
Querying a Web of Linked Data

Foundations and Query Execution

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Dr. Rer. Nat.
im Fach Informatik

eingereicht an der
Mathematisch-Wissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Dipl.-Inf. Olaf Hartig

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Wissenschaftlichen Fakultät II:
Prof. Dr. Elmar Kulke

Gutachter:
1. Prof. Johann-Christoph Freytag, Ph.D.
2. Prof. Dr. Gerhard Weikum
3. Prof. Abraham Bernstein, Ph.D.

eingereicht am: 19. März 2014
Tag der mündlichen Prüfung: 10. Juli 2014

Abstract

During recent years a set of best practices for publishing and connecting structured
data on the World Wide Web (WWW) has emerged. These best practices are
referred to as the Linked Data principles and the resulting form of Web data is called
Linked Data. The increasing adoption of these principles has lead to the creation
of a globally distributed space of Linked Data that covers various domains such as
government, libraries, life sciences, and media. Approaches that conceive this data
space as a huge distributed database and enable an execution of declarative queries
over this database hold an enormous potential; they allow users to benefit from
a virtually unbounded set of up-to-date data. As a consequence, several research
groups have started to study such approaches. However, the main focus of existing
work is to address practical challenges that arise in this context. Research on the
foundations of such approaches is largely missing. This dissertation closes this gap.
This dissertation first establishes a well-defined framework for defining and study-

ing queries over Linked Data on the WWW. In particular, we introduce a data model
that enables us to formally conceive Linked Data on the WWW as a (distributed)
database and a computation model that captures the capabilities of a query exe-
cution system for this database. Based on these models, we adapt the declarative
query language SPARQL to the given scenario. More precisely, we define a full-Web
query semantics and a family of reachability-based query semantics such that each
of these query semantics presents a well-defined basis for using SPARQL to query
Linked Data on the WWW. Thereafter, we show theoretical properties of queries
under these query semantics. Perhaps the most important result of this study for-
mally verifies the common assumption that a computation of query results that are
complete w.r.t. all Linked Data on the WWW, is not feasible. However, we also
identify classes of queries for which the computational feasibility is less limited.
After analyzing queries over Linked Data independent of specific approaches for

executing such queries, this dissertation focuses on a particular execution approach
and studies fundamental aspects thereof. The studied approach presents a general
strategy for executing queries by integrating traversal-based data retrieval into the
result construction process. To analyze this notion of traversal-based query execu-
tion formally, we define it in the form of an abstract query execution model. In
addition, we discuss a concrete implementation approach for our execution model;
this approach is based on the well-known concept of iterators. Our analysis of
both the execution model and the iterator-based implementation shows that (i) for
one of our reachability-based query semantics, the given notion of traversal-based
query execution, in general, is sound and complete, whereas (ii) for the same query
semantics, the specific, iterator-based implementation approach cannot guarantee
completeness of query results. Based on an experimental analysis we verify that the
latter limitation has a significant impact in practice.

ii

Zusammenfassung

In den letzten Jahren haben sich spezielle Prinzipien zur Veröffentlichung struktu-
rierter Daten im World Wide Web (WWW) etabliert. Diese Prinzipien erlauben es,
von den jeweils angebotenen Daten auf weitere, nach den selben Prinzipien veröf-
fentlichten Daten zu verweisen. Die daraus resultierende Form von Web-Daten wird
entsprechend als Linked Data bezeichnet. Mit der Veröffentlichung von Linked Data
im WWW entsteht ein sehr großer Datenraum, welcher Daten verschiedenster An-
bieter miteinander verbindet und neuartige Möglichkeiten für Web-basierte Anwen-
dungen bietet. Als Basis für die Entwicklung solcher Anwendungen haben mehrere
Forschungsgruppen begonnen, Ansätze zu untersuchen, welche diesen Datenraum als
eine Art verteilte Datenbank auffassen und die Ausführung deklarativer Anfragen
über dieser Datenbank ermöglichen. Forschungsarbeit zu theoretischen Grundlagen
der untersuchten Ansätze fehlt jedoch nahezu vollständig. Das Ziel der vorliegenden
Dissertation ist es mitzuhelfen, diese Lücke zu schließen.
Die Basis der Dissertation bilden ein Datenmodell und ein Berechnungsmodell.

Während das Datenmodell das Konzept eines Web of Linked Data als (verteilte) Da-
tenbank formalisiert und eine exakte Definition von Anfragesemantiken ermöglicht,
formalisiert das Berechnungsmodell das Leistungsvermögen von Systemen, welche
Anfragen über dieser Datenbank ausführen können. Auf Basis dieser Modelle wird
die, vom WWW-Consortium (W3C) spezifizierte Anfragesprache SPARQL um ver-
schiedene Anfragesemantiken für eine Nutzung im Linked-Data-Kontext erweitert
und die, sich unter diesen Semantiken ergebenden Anfragen bezüglich ihrer Be-
rechenbarkeit entsprechend unseres Berechnungsmodells untersucht. Insbesondere
führt die Arbeit eine Menge von erreichbarkeitsbasierten Anfragesemantiken und ei-
ne unbegrenzte Anfragesemantik (engl.: full-Web query semantics) ein. Als Haupter-
gebnis der Untersuchung dieser Anfragesemantiken liefert die Arbeit einen formalen
Beweis für die weit verbreitete Annahme, dass eine Berechnung vollständiger An-
frageergebnisse in Bezug auf die komplette Menge an Linked Data im WWW nicht
möglich ist. Weitere Ergebnisse der Untersuchung identifizieren Klassen von Anfra-
gen, deren vollständige Berechnung unter gewissen Bedingungen möglich ist.
Neben der Analyse theoretischer Eigenschaften von SPARQL-basierten Anfragen

über Linked Data im WWW, beschäftigt sich die Dissertation mit einem verweisba-
sierten Ansatz zur Ausführung solcher Anfragen. Hierbei stehen insbesondere grund-
sätzliche Eigenschaften wie Terminierung der Anfrageausführung, sowie Korrektheit
und Vollständigkeit im Zentrum der Untersuchung. Die Kernidee des untersuchten
Ansatzes besteht darin, die Bestimmung des Ergebnisses einer gegebenen Anfrage
mit dem Verfolgen von Verweisen im angefragten Web zu kombinieren und somit
potentiell relevante Daten während der Anfrageausführung zu entdecken. Um diese
Idee formal untersuchen zu können, wird ein abstraktes Anfrageausführungsmodell
eingeführt. Zusätzlich wird eine konkrete, auf dem Konzept eines Iterators basieren-
de Möglichkeit zur Umsetzung dieses abstrakten Modells besprochen.
Die formale Analyse zeigt, dass (i) der generelle Ansatz einer verweisbasierten An-

frageausführung korrekt und vollständig bezüglich einer, der eingeführten erreich-
barkeitsbasierten Anfragesemantiken ist, während (ii) die konkrete, iteratorbasierte
Umsetzung die Vollständigkeit von Anfrageergebnissen bezüglich derselben Anfrage-
semantik nicht garantieren kann. Eine experimentelle Analyse untersucht die itera-
torbasierte Umsetzung eingehender und zeigt, dass die theoretische Möglichkeit von
unvollständigen Anfrageergebnissen auch in der Praxis eine maßgebliche Rolle spielt.

iii

Contents

1. Introduction 1
1.1. Linked Data on the WWW . 1
1.2. Approaches to Query Linked Data . 4
1.3. Problem Statement . 6
1.4. Contributions . 7
1.5. Thesis Outline . 10

I. Foundations of Queries over a Web of Linked Data 13

2. Models for Linked Data Queries 15
2.1. Data Model . 15

2.1.1. Structural Elements . 15
2.1.2. Queries . 22
2.1.3. Related Work . 24

2.2. Computation Model . 25
2.2.1. Existing Models of Computation on the WWW 26
2.2.2. The LD Machine . 27
2.2.3. LD Machine Computability . 29
2.2.4. LD Machine Decidability . 30

3. Full-Web Query Semantics 33
3.1. Related Work . 34

3.1.1. Web Query Languages . 34
3.1.2. Navigational Query Languages for Linked Data 34
3.1.3. SPARQL as a Query Language for Linked Data 35

3.2. Definition . 38
3.2.1. SPARQL . 38
3.2.2. SPARQLLD . 42

3.3. Theoretical Properties . 42
3.3.1. Satisfiability, (Un)bounded Satisfiability, and Monotonicity 43
3.3.2. LD Machine Decidability of Termination 47
3.3.3. LD Machine Computability . 53
3.3.4. Finiteness of Expected Query Results 57

3.4. Summary . 59

v

Contents

4. Reachability-Based Query Semantics 61
4.1. Definition . 61

4.1.1. Reachability . 62
4.1.2. SPARQLLD(R) . 63

4.2. Result Containment and Infiniteness . 64
4.3. Reachability Criteria . 69

4.3.1. Comparing Reachability Criteria 69
4.3.2. Combining Reachability Criteria 71
4.3.3. Reachability Criteria that Ensure Finiteness 73
4.3.4. Constant Reachability Criteria . 74

4.4. Theoretical Properties . 76
4.4.1. Satisfiability, (Un)bounded Satisfiability, and Monotonicity 77
4.4.2. LD Machine Decidability of Termination 86
4.4.3. LD Machine Computability . 90

4.5. Differences between SPARQLLD and SPARQLLD(R) 95

II. Execution of Queries over a Web of Linked Data 97

5. Overview of Query Execution Techniques 99
5.1. Data Source Selection . 100

5.1.1. Live Exploration Approaches . 100
5.1.2. Index-Based Approaches . 101
5.1.3. Hybrid Approaches . 104

5.2. Data Source Ranking . 104
5.3. Integration of Data Retrieval and Result Construction 106

5.3.1. Separated Execution Approaches 106
5.3.2. Integrated Execution Approaches 107

5.4. Traversal-Based Query Execution . 107
5.5. Summary . 108

6. A Traversal-Based Strategy 111
6.1. Conjunctive Linked Data Queries . 111
6.2. Informal Description . 114
6.3. Query Execution Model . 115

6.3.1. Overview . 116
6.3.2. Partial Solutions . 116
6.3.3. Constructing (Partial) Solutions 117
6.3.4. Discovered Subwebs of the Queried Web 118
6.3.5. Traversing Data Links . 119
6.3.6. Combining Construction and Traversal 121
6.3.7. Abstract Query Execution Procedure 125

6.4. Soundness and Completeness . 126
6.5. Summary . 128

vi

Contents

7. An Iterator-Based Implementation 129
7.1. Definition . 130

7.1.1. Iterators for Query Execution over RDF Data 130
7.1.2. Iterators for Traversal-Based Query Execution 134

7.2. Formal Analysis . 137
7.2.1. Examples for Incompleteness . 137
7.2.2. Alignment with the Execution Model 140

7.3. Experimental Analysis . 151
7.3.1. Our Query Execution System . 152
7.3.2. WWW-Based Experiment . 153
7.3.3. Simulation Based Experiments . 158

7.4. Summary . 176

III. Conclusions 177

8. Conclusions 179
8.1. Main Results . 179
8.2. Directions for Future Work . 182

8.2.1. Schema Heterogeneity . 182
8.2.2. Coreferences . 183
8.2.3. Trustworthiness and Data Quality 183
8.2.4. Dynamic Environment . 184
8.2.5. Query Expressiveness . 184

IV. Appendix 187

A. Commonly Used Symbols 189

B. Encoding of Structures Related to Query Computation 193
B.1. Encoding Basic Elements . 193
B.2. Encoding RDF Triples . 194
B.3. Encoding Webs of Linked Data . 194
B.4. Encoding Valuations . 194

C. Basic Properties of SPARQL Queries 195
C.1. Satisfiability . 195
C.2. Monotonicity . 201
C.3. Bounded Satisfiability and Unbounded Satisfiability 204

D. Supplementary Information about the Experiments 211
D.1. Queries for the WWW-Based Experiment 211
D.2. Measurements of the WWW-Based Experiment 215
D.3. Queries for the Simulation-Based Experiments 216

vii

Contents

E. Proofs of Auxiliary Results 219
E.1. Proof of Lemma 3.1 . 219
E.2. Proof of Lemma 3.2 . 219
E.3. Proof of Lemma 4.1 . 221
E.4. Proof of Lemma 4.2 . 222
E.5. Proof of Lemma 4.3 . 223
E.6. Proof of Lemma 4.4 . 224
E.7. Proof of Lemma 4.5 . 225
E.8. Proof of Lemma 4.6 . 226
E.9. Proof of Lemma 4.7 . 228
E.10.Proof of Lemma 6.1 . 229
E.11.Proof of Lemma 6.2 . 230
E.12.Proof of Lemma 6.3 . 231

viii

List of Figures

1.1. Example SPARQL query. 5

2.1. Data in the example Web Wex. 19
2.2. Link graph of the example Web Wex. 20
2.3. Link graph of the subweb W ′ex. 21

7.1. An iterator-based execution of a BGP over a set of RDF triples. 133
7.2. An iterator-based execution of a CLD(M) query of the example Web. . . . 137
7.3. An alternative iterator-based execution of the example CLD(M) query. . . . 139
7.4. Number of solutions returned during the WWW-based experiment. 156
7.5. Number of documents retrieved during the WWW-based experiment. . . . 157
7.6. Query execution times measured during the WWW-based experiment. . . 158
7.7. The RDF vocabulary used for BSBM datasets. 160
7.8. Primary measurements of the simulation-based experiments. 166
7.9. Primary measurements of the simulation-based experiments, cont’d. . . . 167
7.10. Correlation between discovered documents and result completeness. . . . 169
7.11. Degree of result completeness over different test Webs. 171
7.12. Comparison of ascending, descending, and nondeterministic runs. 174

ix

List of Tables

4.1. Summary of computability results for SPARQLLD and SPARQLLD(R). . . 96

5.1. Classification of existing work on Linked Data query execution. 109

7.1. Structural properties of test queries (WWW-based experiment). 154
7.2. Structural properties of test queries (simulation-based experiment). 163
7.3. Minimum and maximum result completeness over different test Webs. . . 168

A.1. Symbols used in this dissertation. 189

C.1. Theoretical properties of different types of SPARQL expressions. 196

D.1. Measurements of the WWW-based experiment (result size, documents). . 215
D.2. Measurements of the WWW-based experiment (query execution times). . 216

xi

1. Introduction

Since its emergence, the World Wide Web (WWW) has attracted research interest in
adopting database techniques for retrieving information from the WWW. The main
motivation for such an attraction was—and still is—“the popularity of the [WWW as] a
prime vehicle for disseminating information” [49].
However, approaches traditionally used for disseminating information on the WWW

focus on human users as (direct) consumers of WWW content; as a result, there exist ma-
jor practical hurdles for automated query processing over data available in (traditional)
Web pages. In particular, the data in such Web pages is at best semi-structured [2]
and a large percentage of these pages is “hidden” behind form-based interfaces designed
for human users [82]. This situation has quickly led to a divergence from research on
“database-like access to the WWW” [94] to research necessary to overcome the afore-
mentioned hurdles. Most notable in this context is a plethora of work on extracting
structured data from semi-structured or unstructured Web pages [32, 101, 167] and on
getting access to such pages by automated completion of Web forms [44, 91, 134]. How-
ever, we observe a shortage of more recent work that comes back to the original vision of
conceiving the whole WWW (and not just single Web sites) “as a gigantic database” [94].
On the other hand, a new set of best practices for publishing and connecting structured

data on the WWW has emerged [14, 83]. The resulting form of Web data is commonly
referred to as Linked Data and has gained tremendous momentum in recent years. That
is, more and more content providers make their data openly available as Linked Data [23,
24, 114, 118]. This development presents an exciting opportunity to reconsider viewing
the WWW as a database. In particular, because the aforementioned problems caused by
traditional data publishing approaches do not exist for Linked Data (nonetheless, other
characteristics of the WWW present further challenges as we shall discuss shortly).
Consequently, the aim of this dissertation is to study foundations for a database-like

access to Linked Data on the WWW. To introduce the particular problems addressed in
this dissertation, we first outline the principles for publishing Linked Data and discuss
query processing paradigms applicable to the scenario of querying Linked Data.

1.1. Linked Data on the WWW

The publication of Linked Data on the WWW is based on the following four principles,
which have become known as the “Linked Data principles” [23].

“1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

1

1. Introduction

3. When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things.” [14]

Thus, the publication of Linked Data is based on standard Web technologies such as
Uniform Resource Identifiers (URIs) [15], the Hypertext Transfer Protocol (HTTP) [47],
and the Resource Description Framework (RDF) [92]. In the following, we informally
describe how the Linked Data principles propose to use these technologies for publishing
and linking structured data on the WWW (a formal definition of concepts relevant to
this dissertation follows in Chapter 2).

The Linked Data principles require data providers to identify entities via HTTP scheme
based URIs (i.e., URIs that begin with http://), hereafter, simply referred to as HTTP
URIs. Such a URI does not only serve as a globally unique identifier, it also provides
access to a structured data representation of the identified entity. Hence, looking up
such a URI via the HTTP protocol yields data about the entity identified by the URI.
According to the third principle, this data should be represented using RDF. RDF is a
data model that represents information based on triples of the form (subject, predicate,
object). By definition, each element of such an RDF triple may be a URI; objects may
also be literal values (e.g., a string or a number), and subjects and objects may also be
local identifiers for unnamed entities (called “blank nodes” [92]). The predicate in an
RDF triple specifies the relationship between the subject and the object of that triple.

Example 1.1. The RDF triple(
http://example.org/foaf.rdf#me , http://xmlns.com/foaf/0.1/name , "John Scott"

)
states that the person identified by the given subject URI is called John Scott, and

(
http://example.org/foaf.rdf#me , http://xmlns.com/foaf/0.1/knows , http://acme.com/empl/Jeff

)
states that John Scott knows another person identified by the given object URI. 2

The semantics of predicate URIs as well as classes of entities are defined in vocabularies.
The RDF Vocabulary Definition Language [28] and the Web Ontology Language [87]
allow users to define such vocabularies. Since such a definition may be represented as a
set of RDF triples, the terms introduced in a vocabulary should also be identified with
HTTP URIs and vocabularies should also be published as Linked Data [18]. This practice
enables a Linked-Data-aware software system to retrieve and utilize automatically the
definition of terms used in the currently processed data.
The third Linked Data principle requires responding to a URI look-up request with

a representation of RDF data that contains triples about the entity identified by the
requested URI. However, the principles do not determine how exactly such RDF data
should look like, what triples are necessary, or what vocabularies should be used. None-
theless, a common practice is to provide RDF triples that contain the requested URI.

2

1.1. Linked Data on the WWW

Even if the Linked Data principles do not prescribe what data should be provided in
response to a URI look-up request, the fourth principle requires that the data includes
links pointing to Linked Data from other data sources on the WWW. Such a data link
is established by an RDF triple whose subject is a URI in the namespace of one data
provider and whose object is another URI in the namespace of another provider. For
instance, the second RDF triple in Example 1.1 establishes such a data link. These
links are the most important feature of Linked Data because they form the basis for
connecting structured data of different sources in a way similar to how human-readable
Web documents have been interlinked for more than 25 years. Hence, based on these
data links, the WWW evolves into a platform where self-describing data of any type can
be posted, discovered, and integrated in an automated and standardized manner.
The particular set of RDF triples that a Web server returns in response to a URI look-

up request, may exist as a precomputed RDF document stored on the server. Another
typical approach is a Linked Data server that returns subsets of a larger set of RDF
triples (which is usually stored in a database management system for RDF data). Other
Linked Data servers may be implemented as wrappers over a relational database or over
a Web API. There exist even Web servers that generate Linked Data on the fly as the
following example illustrates.

Example 1.2. Assume a URI pattern that can be used to construct an HTTP URI
http://example.org/number/i for every natural number i ∈ N. The WWW server that is
responsible for these URIs may be set up to return a specific set of RDF triples for each
of these URIs; these sets may be generated upon request. For instance, the data generated
in response to a request for URI http://example.org/number/42 may include the RDF triple(

http://example.org/number/42 , http://example.org/vocab#next , http://example.org/number/43
)

that associates the requested natural number 42 with its successor 43. An example for
such a server is provided by the Linked Open Numbers project [161]. The URI pattern for
natural numbers as used by this server is: http://km.aifb.kit.edu/projects/numbers/web/ni. 2

In addition to publishing data using the Linked Data principles, several publishers also
provide a Web service for executing queries over their Linked Data. Usually, such a
service supports the query language SPARQL [63] and may be accessed using the corre-
sponding SPARQL protocol [46]. Therefore, such a service is called a SPARQL endpoint.
For the sake of conciseness, we have left out a number of technical details in this

introduction. Most of these details relate to how exactly the HTTP protocol is used for
publishing and consuming Linked Data on the WWW; those details are not important
for this dissertation. For a comprehensive introduction to publishing Linked Data we
refer to Heath and Bizer’s recent book on the topic [83].
After the Linked Data principles had been proposed in 2006, a grass-roots move-

ment started to publish and interlink multiple open databases on the WWW following
these principles [22]. Since then, community initiatives and research groups, as well as
enterprises and government initiatives, adopted the Linked Data principles, and pub-
lishing Linked Data has become a non-negligible trend on today’s WWW [23, 114, 118].

3

1. Introduction

Prominent publishers include the BBC [93, 155], the New York Times [103], the UK gov-
ernment [35], the Library of Congress [50], Best Buy [17], and Renault [144]. Available
data covers diverse topics such as books [21], movies [80], music [132], radio and televi-
sion programs [93], reviews [84], scientific publications [165], genes, proteins, medicine,
clinical trials [136], geographic locations [10], people, companies, census data, etc.
The emergence of this global, interlinked data space—often referred to as the “Web of

Data” [23, 83]—presents an interesting development; the possibility to query the Web of
Data as if it were a huge distributed database holds an enormous potential: Data from
a virtually unbounded set of data sources can be aggregated in a standardized manner;
fragmentary information from a multitude of sources can be integrated to achieve a more
complete view or to answer complex information needs in an automated fashion. In the
following, we discuss options for implementing such a query processing functionality.

1.2. Approaches to Query Linked Data
Several general options for querying Linked Data exist. In the simplest case, an applica-
tion may access the SPARQL endpoint provided by a particular data publisher. While
such an access may already provide the application with valuable data, this approach
ignores the great potential of the Web of Data; it does not exploit the possibilities of this
huge data space that integrates a large number of interlinked datasets. The following
example illustrates this limitation.

Example 1.3. Consider a query that asks for the phone number of people who au-
thored a data integration related paper at the European Semantic Web Conference 2009
(ESWC’09). Figure 1.1 provides a SPARQL representation of this query (for a defi-
nition of the SPARQL query language we refer to Chapter 3). For instance, the URI
http://data.semanticweb.org/conference/eswc/2009/proceedings, as used in line 9 in Figure 1.1, de-
notes the proceedings of ESWC’09.
This query cannot be answered from a single dataset but requires data from a diverse

set of data sources on the WWW. For instance, the list of papers and their topics
(as asked for in lines 9 to 11) are published as part of the Semantic Web Conference
Corpus (online at http://data.semanticweb.org); the names of the paper topics (line 12)
are provided by the data sources responsible for the URIs used to denote the topics;
the phone numbers (line 18) are provided by the authors (e.g., in a FOAF document on
their personal Web site [41]). 2

The example introduces a query that can only be answered by executing queries over a
(potentially virtual) union of Linked Data from multiple sources. The database literature
focuses on two paradigms for querying distributed data provided by autonomous sources:
data warehousing [33] and federated query processing [145]. Both of these paradigms
can be used to query Linked Data provided by multiple publishers [78].
Data warehouse approaches are based on copying data into a centralized repository

similar to collecting Web documents managed by search engines for the WWW. By
using such a repository, it is possible to provide almost instant query results. This

4

http://data.semanticweb.org

1.2. Approaches to Query Linked Data

1 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
2 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
3 PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
4 PREFIX swc : <http :// data . semanticweb . org /ns/swc/ onto logy#>
5 PREFIX swrc : <http :// swrc . ontoware . org / onto logy#>
6
7 SELECT DISTINCT ? author ?phone
8 WHERE {
9 <http :// data . semanticweb . org / con f e r ence /eswc /2009/ proceed ings>

10 swc : hasPart ?pub .
11 ?pub swc : hasTopic ? t op i c .
12 ? top i c r d f s : l a b e l ? top i cLabe l .
13 FILTER regex (str (? top i cLabe l) , "Data␣ i n t e g r a t i o n " , " i ") .
14
15 ?pub swrc : author ? author .
16 {? author owl : sameAs ? authAlt } UNION {? authAlt owl : sameAs ? author }
17
18 ? authAlt f o a f : phone ?phone .
19 }

Figure 1.1.: SPARQL query that asks for phone numbers of people who authored a data
integration related paper at the European Semantic Web Conference 2009.

capability comes at the cost of setting up and maintaining a centralized repository. Thus,
query results may not reflect the most recent data and users may only benefit from the
portion of the Web of Data that has been copied into the repository. For instance, if
we aim to answer the query in Example 1.3 by using a repository that lacks, e.g., some
authors’ personal data (or the most recent version thereof), we may get an answer that
is incomplete (or outdated) w.r.t. all Linked Data available on the WWW.
Federated query processing approaches distribute query execution over the SPARQL

endpoints that publishers provide for their Linked Data. Building a federation system
for a given set of SPARQL endpoints differs not much from work on relational federation
systems [55]; a number of SPARQL federation systems have been presented in the litera-
ture (e.g., ANAPSID [5], Avalanche [11], DARQ [130], FedX [143], and SPLENDID [54]).
The advantage of using such a system is that no copied data needs to be synchronized;
instead, queries are always answered based on the original, up-to-date data. With ver-
sion 1.1 of SPARQL, query federation even becomes a feature of the query language:
The keyword SERVICE enables users to identify subqueries that have to be processed
by remote SPARQL endpoints [129]. However, a particular downside of all SPARQL
federation approaches is their limited coverage: We cannot assume that all publishers
provide a SPARQL endpoint for their Linked Data. Providing and maintaining a reli-
able SPARQL endpoint presents a significant additional effort that not all publishers are
willing or able to make [29]. In contrast, the Linked Data principles present a simple
publishing method that can be easily added to existing workflows for generating HTML
documents. Using the RDFa standard, Linked Data can even be embedded into HTML
documents [6], allowing publishers to serve a single type of document for human and ma-
chine consumption. Therefore, it is more likely that people expose Linked Data on their
personal Web site via dedicated RDF documents or embedded in HTML documents,

5

1. Introduction

rather than setting up a SPARQL endpoint (which renders a query execution approach
that relies on such endpoints unsuitable for the query in Example 1.3). Consequently,
querying the Web of Data as a federation of SPARQL endpoints may result in ignoring
a large portion of Linked Data available.
Given the limitations that data warehousing and federated query processing have in

exploiting the Web of Data to its full potential, special approaches for Linked Data
query processing have been studied [74, 99, 115, 139, 159]. The goal of Linked Data
query processing is an online execution of declarative queries over the Web of Data,
by relying only on the Linked Data principles. That is, Linked Data query processing
systems obtain Linked Data for answering a given query by looking up URIs during
the query execution process itself. As a result, Linked Data query processing is likely
to contribute to bringing the Web of Data to its full potential. However, we notice a
shortage of work on fundamental aspects of this new paradigm. That is, existing work
on Linked Data query processing focuses primarily on various, system-related aspects
of (query-local) data management, query execution, and optimization. To fill this gap,
this dissertation studies the foundations of Linked Data query processing.

1.3. Problem Statement

Querying the Web of Data is fundamentally different from querying a more traditional
database whose elements (such as tables and indexes) are registered in a catalog and
can be accessed without any limitations. The Web of Data is a virtually unbounded
space; that is, looking up any randomly generated HTTP URI may result in retrieving
Linked Data. Although these URIs are countable, there exists an infinite number of
them. Therefore, we cannot assume the existence of a complete catalog of all URIs for
retrieving all Linked Data (even if the Web of Data would be static). Consequently,
we also cannot assume that any system ever has access to all Linked Data that is—or
was—(openly) available on the WWW at a certain point in time.
While existing work on Linked Data query processing has studied practical approaches

for dealing with these restrictions, a more fundamental discussion of the queries that may
be executed based on such approaches is largely missing. More precisely, there do not
exist provable criteria for identifying queries whose execution (over the Web of Data)
may not terminate or is not feasible at all. Furthermore, for most of the Linked Data
query processing approaches it is not even clear what exactly the expected result of
executing a query is (because the corresponding publications lack a precise definition of
supported queries and query semantics).
While the declarative query language SPARQL is the standard for querying a-priory

defined sets of (RDF-based) Linked Data copied from the WWW, there does not exist
a similarly declarative language for querying the Web of Data itself. Nonetheless, given
that Linked Data is based on the RDF data model and SPARQL is a query language for
RDF, it seems natural to assume that SPARQL could also be used for such a purpose
(as we have done in Example 1.3). In fact, existing Linked Data query processing
approaches use (a particular fragment of) SPARQL to denote the queries that they

6

1.4. Contributions

focus on. However, this approach is insufficient because the existing SPARQL semantics
defines queries as functions over an “RDF dataset” [63], that is, a fixed, a-priory defined
collection of sets of RDF triples; therefore, given that the Web of Data is not such an
RDF dataset, the expected result for evaluating a SPARQL expression over the Web of
Data remains undefined in most of the literature on Linked Data query processing.
We note that some publications exist that propose such a missing query semantics

to use SPARQL for the Web of Data [26, 66, 160] (for a detailed discussion of these
proposals refer to Section 3.1.3, page 35ff). However, these proposals are limited to
conjunctive queries and they lack an analysis of the computational feasibility (or other
properties) of queries under the proposed semantics (let alone a proof showing that a
Linked Data query processing approach correctly supports such a query semantics).

1.4. Contributions

The primary goal of this dissertation is to formally establish fundamental properties and
limitations of Linked Data query processing. To this end, we address the aforementioned
problems by making the following main contributions:

1. We establish well-defined foundations for Linked Data query processing (as-
suming SPARQL as our query language). In particular, these foundations include:

a) a data model that formally represents the Web of Data,

b) a computation model that captures the capabilities of systems whose access
to data sources relies only the Linked Data principles, and

c) multiple, well-defined query semantics for using the complete core fragment
of SPARQL as a query language for Linked Data on the WWW.

2. We study computational feasibility and related properties of queries under the
proposed query semantics.

3. We provide a comprehensive overview and classification of query execution
techniques that are used in existing query processing approaches for Linked Data.

4. We show soundness and completeness of a “traversal-based query execution”
approach [75], which is among the most prevalent query processing approaches for
Linked Data.

5. We investigate the suitability of iterators for implementing traversal-based
query execution.

In the following we provide a more detailed description of our contributions.

7

1. Introduction

Formal Framework

The basis of this dissertation is a formal framework that enables us to define query
semantics of queries over Linked Data and to study the computational feasibility of
queries under such query semantics. Consequently, our formal framework consists of a
data model and a computation model.
The data model formalizes the idea of Linked Data by introducing an abstract struc-

ture called the Web of Linked Data. We emphasize that such a Web may be infinitely
large in our data model; allowing for an infinite Web of Linked Data enables us to cap-
ture the existence of Web servers that are able to respond to an infinite number of URIs
by generating Linked Data on the fly (as illustrated in Example 1.2, page 3). Our data
model also introduces the concept of a Linked Data query. This concept formalizes the
notion of queries over Linked Data.
In addition to the data model, our formal framework comprises a computation model.

This model allows us to formally identify those Linked Data queries for which a complete
computation is feasible. To this end, the model captures the capabilities of systems that
aim to make use of data available as per the Linked Data principles (e.g., for query
computation or for answering decision problems about Linked Data on the WWW).
We emphasize that our data model and our computation model are independent of

any particular query language (such as SPARQL) or query processing approach (such
as traversal-based query execution). Hence, these models present a basis not only for
the work in this dissertation but also for future work related to the foundations of query
processing for Linked Data.

Query Semantics

This dissertation focuses on Linked Data queries that are represented using the com-
plete core fragment of the RDF query language SPARQL (which includes conjunctions,
disjunctions, optional parts, and filter constraints over values bound to query variables).
To use SPARQL in our context, we have to adjust the semantics of SPARQL expres-
sions. More precisely, we redefine the scope for evaluating SPARQL expressions. In
this dissertation we propose (and study) two approaches for such an adjustment. The
first approach uses a query semantics where the scope of a query is the complete set
of Linked Data on the Web. We call this semantics full-Web semantics. The second
approach introduces a family of reachability-based semantics which restrict the scope to
data that is reachable by traversing a well-defined set of data links.

Formal Analysis of SPARQL-Based Linked Data Queries

By introducing the aforementioned query semantics, we contribute a well-defined foun-
dation for Linked Data query processing. However, instead of merely defining query
semantics, we aim to understand the consequences of using these semantics. Therefore,
we formally analyze several theoretical properties of queries under these semantics: Most
importantly, we study the computational feasibility of such queries and the feasibility of

8

1.4. Contributions

deciding whether a query execution terminates. For this analysis we use our computa-
tion model. The perhaps most important result of this analysis is a formal verification of
the common, as yet unverified assumption that “processing queries against Linked Data
where sources have to be discovered online might not yield all results” [99]. However, we
also identify the cases in which—at least in theory—an expected query result may be
computed completely by an execution that is guaranteed to terminate.
Furthermore, we study basic properties such as satisfiability and monotonicity, and we

discuss the implications of querying an infinite Web of Linked Data. For the reachability-
based query semantics, we also discuss the relationships between different notions of
reachability and the impact of these notions on queries and their properties. Finally, we
identify commonalities and differences between the different query semantics.

Classification of Possible Query Execution Techniques

Multiple approaches to process Linked Data queries have been presented in the literature.
Each of these approaches introduces a number of (complementary) query execution tech-
niques. Some of the techniques proposed for different approaches implement the same
abstract idea and, thus, are conceptually similar; other techniques are very different from
each other (or serve different purposes).
There does not exist a systematic overview on the state of the art in executing Linked

Data queries that reviews all of these techniques separate from discussing the particu-
lar approaches in whose context they are introduced. To fill this gap, we introduce a
classification that categorizes possible query execution techniques along three orthogo-
nal dimensions: (i) data source selection, (ii) data source ranking, and (iii) integration
of data retrieval and result construction. For each of the dimensions, we provide a
comprehensive conceptual comparison of the techniques in that dimension.

Formal Analysis of Traversal-Based Execution

One of the most prevalent approaches to execute Linked Data queries is “traversal-
based query execution” [75], which takes advantage of the characteristics of the Web of
Data. The fundamental approach is to intertwine the traversal of data links with the
construction of the query result thus integrating the discovery of data into the query
execution process. Hence, in contrast to more traditional query execution approaches,
this approach does not assume a fixed set of relevant data sources beforehand; instead,
it uses data from initially unknown data sources for answering queries and, therefore,
enables applications to tap the full potential of the WWW.
While different implementations of the idea of traversal-based query execution have

been published [79, 99, 115], we are interested in whether the general approach is sound
and complete w.r.t. the query semantics that we introduce. Therefore, we define an ab-
stract query execution model that formalizes the idea of traversal-based query execution;
i.e., this model captures the approach of intertwining link traversal and result construc-
tion independent from particular implementation techniques. Based on this model we
prove the soundness and completeness of the new query execution paradigm.

9

1. Introduction

Analysis of Link Traversing Iterators

As mentioned before, the idea of traversal-based query execution may be implemented
using different techniques. In this dissertation we aim to achieve an understanding of the
suitability of classical database techniques for such a purpose. In particular, we focus
on the well-known iterator model [56].
We define a link traversing iterator. The main feature of this iterator is that calling its

GetNext function (to obtain intermediate results for computing a query) has the desired
side effect of a dynamic, traversal-based retrieval of Linked Data. Hence, a pipeline of
such iterators continuously augments the query-local dataset over which it operates.
We prove that such a pipeline presents a sound implementation of our abstract model

of traversal-based query execution. However, this implementation approach cannot guar-
antee completeness of computed query results. In a formal and experimental analysis
we study this limitation, as well as other properties of the implementation approach.

Technical Contributions

In addition to the aforementioned research contributions, we developed a complete query
processing system for Linked Data queries during our work on this dissertation. This
system, called SQUIN, is implemented in Java, and it consists of more than 10K lines of
native source code (which is available as Free Software on the SQUIN project homepage
at http://squin.org). The query engine in SQUIN performs a traversal-based execution
of Linked Data queries and has been implemented based on the iterator approach as
studied in this dissertation.
By using SQUIN, the aforementioned example query (cf. Example 1.3 on page 4) can

be executed live on the WWW. On September 16, 2013, such an execution resulted in
obtaining the phone numbers of two relevant authors. During this execution, SQUIN
discovered (and used) Linked Data from 14 different Web sites.

1.5. Thesis Outline
This dissertation consists of two main parts. The first part focuses on the theoretical
foundations and fundamental properties of SPARQL-based Linked Data queries. This
part is divided into three chapters:

• Chapter 2 introduces the formal framework for this dissertation, that is, our data
model and our computation model.

• Chapter 3 defines SPARQL and the full-Web semantics for SPARQL; thereafter,
the chapter presents our analysis of queries under this full-Web semantics. More-
over, the chapter also reviews related work on query languages and query semantics
for Linked Data queries and for accessing the WWW in general.

• Chapter 4 defines the family of reachability-based query semantics for SPARQL
and provides an analysis of queries under these semantics (analogous to the analysis

10

http://squin.org

1.5. Thesis Outline

of full-Web semantics in the previous chapter). Furthermore, the chapter discusses
different notions of reachability, and it compares the full-Web semantics with the
reachability-based query semantics.

The second part of this dissertation focuses on topics related to the execution of Linked
Data queries. This part also consists of three chapters:

• Chapter 5 provides a comprehensive, systematic review of query execution tech-
niques for Linked Data queries.

• Chapter 6 defines an implementation-independent execution model of traversal-
based query execution and shows the soundness and completeness of this model.

• Chapter 7 introduces the iterator approach for implementing traversal-based query
execution and analyzes this implementation approach formally and experimentally.

Finally, Chapter 8 summarizes the results of this dissertation and outlines directions for
future research.

The formalizations in this dissertation introduce a number of symbols. We emphasize
that, for the convenience of the reader, Appendix A lists these symbols and refers to the
corresponding definitions.

11

Part I.

Foundations of Queries
over a Web of Linked Data

13

2. Models for Linked Data Queries

This chapter introduces formal models for defining and analyzing queries over data that
is accessible on the WWW based on the Linked Data principles. In particular, these
models are a data model and a computation model.
The data model formalizes the idea of a Web of Linked Data and a notion of queries

over such a Web. The main purpose of this model is to provide a basis for introducing
well-defined query semantics in Chapters 3 and 4. However, we also use the data model
as a basis for developing a query execution model that formally captures a particular
approach to execute queries over a Web of Linked Data (cf. Chapter 6).
The concept of a Web of Linked Data, as formalized by our data model, presents the

notion of a database in our work. We assume that this database is distributed over
the WWW, data access is limited to URI lookups, and there does not exist a complete
catalog of all URIs whose lookup results in the retrieval of some data. These limitations
have an impact on the capabilities of systems that aim to compute queries over Linked
Data on the WWW. The computation model that we introduce in this chapter captures
these capabilities formally and, thus, allows us to classify queries w.r.t. whether Linked
Data query execution systems for the WWW can compute them.
For the models presented in this chapter, we assume a static view of the Web. More pre-

cisely, we assume that no changes are made to the data on the Web during the compu-
tation of a query (or any other type of computation). Such a static view also ignores
temporarily unavailable data and the possibility of timeouts during the retrieval of data.
This chapter is organized as follows: First, Section 2.1 introduces our data model.

Second, Section 2.2 specifies our computation model.

2.1. Data Model
In this section we first define the structural elements of our data model. Thereafter,
we augment the model by introducing the notion of a Linked Data query. Finally, we
review related work on modeling the WWW and Linked Data on the WWW.

2.1.1. Structural Elements
Berners-Lee’s Linked Data principles prescribe RDF as a common data model for rep-
resenting Linked Data published on the WWW [14]. Therefore, we use the RDF data
model [92] as a basis for our model of a Web of Linked Data. That is, we assume three
pairwise disjoint, countably infinite sets U (URIs), B (blank nodes), L (literals). An
RDF triple is a tuple (s, p, o) ∈ (U ∪B)×U× (U ∪B∪L), where s, p, and o are called the
subject, predicate, and object of that triple, respectively. For any RDF triple t = (s, p, o)

15

2. Models for Linked Data Queries

we define terms(t) := {s, p, o} and uris(t) := terms(t) ∩ U . Overloading function terms,
we define terms(G) :=

⋃
t∈G terms(t) for any set G of RDF triples.

Given these preliminaries we are ready to define a Web of Linked Data: Assume
a countably infinite set D that is disjoint from U , B, and L, respectively. We refer
to elements in this set as Linked Data documents, or LD documents for short, and
use them to represent the concept of Web documents from which Linked Data can be
extracted. Then, a Web of Linked Data is a potentially infinite structure of interlinked
LD documents. In such a Web, LD documents are accessed via URIs and contain a set
of RDF triples. The following definition captures our approach:

Definition 2.1 (Web of Linked Data). Let T = (U ∪ B) × U × (U ∪ B ∪ L) be the
infinite set of all possible RDF triples and let ⊥ be a special symbol that denotes the
nonexistent LD document (⊥ /∈ D). AWeb of Linked Data is a tupleW = (D, data, adoc)
with the following three elements:

• D is a finite or countably infinite set of LD documents; i.e., D ⊂ D.

• data is a total mapping data : D → 2T such that (i) data(d) is finite for all LD
documents d ∈ D, and (ii) for each pair (d1, d2) ∈ D×D of distinct LD documents
d1 6= d2, terms

(
data(d1)

)
∩ terms

(
data(d2)

)
∩ B = ∅ holds.

• adoc is a total mapping adoc : U → D ∪ {⊥} such that for each LD document
d ∈ D there exists a URI u ∈ U for which adoc(u) = d. 2

In the following, we discuss the rationale and properties of the three elements that define
a Web of Linked Data in our model (i.e., D, data, and adoc), and we introduce additional,
related concepts that we need in this dissertation.

Elements of a Web of Linked Data

We say that a Web of Linked Data W = (D, data, adoc) is infinite if its set of LD
documents D is infinite; otherwise, we say W is finite. Our model allows for infinite
Webs to cover the possibility that Linked Data about an infinite number of identifiable
entities is generated on the fly. As an example for such a case recall the Web server that
provides Linked Data for all natural numbers as discussed in Example 1.2 (cf. page 3).
Another example for an infinite number of entities is the LinkedGeoData project; this
project provides Linked Data about any circular and rectangular area on Earth [10].
These two examples illustrate that—even if we assume a static view—an infinite Web of
Linked Data is possible in practice because of the existence of data generating servers.
Covering these cases in our model enables us to define queries over such data and analyze
the effects of executing those queries.
Even if a Web of Linked Data is infinite, we require countability for its set of LD

documents. We shall see that this requirement has nontrivial consequences: It limits the
potential size of Webs of Linked Data in our model and, thus, allows us to encode such
a Web on the tape of a Turing machine (cf. Section 2.2.2, page 27ff). We emphasize
that the requirement of countability does not restrict us in modeling the WWW as a

16

2.1. Data Model

Web of Linked Data: In the WWW, HTTP-scheme-based URIs [47] are used to locate
documents that contain Linked Data. Even if those URIs are not limited in length, they
are words over a finite alphabet. Thus, the infinite set of all possible HTTP URIs is
countable, and so is the set of all documents that may be retrieved using such URIs.
The mapping data associates each LD document d ∈ D in a Web of Linked Data

W = (D, data, adoc) with a finite set of RDF triples. In practice, these triples are
obtained by parsing a Web document after it has been retrieved from the WWW. The
actual syntax for representing RDF triples in Web documents is not relevant for our
model. However, as prescribed by the RDF data model [92], Definition 2.1 requires that
the data of each LD document uses a unique set of blank nodes.
To denote the (potentially infinite but countable) set of all RDF triples in a Web of

Linked Data W = (D, data, adoc) we write AllData(W). More precisely, we define:

AllData(W) :=
⋃
d∈D

data(d).

According to the Linked Data principles [14], a URI does not only identify an entity,
but it also serves as a reference to a particular document that contains data about that
entity. Our model captures this relationship between URIs and documents by defining
the mapping adoc. LD document adoc(u) ∈ D may be considered as an authoritative
source of data for URI u (hence the name adoc). To allow for LD documents that are
authoritative for multiple URIs, we do not require injectivity for mapping adoc.
However, we require totality for mapping adoc, which shall allow us to model a notion

of partial knowledge about a queried Web of Linked Data when we discuss our query
execution model in Chapter 6 (see in particular Definition 6.4, page 118). Given that
mapping adoc is total, we need the concept of a nonexistent LD document, denoted by ⊥,
in order to accommodate for URIs for which no authoritative LD document exists (in a
given Web of Linked Data). Hence, adoc maps these URIs to ⊥.

Graph Structure of a Web of Linked Data

Our data model does not make any assumption about the relationship between a URI u
for which there exists an authoritative LD document d = adoc(u) ∈ D in a Web of Linked
DataW = (D, data, adoc) and the data in this document. Nonetheless, as encouraged by
the Linked Data principles, it is common practice that the URI occurs in this data; i.e.,
there exists an RDF triple t ∈ data(d) such that u ∈ uris(t). Clearly, other URIs may
occur in this data as well. Then, the occurrence of a URI u with adoc(u) 6=⊥ in the data
of some LD document establishes a data link from that document to the authoritative
LD document for the URI. These data links form the following graph structure.

Definition 2.2 (Link Graph). Given a Web of Linked Data W = (D, data, adoc), the
link graph of W is a directed graph (D,E) whose vertices are all LD documents in W,
and which has an edge from LD document di to LD document dj if there exists a data
link from di to dj ; i.e., E is defined as follows:

E :=
{

(di, dj) ∈ D ×D
∣∣∣ t ∈ data(di) and u ∈ uris(t) and adoc(u) = dj

}
2

17

2. Models for Linked Data Queries

We note that the link graph of an infinite Web of Linked Data is infinite (i.e., it has
an infinite number of vertices and it may also have an infinite number of edges); the
link graph of a finite Web of Linked Data is finite. Furthermore, link graphs are not
necessarily strongly connected; they do not even have to be weakly connected. Moreover,
given that URIs usually occur in the data of their authoritative LD document (see above),
link graphs may have loops (i.e., edges that connect vertices to themselves).

Example 2.1. Let Wex = (Dex, dataex, adocex) be a Web of Linked Data in which two
producers and two vendors publish (and interlink) data about themselves, their products,
and their offers. We use this Web as a running example throughout this dissertation.
Wex consists of ten LD documents: Dex = {dPr1, dPr2, dV1, dV2, dp1, dp2, dp3, dp4, doff1.1,

doff1.2, doff2.1}. The sets of RDF triples in these documents are given as shown in Fig-
ure 2.1 in which double quote delimited strings denote literals (e.g., "Producer 1" ∈ L) and
any other element in these triples is a URI. For any URI u ∈ U , mapping adocex is given
as follows:

adocex(u) =



dPr1 if u = producer1,
dPr2 if u = producer2,
dV1 if u = vendor1,
dV2 if u = vendor2,
dp1 if u = product1,
dp2 if u = product2,
dp3 if u = product3,
dp4 if u = product4,
doff1.1 if u = offer1.1,
doff1.2 if u = offer1.2,
doff2.1 if u = offer2.1,
⊥ else.

Then, Figure 2.2 illustrates the link graph of Wex (cf. page 20). 2

Subwebs of a Web of Linked Data

To study the monotonicity of queries over a Web of Linked Data we require a notion of
containment for such Webs. For this purpose, we define the concept of a subweb.
Definition 2.3 (Subweb). Let W = (D, data, adoc) and W ′ = (D′, data′, adoc′) be
Webs of Linked Data. W ′ is a subweb of W if the following four properties hold:

1. D′ ⊆ D,

2. For each LD document d ∈ D′, data′(d) = data(d).

3. For each URI u ∈ U , if adoc(u) ∈ D′, then adoc′(u) = adoc(u) or adoc′(u) =⊥.

4. For each URI u ∈ U , if adoc(u) /∈ D′, then adoc′(u) =⊥. 2

18

2.1. Data Model

d
a
ta

ex
(d

Pr
1)

=
{ (p

ro
du

ce
r1
,n

am
e,
"P

ro
du

ce
r1

")
,

(p
ro
du

ct
2,

pr
od

uc
ed
By
,p

ro
du

ce
r1

),
(p
ro
du

ct
3,

pr
od

uc
ed
By
,p

ro
du

ce
r1

)}
d
a
ta

ex
(d

p1
)=

{ (p
ro
du

ct
1,

na
m
e,
"P

ro
du

ct
1"

),
(p
ro
du

ct
1,

ol
dV

er
sio

nO
f,
pr
od

uc
t2

),
(p
ro
du

ct
1,

ol
dV

er
sio

nO
f,
pr
od

uc
t3

)}
d
a
ta

ex
(d

p2
)=

{ (p
ro
du

ct
2,

na
m
e,
"P

ro
du

ct
2"

),
(p
ro
du

ct
2,

pr
od

uc
ed
By
,p

ro
du

ce
r1

),
(p
ro
du

ct
1,

ol
dV

er
sio

nO
f,
pr
od

uc
t2

)}
d
a
ta

ex
(d

p3
)=

{ (p
ro
du

ct
3,

na
m
e,
"P

ro
du

ct
3"

),
(p
ro
du

ct
3,

pr
od

uc
ed
By
,p

ro
du

ce
r1

)}
d
a
ta

ex
(d

Pr
2)

=
{ (p

ro
du

ce
r2
,n

am
e,
"P

ro
du

ce
r2

")
,

(p
ro
du

ct
4,

pr
od

uc
ed
By
,p

ro
du

ce
r2

)}
d
a
ta

ex
(d

p4
)=

{ (p
ro
du

ct
4,

na
m
e,
"P

ro
du

ct
4"

),
(p
ro
du

ct
4,

pr
od

uc
ed
By
,p

ro
du

ce
r2

)}

d
a
ta

ex
(d

V
1)

=
{ (v

en
do
r1
,n

am
e,
"V

en
do
r
1"

),
(o
ffe

r1
.1
,o

ffe
re
dB

y,
ve
nd

or
1)
,

(o
ffe

r1
.2
,o

ffe
re
dB

y,
ve
nd

or
1)
}

d
a
ta

ex
(d

off
1.

1)
=
{ (o

ffe
r1
.1
,o

ffe
re
dB

y,
ve
nd

or
1)
,

(o
ffe

r1
.1
,p

ric
e,

10
),

(o
ffe

r1
.1
,o

ffe
re
dP

ro
du

ct
,p

ro
du

ct
2)
}

d
a
ta

ex
(d

off
1.

2)
=
{ (o

ffe
r1
.2
,o

ffe
re
dB

y,
ve
nd

or
1)
,

(o
ffe

r1
.2
,p

ric
e,

6)
,

(o
ffe

r1
.2
,o

ffe
re
dP

ro
du

ct
,p

ro
du

ct
3)
}

d
a
ta

ex
(d

V
2)

=
{ (v

en
do
r2
,n

am
e,
"V

en
do
r
2"

),
(o
ffe

r2
.1
,o

ffe
re
dB

y,
ve
nd

or
2)
}

d
a
ta

ex
(d

off
2.

1)
=
{ (o

ffe
r2
.1
,o

ffe
re
dB

y,
ve
nd

or
2)
,

(o
ffe

r2
.1
,p

ric
e,

11
),

(o
ffe

r2
.1
,o

ffe
re
dP

ro
du

ct
,p

ro
du

ct
2)
}

Fi
gu

re
2.
1.
:T

he
da

ta
in

ou
r
ex
am

pl
e
W
eb

W
ex

(c
f.
Ex

am
pl
e
2.
1,

pa
ge

18
).

19

2. Models for Linked Data Queries

Figure 2.2.: Link graph of the example Web Wex.

As can be seen from Definition 2.3, we require that any LD document in subweb W ′

is also contained in the parent Web W and has the same data as in W (Properties
1 and 2). Furthermore, for URIs whose authoritative LD document is contained in
the parent Web and in the subweb, the relationship between URI and authoritative
LD document may also be available in the subweb; however, the latter is not a must
(Property 3). Finally, if a URI has an authoritative LD document in the parent Web that
is not contained in the subweb, the URI must not have any authoritative LD document
in the subweb (Property 4). Due to this definition our notion of a subweb resembles the
well-known concept of a subgraph in graph theory. In fact, any subweb relation becomes
a subgraph relation when we consider the link graphs for a Web of Linked Data and its
subweb. That is, it is easily verified that the link graph for a subweb is a subgraph of
the link graph for the corresponding parent Web.

Example 2.2. A possible subweb of the Web of Linked DataWex = (Dex, dataex, adocex)
given in Example 2.1 (cf. page 18) is the Web of Linked DataW ′ex = (D′ex, data

′
ex, adoc

′
ex)

with (i) D′ex = {dp2, dp3, doff1.1, doff1.2, offer2.1} ⊂ Dex, (ii) data′ex(d′) = dataex(d′) for all
LD documents d′ ∈ D′ex, and (iii) for any URI u ∈ U , mapping adoc′ex is given as follows:

adoc′ex(u) =



dp2 if u = product2,
dp3 if u = product3,
doff1.1 if u = offer1.1,
doff1.2 if u = offer1.2,
doff2.1 if u = offer2.1,
⊥ else.

20

2.1. Data Model

Figure 2.3.: Link graph of the subweb W ′ex given in Example 2.2.

Figure 2.3 illustrates the link graph of this subweb. 2

In the context of defining reachability-based query semantics in Chapter 4, we shall
define the concept of a reachable subweb. This definition is based on a particular class
of subwebs that resemble the graph theoretic notion of an induced subgraph and, thus,
are called induced subwebs.
Definition 2.4 (Induced Subweb). Let W = (D, data, adoc) be a Web of Linked
Data and let W ′ = (D′, data′, adoc′) be a subweb of W. W ′ is an induced subweb of W
if, for each URI u ∈ U with adoc(u) ∈ D′, adoc′(u) = adoc(u) holds. 2

The condition in Definition 2.4 is a more strict version of Property 3 in Definition 2.3.
We remark that the link graph of an induced subweb is an induced subgraph of the
link graph of the corresponding parent Web (we omit a formal proof of this statement
because this statement is not required for the results in this dissertation).
The following proposition establishes several properties of subwebs and induced sub-

webs that we shall use throughout this dissertation:

Proposition 2.1. Let W = (D, data, adoc) be a Web of Linked Data.

1. For any subweb W ′ of W, AllData(W ′) ⊆ AllData(W).

2. Any subweb W ′ = (D′, data′, adoc′) of W is specified unambiguously by defining
the set of LD documents D′ and mapping adoc′.

3. Any induced subweb W ′ = (D′, data′, adoc′) of W is specified unambiguously by
defining the set of LD documents D′.

Proof. 1.: For any subweb W ′ = (D′, data′, adoc′) of W, D′ ⊆ D holds by Defini-
tion 2.3 (cf. page 18). Then, we show AllData(W ′) ⊆ AllData(W) by using:

AllData(W ′) =
⋃
d∈D′

data(d) and AllData(W) =
⋃
d∈D

data(d).

2.: Let W ′ = (D′, data′, adoc′) be an arbitrary subweb of W . To prove that W ′ is
specified unambiguously by defining D′ and adoc′ we have to show that there does not

21

2. Models for Linked Data Queries

exist another subweb of W that has both the same D′ and the same adoc′. We show
this by contradiction: Assume there exists another subweb W ′′ = (D′′, data′′, adoc′′) of
W such that D′′ = D′, adoc′′ = adoc′, and data′′ 6= data′. Since both W ′ and W ′′ are a
Web of Linked Data, by Definition 2.1 (cf. page 16), data′ and data′′ are total mappings
from the set D′ and D′′, respectively; i.e., dom(data′) = D′ and dom(data′′) = D′′.
Since both subwebs have the same set of LD documents (D′′ = D′), it holds that
dom(data′) = dom(data′′). Furthermore, from Property 2 in Definition 2.3, we have:

∀ d ∈ D′ : data′(d) = data(d) and ∀ d ∈ D′′ : data′′(d) = data(d).

Thus, given D′′ = D′, it follows that mappings data′′ and data′ are equivalent. Since
this equivalence contradicts our assumption, we conclude that defining D′ and adoc′ is
sufficient to specify subweb W ′ unambiguously (given its parent Web W).

3.: Let W ′ = (D′, data′, adoc′) be an arbitrary induced subweb of W . To prove that W ′
is specified unambiguously by defining D′ we, again, use a proof by contradiction. That
is, we assume there exists another induced subweb W ′′ = (D′′, data′′, adoc′′) of W such
that D′′ = D′ and data′′ 6= data′ or adoc′′ 6= adoc′. By Definition 2.4 and by Property 4
in Definition 2.3, we have:

∀u ∈ U : adoc(u) ∈ D′ ⇒ adoc′(u) = adoc(u),
∀u ∈ U : adoc(u) /∈ D′ ⇒ adoc′(u) =⊥,

as well as:

∀u ∈ U : adoc(u) ∈ D′′ ⇒ adoc′′(u) = adoc(u),
∀u ∈ U : adoc(u) /∈ D′′ ⇒ adoc′′(u) =⊥ .

Thus, givenD′′ = D′, it follows that mappings adoc′′ and adoc′ are equivalent. Therefore,
based on our assumption, mappings data′′ and data′ cannot be equivalent. However, by
using the same argument as in the more general case of subwebs, we may show that
mappings data′′ and data′ are equivalent. Thus, our assumption cannot hold. �

Example 2.3. Example 2.2 introduces a subweb W ′ex = (D′ex, data
′
ex, adoc

′
ex) of our

example Web of Linked Data Wex (cf. page 20). This subweb is even an induced subweb
of Wex. Thus, its set of LD documents D′ex specifies W ′ex unambiguously. 2

2.1.2. Queries
In addition to the structural part, our data model introduces an abstract notion of
queries over a Web of Linked Data. We aim to define this notion without imposing any
particular query formalism (including query languages, query semantics, etc.) because
we understand our data model as a general framework for defining and studying queries
over Webs of Linked Data. Therefore, in the following definition we deliberately leave
open query formalism specific aspects.

22

2.1. Data Model

Definition 2.5 (Linked Data Query). Let WAll be the infinite set of all possible
Webs of Linked Data (that is, all 3-tuples that satisfy Definition 2.1) and let R(F) be
a possibly infinite but countable set of all possible elements of query results specific to
some query formalism F . A Linked Data query Q, specified using query formalism F , is
a total function Q :WAll → 2R(F). 2

As can be seen from Definition 2.5, every Linked Data query maps a queried Web of
Linked Data to some subset of the set of all possible (query formalism specific) result
elements. For instance, for the Linked Data queries discussed in the following chapters,
these result elements are valuations that provide bindings for query variables (a formal
definition of these valuations follows in Section 3.2.1, page 38ff). However, for the
following, general discussion of Linked Data queries (that is, before we introduce concrete
notions of Linked Data queries), we assume an arbitrary setR(F) (as per Definition 2.5).
While such a (query formalism specific) set of possible result elements may be infinite, we
assume countability. This limitation is necessary to allow us to analyze computability
of Linked Data queries using an abstract machine model (for which encoding result
elements requires countability; cf. Section 2.2.2, page 27ff).
Hereafter, for any Linked Data query Q and any Web of Linked DataW, we refer to the

particular subset Q(W) ⊆ R(F) that is expected according to the query semantics used
for Q as the expected query result for Q in W. Each element µ ∈ Q(W) in this expected
query result is a query solution (or simply a solution) for Q in W. Furthermore, we use
the term computed query result to refer to the set of result elements that a particular
query execution process reports as a result of executing a Linked Data query over a Web
of Linked Data. For query execution approaches that are sound and complete (w.r.t.
the query semantics used) it holds that every computed query result is equivalent to
the corresponding expected query result; approaches that are sound but not complete
guarantee computed query results that are subsets of the expected query results.
While our definition of Linked Data queries assumes that all query results are sets, we

emphasize that this definition does not rule out boolean queries or queries under some
bag semantics: Boolean queries may be simulated by interpreting an empty (expected)
query result as false and a nonempty result as true. To accommodate bag semantics,
solutions may be augmented with some notion of identity.
Given the concept of subwebs, we define monotonicity of Linked Data queries.

Definition 2.6 (Monotonicity). A Linked Data query Q is monotonic if the following
statement holds for any pair of Webs of Linked DataW1 andW2: IfW1 is a subweb ofW2,
then Q(W1) ⊆ Q(W2). A Linked Data query is non-monotonic if it is not monotonic. 2

Similarly, the satisfiability property carries over naturally to Linked Data queries.

Definition 2.7 (Satisfiability). A Linked Data query Q is satisfiable if there exists
a Web of Linked Data W such that Q(W) is not empty. A Linked Data query is
unsatisfiable if it is not satisfiable. 2

As usual, non-monotonicity entails satisfiability:

Proposition 2.2. Any non-monotonic Linked Data query is satisfiable.

23

2. Models for Linked Data Queries

Proof. W.l.o.g., let Q be an arbitrary non-monotonic Linked Data query. Then, by
Definition 2.6, there exists a pair of Webs of Linked Data W1 and W2 such that W1 is a
subweb of W2 and Q(W1) * Q(W2). Given such a pair, from Q(W1) * Q(W2) it follows
that there exists a solution for query Q in Web W1 that is not a solution for Q in Web
W2. Let µ be such a solution. Hence, µ ∈ Q(W1). Therefore, Q(W1) is not empty and,
thus, Linked Data query Q is satisfiable. �

For some of the discussions in this dissertation we need the following, more restrictive
notion of satisfiability.
Definition 2.8 (Bounded and Unbounded Satisfiability). A Linked Data query
Q is unboundedly satisfiable if, for any natural number k ∈ {0, 1, 2, ...}, there exists a
Web of Linked DataW such that the cardinality of query result Q(W) is greater than k;
i.e., |Q(W)| > k. A Linked Data query is boundedly satisfiable if it is satisfiable but not
unboundedly satisfiable. 2

Remark 2.1. From Definition 2.8 we see that every unboundedly satisfiable Linked
Data query is also satisfiable. Hence, the two disjoint classes—boundedly satisfiable
Linked Data queries and unboundedly satisfiable Linked Data queries—cover the more
general class of satisfiable Linked Data queries completely.

2.1.3. Related Work
We conclude the discussion of our data model with an overview on related work. In
particular, we review general models of the WWW briefly and, thereafter, discuss ap-
proaches for modeling Linked Data on the WWW.

Models of the World Wide Web

Early works that introduce models of the WWW, are based on an understanding of the
WWW as a distributed hypertext system consisting of Web pages that are interconnected
by a single type of hypertext links. Therefore, most of these works model the WWW
as a directed graph where each vertex represents a Web page, and edges represent the
links between those pages [3, 58, 86, 95, 96, 97, 106, 112, 113]. In most cases, the
edges are labeled with the anchor text of the corresponding hypertext link. In some
models, vertices have additional attributes (e.g., title, modification date, size) [112, 113]
or an internal structure [58, 95, 106, 152]. Furthermore, some authors represent their
conceptual, graph-based model as a relational database schema [3, 98, 112, 113, 152].
For instance, Abiteboul and Vianu introduce the notion of a “Web instance” [3]. Such

a Web instance is an infinite structure over the relational database schema{
Obj(oid), Ref (source, label, destination)

}
,

where the domain of attributes oid, source, and destination is a “set [...] of object
identifiers” and the domain of attribute label is a “set [...] of labels” [3]. Then, for
each Web instance, “relation Obj specifies the set of objects [in that instance, where,]

24

2.2. Computation Model

intuitively, an object corresponds to a Web page” and “relation Ref specifies, for each
of the objects, a finite set of links to other objects, each of which has a label” [3]. Note
that, although Web pages have only a finite number of links to other pages, any Web
instance (in Abiteboul and Vianu’s model) consists of infinitely many of these pages.
For a more comprehensive discussion of the challenges and different approaches for

“modeling the Web from a data perspective” we refer to Gutierrez’ overview [60].

Models of Linked Data on the World Wide Web

With the emergence of Linked Data on the WWW, several Linked Data specific query
formalisms (cf. Section 3.1, page 34ff) and query execution techniques (cf. Chapter 5,
page 99ff) have been proposed in the literature. Along with these works come a number
of more or less formal approaches for modeling Linked Data on the WWW.
Surprisingly, none of these approaches presents a graph-based model. Instead, the

common method of modeling Linked Data is to, first, introduce the notion of an “RDF
graph” [26, 66, 88, 139, 160, 162], which, essentially, is a set of RDF triples (other
authors call this concept “source” [99] or refer to it simply as a “set of triples” [48]).
Then, most authors define some structure that consists of (i) a set of such RDF graphs
and (ii) specific mappings that capture the possibility for obtaining these RDF graphs
based on Web protocols [48, 66, 88, 160] (in other models such a structure is not made
explicit [26, 99, 139, 162]). While the mappings in such a structure are similar to the
mappings adoc and data in our data model, the set of RDF graphs in such a structure
corresponds to the image of mapping data.
The primary conceptual difference between the models introduced by different au-

thors is whether every URI is directly mapped to a (potentially empty) set of RDF
triples [48, 99], or whether there exists a level of indirection between URIs and sets of
RDF triples [26, 66, 88, 139, 160]. Authors who introduce such a level of indirection aim
to distinguish between (i) “URIs [for which] HTTP lookups [...] directly return [HTTP]
status code 200 OK and data in a suitable RDF format” and (ii) URIs for which Web
servers answer with an “HTTP redirect to another URI” [160]. Based on such a dis-
tinction it is possible to make explicit that (i) the lookup of a particular URI involves
multiple HTTP requests and (ii) looking up different URIs may result in retrieving the
same RDF graph (from the same location on the Web).
While our data model does not focus on such protocol-specific details, our notion of

an LD document represents a similar level of indirection. Thus, our model also allows us
to express that looking up different URIs may result in retrieving the same set of RDF
triples from the same location. Furthermore, we may express that the same set of RDF
triples is available from different locations. As an additional feature, by introducing the
concept of a link graph, our model makes the graph-based nature of the Web explicit.

2.2. Computation Model
Our data model provides the foundation to define precisely the queries that Linked Data
query execution systems for the WWW aim to compute. To analyze the feasibility of

25

2. Models for Linked Data Queries

computing such queries we need a model of computation that captures the capabilities
of such systems. This section introduces such a model.
The commonly used model of computation, a Turing machine [158], is unsuitable in

our context because of the assumption that functions are computed over finite structures
that are directly and completely accessible by the system that performs the computation.
This assumption does not hold for a Web of Linked Data W = (D, data, adoc) that
is distributed over the WWW: First, W may be infinitely large. Second, and more
importantly, we cannot assume that a system for executing Linked Data queries over
this Web has direct access to any of the three elements D, data, and adoc. Instead, such
a system can only access the queried Web by looking up URIs. Since the set U of all
URIs is infinite, the system cannot have complete information about W (in particular
about mapping adoc). Finally, if we assume that there does not exist a complete catalog
of all URIs based on which the system may retrieve an LD document d ∈ D (i.e., a
catalog of all URIs u ∈ U for which adoc(u) 6=⊥), the system can never be certain that
it has seen all LD documents in D.
More suitable models of computation on the WWW have been introduced by Abite-

boul and Vianu [3] and by Mendelzon and Milo [112]. These models are based on the
hypertext-centric view of the WWW as outlined in Section 2.1.3 (cf. page 24f). For our
computation model we adopt the idea of these existing models to our context (that is,
a Web of Linked Data distributed over the WWW).
In the following, we briefly describe the work of Abiteboul and Vianu and of Mendelzon

and Milo. Afterwards, we introduce an abstract machine that captures the capabilities of
Linked Data query execution systems for the WWW. Based on this machine we define
(i) a classification for the computability of Linked Data queries and (ii) a notion of
decidability for decision problems whose input is a Web of Linked Data.

2.2.1. Existing Models of Computation on the WWW

In earlier work on computing queries over a hypertext-centric view of the WWW (cf.
Section 2.1.3, page 24f), Abiteboul and Vianu model computation using specific adap-
tations of the Turing machine which they call “Web machine”, “browser machine”, and
“browse/search machine” [3]. The latter two machine models capture the limited data
access capabilities on the WWW. That is, the “Web instance” (Abiteboul and Vianu’s
abstraction of a snapshot of the WWW; cf. Section 2.1.3) is not available directly to
programs run by these machines. Instead, such a program needs to write an encoding
of a valid object identifier (that exists in the Web instance) to a special “browsing tape”
and then enter a special state, called “expand” [3]; in this state the machine replaces
the object identifier on the browsing tape by an encoding of the description of the corre-
sponding object (that is, all those Ref tuples whose source attribute is the given object
identifier; cf. Section 2.1.3). Hence, this procedure resembles the process of retrieving a
Web page by looking up the URL of that page. The browse/search machine augments
the browser machine with a nondeterministic search feature that captures the possibility
of querying a search engine for the WWW.
Based on their machines, Abiteboul and Vianu introduce particular notions of com-

putability for queries over a Web instance. These notions are: finitely computable queries,

26

2.2. Computation Model

which correspond to the traditional notion of computability; and eventually computable
queries whose computation may not terminate but each element of the query result will
eventually be reported during the computation [3].
Mendelzon and Milo introduce a similar machine model and similar notions of com-

putability [112]. They also call their machine “Web machine.” However, this machine
is analogous to Abiteboul and Vianu’s browser machine. The only significant difference
between Abiteboul and Vianu’s browser machine and Mendelzon and Milo’s Web ma-
chine is that the latter allows for programs that guess URLs (or enumerate all possible
URLs) in order to discover Web pages by chance; by contrast, the browser machine
terminates when presented with an object identifier that does not exist in the queried
Web instance. Another fundamental difference between the authors’ works exists in
the underlying data models: While Abiteboul and Vianu’s Web instances must be infi-
nite [3], Mendelzon and Milo require finiteness for every instance of their “Web database
schema” [112] (which is a relational database schema similar to Abiteboul and Vianu’s
schema that we describe in Section 2.1.3). This divergence leads to subtle differences in
both authors’ notions of (finitely) computable queries and eventually computable queries
(however, these differences are not relevant in this dissertation).
We adopt the ideas of Abiteboul and Vianu and of Mendelzon and Milo for our work.

More precisely, we adapt the idea of a browser machine (respectively Mendelzon and
Milo’s Web machine) to our scenario of a Web of Linked Data. We call our machine
a Linked Data machine (or LD machine, for short). Furthermore, similar to Abiteboul
and Vianu’s and Mendelzon and Milo’s notions of computability, we use our LD machine
to define finite computability and eventual computability for Linked Data queries.

2.2.2. The LD Machine
As a preliminary for defining our LD machine we have to specify how to encode (frag-
ments of) a Web of Linked Data W = (D, data, adoc) on the tapes of such a machine.
Such an encoding is straightforward because all relevant structures—such as the set D
of all LD documents in W or the set U of all URIs—are countable (even if infinite).
Hereafter, we write enc(x) to denote the encoding of some element x, where x may be a
single RDF triple, a set of RDF triples, a full Web of Linked Data, etc. For a detailed
definition of the encoding that we use in this dissertation, we refer to Appendix B.
We now define the LD machine as a multi-tape Turing machine with limited access

to an input Web of Linked Data. We emphasize that using multiple tapes is a technical
detail; an analogous definition with a single tape is possible but it would make the
presentation unnecessarily involved.
Definition 2.9 (LD Machine). An LD machine is a multi-tape Turing machine with
five tapes and a finite set of states, including a special state called expand. The five
tapes consist of two, read-only input tapes: (i) an ordinary input tape and (ii) a right-
infinite Web input tape which can only be accessed in the expand state; two work tapes:
(iii) an ordinary, two-way infinite work tape and (iv) a right-infinite lookup tape; and
(v) a right-infinite, append-only output tape. Initially, the work tapes and the output
tape are empty, the Web input tape contains a (potentially infinite) word that encodes a

27

2. Models for Linked Data Queries

Web of Linked Data, and the ordinary input tape contains an encoding of further input
(if any). An LD machine operates like an ordinary multi-tape Turing machine except
when it reaches the expand state. In this case the machine performs the following expand
procedure: The machine inspects the word on the lookup tape. If the suffix of this word
is the encoding enc(u) of some URI u ∈ U and the word on the Web input tape contains
] enc(u) enc

(
adoc(u)

)
] , then the machine appends enc

(
adoc(u)

)
] to the (right) end of

the word on the lookup tape by copying from the Web input tape; otherwise, the machine
appends] to the word on the lookup tape. 2

Notice how an LD machine is limited in the way it may access a Web of Linked Data
W = (D, data, adoc) that is encoded on its Web input tape: The machine may use the
data of any particular LD document d ∈ D only after performing the expand procedure
using a URI u ∈ U for which adoc(u) = d. Hence, the expand procedure simulates a URI
lookup which conforms to the typical method for accessing Linked Data on the WWW.
In comparison to the aforementioned machine models (cf. Section 2.2.1), the expand

procedure of our LD machine corresponds to entering the expand state in Abiteboul
and Vianu’s browser machine [3] and to calling the oracle in Mendelzon and Milo’s Web
machine [112]. Furthermore, similar to Mendelzon and Milo’s Web machine (and in
contrast to Abiteboul and Vianu’s browser machine), an LD machine supports programs
that guess or enumerate URIs for lookup.
We note that the word on the Web input tape of an LD machine is infinitely large

if (and only if) the encoded Web of Linked Data W = (D, data, adoc) is infinite. Such
an infinitely large input is impossible with an ordinary Turing machine. We also note
that the words on the other tapes of an LD machine are always finite at any step in any
possible computation of such a machine.
In this dissertation we are particularly interested in LD machines that (aim to) com-

pute a Linked Data query Q over a Web of Linked Data W encoded on the Web input
tape. The general process of such a computation is to use the expand procedure to
access W as needed for the computation and, for any solution µ ∈ Q(W) computed
during the process, write an encoding of µ to the output tape. We emphasize that no
particular order is required for the output unless query Q explicitly asks for an ordered
query result (assuming the query language used for Q provides such a feature).
Since our abstract notion of a Linked Data query allows for arbitrary types of solutions

(cf. Section 2.1.2, page 22ff), the particular convention for encoding solutions (on the
output tape of an LD machine) depends on the particular type of result elements that
is specific to the query formalism used for query Q. For instance, our encoding in
Appendix B covers the type of result elements that are relevant in this dissertation
(that is, valuations, which we introduce formally in Section 3.2.1, page 38ff). Since
we require countability for any (query formalism specific) set of possible result elements
(cf. Definition 2.5, page 23), it is straightforward to augment our encoding to cover other
types of result elements. Therefore, for the definitions in the remainder of this chapter,
we assume that any possible query formalism is associated with such an augmented
encoding and write enc(µ) to denote the encoding of a result element µ that is possible
in this formalism. Furthermore, if a query result Q(W) may be reported in an arbitrary

28

2.2. Computation Model

order (see above), there exist different possible encodings of Q(W), each of which is a
word that concatenates the encodings of all µ ∈ Q(W) in a different order.

2.2.3. LD Machine Computability

We now use LD machines to adapt Abiteboul and Vianu’s notions of finite computability
and eventual computability [3] for Linked Data queries.

Definition 2.10 (Finitely Computable Linked Data Query). A Linked Data
query Q is finitely computable by an LD machine if there exists an LD machine M
whose computation, for any Web of Linked Data W encoded on the Web input tape of
M , halts after a finite number of computation steps and produces a possible encoding
of query result Q(W) on the output tape of M . 2

Definition 2.11 (Eventually Computable Linked Data Query). A Linked Data
query Q is eventually computable by an LD machine if there exists an LD machine M
whose computation on any Web of Linked Data W encoded on the Web input tape of
M has the following two properties:

1. The word on the output tape of M at each step of the computation is a prefix of
a possible encoding of query result Q(W).

2. The encoding enc(µ) of each solution µ ∈ Q(W) becomes part of the word on the
output tape of M after a finite number of computation steps. 2

Informally, finite computability of a Linked Data query requires the existence of an LD
machine that guarantees a terminating, complete computation of the query over any
possible Web of Linked Data. Hence, finite computability resembles the traditional no-
tion of computability. In contrast, eventual computability does not require a termination
guarantee. However, as finite computability, eventual computability requires that every
element of the corresponding query result is reported eventually. Due to these defini-
tions, all finitely computable Linked Data queries are also eventually computable. The
converse of this statement does not hold in general.
We note that computing any unsatisfiable query is trivial: Any machine for such a

query may immediately report the empty result. We may show the following proposition.

Proposition 2.3. Any Linked Data query that is unsatisfiable (as per Definition 2.7,
page 23), is finitely computable by an LD machine.

Proof. W.l.o.g., let Q be an arbitrary unsatisfiable Linked Data query; that is, the
expected query result Q(W) is empty for any possible Web of Linked Data W. Assume
an LD machine for Q that immediately terminates its computation without writing
anything to its (initially empty) output tape. Clearly, for any Web of Linked Data W
encoded on the Web input tape of this machine, the machine produces the expected
query result, Q(W) = ∅, on its output tape and halts (as required by Definition 2.10).
Hence, Linked Data query Q is finitely computable by an LD machine. �

29

2. Models for Linked Data Queries

2.2.4. LD Machine Decidability

Our analysis of Linked Data queries in the following chapters includes a discussion of
decision problems that have a Web of Linked Data as input (e.g., problems such as: is
the expected query result for a given Linked Data query over a given Web of Linked
Data finite?). These problems depart from the usual notion of decision problems defined
based on the Turing machine (that cannot have infinitely large input). Therefore, we
call them Web of Linked Data decision problems (or simply LD decision problems).
Definition 2.12 (LD Decision Problem). Let W be a (potentially infinite) set of
Webs of Linked Data (each of which may be infinite itself); let X be an arbitrary (po-
tentially infinite) set of finite structures; and let DP ⊆ W ×X be a subset of pairs from
W and X . The LD decision problem for DP is the problem to decide for any possible
pair (W,X) ∈ W ×X whether (W,X) ∈ DP . 2

Example 2.4. A trivially simple LD decision problem is to decide whether a given Web
of Linked Data contains an authoritative LD document for a given URI. Let us call
this problem AuthDocExistence. Given that WAll denotes the (infinite) set of all
possible Webs of Linked Data (cf. Definition 2.5, page 23) and U is the (infinite) set of
all URIs, we formalize AuthDocExistence as the LD decision problem for a subset
DPAuthDocExistence ⊆ WAll × U that is given as follows:

DPAuthDocExistence =
{(

(D, data, adoc), u
)
∈ WAll × U

∣∣∣ adoc(u) 6=⊥
}
.

Notice, WAll corresponds to W in Definition 2.12, and U corresponds to X . 2

As for the computation of Linked Data queries, we assume that a Web of Linked Data
that is input to an LD decision problem, is distributed over the WWW. Then, we are
interested in the feasibility of computing answers to such a problem if we restrict the
computation to the (limited) capabilities of systems that access Linked Data on the
WWW. That is, we aim to analyze whether such a problem can be answered by an
LD machine (with an encoding of the Web of Linked Data on its Web input tape).
Consequently, we introduce a notion of LD machine decidability.
Definition 2.13 (LD Machine Decidability). Let W be a (potentially infinite) set
of Webs of Linked Data and let X be an arbitrary (potentially infinite) set of finite
structures. The LD decision problem for a subsetDP ⊆ W×X is LD machine decidable if
there exist an LD machineMDP whose computation on any Web of Linked DataW ∈ W
(encoded on the Web input tape ofMDP) and any X ∈ X encoded on the ordinary input
tape of MDP , has the following property: MDP halts with a nonempty output tape if
(W,X) ∈ DP ; otherwise the machine halts with an empty output tape. 2

Example 2.5. It is trivial to show that LD decision problem AuthDocExistence,
as introduced in Example 2.4, is LD machine decidable. We only have to construct an
LD machine M that performs the following program (for any possible Web of Linked
Data W = (D, data, adoc) ∈ WAll encoded on the Web input tape and any possible URI
u ∈ U encoded on the ordinary input tape): First, M copies enc(u) from its ordinary

30

2.2. Computation Model

input tape to its lookup tape. Next, M enters its expand state to perform the expand
procedure using URI u. Finally, M checks the resulting word on the lookup tape. By
Definition 2.9 (cf. page 27), this word may either be enc(u) enc

(
adoc(u)

)
] or enc(u)] .

In the first case, adoc(u) 6=⊥ holds (i.e., the given Web of Linked Data W contains an
authoritative LD document d = adoc(u) for the given URI u). In this case, to indicate
that (W,u) ∈ DPAuthDocExistence holds, machineM adds an arbitrary word to its output
tape (e.g., the symbol]) and halts.
In the second case, adoc(u) =⊥ holds and, thus, (W,u) /∈ DPAuthDocExistence. In this

case, machine M simply halts (without adding anything to the empty output tape). 2

Hereafter, instead of specifying their subset DP ⊆ W × X (as per Definition 2.12), we
represent the definition of LD decision problems as shown for AuthDocExistence in
the following:

LD Problem: AuthDocExistence
Web Input: a Web of Linked Data W = (D, data, adoc)
Ordin. Input: a URI u
Question: Does adoc(u) 6=⊥ hold?

We emphasize that an LD machine may also be used to (try to) compute any ordinary
decision problem. The input to such a problem may be encoded on the ordinary in-
put tape of the LD machine. Then, by ignoring its Web input tape (and its expand
procedure), the machine may behave like a standard (multi-tape) Turing machine and
simulate a potentially existing decider (that is, an ordinary Turing machine that can be
used for deciding the given ordinary decision problem). More precisely, for any ordinary
decision problem, if and only if this problem is (Turing) decidable, an LD machine may
simulate the corresponding decider (and, thus, be a decider itself).

The definition of LD machine decidability completes the mathematical framework that
we need to define and to analyze concrete types of Linked Data queries in the follow-
ing chapters.

31

3. Full-Web Query Semantics

In the previous chapter we introduce a Web of Linked Data as a model of data published
and interlinked on a (distributed) platform such as the WWW. To query such a Web of
Linked Data we require a language for expressing queries and a well-defined semantics
for this query language. In particular, such a semantics must define the expected query
result for any possible query expression over any possible Web of Linked Data. In this
dissertation we focus on using the SPARQL query language [63] for such a purpose.
SPARQL is the de facto, declarative query language for the RDF data model. That is,

using its standard query semantics, SPARQL allows for querying fixed, a-priory defined
collections of RDF data. Such a collection may be stored in a DBMS for RDF data.
Storing RDF data and querying it efficiently has attracted much research during recent
years (e.g., [1, 65, 76, 89, 104, 122, 123, 140, 149, 153, 157, 164, 169]).
Although the SPARQL query language is defined for expressing queries over fixed, a-

priory defined collections of RDF data, it seems natural to use SPARQL also for Linked
Data queries (that is, queries over a Web of Linked Data), because Linked Data is
represented based on RDF triples. In fact, all published approaches to process Linked
Data queries that we are aware of (and review in Chapter 5), assume that those queries
are expressed using SPARQL (or a fragment thereof). However, a precise definition of
the query semantics assumed for the supported queries is missing in most of these works.
To use SPARQL as a language for Linked Data queries, we have to adjust the query

semantics of SPARQL. More precisely, we have to redefine the scope for evaluating
SPARQL expressions. In this chapter we focus on a first approach for such an adjust-
ment. Informally, the scope of a query under the semantics introduced by this approach,
is the complete set of all data on the queried Web (a formal definition follows in Sec-
tion 3.2.2). Consequently, we call this query semantics full-Web semantics.
The main contribution of this chapter is a formal analysis of theoretical properties of

queries under full-Web semantics. It is a common assumption that such queries have
limited computability; for instance, Ladwig and Tran assume that “processing queries
against Linked Data where sources have to be discovered online might not yield all re-
sults” [99]. Our analysis provides a formal verification of these assumptions. In particu-
lar, we study basic properties (such as satisfiability and monotonicity) and computation
related properties (such as LD machine based computability and the decidability of ter-
mination for query computations). Furthermore, we discuss the implications of querying
an infinite Web of Linked Data.
We begin the chapter with a discussion of related work on query languages and query

semantics for Linked Data queries and for accessing the WWW in general (cf. Sec-
tion 3.1). Thereafter, we provide a formal definition of SPARQL and of the full-Web
semantics that allows us to query a Web of Linked Data using SPARQL (cf. Section 3.2).

33

3. Full-Web Query Semantics

Given these definitions, we provide an analysis of SPARQL-based Linked Data queries
under full-Web semantics in Section 3.3. In particular, Section 3.3.1 focuses on ba-
sic properties (satisfiability, bounded and unbounded satisfiability, and monotonicity).
Sections 3.3.2, 3.3.3, and 3.3.4 discuss the termination problem, LD machine based com-
putability, and finiteness of (expected) query results, respectively. Finally, Section 3.4
summarizes our results.

3.1. Related Work
Since its emergence the WWW has spawned research on declarative query languages
for a retrieval of information from the WWW. In this section we briefly review general
(i.e., Linked Data independent) query languages for the WWW and, afterwards, discuss
query languages for expressing queries over Webs of Linked Data. In this context we
particularly look at proposals for using SPARQL as a language for Linked Data queries.

3.1.1. Web Query Languages
Initial work on querying the WWW emerged in the late 1990s. For an overview on early
work in this area we refer to Florescu et al.’s survey [49]. Most of this work is based on
the hypertext-centric view that led to modeling the WWW as a graph of Web pages and
links between them (as mentioned in Section 2.1.3, page 24f). Query languages proposed
and studied in this context allow a user to either ask for:

• specific Web pages (e.g., W3QL [94, 95]),

• particular attributes of specific Web pages (e.g., WebSQL [9, 113], F-logic [86],
Web Calculus [112]), or

• particular content within specific Web pages (e.g., WebOQL [8], NetQL [58],
WebLog [102], WQL [106], HTML-QL [109], nalg [111], Squeal [152]).

Common to these languages is the navigational nature of the queries. That is, each of
these Web queries is based on some form of path expression that specifies navigation
paths to relevant Web pages. The specific form of path expressions supported by each
Web query language is tailored to the particular graph structure used for modeling the
WWW, respectively.

3.1.2. Navigational Query Languages for Linked Data
In recent years, some research groups have started to work on navigational query lan-
guages tailored to query Linked Data on the WWW [48, 138]. These languages are
similar in nature to the aforementioned, more general Web query languages. That is,
they introduce some form of path expressions based on which a user may specify navi-
gation paths over the link graph of a queried Web of Linked Data. To the best of our
knowledge, two such languages have been proposed in the literature: LDPath [138] and
NautiLOD [48]. In the following we briefly describe both languages.

34

3.1. Related Work

In LDPath, the basic type of path expressions is a “property selection” that refers to a
particular URI. Such an expression selects the objects of those RDF triples whose subject
is the current “context resource” and whose predicate is the given URI. More complex
LDPath path expressions can be built recursively by concatenating subexpressions or
combining them via a union or an intersection operator. Additionally, each subexpres-
sion may be associated with a “path test” that represents a condition for filtering the
result of the subexpression [138]. To our knowledge, there does not exist a formally
defined semantics for LDPath. However, according to Schaffert et al. [138], “LDPath
[...] allows traversal over the conceptual RDF graph represented by interlinked Linked
Data servers.” Unfortunately, a precise definition of this graph structure is missing, and
so is a definition of the particular graph that needs to be considered for evaluating a
given LDPath expression. Instead, the authors informally suggest that “path traversal
transparently “hops over” to other Linked Data servers when needed” [138]. W.r.t. the
computability of LDPath, Schaffert et al. claim that “in LDPath, only queries can be
expressed that can be evaluated properly over Linked Data” [138]. However, without a
well-defined query semantics the justification of this claim remains unclear.
NautiLOD expressions, in contrast, come with a formal semantics [48]. In terms of

our data model, the result of evaluating such an expression is a set of URIs whose
lookup yields an LD document that is the end vertex of some path specified by the
expression. The basic building blocks of NautiLOD expressions are very similar to
LDPath. However, test expressions are more powerful because, in NautiLOD, those
tests are represented using existential, SPARQL-based subqueries and, thus, provide the
full expressive power of the SPARQL query language. Informally, a URI in the tested
result of the corresponding NautiLOD subexpression passes the test, if the existential
test query evaluates to true over the data that can be retrieved by looking up this
URI. Another interesting feature of NautiLOD are action subexpressions that can be
embedded into a NautiLOD path expression. Represented actions are then performed
as side-effects of navigating along the specified paths. Such an action may be the retrieval
of data into a local store or the sending of a notification message [48].
The expressive power of NautiLOD is not comparable to the power of SPARQL for

Linked Data queries (as studied in this dissertation). The latter does not provide naviga-
tional features (that is, expressions for describing navigation over the link graph of a Web
of Linked Data). On the other hand, NautiLOD (and LDPath) cannot be used to express
conditions across data from multiple LD documents. As mentioned before, elements of
the result of evaluating a NautiLOD expression are simply URIs, whereas, for SPARQL-
based Linked Data queries, any result element is a set of variable bindings whose com-
putation may require (the discovery and) combination of multiple LD documents.

3.1.3. SPARQL as a Query Language for Linked Data

Instead of developing a new language for Linked Data queries, in this dissertation we
focus on using the RDF query language SPARQL for such a purpose. We shall see that
this approach allows users who are not interested in prescribing particular navigation
paths, to express queries over Linked Data without knowing anything about the link

35

3. Full-Web Query Semantics

graph of the queried Web of Linked Data. Another motivation for studying SPARQL-
based Linked Data queries is the focus on such queries in existing works on processing
Linked Data queries. While we postpone a discussion of these works to Chapter 5, we
emphasize that most of them lack a precise definition of the query semantics assumed
for the supported queries.
The theoretical properties of SPARQL as a query language for fixed, a-priory defined

collections of RDF data are well understood today [7, 127, 128, 140]. Particularly in-
teresting in our context are semantical equivalences between SPARQL expressions [140];
these equivalences may also be used for optimizing SPARQL-based Linked Data queries.
Bouquet et al. were the first to provide a formalization for using (a fragment of)

SPARQL as a language for Linked Data queries [26]. Other proposals have been pub-
lished by Harth and Speiser [66] and by Umbrich et al. [160]; a first version of one of the
reachability-based query semantics presented in this dissertation can be found in our ear-
lier work on Linked Data query processing [72]. The remainder of this section describes
these proposals in detail and informally compares the respectively introduced query
semantics to the query semantics that we study in both this and the following chapter.
Bouquet et al. formalize three “query methods” for conjunctive queries [26]. In terms

of our data model these methods can be characterized as follows:

“Bounded method” : This method assumes that queries include a specification of a set
of LD documents. The evaluation of such a query is then restricted to the data
in these documents. This approach corresponds to the most restrictive version of
our reachability-based query semantics, namely, our notion of cNone-semantics (cf.
Section 4.1.2, page 63f).

“Navigational method” : This method is based on a notion of reachability that assumes
a recursive traversal of all data links in a queried Web. The result of a query must
be computed by taking into account all data that can be discovered by starting
such a traversal from a designated LD document (specified as part of the query).
This navigational method prescribes a query semantics that is equivalent to, what
we call, cAll-semantics (cf. Section 4.1.2); it is the most general of our reachability-
based semantics. Bouquet et al.’s navigational method does not support other,
more restrictive notions of reachability, as is possible with our model.

“Direct access method” : For this method, Bouquet et al. assume an oracle that, for a
given query, provides a set of “relevant” LD documents (from a queried Web of
Linked Data). Without discussing their understanding of relevance any further, the
authors define an expected query result based on such a set of relevant documents.
Due to the undefined basis of this definition, it is unclear how Bouquet et al.’s direct
access method is related to the query semantics discussed in this dissertation.

After introducing these query methods, Bouquet et al. use model theory to establish a
formalism for interpreting query results [26]. However, an analysis of the properties or
the feasibility of the three query methods is missing from Bouquet et al.’s work.

36

3.1. Related Work

Harth and Speiser also propose several query semantics for conjunctive Linked Data
queries [66]. These semantics use authoritativeness of data sources to restrict the evalu-
ation of queries to particular subsets of all data in a queried Web. In terms of our data
model, the authors call an LD document d “subject-authoritative” for an RDF triple
t = (s, p, o) in a Web of Linked Data W = (D, data, adoc), if s is a URI and adoc(s) = d;
analogously, LD documents may be predicate-authoritative and object-authoritative for
a given RDF triple. Based on these notions of authoritativeness, the authors introduce
a formalism that allows users to express what data they consider relevant for a query.
More precisely, users may specify that only those RDF triples are relevant for evaluat-
ing a query, that are available in their authoritative documents (or in particular subsets
thereof); any other triple is considered irrelevant and must be ignored. These restrictions
may be specified separately for each predicate of a given conjunctive query.
In addition to these data-specific “authority restrictions” [66], Harth and Speiser in-

troduce three “completeness classes.” For any query, such a class designates particular
documents from a queried Web such that, by definition, these documents are considered
“completely sufficient” for the query [66]. Hence, these completeness classes may be
understood as document-specific restrictions on the relevance of data. The authors’ for-
malism allows users to combine any of the three completeness classes with any possible
set of authority restrictions. Then, an RDF triple needs to be considered for a predicate
of a given (conjunctive) query if and only if (i) the triple is available in its authoritative
documents (or in a specified subset thereof) and (ii) these documents qualify accord-
ing to the completeness class used. Thus, depending on which completeness class and
authority restrictions are used, a different query semantics ensues.
Unfortunately, Harth and Speiser’s work lacks a proper formal definition of one of the

key concepts for specifying authority restrictions (that is, the concept of an “authoritative
lookup”—represented by a function called derefa [66, Definition 10]). Therefore, it is
impossible to discuss Harth and Speiser’s query semantics in detail or to provide an
informed comparison with the query semantics discussed in this dissertation.
Umbrich et al. define five different query semantics for conjunctive Linked Data queries

and analyze them empirically [160]. The first of these semantics is the reachability-based
query semantics presented in our earlier work [72]. In this dissertation we shall refer to
this semantics as cMatch-semantics (cf. Section 4.1.2). In comparison to the reachability-
based cAll-semantics that corresponds to the aforementioned navigational method of
Bouquet et al. [26], we shall see that cMatch-semantics is more restrictive (w.r.t. what
data is considered relevant for evaluating queries).
However, the main contribution of the work by Umbrich et al. are several query seman-

tics that extend cMatch-semantics in order to “benefit [from] inferable knowledge” [160].
Thus, these extensions take into account additional RDF triples that can be inferred
from data available on the queried Web. In particular, these query semantics integrate
(i) lightweight RDFS reasoning [119] (restricted to a fixed, a-priori defined set of vocab-
ularies), and (ii) inference rules for RDF triples with the predicate owl:sameAs [142]. The
latter allows for making use of information about coreferenced entities because owl:sameAs
is commonly used to indicate coreferencing URIs in Linked Data [42].

37

3. Full-Web Query Semantics

In an empirical analysis, Umbrich et al. compare their extended, inference-based query
semantics to cMatch-semantics (which does not integrate inference rules) [160]. This
analysis shows that the number of solutions in a query result under any of the inference-
based semantics is usually greater than the result for the corresponding query under
cMatch-semantics. The price for such an increase in “recall” [160] is an increase in average
query execution times because, for a complete execution of queries under the inference-
based semantics, it becomes necessary to look up more URIs than under cMatch-semantics.
We consider extending Linked Data queries with features for leveraging inferable

knowledge a very interesting topic for future research. However, the aim of this dis-
sertation is to establish a comprehensively studied foundation for the base case (that is,
Linked Data queries without inference rules).
In summary, a common limitation of the query semantics that have been proposed to

use SPARQL as a language for Linked Data queries [26, 66, 72, 160], is their focus on
a very basic type of SPARQL expressions, namely, “basic graph patterns” [63], which
allow users to express some form of conjunctive queries (cf. Section 6.1, page 111ff). By
contrast, this dissertation covers the complete core fragment of SPARQL; in addition
to conjunctions, this fragment includes disjunctions, constraints on variable bindings,
and optional parts. Furthermore, the aforementioned proposals merely define some
query semantics without properly analyzing what a sound and complete support of these
semantics entails. That is, a formal analysis of queries under a given semantics—our
primary contribution in both this and the following chapter—is missing for any of these
proposals.

3.2. Definition
This section provides a formal definition of the full-Web query semantics that allows us
to query a Web of Linked Data using the SPARQL query language. As a preliminary
for this definition we need to introduce SPARQL and the standard SPARQL semantics
(which focuses on queries over a-priori defined sets of RDF triples). Afterwards, based
on the standard semantics, we define the full-Web semantics for SPARQL.

3.2.1. SPARQL
This dissertation focuses on the core fragment of SPARQL discussed by Pérez et al. [128].
We adopt their formalization approach by using the algebraic syntax and the composi-
tional set semantics as introduced in [128]. We emphasize that the official W3C specifi-
cation introduces bag semantics for SPARQL [63]; the definition of this bag semantics is
based on a formalism that comprises compositional and operational elements [7]. For a
detailed comparison of both formalization approaches we refer to the work of Angles and
Gutierrez [7], who show that both approaches have the same expressive power (under bag
semantics). Pérez et al. provide a brief historical survey of the different approaches [128].
In the following, we introduce the syntax and the (standard) semantics of SPARQL ex-

pressions as used in this dissertation. Furthermore, we define basic theoretical properties
(such as satisfiability and monotonicity) for SPARQL expressions.

38

3.2. Definition

SPARQL Syntax

The basic elements of the algebraic syntax as introduced by Pérez et al. [128], are triple
patterns and filter conditions:

• A triple pattern is a tupel (s, p, o) ∈ (V ∪U)× (V ∪U)× (V ∪U ∪L), where V is an
infinite set of query variables that is disjoint from U , B, and L, respectively (we re-
call that U are all URIs, B are all blank nodes, and L are all literals; cf. Section 2.1,
page 15ff). We denote variables by a leading question mark symbol (e.g., ?v ∈ V).
Function vars maps triple patterns to the (finite) set of all variables mentioned in
such a pattern; that is, for each triple pattern tp = (s, p, o), vars(tp) := {s, p, o}∩V.

• A filter condition is defined recursively as follows:

1. If ?x, ?y ∈ V and c ∈ (U ∪ L), then ?x = c, ?x = ?y, and bound(?x) are filter
conditions.

2. If R1 and R2 are filter conditions, then (¬R1), (R1 ∧R2), and (R1 ∨R2) are
filter conditions.

Given these basic elements, a SPARQL expression is defined recursively as follows:

1. A triple pattern is a SPARQL expression.

2. If P1 and P2 are SPARQL expressions and R is a filter condition, then (P1 AND P2),
(P1 UNION P2), (P1 OPT P2), and (P1 FILTER R) are SPARQL expressions.

Overloading function vars, we write vars(P) to denote the (finite) set of all variables in
all triple patterns of a SPARQL expression P .
In contrast to the official SPARQL syntax introduced by the W3C specification [63],

the syntax that we use here avoids the use of blank nodes in SPARQL expressions (for
the sake of more straightforward definitions). However, omitting blank nodes is not a
problem because “each SPARQL query [with blank nodes] can be simulated by a SPARQL
query [...] without blank nodes” [7].

SPARQL Semantics

As a preliminary for defining the semantics of SPARQL we introduce the notion of
valuations:1 A valuation µ is a partial mapping µ : V → U ∪ B ∪ L that is defined for a
finite subset of V (the set of all variables). For valuations we overload function terms,
that is, for each valuation µ, we define terms(µ) :=

{
µ(?v)

∣∣ ?v ∈ dom(µ)
}
, where dom(µ)

denotes the domain of µ (i.e., the subset of V for which µ is defined). Furthermore, we
let uris(µ) := terms(µ) ∩ U . A specific valuation is the empty valuation, denoted by µ∅,
for which it holds that dom(µ∅) = ∅.

1We use the term valuation instead of the term “solution mapping” as used in the W3C specification
of SPARQL [63]; valuation is the standard term used in database theory [4].

39

3. Full-Web Query Semantics

The standard semantics of SPARQL is defined based on an evaluation function that
maps a SPARQL expression and a set of RDF triples to a set of valuations. Our for-
malization explicitly allows for infinitely large sets of RDF triples; as a consequence,
resulting sets of valuations may be infinite as well. Supporting infiniteness is necessary
to study SPARQL in the context of a potentially infinite Web of Linked Data.
To define the evaluation function we need some additional terminology. In particu-

lar, we introduce the application of a valuation to a triple pattern, matching triples,
compatibility of valuations, and certain binary operations over sets of valuations:

• Given a valuation µ and a triple pattern tp, we write µ[tp] to denote the triple
pattern that we obtain by replacing the variables in tp according to µ (any variable
for which µ is not defined, is not replaced). Notice that µ[tp] is an RDF triple if
vars(tp) ⊆ dom(µ).

• Given an RDF triple t and a triple pattern tp, we say t is a matching triple for
tp if there exists a valuation µ such that t = µ[tp]. Applying the aforementioned
empty valuation µ∅ to a triple pattern has no effect, that is, µ∅[tp] = tp for any
possible triple pattern tp.

• Two valuations µ and µ′ are compatible, denoted by µ ∼ µ′, if µ(?v) = µ′(?v) for
all variables ?v ∈ dom(µ) ∩ dom(µ′). The empty valuation µ∅ is compatible with
any other valuation. For two compatible valuations µ and µ′, we write µ ∪ µ′ to
denote a valuation µ∗ for which the following three properties hold: (i) µ∗ ∼ µ,
(ii) µ∗ ∼ µ′, and (iii) dom(µ∗) := dom(µ) ∪ dom(µ′).

• Let Ω1 and Ω2 be sets of valuations, each of which may be finite or countably
infinite. The binary operations join, union, difference, and left outer-join over Ω1
and Ω2 are defined as follows:

Ω1 1 Ω2 :=
{
µ1 ∪ µ2

∣∣µ1 ∈ Ω1 and µ2 ∈ Ω2 and µ1 ∼ µ2
}

Ω1 ∪ Ω2 :=
{
µ
∣∣µ ∈ Ω1 or µ ∈ Ω2

}
Ω1 \ Ω2 :=

{
µ1 ∈ Ω1

∣∣ ∀µ2 ∈ Ω2 : µ1 6∼ µ2
}

Ω1 1 Ω2 := (Ω1 1 Ω2) ∪ (Ω1 \ Ω2)

We are now ready to define the evaluation function that specifies the (standard) seman-
tics of SPARQL expressions: Let P be a SPARQL expression and let G be a (potentially
infinite but countable) set of RDF triples. The evaluation of P over G, denoted by [[P]]G,
is defined recursively as follows:

1. If P is a triple pattern tp, then [[P]]G :=
{
µ
∣∣ dom(µ) = vars(tp) and µ[tp] ∈ G

}
.

2. If P is (P1 AND P2), then [[P]]G := [[P1]]G 1 [[P2]]G.

3. If P is (P1 UNION P2), then [[P]]G := [[P1]]G ∪ [[P2]]G.

4. If P is (P1 OPT P2), then [[P]]G := [[P1]]G 1 [[P2]]G.

40

3.2. Definition

5. If P is (P1 FILTER R), then [[P]]G :=
{
µ ∈ [[P1]]G

∣∣µ satisfies R
}
, where a valuation

µ satisfies a filter condition R if any of the following conditions holds:
a) R is ?x = c, ?x ∈ dom(µ), and µ(?x) = c;
b) R is ?x = ?y, ?x ∈ dom(µ), ?y ∈ dom(µ), and µ(?x) = µ(?y);
c) R is bound(?x) and ?x ∈ dom(µ);
d) R is (¬R1) and µ does not satisfy R1;
e) R is (R1 ∧R2) and µ satisfies R1 and R2; or
f) R is (R1 ∨R2) and µ satisfies R1 or R2.

Each valuation µ ∈ [[P]]G is called a solution for P in G.

Basic Properties

We conclude the definition of SPARQL by introducing basic properties for SPARQL
expressions. For a detailed discussion of these properties we refer to Appendix C in
which we identify fragments of SPARQL for which these properties hold (cf. page 195ff).
We first specify how the standard notions of monotonicity and satisfiability carry over

to SPARQL: A SPARQL expression P is monotonic if, for any pair G1, G2 of (potentially
infinite) sets of RDF triples with G1 ⊆ G2, [[P]]G1 ⊆ [[P]]G2 holds. A SPARQL expression
P is satisfiable if there exists a (potentially infinite) set of RDF triples G such that the
evaluation of P over G is not empty; i.e., [[P]]G 6= ∅.
In addition to the traditional notion of satisfiability we introduce more restrictive types

of satisfiability for Linked Data queries in Section 2.1.2 (cf. page 22ff). For SPARQL
expressions we define these notions of satisfiability as follows: A SPARQL expression P
is unboundedly satisfiable if for any natural number k ∈ {0, 1, 2, ...} there exists a set of
RDF triples G such that

∣∣[[P]]G
∣∣ > k. A SPARQL expression P is boundedly satisfiable

if it is satisfiable but not unboundedly satisfiable.

Example 3.1. Consider three arbitrary URIs u∗1, u∗2, u∗3 ∈ U and a variable ?v ∈ V.
The triple pattern tp1 = (u∗1, u∗2, ?v) is unboundedly satisfiable: The set of all matching

triples for tp1 is Ttp1 = {u∗1} × {u∗2} × (U ∪ B ∪ L). This set is infinite because U , B,
and L are infinite, respectively. Then, for any k ∈ {0, 1, 2, ...} we may select a subset
Gk ⊂ Ttp1 of size k+1; i.e.,

∣∣Gk∣∣ = k+1. It is easy to see that
∣∣[[tp1]]Gk

∣∣ = k+1 > k. Due
to the infiniteness of Ttp1 , such a subset exists for all k ∈ {0, 1, 2, ...}.
In contrast, triple pattern tp2 = (u∗1, u∗2, u∗3) is a trivial example of a boundedly sat-

isfiable SPARQL expression: Since vars(tp2) = ∅, tp2 is an RDF triple. Hence, any
possible set of RDF triples may contain at most a single matching triple for tp2, namely
(u∗1, u∗2, u∗3). For any such set G (for which (u∗1, u∗2, u∗3) ∈ G), [[tp2]]G = {µ∅} holds with
µ∅ being the empty valuation. For any other set of RDF triples the expected query
result contains no solution at all, that is, [[tp2]]G′ = ∅ for any set of RDF triples G′ for
which (u∗1, u∗2, u∗3) /∈ G′. Therefore, k = 1 is an upper bound for the number of possible
solutions that may be computed for tp2; more precisely, there does not exist a set of
RDF triples G such that

∣∣[[tp2]]G
∣∣ > 1.

41

3. Full-Web Query Semantics

Another, less trivial example for boundedly satisfiable SPARQL expressions is the
expression

(
(u∗1, u∗2, ?v) FILTER (?v = u∗1 ∨ ?v = u∗3)

)
. This expression contains the afore-

mentioned triple pattern tp1 as a subexpression. Although the aforementioned set Ttp1

of matching triples for tp1 is infinite (see above), there exist only two valuations in
[[tp1]]Ttp1

that satisfy the filter condition, namely µ = {?v → u∗1} ∈ [[tp1]]Ttp1
and

µ′ = {?v → u∗3} ∈ [[tp1]]Ttp1
. Hence, µ and µ′ are the only solutions for the given

SPARQL expression in Ttp1 . Similarly, there exist at most these two solutions in any
other set of RDF triples. 2

3.2.2. SPARQLLD
SPARQL expressions are used for queries over sets of RDF triples. The evaluation
function introduced before defines the semantics of these queries. A Linked Data query,
in contrast, is a function over a Web of Linked Data (cf. Definition 2.5 on page 23).
To interpret SPARQL expressions as Linked Data queries we may assume a full-Web
query semantics: Informally, the scope of evaluating SPARQL expressions under this
semantics is the complete set of all data on the queried Web of Linked Data. Hereafter,
we refer to SPARQL-based Linked Data queries under full-Web semantics as SPARQLLD
queries. The definition of these queries is unsurprisingly straightforward and makes use
of SPARQL expressions and their evaluation function:
Definition 3.1 (SPARQLLD Query). Given a SPARQL expression P , the SPARQLLD
query that uses P , denoted by QP, is a Linked Data query that, for any Web of Linked
Data W, is defined by QP(W) := [[P]]AllData(W). Each valuation µ ∈ QP(W) is a solution
for QP in W. 2

Example 3.2. Consider a SPARQL expression Pex that is given as follows:(
(?product, producedBy, producer1) AND (?product, name, ?productName)

)
If QPex is the SPARQLLD query that uses SPARQL expression Pex, the (expected) query
result of QPex over our example Web of Linked Data Wex (cf. Example 2.1, page 18) is
QPex(Wex) =

{
µ1, µ2, µ3

}
where µ1 = {?product→ product1, ?productName→ "Product 1"},

µ2 = {?product → product2, ?productName→ "Product 2"}, and µ3 = {?product → product3,
?productName→"Product 3"}. 2

3.3. Theoretical Properties
In this section we analyze theoretical properties of SPARQLLD queries. For this analysis
we assume that the data access capabilities in a queried Web of Linked Data are limited
as they are in the WWW. Consequently, we use the computation model introduced
in the previous chapter (cf. Section 2.2, page 25ff) to analyze SPARQLLD as follows:
We identify cases in which an LD machine based computation of SPARQLLD queries

42

3.3. Theoretical Properties

may (not) terminate with a complete query result. Based on these cases we discuss the
more general question of whether an LD machine can decide, for any given SPARQLLD
query, if such a computation is possible. Furthermore, we classify SPARQLLD queries
w.r.t. the notions of finite computability and eventual computability (as introduced in
Section 2.2.3, page 29). Our results shall show that both the possibility for terminating
computations and the computability depend on the more basic properties satisfiability
and monotonicity. Therefore, we first focus on these properties. Afterwards, we study
the termination problem for SPARQLLD and LD machine based computability. Finally,
we discuss the finiteness of expected query results.

3.3.1. Satisfiability, (Un)bounded Satisfiability, and Monotonicity

We show that computation related properties of SPARQLLD queries depend on ba-
sic properties such as satisfiability and monotonicity. Thus, to classify any particular
SPARQLLD query w.r.t. computation related properties it is important to identify the
basic properties of such a query. For this purpose, we may use results on basic properties
of SPARQL expressions (such as our results in Appendix C). Therefore, in the follow-
ing we show relationships between basic properties of SPARQL expressions and their
SPARQLLD counterparts. Based on these relationships we then carry over our SPARQL
specific results to SPARQLLD.
For any SPARQLLD query the basic properties, satisfiability, bounded and unbounded

satisfiability, and monotonicity, are directly correlated with the corresponding property
of the SPARQL expression used:

Proposition 3.1. Let QP be a SPARQLLD query that uses SPARQL expression P .

1. QP is satisfiable if and only if P is satisfiable.

2. QP is unboundedly satisfiable if and only if P is unboundedly satisfiable.

3. QP is boundedly satisfiable if and only if P is boundedly satisfiable.

4. QP is monotonic if and only if P is monotonic.

While Proposition 3.1 seems trivial, proving it requires some attention because we are
concerned with structures that may be infinite. More precisely, our definition of standard
SPARQL semantics in Section 3.2.1 (cf. page 38ff) allows for infinitely large sets of RDF
triples. For a (hypothetical) Web of Linked Data that we may construct from such a
set in a proof of Proposition 3.1, we must ensure that each constructed LD document
contains a finite number of triples only (as required by our data model; cf. Definition 2.1,
page 16). While it is possible to split up a set of RDF triples—in order to distribute it
over multiple (potentially infinitely many) LD documents—dealing with blank nodes in
such a case needs additional care: The data of each LD document in a Web of Linked
Data must use a unique set of blank nodes (cf. Definition 2.1). Although we could naively
rename blank nodes when we distribute the RDF triples from a set G over multiple LD
documents, such an approach is insufficient for our proof. If we compute a SPARQLLD

43

3. Full-Web Query Semantics

queryQP over such a naively constructed WebW, we may lose some solutions from [[P]]G,
that is, we may have QP(W) ⊂ [[P]]G. To avoid this issue we introduce an isomorphism
that replaces blank nodes by URIs not used in the corresponding set of RDF triples:

Definition 3.2 (Grounding Isomorphism). Let G be a (potentially infinite) set of
RDF triples, let BG = terms(G) ∩ B (i.e., the set of all blank nodes mentioned in G),
let UB ⊆ U be a set of new URIs not mentioned in G (i.e., UB ∩ terms(G) = ∅) such
that |UB| = |BG|, and let %B be a bijection %B : BG → UB that maps each blank node
in G to a new, unique URI u ∈ UB. Then, a grounding isomorphism for G is a bijective
mapping % : terms(G)→

(
UB ∪ (terms(G) \BG)

)
such that, for each x ∈ terms(G),

%(x) :=
{
%B(x) if x ∈ BG,
x else . 2

We use the term grounding isomorphism because the RDF specification calls a set of
RDF triples grounded, if this set is free of blank nodes [81].
The application of such a grounding isomorphism % (for an arbitrary set of RDF

triples) to an arbitrary valuation µ, denoted by %[µ], results in a valuation µ′ such that
(i) dom(µ′) = dom(µ) and (ii) µ′(?v) = %

(
µ(?v)

)
for all ?v ∈ dom(µ). Furthermore, the

application of % to an arbitrary RDF triple t = (x1, x2, x3), denoted by %[t], results in
an RDF triple (x′1, x′2, x′3) such that x′i = %(xi) for all i ∈ {1, 2, 3}.
The following properties are easily verified:

Property 3.1. Let G be a set of RDF triples, % be a grounding isomorphism for G, and
G′ =

{
%[t]

∣∣ t ∈ G}, then |G| = |G′|.
Property 3.2. Let G be a set of RDF triples, % be a grounding isomorphism for G,
and G′ =

{
%[t]

∣∣ t ∈ G
}
. Furthermore, let P be a SPARQL expression and let µ be a

valuation. Then, valuation µ′ = %[µ] is a solution for P in G′ if and only if µ is a
solution for P in G. More precisely, if we let %−1 denote the inverse of the bijective
mapping %, then:

∀µ ∈ [[P]]G : %[µ] ∈ [[P]]G′ and ∀µ′ ∈ [[P]]G′ : %−1[µ′] ∈ [[P]]G .

To prove Proposition 3.1 we use the concept of a grounding isomorphism to construct
the following type of a Web of Linked Data for a given set of RDF triples:

Definition 3.3 (%-Web). Let G be a set of RDF triples, % be a grounding isomorphism
for G, and G′ =

{
%[t]

∣∣ t ∈ G}. A Web of Linked Data (D, data, adoc) is a %-Web for G
if there exist (i) a set U ⊆

(
U ∩ uris(G′)

)
of URIs not mentioned in G′, (ii) a bijective

mapping tU : U → G′, and (iii) a bijective mapping tD : D → G′, such that

∀ d ∈ D : data(d) =
{
tD(d)

}
and ∀u ∈ U : adoc(u) =

{
t−1
D

(
tU (u)

)
if u ∈ U ,

⊥ else,

where t−1
D denotes the inverse of the bijective mapping tD. 2

44

3.3. Theoretical Properties

Based on our definitions it is trivial to verify the following properties:

Property 3.3. Let G be a set of RDF triples; let % be a grounding isomorphism for G;
and letW = (D, data, adoc) be an arbitrary %-Web for G. W has the following properties:

1. W is infinite if and only if G is infinite.

2. W contains no data links, that is, adoc(u) =⊥ for all u ∈ uris
(
AllData(W)

)
.

3. For any SPARQLLD query QP it holds that QP(W)=[[P]]G′ with G′=
{
%[t]

∣∣ t∈G}.
We now prove Proposition 3.1 by showing its four claims one after another:
Proof of Proposition 3.1, Claim 1 (Satisfiability). Let QP be a SPARQLLD query.
If: Suppose the SPARQL expression P (used by QP) is satisfiable. Then, there exists

a set of RDF triples G such that [[P]]G 6= ∅. Let % be a grounding isomorphism for G,
let G′ =

{
%[t]

∣∣ t ∈ G}, and let W be a %-Web for G. Based on Property 3.2 and on the
fact that [[P]]G 6= ∅, we have [[P]]G′ 6= ∅. Then, by Property 3.3, QP(W) 6= ∅ and, thus,
SPARQLLD query QP is satisfiable.
Only if: Suppose SPARQLLD query QP is satisfiable. In this case there exists a Web of

Linked Data W such that QP(W) 6= ∅. Since QP(W) = [[P]]AllData(W) (cf. Definition 3.1,
page 42), we conclude that SPARQL expression P is satisfiable. �

Proof of Proposition 3.1, Claim 2 (Unbounded satisfiability). Let QP be a
SPARQLLD query. We prove Claim 2 using a similar argumentation as for Claim 1.
If: Suppose SPARQL expression P (used by QP) is unboundedly satisfiable. W.l.o.g.,

let k ∈ {0, 1, 2, ...} be an arbitrary natural number. To prove that SPARQLLD query QP
is unboundedly satisfiable it suffices to show that there exists a Web of Linked Data W
such that

∣∣QP(W)
∣∣ > k. Since SPARQL expression P is unboundedly satisfiable, there

exists a set of RDF triples G such that
∣∣[[P]]G

∣∣ > k. Let % be a grounding isomorphism
for G, let G′ =

{
%[t]

∣∣ t ∈ G}, and let W be a %-Web for G. Based on Property 3.2 and
on the fact that

∣∣[[P]]G
∣∣ > k, we have

∣∣[[P]]G′
∣∣ > k. Then, by Property 3.3,

∣∣QP(W)
∣∣ > k.

Hence, SPARQLLD query QP is unboundedly satisfiable.
Only if: Suppose SPARQLLD query QP is unboundedly satisfiable. W.l.o.g., we let k ∈
{0, 1, 2, ...} be an arbitrary natural number. To prove that SPARQL expression P (used
by QP) is unboundedly satisfiable it suffices to show that there exists a set of RDF triples
G such that

∣∣[[P]]G
∣∣ > k. Since SPARQLLD query QP is unboundedly satisfiable, there

exists a Web of Linked Data W such that
∣∣QP(W)

∣∣ > k. Using QP(W) = [[P]]AllData(W)
(cf. Definition 3.1), we note that AllData(W) is such a set of RDF triples that we need
to find for P . Hence, P is unboundedly satisfiable. �

Proof of Proposition 3.1, Claim 3 (Bounded satisfiability). Claim 3 follows
trivially from Claims 1 and 2: Suppose SPARQL expression P is boundedly satisfiable.
In this case, P is satisfiable and not unboundedly satisfiable (cf. Section 3.2.1, page
38ff). By Claims 1 and 2, SPARQLLD query QP (which uses P) is also satisfiable and
not unboundedly satisfiable. Therefore, QP is boundedly satisfiable (cf. Definition 2.8
on page 24). The same argument applies for the other direction of Claim 3. �

45

3. Full-Web Query Semantics

Proof of Proposition 3.1, Claim 4 (Monotonicity). Let QP be a SPARQLLD query
that uses SPARQL expression P .
If: Suppose SPARQL expression P is monotonic. Let W1,W2 be an arbitrary pair of

Webs of Linked Data such that W1 is a subweb of W2. To prove that SPARQLLD query
QP is monotonic it suffices to show QP(W1) ⊆ QP(W2). By Definition 3.1 (cf. page 42),
QP(W1) = [[P]]AllData(W1) and QP(W2) = [[P]]AllData(W2). Since W1 is a subweb of W2,
by Property 1 of Proposition 2.1 (cf. page 21), AllData(W1) ⊆ AllData(W2). Then, due
to the monotonicity of SPARQL expression P , [[P]]AllData(W1) ⊆ [[P]]AllData(W2). Hence,
QP(W1) ⊆ QP(W2) and, thus, SPARQLLD query QP is monotonic.
Only if: Suppose SPARQLLD query QP is monotonic. We distinguish two cases:

SPARQL expression P (used by QP) is satisfiable or P is not satisfiable. In the latter
case, P trivially is monotonic (cf. Property C.1, page 201). Hence, we only have to
discuss the first case.
LetG1, G2 be an arbitrary pair of sets of RDF triples such thatG1 ⊆ G2. To prove that

(the satisfiable) SPARQL expression P is monotonic it suffices to show [[P]]G1 ⊆ [[P]]G2 .
Similar to the proof for the other direction, we aim to use G1 and G2 for constructing
two Webs of Linked Data W1 and W2 (where W1 is a subweb of W2) and then use
the monotonicity of QP for showing the monotonicity of P . However, since G1 and
G2 may be (countably) infinite we cannot simply construct Webs of Linked Data that
consist of single LD documents which contain all RDF triples of G1 and G2, respectively.
Instead, we have to use the same approach as we use for proving the other claims of
Proposition 3.1 (see above). That is, we let W2 = (D2, data2, adoc2) be a %-Web for G2
where % is a grounding isomorphism for G2.
Since G1 ⊆ G2 we may use % not only for G2 but also for G1. In particular, we let

G′1 =
{
%[t]

∣∣ t ∈ G1
}
. Then, let W1 = (D1, data1, adoc1) be the induced subweb of W2

that is defined by D1 = {d ∈ D2 | data2(d) ⊆ G′1} (we recall that any induced subweb
is unambiguously defined by specifying its set of LD documents; cf. Proposition 2.1,
page 21). It can be easily seen that AllData(W1) = G′1 and AllData(W2) = G′2.
In the following we use both Webs, W1 and W2, and the monotonicity of QP, to show

[[P]]G1 ⊆ [[P]]G2 (which proves that P is monotonic). W.l.o.g., let µ be an arbitrary
solution for P in G1, that is, µ ∈ [[P]]G1 . Such a solution µ exists because we assume
that P is satisfiable (see above). To prove [[P]]G1 ⊆ [[P]]G2 it suffices to show µ ∈ [[P]]G2 .
By Property 3.2 it holds that %[µ] ∈ [[P]]G′1 . With AllData(W1) = G′1 and Definition 3.1

we have [[P]]G′1 = [[P]]AllData(W1) = QP(W1) and, thus, %[µ] ∈ QP(W1). Since W1 is an
(induced) subweb of W2 and QP is monotonic, we show QP(W1) ⊆ QP(W2) and, thus,
%[µ] ∈ QP(W2). We now use AllData(W2) = G′2 and show %[µ] ∈ [[P]]G′2 . Finally, we
again use Property 3.2 and find %−1[%[µ]

]
∈ [[P]]G2 and, thus, µ ∈ [[P]]G2 . �

The relationships in Proposition 3.1 enable us to carry over our results on basic proper-
ties of SPARQL expressions (cf. Appendix C, page 195ff) to SPARQLLD queries. First,
we focus on the (un)decidability of basic properties: For SPARQL expressions the ordi-
nary (Turing-machine-based) decision problems that are related to satisfiability, bounded
satisfiability, and monotonicity, are undecidable (see Proposition C.1, C.5, and C.8 on

46

3.3. Theoretical Properties

page 195, 201, and 206, respectively). To show the same for SPARQLLD we introduce
corresponding (ordinary) decision problems as follows:

Problem: Satisfiability(SPARQLLD)
Input: a SPARQLLD query QP
Question: Is QP satisfiable?

Problem: Monotonicity(SPARQLLD)
Input: a SPARQLLD query QP
Question: Is QP monotonic?

Problem: BoundedSatisfiability(SPARQLLD)
Input: a SPARQLLD query QP
Question: Is QP boundedly satisfiable?

The undecidability of these problems follows readily from the undecidability of their
SPARQL counterparts:

Corollary 3.1. Satisfiability(SPARQLLD), Monotonicity(SPARQLLD), and
BoundedSatisfiability(SPARQLLD) are undecidable.

Proof. Based on Proposition 3.1 it is trivial to use the undecidability of Satisfia-
bility(SPARQL) (shown in Proposition C.1 on page 195) to show by reduction that
Satisfiability(SPARQLLD) is undecidable. Similarly, the undecidability of Mono-
tonicity(SPARQLLD) follows immediately from the undecidability of Monotonic-
ity(SPARQL) (shown in Proposition C.5 on page 201), and the undecidability of
BoundedSatisfiability(SPARQLLD) follows from the undecidability of Bounded-
Satisfiability(SPARQL) (shown in Proposition C.8 on page 206). �

Although we cannot decide the basic properties for SPARQLLD in general, we may
identify certain fragments of SPARQLLD for which the properties can be shown. How-
ever, the relationships in Proposition 3.1 indicate that identifying such fragments is not
a SPARQLLD-specific problem. Instead, related results obtained for certain classes of
SPARQL expressions (interpreted under the standard SPARQL query semantics) carry
over directly to full-Web query semantics. Therefore, we consider a comprehensive dis-
cussion of such fragments out of scope of this dissertation. Nonetheless, for the sake of
completeness, we identify some such fragments in our discussion of SPARQL expressions
in Appendix C. For a summary of our findings we refer to Table C.1 (cf. page 196).

3.3.2. LD Machine Decidability of Termination

We now discuss (non-)termination of SPARQLLD query computation. In particular,
we focus on the question of whether an LD-machine-based computation of a given
SPARQLLD query (over a given Web of Linked Data) may halt with the complete ex-
pected query result. If (and only if) this is the case, we have the guarantee that an actual
query execution system (for a Web of Linked Data such as the WWW) might completely

47

3. Full-Web Query Semantics

answer the query within a finite amount of time. We emphasize that any approach to
decide about such a termination question in practice, is restricted to the limited data
access capabilities captured by our computation model. Therefore, we formally specify
the question as an LD decision problem (cf. Definition 2.12, page 30).

LD Problem: Termination(SPARQLLD)
Web Input: a Web of Linked Data W
Ordin. Input: a SPARQLLD query QP
Question: Does there exist an LD machine M whose computation, with W

encoded on the Web input tape of M , halts with an encoding of
query result QP(W) on the output tape?

We shall see that Termination(SPARQLLD) is not LD machine decidable. To obtain
this result we first discuss the dependency of termination on information about the
satisfiability of a given SPARQLLD query.
Suppose a given SPARQLLD query is not satisfiable: Any unsatisfiable Linked Data

query is finitely computable by an LD machine because such a machine may immediately
report the empty result (cf. Proposition 2.3, page 29). Consequently, for any SPARQLLD
query for which an LD machine can decide that this query is not satisfiable, this “decider”
machine may immediately answer the termination problem with yes (independent of
what the Web input is). Notice, the decider and the LD machine that may perform the
(terminating) computation of the unsatisfiable query are different LD machines.
For unboundedly satisfiable SPARQLLD queries an LD machine may also immediately

answer the termination problem (again, independent of the Web input). However, in
this case the answer is always negative as the following proposition shows.

Proposition 3.2. There does not exist any unboundedly satisfiable SPARQLLD query
QP for which there exists an LD machine M that, for any Web of Linked Data W
encoded on the Web input tape of M, halts after a finite number of computation steps
and produces an encoding of query result QP(W) on its output tape.

Proof. We use proof by contradiction. W.l.o.g., let QP be an arbitrary unboundedly
satisfiable SPARQLLD query. To obtain a contradiction we assume that there exists an
LD machine M that, for any Web of Linked Data W encoded on the Web input tape of
M, halts after a finite number of computation steps and produces a possible encoding of
query result QP(W) on its output tape.
To compute query QP over an arbitrary Web of Linked Data W = (D, data, adoc)

(encoded on theWeb input tape ofM),M requires access to the data of all LD documents
d ∈ D. However, M may only access an LD document d ∈ D (and its data) after, first,
writing to the end of its lookup tape a URI u ∈ U such that adoc(u) = d and, then,
calling its expand procedure. Initially, the machine has no information about which
URIs to use for accessing any d ∈ D (recall that mapping adoc is not available to the
machine). Hence, to ensure that all LD documents d ∈ D have been accessed, M must
expand all URI u ∈ U . Notice, a real query execution system for the WWW would have
to perform a similar procedure: To guarantee that such a system sees all documents, it

48

3.3. Theoretical Properties

must enumerate and look up all URIs. However, since the set U is (countably) infinite,
this process does not terminate, which is a contradiction to our assumption thatM halts
after a finite number of computation steps. �

We now focus on boundedly satisfiable SPARQLLD queries. For such a query an LD-
machine-based computation may terminate as the following example illustrates.

Example 3.3. Let tp = (u∗1, u∗2, u∗3) ∈ U × U × U be a triple pattern (that contains no
variables and, hence, also is an RDF triple), and let Qtp be the SPARQLLD query that
uses this triple pattern. We emphasize that this triple pattern is boundedly satisfiable
(cf. Example 3.1, page 41), and so is Qtp (cf. Proposition 3.1, page 43). An LD machine
for Qtp may take advantage of this fact: As soon as such a machine discovers an LD
document whose data contains RDF triple (u∗1, u∗2, u∗3), the machine may return the
complete query result {µ∅} (with dom(µ∅) = ∅) and halt.
On the other hand, it is also easy to verify that, for any Web of Linked Data W

with (u∗1, u∗2, u∗3) /∈ AllData(W), such a machine does not halt. The following proposition
generalizes this claim for the empty Web of Linked Data. 2

Proposition 3.3. Let W∅ = (D∅, data∅, adoc∅) be the empty Web of Linked Data, that
is, D∅ = ∅ (and, thus, adoc∅(u) =⊥ for all u ∈ U). There does not exist any boundedly
satisfiable SPARQLLD query QP for which there exists an LD machine M that has the
following two properties:

1. The computation of M on any Web of Linked Data (encoded on the Web input
tape of M) has the two properties given in the definition of eventually computable
Linked Data queries (cf. Definition 2.11, page 29).

2. The computation of M on W∅ (encoded on the Web input tape of M) halts after a
finite number of computation steps and outputs an encoding of QP(W∅) = ∅.

Proof. We use proof by contradiction and argue similarly as in the proof of Proposi-
tion 3.2. W.l.o.g., let QP be an arbitrary boundedly satisfiable SPARQLLD query. To
obtain a contradiction we assume that there exists an LD machine M that has the two
properties given in Proposition 3.3.
Since M exhibits the first property, M actually attempts to compute query QP over

any given Web of Linked Data (including W∅). We discuss the case where M attempts
to compute QP over W∅ (that is, W∅ is encoded on the Web input tape of M). Recall,
an LD machine has no a-priori information about the Web of Linked Data on its Web
input tape (unless such information is given as additional input on the ordinary input
tape, which is not the case here). Thus, the fact that D∅ is empty is not available to M.
Due to the lack of information about W∅, machine M must assume that there may at

least be a single solution for QP inW∅ (because any boundedly satisfiable query is satisfi-
able; cf. Definition 2.8, page 24). SinceM has the first property given in Proposition 3.3,
M starts a computation with which it attempts to compute the (nonexistent) solutions
for QP in W∅. To halt this computation and return the (correct) empty query result,
M needs to ascertain that it has seen the data of all LD documents in W∅. However, as

49

3. Full-Web Query Semantics

we argue in our proof of Proposition 3.2, a guarantee that an LD machine accessed all
LD documents from an input Web is only given after the machine performed its expand
procedure for all URIs in U . Such a process cannot terminate because of the infiniteness
of U . Therefore, machine M cannot have the second property given in Proposition 3.3,
which contradicts our initial assumption. �

While Example 3.3 illustrates that the (LD-machine-based) computation of boundedly
satisfiable SPARQLLD queries over particular Webs of Linked Data may terminate,
Proposition 3.3 shows that for at least one Web of Linked Data such a computation
cannot terminate (if it has to guarantee completeness). This observation leads us to
a more specific version of problem Termination(SPARQLLD) that is only concerned
with boundedly satisfiable SPARQLLD queries:

LD Problem: Termination(BS-SPARQLLD)
Web Input: a Web of Linked Data W
Ordin. Input: a boundedly satisfiable SPARQLLD query QP
Question: Does there exist an LD machine M whose computation, with W

encoded on the Web input tape of M , halts with an encoding of
query result QP(W) on the output tape?

We cannot use LD machines to decide Termination(BS-SPARQLLD).

Proposition 3.4. Termination(BS-SPARQLLD) is not LD machine decidable.

Proof. We show that Termination(BS-SPARQLLD) is not LD machine decidable
by reducing the well-known halting problem to Termination(BS-SPARQLLD). The
halting problem asks whether a given Turing machine halts on a given input [150]. For
the reduction we construct an infinite Web of Linked Data WTMs that describes all
possible computations of all possible Turing machines. For a formal definition of WTMs
we adopt the usual approach to unambiguously describe Turing machines and their input
by finite words over the (finite) alphabet of a universal Turing machine (e.g., [125]).
Let W be the countably infinite set of all words that describe Turing machines. For

each such word w ∈ W, let M(w) denote the Turing machine described by w, let
cw,x denote the computation of this Turing machine M(w) on input x, and let uw,x
denote a URI that identifies cw,x. Furthermore, let uw,xi denote a URI that identifies
the i-th step in computation cw,x. To denote the (infinite) set of all such URIs (for all
Turing machines and all inputs) we write UTMsteps. Hence, by using these URIs we may
unambiguously identify each step in each possible computation of any Turing machine
on any given input. However, if a URI u ∈ U could potentially identify a computation
step of a Turing machine M on some input x (because u adheres to the pattern used
for such URIs) but the corresponding step does not exist (because the computation of
M on input x terminates after an earlier step), then u /∈ UTMsteps. For instance, if the
computation of a particular Turing machine M(wj) on a particular input xk halts with
the i′-th step, then uwj ,xk

i /∈ UTMsteps for all i ∈ {i′+1, i′+2, ...}, whereas uwj ,xk

i ∈ UTMsteps
for all i ∈ {1, ... , i′}. Notice, while the set UTMsteps is infinite, it is still countable because
(i) W is countably infinite, (ii) the set of all possible input words for Turing machines

50

3.3. Theoretical Properties

is countably infinite, and (iii) each computation cw,x consists of a countable number of
steps (for all w ∈ W and any possible input word x).
We now define WTMs as a Web of Linked Data (DTMs, dataTMs, adocTMs) such that:

• DTMs consists of |UTMsteps| different LD documents, each of which corresponds
to one of the URIs in UTMsteps (and, thus, to a particular step in a particular
computation of a particular Turing machine). For any uw,xi ∈ UTMsteps we denote
the corresponding LD document by dw,xi .

• Mapping adocTMs maps each URI in UTMsteps to its corresponding LD document;
i.e., adocTMs

(
uw,xi

)
:= dw,xi for all uw,xi ∈ UTMsteps. For any other URI u /∈ UTMsteps,

adocTMs
(
u
)

:=⊥.

• Finally, mapping dataTMs is defined as follows: The set of RDF triples for an
LD document dw,xi ∈ DTMs is empty if computation cw,x does not halt with the
i-th computation step; otherwise, dataTMs

(
dw,xi

)
consists of a single RDF triple

(uw,x, type,TerminatingComputation) where type,TerminatingComputation ∈ U . Formally:

dataTMs
(
dw,xi

)
:=


{
(uw,x, type,TerminatingComputation)

}
if computation cw,x halts
with the i-th step,

∅ else.

We emphasize that mappings dataTMs and adocTMs are Turing computable because a
universal Turing machine may determine by simulation whether the computation of a
particular Turing machine on a particular input halts before a given number of steps.
We now reduce the halting problem to Termination(BS-SPARQLLD). The input

to the halting problem is a pair (w, x) consisting of a Turing machine description w and
a possible input word x. For the reduction we need a Turing computable function f
that, given such a pair (w, x), produces a tuple (W,QP) as input for Termination(BS-
SPARQLLD). We define f as follows: Let (w, x) be an input to the halting problem,
then f(w, x) :=

(
WTMs,QPw,x

)
where SPARQL expression Pw,x is the triple pattern

(uw,x, type,TerminatingComputation). Notice, vars(Pw,x) = ∅ and, thus, by Corollary C.1
(cf. page 209) and Proposition 3.1 (cf. page 43), SPARQLLD query QPw,x is bound-
edly satisfiable. Given that WTMs is independent of (w, x), it is easy to see that f is
computable by a Turing machine (and, thus, by an LD machine).
Then, the reduction is based on the following claim: For any possible (halting prob-

lem) input (w, x), and the corresponding
(
WTMs,QPw,x

)
= f(w, x), it holds that Turing

machine M(w) halts on input x if and only if there exists an LD machine that computes
QPw,x(WTMs) = {µ∅} and halts. The claim is easily verified based on the following two
observations:

1. Let (w, x) be an input to the halting problem and let
(
WTMs,QPw,x

)
= f(w, x).

Due to the definition of Web of Linked Data WTMs and query QPw,x, it holds that

51

3. Full-Web Query Semantics

QPw,x(WTMs) =


{µ∅} if the computation of Turing machine M(w)

on input x halts,
∅ else,

where µ∅ is the empty valuation with dom(µ∅) = ∅.

2. Let (w, x) be an input to the halting problem and let
(
WTMs,QPw,x

)
= f(w, x).

If Turing machine M(w) halts on input x, then there exists an LD machine, say
Mw,x, whose computation on Web input WTMs halts eventually with the query
result QPw,x(WTMs) = {µ∅} on the output tape of Mw,x. For instance, such a
machine may enter its expand state successively for all URIs uw,x1 , uw,x2 , ... until
the RDF triple (uw,x, type,TerminatingComputation) appears on the lookup tape of the
machine; at this point the machine writes enc(µ∅) to its output tape and halts.

To show that Termination(BS-SPARQLLD) is not LD machine decidable, suppose
it is LD machine decidable and LD machine M is a decider. Then, due to the afore-
mentioned claim, LD machine M may also be used to answer the halting problem for
any input (w, x). However, we know the halting problem is undecidable for Turing ma-
chines. Therefore, it is also undecidable for LD machines (which are Turing machines).
Hence, we have a contradiction and, thus, Termination(BS-SPARQLLD) cannot be
LD machine decidable. �

Given Proposition 3.4 it is now trivial to show that the general termination problem for
SPARQLLD is not decidable for LD machines.

Theorem 3.1. Termination(SPARQLLD) is not LD machine decidable.

Proof. We reduce Termination(BS-SPARQLLD) to Termination(SPARQLLD)
using the identity mapping. Given that Termination(BS-SPARQLLD) is not LD
machine decidable it is easily shown by reduction that Termination(SPARQLLD) is
not LD machine decidable either. �

In our proof of Theorem 3.1 we use the fact that problem Termination(SPARQLLD)
includes boundedly satisfiable SPARQLLD queries as possible input. We emphasize,
however, that if we would explicitly rule out the special case of boundedly satisfiable
queries in our definition of Termination(SPARQLLD), the problem would still be
undecidable for LD machines: Given a Web of Linked Data W and a SPARQLLD query
QP that is not boundedly satisfiable, we may easily use Proposition 2.3 (cf. page 29) and
Proposition 3.2 (cf. page 48) to show that there exists an LD machine that computes
QP(W) and halts if and only if QP is not satisfiable. However, the satisfiability of
SPARQLLD queries is undecidable (cf. Corollary 3.1 on page 47). Thus, we could show by
reduction from the satisfiability problem that the adjusted termination problem (which
excludes boundedly satisfiable queries) is still not LD machine decidable.

52

3.3. Theoretical Properties

3.3.3. LD Machine Computability
This section discusses LD-machine-based computability of SPARQLLD queries. Since all
unsatisfiable SPARQLLD queries are finitely computable by an LD machine (cf. Propo-
sition 2.3, page 29), we focus on satisfiable SPARQLLD queries. The following result
shows that the computability of such queries is correlated with their monotonicity.

Theorem 3.2. If a satisfiable SPARQLLD query QP is monotonic, then QP is eventu-
ally computable by an LD machine (but not finitely computable); otherwise, QP is not
eventually computable by an LD machine.

To prove Theorem 3.2 we have to show that any monotonic SPARQLLD query is even-
tually computable by an LD machine. For this proof we introduce a specific type of
LD machine which we call full-Web machine. Such a machine exists for any SPARQLLD
query. We shall see that if a satisfiable SPARQLLD query is monotonic, the correspond-
ing full-Web machine for this query (eventually) computes the query over any given
Web of Linked Data without terminating (i.e., the machine satisfies the conditions of
eventual computability as given in Definition 2.11, page 29). In the following, we de-
fine the full-Web machine, show properties of this machine that are relevant for proving
Theorem 3.2, and, afterwards, prove the theorem.
Definition 3.4 (Full-Web Machine). Let P be SPARQL expression. The full-Web
machine for P is an LD machine (as per Definition 2.9, page 27) that implements Al-
gorithm 3.1. This algorithm makes use of a special subroutine called lookup. This
subroutine, when called with URI u ∈ U , (i) writes enc(u) to the right end of the word
on the lookup tape, (ii) enters the expand state, and (iii) performs the expand procedure
as specified in Definition 2.9. 2

Algorithm 3.1 Program of the full-Web machine for SPARQL expression P .
1: j := 1
2: for all u ∈ U do
3: Call subroutine lookup for u.
4: Use the work tape to enumerate the set of valuations [[P]]Tj where Tj denotes the

set of all RDF triples currently encoded on the lookup tape.
5: For each valuation µ ∈ [[P]]Tj check whether µ is already encoded on the output

tape; if not, then append enc(µ) to word on the output tape.
6: j := j + 1
7: end for

In Algorithm 3.1 we see that any computation performed by a full-Web machine enters
a loop that iterates over the set of all possible URIs. As discussed before (see our proofs
of Propositions 3.2 and 3.3), expanding all URIs u ∈ U is necessary to access all LD
documents in the queried Web of Linked Data and, thus, to guarantee completeness
of the computed query result. However, since U is (countably) infinite, the algorithm
does not terminate (which is not a requirement for eventual computability; cf. Defini-
tion 2.11, page 29).

53

3. Full-Web Query Semantics

During each iteration of its main processing loop, a full-Web machine generates valu-
ations using all data that is currently encoded on its lookup tape. The following lemma
shows that these valuations are part of the corresponding query result.

Lemma 3.1. Let QP be a satisfiable SPARQLLD query that is monotonic; letMP denote
the full-Web machine for the SPARQL expression P used by QP; and let W be an arbi-
trary Web of Linked Data encoded on the Web input tape of MP. During the execution
of Algorithm 3.1 by MP, [[P]]Tj ⊆ QP(W) holds for all j ∈ {1, 2, ... }.

For the proof of Lemma 3.1—and of any other auxiliary result in this thesis—we refer
to Appendix E (in particular, the proof of Lemma 3.1 is given in Section E.1, page 219).
Lemma 3.1 provides the basis for showing that the computation of a full-Web machine

has the first property required for eventual computability (cf. Definition 2.11, page 29).
To verify that the computation also has the second property in Definition 2.11, it is
important to note that Algorithm 3.1 looks up no more than a single URI per iteration
(cf. line 3). Hence, a full-Web machines prioritizes result construction over data retrieval.
This feature allows us to show that for each solution in an expected query result, there
exists an iteration during which that solution is computed.

Lemma 3.2. Let QP be a satisfiable SPARQLLD query that is monotonic; let MP de-
note the full-Web machine for the SPARQL expression P used by QP; and let W be an
arbitrary Web of Linked Data encoded on the Web input tape of MP. For each solution
µ ∈ QP(W) there exists a jµ ∈ {1, 2, ... } such that during the execution of Algorithm 3.1
by MP, µ ∈ [[P]]Tj holds for all j ∈ {jµ, jµ+1, ... }.

The proof of Lemma 3.2 can be found in the appendix (cf. Section E.2, page 219ff).
We are now ready to prove Theorem 3.2 (cf. page 53).

Proof of Theorem 3.2. The proof consists of three parts: First, we show that sat-
isfiable, monotonic SPARQLLD queries are eventually computable by an LD machine.
Next, we prove that there does not exist any satisfiable SPARQLLD query that is finitely
computable by an LD machine. Finally, we focus on SPARQLLD queries that are not
monotonic and show that these queries are not eventually computable by an LD machine.

Part 1: To show that satisfiable, monotonic SPARQLLD queries are eventually com-
putable by an LD machine we use the aforementioned full-Web machine. Let QP ∗ be
a satisfiable SPARQLLD query that is monotonic and let W ∗ be an arbitrary Web of
Linked Data encoded on the Web input tape of the full-Web machine for P ∗ (where
P ∗ is the SPARQL expression used by QP ∗). To denote this machine we write MP ∗.
W.l.o.g. it suffices to show that the computation of MP ∗ on Web input enc(W ∗) has the
two properties required for eventual computability (cf. Definition 2.11, page 29).
During the computation, machineMP ∗ only writes to its output tape when it appends

(encoded) valuations µ ∈ [[P ∗]]Tj (for j = 1, 2, ...). Since all these valuations are solutions
for QP ∗ in W ∗ (cf. Lemma 3.1, page 54) and line 5 in Algorithm 3.1 ensures that the
output is free of duplicates, the word on the output tape of MP ∗ is always a prefix of
a possible encoding of QP ∗(W ∗). Hence, the computation of MP ∗ has the first property
required for eventual computability.

54

3.3. Theoretical Properties

The second property requires that the encoding enc(µ′) of any solution µ′ ∈ QP ∗(W ∗)
becomes part of the word on the output tape ofMP ∗ after a finite number of computation
steps. From Lemma 3.2 (cf. page 54) we know that for any such solution there exists an
iteration of the loop in Algorithm 3.1 during which MP ∗ computes the solution (for the
first time). In this iteration, machine MP ∗ appends the encoding of the solution to its
output tape (cf. line 5 in Algorithm 3.1).
It remains to show that the computation of MP ∗ definitely reaches each iteration of

the loop after a finite number of computation steps. To prove this property we show
that each iteration of the loop finishes after a finite number of computation steps:

• The call of subroutine lookup (cf. Definition 3.4) at line 3 in Algorithm 3.1 termi-
nates because the encoding of W ∗ on the Web input tape of MP ∗ is ordered (cf.
Appendix B, page 193f).

• At any point in the computation the word on the lookup tape of MP ∗ is finite
because MP ∗ only gradually appends (encoded) LD documents to the lookup tape
and the encoding of each document is finite (because the set of RDF triples data(d)
for each LD document d ∈ D in any Web of Linked Data W = (D, data, adoc) is
finite). Due to the finiteness of the word on the lookup tape, each set of valuations
[[P ∗]]Tj (for j = 1, 2, ...) is finite, resulting in a finite number of computation steps
for line 4 during any iteration.

• Finally, line 5 requires only a finite number of computation steps because the word
on the lookup tape of MP ∗ is finite at any point in the computation, and so is the
word on the output tape.

Part 2: We now show that there does not exist any satisfiable SPARQLLD query that is
finitely computable by an LD machine. By Definition 2.10 (cf. page 29), a Linked Data
query Q is finitely computable by an LD machine if there exists an LD machine that, for
any Web of Linked DataW encoded on its Web input tape, halts after a finite number of
computation steps and produces a possible encoding of the expected query result Q(W)
on its output tape. By Proposition 3.2 (cf. page 48) and Proposition 3.3 (cf. page 49),
such a machine does not exist for any satisfiable SPARQLLD query (which may either
be boundedly satisfiable or unboundedly satisfiable; cf. Definition 2.8, page 24).

Part 3: In the remainder of this proof, we show that non-monotonic SPARQLLD queries
are not eventually computable by an LD machine. LetQP be an arbitrary non-monotonic
SPARQLLD query. W.l.o.g., we show that QP is not eventually computable by an LD
machine. As in our proofs of Propositions 3.2 and 3.3, we use proof by contradiction.
To obtain a contradiction we assume that there exists an LD machine, say M, whose
computation of QP on any Web of Linked Data W has the two properties required for
eventual computability (cf. Definition 2.11, page 29).
Let W1 and W2 be two Webs of Linked Data such that (i) W1 is a subweb of W2 and

(ii) QP(W1) * QP(W2) (such a pair of Webs exists because query QP is non-monotonic).
Then, there exists a solution µ ∈ QP(W1) such that µ /∈ QP(W2).

55

3. Full-Web Query Semantics

Consider the computation of LD machine M on Web input enc(W1). Based on our
assumption, machineM writes enc(µ) to its output tape after a finite number of compu-
tation steps (cf. property 2 in Definition 2.11). We argue that this is impossible: Since
query QP is not monotonic, M may not add µ to the output until it is guaranteed that
M accessed all LD documents in the queried Web of Linked Data W1. As discussed
before, such a guarantee requires expanding all URIs u ∈ U because M has no a-priory
information about W1. However, expanding all u ∈ U is a non-terminating process (due
to the infiniteness of U) and, thus,M does not write µ to its output after a finite number
of steps. As a consequence, the computation of QP(W) by M does not have property 2
given in Definition 2.11, which contradicts our initial assumption. This contradiction
shows that non-monotonic SPARQLLD queries are not eventually computable by an LD
machine (which concludes our proof of Theorem 3.2, page 53). �

Theorem 3.2 shows a direct correlation between the monotonicity and the (LD-machine-
based) computability of satisfiable SPARQLLD queries. Furthermore, it shows that not
any satisfiable SPARQLLD query is finitely computable. Our proof of the theorem reveals
that the reason for this limitation is the infiniteness of the set of all URIs U . Hence,
even if our data model would allow only for Webs of Linked Data that are finite, we
would obtain the same result as given by Theorem 3.2.
We conclude our discussion of theoretical properties of SPARQLLD by showing that

(LD-machine-based) computability is undecidable for SPARQLLD. As a basis we intro-
duce the following (ordinary) decision problems:

Problem: FiniteComputability(SPARQLLD)
Input: a SPARQLLD query QP
Question: Is QP finitely computable by an LD machine?

Problem: EventualComputability(Sat-SPARQLLD)
Input: a SPARQLLD query QP that is satisfiable
Question: Is QP eventually computable by an LD machine?

Based on the fact that satisfiability and monotonicity are undecidable for SPARQLLD
we show the aforementioned result:

Corollary 3.2. FiniteComputability(SPARQLLD) and EventualComputabili-
ty(Sat-SPARQLLD) are undecidable.

Proof. By Theorem 3.2 and based on the fact that unsatisfiable SPARQLLD queries are
finitely computable (cf. Proposition 2.3, page 29), it follows that any SPARQLLD query
is finitely computable if and only if this query is not satisfiable. Given the undecidability
of Satisfiability(SPARQLLD) (shown in Corollary 3.1, page 47), it is trivial to show
by reduction that FiniteComputability(SPARQLLD) is undecidable. Similarly, the
undecidability of EventualComputability(Sat-SPARQLLD) follows readily from
Theorem 3.2 and the fact that Monotonicity(SPARQLLD) is undecidable (also shown
in Corollary 3.1). �

56

3.3. Theoretical Properties

3.3.4. Finiteness of Expected Query Results

The limited computational feasibility of SPARQLLD queries that our results in the pre-
vious sections show is a consequence of the infiniteness of the set of all URIs. As a
consequence, a possible infiniteness of queried Webs of Linked Data has no impact on
the computational feasibility of SPARQLLD queries. Nonetheless, we are interested in
the implications of allowing for an infinite Web of Linked Data in our data model.
Therefore, in this section we discuss the impact of infiniteness on SPARQLLD queries .
In particular, we focus on the (expected) query results of such queries. In the following,
we first assume a finite Web of Linked Data; for the sake of completeness, we formally
prove that the result of any SPARQLLD query over such a Web is finite. A similarly
general statement does not exist when the queried Web of Linked Data is infinite. As
a consequence, we then discuss the decision problem that is related to the finiteness of
expected query results.
As mentioned before, we first show that the result of any SPARQLLD query over a

finite Web of Linked Data is finite:

Proposition 3.5. For any SPARQLLD query QP and any Web of Linked Data W, query
result QP(W) is finite if W is finite.

Proof. Let W = (D, data, adoc) be a Web of Linked Data that is finite, and let
GW = AllData(W). Given that QP (W) = [[P]]GW

for any SPARQLLD query QP (cf. Def-
inition 3.1, page 42), we prove the proposition by showing that [[P]]GW

is finite for any
SPARQL expression P . We use an induction on the structure of SPARQL expressions.
Base case: Suppose SPARQL expression P is a triple pattern tp. In this case we have:

[[P]]GW
=
{
µ
∣∣µ is a valuation with dom(µ) = vars(tp) and µ[tp] ∈ GW

}
.

SinceW (and, thus, D) is finite and, for each LD document d ∈ D, the set of RDF triples
data(d) is finite, we only have a finite number of RDF triples in GW =

⋃
d∈D data(d).

Hence, the number of all possible valuations µ ∈ [[P]]GW
(with dom(µ) = vars(tp) and

µ[tp] ∈ GW) is finite and, thus, [[P]]GW
must be finite.

Induction step: Let P1 and P2 be SPARQL expressions such that [[P1]]GW
and [[P2]]GW

is
finite, respectively. We show that [[P]]GW

is finite for any SPARQL expression P that can
be constructed using P1 and P2. Thus, we have to consider four cases that we summarize
in the following table (in which R denotes an arbitrary filter condition):

P [[P]]GW
Maximum possible result cardinality

(P1 AND P2) [[P1]]GW
1 [[P2]]GW

∣∣[[P1]]GW

∣∣ · ∣∣[[P2]]GW

∣∣
(P1 UNION P2) [[P1]]GW

∪ [[P2]]GW

∣∣[[P1]]GW

∣∣+ ∣∣[[P2]]GW

∣∣
(P1 OPT P2) [[P1]]GW

1 [[P2]]GW

∣∣[[P1]]GW

∣∣ · ∣∣[[P2]]GW

∣∣
(P1 FILTER R)

{
µ ∈ [[P1]]GW

∣∣µ satisfies R
} ∣∣[[P1]]GW

∣∣
For all four cases the maximum possible result cardinality (third column in the table) is
a finite number because [[P1]]GW

and [[P2]]GW
are finite, respectively. �

57

3. Full-Web Query Semantics

The following example illustrates that a similarly general statement as in Proposition 3.5
does not exist when the queried Web of Linked Data is infinite such as the WWW.

Example 3.4. Let Winf = (Dinf , datainf , adocinf) be an infinite Web of Linked Data that
contains LD documents for all integers (similar to the documents for natural numbers
in Example 1.2 on page 3). The data in these documents refers to the predecessor and
to the successor of the corresponding integer. Hence, for each integer i ∈ Z, identified
by URI noi ∈ U , there exists an LD document di ∈ Dinf such that adocinf(noi) = di and

datainf(di) =
{
(noi, pred, noi−1), (noi, succ, noi+1)

}
where URIs pred ∈ U and succ ∈ U identify the predecessor relation and the successor
relation for integers, respectively.
Furthermore, let tp1 and tp2 be triple pattern (no0, succ, ?v) and (?x, succ, ?y), respec-

tively. The result of SPARQLLD query Qtp1 overWinf is finite; it consists of a single solu-
tion: Qtp1(Winf) =

{
{?v → no1}

}
. In contrast, the result of SPARQLLD query Qtp2 over

Winf is infinite: Qtp2(Winf) =
{
... , {?x→ no -1, ?y → no0}, {?x→ no0, ?y → no1}, ...

}
. 2

The example illustrates that some SPARQLLD queries have a finite result over an in-
finite Web of Linked Data, whereas other SPARQLLD queries have an infinite result.
Consequently, we are interested in the following LD decision problem:

LD Problem: Finiteness(SPARQLLD)
Web Input: a (potentially infinite) Web of Linked Data W
Ordin. Input: a SPARQLLD query QP
Question: Is the expected query result QP(W) finite?

We note that the result of any unsatisfiable SPARQLLD query is trivially finite in any
Web of Linked Data. Hence, for these unsatisfiable queries an LD machine may imme-
diately answer the question posed by Finiteness(SPARQLLD). However, if we take
satisfiable SPARQLLD queries into account, the problem is undecidable for LD machines:

Theorem 3.3. Finiteness(SPARQLLD) is not LD machine decidable.

Proof. We reduce the halting problem to Finiteness(SPARQLLD). While this proof
is similar to the proof of Proposition 3.4 (cf. page 50), we use a different Web of Linked
Data. This Web, denoted by WTMs2, differs from WTMs (used in the proof of Proposi-
tion 3.4) in the way it describes all possible computations of all Turing machines.
For the proof we use the same symbols as in the proof of Proposition 3.4. That is,
W denotes the countably infinite set of all words that describe Turing machines. For
each such word w ∈ W, M(w) denotes the Turing machine described by w, cw,x denotes
the computation of machine M(w) on input x, and URI uw,xi ∈ U identifies the i-th step
in computation cw,x. The set of all these identifiers is denoted by UTMsteps. UTMsteps is
countably infinite.
We now define WTMs2 as a Web of Linked Data (DTMs2, dataTMs2, adocTMs2) similar

to the Web of Linked Data WTMs used in the proof of Proposition 3.4: DTMs2 and

58

3.4. Summary

adocTMs2 are the same is in WTMs. That is, DTMs2 consists of
∣∣UTMsteps

∣∣ different LD
documents, each of which corresponds to one of the URIs in UTMsteps. Mapping adocTMs2
maps each URI uw,xi ∈ UTMsteps to the corresponding LD document dw,xi ∈ DTMs2 and
any other URI to ⊥. Mapping dataTMs2 for WTMs2 is different from the corresponding
mapping for WTMs: For each LD document dw,xi ∈ DTMs2, the corresponding set of
RDF triples dataTMs2

(
dw,xi

)
contains a single RDF triple (uw,xi , first, uw,x1) which associates

the i-th computation step (identified by uw,xi) with the first step of the corresponding
computation cw,x (first ∈ U denotes a URI for this relationship).
Before we come to the reduction we highlight a property of WTMs2 that is important

for our proof. Each RDF triple of the form (uw,xi , first, uw,x1) establishes a data link from
LD document dw,xi to document dw,x1 . Hence, the link graph of WTMs2 consists of an
infinite number of separate subgraphs, each of which (i) corresponds to a particular
computation cw,x, (ii) is weakly connected, and (iii) has a star-like form in which the LD
document dw,x1 is the center of the star. More precisely, the subgraph that corresponds
to a computation cwj ,xk is a directed graph (V wj ,xk , Ewj ,xk) such that:

V wj ,xk =
{
dw,xi ∈ DTMs2

∣∣w = wj and x = xk
}

and Ewj ,xk = V wj ,xk ×
{
d
wj ,xk

1
}
.

Each of these subgraphs is infinitely large (i.e., has an infinite number of vertices) if and
only if the corresponding computation halts.
For each Turing machine description w and each possible input word x for Turing

machine M(w), let tpw,x denote the triple pattern (?v, first, uw,x1) where ?v ∈ V is an
arbitrary query variable. Then, the following property is easily verified: Turing machine
M(w) halts on input x if and only if the result of SPARQLLD query Qtpw,x (that uses
triple pattern tpw,x) over WTMs2 is finite.
For the reduction we use mapping f that is defined as follows: Let w be the description

of a Turing machine M(w) and let x be a possible input word for M(w), then f(w, x) =(
WTMs2,QPw,x

)
. Given that WTMs2 is independent of (w, x), it is easy to see that f can

be computed by a Turing machine (and, thus, by an LD machine).
To show that Finiteness(SPARQLLD) is not LD machine decidable, suppose it

is LD machine decidable. In such a case an LD machine could answer the halting
problem for any input (w, x) because: Turing machine M(w) halts on input x if and
only if QPw,x(WTMs2) is finite. However, we know the halting problem is undecidable
for Turing machines, including LD machines. Hence, we have a contradiction and, thus,
Finiteness(SPARQLLD) cannot be LD machine decidable. �

3.4. Summary

This chapter introduces a query semantics, called full-Web semantics, that allows us to
use SPARQL expressions as queries over a Web of Linked Data. The scope of evaluating
a SPARQL expression under this semantics is the complete set of all data in the queried
Web. After providing a formal definition of this type of Linked Data queries, which we
call SPARQLLD queries, we analyzed theoretical properties of SPARQLLD.

59

3. Full-Web Query Semantics

Our analysis verifies formally the common assumption that the computational feasibil-
ity of queries under a full-Web semantics is limited. In particular, our main result shows
that not any satisfiable SPARQLLD query is finitely computable by an LD machine.
Furthermore, non-monotonic SPARQLLD queries are not even eventually computable by
an LD machine. As the reason for this limitation we identify the infiniteness of the set
of all URIs. This finding shows that allowing for an infinite Web of Linked Data in our
data model has no impact on the computational feasibility of SPARQLLD queries.

60

4. Reachability-Based Query Semantics
The full-Web query semantics discussed in the previous chapter is an initial, straightfor-
ward approach to use SPARQL as a language for expressing Linked Data queries. Our
results show that the computational feasibility of SPARQLLD queries (under full-Web
semantics) is very limited. Consequently, any execution approach for such queries re-
quires some ad hoc mechanism to abort query executions; we have to accept a potentially
incomplete answer for any (satisfiable) SPARQLLD query. Furthermore, depending on
the abort mechanism, query execution may even be nondeterministic; that is, executing
a query multiple times (over the same Web of Linked Data) may result in different an-
swers. Since a query semantics that inherently gives rise to such issues is undesirable
for various reasons, we are interested in alternative semantics for SPARQL-based Linked
Data queries. In particular, we are interested in semantics that are closer to the capabil-
ities of systems captured by our computation model (i.e., systems for executing Linked
Data queries over an implementation of a Web of Linked Data such as the WWW).
In this chapter we discuss a family of such query semantics which we call reachability-

based query semantics. Informally, the scope of a query under such a semantics is the
set of all data in a well-defined, reachable subweb of the queried Web of Linked Data (a
formal definition follows shortly). We emphasize that this approach still allows systems
to make use of data from initially unknown data sources and, thus, enables applications
to tap the full potential of the Web. Each of the different reachability-based query
semantics applies a specific notion of reachability. To this end, we shall provide a generic
definition that does not prescribe a single possible notion of reachability. Instead, our
definition introduces the concept of a reachability criterion. By using such a criterion
the notion of reachability can be made explicit for each query.
This chapter is organized as follows: Section 4.1 introduces formally our notion of

reachability-based query semantics for SPARQL. Section 4.2 compares query results
under full-Web query semantics and under different reachability-based query semantics.
Section 4.3 provides a detailed discussion of reachability criteria. Section 4.4 analyzes
theoretical properties of queries under reachability-based semantics. Analogously to
the analysis for full-Web semantics in the previous chapter, we focus on basic properties
(such as satisfiability and monotonicity) and on computation-related properties. Finally,
Section 4.5 concludes our analysis by comparing properties shown for full-Web query
semantics with those for reachability-based query semantics.

4.1. Definition
The definition of reachability-based query semantics is based on a two-step approach:
First, we define the subweb of a (queried) Web of Linked Data that is potentially reach-

61

4. Reachability-Based Query Semantics

able when traversing specific data links using seed URIs given as part of a query as a
starting point. Then, we formalize the result of such a query as the set of all valua-
tions that map the query to a subset of all data in the reachable subweb of the queried
Web. While this two-step definition approach provides for a straightforward presentation
of the query semantics, an actual execution of a query (interpreted under the defined
semantics) is not required to apply a corresponding two-step execution approach.

4.1.1. Reachability

The basis of any reachability-based query semantics is a notion of reachability of LD
documents. Informally, an LD document is reachable in a Web of Linked Data if there
exists a (specific) path in the link graph of the Web to that document. The potential
starting points for such a path are given as a set of seed URIs. However, allowing for
arbitrary paths might not be feasible in practice because this approach requires following
all data links (recursively) for answering a query completely. A more restrictive approach
is the notion of query-based reachability: a data link qualifies as a part of paths to
reachable LD documents only if that link corresponds to a triple pattern in the executed
query. However, other criteria for specifying which data links qualify might prove to be
more suitable for certain cases. For this reason, we do not prescribe a specific criterion.
Instead, we enable supporting any possible criterion by parameterizing this choice.

Definition 4.1 (Reachability Criterion). Let T , U , and P denote the infinite sets
of all possible RDF triples, URIs, and SPARQL expressions, respectively. A reachability
criterion is a (Turing) computable function c : T × U × P → {true, false}. 2

An example for a reachability criterion is cAll which corresponds to the aforementioned
approach of allowing for arbitrary paths to reach LD documents; hence, cAll(t, u, P) is
defined to be true for every tuple (t, u, P) ∈ T ×U ×P. The complement of cAll is cNone
which returns false for every tuple (t, u, P) ∈ T × U × P. Another alternative is cMatch
which corresponds to the aforementioned query-based reachability. We define cMatch
based on the notion of matching RDF triples (introduced on page 40 in Section 3.2.1):
For each tuple (t, u, P) ∈ T × U × P we define:

cMatch
(
t, u, P

)
:=
{

true if there exists a triple pattern tp in P and t matches tp,
false else.

Section 4.3 shall provide a more comprehensive discussion of different reachability criteria
and the relationships among them (cf. page 69ff).
Using the concept of a reachability criterion, we define reachability of LD documents:

Definition 4.2 (Reachability). Let S ⊆ U be a finite set of URIs; let c be a reacha-
bility criterion; let P be a SPARQL expression; and let W = (D, data, adoc) be a Web
of Linked Data. Then, an LD document d ∈ D is (c, P)-reachable from S in W if any
of the following two conditions holds:

1. There exists a URI u ∈ S such that adoc(u) = d; or

62

4.1. Definition

2. there exist (another) LD document d′ ∈ D, an RDF triple t ∈ data(d′), and a URI
u ∈ uris(t) such that
a) d′ is (c, P)-reachable from S in W,
b) c(t, u, P) = true,
c) adoc(u) = d. 2

From Condition 1 in Definition 4.2 we see that any LD document that is authoritative
for any of the URIs given in S (which serve as seed), is always reachable from S in the
corresponding Web of Linked Data, independent of the reachability criterion and the
SPARQL expression used. We call such a reachable LD document (that satisfies the
first condition in Definition 4.2) a seed document.

Example 4.1. Consider a set of seed URIs Sex = {producer1} and a SPARQL expression
Pex that is given as follows:(

(?product, producedBy, producer1) AND (?product, name, ?productName)
)

The only LD document that is (cNone, Pex)-reachable from Sex in our example Web of
Linked Data Wex (cf. Example 2.1, page 18) is dPr1. This document is also (cMatch, Pex)-
reachable from Sex in Wex and it is (cAll, Pex)-reachable from Sex in Wex. In all three
cases LD document dPr1 is the (only) seed document.
Further LD documents that are (cMatch, Pex)-reachable from Sex in Wex are dp2 and

dp3. The set of all LD documents that are (cAll, Pex)-reachable from Sex in Wex also
includes these documents and, additionally, dp1. 2

Based on reachability of LD documents we define reachable subwebs of a Web of Linked
Data. Such a subweb is an induced subweb covering all reachable LD documents.
Definition 4.3 (Reachable Subweb). Let S ⊆ U be a finite set of URIs; let c be
a reachability criterion; let P be a SPARQL expression; and let W = (D, data, adoc)
be a Web of Linked Data. The (S, c, P)-reachable subweb of W is an induced subweb
(DR, dataR, adocR) of W defined by:

DR :=
{
d ∈ D

∣∣ d is (c, P)-reachable from S in W
}
. 2

4.1.2. SPARQLLD(R)
We now use the concept of a reachable subweb to define reachability-based semantics for
SPARQL-based Linked Data queries. We refer to such queries as SPARQLLD(R) queries.
Definition 4.4 (SPARQLLD(R) Query). Let S ⊆ U be a finite set of URIs; let c be a
reachability criterion; and let P be a SPARQL expression. The SPARQLLD(R) query that
uses P , S, and c, denoted by QP,Sc , is a Linked Data query that, for any Web of Linked
Data W, is defined by QP,Sc (W) := [[P]]AllData(R) where R denotes the (S, c, P)-reachable
subweb of W. 2

63

4. Reachability-Based Query Semantics

According to Definition 4.4, our notion of SPARQLLD(R) consists of a family of (reach-
ability-based) query semantics, each of which is characterized by a certain reachability
criterion. Therefore, we refer to SPARQLLD(R) queries for which we use a particular
reachability criterion c as SPARQLLD(R) queries under c-semantics.
Definition 4.4 also shows that query results depend on the given set of seed URIs

S ⊆ U . It is easy to see that any SPARQLLD(R) query that uses an empty set of seed
URIs is not satisfiable and, thus, trivially monotonic and finitely computable by an LD
machine. We therefore consider only nonempty sets of seed URIs.

Example 4.2. Let QPex,Sex
cNone be the SPARQLLD(R) query under cNone-semantics that uses

the SPARQL expression Pex and the set of seed URIs Sex as given in Example 4.1. The
corresponding (Sex, cNone, Pex)-reachable subweb of our example Web of Linked DataWex
consists of LD document dPr1 only (cf. Example 4.1). Although dataex(dPr1) includes two
matching triples for the first triple pattern in SPARQL expression Pex, none of the RDF
triples in dataex(dPr1) is a matching triple for the second triple pattern (cf. Example 2.1,
page 18). Therefore, the result of query QPex,Sex

cNone over Wex is empty:

QPex,Sex
cNone (Wex) = ∅ .

LetQPex,Sex
cMatch andQPex,Sex

cAll be the corresponding SPARQLLD(R) queries under cMatch-seman-
tics and under cAll-semantics, respectively. For cMatch-semantics the (Sex, cMatch, Pex)-
reachable subweb of Wex consists of LD documents dPr1, dp2, and dp3 (cf. Example 2.1).
The (Sex, cAll, Pex)-reachable subweb of Wex additionally includes dp1. Therefore:

QPex,Sex
cMatch (Wex) =

{
µ1, µ2

}
and QPex,Sex

cAll (Wex) =
{
µ1, µ2, µ3

}
,

where µ1 = {?product→ product2, ?productName→ "Product 2"}, µ2 = {?product→ product3,
?productName→"Product 3"}, and µ3 ={?product→product1, ?productName→"Product 1"},
respectively. 2

In the next section we discuss more extensively the results of SPARQLLD(R) queries.
In particular, we provide a general comparison of SPARQLLD(R) and SPARQLLD w.r.t.
containment of query results. Based on this comparison we discuss query results under
reachability-based semantics in the context of infinitely large Webs of Linked Data. Fol-
lowing sections then focus on the concept of reachability criteria, and analyze theoretical
properties of SPARQLLD(R) queries.

4.2. Result Containment and Infiniteness
Definition 4.4 defines precisely what the sound and complete result of any SPARQLLD(R)
query over any Web of Linked Data W is. However, in contrast to SPARQLLD (as
discussed in Chapter 3), there is no guarantee that such a (complete) SPARQLLD(R)
query result is complete w.r.t. all data in W since the corresponding (S, c, P)-reachable
subweb of W may not cover W as a whole. We emphasize that such an incomplete
coverage is even possible for the reachability criterion cAll because the link graph of W

64

4.2. Result Containment and Infiniteness

may not be connected; therefore, the cAll-semantics differs from the full-Web semantics.
The following proposition relates the result of any SPARQLLD(R) query to the result of
its SPARQLLD counterpart.

Proposition 4.1. Let QP,Sc be a SPARQLLD(R) query; let QP be the SPARQLLD query
that uses the same SPARQL expression P as used by QP,Sc ; let W be a Web of Linked
Data. Then, the following two properties hold:

1. QP,Sc (W) = QP(R) with R being the (S, c, P)-reachable subweb of W.

2. If QP is monotonic, then QP,Sc (W) ⊆ QP(W).

Proof. We first prove Property 1: By Definition 4.4, QP,Sc (W) = [[P]]AllData(R) (cf.
page 63) and, by Definition 3.1, QP(R) = [[P]]AllData(R) (cf. page 42). Hence, we have
QP,Sc (W) = QP(R), as stated.
We now focus on Property 2: Suppose SPARQLLD query QP is monotonic. By Def-

inition 4.3 (cf. page 63), R is an induced subweb of W. Therefore, by Proposition 2.1
(cf. page 21), AllData(R) ⊆ AllData(W) holds. Then, QP(R) ⊆ QP(W) because QP is
monotonic. Using the previously shown Property 1, we conclude QP,Sc (W) ⊆ QP(W). �

Since the result of any SPARQLLD query over a finite Web of Linked Data is finite, we
may use Proposition 4.1 (Property 1) to show the same for SPARQLLD(R) queries:

Corollary 4.1. The result of any SPARQLLD(R) query QP,Sc over a finite Web of Linked
Data W is finite, and so is the (S, c, P)-reachable subweb of W.

Proof. Let W = (D, data, adoc), and let R = (DR, dataR, adocR) be the (S, c, P)-reach-
able subweb of W. We first show finiteness for R: By Definition 4.3, R is an induced
subweb of W (cf. page 63) and, thus, by Definition 2.4, we have DR ⊆ D (cf. page 21).
Then, using the finiteness of D, DR is finite and hence R is finite.
Given the finiteness of R, the finiteness of QP,Sc (W) follows directly from (i) Propo-

sition 4.1, Property 1, and (ii) Proposition 3.5 (which shows that the result of any
SPARQLLD query over a finite Web of Linked Data is finite; cf. page 57). �

Corollary 4.1 focuses on a finite Web of Linked Data. Now, we study the implications
of querying an infinite Web of Linked Data (using reachability-based query semantics).
We first take a look at some example queries:

Example 4.3. For the example we assume the same infinite Web of Linked DataWinf as
used in Example 3.4 (cf. page 58). We recall that Winf = (Dinf , datainf , adocinf) contains
an LD document di ∈ Dinf for every integer i ∈ Z, that is, adocinf(noi) = di where URI
noi ∈ U identifies integer i. The data of each of these documents consists of two RDF
triples that refer to the predecessor and to the successor of the corresponding integer:
datainf(di) =

{
(noi, pred, noi−1), (noi, succ, noi+1)

}
for all i ∈ Z. Furthermore, as a basis for

two SPARQLLD queries, Example 3.4 uses two triple patterns: tp1 = (no0, succ, ?v) and
tp2 = (?x, succ, ?y).
We now revisit this example in the context of reachability-based query semantics. We

consider the aforementioned reachability criteria cAll, cMatch, and cNone (cf. page 62 in
Section 4.1) and use URI no0 as seed URI; i.e., S = {no0}.

65

4. Reachability-Based Query Semantics

First, we focus on triple pattern tp1: If we assume adocinf(pred) = adocinf(succ) =⊥,
then the (S, cAll, tp1)-reachable subweb of Winf consists of the LD documents for all
integers and, thus, is infinite. In contrast, the corresponding reachable subwebs for
cMatch and cNone are finite: The (S, cMatch, tp1)-reachable subweb of Winf consists of LD
documents d0 and d1, whereas the (S, cNone, tp1)-reachable subweb of Winf consists only
of d0. Irrespective of these differences, the query result is the same in all three cases:
Qtp1,S
cAll (Winf) = Qtp1,S

cMatch(Winf) = Qtp1,S
cNone(Winf) =

{
{?v → no1}

}
.

We now consider triple pattern tp2: Under cNone-semantics the query result is the same
as in the case of tp1 because the (S, cNone, tp2)-reachable subweb of Winf consists only of
LD document d0 (as before). For cAll and cMatch the reachable subwebs are infinite but
different: The (S, cAll, tp1)-reachable subweb ofWinf consists, again, of the LD documents
for all integers, whereas the (S, cMatch, tp1)-reachable subweb of Winf consists of the LD
documents d0, d1, d2, The query results for both criteria are also infinite and different
from each other: Qtp2,S

cAll (Winf) =
{
... , {?x → no -1, ?y → no0}, {?x → no0, ?y → no1}, ...

}
and Qtp2,S

cMatch(Winf) =
{
{?x→ no0, ?y → no1}, {?x→ no1, ?y → no2}, ...

}
⊂ Qtp2,S

cAll (Winf). 2

The example illustrates that, for the case of an infinite Web of Linked Data, the results
of SPARQLLD(R) queries may be either finite or infinite. In Example 3.4 we found the
same heterogeneity for SPARQLLD queries (cf. page 58). However, for SPARQLLD(R)
we may identify dependencies between query results and the corresponding reachable
subwebs of the queried Web:

Proposition 4.2. Let S ⊆ U be a finite set of URIs; let c be a reachability criterion; let
P be a SPARQL expression; let W be a (potentially infinite) Web of Linked Data, and
let R denote the (S, c, P)-reachable subweb of W. Then, the following properties hold:

1. If R is finite, then QP,Sc (W) is finite.

2. If QP,Sc (W) is infinite, then R is infinite.

3. If c is cNone, then R is finite, and so is QP,ScNone(W).

Proof. Property 1: By Proposition 4.1 (Property 1), it holds that QP,Sc (W) = QP(R)
where QP is the SPARQLLD query that uses the same SPARQL expression as used by
QP,Sc . Since the result of any SPARQLLD query over a finite Web of Linked Data is finite
(as shown in Proposition 3.5, page 57), Property 1 follows immediately.
Property 2: Suppose QP,Sc (W) is infinite. We use proof by contradiction, that is, we

assume R is finite. Then, by Property 1, QP,Sc (W) is also finite, a contradiction. Hence,
R must be infinite.
Property 3: Let W = (D, data, adoc) and R = (DR, dataR, adocR). Suppose c is cNone.

Since cNone always returns false, it is easily verified that there does not exist an LD
document d ∈ D that satisfies Case 2 in Definition 4.2 (cf. page 62). Hence, DR contains
the seed documents only, that is, DR =

{
d ∈ D

∣∣u ∈ S and adoc(u) = d
}
(cf. Case 1

in Definition 4.2). Since S is finite, DR is finite, and so is R. Then, the finiteness of
QP,ScNone(W) follows by Property 1. �

66

4.2. Result Containment and Infiniteness

Proposition 4.2 provides valuable insight into the dependencies between the (in)finiteness
of reachable subwebs of an infinite Web and the (in)finiteness of query results. In prac-
tice, however, we are primarily interested in answering the following questions: Does the
execution of a given SPARQLLD(R) query reach an infinite number of LD documents? Do
we have to expect an infinite query result? We formalize these questions as the following
LD decision problems and discuss them in the remainder of this section.

LD Problem: FinitenessReachablePart
Web Input: a (potentially infinite) Web of Linked Data W
Ordin. Input: a SPARQLLD(R) query QP,Sc
Question: Is the (S, c, P)-reachable subweb of W finite?

LD Problem: Finiteness(SPARQLLD(R))
Web Input: a (potentially infinite) Web of Linked Data W
Ordin. Input: a SPARQLLD(R) query QP,Sc
Question: Is query result QP,Sc (W) finite?

As in the case of Finiteness(SPARQLLD), discussed on page 58, an LD machine can
trivially decide Finiteness(SPARQLLD(R)) for unsatisfiable1 SPARQLLD(R) queries.
In contrast, the satisfiability property of queries is irrelevant for FinitenessReach-
ablePart: The reachable subweb of a queried Web of Linked Data may be infinite
regardless of whether the corresponding SPARQLLD(R) query is unsatisfiable or satisfi-
able. Nonetheless, for a particular class of SPARQLLD(R) queries we can rule out the
existence of infinitely large reachable subwebs. This class comprises all queries that use
a reachability criterion that ensures the finiteness of reachable subwebs in any possible
case by definition. We define such property of reachability criteria as follows:
Definition 4.5 (Ensuring Finiteness). A reachability criterion c ensures finiteness
if, for any Web of Linked Data W, any (finite) set S ⊆ U of URIs, and any SPARQL
expression P , the (S, c, P)-reachable subweb of W is finite. 2

From the reachability criteria discussed so far, only cNone ensures finiteness (see Propo-
sition 4.2); this property does not hold for cAll and cMatch (as shown by Example 4.3).
We refer to the next section, in particular, Subsections 4.3.3 and 4.3.4 (cf. page 73ff),
for a more comprehensive discussion of reachability criteria that ensure finiteness. How-
ever, due to its relevance for Finiteness(SPARQLLD(R)), we emphasize that using
reachability criteria that ensure finiteness also guarantee finite query results:

Corollary 4.2. Let c be a reachability criterion that ensures finiteness. For any
SPARQLLD(R) query QP,Sc under c-semantics and any Web of Linked Data W , query
result QP,Sc (W) is finite.

Proof. The corollary follows readily from Definition 4.5 and Proposition 4.2. �

Given Definition 4.5 and Corollary 4.2 we see that, for a SPARQLLD(R) query whose
reachability criterion ensures finiteness, an LD machine can immediately answer the

1We shall discuss satisfiability of SPARQLLD(R) queries in Section 4.4.1 (cf. page 77ff).

67

4. Reachability-Based Query Semantics

questions posed by FinitenessReachablePart and by Finiteness(SPARQLLD(R)).
Thus, for both of these problems we have decision criteria that cover certain classes of
queries. In general, however, both problems are undecidable for LD machines.

Theorem 4.1. FinitenessReachablePart and Finiteness(SPARQLLD(R)) are not
LD machine decidable.

Proof. We prove Theorem 4.1 by reducing the halting problem to FinitenessReach-
ablePart and to Finiteness(SPARQLLD(R)). While this proof resembles the proofs
of Proposition 3.4 (cf. page 50) and Theorem 3.3 (cf. page 58), we need to use a Web
of Linked Data WTMs3 that differs from Webs WTMs and WTMs2 (used in the aforemen-
tioned proofs). Although WTMs3 also describes all possible computations of all Turing
machines, this description differs from the descriptions in WTMs and WTMs2.
We use the same symbols as in the aforementioned proofs: W denotes the countably

infinite set of all words that describe Turing machines. For all w ∈ W, M(w) denotes
the machine described by word w; cw,x denotes the computation of machine M(w) on
input x; URI uw,xi ∈ U identifies the i-th step in computation cw,x. The countably infinite
set of all these identifiers is denoted by UTMsteps.
We now defineWTMs3 as a Web of Linked Data (DTMs3, dataTMs3, adocTMs3) similar to

the Web WTMs used for proving Proposition 3.4: DTMs3 and adocTMs3 are the same is in
WTMs. That is, DTMs3 consists of |UTMsteps| different LD documents, each of which corre-
sponds to one of the URIs in UTMsteps. Mapping adocTMs3 maps each URI uw,xi ∈ UTMsteps
to the corresponding LD document dw,xi ∈ DTMs3. Mapping dataTMs3 for WTMs3 is dif-
ferent from the corresponding mapping forWTMs: The set dataTMs3

(
dw,xi

)
of RDF triples

for an LD document dw,xi is empty if computation cw,x halts with the i-th computation
step. Otherwise, dataTMs3

(
dw,xi

)
contains a single RDF triple (uw,xi , next, uw,xi+1) which as-

sociates the computation step identified by URI uw,xi with the next step in cw,x (next ∈ U
denotes a URI for this relationship). Formally:

dataTMs3
(
dw,xi

)
:=
{
∅ if computation cw,x halts with the i-th step,{
(uw,xi , next, uw,xi+1)

}
else.

Mappings adocTMs3 and dataTMs3 are Turing computable (by simulation).
For the reduction we use mapping f which is defined as follows: Let (w, x) be an

input to the halting problem and let ?a, ?b ∈ V be two distinct query variables, then
f(w, x) =

(
WTMs3,Q

Pw,x,Sw,x
cMatch

)
where Sw,x =

{
uw,x1

}
and Pw,x = (?a, next, ?b). Given that

cMatch and WTMs3 are independent of (w, x), it can be easily seen that f is computable
by Turing machines (including LD machines).
Before we present the reduction we highlight a property of WTMs3 that is important

for our proof. Any RDF triple of the form (uw,xi , next, uw,xi+1) establishes a data link from
LD document dw,xi to LD document dw,xi+1. Based on such links we may reach all LD
documents about all steps in a particular computation of any Turing machine (given
the corresponding w and x). Hence, for each possible computation cw,x of any Turing
machine M(w) we have a (potentially infinite) simple path (dw,x1 , ... , dw,xi , ...) in the link
graph ofWTMs3. Each of these paths is finite if and only if the corresponding computation

68

4.3. Reachability Criteria

halts. Moreover, each of these paths forms a separate subgraph of the link graph ofWTMs3
because we use a separate set of step URIs for each computation and the RDF triples
in the corresponding LD documents mention steps from the same computation only. As
a consequence, the following two properties hold for any halting problem input (w, x):

1. Turing machine M(w) halts on input x if and only if the (Sw,x, cMatch, Pw,x)-reach-
able subweb of WTMs3 is finite.

2. Turing machineM(w) halts on input x if and only if query resultQPw,x,Sw,x
cMatch (WTMs3)

is finite.
To show that FinitenessReachablePart is not LD machine decidable, suppose the
problem is LD machine decidable. Then, an LD machine can answer the halting problem
for any input (w, x) by using the first of the two aforementioned properties (i.e., Turing
machineM(w) halts on x if and only if the (Sw,x, cMatch, Pw,x)-reachable subweb ofWTMs3
is finite). Since the halting problem is undecidable for Turing machines (and, thus, for
LD machines), we have a contradiction. Therefore, FinitenessReachablePart cannot
be LD machine decidable.
The proof that Finiteness(SPARQLLD(R)) is undecidable for LD machines fol-

lows similar steps. Hence, we only outline the idea of the proof: Instead of reducing
the halting problem to FinitenessReachablePart based on mapping f we now re-
duce the halting problem to Finiteness(SPARQLLD(R)) using the same mapping. If
Finiteness(SPARQLLD(R)) is decidable, the halting problem for any (w, x) is decidable
since the corresponding Turing machineM(w) halts on x if and only if QPw,x,Sw,x

cMatch (WTMs3)
is finite. �

In summary, this section showed that the reachable subweb of some Webs of Linked
Data is infinite for some SPARQLLD(R) queries. In Section 4.4.3 we shall see that the ex-
istence of these cases impacts the computational feasibility of SPARQLLD(R) queries (cf.
page 90ff). However, we first elaborate further on reachability criteria before discussing
theoretical properties of SPARQLLD(R).

4.3. Reachability Criteria
The concept of a reachability criterion is a key concept for our notion of reachabil-
ity-based query semantics. As a consequence, this section provides a more detailed
discussion of these criteria. In particular, we elaborate on how to compare and how to
combine such criteria. Furthermore, we discuss the finiteness property defined in the
previous section, and we introduce a particular class of reachability criteria for which
this property holds.

4.3.1. Comparing Reachability Criteria
We compare reachability criteria based on the data links they accept. Informally, a
criterion c1 is less restrictive than criterion c2 if c1 accepts a proper superset of the links
that c2 accepts. Formally, we define this notion of restrictiveness as follows:

69

4. Reachability-Based Query Semantics

Definition 4.6 (Less Restrictive). Let T , U , and P denote the infinite sets of all
possible RDF triples, URIs, and SPARQL expressions, respectively. A reachability cri-
terion c1 is less restrictive than a reachability criterion c2, denoted by c1 C c2, if (i) for
each tuple (t, u, P) ∈ T × U × P for which c2(t, u, P) = true, also c1(t, u, P) = true,
and (ii) there exists a tuple (t′, u′, P ′) ∈ T × U × P such that c1(t′, u′, P ′) = true but
c2(t′, u′, P ′) = false. 2

In addition to less restrictiveness we may say two reachability criteria c1 and c2 are
equally restrictive if c1(t, u, P) = c2(t, u, P) for all tuples (t, u, P) ∈ T ×U×P. However,
in this dissertation we understand two equally restrictive reachability criteria as a single
criterion for which multiple definitions exist. Then, it can be easily seen that reachability
criterion cAll is the least restrictive criterion, that is, for any other reachability criterion
c it holds that cAll C c. Similarly, cNone is the most restrictive reachability criterion (i.e.,
c C cNone for any other reachability criterion c).
We note that the relation C is a strict order over the set of all possible reachability

criteria. However, C is only partial. That is, not any pair of distinct reachability criteria
can be compared (using C) as the following example illustrates.

Example 4.4. Consider two distinct RDF triples t1, t2 ∈ U × U × U that consist of
URIs only. Using t1 and t2 we may define two simple (and fairly restrictive) reachability
criteria ct1 and ct2 as follows. For each tuple (t, u, P) ∈ T × U × P, let:

ct1(t, u, P) :=
{

true if t is t1,
false else,

and ct2(t, u, P) :=
{

true if t is t2,
false else.

Thus, in addition to its seed documents, an (S, ct1 , P)-reachable subweb of an arbitrary
Web of Linked DataW (for any set of seed URIs S and any SPARQL expression P) may
contain at most three additional LD documents. This requires however that (i) RDF
triple t1 is available in at least one of the seed documents and (ii) there actually exist
LD documents in W that are authoritative for the three URIs in t1. Similarly, for ct2 .
Apparently, neither ct1 is less restrictive than ct2 nor vice versa (nor are they equally

restrictive). However, we may introduce an additional criterion c{t1,t2} that maps any
tuple (t, u, P) ∈ T ×U ×P to true if and only if t is t1 or t is t2. Then, c{t1,t2} C ct1 and
c{t1,t2} C ct2 . Notice, ct1 , ct2 , and c{t1,t2} are constant reachability criteria, a particular
class of reachability criteria that we shall discuss in Section 4.3.4 (cf. page 74ff). 2

Given the comparability of (some) reachability criteria we now can, at least in theory,
compare corresponding reachable subwebs of a queried Web of Linked Data, as well as
corresponding query results:

Proposition 4.3. Let W be a Web of Linked Data; let S ⊆ U be a finite set of URIs;
let P be a SPARQL expression; and let c and c′ be reachability criteria such that c C c′.
Then, the (S, c′, P)-reachable subweb of W is an induced subweb of the (S, c, P)-reachable
subweb of W. Furthermore, if P is monotonic, then QP,Sc′ (W) ⊆ QP,Sc (W).

Proof. Let R = (DR, dataR, adocR) and R′ = (D′R, data′R, adoc′R) be the (S, c, P)-reach-
able subweb and the (S, c′, P)-reachable subweb of W, respectively.

70

4.3. Reachability Criteria

To show that R′ is an induced subweb of R it suffices to show D′R ⊆ DR, because, by
Definition 4.3 (cf. page 63), both reachable subwebs are induced subwebs ofW. D′R ⊆ DR
holds because any LD document d ∈ D′R is not only (c′, P)-reachable from S in W but,
due to c C c′, document d is also (c, P)-reachable from S in W and, thus, d ∈ DR.
Since R′ is an induced subweb of R we also have AllData(R′) ⊆ AllData(R) (cf. Propo-

sition 2.1, page 21). If P is monotonic, it holds that [[P]]AllData(R′) ⊆ [[P]]AllData(R) and,
thus, by Definition 4.4 (cf. page 63), QP,Sc′ (W) ⊆ QP,Sc (W). �

The following properties are a trivial consequence of Proposition 4.3.

Corollary 4.3. Let W be a Web of Linked Data; let S ⊆ U be a finite set of URIs; let
P be a SPARQL expression; and let c and c′ be reachability criteria such that c C c′.
Furthermore, let R and R′ denote the (S, c, P)-reachable subweb and the (S, c′, P)-reach-
able subweb of W, respectively. The following two properties hold:

1. If R is finite, then R′ is finite.

2. If R′ is infinite, then R′ is infinite.

Proof. The result follows immediately from Proposition 4.3 and the fact that D′R ⊆ DR
(where D′R and DR denote the set of LD documents in R′ and in R, respectively). �

4.3.2. Combining Reachability Criteria
Consider reachability criteria ct1 , ct2 , and c{t1,t2} that we introduce in the previous
example (cf. Example 4.4). We note that c{t1,t2} is a (disjunctive) combination of ct1 and
ct2 . In this section we provide a general formalism for such combinations by introducing
an algebraic structure over the set of all possible reachability criteria. As a basis we
define the following algebraic operations:
Definition 4.7 (Combining Reachability Criteria). Let T , U , P, and C denote the
infinite sets of all possible RDF triples, all URIs, all possible SPARQL expressions, and
all possible reachability criteria, respectively. The disjunctive combination of reachability
criteria, denoted by t, and the conjunctive combination of reachability criteria, denoted
by u, are binary operations over C such that the following two properties hold for any
pair of reachability criteria (c1, c2) ∈ C × C and any tuple (t, u, P) ∈ T × U × P:

1. Let c be the reachability criterion c1 t c2, then c(t, u, P) = true if and only if
c1(t, u, P) = true or c2(t, u, P) = true.

2. Let c be the reachability criterion c1 u c2, then c(t, u, P) = true if and only if
c1(t, u, P) = true and c2(t, u, P) = true. 2

Example 4.5. For the reachability criteria ct1 , ct2 , and c{t1,t2} that we introduce in
Example 4.4 it holds that c{t1,t2} is the same as ct1 t ct2 . 2

Based on their definition it is easy to verify that both operations, t and u, have the
following, desirable properties (where C denotes the set all possible reachability criteria):

71

4. Reachability-Based Query Semantics

• Operations t and u are commutative.
That is, for each pair (c1, c2) ∈ C × C it holds that (i) c1 t c2 is the same as c2 t c1
and (ii) c1 u c2 is the same as c2 u c1.

• Set C is closed under t and under u.
That is, for each pair (c1, c2) ∈ C×C it holds that (i) c1tc2 ∈ C and (ii) c1uc2 ∈ C.

• Operations t and u are associative.
That is, for each triple (c1, c2, c3) ∈ C × C × C it holds that (i) (c1 t c2) t c3 is the
same as c1 t (c2 t c3) and (ii) (c1 u c2) u c3 is the same as c1 u (c2 u c3).

• Reachability criteria cAll and cNone are identity element for t and u, respectively.
That is, cAll t c is the same as cAll for all c ∈ C; similarly, cNone u c is the same as
cNone for all c ∈ C.

• Any reachability criterion is invertible w.r.t. t and to u.
That is, if c denotes the inverse of reachability criterion c, then c t c is the same
as identity element cAll for all c ∈ C; similarly, cu c is the same as identity element
cNone for all c ∈ C. Formally, we define the inverse of a reachability criterion c as a
reachability criterion c such that for each tuple (t, u, P) ∈ T ×U ×P it holds that
c(t, u, P) = true if and only if c(t, u, P) = false.

• Operation t is distributive over u.
That is, for each (c1, c2, c3) ∈ C × C × C it holds that (i) c1 t (c2 u c3) is the same
as (c1 t c2) u (c1 t c3) and (ii) (c1 u c2) t c3 is the same as (c1 t c3) u (c2 t c3).

• Operation u is distributive over t.
That is, for each (c1, c2, c3) ∈ C × C × C it holds that (i) c1 u (c2 t c3) is the same
as (c1 u c2) t (c1 u c3) and (ii) (c1 t c2) u c3 is the same as (c1 u c3) t (c2 u c3).

• Operations t and u are connected by the absorption law.
That is, for each pair (c1, c2) ∈ C × C it holds that (i) c1 t (c1 u c2) is the same as
c1 and (ii) c1 u (c1 t c2) is the same as c1.

As a consequence of these properties, in terms of ring theory [124], set C and operations
t and u form two commutative rings (C,t,u) and (C,u,t). Furthermore, if we let E
be the non-strict partial order (over C) that corresponds to our strict partial order C,
then, in terms of order theory [38], (C,E) is a bounded lattice (where t and u are the
join and the meet operation of the lattice, respectively, and cAll and cNone are the top
and the bottom element, respectively).
Finally, the following dependencies follow trivially from the corresponding definitions.

Proposition 4.4. Let C denote the infinite set all possible reachability criteria. The
following properties hold for each pair of reachability criteria (c1, c2) ∈ C × C:

1. (c1 t c2) E c1 and (c1 t c2) E c2.

2. c1 E (c1 u c2) and c2 E (c1 u c2).

72

4.3. Reachability Criteria

3. If c1 C c2, then c1 t c2 is the same as c1 and c1 u c2 is the same as c2.

4. If c1 is not the same as c2, then (c1 t c2) C (c1 u c2).

Proof. First, we define E formally: For any pair (c1, c2) ∈ C × C it holds that c1 E c2 if
either (i) c1 C c2 or (ii) c1 is the same as c2. Then, Proposition 4.4 follows readily from
our definition of C and our definition of t and u. �

4.3.3. Reachability Criteria that Ensure Finiteness
We now focus on the finiteness property for reachability criteria that we introduce in
Section 4.2. Recall, a reachability criterion c∗ ensures finiteness if any possible (S, c∗, P)-
reachable subweb of any Web of Linked Data W is finite (cf. Definition 4.5, page 67). In
what follows we first revisit this property given the possibility to compare and to combine
reachability criteria. Afterwards, in Section 4.3.4, we introduce constant reachability
criteria as a particular class of reachability criteria that ensure finiteness.
Using Corollary 4.3 we may easily show that a reachability criterion ensures finiteness

if there exists another, less restrictive criterion that also ensures finiteness. Formally:

Corollary 4.4. Let Cef denote the set of all reachability criteria that ensure finiteness.
For any pair of reachability criteria c and c′ the following property holds: If c ∈ Cef and
c E c′, then c′∈ Cef.

Proof. The corollary follows immediately from our definition of the finiteness property
(that is, Definition 4.5) and Corollary 4.3 (cf. page 4.3). �

The following result classifies (disjunctive and conjunctive) combinations of reachability
criteria w.r.t. our finiteness property.

Proposition 4.5. Let Cef denote the set of all reachability criteria that ensure finiteness.
For any two reachability criteria c1 and c2 with c1 ∈ Cef, the following properties hold:

1. (c1 u c2) ∈ Cef

2. (c1 t c2) ∈ Cef if and only if c2 ∈ Cef

To prove Proposition 4.5 (in particular, Property 2), we need the following characteristic
that distinguishes reachability criteria that ensure finiteness from those that do not.

Lemma 4.1. Let T , U , P, and C denote the infinite sets of all possible RDF triples,
all URIs, all possible SPARQL expressions, and all possible reachability criteria, respec-
tively. Furthermore, we define a function X : C × P → U that maps any pair of a
reachability criterion c ∈ C and a SPARQL expression P ∈ P to a set of URIs:

X(c, P) :=
{
u ∈ U

∣∣ ∃t ∈ T : u ∈ uris(t) and c(t, u, P) = true
}
.

Then, for each reachability criterion c ∈ C it holds that c ensures finiteness if and only
if X(c, P) is finite for all SPARQL expressions P ∈ P.

73

4. Reachability-Based Query Semantics

For the proof of Lemma 4.1 we refer to the appendix (cf. Section E.3, page 221f).
Before we prove Proposition 4.5 (based on Lemma 4.1), we emphasize that the sets

X(c, P) in Lemma 4.1 present upper bounds for all URIs based on which LD documents
may be reached by applying the recursive (second) step in our definition of reachable LD
documents (cf. Definition 4.2, page 62). Of course, it is not necessarily the case that all
these URIs are discovered (and used) during such a recursive application of Definition 4.2
in a particular Web of Linked Data, starting from a particular set of seed documents.
We now use Lemma 4.1 to prove Proposition 4.5.

Proof of Proposition 4.5. Property 1 in Proposition 4.5 (i.e., (c1 u c2) ∈ Cef) follows
readily from Proposition 4.4 (cf. page 72), Corollary 4.4 (cf. page 73), and c1 ∈ Cef .
To show the second property in Proposition 4.5 (i.e., (c1 t c2) ∈ Cef ⇔ c2 ∈ Cef), we

first note that for any two reachability criteria c and c′, X(ct c′, P) = X(c, P)∪X(c′, P)
holds for all SPARQL expressions P ∈ P (whereX is the function defined in Lemma 4.1).
We now distinguish whether c2 ensures finiteness and use Lemma 4.1 in both cases:

• If c2 ∈ Cef , then both X(c2, P) and X(c1, P) are finite for all P ∈ P (regarding c1
we recall c1 ∈ Cef). Then, X(c1 t c2, P) = X(c1, P) ∪X(c2, P) is also finite for all
P ∈ P and, thus, (c1 t c2) ∈ Cef .

• If c2 /∈ Cef , there exists a SPARQL expression P ∈ P such that X(c2, P) is infinite.
Consequently, for this SPARQL expression P , X(c1t c2, P) = X(c1, P)∪X(c2, P)
is also infinite. Therefore, (c1 t c2) /∈ Cef . �

While we leave the decidability of our finiteness property an open question for future
research, the following section introduces a class of reachability criteria for which the
property holds.

4.3.4. Constant Reachability Criteria

This section discusses a particular class of reachability criteria which we call constant
reachability criteria. These criteria always only accept a given, constant set of data links.
As a consequence, each of these criteria ensures finiteness. In the following we introduce
constant reachability criteria and prove that they ensure finiteness.
The (fixed) set of data links that a constant reachability criterion accepts may be

specified differently. Accordingly, we distinguish two basic types of constant reachability
criteria. Formally, we define them as follows:

Definition 4.8 (URI-Constant Criterion and Triple-Constant Criterion). Let
T , U , and P denote the infinite sets of all possible RDF triples, all URIs, and all possible
SPARQL expressions, respectively. For any finite set of URIs U ⊆ U and any finite set
of RDF triples T ⊆ T , the URI-constant criterion for U, denoted by cU, and the tri-
ple-constant criterion for T, denoted by cT, are reachability criteria that for each tuple
(t, u, P) ∈ T × U × P are defined as follows:

74

4.3. Reachability Criteria

cU
(
t, u, P

)
:=
{

true if u ∈ U,
false else,

and cT
(
t, u, P

)
:=
{

true if t ∈ T,
false else. 2

As can be seen from the definition, URI-constant criteria use a (finite) set of URIs to
specify the data links that they accept. Similarly, triple-constant criteria use a (finite) set
of RDF triples. An example for triple-constant criteria are the the reachability criteria
ct1 , ct2 , and c{t1,t2} in Example 4.4 (cf. page 70). Another example for such criteria is
cNone, which presents the following special case: cNone is the URI-constant criterion that
uses an empty set of URIs and cNone is the triple-constant criterion that uses an empty
set of RDF triples. The following properties are trivial to verify:

Property 4.1. If cU and cU ′ are URI-constant criteria such that U ′ ⊂ U , then cU C cU ′.
Similarly, if cT and cT ′ are triple-constant criteria such that T ′ ⊂ T , then cT C cT ′.

As any other reachability criteria, URI-constant criteria and triple-constant criteria may
be combined using operations t and u. Our understanding of constant reachability
criteria covers all criteria in the closure of such combinations:

Definition 4.9 (Constant Reachability Criterion). Constant reachability criteria
are defined recursively as follows:

1. Any URI-constant criterion is a constant reachability criterion.

2. Any triple-constant criterion is a constant reachability criterion.

3. If c1 and c2 are constant reachability criteria, then both c1 t c2 and c1 u c2 are
constant reachability criteria. 2

Since the set of all URIs, U , is infinite, the number of finite subsets of U is also in-
finite and, thus, there exist infinitely many distinct URI-constant criteria; the same
holds for triple-constant criteria. As a consequence, the set of all constant reachability
criteria (that satisfy Definition 4.9) is also infinite.
We now show that any criterion in this set ensures finiteness (and there exist additional

reachability criteria that ensure finiteness but are not constant by our definition):

Proposition 4.6. If Cconst and Cef denote the infinite sets of all constant reachability
criteria and all reachability criteria that ensure finiteness, respectively, then Cconst ⊂ Cef.

Proof. To prove Cconst ⊂ Cef we show (i) c ∈ Cef for all c ∈ Cconst, and (ii) Cconst 6= Cef .
We first show Cconst 6= Cef using the following counterexample: Let curis(P) be a

reachability criterion such that for each tuple (t, u, P) ∈ T × U × P it holds that
curis(P)(t, u, P) = true if and only if u ∈ uris(P). Since uris(P) is finite for any given
SPARQL expression P ∈ P, it is easy to verify that curis(P) ∈ Cef . On the other hand,
there does not exist a constant reachability criterion that is the same as curis(P), because,
by definition, any constant reachability criterion ignores the given SPARQL expression,

75

4. Reachability-Based Query Semantics

whereas the set of all possible data links accepted by curis(P) always depends on the given
SPARQL expression. Hence, curis(P) /∈ Cconst and, thus, Cconst 6= Cef .
We now show c ∈ Cef for all c ∈ Cconst. For the proof we use an induction on the

definition of constant reachability criteria (that is, Definition 4.9).
Base case: The base case includes URI-constant criteria and triple-constant criteria

(as defined in Definition 4.8, page 74). Given Lemma 4.1 (cf. page 73), it suffices to show
for each such criterion c that set X(c, P) is finite for all SPARQL expressions P ∈ P.
W.l.o.g., let P ∈ P be an arbitrary SPARQL expression, and let cU and cT be an

arbitrary URI-constant criterion and an arbitrary triple-constant criterion, respectively.
Then,

∣∣X(cU, P)
∣∣ = |U | and

∣∣X(cT, P)
∣∣ ≤ 3 |T |. Consequently, X(cU, P) and X(cT, P) are

finite, because U and T are finite (as required by our definition of URI-constant criteria
and triple-constant criteria; cf. Definition 4.8). Thus, cU ∈ Cef and cT ∈ Cef .
Induction step: Let c1 ∈ Cconst and c2 ∈ Cconst be two constant reachability criteria

such that c1 ∈ Cef and c2 ∈ Cef . For any constant reachability criterion c ∈ Cconst that can
be obtained by combining c1 and c2, we have to show c ∈ Cef . Two such combinations
are possible (cf. Definition 4.9): Either c is c1 t c2 or c is c1 u c2. In both cases, c ∈ Cef
follows from Proposition 4.5 (cf. page 73). �

We conclude our discussion of constant reachability criteria by interpreting them in
terms of abstract algebra. By Definition 4.9, the set of all constant reachability criteria,
Cconst, is closed under t and under u. Therefore, Cconst is a subring of our commutative
ring (C,u,t) (introduced in Section 4.3.2, page 71ff). However, this subring is a (com-
mutative) pseudo-ring only; it has no multiplicative identity. That is, for the restriction
of t to Cconst there does not exist an identity element in Cconst. In other words, the cor-
responding sublattice

(
Cconst,E

)
of the lattice (C,E), introduced in Section 4.3.2, has no

top element (and, thus, is not bounded). To see this, consider our definition of URI-con-
stant criteria and the fact that the set of all URIs is infinite; then, for any URI-constant
criterion cU ∈ Cconst there exists another URI-constant criterion cU

′ ∈ Cconst such that
|U | < |U ′|. Hence, there exists no least restrictive URI-constant criterion (and, thus, no
top element for Cconst). Although sublattice

(
Cconst,E

)
is not bounded, we note that it

is a convex sublattice of lattice (C,E). That is, for each triple (c1, c2, c3) ∈ C ×C ×C the
following property holds: If c1, c3 ∈ Cconst and c1 E c2 E c3, then c2 ∈ Cconst.

4.4. Theoretical Properties

We now analyze theoretical properties of SPARQLLD(R) queries. This analysis resembles
our analysis of SPARQLLD (cf. Section 3.3, page 42ff). That is, we use our computa-
tion model for the analysis and organize the discussion as follows: Section 4.4.1 focuses
on the basic properties, Section 4.4.2 studies termination of (LD-machine-based) query
computation, and Section 4.4.3 classifies SPARQLLD(R) queries using the notions of finite
computability and eventual computability. During this discussion we identify commonal-
ities and differences between SPARQLLD and SPARQLLD(R). Section 4.5 summarizes the
key points in which SPARQLLD and SPARQLLD(R) differ w.r.t. the analyzed properties.

76

4.4. Theoretical Properties

4.4.1. Satisfiability, (Un)bounded Satisfiability, and Monotonicity

For the basic properties of a SPARQLLD(R) query we show the following relationships:

Proposition 4.7. Let QP,Sc be a SPARQLLD(R) query that uses SPARQL expression P
and a nonempty set of (seed) URIs S ⊆ U . The following relationships hold:

1. QP,Sc is satisfiable if and only if P is satisfiable.

2. QP,Sc is unboundedly satisfiable if and only if P is unboundedly satisfiable.

3. QP,Sc is boundedly satisfiable if and only if P is boundedly satisfiable.

4. QP,Sc is monotonic if P is monotonic.2

Proving Proposition 4.7 is more complex than proving the corresponding result in the
context of full-Web semantics (that is, Proposition 3.1, page 43). In the proof for the
full-Web semantics case we construct Webs of Linked Data from sets of RDF triples.
Since these sets may be infinitely large, we split up these sets and distribute their triples
over multiple LD documents in the constructed Web (after dealing with their blank
nodes). In the case of reachability-based semantics we cannot use such a construction
because the LD documents that contain relevant RDF triples from the original, split up
set may not be reachable. For this reason, we use an alternative approach for our proof
of Proposition 4.7. This alternative is based on a particular notion of lineage defined
for solutions in SPARQL query results. Informally, the lineage of such a solution µ is a
subset of the queried set of RDF triples that is required to construct µ. Formally:

Definition 4.10 (Lineage). Let P be a SPARQL expression and G be a (potentially
infinite) set of RDF triples. For every solution µ ∈ [[P]]G the (P ,G)-lineage of µ, denoted
by linP,G(µ), is defined recursively as follows:

1. If P is a triple pattern tp, then linP,G(µ) :=
{
µ[tp]

}
.

2. If P is (P1 AND P2), then linP,G(µ) := linP1,G(µ1) ∪ linP2,G(µ2), where µ1 ∈ [[P1]]G
and µ2 ∈ [[P2]]G such that µ1 ∼ µ2 and µ = µ1 ∪ µ2. (Since µ ∈ [[P]]G, there exists
a pair of valuations µ1, µ2 with the given properties.)

3. If P is (P1 UNION P2), then

linP,G(µ) :=
{

linP1,G(µ1) if ∃µ1 ∈ [[P1]]G : µ1 = µ,

linP2,G(µ2) if ∃µ2 ∈ [[P2]]G : µ2 = µ.

(If valuation µ1 does not exist, then there exists valuation µ2 because µ ∈ [[P]]G.)

2Using the material conditional in the statement about monotonicity (instead of the material bicondi-
tional as used in the other three statements) is not a mistake. We elaborate more on this issue after
proving Proposition 4.7.

77

4. Reachability-Based Query Semantics

4. If P is (P1 OPT P2), then

linP,G(µ) :=


linP1,G(µ1) ∪ linP2,G(µ2) if ∃ (µ1, µ2) ∈ [[P1]]G × [[P2]]G :(

µ1 ∼ µ2 ∧ µ = µ1 ∪ µ2
)
,

linP1,G(µ′) if ∃µ′ ∈ [[P1]]G :(
µ′ = µ ∧ ∀µ∗ ∈ [[P2]]G : µ∗ 6∼ µ′

)
.

(Since µ ∈ [[P]]G, either there exist valuations µ1, µ2, or there exists valuation µ′.)

5. If P is (P ′ FILTER R), then linP,G(µ) := linP ′,G(µ′) where µ′ ∈ [[P ′]]G such that
µ = µ′. (Valuation µ′ exists because µ ∈ [[P]]G.) 2

Example 4.6. Consider an infinite set of RDF triples Ginf = AllData(Winf) that contains
all RDF triples distributed over LD documents in our infinite example WebWinf (as used
in Examples 3.4 and 4.3 on page 58 and 65, respectively). That is, for each integer i ∈ Z,
identified by URI noi ∈ U , set Ginf contains two RDF triples: (noi, pred, noi−1) ∈ Ginf and
(noi, succ, noi+1) ∈ Ginf . Let Pex be the following SPARQL expression:((

(?x, succ, ?y) FILTER ?x = no1
)

UNION (no2, succ, ?y)
)
.

There exist two solutions for Pex in Ginf , namely µ1 = {?x → no1, ?y → no2} ∈ [[Pex]]Ginf

and µ2 = {?y → no3} ∈ [[Pex]]Ginf . The (Pex, Ginf)-lineage of µ1 consists of a single RDF
triple: linPex,Ginf

(
µ1
)

=
{
(no1, succ, no2)

}
. Similarly, linPex,Ginf

(
µ2
)

=
{
(no2, succ, no3)

}
. 2

Remark 4.1. If we let G′ = linP,G(µ) for a SPARQL expression P , a potentially infinite
set of RDF triples G, and a valuation µ ∈ [[P]]G, then it follows from Definition 4.10 that
(i) G′ ⊆ G, (ii) G′ is finite, and (iii) µ ∈ [[P]]G′ .

We now prove Proposition 4.7 by discussing its claims one after another:
Proof of Proposition 4.7, Claim 1 (Satisfiability). Let QP,Sc be a SPARQLLD(R)
query that uses SPARQL expression P and a nonempty set of seed URIs S ⊆ U .
If: Suppose P is satisfiable. Then, there exists a set of RDF triples G such that

[[P]]G 6= ∅. Let µ be an arbitrary solution for P in G, that is, µ ∈ [[P]]G. Furthermore,
let G′ = linP,G(µ) be the (P,G)-lineage of µ. We use G′ to construct a Web of Linked
Data Wµ = (Wµ, dataµ, adocµ) that consists of a single LD document. This document
can be retrieved using any URI from the (nonempty) set of seed URI S of query QP,Sc
and it contains the (P,G)-lineage of µ (which is finite). Formally:

Dµ = {d} dataµ(d) = G′ ∀u ∈ U : adocµ(u) =
{
d if u ∈ S,
⊥ else.

Due to our construction, AllData(Wµ) = AllData(R) = G′ where R denotes the (S, c, P)-
reachable subweb ofWµ. Then, by Definition 4.4 (cf. page 63), QP,Sc (Wµ) = [[P]]G′ . Since
µ ∈ [[P]]G′ , it holds that QP,Sc (Wµ) 6= ∅. Hence, QP,Sc is satisfiable.

78

4.4. Theoretical Properties

Only if: Suppose SPARQLLD(R) query QP,Sc is satisfiable. Then, there exists a Web
of Linked Data W such that QP,Sc (W) 6= ∅. By Definition 4.4 (cf. page 63), we have
QP,Sc (W) = [[P]]AllData(R) where R denotes the (S, c, P)-reachable subweb of W. Thus, we
may conclude that P is satisfiable. �

Proof of Proposition 4.7, Claim 2 (Unbounded satisfiability). Let QP,Sc be a
SPARQLLD(R) query that uses a nonempty set of seed URIs S ⊆ U .
If: Suppose SPARQL expression P (used byQP,Sc) is unboundedly satisfiable. W.l.o.g.,

let k ∈ {0, 1, 2, ...} be an arbitrary natural number. To prove that QP,Sc is unboundedly
satisfiable it is sufficient to show that there exists a Web of Linked Data W such that∣∣QP,Sc (W)

∣∣ > k. Since P is unboundedly satisfiable, there exists a set of RDF triples G
such that

∣∣[[P]]G
∣∣ > k. Let G be such a set and let Ω ⊆ [[P]]G be a subset of query result

[[P]]G such that
∣∣Ω∣∣ = k+1 (such a subset exists because

∣∣[[P]]G
∣∣ > k). Let GΩ be the

union of the (P,G)-lineages of all µ ∈ Ω, that is, GΩ =
⋃
µ∈Ω linP,G(µ). Then, Ω ⊆ [[P]]GΩ

(cf. Remark 4.1). Furthermore, since Ω is finite and the (P,G)-lineage of each µ ∈ Ω
is finite, GΩ is finite. Thus, we may construct a Web of Linked Data that consists of a
single LD document with all RDF triples from GΩ. Let WΩ = (DΩ, dataΩ, adocΩ) with

DΩ = {d}, dataΩ(d) = GΩ, and ∀u ∈ U : adocΩ(u) =
{
d if u ∈ S,
⊥ else,

be such a Web of Linked Data. Based on our construction of this Web it holds that
AllData(WΩ) = AllData(R) = GΩ where R denotes the (S, c, P)-reachable subweb of
WΩ. Then, by Definition 4.4 (cf. page 63), we have QP,Sc (WΩ) = [[P]]GΩ and, because
of [[P]]GΩ = Ω, it thus holds that QP,Sc (WΩ) = Ω. Therefore,

∣∣QP,Sc (WΩ)
∣∣ = k+1 > k.

Hence, WΩ is a Web of Linked Data that shows that QP,Sc is unboundedly satisfiable.
Only if: Suppose SPARQLLD(R) query QP,Sc is unboundedly satisfiable. W.l.o.g., let

k ∈ {0, 1, 2, ...} be an arbitrary natural number. To prove that SPARQL expression P
(used by QP,Sc) is unboundedly satisfiable it suffices to show that there exists a set of
RDF triples G such that

∣∣[[P]]G
∣∣ > k. Since QP,Sc is unboundedly satisfiable, there exists

a Web of Linked Data W such that
∣∣QP,Sc (W)

∣∣ > k. Let R denote the (S, c, P)-reachable
subweb of this Web W . By using QP,Sc (W) = [[P]]AllData(R) (cf. Definition 4.4), we have
that AllData(R) is such a set of RDF triples that we need to find for P . Hence, P is
unboundedly satisfiable. �

Proof of Proposition 4.7, Claim 3 (Bounded satisfiability). Claim 3 follows
trivially from Claims 1 and 2: Suppose SPARQL expression P is boundedly satisfiable.
In this case, P is satisfiable and not unboundedly satisfiable (cf. Section 3.2.1, page 38ff).
By Claims 1 and 2, SPARQLLD(R) query QP,Sc (which uses P) is also satisfiable and not
unboundedly satisfiable. Therefore, QP,Sc is boundedly satisfiable (cf. Definition 2.8,
page 24). The same argument applies for the other direction of Claim 3. �

Proof of Proposition 4.7, Claim 4 (Monotonicity). Let QP,Sc be a SPARQLLD(R)
query that uses SPARQL expression P and a nonempty set of seed URIs S ⊆ U .

79

4. Reachability-Based Query Semantics

Suppose SPARQL expression P is monotonic. Let W1,W2 be an arbitrary pair of
Webs of Linked Data such that W1 is a subweb of W2. To prove that QP,Sc is monotonic
it suffices to show QP,Sc (W1) ⊆ QP,Sc (W2).
Let R1 = (DR1, dataR1, adocR1) and R2 = (DR2, dataR2, adocR2) denote the (S, c, P)-

reachable subweb of W1 and of W2, respectively. Then, by Definition 4.4 (cf. page 63),
QP,Sc (W1) = [[P]]AllData(R1) and QP,Sc (W2) = [[P]]AllData(R2). Furthermore, given that W1 is
a subweb of W2, any LD document that is (c, P)-reachable from S in W1 is also (c, P)-
reachable from S in W2. Therefore, R1 is a subweb of R2 and, thus, by Property 1 of
Proposition 2.1 (cf. page 21), AllData(R1) ⊆ AllData(R2). Thus, by using the mono-
tonicity of P we have [[P]]AllData(R1) ⊆ [[P]]AllData(R2). Hence, QP,Sc (W1) ⊆ QP,Sc (W2). �

This concludes our proof of Proposition 4.7. We emphasize that the proposition reveals
a first major difference between SPARQLLD(R) and SPARQLLD: The statement about
monotonicity in Proposition 4.7 is a material conditional only, whereas it is a bicon-
ditional in the case of SPARQLLD (cf. Proposition 3.1, page 43). The reason for this
disparity is the existence of SPARQLLD(R) queries for which monotonicity is independent
of whether the corresponding SPARQL expression is monotonic. A simple example for
such a case are SPARQLLD(R) queries with a single seed URI under cNone-semantics:

Proposition 4.8. Any SPARQLLD(R) query QP,ScNone is monotonic if |S| = 1.

Proof. Suppose QP,ScNone is a SPARQLLD(R) query (under cNone-semantics) such that
|S| = 1. Let u denote the single seed URI, that is, u ∈ S = {u}. W.l.o.g., let W1,W2
be an arbitrary pair of Webs of Linked Data such that W1 is a subweb of W2. To proof
Proposition 4.8 we show QP,ScNone(W1) ⊆ QP,ScNone(W2).
Let W1 = (D1, data1, adoc1) and W2 = (D2, data2, adoc2). Furthermore, R1 denotes

the (S, cNone, P)-reachable subweb of W1 and R2 denotes the (S, cNone, P)-reachable sub-
web of W2. We distinguish the following four cases for seed URI u:

1. adoc1(u) =⊥ and adoc2(u) =⊥.
In this case, R1 and R2 are equal to the empty Web (which contains no LD docu-
ments), respectively. Hence, QP,ScNone(W1) = QP,ScNone(W2) = ∅.

2. adoc1(u) =⊥ and adoc2(u) = d with d ∈ D2.
In this case, R1 is equal to the empty Web, whereas R2 contains a single LD
document, namely d. Hence, QP,ScNone(W1) = ∅ and QP,ScNone(W2) = [[P]]data2(d) and,
thus, QP,ScNone(W1) ⊆ QP,ScNone(W2).

3. adoc1(u) = d and adoc2(u) = d with d ∈ D1 and, thus, d ∈ D2 (because D1 ⊆ D2).
In this case, both reachable subwebs, R1 and R2, contain a single LD document,
namely d. Hence, QP,ScNone(W1) = QP,ScNone(W2).

4. adoc1(u) ∈ d and adoc2(u) =⊥ with d ∈ D1.
This case is impossible because W1 is a subweb of W2 (see Requirement 4 in
Definition 2.3, page 18).

For all possible cases we have QP,ScNone(W1) ⊆ QP,ScNone(W2). �

80

4.4. Theoretical Properties

Proposition 4.8 verifies the impossibility for showing in general that SPARQLLD(R)
queries (with a nonempty set of seed URIs) are monotonic only if their SPARQL expres-
sion is monotonic. However, if we exclude queries whose reachability criterion ensures
finiteness, then it is possible to show the dependency that is missing in Proposition 4.7:

Proposition 4.9. Let QP,Scnf
be a SPARQLLD(R) query that uses SPARQL expression P ,

a nonempty set of (seed) URIs S ⊆ U , and a reachability criterion cnf that does not
ensure finiteness. The following relationship holds:

4∗. QP,Scnf
is monotonic only if P is monotonic.

Proof. LetQP,Scnf
be a SPARQLLD(R) query that uses SPARQL expression P , a nonempty

set of seed URIs S ⊂ U and a reachability criterion cnf which does not ensure finiteness.
Suppose QP,Scnf

is monotonic. We have to show that the SPARQL expression P (used by
QP,Scnf

) is monotonic as well. We distinguish two cases: P is satisfiable or P is unsatisfiable.
In the latter case, P is trivially monotonic (cf. Property C.1, page 201). Hence, we only
have to discuss the first case.
Let G1, G2 be an arbitrary pair of sets of RDF triples such that G1 ⊆ G2. To prove

that (the satisfiable) P is monotonic it suffices to show [[P]]G1 ⊆ [[P]]G2 . Similar to the
proof in the full-Web semantics case we construct two Webs of Linked Data W1 and W2
such that (i)W1 is an induced subweb ofW2 and (ii) the data of G1 and G2 is distributed
over W1 and W2, respectively. We then use W1 and W2 to show the monotonicity of P
based on the monotonicity of QP,Scnf

.
We emphasize that this proof cannot be based on the notion of lineage which we use

for proving the satisfiability-related claims in Proposition 4.7. Instead, we have to use
an approach that resembles the approach that we use for monotonicity in the full-Web
semantics case. We shall see that this is possible because reachability criterion cnf does
not ensure finiteness. However, the construction ofW1 andW2 is more complex than the
corresponding construction for the full-Web semantics case because we have to ensure
reachability of all LD documents that contain RDF triples from G1 and G2.
As discussed in the context of Proposition 3.1, we may lose certain solutions of query

results if we naively distribute RDF triples from G1 and G2 over separate LD documents
in W1 and W2, respectively (recall, each LD document in a Web of Linked Data must
use a unique set of blank nodes). We address this problem by applying the grounding
isomorphism introduced for our proof of Proposition 3.1 (cf. Definition 3.2, page 44).
That is, we let % be a grounding isomorphism for G2 and construct two sets of RDF
triples, G′1 and G′2, by replacing the blank nodes in G1 and in G2 according to %; i.e.,

G′1 =
{
%[t]

∣∣ t ∈ G1
}

and G′2 =
{
%[t]

∣∣ t ∈ G2
}
.

Then, G′1 ⊆ G′2 because of G1 ⊆ G2. Furthermore, for each j ∈ {1, 2}, (i)
∣∣Gj∣∣ =

∣∣G′j∣∣,
(ii) ∀µ ∈ [[P]]Gj : %[µ] ∈ [[P]]G′j , and (iii) ∀µ′ ∈ [[P]]G′j : %−1[µ′] ∈ [[P]]Gj where %−1

denotes the inverse of % (cf. Property 3.1 and Property 3.2, page 44).
We aim to construct Webs W1 and W2 (by using G′1 and G′2) such that all LD doc-

uments that contain RDF triples from G′1 and G′2 are reachable. To achieve this goal

81

4. Reachability-Based Query Semantics

we use a reachable subweb of another Web of Linked Data for the construction. This
reachable subweb must be infinite because G1 and G2 may be (countably) infinite. To
find a Web of Linked Data with such a reachable subweb we exploit the fact that query
QP,Scnf

uses a reachability criterion that does not ensure finiteness: Since cnf does not
ensure finiteness, there exist a Web of Linked Data W ∗ = (D∗, data∗, adoc∗), a (fi-
nite, nonempty) set S∗ ⊆ U of seed URIs, and a SPARQL expression P ∗ such that the
(S∗, cnf , P ∗)-reachable subweb of W ∗ is infinite (cf. Definition 4.5, page 67). Notice, S∗
and P ∗ are not necessarily the same as S and P .
While the (S∗, cnf , P ∗)-reachable subweb ofW ∗ presents the basis for our construction

of W1 and W2, we cannot use it directly because the data in that subweb may cause
undesired side-effects for the evaluation of P . To avoid this issue we define an isomor-
phism ρ for W ∗, S∗, and P ∗ such that the images of W ∗, S∗, and P ∗ under ρ do not use
any RDF term or query variable from G′2 or from P .
To define ρ formally we need to introduce several symbols: First, we write U , L, and

V to denote the sets of all URIs, literals, and variables in G′2 and P , respectively (neither
G′2 nor P contain blank nodes). Formally:

U =
(
terms(G′2) ∪ terms(P)

)
∩ U ,

L =
(
terms(G′2) ∪ terms(P)

)
∩ L, and

V = vars(P) ∪ varsF(P),

where varsF(P) denotes the set of all variables in all filter conditions of P (if any).
Similar to U , L, and V , we write U∗, L∗, and V ∗ to denote the sets of all URIs, literals,

and variables in W ∗, S∗, and P ∗:

U∗ = S∗ ∪ terms
(
AllData(W ∗)

)
∩ U ,

L∗ = terms
(
AllData(W ∗)

)
∩ L, and

V ∗ = vars(P ∗) ∪ varsF(P ∗) .

Moreover, we assume three new sets of URIs, literals, and variables, denoted by Unew,
Lnew, and Vnew, respectively, such that the following properties hold:

Unew ⊆ U such that |Unew| = |U | and Unew ∩ (U ∪ U∗) = ∅;
Lnew ⊆ L such that |Lnew| = |L| and Lnew ∩ (L ∪ L∗) = ∅; and
Vnew ⊆ V such that |Vnew| = |V | and Vnew ∩ (V ∪ V ∗) = ∅ .

Furthermore, we assume three total, bijective mappings:

ρU : U → Unew ρL : L→ Lnew ρV : V → Vnew .

Now we define ρ as a total, bijective mapping

ρ :
((
U ∪ B ∪ L ∪ V

)
\
(
Unew ∪ Lnew ∪ Vnew

))
→
((
U ∪ B ∪ L ∪ V

)
\
(
U ∪ L ∪ V

))
such that, for each x ∈ dom(ρ),

82

4.4. Theoretical Properties

ρ(x) =


ρU (x) if x ∈ U ,
ρL(x) if x ∈ L,
ρV (x) if x ∈ V ,
x else.

The application of isomorphism ρ to structures relevant for our proof is defined as follows:

• The application of ρ to a valuation µ, denoted by ρ[µ], results in a valuation µ′

such that (i) dom(µ′) = dom(µ) and (ii) µ′(?v) = ρ
(
µ(?v)

)
for all ?v ∈ dom(µ).

• The application of ρ to an RDF triple t = (x1, x2, x3), denoted by ρ[t], results in
an RDF triple (x′1, x′2, x′3) such that x′i = ρ(xi) for all i ∈ {1, 2, 3}.

• The application of ρ to the aforementioned Web W ∗ = (D∗, data∗, adoc∗), denoted
by ρ[W ∗], results in a Web of Linked Data W ∗′ = (D∗′, data∗′, adoc∗′) such that
D∗′ = D∗ and mappings data∗′ and adoc∗′ are defined as follows:

∀ d ∈ D∗′ : data∗′(d) =
{
ρ[t]

∣∣ t ∈ data∗(d)
}

∀u ∈ U : adoc∗′(u) = adoc∗
(
ρ−1(u)

)
where ρ−1 is the inverse of the bijective mapping ρ.

• The application of ρ to a (SPARQL) filter condition R, denoted by ρ[R], results in
a filter condition that is defined recursively as follows:
1. If R is of the form ?x = c, ?x =?y, or bound(?x), then ρ[R] is of the form

?x′ = c′, ?x′ =?y′, and bound(?x′), respectively, where ?x′ = ρ(?x), ?y′ =
ρ(?y), and c′ = ρ(c).

2. If R is of the form (¬R1), (R1 ∧ R2), or (R1 ∨ R2), then ρ[R] is of the form
(¬R′1), (R′1∧R′2), or (R′1∨R′2), respectively, where R′1 = ρ[R1] and R′2 = ρ[R2].

• The application of ρ to an arbitrary SPARQL expression P ′, denoted by ρ[P ′],
results in a SPARQL expression that is defined recursively as follows:
1. If P ′ is a triple pattern

(
x′1, x

′
2, x
′
3
)
, then ρ[P ′] is (x′′1, x′′2, x′′3) where x′′i = ρ(x′i)

for all i ∈ {1, 2, 3}.
2. If P ′ is (P ′1 AND P ′2), (P ′1 UNION P ′2), (P ′1 OPT P ′2), or (P ′1 FILTER R′), then ρ[P ′]

is (P ′′1 AND P ′′2), (P ′′1 UNION P ′′2), or (P ′′1 OPT P ′′2), and (P ′′1 FILTER R′′), respec-
tively, where P ′′1 = ρ[P ′1], P ′′2 = ρ[P ′2], and R′′ = ρ[R′].

We introduce W ∗′, S∗′, and P ∗′ as image of W ∗, S∗, and P ∗ under ρ, respectively; i.e.,

W ∗′ = ρ[W ∗] , S∗′ =
{
ρ(u)

∣∣u ∈ S∗} , P ∗′ = ρ[P ∗] .

Web of Linked DataW ∗′ is structurally identical toW ∗. Furthermore, the (S∗′, cnf , P ∗′)-
reachable subweb of W ∗′ is infinite because the (S∗, cnf , P ∗)-reachable subweb of W ∗ is
infinite. Let R = (DR, dataR, adocR) be the (S∗′, cnf , P ∗′)-reachable subweb of W ∗′.

83

4. Reachability-Based Query Semantics

We now use R to construct Webs of Linked Data that contain all RDF triples from
G′1 and G′2, respectively. Since R is infinite, there exists at least one infinite path in the
link graph of R. Let p = d1, d2, ... be such a path. Hence, for all i ∈ {1, 2, ...},

di ∈ DR and ∃ t ∈ dataR(di) :
(
∃u ∈ uris(t) : adocR(u) = di+1

)
We may use this path to construct Webs of Linked Data W1 and W2 from R such that
W1 and W2 contain the data from G′1 and G′2, respectively. However, to allow us to use
the monotonicity of SPARQLLD(R) queries for our proof, it is necessary to construct W1
and W2 such that W1 is an induced subweb of W2. To achieve this goal we assume a
strict total order on G′2 such that each RDF triple t ∈ G′1 ⊆ G′2 comes before any RDF
triple t′ ∈ G′2 \ G′1 in that order. Formally, we denote this order by infix < and, thus,
require t < t′ for all (t, t′) ∈ G′1 × (G′2 \G′1). Furthermore, we assume a total, injective
function pdoc : G′2 →

{
d ∈ DR

∣∣ d is on path p
}
that is order-preserving, that is, for each

pair (t, t′) ∈ G′2 × G′2, if t < t′, then LD document pdoc(t) comes before LD document
pdoc(t′) on path p.
We now use pdoc, G′2, and R = (DR, dataR, adocR) to construct a Web of Linked Data

W2 = (D2, data2, adoc2) with the following three elements:

D2 = DR,

∀ d ∈ D2 : data2(d) =
{
dataR(d) ∪ {t} if ∃ t ∈ G′2 : pdoc(t) = d,

dataR(d) else,
∀u ∈ U : adoc2(u) = adocR(u) .

In addition to W2, we introduce a Web of Linked Data W1 = (D1, data1, adoc1) that is
an induced subweb of W2, specified by:

D1 :=
{
d ∈ D2

∣∣ either d is not on path p or ∃ t ∈ G′1 : d = pdoc(t)
}
.

(Recall that any induced subweb is specified unambiguously by defining its set of LD
documents; cf. Proposition 2.1, page 21.)
The following properties are verified easily:

Property 4.2. For any j ∈ {1, 2}, G′j ⊂ AllData(Wj) = G′j ∪ AllData(R).

Property 4.3. For any j ∈ {1, 2}, the (S∗′, cnf , P ∗′)-reachable subweb ofWj isWj itself.

Property 4.4. For any j ∈ {1, 2}, [[P]]G′j = [[P]]AllData(Wj).

We now consider a SPARQL expression (P UNION P ∗′). In the following, we write P̃ to
denote this expression. Since G′2 and the data in R have no RDF terms in common
(i.e., terms(G′2) ∩ terms

(
AllData(R)

)
= ∅), we conclude the following properties for P̃

w.r.t. the Webs of Linked Data W1 and W2 (that we constructed from G′1, G′2, and R):

Property 4.5. For any j ∈ {1, 2} the following three properties hold:

1. The (S∗′, cnf , P̃)-reachable subweb of Wj is Wj itself,

84

4.4. Theoretical Properties

2. [[P]]AllData(Wj) ∪ [[P ∗′]]AllData(Wj) = [[P̃]]AllData(Wj), and

3. [[P]]AllData(Wj) ∩ [[P ∗′]]AllData(Wj) = ∅.

Since (i) W1 is an (induced) subweb of W2, (ii) P̃ is (P UNION P ∗′), and (iii) QP,Scnf
is

monotonic, we may use Property 4.5 and our definition of SPARQLLD(R) queries (cf.
Definition 4.4, page 63) to obtain the following inclusion:(

QP̃ ,S∗′cnf
(W1) \ [[P ∗′]]AllData(W1)

)
⊆
(
QP̃ ,S∗′cnf

(W2) \ [[P ∗′]]AllData(W2)
)
. (4.1)

Finally, we now use W1 and W2 and the monotonicity of QP,Scnf
to show [[P]]G1 ⊆ [[P]]G2

(which proves that SPARQL expression P is monotonic). Let µ be an arbitrary solution
for P in G1, that is, µ ∈ [[P]]G1 . Notice, such a solution exists because we assume P is
satisfiable (see a). To prove [[P]]G1 ⊆ [[P]]G2 it suffices to show µ ∈ [[P]]G2 .
Due to Property 3.2 (cf. page 44) it holds that

%[µ] ∈ [[P]]G′1

and with Property 4.4, Property 4.5, and the definition of SPARQLLD(R) queries, we have:

%[µ] ∈
(
QP̃ ,S∗′cnf

(W1) \ [[P ∗′]]AllData(W1)
)
.

Due to the inclusion in (4.1), we obtain:

%[µ] ∈
(
QP̃ ,S∗′cnf

(W2) \ [[P ∗′]]AllData(W2)
)
.

We again use the definition of SPARQLLD(R), Property 4.5, and Property 4.4 to show:

%[µ] ∈ [[P]]G′2 .

Finally, we use Property 3.2 again and find:

%−1[%[µ]
]
∈ [[P]]G2 .

Since %−1 is the inverse of bijective mapping %, it holds that %−1[%[µ]
]

= µ and, thus,
we have µ ∈ [[P]]G2 . This concludes our proof of Proposition 4.9 (cf. page 81). �

By using the relationships shown in Propositions 4.7 and 4.9, we may carry over our
results on the undecidability of basic properties of SPARQL expressions (cf. Appendix C,
page 195ff) to SPARQLLD(R) queries:

Problem: Satisfiability(SPARQLLD(R))
Input: a SPARQLLD(R) query QP,Sc
Question: Is QP,Sc satisfiable?

85

4. Reachability-Based Query Semantics

Problem: Monotonicity(SPARQLLD(R))
Input: a SPARQLLD(R) query QP,Sc
Question: Is QP,Sc monotonic?

Problem: BoundedSatisfiability(SPARQLLD(R))
Input: a SPARQLLD(R) query QP,Sc
Question: Is QP,Sc boundedly satisfiable?

Problem: UnboundedSatisfiability(SPARQLLD(R))
Input: a SPARQLLD(R) query QP,Sc
Question: Is QP,Sc unboundedly satisfiable?

Corollary 4.5. Any of the four problems, Satisfiability(SPARQLLD(R)), Monoto-
nicity(SPARQLLD(R)), BoundedSatisfiability(SPARQLLD(R)), and Unbound-
edSatisfiability(SPARQLLD(R)), is undecidable.

Proof. We prove the undecidability of Monotonicity(SPARQLLD(R)). Since we
may prove the undecidability of Satisfiability(SPARQLLD(R)), of BoundedSatis-
fiability(SPARQLLD(R)), and of UnboundedSatisfiability(SPARQLLD(R)) in an
analogous manner, we omit these proofs.
To show that Monotonicity(SPARQLLD(R)) is undecidable, we use the undecid-

ability of Monotonicity(SPARQL) (cf. Proposition C.5 on page 201). Hence, we
reduce Monotonicity(SPARQL) to Monotonicity(SPARQLLD(R)). For the re-
duction we need a Turing computable function f that maps any possible input of Mono-
tonicity(SPARQL) to a possible input of Monotonicity(SPARQLLD(R)). While
the input of Monotonicity(SPARQL) is a SPARQL expression (cf. Section C.2, page
201ff), the input of Monotonicity(SPARQLLD(R)) is a SPARQLLD(R) query. We
define f as follows: Let u∗ ∈ U be an arbitrary URI and let c∗ be an arbitrary reacha-
bility criterion that ensures finiteness. For any possible SPARQL expression P , f(P) is
SPARQLLD(R) query QP,S

∗

c∗ that uses SPARQL expression P , reachability criterion c∗,
and the (nonempty) set of seed URIs S∗ := {u∗}. If Monotonicity(SPARQLLD(R))
were decidable we could decide Monotonicity(SPARQL) because it holds: SPARQL
expression P is monotonic if and only if SPARQLLD(R) query f(P) = QP,S

∗

c∗ is monotonic
(cf. Propositions 4.7 and 4.9). However, since Monotonicity(SPARQL) is undecid-
able, Monotonicity(SPARQLLD(R)) must be undecidable as well. �

While the basic properties are undecidable for SPARQLLD(R) queries (as they are for
SPARQL expressions under standard SPARQL semantics, as well as for SPARQLLD
queries), we obtain decidable fragments trivially by using the decidable fragments iden-
tified for SPARQL expressions in Appendix C (see, in particular, Table C.1 on page 196).

4.4.2. LD Machine Decidability of Termination
After discussing basic properties of SPARQLLD(R), we now focus on computation-related
properties. This section discusses termination for an LD-machine-based computation of

86

4.4. Theoretical Properties

SPARQLLD(R) queries. Afterwards, in the next section, we identify the (LD-machine-
based) computability of SPARQLLD(R).
The termination problem for SPARQLLD(R) is the following LD decision problem:

LD Problem: Termination(SPARQLLD(R))
Web Input: a Web of Linked Data W
Ordin. Input: a SPARQLLD(R) query QP,Sc
Question: Does there exist an LD machine M whose computation, with W

encoded on the Web input tape of M , halts with an encoding of
query result QP,Sc (W) on the output tape?

Section 3.3.2 discussed the termination problem for SPARQLLD and showed that this
problem is not LD machine decidable (cf. Theorem 3.1, page 52). Although we shall
see that the same holds for Termination(SPARQLLD(R)), we note a remarkable dif-
ference between SPARQLLD and SPARQLLD(R) w.r.t. termination of query computa-
tions: For SPARQLLD there does not exist any (LD-machine-based) computation of an
unboundedly satisfiable SPARQLLD query that terminates with a complete query result
(cf. Proposition 3.2, page 48). Such a general limitation does not exist for SPARQLLD(R).
Instead, for any unboundedly satisfiable SPARQLLD(R) query there exist particular Webs
of Linked Data in which a complete, terminating computation is possible:

Proposition 4.10. Let QP,Sc be a SPARQLLD(R) query that is unboundedly satisfiable.
There exists an LD machine that computes QP,Sc over any (potentially infinite) Web of
Linked Data W and halts after a finite number of computation steps with an encoding of
QP,Sc (W) on its output tape if and only if the (S, c, P)-reachable subweb of W is finite.

Before we prove the proposition we recall that the finiteness of reachable subwebs, which
the proposition establishes as a necessary and sufficient condition for complete, termi-
nating computation, is not LD machine decidable (cf. Theorem 4.1 on page 68). Hence,
in practice, we cannot use the given condition to decide about termination of any un-
boundedly satisfiable SPARQLLD(R) query. However, a class of SPARQLLD(R) queries for
which the reachable subweb of any Web of Linked Data is finite, are queries whose reach-
ability criterion has the finiteness property introduced by Definition 4.5 (cf. page 67).
For these queries we generalize the previous proposition as follows:

Proposition 4.11. Let QP,Sc be a SPARQLLD(R) query such that reachability criterion c
ensures finiteness. There exists an LD machine that computes QP,Sc over any (potentially
infinite) Web of Linked Data W and halts after a finite number of computation steps with
an encoding of QP,Sc (W) on its output tape.

In the remainder of this section we first prove Propositions 4.10 and 4.11. After these
proofs we come back to the general termination problem for SPARQLLD(R) and show
that it is not LD machine decidable (refer to page 90 for the corresponding result).
To prove Propositions 4.10 and 4.11 we introduce a specific type of LD machine, called

two phase SPARQLLD(R) machine (or 2P machine, for short). Such a machine exists
for every SPARQLLD(R) query and implements a generic computation of the particular

87

4. Reachability-Based Query Semantics

query for which the machine is defined. We shall see that these computations consist of
two main phases (hence the name of the machine). In the following, we define the notion
of a 2P machine formally, discuss properties of these machines as they are relevant for
our proofs, and then prove Propositions 4.10 and 4.11.
Definition 4.11 (2P Machine). Let QP,Sc be a SPARQLLD(R) query. The 2P machine
forQP,Sc is an LD machine (as per Definition 2.9, page 27) that implements Algorithm 4.1.
This algorithm uses a special subroutine called lookup, which, when called with URI
u ∈ U , (i) writes enc(u) to the right end of the word on the lookup tape, (ii) enters the
expand state, and (iii) performs the expand procedure as specified in Definition 2.9. 2

Algorithm 4.1 Program of the 2P machine for SPARQLLD(R) query QP,Sc .
1: Call lookup for all URIs u ∈ S.

2: expansionCompleted := false
3: while expansionCompleted = false do
4: Scan the lookup tape (starting from the leftmost position) for an RDF triple t and

a URI u ∈ uris(t) such that (i) c(t, u, P) = true and (ii) the word on the lookup
tape neither contains enc(u) enc(adoc(u))] nor enc(u)]. If such t and u exist,
call lookup for u; otherwise expansionCompleted := true.

5: end while

6: Let G denote the set of all RDF triples currently encoded on the lookup tape. For
each valuation µ ∈ [[P]]G append enc(µ) to the word on the output tape.

As can be seen in Algorithm 4.1, the computation of a 2P machine consists of two
separate phases: (i) a data retrieval phase (lines 1 to 5) and (ii) a subsequent, result
computation phase (line 6). Data retrieval starts with an initialization (cf. line 1). After
the initialization, the machine enters a (potentially nonterminating) loop that recursively
discovers (i.e., expands) LD documents of the corresponding reachable subweb of the
queried Web of Linked Data (encoded on the Web input tape of the machine). Since
each scan of the lookup tape at line 4 starts from the leftmost position, the recursive
discovery of LD documents resembles a breadth-first traversal of the reachable subweb.
This breadth-first strategy guarantees that the 2P machine eventually discovers each
of the reachable documents. The following lemma verifies this guarantee formally (the
proof of this lemma can be found in Section E.4, page 222f).

Lemma 4.2. Let M be the 2P machine for a SPARQLLD(R) query QP,Sc ; let W = (D,
data, adoc) be a Web of Linked Data encoded on the Web input tape of M ; and let
d ∈ D be an LD document that is (c, P)-reachable from S in W. During the execution
of Algorithm 4.1 by M there exists an iteration of the loop (lines 3 to 5) after which the
word on the lookup tape of M contains enc(d) permanently.

While Lemma 4.2 shows that Algorithm 4.1 discovers all reachable LD documents, the
following lemma verifies that the algorithm does not copy data from unreachable docu-
ments to the lookup tape (Section E.5 provides the proof of this lemma; cf. page 223f).

88

4.4. Theoretical Properties

Lemma 4.3. Let M be the 2P machine for a SPARQLLD(R) query QP,Sc ; let W be a Web
of Linked Data encoded on the Web input tape ofM ; and let R denote the (S, c, P)-reach-
able subweb ofW. For any RDF triple t for which enc(t) eventually appears on the lookup
tape of M during the execution of Algorithm 4.1 by M it holds that t ∈ AllData(R).

After verifying that the data retrieval phase of Algorithm 4.1 (i.e., lines 1 to 5) is sound
(cf. Lemma 4.3) and complete (cf. Lemma 4.2), we now show that an execution of the
algorithm terminates if the corresponding reachable subweb of the input Web is finite.

Lemma 4.4. Let M be the 2P machine for a SPARQLLD(R) query QP,Sc and let W be a
Web of Linked Data encoded on the Web input tape of M . The computation of M halts
after a finite number of steps if and only if the (S, c, P)-reachable subweb of W is finite.

For the proof of Lemma 4.4 we refer to Section E.6 (cf. page 224f).
We are now ready to now use 2P machines to prove Proposition 4.10 (cf. page 87) and

Proposition 4.11 (cf. page 87).
Proof of Proposition 4.10. Let QP,Sc be a SPARQLLD(R) query that is unboundedly
satisfiable; let W be an arbitrary Web of Linked Data; and let R = (DR, dataR, adocR)
be the (S, c, P)-reachable subweb of W. We prove the proposition by showing that there
exists an LD machine whose computation, with enc(W) on the Web input tape of that
machine, halts after a finite number of computation steps with an encoding of QP,Sc (W)
on its output tape if and only if R is finite.
If: Suppose R is finite. Based on Lemmas 4.2 to 4.4 it is easy to verify that the 2P

machine for QP,Sc is an LD machine whose computation over W (encoded on the Web
input tape of this 2P machine) halts after a finite number of computation steps with an
encoding of QP,Sc (W) on the output tape of the 2P machine.
Only if: Let M be an LD machine (not necessarily a 2P machine) that computes
QP,Sc (W) (given enc(W) on the Web input tape of M) and halts after a finite number
of computation steps. We have to show that R is finite. We use proof by contradiction,
that is, we assume R is infinite. In this case, DR is infinite. Since SPARQLLD(R) query
QP,Sc is unboundedly satisfiable, machine M cannot assume a particular upper bound
k for the cardinality of query result QP,Sc (W). Hence, in order to compute QP,Sc over
W , machine M must (recursively) expand the word on its lookup tape until this word
contains the encodings of (at least) each LD document in DR. Such an expansion is
necessary to ensure that the computed query result is complete. Since DR is infinite the
expansion requires infinitely many computing steps. However, we know that M halts
after a finite number of computation steps. Hence, we have a contradiction and, thus,
R must be finite. �

Proof of Proposition 4.11. Let QP,Sc be a SPARQLLD(R) query such that reachability
criterion c ensures finiteness. We have to show that there exists an LD machine that
computes QP,Sc over any Web of Linked Data W and halts after a finite number of com-
putation steps with an encoding of QP,Sc (W) on its output tape. Based on Lemmas 4.2
to 4.4 it is easy to verify that the 2P machine for QP,Sc is such a machine (notice, 2P
machines are not restricted to SPARQLLD(R) queries that are unboundedly satisfiable,
neither are Lemmas 4.2 to 4.4). �

89

4. Reachability-Based Query Semantics

Proposition 4.11 shows that answering the question posed by the LD decision problem
Termination(SPARQLLD(R)) (cf. page 87) is trivial if the given SPARQLLD(R) query
uses a reachability criterion that ensures finiteness. In general, however, the problem is
undecidable for LD machines.

Theorem 4.2. Termination(SPARQLLD(R)) is not LD machine decidable.

Proof. To prove that Termination(SPARQLLD(R)) is not LD machine decidable we
reduce the halting problem to Termination(SPARQLLD(R)). For this reduction we
use the same argumentation, including the same Web of Linked Data, as used for proving
Proposition 3.4 (which shows that Termination(BS-SPARQLLD) is not LD machine
decidable; cf. page 50).
We define the mapping from any possible input for the halting problem to an input

for Termination(SPARQLLD(R)) as follows: Let (w, x) be an input to the halting
problem, that is, w is the description of a Turing machineM(w) and x is a possible input
word for M(w); then, f(w, x) :=

(
WTMs,Q

Pw,x,Sw,x
cAll

)
where: (i) WTMs is the (infinite)

Web of Linked Data defined in the proof of Proposition 3.4 (cf. page 50 in Section 3.3.2),
(ii) SPARQL expression Pw,x is the triple pattern (uw,x, type,TerminatingComputation), and
(iii) Sw,x :=

{
uw,x1

}
(where uw,x denotes a URI that identifies the computation of Turing

machine M(w) on input x and uw,x1 denotes a URI that identifies the first step in this
computation). As in the proof of Proposition 3.4, f is computable by Turing machines
(and, thus, by LD machines).
To show that Termination(SPARQLLD(R)) is not LD machine decidable, suppose it

is LD machine decidable. Then, an LD machine decides the halting problem for any input
(w, x): Turing machine M(w) halts on input x if and only if there exists an LD machine
that computes QPw,x,Sw,x

cAll (WTMs) and halts. However, the halting problem is undecidable
for Turing machines and, thus, for LD machines. Hence, we have a contradiction. As a
consequence, Termination(SPARQLLD(R)) cannot be LD machine decidable. �

Proving that Termination(SPARQLLD(R)) is not LD machine decidable concludes our
discussion of the termination problem for SPARQLLD(R). While the results in this section
are related to termination, they also present a basis for proving computability-related
results in the following section.

4.4.3. LD Machine Computability
We now classify SPARQLLD(R) queries using the notions of finite computability and
eventual computability (cf. Section 2.2.3, page 29). Our discussion focuses on satis-
fiable queries because unsatisfiable queries are trivially finitely computable by an LD
machine (cf. Proposition 2.3, page 29).
From the previous section we know that SPARQLLD(R) queries whose reachability cri-

terion ensures finiteness present a special case w.r.t. LD-machine-based computability:
For each of these queries there exists an LD machine that performs a complete, termi-
nating computation of the query over any Web of Linked Data (cf. Proposition 4.11,
page 87). As a result, these queries are finitely computable by an LD machine.

90

4.4. Theoretical Properties

Proposition 4.12. Let c be a reachability criterion that ensures finiteness, then any
SPARQLLD(R) query under c-semantics is finitely computable by an LD machine.

Proof. Proposition 4.12 follows readily from Proposition 4.11 (compare the property
shown by Proposition 4.11, page 87, to the requirements for finitely computable Linked
Data queries given in Definition 2.10, page 29). �

Proposition 4.12 reveals another difference between SPARQLLD(R) and SPARQLLD: The
proposition shows (indirectly) that LD-machine-based computability is independent of
monotonicity for all SPARQLLD(R) queries whose reachability criterion ensures finiteness.
Such an independence does not exist for any (satisfiable) SPARQLLD query (cf. Theo-
rem 3.2, page 53).
However, even in the case of SPARQLLD(R) this independence exists only for reachabil-

ity criteria that ensure finiteness. For any other criterion (including cMatch and cAll), we
may show a similar relationship between monotonicity and computability as Theorem 3.2
shows in the context of SPARQLLD:

Theorem 4.3. Let c∗ be a reachability criterion that does not ensure finiteness. If a
satisfiable SPARQLLD(R) query QP,Sc∗ (under c∗-semantics) is monotonic, then QP,Sc∗ is
either finitely computable or eventually computable by an LD machine; otherwise, QP,Sc∗
may not even be eventually computable by an LD machine.

The remainder of this section is dedicated to the proof of Theorem 4.3.
Proof. Let QP

∗,S∗

c∗ be an arbitrary satisfiable SPARQLLD(R) query under c∗-semantics
(c∗ does not ensure finiteness). To prove Theorem 4.3 we distinguish four cases:

(1) The (S∗, c∗, P ∗)-reachable subweb of every Web of Linked Data is finite (which is
possible even if c∗ does not ensure finiteness; cf. Definition 4.5, page 67).

(2) The (S∗, c∗, P ∗)-reachable subweb of some Web of Linked Data is infinite andQP
∗,S∗

c∗

is monotonic.

(3) The (S∗, c∗, P ∗)-reachable subweb of some Web of Linked Data is infinite, QP
∗,S∗

c∗ is
not monotonic, and there exists a Web of Linked Data W in which the (S∗, c∗, P ∗)-
reachable subweb is infinite such that QP

∗,S∗

c∗ (W) 6= ∅.

(4) The (S∗, c∗, P ∗)-reachable subweb of some Web of Linked Data is infinite, QP
∗,S∗

c∗

is not monotonic, and for each Web of Linked Data W in which the (S∗, c∗, P ∗)-
reachable subweb is infinite, it holds that QP

∗,S∗

c∗ (W) = ∅.

We shall see that, in case (1), query QP
∗,S∗

c∗ is finitely computable by an LD machine; in
case (2), QP

∗,S∗

c∗ is at least eventually computable by an LD machine; in case (3), QP
∗,S∗

c∗ is
not even eventually computable by an LD machine; and, in case (4), QP

∗,S∗

c∗ is eventually
computable by an LD machine. In the following we discuss each of these cases.

Case (1): Suppose the (S∗, c∗, P ∗)-reachable subweb of every Web of Linked Data is finite.
We claim that in this case query QP

∗,S∗

c∗ is finitely computable by an LD machine (in-
dependent of whether the query monotonic). To prove this claim we use the same

91

4. Reachability-Based Query Semantics

argument as we use for proving Proposition 4.11 (cf. page 87): Based on Lemmas 4.2
to 4.4 (cf. Section 4.4.2, page 86ff) and based on the fact that the (S∗, c∗, P ∗)-reachable
subweb of every Web of Linked Data is finite, it is easy to verify that the 2P machine
for QP

∗,S∗

c∗ is an LD machine that computes QP
∗,S∗

c∗ over any Web of Linked Data W
and halts after a finite number of computation steps (with an encoding of QP

∗,S∗

c∗ (W)
on its output tape). Hence, the 2P machine for QP

∗,S∗

c∗ satisfies the requirements in our
definition of finitely computable Linked Data queries (cf. Definition 2.10, page 29) and,
thus, QP

∗,S∗

c∗ is finitely computable.

Case (2): Suppose query QP
∗,S∗

c∗ is monotonic and there exists a Web of Linked Data
W ∗ such that the (S∗, c∗, P ∗)-reachable subweb of W ∗ is infinite. We show that QP

∗,S∗

c∗ is
eventually computable by an LD machine. However, for this case we cannot use the 2P
machine for QP

∗,S∗

c∗ because the computation of this machine on Web input W ∗ does not
have the two properties given in our definition of eventually computable Linked Data
queries (cf. Definition 2.11, page 29). More precisely, during this particular computation
the data retrieval phase (i.e., the loop in lines 3 to 5 of Algorithm 4.1, page 88) would
not terminate (because the (S∗, c∗, P ∗)-reachable subweb of W ∗ is infinite). As a result,
this computation cannot report any solution for QP

∗,S∗

c∗ in W ∗ (if there is any).
Hence, to show that QP

∗,S∗

c∗ is eventually computable by an LD machine we introduce
another type of LD machine called early reporting SPARQLLD(R) machine (ER machine).
As the name suggests, such a machine reports any solution (for its SPARQLLD(R) query
over the given input Web) as early as possible. We emphasize that this strategy is sound
only for monotonic queries (thus, we cannot use an ER machine for previous proofs that
are based on a 2P machine). We define an ER machine as follows:
Definition 4.12 (ERMachine). LetQP,Sc be a SPARQLLD(R) query. The ER machine
forQP,Sc is an LD machine (as per Definition 2.9, page 27) that implements Algorithm 4.2.
This algorithm uses a special subroutine called lookup, which, when called with a URI
u ∈ U , (i) writes enc(u) to the right end of the word on the lookup tape, (ii) enters the
expand state, and (iii) performs the expand procedure as specified in Definition 2.9. 2

As can be seen in Algorithm 4.2, the computation of an ER machine starts with an
initialization (cf. line 1). After the initialization, the machine enters a (potentially non-
terminating) loop. During each iteration of this loop, the machine generates valuations
using all data that is currently encoded on the lookup tape. The following lemma shows
that these valuations are part of the corresponding query result:

Lemma 4.5. Let M be the ER machine for a monotonic SPARQLLD(R) query QP,Sc
and let W be a Web of Linked Data encoded on the Web input tape of M . During the
execution of Algorithm 4.2 by M it holds that [[P]]Tj ⊆ QP,Sc (W) for all j ∈ {1, 2, ... }.

The proof of Lemma 4.5 can be found in Section E.7 (cf. page 225f); unsurprisingly, this
proof resembles the proofs of Lemmas 3.1 and 4.3 (which show soundness of full-Web
machines and of 2P machines, respectively; cf. page 54 and page 89).
Lemma 4.5 provides a basis for proving the soundness of (monotonic) query results

computed by an ER machine. To verify the completeness of these results it is important

92

4.4. Theoretical Properties

Algorithm 4.2 Program of the ER machine for SPARQLLD(R) query QP,Sc .
1: Call lookup for all URIs u ∈ S.

2: for j = 1, 2, ... do
3: Use the work tape to enumerate the set [[P]]Tj , where Tj denotes the set of all

RDF triples currently encoded on the lookup tape.
4: For each valuation µ ∈ [[P]]Tj , check whether µ is already encoded on the output

tape; if this is not the case, then append enc(µ) to the word on the output tape.
5: Scan the lookup tape (starting from the leftmost position) for an RDF triple t

that contains a URI u ∈ uris(t) such that (i) c(t, u, P) = true and (ii) the word
on the lookup tape neither contains enc(u) enc(adoc(u))] nor enc(u)]. If such t
and u exist, call subroutine lookup for u; otherwise halt the computation.

6: end for

to note that such a machine looks up no more than one URI per iteration (cf. line 5 in
Algorithm 4.2). Hence, in contrast to a 2P machine, an ER machine prioritizes result
construction over data retrieval. On the other hand, similar to a 2P machine, the data
retrieval strategy performed by an ER machine traverses the reachable subweb of the
queried Web of Linked Data in a breadth-first manner (because each scan of the lookup
tape at line 5 in Algorithm 4.2 starts from the leftmost position). Due to these two
properties we may show that for each solution in a query result there exists an iteration
during which the ER machine computes this solution:

Lemma 4.6. Let M be the ER machine for a monotonic SPARQLLD(R) query QP,Sc
whose reachability criterion c does not ensure finiteness; and let W be a Web of Linked
Data encoded on the Web input tape of M . For each solution µ ∈ QP,Sc (W) there exists
a jµ ∈ {1, 2, ... } such that during the execution of Algorithm 4.2 by M it holds that
µ ∈ [[P]]Tj for all j ∈ {jµ, jµ+1, ... }.

We prove Lemma 4.6 in Section E.8 (cf. page 226ff). The proof resembles our proofs of
the corresponding lemmas for full-Web machines and for 2P machines (cf. Lemma 3.2
on page 54 and Lemma 4.2 on page 88, respectively).
So far our results verify that (i) the set of query solutions computed after any iteration

of the loop in Algorithm 4.2 is sound, and (ii) eventually, this set covers the query result
completely. The following lemma shows that each iteration requires a finite number of
computation steps only (for the proof of this lemma refer to Section E.9, page 228f).

Lemma 4.7. Let M be the ER machine for a SPARQLLD(R) query QP,Sc and let W be
a Web of Linked Data encoded on the Web input tape of M . During the execution of
Algorithm 4.2, M completes each iteration of the loop in Algorithm 4.2 after a finite
number of computation steps.

Altogether, Lemmas 4.5 to 4.7 conclude the discussion of case (2) of our proof of The-
orem 4.3. That is, based on these lemmas it is easy to verify that the ER machine for
our SPARQLLD(R) query Q

P ∗,S∗

c∗ satisfies the requirements in our definition of eventually
computable Linked Data queries (cf. Definition 2.11, page 29) and, thus, query QP

∗,S∗

c∗

is eventually computable by an LD machine.

93

4. Reachability-Based Query Semantics

Case (3): Suppose query QP
∗,S∗

c∗ is not monotonic, and there exists a Web of Linked Data
W such that (i) the (S∗, c∗, P ∗)-reachable subweb ofW is infinite and (ii) QP

∗,S∗

c∗ (W) 6= ∅.
Let W ∗ be such a Web of Linked Data.
To show that QP

∗,S∗

c∗ is not even eventually computable by an LD machine we use the
same argument as used for the corresponding discussion of non-monotonic SPARQLLD
queries (see the proof of Theorem 3.2 on page 53). That is, we show a contradiction
by assuming that query QP

∗,S∗

c∗ is (at least) eventually computable by an LD machine.
Hence, for the proof we assume an LD machine M (which is not necessarily an ER
machine, nor a 2P machine) whose computation of QP

∗,S∗

c∗ on any Web of Linked Data
(encoded on the Web input tape of M) has the two properties given in our definition of
eventually computable Linked Data queries (cf. Definition 2.11, page 29).
Let W ∗ be encoded on the Web input tape of M and let µ be an arbitrary solution

for QP
∗,S∗

c∗ in W ∗; i.e., µ ∈ QP
∗,S∗

c∗ (W ∗). Based on our assumption, machine M writes
enc(µ) to its output tape after a finite number of computation steps (cf. property 2 in
Definition 2.11). We argue that this is impossible: SinceQP

∗,S∗

c∗ is not monotonic,M may
not add enc(µ) to the output before M has accessed all LD documents that are (c∗, P ∗)-
reachable from S∗ in W ∗. However, due to the infiniteness of the (S∗, c∗, P ∗)-reachable
subweb of W ∗, there exists an infinite number of such documents. Therefore, accessing
all these documents is a nonterminating process and, thus, M cannot write enc(µ) to its
output after a finite number of computation steps. As a consequence, the computation
of QP

∗,S∗

c∗ (over W ∗) by M does not have the properties given in Definition 2.11, which
contradicts our initial assumption. Due to this contradiction we conclude that QP

∗,S∗

c∗ is
not eventually computable by an LD machine.

Case (4): Suppose (i) queryQP
∗,S∗

c∗ is not monotonic, (ii) for each Web of Linked DataW
for which the (S∗, c∗, P ∗)-reachable subweb of W is infinite it holds that QP

∗,S∗

c∗ (W) = ∅,
and (iii) there exists at least one such Web of Linked Data (in which the (S∗, c∗, P ∗)-
reachable subweb is infinite). To show that QP

∗,S∗

c∗ is eventually computable by an LD
machine we use the 2P machine for QP

∗,S∗

c∗ (cf. Definition 4.11, page 88). We write M to
denote this machine. To consider all possible Webs of Linked Data we distinguish the
following two cases:
First, we consider Webs of Linked Data whose (S∗, c∗, P ∗)-reachable subweb is finite.

Let W be such a Web of Linked Data. Lemmas 4.2 to 4.4 (cf. Section 4.4.2, page 86ff)
verify that machine M , with enc(W) on its Web input tape, halts after a finite number
of computation steps with a possible encoding of query result QP

∗,S∗

c∗ (W) on its output
tape. Hence, for W, the computation of M has the properties required for eventually
computable Linked Data queries (cf. Definition 2.11, page 29). In fact, the computation
of M even has the more restrictive properties required for finitely computable Linked
Data queries (cf. Definition 2.10, page 29).
Second, we consider Webs of Linked Data whose (S∗, c∗, P ∗)-reachable subweb is infi-

nite. Recall that the result of query QP
∗,S∗

c∗ in those Webs is empty. Let W be such a
Web of Linked Data. Since the (S∗, c∗, P ∗)-reachable subweb of W is infinite, the com-
putation of M on Web input W does not halt. More precisely, the data retrieval phase

94

4.5. Differences between SPARQLLD and SPARQLLD(R)

in Algorithm 4.1 never terminates (cf. page 88). Nonetheless, due to QP
∗,S∗

c∗ (W) = ∅, the
computation of M on Web input W has the properties required by Definition 2.11. �

4.5. Differences between SPARQLLD and SPARQLLD(R)
We conclude the analysis of properties of SPARQLLD(R) queries by comparing our results
to the corresponding results for SPARQLLD queries established in the previous chapter
(cf. Section 3.3, page 42ff). In particular, we focus on the main differences between
SPARQLLD and SPARQLLD(R) w.r.t. the analyzed properties.
By comparing Theorem 4.3 (cf. page 91) and Theorem 3.2 (cf. page 53) we notice that

the relationship between computability and monotonicity is not as definite for (satisfi-
able) SPARQLLD(R) queries (whose reachability criterion does not ensure finiteness) as
it is for (satisfiable) SPARQLLD queries. The reason why Theorem 4.3 does not present
a more distinctive statement is the possibility of the four different cases discussed in
our proof of the theorem. As a result, there exist satisfiable SPARQLLD(R) queries that
feature the same limited computability as their SPARQLLD counterparts. However,
the reasons for such limitation in each of the two cases differ significantly: In case of
SPARQLLD the limitation can be attributed to the infiniteness of the set of all URIs,
whereas, for SPARQLLD(R), the limitation is a consequence of the possibility to query
an infinitely large Web of Linked Data.
In addition to our main computability-related result in Theorem 4.3, we also identified

a class of SPARQLLD(R) queries that present a special case w.r.t. (LD-machine-based)
computability: Any SPARQLLD(R) query whose reachability criterion ensures finiteness
is finitely computable by an LD machine (cf. Proposition 4.12, page 91). Hence, for these
queries, computational feasibility is independent of monotonicity. Such an independence
does not exist for any (satisfiable) SPARQLLD query (cf. Theorem 3.2). Table 4.1 sum-
marizes our computability-related results.
In addition to differences w.r.t. (LD-machine-based) computability, we identified fur-

ther differences between SPARQLLD and SPARQLLD(R):

• LD-machine-based computation of any unboundedly satisfiable SPARQLLD query
cannot terminate with a guarantee for complete query results (cf. Proposition 3.2,
page 48). For an unboundedly satisfiable SPARQLLD(R) query, in contrast, an LD-
machine-based computation over some Webs of Linked Data may terminate (with
a complete query result), even if the query is not finitely computable by an LD
machine; this includes all finite Webs of Linked Data but also some infinite Webs
(cf. Corollary 4.1, page 65, and Proposition 4.10, page 87).

• While the monotonicity of any SPARQLLD query is correlated with the mono-
tonicity of the SPARQL expression used by the query, such a relationship does not
exist for all SPARQLLD(R) queries (compare Proposition 3.1, page 43, and Propo-
sition 4.7, page 77). Instead, there exist SPARQLLD(R) queries that are monotonic
regardless of whether their SPARQL expression is monotonic or non-monotonic

95

4. Reachability-Based Query Semantics

(cf. Proposition 4.8, page 80). However, for SPARQLLD(R) queries whose reach-
ability criterion does not ensure finiteness, we have the same correlation as we
have for all SPARQLLD queries (cf. Proposition 4.9, page 81). Remarkably, the
SPARQLLD(R) queries covered by this result are exactly those queries for which
monotonicity has an impact on LD-machine-based computability (cf. Table 4.1).

finitely
comput-
able

event.
comput-
able

not even
event.
comp.

Corresponding
result

SPARQLLD
- unsatisfiable all Proposition 2.3, p.29
- satisfiable, monotonic all Theorem 3.2, p.53
- non-monotonic all Theorem 3.2, p.53
SPARQLLD(R) (reachability criterion does not ensure finiteness)
- unsatisfiable all Proposition 2.3, p.29
- satisfiable, monotonic some some Theorem 4.3, p.91
- non-monotonic some some some Theorem 4.3, p.91
SPARQLLD(R) (reachability criterion ensures finiteness)
- unsatisfiable all Proposition 2.3, p.29
- satisfiable, monotonic all Proposition 4.12, p.91
- non-monotonic all Proposition 4.12, p.91

Table 4.1.: Correlation between (LD-machine-based) computability and basic properties
for all SPARQL-based Linked Data queries considered in this dissertation.

96

Part II.

Execution of Queries
over a Web of Linked Data

97

5. Overview of Query Execution Techniques

In the previous chapters we discuss theoretical foundations of queries over a Web of
Linked Data. In the second part of this dissertation we now focus on approaches to exe-
cute such queries. More precisely, in this chapter we provide a comprehensive, informal
overview on techniques that might be used for developing a Linked Data query execution
approach. The following chapters then focus on a particular query execution strategy
(cf. Chapter 6) and a concrete approach to implement this strategy (cf. Chapter 7).
To discuss possible query execution techniques, we briefly recall the challenges of

querying Linked Data on the WWW: Usually, queries are executed over a finite struc-
ture of data (e.g., a relational database or an RDF dataset) that is assumed to be fully
available to the execution system. However, in this dissertation we focus on queries over
a Web of Linked Data that might be infinite and that is—at best—partially known at
the beginning of a query execution process. A query execution system might obtain data
only by looking up URIs and parsing the documents retrieved by such a lookup. How-
ever, whether the lookup of a given URI actually results in the retrieval of a document
is unknown beforehand. Furthermore, in a puristic implementation of a Web of Linked
Data (as we assume in this dissertation), Web servers do not provide query processing in-
terfaces. Hence, a query execution system cannot distribute the execution of (sub)queries
to remote data sources. Instead, such a system has to retrieve data for local processing.
Multiple approaches to address these challenges have been proposed in the litera-

ture [67, 72, 79, 99, 100, 115, 126, 139, 156, 159, 162]. The basis of each of these
approaches is a number of specific (and often complementary) query execution tech-
niques. Some of the techniques presented for different approaches implement the same
abstract idea; other techniques are conceptually different or serve different purposes.
The goal of this chapter is to provide a systematic overview of these Linked Data query

execution techniques. To this end, we categorize these techniques along three orthogonal
dimensions: (i) data source selection (cf. Section 5.1), (ii) data source ranking (cf. Sec-
tion 5.2), and (iii) integration of data retrieval and result construction (cf. Section 5.3).
For each of these dimensions, we provide a comprehensive conceptual comparison of the
techniques in that dimension. Thereafter, we discuss so called traversal-based query
execution strategies which combine particular types of techniques from each of the di-
mensions (cf. Section 5.4). These strategies are of particular interest because the query
execution strategy analyzed in the following chapters presents a specific example of these
traversal-based strategies. A classification consisting of this analyzed strategy and all
existing Linked Data query execution approaches concludes this chapter (Section 5.5).

99

5. Overview of Query Execution Techniques

5.1. Data Source Selection

For the execution of Linked Data queries it is necessary to retrieve data by looking
up URIs. There exist three classes of approaches for selecting the URIs that a query
execution system looks up during the execution of a given query: (i) live exploration
approaches, (ii) index-based approaches, and (iii) hybrid approaches. In the following
we discuss each of these types.

5.1.1. Live Exploration Approaches

Live exploration approaches make use of the characteristics of Webs of Linked Data, in
particular, the existence of data links. In order to execute a given Linked Data query,
live exploration systems perform a recursive URI lookup process during which they
incrementally discover further URIs that also qualify for lookup. Thus, such a system
explores the queried Web by traversing data links at query execution time. While the
data retrieved during such an exploration allows for a discovery of more URIs to look
up, it also provides the basis for constructing the query result.
Live exploration systems may not need to look up all URIs discovered. Instead, cer-

tain live exploration approaches may (directly or indirectly) introduce criteria to decide
which of the discovered URIs are scheduled for lookup. Such a lookup criterion may re-
semble a particular reachability criterion. In such a case it may be shown that the given
live exploration approach is sound and complete for queries under the corresponding
reachability-based query semantics. For instance, we shall see that the query execution
strategy that we study in this dissertation supports cMatch-semantics.
We notice that query execution based on live exploration is similar to focused crawling

as studied in the context of search engines for the WWW [31, 12]. However, in focused
crawling a (discovered) URI qualifies for lookup because of a high relevance for a specific
topic; in live exploration approaches the relevance is more closely related to the task
of answering the query at hand. Furthermore, the purpose of retrieving Web content
is slightly different in both cases: Focused crawling, or Web crawling in general, is a
pre-runtime (or background) process during which a system populates a search index or
a local database; then, the runtime component of such a system provides query access
to the populated data structure. By contrast, live exploration approaches are used
to retrieve data for answering a particular query; in these approaches, traversal-based
data retrieval is an essential part of the query execution process itself. Nonetheless,
implementation techniques used for focused crawling, such as context graphs [40], may
be applied in a live exploration approach for Linked Data query execution.
The most important characteristic of live exploration approaches is the possibility to

use data from initially unknown data sources. This characteristic allows for serendipitous
discovery and, thus, enables applications that tap the full potential of a Web of Linked
Data such as the WWW. Another characteristic is that live exploration approaches
might be used to develop query execution systems that do not require any a-priori
information about the queried Web. Consequently, such a system might readily be used
without having to wait for the completion of an initial data load phase or any other

100

5.1. Data Source Selection

type of preprocessing. Hence, live exploration approaches are most suitable for an “on-
demand” querying scenario. However, data access times inherently add up due to the
recursive nature of the lookup process. Possibilities for parallelizing data retrieval are
limited because relevant URIs become available only incrementally. Furthermore, from
Example 4.3 (cf. page 65) we know that the recursive link discovery may be infinite, even
if the expected query result is finite. Another limitation of live exploration approaches
is their inherent dependency on the structure of the link graph as well as on the number
of links in the queried Web of Linked Data. In a Web sparsely populated with links,
chances are low to discover relevant data. While such a limitation is not an issue for
queries under a reachability-based query semantics, systems that aim to support full-
Web semantics might report more complete results for certain queries if they use other
source selection approaches.
In its purest form, live exploration approaches assume query execution systems that

do not have any a-priori information about the queried Web. This assumption also holds
for the approach that we study in this dissertation. It is also possible, however, that a
query execution system reuses data retrieved during the execution of a query as a basis
for executing subsequent queries. In [71] we demonstrate that such a reuse is beneficial
for two reasons: 1) it can improve query performance because it reduces the need to
retrieve data multiple times; 2) assuming full-Web semantics, it can provide for more
complete query results, calculated based on data from data sources that would not be
discovered by a live exploration with an initially empty query-local dataset. However,
since reusing the query-local dataset for the execution of multiple queries is a form of
data caching, it requires suitable caching strategies. In particular, any system that keeps
previously retrieved data has to apply an appropriate invalidation strategy; otherwise
it could lose the advantage of up-to-date query results. As an alternative to caching
retrieved data it is also possible to keep only a summary of the data or certain statistics
about it. Such information may then be used to guide the execution of later queries (as
in the case of index-based source selection approaches which we discuss in the following).

5.1.2. Index-Based Approaches

Index-based approaches ignore the existence of data links during the query execution
process. Instead, these approaches use a pre-populated index to determine a set of URIs
for lookup during query execution time. Hence, in contrast to index structures that store
the data itself (such as the original B-tree [13] or existing approaches for indexing RDF
data [65, 123, 164]), the index-based approaches discussed here use data structures that
index URIs as pointers to data; each of these URIs may appear multiple times in such
an index because the data that can be retrieved using such a URI may be associated
with multiple index keys.
A typical example for such a data structure uses triple patterns as index keys [99].

Given such a pattern, the corresponding index entry is a set of URIs such that looking
up each of these URIs provides us with some data that contains a matching triple for the
pattern. To enable data source ranking (discussed in the following Section 5.2), index
entries may additionally encode the cardinality of matching triples for each indexed

101

5. Overview of Query Execution Techniques

URI [67, 99, 159]. Thus, such an index presents a summary of the data available from
all indexed URIs.
Source selection using such an index is based on a notion of relevance: A URI is relevant

for a given query if the data retrieved by looking up the URI contributes to the query
result [99, 156]. However, the existence of a triple that matches a triple pattern from the
query is not sufficient to make the corresponding URI relevant; only if such a matching
triple can be used to construct a solution of the query result, the URI is relevant.
Given that data from irrelevant URIs is not required to compute a query result,

avoiding the lookup of such URIs reduces the cost of query executions significantly [67,
159, 99, 126]. Consequently, the focus of research in this context is to identify a subset of
all (indexed) URIs that contains all relevant URIs and as few irrelevant ones as possible.
While simpler approaches consider any triple pattern of a given query separately [126],
more sophisticated approaches achieve a higher reduction of irrelevant URIs by taking
into account joins between triple patterns [67, 159, 99, 156].
We note that these index-based approaches are closer in spirit to traditional query

processing techniques than live exploration approaches. Existing data summarization
and indexing techniques may be adapted to develop an index-based approach for Linked
Data query execution. For instance, Umbrich et al. adopt multidimensional histograms
(originally proposed to estimate selectivity of multidimensional queries [120]) as a data
summary for index-based Linked Data query execution [159]. Similarly, the QTree that
Harth et al. use as a summary of Linked Data [67] is a combination of a histogram and
an R-tree (the latter was originally proposed to index data about spatial objects [61]).
Further index structures for index-based Linked Data query execution are proposed

in the literature: In contrast to the aforementioned approach of using triple patterns as
index keys, Tian et al. extract frequently used combinations of triple patterns from a
given query workload and use unique encodings of these combinations as index keys [156].
For a query workload that is similar to the workload used for building an index, the
authors show that their approach can prune more irrelevant URIs than the baseline
approach of using triple patterns as index keys. An inverted URI index is another, very
simple index structure [159]. In this case the index keys are URIs, namely, the URIs
mentioned in the data that can be retrieved by looking up the indexed URIs. In another
approach the index keys are properties and classes from ontologies used for the data [126].
Umbrich et al. refer to this approach as schema-level indexing [159]. In their work the
authors compare index-based approaches that use an inverted URI index, schema-level
indexing, the aforementioned QTree, and a multidimensional histogram [159].
Existing work on index-based Linked Data query execution usually assumes that the

set of URIs to be indexed is given. To build the index for such a set it is necessary to
retrieve the data for any given URI. Instead of populating the index based on a given
set of URIs it is also possible to build such an index using the output of a Web crawler
for Linked Data. For a comprehensive discussion of crawling Linked Data we refer to
Hogan et al. [88]. Alternatively, (partially) populated indexes may also be a by-product
of executing queries using a live exploration approach. However, in all these cases an
initial lookup of all indexed URIs is required.
After populating an initial version of an index it is necessary to maintain such an index.

Maintenance may include adding additionally discovered URIs and keeping the index up

102

5.1. Data Source Selection

to date. The latter is necessary because what data can be retrieved from indexed URIs
might change over time. While Umbrich et al. address this topic briefly [159], no work
exists that discusses index maintenance for index-based Linked Data query execution in
detail. We also do not elaborate on this topic further because index-based approaches
are not the focus of this dissertation. However, we point out that the topic is related
to index maintenance in information retrieval (e.g., [30, 105, 107]), index maintenance
for (traditional) Web search engines (e.g., [27, 108]), Web caching (e.g., [39, 116, 163]),
maintenance of data(base) caches (e.g., [25, 37]), and view maintenance in databases
and data warehouses (e.g., [59, 147, 168]).
The most important characteristic of index-based approaches is the ability to deter-

mine at the beginning of a query execution all URIs that need to be looked up. This
ability enables query execution systems to parallelize data retrieval. Such a paralleliza-
tion might reduce data retrieval time for executing a query. As a consequence, an
efficiently implemented index-based system might answer a Linked Data query faster
than a live exploration system (assuming both systems look up the same set of URIs
during the execution).
On the other hand, a live exploration system is ready for use immediately, whereas an

index-based system can be used only after initializing its index. Such an initialization
may take a significant amount of time assuming that the system has to retrieve the data
for all indexed URIs first. In the aforementioned publications only Paret et al. take the
initial retrieval time into account for the evaluation of their approaches [126]. Unfortu-
nately, the actual setup of Paret et al.’s experiments is not clear; in particular, missing
information about response times of the dedicated Web servers used for the experiment
and about the number of URIs looked up, prohibit drawing conclusions from the reported
measurements. However, for systems that use crawling to populate their index, we may
get an idea of the initial data retrieval time by looking into related work. In particular,
in their work on a search engine for Linked Data, Hogan et al. report the following
measurements [88]: For crawling 1,000 URIs (resp. 100,000 URIs) with 64 threads on a
single machine they report an overall crawl time of about 9 minutes (resp. 360 minutes);
in a distributed setting, 8 machines with 64 threads each, crawl 100,000 URIs in about
63 minutes.
Another advantage of index-based approaches claimed in the literature is the ability

to report query results that are more complete when compared to live exploration ap-
proaches [67]. However, the authors’ understanding of completeness remains unclear,
because they do not provide a precise definition of query semantics for the Linked Data
queries executed by their approach (the same holds for any of the aforementioned index-
based approaches; i.e., [67, 99, 126, 156, 159]). However, if we assume full-Web semantics,
it is indeed possible that an index-based approach computes some solutions of a query
result which a live exploration approach cannot compute; this is the case if (some) data
necessary for computing these solutions cannot be discovered by link traversal. On the
other hand, a live exploration approach may discover URIs that are not indexed and the
data retrieved by looking up these URIs may allow for the computation of some query
solutions. In such a case the corresponding index-based execution cannot compute these
solutions. Hence, a general statement about the superiority of an index-based approach

103

5. Overview of Query Execution Techniques

over a live exploration approach (or vice versa) w.r.t. result completeness is not possible
in the context of full-Web semantics.
Finally, we also emphasize that the aforementioned notion of relevance of URIs should

not be carried over directly to live exploration approaches (or used in a comparison of
both types of approaches). For a live exploration system the retrieval of data is not
only necessary to obtain matching triples that contribute to the query result; instead,
such data may also allow the system to discover (and, thus, traverse) data links, through
which the system may eventually obtain additional matching triples.

5.1.3. Hybrid Approaches
Hybrid source selection approaches combine an index-based approach with a live explo-
ration approach and, thus, aim to achieve the advantages of both approaches without
inheriting their respective shortcomings. For instance, a hybrid approach may use an
index to determine a suitable set of seed URIs as input for a subsequent live exploration
process. This process may than feed back information for updating, for expanding, or
for reorganizing the index. An alternative idea is a hybrid approach that uses an index
only to prioritize discovered data links and, thus, to control a live exploration process.
To the best of our knowledge, the only query execution strategy that implements such

a hybrid approach is the “mixed strategy” proposed by Ladwig and Tran [99]. This
strategy is based on a ranked list of URIs that need to be looked up. To obtain an initial
version of this list for a given query, the approach exploits an index. Additional URIs
discovered during query execution are then integrated into the list.

5.2. Data Source Ranking
Instead of merely selecting URIs to look up, execution strategies for Linked Data queries
may rank the resulting set of URIs such that the ranking represents a priority for looking
up each (selected) URI. Such a data source ranking may allow a query execution system
to (i) report solutions of a query result as early as possible, (ii) to reduce the time for
computing the first k solutions, or (iii) to compute the maximum number of solutions
in a given amount of time [99]. Although, the query execution strategy studied in this
dissertation does not implement an approach for source ranking, we briefly summarize
related work on source ranking for Linked Data query execution.
Harth et al. complement their (QTree) index-based source selection approach with

source ranking [67]. Selected URIs are ranked using an estimate for the number of
query solutions that the data of each URI contributes to. The basis for estimating these
numbers are cardinalities recorded in the QTree entries for each (indexed) URI. Then,
by accessing such a QTree, a query execution system might obtain an estimate of how
many matching triples for a given triple pattern are available from each URI. Based on
these triple-pattern-specific estimates, Harth et al.’s approach computes the estimates
for the whole query recursively. For this computation, the authors take join cardinality
estimations into account.
Ladwig and Tran introduce a ranking approach that includes multiple scores [99]:

104

5.2. Data Source Ranking

1. Triple frequency - inverse source frequency (TF-ISF). TF-ISF is an adaptation of
the well-known TF-IDF measure used in information retrieval [135]. Ladwig and
Tran define TF-ISF for a pair of an indexed URI and a triple pattern (from the
query). The computation of such a TF-ISF measure is based on the triple-pat-
tern-specific cardinality of the corresponding URI (that is, how many matching
triples for the pattern can be obtained by looking up the URI). Similar to Harth
et al. [67], Ladwig and Tran’s approach obtains these cardinalities from an index.
However, due to a different index structure used by Ladwig and Tran, the obtained
cardinalities are accurate (in Harth et al. they are estimates only, because the
QTree is an approximate index structure [67]).

2. (URI-specific) join cardinality estimates. This score represents an estimation of
the number of query solutions that can be computed using only the data from a
given URI. While this score is similar to the estimates that Harth et al. use for
ranking, it neglects joins based on data from multiple URIs. For the computation
of such a (URI-specific) join cardinality estimate, Ladwig and Tran propose an
approach that, again, uses the triple pattern cardinalities recorded in their index,
as well as partial query solutions (generated using a random sample of data already
retrieved during the query execution).

3. In-link scores. This score is calculated based on incoming data links (i.e., references
to a given URI in the data available from other URIs). Interlinkage information
about a set of URIs may be recorded in an additional data structure that comple-
ments the main index used for index-based source selection. However, Ladwig and
Tran propose to obtain such information during query execution. As a result, the
in-link score can also be used to rank URIs selected by live exploration approaches.

Ladwig and Tran’s ranking approach aggregates these scores using a weighted summa-
tion [99]. This approach is suitable for hybrid source selection because it supports both,
URIs selected from an index as well as URIs discovered by live exploration. However, the
ranks for indexed URIs are more accurate because for those URIs all scores are available,
whereas newly discovered URIs can only be ranked based on their in-link score.
Some of the input for calculating the aforementioned scores may be refined based on

information that becomes available during the query execution process. For instance, the
data used to obtain samples for join cardinality estimation grows; similarly, additional
interlinkage information becomes available. As a consequence, Ladwig and Tran propose
a periodic recalculation of scores and resulting ranks. Based on certain thresholds the
authors study the trade-off between the benefits of a more accurate ranking that can
be achieved by recalculating scores more frequently and the higher costs incurred by a
more frequent recalculation [99].
The source ranking approaches as summarized above are designed to achieve the ob-

jectives mentioned in the beginning of this section. We note that similar objectives
characterize the problem of top-k query processing where only the k top-ranked result
elements need to be computed. Wagner et al. study top-k processing for Linked Data
queries [162]. In particular, the authors propose a top-k approach that builds on the

105

5. Overview of Query Execution Techniques

index-based source selection strategy. Although this approach is about ranking (inter-
mediate) query solutions, it enforces an indirect ranking of the URIs to look up. The
additional information that is necessary for ranking is, again, assumed to be recorded in
the pre-populated index.

5.3. Integration of Data Retrieval and Result Construction

The actual process of executing a Linked Data query may consist of two separate phases:
During the first phase a query execution system selects URIs and uses them to retrieve
data from the queried Web (as discussed before); during a subsequent, second phase the
system generates the query result using the data retrieved in the first phase. Instead of
separating these two phases it is also possible to integrate the retrieval of data and the
result construction process. Hereafter, we use the term integrated execution approaches
to refer to Linked Data query execution approaches that apply the latter idea. Analo-
gously, separated execution approaches separate data retrieval from result construction
by two consecutive phases. We emphasize that separating or integrating data retrieval
and result construction is a design decision that is orthogonal to what source selection
approach (and source ranking approach) is used for developing a Linked Data query
execution approach. In the following we discuss both types of approaches, separated
execution and integrated execution.

5.3.1. Separated Execution Approaches

Due to the clear separation of data retrieval and result construction, separated ap-
proaches are straightforward to implement. In particular, index-based source selection
lends itself naturally to such an implementation [67, 159, 126]. However, it is also easy
to develop a separated execution approach based on live exploration. For instance, we
may derive such an approach directly from the definitions for reachability-based query
semantics as introduced in the previous chapter (cf. Section 4.1, page 61ff): During the
first phase a query execution system retrieves data by traversing recursively all data
links that qualify according to the reachability criterion specified in the query; during
the second phase the system generates the query result. The 2P machine that we use for
the proofs in Section 4.4.2 implements such an approach (cf. Algorithm 4.1, page 88).
The downside of separated execution approaches is that the query execution system

can report first solutions only after it has completed the data retrieval phase. Looking
up a large set of selected URIs or retrieving the complete set of reachable data may
exceed the resources of an execution system or it may take a prohibitively long time; for
queries that are not finitely computable by an LD machine, it is even possible that the
data retrieval process does not terminate at all (this was the reason why we could not
use a 2P machine for the second case in our proof of Theorem 4.3; cf. page 91). We note
that the application of data source ranking may address these problems (for the price of
missing some query solutions).

106

5.4. Traversal-Based Query Execution

5.3.2. Integrated Execution Approaches

Integrated approaches may allow a query execution system to report first solutions for a
(monotonic) query early, that is, before data retrieval has been completed. Furthermore,
integrated approaches have the potential to require significantly less query-local memory
than any separated execution approach; this holds in particular for integrated approaches
that process retrieved data in a streaming manner and, thus, do not require to store all
retrieved data until the end of a query execution process.
As for separated approaches it is possible to use any type of source selection as a basis

for an integrated execution approach. A manifold of combinations are conceivable; in
particular, live exploration may be combined with an integrated approach in a multi-
tude of ways. We refer to query executions that present such a combination (i.e., live
exploration with an integrated execution approach) as traversal-based query executions.

5.4. Traversal-Based Query Execution
For a simple example of a traversal-based query execution strategy we recall the ER
machine that we use in our proof of Theorem 4.3 (cf. Definition 4.12, page 92). The
query execution strategy of this machine combines the idea of an integrated execution
with source selection by live exploration: The machine alternates between link traversal
phases and result computation phases. Each link traversal phase consists of traversing all
those relevant data links that the machine finds in the data retrieved during the previous
link traversal phase. Hence, with each link traversal phase the machine expands its
information about (the reachable subweb of) the queried Web of Linked Data. After each
link traversal phase the machine generates a (potentially incomplete) query result; from
such a result the machine reports those solutions that did not appear in the previously
generated result. While this execution strategy is sufficient for proving Theorem 4.3, the
frequent recomputation of partial query results is not efficient and, thus, the strategy
may not be suitable in practice.
Schmedding proposes a traversal-based query execution strategy that addresses this

problem [139]. The idea of this strategy is to adjust an intermediate (and potentially
incomplete) query result after each link traversal phase. Schmedding’s main contribution
is an extension of the SPARQL algebra operators that makes the differences between
query results computed on different input data explicit; based on the extended algebra
the intermediate query result can be adjusted by using only the data retrieved during the
directly preceding link traversal phase (instead of recomputing the intermediate query
result from scratch as done by the ER machine).
An alternative approach to traversal-based query execution is the strategy that we

study in the following chapters. This strategy is based on a result construction pro-
cess that generates any single solution of a query result incrementally (as opposed to
generating incrementally the query result as a whole). We shall see that this strategy
achieves an even tighter integration of data retrieval and result construction than the
two aforementioned approaches.
The idea of integrating the traversal of data links into the application logic has first

been proposed by Berners-Lee et al. [16]. The authors outline an algorithm that traverses

107

5. Overview of Query Execution Techniques

data links in order to obtain more data about the entities presented in the Tabulator
Linked Data browser. Shinavier’s functional scripting language Ripple is based on the
same idea [146]: While Ripple programs operate on Linked Data, the automatic lookup
of recursively discovered URIs is an integral feature of the language. Therefore, it is not
necessary to add explicit URI lookup commands to such a program. Instead, during run-
time the Ripple interpreter traverses data links and retrieves all Linked Data required for
the execution incrementally. The earliest integration of link traversal into an execution
of Linked Data queries was implemented in the Semantic Web Client Library [20].
The first research publication on Linked Data query execution describes the idea of

traversal-based query execution and introduces an efficient implementation of this idea
using a synchronized pipeline of iterators [79]. We follow up on this implementation
approach in [72], where we propose a heuristics-based approach for query planning.
These two publications provide the basis for Chapter 7 in this dissertation. In a more
recent publication we introduce a general, implementation independent formalization of
a traversal-based execution strategy [75]; this formalization is the basis for the query
execution model that we present in the following chapter (cf. Section 6.3, page 115ff).
While our work on implementing traversal-based query execution focuses on iterators,

other authors introduce alternative implementation approaches:

• Ladwig and Tran propose an implementation approach that uses symmetric hash
join operators which are connected via an asynchronous, push-based pipeline [99].
In later work, the authors extend this approach and introduce the symmetric index
hash join operator. This operator allows a query execution system to incorporate
a query-local RDF data set into the query execution [100].

• Miranker et al. introduce another push-based implementation [115]. The authors
implement traversal-based query execution using Forgy’s Rete match algorithm
(originally introduced in [51]).

Since traversal-based query execution approaches combine an integrated execution and
live exploration, they inherit the advantages and limitations of these two strategies (as
discussed in Sections 5.1.1 and 5.3.2). That is, like all live exploration systems, traversal-
based query execution systems are able to make use of data from initially unknown data
sources and can readily be used without first populating and maintaining supporting
data structures. Furthermore, a traversal-based query execution system can be built to
report first solutions early. On the downside, data retrieval may not be parallelized as
effectively as is possible with index-based source selection; moreover, a sparsity of data
links reduces the chances for discovering potentially relevant data and may thus result
in missing a larger number of solutions for queries under full-Web semantics.

5.5. Summary
We conclude our discussion of query execution techniques for Linked Data queries by
classifying existing approaches in Table 5.1. For the classification we use the three
dimensions as introduced in this chapter.

108

5.5. Summary

Publication Source
Selection

Source
Ranking

Integr.
Exec.

Harth et al. [67, 159] index-based yes no
Ladwig and Tran [99] (“bottom up”)∗ live exploration yes yes
Ladwig and Tran [99] (“top down”) index-based yes yes
Ladwig and Tran [99] (mixed strategy)∗ hybrid yes yes
Ladwig and Tran [100]∗ live exploration no yes
Miranker et al. [115]∗ live exploration no yes
Paret et al. [126] index-based no no
Schmedding [139]∗ live exploration no yes
Tian et al. [156] index-based no n/a
Umbrich et al. [159] (multidim. histograms) index-based yes no
Umbrich et al. [159] (schema-level index) index-based no no
Umbrich et al. [159] (inverted URI index) index-based no no
Wagner et al. [162] index-based yes yes
our work∗ live exploration no yes

Table 5.1.: Classification of existing work on Linked Data query execution along the
dimensions of (i) data source selection, (ii) data source ranking, and (iii) in-
tegration of data retrieval and result construction. Approaches marked with
an asterisk (*) are traversal-based query execution approaches.

109

6. A Traversal-Based Strategy
Traversal-based query execution (as described in Section 5.4, page 107f) is among the
most prevalent approaches for which query execution techniques have been studied in
existing work on Linked Data query processing (cf. Table 5.1, page 109). This research
interest may perhaps be attributed to the fact that traversal-based query execution
presents a novel query execution paradigm. The ability to discover data from unknown
data sources is its most distinguishing advantage over traditional query execution ap-
proaches which assume a fixed set of potentially relevant data sources that is known
beforehand. This ability poses new practical challenges to query planning and optimiza-
tion, which are the focus of existing work. On the other hand, a systematic discussion of
fundamental properties such as termination or soundness and completeness of proposed
approaches is missing from existing work. Therefore, in this and the following chapter,
we provide such a more fundamental analysis.
For this analysis we focus on a specific traversal-based query execution strategy that

integrates tightly data retrieval and query result construction. In this chapter we intro-
duce and discuss this strategy independent from particular implementation techniques.
The following chapter then focuses on a specific implementation approach. By clearly
distinguishing the general strategy from this implementation approach, we can study
the general characteristics separate from implementation-specific peculiarities.
To allow us to focus on the essence of the strategy we restrict ourselves to a discussion

of conjunctive queries. We emphasize, however, that the concepts introduced in this
part of the dissertation can easily be extended to support more expressive queries (as
long as such queries are monotonic).
This chapter is organized as follows: As a preliminary for a well-founded discussion,

Section 6.1 defines a notion of conjunctive Linked Data queries. The remaining sections
focus on our traversal-based strategy: Section 6.2 introduces the strategy informally
using an example. Section 6.3 presents a query execution model that defines the strategy
formally. Based on this model we analyze the strategy. In particular, Section 6.4 shows
that the strategy allows for a sound and complete execution of any conjunctive Linked
Data query under the (reachability-based) cMatch-semantics that has been introduced in
Section 4.1 (cf. page 61ff). We conclude the chapter with a brief summary in Section 6.5.

6.1. Conjunctive Linked Data Queries
As mentioned above, we discuss our traversal-based execution strategy for conjunctive
queries only. Such a focus on conjunctive queries allows us to simplify the presentation of
the main idea without getting distracted by details necessary to support more expressive
Linked Data queries. However, as a preliminary for discussing execution of conjunctive

111

6. A Traversal-Based Strategy

Linked Data queries we need a precise definition of these queries. This section provides
such a definition.
Basically, the notion of conjunctive queries that we focus on are SPARQLLD(R) queries

that use SPARQL expressions consisting only of triple patterns and AND . Since the AND
operator is associative and commutative [128, 140], the order of the triple patterns that
occur in such a conjunctive expression is irrelevant w.r.t. query semantics. Therefore,
we may use (finite) sets of triple patterns as a more compact representation of these
expressions. Consequently, for the sake of a more concise formalism we define our notion
of conjunctive queries based on sets of triple patterns (instead of using the corresponding,
conjunctive SPARQL expressions). Such a finite set of triple patterns is commonly
referred to as a basic graph pattern (BGP) [63, 127]; we adopt this term in the following.
For any BGP B we write vars(B) to denote the (finite) set of all variables in triple pat-

terns of B, i.e., vars(B) :=
{
?v ∈ vars(tp)

∣∣ tp ∈ B}. Furthermore, the application of a
valuation µ to a BGP B, denoted by µ[B], is defined as follows: µ[B] :=

{
µ[tp]

∣∣ tp ∈ B}.
To define conjunctive Linked Data queries using BGPs, we first introduce the usual

set semantics for BGPs as specified in Pérez et al. [127]: Let B = {tp1, tp2, ... , tpn}
be a BGP and let G be a (potentially infinite but countable) set of RDF triples. The
evaluation of B over G, denoted by [[B]]G, is defined as follows:

[[B]]G :=
{
µ
∣∣µ is a valuation such that dom(µ) = vars(B) and µ[B] ⊆ G

}
.

The following proposition shows that any conjunctive SPARQL expression is semanti-
cally equivalent to the corresponding BGP.

Proposition 6.1. Let P be a SPARQL expression that consists only of triple patterns
and AND; let B = {tp1, tp2, ... , tpn} be the BGP that consists of all triple patterns in P.
For any set of RDF triples G it holds that [[P]]G = [[B]]G.

Proof. Proposition 6.1 follows trivially from the results of Pérez et al. [127] (see in
particular [127, Proposition 3.13] and [127, Note 3.14]). �

To use our definitions and results from the previous chapter as a foundation for a BGP-
based formalism, we assume a mapping exp that maps any nonempty BGP B = {tp1, tp2,
... , tpn} to a SPARQL expression of the form ((...(tp1 AND tp2) AND ...) AND tpn) where
n = |B| and tpi ∈ B for all i ∈ {1, ... , n}; each singleton BGP B = {tp} is mapped to its
triple pattern tp (a single triple pattern is also a SPARQL expression, cf. Section 3.2.1).
Based on mapping exp we overload some of the notation and terminology introduced

in the previous chapter: For any reachability criterion c, RDF triple t, URI u, and
nonempty BGP B, we write c(t, u,B) to denote the result of c

(
t, u, exp(B)

)
. Then,

given a reachability criterion c and a nonempty BGP B, an LD document d ∈ D is
(c,B)-reachable from a set of URIs S ⊆ U in a Web of Linked Data W = (D, data, adoc)
if and only if d is (c, exp(B))-reachable from S in W; the (S, c,B)-reachable subweb of
W is the same as the (S, c, exp(B))-reachable subweb of W.
We are now ready to introduce a BGP-based notion of conjunctive Linked Data queries

(under reachability-based query semantics).

112

6.1. Conjunctive Linked Data Queries

Definition 6.1 (CLD(R) query). Let S ⊆ U be a finite set of URIs; let c be a reach-
ability criterion; and let B be a nonempty BGP. The conjunctive Linked Data query
(CLD(R) query) that uses B, S, and c, denoted by QB,Sc , is a Linked Data query that, for
any Web of Linked Data W, is defined by QB,Sc (W) := [[B]]AllData(R) where R denotes the
(S, c,B)-reachable subweb of W. 2

From the definitions it follows trivially that any CLD(R) query QB,Sc is semantically equiv-
alent to the corresponding SPARQLLD(R) query that uses expression exp(B). Formally:

Proposition 6.2. For any CLD(R) query QB,Sc and any Web of Linked Data W it holds
that QB,Sc (W) = QP,Sc (W) where QP,Sc is the SPARQLLD(R) query that uses SPARQL
expression P = exp(B) (and the same S and c as QB,Sc).

Proof. Proposition 6.2 follows directly from Definition 6.1, Proposition 6.1, and Defi-
nition 4.4 (cf. page 63). �

Based on the semantic equivalence shown in Proposition 6.2, our results for (conjunctive)
SPARQLLD(R) queries carry over directly to CLD(R) queries:

Corollary 6.1. Let QB,Sc be a CLD(R) query whose set of URIs S is not empty.

1. QB,Sc is satisfiable and monotonic.

2. If reachability criterion c ensures finiteness, then QB,Sc is finitely computable by an
LD machine.

3. If reachability criterion c does not ensure finiteness, then QB,Sc is either finitely
computable by an LD machine or it is eventually computable by an LD machine.

Proof. Claim 1 follows trivially from: (i) Proposition 6.2, (ii) the relationships shown
in Proposition 4.7 (cf. page 77), and (iii) the fact that conjunctive SPARQL expressions
(with triple patterns and AND only) are satisfiable (cf. Proposition C.2, page 197) and
monotonic (cf. Proposition C.6, page 202).
Claim 2 follows trivially from: (i) Proposition 6.2 and (ii) Proposition 4.12 (which

shows that any SPARQLLD(R) query whose reachability criterion ensures finiteness is
finitely computable by an LD machine; cf. page 91).
Claim 3 follows trivially from: (i) Proposition 6.2, (ii) the satisfiability and the mono-

tonicity ofQB,Sc (see the previously shown Claim 1), and (iii) the fact that any satisfiable,
monotonic SPARQLLD(R) query whose reachability criterion does not ensure finiteness is
either finitely computable or eventually computable by an LD machine (cf. Theorem 4.3,
page 91). �

After defining our notion of conjunctive Linked Data queries formally, we are now ready
to discuss our traversal-based strategy for executing such queries.

113

6. A Traversal-Based Strategy

6.2. Informal Description
We recall from Section 5.4 (cf. page 107f) that traversal-based query execution ap-
proaches combine a live exploration approach to source selection (as discussed in Sec-
tion 5.1.1, page 100f) with the idea of integrating data retrieval into the query-local
result construction process (discussed in Section 5.3.2, page 107). The specific strategy
of traversal-based query execution that we aim to discuss in this dissertation proposes a
particularly tight integration of data retrieval approach into a result construction process
that generates solutions of query results incrementally. The following example outlines
this strategy.
Example 6.1. Let QBex,Sex

cMatch be a CLD(R) query under cMatch-semantics. Suppose the BGP
of this query is Bex = {tpex1, tpex2, tpex3, tpex4} with the following four triple patterns:

tpex1 = (?product, producedBy, producer1), tpex2 = (?product, name, ?productName),
tpex3 = (?offer, offeredProduct, ?product), and tpex4 = (?offer, offeredBy, vendor1).

The query asks for all products from producer 1 for which we find offers from vendor 1.
Let the seed URIs of this query include the URIs of all entities mentioned in Bex, that
is, Sex = {producer1, vendor1}. In what follows we describe a traversal-based execution of
this query over our example Web Wex (cf. Example 2.1, page 18).
Traversal-based query execution usually starts with an empty, query-local dataset.

We obtain some seed data by looking up the seed URIs mentioned in the query. For
our example query with the seed URIs producer1 and vendor1, we retrieve two sets of RDF
triples, dataex(dPr1) and dataex(dV1). We add these triples to the local dataset.
Now, we begin an iterative process which is based on those RDF triples in the query-

local dataset that are a matching triple for any of the triple patterns in our query.
During each step of the process we use such a triple (i) to construct a valuation and
(ii) to retrieve more data by looking up the URIs mentioned in the triple. Looking
up these URIs presents a traversal of data links based on which we may augment the
query-local dataset. Such an augmentation may allow us to discover more matching
triples and, thus, to perform further steps. The valuation that we construct during
such a step may either be based solely on the current matching triple and, thus, cover
only the corresponding triple pattern; or the valuation extends a previously constructed
valuation such that it covers multiple triple patterns from the query. Ultimately, we are
interested in the valuations that cover all triple patterns (because these valuations are
the solutions of the query result). The whole process continues until it reaches a fixed
point. We note that such a fixed point may not exist for queries that are not finitely
computable by an LD machine.
For triple pattern tpex1 in our example query the local dataset contains matching triple

(product2, producedBy, producer1), originating from seed document dPr1. By using this triple,
we construct a valuation µex1 = {?product → product2} and look up the URIs mentioned
in the triple. While a second lookup of URI producer1 is not necessary and we do not
retrieve any data by looking up URI producedBy, the lookup of URI product2 allows us to
augment the query-local dataset with dataex(dp2).

114

6.3. Query Execution Model

In the augmented dataset we now find a matching triple for triple pattern tpex2,
that is, triple (product2, name, "Product 2") ∈ dataex(dp2). Given this triple we can extend
valuation µex1 by adding a binding for variable ?productName. We obtain valuation
µex2 = {?product → product2, ?productName → "Product 2"}, which already covers the first
two triple patterns of our query. Notice, constructing µex2 is only possible because we
retrieved dataex(dp2). However, before we discovered the first matching triple and looked
up the URI product2, we neither knew about the existence of LD document dp2 nor about
the matching triple that allows us to construct µex2. Hence, the traversal of data links
enables us to answer queries based on data from initially unknown sources.
We proceed with our execution strategy as follows: The data from the other seed

document, dV1, contains a matching triple for triple pattern tpex4. Based on this triple we
construct a new valuation µex3 = {?offer → offer1.1} (µex3 covers triple pattern tpex4) and
augment our local dataset with all RDF triples from data(doff1.1), which we retrieve by
looking up URI offer1.1. After this augmentation we may eventually construct valuation
µex4 = {?product → product2, ?productName → "Product 2", ?offer → offer1.1}, which covers
the whole BGP Bex. Hence, µex4 can be reported as a solution for QBex,Sex

cMatch over Wex. 2

The example illustrates how our traversal-based query execution strategy integrates an
incremental construction of query solutions with a live exploration approach to data
retrieval. This strategy presents an even tighter integration of data retrieval and result
construction than the two strategies outlined in the beginning of Section 5.4 (cf. page
107f). That is, instead of performing multiple result computation phases that always
compute a whole query result (from scratch as in an ER machine or incrementally as
proposed by Schmedding [139]), our traversal-based strategy executes a single result
construction process only; this process computes the solutions of a query result by aug-
menting valuations incrementally. For such an augmentation the process uses matching
triples from data retrieved via link traversal. At the same time, the process uses these
matching triples for the next link traversal step. Hence, this process deeply intertwines
result construction and (traversal-based) data retrieval.
We emphasize that the strategy presents a general approach rather than a concrete

algorithm. Hence, the strategy can be implemented using different techniques. Possible
implementation approaches may use a Rete network as proposed by Miranker et al. [115],
or Ladwig and Tran’s asynchronous pipeline of symmetric hash join operators [99]. We
study an iterator-based implementation in the following chapter. Further implemen-
tation approaches are conceivable. As a general foundation for such implementation
approaches we now provide a formal definition of our traversal-based execution strategy.

6.3. Query Execution Model
This section defines a query execution model that captures the traversal-based execution
strategy outlined in the previous section. This model does not only present a precise,
unambiguous definition of the strategy, it also allows us to analyze the strategy formally
(and independent of implementation-specific peculiarities).
Before we define our model we give an informal overview thereof.

115

6. A Traversal-Based Strategy

6.3.1. Overview

The query execution strategy that we aim to capture with our execution model constructs
solutions for a query incrementally. We call the intermediate results of such a construc-
tion partial solutions (a formal definition follows shortly). In addition to the construction
of solutions, the strategy discovers the queried Web of Linked Data in an incremental
manner. Therefore, we model query execution by a sequence of states, where each state
is characterized by (i) the set of the partial solutions that have been constructed already
and (ii) the currently discovered subweb of the queried Web of Linked Data.
In addition to the basic structural elements (partial solutions, discovered subwebs, and

states) our model introduces operations over these elements. These operations include
an augmentation operation for partial solutions and an expansion operation for the
discovered subweb. Both of these operations are based on a matching triple. Since our
traversal-based execution approach always uses such a matching triple for performing
an augmentation and the corresponding expansion at the same time, we also introduce a
combination of these operations. By performing such a combined operation an execution
in our model enters its next state.
In the following we first focus on partial solutions and the corresponding augmentation

operation. Second, we define our notion of discovered subwebs of a queried Web of
Linked Data and formalize how query execution expands such a discovered subweb. After
discussing augmentation and expansion separately, we introduce the concepts necessary
to intertwine the incremental construction of (partial) solutions with the incremental
expansion of the discovered subweb. Finally, we combine these concepts into an abstract
procedure which represents the query execution that is possible in our model.

6.3.2. Partial Solutions

We now define the concept of partial solutions. This concept shall allow us to represent
all valuations computed during query execution. However, as outlined in Example 6.1
(cf. page 114), some of these valuations cover only a part of the queries that we want to
answer. In our definition of partial solutions we make the part covered explicit:
Definition 6.2 (Partial Solution). Let QB,Sc be a CLD(R) query; let W be a Web of
Linked Data; let R be the (S, c,B)-reachable subweb ofW. A partial solution for QB,Sc in
W is a pair σ = (E,µ) with E ⊆ B and µ ∈ [[E]]AllData(R). To denote the set of all partial
solutions for CLD(R) query QB,Sc in Web of Linked Data W we write σ(QB,Sc ,W

)
. 2

Example 6.2. During the query execution in Example 6.1 (cf. page 114) we construct
valuation µex1 using RDF triple (product2, producedBy, producer1) ∈ dataex(dPr1), which is a
matching triple for triple pattern tpex1 (the first triple pattern of our example query).
Thus, the corresponding partial solution is the pair σex1 =

(
{tpex1}, µex1

)
. Partial solu-

tions that correspond to the other valuations mentioned in Example 6.1 are:

σex2 =
(
{tpex1, tpex2}, µex2

)
σex3 =

(
{tpex4}, µex3

)
σex4 =

(
{tpex1, tpex2, tpex4}, µex4

)
σex5 =

(
{tpex1, tpex2, tpex3, tpex4}, µex4

)
. 2

116

6.3. Query Execution Model

Given a partial solution σ = (E,µ), we say that this partial solution covers the triple pat-
terns in E. For partial solutions of a query QB,Sc that cover the BGP B completely, it is
trivial to show that the valuations in these partial solutions are solutions for the query:

Proposition 6.3. Let σ = (E,µ) be a partial solution for a CLD(R) query QB,Sc in a
Web of Linked Data W. If E = B, then µ ∈ QB,Sc (W).

Proof. Proposition 6.3 follows trivially from Definitions 6.2 and 6.1 (cf. page 113). �

A special partial solution that exists for any CLD(R) query (in any Web of Linked Data)
is the empty partial solution σ∅ := (B∅, µ∅). This partial solution covers the empty BGP
B∅ := ∅ (recall, µ∅ denotes the empty valuation for which dom(µ∅) = ∅ holds). Every
query execution in our execution model starts with the empty partial solution.

6.3.3. Constructing (Partial) Solutions
During query execution our model uses matching triples to extend valuations incremen-
tally such that the resulting, extended valuations cover larger parts of the corresponding
BGP. We define such an extension as an operation over partial solutions:
Definition 6.3 (Augmentation). Let σ = (E,µ) be a partial solution for a CLD(R) que-
ry QB,Sc in a Web of Linked DataW. Given a triple pattern tp ∈ B\E and an RDF triple
t such that t is a matching triple for triple pattern tp′ = µ[tp], the (t, tp)-augmentation
of σ, denoted by AUG(σ, t, tp), is a pair (E′, µ′) where E′ := E∪{tp} and µ′ is a valuation
that extends µ as follows: (i) dom(µ′) := vars(E′) and (ii) µ′[E′] := µ[E] ∪ {t}. 2

Example 6.3. Recall that RDF triple (product2, producedBy, producer1) is a matching triple
for triple pattern tpex1 = (?product, producedBy, producer1) of the query in Example 6.1
(cf. page 114). Let us write tex1 to denote this triple, then the (tex1, tpex1)-augmenta-
tion of the empty partial solution σ∅ is AUG(σ∅, tex1, tpex1) =

(
{tpex1}, µex1

)
where µex1 =

{?product → product2}. We emphasize that this augmentation of σ∅ is the partial solution
σex1 that we introduce in Example 6.2. Similarly, partial solution σex2 in Example 6.2 is
the result of AUG(σex1, tex2, tpex2) if we assume tex2 is the second matching triple that we
use during the example execution (i.e., the triple that matches triple pattern tpex2). 2

The following proposition shows that, if the matching triple used for augmenting a partial
solution is available in the reachable subweb of the queried Web, then the result of the
augmentation is again a partial solution (as in Example 6.3).

Proposition 6.4. Let σ = (E,µ) be a partial solution for a CLD(R) query QB,Sc in a
Web of Linked Data W; let R denote the (S, c,B)-reachable subweb of W; let tp ∈ B \E;
and let t be a matching triple for triple pattern tp′ = µ[tp]. If t ∈ AllData(R), then the
(t, tp)-augmentation of σ is a partial solution for QB,Sc in W.

Proof. Suppose t ∈ AllData(R). To show that (E′, µ′) = AUG(σ, t, tp) is a partial solution
for QB,Sc inW, we have to show: (1) E′ ⊆ B and (2) µ′ ∈ [[E′]]AllData(R) (cf. Definition 6.2,
page 116).

117

6. A Traversal-Based Strategy

(1) holds because (i) E′ = E ∪ {tp} (cf. Definition 6.3, page 117), (ii) tp ∈ B \E, and
(iii) E ⊆ B (because σ is a partial solution for QB,Sc in W).
To show (2) we distinguish two cases: E = ∅ and E 6= ∅. We note, in the former case,

partial solution σ is the empty partial solution σ∅, whereas, in the latter case, σ 6= σ∅.
We first discuss the former case. In this case, E′ = {tp} holds. From Definition 6.3

we know dom(µ′) = vars(E′) and µ′[E′] = {t} (to see the latter, note that µ[E] = ∅ for
E = ∅). From t∈AllData(R) we have µ′[E′]⊆AllData(R) and, thus, µ′∈ [[E′]]AllData(R).
We now discuss the second case, E 6= ∅. In this case, µ′ ∈ [[E′]]AllData(R) follows trivially

from the definitions and the fact that t ∈ AllData(R). �

6.3.4. Discovered Subwebs of the Queried Web

In addition to a set of partial solutions that have already been constructed, any point
in a query execution process is characterized by the information that has already been
discovered about the queried Web of Linked Data.

Example 6.4. At the begin of the query execution in Example 6.1 we look up the seed
URIs producer1 and vendor1. As a result we obtain partial knowledge of the queried example
Web Wex = (Dex, dataex, adocex). More precisely, we learn that adocex(producer1) = dPr1
and adocex(vendor1) = dV1, and, thus, {dPr1, dV1} ⊆ Dex; we also discover the RDF triples
in dataex(dPr1) and in dataex(dV1). 2

The information that is available about a queried Web of Linked Data (at any partic-
ular point during query execution) determines the set of all possible next steps for the
execution. Therefore, our execution model captures this information formally:
Definition 6.4 (Discovered Subweb). Let T = (U∪B)×U×(U∪B∪L) be the infinite
set of all possible RDF triples and let ⊥ denote the nonexistent LD document (cf. Defi-
nition 2.1, page 16). A discovered subweb of a Web of Linked Data W = (D, data, adoc)
is a tuple WD = (DD, dataD, adocD) with the following three elements:

1. DD is a finite subset of D; i.e., DD ⊆ D.

2. dataD is a total mapping dataD : DD → 2T such that dataD(d) = data(d) for all
LD documents d ∈ DD.

3. adocD is a partial mapping adocD : U → DD ∪ {⊥} such that adocD satisfies the
following conditions for any URI u ∈ U :
a) If adoc(u) ∈ DD, then adocD(u) = adoc(u) or u /∈ dom(adocD).
b) If adoc(u) ∈ D \DD, then u /∈ dom(adocD).
c) If adoc(u) =⊥, then adocD(u) =⊥ or u /∈ dom(adocD). 2

Definition 6.4 assumes finiteness for the set of LD documents in any discovered subweb
of a Web of Linked Data. This assumption captures the fact that we obtain infor-
mation about a queried Web of Linked Data incrementally; thus, at any point in a

118

6.3. Query Execution Model

query execution process we only know a finite part of such a Web, even if this Web
is infinite. Furthermore, we emphasize that mapping adoc of any Web of Linked Data
W = (D, data, adoc) is total (cf. Definition 2.1, page 16), whereas the corresponding
mapping adocD of a discovered subweb WD = (DD, dataD, adocD) is only partial. This
relaxation is necessary because up to any point in a query execution process we can
only look up a particular (finite) subset of all URIs. Due to this relaxation, discovered
subwebs of Webs of Linked Data are not necessarily Webs of Linked Data themselves
and, thus, strictly speaking, they are not subwebs as per Definition 2.3 (cf. page 18).
To denote the set of all RDF triples in a discovered subweb we overload function

AllData. That is, for any discovered subweb WD = (DD, dataD, adocD) (of some Web of
Linked Data), we define:

AllData(WD) :=
⋃

d∈DD

dataD(d) .

Remark 6.1. For a discovered subweb WD = (DD, dataD, adocD) of a Web of Linked
DataW = (D, data, adoc) it holds that mapping dataD depends only on setDD and map-
ping data. Therefore, we may identify any discovered subweb WD = (DD, dataD, adocD)
of a given Web of Linked Data W = (D, data, adoc), by specifying only DD and adocD.

Query execution in our model starts by looking up the seed URIs given in the query.
The result is an initially discovered subweb which contains information about all seed
URIs and about all LD documents that can be retrieved using the seed URIs.

Example 6.5. Let (Dex0, dataex0, adocex0) denote the initially discovered subweb of our
example WebWex after looking up seed URIs Sex = {producer1, vendor1} at the begin of our
example execution (cf. Example 6.1, page 114). Since producer1 and vendor1 are the only
URIs looked up at this point, mapping adocex0 is defined only for these two URIs; i.e.,
dom(adocex0) = {producer1, vendor1} with adocex0(producer1) = dPr1 and adocex0(vendor1) =
dV1. Furthermore, we have Dex0 = {dPr1, dV1} and, thus, dom(dataex0) = {dPr1, dV1}
with dataex0(dPr1) = dataex(dPr1) and dataex0(dV1) = dataex(dV1). 2

In general, we define the initially discovered subweb of a queried Web as follows:
Definition 6.5 (Seed Subweb). Let W = (D, data, adoc) be a Web of Linked Data
and let S ⊆ U be a finite set of URIs. The S-seed subweb of W, denoted by Dinit(S,W), is
the discovered subweb of W that is defined by Dinit(S,W) := (D0, data0, adoc0) such that:

1. D0 =
{
adoc(u) ∈ D

∣∣u ∈ S and adoc(u) 6=⊥
}
, and

2. dom(adoc0) = S and adoc0(u) = adoc(u) for all u ∈ dom(adoc0). 2

6.3.5. Traversing Data Links
During traversal-based query execution we traverse data links to retrieve additional
RDF triples. These triples may allow us to compute partial solutions and to discover
further data links. In the query execution strategy that we model we traverse data links

119

6. A Traversal-Based Strategy

by looking up the URIs mentioned in each matching triple that we use for generating
partial solutions (cf. Example 6.1, page 114).
In terms of our execution model the lookup of URIs from a matching triple is an oper-

ation that expands the discovered subweb of the queried Web of Linked Data. Formally:
Definition 6.6 (Expansion). Let WD = (DD, dataD, adocD) be a discovered subweb
of a Web of Linked DataW = (D, data, adoc). Given an RDF triple t, the t-expansion of
WD inW, denoted by EXP

(
WD, t,W

)
, is a tuple (D′D, data′D, adoc′D) whose three elements

are defined as follows:

1. D′D := DD ∪∆W(t) where ∆W(t) :=
{
adoc(u) ∈ D

∣∣u ∈ uris(t) and adoc(u) 6=⊥
}
.

2. data′D is a total mapping data′D : D′D → 2T such that data′D(d) := data(d) for all
LD documents d ∈ D′D.

3. adoc′D is a partial mapping adoc′D : U → D′D ∪ {⊥} such that

dom(adoc′D) := dom(adocD) ∪ uris(t)

and, for each URI u ∈ dom(adoc′D),

adoc′D(u) :=
{
adoc(u) if u ∈ uris(t),
adocD(u) else.

2

Although expansion operations use the queried Web of Linked Data W as an input, it is
important to note that Definition 6.6 accounts for the limited data access capabilities in
an implementation of a Web of Linked Data such as the WWW. That is, query execution
systems can perform expansion operations without having complete knowledge ofW: By
looking up all URIs u ∈ uris(t), such a system can obtain all information necessary to
generate the t-expansion of a given discovered subweb. Similarly, in more abstract terms,
an LD machine can obtain this information by performing its expand procedure for all
URIs in uris(t).

Example 6.6. Recall that the first matching triple that we consider during our exam-
ple execution is tex1 = (product2, producedBy, producer1) (cf. Example 6.1 on page 114). By
looking up the URIs from tex1 in the queried example Web Wex, we perform the tex1-ex-
pansion of Dinit(Sex,Wex) in Wex, where Dinit(Sex,Wex) = (Dex0, dataex0, adocex0) is the (ini-
tially discovered) Sex-seed subweb of Wex (cf. Example 6.5, page 119). As a result we
have EXP

(
Dinit(Sex,Wex), tex1,Wex

)
= (Dex1, dataex1, adocex1) where Dex1 = Dex0 ∪ {dp2}

and dom(adocex1) = dom(adocex0) ∪ {product2, producedBy} with adocex1(product2) = dp2
and adocex1(producedBy) =⊥. 2

The following proposition shows that the set of all possible discovered subwebs of a Web
of Linked Data is closed under the expansion operation.

Proposition 6.5. Let WD be a discovered subweb of a Web of Linked Data W and let
t be an arbitrary RDF triple, then EXP

(
WD, t,W

)
is also a discovered subweb of W.

120

6.3. Query Execution Model

Proof. Let W = (D, data, adoc), WD = (DD, dataD, adocD), and EXP
(
WD, t,W

)
=

(D′D, data′D, adoc′D). To prove that EXP
(
WD, t,W

)
is a discovered subweb of W we have

to show that (D′D, data′D, adoc′D) is a tuple that has the three properties given in Defi-
nition 6.4 (cf. page 118). Property 2, however, holds by definition.
Property 1 requires that D′D = DD ∪ ∆W(t) is a finite subset of D. Since WD is a

discovered subweb of W, DD is a finite subset of D (cf. Definition 6.4). Hence, we only
have to show (i) ∆W(t) ⊆ D and (ii) ∆W(t) is finite (cf. Definition 6.6). The former holds
by definition and the latter follows from the finiteness of uris(t).
W.r.t. Property 3 we first note that adoc′D is a partial mapping adoc′D : U → D′D∪{⊥}.

Hence, we have to show that adoc′D satisfies the three requirements of Property 3.

a) Let u ∈ U be a URI such that adoc(u) ∈ D′D. If u ∈ dom(adoc′D), then adoc′D(u) =
adoc(u) holds by Definition 6.6 (recall, WD is a discovered subweb of W).

b) Let u ∈ U be a URI such that adoc(u) ∈ D \ D′D, and show u /∈ dom(adoc′D).
Since dom(adoc′D) = dom(adocD) ∪ uris(t) (cf. Definition 6.6) we have to show
u /∈ dom(adocD) and u /∈ uris(t). Since adoc(u) /∈ D′D and D′D = DD ∪ ∆W(t)
we have adoc(u) /∈ DD and adoc(u) /∈ ∆W(t). From adoc(u) /∈ DD and the fact
that WD is a discovered subweb of W we have u /∈ dom(DD). Similarly, from
adoc(u) /∈ ∆W(t) and the fact that adoc(u) ∈ D (and, thus, adoc(u) 6=⊥) we have
u /∈ uris(µ).

c) Let u ∈ U be a URI such that adoc(u) =⊥. If u ∈ dom(adoc′D), then adoc′D(u) =⊥
holds by Definition 6.6 and the fact that WD is a discovered subweb of W. �

6.3.6. Combining Construction and Traversal
Expanding the discovered subweb and augmenting partial solutions may be understood
as separate processes. However, the idea of the execution strategy that we model is to
intertwine these two processes. More precisely, the strategy combines each augmentation
of a partial solution with an expansion operation that uses the same matching triple as
used for the augmentation. To capture this idea in our execution model we formalize
query execution as a sequence of states such the transition from a state to a subsequent
state is the combined performance of an augmentation operation and a corresponding
expansion operation. We note that each state of a such a query execution is charac-
terized sufficiently by specifying (i) the set of partial solutions that have already been
constructed and (ii) the currently discovered subweb of the queried Web. Consequently,
we define a query execution state, or QE state for short, as follows:
Definition 6.7 (QE State). Let QB,Sc be a CLD(R) query; let W be a Web of Linked
Data; and let R denote the (S, c,B)-reachable subweb of W. A QE state for QB,Sc over
W is a pair st = (σ, RD) where:

1. σ ⊆ σ(QB,Sc ,W
)
is a finite set of partial solutions for QB,Sc in W, and

2. RD is a discovered subweb of R. 2

121

6. A Traversal-Based Strategy

Instead of simply prescribing that RD of any QE state st = (σ, RD) is a discovered
subweb of the queried Web of Linked Data, Definition 6.7 requires that RD must be
contained in the corresponding reachable subweb (of the queried Web). This constraint
is necessary to ensure the soundness of our execution model: Recall, Proposition 6.4
guarantees that the augmentation of partial solutions is sound if the matching triple
that we use for the augmentation is contained in the corresponding reachable subweb of
the Web (cf. page 117).
We now focus on possible transitions from a QE state st = (σ, RD) to a subsequent

QE state. As mentioned before, such a transition presents a combined performance of
augmenting a partial solution σ ∈ σ and expanding the discovered subweb RD (using
the same matching triple for both operations). To capture such a combination formally,
we introduce the concept of an augmentation & expansion task (AE task) and define the
operation of performing such a task as an operation over QE states.
We characterize AE tasks by the elements that are necessary for a combined perfor-

mance of an augmentation and the corresponding expansion:
Definition 6.8 (AE Task). Let QB,Sc be a CLD(R) query; let W be a Web of Linked
Data; let R be the (S, c,B)-reachable subweb of W. A tuple (σ, t, tp) ∈ σ(QB,Sc ,W

)
×

AllData(R) × B, where σ = (E,µ), is an AE task for QB,Sc over W if the following two
properties hold:

1. Triple pattern tp is not covered by partial solution σ; i.e., tp /∈ E.

2. RDF triple t is a matching triple for triple pattern tp′ = µ[tp]. 2

Example 6.7. The first AE task of our example query execution in Example 6.1 (cf.
page 114) is τex1 = (σ∅, tex1, tpex1) where σ∅ = (B∅, µ∅) is the empty partial solution
(cf. page 117), tex1 = (product2, producedBy, producer1) is the first matching triple that we
consider during the execution, and tpex1 ∈ Bex (cf. Example 6.1). It holds tpex1 /∈ B∅
because B∅ = ∅, and RDF triple tex1 matches triple pattern tp′ex1 = µ∅[tpex1]. Note,
µ∅[tpex1] = tpex1 because dom(µ∅) = ∅.
The QE state, denoted by stex0, in which the execution performs this AE task τex1 is

the initial state after looking up the seed URIs. At this point we only know the empty
partial solution σ∅ and the initially discovered subweb Dinit(Sex,Wex) of the queried Web
of Linked Data Wex (Dinit(Sex,Wex) is given in Example 6.5, page 119). Hence, we have
stex0 =

(
{σ∅},Dinit(Sex,Wex)

)
.

Performing AE task τex1 comprises (i) computing the (tex1, tpex1)-augmentation of
σ∅ and (ii) executing the tex1-expansion of Dinit(Sex,Wex) in Wex. As a result, the next
QE state is stex1 =

(
{σ∅, σex1},Dex1

)
where σex1 = AUG(σ∅, tex1, tpex1) (cf. Example 6.3,

page 117) and Dex1 = EXP
(
Dinit(Sex,Wex), tex1,Wex

)
(cf. Example 6.6, page 120). 2

We now define the operation of performing an AE task formally:
Definition 6.9 (Performance of an AE task). Let τ = (σ, t, tp) be an AE task for
a CLD(R) query over a Web of Linked Data W and let st = (σ, RD) be a QE state for
the same query over the same Web W. The performance of τ in st, denoted by τ

[
st
]
, is

a pair (σ′, R′D) where σ′ := σ ∪ {AUG(σ, t, tp)
}
and R′D := EXP

(
RD, t,W

)
. 2

122

6.3. Query Execution Model

We emphasize that the requirements for the elements σ, t and tp in our definition of
AE tasks (Definition 6.8) are the same as the requirements for augmentation operations
(cf. Definition 6.6, page 120). This equivalence allows us to define the performance of
AE tasks as given in Definition 6.9.
However, Definition 6.9 per se does not guarantee that the result of performing an

AE task τ in a QE state st is again a possible QE state for the corresponding query
execution. Instead, we have to show that the resulting pair τ

[
st
]

= (σ′, R′D) satisfies
our definition of QE states (Definition 6.7, page 121). Unfortunately, showing that R′D
is a discovered subweb of the corresponding reachable subweb R turns out to be tricky:
Although we know that R′D is a discovered subweb of the complete queried Web (cf.
Proposition 6.5, page 120), we may not have a guarantee that R′D is fully contained in
the reachable subweb. We need such a guarantee to ensure soundness of subsequent
augmentation operations (as discussed in the context of Definition 6.7). To resolve this
dilemma, we restrict our model to cMatch-semantics; in this case we have the necessary
guarantee as the following lemma shows (for the proof refer to Section E.10, page 229f).

Lemma 6.1. Let QB,ScMatch be a CLD(R) query (under cMatch-semantics); let R denote the
(S, cMatch, B)-reachable subweb of a Web of Linked Data W; and let RD be a discovered
subweb of R. For any RDF triple t with (i) t ∈ AllData(RD) and (ii) t is a matching
triple for a triple pattern tp ∈ B, it holds that EXP

(
RD, t,W

)
is a discovered subweb of R.

We explain the restriction to cMatch-semantics in Lemma 6.1 as follows: The query
execution strategy that we model expands the discovered subweb of the queried Web
only by looking up URIs from RDF triples that match a triple pattern in the query (as
we demonstrate in Example 6.1, page 114). Therefore, this strategy enforces query-based
reachability (cf. Section 4.1.1, page 62f). As a result, the strategy only supports CLD(R)
queries under cMatch-semantics, and so does our execution model.
For the sake of conciseness, in the remainder of this dissertation we refer to these

queries as conjunctive cMatch-queries (CLD(M) queries for short) and omit the index
“cMatch” in formulas.
Definition 6.10 (CLD(M) query). Let S ⊆ U be a finite set of URIs and let B be a
nonempty BGP. The CLD(M) query that uses B and S, denoted by QB,S, is the CLD(R)
query QB,ScMatch that uses the same B and S (and reachability criterion cMatch). 2

Remark 6.2. Due to Definition 6.10 we have QB,S(W) = QB,ScMatch(W) for any CLD(M) que-
ry QB,S and any Web of Linked Data W.

For CLD(M) queries we can now show the soundness of performing AE tasks:

Proposition 6.6. Let QB,S be a CLD(M) query and let W be a Web of Linked Data. If
τ and st are an AE task and a QE state for QB,S over W, respectively, then τ

[
st
]
is also

a QE state for QB,S over W.

Proof. Let st = (σ, RD) and τ
[
st
]

= (σ′, R′D). To show that τ
[
st
]
is a QE state for

QB,S over W, we have to prove the following two claims (cf. Definition 6.7, page 121):

123

6. A Traversal-Based Strategy

(i) σ′ is a finite set of partial solutions for QB,S inW, and (ii) R′D is a discovered subweb
of the (S, cMatch, B)-reachable subweb of W. The first claim follows from Definition 6.9
(cf. page 122), Proposition 6.4 (cf. page 117), and the fact that σ is a finite set of partial
solutions for QB,S in W (cf. Definition 6.7). Similarly, the second claim follows from
Definition 6.9, Lemma 6.1 (cf. page 123), and the fact that RD is a discovered subweb
of the (S, cMatch, B)-reachable subweb of W (cf. Definition 6.7). �

In the following proposition we also show that the order in which a query execution
performs AE tasks is irrelevant w.r.t. the resulting QE state. Furthermore, performing
the same AE task multiple times does not affect the resulting QE state.

Proposition 6.7. If τ1 and τ2 are AE tasks for a CLD(M) query QB,S over a Web of
Linked Data W and st is a QE state for QB,S over W, then (i) τ1

[
τ2
[
st
]]

= τ2
[
τ1
[
st
]]

and (ii) τ1
[
τ1
[
st
]]

= τ1
[
st
]
.

Proof. Let st = (σ, RD) and RD = (DD, dataD, adocD). Then, Proposition 6.7 follows
trivially from the definitions of augmentation (Definition 6.3, page 117) and of expansion
(Definition 6.6, page 120), and the fact that σ, DD, and dom(adocD) are sets. �

For our discussion so far we implicitly take the AE tasks that a query execution can
perform as given. Although we can enumerate the set of all AE tasks for a query
execution completely, such an enumeration requires the availability of all partial solutions
for the query and of all RDF triples from any reachable LD document (see Definition 6.8
of AE tasks on page 122). Since this information is only available partially in most
QE states, certain AE tasks are “hidden” in such a state. We shall ensure that query
execution in our model may not perform such a task as long as it is hidden. As a basis
we provide a formal definition of hidden AE tasks.

Definition 6.11 (Hidden AE Task). Let QB,S be a CLD(M) query; letW be a Web of
Linked Data; let st = (σ, RD) be a QE state for QB,S over W. An AE task τ = (σ, t, tp)
for QB,S over W is hidden in st if σ /∈ σ or t /∈ AllData(RD). 2

Remark 6.3. Given Definition 6.11 and Definition 6.9 (cf. page 122), it is easy to see
that any AE task that is not hidden in a particular QE state stx is also not hidden in
all QE states that may result from performing an arbitrary AE task in stx.

Example 6.8. Recall the first example AE task, τex1 = (σ∅, tex1, tpex1), which our ex-
ample execution performs in the initial QE state stex0 =

(
{σ∅},Dinit(Sex,Wex)

)
(cf. Exam-

ple 6.7, page 122). This task is not hidden in state stex0. It is also not hidden in the
second QE state stex1 = τex1

[
stex0

]
(or in any other, subsequent state of the execution).

The second AE task that our example execution performs is τex2 = (σex1, tex2, tpex2)
where σex1 =

(
{tpex1}, µex1

)
and RDF triple tex2 = (product2, name, ”Product2”) matches

triple pattern µex1[tpex2] = (product2, name, ?productName). This task is hidden in the
initial state stex0 because σex1 /∈ {σ∅} and also tex2 /∈ AllData(Dinit(Sex,Wex)). However, in
the second QE state stex1—in which our execution performs this task—the task is not
hidden (anymore): Recall from Example 6.7 that stex1 =

(
{σ∅, σex1},Dex1

)
and, thus,

124

6.3. Query Execution Model

σex1 ∈ {σ∅, σex1} and tex2 ∈ AllData(Dex1). The latter holds because tex2 is contained in
the data of LD document dp2 and this document is added to the discovered subweb by
performing the previous AE task τex1 (which executes the tex1-expansion of Dinit(Sex,Wex)
in Wex, as discussed in Example 6.7). 2

We aim to ensure that a query execution in our model only performs AE tasks that are
not hidden in the particular QE state in which the execution performs them. On the
other hand, we note that the exist cases in which query execution may not make progress
by performing certain AE tasks in certain QE states, even if these tasks are not hidden
(case (ii) of Proposition 6.7 is a trivial example, cf. page 124). To identify AE tasks that
guarantee progress in a given QE state we introduce the concept of open AE tasks:
Definition 6.12 (Open AE Task). Let QB,S be a CLD(M) query; let W be a Web of
Linked Data; let st be a QE state for QB,S over W. An AE task τ for QB,S over W is
open in st if (i) τ is not hidden in st and (ii) st 6= τ

[
st
]
. To denote the set of all AE tasks

(for QB,S over W) that are open in a QE state st = (σ, RD) we write Open
(σ, RD

)
. 2

6.3.7. Abstract Query Execution Procedure
We now use the introduced concepts to define an abstract procedure with which we
formalize a query execution that applies the execution strategy demonstrated in Exam-
ple 6.1 (cf. page 114). Algorithm 6.1 illustrates this abstract procedure, which we call
tbExec. The input for tbExec is a nonempty BGP B, a finite set of (seed) URIs S, and
a Web of Linked Data W. Hence, executions of this procedure compute CLD(M) query
QB,S over W. The remainder of this section describes this procedure briefly.
In Algorithm 6.1 we denote the incrementally progressing QE state of tbExec execu-

tions by
(
P,D

)
. That is, at any point during an execution of tbExec(B,S,W), P is the

(finite) set of all currently constructed partial solutions (for QB,S in W), and D is the
currently discovered subweb of W.
After initializing P and D (cf. lines 1 and 2 in Algorithm 6.1), the procedure amounts

to a continuous execution of open AE tasks. We represent this continuous process by
a loop (lines 3 to 9). Each iteration of this loop performs an open AE task (lines 5
to 7) and checks whether the newly constructed partial solution (E′, µ′) covers the whole
BGP of the executed query; if this is the case, the valuation µ′ in (E′, µ′) must be
reported as a solution for the query (line 8). We emphasize that the set of all open
AE tasks, Open

(
P,D

)
, changes when the query execution performs such a task. The

loop terminates when no more open AE tasks exist for the current QE state.
If, however, the (S, cMatch, B)-reachable subweb of the queried Web of Linked Data

W is infinite, then the set of all AE tasks for QB,S over W is infinite as well. In such
a case, there always exist open AE tasks during any execution of tbExec(B,S,W) and,
thus, any such execution continues ad infinitum (as long as it is not stopped externally).
Such a non-terminating execution is consistent with Proposition 4.10 (cf. page 87).
We emphasize the abstract nature of tbExec. The fact that we model query execution

as a single loop that performs (open) AE tasks sequentially does not imply that our exe-
cution model has to be implemented in such a strictly sequential form. Instead, different

125

6. A Traversal-Based Strategy

Algorithm 6.1 tbExec(B,S,W) – Compute query result QB,S(W).
1: P := {σ∅} // σ∅ is the empty partial solution (cf. page 117)
2: D := Dinit(S,W) // Dinit(S,W) is the S-seed subweb of W (cf. Definition 6.5, page 119)

3: while Open
(
P,D

)
6= ∅ do

4: Choose open AE task (σ, t, tp) ∈ Open
(
P,D

)
5: (E′, µ′) := AUG(σ, t, tp) // Perform the selected AE task in the
6: P := P ∪

{
(E′, µ′)

}
// current QE state; this performance

7: D := EXP
(
D, t,W

)
// indirectly changes Open

(
P,D

)
.

8: if E′ = B then report µ′ endif

9: end while

implementation approaches are possible, including implementations that perform multi-
ple open AE tasks in parallel. The nondeterministic selection of open AE tasks in line 4
of Algorithm 6.1 provides the flexibility for interpreting our model in terms of diverse
implementation techniques. In contrast to the concrete (implementable) algorithms of
an actual implementation approach (such as the iterator-based approach discussed in
the following chapter), we understand tbExec as an instrument for presenting and for
studying the general idea of the traversal-based query execution strategy outlined in
Example 6.1 (cf. page 114).

6.4. Soundness and Completeness
We now show that the traversal-based query execution strategy captured by our execu-
tion model is sound and complete.

Theorem 6.1. Let W be a Web of Linked Data and let QB,S be a CLD(M) query.

• Soundness: For any valuation µ reported by an execution of tbExec(B,S,W) it
holds that µ ∈ QB,S(W).

• Completeness: There exist executions of tbExec(B,S,W) that eventually report all
solutions µ ∈ QB,S(W).

As a basis for proving the soundness we use the following lemma.

Lemma 6.2. Let W be a Web of Linked Data and let QB,S be a CLD(M) query. At any
point during an (arbitrary) execution of tbExec(B,S,W) it holds that (i) each σ ∈ P is
a partial solution for QB,S in W and (ii) D is a discovered subweb of the (S, cMatch, B)-
reachable subweb of W.

Our proof of Lemma 6.2 is based on Proposition 6.6 (cf. page 123) and can be found in
Section E.11 (cf. page 230).
The following lemma provides a basis for proving completeness.

126

6.4. Soundness and Completeness

Lemma 6.3. Let W = (D, data, adoc) be a Web of Linked Data and let QB,S be a
CLD(M) query. There exist executions of tbExec(B,S,W) that have the following two
properties:

(1.) For each LD document d ∈ D that is (cMatch, B)-reachable from S in W there exists
an iteration (of the loop in tbExec) after which d is part of D.

(2.) For each partial solution σ ∈ σ(QB,S,W)
there exists an iteration after which

σ ∈ P.

We prove Lemma 6.3 in Section E.12 (cf. page 231ff) by using the notion of FIFO-
based executions of tbExec, that are, executions of tbExec that use a FIFO strategy to
choose an open AE task at line 4 of Algorithm 6.1. More precisely, such an execution
always chooses an open AE task τ ∈ Open

(
P,D

)
for which there does not exist another

τ ′ ∈ Open
(
P,D

)
such that (i) τ was hidden in an earlier QE state of the execution and

(ii) τ ′ was not hidden in that state. Informally, we note that such an execution resembles
a breadth-first search over the link graph of the corresponding reachable subweb of W.
Although we assume FIFO-based executions to prove Lemma 6.3, there may be other

executions of tbExec(B,S,W) that also have both properties as stated in Lemma 6.3. On
the other hand, there are executions of tbExec that do not have these properties. As a
trivial example consider executions that use a LIFO strategy for choosing the next open
AE task. If such an execution starts traversing along an infinite path in an (infinite)
reachable subweb of a queried Web, then the execution never discovers LD documents
that are not on this path; moreover, this execution does not terminate.
We claim that such incomplete and non-terminating executions are only possible in

cases where the corresponding reachable subweb of the queried Web is infinite. For
the sake of brevity we omit a formal verification of this claim; in the context of this
dissertation it is sufficient to know that incomplete, non-terminating executions are
possible at all (as shown by the aforementioned LIFO example). Furthermore, recall that
the antecedent of the claim (that is, whether the corresponding reachable subweb is finite
or infinite) is not LD machine decidable (cf. Theorem 4.1, page 68). We also note that
even complete executions of tbExec (that have the two properties given in Lemma 6.3) do
not terminate in the (not LD machine decidable) case that the corresponding reachable
subweb is infinite (cf. Proposition 4.10, page 87).
We now use Lemmas 6.2 and 6.3 to prove Theorem 6.1 (cf. page 126).

Proof of Theorem 6.1. For the proof of soundness let µ be a valuation that an
arbitrary execution of tbExec(B,S,W) reports in some iteration itj . We show that
µ ∈ QB,S(W). Valuation µ originates from the pair (E,µ) that the execution of
tbExec(B,S,W) constructs and adds to P in iteration itj . Since (E,µ) is a partial
solution for QB,S in W (cf. Lemma 6.2, page 126) and tbExec reports µ only if E = B
(cf. line 8 in Algorithm 6.1), µ is a solution for QB,S inW (cf. Proposition 6.3, page 117);
i.e., µ ∈ QB,S(W).
For the proof of completeness let µ be an arbitrary solution for QB,S in W ; i.e.,

µ ∈ QB,S(W). We show that there exist executions of tbExec(B,S,W) that report µ.
There exists a partial solution σ = (E,µ) ∈ σ(QB,S,W)

such that E = B. Due to

127

6. A Traversal-Based Strategy

Lemma 6.3 there exists an execution of tbExec(B,S,W) with the following property:
During this execution there exists an iteration (of the loop in tbExec) that constructs
partial solution σ and adds σ to P. This iteration reports µ because E = B (cf. line 8
in Algorithm 6.1). �

Theorem 6.1 verifies the applicability of our traversal-based query execution strategy
for answering CLD(M) queries over a Web of Linked Data. Any implementation of our
execution model is guaranteed to report query results that are sound. However, our
discussion also shows that completeness of reported query results cannot be guaranteed
by any implementation.

6.5. Summary
This chapter is dedicated to a general strategy for executing (conjunctive) Linked Data
queries. This strategy intertwines traversal-based retrieval of data with a result con-
struction process that generates solutions of a query result incrementally. Our main
contribution in this context is a query execution model that provides a formal definition
of the strategy. While the strategy may be implemented in various ways, our execution
model is independent from specific implementation approaches and, thus, enables us to
analyze the strategy in general.
We prove that our execution model allows for a sound and complete execution of any

conjunctive Linked Data query under (reachability-based) cMatch-semantics. From our
results in Chapter 4 we know that a complete execution of such a query does not termi-
nate in cases where the corresponding reachable subweb of the queried Web of Linked
Data is infinite. However, our discussion in this chapter also reveals that some imple-
mentations of our execution model may neither guarantee termination nor completeness
in such a case (even if the expected query result is finite).

128

7. An Iterator-Based Implementation
Our execution model as presented in the previous chapter defines a traversal-based exe-
cution strategy for conjunctive Linked Data queries (under reachability-based cMatch-se-
mantics). A query execution system that applies the strategy captured by this model,
requires a concrete approach for implementing the execution model. In this chapter we
focus on using the well-known iterator model [56] for such a purpose.
The iterator model introduces the concept of an iterator as a particular implementa-

tion of an operator that allows a consumer to get the results of the operation separately,
one at a time. An iterator provides three functions: Open, GetNext, and Close. Open
initializes the data structures needed to perform the operation; GetNext returns the next
result of the operation; and Close ends the iteration and releases allocated resources.
Many DBMSs employ the iterator model for query execution [85], that is, query ex-

ecution plans are implemented as a tree of iterators. Such an iterator tree computes a
query result in a pull fashion: During execution the GetNext function of each iterator
calls GetNext on its child iterator(s) and uses the input obtained by these calls for pro-
ducing the next result(s). Employing iterators for query execution simplifies “the code
[that is] responsible for coordinating the execution of a plan” [133, page 408].
Another advantage of the iterator model is that iterators naturally support an im-

plementation of pipelined execution plans [133]. Such a plan consists of non-blocking
operators that may work on partial input from preceding operators instead of having to
consume (and materialize) all input results for producing output [151, 166]. The merits
of using pipelined execution plans over non-pipelined plans are threefold:

1. Pipelining allows for a space-efficient query execution because “only a small buffer
is needed to exchange data between pipelined operations instead of storage for large
temporary relations.” [151]

2. “The disk I/O cost is significantly reduced since the intermediate relations [...] need
not be [materialized and] written back to disks.” [34]

3. Pipelining reduces “the perceived response time by an end user [because] the first
tuples of the resulting relation [...] can be produced earlier [...].” [34]

While the characteristics of using iterators for executing queries over a fixed set of data
are widely known, we aim to achieve an understanding of the suitability of iterators for
a traversal-based query execution. To this end, we investigate an approach that employs
a pipeline of iterators for implementing the execution model introduced in the previous
chapter. A distinguishing feature of the iterators used in this approach is that calling
their GetNext function (to obtain intermediate results for computing a given query) has
the desired side effect of a dynamic, traversal-based expansion of the query-local dataset.

129

7. An Iterator-Based Implementation

After defining the iterator-based implementation approach we analyze the approach
formally and experimentally. This analysis reveals a major drawback of the approach:
The (computed) query result that we obtain by executing a CLD(M) query using the ap-
proach may only be a subset of the expected query result. Hence, as per our classification
in Section 2.1.2 (cf. page 22ff), the approach is sound but not complete.
The chapter is structured as follows: Section 7.1 introduces the implementation ap-

proach. Section 7.2 and Section 7.3 present our formal and experimental analysis of this
approach, respectively. Finally, Section 7.4 summarizes our results.

7.1. Definition

This section introduces our approach to implement traversal-based query execution using
a pipeline of iterators. Essentially, such a pipeline evaluates the BGP of a CLD(M) que-
ry over a query-local dataset that the iterators augment continuously with data from
the queried Web of Linked Data. To present the approach we first introduce the static
case. That is, we first describe how pipelined iterators may be employed for evaluating
BGPs over a fixed set of RDF triples. Our description introduces basic concepts for
querying RDF data with iterators and, thus, lays the foundations for presenting the
traversal-based implementation afterwards.

7.1.1. Iterators for Query Execution over RDF Data

A logical plan for evaluating a BGP is an operator tree with as many leaf nodes as there
exist triple patterns in the BGP. Each of these leaf nodes represents a data access oper-
ation for such a triple pattern. The internal nodes (including the root node) represent
join operations. In query execution systems that employ iterator-based pipelining to
evaluate BGPs, such a logical plan usually takes the form of a left-deep tree, that is, a
tree in which the right child of each internal node is a leaf node. Since the join is a
commutative and associative operation [128, 140], multiple of these left-deep operator
trees are possible for any given BGP (with at least two triple patterns). In fact, for
a BGP with a cardinality of n, there exist n! different left-deep trees. However, these
trees differ only in the order in which the triple patterns of the BGP are associated with
leaf nodes. Therefore, specifying such an order is sufficient to represent logical plans for
evaluating BGPs.

Definition 7.1 (Logical Plan). Let B be a BGP. A logical plan for B is a pair (B, /)
where / is a strict total order on the triple patterns in B. 2

Given a logical plan (B, /) for a BGP B, we write sub/k (B) to denote the subset of B
that consists of the first k triple patterns according to the plan; i.e.,

sub/k (B) :=
{
tp ∈ B

∣∣∣ k > ∣∣{tp′ ∈ B | tp′ / tp}∣∣} for all k ∈
{
0, ... , |B|

}
.

We emphasize that for k = 0, sub/0 (B) = ∅ holds, and for k = |B|, sub/|B|(B) = B.

130

7.1. Definition

Listing 7.1 Open, GetNext, and Close functions of the root iterator I0 used for
evaluating BGPs over a fixed, a-priori defined set of RDF triples G.
FUNCTION Open
1: ready := true

FUNCTION GetNext
2: if ready = true then
3: ready := false
4: return µ∅ // empty solution; dom(µ∅) = ∅
5: else
6: return EndOfFile
7: end if

FUNCTION Close
8: // nothing to do

As mentioned before, for a BGP B with a cardinality of n = |B|, we have n! possible
logical plans. Selecting one of these plans for execution is a query optimization problem
that is out of scope of this dissertation (nonetheless, our experimental analysis in Sec-
tion 7.3 addresses the question of “good” logical plans partially). Therefore, for the fol-
lowing description of the iterator implementation, we assume an arbitrary plan is given.
For an actual query execution the (selected) logical plan must be transformed into a

physical query execution plan. In our context such a physical query execution plan (for
short physical plan) is a pipeline of iterators whose functions Open, GetNext, and Close
are given in Listing 7.1 and Listing 7.2. The pipeline is constructed as follows.
Assume a BGP B of size n and a corresponding logical plan (B, /). The physical plan

for (B, /) consists of n+1 iterators, denoted by I0 to In, each of which returns a set
of valuations as output. These iterators are organized in a pipeline such that for each
k ∈ {1, ... , n}, iterator Ik consumes the output of Ik−1. Except for I0, each iterator is
responsible for a particular triple pattern from B; more precisely, for each k ∈ {1, ... , n},
iterator Ik is responsible for the triple pattern tp ∈ sub/k (B) \ sub/k−1(B). To denote the
triple pattern of iterator Ik we write tp(Ik).
Iterator I0 is a special iterator; it always only provides a single empty valuation µ∅

(i.e., dom(µ∅) = ∅). Listing 7.1 specifies the functions Open, GetNext, and Close for
I0. Since such an iterator is always the first iterator in our physical plans, we call this
iterator the root iterator.
Iterators I1 to In perform the same Open, GetNext, and Close function. Listing 7.2

specifies these functions. We briefly describe the operation implemented by the GetNext
function: The valuations that the GetNext function of an iterator Ik (with k ∈ {1, ... , n})
returns are solutions for BGP Ek = sub/k (B). To produce these solutions iterator Ik
executes the following three steps repeatedly: First, Ik consumes a valuation µinput from
its direct predecessor Ik−1 (cf. line 4 in Listing 7.2) and applies this valuation to its triple

131

7. An Iterator-Based Implementation

Listing 7.2 Open, GetNext, and Close functions of an iterator used for evaluating
BGPs over a fixed, a-priori defined set of RDF triples G.
Require:

tp – a triple pattern
Ipred – a predecessor iterator
G – the queried set of RDF triples

FUNCTION Open
1: Ipred.Open // initialize the input iterator
2: Ωtmp := ∅ // used for holding (precomputed) valuations between calls of the GetNext function

FUNCTION GetNext
3: while Ωtmp = ∅ do
4: µinput := Ipred.GetNext // consume valuation from the input iterator
5: if µinput = EndOfFile then
6: return EndOfFile
7: end if

8: tp′ := µinput[tp]
9: T :=

{
t ∈ G

∣∣ t is a matching triple for tp′
}

10: Ωtmp :=
{
µinput ∪ µ′

∣∣µ′ is a valuation with dom(µ′) = vars(tp′) and µ′[tp′] ∈ T
}

11: end while

12: µ := an element in Ωtmp
13: Ωtmp := Ωtmp \ {µ}
14: return µ

FUNCTION Close
15: Ipred.Close // close the input iterator

pattern tpk = tp(Ik), resulting in a triple pattern tp′k = µinput[tpk] (cf. line 8); second,
Ik (pre)computes a set of solutions by finding matching triples for tp′k in the queried
dataset (cf. lines 9 and 10); and, third, Ik returns each of the precomputed solutions,
one after another (cf. lines 12 to 14).

Example 7.1. Let Bex = {tp1, tp2} be a BGP with the following two triple patterns:

tp1 = (?p, producedBy, producer1) , tp2 = (?o, offeredProduct, ?p) .

For an evaluation of Bex we assume a logical plan (Bex, /ex) such that tp1 /ex tp2. Hence,
in the corresponding physical plan, iterator I1 is responsible for triple pattern tp1 and
I2 for tp2 (i.e., tp(I1) = tp1 and tp(I2) = tp2). The sequence diagram in Figure 7.1(a)
illustrates an execution of this plan over a set of RDF triples Gex that is given as follows:

132

7.1. Definition

(a) Sequence diagram that illus-
trates the interaction between iter-
ators during the example execution.

Ωtmp(1) = {µ(1,1), µ(1,2), µ(1,3)}
Ωtmp(2,1) = {µ(2,1), µ(2,2)}
Ωtmp(2,2) = ∅
Ωtmp(2,3) = {µ(2,3)}

µ(1,1) = {?p → product1}
µ(2,1) = {?p → product1, ?o → offer1.1}
µ(2,2) = {?p → product1, ?o → offer2.1}
µ(1,2) = {?p → product2}
µ(1,3) = {?p → product3}
µ(2,3) = {?p → product3, ?o → offer1.2}

(b) All sets of (intermediate) solutions that the iterators in the
example execution (pre)compute.

Figure 7.1.: A particular, iterator-based execution of the example BGP over the set of
RDF triples as discussed in Example 7.1.

Gex =
{

(product1, producedBy, producer1), (offer1.1, offeredProduct, product1),
(product2, producedBy, producer1), (offer1.2, offeredProduct, product3),
(product3, producedBy, producer1), (offer2.1, offeredProduct, product1)

}
.

As it can be seen from the diagram, the first execution of the GetNext function of iterator
I1 begins with consuming the empty valuation µ∅ from root iterator I0. This valuation
corresponds to µinput in Listing 7.2 (cf. line 4). Based on µ∅, iterator I1 precomputes a set
Ωtmp(1) of solutions for triple pattern tp′1 = µ∅[tp1] (cf. lines 8 to 10 in Listing 7.2). Note,
tp′1 = tp1 because dom(µ∅) = ∅. Since the queried data contains three RDF triples that
match tp′1, it holds that Ωtmp(1) = {µ(1,1), µ(1,2), µ(1,3)} where µ(1,1) = {?p → product1},
µ(1,2) = {?p → product2}, and µ(1,3) = {?p → product3}.
After precomputing Ωtmp(1), iterator I1 removes an (arbitrary) valuation from this

precomputed set and returns this valuation as the first result of its operation (cf. lines 12
to 14). In our example execution the returned valuation is µ(1,1) (cf. Figure 7.1(a)).
Using valuation µ(1,1) as input, iterator I2 computes its set Ωtmp for triple pattern

tp′2 = µ(1,1)[tp2] = (?o, offeredProduct, product1). To denote this particular version of Ωtmp
we write Ωtmp(2,1). Since two RDF triples in Gex match the triple pattern tp′2, the
iterator computes Ωtmp(2,1) = {µ(2,1), µ(2,2)} with µ(2,1) = µ(1,1) ∪ {?o → offer1.1} and
µ(2,2) = µ(1,1) ∪ {?o → offer2.1}. It is easy to see that each of the two valuations in

133

7. An Iterator-Based Implementation

Ωtmp(2,1) is a solution for BGP sub/ex
2 (Bex) = {tp1, tp2}. Iterator I2 concludes the first

execution of its GetNext function by reporting µ(2,1) (after removing it from Ωtmp).
In response to the second call of its GetNext function, iterator I2 returns the other

precomputed solution, that is, µ(2,2). As a consequence, Ωtmp is empty when the query
execution system requests another solution from I2 (by calling the GetNext function of
I2 a third time). Hence, at the begin of the third execution of GetNext, I2 consumes
the next valuation from its predecessor I1. Let this valuation be µ(1,2). The set Ωtmp
that I2 may construct based on µ(1,2), denoted by Ωtmp(2,2), is empty because Gex does
not contain a matching triple for triple pattern µ(1,2)[tp2] = (?o, offeredProduct, product2).
Therefore, I2 consumes another valuation from I1.
In the remaining steps of our example query execution, the iterators proceed as illus-

trated in Figure 7.1(a); Figure 7.1(b) enumerates all (intermediate) solutions that the
iterators report and consume, as well as all versions of the respective set Ωtmp that the
iterators precompute. 2

7.1.2. Iterators for Traversal-Based Query Execution

We now adapt the iterators to define an implementation approach for our traversal-based
query execution strategy. Hence, this approaches focuses on executing CLD(M) queries
over a Web of Linked Data. As in the static case discussed before, logical (query execu-
tion) plans specify an order over the BGP of the CLD(M) query that has to be executed
and a corresponding physical plan is a pipeline of iterators. However, to implement a
traversal-based query execution we require a different kind of iterators. In this section
we introduce these iterators which we call link traversing iterators.
All link traversing iterators in a pipelined execution plan share a data structure that

represents the (currently) discovered subweb of the queried Web of Linked Data. As in
the abstract procedure tbExec of our query execution model (cf. Section 6.3.7, page 125f),
we denote this discovered subweb by D. During query execution D grows monotonically.
To perform the initialization of D at the beginning of iterator-based query executions

we extend the Open function of root iterator I0. Listing 7.3 specifies the adjusted function

Listing 7.3 Open function for the root iterator I0 in our iterator implementation of
traversal-based query execution (Functions GetNext and Close for I0 are the same as
in Listing 7.1 on page 131).
Require:

S – a finite set of seed URIs (S ⊂ U)
W – the queried Web of Linked Data
D – the currently discovered part of W (note, all iterators have access to D)

FUNCTION Open
1: D := Dinit(S,W) // Dinit(S,W) is the S-seed part of W (cf. Definition 6.5, page 119)
2: ready := true

134

7.1. Definition

Listing 7.4 GetNext function for an iterator in our iterator implementation of tra-
versal-based query execution (Functions Open and Close are the same as in Listing 7.2
on page 132).
Require:

tp – a triple pattern
Ipred – a predecessor iterator
W – the queried Web of Linked Data
D – the currently discovered part of W (all iterators in the pipeline access this D)
Ωtmp – a set that allows the iterator to keep (precomputed) partial solutions between

calls of this GetNext function; Ωtmp is empty initially (cf. Listing 7.2)

1: while Ωtmp = ∅ do
2: µinput := Ipred.GetNext // consume valuation from the input iterator
3: if µinput = EndOfFile then
4: return EndOfFile
5: end if

6: tp′ := µinput[tp]
7: Gsnap := AllData(D)
8: T :=

{
t ∈ Gsnap

∣∣ t is a matching triple for tp′
}

9: Ωtmp :=
{
µinput ∪ µ′

∣∣µ′ is a valuation with dom(µ′) = vars(tp′) and µ′[tp′] ∈ T
}

10: for all t ∈ T do
11: D := EXP

(
D, t,W

)
// EXP

(
D, t,W

)
denotes the t-expansion of D in W

12: end for // (cf. Definition 6.6, page 120)

13: end while

14: µ := an element in Ωtmp
15: Ωtmp := Ωtmp \ {µ}
16: return µ

for the link traversing version of I0. Functions GetNext and Close of this iterator do
not require adjustments; hence, they are the same as in Listing 7.1 (cf. page 131).
For the link traversing version of the iterators that consume and report valuations we

also extend the functionality of their static counterparts. However, in this case, we have
to adjust the GetNext function (Open and Close remain the same as in Listing 7.2 on
page 132). Listing 7.4 specifies the adjusted GetNext function. Differences between this
GetNext function and the GetNext function for the static case are highlighted in the
listing. These differences are twofold:

1. While iterators for the static case compute valuations over a fixed set of RDF
triples G, link traversing iterators use the set of all RDF triples in (a snapshot of)
D for computing valuations (compare line 9 in Listing 7.2 to line 8 in Listing 7.4).

2. In addition to computing (and reporting) valuations, link traversing iterators also
perform the incremental expansion of D that is characteristic for traversal-based

135

7. An Iterator-Based Implementation

query execution (and not necessary in the static case). In particular, a link travers-
ing iterator performs expand operations (per Definition 6.6, page 120) each time
it precomputes the next version of its set Ωtmp. For these operations the iterator
uses the same set of matching triples that it uses for generating the valuations in
Ωtmp (cf. lines 10 to 12 in Listing 7.4).

Example 7.2. Let QBex,Sex be a CLD(M) query with a set Sex = {producer1} of seed URIs
and a BGP Bex = {tp1, tp2} that consists of the following two triple patterns:

tp1 = (?product, producedBy, producer1) , tp2 = (?previous, oldVersionOf, ?product) .

For a traversal-based execution of this query over our example WebWex (cf. Example 2.1,
page 18) we assume a physical plan of link traversing iterators I0 to I2 such that I0 is
the root iterator and iterators I1 and I2 are responsible for triple patterns tp1 and tp2,
respectively. The sequence diagram in Figure 7.2(a) illustrates an execution of this plan;
Figure 7.2(b) enumerates all valuations that the iterators report and consume during
this execution, as well as all versions of the set Ωtmp precomputed by each iterator.
In contrast to the sequence diagram that illustrates our example execution for the

static case (cf. Figure 7.1(a), page 133), the diagram in Figure 7.2(a) contains an ad-
ditional lifeline. This lifeline represents a (hypothetical) component that manages the
currently discovered subweb D of the queried Web of Linked Data. We emphasize that
we do not assume (or require) an explicit existence of such a management component
in any traversal-based query execution system. Instead, the purpose of this lifeline is to
illustrate the points at which iterators attempt to expand D.
The example execution begins with the initialization of D by root iterator I0. Hence,

when iterator I1 executes its GetNext function for the first time, D consists of a single
LD document, namely dPr1 = adocex(producer1). The data in this document contains two
RDF triples that match triple pattern tp1 = tp(I1). We denote these triples by t(1,1) and
t(1,2) (cf. Figure 7.2(b)). Based on these matching triples, iterator I1 precomputes two
valuations: µ(1,1) = {?product → product2} and µ(1,2) = {?product → product3}. Instead of
immediately reporting one of these valuations to its predecessor I2 (as it would happen in
the static case), iterator I1 first uses the two matching triples to expand D. As a result,
D consists of the LD documents dPr1, dp2 = adocex(product2), and dp3 = adocex(product3)
when I1 reports µ(1,1) to I2.
Based on a matching triple in dataex(dp2), iterator I2 now precomputes valuation

µ(2,1) as an augmentation of µ(1,1) (cf. Figure 7.2). Thus, I2 benefits from the previous
expansion of D that led to the discovery of LD document dp2. The execution proceeds
as illustrated in Figure 7.2(a). 2

As can be seen in the example, calling the GetNext function of a link traversing iterator
may have the side effect of expanding D (as desired for an implementation of travers-
al-based query execution). Since all iterators share the same data structure for D, the
next iterator that computes valuations may benefit immediately from this expansion
(and from all previous expansions). For instance, in the previous example, the expand
operations performed by iterator I1 enable iterator I2 to compute valuations.

136

7.2. Formal Analysis

(a) Sequence diagram that illustrates the in-
teraction between the link traversing iterators
during the example execution.

t(1,1) = (product2, producedBy, producer1)
t(1,2) = (product3, producedBy, producer1)
t(2,1) = (product1, oldVersionOf, product2)
t(2,2) = (product1, oldVersionOf, product3)

Ωtmp(1) = {µ(1,1), µ(1,2)}
Ωtmp(2,1) = {µ(2,1)}
Ωtmp(2,2) = {µ(2,2)}

µ(1,1) = {?product → product2}
µ(2,1) = {?previous → product1} ∪ µ(1,1)

µ(1,2) = {?product → product3}
µ(2,2) = {?previous → product1} ∪ µ(1,2)

(b) Matching triples and all sets of (intermediate) so-
lutions that the link traversing iterators (pre)compute
during the example execution.

Figure 7.2.: A particular, iterator-based execution of the example CLD(M) query as dis-
cussed in Example 7.2.

We conclude our introduction of the iterator approach by summarizing the overall process
for executing a CLD(M) query in Algorithm 7.5 (cf. page 138).

7.2. Formal Analysis
We now analyze the implementation approach formally and show the following property:

Theorem 7.1. Any execution of Algorithm 7.5 for a CLD(M) query QB,S over a Web of
Linked Data W reports a finite (possibly nonproper) subset of QB,S(W).

Theorem 7.1 verifies that the implementation approach is sound and, thus, can be used
for answering CLD(M) queries. However, the theorem also shows that the approach cannot
guarantee answers that are complete query results.
We first discuss examples for iterator-based executions that provide an incomplete

query result. Afterwards, we interpret the implementation approach in terms of our
execution model; based on the results of this discussion we prove Theorem 7.1 (for the
proof itself refer to page 144) and explain the incompleteness of the approach.

7.2.1. Examples for Incompleteness
Example 7.2 (cf. page 136) demonstrates a particular execution of Algorithm 7.5 for
a given CLD(M) query. This execution reports two valuations. These two valuations

137

7. An Iterator-Based Implementation

Algorithm 7.5 Overall process for an iterator-based execution of CLD(M) query QB,S
over a Web of Linked Data W.
1: n := |B|
2: Select a logical plan (B, /) for B.

3: Create a data structure D for the currently discovered subweb of W.
4: Use S, W, and D to create root iterator I0 (as defined in Listing 7.3, page 134).
5: for k := 1 to n do
6: Assume tpk ∈ B is the k-th triple pattern in B according to order / . Use tpk,

Ik−1, W, and D to create link traversing iterator Ik (as defined in Listing 7.4,
page 135).

7: end for

8: In.Open // initialize all iterators recursively

9: repeat
10: µ := In.GetNext
11: if µ 6= EndOfFile then report µ endif
12: until µ = EndOfFile

13: In.Close // close all iterators recursively

make up the complete (expected) query result for the example query over the example
Web. However, other executions of the algorithm are also possible for the same example
query (over the same example Web). Some of these (alternative) executions provide an
incomplete query result only. In this section we discuss two of these executions, both of
which reveal different characteristics of the iterator-based implementation approach.
We first focus on an execution that uses an alternative logical plan:

Example 7.3. For the query execution in Example 7.2 we assume a logical plan such
that, in the corresponding physical plan, iterator I1 is responsible for triple pattern tp1 =
(?product, producedBy, producer1) and I2 for tp2 = (?previous, oldVersionOf, ?product); i.e.,
tp(I1) = tp1 and tp(I2) = tp2. Let us now use the alternative logical plan (Bex, /

′
ex) with

tp2/
′
ex tp1. Hence, for the pipeline of iterators I ′0, I ′1, I ′2 that constitutes the corresponding

(alternative) physical plan, it holds that tp(I ′1) = tp2 and tp(I ′2) = tp1.
The initialization of D by the root iterator is the same for all (iterator-based) ex-

ecutions of the example query QBex,Sex . Hence, after the initialization, D consists of
LD document dPr1 = adocex(producer1), because the corresponding set of seed URIs is
Sex = {producer1} (cf. Example 7.2). The example execution proceeds as follows: Al-
gorithm 7.5 calls the GetNext function of I ′2, this function calls GetNext of I ′1, and I ′1
consumes the empty valuation µ∅ from I ′0 (by calling GetNext of I ′0). Then, I ′1 tries to
find matching triples for triple pattern µ∅

[
tp(I ′1)

]
= (?previous, oldVersionOf, ?product) in

the current snapshot of D (cf. line 8 in Listing 7.4, page 135). However, dataex(dPr1)
does not contain such a triple (cf. Figure 2.1, page 19). Thus, I ′1 cannot return an inter-
mediate solution to its successor I ′2. As a result, the query execution process terminates
with an incomplete (empty) query result. 2

138

7.2. Formal Analysis

Figure 7.3.: Sequence diagram for the query execution outlined in Example 7.4. Valu-
ations and RDF triples mentioned in the diagram are the same as given in
Figure 7.2(b) (cf. page 137).

The example verifies our claim that the iterator implementation of traversal-based query
execution may produce an incomplete query result. Our experiments shall even show
that there exist queries for which none of all possible logical plans produces the complete
query result (cf. Section 7.3.3, page 158ff). Moreover, by comparing Example 7.3 and
Example 7.2, we also note that for different logical plans, the approach may produce
different subsets of the (complete) query result. Thus, in contrast to traditional query
execution scenarios, alternative logical plans for this approach are not guaranteed to
be semantically equivalent (nonetheless, each plan is sound). We come back to this
limitation after interpreting the implementation approach in terms of our query execution
model in the next section.
While the previous example uses a different logical plan, executions of Algorithm 7.5

may even differ without varying the logical (and, thus, physical) plan: We emphasize the
arbitrary order in which iterators may report precomputed valuations (cf. lines 14 to 16
in Listing 7.4, page 135). Due to this flexibility we may observe different, nonidentical
query execution processes for the same physical plan. This type of nondeterministic
behavior is not unusual and has no consequences in the traditional, static case. It may
however have an impact in the dynamic case as the following example demonstrates.

Example 7.4. Let the pipeline of iterators I0, I1, I2 be the same physical plan as in
Example 7.2 (cf. page 136). Hence, it holds that tp(I1) = tp1 and tp(I2) = tp2. However,
we now outline another possible execution of this physical plan. More precisely, we
assume that iterator I1 reports the precomputed valuations Ωtmp(1) = {µ(1,1), µ(1,2)} in
a different order than in Example 7.2. The sequence diagram in Figure 7.3 illustrates
the execution process that we may observe in such a case.
Up to the point at which iterator I1 completes its expansion of D (at line 12 in List-

ing 7.4, page 135), the execution is identical to the execution in Example 7.2. Hence, at

139

7. An Iterator-Based Implementation

this point the currently discovered subweb D of the queried example Web Wex consists
of the LD documents dPr1, dp2, and dp3. Now, iterator I1 returns precomputed valuation
µ(1,2) to its successor I2 (in contrast to valuation µ(1,1) returned in Example 7.2). Based
on this valuation, iterator I2 uses the current snapshot of D to find matching triples for
triple pattern µ(1,2)

[
tp(I2)

]
= (?previous, oldVersionOf, product3). Although such a match-

ing triple exists in LD document dp1 in the queried Web (cf. Example 2.1, page 18), this
document has not been discovered and retrieved at this point. Therefore, I2 cannot con-
struct valuation µ(2,2) as an augmentation of µ(1,2) (as was possible during the execution
in Example 7.2). Instead, I2 discards µ(1,2) and consumes the next valuation from I1.
The second valuation consumed from I1 is µ(1,1). Based on µ(1,1), iterator I2 tries to

find matching triples for triple pattern µ(1,1)
[
tp(I2)

]
= (?previous, oldVersionOf, product2).

For this triple pattern the currently discovered subweb D already contains matching
triple (product1, oldVersionOf, product2) (originating from LD document dp2). Hence, I2 con-
structs (and returns) the corresponding valuation µ(2,1).
After that, the iterators return no more valuations and, thus, the execution outlined re-

ports only valuation µ(2,1) as a solution of the query resultQBex,Sex(Wex) = {µ(2,1), µ(2,2)}.
Although this answer is not empty (as the answer produced by the execution in Exam-
ple 7.3), it is also not complete (in contrast to the answer in Example 7.2). 2

The example demonstrates that the nondeterministic order in which link traversing iter-
ators report precomputed valuations may have an impact on the query results provided
by a pipeline of such iterators. We emphasize, however, that the alternative report order
used in Example 7.4 (compared to the “original” order assumed in Example 7.2) is not
the main reason for the incomplete query result reported by the execution. Instead, this
alternative order merely allows us to observe the effect demonstrated in the example.
The actual reason why iterator I2 cannot compute valuation µ(2,2) in the example

is that the iterators discard each input valuation after using it. While this “use and
forget” strategy is typical for pipelined iterators, it presents a major limitation for our
use case where it may lead to incomplete answers. On the other hand, due to this
strategy the iterator implementation of traversal-based query execution has the following
advantageous property as we shall see in the next section: It guarantees termination of
query executions (even for queries that are not finitely computable by an LD machine).
Nonetheless, we may prevent the nondeterministic behavior of link traversing iterators

by prescribing a particular (artificial) order in which iterators must report precomputed
valuations. While such an adjustment does not address the issue of potentially incom-
plete query results, it ensures repeatability. Consequently, for most of our experiments
we shall use such an adjustment. However, for our formal results in the following section
we take into account that multiple executions are possible for a physical plan.

7.2.2. Alignment of the Implementation with the Execution Model

We now show formally that (and how) Algorithm 7.5 implements our traversal-based
query execution model (defined in Section 6.3, page 115ff). Thereafter, we use the result-
ing propositions to prove Theorem 7.1 (cf. page 137). Furthermore, such an alignment

140

7.2. Formal Analysis

shall allow us to provide a more informed explanation of the effects observed in the
previous section. In the following, we first focus on the concept of partial solutions and
then discuss the performance of open AE tasks by link traversing iterators.
In terms of our execution model, we may interpret each valuation computed and

reported by a link traversing iterator as a partial solution (as introduced in Definition 6.2,
page 116). The following proposition verifies this claim:

Proposition 7.1. Let QB,S be a CLD(M) query that uses a BGP B of size n = |B|;
let (B, /) be a logical plan for executing QB,S over a Web of Linked Data W; let the
pipeline of link traversing iterators I0 , ... , In be the corresponding physical plan; and let
exec denote an execution of this physical plan. For any k ∈ {0, ... , n} and any valuation
µ that iterator Ik computes and reports during exec it holds that the pair

(
sub/k (B), µ

)
is a partial solution for QB,S in W.

Proof. Let Ωexec
all denote the set of all valuations that iterators I0 to In compute and

report during exec. We prove Proposition 7.1 by induction on the sequence in which
iterators I0 to In generate these valuations.

Base case: The first valuation generated by any of the iterators is the empty valuation
µ∅ that root iterator I0 generates. Since sub/0 (B) = ∅, the pair

(
sub/0 (B), µ∅

)
is a partial

solution for QB,S in W. In fact, this pair is the empty partial solution introduced on
page 117 in Section 6.3.2.

Induction step: Let µ(k,i) ∈ Ωexec
all \ {µ∅} be an arbitrary valuation computed during

exec after I0 generated µ∅. Furthermore, let Ik be the iterator that computes µ(k,i).
We note that Ik cannot be the root iterator I0 because I0 generates no more valuations
after generating µ∅ (as can be seen in Listings 7.1 and 7.3). Let Ω denote the set of all
valuations that all iterators I0 to In precompute (during exec) before Ik computes µ(k,i).
By induction we assume that for each valuation µ(k′,i′) ∈ Ω (where k′ ∈ {0, ... , n} and
µ(k′,i′) is computed by iterator Ik′), the pair

(
sub/k′(B), µ(k′,i′)

)
is a partial solution for

QB,S in W. Based on this hypothesis we show that the pair
(
sub/k (B), µ(k,i)

)
is also a

partial solution for QB,S in W.
Let µ(k−1,j) be the valuation that iterator Ik consumes from its predecessor Ik−1 during

the particular execution of its GetNext function in which Ik (pre)computes µ(k,i). By
induction, the pair

(
sub/k (B), µ(k−1,j)

)
is a partial solution for QB,S in W. Hereafter, we

write σ(k−1,j) to denote this partial solution.
Let D(k−1,j) be the particular snapshot of D that Ik uses for generating µ(k,i). Since

Ik computes µ(k,i) based on µ(k−1,j), there must exist an RDF triple t′ and a valuation µ′
such that (i) t′ ∈ AllData(D(k−1,j)), (ii) µ(k,i) = µ(k−1,j)∪µ′, (iii) dom(µ′) = vars(tp′(k,j)),
and (iv) t′ = µ′

[
tp′(k,j)

]
, where tp′(k,j) = µ(k−1,j)

[
tp(Ik)

]
(cf. line 9 in Listing 7.4,

page 135). Thus, for RDF triple t′ it also holds that t′ = µ(k,i)
[
tp(Ik)

]
.

Then, in terms of our execution model, the pair
(
sub/k (B), µ(k,i)

)
is the

(
t′, tp(Ik)

)
-aug-

mentation of partial solution σ(k−1,j) (cf. Definition 6.3, page 117). By Proposition 6.4
(cf. page 117), this augmentation is a partial solution for QB,S in W if (i) σ(k−1,j) is a

141

7. An Iterator-Based Implementation

partial solution for QB,S in W, and (ii) t′ ∈ AllData(R) where R is the (S, cMatch, B)-
reachable subweb of W. Since the former holds by induction, it remains to prove the
latter. Since t′ ∈ AllData(D(k−1,j)), we prove t′ ∈ AllData(R) by showing that D(k−1,j)
is a discovered subweb of R (in which case we have AllData(D(k−1,j)) ⊆ AllData(R)).
After iterator I0 initialized D with Dinit(S,W), each (other) iterator from the pipeline

may expand D only based on RDF triples that match the triple pattern for which the
iterator is responsible (cf. lines 10 to 12 in Listing 7.4). Hence, snapshot D(k−1,j) is
the result of expanding Dinit(S,W) using triples that match a triple pattern from BGP
B. Since Dinit(S,W) is a discovered subweb of the (S, cMatch, B)-reachable subweb of W
(cf. Definition 6.5, page 119), we use Lemma 6.1 (cf. page 123) recursively to show that
D(k−1,j) is also a discovered subweb of the (S, cMatch, B)-reachable subweb of W . �

Example 7.5. Revisiting the query execution discussed in Example 7.2 (cf. page 136),
we may say that iterator I1 implicitly generates partial solutions σ(1,1) =

(
{tp1}, µ(1,1)

)
and σ(1,2) =

(
{tp1}, µ(1,2)

)
. Similarly, iterator I2 (the other iterator in Example 7.2)

generates partial solutions σ(2,1) =
(
{tp1, tp2}, µ(2,1)

)
and σ(2,2) =

(
{tp1, tp2}, µ(2,2)

)
. 2

Primarily, Proposition 7.1 shows that link traversing iterators (implicitly) generate par-
tial solutions. However, the proposition also specifies these partial solutions. Thus, as a
direct consequence of Proposition 7.1 we highlight the following property:

Remark 7.1. Let I0 , ... , In be a pipeline of link traversing iterators that executes logical
plan (B, /) for CLD(M) query QB,S (where n = |B|). Then, for each k ∈ {0, ... , n},
iterator Ik is the only iterator from the pipeline that may (implicitly) generate a partial
solution (E,µ) ∈ σ(QB,S,W)

for which it holds that E = sub/k (B) (where σ(QB,S,W)
denotes the set of all partial solutions for QB,S over a queried Web of Linked Data W,
as introduced in Definition 6.2, page 116).

Remark 7.2. We also note that an iterator-based execution of a logical plan (B, /)
for a CLD(M) query QB,S cannot compute any partial solution (E,µ) ∈ σ(QB,S,W)

for
which there does not exist a k ∈ {0, ... , |B|} such that E = sub/k (B).

While Proposition 7.1 shows that link traversing iterators (implicitly) compute partial
solutions, the following proposition shows that for each such iterator the overall number
of these partial solutions is finite and there are not duplicates.

Proposition 7.2. Let (B, /) be a logical plan for executing a CLD(M) query QB,S (over
a Web of Linked Data), and let the pipeline of link traversing iterators I0 , ... , In be the
corresponding physical plan (where n = |B|). Any iterator in the physical plan computes
and reports a finite number of valuations during any execution of the physical plan; each
of these valuations is not compatible with any other valuation that the iterator computes
during the execution. (We recall that two valuations µ and µ′ are not compatible, denoted
by µ 6∼ µ′, if there exists a variable ?v ∈ dom(µ) ∩ dom(µ′) such that µ(?v) 6= µ′(?v).)

Proof. To prove Proposition 7.2 we assume (without loss of generality) a particular,
arbitrary execution of the physical plan. The proof is by induction on k ∈ {0, ... , n}.

142

7.2. Formal Analysis

Base case (k = 0): Root iterator I0 reports a single valuation only (namely, the empty
valuation µ∅); this happens only once (during any execution of the physical plan).

Induction step (1 ≤ k ≤ n): Suppose iterator Ik−1 reports a finite number of valuations,
each of which is not compatible with any other valuation that Ik−1 reports. If Ik−1
reports no valuations, then Ik computes no valuations and, thus, satisfies Proposition 7.2.
Hence, in the remainder of this proof we assume Ik−1 reports at least a single valuation.
Iterator Ik performs line 9 in Listing 7.4 (cf. page 135) as many times as iterator Ik−1

reports a valuation via its GetNext function. Each of these performances generates a
new set Ωtmp. To denote the particular version of Ωtmp generated using the i-th input
valuation (consumed from Ik−1) we write Ωtmp(k,i). By induction, there exists an upper
bound m ∈ N+ for i (i.e., 0 < i ≤ m). Thus, to show that Ik computes a finite
number of valuations only, it suffices to prove that Ωtmp(k,i) is finite for all i ∈ {1, ... ,m}:
Ik precomputes Ωtmp(k,i) using a snapshot of the currently discovered subweb of the
queried Web of Linked Data. Since the set of LD documents in any discovered subweb
is finite (cf. Definition 6.4, page 118), and the set of RDF triples in any LD document is
also finite, we conclude that iterator Ik may only use a finite number of RDF triples to
precompute Ωtmp(k,i). Thus, Ωtmp(k,i) is guaranteed to be finite. Removing any valuation
µ from the (current version of) set Ωtmp, before reporting this valuation, guarantees that
the number of reported valuations is finite as well (cf. lines 14 to 16 in Listing 7.4).
We now show that the valuations computed by Ik are not compatible with one another.

We need to distinguish the following two cases:

1. We first focus on the difference of all valuations within any particular set Ωtmp(k,i)
(for all i ∈ {1, ... ,m}): W.l.o.g., let Ωtmp(k,i) be such a set and let µ(k,x) ∈ Ωtmp(k,i)
and µ(k,y) ∈ Ωtmp(k,i) be two of the valuations in this set; i.e., µ(k,x) 6= µ(k,y). Fur-
thermore, let tp′k be the particular triple pattern that iterator Ik uses to precompute
Ωtmp(k,i); i.e., tp′k = µ(k−1,i)

[
tp(Ik)

]
where µ(k−1,i) is the i-th input valuation (that

Ik consumes from Ik−1). Then, there exist valuations µ′(k,x) and µ′(k,y) such that
µ(k,x) = µ(k−1,i)∪µ′(k,x) and µ(k,y) = µ(k−1,i)∪µ′(k,y) (cf. line 9 in Listing 7.4). These
two valuations, µ′(k,x) and µ

′
(k,y), are computed from different matching triples (i.e.,

µ′(k,x)[tp
′
k] 6= µ′(k,y)[tp

′
k]), because µ(k,x) 6= µ(k,y). Therefore, µ′(k,x) 6∼ µ′(k,y) and,

thus, µ(k,x) 6∼ µ(k,y).

2. It remains to show for any pair i, j ∈ {1, ... ,m} with i 6= j that every valuation
in Ωtmp(k,i) is incompatible with every valuation in Ωtmp(k,j). W.l.o.g., we use
an arbitrary pair i, j ∈ {1, ... ,m} such that i 6= j, and an arbitrary valuation
µ(k,x) ∈ Ωtmp(k,i). Then, valuation µ(k,x) consists of all variable bindings specified
by the corresponding input valuation µ(k−1,i) Similarly, all valuations in Ωtmp(k,j)
consist of all variable bindings from input valuation µ(k−1,j). Since i 6= j, it holds
by induction that µ(k−1,i) is not compatible with µ(k−1,j) and, thus, µ(k,x) is not
compatible with any valuation in Ωtmp(k,j). �

Given Propositions 7.1 and 7.2, we are now ready to prove Theorem 7.1 (cf. page 137):

143

7. An Iterator-Based Implementation

Proof of Theorem 7.1. Let (B, /) be an arbitrary logical selected at the begin of
executing CLD(M) query QB,S by Algorithm 7.5; let the pipeline of link traversing iter-
ators I0 , ... , In be the corresponding physical plan (where n = |B|); and let Ω be the
set of all valuations that the last iterator, In, reports (via its GetNext function) during
an arbitrary execution of the physical plan. W.l.o.g., we may prove Theorem 7.1 by
showing (i) Ω ⊆ QB,S(W) and (ii) Ω is finite.
(i) To show Ω ⊆ QB,S(W) it suffices to show µ ∈ QB,S(W) for an arbitrary valuation

µ ∈ Ω. Let µ∗ ∈ Ω be such a valuation. By Proposition 7.1, σ∗ =
(
sub/n(B), µ∗

)
is

a partial solution for QB,S in W. This partial solution covers the whole BGP B of
QB,S because sub/n(B) = B. Therefore, we may use our definition of partial solutions
(cf. Definition 6.2, page 116) and our definition of CLD(M) queries (cf. Definition 6.10,
page 123) to conclude µ∗ ∈ QB,S(W).
(ii) The finiteness of Ω is a direct consequence of Proposition 7.2. �

While Propositions 7.1 and 7.2 suffice for proving Theorem 7.1, they cover only a sin-
gle aspect of our execution model, namely, the computation of partial solutions. To
verify that the iterator approach is an implementation of our query execution model it
is also necessary to show that the approach performs open AE tasks. We recall that
an AE task consists of a partial solution σ, a triple pattern tp, and an RDF triple t
that matches tp (cf. Definition 6.8, page 122); performing such an AE task τ = (σ, t, tp)
combines (i) generating a new partial solution by augmenting σ based on t and tp, and
(ii) expanding the discovered subweb of the queried Web of Linked Data using t (cf. Sec-
tion 6.3.6, page 121ff). In the remainder of this section we argue that the execution of
lines 9 to 12 in the GetNext function of link traversing iterators (cf. Listing 7.4, page 135)
presents an (implicit) performance of open AE tasks.

Example 7.6. During the query executions discussed in Examples 7.2 and 7.4 (cf. page
136 and 139, respectively), iterator I1 consumes the empty valuation µ∅ as an in-
put valuation from its predecessor, root iterator I0. According to Proposition 7.1 (cf.
page 141), we may say that I1 consumes partial solution σinput =

(
sub/0 (B), µ∅

)
, which,

in this particular case, is the empty partial solution σ∅. By using this input, itera-
tor I1 (implicitly) computes partial solutions σ(1,1) and σ(1,2) (as discussed in Exam-
ple 7.5, page 142). In terms of our execution model we interpret this computation
of σ(1,1) and σ(1,2) as a computation of all augmentations of partial solution σ∅ that
are possible based on all matching triples for tp1 in the currently discovered subweb
of the queried example Web Wex. For instance, σ(1,1) is the (t(1,1), tp1)-augmentation
of σ∅ where t(1,1) denotes RDF triple (product2, producedBy, producer1) (cf. Figure 7.2(b),
page 137). Similarly, σ(1,2) is the (t(1,2), tp1)-augmentation of σ∅ where t(1,2) denotes
RDF triple (product3, producedBy, producer1). Immediately after augmenting σ∅ based on
these two RDF triples (t(1,1) and t(1,2)), iterator I1 uses these triples for expanding the
discovered subweb D to EXP

(
EXP

(
D, t(1,1),Wex

)
, t(1,2),Wex

)
. Therefore, we may conclude

that by executing lines 9 to 12 of its GetNext function, iterator I1 (implicitly) performs
two AE tasks, namely τ(1,1) = (σ∅, t(1,1), tp1) and τ(1,2) = (σ∅, t(1,2), tp1). 2

The following result generalizes the conclusion from the example.

144

7.2. Formal Analysis

Proposition 7.3. Let QB,S be a CLD(M) query that uses a BGP B of size n = |B|;
let (B, /) be a logical plan for executing QB,S over a Web of Linked Data W; let the
pipeline of link traversing iterators I0 , ... , In be the corresponding physical plan; and let
exec denote a particular execution of this physical plan. Furthermore, let k ∈ {1, ... , n};
let µinput be a valuation that iterator Ik consumes (from its predecessor Ik−1) during
exec; let σinput =

(
sub/k−1(B), µinput

)
; and let Dx denote the snapshot of the discovered

subweb D of W immediately after Ik consumed µinput. During the particular execution
of its GetNext function during which Ik consumes µinput, Ik performs the following set
τ of open AE tasks:

τ =
{(
σinput, t, tp(Ik)

) ∣∣∣ t ∈ AllData(Dx) is a matching triple for tp′k = µinput[tp(Ik)]
}
.

Proof. In addition to the symbols introduced in Proposition 7.3, let gnexec denote the
execution of the GetNext function during which Ik consumes µinput from Ik−1, and let
Px be the set of partial solutions for QB,S in W such that the pair stx =

(
Px,Dx

)
represents the QE state of the query execution immediately after Ik consumes µinput,
that is, before Ik performs line 8 during gnexec (cf. Listing 7.4, page 135). Similarly, let
sty =

(
Py,Dy

)
be the QE state of the query execution immediately after Ik completes

line 12 (in Listing 7.4) during gnexec. Finally, let tp′k = µinput[tp(Ik)].
To prove Proposition 7.3 we have to prove the following claims:

1. Each τ ∈ τ is an AE task for QB,S over W.

2. Each AE task τ ∈ τ is not hidden in state stx.

3. Each AE task τ ∈ τ is open in state stx.

4. Each AE task τ ∈ τ is not open (anymore) in state sty.

5. Any AE task τ ′ for QB,S over W is (still) open in state sty if τ ′ is open in state
stx and τ ′ /∈ τ .

We notice that the fifth claim verifies that our specification of τ is complete while the
first four claims verify the soundness of this specification.
Before we prove these claims we need to specify states stx and sty more accurately. In

particular, we need to specify Px and Py. We recall that Px and Py are the sets of all
those partial solutions for QB,S in W that have already been computed up to the point
in the query execution represented by state stx and sty, respectively. To specify these
sets we emphasize that any pipeline of link traversing iterators may (implicitly) generate
partial solutions only by precomputing valuations (cf. line 9 in Listing 7.4). Hence,

Px =
{
(sub/k′(B), µ)

∣∣ k′ ∈ {0, ... , n} and iterator Ik′ precomputes valuation µ
before iterator Ik consumes µinput

}
.

By Proposition 7.1 (cf. page 141), Px ⊆ σ(QB,S,W)
holds with σ(QB,S,W)

denoting
the set of all partial solutions for QB,S over W (cf. Definition 6.2, page 116).

145

7. An Iterator-Based Implementation

To specify Py we note that no other iterator, except for Ik, precomputes valuations
while Ik executes lines 8 to 12 during gnexec. Thus,

Py = Px ∪
{
(sub/k (B), µ)

∣∣µ ∈ Ωtmp(k,x)
}
,

where Ωtmp(k,x) denotes the particular version of set Ωtmp that Ik precomputes during
gnexec. Based on lines 8 and 9 in Listing 7.4 we have:

Ωtmp(k,x) =
{
µinput ∪ µ′

∣∣µ′ is a valuation with
dom(µ′) = vars(tp′k) and µ′[tp′k] ∈ AllData(Dy)

}
.

We now prove the aforementioned five claims in the following order: 5, 1, 2, 4, 3.

(5.) W.l.o.g., let AE task τ = (σ, t, tp) with partial solution σ = (E,µ) be an arbitrary
AE task for CLD(M) query QB,S over Web of Linked Data W such that τ /∈ τ and τ is
open in state stx. We prove by contradiction that τ is also open in state sty; that is, we
assume τ is not open (anymore) in sty. In this case, by Definition 6.12 (cf. page 125), it
must hold that (i) τ is hidden in sty or (ii) sty = τ

[
stx
]
. However, since AE task τ is open

in state stx, it is not hidden in stx (cf. Definition 6.12) and, thus, it cannot be hidden in
state sty (cf. Remark 6.3, page 124). Therefore, it must hold that sty = τ

[
stx
]
and, thus,

the set of partial solutions Py contains the (t, tp)-augmentation of σ (cf. Definition 6.9,
page 122). For this augmentation we know the following:

• By Definition 6.3 (cf. page 117), this augmentation is a pair (E∗, µ∗) with (i) E∗
being a BGP that consists of triple pattern tp and all triple patterns from BGP E
(i.e., E∗ = E ∪

{
tp
}
) and (ii) µ∗ being a valuation that extends valuation µ such

that dom(µ∗) = vars(E∗) and µ∗[E∗] = µ[E] ∪ {t}.

• Since AE task τ is open in QE state stx =
(
Px,Dx

)
, we also know (E∗, µ∗) /∈ Px.

• Therefore, (E∗, µ∗) ∈ Py \Px and, thus, E∗ = sub/k (B) and µ∗ ∈ Ωtmp(k,x).

Then, due to E∗ = E∪
{
tp
}
we have E = sub/k−1(B) (cf. Remark 7.2, page 142) and, thus,

tp is the triple pattern processed by the k-th iterator; i.e., tp = tp(Ik). Furthermore,
from µ∗ ∈ Ωtmp(k,x) we know there exist an RDF triple t′ ∈ AllData(Dy) and a valuation
µ′ such that (i) µ∗ = µinput ∪ µ′, (ii) dom(µ′) = vars(tp′k), and (iii) t′ = µ′[tp′k]. Hence,
RDF triple t′ is a matching triple for triple pattern tp′k = µinput[tp(Ik)] and, thus, also
for triple pattern tp = tp(Ik). Putting everything together, it must hold that RDF triple
t′ and input solution µinput are the RDF triple t and valuation µ as given in AE task
τ = (σ, t, tp) with σ = (E,µ); i.e., t = t′ and µ = µinput. Therefore, σ = σinput and, thus,
τ =

(
σinput, t, tp(Ik)

)
and τ ∈ τ . This finding contradicts our premise τ /∈ τ . Hence, τ

is open in state sty.

(1.) Let τ = (σinput, t, tp(Ik)) ∈ τ be an arbitrary tuple in τ . To prove that τ is
an AE task for CLD(M) query QB,S over Web of Linked Data W, per Definition 6.8 (cf.
page 122), we have to show the following four properties:

146

7.2. Formal Analysis

1. σinput ∈ σ(QB,S,W)
,

2. t ∈ AllData(R) with R being the (S, cMatch, B)-reachable subweb of W,

3. tp(Ik) ∈ B \ sub/k−1(B), and

4. t is a matching triple for triple pattern tp′k = µinput[tp(Ik)].

Properties 1, 2, and 4 hold because τ ∈ τ . Property 3 holds by definition (cf. Sec-
tion 7.1.1, page 130ff).

(2.) Let τ = (σinput, t, tp(Ik)) ∈ τ be an arbitrary tuple in τ . We have shown that τ
is an AE task for CLD(M) query QB,S over Web of Linked Data W. To prove that τ is
not hidden in state stx =

(
Px,Dx

)
, per Definition 6.11 (cf. page 124), we have to show:

1. σinput ∈ Px and

2. t ∈ AllData
(
Dx
)
.

Again, the second property holds because τ ∈ τ . Property 1 holds because iterator Ik−1
(pre)computed valuation µinput before Ik consumed µinput from Ik−1.

(4.) Let τ = (σinput, t, tp(Ik)) ∈ τ be an arbitrary tuple in τ . We have shown that τ
is an AE task for CLD(M) query QB,S over Web of Linked DataW. To prove that τ is not
open in state sty we may either show that τ is hidden in state sty or that sty = τ

[
sty
]

(cf. Definition 6.12, page 125). However, since τ is not hidden in state stx (see above), it
cannot be hidden in state sty (cf. Remark 6.3, page 124). Hence, we show sty = τ

[
sty
]
.

By Definition 6.9 (cf. page 122), this equivalence holds if the following two statements
are true:

1. AUG(σinput, t, tp(Ik)) ∈ Py (i.e., the set of partial solutions in state sty =
(
Py,Dy

)
contains the (t, tp(Ik))-augmentation of partial solution σinput), and

2. Dy = EXP
(
Dy, t,W

)
.

We first show the latter: By comparing the definition of τ with line 8 in Listing 7.4
(cf. page 135), we note that RDF triple t is one of the matching triples that iterator Ik
uses during the particular execution gnexec (as introduced in Proposition 7.3). Since Dy

denotes the snapshot of D after iterator Ik completes line 12 during gnexec, it follows
trivially that Dy = EXP

(
Dy, t,W

)
.

We now show AUG(σinput, t, tp(Ik)) ∈ Py: Based on Definition 6.3 (cf. page 117) we
know that AUG(σinput, t, tp(Ik)) must be a pair (E∗, µ∗) with the following two elements:

• E∗ is a BGP with E∗ = sub/k−1(B) ∪
{
tp(Ik)

}
and, thus, E∗ = sub/k (B).

• µ∗ is a valuation that extends input solution µinput such that dom(µ∗) = vars(E∗)
and µ∗[E∗] = µinput[sub/k−1(B)] ∪ {t}.

147

7. An Iterator-Based Implementation

Since RDF triple t is one of the matching triples that iterator Ik uses during gnexec,
µ∗ is one of the valuations that iterator Ik precomputes in line 9 of Listing 7.4 (during
gnexec). Therefore, the pair (E∗, µ∗) is a partial solution for CLD(M) query QB,S in Web
of Linked Data W (cf. Proposition 7.1, page 141) and, thus, (E∗, µ∗) ∈ Py.

(3.) Let τ = (σinput, t, tp(Ik)) ∈ τ be an arbitrary tuple in τ . We have shown
that τ is an AE task for CLD(M) query QB,S over Web of Linked Data W and τ is
not hidden state stx. To prove that τ is open in stx it remains to show stx 6= τ

[
stx
]

(cf. Definition 6.12, page 125). By Definition 6.9 (cf. page 122), stx 6= τ
[
stx
]
holds if

AUG(σinput, t, tp(Ik)) /∈ Px (i.e., if the set of partial solutions in state stx =
(
Px,Dx

)
does not contain the (t, tp(Ik))-augmentation of partial solution σinput). We recall that
iterator Ik is the only iterator from the pipeline that may (implicitly) generate this aug-
mentation (cf. Remark 7.1, page 142). As seen in the discussion of the previously shown
Claim 4, iterator Ik precomputes the valuation for this augmentation during gnexec.
Given that Ik precomputes a valuation only once (cf. Proposition 7.2, page 142), it is
thus impossible that Ik already generated AUG(σinput, t, tp(Ik)) before gnexec. Therefore,
AUG(σinput, t, tp(Ik)) /∈ Px and, thus, stx 6= τ

[
stx
]
. �

Proposition 7.3 specifies the set of open AE tasks that a link traversing iterator performs
during a single execution of its GetNext function. These may not be the only AE tasks
that the iterator performs during the whole query execution process. Instead, a set τ
as specified in the proposition exists for each input valuation that the iterator consumes
from its predecessor.

Example 7.7. We come back to Example 7.6 (cf. page 144), which focuses on open
AE tasks that example iterator I1 performs during the query executions discussed in
Examples 7.2 and 7.4 (cf. page 136 and 139, respectively). Since, I1 consumes only a
single input valuation (namely, the empty valuation µ∅ provided by the root iterator),
the two open AE tasks introduced in Example 7.6, i.e., τ(1,1) and τ(1,2), are the only
AE tasks that I1 performs in any possible execution of the example plan.
We now focus on iterator I2. During the first execution (discussed in Example 7.2), I2

first obtains valuation µ(1,1) from iterator I1. The corresponding set of open AE tasks is
τ(2,1) = {τ(2,1)} with τ(2,1) =

(
σ(1,1), t(2,1), tp2

)
because (i) iterator I2 expands the discov-

ered subweb D using RDF triple t(2,1) (cf. Figure 7.2, page 137), and (ii) I2 (implicitly)
generates partial solution σ(2,1) =

(
{tp1, tp2}, µ(2,1)

)
as the (t(2,1), tp2)-augmentation of

partial solution σ(1,1) (given in Example 7.5, page 142).
Later, during the same execution, I2 obtains the other valuation from I1, that is, µ(1,2).

The set of open AE tasks that I2 performs based on this valuation is τ(2,2) = {τ(2,2)}
with τ(2,2) =

(
σ(1,2), t(2,2), tp2

)
and t(2,2) = (product1, oldVersionOf, product3).

Now revisit the other possible execution of the same example plan (discussed in Ex-
ample 7.4). In this case, I2 first obtains valuation µ(1,2) (instead of µ(1,1)) and, at this
point, the discovered subweb D of the queried Web consists of the LD documents dPr1,
dp2, and dp3. Hence, RDF triple t(2,2) ∈ dataex(dp1), as used by the aforementioned
AE task τ(2,2), has not yet been discovered and, thus, τ(2,2) is still hidden. As a conse-
quence, during this alternative execution of the example plan, the set of open AE tasks

148

7.2. Formal Analysis

that iterator I2 may perform based on valuation µ(1,2) is empty. Therefore, to proceed
with the execution, iterator I2 discards µ(1,2) and requests the next input valuation from
I1. Based on this next input, µ(1,1), iterator I2 is able to perform the same set of open
AE tasks as in the execution process of Example 7.2, that is, the set τ(2,1) = {τ(2,1)}.
After the performance of AE task τ(2,1), the discovered subweb D now includes the

previously undiscovered RDF triple t(2,2) ∈ dataex(dp1) and, thus, the previously hidden
AE task τ(2,2) is not hidden anymore. However, at this point during the execution pro-
cess, iterator I2 does not come back to the previous (already discarded) input valuation
µ(1,2). Therefore, I2 never performs AE task τ(2,2) during the execution process outlined
in Example 7.4, and neither does any other iterator from the pipeline (as we see from
Proposition 7.3, page 145, and Remark 7.1, page 142). As a result of not performing
τ(2,2), the execution process does not generate partial solution σ(2,2) =

(
Bex, µ(2,2)

)
and,

thus, the answer provided for the example query is not the complete query result. 2

The example indicates that Proposition 7.3 presents a formal explanation of why some
iterator-based execution processes cannot provide complete query results. To elaborate
more on the reason for such an inability, suppose (B, /) is a logical plan for executing
a CLD(M) query QB,S over a Web of Linked Data W = (D, data, adoc), and Ik is an
iterator in the corresponding physical plan. Then, for each solution µ∗ ∈ QB,S(W)
there exists a partial solution σ =

(
sub/k (B), µ

)
such that valuations µ∗ and µ are

compatible (i.e., µ∗ ∼ µ). During any possible execution of the given plan, Ik is the
only iterator that might generate σ (cf. Remark 7.1, page 142). For any other partial
solution σ′ =

(
sub/k (B), µ′

)
that Ik might generate, it holds that µ∗ 6∼ µ′ (because µ 6∼ µ′,

as shown by Proposition 7.2). Therefore, for any possible execution of the given plan,
generating partial solution σ (by Ik) is a necessary condition for producing solution µ∗
(and, thus, for answering the query completely).
Some executions may not meet this condition: Our proof of Proposition 7.3 re-

veals that to generate partial solution σ, iterator Ik needs to perform an AE task
τ =

(
σinput, t, tp(Ik)

)
with σinput =

(
sub/k−1(B), µinput

)
such that σ = AUG(σinput, t, tp(Ik))

and, thus, µinput ∼ µ. We note that τ is the only AE task that has this property because
there exists only a single input valuation µinput with µinput ∼ µ (cf. Proposition 7.2).
By Proposition 7.3, there exists at most one point during any possible execution of
the given plan, at which Ik may perform the AE task τ (that is, the point when Ik
consumes input valuation µinput from predecessor iterator Ik−1). However, if, at this
point, the currently discovered subweb D of the queried Web does not comprise an LD
document d ∈ D with t ∈ data(d), then AE task τ is still hidden (cf. Definition 6.11,
page 124) and Ik misses the opportunity to perform τ and, thus, to generate σ. As
discussed in the Example 7.7, the query execution process outlined in Example 7.4
(cf. page 139) represents such a case: When example iterator I2 would have to perform
AE task τ(2,2) =

(
σ(1,2), t(2,2), tp2

)
, this task is still hidden because the corresponding

RDF triple t(2,2) has not yet been discovered. An even more extreme example presents
the execution in Example 7.3 (cf. page 138) that uses the alternative logical plan.

Example 7.8. Example 7.3 considers the alternative logical plan for executing the
example query. The link traversing iterator I ′1 in the corresponding (alternative) physical

149

7. An Iterator-Based Implementation

plan is responsible for triple pattern tp(I ′1) = (?previous, oldVersionOf, ?product). During
the first execution of its GetNext function, I ′1 consumes the empty valuation µ∅ as an
input valuation from root iterator I ′0. At this point, the currently discovered subwebD of
the queried example Web contains a single LD document, namely dPr1 (cf. Example 7.3).
Since dataex(dPr1) does not contain a matching triple for triple pattern µ∅

[
tp(I ′1)

]
, the

corresponding set τ of open AE tasks that I ′1 “performs” is empty (cf. Proposition 7.3).
Thus, during the execution process in Example 7.3, both link traversing iterators, I ′1 and
I ′2, do not perform any open AE task. 2

While the set of open AE task that a link traversing iterator performs may be empty
(for some or even for all executions of its GetNext function), it is impossible, on the
other hand, that such an iterator performs an infinite number of AE tasks.

Corollary 7.1. The overall number of open AE tasks that link traversing iterators per-
form during any possible execution of Algorithm 7.5 is finite.

Proof. This proposition is a direct consequence of Propositions 7.2 and 7.3 (cf. page 142
and 145, respectively): From Proposition 7.2 it follows that, for each link traversing
iterator, there always only exists a finite number of sets τ as specified in Proposition 7.3.
Each of these sets is finite because any discovered subweb of a queried Web of Linked
Data contains a finite number of RDF triples only (cf. Definition 6.4, page 118). �

Corollary 7.1 verifies that Algorithm 7.5 always terminates. We emphasize that such
a guarantee does not exist for all implementations of our traversal-based execution
model. In particular, implementation approaches that guarantee completeness of query
results, cannot guarantee termination of any possible execution process (given that some
CLD(M) queries are not finitely computable by an LD machine). Furthermore, we note
that Corollary 7.1 is in line with Theorem 7.1 (cf. page 137): Since any pipeline of link
traversing iterators may only perform a finite number of AE tasks, it cannot report an
infinite number of query solutions, even if the expected query result (as defined by the
query semantics) is infinite.

Our results of this section show that a pipeline of link traversing iterators performs open
AE tasks and, thus, implements our traversal-based query execution model. However,
this implementation does not guarantee completeness; that is, by executing a CLD(M) que-
ry with this implementation approach we may not obtain the complete query result (but
the result that we obtain is guaranteed to be sound). Furthermore, we identified the
following properties of this implementation approach:

• Based on different logical plans the approach may report different subsets of the
complete query result.

• Even for the same physical plan we may observe different execution processes and
obtain different subsets of the complete query result.

• Any possible query execution process is guaranteed to terminate.

In the following, we investigate these properties experimentally.

150

7.3. Experimental Analysis

7.3. Experimental Analysis
In this section we analyze the performance of the iterator-based implementation ap-
proach in practice. Primarily, we are interested in the issue of incompleteness. That is,
we focus on the following questions:

Question 7.1. What is the percentage of reachable documents discovered by the iter-
ator-based implementation approach?

Question 7.2. To what degree are answers provided by the approach complete (i.e.,
what is the ratio of reported solutions to all solutions in corresponding
query results)?

Question 7.3. Does there exist a correlation between the degree of completeness and
the percentage of reachable documents discovered by the approach?

Question 7.4. Does the distribution of data over a queried Web of Linked Data affect
the degree of completeness? If it does, what (link graph) structure of a
queried Web is beneficial for the approach?

Question 7.5. What is the practical impact of the property that different logical plans
for a query may not be semantically equivalent?

Question 7.6. What is the practical impact of the property that different executions
of the same plan may return different results?

Question 7.7. Which logical plans for a query enable us to achieve the highest degree
of completeness (in comparison to all logical plans for the query)?

In addition to these questions we test the following hypothesis:

Hypothesis 7.1. Overall query execution time is dominated by the time needed for
retrieving data from the queried Web of Linked Data.

For our experimental analysis we focus on CLD(M) queries whose set of seed URIs consists
of all subject-position and object-position URIs mentioned in the BGP of the query.
Formally, for any CLD(M) query QB,S that we consider it holds that

S =
{
u ∈ {s, o}∩ U

∣∣ (s, p, o) ∈ B}.
To ensure reproducibility we conducted most of the experiments for our analysis in
a simulation environment. Although the execution of Linked Data queries over the
WWW is the main use case for the concepts discussed in this dissertation, the WWW is
unsuitable as an experimental environment. Reasons for this unsuitability are nondeter-
ministic timeouts, temporarily unresponsive Web servers, unpredictable effects of Web
caches (including intermediate proxy servers), and other, non-repeatable behavior. Fur-
thermore, certain datasets published as Linked Data on the WWW change frequently;
as a consequence, experiments based on queries that discover and use such data become

151

7. An Iterator-Based Implementation

non-reproducible quickly. Therefore, we set up a controlled simulation environment that
implements multiple Webs of Linked Data for our experiments.
The only experiment during which we queried Linked Data on the WWW is related to

Hypothesis 7.1 (for which results would otherwise be easily manipulable by parameters
configured for the simulation environment). This WWW-based experiment also provides
us with a general understanding of typical query execution times, response times, and
size of retrieved data (number of documents and RDF triples) as can be expected for
Linked Data queries over the WWW.
This section proceeds as follows: First, we briefly introduce the query execution system

used for our experiments. Then, we describe and discuss the WWW-based experiment.
Afterwards, we focus on the simulation-based experiments.

7.3.1. Our Query Execution System

As a basis for our experiments we developed a query execution system called SQUIN [73].
The program is written in Java and is available as Free Software at the project home-
page [68]. SQUIN consists of the following main components:

dataset This component provides a physical main memory representation of a query-
local dataset and, thus, enables the query system to (temporarily) store and to
access all data retrieved from the Web during a query execution. The basis of
this component is a main memory data structure that stores RDF triples from
all discovered documents in a single index. This index consists of six hash tables
to efficiently support all possible types of triple pattern based lookups. In earlier
work we provide a comprehensive discussion of this data structure [77].

lookup This component processes URI lookups using the HTTP protocol. Due to a
multi-threaded implementation, multiple lookup tasks may run in parallel. For
the experiments we allow SQUIN to use a maximum of 20 lookup threads. Fur-
thermore, we configured a timeout of 30 seconds for each lookup. In addition to the
actual lookups, the lookup component manages (i) the status of currently running
lookups and (ii) the results of completed lookups. By using such information, the
component avoids looking up the same URI multiple times.

engine This component provides the actual query engine that implements a travers-
al-based query execution using the iterator-based implementation approach. The
engine makes use of the aforementioned components to find matching triples and
to initiate URI lookups during the execution of a query. In its primary mode of
operation the engine clears all data structures (e.g., the query-local dataset, the
index of completed URI lookups) before it starts executing a given query.

In the version used for our experiments, SQUIN contains no component for selecting a
logical execution plan. Instead, the order in which triple patterns of a query appear in
the given serialization of the query are used as the logical plan.

152

7.3. Experimental Analysis

For the experiments we instrumented SQUIN to measure (i) the number of returned
solutions for each query, (ii) query execution time, (iii) the number of retrieved docu-
ments, (iv) the number of URI lookups that timed out, and (v) the average URI lookup
time. We then set up a benchmark system that integrates SQUIN. This system runs in
a virtual machine on a server in the university network. Hence, it has comparably fast
access to the WWW. The virtual machine has a single (virtual) processor and 4 GB of
main memory. The operating system on the virtual machine is openSUSE Linux 11.2
with Sun Java 1.6.0.

7.3.2. WWW-Based Experiment

In our first experiment we executed particular CLD(M) queries over the WWW to test
Hypothesis 7.1. In the following we describe this experiment and discuss the results.

Queries

For this experiment we used a mix of 18 queries. These queries, denoted by WQ1 to
WQ18, can be found in the Appendix (cf. Section D.1, page 211ff). Eleven of these queries
have been proposed as Linked Data queries for the FedBench benchmark suite [141].
These “queries vary in a broad range of characteristics, such as number of sources in-
volved, number of query results, and query structure” [141]. However, we had to slightly
adjust five of these queries (WQ6, WQ7, WQ8, WQ9, and WQ10) because their original
versions use terms from outdated vocabularies. These adjustments do not change the
intent of the queries or their structural properties.
In addition to these eleven FedBench queries, we used seven queries that are updated

versions of queries used for experiments in our earlier work [72, 79]. These seven queries
are designed such that each of the respective reachable subwebs covers data from a larger
number of data providers than the reachable subwebs of the FedBench queries. Hence,
these seven queries add more diversity to the query mix.
Overall the query mix covers a variety of structural properties. The BGPs in these

queries consist of two to eight triple patterns and contain between two to seven different
query variables. Some of these BGPs are “star-shaped” (i.e., one variable is contained in
all triple patterns of the BGP), others are “path-shaped” (i.e., every variable is contained
in at most two triple patterns), and a third group presents mixtures of star-shaped and
path-shaped BGPs. Table 7.1 characterizes all 18 test queries w.r.t. these properties.

Procedure

For the experiment we executed the 18 queries sequentially (i.e., one after the other).
Such a sequential execution avoids measuring artifacts of concurrent executions. To
exclude possible interference between subsequent query executions, we use SQUIN in its
primary mode of operation as described in Section 7.3.1 (cf. page 152f), that is, each
query execution within the sequence starts with an initially empty query-local dataset.
Hereafter, we refer to these executions of the test queries as data-retrieving executions.

153

7. An Iterator-Based Implementation

Query Number of
seed URIs

Number of
triple patterns

Number of
variables

Primary
structure

WQ1 1 3 3 path-shaped
WQ2 1 3 3 path-shaped
WQ3 1 4 4 mixed
WQ4 1 5 4 path-shaped
WQ5 2 3 2 star-shaped
WQ6 1 3 3 path-shaped
WQ7 2 3 3 path-shaped
WQ8 1 5 5 mixed
WQ9 1 3 2 path-shaped
WQ10 1 3 3 path-shaped
WQ11 1 5 5 star-shaped
WQ12 2 6 5 mixed
WQ13 1 5 5 path-shaped
WQ14 1 6 5 mixed
WQ15 1 2 2 path-shaped
WQ16 1 3 3 path-shaped
WQ17 1 8 7 mixed
WQ18 1 6 5 mixed

Table 7.1.: Structural properties of the queries used for the WWW-based experiment.

To minimize the potential of impacting the experiment by unexpected network traffic
we performed five of the aforementioned sequential runs and combine the measurements
by calculating the arithmetic mean for each query, respectively. By this procedure we
obtain the following primary measurements for each test query:

• the average number of documents retrieved during data-retrieving executions of
the query,

• the average number of solutions returned for the query during data-retrieving ex-
ecutions, and

• the average time for completing the data-retrieving executions of the query.

Furthermore, for each test query we also recorded the minimum and maximum of (i) the
number of retrieved documents, (ii) the number of returned solutions, and (iii) the query
execution time as measured during the five runs (of data-retrieving executions).
To test Hypothesis 7.1 we also need the data retrieval time, that is, the fraction of

the query execution time that SQUIN spends on data retrieval. However, this fraction
is difficult to determine during data-retrieving executions because data retrieval and
query-local data processing are deeply interwoven in SQUIN (as suggested by our query
execution model); furthermore, due to a multi-threaded implementation of data retrieval,

154

7.3. Experimental Analysis

SQUIN usually performs multiple URI lookups in parallel (cf. Section 7.3.1, page 152f).
Consequently, simply summing up the runtime of all URI lookups would not be an
accurate approach for measuring the fraction of query execution time spent on data
retrieval (i.e., data retrieval time). Therefore, we applied the following cache-based
method to measure the data retrieval time for each test query.
We executed each test query twice: First, as for the aforementioned data-retriev-

ing executions, we executed the query using SQUIN in its primary mode of operation
(i.e., starting the query execution with an empty query-local dataset). Hence, during this
execution, SQUIN populates the (initially empty) query-local dataset as usual. After this
first execution we kept the populated query-local dataset and reused it as the initial que-
ry-local dataset for a second execution of the same test query. However, for this second
execution we deactivated SQUIN’s data retrieval functionality and, thus, used SQUIN
as if it was a standard SPARQL query engine. That is, we evaluated the test query
over the fixed dataset that we obtained from the first execution. As a result, we may
use the difference between the query execution time of this second execution—hereafter
called cache-based execution—and the average query execution time of the data-retriev-
ing executions as a measure of data retrieval time. Formally:

Definition 7.2 (Average Data Retrieval Time). Let q be a test query; let toverall be
the average query execution time measured for the data-retrieving executions of q; and
let tlocal be the query execution time measured for the cache-based execution of q. The
average data retrieval time for test query q is tretrieval := toverall − tlocal. 2

Arguably, this method of measuring data retrieval time is not completely accurate. By
starting the cache-based executions with query-local datasets that are already popu-
lated completely, our query engine may compute additional intermediate solutions (that
are not computed based on an initially empty, continuously augmented query-local
dataset) [71]. Thus, for the cache-based executions, the amount of query-local data
processing may be greater than what it actually is in the data-retrieving executions.
Therefore, our method may underestimate the actual data retrieval times. However,
underestimation does not invalidate a verification of Hypothesis 7.1.

Measurements

We conducted the experiment from September 17, 2012 to September 18, 2012. Thus,
the measurements that we report in the following, reflect the situation of Linked Data
on the WWW during that time (and may be different for other points in time).
The chart in Figure 7.4 depicts the average number of solutions returned for each of

the 18 test queries during the five primary, data-retrieving runs. Figure 7.5 reports the
corresponding number of retrieved documents. The range bar laid over each of the main
bars in these two charts denotes the minimum and maximum values that contribute to
the average represented by the main bar (for the exact minimum and maximum values
we refer to Table D.1 in the appendix, cf. page 215).
These range bars indicate that the measurements for queries WQ5, WQ8, WQ17, and

WQ18 varied significantly for the five runs, whereas the measurements for the other

155

7. An Iterator-Based Implementation

Figure 7.4.: Average number of solutions returned for each of the 18 test queries in the
WWW-based experiment.

queries have been consistent. A closer inspection of the statistics recorded during the
experiment reveals that for query WQ5, WQ8, WQ17, and WQ18, some atypical URI
lookup timeouts occurred during one of the five executions, respectively.
For instance, there are four executions of query WQ8 during which SQUIN recorded

48 lookup timeouts and retrieved 331 LD documents, respectively; during the other exe-
cution of query WQ8, SQUIN observed an atypical number of 160 timeouts. As a result,
during this atypical execution, SQUIN retrieved only 59 of the 331 LD documents.1 The
smaller number of retrieved documents also has an effect on the number of solutions
that SQUIN returned during the atypical execution of query WQ8 (see the lower bound
of the corresponding range bar in Figure 7.4).
An even more extreme example is query WQ17 for which the lookup of the seed URI

of the query timed out during one of the five executions. In this case, the lack of seed
data made the traversal-based discovery of further data impossible. As a result, during
this atypical execution of query WQ17, SQUIN did not retrieve a single document and
returned no solutions for the query.
While Figures 7.4 and 7.5 show measurements for the data-retrieving runs, correspond-

ing numbers for the cache-based run follow from these measurements: We ensured that
the particular (data-retrieving) executions based on which we populated the query-local

1We explain the disparity in the differences between the typical and the atypical number of timeouts
(48 vs. 160) and between the typical and the atypical number of retrieved documents (331 vs. 59) as
follows: Some of the documents missed due to the additional timeouts during the atypical execution,
have enabled SQUIN to discover further documents during the four typical executions.

156

7.3. Experimental Analysis

Figure 7.5.: Average number of documents retrieved during executions of the 18 test
queries in the WWW-based experiment.

datasets for the cache-based executions are not atypical. Hence, for each test query, the
cache-based run (re)used a pre-populated dataset that consisted of the data from all doc-
uments whose retrieval contributed to the corresponding measurement in the rightmost
column of Table D.1(b) (cf. page 215). The number of solutions returned in the cache-
based executions is consistent with the numbers reported for the typical data-retrieving
executions (that is, the numbers in the rightmost column of Table D.1(a), page 215).
Figure 7.6 reports query execution times. In particular, the dark gray, hatched bars

in the chart represent the query execution times measured during the cache-based run.
The light gray bars represent the average query execution times of the primary, da-
ta-retrieving executions; range bars, again, denote the minimum and maximum values
that contribute to the average (Table D.2 in the appendix lists the exact minimum and
maximum values; cf. page 216).

Result

Based on Figure 7.6 we observe that for each test query the average execution time
measured during the data-retrieving runs is significantly larger than the time required
for the cache-based execution. More precisely, these times differ by two (for query WQ17)
to five (for queries WQ6, WQ7, WQ8, WQ10, WQ15, and WQ16) orders of magnitude. As
discussed in the context of Definition 7.2 (cf. page 155), these differences approximate the
net times that SQUIN required for retrieving data during the traversal-based executions
of the test queries. Thus, the measurements show that the overall (traversal-based)

157

7. An Iterator-Based Implementation

Figure 7.6.: Comparison of overall execution times for each of the 18 test queries in the
WWW-based experiment.

query execution time for the test queries is dominated by the data retrieval time, which
verifies Hypothesis 7.1.

7.3.3. Simulation Based Experiments
To answer Questions 7.1 to 7.7 we set up a controlled environment that allows us to
simulate multiple Webs of Linked Data. Based on this environment, we conducted a
series of experiments during which we executed all possible query plans for particular
CLD(M) queries over different simulated Webs. In the following we first describe the
experimental setup, that is, the simulation environment, the simulated Webs of Linked
Data, and the test queries; thereafter, we discuss the experiments and their results.

Simulation Environment

For the simulation environment, we developed a Java servlet called WODSim (which is
available at the SQUIN Web site [68]). This servlet simulates a (finite) Web of Linked
Data by answering all URI lookup requests that Web clients may send to potential Web
servers in the simulated Web. The basis of such a simulated Web are (gzip-compressed)
RDF documents stored in a particular structure of subdirectories in the file system of
the servlet container that deploys WODSim. More precisely, each of these documents
contains the data for an LD document of the simulated Web. When WODSim serves
such document (on behalf of a simulated Web server), it transforms the data of the
document by prefixing any URI mentioned in the document with the URL at which

158

7.3. Experimental Analysis

the WODSim instance is deployed on the WWW. This transformation ensures that all
URIs that appear in the simulated Web refer back to the WODSim instance hosting
the simulation. Hence, systems built for accessing Linked Data on the WWW (such as
SQUIN) may traverse the simulated Web without crossing over to the wider WWW.
For the experiments, we deployed WODSim using an Apache Tomcat Web server

(version 6.0.33) on a second virtual machine. This virtual machine has the same config-
uration and runs on the same server as the virtual machine that hosts our SQUIN-based
benchmark system (cf. Section 7.3.1, page 152f).

Simulated Webs of Linked Data

The overall goal of our experiments is to investigate the effects of using link traversing
iterators for queries over a Web of Linked Data. However, the observability of these
effects may be highly dependent on how such a queried Web is structured and how data is
distributed. Therefore, we used multiple Webs of Linked Data for all of our experiments.
In fact, some of the experiments (in particular, those related to Questions 7.3 and 7.4)
inherently require executing the same query plans in different Webs. To be able to
meaningfully compare such executions over different Webs, we generated each of these
Webs using the same base dataset.
This base dataset consists of synthetic RDF data created with the data generator

that is part of the Berlin SPARQL Benchmark (BSBM) suite [19]. The data describes
entities in a fictitious distributed e-commerce scenario, including different producers and
vendors, products, product offers, and reviews from multiple reviewing sites. Figure 7.7
illustrates the RDF vocabulary used for these descriptions.
To obtain the particular BSBM dataset based on which we generated our test Webs,

we executed the BSBM data generator using a scaling factor of 200. The resulting base
dataset consists of 75,150 RDF triples and describes 7,329 entities (namely: 21 product
types, 999 product features, 5 producers, 200 products, 2 vendors, 4,000 offers, and 1
rating site with 101 reviewers and 2,000 reviews). Each of these entities is identified
by a single, unique URI. We denote the set of these URIs by Utest (i.e., Utest ⊆ U and
|Utest| = 7, 329), and the base dataset by Gtest.
Each test Web that we generated from the base dataset consists of 7,329 LD docu-

ments, each of which is authoritative for a different URI u ∈ Utest. To distribute the
base dataset Gtest over these documents, we partitioned Gtest into 7,329 (potentially
overlapping) subsets. While the particular partitioning process differed for the different
test Webs (as described in the following), we ensured that every RDF triple in the sub-
set for the LD document generated for URI u ∈ Utest has u as subject or as object (as
encouraged by the Linked Data principles [14]). As a result, every test Web is a Web of
Linked Data Wtest = (D, data, adoc) that has the following six properties:

1.
∣∣D∣∣ = 7, 329.

2. For each URI u ∈ Utest, adoc(u) ∈ D.

3. For each pair of distinct URIs u, u′ ∈ Utest (i.e., u 6= u′), adoc(u) 6= adoc(u′).

159

7. An Iterator-Based Implementation

Figure 7.7.: An entity-relationship model that illustrates the RDF vocabulary used for
BSBM datasets. Entity sets represent classes; relationship sets represent
properties. Attributes represent additional properties whose ranges are lit-
erals. Key attributes (representing the URI of each entity) are omitted.

4. For each URI u /∈ Utest, adoc(u) =⊥.

5. AllData(Wtest) = Gtest.

6. For every URI u ∈ Utest and RDF triple (s, p, o) ∈ data
(
adoc(u)

)
, u ∈ {s, o}.

Property 5 shows that all RDF triples in our test Webs come from the base dataset and,
conversely, each RDF triple from the base dataset is available in every test Web.
Since none of the RDF triples generated by the BSBM data generator contains a blank

node, the base dataset consists of two types of RDF triples only: RDF triples from the
set U × U × U , henceforth referred to as URI-only triples, and RDF triples from the set
U × U × L, henceforth referred to as literal triples.
To ensure Properties 5 and 6 for every test Web, we always added each of the literal

triples to the data of the LD document generated for the subject URI of that triple; i.e.,
for each literal triple t = (s, p, o) ∈ Gtest, we ensured that t ∈ data

(
adoc(s)

)
holds for

every test Web Wtest = (D, data, adoc).

160

7.3. Experimental Analysis

For any URI-only triple t ∈ Gtest, it was possible to either add t only to the LD
document for the subject of t, add t only to the LD document for the object of t, or add
t to both of these documents. The first of these three options establishes a subject-based
data link pointing to the LD document for the object of t, the second option establishes
an object-based data link to the LD document for the subject of t, and the third option
establishes both the subject-based and the object-based data link. It is easy to see
that choosing among these three options (where the choice may differ for each URI-only
triple) may have a significant impact on the structure of the resulting test Web.
We applied a random-based approach to choose among these three options for any

URI-only triple. This approach is based on the following two metrics (which we shall
use to characterize the structure of our test Webs): Informally, the bidirectional inter-
linkage (or simply b-interlinkage) of a test Web is the percentage of all URI-only triples
that establish both a subject-based and an object-based data link; the non-bidirectional,
subject-based interlinkage (or simply nbsb-interlinkage) of a test Web is the percentage
of the remaining URI-only triples that establish a subject-based data link (and not an
object-based data link). Formally, we define these metrics for an arbitrary Web of Linked
Data (not just our test Webs) as follows:

Definition 7.3 (b-interlinkage and nbsb-interlinkage). Let W = (D, data, adoc)
be a Web of Linked Data and let Tor, Tand, and Tsubj be the following sets of (URI-only)
RDF triples in AllData(W):

Tor =
{

(s, p, o) ∈ U × U × U
∣∣∣ (s, p, o) ∈ data(adoc(s)) or (s, p, o) ∈ data

(
adoc(o)

)}
,

Tand =
{

(s, p, o) ∈ U × U × U
∣∣∣ (s, p, o) ∈ data(adoc(s)) and (s, p, o) ∈ data

(
adoc(o)

)}
,

Tsubj =
{

(s, p, o) ∈ U × U × U
∣∣∣ (s, p, o) ∈ data(adoc(s)) and (s, p, o) /∈ data

(
adoc(o)

)}
.

Then, the b-interlinkage ofW, denoted by bi(W), and the nbsb-interlinkage ofW, denoted
by nbsbi(W), are defined as follows:

bi(W) := 100% · |Tand|
|Tor|

and nbsbi(W) := 100% · |Tsubj|
|Tor \ Tand|

.
2

We emphasize that there exists exactly one test Web with a b-interlinkage of 0% and
an nbsb-interlinkage of 100%. In this test Web, hereafter denoted by W 0,100

test , any base
dataset triple is contained only in the LD document generated for the subject of that
triple. Similarly, there exists exactly one test Web, W 0,0

test, with both a b-interlinkage of
0% and an nbsb-interlinkage of 0%, and there exists exactly one test Web, W 100

test , with
100% b-interlinkage (nbsb-interlinkage is irrelevant for the latter).
Any other pair of b-interlinkage and nbsb-interlinkage does not uniquely determine

a particular test Web. Instead, for any such pair (b, n), there exist multiple test Webs,
each of which has a b-interlinkage of b and an nbsb-interlinkage of n. These test Webs
have link graphs that are very similar to each other. When we partitioned the base
dataset Gtest to generate such a test Web W b,n

test = (D, data, adoc), we used a random-

161

7. An Iterator-Based Implementation

based approach. That is, for each URI-only triple (s, p, o) ∈ Gtest, we randomly selected
one of the aforementioned three options (i.e., adding the triple to LD document adoc(s),
to LD document adoc(o), or to both) such that the resulting test Web has the given
pair of b-interlinkage b and nbsb-interlinkage n. Hence, each of the three options had
a certain probability of being (randomly) selected; essentially, these probabilities are a
function of the given interlinkage values b and n (i.e., we used b as the probability for
choosing to add a URI-only triple (s, p, o) ∈ Gtest to both LD documents ds = adoc(s)
and do = adoc(o), and we used n as the conditional probability for choosing to add the
triple to ds if it has not been added to both ds and do).
For most of our evaluation questions, we are interested in test Webs whose pair of

interlinkage values is most representative of the interlinkage values of (real) Linked
Data on the WWW. To determine such representative interlinkage values we analyzed
a comprehensive corpus of real Linked Data that has been crawled for the Billion Triple
Challenge 2011 [64]. This corpus consists of about 7.9 million LD documents; the overall
number of RDF triples distributed over these documents is 2.15 billion (where the overall
number of unique RDF triples is 1.97 billion) and the number of URIs mentioned in these
triples is 103 million. For this corpus of real Linked Data, we determined a b-interlinkage
of 62% and an nbsb-interlinkage of 47%.
Given this pair of values, we generated ten different test Webs using the random-based

approach as outlined before. Thus, each of these ten Webs has a b-interlinkage of 62%
and an nbsb-interlinkage of 47% (and the aforementioned six properties). Furthermore,
although they differ slightly, the link graphs of these ten Webs are very similar to each
other. For instance, for an arbitrarily specified path, the prior probability that this
path exists in the respective link graph is the same for each of these test Webs (and
different from the corresponding prior probability that we may find for any test Web
that has another pair of interlinkage values). Hereafter, we denote these ten test Webs
by W 62,47,1

test , W 62,47,2
test , . . . , W 62,47,10

test .
In addition to these, structurally very similar test Webs, we are interested in a set of

test Webs that covers a wide variety of link graphs (in order to study Question 7.4). For
this purpose, we randomly generated another ten test Webs based on ten different pairs
of b-interlinkage and nbsb-interlinkage. We denote these test Webs by W 0,33

test , W
0,66
test ,

W 33,0
test , W

33,33
test , W 33,66

test , W 33,100
test , W 66,0

test , W
66,33
test , W 66,66

test , and W 66,100
test , where the superscript

identifies the corresponding pair of b-interlinkage and nbsb-interlinkage. Finally, we
complemented this set of test Webs for Question 7.4 by adding the aforementioned test
Webs W 0,0

test, W
0,100
test , and W 100

test .
We materialized each of the 23 generated test Webs into a separate structure of sub-

directories in the file system of our WODSim-based simulation server. Hence, switching
from one of the test Webs to another is a matter of restarting the WODSim servlet with
a particular configuration parameter that points to the corresponding directory.

Queries and Query Plans

As a basis for the simulation-based experiments we used six CLD(M) queries, SQ1 to SQ6,
which can be found in the Appendix (cf. Section D.3, page 216f). These queries differ
w.r.t. their structural properties, as summarized in Table 7.2.

162

7.3. Experimental Analysis

Query Number of
seed URIs

Number of
triple patterns

Number of
variables

Primary
structure

SQ1 2 3 2 path-shaped
SQ2 1 3 3 path-shaped
SQ3 1 3 3 star-shaped
SQ4 1 4 3 path-shaped
SQ5 1 4 3 mixed
SQ6 2 4 3 path-shaped

Table 7.2.: Structural properties of the test queries used for the simulation-based
experiments.

In addition to the structural diversity, these queries also differ w.r.t. the types of paths
that establish the query-specific reachable subwebs of our test Webs. For instance, for
query SQ2, any such path needs to start with a subject-based data link from the author-
itative document for Review110 to a document for the product associated with the review;
from there, paths may alternate between subject-based data links from documents for
products to documents for product features and object-based data links from documents
for product features to documents for products. In contrast, for query SQ3, such paths
can only have a length of 1 and need to consist of an object-based data link from the
authoritative document for Product128 to a document for a review about the product.
For each of the six test queries we generated all possible query plans, each of which

presents a different permutation of the set of triple patterns as given for the respective
query. As a result, we obtained an overall number of 90 query plans (six for the three
queries with three triple patterns and 24 for the three queries with four triple patterns).

Procedure

For the simulation-based experiments we used SQUIN to perform different query execu-
tion runs. Each of these runs consists of executing the 90 query plans over a particular
test Web. As for the WWW-based experiment, we avoided measuring artifacts of con-
current query executions by executing all query plans sequentially, one after another, and
we excluded possible interference between subsequent query executions by using SQUIN
in its primary mode of operation (i.e., for each query plan, SQUIN starts with an initially
empty query-local dataset). Another aspect that might limit the comparability of our
measurements is the nondeterministic behavior of link traversing iterators (as discussed
in the context of Example 7.4, page 139). Since this type of nondeterminism is irrelevant
for testing Hypothesis 7.1, we deliberately ignored it for the WWW-based experiments.
However, for the simulation-based experiments, we need to take the nondeterministic
behavior of link traversing iterators into consideration.
To investigate whether this nondeterministic behavior has a practical impact (cf. Ques-

tion 7.6), we added two deterministic implementations of a link traversing iterator to
SQUIN. These implementations represent any set of precomputed solutions (i.e., the set

163

7. An Iterator-Based Implementation

Ωtmp in Listing 7.4, page 135) as a list and return such solutions in the order in which
they appear in the list. The particular (total) order used for the list is based on how
SQUIN represents valuations internally and is irrelevant for our discussion. While both
deterministic implementations use this (artificial) order, one of them always returns the
precomputed solutions starting from the begin of the list, whereas the other implemen-
tation always starts from the end. Consequently, we refer to query execution runs for
which we use these (deterministic) implementations as ascending runs and descending
runs, respectively. Nondeterministic runs, in contrast, use the standard, nondetermin-
istic implementation.
We performed these runs for all of the aforementioned 23 test Webs. During the

execution of each of the 90 query plans in such a run, we measured the number of
documents retrieved and the number of solutions returned. We do not report query
execution times here because, as per Hypothesis 7.1 (which we have verified by the
WWW-based experiment), measuring query execution times basically means measuring
the response time of our WODSim-based simulation environment. Furthermore, we
emphasize that due to the reliability of this environment, SQUIN did not observe any
URI lookup failures or timeouts during the simulation-based experiments. Thus, all
measurements presented in the following section are error-free.
For some of our evaluation questions (in particular, for Questions 7.1, 7.2, 7.3, and 7.4)

we need to know what the (complete) query result of our 6 test queries over each of the
test Webs is and how many of the 7,329 LD documents of each test Web are reachable
in the context of each test query. However, these numbers cannot be measured during
ascending, descending, or nondeterministic runs (because link traversing iterators cannot
guarantee completeness). Hence, to obtain these numbers we performed an additional
completeness run for each test Web. During such a run we executed each of the 6 test
queries using a two-phase algorithm that is similar to the algorithm implemented by
the 2P machine (cf. Algorithm 4.1, page 88). That is, given a test query, the algorithm
first retrieves all reachable LD documents by traversing data links that qualify according
to reachability criterion cMatch (recall that our test queries are CLD(M) queries; hence,
cMatch-semantics applies). Second, the algorithm evaluates the BGP of the test query
over all data from the retrieved documents and, thus, computes the (complete) query
result. Since the algorithm is a straightforward adaptation of Algorithm 4.1, we omit
proving its properties (soundness, completeness, and termination for any Web of Linked
Data that is finite such as our test Webs); instead, we refer to the formal discussion of
Algorithm 4.1 (in particular, Lemmas 4.2, 4.3, and 4.4; cf. pages 88 to 89).

Measurements

The measurements that we obtained using test Webs W 62,47,1
test to W 62,47,10

test are very
similar to each other. Therefore, this section presents detailed measurements for test Web
W 62,47,1

test only. Thereafter, we discuss our observations and refer to the measurements
obtained using the other test Webs when necessary.
The charts in Figures 7.8 and 7.9 depict these measurements (cf. pages 166 and 167).

More precisely, Figures 7.8(a), 7.8(c), 7.8(e),7.8(g), 7.9(a), and 7.9(c) report the number

164

7.3. Experimental Analysis

of solutions returned by executing the query plans for test query SQ1, SQ2, SQ3, SQ4,
SQ5, and SQ6 over test Web W 62,47,1

test , respectively. The corresponding numbers of
retrieved documents can be seen in Figures 7.8(b), 7.8(d), 7.8(f),7.8(h), 7.9(b), and
7.9(d). The x-axises in these charts represent the query plans. Labels on these axises
(given in parentheses) indicate a specific structural property of the plans that is relevant
for our discussion below; we shall introduce this property in the context of this discussion.
The bars in these charts represent the respective measurements obtained during the

ascending, descending, and nondeterministic run; the corresponding measurements of
the completeness run are represented as a dotted line that stretches across the bars
(because, for each test query, the cardinality of the complete query result is independent
of the query plan used, and so is the number of reachable documents).
For instance, from Figures 7.8(a) and 7.8(b) we see that the complete query result for

test query SQ1 (over test Web W 62,47,1
test) consists of 563 solutions and the corresponding

reachable subweb of the test Web comprises 3,834 documents. During the ascending
run, the first plan for query SQ1 discovered and retrieved 2,201 of the 3,834 reachable
documents and returned 482 of the 563 solutions (see the leftmost bars in the figures).

Discussion of Questions 7.1 and 7.2

The first and most striking observation from our measurements in Figures 7.8 and 7.9 is
that the lack of semantic equivalence between different logical plans for a query (as shown
theoretically in Section 7.2.1, page 137ff) has a significant practical impact. For any of
the six test queries, the degree of completeness of the computed query results differs
drastically between the different execution plans, and so does the number of discovered
documents. For all test queries except SQ4, there exist plans that return empty query
results. In contrast, other plans achieve degrees of result completeness of up to 86%,
86%, 100%, 94%, 50%, and 78% for query SQ1 to query SQ6, respectively.
Table 7.3 (on page 168) shows that we observed similar differences (as well as similar

minimum and maximum degrees of result completeness) in the other test Webs generated
with 62% b-interlinkage and 47% nbsb-interlinkage. While we shall discuss reasons for
these differences below, these differences show that it is impossible to provide a general
answer for Questions 7.1 and 7.2 (other than that the percentages may range from 0%
to 100%). Therefore, in the remainder of this section we focus on the other evaluation
questions and discuss them one after another.

Discussion of Question 7.3

To investigate whether link traversing iterator based query plans exhibit a correlation
between (i) the degree of result completeness and (ii) the percentage of reachable doc-
uments discovered (Question 7.3), we computed these two numbers for each of the 90
query plans for every ascending run (i.e., over any of our test Webs); we then plotted
the resulting pairs of numbers as points in scatter charts.

165

7. An Iterator-Based Implementation

(a
)

(c
)

(e
)

(b
)

(d
)

(f
)

fo
r
qu

er
y
SQ

1
fo
r
qu

er
y
SQ

2
fo
r
qu

er
y
SQ

3

(g
)

(h
)

fo
r
qu

er
y
SQ

4

Fi
gu

re
7.
8.
:M

ea
su
re
m
en
ts

fo
r
qu

er
yi
ng

te
st

W
eb

W
62
,4

7,
1

te
st

us
in
g
al
lp

os
sib

le
qu

er
y
pl
an

s
fo
r
te
st

qu
er
ie
s
SQ

1
to

SQ
4.

166

7.3. Experimental Analysis

(a
)

(b
)

fo
r
qu

er
y
SQ

5

(c
)

(d
)

fo
r
qu

er
y
SQ

6

Fi
gu

re
7.
9.
:M

ea
su
re
m
en
ts

fo
r
qu

er
yi
ng

te
st

W
eb

W
62
,4

7,
1

te
st

us
in
g
al
lp

os
sib

le
qu

er
y
pl
an

s
fo
r
te
st

qu
er
ie
s
SQ

5
an

d
SQ

6.

167

7. An Iterator-Based Implementation

T
es
t

Q
ue

ry
SQ

1
Q
ue

ry
SQ

2
Q
ue

ry
SQ

3
Q
ue

ry
SQ

4
Q
ue

ry
SQ

5
Q
ue

ry
SQ

6
W
eb

m
in

m
ax

cm
pl

m
in

m
ax

cm
pl

m
in

m
ax

cm
pl

m
in

m
ax

cm
pl

m
in

m
ax

cm
pl

m
in

m
ax

cm
pl

W
62
,4

7,
1

te
st

0
0.
86

56
3

0
0.
86

35
0

1
8

0.
11

0.
94

18
0

0.
5

2
0

0.
78

90
W

62
,4

7,
2

te
st

0
0.
82

55
4

0
0.
89

36
0

1
8

1
1

1
0

1
2

0.
36

0.
89

89
W

62
,4

7,
3

te
st

0
0.
82

56
0

0
0.
88

34
0

1
9

0.
11

0.
95

19
0

1
1

0
0.
68

88
W

62
,4

7,
4

te
st

0
0.
86

55
9

0
0.
82

34
0

1
10

0.
05

0.
81

21
0

1
1

0.
32

0.
81

88
W

62
,4

7,
5

te
st

0
0.
83

56
1

0
0.
83

35
0

1
8

0.
11

0.
95

19
0

1
1

0.
33

0.
91

89
W

62
,4

7,
6

te
st

0
0.
87

56
6

0
0.
79

33
0

1
9

1
1

1
0

0.
5

2
0.
30

0.
78

87
W

62
,4

7,
7

te
st

0
0.
84

55
5

0
0.
78

36
0

1
8

0.
11

0.
89

18
0

1
1

0.
31

0.
83

90
W

62
,4

7,
8

te
st

0
0.
82

56
1

0
0.
77

35
0

1
10

0.
05

0.
74

19
0

1
2

0.
30

0.
88

89
W

62
,4

7,
9

te
st

0
0.
84

56
3

0
0.
80

35
0

1
10

1
1

1
0

1
3

0.
32

0.
80

89
W

62
,4

7,
10

te
st

0
0.
81

56
2

n/
a

n/
a

0
0

1
10

0.
11

0.
90

19
n/
a

n/
a

0
0.
33

0.
75

89

Ta
bl
e
7.
3.
:M

in
im

um
an

d
m
ax

im
um

de
gr
ee

of
re
su
lt

co
m
pl
et
en

es
s
ac
hi
ev
ed

by
ex
ec
ut
in
g
th
e
di
ffe

re
nt

po
ss
ib
le

qu
er
y
pl
an

s
fo
r
te
st

qu
er
ie
s
SQ

1
to

SQ
6
ov
er

di
ffe

re
nt

te
st

W
eb

s
(d
ur
in
g
th
e
as
ce
nd

in
g
ru
ns
).

To
pu

t
th
es
e
nu

m
be

rs
in
to

pe
rs
pe

ct
iv
e,

th
e
cm

pl
co
lu
m
ns

lis
t
th
e
ca
rd
in
al
ity

of
th
e
co
m
pl
et
e
qu

er
y
re
su
lts

fo
r
ea
ch

te
st

qu
er
y,

re
sp
ec
tiv

el
y.

168

7.3. Experimental Analysis

Figure 7.10.: Correlation between the percentage of reachable documents discovered by
any query plan and the degree of result completeness achieved by that
plan (for the ascending run over test Web W 62,47,1

test); any point represents
a particular plan for one of the six test queries.

Figure 7.10 depicts such a chart for the ascending run over test Web W 62,47,1
test (i.e.,

the points in this chart are based on the measurements presented in Figures 7.8 and
7.9). For instance, the first two plans for query SQ3 are represented by two (coincident)
points in the top-right corner of the chart (both plans returned the complete query
result and retrieved all reachable documents in test Web W 62,47,1

test). We emphasize that
the analogous charts generated for the other test Webs are very similar to Figure 7.10.
The distribution of points in each of these charts does not suggest a general, mutual

dependency between result completeness and the percentage of discovered documents.
However, we notice that for each test query, the query plans that return the most solu-
tions (i.e., achieve the highest degree of completeness) are among the plans that discover
a comparably high number of reachable documents. On the other hand, our measure-
ments refute the logical converse of this observation. That is, a statement such as “those
query plans for a query that discover a comparably high number of reachable documents,
achieve the highest (or, at least, a comparably high) degree of completeness” is not sup-
ported by our measurements. As counterexamples, consider the measurements for query
plans 4.1, 4.7, 4.9, and 4.10 in Figures 7.8(g) and 7.8(h). Another, more extreme coun-
terexample are the measurements for query plan 6.9 in Figures 7.9(c) and 7.9(d).

Discussion of Question 7.4

We now turn to Question 7.4, which focuses on the dependency between the distribution
of data over a queried Web of Linked Data and the degree of result completeness achieved
by link traversing iterators. To discuss this question, we focus on a single query execution
plan per test query. In particular, for each test query, we focus on a plan that achieved

169

7. An Iterator-Based Implementation

the highest degree of completeness during the ascending run over test Web W 62,47,1
test (as

reported in Figures 7.8 and 7.9). For query SQ1 this is plan 1.1, for SQ2 it is plan 2.1,
and for SQ3, SQ4, SQ5, and SQ6 it is 3.1, 4.2, 5.1, and 6.10, respectively. For ease of
reference, we used these plans for the particular serialization of our six test queries as
given in the Appendix (cf. Section D.3, page 216f); that is, the order in which triple
patterns of the test queries appear in the given serializations is the order prescribed by
the aforementioned six plans (i.e., 1.1, 2.1, 3.1, 4.2, 5.1, and 6.10).
The charts in Figure 7.11 present the degree of completeness achieved by these six

query plans during ascending runs over different test Webs. In particular, these are the
13 test Webs that we generated using b-interlinkage and nbsb-interlinkage of 0%, 33%,
66%, and 100%, respectively. Each bar in these charts represents the measurement for
one of these test Webs (since nbsb-interlinkage is irrelevant for a b-interlinkage of 100%,
the four bars in the back of each chart represent the same measurement, respectively).
To put these measurements into perspective, Figure 7.11 also includes charts that re-
port the cardinalities of the corresponding complete query results (as measured by the
corresponding completeness runs). These charts reveal that the complete results of our
test queries over some test Webs are empty (under cMatch-semantics). For instance, SQ1
overW 0,100

test has an empty result (cf. Figure 7.11(b)). We explain the latter by the lack of
object-based data links inW 0,100

test —without such links the (SQ1-specific) set of reachable
documents in W 0,100

test consists only of the seed documents for SQ1, because all triple pat-
terns of SQ1 have a variable in the subject position. Apparently, in cases like this (i.e.,
emptiness of the complete query result), discussing the degree of result completeness
achieved by iterator-based query execution plans is meaningless.
As a first, general observation from Figure 7.11, we notice that for plans 1.1, 2.1, 4.2,

and 6.10, the degree of result completeness depends on the b-interlinkage of the queried
test Web: With an increasing b-interlinkage (i.e., a larger number of bidirectional data
links), the result completeness achieved by these plans also increases in almost all cases.
We also observe that in test Web W 100

test (which has a b-interlinkage of 100%), all six
plans achieve the maximum degree of completeness. We emphasize that this is not the
case for all 90 query plans. Instead, there exist plans that returned an empty set of query
solutions for every test Web. Most of these plans have the following property: None of
the respective seed documents contains a single matching triple for the first triple pattern
in such a plan (such matching triples may be available in other reachable documents but
those cannot be discovered by executing the plan in question). For instance, plan 3.3
prescribes the following order for the three triple patterns in query SQ3:

?review bsbm:rating1 ?rating .
?review bsbm:reviewFor <http:// ... /Product128> .
?review dc:title ?reviewTitle .

The document that is the authoritative document for Product128 is the seed document
for this query. However, in none of our test Webs, this document contains triples that
match the first triple pattern of plan 3.3 (i.e., the bsbm:rating1 triple pattern). Therefore,
plan 3.3 cannot return a single solution for query SQ3 in any test Web. This is in stark
contrast to plan 3.1 (as we can see in Figure 7.11(e)).

170

7.3. Experimental Analysis

(a
)
Q
ue

ry
SQ

1,
pl
an

1.
1

(b
)
Q
ue

ry
SQ

1,
co
m
pl
et
e

(c
)
Q
ue

ry
SQ

2,
pl
an

2.
1

(d
)
Q
ue

ry
SQ

2,
co
m
pl
et
e

(e
)
Q
ue

ry
SQ

3,
pl
an

3.
1

(f
)
Q
ue

ry
SQ

3,
co
m
pl
et
e

(g
)
Q
ue

ry
SQ

4,
pl
an

4.
2

(h
)
Q
ue

ry
SQ

4,
co
m
pl
et
e

(i)
Q
ue

ry
SQ

5,
pl
an

5.
1

(j
)
Q
ue

ry
SQ

5,
co
m
pl
et
e

(k
)
Q
ue

ry
SQ

6,
pl
an

6.
10

(l)
Q
ue

ry
SQ

6,
co
m
pl
et
e

Fi
gu

re
7.
11
.:
D
eg
re
e
of

re
su
lt

co
m
pl
et
en

es
s
ac
hi
ev
ed

by
pa

rt
ic
ul
ar

qu
er
y

pl
an

s
du

rin
g
as
ce
nd

in
g
ru
ns

ov
er

di
ffe

re
nt

te
st

W
eb

s
(g
en

er
at
ed

ba
se
d
on

di
ffe

re
nt

pa
irs

of
b-
in
te
rli
nk

ag
e
an

d
nb

sb
-in

te
rli
nk

ag
e)
.
To

pu
t
th
es
e
nu

m
be

rs
in
to

pe
rs
pe

ct
iv
e,

ev
er
y
ot
he

r
di
ag
ra
m

re
po

rt
s
th
e
ca
rd
in
al
iti
es

of
th
e
co
rr
es
po

nd
in
g
co
m
pl
et
e
qu

er
y
re
su
lts

.

171

7. An Iterator-Based Implementation

Query plan 3.1 (as well as plan 5.1) achieves the maximum degree of result complete-
ness in any relevant test Web (that is, any test Web in which the complete result for query
SQ3 is not empty). For plan 3.1 this observation is easily explained: The (SQ3-specific)
reachable subweb of any test Web contains (i) the aforementioned seed document (i.e.,
the authoritative document for Product128) and (ii) the authoritative documents for re-
views about Product128 linked to by an object-based data link in the seed document.
These data links can only be established by (URI-only) RDF triples that match the
bsbm:reviewFor triple pattern given in query SQ3. Since plan 3.1 assigns this pattern to
the first link traversing iterator, this iterator discovers and retrieves the complete set of
reachable documents even before the remaining iterators aim to find matching triples
for the other triple patterns of query SQ3.
Plan 5.1 also achieves the maximum degree of result completeness in any relevant test

Web (cf. Figure 7.11(i)). However, in contrast to plan 3.1, plan 5.1 does not guarantee
an exhaustive discovery of the respective reachable subweb of a queried test Web (as
the measurements in Figure 7.9(b) show). For instance, there may exist a review that is
not about Product128 but that is associated with a reviewer who also reviewed Product128.
While the authoritative document for such a review may be reachable in some test Web,
an execution of plan 5.1 cannot discover this document because the plan ignores object-
based data links from reviewers to reviews (the variable ?review is always already bound
when the third iterator evaluates the corresponding rev:reviewer triple pattern). However,
this limitation has no negative impact on result completeness because such review data
(that is reachable but cannot be discovered by executing plan 5.1), is not relevant for
query SQ5 (which is only concerned with reviews about Product128). What is important
is that, in any test Web, data about reviews (and about their reviewers) that is both
reachable and relevant for query SQ5, can always be discovered by plan 5.1; the paths to
such data in the link graphs of our test Webs corresponds to the order of triple patterns
as prescribed by the plan (i.e., object-based data links from Product128 to its reviews and
subject-based data links from these reviews to their reviewers).
The latter finding (i.e., the finding that the correspondence between paths to relevant

data and triple pattern order in a query plan may have an impact on whether the plan
discovers that data) also explains the following observation: For the other four plans
covered in Figure 7.11 (i.e., plans 1.1, 2.1, 4.2, and 6.10), the degree of completeness also
depends on the nbsb-interlinkage of the queried test Web (not only on the b-interlinkage).
We explain this observation for query plan 2.1, for which the expected (complete) query

results appeared to be almost the same for most of the test Webs (in fact, the same holds
for the respective sets of reachable documents). We first note that Review110 (mentioned
in query SQ2) is about Product128, which is associated with 36 different product features
in our base dataset Gtest. Consequently, in any test Web in which the LD documents for
these 36 product features are reachable (based on query SQ2), the complete result for
query SQ2 consists of 36 solutions. Such a document (for one of the 36 product features)
might be reachable due to the existence of a path (in the link graph of the queried Web)
that corresponds to the triple patterns in query plan 2.1, that is, (i) the path is of length
two, (ii) the first edge on the path is a subject-based data link from the (seed) document
for Review110 to the document for Product128, and (iii) the second edge is a subject-based

172

7.3. Experimental Analysis

data link from the document for Product128 to the document for the product feature.
However, such document may also be reachable in a test Web whose link graph does not
contain such a path: We note that the corresponding product feature is also associated
with other products, which in turn have other features. Then, by traversing recursively
between documents for products and documents for product features, we may eventually
discover those features of Product128 that are not explicitly mentioned in the authoritative
document for Product128 (which explains why even in test Webs with a lower nbsb-inter-
linkage the size of the complete result for query SQ2 is close to 36; cf. Figure 7.11(d)).
However, an iterator-based execution of plan 2.1 cannot traverse recursively between
product documents and feature documents. Instead, it relies on the availability of the
aforementioned paths of length two to discover relevant documents of product features.
Recall that these paths consist of two subject-based data links. Hence, their existence is
more likely in test Webs that have a high nbsb-interlinkage (or a high b-interlinkage).
Therefore, plan 2.1 misses an increasing number of query solutions when we go to test
Webs with a lower nbsb-interlinkage (cf. Figure 7.11(c)).
In contrast, other query plans miss an increasing number of query solutions when the

queried Webs have a higher nbsb-interlinkage. Examples for such plans are plan 1.1
and 4.2 (cf. Figures 7.11(a) and 7.11(g)). These plans rely on the availability of specific
object-based data links (rather than subject-based). Clearly, query plans may also partly
rely on both specific subject-based data links and specific object-based data links (which
is more likely for queries with a larger number of triple patterns).
From these observations we draw the following conclusions for Question 7.4.

1. Unsurprisingly, the distribution of data over a queried Web of Linked Data clearly
affects the degree of completeness.

2. Webs of Linked Data in which the seed document(s) for a given query contain
RDF triples that match at least one of the triple patterns in the query are more
beneficial for the iterator-based implementation approach.

3. Webs of Linked Data with a high b-interlinkage (i.e., many bidirectional data links)
are more beneficial for the iterator-based implementation approach.

4. Webs of Linked Data with a low b-interlinkage may also be beneficial for the
approach; however, the link graph of such a Web must include the traversal paths
that query plans rely on.

Discussion of Questions 7.5 and 7.6

We have already answered Question 7.5 when we discussed Questions 7.1 and 7.2 (cf.
page 165): The property that different logical plans for a query may not be semantically
equivalent has a significant impact in practice: For none of our test queries, we have en-
countered a test Web for which all possible query plans perform equally well w.r.t. result
completeness (with the exception of test Webs for which the complete query result is
empty). In contrast, there exist cases where some plans achieve the maximum degree of

173

7. An Iterator-Based Implementation

W 62,47,1
test W 62,47,2

test W 62,47,3
test W 62,47,4

test W 62,47,5
test W 62,47,6

test W 62,47,7
test W 62,47,8

test W 62,47,9
test W 62,47,10

test

Figure 7.12.: Measurements for querying different test Webs using query SQ1, plan 1.1.

completeness (i.e., answer the query completely), while other plans cannot even provide
a single query solution (Figure 7.8(e) illustrates such an example for query SQ3).
Related to the previous question, Question 7.6 focuses on the practical impact of the

property that even the same query plan may result in different answers (as discussed
in the context of Example 7.4, page 139). While our measurements show that such an
impact exists, it is considerably less significant than the practical impact of the lack of
semantic equivalence between different logical plans. As an example, consider query plan
1.1 for query SQ1: The chart in Figure 7.12 illustrates the number of query solutions
that this plan reported during the ascending, descending, and nondeterministic runs
over test Webs W 62,47,1

test to W 62,47,10
test . We notice that, for each of these test Webs, the

number of query solutions returned by plan 1.1 differed across the respective ascending,
descending, and nondeterministic run. However, these differences are small compared to
differences between the number of solutions that different plans for query SQ1 returned
during, e.g., the ascending run over test Web W 62,47,1

test (cf. Figure 7.8(a))

Discussion of Question 7.7

It remains to discuss which of the possible logical plans for a CLD(M) query guarantee the
highest degree of completeness (Question 7.7). Presumably, properties of such plans that
might influence the degree of completeness a plan may achieve, are endless. We focus on
a single structural property. In particular, we note that some query plans are seed-based,
that is, their first triple pattern contains one of the seed URIs. This observation leads
to the following definition.

Definition 7.4 (Seed-Based Plan). Let (B, /) be a logical plan for the BGP B of
a CLD(M) query QB,S (as per Definition 7.1, page 130); let tp1 be a triple pattern such
that tp1 ∈ B and tp1 / tp for all tp ∈ B \ {tp1}. The logical plan (B, /) is seed-based if
there exists a URI u ∈ S such that u ∈ uris(tp1). 2

174

7.3. Experimental Analysis

Before we discuss whether our measurements confirm that such a property has an impact
on the degree of completeness, we argue why such an impact might exist.
During any execution of a pipeline of link traversing iterators I0 , I1 , ... , In, iterator I1

(which is responsible for the first triple pattern) is the first iterator that generates valua-
tions based on matching triples in the query-local dataset. The remaining link traversing
iterators augment these valuations by adding bindings for their query variables. Hence,
it is crucial to select a triple pattern for I1 such that there exists a high likelihood that
the early snapshot of the query-local dataset as used by I1 already contains matching
triples for the selected, first triple pattern. We recall that this particular snapshot of the
query-local dataset consists of the data from the seed documents only. Since such a seed
document is the authoritative document for a seed URI, data in such a document (pri-
marily) includes RDF triples that contain the respective seed URI. Hence, those triples
are more likely to match a triple pattern that also contains the seed URI rather than
an arbitrary triple pattern (that does not contain the seed URI). Therefore, it seems
reasonable to select a triple pattern that contains one of the seed URIs as the first triple
pattern and, thus, to prefer seed-based query plans over plans that are not seed-based.
To evaluate the suitability of seed-based plans based on our measurements, we iden-

tified all seed-based plans among our 90 test plans. The annotations on the x-axises
in Figures 7.8 and 7.9 indicate whether a plan is seed-based or not, denoted by S and
N, respectively. Then, the measurements presented in these figures show that the query
plans that achieved the highest degree of completeness for their respective query over test
Web W 62,47,1

test are seed-based plans. Our measurements for the other test Webs confirm
this observation. On the other hand, not all seed-based plans achieved a comparably
high degree of completeness. Instead, some seed-based plans did not even return a single
solution for their query over test Web W 62,47,1

test . Apparently, none of the non-seed-based
plans returned any solution either. We emphasize that the latter is not a general issue.
In some test Webs, non-seed-based plans achieved a degree of completeness greater than
zero. However, in these cases all corresponding seed-based plans achieved at least the
same degree of completeness (or higher). Consequently, even if arbitrarily selecting a
seed-based plan may not guarantee the highest possible degree of completeness, it is a
better choice than selecting a non-seed-based plan.

We summarize the findings of our simulation-based experiments as follows:

• An estimate on the percentage of reachable documents discovered by the (itera-
tor-based) approach or about the degree of result completeness achieved by that
approach cannot be given. Even for the same query over the same Web of Linked
Data, these numbers may range from 0% to 100% depending on the selected query
plan. (For the discovered documents the minimum is always slightly above 0%
because any plan “discovers” at least all seed documents.)

• Our experiments do not suggest a general correlation between the degree of com-
pleteness and the percentage of reachable documents discovered by the approach.
However, the query plans that achieve the highest degree of completeness are
among the plans that discover a comparably high number of reachable documents.

175

7. An Iterator-Based Implementation

• The structure of the link graph of a queriedWeb of Linked Data affects the degree of
completeness that query execution plans with link traversing iterators may achieve
for CLD(M) queries. In general, Webs of Linked Data that have a high b-interlinkage
(that is, many bidirectional data links) are more beneficial for the iterator-based
approach. Furthermore, it is necessary that the seed documents for a given query
in a queried Web contain matching triples for a triple pattern in the query.

• The property that different logical plans for a query may not be semantically
equivalent has a practical impact, and so does the property that the same plan
may result in different answers. However, the latter is considerably less significant
than the former.

• Seed-based query plans provide a better chance for achieving a comparably high
degree of completeness than non-seed-based plans.

7.4. Summary
This chapter studies the suitability of the well-known iterator model for implementing
the traversal-based query execution model presented in the previous chapter. To this
end, we introduced the notion of link traversing iterators, which present a straightforward
adaptation of iterators as used for the static case of querying a fixed set of RDF triples.
The primary difference is that calling the GetNext function of a link traversing iterator
may have the side effect of expanding the query-local dataset using data retrieved as per
the traversal-based execution model. We then analyzed formally and experimentally the
resulting, iterator-based implementation approach for our execution model.
The analysis revealed a major limitation of the approach: While the approach is sound

(i.e., every valuation returned for any CLD(M) query over any Web of Linked Data is a
solution of the expected query result), the approach cannot guarantee completeness of the
set of query solutions returned. We emphasize that this limitation is a specific property
of the iterator-based implementation approach; it is not a property of the general, tra-
versal-based execution strategy captured by our execution model (as we have shown in
the previous chapter; cf. Theorem 6.1, page 126).
Further results of analyzing the implementation approach formally are the following.

The approach guarantees termination for any possible query execution process. This
guarantee presents an advantage of the approach over the general execution model, for
which such a guarantee does not exist. However, as another issue we show that query
execution plans consisting of link traversing iterators are not semantically equivalent.
Hence, executing different possible query plans for the same query may result in obtaining
different subsets of the complete query result. Similarly, even for the same query plan
we may observe different execution processes and obtain different answers. Our experi-
mental analysis verified that the latter two properties have an actual impact in practice.

176

Part III.

Conclusions

177

8. Conclusions
Due to the increasing adoption of publishing principles for Linked Data, the WWW
evolves into a space in which more and more structured data is published and interlinked
in a standardized manner. The feasibility to query this data space opens possibilities
not conceivable before. As a result, we are witnessing the emergence of a new query
paradigm that is tailored to the characteristics of Linked Data and the WWW. By
relying only on the Linked Data publishing principles, this new paradigm, referred to
as Linked Data query processing, bears the potential to enable users to fully benefit
from the increasing amounts of Linked Data published on the WWW. This dissertation
studies the foundations of this new query paradigm. In the following, we summarize the
main results of this study and outline directions for future research.

8.1. Main Results
Our first main contribution is a formal framework for defining and analyzing queries over
Linked Data on the WWW. This framework includes a data model that formalizes the
notion of a Web of Linked Data and several related concepts. Additionally, the formal
framework includes a computation model whose main concept is an LD machine, that
is, a restricted Turing machine that formally captures the capabilities of systems that
access Linked Data on the WWW as per the Linked Data principles. In this dissertation
we used our formal framework to introduce and investigate adaptations of the query
language SPARQL as a language for Linked Data queries.
The first adaptation, which we call SPARQLLD, is based on a full-Web query seman-

tics according to which the scope of a query is all Linked Data on the queried Web. We
showed formally that there does not exist a satisfiable SPARQLLD query that is finitely
computable by an LD machine (cf. Theorem 3.2, page 53). As a consequence, there
cannot exist a query execution approach that guarantees an execution of a satisfiable
SPARQLLD query (over Linked Data on the WWW) that both terminates and returns
the complete query result. Moreover, if such a query is non-monotonic, it is not even
possible to guarantee a nonterminating execution that eventually returns all elements of
the complete result (i.e., in terms of our formal framework, non-monotonic SPARQLLD
queries are not eventually computable by an LD machine; cf. Theorem 3.2). We empha-
size that the limited computational feasibility of SPARQLLD queries is not an artifact of
allowing for infinitely large Webs of Linked Data in our data model. Instead, the reason
for these limitations is the infiniteness of the set of all possible HTTP URIs.
Given the aforementioned limitations of SPARQLLD queries, we introduced an alter-

native adaptation of SPARQL for Linked Data queries; that is, we defined a family of
reachability-based query semantics. Queries under these semantics, called SPARQLLD(R)

179

8. Conclusions

queries, are restricted to range over well-defined, reachable subwebs of the queried Web.
Each of the corresponding query semantics is based on a notion of reachability that is
specified formally using the concept of reachability criteria. For instance, we discussed
a reachability criterion called cMatch; according to cMatch, the scope of a given query is a
reachable subweb covering the portion of a queried Web that can be reached by traversing
along all those data links that may also be used for constructing the query result.
Our analysis of SPARQLLD(R) queries identified a sub-family of reachability-based

query semantics whose reachability criteria ensure finiteness of all query-specific reach-
able subwebs. We showed that SPARQLLD(R) queries under a query semantics in this
sub-family are finitely computable by an LD machine (cf. Proposition 4.12, page 91).
Hence, it is possible to design a query execution approach that guarantees complete,
terminating executions of such queries.
SPARQLLD(R) queries under any of the other reachability-based query semantics

(which includes the query semantics defined by the aforementioned reachability criterion
cMatch) have a limited computational feasibility similar to SPARQLLD queries (cf. Theo-
rem 4.3, page 91). However, in contrast to SPARQLLD, the reason for these limitations
in the case of SPARQLLD(R) is the possibility of infinitely large Webs of Linked Data.
Further results regarding properties of SPARQLLD queries and SPARQLLD(R) queries

focus on several decision problems: In particular, by taking into account the access
limitations to a Web of Linked Data that is distributed over the WWW, it is impossible to
decide for all SPARQLLD queries whether there exists a complete, terminating execution
of a given SPARQLLD query over a given Web of Linked Data (cf. Theorem 3.1, page 52),
and it is also undecidable whether the expected result of such a query over an arbitrary
Web of Linked Data is finite (cf. Theorem 3.3, page 58). The same property holds for
SPARQLLD(R) queries (cf. Theorems 4.2 and 4.1 on pages 90 and 68, respectively). We
showed these negative results formally by proving that the termination problem and the
finiteness problem for SPARQLLD (resp. for SPARQLLD(R)) are undecidable for an LD
machine. However, there are (positive and negative) exceptions to these general results:

• For any SPARQLLD(R) query under a (reachability-based) query semantics whose
reachability criterion ensures finiteness, any expected query result (over any Web
of Linked Data) is finite (cf. Proposition 4.2, page 66) and there exist terminating
executions that return this result completely (cf. Proposition 4.11, page 87).

• For all queries (SPARQLLD and SPARQLLD(R)) that are boundedly satisfiable
(cf. Definition 2.8, page 24), any expected query result is finite by definition.

• There cannot exist an execution of an unboundedly satisfiable SPARQLLD query
that terminates after returning all elements of the expected query result (cf. Propo-
sition 3.3, page 49).

In addition to defining and analyzing SPARQL-based Linked Data queries, we studied
fundamental properties of a traversal-based strategy for executing such queries. While
this strategy may be implemented in a multitude of ways, the strategy in general is based
on two core principles: The first principle is to select recursively URIs for data retrieval

180

8.1. Main Results

by traversing particular data links at query execution time; the other one being the inte-
gration of data retrieval into the result construction process (instead of separating data
retrieval and result construction into two consecutive phases). To put this strategy into
the context of existing work, we provided a comprehensive review of possible techniques
for executing Linked Data queries.
Additionally, we defined an abstract query execution model that formalizes our tra-

versal-based query execution strategy in an implementation-independent manner. This
model enabled us to conduct a formal analysis of the strategy in general (that is, without
having to worry about the peculiarities of any approach for implementing the strategy).
The main result of this analysis proves that the general strategy is sound and complete
for one of the reachability-based query semantics that we introduced—namely, the query
semantics that is defined by the aforementioned reachability criterion cMatch (cf. Theo-
rem 6.1, page 126).
Finally, we investigated the suitability of using the well-known concept of pipelined

iterators to implement our traversal-based query execution strategy. As a basis for
this investigation, we introduced a straightforward approach for such an implementa-
tion and verified formally that this approach indeed implements the aforementioned
abstract query execution model. Given this implementation approach we identified a
serious shortcoming: The approach cannot guarantee completeness; that is, if we exe-
cute (conjunctive) SPARQLLD(R) queries under cMatch-semantics using this approach, we
may obtain incomplete query results. This limitation is due to the following behavior
of pipelined iterators: Whenever such an iterator requests a next input element from
the preceding iterator in the pipeline, it discards the previously retrieved input element.
Usually, discarding such elements is not a problem because pipelined iterators typically
operate over a dataset that is complete from the outset. However, in our scenario, the
iterators operate over a dataset that they augment continuously; as a consequence, some
data that would allow an iterator to generate particular output elements from a given
input element, may become available only after the iterator has already discarded the
input element and, thus, the iterator cannot generate these output elements.
Due to this issue, the iterator implementation of traversal-based query execution may

generate incomplete query results, and we also showed that different, alternative query
execution plans for a given query may not be semantically equivalent. Moreover, even for
the same plan we may observe different execution processes and obtain different results.
At least it is guaranteed that all query result elements returned by such a process are
elements of the expected query result (cf. Theorem 7.1, page 137).
To achieve additional practical insight into the characteristics of using pipelined it-

erators for implementing traversal-based query execution, we analyzed this approach
experimentally. The main results of our experiments can be summarized as follows: The
times required to execute queries over “real” Linked Data on the WWW range from sec-
onds up to almost two hours (depending on the query). The dominating factor of these
query execution times is the time spend on data retrieval. The percentage of relevant
reachable subwebs that the iterators discover during such executions ranges from slightly
above 0% to 100%. Similarly, the percentage of expected query result elements returned
by such executions ranges from 0% to 100%. In both cases these numbers depend on the

181

8. Conclusions

link structure of queried Webs. In particular, we observed that the existence of many
bidirectional data links increases the chances for achieving a comparably high percentage
of query result completeness. Another important factor that influences the completeness
of returned query results is the selected query execution plan. We identified a specific
property (seed-basedness, cf. Definition 7.4, page 174) that characterizes plans whose
executions a more likely to return a high percentage of expected query result elements.

8.2. Directions for Future Work

In this dissertation we focused on aspects of Linked Data query processing that we
consider as most fundamental for studying the foundations of this new query processing
paradigm. In the following, we point out further aspects that we have deliberately ig-
nored and outline several ways to extend our work by taking these aspects into account.

8.2.1. Schema Heterogeneity

A fundamental characteristic of the WWW is that the publication of content is not
coordinated centrally. While such an absence of coordination is critical to the openness
and the growth of Linked Data on the WWW, it entails the typical data integration
problem of schema heterogeneity. That is, Linked Data providers are free to choose the
RDF vocabularies based on which they represent their data. Since different vocabularies
may overlap w.r.t. the classes and properties that they define, a query expressed in terms
of one vocabulary must be rewritten to benefit from data represented using a different
vocabulary (alternatively, the data may be rewritten to match the vocabulary used by
the query). Future research might extend our work to support query (or data) rewriting.
A prerequisite for such an extension is the availability of vocabulary mappings that

specify the relationships between the RDF vocabularies used by query-relevant data
sources. Such mappings may be provided by vocabulary maintainers or by third parties;
ideally, these mappings are published as Linked Data along with the mapped vocabular-
ies. Alternatively, it is possible to use schema matching [131] or ontology matching [148]
to establish mappings between RDF vocabularies.
Based on such mappings, Linked Data queries might be rewritten by applying tech-

niques that have been introduced for query answering using views (as surveyed by
Halevy [62]). In fact, there already exist a few related approaches that focus on SPARQL
query rewriting in the context of querying a federation of SPARQL endpoints [36, 90,
110, 117]. A noteworthy assumption of these approaches is that the queried set of data
sources is given beforehand and, thus, a fixed set of all relevant vocabulary mappings
can be specified prior to query execution. This assumption limits the suitability of these
approaches for the traversal-based query execution model discussed in this dissertation
(because this model integrates initially unknown data sources on the fly). Hence, to deal
with schema heterogeneity in our execution model—and still leverage the full potential
of this model—it requires novel query rewriting approaches in which the discovery (or
creation) of mappings and the rewriting of queries is also performed on the fly.

182

8.2. Directions for Future Work

8.2.2. Coreferences

Another typical data integration issue entailed by the decentralized publication of Linked
Data on the WWW are coreferences: Although URIs are used as globally unique identi-
fiers for denoting entities in Linked Data, the underlying RDF data model does not make
the unique name assumption [92]; hence, different publishers may denote the same en-
tity using different URIs. As a consequence, some of the data about such a coreferenced
entity will be ignored by query processing approaches that do not detect and resolve the
coreference. The models in this dissertation ignore the problem of coreferenced entities.
However, coreference resolution [52]—also referred to as duplicate detection [45] or ref-

erence reconciliation [43]—has been studied extensively in the database and information
systems literature. Therefore, a possible extension of our work is to revisit existing coref-
erence resolution approaches in the context of Linked Data query processing. A necessary
basis for dealing with coreferences in this context are coreference-aware query semantics.

8.2.3. Trustworthiness and Data Quality

Another consequence of the openness of the WWW is that Linked Data from different
data sources may be of different quality, that is, some data might be inaccurate, incon-
sistent, outdated, etc. As a result, users may consider some data more trustworthy and
reliable than other data. Therefore, to provide a holistic solution for querying Linked
Data on the WWW, the subjective trustworthiness of data (and of query results) can-
not be ignored. Thus, our work might be extended accordingly. In particular, such an
extension may include (i) augmenting our data model with a trust model and (ii) using
a trust-aware query language instead of SPARQL.
The goal of adding a trust model is to enable an automated assessment of the trust-

worthiness of data in a Web of Linked Data. Hence, the main concept introduced by
such a trust model would be a trust function that assigns every LD document—or even
every RDF triple—a context-specific trustworthiness score. The particular meaning of
such a score is to be specified by the trust model, and so is the definition of the trust
function. In fact, defining a trust function is a challenging research problem in itself. As
a possible starting point we refer to earlier work in which we review existing approaches
for measuring trustworthiness of data and discuss different factors that may influence
the decision to trust some data [70].
Given a suitable trust model, a possible query language for defining a trust-aware

notion of Linked Data queries is tSPARQL [69]. This language extends SPARQL by
redefining the SPARQL algebra such that the resulting algebra operates over sets of
trust-weighted valuations, that is, conventional SPARQL valuations (as introduced in
Section 3.2.1, cf. page 39) that are associated with a trustworthiness score. Further-
more, tSPARQL adds two new operators that enable users to describe trustworthiness
requirements and to access the trustworthiness of (intermediate) solutions; the latter
may be used to obtain a trustworthiness-related ordering of a query result or to out-
put trustworthiness scores as part of a query result. Similar to SPARQL, tSPARQL is
defined for expressing queries over fixed, a-priori defined collections of RDF data (for
tSPARQL these collections need to be augmented with a trust function).

183

8. Conclusions

Apparently, it is possible to use tSPARQL as a query language for (trust-aware)
Linked Data queries by defining a full-Web query semantics or reachability-based query
semantics for tSPARQL in a manner similar to our definitions for SPARQL in Chapters
3 and 4. Then, an interesting problem would be, how to execute the resulting queries
efficiently. For instance, a suitable execution approach should aim to avoid retrieving
LD documents unless their data may meet the trustworthiness requirements given in
queries. A related, more explicit extension of our work would be to add a trust-aware
notion to our concept of a reachability criterion.
Instead of focusing only on trustworthiness (also often referred to as believability in

the data quality literature [121]), other dimensions of data quality, such as accuracy,
consistency, or timeliness [137], may be covered by extending tSPARQL (and our data
model) accordingly. Of course, it is also possible to revisit other quality-related query
languages in the context of Linked Data queries (or develop a new one).

8.2.4. Dynamic Environment

The models presented in this dissertation make the simplifying assumption that a queried
Web of Linked Data is static (during the process of executing a query). However, given
that Linked Data is published via ordinary, HTTP-based Web servers, it is impossible to
isolate a particular state of a Web of Linked Data for a given query. Hence, an important
extension of our work includes adding some notion of a dynamically changing Web of
Linked Data to our models.
A possible basis for capturing such a dynamic environment is to formalize a changing

Web of Linked Data as an infinite sequence of (static) Webs of Linked Data. Mendelzon
and Milo use this approach for their dynamic model of the WWW [112]. It remains
to be seen whether this approach is suitable for defining query semantics for dynamic
Linked Data queries (i.e., queries over a changing Web of Linked Data).
An alternative direction of future work is to study what extra data access features

need to be provided by Web servers in order to support queries over a particular state
of a (dynamic) Web of Linked Data. If multiple such features are conceivable, it would
be interesting to compare them w.r.t. the additional requirements that each of them
entails for data publishers’ infrastructures and the guarantees that they provide (such
guarantees may be similar to the different notions of consistency supported by distributed
systems [154] or the different levels of isolation of database transactions [57]).

8.2.5. Query Expressiveness

This dissertation focuses on Linked Data queries that can be expressed using a core
fragment of the SPARQL query language. However, our definitions of these queries can
be easily extended to cover additional features introduced in the W3C specification of
SPARQL [63] (e.g., query result ordering, property paths, aggregates). The effect of such
extensions on the computational feasibility of resulting queries might be analyzed. Along
the same lines, a possible support of more powerful SPARQL entailment regimes [53]
might be investigated. Similarly, our traversal-based query execution model might be

184

8.2. Directions for Future Work

extended to support more expressive queries. Another possibility for future work is to
use our computation model to analyze the computational feasibility of other Linked Data
query languages (such as the navigational languages discussed in Section 3.1.2, page 34f).

185

Part IV.

Appendix

187

A. Commonly Used Symbols

The following table lists symbols used in the formalisms of this dissertation, and the
concepts denoted by these symbols.

Table A.1.: Symbols used in this dissertation.
Symbol Concept Reference
adoc mapping from URIs to authoritative LD

documents in a Web of Linked Data
Definition 2.1, page 16

AllData(W) the set of all RDF triples in a Web of
Linked Data W

Section 2.1.1, page 17

AUG(σ, t, tp) the (t, tp)-augmentation of partial solu-
tion σ

Definition 6.3, page 117

B the (countably infinite) set of all blank
nodes

Section 2.1.1, page 15

B a basic graph pattern (BGP) Section 6.1, page 112

c a reachability criterion Definition 4.1, page 62

C the infinite set of all possible reachability
criteria

–

Cconst the infinite set of all constant reachability
criteria

Definition 4.9, page 75

Cef the infinite set of all reachability criteria
that ensure finiteness

Definition 4.5, page 67

Cnef the infinite set of all reachability criteria
that do not ensure finiteness

–

d an LD document Section 2.1.1, page 16

D the (countably infinite) set of all LD doc-
uments

Section 2.1.1, page 16

D the set of LD documents in a Web of
Linked Data

Definition 2.1, page 16

Continued on next page ...

189

A. Commonly Used Symbols

Table A.1 – continued from previous page
Symbol Concept Reference
D currently discovered subweb of a queried

Web during a query execution
Section 6.3.7, page 125

Dinit(S,W) the S-seed subweb of a Web of Linked
Data W

Definition 6.5, page 119

data maps each LD document in a Web of
Linked Data to a set of RDF triples

Definition 2.1, page 16

dom(f) the domain of a function f –

enc(x) encoding of some element x (where x may
be a single RDF triple, a set of triples, a
full Web of Linked Data, a valuation, etc.)

Appendix B, page 193f

EXP
(
WD, t,W

)
the t-expansion ofWD in a Web of Linked
Data W

Definition 6.6, page 120

G a set of RDF triples Section 2.1.1, page 15

I an iterator Section 7.1.1, page 130

L the (countably infinite) set of all literals Section 2.1.1, page 15

µ a valuation Section 3.2.1, page 39

µ∅ the empty valuation (i.e., dom(µ∅) = ∅) Section 3.2.1, page 39

µ[tp] the application of valuation µ to triple
pattern tp

Section 3.2.1, page 40

µ[B] the application of valuation µ to BGP B Section 6.1, page 112

P a SPARQL expression Section 3.2.1, page 39

P the infinite set of all possible SPARQL
expressions

Definition 4.1, page 62

P the set of partial solutions currently con-
structed during a query execution

Section 6.3.7, page 125

Q an arbitrary Linked Data query Definition 2.5, page 23

QP a SPARQLLD query Definition 3.1, page 42

QP,Sc a SPARQLLD(R) query Definition 4.4, page 63

QB,Sc a CLD(R) query Definition 6.1, page 113

QB,S a CLD(M) query Definition 6.10, page 123

Continued on next page ...

190

Table A.1 – continued from previous page
Symbol Concept Reference
R a (particular) reachable subweb of a Web

of Linked Data
–

% a grounding isomorphism Definition 3.2, page 44

S a set of seed URIs –

st an QE state Definition 6.7, page 121

sub≺k (B) a BGP that consists of the first k triple
patterns from BGP B (assuming the or-
der ≺ for the triple patterns in B)

Section 7.1.1, page 130

σ a partial solution Definition 6.2, page 116

σ∅ the empty partial solution Section 6.3.2, page 117

σ(QB,Sc ,W
)

the set of all partial solutions for CLD(R)
query QB,Sc in Web of Linked Data W

Definition 6.2, page 116

t an RDF triple Section 2.1.1, page 15

tp a triple pattern Section 3.2.1, page 39

tp(Ik) the triple pattern of iterator Ik Section 7.1.1, page 130

T the infinite set of all possible RDF triples Section 2.1.1, page 15

τ an AE task Definition 6.8, page 122

τ
[
st
]

performance of AE task τ in QE state st Definition 6.9, page 122

terms(x) the set of all URIs, blank nodes, and lit-
erals mentioned in x (where x may be an
RDF triple, or a set of RDF triples)

Section 2.1.1, page 15

U the (countably infinite) set of all URIs Section 2.1.1, page 15

u a URI –

uris(x) the set of all URIs mentioned in x (where
x may be an RDF triple, a set of RDF
triples, a triple pattern, a SPARQL ex-
pression, a BGP, or a valuation)

Section 2.1.1, page 15;
Section 3.2.1, page 39

V the (countably infinite) set of all query
variables

Section 3.2.1, page 39

Continued on next page ...

191

A. Commonly Used Symbols

Table A.1 – continued from previous page
Symbol Concept Reference
vars(x) the set of all variables mentioned in x

(where x can be a triple pattern, a
SPARQL expression, or a BGP)

Section 3.2.1, page 39

W a Web of Linked Data Definition 2.1, page 16

WD a discovered subweb of a Web of Linked
Data W

Definition 6.4, page 118

WAll the infinite set of all Webs of Linked Data Definition 2.5, page 23

∅ an empty set –

⊥ the nonexistent LD document Definition 2.1, page 16

∼ compatibility of valuations Section 3.2.1, page 40

C restrictiveness relation over reach. criteria Definition 4.6, page 70

u conjunctive combination of reach. criteria Definition 4.7, page 71

t disjunctive combination of reach. criteria Definition 4.7, page 71

192

B. Encoding of Structures Related to
Query Computation

This appendix defines an encoding for representing (fragments of) a Web of Linked Data
and query results on the tapes of an LD machine (cf. Definition 2.9 on page 27)
For the encoding we use an alphabet that consists of the following 12 characters:

0 1 U B L 〈 〉 , 〈〈 〉〉] →

Assume total orders ≺U , ≺B, ≺L, and ≺V over the sets U (all URIs), B (all blank nodes),
L (all literals), and V (all query variables), respectively. In all four cases such an order
could simply be the lexicographic order of corresponding string representations.
Based on the orders ≺U , ≺B, and ≺L, we construct a total order ≺t over the set
U ∪ B ∪ L. For two distinct elements x, y ∈ U ∪ B ∪ L, x ≺t y holds if either

(i) x ∈ U and y /∈ U , or
(ii) x ∈ B and y ∈ L, or
(iii) x ∈ U and y ∈ U and x ≺U y, or
(iv) x ∈ B and y ∈ B and x ≺B y, or
(v) x ∈ L and y ∈ L and x ≺L y.

Furthermore, we construct a total order ≺T over the set of all RDF triples. For two
distinct RDF triples t1 = (s1, p1, o1) and t2 = (s2, p2, o2), t1 ≺T t2 holds if either

(i) s1 6= s2 and s1 ≺t s2, or
(ii) s1 = s2 and p1 6= p2 and p1 ≺t p2, or
(iii) s1 = s2 and p1 = p2 and o1 6= o2 and o1 ≺t o2.

B.1. Encoding Basic Elements
For every URI u ∈ U , the encoding of u, denoted by enc(u), is the word that begins with
character U, followed by the binary representation of u.
For every blank node bn ∈ B, the encoding of bn, denoted by enc(bn), is the word that

begins with character B, followed by the binary representation of bn.
For every literal c ∈ L, the encoding of c, denoted by enc(c), is the word that begins

with character L, followed by the binary representation of c.
For every variable ?v ∈ V, the encoding of ?v, denoted by enc(?v), is the binary

representation of ?v.

193

B. Encoding of Structures Related to Query Computation

B.2. Encoding RDF Triples
The encoding of an RDF triple t = (s, p, o), denoted by enc(t), is a word

〈 enc(s) , enc(p) , enc(o) 〉

The encoding of a set of RDF triples T = {t1, . . . , tn}, denoted by enc(T), is a word

〈〈 enc(t1) , enc(t2) , . . . , enc(tn) 〉〉

where the enc(ti) are ordered as follows: For each pair of RDF triples tx, ty ∈ T , subword
enc(tx) occurs before subword enc(ty) in enc(T) if tx ≺T ty.

B.3. Encoding Webs of Linked Data
For a Web of Linked Data W = (D, data, adoc), the encoding of each LD document
d ∈ D, denoted by enc(d), is the word enc(data(d)). The encoding of W itself, denoted
by enc(W), is a word

] enc(u1) enc(adoc(u1))] enc(u2) enc(adoc(u2))] . . .] enc(ui) enc(adoc(ui))] . . .

where u1, u2, . . . , ui, . . . is the (potentially infinite but countable) list of all URIs for
which adoc(uj) 6=⊥, ordered according to ≺U .
We note that the word enc(W) is infinitely large if and only if Web of Linked Data

W is infinite. Furthermore, we note that enc(W) may contain data of an LD document
d ∈ D multiple times; more precisely, the data of d is present as many times as there
exist URIs u ∈ U with adoc(u) = d. We emphasize that such a duplication does not
present a problem for analyzing set-based query semantics as we do in this dissertation.

B.4. Encoding Valuations
The encoding of a valuation µ with dom(µ) = {?v1, . . . , ?vn}, denoted by enc(µ), is a
word

〈〈 enc(?v1)→ enc
(
µ(?v1)

)
, . . . , enc(?vn)→ enc

(
µ(?vn)

)
〉〉

where the subwords enc(?vi) → enc
(
µ(?vi)

)
are ordered as follows: For each pair of

variables ?vx ∈ dom(µ) and ?vy ∈ dom(µ), subword enc(?vx) → enc
(
µ(?vx)

)
occurs

before enc(?vy)→ enc
(
µ(?vy)

)
in enc(µ) if ?vx ≺V?vy.

A possible encoding of a (potentially infinite) set of valuations Ω = {µ1, µ2, . . . },
denoted by enc(Ω), is a word

enc(µ1) enc(µ2) . . .

where the subwords enc(µi) may occur in any order.

194

C. Basic Properties of SPARQL Queries

In the following, we discuss basic theoretical properties of SPARQL expressions that are
relevant for the results in this dissertation. In particular, these properties are satisfi-
ability and monotonicity, as well as the particular notions of bounded and unbounded
satisfiability that we introduce in Section 2.1.2 (cf. page 22ff). We show that all four
properties are undecidable for SPARQL in general. As a consequence, we identify specific
fragments of SPARQL for which these properties are decidable. Table C.1 summarizes
our findings (cf. page 196). A more extensive discussion may reveal further fragments
for each property. However, given that SPARQL queries as functions over a fully acces-
sible set of RDF triples are not the main focus of this dissertation, we consider such a
discussion out of scope.

C.1. Satisfiability
As the first relevant property of SPARQL expressions we discuss satisfiability.
Definition C.1. A SPARQL expression P is satisfiable if there exists a (potentially
infinite) set of RDF triples G such that the result of evaluating P over G is not empty,
that is, [[P]]G 6= ∅. A SPARQL expression is unsatisfiable if it is not satisfiable. 2

Example C.1. Let P1 be SPARQL expression
(

(?v, name, ?vn) FILTER ?vn = "Vendor1"
)

and let P2 be SPARQL expression
(

(?v, name, "Vendor1") FILTER (¬bound(?v))
)
. It is

easily verified that P1 is satisfiable, whereas, P2 is unsatisfiable (for a formal, more
general proof of these claims we refer to Proposition C.3, page 199). 2

The satisfiability problem (for SPARQL) is the following (ordinary) decision problem:

Problem: Satisfiability(SPARQL)
Input: a SPARQL expression P
Question: Is P satisfiable?

The following result shows that we cannot answer this question in general.

Proposition C.1. Satisfiability(SPARQL) is undecidable.

Proof. The satisfiability problem for relational algebra is well known to be undecid-
able [4]. Furthermore, relational algebra and SPARQL have equivalent expressive power.
More precisely, Angles and Gutierrez [7] show that there exist (Turing) computable, bi-
jective mappings TQ, TD and TS such that

195

C. Basic Properties of SPARQL Queries

Fo
rm

of
SP

A
R
Q
L

ex
pr
es
si
on

P
C
on

di
ti
on

(s
)

P
ro
pe

rt
y

C
or
re
sp
on

di
ng

re
su
lt

an
y
w
ith

ou
t

FI
L T

ER
-

sa
tis

fia
bl
e

Pr
op

os
iti
on

C
.2
, p

.1
97

(P
′

FI
LT

ER
R

)
P
′
is

sa
tis

fia
bl
e
an

d
R

is
?v

=
c
w
he

re
?v
∈

cv
ar

s(
P
′)
an

d
c
/∈
V

sa
tis

fia
bl
e

Pr
op

os
iti
on

C
.3
, p

.1
99

(P
′

FI
LT

ER
R

)
R

is
(¬

bo
un

d(
?v

))
w
he

re
?v
∈

cv
ar

s(
P
′)

no
n-
sa
tis

fia
bl
e

Pr
op

os
iti
on

C
.3
, p

.1
99

(P
′

FI
LT

ER
R

)
R

is
bo

un
d(

?v
)
w
he

re
?v

/∈
va

rs
(P
′)

no
n-
sa
tis

fia
bl
e

Pr
op

os
iti
on

C
.3
, p

.1
99

an
y

P
is

no
n-
sa
tis

fia
bl
e

m
on

ot
on

ic
Pr

op
er
ty

C
.1
,p

.2
01

an
y
w
ith

ou
t

O
PT

-
m
on

ot
on

ic
Pr

op
os
iti
on

C
.6
, p

.2
02

(P
1

O
PT
P

2)
va

rs
(P

1)
=
∅
an

d
P

1
an

d
P

2
ar
e
m
on

ot
on

ic
m
on

ot
on

ic
Pr

op
os
iti
on

C
.7
,p

.2
03

(P
1

O
PT
P

2)
va

rs
(P

2)
=
∅
an

d
P

1
is

m
on

ot
on

ic
m
on

ot
on

ic
Pr

op
os
iti
on

C
.7
,p

.2
03

(P
1

O
PT
P

2)
va

rs
(P

2)
=
∅
an

d
P

1
is

no
n-
m
on

ot
on

ic
no

n-
m
on

ot
on

ic
Pr

op
os
iti
on

C
.7
, p

.2
03

(P
1

O
PT
P

2)
va

rs
(P

1)
6=
∅ ,

va
rs

(P
2)
6=
∅,

an
d
P

1
is

no
t

sa
tis

fia
bl
e

m
on

ot
on

ic
Pr

op
os
iti
on

C
.7
, p

.2
03

(P
1

O
PT
P

2)
va

rs
(P

1)
6=
∅ ,

va
rs

(P
2)
6=
∅,
P

1
is
m
on

ot
on

ic
,

an
d
P

2
is

no
t
sa
tis

fia
bl
e

m
on

ot
on

ic
Pr

op
os
iti
on

C
.7
, p

.2
03

an
y

P
is

no
t
sa
tis

fia
bl
e

no
t
bo

un
de

dl
y
sa
tis

fia
bl
e

by
de

fin
iti
on

an
y

P
is

no
t
sa
tis

fia
bl
e

no
t
un

b o
un

de
dl
y
sa
tis

fia
bl
e

by
de

fin
iti
on

an
y

P
is

sa
tis

fia
bl
e
an

d
va

rs
(P

)=
∅

bo
un

de
dl
y
sa
tis

fia
bl
e

(L
em

m
a
C
.3
, p

.2
07

)
an

y
w
ith

ou
t

FI
L T

ER
,

O
PT

,a
nd

U
N

IO
N

va
rs

(P
)6=
∅

un
bo

un
de

dl
y
sa
tis

fia
bl
e

Pr
op

os
iti
on

C
.9
, p

.2
07

an
y
w
ith

ou
t

FI
LT

ER
,

O
PT

,a
nd

U
N

IO
N

va
rs

(P
)=
∅

bo
un

de
dl
y
sa
tis

fia
bl
e

C
or
ol
la
ry

C
.1
,p

.2
09

Ta
bl
e
C
.1
.:
T
he

or
et
ic
al

pr
op

er
tie

s
of

di
ffe

re
nt

ty
pe

s
of

SP
A
R
Q
L
ex
pr
es
sio

ns
as

pr
ov
ed

in
th
is

di
ss
er
ta
tio

n.

196

C.1. Satisfiability

1. TQ transforms relational algebra queries into SPARQL expressions,

2. TD transforms relations into sets of RDF triples,

3. TS transforms relations (resulting from evaluating relational algebra queries) into
SPARQL query results such that (i) TS

(
q(D)

)
= TQ(q)

(
TD(D)

)
for each relational

algebra query q and relational database instance D, and (ii) TS(∅) = ∅.

From the existence of such mappings, it follows that if Satisfiability(SPARQL) were
decidable, then the satisfiability problem for relational algebra would be decidable, a
contradiction. �

We shall see that the satisfiability of SPARQL-based Linked Data queries studied in this
dissertation always corresponds to the satisfiability of the SPARQL expressions used for
these queries. Therefore, satisfiability of SPARQL expressions is relevant for most of our
results in this dissertation. For instance, any unsatisfiable Linked Data query is finitely
computable as we know from Proposition 2.3 (cf. page 29). As a consequence, even if
we cannot decide satisfiability of SPARQL expressions in general, we are interested in
fragments of SPARQL for which satisfiability is decidable.
Such a fragment are SPARQL expressions without FILTER :

Proposition C.2. SPARQL expressions without FILTER are satisfiable.

As a basis for proving Proposition C.2 we write lit(tp) to denote the set of all literals in
a triple pattern tp = (s, p, o); i.e., lit(tp) is defined as follows:

lit(tp) :=
{
{o} if o ∈ L,
∅ else.

Overloading notation, we write lit(P) to denote the set of all literals in a SPARQL
expression P , which we define recursively as follows:

1. If P is a triple pattern tp, then lit(P) := lit(tp).

2. If P is (P1 AND P2), (P1 UNION P2), or (P1 OPT P2), then lit(P) := lit(P1) ∪ lit(P2).

3. If P is (P ′ FILTER R), then lit(P) := lit(P ′).

Furthermore, we introduce the notion of an all permutations triple set, that is, the set of
all RDF triples that can be constructed from a given set of URIs and literals. Formally,
given a finite set A ⊆ U ∪ L of URIs and literals, the all permutations triple set for A,
denoted by AllPerm(A), is a set of RDF triples defined by:

AllPerm(A) := (A ∩ U)× (A ∩ U)×A .

To prove Proposition C.2 we use the following lemma.

197

C. Basic Properties of SPARQL Queries

Lemma C.1. Let P be a SPARQL expression without FILTER; let A ⊆ U ∪ L be a finite
set of URIs and literals such that uris(P) ⊆ A and lit(P) ⊆ A. Then, for each valuation
µ : V → uris(P) there exists a valuation µ′ ∈ [[P]]AllPerm(A) such that µ′(?v) = µ(?v) for
all variables ?v ∈ dom(µ′).

Proof of Lemma C.1. We prove the lemma by induction on the possible structure of
SPARQL expression P .

Base case: Suppose SPARQL expression P is a triple pattern tp. Due to the construction
of AllPerm(A), we have µ[tp] ∈ AllPerm(A). Consequently, there exists a valuation
µ′ ∈ [[P]]AllPerm(A) such that µ′(?v) = µ(?v) for all ?v ∈ dom(µ′).

Induction step: We distinguish the following three cases:

• P is (P1 AND P2). By the induction hypothesis, there exist µ1 ∈ [[P1]]AllPerm(A)
and µ2 ∈ [[P2]]AllPerm(A) such that (i) µ1(?v) = µ(?v) for all ?v ∈ dom(µ1) and
(ii) µ2(?v) = µ(?v) for all ?v ∈ dom(µ2). In particular, µ1 ∼ µ2, and hence, for
µ′ = µ1 ∪ µ2 we have µ′ ∈ [[P]]AllPerm(A) and µ′(?v) = µ(?v) for all ?v ∈ dom(µ′),
as desired.

• P is (P1 OPT P2). By the induction hypothesis, there exist µ1 ∈ [[P1]]AllPerm(A)
and µ2 ∈ [[P2]]AllPerm(A) such that (i) µ1(?v) = µ(?v) for all ?v ∈ dom(µ1) and
(ii) µ2(?v) = µ(?v) for all ?v ∈ dom(µ2). In particular, µ1 ∼ µ2, and therefore, µ′ =
µ1 ∪ µ2 ∈ [[P]]AllPerm(A). Altogether we have found a valuation µ′ ∈ [[P]]AllPerm(A)
such that µ′(?v) = µ(?v) for all ?v ∈ dom(µ′), as desired.

• P is (P1 UNION P2). By the induction hypothesis, there exists a µ′ ∈ [[P1]]AllPerm(A)
such that µ′(?v) = µ(?v) for all ?v ∈ dom(µ′). Note that µ′ ∈ [[P]]AllPerm(A). �

Lemma C.1 readily implies Proposition C.2:
Proof of Proposition C.2. To show that a SPARQL expression P without FILTER is
satisfiable, let A ⊂ U ∪ L be a finite set of URIs and literals such that (i) A contains
at least one URI (ii) uris(P) ⊆ A, and (iii) lit(P) ⊆ A. Then, by Lemma C.1, the
evaluation of P over AllPerm(A) is nonempty, that is, [[P]]AllPerm(A) 6= ∅ and, thus, P is
satisfiable. �

For SPARQL expressions with FILTER we know from Example C.1 that some expres-
sions are satisfiable and some are not (cf. page 195). To generalize the findings from
Example C.1 we adopt Schmidt et al.’s notion of certain variables [140, Definition 6].
Informally, certain variables of a SPARQL expression P , denoted by cvars(P), are the
variables in P that are guaranteed to be bound in each solution for P . Formally, cvars(P)
is defined recursively as follows:

1. If P is a triple pattern tp, then cvars(P) := vars(P).

2. If P is (P1 AND P2), then cvars(P) := cvars(P1) ∪ cvars(P2).

198

C.1. Satisfiability

3. If P is (P1 UNION P2), then cvars(P) := cvars(P1) ∩ cvars(P2).

4. If P is (P1 OPT P2), then cvars(P) := cvars(P1).

5. If P is (P ′ FILTER R), then cvars(P ′) := cvars(P ′).

Using the concept of certain variables we may show the following result.

Proposition C.3. Let P be a SPARQL expression (P ′ FILTER R).

1. If P ′ is satisfiable and R is filter condition ?v = c where ?v ∈ cvars(P ′) and
c ∈ (U ∪ L), then P is satisfiable.

2. If R is filter condition (¬bound(?v)) where ?v ∈ cvars(P ′), then P is not satisfiable.

3. If R is filter condition bound(?v) where ?v 6∈ vars(P ′), then P is not satisfiable.

Proof. As a preliminary for this proof we recall Schmidt et al.’s result which shows
that each certain variable of a SPARQL expression P is guaranteed to be bound in each
solution for P [140, Proposition 1]. Formally, let P be a SPARQL expression and let G
be a set of RDF triples, then cvars(P) ⊆ dom(µ) holds for all µ ∈ [[P]]G. We now prove
the three claims of Proposition C.3.
Claim 1. Let P be a SPARQL expression of the form (P ′ FILTER R) such that (i) P ′

is satisfiable and (ii) R is ?v = c where ?v ∈ cvars(P ′) and c ∈ (U ∪ L). Since P ′ is
satisfiable, there exists a set of RDF triples G such that [[P ′]]G′ 6= ∅. Let G′ be such a set
and let µ be an arbitrary solution for P ′ in G′, i.e., µ ∈ [[P ′]]G′ . We construct another set
of RDF triples G′′ from G′ by replacing each occurrence of RDF term c′ = µ(?v) in G′
by c. Formally, G′′ =

{
σ(t)

∣∣ t ∈ P ′} where function σ maps each RDF triple (x1, x2, x3)
to another RDF triple (x′1, x′2, x′3) such that x′i = c if xi = c′; otherwise x′i = xi (for all
i = {1, 2, 3}). Due to this construction we have µ ∈ [[P]]G′′ . Hence, P is satisfiable.
Claim 2. Let P be a SPARQL expression of the form (P ′ FILTER R) such that filter

condition R is (¬bound(?v)) where ?v ∈ cvars(P ′). We need to distinguish two cases:
Either subexpression P ′ is satisfiable or it is unsatisfiable. In the latter case, P is also
unsatisfiable because for any set of RDF triples G it holds that [[P ′]]G = ∅ and, thus,
[[P]]G =

{
µ ∈ ∅

∣∣µ satisfies R
}

= ∅. Hence, it remains to discuss the case where P ′ is
satisfiable. If P ′ is satisfiable, there exists a set of RDF triples G such that [[P ′]]G 6= ∅.
Let G′ be such a set and let µ be an arbitrary solution for P ′ in G′, i.e., µ ∈ [[P ′]]G′ .
W.l.o.g., we prove that P is unsatisfiable by showing that µ /∈ [[P]]G′ . Since ?v is a
certain variable of P ′, it holds that ?v ∈ dom(µ) and, thus, µ does not satisfy filter
condition R. Therefore, µ /∈ [[P]]G′ .
Claim 3. Let P be a SPARQL expression of the form (P ′ FILTER R) such that R is

filter condition bound(?v) where ?v /∈ vars(P ′). If P ′ is unsatisfiable we directly conclude
that P is unsatisfiable (see our discussion of claim 2 above). If P ′ is satisfiable, there
exists a set of RDF triples G such that [[P ′]]G 6= ∅. Let G′ be such a set and let µ be an
arbitrary solution for P ′ in G′, i.e., µ ∈ [[P ′]]G′ . W.l.o.g., we prove that P is unsatisfiable

199

C. Basic Properties of SPARQL Queries

by showing that µ /∈ [[P]]G′ . Since ?v /∈ vars(P ′) it holds that ?v /∈ dom(µ) and, thus, µ
does not satisfy filter condition R. Therefore, µ /∈ [[P]]G′ . �

Proposition C.3 covers only a few patterns of SPARQL expressions with FILTER . Provid-
ing a more comprehensive list is out of scope of this dissertation. However, we conclude
the discussion of satisfiability by providing equivalences based on which SPARQL expres-
sions with an unsatisfiable subexpression may be rewritten into a semantically equivalent
expression. By applying these equivalences recursively, it may be possible to show that
the original expression is also unsatisfiable; or, for some cases an unsatisfiable subex-
pression may be eliminated in order to show satisfiability of the original expression.

Proposition C.4. Let symbol ≡ denote semantic equivalence of SPARQL expressions,
that is, for two SPARQL expressions P1 and P2 it holds that P1 ≡ P2 if [[P1]]G = [[P2]]G
for any possible set of RDF triples G. For any SPARQL expression P , the following
properties hold:

1. If P is (P1 AND P2) and P1 or P2 is unsatisfiable, then P is unsatisfiable.

2. If P is (P ′ FILTER R) and P ′ is unsatisfiable, then P is unsatisfiable.

3. If P is (P1 OPT P2) and P1 is unsatisfiable, then P is unsatisfiable.

4. If P is (P1 OPT P2) and P2 is unsatisfiable, then P ≡ P1.

5. If P is (P1 UNION P2) and P1 is unsatisfiable, then P ≡ P2.

6. If P is (P1 UNION P2) and P2 is unsatisfiable, then P ≡ P1.

Proof. Property 1: Suppose P is (P1 AND P2) and P1 or P2 is unsatisfiable. Since AND is
commutative (cf. Pérez et al. [128, Lemma 2.5], Schmidt et al. [140, Figure 2]), it is
sufficient to consider the case where P1 is unsatisfiable. In this case, [[P1]]G = ∅ holds for
any set of RDF triples G and, thus, [[P]]G =

(
∅ 1 [[P2]]G

)
= ∅. Hence, P is unsatisfiable.

Property 2: Suppose P is (P ′ FILTER R) and P ′ is unsatisfiable. Then, [[P ′]]G = ∅ holds
for any set of RDF triples G and, thus, [[P]]G =

{
µ ∈ ∅

∣∣µ satisfies R
}

= ∅. Hence, P is
unsatisfiable.
Property 3: Suppose P is (P1 OPT P2) and P1 is unsatisfiable. Then, [[P1]]G = ∅

holds for any set of RDF triples G and, thus, [[P]]G =
(
∅ 1 [[P2]]G

)
= ∅. Hence, P is

unsatisfiable.
Property 4: Suppose P is (P1 OPT P2) and P2 is unsatisfiable. Then, [[P2]]G = ∅ holds

for any set of RDF triples G and, thus, [[P]]G =
(
[[P1]]G 1 ∅

)
= [[P1]]G. Hence, P ≡ P1.

Property 5: Suppose P is (P1 UNION P2) and P1 is unsatisfiable. Then, [[P1]]G = ∅ holds
for any set of RDF triples G and, thus, [[P]]G =

(
∅ ∪ [[P2]]G

)
= [[P2]]G. Hence, P ≡ P2.

Property 6: Suppose P is (P1 UNION P2) and P2 is unsatisfiable. Since UNION is commu-
tative (cf. Pérez et al. [128, Lemma 2.5], Schmidt et al. [140, Figure 2]), P ≡ P1 follows
from Property 5. �

200

C.2. Monotonicity

C.2. Monotonicity
We now focus on monotonicity of SPARQL expressions.
Definition C.2. A SPARQL expression P is monotonic if the following statement holds
for any pair G1, G2 of (potentially infinite) sets of RDF triples: If G1 ⊆ G2, then
[[P]]G1 ⊆ [[P]]G2 . A SPARQL expression is non-monotonic if it is not monotonic. 2

The following property is a trivial corollary of Definitions C.1 and C.2.

Property C.1. Unsatisfiable SPARQL expressions are monotonic, and non-monotonic
SPARQL expressions are satisfiable.

As in the case of satisfiability, we have an (ordinary) decision problem for monotonicity:

Problem: Monotonicity(SPARQL)
Input: a SPARQL expression P
Question: Is P monotonic?

The monotonicity problem for SPARQL is also undecidable:

Proposition C.5. Monotonicity(SPARQL) is undecidable.

We aim to prove the proposition by reducing Satisfiability(SPARQL) to Mono-
tonicity(SPARQL). For this proof we first show the following lemma.

Lemma C.2. Let P1 and P2 be SPARQL expressions such that (i) P2 is non-monotonic
and (ii) vars(P1)∩vars(P2) = ∅. Then, P1 is satisfiable if and only if SPARQL expression
(P1 AND P2) is non-monotonic.

Proof. If: Suppose SPARQL expression (P1 AND P2) is non-monotonic. To show that
P1 is satisfiable we use proof by contradiction, that is, we assume P1 is unsatisfiable.
In this case, SPARQL expression (P1 AND P2) is also unsatisfiable (cf. Proposition C.4,
page 200). This is a contradiction because, due to its non-monotonicity, SPARQL ex-
pression (P1 AND P2) is satisfiable (cf. Property C.1).
Only if: Suppose SPARQL expression P1 is satisfiable. Hence, there exists a set of

RDF triples G such that [[P1]]G 6= ∅. Since P2 is non-monotonic, there also exist two
sets of RDF triples G1 and G2 such that (i) G1 ⊆ G2 and (ii) [[P2]]G1 * [[P2]]G2 . Let
valuation µ1 be an arbitrary solution for P1 in G (i.e., µ1 ∈ [[P1]]G). Furthermore, let
valuation µ2 be a solution for P2 in G1 (i.e., µ2 ∈ [[P2]]G1) such that µ2 /∈ [[P2]]G2 . Since
vars(P1) ∩ vars(P2) = ∅, it holds that µ1 ∼ µ2 and, thus, µ1 ∪ µ2 ∈ [[(P1 AND P2)]]G∪G1 .
However, from µ2 /∈ [[P2]]G2 it follows that µ1∪µ2 /∈ [[(P1 AND P2)]]G∪G2 . Hence, SPARQL
expression (P1 AND P2) is non-monotonic. �

Given Lemma C.2, we now prove Proposition C.5.
Proof of Proposition C.5. As mentioned before we show the undecidability of problem
Monotonicity(SPARQL) by reducing Satisfiability(SPARQL) to Monotonic-
ity(SPARQL). Assume Monotonicity(SPARQL) were decidable. In this case we
could answer Satisfiability(SPARQL) for any SPARQL expression P as follows.

201

C. Basic Properties of SPARQL Queries

Let P ′ be a non-monotonic SPARQL expression such that vars(P)∩vars(P ′) = ∅. For
instance, P ′ could be the non-monotonic SPARQL expression that we shall discuss in
Example C.2 (cf. page 203). If P and the selected non-monotonic SPARQL expression
have variables in common, it is trivial to construct P ′ by renaming the variables in the
selected expression. By using our (hypothetical) decider for Monotonicity(SPARQL)
we decide whether SPARQL expression (P AND P ′) is monotonic or not. Now, it is easy
to use Lemma C.2 for deciding the satisfiability of P .
Since Satisfiability(SPARQL) is undecidable (cf. Proposition C.1, page 195) we

have a contradiction and, thus, Monotonicity(SPARQL) cannot be decidable. �

Similar to satisfiability, monotonicity is also relevant for certain results in this disserta-
tion. For instance, we shall see that in many cases LD machine computability of Linked
Data queries depends on monotonicity. Hence, we now identify fragments of SPARQL
for which we can show monotonicity (or non-monotonicity).
We already know that unsatisfiable SPARQL expressions are monotonic (see Prop-

erty C.1). The following proposition shows monotonicity for all expressions without OPT :

Proposition C.6. SPARQL expressions without OPT are monotonic.

Proof. Let G1, G2 be an arbitrary pair of (potentially infinite) sets of RDF triples such
that G1 ⊆ G2. W.l.o.g., we prove Proposition C.6 by showing that [[P]]G1 ⊆ [[P]]G2

holds for all SPARQL expressions P without OPT . We use induction on the structure of
possible SPARQL expressions for this proof.
Base case: Suppose SPARQL expression P is a triple pattern tp. We show µ ∈ [[P]]G2

for all valuations µ ∈ [[P]]G1 . Let valuation µ be an arbitrary solution for P in G1; i.e.,
µ ∈ [[P]]G1 . Then, dom(µ) = vars(tp) and µ[tp] ∈ G1. Since G1 ⊆ G2, it holds that
µ[tp] ∈ G2 and, thus, µ ∈ [[P]]G2 .
Induction step: By induction, assume two SPARQL expressions P1 and P2 such that

[[P1]]G1 ⊆ [[P1]]G2 and [[P2]]G1 ⊆ [[P2]]G2 . Then, for any SPARQL expression P that
can be constructed (using P1, P2, and the operators AND , FILTER , UNION), we show that
µ ∈ [[P]]G2 holds for all valuations µ ∈ [[P]]G1 . We distinguish the following cases:

• P is (P1 AND P2). For any µ ∈ [[P]]G1 = [[P1]]G1 1 [[P2]]G1 there exist valuations
µl ∈ [[P1]]G1 and µr ∈ [[P2]]G1 such that µ = µl ∪ µr and µl ∼ µr. By induction we
have µl ∈ [[P1]]G2 and µr ∈ [[P2]]G2 . Thus, µ ∈ [[P1]]G2 1 [[P2]]G2 = [[P]]G2 .

• P is (P ′ FILTER R). For any µ ∈ [[P]]G1 it holds that (i) µ ∈ [[P ′]]G1 and (ii) µ
satisfies filter condition R. By induction we have µ ∈ [[P ′]]G2 . Therefore, it holds
that µ ∈

{
µ′ ∈ [[P ′]]G2

∣∣µ′ satisfies R} = [[P]]G2 .

• P is (P1 UNION P2). For any µ ∈ [[P]]G1 = [[P1]]G1 ∪ [[P2]]G1 we have the following
two (nonexclusive) cases:
1. µ ∈ [[P1]]G1 . By induction we also have µ ∈ [[P1]]G2 .
2. µ ∈ [[P2]]G1 . By induction we also have µ ∈ [[P2]]G2 .

Hence, in both cases, µ ∈ [[P1]]G2 ∪ [[P2]]G2 = [[P]]G2 .

202

C.2. Monotonicity

�

While all SPARQL expressions without OPT are monotonic, we now focus on expressions
with OPT . These may not be monotonic as the following example demonstrates.

Example C.2. Let G1 and G2 be the following sets of RDF triples:

G1 =
{
(offer1.1, offeredBy, vendor1)

}
and G2 = G1 ∪

{
(vendor1, name, "Vendor1")

}
,

and let P be the SPARQL expression
(
(offer1.1, offeredBy, ?v) OPT (?v, name, ?vn)

)
. It holds

that [[P]]G1 = {µ1} and [[P]]G2 = {µ2} where µ1 and µ2 are the valuations {?v → vendor1}
and {?v → vendor1, ?vn→ "Vendor1"}, respectively. Hence, [[P]]G1 * [[P]]G2 and, thus, P
is non-monotonic. 2

However, some expressions with OPT are monotonic:

Example C.3. It can be easily seen that the following SPARQL expression is monotonic:(
(?o, offeredBy, vendor1) OPT (vendor1, name, "Vendor1")

)
. We shall provide a formal proof

shortly (see Proposition C.7 below). 2

While Examples C.2 and C.3 verify that (satisfiable) SPARQL expressions with OPT are
either monotonic or non-monotonic, the following result provides us with an (incomplete)
list of criteria for deciding about the monotonicity of such expressions.

Proposition C.7. Let P be a SPARQL expression (P1 OPT P2).

1. If vars(P1) = ∅, it holds: P is monotonic if P1 and P2 are monotonic.

2. If vars(P2) = ∅, it holds: P is monotonic if and only if P1 is monotonic.

3. If vars(P1) 6= ∅ and vars(P2) 6= ∅, it holds: P is monotonic if (i) P1 is unsatisfiable
or (ii) P1 is monotonic and P2 is unsatisfiable.

We prove the proposition by discussing its three claims one after another:
Proof of Proposition C.7, Claim 1. Let P be a SPARQL expression (P1 OPT P2)
where (i) vars(P1) = ∅ and (ii) P1 and P2 are monotonic.
We distinguish two cases w.r.t. the evaluation of subexpression P1 over an arbitrary

(potentially infinite) set of RDF triples G: (a) [[P1]]G = ∅ and (b) [[P1]]G 6= ∅. To show
claim 1 we first discuss the effect of both cases on [[P]]G:

(a) If [[P1]]G = ∅, then [[P]]G = ∅ (irrespective of the result of [[P2]]G).

(b) If [[P1]]G 6= ∅, then [[P1]]G = {µ∅} where µ∅ is the empty valuation (dom(µ∅) = ∅).
Then, [[P]]G = {µ∅} 1 [[P2]]G = {µ∅} 1 [[P2]]G = [[P2]]G, because µ∅ is compatible
with any valuation.

We now discuss what cases (a) and (b) mean for the monotonicity of P . Let G1, G2 be
an arbitrary pair of (potentially infinite) sets of RDF triples such that G1 ⊆ G2. We
distinguish the following cases for G1 and G2 w.r.t. (a) and (b):

203

C. Basic Properties of SPARQL Queries

• If we have case (a) for G1 and case (a) for G2, then it holds that [[P1]]G1 = [[P1]]G2

and [[P]]G1 = [[P]]G2 . In this case P1 and P satisfy the requirement for monotonicity
(regardless of whether P2 is monotonic or non-monotonic).

• If we have case (a) for G1 and case (b) for G2, then it holds that [[P1]]G1 ⊆ [[P1]]G2

and [[P]]G1 ⊆ [[P]]G2 . In this case P1 and P satisfy the requirement for monotonicity
(regardless of whether P2 is monotonic or non-monotonic).

• If we have case (b) for G1 and case (b) for G2, then [[P1]]G1 = [[P1]]G2 . In this case P1
satisfies the requirement for monotonicity. However, P satisfies the requirement for
monotonicity only if P2 is monotonic. The latter holds according to our antecedent.

• If we have case (b) for G1 and case (a) for G2, then [[P1]]G1 ⊃ [[P1]]G2 . In this
case, P1 does not satisfy the requirement for monotonicity. Hence, this case is not
relevant because we assume P1 is monotonic.

In all three relevant cases SPARQL expression P is monotonic. �

Proof of Proposition C.7, Claim 2. Let P be a SPARQL expression of the form
(P1 OPT P2) where vars(P2) = ∅. We distinguish two cases w.r.t. the evaluation of subex-
pression P2 over an arbitrary (potentially infinite) set of RDF triples G: (a) [[P2]]G = ∅
and (b) [[P2]]G 6= ∅. To show claim 2 we first discuss the effect of both cases on [[P]]G:

(a) If [[P2]]G = ∅, then [[P]]G = [[P1]]G 1 ∅ =
(
[[P1]]G 1 ∅

)
∪
(
[[P1]]G \ ∅

)
= [[P1]]G.

(b) If [[P2]]G 6= ∅, it holds that [[P2]]G = {µ∅} where µ∅ is the empty valuation with
dom(µ∅) = ∅. Then, [[P]]G = [[P1]]G 1 {µ∅} = [[P1]]G 1 {µ∅} = [[P1]]G because µ∅ is
compatible with any valuation.

In both cases we have [[P]]G = [[P1]]G (for an arbitrary set of RDF triples G). Hence, P
is semantically equivalent to P1 and, thus, P has the same monotonicity as P1. �

Proof of Proposition C.7, Claim 3. Let P be a SPARQL expression of the form
(P1 OPT P2) where vars(P1) 6= ∅ and vars(P2) 6= ∅.
First, we assume subexpression P1 is unsatisfiable. In this case, P is also unsatisfiable

(cf. Proposition C.4 on page 200). Then, since P is unsatisfiable, P is trivially monotonic
(cf. Property C.1).
We now assume P1 is monotonic and P2 is unsatisfiable. Due to the latter we have

[[P2]]G = ∅ and, thus, [[P]]G = [[P1]]G 1 ∅ =
(
[[P1]]G 1 ∅

)
∪
(
[[P1]]G \ ∅

)
= [[P1]]G, for any set

of RDF triples G. Hence, P is semantically equivalent to P1. Then, the monotonicity of
P follows from the monotonicity of P1. �

C.3. Bounded Satisfiability and Unbounded Satisfiability
Section 2.1.2 introduces bounded satisfiability and unbounded satisfiability as particular
types of satisfiability that are relevant for some of the results in this dissertation (cf. page

204

C.3. Bounded Satisfiability and Unbounded Satisfiability

22ff). While Section 2.1.2 introduces these notions of satisfiability for Linked Data
queries (see, in particular, Definition 2.8, page 24), we now define and discuss bounded
satisfiability and unbounded satisfiability for SPARQL expressions.
Definition C.3. A SPARQL expression P is unboundedly satisfiable if, for any natural
number k ∈ {0, 1, 2, ...}, there exists a set of RDF triples G such that

∣∣[[P]]G
∣∣ > k. A

SPARQL expression P is boundedly satisfiable if it is satisfiable but not unboundedly
satisfiable. 2

Example C.4. Consider triple patterns tp1 = (u∗1, u∗2, ?v) and tp2 = (u∗1, u∗2, u∗3) where
u∗1, u

∗
2, u
∗
3 ∈ U and ?v ∈ V.

We show that tp1 is unboundedly satisfiable as follows: The set of all potentially
matching triples for tp1 is Ttp1 = {u∗1} × {u∗2} × (U ∪ B ∪L). This set is infinite because
U , B, and L are infinite, respectively. Then, for any k ∈ {0, 1, 2, ...} we select a subset
Gk ⊂ Ttp1 of size k+1; i.e.,

∣∣Gk∣∣ = k + 1. It is easy to see that
∣∣[[tp1]]Gk

∣∣ = k + 1 > k.
Due to the infiniteness of Ttp1 , such a subset exists for all k ∈ {0, 1, 2, ...}.
Triple pattern tp2, in contrast, is a trivial example of a boundedly satisfiable SPARQL

expression: Since vars(tp2) = ∅, tp2 is an RDF triple. Hence, any possible set of RDF
triples may contain at most a single matching triple for tp2, namely (u∗1, u∗2, u∗3). For any
such set G (for which (u∗1, u∗2, u∗3) ∈ G), [[tp2]]G = {µ∅} holds with µ∅ being the empty
valuation. For any other set of RDF triples the query result contains no solution at all,
that is [[tp2]]G′ = ∅ for any set of RDF triples G′ for which (u∗1, u∗2, u∗3) /∈ G′. Therefore,
k = 1 is an upper bound for the number of possible solutions that may be computed for
tp2; more precisely, there does not exist a set of RDF triples G such that

∣∣[[tp2]]G
∣∣ > 1.

Another, less trivial example of a boundedly satisfiable SPARQL expression is the
expression

(
(u∗1, u∗2, ?v) FILTER (?v = u∗1 ∨ ?v = u∗3)

)
. This expression contains the afore-

mentioned triple pattern tp1 as a subexpression. Although the relevant set Ttp1 of po-
tentially matching triples for tp1 is infinite (see above), there exist only two valuations
in [[tp1]]Ttp1

that satisfy the filter condition, namely µ = {?v → u∗1} ∈ [[tp1]]Ttp1
and

µ′ = {?v → u∗3} ∈ [[tp1]]Ttp1
. Hence, µ and µ′ are the only solutions for the given

SPARQL expression in Ttp1 . Similarly, in any other set of RDF triples there exist at
most these two solutions. 2

From Definition C.3 it follows trivially that any unboundedly satisfiable SPARQL expres-
sion is also satisfiable. Hence, our notions of bounded satisfiability and unbounded sat-
isfiability partition the set of satisfiable SPARQL expressions into two, non-overlapping
subsets. We emphasize that an expression that is not boundedly satisfiable is not nec-
essarily unboundedly satisfiable; it may also be unsatisfiable (vice versa for expressions
that are not unboundedly satisfiable).
Similar to the satisfiability problem and to the monotonicity problem discussed in the

previous sections, we have (ordinary) decision problems for unbounded satisfiability and
for bounded satisfiability.

Problem: BoundedSatisfiability(SPARQL)
Input: a SPARQL expression P
Question: Is P boundedly satisfiable?

205

C. Basic Properties of SPARQL Queries

Problem: UnboundedSatisfiability(SPARQL)
Input: a SPARQL expression P
Question: Is P unboundedly satisfiable?

Proposition C.8. BoundedSatisfiability(SPARQL) and UnboundedSatisfia-
bility(SPARQL) are undecidable.

Proof. We first show that BoundedSatisfiability(SPARQL) is undecidable by re-
ducing Satisfiability(SPARQL) to BoundedSatisfiability(SPARQL). For such
a reduction we need a (Turing) computable function that maps any possible input for
Satisfiability(SPARQL) to an input for BoundedSatisfiability(SPARQL). We
use the identity function.
Assume BoundedSatisfiability(SPARQL) is decidable. Then, we may answer

Satisfiability(SPARQL) for any SPARQL expression P as follows.
Let u∗∈ U be a URI that is not mentioned in P (neither in any triple pattern nor in

any filter condition); and let SPARQL expression P ′ be triple pattern (u∗, u∗, u∗). P ′ is
boundedly satisfiable because, for any possible set of RDF triples G, either [[P ′]]G = ∅
holds or [[P ′]]G = {µ∅} holds (where µ∅ is the empty valuation with dom(µ∅) = ∅).
We use our (hypothetical) decider for BoundedSatisfiability(SPARQL) to decide
whether SPARQL expression (P UNION P ′) is boundedly satisfiable.

• Case 1: If (P UNION P ′) is boundedly satisfiable, then P cannot be unbounded-
ly satisfiable. Thus, P is either boundedly satisfiable (and, thus, satisfiable) or
unsatisfiable. To determine which of both cases holds, we again use our (hypothet-
ical) decider for BoundedSatisfiability(SPARQL) and simply ask whether P
is boundedly satisfiable. Depending on the result, we conclude that P is satisfiable
(if it is boundedly satisfiable) or unsatisfiable (if it is not boundedly satisfiable).

• Case 2: If (P UNION P ′) is not boundedly satisfiable, then (P UNION P ′) could be
either unboundedly satisfiable or unsatisfiable. However, since P ′ is (boundedly)
satisfiable, (P UNION P ′) cannot be unsatisfiable. Hence, (P UNION P ′) must be
unboundedly satisfiable. Then, we may again use the fact that P ′ is bounded-
ly satisfiable to conclude P must be unboundedly satisfiable (in order to make
(P UNION P ′) unboundedly satisfiable). As a result we have that P is satisfiable.

Based on the assumption that BoundedSatisfiability(SPARQL) is decidable, the
procedure outlined above decides Satisfiability(SPARQL). Therefore, given that
Satisfiability(SPARQL) is undecidable (cf. Proposition C.1, page 195) we have a
contradiction and, thus, BoundedSatisfiability(SPARQL) cannot be decidable.
We now focus on UnboundedSatisfiability(SPARQL). To show that Unbound-

edSatisfiability(SPARQL) is undecidable, we reduce Satisfiability(SPARQL) to
UnboundedSatisfiability(SPARQL) (using the identity function again). That is,
we assume the existence of a decider for UnboundedSatisfiability(SPARQL) and
use this decider to answer Satisfiability(SPARQL) for any SPARQL expression P as
follows: Let SPARQL expression P ′′ be a triple pattern (u∗, u∗, ?v) such that (i) u∗ ∈ U

206

C.3. Bounded Satisfiability and Unbounded Satisfiability

is a URI that is not mentioned in P (as above) and (ii) ?v is a fresh variable not used in
P ; i.e., ?v ∈ V \ vars(P). P ′′ is unboundedly satisfiable (cf. Proposition C.9 below). We
note that any possible solution for P ′′ is compatible with any potential solution for P
(independent of the queried set of RDF triples) because both expressions, P and P ′′, do
not have any variable in common. Then, given the unbounded satisfiability of P ′′, the
SPARQL expression (P AND P ′′) cannot be boundedly unsatisfiable; instead, it is either
unboundedly satisfiable or it is unsatisfiable. To determine which of these cases holds,
we use our (hypothetical) decider for UnboundedSatisfiability(SPARQL).

• Case 1: If (P AND P ′′) is unboundedly satisfiable (and, thus, satisfiable), then, by
Proposition C.4 (cf. page 200), we conclude that P is satisfiable.

• Case 2: If (P AND P ′′) is unsatisfiable (because it is not unboundedly satisfiable and
it cannot be boundedly satisfiable), then, due to the (unbounded) satisfiability of
P ′′ and by using Proposition C.4 (cf. page 200), we conclude that P is unsatisfiable.

By using the outlined procedure, we may decide Satisfiability(SPARQL) if prob-
lem UnboundedSatisfiability(SPARQL) is decidable. Thus, given that Satisfia-
bility(SPARQL) is undecidable, UnboundedSatisfiability(SPARQL) cannot be
decidable either. �

Given that both BoundedSatisfiability(SPARQL) and UnboundedSatisfiabil-
ity(SPARQL) are undecidable, we want to identify a fragment of SPARQL for which
we can show unbounded satisfiability and bounded satisfiability. We focus on SPARQL
expressions that consist only of triple patterns and AND :

Proposition C.9. Any SPARQL expression P without FILTER, OPT, and UNION is un-
boundedly satisfiable if and only if vars(P) 6= ∅.

To prove the proposition we first show the following necessary condition for unbounded
satisfiability:

Lemma C.3. If a SPARQL expression P is unboundedly satisfiable, then vars(P) 6= ∅.

Proof of Lemma C.3. Let P be an arbitrary unboundedly satisfiable SPARQL expres-
sion. Furthermore, let G be a set of RDF triples such that

∣∣[[P]]G
∣∣ > 1. Such a set exists

because P is unboundedly satisfiable. Then, there exist (at least) two distinct solutions
µ1 ∈ [[P]]G and µ2 ∈ [[P]]G. Because of µ1 6= µ2 it holds that dom(µ1) 6= dom(µ2) or
µ1 6∼ µ2 (or both). We discuss both cases in the following.
The first case, dom(µ1) 6= dom(µ2), is only possible if dom(µ1) 6= ∅ or dom(µ2) 6= ∅ (or

both). W.l.o.g., let dom(µ1) 6= ∅. Since µ1 ∈ [[P]]G and dom(µ1) 6= ∅, it is trivial to show
(by induction on the possible structure of SPARQL expression P) that vars(P) 6= ∅.
In the second case, µ1 6∼ µ2, there exists a common variable ?v ∈ dom(µ1) ∩ dom(µ2)

such that µ1(?v) 6= µ2(?v). This shows that dom(µ1) 6= ∅ and dom(µ2) 6= ∅. As in the
first case, we may use µ1 ∈ [[P]]G and dom(µ1) 6= ∅ to show vars(P) 6= ∅. �

In addition to Lemma C.3, we need the following lemma to prove Proposition C.9.

207

C. Basic Properties of SPARQL Queries

Lemma C.4. Let T UL = U×U×(U∪L) be the infinite set of all RDF triples that contain
no blank node; and let P be a SPARQL expression without FILTER, OPT, and UNION. For
any valuation µ with dom(µ) ⊆ vars(P) there exists a pair (G′, µ′) with G′ ⊆ T UL and
µ′ ∈ [[P]]G′ such that µ′ ∼ µ.

Proof of Lemma C.4. We prove Lemma C.4 by induction on the possible structure
of SPARQL expression P .
Base case: Suppose P is a triple pattern tp. Let µ be an arbitrary valuation such that

dom(µ) ⊆ vars(tp). It suffices to show that there exists a pair (G′, µ′) with G′ ⊆ T UL
and µ′ ∈ [[tp]]G′ such that µ′ ∼ µ. It can be easily seen that there exists an RDF triple
in T UL such that this triple is a matching triple for triple pattern tp′ = µ[tp]. Let
t ∈ T UL be such a triple. Since tp′ = µ[tp], t is also a matching triple for triple pattern
tp. Then, let µ′ be a valuation such that dom(µ′) = vars(tp) and µ′[tp] = t. Due to this
construction of µ′ we have µ′ ∈ [[tp]]G′ where G′ = {t} ⊆ T UL. Hence, for valuation µ
the pair (G′, µ′) satisfies the condition in Lemma C.4.
Induction step: Let P1 and P2 be SPARQL expressions without FILTER , OPT, and UNION

such that Lemma C.4 holds for both, P1 and P2. Since P1 and P2 contain no OPT , they
are monotonic (cf. Proposition C.6, page 202). We now show that Lemma C.4 also holds
for SPARQL expression (P1 AND P2) (which is also monotonic).
Let µ be an arbitrary valuation such that dom(µ) ⊆ vars

(
(P1 AND P2)

)
. It suffices to

show that there exists a pair (G′, µ′) with G′ ⊆ T UL and µ′ ∈ [[(P1 AND P2)]]G′ such that
µ′ ∼ µ.
Let µ1 and µ2 be valuations such that (i) dom(µi) = dom(µ)∩vars(Pi) for all i ∈ {1, 2},

and (ii) µ = µ1 ∪ µ2. By induction, there exist pairs (G′1, µ′1) and (G′2, µ′2) such that for
each i ∈ {1, 2} it holds that (i) G′i ⊆ T UL, (ii) µ′i ∈ [[Pi]]G′i , and (iii) µ′i ∼ µ. We use
these pairs to construct G′ = G′1 ∪G′2 and µ′ = µ′1 ∪µ′2. Since P1 and P2 are monotonic,
µ′i ∈ [[Pi]]G′ for all i ∈ {1, 2}. However, it also holds that µ′ ∈ [[(P1 AND P2)]]G′ and, since
µ′i ∼ µ for all i ∈ {1, 2}, we also have µ′ ∼ µ. Therefore, (G′, µ′) is the pair that satisfies
the condition from Lemma C.4 for valuation µ. �

Now we are ready to prove Proposition C.9.

Proof of Proposition C.9. Let P be a SPARQL expression without FILTER , OPT ,
and UNION . We have to show that P is unboundedly satisfiable if and only if vars(P) 6= ∅.
Since the only if part follows directly from Lemma C.3, we only have to show the if part.
We use an induction on the possible structure of SPARQL expression P .
Base case: Suppose P is a triple pattern. W.l.o.g., let tp = (u1, u2, ?v) ∈ U × U × V

be this triple pattern. It can be easily seen that the following argument applies to any
other type of triple patterns that contain at least one variable, that is, any triple pattern
in
(
(V ∪ U)× (V ∪ U)× (V ∪ U ∪ L)

)
∩
(
U × U × U

)
∩
(
U × U × L

)
.

Let Ttp = {u1} × {u2} × U . Notice, we deliberately exclude the sets of all blank
nodes B and of all literals L from this definition (if we would use a triple pattern
tp′ = (?v, u, c) ∈ V×U×L instead of tp = (u1, u2, ?v), then the constructed set would be
Ttp′ = U ×{u}×{c}). It is easy to see that any RDF triple in Ttp is a matching triple for

208

C.3. Bounded Satisfiability and Unbounded Satisfiability

tp and Ttp is infinite because U is infinite. Thus, for any natural number k ∈ {0, 1, 2, ...}
there exists a subset G ⊆ Ttp such that

∣∣[[tp]]G∣∣ > k. Hence, tp is unboundedly satisfiable.
Induction step: Since Proposition C.9 excludes FILTER , OPT , and UNION , we only have

to discuss the case where P is a SPARQL expression (P1 AND P2) (with vars(P) 6= ∅). In
this case, P , P1, and P2 are monotonic (cf. Proposition C.6, page 202). Since vars(P) 6= ∅,
there exists an i ∈ {1, 2} such that vars(Pi) 6= ∅. W.l.o.g., let i = 1. Then, by induction,
P1 is unboundedly satisfiable. We now show that P is also unboundedly satisfiable.
Let k ∈ {0, 1, 2, ...} be an arbitrary natural number. Since P1 is unboundedly satisfi-

able, there exists a set of RDF triples G1 such that
∣∣[[P1]]G1

∣∣ > k. Let G′1 be such a set
and let k′ =

∣∣[[P1]]G′1
∣∣; hence, k′ > k. For each (of the k′ different) µ ∈ [[P1]]G′1 we write

j(µ) to denote the valuation for which dom(µ∗) = vars(P1) ∩ vars(P2) and µ∗ ∼ µ hold.
Furthermore, for each µ ∈ [[P1]]G′1 we write J(µ) to denote an arbitrary pair (G′, µ′) for
which it holds that (i) G′ ⊆ T UL, (ii) µ′ ∈ [[P2]]G′ , and (iii) µ′ ∼ j(µ). Such a pair exists
(cf. Lemma C.4).
Then, for each µ ∈ [[P1]]G′1 with J(µ) = (G′, µ′), we have µ ∪ µ′ ∈ [[(P1 AND P2)]]G′1∪G′

because (i) dom(µ) ∪ dom(µ′) = vars(P1) ∪ vars(P2) = vars(P), (ii) µ′ ∼ j(µ) ∼ µ, and
(iii) P1, P2, and (P1 AND P2) are monotonic.
Let G = G′1 ∪

⋃
G′∈G

(
G′
)
where G =

{
G′
∣∣µ ∈ [[P1]]G′1 and J(µ) = (G′, µ′)

}
. Then,

for each µ ∈ [[P1]]G′1 with J(µ) = (G′, µ′), we also have µ ∪ µ′ ∈ [[(P1 AND P2)]]G. Be-
cause of

∣∣[[P1]]G′1
∣∣ = k′, we have

∣∣[[(P1 AND P2)]]G
∣∣ ≥ k′ and, since k′ > k, it holds that∣∣[[(P1 AND P2)]]G

∣∣ > k. This shows that P is unboundedly satisfiable. �

The following result is a trivial consequence of Proposition C.9 (and the fact that any
SPARQL expression without FILTER is satisfiable).

Corollary C.1. Any SPARQL expression P without FILTER, OPT, and UNION is bound-
edly satisfiable if and only if vars(P) = ∅.

Proof. The corollary follows immediately from the satisfiability of SPARQL expressions
without FILTER (cf. Proposition C.2, page 197) and Proposition C.9. �

Proposition C.9 and Corollary C.1 cover the fragment of SPARQL that uses only triple
patterns and AND . In addition to this fragment, Example C.4 (cf. page 205) introduces
a form of SPARQL expressions with FILTER for which bounded satisfiability is easy to
prove. We leave a more extensive discussion of SPARQL expressions with FILTER , OPT ,
or UNION as future work.

209

D. Supplementary Information about the
Experiments

D.1. Queries for the WWW-Based Experiment
For the queries enumerated in this section we assume the following prefix definitions:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbowl: <http://dbpedia.org/ontology/>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX swc: <http://data.semanticweb.org/ns/swc/ontology#>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
PREFIX drugbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
PREFIX diseasome: <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/>
PREFIX dailymed: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>
PREFIX tcm: <http://purl.org/net/tcm/tcm.lifescience.ntu.edu.tw/>
PREFIX eurostat: <http://www4.wiwiss.fu-berlin.de/eurostat/resource/eurostat/>
PREFIX gn: <http://www.geonames.org/ontology#>

Query WQ1.
Query semantics: cMatch-semantics
BGP: ?paper swc:isPartOf

<http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings> .
?paper swrc:author ?p .
?p rdfs:label ?n .

Seed URI: http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings

Query WQ2.
Query semantics: cMatch-semantics
BGP: ?proceedings swc:relatedToEvent

<http://data.semanticweb.org/conference/eswc/2010> .
?paper swc:isPartOf ?proceedings .
?paper swrc:author ?p .

Seed URI: http://data.semanticweb.org/conference/eswc/2010

211

D. Supplementary Information about the Experiments

Query WQ3.
Query semantics: cMatch-semantics
BGP: ?paper swc:isPartOf

<http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings> .
?paper swrc:author ?p .
?p owl:sameAs ?x .
?p rdfs:label ?n .

Seed URI: http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings

Query WQ4.
Query semantics: cMatch-semantics
BGP: ?role swc:isRoleAt <http://data.semanticweb.org/conference/eswc/2010> .

?role swc:heldBy ?p .
?paper swrc:author ?p .
?paper swc:isPartOf ?proceedings .
?proceedings swc:relatedToEvent

<http://data.semanticweb.org/conference/eswc/2010> .

Seed URI: http://data.semanticweb.org/conference/eswc/2010

Query WQ5.
Query semantics: cMatch-semantics
BGP: ?a dbowl:artist <http://dbpedia.org/resource/Michael_Jackson> .

?a rdf:type dbowl:Album .
?a foaf:name ?n .

Seed URIs: http://dbpedia.org/resource/Michael_Jackson, dbowl:Album

Query WQ6.
Query semantics: cMatch-semantics
BGP: ?director dbowl:nationality <http://dbpedia.org/resource/Italy> .

?film dbprop:director ?director.
?film owl:sameAs ?x .

Seed URI: http://dbpedia.org/resource/Italy

Query WQ7.
Query semantics: cMatch-semantics
BGP: <http://sws.geonames.org/2921044/> gn:childrenFeatures ?c .

?x gn:parentFeature <http://sws.geonames.org/2921044/> .
?x gn:name ?n .

Seed URI: http://sws.geonames.org/2921044/

212

D.1. Queries for the WWW-Based Experiment

Query WQ8.
Query semantics: cMatch-semantics
BGP: ?drug drugbank:drugCategory

<http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugcategory/micronutrient> .
?drug drugbank:casRegistryNumber ?id .
?drug owl:sameAs ?s .
?s foaf:name ?o .
?s dct:subject ?sub .

Seed URI: http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugcategory/micronutrient

Query WQ9.
Query semantics: cMatch-semantics
BGP: ?x dct:subject

<http://dbpedia.org/resource/Category:FIFA_World_Cup-winning_countries> .
?p dbprop:managerclubs ?x .
?p foaf:name "Luiz Felipe Scolari"@en .

Seed URI: http://dbpedia.org/resource/Category:FIFA_World_Cup-winning_countries

Query WQ10.
Query semantics: cMatch-semantics
BGP: ?n dct:subject <http://dbpedia.org/resource/Category:Chancellors_of_Germany> .

?n owl:sameAs ?p2 .
?p2 <http://data.nytimes.com/elements/latest_use> ?u .

Seed URI: http://dbpedia.org/resource/Category:Chancellors_of_Germany

Query WQ11.
Query semantics: cMatch-semantics
BGP: ?x dbowl:team <http://dbpedia.org/resource/Eintracht_Frankfurt> .

?x rdfs:label ?y .
?x dbowl:birthDate ?d .
?x dbowl:birthPlace ?p .
?p rdfs:label ?l .

Seed URI: http://dbpedia.org/resource/Eintracht_Frankfurt

Query WQ12.
Query semantics: cMatch-semantics
BGP: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugs/DB01273>

drugbank:possibleDiseaseTarget ?disease .
?disease owl:sameAs ?sameDisease.
?altMedicine tcm:treatment ?sameDisease.
?altMedicine rdf:type tcm:Medicine.
?sameDisease rdfs:label ?diseaseLabel.
?altMedicine rdfs:label ?altMedicineLabel.

Seed URI: http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugs/DB01273

213

D. Supplementary Information about the Experiments

Query WQ13.
Query semantics: cMatch-semantics
BGP: ?u dct:subject

<http://dbpedia.org/resource/Category:Universities_and_colleges_in_Lower_Saxony> .
?u dbowl:city ?c .
?c owl:sameAs ?cAlt .
?cAlt rdfs:label ?cityName .
?cAlt eurostat:unemployment_rate_total ?ur .

Seed URI: http://dbpedia.org/resource/Category:Universities_and_colleges_in_Lower_Saxony

Query WQ14.
Query semantics: cMatch-semantics
BGP: ?pub swc:isPartOf

<http://data.semanticweb.org/conference/eswc/2009/proceedings> .
?pub swc:hasTopic ?topic .
?topic rdfs:label "Ontology engineering"@en .
?pub swrc:author ?author .
?author owl:sameAs ?authorAlt .
?authorAlt foaf:phone ?phone .

Seed URI: http://data.semanticweb.org/conference/eswc/2009/proceedings

Query WQ15.
Query semantics: cMatch-semantics
BGP: <http://www.w3.org/People/Berners-Lee/card#i> foaf:knows ?p .

?p foaf:interest ?i .

Seed URI: http://www.w3.org/People/Berners-Lee/card#i

Query WQ16.
Query semantics: cMatch-semantics
BGP: <http://www.w3.org/People/Berners-Lee/card#i> foaf:knows ?p .

?p foaf:knows ?p2 .
?p2 foaf:phone ?i .

Seed URI: http://www.w3.org/People/Berners-Lee/card#i

Query WQ17.
Query semantics: cMatch-semantics
BGP: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/organization/Mylan_Pharmaceuticals_Inc.>

dailymed:producesDrug ?bd .
?bd dailymed:genericDrug ?gd .
?gd drugbank:possibleDiseaseTarget ?dt .
?dt diseasome:name "Epilepsy" .
?bd dailymed:activeIngredient ?ai .
?bd2 dailymed:activeIngredient ?ai .
?c dailymed:producesDrug ?bd2 .
?c rdfs:label ?cn .

Seed URI:
http://www4.wiwiss.fu-berlin.de/dailymed/resource/organization/Mylan_Pharmaceuticals_Inc.

214

D.2. Measurements of the WWW-Based Experiment

Query WQ18.
Query semantics: cMatch-semantics
BGP: ?gd drugbank:drugCategory

<http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugcategory/antimalarials> .
?gd drugbank:brandedDrug ?bd .
?c dailymed:producesDrug ?bd .
?c rdfs:label "Pfizer Labs" .
?gd owl:sameAs ?gd2 .
?gd2 foaf:depiction ?p .

Seed URI: http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugcategory/antimalarials

D.2. Measurements of the WWW-Based Experiment

Query min. avg. max.
WQ1 334 334.0 334
WQ2 185 185.0 185
WQ3 191 191.0 191
WQ4 50 50.0 50
WQ5 6 41.2 50
WQ6 261 261.0 261
WQ7 16 16.0 16
WQ8 12 24.8 28
WQ9 1 1.0 1
WQ10 0 0.0 0
WQ11 51123 51123.0 51123
WQ12 0 0.0 0
WQ13 4 4.0 4
WQ14 0 0.0 0
WQ15 20 20.0 20
WQ16 30 31.6 32
WQ17 0 52.0 65
WQ18 0 0.8 1

(a) result set size

Query min. avg. max.
WQ1 352 352.0 352
WQ2 281 281.0 281
WQ3 395 395.0 395
WQ4 984 984.0 984
WQ5 11 62.2 75
WQ6 1078 1078.0 1078
WQ7 24 24.0 24
WQ8 59 276.6 331
WQ9 207 207.0 207
WQ10 288 288.0 288
WQ11 658 658.0 658
WQ12 16 16.0 16
WQ13 91 91.0 91
WQ14 154 154.8 155
WQ15 54 54.8 55
WQ16 324 324.8 325
WQ17 0 703.2 879
WQ18 44 104.8 120

(b) retrieved documents

Table D.1.: Result set size and number of retrieved documents as measured during the
WWW-based experiment (cf. Section 7.3.2).

215

D. Supplementary Information about the Experiments

Query without cache with cache
min. avg. max.

1 494.592 507.226 534.864 0.288
2 433.915 438.832 445.012 0.187
3 1619.716 1628.652 1640.759 0.902
4 1421.391 1432.641 1443.578 7.345
5 18.996 35.215 39.581 0.020
6 1324.191 1431.628 1686.730 0.050
7 105.196 108.366 110.742 0.002
8 1842.871 2421.207 4690.692 0.065
9 54.425 61.498 66.783 0.010
10 1074.739 1076.068 1080.118 0.015
11 365.166 399.769 482.930 6.748
12 24.162 34.456 59.119 0.002
13 935.298 955.963 970.606 0.018
14 778.563 793.079 842.658 0.051
15 506.900 544.696 587.600 0.002
16 2620.847 2652.639 2706.518 0.016
17 30.004 142.770 492.626 4.052
18 39.917 248.415 984.125 0.020

Table D.2.: Query execution times measured during the WWW-based experiment.

D.3. Queries for the Simulation-Based Experiments
For the queries enumerated in this section we assume the following prefix definitions:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rev: <http://purl.org/stuff/rev#>
PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

Query SQ1.
Query semantics: cMatch-semantics
BGP: ?o bsbm:vendor

<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromVendor1/Vendor1> .
?o bsbm:product ?p .
?p bsbm:producer

<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer2/Producer2> .

Seed URIs: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromVendor1/Vendor1,
http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer2/Producer2

216

D.3. Queries for the Simulation-Based Experiments

Query SQ2.
Query semantics: cMatch-semantics
BGP: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromRatingSite1/Review110>

bsbm:reviewFor ?product .
?product bsbm:productFeature ?feature .
?feature rdfs:label ?featureLabel .

Seed URI: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromRatingSite1/Review110

Query SQ3.
Query semantics: cMatch-semantics
BGP: ?review bsbm:reviewFor

<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer3/Product128>.
?review bsbm:rating1 ?rating .
?review dc:title ?reviewTitle .

Seed URI: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer3/Product128

Query SQ4.
Query semantics: cMatch-semantics
BGP: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer5/Product184>

bsbm:producer ?producer .
<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer5/Product184>

rdf:type ?type .
?product2 bsbm:producer ?producer .
?product2 rdf:type ?type .

Seed URI: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer5/Product184

Query SQ5.
Query semantics: cMatch-semantics
BGP: ?review bsbm:reviewFor

<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer3/Product128>.
?review bsbm:rating1 10 .
?review rev:reviewer ?reviewer .
?reviewer bsbm:country ?country .

Seed URI: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer3/Product128

Query SQ6.
Query semantics: cMatch-semantics
BGP: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer3/Product128>

bsbm:productFeature ?feature .
?product2 bsbm:productFeature ?feature .
?product2 bsbm:producer ?producer .
<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer3/Product128>

bsbm:producer ?producer .

Seed URI: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromProducer3/Product128

217

E. Proofs of Auxiliary Results

E.1. Proof of Lemma 3.1 (page 54)
Lemma 3.1. Let QP be a satisfiable SPARQLLD query that is monotonic; let MP

denote the full-Web machine for the SPARQL expression P used by QP; and let W be
an arbitrary Web of Linked Data encoded on the Web input tape of MP. During the
execution of Algorithm 3.1 by MP, [[P]]Tj ⊆ QP(W) holds for all j ∈ {1, 2, ... }.

Since QP(W) = [[P]]AllData(W) (cf. Definition 3.1, page 42), we may prove [[P]]Tj ⊆ QP(W)
for all j ∈ {1, 2, ... } by showing [[P]]Tj ⊆ [[P]]AllData(W), respectively. Since SPARQLLD
query QP is monotonic, its SPARQL expression P is monotonic as well (cf. Proposi-
tion 3.1, page 43). Therefore, for any j ∈ {1, 2, ... }, [[P]]Tj ⊆ [[P]]AllData(W) holds if
Tj ⊆ AllData(W). Thus, it remains to show that during the execution of Algorithm 3.1
by machine MP on Web input enc(W), Tj ⊆ AllData(W) holds for all j ∈ {1, 2, ... }.
Let W = (D, data, adoc). As for any LD machine, the computation of MP starts with

an empty lookup tape (cf. Definition 2.9, page 27). Let wj be the word on the lookup
tape of MP before MP executes line 4 during the j-th iteration of the main processing
loop in Algorithm 3.1. It can be easily seen that for any j ∈ {1, 2, ... } there exists a
finite sequence u1, ... , uj of j different URIs such that wj is the following word:

enc(u1) enc(adoc(u1))] ...] enc(uj) enc(adoc(uj))]

where, for any URI ui for which adoc(ui) =⊥, we assume sub-word enc(adoc(ui)) is the
empty word. If Uj is the set that contains all URIs in this sequence u1, ... , uj , it holds that
Tj =

{
t ∈ data(adoc(ui))

∣∣ui ∈ Uj and adoc(ui) 6=⊥}. Clearly, Tj ⊆ AllData(W). �

E.2. Proof of Lemma 3.2 (page 54)
Lemma 3.2. Let QP be a satisfiable SPARQLLD query that is monotonic; let MP

denote the full-Web machine for the SPARQL expression P used by QP; and let W be an
arbitrary Web of Linked Data encoded on the Web input tape of MP. For each solution
µ ∈ QP(W) there exists a jµ ∈ {1, 2, ... } such that during the execution of Algorithm 3.1
by MP, µ ∈ [[P]]Tj holds for all j ∈ {jµ, jµ+1, ... }.

To prove Lemma 3.2 we first show that a full-Web machine eventually discovers any
RDF triple in the queried Web of Linked Data:

Lemma E.1. Let QP be a satisfiable SPARQLLD query that is monotonic; let MP

denote the full-Web machine for the SPARQL expression P used by QP; and let W be

219

E. Proofs of Auxiliary Results

an arbitrary Web of Linked Data encoded on the Web input tape of MP. For each RDF
triple t ∈ AllData(W) there exists a jt ∈ {1, 2, ... } such that during the execution of
Algorithm 3.1 by MP, t ∈ Tj holds for all j ∈ {jt, jt+1, ... }.

Proof of Lemma E.1. Let W = (D, data, adoc). Furthermore, let t ∈ AllData(W)
be an arbitrary RDF triple in W. Hence, there exists an LD document d ∈ D such
that t ∈ data(d). Let d ∈ D be such an LD document. By our definition of a Web
of Linked Data, there exists a URI u ∈ U such that adoc(u) = d (see the requirement
for mapping adoc in Definition 2.1, page 16). Let u be such a URI. Since u ∈ U , there
exists a jt ∈ {1, 2, ... } such that machine MP selects URI u for processing in the jt-th
iteration of the main loop in Algorithm 3.1. After completing the lookup of u during this
iteration (cf. line 3 in Algorithm 3.1), the word on the lookup tape contains sub-word
enc(d) (cf. Definition 3.4, page 53, and Definition 2.9, page 27). Since t ∈ data(d), sub-
word enc(d) contains sub-word enc(t) (cf. Appendix B, page 193f). Hence, t ∈ Tjt . Since
a full-Web machine only appends to (the right end of) the word on its lookup tape, MP

never removes enc(t) from that tape and, thus, t ∈ Tj holds for all j ∈ {jt, jt+1, ... }. �

We now focus on Lemma 3.2. Since QP(W) = [[P]]AllData(W) (cf. Definition 3.1, page 42),
we may prove Lemma 3.2 by showing the following: For each solution µ ∈ [[P]]AllData(W)
there exists a jµ ∈ {1, 2, ... } such that during the execution of Algorithm 3.1 by full-Web
machine MP, µ ∈ [[P]]Tj holds for all j ∈ {jµ, jµ+1, ... }. Because of the monotonicity of
SPARQLLD queryQP, SPARQL expression P is monotonic (cf. Proposition 3.1, page 43).
For the proof we use an induction on the structure of SPARQL expression P .
Base case: Suppose SPARQL expression P is a triple pattern tp. W.l.o.g., let valuation

µ be an arbitrary solution for P in AllData(W); i.e., µ ∈ [[P]]AllData(W). According to the
definition of SPARQL semantics it holds that (i) dom(µ) = vars(tp) and (ii) there exists
an RDF triple t ∈ AllData(W) such that t = µ[tp] (cf. Section 3.2.1, page 38ff). Due
to Lemma E.1, there exists a jt ∈ {1, 2, ... } such that t ∈ Tj for all j ∈ {jt, jt+1, ... }.
Since P is monotonic we conclude µ ∈ [[P]]Tj for all j ∈ {jt, jt+1, ... }.
Induction step: Let P1 and P2 be SPARQL expressions such that the following induc-

tion hypothesis holds for all i ∈ {1, 2}:

• For each valuation µ ∈ [[Pi]]AllData(W) there exists a jµ ∈ {1, 2, ... } such that,
during the execution of Algorithm 3.1 by machine MP, µ ∈ [[Pi]]Tj holds for all
j ∈ {jµ, jµ+1, ... }.

Let P be a SPARQL expression that can be constructed using P1 and P2 (i.e., P is
of the form (P1 AND P2), (P1 UNION P2), (P1 OPT P2), or (P1 FILTER R), where R is a
filter condition), and let valuation µ ∈ [[P]]AllData(W) be an arbitrary solution for P in
AllData(W). Then, w.l.o.g., we show that there exists a jµ ∈ {1, 2, ... } such that, during
the execution of Algorithm 3.1 by machineMP, µ ∈ [[P]]Tj holds for all j ∈ {jµ, jµ+1, ... }.
We have to consider the following cases:

• P is (P1 AND P2). In this case there exist valuations µ1 ∈ [[P1]]AllData(W) and µ2 ∈
[[P2]]AllData(W) such that µ1 ∼ µ2 and µ = µ1 ∪ µ2. By induction there exist

220

E.3. Proof of Lemma 4.1

jµ1 , jµ2 ∈ {1, 2, ... } such that (i) µ1 ∈ [[P1]]Tj for all j ∈ {jµ1 , jµ1 +1, ... } and
(ii) µ2 ∈ [[P2]]Tj for all j ∈ {jµ2 , jµ2 +1, ... }. Let jµ = max

(
{jµ1 , jµ2}

)
. Due to the

monotonicity of P we have µ ∈ [[P]]Tj for all j ∈ {jµ, jµ+1, ... }.

• P is (P1 UNION P2). In this case there exists a sub-expression P ′ ∈ {P1, P2} and a
valuation µ′ ∈ [[P ′]]AllData(W) such that µ′ = µ. W.l.o.g., let P1 be this sub-expres-
sion P ′. Then, by induction, there exists a jµ′ ∈ {1, 2, ... } such that µ′ ∈ [[P1]]Tj

for all j ∈ {jµ′ , jµ′+1, ... }. Due to the monotonicity of P we have µ ∈ [[P]]Tj for
all j ∈ {jµ, jµ+1, ... }.

• P is (P1 OPT P2). We distinguish two cases:
1. There exist valuations µ1 ∈ [[P1]]AllData(W) and µ2 ∈ [[P2]]AllData(W) such that
µ1 ∼ µ2 and µ = µ1 ∪ µ2. This case corresponds to the case in which P is
(P1 AND P2) (see above).

2. There exists a valuation µ1 ∈ [[P1]]AllData(W) such that (i) µ1 6∼ µ2 for all µ2 ∈
[[P2]]AllData(W) and (ii) µ = µ1. By induction there exists a jµ1 ∈ {1, 2, ... }
such that µ1 ∈ [[P1]]Tj for all j ∈ {jµ1 , jµ1 +1, ... }. Since P is monotonic we
have µ ∈ [[P]]Tj for all j ∈ {jµ1 , jµ1 +1, ... }.

• P is (P1 FILTER R). In this case there exists a valuation µ′ ∈ [[P1]]AllData(W) such
that µ = µ′. By induction there exists a jµ′ ∈ {1, 2, ... } such that µ′ ∈ [[P1]]Tj for
all j ∈ {jµ′ , jµ′+1, ... }. Due to the monotonicity of P we have µ ∈ [[P]]Tj for all
j ∈ {jµ′ , jµ′+1, ... }. �

E.3. Proof of Lemma 4.1 (page 73)
Lemma 4.1. Let T , U , P, and C denote the infinite sets of all possible RDF triples,
all URIs, all possible SPARQL expressions, and all possible reachability criteria, respec-
tively. Furthermore, we define a function X : C × P → U that maps any pair of a
reachability criterion c ∈ C and a SPARQL expression P ∈ P to a set of URIs:

X(c, P) :=
{
u ∈ U

∣∣ ∃t ∈ T : u ∈ uris(t) and c(t, u, P) = true
}
.

Then, for each reachability criterion c ∈ C it holds that c ensures finiteness if and only
if X(c, P) is finite for all SPARQL expressions P ∈ P.

W.l.o.g., let c ∈ C be an arbitrary reachability criterion.
If: Suppose X(c, P) is finite for all SPARQL expressions P ∈ P. To show that c

ensures finiteness we use proof by contradiction. That is, we assume c does not ensures
finiteness. Then, there exist a Web of Linked Data W, a finite set of URIs S ⊆ U , and a
SPARQL expression P , such that the (S, c, P)-reachable subweb ofW is infinite. Let R =
(DR, dataR, adocR) be this subweb. Furthermore, let DS ⊆ DR be the corresponding set
of seed documents (i.e., DS = {d ∈ DR | ∃u ∈ S : adocR(u) = d}). DS is finite because
the set of seed URIs S is finite. Therefore, the set of non-seed documents DNS = DR\DS

221

E. Proofs of Auxiliary Results

must be infinite. Since each of these non-seed documents are (c, P)-reachable from S in
W , each of them satisfies the second condition in Definition 4.2 (cf. page 62). Hence,
for each document d ∈ DNS there exists a distinct URI u ∈ U with adocR(u) = d and an
RDF triple t ∈ T such that u ∈ uris(t) and c(t, u, P) = true, and, thus, u ∈ X(c, P). As
a consequence, the set of URIs X(c, P) is infinite (recall the infiniteness of DNS), which
is a contradiction. Therefore, reachability criterion c ensures finiteness.
Only if: To prove that X(c, P) is finite for all SPARQL expressions P ∈ P if c ensures

finiteness, we use proof by contraposition. That is, we show that c does not ensure
finiteness if X(c, P) is infinite for some SPARQL expression P ∈ P.
Suppose P ∈ P is a SPARQL expression such that X(c, P) is infinite. To show that

c does not ensure finiteness we use the URIs in X(c, P) to construct an infinite Web of
Linked Data W ∗ and a set of seed URIs S∗ such that the (S∗, c, P)-reachable subweb of
W ∗ is infinite. To this end, we assume an arbitrary strict, total order < over X(c, P).
Based on this order we obtain an infinite sequence of distinct URIs u1, u2, ... such that,
for each i ∈ {1, 2, ... }, ui < ui+1 and ui ∈ X(c, P).
We now use this sequence of URIs to construct the (infinite) Web of Linked Data

W ∗=(D∗, data∗, adoc∗) as follows: For each URI ui in our sequence (i.e., i ∈ {1, 2, ... }) we
construct a distinct LD document di ∈ D∗ such that adoc∗(ui) = di and data∗(di) = {t}
where t ∈ T is an RDF triple such that ui+1 ∈ uris(t) and c(t, ui+1, P) = true. Such a
triple exists because for the next URI in our sequence, ui+1, it holds that ui+1 ∈ X(c, P).
Then, each of these documents di ∈ D∗ (for all i ∈ {1, 2, ... }) is (c, P)-reachable from

S∗ = {u1} in W ∗ (where the seed URI u1 is the first URI in our sequence). Due to the
infinite number of these documents, the (S∗, c, P)-reachable subweb of W ∗ is infinite.
Thus, reachability criterion c does not ensure finiteness (cf. Definition 4.5, page 67). �

E.4. Proof of Lemma 4.2 (page 88)
Lemma 4.2. Let M be the 2P machine for a SPARQLLD(R) query QP,Sc ; let W = (D,
data, adoc) be a Web of Linked Data encoded on the Web input tape of M ; and let
d ∈ D be an LD document that is (c, P)-reachable from S in W. During the execution
of Algorithm 4.1 by M there exists an iteration of the loop (lines 3 to 5) after which the
word on the lookup tape of M contains enc(d) permanently.

To prove Lemma 4.2 we first emphasize that 2P machine M only appends to the word
on its lookup tape. Hence, M never removes enc(d) from that word once it has been
added. The same holds for the encoding of any other LD document d′ ∈ D.
Since d is (c, P)-reachable from S inW, the link graph ofW contains at least one finite

path (d0, ... , dn) of LD documents di ∈ D (for i ∈ {0, ... , n}) such that: (i) n ∈ {0, 1, ...},
(ii) dn = d, (iii) ∃u ∈ S : adoc(u) = d0, and (iv) for each i′ ∈ {1, ... , n} it holds that:

∃ t ∈ data(di′−1) :
(
∃u ∈ uris(t) :

(
adoc(u) = di′ and c(t, u, P) = true

))
(E.1)

Let (d0, ... , dn) be such a path. To prove Lemma 4.2 we show by induction on n that
there exists an iteration after which the word on the lookup tape of 2P machine M
contains enc(dn) (which is the same as enc(d) because dn = d).

222

E.5. Proof of Lemma 4.3

Base case (n = 0): Since there exists a seed URI u ∈ S such that adoc(u) = d0, it is
easy to verify that after the 0-th iteration (i.e., before the first iteration) the word on
the lookup tape of M contains enc(d0) (cf. line 1 in Algorithm 4.1).
Induction step (n > 0): There exists an iteration after which the word on the lookup

tape of M contains enc(dn−1). Let this be the j-th iteration. We show that there
exists an iteration after which the word on the lookup tape of M contains enc(dn).
We distinguish two cases: After the j-th iteration the word on the lookup tape already
contains enc(dn) or it does not contain enc(dn). We have to discuss the latter case only.
Due to (E.1) there exist an RDF triple t ∈ data(dn−1) and a URI u ∈ uris(t) such that
adoc(u) = dn and c(t, u, P) = true. Then, by the definition of Algorithm 4.1, there exists
a δ ∈ {1, 2, ...} such that machine M finds t and u in the (j+δ)-th iteration. During this
iteration, M calls subroutine lookup for u (cf. line 4 in Algorithm 4.1). Hence, after the
(j+δ)-th iteration the lookup tape of M contains enc(dn) . �

E.5. Proof of Lemma 4.3 (page 89)
Lemma 4.3. Let M be the 2P machine for a SPARQLLD(R) query QP,Sc ; let W be a Web
of Linked Data encoded on the Web input tape ofM ; and let R denote the (S, c, P)-reach-
able subweb ofW. For any RDF triple t for which enc(t) eventually appears on the lookup
tape of M during the execution of Algorithm 4.1 by M it holds that t ∈ AllData(R).

Let W = (D, data, adoc). Furthermore, let wj denote the word on the lookup tape of
M when M finishes the j-th iteration of the loop in Algorithm 4.1; w0 denotes the
corresponding word before the first iteration (that is, after the initialization at line 1).
To prove the lemma it is sufficient to show that for each j ∈ {0, 1, ...} there exists a
finite sequence u1, ... , unj of nj different URIs such that (i) for each i ∈ {1, ... , nj} either
adoc(ui) =⊥ or adoc(ui) ∈ D is an LD document which is (c, P)-reachable from S in
W, and (ii) wj is the following word:1

enc(u1) enc(adoc(u1))] ...] enc(unj) enc(adoc(unj))]

We use an induction on j for this proof.
Base case (j = 0): The computation of M starts with an empty lookup tape (as is

the case for any LD machine based computation; cf. Definition 2.9, page 27). After
the initialization at line 1 in Algorithm 4.1, word w0 is a concatenation of sub-words
enc(u) enc(adoc(u))] for all seed URIs u ∈ S. Hence, we have a corresponding sequence
u1, ... , un0 such that n0 = |S| and ui ∈ S for all i ∈ {1, ... , n0}. The order of the URIs
in this sequence depends on the order in which the seed URIs have been looked up and
is irrelevant for our proof. For each seed URI u ∈ S it holds that either adoc(ui) =⊥ or
adoc(u) is (c, P)-reachable from S in W (cf. case 1 in Definition 4.2, page 62).
Induction step (j > 0): Let there exist a finite sequence u1, ... , unj−1 of nj−1 different

URIs such that (i) for each i ∈ {1, ... , nj−1} either adoc(ui) =⊥ or adoc(ui) ∈ D is
(c, P)-reachable from S in W, and (ii) word wj−1 is the following word:

1We assume enc(adoc(ui)) is the empty word if adoc(ui) = ⊥.

223

E. Proofs of Auxiliary Results

enc(u1) enc(adoc(u1))] ...] enc(unj−1) enc(adoc(unj−1))]

Let t be the RDF triple and u ∈ uris(t) be the URI that machine M finds (encoded as
part of word wj−1) and uses in the j-th iteration; i.e., c(t, u, P) = true and subroutine
lookup has not been called for URI u. The machine calls lookup for u, which changes
the word on the lookup tape to wj . Hence, wj is equal to wj−1 enc(u) enc(adoc(u))]
and, thus, the sequence of URIs for wj is u1, ... , unj−1 , u. It remains to show that LD
document adoc(u) is (c, P)-reachable from S in W if adoc(u) 6=⊥.
Suppose adoc(u) 6=⊥. Since RDF triple t is encoded as part of wj−1, by the induc-

tive hypothesis, t must be contained in the data of an LD document d∗ ∈ D that is
(c, P)-reachable from S in W (and for which there exists an i ∈ {1, ... , nj−1} such that
adoc(ui) = d∗). Therefore, d∗, t, and u satisfy Condition 2 in Definition 4.2 (cf. page 62)
and, thus, LD document adoc(u) is (c, P)-reachable from S in W. �

E.6. Proof of Lemma 4.4 (page 89)

Lemma 4.4. Let M be the 2P machine for a SPARQLLD(R) query QP,Sc and let W be a
Web of Linked Data encoded on the Web input tape of M . The computation of M halts
after a finite number of steps if and only if the (S, c, P)-reachable subweb of W is finite.

Let W = (D, data, adoc) and let R denote the (S, c, P)-reachable subweb of W.
If: Suppose R is finite. To show that the computation ofM halts after a finite number

of steps we emphasize the following observations:

1. Each call of subroutine lookup by M terminates because the encoding of W on the
Web input tape of M is ordered (cf. Appendix B on page 193f).

2. Based on Observation 1, machine M completes the initialization at line 1 in Algo-
rithm 4.1 after a finite number of steps because the set of seed URIs S is finite.

3. At any point in the computation the word on the lookup tape ofM is finite because
(i) during each iteration of the loop in Algorithm 4.1,M appends one (encoded) LD
document to that tape and (ii) the encoding of any LD document is finite (because
the set of RDF triples data(d) for each LD document d ∈ D is finite).

4. During each iteration of the loop in Algorithm 4.1, machine M completes the scan
of its lookup tape (cf. line 4) after a finite number of steps because the word on this
tape is always finite (see Observation 3). Thus, together with the first observation,
machine M finishes each iteration of the loop after a finite number of steps.

5. Machine M considers only those URIs for a call of subroutine lookup that are
mentioned in some RDF triple t for which t ∈ AllData(R) holds (cf. Lemma 4.3).
Given that R is finite, there exists only a finite number of such URIs. Since M
considers each of these URIs only once (cf. line 4), the loop in Algorithm 4.1 as
performed by M has a finite number of iterations.

224

E.7. Proof of Lemma 4.5

6. Since the word on the lookup tape is finite (see Observation 3), the set G used at
line 6 in Algorithm 4.1 is finite and, thus, [[P]]G is finite. As a consequence, M
requires only a finite number of computation steps for executing line 6.

Altogether, these observations show that the computation of M halts after a finite num-
ber of steps (given the finiteness of R).
Only if: We use proof by contraposition. That is we show that if R is infinite, then

the computation ofM does not halt after a finite number of steps: Suppose R is infinite.
Then, it is easy to see that the data retrieval loop in Algorithm 4.1 (i.e., lines 3 to 5)
never terminates. �

E.7. Proof of Lemma 4.5 (page 92)
Lemma 4.5. Let M be the ER machine for a monotonic SPARQLLD(R) query QP,Sc
and let W be a Web of Linked Data encoded on the Web input tape of M . During the
execution of Algorithm 4.2 by M it holds that [[P]]Tj ⊆ QP,Sc (W) for all j ∈ {1, 2, ... }.

Let W = (D, data, adoc). Furthermore, let R denote the (S, c, P)-reachable part of W.
As a basis for proving Lemma 4.5 we use the following lemma:

Lemma E.2. During the execution of Algorithm 4.2 by M on (Web) input enc(W) it
holds that Tj ⊆ AllData(R) for all j ∈ {1, 2, ... }.

Proof of Lemma E.2. This proof resembles the proof of the corresponding lemma
for 2P machines (cf. Lemma 4.3, page 89). Let wj denote the word on the lookup tape
of ER machine M when M starts the j-th iteration of the main processing loop in
Algorithm 4.2 (i.e., before line 3).
To prove Tj ⊆ AllData(R) for all j ∈ {1, 2, ... } it is sufficient to show for each word wj

(where j ∈ {1, 2, ... }) there exists a finite sequence u1, ... , unj of nj different URIs such
that (i) for each i ∈ {1, ... , nj} either adoc(ui) =⊥ or adoc(ui) ∈ D is an LD document
that is (c, P)-reachable from S in W, and (ii) wj is the following word:2

enc(u1) enc(adoc(u1))] ...] enc(unj) enc(adoc(unj))]

We use an induction on j for this proof.
Base case (j = 1): The computation of M starts with an empty lookup tape (as any

LD machine based computation; cf. Definition 2.9, page 27). Due to the initialization in
line 1 of Algorithm 4.2, word w1 is a concatenation of sub-words enc(u) enc(adoc(u))] for
all (seed) URIs u ∈ S. Hence, there exists a corresponding sequence of URIs u1, ... , un1

where n1 = |S| and ui ∈ S for all i ∈ {1, ... , n1}. The order of the URIs in that sequence
depends on the order in which these URIs have been looked up and is irrelevant for
our proof. For every seed URI u ∈ S it holds that either adoc(ui) =⊥ or adoc(u) is
(c, P)-reachable from S in W (cf. Condition 1 in Definition 4.2, page 62).

2We, again, assume enc(adoc(ui)) is the empty word if adoc(ui)) = ⊥.

225

E. Proofs of Auxiliary Results

Induction step (j > 0): Let there exist a finite sequence u1, ... , unj−1 of nj−1 different
URIs such that (i) for each i ∈ {1, ... , nj−1} either adoc(ui) =⊥ or adoc(ui) ∈ D is
(c, P)-reachable from S in W, and (ii) word wj−1 is:

enc(u1) enc(adoc(u1))] ...] enc(unj−1) enc(adoc(unj−1))]

In the j-th iteration machine M finds an RDF triple t encoded as part of word wj−1
such that ∃u ∈ uris(t) : c(t, u, P) = true and subroutine lookup has not been called for
URI u. The machine calls lookup for u, which changes the word on the lookup tape to
wj . Hence, wj is equal to wj−1 enc(u) enc(adoc(u))] and, thus, the sequence of URIs for
wj is u1, ... , unj−1 , u. It remains to show that LD document adoc(u) is (c, P)-reachable
from S in W if adoc(u) 6=⊥.
Suppose adoc(u) 6=⊥. Since RDF triple t is encoded as part of wj−1, by the induc-

tive hypothesis, t must be contained in the data of an LD document d∗ ∈ D that is
(c, P)-reachable from S in W (and for which there exists an i ∈ {1, ... , nj−1} such that
adoc(ui) = d∗). Therefore, t and u satisfy the requirements as given in Condition 2 of
Definition 4.2 and, thus, adoc(u) is (c, P)-reachable from S in W. �

Due to the monotonicity of QP,Sc it is trivial to show Lemma 4.5 using Lemma E.2 (recall,
QP,Sc (W) = [[P]]AllData(R)). �

E.8. Proof of Lemma 4.6 (page 93)

Lemma 4.6. Let M be the ER machine for a monotonic SPARQLLD(R) query QP,Sc
whose reachability criterion c does not ensure finiteness; and let W be a Web of Linked
Data encoded on the Web input tape of M . For each solution µ ∈ QP,Sc (W) there exists
a jµ ∈ {1, 2, ... } such that during the execution of Algorithm 4.2 by M it holds that
µ ∈ [[P]]Tj for all j ∈ {jµ, jµ+1, ... }.

Let W = (D, data, adoc). Furthermore, let R denote the (S, c, P)-reachable part of W.
As a basis for proving Lemma 4.6 we use the following lemma:

Lemma E.3. For each RDF triple t ∈ AllData(R) there exists a jt ∈ {1, 2, ... } such
that during the execution of Algorithm 4.2 by M on (Web) input enc(W) it holds that
t ∈ Tj for all j ∈ {jt, jt+1, ... }.

Proof of Lemma E.3. Let wj denote the word on the lookup tape of ER machine M
whenM starts the j-th iteration of the main processing loop in Algorithm 4.2 (i.e., before
line 3). Let t be an arbitrary RDF triple such that t ∈ AllData(R). Hence, there exists an
LD document d ∈ D such that (i) t ∈ data(d) and (ii) d is (c, P)-reachable from S in W.
Let d be such a document. SinceM only appends to its lookup tape, we prove that there
exists a jt ∈ {1, 2, ... } such that t ∈ Tj for all j ∈ {jt, jt+1, ... }, by showing that there
exists a jt ∈ {1, 2, ... } such that wjt contains the sub-word enc(d). This proof resembles
the proof of the corresponding lemma for 2P machines (cf. Lemma 4.2, page 88).

226

E.8. Proof of Lemma 4.6

Since document d is (c, P)-reachable from S in W, the link graph of W contains at
least one finite path (d0, ... , dn) of LD documents di ∈ D (for i ∈ {0, ... , n}) such that:
(i) n ∈ {0, 1, ... }, (ii) dn = d, (iii) ∃u ∈ S : adoc(u) = d0, and (iv) for each i′ ∈ {1, ... , n},

∃ t ∈ data(di′−1) :
(
∃u ∈ uris(t) :

(
adoc(u) = di′ and c(t, u, P) = true

))
. (E.2)

Let (d0, ... , dn) be such a path. To prove Lemma E.3 we show by induction on n that
there exists a jt ∈ {1, 2, ... } such that wjt contains the sub-word enc(dn) (which is the
same as enc(d) because dn = d).
Base case (n = 0): Since there exists a seed URI u ∈ S such that adoc(u) = d0, it is

easy to verify that w1 contains the sub-word enc(d0) (cf. line 1 in Algorithm 4.2).
Induction step (n > 0): Suppose there exists a j ∈ {1, 2, ... } such that wj contains

sub-word enc(dn−1). We will show that there exists a j′ ∈ {j, j+ 1, ... } such that
wj′ contains the sub-word enc(dn) . We distinguish two cases: either enc(dn) is not
contained in wj or it is already contained in wj . In the first case we have j′ > j; in the
latter case we have j′ = j. Hence, we have to discuss the first case only.
Due to equation (E.2) there exist an RDF triple t∗∈data(dn−1) and a URI u∗∈uris(t∗)

such that adoc(u∗) = dn and c(t∗, u∗, P) = true. Then, by Algorithm 4.2, there exists
a δ ∈ {1, 2, ... } such that machine M finds t∗ and u∗ in the (j+δ)-th iteration. During
this iteration,M calls subroutine lookup for u∗ (cf. line 5 in Algorithm 4.2). Hence, word
wj+δ+1 contains enc(dn) and, thus, j′ = j + δ + 1. �

We now prove Lemma 4.6. This proof resembles the proof of the corresponding lemma
for full-Web machines (cf. Lemma 3.2, page 54).
Since QP,Sc (W) = [[P]]AllData(R) (cf. Definition 4.4, page 63), we may prove Lemma 4.6

by showing the following: For each solution µ ∈ [[P]]AllData(R) there exists some jµ ∈
{1, 2, ... } such that during the execution of Algorithm 4.2 by ER machine M it holds
that µ ∈ [[P]]Tj for all j ∈ {jµ, jµ+1, ... }. We note that, by Proposition 4.9 (cf. page 81),
SPARQL expression P is monotonic because SPARQLLD(R) query QP,Sc is monotonic
and reachability criterion c does not ensure finiteness.
For the proof we use an induction on the possible structure of SPARQL expression P .

Base case: Suppose SPARQL expression P is a triple pattern tp. W.l.o.g., let valuation
µ be an arbitrary solution for P in AllData(R); i.e., µ ∈ [[P]]AllData(R). According to the
definition of the standard SPARQL semantics (as given in Section 3.2.1, page 38ff) it
holds that (i) dom(µ) = vars(tp) and (ii) there exists an RDF triple t ∈ AllData(R) such
that t = µ[tp]. By Lemma E.3, there exists a jµ ∈ {1, 2, ... } such that t ∈ Tj for all
j ∈ {jµ, jµ+1, ... }. Since P is monotonic, we conclude µ ∈ [[P]]Tj for all j ∈ {jµ, jµ+1, ... }.

Induction step: Let P1 and P2 be SPARQL expressions. By induction, assume for each
i ∈ {1, 2}:

• For each valuation µ ∈ [[Pi]]AllData(R) there exists a jµ ∈ {1, 2, ... } such that, during
the execution of Algorithm 4.2 by M , µ ∈ [[Pi]]Tj holds for all j ∈ {jµ, jµ+1, ... }.

For any SPARQL expression P that can be constructed using P1 and P2 we will show:

227

E. Proofs of Auxiliary Results

• For each valuation µ ∈ [[P]]AllData(R) there exists a jµ ∈ {1, 2, ... } such that, during
the execution of Algorithm 4.2 by M , µ ∈ [[P]]Tj holds for all j ∈ {jµ, jµ+1, ... }.

Let valuation µ be an arbitrary solution for P in AllData(R); i.e., µ ∈ [[P]]AllData(R). We
need to consider the following cases:

• P is (P1 AND P2). In this case there exist two valuations µ1 ∈ [[P1]]AllData(R) and
µ2 ∈ [[P2]]AllData(R) such that µ1 ∼ µ2 and µ = µ1 ∪ µ2. By induction, there
exist jµ1 , jµ2 ∈ {1, 2, ... } such that, for each i ∈ {1, 2}, µi ∈ [[Pi]]Tj for all j ∈
{jµi , jµi +1, ... }. Let jµ = max

(
{jµ1 , jµ2}

)
. Due to the monotonicity of P we have

µ ∈ [[P]]Tj for all j ∈ {jµ, jµ+1, ... }.

• P is (P1 FILTER R). In this case there exists a valuation µ′ ∈ [[P1]]AllData(R) such
that µ = µ′. By induction, there exists a jµ′ ∈ {1, 2, ... } such that µ′ ∈ [[P1]]Tj for
all j ∈ {jµ′ , jµ′+1, ... }. Due to the monotonicity of P we have µ ∈ [[P]]Tj for all
j ∈ {jµ′ , jµ′+1, ... }.

• P is (P1 OPT P2). We distinguish two cases:
1. There exist valuations µ1 ∈ [[P1]]AllData(R) and µ2 ∈ [[P2]]AllData(R) such that
µ1 ∼ µ2 and µ = µ1 ∪ µ2. This case corresponds to the case where P is
(P1 AND P2) (see above).

2. There exists a valuation µ1 ∈ [[P1]]AllData(R) such that (i) µ = µ1 and (ii) µ1 6∼
µ2 for all µ2 ∈ [[P2]]AllData(R). By induction, there exists a jµ1 ∈ {1, 2, ... }
such that µ1 ∈ [[P1]]Tj for all j ∈ {jµ1 , jµ1 +1, ... }. Since P is monotonic we
have µ ∈ [[P]]Tj for all j ∈ {jµ1 , jµ1 +1, ... }.

• P is (P1 UNION P2). We distinguish two cases:
1. There exists a valuation µ′ ∈ [[P1]]AllData(W) such that µ′ = µ. By induction,

there exists a jµ′ ∈ {1, 2, ... } such that µ′ ∈ [[P1]]Tj for all j ∈ {jµ′ , jµ′+1, ... }.
2. There exists a valuation µ′ ∈ [[P2]]AllData(W) such that µ′ = µ. By induction,

there exists a jµ′ ∈ {1, 2, ... } such that µ′ ∈ [[P2]]Tj for all j ∈ {jµ′ , jµ′+1, ... }.
In both cases we have µ ∈ [[P]]Tj for all j ∈ {jµ′ , jµ′+1, ... }, because P is monotonic.

�

E.9. Proof of Lemma 4.7 (page 93)

Lemma 4.7. Let M be the ER machine for a SPARQLLD(R) query QP,Sc and let W
be a Web of Linked Data encoded on the Web input tape of M . During the execution
of Algorithm 4.2, M completes each iteration of the loop in Algorithm 4.2 after a finite
number of computation steps.

Let W = (D, data, adoc). First, we emphasize the following properties:

228

E.10. Proof of Lemma 6.1

1. Each call of subroutine lookup in Algorithm 4.2 terminates because the encoding
of the queried Web of Linked Data on the Web input tape of any LD machine
(including the ER machine M) is ordered (cf. Appendix B, page 193f).

2. The ER machine M completes the initialization in line 1 of Algorithm 4.2 in a
finite number of computation steps because the set of seed URIs S is finite.

3. At any point in the computation, the word on the lookup tape of ER machine M
is finite because the machine only gradually appends (encoded) LD documents to
that tape (one document per iteration) and the encoding of each document is finite
(recall that the set of RDF triples data(d) for each LD document d is finite).

It remains to show that each iteration of the loop also only requires a finite number
of computation steps: Due to the finiteness of the word on the lookup tape, every set
[[P]]Tj (for j = {1, 2, ... }) is finite. Due to this finiteness, lines 3 and 4 can be completed
in a finite number of computation steps (during any iteration). The scan in line 5 also
finishes after a finite number of computation steps because of the finiteness of the word
on the lookup tape. �

E.10. Proof of Lemma 6.1 (page 123)

Lemma 6.1. Let QB,ScMatch be a CLD(R) query (under cMatch-semantics); let R denote the
(S, cMatch, B)-reachable subweb of a Web of Linked Data W; and let RD be a discovered
subweb of R. For any RDF triple t with (i) t ∈ AllData(RD) and (ii) t is a matching
triple for a triple pattern tp ∈ B, it holds that EXP

(
RD, t,W

)
is a discovered subweb of R.

Let W = (D, data, adoc), R = (DR, dataR, adocR), RD = (DD, dataD, adocD), and
EXP

(
RD, t,W

)
= (D′D, data′D, adoc′D). Furthermore, let t ∈ AllData(RD) be an arbi-

trary RDF triple such that t is a matching triple for a triple pattern tp ∈ B. To prove
that EXP

(
WD, t,W

)
is a discovered subweb of R we have to show that the three proper-

ties in Definition 6.4 (cf. page 118) hold for D′D, data′D, and adoc′D w.r.t. R (i.e., in this
case the Web of Linked Data referred to in Definition 6.4 is R).
Property 1 requires that D′D = DD ∪ ∆W(t) is a finite subset of DR. Since WD is

a discovered subweb of R, DD is a finite subset of DR. Hence, we only have to show
(i) ∆W(t) ⊆ DR and (ii) ∆W(t) is finite (cf. Definition 6.6, page 120). The latter follows
from the finiteness of uris(t). To show the former we use a proof by contradiction, that
is, we assume there exists an LD document d ∈ ∆W(t) such that d /∈ DR.
By Definition 6.6, there exists a URI u ∈ uris(t) such that adoc(u) = d. Let u∗ ∈ uris(t)

be this URI. Since t is a matching triple for a triple pattern tp ∈ B, it must hold that
cMatch

(
t, u∗, B

)
= true.

From t ∈ AllData(RD) we also know that there exists an LD document d′ ∈ DD such
that t ∈ dataD(d′). Let d∗ ∈ DD be this document. Since RD is a discovered subweb of
R, we have DD ⊆ DR (cf. Definition 6.4). Hence, LD document d∗ is (cMatch, B)-reach-
able from S in W. Finally, we may use the fact that R is a reachable subweb (and, thus,

229

E. Proofs of Auxiliary Results

an induced subweb) of W to show d∗ ∈ D and dataD(d∗) = dataR(d∗) = data(d∗) (cf.
Definition 4.3, page 63, and Definition 2.4, page 21).
Putting everything together, we have d∗ ∈ D, t ∈ data(d∗), and u∗ ∈ uris(t), and

we know (i) d∗ is (cMatch, B)-reachable from S in W, (ii) cMatch
(
t, u∗, B

)
= true, and

(iii) adoc(u∗) = d. Thus, d must be (cMatch, B)-reachable from S inW (cf. Definition 4.2,
page 62); i.e., d ∈ DR. This contradicts our assumption d /∈ DR.
Property 2 follows from Definition 6.6 (cf. page 120), Definition 4.3 (cf. page 63), and

the fact that R is a reachable subweb (and, thus, an induced subweb) of W.
We omit showing that Property 3 holds for (D′D, data′D, adoc′D) w.r.t. R; the proof ideas

are the same as those that we use in the proof of Proposition 6.5 (cf. page 120). �

E.11. Proof of Lemma 6.2 (page 126)

Lemma 6.2. Let W be a Web of Linked Data and let QB,S be a CLD(M) query. At any
point during an (arbitrary) execution of tbExec(B,S,W) it holds that (i) each σ ∈ P is
a partial solution for QB,S in W and (ii) D is a discovered subweb of the (S, cMatch, B)-
reachable subweb of W.

Let R = (DR, dataR, adocR) be the (S, cMatch, B)-reachable subweb of W. The proof
is by induction on the iterations of the main processing loop in tbExec(B,S,W) (i.e.,
lines 3 to 9 in Algorithm 6.1).

Base case: Before the first iteration, tbExec(B,S,W) initializes P as a set that contains
a single element, namely the empty partial solution σ∅ (cf. line 1 in Algorithm 6.1). The
empty partial solution σ∅ is trivially a partial solution for QB,S in W.
D is initialized using Dinit(S,W) (cf. line 2 in Algorithm 6.1), where Dinit(S,W) is the

S-seed subweb of W (cf. Definition 6.5, page 119). Let Dinit(S,W) = (D0, data0, adoc0).
To prove that Dinit(S,W) is a discovered subweb of R we have to show that the three
properties in Definition 6.4 (cf. page 118) hold for (D0, data0, adoc0) w.r.t. R (i.e., in
this context the Web of Linked Data referred to in Definition 6.4 is R). Property 1
requires that (i) D0 is finite and (ii) D0 ⊆ DR. The former holds because the set of seed
URIs S is finite. The latter holds because each LD document d ∈ D0 satisfies case 1
in Definition 4.2 (cf. page 62). Properties 2 and 3 follow from (i) D0 ⊆ DR, (ii) the
definition of Dinit(S,W) (cf. Definition 6.5), and (iii) the fact that R is a reachable subweb
of W and, thus, an induced subweb of W (recall, Definition 4.3, page 63, introduces the
concept of reachable subwebs while Definition 2.4, page 21, introduces induced subwebs).

Induction step: Let τ be the open AE task selected in the i-th iteration (cf. line 4 in
Algorithm 6.1). The current QE state (for QB,S over W) in which the i-th iteration
performs τ consists of (versions of) P and D for which we know from our induction
hypothesis that (i) each σ ∈ P is a partial solution for QB,ScMatch in W and (ii) D is
a discovered subweb of R. By Proposition 6.6 (cf. page 123), the same holds after
performing AE task τ . �

230

E.12. Proof of Lemma 6.3

E.12. Proof of Lemma 6.3 (page 127)
Lemma 6.3. Let W = (D, data, adoc) be a Web of Linked Data and let QB,S be a
CLD(M) query. There exist executions of tbExec(B,S,W) that have the following two
properties:

(1.) For each LD document d ∈ D that is (cMatch, B)-reachable from S in W there exists
an iteration (of the loop in tbExec) after which d is part of D.

(2.) For each partial solution σ ∈ σ(QB,S,W)
there exists an iteration after which

σ ∈ P.

As a preliminary for our proof of Lemma 6.3 we introduce the notion of FIFO-based
executions of tbExec, that are, executions of tbExec that use a FIFO strategy to choose an
open AE task at line 4 of Algorithm 6.1. More precisely, such an execution always chooses
an open AE task τ ∈ Open

(
P,D

)
for which there does not exist another τ ′ ∈ Open

(
P,D

)
such that (i) τ was hidden in an earlier QE state of the execution and (ii) τ ′ was not
hidden in that state. Informally, we note that such an execution resembles a breadth-first
search over the link graph of the corresponding reachable subweb of W.
In addition to the symbols introduced in Lemma 6.3, let R denote the (S, cMatch, B)-

reachable subweb ofW. For the proof we assume a FIFO-based execution of our abstract
procedure tbExec(B,S,W). At any point during this execution let DD denote the set of
LD documents discovered so far.
(1.) We begin by proving the first claim of Lemma 6.3. Let d ∈ D be an arbitrary
LD document such that d is (cMatch, B)-reachable from S in W. We show that during a
FIFO-based execution of tbExec(B,S,W) there exists an iteration after which d ∈ DD
holds. Based on Definition 4.2 (cf. page 62) and since d is (cMatch, B)-reachable from S
in W, the link graph for W contains a finite path (d0, ... , dn) of (cMatch, B)-reachable LD
documents di ∈ D (where 0 ≤ i ≤ n and n ≥ 0) such that (i) ∃u ∈ S : adoc(u) = d0,
(ii) dn = d, and (iii) for all i ∈ {1, ... , n},

∃ t ∈ data(di−1) :
(
∃u ∈ uris(t) :

(
adoc(u) = di and cMatch(t, u,B) = true

))
. (E.3)

Let (d0, ... , dn) be such a path. In the following, we show by induction on n that there
exists an iteration (during any possible FIFO-based execution of tbExec(B,S,W)) after
which DD contains dn = d.
Base case (n = 0): For this case there exists a seed URI u ∈ S such that adoc(u) = d.

Therefore, d ∈ D0 where D0 denotes the set of LD document in the S-seed subweb of
W (cf. Definition 6.5, page 119). Any execution of tbExec(B,S,W) initializes D with
this S-seed subweb (cf. line 2 in Algorithm 6.1). Thus, even before the first iteration,
d ∈ DD holds.
Induction step (n > 1): During a FIFO-based execution of tbExec(B,S,W) there

exists an iteration itj after which dn−1 ∈ DD holds. We show that there also exists an
iteration after which dn ∈ DD holds. While P and D are variables in Algorithm 6.1, we
denote the particular snapshot of P and D at the begin of the next iteration after itj
by Pj+1 and Dj+1, respectively.

231

E. Proofs of Auxiliary Results

Due to equation (E.3) there exist an RDF triple t ∈ data(dn−1) and a URI u ∈ uris(t)
such that adoc(u) = dn and cMatch(t, u,B) = true. Hence, there must exist a triple
pattern tp ∈ B such that t is a matching triple for tp. Let tp∗ ∈ B be such a triple
pattern and let t∗ ∈ data(dn−1) be the corresponding, matching triple. Since Dj+1 is
a discovered subweb of R (cf. Lemma 6.2), dn−1 is (cMatch, B)-reachable from S in W
and, thus, t∗ ∈ AllData(R). Therefore, τ = (σ∅, t∗, tp∗) is an AE task for QB,S over
W (cf. Definition 6.8, page 122). The partial solution in this task is the empty partial
solution σ∅. Since σ∅ ∈ Pj+1 (cf. line 1 in Algorithm 6.1) and t∗ ∈ AllData(Dj+1) (recall
our induction hypothesis due to which dn−1 ∈ DD after iteration itj), we know that
AE task τ is not hidden in QE state st =

(
Pj+1,Dj+1

)
(cf. Definition 6.11, page 124).

We distinguish two cases: Either τ is open in st or it is not open (the latter case exists
because there may exist other AE tasks with RDF triple t∗ and one of them may have
been performed in iteration itj or before).
If AE task τ is not open in QE state st, then st = τ

[
st
]
(cf. Definition 6.12, page 125).

Hence, in this case, dn ∈ DD holds after iteration itj (or even before).
It remains to discuss the case in which AE task τ is open in QE state st. Since τ is

open there exists an iteration itj+δ (after itj) in which the FIFO-based execution selects
an (open) AE task τ ′ = (σ, t, tp) where t = t∗. This task may either be τ or another
AE task with t∗. After selecting τ ′ the execution performs this task and, thus, expands
D to EXP

(
D, t∗,W

)
. This expansion operation results in adding each LD document

d ∈ ∆W(t∗) to DD (cf. Definition 6.6, page 120). Since there exists a URI u ∈ uris(t∗)
such that adoc(u) = dn, dn ∈ ∆W(t∗) holds. Hence, LD document dn will be added to
DD in iteration itj+δ (if it has not been added before).
(2.) We now prove the second claim of Lemma 6.3. Let σ ∈ σ(QB,S,W)

be an arbitrary
partial solution for QB,S in W. We show that during our FIFO-based execution of
tbExec(B,S,W) there exists an iteration after which σ ∈ P holds. The construction of
σ comprises the iterative construction of a finite sequence σ0, ... , σn of partial solutions
σi = (Ei, µi) ∈ σ(QB,S,W)

(where 0 ≤ i ≤ n and 0 ≤ n ≤ |B|) where (i) σ0 is the
empty partial solution σ∅, (ii) σn = σ, and (iii) for all i ∈ {1, ... , n},

µi−1[Ei−1] = µi[Ei−1] and ∃ tp ∈ B \ Ei−1 : Ei = Ei−1 ∪ {tp} .

In the following, we show by induction on n that there exists an iteration (during a
FIFO-based execution of tbExec(B,S,W)) after which P contains σn = σ.
Base case (n = 0): Any execution of tbExec(B,S,W) adds the empty partial solution

σ∅ to P before it starts the first iteration (cf. line 1 in Algorithm 6.1).
Induction step (n > 1): During any FIFO-based execution of tbExec(B,S,W) there

exists an iteration itj after which σn−1 = (En−1, µn−1) ∈ P holds. Based on this induc-
tion hypothesis we show that there also exists an iteration after which σn = (En, µn) ∈ P
holds. We distinguish two cases: Either after iteration itj it already holds that σn ∈ P
or it still holds that σn /∈ P. We have to discuss the latter case only.
Let tp ∈ B be the triple pattern such that En = En−1∪{tp}. Since σn = (En, µn) is a

partial solution forQB,S inW, µn ∈ [[En]]AllData(R) holds (cf. Definition 6.1, page 113) and,
thus, there exists a (cMatch, B)-reachable LD document d ∈ D such that µn[tp] ∈ data(d).

232

E.12. Proof of Lemma 6.3

Let d∗ ∈ D be this document and let t = µn[tp] be the corresponding RDF triple.
According to the (previously shown) first claim of Lemma 6.3, there exists an iteration
after which d∗ ∈ DD holds. By then, either σn has already been constructed and added
to P or there exists an open AE task τ = (σn−1, t, tp). Again, we have to discuss the
latter case only.
Recall that we assume a FIFO-based execution. This execution guarantees the per-

formance of open AE task τ . This performance constructs σn and adds it to P. �

233

Bibliography

[1] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach.
Scalable Semantic Web Data Management Using Vertical Partitioning. In Pro-
ceedings of the 33rd International Conference on Very Large Data Bases (VLDB),
2007.

[2] Serge Abiteboul. Querying Semi-Structured Data. In Proceedings of the 6th Inter-
national Conference on Database Theory (ICDT), 1997.

[3] Serge Abiteboul and Victor Vianu. Queries and Computation on the Web. Theo-
retical Computer Science, 239(2):231–255, 2000.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[5] Maribel Acosta, Maria Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruck-
haus. ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints.
In Proceedings of the 10th International Semantic Web Conference (ISWC), 2011.

[6] Ben Adida, Mark Birbeck, Shane McCarron, and Ivan Herman. RDFa Core 1.1
– Syntax and Processing Rules for Embedding RDF through Attributes. W3C
Recommendation, Online: http://www.w3.org/TR/rdfa-core/, June 2012.

[7] Renzo Angles and Claudio Gutierrez. The Expressive Power of SPARQL. In
Proceedings of the 7th International Semantic Web Conference (ISWC), 2008.

[8] Gustavo O. Arocena and Alberto O. Mendelzon. WebOQL: Restructuring Docu-
ments, Databases and Webs. In Proceedings of the 14th International Conference
on Data Engineering (ICDE), 1998.

[9] Gustavo O. Arocena, Alberto O. Mendelzon, and George A. Mihaila. Applications
of a Web Query Language. Computer Networks and ISDN Systems, 29(8-13):
1305–1316, 1997.

[10] Sören Auer, Jens Lehmann, and Sebastian Hellmann. LinkedGeoData – Adding
a Spatial Dimension to the Web of Data. In Proceedings of the 8th International
Semantic Web Conference (ISWC), 2009.

[11] Cosmin Basca and Abraham Bernstein. Avalanche: Putting the Spirit of the
Web back into Semantic Web Querying. In Proceedings of the 6th International
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2010), 2010.

235

http://www.w3.org/TR/rdfa-core/

Bibliography

[12] Sotiris Batsakis, Euripides G. M. Petrakis, and Evangelos Milios. Improving the
Performance of Focused Web Crawlers. Data & Knowledge Engineering, 68(10):
1001–1013, 2009.

[13] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large
Ordered Indices. Acta Informatica, 1:173–189, 1972.

[14] Tim Berners-Lee. Design Issues: Linked Data. Online at http://www.w3.org/
DesignIssues/LinkedData.html, July 2006.

[15] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource Identi-
fier (URI): Generic Syntax. RFC 3986, online at http://tools.ietf.org/html/
rfc3986, January 2005.

[16] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,
James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and
Analyzing linked data on the Semantic Web. In Proceedings of the 3rd Semantic
Web User Interaction Workshop (SWUI), 2006.

[17] John Bernier. Announcing BBYOpen Metis Alpha: Best Buy Product
Catalog via Semantic Endpoints. Blog post, Online at http://bbyopen.com/

announcing-bbyopen-metis-alpha-best-buy-product-catalog-semantic-endpoints, 2012.

[18] Diego Berrueta and Jon Phipps. Best Practice Recipes for Publishing RDF
Vocabularies. W3C Working Group Note, Online at http://www.w3.org/TR/
swbp-vocab-pub/, August 2008.

[19] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. International
Journal on Semantic Web & Information Systems, 5(2):1–24, 2009.

[20] Christian Bizer, Tobias Gauß, Richard Cyganiak, and Olaf Hartig. Semantic Web
Client Library. Project homepage, Online at http://www4.wiwiss.fu-berlin.
de/bizer/ng4j/semwebclient/.

[21] Christian Bizer, Richard Cyganiak, and Tobias Gauss. The RDF Book Mashup:
FromWeb APIs to a Web of Data. In Proceedings of the 3rd Workshop on Scripting
for the Semantic Web (SFSW), 2007.

[22] Christian Bizer, Tom Heath, Danny Ayers, and Yves Raymond. Linking Open
Data. In Proceedings of the Poster Session at the 4th European Semantic Web
Conference (ESWC), 2007.

[23] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – The Story So
Far. International Journal on Semantic Web and Information Systems (IJSWIS),
5(3):1–22, 2009.

[24] Christian Bizer, Anja Jentzsch, and Richard Cyganiak. State of the LOD
Cloud. Version 0.3 of this report is online at http://lod-cloud.net/state/
2011-09-19/, September 2011.

236

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://bbyopen.com/announcing-bbyopen-metis-alpha-best-buy-product-catalog-semantic-endpoints
http://bbyopen.com/announcing-bbyopen-metis-alpha-best-buy-product-catalog-semantic-endpoints
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://www4.wiwiss.fu-berlin.de/bizer/ng4j/semwebclient/
http://www4.wiwiss.fu-berlin.de/bizer/ng4j/semwebclient/
http://lod-cloud.net/state/2011-09-19/
http://lod-cloud.net/state/2011-09-19/

Bibliography

[25] Christof Bornhövd, Mehmet Altinel, C. Mohan, Hamid Pirahesh, and Berthold
Reinwald. Adaptive Database Caching with DBCache. IEEE Data Engineering
Bulletin, 27(2):11–18, 2004.

[26] Paolo Bouquet, Chiara Ghidini, and Luciano Serafini. Querying The Web Of Data:
A Formal Approach. In Proceedings of the 4th Asian Semantic Web Conference
(ASWC), 2009.

[27] Brian E. Brewington and George Cybenko. Keeping Up with the Changing Web.
Computer, 33(5):52–58, 2000.

[28] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, Online at http://www.w3.org/TR/
rdf-schema/, February 2004.

[29] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Vandenbuss-
che. SPARQL Web-Querying Infrastructure: Ready for Action? In Proceedings of
the 12th International Semantic Web Conference (ISWC), 2013.

[30] Stefan Büttcher and Charles L. A. Clarke. A Hybrid Approach to Index Mainte-
nance in Dynamic Text Retrieval Systems. In Proceedings of the 28th European
Conference on Advances in Information Retrieval (ECIR), 2006.

[31] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused Crawling:
A New Approach to Topic-Specific Web Resource Discovery. Computer Networks,
31(11-16):1623–1640, 1999.

[32] Chia-Hui Chang, Mohammed Kayed, Moheb R. Girgis, and Khaled F. Shaalan. A
Survey of Web Information Extraction Systems. IEEE Transactions on Knowledge
and Data Engineering, 18(10):1411–1428, 2006.

[33] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing and
OLAP Technology. SIGMOD Record, 26(1):65–74, 1997.

[34] Ming-Syan Chen, Ming-Ling Lo, Philip S. Yu, and Honesty C. Young. Using Seg-
mented Right-Deep Trees for the Execution of Pipelined Hash Joins. In Proceedings
of the 18th International Conference on Very Large Data Bases (VLDB), 1992.

[35] Alex Coley. Linked Data Pilot Implementations Update. Blog post, Online
at http://data.gov.uk/blog/linked-data-pilot-implementations-update,
2012.

[36] Gianluca Correndo, Ian Millard, Hugh Glaser, Nigel Shadbolt, and Manuel Sal-
vadores. SPARQL Query Rewriting for Implementing Data Integration over
Linked Data. In Proceedings of the 1st International Workshop on Data Semantics
(DataSem), 2010.

237

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://data.gov.uk/blog/linked-data-pilot-implementations-update

Bibliography

[37] Shaul Dar, Michael J. Franklin, Björn THór Jónsson, Divesh Srivastava, and
Michael Tan. Semantic Data Caching and Replacement. In Proceedings of 22th
International Conference on Very Large Data Bases (VLDB), 1996.

[38] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 2nd edition, 2002.

[39] Brian D. Davison. A Web Caching Primer. IEEE Internet Computing, 5(4):38–45,
2001.

[40] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles, and Marco
Gori. Focused Crawling Using Context Graphs. In Proceedings of the 26th Inter-
national Conference on Very Large Data Bases (VLDB), 2000.

[41] Li Ding, Lina Zhou, Timothy W. Finin, and Anupam Joshi. How the Semantic
Web is Being Used: An Analysis of FOAF Documents. In Proceedings of the 38th
Hawaii International Conference on System Sciences (HICSS), 2005.

[42] Li Ding, Joshua Shinavier, Zhenning Shangguan, and Deborah L. McGuinness.
SameAs Networks and Beyond: Analyzing Deployment Status and Implications of
owl:sameAs in Linked Data. In Proceedings of the 9th International Semantic Web
Conference (ISWC), 2010.

[43] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference Reconciliation in Com-
plex Information Spaces. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, 2005.

[44] Eduard C. Dragut, Weiyi Meng, and Clement T. Yu. Deep Web Query Interface
Understanding and Integration. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2012.

[45] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-
plicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data
Engineering, 19(1), 2007. doi: http://doi.ieeecomputersociety.org/10.1109/TKDE.
2007.9.

[46] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres.
SPARQL 1.1 Protocol. W3C Recommendation, Online at http://www.w3.org/
TR/sparql11-protocol/, March 2013.

[47] Roy Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk, Larry Masinter,
Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616, online at http://tools.ietf.org/html/rfc2616, June 1999.

[48] Valeria Fionda, Claudio Gutierrez, and Giuseppe Pirró. Semantic Navigation on
the Web of Data: Specification of Routes, Web Fragments and Actions. In Pro-
ceedings of the 21th International World Wide Web Conference (WWW), 2012.

238

http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-protocol/
http://tools.ietf.org/html/rfc2616

Bibliography

[49] Daniela Florescu, Alon Y. Levy, and Alberto O. Mendelzon. Database Techniques
for the World-Wide Web: A Survey. SIGMOD Record, 27(3):59–74, 1998.

[50] Kevin Ford. LC Classification as Linked Data. Italian Journal of Library and
Information Science, 4(1), 2013.

[51] Charles Forgy. Rete: A Fast Algorithm for the Many Patterns/Many Objects
Match Problem. Artificial Intelligence, 19(1):17–37, 1982.

[52] Hugh Glaser, Afraz Jaffri, and Ian Millard. Managing Co-reference on the Semantic
Web. In Proceedings of the 1st Linked Data on the Web Workshop (LDOW), 2009.

[53] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes. W3C Rec-
ommendation, Online at http://www.w3.org/TR/sparql11-entailment/, March
2013.

[54] Olaf Görlitz and Steffen Staab. SPLENDID: SPARQL Endpoint Federation Ex-
ploiting VOID Descriptions. In Proceedings of the 2nd International Workshop on
Consuming Linked Data (COLD), 2011.

[55] Olaf Görlitz and Steffen Staab. Federated Data Management and Query Opti-
mization for Linked Open Data. In Athena Vakali and Lakhmi C. Jain, editors,
New Directions in Web Data Management 1, pages 109–137. 2011.

[56] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Computing
Surveys, 25(2):73–169, 1993.

[57] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. Gran-
ularity of Locks and Degrees of Consistency in a Shared Data Base. In Proceedings
of the IFIP Working Conference on Modelling in Data Base Management Systems,
1976.

[58] Tao Guan, Miao Liu, and Lawrence V. Saxton. Structure-Based Queries over
the World Wide Web. In Proceedings of the 17th International Conference on
Conceptual Modeling (ER), 1998.

[59] Ashish Gupta and Iderpal Singh Mumick. Materialized Views, chapter Main-
tenance of Materialized Views: Problems, Techniques, and Applications, pages
145–157. MIT Press, Cambridge, MA, USA, 1999.

[60] Claudio Gutierrez. Modeling the Web of Data (Introductory Overview). In Tutorial
Lectures of the 7th Reasoning Web Summer School, 2011.

[61] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data, 1984.

[62] Alon Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal, 10
(4):270–294, 2001.

239

http://www.w3.org/TR/sparql11-entailment/

Bibliography

[63] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1
Query Language. W3C Recommendation, Online at http://www.w3.org/TR/
sparql11-query/, March 2013.

[64] Andreas Harth. Billion Triples Challenge 2011 Data Set. Online at http://km.
aifb.kit.edu/projects/btc-2011/, 2011.

[65] Andreas Harth and Stefan Decker. Optimized Index Structures for Querying RDF
from the Web. In Proceedings of the 3rd Latin American Web Congress (LA-Web),
2005.

[66] Andreas Harth and Sebastian Speiser. On Completeness Classes for Query Eval-
uation on Linked Data. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence, 2012.

[67] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sattler,
and Jürgen Umbrich. Data Summaries for On-Demand Queries over Linked Data.
In Proceedings of the 19th International Conference on World Wide Web (WWW),
2010.

[68] Olaf Hartig. SQUIN. Project homepage, Online at http://squin.org/.

[69] Olaf Hartig. Querying Trust in RDF Data with tSPARQL. In Proceedings of the
6th Extended Semantic Web Conference (ESWC), 2009.

[70] Olaf Hartig. Towards a Data-Centric Notion of Trust in the Semantic Web. In
Proceedings of the 2nd Workshop on Trust and Privacy on the Social and Semantic
Web (SPOT), 2010.

[71] Olaf Hartig. How Caching Improves Efficiency and Result Completeness for Query-
ing Linked Data. In Proceedings of the 4th Linked Data on the Web Workshop
(LDOW), 2011.

[72] Olaf Hartig. Zero-Knowledge Query Planning for an Iterator Implementation of
Link Traversal Based Query Execution. In Proceedings of the 8th Extended Se-
mantic Web Conference (ESWC), 2011.

[73] Olaf Hartig. SQUIN: A Traversal Based Query Execution System for the Web of
Linked Data. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, 2013.

[74] Olaf Hartig. An Overview on Execution Strategies for Linked Data Queries.
Datenbank-Spektrum, 13(2):89–99, 2013.

[75] Olaf Hartig and Johann-Christoph Freytag. Foundations of Traversal Based Query
Execution over Linked Data. In Proceedings of the 23rd ACM Conference on
Hypertext and Social Media (HT), 2012.

240

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://km.aifb.kit.edu/projects/btc-2011/
http://km.aifb.kit.edu/projects/btc-2011/
http://squin.org/

Bibliography

[76] Olaf Hartig and Ralf Heese. The SPARQL Query Graph Model for Query Opti-
mization. In Proceedings of the 4th European Semantic Web Conference (ESWC),
2007.

[77] Olaf Hartig and Frank Huber. A Main Memory Index Structure to Query Linked
Data. In Proceedings of the 4th Linked Data on the Web Workshop (LDOW), 2011.

[78] Olaf Hartig and Andreas Langegger. A Database Perspective on Consuming Linked
Data on the Web. Datenbank-Spektrum, 10(2):57–66, 2010.

[79] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing SPARQL
Queries over the Web of Linked Data. In Proceedings of the 8th International
Semantic Web Conference (ISWC), 2009.

[80] Oktie Hassanzadeh and Mariano P. Consens. Linked Movie Data Base. In Pro-
ceedings of the 2nd Linked Data on the Web Workshop (LDOW), 2009.

[81] Patrick Hayes. RDF Semantics. W3C Recommendation, Online at http://www.
w3.org/TR/rdf-mt/, February 2004.

[82] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing the
Deep Web. Communications of the ACM, 50(5):94–101, 2007.

[83] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global
Data Space. Morgan & Claypool, 1st edition, 2011.

[84] Tom Heath and Enrico Motta. Revyu: Linking Reviews and Ratings into the Web
of Data. Journal of Web Semantics, 6(4):266–273, 2008.

[85] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. Architecture of
a Database System. Foundations and Trends in Databases, 1(2):141–259, 2007.

[86] Rainer Himmeröder, Georg Lausen, Bertram Ludäscher, and Christian Schlep-
phorst. On a Declarative Semantics for Web Queries. In Proceedings of the 5th
International Conference on Deductive and Object-Oriented Databases (DOOD),
1997.

[87] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Se-
bastian Rudolph. OWL 2 Web Ontology Language Primer (Second Edition). W3C
Recommendation, Online at http://www.w3.org/TR/owl2-primer/, December
2012.

[88] Aidan Hogan, Andreas Harth, Juergen Umrich, Sheila Kinsella, Axel Polleres, and
Stefan Decker. Searching and Browsing Linked Data with SWSE: the Semantic
Web Search Engine. Journal of Web Semantics, 9(4), 2012.

[89] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL Querying of
Large RDF Graphs. Proceedings of the VLDB Endowment, 4(11):1123–1134, 2011.

241

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/owl2-primer/

Bibliography

[90] Amit Krishna Joshi, Prateek Jain, Pascal Hitzler, Peter Z. Yeh, Kunal Verma,
Amit P. Sheth, and Mariana Damova. Alignment-based Querying of Linked
Open Data. In Proceedings of the 11th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), 2012.

[91] Ritu Khare, Yuan An, and Il-Yeol Song. Understanding Deep Web Search Inter-
faces: A Survey. SIGMOD Record, 39(1):33–40, September 2010.

[92] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, Online at http://www.
w3.org/TR/rdf-concepts/, February 2004.

[93] Georgi Kobilarov, Tom Scott, Yves Raimond, Silver Oliver, Chris Sizemore,
Michael Smethurst, Christian Bizer, and Robert Lee. Media Meets Semantic Web
– How the BBC Uses DBpedia and Linked Data to Make Connections. In Pro-
ceedings of the 6th European Semantic Web Conference (ESWC), 2009.

[94] David Konopnicki and Oded Shmueli. W3QS: A Query System for the World-Wide
Web. In Proceedings of 21th International Conference on Very Large Data Bases
(VLDB), 1995.

[95] David Konopnicki and Oded Shmueli. Information Gathering in the World-Wide
Web: The W3QL Query Language and the W3QS System. ACM Transactions on
Database Systems, 23(4):369–410, 1998.

[96] David Konopnicki and Oded Shmueli. WWW Exploration Queries. In Proceedings
of the 4th International Workshop on Next Generation Information Technologies
and Systems (NGITS), 1999.

[97] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew
Tomkins, and Eli Upfal. The Web as a Graph. In Proceedings of the 19th Sympo-
sium on Principles of Database Systems (PODS), 2000.

[98] Zoe Lacroix, Arnaud Sahuguet, R. Chandrasekar, and B. Srinivas. A Novel Ap-
proach to Querying the Web: Integrating Retrieval and Browsing. In Proceedings
of the ER Workshop on Conceptual Modeling for Multimedia Information Seeking,
1997.

[99] Günter Ladwig and Duc Thanh Tran. Linked Data Query Processing Strategies.
In Proceedings of the 9th International Semantic Web Conference (ISWC), 2010.

[100] Günter Ladwig and Duc Thanh Tran. SIHJoin: Querying Remote and Lo-
cal Linked Data. In Proceedings of the 8th Extended Semantic Web Conference
(ESWC), 2011.

[101] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S. da Silva, and Ju-
liana S. Teixeira. A Brief Survey of Web Data Extraction Tools. SIGMOD Record,
31(2), June 2002.

242

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/

Bibliography

[102] Laks V. S. Lakshmanan, Fereidoon Sadri, and Iyer N. Subramanian. A Declarative
Language for Querying and Restructuring the Web. In Proceedings of the 6th
International Workshop on Research Issues in Data Engineering (RIDE), 1996.

[103] Rob Larson and Evan Sandhaus. NYT to Release Thesaurus and Enter Linked
Data Cloud. Blog post, Online at http://open.blogs.nytimes.com/2009/06/
26/nyt-to-release-thesaurus-and-enter-linked-data-cloud/, 2009.

[104] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei Li. Scal-
able Multi-Query Optimization for SPARQL. In Proceedings of the 28th IEEE
International Conference on Data Engineering (ICDE), 2012.

[105] Nicholas Lester, Justin Zobel, and Hugh E. Williams. In-Place versus Re-Build
versus Re-Merge: Index Maintenance Strategies for Text Retrieval Systems. In
Proceedings of the 27th Australasian Conference on Computer Science (ACSC),
2004.

[106] Wen-Syan Li, Junho Shim, and K. Selçuk Candan. WebDB: A System for Querying
Semi-structured Data on the Web. Journal of Visual Languages and Computing,
13(1):3–33, 2002.

[107] Yan Liang, Haofen Wang, Qiaoling Liu, Thanh Tran, Thomas Penin, and Yong Yu.
Efficient Index Maintenance for Frequently Updated Semantic Data. In Proceedings
of the 3rd Asian Semantic Web Conference (ASWC), 2008.

[108] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter, and Ramesh
Agarwal. Efficient Update of Indexes for Dynamically Changing Web Documents.
World Wide Web, 10(1), 2007.

[109] Mengchi Liu and Tok Wang Ling. A Conceptual Model and Rule-Based Query
Language for HTML. World Wide Web, 4(1-2):49–77, 2001.

[110] Konstantinos Makris, Nektarios Gioldasis, Nikos Bikakis, and Stavros
Christodoulakis. Ontology Mapping and SPARQL Rewriting for Querying Feder-
ated RDF Data Sources. In Proceedings of OTM Conferences, 2010.

[111] Giansalvatore Mecca, Alberto O. Mendelzon, and Paolo Merialdo. Efficient Queries
over Web Views. In Proceedings of the 6th International Conference on Extending
Database Technology (EDBT), 1998.

[112] Alberto O. Mendelzon and Tova Milo. Formal Models of Web Queries. Information
Systems, 23(8):615–637, 1998.

[113] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. Querying the World
Wide Web. International Journal on Digital Libraries, 1(1):54–67, 1997.

[114] Peter Mika and Tim Potter. Metadata Statistics for a Large Web Corpus. In
Proceedings of the 5th Linked Data on the Web Workshop (LDOW), 2012.

243

http://open.blogs.nytimes.com/2009/06/26/nyt-to-release-thesaurus-and-enter-linked-data-cloud/
http://open.blogs.nytimes.com/2009/06/26/nyt-to-release-thesaurus-and-enter-linked-data-cloud/

Bibliography

[115] Daniel P. Miranker, Rodolfo K. Depena, Hyunjoon Jung, Juan F. Sequeda, and
Carlos Reyna. Diamond: A SPARQL Query Engine, for Linked Data Based on
the Rete Match. In Proceedings of the Workshop on Artificial Intelligence meets
the Web of Data (AImWD) at ECAI, 2012.

[116] Jeffrey C. Mogul. Squeezing More Bits Out of HTTP Caches. IEEE Network, 14
(3):6–14, 2000.

[117] Gabriela Montoya, Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-
Esther Vidal. GUN: An Efficient Execution Strategy for Querying the Web of
Data. In Proceedings of the 24th International Conference on Database and Expert
Systems Applications (DEXA), 2013.

[118] Hannes Mühleisen and Christian Bizer. Web Data Commons – Extracting Struc-
tured Data from Two Large Web Corpora. In Proceedings of the 5th Linked Data
on the Web Workshop (LDOW), 2012.

[119] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Simple and Efficient Minimal
RDFS. Journal of Web Semantics, 7(3):220–234, 2009.

[120] M. Muralikrishna and David J. DeWitt. Equi-Depth Histograms For Estimating
Selectivity Factors For Multi-Dimensional Queries. In Proceedings of the 1988
ACM SIGMOD International Conference on Management of Data, 1988.

[121] Felix Naumann. Quality-Driven Query Answering for Integrated Information Sys-
tems. Springer Verlag, 2002.

[122] Thomas Neumann and Guido Moerkotte. Characteristic Sets: Accurate Cardinal-
ity Estimation for RDF Queries with Multiple Joins. In Proceedings of the 27th
IEEE International Conference on Data Engineering (ICDE), 2011.

[123] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style Engine for RDF.
In Proceedings of the 34th International Conference on Very Large Data Bases
(VLDB), 2008.

[124] Emmy Noether. Idealtheorie in Ringbereichen. Mathematische Annalen, 83:24–66,
1921. URL http://eudml.org/doc/158855.

[125] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.

[126] Elien Paret, William Van Woensel, Sven Casteleyn, Beat Signer, and Olga De
Troyer. Efficient Querying of Distributed RDF Sources in Mobile Settings based
on a Source Index Model. Procedia CS, 5:554–561, 2011.

[127] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics of SPARQL.
Technical Report TR/DCC-2006-17, Universidad de Chile, October 2006.

[128] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity
of SPARQL. ACM Transactions on Database Systems, 34(3), 2009.

244

http://eudml.org/doc/158855

Bibliography

[129] Eric Prud’hommeaux and Carlos Buil-Aranda. SPARQL 1.1 Feder-
ated Query. W3C Recommendation, Online at http://www.w3.org/TR/
sparql11-federated-query/, March 2013.

[130] Bastian Quilitz and Ulf Leser. Querying Distributed RDF Data Sources with
SPARQL. In Proceedings of the 5th European Semantic Web Conference (ESWC),
2008.

[131] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal, 10(4):334–350, 2001.

[132] Yves Raimond, Christopher Sutton, and Mark B. Sandler. Interlinking Music-
Related Data on the Web. IEEE MultiMedia, 16(2):52–63, 2009.

[133] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, 3rd edition, 2003.

[134] Yanbo Ru and Ellis Horowitz. Indexing the Invisible Web: A Survey. Online
Information Review, 29(3):249–265, 2005.

[135] Gerard Salton and Michael McGill. Introduction to Modern Information Retrieval.
McGraw-Hill Book Company, 1984.

[136] Matthias Samwald, Anja Jentzsch, Christopher Bouton, Claus Kallesøe, Egon L.
Willighagen, Janos Hajagos, M. Scott Marshall, Eric Prud’hommeaux, Oktie Has-
sanzadeh, Elgar Pichler, and Susie Stephens. Linked Open Drug Data for Phar-
maceutical Research and Development. Journal of Cheminformatics, 3(19), 2011.

[137] Monica Scannapieco, Paolo Missier, and Carlo Batini. Data Quality at a Glance.
Datenbank-Spektrum, 5(14):6–14, 2005.

[138] Sebastian Schaffert, Christoph Bauer, Thomas Kurz, Fabian Dorschel, Dietmar
Glachs, and Manuel Fernandez. The Linked Media Framework: Integrating and
Interlinking Enterprise Media Content and Data. In Proceedings of the 8th Inter-
national Conference on Semantic Systems (I-Semantics), 2012.

[139] Florian Schmedding. Incremental SPARQL Evaluation for Query Answering on
Linked Data. In Proceedings of the 2nd International Workshop on Consuming
Linked Data (COLD) at ISWC, 2011.

[140] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL
Query Optimization. In Proceedings of the 13th International Conference on
Database Theory (ICDT), 2010.

[141] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte,
and Thanh Tran. FedBench: A Benchmark Suite for Federated Semantic Data
Query Processing. In Proceedings of the 10th International Semantic Web Confer-
ence (ISWC), 2011.

245

http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/

Bibliography

[142] Michael Schneider. OWL 2 Web Ontology Language, RDF-Based Semantics
(Second Edition). W3C Recommendation, Online at http://www.w3.org/TR/
owl2-rdf-based-semantics/, December 2012.

[143] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
FedX: Optimization Techniques for Federated Query Processing on Linked Data.
In Proceedings of the 10th International Semantic Web Conference (ISWC), 2011.

[144] Francois-Paul Servant and Edouard Chevalier. Describing Customizable Products
on the Web of Data. In Proceedings of the 6th Linked Data on the Web Workshop
(LDOW), 2013.

[145] Amit P. Sheth and James A. Larson. Federated Database Systems for Manag-
ing Distributed, Heterogeneous, and Autonomous Databases. ACM Computing
Surveys, 22(3):183–236, September 1990.

[146] Joshua Shinavier. Ripple: Functional Programs as Linked Data. In Proceedings of
the 3rd Workshop on Scripting for the Semantic Web (SFSW), 2007.

[147] Oded Shmueli and Alon Itai. Maintenance of Views. SIGMOD Record, 14(2):
240–255, 1984.

[148] Pavel Shvaiko and Jérôme Euzenat. Ontology Matching: State of the Art and
Future Challenges. IEEE Transactions on Knowledge Data Engineering, 25(1):
158–176, 2013.

[149] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and Stefan
Manegold. Column-Store Support for RDF Data Management: Not All Swans are
White. Proceedings of the VLDB Endowment, 1:1553–1563, 2008.

[150] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing, 2nd
edition, 2006.

[151] John Miles Smith and Philip Yen-Tang Chang. Optimizing the Performance of
a Relational Algebra Database Interface. Communications of the ACM, 18(10):
568–579, 1975.

[152] Ellen Spertus and Lynn Andrea Stein. Squeal: A Structured Query Language for
the Web. Computer Networks, 33(1-6):95–103, 2000.

[153] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave
Reynolds. SPARQL Basic Graph Pattern Optimization Using Selectivity Esti-
mation. In Proceedings of the 17th International World Wide Web Conference
(WWW), 2008.

[154] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms. Pearson Education, 2nd edition, 2007.

246

http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

Bibliography

[155] Olivier Thereaux, Sofia Angeletou, Jeremy Tarling, and Michael Smethurst. Open-
ing up the BBC’s Data to the Web. In Proceedings of the W3C Open Data on the
Web Workshop, 2013.

[156] Yuan Tian, Jürgen Umbrich, and Yong Yu. Enhancing Source Selection for Live
Queries over Linked Data via Query Log Mining. In Proceedings of the Joint
International Semantic Technology Conference (JIST), 2011.

[157] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis Christophides,
and Peter Boncz. Heuristics-based Query Optimisation for SPARQL. In 15th
International Conference on Extending Database Technology (EDBT), 2012.

[158] Alan Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series 2, 42:
230–265, 1936.

[159] Jürgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel Polleres.
Comparing Data Summaries for Processing Live Queries over Linked Data. World
Wide Web, 14(5–6):495–544, 2011.

[160] Jürgen Umbrich, Aidan Hogan, Axel Polleres, and Stefan Decker. Improving the
Recall of Live Linked Data Querying through Reasoning. In Proceedings of the 6th
International Conference on Web Reasoning and Rule Systems (RR), 2012.

[161] Denny Vrandecić, Markus Krötzsch, Sebastian Rudolph, and Uta Lösch. Leverag-
ing Non-Lexical Knowledge for the Linked Open Data Web. In The 5th Review of
April Fool’s day Transactions (RAFT), 2010.

[162] Andreas Wagner, Thanh Tran, Günter Ladwig, and Andreas Harth. Top-K Linked
Data Query Processing. In Proceedings of the 9th Extended Semantic Web Con-
ference (ESWC), 2012.

[163] Jia Wang. A Survey of Web Caching Schemes for the Internet. ACM Computer
Communication Review, 29(5):36–46, 1999.

[164] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: Sextu-
ple Indexing for Semantic Web Data Management. In Proceedings of the 34th
International Conference on Very Large Data Bases (VLDB), 2008.

[165] Reynold S. Xin, Oktie Hassanzadeh, Christian Fritz, Shirin Sohrabi, and Renée J.
Miller. Publishing Bibliographic Data on the Semantic Web using BibBase. Se-
mantic Web Journal, 4(1):15–22, 2013.

[166] S. Bing Yao. Optimization of Query Evaluation Algorithms. ACM Transactions
on Database Systems, 4(2):133–155, 1979.

[167] Richard Zanibbi, Dorothea Blostein, and James R. Cordy. A Survey of Table
Recognition: Models, Observations, Transformations, and Inferences. Interna-
tional Journal on Document Analysis and Recognition, 7(1):1–16, March 2004.

247

Bibliography

[168] Yue Zhuge, Héctor García-Molina, Joachim Hammer, and Jennifer Widom. View
Maintenance in a Warehousing Environment. SIGMOD Record, 24(2):316–327,
1995.

[169] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Özsu, and Dongyan Zhao. gStore:
Answering SPARQL Queries via Subgraph Matching. Proceedings of the VLDB
Endowment, 4(8):482–493, 2011.

248

Selbstständigkeitserklärung

Ich erkläre hiermit, dass

• ich die vorliegende Dissertationsschrift „Querying a Web of Linked Data” selbstän-
dig und ohne unerlaubte Hilfe angefertigt habe;

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe oder einen
solchen besitze;

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät II
der Humboldt-Universität zu Berlin bekannt ist, gemäß amtliches Mitteilungsblatt
Nr. 34/2006.

Berlin, den 15. Januar 2014 Olaf Hartig

	1. Introduction
	1.1. Linked Data on the WWW
	1.2. Approaches to Query Linked Data
	1.3. Problem Statement
	1.4. Contributions
	1.5. Thesis Outline

	Part I. Foundations of Queries over a Web of Linked Data
	2. Models for Linked Data Queries
	2.1. Data Model
	2.1.1. Structural Elements
	2.1.2. Queries
	2.1.3. Related Work

	2.2. Computation Model
	2.2.1. Existing Models of Computation on the WWW
	2.2.2. The LD Machine
	2.2.3. LD Machine Computability
	2.2.4. LD Machine Decidability

	3. Full-Web Query Semantics
	3.1. Related Work
	3.1.1. Web Query Languages
	3.1.2. Navigational Query Languages for Linked Data
	3.1.3. SPARQL as a Query Language for Linked Data

	3.2. Definition
	3.2.1. SPARQL
	3.2.2. SPARQLLD

	3.3. Theoretical Properties
	3.3.1. Satisfiability, (Un)bounded Satisfiability, and Monotonicity
	3.3.2. LD Machine Decidability of Termination
	3.3.3. LD Machine Computability
	3.3.4. Finiteness of Expected Query Results

	3.4. Summary

	4. Reachability-Based Query Semantics
	4.1. Definition
	4.1.1. Reachability
	4.1.2. SPARQLLD(R)

	4.2. Result Containment and Infiniteness
	4.3. Reachability Criteria
	4.3.1. Comparing Reachability Criteria
	4.3.2. Combining Reachability Criteria
	4.3.3. Reachability Criteria that Ensure Finiteness
	4.3.4. Constant Reachability Criteria

	4.4. Theoretical Properties
	4.4.1. Satisfiability, (Un)bounded Satisfiability, and Monotonicity
	4.4.2. LD Machine Decidability of Termination
	4.4.3. LD Machine Computability

	4.5. Differences between SPARQLLD and SPARQLLD(R)

	Part II. Execution of Queries over a Web of Linked Data
	5. Overview of Query Execution Techniques
	5.1. Data Source Selection
	5.1.1. Live Exploration Approaches
	5.1.2. Index-Based Approaches
	5.1.3. Hybrid Approaches

	5.2. Data Source Ranking
	5.3. Integration of Data Retrieval and Result Construction
	5.3.1. Separated Execution Approaches
	5.3.2. Integrated Execution Approaches

	5.4. Traversal-Based Query Execution
	5.5. Summary

	6. A Traversal-Based Strategy
	6.1. Conjunctive Linked Data Queries
	6.2. Informal Description
	6.3. Query Execution Model
	6.3.1. Overview
	6.3.2. Partial Solutions
	6.3.3. Constructing (Partial) Solutions
	6.3.4. Discovered Subwebs of the Queried Web
	6.3.5. Traversing Data Links
	6.3.6. Combining Construction and Traversal
	6.3.7. Abstract Query Execution Procedure

	6.4. Soundness and Completeness
	6.5. Summary

	7. An Iterator-Based Implementation
	7.1. Definition
	7.1.1. Iterators for Query Execution over RDF Data
	7.1.2. Iterators for Traversal-Based Query Execution

	7.2. Formal Analysis
	7.2.1. Examples for Incompleteness
	7.2.2. Alignment with the Execution Model

	7.3. Experimental Analysis
	7.3.1. Our Query Execution System
	7.3.2. WWW-Based Experiment
	7.3.3. Simulation Based Experiments

	7.4. Summary

	Part III. Conclusions
	8. Conclusions
	8.1. Main Results
	8.2. Directions for Future Work
	8.2.1. Schema Heterogeneity
	8.2.2. Coreferences
	8.2.3. Trustworthiness and Data Quality
	8.2.4. Dynamic Environment
	8.2.5. Query Expressiveness

	Part IV. Appendix
	A. Commonly Used Symbols
	B. Encoding of Structures Related to Query Computation
	B.1. Encoding Basic Elements
	B.2. Encoding RDF Triples
	B.3. Encoding Webs of Linked Data
	B.4. Encoding Valuations

	C. Basic Properties of SPARQL Queries
	C.1. Satisfiability
	C.2. Monotonicity
	C.3. Bounded Satisfiability and Unbounded Satisfiability

	D. Supplementary Information about the Experiments
	D.1. Queries for the WWW-Based Experiment
	D.2. Measurements of the WWW-Based Experiment
	D.3. Queries for the Simulation-Based Experiments

	E. Proofs of Auxiliary Results
	E.1. Proof of Lemma 3.1 (page 54)
	E.2. Proof of Lemma 3.2 (page 54)
	E.3. Proof of Lemma 4.1 (page 73)
	E.4. Proof of Lemma 4.2 (page 88)
	E.5. Proof of Lemma 4.3 (page 89)
	E.6. Proof of Lemma 4.4 (page 89)
	E.7. Proof of Lemma 4.5 (page 92)
	E.8. Proof of Lemma 4.6 (page 93)
	E.9. Proof of Lemma 4.7 (page 93)
	E.10. Proof of Lemma 6.1 (page 123)
	E.11. Proof of Lemma 6.2 (page 126)
	E.12. Proof of Lemma 6.3 (page 127)

	Bibliography
	Selbstständigkeitserklärung

