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Abstract

Humans differ most from other animals in that their lives are shaped
by many cultural practices. Having cultural traits allowed human pop-
ulations to grow considerably in a short time and to conquer almost
all terrestrial habitats on Earth. Cultural traits are not inborn but
are instead transmitted between humans through social learning – no
individual could build a fully functional kayak without learning from
others. Concluding that cultural evolution is thus a separate process
from genetic evolution would, however, be rash. The latter has endowed
humans with the possibility to learn from others in the first place and
prepared learning to make it especially adaptive. To find out what
makes humans unique, cultural and genetic evolution, therefore, have
to be studied in concert. Although nobody doubts that evolution gave
rise to social learning and that the resulting cultural practices serve
an adaptive purpose, theoretical works have shown that simple forms
of social learning do not improve human adaptedness. This finding
contradicts the observations and thus implies that the understanding
of social learning is incomplete. Several authors have proposed so-
lutions to this paradox but we find the paradox to be more resilient
than is believed. We propose new forms of social learning that could
solve it, albeit only under very narrow circumstances. Furthermore, we
argue for a new perspective on social learning and, consequently, for
a different framework that allows for more realistic learning models.
We suggest that the study of the evolutionary origin of social learning
should be given equal weight as the study of the evolutionary origin of
cooperation and illustrate this by elaborating on the impact of social
learning on modern societies and market behaviors in general, and on
financial crises specifically.
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Zusammenfassung

Menschen unterscheiden sich von anderen Tieren insbesondere da-
durch, dass ihr Alltag durch vielfältige kulturelle Praktiken bestimmt
wird. Diese erlaubten es dem Menschen, fast alle terrestrischen Habi-
tate auf der Erde in hoher Dichte zu besiedeln. Kulturelle Merkma-
le werden nicht genetisch vererbt, sondern durch soziales Lernen zwi-
schen Menschen übertragen – niemand könnte ohne den vorhandenen
Wissensbeitrag anderer ein funktionstüchtiges Kajak bauen. Daraus zu
schließen, kulturelle und genetische Evolution seien komplett getrennt
zu behandeln, wäre allerdings vorschnell. Genetische Evolution hat es
überhaupt erst erlaubt, von anderen in adaptiver Weise zu lernen. Kul-
turelle und genetische Evolution müssen zusammen betrachtet werden,
um die Einzigartigkeit des Menschen zu verstehen. Der offensichtlich
vorhandene adaptive Nutzen sozialen Lernens konnte in theoretischen
Arbeiten allerdings nicht repliziert werden. Das deutet darauf hin, dass
das Verständnis über die Funktionsweise sozialen Lernens noch unvoll-
ständig ist. Zwar wurden mögliche Lösungen für dieses Paradox vorge-
schlagen, aber unser Modell zeigt, dass sich der Widerspruch hartnä-
ckiger hält als geglaubt. Wir analysieren zwar neue soziale Lernstra-
tegien, die den Widerspruch lösen können, doch erfolgt das nur unter
sehr beschränkten Bedingungen. Außerdem treten wir für eine neue
Sicht auf soziales Lernen ein und damit einhergehend für einen Model-
lierungsansatz, der Lernformen in realistischerer Weise berücksichtigt.
Die Untersuchung des evolutionären Ursprungs sozialen Lernens sollte
den gleichen Stellenwert haben wie jene des evolutionären Ursprungs
kooperativen Verhaltens. Dass dies sinnvoll wäre, belegen wir, indem
wir zeigen, welchen Einfluss soziales Lernen sogar auf moderne Ge-
sellschaften und Volkswirtschaften hat und wie es beispielsweise hilft,
Finanzkrisen besser zu verstehen.
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1 Introduction to models of social
learning

This chapter has two goals, frist, to introduce the reader to some basic
approaches of how to model social learning, second, to present some of the
most important findings from social learning theory, most notably Rogers’
paradox [23, 146]. These goals can be reached in one step by presenting
the model that led to this important finding, while also explaining potential
modifications of the model. Instead of summarizing the important literature
on social learning upfront, we discuss it when appropriate during our journey.
We present the basics of our own model, which we will further develop over
the course of the following chapters, and explain why we made certain choices
that differ from existing approaches. Before we begin, however, we first need
to establish the context of this work.

1.1 Why study social learning
1.1.1 From the calculus of planetary motions ...

Look round our world; behold the chain of love
Combining all below and all above.1

For much of mankind’s history, we stared up at the stars and saw with
endless awe their constant movements on the firmament. We marveled at
what enigmatic motions act the souls of the eternal beings who above us
circle in eternity. When people came to comprehend the implications of
the works of Newton it was like a thunder waking up a sleeping man from
his deceitful dreams. For Isaac Newton showed that same mathematic laws
that govern earthly matters also govern movements of celestial bodies. It
is impossible to underrate the gravity of this; these realms once thought as
separated were combined at last.

Whether with reason or with instinct blest,
Know, all enjoy that power which suits them best;
To bliss alike by that direction tend,
And find the means proportion’d to their end.2

1Alexander Pope, 1734, An Essay on Man, Epistle III, 7–8.
2Ibid., 79–82.
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1 Introduction to models of social learning

One century later Condorcet attempted to envision mathematic laws de-
scribing social matters and behaviors. Although accomplishments of social
sciences when compared to physics have been modest, aspirations to achieve
this great ideal to this day persist. However, what could be the science that
will decipher what makes humans spin, that will achieve to mark the laws
of culture and decision making?

God, in the nature of each being, founds
Its proper bliss, and sets its proper bounds3

The organisms populating Earth have one characteristic that distinguishes
them from all inanimate objects. And that distinction is their almost perfect
adaptation to the world surrounding them and their ability to navigate it.
This wondrous observation led the theologian Paley to insist that this must
be the work of a divine Designer. (see [39]). If, wandering in a forest, one
were to find such a perfect apparatus as a watch, then would one not be
prompted to believe in the existence of a maker of said watch? Similarly,
recognizing how absurdly well the organisms roaming earth are built, then
would one not have to believe in the existence of an organism-maker?
But Darwin then proposed an argument that made presuming any supreme

being obsolete while still explaining the astounding adaptations [38]: All
organisms are evolving, and by natural selection, adaptation is achieved
without the need for plan nor purpose. And this is how we understand
today the origin of adaptation of all living beings.
Yet not just bodily aspects but all kinds of behaviors could be explained

beautifully by natural selection; this constitutes the cornerstone of what is
called behavioral ecology [106]. Behaviors that were thusly studied include
parenting in birds, ritualized fights of deer, and life in colonies of ants and
bees. Without a doubt, behaviors of Man, including social ones, are not
excluded from the grip of the Darwinian logic.

See him from Nature rising slow to Art!
To copy instinct then was reason’s part;
Thus then to Man the voice of Nature spake–
’Go, from the creatures thy instructions take’ 4

The adaptations of the mind are not as fix as laws of nature. Not seldom
they require Man to change his ways according to the circumstances. Thus
learning is a crucial part of what really defines him. Some innovations are
assuredly made during a human’s lifetime but the lion’s share of traits he
learns are learned observing others. Although Man may not often copy what
he sees in other creatures, he may still be quite adept at imitating other

3Ibid., 109–110.
4Ibid., 169–170.
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1.1 Why study social learning

people. Through imitation, augmentation, Man was capable of learning
traits that in a lifetime no Man could have learned alone.
But if mankind is able to acquire many a copied trait, well does that not

imply that the Darwinian laws apply no more?
Don’t judge too fast, the way Man learns has been prepared and biased by

his evolutionary past. To study how Man aggregates and transmits cultural
traits is thus to study the Darwinian logic of these faculties. One great
endeavor lying straight before us is to see if, similar to Newton’s finding, one
great mathematic framework will allow us to consolidate the field of human
evolution with the field of human culture.

3



1 Introduction to models of social learning

Great Nature spoke; observant men obey’d;
Cities were built, societies were made 5

Apart from Man, there is no animal that forms complex societies whose
building blocks are socially transmitted traits. And this may very well
present the only property that makes Man so unique among all animals
that populate this planet. To know what makes us human, therefore, will
require us to understand and to explain the origin of human culture.

1.1.2 ... to the calculus of culture
Until not so long ago, cultural and biological explanations for many human
behaviors were seen as separate. This culminated in the infamous nature
vs nurture debate. Take a certain trait, such as the food taboos found in
many societies – why do the French eat horsemeat but the British abhor
the very notion? The one side would claim that the trait can be explained
by biological adaptation that served to increase Darwinian fitness. The
other side would claim that the trait can be explained solely by cultural
specificities. And some would claim that the trait can be explained partly
by biology and partly by culture.
What this debate eschews is the question why humans possess the faculty

for culture in the first place. When we accept that evolutionary adaptations
allowed us to develop culture, suddenly all the positions above become moot.
It makes no sense to say that a trait is caused 56% by culture and 44%
by nature. For many traits, which option to pick is not determined by
human biology but the choice is culturally transmitted; the mode of cultural
transmission is, however, not arbitrary but strongly shaped by evolution.
This way, humans have two inheritance systems, one vertical, involving

the transmission of genes from parents to offspring; the other, more varied,
involving the transmission of cultural traits. The pioneers establishing this
dual inheritance theory are Cavalli-Sforza and Feldman [31] on the one hand
and Boyd and Richerson [22] on the other hand. The former were especially
involved in developing how concepts of evolution like inheritance, mutation,
and drift of genes would translate to transmission of cultural traits. The
latter established a wide range of possible mechanisms that bias cultural
transmission and explained how many features could be understood through
the lens of dual inheritance. Most of the work on this topic that came
thereafter could be seen as a footnote to Boyd and Richerson’s influential
book. Overall, these authors showed that a rigorous formal framework is
required to generate testable predictions, and how such a framework could
look like.
A basic assumption of most models of social learning is that adaptation

takes place on two timescales. First, there is adaptation of cultural traits
5Ibid., 199–200.
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1.2 Rogers’ model

during an individual’s lifespan. For example, this could consist of deciding
whether one wants to align with party A or B. Next, there is adaptation of
the learning strategy on an evolutionary timescale. The learning strategy
could consist of doing what one’s parents did, of aligning oneself with the
majority, or of making up a mind of one’s own. Although genetic evolution
is generally slower than cultural evolution, not all models require the two
timescales to be completely separated. This is why the field is often called
gene-culture coevolution.
In simple gene-culture coevolution models, the content that is learned is

determined by culture, while the mode of learning is determined by Dar-
winian selection. There is thus a split between what is learned and how it
is learned. That does not mean, however, that the two can be studied in
isolation. If one’s learning strategy is to imitate cultural traits of others,
one’s choice becomes dependent on what others do, which in turn depends
on their genetically inherited learning strategy. Therefore, the cultural and
evolutionary dimension become linked and feedbacks enter the stage. These
feedbacks in turn will produce a host of unexpected problems, as will be
explored in this chapter.

1.2 Rogers’ model
Our work will mainly focus on the different social learning strategies and
their properties. But before we begin our venture into the complex world
of social learning strategies, it is helpful to analyze a simple model of social
learning that is still instructive. For that cause, we use a model initially
proposed by Rogers [146] and modify it slightly to fit for our purposes.

1.2.1 Rogers’ model with random copying
In the model proposed by Rogers, it is assumed that there are several be-
haviors, each of which may or may not result in a benefit, depending on
the environment. The environment is assumed to be such that there is only
one correct adaptive behavior, whereas all other behaviors are maladaptive.
After each generation, with a probability 1 − q (0 < q < 1), there is an
environmental change, after which a new behavior becomes adaptive and
the formerly adaptive behavior becomes maladaptive. Therefore, organisms
need to constantly learn what is best.
If an individual adopts the correct behavior for the given environment,

she receives a benefit of 1 and else she receives nothing. There are two
phenotypes in the population, individual learners and social learners. Indi-
vidual learners learn on their own which behavior is best. Social learners
imitate randomly – they choose one random individual from the population
and adopt this individual’s behavior. Individual learners pay a cost c for
learning (0 < c < 1) and always acquire the currently best behavior, but

5



1 Introduction to models of social learning

we introduce the possibility of making an error, which occurs with proba-
bility ε. Imitators do not pay any costs and acquire the best behavior with
probability pSL, to be calculated later.
We assume that fitness is only determined by the probability that an

individual adopts the currently best behavior times the benefit, minus the
cost of learning. Hence, for individual learners, fitness wIL is equal to

wIL = (1− ε) · 1 + ε · 0− c
wIL = 1− ε− c

For social learners, the fitness wSL is simply:

wSL = pSL · 1 + (1− pSL) · 0− 0
wSL = pSL

The important question is now: What is the probability pSL that a social
learner adopts the correct choice? If the frequency of social learners is x and
the frequency of individual learners is 1 − x, a social learner has a chance
of 1 − x to adopt the behavior of an individual learner. We assume that
social learners copy choices from the previous generation. Therefore, there
is also a chance of 1− q that the environment has changed in the meantime,
rendering the copied behavior incorrect.
Furthermore, a social learner may observe another social learner, which

happens with probability x. What is the probability that this imitated social
learner chose correctly? Well, this is the same question as we have asked in
the beginning, so we have a recurrent iteration, or chain, as shown in figure
1.1. If we assume that cultural evolution is fast whereas genetic evolution is
slow, we can make the approximation that changes in x are negligible over
the time periods. But we have to keep in mind that if a social learner imitates
another social learner who imitated an individual learner, the information
is not one but two generations old. Therefore, the probability that the
environment changed in the meantime is not 1 − q but 1 − q2. Similar
arguments can be made for three, four, five steps.
From the information given above, we can compute the probability pSL

of a social learner to choose correctly. All probabilities are assumed to be
independent, so we can simply multiply the probabilities of the different

6



1.2 Rogers’ model

Figure 1.1: Chain showing the use of information by social learners (SL). They
either imitate an individual learner (IL) or another social learner. The environment
stays stable with probability q after each generation. A social learner might have
imitated another social learner who in generation t−1 might have imitated another
social learner etc., but at some point in time, the source of information must have
been an individual learner, who is right with probability 1− ε. Therefore, the chain
is rooted in the choice of an individual learner but the farther in the past this root
is, the lower the probability that the environment has not changes in the meantime.
For one generation, the probability is q, for two generations q2, etc.

events:

pSL = q · (1− x)(1− ε) +
q2 · x · (1− x)(1− ε) +
q3 · x2 · (1− x)(1− ε) + . . .

= (1− x)(1− ε)
∞∑
τ=1

qτxτ−1

= (1− x)(1− ε)
∞∑
τ=0

q · qτxτ

= (1− x)(1− ε) · q ·
∞∑
τ=0

(q · x)τ

As we have 0 ≤ q, x ≤ 1, it follows that 0 ≤ q · x ≤ 1. The equation can
thus be simplified to:

pSL = (1− x)(1− ε) · q · 1
1− q · x

= (1− x)(1− ε) · q
1− q · x

= wSL

Having derived the required fitness functions, we can now plot the fitness
of individual learners and of social learners as a function of the frequency

7



1 Introduction to models of social learning

Figure 1.2: Fitness of individual learners (dashed line) and social learners (solid
lines, left for c = 0.2, right for c = 0.4) as a function of the frequency of so-
cial learners. ε = 0.2, q = 0.95. Social learners copy randomly. Their fitness is
monotonically decreasing with their frequency. The fitness of individual learners is
constant with regard to the frequency of social learners. It decreases with c and ε.

x of social learners, as done in figure 1.2. The fitness of social learners
(solid line) is negatively frequency dependent – the more social learners there
are, the more they imitate one another, increasing the reliance on outdated
information. On the other hand, the fitness of individual learners (dashed
line) is independent of the frequency of social learners, as individual learners
only rely on their own judgment.
The equilibrium frequency x∗ of social learners is:

x∗ = q · (1− ε)− (1− ε− c)
q · c

It can be shown that this equilibrium is always stable. The equilibrium fre-
quency of social learners increases with c and ε. This is to be expected, since
these two variables decrease fitness of individual learners. Insofar, the effect
of costs and errors on the equilibrium frequency is trivial. Moreover, the
equilibrium frequency of social learners increases with environmental stabil-
ity q. The more stable the environment, the more reliable social information
is even when old, so this result is not surprising either.
An interesting aspect of social learning is how it performs. Performance

is defined here as the probability to choose the correct option. For social
learners, it is simply pSL and for individual learners, it is 1 − ε. Costs of
learning do not influence performance. If we only compare performance, we
find that social learners never have a higher performance than individual
learners. This should be expected, because social learners always lag be-
hind individual learners, copying information that is at least one generation
old, while individual learners always learn the correct choice for the given
generation. In addition, social learners have no mechanism to correct the
errors that individual learners make – a social learner will blindly copy any

8



1.2 Rogers’ model

Figure 1.3: Rogers’ paradox. Left: fitness; right: performance. Fit-
ness/performance of individual learners (dashed line), social learners (solid line),
and the population mean (dotted line) are shown as a function of the frequency
x of social learners. ε = 0.2, q = 0.95. At the equilibrium frequency x∗, fitness
of individual learners and social learners are equal, corresponding to the fitness of
individual learners. The mean population fitness transiently exceeds the fitness of
individual learners, but in equilibrium, it is always the same. The group is eventu-
ally not better off than it was before social learners invaded. This finding is called
Rogers’ paradox [23, 146]. Additionally, we find that in equilibrium, the population
performs even worse on average than in absence of social learners. This finding
adds to Rogers’ paradox, as it suggests that in equilibrium, it is less likely that the
better option be chosen than in absence of social learners.

error they observe. Since individual learners always outperform social lear-
ners, the latter could not invade if it were not for the additional cost that
individual learners pay.
When social learners are very rare, their fitness is q · (1 − ε), which will

be greater than the fitness of individual learners, as long as c is sufficiently
large. When social learners are very very frequent, their fitness is reduced
to 0, which is worse than the fitness of individual learners (except if ε and
c are absurdly high). If the fitness of social learners is greater than that
of individual learners when rare and lower when frequent, given that their
fitness decreases monotonically with their frequency and fitness of individual
learners is constant, there must be one frequency and one frequency only at
which social learners and individual learners have equal fitness. This is
obviously the equilibrium frequency x∗, as shown in the left panel of figure
1.3.
The fitness of individual learners being constant over x, it is the same

at equilibrium as it was in absence of social learners. At equilibrium, the
fitness of social learners is by necessity also the same as that of individual
learners. Therefore, in equilibrium, the average fitness of the population is
the same as it had been before social learning was introduced. This finding is
called Rogers’ paradox. Although it might seem trivial, its interpretation

9



1 Introduction to models of social learning

is actually our first important conclusion.
The “paradox” consists of the fact that although social learning, by virtue

of saving the cost of learning individually, can indeed improve the population
fitness, this improvement is not maintained. As long as social learners have
a fitness advantage, they become more frequent and thereby deteriorate the
accuracy of social information. At the stable equilibrium, the population
fitness is exactly the same as in absence of social learners. Although natural
selection would favor social learning to evolve, it would contribute nothing
to the lot of the population as a whole.
The finding by Rogers is robust to some of its assumptions. Boyd and

Richerson [23] showed that if spatial variation is added or if social learners
are allowed to preferentially copy individual learners, Rogers’ conclusion still
holds. They also showed possible solutions to Rogers’ paradox, which we will
discuss in the third chapter.
When the adaptedness of culture is studied, the understanding is that cul-

ture is indeed very adaptive and allows humans to cope with situations they
could not otherwise cope with [144]. This runs counter to Rogers’ findings.
But Rogers’ findings have to be interpreted carefully. The conclusion is not
that socially acquired traits (or “culture”) are useless and do not improve
mankind’s lot; the conclusion is that under very general conditions, social
learning would not improve mankind’s lot, so one or several of the initial
assumptions must be wrong. Rogers deserves merit for pointing out that
something in the study of the adaptedness of culture is amiss.
A further conclusion from Rogers’ work has not generally been recognized

in the literature. He showed that in equilibrium, population fitness is the
same as in absence of social learners. The disadvantage of relying on social
information becomes so great that it equals the cost of learning individually.
However, it is certainly true that the adaptedness of culture does not consist
solely in saving the cost of learning individually. In our opinion, one should
expect social learning to actually improve upon the performance of individual
learning.
With simple random copying as in Rogers’ model, however, we actually

find a decrease in performance. This is shown in the right panel of figure 1.3.
There, we plotted performance of individual learners, social learners, and the
mean population performance as a function of x. Performance, opposed to
fitness, is calculated by leaving out the costs. Social learners always perform
worse than individual learners, so that at equilibrium, the population as
a whole performs worse than in absence of individual learners. After the
invasion of social learners, we would thus find individuals to more often pick
the wrong option than before. An important question we will address in
this work is therefore whether there are social learning strategies that can
actually improve performance in equilibrium.
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1.2 Rogers’ model

sample prob. to observe prob. of 3 correct prob. of 2 correct
0 SL, 3 IL (1− x)3 q · (1− ε)3 3 · q · (1− ε)2 · ε
1 SL, 2 IL 3 · x · (1− x)2 q · pconf · (1− ε)2 2 · q · pconf · (1− ε) · ε+

q · (1− pconf )(1− ε)2

2 SL, 1 IL 3 · x2 · (1− x) q · p2
conf · (1− ε) 2 · q · pconf · (1− pconf )(1− ε)+

q · p2
conf · ε

3 SL, 0 IL x3 q · p3
conf 3 · q · p2

conf · (1− pconf )

Table 1.1: Conformists who sample three individuals. x is the frequency of con-
formists in the population, q is the probability that the environment stays constant,
ε the error rate of individual learners, and pconf the probability that a conformist
chooses the correct option. Any number between 0 and 3 individuals in the sample
of a conformist may be other conformists. If 2 or 3 sampled individuals choose
correctly and the environment stays constant, a conformist also adopt the correct
option; if not, a conformist chooses the wrong option.

1.2.2 Rogers’ model with conformism
Social learners who engage in random copying can never outperform indi-
vidual learners, no matter how inaccurate individual learners are. However,
other forms of social learning may lead social learners to have a performance
that exceeds the performance of individual learners. We extend Rogers’
model by implementing another social learning strategy, conformism. We
define a conformist as a social learner who samples three individuals and
then adopts the choice that the majority of the individuals adopted.
For simplicity, a conformist is assumed to always observe 3 individuals.

Among these 3, they may observe any number between 0 and 3 individual
learners, while the rest are social learners. Let pconf be the probability that
a conformist makes a correct choice. We can then calculate pconf using table
1.1.
For this calculation, we made the simplifying assumption that all incorrect

options are lumped together. That way, if the majority of the sampled
individuals choose the correct option, the correct option will be chosen, and
if the majority of the sampled individuals choose any of the incorrect options,
the incorrect option will be chosen. We furthermore ignore the possibility
that a conformist chooses the wrong option but that the environment changes
so that this option suddenly becomes correct.
By adding up the products of the third and fourth column of the table

multiplied by weights in the second column and solving for pconf , we arrive at
three solutions; two are stable equilibria and one is an unstable equilibrium
(see figure 1.4). All of the solutions are too cumbersome to write down here.
To show that conformists may perform better than individual learners, we

can simplify the formula by assuming that conformists are very rare. For
x = 0, the formula reduces to pconf = q · (1 − ε)2(1 + 2 · ε). For ε = 0.2

11



1 Introduction to models of social learning

Figure 1.4: Fitness of individual learners (dashed line) and conformists (solid lines:
stable equilibria; dotted line: unstable equilibrium) as a function of the frequency
of conformists. ε = 0.2, q = 0.95. At lower frequencies, fitness of conformists
increases with their frequency. When they are very frequent, depending on whether
they adopt the good option or not, their fitness can either be very high or very low
(two stable equilibria). Whether they end in the high or low equilibrium depends
on which side of the unstable equilibrium they start on. The more conformists there
are, the more likely it is that they start on the side of the unstable equilibrium that
leads to the choiec of the inferior option.

and q = 0.95, we have pconf ≈ 0.85 and pIL = 0.8, meaning that conformists
outperform individual learners. In fact, as long as ε is sufficiently large and
q sufficiently small, pconf is always greater than pIL, meaning that when
conformists are rare and individual learners perform above chance level,
conformists perform better than individual learners.
Paradoxically, the invasion threshold for conformists increases the worse

individual learners perform. If individual learners have a high chance to
pick the wrong option, mistakes will be amplified by conformists and lead to
even more mistakes. For q = 1, this means that conformists cannot invade
a population of individual learners if ε > 1/2. This, however, amounts to
individual learners being wrong more than half of the times, which is unlikely.
One would expect competition among individual learners to reduce ε, even
if this meant that the population becomes prone to invasion by conformists.
Given that ε is sufficiently small, if conformists sample even more than

just 3 individuals, their invasion fitness would be even greater. For example,
if they sample 7 individuals and if q = 0.95 and ε = 0.2, the fitness of a
rare conformist would be ≈ 0.92 instead of ≈ 0.85. This is because the more
individuals are sampled, the less likely it becomes that the majority of them
choose wrongly, given that each individual has a higher than 50% chance of
being right.
Not coincidentally, this finding corresponds to Condorcet’s Jury Theorem

[36]. Condorcet started with the question how many members a jury should
optimally have if it is about to make a binary verdict (like “guilty” or “inno-
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cent”). It is assumed that decisions are made by majority vote. If each juror
has a higher than 50% chance to make a correct decision, the conclusion is
that the more members the jury has, the more likely it is that the majority
vote turns out right. Similarly, in our model, the jurors are the sampled
individuals and the majority vote is realized by the conformist. The more
individuals the conformist samples, the higher the probability that she ac-
tually chooses the right option. It is straightforward to take this theorem
as support for democracy, and not coincidentally, the philosophe Condorcet
was a major figure during the French Revolution [44].
Condorcet’s theorem hinges on the assumption that each juror decides

independently from the others. Similarly, we started with the assumption
that conformists are rare, implying that they only sample individual learners,
all of which indeed decide independently. What would happen if we dropped
the assumption?
We will have to entertain the possibility that a conformist samples other

conformists. As we saw, conformists are initially more likely to be correct
than individual learners are. Therefore, if conformists sample other con-
formists, this should improve the performance of conformists even further.
This is indeed the case. If instead of assuming that x = 0 we assume that
x = 0.1, performance of conformists who sample 3 individuals increases by
0.01 to ≈ 0.86; for x = 0.5, it reaches ≈ 0.89. For conformist performance,
we thus observe a positive frequency dependence, as shown in figure 1.4.
The more conformists there are, the better they perform.
This does not mean, however, that conformists will become fixed in the

population. As long as there is a sufficient number of individual learners,
when there is an environmental change, conformists will also adopt. If there
are too few individual learners, conformists become stuck with the now mal-
adaptive option, though. This manifests as the second stable equilibrium in
figure 1.4. As long as most individuals in the population choose the correct
option, conformists will also choose it. If too many individuals choose an
incorrect option, though, conformists will also choose the incorrect option
(the dotted line separates the two stable equilibria).
Assuming environmental changes to be infrequent and conformists to be

initially rare, we will thus see conformists outperforming individual learners
and becoming more and more frequent. The more frequent they become, the
better they perform. At some point, individual learners will become rare in
the population. Sooner or later, however, there will be an environmen-
tal change. Afterwards, conformists are suddenly worse off and individual
learners begin to rise in frequency. At one point, when there are enough
individual learners, conformists will suddenly switch and choose the better
option, again outperforming individual learners. Thus the cycle continues.
A totally stable equilibrium frequency will never be attained; instead we
observe constant ups and downs.
Even for the rather simple case of conformists with sample size 3, the
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model therefore generates complex outcomes. We cannot calculate an equi-
librium frequency of social learners, as opposed to what we did when social
learning consisted of random copying. This is why social learning theory of-
ten has to recur to simulations when strategies more complex than random
copying are analyzed.
Although the frequency of conformists will never completely stabilize,

there has to be a frequency around which it fluctuates. The average fitness
of conformists after the occurrence of the bifurcation is evidently between
the two stable equilibria and depends on the exact adoption dynamics. It
is clear, though, that for x = 1, the fitness of conformists would be zero, as
they would never choose the adaptive option after an environmental change
occurs. Thus, somewhere between the x at which the bifurcation occurs and
x = 1, the average fitness of conformists has to become lower than that of
individual learners. This is the frequency around which conformists fluctu-
ate in the population, and it is more or less constant depending on how fast
evolution is compared to the social learning process.
Evidently, at this equilibrium, fitness of individual learners and conformists

have to be equal. As individual learners still have the same fitness as they
had before conformists invaded, the fitness at equilibrium must also take this
value. Therefore, in equilibrium, the mean population fitness is the same as
it was before the arrival of conformists. In other words, we have replicated
Rogers’ paradox. Conformism is not a social learning strategy that is able
to solve Rogers’ paradox.
Coming back to the question of learning costs, the same result holds as

previously found for random copying. There is a more or less stable equilib-
rium of social learners and individual learners; when the cost of individual
learning increases, the equilibrium frequency of individual learners decreases.
The effect of costs is thus again trivial.
Overall, this exercise showed what we can learn from a simple social lear-

ning model. Social learning by random copying can never outperform indi-
vidual learning, but conformism may do so. Still, conformism cannot resolve
Rogers’ paradox; in equilibrium, the mean population fitness is the same as
in absence of social learning.
Moreover, it became obvious that learning costs have a trivial effect on

the outcome. This is because costs only affect the fitness but not the perfor-
mance of learners. However, performance is the more interesting aspect of
social learning – in this work, we want to understand which social learning
strategies lead to a better performance and not to cost savings. There-
fore, we do not implement exogenous learning costs, in contrast to previous
social learning models (e.g. [22, 23, 50, 61, 63, 76, 77, 100, 101, 103, 119–
121, 143, 146, 174, 177]) but focus solely on performance instead.
We found that in the study of social learning, there are some similarities

with early research on social choice theory. Condorcet studied the outcome
of votes cast by a group of people [36]. In contrast to modern social choice
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theory [3], which is only concerned with whether the voting process correctly
reflects the preferences revealed by the voters, Condorcet was additionally
interested in whether the outcome was really the better outcome. Although
in an election, it is debatable whether there are objectively better outcomes,
in models of social learning, there are correct and incorrect outcomes. There-
fore, Condorcet’s studies are closer to our studies than is modern social choice
theory.
In particular, we found that there is an analogy between the performance

of conformists under the assumption that they are rare in the population,
and Condorcet’s Jury Theorem under the assumption that jurors make in-
dependent choices. Moreover, we showed that conformists could actually get
stuck with choosing the wrong option if too many individuals in the popula-
tion use conformism as a strategy. Is there an equivalent finding with regard
to Condorcet’s theorem when the assumption of independence is dropped?
We could assume e.g. that jurors have an incentive to be on the right

side of the verdict. They may be afraid of being ridiculed if their personal
decision turns out to be wrong at the end of the day. This would provide
an incentive to imitate other jurors if possible. For instance, interesting
effects may occur when jurors cast their vote sequentially. The first juror
will obviously vote according to what she believes to be true, she has no
better information. The second juror now knows the first juror’s belief,
as well as her own belief. Assuming that each juror’s beliefs are equally
accurate, if her own belief contradicts the first juror’s belief, the second
juror is confronted with a dilemma. Let us assume that in this case, a juror
will always act according to her own belief. The second juror would thus
decide the opposite of the first juror. If, however, the first juror confirms the
second juror’s belief, she will obviously cast the same vote as the first.
For the third juror it becomes tricky. She will observe either two contra-

dicting votes or two conforming votes. In the first case, the two contradicting
bits of information cancel out and the third juror is in the same position as
the first juror was. If the two first jurors came to the same conclusion,
however, the third juror knows that they held the same belief. If the third
juror also holds this belief, she will happily concur. If not, though, what
should she do? She could vote according to her own belief, but if her most
important goal is to cast a vote that will turn out to be correct, is this her
best option? Obviously, if all jurors are a priori equally likely to be correct,
it is more likely that the third juror is misinformed than that the previous
two jurors were both misinformed. It is thus rational for the third juror to
ignore her own belief and to align with the other two.
The fourth juror will subsequently be in a similar position as the third

juror. She knows that the first two jurors had the same belief, so that even
if her own belief contradicts these jurors’ believes, it is rational for her to
concur. Interestingly, she cannot make any conclusions about the belief of
the third juror, since the third juror will always align herself, regardless of
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her belief. The fourth juror is therefore not better informed than the third
juror, even though she made more observations. This is evidently true for
all subsequent jurors.
This finding has first been described by Bikhchandani, Hirshleifer, and

Welch [16], a similar model was proposed by Banerjee in the same year [10].
The general phenomenon of people (or other organisms) aligning with others
is called herding. The specific case studied here, when suddenly personal in-
formation is ignored and every subsequent observer aligns with the previous
ones is called an informational cascade. It was shown by the authors that
such a cascade will start as soon as one of the two propositions has a margin
of two votes over the other. After a cascade has started, no further juror
adds to the publicly available information, so that even the 100ths juror is
not better informed than the first.
It has also been shown that in the limit, an informational cascade is bound

to occur and that because of the alignment, the probability that the cascade
ends with the correct verdict is only slightly higher than the probability of
each individual juror to be correct [16, 17]. Compare this with the case
of 7 independent jurors and an accuracy of 80% (i.e. ε = 0.2) and no
environmental changes (i.e. q = 1). The probability of a correct decision
would be ≈ 0.97%, the error rate thus being diminished to 1/6th of the
initial value.
Coming back to Condorcet’s theorem, this means that if jurors influence

each other in the way just described, the verdict of a jury does not become
more reliable the more jurors there are. Although the decision made by many
jurors is slightly more likely to be true than the judgment of a single juror,
the gain is minimal, especially when compared to what could be achieved if
all jurors acted independently.
A second big conclusion, similar in spirit to Rogers’ paradox, is, therefore,

that if individuals act rationally to increase their own utility/fitness, they
will choose to conform to the majority choice to a higher degree than is
optimal (optimal in the sense of considering the overall result). The poten-
tial information gained by observing the behavior of others is thus almost
obliterated. For the legitimacy of democratic processes, this has major im-
plications: Polls, traditional and social media, opinion leaders, all create
dependencies between the voters’ opinions, which could undermine the ’wis-
dom of the crowd’ [166]. Similarly, excessive social learning is suboptimal
for the total fitness of the group.

1.2.3 What to expect from a social learning model
Rogers’ findings has some striking similarities with those reached when
studying a different type of social behavior, cooperation (see figure 1.5).
In the tragedy of the commons [82], there is a large surplus (the common)
that could be used to the benefit the whole group. However, selfish inter-
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est will lead to the over-exploitation of the common up to a point where
the marginal benefit of exploiting the common even more equals that of not
using the common. At the end of the day, there are thus no benefits to
be had from having the common. Similarly, with social learning, there is a
large benefit to be had – the aggregation of knowledge derived from observ-
ing others – but this benefit is exploited until the marginal benefit of using
social learning equals that of using individual learning. Eventually, in both
cases, the population is not better off in equilibrium than at the beginning,
even though a better state clearly exists.
The problem of cooperation has long been identified, with the tragedy of

the common being a prominent illustration, but with other problems like
the prisoner’s dilemma and the public goods game following suit. The great
importance of Rogers’ results [146] is that they make clear that a similar
problem exists with the use of information in populations (societies). The
importance of information has been ever increasing in the last centuries
and decades and is nowadays arguably of equal importance as fostering and
stabilizing cooperation. (For instance, besides spreading risk, aggregation of
information is the main function of financial markets.)
Studying the problem of social learning provides a different challenge from

studying the problem of cooperation. The latter is deeply linked to game
theory, as the marginal impact of an individual’s action on the payoff of an-
other individual is considered to be large. That is, in most cases, the overall
cost associated with a selfish behavior exceeds the personal benefit gained
through this behavior – we are dealing with large externalities. Using the
standard prisoner’s dilemma payoffs6 [6, 7], given that player A cooperates,
player B’s benefit from defecting is gaining 2 while player A loses 3; given
that player A defects, player B’s benefit from defecting instead of cooper-
ating is gaining 1, while player A loses 4. In contrast, in social learning
problems, the marginal impact that an individual has on another individ-
ual’s payoff is typically relatively small. Although a player’s best response
ultimately depends on the strategies of other players, the tools provided by
game theory are therefore rarely used to study social learning.
Besides cooperation, social learning is another big domain of the study of

social behavior. In our opinion, it’s paradigm needs to be developed further
to make its study more successful. Although not the first to model social
learning, Rogers was the first to present such a simple social learning model
that it could be grasped immediately by a lay person while still providing
valuable a insight (although the elaboration in the original paper was some-
what unclear and it was up to other scientists – notably Robert Boyd and
Peter J. Richerson [23] – to clarify the importance of Rogers’ results.)
Axelrod’s tournament [6] sparked a huge explosion in the cooperation

literature. Although the significance of the main results from this and the

6T (temptation) = 5, R (reward) = 3, P (punishment) = 1, S (sucker’s payoff) = 0.
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following tournaments can be contested, it is still true that it provided a
unified framework, in the form of accepting the iterated prisoner’s dilemma
game as the main paradigm for studying cooperation. Despite attempts to
invigorate the field of social learning by copying Axelrod’s premise [141], a
true paradigm has not been established. However, doing so would be very
helpful to advance the study of social learning.
Certainly, it can be argued that a paradigm will likely restrict researchers

in an undue fashion. But the benefits from having one at this point would
arguably exceed the disadvantages. Most notably, a paradigm allows the
comparison of different results and also achieves to focus the critique of
the field; without a paradigm, the weaknesses of the research will be easier
to conceal. We will show in chapter 3 that many conclusions about social
learning may have been premature, the reason being that only a small subset
of possible social learning strategies were considered in the literature.
As mentioned, although Rogers was not the first to model social learning,

his model was by the time the easiest model that still drove home an im-
portant point. Before this model, there were other models that, although
adequate and useful for the respective purposes, were too specific to make
a very broad impact beyond the field of social learning. Yet, while Rogers’
model was almost perfect in achieving what the author meant to achieve,
it is clear that it is too restrictive to breed the same “adaptive radiation”
that was triggered by the adoption of the prisoner’s dilemma or public goods
game as the paradigm to study cooperation.
Other frameworks have been suggested for social learning, most notably

by a team formed around Kevin Laland. Their game basically comes down
to a multi-armed bandit with the option of learning individually, acquiring
information about the choices and payoffs of other individuals, and exploit-
ing the bandit [141]. This model encompasses more possibilities but is not
intuitively as easy to grasp as Rogers’ model. It may also be too specific,
allowing savvy participants of the tournament to “game the system”, thus
providing little useful information about what to expect from social learning
in the real world.7
In our opinion, a new framework is needed, although Rogers’ model should

serve as an exemplar. We propose that the framework should have the
following features:

• Synchrony in choice, so that sequence effects can be ignored (in con-
trast to, say, herding models [10, 16]).

• Spatial patterns should be cast aside (at least at first), as they add
unduly to the complexity.

7The problems of the original tournament have been recognized by the authors. By
the time this text is written, a second tournament, which is supposed to amend the
problems of the first tournament and to extend its scope, is being held.
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• Dichotomy of choice, as many problems can be reduced to choosing the
default state or the alternative (in contrast to more than two options
or actions on a continuous space).

• Emphasis on performance of social learning; an important goal should
be to study under which conditions social learning improves upon in-
dividual learning.

In our opinion, Rogers’ model can be improved on four levels to come closer
to what might be considered a good paradigm for the study of social learning.
First, we think that Rogers’ model was too restricted in the way that

social learning was allowed to take place. Social learning consisted of copy-
ing a random individual in the population. Instead, social learners should
be allowed to sample more than one individual, they should be allowed to
discriminate between individuals (for example, just copy the most success-
ful individual), they should be allowed to facultatively switch their mode of
learning (e.g. only copy when not sure which alternative is best), etc. This
will allow for the needed flexibility in the study of social learning.
Next, in Rogers’ model, it was assumed that individual learners always

know instantly which choice is currently the correct one. Later models re-
laxed this assumption by introducing the possibility for errors. In our opin-
ion, the goal should be to get closer to real learning processes. If not learning
from others, humans and other animals learn by trial-and-error, so a good
model should be able to at least accommodate strategies like reinforcement
learning.
Following from the two previous modifications, Rogers’ original model

contained a variable that becomes unnecessary and should thus be omitted
if not specifically needed: the cost of learning individually. The reason why
Rogers required individual learners to pay an extra cost was that the only
edge social learners had over individual learners was to save this very cost.
Individual learners were perfect in their choice, so some form of handicap
had to be added. By requiring individual learners to really learn instead of
granting them omniscience, the possibility for making mistakes is included;
by allowing for more sophisticated social learning strategies, social learning
can have an advantage over individual learning apart from saving costs.
In the world of models, costs have a trivial effect on the results, namely

that the higher the cost of a certain strategy is, compared to the cost of an-
other strategy, the lower this strategy’s equilibrium frequency. Empirically,
the cost of individual learning might be more or less easy to measure, but
the cost of social learning less so. What exactly is the additional cost of
modifying the cognitive apparatus to allow social learning to happen? How
much time does an individual need to sacrifice to follow others around and
copy their choices? As learning costs only affect model results trivially and
are hard to measure, parsimony would suggest to omit them as long as they
are not specifically required for a given problem.
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Finally, Rogers had to assume for his model that cultural learning happens
at a much faster pace than genetical evolution. When determining how old
social information is, he had to assume that the frequency of social learners
was approximately constant. Though appropriate for the given question, the
speed of cultural and genetical evolution should optimally be endogenous to
the model, as it might easily be true that the most interesting phenomena in
the evolution of social learning emerge in times when cultural and genetical
evolution act on a comparable time scale.
Obviously, we tried to implement these four modifications to Rogers’

model in the model that we will propose. We thus hope that our model
strikes the right balance between generalizability and specificity, flexibility
and restriction, allowing us to make significant progress.
Although the model arguably improves upon Rogers’ model, especially in

allowing for more flexible and realistic strategies, these improvements come
at a cost. As is almost inevitable, higher flexibility leads to more parameters.
Most notably, the fashion in which the environment changes over time will
greatly expanded. In the original model, one single parameter determined
the environment: the probability that it changes after each period. In our
model, greater flexibility is allowed, such as that both options being good at
the same time or bad at the same time.
Regarding the strategy space, it is clear that it expands substantially.

Even if the sampling of a social learner from the population is random, even
if observed individuals cannot be distinguished from each other, and even
if sample size is limited to three individuals, there are already 20 possible
observations for dichotomous choices (all three observed individuals chose
option A and were successful, all three chose option A and two were suc-
cessful, etc.). A strategy is only completely described by attaching to each
possible observation a probability to choose one or the other option. With
higher sample sizes or more choice options, the number of possible combina-
tions quickly gets out of control. We will later discuss ways to restrict the
complexity in a meaningful way.
How will the field of social learning develop? Again, the analogy to the

cooperation literature may serve as a guide to what we could expect. Mod-
eling approaches will give us a hint as to what we should expect to see in
the real world. Only if we know what to look for, only if we have specific
hypotheses, will the observations we make be interpretable. Often, we will
find that observations refute our hypotheses, but then at least we have a hint
at where we actually made mistakes. The study of cooperation has given
rise to concrete policies aimed at improving cooperativeness in communities
– just consider the work of the late Nobel prize laureate Elinor Ostrom [137].
Similarly useful conclusions could be drawn from studying social learning.
It is debated whether what we think we know about cooperation covers

what we want to know to a reasonable degree, or whether cooperation is still
not well understood. As an example, kin selection [79] and direct reciprocity
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[170] are often considered to be keys to breed and sustain cooperation, yet
these concepts were criticized in the recent years (see [80] and [134], respec-
tively). Currently, punishment is hotly debated as a mechanism that sup-
ports cooperation [58] but it gives rise to second order free-riding and other
problems [45]. Similarly, the study of social learning will be characterized by
not knowing whether the gained knowledge is already very comprehensive
or whether astounding discoveries are still lurking around the corner.

1.3 Introduction to our model
After this long prelude, we should now cut to the chase. The following
section will expose the model we use throughout this work. We will derive
some simple results and discuss them, before presenting more intricacies in
the next chapters.

1.3.1 General outline
Individuals in our model face what seems to be a fairly simply task, namely
repeatedly choosing between two options, A and B. These options can be
thought of as e.g. hunting antelopes or wildebeests. Each option has a
certain probability to lead to success, in which case fitness is increased. If
two individuals choose the same option, they have the same probability to be
successful, but each success is drawn independently. Therefore, even if both
choose to hunt antelopes, one of the individuals may end up being successful
and the other not.
The underlying success probabilities are unknown to the individuals. To

allow them to learn, they have the opportunity to make several decisions
per lifetime (a generation). Since they receive feedback from their previous
choices – whether they succeeded or not – they can make better informed
decisions over time. This way, more realistic forms of learning are possible
in our model compared to previous models.
In order for the task to be challenging, the success probabilities of the

options A and B, denoted pA and pB respectively, change over time. If
option A was associated with many successes in the past, that does not
necessarily mean that it is in the present. pA and pB behave independently
of each other but always according to the same underlying algorithm.
We show an example of how pA and pB vary over time using our default

parameter settings in figure 1.6. pA is shown as the thick line and pB as
the thin line. After each period, pA and pB change by a small amount. But
in contrast to a real random walk, they will tend to revert to the mean,
which is 0.5 in this example. At the beginning, A is the better choice, as pA
exceeds pB; later on this trend reverses. Between period 100 and 150, the
difference between pA and pB is small, so choosing the worse option is not
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Figure 1.6: Example of how pA (thick line) and pB (thin line) vary over time. pA

is the probability that a choice of option A will result in a success, pB that B results
in a success. pA and pB fluctuate in small steps after each period but stick close to
the mean of 0.5. At the beginning, A is the better choice but later on, B becomes
the better choice.

backbreaking. Around period 200, though, B is significantly better than A,
meaning that it is very costly to choose A in that situation.
There are several possibilities to tinker with the parameters of the envi-

ronment. The next chapter will deal with this. In this chapter, however, we
only use the default parameters. They are set so that each individual has
50 choices per lifetime. After each time period, the value of pA (and pB)
changes by 2 percentage points. Whether pA increases depends on the cur-
rent value of pA: the probability is simply 1− pA (same for pB). Therefore,
if pA is greater than 0.5, it is more likely to decrease in the next period, and
if it is less than 0.5, it is more likely to increase in the next period. This is
why we wrote that the values of pA and pB tend to “revert to the mean”.
In this chapter, we model only two types of learning strategies:

Individual Learners base their decision only on their own experience and not
on the behavior of others. In particular, they will practice reinforcement-
learning [97], i.e. they pick their assets according to a trial-and-error-
method. Since pA and pB are fluctuating, the choice between A and
B has to be updated constantly. Individual learners therefore have a
memory that allows them to draw on earlier experiences.

Conformists do not rely on their own experience. Instead, they base their
choice purely on the observation of other individuals. In each time pe-
riod, after having observed a fixed number of individuals, a conformist
will always pick the option that has been chosen by the majority of
the observed individuals.

All individuals start with a base fitness of 10. After each time period, an
individual’s fitness is increased by 1 if the individual was successful or stays
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1 Introduction to models of social learning

the same if not. After 50 periods, one generation ends. The frequency
of the strategies will then evolve, with strategies that have a higher mean
fitness being more likely to become more frequent in the population. This
process of natural selection is accomplished with a standard method from
population genetics, the Fisher-Wright process [62, 181], which preserves
the total population size. Generations are non-overlapping, there are no
mutations, and we assume non-sexual haploid inheritance.
The whole model is is shown schematically in figure 1.7. The exact details

should not matter here. In general, each strategy is characterized by a
decision mechanism. This mechanism has to be exactly defined – for each
possible observation, there must be a rule that determines the reaction. From
this mechanism, an aggregate behavior can be derived, which describes what
option a strategy adopts; for social learners, adoption probabilities depend on
what other individuals in the population chose. Moreover, for all strategies,
the behavior may depend on the environment, i.e. the values of pA and pB.
The interplay between the strategies’ behavioral responses and the variable
environment leads to cultural adaptation within a generation. If a strategy is
especially apt at choosing the better option, it will likely have a higher fitness
than others. This will lead to an increase of this strategy’s frequency between
generations, i.e. genetic adaptation. The frequencies of the strategies will
in turn influence their faculty for cultural adaptation; genes and culture
coevolve.

1.3.2 Learning strategies
In the following, we will consider in more detail the learning strategies. Social
learning will take the form of conformism. Individual learning will take
the form of reinforcement learning with exponential discounting. Bayesian
learning would suggest itself as an alternative individual learning strategy.
We will briefly discuss Bayesian learning and explain why it is not very
adequate for the learning task.

1.3.2.1 Individual learning trough reinforcement

In our model, individual learning is modeled in a more realistic fashion than
previously. This is possible because an individual faces more than just one
decision per lifetime and can therefore rely on past experience to make in-
formed decisions.
We chose to implement individual learning as reinforcement learning [97].

This is a rather broad term that includes several possible implementations,
so we have to go into more details. The most simplistic implementation of
reinforcement learning would be a strategy that sticks with the same option
as last period when it was successful and switches options when unsuccessful
– this strategy is called win-stay lose-shift [133, 145].
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1.3 Introduction to our model

Figure 1.7: Overview of the model. Strategies are characterized by a decision
mechanism. This mechanism results in a certain behavior that, for social lear-
ners, is dependent on how others in the population behave. Furthermore, the beha-
vior of the strategies depends on the environment, which varies over time. Com-
bining the behavioral responses of the strategies with the environment results in
cultural adaptation. Social learners sample randomly from the whole population.
Depending on the choices, strategies accumulate fitness. Strategies with higher fit-
ness tend to increase in frequency, resulting in genetic adaptation. Changes in
the strategies’ frequency feeds back on cultural adaptation.
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1 Introduction to models of social learning

Figure 1.8: The behavior of win-stay lose-shift over time. The proportion of A
choices made by this strategy (•) is measured on the left y-axis. The solid line
represents the environment in the form of pA − pB , measured on the right y-axis.
The horizontal line serves as a guide to the eye. A perfectly performing strategy
would always choose A as long as pA−pB > 0, that is, when the pA−pB line is below
the horizontal line. It would never choose A in the opposite case of pA − pB < 0.
Win-stay lose-shift tracks changes in the environment but is very “conservative”
because it never deviates very far from 50% A choice. This behavior hampers the
performance of this strategy.

An illustration of the behavior of win-stay lose-shift can be found in fi-
gure 1.8. Shown are the aggregate behavior of 1000 individuals who use
this strategy and at the same time how the environment develops over time.
Behavior is shown as the average proportion of A choices made be the in-
dividuals, measured on the left y-axis. The environment consists of pA and
pB, but to simplify matters, we only plotted the difference pA − pB, which
is measured on the right y-axis.
To understand why win-stay lose-shift is not a good performer, we first

have to understand how a perfect strategy would behave. Obviously, the
perfect strategy should always choose A when pA > pB and B when pA < pB
(if pA = pB, the choice is irrelevant). When we look, e.g., at period 200,
we find that pA is larger than pB but still only approximately 60% of the
population choose A. Win-stay lose-shift is very conservative in that it will
stick close to 50% most of the time, at the detriment of its performance.
Still, win-stay lose-shift is capable of tracking changes in the environment

reasonably well, resulting in a performance significantly better than expected
from chance. Performance is defined here as the degree to which a strategy
approaches optimal behavior. If a strategy has a performance of 60%, that
could mean, e.g., that in each period, 60% of the individuals using this
strategy choose the better option. But it could also mean that during 60%
of the periods, all individuals choose the better option and during 40% of the
periods, none of them chooses the better option. In reality, we will always
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find a mixture of these extremes. The performance of random choice would
be 50%, performance of win-stay lose-shift is 54.40% (0.06% standard error
of the mean), which is significantly higher.
Essentially, win-stay lose-shift is a reinforcement learning strategy with a

memory of only one period length. It cannot take into consideration what
happened two, three, or more periods in the past. However, the environment
tends to vary slowly. Say that A has led to success in the past 10 periods
except in the very last period. Win-stay lose-shift would immediately switch
to B after this turn of events, as it ignores everything except the last ob-
servation. However, such a string of successes makes it very likely that pA
is high and should not prompt a premature switch. This is where memory
comes into play.
We model reinforcement learning with memory by assuming that individ-

uals have a propensity, Pi for each option i, i = {A,B}. The propensities
are updated in each period by increasing them by an amount Ri if option
i is reinforced, with Ri being equal to 1 if option i was chosen and yielded
success or -1 if it was chosen and did not yield success; it is 0 if the op-
tion was not chosen in this period. Moreover, the propensity for an option
depends on the discounted propensity of the last period, with the discount
factor denoted as q. In sum, the propensity for option i in period t is given
as:

Pi(t) = q · Pi(t− 1) +Ri(t− 1)

The probability Pri(t) of choosing option i in period t is then given as:

Pri(t) = exp (Pi(t))∑
j exp (Pj(t))

We only face two options, A and B. Therefore, we have:

PrA(t) = 1− PrB(t)

=
exp

(
PA(t)

)
exp

(
PA(t)

)
+ exp

(
PB(t)

) (1.1)

= 1
1 + exp

(
PB(t)− PA(t)

)
= 1

1 + exp (−∆P (t)) (1.2)

with
∆P (t) ≡ PA(t)− PB(t)
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Moreover, for ∆P (t), we have:

∆P (t) = PA(t)− PB(t)
= q · PA(t− 1) +RA(t− 1)− q · PB(t− 1)−RB(t− 1)
= q ·

(
PA(t− 1)− PB(t− 1)

)
+RA(t− 1)−RB(t− 1)

= q ·∆P (t− 1) +RA(t− 1)−RB(t− 1) (1.3)

When choosing A in the last period led to a success, RA(t− 1) = 1, while
a failure with A results in RA(t − 1) = −1; the same is true for B. On the
other hand, the option that was not chosen is not reinforced. Therefore,
RA(t− 1)−RB(t− 1) equals 1 if A was chosen and yielded success or if B
was chosen and did not yield success. In contrast, RA(t − 1) − RB(t − 1)
equals -1 if A was chosen and did not yield success or if B was chosen and
did yield success. We can thus define R(t− 1) as:

R(t− 1) ≡
{

1 A successful or B unsuccessful in t− 1
−1 B successful or A unsuccessful in t− 1

Inserting this in equation 1.3, we get:

∆P (t) = q ·∆P (t− 1) +R(t− 1) (1.4)

To calculate the probabilities, we thus insert equation 1.4 in 1.2:

PrA(t) = 1
1 + exp (−∆P (t))

= 1
1 + exp (−q ·∆P (t− 1)−R(t− 1))

From these equations, it is clear that for the first period of the first gener-
ation, a probability to choose A or B cannot be defined. This is why for all
strategies, the very first choice is defined to be random. For the first period
of subsequent generations, offspring use as first choice the last choice of its
parent. This is the only form of vertical transmission in our model and it
is also applied to all other strategies. Individual learners do not inherit the
propensities of their parents, though, instead starting fresh with propensities
of 0.
Often, an additional modification to reinforcement learning is made by

introducing a sensitivity factor λ (see e.g. [104]). This parameter alters
the steepness of the probability of choosing an option as a function of the
difference in propensities, so that:

PrA(t) = 1
1 + exp (−λ ·∆P (t))
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Low λ imply that the probabilities to choose A or B are rather insensi-
tive to changes in propensity. The higher λ, the steeper the adjustment of
the probability – even small differences in propensities would lead to large
differences in the probabilities to choose A and B. In the extreme case of
λ =∞, this results in a simple threshold function that prescribes to choose
A if propensity for A exceeds propensity for B and vice versa:

PrA(t) =


1 ∆P (t) > 0
0.5 ∆P (t) = 0
0 ∆P (t) < 0

We found that this simple threshold function leads to a performance that
is almost the best that an individual learner can achieve. For this reason,
and for reasons of simplicity and parsimony, we adopt this threshold function
and do not further analyze λ.
The only free parameter that is left is thus q, the discount factor applied

to previous propensities. For q ≤ 0.5, propensities could never exceed 1
in absolute values in finite time, so that the reinforcement R would always
exceed previous propensities. In other words, for q < 0.5, previous experi-
ence counts so little that it never affects the current decision. If previous
experience counts that little, we effectively deal with win-stay lose-shift.
When q > 0.5, however, experience past the very last period may well

affect the current choice, and the more so the higher q. We show an example
of how individual learners with q = 0.9 behave in a given environment in
figure 1.9. Individual learners with q = 0.9 too track the environment quite
well but behave less “conservatively” than win-stay lose-shift (the right panel
of the figure is a reproduction of fig. 1.8). For example, at around period
200, pA is clearly greater than pB, yet only approximately 60% of individuals
using win-stay lose-shift pick A. In contrast, approximately 80% of individual
learners with q = 0.9 pick A. On the flip-side, individual learners sometimes
fall a little behind, e.g. during the changes between period 50 and 100. We
will later analyze how performance of individual learners depends on q.

1.3.2.2 Bayesian individual learning

A natural alternative to individual learning based on exponential discounting
reinforcement learning would be a Bayesian learning algorithm. A Bayesian
learner has a prior belief about pA and pB and updates it after each realiza-
tion of an outcome. For example, assume that in period t, the learner has a
prior belief that pA equals 0.6 of 0.7, Pr (pA = 0.6) = 0.7, and consequently
chooses A. However, the learner is not successful with A. Then her posterior
belief about A is:
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1 Introduction to models of social learning

Figure 1.9: The behavior of individual learners with q = 0.9 (left panel) and of
win-stay lose-shift (right panel) over time. The proportion of A choices made by the
strategies (•) is measured on the left y-axis. The line represents the environment
in the form of pA − pB , measured on the right y-axis. Individual learners with
q = 0.9 track changes in the environment quite well and are less “conservative”
than win-stay lose-shift but lag a little behind.

Pr (pA = 0.6|A fails) = Pr (A fails|pA = 0.6) · Pr (pA = 0.6) /Pr (A fails)

The probability of A not succeeding when pA = 0.6 is equal to 0.4. As-
suming that Pr (A fails) = 0.5, we have:

Pr (pA = 0.6|A fails) = 0.4 · 0.7/0.5
= 0.56

Using this approach, it is possible to design a Bayesian individual learner.
The problem that occurs is that a Bayesian learner has to start with some

kind of prior. We will be very generous: We supply the Bayesian learner
the full probability distribution of pA and pB, as determined by simulating
those values for a length of 107 periods (see figure 1.10). In reality, no
learner would live long enough to be able to draw on such extensive data,
so this should give a Bayesian learner a huge advantage. Even more, other
learners in our model do not even know that there is a constant probability
distribution of pA and pB, but as we said, we wanted to be generous towards
Bayesian learners.
In each period, the Bayesian learner chooses an option, then this option is

realized, resulting in either success or failure. After realization, the Bayesian
learner updates her beliefs about the probability distribution of pA if A was
chosen or pB if B was chosen. The belief about the option that was not
chosen is not updated. In the next period, the Bayesian learner chooses the
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Figure 1.10: Probability distribution of pA and pB , the environment, for the de-
fault parameters.

option that, according to her beliefs, has the higher expected value and the
cycle continues.
We made three further adjustments to Bayesian learners. As after each

period, pA and pB change their values by one incremental step, they take
distinct sets of values depending on whether the period is currently even
or odd. For example, in odd periods, pA can take the value 0.5 or 0.54
but never 0.52, whereas in even periods, the opposite is true. We allowed
Bayesian learners to take this into account.
Another adjustment is to allow Bayesian learners to make inferences from

their first period’s choice, which is the same as their parent’s last period’s
choice. If the parent chose A in the last period, it is more likely than not that
pA > pB. We simulated the final priors of pA and pB conditional on whether
the final choice was A or B and allowed Bayesian learners to use these biased
priors as their initial priors, depending in whether they inherited A or B as
their first choice.
Moreover, it is possible to give Bayesian learners the ability to predict the

next step of the environment when they are given knowledge about how the
environment changes from period to period. For example if they assign a
probability to the event that currently pA(t) = 0.5 and a probability to the
event that currently pA(t) = 0.54, they can use these probabilities to calcu-
late the probability of pA(t+1) = 0.52 when they know how the environment
changes. This way, Bayesian learners not only have huge statistical knowl-
edge about the environment, as well as the possibility to bias their priors
according to their parent’s last choice, but also a complete understanding
of the process that generates the environment, a further advantage that no
other strategy has.
The remaining conditions for Bayesian learners are the same as for indi-

vidual learners. The very first choice is determined by chance. After each
generation, offspring inherit their first choice from their parent. However,
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they do not inherit the beliefs of their parents but instead again start with
the prior as determined initially. The situation is similar to the situation
of reinforcement learners who also do not inherit the propensities of their
parent.

1.3.2.3 Social learning through conformism

In this chapter, we do not want to present any breathtaking new insights
derived from our social learning model but instead establish its validity.
Therefore, before we begin to test new social learning strategies, we con-
tend with studying a social learning strategy that is well explored already,
conformism.
Conformism has always been an important part of the theory of social

learning [21, 22, 86]. There is no single definition of conformism that is
used by all researchers across disciplines, or even within disciplines. Boyd
and Richerson write that “[Conformist] Individuals are assumed to be dis-
proportionately likely to imitate the more common behavioral types among
their cultural parents” [21], which is essentially how conformism (or “hyper-
conformity”, as some would call it [34]) is used in this work.
“Disproportionally” in the quotation above means that the probability of

adopting the most frequent option is higher than this option’s share in the
population’s choice. For example, say that option A is chosen by 60% of
the population and option B by 40%. If social learning consisted of random
choice, the probability to adopt A would also be 60%, not more or less than
the option’s frequency in the population. This would therefore not qualify
as conformism. If a social learning strategy had an adoption probability of
more than 60%, even if only of 61%, it could be conformism.8 Similarly, since
option B is chosen by only 40% of the population, it’s adoption probability
has to be less than 40% for a strategy to qualify as conformist.
For our purposes, we define conformism as a strategy that samples a fixed

number of individuals and then chooses the option that the majority of the
sampled individuals chose. For example, if three individuals are sampled and
two or three of them chose A, the conformist will also choose A. We could
implement a sensitivity parameter λ. This parameter would smooth out the
step function-like mechanism we designed. When two of three individuals
choose A, we could, e.g., say that the conformist also chooses A with 80%
probability instead of 100%. But as for reinforcement learning, we found
such a parameter to have little positive effect, and often even negative effects,
so it is more parsimonious to drop it completely. This implementation of
conformism thus corresponds to the example we discussed earlier in this
chapter.

8A strategy with a less than 60% adoption probability would be called “anti-conformism”
or a “maverick” [46].
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1.3.3 Modeling details
We chose a population size of 10,000 individuals, which is thought to be the
effective population size of early humans in the last 1 million years or so
[83, 167]. Base fitness is set to 10, while the average fitness gain of choosing
randomly would be 25 for a period length of 50. By choosing a low base
fitness, random drift is less likely to determine the evolutionary outcome
[136]. This is convenient assumption for the purpose of the simulation but
most likely unrealistic. The validity of our result should not depend on this
assumption, though.
For simplicity, reproduction is assumed to be asexual and generations to

be non-overlapping. Generally, there is only vertical transmission of cultural
traits in our model. However, offspring inherit their very first choice from
their parent, since else, the very first choice would not be defined. Fur-
thermore, the values of pA and pB in the first period of a new generation
correspond to their last values of the previous generation. This way, not
only is the choice but also the environment continuous between generations.
Other variables, such as the propensities derived from experience, are not
inherited.
Equilibrium frequencies can be estimated by two different methods. First,

one can simply run the evolutionary simulations and check the frequen-
cies after equilibrium has been reached. Since there is always stochasticity
in the model (due to choice, the environment, and success having random
elements), full convergence towards the equilibrium will never be observed,
though. A second method is to fix the frequency of the strategies at different
levels and estimate their performance precisely by averaging it over a large
number of independent simulations. This allows us to derive performance as
a function of frequency. Because fitness only depends on performance (there
are no costs), the performance curves are sufficient to derive equilibrium
frequencies.
All analytical results were derived with Wolfram Mathematica 8 and nu-

merical simulations were run on Matlab 7 (The MathWorks, Inc.).

1.4 Preliminary findings
1.4.1 Individual learning
First we have a look at the performance of individual learners and how it
depends on the only free parameter, the discount factor q. Furthermore, we
differentiate between different generation lengths tmax. The results can be
seen in figure 1.11. The more trials an individual has during her lifetime,
the more experience she can rely upon to make her decisions. That is why
performance is generally higher for higher tmax. This finding was expected.
Given that there are no sudden jumps in pA and pB, past experience should
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Figure 1.11: Performance of individual learners as a function of the discount factor
q and for different lifetime lengths tmax. In general, performance is higher for longer
tmax and higher q, except for q = 1. Error bars indicate standard errors of the mean.
q = 0.5 corresponds to win-stay lose-shift. All simulations consisted of 250,000
periods and 1,000 individuals.

have a generous weight on the learners decision. If q is too low, experience
is discounted too strongly and should lead to a lower performance. This
is indeed what we observe. For the highest value of q, q = 1, we find,
however, that performance is not higher than for q = 0.9. The reason is
that for q = 1, experience even from 50 periods ago counts as much as the
most recent experience. Yet the environment does vary over time, so recent
experience should have more impact. We thus see a decline in performance
for q values beyond 0.9.
If we have a low tmax of 25, we find performance not to differ significantly

between q = 0.9 and q = 1. Here, even the oldest experience is never
older than 24 periods and therefore, the disadvantage of not discounting it
sufficiently does not manifest. The true optimal q is probably somewhere
between 0.9 and 1, and we would actually see a decline in performance after
this optimal q would have been reached. We wanted, however, to avoid
overfitting the behavior of individual learners, which is way we did not test
q to more decimals than the first.
For our default conditions (tmax = 50), we thus choose a discount fac-

tor q of 0.9. This leads to a performance of 58.96 ± 0.16% (standard error
of the mean). Although this performance seems to be only little better
than random choice (50%) or win-stay lose-shift (54.4%), it is already a vast
improvement when one considers the difficulty of the task. In the default
conditions, the mean difference between pA and pB is only 7.88 percentage
points and 45.3% of the time, the difference is equal to or less than 4 percent-
age points. Considering the noisiness of the data, we have yet to see whether
any social learning strategy is capable of besting individual learners.
When we regress the proportion of A choices of a population of individual
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Figure 1.12: The proportion of A choices of individual learners (q = 0.9) as a
function of pA − pB ; simulation results (•) and linear fit (solid line). Individual
learners “match” the probabilities in an almost 1 to 1 fashion. That is, when
pA− pB increases by 1 percentage point, the probability of an individual learner to
choose A also increases by approximately 1 percentage point.

learner with q = 0.9 on the difference between pA and pB, we get an interest-
ing finding (figure 1.12). The proportion of A choices made by the population
corresponds to the probability of each individual learner to choose A. This
probability seems to depend linearly on the difference between pA and pB.
We fitted a linear model to the simulation data and found the slope to be
1.047 (1.041-1.054, 95% confidence bounds, R2 = 0.678). This implies that
if pA − pB increases by 1 percentage point, we can expect a 1 percentage
point increase in the probability of an individual learner to choose A.
This behavior corresponds to “probability matching” (with a power of 1

[14]). Probability matching is typically shown in experiments in the follow-
ing way. The subject draws from two lotteries and after some exploration
presumably reaches the estimate that lottery A yields a success, say, 70%
of the time and lottery B 30% of the time (prizes are the same). What one
should expect is the subject to continue drawing only from lottery A, as this
would maximize her expected payoff. Instead, one finds that she draws from
A roughly 70% of the time and from B 30% of the time [110, 118], hence the
term “matching”.
Although this deviation from optimal behavior seems irritating, it is con-

sistent with optimal behavior when the fundamental probabilities are not
fixed [72]. Our task corresponds to the probability matching task with vari-
able environment and thus would suggest matching behavior.9 This is indeed

9Note that in the numerical example above, the difference in success probabilities be-
tween A and B is actually 40% and would thus be matched with a 90% probability to
choose A, not 70%, as indicated by the experiments. Our simulations reveal a slope of
approximately 1, while the experiments suggest a slope of 0.5. If, however, we use q = 0
(win-stay lose-shift), we indeed get exact probability matching according to the exper-
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what we find, supporting the idea that matching is caused by the need to
explore in case of changing environments.
In the probability matching task, as in our model, optimal behavior con-

sists of always choosing A when pA > pB and always choosing B in the
opposite case. The true values of pA and pB, at a given point in time, are,
however, not known (except to the experimenter). Given the limited amount
of knowledge that the subjects possess and taking into account the possibil-
ity of a varying environment, it may thus be optimal for an individual to
choose according to a matching scheme. Subjects in the experiments may
simply “import” their decision mechanism from the outside world, where ex-
ploration is often necessary, hence creating the apparent mismatch between
optimal and actual behavior.

1.4.2 Bayesian learning
We discussed Bayesian learning as an alternative form of individual learning.
For that, Bayesian learners could use the probability distributions of pA and
pB as determined from 107 periods. These probability distributions are
subsequently updated in a Bayesian fashion to estimate the values of pA
and pB, taking experience into account. We found Bayesian learners and
reinforcement learners to behave quite alike, but Bayesian learners actually
performed worse. Therefore, we introduced several modifications to improve
the performance of Bayesian learners, as discussed in the modeling section.
First, we allowed Bayesian learners to take into account whether they

currently are in an even or odd period. This provided a very small but
not sufficient improvement in performance. Second, we allowed Bayesian
learners to use priors that are biased towards A or B, depending on whether
they inherited A or B as their first choice. This led to a lower performance,
probably because too much weight was given to outdated information about
the environment. Starting with fresh, unbiased priors proved to be the better
approach.
Third, we gave Bayesian learners full knowledge about the process that

generates the environment. Using this knowledge, Bayesian learners can
additionally predict the environmental state of the next period based upon
their beliefs about the probabilities of the current period. An example of
the resulting behavior is shown in figure 1.13. This change indeed improved
the performance of Bayesian learners, which consequently reached 60.15%
(±0.67%, S.E.M.). Therefore, Bayesian learners can be made to outperform
reinforcement learners, albeit barely with a 1 percentage point advantage. A

iments, with a slope of 0.5. Also, analytically, the probability of win-stay lose-shift to
choose A is:

1 − pB

1 − pA + 1 − pB

This reduces to pA if pB = 1−pA, which is usually the case in the matching experiments.
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Figure 1.13: The behavior of Bayesian learners over time. The proportion of A
choices made by Bayesian learners (•) is measured on the left y-axis. The solid line
represents the environment in the form of pA − pB , measured on the right y-axis.
Bayesian learners approximately match probabilities. Note that after every 50th
period, when new generations start, behavior reverts back to the mean, reflecting
that Bayesian learners start with fresh, unbiased priors.

linear regression of the matching behavior of Bayesia learners resulted in a
slope of 1.083 (1.075− 1.091, 95% confidence bounds, R2 = 0.580), showing
that Bayesian learners also match probabilities.
We varied the generation length tmax to see how it affects the performance

of Bayesian learners. For tmax = 25, we find a performance of 59.42%
(±0.55%), for tmax = 100 of 59.69% (±0.76%), and for tmax = 250 of 59.96%
(±0.83%). These values barely differ. Generation length thus does not seem
to have a strong impact on the performance of Bayesian learners.
In sum, even though we provided Bayesian learners with vast data about

the model – information that is unavailable to any other strategy – and also
with complete knowledge about the process that generates the environment,
their performance can at best slightly exceed the performance of the much
more simplistic reinforcement learners. The reason why Bayesian learners
cannot do much better is that the environment is always changing. Bayesian
learners chase after a target that moves faster than they are able to learn.
It does not make much sense to calculate any supposed priors. Instead, it is
better to discount old information, as reinforcement learners do.
Not only does Bayesian learning presuppose that the individuals have

unrealistically deep insight into the environment, it is also very complex,
requiring to remember a lot of information. For each distinct value of pA
and pB, 2 × 51 possibilities for the default condition, the Bayesian learner
has to know the unbiased prior in the first period, as well as the updated
prior of the current period. After an outcome is realized, all priors have to
be updated and then the expected values of the priors have to be computed
and compared with each other. In contrast, reinforcement learning by expo-
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nential discounting only requires to remember the difference in propensities
of A and B and the discount factor, and to multiply these two values. Rein-
forcement learning is thus far more parsimonious than Bayesian learning.
In sum, Bayesian learning presumes a lot of background information about

the environment and on how it works, is far less parsimonious than reinforce-
ment learning by exponential discounting, and requires a lot more computa-
tion, while still performing only minimally better. In our model, reinforce-
ment learning by exponential discounting is thus the better candidate for an
individual learning strategy and will henceforth be used instead of Bayesian
learning.

1.4.3 Conformism
Conformists choose the most common option in their sample. An interesting
consequence of this behavior is that it leads to uniformity of choice. If
slightly more than half of a conformist population chooses A, eventually, all
individuals will choose A (see top row of figure 1.14). Higher sample sizes
make it easier to detect which option is actually the more frequent one and
are thus associated with higher conformity, in the sense of a more aligned
behavior of the conformists.
If transmission were unbiased (like for random copying), the frequency of

A choices would not change (except by drift), and if transmission were anti-
conformist, it would tend to return to 50% a choice. A conformist population
would, however, tend to exaggerate even small deviations. This exaggeration
is even stronger for higher sample sizes. An illustration of this is found in the
bottom left panel of figure 1.14, were the behavior of conformists of different
sample sizes is shown. We simulated their behavior in the same environment
when being paired with an equal number of individual learners, who are not
shown. This example shows that instead of matching the environment, as
individual learners would, conformists overmatch. This is validated by a
linear regression (bottom right panel of figure 1.14), which results in a slope
of 1.903 (1.853-1.953, 95% confidence bounds, R2 = 0.525).
When a conformist has a higher sample size, she is more likely to actually

choose the option that is most common in the population. As long as con-
formists are sufficiently rare, this should lead to a better performance and
hence fitness. This can be seen in the left panel of figure 1.15. Conformists
with higher sample size are, however, also more likely to collectively choose
the incorrect option. Maladaptive behavior is possible earlier for higher
sample sizes, and the incorrect option is more likely to be chosen once that
becomes a possibility. Higher sample sizes thus have advantages and disad-
vantages.
Next we performed numerical evolutionary simulations starting with a

population consisting predominantly of individual learners and a minority
of conformists. We simulated conformists with sample size 3, 5, and 7.
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Figure 1.14: Top row: recurrence relation for conformists. Top left: compari-
son between different sample sizes (as indicated by the numbers). There are three
equilibria, nobody chooses A, everybody chooses A (“conformist” behaviors, both
stable), and 50% choose A (unstable). Higher sample sizes result in stronger con-
formity in the sense of faster convergence towards total conformity. Top right: The
recurrence relation can be used to trace the convergence to conformity, as indicated
by the arrows. Bottom left: Behavior of conformists over time. Conformists with
sample size of either 3 (×), 5 (•), or 7 (©) were paired with an equal number
of individual learners (not shown). The proportion of A choices by conformists is
shown on the left y-axis, the environment in the form of pA− pB (solid line) on the
right y-axis. Bottom right: Conformists (here with sample size 3) overmatch, since
small changes in the differences between pA and pB may lead to large swings in the
proportion of A choices.
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Figure 1.15: Fitness (left) and evolution (right) of conformists, depending on their
sample size. Left: analytically derived fitness (stable: solid line, unstable: dashed
line). Performance of individual learners (dotted line) was assumed to be 59%,
as measured previously, and is independent of the frequency of conformists. Con-
formists with higher sample size are initially more likely to choose correctly than
those with small sample size, and thus have a higher fitness at low frequencies.
They are, however, also more likely to collectively choose the wrong option, as is
evidenced by the earlier appearance of the bifurcation that marks the emergence of
the maladaptive equilibrium. Right: Comparison of evolutionary simulations of the
frequency of conformists (solid line) with different sample sizes as indicated when
competing with individual learners (not shown). Conformists with lower sample size
have higher equilibrium frequencies (as measured by the mean frequency during the
last 500 generations, dash-dotted line) but take more time to reach it.

Our analytical findings suggest that 1) conformists with higher sample size
invade faster because they initially have a higher fitness and 2) conformists
with lower sample size have a higher equilibrium frequency because it takes
more of them before maladaptive behavior occurs. In the right panel of
figure 1.15, we show the simulation results. Although the invasion speed
of conformists with sample size 5 and 7 is indistinguishable, both invade
faster than conformists with sample size 3. Furthermore, the latter have the
highest equilibrium frequency, calculated as the arithmetic mean of the last
500 generations, 79.6% to be precise. Sample size of 5 leads to an equilibrium
frequency of 72.9% and 7 of 67.4%. All differences are significant (all p <
10−11, Wilcoxon rank sum test). The numerical simulations therefore reflect
our predictions from the analytical findings.
Instead of directly simulating the evolutionary path of conformists, we

can use a different method to gauge their evolution. For this, we fix the
frequency of the involved strategies and simulate their performance a large
number of times. This will let us estimate precisely the performance of the
strategies at different frequencies, and since we know that a strategy with a
higher performance than its competitor also has higher fitness, we can infer
the evolutionary path of the strategy from this. When performance is equal,
we should expect that the corresponding frequency is an equilibrium. From
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58.96 ± 0.16% for individual learners, ±S.E.M.); it thus correctly predicts
the equilibrium frequency. Additionally, as conformists perform better when
less frequent and worse when more frequent, the performance measure allows
us to correctly infer that the equilibrium is stable. All in all, the results from
the performance approach corroborate our earlier findings and thus validate
the approach.
For sample sizes of 5 and 7, we simulated the performance of conformists

at the equilibrium frequency suggested by the evolutionary simulations. We
found performance to be 58.11±0.55% and 59.20±0.55%, respectively, very
close to the performance of individual learners (58.96 ± 0.16%). Therefore,
the performance approach would yield the same equilibrium frequency as the
evolutionary simulations for the given sample size, confirming this approach
to be a good substitute for evolutionary simulations.

1.4.4 Principal findings
As we said, the main goal of this chapter was not to provide major new
insights into social learning. Instead, our focus was to present some of the
more interesting findings of the field and our own approach. Still there are
some take-home-messages in this chapter that can be summarized as follows:

• Rogers’ paradox is akin to the paradox of cooperation; in our opinion,
uncovering how social learning works is as important for our modern
world as uncovering the conditions and mechanisms of cooperation.

• The implications of Rogers’ paradox are even more severe when fo-
cusing on performance – in equilibrium, performance is, by necessity,
worse than before the arrival of social learners.

• Conformism, although capable of boosting performance transiently, is
not a solution to Rogers’ paradox – in equilibrium, the population’s
mean performance must be the same as that of individual learners.

• Individual learners could impede the invasion of conformists by per-
forming worse but competition among individual learners will probably
prevent that.

• Conformists can reach a higher equilibrium frequency if they sample
less individuals but will take more time invading a population of indi-
vidual learners.

Furthermore, we presented a social learning model that we believe to be
quite useful as a social learning paradigm. As far as we could, we validated
the results by comparing them with analytically derived predictions.
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1.5 Discussion
1.5.1 The importance of Rogers’ paradox
To completely understand the implications of Rogers’ paradox, an analogy
to another paradox uncovered by theory may help. Sexual reproduction
is a common mode of reproduction in nature. For a long time, nobody
wondered why organisms reproduce sexually. As John Maynard Smith noted
[162], however, this reproductive mode cannot be justified by simple means.
In a sexually reproducing species, an asexual mutant could, all else being
equal, contribute twice as much genetic material to the next generation as its
sexually reproducing conspecifics. Therefore, sexually reproducing species
bear the cost of having only half the fitness of an otherwise identical but
asexual mutant. Sexual reproduction leads to even further costs caused,
e.g., by fights for mates and by sexually antagonistic evolution. This finding
was called the two-fold cost of sex.
The conclusion from this theoretical finding is of course not that sexual

reproduction is maladaptive. There have to be advantages, although it is
not quite trivial to explain how these advantages can overcome the two-fold
cost. The real importance from Maynard Smith’s finding is that it made
obvious that there is a lack in our understanding of sex, a lack that has to
be investigated.
Another important theoretical finding of the 20th century was that co-

operation is not easily explained. Non-cooperative game theory suggests
[116, 130] that cooperation is not an equilibrium behavior (neither minimax
nor Nash). Similarly, in nature, individual selection usually trumps group
selection, so that competition should trump cooperation. Here too, the con-
clusion is not that that the scrutinized behavior, cooperation, is maladaptive,
but rather that there is a lack in our understanding.
This perspective should be taken when considering Rogers’ paradox. The

straightforward conclusion is that social learning does not, in equilibrium,
increase human adaptability. The real conclusion, however, is not that cul-
ture does indeed not contribute to adaptability, but that there is a lack in
our understanding, a hole in the theory that needs to be filled.
The finding that the evolutionary origins of both sex and cooperation

cannot be easily understood has sparked scientific endeavors so numerous
that we could not even begin to cite all the resulting literature. Leaving
aside the question whether these two riddles have been sufficiently solved, it
is clear that the initial puzzles have attracted the much needed brain power
to address them. On the other hand, the evolutionary origin of culture is
studied by only a few scientists. The reason may be that it is the most recent
of the three puzzles; it may be that it is less attractive a problem; it may be
that the general impression is that it has already been solved (we later show
why we think it has not); or it may be that the importance has not (yet)
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been sufficiently recognized. Whatever the reason, the evolutionary origin
of culture is the least studied of the three phenomena, even though they are
all considered “major transitions in evolution” [163].

1.5.2 Social learning and culture
Two of the most important researchers of the evolution of culture, Peter J.
Richerson and Robert Boyd, define culture as follows [144]:

Culture is information capable of affecting individuals’ be-
havior that they acquire from other members of their species
through teaching, imitation, and other forms of social transmis-
sion.

This very broad definition of culture encompasses the phenomena we study
in this work. The cultural trait we study is whether option A or option B
is adopted. Most people would probably not consider this to be culture.
They would rather think of more elaborate cultural techniques, such as cave
paintings, ornaments, or music. Also, technological progress would be con-
sidered as culture, such as ever more efficient arrow heads or kayaks. These
cultural traits are seen as such because they show a level of sophistication
that exceeds what one individual could find out by herself during her whole
lifetime [144].
These cultural traits are what the literature calls “cumulative”, i.e. they

can be enhanced and modified over time. Without cumulative culture, the
spread of humans to regions ranging from deserts to the Arctic could not be
understood [26]. Mankind’s greatest achievements are based on cumulative
culture, whether they be Newton’s Principia, Bach’s fugues, or landing a
robot on Mars.10

Yet these forms of cumulative culture are not what we are interested in
here. Models of cumulative culture usually assume that cultural traits are
accumulated or can be strictly enhanced (e.g. [23, 24, 48, 51, 111]). Our
model instead just proposes two options that alternate in being the best op-
tion. This approach is clearly not appropriate to model cumulative culture.
Why did we decide not to model cumulative culture? From our point of

view, cumulative culture is a different topic that raises different questions.
It deals with different questions. Do humans occupy a specific “cognitive
niche” that allows us to innovate especially well; or do we occupy a “cultural
niche”, with our ability to spread adaptive cultural traits rapidly [26]? Mod-
eling cumulative cultural evolution has to somehow grapple these opposing
theories. It has to make clear what the origin of innovations and their mode
of diffusion is [147].

10Newton, despite not being known for his modesty, famously proclaimed that “If I have
seen further it is by standing on the shoulders of giants.”
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Two aspects are in our opinion crucial in differentiating between models of
social learning as ours and models of cumulative culture. First, by their very
nature, innovations in cultural traits are rare. They may not even occur once
per trait and generation, or at least they used to during much of human’s
history. As recently as until the beginning of the 19th century, technology
growth was so low as to be barely measurable [35] and the very notion that
mankind would make progress was considered outlandish.
The second difference is that innovation means improvement. Some traits

are simply superior to others. They allow to generate a greater benefit or to
save production costs, thus increasing productivity. The question is then not
whether it is right or not to adopt the trait, but rather whether, when, and
under what circumstances adoption occurs. The perhaps most famous study
of innovation was the adoption of hybrid corn [148]; hybrid corn produced
superior yields but was still slow to be accepted by farmers in Iowa, which
sparked the question why innovations often take so long to be adopted.
Taking these features of cumulative culture into account would require

quite a different model from ours. In our model, there is not one option that
is strictly superior over time. Furthermore, we assume that both options
are commonly known, meaning that we allow an individual to adopt an
option even if she has never seen anyone else choosing that option.11 Our
model does not bother with the question how individuals come up with new
options, which a comprehensive model of innovation eventually has to. As
the options in our model vary in payoff, individuals have to constantly adopt
during their lifetime. After acquiring a superior trait, it is not at all certain
that it will still be superior ten periods later. Constant learning is required.
One could say that cumulative culture deals with traits whose adoption

occurs rarely in life but has huge fitness impacts. Non-cumulative culture
as we model it deals with adoption choices that occur frequently in life but
that have, each by themselves, little fitness consequences.
Since our model neither accommodates hybrid corn nor space flights, could

it not be argued that we actually model nothing of importance? We would,
of course, object. Instead, we claim that although we model something
different, it is still something important. These tiny life choices we describe
may each have little fitness value but as they are so common, they could still
add up to have a large impact.
Consider foraging, a daily task in most small scale societies. There is

not only the choice between different forms of foraging, like hunting and
gathering, but also between what items to search for, and how to prepare
them for meal. These choices have direct and indirect rewards, but those
can be noisy. One day the hunt will be successful, the other day it is not.
Relying purely on one’s own experience could be less informative than taking
into account how others did.

11This defuses the criticism raised by Eriksson et al. [52].
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Apart from food choices, many other common decisions could be influ-
enced by social learning. What clothes one should wear, which direction to
take, what manners to display, what words to use, what products to buy,
whom to choose as interaction partner, whose writing style to imitate. In
the modern world, such choices may have tremendous consequences for ev-
eryone on the planet. Just think of bubbles in financial markets, which are
arguably caused by social learning (more on that in the last chapter).
As we argued, these many small decisions are equally interesting to study

as the few large decisions. Should one expect different social learning stra-
tegies to be used depending on which of the two types of decisions are con-
cerned? This question cannot be easily answered. On the one hand, there
is no obvious reasons why the same strategies should work equally well. For
example, when making many small decisions, conformism is often a good
strategy in the face of uncertainty. If we deal with innovations, however,
conformism will initially slow down progress because an innovation, per def-
inition, is rare when it is first discovered, and thus unlikely to be adopted
by a conformist.
On the other hand, it could be argued that the same social learning stra-

tegies apply to all domains. First, our brains could be constrained to use
the same learning strategy for everything, not being able to readily switch.
Second, the difference between small and large decisions could be obvious in
theory but in the real world, options are not labeled according to how fast
they vary or how often innovations are expected.
Ultimately, it is an empirical question when which social learning strategy

is applied. Our theoretical work can be used as a guide to what to look for,
and whether there are huge gaps in our understanding of the problem. Em-
pirical research has to uncover which social learning strategies are actually
used.

1.5.3 Choice of the model
We think that our approach to model the evolution of social learning is
more appropriate to meet the goal of modeling non-cumulative culture than
previous approaches. In previous approaches, it was often assumed that
an environmental state is characterized by one choice being correct and the
other(s) wrong. The image that is often invoked was that of a mushroom
that could be poisonous or not [90, 100, 101]. The state would, however,
reverse from time to time. But imagine that we had a social learner who
copies the choice of others. If she sees others eating the mushroom, she will
also give it a try. If we are in the environmental state where the mushroom is
poisonous, clearly, she will become sick. Nevertheless, according to previous
models, she will continue to eat the mushroom and pass this behavior on to
following generations. Only when an individual learner appears who comes
up with the idea of not eating the poisonous mushroom will social learners

46



1.5 Discussion

who copy this individual stop eating the mushroom. This whole description
seems totally unrealistic. The problem is that if outcomes allow the learner
to clearly distinguish between good and bad, as in the mushroom example,
learning is trivial and there is nothing worth modeling.
One has to think of other situations where the outcomes are not of the

all-or-nothing type. Perhaps the mushroom example could be modified so
that the mushroom either has a slightly positive or slightly negative energy
balance. Then the bad outcome is not so obviously bad. But this does
not resolve the implausibility. The difference has to be detectable – if it
were not, individual learners could not learn it. The social learner, after
having copied a choice, should thus also be able to detect the difference and
adopt the best behavior afterwards. There is no specific reason why the
social learner should ignore her private information (except if one assumes
that social learners totally lost their ability to learn individually). So we
still cannot find a plausible application of this model assumption to the real
world.
What would happen if the outcomes of the choice options were noisy?

That is, although one option is at least temporarily better than the other,
for each individual, the outcomes vary so much that the probability dis-
tributions of the two options overlap. Then, if a social learner chooses A
and receives a worse outcome than her choice of B yielded, she can still
reasonably choose A if her social information indicates that A is better (as
e.g. in models of informational cascades [10, 16]). She thus ignores her
personal information because it could be faulty. This, for us, is the most
plausible scenario that would allow social learning strategies to evolve. As
indicated earlier, examples that would fit this description include foraging,
clothing styles, manners, consumption decisions, or the choice of interaction
partners.
A more detailed example may help illustrate what situations our model

captures. Imagine a teenager who wants to inquire whether wearing yellow
shirts increases his attractiveness. If he wears a yellow shirt and encounters
the target group, he receives feedback that allows him to infer his perceived
attractiveness. This feedback, however, is noisy; another target group may
respond differently, and there may not be sufficiently many opportunities to
reduce the variance to a reasonable level, especially since fashions change.
Therefore, this teenager may instead opt to wear shirts of the color that his
peers most frequently wear or that a person he admires often wears. Such
situations can be captured well by our model. One might object that since
there are so many different shirt colors, a binary choice task is too simplistic.
However, humans often search sequentially (e.g. [29]), so that our teenager
might first test yellow against blue, then the (supposedly) better of the two
against red, etc.
Another example that is probably closer to the life of a scientist might

be whether publishing in journal X will lead to more citations. Imagine a
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scientist who has published an article in X with the result that few people
read and cited this article. She concludes that it does not pay to submit to
X. But maybe, this failure was due to other factors such as the particular
topic not being fashionable at that time. If other people did have success
with publishing in journal X, as suggested for instance by a high impact
factor, the scientist may be best off ignoring her own experience and should
continue submitting to X. (But perhaps even scientists can relate more to
the former example.)
We also think that it is important that models of gene-culture coevolution

allow for multiple decisions per lifetime. Having to make more than just
one choice gives rise to intergenerational dynamics of decisions. It could
thus happen that at the beginning, A is better than B, followed by periods
of about equal payoffs from both choices, and ending with B being better
than A. The choice of the individuals could or could not reflect this pattern,
depending on how the individuals learn. Such dynamics cannot be studied
if there is only one decision per generation.
Having more than one decision per lifetime also allows us to model the

learning process itself in a more realistic fashion. Previously, it was assumed
that individual learning consists of paying an exogenous costs to receive the
information which of the choices is better, sometimes allowing for the possi-
bility of a fixed error rate. Phenomena, such as that even individual learners
do not immediately notice sudden changes, cannot be captured by simplistic
models. However, if there are several trials and errors per lifetime, a more
realistic learning mechanism can be implemented, e.g. learning strategies
such as reinforcement learning [97]. As a byproduct, there is no more need
for exogenous costs of individual learning; the cost of individual learning is
the opportunity cost of not using social learning.
Dropping exogenous learning costs has the additional advantage of al-

lowing us to drop two otherwise crucial parameters – the cost of learning
individually and the cost of learning socially. First of all, the values of those
costs are hard to measure. Moreover, our results do not rely anymore on
the assumption that individual learning is more costly than social learning.
Social learning requires a sophisticated cognitive apparatus and it requires
time to follow others around to observe them. Individual learning, however,
relies on a system that is already there and probably optimized by evolu-
tion. One can at least doubt the assumption that social learning is under all
circumstances the cheaper way of learning. Our choice to exclude exogenous
learning costs should, however, not be interpreted to mean that we believe
there to be no costs of learning. We just believe it is best to leave this
question open until more is known.
Interestingly, figure 1.15 reveals that as long as conformists are not too

frequent, increases in their frequency actually improve their performance
– there is positive frequency-dependent selection. This contrasts with the
usual findings (figure 1.3) that social learners perform worse the more social
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learners there are. Consequently, we think that in our model’s framework, it
is inappropriate to think of individual learners as “information producers”
and social learners as “information scroungers” or free-riders [69, 70, 101].
This terminology implies that social learners do not contribute to the infor-
mation pool used by the population, which is contradicted by the transiently
positive frequency-dependence.
Our model shows that for certain frequencies, social learners make more

accurate decisions than individual learners. Their advantage stems from the
performance boost and not from saving the cost of learning individually,
which are non-existent in our model. Therefore, at least hypothetically,
there can be an equilibrium involving social learning which leads to more
accurate decision making. The adaptedness of culture would not simply
stem from saving the costs of learning individually but also from increasing
overall performance.

1.5.4 Outlook
In this chapter, we have established how we model social learning and why
we made certain choices. Importantly, we also established what we do not
try to model. Furthermore, we have presented some interesting findings from
the social learning literature, most importantly Rogers’ paradox.
A social learning model as ours permits an almost uncountable number of

distinct social learning strategies. It would be impossible to treat them all.
In the second chapter, we therefore focus our attention to a special class of
social learning strategies, and characterize different types of strategies within
that class. We will analyze the peculiarities of these strategies, as well as
their potential.
Among those studied strategies, some will have the potential to solve

Rogers’ paradox. In the third chapter, we submit those strategies, in addition
to other strategies proposed by the literature, to the test. We will find
that strategies that have been proclaimed to solve Rogers’ paradox do not
actually solve it. Even worse, we find that in finite populations, there is
the danger that social learning actually makes populations worse off. We
conclude by showing the very narrow conditions under which some social
learning strategies solve Rogers’ paradox and discuss evidence for different
forms of social learning.
There is no question that social learning profoundly shapes our everyday

lifes, even in modern societies. The fourth chapter therefore addresses the
question of how behavior in populations and societies is affected by the
ubiquity of social learning. We will find that social learning alters behavior
in a way that has striking similarities to anomalies observed in financial
markets.
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2.1 Introduction
In the last chapter, we presented the basic outline of our model. Our learning
strategies were, however, reduced to reinforcement learning by exponential
discounting, Bayesian learning, and conformism. Although we believe we
have found in reinforcement learning a satisfying candidate for the individ-
ual learning strategy, there are many more social learning strategies to be
explored. This chapter will deal with a certain class of such strategies.

2.1.1 The problem
Individual learners, conformists, and other similar strategies do not observe
the outcome of other individuals’ choices, even though these observations
may yield valuable information. An individual learner relies solely on her
own experience. A conformist bases her decision on what other individuals
do but does not care whether the outcome of these actions is good or bad.
An example should illustrate why outcomes are important. Suppose that

a conformist observes seven individuals. Of those, four choose A and three
choose B. A conformist (according to our definition) will then choose A.
If the A choosers, however, all failed to reap the reward, whereas the B
choosers were all successful with their choices, an argument could be made
that it is wiser to opt for B instead of A. This is the rationale for introducing
payoff-biases social learning (PBSL).
PBSL requires to observe the payoff that an option generates (hence the

name) and to hopefully make good use of this additional bit of informa-
tion. It requires to integrate more information than conformism, information
which might or might not be available in real life situations. For now, we
will not be concerned with the question of how realistic these assumptions
are but will try to give an exhaustive picture of PBSL (as we define it).
The number of possible embodiments of PBSL is large, much larger than

the possible embodiments of conformism. For the latter, given that there two
options and no sequence effects, there are only four possible observations:
{AAA}, {AAB}, {ABB}, and {BBB}. Each observation is associated with
a probability to choose A. The way we model conformism, observation of
{AAA} and {AAB} would lead to choosing A with probability 1, observation
of {ABB} and {BBB} would lead to choosing A with probability 0. There
are thus four possible parameters to choose in order to define conformists.
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For symmetry reasons, however, the probability to choose A after observ-
ing {AAA} must be the same as the probability to choose B after observing
{BBB}; the same holds for {AAB} and {ABB}. This reduces the number of
free parameters to only two. Given that these parameters are probabilities,
their values have to be between 0 and 1, and for the strategy to show a
conformist bias, their values are even more restrained. To sum things up,
conformists, who only observe what is chosen and who totally ignore the
outcomes, can be characterized by a vector with two entries in real values.
Payoff-biased social learning broadens the number of possibilities consid-

erably. Not only is the observed action important, but we have also consider
the outcome. In our case, outcomes can either be positive (success) or neg-
ative (failure). Therefore, instead of two possible realizations per observa-
tion, A or B, we have four possibilities, A+success, A+failure, B+success,
B+failure.
Restricting ourselves to a sample sizes of only three, there are already

20 possible observations. Of those, half can be eliminated for symmetry
reasons, leaving us with 10 possible observations. Instead of being able to
characterize a strategy by a vector with two entries, we thus have to resort
to a vector of 10 entries, giving us much more possibilities. Assuming that
every observation leads to choosing A with a probability of either 0, 0.5, or
1, we would already deal with 310 = 59, 049 distinct strategies. If we were
to allow for a higher sample size of, say, seven observations, the number
of possible combinations would skyrocket to 60 possible observations (when
symmetry holds) and ≈ 4 · 1028 distinct strategies. Although many of the
possible strategies would be nonsensical, there are still too many possibilities
left to analyze all of them.1
Additionally to the fact that there are too many possible PBSL strategies

to study them all, there is also the concern of plausibility. In the end, each
learning strategy should be reasonable from a psychological point of view. A
strategy that basically is defined as “If you observe A succeed twice and B
once, choose A with probability 0.7; if you observe A succeed once and fail
once, and B succeed once, choose A with probability 0.4; if...” is not a very
realistic decision mechanism. If a strategy can be phrased as a heuristic,
however, it makes the strategy more plausible. For instance, conformists, as
we define them, work according to the heuristic “Choose the option that you
observe most frequently”.
This simplicity is arguably one of the reasons why conformism has often

be the focus of social learning studies. We will try to find PBSL strategies
that have a similar heuristic allure. Two classes in particular are considered
in the following, the first based on scoring the different options, the second

1Unfortunately, to our knowledge, there is no easy way to deduce the performance of a
strategy from its definition. We have to use simulations, which use up computation
time; this is why we cannot just analyze all possibilities.
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A Ā B B̄
conformists (≡ weights [1/1]) +1 +1 +1 +1
PBSL with weights [1/− 1] +1 −1 +1 −1
PBSL with weights [4/− 1] +4 −1 +4 −1
PBSL with weights [1/− 4] +1 −4 +1 −4
PBSL with weights [1/0] +1 +0 +1 +0

Table 2.1: Scoring rules for different strategies. A indicates that the sampled indi-
vidual chose A and succeeded, Ā that she chose A and did not succeed, B that she
chose B and succeeded, and B̄ that she chose B and did not succeed. A scoring-type
PBSL is characterized by a pair of weights [x/y], where x is added to the score of
A (B) each time A (B) is observed being chosen successfully, and y is added to the
score of A (B) each time A (B) is observed being chosen unsuccessfully. Conformism
can be narrowed down to a special case of scoring-type PBSL with weights [1/1].

on averaging the payoffs of the options.

2.1.2 Scoring-type payoff-biased social learning
To understand how scoring works, we first have a look at a strategy that
does not obviously rely on scoring. Conformism was defined as “choosing
the option that is observed most frequently”. But this strategy can be refor-
mulated in a slightly different and less elegant way as “each time you observe
A, add a point to the score of A; each time you observe B, add a point to the
score of B; finally, choose the option with the higher score”. This principle
is shown in the first row of table 2.1.
Using the logic of adding scores for A and B and then choosing the op-

tion with the highest score, we introduce the class of scoring-type PBSL.
Conformism is just a special case of that class. In general, it encompasses
all strategies that obey the rule “each time you observe an individual who
chooses A (B) and is successful, add the amount x to the score of A (B);
each time you observe an individual who chooses A (B) and is unsuccessful,
add the amount y to the score of A (B); finally, choose the option with the
highest score”. The numbers x and y could be any real number, but it is
sufficient to restrict ourselves to (positive and negative) integers.
This principle is more easily understood by giving an example. Suppose

that a scoring-type payoff-biased social learner puts the weight 1 on observed
successes and the weight -1 on observed failures. This individual observes{
AĀB

}
, i.e. one individual choosing A and being successful, one individual

choosing A and being unsuccessful, and one individual choosing B and being
successful. The total score SA in favor of A is thus SA = +1 − 1 = 0, and
the total score in favor of B is SB = +1. The higher scoring option, B in
this case, is chosen.
Note that in this example, even though A was observed more often, B is
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2 Payoff-biased social learning

eventually chosen. Therefore, this specific PBSL strategy would not make
the same decision as a conformist. This would, however change, if we as-
sumed another pair of weights. Say the strategy puts a weight of 2 on ob-
served successes and a weight of 1 on observed failures (abbreviated as [2/1]).
The observation

{
AĀB

}
would result in a score for A of SA = +2 + 1 = 3

and a score for B of SB = +2. A PBSL strategy with these weights would
thus choose A, as would conformists.
All scoring-type PBSL strategies can be characterized by the pair of

weights [x/y]. The principle of scoring the options and choosing the option
with the highest score is reminiscent of the Borda count in social welfare
theory [20].2 Scoring-type PBSL does, of course, not encompass all possible
PBSL strategies, but our first goal was to restrict the number of possibilities.
This goal is therefore achieved. Our second goal was to present strategies
that from a psychological point of view are somewhat plausible. As scoring-
type PBSL can be characterized by just two parameters, we would argue
that this goal is also achieved.

2.1.3 Averaging-type payoff-biased social learning
The class of PBSL strategies introduced above is of course not the only sen-
sible class. McElreath et al. [120] proposed a variant that works according
to the heuristic “Calculate the average payoff generated by A, calculate the
average payoff generated by B, choose the option with the higher average
payoff” (average meaning arithmetic mean in this case). They call this stra-
tegy simply “pay-off-biased social learning”. In case of a draw, this strategy
chooses the options according to their frequencies; e.g., if {AAB} is observed,
both A and B would have the same average payoff, and the strategy would
choose A with probability 2/3 and B otherwise.
Furthermore, they proposed a variant of this strategy, called “pay-off con-

formity”. This variant decides exactly as the original, but in case of a draw
chooses the more frequent option (i.e. {AAB} leads to choosing A with
probability 1). Both variants often decide in the same manner, but “pay-off
conformity” was shown to be more successful, so we focus on this strategy
only. However, we found the name “pay-off conformity” to be imprecise,3
hence we will call this strategy “PBSL McElreath” from now on.
To reverse-engineer the strategy proposed by McElreath and colleagues,

we had to made the assumption that an unobserved option is considered to
always produce a lower average payoff than an observed option. For example,

2The Borda count is a way of voting. Each voter ranks each candidate, then each candi-
date receives a score that is higher the higher she is ranked. After all scores have been
added up, the candidate with the highest score wins.

3The name is imprecise because there are many PBSL strategies that display a conformist
bias – remember that conformism is but a special case of scoring-type PBSL. We will
elaborate on this later on.
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2.2 Model description

observing A being chosen unsuccessfully three times and not observing B
leads to the choice of A. In principle, one could also make the assumption that
the unobserved option produces a payoff somewhere between total success
and no success, which would then lead to the choice of B. However, this is
not how McElreath et al. implemented their strategy, so we stuck to their
choice.
As we mentioned earlier, all PBSL strategies could be characterized by

specifying the probability to choose a certain option, given a certain obser-
vations of successes and failures. For a sample size of 3, there are thus 20
different observations. The choice made by scoring-type PBSL with differ-
ent pairs of weights and by PBSL McElreath, given these observations, is
shown in table 2.2. Additionally, rows in which a conformist would choose
A are shown in gray. It can be seen that although the strategies behave
similarly, they are all distinct, as no two strategies would choose the same
in all situations.

2.2 Model description
In the previous chapter, we have given a hint at how our model works. Here
we explain more details of the model.

2.2.1 The environment
The task that the strategies face will be to adapt to the environment, so
it is important that we understand how it works. In previous works, the
environment often only consisted of one option that is correct and will (al-
most) always yield a benefit on the one hand, and of one or several other
options that are incorrect and do not yield the benefit on the other hand. In
our model, the environment consists of two options A and B (if not stated
otherwise) that are characterized by having certain probabilities, pA(t) and
pB(t) respectively, to yield success in period t. These probabilities fluctuate
over time and are independent of each other. This means that it is entirely
possible that both A and B are good at the same time or bad at the same
time; it is possible that they are very close and distinguishing between the
better and worse option is unimportant, or that they take quite different val-
ues, so that distinguishing is very important. In this sense, our environment
is more complex than in previous models but, arguably, also more realistic.
In the following, we characterize the parameters that influence the envi-

ronment.

2.2.1.1 The length of a generation, tmax

During one generation, each individual has to make several decisions. This
allows the individual to learn over time. Within each generation, there are
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2 Payoff-biased social learning

AĀBB̄ [1/− 1] [4/− 1] [1/− 4] [1/0] McElreath
3 0 0 0 1 1 1 1 1
2 1 0 0 1 1 0 1 1
1 2 0 0 0 1 0 1 1
0 3 0 0 0 0 0 0.5 1
2 0 1 0 1 1 1 1 1
1 1 1 0 0 0 0 0.5 0
0 2 1 0 0 0 0 0 0
1 0 2 0 0 0 0 0 0
0 1 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0
2 0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
0 2 0 1 0 0 0 0.5 1
1 0 1 1 1 1 1 0.5 1
0 1 1 1 0 0 0 0 0
0 0 2 1 0 0 1 0 0
1 0 0 2 1 1 1 1 1
0 1 0 2 1 1 1 0.5 0
0 0 1 2 1 0 1 0 0
0 0 0 3 1 1 1 0.5 0

Table 2.2: Probability to choose A of different payoff-biased social learning stra-
tegies with sample size 3. A indicates that the sampled individual chose A and
succeeded, Ā that she chose A and did not succeed, B that she chose B and suc-
ceeded, and B̄ that she chose B and did not succeed. Rows that correspond to
samples with a majority of A choices are colored gray. The first column describes
the observation, the second to fifth column the choices of scoring-type PBSL with
weights as indicated, the last column the choice of averaging-type PBSL as described
by McElreath et al.
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2.2 Model description

exactly tmax decisions to be made, with tmax = 50 as our default setting.
Between generations, there is evolution, meaning that the frequencies of the
strategies may change, while they are fixed within a generation.
For the very first period, we set pA = pB = 0.5. Furthermore, the envi-

ronment “remembers” the last value of pA and pB of the current generation
and uses it as the initial value of pA and pB in the subsequent generation,
creating a smooth transition.
In this section, we are only interested in performance and not in evolu-

tion. Each strategy is assumed to be fixed in the population and we analyze
how they perform for a given environment. Also, PBSL strategies have no
memory. Therefore, tmax does not play a role in this chapter but may well
do so when strategies with memory are involved.

2.2.1.2 Mean success rate of the environment

pA and pB fluctuate around a mean, but the value of this mean may vary.
There is no particular reason to assume that pA and pB should be 0.5 on
average, though. Instead, if we imagine option A and B being two hunting
grounds and the decision being which of the two to visit, one would expect
the mean success probability to be below 0.5. If instead we dealt with
gathering berries, the success probability could well be above 0.5. It is thus
crucial to vary the mean success rate of pA and pB and to check whether
payoff-biased social learning strategies can cope with this variation.
In our simulations, we will vary the mean pA and pB by adding the same

value ∆p to both of them. We illustrate the change in the joint distribution
of pA and pB in figure 2.1. The shift in the means only results in a shift of
the joint distribution, while the shape of the distribution is preserved. The
reason why both pA and pB are shifted by the same amount is that if, say,
pA were on average greater than pB, even if only by a very small amount, it
would often be the best response to always choose A, discouraging any form
of learning.

2.2.1.3 Reversion factor r

pA and pB vary over time but they will tend to revert to the mean, which is
0.5 by default. This reversion trend means that if pA (pB) is greater than 0.5,
it is more likely than not that it will decrease in the next period; if pA (pB) is
less than 0.5, it is more likely than not that it will increase in the next period.
The reasoning for this is that if pA and pB were just random walks, there
would be very long stretches of one option staying better than the other.
Rarely would a switch occur. But if switches are too rare, strategies hardly
need to adapt to the environment, which would strongly favor strategies that
are slow in adapting.
The probability that a pi increases (i = {A,B}) is calculated as 0.5 −
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2 Payoff-biased social learning

Figure 2.1: Influence of the mean value of pA and pB on the joint distribution of
pA and pB . Darker shades indicate higher probability densities. The shape of the
distribution is not affected by higher or lower ∆p but the distribution is shifted to
the bottom left (left panel, ∆p = −0.2) or to the top right (right panel, ∆p = 0.2).
pA and pB , being probabilities, are never allowed to be less than 0 or greater than
1.

r × (pi − 0.5). For example, if r = 1 and pi = 0.6, the probability that pi
increases in the next period is 40%, so it will tend to decrease towards 0.5.
If pi = 0.4, the probability that pi increases is 60% instead, so it will tend
to increase towards 0.5. A stronger reversion factor of 3 would lead to a
tendency of 80% to increase, instead of 60%, so reversion will be stronger;
a weaker r of 0.1 would instead only lead to a tendency of 51% to increase,
so reversion will be very weak. Overall, r thus has an important role for the
probability distribution of pA and pB, as illustrated in figure 2.2.
An interesting measure of how the reversion factor influences the environ-

ment is the switch rate. This is the rate at which one option that was the
best in the last period becomes the worse option in the following one or two
periods. For r = 0.01, a switch occurs on average once every 51 periods, for
r = 1 once every 25 periods, and for r = 3 once every 15 periods. Higher r
are thus associated with more frequent switches, making it necessary to be
a quicker learner.

2.2.1.4 Speed of environmental change, pincr

The parameter pincr indicates how probable it is that the environment changes
at all from one period to the other. Change probabilities of pA and pB are
independent of each other. For the default setting, the environment changes
after each period, that is, pincr = 1. We chose this high number because we
modeled the environment so as to only change by small steps anyways, so
this high speed still means that there are sufficiently long stretches where A
is better than B or the other way round.
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Figure 2.2: Influence of the reversion factor r on the joint distribution of pA and
pB . Darker shades indicate higher probability densities. A low r of 0.01 (left panel)
causes pA and pB to wander far astray from their mean of 0.5. The higher r, the
tighter pA and pB will stick to their mean. For r = 1 (middle panel), pA and pB

will very rarely if ever wander beyond ±0.3 of their mean, for r = 3, they will rarely
if ever wander beyond ±0.16 of their mean.

2.2.1.5 Step size kincr

Whenever pA or pB change from one period to the other, the absolute size
of the increment is determined by the parameter kincr. We have plotted
the joint distribution of pA and pB for different values of kincr in figure 2.3.
The smaller kincr, the finer the ’resolution’ of the joint distribution. This
is because smaller kincr imply that the joint distribution of pA and pB can
take more discrete value pairs.
The first influence of greater kincr is that from one period to the other,

changes in pA and pB are greater and therefore, strategies have to adopt
more quickly. The second influence of the factor kincr is not as easy to spot.
We have to keep in mind that pA and pB tend to revert to the mean, so if
they are far above the mean, it is more likely that they decrease and vice
versa. If kincr is large, it happens more quickly that pA and pB step far
away from the mean and they will thus revert to it more frequently than
for low kincr. For example, for kincr = 0.005, we can expect on average one
switch from pA > pB to pB > pA every 50 periods, for kincr = 0.02 one
switch every 25 periods, and for kincr = 0.1. one switch every 12 periods.
The environment changes more frequently when kincr is large, implying that
strategies that are fast to adopt should fare better.

2.2.1.6 Three choice options

Until now, we have assumed that there are only two options to choose from.
This assumption was also made in most previous works on this topic, or,
with a similar effect, it was assumed that at each point in time, there is only
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Figure 2.3: Influence of the step size parameter kincr on the joint distribution of
pA and pB . Darker shades indicate higher probability densities. The ’pixelation’
seen in the figure, especially in the right panel, are not due to a malfunction of the
printer but are there by construction. The higher the step size, the less discrete
value pairs pA and pB can take.

one correct option that yields a benefit while all other options are incorrect.
Relying on this simplification can be justified because it is not inconceivable
that humans often compare just two options at the same time and only after
discarding one option move on to the next. This way, only binary choices
have to be made.
Still we felt it necessary to implement more than just one choice option to

verify that our results are not dependent on this assumption. We reasoned
that if stepping up from two to three options would not qualitatively affect
the results, neither would increasing the number of options to four, five,
or more. Thus we introduced a third choice option called C that behaves
exactly as A and B do.
Strategies had to be slightly adapted to be able to cope with three choices.

If two options are tied for the highest score/average payoff, each is chosen
with probability 1/2; if three options are tied for the highest score/average
payoff, each is chosen with probability 1/3. As there were no ambiguous
cases, the adjustment of scoring-type and averaging-type PBSL could be
done in a straightforward fashion.
A problem occurs when working with 3 choice options. The equations

derived to calculate the choices of strategies with 3 options are by neces-
sity longer and more complicated than when working with 2 options. As a
consequence, computation time increases considerably when dealing with 3
options. Roughly, an otherwise identical simulation takes 15 times longer
when one option is added. Therefore, when dealing with 3 options, we did
not extensively check the parameter space, as this would have exceeded our
available computational power.
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2.2.1.7 Recapitulation

The process that generates the environment can be summed up as follows:

pi(t+ 1) =


pi(t); 1− pincr
pi(t) + kincr; pincr (0.5− r · (pi(t)− (0.5 + ∆p)))
pi(t)− kincr; pincr (0.5 + r · (pi(t)− (0.5 + ∆p)))

With probability (1 − pincr), the environment remains static, with prob-
ability pincr, it changes. If it changes, the increment of size kincr will be
added with probability 0.5−r · (pA(t)− (0.5 + ∆p)) and else kincr will be
subtracted. Moreover, pi is bound between 0 and 1. For the default values,
the process reduces to:

pi(t+ 1) =
{
pi(t) + kincr; 1− pi(t)
pi(t)− kincr; pi(t)

The parameters that affect the environment are listed in the table below.
We also list their default values and include a short explanation.

parameter default value description
tmax 50 Number of time periods per generation
∆p 0 Change in mean pA and pB
r 1 Strength of reversion to the mean

pincr 1 Probability that environment changes per
period

kincr 0.02 Step size at which environment changes

2.2.2 Modeling details
In this chapter, we do not take evolution into account but instead only model
populations consisting of one strategy. As the PBSL strategies we study do
not have a memory past the last period, it is unnecessary to differentiate
between generations. In general, we simulated the strategies for 100,000
periods. For scoring-type PBSL and a high sample size of 7, we had to
restrict ourselves to 10,000 generations, as those simulations take so much
longer.
We should justify briefly why we did not derive analytical results. In

principle, we should be able to calculate equilibrium choice proportions of
the strategies. However, by only focusing on equilibria, we would neglect
the choice dynamics. For example, after the environment has switched, con-
formists will mostly choose the worse option. Even if they re-converge to
the better option, this process will take some time. And in the meantime,
they perform worse than they would do in equilibrium. In contrast, indi-
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2 Payoff-biased social learning

vidual learners choose more conservatively (closer to a 50:50 split for A and
B) but adopt much faster. If we assumed that the choices of all strategies
reach equilibrium immediately, we would thus overestimate the performance
of conformists. The approximation would only be valid if environmental
change is very slow, which would severely restrict the applicable domain of
the model.
But if we want to consider dynamics, it is hard to obtain analytical results

and thus have to rely on simulations. Moreover, it is already quite hard to
even determine the equilibrium choices of such a simples strategy as confor-
mism with a sample of three because solutions contain roots of polynomials
of the third degree. Degrees rise linearly with sample size, so trying to solve
for sample sizes of, say, 7 is simply not feasible.
As we assume an infinite population size and as strategies are determin-

istic, the performance of the strategies is also deterministic. There is one
source of stochasticity, though, which is the environmental change. Some-
times we will encounter many periods with one choice being better than the
other, sometimes there will be several switches per generation. Some test
runs with the same initial conditions but different random numbers led to
the same equilibrium frequencies, so the stochastic elements do not seem to
push the frequencies towards different equilibria.
Moreover, we built in a limit so that each option is chosen by at least

0.1% of the population at all times. Why this arbitrary choice? In princi-
ple, when the population starts with a certain mixture of A and B choices,
these frequencies can never reach 0 or 1, so that there will always be some
demonstrators that choose the rarer of the two options. Similarly to genetic
variants following evolutionary replicator dynamics with infinite population
size, choices will never become “extinct”. This is important because if choices
could die out, some strategies would never again choose this option, as it has
to be demonstrated in their sample in order to have a chance to be picked. A
computer program simulating numerical values will, however, cease at some
point to be precise enough, so that very small numbers are rounded down
to zero. So due to hardware constraints, there will always be an arbitrary
lower bound. Therefore, it is better to control it than to let it be controlled
by the hardware.
We have chosen to limit the minimum choice frequency for the options

to 0.1%. We found that changing this limit by one order of magnitude in
either direction does not greatly affect performance. Also, decreasing this
limit even further, up until 0, rarely if ever affects the performance of scoring-
type PBSL. However, it does affect the performance of averaging-type PBSL.
For this type of strategy, due to rounding errors, it may indeed happen that
all individuals at some point choose the same option and never recover from
that choice. By introducing the limit, we prevented this from arbitrarily
occurring.
To keep matters fair, we thus decided to use the choice limit and to apply
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it to all strategies. One may, however, interject that this limitations has
very real implications for how strategies perform and that in absence of any
evidence that such a limit really exists, one should not use this limitation
for the simulations. On the other hand, the limit could be justified as being
caused by errors or innovations.

2.2.3 Performance calculation
This chapter deals entirely with the question how the studied strategies
perform in isolation and why that is so. For this task, it is not important
how they would evolve. Instead, we assume that the whole population only
plays one strategy and then we observe the outcome. Of course, the results
from this chapter still allow us to make inferences regarding the evolution
of social learning strategies – it is reasonable to assume that strategies that
perform well will also have a greater chance to invade a population or to fend
off other invaders, although this still will have to be tested. Given the vast
number of possible strategies, an important role for this chapter is therefore
to weed out implausible and redundant strategies, so that we can focus our
efforts on studying the most promising strategies in an evolutionary context.
How exactly do we define performance? Performance is supposed to be

a measure of how well a strategy adapts to the environment. We therefore
defined performance as the fraction of a population that chooses the bet-
ter of the two options, averaged over time (periods when both options are
equally good are excluded). As an example, consider a population where
at all times, 60% of the individuals choose the better option; the strategy
would have a performance of 60%. Or consider another population where all
individuals choose the better option 60% of the time and the worse option
40% of the time; the performance would also be 60%. The performance is
thus a measure that is averaged over individuals and over time, so these two
extreme cases result in the same performance. In practice, we will always
find a mixture.
When a strategy would consist of flipping a coin and choosing according

to this result, we would observe random choice. Since a priori, A and B
are equally likely to be the better option, random choice will lead to a
performance of 50% on average. A social learner will thus have to exceed
a performance of 50% in order to be interesting at all. (We will encounter
“paradoxical” strategies that indeed perform worse than 50%.)
Another way to think of performance is that it measures how well the

population fits the “effective environment”. Here “effective environment”
means that when pA > pB, one should always choose A and else always B.
Making a linear fit of the proportion of A choices to an effective environment,
which takes the value 1 when pA > pB and 0 when pA < pB, let the steepness
of the curve be α. Performance is then equal to 0.5 + α/2, which for an
optimal α = 1 would give a performance of 1, for α = 0 (no correlation,
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as for random choice) gives a performance of 0.5, and for α = −1 (always
the wrong choice) gives a performance of 0. This measure of performance is
equivalent to the previous.
Another possibility to measure performance would be to calculate the

expected payoff of a choice. Say that in period t, we have pA = 0.5 and
pB = 0.6 and a strategy that chooses A with 90% probability and B with 10%
probability. The expected value of this choice is thus 0.9·0.5+0.1·0.6 = 0.51.
Our previous measure would result in a performance of 0.1. The advantage
of the second measure is that if, say, pA were 0.1 instead of 0.5, this would be
reflected in the performance measure, with performance dropping to 0.15.
Our previous measure, on the other hand, would still result in the same
performance of 0.1. The second approach using expected values thus factors
in how much worse the worse option is compared to the better option.
A disadvantage of the second approach is that it is dependent on the mean

values of pA and pB, which we will want to alter later on. If the means of pA
and pB increase, so would performance, even if the strategies are not better at
making decisions. However, we want performance measures to solely reflect
the goodness of the decisions not the environment’s properties, and more
importantly, we want them to be comparable across conditions. Therefore,
we chose the first approach. In several tests, we found that performance
according to the first definition and performance according to the second
definition are monotonically and positively correlated as long as means of
pA and pB are held constant. This means that our results are not distorted
by the choice of how to define performance.

2.2.4 Computation
Before we go on, we want to shortly discuss how the behavior of the PBSL
strategies were computed. One might have noticed that the PBSL strategies
were defined by a set of rules. These rules, for computational purposes, have
to be translated into equations and then, numerical simulations have to be
conducted. We proceeded in two steps to achieve the result.
First, we had to be able to translate the rules into equations. As Mathe-

matica is a mathematical software specialized in symbolical computation, we
used this software (version 8) as a starting point. We assumed that the po-
pulation that the social learners draw their observations from is well mixed.
As there are four possible observations per draw, A+success, A+failure,
B+success, and B+failure, we could determine the probability of each ob-
servation, depending on the sample size, by using multinomial distributions.
Given that the probability that A generates a success in period t is pA(t)
and the frequency of A choices in the population is x(t), we could express
the observation A+success as pA(t) · x(t), A+failure as (1− pA(t)) · x(t),
B+success as pB(t) · (1− x(t)), and B+failure as (1− pB(t)) · (1− x(t)).
Next we defined a rule that 1) for scoring-type PBSL strategies would
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assign scores to the options according to how often they are observed gener-
ating gains or losses, and 2) for averaging-type PBSL computes the average
payoff generated by a given observation. In the next step, these results are
translated into choices by assuming that the strategies simply always choose
the option with the highest score/highest average payoff. Given the multino-
mial distribution as a function of pA(t), pB(t), and x(t), we can translate the
rules into a choice probability f for a given strategy to choose A in period
t+ 1.
This way, we could calculate the choice probability of any scoring-type

PBSL, regardless of weights and sample size, and any PBSL McElreath,
regardless of sample size (which is their only parameter). For example, for
scoring-type PBSL with weights [1/0] and sample size 3, we have:

f[1/0] = 1
2[1− p3

B (1− x) + 3pA · x− 3p2
A · x2 +

3p2
B (1− x)2 (pA · x− 1)− 3pB (1− x)

(
1− p2

A · x2
)
]

The (t) argument was omitted for simpler reading. For PBSL McElreath
with a sample size 3, we would have:

fMcElreath = x · [3p2
A · pB(1− x)x− 3pA

(
1− p2

B

)
(1− x)2 +

(3− 3 · pB (1− x)− 2 · x)x]

The choice made for period t + 1 is always based on observations made in
period t, so we deal with simple difference equations. Yet we also deal with
polynomials of degree 3 or higher (the degree equals the sample size) and
both pA(t) and pB(t) are not easily expressed in a static way, which means
that we have to resort to numerical simulations to simulate how exactly the
different strategies behave. As Matlab is the better software for numerical
simulations, we transferred the equations from Mathematica to Matlab 7
and worked with this software from there on. Codes are available from the
author by request.

2.3 Results
2.3.1 Scoring-type PBSL
2.3.1.1 Weights

Before starting to analyze scoring-type PBSL, we must ask what range of
weights we should include. In principle, there is no limit; a payoff-biased
social learner could weigh successes by a factor of 757 and failures by a fac-
tor of -312. However, many combinations of weights will be redundant. For
instance, it makes no difference whether one chooses the pair [5/0] for the
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The explanation for this finding is not very hard. A positive weight on
failures means that the more negative outcomes are observed in relation to
an option, the more likely it will become to pick that option, a behavior that
is paradoxical and very unlikely to be found in nature. Positive weight of
failures are thus unlikely to be part of a viable PBSL strategy.
The highest performance, perhaps surprisingly, is found for positive weight

of successes and zero weight on failures. In that case, performance climbs up
to 71.7%, 9.1 percentage points above the second best result. So a payoff-
biased social learner who counts successes positively (the exact weight does
not matter) and completely ignores failures has the highest performance.
The surprising element here is that one type of information, observation of
failed attempts, is completely neglected. The perhaps more intuitive guess
that failures should count negatively towards the choice of the observed
option is not true for the given parameters. We thus deal with a situation of
“less-is-more” [73], where ignoring one type of information actually increases
performance.

2.3.1.2 Mean success rate of environment

One of the most important features of the environment is the mean success
rate. Preferentially, strategies should show a stable performance regardless
of the mean value of pA and pB. To study this, we varied mean pA and pB
from 0.25 to 0.75 in steps of 0.05 (mean p’s of 0.5 are our default value).
The results are illustrated in figure 2.6. In panels A) to C), performance
results for all combinations of weights from -5 to 5 are shown; the better the
performance, the darker the color. Clearly, strategies that place a positive
weight on successes and no or negative weight on failures (top left areas
of the grids) perform best. Strategies that place no or negative weight on
successes and positive weight on failures (bottom right areas of the grids)
perform worst. This finding is independent of mean pA and pB.
There are only two different types of strategies that perform best in some

region of the parameter space. On the one hand, we have PBSL that con-
siders successes positively and ignore failures (i.e. [1/0], [2/0], etc.), on the
other hand, strategies with weights [3/− 1], [4/− 1], [5/− 1], and [5/− 2]
(these weight pairs all produce the same choice pattern and are thus iden-
tical). Plotting the performance of these two types of strategies (panel D
of figure 2.6) reveals that strategies with weights [1/0] and other identical
strategies perform best when mean p’s are between 0.25 and 0.6, whereas
strategies with weight [3/− 1] and identical strategies perform best for mean
p’s of 0.65 to 0.75.
When just looking at the best performance, regardless of which pair of

weights attains it, there is a clear trend. The higher the mean value of pA
and pB, the better the performance of the best performing strategy. For
means of 0.25, the best performance is 61.3%, for means of 0.5, it is 71.7%,
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Figure 2.6: The performance of scoring-type PBSL according to their weight for
different values of mean p. A) Mean pA and pB of 0.25. B) Mean pA and pB of
0.5. C) Mean pA and pB of 0.75. Performance is color coded, with darker shades
indicating better performance. Generally, placing negative or zero weight on failures
while placing positive weight on successes leads to the best performance. D) Best
performance is found either for strategies that weigh successes positively and ignore
failures (i.e. [+X/0]) or for strategies with weights [5/− 2], [5/− 1], [4/− 1], and
[3/− 1] (all of which are redundant). The former perform best for low to medium
values of mean p, the latter for high values of mean p. At no point in the parameter
space do other combinations of weights result in the best performance.
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Figure 2.7: Influence of the reversion factor r on performance. Three exemplary
weight pairs are shown. In general, performance drops with higher r, with all
strategies being affected in the same way. Therefore, the rank of the strategies
stays the same. PBSL of the type [+X/0], e.g. [1/0], perform best over the whole
range of r.

and for means of 0.75, it is 76.1%. Scoring-type PBSL therefore does not
perform very robustly over the parameter range.

2.3.1.3 Reversion factor

The reversion factor r could potentially have a large influence on perfor-
mance. This factor regulates how strongly pA and pB revert to the mean of
0.5, with r = 0 meaning no reversion at all and higher r meaning stronger
reversion. If reversion is strong, the success rate of A and B will rarely if
ever lead far astray from the mean, oscillating irregularly around it instead.
For this reason, the stretches of time in which one option remains superior
to the other become shorter, switches become more frequent.
Our simulations showed that r has little influence on the overall result.

Although higher r, implying frequent switches in best choice, lead to a de-
crease in performance, qualitatively, nothing changes. PBSL with score [1/0]
and other identical strategies perform best over the whole range; PBSL with
score weights of [3/− 1] and other identical strategies perform second best
over the whole range, etc. (see figure 2.7). Thus, qualitatively, the results
remain the same for all r.
As mentioned earlier, there are paradoxical strategies, e.g. strategies that

place positive weight on failures and negative weight on successes. Those
strategies still perform below chance level over all r, but actually become
better for higher r. This is because the faster the environment changes, the
harder it becomes to pick the worse option “on purpose”.
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2.3.1.4 Speed of environmental changes

We varied the parameter pincr, the speed of environmental changes, but
found it to have almost no influence on performance. Strategies with weights
[1/0] and equivalent performed better for lower pincr, with performance in-
creasing by 5.1 percentage points when pincr drops from 1 to 0.1. Still, over
this whole range, weights of [1/0] and equivalent performed better than any
other weight pairs. PBSL with weights [3/− 1] and equivalent strategies
were second best over the whole range, with performance varying between
61.82 to 62.61%. This variation showed no consistent pattern and could be
due to stochasticity. Similarly, there is no trend in performance over pincr
in general. Overall, pincr thus had little influence on performance.

2.3.1.5 Step size

For increasing step size kincr, we observe that variance in performance be-
tween strategies becomes smaller. On the analyzed range, PBSL with weights
[1/0] and equivalent performs best, except for kincr = 0.1 (the highest stud-
ied value), were weights [3/− 1] and equivalent become the better choice, if
only marginally so. There is no general trend of how performance correlates
with kincr. Overall, the performance of scoring-type PBSL is rather robust
to kincr.

2.3.1.6 Sample size

Until now, it was assumed that payoff-biased social learners could only ob-
serve three models. It is, however, possible that more observations are made
when real beings make decisions based on social information. We therefore
re-analyzed the performance data but instead of a sample size of 3, we took
a sample size of 7. Note that for a sample size of 7, there are more quanti-
tatively different strategies than before. For example, weights [3/− 1] and
[4/− 1] result in the same behavior for sample size 3 but not for sample size
7.
A direct comparison between the two sample sizes is shown in figure 2.8.

On the left hand side, for sample size 3, PBSL with weights [1/0] and equi-
valent show the highest performance. PBSL with weights [3/− 1], [4/− 1],
[5/− 1], and [5/− 2] performed second best. On the right hand side, per-
formance results for a sample size 7 are shown. Here, weights of [4/− 1]
lead to the best performance. Second comes [3/− 1], third [5/− 2], and
fourth [5/− 1] (due to the increase in sample size, these weight pairs are
not redundant anymore). Strategies with weights [1/0] and equivalent only
come in 10th, with other strategies that place positive weight on successes
and negative but less weight (in absolute numbers) on failures ranking in-
between.
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Figure 2.9: The best performing relative weight of failures as a function of mean
pA and pB . We normalized the weight of successes to 1 and plotted the weight of
failures that, for the given ∆p, results in the highest performance. The higher the
mean of pA and pB is, that is, the higher ∆p, the more weight in absolute terms
has to be put on failures. Some weight pairs are indicated for illustration.

positively and failures negatively are the best performers. However, the
best weight ratio of successes to failures varies. To better illustrate this,
we plotted the weight of failures, given that the weight of successes was
normalized to 1 (figure 2.9). For example, all strategies with weights [+X/0]
corresponds to [1/0], [4/− 1] corresponds to [1/− 0.25], etc. As can be seen,
depending on mean pA and pB, various combinations of weights for successes
and failures can now lead to the best performance. For low mean pA and
pB, it is best to completely ignore failures. For a mean of 0.5, failures should
count one quarter the weight of successes, corresponding to [4/− 1]. For a
mean of 0.75, failures should count three quarters the weight of successes,
corresponding to [4/− 3]. The overall trend is simple: The higher the mean
of pA and pB, the more weight should be put on failures.
Interestingly, although the optimal combination of weights for successes

and failures varies, the performance of the best combination is quite stable
for the tested parameter range. This was not true when sample size was
restricted to 3. With a sample size of 7, however, scoring-type PBSL attains
a performance of at least 73.6% and at best of 78.5%. There is no correlation
between performance and mean pA and pB. In summary, the performance
of scoring-type PBSL with sample size 7 is quite robust on the parameter
range, if optimal adjustments of weights are allowed for.

2.3.1.7 Three choice options

We tested whether the performance of scoring-type PBSL is robust with
regard to the number of choice options. For that, we increased the number
of options from two to three and re-assessed the performance. We found
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Figure 2.10: Performance of PBSL McElreath under default conditions for sample
sizes ranging from 2 to 7. The best performance, 72.3%, is reached for a sample
size of 3.

that there is essentially no difference between the results. Of the 121 pairs
of weights tested, 50 performed better and 70 worse (the weight pair [0/0]
generated the draw). The mean difference being only 1.3 percentage points
and the deviations not being systematic, we conclude that the number of
choice options is unimportant for performance of scoring-type PBSL.

2.3.2 Averaging-type PBSL
2.3.2.1 Sample size

A specific form of averaging-type PBSL was first proposed McElreath et
al. [120], which is why we call it PBSL McElreath for short. This strategy
works differently than scoring-type PBSL. It takes the average generated by
options A and B as observed in the sample and then chooses the option with
the higher performance. A greater sample size might seem favorable to this
approach, as a small sample could be more subject to randomly assigning
the higher average payoff to the worse option. In the original work, only
sample size 3 was tested, so we were left wondering whether higher sample
sizes increase performance. To check this, we simulated PBSL McElreath
for sample sizes ranging from 2 to 7. The resulting performance using our
default parameters is shown in figure 2.10. In contrast to the expectation,
higher sample sizes do not lead to higher performance. Instead, the best
performance by a fair margin is reached for a sample size of 3, the sample
sizes studied in the original work. Here, as was the case for scoring-type
PBSL with weights [1/0], the principle seems to be: less is more.
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Figure 2.11: Mean performance of PBSL McElreath as a function of the mean
success rate of the environment (left panel) or as a function of the step size kincr

(right panel). Shown is the excess performance over chance level (50%) depending
on sample size, each stacked on top of one another. Numbers in the bars indicate
the best performance achieved for each sample size, bars with thick borders indicate
the best performance achieved for each mean parameter value. Left: A sample size
of 2 leads to a rather stable but low performance (≈ 60− 61%) over mean p. For a
sample size of 3, very good performance (≈ 74− 75.5%) is attained for medium to
high mean p (0.45 to 0.65). The reverse trend in performance is found for higher
sample sizes; for instance, the best overall performance (77.38%) is found for sample
size 6 and mean p of 0.25. Right: Sample size 3 is favored for low kincr, while sample
sizes of 4 and higher are favored for higher kincr.

2.3.2.2 Mean success rate of the environment

It is crucial to study how strategies perform depending on the mean success
rate provided by the environment. The left panel of figure 2.11 shows the
performance of PBSL McElreath as a function of sample size and mean pA
and pB. To emphasize the differences, we only show performance above the
chance level of 50%. For each mean p, we stack the performance for all
sample sizes on top of each other. For low or high mean p, higher sample
sizes provide the best performance. For example, for a mean p of 0.25,
sample sizes of 6 yield the best results; and for a mean p of 0.75, a sample
size of 4 yields the best performance. A sample size of 2 generally leads to
low but stable performance. A sample size of 3 leads to good performance
in the p range of 0.45 to 0.65 but for low mean p also leads to the lowest
observed performance, hardly exceeding chance level.

2.3.2.3 Reversion factor

We simulated the influence of the the reversion factor r on performance. For
PBSL McElreath, we found that performance decreases with increasing r,
regardless of the sample size. For all r except for r = 0, sample size of 3
delivered the best performance; for r = 0, performance peaked at a sample
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size of 4. The advantage over a sample size of 3 was, however, only 2.4
percentage points for r = 0 and was on average 5.7 percentage points lower
for all other r. It is thus safe to state that a sample size of 3 results in the
highest performance and that this is robust with regard to the parameter r.

2.3.2.4 Speed of environmental change

We varied pincr from 0.1 to 1 in steps of 0.1 and found no large differences
to the previous results. Sample size of 3 remains the best choice by far over
the whole parameter range. Generally, when changes become slower (lower
pincr), performance is stable or increases. The only important change is that
for environments that change very slowly (pincr ≤ 0.5), PBSL McElreath
with sample size of 2 see a performance boost and becomes the second best
choice. PBSL McElreath with sample size 3 is the only strategy to outper-
form scoring-type PBSL that ignores failures (i.e. with weights [1/0] and
equivalent); slightly for high pincr and more so for low pincr.

2.3.2.5 Step size

We varied the step size kincr, which reflects the absolute change in pA and
pB each time they change. The results are shown in the right panel of figure
2.11. A sample size of 3 leads to the best performance as long as kincr is
small (kincr ≤ 0.03). For higher values, 0.04 ≤ kincr ≤ 0.08, a sample size
of 4 is best. For even higher values, 0.09 ≤ kincr ≤ 0.1, a sample size of 5
is best. It thus seems that the higher kincr, the higher the optimal sample
size.

2.3.2.6 Three choice options

We tested the performance of PBSLMcElreath for three instead of two choice
options. The results are shown in figure 2.12. Overall, PBSL McElreath,
regardless of its sample size, improves its performance when there are three
options. Strategies with sample size 4 profit most, showing an increase of
6.8 percentage points. However, sample size 3 still remains the best choice,
delivering the best performance for both two and three choice options.
Of the environmental parameters, we found ∆p, which determines the

mean value of pA, pB, and pC , to be the most important. Therefore, we
re-simulated performance for different values of ∆p, this time with three
choice options. The results were almost identical to those found for two
choice options. Interesting to note, over the whole parameter range of ∆p,
performance improved for each studied sample size when there were three
instead of two choice options; with only 3.3 percentage points on average,
these improvements were rather small, though, and they never exceeded 9
percentage points.
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Figure 2.13: Mean performance of PBSL with a payoff-conformism trade-off as a
function of the mean success rate of the environment and sample size. Shown is
the excess performance over chance level (50%), with sample sizes stacked on top
of one another. Numbers in the bars indicate the best performance for each sample
size, bars with thick borders indicate the best performance for each mean p. For
low to moderately high mean pA and pB , a sample size of 6 yields the best result,
for high mean pA and pB , a sample size of 5 is better, and for very high mean pA

and pB , a sample size of 4 is best. Sample size of 3, which was dominant without
the trade-off, is never the best.

performance. The result is shown in figure 2.13. Previously, we found that
PBSL McElreath with a sample size of 3 produced the best performance,
except for low or very high mean pA and pB. After including the payoff-
conformism trade-off, a sample size of 3 never leads to the best performance.
Instead, a sample size of 6 is the best choice for mean values of pA and pB
between 0.25 and 0.55. For higher values, smaller sample sizes are better. In
summary, introducing the trade-off increases performance considerably and
shifts the best sample size upwards.
We furthermore analyzed the modified social learning strategy under the

condition that there are three choice options. The results were very similar
to those found for two choice options. Increasing the number of options does
therefore not affect performance in an important way.

2.3.3 Behavioral results
Until now, we have focused our analysis on the performance of the strategies
as a function of different parameters. To get a better grasp on why strategies
sometimes perform well and sometimes not, we will have a closer look at their
actual behavior.
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2.3.3.1 Conformist bias

We discussed how we use the term “conformism” qualitatively earlier in
this work. For our current purposes, we need a quantitative definition of
conformity, though. Therefore, we chose the approach to define the degree
of “conformist bias” as how closely a strategy sticks to a true conformist.
A first impression of how to approach this can be gained by again looking
at table 2.2. Gray rows correspond to samples in which the majority of
the sampled individuals chose A. Pure conformists would choose A exactly
for these samples and B otherwise. Of the PBSL strategies, those with
weights [1/− 1] would act in line with conformists in 50% of the possible
samples; those with weights [4/− 1] in 60%, those with weights [1/− 4] in
40%, those with weights [1/0] in 75%, and PBSL McElreath in 80% of the
possible samples.
A social learner who imitates the choice of a random individual in the

population preserves the choice frequencies. In contrast, conformist bias
leads to polarization – if one option is more frequent than the other, a
conformist is more likely to adopt this option than expected from random
choice, as is shown in panel A of figure 2.14. For example, if A is chosen by
2/3 of the population, a conformist with sample size 3 (solid line) will chose
A with a probability of almost 3/4. The more individuals are samples, the
more conformist bias a conformist will show. For example, with a sample size
of 7 (dashed line), the same conformist would have a probability of almost
5/6 to choose A instead of 3/4. If the whole population were sampled, a
conformist would always choose the more frequent option (dotted line).
When we look at PBSL and whether they display a conformist bias, we

have to keep in mind that PBSL strategies act differently when payoffs differ.
For example scoring-type PBSL with weights [4/− 1] (panel B of figure 2.14)
do not show a conformist bias when pA and pB are rather low (dashed line)
but do so when they are rather high (solid line). PBSL McElreath (panel C)
shows a conformist bias when pA and pB are low (solid line) but less so when
they have intermediate values (dashed line). It would thus be interesting
to quantitatively measure the degree of conformist bias of different PBSL
strategies as a function of pA and pB.
We define the conformist bias as the tendency to increase the proportion

of A choices if A is also chosen by the majority of the population and to
increase the proportion of B choices if B is chosen by the majority (see panel
D of figure 2.14). Put mathematically, if f(x) is the proportion of A choices
made by a PBSL strategy as a function of the frequency x of A choices made
by the population, then the conformist bias is defined as

conformist bias =
∫ 1/2

0
(x− f(x))dx+

∫ 1

1/2
(f(x)− x) dx
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Using this definition, conformist bias is bound between -0.75 and 0.25 (note:
negative values do not imply an anti-conformist bias). Conformists, whose
behavior is independent of pA and pB, have a conformist bias of 0.0625 for
a sample size of 3 and of ≈ 0.113 for a sample size of 7.
The conformist bias of scoring-type PBSL as a function of pA and pB is

shown in figure 2.15. The thick line presents the isocline at which conformist
bias is 0, thin lines are isoclines with 1/8th difference between each. We
colored areas with positive values of conformist bias in gray. PBSL with
weights [1/0] (and equivalent) and sample size 3 (top left) have a rather
high conformist bias for most of pA and pB. But conformist bias becomes
much more severe for sample size 7, with positive values for the better part
of the area. PBSL with weights [4/− 1] have a rather low conformist bias
compared to PBSL with weights [1/0] but conformist bias also increases with
higher sample size.
We applied the same analysis to PBSL McElreath and PBSL with payoff-

conformism trade-off (figure 2.16). Both strategies show a high degree of
conformist bias only for high or low mean pA and pB. For a sample size of 3,
both strategies are identical and thus show the same behavior. For sample
size 6 they differ. Most notably, PBSL McElreath become substantially
less conformist, while PBSL with payoff-conformism trade-off is still almost
as conformist as before. The fact that we see the latter strategy being
more conformist is not surprising, as we designed the strategy in a way that
conformism has more impact on decision making.
Combining these findings with our performance measures, there is no sim-

ple correlation between the degree of conformism and performance. We may
suspect, however, that some amount of conformist bias is good, but too much
conformity is detrimental for performance. For instance, for sample size 3,
PBSL with weights [1/0] is more conformist than PBSL with weights [4/− 1]
and our earlier analysis also showed that it performs better. If sample size
is increased to 7, however, PBSL with weights [4/− 1] becomes moderately
conformist and also performs better, whereas PBSL with weights [1/0] be-
comes very conformist and performs worse. Is it therefore possible that there
is an optimal degree of conformist bias?
To get more data, we needed to make an assumption. To calculate the

conformist bias as a single number, we took the joint distribution of pA and
pB using the default parameter values. We calculated the conformist bias
of all scoring-type PBSL strategies that have positive weight on successes,5
the conformist bias of PBSL McElreath, and the conformist bias of PBSL
with payoff-conformism trade-off. Next we plotted their performance as a
function of their average conformist bias, shown in figure 2.17. Confirming

5We excluded negative weight on successes, since these strategies are often paradoxical
in the sense that they are more likely to pick the worse option than to pick the better
option. As they perform so horribly, these strategies are uninteresting in general.
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our suspicion, we observe that performance first increases with increasing
conformist bias, only to drop after a certain point. The optimum is reached
for a conformist bias close to zero but slightly negative (remember that a
conformist bias of 0 still implies a moderately high degree of conformity).
Therefore, there is indeed an optimal degree of conformity.
To check for robustness of the findings, we also plotted performance as

a function of conformity under the assumption that the mean pA and pB
either were 0.25 or 0.75. The results did not differ substantially, we still
observe the peak in performance for a conformist bias close to 0. The gen-
eral shape of a curve fitting the data is somewhat odd – first performance
increases modestly with conformist bias, then it suddenly drops after opti-
mal conformity is reached. An interpretation of this could be that after this
point is reached, maladaptive equilibria may establish, as we observed when
studying conformism in the previous chapter.
For PBSL McElreath and PBSL with payoff-conformism trade-off, there is

more variance left to explain than for scoring-type PBSL. This implies that
more is going on than just performance altering as a function of conformist
bias. Alternatively, our measure of conformist bias may simply be imperfect
and that a better measure would reduce unexplained variance.
To sum up, a strategy does not need to be a conformist to display a con-

formist bias. This is why we refrained from adopting the nomenclature used
by McElreath et al. [120], who called their strategy “pay-off conformity” – it
would be confusing, as many PBSL strategies show conformity, even if they
are not specifically designed to be conformist. Payoff-biased social learners
often behave in a conformist manner, which is especially true for those PBSL
strategies that also show a high performance. Therefore, conformism is an
ingredient of a successful social learning strategy. It is, however, possible to
be too conformist, which is detrimental to performance. Finding the right
level seems to be key to success.

2.3.3.2 Frequency-information vs payoff-information

In the previous section we exclusively dealt with how social learners react to
frequency-information, i.e. information about how often an option is chosen
in the population. A prominent feature of payoff-biased social learning is,
however, that it takes payoffs into account. We can therefore characterize
a PBSL strategy according to how it reacts to frequency-information vs
payoff-information.
In general, there is always a trade-off between incorporating frequency-

information and incorporating payoff-information. For example, assume that
a strategy samples three individuals, two of whom chose A but were unsuc-
cessful and one of whom chose B and was successful. Frequency-information
gives a 2:1 advantage to A; payoff-information gives an advantage to B. A
strategy can either rely more on the former type of information, leading to
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A as choice, or on the latter type of information, leading to B as choice. It
is impossible that both types of information have at the same time a high
impact on choice. Strategies can thus be characterized by how much they
rely on one or the other type of information.
First we considered scoring-type PBSL strategies. To gauge how they re-

act to the two kinds of information, we plotted their frequency of A choices
as a function of 1) the frequency of A choices in the population and 2) as a
function of the values of pA and pB, assuming that pB = 1−pA. The results
are shown in figure 2.18. First we have an example of a strategy that only re-
acts to frequency-information, namely pure conformism. Conformism (which
corresponds to PBSL with weights [1/1]) does not distinguish between suc-
cesses and failures and thus completely disregards payoff-information. In
contrast, PBSL with weights [1/− 1], in this example, only reacts to payoff-
information and completely disregards frequency-information. In effect, un-
der the assumption that pB = 1−pA, this strategy is the complete mirror im-
age of conformism. Scoring-type PBSL thus encapsulates both extremes, sole
reliance on frequency-information and sole reliance on payoff-information.
Of course, relying but on one source of information is not necessarily wise,

and indeed we see that strategies that rely on both are more successful.
We already saw that PBSL with weights [1/0] performed quite well. Figure
2.18 shows that this strategy is about equally sensitive to frequency- as to
payoff-information. PBSL with weights [4/− 1] and with sample size 7 was
also quite successful; our results reveal that the gradient is steeper in the
direction of payoff changes. This strategy thus also relies on both kinds of
information but reacts more strongly to payoff-information.
Next we turned to PBSL McElreath and PBSL with payoff-conformism

trade-off (figure 2.19). For a sample size of 3, when both strategies are
identical, we see a high gradient in the direction of frequency-information,
meaning that they rely more on this type of information. If we increase
the sample size to 6, PBSL McElreath changes so that the gradient is much
higher in the direction of payoff-information. This is especially valid when
0.3 < pA, pB < 0.7, which is true 99% of the time for the default parameters.
For PBSL with payoff-conformism trade-off, we do not see such a dramatic
change when sample size is increased to 6. Instead, this strategy relies
almost as much on frequency-information as it does on payoff-information.
This reflects the fact that this strategy was designed so as to give frequency-
information more weight.

2.3.4 Principal findings
This subsection recapitulates the most important results presented on the
last pages. First, we find that among scoring-type PBSL, many pairs of
weights of successes and weights of failures are redundant, allowing us to
focus on just a subsample of the possibilities. Second, among the environ-
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mental parameters, we found that only the mean value of pA and pB has a
strong influence on the result, and the reversion factor r has a moderately
strong influence. Even though most parameters often change the outcome
quantitatively, they leave the rank of the strategies and thus the qualitative
findings untouched.
Of the whole range of tested strategies, we found three strategies that con-

sistently had a decent showing: scoring-type PBSL with weights [1/0], with
weights [4/− 1] (and redundant ones), and PBSL McElreath with sample
size 3. Although none of the strategies performed well under all circum-
stances, they reliable outperformed other strategies in most conditions. A
comparison of the performance of these strategies under different conditions
is shown in figure 2.20. Shown is the performance for default values (stan-
dard) and for varied environmental parameters (reversion factor r and mean
pA and pB). Furthermore, we show how an increase of the sample size from
3 to 7, as well as an increase of the number of choice options from 2 to 3,
affect the result.
All three strategies consistently outperform strategies of the same type but

none of them consistently outperforms the other. While the environmental
parameters and the number of choice options are exogenous and therefore
not amenable to natural selection, the sample size arguably is. We may
thus predict that PBSL with weights [4/− 1] will evolve to have a higher
sample size, as this boosts performance, whereas PBSL with weights [1/0]
and PBSL McElreath fare better with a sample size of 3.
Limiting the scope of the analysis to the default conditions, scoring-type

PBSL could achieve a performance of 71.7% if they only counted successes
and ignored failures. PBSL McElreath achieved a performance of 72.3%.
The best overall performance, 78.5%, was achieved by PBSL with weights
[4/− 1] and sample size 7. A similar performance, 78.4%, was achieved by
PBSL McElreath with sample size 6 after we modified the strategy so that
instead of using conformism solely as a tie-breaking rule, it really traded off
payoff-information and conformism. This modification allowed the strategy
to consistently increase performance at higher sample sizes.

2.4 Discussion
Empirical findings supporting or refuting the existence of certain types of
social learning strategies are mainly discussed in the next chapter, after hav-
ing introduced some other interesting strategies. In this chapter, we instead
discuss why payoff-biased learning generates the behavior and performance
we observed, and what this tells us about social learning in general.
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2.4.1 Robustness of the strategies
The environment is characterized by several parameters that affect, for ex-
ample, the magnitude of changes, how often the environment varies, and
how far these variations tend to stray away from the mean. All these pa-
rameters did, however, not affect the strategies’ performance qualitatively.
Sometimes, they would improve or decrease overall performance, but the
rank of the strategies was unaffected. Similarly, it made no substantial dif-
ference whether two or three choice options were considered. In summary,
these results speak in favor of payoff-biased social learning because this class
of strategies is quite capable of coping with many different environments.
There is one parameter, though, that has a large impact on the outcome.

This parameter is ∆p, which modifies the mean value of pA and pB. Finding
this parameter to be so crucial is especially interesting because we know of no
other study that analyzes social learning and takes this – or an equivalent
– parameter into account. The reason is that in most other models, the
probability that the better option and that the worse option(s) lead to a
success is fixed. We would argue, however, that in many real life examples,
this is not true. The example we often use is the choice between two foraging
grounds. If, for instance, we deal with hunting large game, the success
probability of the options could indeed be very small, while still one option is
better than the other. If we deal with gathering fruits, the success probability
of the options could easily be very large. One of the most common examples
in the social learning literature, the adoption by farmers of hybrid corn [147,
148], would also fit the description that both the current technology and the
new technology can simultaneously have high (or low) success probabilities.
In our opinion, whenever it is possible, this factor should be taken into
account.

2.4.2 Scoring-type payoff-biased social learning
In this chapter, we introduced a new form of social learning, which we called
scoring-type payoff-biased social learning. In the following, we want to ex-
plain some of the phenomena we observed relating to this class of strategies.

2.4.2.1 Positive responsiveness to frequency-information

Scoring-type PBSL may at first be an unintuitive form of learning. We
can improve our understanding of it by comparing it with statistical tests.
There are some differences, though, so let us use an example to illuminate
the similarities and differences. Imagine a standard test of whether a medical
treatment will cure a disease. Typically, the patients are divided randomly
into a test group and a control group, and at the end of the run, it is deter-
mined how many patients were cured. This information is best presented in
a contingency table such as the following:
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cured not cured
treatment
group

61 39

control group 58 42
Evidently, in this case, the difference in treatment success between the

treatment and the control group are not significant. Now what would hap-
pen if the group sizes could not be controlled? For example, if a company
specialized in polls wants to know whether being Republican or Democrat
has an influence on the endorsement of capital punishment, it may proceed
by questioning random people on the street or by phone. However, it cannot
usually control the number of Republicans or Democrats it encounters. A
contingency table could then look like the following (the data are all made
up):

pro capital
punishment

contra capital
punishment

Republican 205 97
Democrat 104 45

Here, again, there is no significant difference between the two groups; in
both groups, capital punishment is endorsed by two thirds of the subjects.
A good statistical test, being robust to the relative sizes of the groups,
would thus show that partisanship has no significant effect on endorsement
of capital punishment.
Now we come back to the task of social learning. Imagine that both

options A and B have the same probability of leading to success but that A
is chosen more frequently than B, as in the following table:

success failure
A 35 32
B 17 16

A statistical test would show that treatment (choosing A or B) has no
significant effect on outcome (success or failure). For example, Fisher’s ex-
act test would lead to a highly insignificant p-value, p > 0.99. A social
learner, if she were as “fair” as a statistical test, should consequently choose
both options with equal probability. However, a look at how the different
social learning strategies would choose, given that they sample from this
population, reveals quite a different behavior, as presented in table 2.3.
Some strategies behave consistently with a “fair” statistical test while

others do not. For instance, PBSL with weights [1/− 1] would choose A
with a probability close to 50%, reflecting the relative success rate of A. In
contrast, conformists, PBSL with weights [4/− 1], PBSL with weights [1/0],
and PBSL McElreath would choose A with probabilities ranging from 61% to
75%. This, as we saw earlier, is because they have a high conformist bias. For
example, PBSL with weights [1/0], which ignores unsuccessful choices, would
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strategy prob. of choosing A
conformists 74.5%
PBSL, weight [1/− 1] 51.5%
PBSL, weight [1/− 4] 41.1%
PBSL, weight [4/− 1] 60.9%
PBSL, weight [1/0] 66.5%
PBSL McElreath 66.3%

Table 2.3: Probability to choose A by different strategies (all PBSL with sample
size 3). It is assumed that the sample population of 100 individuals consists of 35
who chose A successfully, 32 who chose A unsuccessfully, 17 who chose B success-
fully, and 16 who chose B unsuccessfully.

only look at the first two rows of the contingency table, completely ignoring
the third row that contains the information regarding failures. Since option
A is twice as prominent as option B among the successes, players who use
this strategy would end up choosing A with probability 2/3. This strategy,
as most of the strategies we studied, does not reflect the success rates in an
unbiased fashion.
These strategies display a conformist bias, but as we have seen, they have

proven to be very successful. Why then is it desirable for social learners to
respond positively to frequency-information, whereas a statistical test, which
is also supposed to tease out which of the two options/treatments is better,
should not respond positively to frequency-information? The reason is that
in ordinary statistical testing, the sample sizes are created exogenously and
are uncorrelated with the dependent variable. In the medical treatment
example, for instance, test groups are created randomly; in the capital pun-
ishment example, we also assumed that partisanship is predetermined. In
the domain of social learning, though, the proportion of A choosers is en-
dogenous. It is, in general, positively correlated with the success rate of A,
so using frequency-information to bias the decision is rational.
A similar logic would apply if we assumed that in the example of capital

punishment, partisanship was not predetermined. If we assume that Repub-
licans are in general in favor of capital punishment whereas Democrats are
not, and if random sampling revealed a high proportion of Republicans in
the population, we could be confident that a high proportion of the popula-
tion is in favor of capital punishment. In the case of social learning, if choice
is somehow positively correlated with success, it would be unreasonable to
disregard the frequency-information. And as making good choices is favored
by natural selection, we should expect this positive correlation to generally
exist.
Relating to previous theoretical work, Eriksson et al. [52] found that

introducing more than two choice options is detrimental for conformity. In
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their model, an individual first observes a fixed number of individuals, then
with a certain probability finds out which of the observed variants is the best
and adopts it; if she does not find out, she instead adopts the most common
variant (conformism) or copies at random. If the authors then introduce
an infinite number of choice options that have to be invented in a step-wise
manner (innovation), conformists do poorly.
In our model, increasing the number of choice options (from two to three)

did not affect the performance of scoring-type PBSL in any significant way,
even though this strategy often behaves in a conformist way. PBSL McEl-
reath, a strategy that at times is very conformist, even benefited consistently
from increasing the number of options to three. In general, conformity is
an obstacle to innovation, as new variants are per definition rare and there-
fore unlikely to be adopted through conformism. If the payoff derived from a
choice is taken into account, though, a new innovation might still be adopted,
thus overcoming the conformist bias. This might partly explain the discrep-
ancy between our findings and the findings of Eriksson et al.

2.4.2.2 Putting more weight on successes

PBSL that overweigh successes compared to failures display a conformist
bias that is found to be adaptive. But why does overweighting successes
produce conformity? To better understand this, consider a sample of 10
individuals of which 6 choose A and 4 choose B. Assume further that for
both options, half of the individuals are successful, meaning that the social
learner observes

{
AAAĀĀĀBBB̄B̄

}
. If successes and failures were weighted

equally, they would cancel out and the given sample would lead to a draw.
If, however, successes count more than failures, the more frequent option
will prevail, which is A in this example. Therefore, putting a higher weight
on successes than on failures induces payoff-biased social learners to have a
conformity bias. Conversely, if a social learner were to weigh failures more
than successes, they display an anti-conformist bias (see PBSL with weights
[1/− 4] in table 2.3).
There are other reasons why weighting successes more than failures is

beneficial. For example, say that both A and B are very unlikely to lead
to success but that B is still better than A. Furthermore, assume that more
individuals choose the better option B. As B is more likely to lead to failure
than to success, it is also more likely that an observer gathers more negative
evidence with regard to B than with regard to A. She will thus be inclined to
choose the worse option A.6 However, if positive evidence is weighted more
heavily than negative evidence, the described misjudgment will be unlikely
to occur. Overweighting of successes thus allows to pick the better of two
bad options.

6This effect is akin to the Simpson’s Paradox from statistics.
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For the opposite problem, when A and B are very likely to produce success,
placing higher weight on successes than on failures might be disadvantageous.
Say that B is better but the majority chooses A. Then, as successes weigh
more than failures, a payoff-biased social learner will probably gather more
evidence in favor of A and will thus not switch to the better option B. This
is why we observe that the higher the success rates of A and B, the less
overweighting of successes should be expected (see figure 2.9). However,
we presumed that the worse option is chosen more often than the better
option, which rarely occurs anyway. Therefore, this opposite case is less
problematic, so that the positive effects of overweighting successes should
more than compensate for the negative effects.

2.4.2.3 Influence of the mean value of pA and pB
We found that environmental parameters have surprisingly little influence
on the performance of strategies, especially on how the strategies rank. One
parameter, however, the mean value of pA and pB, was found to severely
influence the outcome. A good social learning strategy should, if possible,
perform well regardless of this mean value. However, payoff-biased social
learners often do not perform equally well for high and low mean pA and
pB (see figures 2.6, 2.9, 2.11, and 2.13 for reference). This is perhaps not
surprising, given that payoff-biased social learners pay special attention to
the payoff, which is greatly affected by the mean value of pA and pB – the
other parameters only affect the variation of the payoffs but not their mean.
Can we explain why payoff-biased social learners react the way they do to
∆p?
With regard to scoring-type PBSL, we found that the higher the mean

value of pA and pB, the higher should be the weight placed on negative
outcomes, and vice versa. A short reflection shows this to be sensible –
observing the rarer event is simply more informative. A numerical example
may help to illustrate this. Assume that either pA or pB equals 0.2 and the
other 0.3. So both options are bad but one is still better by 50%. Moreover,
assume that a social learner observes that an individual chose A and was
unsuccessful. We can now calculate the posterior probability that B is the
better choice, that is, Pr

(
pA = 0.2&pB = 0.3|Ā

)
. Using Bayes’ theorem, we

arrive at:

Pr
(
pA = 0.2&pB = 0.3|Ā

)
=

Pr
(
Ā|pA = 0.2

)
· Pr (pA = 0.2)

Pr
(
Ā|pA = 0.2

)
· Pr (pA = 0.2) + Pr

(
Ā|pA = 0.3

)
· Pr (pA = 0.3)

with “Ā” designating the evidence that A led to failure. Assuming that
our prior belief was that pA and pB are equally likely to be 0.2 or 0.3, we
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arrive at:

Pr
(
pA = 0.2&pB = 0.3|Ā

)
= 0.5 · 0.8

0.8 · 0.5 + 0.7 · 0.5

= 0.5 · 16
15

= 0.5333 . . .

So the observation of a failure with A increases our posterior belief that B
is indeed the better option by a factor of 16/15. What would happen, though,
if we had instead observed an individual who chose B and was successful?
The probabilities now change to:

Pr (pA = 0.2&pB = 0.3|B) =
Pr (B|pA = 0.2) · Pr (pA = 0.2)

Pr (B|pA = 0.2) · Pr (pA = 0.2) + Pr (B|pA = 0.3) · Pr (pA = 0.3) =

0.5 · 0.3
0.3 · 0.5 + 0.2 · 0.5 =

0.5 · 6
5 =

0.6

with “B” designating the evidence that B led to success. Observing a success,
the rarer of the two events, thus increases our posterior belief that B is better
by a factor of 6/5. This corresponds to 18/15 and is greater than 16/15, the
update in probabilities we found before. That is, we learn more by observing
the rarer event (the success) than by observing the more frequent event (the
failure). Expressed differently, when failures are more frequent, the self-
information of observing a success is greater than the self-information of
observing a failure; entropy is reduced by a higher degree.
Turning back to our model, this conclusion explains why social learners

should preferentially overvalue the event that is rarer in the given environ-
ment. Therefore, as shown in figure 2.9, it is optimal to put a relatively
higher weight on failures when mean pA and pB rise.

2.4.3 Adverse effects of higher sample sizes
In several instances, we found that increasing the sample size does not im-
prove performance but instead deteriorates it. This finding may be surpris-
ing at first, since taking into account more information should not lead to
a worse result. There are, however, theoretical reasons why sometimes ig-
norance is a bliss. For example, knowing too much may prevent the usage
of the recognition heuristic. American students were better at estimating
which of two German cities has the larger population than which of two
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American cities has; similarly German students were better with American
cities than with German cities [73, 74].7
Other reasons have been found for why knowing less can be advanta-

geous. For example, sampling only a few times can lead the payoff difference
between the studied variables to appear larger than it actually is [93]. Cor-
relations between variables may appear larger and thus more distinct if the
sample size is smaller [102]. These findings make sense under the assumption
that an individual needs to cross a certain threshold before taking action;
sampling less may result in the threshold being crossed more easily. The
findings do not explain why the individuals do not simply lower the required
threshold instead of sampling less. This makes it dubious whether less sam-
pling is really adaptive in these cases and not rather a constraint.
This section deals with explaining why in the context of social learning, we

should not always expect that as much information as possible is acquired,
even if information acquisition is costless.

2.4.3.1 PBSL with weights [1/0]

First, we found that PBSL that only values successes (i.e. with weight pairs
[1/0], [2/0], etc.) perform worse when they sample too many individuals.
Given standard conditions and for a sample size of three, this strategy at-
tained a performance of 71.7%; for a sample size of 7, performance dropped to
only 60.8%. Other scoring-type PBSL strategies, such as those with weights
[4/− 1], did not suffer this decline.
To better understand why we see these opposite effects of higher sample

size, we had a closer look at the behavior of the different strategies. As an
example, we assumed that pA = 0.55 and pB = 0.45. As A is slightly better
than B, one would expect that in the best case, a strategy would converge to-
wards only choosing A. PBSL with weights [4/− 1] and sample size 3 indeed
converges towards predominantly choosing A, but only with a probability of
65%; approximately one third of the population would incorrectly choose B
(see left panel of figure 2.21). With a sample size of 7, we see instead that
94% of the population will eventually choose the better option A. For PBSL
with weights [4/− 1] and similar, it becomes easier to pick the better option
when they observe a greater sample.
We applied the same conditions to PBSL with weights [1/0]. For a sample

size of 3, 85% would converge towards choosing the better of the two options
(right panel of figure 2.21), explaining why they perform so well for this
sample size. For a sample size of 7, it is possible that 99.8% of the population
converges towards the better option, which is even better. There is, however,

7The recognition heuristic works this way: If one of the compared cities is known by name
but not the other, one should guess that the known city is larger, as this is typically
true. In the best case, one knows half of the cities; knowing too many cities would
prevent the subjects from using the heuristic.

90



2.4 Discussion

also a strong conformist bias. If 66% or more of the population choose the
worse option, the conformist bias would lure more individuals to choose the
worse option and in the end, 98.8% of the population would do so. PBSL
with weights [1/0] and sample size 7 are therefore often very decidedly on
the right side but can also very decidedly end up on the wrong side. The
conformist bias is too strong for a sample size of 7 and therefore, this high
sample size is an impediment for high performance.

2.4.3.2 PBSL McElreath

We found that for PBSL McElreath, too, a sample size of 3 results in higher
performance than higher sample sizes in most conditions. Here we explain
why this is the case. PBSL McElreath works by averaging the observed
payoffs of the choice options and choosing the option with the highest average
payoff. This appears to be a reasonable heuristic but this heuristic may
also fail in some conditions. Assume for example that the social learning
strategy observes 100 individuals that chose A and 1 individual that chose
B. Furthermore, assume that the one B choice led to a success and that of
the 100 A choices, 99 were successful and 1 unsuccessful. It would now be
very sound to deduce from this observation that A must have a very high
chance of success, while we know almost nothing about B. Knowing nothing
about B, we should conclude that the very successful option A is the better
choice and thus confidently choose it over B. Yet, if we take the average
payoff of A (assuming a success gives 1 and a failure 0), it will be 0.99, while
the average payoff of B is 1 and therefore higher. PBSL McElreath would
choose B, the option that is almost certainly worse.
A similar argument as above can be made for very unsuccessful options.

If A is observed 100 times, of which 99 were unsuccessful and one successful,
and if B is observed once and was unsuccessful, then B is in almost all
situations the better option. Still PBSL McElreath would calculate the
average payoffs, 0.01 in case of A and 0 in case of B, and consequently choose
A. This example is of less importance, though, since it is a priori less likely
that the worse option is chosen overwhelmingly often in the population.
These examples showcase why the strict comparison between average pay-

offs can sometimes go awry, especially if the observed sample is large. Even
in less extreme examples, if A is successful 5 times and unsuccessful once,
while B is successful once, A is arguably the better choice but PBSL McEl-
reath would choose B. Indeed, given this setup, if we assume that the better
option has a success probability of 60% and the worse option of 40%, then
A is the better choice in 10 out of 13 cases. The success probability of the
better option would have to exceed 98% in order for B being more likely to
be the better choice.8

8This is because if the better option has a very very high success probability, it becomes
unlikely to observe even one failure in a sample of 6.
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The approach of simply comparing means is flawed for high sample sizes.
When many individuals choose the same option, because of the described
effect, it becomes less likely that an additional individual will follow their
lead. PBSL McElreath will display anti-conformist behavior when many
individuals are sampled (see left panel of figure 2.22). This effect occurs
even though McElreath et al. [120] included a bias towards choosing the
more frequent option. This bias is, however, only applied in fringe cases –
only if there is a tie in average payoffs – and thus cannot correct for these
suboptimal decisions. Now it is also clear why observing less leads to better
results for PBSL McElreath. If the sample consists of only three or four
observations, the described error cannot occur.9
Baldini showed more formally that anti-conformism is expected for higher

sample sizes when averaging-type PBSL is used [8]. He therefore called into
question the usefulness of averaging-type PBSL as a social learning strategy
in general. However, as we showed, the problem can be circumvented by
using small sample sizes. In effect, performance was even quite high despite
small sample sizes. There is no reason to believe that evolution would not
settle for smaller samples, as sampling is not exogenously fixed but presum-
ably subject to natural selection.
We argued that if one observes 5 successes with A and one failure with

A, while observing one success with B, it is in most circumstances better to
choose A. To implement this change, we modified PBSL McElreath so that
if the average payoffs of the observed options are close but not necessarily
equal, the more frequent of the two options will be chosen. In theory, this
payoff-conformism trade-off should cure the described weakness of PBSL
McElreath with high sample sizes. We found this change to remedy the
anti-conformist behavior observed for higher sample sizes (see right panel
of figure 2.22), resulting in an improvement in performance. For example,
under default conditions and for a sample size of 6, performance increased
from 61.6% (without trade-off) to 78.4% (with trade-off).
In summary, we thus find that if an option is chosen very frequently in

the population, this can actually lead to that option becoming less likely to
be chosen by PBSL McElreath when they sample many individuals. There-
fore, PBSL McElreath performs better when only sampling 3 individuals.
The adverse effect can, however, be amended by introducing a true payoff-
conformism trade-off (instead of a tie-breaking rule). As a consequence, we
find the performance at higher sample sizes to dramatically improve, exceed-
ing performance at sample size 3.

9If one observes A being successful twice and unsuccessful once, and B being successful
once, then choosing B is not obviously wrong.
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2.4.4 Rationality of payoff-biased social learning
Economists are very interested in the question whether certain behavior can
be reconciled with a rational choice model. For example, they might want
to know whether the preferences that subjects reveal are transitive. In a
slightly changed fashion, we can apply a rationality analysis to the behavior
to social learners. For instance, borrowing from social choice theory, there is
an interesting theorem by Peyton Young [182] that has consequences for the
strategies we study. (Social choice theory typically deals with the question
of how the preferences of different voters can be reconciled to choose a single
winner, or a list of winners, from a set of candidates.)
Before we present Young’s results, some definitions are required. First,

he used two axioms, symmetry and consistency. Symmetry means that each
voter choice is treated equally. Consistency means that if f is a social choice
function, w and w′ are disjoint subsets of voters, and f(w) ∩ f(w′) 6= ∅,
then f(w) ∩ f(w′) = f(w + w′). In other words, if one group of voters
w, according to their preferences, would choose X and a second group of
voters w′ would also choose X, the two groups combined, w + w′, should
choose X as well. Young further defined a scoring rule as following: For
each alternative, a score is assigned by a voter and the alternative(s) with
the highest score is (are) part of the social choice set (the list of winners). A
social choice function is a function that assigns to each voting profile with a
finite amount of voters a social choice set.
Young showed that if the axioms of symmetry and consistency are followed,

any social choice function is a scoring rule [182]. The contrapositive then
also holds: Every social choice function that is not a scoring function violates
at least one of the two axioms.
An analogy can be made between social choice theory and the study of

social learning. The voter profiles of the former correspond to the sampled
observation and the social welfare function corresponds to a social learning
function that translates observations into a choice. Although the proof by
Young would have to be adjusted to our case, it is quite likely that the
same theorem would hold. The implication is then that for consistency and
symmetry to hold, we have to require that the social learners obey a scoring
function. Conformists and all other scoring-type PBSL strategies we studied
obey to a scoring function, meaning they conform to the proposed axioms.
Not violating the symmetry axiom is a trivial task. The definition of the

strategies does not allow them to differentiate between individuals in their
sample. If three individuals are sampled, all are treated equally. It is possible
to change this, one could e.g. define a strategy that gives more weight to
the first sampled individual. But the strategies we used necessarily have to
comply to symmetry, so that we can focus on whether the consistency axiom
holds.
If the sample of a scoring-type PBSL is broken into two disjoint samples
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w and w′, and if the choice function f chooses option X for both samples,
it is equivalent to say that the score SX of X is higher than the score SY of
Y (were X and Y , interchangeably, correspond to A or B):

(f(w) = X) ⇔ (SX(w) > SY (w)) (2.1)(
f(w′) = X

)
⇔

(
SX(w′) > SY (w′)

)
(2.2)

Furthermore, as scores are simply summed up, we have:

SX(w + w′) = SX(w) + SX(w′) (2.3)
SY (w + w′) = SY (w) + SY (w′) (2.4)

The choice derived from the joint sample w + w′ is X if and only if:(
f(w + w′) = X

)
⇔
(
SX(w + w′) > SY (w + w′)

)
which, using 2.3 and 2.4, is equivalent to:

(
f(w + w′) = X

)
⇔
(
SX(w) + SX(w′) > SY (w) + SY (w′)

)
Using all the above, we can conclude that:(

(f(w) = X) ∧
(
f(w′) = X

))
⇔

(
(SX(w) > SY (w)) ∧

(
SX(w′) > SY (w′)

))
⇒

(
SX(w) + SX(w′) > SY (w) + SY (w′)

)
⇔

(
f(w + w′) = X

)
Or, in short:(

(f(w) = X) ∧
(
f(w′) = X

))
⇒
(
f(w + w′) = X

)
In words, this means that for scoring-type PBSL, if a subsample would

result in choosingX and the other subsample would result in choosingX, the
joint sample would also result in choosing X. This is in agreement with the
consistency axiom, meaning that scoring-type PBSL obeys both symmetry
and consistency and thus, in one sense of the word, behaves rationally.
Does the same hold true for PBSL McElreath [120]? This strategy acts

according to the following rule: Calculate the average payoff generated by
the two options in the observed sample, then choose the option with the
higher average payoff; in case of a draw, choose the more frequent option.
This rule seems to be reasonable but is it also rational?
As we said, the symmetry axiom cannot be violated. To check whether

consistency is violated by PBSL McElreath, we have to stretch a little. Let
f be the choice function that translates the observations of a social learner
using PBSL McElreath into a personal decision. Moreover, let {A} be an
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observation of an individual who chose A and was successful and
{
Ā
}

be
an observation of an individual who chose A and was unsuccessful; the same
holds for {B} and

{
B̄
}
. According to the definition of McElreath et al.

[120], f
({

Ā
})

= A. Furthermore, owing to symmetry, f ({AB}) = {AB},
meaning that observing one success with A and one success with B may
either lead to A or B choice. For the two disjoint samples, only one option
overlaps, namely A. Therefore, one should expect A to be chosen from the
joint sample – f

({
Ā
}

+ {AB}
)

= A. However, according to McElreath et

al. ([120], see also table 2.2), f
({

Ā
}

+ {AB}
)

= B. This is a violation of
consistency. With regards to the system we study, PBSL McElreath does
thus not behave according to one of the two axioms. In this narrow sense,
PBSL McElreath acts irrationally.
We have proven that scoring-type PBSL but not PBSL McElreath obeys

the two axioms; we have not proven though that a necessary condition for
a strategy to behave rationally requires that strategy to be a scoring-type
PBSL. Such a statement would require a more lengthy proof in the spirit of
Young [182], which we will not provide here.
PBSL McElreath may not obey the axiom of consistency, but does this

make them “irrational”. To show that acting according to this strategy
would seem unreasonable on the surface, consider the following example:
Say that a social learner encounters either i) {AB} or ii)

{
ĀB̄

}
. In either

case, symmetry requires that these observations must leave the social learner
indifferent between choosing A and choosing B. Now, imagine that later the
social learner encounters

{
Ā
}
. If she was in situation i), her total sample

would be
{
AĀB

}
, making her choose B [120]. If she was in situation ii), her

total sample would be
{
ĀĀB̄

}
, making her choose A [120] (see also table

2.2). So starting from the same assumption, indifference between A and
B, the same additional information,

{
Ā
}
, will in the first situation tilt the

choice towards A and in the second situation towards B. According to one’s
standpoint, this may or may not appear to be irrational behavior. Now it
is of course possible that empirically, humans use the same evidence in one
context to justify X and in another context to justify not-X but it is hard
to deny that people acting according to McElreath et al.’s PBSL strategy
would appear to be somewhat unreasonable.
There are findings in the psychological literature showing that subjects

can respond in opposing fashions after being exposed to the same evidence.
A famous study by Lord et al. [115] began by separating subjects into those
who favor and those who disapprove of capital punishment. Then the sub-
jects were exposed to two studies, one supporting the hypothesis that capital
punishment has a deterrent effect, one refuting it. Interestingly, exposure to
these studies had a polarizing effect. Those in favor of capital punishment
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were even more in favor after the exposure, whereas those against capital
punishment opposed it even more afterwards. Empirically, the same evidence
can be used to rationalize X, as well as not-X.
Analogously, the observation of

{
Ā
}
carries ambiguous information. On

the one hand, if another individual chose A, this individual presumably had
a good reason to; on the other hand, if A did not lead to success, maybe
B is really the better option. This is similar to the ambiguous evidence
provided by Lord et al. However, a major difference to our example is that
in their study, subjects were already biased towards one of the two opinions
beforehand, making their case an example of motivated reasoning [107]. For
social learners, the observation of

{
Ā
}

cannot be used to support a pre-
established opinion, as there is no reason to favor A or B after observing
just{AB} or

{
ĀB̄

}
. Motivated reasoning cannot explain the differential

outcomes.
Another case of inconsistency is the violation of the sure thing principle

observed by Shafir and Tversky [153]. In one example, a game was proposed
were a coin flip that shows heads results in the subject gaining $200 and
tails results in him or her losing $100. Most subjects would prefer to only
play the game once instead of twice or more. However, after they have won
once or have lost once, most subjects were willing to take a second gamble.
This is inconsistent because if both outcomes make the subject prefer to
play a second game, they should also prefer a second game before they know
the outcome. Different observations lead to the same outcome, even though
different outcomes should be expected.
In our case, the same observation leads to different outcomes, even though

the same outcome should be expected. The cases are therefore similar but
reversed. This indicates that we should not dismiss the possibility that real
subjects behave in such an inconsistent manner when using social learning,
but we are not aware of any finding that would directly support or refute
our example. Still, since we know that PBSL McElreath shows very high
performance, it is interesting to contemplate that a behavior that appears
to be irrational from an axiomatic point of view can prove to be favored by
natural selection.

2.4.5 Undervaluation of the advantages of conformist bias
One assumption we made in this chapter was that we have homogeneous
populations, meaning each strategy only interacts with copies of itself. This
shortcoming may be especially detrimental for strategies with high confor-
mist bias. For example, pure conformists (corresponding to PBSL with
weights [+X/+ X]) only performed at chance level in this chapter. The rea-
son is that they will completely converge towards only choosing A or only
choosing B. Afterwards, they will never switch again, regardless of how the
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environment behaves, since they simply imitate each other’s choices. Given
that each option is better than the other 50% of the time, their performance
is thus 50%. Similarly, other strategies with a high conformist bias could be
at a disadvantage when using the approach of this chapter.
In this light, it is not surprising that conformists and similar strate-

gies were found to perform poorly compared to other strategies. If there
were, however, other strategies to be imitated in the population, the picture
could change dramatically. Although conformists, who only use frequency-
information, could never overtake a whole population, they could well attain
a high equilibrium frequency. To address this possibility, we will use evolu-
tionary simulations containing mixed populations in the next chapter.
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2 Payoff-biased social learning

Figure 2.14: Conformist bias of different strategies. For all panels, the probability
to choose A is shown as a function of the frequency of A choices in the population.
A) Pure conformists with sample size 3 (solid line), sample size 7 (dashed line), and
“perfect” conformists (dotted line). Random choice would result in preserving the
A choice frequency in the population, as shown as the dashed gray line. B) PBSL
with weights [4/− 1] and pA = 0.8, pB = 0.7 (solid line) or pA = 0.3, pB = 0.2
(dashed line). C) PBSL McElreath with pA = 0.2, pB = 0.1 (solid line) or pA = 0.6,
pB = 0.4 (dashed line). D) Definition of conformist bias. Conformist bias is greater
the more a strategy tends to decrease its probability to choose A when A is chosen
by the minority of the population and the more it tends to increase its probability to
choose A when A is chosen by the majority of the population. The strategy shown
in this example generally tends to act according to conformity (dark gray area) but
will sometimes increase its probability to choose A even if A is the minority option
(light gray area).
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Figure 2.17: Performance of different PBSL strategies as a function of conformist
bias. Conformist bias was calculated using the joint distribution of pA and pB ,
with their means set to 0.25, 0.5, and 0.75. Left panel: Scoring-type PBSL with
positive weight on successes; right panel: averaging-type PBSL. Across conditions
and regardless of the specific strategy, performance first increases as a function of
conformist bias. After a certain point, for a conformist bias slightly below 0, perfor-
mance suddenly drops. There thus appears to be an optimal degree of conformist
bias.
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Figure 2.20: Comparison of the three strategies that have shown the most con-
sistently high performance: scoring-type PBSL with weights of [1/0], scoring-type
PBSL with weights [4/− 1], and PBSL McElreath (all with sample size 3 except if
indicated otherwise). Conditions are as indicated, with all else held equal.
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Figure 2.21: Probability to choose A as a function of the frequency of A choices
in the population. It is assumed that pA = 0.55 and pB = 0.45. Left panel: PBSL
with weights [4/− 1] and sample size 3 (dashed line) or sample size 7 (solid line).
Right panel: PBSL with with weights [1/0] and sample size 3 (dashed line) or
sample size 7 (solid line). The bissectrix (dashed gray line) is shown for reference.
PBSL with weights [4/− 1] and sample size 3 converges towards mostly choosing the
better option, though a large minority will choose the worse option. With sample 7,
however, the strategy will converge almost completely towards choosing the better
option. PBSL with weights [1/0] and sample size 3 shows reasonable behavior and
converges overwhelmingly towards the better option. With sample size 3, however,
the strategy shows strongly conformist behavior and may get stuck choosing the
worse option.

Figure 2.22: Probability to choose A as a function of the frequency of A choices
in the population. It is assumed that pA = 0.6 and pB = 0.4. Left panel: PBSL
McElreath with sample size 3 (dashed line) and sample size 6 (solid line). Right
panel: PBSL with payoff-conformism trade-off with sample size 3 (dashed line) and
sample size 6 (solid line). The bissectrix (dashed gray line) is shown for reference.
PBSL McElreath with sample size 3 show reasonable behavior that suggests com-
plete convergence towards the better option. With sample size 6, anti-conformist
behavior occurs, meaning incomplete convergence towards the better option. With
payoff-conformism trade-off, the anti-conformist behavior disappears for a sample
size of 6; the strategy instead converges completely towards the better option, even
faster than it would with sample size 3.
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3 Rogers’ paradox and informational
breakdown

3.1 Introduction
3.1.1 Rogers’ paradox
Social learning has been invoked to explain the adaptedness of human culture
[22, 144]. For example, assume that there are two prey animals, say antelopes
and wildebeests, that yield different expected values when hunting them. If
person 1 is an individual learner, she will try hunting both antelopes and
wildebeests and will eventually learn which prey is more profitable, albeit at
a cost. Assume that antelope is the better choice. Person 2, a social learner,
observes person 1’s behavior and infers that antelopes are more profitable to
prey on. If person 1 had opted for wildebeests, person 2 would have inferred
that wildebeests are more profitable. So person 2 gained information about
the prey animals without ever trying for herself.
If antelopes were always more profitable to hunt, one would expect natural

selection to “teach” humans to better hunt antelopes. But if the environ-
ment is variable (in space or time), profitability may change. For example,
environmental conditions might have favored wildebeest growth in recent
years, increasing their abundance and thus making their hunt more prof-
itable. Or excessive hunting might have depleted the pool of available an-
telopes, making them harder to find. The environment thus being variable,
natural selection could be too slow to adapt to the relentless changes. One
would thus be better off if one could learn, or if one could observe others in
order to learn from their mistakes and save the costs of trying. Gaining the
benefit while saving the cost should lead to a net profit.
So it seems that in varying environments, the existence of social learning

makes it possible to avoid the costs of individual learning, improving the lot
of the population as a whole. However, Rogers showed [146] that this rea-
soning is fallacious. Remember Rogers’ model as we presented it in the first
chapter. The fitness of individual learners was constant for all frequencies
x of social learners. Social learners, however, did well when rare but worse
than individual learners when too frequent. There was thus a certain fre-
quency x∗ at which social learners and individual learners did equally well,
the equilibrium frequency of social learners. Yet, the fitness of individual
learners being constant, the fitness of social learners at x = x∗ is exactly
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the same as the fitness of a population consisting only of individual learners.
The population is not better off after the arrival of social learning. Others
have shown that Rogers’ results are quite robust [23].
In equilibrium, the mean fitness of the population is therefore not higher

than initially, in absence of social learners. The curious conclusion that
Rogers and others drew from his findings is that overall, simple forms of
social learning do not lead to a higher adaptedness of the population. Yet
it is plainly obvious that socially learned traits are beneficial for humans,
for instance allowing us to survive in almost all terrestrial habitats on earth
[26, 144]. The conclusion thus has to be that there is a catch, a possibility
for social learning to improve adaptedness after all.

3.1.2 Proposed solutions to Rogers’ paradox
There are several possible ways out of Rogers’ paradox. Intuitively, they
are easy to understand. In Rogers’ original model, the mean fitness of the
population transiently increases during the invasion of social learners. In
equilibrium, social learning is, however, used so often that it cancels out the
benefit of its use. It is clear that if social learning were used less often, the
average fitness must be greater than that of a population of pure individual
learners. To stop social learning from becoming more common, one could in-
troduce a strategy that uses a fixed mixture of social and individual learning,
involving less social learning on average than in Rogers’ equilibrium.
Strategies that mix social and individual learning have been proposed in

the past. Boyd and Richerson [23] and Kameda and Nakanishi [101] proposed
strategies that are based on this idea. The proposed strategies rely on the
information derived from learning individually only if this information is very
clear with regard to which option is better. If the own experience leaves one
indecisive, one imitates a random individual instead.
Enquist and coworkers [50] considered a “critical social learning” stra-

tegy that learns socially first but then learns individually if social learning
proved unsatisfying. We will study a similar strategy. The reverse strategy,
“conditional social learning” [50, 143], was also proposed; it consists of using
individual learning first but switching to social learning if individual learning
proves unsatisfying.
We are interested in whether the presented strategies solve Rogers’ para-

dox in the context of our model. In our model, there are no individual
learning costs, so random choice is not a particularly successful social lear-
ning strategies. We therefore changed the presented models so that when
they employ social learning, they actually use conformism, a social learning
strategy that we know is capable of invading a population of individual lear-
ners even in absence of learning costs. This alteration should, however, keep
the spirit of the strategies alive and if it affects the performance, it does so in
a positive way. We thus make the strategies even better than before, giving
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them a better shot at proving that they can resolve Rogers’ paradox.

3.1.3 Informational breakdown
Rogers’ paradox shows that the existence of social learning by itself does not
help explain why culture is adaptive. Social learning would evolve, since as
long as there are but few social learners, it is individually beneficial to learn
socially. But in equilibrium, everybody is back to square one. So at least,
one could say, social learning does not hurt the population. However, one
may ask whether there are a social learning strategies that would make the
population worse off.
Earlier, we explained that although the mean population fitness in equi-

librium is the same as the fitness of individual learners in Rogers’ model, this
was not true for performance. Performance, measured as the probability of
choosing the better option, was actually worse in equilibrium than before
the invasion social learners. In contrast, one would expect social learning to
produce better performance, and not to only save costs. We could show in
the previous chapter that there were indeed social learning strategies that
have the potential of vastly improving performance. This chapter will test
whether this finding remains true in an evolutionary setting.
A further possibility for the population to be worse off through social lear-

ning would be if social learners became fixed. Assuming that these social
learners cannot learn about the environment without the help of other stra-
tegies, they would only perform at chance level. Such a population consisting
only of social learners would thus be worse off than one consisting solely of
individual learners. We call this phenomenon informational breakdown be-
cause it entails that the decisions of all individuals in the population become
self-referential, no information is drawn from the environment.
Some works find informational breakdown. Rendell et al. [143] found in

their model that when there is spatial structure, social learning can become
fixed. The reason for the extinction of individual learners is that at the
borders where they interact with social learners, social learners are better
off and thus proliferate, even though social learners that are surrounded
only by social learners are worse off. For social learning to sweep through
the population, the authors needed to assume specific spatial structures that
are fixed (no mixing) and the cost of learning individually to be very high
(greater than 30% of the potential benefit). Moreover, when further learning
strategies were introduced, vanishing of individual learning was prevented.
Therefore, their model shows that informational breakdown only occurs in
very specific conditions.
Whitehead and Richerson [177] showed that social learning can become

fixed when the environment varies according to red noise. In that context,
red noise means that there can be long periods of environmental stability,
resulting in gradual loss of costly individual learning. In their simulations,

109



3 Rogers’ paradox and informational breakdown

social learners became fixed in 84 of 100 runs with high individual learning
costs. But sometimes, the environment would suddenly change, rendering
the behavior of social learners maladaptive and thus leading to informational
breakdown. However, again, the authors needed to assume high exogenous
costs of learning individually. Introducing a richer set of social learning stra-
tegies prevented informational breakdown in most simulation runs. There-
fore, informational breakdown again was but a very unlikely occurrence.
Informational breakdown could thus be found, but only under very re-

strictive conditions. These findings may lead to the conclusion that it should
not be expected that a population becomes detached from the environment.
However, there might be circumstances under which the equilibrium fre-
quency of social learners can become very high. In finite populations, ran-
dom drift could then lead to the fixation of those social learners, who sud-
denly find themselves only imitating other social learners. At this point,
informational breakdown would follow.
How can such a high equilibrium frequency of social learners be attained?

In Rogers’ model, by increasing the cost of learning individually to almost
match the benefit, the equilibrium frequency of social learners can be pushed
close to 1. One could object, however, that such high costs of learning indi-
vidually are implausible, since they would make the evolution of individual
learning very unlikely in the first place (in contrast to just guessing). But we
will show that certain social learning strategies are capable of attaining very
high equilibrium frequencies without requiring learning costs at all. More so,
our findings hold under very general conditions. Informational breakdown is
thus not just a fringe case that one should never expect to occur but a real
possibility.
So not only has it been shown that social learning is not beneficial, it

is even possible that it can be detrimental for a population. This finding
places an even higher burden on the hypothesis that social learning increases
adaptedness of populations. An additional goal of this chapter will thus be
to find out when informational breakdown occurs and when not.

3.1.4 Outline of this chapter
This chapter has three principal goals. First we are interested in whether
the solutions to Rogers’ paradox proposed in the literature do indeed solve
Rogers’ paradox. We will argue that they cannot. The reasons are 1) that in
equilibrium, the strategies are not even present in the population when com-
peting with other social learning strategies, and 2) that even if those other
strategies were excluded, simple social learning strategies such as confor-
mism severely hamper the proposed strategies’ performance in equilibrium.
The previous works did not test for these possibilities, which is why the
limitations did not become manifest.
Second, we turn to strategies that in the context of our model may indeed
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solve Rogers’ paradox. We show that payoff-biased social learning (PBSL),
a type of social learning that we detailed in the previous chapter, offers some
strategies that indeed lead to considerably better performance. Furthermore,
these strategies should be expected to dominate the population in equilib-
rium, meaning that they are more plausible candidates for solving Rogers’
paradox. They are, however, also cognitively more demanding, which is why
we scrutinize the literature for evidence of payoff-biased social learning.
Third, we have to analyze the possibility of informational breakdown. We

will show that under very general conditions, social learning strategies will
become fixed in the population that are not, of themselves, capable of lear-
ning from the environment. This fixation is possible because the equilibrium
frequency of those social learners is so high that random drift will fix them in
a finite population. If that happens, the population’s behavior will become
completely detached from reality and performance will drop to chance level.
We will discuss the implications of this finding.

3.2 Model description
3.2.1 Agent-based modeling
In the previous chapter, we followed a more or less classical modeling ap-
proach in that we calculated the aggregate behavior of different strategies,
given how they behaved in the last period. Then we placed these strategies
in a generated environment and simulated their behavior. In this chapter,
however, we will choose a different approach to model the same task. Instead
of modeling strategies in an aggregate manner, we will employ what is called
agent-based modeling.
Agent-based modeling treats each individual of the population separately.

The strategy of an individual is formulated as a behavioral rule. For example,
instead of defining that a conformist adopts A with probability (3− 2 · x)·x2,
with x being the proportion of A choices in the population, we define a
conformist as an individual who obeys the rule, “observe three individuals
and choose A if two or more of them chose A”. At the end of the day, the
two approaches should lead to the same result, but there are advantages and
disadvantages of using either of the modeling approaches:

• Advantage of using aggregate modeling: Whole groups of individuals
are modeled, instead of simulating each individual separately. This
process takes less computational time – simulations of aggregate mod-
els are roughly two orders of magnitude faster than those of agent-
based models with a population size of 10,000. Aggregate modeling
thereby allows us to test different parameter values more systemati-
cally, which was our main concern in the previous chapter. Also, being
closer to previous models, the obtained results can be compared more
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easily.

• Advantage of using agent-based modeling: It is very hard to include
an individual’s history into aggregate models. Learning rules that are
path-dependent can therefore not be considered [19]. Using agent-
based models allows us to implement these path-dependent strategies.
The continuity of aggregate models may also be problematic. For
instance, the fraction of individuals who choose A will never become
1 but only converge arbitrarily close to 1. In agent-based models,
however, it can well happen that all individuals choose A in the same
period. As human effective population sizes were, historically, rather
small (≈ 10, 000 [83, 167]), agent-based models may actually capture
reality more accurately.

3.2.2 Individual learning, conformism, and mixed forms
By use of agent-based models, we can keep track of the individual histories of
each agent in the population. This allows us to incorporate several strategies
that could not be modeled before. Additionally, we will include strategies
we have already encountered earlier.

Reinforcement learning: In the first chapter, we described that we model
individual learners as using reinforcement learning with exponential
discounting. Agent-based modeling allows for each individual’s path
to matter, so that they can make choices based on their private ex-
perience. Although very simplistic forms of individual learning like
win-stay lose-shift (reinforcement learning without memory) can eas-
ily be modeled in the aggregate, this is much harder for reinforcement
learning with memory.

Conformism: Conformism is one of the most studied social learning stra-
tegies and there are good reasons why one should expect conformism
to be used (see e.g. [21, 22, 86]). We found in the first chapter that
conformists can invade a population of individual learners and attain
a high equilibrium frequency, especially when they sample few (3) in-
dividuals. In our model, conformism is defined as sampling a group
of individuals and always choosing the option that is most common
among these individuals.

Of course, we also want to test how “critical social learning” [50] and “condi-
tional social learning” [50, 143] perform. One criticism that has been leveled
against these strategies (Robert Boyd, personal communication) is addressed
here. The criticism is that the way these strategies were conceptualized, they
inherently have an edge over just individual learning or social learning. A
critical social learner was defined as to first acquire a trait through social
learning, and if this trait is unsatisfying, to learn individually. This implies
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that the critical social learner has the ability to assess the acquired trait and
relearn it if the trait does not yield a good payoff. By definition, this makes
the critical social learner better than a pure social learner, who has to stick
with the first acquired choice. Simple individual and social learners are not
granted the possibility to re-evaluate, even though it would be a possibility.
An individual learner, e.g., could first learn the trait individually and if she
does not succeed in acquiring the good trait try to learn individually again.
If the possibility to re-evaluate were granted to other strategies, it would

not be true anymore that critical social learners are always superior to social
learners. However, the authors do not allow for this possibility. The reason
that critical social learning is superior in their model is therefore not that it
combines first social than individual learning, but that it learns twice, while
social learners learn only once.
In our model, we prevent this unequal battle. This is possible because our

model consists of making several decisions during an individual’s lifetime.
Therefore, it is possible to incorporate a critical social learning strategy that
learns socially in period t and then, if unsatisfied, learns individually in
period t + 1, instead of learning twice in period t. This way, we avoid the
unfair advantage of some strategies being allowed to learn twice each round
while others could only learn once.
Furthermore, we changed the mode of social learning of critical and con-

ditional social learners. In the original works, they used random copying
when learning socially. In the context of our model, we know, however, that
random copying is not a good learning strategy. The reason is that ran-
dom copying results in lagging behind individual learners while the choice
frequency in the population is preserved. Since there are no learning costs
to be saved, there is no advantage of copying randomly. For this reason,
we substituted conformism for random copying. We know that conformism,
if not used too frequently, is capable of leading to very high performance,
so mixing it with individual learning should result in reasonable learning
strategies.
Since we changed how critical and conditional social learning work com-

pared to the original papers, we chose to rename them. Furthermore, “crit-
ical” and “conditional” do not transport the message what exactly these
strategies do; in fact, the names could be reversed and would fit equally
well. We thus prefer names that describe the behavioral rule of the strate-
gies more precisely. In our model, we call an individual who uses individual
learning by default but switches to conformism if unsatisfied “Opportunis-
tic Conformist” (OC). In contrast, an individual who uses conformism by
default but switches to individual learning if unsatisfied is called “Oppor-
tunistic Individual Learner” (OIL).

Opportunistic Conformism (OC): This strategy consists of individual lear-
ning by default. If in period t, the chosen option yields a success, the
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strategy will continue to use individual learning. If in period t, the
chosen option does not yield a success, the strategy uses conformism
in period t + 1. Note that the propensities for A and B, on which a
strategy relies for individual learning, are updated even if conformism
is used. This strategy is similar to “critical social learning” [50].

Opportunistic Individual Learning (OIL): This strategy consists of using
conformism by default. If in period t, the chosen option yields a suc-
cess, the strategy will continue to conform. If in period t, the chosen
option does not yield a success, the strategy uses individual learning
in period t+ 1. Note that the propensities are updated even if confor-
mism is used. This strategy is similar to “conditional social learning”
[143].

In addition to these two strategies, we also want to incorporate another
strategy proposed in earlier works [23, 101]. This strategy consists of using
individual learning only when it is certain about which option is superior
and to use social learning otherwise. In our model, individual learners have
propensities to choose A and B. If these propensities are close, both options
are equally reinforced, meaning that the individual is uncertain about which
option is the better one. If one option has a much higher propensity than
the other, this option has proven more successful in the individual’s past.
Therefore, using the difference in propensities as indicator of certainty is
most natural in the context of our model. Again, we choose conformism to
play the part of social learning. Because there is no consensus on how to
call such a strategy, we use a name that best describes the behavioral rule,
“In Doubt, Conform” (IDC).

In Doubt, Conform (IDC): This strategy consists of individual learning by
default. If, however, the individual is in doubt about which option is
superior, she will rely on conformism instead. Uncertainty is measured
as the difference between the propensities of the two options. If the
difference is less than 2, an individual is considered to be uncertain.
Note that the propensities are updated even if conformism is used. This
strategy corresponds to strategies studied in earlier works [23, 101].

3.2.3 Imitate The Wealthiest
Since we use agent-based models, we can keep track of individual character-
istics of the members of the population. For instance, we know at each point
in time how often an individual has been successful in the past. An argument
can be made that a social learner should preferentially imitate those who are
especially successful. We therefore propose a strategy that, among the sam-
pled population, imitates the individual who has had the highest aggregate
number of successes so far (in case of a tie, a random individual among the
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tied individuals is imitated). As the aggregate number of successes could be
interpreted as the “wealth” of an individual, we call this strategy “Imitate
The Wealthiest” (ITW). In our model, the number of successes adds to the
fitness of the individual, so that in effect, the fittest individual is imitated.
In the Pleistocene, this could be e.g. the individual with the most children,
whereas in modern times, it could be the individual with the biggest real
estate.
Earlier works have studied strategies called “imitate the best” [2, 96, 152,

173] but this strategy corresponds more closely to payoff-biased social lear-
ning as we defined it, since only the last period’s payoff and not the total
payoff is used as criterion. ITW is instead more akin to prestige-biased social
learning [87], but note that our model does not include idiosyncratic differ-
ences except for learning strategies and personal histories of decisions and
outcomes. In our model, prestige can therefore not depend on an individuals
intelligence, hunting skills, etc.
Imitate The Wealthiest (ITW): ITW consists of adopting in each period

the last period’s choice of the individual who, among the sampled
individuals, had the highest aggregate number of successes so far. This
individual is the “wealthiest”, hence the name of the strategy. It can
be modified so that one does not imitate if one has a higher fitness than
all sampled individuals (making it more similar to previously studied
strategies [151, 152]). In preliminary tests, this modification did not
alter the results, though, so we did not implement it. Moreover, these
tests showed that ITW fares better the more individuals are sampled.

3.2.4 Payoff-biased social learning
In the previous chapter, we studied in detail two classes of payoff-biased
social learning (PBSL), scoring-type PBSL and averaging-type PBSL. In
short, the former consists of having two scores, one for A and one for B, which
are updated according to how successful the options were in the observed
sample, then choosing the option with the higher score. Conformism is a
special case of scoring-type PBSL. The second class, averaging-type PBSL,
consists of averaging the payoff of A and of B, and choosing the option with
the highest average payoff. Mixed in is some degree of conformism.
Of all the strategies we tested, four promised to be exceptionally good.

Of the scoring-type PBSL strategies, we found those who weighted successes
four times as much as failures and counted the latter as negative (short:
weights [4/− 1]) to perform quite well, especially for higher sample sizes. We
therefore include this strategy in our tests. Furthermore, scoring-type PBSL
that completely ignores failures (short: weights [1/0] or, more generally
[+X/0]) were also quite successful, especially for a sample size of 3.
Of the averaging-type PBSL strategies, PBSL McElreath [120] with sam-

ple size 3 performed on a high level. This strategy uses conformism as a
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tie-breaker – if both options have the same average payoff, the more com-
mon option is chosen. In addition, we found the averaging-type PBSL with
payoff-conformism trade-off and sample size 6 to be very successful. For this
strategy, conformism can sometimes override the choice suggested by the
payoff average, hence the trade-off. These two strategies were also included
in our tests. For more information on them, refer to the previous chapter.

3.2.5 General points
When social learning occurs, one has to decide how many individuals are
sampled at a time by a social learner. Often, we will find that the more in-
dividuals are sampled, the better informed the decision of the social learner
will be. Therefore, we have to put a limit on this number, a limit which
is more or less arbitrary. As previously, we choose “the magical number 7”
[128] for this purpose. However, we also found that some strategies are better
off with lower sample sizes. For instance, conformists acquired a higher equi-
librium frequency for sample size 3; scoring-type PBSL with weights [1/0],
as well as PBSL McElreath and PBSL with payoff-conformism trade-off had
better performance for lower sample sizes too (3, 3, and 6, respectively). In
these cases, we used the optimal sample sizes instead of 7. As Opportunistic
Conformists, Opportunistic Individual Learners, and In Doubt, Conform all
make use of conformism, their sample sizes are also 3. That means that the
only strategies with a sample size of 7 are scoring-type PBSL with weights
[4/− 1] and ITW.
We included three strategies that rely sometimes on individual and some-

times on social learning, namely Opportunistic Conformism, Opportunistic
Individual Learning, and In Doubt, Conform. One may ask why these mix-
ing strategies always combine individual learning with conformism and not
with ITW or PBSL. The reason is that we found that conformists can tran-
siently lead to a very strong improvement of mean population performance.
In equilibrium, of course, Rogers’ paradox manifests and conformists perform
as good or bad as individual learners. But as they show a high potential,
it is reasonable to make them part of the mixing strategies. Moreover, con-
formism is the simplest form of social learning that we study in this chapter
and thus, a priori, most likely to be found in nature. Strategies that mix
other types of social learning could be studied in later works.
Strategies can be categorized along different dimensions. The most im-

portant category is whether a strategy is autonomous or dependent. An
autonomous strategy can perform above chance level even in the absence of
other strategies in the population because it has a direct way to learn about
the environment. This can be tested in the following way: Assuming that all
members of the population were to choose A, is there a real chance that they
will eventually move to B when B becomes the better choice? If there is,
the strategy counts as autonomous but otherwise, it is dependent on other
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strategies. For example, individual learners cannot become stuck with one
option; if this option results in too many negative outcomes, they will decide
to choose the other option.
In contrast, imagine that there were only conformists in the population and

that they all choose the same option. As there are no dissenting role models
that could convince the conformists to switch, conformists would never aban-
don their choice. Individual learners are thus autonomous and conformists
dependent; all other strategies can be characterized according to this char-
acteristic as well. Of course, there are strategies that are autonomous but
do not incorporate environmental information, such as choosing randomly.
But such strategies are not studied here and are thus of no concern.

3.2.6 Evolution
We model populations with a size of 10,000, which is thought to correspond
to the effective population size of humans during the last million years or
so [83, 167]. Generations are non-overlapping, genetics haploid, and repro-
duction non-sexual (there is only one locus). Updating the strategies’ fre-
quencies is modeled by the Fisher-Wright process. That means, after each
generation, parents contribute a number of offspring equal to their fitness
to the offspring pool. Of this pool, 10,000 individuals are drawn at random
to form the next generation. This way, population size is held constant and
individuals with higher fitness on average contribute more offspring to the
next generation.
pA and pB vary continuously over time. This means, after a generation

has ended, the last value of pA and pB in that generation constitutes the
first value of the subsequent generation. In the very first period, pA and pB
equal 0.5. Analogously, offspring inherit their very first choice from their
parent; this is the only form of vertical cultural transmission in our model.
In the very first period, individuals start with a random choice. Offspring
genetically inherit the strategy from their parent, mutations do not occur.

3.3 Results
3.3.1 Behavior of the strategies
3.3.1.1 Opportunistic conformists and opportunistic individual learners

We introduced three strategies in this chapter that make use of a mix of
individual learning and conformism. An opportunistic conformist (OC) uses
individual learning by default and switches to conformism when her choice
did not yield success; an opportunistic individual learner (OIL) does the re-
verse. As both rely on some mixing of individual learning and conformism,
it should be expected that their behavior is also a mixture of both learning
strategies. In figure 3.1, we see on the left panel the behavior of individual
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Figure 3.1: Left: Proportion of A choices made by the learning strategies, mea-
sured on the left y-axis, and the environment in the form of pA − pB (solid line),
measured on the right y-axis, over time. Left panel: Individual learners (©) and
conformists (•) in a population consisting of 50% of both. Individual learners match,
conformists overmatch probabilities. Right panel: OC (�) and OIL (×), simulated
separately but superimposed for comparison. Their behavior is a mixture of indi-
vidual learning and conformism. OC overmatches more strongly than OIL.

learners (©) and conformists (•) in a population consisting of 50% of both
strategies. As we already know, individual learners are more conservative,
whereas conformists strongly overmatch. Remember that overmatching gen-
erally is good, as it allows more individuals to choose the better option, but
often comes at the cost of lagging behind environmental changes, which is
of course bad for performance.
On the right panel, we see the behavior of OC (�) and OIL (×’s), both

simulated separately and using the same environment as in the left panel. As
expected their behaviors are a mixture of the behavior of individual learners
and conformists. OC overmatches more strongly than OIL.

3.3.1.2 In Doubt, Conform

The third strategy that relies on mixing individual learning and conformism
uses the former when it is certain about which option is the better one and
the latter otherwise. We called it In Doubt, Conform (IDC). As has been
argued Boyd and Richerson [23], the more certain an individual needs to be
about her choice (the higher the difference in propensities), the more often
she will be correct when she actually uses individual learning.
We tested whether this holds in our model by varying the threshold dif-

ference in propensities. Pure individual learning produced a performance of
≈ 59.0%; if the difference in propensities has to be 1 or more, individual
learning results in a performance of ≈ 61.5%, if it has to be 2 or more, per-
formance is ≈ 64.3%, and if it has to be 3 or more, performance is ≈ 68.8%
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(likewise, performance is especially low when the difference in propensities
is low). So performance is indeed higher for higher thresholds. At the same
time, the higher the requirements for certainty are, the less likely an indi-
vidual is to use individual learning in the first place. For a difference in
propensities of 1, individual learning is used ≈ 64% of the periods, for a
difference of 2 ≈ 38% of the periods, and for a difference of 3 ≈ 20% of the
periods. So there is a trade-off here – the more certain an individual wants
to be before relying on her own experience, the more likely it is that she
actually chooses the better option, but the less often she will actually rely
on her experience.
From this, it becomes clear that the required difference in propensities

should neither be too small nor too large. If it is too small, IDC would use
individual learning too often, even if uncertain, thus lowering performance;
if it is too large, it would use individual learning too rarely and rely too
much on conformism, causing the known troubles. In figure 3.2, we show
the behavior of IDC for a given environment and for different levels of re-
quired certainty. If propensities have only to differ by 1 (•), the strategy
mostly relies on individual learning, as can be seen by the strong tendency
to closely match the environment. If propensities have to differ by 2 (©),
there is stronger overmatching, as conformism becomes more ubiquitous. If
propensities have to differ by 3 (�), there is strong uniformity in behavior,
which is expected if conformism is the main form of learning. The more
conformism is used, the stronger a strategy overmatches (which is good) but
the slower it reacts to environmental changes (which is bad).
In preliminary tests, we found that a threshold of approximately 2 results

in the best performance of IDC if competing in a homogeneous population.
Therefore, we use this threshold for our analysis in this chapter. The thresh-
old generates a behavior that is very close to the behavior of opportunistic
conformists (compare figures 3.1 and 3.2). This is because by construction,
both strategies become more likely to rely on conformism after a failure.

3.3.1.3 Imitate The Wealthiest

We introduced a new strategy in this chapter that we called Imitate The
Wealthiest (ITW). This strategy samples 7 individuals and imitates the
choice of the individual with the highest aggregate amount of successes so
far. This strategy is in some way very different from the other social learning
strategies, especially conformists and other scoring-type payoff-biased social
learners.
To understand this, we have to distinguish between strategies that use a

compensatory decision rule and strategies that use a noncompensatory deci-
sion rule (these terms are borrowed from [67]). “Compensatory” means that
all the gathered bits of information have approximately the same weight
in shaping the final decision, whereas “noncompensatory” means that some
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Figure 3.2: Proportion of A choices made by In Doubt, Conform (IDC, measured
on the left y-axis) over time as a function of the required absolute difference in
propensities. The strategies were simulated separately in a homogeneous popula-
tion, the results are overlaid for comparison. The environment (solid line) is shown
as pA − pB , measured on the right y-axis. For a required difference of 1 (•), the
strategy uses individual learning even if fairly uncertain about which option is bet-
ter. For a required difference of 3 (�), the strategy mostly uses conformism and
individual learning only when very certain. A required difference of 2 (©) presents
a compromise between the two more extreme strategies. It can be observed that a
low required difference leads to more “conservative” behavior (probability match-
ing) associated with individual learning, whereas a high required difference leads to
more extreme and uniform behavior associated with conformism.
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part of the gathered information counts much more than the rest. For ex-
ample, a conformist counts all the sampled individuals who choose A and
compares them with all the individuals who choose B; all observations have
the same weight in this calculation. Conformism is thus a compensatory
decision rule. ITW is different. If the wealthiest among the sampled indi-
viduals chooses B, it does not matter what all the other sampled individuals
do, even if they all choose A; although they are superior in numbers, they
cannot “compensate” for the one dissenter. The difference between compen-
satory and noncompensatory social learning strategies is crucial, as we will
see.
One implication of using a compensatory decision rule is that small differ-

ences in the sample are very unlikely to cause large differences in behavior.
Therefore, it is also very unlikely that the presence of some individuals with
a different strategy can affect the aggregate behavior of a strategy with a
compensatory decision rule. This is shown in figure 3.3 using the example
of conformists and ITW. On the left panel, we show the behavior of con-
formists (×) when either competing with 2% individual learners or when the
whole population uses conformism (�). As is readily seen, regardless of the
presence of individual learners, conformists behave the same. Compare this
with the behavior of ITW shown in the right panel. For ITW, it makes all
the difference whether 2% individual learners are present (•) or not (©); in
the first case, they react adaptively to the environment, in the second case
they do not. Since for ITW, even the voice of a single sampled individual
can completely reverse a decision, small minorities in the population have
the potential to shift the behavior of the whole population.

3.3.1.4 Payoff-biased social learning

Last chapter, we encountered two types of payoff-biased social learning
strategies. Those PBSL strategies were either of the scoring-type or the
averaging-type. Among all the possibilities, we encountered some strategies
that performed especially well. As those strategies were already analyzed
in detail in the last chapter, we will not provide too much further analysis
here.
A point of interest we have not discussed yet is whether the strategies are

compensatory or not. Scoring-type PBSL consists of adding up the scores
in favor or against options A and B, and then choosing the option with the
higher score. If two individuals using scoring-type PBSL observe the same
sample safe for one individual who behaves differently, it is thus very likely
that the scores are similar and that the decisions are the same. Scoring-type
PBSL is therefore a compensatory decision rule. (As we just saw, confor-
mism, which is a special case of scoring-type PBSL, is also compensatory).
This is illustrated in figure 3.4, where the behavior of PBSL with weights
[4/− 1] is shown once in the presence (×) and once in the absence (�) of 2%
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Figure 3.3: Left: Proportion of A choices (measured on the left y-axis) made by
conformists if they make up 98% of the population (×) and the rest are individual
learners (not shown), or if they make up 100% of the population (�). Right:
Proportion of A choices made by Imitate The Wealthiest (ITW) if they make up
98% of the population (•) and the rest are individual learners (not shown), or if
they make up 100% of the population (©). The environment (solid line) is shown
as pA−pB , measured on the right y-axis. Conformism is compensatory, resulting in
the presence of 2% individual learners having as good as no influence on aggregate
behavior. ITW, in contrast, is noncompensatory, leading to a huge difference in
aggregate behavior in the presence of only 2% individual learners.

individual learners. For almost all periods, the presence of individual lear-
ners makes hardly any difference, although it must be noted that between
periods 50 and 100, it does make a difference. Scoring-type PBSL is thus
very compensatory but not completely insensitive to small changes.
Is averaging-type PBSL also compensatory? One simple example may

elucidate this question. If an individual using such a strategy observes 6
individuals who chose A, 3 of which were successful, and one individual who
chose B, it makes a difference whether this last individual was successful or
not. If she was successful, B has a higher average score and is the choice that
follows, and if she was unsuccessful, A has the higher average score and is
the choice that follows. For scoring-type PBSL, whether with weights [1/0]
or [4/− 1], the lone B chooser would not make a difference. In contrast to
scoring-type PBSL, averaging-type PBSL is therefore noncompensatory.
In the right panel of figure 3.4, we illustrate this. There, the behavior of

PBSL with payoff-conformism trade-off is shown once in presence (•) and
once in absence (©) of 2% individual learners. In absence, the social learning
strategy will reach 100% A choices shortly after period 50 and never move
away thereafter. The presence of 2% individual learners convinces them,
however, to abandon A and to predominantly choose B some periods later.
A few individual learners can therefore make a huge difference, showing that
averaging-type PBSL is noncompensatory.
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Figure 3.4: Left: Proportion of A choices (measured on the left y-axis) made by
PBSL with weights [4/− 1] if they make up 98% of the population (×) and the
rest are individual learners (not shown), or if they make up 100% of the population
(�). Right: Proportion of A choices made by PBSL with payoff-conformism trade-
off if they make up 98% of the population (•) and the rest are individual learners
(not shown), or if they make up 100% of the population (©). The environment
(solid line) is shown as pA − pB , measured on the right y-axis. PBSL with weights
[4/− 1] is compensatory, resulting in the presence of 2% individual learners having
almost no influence on aggregate behavior, except in between periods 50 and 100.
PBSL with payoff-conformism trade-off, in contrast, is noncompensatory, resulting
in a huge difference in aggregate behavior in the presence of only 2% individual
learners.

3.3.1.5 Dependent strategies

A sufficient condition for a strategy to be dependent is if that strategy would
never switch away from choosing A (B) if the whole population were to
choose A (B). In such a case, the population will be stuck with this choice
forever and there will not be any information flow from the environment
towards the learners – there is informational breakdown. In other words,
they require the presence of other strategies that do not get stuck with
one choice in order to meaningfully react to the environment in the long
run. Both options have to be present to form a “substrate” for their being
chosen.
Among the strategies we test in this chapter, four are dependent strategies.

These strategies are:

• conformism

• Imitate The Wealthiest

• PBSL McElreath

• PBSL with payoff-conformism trade-off.
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Each time that an evolutionary simulation results in the extinction of all
autonomous strategies, only leaving back some combination of the dependent
strategies above, we have encountered an informational breakdown.
Notably, not all social learning strategies are dependent. This is obviously

true for those who mix in some amount of individual learning, OC, OIL, and
IDC. But it is also true for scoring-type PBSL with weights [1/0] and [4/− 1].
A social learning strategy that completely ignores its personal information
and instead only bases the choice on the observation of others can therefore
still be autonomous.

3.3.2 Rogers’ paradox: Evolutionary stability
As we said, there are several proposed solutions to Rogers’ paradox [23, 50,
101, 143]. These solutions consisted of developing strategies that perform
a mix of individual and social learning. We implemented these strategies
in our model. In the following sections, we will show that these strategies
are not persuasive solutions to Rogers’ paradox. Our argument will use two
lines of attack. First, we will show that these strategies are outcompeted
by other strategies, especially by PBSL strategies and ITW. Second, even if
PBSL and ITW were disallowed, the proposed solution strategies would be
prone to invasion by pure conformists, in which case the attained equilibrium
produces a performance that is hardly an improvement compared to the
performance of individual learners. These findings cast a doubt on the claim
that these strategies are convincing solutions to Rogers’ paradox.

3.3.2.1 Default conditions

Our first line of attack consists of showing that the proposed solutions to
Rogers’ paradox, Opportunistic Individual Learning (OIL), Opportunistic
Conformism (OC), and In Doubt, Conform (IDC) are prone to invasion
by other strategies. To show this, we performed evolutionary simulations
containing all 10 strategies, each starting with 1000 individuals, over 10,000
generations. Since we deal with a stochastic process in finite populations,
outcomes will vary between simulations. For each condition, we therefore
ran 10 simulations.
The first result shows the outcome using the default parameters. The

frequencies of the all strategies that did not become extinct at least once
in the 10 simulations is shown in figure 3.5. The thin lines present the
results from all ten simulations, the bold line the average. The first thing
to note is that individual learning, as well as the three proposed solutions
to Rogers’ paradox, namely OIL, OC, and IDC, always become extinct.
PBSL with weights [1/0] also always goes to extinction. The strategies that
remain at least once are conformism, ITW, PBSL with weights [4/− 1],
PBSL McElreath, and PBSL with payoff-conformism trade-off.
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Figure 3.5: Evolutionary simulation of all 10 strategies. Shown are only the stra-
tegies that at least once did not become extinct in the 10 simulations. The thin
lines are the distinct frequencies derived from the 10 simulations, the bold line the
average frequency of those simulations. The only strategies that did not always
become extinct are conformism, ITW, PBSL with weights [4/− 1], PBSL McEl-
reath, and PBSL with payoff-conformism trade-off. Among those, the first three
were only present in 1 of the 10 simulations, suggesting that only the latter two can
be expected to be robustly present. Note that OIL, OC, and IDC, the proposed
solutions to Rogers’ paradox, always become extinct.
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Taking a closer look at the results reveals that conformism, ITW, and
PBSL with weights [4/− 1] were only present in one trial each at the end
of simulation. PBSL McElreath and PBSL with payoff-conformism trade-off
were, in contrast, present several times, with the latter attaining the highest
frequencies most of the time. We repeated the simulations with a population
size of 25,000 instead of 10,000 to check for robustness (see Appendix). It
turns out that in this replication, only these two PBSL strategies, as well
as conformists, achieved to not become extinct. Furthermore, PBSL with
payoff-conformism trade-off proved to always be the dominant strategy.

3.3.2.2 Robustness

We showed that OIL, OC, and IDC always become extinct when competing
with the other strategies. It is, however, possible that the default conditions
are hostile to OIL, OC, and IDC, and that if we changed the parameters,
outcomes would be more favorable towards them. Therefore, we repeated
the evolutionary simulations with different reversion factors, different mean
success rates of the environment, and increasing the environmental stability.
These parameters had proven to have the most influence on performance (see
the previous chapter for more details). Interestingly, none of the changes
resulted in OIL, OC, or IDC to be able to compete with the other strategies
(see Appendix). We can thus state with confidence that the observation that
OIL, OC, and IDC always become extinct when competing with the other
strategies is robust to changes in the environmental parameters.

3.3.2.3 Excluding PBSL

Another objection to our findings could be that some of the studied stra-
tegies are implausible from an empirical point of view. Especially payoff-
biased social learning is, compared to the other strategies, cognitively more
demanding. It requires some form of sophisticated integration of all observed
outcomes, either in the form of adding them up (scoring-type) or averaging
them (averaging-type). Therefore, we excluded some of the PBSL strategies
and reran the simulations.
First, we excluded scoring-type PBSL. The results were very close to those

of the default condition (see Appendix). Next, we excluded averaging-type
PBSL, which has proven to be the most dominant type. Still, neither OIL,
nor OC, nor IDC stood a chance against the other strategies (see Appendix).
Excluding one of the two classes of PBSL strategies could thus not help our
three candidate strategies.
Next, one could argue that PBSL is implausible altogether. Perhaps, it

is impossible to observe the payoffs of others in the real world. Therefore,
we ran the simulations again while excluding all four PBSL strategies. The
result is shown in figure 3.6. Individual learners, OIL, and OC always became
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extinct before the end of the simulations. Conformism persisted in 2 of the
10 simulations, but only at low frequencies. IDC persisted in 9 out of 10
simulations, averaging at about 20% frequency. The most dominant strategy
was ITW, which persisted in all simulations and consistently attained high
frequencies.
Since IDC persisted, does this mean we have a potential solution to Rogers’

paradox? To answer this, we need to have to look at performance. We
show the mean population performance derived from the simulations on the
bottom right hand side of figure 3.6. As performance is noisy, we applied a
running average filter of 1000 generations length. First, we indeed see that
the mean performance exceeds the performance of pure individual learning
(dashed line). Over time, however, the frequency of the strategies evolve,
entailing a decline of the mean performance. Finally, mean performance dips
below the performance of individual learners, meaning that the population
is actually worse off than before social learning was introduced. Therefore,
Rogers’ paradox is not solved at all.
In sum, even after excluding PBSL completely, only one of the three pro-

posed solutions to Rogers’ paradox, IDC, is capable of resisting total ex-
tinction. But even then, it remains the minority in the population, while
ITW makes up the majority. Consequently, the mean population perfor-
mance drops below the performance of individual learners. This is not a
very convincing outcome for the proposed solution strategies.

3.3.3 Rogers’ paradox: performance
Although showing some promise, neither Opportunistic Individual Learning,
nor Opportunistic Conformism, nor In Doubt, Conform proved capable of
competing with the other strategies in an evolutionary battle. In fact, they
almost always became extinct. Now one could make the argument that
all those other strategies that are oppressing OIL, OC, and IDC are not
realistic and should thus be excluded. Here we will show that even then, the
candidate strategies do not present convincing solutions to Rogers’ paradox.
To prove this, we will proceed as follows. If it is plausible that either OIL,

OC, or IDC are existing learning strategies, pure conformism must also be
a possibility. This is because conformism is part of OIL, OC, and IDC, so if
strategies exist that rely on conformism as part of their decision mechanism,
there should also be a strategy that relies only on conformism. Consequently,
one has to ask whether pure conformists could invade a population consist-
ing of OIL, OC, or IDC. And if conformists do invade, what is the mean
population performance when equilibrium is reached; specifically, is it still
above the performance of individual learners? If it is not, Rogers’ paradox
is not solved.
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Figure 3.6: Evolutionary simulation of the 6 non-PBSL strategies. Shown are
only the strategies that did not become extinct at least once in the 10 simulations.
The thin lines are the individual frequencies derived from the 10 simulations, the
bold line the average frequency of those simulations. The only strategies that did
not always become extinct are conformism, IDC, and ITW. Among those, ITW
was the most dominant, while IDC and conformism persisted at low frequencies
on average. Bottom right: Mean performance derived from the same simulations.
Performance was smoothed by a running average filter to reduce noise. Although
the mean population performance (solid line) is initially higher than performance
of individual learners (dashed line), it declines over time to a lower level. The
population is thus worse off, meaning that Rogers’ paradox is not solved.
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Figure 3.7: Performance of OIL, OC, and IDC (+S.E.M.). All three strategies
beat the performance of individual learning, as shown by the dashed line. IDC
displays the best performance.

3.3.3.1 Performance in homogeneous populations

First, we wanted to check a necessary (but not sufficient) condition for OIL,
OC, and IDC to resolve Rogers’ paradox, whether they can improve over-
all performance by themselves. We found that they do, as shown in figure
3.7. Pure individual learning results in an average performance of about
59.05±0.12% (S.E.M.). Opportunistic Individual Learning results in a mean
performance of 60.31± 0.50%, Opportunistic Conformism in a mean perfor-
mance of 65.61± 0.75%, and In Doubt, Conform in a mean performance of
67.32±0.86%. Thus OIL, OC, and IDC do indeed improve upon the perfor-
mance of individual learners, the difference ranging from 1 to 8 percentage
points. Moreover, these strategies do not require individual learners in the
population, meaning that even if they could completely replace individual
learners without jeopardizing performance.

3.3.3.2 Performance when competing with conformists

The candidate strategies use a mixture of individual learning and conformism
that involves sufficient individual learning to maintain good performance.
However, we found that they are prone to invasion by pure conformists, as
shown in figure 3.8. In the top left, the performance of individual learners
competing with conformists, as obtained by simulations, are shown. The
performance of individual learners being independent of the frequency of
conformists, the classical paradox as formulated by Rogers obtains: In equi-
librium, the population has the same average performance as a population
consisting solely of individual learners (see also the first chapter of this work).
For OIL (top right), OC (bottom left), and IDC (bottom right), the results

differ. As long as conformists are rare in the population, they outcompete
these strategies and will thus invade. As conformists become more common,
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at a certain point, the performance of OIL, OC, and IDC starts to sink. The
performance of conformists starts to sink even faster, though, so that at one
point, performance curves of the two strategies intersect, which is where the
equilibrium is expected.
In contrast to individual learners, the three candidate strategies have a

lower performance at equilibrium than initially. For OIL, the estimated per-
formance at equilibrium is roughly 58%. This means that even though this
strategy, in a homogeneous population, outperforms individual learners, in
equilibrium with conformists, it does not. It can therefore not solve Rogers’
paradox, which would at least require it to do better at equilibrium than
individual learners. For OC, the performance at equilibrium is roughly 62%,
for IDC, it is roughly 64%. Those are 3 and 5 percentage point advan-
tages over individual learning, respectively. One could thus argue that OC
and IDC could indeed be solutions to Rogers’ paradox. However, the ini-
tial advantages of 6 to 8 percentage points have vastly diminished. And
it is questionable whether an increase of 5 percentage points total is really
sufficient to explain the adaptedness of human culture.
In summary, we analyzed three candidate strategies, OIL, OC, and IDC,

that were proposed in the literate as solutions to Rogers’ paradox [23, 50,
101, 141]. In homogeneous populations, they would indeed lead to a better
overall performance. From evolutionary perspective, however, we showed
that there are better strategies that we would expect to drive these three
strategies to extinction. But even if we assume that those other strategies
did not exist, conformists would invade and deteriorate their performance.
In equilibrium with conformists, OC would preserve a 3 percentage points
advantage, IDC a 5 percentage points advantage over individual learners.
This means that among the proposed strategies, IDC shows the most promise
but it is questionable whether the meager performance increase shown by
IDC is a satisfying solution to Rogers’ paradox.

3.3.3.3 Payoff-biased social learners

If neither OIL, OC, nor IDC present convincing solutions to Rogers’ para-
dox, maybe payoff-biased social learning do. We introduced this class of
strategies in the previous chapter. Of the studied strategies, 4 proved es-
pecially promising, namely PBSL with weights [1/0], PBSL with weights
[4/− 1], PBSL as proposed by McElreath et al. [120], and PBSL with
payoff-conformism trade-off. Therefore, we included these four strategies
from the previous chapter in the present analysis.
First we have to check whether these strategies outperform individual

learners. This is indeed the case, as shown in figure 3.9. PBSL with weights
[1/0] have a performance of 68.98 ± 0.65% (S.E.M.), PBSL with weights
[4/− 1] have a performance of 74.16 ± 0.83%. (Because the agent-based
model deals with finite population sizes, the performance derived from it
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Figure 3.9: Performance of individual learning, OIL, OC, IDC, PBSL with weights
[4/− 1], PBSL with weights [1/0], PBSL McElreath, and PBSL with payoff-
conformism trade-off. As the last two strategies are not autonomous, their perfor-
mance is shown as derived from the aggregate model (as discussed in the previous
chapter), in contrast to the other performance values, which were derived using the
agent-based model. All shown strategies do better than individual learners.

is not exactly the same as performance derived from the aggregate model.)
These performance results are well above what individual learners achieve.
PBSL McElreath and PBSL with payoff-conformism trade-off are depen-

dent strategies, meaning that in absence of autonomous strategies, they will
eventually all choose the same option. This constitutes an informational
breakdown and will, in the long run, reduce performance to chance level.
Therefore, we cannot test them in a homogeneous population. Their per-
formance was thus derived from the aggregate model in the previous chap-
ter, where the choice limit prevented informational breakdown. For PBSL
McElreath, we observe a performance of 72.34±0.23%, for PBSL with payoff-
conformism trade-off, we observe a performance of 78.43± 0.17%. As these
numbers indicate, the four tested PBSL strategies outperform individual
learners by a fair margin. Even more, they also outperform OIL, OC, and
IDC. Therefore, the PBSL strategies are potentially better candidate stra-
tegies for solving Rogers’ paradox.
As always, performance has to be considered in equilibrium. Therefore,

we tracked performance over time when all strategies competed with one
another. The evolutionary outcome was shown in figure 3.5. When we look
at the mean performance derived from these simulations (left panel of figure
3.10), we see that at the start, when all strategies are equally represented,
we indeed find mean performance to be quite high (≈ 70%). Over time,
though, the frequencies of the strategies adjust, which is accompanied by
a decline in the mean performance. At the end, mean performance is well
below the performance of individual learning. This means that even with
PBSL, Rogers’ paradox is not solved.
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Figure 3.10: Mean performance (solid line) of the population as derived from evo-
lutionary simulations over time. A running average filter was applied to the mean
performance to smooth out noise. Performance of individual learning (dashed line)
is shown for reference. Left: When all 10 strategies were tested, mean performance
is initially well above the performance of individual learning. Over time, however,
the composition of the strategies changes, resulting in a loss of performance. At the
end, mean performance falls substantially below that of individual learning. Right:
When PBSL McElreath and PBSL with payoff-conformism trade-off are excluded,
mean performance remains higher than that of individual learning for the whole
time.

We tested several adjustments of the parameter values to check whether
this result is always obtained. The tested alterations could not bring about
a qualitative change. There was, however, one possibility to maintain a high
performance. When PBSL McElreath and PBSL with payoff-conformism
trade-off were excluded, we find that PBSL with weights [4/− 1] becomes
the dominant strategy while conformism is maintained at low frequency (see
Appendix). This setup leads to a consistently high performance, as shown
in the right panel of figure 3.10. In fact, average performance was 69.19 ±
0.39%, 10 percentage points higher than performance of individual learning.
There was no downward trend in the mean performance (linear model fit:
slope of −0.02 (−0.156 to 0.116, 95% confidence bounds), R2 = 8.4−5, p =
0.77). This means that under the condition of excluding the two mentioned
strategies, a solution to Rogers’ paradox is possible.

3.3.4 Informational breakdown
In addition to studying Rogers’ paradox, we were interested in the possibil-
ity of informational breakdowns. An informational breakdown occurs when
none of the strategies that are left in the population are influenced in their
behavior by the environment. This means that there is no flow of infor-
mation from the environment towards the individuals. Consequently, the
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Figure 3.11: Evolutionary simulation with informational breakdown. The fre-
quencies of autonomous (thin lines) and dependent strategies (thick lines) over time
is shown. At period 2490, all autonomous strategies have become extinct, resulting
in informational breakdown. Performance (dashed line, smoothed by a running av-
erage filter) is high before the informational breakdown but declines immediately
afterwards.

population behaves in a way that is completely detached from reality.
The simplest way that an informational breakdown could occur is if all the

present strategies choose the same option and if their decision mechanisms
do not allow them to switch away from this option. For example, if every
individual were a conformist, sooner or later all of them would choose the
same option, say A. As soon as this state is reached, nobody will ever switch
to B, since the learning mechanism requires that in order to switch to B,
B must be present in the conformist’s sample, which is impossible in this
state. Similarly, ITW, PBSL McElreath, and PBSL with payoff-conformism
trade-off are prone to reaching a state of informational breakdown.
An example of informational breakdown is shown in figure 3.11. In gener-

ation 2490, the last autonomous strategy becomes extinct, leaving only de-
pendent strategies behind. Consequently, the mean population performance
drops from 70.3% to 52.3%, a significant decrease (p < 10−8, two-tailed
Wilcoxon rank sum test). Therefore, if the population is ever composed of
only the four dependent strategies or a subset of them, the population will
sooner or later encounter informational breakdown, leading to chance level
performance.
The fact that dependent strategies have to rely on autonomous strategies

to learn about the environment makes our search for informational break-
downs quite easy. For example, we found that in the default conditions,
in 9 out of 10 simulations, the population finally reached a state were all
remaining strategies are dependent (see figure 3.5). Only in one of the sim-
ulations could PBSL with weights [4/− 1] persist, which prevents informa-
tional breakdown. Informational breakdown is thus expected in the default
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conditions.
We further checked our results for robustness by changing the parame-

ter values (see Appendix). In general, informational breakdown was the
predominant outcome. There were some exceptions, though. When we in-
creased the reversion parameter, PBSL with weights [4/− 1] persisted in the
population 8 out of 10 times, mostly at high frequencies. A higher reversion
parameter basically implies that the environment is more volatile, which re-
quires a strategy to adapt very rapidly. We could thus expect informational
breakdown to be less likely in rapidly changing environments.
Moreover, we found that if we increased the mean success rate of the

environment to 0.75, PBSL with weights [1/0] persisted in 4 out of 10 simu-
lations. Environments in which successes are very common could thus also
possibly prevent informational breakdown.
Finally, we found that when PBSL McElreath and PBSL with payoff-

conformism trade-off were excluded, informational breakdown was prevented.
PBSL with weights [4/− 1] then became the most dominant strategy, per-
sisting in all 10 simulations with a mean frequency of almost 70%. Of course,
it is not very surprising that informational breakdown could be prevented
when two of the four dependent strategies were excluded from consideration.

3.3.5 Principal findings
In this chapter, we were interested in investigating whether social learners are
capable of improving human adaptedness to the environment compared to a
population of only individual learners. Rogers [146] found that when social
learning consists of random copying, in equilibrium, there is no improvement
– this is Rogers’ paradox. Furthermore, we showed that one has to consider
the possibility that in equilibrium, the population is actually worse off than
before. This is possible when in finite populations, all autonomous strategies
become extinct, so that the remaining social learners lose touch with reality,
creating a state that we called informational breakdown.
In total, ten strategies were studied. Individual learning and conformism

are standard strategies. Opportunistic Individual Learning, Opportunis-
tic Conformism, and In Doubt, Conform are derived from strategies that
were proposed in the literature as solutions to Rogers’ paradox. We find
that by themselves, these strategies indeed outperform individual learners.
They are, however, prone to invasion by pure conformists, which depreciates
the performance to a point where there is only a small improvement. In
Doubt, Conform did best and, in equilibrium with conformists, achieved a
performance improvement of 5 percentage points, which is neither bad nor
remarkable.
There is a bigger problem, however. We introduced another strategy based

on a simple heuristic, Imitate The Wealthiest. It turns out that this strategy
outperforms the other strategies in most circumstances without providing

135



3 Rogers’ paradox and informational breakdown

enhanced performance in equilibrium. Even worse, when we introduced four
payoff-biased social learning strategies, all of the three proposed solutions
became extinct in equilibrium. They are thus not very likely candidates for
solving Rogers’ paradox.
Are there other strategies that might resolve Rogers’ paradox? We found

that under a wide range of parameter values, payoff-biased social learning
with payoff-conformism trade-off outperformed all the other strategies. How-
ever, this strategy was not able to sustain a high performance in finite popu-
lations. In contrast, it led to a decline of performance to chance level owing
to informational breakdown.
There were only few scenarios that allowed to escape Rogers’ paradox and

avoid informational breakdown. When we excluded averaging-type payoff-
biased social learning, we found another strategy to thrive, scoring-type
PBSL with weight 4 on successes and -1 on failures. In equilibrium, per-
formance was 10 percentage points higher than performance of individual
learners, which is a sizable improvement. Moreover, we found that Rogers’
paradox and informational breakdown were prevented when the environment
varies very rapidly or when successes or failures were very frequent.

3.4 Discussion
3.4.1 Solutions to Rogers’ paradox
Rogers showed that in a simple and general model of the evolution of social
learning, in equilibrium, the individuals are not better off than before so-
cial learning was introduced [23, 146]. Thus one important question in the
study of gene-culture coevolution is whether social learning can nevertheless
improve the lot of a population.
Solutions to Rogers’ paradox often invoked strategies that relied on mix-

ing both individual and social learning [23, 50, 101, 143]. Using the more
realistic social learning model we introduced in the previous chapters, we
implemented three incarnations of such strategies. Opportunistic Individual
Learners (OIL) use conformism if successful in the last period and individ-
ual learning if unsuccessful; Opportunistic Conformists (OC) use individual
learning if successful in the last period and conformism if unsuccessful; In
Doubt, Conform (IDC) consists of using individual learning if the agent is
sure which option is better and conformism if in doubt. Simulations of these
learners show that they perform better than individual learners; OIL per-
forms 1 percentage point better, OC 7 percentage points better, and IDC 8
percentage points better than individual learners in monomorphic popula-
tions.
In Rogers’ classical formulation of the paradox [146], the performance

of individual learners is frequency-independent, whereas the performance
of social learners drops as their frequency increases. Hence, in equilib-
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rium, the polymorphic population attains the same average performance
as a monomorphic population of individual learners. The proposed solution
strategies seem to resolve Rogers’ paradox because they have a higher perfor-
mance than individual learners without being dependent on them. However,
one has to ask whether pure conformists can invade populations consisting
of any of the strategies. Our simulations show that indeed they can. In-
terestingly, the more frequent conformists become, the worse the solution
strategies perform. Therefore, in equilibrium, the polymorphic population
performs worse than in absence of conformists.
How can the polymorphic equilibria be characterized? For OIL, the equi-

librium frequency of conformists would be slightly above 60% and the aver-
age performance 57-58%. For OC, the equilibrium frequency of conformists
would be slightly below 50% and the average performance 61-62%. For IDC,
the equilibrium frequency of conformists would also be slightly below 50%
and the average performance 63-64%. So at least for OC and IDC, we see a
small improvement over the 59% average performance of individual learners.
However, the question remains whether such a small improvement is really
sufficient to conclude that this explains the adaptedness of human culture.
We would be more conservative and state that the proposed solution strate-
gies have not (yet) convincingly proven to be solutions to Rogers’ paradox.
Why do our results differ from the earlier findings? One reason may be

that our model is not exactly the same as earlier models. For instance, we
have several periods per generation, allowing more realistic learning algo-
rithms to exist. This should be considered as an advantage, though, and not
as a weakness of our approach. Furthermore, as discussed earlier, there was
a problem with the implementation of “critical social learners” ([50], corre-
sponding to OIL) and “conditional social learners” ([143], corresponding to
OC); they were allowed to learn twice, whereas individual learners and pure
social learners were not, explaining the latter two strategies’ inferiority. We
changed this so that each strategy has an equal learning opportunity and
predictably find that OC and OIL are not strictly better than pure social
learning. Our model presents a fair ground for all strategies and, therefore,
our results should be more believable.
IDC is analogous to strategies studied by Boyd and colleagues [22, 23, 86,

139]. Their implementation is, however, completely different. In essence,
they suggest that all individuals rely to some extent on both individual
learning and imitation. They receive a private signal from the environment
about which option is better and, when the signal is not sufficiently clear,
choose to rely on social information instead of relying on this cue. In our
model, there is no exogenously generated cue. Instead, individuals have to
learn by trial-and-error or by learning socially which option is putatively
better. Past observations could be interpreted as a noisy cue to which of the
two options is better. The cue in our model is thus generated endogenously
and influenced by the behavior of the strategies; its reliability depends on
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the environmental parameters.
Furthermore, a difference to previous models is that we omitted costs of

learning and focused on what performance is reached in equilibrium instead.
This could make a difference, although it is unlikely. Finally, and most
importantly, we included more learning strategies than the previous models
did and checked what state is reached when all the strategies’ frequencies
settle in equilibrium. Our analysis is thus more comprehensive than previous
ones, and it shows how important it is to include a wide range of social
learning strategies. As it is impossible to cover all social learning strategies, it
is possible that other undiscovered social learning strategies could invalidate
our present findings. We would even expect this to be the case. Further
studies are thus needed.

3.4.2 Solutions to informational breakdown
Several works have shown [63, 143, 177] that under certain circumstances,
individual learners can be pushed out of the population. Although there are
some social learning strategies – we call them autonomous – that are able
to learn from the environment without the help of individual learners, these
strategies may become extinct as well. As the other social learning strategies
– we call them dependent – require autonomous strategies to learn about the
environment, the extinction of the latter leads to total detachment of the
behavior from the environment. We called this phenomenon informational
breakdown and showed that it robustly occurs in our model. Informational
breakdown reduces performance to chance level and is thus even worse than
the equilibrium state described by Rogers.
One possible solution to prevent informational breakdown is to invoke

strategies that rely on a mixture of both individual and social learning [143].
However, our simulations revealed that these strategies generally become
extinct when competing with the other strategies. Two scoring-type PBSL
strategies we studied here are also autonomous and could, in principle, pre-
vent informational breakdown. But these strategies subsided to averaging-
type PBSL (PBSL McElreath [120] and PBSL with payoff-conformism trade-
off). This second type of social learning is dependent and therefore it is not
a solution to the threat of informational breakdown.
Similarly to the conclusion drawn from Rogers’ paradox, the conclusion

drawn from our findings should not be that human populations are gener-
ally in a state of informational breakdown. Instead, Rogers’ paradox and
informational breakdown provide challenges to too simplistic notions of how
social learning works. If a proposed social learning strategy can neither solve
Rogers’ paradox, nor prevent informational breakdown, there must be some-
thing amiss. Or, alternatively, one would have to show why our assumptions
are inappropriate.
Our findings could be criticized on some grounds. We chose a population
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size of 10,000 for our model, since this was suggested to correspond to the
effective population size in much of our recent history [83, 167]. Because
the population size is finite, very small equilibrium frequencies cannot be
realized. Therefore, it could be that when we allow for higher population
sizes, our results would change. This is certainly a possibility. Testing it is
not easy, since computational constraints set an upper limit on what we can
do. We did, however, run 10 simulations in the default condition but with
a population size of 25,000 (see Appendix). In this setting, informational
breakdown still occurred in all of the simulations. The next chapter will
provide more evidence for the robustness of our findings. It is thus unlikely
that too small population sizes explain our findings.
Moreover, one could argue that informational breakdown is prevented

when there is always a small possibility (e.g. through error) that an in-
dividual does choose the minority option. Then there would always be some
dissenters who could be copied when their inferior choice becomes superior
over time. However, evolution would act to reduce the error probability,
since it is not individually optimal to make errors; those individuals who
are most accurate would be selected. It does not matter that groups with
less accurate individuals are better off in the long run, since individual level
selection usually trumps group level selection. There would have to be an
external constraint on accuracy to prevent informational breakdown.
Similarly, one could object that informational breakdown would be less

frequent if offspring did not inherit their first period’s choice from their
parents. When they would start fresh with random choice, each option
would be represented in the population, making informational breakdown
less likely (although it may still occur within the 50 periods that a generation
lasts). We would, however, expect such vertical transmission to evolve, since
parents are more likely than not to make the right choice. Offspring would
face a selective pressure to inherit their parent’s choice and not to start
by guessing. Furthermore, discrete generations are an artificial assumption
made to simplify the model. In reality, there is never a completely new
generation, horizontal, vertical, and oblique transmission will always act in
concert. This makes the re-boot a purely hypothetical possibility.

3.4.3 Evidence for the use of social learning strategies
In the empirical literature, it is often important to distinguish between dif-
ferent forms of how social learning is actually performed. For our model, this
question is mostly irrelevant. Take the example of choosing between hunt-
ing two different prey species A and B. An individual could learn socially
by imitating others (i.e. faithful copying of means and ends), by emulating
others (trying to achieve the same goal), or local enhancement (going where
the others go and then act autonomously). The exact form of learning is
not instrumental in achieving the final goal, choosing A or B based upon
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information derived from others. Consequently, we are also not interested
in the role of speech for social learning. For our purposes, social learning is
defined purely on a functional basis.
We also want to clarify that we will mostly ignore a large part of the

literature that studies cumulative cultural learning. Among others, these
works study how social transmission shapes the cultural traits themselves,
and they are well summarized [124]. As we made clear earlier, there is a
distinction between cumulative cultural change and non-cumulative cultural
change, the former of which is not our topic. Therefore, there is no point in
studying this literature here, despite it being of high general interest.
Furthermore, we are not focused on social learning in animals. For this

literature, readers should have a look at the 2004 review by Kevin Laland
[108]. Andrew Whiten and colleagues compared different forms of imitative
behavior in human children and chimpanzees [178]. These works and refer-
ences therein should be sufficient to satisfy the curiosity of those interested
in social learning in animals.

3.4.3.1 Conformism

Conformism in the sense used in this work requires that an option is more
likely to be adopted than by random chance if it is chosen by the majority of
the population, and less likely to be adopted if it is chosen by the minority
of the population. In an extreme case of conformism, the subject overrides
her personal information when others unanimously choose a different option.
This was famously tested by Asch in his conformity experiments [4, 5]. In
these experiments, subjects had to tell which of three shown lines was the
longest. Differences were so extreme that making a wrong call almost never
occurred. However, most of the subjects in the experiment were really con-
federates. In some rounds, the confederates who announced their judgment
before the test subject all chose one of the false options. Asch found that in
one third of the cases, the test subjects conformed to the wrong judgment.
Two thirds of the subjects conformed at least once.
Despite their general interest, these findings are of little value for our

research. Test subjects had to make their judgments publicly. Therefore,
there was a normative pressure to conform; if one contradicts the previous
answers, one would publicly proclaim the previous subjects to be wrong.
In fact, when the real test subject was allowed to write down the answer
instead of making a public announcement, conformity vanished. This should
be expected, as, by design, there was no uncertainty about which answer was
correct. However, as we have argued in the first chapter, social learning is
most likely to be applied when the goal is to reduce uncertainty about what
option is correct.
Another classic study performed by Sherif involved reduction of uncer-

tainty. The test consisted of showing the subjects a light dot and of having
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them estimate the distance the dot moves [154]. In reality, the dot did not
move at all, the perceived movement was due to the autokinetic effect. Af-
ter one session, subjects received a feedback of the estimates of other group
members. In a subsequent session, judgments were more likely to fall within
the “norm” established by the group. Questionnaires showed that the sub-
jects’ decisions were influenced by concern about how they are perceived by
others, meaning that the main objective again was how the subjects would
be seen by the others. Therefore, it is important to differentiate between
normative and informational social influences [42]. In contrast to Asch and
Sherif, we are only interested in the latter.
Later experiments on social learning paid more attention to prevent nor-

mative influence from altering the subjects’ behavior. Efferson et al. [47]
tested individual and social learning involving two options with subjects from
the Sama Biological Reserve in Bolivia, who mainly engage in subsistence
herding. Subjects could sample from two options with different payoffs and
in some treatments were additionally provided with payoff- and frequency-
information from other subjects. The best model fit of the data was achieved
with individual learning models, payoff- and frequency-information did not
seem to have an impact. The authors state that improvements in perfor-
mance mainly took place within the first 6 or 7 of the 50 periods, which is
not too surprising, as the quality of the options did not change over time.
Within these few periods, there was some evidence for conformity but there
were too few data points to find significant effects.
The same authors later tested the propensity for conformism in students

from Zurich [46]. Again, there were two options that, within a session, had
a fixed mean payoff. Some subjects only had individual feedback at their
disposal, others only frequency-information. Of the latter, 12 self-identified
as non-conformists and 28 self-identified as conformists, which the authors
found to be validated quite well by the data. The conformists indeed behaved
in a conformist fashion, displaying the typical sigmoidal adoption curve.
Since these subjects could not respond but to the frequency-information,
this experiment cannot tell us anything about the natural occurrence of
conformism, though. It only tells us that even when conformism is adap-
tive and the only sensible learning strategy, one will still find a substantial
proportion of subjects who reject conformism. One reason for this could be
that the students did not want to appear to be conformists in the eyes of
the experimenters.
Goeree and Yariv also tested conformity in a laboratory setting [71]. The

basic task was to guess which of two colors was more common by drawing
with replacement from an urn. However, the first subject was forced to guess
and the two subsequent subjects were also not allowed to draw but could
observe the choice of the previous subject(s). Clearly, these three judgments
were not informative about the true outcome. Still subsequent subjects, who
could choose between drawing from the urn or observing the choice of sub-
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jects who did not draw (i.e. uninformative actions) often chose to do the
latter. 34% of subjects did in fact choose to observe the uninformative ac-
tions; this number even increased to 50% when stakes were raised. Of those
subjects, more than 80% followed the majority choice. The later a subject
was in sequence, the more likely it was that the subject chose to observe the
social information. The authors claim that this puzzling behavior could not
be explained by confusion, inequity aversion, or the desire to balance the
choices. Instead, the authors concluded that subjects have an intrinsic taste
for behaving in a conformist fashion, which might be adaptive in other situ-
ations. However, considering how much money was lost due to observing an
uninformative signal, one has to consider the possibility that many subjects
were confused on a level not detected by the authors.
Corazzini and Greiner conducted a follow-up experiment [37]. Their ex-

periment was very similar to that of Goeree and Yariv but subjects did not
have the possibility to draw from the urn. Instead, they had to rely purely
on the uninformative social signal. The authors found that there was no sign
of conformity. Quite in contrast, subjects were more likely to choose the op-
tion less chosen. Even if one option was inherently better, some subjects
chose the inferior option. This could be interpreted as non-conformism but
is probably rather due to probability matching. Overall, these experiments
tell us little about conformism because we deal with models that assume
that the social signal does provide information.
Claidière and colleagues studied conformity in a field experiment [34] by

hosting a competition in a Scottish zoo involving real prizes. Subjects were
asked to submit either a drawing or a text to the competition. The re-
searches found them more likely to adopt an option if it is was displayed
more frequently, but the relationship was mostly linear, which contradicts
the use of conformity. There was, however, a content bias; even if one of
the options was never shown, almost 40% of subjects chose that option. In
addition, it is possible that some subjects had the impression that choosing
the minority option would enhance their chance of winning. These and other
possible confounds make the experiment hard to interpret.
Faria et al. [56] observed people waiting at a street light in Leeds, UK,

under real world conditions. They found that when lights were red, pedes-
trians were 150% to 250% more likely to cross the street if their neighbor
crossed first. Males were more likely to initiate imitation. Sometimes, pedes-
trians who followed others aborted their crossing attempt, which the authors
interpret as occurrence of a maladaptive informational cascade.
Haun et al. [84] tested conformism in human 2-year old children, chim-

panzees, and orangutans. There were three options to choose from. In the
first study, three demonstrators of the same species chose option A and one
demonstrator option B; each choice was rewarded. It was found that 72% of
the chimpanzees’ choices, 56.3% of the children’s choices, and 36.1% of the
orangutans’ choices conformed to the majority. The authors concluded that
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this shows that chimpanzees and children show “majority-biased transmis-
sion”. One has to be careful, though, to not call this conformism. Remember
that conformism requires that the probability to choose the majority option
has to be greater than its representation in the sample. In this study, 75%
of the demonstrators chose A. None of the species responded with choosing
A with a higher probability than 75%. The observed behavior is therefore
more akin to linear adoption (chimpanzees), total random choice regardless
of observation (orangutans), or a mixture (humans).
In another treatment, Haun and colleagues had one demonstrator chose

option A three times and one demonstrator option B once. All attempts led
to a reward. Chimpanzees and orangutans were not significantly more likely
to choose A than B but children were. In fact, the behavior of children and
orangutans hardly differed between study 1 and study 2. In our model, due
to synchrony of choice and lack of recognizability, it is not possible to observe
the same individual three times, so we cannot make predictions whether this
should lead to conformism or not. This would certainly be an interesting
question for future studies.

3.4.3.2 When to imitate

Kameda and Nakanishi [100] tested social learning with undergrad students
from psychology classes of the Hokkaido University, Japan. There were two
options, one of which was correct and the other false, but this switched oc-
casionally. After each round, subjects received information about the choice
of three other subjects of the pool; additionally, they could purchase individ-
ual information, which was accurate 67% of the time. The cost of individual
learning was either high or low. There was no immediate feedback about suc-
cess after each round. Instead, after 5 rounds, a subject’s cumulative payoff,
as well as the other group members’ cumulative payoffs, were displayed.
The experiments revealed that for low costs of individual learning, some in-

dividuals always and some never learn individually; most individuals learn in-
dividually some of the times. For high costs, many individuals never learned
individually and few individuals did so more than half of the rounds. This
finding is consistent with the basic prediction about the impact of learning
costs, namely that higher costs of individual learning lower the reliance on
individual learning.
Participants were more likely than not to adopt the majority choice when

it opposed their own choice in the previous round, and more so when they
did not seek individual information. However, the authors did not show how
the probability of choosing an option varies, in general, as a function of the
number of demonstrators of that option. Firm conclusions about the degree
of conformism can thus not be drawn.
Additionally, one could criticize that in the high cost condition, the cost

of learning equaled half the total reward of being right. Considering the
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rather low accuracy of individual learning, and depending on the frequency
of switches in the environment (which was not indicated), one would not
even expect subjects to ever learn individually. Instead, it could be possible
that never or rarely learning individually and relying on guesses otherwise
would have been the best response in absence of social learning.
Overall, most subjects engaged in both individual and social learning, al-

though heterogeneity in behavior increased over time. The authors started
their paper with a model of social learning in mind very similar to In Doubt,
Conform. But in the experiment, the accuracy of the individual learning
signal was held constant. Feedback was only given on occasion. Therefore,
it was hard to test whether such a strategy was really employed on an in-
dividual level. This question could perhaps be addressed with the gathered
data – do subjects engage in more social learning when they performed worse
than the other subjects in the pool? – but the data were unfortunately not
analyzed in this fashion.
McElreath et al. tested undergrad students from psychology classes of UC

Davis, California [122]. In their task, there were two options whose payoffs
were subject to variance, so that it was impossible to tell the better option
with absolute certainty. Variation in the mean payoffs of the options, as well
as changes in the payoff variance, were changed according to condition. In
the first experiment, individual learning was tested and a model of expo-
nential discounting handily beat two Bayesian learning models in fitting the
data. This confirms our choice for the individual learning strategy.
In the second experiment, subjects could reveal the choice of one group

member who played in the same environment. 20 of the 55 subjects never or
almost never acquired social information. Moreover, social information use
declined over time. Fitting three models, pure individual learning, random
copying, and using social information as confirmation, showed that there was
no clear winner. The authors conclude, however, that confirmation provides
a better fit than random copying, but that overall, social learning was used
very rarely.
In the third experiment, subjects were allowed to reveal the choice of all

group members (size 4 to 7). Subjects were more likely to acquire social
information in this experiment but its usage still declined over time. Ran-
dom copying achieved the best fit, except when the environment fluctuated
and variance was low, in which case conformity fitted best. Unfortunately,
neither did the authors show the probability to adopt an option as a function
of its frequency in the sample, nor did they analyze whether social informa-
tion usage depended on previous outcomes. Firm conclusions with regard to
social learning usage cannot be drawn.
In a study with 11th grade college students from Cambridge, UK, Mesoudi

studied social learning of designing virtual arrow-heads [123]. Subjects
mostly had to rely on individual learning but sometimes were allowed to
learn socially. If they did, they could reveal the cumulative payoff of other
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players and then the choice of one of these players. This allowed them to use
a strategy such as Imitate The Wealthiest. Interestingly, Mesoudi found that
subjects who had low cumulative payoffs shifted their choice more strongly
in the direction of the demonstrator than subjects who did better. This is
supportive of a strategy that relies more on social learning when not very
successful or uncertain about the better option, i.e. of OC or IDC. How-
ever, since subjects were forced to use individual or social learning in specific
rounds, flexibility in switching was not possible; a strategy like OIL could
not have emerged. We thus learn very little about which social learning
strategies subjects would engage in were they free to choose.
More support in favor of IDC comes from Morgan et al. [129] with mostly

students of the University of St Andrews, Scotland. They found more con-
fident subjects to be less likely to use social information; on a Likert scale,
subjects who self-rated most confident in a task were approximately 4 times
less likely to use social information than those who self-rated least confi-
dent (confidence ratings reflected actual performance). But even the least
confident subjects used social information only less than half of the times.
Harder tasks led to more reliance on social information. When there was
more consensus among the demonstrators, which should correlate with their
being correct, the subjects’ probability to rely on social information also
increased. These findings support the idea that the reliability of a cue is
factored in when deciding between individual and social learning.
Williamson and colleagues studied imitation by 3-year old children [180].

Two treatment groups differed in whether the task was easy or hard to solve.
Next, a demonstrator showed an effective way to complete the task. The
researchers found that children who faced the difficult task but not those
who faced the easy task were more likely to engage in the same behavior as
the demonstrator. This is consistent with opportunistic social learning.
In the described experiments, children always had prior experience with

the task. In a later study, Williamson and Meltzoff introduced a variation of
this experiment [179]. Here children either encountered an easy or a difficult
task. Groups were further separated into a condition were subjects could
either make the experience themselves or saw a demonstrator making the
experience. After this phase, there was another demonstration of a novel
behavior that led to an easy resolution of the problem. Children who faced
the difficult task, even when they had no personal experience with it, were
more likely to later imitate the demonstrated behavior that led to an easy
solution. This is also consistent with opportunistic social learning.
Moreover, children who could only observe in the first phase, regardless

of whether the task was difficult or not, were more likely to imitate the
behavior from the second phase than those who had personal experience.
This demonstrates a bias in favor of own experience over observed experience.
Such a bias is consistent with a meta-analysis [176] that showed that personal
experience is weighted more heavily than observations, approximately in a
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2:1 fashion

3.4.3.3 Whom to imitate

ITW consists of imitating the individual with the highest aggregate num-
ber of successes so far, which could be interpreted as “wealth”. Therefore,
evidence in favor of ITW would require to show that individuals who some-
how display that they were particularly successful in the past are imitated
preferentially.
Henrich and Gil-White summarize evidence, mostly from anthropologi-

cal literature, that skillful individuals usually are especially prestigious and
are more likely to be imitated [87]. Chudek et al. [33] tested for such
“prestige-bias” in children and found that children are more likely to im-
itate a model who was previously given more attention. This preference
was domain-specific in the sense that prestige was not translated from a
food-related task to an artifact-related task and vice versa.
Psychological studies by Hill and colleagues [95] further supported the

existence of ITW-like strategies. The researchers presented participants with
fictitious persons who could either elicit envy or not. Envy was triggered by
signs of wealth and by attractiveness. It was shown that the participants
spent more time examining the wealthy and attractive persons, and were
later able to remember more details about them. Men and women were
found to be equally envious of wealth but women were more envious of looks.
These results suggest that special attention is paid to, and more details are
remembered about, successful individuals. This in turn would allow to more
easily imitate this person, but whether there was an increase of imitative
behavior of successful individuals was not tested. Still the shift in attention
is compatible with a strategy that relies on imitating the wealthiest.
Mesoudi and O’Brien tested social learning with students of the University

of Missouri-Columbia, USA [126]. The task was to build a virtual arrow-
head that could be changed along several dimensions. The multiple local
optima in design were fixed. In the first treatment, subjects were shown the
cumulative scores of six models and could copy one of the models. In total,
182 of 225 choices (81%) resulted in copying the most successful individual.
In this treatment, subjects did, however, not have a choice to consult other
information like individual experience; they were effectively forced to use
this social learning strategy. Hence these results cannot be counted strongly
in support of ITW.
In another treatment, subjects could learn individually and additionally

could reveal the cumulative score of other subjects in specific rounds. After
having revealed the scores, subjects could look at the choice of those other
subjects. Overall, 82 of 87 decisions (94%) were preceded by looking at
another player’s choice. Of those 82 decisions to peek, 68 were directed at
the player with the highest cumulative score (83%). Therefore, if subjects

146



3.4 Discussion

did not have to rely on ITW but could use individual learning instead, they
mostly chose to acquire social information. Other social learning strategies
such as conformism or PBSL were, however, not possible. Interestingly,
subjects looked only at an average of 1.5 other choices during 5 rounds,
although they could have accessed 1 choice per period. It thus seems that
they used social information sparingly. These results were broadly replicated
in a follow-up study [123].
Forcing participants to use individual or social learning in particular round

made it difficult to tease out what learning strategy was actually preferred by
the subjects. To correct this, Mesoudi performed another experiment that
used the same setup, designing virtual arrow-heads, but allowed to freely
choose the learning strategy [124]. Subjects were undergrad students from
Queen Mary University, London, UK. The available learning strategies were
individual learning, conformity, random copying, averaging of the choices
(not payoffs!) of other group members (“blending transmission” [22], which
is possible if the options are not binary, as in our model, but continuous),
and copying of the choice of the most successful player (similar to ITW).1
The results showed that when subjects engaged in social learning, copy-

ing the most successful was most prevalent (84%), with the remaining social
learning strategies being approximately equally likely. This result is easy to
understand. Random copying is never a good choice when there are better
social learning strategies available. Averaging was an inferior strategy by de-
sign, since there were multiple optima; when subjects cluster in the different
local optima, averaging results in ending in a payoff valley. Conformism was
also inferior to “ITW”, since the learning process included very little noise,
so that the best score was also associated with the best choice most of the
time – there was no reason not to rely on this signal.
Most surprisingly perhaps was the finding that social learning was rarely

used. Instead, subjects used individual learning in 77.5% of the rounds.
This is surprising because higher frequency of social learning was associated
with higher payoffs. The problem with this study was, however, the incentive
structure. Each participant received 5 pounds as a show-up fee; additionally,
if at the end of each of the three sessions a subject performed better than
a control group, she earned 1 additional pound. This means that she could
earn at best 3 more pounds, or 60%more. Now one has to consider that social
learning in this experiment consisted of pressing one button and then the
computer would automatically determine the arrow-head design. Individual
learning, however, allowed to tweak each of the variables and then look
at how this visually affected the virtual arrow-head. Therefore, individual

1Mesoudi calls a strategy that relies on this latter type of information “payoff-biased social
learning”, since it is biased by the cumulative payoffs. In our definition, payoff-biased
social learning is instead targeted at copying choices that generated high payoffs specif-
ically in the last period. We call the social learning strategy that looks at cumulative
payoffs Imitate The Wealthiest instead.
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learning was intrinsically more rewarding and may thus have crowded out
social learning. This is a concern that potentially exists with all similar lab
experiments.

3.4.3.4 Payoff-bias

Our simulations showed that payoff-biased social learning strategies were
superior to other forms of social learning. Over the whole tested parameter
range, individual learning, conformism, and the strategies mixing both al-
most always became extinct. Thus PBSL should always be the first choice
if possible. Two obstacles could be in the way of using payoff-information
of others to inform one’s own choice. First, the payoff-information might
simply not be available, depending on the situation. For example, when
two restaurants are presented, one chock full of people and the other serv-
ing only few customers, one might argue that only frequency-information
is available. However, if one could somehow see that all the customers of
the full restaurant turn away from their food in disgust, whereas the cus-
tomers of the other restaurant visibly enjoy their meals, then the valuable
payoff-information is present. The availability of payoff-information is thus
dependent on the specific situation.
Although payoff-information might be available, it could also be possible

that human cognition is not able to make use of it. Although this might
seem unlikely, there are precedents for this inability. For example, the food
choice of Norway rats can be reinforced, and aversion be overridden, if a rat
has contact to a model rat that ate the tested food item. Surprisingly, this
reinforcement occurs even when the model rat was injected a nauseating
substance, presumably indicating that the food item was toxic [66]. Rats
thus seem to be incapable of taking the result (becoming sick) of a certain
action (eating a food item) into account.
To extend this conclusion to humans would be premature, though. Quite

in contrast, tests have been conducted showing that payoff-information is
taken into account even by three- to four-year old children. In one test
[18], two models (hand puppets) were presented to children. One model
called four objects whose names were familiar to the test subject by the
correct name, whereas the other model called four other familiar objects
by a wrong name. Next, two objects with names unknown to the child
were presented. The good performer called one of the objects a fantasy
name X, the bad performer called the other object this same name X. The
experimenter then asked the child to give her X. Children significantly more
often handed over the object that was called X by the good performer. In
a second test, the experimenter instead asked the child to give object Y,
with Y being an unknown fantasy word. Children more often handed over
the object not called X by the good performer. This test shows that even
very young children are capable of distinguishing whether a certain action
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(naming an object) was carried out successfully or not and that they use
this information to inform their own decisions. It thus seems unlikely that
making use of payoff-information, if present, should be too hard a cognitive
task for adults to perform.
Williamson et al. also tested social learning in 3-year old children [180]. As

reported earlier, they found that when children had difficulty accomplishing
a task, they were more ready to adopt the behavior of a demonstrator. This
is consistent with OC. In another experiment, the treatment groups were
separated in two: one in which the demonstrator successfully completed the
task and one in which the demonstrator failed to accomplish the task. Sub-
jects performed the demonstrated behavior more frequently after observing
it but were significantly more likely to imitate in the former, successful case,
showing that they take success/payoff into account. This also confirms that
already at a young age, children show the potential for PBSL. The authors
also show that the children do remember the demonstrated act even if it was
unsuccessful, meaning that their choice to not use this act was deliberate
and not because the act was absent from their repertoire.
Some experiments have shown that subjects are more likely to adopt an

option that has been successful in the last period. Offerman and Sonnemans
showed that when undergrad students from the University of Amsterdam,
NL, had to make investment decisions that depended on estimating prob-
abilities, subjects took the estimations of other players into account [135].
Unsuccessful players shifted their estimations more strongly, suggesting op-
portunistic social learning or social learning in case of uncertainty about the
better option (OC or IDC). Furthermore, shifts were stronger in the direc-
tion of successful players, suggesting a payoff-bias. Similarly, Apesteguia et
al. showed that in an oligopoly game, subjects were more likely to adopt an
option if the difference between the payoff associated with this option and
their own payoff was particularly high [2]. All these results are compatible
with social learning strategies we studied and in accordance with previous
theoretical findings [151, 152].
Further evidence for the use of PBSL comes from computer experiments

with students. In the experimental part of their paper, McElreath et al.
[120] present an experimental paradigm for testing social learning in the lab.
Subjects were “farmers” and had to repeatedly choose between two “crops”.
After each period, their yield of the corresponding crop was revealed to the
subjects. Furthermore, subjects could inspect choices and yields of other
participants. They knew beforehand that one crop would have a higher
mean yield but that variance was so high that the yields of both crops could
not be distinguished with certainty.
(By the way, the experiment did not include exogenous costs of learning,

and payoffs were designed to leave subjects uncertain, thus making social
information a factor in reducing uncertainty instead of a means to save the
cost of individual learning. In their theoretical analysis, in contrast, they
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assume that there is a cost of learning and that individual learners know
with certainty which option is better. Thus, curiously, their experiment
more closely resembles our model than their own model.)
McElreath et al.’s analysis of the participants’ choice behavior revealed

that the model that best explains the data consists of relying on payoff-
information but falling back on frequency-information if payoffs of both crops
are similar. They thus conclude that a payoff-biased social learning strategy
with a payoff-conformism trade-off is most likely to be used.2 However, as we
saw, there are many ways to implement payoff-biased social learning strate-
gies that also react positively to frequency-information. Their evidence can
therefore not be used to distinguish between the different PBSL strategies.
As we noted, one general mechanism to implement a conformist PBSL

strategy is to pay more attention to successes than to gains. Interestingly,
McElreath et al. observed that in each of the 15 rounds, subjects were a little
bit more likely to inspect the yields than to inspect the choice of other partic-
ipants. This indicates that subjects first determine who the more successful
participants are and then inspect those participants’ choices, a behavior that
would be consistent with paying more attention to successes. Unfortunately,
McElreath et al. did not further analyze the behavior – neither the order
of information acquisition, nor specific biases towards successes or failures
were tested –, so that this possibility remains but speculation.
We found, to our knowledge for the first time, that the mean success rate of

the environment is a crucial parameter in determining which social learning
strategy prevails. This makes testing for specific social learning strategies in
the real world more difficult than it might seem. For example, one prediction
that follows from our simulations is that successes should be valued more
heavily than failures; there should be an optimist bias. If one were to find,
however, that both are valued equally, this would not conclusively refute
our findings, because we saw that the more frequent successes are, the more
attention should be paid to failures and vice versa. The optimist bias could
thus still be present but balanced out by the mean success rate.
If we see that people in general pay more attention to the rarer event,

this finding would be trivial, as it results from basic information theory. It
would only be interesting if one could show that an optimist bias exists when
success and failure are equally likely. The critical control would thus have
to be the mean success rate as determined by the environment. Of course,
this mean success rate could be manipulated in laboratory experiments, but
if priors about the optimal relative weight are “imported” into the lab by
drawing on real world experience, this manipulation would not be revealing.
Keeping these restrictions in mind, is there experimental evidence in favor

2Note again that the specific strategy analyzed in the theoretical part of their paper,
which we call “PBSL McElreath”, does not trade off payoff- and frequency-information,
but instead uses frequency-information as a tie breaker. The strategy we call “PBSL
with payoff-conformism trade-off” does, however, trade off both types of information.
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or against the findings that relative weights should be adjusted for rarity
and present an optimist bias? The first thing that will probably come to
mind are the famous experiments by Kahneman and Tversky about loss
aversion [98, 99]. They showed that relative to a subject’s current status,
losses produce greater disutility than gains of the same magnitude produce
utility. For example, if after a fair coin flip, heads would result in losing $100
and tails in gaining $100, most people would decline to participate in such a
gamble. A risk premium would have to be paid to make subjects participate.
What Kahneman and Tversky found is that typically, gains have to be twice
as large as losses to compensate subjects, so only if tails resulted in $200 or
more would a typical subject agree to take the gamble.
These results seem to speak against our notion of an optimist bias but a

straightforward application to our model is not possible. In Kahneman and
Tversky’s experiments, subjects responded to future prospects that would
affect their own wealth; in our example, subjects respond to past experience
that affected the wealth of other individuals. There are differences in both
the time of realization (future vs past) and the persons from which experience
is drawn (self and others).
There are more differences that might explain why Kahneman and Tver-

sky’s findings seem to contradict our predictions. In the context of individual
learning, it has been shown repeatedly that it makes a difference whether
subjects read a descriptive stimulus that describes what will happen to these
subjects in terms of probability, or whether they instead draw on their own
experience before making a decision [91, 92, 172]. For example, when sub-
jects draw cards that yield payoffs from different decks, they tend to un-
derestimate rare events, a finding that could not be attributed to sampling
biases. Kahneman and Tversky found the opposite, though, namely that
small probabilities are overweighted [99, 171]. In their experiments, subjects
did, however, learn probabilities not from experience but from description.
Thus the mode of learning completely changes the behavior of human sub-
jects.
The other difference between loss aversion and the optimist bias we conjec-

ture is the distinction between what happens to self and what one observes
happen to others. While an equal number of successes and failures may
push a person away from repeating a behavior because she is loss averse,
observing this same proportion of success and failures in other persons may
reinforce the behavior because of the optimist bias.
Bandura performed experiments that shed some light on how payoffs to

others influence subjects. In one experiment [9], children that were on aver-
age 4-year old were exposed to a movie of a person mistreating a clown doll.
Afterwards, the actor was i) rewarded, ii) punished, or iii) no consequences
followed (control condition). Next, the children entered a room with the
same clown doll and the number of aggressive acts directed towards this doll
were measured. Bandura found that children who observed the actor being
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rewarded did not engage in more aggressive acts than children in the control
group, whereas children who observed the punishment significantly reduced
their rate of aggression. This experiment can be interpreted as negative
outcomes (punishment) affecting children more than positive outcomes (re-
wards). This contradicts our hypothesis that positive outcomes should have
a higher impact.
Several caveats exist for this interpretation. First, as we noted, the prior

probabilities have to be taken into account. For instance, at the age that
the children were tested, it is very likely that they know that aggressive
behavior results in punishment. If the actor is not punished, even in absence
of a reward, the expectation of a punishment would be contradicted. No
punishment could hence be interpreted as a reward. If this were the case, one
should not be surprised that the reward and the control condition resulted
in similar outcomes.
A second caveat is that strictly speaking, our model only makes predic-

tions if more than one person is observed. So an optimist bias could be
expected if, after a child observed two actors being punished and one actor
being rewarded for the aggressive behavior, the child would still engage in
more aggressive behavior compared to the control condition (the appropri-
ate control would be children who did not observe any actors at all). Again,
though, the results would be contingent on unobservable priors. Bandura’s
experiments thus unfortunately tell us very little about our question, which
is simply owing to his experiments being designed with completely differ-
ent research questions in mind. An experiment that is supposed to test our
predictions would have to be designed carefully and have good controls.

3.4.3.5 Social information use on the internet

Laboratory experiments on behavior have some limitations, many of which
are summarized by Levitt and List [112]. These authors conclude that field
experiments should play a bigger role in experimental economics. Despite
the difficulties in executing more naturalistic experiments, we concur with
them that many phenomena found in the laboratory may not transfer to the
real world.
One possible route to take in order to study social learning in a more

“natural” fashion is to look at the internet. Two advantages compared to
lab experiments come immediately to mind here, namely that subjects are
not supervised and behave according to their “natural” preferences and that
the sample size is potentially enormous. In the following, we will show some
examples of social information usage on the internet and explain how these
examples relate to the studied social learning strategies.
The world wide web lends itself to the use of social information, as con-

nections between different sites and users are its bread and butter. Data
about the user behavior is routinely tracked to extract valuable informa-
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tion. Moreover, factors such as teaching or norms have less value on the
internet, making it more likely that social information is foremost used for
informational and not normative reasons, as is assumed in our model.
An important part of the time on the internet is spent on news sites. These

sites routinely provide more articles for the readers than they could possible
read; therefore, filters that extract the most interesting articles are often
used. Which articles are more or less interesting could be determined by
the editors of the journals or by some algorithm that evaluates the content
of the article. This would amount to individually considering the relevance
of an article as a guide for readers. However, this is not the only route
news sites usually take. Additionally, they often harness the power of social
information to decide which articles are most relevant for users.
For example, The New York Times, Le Figaro, and Spiegel Online, three

popular news sites in their respective countries, provide information about
the relevance of news articles based on the behavior of other users (see fi-
gure 3.12).3 All three sites have a section that lists the most read articles.
This type of information is akin to frequency-information. It simply reflects
which articles have gathered the highest number of views in a certain stretch
of time, probably with some discounting. Reading the articles that were
most read previously corresponds to a conformist strategy, which adopts the
option that has been most frequently adopted by others.
Moreover, two of the three listed sites show information about which arti-

cles have been recommended most often by other users. A recommendation
can be understood as a positive outcome the recommending person asso-
ciates with the article. If a reader recommends an article, she thinks that it
is well written or relevant to the targeted person. Therefore, recommenda-
tions are similar to successful choices in our model. An article that is often
recommended is like an option that generated many successes. From the
studied strategies, scoring-type PBSL with weights [1/0] is a strategy that
chooses the action that generated the most successes in the sample; failures
are simply ignored. Similarly, a reader who reads an article because it has
been recommended frequently relies on the positive outcome associated with
the article but ignores the negative outcomes (for instance, how often the
article was read and not recommended).
We had a look at the top 10 news sites in the USA according to Nielsen.4

Sites were ranked according to the number of unique viewers from the US.
We were interested in whether these sites provided social information on
their main page to help the readers browse the presumably most relevant
articles. From the list, two sites had to be excluded because they were listed
twice (once as member of a group, once as single sites). From the Tribune

3Sources: www.nytimes.com, www.lefigaro.fr, www.spiegel.de. Information retrieved in
June 2012.

4blog.nielsen.com/nielsenwire/?p=32201. Retrieved May 2012.
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Figure 3.12: Popular news sites from the US (The New York Times), France (Le
Figaro), and Germany (Spiegel Online). These sites provide the user means to filter
the articles according to how relevant other users deemed the articles. The New
York Times and Spiegel Online show which articles have been recommended most
frequently (“most e-mailed” and “verschickt”). All three sites show which articles
have been most read (“most viewed”, “les articles les + lus”, “gelesen”).
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Site Social information
news.yahoo.com yes but type unclear (“trending”)
edition.cnn.com yes, frequency
www.huffingtonpost.com yes, frequency
www.nbcnews.com no
www.nytimes.com yes, frequency and payoff
www.chicagotribune.com no
www.foxnews.com yes but type unclear (“trending”)
www.usatoday.com yes, frequency

Table 3.1: The most popular news sites among US citizens as of May 2012 accord-
ing to Nielsen. Six out of the eight sites provide some kind of social information.
Frequency-information is the most frequent one.

Company group, we chose, before knowing the outcome, the Chicago Tribune
website.
The results from the visited news site are listed in table 3.1. We found

six out of eight sites to directly give access to social information on the
main page. Frequency-information was made available in four cases, payoff-
information in one case. Two sites provided frequency-information but were
unclear about the exact type, designating it as “trending”. We suspect that
this also corresponds to frequency-information but one cannot exclude that
payoff-information plays a role here.
It should be noted that even though we searched for explicit provision of

social information, that does not mean that when this information is not
provided, it is not used. Quite in contrast, most news sites determine the
placement of head lines according to algorithms that take popularity and
other types of social information into account. Therefore, what one sees on
a news site is almost certainly influenced by what other visitors clicked on
in the past, and not just by the judgment of the website’s editors.
Next, we were interested in how other popular websites make use of social

information. Again, we looked at the Nielsen data that listed the websites
that had the highest number of unique US visitors as of May 2012.5 In
addition, we consulted Alexa, a web analysis company, which provides a daily
update about the most popular sites of its users, who are not exclusively of
US origin.6 The results are shown in table 3.2. In the following, we will
show that almost all of these sites make use of social information to improve
their content.
Some of the sites do not need further discussion. www.wikipedia.org is an

online encyclopedia that allows everyone to edit articles or write new ones,
and is frequently praised as the prime example of “swarm intelligence” or

5blog.nielsen.com/nielsenwire/?p=32201
6www.alexa.com/topsites. Retrieved 8. February 2013.
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Rank Nielsen Alexa
1 www.google.com www.google.com
2 www.facebook.com www.facebook.com
3 www.yahoo.com www.youtube.com
4 www.youtube.com www.yahoo.com
5 www.hotmail.com www.baidu.com
6 www.microsoft.com www.wikipedia.org
7 www.aol.com www.live.com
8 www.wikipedia.org www.qq.com
9 www.amazon.com www.amazon.com
10 www.ask.com www.twitter.com

Table 3.2: Top 10 websites with the highest number of unique viewers originating
from the US (Nielsen) or among users of the Alexa web analysis tool. Regard-
ing www.hotmail.com, Nielsen apparently pooled hotmail, MSN, WindowsLive, and
Bing; we used hotmail as stand in.

“wisdom of the crowd” [166]. The Microsoft services (including Live) and
the Yahoo! services also need not be further described. Providing an e-
mail service (hotmail, yahoo mail) does not require social information, and
we will treat search engines (bing, yahoo search) later. www.aol.com is, in
essence, also a news portal, but since it provides additional services, it was
apparently not listed in Nielsen’s top news sites. As most other news sites,
AOL provides direct information on its main site about the most popular
articles and videos. www.qq.com is a Chinese news hub associated with a
very popular instant messaging service. Due to the language barrier, we
cannot properly evaluate this site.
Other sites are more interesting to discuss. Amazon is an online retailer

that has a large inventory of products to sell. It is in this site’s interest
to provide the potential buyers useful information about which products
could be especially relevant to them. This is achieved in several ways (see
figure 3.13).7 When the user types in a product type, a list is displayed
which is ordered according to relevance, a criterion that is determined in an
unknown way. Second, when the user chooses a product type from a list,
it is ordered according to popularity, which allows her to assess frequency-
information and thus the use a conformist strategy (this is basically a best-
seller list). Last, each product has a five star rating (beginning at 1, with
5 being best), which is shown very prominently. This rating is simply the
rounded arithmetic mean of all individual ratings of the product and thus
corresponds to the average payoff of the product. A strategy akin to PBSL
McElreath, which chooses the option with the highest average payoff, can
thus be used based on this information.

7Information about www.amazon.com. Retrieved February 2013.
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3.4 Discussion

Figure 3.13: Social information displayed by www.amazon.com. A: When typing
in a specific keyword, results are by default sorted by relevance using an unknown
algorithm. B: When browsing by category, results are by default sorted by popular-
ity. C: Each product that has been rated shows the average rating on a scale of 1 to
5 stars. Moreover, the total number of reviews is shown. D: The user may inquire
more detailed information about the star ratings, in the form of a histogram (left)
and the total numbers (right) of each rating.
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The user can access the total number of ratings (frequency-information),
as well as how often each rating has been awarded. Therefore, even more
complex social learning strategies based on scoring could be employed. Ama-
zon also allows users to write a custom review of the products, which is
more akin to teaching or giving advice and thus not very interesting to us.
Moreover, amazon uses an algorithm to determine similarities between users,
which allows it to suggest products that similar users were interested in in
the past. These idiosyncrasies are also not captured by our model.
What can all these findings from amazon teach us? Obviously, amazon

is interested in providing information that boosts its sales. Therefore, the
information has both to be relevant and it should be considered by the user
as authoritative (whether consciously or not). It is unlikely that a company
that intends to maximize revenue would provide useless information. Since
amazon displays both frequency and payoff-information, the users probably
make use of both types. Only amazon knows the weights that are attached
to these information sources, so we are left guessing whether its customers
use strategies that are similar to our social learning strategies. Popular-
ity and average rating being the most salient forms of information suggests,
though, that conformism, PBSL McElreath, or a mixture (PBSL with payoff-
conformism trade-off) are mostly used. Although amazon also provides in-
formation that would allow the use of scoring-type PBSL, this information
is less salient, suggesting that scoring-type PBSL is less relevant.
In an experiment with Taiwanese students, Chen tried to evaluate how

different social cues affect decision making in a setup that mimics amazon’s
bookstore [32]. Subjects were confronted with a hypothetical decision to
buy books using an interface that is similar to amazon’s. Chen found out
that in a binary choice, a book with a higher star rating that is otherwise
similar to another book is considered more likely to be purchased. However,
the quantitative difference in star ratings (2 vs 4 stars difference) did not
significantly affect the likelihood to buy. This indicates that subjects use
payoff-bias to inform their choice, but that the influence behaves in a step-like
fashion, corresponding to how we modeled social learning and contradicting
other models were choice scales with difference in payoff [151, 152].
Furthermore, Chen found out that higher sales volumes also resulted in

a higher likelihood of subjects indicating a willingness to purchase a book.
This finding indicates that frequency-information alters consumer decisions,
which is more or less common knowledge. The researcher also tested how
recommendations affect the subjects’ choices. It was found that an expert
recommendation improves potential sales compared to no recommendation,
but that the recommendation from other consumers improves potential sales
even more. With care, this could be interpreted as weighting the positive
outcome of many similar individuals – payoff-biased social learning – more
heavily than the positive outcome of a single, albeit knowledgeable individual
– imitating the wealthiest.
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Youtube is the largest video hosting platform on the internet.8 Similarly
to amazon customers, youtube users have access to much more content than
they could possibly consume. Videos on the front page of youtube are chosen
according to some relevance algorithm. This algorithm probably compares
past behavior of the user and, through comparison with other similar users,
tries to predict what the current user might be interested in. Thus social
information is used here but cannot be assessed directly by the user.
Upon entering a video query, a list of possible results is displayed. Here

too, relevance is determined by some internal algorithm, which takes into
account several signals. The user has the possibility, though, to change the
filter to rank the results, among others, according to popularity and average
rating.
The most salient forms of social information shown to the user is the

number of times a video has been seen (see figure 3.14A). It is thus very
likely that frequency-information is the most relevant for youtube’s users.
Moreover, a rating is accessible, but only after a video has been selected
(see figure 3.14B). This rating is more coarse than amazon’s, only allowing
for positive (thumbs up) or negative (thumbs down) ratings. The total
numbers of positive and negative ratings are shown, as well as a bar that
reflects the proportion of positive to negative ratings. The total numbers
could be used for a scoring-type PBSL strategy, whereas the bar could be
used for an averaging-type PBSL strategy. As always, we do not know how
the users actually use these types of information, but the mere fact that
they are present suggests that they are relevant for the user. In contrast
to amazon, youtube makes the frequency-information more salient than the
payoff-information, which is also less detailed on youtube.
Is there a certain reason why amazon and youtube differ in how they

place the weights? First of all, amazon is probably reluctant to fully disclose
the sales volume of each individual product, so that frequency-information
has to be ordinal (ranked) and not cardinal (total number of sales). This
reduces the information contained in the frequency-information and makes
it less informative. On the other hand, the rating system of youtube is more
coarse, maybe because a fine-grained rating of a video is harder than of a
typical amazon product, making payoff-information less informative. This
could explain the difference in information salience.
Alternatively, the relevance of payoff-information could be deteriorated

when ratings are too similar. Personal experience suggests that rated youtube
videos have almost always an overwhelmingly positive rating, so that this
rating cannot be used to distinguish most video clips. However, most rated
amazon products also have overwhelmingly positive ratings, meaning that
the same argument could apply. But since amazon’s ratings are more fine-
grained, differentiation is still more readily possible.

8Information about www.youtube.com as of February 2013.
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3 Rogers’ paradox and informational breakdown

Figure 3.14: www.youtube.com provides two direct types of social information. A:
The most salient type is frequency-information, which is shown after a query has
been entered (“Aufrufe”, meaning the number of views). B: Additionally, infor-
mation about the rating is shown, but only after a video has been chosen by the
user.

Facebook is a social network and therefore massively makes use of social
information. For example, the users are ranked according to how relevant
facebook deems them to be. This ranking is similar to the PageRank system
designed by google, which we will explain later. Here we want to focus on a
different aspect of social information use, though. Facebook allows its users
to “Like” certain web pages, comments, etc. (see figure 3.15A). A “Like” is
essentially a display of approval, a positive rating. The total number of Likes
is then displayed. There is no frequency-information, as e.g. the number of
Likes per visitor of a page. Neither is negative information shown. This
very sparse type of information can only be used to perform a scoring-type
PBSL strategy with weights [1/0]. Remember that this strategy only takes
into account positive outcomes, ignoring negative outcomes. We saw that
this strategy performs reasonably well under some conditions.
Why does facebook restrict the amount of given information to merely

positive outcomes? One reason is certainly to not offend its users. When a
user posts a comment that receives a lot of negative ratings, the user may be
upset and quit using facebook. Facebook is not anonymous, so users would
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Figure 3.15: A: The facebook “Like” button allows users to indicate that they like
a certain web page, comment, picture, etc. The total number of “Likes”, here 929,
is usually shown. B: For each user, twitter shows the number of tweets, the number
of people being followed by that user (“folgt”), and, most importantly, the number
of followers of that user. Information as of February 2013.

probably take negative ratings personally. In contrast, users of youtube and
amazon typically do not know each other and therefore, there is less risk of
being offended by a negative rating.
There could be another reason why facebook restricts the displayed social

information to only positive outcomes. The highest share of Likes falls on
comments, photos, web pages, etc. that have very few comments. This
is linked to the very personal nature of facebook – there are simply not
that many persons who are interested in a picture of your dog in the first
place (personal observation). As we found out earlier, with small sample
sizes, PBSL with weights [1/0] actually performs quite well, better than,
say, PBSL with weights [4/− 1]. Although PBSL McElreath also performs
quite well with small sample sizes, giving an average of three ratings would
look ridiculous. The sparse use of social learning on facebook may thus serve
a purpose.
www.twitter.com is a micro-blogging service. Its foremost use is to write

and read “tweets”, messages of no more than 140 characters. To sort through
the mass of possible people to follow, twitter indicates for each user the
number of followers she already has (see figure 3.15B). This allows the reader
to quickly find the most popular twitter users, thus engaging in a conformist
strategy.
In the lists of the most popular websites, we have several search engines,

namely www.ask.com, www.bing.com, www.yahoo.com, www.baidu.com, and
www.google.com. According to both lists, google is the most popular site
(although, according to Nielsen, US citizens spend four times as much time
on facebook as on google). We will focus on google search, which is by far
the most frequently used search engine and also revolutionized web search
in general.
Before google entered the market, search engines evaluated the relevance

of a website – and thus its position after a search query – by trying to assess
its content [113]. For example, if a user searched the word “dog”, a page
that contains a lot of instances of this word or whose title contains the word
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would have a good shot at a top spot. This system was unsatisfying, though,
since meaning was, and is, notably difficult to extract from a site. Also, the
system could easily be gamed; just having the word “dog” appear a hundred
times on a site, even if it did not deal with dogs, made it rise in rank.
The google search engine took a different approach to rank websites [113,

138, 166]. Put simply, a website received a higher score (the “PageRank”)
when many other websites linked to it. This is similar to the frequency-
information in our model. The advantage of this system was that google
search did not need to evaluate itself how good the content of a website was.
If other people found the website relevant, they would be more likely to link
to this site. Thus google made use of the individual experience of other
people to improve its own results. This is social learning at its finest.
In reality, the PageRank is a little bit more complex than just described.

Not all links are treated equally. Instead, links originating from websites
that were themselves often linked to have a higher weight [113, 138, 166].
For example, many websites link to the homepage of the New York Times.
Therefore, if the New York Times links to another website, that site’s PageR-
ank increases more than if just some minor website linked to it. Although the
rule is recursive, google founders Page and Brin developed an algorithm that
allowed to calculate a steady state, even if billions of links are included [138].
The PageRank improved the search results so considerably that despite ex-
isting competition, google quickly became the most popular search engine
[113]. Other search engines nowadays use similar algorithms as google.
In our social learning model, there could, theoretically, be a social lear-

ning strategy that works similarly to the PageRank. Until now, all sampled
individuals are treated the same. However, one could design a strategy that
ranks individuals according to how often they have been copied, and then
imitates the individual who has been copied most. In the next step, it could
place different weights according to how often the copiers have been copied,
and so on and on. The problem is, however, that it is very unlikely that this
type of second order social information is available in most real world situa-
tions, not even mentioning higher orders. Not only is this information hard
to come by, after some recursions, it is likely that the signal is drowned in
noise, making it uninformative. The structure of the web allows algorithms
like the PageRank to work; in the real world, things are unfortunately not
that easy.
As in social learning models, the internet runs the risk of relying too

much on imitation. Are websites often linked to because they are relevant or
because they figure prominently in google search? Are popular products on
amazon also the best products, or do users just buy products because other
users did before them? The same dynamics that we describe in our models
are possibly governing interactions on the web. It is not hard to imagine
that online systems are prone to the same inefficiencies caused by Rogers’
paradox as are social learning models.
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3.4.3.6 Reinterpretation of experimental results in the light of social
learning

Many experiments and observations indicate that social information is an
important source for decision making. However, most experimental designs
test subjects under the assumption that social learning plays no role. For
many experiments, this will be true, but some experiments may be affected
by social learning without the researchers being aware of it. This may be
especially true for experimental economics, were several players interact and
feedback about the other players’ choices and payoffs is often provided. (Re-
views of some of the most important findings from experimental economics
can be found in the literature [28, 57, 65].)
In the Public Goods Game (PGG), subjects typically play anonymously

with the same group, most of the times consisting of four players total, for
several rounds. At the beginning of each round, they receive an endowment
of, say, 20 monetary units (m.u.), of which they can contribute any amount
to the public good. The total contribution is multiplied by, say, 1.6, and then
redistributed equally among the players. Therefore, the group can maximize
the reward by contributing everything but it is individually rational to con-
tribute nothing. Over time, after players adjust, typically they notice this
and lower their contributions to the lowest possible level.
Furthermore, subjects in these experiments are often allowed to punish

other players; this punishment is costly for the punisher but even more costly
for the punished player. As punishing is costly, rational choice would dictate
to never punish, so no player should be afraid of being punished and the end
result should be that nobody punishes and nobody contributes. The actual
outcomes are different, though. Some players do punish, targeting especially
those who contribute little, which results in contributions rising. In contrast
to what should be expected, the possibility to punish increases the level of
cooperation in the experiments.
Several explanations have been forwarded to explain this deviation from

expectations. Subjects could act rationally but their utility could depend on
the utilities of the other group members, as e.g. proposed by the inequity
aversion model [60]. Alternatively, people may be motivated by reciprocity
[53]. Although these kind of theories do take into account how other players
behave, they do not account for social learning. They focus on the outcomes
of actions, what payoffs they generate or what choice sets they produce, but
they do not allow for the possibility that players instead prefer to imitate
the actions of others.
We want to illustrate how social learning may affect outcomes in the PGG.

In the experiment just described, subjects in the non-punishment condition
are informed about the total contribution after each period. Say that player
1 contributes 20 m.u. to the public good and player 2 contributes nothing;
player 3 and 4 contribute 10 m.u. each. After this decision, the total con-
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tribution is 40 m.u., resulting in the public good growing to 64 m.u., which
amounts to 16 m.u. being awarded to each player. Player 1 now has 16 m.u.
total, player 2 has 36 m.u. total, player 3 and 4 have 26 m.u.
Imagine that the players use some form of opportunistic social learning.

Player 1 has made a loss compared to the group and is therefore likely to
adopt another choice. For example, the average contribution of the other
players was 20/3, so player 1 may contribute 7 in the next period. Player 2,
however, has made a gain and will not change her strategy. Similarly, player
3 and 4 received exactly the average payoff and thus do not change their
behavior.
In the next period, player 1 contributes 7 m.u., player 2 nothing, the other

players stay at 10 m.u. Total contributions are 27 m.u., which amounts to
each player receiving 11 m.u., so that player 1 has made 24 m.u., player 2
has made 31 m.u., and players 3 and 4 have made 21 m.u. each. Now those
latter two players fared worse and could therefore imitate the other players’
choices, which again would lower total contributions. This behavior would
finally mirror the downwards trend in contributions for the non-punishment
part of the experiment.
In the punishment part, players are informed about each single contribu-

tion before they can make their choice to punish [59]. They also are informed
about how much they were punished but do not see the payoffs after pun-
ishment. Fehr and Gächter observed that those who contributed less to the
public good than the average were most likely to be punished. Say that we
see the same initial contributions as before, but now player 2 gets punished
for defecting. Therefore, she receives a lower payoff and, instead of being
imitated, may thus herself imitate the choice of other players. As the play-
ers cannot directly observe how costly punishing affects payoffs, they may
not notice the opportunity of second-order free-riding (contributing to avoid
punishment but not punishing others). This dynamic could thus lead to the
observed upwards-trend in the punishment condition.
Of course, the explanation based on social learning is totally ad hoc. Al-

though it could not explain some of the observations (for instance why there
is punishment of free-riders in the first place, or why there are differences
between cultural groups), it could still plausibly replicate these and other
findings. Furthermore, social learning makes some unique predictions. For
example, the way that feedback is given should influence the outcome. If,
e.g., players would be informed about the decisions and cumulative payoffs
of others, they should be more likely to imitate the most successful player
in these types of experiments.
One could design an experiment where imitating the most successful is nei-

ther consistent with selfish payoff-maximization, nor with fairness concerns
or reciprocity. This would provide valuable insights about the true reasons
for the players’ behavior. Another prediction derived from social learning is
that in more complex tasks, subjects should rely more on copying. A social
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learning model should be developed that can accommodate the experiment
so as to make precise predictions. Our model, for instance, only works for
binary payoffs and would have to be modified to make sensible predictions.
The PGG is not the only game that could be affected by social learning. It

should be interesting to develop a social learning model that is independent
from specific game structure, makes predictions about the applied strategies,
and then to test those predictions against the existing predictions, or to re-
analyze existing data from the new point of view. Since we know that people
learn socially when they are allowed to and when it makes sense, we find it
unlikely that social learning has no influence on economic experiments.

3.4.3.7 Conclusion

There are several experiments that may help to elucidate which forms of
social learning are used by humans. We found evidence for conformism, for
imitation when uncertain or unsuccessful previously, imitation of the most
successful, and payoff-bias. In short, we found evidence for almost all of
the studied social learning strategies. This could mean that there is a lot of
heterogeneity, either between individuals or between tasks (or both). The
most consistent evidence in line with the studied social learning strategies
is in favor of opportunistic social learning, i.e. social learning in case of
uncertainty about the best decision.
Many experiments were tested with a specific social learning strategy in

mind. Other social learning strategies could not be performed owing to
restrictions in the experimental setup, or the authors just did not test their
data for the possibility of these strategies. Especially payoff-bias has received
too little attention. Our findings should help researchers to be more open-
minded about different forms of social learning. An experiment specifically
designed to test our hypotheses should be open towards which information
the subjects use and then see what develops naturally. The experiment that
came closest to this ideal was performed by McElreath and colleagues [120].
In general, the laboratory experiments showed high variability in subject

behavior, as well as under-usage of social information most of the time (over-
usage was rare). Often, random copying was observed when conformity could
have been possible. One reason for these surprising findings may be that
the experiments were not sufficiently incentivized. Also, most test subjects
were “W.E.I.R.D.”9 students. Perhaps, students do not want to make the
impression to follow others instead of thinking of their own, especially if the
experimenters are their own professors. This may explain why they rely less
on social learning than theory predicts.
For all these reasons, more naturalistic settings should be preferred. It

is known that under naturalistic settings, people are very sensitive to social
9They come from “Western, educated, industrialized, rich, and democratic” societies,
which are argued to be the least representative of humanities past [88, 89].
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cues; the presence of images of eyes increases honesty [13] and charitable
giving [140]. Field experiments such as the one about imitation in street-
crossing behavior [56] are a good start. These experiments are of course
harder to control but have higher external validity. We think that the indi-
rect evidence gleaned from social information usage on the internet is also
an indicator for its widespread use. It would be even more desirable to get
direct access to databases such as those from amazon.com to study when
which social information affects whom. Those data are hard to come by,
though, because of privacy concerns and because companies are reluctant to
share data with their competitors. We nevertheless believe that this avenue
of research is promising.
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Appendix
Evolutionary simulations
To check our results for robustness, we repeated the evolutionary simulations
while changing some of the parameters.

Population size of 25,000

Usually, we use a population size of 10,000. However, there is a decent
amount of stochasticity in the results. Therefore, it is cautious to repeat
the simulations with greater population size, as this reduces the amount of
stochasticity [136]. We simulated the default conditions again, this time
with 25,000 individuals. The result is shown in figure 3.16. Only three
strategies are shown to be able to resist extinction at least some of the time.
Conformists became extinct in only 2 of the 10 simulations but their average
frequency was below 20% most of the time. PBSL McElreath could persist
in half of the simulations but if they did, their frequency also was only 20%
on average. PBSL with payoff-conformism trade-off was the most successful,
never becoming extinct and attaining frequencies of 70-80%.
When comparing these results with the simulations with a population

size of 10,000, the outcome is mostly the same. With 10,000 individuals,
ITW and PBSL with weights [4/− 1] managed to not become extinct both
exactly once, but apart from this, the results are consistent. Most notably,
we observe in both conditions PBSL with payoff-conformism trade-off to be
the predominant strategy.

Reversion factor

The environment in our model is heavily influenced by the reversion factor.
The higher it is, the more the environment tends to revert to the mean. This
entails that the stretches of periods in which one option remains consistently
better than the other are shorter for higher reversion factors. To see how this
factor influences the outcome, we changed it from the default value of 1 to
3. The results are shown in figure 3.17. In contrast to the default condition,
PBSL with weights [4/− 1] is the dominant strategy, with conformism and
PBSL with payoff-conformism trade-off being able to persist at low frequen-
cies on average. Higher reversion factors seem to favor PBSL with weights
[4/− 1].
To check this in more detail, we increased the reversion factor even more

to 5. The result can be seen in figure 3.18. Again, PBSL with weights
[4/− 1] are most dominant, while PBSL with payoff-conformism trade-off is
able to persist at a low frequency on average. This time, conformists always
become extinct.
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Figure 3.16: Evolutionary simulations with the default conditions but with a po-
pulation size of 25,000. As always, thin lines show the individual frequencies of the
ten simulations and the bold line the average frequency. The only strategies that
do not always become extinct are conformism, PBSL McElreath, and PBSL with
payoff-conformism trade-off. The latter is always dominant.
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Figure 3.17: Evolutionary simulations with the default conditions but with a re-
version factor of 3. The only strategies that do not always become extinct are
conformism, PBSL with weights [4/− 1], and PBSL with payoff-conformism trade-
off. The second strategy is the most dominant.

Figure 3.18: Evolutionary simulations with the default conditions but with a re-
version factor of 5. The only strategies that do not always become extinct are PBSL
with weights [4/− 1] and PBSL with payoff-conformism trade-off. The former is
the most dominant.
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Figure 3.19: Evolutionary simulations with the default conditions but with a mean
success rate of 0.25. The only strategies that do not always become extinct are
conformism, ITW, PBSL McElreath, and PBSL with payoff-conformism trade-off.

PBSL with weights [4/− 1] is an autonomous strategy. Therefore, with
higher reversion factor, it is possible to reliably circumvent informational
breakdown.

Mean success rate of the environment

In the last chapter, we saw that the mean success rate of the environment
was the parameter that had the largest impact on the performance of PBSL
strategies. To see whether the mean success rate has a substantial impact
in the evolutionary simulations, we repeated the simulations with different
success rates. First, we decreased the mean success rate from 0.5 to 0.25.
The outcome is shown in figure 3.19. Strategies that survive at least in
some of the 10 simulations are conformism, ITW, PBSL McElreath, and
PBSL with payoff-conformism trade-off. The only qualitative difference to
the default condition is that ITW manages to not become extinct in 4 of the
10 simulations, instead of 1 of 10 simulations.
Next we performed 10 simulations with a mean success rate of 0.75 (figure

3.20). Strategies that survive at least some of the time are ITW, PBSL with
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Figure 3.20: Evolutionary simulations with the default conditions but with a mean
success rate of 0.75. The only strategies that do not always become extinct are ITW,
PBSL with weights [1/0], PBSL McElreath, and PBSL with payoff-conformism
trade-off. The latter strategy is the most dominant.

weights [1/0], PBSL McElreath, and PBSL with payoff-conformism trade-
off. The only qualitative difference is the occasional presence of PBSL with
weights [1/0]; this strategy persisted in 4 of the 10 simulations, compared
to none in the default condition. Note that PBSL with weights [1/0] is
autonomous, meaning that when it is present, there is no informational
breakdown.

Lower probability of an environmental change

In the default condition, the environment changes after each period, albeit
only at small steps. We changed this so that each environmental component,
pA and pB, only change with a probability of 25% after each period (each
independently). The result is shown in figure 3.21. The strategies that did
not always become extinct were conformism, ITW, PBSL McElreath, and
PBSL with payoff-conformism trade-off. These are the exact same strategies
as in the default condition. The probability of environmental change has thus
no large impact on the outcome.
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Figure 3.21: Evolutionary simulations with the default conditions but with a prob-
ability of only 0.25 for the environment to change at all after each period. The only
strategies that do not always become extinct are conformism, ITW, PBSL McEl-
reath, and PBSL with payoff-conformism trade-off. The results are very close to
those found using the default condition.
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Figure 3.22: Evolutionary simulations with the default conditions but without
scoring-type PBSL strategies. The only strategies that do not always become extinct
are conformism, ITW, PBSL McElreath, and PBSL with payoff-conformism trade-
off. The results are very similar to those found using the default condition.

There are other parameters that affect the environment, but our analyses
in the last chapter suggested that they do not have any meaningful impact
on the results. Therefore, we did not test them here.

Simulations without scoring-type PBSL

We wanted to test how the outcomes are affected if we exclude the scoring-
type PBSL strategies from the contest, namely PBSL with weights [4/− 1]
and PBSL with weights [1/0]. The result is shown in figure 3.22. The only
strategies that did not always become extinct are conformism, ITW, PBSL
McElreath, and PBSL with payoff-conformism trade-off, with the latter be-
ing most dominant. This closely mirrors the results found for the default
condition. These results were to be expected, as scoring-type PBSL strate-
gies did not play a huge role in the default conditions anyway, so that there
absence should not affect the results.
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3 Rogers’ paradox and informational breakdown

Figure 3.23: Evolutionary simulations with the default conditions but without
averaging-type PBSL strategies. The only strategies that do not always become
extinct are conformism, ITW, PBSL with weights [4/− 1]. The latter is the most
dominant.

Simulations without averaging-type PBSL

Furthermore, we tested the outcome if averaging-type PBSL in the form of
PBSL McElreath and PBSL with payoff-conformism trade-off were excluded.
The evolutionary outcome can be seen in figure 3.23. The strategies that did
not always become extinct are conformism, ITW, and PBSL with weights
[4/− 1]. Among those, ITW managed to survive but in one simulation.
PBSL with weights [4/− 1] and conformism, in contrast, seem to reach a
stable equilibrium, with the former fluctuating around 70% of the population
and the latter around 30% frequency.

Conclusion

We tested our results for robustness by changing the population size, the
most influential environmental parameters, and by excluding some of the
PBSL strategies. We were especially interested in whether in any of the con-
ditions, one or more of the proposed solution strategies to Rogers’ paradox
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(OIL, OC, or IDC) were capable of establishing themselves in the popula-
tion. We found, however, that these strategies always became extinct. Even
pure conformism, which is supposed to be inferior to the solution strate-
gies, managed to stabilize in some the conditions. Our line of argument to
attack the proposed solutions, namely that they are outcompeted by other
strategies, is thus robustly supported.
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4 Consequences of social learning for
society

Disclaimer: Many parts of this chapter are based on an article written in
close collaboration with Ole Jann from the University of Copenhagen Depart-
ment of Economics and Prof. Peter Hammerstein. The article is currently
in submission (April 2013).

4.1 Introduction
In the last chapter, we addressed Rogers’ paradox and how it could be re-
solved. Rogers’ paradox mainly deals with whether culture is an evolution-
ary product that is adaptive for humans. Therefore, it could be argued that
although the study of social learning is interesting from an academic stand-
point, it has no bearing on our modern societies. Here we show why this is
not the case, and why the study of social learning could be more important
than it has ever been.

4.1.1 Social learning is ubiquitous
There is general consensus that our behavior is largely shaped by traits
that were acquired through social learning (see e.g. [26, 144]). A simple
introspection should make clear that almost every routine that we have is
at least partly influenced by incorporating information derived from others.
For example, the way we dress, the things we eat and how we prepare them,
the manners we have, the skills we learn at work – all these traits would be
hugely different if we had to learn them just by ourselves.
Among the things we learn socially, a large fraction is probably not learned

through teaching [109]. Hewlett et al. [94] observed that among Aka and
Bofi hunter-gatherers, although teaching was present, imitation was used
more frequently. However, it is difficult to quantify how many traits are
really learned through teaching and how many by unguided observation. It
is a central finding from psychologists, though, that many decisions we make
are not based on conscious reasoning, even if we believe otherwise [12, 132].
Therefore, we should assume that our decisions are heavily biased by social
information even when we are not aware of it.
It is thus a safe assumption that human behavior is broadly influenced

by social information that we obtained without direct guidance or teaching.
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Of course, among those influences, many will be of the normative kind [42],
which possibly follow a pattern that is different from the social influences
we have described in the previous chapters. Still, not all behavior is norma-
tive, especially in modern Western societies. This is because these societies
are generally more progressive and liberal, which de-emphasizes the weight
of many norms [78], and more market-oriented, which emphasizes the im-
portance of efficiency. For better or worse, an investment banker is more
interested in revenues than in pleasing the public.
Since so many of our behaviors are influenced by social information, un-

derstanding its impact on behavior is of great importance. For example, it
has been argued that the pattern of how innovations are adopted in modern
societies is best explained by assuming that people learn from and influence
one another [147]. Although it is safe to assume that culturally acquired
traits are adaptive more often than not – if they were not, why would one
have the ability to acquire them – they certainly produce maladaptations
that would not occur without social learning [144]. For example, as Jared
Diamond describes [43], the inhabitants of the Eastern Island completely
deforested their island; a lot of the wood was required for practices such as
cremation of the dead or production and transport of the elaborate Moai
statues. Those practices have no direct fitness enhancing effect but con-
tributed to the total deforestation of the Eastern Island, which in turn was
a major reason for the collapse of the Eastern Island society.

4.1.2 Social learning may take different forms
Even in our modern societies, the actions we take are influenced by social
learning. This leads to behavioral patterns that could not be explained by
pure individual learning. Due to the findings of our last chapters, we also
have a good idea about which social learning strategies are especially likely to
play an important role. We will pick two strategies in particular, Imitate The
Wealthiest (ITW) and payoff-biased social learning with payoff-conformity
trade-off (“PC-PBSL” for short), that were particularly successful. PBSL
was shown to dominate under almost all conditions, so it is the natural
candidate for closer scrutiny. Yet it is cognitively and informationally very
demanding, as it requires observing the short-term outcome of each sampled
individual, calculating the average payoff of the options, and weighing this
average against the relative frequency of the options. Therefore, we also
included ITW in our analysis, as this is a rather simple heuristic.
Is it reasonable to assume that nowadays, imitation of the wealthiest is

a practiced form of social learning? Wealthy individuals are likely to have
made good decisions during their lifetime and therefore to be especially pres-
tigious. There is good reason to believe that prestigious individuals should be
imitated preferentially [87]. Furthermore, wealth is an especially important
variable in social learning in modern societies, which have greater wealth
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inequalities than small scale societies (although the Industrial Revolution
has attenuated some of the inequalities [35]).
If we look, e.g., at consumption behavior, our choices are arguably in-

fluenced by the consumption behavior of others, especially those who are
wealthy. We may imitate the neighbor with the big house, the colleague
with the expensive car, or the famous TV actor who displays his lush life
style. Consumption behavior is, however, more dependent on total lifetime
income (i.e. wealth) than on short term flows of income (i.e. payoff), as
people tend to smooth out their income over their lifetime by accounting
for expected future incomes [64]. Wealth is thus more readily reflected in
consumption behavior, which in turn serves as an indicator of wealth. We
therefore believe that in today’s world, imitating the wealthiest is especially
likely to be used as a social learning strategy.
In addition, we use payoff-biased social learning with payoff-conformity

trade-off (PC-PBSL) in this chapter as a candidate social learning strategy.
Remember that PC-PBSL consists of first calculating the average payoff
generated by the two options as observed in the sample. These two averages
are compared and the option with the higher average is chosen. When the
averages are very close, however, the option that was more common in the
sample is chosen. If, e.g., A is observed four times and was successful three of
the times, while B was observed once and was successful, the average payoff
of A is less than the payoff of B but PC-PBSL would still choose the more
frequent A. The magnitude of the trade-off, as well as the optimal sample
size, were chosen by us so as to maximize performance of PC-PBSL in the
default condition.
In the last chapter, we showed some evidence that indicated that averaging-

type PBSL is used as a social learning strategy but strong evidence is still
lacking. Our main reason to use this strategy is rather that it performed
best in all our simulations and across most conditions. It is robustly the best
social learning strategy we encountered so far and should thus be studied
this chapter.
PC-PBSL is on the other end of the spectrum of complexity when com-

pared to ITW. The description of the decision mechanism should make it
clear that this strategy is cognitively more taxing than ITW. While ITW
requires only to copy the sampled individual with the highest wealth, PC-
PBSL requires to observe the payoff, which is harder to observe, it requires
to calculate averages, to determine the most frequent option, and to make a
trade-off between payoff- and frequency-information. An additional reason
why we chose these two strategies is thus that the one is more successful in
evolutionary simulations, while the other is cognitively more simple. Hope-
fully, other social learning strategies are somewhere within this spectrum.
ITW and PC-PBSL are dependent strategies, as we showed in the previous

chapter. Therefore, we have to assume that there is also an autonomous
strategy in the population. For this role, we chose the trusty individual
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learners, the anti-thesis to the social learning strategies. Our procedure will
thus be to start with a population consisting to some degree of individual
learners and to some degree of either of the two social learning strategies.
Then we simulate the behavior of the strategies and perform several analyses
of their aggregate behaviors.

4.1.3 Social learning affects population-wide behavior
The presence of social learning should obviously have implications for the
aggregate behavior of the strategies. Social learning, especially when having
a conformist bias, should for instance increase variation in cultural traits
between populations. Assume that one such cultural trait is whether an
individual is cooperative or defective in a cooperation game, e.g. the public
goods game. More variation through social learning means that there will be
more groups consisting of mostly cooperators or of mostly defectors, despite
migration between the groups. Therefore, the forces of group selection could
act more strongly on such groups than would be the case in absence of
cultural transmission. Group selection, which favors cooperation, could thus
be stronger than individual level selection, which favors defection. Therefore,
social learning could be a possible mechanism that allows cooperation to
stabilize. This has been studied earlier works [21, 22, 25].
Social learning could also lead to a delay of the population’s ability to

quickly respond to environmental changes [146]. In Rogers’ model, social
learners have the advantage of saving the cost of learning individually but
bear the cost of lagging behind the environment. For example, if a social
learner imitates another social learner who imitated an individual learner,
the information is already two generations old. This deficit is accentuated
the more social learners there are in the population. Social learners will
thus often find themselves in a position of using a cultural trait that is not
adaptive anymore.
Individual learners will generally stick closely to the environment. In

contrast, social learners show more variance in behavior and react to envi-
ronmental changes with a delay. Combine these two patterns and one will
often find the behavior of social learners to have little to no relationship with
the environment. It will seem that, at least transiently, social learners live
in their own world, which is completely detached from reality. Of course,
this cannot last forever, since then individual learners would outperform so-
cial learners and become more frequent. There is some danger, however,
that this transient detachment is grave enough to provoke a collapse of the
population [177].
In this chapter, we thus want to study in detail how pervasively social

learning affects these three aspects of the population-wide behavior. That
is, what are the consequences social learning has for:

1. the variance in adoption of cultural traits,
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Figure 4.1: Comparison of the behavior (•) of a population of individual learners
(left panel) and social learners in the form of ITW (right panel) as a function of the
environment (solid line). The behavior of individual learners closely matches the
environment. The behavior of social learners is characterized by higher variance
caused by overmatching, by delay in response time, and by transient detachment
from environmental changes.

2. the delay in response time to environmental changes, and

3. following from this, the transient detachment of behavior from reality.

In figure 4.1, we show an example of how individual learners (left panel) and
social learners (ITW, right panel) differ in these aspects. While the behavior
of individual learners (•) closely matches changes in the environment (solid
line), the behavior of social learners does not. Instead, it shows more vari-
ance, caused by overmatching changes in the environment, it lags behind,
and it can for some time become totally detached from the environment. We
will perform several types of data analyses to study those points.

4.1.4 Social learning affects market participants
We have stressed that social learning for informational reasons should have a
huge influence on decision making in modern societies, maybe more so than
in former times. The importance of knowing how exactly social learning
influences information processing should thus be obvious. Besides evolution
and anthropology, economics is particularly interested in phenomena created
by social learning. Hayek argued [85] that however beautiful and intricate
macroeconomic models are, their use is limited because they assume that all
necessary information is available to all participants in a society at all times.
Although this assumption has been justified by assuming that learning will
eventually lead to a behavior that is optimal in the aggregate, biases intro-
duced by social learning have not been taken into account sufficiently.
In this chapter, we will have a more direct glance at how social learning

affects aggregate behavior. In particular, we will be interested in how aspects
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of behavior that are important for markets and for societies as a whole are
influenced.
As we have argued, there is strong evidence in favor of the ubiquity of

social learning. For this, we do not even have to assume that our social lear-
ning propensities are shaped by natural selection, as we did in the previous
chapters. Markets produce their own kind of selection [1]. For example, a
bad portfolio managing strategy will sooner or later leave the market, either
because the managers run out of capital or because they shift their strategy.
Although this kind of evolution is not natural but cultural, it should display
similar features [68, 81, 127, 175]. Therefore, we need not bother with what
the exact origin of the studied social learning strategies is, as long as the
more adaptive ones are finally selected.
Moreover, there is a normative argument in favor of the use of social

learning by market participants [150]. As we have seen previously, adaptive
social learning is characterized by a strong degree of conformity. When we
look at the incentive structure of, say, investment bankers, they should also
be expected to be conformist. If they imitate other market participants and
their strategy goes bust, they cannot be blamed, since they did what almost
everyone else did. If they follow a renegade strategy and go bust, this will
result in their losing their job. And even if an investor foresees a market to
go bust, it is almost impossible to predict the exact date; she might therefore
be better off to be bullish, as non-conformist behavior is likely to get her
fired before the crash manifests.
Conformist tendencies have presumably contributed to past bubbles [30,

117, 165, 168], from tulip mania in 1637 to the subprime crisis of 2008, and
will certainly continue to do so for future bubbles. Bubbles should, however,
not exist, given one of the most famous hypotheses in economics, the efficient
market hypothesis. This hypothesis comes in three forms [54, 55]:

• weak form – it is impossible to consistently beat the market by pre-
dicting it’s behavior,

• semi-strong form – publicly available information is instantly reflected
in security prices,

• strong form – public and insider information is instantly reflected in
security prices.

The semi-strong and strong form entail the weak form. If the present infor-
mation is accurately reflected in the prices, it is impossible to predict how
the prices will move; the only factors that will influence prices are those that
are not expected, so it is impossible to predict them. Therefore, it should
be impossible to beat the market. The weak form is agnostic with regard
to the precise reasons why it is impossible to beat the market in a consis-
tent fashion (i.e. excluding luck). It may be possible that this form of the
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efficient market hypothesis holds true but not for the reason that prices al-
ways accurately reflect the fundamental value (which is implied by the word
“efficient”). We will discuss this last possibility at the end of this chapter.
There are other reasons why markets could fail to be efficient, e.g. reasons

related to costs of acquiring information and to capital constraints. In our
model, costs and constraints on behavior play no role, though, so we do not
bother with them here.
Our understanding of social learning suggests that it may inhibit markets

from being efficient. For instance, the semi-strong and the strong form of the
efficient market hypothesis postulate that (public) information is integrated
into security prices almost instantly. Yet the simplest social learning models
predict there to be a delay in information integration [146]. Social learning by
market participants is, however, not irrational but would rather be expected
in equilibrium [76, 77]. So even if everyone behaved rationally, in a world
of uncertainty, the semi-strong and the strong form of the efficient market
hypothesis would be invalid.
There is some evidence that markets are indeed not efficient. Most fa-

mously, Shiller showed that there is excess volatility in markets [156, 158].
It was also found that stock prices tend to underreact to single new bits of
information and to overreact to series of new bits of information [11, and
references therein]. Furthermore, stock prices were found to have a high cor-
relation to their fundamental value, but only in the long and not in the short
run [157]. Finally, the history of financial markets is a history of bubbles and
busts [30, 117, 155, 165, 168], which are hard to consolidate with the efficient
market hypothesis. We will show how all these failures of market efficiency
can at least be partly explained by social learning, making social learning a
natural and parsimonious explanation for market inefficiencies. The empiri-
cal finding that markets are often inefficient is thus indirect evidence for the
wide-spread use of social learning by market participants.
Although we use our social learning model to understand markets, we

do not explicitly model markets. Markets are more complicated than the
simple binary choice task we model here, and integrating a market structure
into the model framework would bring about many difficulties. A major
difference between markets and our model is that in markets, the behavior
of the individuals affects the “environment” through the price. On the one
hand, if many social learners copy one another and buy the same stock, the
price for the stock should rise and demand fall, thus providing a negative
feedback loop. On the other hand, if the stock price rises, this could create
a self-fulfilling prophecy, as the higher price justifies the initial investment;
more imitators would jump on the bandwagon, creating a positive feedback
loop. It is not clear which of the two loops would prevail in what situations,
but it certainly would be an interesting topic to study in the future.
Another difference to real markets are capital constraints. An investor

who has been proficient in the past should have more money at her disposal
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and therefore a stronger influence on the market. At the other end of the
spectrum, there could be unsophisticated small investors with little money
who buy and sell more or less randomly, so-called noise traders [157–160].
In our model, each individual has the same overall impact on the aggregate
behavior, although of course different strategies, through their frequency,
can have substantially different impacts.
Despite the differences between our model and real markets, we believe

that our work allows us to gain insights into market behavior. This insight
should be seen more as a proof of principle. Behavior that may seem puz-
zling when one expects efficient markets and rational choice may be easily
understood if one considers social learning to play a role. We will show that
social learning can lead to behavioral patterns that deviate from efficiency in
a way that is consistent with empirical findings about market inefficiencies
but still cannot be easily exploited and thus corrected. Whether social lear-
ning is really the cause of inefficiences in real markets has yet to be shown,
but we would argue that it should be considered a possibility.

4.2 Model description
The model we use for this chapter is the same we used in the previous chap-
ter. No additional changes were made, so everything that was true previously
is still true now. The only difference to the previous chapters is that we use
the behavioral data generated by the strategies and scrutinize them in more
detail. Behavioral data in the sense used here is how the strategies react to
changes in the environment. More precisely, we monitored the proportion
of A choices over time and made connections to the environment, which is
characterized by pA and pB. The analyses we perform on the data will be
explained in the next section.
The strategies that participate in this chapter are individual learning, Im-

itate The Wealthiest (ITW), and payoff-biased social learning with payoff-
conformism trade-off (PC-PBSL). Individual learning consists of reinforce-
ment learning by exponential discounting (discount factor of 0.9, as always).
ITW consists of imitating the individual with the highest fitness among a
sample of 7 individuals. PC-PBSL consists of comparing the average pay-
offs as observed in a sample of 6, and choosing the option with the highest
average payoff; if averages are too close, the more frequent of the strategies
is chosen instead. Thus all these strategies function exactly as they did in
the previous chapter.
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Figure 4.2: Performance of social learning strategies. Left: Performance of ITW
competing with individual learners as a function of the frequency of individual lear-
ners (S.E.M. for ITW indicated). The performance of ITW is consistently higher
than individual learners, except for very low frequencies of individual learners. Equi-
librium frequency of individual learners is expected to lie between 10−3 and 10−4.
Right: Performance of PC-PBSL competing with individual learners as a function
of the frequency of individual learners (S.E.M. for PC-PBSL indicated). PC-PBSL
consistently performs better than individual learners. The equilibrium frequency of
individual learners is less than 10−4.

4.3 Results
4.3.1 Evolution
Before we make our analysis of the strategies’ behavior, we first re-establish
that social learning is expected to be the dominant form of learning. In
the last chapter, we already deduced this from the simulations containing
10 different strategies. Here we compare the performance of individual lear-
ners competing either with ITW or with PC-PBSL (figure 4.2); the other
strategies were not included. For this, we fixed the frequencies of social
and individual learners and compared the performance as derived from 1000
simulations. On the left panel, individual learners compete with ITW. For
almost the whole range of tested frequencies, ITW is superior in performance
(note the log-scaled x-axis). Only for very low frequencies of individual lear-
ners do we find the performance of ITW to drop below the performance of
individual learners. The equilibrium frequency of ITW can be inferred to lie
between 0.999 and 0.9999.
For PC-PBSL competing with individual learners, we see a similar picture.

However, even for a frequency of individual learners of 1 in 10,000, PC-
PBSL still outperforms them. To gauge the equilibrium more precisely, we
increased the frequency of PC-PBSL beyond the default population size of
10,000. Even if there is only 1 individual learner in a population of 500,000
did we find a high performance of PC-PBSL, reaching 75.43% (±0.92%,

185



4 Consequences of social learning for society

Figure 4.3: Mean frequencies of the different strategies for different conditions.
Results are sorted according to the total frequency of ITW. ITW (black) reached
the highest frequency on average, IDC (light gray) the second highest, conformism
(dark gray) the third highest, and OIL the fourth highest. OC and individual
learning always became extinct. ITW performs well except when the environment
changes too quickly or when generations are too long.

S.E.M.). We know, however, that without individual learners, PC-PBSL
would only perform at chance level. Therefore, their equilibrium frequency
should be between 0.999998 and 1.
In the last chapter, we have already established that PC-PBSL is the

dominant form of social learning and that this finding is robust to almost all
changes in the parameter settings. We have further shown that in absence
of PBSL strategies, ITW is the dominant form of social learning but we did
not test this finding for robustness. Therefore, we checked the robustness of
ITW when competing with the 5 other non-PBSL strategies: individual lear-
ning, conformism, Opportunistic Individual Learning (OIL), Opportunistic
Conformism (OC), and In Doubt, Conform (IDC). 12 parameter setting were
simulated 10 times for 20,000 generations. The mean frequencies at the end
of the simulations are shown in figure 4.3. The parameters we tested were:
generation lengths (tmax) of 25, 150, and 250 (default: 50); mean success
rate of the environment (pmean) of 0.25 and 0.75 (default: 0.5); step size of
environmental change (kincr) of 0.01 and 0.03 (default: 0.02); probability of
environmental change (pincr) of 0.25 (default: 1); reversion factor (r) of 0.5
and 2 (default: 1); reduction of the sample size of ITW to 3 (default: 7).
The first finding is that OC and individual learning became extinct in

each of the 120 individual simulations. OIL reached an average of 0.1 for
pmean = 0.75 but became extinct otherwise. Conformism was the third
most successful strategy, reaching a frequency of 0.166 on average. IDC was
second most successful, reaching a frequency of 0.240 on average. ITW was
the most successful, reaching a frequency of 0.585 on average. In 7 of the 12
conditions, it reached a frequency of 70% or higher.
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ITW performed worse when generation length tmax was set to high values.
The reason is that when generations last very long, a high total wealth is less
likely to be informative about current behavior than it is to be about past
behavior. Imitating the currently wealthiest individual is not necessarily
the best strategy anymore. Furthermore, ITW’s performance declined for
a high reversion factor and step size. Remember that these two conditions
are associated with more rapidly changing environments. ITW does not
cope that well with this faster pace. Otherwise, ITW proved to reach high
frequencies across conditions.
In conclusion, both social learning strategies that we study in this chapter,

ITW and PC-PBSL, display good and robust performance across most condi-
tions. They are capable of attaining extremely high equilibrium frequencies
when competing with individual learners. In practical terms, with finite
populations, this could well lead to informational breakdown, as discussed
in the previous chapter. We will not deal with informational breakdown here
but focus on how behavior of the population is affected if we assume – as we
should – that social learning is extremely pervasive.

4.3.2 Over-matching and volatility
Before beginning the more technical analysis, we first have a look at the
behavior of the strategies in order to get an intuition about how they behave
depending on their frequency in the population. In figure 4.4, we show the
behavior of the different strategies in a randomly generated environment.
The proportion of A choices made by the strategies (•) is shown as compared
to the environmental changes (pA−pB, solid line) over time. On the top left
panel, individual learners are shown. They follow environmental changes
quickly and closely, which results in environment and behavior changing
almost in synchrony.
In the middle row, the behavior of ITW is shown, once for a frequency of

0.5 (left) and once for a frequency of 0.98 (right). The rest of the population
is made up of individual learners but not shown. ITW tends to overmatch
the environmental changes, resulting in fluctuations in behavior that are
stronger than the fluctuations in the environment. On the bottom, the
behavior of PC-PBSL is shown, again once for a frequency of 0.5 (left) and
once for a frequency of 0.98 (right), with the rest being individual learners
(not shown). PC-PBSL too shows overmatching behavior, especially when
more common.
We used the terms “matching” and “overmatching” without being specific

about them. These terms are borrowed from the study of animal behavior
[14]. In our context, what we mean by matching is that a 1 percentage point
increase in pA − pB is matched by a roughly 1 percentage point increase
in the proportion of A choices made a strategy. In contrast, overmatching
would lead to a more than 1 percentage point increase in the proportion of A
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Figure 4.4: Behavior of the different strategies over time. Top: Individual lear-
ners. Middle: ITW for a frequency of 0.5 (left) and 0.98 (right); the remainder are
individual learners (not shown). Bottom: PC-PBSL for a frequency of 0.5 (left) and
0.98 (right); the remainder are individual learners (not shown). The behavior of
the strategies is shown as the proportion of A choices (•, left y-axis) over time; the
environment is shown as pA − pB (solid line, right y-axis). Individual learners tend
to match the environmental probability, while social learners tend to overmatch,
especially when very frequent.
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choices. Picturing matching behavior in the fashion of figure 4.4, matching
results in behavior and environment moving in parallel, as is observed for
individual learners.
To quantify the tendency of strategies to match or overmatch, we simu-

lated the behavior of the strategies for fixed frequencies over 1000 generations
with 50 periods each. The resulting behavior of the different strategies is
shown in figure 4.5, with proportion of A choices shown as a function of
pA−pB. Optimal behavior, choosing A when pA > pB and vice versa, would
result in a step function, as shown on the top left hand side. Individual
learners show a rather linear correlation between behavior and environment,
as shown on the top right hand side. The social learning strategies (middle
and bottom row) show a sigmoidal behavioral function.
Next we regressed the proportion of A choices onto the environment (pA−

pB). Note that we corrected these results for delay, since strategies always
react with a certain delay to environmental changes. To do this, we calcu-
lated the lag that was associated with the highest cross-correlation between
environment and behavior and corrected for this lag. Without this correc-
tion, we get very similar results, except that the fits are worse and the slopes
a little lower. (More on lags can be found in the next section.)
The results for the regression analysis are shown in table 4.1. As specu-

lated, individual learners match probabilities. A 1 percentage point increase
in pA− pB is matched by a 1.15 percentage point increase in the proportion
of A choices. In contrast, ITW shows overmatching, with a 1 percentage
point increase in pA − pB followed by a 2.14 (frequency of 0.5) or even 2.51
(frequency of 0.99) percentage point increase in the proportion of A choices.
PC-PBSL also shows overmatching. For a frequency of 0.5, each 1 percentage
point increase in pA − pB is matched with a 1.96 percentage point increase
in the proportion of A choices; for a frequency of 0.99, it is even matched
with a 2.99 percentage point increase in the proportion of A choices. In sum,
social learning strategies tend to overmatch by factor of 2:1 when not too
common, and up to a factor of 3:1 when very common.
A corollary of these findings is that one should expect the social lear-

ning strategies to act in a more uniform fashion. We therefore wanted to
determine the uniformity of a strategy. Uniformity is defined as exceeding
value x if more than x% of the individuals with a certain strategy choose
the same option. Figure 4.6 shows the proportion of periods in which the
strategies have at least a certain degree of uniformity. Individual learners
exhibit balanced behavior – rarely do 80% of them choose the same option.
For ITW and PC-PBSL, however, more often than not do we observe 80%
or more of them choosing the same option. Uniformity increases the more
frequent social learners are. Higher degrees of overmatching are thus indeed
associated with more uniform behavior.
It might be of interest that the uniformity in behavior apparently follows

a power law. This is true for both social and individual learners. For PC-
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Figure 4.5: Scatter plot of the proportion of A choices as a function of pA − pB .
Top left: The optimal behavior would be to choose A whenever pA > pB and
B otherwise. Top right: Behavior of individual learners; they match probabili-
ties. Middle: Behavior of ITW (left: frequency of 0.5, right: frequency of 0.99).
They overmatch probabilities, especially when more frequent. Bottom: Behavior of
PC-PBSL (left: frequency of 0.5, right: frequency of 0.99). They also overmatch
probabilities, especially when more frequent. The social learning strategies display
a sigmoidal adoption curve. All data points were corrected for delay; only every
50th of the 50.000 data points is shown to reduce image file size.
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Strategy Frequency Lag Slope (95% C.I.) R2 S.S.E.
Individual learners - 6 1.15 (1.14-1.15) 0.83 132

ITW 0.5 9 2.14 (2.13-2.15) 0.79 582
ITW 0.99 27 2.51 (2.49-2.53) 0.48 3214

PC-PBSL 0.5 4 1.96 (1.95-1.96) 0.88 264
PC-PBSL 0.99 7 2.99 (2.97-3.00) 0.77 1371

Table 4.1: Results of the linear regression analysis of behavior derived from the
simulation of 50,000 periods, regressed onto the environment. The lag is the lag
at which the cross-correlation between environment and behavior is maximized.
Shown are the slope of the linear fit is shown, including 95% confidence bounds,
adjusted R2 and sums of square errors (S.S.E.).

Figure 4.6: Proportion of periods in which a strategy exhibits a behavior with
a certain degree of uniformity. Left: ITW (solid lines) and individual learners
(dashed line); right: PC-PBSL (solid lines) and individual learners (dashed line).
Frequencies of the social learning strategies as indicated. Individual learners do not
exhibit very uniform behavior. ITW and PC-PBSL act more uniformly, and the
more so the more frequent they are.

PBSL, we found R2 > 0.95 for 9 of 9 frequencies, and R2 > 0.99 for 4
of 9 frequencies. For ITW, we found R2 > 0.98 for 9 of 9 frequencies, and
R2 > 0.99 for 7 of 9 frequencies. For individual learners, we found R2 > 0.98
for 9 of 9 independent data series, and R2 > 0.99 for 8 of 9 of the data series.
This is strong evidence for the notion that uniformity is distributed according
to a power law. Although this finding is certainly not a coincidence, we
cannot think of a reason why that should be so – the environment is not
distributed according to a power law – except that power law distributions
are common for social phenomena [131]. Mesoudi and Lycett found that
frequency-bias (which is present for ITW and PC-PBSL) disrupts power law
distributions in cultural transmissions [125] but their study is made in a
different context and thus results cannot be compared.
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Figure 4.7: Median proportion of A choices (solid line) as a function of pA − pB ,
as well as 95% confidence intervals (dashed lines). As pA − pB only takes discrete
values, we could calculate the median proportion of A choices for each unique value
of pA−pB . Individual learners (left) show a quite linear behavioral function, whereas
ITW (middle) and PC-PBSL (right) show a sigmoidal behavioral function.

We were interested in the shape of the behavioral function of the different
strategies. As there is a lot of variation in the data, we calculated, for each
unique value of pA− pB, the median proportion of A choices of the different
strategies. The results shown in figure 4.7 confirmed our initial guess. For
individual learners, we find a linear behavioral response to environmental
changes, for ITW and PC-PBSL, we find a sigmoidal behavioral response
to environmental changes. Fitting a sigmoidal function of the form y =
1/ (1 + a · exp (−b · x)) resulted in better fits for the social learning strategies
but not for the individual learners.
Our findings also suggest that the behavior of social learners is more vari-

able. When looking, e.g., at the sum of square errors (S.S.E.) of individual
learners, we find it to be much lower than the S.S.E. of the social learners, es-
pecially when the latter are very frequent. However, this could be explained
by the fact that the behavior of social learning strategies is not fitted as well
by a simple function. To make a better comparison, we thus looked at the
excess volatility that remains after subtracting the mean proportion of A
choices for each singular value of pA− pB. That is, we make the assumption
that each value of pA−pB should map on a singular proportion of A choices.
The variation that remains after this is the variation that is not explained
after controlling for differences in the environment.
As it turns out, we indeed find more unexplained variation for social lear-

ners. In table 4.2, we show the remaining standard deviation σ after con-
trolling for differences in the environment. In finance, this is also called
“volatility”. For individual learners, volatility is quite low at 0.051. For
ITW at frequency 0.9, it is already almost three times as much, and at a
very high frequency of 0.9999, volatility rises to 0.432. For PC-PBSL, we
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Strategy Frequency Unexplained σ
Individual learners - 0.051

ITW 0.9 0.141
ITW 0.99 0.250
ITW 0.999 0.361
ITW 0.9999 0.432

PC-PBSL 0.9 0.093
PC-PBSL 0.99 0.139
PC-PBSL 0.999 0.162
PC-PBSL 0.9999 0.204

Table 4.2: Unexplained standard deviation or “volatility” (σ) after controlling for
differences in the environment.

also find high unexplained volatility, though less than for ITW, reaching
0.204 for a frequency of 0.9999.

4.3.3 Delay
A peak at figure 4.1 and 4.4 suggests that social learning could lead to
a delayed response to environmental changes. To study this, we have a
closer look at the cross-correlation between the environment in the form
of pA − pB and the proportion of A choices made by the strategies (figure
4.8). On the left panel, we see the cross-correlation of ITW for different
frequencies. Cross-correlation of ITW is lower and peaks at higher lags
than cross-correlation of individual learners. For example, the peak cross-
correlation of ITW at frequency 0.9 can be found at 14 periods, with ρ =
0.86, whereas for individual learners, it can be found at 6 periods, with
ρ = 0.91. It becomes worse for ITW at higher frequencies; for a frequency
of 0.999, ITW’s cross-correlation peaks at 44 periods, with ρ = 0.49. This
means that the more social learning there is in the populatuion, the more
the behavior of ITW lags behind the environment and the less environment
is reflected in behavior.
For PC-PBSL, we qualitatively see a similar picture but quantitatively

quite a different one. This strategy also shows higher lags and lower correla-
tions when it becomes more frequent in the population. However, even when
very frequent, the behavior of PC-PBSL still correlates reasonably well with
the environment; for a frequency of 0.999, cross-correlation peaks at a lag of
8 and reaches 0.86, which is almost as good as individual learners do. For
lower frequencies, PC-PBSL might even do better than individual learners.
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Figure 4.8: Cross-correlation between the proportion of A choices made by the
strategies and the environment (pA − pB), left panel ITW, right panel PC-PBSL
(solid lines). Frequencies of the social learning strategies are indicated. As a com-
parison, auto-correlation of the environment (dotted line) and cross-correlation of
individual learners (dashed line) are shown. In general, cross-correlation of social
learning is higher and lag lower the fewer social learners there are. ITW has espe-
cially low cross-correlations, whereas PC-PBSL shows good cross-correlation even
for very high frequencies.

4.3.4 Detachment from reality
In this section, we want to study whether the strategies’ behavior accurately
reflects the environment or not. We first asked ourselves whether the strate-
gies react to the environment in an instantaneous fashion or rather to how
the environment behaves over the long run. To analyze this, we used moving
average filters of variable sizes to smooth the environment. For a window
size of 10, for instance, each data point of the environment corresponds to
the arithmetic mean value of the environment of the last 10 periods. Next,
we again determined the cross-correlation between behavior and the now
smoothed environment. What we were interested in was how the highest
cross-correlation we found, the peak correlation, varied with the length of
the environmental trend. The results are shown in figure 4.9.
First we have individual learners. Depending on the window size of the fil-

ter, peak correlations vary, first increasing but later decreasing. The highest
peak correlation can be found for a window size of approximately 15 periods.
This means that the highest correlation between behavior of individual lear-
ners and environment is actually found if we look at environmental trends
of 15 periods. Individual learners best track trends of this rather short du-
ration.
Second we have PC-PBSL. At a frequency of 0.9, the highest peak cor-

relation is found for a window size of around 10 periods. PC-PBSL thus
behaves as if tracking trends of 10 periods length. When becoming more
common, peak correlations of PC-PBSL shift to longer trends, but even for
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Figure 4.9: Peak correlation for different window sizes of the moving average filter
applied to pA−pB . Top left: individual learners; top right: PC-PBSL (note for both
the truncated y-axis); bottom: ITW. For the social learning strategies, frequencies
are indicated. For individual learners, the highest peak correlation is found for a
window size of about 15 periods length. For PC-PBSL, the highest peak correlations
are in a similar range, and they increase the more frequent PC-PBSL is. For ITW,
the highest peak correlations can be found at much higher window sizes of 40 or
more.

a frequency of 0.9999, these trends are still only 20-30 periods long.
Last we have ITW. ITW too shows a shift of peak correlations towards

longer trends when becoming more frequent. However, even at low frequen-
cies, the highest peak correlations appear quite late. For a frequency of 0.9,
it is at approximately 35 periods, for a frequency of 0.99 almost at 100 pe-
riods, and at frequencies of 0.999 or above, the highest peak frequencies are
beyond 200 periods length. ITW thus behaves as if reacting to very long
term trends, a fact that is hugely aggravated when ITW is very frequent.
Another method to study whether the behavior of the strategies reflects

the environment is to analyze whether it is possible to infer the environ-
mental state from the behavior of the strategies. To make this inference,
we propose a very simple mechanism akin to conformism. According to this
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Figure 4.10: How well the environmental state can be inferred from behavior. The
left panel illustrates how the choice of the prediction threshold impacts the number
of data points that fall in the range of true or false positives or negatives. In the
right panel, the proportion of true and false positives and negatives as derived from
the simulation of individual learners is cumulatively shown. The total proportion
of true estimations is shown as the dashed line. There is a high peak of total true
estimations for a threshold of 0.5, reaching 88% correct estimations.

mechanism, one should infer that pA is greater than pB if at least x% of the
population choose A (and vice versa). We illustrate this in the left panel of
figure 4.10. When one infers that pA is greater than pB, the inference can
be true, resulting in a “true positive”, or false, resulting in a “false positive”.
In contrast, when one infers that pA is less than pB, a true inference results
in a “true negative” and a false inference in a “false negative”.
The right panel of figure 4.10 shows how the proportion of true and false

positives and negatives develops when the threshold is shifted. When start-
ing with a very low threshold, all predicitions are positives, i.e. that pA > pB.
Of those predictions, approximately half will be correct and the other half
false. When the threshold is increased, negative predictions (i.e. pA < pB)
will join in, some of them being false and some true. The really interest-
ing measure is the total number of correct inferences. This is shown as the
dashed line. As expected, when the threshold is too low or too high, roughly
half of the predictions will be correct, but when the threshold is set at around
0.5, 88% of the inferences are correct. In other words, when one observes
individual learners, the best guess is to estimate that pA > pB when more
than half of them choose A and vice versa, which is of course hardly sur-
prising. More notable is the fact that the accuracy of the inference is quite
high, reaching 88%.
We were interested in whether social learning strategies also allow to make

correct inferences about the environment the majority of times. We found
that this depends on the strategy and how frequent it is. Our approach was
for each strategy to find the best possible proportion of correct inferences by
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Figure 4.11: Proportion of best possible inferences from observing a strategy as a
function of the window size of the moving average filter applied to pA−pB . Dashed
line: individual learners; solid line: ITW (left) or PC-PBSL (right). Frequencies of
the social learning strategies as indicated. From observing individual learners, one
would be quite accurate in inferring the environmental state. For ITW, accuracy
would be lower, especially the more frequent ITW is. Instead, ITW behaves as if
fitting a smoothed environment, with filter size of 35 periods or more. PC-PBSL, in
contrast, allows to make quite good predictions about the environment even if very
frequent. PC-PBSL and individual learners behave as if reacting to an environment
smoothed over 20 periods or less.

determining the optimal threshold ex post. For ITW at frequency 0.9, accu-
racy is only 79% and drops to 62% for a frequency of 0.999. For PC-PBSL,
however, inferences were quite accurate, ranging from 86% for a frequency
of 0.9 to 85% for a frequency of 0.999. Observing PC-PBSL would thus
reveal a lot about the environment, while observing ITW, especially when
very frequent, would reveal little.
Moreover, we were interested in whether the strategies react more to

long term developments in the environment rather than fitting short term
changes. To study this, we again applied a moving average filter to the
environment and determined the highest possible proportion of correct in-
ferences as a function of the filter size (figure 4.11). It turns out again that
individual learners rather behave as if fitting a 15 period average of the envi-
ronment. ITW at frequency 0.9 behaves as if reacting to a 35 period average;
if more frequent, the apparent filter size ITW reacts best to can be larger
than 200 periods. For PC-PBSL, we did not find this. Even at a frequency
of 0.999, the strategy reacts as if fitting an environment smoothed over 20
periods only. This shows that PC-PBSL reflects the environment in a more
accurate, short-term fashion.
Another important factor for keeping in touch with reality is that at all

times, some contrarian views should be expressed. That is, even if, say, A
is better than B, there should be some individuals who choose B. This is
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required because dependent social learning strategies such as ITW and PC-
PBSL need role models to copy from. If all individuals choose A, there would
be no “substrate” for B and a dependent social learner could never choose
this option. The need for contrarians is particularly high if for a long stretch
of time, one option was better, leading almost all individuals to choose that
option; when there is a sudden change, a decent number of contrarians are
required as models to cause a sufficiently fast switch in the population.
To quantify contrarianism, we defined the option that is chosen by less

than half of the population as the minority option, regardless of whether
this option is better or not. It is especially interesting to study which strate-
gies are expected to engage in more contrarian behavior. We thus looked at
what percentage of contrarians are social learners and what percentage are
individual learners. Interestingly, we found that individual learners were al-
ways over-represented among contrarians. For example, when the population
consists of 50% individual learners and 50% ITW, we found 57.1% of the
contrarian views to be expressed by individual learners. This means that
individual learners are 1.14 times more likely to express contrarian views
than would be expected if contrarian views were expressed equally by all
strategies.
The over-representation of contrarian views among individual learners de-

pends on the social learning strategies that are involved and their frequencies.
This is shown in figure 4.12. If contrarian views were expressed by all stra-
tegies according to their proportion, we would find a representation of 1 by
individual learners (horizontal line). Instead, we find that individual learners
are always over-represented among contrarians. For low frequencies of social
learners, this over-representation is weak, but it rises and exceeds the factor
2 when the population consists of 99 percent social learners or more. In the
extreme, if individual learners make up only 0.01% of the population, over-
representation reaches a factor of 2.55 when individual learners are paired
against PC-PBSL, and of 7.39 when paired against ITW.
When social learners are very frequent, despite being under-represented,

they still are more common among the contrarians. But among the few con-
trarian social learners, many have adopted the contrarian view because they
copied contrarian individual learners (but not vice versa, since individual
learners do not copy). This means that an important role of individual lear-
ners is to express contrarian views in the population and “convince” others to
do the same. These contrarian views are required as a substrate that allows
social learners to switch options in case of an environmental change; if every-
one chose the same option, there would be no one to copy the other option
from. This would result in informational breakdown and thus a potentially
disastrous complete detachment of behavior from reality.
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Figure 4.12: Representation of contrarian views by individual learners as a func-
tion of their frequency and of the opposing strategy (gray: ITW, black: PC-PBSL).
If contrarian views were expressed equally among strategies, we would find a rep-
resentation of 1 among individual learners (horizontal line). We find instead that
contrarian views are more likely to be expressed by individual learners, resulting
in representation exceeding 1. This is especially true the less frequent individual
learners are in the population.

4.3.5 Principal findings
In this chapter, we foucs our study on three strategies, individual learning,
ITW, and PC-PBSL. We chose the two latter strategies because both have
been shown to have very high equilibrium frequencies under many conditions.
PC-PBSL is a very dominant strategy across a wide range of parameter
values but is ecologically and cognitively rather demanding. ITW, on the
other hand, is the best strategy in absence of payoff-biased social learning
and follows a rather simply heuristic. Therefore, these two strategies should
cover a wide spectrum of social learning strategies.
First we found that ITW and PC-PBSL are characterized by overmatching

– a one percentage point increase in pA − pB leads to a 2 to 3 percentage
point increase in the proportion of A choices. Individual learners match in
a fashion closer to 1:1.
Overmatching by the social learners implies more uniform behavior. Most

of the time, one will observe that 80% or more of them choose the same
option, whereas individual learners never act in such a coordinated fash-
ion. Moreover, since social learners behave self-referentially, more of their
behavior is unexplained by differences in the environment.
Overmatching in itself should be positive; it is indeed expected if behavior

were optimal. There is, however, also a negative side to the social learning
strategies’ behavior: We find them to lag behind environmental changes.
Granted, individual learners also lag behind, but only by approximately 6
periods. PC-PBSL often shows a lower cross-correlation with the environ-
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ment than individual learners, but their lag is moderate. ITW, on the other
hand, shows strong tendencies to lag behind.
Interestingly, we find that the strategies fit trends in the environmental

changes better than the environment itself. Individual learners show the best
correlation for trends of approximately 15 periods length, while the social
learning strategies seem to fit longer trends.
If social learners lag behind and overmatch, it should be expected that

their behavior is often not strongly linked to the environment. For ITW,
we find this to be indeed the case. When one observes them, it is difficult
to infer whether A or B is currently the better choice, while for individual
learners and PC-PBSL, inferences are spot on most of the time. Again, we
find that if one were to infer trends in environmental changes rather than the
current environmental state, the fit would be better. For individual learners
and PC-PBSL, best inferences were made for trends that have a length of
15-20 periods; for ITW, the length could go into the hundreds.
Learning in varying environments always involves a trade-off between ex-

ploration and exploitation. Explore too much, and you will spend too little
time with the better option; exploit too much, and you will miss when an-
other option becomes better. In our model, the roles of explorers and ex-
ploiters seem to be well separated. Individual learners are much more likely
to choose the minority option, which is often the worse option.
All the described phenomena associated with social learning depend on the

frequency of social learning. If social learners are rare, they mostly imitate
individual learners and thus behave in a similar fashion. Only when they are
frequent do we see extreme deviations between the behavioral features. But
as we noted initially, high frequencies of social learners should be expected,
so that the described phenomena should be expected to occur.

4.4 Discussion
4.4.1 General discussion
Earlier theoretical work in evolution and anthropology has already studied
the consequences of gene-culture coevolution, but mainly on the level of evo-
lutionary stability. This means that it has focused on which types of social
learning should be expected in equilibrium – how much to learn socially, how
to copy, whom to copy, and so forth [21–23, 31, 46, 50, 61, 63, 86, 100, 101,
103, 108, 111, 120, 141–143, 146, 174, 177]. On the other hand, economic
work on social learning has mainly dealt with how social learning, assum-
ing it takes place and has certain characteristics, affects decision making in
equilibrium [2, 10, 16, 17, 40, 41, 49, 96, 150, 157, 159, 183, 184].
In this work, we sought to tie together these two threads. The first chap-

ter of this work has prepared the ground by presenting the general model
framework. In the second chapter, we took a closer look at payoff-biased
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social learning strategies and studied dozens of strategies under many condi-
tions. In the third chapter, we took the most promising payoff-biased social
learning strategies and matched them against other strategies, most of them
proposed in the literature. From this competition, two social learning strate-
gies showed especially robust performance in the evolutionary context, one
being more simplistic and one more complex. In this chapter, we took a
closer look at the behavior of these two strategies compared to the beha-
vior of individual learners, unveiling some of the consequences that should
be expected from the use of social learning. This way, we connected the
evolutionary and the behavioral approach and thus hope to contribute to a
better understanding of social learning phenomena.

4.4.1.1 Social learning and altruism

The existence of altruistic behavior is puzzling. By definition, it involves a
cost to the actor, and although the benefit to the recipient is larger than
the cost, selfish natural selection should remove altruistic behavior from the
population. Examples of altruistic behavior include guarding herds, game
hunting with subsequent meat sharing, and risking one’s life in warfare. A
possible explanation for altruistic behavior could be group selection, since on
the level of the group, altruistic behavior is beneficial. Group selection works
only under very narrow conditions, though, and requires, among others, suf-
ficient intergroup-variance. Empirical work has shown that group-beneficial
traits are unlikely to have evolved through group-selection alone [164].
Cultural evolution has been proposed in the literature to enable the evolu-

tion of altruistic behavior between non-kin [21, 22, 25, 27, 90]. The proposed
argument is roughly the following:

1. Social learning, in the form of conformism, exists because it is beneficial
for reasons unrelated to cooperation.

2. Social learning promotes intergroup-variance.

3. Higher intergroup-variance facilitates group selection.

4. Group selection results in the evolution of altruistic behavior.

5. Psychological mechanisms have locked in group-beneficial behaviors.

A very simplified model may illuminate this process. Imagine there to be
several groups of humans living in the same area. Each individual can either
participate in helpful cooperative behavior, which has a personal cost but
benefits the group, or not. Usually, such helpful behavior cannot be sustained
because selfish individuals have a higher fitness. But now assume that the
individuals are all conformists. Then either all or none of the group members
are helpful. If a member migrates to another group, he or she, being a

201



4 Consequences of social learning for society

conformist, adopts the behavior that is currently practiced in that group.
This way, disruptive selfish behavior cannot undermine cooperation through
immigration.
Now there are groups that are completely cooperative and groups that are

completely uncooperative. Next, one could imagine that some event, like a
drought or warfare, leads to the extinction of some groups. It is most likely
that the uncooperative groups vanish, since they engage in less altruistic
acts. The cooperative groups, however, propagate to the vacated spots and
thus cooperation becomes more common overall.
Without conformism, the level of cooperation would be more similar be-

tween groups. Therefore, the forces of group selection would be weaker than
those of individual level selection. But as conformism exists, over time, coop-
eration dominates and defection succumbs. Psychological mechanisms such
as shame evolve, making it easier to internalize the cooperative norms.
Do our findings support the notion that social learning promotes the evo-

lution of altruistic behavior? We found earlier that pure conformism is not
a very likely candidate for a social learning strategy, and even if other forms
of social learning were impossible (e.g. if payoffs were not observable), we
would not expect the whole population to be conformist. Therefore, the first
step of the argument could be contested. However, we found that those so-
cial learning strategies that we do expect to thrive, in spite of not technically
being conformists, behave in a conformist fashion. Even though pure confor-
mism is not expected, behavior that is aligned with conformism is expected.
This supports the first step of the cultural group selection argument.
Furthermore, we found social learning to result in overmatching. When

the difference between the success probabilities of the two options A and
B, pA and pB, increases by one percentage point, the behavioral response
should exceed it, leading to a 2 or 3 percentage point increase in A choices. In
contrast, individual learners match differences in fashion closer to 1:1. This
results in more coordinated behavior of social learners. Whereas individual
learners spend only 1 in 80 periods making a uniform choice (i.e. more than
80% choose the same option), ITW at frequency 99.9% acts uniformly in an
average of 77 of 100 periods, and PC-PBSL at that frequency in an average of
62 of 100 periods. Therefore, social learning will indeed increase intergroup-
variance towards a level that cannot be reached through individual learning.
This reinforces the second step of the argument.
There is, however, a caveat. Although we should expect behavior to be

very uniform, with almost all individuals choosing the same option, we also
know that ITW and PC-PBSL are noncompensatory decision rules. This
means that in principle, one single dissenter could convince them to switch
options. Per definition, a selfish individual receives a higher payoff than
an altruist. Thus, even if defection is the minority option, if it generates
a higher payoff or wealth, it will be adopted sooner or later. Therefore,
on an individual level, cultural selection, like natural selection, would favor
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defection over cooperation.
Certainly, this argument is purely verbal and needs to be substantiated

quantitatively. It may still be possible that ITW, PC-PBSL, and other social
learning strategies with a conformist bias would facilitate group-selection
more than individual learning does. Yet it is doubtful that group selection
would work as easily as it would if conformism was the dominant form of
social learning.
Conformism will be most successful where other forms of social learning

are not possible. For example, when it is impossible to link a certain behavior
with its result, be it payoff or wealth, neither PBSL nor ITW could exist. But
as these forms of social learning are superior to conformism, one would expect
cognitive mechanisms to evolve that permit to make such links. Ultimately,
it is unlikely that social learning takes purely the form of conformism.

4.4.1.2 Social learning and signal detection

The task we designed for the strategies to solve is a rather difficult one. For
the default condition, the median success probability of the better option is
0.54 and the median success probability of the worse option is 0.46. How
often would it be necessary to sample an option before one could be certain
that it is indeed the better and not the worse option? When the usual
criterion of a significance level of p ≤ 0.05 is used, it would require on
average almost 140 trials before significance is established by a binomial
test. If the null hypothesis is that both options are equally good, it would
take, on average, almost 490 trials before significance is reached.
During the sampling process, the values of pA and pB will have changed,

however. After 100 periods, the autocorrelation of the environment has
shrunk to a meager 0.02. The probability that if one option is currently
better or equal to the other and still is so in 100 periods later is only 65.2%.
The time scale at which pA and pB vary is thus shorter than the time scale
needed to tell with certainty which of the two options is better. A “scientific
approach” to the problem through use of significance tests is thus doomed
to fail. The learners have to make a decision in the face not of risk but
of uncertainty [105]. (By the way, taking a Bayesian approach instead of a
frequentist approach does not solve the problem; as we showed in the first
chapter, Bayesian individual learning, even if given a huge advantage, still
leads to a modest performance only.)
A way to frame this problem is in terms of signal and noise. The signal

is whether pA or pB is greater, but sampling from A and B is a very noisy
process because pA and pB typically take very similar values. If, for an
individual, A yielded successes in the last ten periods but then suddenly is
unsuccessful twice, she has to contemplate whether these last two events are
meaningful signal or just random noise. Being too conservative results in
missing environmental changes, being too volatile results in fitting the noise
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and not the signal.
An adaptive strategy will have to encounter several failures in short order

before switching away from an otherwise successful option. Therefore, it is
not surprising that we find the behavior of individual learners to fit trends
in the environment rather than instantaneous changes. In fact, the behavior
of individual learners was best described if assuming that they fit trends of
15 periods length. If individual learners had no memory, i.e. if they used
win-stay lose-shift, they would react instantaneously to the environment. In
the first chapter, we already saw, however, that such immediate switches in
behavior result in a lower performance. Having a longer memory, and thus
fitting trends rather than instantaneous changes, is the adaptive thing to do.
Social learning strategies, by drawing on the experience of several indi-

viduals, could in principle react faster to environmental changes. Yet this
advantage vanishes the more social learning occurs in the population [146].
Our findings support the notion that social learning does not lead to faster
adoption but instead to delays. Furthermore, we found social learning to cre-
ate excess volatility in the behavior, making the observations derived from
other social learners more noisy.
At the end of the day, social learners face the same trade-off as individ-

ual learners in terms of sampling. They, too, indirectly sample over several
periods by imitating old behavior, thus avoiding overfitting; their behavior
consequently fits trends in the environment and not instantaneous changes.
This is supported by our findings that PC-PBSL behaved as if fitting trends
of length 10 to 30 and ITW as if fitting even longer trends – depending on
the frequency, these trends could be several hundreds of periods long. If any-
thing, social learning should eventually lead to less instantaneous behavior.

4.4.2 Social learning and finance
4.4.2.1 Excess volatility

Robert Shiller showed that the volatility of a stock price forecast has to
be lower than volatility of the realized stock price [156, 158]. To see this,
let pt = E(pt) + Ut, with pt being the real stock price, E(pt) the expected
value of the stock price (the forecast), and Ut being the forecasting error. It
must true be that the covariance of E(pt) and Ut is zero because else, there
would be a systematic error that could be exploited to beat the market,
contradicting the efficient market hypothesis. From the equation, it follows
that Var(pt) = Var(E(pt))+Var(Ut), and thus, as variance is never negative,
that Var(pt) ≥ Var(E(pt)), implying that σ(pt) ≥ σ(E(pt)) (σ being the
standard deviation or “volatility”).
In terms of finance, E(pt) is the stock price and pt is the present value of

all future dividends. Whether the inequation holds true is thus a matter of
simple statistical analysis of the two data sets, stock prices and dividends,
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and Shiller found that the inequality is undoubtedly violated – stock prices
vary much more than present value of dividends as determined ex post. The
standard deviation that is not explained by changes in the present value of
dividends is called excess volatility.
Is this excess volatility in behavior mirrored in the behavior our social

learning strategies? For this, we do not simply take the variation of pA−pB,
since the optimal behavior is not to track this difference as accurately as
possible, but to choose A when pA > pB and vice versa. Therefore, we took
the standard deviation of the sign of pA − pB, mapped onto [0; 1], because
we deal with probabilities. This is called the “effective environment”, as
fitting this environment exactly would really lead to optimal behavior. It
turns out that variation in behavior is not greater than variation in the
effective environment. Even for ITW at frequency 0.9999, standard deviation
of behavior was 0.451, while standard deviation of the environment is 0.458.
One could thus conclude that the findings from finance that forecasts of
stock prices show excess volatility are not replicated by our model.
There is a more sophisticated way to look for excess volatility in our

model, though. Because of how we generate the environment, pA − pB can
only take discrete values. It is therefore easy to compute for each singular
value of pA − pB the median proportion of A choices made by a strategy.
Next, one can calculate the standard deviation of the behavior corrected for
the median behavior for the given value of pA − pB. We also corrected for
delay in behavior. The remaining standard deviation is the volatility of the
behavior that cannot be explained by reactions to the environment. There
are two possible sources for this remaining volatility:

• historical contingencies and

• self- and other-referential behavior (social learning).

For individual learners, clearly the first point applies – they decide based on
the past experience, which is partly subject to random outcomes. The second
point, however, does not apply, since they cannot learn socially. For social
learners, the second point applies but the first does not (except, indirectly,
if they copy an individual learner); this is because the two social learning
strategies we studied only sample from the last period and have no memory
of earlier events. The reason why social learning generates volatility is mostly
because sampling is random and small initial differences may be exaggerated.
Our results suggest that excess volatility generated by social learning is

much higher than excess volatility generated by individual learning. For a
frequency of, say, 99%, ITW has five times the excess volatility of individual
learners and PC-PBSL has almost three times the excess volatility. When
social learning is more ubiquitous, the differences become even larger. This
means that volatility generated by social learning is greater than volatility
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generated by the contingencies of individual learning. For finance, this means
that social learning behavior could be the main source of excess volatility.
In behavioral finance models, similar results were found. For example,

Shiller [157] assumed that in addition to “smart money”, there are feedback
traders in the market. Feedback traders observe the movement of prices,
which a rational actor knows are random in efficient markets, and buy or
sell as a consequence of these movements. As prices are determined by de-
mand and supply, which are in turn determined by the market participants,
feedback trading is a form of social learning. Shiller found that feedback
traders can generate excess volatility, which lends support to our finding
that social learning is the main source of volatility.
In Shiller’s model, there is no explanation why feedback trading, which

is irrational, should exist in the first place. Although, according to Shiller,
casual observation suggests that feedback trading exists and data are con-
sistent with it, one should expect that irrational behavior, which in the long
run leads to monetary losses, should vanish from the market. This is a
common criticism raised against behavioral finance models [11, 76, 77]. Our
model, though not a market model, has the advantage of explaining why
social learning should be an important factor, instead of presupposing its
existence. Future models that merge our evolutionary approach while tak-
ing market mechanisms into account should be a welcome addition to the
study of anomalies in financial markets.

4.4.2.2 Reaction to short and long term trends

Barberis, Shleifer, and Vishny found that stock prices underreact to singular
new bits of information but overreact to series of new bits of information [11,
and references therein]. In the short term, which according to the authors
is of a length between one and twelve months, stock prices thus underreact
to changes in fundamentals, whereas in the long term, if a consistent series
of information is revealed (all good or all bad), they overreact. In their
model, the authors explain this by the existence of “investor sentiment”.
These sentimental investors are assumed to either believe that the environ-
ment is mean-reverting or trending when really it is a random walk. The
investors thus react to the prices, which is a form of social learning. The
real model, random walk, is not supported in the boundedly rational beha-
vior of the investors, which explains why they never fully learn to behave
rationally. Therefore, the proposed model could be criticized for precluding
fully rational behavior.
In our model, social learning is rational in the sense that one would expect

it to evolve. When we look at the cross-correlation between behavior and
environment in our model, we find that it can be improved when not looking
at the environment instantaneously but instead at the long term trend of
the environment. For individual learners, these trends are of the length of
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about 15 periods but for social learners, these trends are longer. For PC-
PBSL at frequency 0.999, these trends are rather 20 to 25 periods long; at
frequency 0.9999, 25 to 30 periods. For ITW, this finding is exacerbated. At
frequency 0.99, the best cross-correlation is found for trends of roughly 100
periods length; at a frequency of 0.999 and higher, the best cross-correlation
is found for trends of more than 200 periods length.
Interpreting our results in terms of finance, they suggest that investors

should be expected to react more weakly to short term trends in the fun-
damentals and more strongly to long term trends in the fundamentals. Are
these reactions under- and overreactions, respectively? When optimal be-
havior is fitted to the environment, we find a correlation of 0.860. Then
we would indeed find that ITW, especially when frequent but not too fre-
quent, underreacts to short-term trends and overreacts to long term trends.
We would, however, also find that both individual learners and PC-PBSL al-
most always overreact, so this interpretation is a little shaky. What remains,
though, is that the strategies, especially the social learning strategies, react
more strongly to long than to short term trends; whether we deal with over-
and underreactions is hard to tell, especially since there is no objective way
to relate periods in our model to real time.

4.4.2.3 Relation between prices and fundamentals

The weak form of the efficient market hypothesis states that markets are un-
predictable. The impossibility to make accurate forecasts of markets having
been supported by abundant evidence [54, 55], this is seen as evidence for
the notion that market participants are rational, because:
If all available information is accurately reflected in prices, price move-

ments should be unpredictable.
From here, it is a short step to conclude the converse, namely that:
If price movements are unpredictable, all available information is accu-

rately reflected in prices.
This is stated by the strong and semi-strong form of the efficient mar-

ket hypothesis [54, 55]. But the first statement being true does not imply
its converse to be true. Yet this converse statement is what proponents of
efficient markets often imply – that is why it is called efficient market hy-
pothesis. But a simple example should illustrate why the converse is false.
If all buyers and sellers would base their decisions on a random number gen-
erator, price movements would be unpredictable but prices would still not
accurately reflect all the available information, or any.
Certainly, nobody suggests that all market participants just act randomly.1

Another reason for unpredictability could be social influence. Very small dif-
ferences in initial values, unmeasurable under most circumstances, can lead

1If the efficient market hypothesis were true, though, market participants could as well
act completely randomly, since there would be nothing to gain or to lose, on average.
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to completely opposite outcomes when social influence is involved [75]. When
informational cascades occur, one new piece of information can completely
reverse them and lead to the opposite result [16]. Social learning could thus
be the reason why price movements are unpredictable [159].
Whether markets accurately reflect fundamental values is, however, also

dependent on the observed time scale. It has been found that in the long
run, real stock prices have very high correlation with real dividends, while
in the short run, correlation is low. Using S&P stock prices for the time of
1871 to 1987, Shiller found an R2 of 0.637 on an annual basis, and for the
time of 1951 to 1987, of 0.819 [157]. Yet when he regressed stock prices on
contemporaneous changes in real dividends, R2 fell to 0.301 for the period of
1871 to 1987 and to 0.231 for the period of 1951 to 1987. Prices thus seem
to well reflect long term trends of fundamentals but not short term trends.
In our model, we tested how well it is possible to infer the environmental

state from observing the behavior. We found that for ITW, especially at
high frequencies, inferences were quite bad. If, however, inferences are not
made about the contemporaneous environment but rather about long term
trends in the environment, this was not necessarily the case. For example,
for ITW at frequency 0.99, instantaneous inferences were only right about
69% of the times; when looking at long term trends of about 85 periods
length, however, inferences were right more than 90% of the times. More
extremely, for ITW at a frequency of 0.999, instantaneous inferences were
only right about 61% of the times but inferences of trends with a length of
230 periods were right more than 85% of the times. When ITW is dominant
in the population, one should thus expect that in the short run, there is little
relation between behavior and environment, whereas in the long run, there
is a lot of relation between behavior and environment.
In finance, behavior is reflected in prices and our model’s environment

corresponds to the fundamental value of a security. Therefore, our findings
have similarities with the findings from finance reported above. There are
some caveats, though. Apart from not modeling real markets with all their
feedback mechanisms, our model’s time scale is not explicit. Therefore, we
cannot know whether long term trends in our model are long term trends in
finance. Moreover, with PC-PBSL, we did not find the phenomena related
to short and long term trends. Therefore, it crucially depends on which
social learning strategy is played whether phenomena as those we described
should be expected.

4.4.2.4 Overmatching

Social learning in general cannot be condemned. Indeed, in our model, some
forms of social learning lead to an increase in performance – this is why they
are expected to rise in frequency. At least transiently, social learning can
improve upon the possibilities of individual learning. Depending on which
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strategy is involved, one may find higher performance even in equilibrium, as
we showed in the previous chapter. But when could social learning actually
being harmful?
As we found in the first chapter, if the main advantage of social learning is

saving the costs of individual learning, performance will be worse when so-
cial learners reach equilibrium. Furthermore, the evolution of the frequency
of social learning strategies takes place on a similar time scale as the adap-
tations to the changing environment. Therefore, when circumstances are
right, one may transiently find too much social learning. For example, when
one option is better than the other for an unusually long stretch of time,
imitation, even pushed to the extreme, may perform better than individual
learning.
To illustrate this, we simulated a population of conformists and individual

learners that has reached equilibrium. The resulting frequencies show a
decent amount of fluctuation around the equilibrium, as can be seen in the
left panel of figure 4.13. These fluctuations are, however, not purely random.
Instead, conformists tend to do better when the environment greatly favors
one option over the other during a generation. This is illustrated in the
right panel of figure 4.13. When the mean absolute difference between pA
and pB is especially high during one generation, meaning that one option
was much better, fitness of conformists is also especially high. In fact, a
0.1 percentage point increase in the mean absolute difference of pA and pB
leads to an increase of 1.89 in fitness (95% confidence bounds: 1.60 - 2.19).
In contrast, individual learners gain less from constancy, only a 1.21 (0.95
- 1.45) increase in fitness for a 0.1 percentage point increase in absolute
mean pA − pB. Conformists thus tend to become more frequent in time of
constancy and vice versa, which is consistent with earlier findings [177].
Another risk posed by excessive social learning is complete loss of feedback

from the environment. In the last chapter, we discussed the possibility of
such informational breakdowns when equilibrium frequencies of dependent
social learning strategies are extremely high. Our results suggested that for
finite populations, informational breakdown should be expected under most
circumstances. Therefore, the existence of social learning, while generally
positive for performance, is sometimes predicted to cause peril.
History is ripe with examples of financial bubbles [30, 117, 155, 165, 168],

ranging from tulip mania in 17th century Holland to the recent subprime
crisis.2 Bubbles are marked by a constant rise in the price of some asset, be it
tulip bulbs or stocks of dotcom companies. For a long stretch of time, being
bullish is the right thing to do, as imitating those who made a fortune indeed
yields the best returns. All market participants act in a coordinated fashion,
even if this means that tulip bulbs become worth a month’s wage, but this
detachment from fundamental values did not seem to have an influence on

2Proponents of the efficient market hypothesis obviously deny the existence of bubbles.
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Figure 4.13: Left: Frequency of conformists and individual learners as derived
from simulating 1000 generations. Frequencies fluctuate around the mean. Right:
Mean fitness of conformists as a function of the absolute mean value of pA − pB

during a generation. Data from the same simulation. As the linear fit suggests,
there is a positive relationship. This means that when, during a generation, one
option is constantly better than the other, conformists perform especially well; if
the options perform about equally well during a generation, conformists perform
less well.

decision making of the market participants.
We found that in our model, contrarian views are especially likely to be

expressed by individual learners but are crowded out if social learning is the
dominant form of learning. Only when the detachment from the fundamental
values of the asset becomes unsustainable do bubbles collapse. It could be
argued that the typical downswings after bubbles burst are also bubbles,
albeit bearish ones.

4.4.2.5 Social learning and the subprime crisis

Many a word has been written about the putative causes of the recent sub-
prime crisis, which culminated in 2008. The truth is probably that many
causes were at work and that the absence of any one of the causes may have
prevented the crisis or would at least have mitigated the grave consequences.
We will focus on one of the culprits of the crisis that is especially related to
imitation but has been given little attention.
A new financial instrument, an asset-backed security going by the name of

Collateralized Debt Obligations, was at the center of the crisis. CDOs mostly
consist of bundles of mortgages and are divided in tranches of different risks.
Even if mortgages were very risky (“subprime”), as CDOs consisted of many
mortgages, the risk of all of them defaulting at the same time was thought
to be low. Especially the most secure CDO tranches, which are paid first
in case of default, should bear very little risk. However, the exact default
risk of a CDO tranche depends crucially on the correlation between default
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Figure 4.14: Case-Shiller Housing Price Index, Nov. 1999 = 100. Housing prices
show signs of a bubble that burst in 2007. Data from Standard and Poor’s,
http://bit.ly/rH42Ep (as of Feb. 2013).

risks. If mortgage defaults were completely uncorrelated, risks would almost
be non-existent, but if they were completely correlated, risks would be much
higher than expected, especially for the safest CDO tranches.
CDOs were responsible for most of the write-downs by the affected banks.

In 2007, Citigroup and Merrill Lynch had to write down a combined $48.5
billion, mostly because of CDOs on their accounts [169]; until February 2009,
total write-downs due to CDOs accumulated to $218.2 billion [15]. These
write-downs were caused by CDOs defaulting completely or losing almost all
of their market value.
Why were the values of CDOs so blatantly miscalculated? Of course, there

was the housing bubble (figure 4.14). But this would not have caused any
trouble if the default risk of mortgages had been accurately reflected in the
pricing of CDOs. We have to look elsewhere to understand the causes of the
misjudgments.
To estimate default risks and their correlations, derivatives by the name

of Credit Default Swaps (CDSs) were used as a measure. CDSs can be seen
as insurances on the default risk, or as bets on the probability of default.
The cost of a CDS for a certain mortgage should reflect the probability of
a default of that mortgage, and the correlation between CDS prices should
reflect the correlation between default risks. Using CDS prices, one can
therefore hypothetically infer the correct pricing of CDOs without ever hav-
ing to look at historical default rates [114]. If default risks rise, CDS prices
should anticipate this and therefore the risk on CDOs could be correctly
re-assessed. This approach to calculating the values of CDOs has been ex-
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cessively practiced on Wall Street [149].
The twist of the story is of course that the calculations were totally wrong.

In fact, default rates of the safest, AAA rated CDO tranches were 200 times
higher than predicted by the models [161]. What links this story to so-
cial learning is that instead of doing their own research about default risks,
bankers tasked with pricing CDOs relied on the judgment of others, as re-
flected in the CDS prices. This is a convenient form of social learning, since
neither does it require bankers to do the tedious work of studying historical
data on default risks, nor does it involve researching market fundamentals.
As this chapter has shown, a high amount of social learning is accompa-

nied by exaggeration, delayed responses, and, transiently, detachment from
reality. During the subprime crisis, statistical input from real world data has
scarcely been present; instead market participants relied upon each other to
make accurate judgments. This should be seen as one of the causes for the
financial crisis.

4.4.2.6 Conclusion

In the first three chapters of this work, we studied social learning mainly
from an evolutionary perspective. Social learning is crucial to explain cul-
tural practices, which in turn allowed humans to successfully spread to al-
most all terrestrial habitats on Earth. Theoretical findings do, however,
suggest that simple forms of social learning should not contribute to human
adaptedness. Although solutions to this problem have been proposed, our
detailed analyses showed that they do not actually solve it. Although we
found that some strategies that we proposed were sometimes able to explain
human adaptedness, this was only true in narrow cases. The research quest
is thus still going on.
It could be argued that all these question have are interesting from an

academic standpoint but have no consequences for our modern societies.
However, understanding what makes us human requires us to take an evo-
lutionary perspective. In the last chapter, we showed that if we take the
evolution of social learning seriously, we should expect different behaviors in
populations than if individual learning dominated. These differences could
parsimoniously explain many phenomena that are hard to explain otherwise,
for example market failures in the domain of finance, which we know to have
grave consequences for economies and societies. Studying social learning and
its origins could therefore be more necessary, and the lessons we draw more
valuable, than ever in human history.
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