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Abstract 
Dairy farming is increasing and becoming more intensive, attendant on higher energy inputs, 

also in Iran. The aim of this study was to estimate and assess the energy efficiency of dairy 

farming and the related feed production in north-western Iran. Data were gained from a com-

pany producing feeds in north-western Iran, and from 24 dairy farms, also in north-western 

Iran for a period of three years. A method of investigation was devised based on the cumula-

tive energy demand (CED) method introduced by VDI guideline 4600 and ISO standard 

14044, which is used in life cycle assessment (LCA).  

The energy intensity (EI) in the feed production (in MJ kg-1 DM) was 2.92 for alfalfa, 6.76 for 

barley grain, 9.19 for maize corn, 12.36 for rapeseed, 2.45 for spring maize silage, 4.45 for 

summer maize silage and 4.35 for wheat grain. The EI for the energy corrected milk (ECM) 

was 5.84±0.69 MJ kg-1 with a ECM yield of 6,585±1,221 kg cow-1 yr-1. Feedstuff was the main 

source of energy input in milk production, with approximately 79% of the total energy input. 

The EI was decreasing with an increasing milk yield (-0.36 MJ kg-1 ECM per +1,000 kg ECM 

cow-1 yr-1), within the range of the milk yield found in the investigated farms (3,860-8,320 kg 

ECM cow-1 yr-1). The energy input was allocated to milk (83%), manure (15%) and meat 

(2%). The EI for boneless meat produced by bulls up to 400 kg body mass was 75.4±9.1 MJ 

kg-1 and produced by bulls up to 700 kg was 103.8±11.4 MJ kg-1. The allocated EI for meat of 

the replacing slaughtered cows was 16.3 MJ kg-1 of meat.  

By calculating the EI for milk production on the basis of the higher heating value (HHV) of 

feeds, it yielded in a mean EI of 23.7±3.37 MJ kg-1 ECM and an EI of 314±25 MJ kg-1 bull 

meat (400 kg body mass).  

Energy output input ratio (OIR) ranged between 2.03 MJ MJ-1 for maize corn and 7.75 MJ 

MJ-1 for spring maize silage production. While, in milk production OIR was 0.55 MJ MJ-1 and 

in meat production 0.12 MJ MJ-1.  

 

Keywords:  

Cumulative Energy Demand, Dairy, Energy Intensity, Feedstuff, Iran, LCA  
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Kurzfassung 

Umfang und Intensität der Milchviehhaltung nehmen immer weiter zu, dies gilt auch für den 

Iran. Das Ziel dieser Studie waren die Ermittlung und Bewertung der Energieeffizienz der 

Milchviehhaltung und Futterproduktion im nordwestlichen Iran. Daten wurden auf einem 

Futterbaubetrieb und auf 24 Milchviehbetrieben im nordwestlichen Iran erfasst. Es wurde 

eine Untersuchungsmethode erarbeitet, die auf der VDI-Richtlinie 4600 Kumulierter 

Energieaufwand (KEA) und dem ISO-Standard 14044  Umweltmanagement – Ökobilanz  

basiert.  

Die Energieintensität (EI) im Futter (in MJ kg-1 DM) lag bei 2,92 für Luzerne, bei 6,76 für 

Gerste, bei 9,19 für Mais, bei 12,36 für Raps, bei 2,45 für Frühjahrsmaissilage, bei 4,45 für 

Sommermaissilage und bei 4,35 für Weizen. Die EI der energiekorrigierten Milch (ECM) lag 

bei 5,84±0,69 MJ kg-1, bei einer Milchleistung von 6.585±1.221 kg ECM Kuh-1 Jahr-1. Die 

Futter waren die Hauptquelle des Energie-Inputs in die Milchproduktion, mit einem Anteil von 

79%. Innerhalb der in den untersuchten Betrieben vorgefundenen Milchleistung (3.860-8.320 

kg ECM Kuh-1 Jahr-1) verringerte sich die EI bei steigender Milchleistung (-0,36 MJ kg-1 ECM 

je +1.000 kg ECM Kuh-1 Jahr-1). Die Allokation des Energie-Inputs führte zu einem Anteil von 

83% auf dem Milch, 2% auf den Fleisch und 15 % auf den Wirtschaftsdünger. Die EI des mit 

Bullen bis zu einer Körpermasse von 400 kg produzierten Schlachtfleisches lag bei 75,4±9,1 

MJ kg-1, bei Fortführung der Mast bis zu 700 kg lag sie bei 103,8±11,4 MJ kg-1. Die EI bei 

ersetzten, geschlachteten Milchkühen bei 16,3 MJ kg-1 Fleisch lag. 

Die Kalkulation der EI auf Basis des Brennwert der Futter, führte zu einer EI in der 

Milchproduktion von 23,7±3,37 MJ kg-1 ECM und in der Erzeugung von Bullenfleisch (400 kg 

Körpermasse) 314±25 MJ kg-1. 

Das Energie Output-Input-Verhältnis (OIR) lag zwischen 2,03 MJ MJ-1 für Körnermais und 

7,75 MJ MJ-1 für Frühjahrsmaissilage. Während OIR in der Milch 0,55 MJ MJ-1 und in der 

Fleisch 0,12 MJ MJ-1 betrug.  

 

Keywords:  

Energieintensität, Futtermittel, Iran, Kumulierter Energieaufwand, LCA, Milchviehhaltung,  
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1 Introduction 

The population of the world is growing. In 2000, the world population was 6.1 billion, and it is 

estimated that there will be an increase to 8.2 billion people by 2030 (Schneider, 2010). The 

security of the food that will feed this growing population is a significant challenge. Recently, 

more than 3.7 billion people were faced with malnourishment (Pimentel, 2009). In 2010, it 

was determined that of these 3.7 billion, 925 million people, mostly in developing countries, 

were undernourished, and these numbers have been increasing worldwide since 1995 (FAO, 

2010). However, agriculture produces enough food to overcome future demands. Poverty 

and undernourishment of a large part of the population is caused by fundamental problems in 

the distribution of food and resources (FAO, 2002).   

Agriculture plays a role in the improvement of food security worldwide by contributing to the 

growth of the economy in most developing countries and thereby reducing poverty (Pingali 

and McCullough, 2010). Livestock farming is an important sector of agriculture that contrib-

utes intensively to these aspects of food security. The demand for livestock products is in-

creasing. The increase in demand for livestock products is growing more rapidly than the 

population growth rate (Schneider, 2010). Because of population growth, increasing living 

standards and shifting demographic parameters (e.g., urbanisation and rising incomes), the 

demand for animal products has increased (Steinfeld et al., 2006). Global production of milk 

and meat in 2050 is projected to be more than double the production of 1999 (Steinfeld et al., 

2006), an increase that is being called the Livestock Revolution (Devendra, 2002).  

At the same time, agriculture is seriously challenged by environmental problems such as the 

reduction of water quality and farmland quantity due to erosion, developing infrastructures, 

and extensive grazing (Steinfeld et al., 2006). Increasing debate regarding the impact of ag-

riculture on the environment has led to less use of chemical fertilisers and pesticides and 

more restrictions on greenhouse gas emissions. It is assumed that these restrictions will lead 

to a decrease in the production yield (Börjesson, 1996). Therefore, to compensate for these 

restrictions and increase food production, the use of more intensive, mechanised, and pre-

cise agricultural systems is unavoidable, which will cause higher energy consumption in food 

production. However, the depletion of the fossil fuel stocks and increasing oil prices may re-

sult in a further decrease in energy consumption.  

Energy efficiency improvement is one of the most important aspects in regard to combatting 

these challenges. Energy efficiency improvements contribute to the reductions of emissions 

and climate change (Varone and Aebischer, 2001) and are a solution for fuel resource re-

strictions. The study of energy flow and energy efficiency will allow us to recognise bottle-
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necks and, subsequently, improve the production processes to achieve systems with more 

energy efficiency.   

Energy efficiency first garnered attentions after the oil crisis and resulting increase in oil pric-

es in the 1970s (Zuberman, 2009). Primarily, economic and political indicators and later, en-

vironmental issues (linked with the consumption of fossil fuels), brought the reliability of pro-

duction systems and the dependency on fossil fuels to the forefront. With this goal in mind, 

Life Cycle Assessment (LCA) models were introduced to assess the life of a production pro-

cess. In 1974, after some individual works the International Federation of Institutes for Ad-

vanced Studies (IFIAS) in Stockholm tried to standardise energy efficiency investigations so 

that the results of different studies could be compared (Zuberman, 2009). At the 1992 Inter-

national Environment and Development Conference in Rio de Janeiro, new guidelines and 

indicators were introduced to support the assessment of national and international develop-

ment processes in regard to sustainability (UN, 1992). These attempts led to the introduction 

of several standards and guidelines, such as VDI 4600 in 1997 (revised 2012) and ISO 

14041 in 1998 (revised by ISO 14044, 2006). Additionally, several software models have 

been introduced to help to analyse the systems. Some examples of these models are the 

KUL-method (Eckert et al., 1999) and REPRO (Hülsbergen, 2003) in Germany, EMA system 

(Lewis & Bardon, 1998) in Britain, and ESI-method (Sands & Podmore, 2000) in the USA. 

Agriculture is one of the three main economic sectors (in addition to industry and services) 

(Schäfer, 2003) that consume energy resources and emit greenhouse gases (GHG). Scien-

tists have investigated and assessed the energy efficiency of agricultural systems. Farming 

practices (which differ in intensity), region, crop type, and management have been evaluated 

by energy efficiency indicators. These studies showed a reduction of the energy output input 

ratio (OIR) in more intensified systems because the increase in the yield was less than the 

increase in the consumption of non-renewable energy resources, such as fuels and fertilisers 

(Pimentel et al, 1973; Pimentel et al., 1998; Kuesters and Lammel, 1999).  

The energy efficiency of livestock production is lower than that of crop production (Pimentel, 

2009). In comparison to crop production, few studies have been conducted on the energy 

efficiency of livestock farming (Wechselberger, 2000). The number of intensive livestock sys-

tems is increasing, and the land and livelihood needs of extensive systems are crucial chal-

lenges of livestock farming (Schneider, 2010). There is insufficient knowledge about the en-

ergy efficiency of production technologies in animal husbandry, in addition to little information 

on how targets and intensity of production may influence energy efficiency.  

There is a rapidly increasing demand for dairy products in Iran, as well as in most developing 

countries. Pastures in Iran are mainly low in quality and sensitive to overgrazing due to the 

primarily dry climate (Badripour, 2006). Therefore, most feedstuffs used in cattle farming are 
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produced intensively on farms in competition and rotation with foodstuff production. The use 

of croplands for the production of feedstuffs or consumption of grains as feedstuff to meet the 

increasing demand of livestock production is a threat to the sustainability of the food supply 

in Iranian agriculture.  

The aim of this study is to estimate and assess the energy efficiency of dairy cattle farms and 

feedstuff production farms in common systems that are prevalent in north-western Iran. The 

most useful indicators in energy efficiency investigation in the production of feedstuffs and 

also dairy products are the energy intensity (EI) and energy output input ratio (OIR). These 

indicators are calculated for both milk and meat from dairy cattle farms. The comparison of 

the energy efficiency of several farms that differ in herd size, cattle breed quality, keeping 

systems and management makes it possible to determine which systems are more efficient 

and trace more efficient processes and activities inside these systems. 

To preserve a scientific and standard method of investigation and to be able to assess and 

compare the production processes with other similar studies, the Cumulative Energy De-

mand (CED) concept described by VDI guideline 4600 (2012) and the Life Cycle Assessment 

(LCA) concept specialised by ISO standards 14040 and 14044 (2006) were used. Sensitivity 

analysis described the uncertainties of the results and identified connotative fields for further 

investigations.  
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2 Literature review 

2.1 Agriculture and livestock farming in Iran 

Agriculture is one of the most important sectors of Iran’s economy. Currently, agriculture 

constitutes 13.9% of the total gross domestic product (GDP) and 30% of non-oil exports from 

the country (Rabii, 2011). According to FAO, Iran ranks among the top 7 countries in the 

production of 22 important agricultural products. In comparison to the previous year, the val-

ue of agricultural production increased by 20% in the Iranian calendar 1389 (ending March 

2011), and agricultural exports rose by 30% (Rabii, 2011).  

The total land area of Iran is approximately 165 million hectares, consisting of 54.6% range-

land, 7.5% forests, and 20.6% deserts, and the remaining 6% are other settlements, infra-

structures, and water. Approximately, 33 million hectares have good capacity, on average, 

for agriculture, but just 18.5 million ha (12% of total land area) are cultivated. Of the cultivat-

ed land, 8.5 million ha are irrigated, and 10 million ha are rain fed (Badripour, 2006). There-

fore, agriculture is correlated with rainfall, and the amount of rain that falls on the region is 

the most significant challenge of the Iranian agricultural sector. The annual rainfall is 264 

mm, which is less than one-third of the world’s average precipitation.   

 

Figure 1 Average annual rainfall map of Iran.  

The mean altitude is 1,200 m above sea level. The lowest point is the coast of the Caspian 

Sea, at 27 m below sea level, while the highest point is Damavand Mountain, at 5,670 m 

above sea level. The southern half of the county is in the subtropical zone, the northern half 
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is in the temperate zone, and there is a desert zone in the middle of the country. These con-

trasting zones cause high diversity in the climate across the entire country (Badripour, 2006).  

Livestock farming constitutes 6% of the total GDP of Iran. There are nearly 83 million animal 

units1 in the country. Only 37 million animal units can be fed by range for 7 months per year, 

leaving an excess of 46 million animal units (Badripour, 2006). Therefore, some of the arable 

land is under cultivation for feedstuff for livestock in competition with foodstuff production. 

However, a significant share of feedstuff is imported yearly, depending on the yearly rainfall 

rate. 

Table 1 Range condition in Iran (Badripour, 2006). 

Condition Area 
(million ha) 

Mean DM yield 
(kg/ha) 

Useable DM 
(million tonnes) 

Fair – Good 14 290 4.0 
Poor – Fair 60 92 5.5 
Very poor – Poor 16 26 0.5 

Total 90  10.0 

According to FAOSTAT, in 2006, the livestock numbers comprised 54 million sheep, 26 mil-

lion goats, and 7.9 million cattle. In 2011, these numbers were 49, 23.5, and 8.6 million, re-

spectively (FAOSTAT, 2012). In 2011, the average whole fresh milk yield per cow was 2.2 

tonnes per year with a total of 6.4 million tonnes of milk across the country (FAOSTAT, 

2012). The statistical portal of the agricultural ministry of Iran claims that the total milk pro-

duction was 7.8 million tonnes in 2006 and 10.8 million tonnes in 2011 (MAJ, 2011). The 

difference between these two statistics may refer to the estimation of produced milk on small 

dairy farms, where the producer consumes the products or they sell their products directly to 

private individuals. These farms are not included regularly in the statistical surveys. Addition-

ally, the statistics of the agricultural ministry include milk produced by sheep and goats, as 

well as from buffaloes and camels. 

Based on the diversity in climate and the demographic culture, in addition to the population 

density, there are different systems of agriculture and animal husbandry all over the country. 

These systems have been adapted to each region and climate over a long period of time. 

The difference between livestock systems appears in the breed purity of the livestock, the 

feedstuff fed to the livestock, keeping systems, herd size, and managerial patterns. Sheep 

                                                 
1 Animal unit means a unit of measurement for any animal feeding operation (University of Illinois: agricultural and 
horticultural extension). An animal unit (AU) in Iran was defined as a sheep of 45 kg mass, which requires 276.5 
kg TDN per year (Badripour, 2006). Accordingly, in Iran, a pure breed Holstein cow is 9.5 AU, cross breed cattle 
is 6.5 AU, local cattle is 4 AU, buffalo is 6.5 AU, goat is 0.75 AU, camel is 5.5 AU, and horse and ass is 4.5 AU 
(MAJ, 2007). 
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and goats are kept mostly extensively, while cattle, buffalo, and camel are kept intensively 

and in barns in the vicinity of villages and cities.   

The breed composition of cattle population in Iran in 2006 consisted of 8.6% Holstein with a 

milk yield of 6,634 kg per year and cow, 45.4% crossing of Holstein and local breeds with a 

yield of 2,827 kg per year and cow, and 46.0% local breeds with yield of 864 kg per year and 

cow (Amar, 2006). Breed purity improving programs in the country has been planned to 

change from local breed to Holstein breed.  

 

Figure 2 Density of milk production in kg per km2 (left) and the cattle population in 

heads per km2 (right) in Iran (FAO, 2005) 

The two main systems in cattle farming are traditional and industrial. As reported by the sta-

tistic centre of Iran in 2006, traditional livestock farming was generally practiced in rural loca-

tions and comprised approximately 85% of the total cattle population, while industrial farms 

had a share of only 15% of the total cattle population (Amar, 2006). However, there have 

been an increasing number of cattle raised on industrial farms in recent years (see figure 3).  
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Figure 3 Number of industrial raised cattle in Iran from 1990 to 2006 (Amar, 2006). 
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The term “industrial dairy farm” refers to farms that adjust their barns, facilities, management, 

feeding program, and cattle breed to the new methods and scientific techniques introduced 

by the agricultural ministry and experts (Amar, 2006). This definition is independent of the 

herd size, but most industrial farms have larger herds than the traditional farms. On some 

industrial farms, the number of cattle is over 20,000. The feedstuff of these farms is generally 

not produced on site, but is instead bought from external providers. Only 5% of industrial 

farms have the availability to include a grazing program to supplement half of the feeding of 

cattle (Amar, 2010), while in rural farms, this availability is higher. However, there are also no 

regular grazing programs on rural farms. Grazing is often limited to a short session and is 

performed on the after-harvest residues. As shown in table 2, most of the cattle population in 

Iran in 2006 were kept on farms consisting of 10 or fewer head (88% of total cattle holders). 

Thirty-one percent of the cattle were kept in 11-50 head herds, and only 15% were kept in 

herds bigger than 50 head. 

Table 2 Classification of holders and dairy cow population by herd size (Amar, 2006) 

Herd size Holders population 

(%) 

Cattle population 

(%) 

1-10 88 54 

11-50 11 31 

51-100 0.5 5 

101-200 0.2 4 

201-500 0.06 3 

More than 500 0.01 3 

Total number  1,321,531 7,609,358 

2.2 Historical background of energy analysis  

High dependency on fossil fuels is one of the challenges of intensive agricultural systems 

and has been a source of interest to researchers for many years. After the oil crisis in the 

1970s and the subsequent increasing oil prices, some studies have been introduced and 

developed with the goal of improving the management of fossil fuel consumption in agricul-

ture. Howard Odum, David Pimentel and Robert Constanza were among the pioneers and 

most prominent researchers involved in evaluating the energy balances in agricultural sys-

tems and trying to increase energy efficiency (Zuberman, 2009). Pimentel published his first 

study in 1973. His method consisted of quantifying the amount of energy input in the form of 

either working hour, mass of materials, fuels or machinery and comparing them with the en-

ergy output from the products. In the same manner, he converted energy inputs into econom-
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ic prices. He introduced indicators that allowed for the energy inputs to be compared with the 

outputs and for the energy efficiency of a system to be evaluated. In 1974, the International 

Federation of Institutes for Advanced Studies (IFIAS) conducted a workshop in Stockholm 

with the aim of producing of a set of definitions, conventions and standards to be recom-

mended for general use by those working with the analysis of energy (IFIAS, 1975). 

Most of the data needed in energy analyses, such as the energy equivalent of embodied 

energy in inputs, are from the 1970s (Börjesson, 1996). For example, in 1972, Berry and 

Fulton investigated the embodied energy in car factories, and Pimentel et al. (1973) extend-

ed their study by estimating the embodied energy in agricultural machinery, a finding that is 

still used in energy analyses (Mikkola and Ahokas, 2010). Constanza (1980) discussed dif-

ferent methods used in input-output analysis and outlined the main factors in boundary de-

signing and consideration of direct and indirect energies. In addition to these individual stud-

ies, other attempts were made to provide standards and guidelines to establish a standard 

methodology of energy assessment worldwide that has been used to this day. The VDI 

guideline 4600 was introduced in 1997 by an association of German engineers (VDI) to de-

velop a cumulative energy demand investigation, which was revised in 2012. The GEMIS 

database (Globales Emissions-Modell Integrierter Systeme), which was established in 1989 

(GEMIS ver. 1, 1989), also used this guideline in 1999 (GEMIS ver. 3.x, 1999) to enable the 

analysis of energy and emission in production processes. Both the VDI guideline and the 

GEMIS database were used by Kraatz (2009) to investigate the energy efficiency of dairy 

farming in Germany.  

ECOINVENT is another database that was established in 2000 in Switzerland that is used to 

provide LCA data (ECOINVENT, 2007). The GEMIS database (GEMIS ver. 4.81, 2012) and 

ECOINVENT database (ECOINVENT ver. 3.0, 2013) were revised in 2012 and 2013, re-

spectively. 

Most of the energy investigation methodologies are focused on the energy and economic 

indicators. To avoid neglecting other issues, such as the environmental effects of the con-

sumption of energy resources (especially non-renewable energies), the life cycle assessment 

(LCA) methodology was introduced in the 1970s, primarily in beverage companies (e.g., Co-

ca-Cola) (Zuberman, 2009). The LCA methodology is used to assess the impact of a produc-

tion system on the environment. This method has become more and more important. The 

International Organisation of Standards (ISO) developed ISO 14041-3 standards in 1998 and 

2000 for LCA concept, which were revised in 2006 by ISO 14040 and ISO 14044 (2006). 

With the increasing complexity of the indicators and their relation to emissions, several soft-

ware models were introduced to help to analyse the systems. Some of these models include 

the KUL-method (Eckert et al., 1999) and REPRO (Hülsbergen, 2003) in Germany, the EMA 
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system (Lewis & Bardon, 1998) in Britain, and the ESI-method (Sands & Podmore, 2000) in 

the USA. 

2.3 Methodologies of energy analysis 

According to the IFIAS (1974), the energy analysis is defined as the “determination of the 

energy sequestered in the process of making a good or service within the framework of an 

agreed set of conventions or applying the information so obtained”. 

The IFIAS method consisted of the following steps: 

- Establishing the boundary of the process under analysis. 

- Identifying all the factors involved in the process. 

- Assigning an energy equivalent to each factor. 

- Multiplying the energy equivalent by the quantities required by each factor. 

- Identifying and quantifying the end product. Allocating the consumed energy to the 

main product and by-product. 

- Relating the energy content of the product with the energy consumed in its produc-

tion, which means defining suitable indicators to evaluate the efficiency of the pro-

cess.   

In the IFIAS methodology, the energy equivalent of each factor is defined as its thermody-

namic heating content. There are no differences between different qualities or hierarchies of 

energy sources (Zuberman, 2009). Therefore, the indicators used in the evaluation are in fact 

based on the first law of thermodynamics1, referring to the thermal or enthalpic efficiency of a 

system. With such indicators, the energy quality of inputs and outputs is not taken into ac-

count, which is a significant disadvantage of their use (Patterson, 1996). One of the solutions 

to overcome this problem is to quantify the inputs and outputs by means of their work ability 

and the exergy concept, which are based on the second law of thermodynamic (Patterson, 

1996). Another way to combat this disadvantage is the use of the emergy (energy memory) 

concept. Emergy attempts to quantify all the useful energy (exergy), both directly and indi-

rectly, through the entire process of obtaining a product. Odum proposed this method in 1996 

(cited in Zuberman, 2009). Because the first and main energy input in each system is from 

the sun, the unit of measure of emergy is expressed primarily in solar equivalent joules (SEJ) 

for each unit of output, measured in kg or J (Odum, 1998). 

                                                 
1The first law of thermodynamic refers to the conservation of energy. It states that matter and energy can neither 
be created nor destroyed, only be transformed (Hussen, 2004).  
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In energy analysis, the boundary of a system starts with the primary energy resources and 

ends with the disposal of products, which is also called an LCA assessment (VDI 4600, ISO 

14040 & ISO 14044). The emergy analysis quantifies all of the environmental flows and dis-

tinguishes the origin of each input (Zuberman, 2009). Additionally, the indicators used in the 

energy analysis measure the primary energy consumption in a process or product, whereas 

indicators used in emergy measure the whole energy flow of the process (renewable or non-

renewable, commercial or non-commercial) and their contribution to the production energy 

(Odum, 1998 and Zuberman, 2009). 

However, there are some disadvantages in the use of the exergy and the emergy methods, 

especially in agriculture. First, these methods make the analysis more complex. Second, 

physical work is not a desired energy output in agriculture. Finally, the desired type of work 

(e.g. electrical, mechanical, chemical) is not defined. Additionally, there is a large amount of 

energy input from the environment and the sun in agricultural systems. This input causes 

relatively low amounts of primary energy inputs to not be adequately considered. Therefore, 

in the boundary of these studies, solar energy is not taken into account, and only the com-

mercial energy resources are investigated. In this study, the intended boundary of the system 

and energy analysis is based on the primary energy resources. The methodology is de-

scribed below.   

2.4 Energy analysis boundary 

According to VDI 4600 and ISO standards (14040 and 14044), energy systems start with the 

consumption of primary energy and raw materials at the beginning of a process and end with 

the disposal of productions and necessary operations to remove the impacts of the process 

on the environment. This full LCA is also known as the cradle to grave assessment. Cradle 

refers to the resource extraction phase, and grave is indicative of the disposal phase.   

As revealed in the VDI 4600 guideline (2012), CED consists of three parts of energy demand 

in each system: cumulative energy demand for production (CEDP), cumulative energy de-

mand for use (CEDU) and cumulative energy demand for disposal of products and by-

products (CEDD).  

DUP CEDCEDCEDCED ++=       Equation 1 

In each part, the sum of the energy expenditures that result from the acquisition, processing, 

fabrication, transportation and disposal of used objects or services should be taken into ac-

count.  
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However, according to the purpose of the investigation, the proper boundary of any system 

and the estimated indicators could be redefined. In energy-agriculture and production of bio-

mass crops (in replacement of food crops), the LCA methodology has vital importance. The-

se systems have been introduced to replace non-renewable energy resources as a means to 

save the environment. Therefore, the entire system must be completely energy efficient (the 

energy output input ratio must be more than 1). In food production systems, some parts of 

LCA (e.g., disposal of products) are often neglected, and the investigation boundary is limited 

to the farm gate. This limited boundary is called cradle to gate assessment. This boundary 

can be extended to include the handling of products from farm, post-processing, packing, 

marketing, and finally, the disposal of all the materials used in these processes. Even though 

the aim of investigating the energy efficiency is to develop more efficient production systems, 

food production systems (i.e. livestock farming) are not expected to be absolutely energy 

efficient. In other words, the energy output should not be necessarily more than the energy 

input, even in the cradle to gate boundary. Figure 4 shows a diagram of material and energy 

flow during a production system.    

Provision of industrial production factors

Process

Poduct(s) By-product(s) Off-heat Wastes Emissions

Production materials:

Raw materials, circulation 
materials, parts, assemblies 
e.g. steel, oil (non-energetic 
consumption), metal sheet, 
engines ... 

Consumables:

Operating energy,  
recirculated energy, 
spare parts, lubricants

Production facilities:

machines, transport 
facilities
e.g. lathe, punching 
machine, furnace, 
conveyor

buildings, non-productory 
plants, 
e.g. factory premises, 
R&D area, 
administration, canteen

Primary energy Primary raw materials

 

Figure 4 Diagram of material and energy process flows (VDI 4600, 2012). 

To obtain a sense of the amount of energy input in each stage, IFIAS has suggested the fol-

lowing levels of energy consumption during each type of energy input in the mentioned 

boundary (Baird et al., 1997):  
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Level 1: Typically less than 50%:  

Level 2: Frequently approximately 40%:   

Level 3: Rarely greater than 1%: 

Level 4: Usually very low:               

Direct energy involved in the process only. 

Energy involved in extracting materials. 

Energy needed to make capital equipment.  

Energy needed to make the machines that 

make the capital equipment. 

2.5    Definition of terms  

2.5.1 Definition of energy resource terms 

Commercial energy: energy that is traded in the market and therefore has a market price. 

Coal, oil, gas and electricity are examples of commercial energy (Bhattacharyya, 2011).  

Additionally, latent energy in biomass may belong to commercial energies, depending on the 

location. The availability to commercial energies is generally limited. Odum (1998) named 

this energy category ‘purchased energy’ in his emergy system diagram. 

Non-commercial energy: energy that does not pass through the market and, thus, has no 

market price (Bhattacharyya, 2011). Environmental energies that have not been converted to 

commercial energy, such as wind, solar, water, and soil, belong to the non-commercial ener-

gy category. 

Primary energy: energy that is found in nature and that has not undergone any conversion 

or transformation (other than separation and cleaning from attendant materials) 

(Bhattacharyya, 2011 and VDI 4600, 2012). Examples are coal, crude oil, natural gas, nucle-

ar power, and solar energy. 

Secondary energy: energy that is obtained through transformation and conversion of prima-

ry energy or some other secondary energy (Bhattacharyya, 2011 and VDI 4600, 2012). Ex-

amples are oil products and electricity. 

Renewable energy: any primary energy that is obtained from a consistently available energy 

resource. Solar, wind and water flow are renewable energy resources (Bhattacharyya, 2011). 

Non-renewable energy: a type of primary energy that comes from finite energy resources. 

Coal, crude oil, and nuclear are non-renewable energy resources (Bhattacharyya, 2011). 

Direct energy input: energy input from primary or secondary energy resources that are 

consumed directly in a system or process. Examples are diesel, electricity, and gas. 
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Indirect energy input: energy input in the form of materials, facilities, or services that is 

equal to the primary or secondary energy resources consumed in their extraction, construc-

tion, transportation, and delivery. Energy input from machinery, building materials, and ferti-

lisers are as examples of indirect energy input.   

Final energy (end energy): energy content of all primary and secondary energy carriers that 

are ultimately available to the consumer. It is the net energy of the primary energies, reduced 

by conversion losses and auxiliary energy demand (VDI 4600, 2012).   

Energy system: a chain of transformation and conversion processes and flows, where pri-

mary energy is processed until it reaches final energy and, thereafter, can be effectively used 

(product) (Orecchini & Naso, 2012). 

Production energy: the sum of the energies consumed by an energy system during produc-

tion until the product reaches the consumer. 

Cumulative energy demand (Embodied energy): the entire primary energy demand that is 

consumed in a production process. With LCA methodology, the entire energy demand for 

production and disposal of production or any casual relation (VDI 4600, 2012).   

2.5.2 Definition of heating values  

Different heating values are defined based on different conditions and views. Depending on 

the purpose of consumption or study, heating specifications are defined and measured in 

various ways. To avoid of any confusion regarding thermal and energy statements, the pre-

cise definitions of heating values and energy content of investigated materials must be given. 

The values that are used or mentioned in this study are defined as follows: 

Higher heating value (HHV): the maximum amount of heat produced by the complete oxi-

dation and combustion of a given amount of material or fuel. The higher heating value is ob-

tained when all products of the combustion, as well exhaust gases, are cooled down to the 

standard base temperature (or temperature prior to combustion) and all the produced or va-

porised water during combustion is condensed (Kaltschmitt et al, 2009).  

This value is calculated by assessing the combustion of materials or fuels in a bomb calorim-

eter. The higher heating value is also known as the gross caloric (or heating) value, upper 

heating value or superior heating value.  

Lower heating value (LHV): the amount of heat produced by the complete oxidation or 

combustion of a given amount of a material or fuel, without considering the condensation 

heat of the produced or vaporised water (Kaltschmitt et al, 2009).  
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Engineers generally refer to this value as the practical combustion value of fuels needed to 

produce heat and energy. The lower heating value is also known as the net caloric value, 

lower caloric value or inferior caloric value. 

The difference between HHV and LHV comes from the condensation energy of vaporised 

water during the combustion of materials. In completely water-free materials, there is a small 

difference between HHV and LHV, dependent on the chemical structure and amount of the 

produced water during combustion. This difference increases as the water content of com-

busted material or fuel increases (figure 5). The moisture content of materials also has a sig-

nificant influence on the heating value. As shown in figure 5, the lower heating value of a 

biomass with moisture content of approximately 90% is zero.  
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Figure 5 Difference between higher and lower heating value for most of biomasses        

(Kaltschmitt et al., 2009) 

To convert the heating value from the dry matter-based value to the fresh matter-based val-

ue, two separate formulas are used. Converting the dry matter-based higher heating value 

(HHVd in MJ kg-1) to the fresh matter-based higher heating value (HHVf in MJ kg-1) with given 

moisture content (M) is described in equation 2: 

)1( MHHVHHV df −×=         Equation 2 

To convert the dry matter-based lower heating value (LHVd in MJ kg-1) to the fresh matter-

based lower heating value (LHVf in MJ kg-1), equation 3 used as described by Kaltschmitt et 

al. (2009): 

MMLHVLHV df 443.2)1( −−×=        Equation 3  

Dependent on the aims of an energy analysis, the HHV or LHV of the consumed materials or 

fuels is used as the energy equivalent. However, in the animal sciences, other definitions are 
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used to determine the energy content of feedstuffs because the higher heating value of 

feedstuffs is not completely used by animals. For example, the same amounts of straw and 

grain have nearly the same higher heating values, but the usable energy by animals from 

straw is not same as the usable energy from the grain (table 10). Therefore, other definitions 

were introduced for animal sciences as a means to quantify the energy content and qualify 

the feedstuffs. These definitions are as follows (from Kirchgeßner et al., 2008 and Moehn et 

al., 2005): 

Digestible energy value (DEV): the part of the higher heating value of a feedstuff that is 

digestible by animals. It is the higher heating value of the feedstuff minus the higher heating 

value of the faeces, named the faecal energy. 

Metabolisable energy value (MEV): the part of the digestible energy value that is not ex-

creted during the metabolism of feedstuff through urine (urinary energy) or combustible fer-

mentation gases (methane).  

Net energy value (NEV): the energy that can be metabolised, minus the heat increment that 

is produced during the digestion of feed, nutrient metabolism and waste excretion.  

Production energy value (PEV): the part of the net energy that is used for production 

(growth, gestation and lactation). Production energy is calculated as the net energy minus 

the energy used for maintenance.   

Net energy lactation (NEL): the available energy in feedstuff for dairy cattle that is used for 

milk production and body maintenance. NEL is a special definition of NEV used in dairy cattle 

science. 

These definitions indicate that only net energy is used by animals and that the difference 

between net energy and gross energy is actually the energy loss (Moehn et al, 2005). How-

ever, the maintenance energy is also energy loss, and only the production energy is convert-

ed to the target products, such as milk and meat (shown in figure 6).  

Gross energy

Faecal energy Digestible energy

Urinary & gases energy Metabolisable energy

Heat increment Net energy

Maintenance Production
 

Figure 6 Energy losses from feedstuff in an animal body. 
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These energy values vary from animal to animal depending on the type and breed of the 

animal and are generally reported individually for ruminants, non-ruminants and poultry. Be-

cause many complexities and difficulties result when NEV is assessed, digestible (DEV) and 

metabolisable (MEV) energy values are widely used (Moehn et al, 2005), except in dairy cat-

tle science, where NEL is widely used. Net energy lactation (NEL) is a more useful and spe-

cialised definition for determining the net energy used during the lactation of dairy cattle. 

2.5.3 Definition of energy efficiency indicators  

In general, energy efficiency refers to using less energy to produce the same amount of use-

ful output (Patterson, 1996). Useful output of a process can be an energy output, a physical 

product, or a service (Patterson, 1996). To quantify the energy efficiency, different indicators, 

such as energy output/input ratio, energy productivity, energy intensity and net energy yield, 

have been defined and frequently used, especially in agricultural studies (Zuberman, 2009; 

Kuesters & Lammel, 1999). The most applied indicators in energy efficiency analysis are 

defined as follows:  

Energy intensity (EI): the amount of final energy that is consumed to produce a unit of 

product. In agriculture, usually the unit of MJ kg-1 is used for this indicator.  

This indicator is the most important indicator used for the indication of the efficiency of ener-

gy systems in the agricultural sector (IAEA, 2005).  

In this study, the energy intensity (EI) corresponds to the cumulative energy demand (CED) 

concept and to the embodied energy (EE), which were defined previously. These terms are 

frequently used interchangeably in this study.  

Energy productivity (EP): the amount of produced yield per a unit of final energy input. This 

indicator is the reverse of the energy intensity indicator and therefore has the unit of kg MJ-1 

in agriculture. 

Energy output/input ratio (OIR): the ratio of usable energy output to final energy input in a 

system. This indicator is the most famous and common indicator in energy efficiency analy-

sis. Hence, this ratio indicates “energy efficiency’’. It is without a unit or can be referred to as 

MJ MJ-1.     

Net energy yield (NEY): the difference between the usable energy output (yield) and the 

energy input. The unit of this indicator is MJ. This indicator is sometimes called the “net en-

ergy gain”.  

Labour energy productivity (LEP): the amount of produced energy per hour of labour. The 

unit of this indicator is MJ h-1 of labour work.   
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The first two indicators are a combination of physical and thermodynamic specifications. In 

regard to these indicators, the more efficient system uses less energy to produce a unit of 

production or service. The use of a physical unit of output in these indicators helps to evalu-

ate a production system or service delivery system without any difficulties that might occur 

when converting the output to energetic units. Additionally, the consumer or producer do not 

evaluate the end product or service based on a heat content or work potential basis, but can 

still objectively compare the product. However, in the case of the existence of several prod-

ucts or by-products, an allocation issue will arise (Patterson, 1996). 

The next two indicators reveal the difference between the heating or energetic value of inputs 

and useable outputs of a system. According to these indicators, the more efficient system is 

the one that converts more input energy (in any case) to usable output energy. 

The last indicator is defined by own, because the importance of labour work must be ad-

dressed due to the reduction of its availability and increasing wages, especially in agriculture. 

More energy production per hour of labour work is one of the aims of agricultural research. 

LEP does not directly indicate the energy efficiency of a system and seems to be related to 

the mechanisation status of a system. However, in addition to the other indicators, it contrib-

utes to an extended interpretation of the efficiency of the systems. 

2.6 Energy input equivalents  

Energy input into a system is in the form of direct energy and indirect energy. Direct energy 

is in the form of primary energy resources, such as crude fossil oil, gas, coal and nuclear 

power, and secondary energy resources, such as electricity, human and animal works, and 

even diesel and other refinery products of fossil fuels, which are the converted or modified 

forms of primary energies. Indirect energy is the energy embodied in facilities and services 

used in the production.   

According to VDI Guideline 4600, all direct and indirect energy inputs should be included in 

assessments (VDI 4600, 2012). However, depending on the aim of the assessments, some 

of the energy inputs may be neglected by limiting the boundary of the investigation. There-

fore, there is a need to clearly define all included and excluded energies in the analysis to 

avoid diversity in the methodologies, thereby resulting in data that are comparable. 

In energy analysis, the environmental energy resources, such as passively utilised solar en-

ergy (air, soil and water temperature (VDI 4600, 2012)), wind energy, latent energy in soil, 

and hydro-power, are not taken into consideration, with the exception of the energy con-

sumed for their transport and supply. In general, all of the energy resources that are not in 

the list of commercial energy resources are excluded. Moreover, because of uncertain or 
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missing data, some energy inputs (especially in infrastructures) may be included through a 

rough estimation. 

All energy input calculations are based on the whole fuel cycle, including the primary energy 

need for producing the energy carrier used as both raw material and fuel. The higher heating 

value of primary energy resources is the basis of energy content (Börjesson, 1996). Accord-

ing to this concept, energy efficiency is actually the efficiency of the primary energy re-

sources. The higher heating value would be more appropriate for describing the energy con-

tent of resources and materials, with the exception of the energy of other combustible mate-

rials that are not registered as energy carriers in the national energy statistics, such as bio-

mass (VDI 4600, 2012). VDI guidelines recommend the lower heating value for biomass (see 

 2.6.2.6.2). For different sites and conditions, the conversion of primary energy efficiencies to 

secondary energies or to indirect energy resources can vary significantly. Therefore, depend-

ing on specifications of the regions, different energy equivalents for the same input is possi-

ble and should be considered.  

2.6.1 Direct energy 

Energy input from direct energy resources is calculated by multiplying the consumed amount 

of the energy resource by its energy equivalent. The following are common direct energy 

resources in agriculture:  

2.6.1.1 Electricity 

The energy of electricity in the primary energy-based analysis is the energy embodied in the 

life cycle of electricity production, which should be used in the calculation of the energy input. 

The amount of energy embodied in electricity production in each country depends on the 

structure and fuel composition of its power plants. An average demand of 12.0 MJ per kWh is 

reported by Ortiz-Canavate and Hernanz (1999) which is the energy embodied in its produc-

tion (8.4 MJ kWh-1) in addition to its secondary energy value (3.6 MJ kWh-1). The share of 

renewable energy is not reported, but it can be assumed that this share is small and there-

fore not relevant to the end results. According to CED, only the production energy should be 

used as the electrical energy equivalent what that is used in this study.  

2.6.1.2 Fuels 

The energy input from the direct consumption of fuels includes the energy content of fuel in 

the base of HHV, in addition to the energy embodied in its production, such as the energy 

consumed in mining, excavation, refinery and transportation. Indirect energy embodied in 
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fossil fuel production was assumed by Börjesson (1996) to correspond to 10% of the energy 

content of the fuels. Furthermore, another 4% of the energy content of diesel corresponds to 

energy input in the form of lubricants. Therefore, with a HHV of 38.7 MJ l-1, Börjesson pre-

sumed that the energy input from diesel consumption was 44.3 MJ l-1. Table 3 shows the 

energy equivalent of various energy resources reported by Ortiz-Canavate & Hernanz 

(1999). 

Table 3 Energy equivalent of fuels in MJ per unit (Ortiz-Canavate & Hernanz, 1999) 

Energy resource Unit HHV a Consumed energy in production Total energy equivalent 

Gasoline l 38.2 8.1 46.3 

Diesel l 38.7 9.1 47.8 

Fuel oil l 38.7 9.1 47.8 

LPG b l 26.1 6.2 32.3 

Natural Gas m3 41.4 8.1 49.5 

Coal kg 30.2 2.4 32.6 

Electricity kWh -  8.4 12.0 
     a Higher heating value; b Liquid petroleum gas;  

Fuel consumption of machinery 

To calculate the fuel consumption of a machine, several methods are used. Factories, re-

searchers and agricultural engineering associations have introduced various theoretical for-

mulae to calculate the fuel consumption of tractors and self-propelled agricultural machiner-

ies. Another method uses empirical data adapted to different agricultural machinery opera-

tions (table 4). These equations or tables are based on the specifications of the engine, im-

plement, and soil and estimate the fuel consumption of a machine per hectare or per hour of 

operation. However, due to many factors affecting machinery operation, such as weather, 

soil, depth of work, field shape and size, and particularly managerial factors, both of these 

methods may not determine the fuel consumption of different machinery in different sites 

precisely. For example, a fuel consumption rate of 17.5 and 24.2 litre per hectare for mould-

board operation was recorded in two different regions (Bowers, 1992) that are very different. 

The field measuring techniques, such as fuelling the tank before and after the operation or 

use of measuring instruments, can estimate the fuel consumption more accurately than use 

of theoretical data (Fathollahzadeh et al., 2011). Fuelling and refuelling the tank before and 

after the operation introduces some errors (Fathollahzadeh et al., 2011), but it is the simplest 

way to measure farm fuel consumption that is practiced by the farmers. Fuel consumption 

should include all consumption between the entrance and the exit of the machinery from the 

field, in addition to the transportation of the machinery between farms.  
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Table 4 Diesel consumption in farm operations estimated by Ortiz-Canavate & Hernanz (1999) 

Operation Consumption (l ha-1) Operation Consumption (l ha-1) 

Mouldboard plough 25±7 Centrifugal fertilizer 2±0.5 

Disc plough 22±5 Manure spreader 7±2 

Chisel (straight arm) 13±2 Mounted sprayer 1.5±0.5 

Chisel (curved arm) 10±2 Trailed sprayer 3±0.5 

Heavy disc harrow 9±3 Grain drill 5±0.5 

Medium disc harrow 7±2 Row planter 5.5±1 

Heavy cultivator 10±2 Ridge planter 17±1.5 

Light cultivator 8±1 Combine 18±2 

Vibro-cultivator 6±1 Cutterbar mower 4±0.5 

Rotary hoe 4±1 Rotary mower 5.5±0.5 

Roller 4±1 Swather 3±1 

Rotary cultivator 20±4 Baler 5±1 

Hoeing toolbar 2±0.5 Forage harvester 25±5 

Combined equipment for 
ploughing - seedbed preparation 

24±6 Sugar beet harvester 60±10 

2.6.1.3 Human 

In several studies, such as Ozkan et al. (2004b), human work was included in the energy 

analysis as an energy input resource, with an equivalent of 1.96 MJ h-1. However, according 

to VDI Guideline 4600 and Pimentel et al. (1983), no energy input from labour is considered 

in energy analysis. 

Energy input from labour could be categorised as secondary direct energy input. However, it 

is hard to clearly define an exact relationship between the energy embodied in human food 

and the energy produced in the human body or the energy used for physical work.  

Regarding the claimed energy equivalent to human work, the share of the energy input by 

human work in the total energy input into the farm is insignificant. It is reported by Ozkan et 

al. (2004b) to be 2.6% of the total energy input for an orange farm, and by Maysami et al. 

(2009) to be between 0.5% and 2.1% for wheat cultivation and 4.6% for onion cultivation, 

where more labour work for weeding is required. These low shares did not include labour 

energy in the energy analysis, while in most cases, human labour is a high value input due to 

its availability and cost. Therefore, other indicators could be applied to investigate a system 

based on its labour requirement. Pimentel et al. (1983) used labour productivity or produced 

yield per one hour of labour work to assess production systems. This indicator could be rede-
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fined as the amount of energy produced per one hour of labour work or labour energy 

productivity (LEP).   

2.6.2 Indirect energy 

Indirect energy input includes a vast range of materials or services used and consumed in a 

system or infrastructural facilities, such as transportation systems, massive irrigation and 

drainage systems, and delivery networks (electricity, water, and communication). As a result 

of daily innovations and progress in converting processes, embodied energy in materials and 

services is changing rapidly. Increasing energy efficiency causes embodied energy to de-

crease, while more complex systems and materials result in higher embodied energy. For 

this reason, frequent updates in the calculations of energy equivalents of indirect energy re-

sources are needed. Some of the most important indirect energy input resources in agricul-

tural systems are reviewed in more detail in the following sections. 

2.6.2.1 Machinery 

The first investigation of indirect energy consumption in machine production was performed 

in 1972 by Berry and Fulton Fells on automobile manufacturing. Their study indicated that 

81.2 MJ kg-1 of automobile is consumed energy in automobile manufacturing (Mikkola and 

Ahokas, 2010). Pimentel et al. (1973) modified this research for agricultural machinery and 

presented an embodied energy of 86.8 MJ kg-1 of agricultural machinery from the cradle to 

the gate of the factory. In 1980, Pimentel modified his methodology to calculate the energy 

embodied in agricultural machinery to include the energy embodied in the materials for the 

parts, the fabrication of parts and spares, and the energy to assemble the parts (cited in Bör-

jesson, 1996).  

Embodied energy in machinery is categorised in four steps. First, the energy embodied in the 

raw materials is assessed. Second, the energy used in processing the raw materials and part 

production and the energy used in assembling the parts are determined. Third, the energy 

consumed in the transportation and distribution of machinery is calculated. Finally, the ener-

gy embodied in the repair and maintenance, including spare parts and services, is consid-

ered. Only a small portion of farm machinery is recovered and recycled as scrap metal. 

Therefore, the energy consumed in the disposal is neglected by most authorities (Bowers, 

1992). Scholz et al. (1998) estimated the energy demand for the disposal of agricultural ma-

chinery to be 0.5 MJ kg-1. 

Tractors are made of heavy parts of cast iron, whereas the body of a car is generally made of 

steel sheet. The use of synthetic materials in cars has increased, and the tyres, fuel tank, 
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cabin and bonnets of tractors have also recently been made of plastics and fibreglass (Mik-

kola and Ahokas, 2010). The energy consumed in material production has been reduced 

during the last few decades. As reported by Börjesson (1996), American steel production 

consumed 63 MJ kg-1 in the late 1970s, while this value was 24 MJ kg-1 in the 1990s in Swe-

den, with an assumption of a further 30% energy reduction in following two decades. Energy 

input per kg material is two times more in steel production than that in cast iron production, 

but is 4 times less than that for rubber production (Börjesson, 1996). Börjesson claimed that 

tractors and forestry machines are made of 45% steel, 45% cast iron and 10% rubber or 

plastic, while implements are often made from steel. Thus, the energy input per kg of tractor 

material should be similar to the energy input per kg of steel. However, Mikkola and Ahokas 

(2010) claimed that the use of more sophisticated complexes and more energy intensive 

materials, such as plastics and aluminium, in recently manufactured tractors suggested that 

the energy analysis of agricultural machinery should not be made on the basis of energy 

consumption in steel production. So far, there is no comprehensive analysis of the energy 

intensity in car manufacturing, agricultural machinery manufacturing and the structural differ-

ences between them (Mikkola and Ahokas, 2010).  

The determination of consumed energy in machinery manufacturing is a very time-

consuming and onerous part of machinery energy calculations. Because machines consist of 

diverse parts of different materials made in different firms and sub-factories, it is difficult to 

acquire information about them. Table 5 shows the energy consumption estimations in the 

manufacturing of farm machinery from Bowers (1992) and Börjesson (1996). 

Table 5 Energy consumption during the manufacturing of farm machinery (ex-

cluding energy embodied in materials), given in MJ kg-1 machinery. 

Machinery (Bowers, 1992) (Börjesson, 1996) 

Tractor 27.63 11 

Combine 21.65 9.1 

Plough 12.78 6.3 

Disc 9.96 5.9 

Applicator 10.20 5.1 

Planter 16.90 5.1 

Rotary hoe 11.38 5.9 

Mower, baler and harvester - 4.8 

Other - 5.1 
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Bowers (1992) revealed that a simple way to estimate the energy embodied in agricultural 

machinery is to use the 86.77 MJ kg-1 value (estimated by Pimentel et al. in 1973) as the 

energy embodied in the assembled machinery (from the cradle to the gate of factory). This 

estimation includes the tyres because the suggested embodied energy value for tyres (85.8 

MJ kg-1) by Doering et al. (1977) is close to the energy embodied in the assembled machin-

ery estimated by Pimentel et al.. Therefore, tyres can be considered a part of the manufac-

tured machine. In 1983, Yisheng estimated a consumed energy value of 209 MJ kg-1 for ma-

chinery production in China, which was two times more than that in the USA. It seems that 

this difference was due to smaller and less efficient manufacturing companies (Bower, 1992).  

Consumed energy during the transportation of machinery from the factory to the farm de-

pends on the distance between the two locations and the transportation system.  Bowers 

(1992) estimated an additional energy demand of 8.8 MJ kg-1 of machinery for transportation 

and distribution of manufactured products. Börjesson (1996) made an assumption of 10% of 

energy embodied for assembled machinery for transportation. With an embodied energy of 

86.77 MJ kg-1 for assembled machinery (Pimentel et al., 1973), the results of both estima-

tions are quite similar.   

Authors differ in respect to their calculations of energy embodied in repairs. Repair and 

maintenance (R&M) also has a significant share of the indirect energy of machinery (Bowers, 

1992). Because of the lack of information on repair and maintenance, it is difficult to clearly 

determine the energy embodied in R&M. Information is needed on the accumulated mass, 

materials and frequency of spare parts; facilities, such as storage buildings; tools and instru-

ments used in repair and maintenance of the machine during its service life and also service 

and activities made by dealers, farmers and workshops. According to the total accumulated 

repair costs, Pimentel used a formula to assume the energy embodied in R&M. However, the 

investigation of Börjesson (1996) showed that the results of that formula were 50% too low. 

Mikkola and Ahokas (2010) reviewed some recent research on the R&M of cars and agricul-

tural machineries, which all showed different ratios for the energy embodied in R&M to the 

energy embodied in assembled machinery. These reported values were between 6 percent 

for tractors by Pimentel et al. in 1973 to 360 percent for cutter bar mowers by Fluck and 

Baird in 1985 (cited by Mikkola and Ahokas, 2010). These estimations were generally based 

on monetary models that were driven normally from accumulated repair cost models or part 

producers and sellers statistics (Börjesson, 1996). The changes in the prices, the different 

results of the models and some ignored data in the models caused high variation in the re-

sults. For example, as cited by Bowers (1992), in the research of Fluck and Baird, 55% of the 

energy embodied in assembled machinery was needed for R&M when it was based on the 

industry cost model; it was 138% when based on the lifetime machine repair cost model. 

Bowers (1992) estimated the energy sequestered in R&M as a ratio to the energy embodied 
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in assembled machinery. In his estimation self-propelled combines had the lowest ratio while, 

for cutter bar mowers had the highest, at 1.44. On average, for 14 machines the ratio was 

0.55, which is the same ratio estimated by Fluck and Baird with the industry cost model 

(Bowers, 1992). The average R&M ratio used by Börjesson (1996) was 0.75, which is 36% 

higher than those estimated by Bowers (table 6).  

Assuming the value of 86.77 MJ kg-1 of machinery for the embodied energy in assembled 

machinery, including the tyres, 8.8 MJ kg-1 of machinery for transportation and distribution, 

and the R&M ratios estimated by Bowers (1992), the energy embodied in different farm ma-

chinery are shown in table 6. Bowers revealed that the size of the machine (for example, two 

types of combine) has very little effect on the energy input for a given amount of area by the 

embodied energy in the machine.  

The allocation of the indirect energy embodied in machinery to the biomass production is 

also an issue. Machinery energy (ME) input is generally calculated in MJ per hour of machin-

ery work, as shown in equation 4 (Ozkan et al., 2004), where G is the machine mass, E is 

the energy equivalent of each kg of machine, and T is the machinery lifetime (mentioned in 

the table 6).  

TEGME ×=         Equation 4                                                                                   

With a given or assumed duration of operation per area, the indirect energy input per area is 

calculated in MJ per hectare.  

With a given or assumed operated area (ha) during the machinery real lifetime, the embodied 

energy in the machinery is divided into the total operated area (equation 5).  

haEGME ×=         Equation 5                                                                                   

There can be significant differences between the real and calculated machinery lifetime. If no 

real data are available, calculated values have to be used. ASABE standards give 12,000 

hours of lifetime to 2-wheel drive tractors, while the average annual usage of tractors was 

200 h per year in Denmark, 200-600 h per year in Canada and 300 h per year in the USA 

(Mikkola and Ahokas, 2010). These values mean that with an estimated economic life of 10-

15 years, the total tractor usage is between 2,000-9,000 h. Furthermore, in this method, 

there is no difference between light usage of the tractor in a one hour operation, such as 

spraying, and one hour of heavy operation, such as ploughing. Mikkola and Ahokas (2010) 

have described a method that could overcome this disadvantage. In this method, indirect 

energy is incorporated with fuel consumption during each operation. Thus, with high fuel 

consumption during a heavy operation, a higher share of indirect energy is considered in this 
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operation. In this method, the total indirect energy embodied in a machine is divided into the 

total fuel consumed in the real service life of the machine, and the result is added to the di-

rect energy of the fuel. The difficulty of this method is in the exact estimation of the total fuel 

consumption and the real service lifetime of the machine.  

Table 6 Embodied energy in farm machinery (MJ kg-1) and machinery lifetime (h).  

Machinery Ratio of R&M a to embodied energy 

in assembled machinery  

Total embodied 
energy b (MJ kg-1) 

Lifetime c (h) 

 (Börjesson, 1996) (Bowers, 1992)   

Tractor 

2-Wheel drive 

4-Wheel drive 

0.82 0.49 138.1  

12,000 

16,000 

Self-propelled combine 0.46 0.24 116.4 3,000 

Mouldboard plough 0.93 0.97 179.7 2,000 

Planters 0.76 0.43 132.9 1,500 

Row cultivators 0.93 0.58 145.9 2,000 

Field cultivators 0.93 0.51 139.8 2,000 

Disc harrows 0.93 0.61 148.5 2,000 

Corn pickers 0.61 0.35 125.9 2,000 

Stalk choppers 0.61 0.33 124.2 2,000 

Cutterbar mowers 0.61 1.44 220.5 2,000 

Balers 0.61 0.39 129.4 2,000 

Forage harvesters 0.61 0.39 129.4 2,500 

Rotary hoes 0.93 0.59 146.8 2,500 

Fertilisers and sprayers 0.76 0.37 127.7 1,200 - 1,500 

Average 0.75 0.55 143.2 - 

a repair and maintenance; b includes materials, manufacturing, transportation, and repair and maintenance 
based on Bower’s ratios; c from ASABE D497.6 (2009)   

2.6.2.2 Buildings 

Buildings in agriculture include barns, storage, machinery hangars, and other facilities used 

as labour houses or workshops. There is a wide variety of construction materials used in 

these buildings, in addition a difference in the lifetimes of the buildings. These variations 

make it difficult to accurately calculate the energy embodied in the buildings. The allocation 

of the embodied energy to the unit of production is also an issue. Because of the low share 

of energy from workshops or hangars in the production energy of agricultural commodities, it 

is generally neglected. The determination of the main structural materials of a building and 
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the energy consumed in material production (primary energy based) allow for a rough esti-

mation of the embodied energy in the buildings. By estimating the volume of the materials 

used, the density of the materials used described in engineering handbooks, and the energy 

equivalents (table 7), the energy embodied in the building construction can be calculated. 

With an assumption of a lifetime of 25 years for buildings (Kraatz, 2012), the allocation of this 

energy to the unit of production delivers values that are high enough to be included in the 

final consideration of the energy analysis. This share in dairy cattle farming in Germany was 

calculated as 3% of all of the energy embodied in the milk production (Kraatz, 2012). In table 

7, the energy equivalents of some materials are shown based on the German GEMIS data 

base (GEMIS, 2006) and New Zealand statistics (Baird et al., 1997).  

 Table 7 Energy equivalents of building materials. 

Material Energy equivalent 

 MJ kg-1 

(GEMIS, 2006) 

Energy equivalent  

MJ kg-1 

(Baird et al., 1997) 

Density 

 g cm-3 

 

Steel 20 32 7.9 a 

Stainless steel 103 - 8.0 b 

Plastics (PVC, Rubber, PP) 87 - 110 54 - 117 0.9-1.5 a 

Glass 15 15.9 2.5 a 

Concrete  0.8 1 2.2 a 

Reinforced concrete 1.2 2 2.4 b 

Wood 0.1 0.3 0.45 a 

Fibreglass 15 30 1.5 b 

Brick 2.7 2.5 1.8 b 

Aluminium 191 191 2.7 a 

Bitumen 43 44.1 1.0 b 

Zinc-plated sheet 36 35 7.1 b 

a ECOINVENT (2007); b The engineering toolbox (2012),  

Another way to estimate the energy embodied in buildings is through the use of standard 

calculations defined in the building construction for standard houses. Baird et al. (1997) pre-

sented the calculated embodied energy in different types of buildings, which is shown in table 

8. 
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Table 8 Embodied energy in standard buildings (Baird et al., 1997) 

Wall Roof Floor 
Embodied energy 

GJ m-2 

Weatherboard 
Concrete tile 

Particle board 0.7 
Concrete slab 0.9 

Corrugated galvanised 
Particle board 0.9 
Concrete slab 1.1 

Concrete masonry 
Concrete tile 

Particle board 1.3 
Concrete slab 1.4 

Corrugated galvanised 
Particle board 1.4 
Concrete slab 1.6 

Brick veneer 
Concrete tile 

Particle board 1.1 
Concrete slab 1.2 

Corrugated galvanised 
Particle board 1.3 
Concrete slab 1.4 

2.6.2.3 Fertilisers  

One of the main factors in increasing food production is the use of fertilisers. The consump-

tion of fertilisers causes a high-energy input on a farm because fertiliser production is a high-

energy-consuming process, especially for nitrogen fertiliser. In fertiliser production, there are 

different production processes all over the world, using modern or older technologies, which 

result in lower or higher energy consumption, respectively. In some energy analyses, the 

LHV is used instead of the HHV, or the secondary energy is used instead of the primary en-

ergy, especially for electricity energy (Mudahar and Hignett, 1985).   

Nitrogen (N) fertiliser is the most energy-intensive fertiliser because of the consumption of 

natural gas as both feedstock (82%) and fuel (18%) in its production (Jenssen, 2003). N ferti-

liser production is approximately 9 times more energy intensive than phosphate and 11 times 

more energy intensive than potash fertiliser production (Mudahar and Hignett, 1985). In the 

energy analyses of agricultural products, a wide range of 39 to 78 MJ kg-1 is used as the em-

bodied energy in N fertiliser, which makes it difficult to compare the results across studies. 

Therefore, it is necessary to review the energy flow in the N fertiliser production process to 

find the best fitted energy equivalent to this fertiliser. 

The most common N fertilisers are urea, ammonium nitrate and ammonium sulphate, in 

which the share of urea is highest. The basic feedstock in N fertiliser production and the most 

energy-consuming production is ammonia. The worldwide average energy input per kg of 

NH3 production is 36.6 MJ (44.4 MJ kg-1 N) (IFA, 2009). To produce urea from ammonia, 9.0 

MJ kg-1 NH3 (10.9 MJ kg-1 N) on average is consumed in European plants (Jenssen, 2003). 

Furthermore, energy is consumed in the packaging, transport and delivery of the fertiliser to 

the market, which was estimated to be near 8.7 MJ kg-1 N (Helsel, 1992). Therefore, an em-
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bodied energy of 78.2 MJ kg-1 N fertiliser, reported by Helsel (1992) and Ortiz-Canavate & 

Hernanz (1999) and cited by Gellings and Parmenter (2004), seems to be the most precise 

world average (see table 9).   

Table 9 Embodied energy in chemical fertilisers (Helsel, 1992) 

 Nitrogen 
MJ kg-1 N 

Phosphate 
MJ kg-1 K20 

Potash 
MJ kg-1 P2O5 

Produce 69.5 7.7 6.4 
Package 2.6 2.6 1.8 
Transport 4.5 5.7 4.6 
Apply 1.6 1.5 1 
Total 78.2 17.5 13.8 

2.6.2.4 Pesticides 

According to the active substance in pesticides, primary energy consumption in production, 

formulation, packaging and delivery for the 50 most used pesticides varies between 107 MJ 

kg-1 of 2-4D (Herbicide) and 713 MJ kg-1 of Boscalid (Fungicide), as reported by Audsley et 

al. (2009). These values are estimates from data from the last 20 years and may include er-

rors (Audsley et al., 2009). Production processes are becoming more efficient, but converse-

ly, chemical formulas have become more complex and hence, more energy consuming 

(Audsley et al., 2009). Pesticides are a mix of active substances and inactive peripheral sub-

stances. Pesticides are usually not known and are not reported with active substance names, 

rather, they are reported by their commercial names. In most references, an average value is 

reported for the energy embodied in commercial pesticides. Rathke & Diepenbrook (2006) 

have used 237, 288 and 196 MJ kg-1 active substances as the energy equivalents of insecti-

cides, herbicides and fungicides, respectively. 

2.6.2.5 Irrigation 

The energy input for irrigation and water supply depends greatly on the delivery systems. 

Corresponding to the LCA method, the direct and indirect energy consumed in the construc-

tion, maintenance, operation and decommissioning of entire facilities (which may include 

dam, channels, land preparing, pipelines, and water pumps), should be taken into account. 

There are very few studies applying LCA to different irrigation systems. Furthermore, in the 

existing reports, the full life cycle of the systems has not been analysed (Jacobs, 2006). In 

some studies, the consumed energy has been calculated by the use of standard equations 

governing the operation of electric or internal combustion motors. Alexandrou et al. (2009) 

calculated the direct energy consumption of a sprinkler irrigation system with addition of an 
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extra 18% to cover the indirect energy inputs. Ozkan et al. (2004b) used a value of 0.63 MJ 

m-3 water to calculate the energy input from irrigation, but without determining the irrigation 

system. Another assay was aimed at the consideration of the entire life cycle of different irri-

gation systems in Australia, but the construction of water storage, such as dams, was not 

included (Jacobs, 2006). An average of 0.46 MJ m-3 water for a border-check irrigation sys-

tem (flooding) was derived through the study of Jacobs.  

2.6.2.6 Biomass 

The determination of the energy input in the form of biomass to a system is conducted in 

many different ways and, thus, leads to varied results across studies. Different equivalents 

can be considered as energy inputs from biomass to a system. Regarding a common way to 

considering the energy input from other inputs, some researchers, such as Börjesson (1996) 

and Pimentel et al. (1983), try to keep the same methodology and use the higher heating 

value of biomass plus the energy embodied in its production as the energy equivalent of bi-

omass. Kuesters and Lammel (1999) used only the energy embodied in seed production. On 

the other hand, VDI guideline 4600 (2012) introduced the use of the LHV for combustible 

materials (e.g. biomass) that are not used as energy. Another method is the use of more 

specialised energy specifications, such as metabolisable energy value (MEV) or net energy 

lactation (NEL) of biomass in animal husbandry systems, where materials are not used for 

physical combustion, but as feedstuffs.   

2.6.2.6.1 Investigation scenarios 

Due to the different energy equivalents of materials that are used for purposes other than 

energy resources but that can also be used as energy resources, there are significant differ-

ences between studies. In animal husbandry systems, where most of the energy input is 

from feedstuffs, assigning a proper equivalent is more important. According to the chosen 

energy efficiency indicators in an energy analysis study and the interpretation of useful bio-

mass output in that study, five possible scenarios are defined as follows:  

In CED theory, the main reason to investigate the energy efficiency of any system is to de-

termine its dependency on non-renewable energy resources (fossil fuels). The energy inten-

sity (EI) is the main efficiency indicator used for this purpose. Therefore, the first scenario is 

named in this study as EEV basis scenario and defined as: 

A) The energy equivalent of each input, as well as the biomass, is equal to the non-

renewable energy consumed directly and indirectly in its production. The outputs 

are not converted to an energy value.   
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Although in VDI guideline 4600 the LHV was introduced as the energy input from biomass, 

only the non-renewable energy embodied in the production of biomass should be used but 

regarding to the general theory of this guideline. However, considering the energy of biomass 

as a potential energy asset, the use of the LHV of biomass in assessments is reasonable. 

Thus, scenario B is deducted from scenario A as: 

B) The energy equivalent of biomass corresponds to its LHV. The energy equivalent of 

all other inputs is equal to the non-renewable energy consumed directly and indi-

rectly in its production. The outputs are not converted to an energy value.   

Agricultural residues that are used in bio-energy systems are examples of biomass energy 

assets. The reason for using the LHV of biomass instead of the HHV in this scenario is that 

in conventional systems, the LHV of biomass is generally obtained.  

In nutrition sciences as well as in this study the caloric value (HHV) is used to credit biomass. 

Therefore, scenario B could be rewritten for nutrition science as: 

The energy equivalent of biomass corresponds to its HHV. The energy equivalent of 

all other inputs is equal to the non-renewable energy consumed directly and indi-

rectly in its production. The outputs are not converted to an energy value.   

To investigate the energy efficiency of a system by means of the energy output/input ratio 

(OIR), the output must be converted to an energy value. In regard to this, scenarios C and D 

are defined as below: 

C) The energy equivalent of each input, as well as the biomass, is equal to the non-

renewable energy consumed directly and indirectly in its production. The energy 

equivalent of useful outputs, as well as biomass, is equal to its HHV (or LHV).  

D) On both the input and output sides, either the HHV (or LHV) of biomass is used as 

the energy equivalent of biomass. 

Another observed scenario, used by Börjesson (1996) and Pimentel et al. (1983), is the use 

of the HHV (or LHV) of biomass plus embodied energy in its production as energy input from 

biomass consumption. This scenario is as below:  

E) The HHV (or LHV) of biomass plus embodied energy in its production is used as 

energy input from biomass.  

2.6.2.6.2 Biomass energy content 

In food and feed production systems, the HHV is used as the heating value and is generally 

called the caloric value. The dry matter HHV is the most reported thermo-physical specifica-

tion of biomasses in databases. Therefore, the use of dry matter as the basis for input and 
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output biomasses in an energy analysis makes it easier to compare the results of different 

studies. However, it is possible, and sometimes more useful, to use other energetic values of 

biomasses to make a more specialised investigation of biomass production. These values 

can be the DEV, MEV or NEL, which are used as the energetic values of feedstuffs in animal 

husbandry. 

Energy content and heating value of biomass depends on its composition. The share of fat, 

protein, carbohydrate, fibre, amino acids, and ash, in addition to other components and ele-

ments, has an influence on the heating value or feeding values of biomass. The same type of 

biomass could have different energy content, resulting from different growing conditions or 

varieties. This difference is normally not significant. In table 10, the energy content of bio-

masses used as cattle feed are shown. 
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Table 10 Energy content of typical biomasses used as cattle feedstuff (in MJ kg-1 DM). 

Biomass Moisture  

% a 

HHV b 

MJ kg-1 

LHV b 

MJ kg-1 

DEV b 

MJ kg-1 

MEV b 

MJ kg-1 

NEL b 

MJ kg-1 

Alfalfa fresh  79 c 18.1 d 17.4 e 11.8 d 9.3 c 5,4 c 

Alfalfa hay 10 f 18.2 d 17.4 e 10.9 f 8.2 f 5.0 f 

Barley grain  11 f 18.4 d 17.0 g 15.2 f 12.2 f 7.8 f 

Barley straw  12 c 18.3 d 17.2 g 9.0 i 6.8 d 3.8 c 

Beet (sugar beet) 77 c 17.2 d 16.0 h 14.9 d 12.6 c 8.0 3 

Beet pulp  12 f 17.0 d 16.4 g 13.7 d 11.2 d 7.2 j 

Beet molasses  22 f 15.5 d 14.7 h 15.1 f 12.0 f 7.7 f 

Cottonseed (with linter) k 10 f 23.8 d 22.1 h 17.7 k 16.0 k 9.3 k 

Cottonseed hulls (as well gin trash) 11 f 19.7 d 18.3 h 8.3 l 7.3 d 4.2 l 

Cottonseed meal (41% protein) k 10 f 21.2 d 19.8 h 14.9 k 13.0 k 7.7 k 

Fat (palm oil m) 0 m 37.9 i 36.7 h 36.0 i 34.3 m 24.3 j 

Fishmeal  9 f 20.9 n 20.2 h 17.7 f 13.6 d 7.6 j 

Maize corn 12 f 18.7 d 17.4 g 16.1 f 13.1 f 8.4 f 

Maize silage 65 o 19.0 d 17.7 g 13.0 d 10.7 c 6.4 o 

Meat and bone meal 6 f 16.7 d 15.5 h 13.3 f 10.6 f 6.8 f 

Poultry offal  8 d 22.7 p 21.1 h 17.5 d 15.7 p 7.7 l 

Rapeseed (40% oil g) 12 c 31.5 g 26.5 g 23.4 f 17.5 c 10.7 c 

Rapeseed oil  1 q 39.4 g 36.0 g - 30.0 q 19.3 q 

Rapeseed meal 9 i 21.8 p 20.3 h 16.8 d 13.1 d 7.4 r 

Soya bean (20% oil d) 12 c 23.2 n 21.6 h 19.8 d 15.9 c  9.9 c 

Soya bean meal (44% protein) 11 f 19.7 d 18.5 h 16.9 f 13.8 f 8.9 f  

Sunflower seed (36% oil d) 8 f 32.6 n 30.3 h 22.5 f 19.7 f 14.1 f 

Sunflower meal dehulled 8 f 19.3 d 17.9 h 12.7 d 9.6 d 7.3 j 

Tomato  93 d 18.2 d 17.0 h 12.7 s - 6.6 s 

Pomace dried (10% of tomato d) 75 f 21.8 d 20.3 h 12.5 f 9.9 f 6.4 f 

Wheat grain 11 f 18.2 i 17.0 g 16.0 f 13.0 f 8.3 f 

Wheat bran 11 f 18.9 d 17.6 h 13.5 f 10.7 f 6.7 f 

Wheat straw  7 f 18.5 i 17.2 g 8.5 f 6.0 f 3.4 f 

a Average fresh matter basis moisture content when it is fed; b Dry matter basis; c Kirchgeßner et al. (2008); d 

Feedipedia (2012); e Domalski et al. (1986); f NRC (2001); g KTBL Energiepflanzen (2006); h average 3-7% less 
than HHV based on Kaltschmitt et al. (2009); i Derived from Stanton and LeValley (2010); j VEEPRO HOLLAND 
(2012); k Coppock et al. (1987); l Shaver (2008); m Pioneerfeed Company (2012); n Klinge (1989); o Schwab et al. 
(2003); p Silva et al. (2010); q Spiekers & Potthast (2004); r Newkirk (2009); s Bernard (2012);  
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2.6.2.6.3 Seed 

The energy equivalent of seed depends on its production methods and conditions. There are 

only a few studies and limited information regarding seed production and the energy used in 

its production (Ortiz-Canavate & Hernanz, 1999).  

The energy embodied in seed production includes the pre-harvest and postharvest energies 

that are consumed during its production and preparation as seed. Postharvest energy re-

quirements of alfalfa seed production include drying, sorting, disinfecting, and packaging and 

reach 46% of the energy consumed during seed production on the farm (Heichel, 1980). 

There is not enough data on energy consumption in production available for recently im-

proved high-yielding hybrid seeds. Table 11 summarises the energy equivalents of different 

seeds and tubers stated by Heichel (1980) and adopted and cited in Ortiz-Canavate & 

Hernanz (1999). 

Table 11 Embodied energy value (EEV) in seed and tuber production 

(Heichel, 1980; adopted and cited in Ortiz-Canavate & Hernanz, 1999) 

Crop EEV MJ kg-1 Crop EEV MJ kg-1 
Alfalfa 230 Rice 17 
Clover 135 Sugar beet 54 
Corn hybrid 100 Forage hay 88 
Wheat 13 Rapeseed 200 
Barley 14 Sunflower 20 
Oats 18 Potato 93 
Soya bean 34 Cotton 44 

2.6.2.6.4 Manure 

Dairy cattle (with 650 kg mass, 7,000 kg yr-1 milk production, and 20 kg d-1 DM intake) pro-

duce nearly 60 kg of fresh manure per day (Safley et al., 1986). Weiss & St-Pierre (2010) 

found that fresh manure output is approximately 3 kg per kg of DM feedstuff intake. The fresh 

manure or “as-excreted manure” is a mix of faeces and urine with a ratio of 2.2/1 by mass 

(Safley et al., 1986). Manure is distributed on farms to improve the soil structure and utilise 

its nutrient content, as it is a renewable replacement for chemical fertilisers. Manure is a re-

source of biomass energy, and recently, it has been used in gasifiers or biogas plants to pro-

duce heat or gas fuel. As with other biomass energy resources and biomass products, there 

is the issue of whether the heating value of manure or allocated embodied energy in its pro-

duction should be used as an energy equivalent of manure input in farms. Manure is a by-

product of cattle farming, and therefore, the energy embodied in manure production should 

be investigated within the energy analysis of cattle farming. Canakci et al. (2005) used a val-

ue of 0.3 MJ kg-1 as the energy equivalent of manure, without assessing the moisture content 
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and heating value basis of this value. Manure is normally mixed with wash water, straw or 

other bedding materials. Fresh manure has a water content of approximately 87.5% (Weiss 

& St-Pierre, 2010), but during storage in the lagoon or barnyard, its moisture can be reduced. 

The HHV of dry manure is approximately 14 MJ kg-1 manure (Beck et al., 1979). The value 

used by Canakci et al. (2005) is significantly less than the HHV of fresh manure (with 80% 

moisture, the HHV is 2.8 MJ kg-1 fresh manure).  

Another way to define the energy equivalent of manure could be based on the amount of its 

nutrients, especially N, and thus, the replacement ability of manure relative to chemical ferti-

lisers. The nutrient content of manure, as well as its heating value, depends on various fac-

tors, such as cattle category, feedstuff, and how manure is stored and for how long. The N 

content of manure is generally in two N compositions: inorganic and organic. Inorganic N 

(ammonia N) is the predominate part. Organic N is not available for use as a nutrient by 

crops, but every year, 30-50% will breakdown into inorganic N, which can be used by plants 

(Pennington et al., 2003). Cattle manure reportedly contains 5.6 kg N, 1.5 kg P (3.4 kg P2O5), 

and 3 kg K (3.6 kg K2O) in each fresh manure tonne, according to Pimentel et al. (1983). The 

reported amount by Weiss & St-Pierre (2010) was 5.9 kg N and 0.77 P (1.8 kg P2O5) per 

tonne of fresh manure, while the reported amount by Pennington et al. (2003) was 5.0 kg N, 

1 kg P (2.3 kg P2O5), and 4.2 kg K (5.0 kg K2O). Depending on the techniques, during ma-

nure storage, 15-80% of N content could be lost, and 1-40% of N content after application on 

the farm could also be lost (Pennington et al., 2003). At an average daily temperature be-

tween 5-25 °C, the reported losses of total manure nitrogen during storage are between 40% 

and 60% (Safley et al., 1986). With an assumption of 50% of N loss (for the inorganic part) 

during manure storage and application on a farm, and comparing the nutritional value of ma-

nure with the embodied energy in chemical fertilisers in the form of N, P2O5 and K2O (table 

9), the energy value of fresh cattle manure is calculated to be 0.33 MJ kg-1, which is similar to 

the figure used by Canakci et al. (2005).  

Depending on the available opportunities in each region for the use of manure, its energy 

equivalent could be defined in each case, whether as its LHV or nutrients replacing availabil-

ity value. 

2.6.2.7   Transportation 

Nearly half of the energy consumed in food industries in developed countries is due to trans-

portation, marketing and household preparation (Hernanz & Ortiz-Canavate, 1999). In these 

countries, also in Iran, most food transportation systems are based on truck transportation. 

The energy consumed in Swedish truck transportation has been estimated to be 1.4 MJ t-1 

km-1, including both direct and indirect energy consumption in vehicles and infrastructure 
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(Börjesson, 1996), while Hülsbergen et al. (2001) and Rathke & Diepenbrook (2006) used a 

value of 6.3 MJ t-1 km-1 transport for Germany. It seems that this value is overestimated. The 

fuel consumption of trucks has been reduced during the last few decades. Therefore, based 

on the transportation fleet composition of each country as well as different amounts of con-

sumed energy in infrastructures, the embodied energy in transportation could vary signifi-

cantly. Table 12 shows the energy demand of different types of transportation used by 

Hernanz & Ortiz-Canavate (1999). 

Table 12 Energy demand of different transportation 

systems (Hernanz & Ortiz-Canavate, 1999) 

Transport system Energy equivalent  MJ t-1 km-1 

Boats 0.3 - 0.8 

Railroads 0.4 - 0.9 

Trucks 1.6 - 4.5 

Airplanes 1 – 30 

To calculate the energy input from the transportation of input materials, it should be consid-

ered that in the energy equivalent of some of input materials, such as machinery, fertiliser 

and pesticide, energy input from transportation is already included.    

2.7 Energy outputs from a dairy farm 

2.7.1 Milk energy 

The energy content of milk depends on the milk components of fat, protein, and lactose. Fat 

and protein are measured frequently. Therefore, the energy content of milk is calculated 

through the following formulas:  

950.0(%)210.0(%)370.0)/( +×+×= proteinfatkgMJHHVMilk             Equation 6 

 804.0(%)229.0(%)389.0)/( +×+×= proteinfatkgMJHHVMilk             Equation 7 

Equation 6 (Kirchgeßner et al., 2008) and equation 7 (adopted from NRC, 2001) give nearly 

the same result for a given sample of milk.   

Regarding different fat and protein contents of milk from different farms, a constant basis of 

energy for milk is used to compare the farms. The Gaines formula, introduced in 1928, cor-

rects the milk yield of farms for 4% fat milk, which has 3.16 MJ kg-1 of energy content. The 
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Gaines formula to calculate the 4% fat-corrected milk (4% FCM) is as follows (adopted from 

NRC, 2001): 

)((%)15.0)(4.0)(%4 kgyieldmilkfatkgyieldmilkkgFCM ××+×=   Equation 8 

The FCM formula has been widely used to convert the milk yield even at the 4% fat level 

(Kraatz, 2012) or 3.5% level (Erdman, 2001). Regarding the availability of fat and protein 

content of produced milk, the energy corrected milk (ECM) is calculated through equation 9 

(Ulbrich et al., 2004): 

[ ] 28.3/)(05.1(%))21.0(%)38.0()( kgyieldmilkproteinfatkgECM ×+×+×=          

 Equation 9 

The resulting ECM has the same dimension as milk yield (kg) but is corrected for 4% fat and 

3.4% protein, which has 12.8% DM and 3.15 MJ kg-1 energy content (through equation 6).  

2.7.2 Meat energy 

Meat quality and its energy content (HHV) are dependent on the cattle category and meat 

tissue in the cattle. Klinge (1989) introduced the caloric value of 8.8 MJ kg-1 of fresh cattle 

meat as an average of different types of meat. The amount of meat from an animal depends 

on several factors, such as the cattle breed, cattle category (dairy or beef), age and dietary 

program.  

If the latent energy in the slaughtering residues of cattle (e.g., blood, skin, internal organs, 

head, and legs) is neglected, the remaining carcass consists of meat and fat as the useful 

parts and the bone and tendons as useless parts. The percentage of cold carcass weight to 

empty body mass of an animal is known as the dressing percentage. The empty body mass 

is 90-96% (Aass & Vangen, 1997) of the live animal mass. Table 13 summarises the results 

of some related studies to determine the dressing percentage and meat and fat amount of 

carcass mass. 
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 Table 13 Cattle dressing percentage and meat proportion of carcass mass. 

Cattle 

 type 

Mass 

kg 

empty 

body 

Dressing 

(cold) % 

of empty 

body  

Meat 

%  

of carcass 

Bone 

%  

of carcass 

Subcutaneous 

Fat  

 %  

of carcass 

Reference 

Bull 555 58 70 19 11 Afolayan et al. (2002) 

Bull 588 60 76 16 6 Pfuhl et al. (2007) 

Calf 44 58 65 35 - Brekke & Wellington (1969) 

Calf 90 61 72 28 - Brekke & Wellington (1969) 

Calf 131 63 75 25 - Brekke & Wellington (1969) 

Bull 197 50 - - - Khalafalla et al. (2011) 

Bull 243 50 - - - Khalafalla et al. (2011) 

Bull 297 53 - - - Khalafalla et al. (2011) 

Bull 341 53 - - - Khalafalla et al. (2011) 

 

As shown in this table, for different types of cattle in different studies, the dressing percent-

age is 50% to 60% of the empty body mass, and 65 to 80% of the carcass is meat and sub-

cutaneous fat. These studies were conducted for beef and veal Holstein breeds. Dairy cattle 

save more internal fat as an energy deposit (Pfuhl et al., 2007).      

2.8 Allocation of embodied energy  

Agricultural processes generate one or several by-products in addition to the main products. 

One of the issues in LCA and energy analysis is how to allocate inputs such as production 

energy to the product and by-product. The allocated energy to the product and by-product 

depends on the methodology used and can cause significant differences in the results of the 

energy analysis. To attribute the production energy completely to the target product is the 

simplest solution of allocation. In this case, the by-product is valued as free from the energy. 

However, this solution is not an adequate method, at least in agriculture, because it neglects 

the by-product that can sometimes have the same energetic value as the product. To find a 

solution for the allocation, the International Organisation for Standards have introduced a 

procedure published in the ISO standard 14041 (1998) and later revised in ISO 14044 (2006) 

as follow: 

- Allocation should be avoided, wherever possible, by dividing the process into sub-

processes and collecting data for each sub-process or through expanding the system 

to include the same product or function of an alternative system. 



Literature review 

 42 

- Where allocation cannot be avoided, the allocation should reflect a physical relation-

ship between the products or functions. 

- Where such a physical relationship cannot be used, the allocation should reflect other 

relationships between products or functions, for example, the economic value of the 

products. 

In the process of subdividing production, detailed data of the sub-processes should be col-

lected, and only the necessary sub-processes attributed to each part of the product should 

be taken into account for its production energy. Subdivision can eliminate the allocation is-

sue, or at least reduce it. System expansion means that the embodied energy in a by-product 

is assumed to be same as the embodied energy in an alternative product, which is replaced 

in a special purpose. This method in LCA is also called a “substitution”, “displacement”, or 

“replacement” allocation method (Edwards & Anex, 2009). Figure 7 illustrates these two pro-

cedures of allocation of production energy. 

Production energy

          Production energy 

Product C
       Product A          Product B (competing with product B)

           
                                                               Production process

Sub-process
1

Sub-process
2

Use of product C 
instead of product B

Alternative system

 

Figure 7 Illustration of the process division and system expansion procedure in allo-

cation of production energy (adopted from Ekvall & Finnveden, 2001) 

In energy analysis, allocation of the consumed energy to product and by-products is carried 

out by comparing them to physical properties (e.g., volume and quantity of material), ener-

getic values (e.g., HHV, LHV and MEV) or economic prices (VDI 4600, 2012).  

It is difficult or impossible to introduce a common way to allocate the embodied energy in the 

production process to products and by-products. Kraatz (2009) also used economic proper-

ties for allocation in an energy analysis of dairy farms. Because the price proportion of prod-

ucts and by-products can vary over time or between regions (particularly in countries where 

pricing policies can vary rapidly), the use of other properties, especially energetic values, in 

energy analysis seems to be more reliable, enduring and rational. In the substitution of 

feedstuffs with each other, feeding values and the substitution rate or the portion of replaced 

materials may affect the dietary characteristics of feed mix. Edwards and Anex (2009) used a 

feeding model to assess the effects of different substitution rates and then credit the replacer 
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feed. However, substitution methods can also change over time and between regions. By 

employing new technologies or different management systems, the energy value used for a 

product can be different, depending on the product and by-product consumption purposes.   

Cotton production is an example of complexity in allocation. The purpose of cotton produc-

tion is lint. However, in the United States, 18% of a cotton producer’s income is from cotton-

seed (Blasi & Drouillard, 2002). Lint, cottonseed and gin trash are three components of cot-

ton that has been freshly picked with a spindler harvester. Lint is used in the textile industry, 

while cottonseed and gin trash are feedstuff or bio-energy resources. Cotton fuzzy (cotton-

seed with linter) and cottonseed meal are edible to ruminants and are rich in protein, fat, fi-

bre, and energy. Cottonseed meal is generally a replacement for rapeseed meal and soy-

bean meal. After harvesting and separating the lint (ginning), the seeds can be fed directly to 

livestock, as well as be crushed (Anonymous, 2011). While cottonseed is itself a by-product 

of the cotton industry, four other by-products come from cottonseed crushing: oil, meal, hull 

and linter. Extra energy is consumed to separate the linter (delinting) and hull (dehulling) 

from cottonseed to prepare it for oil extraction purpose. LCA modelling of cotton production is 

a complex process (Anonymous, 2011). 

2.9 Energy intensity in feedstuffs and dairy farm productions 

The estimated energy demand for the feedstuffs production and dairy farm productions wide-

ly varies in literature, according to existing investigations and methodologies. Table 14 pro-

vides the values for the energy intensity of feedstuffs used for dairy cattle, as found in litera-

tures.  

The energy intensity calculated by Refsgaard et al. (1998) for cereals was approximately 2.6 

MJ kg-1 DM with a yield of 3,000-4,000 kg ha-1. In a study in Iran it was found that the energy 

intensity for maize corn is 6.25 MJ kg-1 DM with FM yield of 7,000 kg ha-1 (Lorzadeh et al., 

2012). The energy intensity calculated for rapeseed is 9.1-10.7 MJ kg-1 DM for a study in Iran 

by Mousavi-Avval et al. (2011) with yield of 1,900 kg ha-1 FM and much higher than for Ger-

many (5.2) estimated by Kraatz (2009). 
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Table 14 Energy intensity of feedstuffs for dairy cattle.  

Feedstuff Location Energy intensity 
(MJ kg-1 DM) 

Reference 

Alfalfa    
 Denmark 2.98 Refsgaard et al. (1998) 
 Estonia 1.59 Frorip et al. (2012) 
 Greece 2.53 Tsatsarelis & Koundouras (1994) 
Barley    
 Estonia 3.81 Frorip et al. (2012) 
 Germany 1.88 - 2.30 Kraatz (2009) 
 Iran 6.58 Ghasemi Mobtaker (2010) 
 Iran 13.59 Sahabi et al. (2013) 
Maize corn    
 Estonia 5.13 Frorip et al. (2012) 
 Iran 6.25 Lorzadeh et al. (2012) 
Maize silage    
 Belgium 2.2 Meul et al. (2007) 
 Estonia 2.33 Frorip et al. (2012) 
 Germany 2.24 - 2.49 Kraatz (2009) 
Rapeseed    
 Germany 5.15 Kraatz (2009) 
 Iran 9.07 - 10.67 Mousavi-Avval et al. (2011) 
Wheat    
 Estonia 2.33 Frorip et al. (2012) 
 Germany 1.85  Kraatz (2009) 
 Iran 6.26 - 8.41 Shahin et al. (2008) 

Table 15 shows the energy intensity in milk production as calculated by some investigations 

for dairy farms with different milk yields in cows from European countries. The energy intensi-

ties are based on the cumulative energy demand in dairy farming, but some exceptions are 

seen e.g. the energy input from electricity was calculated other than primary energy basis by 

Frorip et al. (2012). However, the methodologies used in the estimation of the energy intensi-

ty differed slightly. Bockisch and Ahlgrimm (2000) neglected the energy demand for when 

heifers replaced cows. Grönroos et al. (2006) and Refsgaard et al. (1998) also neglected 

heifer rearing for cow replacement. The allocation of the input energy to by-product 

feedstuffs is another source of variability in the investigations. Abel (1997) used economic 

relationships between dairy products; accordingly, he allocated 70-75% of the total energy 

input to milk, 22% to meat and 3-8% to excrement. Refsgaard et al. converted meat yield to 

milk yield by energetic relationships which resulted in 96.5% allocation to milk and 3.5% to 

meat. Grönroos et al. (2006) allocated rapeseed production energy to oil and meal according 

to their mass yield. He allocated 87% of the total energy input of milk production to milk and 

13% to meat, as done by Cederberg & Stadig (2003), in a way that was dependent on 

boundary expansion method (Substitution). Grönroos et al. (2006) did not allocate any ener-



Literature review 

 45 

gy input to excrement. One of the arguments of Cederberg & Stadig (2003) to system expan-

sion was the high replacement rate (37% or 72 kg boneless meat yield per cow and year) in 

dairy farms in Sweden. Kraatz (2009) included the energy demand for rearing heifers in the 

energy input of milk production. Furthermore, she discussed various possibilities on how to 

allocate the whole energy input to milk, meat, calf, and excrement production by using bio-

logical and physical relations. The energy input for milk, meat and calves was allocated ac-

cording to the energy demand of cattle for maintenance and lactation. The energy allocated 

for excrement was performed according to the substitution of manure with chemical fertilis-

ers. She carried out these allocations under several variants and provided a discussion. The 

reason not to including the energy output from excrement in the allocations is the grazing of 

the cows direct on the farm which causes to neglect the excrement in both input and output 

sides by Refsgaard et al. (1998), Grönroos et al. (2006) and Thomassen et al. (2008). Beside 

the energy input sources considered in the investigations, allocation method, and also the 

milk yield and milk type should be considered for the comparison of different reports.  

High share of energy input from feedstuffs makes the energy intensity of feedstuffs as the 

main determinative factor in the energy intensity of milk. Refsgaard et al. (1998) found that 

70% of the energy input in milk production is from feedstuffs, 20% from direct energies and 

10% from facilities (e.g. building and machinery) in stalls for conventional milk production. 

73% of energy intensity in conventional milk was from feedstuff by investigation of Grönroos 

et al. (2006). Thomassen et al. (2008) found the share of the indirect energies (feedstuffs, 

building and machinery) to be 90% and of direct energy 10%. In the investigation of Kraatz 

(2009), 50% of energy input was from feedstuffs, 27% from, direct energies, and technical 

facilities, 20% from heifer rearing and 3% from building. Therefore, the feeding plan and 

grazing possibility make considerable differences in the results. In two systems of dairy farm-

ing compared by Kraatz (2009), the lower energy intensity in pasture (0.5 MJ kg-1 DM), leads 

to lower energy intensity in milk produced in the dairy farms with even half day grazing plan. 

She found the energy intensity of milk in dairy farms with half day grazing plan to be 3.54 and 

without gazing plan 4.3 MJ kg-1. 



Literature review 

 46 

Table 15 Energy intensity in milk production according to different studies. 

Study 
 location 

Milk type Milk yield 
(kg cow-1 yr-1) 

Energy intensity 
(MJ kg-1) 

Reference 

Germany - 7,000 4.8 Abel (1997) 
Denmark ECM Conventional 7,300 3.3 - 3.6 Refsgaard et al. (1998) 
Denmark ECM Organic 6950 2.2 - 2.9 Refsgaard et al. (1998) 
Germany - 7,000 4.7 Römer et al. (1999) 
Germany - 6,600 3.0 Berg and Scholz (2000) 
Germany ECM 6,182 2.7 Bockisch and Ahlgrimm (2000) 
Finland 1.5% fat Conventional 7,700 6.4 Grönroos et al.(2006) 
Finland 1.5% fat Organic 6,800 4.4 Grönroos et al. (2006) 
Belgium  Fresh 5,521 4.4 Meul et al. (2007) 
Netherland 4.4% fat  Conventional 7,991 5.0 Thomassen et al. (2008) 
Netherland 4.5% fat Organic 6,138 3.1 Thomassen et al. (2008) 
Germany ECM 8,000 3.5 Kraatz (2009) and Kraatz (2012) 
Finland - - 3.0 Mikkola and Ahokas (2008) 
Estonia Fresh - 5.3 Frorip et al. (2012) 

The energy intensity of beef meat production in Germany for conventional keeping systems 

was 56.35 MJ kg-1 and 25.50 MJ kg-1 for organic systems according to the data from GEMIS 

3.1 (Taylor, 2000). In the UK, the energy intensity of cattle meat production was estimated to 

be 28 MJ kg-1 of the carcass mass, in which the energy intensity per kg of fresh milk was 2.5 

MJ kg-1 (Williams et al., 2006). Frorip et al. (2012), calculated the energy intensity for meat as 

69 MJ kg-1 for Estonia using 6.5 to 9.22 MJ kg-1 caloric value (HHV) for whole empty body 

mass. They also calculated the energy input in meat and milk by HHV basis scenario and 

found it to be 255 MJ HHV kg-1 meat and 20 MJ HHV kg-1 of milk. 
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3 Methodology 

3.1 Study framework  

The transparency of the study methodology is an important aspect of the energy analysis 

that makes the results of one study comparable with the results of other studies. Therefore, 

standard guidelines were used in this study to attempt to clearly describe the methodologies 

in question. 

The main framework of this study is based on the spirit of the methodology introduced in 

1974 by the International Federation of Institutes for Advanced Studies (IFIAS) for energy 

analysis (IFIAS, 1974). However, the new and more detailed guidelines for cumulative ener-

gy demand (CED) and life cycle assessment (LCA) concepts introduced respectively by the 

Association of German Engineers (VDI 4600, 1997, revised in 2012) and International 

Standard Organisation (ISO 14040 and 14044, 2006) were used. 

As described in section  2.3, the IFIAS methodology consists mainly of the following steps: 

establishing the boundaries of the understudied system, identifying the underlying factors, 

assigning an energy equivalent to each factor, multiplying the actual quantity of each factor 

by its energy equivalent, identifying and quantifying the output product(s) and establishing 

the energy allocation criteria of the products and by-products, and finally comparing and re-

lating the product or its energy equivalent to the energy consumed within the production sys-

tem (IFIAS, 1974). To properly establish the boundaries of the understudied system and 

identify the underlying factors, the VDI 4600 guideline, which was specialised for energy 

analysis, was selected. However, ISO 14040 and ISO 14044 standards have also been in-

troduced for environmental assessment, but they were used to establish the methodological 

structure for this study.  

In reference to ISO 14040, a comprehensive LCA study has several stages (ISO 14040, 

2006), which are as follows:  

a) The goal and scope definition phase, which is used to determine the goal, scope, sys-

tem boundary, level of detail and depth and breadth depending on the aims of the study. 

b) The life cycle inventory analysis phase (LCI), which includes an inventory of input-

output data with regards to the system under study and the goals. 

c) The life cycle impact assessment phase (LCIA), for providing additional information to 

help assess a system. 
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d) The interpretation phase, which is the discussion stage for addressing the results of 

the inventory analysis phase or the impact assessment phase.  

Goal and scope 
definition

Impact 
assessment

Inventory 
analysis Interpretation

Direct applications:

- Product development 
  and improvement
- Strategic planning
- Public policy making
- Marketing
- Other

 

Figure 8 Stages of an LCA study (from: ISO 14040, 2006) 

According to this concept, the impact assessment phase could be neglected. Without the 

LCIA phase, the input and output data in the inventory analysis phase could be interpreted 

and applied directly to achieve these goals. Figure 8 graphically demonstrates these phases 

and their connection order. The following methodology for this study is expressed with the 

intent of maintaining the LCA methodology format. 

3.2 Study goals 

To achieve more energy-efficient and sustainable dairy cattle farming, the goals of this study 

were defined as the investigation and evaluation of dairy cattle farming in Iran by estimating 

energy efficiency indicators. This study includes an investigation of the energy efficiency of 

feedstuff production and various cattle farms that differ in terms of herd size, breed purity, 

milk yield, region and management systems. The investigation focused on the calculation of 

energy indicators and the energy intensity used in the production of feedstuffs with milk and 

meat as the main indicators and gives suggestions for possible solutions for farmers or agri-

cultural policy makers to improve and develop better energy efficiency in dairy cattle farming. 
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3.3 Study scope  

3.3.1 Production system  

The system under investigation was dairy cattle farming and the production of milk and meat 

(or cows). For this study, the dairy system consisted of two individual units: the feedstuff pro-

duction unit and the dairy cattle farm unit. Feedstuff production consisted of output from the 

first unit and input or feedstock for the second unit. These products are termed intermediate 

products or flows (ISO 14040, 2006). In this study, the main and most important unit was the 

dairy farm unit. Therefore, different dairy farm systems were compared under the assumption 

that they employ the same feedstuff production methods.  

3.3.2 System boundaries  

In this study, the boundaries of the dairy farming system started with the feedstuff production 

in feedstuff farms and ending with the production of milk, meat and manure at the output 

gate. Therefore, the system boundaries included the consumption of the primary energy and 

material resources in the production of energy carriers, materials and facilities used or con-

sumed in feedstuff farms, dairy farms and required transportation. In the studied regions, the 

feedstuff farms and dairy cattle farms were completely separated, and the dairy farms largely 

had no grazing facilities. The resulting excrement from the dairy farms was sold to the crop 

production farms. The system was divided in two separate sub-systems:  “feedstuff farm unit” 

and “dairy farm unit”. Thus, these two sub-systems were investigated separately, which 

made it possible to evaluate each unit individually and ultimately combine the results in ac-

cordance to the estimated energy efficiency indicators.   

The sub-system of the feedstuff farm unit began with the extraction of raw materials and en-

ergy resources and was confined to the output gate of feedstuff farms. The dairy farm sub-

system started from the output gate of the feedstuff farm and was confined to the output gate 

of dairy farms. For inputs other than feedstuffs, the sub-system of the second unit began with 

the extraction of energy and material resources and continued until the farm output gate. 

Figure 9 shows the dairy farming system with energy and material flowing through it. 
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Figure 9 Energy input / output system in dairy cattle farming. 

The non-commercial energy types, e.g., the solar, wind, soil and water energy entering the 

system, were excluded from the system boundaries and not calculated as energy inputs. The 

primary energy or raw material resources inside the system boundary were in the form of 

direct energy as energy carriers or indirect energy as materials and facilities. Physical non-

renewable energy from the fabrication and production of renewable energy resources were 

included within the boundaries (for example, non-renewable energies used in the fabrication 

of wind or solar energy facilities and non-renewable energy used in seed production).  

According to the scenarios explained in section  2.6.2.6.1, calculating the energy equivalent 

used for feedstuffs (the output of unit 1 and input of unit 2) in combining the two sub-systems 

and calculating the energy efficiency indicators were accomplished in two ways. In the first 
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scenario, the feedstuff energy equivalent was designated as the energy embodied in their 

production. In this study, this scenario is called the EEV scenario. In the second scenario, the 

energy equivalent of the feedstuff was given a higher heating value. This scenario is called 

the HHV scenario in this study. 

The second scenario includes the commercial renewable energy stored in feedstuff (from 

photosynthesis) within the boundary of the study, in contrast to the methodology explained 

before and used in scenario one. However, this difference was introduced to compare the 

caloric values in feedstuff and dairy products. 

3.3.3 Farm selection and data acquisition 

As a result of different climates, cultures and geographic specifications, there is a wide range 

of diverse cattle keeping systems within Iran. In this study, the cattle farming system in north-

western Iran was selected, including the provinces of West Azarbaijan, East Azarbaijan, Ar-

dabil, and Zanjan. According to the dairy specification in Iran (figure 2, p. 10), cattle keeping 

systems in north-western Iran are in the middle of a spectrum of prevalent systems from cen-

tral, north, and south Iran. The systems are distinguished by herd size, milk yield per cow, 

feeding materials, and management of the different dairy farms. In the following text, the se-

lection criteria of farms for both feedstuff and dairy farms as well as the data acquisition 

methodology are revealed 

3.3.4 Feedstuff farm selection 

Alfalfa, maize silage, maize corn, barley and oilseed meal are the feedstuffs for Iranian cattle 

farming. In the Azarbaijan provinces (West Azarbaijan, East Azarbaijan and Ardabil), the 

main regions for alfalfa production are Moghan plain, Miandoab, and Naghade. Maize silage 

and corn are produced in the Moghan plain (Ardabil province) and the Kermanshah and 

Khuzestan provinces. Barley is mainly imported from Ukraine and Canada, but it is produced 

inside the country in a few regions as well as the Moghan plain. Cotton and sunflower cake 

are mainly imported from central Asia. Soya and rapeseed cake are produced in the Ker-

manshah and Gorgan provinces. 

The energy efficiency of these feedstuffs should theoretically be investigated within their orig-

inal production regions. Therefore, in the absence of any similar or related studies involving 

energy efficiency, the production input and output data should be collected from the farms 

that produce at least the majority of feedstuffs used in the selected cattle farms. In this study, 

the region that produces most of these feedstuffs was chosen. Therefore, the Moghan agro-
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industrial company in the Moghan plain was chosen for investigating the energy efficiency of 

feedstuff production.   

There is a large area under cultivation by the Moghan agro-industrial company, which pro-

duces diverse products with mechanised farming systems. The 40-year-old company has 

experience in applying new technologies related to mechanised farming, and it has intro-

duced new or unconventional products to the region, making it a pioneer in the field. The 

company was established by the government in 1971 with more than 63,000 hectares of un-

cultivated Moghan plain land (Anonymous, 2013). It has since become one of the largest 

agricultural companies in Iran. This company produces a wide range of agricultural and horti-

cultural products, which are sold directly to the markets and processed in their own food 

firms inside the company or are consumed as feedstuff in the cattle farm unit, which has re-

cently grown to almost 15,000 cattle.  

Following the patterns used by the Moghan Company and adopted by other private compa-

nies and farmers in Moghan, which have relatively larger farm sizes in comparison to farms 

in other regions, these methods have led this plain to become a major supplier of agricultural 

products. 

The Moghan plain is located in north-western Iran and west of the Caspian Sea, between a 

latitude of 39° N and 40° N and a longitude of 42° E and 48° E, with an average altitude of 45 

m over sea level (Anonymous, 2013). The annual rainfall is 265 mm, the average minimum 

temperature is 9.7°C, the average maximum temperature is 20.5°C, and the average annual 

temperature is 15.1°C (Tavousi & Delara, 2011). As a result of the high soil fertility, the high 

average temperature and available water resources from dams and irrigation networks from 

the Aras river, this plain contributes a high share of food production and feed delivery to dairy 

cattle farms in neighbouring provinces. 

3.3.4.1 Feedstuff data acquisition 

The necessary production input and output data were collected by making field observations 

and measurements or technical calculations from the Moghan Company farms. The study 

feedstuffs from the Moghan Company were alfalfa (1,200 ha), barley (2,000 ha), maize corn 

(3,000 ha), maize silage (1,000 ha spring maize silage and 2,000 ha summer maize silage), 

rapeseed (3,000 ha) and wheat (7,000 ha). Selected products or by-products were used di-

rectly or indirectly as cattle feedstuff. The farms were segmented into several ten-hectare 

farms and cultivated in yearly crop rotation. Propitious agricultural conditions and water 

availability during the long farming season make it possible to cultivate as many as two crops 

each year. The cultivation of maize forage as a secondary product following the harvest of 

cereals or oilseeds as a primary product is very common. With nearly the same water deliv-
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ery and climate conditions during different years as well as stable operational procedures, no 

significant differences were observed in the production input and output data for the compa-

ny. Therefore, the average value for 3 years, ending in the year 2010 (the year 1389 in the 

Iranian calendar), was calculated.  

Energy efficiency indicators for feedstuffs (e.g., cottonseed and soya bean) not investigated 

here were derived from the scientific literature using studies with similar regional conditions.   

All cultivation machinery operations and materials applied and consumed during production 

were included in the data acquisition. These data consisted of the production yield, con-

sumed material (seed, manure, fertiliser, pesticide and water), fuel consumption, duration 

and repetition of machinery operations, and type and weight of machinery. Machinery opera-

tions such as sub-soiling or manure spreading are repeated every 5 years and were distrib-

uted equally over 5 years, although their effect is not the same for the years covered in this 

study.    

3.3.4.2 Dairy farms selection 

Dairy farms were selected in view of the differences in dairy cattle numbers per farm, milk 

yield, region, and year. The number of dairy cattle in the selected farms should reflect the 

herd size distribution in Iran as described in section  2.1 (85% of dairy cattle are kept in herds 

with less than 51 heads, 5% in herds between 51 and 100 heads and 10% in herds with 

more than 100 heads). The dairy farms were selected from three provinces (West and East 

Azarbaijan and Zanjan), which are representative of prevailing dairy farming methods in 

north-western Iran. These provinces were selected according to the dairy distribution in 5 

regions. Cattle in these regions are cross breeds of Holstein and a local breed, with different 

degrees of breed purity. Data were gathered for 2008, 2009 and 2010. 

On the one hand, there was an intention to gather data from a high number of farms to ena-

ble representative results with a high degree of accuracy. On the other hand, the required 

data could not be obtained from some of the selected dairies. These dairies were especially 

large farms with several hundred cattle. Therefore, only two dairies with more than 100 

heads of dairy cattle could provide the requested information. Lastly, the required data were 

obtained from 24 dairies in 4 regions. Fifteen dairies were in East Azarbaijan (3 in region 1 

and 12 in region 2), 8 dairies were in West Azarbaijan (region 3), and only one dairy was 

located in Zanjan (region 4).  
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3.3.4.3 Dairy farm data acquisition 

The desired data were obtained from the dairies by using a questionnaire designed for this 

purpose. The questions were arranged in 5 groups. The first group was about the number 

and mass of different cattle categories (calves, bulls, heifers and cows) at the beginning and 

end of each year and the number of cattle sold or bought in that year along with the selling 

time. The second group included questions about the amounts and types of annual feedstuff 

consumption for the dairy and the daily feed intake of the cattle categories. The building area 

specifications for materials and roofed and non-roofed areas and the specifications for ma-

chinery used in the dairies, i.e., their nominal power, mass and usage hours, made up the 

third group of questions. Direct energy resource consumption was obtained by the forth 

questions group. The last questions were about the annual milk production of the dairy 

farms, the amount of manure produced, the average daily milk yield, dairy cattle replacement 

rate, calving interval, etc. Due to the lack of regular measurements for some data, such as 

cattle body mass and the amount of feedstuffs remaining in the dairies from year to year, 

farmer estimations were used.   

3.3.5 Functional unit 

One element of the LCA study is the necessity of clearly defining the functions (performance 

characteristics) of the studied system. The functional unit of a system is a reference with 

which to normalise and quantify related input and output data and make the different systems 

comparable with one another in the same way (ISO 14040, 2006). In this study, the function-

al unit is the actual energy, which is the sum of the energy consumed to produce an asset 

(the section  2.5), which can be an output material as well as an input material, facility, or ser-

vice. Therefore, all production information was converted to the energy value per unit of each 

input or output. Finally, the energy embodied in the energy-corrected milk (unit: MJ kg-1 ECM) 

was used as a functional unit to reveal the performance of a system. 

3.3.6 Assigning the energy equivalents  

3.3.6.1 Energy input   

As described in section  2.6 (energy input equivalents), a wide range of assumptions for en-

ergy equivalents has been made in energy studies. Different assumptions for energy equiva-

lents make it difficult to compare the results of different studies. Energy equivalents intended 

to quantify the inputs or outputs should be determined to clarify the study. To conclude sec-

tion  2.6, the energy equivalents used in this study are used as follow: 
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- Equivalents of direct energies were used as listed in table 3 (p. 22), except for elec-

tricity energy which 8.4 MJ kWh-1 (energy of production) is used.  

- Human work was not viewed as an energy input.  

- Machine equivalents were calculated using the method of Bowers (1992), as shown 

in table 6 (p. 29).  

- The building equivalent was the same as in table 8 and for the silos and open area 

calculated according to their dimensions and information in table 7 (p. 30). 

- Fertiliser equivalents are shown in table 9 (p. 32). 

- Insecticide, herbicide and fungicide equivalents were assumed to be, on average, 

237, 288 and 196 MJ kg-1, respectively, for the active ingredients (Rathke & 

Diepenbrook, 2006). The active substance amounts are in annex 4. 

- The water consumption equivalent in channels and network irrigation systems was 

assumed to be 0.63 MJ m-3 water (Ozkan et al., 2004b). 

- The transportation equivalent was calculated from the fuel consumption of trucks 

used between the farms. In the case of absent data, it was assumed to be 1.6 MJ t-1 

km-1 of truck transportation (Hernanz & Ortiz-Canavate, 1999). 

- Seed equivalents were used from table 11 (p. 37). 

- Biomass equivalents following the EEV investigation scenario were given as the pro-

duction energy presented in table 20 (p. 73) and table 21 (p. 73) and according to the 

HHV investigation scenario in table 10 (p. 36).  

3.3.6.2 Energy output  

According to the available fat and protein content data for the milk produced in the dairy 

farms in this study, the milk yield of the farms was converted to the energy-corrected milk 

(ECM) value by using equation 9 (p. 40). An energy content of 3.15 MJ kg-1 ECM was used 

as the energy output from milk production. 

The energy output from live cattle, which was leaving the system to be slaughtered, was cal-

culated according to the energy equivalent (HHV based) of its meat content. In this study, no 

meat quality considerations between the different cattle categories were considered. Accord-

ing to section  2.7.2, an average of 55% was assumed as the dressing percentage and 75% 

of the carcass weight makes up the meat and fat proportion. Therefore, 40% of the live body 

mass was used as the meat yield for any given type of cattle. Referring to Klinge (1989), 8.8 

MJ kg-1 of cattle meat was used as the caloric value and energy output equivalent of meat. 
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The energy output of manure was given a value of 0.33 MJ kg-1 fresh matter after a literature 

analysis and a calculation described in section  2.6.2.6.4. 

3.3.7 Allocations in this study 

3.3.7.1 Allocated energy for feedstuffs  

The feedstuff energy content can be quantified depending on the animal species to which it 

is fed. For dairy cattle, the NEL indicates the energy available in feedstuff for milk production 

and body maintenance. The MEV can be used for all ruminants. Therefore, the MEV is used 

to compare or to sum the energy content of feedstuffs for different animal categories, such as 

calves, heifers, bulls and cows. Energy input in feedstuff production can be allocated to dif-

ferent parameters, thereby giving the energy content of the feedstuffs (e.g., MEV or NEL). 

Furthermore, energy allocation is needed if a feedstuff is not the only product of a process, 

i.e., if a feedstuff is one of several products and/or by-products.  

In this study, three cases were used in the allocation of production energy to different 

feedstuff products in dairy farms and described in the following. 

Case A) Products and by-products are both used as feedstuffs: 

When both the products and by-products are or can be used as feedstuffs, the production 

energy is allocated with the relationship of their feeding values (MEV or NEL). The energy in 

product A (EEVA) is found by multiplying the actual energy in the total products (EEVT) by the 

ratio of metabolisable energy of product A (MEVA) to the metabolisable energy of total prod-

ucts (MEVT), as shown in   equation 10.  

T
T

A
A EEV

MEV
MEV=EEV ×   Equation 10  

This method was used for the allocation of production energy to sugar beets by products, 

straw and grain in cereals, and also the bran of wheat grain, which are all used as feedstuffs. 

This case was also used for soya beans and sunflower meal, and the metabolisable energy 

value of whole sunflower seed and rapeseed is reported.  

Case B) The product is used as foodstuff and the by-product is used as feedstuff: 

In some processes, the main aim is the production of foodstuff, and by-products can be used 

as feedstuff. Rapeseed meal, tomato pomace, poultry offal, meat and bone meal, and fat are 
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by-product feedstuffs from main products which are foodstuff. In this case, when there is no 

information about the MEV of the main product, the HHV of the main product and by-product 

are used for allocation.  

T
T

A
A EEV

HHV
HHV=EEV ×   Equation 11   

Extra necessary energy consumed in the preparation of by-product as feedstuff (e.g., milling 

of meat and bone) is included in the energy demand of by-product.  

Case C) Product is used as material and by-product is used as feedstuff: 

In the case that the main product is used for purposes other than bio-energy, food, or 

feedstuff (such as the cotton lint used in the textile industry), but by-products are used as 

feedstuff, the substitution method was used to credit the by-product according to the amount 

of displaced feedstuff. In this study, the simple substitution method was used, by crediting 

the replacer according to the ratio of the MEV of the replacer (MEVA) to the MEV of replaced 

feedstuff (MEVB).    

B
B

A
A EEV

MEV
MEV=EEV ×   Equation 12   

In the case of products such as sugar beets and oilseeds, there is an extra consumed energy 

in the sugar or oil extraction processes. This energy was assigned to the energy demand of 

sugar or oil and not to the energy demand of molasses, pulps, and meals, which were con-

sidered by-products. This argument shows that the extra energy is not necessary for the 

feedstuff and has no influence on the feeding specification of the feedstuff. In other words, 

prior to the consumption of this extra energy, the main product could be fed to the cattle, and 

the extraction energy belongs to the food production.  

The EEV allocation of cotton example: 

When allocating the consumed energy from cotton production, cases C and B were com-

bined. Considering that cotton fuzz can be fed to ruminants without being crushed, all the 

extra energy requirements are from ginning, de-linting, de-hulling and oil extraction and are 

excluded from the energy required for the feedstuff.  

As reported in the petition of the National Cottonseed Products Association (Anonymous, 

2011), the average energy embodied in cotton production with mechanised cultivation in Asia 

is 13.0 MJ kg-1 whole cottonseed and lint. During recent years, the lint to seed ratio in im-

proved cultivars has been 1.43 (i.e., lint is 59% of the mass of fresh-picked cotton.) (Anony-
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mous, 2011). Cottonseed consists of 16% oil, 45% meal and 39% hull, linter and waste (Blasi 

& Drouillard, 2002). The feeding characteristics of whole cottonseeds are very similar to soya 

beans, and both have a similar proportion of oil. In addition, their meals also seem to be simi-

lar in terms of feeding value, especially for MEV (table 10, p. 36). In this study, the allocation 

of energy, cottonseed and cottonseed meal are used as replacements for soya bean meal. In 

reference to the energy values presented in table 10 and also considering the 9.17 MJ kg-1 

soya bean energy reported by Mandal et al. (2002), the allocation of embodied energy in 

cotton by-products was performed as detailed below: 

The allocated cottonseed EEV was calculated by substituting it with the soya bean values 

and comparing their MEVs using equation 13 (case C). 

)()( 11 −− × kgMJEEV
MEV
MEV

=kgMJEEV beanSoya
beanSoya

Cottenseed
Cottenseed    Equation 13 

       = (16 /15.3) * 9.17 = 9.59 MJ kg-1 

Allocated EEV in cottonseed meal was calculated by comparing its MEV with the MEV of 

cottonseed (case A) and calculating the allocated EEV (9.59 MJ kg-1) with the following: 

)()( 11 −− × kgMJEEV
MEV

MEV
=kgMJEEV Cottonseed

Cottonseed

mealCottenseed
mealCottenseed   Equation 14 

      = (13 /16) * 9.59 = 7.79 MJ kg-1 

In the same way, the cottonseed hull MEV was compared with the MEV of cottonseed (case 

A); the energy allocated to cottonseed hulls was found as follows: 

)()( 11 −− × kgMJEEV
MEV

MEV
=kgMJEEV Cottonseed

Cottonseed

hullCottenseed
hullCottenseed   Equation 15 

      = (7.3 /16) * 9.59 = 4.38 MJ kg-1 

Allocation by substituting soya bean meal with cottonseed meal (instead of soya bean with 

cottonseed) and then allocating embodied energy to cottonseed and other cottonseed by-

products produces the same results because this method is simply the reverse of the above 

calculations. 

Considering the allocation methods for the products and by-products consumed as feedstuffs 

by the study farms (listed in table 10), the embodied energy is allocated as follows: 

- Alfalfa, maize corn, maize silage, and grass silage cultivation have no useful by-

product. Therefore, all the production energy was allocated to the main product. 
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- Barley, wheat, soya bean, tomato, and sugar beet cultivation have by-products. Thus, 

the production energy was allocated to grain, straw and bran in wheat and barley, 

pulp and molasses in sugar beet, and as well oil and meal in oilseeds, according to 

the ration of their MEV to the total MEV of the products and by-products (case A). 

- Assuming the substitution of soya bean meal (as the main oilseed meal consumed in 

the investigated farms) with cottonseed, rapeseed and sunflower meal, the embodied 

energy in the replacement was calculated by multiplying the EEV of soya bean meal 

with the ratio of the MEV of the replacement to the MEV of soya bean meal (corre-

spondent to “case A”). 

3.3.7.2 Allocated energy for dairy products 

The energy allocated to excrement was 0.33 MJ kg-1 of fresh manure as discussed in section 

 2.6.2.6.4.  

The energy output from manure was subtracted from the energy input in a cow. Thereafter, 

the remained energy input was allocated to the milk and meat produced by the cow. The 

energy input allocation between the milk and meat was carried out according to the caloric 

value (MJ kg-1) produced by the milk and meat yield (kg cow-1) of a cow. 

)(
)()(

)( 11 −− ×
×+×

×
cowMJinputEnergy

yieldMeatHHVyieldMilkHHV
yieldMilkHHV

=kgMJEEV
MeatMilk

Milk
Milk

 

Equation 16 

3.4 Feedstuff data processing  

The collected input and output data for feedstuff crops (unit 1; figure 9, p. 50) from Moghan 

Company were converted to the energy input and output data for the dairy farm (unit 2) by 

multiplying the consumed or otherwise used amounts by their assigned energy equivalent. 

The output energy of feedstuff production was calculated based on HHV, MEV and NEL to 

find the energy equivalent. 

The energy input from spreading manure was distributed equally over 5 years. Additionally, 

the distribution was done in perennial alfalfa and cultivated over a 5-year period for opera-

tions such as ploughing, disking, planting etc. 

The energy input for transporting manure an average distance of 10 km was considerable. 

Therefore, this input was calculated and incorporated into the energy input from the manure 

spreading operation. In addition, the energy consumed in the transportation of products from 

the fields to the storage inside the feed-producing farm (as the output gate of unit 1) was 
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calculated by assuming a distance of 10 km, and 35 and 55 litres of fuel consumption were 

used for trucks and trailers, respectively.  

To calculate the EI and EP indicators for grain and straw, the energy input from the common 

operations between grain and straw (e.g., ploughing, fertilisation, combine harvesting, etc.) 

was allocated between them. The energy inputs related only to straw (bailing and transporta-

tion) or grain (transportation of grain) were added to the allocated energy inputs for straw or 

grain.  

3.5 Dairy data processing  

The data from the dairy farms for feedstuff and direct energy consumption indicated the year-

ly farm consumption, according to the purchase bills. This consumption and usage of ma-

chinery and building area were used without distinguishing between cattle categories. The 

number and average mass of different types of cattle at the beginning and at the end of each 

year, and also those for sold cattle, were declared by the farmers. However, the sale dates 

for the sold cattle or calves, the replacement dates for old cows with heifers, and the birth 

dates for the calves were not determined. Given that information, the following data pro-

cessing was performed: 

  
Feedstuff  

The feedstuff consumption data were checked by calculating the cattle demand for feed en-

ergy intake on the basis of animal nutrition knowledge. The standard cattle energy intake 

requirements, as reported by Kirchgeßner et al. (2008), and the data on cattle live mass 

(LM), growing rates and milk yield from the investigated farms were obtained from these cal-

culations. The energy demand for the maintenance (EDM) of dairy cattle was calculated from 

the live body mass by using equation 17 (Kirchgeßner et al., 2008). To calculate the lactation 

energy requirement (MJ NEL), a value of 3.15 MJ kg-1 ECM was used, which is equal to the 

HHV of the resulting ECM. The total dairy cattle energy requirement was calculated by add-

ing the energy requirement for maintenance and for lactation. Kirchgeßner et al. (2008) used 

a value of 1.66 to convert the NEL to the ME (q value). The NEL and ME of all feedstuffs 

consumed at each farm for each year were calculated by using the energy values shown in 

table 10 (p. 36).  
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)(488.0)( 75.01 kgLMdayMEMJEDM ×=−     Equation 17  

For the other cattle categories, the cattle growing period was divided into different categories. 

The live mass, average daily mass gain and average metabolisable energy requirement in 

each category are summarised in table 16 according to Kirchgeßner et al. (2008). 

Table 16 Average daily mass gain and metabolisable energy intake for different 

types of cattle at different ages and live masses. 

Live mass (LM) 
       (kg) 

Age 
(month) 

Mass gain a 

(g/day) 
ME intake b 

MJ/day 
Calves born at 38 kg (male or female) 

38-150 0-5 730 29.4 
Heifers  

150-400 5-15 830 56.7 
400-550 15-25 500 75.2 

Bulls 
150-400 5-13 1000 66.9 
400< 13< 1000 102.5 
a According to Kirchgeßner et al. (2008). 
b Average value for cattle data in this category by Kirchgeßner et al. (2008). 

The number of days that cattle from each category stayed on the farms was calculated using 

the mass gain values given in table 16 and the farm data on the live mass of each type of 

cattle at the beginning / end of each year and also those sold or bought from each farm. A 

prediction model was established to allocate the growing period of the existing cattle to the 

categories listed in table 16. Then, the standard ME requirements were calculated for each 

cattle category.  

These calculated standard ME requirements were compared with the farm data of the ME 

consumption of each farm for each year. This comparison helped to rectify the feedstuff con-

sumption data by again contacting the farmers for an iterative approach, as advised by LCA 

analysis (ISO 14040, 2006).   

Based on the calculated ME requirements for each cattle category and the derived feedstuff 

rations, the embodied energy in the consumed feedstuff were allocated to the cattle catego-

ries for each farm and year of investigation. 

Concentrated feed  

The farms were designated according to whether they were preparing concentrated feed 

inside the farm or buying it from other companies. Some of the farms had no mixing ma-

chines and were buying the feedstuffs and having them mixed by their neighbours. For the 

direct buying case, the energy embodied in concentrated feed was calculated according to 
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the mixture of the single feedstuffs indicated by the ration receipts and the data from the oth-

er farms, which were mixing the concentrated feed by themselves. The extra energy input 

from machinery and electrical consumption was added according to the average mass and 

usage hours of the mixing machinery, the average mixing capacity (1 t h-1), and the nominal 

motor power, assuming 50% use of nominal power. 

Energy embodied in dairy facilities 

In the absence of an exact separation between the cattle categories in the barns and the use 

of machinery and consumed direct energy, the energy embodied in the facilities was calcu-

lated and allocated to each category in several ways.  

The energy embodied in the buildings, silos and open areas (concrete and fences) was allo-

cated to each cattle category according to the days for each category in the farm and the 

required area inside the barns for cattle in each category. Using a scoring system in which 

the area requirement was 1 for a calf, 2 for heifers and bulls, and 4 for dairy cattle, this sys-

tem indicates that dairy cattle need 4 times more land than a calf.  

The embodied energy in milking machines and milk coolants were allocated only to the dairy 

cattle. For the other machines, e.g., feed mixers, tractors, and water pumps, the embodied 

energy was allocated with the same ratios used in the allocation of the energy embodied in 

the feedstuffs.  

The electricity consumed by milking machines and milk coolants was allocated only to dairy 

cattle. This consumption was estimated by recording the nominal power of their motors and 

their hours of use and by assuming 50% use of nominal power. The electricity consumed by 

mixers and water pumps was allocated according to the allocated feedstuff in each category. 

The electricity, diesel or gas consumption consumed for lighting, households and tractors (for 

excrement gathering and feedstuff displacement) was allocated according to the ratios used 

in building energy allocations.  

Energy embodied in live cattle 

The energy embodied in live cattle was the sum of the allocated energies to each cattle cat-

egory from different energy input resources. The average number of cattle from each catego-

ry on the farms was determined according to the mass gain of cattle and estimations made 

by model predictions. The first cattle category was that in which the calves weighed less than 

150 kg. Each calf was an energy input for a heifer with less than 400 kg of body mass, be-

sides the other inputs. In addition, a heifer with less than 400 kg of mass was an energy input 

for a heifer of up to 550 kg. A heifer was also an energy input for a cow. The energy from the 

manure of each cow was subtracted from the total energy input.  
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For the bull cattle, an individual with less than 400 kg body mass and a bull over 400 kg was 

used to calculate the energy input in cattle. The newborn calves were not considered in the 

energy analysis.  

3.6 Statistical analysis model 

Statistical analyses for the dairy data were carried out with SAS 9.3 software. The mixed 

procedure (PROC MIXED) in SAS fits a variety of mixed linear models to data, and it was 

used to make statistical inferences and test the possible effects of different factors influenc-

ing the energy input in dairy products. 

Dairy data were gathered during 2008, 2009 and 2010 from 24 dairy farms in 4 regions. The 

feeding pattern, cattle milk yield, mechanisation status and herd size were different for each 

location. Therefore, a mixed linear model was created and tested to find the significant influ-

ences on the milk production energy input by using a significance level of α = 0.05.  

ijkkijjiijk efnCpMRYYREE +++++++=µ                                      Equation 18 

In which EEijk is the embodied energy in the output product (e.g., milk or meat), μ determines 

the general mean of embodied energy, Ri and Yj represent the fixed effects on the region and 

year and RYij represents their interactions. p is the regression coefficient for M the milk yield 

of cattle (kg yr-1 cow-1 ECM). n is the regression coefficient and C cattle number in the herd. 

The fk term represents the covariable estimates for farms, and eijk
 expresses the random res-

idues. In comparison to this original model, the model was reduced by removing its insignifi-

cant parts or was changed to test the more interactive effects between the parts in some 

cases, which will be mentioned in the results.   

The Gaussian distribution (normality) of the residuals and their homogeneity of variance line-

arity of means that are essential in the performance of mixed linear models were checked by 

observing the distribution of residues. The simulate option (SIM) by α = 0.05 was applied to 

find solutions and make adjustments for multiple pair-wise comparisons between levels of 

the same factor. 

3.7 Uncertainty and sensitivity analysis 

The sensitivity analysis should be performed to find the reliability of the data and the effects 

of uncertainties in data gathering, calculations and allocation on the results as recommended 

by ISO standards (14044, 2006). Covariance analysis was performed on the statistical anal-

ysis of the model used for dairy data as a sensitivity analysis. However, the following sensi-
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tivity analysis was used to find the impact of the energy sources on feedstuff production and, 

thereafter, on the energy intensity of milk production. The methodology used in this study to 

assess the impact of the errors was the Gaussian error impact assessment. According to this 

method, the uncertainty of a function (F) to its variables (xi) is described as follows (Huggins, 

1991): 

) x., , x, x(f F n21 …=          Equation 19 

FF F u+= µ         Equation 20 

In which µ F is the mean value of function F and uF is its uncertainty. The uF term is calculat-

ed according to the uncertainty of the variables (ux) as follows: 
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The uncertainty of ux is calculated in the same way. In this study, the energy input is the sum 

of the energy inputs from different sources. The energy input from each source is then found 

by multiplying the amount (a) by the energy equivalent (b). Therefore: 

b×= a xi          Equation 22 

ii
uxxi  x += µ         Equation 23 

( ) ( )bau uaubix ×× +±=
22

      Equation 24 

The uncertainty of a and b are determined by measuring instrument errors, accepted error in 

data gathering, assumptions, and so forth, according to the condition of each study. In this 

study, the acceptable error for data gathering was 10%. A sensitivity analysis was performed 

on for fuel and fertiliser consumption, for the N fertiliser energy equivalent uncertainty in the 

feedstuff farms, and for the feedstuff intake and direct energy consumption uncertainty on the 

dairy farms.  
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4 Results 

4.1 Energy efficiency in feedstuff production  

4.1.1 Energy input analysis 

According to the results, the energy input per area for maize corn production was the high-

est, at 51,500 MJ ha-1 (figure 10, annex 1.1). For the other products, the energy input ranged 

between 36,800 MJ ha-1 (spring maize silage) and 28,000 MJ ha-1 (alfalfa). For all investigat-

ed crops except alfalfa, fertilisation was the single operation with the highest energy input, 

followed by irrigation. The high energy input from fertilisation was caused by the high energy 

demand for N fertiliser production. Within the maize corn production, energy input from ferti-

lisers and their spread was 34% of the total energy input, of which 88% of the energy input 

came from the consumption of 200 kg ha-1 N fertiliser. Irrigation made up 22% and spraying 

operations accounted for 10% of the total energy input, which were the operations with the 

next highest energy input for maize corn production. In the spring maize silage, harvest and 

transportation of the highest amount of fresh matter yield (75 t ha-1) had 19% of the total en-

ergy input. In addition, two instances of ploughing and three rounds of using of cultivator 

caused a high energy input in the form of machinery operations. In wheat, 150 kg ha-1 N ferti-

liser consumption (50% more than that of spring maize silage) and the spraying requirement 

caused the same extra energy input as from repeated machinery operations in spring maize 

silage. Summer maize silage or secondary maize silage cultivation had a short growing peri-

od (July-October) and was cultivated in a 2,000 ha quantity after the cereal or rapeseed har-

vest. The reduced energy input in summer maize silage in comparison to spring maize silage 

resulted from the exclusion of manure spreading, less repetition of the cultivator operation 

(only one) and a nearly 50% reduction in fresh matter yield and ensuing energy input from 

the transportation of summer maize silage production. Because summer maize silage was 

cultivated after a different prior crop, no energy input from manure spreading from the previ-

ous cultivation was allocated to summer maize silage. For all feedstuffs other than summer 

maize silage and barley, the energy input from manure spreading ranged between 4% 

(maize corn) and 8% (alfalfa) of the total energy input with the same amount per area (2,240 

MJ ha-1).  
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Figure 10 Energy input in the investigated crop production (MJ ha-1 yr-1) from machinery op-

erations including energy from materials, fuels and machines. a b 
a Operations with an energy input of less than 5% of the total energy input were shown as  Other”. 
b For summer maize silage, the yield was not yearly because it was cultivated as a secondary product. 

No manure spreading was reported for barley production. Barley fertilisation comprised 48% 

of the total energy input. In alfalfa production, the energy input from irrigation was the high-

est, with 40% of the total energy input. This high share of the energy input came from high 

water consumption (18,000 m3 ha-1) as a result of flooding irrigation system. A harvest opera-

tion with 25% of the total energy input was the next biggest share of energy input, which re-

sulted from five harvests per year and required three individual machinery operations (mow-

er, rake, and baler). Operations with a share of less than 5% of the total energy input for 

each product were merged together as “Other” operations to limit the number of operations. 

Therefore, as an example, the spraying operation in this figure is only visible for alfalfa and 

maize corn production, with 5% and 10% of their total energy inputs, respectively. 

The energy input from different sources and their proportion of the total energy input are 

shown for each investigated product in figure 11 (according to annex 1.2). The energy input 
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from fertiliser was the biggest or second biggest energy source (maize silage) in total energy 

input, except for alfalfa, which had the lowest N fertiliser requirements. Fuel consumption 

during machinery operations was the main source of energy input in the production of maize 

silage, and it was the second main source of energy input for the other crops. In both maize 

silage productions, the diversity of machinery operations and the high volume and mass of 

the fresh matter yield caused high energy consumption during harvest and transfer. Thus, 

the fuel had the highest share of the energy input for both products.   

Regarding the high volume of water consumption, irrigation was the third main source of en-

ergy input besides the fertilisers and fuel in most crops. With approximately 18,000 m3 ha-1 

water, irrigation caused the highest single energy input in alfalfa and in maize corn produc-

tion, with nearly the same energy input as that of fuel consumption. Irrigation and fuel were 

the two dominant energy input sources in alfalfa, which were responsible for 73% of the total 

energy input. The energy inputs from machinery, seed, manure and pesticides were consid-

erably less than the three dominant sources, except in alfalfa, in which energy input from 

fertilisers was very low. The energy input from pesticides was relatively high only in maize 

corn production. For the other products, energy input from pesticides was very low or zero for 

both maize silage products. 

 

Figure 11 Energy input in the production of the investigated crops according to different 

sources (MJ ha-1 yr-1).a  
a For summer maize silage, the yield was not reported annually because it was cultivated as a secondary product. 
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4.1.2 Energy output (yield) of feedstuff production 

Table 17 summarises the material yields and energy yields (energy output) of the investigat-

ed feedstuffs from Moghan Company. This table shows the fresh matter (FM) and dry matter 

(DM) yield of the crops as well as the calculated energy yield of each feedstuff farm in the 

HHV, the MEV and the NEL. Spring maize silage achieved the highest fresh and dry matter 

yield with 75,000 and 15,000 kg ha-1, respectively, as well as the highest energy yield for all 

three energy calculations. In contrast, rapeseed gave the lowest and barley (grain and straw) 

yielded second lowest in all categories. Summer maize silage with 35,000 kg ha-1 FM and 

alfalfa with 12,000 kg ha-1 FM were the next crops with high FM yields. However, the wheat 

crop had higher DM yield than summer maize silage and alfalfa, considering the grain and 

straw yield together as two useful products. Following the spring maize silage, wheat (grain 

and straw) and alfalfa were the second and third highest, respectively, for all energy yield 

categories. Within the category of NEL yield, maize corn and summer maize silage both 

changed their positions (to fourth and fifth, respectively). However, there was no large differ-

ence between their MEV and NEL yields. By using straw (by-product) as a feedstuff and 

comparing its MEV yield with the MEV yield of grain (main product), about one fourth of the 

total MEV yield of wheat and barley cultivation belonged to the straw yield. Based on the 

NEL for both crops, nearly 22% of the total yield comes from straw. 

Table 17 Yearly yield and energy yield from investigated crops in Moghan Company. 
 Alfalfa Barley Maize 

corn 
Rapeseed Spring 

maize 
silage 

Summer 
maize 

silage a 

Wheat 

  Grain Straw     Grain Straw 

FM yield 
(kg ha-1) 

12,000 4,000 2,400 7,000 3,000 75,000 35,000 7,000 4,900 

DM yield 
(kg ha-1) 

9,600 3,200 1,920 5,600 2,550 15,000 7,000 5,950 4,165 

HHV yield 
(MJ ha-1) 

174,720 58,880 35,136 104,720 80,325 285,000 133,000 108,290 77,052 

MEV yield 
(MJ ha-1) 

78,720 39,040 13,056 73,360 44,625 160,500 74,900 77,350 24,990 

NEL yield 
(MJ ha-1) 

48,000 24,960 7,296 47,040 27,285 96,000 44,800 49,386 14,161 

a Summer maize silage was cultivated as the secondary product in between other crops. 

4.1.3 Energy efficiency indicators in feedstuff production 

The energy input from common operations between straw and grain was 28,600 MJ ha-1 of 

barley and 33,900 MJ ha-1 of wheat production (annex 1.1). This energy was allocated to 

straw and grain in each production by using the energy yield information in table 17. Three 

measures of energy yield (the HHV, MEV and NEL) were used separately in this manner. 
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The energy input for grain transportation was 193 MJ ha-1 for barley and 285 MJ ha-1 for 

wheat production. Barley straw bailing and transportation required 763 MJ ha-1 and wheat 

straw required 1,556 MJ ha-1. Using this information, the energy efficiency indicators for bar-

ley and wheat production were calculated and are shown in table 18.   

According to table 18, the OIR indicators for barley and wheat production with based on HHV 

were 3.18 and 5.19 MJ MJ-1, respectively, when grain and straw were taken into account. 

They were significantly more than the 2.04 and 3.17 MJ MJ-1 for barley and wheat, respec-

tively, when only the grain yield was considered. The EI was 9.01 MJ kg-1 barley grain and 

5.74 MJ kg-1 wheat grain when only the grain yield was considered. When both grain and 

straw were taken into consideration, the EI was much lower. Based on HHV, the calculated 

EIs of straw and grain were nearly same (at 5.66 and 5.97 MJ kg-1 for barley straw and grain, 

respectively, and 3.38 and 3.76 MJ kg-1 for wheat straw and grain, respectively). Using an 

energy input allocation for grain and straw according to their MEV or NEL resulted in a signif-

icant difference between the EIs of grain and straw. This difference was caused by the 

greater difference between the MEVs or the NELs of grain and straw. In other words, the 

metabolisable energy of straw is much lower than that for grain; therefore, the majority of the 

energy input was allocated to the grain rather than to straw. The difference between the 

MEV-based and NEL-based EI was slight for both the straw and grain of both crops. 

The efficiency indicators as calculated for alfalfa, rapeseed, maize corn and maize silage in 

three energy yield calculations are shown in table 19. These products have no by-product 

and, therefore, the energy input allocation for the resulting DM yield or energy yield was 

straightforward.   

In the following section, the feedstuffs are compared based on MEV for efficiency indicators 

because they are used for all the cattle categories (lactating and non-lactating). In addition, 

the energy yields for barley and wheat are the sum of the energy for straw and grain, as both 

were used as feedstuff. According to table 18 and table 19, the spring maize silage was the 

best feedstuff out of all the crops investigated for every efficiency indicator and all three en-

ergy calculations. For spring maize silage, the OIR was 4.36 MJ MJ-1 MEV, the EI was 2.45 

MJ kg-1 DM and the NEY was 124 GJ ha-1. Wheat (grain and straw) was the second most 

advantageous crop due to its higher OIR at 2.86 MJ MJ-1 MEV, followed by alfalfa with 2.81 

MJ MJ-1 MEV and summer maize silage with 2.40 MJ MJ-1 MEV. The OIR of maize corn and 

rapeseed was the lowest with 1.42 MJ MJ-1 MEV. 

The energy intensity was the most important indicator in this study because this measure 

was used to calculate the cumulative energy demand in milk production. Alfalfa was the se-

cond best crop for lower EI with 2.92 MJ kg-1 DM, followed by wheat with 4.35 MJ kg-1 DM 
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and summer maize silage with 4.45 MJ kg-1 DM. The highest EI was found for rapeseed at 

12.36 MJ kg-1 DM.  

Wheat was the second highest crop for the NEY with 66.6 GJ ha-1 (MEV), which was higher 

than that for alfalfa with 50.7 GJ ha-1. The NEY indicator was the lowest in rapeseed produc-

tion with 13.1 MJ ha-1.   

The labour energy productivity was another calculated energy indicator. The spring maize 

silage was the best crop, with an MEV-based LEP of 4.66 GJ h-1. It was followed by wheat 

with an LEP of 2.88 GJ h-1. Alfalfa had the lowest LEP with 1.24 GJ h-1. The flooding irriga-

tion system used in the Moghan Company requires approximately 2 hours of labour per hec-

tare for each irrigation incident. The high amount of irrigation water needed for alfalfa and 

maize corn production (18,000 m3 with in average of 8 instances of irrigation per year) was 

the main source of the labour requirements in alfalfa and maize corn. The manual loading of 

the bales of alfalfa and straw into trucks also required labour hours.  
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Table 18 Energy efficiency indicators for DM wheat and barley with the energy yield calculated based on HHV, MEV and NEL. 

Product Barley  Wheat 
Useful yield Only grain  Grain and straw  Only grain  Grain and straw 
Energy yield base HHV  HHV MEV NEL  HHV  HHV MEV NEL 
Energy output/input ratio (OIR)  
MJ MJ-1 

2.04  3.18 1.76 1.09  3.17  5.19 2.86 1.78 

Energy intensity  (EI)  
MJ kg-1 DM 

9.01      5.74     

Grain a   5.66 6.76 6.98    3.38 4.35 4.47 
Straw a   5.97 4.13 3.77    3.76 2.36 2.19 

Energy productivity  (EP)  
kg MJ-1 DM 

0.11      0.17     

Grain a   0.18 0.15 0.14    0.30 0.23 0.22 
Straw a   0.17 0.24 0.27    0.27 0.42 0.46 

Net energy yield  (NEY)  
1000 MJ ha-1 

30.1  64.4 22.5 2.7  74.1  150 66.6 27.8 

Labour energy productivity  (LEP)  
1000 MJ h-1 

2.99  3.77 2.09 1.29  4.40  5.21 2.88 1.79 

a Allocated energy input. 

 

 

 



Results 

 72 

 

 

 

Table 19 Energy efficiency indicators for DM feedstuffs with the HHV, MEV and NEL measures of energy yield. 

Product  Alfalfa  Maize corn  Rapeseed  Spring 
maize silage 

 Summer 
maize silage 

Energy yield basis  HHV MEV NEL  HHV MEV NEL  HHV MEV NEL  HHV MEV NEL  HHV MEV NEL 

Energy output/input 
ratio (OIR)  
MJ MJ-1 

 6.23 2.81 1.71  2.03 1.42 0.91  2.55 1.42 0.87  7.75 4.36 2.61  4.27 2.40 1.44 

Energy intensity 
(EI)  
MJ kg-1 DM 

 2.92 2.92 2.92  9.19 9.19 9.19  12.36 12.36 12.36  2.45 2.45 2.45  4.45 4.45 4.45 

Energy productivity  
(EP) 
 kg MJ-1  DM 

 0.34 0.34 0.34  0.11 0.11 0.11  0.08 0.08 0.08  0.41 0.41 0.41  0.22 0.22 0.22 

Net energy yield 
(NEY)  
1000 MJ ha-1 

 147 50.7 20.0  53.2 21.9 - 4.5  48.8 13.1 - 4.2  248 124 59.2  102 43.7 13.6 

Labour productivity 
(LEP)  
1000 MJ h-1 

 2.75 1.24 0.76  2.43 1.70 1.09  3.82 2.12 1.30  8.27 4.66 2.79  4.58 2.58 1.54 
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4.1.4 Energy intensity of feedstuffs consumed in dairy farms       

Energy consumption during the production (i.e., energy intensity) of feedstuffs was an essen-

tial piece of information for the energy investigation of dairy farms. The energy intensity of 

the crops in this study and allocated energy for their by-products are summarised in table 20. 

Table 20 Energy intensity (EI) of the investigated feedstuffs and allocated energy inten-

sity to their by-products when used as feedstuff. 

Feedstuff EI  

MJ kg-1 DM 

 Feedstuff EI  

MJ kg-1 DM 

Alfalfa hay  2.92   Rapeseed (40% oil d) 12.36  

Barley grain  6.76 a  Rapeseed meal 9.25  

Barley straw  4.13 a  Wheat grain 4.35 a 

Maize corn 9.19   Wheat bran 3.62 c 

Maize silage  3.42 b  Wheat straw  2.36 a 

a EI allocated based on the MEV ratio of grain and straw and consumed energies in their production; b 
Weighted average of the results for summer and spring maize silage in this study according to cultivation area 
and yield;  c Allocated EI based on the MEV ratio of grain and bran. 

 

For the other feedstuffs not investigated in this study, the results of other published studies 

were used. The energy intensity of these feedstuffs and the energy allocated to their by-

products are summarised in table 21. For feedstuffs for which there was not enough infor-

mation about production energy (e.g., fish meal, fat powder, poultry, meat and bone meal), 

their HHVs were used to calculate their EI. 

Table 21 Energy intensity of feedstuffs not investigated in this study. 

Feedstuff EI 

MJ kg-1 DM 

 Feedstuff EI 

MJ kg-1 DM 

Beet (sugar beet) 3.28 a  Soya bean  9.17 d 

Beet pulp  2.92 b  Soya bean meal  7.96 b 

Beet molasses  3.12 b  Sunflower seed  8.49 e 

Cottonseed (with linter)  9.59 c  Sunflower meal dehulled 3.88 b 

Cottonseed hulls & gin trash 4.38  b c   Tomato  11.9 f 

Cottonseed meal  7.79  b c   Tomato pomace 11.5 b 

a Derived from Erdal et al. (2007); b Allocated energy intensity based on the MEV ratio of product and 
by-product; c Calculated by substitution (see section  0); d Mandal et al. (2002);  e Uzunoz et al. (2008);  f 
Rezvani Moghaddam et al. (2011). 
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For the energy intensity of the fat powder, fish meal, meat and bone meal, and poultry offal 

(which have not been published anywhere), their HHV was used as the energy input in this 

study (according to table 10, they had values of 37.9, 20.9, 16.7 and 22.7 MJ kg-1 DM, re-

spectively). The HHV-based OIR indicator was therefore assumed to be equal to 1.     

4.1.5 Sensitivity analysis of feedstuff production 

Different figures can be found for the N fertiliser production energy input, depending on the 

state of the production technique. The amount of fertiliser, fuel and irrigation water can also 

vary from farm to farm. Therefore, a sensitivity analysis was carried out for these parameters. 

A sensitivity analysis was performed by assuming 10% uncertainty. Table 22 shows the ef-

fects of this uncertainty on the energy intensity of the feedstuffs in the study. The uncertainty 

effect of N fertiliser (either in consumption or in consumption and energy equivalent together) 

on the alfalfa production EI was very low (0.30% and 0.34%, respectively), and the effect of 

the uncertainties in diesel consumption and irrigation water was rather high (3.4% and 4.1%, 

respectively). For the feedstuffs other than alfalfa, the uncertainty effect for N fertiliser was 

stronger, especially for barley (uncertainty at 4.0% for N fertiliser consumption and 5.7% for 

N fertiliser consumption and simultaneously its equivalent). The uncertainty in diesel con-

sumption, besides alfalfa, had its strongest effect on the EI of maize silage. 

Table 22 Sensitivity analysis of the HHV energy intensity of products. 

Uncertainty 
source 

Uncertainty 
(%) 

Sensitivity of the EI indicator of feedstuff  
(%) 

  Alfalfa Barley 
grain 

Maize 
corn 

Rape- 
seed 

Spring 
maze 
silage 

Summer 
maize 
silage 

Wheat 
grain 

N fertiliser 
consumption 
or energy equivalent 

10 0.30 4.00 3.00 3.70 2.00 2.50 3.50 

N fertiliser  
consumption 
and energy equivalent 

10 0.34 5.66 4.35 5.26 3.27 3.60 4.88 

Diesel  
consumption 

10 3.41 2.33 2.10 2.41 3.72 3.41 2.43 

Irrigation water 10 4.12 1.62 2.20 1.44 1.60 1.81 1.62 
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4.2 Energy efficiency of the dairy farms 

4.2.1 An overview on the investigated dairy farms 

The investigated dairy farms were located in 4 regions of East and West Azarbaijan and Zan-

jan provinces in north-western Iran. Data were collected for 3 years, namely 2008, 2009 and 

2010. In region 1 in East Azarbaijan, there were 3 dairy farms, and in region 2 in the same 

province, 12 dairies were investigated. Eight dairy farms in region 3 in West Azarbaijan were 

studied. Finally, only one dairy farm in region 4 of Zanjan province was analysed. Table 23 

shows the main specifications for the investigated dairy farms over the three years of investi-

gation.   

Twenty of the 24 investigated dairy farms had less than 50 (heads) cows, 2 had between 50 

and 99 (heads) cows and 2 farms had 100 (heads) or more cows. The smallest dairy farm 

was dairy 9 in region 2, with 20 (heads) cattle (9 cows) during the first years of investigation. 

Dairy 24 in region 4 was the biggest, with 645 (heads) cattle (363 cows) in 2010. There was 

no significant difference between the cow number in dairies from regions 1-3 or during the 

investigation years, except for dairies 9, 12 and 16, which had a substantial change in the 

cow number during the investigation years. The average cow number for region 1 was 24±15 

heads; for region 2, it was 41±7 heads; and for region 3, it was 30±9 heads. On average, 

35±21 (heads) cows were in the dairies in regions 1-3; dairy 24 had 360±3 (heads) cows, 

and dairy 8 had 102±2 (heads) cows.  

In most of the dairy farms, bull cattle and heifers were kept beside the cows. It was only in 

dairies 22 and 24 that the male calves were sold some weeks after birth. Therefore, the herd 

size of dairy farms was usually more than two times the cow number of the herd.  

According to table 23, only 9 dairies had feedstuff farm areas with approximately 1 to 10 ha, 

mostly under alfalfa cultivation. The grazing program in the feedstuff farm was the only one 

there, and thus, the required feedstuffs were bought from markets.  
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Table 23 Dairy farm specifications for the three investigation years. 

           D
airy farm

 no. 

            R
egion no. 

   P
rovince a 

 
Dairy specifications 

 
Feedstuff farm

 (ha) e  

2008 2009 2010 

C
ow

 num
ber b 

(head) 

H
erd size c 

(head) 

M
ilk yield d 

(kg yr -1 head
-1) 

C
ow

 num
ber b 

(head) 

H
erd size c 

(head) 

M
ilk yield d 

(kg yr -1 head
-1)  

C
ow

 num
ber b 

(head) 

H
erd size c 

(head) 

M
ilk yield d 

(kg yr -1 head
-1) 

1 1 E. A. 20 44 7,520 19 43 7,230 20 41 7,280 0 

2 1 E. A. 21 51 7,050 22 49 7,000 23 59 6,920 0 

3 1 E. A. 23 58 6,320 26 59 6,010 26 54 6,080 0 

4 2 E. A. 62 142 7,050 65 138 7,230 63 143 7,230 0 

5 2 E. A. 35 74 4,470 35 70 4,660 38 91 4,810 0 

6 2 E. A. 47 111 7,550 48 116 7,580 50 112 7,600 0 

7 2 E. A. 25 61 6,690 25 60 6,970 25 64 7,250 3 

8 2 E. A. 100 252 8,210 103 256 8,060 104 256 8,150 0 

9 2 E. A. 9 20 6,080 9 20 6,240 18 32 5,860 0 

10 2 E. A. 25 52 5,840 21 41 5,450 20 35 5,580 5 

11 2 E. A. 12 30 7,850 12 29 8,240 12 29 7,750 0 

12 2 E. A. 22 34 5,220 15 32 5,240 12 22 5,560 0 

13 2 E. A. 33 79 8,060 34 81 7,990 41 99 7,800 1 

14 2 E. A. 70 163 7,540 70 177 7,800 70 164 7,870 0 

15 2 E. A. 28 66 6,490 26 98 6,370 25 58 6,500 0 

16 3 W. A. 35 78 3,860 22 45 4,690 20 48 4,970 4 

17 3 W. A. 50 103 5,480 45 104 5,470 40 91 5,700 10 

18 3 W. A. 40 105 8,150 40 102 8,310 43 107 7,900 4 

19 3 W. A. 30 55 7,160 34 79 6,990 37 87 7,000 6 

20 3 W. A. 30 64 5,150 30 76 4,990 30 68 5,160 3 

21 3 W. A. 20 41 4,140 21 46 4,050 20 42 4,390 5 

22 3 W. A. 35 55 6,620 36 71 6,560 38 73 6,230 0 

23 3 W. A. 35 75 7,020 35 84 6,760 35 77 6,890 3 

24 4 ZA 360 512 8,050 356 613 8,150 363 645 8,020 0 
a E. A.: East Azarbaijan; W. A.: West Azarbaijan; ZA: Zanjan 
b The number of dairy cattle in the dairy farm 

c The total number of cattle in the dairy farm   
d ECM yield  
e Area of own feedstuff production 
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4.2.2 Milk production in the dairy farms 

The ECM yield of the investigated dairy farms was 6,585±1,221 kg cow-1 yr-1 on average. The 

yield varied between 3,861 kg cow-1 yr-1 and 8,317 kg cow-1 yr-1. The ECM yield distribution in 

these regions is shown in figure 12. The ECM yield was calculated according to the average 

milk protein and fat content of the dairy farms, which were measured monthly and provided 

by the farms. The milk protein content of all investigated dairy farms ranged between 2.98% 

and 3.30%, and the fat content was between 3.30% and 3.90%.   

 
Figure 12 Box plot of dairy farm ECM yield (kg cow-1 yr-1) for regions 1-4.  

Statistical analyses of the ECM yield (kg cow-1 yr-1) and the protein and fat contents of the 

fresh milk produced in the dairies were performed using the model defined in the methodolo-

gy chapter (equation 18). The covariance analysis results are shown in table 24. 

Table 24 Covariance analysis of the protein and fat content in fresh milk and the ECM 

yield of cows from investigated dairies. 

Effect Analysed parameters 

  Protein content Fat content ECM yield (kg cow-1 yr-1) 

Num 
DF 

Den 
DF 

F 
Value 

Pr > F Den 
DF 

F 
Value 

Pr > F Den 
DF 

F 
Value 

Pr > F 

Year 2 40.1 0.10 0.9014 38.3 0.02 0.9779 34.3 0.15 0.8650 
Region 3 20.1 0.97 0.4262 20 3.51 0.0341 21.6 3.86 0.0237 
Year × Region 6 40.2 0.68 0.6660 38.4 0.31 0.9291 34.1 0.61 0.7231 
Cow number  1 24.9 3.24 0.0839 30.9 2.05 0.1617 54.6 9.64 0.0030 
ECM (kg cow-1 yr-1) 1 26.1 2.62 0.1178 34.2 2.01 0.1654 - - - 
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According to the statistical analysis for regions 1-4, the protein content was not significantly 

affected by the year, region, ECM yield and cow number in the dairies. The mean protein 

content of the fresh milk produced in regions 1-4 was 3.14±0.07%. The difference in fat con-

tents between the regions was significant at a level of 5% in the F-test. However, with the 

adjusted probability made to account for multiple pair-wise testing, this effect was no longer 

significant because this particular simulation test adjusted the estimations for the single dairy 

in region 4 (dairy 24). There was a need to have at least 3 dairy farms in a region for the re-

gression estimation (in covariance analysis). Because a regression estimate was impossible 

for region 4, the covariance analysis was not working properly and the model adjustment for 

dairy 24 made the difference between other dairy farms insignificant. To find a solution for 

this problem, dairy farm 24 (and thus region 4) was excluded from all further statistical anal-

yses. After excluding dairy 24, the model was tested for the fat content of milk produced in 

regions 1-3. The results showed that region 1 had a mean milk fat content of 3.71±0.08%, 

which was different from region 2 with 3.49±0.05% at a significance level of 0.05. Region 3 

had a milk fat content of 3.57±0.04% and was not different from regions 1 and 2. The fat con-

tent of the milk produced in dairy 24 was 3.49±0.01%. 

The selected model (equation 18) yielded a significant difference between the ECM yield for 

the regions and the number of cows per farm (table 24). 

With an improved model (described in table 25), the interaction effect of the region and cow 

number was analysed. The results showed a significant effect on the ECM yield only for the 

interaction effect between the cow number and the region (table 25).  

ijjijj
-1 -1 e   C    C  n R)   (Y Y   )yrcow (kg ECM ++×+×+×+++= frRiij µ                        Equation 25 

Where rj is the estimated regression slope for each region. Other elements are described by 

equation 18 (p. 67). 

Table 25 Covariance analysis of the ECM yield of cows in the investigated dairies. 

 Tests of fixed effects for ECM yield  

Effect Num DF Den DF F Value Pr > F 
Year 2 36 0.54 0.5894 
Region 2 47.3 0.54 0.5846 
Year × Region 4 35.7 0.81 0.5252 
Cow number 1 39.4 0.62 0.4371 
Cow number × Region 2 44.3 5.85 0.0056 

The estimated intercepts for the region effects and the regression slopes for each region 

were analysed with the improved model (table 25). The significant and meaningful effect re-

sults are given in table 26 (see annex 2.1 for complete solutions).  
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Table 26 Estimated intercept and slopes for the tested model between the 

region and the number of cows per farm on the ECM yield.  

 Solutions for Fixed Effects 
Effect Estimate Standard Error 
Fixed Effects (Intercept)   

Region 1 7,054.50 2,146.29 
Region 2 6,943.50 557.56 
Region 3 7,787.98 607.64 

Regressions (slopes)   
Cow number × Region  (r1) - 12.81 86.69 
Cow number × Region  (r2) - 2.85 9.79 
Cow number × Region  (r3) -  53.38 11.07 

  

The average ECM yield after the model (table 25) was 6,661±1,358 kg cow-1 yr-1 for region 1, 

6,813±398 kg cow-1 yr-1 for region 2, and 5,901±584 kg cow-1 yr-1 for region 3. For dairy 24 

(region 4) the average ECM yield after the model was 8,073±67 kg cow-1 yr-1 during the three 

years of investigation.  

Figure 13 graphically demonstrates the ECM yield depending on the number of dairy cows 

per farm, including estimated linear trend lines for regions 1-3. Although the trend lines show 

a negative slope, the limited number of the farms in the regions 1-3 (9-104 head cows) and 

between regions does not allow a properly interpretation of the effect of the number of cows 

on ECM yield.  

 

 

Figure 13 Scatter plot and estimated linear trends of ECM yield (kg cow-1 yr-1) 

versus cow number for regions 1-3. 
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The calving interval (lactating days plus a 2 month dry period) was between 355 and 400 

days. The calving interval was 394.4±5.7 days for region 1, 371.8±2.9 days for region 2, and 

377.5±3.5 days for region 3. Finally, the calving interval for dairy 24 was 370±1.0 days. 

There was a significant difference between regions 1 and 2 (Adj. P=0.006) but not between 

these regions and region 3.       

4.2.3 Indirect energy input by buildings and machines  

Buildings 

The keeping area of the dairy farm generally consisted of the stall building, an open farmyard 

area outside the stall, storage buildings, a milking parlour, silos and a labour house. The 

dairy farms varied in the given building areas, amount of roofed and non-roofed area and 

building materials. Stall walls and roofs were mostly made of bricks with metal or woody pil-

lars and sometimes of corrugated galvanised sheets. Roofed farmyard area was mostly cov-

ered with corrugated galvanised sheets. Mangers and the floors of stalls and farmyards were 

made of concrete. A milking parlour was found only in the large-scale farms. In the small 

farms, the cows were milked when standing in the stall with small mobile milking machines 

(single or double). Feedstuffs were stored in bulk or in sacks, except for dairy 24, which had 

some vertical silos. The maize silage was stored in underground concrete silos. 

The allocated roofed area per cow was 14.4±2.2 m2 in region 1, 14.8±1.1 m2 in region 2, 

9.5±1.3 m2 in region 3, and 10.9±0.6 m2 in region 4. Only the difference between region 2 and 

region 3 was significant (α=0.05). The mean open area value in regions 1-3 was 53±28 m2. 

The open area per cow was significantly dependent on the cow number. On average, dairies 

with a large number of cows had a lower open area per cow than the smaller ones. Never-

theless, the open area per cow in dairy 24 was 77±4 m2. 

The allocated energy input in the ECM from total energy embodied in the roofed area, non-

roofed area and silos was 0.19±0.09 MJ kg-1. The range was between 0.06 and 0.50 MJ kg-1.  

The reference model (equation 18, p. 63) was excluded for the ECM yield effect to find the 

best model for analysing the energy input from a building area (EIB) in the ECM (MJ kg-1) 

produced in the regions 1-3 as follows: 

ijjjiij
-1

B e  C p R)  (Y R  Y   )kg (MJ EI ++×+×+++= fiµ             Equation 26 
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The statistical analysis for this model showed a significant regional effect on the ECM energy 

input from the building area (α=0.05). The farm cow number was also a significant factor at a 

significance level of 0.01 (DF of 29.2). The solutions for this model are given in table 27.  

Table 27 Estimated solutions for a model testing the effects of the region and number 

of cows in a farm on the energy input from a building area on milk (MJ kg-1 ECM).a   

 Solutions for Fixed Effects 
Effect Estimate Standard Error 
Fixed Effects (Intercept)   

Region 1 0.2304 0.04903 
Region 2 0.3369 0.03795 
Region 3 0.2282 0.03814 

Regression (slope)   
Cow number  (p) - 0.0027 0.00077 

a Only the intercepts of significant or meaningful effects are given. 

The mean EI caused by the energy input from buildings (EIB) was 0.13±0.05 MJ kg-1 ECM for 

region 1 and 0.24±0.02 MJ kg-1 ECM for region 2. For region 3, the EIB was 0.14±0.03 MJ kg-

1 ECM, and it was not different from region 1. The mean EIB of region 2 was significantly dif-

ferent from regions 1 and 3. The regression trend for the cow number was slightly negative 

(table 27), i.e., EIB slightly decreased with an increasing number of cows per farm. In dairy 

farm 24 (region 4), the EIB was 0.18±0.01 MJ kg-1 ECM. 

Machinery 

The machines (present and in use) in the dairy farms, their power, mass and operating hours 

were different among the dairies. Nine dairies had stationary milking machines (i.e., a milking 

parlour); out of them, 7 dairies were located in region 2, one dairy was in region 3, and one 

farm was in region 4. There were 12 farms with a concentrated feed mixing machine. Eight 

dairy farms were in region 2, three were in region 1, and there was one dairy in region 4. The 

mixing machines were a combination of a mill, elevator and mixer with total electric power 

between 15 and 27 kW. Seventeen farms had a hay comminuter with a power range be-

tween 1.5 and 2.25 kW. Comminuters had their own electric power or tractor implement. 

Seven dairies had a milk cooler, with 3 in region 2, 3 in region 3 and 1 in region 4. All farms 

were using an electric or diesel engine water pump to supply their water requirement. Dairy 5 

had no electricity supply and was using a diesel motor for 6 hours per day to support its elec-

tricity requirements. The excrement removal and feedstuff supply was mostly performed 

manually. However, 5 dairies in region 2, 2 dairies in region 3 and the only dairy in region 4 

were using their tractors to transport feedstuffs inside the dairy or to remove excrement from 

the open area of the dairy. Dairy farm 24 had 7 tractors, and each one was used up to          
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2 hours per day. Other machinery included a sprayer to disinfect the farms, which was oblig-

atory every month. With the exception of dairy 24, no ventilation facility was used.  

The energy input from machinery per kg ECM was between 0.04 and 0.19 MJ. The mean 

value of EIM for regions 1-3 was 0.09±0.01 MJ kg-1 ECM. The EIM was the highest for dairy 

farm 24 (region 4), with 0.19 MJ kg-1 ECM. By analysing the allocated energy input (for re-

gion 1-3) from the indirect energy embodied in the machinery per kg ECM, no significant ef-

fect was detected for the regions of interest.  

4.2.4 Direct energy input  

The direct energy input sources in the dairy farms came from the consumption of diesel, nat-

ural gas and electricity. The dairies were using diesel, natural gas or both for heating and 

warming the water used in cleaning. Diesel was also used as a tractor fuel. The energy input 

from each source was calculated and summarised together. The allocated direct energy in-

put (EID) in the resulting ECM was an average of 1.01±0.93 MJ kg-1. The lowest and highest 

values were 0.60 and 2.83 MJ kg-1 (figure 14), respectively. The highest diesel consumption, 

observed in dairy 5 (region 2), was used to generate and supply electricity, and dairy 5 had 

the highest direct energy consumption for all milk production sites (the three dots, one for 

each year, can be seen in figure 14). 

 

Figure 14 Box plot of the direct energy input in the ECM (MJ kg-1) 

produced in the investigated dairy farms according to their regions. 
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The statistical model indicated that the mean value of the EID was 0.65±0.22 in region 1, 

1.16±0.11 in region 2 and 0.86±0.14 MJ kg-1 ECM in region 3. In dairy farm 24 (region 4), the 

mean value of the EID was higher than in the other regions, with 1.74±0.09 MJ kg-1 ECM. 

For statistical analysis of the EID interaction effect, the year and region from the reference 

model (equation 18, p. 63) were removed to yield a better fitted model. The statistical analy-

sis for the new model showed a significant effect for the year and ECM yield on EID at a sig-

nificance level of 0.05 (table 28). 

Table 28 Covariance analysis of the direct energy input in ECM (MJ kg-1). 

  Tests of fixed effects for direct energy input  

Effect Num DF Den DF F Value Pr > F 
Year 2 38.8 3.25 0.0494 
Region 2 15.5 2.67 0.1005 
Cow number 1 41.6 3.01 0.0900 
ECM (kg cow-1 yr-1) 1 49.3 5.09 0.0285 

The significant and meaningful solutions estimated for the tested model for EID are shown in 

table 29 (see annex 2.2 for the complete table). According to this table, there was a slight 

decrease in the EID from 2008 to 2010. The difference between the overall mean values of all 

farms was 0.91 MJ kg-1 ECM in 2008, 0.90 MJ kg-1 ECM in 2009 and 0.85 MJ kg-1 ECM in 

2010. These results indicate that an approximately 7% reduction in energy input from direct 

energies occurred from 2008 to 2010. The difference between 2008 and 2010 was signifi-

cant, but no difference was observed between 2009 and 2008 and 2010.  

Table 29 Estimated solutions for the model testing the effects of the year, number of 

cows per farm and the ECM yield on the direct energy input for milk (MJ kg-1 ECM).a   

 Solutions for Fixed Effects 
Effect Estimate Standard Error 
Fixed Effects (Intercept)   

Year 1 (2008) 1.8201 0.3531 
Year 2 (2009) 1.8006 0.3532 
Year 3 (2010) 1.7541 0.3552 

Regression (slope)   
 ECM yield      (E) - 0.00011 0.000051 

a Only the intercept of significant or meaningful effects is given. 

According to table 29, a significant and reverse slope (trend) is estimated by the statistical 

analysis for the ECM yield effect on EID for regions 1-3. In other words, an increase in the 

ECM yield leads to a decrease in the EID. According to the intercept and estimated regres-

sion, an increase in the ECM yield per cow and the year from 6,000 to 7,000 kg could reduce 



Results 
 

 84 

the EID by 10%. The effect of the ECM yield on EID within the investigation years is shown in 

figure 15. 

 

 

Figure 15 Scatter plot and estimated linear trends of the relationships between the 

ECM yield (kg cow-1 year-1) and the direct energy input in its production (MJ kg-1 

ECM) during the years of investigation. 

No significant effect of the cow number on EID was found. However, there was a decreasing 

EID tendency with an increasing cow number (slope: -0.005), i.e., an increase in the cow 

numbers per farm from 30 to 60 results in an EID decrease of 10%. 

Of total EID 30%±9% was for electricity consumption and rest (70%) from diesel or natural 

gas consumption. For this ration there was no significant difference between the dairies.  

4.2.5 Feedstuff intake analysis 

The feedstuffs consumed in these dairies were forage and concentrate feed, which were 

delivered separately. The forage was confined to alfalfa hay, fresh alfalfa, maize silage and 

straw. The energy intensities in the fresh and hay alfalfa were assumed to be the same. The 

concentrated feed consisted of barley, maize corn, wheat bran, oilseed meals (e.g., from soy 

beans, rapeseed, cottonseed and sunflowers), fat powder and complementary feeds in dif-

ferent ratios. Dairy farms were providing concentrates according to the advice of feeding ex-

perts; for lactating cows, the recommendation is 6.49 MJ NEL kg-1 DM (1.55 MCal kg-1), and 

for bulls and other cattle, the recommendation is 10.67 MJ ME kg-1 DM (2.55 MCal kg-1).  
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The q-value (NEL to ME ratio of feedstuff) in the farms was between 0.60 and 0.62, and the 

forage to concentrate ratio (based on DM) was between 1.08 and 2.73. The real ME intake 

(MEr) in the dairies was more than the calculated standard ME requirements (MEs). The MEs 

was calculated for the lactation and maintenance of cows and the growth of other cattle in 

the dairies. These extra ME intakes refer to overfeeding and feed losses. The MEr to MEs 

ratio was between 1.08 and 1.35, with an average of 1.23±0.06. 

A statistical analysis (table 30) of regions 1-3 showed significant q-value differences between 

the years, regions, their interactions and the number of cows in the dairies. The mean q-

value for dairies in all 4 regions was 0.61±0.01. The region and the number of cows per farm 

had a significant effect on the forage to concentrate ratio. In region 1, it was 1.2±0.2, which 

differed from region 2 with 1.8±0.1 and region 3 with 1.9±0.1. For dairy 24, the forage-to-

concentrate ratio was 1.60±0.01. A significant regression effect with a negative slope was 

observed between the forage to concentrate ratio and the cow number, revealing that the 

dairies with larger herds were using more concentrated feed than the smaller dairies. The 

MEr to MEs ratio was significantly different between all regions. The MEr to MEs ratio was 

1.13±0.02 for region 1, 1.27±0.01 for region 2, 1.21±0.01 for region 3 and 1.20±0.05 for dairy 

24 in region 4. 

Table 30 Covariance analysis of the NEL to ME ratio (q-value), the forage to concentrate 

ratio and the real to standard ME intake ratio in the investigated dairy farms from regions 1-3. 

 

Effect 

Analysed parameters 

 NEL to ME ratio (q) Forage/concentrate ratio Real to standard ME 
intake 

Num 
DF 

Den 
DF 

F 
Value Pr > F Den 

DF 
F 

Value Pr > F Den 
DF 

F 
Value Pr > F 

Year 2 38.8 5.28 0.0094 37.4 0.49 0.6167 40 0.30 0.7459 
Region 2 19.7 4.22 0.0298 17.4 4.92 0.0202 18.5 16.93 <.0001 

Year × Region 4 38.9 4.79 0.0031 37.7 0.65 0.6271 40.1 0.91 0.4698 
Cow number 1 53.8 7.40 0.0088 35.1 11.96 0.0014 21.4 0.01 0.9275 
ECM yield 1 56.6 1.17 0.2846 39.7 2.48 0.1229 21.9 3.44 0.0773 

The energy input from feedstuff (EIF) in the ECM production was between 4.15 and 6.16 MJ 

kg-1 ECM with an average of 4.77±0.45. The EIF distribution is shown in figure 16.   
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Figure 16 Feedstuff energy input in the ECM (MJ kg-1) produced by regions 1-4. 

A statistical analysis of the EIF for regions 1-3 (table 31) showed a significant regression ef-

fect for the ECM yield on EIF (P<0.0003), but no significant differences between regions 1-3, 

the years and the number of cows. 

Table 31 Covariance analysis of feedstuff energy input in the ECM (MJ kg-1). 

  Tests of fixed effects for direct energy input 

Effect Num DF Den DF F Value Pr > F 
Year 2 39.2 0.11 0.8942 
Region 2 18.7 0.50 0.6135 
Year × Region 4 39.5 0.46 0.7619 
Cow number 1 31.1 0.18 0.6747 
ECM yield  1 34.1 16.11 0.0003 

The mean EIF value for regions 1-3 was 4.76±0.20 MJ kg-1 ECM. For dairy 24, the mean EIF 

value over the three years of investigation was 4.27±0.14 MJ kg-1 ECM. In the statistical 

model test (equation 18, p. 63) used to calculate the energy input from the feed intake, the 

estimated intercept was 6.39±0.38 MJ kg-1 ECM, and the estimated regression slope for the 

ECM yield was -0.00025±0.00006. This finding suggests that the feedstuff intake by a cow 

with a higher ECM yield was more efficient than that of a cow with a lower ECM yield (figure 

17). For example, by increasing the ECM yield from 6,000 to 7,000 kg-1 cow-1 yr-1, the EIF is 

reduced by 5% from 4.89 MJ kg-1 ECM to 4.64 MJ kg-1 ECM. 
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Figure 17 Scatter plot and estimated linear trend of the relationship between ECM yield 

(kg cow-1 yr-1) and feedstuff energy input (MJ kg-1 ECM) for regions 1-3. 

4.2.6 Heifer replacement analysis 

The energy embodied in a heifer that replaced an old cow was calculated as the sum of the 

energy embodied in a calf (from birth) up to 150 kg, followed by a heifer up to 400 kg and 

finally reaching a mass between 500 and 550 kg within 24 months. The energy embodied in 

each stage was a different combination of the energy inputs from the buildings, machinery, 

direct energy sources and feedstuffs, which were allocated from the total consumption of all 

the dairies. The energy embodied in a heifer was between 20.1 and 35.2 GJ head-1 in the 

investigated dairies with an average of 25.5±3.1 GJ head-1 (see section  4.2.8).  

The planned number of lactations per cow was an average of 6.01±1.09 years and was sig-

nificantly different between regions, varying between 3.7 and 8 years. Region 1 averaged 

4.7±0.05 years, which was different from region 3, with 6.8±0.3 years. No significant differ-

ence was observed between region 2, with 5.9±0.2 years, and regions 1 and 3. The planned 

number for region 4 was 5.0 years. During the investigation years, the heifer rearing rate 

(HRR) was different from the planned replacement rate. The real replacement rate was de-

pendent on the prior replacement date, thereby establishing the date of the dairy, managerial 

and economic decisions for each year. Therefore, the HRR for the years of the study was 

calculated according to the number of cows sold and the decrease or increase in the cow 

number during each year as follows: 

MCNCNBYCNSYCNEYHRR /)( −+=  Equation 27 
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In which CNEY is the number of cows at the end of year, CNSY is the number of cows sold, 

CNBY is the number of cows at the beginning of year, and MCN is the mean cow number in 

a year. 

The HRR varied over the investigation years between 0 and 0.6, in which higher rates be-

longed to the dairies with a considerable change in the number of cows or those trying to 

improve the milk yield by replacing old cows with improved cow breeds. The average re-

placement rate for the dairies in regions 1-3 was 0.24±0.15 (i.e., approximately 4 lactations 

per cow) and for dairy 24 it was 0.20±0.05 (i.e., approximately 5 lactations per cow). 

The energy input for heifer rearing (EIH) was calculated according to the energy embodied in 

a heifer and the HRR in these dairies. The mean value of the EIH was 1.09±0.40 MJ kg-1 

ECM for regions 1-3 and 0.80±0.18 MJ kg-1 ECM for dairy 24 (region 4). The results showed 

that EIH was not significantly affected by any of the factors in the statistical model (equation 

18, p. 63).   

4.2.7 Energy input in milk production 

The energy input from the different sources of ECM production are presented in sections 

 4.2.3 to  4.2.6, and they represent the actual energy inputs for each cow per year divided by 

its annual ECM yield without considering the by-products (excrement and meat). The energy 

input for ECM ranged widely between 5.60 and 10.11, with an average of 7.07±0.82 MJ kg-1. 

The highest ECM energy input belonged to dairy 5, which had the highest direct energy    

input, particularly in 2008 (section  4.2.4).  

Figure 18 graphically presents the share of the energy input in ECMs from different sources 

for all the dairy farms (using a mean value for the years of investigation). As noted, the high-

est share belongs to the energy input from feedstuff, with a mean value of 67.5% of the total 

ECM energy input. The lowest share belongs to the energy input from machinery, with a 

mean of 1.3%, followed by the energy input from buildings, with a mean value of 2.7% of the 

energy input for milk production. 
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 Mean Min Max 

Building  2.7±1.0% 0.9% 6.1% 
Direct energy 13.6±4.0% 9.2% 26.0% 
Feedstuff 67.5±5.8% 54.4% 76.2% 
Heifer 14.9±5.1% 4.7% 25.4% 
Machines 1.3±0.6% 0.6% 2.6% 

Figure 18 Energy input from different sources in the ECM (MJ kg-1) produced in 

dairies 1-24 (from an average of 3 years of investigation). 

The statistical analysis of the ECM energy input for the investigated dairies using a model 

test (equation 18, p. 63) showed that the regional effect was significant (α=0.05). The regres-

sion effect of the annual ECM yield per cow was also significant for the energy input of the 

ECM (table 32).  

Table 32 Covariance analysis of the energy input of milk (MJ kg-1 

ECM) produced in the investigated dairies in regions 1-3.   

 Energy input of ECM 
Effect Num DF Den DF F Value Pr > F 
Year 2 39.6 0.53 0.9300 
Region 2 18.1 5.45 0.0138 
Year × Region 4 39.8 0.38 0.8191 
Cow number 1 20.7 0.21 0.6184 
ECM yield 1 21.1 23.52 <.0001 
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The solutions for this model are summarised in table 33 (see annex 2.3 for complete solu-

tions). Both the ECM yield effect and the number of cows per farm on the EIECM are negative, 

i.e., the dairies with the higher number of cows and the higher ECM yield per cow had a low-

er milk energy intensity. For example, in region 3 which its estimated linear trend is between 

the other 2 regions, with an increase in the ECM yield from 6,000 to 7,000 kg cow-1 yr-1, 

causing a 9% decrease in the energy input of 7.18 MJ kg-1 to 6.74 in region 3.  

Table 33 Estimated solutions for the model test for the energy input in 

the milk (MJ kg-1 ECM) in the investigated dairies in the regions 1-3.a  

 Solutions for Fixed Effects 

Effect  Estimate Standard Error 
Fixed effects (Intercept)       

Region 1 9.4587 0.6963 
Region 2 10.3715 0.6118 
Region 3 9.9088 0.5633 

Regression effects    
Cow number (C)  -0.00274 0.005417 
ECM yield     (E)  -0.00044 0.000094 

              a Only the intercepts of significant or meaningful effects is given. 

Table 34 shows the least squares means comparison between the investigation years and 

regions 1-3 for both methods. In this table, the means that had no significant differences from 

one another have the same letter. The EIECM in dairy 24 (region 4) was 7.18±0.23 MJ kg-1.  

Table 34 Least squares means of milk energy input (MJ kg-1 ECM) in regions 1-3.  

  Least Squares Means 

Effect   Estimate* Standard Error 
Year 2008  6.8907 A 0.1563 
Year 2009  6.8480 A 0.1562 
Year 2010  6.9168 A 0.1559 
Region 1  6.4018 a 0.2813 
Region 2  7.3549 b 0.1367 
Region 3  6.8987 ab 0.1709 

                     * The difference between the estimates with the same letter was not significant. 

4.2.8 Energy input for live cattle and meat production 

The dairies kept the bulls and heifers until they reached an average of 415±161 kg body 

mass, when they were sold. The bulls were sold a few weeks after birth only in two of the 

dairies, and in some dairies, they were kept until reaching approximately 700 kg.  

Energy input to live cattle (without considering the recycled energy from excrement) is the 

allocated energy input from the facilities, direct energy, and feedstuffs and the energy input 

from cattle in the prior category (table 35). 
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Table 35 Energy input for live cattle in the all dairies (GJ head-1) 

 Energy input 

Cattle type Mass (kg) Mean Min Max 
Calf 150 3.4±0.5 2.7 6.2 
Heifer 400 16.0±1.9 13.1 22.5 
 550 30.5±2.9 26.3 40.7 
Bull 400 15.2±1.5 12.6 18.6 
 700 36.1±3.4 30.1 44.1 

The shares of different energy input sources from the total energy input in a heifer of 550 kg 

in the different regions are shown in figure 19. In this figure, the energy input from cattle in 

the prior categories (calf and heifer of 400 kg) is explained as the energy source share. The 

energy input from feedstuff was the main source of the energy input with a mean value of 

80% in regions 1-3 and 62% in dairy 24 (region 4). The relatively high amount of energy input 

from direct energy sources in dairy 24 led to a higher energy input for a heifer in region 4.  

In a bull of 400 kg, the share of the energy input was 78% from feedstuff, 17% from direct 

energy, 4% from buildings, and 1 % from machinery.  

 
 Feedstuff Direct energy Building Machinery 

Region 1 81% 14% 4% 1% 

Region 2  75% 19% 5% 1% 

Region 3  83% 14% 2% 1% 

Region 4  62% 34% 3% <1% 

Figure 19 Energy input from different energy sources in a heifer 

with 550 kg body mass in regions 1-4 (MJ head-1). 
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4.2.9 Dairy energy efficiency indicators 

4.2.9.1 Energy efficiency indicators in milk production 

In section  4.2.7, the energy input in a cow was directly allocated to the milk yield without 

considering the excrement and meat produced by the cow. The energy input allocation to the 

dairy products and by-products was done according to the substitution method used for ma-

nure, and an allocation by caloric value was used for the milk and meat (section  3.3.7.2). 

According to figure 9 (p. 50), the energy output from excrement is recycled into the system 

by using it again as manure in the feedstuff production unit. This recycled energy constituted 

15.4%±1.3 of the total energy input for a cow. Therefore, 82.5%±1.5 of the total ECM energy 

input was allocated to milk, 15.4%±1.3 to excrement and 2.1%±1.2 to meat. The energy in-

tensity indicator in milk and meat production hereafter refers to the energy input allocated for 

each one.  

The mean value for the energy intensity of milk was 5.84±0.69 MJ kg-1 for all regions, which 

belongs to the mean ECM yield of 6,525±1,221 kg cow-1 yr-1. Figure 20 shows the energy 

intensity of milk for the investigated regions. The highest energy intensity belongs to dairy 5 

in region 2, as discussed earlier, shown with extreme dot for region 2 in this figure. 

 

Figure 20 Box plot of the energy intensity in milk (MJ kg-1 ECM) 

from investigated regions (1-4). 

The statistical analysis of the energy intensity in these farms is consistent with the results for 

unallocated energy input in milk as presented in table 32, in which only the significant effect 
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of ECM yield was detected. Table 36 shows the estimated solutions for the model test for 

milk energy intensity in regions 1-3. 

Table 36 Estimated solutions for the energy input model test for 

milk (MJ kg-1 ECM) in the investigated dairies in regions 1-3.a  

                        Solutions for Fixed Effects 

Effect 
 

 Estimate Standard Error 

Fixed effects (Intercept)          
Region 1  7.6676 0.6445 
Region 2  8.4522 0.5735 
Region 3  7.9828 0.5258 

Regression effects     
Cow number (C)   -0.00067 0.005088 
ECM yield     (E)   -0.00036 0.000088 

a Only the intercepts of significant or meaningful effects is given. 

Figure 21 shows the regression trends between the ECM yield and the energy intensity in the 

investigated dairies. For example, for a farm in region 3 (the estimated linear trend of which 

is between the other 2 regions), an increase in the ECM yield of 6,000 to 7,000 kg cow-1 yr-1 

causes a decrease in the energy input of 5.81 MJ kg-1 by 10% to 5.46. The impact of the cow 

number is very low and neglected. 

 

Figure 21 Scatter plot and estimated linear trends of the energy intensity in milk pro-

duction (EI MJ kg-1 ECM) versus ECM yield (kg cow-1 year-1) and for regions 1-3. 
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Table 37 shows the least squares means comparison between the investigation years and 

regions 1-3 for both methods. The EIECM in dairy 24 (region 4) was 6.16±0.20 MJ kg-1.  

Table 37 Least squares means of energy intensity in the ECM 

(MJ kg-1) in the given investigation years and regions 1-3.   

  Least Squares Means 
Effect  Estimate Standard Error 
Year 2008 5.6708 A 0.1386 
Year 2009 5.6374 A 0.1386 
Year 2010 5.6752 A 0.1383 
Region 1 5.2673 a 0.2667 
Region 2 6.0898 b 0.1298 
Region 3 5.6264 ab 0.1621 

* The difference between the estimates with the same letter was not significant. 

In addition to the energy intensity (EI) indicator, the other indicators were also calculated for 

milk produced by the investigated farms under the EEV-based and the HHV-based scenarios 

according to section  2.6.2.6.1 (p. 33).  

Energy efficiency indicators for ECM under the EEV-based scenario 

After the energy intensity (EI), the energy output to input ratio (OIR), energy productivity (EP) 

and net energy yield (NEY) indicators were calculated for milk production. According to the 

EEV-based scenario (also called the CED-based scenario), for milk with an energy output of 

3.15 MJ kg-1 ECM, the indicators were calculated and summarised in table 38. To avoid du-

plication, statistical analyses are neglected in this section because they were the same as 

the statistics calculated for EI (table 32). The regression effect is not mentioned here, and 

only the mean value of the indicators for the regions were summarised in table 38. 

Table 38 Energy efficiency indicators in the ECM production in the investigated regions 

by the EEV-based scenario.  

 Efficiency Indicators 

Region EI 
(MJ kg -1 ECM) 

OIR 
(MJ MJ-1 ECM) 

EP 
(kg ECM MJ-1) 

NEY 
(MJ kg-1) 

 Mean SD Mean SD Mean SD Mean SD 
Region 1 5.27 0.27 0.60 0.02 0.19 0.00 - 2.12 0.27 
Region 2 6.09 0.13 0.52 0.01 0.17 0.00 - 2.94 0.13 
Region 3 5.62 0.16 0.56 0.01 0.18 0.00 - 2.47 0.16 
Region 4 6.16 0.23 0.51 0.02 0.16 0.00 - 3.01 0.20 
Average of all dairies 5.84 0.69 0.55 0.06 0.17 0.2 - 2.69 0.69 
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Energy efficiency indicators for ECM with an HHV-based scenario 

The HHV energy efficiency data help in the investigation of dairy farm units independent of 

the feedstuff farm unit because the HHV of feedstuffs is nearly independent of the production 

process. Indicators were calculated by using the HHV-based scenario, but by replacing the 

EEV-based energy equivalent of the feedstuffs by their HHV equivalent. The indicators calcu-

lated using an HHV-based scenario were summarised in table 39. In comparing these two 

scenarios, it is clear that the energy intensity of milk as defined by the HHV-based scenario 

is approximately 4 times larger than that by the EEV-based scenario because the HHV 

feedstuff equivalents are, on average, higher than their EEV equivalents. In both scenarios, 

the OIR is less than 1, meaning the NEY has a negative value. 

Table 39 Energy efficiency indicators in the ECM production following the HHV based 

scenario.   

 Efficiency Indicators 

Region EI 
(MJ kg -1 ECM) 

OIR 
(MJ MJ-1 ECM) 

EP 
(kg ECM MJ-1) 

NEY 
(MJ kg-1) 

 Mean SD Mean SD Mean SD Mean SD 
Region 1 20.52 0.86 0.15 0.00 0.05 0.00 - 17.37 0.86 
Region 2 24.65 0.42 0.13 0.00 0.04 0.00 - 21.50 0.42 
Region 3 23.91 0.52 0.13 0.00 0.04 0.00 - 20.76 0.52 
Region 4 20.16 0.56 0.16 0.00 0.05 0.00 - 17.01 0.56 
Average of all dairies 23.70 3.37 0.135 0.02 0.04 0.01 - 20.55 3.37 

4.2.9.2 Energy efficiency indicators in meat production 

The energy output from excrement produced by each cattle category was subtracted from 

the cattle energy input, and hereafter, the remaining energy input is called the energy em-

bodied or intensity in live cattle or meat. The energy embodied in the live cattle from each 

category and per kg of boneless meat (40% of body mass) is summarised in table 40. In ad-

dition, the energy requirement for each 1 kg increase in body mass and meat from one cate-

gory to the next category is shown in this table. When comparing this table and table 35 it is 

clear that the energy input value of cattle is 21% more than its energy embodied value, in 

reference to the re-circulated energy of excrement. 

The energy demand for body mass increases with the increasing age of cattle. Thus, the 

lowest energy embodied for a one kg increase in meat belonged to growing calves with 63.7 

MJ kg-1, which ultimately reach 150 kg, and an embodied energy of 46.7 MJ kg-1 in meat. The 

highest embodied meat energy of 115 MJ kg-1 belonged to a heifer with 550 kg of body mass. 

Accordingly, the energy embodied in each kg of meat increases for a heifer with a body mass 

between 400 kg and 550 kg was the highest at 199.4 MJ kg-1 (79.8 MJ kg-1 body mass). The 

energy embodied in a heifer of 550 kg to replace an old cow was 25.5 GJ head-1. The energy 
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embodied per kg of meat increase for heifers between 150 and 400 kg was 104±14 MJ kg-1, 

and it was 93±12 MJ kg-1 for bulls between 150 and 400 kg. The energy embodied per kilo-

gram of meat produced by replacing an old cow (16±2 MJ kg-1 meat) was the allocated ener-

gy intensity (2.1% of total energy input for a cow) for the meat yield of a cow ( 4.2.9.1). 

Table 40 Energy embodied in live cattle (MJ head-1) and boneless meat (MJ kg-1) 

produced from different cattle categories in the study dairies. 

Cattle category/ 
Growing stage 

Factor Unit Mean Standard 
deviation 

Min Max 

Birth  Calf  Meat c MJ kg-1 63.7 11.5 49.7 128.7 
Calf (of 150 kg)a 
 

Live  MJ head-1 2,801.6 504.8 2,188.7 5,662.9 
Meat c MJ kg-1 46.7 3.4 36.5 94.4 

Calf  Heifer 1 b Meat c MJ kg-1 104.3 14.0 83.4 141.1 
Heifer 1 (of 400 kg) 
 

Live MJ head-1 13,227.4 1,854.4 10,532.0 19,773.4 
Meat c MJ kg-1 82.8 11.6 65.8 123.6 

Heifer 1  Heifer 2 b Meat c MJ kg-1 199.4 23.3 159.9 256.6 
Heifer 2 (of 550 kg) 
 

Live MJ head-1 25,488.7 3,119.3 20,123.0 35,170.8 
Meat c MJ kg-1 115.0 14.7 91.5 159.9 

Calf  Bull 1 b Meat c MJ kg-1 93.3 11.5 75.3 120.8 
Bull 1 (of 400 kg) 
 

Live MJ head-1 12,058.5 1,459.0 9,719.6 15,409.4 
Meat c MJ kg-1 75.4 9.1 60.7 96.3 

Bull 1  Bull 2 b Meat c MJ kg-1 140.0 14.6 115.6 178.9 
Bull 2 (of 700 kg) 
 

Live MJ head-1 29,072.6 3,202.1 23,748.3 36,873.9 
Meat c MJ kg-1 103.8 11.4 84.8 131.7 

Cow d Meat c MJ kg-1 16.3 1.9 12.8 23.7 
a The energy input from milk feeding is not included. 
b Growing stage from one cattle category to the next cattle category.  
c The energy embodied in each kg of live body mass, the energy embodied in each kg of meat to be 

multiplied by 0.4. 
d The energy value allocated to the meat produced by replacing old cows. 

The statistical analysis for energy embodied in live cattle in the investigated dairy farms was 

performed for regions according to the reference model test (equation 18, p. 63). Only the 

significant and considerable results are discussed below. 

The energy embodied in a live calf of 150 kg had a significant and direct relationship with the 

ECM yield of cows in regions 1-3. This result reveals that a calf from a cow with a higher 

ECM yield required higher energy for growth than a calf from a cow with lower milk yield. The 

estimated intercept and regression slope (significant in α=0.05) was 1,995±284 MJ head-1 

and 0.11±0.05, respectively. In region 4, the embodied energy in a calf was 4,552±965 MJ 

head-1.  

The energy embodied in a heifer with 400 kg of mass (heifer 1) in the dairies with a higher 

ECM yield was higher than those in dairies with a lower cow ECM yield. The intercept for 
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regions 1-3 was 9,716±284 MJ head-1, and the regression slope of the ECM yield for cows 

was 0.45±0.22 (significant in α=0.05). The energy embodied in a heifer with a 550 kg body 

mass (heifer 2) was significantly different between the regions (α=0.05): 22,309±2,248 MJ 

head-1 in region 1, 25,941±1,091 MJ head-1 in region 2, 19,798±1,365 MJ head-1 in region 3 

and 32,653±2,246 MJ head-1 in region 4.  

The energy embodied in a bull of 400 kg (bull 1) was not affected by the region or cattle 

breed quality (ECM yield of cows). In regions 1-3, it was 12,058±1,459 MJ head-1. The dairy 

24 (region 4) had no bull on the farm. The energy embodied in a live bull of 700 kg (bull 2) in 

regions 1-3 was not different and had an average of 29,073±3,202 MJ head-1 or 104±11 MJ 

kg-1 meat. 

Energy efficiency indicators for ECM under the EEV-based scenario 

To calculate the energy efficiency indicators for meat production, the energy intensity in the 

meat produced by a bull of 400 kg was used because this cattle category was raised in most 

of the dairies for meat production. An energy output of 8.8 MJ kg-1 meat was used in the cal-

culations. The calculated energy indicators for meat production in both scenarios (EEV and 

HHV based) are shown in table 41. No significant difference was found between regions 1-3, 

and no bulls were raised in dairy 24 (region 4). 

Table 41 Energy efficiency indicators in meat production from a bull of 

400 kg in regions 1-3 for both EEV- and HHV-based scenarios.  

Efficiency Indicators 
EI 

(MJ kg -1) 
OIR 

(MJ MJ-1) 
EP 

(kg MJ-1) 
NEY 

(MJ kg-1) 
Mean SD Mean SD Mean SD Mean SD 

EEV based 

75.4 9.12 0.12 0.01 0.013 0.000 - 66.57 9.12 
HHV based 

313.8 24.75 0.03 0.00 0.003 0.000 - 305 24.75 

Considering the indicators summarised in table 38 to table 41, the energy efficiency was 

higher for milk production than for meat production in these dairies. For milk production, the 

EP (EEV based) was 0.17 kg ECM per MJ energy input, and the OIR was 0.55 MJ MJ-1. For 

meat production, the EP (EEV based) was 0.013 kg meat per MJ of energy input, and the 

OIR was 0.12 MJ MJ-1. The energy input for meat production is 13.1 times more than that for 

milk production, and the HHV of meat is only 2.8 times that for milk production. 
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4.2.9.3 HHV conversion ratio for milk and meat production 

Under the HHV-based scenario, it was assumed that the consumed feedstuff HHV was use-

ful before it was converted to a dairy production HHV. To find a clear interpretation for energy 

conversion, the HHV-based OIR indicator was calculated again, only by considering the en-

ergy input from feedstuff consumption based on HHV. The new OIR was the HHV conversion 

ratio (HHVCR). The HHVCR is the ratio of HHV produced by a dairy (milk or meat) to the HHV 

from the feedstuff consumed for its production. The calculated HHVCR for ECM was 

0.136±0.018 MJ MJ-1, and for meat, it was 0.033±0.023 MJ MJ-1. The HHVCR was slightly 

higher than the HHV-based OIR because the share of the energy sources other than 

feedstuff energy (HHV based) was small. A comparison of the HHVCR
 for the meat and ECM 

reveals that by the consumption of one MJ feedstuff energy (based on HHV), 0.136 MJ of 

milk energy was produced in these dairies, which was 4 times more than the energy pro-

duced from meat production (0.033 MJ).   

4.2.10 Sensitivity analysis of milk production 

As shown in figure 18 (p. 89), the main sources of energy input for milk production were 

feedstuff (67.3%), direct energy (13.6%) and heifer rearing (14.9%). The main source of en-

ergy input in heifer rearing was also from feedstuff (79.7%), followed by direct energy 

(15.7%), for regions 1-3 (figure 19, p. 91). Therefore, feedstuff and direct energy were the 

main energy input sources in milk production. The sensitivity analysis for the milk EI indicator 

versus the uncertainty in feedstuff energy intensity was performed for feedstuff intake and 

direct energy consumption in the dairies. According to table 22 (p. 74), the sensitivity analy-

sis for the EI of feedstuffs versus a 10% uncertainty in N fertiliser determined a mean sensi-

tivity of EI of feedstuff of 3%. By assuming 10% uncertainty in the energy intensity of 

feedstuff and a simultaneous 10% uncertainty in feedstuff intake together with 14% uncer-

tainty for the EI of milk, the result was calculated according to equation 19 (p. 64).   

Table 42 summarises the sensitivity of the energy intensity in milk production. The analysis is 

based on an EI of 5.84 MJ kg-1 ECM as the average of all investigated farms (table 38, p. 94). 

Table 42 shows that the EI sensitivity of milk was highly dependent on the feedstuff intake. A 

10% decrease or increase in the feedstuff intake (or energy intensity of the feedstuff) causes 

a 9.3% decrease or increase in the energy intensity of milk production. 
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Table 42 Sensitivity of the average energy intensity for ECM production in 

regions 1-4 (5.84±0.69 MJ kg-1). 

Uncertainty source Uncertainty 
(%) 

Sensitivity of energy intensity  
of ECM 

(%) 

Energy intensity of feedstuffs  3 a 2.7 

Feedstuff intake in the dairies 10 b 9.0 

Feedstuff intake in the dairies 14 c 13.2 

Feedstuff intake in the dairies 20 18.8 

Direct energy consumption in the dairies 10 2.0 

Direct energy consumption in the dairies 20 4.0 
a Resulting from 10% uncertainty in N fertiliser consumption (or diesel consumption) for 

feedstuff production;  
b Or 10% uncertainty in the energy intensity of feedstuff;  
c Or 10% uncertainty in feedstuff intake and a simultaneous 10% uncertainty in the energy 

intensity of feedstuff 
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5 Discussion    

5.1 Energy efficiency in feedstuff production  

The most effective feedstuffs in relation to the DM and energy yields as well as to the total 

energy efficiency indicators are spring maize silage and alfalfa. The high amounts of DM 

yield from both crops and the low N fertiliser input in alfalfa has caused a relatively low ener-

gy intensity in maize silage and alfalfa. In this study, the EI was calculated for spring maize 

silage at 2.45 and that of alfalfa was at 2.92 MJ kg-1 DM. For summer maize silage, the result 

was considerably higher at 4.45 MJ kg-1 DM. Rapeseed had the highest EI, with 12.36 MJ kg-

1 DM as a result of a higher N fertiliser input and irrigation, as well as a lower DM yield (2,550 

kg ha-1), followed by maize corn (9.19 MJ kg-1 DM) and barley (6.8 MJ kg-1 DM).  

The EI for feedstuff production, found in the literature (table 14, p. 44) and the calculations 

herein (table 20, p. 73), varies relative widely. The estimated value for the EI of maize silage 

(2.24 to 2.49 MJ kg-1 DM) by Kraatz (2009) is similar to the value for maize silage calculated 

in this study. The EI of alfalfa calculated by Tsatsarelis & Koundouras (1994) is 2.53 MJ kg-1 

DM and is close to the calculated in this study and by Refsgaard et al. (1998) at 2.98 MJ kg-1 

DM. The EI used for alfalfa by Frorip et al. (2012), 1.59 MJ kg-1 DM, is half this value. They 

used the value according to FAO data, without giving further details.   

For cereals, the resulting EI in this study and other studies in Iran are quite different than 

those of European countries. The EI of maize corn estimated in this study (9.19 MJ kg-1 DM) 

is higher than the one calculated by Lorzadeh et al. (2012) for Iran at 6.58, and the one used 

by Frorip et al. (2012) in Estonia at 5.13 MJ kg-1 DM. The lower estimated EI by Lorzadeh et 

al. (2012) refers to a lower N fertiliser input than that in this study and to use of a different 

amount of primary energy for the supply of electricity (3.6 MJ kWh-1), for mechanised irriga-

tion systems. Similarly, the allocated EI for barley grain in this study (6.76 MJ kg-1 DM) is ap-

proximately 3 times more than the 1.9-2.3 MJ kg-1 DM estimated by Kraatz (2009) for Ger-

many but similar to the one estimated by Ghasemi Mobtaker (2010) in Iran. For wheat grain, 

the calculated EI in this study (4.35 MJ kg-1 DM) is nearly 2 times more than that reported by 

Frorip (2012) and Kraatz (2009). Oilseed meals are among the main feedstuffs consumed in 

dairy farms. The calculated EI for rapeseed in this study is 12.36 MJ kg-1 DM (allocated EI to 

rapeseed meal 9.25 MJ kg-1 DM), or much more than that estimated by Kraatz (2009) at 5.15 

MJ kg-1 DM, and even more than another report from Iran with 9.1-10.7 MJ kg-1 DM (Mousavi-

Avval et al., 2011) but for 25% lower yield (1,912 kg ha-1 DM).  
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The reason of such differences in the EI of crops, especially for cereals and oilseeds, are 

high differences in the amount of N fertilisers input and fuel consumption during the machin-

ery operations as well as the high consumption of irrigation water in the conventional border-

check system. The energy input from these sources in calculations of this study is approxi-

mately 2-3 times of that of Refsgaard et al (1998, for wheat with yield of 3-4 t ha-1 and 50% 

less than that in this study).  

5.2 Energy intensity in milk production  

The mean milk yield of the regions in the investigated dairy farms ranged between 

5,901±584 kg ECM cow-1 year-1 in region 3 and 6,813±398 kg ECM cow-1 year-1 in region 2, 

farm 24 (region 4) had a mean yield of 8,073±67 kg ECM cow-1 year-1. The milk yield was 

driven by the feed intake. The increase in milk yield through the increase in feed intake was 

as high that causing to decrease in the EI. In this way, the EI was decreasing along with 

higher milk yields. The EI, calculated only with the energy input from feedstuff, was 4.85 MJ 

kg-1 ECM in region 3, 4.80 MJ kg-1 ECM in region 2 and 4.27 MJ kg-1 ECM in dairy farm 24 

(region 4), figure 16. Kraatz (2009) calculated that this effect is diminishing with milk yields 

higher than 8,000 kg ECM cow-1 year-1.  

The energy input for milk production consists of the energy input from feedstuffs, heifer rear-

ing, direct energy, buildings and machinery. The share of each of these energy input sources 

for the total milk energy input varies and depends on several factors analysed by statistical 

models, namely the location of the dairy farm (region), year, number of cows in the farm, milk 

yield of the cows and the interactions of these factors. The EI was calculated using the total 

primary energy input in milk production for all investigated dairy farms (with a milk yield of 

6,585±1,221 kg ECM cow-1 yr-1), and it ranged between 4.58 and 8.50 MJ kg-1 ECM, with a 

mean value of 5.84±0.69 MJ kg-1. This result assumed a manure energy output of 0.33 MJ 

kg-1 (substitution method, section  3.3.6.2). Without this allocation of energy input to manure 

as a by-product of dairy cattle, the EI would be approximately 1 MJ kg-1 ECM higher. In any 

case, the EI calculated with the total primary energy input is decreasing with increasing milk 

yield, as it is with EI, which was calculated only with the energy input from feedstuff (table 31, 

figure 17), described in above paragraph. With an increase of 1,000 kg ECM cow-1 year-1, the 

total EI decreases by 0.36 MJ kg-1 ECM, giving a decrease of 6.2% of the mean El. 

In most of the previous studies, excrement were neglected as energy outputs, and thus, the 

milk production energy input was allocated between milk and meat, but these studies includ-

ed pasture in the keeping systems. The EI calculated in these studies ranged between 2.2 

MJ kg-1 ECM for an organic system in Denmark (Refsgaard et al., 1998) and 5.0 MJ kg-1 milk 

for a conventional system in Netherland (Thomassen et al., 2008; cp. table 15, p. 46). The 
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milk type and yield reported in these studies varied from 1.5% to 4.4% fat content in milk and 

a milk yield from 5,521 to 8,000 kg cow-1 year-1. The mean EI, which was calculated in cur-

rent study using an allocation of all energy inputs only to milk, with 7.08±0.82 MJ kg-1 as well 

as with the allocation of all energy inputs to milk, meat and manure, with 5.84±0.69 MJ kg-1 

ECM, being higher than these figures from other studies. The EIs reported by Thomassen et 

al. (2008; 5.0 MJ kg-1 milk) and Frorip et al. (2012; 5.3 MJ kg-1 milk) were very close to the 

results given here. With the employed FAO data for EI of feedstuffs by Frorip et al. (2012) the 

investigated EI for milk production in Estonia is similar to EI in this study. Even if the mean 

milk yield of the investigated farms is in the lower range of that of the other studies, the high 

EI in feedstuff production is the main reason for the higher EI in milk production.  

Different procedures were used for the allocation of energy input to milk and its by-products. 

Refsgaard et al. (1998) converted the meat yield to milk yield by using their caloric values 

(HHV), i.e. he allocated 96.5% to the milk and 3.5% to the meat. Cederberg & Stadig (2003) 

allocated energy to milk and meat by using economical factors (92% of the total energy input 

for milk), biological factors (85%) and system expansion to beef production (87%). Grönroos 

et al. (2006) used a proportion of 87% for milk and 13% for meat according to a variant of 

Cederberg & Stadig (2003; for a rearing rate of 37% in Sweden). Kraatz (2009) allocated 

59% of the energy input to milk, 18% to meat, 2% to calves and 21% to excrement, by using 

a system expansion for manure and the biological and physiological relations between meat 

and milk. With these different allocation procedures, the EI in milk production ranged be-

tween 2.2 and 5.0 MJ kg-1 milk in these other studies (cp. table 15, p. 46). In this study 83% 

of the total energy input was allocated to milk, 15% to excrement and 2% to meat. The ener-

gy allocated to manure was by using of the substitution method (0.33 MJ kg-1 fresh manure) 

and between milk and meat according to the HHV relationship (section  3.3.6.2 p. 55).   

5.3 Energy input from different sources  

Figure 18 and accordingly figure 22 illustrate the share of different energy input sources for 

milk production. Considering that approximately 73% of the energy input in heifer rearing is 

from feedstuff (in regions 1-3), the energy input from feedstuff for cows and heifers has a 

share of approximately 79% of the total energy input to milk production. Direct energy, with 

its 14% share of the total energy input, is the other source worthy of mention. All other ener-

gy input sources play only a marginal role, with a share of less than 3% of the total energy 

input. Kraatz (2009) calculated a share of feedstuff energy input of approximately 50% (1.76 

MJ kg-1 ECM) of the total energy input in milk production. For heifer rearing, she calculated 

20% (0.70 MJ kg-1 ECM), and for machinery, milking and other technical facilities together, 

she designated 27% (0.97 MJ kg-1 ECM) of the total energy input. Furthermore, Kraatz 
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(2009) could show the influence of the replacement rate (service life of a dairy cow) on EI. 

She calculated nearly the same EI for a milk yield of 7,000 kg ECM cow-1 year-1 and a related 

replacement rate of 20% (5-year service life of the dairy cow) as for a milk yield of 8,000 kg 

ECM cow-1 year-1 and a related replacement rate of 30% (3.3 years of service life for the 

dairy cow). The energy input from heifer replacement was neglected by Bockisch and 

Ahlgrimm (2000), Frorip et al. (2012), Grönroos et al. (2006) and Refsgaard et al. (1998). 

However, the results of this study as well as the studies by Kraatz (2009) show that heifer 

rearing makes up a relatively high share of the energy input, has the potential to improve EI 

(especially with a longer service life for dairy cows) and should be considered in energy 

analyses. 
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 (3%)
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 (14%)

0,17 
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0,7 
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Feedstuff
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Direct energy
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Machinery

 

Figure 22 Average energy input share of different sources from total energy 

embodied in the ECM (MJ kg-1) produced in the investigated dairy farms. 

The EI of milk production can be notably improved within the sphere of feedstuff, both for 

dairy cows and for heifer rearing. Improving the EI in feed production has been revealed as 

the most substantial way to improve the EI of milk production. This is derived from the high 

share of energy input in feedstuff of about 79% of the total energy input in milk production 

(inclusive heifer rearing) and the high sensitivity of the total energy input to the energy input 

in feedstuff production. A more extensive use of maize silage and alfalfa in dairy cattle feed-

ing would decrease the energy intensity in milk production.  

In the investigated farms, the feedstuff intake was on average of 23% more than the estimat-

ed requirements according to current knowledge of animal nutrition (Kirchgeßner et al., 

2008). It is believed that storage and feeding losses led to this high value for feedstuff intake. 

Another source of excessive feedstuff intake is observed in cattle overfeeding. A feed supply 

designed according to the known animal nutritional requirements and a careful handling of 

feedstuff is a basic measure for improving the EI. Kraatz (2009) found out that pasture and 
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grazing possibilities in farms causes lower energy input from feedstuff source, as a result of 

the elimination of energy input from harvesting and transportation. Kraatz (2009) calculated 

an EI of 4.03 MJ kg-1 ECM if the cattle kept without pasture. With half day pasture the EI was 

decreasing to 3.54 MJ kg-1 ECM (by 12%).  

Other potential to decrease the EI for milk is reducing the direct energy consumption in 

farms. The share of the direct energy input in dairy farms in this study (14%), is close to that 

of Refsgaard et al. (1998, 20%), and Thomassen et al. (2008, 10%). But the absolute value 

for direct energy input (0.82 MJ kg-1 ECM) is higher than others (Refsgaard et al. (1998): 0.7 

MJ kg-1 ECM, and Thomassen et al. (2008): 0.5 MJ kg-1 ECM). The diesel or natural gas 

consumption at 70% was the main source of the direct energy input for heating, cleaning and 

the generation of electricity. It reveals that these are good potentials to save energy. Espe-

cially electricity generation (reported in dairy 5) was energy consuming because of low effi-

ciency.  

Within the investigated range of milk yield (3,861- 8,317 kg ECM cow-1 year-1) and herd size 

(9-104 cows per farm) the EI was decreasing with the increasing milk yield and the increas-

ing herd size. So at least within these ranges, it seems that a solution to decrease the EI is 

an increase in ECM yield and also herd size. To identify trends in the behaviours of large 

dairy farms, it is necessary to have more large dairy farms to investigate. 

5.4 Energy input in meat  

The EI for meat is strongly dependent on the cattle category. According to table 40 (p., 96), 

the embodied energy in boneless meat from cattle kept for meat production purpose is 46.7 

MJ kg-1 for a calf of 150 kg, 75.4 MJ kg-1 for a bull of 400 kg and 103.8 MJ kg-1 for a bull of 

700 kg. The bulls in this study were mostly sold in the 400 kg category. The allocated energy 

from a dairy cattle system to meat produced from slaughtered cows is 16.3 MJ kg-1. The 

large difference between the allocated energy intensity and the one calculated for bulls may 

complicate the allocation method, considering the caloric values, but also the quality of these 

meats are quite different. 

The EI of meat production from other studies is different. The reported value according to the 

GEMIS data bank for beef meat in Germany is 56.4 MJ kg-1 meat (Taylor, 2000). Williams et 

al. (2006) reported a 28 MJ kg-1 carcass, i.e., 35 MJ kg-1 of boneless meat for conventional 

beef production in the UK. Frorip et al. (2012) calculated the energy intensity of meat at 69 

MJ kg-1. These differences are again due to the differences in keeping systems, but are es-

pecially due to the energy intensity of feedstuff.  
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5.5 Scenarios for the determination and conversion of energy equiva-
lents of biomass in crop production and dairy farming 

According to the possible investigation scenarios to determine and to convert the energy 

equivalents for biomass described in section  2.6.2.6.1 (p. 33), milk production is a tangible 

example for comparing the advantages and disadvantages of the different scenarios in a 

system investigation.  

According to scenario A, the energy equivalent of biomass is equal to its EEV. Scenario B 

differs from scenario A by using of the HHV-based energy equivalent instead of the EEV-

based energy equivalent for biomass. Scenario C and D are a broadening of scenario A and 

B in such a way that the outputs are converted to an energy value (for HHV base). In scenar-

io C for biomass input the EEV and for biomass output the HHV is used as the energy equiv-

alent. In scenario D for both input and output, the HHV of biomass is used as the energy 

equivalent. The advantage of the utilisation of scenarios A and C is the possibility to investi-

gate both units (feedstuff and milk production) together, for different dairy farm systems and 

at different locations. In scenarios B and D the efficiency of the feedstuff unit has no impact 

on the efficiency of the dairy unit. In other words, different feed production systems have no 

effect on the investigation of dairy farm systems because instead of the EEV-based energy 

equivalent, the HHV-based energy equivalent of feedstuff is used, which is an inherent speci-

fication nearly independent of the production process. The advantage of using scenarios B 

and D in dairy farming systems (for HHV base) is the ability that it gives us to compare only 

the dairy units.  

The calculated EI for feedstuffs, milk and meat was actually carried out according to scenario 

A. The EI calculated with scenario B in this study is 23.7 and 314 MJ kg-1 for milk and meat, 

respectively. Frorip et al. (2012) calculated an EI of 20 and 255 MJ kg-1 respectively for milk 

and meat by use of scenario C. These values are respectively 16% and 19% less than those 

calculated in this study. While, the EI calculated by Frorip et al. (2012) by scenario A (5.31 

MJ kg-1 milk), is 9% less than that calculated in this study (5.84 MJ kg-1 ECM).   

Scenario C was also used to calculate the OIR and NEY indicators in the feedstuff farm unit 

as well as the dairy farm unit. According to the results of this study, the EEV-based OIR indi-

cator for the analysis of milk production (scenario C) is 0.55 MJ MJ-1 and for meat (beef) is 

0.12 MJ MJ-1. These results indicate that for each MJ consumed primary energy is gained 

only 0.55 MJ caloric value (HHV) from ECM and 0.12 MJ from meat. These OIR are less 

than 1, while in investigated crops in this study it is at least 2 (maize corn and barley grain). 

The HHV-based OIR indicator (Scenario D) calculated for ECM is 0.135 MJ MJ-1 and for 

meat is 0.030 MJ MJ-1. In scenario D, energy input per each MJ caloric value from meat is 

approximately 4.5 times more than that for ECM.  
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The HHV conversion ratio is calculated in this study by excluding the energy input sources 

other than the feedstuffs in calculation of OIR by scenario D. It compares the consumed and 

produced HHV in the process. The HHV conversion ratio was 0.136 MJ MJ-1 in ECM produc-

tion and 0.033 MJ MJ-1 in meat (beef) production. The results of this indicator are nearly 

same as the OIR indicator, because the share of feedstuff energy is much higher than the 

excluded energies, but HHV conversion ratio could better demonstrate this concept. In re-

verse form, this ratio means that for 1 MJ caloric value of ECM yield approximately 7.35 MJ 

from consumed feedstuffs is needed. For 1 MJ caloric value of meat, 30.3 MJ of feedstuffs is 

needed. 
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6 Conclusions 

The demand for dairy products in Iran is growing. Dairy cattle farming in Iran is carried out 

intensively in dairy farms usually without pasture and grazing possibility, especially in north-

western Iran. The feedstuffs for dairy farms are produced intensively in crop farms in compe-

tition with food crops. In 2006, 85% of the dairy cattle population in Iran were kept in herds 

consisting of 50 or fewer head. However, herd size and intensification are growing in the 

course of the further development of the dairy farms. 

For the investigations of the energy efficiency in milk production the dairy farming system 

was divided into two sub-systems: the feedstuff production unit and the dairy farm unit. The 

outputs of the first unit were handled as the inputs of the second unit. Data were gained by a 

questionnaire from a feedstuff producing company and 24 dairy farms in north-western Iran.  

The energy intensity (EI) in feedstuff production (in MJ kg-1 DM) was 2.92 for alfalfa, 6.76 for 

barley grain, 9.19 for maize corn, 12.36 for rapeseed, 2.45 for spring maize silage, 4.45 for 

summer maize silage and 4.35 for wheat grain. From these feedstuff crops, the best one for 

all efficiency indicators and all three energy bases (HHV, MEV, and NEL) was spring maize 

silage followed by alfalfa and wheat. The allocation of the energy input between products and 

by-products was done according to the ratios of their MEV. In feedstuff production the main 

sources of energy input were N fertiliser, fuel and irrigation (conventional border-check irriga-

tion) with a share of about 32%, 28% and 20%, respectively. Thus, savings in these three 

fields, including N fertiliser production, would have a large effect on improving energy effi-

ciency. According to the sensitivity analysis, 10% reduction in each one of these sources (at 

the same yield) could causes on average 2-4% reduction in the energy intensity. 

For milk production a mean EI of 5.84±0.69 MJ kg-1 ECM was calculated for the investigated 

farms with a mean milk yield of 6,585±1,221 kg cow-1 yr-1. The main source of energy input in 

milk production was feedstuff with approximately 79% of the total energy input (67% directly 

in dairy and 12% in heifer feeding). With about 14% of the total energy input, direct energy 

consumption was the only further considerable source of energy input. The sensitivity analy-

sis confirmed that these sources of energy input had a strong influence on energy efficiency. 

Thus, additionally to the mentioned potential savings in feedstuff production, the energy effi-

ciency could be improved by the reduction of direct energy input for heating and cleaning 

(70% of direct energy input) as well as the on farm generation of electricity, and most notably 

by savings in feedstuffs. Feedstuff savings could be achieved by reducing feed losses (be-

ginning from harvesting, beyond storage up to cattle feeding), the calculation and administra-

tion of the feed rations according to cattle requirements (known from animal nutrition) and the 
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use of energy efficient feedstuff (e.g. spring maize silage and alfalfa). Within the range of the 

milk yield found in the investigated farms (3,860-8,320 kg ECM cow-1 yr-1), EI was decreasing 

with increasing milk yield. According to the mixed linear model used for statistical analysis, 

the EI was decreasing by 0.36 MJ kg-1 ECM when the milk yield was increasing by 1,000 kg 

ECM cow-1 yr-1. Thus, within this range the increase of milk yield could improve energy effi-

ciency, especially in the lower range.  

The allocation of the energy input to manure, done on the basis of the substitution of mineral 

fertilisers, resulted in a share of 15% of the total energy input and turned out to be an appro-

priate solution. The allocation of the remained energy input between milk and meat, done on 

the basis of their HHV, resulted in a share of 83% and 2% of total energy input, respectively. 

This reveals that in case of a long service life of dairy cattle (> 4 years) the allocation to meat 

could be neglected.  

Beside milk production, cattle were kept in the farms for meat production purposes. The cal-

culated EI in boneless meat produced by bulls up to 400 kg body mass was 75.4 MJ kg-1 and 

produced by bulls up to 700 kg body mass was 103.8 MJ kg-1. The allocated EI of the re-

placed slaughtered dairy cows was 16.3 MJ kg-1 meat. On the one hand, this big difference 

emphasises that the meat from dairy cows is a by-product only. On the other hand, it denotes 

that a higher EI could be valued to the meat of replaced slaughtered dairy cows although 

considering the different meat quality.  

EI in milk production calculated on the basis of the higher heating value (HHV) of feedstuffs 

as energy equivalent instead of the energy embodied in their production (EEV) was 

23.7±3.37 MJ kg-1 ECM and 314±25 MJ kg-1 boneless bull meat (400 kg body mass).  

Energy output input ratio (OIR) based on the HHV ranged between 2.03 MJ MJ-1 for maize 

corn and 7.75 MJ MJ-1 for spring maize silage production. While, in milk production OIR was 

0.55 MJ MJ-1 and in meat production 0.12 MJ MJ-1. This emphasises that energy efficiency in 

livestock farming is on average on order of magnitude lower than in crop production.  

The calculated EI for dairy farms and the related feedstuff production in this study was higher 

than those of most other studies. The predominant reasons were the higher EI in feedstuff 

production and higher consumption of feedstuffs in dairy farms than requirements.  

More researches should be done to gather a wider data base for different types of dairy farm-

ing in different regions with different feedstuff. This would allow a better comparison between 

the different types and the deduction of target values so that energy efficiency of production 

processes can be better evaluated than so far. This would also enable further development 

of assessment methods. The assessment of energy efficiency should be complemented by 

further indicators characterising further ecological aspects as well as economic and social 

aspects.  
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Summary 

There is an increasing demand for products from cattle farming, especially dairy products, 

driven by growing population and increasing living standards. The global production of dairy 

goods in 2050 is projected to be doubled since 1999. To catch this goal dairy farming is in-

creasing and becoming more intensive and therefore, it is attendant on higher energy inputs, 

also in Iran. Energy efficiency of livestock production is lower than that of crop production. 

Intensive farming is seriously challenged by environmental problems, the depletion of fuel 

resources and increasing energy prices. Energy efficiency improvement is one of the most 

important challenges.  

The aim of this study was to estimate and assess the energy efficiency of dairy cattle farming 

and the related feedstuff production in common systems that are prevalent in north-western 

Iran. Feedstuff production farms and dairy farms in Iran usually were completely separate. 

Data were gained from a company producing feedstuff in Moghan plain, in north-western 

Iran, and from 24 dairy farms, also located in north-western Iran, with different herd sizes and 

milk yields. For this, a questionnaire was elaborated and data were gathered for a period of 

three years. A method of investigation was devised on the basis of the cumulative energy 

demand (CED) method introduced by VDI guideline 4600 and ISO standard 14044, which is 

used in life cycle assessment (LCA). These methods enabled to analyse the energy efficien-

cy of feedstuff production and milk production separately, and to compare several farms, that 

differ in herd size, milk yield, feedstuff, keeping systems and management. Energy efficiency 

was characterised by several indicators, the most important are the energy intensity (EI) and 

energy output input ratio (OIR). A sensitivity analysis described the uncertainties of the re-

sults and identified connotative fields for further investigations.  

The EI in the investigated feedstuff production (in MJ kg-1 DM) was 2.92 for alfalfa, 6.76 for 

barley grain, 9.19 for maize corn, 12.36 for rapeseed, 2.45 for spring maize silage, 4.45 for 

summer maize silage and 4.35 for wheat grain. Spring maize silage was the most advanta-

geous feedstuff out of all the investigated crops for all the efficiency indicators, followed by 

alfalfa and wheat. N fertiliser, fuel consumption and irrigation were the main sources of ener-

gy input in feedstuff production, with a share of approximately 32%, 28% and 20%, respec-

tively. The energy input was allocated to main and by-product feedstuffs according to the 

ratio of their metabolisable energy value (MEV).  

The mean EI of the produced energy corrected milk (ECM) was 5.84±0.69 MJ kg-1, calculat-

ed for the investigated farms with a mean milk yield of 6,585±1,221 kg cow-1 yr-1. Feedstuff 

was the main source of the energy input in milk production, with approximately 79% of the 
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total energy input (67% directly in dairy feeding and 12% in heifer feeding). Heifer rearing 

(rearing rate 0.25) had a share of 15% (inclusive feeding), and direct energy of 14% of the 

energy input in milk production. Direct energy input consisted of 70% of diesel and natural 

gas consumption for heating and cleaning and of 30% electricity for machinery and lighting. 

Buildings and machinery had a share of 3% and 1% of the energy input in milk production, 

respectively. The sensitivity analysis confirmed that the energy input from feedstuff had the 

strongest influence on the energy efficiency in milk production. The EI was decreasing with 

an increasing milk yield (-0.36 MJ kg-1 ECM per +1,000 kg ECM cow-1 yr-1), within the range 

of the milk yield found in the investigated farms (3,860-8,320 kg ECM cow-1 yr-1). The energy 

input was allocated to manure on the basis of the substitution of mineral fertilisers and re-

sulted in a correspondent share of 15% of the total energy input. The allocation of the re-

mained energy input between milk and meat was done on the basis of their HHV and result-

ed in a share of 83% and 2% of the total energy input, respectively.  

In the investigated dairy farms beside milk production, meat was produced with the remain-

ing calves and further cattle. The EI in boneless meat produced by bulls up to 400 kg body 

mass was 75.4±9.1 MJ kg-1 and produced by bulls up to 700 kg body mass 103.8±11.4 MJ 

kg-1. Whereas, the allocated EI for meat of the replaced slaughtered dairy cows was 16.3 MJ 

kg-1 meat.  

By calculating the milk production EI on the basis of the higher heating value (HHV) of 

feedstuffs, as their energy equivalent instead of the energy embodied in their production 

(EEV), it yielded in a mean EI of 23.7±3.37 MJ kg-1 ECM and an EI of 314±25 MJ kg-1 bull 

meat (400 kg body mass).  

The HHV-based energy output input ratio (OIR) ranged between 2.03 MJ MJ-1 for maize corn 

and 7.75 MJ MJ-1 for spring maize silage production. While, in milk production OIR was 0.55 

MJ MJ-1 and in meat production 0.12 MJ MJ-1. This emphasises that energy efficiency in live-

stock farming is lower than that in crop production.  

In literature, lower or as well as similar results were found for the EI in milk production. More 

researches should be done to gather a wider data base and to enable the deduction of target 

values so that production processes can be better assessed than so far. 
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Zusammenfassung 

Mit der wachsenden Weltbevölkerung und höheren Lebensstandards steigt die Nachfrage an 

Produkten aus der Rinderhaltung, insbesondere aus der Milchviehhaltung. Im Jahr 2050 wird sich 

die globale Erzeugung von Milchprodukten gegenüber 1999 verdoppelt haben. Auf diesem Weg 

nehmen Umfang und Intensität der Milchviehhaltung immer weiter zu. Diese Entwicklung geht 

einher mit immer höheren Energie-Inputs, dies gilt auch für den Iran. Die Energieeffizienz der 

Tierproduktion ist geringer als die der Pflanzenproduktion. Die intensive Landwirtschaft ist durch 

Umweltprobleme, die Erschöpfung von Kraftstoffressourcen und durch steigende Energiepreise 

ernsthaft herausgefordert. Die Verbesserung der Energieeffizienz ist eine der größten 

Herausforderungen.  

Das Ziel dieser Studie waren die Ermittlung und Bewertung der Energieeffizienz der 

Milchviehhaltung und der damit verbundenen Futterproduktion für im nordwestlichen Iran 

verbreitete Produktionssysteme. Im Iran sind Futterbaubetriebe und Milchviehbetriebe 

gewöhnlich vollständig getrennt. Für die Arbeit wurden Daten auf einem Futterbaubetrieb in der 

Moghanebene, im nordwestlichen Iran und auf 24 Milchviehbetrieben erfasst, die sich ebenfalls 

im nordwestlichen Iran befinden und sich in den Herdengrößen und Milcherträgen unterscheiden. 

Für diesen Zweck wurden ein Fragebogen ausgearbeitet und Daten über einen Zeitraum von drei 

Jahren erfasst. Es wurde eine Untersuchungsmethode erarbeitet, die auf der VDI-Richtlinie 4600 

Kumulierter Energieaufwand (KEA) und dem ISO-Standard 14044 Umweltmanagement – 

Ökobilanz basiert, in dem Methoden zum Life Cycle Assessment (LCA) beschrieben sind. Die 

erarbeitete Methode ermöglicht es, die Energieeffizienz der Futtermittel- und der Milchproduktion 

einzeln zu analysieren und einzelne Betriebe zu vergleichen, die sich in der Herdengröße, im 

Milchertrag, beim Futter, im Haltungssystem und im Betriebsmanagement unterscheiden. Die 

Energieeffizienz wurde durch mehrere Indikatoren charakterisiert, wobei die Energieintensität (EI) 

und das Energie Output-Input-Verhältnis (OIR) die wichtigsten. Eine Sensitivitätsanalyse 

beschreibt die Unsicherheiten der Ergebnisse und identifiziert wichtige Felder für weitere 

Untersuchungen.  

Die EI im untersuchten Futterproduktionsbetrieb (in MJ kg-1 DM) lag bei 2,92 für Luzerne, bei 

6,76 für Gerste, bei 9,19 für Mais, bei 12,36 für Raps, bei 2,45 für Frühjahrsmaissilage, bei 4,45 

für Sommermaissilage und bei 4,35 für Weizen. Von den untersuchten Futtermitteln war 

Frühjahrsmaissilage das vorteilhafteste, in Bezug auf alle Effizienzindikatoren, gefolgt von 

Luzerne und Weizen. Die Stickstoffdüngung, der Kraftstoffverbrauch und die Bewässerung waren 

die Hauptquellen des Energieeinsatzes in der Futtermittelproduktion, mit einem Anteil von jeweils 

etwa 32%, 28% und 20%. Die Zuordnung des Energieeinsatzes auf die Haupt- und die 

Nebenprodukte der Futtermittel erfolgte entsprechend dem Verhältnis ihrer metabolisierbaren 

Energie (MEV).  
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Die mittlere EI der in den untersuchten Betrieben produzierten, energiekorrigierten Milch (ECM) 

lag bei 5,84±0,69 MJ kg-1, bei einer mittleren Milchleistung von 6 585±1 221 kg ECM Kuh-1 Jahr-1. 

Die Futtermittel waren die Hauptquelle des Energie-Inputs in die Milchproduktion, mit einem 

Anteil von etwa 79 % des gesamten Energieaufwandes (67 % in der Milchviehfütterung und 12 % 

in der Färsenfütterung). Die Färsenaufzucht hatte einen Anteil von insgesamt 15 % 

(einschließlich der Fütterung; bei einer Reproduktionsrate von 0,25) und die direkte Energie hatte 

einen Anteil von 14 % am gesamten Energie-Input in die Milchproduktion. Der direkte 

Energieaufwand bestand zu 70 % aus Diesel- und Erdgasverbrauch für Heizung und Reinigung, 

und zu 30 % aus elektrischer Energie für Maschinen und Beleuchtung. Gebäude und Maschinen 

hatten jeweils einen Anteil von 3 % und 1 % am gesamten Energieaufwand der Milchproduktion. 

Die Sensivitätsanalyse hat bestätigt, dass der Energie-Input mit den Futtermitteln den größten 

Einfluss auf die Energieeffizienz in der Milchproduktion hat. Innerhalb der in den untersuchten 

Betrieben vorgefundenen Milchleistung (3 860-8 320 kg ECM Kuh-1 Jahr-1) verringerte sich die EI 

bei steigender Milchleistung (-0,36 MJ kg-1 ECM je +1 000 kg ECM Kuh-1 Jahr-1). Die Allokation 

des Energie-Inputs auf den Wirtschaftsdünger erfolgte auf Basis der Substitution von 

Mineraldünger und hatte dementsprechend einen Anteil von 15 % des gesamten 

Energieaufwandes zum Ergebnis. Die Aufteilung des verbliebenen Energie-Inputs zwischen Milch 

und Fleisch wurde anhand ihres oberen Heizwertes vorgenommen und führte zu einem Anteil am 

gesamten Energieaufwand von 83 % bzw. 2 %.  

Die untersuchten Milchviehbetriebe hatten neben Milch auch Fleisch produziert, mit den 

verbliebenen Kälbern und weiteren Rindern. Die EI des mit Bullen bis zu einer Körpermasse von 

400 kg produzierten Schlachtfleisches lag bei 75,4±9,1 MJ kg-1, bei Fortführung der Mast bis zu 

einer Körpermasse von 700 kg lag sie bei 103,8±11,4 MJ kg-1. Während die EI bei ersetzten, 

geschlachteten Milchkühen bei 16,3 MJ kg-1 Fleisch lag. 

Die Kalkulation der EI auf Basis des oberen Heizwertes (Brennwert) der Futtermittel als 

Energieäquivalent, anstatt des zu ihrer Produktion erforderlichen KEA, führte zu einer mittleren EI 

in der Milchproduktion von 23,7±3,37 MJ kg-1 ECM und in der Erzeugung von Bullenfleisch (400 

kg Körpermasse) 314±25 MJ kg-1. 

Das Energie Output-Input-Verhältnis (OIR), auf Basis des HHV, lag zwischen 2,03 MJ MJ-1 für 

Körnermais und 7,75 MJ MJ-1 für Frühjahrsmaissilage. Während OIR in der Milchproduktion 0,55 

MJ MJ-1 und in der Fleischproduktion 0,12 MJ MJ-1 betrug. Dies unterstreicht, dass die 

Energieeffizienz in der Tierproduktion geringer ist als in der Pflanzenproduktion.  

In der Literatur fanden sich geringere aber auch sehr ähnliche Werte für die EI in der 

Milcherzeugung. Weitere Forschungen sollten die Datenbasis erweitern und es ermöglichen 

Zielwerte abzuleiten und die Produktionsprozesse besser bewerten zu können als bisher. 
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 هيدچك

ورده هاي دامي و مخصوصا شيري رو به افزايش است. اين افزايش هم به دليل رشد جمعيت و هم بدليل افزايش آتقاضا براي فر

پيش  1999دو برابر توليد سال  ميلادي 2050استاندارهاي زندگي صورت مي گيرد. توليد جهاني محصولات شيري در سال 

 در واحد سطح پرورش گاو شيري در جهان در حال افزايش بوده و تراكم آن وليدسطح ت شده است. جهت رسيدن به اينبيني 

ايران نيز صادق است. كشور د و اين در شو توليدات دامي دربيشتر انرژي  تراكم (شدت) كه مي تواند منجر به بيشتر مي شود

م بصورت جدي تحت تاثير مشكلات زيست بهره وري انرژي در توليدات دامي پايين تر از توليدات گياهي است. كشاورزي متراك

 .ي و افزايش قيمت سوخت قرار داردتمحيطي، كاهش ذخاير سوخ

ورد و ارزيابي بهره وري انرژي در پرورش گاو شيري و توليد علوفه در سيستم هاي مرسوم در شمال غرب آهدف اين مطالعه بر

. داده هاي مربوط به توليد علوفه از كشت و صنعت هستندز هم جدا ايران بود. مزارع توليد علوفه و گاوداري ها در ايران كاملا ا

گاوداري با اندازه گله و عملكرد شير متفاوت در شمال غرب ايران جمع  24از مغان و داده هاي مربوط به پرورش گاو شيري 

وري شدند. آسال جمع  3 به مدت و پرسش نامه ها اين بر اساس آوري شدند. بدين منظور پرسش نامه هايي آماده و داده ها

انجمن  4600توصيه شده توسط راهنماي  بود كه )CED(ارزيابي داده ها بر اساس روش نياز تجمعي انرژي  اصليروش 

تا  ندها قادر ساخت اين روش .هست )LCA(براي ارزيابي چرخه زندگي  14044و استاندارد ايزو  )۴۶۰۰VDI(مهندسان آلمان 

 توليد علوفه و پرورش گاو شيري بصورت جداگانه انجام گرفته و در جهت مقايسه محصولات مختلف بهره وري انرژي درارزيابي 

و سپس گاوداري هاي با اندازه گله ها و عملكرد شيري متفاوت مورد مقايسه قرار گيرند. بهره وري انرژي با شاخص  علوفه اي

نيز بر تحليل حساسيت  شاخص بازده انرژي بودند.ژي و نرا تراكم (شدت)جيده شد كه مهمترين آنها شاخص هاي متفاوتي سن

 براي عدم قطعيت ها و منابع آنها صورت گرفت.اساس روش گاوسي 

براي  ،36/12، براي كلزا  19/9، براي ذرت دانه ايي  76/6، براي جو  92/2انرژي در علوفه هاي مطالعه شده براي يونجه  راكمت

گرم كيلومگاژول به ازاي هر 35/4و براي گندم  45/4ي ذرت علوفه ايي كشت تابستانه ، برا 45/2ذرت علوفه ايي كشت بهاره 

ماده خشك بود. ذرت علوفه ايي كشت بهاره از لحاظ همه شاخص ها در بين محصولات ارزيابي شده بهترين گياه بود. و بعد از 

سهم تقريبي  د انرژي در توليد محصولات بودند باآن يونجه و گندم قرار داشتند. كود ازت، سوخت و آبياري مهمترين منابع ورو

انرژي ورودي در توليد محصولات علوفه ايي بر اساس نسبت انرژي  .از كل انرژي ورودي %20% و28%، 32به ترتيب 

 بين محصول اصلي و محصول جانبي پخش شد.  )MEV( متابوليسمي

به ازاي هر كيلوگرم بر مگاژول  84/5 ±69/0 برابر )ECM(ه انرژي ميانگين در توليد شير چربي و پروتئين اصلاح شد راكمت

علوفه گاو سال محاسبه گرديد. شير بر گرم كيلو 6585 ±1221 و براي عملكرد )EEV( نآاساس انرژي سرمايه گذاري شده در 

رت غير بصو %12و  گاو شيري مستقيمتغذيه % بصورت 67انرژي ورودي در توليد شير را داشت ( نبيشتري %79با سهم 
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% از كل انرژي ورودي در 15در حدود %) 25تليسه هاي جايگزين). جايگزيني تليسه (با نرخ ميانگين تغذيه مستقيم از طريق 

% انرژي مستقيم ورودي 70% رتبه سوم را داشتند. 14تصاص مي داد و بعد از آن انرژي هاي مستقيم با ختوليد شير را بخود ا

% در ماشين هاي الكتريكي و روشنايي بود. تاسيسات 30شوي و  ر گرمايش و شستناشي از مصرف سوخت هاي نقتي د

ا شامل مي شدند. تحليل حساسيت سهم بزرگ انرژي ورودي از علوفه را در ر% انرژي ورودي 1% و ماشين ها 3ساختماني تنها 

 توليد شير تاييد كرد.

ول به ازاي مگاژ  -36/0( با افزايش عملكرد شير كاهش مي يافت انرژي براي شير در محدوده گاوداري هاي ارزيابي شده راكمت 

 8320و  3860بين  كيلوگرم در عملكرد سالانه گاو). محدوده عملكرد شير در گاوداري ها 1000ش هر كيلوگرم با افزاي

اختصاص داده شد و  % كل انرژي ورودي در توليد شير با استفاده از روش جايگزيني به فضولات دامي15گرم گاو سال بود. كيلو

 % به گوشت توليد شده از كشتار گاو هاي پير اختصاص داده شد. 2% به شير و 83با استفاده از مقايسه بين ارزش غذايي 

ت. شدت انرژي در گوشت بدون استخوان فنيز انجام مي گر يگوشتپرورش گاو  در گاوداي هاي شيري ،در كنار توليد شير

بود. شدت انرژي گرم گاژول بر كيلوم 8/103±4/11 كيلويي 700و از گاو نر  4/75±1/9لويي، كي 400توليد شده از گاو نر 

 مگاژول بر كيلوگرم بود. 3/16اختصاص داده شده به گوشت گاو شيري پير 

و  7/32±37/3انرژي براي شير  راكمت،  )HHV(بر اساس ضريب انرژي بر پايه ارزش حرارتي بالا علوفه با محاسبه انرژي ورودي 

 مگاژول بر كيلوگرم محاسبه شد.  314±25 كيلويي 400گاو نر  ازبراي توليد گوشت 

(مگاژول بر مگاژول)  بهاره در ذرت علوفه ايي 75/7در ذرت دانه ايي و  03/2بازده انرژي در توليد محصولات گياهي حداقل 

وري انرژي در توليدات ه تاكيد مي كند كه بهرورد شد. اين آبر 12/0و براي گوشت  55/0ورد شد، در حاليكه براي شير رآي

 دامي پايين تر از توليدات گياهي است. 

شير مشاهده شد. تحقيقات بيشتري در اين رابطه بايد صورت توليد انرژي براي  راكمتمقادير كمتر يا مشابه  ،در بررسي منابع

    رفته و مراحل توليد را تحليل نمود.وري و استنباطي از مقادير هدف صورت گآگيرد تا داده هاي بيشتري جمع 
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Annexes 

Annex 1.1. Energy input from machinery operations includes energy from materials, fuels 

and machine in the investigated crop productions (MJ ha-1 yr-1). 

Operation Products 

  Alfalfa Barley Maize 
corn 

Rape-
seed 

Spring 
maize 
silage 

Summer 
maize 
silage 

Wheat 

Subsoiling Amount 237 237 237 237 237 237 237 

% <1 <1 <1 <1 <1 <1 <1 

Manure 
Spreading 

Amount 2,243 0 2,243 2,243 2243 0 2,243 

% 8 0 4 7 6 0 6 

Ploughing Amount 643 1,608 3,215 1,608 3,215 3,215 1,608 

% 2 5 6 5 9 10 4 

Disking Amount 774 2,903 2,903 2,903 2,903 2,903 2,903 

% 3 10 6 9 8 9 8 

Levelling Amount 420 1,050 2,101 2,101 2,101 2,101 2,101 

% 1 4 4 7 6 7 6 

Ditching Amount 213 213 213 213 213 213 213 

% <1 <1 <1 <1 <1 <1 <1 

Seeding Amount 809 2,575 2,990 2,075 2,990 2,990 2,815 

% 3 9 6 7 8 10 8 

Fertiliser  
Spreading 

Amount 1,821 13,815 17,725 13,815 8,862 8,862 13,815 

% 6 48 34 44 24 28 39 

Cultivatoring Amount 0 0 1,303 0 1,303 434 0 

% 0 0 3 0 4 1 0 

Spraying Amount 1,271 464 5,145 349 0 0 577 

% 5 2 10 1 0 0 2 

Irrigating Amount 11,340 4,410 11,340 4,410 5,670 5,670 5,670 

% 40 15 22 14 15 18 16 

Harvesting Amount 6,913 1,353 1,794 1,428 3,571 2,806 1,710 

% 25 5 3 5 10 9 5 

Straw  
Baling 

Amount 0 492 0 0 0 0 984 

% 0 2 0 0 0 0 3 

Transporting 
of yield 

Amount 1,354 193 285 143 3,479 1,739 285 

% 5 <1 <1 <1 9 6 <1 

Transporting 
of straw 

Amount 0 271 0 0 0 0 572 

% 0 1 0 0 0 0 2 

Total Amount 28,038 29,583 51,492 31,522 36,786 31,170 35,730 

 % 100 100 100 100 100 100 100 
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Annex 1.2. Energy input in the production of investigated crops according to different sources 

(MJ ha-1 yr-1). 

Operation Products 

  Alfalfa Barley Maize 
corn 

Rapeseed Spring 
maize 
silage 

Summer 
maize 
silage 

Wheat 

Fertiliser Amount 1,721 13,480 17,390 13,480 8,695 8,695 13,480 

% 6 46 34 43 24 28 38 

Fuel Amount 9,095 7,012 11,691 7,714 13,679 10,683 9,091 

% 32 24 23 24 37 34 25 

Irrigation Amount 11,340 4,410 11,340 4,410 5,670 5,670 5,670 

% 40 15 22 14 15 18 16 

Machinery Amount 3,074 2,343 3,261 2,216 4,262 3,622 3,046 

% 11 8 6 7 12 12 9 

Manure Amount 1,980 0 1,980 1,980 1,980 0 1,980 

% 7 0 4 6 5 0 6 

Pesticide Amount 137 238 3331 122 0 0 123 

% <1 <1 6 <1 0 0 <1 

Seed Amount 690 2,100 2,500 1,600 2,500 2,500 2,340 

% 2 7 5 5 7 7 7 

         

Total Amount 28,038 29,583 51,492 31,522 36,786 31,170 35,730 

 % 100 100 100 100 100 100 100 



Annexes 
 

 129 

Annex 2.1. Solutions for model tested for milk yield (kg ECM cow-1 yr-1) in regions 1-3. 

Solution for Fixed Effects 

Effect Year Region Estimate Standard 
Error DF t Value Pr > |t| 

Intercept   7746.41 600.78 38.1 12.89 <.0001 

Year 2008  -36.1251 49.2411 39.6 -0.73 0.4675 

Year 2009  -35.4085 47.6968 39.7 -0.74 0.4622 

Year 2010  0 . . . . 

Region  1 1072.46 1684.04 61 0.64 0.5266 

Region  2 -802.93 812.10 35.8 -0.99 0.3294 

Region  3 0 . . . . 

Cow number   -52.0233 10.8246 41.5 -4.81 <.0001 

Cow number * Region  1 -36.6154 62.0714 41.3 -0.59 0.5585 

Cow number * Region  2 49.0001 14.5255 55 3.37 0.0014 

Cow number  * Region  3 0 . . . . 

 
Annex 2.2. Solutions for model tested for direct energy input in milk production (MJ kg-1 
ECM) in regions 1-3 (without allocation). 

Solution for Fixed Effects 

Effect Year Region Estimate Standard 
Error DF t Value Pr > |t| 

Intercept   1.7541 0.3552 29.2 4.94 <.0001 

Year 2008  0.06604 0.02659 38.7 2.48 0.0174 

Year 2009  0.04658 0.02664 39.1 1.75 0.0883 

Year 2010  0 . . . . 

Region  1 -0.2098 0.2641 15.8 -0.79 0.4387 

Region  2 0.3000 0.1804 15.4 1.66 0.1165 

Region  3 0 . . . . 

ECM yield   -0.00011 0.000051 49.3 -2.26 0.0285 

Cow number   -0.00544 0.003134 41.6 -1.74 0.0900 

 
Annex 2.3. Solutions for model tested for total energy input in milk production (MJ kg-1 
ECM) in regions 1-3 (without allocation). 

Solution for Fixed Effects 

Effect Year Region Estimate Standard 
Error DF t Value Pr > |t| 

Intercept   9.9658 0.5466 20.8 18.23 <.0001 

Year 2008  0.03928 0.1502 43.5 0.26 0.7949 

Year 2009  -0.1098 0.1502 43.5 -0.73 0.4688 

Year 2010  0 . . . . 

Region  1 -0.4858 0.3363 18.2 -1.44 0.1656 

Region  2 0.4623 0.2235 17.9 2.07 0.0534 

Region  3 0 . . . . 

ECM yield   -0.00045 0.000094 21.4 -4.85 <.0001 

Cow number   -0.00246 0.005409 20.9 -0.45 0.6539 
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Annex 3. Residuals for model tested for energy input in ECM. Observation of the 

normal distribution, homogeneity and linearity of the residuals for model.  
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Annex 4. Active substances of consumed pesticides in the Moghan Agro-industry Company. 

Product Pesticide 
trade name a 

Pesticide active 
substance 
name a 

Category 
a 

Active sub-
stance 
(%) a 

Dosage 
Mix formu-

lation 
(l/ha) b 

Dosage 
Active 

substance 
(kg/ha) b c 

Alfalfa 
 

Eradicane EPTC Herbicide 82% 0.4 0.33 

Super galant Haloxyfop-R 
methyl ester 

Herbicide 10.8% 1 0.11 

Desis Deltamethrin Insecticide 2.5% 2 0.02 

Barley U46D 2-4-D Herbicide 55% 1.5 0.83 

Maize corn 
 

U46D 2-4-D Herbicide 55% 1.5 0.83 

Eradicane EPTC Herbicide 82% 5 4.10 
Gesaprim Atrazine Herbicide 80% 1.25 1.00 
Diacap Diazinon Insecticide 60% 10 6.00 
Omite Propargite Insecticide 57% 1.5 0.86 

Rapeseed 
 

Lontrel Clopyralid Herbicide 30% 0.75 0.23 

Focus Cycloxydim Herbicide 10% 2 0.20 

Wheat 
 

Topic Clodinafop 
Propargyl 

Herbicide 8% 0.9 0.07 

Granstar Tribenuron-
ethyl 

Herbicide 75% 0.02 0.02 

Folicur Tebuconazole Fungicide 25% 2 0.5 

a Anonymous (2012); b Consumed dosage in Moghan Company; Density of formulation assumed to be 

same as water (1 g/ml). 
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Annex 5 Collected input data from production of investigated crops in Moghan Agro-industrial 

Company and energy input (MJ ha-1 yr-1) from each item.  

Annex 5.1 Investigated crop: Alfalfa 

Operation Item Label Unit Count 

(unit) 

Repeat 

(yr-1) 

Duration 

(h) 

Energy 

(MJ unit-

1) 

Life 

(h) 

Energy 

(MJ ha-1 

yr-1) 

Subsoiling Tractor MF6290 kg 6420.0 0.2 2.00 138.1 16000 22 

Subsoiling Machine Ssoiler kg 650.0 0.2 2.00 179.7 2000 23 

Subsoiling Fuel Diesel l 20.0 0.2 . 47.8 . 191 

Subsoiling Labour Man h 1.0 0.2 2.00 . . 0 

Manure spreading Machine Truck kg 13000.0 0.2 1.00 138.1 12000 30 

Manure spreading Fuel Diesel l 4.4 0.2 . 47.8 . 42 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Tractor MF399 kg 3317.0 0.2 1.00 138.1 16000 6 

Manure spreading Machine Mspread kg 3000.0 0.2 1.00 127.7 1500 51 

Manure spreading Fuel Diesel l 14.0 0.2 . 47.8 . 134 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Material Manure kg 30000.0 0.2 . 0.3 . 1980 

Ploughing Tractor MF6290 kg 6420.0 0.4 2.50 138.1 16000 55 

Ploughing Machine Plow kg 1220.0 0.4 2.50 179.7 2000 110 

Ploughing Fuel Diesel l 25.0 0.4 . 47.8 . 478 

Ploughing Labour Man h 1.0 0.4 2.50 . . 0 

Disking Tractor MF6290 kg 6420.0 0.8 1.00 138.1 16000 44 

Disking Machine Disk kg 2950.0 0.8 1.00 148.5 2000 175 

Disking Fuel Diesel l 14.5 0.8 . 47.8 . 554 

Disking Labour Man h 1.0 0.8 1.00 . . 0 

Levelling Tractor MF6290 kg 6420.0 0.4 1.50 138.1 16000 33 

Levelling Machine Leveler kg 960.0 0.4 1.50 148.5 2000 43 

Levelling Fuel Diesel l 18.0 0.4 . 47.8 . 344 

Levelling Labour Man h 1.0 0.4 1.50 . . 0 

Ditching Tractor MF6290 kg 6420.0 1.0 0.33 138.1 16000 18 

Ditching Machine Ditch kg 125.0 1.0 0.33 148.5 2000 3 

Ditching Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Ditching Labour Man h 1.0 1.0 0.33 . . 0 

Seeding Tractor MF399 kg 3317.0 0.2 1.00 138.1 16000 6 

Seeding Machine Planter kg 970.0 0.2 1.00 132.9 1500 17 

Seeding Fuel Diesel l 10.0 0.2 . 47.8 . 96 

Seeding Labour Man h 1.0 0.2 1.00 . . 0 

Seeding Material Seed kg 15.0 0.2 . 230.0 . 690 

Fertiliser spreading Tractor MF399 kg 3317.0 0.6 0.33 138.1 16000 6 

Fertiliser spreading Machine Fspread kg 520.0 0.6 0.33 127.7 1500 9 



Annexes 
 

 133 

Fertiliser spreading Fuel Diesel l 3.0 0.6 . 47.8 . 86 

Fertiliser spreading Labour Man h 1.0 0.6 0.33 . . 0 

Fertiliser spreading Material N kg 50.0 0.2 . 78.2 . 782 

Fertiliser spreading Material P2O5 kg 150.0 0.2 . 17.5 . 525 

Fertiliser spreading Material K2O kg 150.0 0.2 . 13.8 . 414 

Spraying Tractor MF399 kg 3317.0 5.0 0.50 138.1 16000 72 

Spraying Machine Chspread kg 400.0 5.0 0.50 127.7 1200 106 

Spraying Fuel Diesel l 4.0 5.0 . 47.8 . 956 

Spraying Labour Man h 1.0 5.0 0.50 . . 0 

Spraying Material Herbicide l 0.4 1.0 . 288.0 . 126 

Spraying Material Insecticide l 0.1 1.0 . 237.0 . 12 

Spraying Material Fungicide l 0.0 0.0 . 196.0 . 0 

Cultivatoring Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Cultivatoring Machine field kg 320.0 0.0 0.00 139.8 2000 0 

Cultivatoring Fuel Diesel l 8.0 0.0 . 47.8 . 0 

Cultivatoring Labour Man h 1.0 0.0 0.00 . . 0 

Harvesting Tractor MF399 kg 3317.0 5.0 4.00 138.1 16000 573 

Harvesting Machine Mower kg 350.0 5.0 2.00 220.5 2000 386 

Harvesting Machine Racker kg 165.0 5.0 1.00 129.4 2000 53 

Harvesting Machine Baler kg 1560.0 5.0 1.00 129.4 2500 404 

Harvesting Fuel Diesel l 23.0 5.0 . 47.8 . 5497 

Harvesting Labour Man h 1.0 5.0 4.00 . . 0 

Transport yield Machine Trailer kg 18000.0 5.0 0.80 138.1 12000 829 

Transport yield Fuel Diesel l 2.2 5.0 . 47.8 . 526 

Transport yield Labour Man h 6.0 5.0 0.70 . . 0 

Irrigating Material Water m3 2250.0 8.0 . 0.6 . 11340 

Irrigating Labour Man h 1.0 8.0 2.00 . . 0 

 



Annexes 
 

 134 

Annex  5.2 Investigated crop: Barley 

Operation Item Label Unit Count 

(unit) 

Repeat 

(yr-1) 

Duration 

(h) 

Energy 

(MJ unit-

1) 

Life 

(h) 

Energy 

(MJ ha-1 

yr-1) 

Subsoiling Tractor MF6290 kg 6420.0 0.2 2.00 138.1 16000 22 

Subsoiling Machine Ssoiler kg 650.0 0.2 2.00 179.7 2000 23 

Subsoiling Fuel Diesel l 20.0 0.2 . 47.8 . 191 

Subsoiling Labour Man h 1.0 0.2 2.00 . . 0 

Manure spreading Machine Truck kg 13000.0 0.0 0.00 138.1 12000 0 

Manure spreading Fuel Diesel l 4.4 0.0 . 47.8 . 0 

Manure spreading Labour Man h 1.0 0.0 0.00 . . 0 

Manure spreading Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Manure spreading Machine Mspread kg 0.0 0.0 0.00 127.7 1500 0 

Manure spreading Fuel Diesel l 14.0 0.0 . 47.8 . 0 

Manure spreading Labour Man h 0.0 0.0 0.00 . . 0 

Manure spreading Material Manure kg 0.0 0.0 . 0.3 . 0 

Ploughing Tractor MF6290 kg 6420.0 1.0 2.50 138.1 16000 139 

Ploughing Machine Plow kg 1220.0 1.0 2.50 179.7 2000 274 

Ploughing Fuel Diesel l 25.0 1.0 . 47.8 . 1195 

Ploughing Labour Man h 1.0 1.0 2.50 . . 0 

Disking Tractor MF6290 kg 6420.0 3.0 1.00 138.1 16000 166 

Disking Machine Disk kg 2950.0 3.0 1.00 148.5 2000 657 

Disking Fuel Diesel l 14.5 3.0 . 47.8 . 2079 

Disking Labour Man h 1.0 3.0 1.00 . . 0 

Levelling Tractor MF6290 kg 6420.0 1.0 1.50 138.1 16000 83 

Levelling Machine Leveler kg 960.0 1.0 1.50 148.5 2000 107 

Levelling Fuel Diesel l 18.0 1.0 . 47.8 . 860 

Levelling Labour Man h 1.0 1.0 1.50 . . 0 

Ditching Tractor MF6290 kg 6420.0 1.0 0.33 138.1 16000 18 

Ditching Machine Ditch kg 125.0 1.0 0.33 148.5 2000 3 

Ditching Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Ditching Labour Man h 1.0 1.0 0.33 . . 0 

Seeding Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 

Seeding Machine Planter kg 720.0 1.0 1.00 132.9 1500 64 

Seeding Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Seeding Labour Man h 1.0 1.0 1.00 . . 0 

Seeding Material Seed kg 150.0 1.0 . 14.0 . 2100 

Fertiliser spreading Tractor MF399 kg 3317.0 2.0 0.33 138.1 16000 19 

Fertiliser spreading Machine Fspread kg 520.0 2.0 0.33 127.7 1500 29 

Fertiliser spreading Fuel Diesel l 3.0 2.0 . 47.8 . 287 

Fertiliser spreading Labour Man h 1.0 2.0 0.33 . . 0 
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Fertiliser spreading Material N kg 75.0 2.0 . 78.2 . 11730 

Fertiliser spreading Material P2O5 kg 100.0 1.0 . 17.5 . 1750 

Fertiliser spreading Material K2O kg 0.0 0.0 . 13.8 . 0 

Spraying Tractor MF399 kg 3317.0 1.0 0.50 138.1 16000 14 

Spraying Machine Chspread kg 400.0 1.0 0.50 127.7 1200 21 

Spraying Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Spraying Labour Man h 1.0 1.0 0.50 . . 0 

Spraying Material Herbicide l 0.8 1.0 . 288.0 . 238 

Spraying Material Insecticide l 0.0 0.0 . 237.0 . 0 

Spraying Material Fungicide l 0.0 0.0 . 196.0 . 0 

Cultivatoring Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Cultivatoring Machine field kg 320.0 0.0 0.00 139.8 2000 0 

Cultivatoring Fuel Diesel l 8.0 0.0 . 47.8 . 0 

Cultivatoring Labour Man h 1.0 0.0 0.00 . . 0 

Harvesting Machine Com. JD955 kg 6000.0 1.0 1.50 116.4 3000 349 

Harvesting Fuel Diesel l 21.0 1.0 . 47.8 . 1004 

Harvesting Labour Man h 1.0 1.0 1.50 . . 0 

Straw baling Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 

Straw baling Machine Baler kg 1560.0 1.0 1.00 129.4 2500 81 

Straw baling Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Straw baling Labour Man h 1.0 1.0 1.00 . . 0 

Transport yield Machine Truck kg 13000.0 1.0 0.33 138.1 12000 49 

Transport yield Fuel Diesel l 3.0 1.0 . 47.8 . 143 

Transport yield Labour Man h 1.0 1.0 0.33 . . 0 

Transport straw Machine Trailer kg 18000.0 1.0 0.80 138.1 12000 166 

Transport straw Fuel Diesel l 2.2 1.0 . 47.8 . 105 

Transport straw Labour Man h 6.0 1.0 0.70 . . 0 

Irrigating Material Water m3 1750.0 4.0 . 0.6 . 4410 

Irrigating Labour Man h 1.0 4.0 2.00 . . 0 

 



Annexes 
 

 136 

Annex  5.3 Investigated crop: Maize corn 

Operation Item Label Unit Count 

(unit) 

Repeat 

(yr-1) 

Duration 

(h) 

Energy 

(MJ unit-

1) 

Life 

(h) 

Energy 

(MJ ha-1 

yr-1) 

Subsoiling Tractor MF6290 kg 6420.0 0.2 2.00 138.1 16000 22 

Subsoiling Machine Ssoiler kg 650.0 0.2 2.00 179.7 2000 23 

Subsoiling Fuel Diesel l 20.0 0.2 . 47.8 . 191 

Subsoiling Labour Man h 1.0 0.2 2.00 . . 0 

Manure spreading Machine Truck kg 13000.0 0.2 1.00 138.1 12000 30 

Manure spreading Fuel Diesel l 4.4 0.2 . 47.8 . 42 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Tractor MF399 kg 3317.0 0.2 1.00 138.1 16000 6 

Manure spreading Machine Mspread kg 3000.0 0.2 1.00 127.7 1500 51 

Manure spreading Fuel Diesel l 14.0 0.2 . 47.8 . 134 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Material Manure kg 30000.0 0.2 . 0.3 . 1980 

Ploughing Tractor MF6290 kg 6420.0 2.0 2.50 138.1 16000 277 

Ploughing Machine Plow kg 1220.0 2.0 2.50 179.7 2000 548 

Ploughing Fuel Diesel l 25.0 2.0 . 47.8 . 2390 

Ploughing Labour Man h 1.0 2.0 2.50 . . 0 

Disking Tractor MF6290 kg 6420.0 3.0 1.00 138.1 16000 166 

Disking Machine Disk kg 2950.0 3.0 1.00 148.5 2000 657 

Disking Fuel Diesel l 14.5 3.0 . 47.8 . 2079 

Disking Labour Man h 1.0 3.0 1.00 . . 0 

Levelling Tractor MF6290 kg 6420.0 2.0 1.50 138.1 16000 166 

Levelling Machine Leveler kg 960.0 2.0 1.50 148.5 2000 214 

Levelling Fuel Diesel l 18.0 2.0 . 47.8 . 1721 

Levelling Labour Man h 1.0 2.0 1.50 . . 0 

Ditching Tractor MF6290 kg 6420.0 1.0 0.33 138.1 16000 18 

Ditching Machine Ditch kg 125.0 1.0 0.33 148.5 2000 3 

Ditching Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Ditching Labour Man h 1.0 1.0 0.33 . . 0 

Seeding Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 

Seeding Machine Planter kg 890.0 1.0 1.00 132.9 1500 79 

Seeding Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Seeding Labour Man h 1.0 1.0 1.00 . . 0 

Seeding Material Seed kg 25.0 1.0 . 100.0 . 2500 

Fertiliser spreading Tractor MF399 kg 3317.0 2.0 0.33 138.1 16000 19 

Fertiliser spreading Machine Fspread kg 520.0 2.0 0.33 127.7 1500 29 

Fertiliser spreading Fuel Diesel l 3.0 2.0 . 47.8 . 287 

Fertiliser spreading Labour Man h 1.0 2.0 0.33 . . 0 
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Fertiliser spreading Material N kg 100.0 2.0 . 78.2 . 15640 

Fertiliser spreading Material P2O5 kg 100.0 1.0 . 17.5 . 1750 

Fertiliser spreading Material K2O kg 0.0 0.0 . 13.8 . 0 

Spraying Tractor MF399 kg 3317.0 8.0 0.50 138.1 16000 115 

Spraying Machine Chspread kg 400.0 8.0 0.50 127.7 1200 170 

Spraying Fuel Diesel l 4.0 8.0 . 47.8 . 1530 

Spraying Labour Man h 1.0 8.0 0.50 . . 0 

Spraying Material Herbicide l 5.9 1.0 . 288.0 . 1706 

Spraying Material Insecticide l 6.9 1.0 . 237.0 . 1625 

Spraying Material Fungicide l 0.0 0.0 . 196.0 . 0 

Cultivatoring Tractor MF399 kg 3317.0 3.0 1.00 138.1 16000 86 

Cultivatoring Machine row kg 320.0 3.0 1.00 145.9 2000 70 

Cultivatoring Fuel Diesel l 8.0 3.0 . 47.8 . 1147 

Cultivatoring Labour Man h 1.0 3.0 1.00 . . 0 

Harvesting Machine Com. jd955 kg 6000.0 1.0 1.75 116.4 3000 407 

Harvesting Fuel Diesel l 29.0 1.0 . 47.8 . 1386 

Harvesting Labour Man h 1.0 1.0 1.75 . . 0 

Transport yield Machine Truck kg 13000.0 1.0 0.50 138.1 12000 75 

Transport yield Fuel Diesel l 4.4 1.0 . 47.8 . 210 

Transport yield Labour Man h 1.0 1.0 0.50 . . 0 

Irrigating Material Water m3 2250.0 8.0 . 0.6 . 11340 

Irrigating Labour Man h 1.0 8.0 2.50 . . 0 
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Annex  5.4 Investigated crop: Rapeseed 

Operation Item Label Unit Count 

(unit) 

Repeat 

(yr-1) 

Duration 

(h) 

Energy 

(MJ unit-

1) 

Life 

(h) 

Energy 

(MJ ha-1 

yr-1) 

Subsoiling Tractor MF6290 kg 6420.0 0.2 2.00 138.1 16000 22 

Subsoiling Machine Ssoiler kg 650.0 0.2 2.00 179.7 2000 23 

Subsoiling Fuel Diesel l 20.0 0.2 . 47.8 . 191 

Subsoiling Labour Man h 1.0 0.2 2.00 . . 0 

Manure spreading Machine Truck kg 13000.0 0.2 1.00 138.1 12000 30 

Manure spreading Fuel Diesel l 4.4 0.2 . 47.8 . 42 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Tractor MF399 kg 3317.0 0.2 1.00 138.1 16000 6 

Manure spreading Machine Mspread kg 3000.0 0.2 1.00 127.7 1500 51 

Manure spreading Fuel Diesel l 14.0 0.2 . 47.8 . 134 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Material Manure kg 30000.0 0.2 . 0.3 . 1980 

Ploughing Tractor MF6290 kg 6420.0 1.0 2.50 138.1 16000 139 

Ploughing Machine Plow kg 1220.0 1.0 2.50 179.7 2000 274 

Ploughing Fuel Diesel l 25.0 1.0 . 47.8 . 1195 

Ploughing Labour Man h 1.0 1.0 2.50 . . 0 

Disking Tractor MF6290 kg 6420.0 3.0 1.00 138.1 16000 166 

Disking Machine Disk kg 2950.0 3.0 1.00 148.5 2000 657 

Disking Fuel Diesel l 14.5 3.0 . 47.8 . 2079 

Disking Labour Man h 1.0 3.0 1.00 . . 0 

Levelling Tractor MF6290 kg 6420.0 2.0 1.50 138.1 16000 166 

Levelling Machine Leveler kg 960.0 2.0 1.50 148.5 2000 214 

Levelling Fuel Diesel l 18.0 2.0 . 47.8 . 1721 

Levelling Labour Man h 1.0 2.0 1.50 . . 0 

Ditching Tractor MF6290 kg 6420.0 1.0 0.33 138.1 16000 18 

Ditching Machine Ditch kg 125.0 1.0 0.33 148.5 2000 3 

Ditching Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Ditching Labour Man h 1.0 1.0 0.33 . . 0 

Seeding Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 

Seeding Machine Planter kg 720.0 1.0 1.00 132.9 1500 64 

Seeding Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Seeding Labour Man h 1.0 1.0 1.00 . . 0 

Seeding Material Seed kg 8.0 1.0 . 200.0 . 1600 

Fertiliser spreading Tractor MF399 kg 3317.0 2.0 0.33 138.1 16000 19 

Fertiliser spreading Machine Fspread kg 520.0 2.0 0.33 127.7 1500 29 

Fertiliser spreading Fuel Diesel l 3.0 2.0 . 47.8 . 287 

Fertiliser spreading Labour Man h 1.0 2.0 0.33 . . 0 
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Fertiliser spreading Material N kg 75.0 2.0 . 78.2 . 11730 

Fertiliser spreading Material P2O5 kg 100.0 1.0 . 17.5 . 1750 

Fertiliser spreading Material K2O kg 0.0 0.0 . 13.8 . 0 

Spraying Tractor MF399 kg 3317.0 1.0 0.50 138.1 16000 14 

Spraying Machine Chspread kg 400.0 1.0 0.50 127.7 1200 21 

Spraying Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Spraying Labour Man h 1.0 1.0 0.50 . . 0 

Spraying Material Herbicide l 0.4 1.0 . 288.0 . 122 

Spraying Material Insecticide l 0.0 0.0 . 237.0 . 0 

Spraying Material Fungicide l 0.0 0.0 . 196.0 . 0 

Cultivatoring Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Cultivatoring Machine field kg 320.0 0.0 0.00 139.8 2000 0 

Cultivatoring Fuel Diesel l 8.0 0.0 . 47.8 . 0 

Cultivatoring Labour Man h 1.0 0.0 0.00 . . 0 

Harvesting Machine Com. jd955 kg 6000.0 1.0 1.00 116.4 3000 233 

Harvesting Fuel Diesel l 25.0 1.0 . 47.8 . 1195 

Harvesting Labour Man h 1.0 1.0 1.00 . . 0 

Transport yield Machine Truck kg 13000.0 1.0 0.25 138.1 12000 37 

Transport yield Fuel Diesel l 2.2 1.0 . 47.8 . 105 

Transport yield Labour Man h 1.0 1.0 0.25 . . 0 

Irrigating Material Water m3 875.0 8.0 . 0.6 . 4410 

Irrigating Labour Man h 1.0 4.0 2.00 . . 0 
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Annex  5.5 Investigated crop: Spring maize silage 

Operation Item Label Unit Count 

(unit) 

Repeat 

(yr-1) 

Dura-

tion 

(h) 

Energy 

(MJ 

unit-1) 

Life 

(h) 

Energy 

(MJ ha-

1 yr-1) 

Subsoiling Tractor MF629

0 

kg 6420.0 0.2 2.00 138.1 16000 22 

Subsoiling Machine Ssoiler kg 650.0 0.2 2.00 179.7 2000 23 

Subsoiling Fuel Diesel l 20.0 0.2 . 47.8 . 191 

Subsoiling Labour Man h 1.0 0.2 2.00 . . 0 

Manure spreading Machine Truck kg 13000.

0 

0.2 1.00 138.1 12000 30 

Manure spreading Fuel Diesel l 4.4 0.2 . 47.8 . 42 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Tractor MF399 kg 3317.0 0.2 1.00 138.1 16000 6 

Manure spreading Machine Msprea

d 

kg 3000.0 0.2 1.00 127.7 1500 51 

Manure spreading Fuel Diesel l 14.0 0.2 . 47.8 . 134 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Material Manure kg 30000.

0 

0.2 . 0.3 . 1980 

Ploughing Tractor MF629

0 

kg 6420.0 2.0 2.50 138.1 16000 277 

Ploughing Machine Plow kg 1220.0 2.0 2.50 179.7 2000 548 

Ploughing Fuel Diesel l 25.0 2.0 . 47.8 . 2390 

Ploughing Labour Man h 1.0 2.0 2.50 . . 0 

Disking Tractor MF629

0 

kg 6420.0 3.0 1.00 138.1 16000 166 

Disking Machine Disk kg 2950.0 3.0 1.00 148.5 2000 657 

Disking Fuel Diesel l 14.5 3.0 . 47.8 . 2079 

Disking Labour Man h 1.0 3.0 1.00 . . 0 

Levelling Tractor MF629

0 

kg 6420.0 2.0 1.50 138.1 16000 166 

Levelling Machine Leveler kg 960.0 2.0 1.50 148.5 2000 214 

Levelling Fuel Diesel l 18.0 2.0 . 47.8 . 1721 

Levelling Labour Man h 1.0 2.0 1.50 . . 0 

Ditching Tractor MF629

0 

kg 6420.0 1.0 0.33 138.1 16000 18 

Ditching Machine Ditch kg 125.0 1.0 0.33 148.5 2000 3 

Ditching Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Ditching Labour Man h 1.0 1.0 0.33 . . 0 

Seeding Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 
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Seeding Machine Planter kg 890.0 1.0 1.00 132.9 1500 79 

Seeding Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Seeding Labour Man h 1.0 1.0 1.00 . . 0 

Seeding Material Seed kg 25.0 1.0 . 100.0 . 2500 

Fertiliser spreading Tractor MF399 kg 3317.0 1.0 0.33 138.1 16000 9 

Fertiliser spreading Machine Fsprea

d 

kg 520.0 1.0 0.33 127.7 1500 15 

Fertiliser spreading Fuel Diesel l 3.0 1.0 . 47.8 . 143 

Fertiliser spreading Labour Man h 1.0 1.0 0.33 . . 0 

Fertiliser spreading Material N kg 100.0 1.0 . 78.2 . 7820 

Fertiliser spreading Material P2O5 kg 50.0 1.0 . 17.5 . 875 

Fertiliser spreading Material K2O kg 0.0 0.0 . 13.8 . 0 

Spraying Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Spraying Machine Chspre

ad 

kg 400.0 0.0 0.00 127.7 1200 0 

Spraying Fuel Diesel l 4.8 0.0 . 47.8 . 0 

Spraying Labour Man h 1.0 0.0 0.00 . . 0 

Spraying Material Herbi-

cide 

l 0.0 0.0 . 288.0 . 0 

Spraying Material Insecti-

cide 

l 0.0 0.0 . 237.0 . 0 

Spraying Material Fungi-

cide 

l 0.0 0.0 . 196.0 . 0 

Cultivatoring Tractor MF399 kg 3317.0 3.0 1.00 138.1 16000 86 

Cultivatoring Machine row kg 320.0 3.0 1.00 145.9 2000 70 

Cultivatoring Fuel Diesel l 8.0 3.0 . 47.8 . 1147 

Cultivatoring Labour Man h 1.0 3.0 1.00 . . 0 

Harvesting Machine Chop. 

Jag682 

kg 7200.0 1.0 2.00 124.2 2000 894 

Harvesting Fuel Diesel l 56.0 1.0 . 47.8 . 2677 

Harvesting Labour Man h 1.0 1.0 2.00 . . 0 

Transport yield Machine Truck kg 13000.

0 

6.0 1.00 138.1 12000 898 

Transport yield Fuel Diesel l 9.0 6.0 . 47.8 . 2581 

Transport yield Labour Man h 1.0 6.0 1.00 . . 0 

Irrigating Material Water m3 2250.0 4.0 . 0.6 . 5670 

Irrigating Labour Man h 1.0 4.0 2.50 . . 0 
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Annex  5.6 Investigated crop: Summer maize silage 

Operation Item Label Unit Count 

(unit) 

Repeat 

(yr-1) 

Duration 

(h) 

Energy 

(MJ unit-

1) 

Life 

(h) 

Energy 

(MJ ha-1 

yr-1) 

Subsoiling Tractor MF6290 kg 6420.0 0.2 2.00 138.1 16000 22 

Subsoiling Machine Ssoiler kg 650.0 0.2 2.00 179.7 2000 23 

Subsoiling Fuel Diesel l 20.0 0.2 . 47.8 . 191 

Subsoiling Labour Man h 1.0 0.2 2.00 . . 0 

Manure spreading Machine Truck kg 13000.0 0.0 0.00 138.1 12000 0 

Manure spreading Fuel Diesel l 4.4 0.0 . 47.8 . 0 

Manure spreading Labour Man h 1.0 0.0 0.00 . . 0 

Manure spreading Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Manure spreading Machine Mspread kg 3000.0 0.0 0.00 127.7 1500 0 

Manure spreading Fuel Diesel l 14.0 0.0 . 47.8 . 0 

Manure spreading Labour Man h 1.0 0.0 0.00 . . 0 

Manure spreading Material Manure kg 0.0 0.0 0.00 0.3 . 0 

Ploughing Tractor MF6290 kg 6420.0 2.0 2.50 138.1 16000 277 

Ploughing Machine Plow kg 1220.0 2.0 2.50 179.7 2000 548 

Ploughing Fuel Diesel l 25.0 2.0 . 47.8 . 2390 

Ploughing Labour Man h 1.0 2.0 2.50 . . 0 

Disking Tractor MF6290 kg 6420.0 3.0 1.00 138.1 16000 166 

Disking Machine Disk kg 2950.0 3.0 1.00 148.5 2000 657 

Disking Fuel Diesel l 14.5 3.0 . 47.8 . 2079 

Disking Labour Man h 1.0 3.0 1.00 . . 0 

Levelling Tractor MF6290 kg 6420.0 2.0 1.50 138.1 16000 166 

Levelling Machine Leveler kg 960.0 2.0 1.50 148.5 2000 214 

Levelling Fuel Diesel l 18.0 2.0 . 47.8 . 1721 

Levelling Labour Man h 1.0 2.0 1.50 . . 0 

Ditching Tractor MF6290 kg 6420.0 1.0 0.33 138.1 16000 18 

Ditching Machine Ditch kg 125.0 1.0 0.33 148.5 2000 3 

Ditching Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Ditching Labour Man h 1.0 1.0 0.33 . . 0 

Seeding Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 

Seeding Machine Planter kg 890.0 1.0 1.00 132.9 1500 79 

Seeding Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Seeding Labour Man h 1.0 1.0 1.00 . . 0 
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Seeding Material Seed kg 25.0 1.0 . 100.0 . 2500 

Fertiliser spreading Tractor MF399 kg 3317.0 1.0 0.33 138.1 16000 9 

Fertiliser spreading Machine Fspread kg 520.0 1.0 0.33 127.7 1500 15 

Fertiliser spreading Fuel Diesel l 3.0 1.0 . 47.8 . 143 

Fertiliser spreading Labour Man h 1.0 1.0 0.33 . . 0 

Fertiliser spreading Material N kg 100.0 1.0 . 78.2 . 7820 

Fertiliser spreading Material P2O5 kg 50.0 1.0 . 17.5 . 875 

Fertiliser spreading Material K2O kg 0.0 0.0 . 13.8 . 0 

Spraying Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Spraying Machine Chsprea

d 

kg 400.0 0.0 0.00 127.7 1200 0 

Spraying Fuel Diesel l 4.0 0.0 . 47.8 . 0 

Spraying Labour Man h 1.0 0.0 0.00 . . 0 

Spraying Material Herbi-

cide 

l 0.0 0.0 . 288.0 . 0 

Spraying Material Insecti-

cide 

l 0.0 0.0 . 237.0 . 0 

Spraying Material Fungi-

cide 

l 0.0 0.0 . 196.0 . 0 

Cultivatoring Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 

Cultivatoring Machine row kg 320.0 1.0 1.00 145.9 2000 23 

Cultivatoring Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Cultivatoring Labour Man h 1.0 1.0 1.00 . . 0 

Harvesting Machine Chop. 

Jag682 

kg 7200.0 1.0 2.00 124.2 2000 894 

Harvesting Fuel Diesel l 40.0 1.0 . 47.8 . 1912 

Harvesting Labour Man h 1.0 1.0 2.00 . . 0 

Transport yield Machine Truck kg 13000.0 3.0 1.00 138.1 12000 449 

Transport yield Fuel Diesel l 9.0 3.0 . 47.8 . 1291 

Transport yield Labour Man h 1.0 3.0 1.00 . . 0 

Irrigating Material Water m3 2250.0 4.0 . 0.6 . 5670 

Irrigating Labour Man h 1.0 4.0 2.50 . . 0 
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Annex  5.7 Investigated crop: Wheat 

Operation Item Label Unit Count 

(unit) 

Repeat 

(yr-1) 

Duration 

(h) 

Energy 

(MJ unit-

1) 

Life 

(h) 

Energy 

(MJ ha-1 

yr-1) 

Subsoiling Tractor MF6290 kg 6420.0 0.2 2.00 138.1 16000 22 

Subsoiling Machine Ssoiler kg 650.0 0.2 2.00 179.7 2000 23 

Subsoiling Fuel Diesel l 20.0 0.2 . 47.8 . 191 

Subsoiling Labour Man h 1.0 0.2 2.00 . . 0 

Manure spreading Machine Truck kg 13000.0 0.2 1.00 138.1 12000 30 

Manure spreading Fuel Diesel l 4.4 0.2 . 47.8 . 42 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Tractor MF399 kg 3317.0 0.2 1.00 138.1 16000 6 

Manure spreading Machine Mspread kg 3000.0 0.2 1.00 127.7 1500 51 

Manure spreading Fuel Diesel l 14.0 0.2 . 47.8 . 134 

Manure spreading Labour Man h 1.0 0.2 1.00 . . 0 

Manure spreading Material Manure kg 30000.0 0.2 . 0.3 . 1980 

Ploughing Tractor MF6290 kg 6420.0 1.0 2.50 138.1 16000 139 

Ploughing Machine Plow kg 1220.0 1.0 2.50 179.7 2000 274 

Ploughing Fuel Diesel l 25.0 1.0 . 47.8 . 1195 

Ploughing Labour Man h 1.0 1.0 2.50 . . 0 

Disking Tractor MF6290 kg 6420.0 3.0 1.00 138.1 16000 166 

Disking Machine Disk kg 2950.0 3.0 1.00 148.5 2000 657 

Disking Fuel Diesel l 14.5 3.0 . 47.8 . 2079 

Disking Labour Man h 1.0 3.0 1.00 . . 0 

Levelling Tractor MF6290 kg 6420.0 2.0 1.50 138.1 16000 166 

Levelling Machine Leveler kg 960.0 2.0 1.50 148.5 2000 214 

Levelling Fuel Diesel l 18.0 2.0 . 47.8 . 1721 

Levelling Labour Man h 1.0 2.0 1.50 . . 0 

Ditching Tractor MF6290 kg 6420.0 1.0 0.33 138.1 16000 18 

Ditching Machine Ditch kg 125.0 1.0 0.33 148.5 2000 3 

Ditching Fuel Diesel l 4.0 1.0 . 47.8 . 191 

Ditching Labour Man h 1.0 1.0 0.33 . . 0 

Seeding Tractor MF399 kg 3317.0 1.0 1.00 138.1 16000 29 

Seeding Machine Planter kg 720.0 1.0 1.00 132.9 1500 64 

Seeding Fuel Diesel l 8.0 1.0 . 47.8 . 382 

Seeding Labour Man h 1.0 1.0 1.00 . . 0 

Seeding Material Seed kg 180.0 1.0 . 13.0 . 2340 

Fertiliser spreading Tractor MF399 kg 3317.0 2.0 0.33 138.1 16000 19 

Fertiliser spreading Machine Fspread kg 520.0 2.0 0.33 127.7 1500 29 

Fertiliser spreading Fuel Diesel l 3.0 2.0 . 47.8 . 287 

Fertiliser spreading Labour Man h 1.0 2.0 0.33 . . 0 
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Fertiliser spreading Material N kg 75.0 2.0 . 78.2 . 11730 

Fertiliser spreading Material P2O5 kg 100.0 1.0 . 17.5 . 1750 

Fertiliser spreading Material K2O kg 0.0 0.0 . 13.8 . 0 

Spraying Tractor MF399 kg 3317.0 2.0 0.50 138.1 16000 29 

Spraying Machine Chspread kg 400.0 2.0 0.50 127.7 1200 43 

Spraying Fuel Diesel l 4.0 2.0 . 47.8 . 382 

Spraying Labour Man h 1.0 2.0 0.50 . . 0 

Spraying Material Herbicide l 0.1 1.0 . 288.0 . 25 

Spraying Material Insecticide l 0.0 0.0 . 237.0 . 0 

Spraying Material Fungicide l 0.5 1.0 . 196.0 . 98 

Cultivatoring Tractor MF399 kg 3317.0 0.0 0.00 138.1 16000 0 

Cultivatoring Machine field kg 320.0 0.0 0.00 139.8 2000 0 

Cultivatoring Fuel Diesel l 8.0 0.0 . 47.8 . 0 

Cultivatoring Labour Man h 1.0 0.0 0.00 . . 0 

Harvesting Machine Com. jd955 kg 6000.0 1.0 1.80 116.4 3000 419 

Harvesting Fuel Diesel l 27.0 1.0 . 47.8 . 1291 

Harvesting Labour Man h 1.0 1.0 1.80 . . 0 

Straw baling Tractor MF399 kg 3317.0 1.0 2.00 138.1 16000 57 

Straw baling Machine Baler kg 1560.0 1.0 2.00 129.4 2500 161 

Straw baling Fuel Diesel l 16.0 1.0 . 47.8 . 765 

Straw baling Labour Man h 1.0 1.0 2.00 . . 0 

Transport yield Machine Truck kg 13000.0 1.0 0.50 138.1 12000 75 

Transport yield Fuel Diesel l 4.4 1.0 . 47.8 . 210 

Transport yield Labour Man h 1.0 1.0 0.50 . . 0 

Transport straw Machine Trailer kg 18000.0 1.0 1.70 138.1 12000 352 

Transport straw Fuel Diesel l 4.6 1.0 . 47.8 . 220 

Transport straw Labour Man h 6.0 1.0 1.50 . . 0 

Irrigating Material Water m3 1800.0 5.0 . 0.6 . 5670 

Irrigating Labour Man h 1.0 5.0 2.00 . . 0 
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Annex 6. Some pictures from common dairy farms in Iran 

 
An industrial dairy barn 

 
A dairy barn yard  

 
Maize silage silo in a dairy farm in Iran 
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Manual feeding in a dairy farm 

       
Free water delivery in a dairy farm                                              

 
Dairy barn yard with roofed area
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