




(a) DGP 4 (b) DGP 5

(c) DGP 6 (d) DGP 7

Figure 2.8: Objective Function for Choice of c
Mean (black solid), median (gray solid), first (black long-dashed) and third (black short-
dashed) quartile of (transformed) objective function for choice of the modification pa-
rameter c in the refined modified gamma kernel vI as defined in (2.8) and (2.21). The
transformed objective function is Q(c) := M(2bc), where M(x) is given in (2.24) and b
denotes the bandwidth of the original modified gamma kernel. n = 400.
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2.4.1 Modeling Intraday Trading Volumes

We consider transaction data for Citigroup from the last trading week of February 2009.
The raw sample is filtered by deleting transactions that occurred outside regular trading
hours from 9:30 am to 4:00 pm, computing cumulated trading volumes over 15-second
intervals and removing zero observations, which yields a sample size of 7452.2 To cap-
ture the well-known intraday seasonalities of high-frequency trading variables (see, e.g.,
Hautsch (2004) for an overview), we divide the cumulated volumes by a seasonality
component, which is pre-estimated employing a cubic spline function.

An important property of the resulting (deseasonalized) trading volumes is the strong
persistence, as evidenced by the highly significant Ljung-Box statistics in Table 2.7. The
most widely-used parametric framework for this type of data, see, e.g., Brownlees et al.
(2010), is the multiplicative error model (MEM) originally proposed by Engle (2002b).

Accordingly, we decompose the t-th trading volume, x
(v)
t , as

x
(v)
t = µ

(v)
t ε

(v)
t , ε

(v)
t ∼ i.i.d. D(1) , (2.34)

where µ
(v)
t denotes the conditional mean given the past information set F (v)

t−1 and is as-

sumed to evolve according to the dynamics described in Appendix B.1. ε
(v)
t is a distur-

bance following an unspecified distribution D(1) with positive support and E

ε
(v)
t


= 1.

Assuming MEM-type dynamics would allow to apply gamma kernel estimators to trad-

ing volumes directly and estimate their unconditional density fX

x
(v)
t


consistently (see

Bouezmarni and Rombouts, 2010). Our object of interest, the conditional density given

the past information set F (v)
t−1, can be estimated semiparametrically in a straightforward

way, as the MEM structure implies the basic relationship

fX

x
(v)
t |F (v)

t−1


= fε


x
(v)
t /µ

(v)
t


/µ

(v)
t . (2.35)

We consider a two-step approach. First, we estimate µ
(v)
t by exponential QML and gen-

erate residuals ε̂
(v)
t := x

(v)
t /µ̂

(v)
t , which are consistent estimates of the i.i.d errors ε

(v)
t

(see, e.g., Drost and Werker, 2004). Second, we estimate fε

x
(v)
t /µ

(v)
t


nonparametri-

cally employing gamma kernels. The consistency and parametric rate of convergence of
the conditional mean estimates enable us to use the MEM residuals as inputs without
affecting the asymptotics of the kernel density estimators.

Nonparametric estimation of the error density requires the choice of the appropriate
type of gamma kernel, i.e., standard or modified in the original and refined version (spec-
ification vI). To ensure comparability and boundary regions of equal size, we consider
the least-squares cross-validation (LSCV) bandwidth of the standard gamma kernel es-
timator in all cases. In particular, we use the bandwidth b∗ that minimizes a nearly

2For a detailed discussion of the treatment of zero observations in the context of financial
high-frequency data, see Chapter 1.
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Table 2.7: Ljung-Box Statistics for Trading Volumes and Realized Kernel Estimates
Q(l): Ljung-Box statistic associated with l lags. The 5% (1%) critical values associated
with lag lengths 20, 50 and 100 are 31.41 (37.57), 67.51 (76.15) and 124.34 (135.81). We
consider deseasonalized nonzero 15-second trading volumes of Citigroup and realized
kernel (RK) estimates for JP Morgan.

Volume RK

Q(20) 10349.281 5045.309
Q(50) 19447.096 9834.944
Q(100) 31353.699 14012.591

unbiased estimate of the integrated mean squared error, i.e.,

CV (b) :=
1

n2


i


j

 ∞

τ
Kγ

x/b+1,b


ε̂
(v)
i


Kγ

x/b+1,b


ε̂
(v)
j


dx (2.36)

− 2

n (n− 1)


i


j ̸=i

Kγ
xi/b+1,b


ε̂
(v)
j


,

which yields the bandwidth b∗ = 0.0118. See Hjort and Glad (1995) for details on
(nearly) unbiased cross-validation. Further, we estimate the normalized density deriva-

tive D

ε
(v)
t


for ε

(v)
t ∈ {0, b∗, 2b∗} as in (2.19) based on the modified gamma kernel. The

corresponding results in Table 2.8 show that two out of three estimates are considerably
negative, which indicates a possible pole situation and suggests the use of the standard

gamma kernel. Figure 2.9 displays estimates of the error density fε

ε
(v)
t


based on the

standard and, for comparison, modified gamma kernel for the boundary region and a
larger part of the support. While for both density estimates, the probability mass is
quite concentrated close to the origin, the standard gamma kernel, being the method
of choice, yields an estimate that lies clearly below the density implied by the modified
kernel for the major part of the boundary region.

Finally, Figure 2.10 shows estimates of the conditional density of trading volumes for
February 26 and 27, 2009, at 11am EST. On the latter day, Citigroup announced that
the US treasury would be taking a major equity stake in the company, while the former
day is included for comparison. As an alternative to the semiparametric approach, the
plot also features the conditional density implied by maximum likelihood estimates of
the MEM (2.34) assuming that the errors follow the widely-used gamma distribution
(e.g. Engle and Gallo, 2006). The impact of the announcement on trading activity
related to the Citigroup stock is clearly visible, as the conditional volume distribution for
February 27 assigns considerably less weight to small transactions. The semiparametric
density estimates and their parametric counterparts are quite close to each other in the
interior of the support. The major difference occurs at the origin where the parametric
densities exhibit a pole, which is not the case for the semiparametric estimates.
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Table 2.8: Estimates of Normalized Density Derivative for MEM Errors

Estimates of the ratio D

ε
(m)
t


:= f ′ε


ε
(m)
t


/fε


ε
(m)
t


, m = v, rk, based on the modi-

fied gamma kernel in the boundary region as in (2.19). ε
(m)
t are errors from the MEM

structure (2.34) fitted to deseasonalized nonzero 15-second trading volumes of Citigroup
and realized kernel (RK) estimates for JP Morgan. b∗ is LSCV bandwidth of the stan-
dard gamma kernel estimator: 0.0118 for trading volumes and 0.0206 for realized kernel
estimates.

ε
(m)
t Volume RK

0 0.293 26.283
b∗ -10.100 59.915
2b∗ -14.399 53.235

(a) Full Support (b) Boundary

Figure 2.9: Estimates of MEM Error Density for Intraday Trading Volumes

Estimates of the density fε

ε
(v)
t


from the MEM structure (2.34) fitted to deseasonalized

nonzero 15-second trading volumes of Citigroup. Black solid line: standard gamma
kernel. Gray solid line: modified gamma kernel. LSCV bandwidth of the standard
gamma kernel, b∗ = 0.0118, is used for both estimators.
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(a) Full Support (b) Boundary

Figure 2.10: (Semi-)Parametric Conditional Density of Intraday Trading Volumes
Conditional densities of deseasonalized nonzero 15-second trading volumes of Citigroup

at time t given past information F (v)
t−1. Based on the MEM structure (2.34) and the

relationship (2.35). Parametric estimates (dashed lines) are implied by a ML approach

assuming gamma-distributed errors ε
(v)
t . Semiparametric estimates (solid lines) rely on

QML estimates of µ
(v)
t and nonparametric estimates of fε


x
(v)
t /µ

(v)
t


using the standard

gamma kernel. Conditional densities are estimated for 11am EST on February 26 (black
lines) and February 27, 2009 (gray lines).
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2.4.2 Modeling Realized Volatility

Realized volatility measures computed from high-frequency data allow to construct more
accurate estimates of the underlying lower frequency volatility (see, e.g., Andersen et al.,
2010a). We employ mid-quotes for JP Morgan from January 2006 to December 2009,
which corresponds to 983 trading days, and clean the raw data as suggested in Barndorff-
Nielsen et al. (2008b). The realized volatility for day t is simply defined as the sum of
squared (mid-quote) returns ri,t, i = 1, . . . , Nt. Barndorff-Nielsen and Shephard (2002)
show that, in the absence of noise and with the number of intraday returns approaching
infinity, this basic estimator is consistent for the latent integrated volatility, which under
regularity conditions, provides an unbiased measure of the conditional variance of (daily)
returns. In practice, observed prices are contaminated by microstructure effects, causing
an inconsistency of the basic realized volatility estimator (e.g. Hansen and Lunde, 2006).
Hence, we consider the noise-robust realized kernel estimator, which was proposed by
Barndorff-Nielsen et al. (2008a) and takes the form

x
(rk)
t := γ0 +

H
h=1

k


h− 1

H


(γh + γ−h) , γh :=

nt
i=1

ri,t ri−h,t, (2.37)

where k(·) is the Parzen kernel and H the bandwidth.3 Since (filtered) realized kernel
estimates are used as inputs for kernel density estimators below, the two bandwidths
involved have to be balanced in a way similar to Corradi et al. (2009) who propose
nonparametric conditional density estimators for the integrated volatility. We ensure
that their assumption A.1 is met by choosing H as in Section 4.3 of Barndorff-Nielsen
et al. (2008a).4

Table 2.7 shows that the realized kernel estimates exhibit a similar persistence as
trading volumes, which we account for by following Engle and Gallo (2006) and impos-
ing a flexible MEM structure. Hence, we model the realized kernel value for day t,

x
(rk)
t , analogously to (2.34), where the assumptions for the errors ε

(rk)
t remain the

same, while a slightly different specification is chosen for the conditional mean µ
(rk)
t

(see Appendix B.1). We compute semiparametric estimates of the conditional density

fX

x
(rk)
t |F (rk)

t−1


using the same approach as in Section 2.4.1, which in the given appli-

cation, can be considered as a simple alternative to the fully nonparametric procedure
proposed in Corradi et al. (2009). As Table 2.8 reports, the estimates of the normalized
density derivative for the MEM errors are consistently positive, indicating that the cor-
responding density should be estimated using a modified gamma kernel. Thus, we first
determine the optimal value of the modification parameter c for the refined specification
vI by minimizing the objective function (2.24). We compute the required pilot estimates
of the unknown density and its first two derivatives as outlined in Section 2.2.3, which
yields the parameter value c∗ = 0.0863.

3The number of returns used for the computation of the realized kernel, nt, is lower than the
total number of observations Nt due to the so-called jittering procedure. See Barndorff-Nielsen
et al. (2008a) for details.

4To estimate the so-called noise-to-signal ratio, we follow Barndorff-Nielsen et al. (2008b).
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(a) Full Support (b) Boundary

Figure 2.11: Estimates of MEM Error Density for Realized Kernel Estimates

Estimates of the density fε

ε
(rk)
t


from the MEM structure (2.34) fitted to realized kernel

estimates for JP Morgan. Black solid line: standard gamma kernel. Gray solid line:
modified gamma kernel. Black dashed line: refined modified gamma kernel vI. LSCV
bandwidth of the standard gamma kernel, b∗ = 0.0206, is used for all estimators.

Estimates of the MEM error density implied by all three types of gamma kernels
considered are displayed in Figure 2.11 and indicate the following major results. First,
as compared to the error density based on trading volumes in Figure 2.9, the mode of
the distribution is further to the interior of the support. Second, the density exhibits
a similar degree of right-skewness as was reported for the unconditional distribution of
realized volatilities by Andersen et al. (2001). Finally, the density estimate based on
the refined modified kernel tends to zero when approaching the boundary instead of

taking a strictly positive value at ε
(rk)
t = 0. This effect is caused by the low value of

the modification parameter c, which pushes the shape parameter ρvIb

ε
(rk)
t


below one

when smoothing at the boundary (see (2.21)). A distribution of stock return volatility
with vanishing probability mass close to the boundary is in line with financial theory,
since stocks are “risky” assets for which investors demand a volatility premium (see, e.g.,
Merton, 1973).

Figure 2.12 displays conditional density estimates of realized kernel values for two
days during the financial crisis 2007 – 2008: October 10, 2008, when the DJIA index fell
by 8% at the start of the trading day, and November 10, 2008, when a major restruc-
turing of the AIG bailout plan was announced. The density estimates are based on our
semiparametric procedure using the refined modified gamma kernel and the parametric
approach from Section 2.4.1. Except for some discrepancies around the mode and in
the boundary region, the parametric estimates roughly match the semiparametric ones,
indicating that the gamma distribution is a reasonable assumption for the MEM errors.
With respect to dynamic changes, the conditional densities reflect the more unstable
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(a) Full Support (b) Boundary

Figure 2.12: (Semi-)Parametric Conditional Density of Realized Kernel Estimates
Conditional densities of realized kernel estimates for JP Morgan at day t given past

information F (rk)
t−1 . Based on the MEM structure (2.34) and the relationship (2.35).

Parametric estimates (dashed lines) are implied by a ML approach assuming gamma-

distributed errors ε
(rk)
t . Semiparametric estimates (solid lines) rely on QML estimates of

µ
(rk)
t and nonparametric estimates of fε


x
(rk)
t /µ

(rk)
t


using the refined modified gamma

kernel vI. Conditional densities are estimated for October 10 (gray lines) and Novem-
ber 10, 2008 (black lines). Realized kernel estimates are annualized.

market environment on October 10, since the corresponding volatility distribution has
its mode further away from the origin and is more dispersed. Further, as in case of the
unconditional error density, the probability mass is vanishing close to the boundary for
both days and estimators considered.

2.5 Conclusion

Gamma kernel estimators vary their shape according to the point of estimation along
the support. For positive-valued random variables, this location adaptiveness avoids the
boundary bias associated with standard fixed kernel estimators, while yielding strictly
nonnegative density estimates by construction. We show for various density shapes that,
in finite samples, the two original gamma kernel estimators outperform all boundary and
boundary-corrected fixed kernel-type estimators in the boundary region, especially for
settings with a pronounced probability mass close to zero. For all other setups and in
the interior of the support, their finite sample performance is comparable to the one of
fixed-type boundary kernels. Moreover, based on asymptotic considerations and finite
sample illustrations, we find that, for pole situations at zero, the two gamma kernel
estimators differ substantially. In fact, the standard type is superior to the generally

64



used modified version in this case. We therefore suggest a simple criterion to check
for such situations. For all other settings, we propose a refined modified version of the
gamma kernel estimator, which further improves upon the performance of the original
modified kernel. Our technique is complemented by a data-driven approach for choosing
the modification parameter in the new refined gamma kernel. In two application settings,
we demonstrate that, in particular in high-frequency finance, the suggested methodology
yields superior results of practical impact.
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Chapter 3

Do High-Frequency Data Improve
High-Dimensional Portfolio
Allocations?

This chapter is based on Hautsch, Kyj, and Malec (2011).

3.1 Introduction

With the rise in mutual fund and exchange-traded fund (ETF) investing, quantitative
short-term management of vast portfolios has emerged as a topic of great interest. For
allocation decisions, forecasts of high-dimensional covariance matrices constitute a cru-
cial input, which initiated a body of literature on the performance of various methods
based on asset return data measured up to a daily frequency (see, e.g., Chan et al., 1999;
Jagannathan and Ma, 2003). Although the work of Andersen et al. (2001), Barndorff-
Nielsen and Shephard (2004) and Barndorff-Nielsen et al. (2011), among others, opened
up a new channel for increasing the precision of covariance matrix estimates and fore-
casts by exploiting high-frequency (HF) data, existing empirical studies examine its
benefits for portfolio selection only in moderate dimensions (e.g. Fleming et al., 2003;
Liu, 2009). This chapter evaluates the potential of HF data for portfolio selection in a
realistic high-dimensional framework.

While ensuring a high precision, we face major technical and practical challenges
when constructing covariance matrix forecasts for vast-dimensional portfolio applica-
tions. First, forecasts have to be both positive definite and well-conditioned. These
properties can be guaranteed by having sufficiently long estimation windows, sampling
frequently enough within a fixed window, imposing a parametric specification or apply-
ing suitable regularization techniques. The latter include factor structures, e.g., based
on principal components, methods from random matrix theory, such as eigenvalue clean-
ing (see Laloux et al., 1999), or shrinkage techniques as proposed in Ledoit and Wolf
(2003). Second, covariance matrix predictions have to balance responsiveness (to new

67



information) and a certain degree of stability. The latter property is crucial for prevent-
ing high transaction costs caused by excessive portfolio rebalancing and can be ensured
by smoothing the estimates appropriately.

Motivated by these requirements, we address the following research questions: (i) Do
HF-based forecasts generally outperform low-frequency-based approaches and – if yes –
over which time horizons? (ii) Which regularization methods are (empirically) supe-
rior? (iii) How important is it to smooth estimates over time? (iv) How well do naive
predictions of covariance matrices (i.e., random walk forecasts) perform compared to
corresponding dynamic forecasting models? (v) How do results change in dependence of
the dimension of the underlying portfolio?

We answer these questions in an extensive and thorough empirical study by focus-
ing on the problem of constructing global minimum variance (GMV) portfolios based
on the constituents of the S&P 500 index over a four-year period covering the 2008
financial crisis. Studying global minimum variance portfolios (in contrast to minimum
variance portfolios for a given expected return) has the important advantage that the
corresponding weights are determined solely by forecasts of the conditional covariance
matrices over the given investment horizon. This property is tantamount to pure volatil-
ity timing strategies and avoids the inherent noisiness of conditional mean predictions,
overshadowing the analysis and blurring the role of covariance forecasts, (see, e.g., Ja-
gannathan and Ma, 2003). We obtain HF-based covariance matrix estimates by applying
the blocked realized kernel (BRK) by Hautsch et al. (2012) to mid-quote data. These
estimates are smoothed over different time windows, regularized by eigenvalue cleaning
or imposing a factor structure and, finally, utilized to construct both naive predictions
and forecasts based on a simple dynamic specification. We benchmark the HF forecasts
with prevailing approaches employing daily returns. In particular, we use multivari-
ate GARCH models, rolling window sample covariance matrices regularized in different
ways, as well as both classic and state-of-the-art RiskMetrics approaches. The compet-
ing methods are evaluated in terms of the (estimated) conditional portfolio volatility and
important characteristics of the implied portfolio allocations, such as portfolio turnovers
and the amount of short-selling. Finally, we examine the economic significance of differ-
ences in portfolio volatility by a refined version of the utility-based method introduced
in West et al. (1993) and Fleming et al. (2001). This approach provides performance fees
(net of transaction costs) that a risk-averse investor would be willing to pay to switch
from, for instance, covariance forecasts employing daily returns to HF-based forecasts.
To provide finite sample inference for these performance characteristics, we embed the
entire evaluation methodology into a stylized “portfolio bootstrap” framework based on
a random sampling of asset subsets.

We summarize the major results as follows. First, even naive HF-based forecasts
outperform all low-frequency (LF) methods in terms of portfolio volatility. This is par-
ticularly true during the turbulent crisis period. Here, an investor with high risk aversion
and a daily horizon would be willing to pay up to 199 basis points to benefit from a lower
portfolio volatility produced from HF data. This superiority of HF-based forecasts per-
sists up to a monthly horizon with the corresponding performance fee being still 99 basis

68



points. Second, while eigenvalue cleaning, as applied to BRK estimates by Hautsch et al.
(2012), performs well as a robust baseline approach, adaptive or fixed factor structures
constitute an effective alternative. Third, short-term smoothing of HF-based covariance
matrix estimates can be beneficial for further reducing portfolio volatility. In contrast,
smoothing over too long time intervals increases volatility but lowers portfolio turnover.
The latter, however, is of importance if the transaction cost level is particularly high.
Fourth, constructing forecasts based on a simple dynamic specification of (realized) co-
variances further improves the performance of HF-based forecasts. During the crisis
period, the performance fees an investor with pronounced risk aversion would pay for
switching from LF-based predictions amount to 328 and 239 basis points for a daily
and monthly horizon, respectively. Fifth, we demonstrate that exploiting HF data for
portfolio selection is challenging in a vast investment universe including relatively illiq-
uid assets. In contrast, focusing on the 100 and 30 most heavily-traded stocks out of
the S&P 500 universe, we find that basis point fees for switching to HF-based forecasts
increase by a multiple.

This chapter contributes to (the few existing) studies on the benefits of HF data for
portfolio allocation. In their seminal work, Fleming et al. (2003) apply the evaluation
methodology by Fleming et al. (2001) to volatility timing strategies in a general mean-
variance context. For a daily forecasting horizon, they find that a risk-averse investor
would be willing to pay between 50 and 200 basis points to switch from covariance fore-
casts based on daily returns to those employing five-minute returns. However, these
results are based on allocations across only three highly-liquid futures contracts. Liu
(2009) extends the size of the asset universe to 30 by constructing minimum tracking
error portfolios (tracking the S&P 500 index) based on the constituents of the Dow Jones
Industrial Average. He confirms the benefits of HF-based forecasts in terms of track-
ing error volatility. Apart from examining the value of HF data for portfolio selection
in general, the studies by Bandi et al. (2008) and de Pooter et al. (2008) also aim to
determine the optimal intraday sampling frequency. While the former minimize a mean
squared error criterion for three S&P 500 stocks and conduct an ex-post economic eval-
uation, the latter directly compare the performance of volatility timing strategies based
on different frequencies considering the constituents of the S&P 100 index.

However, to our best knowledge, no study thoroughly analyzed HF-based forecasts of
portfolios covering several hundreds of assets as commonly used in practice. In addition,
our contributions to this strand of literature are twofold. First, the above studies are
restricted to intraday data sampled at fixed time intervals (e.g., five minutes). We
consider the highest frequency possible, employing tailor-made covariance estimators
that offer substantial precision gains (see, e.g., Barndorff-Nielsen et al., 2011; Hautsch
et al., 2012). Second, the predominant evaluation method is to examine unconditional
sample moments of implied portfolio returns (or utilities depending on the latter), which
however, can distort the ranking of the underlying covariance matrix forecasts (see Voev,
2009). Our evaluation approach builds upon estimated conditional portfolio volatilities,
allowing for a more reliable ranking of competing covariance predictions.

The remainder of the chapter is organized as follows. Section 3.2 introduces the
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general GMV framework, as well as the corresponding evaluation methodology for con-
ditional covariance matrix forecasts. In Section 3.3, we discuss the methods for the
construction of conditional covariance predictions based on both HF and LF data. Sec-
tion 3.4 presents the S&P 500 dataset, more details on the evaluation procedure and the
empirical results. Finally, Section 3.5 concludes.

3.2 Global Minimum Variance Portfolios and

Covariance Forecasts

The practical implementation of a general mean-variance framework in the spirit of
Markowitz (1952) relies on forecasts of the first two conditional moments of asset returns.
Consequently, the performance of the predicted (optimal) portfolio allocation depends on
the predictability of both conditional means and conditional covariances. However, it is
well-known that the predictability of first conditional moments of asset returns is much
lower than the predictability of conditional (co-)variances (e.g. Merton, 1980). Thus,
mean forecasts are subject to substantial prediction errors, which in turn, can completely
dominate and distort the analysis (e.g. Michaud, 1989). As a result, isolating the explicit
effects of high-dimensional covariance forecasts on the resulting portfolio performance
is virtually impossible. Hence, in order to eliminate the impact of conditional mean
predictions and to solely focus on the value of covariance forecasts, we consider global
minimum variance portfolios. This proceeding is backed by empirical evidence showing
that the noisiness of mean predictions leads to highly unstable portfolio allocations,
which are typically outperformed by approaches explicitly avoiding the need of mean
forecasts (e.g. DeMiguel et al., 2009; Jagannathan and Ma, 2003; Michaud, 1989). In this
sense, our analysis provides insights into the impact of covariance forecasts on portfolio
performance without being affected by assumptions or estimation errors associated with
mean predictions.

We assume a risk-averse investor with a horizon of h days and an asset universe of
m stocks whose optimization problem at day t can be formulated as

min
wt,t+h

w′
t,t+hΣt,t+hwt,t+h s.t. w′

t,t+hι = 1, (3.1)

where wt,t+h is the (m× 1) vector of portfolio weights and ι is a (m× 1) vector of ones.
Further, Σt,t+h := Cov[rt,t+h|Ft] denotes the (m×m) conditional covariance matrix of
rt,t+h, i.e., the (m× 1) vector of log-returns from day t to t + h, given the information
set at t, Ft. If, for simplicity, we assume that Cov[rt+r−1,t+r, rt+s−1,t+s|Ft] = 0, r, s ≥ 1,

r ̸= s, then Σt,t+h =
h

r=1 E[Σt+r−1,t+r|Ft]. For h = 1, we write rt+1 := rt,t+1 and,
equivalently, Σt+1 := Σt,t+1. Solving (3.1) yields the GMV portfolio weights given by

w∗
t,t+h =

Σ−1
t,t+h ι

ι′Σ−1
t,t+h ι

. (3.2)
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We investigate the benefits of HF data for GMV portfolio selection in terms of forecasts
of the conditional covariance matrix, Σt,t+h, with corresponding weights wt,t+h. To
evaluate these predictions, we exploit the basic result of Patton and Sheppard (2008)
showing that the conditional variances of the portfolios based on the true conditional
covariance matrix Σt,t+h and its forecast Σt,t+h obey

w′
t,t+hΣt,t+h wt,t+h > w∗′

t,t+hΣt,t+hw
∗
t,t+h if Σt,t+h ̸= Σt,t+h. (3.3)

This result yields a natural evaluation criterion, as resulting portfolio variances approach
a lower bound if forecasts Σt,t+h approach their population counterparts. Consequently,

we consider a forecast Σt,t+h as being “better” if it produces a smaller conditional port-
folio variance. As will be discussed below, the conditional portfolio variances can be
proxied using HF data.

Importantly, Voev (2009) shows that the above criteria are valid only for condi-
tional, but not unconditional variances. Employing the latter introduces an objective
bias, which is driven by the variance of the conditional mean of portfolio returns. There-
fore, the bias is negligible only if a mean of zero can be assumed, which is problematic
for horizons of more than, e.g., a day. Further, the bias term imposes a penalty on the
variation in portfolio weights. This property becomes particularly restrictive when com-
paring covariance matrix forecasts based on LF and HF data, as intuitively, the latter
should be able to incorporate new information faster, implying more variability in the
weights. Hence, gains from employing HF data might be understated when unconditional
portfolio variances are considered for evaluation.

We assess the economic significance of lower (conditional) portfolio variances by
adapting the utility-based evaluation approach suggested by West et al. (1993) and
Fleming et al. (2001) to a conditional framework. Accordingly, we assume that the
investor has quadratic preferences of the form

U

rpt,t+h


= 1 + rpt,t+h −

γ

2 (1 + γ)


1 + rpt,t+h

2
, (3.4)

where rpt,t+h := w′
t,t+h rt,t+h is the portfolio return, while γ denotes the relative risk

aversion. Following Fleming et al. (2003), we consider the two levels γ = 1 and γ = 10.
For two competing covariance forecasts, ΣI

t,t+h and ΣII
t,t+h, implying the GMV portfolio

returns rp,It,t+h and rp,IIt,t+h, we then determine a value ∆γ , such that

T−h
t=1

E

U

rp,It,t+h

Ft


=

T−h
t=1

E

U

rp,IIt,t+h −∆γ

Ft


. (3.5)

∆γ can be interpreted as a fee the investor would be willing to pay in order to

switch from a GMV strategy based on ΣI
t,t+h to its counterpart employing ΣII

t,t+h.
As we show in Appendix C.1, the solution to (3.5) depends on the conditional port-
folio variances, wi′

t,t+hΣt,t+h wi
t,t+h, and the conditional means, wi′

t,t+h µt,t+h, where
µt,t+h := E[rt,t+h|Ft] is the (m× 1) vector of conditional expected returns and i = I, II.
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To focus on the effects of differences in (average) conditional portfolio variances, we
assume that expected returns are constant over time and identical across all stocks, i.e.,
µt,t+h = (h/252)µid ι, t = 1, . . . , T − h. Then, we obtain the relationship

∆γ > 0 iff σ2,pI > σ2,pII , σ2,pi :=
1

T − h

T−h
t=1

wi′
t,t+hΣt,t+h wi

t,t+h, i = I, II, (3.6)

under the assumption that (h/252)µid ≤ 1/γ (see Appendix C.1).1 To control for
the impact of the assumed level of µid on the performance fee ∆γ , we consider a grid
of values satisfying the above restriction for the investment horizons and rates of risk
aversion employed, i.e., µid ∈ {−0.05, 0, 0.05, 0.1}. However, as we discuss below, our
results are very robust to the specific value of µid.

3.3 Covariance Estimation and Forecasting in

Vast Dimensions

3.3.1 Forecasts Based on High-Frequency Data

Estimating asset return covariances based on high-frequency data requires addressing
four major challenges: (i) using high-frequency information based on maximally high
sampling frequencies in order to maximize the estimator’s efficiency, while (ii) avoiding
biases due to microstructure noise (e.g. Hansen and Lunde, 2006) and the asynchronous
arrival of observations across assets (e.g. Epps, 1979), as well as (iii) ensuring positive
definiteness and (iv) well-conditioning of covariance estimates, i.e., numerical stability
of their inverse. Satisfying all criteria simultaneously is challenging, as for instance,
fulfilling (i), (iii) and (iv) requires sampling on maximally high frequencies, which in
turn, causes substantial biases ruled out by (ii). Conversely, sparse sampling, e.g., based
on five-minute returns, as utilized by the classical realized covariance estimator proposed
by Andersen et al. (2001), satisfies (ii) but violates (i) and – if the dimension of the
portfolio is high – (iv).

A widely-used estimator that is both consistent in the presence of microstructure
noise and provides positive semidefinite estimates (thus satisfying (ii) and (iii)) is the
multivariate realized kernel proposed by Barndorff-Nielsen et al. (2011). As an important
ingredient, this approach involves so-called refresh time sampling for synchronization,
which requires to sample prices whenever all assets have been traded (i.e., have been
refreshed) at least once. This naturally implies a loss of efficiency, since the sampling fre-
quency is driven by those assets trading slowest. As stressed and illustrated by Hautsch
et al. (2012), this loss of efficiency can be substantial (thus violating (i)) if the number of

1 Even in case (h/252)µid > 1/γ, we always have that ∆γ > 0 if σ2,p
I > σ2,p

II . However, the
above condition on µid is not overly restrictive. For the longest investment horizon and highest
level of risk aversion we consider, i.e., h = 20 and γ = 10, we need to impose that µid ≤ 1.26.
That is, the assumed annualized expected return may not exceed 126 percentage points.
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assets and their heterogeneity in terms of trading frequency is high. In the extreme case,
covariance matrix estimates might even become ill-conditioned (thus violating (iv)).

The Blocked Realized Kernel

To address this problem and construct estimates which satisfy all criteria, we consider
the blocked realized kernel put forward by Hautsch et al. (2012). The idea behind the
blocked realized kernel is to assign the assets to groups according to their (average)
trading frequency and to estimate the underlying correlation matrix groupwise.

In a general framework, we denote the log-price of asset i at time τ by p
(i)
τ ,

i = 1, . . . ,m. For the assumptions on the price process that ensure consistency of
the (blocked) multivariate realized kernel, we refer to Barndorff-Nielsen et al. (2011).

On day t, t = 1, . . . , T , the j-th price observation of asset i is at time τ
(i)
t,j , where

j = 1, . . . , N
(i)
t and i = 1, . . . ,m. Let G be the specified number of liquidity groups,

yielding the blocks b = 1, . . . , B, with B = G (G+ 1) /2. Further, we denote the set of
indices of the mb assets associated with block b by Ib. Applying the multivariate realized
kernel methodology to the assets in Ib then requires refresh time sampling with refresh
times defined as the time it takes for all the assets in this set to trade or refresh posted
prices, i.e.,

rτ bt,1 := max
i∈Ib


τ
(i)
t,1


, rτ bt,l+1 := max

i∈Ib


τ
(i)

t,N(i)(rτbt,l)+1


, (3.7)

where N (i)(τ) denotes the number of price observations of asset i before time τ . Accord-
ingly, vectors of synchronized returns are obtained as

rbt,l := prτbt,l
− prτbt,l−1

, l = 1, . . . , nbt , (3.8)

where nbt is the number of refresh time observations in block b.
The multivariate realized kernel on block b is defined as

Kb
t :=

Hb
t

h=−Hb
t

k


h

Hb
t + 1


Γh,b
t , (3.9)

where k(·) is given by the Parzen Kernel and Γh,b
t is an autocovariance matrix, i.e.,

Γh,b
t :=

 nb
t

l=h+1 r
b
t,l r

b′
t,l−h for h ≥ 0nb

t
l=−h+1 r

b
t,l+h r

b′
t,l for h < 0.

(3.10)

Hb
t is a block-specific smoothing bandwidth that is chosen as in Section 3.4 of Barndorff-

Nielsen et al. (2011). Based on (3.9), we compute the corresponding estimate of the
correlation block b as

RK,b
t :=


V b
t

−1
Kb

t


V b
t

−1
, V b

t := diag

K

b,(ii)
t

1/2
, i = 1, . . . ,mb, (3.11)
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Figure 3.1: Visualization of the Blocking Strategy According to Hautsch et al. (2012)

where K
b,(ii)
t , i = 1, . . . ,mb, are the diagonal elements of Kb

t .
The correlation matrix RBRK

t is then obtained as a hierarchical combination of the
correlation blocks RK,b

t , b = 1, . . . , B. Figure 3.1 from Hautsch et al. (2012) illustrates
the blocking strategy in a covariance matrix, where the top-left corner is associated with
the most liquid assets and the bottom-right corner is associated with the least liquid
assets. The data is decomposed into three equal-sized liquidity groups (G = 3), yielding
six correlation blocks. Then, in a first step, the entire correlation matrix (block one) is
estimated. Subsequently, we obtain estimates of blocks two and three associated with
the correlations between the less liquid and more liquid assets, respectively. Finally,
blocks four to six contain the correlations within each liquidity group. Efficiency gains
arise due to a more effective synchronization and thus a higher (refresh time) sampling
frequency within each block. Consequently, all blocks – except block one – are estimated
with higher precision than in the plain realized kernel. Finally, from the (block-wise)
estimated correlation matrix RBRK

t , the BRK estimate of the covariance matrix is con-
structed according to

BRKt := V RK
t RBRK

t V RK
t , V RK

t := diag

RK

(i)
t

1/2
, i = 1, . . . ,m, (3.12)

with RK
(i)
t , i = 1, . . . ,m, denoting variance estimates based on the univariate version of

the realized kernel (Barndorff-Nielsen et al., 2008a). Consequently, the variance elements
are estimated with highest precision, since in a univariate setting synchronization by
refresh time sampling is not necessary. We implement the realized kernel estimator
following the procedure from Barndorff-Nielsen et al. (2008b).

Smoothing, Regularization and Construction of Forecasts

Variations in portfolio weights require a rebalancing of the portfolio and thus cause
transaction costs. The latter can be reduced by keeping covariance matrix forecasts suf-
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ficiently stable. The explicit consideration of transaction costs in the underlying portfolio
optimization problem, however, results in an empirically challenging problem, as it re-
quires bounding the variability of portfolio weights and thus of the covariance matrix
over time. Although the derivation of an explicit solution of this problem is beyond
the scope of this chapter, we still aim at studying the impact of competing covariance
forecast constructions on the resulting portfolio turnover. A straightforward method to
stabilize covariance matrix estimates is to “smooth” them over time by computing simple
averages over S days, i.e., BRKt,S := (1/S)

S
s=1BRKt−s+1, where BRKt,1 = BRKt.

2

Then, a smoothed correlation matrix is obtained as

RBRK
t,S :=


V RK
t,S

−1
BRKt,S


V RK
t,S

−1
, V RK

t,S := diag

RK

(i)
t,S

1/2
, i = 1, . . . ,m, (3.13)

with RK
(i)
t,S := (1/S)

S
s=1RK

(i)
t−s+1, i = 1, . . . ,m, being smoothed univariate realized

kernel estimates.
Estimating correlation matrices block-wise implies efficiency gains, but yields esti-

mates (even after smoothing) which are not guaranteed to be positive semidefinite and
well-conditioned. Indefinite matrices feature negative eigenvalues, while ill-conditioned
matrices possess eigenvalues that are close to zero, which makes inversions numerically
unstable. Particularly for the computation of minimum variance portfolio weights as in
(3.2), however, it is crucial that covariance matrices are both positive definite and well-
conditioned. These requirements make it necessary to employ suitable regularization
techniques.

As a first alternative, we follow Hautsch et al. (2012) employing the eigenvalue clean-
ing procedure proposed by Laloux et al. (1999). This method rests on the idea of com-
paring the (empirical) distribution of eigenvalues of the estimated correlation matrix to
the theoretical distribution of eigenvalues one would obtain under independence of the
m processes. The latter is derived from random matrix theory and yields the expected
distribution of eigenvalues assuming these are completely driven by noise. Consequently,
eigenvalues strongly departing from the theoretical distribution are identified as “signals”
carrying significant information on cross-sectional dependencies. Conversely, eigenval-
ues being close to zero, and thus below a theoretical upper threshold, are identified
as “noisy”. They are likely to be noninformative, while causing the correlation ma-
trix to be ill-conditioned. Hence, these eigenvalues can be inflated, making estimates
well-conditioned without significantly losing information. See Appendix C.2 for details.

As a second regularization technique, we consider a factor structure based on the
spectral components of the correlation matrix. Covariance forecasts based on factor
models have been demonstrated to improve the performance of minimum variance port-
folios (e.g. Chan et al., 1999). Moreover, a factor structure ensures fast convergence of
the factor inverse if the number of factors is small relative to the number of assets (see
Fan et al., 2008). Accordingly, we consider a spectral decomposition of the smoothed

2Obviously, one might also “smooth” in a more sophisticated way by applying weighting
schemes, e.g., based on kernel methods. We leave this for further research but show that even
smoothing based on simple averages yields superior results, see Section 3.4.3.
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correlation matrix estimate on day t, i.e.,

RBRK
t,S = Qt,S Λt,S Q

′
t,S , (3.14)

where Λt,S is the diagonal (m×m) matrix of eigenvalues ordered from largest to small-
est, while Qt,S denotes the orthonormal (m×m) matrix of corresponding eigenvectors.
Then, by retaining only the first kt,S ≤ m correlation eigenvalues and associated eigen-
vectors, we obtain the factorized estimate of the correlation matrix

RBRK
t,S,(kt,S)

= Qt,S,(kt,S)Λt,S,(kt,S)Q
′
t,S,(kt,S)

+

Im −Qt,S,(kt,S)


, (3.15)

where Qt,S,(kt,S) is a diagonal (m×m) matrix containing the diagonal elements of
Qt,S,(kt,S)Λt,S,(kt,S)Q

′
t,S,(kt,S)

. The number of factors kt,S is chosen in two ways. Firstly,

we select the number of factors for each day t separately employing the criteria by Bai
and Ng (2002). For implementation details, we refer to Appendix C.3. Secondly, we
consider a factor structure with the numbers of factors fixed to one or three.

Hence, our combined framework for smoothing and regularizing BRK estimates can
be summarized asΣvRnB

t,S := V RK
t,S RvRnB

t,S V RK
t,S , v ∈ {E,F, 1F, 3F} , (3.16)

with RvRnB
t,S corresponding to the smoothed correlation matrix estimates from (3.13)

regularized by eigenvalue cleaning (E) or by imposing an adaptive (F) or fixed (1F and
3F) factor structure. Following Hautsch et al. (2012), in all cases we regularize only if
RBRK

t,S is nonpositive definite or ill-conditioned. The latter is defined to be the case ifΛ(1)
t,S/Λ

(m)
t,S

 > 10×m, (3.17)

where Λ
(1)
t,S and Λ

(m)
t,S are the largest and smallest eigenvalue of RBRK

t,S , respectively.
Further possibilities for regularization include, for instance, thresholding techniques

(Wang and Zou, 2010). However, the latter rely on a sparsity assumption for the un-
derlying covariance matrix, which is problematic given the strong cross-sectional depen-
dencies typical for equity data. Alternatively, as shown by Jagannathan and Ma (2003),
regularization can be achieved by imposing no-short-sale constraints in the portfolio op-
timization problem (3.1). A related result for general gross portfolio constraints is put
forward by Fan et al. (2012b) and applied to evaluate covariance matrix estimates using
HF data, e.g., in Fan et al. (2012a). Here, we focus on an unconstrained framework, since
it explicitly allows us to compare the performance of different regularization methods
and to evaluate the forecasting accuracy not only with respect to the covariance matrix,
but also to its inverse.

We construct forecasts of Σt,t+h based on the information set Ft by two alterna-
tive approaches. Firstly, we evaluate random walk (“naive”) forecasts of the formΣt,t+h = h ΣvRnB

t,S , which will be referred to as vRnB(S), v ∈ {E,F, 1F, 3F}. As an
alternative to a pure random walk forecast, we propose a simple dynamic model for un-
smoothed covariance matrix estimates. When choosing a suitable dynamic specification
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for covariance matrices, positive definiteness of forecasts, model parsimony and ease of
implementation are important factors to ensure feasibility in a vast-dimensional setting.
To guarantee positive definiteness, we follow Andersen et al. (2003) and Chiriac and
Voev (2011) in modeling the Cholesky decomposition of covariance matrix estimates,
i.e., ΣvRnB

t,1 = Lt L
′
t, where Lt is a lower triangular matrix. As Lt contains m (m+ 1) /2

distinct elements, we ensure tractability in high dimensions by modeling each row or col-
umn of Lt independently. Due to its triangular form, modeling the rows or columns of
Lt implies a hierarchical specification of dynamics, depending on the ordering of assets.
Consequently, (co-)variances associated with assets being ranked first widely follow their
individual dynamics, while volatilities associated with higher ranks are subject to several
joint dynamics. For instance, in case of row modeling, the volatility of the first asset and,
in case of column modeling, all scaled covariances thereof with all other stocks follow
independent dynamics.3 To account for this hierarchy, we order the assets according to
their (average) trading frequency during the estimation period.

Let L
(g•)
t denote the (g × 1) vector of elements from the g-th row of Lt and L

(•g)
t

the ((m− g + 1)× 1) vector of elements from the g-th column, g = 1, . . . ,m. Dynamic

specifications for L
(g•)
t and L

(•g)
t should capture the well-known persistence properties

of volatility processes, which can be achieved by fractionally integrated processes (e.g.,
Andersen et al., 2003), appropriately mixing different frequencies using, e.g., mixed
data sampling (MIDAS) techniques as proposed by Ghysels et al. (2006) or heteroge-
neous autoregressive (HAR) processes introduced by Corsi (2009). We follow the latter
strategy, which is in the spirit of Chiriac and Voev (2011) applying HAR dynamics
to the Cholesky factors of realized covariance estimates. Accordingly, we consider the
HAR(1, 5, 20) specifications

L
(g•)
t = c(g•) + α

(g•)
d L

(g•)
t−1 +

α
(g•)
w

5

5
s=1

L
(g•)
t−s +

α
(g•)
m

20

20
s=1

L
(g•)
t−s + ε

(g•)
t , g = 1, . . . ,m,

(3.18)

L
(•g)
t = c(•g) + α

(•g)
d L

(•g)
t−1 +

α
(•g)
w

5

5
s=1

L
(•g)
t−s +

α
(•g)
m

20

20
s=1

L
(•g)
t−s + ε

(•g)
t , g = 1, . . . ,m,

where c(g•) and c(•g) are (g × 1) and ((m− g + 1)× 1) parameter vectors, respectively,
while the remaining parameters are scalars. We will refer to these specifications as Row-
and Column-Cholesky-HAR (RCHAR and CCHAR) models. Based on (least-squares)

parameter estimates, the models (3.18) yield h-step ahead forecasts L(g•)
t+h and L(•g)

t+h ,

g = 1, . . . ,m, which are combined to form Lt+h. Finally, we construct forecasts of Σt,t+h

as Σt,t+h =
h

r=1
Lt+r

L′
t+r. These forecasts involve a bias, as they rely on a nonlinear

transformation of the covariance matrix. However, we abstain from a bias correction,

3The first row of Lt contains the diagonal element
Σ(1,1)

t,1 , while the first column equals the

vector
Σ(1,1)

t,1 , Σ(1,2)
t,1 , . . . , Σ(1,m)

t,1

′
/
Σ(1,1)

t,1 .
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as e.g., Chiriac and Voev (2011) demonstrate that this bias is empirically negligible. In
any case, this issue should be of minor relevance when considering an economic instead
of a statistical loss function.

3.3.2 Forecasts Based on Daily Data

We assess the merits of covariance forecasts based on HF data for the portfolio se-
lection framework presented in Section 3.2 by benchmarking the former against meth-
ods employing daily returns. A comprehensive overview of these approaches can be
found in Sheppard (2012). The three classes of estimators we consider are (i) multivari-
ate GARCH models, (ii) (regularized) rolling window sample covariance matrices and
(iii) RiskMetrics. (i) and (ii) have been shown to perform well in the econometric and
finance literature, while (iii) is of relevance in financial practice. In this context, we
will denote by ut the (m× 1) vector of demeaned returns at day t, i.e., ut := rt − µt,
t = 1, . . . , T , where as for the utility-based evaluation above and in line with, e.g.,
Hansen and Lunde (2005) we assume that the vector of conditional mean returns µt is
constant over time.

Multivariate GARCH Models

Multivariate GARCH (MGARCH) models parameterize the dynamics of the conditional
covariance matrix Σt+1. For a survey of this model class, we refer to Bauwens et al.
(2006). We consider the scalar version of the vector GARCH model (S-VEC) intro-
duced in Bollerslev et al. (1988) and the dynamic conditional correlation (DCC) model
proposed by Engle (2002a). The former is motivated by the results on spectral com-
ponents of covariance and correlation matrices in Zumbach (2009a) that favor a direct
modeling of conditional covariance matrices. For that purpose, the S-VEC model is
the most parsimonious approach. Employing DCC specifications is justified by their
superior out-of-sample prediction accuracy within the MGARCH class when considering
various statistical loss functions and different dimensions (e.g. Caporin and McAleer,
2012; Laurent et al., 2012). We estimate both models by Gaussian QML, i.e., assuming
ut+1|Ft ∼ N(0,Σt+1).

The S-VEC model is a direct extension of the univariate GARCH specification. En-
suring covariance targeting as proposed by Engle and Mezrich (1996), it can be formu-
lated as

Σt+1 = Σ̄ (1− αh − βh) + αh ut u
′
t + βh Σt, αh, βh ≥ 0, αh + βh < 1, (3.19)

where Σ̄ := E[ut u
′
t] denotes the unconditional covariance matrix of ut, which is consis-

tently estimated by the corresponding sample moment. Then, αh and βh are estimated
by QML using the composite likelihood method proposed by Engle et al. (2008). Ac-
cordingly, the joint likelihood is replaced by the sum of pairwise likelihoods, ensuring
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tractability in high dimensions.4 Using the parameter estimates in specification (3.19),
we construct h-step ahead forecasts Σt+h, yielding Σt,t+h =

h
r=1

Σt+r.
The DCC model decomposes the conditional covariance matrix according to

Σt+1 = Vt+1 Rt+1 Vt+1, Vt+1 := diag

σ
2,(i)
t+1

1/2
, i = 1, . . . ,m, (3.20)

with the conditional variances σ
2,(i)
t+1 following univariate GARCH processes, while a

similar dynamic structure is imposed on the conditional correlations in Rt+1, i.e.,

σ
2,(i)
t+1 = ωi + αi u

(i),2
t + βi σ

2,(i)
t , ωi, αi, βi ≥ 0, αi + βi < 1, i = 1, . . . ,m, (3.21)

Rt+1 =

V z
t+1

−1
Zt+1


V z
t+1

−1
, V z

t+1 := diag

Z

(ii)
t+1

1/2
, i = 1, . . . ,m,

Zt+1 = Z̄ (1− αz − βz) + αz ϵt ϵ
′
t + βz Zt, αz, βz ≥ 0, αz + βz < 1,

where Z
(ii)
t+1, i = 1, . . . ,m, are the diagonal elements of Zt+1, ϵt := V −1

t ut is the
(m× 1) vector of devolatilized returns and Z̄ := E[ϵt ϵ

′
t]. Estimation is carried out

in three steps. Firstly, we estimate the m univariate GARCH(1, 1) models. Secondly, Z̄
is estimated by correlation targeting, i.e., replacing E[ϵt ϵ

′
t] with its sample analogue.5

Finally, we estimate the correlation parameters by the composite likelihood approach.
Based on QML parameter estimates and the dynamics in (3.21), one-step ahead covari-
ance forecasts can be straightforwardly constructed as

Σt+1 = Vt+1
Rt+1

Vt+1, Vt+1 := diag
σ2,(i)t+1

1/2
, i = 1, . . . ,m. (3.22)

To obtain the multi-step forecasts necessary for computing Σt,t+h =
h

r=1
Σt+r, h > 1,

we use the approximations suggested in Engle and Sheppard (2005) and Engle (2009,
ch. 9.1).

Regularized Rolling Window Sample Covariance

The sample covariance matrix computed from L (demeaned) daily returns is defined as

Ct :=
1

L

L
l=1

ut−l+1u
′
t−l+1. (3.23)

The covariance matrix estimate Ct is positive definite whenever L ≥ m, but inversion
can be numerically unstable even if the latter condition is fulfilled. Accordingly, we
regularize Ct using alternative techniques if it is ill-conditioned according to the definition

4In our vast-dimensional setting, we follow a suggestion of Engle et al. (2008) and use only
adjacent pairs of assets. The results do not change qualitatively when modifying the ordering of
assets.

5Aielli (2011) shows that the resulting estimator of Z̄ is inconsistent and proposes a “cor-
rected” DCC (cDCC) model. However, Caporin and McAleer (2012) find the latter having an
inferior forecasting performance compared to the original DCC specification.
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in Section 3.3.1. We denote the resulting estimate by Creg
t , where Creg

t = Ct if no
regularization is imposed. Covariance forecasts are then computed as Σt,t+h = hCreg

t .
As a simple regularization method, we consider factor models based on the princi-

pal components of Ct. The strong performance of factor structures in GMV portfolio
applications is documented by Chan et al. (1999), showing that a three-factor model
according to the Fama and French (1993) factors is sufficient. While the latter are fac-
tors constructed based on asset return characteristics and economic fundamentals, an
approximation thereof using principal components can be motivated, for instance, by the
results in Connor (1995) on the similar explanatory power of fundamental and statistical
factor models. Let Λc

t,(kt)
be the diagonal (kt × kt) matrix of the first kt eigenvalues and

Qc
t,(kt)

the (m× kt) matrix of the corresponding eigenvectors of Ct. Then, the resulting
factorized covariance matrix estimate is

Creg
t = Qc

t,(kt)
Λc
t,(kt)

Qc′

t,(kt)
+

V c
t −Qc

t,(kt)


, (3.24)

where V c
t and Qc

t,(kt)
are diagonal (m×m) matrices containing the diagonal elements of

Ct and Q
c
t,(kt)

Λc
t,(kt)

Qc′

t,(kt)
, respectively. In the spirit of Chan et al. (1999), we consider

a three-factor structure (i.e., kt = 3) and, alternatively, examine a more restrictive
framework with kt = 1. Further, we allow for a closer comparison with FRnB estimates
by choosing kt on a dynamic basis using the Bai and Ng (2002) criteria discussed in
Appendix C.3.

As a second type of regularization, we use the shrinkage technique initially proposed
by Stein (1956) and adopted by Ledoit and Wolf (2003) for sample covariance matrices.
The resulting shrunk estimator is a weighted average of Ct and a restricted, positive
definite target Ft, i.e.,

Creg
t = φFt + (1− φ) Ct, 0 ≤ φ ≤ 1, (3.25)

where φ is an estimate of the optimal shrinkage intensity derived by Ledoit and Wolf
(2003) minimizing the squared error loss. As shrinkage target Ft, they consider the
one-factor model by Sharpe (1963), showing that the resulting estimator outperforms,
e.g., the pure one-factor and three-factor model. As an approximation, we employ the
principal component structure (3.24) with kt = 1. In addition, we follow Ledoit and
Wolf (2004) and let Ft be given by the equicorrelation model, i.e., the covariance matrix
implied by setting the common correlation equal to the cross-sectional average of all
pairwise sample correlations implied by Ct.

Finally, we regularize Ct by the eigenvalue cleaning procedure that is applied to
BRK estimates in Section 3.3.1 and discussed in more detail in Appendix C.2. Laloux
et al. (2000) demonstrate that sample covariance matrices regularized by this technique
yield considerably lower portfolio volatilities than their “uncleaned” counterparts in
minimum-variance applications.

80



RiskMetrics

RiskMetrics covariance forecasts constitute the industry standard. The original Risk-
Metrics1994 approach is based on an exponentially-weighted moving average (EWMA)
of the outer products of demeaned returns, i.e.,

Σt+1 =
(1− λ)

1− λLRM−1
 LRM

l=1

λl−1 ut−l+1u
′
t−l+1, 0 ≤ λ ≤ 1, (3.26)

where LRM denotes the window length. We follow the suggestion made in J.P. Mor-
gan/Reuters (1996) for daily returns and set λ = 0.94. If the forecast Σt+1 is ill-
conditioned based on the criterion from Section 3.3.1, we apply the tailored regulariza-
tion technique suggested in Zumbach (2009b), which relies on a two-stage shrinkage. See
Zumbach (2009b) for details. Forecasts of Σt,t+h are then computed as Σt,t+h = h Σreg

t+1,

where Σreg
t+1 is the regularized forecast with Σreg

t+1 =
Σt+1 if no regularization is necessary.

Additionally, we employ the updated RiskMetrics2006 methodology, which intro-
duces pseudo-long memory dynamics by assuming a hyperbolic decay of the weights on
lagged outer products of returns. The corresponding one-step ahead covariance forecast
is

Σt+1 =
LRM
l=1

λl ut−l+1u
′
t−l+1, λl :=

vmax
v=1

ζv
(1− θv)

1− θL
RM−1

v

 θl−1
v , (3.27)

ζv :=
1

D


1− ln(ηv)

ln(η0)


, θv := exp(−1/ηv), ηv := η1 ρ

v−1,

where the constant D is specified such that


v ζv = 1, η0 is a logarithmic decay factor,
while η1 and ηvmax denote the lower and upper cut-off, respectively. ρ is an additional
tuning parameter and vmax is determined by specifying the values of the other parame-
ters. We use the values suggested in Zumbach (2006), i.e., η0 = 1560, η1 = 4, ηvmax = 512
and ρ =

√
2. Finally, we construct forecasts of Σt,t+h according to Σt,t+h =

h
r=1

Σreg
t+r,

where multi-step predictions Σt+r, r > 1, are computed following Appendix A of Zum-
bach (2006).

3.4 Empirical Results

3.4.1 Data and Empirical Setup

We employ mid-quotes for the constituents of the S&P 500 index extracted from the
Trade and Quote (TAQ) database. We focus on the 400 assets with the longest con-
tinuous trading history during the sample period between January 2006 and December
2009, covering approximately 1, 000 trading days and including the financial crisis after
the bankruptcy filing of Lehman Brothers Inc. We discard the first 15 minutes of each
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Figure 3.2: Cross-Sectional Averages of Volatility and Absolute Correlation Estimates
Based on smoothed BRK estimates using daily, monthly or yearly window. Volatilities
are annualized square roots of diagonal elements and are reported in percentage points.

trading day to avoid opening effects and conduct additional steps to clean the raw quote
data. Details are provided in Appendix C.4.

Based on the cleaned mid-quote data, we compute BRK estimates as outlined in
Section 3.3.1 using G = 4 liquidity groups, which will be motivated below. Further, we
smooth the BRK estimates over weekly, monthly, quarterly, half-yearly and yearly win-
dows, i.e., S ∈ {1, 5, 20, 63, 126, 252}. For three smoothing windows, Figure 3.2 depicts
the resulting averages of the square roots of diagonal elements, i.e., volatility estimates,
and of the absolute values of pairwise correlations. Two major features are apparent.
First, there is a considerable increase of both volatility and absolute correlation during
the heyday of the financial crisis in the later part of 2008. Second, employing BRK
estimates smoothed over monthly and yearly windows implies a noticeable stabilization.
The latter effect can also be confirmed for the eigenvalues of the corresponding corre-
lation matrix estimates displayed in Figure 3.3. Here, smoothing is helpful to separate
the dynamics of the first (largest) eigenvalue, which allows for a better signal extrac-
tion. The result that the first eigenvalue follows own dynamics different from those of
other eigenvalues is at odds with findings based on correlation matrices estimated over
long-term rolling windows of daily data (e.g. Zumbach, 2009a).

Following Section 3.3.1, we regularize indefinite or ill-conditioned smoothed BRK
estimates by eigenvalue cleaning (ERnB) or imposing a factor structure (FRnB, 1FRnB
and 3FRnB). As we show in the web appendix in more detail, regularization is necessary
for all days in the sample and every smoothing window.6 Figure 3.4 gives the number of

6The web appendix is available at
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Figure 3.3: Eigenvalues of BRK Correlation Matrix Estimates
Based on logarithmic scale.
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Figure 3.4: Sample Distribution of Number of Factors for FRnB Estimates
Number of factors is determined by applying Bai and Ng (2002) criteria from Ap-
pendix C.3 to BRK estimates smoothed over different windows.

factors based on BRK estimates smoothed over different windows resulting from adaptive
factor selection using the Bai and Ng (2002) criteria (FRnB). The positive relationship
between the length of the smoothing window and the degree of parsimony of the implied
factor structure is apparent.

Our analysis focuses on open-to-close covariance matrices, whereby noisy overnight
returns do not have to be included. This approach is in line with Andersen et al. (2010b)

http://amor.cms.hu-berlin.de/~malecpet/MHFDPF_appendix.pdf.
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treating overnight returns as deterministic jumps. Accordingly, we measure the vector
of daily returns, rt, by the vector of open-to-close returns, which can be interpreted as
close-to-close returns corrected for the above deterministic jumps. To implement the
methods based on daily returns from Section 3.3.2, we obtain the vector of demeaned
returns, ut, by subtracting the sample mean during the respective estimation period.

Using data up to day t, we compute out-of-sample forecasts of the conditional covari-
ance matrices Σt,t+h for daily, weekly and monthly horizons, i.e., h ∈ {1, 5, 20}. Rolling
window sample covariance matrices are computed using a baseline window length of
L = 252 days, although alternative window sizes will be examined in a sensitivity anal-
ysis. RiskMetrics forecasts are computed employing all available data up to day t with
an initial in-sample period of 252 days. Both the sample covariance matrix and Risk-
Metrics estimates need to be regularized for each day (see web appendix). Finally, we
construct covariance forecasts based on MGARCH, as well as R- and CCHAR models
using the same expanding windows as for RiskMetrics. R- and CCHAR parameters are
re-estimated at each step. In the case of MGARCH models, we estimate the parameters
over the entire sample for reasons of numerical stability.

The initial in-sample period comprises the time from 01/2006 to 12/2006. Moti-
vated by the descriptive results above and in order to gain insights into the forecasting
performance during “normal” and “non-normal” market periods, we conduct a separate
evaluation for a period of 375 days before the financial crisis, covering the time from
01/2007 until 06/2008 (“pre-crisis period”), and the period of 377 days from 07/2008 to
12/2009 including the financial crisis (“crisis period”).

3.4.2 Evaluation and Inference in the Portfolio Selection
Framework

The forecasts of the conditional covariance matrix, Σt,t+h, are used as inputs for the
GMV portfolio selection framework in (3.1) and (3.2), yielding the weights wt,t+h. The
resulting conditional portfolio variance, w′

t,t+hΣt,t+h wt,t+h, is then estimated by the
five-minute realized portfolio variance

σ2,pt,t+h := w′
t,t+hRCovt,t+h wt,t+h, (3.28)

where RCovt,t+h is the five-minute realized covariance from day t to t+h, i.e., the sum of
outer products of five-minute return vectors obtained by previous-tick interpolation (e.g.
Dacorogna et al., 2001). The realized portfolio variances based on competing covariance
forecasts are used to compute performance fees ∆γ , γ ∈ {1, 10}, according to (3.4) and
(3.5).

In addition, we examine several basic characteristics of the GMV portfolio alloca-
tions. Following de Pooter et al. (2008), we evaluate portfolio turnover rates to proxy
transaction costs proportional to the traded dollar amount for every stock. For a hori-

zon h, the total return of the portfolio from t−h to t is given by rpt−h,t :=


i w(i)
t−h,t r

(i)
t−h,t,

where w(i)
t−h,t and r

(i)
t−h,t are the weight and return of stock i, respectively. Then, be-

fore rebalancing to the next period, the weight of stock i in the portfolio changes to
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w(i)
t−h,t


1 + r

(i)
t−h,t


1 + rpt−h,t

−1
. Consequently, the portfolio turnover is given by

pot,h :=
m
i=1

 w(i)
t,t+h − w(i)

t−h,t

1 + r
(i)
t−h,t

1 + rpt−h,t

. (3.29)

Secondly, we quantify the portfolio concentration of resulting GMV portfolio weights.
For instance, Oomen (2009) stresses that estimation errors might imply extreme posi-
tions and may cause practical pitfalls, such as disproportionate transaction costs or an
excessive market impact. We measure portfolio concentration in terms of the norm of
the vector of portfolio weights,

pct,h := ∥ wt,t+h∥2 =
 m

i=1

w(i) 2

t,t+h

1/2

, (3.30)

which is minimized for an equally-weighted portfolio, i.e., wt,t+h = (1/m) ι. Finally,
motivated by the analysis in Liu (2009), we evaluate the size of short positions in the
portfolio. Verifying to which extent short-sale constraints would be violated is of practi-
cal relevance, since many portfolio managers are prohibited from taking such positions.
Hence, we compute the sum of negative portfolio weights as

spt,h :=

m
i=1

w(i)
t,t+h 1I

 w(i)
t,t+h<0

, (3.31)

where 1I(·) denotes an indicator function.
To assess the statistical significance of performance differences between competing

forecasts, we perform a stylized “portfolio bootstrap”. Firstly, we create asset indices by
drawing random samples of size 350 without replacement from the uniform distribution
on the integers 1, . . . , 400, which is repeated 1000 times. Second, for each random set of
assets and every covariance matrix forecasting model, we compute: (i) the GMV port-
folio weights for each horizon and day, (ii) the square root of the sample average of the
(annualized) realized portfolio variance in (3.28), σ̄ap , (iii) the resulting annualized per-
formance fees relative to competing forecasts, ∆a

γ , γ ∈ {1, 10}, for all considered values

of the (identical) conditional mean µid, as well as (iv) the sample averages of the above
portfolio characteristics in (3.29), (3.30), and (3.31), i.e., po, pc and sp, respectively.
For the quantities in (ii)-(iv), we examine median values across all random samples.
Additionally, we report the standard deviations of σ̄ap . The empirical implementation
of the outlined re-sampling procedure is computationally demanding, as it requires the
inversion of more than two million 350 × 350 covariance matrices for each forecasting
method.
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3.4.3 The Economic Value of High-Frequency Data

Global Minimum Variance Portfolio Performance

Table 3.1 and 3.2 report the GMV portfolio performance of ERnB, RCHAR and CCHAR
forecasts with the latter utilizing unsmoothed ERnB estimates. Throughout the analysis,
we fix the number of groups in the blocking strategy to G = 4, which will be justified
by means of a robustness check below. Table 3.1 and 3.2 also report the performance of
factor-based forecasts. For sake of brevity, however, we only show the best-performing
factor models minimizing the median realized portfolio volatility for each smoothing
window. The complete results are available in the web appendix. The following findings
can be summarized.

Firstly, covariance predictions based on a dynamic model yield better GMV portfolio
performances than those based on a “naive” forecast. Prior to the crisis, the median
realized portfolio volatility declines by five standard deviations (s.d.’s) when switching
from random walk ERnB(1) to RCHAR forecasts. During the crisis period, the gains
induced by dynamic forecasts even increase up to 13 s.d.’s. HAR-based forecasts cor-
respond to weighted averages of past realized covariances and thus are by construction
“smoother” in time than random walk forecasts. This property pays off in terms of less
volatile portfolio weights and thus lower portfolio turnover. The gains even increase for
weekly and monthly forecasts. Further, it turns out that CCHAR forecasts are superior
to RCHAR forecasts. In particular, in the pre-crisis period, the difference in median
realized portfolio volatility is less than one s.d. for h = 1, but during the crisis period,
CCHAR forecasts yield a median portfolio volatility that is lower by three s.d.’s. This
is also reflected by lower portfolio turnovers induced by CCHAR forecasts.

Secondly, varying the length of the smoothing window has an ambiguous effect. Un-
smoothed or only moderately smoothed forecasts result in the lowest portfolio volatility,
less short positions and lower portfolio concentration (i.e., more diversification). The
benefits of using the most recent data and thus producing forecasts which are highly
responsive to new information have to be confronted, however, with a higher variability
in portfolio weights, causing a higher portfolio turnover and hence higher transaction
costs. These effects yield a natural tradeoff between responsiveness and (too high) vari-
ability of covariance forecasts. Not surprisingly, portfolio turnover is minimized by using
maximally long smoothing intervals, i.e., one year in our setting.

Thirdly, we show that eigenvalue cleaning generally results in the lowest portfo-
lio turnovers and yields less concentrated weights, as well as smaller short positions.
Factor-based regularization (FRnB and 3FRnB), however, becomes effective only if the
underlying estimates are sufficiently smoothed. In this case, they yield the lowest port-
folio volatility and turnover. These effects are particularly apparent during the crisis
period. Here, the combination of smoothing and factor-based regularization yields the
best portfolio performance in terms of lower portfolio volatility and turnover. In more
stable market periods, such as prior to the crisis, the necessity of smoothing and thus
the effectiveness of factor-based regularization declines, making eigenvalue cleaning su-
perior. In contrast, factor structures based on unsmoothed BRK estimates result in
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Figure 3.5: Median Portfolio Volatility of CCHAR Forecasts Relative to Benchmarks
Time series of ratios m(σp,CCHAR

t,t+1 )/m(σp,bencht,t+1 ), where σpt,t+1 is the square root of the
realized portfolio variance in (3.28) computed for h = 1. m(·) denotes the median across
1,000 random samples with each random sample containing 350 assets out of the entire
400 asset universe.

highly unstable forecasts and are not reported here (for details, see web appendix).
Table 3.3 and 3.4 show the corresponding results based on forecasting models utiliz-

ing daily returns as presented in Section 3.3.2. We find that covariance forecasts based
on HF data as evaluated in Table 3.1 and 3.2 outperform all “low-frequency” (LF)
benchmarks up to a weekly horizon. The best-performing LF methods in terms of me-
dian portfolio volatility are the RiskMetrics1994 estimator, as well as the rolling window
sample covariance matrix regularized by eigenvalue cleaning. The strong performance
of the latter, particularly during volatile periods, indicates that the strength of a proper
conditioning scheme might be even more important than imposing a dynamic forecast-
ing model. Nevertheless, during the pre-crisis period, (random-walk-type) ERnB(1)
forecasts yield a median portfolio volatility which is three s.d.’s lower than the best-
performing LF benchmark. This performance gain increases to seven s.d.’s if not naive
but (dynamic) RCHAR specifications are used. During the volatile crisis period, the
superiority of HF-based approaches becomes even stronger, resulting in a decrease in
median realized portfolio volatility of up to 17 s.d.’s in case of a CCHAR model. The
dominance of HF-based forecasts, particularly during the crisis period, is graphically
highlighted by Figure 3.5, which displays the time series of median portfolio volatility
implied by CCHAR forecasts relative to the two best-performing LF benchmarks.

Not surprisingly, the above effects are strongest for daily horizons (h = 1) and become
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weaker for longer forecasting horizons. However, although the informational advantage
of HF data naturally declines with the prediction interval, we still identify performance
gains from HF data even at a monthly horizon. While in the pre-crisis period, the best
LF and HF one-month forecast yield exactly the same median portfolio volatility, the
latter can be significantly reduced during the crisis if HF-based forecasts are employed.

The dominance of HF-based approaches is obviously due to the efficient use of
more recent information, making forecasts more responsive and adaptable to structural
changes. These effects particularly pay off during highly volatile periods, such as in 2008.
Moreover, we show that HF-based forecasts also yield less concentrated (and thus more
diversified) positions, as well as less short-selling. However, as stressed above, the down-
side of a higher responsiveness of forecasts is a higher variability in portfolio weights,
which increases portfolio turnover and transaction costs. The latter could be reduced
at the expense of a higher portfolio volatility by using longer, i.e., at least quarterly,
smoothing windows. Addressing this tradeoff more thoroughly is a challenging avenue
for further research, but is clearly beyond the scope of the current study.

Finally, we also evaluate the performance of a naive investment strategy assigning
equal weights (1/m) to all assets. Interestingly, the 1/m-portfolio yields a significantly
higher median volatility than all other methods. This finding is at odds with the study
of DeMiguel et al. (2009) reporting that strategies based on covariance matrix forecasts
cannot consistently outperform a naive diversification strategy. However, it has to be
noted that DeMiguel et al. examine unconditional Sharpe ratios, while our evaluation
focuses on the conditional portfolio volatility (approximated by the realized volatility).

Economic Significance

We evaluate the economic gains of employing HF-based covariance forecasts using the
utility-based evaluation approach in (3.4) and (3.5). To incorporate the effect of trans-
action costs, we follow de Pooter et al. (2008) assuming that the latter are propor-
tional to portfolio turnover. Accordingly, (3.5) is extended by defining performance fees
net of the difference in transaction costs between the two competing strategies, i.e.,
∆c

γ := ∆γ − c

poII − poI


, where c denotes the proportional transaction costs on each

traded dollar and poi is the (average) turnover implied by the GMV strategy based on the
covariance forecasts Σi

t,t+h, i = I, II. However, to avoid assumptions on the level c, we fo-

cus on “break-even” trading cost levels implying ∆c
γ = 0 and thus c∗γ := ∆γ/


poII − poI


.

The economic interpretation depends on the signs of the performance fee ∆γ and the
turnover difference Dpo := poII − poI. If ∆γ > 0, Dpo > 0 implies that c∗γ yields the
maximal level of positive transaction costs under which the risk-averse investor is still
willing to pay for employing strategy II instead of I, while for Dpo < 0, c∗γ gives the
minimal level (in absolute terms) of negative transaction costs, i.e., transaction credits,
under which this is no longer the case. In contrast, given that ∆γ < 0, c∗γ denotes the
minimal positive (for Dpo < 0) or negative (for Dpo > 0) transaction cost level necessary
to make strategy II superior to strategy I.

Table 3.5 and 3.6 report the median values of the (annualized) performance fees ∆a
γ in
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basis points (bp) the investor would pay in order to switch from the best LF benchmarks
to HF-based forecasting methods. Moreover, we show the median values of the corre-
sponding annualized break-even transaction costs c∗γ . The underlying expected returns

are assumed to be identical across stocks and are fixed to µid = 0.05 (annualized). In the
web appendix, we demonstrate that alternative values of µid yield quantitatively almost
identical results. As LF benchmarks, we choose those strategies minimizing the median
portfolio volatility or turnover. Among HF-based forecasts, for each smoothing window
we select the regularization method yielding the lowest median portfolio volatility. The
corresponding findings for all other models are given in the web appendix.

The major observations are as follows. Firstly, by utilizing HF-based covariance
forecasts, a risk-averse investor can achieve noticeable economic gains which become
substantial during the crisis period. Before the crisis and for a daily horizon, an investor
with low (high) risk aversion would be willing to pay 2 (17) bp to switch from the best LF
strategy to the best random-walk-type HF forecast (ERnB(1)) and 4 (40) bp to switch to
a CCHAR forecast. During the crisis period, these values increase to 20 (199) bp in the
naive (FRnB(5)) and 33 (328) bp in the dynamic case. Focusing on longer forecasting
intervals, these gains become smaller, however are still substantial even for a monthly
horizon if the investor exhibits a high risk aversion. In the latter case, the median
performance fees for switching to FRnB(5) and CCHAR forecasts amount to 99 and
238 bp, respectively. Figure 3.6 shows the nonparametrically estimated performance fee
densities resulting from the underlying portfolio bootstrap approach. The plots confirm
the statistical significance of the results, particularly during the crisis period. Moreover,
CCHAR covariance forecasts yield slightly less dispersed performance fee distributions
than random-walk-type FRnB(5) forecasts.

Secondly, using HF data remains valuable for more risk averse investors even in the
presence of transaction costs. During the crisis period, the annualized median break-
even transaction costs associated with the above performance fees for the daily horizon
are 0.2 (2) percentage points (pp) for FRnB(5) and 0.9 (9) pp for CCHAR forecasts in
case of low (high) risk aversion. These are the median values of the transaction cost
levels at which the net performance fee paid by a risk-averse investor for switching from
the low-volatility LF benchmark to the HF-based forecasts would just remain positive.
When benchmarking against the LF-based forecast yielding the lowest turnover, i.e.,
the rolling window sample covariance regularized by a one-factor structure, the median
break-even transaction costs associated with the CCHAR specification increase to 1.4
(14) pp, which is moderate compared to the increase in the corresponding performance
fees. This finding is obviously induced by the low portfolio turnover implied by the
one-factor structure, naturally decreasing the impact of transaction costs.

Finally, in several cases, we observe a combination of negative (median) performance
fees and positive (median) break-even transaction costs. Here, the explicit consideration
of transaction costs favors HF-based covariance forecasts if these costs exceed a certain
level. For instance, ERnB(252) forecasts yield negative median performance fees vis-a-
vis the low-volatility LF benchmark regardless of the level of risk aversion. However,
after the introduction of transaction costs of at least 1.8 pp in case of low risk aversion
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(a) Pre-Crisis: FRnB(5) vs. RM1994
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(b) Crisis: FRnB(5) vs. S-EvCl
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(c) Pre-Crisis: CCHAR vs. RM1994
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(d) Crisis: CCHAR vs. S-EvCl

Figure 3.6: Kernel Estimates of Performance Fee Density
Kernel density estimates across 1,000 random samples of the annualized basis point
fee (∆a

γ) a risk-averse investor with quadratic utility and relative risk aversion γ = 10
would pay to switch from covariance forecasts using daily data to high-frequency-based
forecasts. Each random sample contains 350 assets out of the entire 400 asset universe.
The assumed constant conditional mean return is identical across all stocks and set to
µid = 0.05 (annualized). Density estimates are based on the Gaussian kernel and the
rule-of-thumb bandwidth with normal reference.
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Table 3.7: No. of Liquidity Groups and GMV Portfolio Volatility of ERnB(1) Forecasts
Medians (m(·)) and standard deviations (s(·)) across 1,000 random samples of the square
root of the annualized average realized portfolio variance (σ̄ap) using predicted GMV
weights for the horizon h = 1 (in percentage points). Each random sample contains 350
assets out of the entire 400 asset universe. G denotes the number of liquidity groups used
to compute BRK estimates. Evaluation is conducted for the pre-crisis period, 01/2007
to 06/2008, and the period including the crisis, 07/2008 to 12/2009.

Pre-Crisis Crisis

G m(σ̄ap) s(σ̄ap) m(σ̄ap) s(σ̄ap)

1 8.38 0.28 14.43 0.11
2 8.25 0.29 14.25 0.11
4 7.49 0.07 14.02 0.11
5 8.15 0.30 13.98 0.11
8 8.13 0.30 13.94 0.11
10 8.12 0.30 13.93 0.11

and 18 pp in case of high risk aversion, the net performance fee turns positive. These
effects materialize whenever the smoothing window is sufficiently long, driving down the
turnover of HF-based approaches compared to their LF competitors.

3.4.4 Sensitivity Analysis and Robustness Checks

Number of Liquidity Groups

In the above analysis, we employed G = 4 liquidity groups to compute BRK estimates,
which in turn, were used to construct HF-based covariance matrix forecasts. Thus, in
order to justify this choice, we examine the optimal value of G in terms of median realized
portfolio volatility.

Focusing on a daily horizon, Table 3.7 reports the forecasting performance of un-
smoothed BRK estimates regularized by eigenvalue cleaning (ERnB(1)) for different
values of G. Before the crisis, using four liquidity groups (G = 4) yields the lowest
volatility. During the crisis period, median portfolio volatility declines monotonously
when increasing G. However, for more than four liquidity groups, the magnitude of the
reductions exhibits a noticeable decay, as the latter do not even amount to one standard
deviation. These results are in line with Hautsch et al. (2012) who find that blocking-
based efficiency gains are mainly due to the (more general) separation between liquid
and illiquid assets, implying that a relatively low number of liquidity groups is sufficient.
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Length of the Estimation Window

The results in Section 3.4.3 suggest a positive relationship between the length of the
smoothing window and the resulting portfolio volatility in the case of HF-based covari-
ance matrix forecasts. For the regularized rolling window sample covariance matrix of
daily returns, an estimation window of 252 days was employed. Hence as a robust-
ness check, we consider the alternative window lengths of 378, 126, 63 and 20 days and
investigate the impact on the median performance fees for switching to HF-based pre-
dictions, as well as on the corresponding median break-even transaction costs. We focus
on FRnB(5) and ERnB(252) forecasts, representing slight and heavy smoothing, respec-
tively. For each window length of the sample covariance matrix, we then consider both
“low-volatility” and “low-turnover” LF-based predictions by choosing the regularization
methods that imply the lowest median portfolio volatility or turnover.

Table 3.8 and 3.9 report the results focusing on the crisis period. The corresponding
analysis for the pre-crisis sample along with the complete results of the above benchmark
selection procedure can be found in the web appendix. For the low-volatility benchmarks,
reducing the window length from 252 to, ultimately, 20 days implies a severe precision
loss, as the median performance fees for switching to both FRnB(5) and ERnB(252)
forecasts increase sharply. In line with intuition, the implied portfolio turnover rises
considerably, which can be detected by the disproportionate increase in the median
break-even transaction costs. An extension of the estimation window to 378 days causes
only a small reduction of the median performance fees, indicating only mild precision
gains due to the larger sample size.

In case of low-turnover benchmarks, which employ the one-factor structure for regu-
larization, a decreasing window length is associated with shrinking median performance
fees for switching to forecasts using HF data. This finding suggests that, if a particu-
larly restrictive regularization method is considered, the smaller number of observations
used for covariance estimation is outweighed by the fact that only the most recent and
hence relevant information is utilized. However, the median performance fees remain
considerably higher than in case of low-volatility benchmarks based on the “optimal”
window lengths. Interestingly, shortening the estimation window does not necessarily
imply an excessive rise in portfolio turnover, as the median break-even transaction costs
vis-a-vis FRnB(5) forecasts decrease. However, when compared to the more severely
smoothed ERnB(252) forecasts, the growing turnover becomes apparent. As long as
the performance fee is positive, median break-even transaction costs increase or even
become negative, which corresponds to a situation where LF-based covariance forecasts
cause a higher (average) turnover than their HF counterparts. Equivalently for negative
performance fees, (positive) median break-even transaction costs contract.
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Dimension of the Asset Universe

Above, we consider a high-dimensional asset universe comprising 400 stocks, which ex-
hibit a considerable heterogeneity with respect to their liquidity.7 In order to examine
the extent to which the gains from HF data depend on both the problem dimension
and the liquidity of the underlying assets, we repeat the analysis for subsets containing
the 100 or 30 stocks with the highest number of mid-quote revisions during the sample
period. The chosen cross-sectional dimensions correspond to those of the S&P 100 and
the Dow Jones Industrial Average, which, e.g., constitute the asset universes for the
studies by de Pooter et al. (2008) and Liu (2009), respectively.

For the portfolio bootstrap procedure outlined in Section 3.4.2, we draw random
samples containing asset indices of size 85 or 25. The covariance matrix forecasting ap-
proaches from Section 3.3.1 and 3.3.2 are implemented as above with three exceptions.
First, we compute BRK estimates employing a smaller number of liquidity groups G,
i.e., G = 2 and G = 1 in the 100 and 30 asset case, respectively. As is shown in the
web appendix, up to these values of G reductions in median realized portfolio volatility
amounting to at least one standard deviation can be achieved. Second, the parameters
of MGARCH models are estimated on a day-by-day basis using expanding estimation
windows as for R- and CCHAR specifications above. In the 30 asset case, we also con-
sider the full quasi-likelihood instead of the composite likelihood approach. Finally, we
account for the fact that regularization of BRK estimates, as well as of rolling window
sample covariance and RiskMetrics forecasts is not always imposed according to the
conditions discussed in Section 3.3.1 and 3.3.2. For BRK estimates and the LF sample
covariance, Figure 3.7 shows that the regularization frequencies are positively related to
the dimension and negatively related to the length of the smoothing or estimation win-
dow.8 Thus, we additionally compute forecasts based on unconditional regularization,
i.e., independent from the above rule.

The results of the entire analysis can be found in the web appendix. Here, we focus
on the median performance fees for switching from the best LF forecasts to random-walk-
type HF-based predictions during the crisis period, which are reported in Table 3.10 and
3.11. We choose the two types of best-performing LF benchmarks, as well as the optimal
regularization (conditional or unconditional) of HF forecasts for each smoothing window
as before. The implied low-volatility benchmarks in the 100 and 30 asset case are given
by the sample covariance shrunk unconditionally towards an equicorrelation model and
the DCC specification, respectively. The latter fact indicates that MGARCH models are
more suitable for moderate dimensions than for vast-dimensional settings. Regarding
HF predictions, an unconditional regularization is not advantageous for any smoothing
window in both dimensions. Accordingly, no regularization is imposed for smoothing
windows of one month or more in the 100 asset case and for all window lengths when

7The average number of mid-quote revisions in the cleaned dataset is about 5, 000 for the
most liquid stocks and only 250 for the least liquid assets.

8The relative regularization frequency of RiskMetrics2006 forecasts drops to around 50% only
in the 30 asset case. RiskMetrics1994 forecasts are always regularized (see web appendix).
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(a) 100 Assets: BRK Estimates (G = 2)
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(c) 30 Assets: BRK Estimates (G = 1)
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(d) 30 Assets: Sample Covariance

Figure 3.7: Regularization Frequency in 100 and 30 Asset Universe
Depending on length of smoothing (BRK) or estimation window (rolling window sample
covariance). (Smoothed) BRK estimates are regularized if any correlation eigenvalue
is negative or the condition number of the correlation matrix is greater than 10 × 100
or 10 × 30. The rolling window sample covariance of daily returns is regularized if
the condition number of the corresponding correlation matrix is greater than the above
thresholds.
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30 assets are considered (cf. Figure 3.7). We refer to the corresponding unregularized
random-walk-type forecasts based on a S-day smoothing window as BRK(S).

The first major result is that, in general, the median basis point fees vis-a-vis the low-
volatility benchmarks increase considerably. In case of 100 assets and a daily horizon,
the median performance fees for switching to ERnB(5) forecasts assuming low (high)
risk aversion are 57 (567) bp, which is almost three times the corresponding values for
FRnB(5) predictions in the vast-dimensional setting. Very similar results are obtained
for 30 assets. The increased benefits from HF data can be explained by the fact that
we focus on more liquid assets featuring a higher number of mid-quote revisions, which
translates into more precise BRK estimates. The latter effect also implies that, secondly,
we observe large median performance fees even at a monthly horizon. Given a high risk
aversion, the median fees for switching to BRK(20) forecasts are 427 and 526 bp in
the 100 and 30 asset scenario, respectively, which is more than four and five times the
highest fee for this horizon found in Section 3.4.3.

Thirdly, the median basis point fees remain positive when employing the three longest
smoothing windows regardless of the magnitude of risk aversion or the investment hori-
zon. This finding is of practical importance, as the corresponding forecasts yield a
relatively low portfolio turnover, resulting in negative median break-even transaction
costs. The latter implies that a risk-averse investor is willing to pay for switching to
long-term smoothed HF-based forecasts given any positive transaction cost level. In
addition, the fact that, compared to the vast-dimensional scenario, the reduction in me-
dian performance fees is less pronounced when moving from short to yearly smoothing
windows indicates a higher persistence of the conditional covariance matrix process in
the lower dimensional case.

Finally, we do not observe the same gains due to the reduced cross-sectional di-
mension and even detect some losses when examining performance fees vis-a-vis the
low-turnover benchmark with the latter being given by the one-factor model, i.e., the
sample covariance matrix unconditionally regularized by a one-factor structure. This
result might be explained by the less restrictive nature of the one-factor model if only
100 or 30 assets are considered. However, the same instance implies that the resulting
portfolio turnover increases relatively to HF-based forecasts employing longer smoothing
windows (see web appendix). For the 30 asset setting, in particular, the latter effect is
evidenced by the median break-even transaction costs becoming considerably negative.

3.5 Conclusion

This chapter provides insights into the value of high-frequency (HF) data for short-
horizon large-scale portfolio allocation decisions. For that purpose, we construct global
minimum variance (GMV) portfolios from the constituents of the S&P 500 index with
weights being determined by different conditional covariance matrix forecasts. We con-
sider HF-based forecasts originating from covariance estimates based on the blocked
realized kernel proposed by Hautsch et al. (2012). The estimates are smoothed, regu-
larized by either eigenvalue cleaning or imposing a factor structure and, finally, used to
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construct both random-walk-type predictions and forecasts relying on a simple autore-
gressive specification. We employ an extensive set of benchmark approaches based on
daily returns and compare the competing forecasting methods in terms of estimated con-
ditional portfolio volatility and additional portfolio characteristics. We allow for basic
inference by using a “portfolio bootstrap” procedure and investigate the economic gains
of reduced portfolio volatility by means of a conditional version of the methodology put
forward in West et al. (1993) and Fleming et al. (2001).

Based on mid-quote data from 2006 to 2009, we show the following major results.
First, HF-based covariance forecasts outperform low-frequency (LF) approaches over in-
vestment horizons of up to a month. The gains in terms of reduced portfolio volatility
are considerably larger during the volatile market period including the 2008 financial
crisis and are of substantial economic value from the point of view of an investor with
pronounced risk aversion. Second, short-term smoothing can be beneficial in terms of
lower portfolio volatility, while long-term smoothing always helps to reduce transac-
tion costs. Third, the performance of HF-based strategies can be further improved if
naive random-walk-type forecasts are replaced by predictions relying on (even simple)
dynamic models. Finally, we find that incorporating methods using HF data into a
large-scale portfolio allocation framework is a relatively demanding task. If we focus on
subsets comprising only the most liquid S&P 500 assets, the gains from GMV strategies
employing HF-based covariance forecasts increase to a considerable extent.

Possible avenues for future research are threefold. First, alternative regularization
methods could be considered. Recent examples are the subsampled principal compo-
nent approach put forward by Abadir et al. (2012) or nonlinear shrinkage as proposed
in Ledoit and Wolf (2012). Second, while our choice of a dynamic model for HF-based
covariance matrix estimates was mainly driven by parsimony and ease of estimation,
richer specifications could be employed. In this context, utilizing HF data in a GARCH
framework, as e.g., suggested by Hansen et al. (2010) and Noureldin et al. (2012), ap-
pears particularly promising. Further possibilities, also specifically for vast-dimensional
settings, are presented in Andersen et al. (2011). Finally, the naive smoothing of covari-
ance matrix estimates could be replaced by an optimal smoothing scheme that strikes
a balance between the accuracy of forecasts, implying low portfolio volatility, and the
minimization of transaction costs caused by variation in portfolio weights. For this pur-
pose, the approach recently proposed by Kirby and Ostdiek (2012) could be adapted to
a HF framework.
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Appendix A

A.1 Power of Distribution Tests for Probability

Integral Transforms

We simulate 1000 samples of length 8000 considering two DGPs. They are equivalent
to DGPs 1 and 2 from the simulation study in Section 1.2.4 with the exception that the
constant probability of nonzero observations is replaced by ACM dynamics as in (1.28),
(1.31) and (1.32). The autoregressive and moving average parameters ζ1 and ρ1 are
chosen in line with the estimates obtained in the empirical application. The constant ϖ
is specified such that the initial value of πt equals 0.5 and about 0.9 for DGP 1 and 2,
respectively.

For each DGP, we estimate the following models, all assuming the correct specifica-
tion of the conditional mean µt:

1

� E-MEM: MEM (1.21), where PMD(1) is based on π = 1 and gε(εt) = fε(εt) is
the standard exponential density.

� G-ZA-MEM: MEM (1.21), where PMD(1) is based on a constant πt = π
and gε(εt) is the gamma density with shape parameter m and scale parameter
λ = (πm)−1.

� ZA-MEM: MEM (1.21), where PMD(1) is the ZAF density (1.26) with constant
πt = π and scale parameter λ = (π ξ)−1.

� G-LOG-DZA-MEM: MEM (1.21), where PMD(1) is based on the autologistic
model (1.28) and (1.29) with l = 0 and d = 1 for πt, while gε(εt|Ht−1) is the
gamma density with scale λt = (πtm)−1.

� LOG-DZA-MEM: MEM (1.21), where PMD(1) is the ZAF density (1.26) with
the autologistic model (1.28) and (1.29), where l = 0 and d = 1, for πt, while
λt = (πt ξ)

−1.

1Results for two additional DGPs and more estimated models can be found in the web ap-
pendix available at http://amor.cms.hu-berlin.de/~malecpet/ZAMEM_appendix.pdf.
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� G-ACM-DZA-MEM: same as G-LOG-DZA-MEM, but the ACM model in (1.28),
(1.31) and (1.32) with v = w = 1 is assumed for πt.

The results of the power study are reported in Table A.1.
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Table A.1: Power of Distribution Tests for (Transformed) PITs
Rejection rates of χ2 and Kolmogorov-Smirnov test for uniformity of PITs, as well as
of Bowman-Shenton and Doornik-Hansen test for normality of transformed PITs. Both
DGPs assume a DZA-Log-MEM based on a ZAF distribution with a = 0.6, m = 100,
η = 3.3 and conditional mean parameters ω = 0.05, α1 = 0.05, β1 = 0.9, α0

1 = −0.005.
πt follows ACM dynamics with ρ1 = 0.15, ζ1 = 0.99 and ϖ = 0.022 (DGP 1) or ϖ = 0
(DGP 2). For every replication, six models are estimated and (randomized) PITs are
computed. In the out-of-sample setting, models are estimated using the first two thirds
of the sample and PITs are computed based on the remaining third of the dataset. The
study uses 1000 replications and a sample size of 8000.

In-Sample Out-of-Sample

DGP 1 DGP 2 DGP 1 DGP 2

Est. Model\α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Pearson-χ2

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.025 0.003 0.015 0.003 0.669 0.571 0.721 0.641
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.047 0.008 0.229 0.088 0.608 0.500 0.711 0.603
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.988

Kolmogorov-Smirnov

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.000 0.000 0.002 0.001 0.706 0.609 0.811 0.764
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.000 0.000 0.005 0.000 0.651 0.535 0.792 0.713
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.984

Bowman-Shenton

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.015 0.002 0.015 0.001 0.325 0.194 0.499 0.364
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.144 0.030 0.114 0.018 0.307 0.154 0.439 0.302
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Doornik-Hansen

E-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G-ZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ZA-MEM 0.017 0.002 0.016 0.001 0.333 0.199 0.513 0.365
G-LOG-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOG-DZA-MEM 0.159 0.044 0.121 0.025 0.316 0.164 0.439 0.312
G-ACM-DZA-MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Appendix B

B.1 MEM Specifications

For trading volumes, we specify the conditional mean µ
(v)
t in (2.34) using the logarithmic

MEM proposed by Bauwens and Giot (2000). The latter does not require parameter

constraints to ensure the positivity of µ
(v)
t and implies

lnµ
(v)
t = ω +

p
i=1

αi lnx
(v)
t−i +

q
i=1

βi lnµ
(v)
t−i, (B.1.1)

where the lag structure is chosen according to the Schwarz information criterion (SIC).
In case of volatilities, we consider (B.1.1) with p = 1, but augmented by the lags

of (logarithmic) weekly and monthly realized kernel estimates, which are defined as the
averages

x
(rk)
t,w :=

1

5

4
j=0

x
(rk)
t−j and x

(rk)
t,m :=

1

20

19
j=0

x
(rk)
t−j . (B.1.2)

This extension is motivated by the widely-used heterogeneous autoregressive (HAR)
model for realized volatilities proposed by Corsi (2009) and yields

lnµ
(rk)
t = ω + αd lnx

(rk)
t−1 + αw lnx

(rk)
t−1,w + αm lnx

(rk)
t−1,m +

q
i=1

βi lnµ
(rk)
t−i , (B.1.3)

where q is determined using the SIC.
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Appendix C

C.1 Analytical Solution for the Performance Fee

Consider the GMV framework (3.1) and the preference structure (3.4). In addition, let

µpi :=
1

T − h

T−h
t=1

wi′
t,t+h µt,t+h, µ

2,p
i :=

1

T − h

T−h
t=1

 wi′
t,t+h µt,t+h

2
, i = I, II, (C.1.1)

and ϑ := 2 (1 + γ) /γ. Then, exploiting the fact that

E


rp,it,t+h

2
Ft


= wi′

t,t+hΣt,t+h wi
t,t+h +

 wi′
t,t+h µt,t+h

2
, i = I, II, (C.1.2)

and using basic algebra, condition (3.5) can be rearranged to

∆2
γ +∆γ


ϑ− 2


1 + µpII


= (ϑ− 2)


µpII − µpI


+ µ2,pI − µ2,pII + σ2,pI − σ2,pII , (C.1.3)

where σ2,pi , i = I, II, is defined as in (3.6). If we assume that µt,t+h = (h/252)µid ι,
t = 1, . . . , T − h, (C.1.3) becomes

∆2
γ +∆γ


ϑ− 2


1 +

hµid

252


= σ2,pI − σ2,pII , (C.1.4)

yielding the solution

∆γ =
hµid

252
− 1

γ
+


hµid

252
− 1

γ

2

+ σ2,pI − σ2,pII , (C.1.5)

which, under the assumption that (h/252)µid ≤ 1/γ, is strictly positive only if

σ2,pI > σ2,pII .
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C.2 Eigenvalue Cleaning

Eigenvalue cleaning is a regularization technique proposed by Laloux et al. (1999) and
further developed by Tola et al. (2008) that draws upon random matrix theory to de-
termine the distribution of the eigenvalues of a correlation matrix estimate R depending
on the ratio of n observations and m dimensions, q := n/m. The idea is to compare
empirical correlation eigenvalues with those implied by the null hypothesis of indepen-
dent Gaussian asset returns, which allows for an identification of those eigenvalues that
deviate from the “noisy” ones and hence constitute “signals”.

Denote by Λ := diag(λ1, . . . , λm) the diagonal matrix of eigenvalues of R ordered
from largest to smallest and by Q the matrix of corresponding eigenvectors, yielding
the spectral decomposition R = QΛQ′. For n → ∞, under the null hypothesis R is
given by the identity matrix, implying that all eigenvalues are equal to one. However, if
m,n→ ∞ with q ≥ 1 fixed, the eigenvalues of R follow a Marchenko–Pastur distribution
with maximum eigenvalue λmax :=


1+1/q+2


1/q


. Hautsch et al. (2012) argue that,

for practical purposes, the above threshold should be tightened to

λ∗max := (1− λ1/m)

1 + 1/q + 2


1/q


. (C.2.6)

This adjustment allows for a better identification of smaller signals, as it accounts for
the fact that the largest empirical eigenvalue λ1 often is associated with a dominating
“market factor”. Then, eigenvalue cleaning requires that all eigenvalues below λ∗max are
transformed according to

λ̃i :=


λi if λi ≥ λ∗max,

δ otherwise,
(C.2.7)

where δ is the average of the positive parts of all “noisy” eigenvalues, i.e.,

δ :=


(λi<λ∗

max)
λ+i

# of λi < λ∗max

 . (C.2.8)

Finally, the cleaned correlation matrix estimate is obtained as R̃ = Q Λ̃Q′, where
Λ̃ := diag


λ̃i

, i = 1, . . . ,m. We apply the procedure to (smoothed) correlation ma-

trix estimates based on the blocked realized kernel, RBRK
t,S , by setting the number of

observations n equal to the minimum number of refresh times in any block averaged
over the smoothing window. For the regularization of the rolling window sample co-
variance of daily returns, Ct, we apply eigenvalue cleaning to the corresponding sample
correlation matrix Rc

t with n equal to the window length L.
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C.3 Selection of the Number of Factors

To select the number of factors for the regularization approach discussed in Section 3.3.1,
we employ the criteria by Bai and Ng (2002) developed for linear factor models with m
assets and n observations. In the context of smoothed BRK estimates, we consider a

factor model defined in refresh time. Let r
(i)
t,S,l, i = 1, . . . ,m, denote the l-th refresh time

return from days t− S + 1 to t. The resulting factor structure reads

r
(i)
t,S,l = ψ′

t,S,i Ft,S,l + ε
(i)
t,S,l, i = 1, . . . ,m, l = 1, . . . , nt,S , (C.3.9)

where Ft,S,l is the (kt,S × 1) vector of common factors, ψt,S,i denotes the corresponding

vector of factor loadings and ε
(i)
t,S,l is the idiosyncratic component of r

(i)
t,S,l, i = 1, . . . ,m.

Following Bai and Ng (2002), we determine kt,S by employing the minima of the criteria

Cm,1
t,S (kt,S) = σ̂2t,S(kt,S) + kt,S σ̂

2
t,S(kmax)


m+ nt,S
mnt,S


ln


mnt,S
m+ nt,S


, (C.3.10)

Cm,2
t,S (kt,S) = σ̂2t,S(kt,S) + kt,S σ̂

2
t,S(kmax)


m+ nt,S
mnt,S


ln

min (

√
m,

√
nt,S)

2

,

where kmax is the exogenously fixed maximum number of factors, while

σ̂2t,S(kt,S) :=
1

m

m
i=1

σ̂
2,(i)
t,S (kt,S), (C.3.11)

with σ̂
2,(i)
t,S (kt,S) being an estimate of the residual variance V


ε
(i)
t,S,l


, i = 1, . . . ,m.

In practice, we let nt,S be the minimum number of refresh times in any block of the

blocked realized kernel averaged over days t − S + 1 to t. Further, we set σ̂
2,(i)
t,S (kt,S)

equal to the i-th diagonal element of V RK
t,S


Im − Qt,S,(kt,S)


V RK
t,S , i = 1, . . . ,m, where

V RK
t,S and Qt,S,(kt,S) are defined as in (3.13) and (3.15), respectively. For the factor

structure based on the rolling window sample covariance of daily returns in (3.24), the
number of observations is equal to the window length L. The factor residual variance is

estimated by σ̂2t (kt) :=
1
m

m
i=1 σ̂

2,(i)
t (kt), where σ̂

2,(i)
t (kt) is the i-th diagonal element of

V c
t −Qc

t,(kt)


, i = 1, . . . ,m.
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C.4 Cleaning Procedure for S&P 500 Quote

Data

The raw dataset described in Section 3.4.1 is cleaned by performing the following steps:

1. Delete entries with negative bid-ask spreads.

2. Delete entries with non-positive bid or ask prices.

3. Delete entries with non-positive bid or ask sizes.

4. Delete entries with bid-ask spread greater than 1% of the current mid-quote.

5. Delete entries for which the mid-quote price is more than 5 times the median
mid-quote on the given day.

6. Delete entries for which the mid-quote price deviated by more than 5 mean abso-
lute deviations from a rolling median (excluding the observation under considera-
tion) of 50 observations (25 observations before and 25 after).

A more detailed discussion of data filtering procedures can be found in Barndorff-Nielsen
et al. (2008b).
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