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Abstract

The earth’s climate is an extraordinarily complex, highly non-linear system with a multi-
tude of influences and interactions between a very large number of variables and parameters.
Complementary to the description of the system using global climate models, in recent years,
a description based on the system’s interaction structure has been developed. Rather than
modelling the system in as much detail as possible, here time series data is used to iden-
tify underlying large scale structures. The challenge then lies in the interpretation of these
structures.
In this thesis I approach the question of the interpretation of network measures from a general
perspective, in order to derive a correspondence between properties of the network topology
and properties of the underlying physical system. To this end I develop two methods of
network construction from a velocity field, using the advection-diffusion-equation (ADE) for
temperature-dissipation in the system.
For the first method, the ADE is solved for δ-peak-shaped initial and open boundary condi-
tions. The resulting local temperature profiles are used to define a correlation function and
thereby a network. Those networks are analysed and compared to climate networks from
data. Despite the simplicity of the model, it captures some of the most salient features of
climate networks. As the method allows the free choice of node locations, this model is used
to study the influence of the node locations on the topology of the network.
The second network construction method relies on a discretisation of the ADE with a stochas-
tic term. The resulting linear stochastic recursive equation can be used to define a correlation
matrix, based only on the transition matrix and the variance of the uniformly random noise
term. This allows the construction of larger networks, due to its relative computational
simplicity. It is straightforward to generalize this method to systems, with more general
transition matrices and time-dependent velocity fields. I construct weighted and unweighted
networks for four different cases and suggest network measures, that can be used to dis-
tinguish between the different systems, based on the topology of the network and the node
locations.
For better applicability, another related model is described, that represents aspects of the
monsoon system of the past 1000 years, demonstrating that it is possible to capture climate
changes in a simple model, that generates correlation structures.
All these methods provide networks of well-understood physical systems with parameters,
that can be varied freely. To track and quantify the topological changes, resulting from
parameter changes in the underlying system, a method is developed to quantify topological
changes in linearly ordered sets of networks. This method is used to study changes in various
types of networks.
The reconstruction methods presented in this thesis successfully model many features, found
in climate networks from well-understood physical mechanisms. This can be regarded as a
justification of the use of climate networks, as well as a tool for their interpretation.
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Zusammenfassung

Das globale Klimasystem ist ein ausgesprochen komplexes und hochgradig nichtlineares
System mit einer Vielzahl von Einflüssen und Interaktionen zwischen sehr vielen Variablen
und Parametern. Komplementär zu der Beschreibung des Systems mit globalen Klimamo-
dellen, wurde in letzter Zeit eine Beschreibung entwickelt, die auf der Interaktionsstruktur
des Gesamtsystems beruht. Statt möglichst viele Details so genau wie möglich zu modellie-
ren, werden hier Zeitreihendaten verwendet um zugrundeliegende Strukturen zu finden. Die
Herausforderung liegt dann in der Interpretation dieser Strukturen.
Um mich der Frage nach der Interpretation von Netzwerkmaßen zu nähern, suche ich nach
einem allgemeinen Zusammenhang zwischen Eigenschaften der Netzwerktopologie und Ei-
genschaften des zugrundeliegenden physikalischen Systems. Dafür werden im Wesentlichen
zwei Methoden entwickelt, die auf der Analyse von Temperaturentwicklungen gemäß der
Advektions-Diffusions-Gleichung (ADE) basieren.
Für die erste Methode wird die ADE mit offenen Randbedingungen und δ-peak Anfangsbe-
dingungen gelöst. Die resultierenden lokalen Temperaturprofile werden verwendet um eine
Korrelationsfunktion und damit ein Netzwerk zu definieren. Diese Netzwerke werden analy-
siert und mit Klimanetzen aus Daten verglichen. Trotz der Einfachheit des Modells, können
einige der characteristischen Merkmale von Klimanetzen reproduziert werden. Da in dieser
Methode die Lage der Knoten frei gewählt werden kann, eignet sie sich gut um den Einfluss
der räumlichen Knotenverteilung auf die Netzwerktopologie zu untersuchen.
Die zweite Methode basiert auf der Diskretisierung der stochastischen ADE. Die resultierende
lineare, stochastische Rekursionsgleichung wird verwendet um eine Korrelationsmatrix zu de-
finieren, die nur von der Übergangsmatrix und der Varianz des stochastischen Störungsterms
abhängt. Aufgrund des vergleichsweise geringen Rechenaufwands erlaubt dies die Konstruk-
tion größerer Netzwerke. Die Methode kann auf allgemeinere Übergangsmatritzen ebenso
einfach verallgemeinert werden wie auf zeitabhängige Prozesse. Ich konstruiere gewichtete
und ungewichtete Netzwerke für vier verschiedene Fälle und schlage Netzwerkmaße vor, die
zwischen diesen Systemen zu unterscheiden helfen, wenn nur das Netzwerk und die Knoten-
positionen gegeben sind.
Ein weiteres verwandtes Modell beschreibt Aspekte des Monsun-Systems über die vergange-
nen 1000 Jahre und zeigt die Möglichkeit auf, die topologischen Auswirkungen von Klima-
veränderungen in einem einfachen Modell zu untersuchen.
Die entwickelten Methoden erlauben die Konstruktion von Netzwerken in Abhängigkeit von
freien Parametern. Um die Änderungen in der Topologie mit Parametervariationen zu un-
tersuchen und quantifizieren wird eine Methode entwickelt, die topologische Veränderungen
in einer geordneten Menge von Netzwerken beschreibt. Diese Methode wird auf verschiedene
Netzwerktypen angewendet.
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1 Introduction

Chaos is the score upon which reality is written
Henry Miller

Physics is an attempt to understand the world, and by understand of course we mean formu-
late equations and calculate. From the smallest to the largest scale, from elementary particles
to galaxies. The trouble is that said world is incredibly complex. Any attempt to describe it
requires simplifying assumptions and the singling out of one particular aspect of it. Be it an
intricate experimental set-up to study a single atom in vacuum or the blunt assumption, that a
thrown object essentially behaves like a point mass.
In most fundamental theories, technically, almost everything interacts with almost everything
else all the time. Still, most interactions, even the behaviour of very large numbers of particles,
like a gas, are described as a series of two-body interactions at most. The reason for the success
of such a radical reductionism lies in the typically fast decrease of the interaction strength be-
tween the constituents with their relative distance. Theoretically of course the sun’s movement
is affected by the motion of humans on earth, but the effect is far too small to be measurable.
It should also be noted, that the abstraction typically depends on the problem. An apple can
be described as a point mass if we want to compute where it lands, when we throw it, but

Figure 1.1: Left: The description of a system with differential equations is based on local values
of a function and its derivatives. Right: The description of a system as a network
is based on the interdependence of a property between all pairs of locations.

if we are more interested in what it tastes like, a description of its molecular composition is
probably more helpful. Knowing about the physical laws that govern the behaviour of an apple,
the molecules the apple is made of, the atoms the molecules are made of and the elementary
particles the atom is made of, helps us to understand a variety of aspects of apple behaviour on
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1 Introduction

many scales.
With constituents and simple interactions a surprising number of phenomena can already be
explained. But there are many other phenomena, that arise from more complex interactions of
the constituents and those phenomena are much less well understood than the individual parts.
While systems in physics have always been too complex to map them mathematically without
approximation, usual simplifying assumptions include the assumption, that the medium is reg-
ular and can be represented as a grid or continuum, in which interactions happen only between
the nearest neighbours (Fig. 1.1). Examples for this range from crystal structures to descrip-
tions by differential equations. This provides a very accurate description for systems with a
simple interaction structure, but the problem is, that partial differential equations are rarely
solvable, especially when the interactions are non-linear and numerical evaluation shows chaotic
behaviour.
One way to resolve this issue is to work with ensembles of trajectories, rather than individual
ones and analyze the correlations of a variable, rather than its exact value. Hence, shifting the
description from a description of local interactions to one, that relies on non-local correlations.
This is the idea behind the study of correlation networks in systems, that can otherwise be
approximated well by a continuous description.
The earth’s climate system is one of the most complex systems. Influences include the sun, tec-
tonics, vegetation and of course, and most controversially, humankind’s activities on this planet

Figure 1.2: Top: Climate networks connect locations with similar climate data time series.
Bottom: Network of a simple flow system.

[20]. While climate models get more and more complex as computing power grows, including
more and more influences and parameters, the model output has more and more characteristics
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of a “numerical experiment”, in which the influence of the parameters is observed rather than a
known feature of the model, leaving the problem of interpretation and identification of underly-
ing mechanisms unsolved.
The introduction of climate networks [45] is an attempt to approach the problem from a differ-
ent perspective. The idea is to understand the large scale structure of the system by looking at
the interactions between all of its parts, with the aim of finding mechanisms, by which simple
constituents work together to produce complex phenomena.
In other fields, graph theory has already been applied with great success [44, 31]. Typical exam-
ples include social networks [25], the internet or transport networks [51]. In all of these cases,
the nodes are clearly defined and distinct from each other. The nodes of a social network are
people, their links are defined by the interaction, subject to the current study. There is no am-

Figure 1.3: There is no ambiguity in the definition of nodes in a network of clearly separated
discrete constituents, like a social network (a), in a network of a continuous system
however, many different choices might be equally valid (b)

biguity in the definition of the nodes, because a person is a well-defined entity and the question
whether person A’s arm might be part of person B would never occur. This is not the case in
the definition of networks from a continuous system, as Fig. 1.3 illustrates.

My thesis is concerned with some conceptual issues of networks of continuous systems and
strives to look at the interpretation of climate networks from a new angle:

1. The description of continuous systems as networks, that are discrete by definition, is
relatively new. Such a description reduces the system’s complexity in a fundamentally
different way to the description with differential equations. Rather than only looking at
local interactions, it takes all possible interactions into account, but reduces the spatial
resolution to the node locations. This provides a fundamentally non-linear description and
has recently given many important insights into the climate system. What can be said
about such networks and their relation to differential equations in general?

3



1 Introduction

2. Climate networks can be constructed in various ways from climate data time series, such as
temperature, pressure or precipitation. Nodes in a climate network are typically associated
with locations on the earth. Links are formed between two locations x1 and x2 if there is a
high statistical interdependence between time series T (x1, t) and T (x2, t) (Fig. 1.2). The
interdependencies can be measured with Pearson correlation, mutual information or event
synchronization. Can we find a simple analytical model system, to produce networks, that
are structurally and conceptually similar to climate networks?

3. An important issue of such climate networks is their interpretation. It is interesting to
see the topological structures of the system, but as physicists and climatologists, we want
to understand the underlying mechanisms. Many of the most interesting discoveries of
climate network approaches aim to find patterns in network measures. Can we find a
relationship between topological features and properties of the underlying system?

4. Given a method of network construction from a manageable physical system, how do
construction parameters like spatial node distribution or influences other than the flow
field itself impact network topology?

To answer these questions I developed two related but distinctly different methods. The first
method starts from a continuous description of the flow system by the advection-diffusion-
equation. A tracer peak (of temperature or concentration) is introduced and the equation is
solved for its decay, giving a temperature profile over time for each location. Similar to the
time series in traditional network construction, we define a continuous Pearson correlation and
compute this for a set of node locations.
The second method starts out from a discretized advection-diffusion-equation with added ran-
dom noise. This can be solved for random initial conditions and noise matrices with a mean of
0 and a variance of 1. In the Pearson correlation we also average over all realizations and obtain
a correlation matrix, that is independent of the initial conditions, and which we interpret as a
weighted network.
These models are used to develop more realistic models for climate applications, study the in-
fluence of inhomogeneous node distributions and verify a method for the characterization of
changes in a network.

The outline of my thesis is the following:
Chapter 1 formulates questions and goals and provides an overview over the topic.
Chapter 2 introduces network concepts and gives definitions used throughout the thesis.
Chapter 3 derives network construction methods from flows for the continuous and discrete
case.
Chapter 4 applies the new methods to study the influence of spatial sampling, temporal evo-
lution and climate networks of the Asian monsoon region.
Chapter 5 summarizes the findings and further questions are formulated.

The main findings from this thesis have already been published. Specifically Chap. 3 is based
on [28, 30] and Chap. 4 is based on [39, 29, 48].
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1.1 Descriptions of complex continuous systems

1.1 Descriptions of complex continuous systems

A natural question, that arises when discussing the possibility of describing a continuous system
as a network is the question why this is necessary and useful. What additional insights can
be gained by reducing the continuous system to a discrete one and seemingly disregarding the
principle of locality by allowing long-range links?
The principle of locality states that a local variable can only be influenced by its direct sur-
roundings. Therefore, the typical approach to the description of most systems in physics uses
differential equations:

F (xi, U , Uxi , Uxixj , Uxixjxk
, ...) = 0, where Ux =

∂U

∂x
. (1.1)

The function U(x1, x2, ..., xn) of n variables {x1, x2, ..., xn} is described by a function F of the
xi and the derivatives of U with respect to these variables. A differential equation describes a
process by its infinitesimal changes, or derivatives, thereby incorporating the principle of local-
ity. This has been a very fruitful intuition for several centuries.
However, while the description of a system as a differential equation is as close to an exact
description as we can hope to get, it yields many problems. Differential equations can rarely
be solved exactly and while they are in principle deterministic, even smallest changes in the
initial conditions can lead to very large differences in the (typically numerical) solution. This
means that we have a description, that is in principle exact and should allow the prediction of
the entire evolution of the system, but since small differences in the initial conditions have such
a large impact on the systems state at later times, and measurements are only finitely accurate,
predictions can only be made on relatively short time scales.
A natural solution of this issue is to work with averages. This can be averages over different re-
alizations of the initial conditions or added noise. Instead of individual trajectories, correlations
between different locations are computed and averaged over all realizations:

C(U(�xi), U (�xj)). (1.2)

The correlation function describes persistent features of the system in a way, that is independent
of the noise realization and can be interpreted as a complex network (by evaluating it at discrete
node positions), giving insights into the topology of the interaction structure.
So instead of studying the evolution of the state at long time scales, we study the correlations
induced by short term dynamics. In this thesis I will show approximate methods for solvable
differential equations and compare them to networks obtained from data, that require no solution
of differential equations. A general, continuous solution is beyond the scope of this work.

1.2 Networks and climate

The climate system is an extraordinarily complex continuous system [9]. It is a very large system
with a vast number of parameters and influences, some of which, like advection and diffusion,
can easily be modelled as differential equations [33]. The influences of human activity, however,
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1 Introduction

are more difficult to model. Consequently, there are many climate models on all levels of com-
plexity [42], depending on the required level of detail.
Following the reasoning from the section above, another possibility is to describe the climate as
a correlation network. Since data is available, this would not even require the development or
choice of a climate model, since the network can be computed directly from the available climate
data time series.
Climate networks were first suggested in [45], and have been found fruitful in many applications
[50, 47, 38, 41]. In climate networks, nodes are locations and connections are established if an
observable, measured over time in two locations, is found to be correlated. In this way networks
can be constructed heuristically from data or models, that allow the definition of a similarity
measure, even without further knowledge of the exact form of the interaction.
They have provided important insights regarding various questions in climate sciences, ranging
from the impact of the El Niño Southern Oscillation on global climate [46, 16, 2], to the dynam-
ics of the Asian monsoons [26, 38], ocean [10, 17] and atmospheric dynamics [4, 13].
The construction of spatially embedded climate networks uses nodes corresponding to (geo-
graphical) locations, and links corresponding to statistical interdependence between climate
time series observed at the locations of the nodes [45]. The strength of statistical dependence
can be quantified in several different ways, depending on the type of data.
Probably the simplest and most common one is the Pearson correlation. Given two time series
T1 and T2:

ρ(T1, T2) =

〈
T1 − 〈T1〉

||T1 − 〈T1〉 || ,
T2 − 〈T2〉

||T2 − 〈T2〉 ||
〉

. (1.3)

Angular brackets 〈.〉 denote the expectation value or 〈 . , . 〉 the scalar product, the norm is
defined as ||.|| = 〈( . − 〈 . 〉)2〉.
This is also the correlation measure, that will be used predominantly in this thesis, as it can be
used for deterministic functions as well as for noisy data, on top of that it has been shown, that
most of the structure of the climate system is captured by the linear approach [19].
Other similarity measures include mutual information [11, 13], an entropy based measure, that
is useful when dealing with non-linear correlations and event synchronization [36, 26, 43], a
measure which compares event series.
Once the correlation matrix Cij is found, the adjacency matrix of the unweighted network
(Eq. 2.1) can be constructed by employing a threshold value α, using the the Heaviside theta

function θ(x) =

{
1 x > 0
0 x ≤ 0 and the Kronecker delta δij =

{
1 i = j
0 i �= j

:

Aij = θ(Cij − α) − δij . (1.4)

Alternatively, the network can be weighted with the correlation values (Eq. 2.2):

wij = Cijθ(Cij − α) − δij . (1.5)

In the weighted case, the thresholding is not strictly necessary, it does however reduce compu-
tational costs for some network measures, such as betweenness to work with sparse networks,
while leaving the result almost unchanged.
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2 Complex networks background

Handle nur nach derjenigen Maxime, von der du
zugleich wollen kannst, dass sie allgemeines Gesetz
werde, Silvio Berlusconi

Marc-Uwe Kling, Das Känguru-Manifest

A graph is a mathematical object, that describes a relational structure. The branch of math-
ematics, that concerns itself with such structures is called graph theory. For many years, graph
theory has been found to be a useful tool for the description of various, very different types of
systems in physics and other areas. Most of these systems, like the internet, the dynamics of
disease spreading or power grids, have a natural network structure, in which nodes and links
have a clear physical interpretation [44, 12, 35] and in many cases, the spatial embedding of the
networks is not of interest.
Recently, however, the spatial embedding has attracted increased attention, as many systems
rely on geometry as well as the topology. In power grids the length of the links is an important
cost factor and in our area of application, the climate system, the physical distance of nodes has
a large influence on their connection probability. Such networks will be referred to as spatial
networks. To describe spatial aspects, some of the network measures, discussed here will take the
geometry into account as well as the topology. In this section I introduce the network concepts
and measures necessary for this thesis, for a more complete overview I refer the reader to [3, 1].

2.1 Definition
A graph G = (V , E) is defined as an ordered pair of a set of nodes or vertices V and links or
edges E. A link is a pair of nodes, that are connected.
Complex networks are graphs with a non-trivial topology. That means that they are neither
grids nor random graphs. In a grid every node is structurally identical, this can be achieved
by arranging the nodes on a regular spatial grid and connecting every node to its k nearest
neighbours. In a random network [15, 14] every pair of nodes has the same probability to be
connected, which also creates a kind of homogeneity of the nodes.
A subgraph G′ of a graph G, is a graph with the vertex set V ′ ∈ V and an edge set E′ ∈ E.
A graph is called undirected, if its links have no orientation.

2.2 Adjacency matrix
A graph of N nodes can be characterized by an N × N -matrix, where each node corresponds to
a row and column. The entry (i, j) is 1 if i and j are connected and 0 if they are not. Such a

7



2 Complex networks background

matrix is called an adjacency matrix. Fig. 2.1 b shows an adjacency matrix of a graph Fig. 2.1 a.

Ai,j =

{
1 if nodes i and j are connected
0 if nodes i and j are not connected (2.1)

Note, that the adjacency matrix of an undirected graph is always symmetric.
Adjacency matrices are an intuitive representation of the graph and many network measures are
defined using them directly. The matrix of all paths of length n, for example is the nth power

0 1 0 0 1 1 0 0 0 0
1 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0
0 1 0 0 1 1 0 0 0 1
1 0 0 1 0 0 0 1 0 0
1 0 0 1 0 0 1 1 0 0
0 1 1 0 0 1 0 0 0 1
0 0 1 0 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0

a)                                                                         b)                                             c)

1

2

3

4

5

6
8

9
10

1

5

0

8

Figure 2.1: A graph can be displayed as: a) Graph, b) Adjacency matrix, c) Matrix plot

of A, while the degree is given by it’s row sum.
In terms of storage space, adjacency matrices are inefficient, particularly for sparse matrices,
as they contain redundant information. In this respect, edge lists are more efficient, instead of
storing zeros and ones, they only store the ones. In this thesis however, all graphs are relatively
small, so the representation as adjacency matrix is sufficient.
The notion of an adjacency matrix can be generalized to describe weighted graphs, incorporating
the connection strength. For a network with weights wi,j this notation is:

wi,j =

{
ci,j if nodes i and j are connected with connection strength ci,j
0 if nodes i and j are not connected (2.2)

In this thesis, all networks are correlation networks. The correlation matrix can be interpreted
directly as a weighted adjacency matrix. For reasons of computational efficiency, however,
a lower cut-off is used, setting all entries below a certain threshold to zero, so that sparse
algorithms can be employed.

2.3 Weighted vs. unweighted network measures

To analyse and describe the topological features of a network, a variety of network measures
have been developed. Here I will present those used in this thesis. Network measures can
describe properties of the network as a whole or single nodes or links. As the main motivation
and application here is the climate system, we are particularly interested in measures, that
can be interpreted as regional properties. Thus the emphasis lies on node properties. Since
our networks are spatially embedded and their spatial embedding is an integral aspect of their
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2.3 Weighted vs. unweighted network measures

structure, we also present network measures, that combine network topology and embedding
geometry.

2.3.1 Degree or node strength
The degree ki of node i of a network with N nodes is given by the number of nodes it is connected
to, that is the row sum over row i of the adjacency matrix, defined in Eq. 2.1:

ki =

∑N
j=1 Aij

N − 1
. (2.3)

The weighted version of the degree is called node strength si of node i and is given by the sum
of the weights of node i’s links, or the row sum over row i of the weighted adjacency matrix,
defined in Eq. 2.2:

si =

∑N
j=1 wij

N − 1
. (2.4)

Both degree and node strength are linear network measures, that only rely on the immediate
surrounding of a node.

2.3.2 Betweenness
The shortest path betweenness bi of a node i is defined as the number of all shortest paths that
go through it,

bi =

∑
j,k∈1,...,N ,j �=k

njk(i)
njk

(N − 1)(N − 2)
. (2.5)

Where njk is the number of shortest paths connecting k and j and njk(i) is the number of those
paths, that go through i. This means that the entire network topology is needed to compute
the betweenness of each individual node.

2.3.3 Connected component or community size
A connected component is a subgraph of a graph G, such that each pair of nodes within the
subgraph is connected by a path, while no node of V ′ is connected to a node outside of V ′. The
size of a subgraph is the total number of its nodes.
Since complete separation rarely occurs in climate networks a more subtle measure is used to
analyse the community structure. Similar to the notion of connected components, we would like
to find subgraphs of G, that are highly connected within themselves and have few connections
to the other subgraphs. First let us define a division d = d1, ..., dn as a set of n non-intersecting
sets of vertices di. Modularity is a measure of how well a given division d divides the network
into subnetworks, that have more links within themselves than interconnecting them. The
modularity of a network with the adjacency matrix A and the division d, is defined as [8]:

Q =
1

2m

∑
ij

(
Aij − kikj

2m

)
δ(di, dj), (2.6)
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2 Complex networks background

where m is the number of edges in the network. The modularity is high if there are many links
within the di and few links connecting two nodes from different sets. The goal is to find a good
division into communities. For this there are optimization algorithms, like the one presented in
[8], which is used throughout this work.

2.3.4 Anisotropy
Unlike the previous network measure, the local anisotropy, as defined in [23], takes the spatial
embedding into account as well as the topology. It is a measure for how aligned the links of
a node are. For this the angles between all links between point m and its neighbours ni and
the reference axis are compared for all existing links. If the locations of the nodes m and n are

ϕmn = arctan

⎛
⎝x

(n)
2 − x

(m)
2

x
(n)
1 − x

(m)
1

⎞
⎠

Figure 2.2: The angle ϕmn is the angle between the vector from vertex m to vertex n and the
x-axis.

given in Cartesian coordinates, (x(m)
1 , x

(m)
2 ) and (x

(n)
1 , x

(n)
2 ), the angle is given by the equation

in Fig. 2.2.
The anisotropy is the vector sum of unit vectors along all connections of node m. The vectors

Rm =
1

km

∣∣∣∣∣
N∑

n=1
Amnei2ϕmn

∣∣∣∣∣ . (2.7)

Figure 2.3: Each link corresponds to a vector of the same angle ϕmn (black) of length 1. The
red vectors have the phase 2ϕmn and are added to find Rm.

are described by their length Amn, which is 1 for existing links and 0 otherwise (see Fig. 2.3).
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2.3 Weighted vs. unweighted network measures

The angles ϕmn are doubled. This ensures that perpendicular vectors cancel, while an angle of
π adds up. We define the weighted local anisotropy as:

Rm =
1

sm

∣∣∣∣∣
N∑

n=1
wmnei2ϕmn

∣∣∣∣∣ . (2.8)

For weighted networks we also have to take the connection strength into account. It comes in
as the length of the vectors.

2.3.5 Link length distribution
The link length distribution is a global network measure, that, like anisotropy, combines topology
of the network and the geometry of the embedding. It is a histogram of frequencies of link lengths
in the network.
The complete link length distribution is the link length distribution of the complete graph of a
set of spatially embedded nodes. The complete link length distribution can be used to compare

Figure 2.4: The frequency of distance d in area R is the integral over all line segments, that lie
inside R (green), integrated over all positions of the origin x.

to the actual link length distribution. If, for example, the spatial distance is unrelated to the
connection probability, the actual link length distribution should differ from the complete link
length distribution only by a factor c < 1, equal to the link density. On the other hand, if the
network is a unit disk graph, as described in [7], of a given node distribution with disk size r,
the link length distribution is the same as the complete link length distribution, cut off at link
length r.
The continuous equivalent of the complete link length distribution is the distance distribution,
which is defined as the integral over the distances between all pairs of points x and y in a region
R. This is equivalent to integrating over the area of the region and all circle segments, that lie
within, of circles of radius d as illustrated in Fig. 2.4.
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2 Complex networks background

2.3.6 Voronoi tessellation analysis
A Voronoi tessellation is a division of a space into non-overlapping regions, such that every point
of the space belongs to one region. The regions are defined around a set of nodes, such that
every point in the cell is closer to that node than to any other, as shown in Fig. 2.5. If X is a

Figure 2.5: The Voronoi cell of a node n includes all points, that are closer to n than to any
other node. Here the nodes are the red dots, the tessellation is depicted as black
lines.

metric space with a distance function d and there are N nodes at the locations p1, ..., pn, then
the cell Ri around point i is:

Ri = {x ∈ X | d(x, pi) ≤ d(x, pj) ∀ j �= i} (2.9)

Voronoi tessellation analysis is a simple diagnostic method to estimate the homogeneity of a
node distribution.
The Voronoi cell size distribution is a histogram, computed from the sizes of the areas of all
Voronoi cells. In a grid all cells are identical, thus the cell size distribution consists of a single
line at a2, where a is the grid constant. If the nodes are uniformly distributed in space the
resulting cell sizes will have a clear peak around the mean cell size Asam/Nnod, where Asam is
the size of the total sampled area and Nnod is the number of nodes. If the nodes are scattered
around a centre with small distances in the centre and large ones in the outer regions, the peak
will be shifted to smaller cell sizes.
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3 Construction of networks from flows
From the maelstrom of the knowledge
Into the labyrinth of doubt
Frozen underground ocean
Melting - nuking on my mind

Gogol Bordello Supertheory Of Supereverything

In this chapter I first present the general idea for the bottom-up construction of networks
from a well-understood physical system. This is done for a continuous system first, which has
the advantage of allowing to freely distribute the nodes in space, but is computationally ex-
pensive. Therefore an alternative method is introduced, that is based on a discretisation of the
advection-diffusion-equation (ADE). This model makes it possible to generalize the method to
time dependent flows, allow external heating, interaction with another layer of flow or obstruc-
tions for the tracer.
Sect. 3.2 is based on my paper [28] and largely follows its presentation. Sect. 3.3 closely follows
my publication [30].

3.1 Question and approach
Simply put, the starting question is: What is the climate network of a bucket of water at rest?
Which later transforms into the advanced question: What is the climate network of an inhomo-
geneous velocity field with external heating or interaction with a secondary velocity field?
Here, I approach the problem of the interpretation of climate networks from a new angle. In-
stead of starting from climate data, constructing a network and interpreting the network based
on climatological knowledge, I apply a bottom-up approach. The idea is to construct complex
networks from a simple model, which is physically well-understood and shares crucial properties
with the climate system. This allows me to draw a connection between network topology and
properties of the underlying system.
As outlined before, climate networks are constructed by choosing node locations with climate
data time series and evaluating pairwise similarity measures between all pairs of nodes. The
resulting correlation matrix is either thresholded or used as a weighted adjacency matrix. The
reason for a high correlation can be that there is a direct connection, meaning that fluctuations
are transported from one node to the other within the system in question, indirect connection,
meaning that fluctuations are transported from node to node via another system, and common
driver, which is an external forcing, that acts on both nodes [37].
It appears reasonable to assume, that a lot of climate’s direct interactions happen via simple
advection and diffusion in the ocean or the atmosphere. So the ADE provides a good start-
ing point. Given a two dimensional flow field and an initial distribution of a tracer quantity
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3 Construction of networks from flows

Figure 3.1: We construct a complex network (right) from a physical flow (left).

(which will be called “temperature”, throughout this thesis), the ADE describes how the tracer
distribution in the flow field changes over time. The resulting tracer changes over time in each
location can be viewed as the theoretical equivalent to the measured time series, used to con-
struct climate networks. Thus, they are used to define a correlation and construct a theoretical
network.
This is done here in two different ways, allowing to investigate different aspects of the system.
The two approaches are presented in Sect. 3.2 (continuous model) and Sect. 3.3 (discrete model).

3.2 Continuous method

The starting point for this model is a continuous two dimensional fluid. To model temperature
fluctuations, that decay too fast to interact with each other, a δ-peak is chosen as initial condi-
tions. Temperature transport in the fluid obeys the deterministic advection-diffusion-equation
(ADE). The location of the initial peak should be irrelevant, because the system to be analysed
is the velocity field. We therefore average over all realizations of the initial condition, which is
all locations of the peak.
By also integrating over a time window ranging from shortly after the initial conditions until
a time long after everything has decayed, we define a continuous correlation measure, which is
then evaluated between all pairs of node positions to construct a correlation matrix and finally
a network.

3.2.1 The advection-diffusion-equation

The ADE is a parabolic partial differential equation, that states how the physical quantity of
interest (here temperature), is transported in a liquid. Local temperature changes over time
are governed by the spatial temperature change, the velocity and the diffusion coefficient in the
fluid. For simplicity, the system is restricted to the sourceless, incompressible ADE:

∂T

∂t
= χΔT − ∇ · (�v(�x)T ), (3.1)
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3.2 Continuous method

where χ is the diffusivity of the fluid and �v(�x) is its velocity at location �x. The ADE is obtained
by inserting the advective and diffusive flux

�j = �jdiff +�jadv = −χ∇T + �vT (3.2)

into the sourceless continuity equation for temperature

∂T

∂t
= −∇ ·�j . (3.3)

Here, T (�x, t) is the value of the temperature in position �x at time t. For a homogeneous
velocity field �v(x) = v in one dimension, this can easily be solved by making the coordinate
transformation:

t′ = t

x′ = x − vt

Leading to the simple heat equation:

∂T

∂t
= χ

∂2T

∂x2 , (3.4)

Which can be solved using Fourier transformations, as explained in [24]. To solve a partial
differential equation, it is necessary to fix initial and boundary conditions: The temperature is
taken to be 0 at ±∞. Furthermore, the interactions are restricted to a flat 2D Euclidean space.
The δ-peak shaped initial conditions, located at �x0, serve as a simplified model for the local
temperature fluctuations. So finally the Cauchy problem of Eq. (3.1) is solved with the initial
conditions:

T (�x, 0; �x0) = δ(�x − �x0) . (3.5)

For homogeneous velocity fields, the ADE can then be solved analytically, giving:

T (x, t) =
e

− (x−x0−vt)2
4χt√

4πχt
+ T0 (3.6)

for the temperature development of a δ-peak, located at x0, as initial temperature distribution.
More complex flows �v(�x) require an approximate solution to the ADE, as a direct analytic
derivation becomes impossible. The stationary flows are assumed to vary slowly over space,
|∇�v(�x)| � χ (Unless it is stated otherwise, we set χ = 1). As a consequence, all derivatives of the
velocity field can be ignored, which is necessary to ensure the applicability of the approximation.
In d dimensions this leads to the approximated temperature field

Tappr(�x, t; �x0) =
e

− |�x− �x0−�v(�x)t|2
4χt

√
4πχt

d
. (3.7)
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3 Construction of networks from flows

To evaluate the validity of this assumption for a given velocity field �v(�x), we compute a diagnostic
residual R from:

R(�x, t) =
∂Tappr

∂t
− χΔTappr + ∇ · (�v(�x)Tappr) . (3.8)

R(�x, t) is zero for a perfect solution, which is the case if |∇�v(�x)| = 0. If the maximum of this
function is small compared to the other terms in equation 3.8, R(�x, t) � ∂Tappr

∂t , the approxima-
tion is considered to be good. This condition was checked numerically for all examples in this
thesis.

3.2.2 Definition of the correlation

In analogy to the wide-spread Pearson correlation [6] (Eq. 1.3), the continuous cross-correlation
analogue (CCA) is defined as the normed scalar product of solutions of the Cauchy problem of
the ADE at two points �x1 and �x2

C(�x1, �x2) =

〈
T (�x1, t; �x0)

||T (�x1, t; �x0)|| ,
T (�x2, t + tl; �x0)

||T (�x2, t + tl; �x0)||
〉

. (3.9)

The scalar product is then defined as the integral over time and peak position �x0. The time
integration is analogous to the sum over time steps, the integration over the peak position serves
as an average over realizations of the peak, corresponding to stochastics in the time series, where
peaks appear at random in arbitrary places. So we define the CCA in this context as:

C(�x1, �x2) =

1
(t1−t0)

1
V

∫ t1
t0

∫
R2 T (�x1, t; �x0)T (�x2, t + tl; �x0)d�x0dt

||T (�x1, t; �x0)||||T (�x2, t + tl; �x0)|| , (3.10)

where �x0 is the position of the peak. The time lag tl is the difference in travel time of the peak
from �x0 to �x1 and �x2. Note that, due to the much finer time resolution in the model, this time
lag is different from those commonly used in data analysis, where the time span between one
data point and the next is often much longer than the time lag would be.

tl = tmax(�x1, �x0) − tmax(�x2, �x0), (3.11)

where tmax(�x, �x0) is the time when the temperature at �x reaches its maximum, with the initial
peak starting at �x0. The norm is defined as:

||T (�x, t; �x0)|| =
√

1
(t1 − t0)

1
V

∫ t1

t0

∫
R2

T (�x, t; �x0)2d�x0dt. (3.12)

The factors 1
(t1−t0)

1
V cancel out due to the division by the norm in Eq. 3.10. Applying the
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Figure 3.2: The continuous analogue of the Pearson correlation is defined using the temperature
profiles at �x1 (blue) and �x2 (dashed orange). They are aligned such that their peaks
(dashed orange → red) coincide and multiplied (purple). The CCA is given by the
integral over time and initial peak location.

solution of Eq. 3.7 in Eq. 3.10, the expression simplifies due to a Gaussian integration:

||T (�x1, t; �x0)||||T (�x2, t + tl; �x0)||

=

√∫ t1

t0

∫
R2

T (�x1, t; �x0)2dtd�x0

√∫ t1

t0

∫
R2

T (�x2, t; �x0)2dtd�x0

=

√√√√∫ t1

t0

∫
R2

e
−2 | �x1− �x0−�v(�x1)t|2

4χt√
4πχt

dtd�x0

√√√√∫ t1

t0

∫
R2

e
−2 | �x2− �x0−�v(�x2)t|2

4χt√
4πχt

dtd�x0

=
∫ t1

t0

1
8πχt

dt =
1

8πχt
(log(t1) − log(t0)) (3.13)

The lower limit of the integration, t0 is chosen small but non-zero (here t0 < 10−2) as the
correlation function is not defined for t = 0. The upper limit is chosen such that all temperature
profiles have decayed to a value very close to zero (here: t1 = 5000).
The CCA is evaluated between all node pairs (i, j) from a given set of nodes. This provides the
correlation matrix Cij from which the adjacency matrix A is constructed by choosing a fixed
significance threshold α. This can be expressed with the Heaviside θ function and Kronecker δ
as

Aij = θ(Cij − α) − δij . (3.14)

α is chosen such that the adjacency matrix is sparse, yet almost all nodes are connected by a path.
In all cases studied, the main features of the network topology were robust with changes of the
threshold (compare Fig. 3.11). A link density of 10-20 % was found to satisfy these requirements
best.

17



3 Construction of networks from flows

3.2.3 Application to different velocity fields

This method can be applied for many different velocity fields. The first step is always to solve
the ADE Eq. 3.1, the result is then used to compute the correlation matrix using Eq. 3.10. The
ADE can be solved analytically for �v = 0, �v = const. (translation) and �v =

(
y

−x

)
(rotation).

The second step is to compute the correlation function. This can be done exactly only for zero
velocity. For constant velocities it can still be done approximately, giving a closed solution.
In the case of more general, slowly varying velocity fields, the time integral has to be done
numerically. Here I present the results for the different cases.

i) For �v = 0

The movement of the peak’s maximum is dominated by the advection, which is zero here.
Therefore the time lag is approximately zero, tl ≈ 0. This simplifies the problem sufficiently so
that the correlation function (see Eq. 3.10) can be computed analytically, giving:

C(�x1, �x2) =
Γ(0, |�x1−�x2|2

8χt1
) − Γ(0, |�x1−�x2|2

8χt0
)

log( t1
t0
)

(3.15)

Where t0 and t1 are the limits of the time integration and Γ(a, x) is the upper incomplete gamma
function. Fig. 3.3 shows how the correlation behaves with the distance of points �x1 and �x2. To
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C

Figure 3.3: Correlation measure for �v = 0, plotted over distance vector
(

w1
w2

)
between the points.

For zero distance, the correlation is maximal and drops off symmetrically with dis-
tance.

obtain a network from this, node locations �xi are chosen and Eq. 3.15 is applied to find their
pairwise correlations. The correlation strength in this case only depends on the distance of the
nodes. If the node locations form a square lattice, the resulting network is a regular grid.
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Figure 3.4: The peak is located at the values for �x, for which both components of the gradient are
zero, which happens at the intersection of the zero-lines of Jx (red) and Jy (orange).
To find the peak location, Newton’s method is applied (blue and purple lines).

ii) For �v = const.

For homogeneous velocity fields the correlation can still be computed analytically with a few
approximations. The added challenge lies in the time lag, which, instead of zero, is now given
by Eq. 3.11, where the following expression for the maximum can be obtained from the roots of
the numerator of the exponent, |�x − �x0 − �vt|2, from Eq. 3.7:

tmax(�x, �x0) =

√
χ2 + |�v|2|�x − �x0|2

|�v|2 . (3.16)

In this case, Eq. 3.7 is the exact solution of the ADE. Using the definition of the correlation
Eq. 3.10, gives the following expression:

C(�x1, �x2) =

∫ t1
t0

∫
R2

1
(4πχt)2

t
t+tl

e
−

|�x1−�x0−�v(�x1)t|2+ t
t+tl

|�x2−�x0−�v(�x2)(t+tl)|2

4χt dtd�x0
1

8πχt (log(t1) − log(t0))
(3.17)

To approximately evaluate it, Laplace’s method [5] is applied. Laplace’s method is a technique
for the estimation of integrals of the form:

∫ b
a h(y)e−g(y)dy, where g(y) is a smooth function

with a unique global minimum. As the exponential decays much faster than the non-exponential
prefactor h(y) varies, all significant contributions to the integral come from a narrow neighbour-
hood of the location of the minimum of g(y). So g(y) is replaced by its Taylor expansion to
second order around the location ymax of the minimum of g(y):
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3 Construction of networks from flows

∫ b

a
h(y)e−g(y)dy ≈ h(ymax)e

−g(ymax)
∫ ∞

−∞
eg′′(ymax)(y−ymax)2/2dy (3.18)

≈ h(ymax)e
−g(ymax)

√
2π

g′′(ymax)
.

Where ymax is the value of y, for which g(y) takes on the global minimum and therefore the
peak reaches its maximum.
For the evaluation of Eq. 3.17, the functions h(�y) and g(�y) are chosen to be:

h(�y) =
1

(4πχt)2
t

t + tl(�y)
(3.19)

g(�y) =
|�x1 − �y − �v(�x1)t|2 + t

t+tl(�y)
|�x2 − �y − �v(�x2)(t + tl(�y))|2

4χt

The two dimensional equivalent of g′′ is the Hessian matrix, which transforms Eq. 3.18 as follows:
∫

R2
h(�y)e−g(�y)d�y ≈ h(�ymax)e

−g(�ymax) 2π√
det H(g(�ymax))

, (3.20)

where H denotes a Hessian matrix. The Gaussian integral is then evaluated. The main challenge
left, is locating the maximum of the peak. By definition it is in the location, where both
components of J are zero simultaneously (Intersection of zero lines for Jx and Jy in Fig. 3.4),
but this system of equations can not be solved analytically for the peak location. The peak
position has to be approximated using Newton’s method (here one iteration) to find the root of
the gradient of g.

�xm,n+1 = �xm,n − H−1(�xm,n) ∗ J(�xm,n) (3.21)

The initial guess is a peak, that moves with the speed �v, starting from �x1:

�xm,0 = �x1 − �v(�x1)t (3.22)
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Figure 3.5: The spatial integration results in the integrand of Eq. 3.23, here it is plotted over
time: numerically (blue line), using Laplace’s method (red line) and using Laplace’s
method, but additionally Taylor expanding 2π√

det H( �xmax)
to first order (green line).

After all these approximations the correlation function can now be written out as:

C(�x1, �x2) ≈
∫ t1

t0

2π√
det H(�xmax)

1
(4πχt)2

t

t + tl
e

−
|�x1−�xmax−�vt|2+ t

t+tl
|�x2−�xmax−�v(t+tl)|2

4χt dt (3.23)

Fig. 3.5 shows how the approximation of the spatial integral relates to its numerical evaluation.
The integral poses a difficult numerical problem, leading to errors in the numerical evaluation.
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Figure 3.6: Taylor expansions for prefactor and exponent together with the full function for the
case of a homogeneous velocity field: a) 2π/

√
det H(�xmax) with it’s first-order Taylor

expansion plotted from 0 to 5, to magnify the discrepancy, b) over the full interval t0
to t1, c) numerator of the exponent |�x1 − �xmax − �vt|2 + t
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|�x2 − �xmax − �v(t + tl)|2

with its first-order Taylor expansion.
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To evaluate the time integration, the gauss integral factor 2π/
√

det H(�xmax) and the numer-
ator of the exponent |�x1 − �xmax − �vt|2 + t

t+tl
|�x2 − �xmax − �v(t + tl)|2, are expanded in a Taylor

series to first order around t1 (see Fig. 3.6). The result is of a form, that can be integrated
analytically over time:

∫
ea0− a1

t (c0 + c1t)

b1t + b2t2 dt = −
ea0

(
e

a1b2
b1 (b2c0 − b1c1)Ei

(
−a1(b1+b2t)

b1t

)
+ b1c1Ei

(−a1
t

))
b1b2

(3.24)

where the ai, bi and ci are given by functions of the Taylor coefficients of the expansions. The
exponential integral function Ei(x) is defined as:

Ei(x) = −
∫ ∞

−x

e−t

t
dt (3.25)

Finally, a set of nodes is chosen and the correlation is evaluated for every pair of nodes.
As the velocity field is homogeneous, the resulting network is also homogeneous, apart from
boundary effects. This implies that an analysis of network measures, provides no interesting
information. However, in contrast to the �v = �0 case, the network is not isotropic. Links are
longer in flow direction than perpendicular to it (see Fig. 3.7).

Figure 3.7: Network for the velocity field: vx(x, y) = 1 , vy(x, y) = 0.3 with 20 × 20 nodes
arranged in a regular grid.

iii) The circular flow

Like the homogeneous flow, the circular flow field �v(�x) = ω
(

y
−x

)
can be described as a coordinate

transformation of the resting case. Using the replacements: �x′ =
(

cos ωt −sin ωt
sin ωt cos ωt

)
�x leads to an

analytical expression for the temperature evolution that is (with ω = 1):

T (�x, t; �x0) =
1

4χt
e

− (x cos t+y sin t−x0)
2+(−x sin t+x cos t−y0)

2
4χt (3.26)
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3.2 Continuous method

The spatial integration was done analogously to the homogeneous field.
While 2π/

√
det H(�xmax) can still be expanded to first order in a Taylor series, in a reasonable

approximation (see Fig. 3.8 a and b), the exponent now has to be expanded to the second order
in t (Fig. 3.8 c). With the second order expansion, however, the integration can not be done
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Figure 3.8: Taylor expansions for prefactor and exponent together with the full function for
the case of the circular flow field: a) 2π/

√
det H(�xmax) with it’s first-order Taylor

expansion plotted from 0 to 5, to magnify the discrepancy, b) over the full interval t0
to t1, c) numerator of the exponent |�x1 − �xmax − �vt|2 + t

t+tl
|�x2 − �xmax − �v(t + tl)|2

with its first-order Taylor expansion.

analytically and a numerical evaluation has to be performed.
A grid of 20 × 20 nodes was chosen and the correlation was evaluated for every pair of nodes.
The resulting network is shown in Fig. 3.9. As expected, there are more longer links in the faster
flowing outer regions of the flow. As in the homogeneous case, links are longer in flow direction,
than perpendicular to it. The result is less regular than the network of the homogeneous flow

Figure 3.9: Network for the velocity field: vx(x, y) = 1 , vy(x, y) = 0.3 with 20 × 20 nodes
arranged in a regular grid. Figure from [28], supplementary material.

shown in Fig. 3.7, but the symmetry of the flow is well visible. The network measures ki (see
Eq. 2.3) and bi (see Eq. 2.5) are dominated by boundary effects.
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3 Construction of networks from flows

iv) For inhomogeneous velocities

Similarly to the circular velocity field, slowly varying (low-gradient) inhomogeneous velocity
fields can be treated using a combination of analytical approximations and numerical evaluation.
This was done for the two paradigmatic flows shown in Fig. 3.10. One is composed of three
narrow parallel flows, with alternating directions, and the other flow is made up of two narrow
flows intersecting in the middle. Using the approximate solution of the ADE, given in Eq. 3.7,

Figure 3.10: The correlation network (black) computed from the given velocity field (red arrows)
for two flow fields for: a) Counter-currents, b) Crossing currents, for better visibility,
a low link density of 2 percent was chosen. The networks display longer links in
flow direction and a higher link density in regions with higher velocity.

the correlations in a 20 × 20 -grid are computed for all pairs of nodes. Any pair of sites with a
correlation larger than α is connected with a link in the network. The threshold α is determined
such that the link density ρ = Lnet

Lfull
is constant, where Lnet denotes the number of links in the

flow network and Lfull denotes the number of links in the fully connected graph with the same
nodes. The value for ρ is chosen such that the network has almost no isolated nodes and is
sufficiently far from being fully connected.

24



3.2 Continuous method

Figure 3.11: Degree of crossing flows (row a) and counter currents (row b) for a link density of
10 % (1), 20 % (2), 30 % (3), 40 % (4). Betweenness of crossing flows (row c) and
counter currents (row d) for a link density of 10 % (1), 20 % (2), 30 % (3), 40 %
(4). Figure from [28], supplementary material.

Fig. 3.11 shows degree (see Eq. 2.3) and betweenness (see Eq. 2.5) for link densities of 10 to
40 % to illustrate the robustness of the general features of degree and betweenness. This implies
that there is no need to use a more sophisticated method of threshold selection, throughout this
chapter the threshold was set at ρ = 0.2.
We observe that, while intensity and width of the patterns vary with the threshold, the degree
is consistently higher in faster flowing regions and the betweenness marks a certain transition
region for most values of the link density. In Fig. 3.11 (d1) the node betweenness is not highest
in the transition region. This implies that the network of the counter currents is disconnected
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3 Construction of networks from flows

at a link density of 10 %, the rare and thereby high betweenness connections between the flows
do not exist in this case.
The resulting networks and underlying flows are illustrated in Fig. 3.10. In areas of the flow with
a higher velocity, the networks show a higher density and length of links than in slower regions.
High absolute velocity coincides with high node degree (see Fig. 3.12 and Fig. 3.13, top row).
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Figure 3.12: Flow field and network measures for the counter-currents in Fig.(3.10a): a) The
normed degree, relates to b) the absolute value of the flow’s local velocity; c) The
maxima of the normed betweenness are co-located with d) the maxima of the ab-
solute value of the gradient gradient of the absolute current velocity. See equa-
tions (2.3) and (2.5) for definitions of the network measures. Figure from [28].

For low velocities, degree and flow speed are approximately proportional, for higher speeds a
saturation occurs due to the finite size of the grid. In Fig. 3.13a, the region, where both flows
are highest (around (115,15)), however, has a lower degree, than the surrounding. The reason
for this is most likely, that the approximate solution of the ADE works less well in this region
than everywhere else.
High values for shortest path betweenness occur in the transition zones between opposing flow
directions (Fig. 3.12, bottom row), or regions of distinctly different flow velocities (Fig. 3.13,
bottom row). In both cases, the regions of highest betweenness outline the underlying velocity
field.
Other network measures such as local clustering coefficient or local assortativity [1] yield struc-
tures similar to those of the node degree (results not shown).
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Figure 3.13: Flows and network measures for the crossing currents, see caption of Fig. 3.12.
Figure from [28].

3.2.4 Application to data

In the model networks, it was found, that the degree is highest, where the absolute velocity
is highest and high betweenness marks transition zones. In the actual climate system, many
other influences act on the local temperature, yet these tendencies can be observed in correlation
networks derived from sea surface temperatures (SST) in the tropical Pacific.
The daily anomaly SST data is based on the optimum interpolation data (OI.v2) as provided by
NOAA/NCDC [40, 34] and the averaged monthly current’s velocity data was provided by the
OSCAR Project Office (Earth and Space Research, Seattle). The data stems from the region
120◦ − 160◦W, 15◦S−15◦N and spans the time period August 1996 to August 1997. The chosen
year is neither an El Niño nor a La Niña-year, and the results are largely robust against the
choice of the particular year. The network is calculated by standard cross-correlation with a
time lag of up to one day.
Flow velocity, gradient, and the obtained network measures are given in Fig. 3.14. To suppress
turbulent effects, only the longitudinal component of the gradient was used. As in the paradig-
matic flows investigated above, there is a reasonable agreement between the absolute values of
the velocity field and the degree in the correlation network (Fig. 3.14 (a) and (b)). Again, the
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3 Construction of networks from flows

Figure 3.14: Network measures of the correlation network of the equatorial counter-currents from
1997 daily anomaly SST data in comparison with flow velocity and gradient. The
region of highest degrees coincides with the region of highest flow velocity, while the
regions of highest betweenness coincide with the highest velocity gradient. Figure
from [28].

degree is maximal where the ocean current’s velocity is, and the betweenness shows large values
in regions with large values of the longitudinal velocity field’s absolute gradient (Fig. 3.14 (c)
and (d)), hereby confirming the results obtained for the paradigmatic flows.

3.2.5 Summary

The method can easily be generalized beyond 2D static flows and to flow systems outside of
climate science, as temperature can be replaced by any quantity described by the heat equation
such as density or chemical concentrations. In multivariate settings, reaction, advection and
diffusion processes could be studied simultaneously. Given sufficient computing resources, non-
stationary flows �v(�x, t) could be treated similarly, using a time offset for integration range and
peak appearance, as the ADE can still be solved analytically for time dependent velocity fields.
This could give new insights in the dynamics of evolving flows, highly valuable not only in the
analysis of changing climates.
The line-like structures in the betweenness fields of global climate networks [10] were previously
attributed to “information flow” in underlying ocean currents. Here it was found that regions
of high betweenness outline the flow rather than tracing it. The results therefore suggest some
corrections concerning the former interpretation and suggest that a high betweenness occurs in
transition zones between regions of different magnitude or direction of the underlying velocity.
This qualitative observation can be seen when comparing the betweenness with the absolute
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3.2 Continuous method

Figure 3.15: Schematic illustration of flow properties, that result in distinctive network proper-
ties: While advection dominates the transport of temperature fluctuations in re-
gions of fast propagation, localized diffusion dominates in stagnant regions. Signals
that leave the stagnant area by diffusion through the mixed region are subsequently
transmitted along the flow. This leads to the asymmetry seen in the betweenness,
where the betweenness values rise in flow direction. Figure from [28].

gradient. Physically, this could be due to the fact that advection dominates in fast flowing
regions, which results in a higher parallel but lower perpendicular link density compared to
the stagnant case. Additionally, there is a correlation between regions with a high node degree
and high average current velocity. Considering the advective-diffusive nature of these surface
currents, a physical explanation could be that a fast flow transports the signal farther.
Both, the degree and the betweenness increase marginally along the flow direction. This indicates
that the signals from the slow flowing region first travel through diffusion, once they hit the fast
region their main peak will travel downstream (the trajectory approximately follows the red
arrow in Fig. 3.15). This leads to a network, in which points downstream in the fast flowing area
have connections even to points in the slow region upstream from them, while points upstream
in the fast region mainly get connected to other points in the fast region downstream from them,
because diffusion plays a smaller role there. This leads to an increased degree and betweenness
in the upstream slower regions close to the flow’s centre.
In future research, such idealized case studies may be highly useful to study the influence of
spatial embedding, and to test hypotheses concerning the dynamics of observed correlation
networks. Given sufficiently low-gradient flow data, this method can be used to construct
correlation networks from observed oceanic or atmospheric flows.
It was shown how correlation networks can be constructed directly from flow fields and given
an example of how to use these networks to interpret network measures. We thereby provide a
foundation for climate network analysis and bridge the gap between the dynamics of underlying
flows and climate network interpretation.
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3 Construction of networks from flows

3.3 Discrete method

A second, complementary, approach to network construction from flows is based on stochastic
recursive equations. For this, the ADE is discretized and a stochastic term is added to the
resulting linear recursive equation. The correlation matrix is averaged over all realizations of
the noise, which can be interpreted as a weighted adjacency matrix and analysed using network
measures.
Additionally to systems, that are fully determined by the velocity field, it is then also possible to
study systems with external heating at a subset of the nodes, systems where some interactions are
artificially lowered and systems in which two velocity fields interact by exchanging temperature.
I propose a combination of network measures, which can identify the underlying system if only
the network is known.

3.3.1 A discrete description

As in the previous section, the starting point is the ADE for an incompressible fluid, given in
Eq. 3.1. Instead of solving it directly, it is discretized to a regular N × N -lattice, using the
central step method and Δx = Δt = 1. For the discretisation to appropriately represent the
differential equation, the following requirements have to be met:

κΔt � Δx2

vmaxΔt � Δx. (3.27)

These requirements are met by choosing κ and vmax appropriately. The partial differential
equation turns into a set of coupled equations for the temperature Tij depending on the two
components of the velocity vi

ij and vj
ij , that is �v(�x) evaluated at the grid points xij for i, j =

1, ..., N :

Tij(t + 1) = Tij(t)(1 − 4κ) + (κ − vi
ij/2)Ti+1j(t)

+ (κ − vj
ij/2)Tij+1(t) + (κ + vi

ij/2)Ti−1j(t)

+ (κ + vj
ij/2)Tij−1(t). (3.28)

This notation can be simplified to a linear matrix equation:

T(t + 1) = AT(t). (3.29)

T(t) is a list of the temperatures at time t in every location. The boundary conditions in the
discrete case are implemented by defining the temperature outside the sampled region. Here
the temperature is set to zero in all sites outside of the region of interest. The entries of the
matrix A are the coefficients in Eq. 3.28. Fig. 3.16 shows a colour-coded example of A. Time
series can be derived from an initial temperature field T(0) using Eq. 3.29. It is deterministic
and the initial conditions provide the only source. For a more realistic model, a noise term ε(t)
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3.3 Discrete method

A=(a)                                        b) (
Figure 3.16: Example velocity field (a) with its transformation matrix A (b). Figure from [30].

is introduced in the recursive equation:

T(t + 1) = AT(t) + ε(t). (3.30)

Where ε(t) is a vector of uniformly random, statistically independent noise with zero mean
variance one in each grid point at each time step:

〈ε(t)x〉 = 0,〈
ε(t)2

x

〉
= 1,〈

ε(t)xε(t′)y
〉
= δxyδtt′ . (3.31)

Where the expectation value of all noise realizations is denoted by 〈.〉. It seems natural to choose
the initial conditions: T(0) = ε(0). Finally, Eq. 3.30 can be integrated to yield:

T(t) =
t−1∑
k=0

At−1−kε(k). (3.32)

Due to the noise, each individual component of the temperature can not be predicted, but their
correlations can be determined. Such correlation matrices can be analysed as networks and
contain topological information about the system.
The covariance of two time series with zero mean is defined as the average over n time steps of
coeval values of the time series, or in short their scalar product, divided by n. The covariance
matrix of n time steps, Cn, is therefore defined as the average over n time steps over tensor
products of coeval temperature realizations.

Cn =
1
n

〈
n∑

t=0
T(t) ⊗ T(t)

〉
(3.33)

=
1
n

n∑
t=0

t−1∑
k=0

t−1∑
k′=1

〈
At−1−kε(k) ⊗ At−1−k′

ε(k′)
〉

.

31



3 Construction of networks from flows

Writing Eq. 3.33 out in components and applying Eq. 3.31 leads to:

t−1∑
k=0

t−1∑
k′=1

〈
At−1−k

ij,i′′j′′ε(k)i′′j′′At−1−k′
i′j′,i′′′j′′′ε(k′)i′′j′′

〉

=
t−1∑
k=0

t−1∑
k′=1

At−1−k
ij,i′′j′′A

t−1−k′
i′j′,i′′′j′′′δi′′j′′,i′′′j′′′δkk′

=
t−1∑
k=0

(AAT )t−1−k
ij,i′j′ , (3.34)

Where AT denotes the transposed of matrix A.
In an idealized static case we can additionally take the number of time-steps n to infinity. So
we can evaluate Eq. 3.33 to:

C∞ = lim
n→∞ n−1

n∑
t=0

t−1∑
k=0

(AAT )t−1−k

= lim
n→∞ n−1(nI − nAAT + AAT ((AAT )n − I))(I − AAT )−2

= (I − AAT )−1 (3.35)

This expression only depends on the transformation matrix A. It describes how the temperature
evolution in a point is related to the temperature evolution in other points. Note, however, that
the largest eigenvalue of matrix AAT is required to be smaller than one to ensure stability and
allow the use of the geometric series for the computation.

The time-dependent case

The discrete approach can easily be generalized to incorporate time-dependence. The time
dependence of the system is encoded in a time dependent transformation matrix A(t), which
transforms Eq. 3.30 into:

T(t + 1) = A(t)T(t) + ε(t). (3.36)

When subsequent application of the transformation matrix lead to its exponentiation before,
now it results in the multiplication of the matrix at different times:

T(t) =
t−1∑
k=0

t−1−k∏
j=0

A(tj)ε(k). (3.37)

And thereby the correlation function:

Cn =
n∑

t=0

t−1∑
k=0

t−1−k∏
j=0

A(tj)A(tj)
T (3.38)
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The resulting correlation matrix can be thresholded and analysed as a weighted network.
The description of the system with a transformation matrix makes it possible to include other
influences beyond advection and diffusion, which is a step towards a more realistic model. The
goal is to construct networks from different transformation matrices and find network mea-
sures, that can distinguish between them. In subsequent sections three different cases will be
introduced.

Secluded regions

In the first variation, a part of the region is disconnected from the rest. This can be useful for
modelling regions with large differences in altitude, or separation by a geographical barrier, that
does not influence the atmospheric velocity field.
For this, the system is divided into regions and all components of A, that connect a node from
one region to a node from another region are multiplied by small factor.
The new transformation matrix is used to compute a correlation matrix according to Eq. 3.35
and analyse it as a network.

External heating

Another form of a common driver is a region, that is affected differently by the decay of the
signal of the last step. It could be a region with a higher heat capacity, such that the ground
reheats the air. This is realized by adding a heat term to the diagonal elements of A, that are
part of the affected region:

A → A + H, (3.39)

where H is a diagonal matrix, with hi,i > 0 in regions, that are heated externally and hi,j = 0
otherwise.
The network is constructed from the modified A using Eq. 3.35.

Interacting flows

To model temperature exchange between two separate velocity fields, i.e. ocean flows and atmo-
spheric flows, the following coupled recursive equations are introduced:

Ta(t + 1) = AaTa(t) + Ba Tb(t) + εa(t)

Tb(t + 1) = AbTb(t) + Bb Ta(t) + εb(t)

(3.40)

Here Ta is the primary temperature field, the network is constructed from. Tb is the secondary
temperature field, that interacts with Ta and thereby influences network a. Aa and Ab are the
corresponding transformation matrices, depending on the velocity field in the respective medium
and Ba and Bb are inter-medium diffusion matrices. The effect of Ta on Tb is ignored, because
the impact of a fluctuation to be transported from system a to b and back again, are small. The
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resulting equations are:

Ta(t + 1) = AaTa(t) + Ba Tb(t) + εa(t)

Tb(t + 1) = AbTb(t) + εb(t) (3.41)

Solving Eq. 3.41, the following expression for the temperature evolution is found:

Ta(t) = At
aTa(0) +

t−1∑
k=0

At−1−k
a (εa(k) + Ba(Ak

aTb(0) +
k−1∑
k′=0

Ak−1−k′
b εb(k

′))). (3.42)

The correlation matrix for flow A is:

Cn =
n∑

t=0

t−1∑
k=0

((AaAT
a )

t−k + BaBa
T

k−1∑
k′=0

(AbAT
b )

k−k′
) (3.43)

In principle the inter-medium interaction matrix Ba could have any shape but for simplicity I
assume that the layers only exchange temperature with the same node in the other medium and
do so with a fixed rate c, i.e. Ba = cI.

Constructing the network

In principle, the resulting correlation matrix can directly be interpreted as a weighted network,
where the link weight between x1 and x2 is equal to their correlation Cn(x1, x2). However, as
most correlations are very small, the introduction of a threshold, below which the correlations are
set to zero, does not significantly change the result, while largely simplifying the computations.
Unweighted networks can be constructed by setting all non-zero weights to one. This however
results in a larger dependence of the network on the threshold.
In the following I show the results for weighted and unweighted networks. All networks were
computed with a threshold keeping the strongest ten percent of links, but the resulting patterns
in the network measures have been found to be robust with respect to changes in the threshold.

3.3.2 Distinguishing different cases by network measures

Networks are constructed from the four cases using Eq. 3.35. While the other influences (secluded
region, external heating and interaction with a secondary flow field) change, the velocity field is
always kept the same for comparability. It is defined by the stream function Φ(x, y) as:

�v(�x) = u

(−∂Φ
∂y

∂Φ
∂x

)
. (3.44)
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where u is the velocity parameter and Φ(x, y) is defined as:

Φ(x, y) = 1 − tan((y − sin(2(x)))
cos(arctan(cos(2(x))))) (3.45)

This kind of flow is called meandering flow, together with the other influences it is depicted in
Fig. 3.17. It constitutes a simple but non-trivial physical example, and can be found approxi-

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40
0 10 20 30 40

0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

a)                                       b)

c)                                       d)

Figure 3.17: Schematic visualization of the underlying system with a) plain flow, b) secluded
region, c) external heating, d) interacting flows. Figure from [30].

mately in ocean currents such as the gulf stream.
Here, the parameters for the velocity u = 0.2 and a diffusion constant of κ = 0.01 were used. For
this flow field, networks are computed with all of the variations mentioned above. The effects of
secluded regions, external heating and interacting flows are discussed and compared to networks
generated from the velocity field only. The grid is regular and has 40 × 40 nodes.
For reasons of computational complexity, the sums are restricted to n = 20. In the following
sections the resulting network measures are presented in their weighted form, applied to the
meandering flow: plain, with a secluded region, with external heating and with interaction with
a secondary flow.
To analyse the networks and distinguish between the different cases, I suggest the use of
three network measures: Node degree or node strength, community detection and edge angle
anisotropy [23].
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3 Construction of networks from flows

Degree or node strength

Fig. 3.18 shows the degree and node strengths (Subsec. 2.3.1) of the networks of the four cases. In
agreement with previous studies [28], in the case of the meandering flow without other influences
(Fig. 3.18 a and e), reaches the node strength in regions with a high absolute velocity. The flow

a)                                             b) c)                                             d)

e)                                             f) g)                                             h)

Figure 3.18: Node degree of the unweighted network resulting from a) plain flow, b) secluded
region, c) external heating, d) interacting flows.
Node strength of the weighted network resulting from e) plain flow, f) secluded
region, g) external heating, h) interacting flows. Figure from [30] and supplementary
material.

transports random temperature fluctuations, thus strengthening the correlation between two
nodes, that are connected by a fast flow. While this can be seen both in the unweighted (top
row) and weighted (bottom row) network measure, the weighted version (e) provides a far clearer
picture, with less border effects and almost no dependence on the threshold.
In the case of a secluded region (see Fig. 3.18 b and f), this effect can still be observed. In the
area, where links were cut, the degree or node strength is lowered. The restriction of the region
also lowered the node strengths in the fast flowing regions around the cutting line. So the node
strength can be lowered by restricting the size of the influencing region. In the unweighted case
(b) this effect is far more prominent.
If there is an externally heated region however, this also leads to an increase in the node strength,
as can be seen in Fig. 3.18 g, in the unweighted case (c), however, this effect can not be seen at
this threshold. Another mechanism for an increased node strength is the indirect transport of
fluctuations via an interaction with a secondary velocity field in the interacting case in Fig. 3.18
h. Again, the unweighted network measure merely shows a mild distortion of the pure flow,
instead of resolving the secondary flow.
As we found multiple possible causes for high node strengths, degree and node strength alone are
insufficient to distinguish uniquely between the different cases. Furthermore, this shows that,
the unweighted degree does not resolve many of the phenomena, going beyond the plain flow.
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3.3 Discrete method

Edge angle anisotropy

The anisotropy (Subsec. 2.3.4) is a measure of how aligned the links of a node are. As such, it

a)                                             b) c)                                             d)

e)                                             f) g)                                             h)

Figure 3.19: Local anisotropy of the network resulting from a) plain flow, b) secluded region, c)
external heating, d) interacting flows.
Weighted local anisotropy of the weighted network resulting from e) plain flow, f)
secluded region, g) external heating, h) interacting flows. Figure from [30] and
supplementary material.

should allow to distinguish between a mechanism, that creates links with a preferred direction
(i.e. advection), and a mechanism, that creates links in all directions with equal probability (i.e
external heating).
The anisotropy for all cases is displayed in Fig. 3.19. We observe, that the weighted anisotropy
in the network of the meandering flow (Fig. 3.19 e) is highest, at the sides of the fastest straight
flowing areas and lowest, at the turning points. In the middle of the straight flow links go to
both sides, whereas at the sides of it, links only go to the middle, leading to smaller differences
in angles. The turning points have links to two of the straight stretches, leading to large angles
between them. At first sight, the unweighted anisotropy (Fig. 3.19 a) appears to trace the flow,
just like the degree, but upon closer examination, it is actually out of phase with the degree.
This is due to the fact, that the anisotropy is lowest at the turning points, that lie within the
flow. The pattern in the unweighted anisotropy can again be seen as a blurred version of the
weighted pattern.
This pattern persists in the other cases, but is distorted. In the case of the secluded region
(Fig. 3.19 f) the anisotropy is lowered where the cut goes against the flow direction and increased
where the cut goes with the general flow direction. In the first case the links that defined a
direction were cut, where in the latter case all those links are cut, that destroyed the alignment.
In the unweighted version in (Fig. 3.19 b), none of these structures are clearly visible.
In the case of external heating (Fig. 3.19 g) we find the same pattern as in the meandering flow,
with some distortion at the borders of the heated region. Together with the node strength, this
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3 Construction of networks from flows

can help to distinguish between a heated and a fast flowing region. If the node strength is high
and the anisotropy follows its shape, being large in straight and low in bent regions, the network
structure can best be explained by a flow. If the node strength is high and the anisotropy is
largely unaffected, this hints towards external heating in the high node strength region.
Interaction with a straight flow perpendicular to the average direction of the meandering flow
as depicted in Fig. 3.19 h, leads to a blurring of the patterns of the meandering flow and adds
high anisotropy along the secondary flow. In the overlapping region however, the anisotropy
is lowered, which distinguishes separate layers of interacting flows from a simply additive flow
pattern. In the unweighted version, Fig. 3.19 c and d are distorted patterns from the plain flow
and show no additional information.

Community detection

The communities (Subsec. 2.3.3) are shown in Fig. 3.20. It appears that networks of the mean-

a)                                      b)

Cluster #2
Cluster #1

Cluster #2

c)                                      d)

Cluster #1

Cluster #1

Cluster #1

Cluster #2

Cluster #3

Figure 3.20: Communities of the network resulting from a) plain flow, b) secluded region, c)
external heating, d) interacting flows. Figure from [30].

dering flow do not form independent clusters (Fig. 3.20a), adding external heating (Fig. 3.20c)
or interaction with perpendicular flow (Fig. 3.20d) does not change this. Separating a region
from the rest like in Fig. 3.20b leads to this region forming a separate cluster.
Therefore a region, that forms its own community can be identified as a secluded region if
the structure also appears in the node strength (as a line of lowered node strength) and the
anisotropy (depending on the relative direction of the edge of the separate cluster to the flow
direction).

3.3.3 Time dependent network construction
The time dependent network construction is done using a shifting meandering flow. In 10 time
steps the flow is shifted over one whole period. Examples of the time slices are depicted in
Fig. 3.21. The networks are constructed according to Eq. 3.38 and node strength and weighted
betweenness are computed for it and shown in Fig. 3.22d and 3.22e. Looking only at the network
of the time dependent velocity field gives a similar result as one would expect from the average
velocity field (Fig. 3.22f), in which the amplitude of the meandering structure is reduced signif-
icantly compared to the time slices (Fig. 3.21). The node strength is highest where the average
velocity field is fastest and the betweenness reaches its maxima in the transition region between
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Figure 3.21: Velocity field for a) The first, b) The fifth and c) The 9th time step.

fast and slow areas of the average flow, showing an outlining pattern.
As the time dependence is not visible in the network measures, it might be necessary to analyse
single time slice networks (Fig. 3.22a-c). If a trend is visible between the time slice networks and
between the single slice networks and the time dependent one, this indicates a time dependent
flow. In networks from climate data, this is hard to accomplish. The closest to realizing this is
a sliding window analysis.
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Figure 3.22: a) Node strength of time slice 0, b) Weighted betweenness of time slice 0, c) Velocity
field of time slice 0, d) Node strength of the whole period, e) Weighted betweenness
of the whole period, f) Average velocity field.
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3 Construction of networks from flows

3.3.4 Summary
A new method to construct networks from flows was introduced, that also allows to modify the
set-up from purely relying on the velocity field, to also including secluded regions and external
heating, as well as interacting flows.
Example networks were constructed for all these cases and network measures were found to
distinguish between different effects.
A purely advection driven system is characterized by high node strengths in combination with
high anisotropy, where the flow velocity is high and straight and high node strength and low
anisotropy, where the region of high velocity has a corner.
An externally heated region shows a high node strength but no changes in the anisotropy, apart
from border effects.
A secluded region can be characterized by a separate community. Additionally the typical
distortions in the anisotropy with the characteristically high values for borders along the flow
direction and low values for borders against flow direction can be used to verify that result.
The node strength in interacting flows adds up while the anisotropy can cancel out if the flows
go in different directions.
Furthermore, it was found, that the unweighted measures suffer far more from problems, such
as threshold selection and border effects and provide far less clear pictures. I therefore recom-
mend the use of weighted networks where possible, as it is not that much more computationally
expensive and provides clearer and more robust statements.
As a next step, this method could be generalized to more realistic models and used to establish
a set of tools for the reconstruction of a physical system from a correlation network. Using
techniques presented in [21], it would be interesting to further investigate the inverse problem
of reconstructing an underlying physical system from correlation data.
The approach presented in this work could also be applied to other systems, that can be de-
scribed by an evolution equation.

40



4 Spatial issues of flow networks

If you point your questions
The fog will surely chew you up
But if you want the answers
You better get ready for the fire

System of a down, Suggestions

In this chapter the methods, developed in the previous section, are used to analyse and in-
terpret some aspects of climate networks. First a simplified model of the monsoon region is
introduced, that is based on the continuous method. Then the influence of the spatial distribu-
tions of the nodes on the network topology is analysed, using common network measures. And
finally an evolution detection measure is applied to track the changes in the network due to
variation of a flow parameter.
Sect. 4.1 is based on [39]. Sect. 4.2 follows my publication [29] closely and Sect. 4.3 is relies on
[48].

4.1 Stream Transported Auto Regressive Temperature (START)
model

In palaeoclimate data analysis, past climate conditions are reconstructed from proxy records.
These can be be found i.e. in ice cores, tree ring data or stalagmites. One of the challenges of the
use of such data is their spatial heterogeneity. Here, a semi-empirical model is introduced, that
was developed to illuminate the impact of this inhomogeneity on the Asian monsoon system,
which is subject to a time dependent forcing.
Observations and analysis of palaeoclimate data [38] have shown that the region in question is
influenced by the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM).
The idea behind this model is similar to the methods presented in Chap. 3: The system is
modelled as a velocity field, in which temperature fluctuations are transported via advection
and diffusion. In contrast to the previous methods however, palaeoclimate data is approximated
at the level of the time series and not only the network.
The flow system consists of three narrow flows with Gaussian envelopes (see Fig. 4.1). Two of
the flows come from the ocean in the south and go northwards at 70° E (representing the ISM
branch) and 115° E (representing the EASM branch). The other one models the longitudinal
influence of the ISM, and goes from west to east at 30° N. In contrast to the methods in Chap. 3,
however, there are now four main sources of variability: One at the centre of each of the flows
and a local noise term.
Over the centuries the respective strengths of the different influences (X, Y and Z) have varied
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4 Spatial issues of flow networks

X

Y Z

Figure 4.1: The monsoon system is modelled as a system of three flows, each with a fluctuation
source at its origin. The black dots mark the locations of the measurements.

significantly. In the model, this is described by the forcing, which controls the relative strength
of the three branches.
At each point in the region, the time series is computed as the sum of the random fluctuations
generated by each of the four sources, scaled with a factor, that quantifies the transport from
that source to the point:

Ri = fX(i, F )RX + fY (i, F )RY + fZ(i, F )RZ + Rnoise. (4.1)

Where RX is the signal at point X, RY is the signal of the vertical Indian source, RZ is the
signal of the vertical East Asian source, RZ is the signal of the Chinese source, Rnoise is the
noise and fX(i, F ), fY (i, F ) and fZ(i, F ) are the scale factors at point i and forcing F . The
forcing controls the respective strengths of the different velocity fields.
To compute these factors the ADE (3.1) was solved approximately, starting from the source’s
position. fX(i, F ) is defined as the maximum height of the temperature front from the vertical
Indian source, when it reaches point i.
The initial condition used for the solution of the ADE is a Gaussian shaped temperature front
of unit height (in longitudinal- or lateral-direction, depending on the source). It is of the form:

e− (x−x0)
2

s . (4.2)

Where s is the width and x0 the position of the temperature fronts. One front starts at the
western border of the region and the other starts at the southern border. Both fronts are
transported by the three flows and deformed in the process. The interaction with the flow is of
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4.1 Stream Transported Auto Regressive Temperature (START) model

the form:
T (x, t) =

√
s

s + 4χt
e

− (x−x0−vt)2
s+4χt . (4.3)

Snapshots of the temperature profile in the flow are given in Fig. 4.2. Eq. 4.3 describes how
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Figure 4.2: The temperature profile for the computation of the scale factors, at t=1, t=20 and
t=80 in the chosen region.

the temperature front starting from x0 develops over time. At t = 0, it is near zero in most
positions, rises to a maximum and decreases again.
The scale factors fX(i, F ), fY (i, F ) and fZ(i, F ) are defined as the as the maximum tempera-
ture in location i, caused by the front from X, Y and Z.
Artificial time series RX , RY , RZ and Rnoise are generated at each point i and Eq. 4.1 is used
to combine those time series into a local time series. Using common similarity measures, such
as Pearson correlation and mutual information, these local time series are used to construct a
network.
This method was applied to the monsoon region. The forcing was varied from F = −1, resulting
in only the south-north streams being present (“ISM off”, only Y and Z in Fig. 4.1), over F = 0,
leading to an equal coexistence of longitudinal and latitudinal branches (“Coexistence”, X, Y
and Z coexist), to F = 1, featuring only the longitudinal branch (“ISM on”, only X). The
results for this are shown in Fig. 4.3.
Each of the origins of the red arrows in Fig. 4.3a)-c) is a source of variability. For each source
a random time series is generated and at each point these three sources, together with a local
source are combined according to Eq. 4.7, to generate a local time series. Several different sim-
ilarity measures (cross correlation, mutual information and event synchronization) are used to
determine the amount of similarity between time series in a robust way. The threshold is set at
the 20 % strongest links. This is done for nodes arranged on a grid (Fig. 4.3d)-f)) and for nodes
at their original measuring locations (Fig. 4.3g)-i)).
As one might expect, in the “ISM off”-case, depicted in a), both in the grid and in the data
locations (Fig. 4.3d) and 4.3g)), the network is almost disconnected into two large clusters, one
for the latitudinal ISM branch and one for the EASM branch. The addition of the longitudinal
ISM branch extends the ISM cluster towards the east, but the clusters remain separate. If the
latitudinal ISM and EASM branch are switched off, the EASM cluster disappears and the ISM
cluster is extended even further east, connecting the formerly distinct ISM and EASM regions.
These features are robust under changes in the spatial node distribution and can be seen both,
in the gridded version and with the nodes at the data locations.
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i) Data locations:ISM onh) Data locations: Coexistenceg) Data locations: ISM o
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Figure 4.3: The three branches at 70° E, 115° E and 30° N. model different influences in the
monsoon system. The forcing term varies their respective strength. a)-c) Illustrate
the effect of the forcing, d)-f) Show the resulting networks, when the nodes are
arranged on a grid, g)-i) Show the resulting networks, when the node locations are
the data locations. Figure from [39].
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It is found, that the results from the START model are consistent with the results from palaeo-
climate records found in [38]. There networks were constructed and analysed for the medieval
warm period (700 to 1100 years BP), the little ice age (100 to 400 years BP) and the recent
warm period (-30 to 100 years BP). The results suggested, that, during the little ice age, ISM
and EASM region were less connected than during the warm periods. In START this can be
modelled as different values for the forcing.
START has thereby been shown to reproduce features present in the palaeoclimate data, thereby
strengthening the hypothesis, that the cooler climate during the little ice age may have lead to
a weaker influence of the ISM on the EASM region. Furthermore, the model suggests, that the
main features of the network topology are robust against the spatial inhomogeneity.

4.2 The influence of node distribution

The construction of climate networks from time series data relies on locally measured or ex-
trapolated observations. As reanalysis has its own pitfalls [49, 27] or regularly sampled data
may not be available at all, it can be desirable to construct the networks directly from spatially
irregular measurements. Since the method, introduced in Sect. 3.2 allows free choice of node
locations, it provides a good testing ground for the influence of the spatial distribution of nodes.
In this section we want to study how network topology, velocity field and node distribution are
intertwined.
We construct networks for different node distributions and analyse their degree, betweenness
and link length distribution to compare the influence of spatial sampling on the topology of the
resulting network.
Flow networks for a diagonal flow pattern, are constructed for the node distributions shown
in row A of Fig. 4.4, on a regular 20 × 20 grid, a jittered 20 × 20 grid and for two versions of
Gaussian clustering. The jittered sampling pattern was generated by uniformly drawing a point
from each grid cell. For the clustered sampling, two Gaussian distributions of 100 nodes each,
were generated around two central points on opposite sides of the flow (Ac) and along the flow
(Ad).
Degree: The degree (shown in row B in Fig. 4.4) takes its maximum in the middle stripe, where
the flow velocity is highest. It is not very sensitive to the spatial sampling and all four plots
clearly show the expected pattern. Clustered sampling can lead to a skewed shape of the stripe
(Bc), or underestimate its width if the outer region is poorly sampled (Bd).
Betweenness: The betweenness is shown in row C in Fig. 4.4. Grid and grid plus jitter show
similar patterns: the betweenness is highest in the transition zone between the fast and slow
flowing areas. This structure is barely visible in the clustered sampling plots. In the clusters on
opposite sides, two stripes are visible, but the lower one of them is located in the centre of the
flow, rather than at its side, in the middle between the two clusters.
This indicates that rather than showing a transition zone of the flow, it emphasizes a region,
that is poorly sampled but central in the flow. In the plot of the two clusters in the flow, the
outer regions are poorly sampled, therefore the transition is not visible.
Voronoi tessellation analysis: A Voronoi tessellation assigns a cell to each node, such that

every point in the cell is closer to that node than to any other. If the nodes are uniformly
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Figure 4.4: A diagonal flow is sampled with Aa) a grid, Ab) a jittered grid, Ac) two clusters
on opposite sides of the flow, Ad) two clusters inside the flow. The networks are
constructed with a link density of 40 percent. Row B) shows the degree, row C) the
betweenness and row D) the link length distribution. Figure from [29].

distributed in space the resulting cell sizes will have a clear peak around Asam/Nnod, where
Asam is the size of the total sampled area and Nnod is the number of nodes. The differences in
the sampling can be quantified using the area size distributions of their Voronoi tessellations [1]
as shown in Fig. 4.5.
In the grid all tiles are exactly the same size, so the histogram would be one very sharp peak. In
the case of grid with jitter the peak is broadened. The two clustered distributions peak around
much smaller values.
Link length distribution: The link length distribution (see Sect. 2.3.5), shown in row D in
Fig. 4.4 is spiky for the grid and considerably smoother for the jittered node distribution. In
the clustered sampling, the link length distributions show two peaks. The beige line shows the
distance distribution (see Sect. 2.3.5) of pairs of points in a continuous square for comparison.
The regular arrangement of points in the grid leads to an over-representation of some specific
link lengths i.e. multiples of the grid constant, while other node-node distances are excluded
by the node distribution. The distance distribution of pairs of points in a continuous square is
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Figure 4.5: Tile size distribution for jittered and clustered sampling. The jittered sampling is
peaked around the grid cell size, clustered sampling results in many small and few
very large tiles. Note that grid and jittered grid have twice as many nodes as the
clustered sampling. Figure from [29].

the continuous analogue to the link length distribution of the fully connected graph of nodes in
the discretized network description. Since climate is a continuous phenomenon, an appropriate
discretisation should well approximate the distance distribution. This is true for the link length
distribution of the fully connected nodes of the jittered sampling. For the regular grid, it is more
spiky but varies around the same curve, while the clustered node sampling leads to a biased link
length distribution with one maximum for links within each cluster and another maximum of
links connecting the clusters.
Compared to the link length distributions of the fully connected networks, the actual flow net-
works only express a subset of links, that is dominated by short ranged links. In the clustered
case c) this eliminates the inter-cluster peak, because the clusters are not connected by a flow.
In the clustered case d) however, this second peak persists, suggesting that links of length 30
are preferred, even though this effect is entirely a sampling effect rather than a flow property.

4.2.1 Spatial sampling in networks from the START-model

Using the START (Stream Transported Auto Regressive Temperature) model [39] described in
Sect. 4.1 gridded, jittered and clustered networks are constructed to compare their topology.
It is used to simulate time series at each node and construct the network by computing the
correlations for each pair. The 20% strongest correlations are used to set the links in the
network. The START-model assumes three sources, RX , RY and RZ of random noise, that is
transported by three independent flows. The ADE is used to compute variance factors fX(p, F ),
that approximate the influence of source X on position p at forcing F . At each point, the signal
is computed as the sum of the contributions from the three sources, scaled with the corresponding
variance factor. A local noise contribution is also added:

Ri = fX(i, F )RX + fY (i, F )RY + fZ(i, F )RZ + Rnoise. (4.4)
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Here, two of the factors were set to zero to model a diagonal flow like the one used above.
Despite also being constructed according to advection and diffusion, START is significantly dif-
ferent from the other flow networks. Firstly, instead of averaging over all possible initial peak
positions, there is a particular source location. This results in a decay of signal strength with
distance from the source. Fig. 4.7 shows the node degrees for the resulting networks, which drop
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Figure 4.6: Right: Tile size distribution for the three node distributions in START. Left: Link
length distribution for the three node distributions in START. Figure from [29].

off with distance to the source, unlike the flow networks, where the degree only depended on

Figure 4.7: Degree of the network of the flow generated with START for grid (a), grid with jitter
(b) and two clusters (c). Figure from [29].

the velocity. While the jittered node distribution shows the same structure as the grid, using
clustered node locations again leads to a distortion of the pattern.
Due to the addition of local random fluctuations, that are themselves not transported by advec-
tion and diffusion, the degree in the stagnant and outer regions goes to zero.
The Link length distribution is similar to the link length distributions for the flow networks, see
Fig. 4.5.
The betweenness (results not shown) shows the same tongue like structure as the degree. This
can be explained with the random fluctuations reducing the dynamic areas to only one, which
is the region inside the flow, while everything else is essentially unconnected.
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Figure 4.8: Tile size distribution for the jittered tile size distribution of the reanalysis data
together with the grid line. Figure from [29].

4.2.2 Spatial sampling effects in data from the Asian monsoon domain

The data analysis was done on NCEP/NCAR [22, 32] reanalysis daily surface temperature
anomalies for the summer monsoon months (June to September) of the years 1971-2010 with a
resolution of 2.5 × 2.5 degrees, which results in a grid constant a = 280 km. The network was
constructed from the anomaly time series using Pearson correlation. The significance threshold
was set at the 5 percent strongest correlations. Degree and betweenness are analysed as shown in
Fig. 4.9. The geographical coordinates of each node are marked by a point at the centre of each
cell. To investigate sampling effects, a jitter was added in longitude and latitude at each grid
point with a uniformly random number between ±a/2. The tile size distributions are shown in
Fig. 4.8. The new time series are constructed as Gaussian weighted averages of all of the original
reanalysis time series on the grid. The weights depend on the euclidean distance between the
grid points and the new location.
Fig. 4.9 shows a) the annual average of the surface wind speeds, where the arrow displays the
direction and the colour shows the absolute value, that is computed by averaging over longi-
tudinal and latitudinal components separately and taking the absolute value of the resulting
vectors. Subfigure b) shows the link length distribution. The degree is presented for grid and
jittered sampling in the second row (c,d). The bottom row shows the betweenness for grid and
jittered sampling (e,f).
The node degree (Fig. 4.9c and d) is highest over the ocean and lowest over the Indian sub-
continent. This coincides with the absolute wind velocities, which are highest over the ocean,
Bangladesh and the Himalayas. This supports the theory, that connections in the climate net-
work are often caused by an atmospheric or ocean flow between the node locations. On a daily
scale, temperature fluctuations are transported along the flow, leading to a high correlation of
nodes connected by a high velocity. Despite the high wind speeds over the Himalayas, however,
the degrees there are not elevated. This may be because the plateau is relatively secluded from
the rest of the network due to its high altitude. Consequently, even if the link density inside the
secluded area would be very high, the degree would be low, as connections to other regions are
less likely.
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Figure 4.9: The correlation network of temperature data from NCEP/NCAR on a grid and a
jittered grid. a) absolute mean wind velocity, b) link length distributions, c) degree
of the grid network, d) degree of the jittered network, e) betweenness of the grid
network, f) betweenness of the jittered network. Figure from [29].

We find that the effect of spatial sampling on the degree patterns is small and the overall
patterns are not affected by the node distribution. This coincides well with our findings from
the theoretical approaches in the previous subsections, as the jittered node distribution is still
homogeneous as shown in the Voronoi tile size distribution in Figure 4.8.
The shortest path betweenness (e,f) is more sensitive to the spatial distribution of the nodes
and the spatial resolution. Therefore, few clear patterns can be seen, most regions have a
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betweenness between 2.5 and 3.5. The jittered network shows higher boundary effects in the
west. There are three regions with a particularly low betweenness in both the gridded and the
jittered version of the network at (80-85 E, 5-10 N), (100 E, 0-5 N) and (110 E, 10-15 N), these
coincide with small regions with a low degree.

4.2.3 Summary

Different node distributions were examined in Flow networks, the START model and surface
temperature correlation networks. The degree is robust, while the betweenness reacts more
sensitively to the spatial sampling. All examples given, are related to climate, yet the results
can be generalized to all networks coming from discretisation of a continuous system.
For a smooth link length distribution the node to node separation has to cover all possible
distances. A grid does not fulfil that as all distances are of the form: d(x1, x2) = a

√
n2 + m2,

where a is the grid constant and n and m are integer numbers. Distances, that can not be
represented in this way, are not present in a grid.
While the effects of the area sizes themselves are discussed in detail in Heitzig et al. [18] and can
be removed using their proposed consistently weighted network measures, this study shows that
the problem goes further, when the underlying physical system is taken into account. While
the node size distribution of the two clustered sampling versions in the flow network approach,
is very similar, their relative position to the underlying flow is not, resulting in very different
distorting effects on the network structure.
In future work it might be interesting to compare different jitter realizations quantitatively, for
example using the common component evolution function (CCEF) as introduced in [48].
So in summary, it was found that, as long as the node distribution in space is sufficiently
homogeneous, the exact spatial sampling chosen has little impact on the topology of the network
in all cases studied. Only in cases of significantly inhomogeneous sampling, distortion and
misleading structures arose. It is therefore important to discuss the sampling and its impact
when analysing spatially sampled data. As a simple test of the spatial sampling the Voronoi size
distribution can be employed. In a homogeneous sampling this will have a clear peak around
Asam/Nnod, where Asam is the size of the total sampled area and Nnod is the number of nodes.
If the peak is shifted or very spread out, that suggests poor spatial sampling.

4.3 Common component analysis

Since the methods described in Chap. 3 provide a means of constructing networks with controlled
parameters, it is now possible to evaluate the evolution of flow networks with the parameters of
the underlying flow.
In climate, there are processes like the daily weather, from which climate networks can be in-
ferred by evaluating correlations. But there are also long-term trends and fluctuations on much
larger time scales, that could be interesting phenomena. If the correlations are evaluated on
intermediate time scales, by either segmenting the original data into smaller portions or using a
sliding window approach, where the segments can overlap, multiple networks can be generated
from the data. It is then interesting to compare these networks and examine their differences
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systematically. One method for this was presented in [2], where the correlation between weighted
adjacency matrices was computed.
Here we want to generalize a related but different measure, which was introduced in [48]:
The common component function (CCF). The common component of T unweighted networks
[N1, ..., NT ] of the same number of nodes, is the network of those nodes and only the links, that
occur in all T networks. It is defined as the sum of the product of each entry of all T adjacency
matrices [A1

l,m, ..., AT
l,m]:

CCF (N1, ..., NT ) =
∑
l,m

A1
l,mA2

l,m...AT
l,m (4.5)

For T = 2 this is identical to the measure in [2], and for unweighted matrices it is also identical
to the definition in [48], but immediately generalizes to weighted networks.
The common component evolution function (CCEF) tracks the overlap of two networks with
a certain distance in the ordering. The CCEF is defined for a linearly ordered set of T n × n
networks [N1, ..., NT ], that can be described by their adjacency matrices [A1

l,m, ..., AT
l,m]. Two

networks Ni and Nj in this set have a distance or lag δ in this order if |i − j| = δ. Then, the ratio
of the number of common links of two networks with the distance δ and the average number of
links in a network, is the CCEF (δ).

CCEF (δ) =
1

T −δ

∑T −δ
i=1
∑

l,m Ai
l,mAi+δ

l,m
1
T

∑T
i=1
∑

l,m(Ai
l,m)2 (4.6)

By definition, CCEF (0) = 1 for all sets of networks, and CCEF (δ) can only take values between
zero and one. For an artificially linearly ordered set of Erdős-Réyni-Graphs (ER-Graphs) with
a fixed number of n nodes and a fixed, constant connection probability p, The CCEF can be
computed analytically.
As the networks are completely random, the size of the common component should not depend

0 20 40 60 80 100
lag

0.2

0.4

0.6

0.8

1.0
CCEF

p=0.5

p=0.3

p=0.1

Figure 4.10: CCEF of a set of 100 linearly ordered ER-networks of 100 nodes for linking proba-
bilities p = 0.1, p = 0.3 and p = 0.5.

on the lag, but be a function that is 1 for δ = 0 and constant otherwise. The total number of
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possible links in such a network is n(n − 1)/2, at a linking probability p, the expectation value
for the number of realized links is pn(n − 1)/2. For the numerator in Eq. 4.6 we need to find the
expectation value of the number of links present in two networks. As the probability of each of
the edges in one network to also appear in the other network is p, the total number of common
links is p2n(n − 1)/2, which with the normalization leads to:

CCEF (δ) =

{
1 : δ = 0
p : δ > 0 (4.7)

In Fig. 4.10, the theoretical prediction is compared to a set of 100 randomly generated networks.

The evolution of a flow network can be analysed for the gradual change of any flow param-
eter using the CCEF. The set of flows, whose networks will be considered here is a set of ten
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Figure 4.11: The diagonal flow changes from width parameter 200 (a) to width parameter 2000
(b) in ten steps of 200. Figure from [48].

diagonal flows of increasing widths given by the following velocity function:

�v(x, y) =

⎛
⎜⎝ e

−(y−0.5x)2
c

0.5e
−(y−0.5x)2

c

⎞
⎟⎠ . (4.8)

The parameter c for the flow-width varies from 200 to 2000 in 10 steps, thus gradually changing
the flow-network. Node position and node number are kept constant. For each value of c,
correlation matrices C1, ..., C10 are obtained according to the method presented in Sect. 3.2. The
resulting matrices are thresholded to obtain unweighted networks. Using Eq. 4.6, the CCEF is
computed and shown in Fig. 4.12.
As expected, the resulting CCEF, shown in Fig. 4.12 decreases monotonously with the index
lag, indicating that there is a systematic evolution happening in the system.
Finally, the CCEF was also computed for climate networks of 1971-2010 in [48], using daily
NCEP/NCAR reanalysis temperature anomaly data [34, 22] for the Asian monsoon domain.
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Figure 4.12: CCEF of ten networks of a widening diagonal flow for a threshold of 0.2. Here the
CCEF depends on the lag δ.

The area between 2.5 °S to 42.5 °N and 57.5 °E to 122.5 °E was sampled with a spatial resolution
of 2.5 °, resulting in time series for 468 nodes. Pearson correlation was used in windows of full
years from January till December and the link density was chosen to be 5%.
At first sight, the resulting CCEF shows the same overall structure as the CCEF of random
networks: A constant level of overlap for all lags except δ = 0. But the levels (see Fig. 4.13)

Figure 4.13: CCEF Here the CCEF depends on the lag δ. Figure from [48].

are significantly higher than those of random networks of the same link density. This suggests
a persistent core network with fluctuations on top of it. The slight decline between 25 and 30
years time lag is statistically not significant, but suggests that it might be interesting to look at
longer time spans.
The CCEF has been introduced as a tool for the analysis of linearly ordered networks, or the
evolution of networks with a parameter. It was applied to three distinct cases, namely random
networks, showing an overlap of p, independently of the lag, flow networks of a widening flow,
displaying a monotonous decline with the parameter distance and climate networks from data,
showing a persistent core with additional fluctuations. The method thereby allows the distinction
between deterministic and random behaviour and can be used to find periodicities. The definition
of the CCF in Eq. 4.5 furthermore allows the computation of the persistent core by evaluating
the total overlap between all networks.

54



5 Summary and outlook

I seldom end up where I wanted to go, but almost
always end up where I need to be.

Douglas Adams

In the previous chapters, two complementary methods were developed for the construction
of networks from a flow system. This helped to get an insight into the physical meaning of
climate networks and their network measures. These methods were then applied to climate and
palaeoclimate questions, as well as to address issues of the spatial distribution of nodes. Here I
will summarize and discuss and the results from the previous chapters and draw my conclusions
from them, as well as point out open ends.

5.1 Network construction from flow systems
In Chap. 3 of this thesis, two complementary methods were established to construct networks
from the ADE, analogously to network construction from time series in climate networks.
The first method allowed the construction of networks of stationary flow systems with a small
gradient using a combination of approximations, analytical calculations and, in the more com-
plex cases, numerical evaluation. Thereby enabling the comparison of climate networks to the
dynamics of advective-diffusive systems, for the first time giving insights into the relationship
between dynamics and topology of such systems.
The second method used a discretisation of the ADE with added white noise. The resulting
stochastic linear recursive equation was solved and the correlation matrix could be computed
analytically, depending only on the variance of the white noise and the transformation matrix.
This method was found to be significantly faster and therefore applicable to larger networks. The
derivation is valid for any linear evolution system with noise and thus, by altering the trans-
formation matrix, one can describe effects, that are not related to the ADE, use temporally
changing transformation matrices or analyse coupled flow systems. It was shown how network
measures can be employed to distinguish between different cases.
So far these methods have only been applied in the context of climate networks, but they could
be applied to any linear evolution equation without much adjustment. The discrete method may
also lead the way to a generalization to linear stochastic differential evolution equations.

5.2 Analysis of spatial issues with networks
In Chap. 4, the methods from the previous chapter were applied to related problems.
Spatio-Temporally AutocoRrelated Time series (START) is a semi-empirical model of the Asian
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summer monsoon region, designed to track the effects of transitions in the velocity field. Unlike
in the methods presented in Chap. 3, random time series are generated at the source locations
and combined according the the ADE. The resulting networks can explain structures seen in
data networks.
To test the influence of spatial sampling, the continuous network construction method was
used to construct networks of the same flow for different node distributions. It was found that
inhomogeneous spatial sampling can lead to distorted or misleading patterns in the network
measures. The Voronoi tile size distribution was found to be a measure for the sampling quality.
Common component analysis was introduced as a method of studying the evolution of networks.
The method was applied to random matrices, matrices generated from flow networks and climate
networks of the Asian summer monsoon.
Despite the simplicity of the model, the above examples showed, that it can shed light on a
number of complex problems, related to the role of spatial proximity in climate networks.

5.3 Conclusion

Coming back to the questions from the introduction, the following answers were found:

• Can we find a simple analytical model system, to produce networks, that are structurally
and conceptually similar to climate networks?
We have implemented such models in Chap. 3 and Chap. 4.1. To evaluate the structural
similarity of the created networks with climate networks, network measures, such as degree,
betweenness and anisotropy were used.

• What can be said about such networks and their relation to differential equations in gen-
eral?
While we are not yet in a position to answer this question in general, multiple ways of
constructing networks from flows were introduced and while the inverse problem is hard,
some publications like [21] suggest that the converse might be possible in special cases at
least.

• Can we find a relationship between topological features and properties of the underlying
system?
Topological features can be quantified using network measures. Those can be related to
local parameters of the underlying flow system such as absolute velocity, velocity gradient
and external heating. Examples for this were given in Chap. 3.

• How do construction parameters like spatial node distribution or influences other than the
flow field itself impact network topology?
The spatial distribution of nodes in the flow plays a large role in the network topology, as
analysed in Chap. 4.2, any interpretation of the topology should consider this. To quantify
the impact of flow and construction parameters, the CCEF was introduced in Chap. 4.3
to track topological changes in networks.

56



5.4 Outlook

5.4 Outlook
Answering questions in science is like beheading a Hydra, whenever a question is answered, two
new ones open.

• The two methods from Chap. 3 are a first step on the way to understanding the corre-
spondence between stochastic partial differential equations and complex networks. Using
methods from the analysis of stochastic differential equations it might be possible to ob-
tain a more general expression for the correlation function between solutions at different
locations, which would allow the definition of a network. From there, the relationship
between dynamical properties and topology could be studied in even more generality, re-
vealing for example possible connections between non-linearity and non-locality. Such a
correspondence would be widely applicable in physics and beyond.

• How can the theory of time dependent correlations be used to improve the analysis of
climate networks?

• Can a consistent weighting similar to that presented in [18] be developed based on the
additional information provided by the velocity field, to obtain better results from inho-
mogeneously sampled flow networks?

• The CCEF method can be generalized in various interesting ways, including monitoring
the evolution of node degrees, eigenvector centrality and other network measures and using
a known periodicity to determine the persistent core of all networks at a distance of the
period.

• So far only the evolution of scalar fields has been used for the network construction. It
would be interesting to extend the concepts to vector fields or a multivariate description
of the system.
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