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Pedras no caminho

Posso ter defeitos, viver ansioso e ficar irritado algumas vezes,
Mas não esqueço de que minha vida

É a maior empresa do mundo�
E que posso evitar que ela vá à falência.

Ser feliz é reconhecer que vale a pena viver
Apesar de todos os desafios, incompreensões e períodos de crise.

Ser feliz é deixar de ser vítima dos problemas e
Se tornar um autor da própria história�

É atravessar desertos fora de si, mas ser capaz de encontrar
Um oásis no recôndito da sua alma�

É agradecer a Deus a cada manhã pelo milagre da vida.
Ser feliz é não ter medo dos próprios sentimentos.

É saber falar de si mesmo.
É ter coragem para ouvir um “Não”!

É ter segurança para receber uma crítica,
Mesmo que injusta�
Pedras no caminho?

Guardo todas, um dia vou construir um castelo�

Fernando Pessoa

Stones in the road

I may have flaws, live in anxiety, even get angry sometimes
But I do not forget that my life
Is the biggest company in the world...
And I can avoid its failure.
To be happy is to recognise that life is worth living
Even with all its challenges, misunderstandings, and its periods of crisis.
To be happy is to stop being victim of problems 
And being the author of your own story.
It's to cross deserts outside of yourself
And to find an oasis inside your soul...
It's to thank God each morning for the miracle of life.
To be happy it is not to be afraid of your own emotions.
It is knowing how to speak about yourself.
It is to have courage to listen to a “no”!
To have the strength to receive a criticism
Even when unjust...
Stones in the road?
I save every single one, one day I'll build a castle....

Fernando Pessoa
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Zusammenfassung

Das Ziel der vorliegenden Arbeit war die Identifizierung von 

Geschlechterunterschieden in der Expression von miRNAs im späten Stadium der 

Myokardhypertrophie, sowie der möglichen Rolle von ERβ bei der Regulierung dieser 

Unterschiede. Geschlechterunterschiede bei kardiovaskulären Erkrankungen und speziell 

bei Myokardhypertrophie sind weithin bekannt und publiziert. Die zugrunde liegenden 

Mechanismen sind jedoch nahezu unbekannt. Unsere früheren Studien identifizierten ERβ

als determinierenden Faktor für die beobachteten Geschlechterunterschiede bei 

Druckbelastung mit unterschiedlichen Effekten bei Männchen und Weibchen. Unter anderem 

führte eine Deletion des Rezeptors zur Aufhebung der zuvor beobachteten 

Geschlechterunterschiede auf physiologischer und fibrotischer Ebene, sowie in der 

Genexpression. Es wurde erwartet, dass miRNAs, als Regulatoren der Genexpression, bei 

Hypertrophie ein dimorphes Expressionsmuster aufweisen.

In dieser Studie wurden insgesamt 30 miRNAs mit Geschlechter- und/oder 

Geschlecht*Operation-Interaktionseffekten 9 Wochen nach TAC in WT-Mäusen identifiziert. 

Die gleichen Effekte waren in ERβ-/--Tieren nicht zu beobachten, teilweise aufgrund einer 

höheren Expression dieser miRNAs in ERβ-/--Weibchen als bei den Männchen. Eine 

Unterdrückung der miRNA-Expression durch Östrogen wurde bereits in verschiedenen 

Modellen beschrieben, aber die meisten der bekannten Untersuchungen wurden - aufgrund 

der bedeutenden Rolle des Hormons bei Brustkrebs - in MCF-7-Zellen durchgeführt; einer 

Zelllinie, der endogenes ERβ fehlt. Die vorliegende Studie zeigt eine Hemmung vieler 

miRNAs durch Östrogen und seine Rezeptoren α und β in weiblichen Kardiomyozyten, 

welches somit die in vivo-Ergebnisse bestätigt und die protektive Rolle von Östrogen und 

ERβ im weiblichen Herzen unterstreicht.

Sechs der miRNAs mit Geschlechterunterschieden in WT-, aber nicht in ERβ-/--

Hypertrophie-Modellen wurden als mögliche Fibroseregulatoren identifiziert, da ihnen 

gemeinsame Inhibitoren des ERK-MAPK-Signalwegs als Zielgene vorhergesagt wurden 

(Spry1, Spry2, Rasa1 und Rasa2). Die Expression dieser miRNAs, miR-106a, miR-106b, 

miR-21, miR-24, miR-27a und miR-27b, war in kardialen Fibroblasten durch Östrogen 

geschlechterabhängig reguliert. In weiblichen Fibroblasten hemmte Östrogen ihre 

Expression, während es die Expression in den männlichen Zellen induzierte. Darüber hinaus 

wurden diese miRNAs in weiblichen Fibroblasten in der Regel durch einen oder beide ER-

spezifischen Agonisten gehemmt, während bei den männlichen Fibroblasten die Mehrheit 

dieser miRNAs in Anwesenheit des ERα-spezifischen Agonisten heraufreguliert wurde. 

Dieses interessante Ergebnis konnte in vivo teilweise bestätigt werden, da eine Deletion von 

ERα die Expression dieser miRNAs (mit Ausnahme von miR-106a) bei Männchen jedoch 
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nicht bei Weibchen veränderte. Ein fibrotischer Reiz (AngII) verursachte eine 

Heraufregulation der Expression von miR-106b, miR-24, miR-27a und miR-27b in 

männlichen Fibroblasten, welche durch gleichzeitige Behandlung mit Östrogen kompensiert 

wurde. In weiblichen Fibroblasten induzierte AngII keine der miRNAs, führte jedoch zu einer 

Herabregulation von miR-24, -27a und -27b sowie von miR-106a, -106b, -21 und -24 bei 

gleichzeitiger Behandlung mit Östrogen.

Zusammengefasst bestätigt diese Arbeit die schützende Rolle von Östrogen und ERβ

im weiblichen Herzen. Östrogen und seine Rezeptoren hemmen die Expression vieler 

miRNAs in weiblichen Kardiomyozyten und kardialen Fibroblasten, sowie in vivo. In 

männlichen Herzen und kardialen Fibroblasten scheint ERα der Hauptakteur zu sein, 

welcher insbesondere mögliche Fibrose-bezogene miRNAs reguliert. Die verschiedenen 

Rollen der ERs in weiblichen und männlichen Herzen sind ein bestimmender Faktor der 

beobachteten Geschlechterunterschiede bei Myokardhypertrophie.
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Summary

The present study aimed to identify sex-differently expressed miRNAs in a late stage 

of hypertrophy (9 weeks) and the possible role of ERs in the regulation of these differences. 

Sex differences in cardiovascular diseases and particularly in cardiac hypertrophy are known 

and described. The underlying mechanisms are, however, far from being clear. Our previous 

studies identified ERβ as an important determinant factor of the observed sex differences in 

pressure overload, playing different roles in males and females. Among other effects, the 

deletion of the receptor abolished sex differences observed at physiological, gene 

expression and fibrosis level. MiRNAs, as gene expression regulators, were expected to 

present dimorphic expression in hypertrophy.

This report identified a total of 30 miRNAs with sex and/or sex*surgery interaction 

effect 9 weeks after TAC in WT mice. The same effects were not observed in ERβ-/- animals 

partially due to the higher expression of these miRNAs in ERβ-/- females than in their WT 

counterparts. The repression of miRNA expression by oestrogen was previously described in

several different models, but due to the hormone role in breast cancer, most of what is 

known was described in MCF-7 cells, a cell line that lacks endogenous ERβ. This study 

reveals a repression of a number of miRNAs by estradiol and its receptors α and β in female 

cardiomyocytes, confirming the in vivo results and accentuating the important protective role 

of oestrogen and ERβ in the female heart.

Six of the miRNAs with sex differences in WT but not in ERβ-/- hypertrophy models 

were found to be possible fibrosis regulators by putatively targeting common ERK/MAPK 

pathway inhibitors (Spry1, Spry2, Rasa1 and Rasa2). MiR-106a, miR-106b, miR-21, miR-24, 

miR-27a and miR-27b were subjected to a different regulation by estradiol in cardiac 

fibroblasts in a sex-dependent manner. Estradiol represses their expression in female 

cardiac fibroblasts, whereas in male cells it induces its expression. Moreover, in female 

fibroblasts these miRNAs are generally repressed by one or both ER-specific agonists, while 

in male fibroblasts the majority of these miRNAs are up-regulated in the presence of ERα-

specific agonist. The interesting result was partially confirmed in vivo, where ERα deletion 

affected the expression of these miRNAs in males but not in females, with the exception of 

miR-106a that was not affected. A fibrotic stimulus (AngII) caused an up-regulation of miR-

106b, miR-24, miR-27a and miR-27b in male fibroblasts that was compensated when co-

treated with estradiol. In female fibroblasts AngII did not induce any of the miRNAs, down-

regulating instead miR-24, miR-27a and miR-27b and the co-treatment caused a down-

regulation of miR-106a, miR-106b, miR-21 and miR-24.

In conclusion, this study reinforces the oestrogen and ERβ protective roles in the 

female hearts. Estradiol and ERs repress many miRNAs’ expression in both female 
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cardiomyocytes and cardiac fibroblasts, as well as in vivo. In male hearts and cardiac 

fibroblasts, ERα is apparently the major player, regulating in particular potential fibrosis –

related miRNAs. The different roles of ERs in male and female hearts are a determinant 

factor of the observed sex differences in cardiac hypertrophy.
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1.1. Cardiac hypertrophy

Cardiac hypertrophy can generally be defined as an increase in heart mass as a 

response to a pressure or volume overload. However, the increase in heart mass, mostly 

due to an increase in ventricular weight, can be divided in different types: pathological and 

physiological.

1.1.1. Physiological and pathological hypertrophy

Physiological hypertrophy includes normal postnatal growth, pregnancy-induced 

growth and exercise-induced cardiac hypertrophy. 

This type of hypertrophy is associated with a normal cardiac structure, normal or 

improved cardiac function and in the case of exercise or pregnancy-induced it is reversible.1-

3 The efficient cardiac pump function happens due to the fibrillar collagen network that

provides structural integrity of adjacent myocytes, facilitating myocyte shortening.4 Exercise-

induced hypertrophy is generally considered to be protective and it does not progress to 

heart failure.5

Pathological hypertrophy occurs in response to a pressure or volume overload that can 

occur in hypertension, valvular heart disease, myocardial infarction or ischemia, associated 

with coronary heart disease, or abnormalities/conditions that can lead to cardiomyopathy 

(e.g. inherited genetic mutations, diabetes).5 Pathological hypertrophy, as physiological 

hypertrophy, is associated with an increase of heart size. However, it is also associated to 

myocyte apoptosis, fibrosis and cardiac dysfunction, having an increased risk of heart failure 

and sudden death.6-8 The loss of myocytes, is replaced with excessive collagen (fibrosis), 

mainly type 1 collagen (Col1), and its excessive accumulation stiffens the ventricles. This 

stiffness impairs contraction and relaxation, impairs the electrical coupling of cardiac 

myocytes with extracellular matrix proteins, and reduces capillary density. Fibrosis and 

reduced capillary density increase oxygen diffusion distances, leading to myocardial 

ischemia and contributes to the transition from hypertrophy to failure.4

1.1.2. Ventricular remodelling

Cardiac hypertrophy is associated with a structural remodelling, a concept that arose 

in 1985 from a study of causes and patterns of increased left-ventricular function after 

coronary artery ligation in rats.9

Remodelling implies changes that result in rearrangement of normally existing 

structures. Histopathologically, cardiac remodelling is characterised by a structural 

rearrangement involving cardiomyocyte hypertrophy, cardiac fibroblast proliferation, fibrosis 

and cell death.10
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The different patterns of remodelling vary according to the type of mechanical stress, 

pressure or volume. The classification is based on changes in shape, which is depending on

the initial stimulus. Volume overload (e.g. mitral regurgitation) produces myocyte lengthening 

and leads to an eccentric hypertrophy. Pressure overload (e.g. aortic stenosis) produces a 

growth in myocyte thickness and leads to a concentric hypertrophy. Finally, the post-infarct 

remodelling is a combination of infarct expansion, where the stretched and the dilated 

infarcted tissues increase ventricular volume with a combined pressure and volume overload 

on the non-infracted areas (Figure 1).11

Figure 1. The three major patterns of ventricular remodelling (figure from reference 11).

1.1.3. Cardiac fibroblasts and fibrosis

The structural remodelling of the heart involves a series of cellular responses in both 

cardiomyocytes and non-muscle cells. The heart is composed of cardiac myocytes (muscle 

cells), non-myocytes (fibroblasts, endothelial cells, mast cells, vascular smooth muscle cells) 

and the surrounding extracellular matrix. Muscle cells represent only 30-35% of the 

ventricular cell suspension, while non-muscle cells account for approximately 65-70%.5, 12

As described above, pathological hypertrophy is typically associated with loss of 

myocytes and excessive collagen replacement, known as fibrosis. Cardiac fibroblast 

activation is responsible for the accumulation of type I and III collagens, the major fibrillar 

proteins of the myocardial collagen matrix, accounting for 90% of total collagen.13 The 

alterations in the heart correlate with the collagen matrix remodelling.14 Cardiac fibroblasts 

and extracellular matrix proteins accumulate disproportionately and excessively as a 
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response to a pathological insult, leading to mechanical stiffness. This will contribute to 

diastolic dysfunction and can progress to systolic dysfunction.15

There are two types of fibrosis described, namely reparative fibrosis and reactive 

fibrosis. The first is described as occurring as a reaction to loss of myocardial material, being 

mainly interstitial, and reactive fibrosis in the absence of cell loss as a reaction to changes in 

myocardial load or inflammation, being primarily perivascular. Reactive and reparative 

fibrosis, usually coexist during ventricular remodelling.16 However, whether they truly 

represent different entities or not remains under discussion.13

Fibroblast stimulation is essential for reactive and reparative fibrosis. Several humoral 

factors are believed to be responsible for fibrosis, affecting fibroblast phenotype and function 

(angiotensin II, Ang II; basic fibroblast growth factor, bFGF/FGF-2; transforming growth 

factor-β, TGFβ; catecholamines; insulin growth factor-1, IGF-1).17-21 However Ang II appears 

to be one of the most important factors in regulation of cardiac fibrosis and remodelling, 

inhibiting collagen degradation.22

1.1.4. Transverse aortic constriction as a validated hypertrophy model

Transverse aortic constriction (TAC) is a validated, reproducible and low mortality 

model for hypertrophy study. Described in 199123, it uses microsurgery techniques to 

produce a stable pressure gradient across the aorta, by banding the ascending aortic arch. It 

is characterised by a first phase of compensated hypertrophy followed by a transition to 

heart failure and mimics human pressure overload-induced heart failure in a number of 

aspects.
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1.2. Heart and sex differences

1.2.1. Sex differences in the healthy heart

It has been widely described that hearts of men and women are not similar. Several 

studies compare young hearts, adult heart and the ageing effect.

During infancy and childhood, left ventricle (LV) mass is not significantly different, 

which suggests that the initial number of cardiomyocytes is the same in males and females. 

However, after puberty, when sex-specific hormonal influences affect the body, the LV mass 

shows clear sex-differences, being 15-30% larger in males than in females. This indicates 

that a state of relative cardiac hypertrophy exists in apparently normal adult men.24

Aging leads to an increase in septal and wall thickness in both males and females and 

in LV diameter only in males, resulting in a more pronounced progressive increase of LV in 

males than in females. Moreover, a progressive slowing of relaxation in females and of both 

contraction and relaxation in males is described, although not being related to changes in LV 

mass.25 Aging was also associated with a preservation of ventricular myocardial mass in 

females, in contrast to the 1 g/year of myocardium lost in males.26

Sex differences exist as well in heart function. Young women have better diastolic 

function when compared to men, but both show a decrease with aging. Postmenopausal 

women, however, show a diastolic function similar to age-matched men (Figure 2). 

Finally, male and female hearts differ largely in the presence of sex hormones. Men 

have higher level of testosterone and women of estradiol (E2), the most abundant form of 

oestrogen, but both hormones are present in both sexes. Yet, after menopause, the level of 

E2 in women decreases to levels compared to the existent in men’s heart. Androgen and 

oestrogen receptors are present in both sexes’ hearts as well.27, 28

Figure 2. Summary of sex differences in the heart 

(figure from reference 29)
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1.2.2. Sex differences in the hypertrophic heart

It is well known that women typically develop heart diseases in a later time-point than 

men. Sex differences were also reported in manifestation and transition to heart failure in 

patients with aortic stenosis.30 In similar degrees of stenosis, elderly female patients also 

preserve more frequently the cardiac performance than male.31 Among heart failure patients, 

women tend to develop a more concentric hypertrophy and heart failure with preserved 

systolic function, whereas men show a loss of systolic function.32-35

In rodents, significant sex differences were described in the adaptation of the LV to 

pressure overload, despite a similar degree of hypertrophy and systolic wall stress.36 At 20 

weeks of TAC, male but not female rats, showed an early transition to heart failure, loss of 

concentric remodelling, elevated wall stress and diastolic dysfunction.37

A study from our group showed sex differences in gene expression in an early 

response to pressure overload in mice. Female-specific regulated genes were related to 

mitochondria and metabolism and male-specific related to matrix and biosynthesis.38

In physiological hypertrophy, despite similar skeletal muscle adaptations, hearts of

male rats adapt to physical training by running with improved intrinsic performance, whereas 

hearts of female rats do not.39

Overall, the relationship between sex and hypertrophy is very complex and appears to 

depend on many different factors like age and model/aetiology and stage of hypertrophy.

1.2.3. Oestrogen protective role in the heart

Sex hormones have often been connected to sex differences in cardiovascular 

diseases and the disappearing of sex differences with aging has been correlated with the 

loss of E2 in postmenopausal women. Both oestrogen and androgen receptors are 

expressed in males and female hearts27, 28, 40 supporting a role for oestrogen and

testosterone in cardiac physiology (Figure 2). The majority of the studies concentrate on 

oestrogen, as it is considered to be a cardio-protective agent, whereas testosterone role is 

more as detrimental to heart function.29

In our group, intact human heart tissue was used to show that women have an 

increase of progesterone receptor mRNA expression and protein level in response to E2 

treatment, while men do not. The study is a demonstration that oestrogen acts in the heart in 

a sex-specific manner in humans.41

Although certainly not the only factor influencing them, sex hormones have also been 

continuously under study in rodents and in vitro.

Different studies in rodents have shown the E2 effect in both left and right ventricle 

development, as well as LV hypertrophy (LVH)42-44. Others described abnormal cardiac 
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function and biochemistry resulting from gonadectomy45, that were prevented in males by 

replacement with testosterone and in females by replacement with oestrogen or 

testosterone.46 A recent study showed that the loss of oestrogen signalling in females, but 

not males, impairs cardiac function and sensitizes the heart to pathological stimuli, up-

regulating numerous hypertrophic pathways.47

Cardiac myocytes and fibroblasts, when exposed to E2, are able to respond directly, 

through the induction of known oestrogen-responsive genes like ESR1 (ERα), ESR2 (ERβ), 

PGR and Cx43.40 Oestrogen protective role in hypertrophy was also demonstrated in vitro,

when it inhibited Ang II and endothelin-1 induced hypertrophy in cardiomyocytes. Mean cell 

area and hypertrophic mechanisms were substantially stimulated by the hypertrophic 

peptides and was reduced in E2-treated cells.48, 49

In isolated cardiomyocytes, E2 was shown to have an anti-apoptotic effect in a 

mechanism that involves NF-kB and in primary cardiac fibroblasts E2 was described as 

having an anti-fibrotic effect, through limiting cardiac fibroblast proliferation and 

differentiation.50, 51 Moreover, E2 can also regulate the remodelling of the extracellular matrix, 

modulating fibroblast protein and gene expression, as well as signalling pathways.52

1.2.4. Oestrogen receptors in the heart

Oestrogen genomic action is mediated by nuclear oestrogen receptors (ERs). The 

oestrogen-ER complex directly binds to a specific DNA sequence or ERE (oestrogen 

responsive element), acting as a transcription factor. Another possibility is that it acts on 

transcription indirectly tethering with other transcription activators.29, 53

ERα and ERβ are two ER subtypes, expressed from different genes and have distinct 

tissue distribution.53 Both ERs are expressed in males and females cardiac tissue, but even 

though they have equal ERα expression values, males have higher levels of ERβ (Figure 

2).28

In the sick heart, we showed before that in end-stage dilated cardiomyopathy ERα is 

up-regulated in both males and females54 and in aortic stenosis the same happens for both 

receptors.28 However, in none of the studies the expression of ERα was different between 

males and females, either in basal level or diseased heart.

In ovariectomised rats, a selective ERα agonist was sufficient to attenuate cardiac 

hypertrophy and to improve hemodynamic function.55

Nonetheless, both ERα and ERβ are shown to protect the cardiovascular remodelling, 

for example against aldosterone salt treatment, and they confer redundant, and specific, 

effects on cardiac protein expression.56
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1.2.5. ERβ plays a determinant role in sex differences in cardiac 
hypertrophy

ER knock-out models have been widely used to study cardiac diseases and especially 

ERβ has been shown to be a determinant factor in sex differences in hypertrophy. Oestrogen 

protective role in cardiac hypertrophy has often been showed to be mediated by ERβ.

In animal experiments, after 2 weeks TAC, wild type (WT) females presented a 

significantly less hypertrophy than males. In the same study, ERα-/- animals presented 

identical levels of hypertrophy than WT, meaning that ERα was not found essential for 

hypertrophy attenuation. However, ERβ-/- females exhibited an increased degree of 

hypertrophy, comparable to WT males, indicating a role for ERβ in mediating an attenuated 

response to pressure overload. This study established the importance of the direct action of 

ERs in myocardial response to pressure overload.57

Another relevant study used ERα-/- and ERβ-/-, ovariectomised mice, treated with E2 

and subjected to 4 weeks of TAC, confirmed this result. While in sham females E2 treatment 

did not have any effect in WT or knock-out animals, E2 effect in TAC differed between 

genotypes. In WT and ERα-/- TAC females, E2 reduced ventricular hypertrophy, whilst in 

ERβ-/- the same was not observed.58

Our own studies also demonstrated the important role of ERβ in the protective 

mechanism to hypertrophy. ERβ showed to be crucial and necessary for the strict control of 

cardiac gene expression in this disease, acquiring the role of gatekeeper of the genomic 

response of the heart to pressure overload.59 Finally, ERβ was shown to have a determinant 

role in sex differences in a late hypertrophy stage, 9 weeks after TAC. Males and females 

WT and ERβ-/- mice showed significant differences in response to hypertrophy. In this study, 

important sex differences were observed in terms of type of hypertrophy, apoptosis and 

fibrosis. WT females developed a more concentric hypertrophy in contrast to the eccentric 

form present in males. Concerning cardiomyocyte diameter, ERβ deletion caused a stronger 

TAC effect. Gene expression profiling revealed sex differences in mitochondrial genes, 

stronger repressed in WT males than in females. In ERβ-/- mice, TAC surgery induced

proapoptotic genes in both sexes, being higher in males. The results show also a more 

pronounced cardiac fibrosis after TAC in WT males than in females. This difference 

disappeared in the absence of ERβ. The authors conclude that sex and ERβ attenuate the

development of fibrosis and apoptosis, therefore slowing the progression to heart failure.60
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1.3. miRNAs

MicroRNAs (miRNAs) are a large family of endogenous, single-stranded, small, 

noncoding RNAs with ~22 nucleotides (nt) in length, that have emerged in the past years as 

key regulators of gene expression. 

In humans, more than 1000 miRNAs are encoded by as much as 5% of the genome 

and they regulate around 30% of our genes. A single miRNA can regulate numerous different 

genes and each gene can be regulated by several miRNAs. Functional studies indicate that 

miRNAs participate in almost every cellular process investigated. They are currently known 

to control vital processes such as cell growth, proliferation and differentiation, apoptosis, 

tissue differentiation, heterochromatin formation and cell proliferation, among others. 

Furthermore, miRNA dysregulation is linked to cancer, neurological disorders, several types 

of cancer and cardiovascular disorders.61

1.3.1. The discovery of miRNAs – a brief story

The first description of a small endogenous regulatory RNA occurred in 1993, when lin-

4, a gene known to control the timing of larval development in C. elegans, was found to code 

for a pair of miRNAs, one with 22 nt and the other with 61 nt, instead of coding for a protein. 

These RNAs had antisense complementarity to multiple sites in the 3’UTR of the lin-14

gene, located in a region previously proposed to mediate the repression of lin-14 by the lin-4

gene product. Once later confirmed on the regulation of lin-14 by lin-4, these discoveries 

supported a model of translational repression as part of the regulatory pathway that triggers 

the transition from cell divisions of the first larval stage to those of the second.62-64 The 

shorter lin-4 is now recognized as the founding member of the miRNA family.

This discovery opened the path for the finding of a large family of molecules, 

eventually found to be widespread, being described and highly conserved in animals, plants, 

fungi and some viruses and revolutionising the comprehension of gene expression 

regulation.65-69

1.3.2. miRNAs as part of a bigger family - the RNAi

MiRNAs belong to a bigger family of small regulatory RNAs called RNA interference 

(RNAi) that comprises miRNAs, short interfering RNAs (siRNAs) and PIWI-interacting RNA 

(piRNAs). The three pathways of RNAi share a common mode of action but differ in the 

mechanism and biogenesis. 

For all three classes, the minimal effector is a ribonucleoprotein complex, comprising 

an Argonaute family protein member bound to a single stranded ~20 to ~30nt RNA. The 

complex grants the specificity of the base-pairing interactions with the target gene. However, 
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miRNAs are derived from the genome, whereas siRNAs may be endogenous or introduced 

in the organism via viral infection or other exogenous sources.70 siRNAs and miRNAs are 

generated from double-stranded RNA but while siRNAs duplexes feature perfect base-

pairing, miRNAs helices contain mismatches and more extended terminal loops. Both 

classes, despite their different origins, have converging pathways once they are assembled 

into the RISC complex (RNA-induced silencing complex). In addition, siRNAs and miRNAs 

are characterised by the double-strand of their precursors, while piRNAs derive from 

precursors that appear to be single stranded. The three classes are also associated with 

distinct subsets of effector proteins: si- and miRNAs bind to members of the Argonaute 

clade, while piRNAs bind to members of the Piwi clade.61, 70-73

The complete understanding of the functions and targets of each class of RNAi is far 

from being done. Particularly in the case of miRNAs, here in focus, it is now clear that they 

play key roles in many organisms’ development, as well as in diseases, thus became 

interesting objects of study in many different fields.

1.3.3. miRNA biogenesis

Mammalian miRNA biogenesis can be divided in two broad classes, canonical and 

non-canonical, based on how pri-miRNAs are processed leading to the production on mature 

miRNAs.

In the canonical pathway (diagrammed in Figure 3) miRNAs are processed in the 

nucleus from precursor molecules, known as pri-miRNAs (~1000nt) and transcribed by RNA 

polymerase II from independent genes or from introns of protein coding genes. These pri-

miRNas fold into hairpins and are subjected to an enzymatic cleavage by Drosha and Dicer, 

two members of the RNase III enzyme family. Drosha acts as first, in the nucleus, together 

with DGCR8 (DiGeorge syndrome critical region gene 8).74, 75 The resulting ~65-70 nt 

precursor miRNA (pre-miRNA) is then exported to the cytoplasm, via Exportin-5 and 

RanGTP, two transport facilitators.61

Once in the cytoplasm, the GTP is replaced by GDP, inducing Exportin-5 to release its 

pre-miRNA cargo. Then, another endoribonucleolytic reaction occurs catalysed by Dicer, 

yielding a ~22 bp miRNA duplex. The duplex is incorporated onto an Argonaute protein, 

where one or occasionally both strands are incorporated into the RISC complex and 

functions as mature miRNAs, leading to translational repression or mRNA degradation. In 

mammals, four different Argonaute proteins (AGO1-4) can be involved in the miRNA-

mediated repression, but only AGO2 functions with siRNAs.76, 77

The non-functional strand, if it is the case, is released and degraded.72 Which strand is 

retained depends on the relative thermodynamic stability of the two ends of the duplex 

intermediate (Figure 3).78, 79
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The non-canonical pathway, on its turn, does not require all the protein factors 

mentioned. Mirtrons, an alternate source of miRNA-type regulatory RNAs that derive from 

short intronic hairpins, have a nuclear biogenesis that appears to bypass Drosha cleavage. 

While this is essential for miRNA biogenesis, mirtrons are produced instead by splicing. 79-82

The mirtron pathway merges with the canonical miRNA pathway during hairpin export 

by Exportin-5, and both types of hairpins are subsequently processed by Dicer. Canonical 

and non-canonical miRNAs can be distinguished by changes in their expression when one of 

the processing factors is absent. The loss of Drosha, DGCR8 or Dicer would reduce the 

expression of canonical miRNAs while the non-canonical would have variable responses, 

depending on the absent protein. However, most ~22 nucleotides long RNA species in 

mammals are canonical miRNAs.79, 81, 83

Figure 3. miRNA biogenesis (figure from reference 76)

In the heart, miRNA processing is crucial for cardiac development and homeostasis. 

The knock-out of DGCR8 develops lethal heart failure due to impaired miRNA synthesis 

whereas Dicer heart selective knock-outs lead to dilated cardiomyopathy and heart failure.84-

86
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1.3.4. miRNA target recognition and regulatory functions

The complete mechanism through which miRNAs regulate gene expression is still not 

totally understood. However, it is currently known that, in mammals, miRNAs do this 

regulation through the inhibition of mRNA translation or its degradation, in both cases 

leading to repression of protein synthesis.

Typically, miRNA-binding sites are located in the 3’UTRs (3’ untranslated regions) of 

target mRNAs. The recognition of these binding sites occurs via base-pairing of the ‘seed’ 

region, which is the sequence between nucleotides 2-8 of a miRNA. However, this is not the 

only determining factor. Among other factors, for a stable interaction it is also necessary to 

exist a reasonable complementarity to the 3’ half of the miRNA. The imperfect nature of the 

miRNA:mRNA interaction helps to the understanding of the fact that a single miRNA can 

potentially target hundreds of mRNAs.87-89

Through the miRNA-mRNA sequence complementarity, miRNA-RISC mediated 

inhibition is commonly divided in three processes: 1) site-specific cleavage, 2) enhanced 

mRNA degradation, 3) translational inhibition. The first is restricted to small RNAs with a

perfect or almost perfect match to the target, but it is commonly referred to as RNAi. The 

other two processes, in contrast, are normally associated to mismatched miRNA-target 

sequences, the most common scenario in mammals. The combination of the latter, is usually 

referred to as non-cleavage repression and can be carried out by any of the four AGO 

proteins.90, 91 (Figure 3).

Target sites for animal miRNAs are not equally distributed throughout the mRNA 3’ 

UTR, but rather located in its both ends. The number and the arrangement of these binding 

sites can influence the degree and specificity of miRNA mediated gene expression. 

Furthermore, many mRNAs can have several potential different sites for the same miRNA 

and its proximity can enhance the down-regulation.92, 93 Moreover, alternative transcripts with

different 3’ UTR lengths can be targeted by different sets of miRNAs.94 Despite these and 

other studies, there is no single model that can depict all miRNA:mRNA interactions.

Besides all miRNA:mRNA interactions, other mechanisms were show to modulate 

miRNA function. For example, a naturally occurring miRNA sequence variation outside the 

‘seed’ sequence can modify mRNA targeting and end-organ function. This was shown in 

vivo, with miR-499, and supports studies of individual phenotypes or disease modification 

conferred by miRNA mutations.95

An interesting recent study, showed another side of miRNA action and regulation in 

mouse hearts. Using transgenic expression of pre-miRNAs in mouse hearts, miR-378 and 

miR-499 were shown to indirectly regulate, 15 to 30 cardiac miRNAs, besides some 

hundreds of cardiac mRNAs, in a stimulus specific way. This miRNA-mediated miRNA 
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regulation helps to explain how small direct effects of miRNAs are amplified to generate 

surprising phenotypes.96

1.3.5. Computational prediction of miRNA targets by TargetScan

The prediction of miRNA targets and miRNAs:mRNAs interaction in animal systems is 

yet a challenge, due to the complexity and the limited knowledge of the rules and regulatory 

mechanisms of this interaction. MiRNA targets can be predicted above the background of 

false positives by requiring conserved base-pairing to the 5’ region of the miRNA, the ‘seed’ 

region, searching for 6-8mer matches.97, 98 For this, it is necessary to use existent miRNA

biology tools like target prediction algorithms to find possible miRNA:mRNA interactions.

Numerous target prediction algorithms have been developed, many of them exploiting 

different approaches. The available algorithms might use or not the conservation 

comparison, influencing the outcome list of targets. Among the algorithms that use 

conservation criteria is TargetScan. TargetScan narrows the search to sites with full 

complementarity in the ‘seed’ region and then they are extended to 21-23 nucleotide long

fragments representing true interaction. The parameters contributing to the final score are 

the ‘seed’ match, the 3’ complementarity, local AU content and position contribution. The 

conservation of the ‘seed’ regions among orthologous 3’UTRs within binding regions has a 

major importance in outcome score.98, 99
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1.4. miRNAs in the diseased heart

The discovery of the fundamental role of miRNAs in gene regulation led to a 

continuous and deep interest about these small RNAs. It did not take long to realize that 

these molecules are also dysregulated under stress conditions. In the heart, several studies 

have shown the important role of miRNAs in cardiovascular development and disease. 

Highly specific patterns of miRNA expression correlate with different cardiovascular 

disorders, such as cardiac hypertrophy, heart failure100-103, post-myocardial infarction 

remodelling104-106, and vascular remodelling107.

Furthermore, gain- and loss-of-function miRNA studies revealed pathogenic and 

protective roles of miRNAs in vivo in the heart, directly associating specific miRNAs to 

specific pathologies such as arrhythmias (miR-1108, miR-133109, miR-208a110), fibrosis (miR-

21111, miR-29105), pressure overload-induced remodelling (miR-208110, 112, miR-133113) and

cardiometabolic disease (miR-33114 miR-122115).

A particular family of miRNAs referred to as MyomiRs and comprising miR-208a, miR-

208b and miR-499, is one of the best characterised examples of stress dependent gene 

regulation in the heart. These miRNAs are encoded by myosin heavy chain (MHC) genes, 

namely α-MHC (miR-208a), β-MHC (miR-208b) and Myh7 (miR-499), and constitutes a 

complex regulatory circuit that controls myosin gene expression and cardiac stress 

responsiveness during adaptation to pathological signalling.110, 112, 116

MiR-199a was also characterized as a master regulator of a hypoxia-triggered 

pathway. This miRNA was acutely down-regulated in cardiomyocytes in hypoxia, leading to 

an up-regulation of hypoxia-inducible factor-1α117 that was inverted when miR-199a was 

replenishing. The knockdown of miR-199a in normal conditions reproduced hypoxia 

conditions. MiR-199a was considered a master regulator of this pathway and a possible 

target to preconditioning cells against hypoxia damage.118

The correlation of miRNAs’ action with their targets and cardiovascular phenotypes 

helps to the understanding of new pathways and diseases mechanisms. The manipulation of 

these disease-related miRNAs through the usage of miRNAs inhibitors and mimics leads to 

a world of possibilities in what concerns future therapies.
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Figure 4. Roles of miRNAs in vascular disease (figure from ref. 119)

1.4.1. miRNAs and cardiac hypertrophy

MiRNAs are differentially regulated during hypertrophy and heart failure, in both

rodents and humans. Given the knowledge that foetal gene expression reprogramming in 

the heart is an established mechanism contributing to the cardiac hypertrophy 

development120, 121, an analogous change in miRNAs’ expression would be expectable. 

Several studies have supported their role in this pathogenesis, as well as hypertrophy effects 

on miRNA expression.

1.4.2. Hypertrophy effect on miRNA expression

Expression profile studies of miRNAs are important to reveal novel miRNA based 

pathways underlying diseases. In animal models of cardiac hypertrophy, whole arrays of 

miRNAs have indicated that some miRNAs are typically up-, down-regulated or remain 

unchanged during hypertrophy, comparing to their levels in the normal heart (Table 1). 

The first report of an evidence for a dysregulation of miRNA expression in cardiac 

remodelling in hypertrophy was in an array study based on two mouse models of 

pathological hypertrophy: the TAC model, as an in vivo model of hypertrophy induced by left 

ventricular pressure-overload, and a calcineurin transgenic (CnA) mouse model, a calcium-

dependent model of maladaptive response. In this study, constitutive CnA signalling and TAC 
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resulted in the up- and down-regulation of common sets of miRNAs, suggesting that these 

miRNAs represent a genetic signature of the cardiac response.100

Another array measuring miRNA expression progression from day 1 to day 14 after 

TAC, revealed more than 50 miRNAs with progressive expression changes during 

hypertrophy development (Table 1). MiR-1 was the earliest miRNA down-regulated during 

hypertrophy and the study also describes several relevant targets for this miRNA (Figure 

2).122

A comparison between 2 and 4 weeks TAC and phenylephrine (PE) treated neonatal 

cardiomyocytes compared miRNA expression patterns in in vitro and in vivo hypertrophy. 

The expression of miR-21, miR-23b and miR-125b was increased in both models, whereas 

miR-25 and miR-29a, highly up-regulated in vivo, appeared unchanged in the in vitro model 

due to their low expression in cardiomyocytes (Table 1). Additionally, the authors suggested 

that miR-21 was a possible negative regulator of cardiac hypertrophy.123

During the same year of the two previously described studies, another comparison of 

miRNA expression between 7, 14 and 21 days of TAC and neonatal cardiomyocytes came 

out. The most aberrantly expressed miRNA in vivo, was miR-21, but the study also identified 

and confirmed by northern-blot miR-27a, miR-27b, miR-146, miR-214, miR-341 and miR-424

as up-regulated in hypertrophy, while miR-29a, miR-29b, miR-29c, miR-30e, miR-126-5p, 

miR-133a, miR-133b, miR-149, miR-150, miR-185, miR-451 and miR-486 were significantly 

down-regulated after TAC (Table 1). MiR-21 was up-regulated in vitro by both AngII and PE, 

and its inhibition was able to decrease the in vitro hypertrophy, confirming the role of this 

miRNA in this pathology.124 A summary of reported regulated miRNAs in TAC in mice is 

shown in Table 1. 

Some of the published data are, however, contradictory. For example, miR-21 was 

highly up-regulated in mice heart after 1-2 weeks TAC, decreasing again to a normal level 

after 3-4 weeks123, while other studies under similar conditions reported an up-regulation of 

miR-21 that was maintained over time.100, 122

In TAC, miR-1 was identified already after 1 day of TAC as one of the most down-

regulated miRNAs, reaching a minimum at 1 week post-TAC and returning to near normal 

levels by day 14. In this analysis the expression of miR-133a/b was unchanged122. On the 

other hand, in two independent reports100, 124 only miR-133a/b was found to be down-

regulated, but not miR-1. 

A possible source of differences in the expression profiles of miRNAs described above 

are differences in mice strain, age, time after TAC and sex, as pointed out in the footnote of 

Table 1.
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Table 1. Reported regulation of miRNAs in mouse hypertrophy models (RNA microarrays).

miRNA Regulation Validation miRNA Regulation Validation

miR-1 ↓122,113 NB113 miR-208 ↑123

miR-10a ↓122 miR-21 ↑122,100,124,125

(↑ 123)
NB124,123

qRT-PCR124

miR-10b ↑100

↓122
miR-210 ↑100,123

miR-103 ↑122 miR-211 ↑123

miR-106a ↑123 miR-214 ↑122,100,124, 125 NB100,124

miR-107 ↑122 miR-217 ↑100

miR-125b ↑122,100,123 NB123 miR-218 ↓122;
↑100

miR-126-5p ↓124 miR-221 ↑122,123

miR-126 ↑100 miR-222 ↑122,123

miR-127 ↑122 miR-23a ↑122,100,123 NB100,123

miR-133a no change122

↓100,124, 125

↓ (133)113

NB (133)113 miR-23b ↑122,100 NB100

miR-139 ↓122 miR-24 ↑122,100 NB100

miR-140 ↑123 miR-25 ↑100,123 NB123

miR-140* ↑122 miR-26a/b ↓122

miR-142-3p ↑123 miR-27a/b ↑122,100,124 NB124

miR-146 ↑124 miR-29a ↑123

↓122,124
NB124,123

miR-149 ↓122,124 miR-29b ↓124 qRT-PCR124

miR-15b ↑122 miR-29c ↓122,100,124,123 NB124

miR-150 ↓122,100,124,123 NB100,124;
qRT-PCR124

miR-30a-3p ↓122

miR-151 ↓122 miR-30a-5p ↓122

miR-153 ↑123 miR-30b ↓122,123, 125

miR-154 ↑100 miR-30c ↓122,123, 125

miR-155 ↓122 miR-30d ↓122

miR-17-5p ↑123 miR-30e* ↓122

miR-18b ↑123 miR-30e ↓122,100,124,125 NB124

miR-181b ↓100 NB100 miR-31 ↑122

miR-184 ↑123 miR-330 ↑100

miR-185 ↓122,124 NB124;
qRT-PCR124

miR-341 ↑124 NB124

miR-19a ↑100 miR-351 ↑122,100

miR-19b ↑123 miR-378 ↓122

miR-194 ↓122 miR-424 ↑124 NB124

miR-195 ↑122,100 NB100 miR-451 ↓124 NB124

miR-199a-5p ↑122,100, 125 NB100 miR-486 ↓124 NB124

miR-199a-3p ↑122,100, 125 miR-93 ↓100

miR-20b ↑123 let-7b/c ↑122

miR-200a ↑123 let-7d* ↓122

NB: Northern blot. 122:C57BL/6 mice; age and gender unknown, complete heart. 113:10-12 weeks old C57BL/6 female mice. 
100: mice strain, age and gender unknown, cardiac tissue. 123: 6-8 weeks old C57BL/6 male mice, heart. 124:12 weeks old 

C576BJ mice; gender unknown, heart. 125: 12 weeks old female, mice strain unknown, heart, 7 days TAC. qRT-PCR –

quantitative real time Polymerase Chain Reaction
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1.4.3. miRNAs with a direct action in hypertrophy

Numerous studies were conducted and several of the miRNAs found to be 

dysregulated during cardiac hypertrophy were characterized as pro-/anti-hypertrophic, with 

or without specific targets identified (Table 2), and others have just been specifically 

implicated in differentiation, apoptosis and fibrosis.

Initially, several miRNAs were shown to be capable of inducing hypertrophic growth in 

vitro. Over-expression of miR-23a, miR-23b, miR-24, miR-195 and miR-214, all up-regulated 

during cardiac hypertrophy, induced a response compared to PE in cardiomyocytes.

Furthermore, a cardiac specific miR-195 over-expression in vivo induced cardiac growth with 

disorganisation and an aberrant size of cardiomyocytes, which progressed to heart failure.100

MiR-1 was one of the first miRNAs with identified targets directly involved in 

hypertrophy, being classified as anti-hypertrophic. Some of the most important targets 

described include Ras GTPase–activating protein (RasGAP), insulin growth factor-1 (IGF-1), 

calmodulin and myocyte enhancer factor-2A (Mef2A).122, 126, 127

Together with miR-1, miR-133a is also a muscle enriched miRNA that shares the same 

primary transcript and was equally early classified as anti-hypertrophic. The first interesting 

targets to be identified were RhoA, a GDP-GTP exchange protein regulating cardiac 

hypertrophy; Cdc42, a signal transduction kinase implicated in hypertrophy; and Nelf-

A/WHSC2, a nuclear factor involved in cardiogenesis.113 However, later on NFATc4 and 

calcineurin were described as well as miR-133a targets.128, 129

The first miRNA knock-out model was a miR-208a-/- mouse that showed reduced 

hypertrophy in response to pressure overload.112 The same miRNA was later found to be 

sufficient to induce cardiac remodelling and modulate the expression of hypertrophy-

associated genes.110 Table 2 summarizes the miRNAs described as promoters or inhibitors 

of hypertrophy.
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Table 2. MiRNAs studied in cardiac hypertrophy. Table adapted from ref. 86, 130, 131

miRNA Validated Target(s) References Action

miR-1

RasGAP; CdK9; fibronectin; Rheb 122 anti-hypertrophic
Mef2a; Gata4; Calmodulin 127 anti-hypertrophic
IGF1; IGF1R 126 anti-hypertrophic
twinfillin-1 132 anti-hypertrophic
--- 133 anti-hypertrophic

miR-133a
RhoA; Cdc42; Nelf-A/WHSC2 113 anti-hypertrophic
NFATc4 128 anti-hypertrophic
Calcineurin 129 anti-hypertrophic

miR-142 p300; actinin; gp130 134 anti-hypertrophic
miR-145 GATA6 135 anti-hypertrophic
miR-19 atrogin-1; MuRF-1, 136 pro-hypertrophic
miR-195 --- 100 pro-hypertrophic
miR-199a HIF1-α 137 pro-hypertrophic
miR-199b Dyrk1a 138 pro-hypertrophic

miR-208a
Thrap1 112 pro-hypertrophic
Thrap1 and myostatin 110 pro-hypertrophic

miR-21
Sprouty1 111 pro-hypertrophic
Sprouty2 139 pro-hypertrophic

miR-212/132 FoxO3 117 pro-hypertrophic
miR-214 --- 100 pro-hypertrophic

miR-22

PTEN 140 pro-hypertrophic
Purb 141 pro-hypertrophic
PGC-1α, PPARα and SIRT1 142 pro-hypertrophic
Sirt1; Hdac4 143 pro-hypertrophic

miR-221 p27 144 pro-hypertrophic

miR-23a

--- 100 pro-hypertrophic
MuRF1 145 pro-hypertrophic
FoxO3 146 pro-hypertrophic
LPA1 147 pro-hypertrophic

miR-23b --- 100 pro-hypertrophic

miR-24 �?
--- 100 pro-hypertrophic
JP2 148, 149 pro-hypertrophic

miR-26b Gata4 150 anti-hypertrophic
miR-27b PPAR-γ 151 pro-hypertrophic
miR-30c CTGF 152 anti-hypertrophic
miR-34 VEGF; Vinculin; Pofut1; Notch1; Sema4b 153 pro-hypertrophic
miR-350 MAPK11/14; MAPK8/9 154 pro-hypertrophic

miR-378
Grb2 155 anti-hypertrophic
Grb2; Igf1r; Ksr1; Mapk1 156 anti-hypertrophic

miR-499
--- 157 pro-hypertrophic
--- 158 pro-hypertrophic

miR-9 NFATc3; myocardin 159 anti-hypertrophic
miR-98/let-7 Cyclin D2 160 anti-hypertrophic
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1.4.4. miRNAs in cardiac fibrosis regulation

One of the most highly consistent up-regulated miRNA in hypertrophy is miR-21. 

However, miR-21 was shown to be low expressed in cardiomyocytes, high expressed in 

cardiac fibroblasts. Through the targeting of Sprouty homolog 1 (Spry1), a negative regulator 

of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) 

signalling pathway, miR-21 was described as a strong fibrosis regulator.111 Furthermore,

miR-21 also represses PTEN, a negative regulator of PI3K/Akt cascade.104

Connective tissue growth factor (CTGF), one of the main factors mediating fibrosis, 

was validated as a target of miR-133b and miR-30, both consistently down-regulated in 

several models of hypertrophy (Table 1). This inversely correlates with the up-regulation of 

the protein.152 MiR-133a on its turn was described as targeting Col1A1 and is down-

regulated during AngII-induced fibrosis, along with miR-29b.161

Other miRNAs rather interfere with ECM genes. The miR-29 family, for example, is 

characterized as being down-regulated after myocardial infarction, caused by an up-

regulation of TGFβ. Down-regulation and over-expression of this miRNA family led to an 

induction and a reduction, respectively, of collagen expression. The authors concluded that 

miR-29 is a regulator of cardiac fibrosis and represents a potential therapeutic target for 

tissue fibrosis in general.105

Table 3 shows a summary of these and other miRNAs directly connected to fibrosis 

development, as well as their described targets.

Table 3. miRNAs directly involved in cardiac fibrosis.

miRNA Validated Target(s) Reference Action

miR-122 TGFβ 162 anti-fibrotic
miR-133a Col1A1 161 anti-fibrotic
miR-133b CTGF 152 anti-fibrotic

miR-21
Spry1 111 pro-fibrotic
MMP2; PTEN 104 pro-fibrotic

miR-24 Furin 163 anti-fibrotic
miR-26a Col1; CTGF 164

miR-29 Col1A1; Col1A2; Col3A1; FBN1; ELN1 105 anti-fibrotic
miR-30c CTGF 152 anti-fibrotic

A recent report on a miRNA expression profile of human biopsies of severe and non-

severe fibrosis patients showed that miR-122 and miR-18b were down-regulated in severe 

compared to non-severe fibrosis patients. Additionally, the report shows in human fibroblasts 

the influence of miR-122 on fibrosis, targeting TGF-β1 and preventing its up-regulation.162

MiRNAs are currently considered as important fibrosis regulators, not only on the heart but 

also in other tissues. Many of these fibrosis-related miRNAs are being considered for 

therapeutic purposes.
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1.5. miRNAs regulation by E2

A number of transcription factors have been identified as stimulating or inhibiting the 

transcription of specific miRNAs, either in normal or disease conditions. Here we focus on 

the regulation by E2, studied and described in several systems. Similar to protein coding 

genes, E2 stimulation also modulates the transcription of several miRNAs. One of the first 

studies revealing E2 effect on miRNA expression, and the first in vivo, was performed using 

zebrafish and revealed a novel pathway for oestrogen regulation. The authors found an 

association between E2 and the expression of 25 miRNAs after 12h of treatment, some of 

them even showing tissue specificity.165

However, due to the hormone role in breast cancer, most of what is currently known 

about oestrogen effect on miRNA expression comes from studies performed in the scope of 

breast cancer. Other studies in rodents identified E2 effects on miRNA expression in the 

mouse uterus166, a traditional oestrogen target tissue. Table 4 reflects some lack of 

consistency of oestrogen-regulated changes in miRNA expression, even within MCF-7 cells, 

the best studied system. These differences can eventually be attributed to different times 

and treatment conditions, E2 concentration, the hormone content of the serum, differences 

in MCF-7 cells between laboratories, the housekeeping gene and the method for miRNA 

quantification. 

Table 4. Reported E2 effect on miRNA expression.

Reference Cell type Species Sex Induced by E2 Repressed by E2

167 MCF-7 Human ♂ miR-206

165 --- zebrafish ♂
miR-196b
let-7h
let-7d

miR-130c
miR-130a
miR-101a

168 MCF-7 Human ♀

let-7a
let-7b
let-7c
let-7d
let-7e
let-7f
let-7g
let-71
miR-103
miR-107
miR-17-5p

miR-200a
miR-200b
miR-200c
miR-203
miR-21
miR-23a
miR-30b
miR-30c
miR-424
miR-98

miR-143
miR-27a
miR-27b
miR-302b
miR-506
miR-524
miR-9

169 MCF-7 Human ♀

let-7a
let-7c
let-7f
let-g
miR-181a
miR-181b
miR-181d
miR-193a
miR-193b
miR-200a
miR-200c
miR-203

miR-21
miR-23a
miR-23b
miR-24
miR-26a
miR-26b
miR-27a
miR-27b
miR-499
miR-520d*
miR-98

170 MCF-7 Human ♀ miR-16
miR-143
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Reference Cell type Species Sex Induced by E2 Repressed by E2

miR-203

171 MCF-7 Human ♀

let-7c
let-7d
let-7g
let-7i
miR-106b
miR-151
miR-15a
miR-15b
miR-16
miR-182
miR-183
miR-195
miR-200a
miR-200b
miR-203

miR-20a
miR-23a
miR-23b
miR-25
miR-26a
miR-26b
miR-27a
miR-27b
miR-30b
miR-365
miR-489
miR-7
miR-92
miR-98

let-7a
let-7f
miR-149
miR-200c
miR-21
miR-320
miR-328
miR-342
miR-423

172 hMSMC Human miR-26a miR-21
hLSMC Human miR-26a

173 hESC/
HGSC Human 

miR-26a

miR-20a
miR-21

174
hESC Human miR-17-5p

miR-542-3p miR-23a/b

hGEC Human miR-17-5p
miR-23b

miR-542-3p
miR-23a

175 MCF-7 Human ♀ miR-21
MCF-7: breast cancer cell line. hMSMC: human myometrial smooth muscle cells. hLSMC: human lung smooth muscle 

cells. hESC: human embryonic stem cells. hGSC: high-grade serous carcinoma cells. hGEC: human glomerular 

epithelial cells.

Because oestrogen does not only regulate specific miRNA expression, but may also 

have a global effect on their biogenesis, some of its key components were analysed 

concerning a possible regulation by this hormone. From these miRNA biogenesis involved 

components, Dicer showed to be up-regulated by E2.168

Due to the fact that MCF-7 cells lack of endogenous ERβ, studies often focus on ERα, 

and less is known about ERβ regulation of miRNAs expression. However, E2-induced ERβ

binding sites were identified in MCF-7 cells engineered to express comparable levels of both 

receptors. In this report, miR-206 was shown to be up-regulated by ERβ selective ligand 

DPN.167 Another study reported 73 miRNAs differentially expressed in ERβ+/ERβ- MCF-7

cells, being 44 increased and 29 decreased.176

To our knowledge, no one reported previously any study on miRNA expression 

regulation by ERβ in a non-cancer model with the endogenous receptor. The heart, as an 

ERβ-expressing tissue, is thus an interesting model to study miRNA regulation by the 

receptor and specifically its possible role on sex-differences in cardiac hypertrophy.
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1.6. Aims of the work

The present study aims to reveal sex differences in miRNA expression in the normal 

and hypertrophic heart, as well as a possible role of E2 and its receptors.

To achieve these aims, we designed the project dividing it in 2 different parts, using in 

vivo samples originated for a previous project and in vitro experiments for the different 

compound treatments.

To unveil possible sex differences in miRNA expression in vivo, we quantified the 

expression of miRNAs in male and female cardiac tissue of WT Sham and TAC operated 

animals and compared the results with identical samples but from ERβ-/- animals, addressing 

the consequences of the receptor’s deletion on miRNA expression in normal and 

hypertrophic hearts.

In order to analyse the effects of E2 on miRNA expression in the heart, we quantified 

their expression in both cardiomyocytes and cardiac fibroblasts after a treatment with the

hormone and to clarify which of the receptors played a major role in each cell type, we also 

treated cells with ERα or ERβ specific agonists for the same measurements.
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2.1. Biological material

2.1.1. Animals

2.1.1.1. Mouse strains

The mice samples used in this project were generated for previous projects. The strain 

used was C57BL/6 and the animals were 12-14 weeks old at the time of the surgery.

- wildtype (WT)
Table 5. Wild type mice used.

WT

Sex Females Males

Surgery Sham TAC Sham TAC

n= 7 10 10 10

- ERβ knock-out
Table 6. ERβ knock-out mice used.

ERβ-/-

Sex Females Males

Surgery Sham TAC Sham TAC

n= 8 8 8 8

- ERα knock-out
Table 7. ERα knock-out mice used.

Sham

Sex Females Males

Genotype WT ERα-/- WT ERα-/-

n= 5 5 5 5

2.1.1.2. Rat strain

Adult Wistar rats were used for the isolation of cardiac fibroblasts.
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2.1.2. Cardiomyocyte cell line

The cell line used was a human cardyomyocyte cell line, named AC16.177 The cells 

were originated from female human ventricular tissue. These cells have retained the nuclear 

and the mitochondrial DNA of the primary cells, expressing myogenic markers and a fully 

respiratory chain. They can be frozen and thawed repeatedly, being useful in the study of 

developmental regulation of cardiomyocytes in normal and pathological states.

2.2. Olignucleotides for quantitative real time PCR

All the oligonucleotides were designed by us and synthesized by Thermo Scientific 

(Germany).

2.2.1. miRNA quantification

Table 8. Oligonucleotide sequences used for miRNA quantification.

miRNA Oligonucluotide sequence

mmu-let-7b TGAGGTAGTAGGTTGTGTGGT

mmu-let-7c TGAGGTAGTAGGTTGTATGGTT
mmu-let-7d AGAGGTAGTAGGTTGCATAGTT
mmu-let-7e TGAGGTAGGAGGTTGTATAGTT
mmu-let-7g TGAGGTAGTAGTTTGTACAGTT

mmu-let-7i TGAGGTAGTAGTTTGTGCTGTT
mmu-miR-100 ACCCGTAGATCCGAACTT
mmu-miR-103 GCAGCATTGTACAGGGC
mmu-miR-106a AAGTGCTAACAGTGCAGGTAG

mmu-miR-106b TAAAGTGCTGACAGTGCAGAT
mmu-miR-107 GCAGCATTGTACAGGGC
mmu-miR-130a AGTGCAATGTTAAAAGGGC
mmu-miR-133a CCCCTTCAACCAGCTG

mmu-miR-133b GTCCCCTTCAACCAGCTA
mmu-miR-143 TGAGATGAAGCACTGTAGCTC
mmu-miR-145 GTCCAGTTTTCCCAGGAAT
mmu-miR-149 CTGGCTCCGTGTCTTCA

mmu-miR-152 AGTGCATGACAGAACTTGG
mmu-miR-154 TAGGTTATCCGTGTTGCCT
mmu-miR-15a AGCAGCACATAATGGTTTG
mmu-miR-15b TAGCAGCACATCATGGTTTAC

mmu-miR-16 TAGCAGCACGTAAATATTGG
mmu-miR-181a ACATTCAACGCTGTCGG
mmu-miR-185 AGAGAAAGGCAGTTCCTGA
mmu-miR-193 CCCACAAAGTCCCGC

mmu-miR-195 GCAGCACAGAAATATTGGC
mmu-miR-199a-3p ACAGTAGTCTGCACATTGGTTA
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mmu-miR-199a-5p CCCAGTGTTCAGACTACCTG
mmu-miR-199b-5p CCCAGTGTTTAGACTACCTGTT
mmu-miR-19b TGTGCAAATCCATGCAA
mmu-miR-203 ATGTTTAGGACCACTAG

mmu-miR-208a TAAGACGAGCAAAAAGCTTG
mmu-miR-20a TAAAGTGCTTATAGTGCAGGTAG
mmu-miR-21 TAGCTTATCAGACTGATGTTGA
mmu-miR-212 AACAGTCTCCAGTCACGG

mmu-miR-22 AAGCTGCCAGTTGAAGAA
mmu-miR-221 AGCTACATTGTCTGCTGGG
mmu-miR-222 AGCTACATCTGGCTACTGG
mmu-miR-23a TCACATTGCCAGGGATTT

mmu-miR-23b ATCACATTGCCAGGGATTAC
mmu-miR-24 GGCTCAGTTCAGCAGG
mmu-miR-26a TTCAAGTAATCCAGGATAGGCT
mmu-miR-27a CACAGTGGCTAAGTTCCG

mmu-miR-27b TCACAGTGGCTAAGTTCTGC
mmu-miR-29a TAGCACCATCTGAAATCGG
mmu-miR-29b TAGCACCATTTGAAATCAGTG
mmu-miR-29c GCACCATTTGAAATCGGTTA

mmu-miR-290-5p CAAACTATGGGGGCACTT
mmu-miR-301a CAGTGCAATAGTATTGTCAAAG
mmu-miR-30a GTAAACATCCTCGACTGGAAG
mmu-miR-30b TGTAAACATCCTACACTCAGCT

mmu-miR-30c TGTAAACATCCTACACTCTCAGC
mmu-miR-30d ACATCCCCGACTGGAAG
mmu-miR-30e TGTAAACATCCTTGACTGGAAG
mmu-miR-34a GCAGTGTCTTAGCTGGTTGT

mmu-miR-378 ACTGGACTTGGAGTCAGAAG
mmu-miR-486 TACTGAGCTGCCCCGA
mmu-miR-497 CAGCAGCACACTGTGGTTT
mmu-miR-499 TTAAGACTTGCAGTGATGTTT

mmu-miR-99a ACCCGTAGATCCGATCTTG

Universal Primer

Universal Primer Qiagen

Table 9. Endogenous reference genes oligonucleotides used for 

quantification

Endogenous reference genes
(miScript PCR controls)

HS_RNU1A-1 Qiagen
HS_RNU6B-2 Qiagen
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2.2.2. mRNA quantification

Table 10. Oligonucleotide sequences used for mRNA quantification.

Gene Oligonucleotide sequence

mm-Col1
FW: TGTAAACACCCCAGCGAAGAA
RV: CTGAGTTGCCATTTCCTTGGA

mm-Col3
FW: CTCACCCTTCTTCATCCCACTCTTA

RV: ACATGGTTCTGGCTTCCAGACAT

mm-Hprt
FW: GCTTTCCCTGGTTAAGCAGTACA
RV: ACACTTCGAGAGGTCCTTTTCAC

2.3. Consumables and chemicals

2.3.1. Buffers and media

DMEM medium Sigma-Aldrich, St. Louis, USA
DMEM medium without Phenol red Sigma-Aldrich, St. Louis, USA
DMEM/F12 Gibco® Life technologiesTM, USA
Dulbecco's PBS (1x), ohne Ca & Mg PAA

2.3.2. Chemicals

Angiotensin II Calbiochem, USA
Dextrin Sigma-Aldrich, St. Louis, USA
Chloroform Carl Roth, Karlsruhe, Germany
DEPC-treated H2O Carl Roth, Karlsruhe, Germany
Estradiol, water soluble Sigma-Aldrich, St. Louis, USA
Ethanol (pure) Merck, Darmstadt, Germany
Ethanol (denatured) Herbeta Arzneimittel Detlef Karlowski
FCS Biochrom AG, Germany
FCS-CS Life Technologies, Carlsbad, USA
Isopropanol Carl Roth, Karlsruhe, Germany
Norepinephrin Sigma-Aldrich, St. Louis, USA
Penicillin/Streptomycin PAA
PSG (L-Glutamine with Penicillin/Strep) PAA
Power Sybr Green PCR Master Mix Life Technologies, Carlsbad, USA
RNA-Bee, RNA Isolation Reagent Tel-Test
SYBR® Green PCR Master Mix Qiagen, Hilden, Germany
Trypsin/EDTA Sigma-Aldrich, St. Louis, USA
Water for molecular biology Millipore
DNAse I Roche, Mannheim, Deutschland
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NaCl Sigma-Aldrich, St. Louis, USA

Na2HPO4 Sigma-Aldrich, St. Louis, USA

HEPES Sigma-Aldrich, St. Louis, USA

Glucose Sigma-Aldrich, St. Louis, USA

BSA PPA, Brussels, Belgium
Collagenase type I Worthington , Lakewood, USA
Dispase Gibco, Darmstadt, Germany
CaCl2 Sigma-Aldrich, St. Louis, USA

2.3.3. Kits

Agilent RNA 6000 Nano Ladder Agilent Technologies, Santa Clara, 
USA

RNA 6000 Nano Kit Agilent Technologies, Santa Clara, 
USA

High Capacity cDNA Reverse Transcription Kit Applied Biosystems, USA
Fast SYBR® Green Master Mix Life Technologies, Carlsbad, USA
miScript I RT Kit Qiagen, Hilden, Deutschland
miScript SYBR Green PCR Kit Qiagen, Hilden, Deutschland
Power SYBR® Green PCR Master Mix Life Technologies, Carlsbad, USA

2.4. Devices

7300 Real-Time PCR System Life Technologies, Carlsbad, USA

Agilent 2100 Bioanalyzer Agilent Technologies, Santa Clara, 
USA

Analytical Balance ALT 220-5DAM Kern & Sohn GmbH, Balingen, 
Germany

Eppendorf Mastercycler® gradient Eppendorf, Hamburg, Deutschland

Eppendorf Centrifuge 5417 R Eppendorf, Hamburg, Germany
HeraCell Incubator Heraeus, Germany
Hettich Microcentrifuge 22R Tuttlingen, Germany

NanoDrop ND-1000 Thermo Fisher Scientific, Waltham, 
USA

StepOnePlus™ System Life Technologies, Carlsbad, USA
Holten Laminair Holten Lamina Air, Denmark
Waterbath Memmert, Germany

2.5. Software and databases

GraphPad Prism 6 La Jolla, USA
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ABI Prism Taqman Applied Biosystems
EndNote Thomson Reuters
http://www.ncbi.nlm.nih.gov/pubmed, National Institutes of Health, USA
http://www.targetscan.org, Whitehead Institute for Biomedical Research, MIT, USA
http://cpdb.molgen.mpg.de, Max-Planck Institute for Molecular Genetics, Germany

2.6. Other

Adhesive Seal Applicator Life Technologies, Carlsbad, USA
Cell culture plates and flasks Biochrom, Berlin, Germany
Combitips Plus Eppendorf, Hamburg, Germany
Eppendorf Pipette tips Eppendorf, Hamburg, Germany
Eppendorf reaction tubes Eppendorf, Hamburg, Germany
Falcon tubes BD Biosciences, NJ, USA
MicroAmp Optical 96-Well Reaction Plate Life Technologies, Carlsbad, USA
MicroAmp Fast Optical 96-well Reaction 
Plate Life Technologies, Carlsbad, USA

Optical Adhesive Covers Life Technologies, Carlsbad, USA
Serological pipettes Carl Roth, Karlsruhe, Germany
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3.1. Computational analysis of mRNA microarrays results

The starting point for this project was the gene expression profiling (microarrays) 

already published.38 The samples used for the array, were cardiac tissue (LV) from 

C57BL/6N mice, males and females, 9 weeks after TAC operation, using Sham operated 

animals as a control group. The genes were selected by 30% up- or down-regulation when 

comparing TAC to Sham operated mice.

The results were analysed by the online software TargetScan Mouse database 

(http://www.targetscan.org/mmu_61). This software predicts possible biological targets for 

miRNAs, detecting the presence of 7- or 8-mer sites in the gene‘s 3’ UTRs that match the 

seed region of each miRNA.

Figure 5. TargetScan start screen. This online software allows the prediction of possible biological targets for miRNAs, through 

the detection of binding sites.

The search was then limited to “conserved sites” and “miRNAs families broadly 

conserved among vertebrates”.
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Figure 6. TargetScan results screen.

The final list of miRNAs selected for qRT-PCR was obtained by selection of the 

miRNAs that are expressed in the heart, according to a miRNA microarray previously done 

in our group.

3.2. Over-representation/enrichment analysis of genes

The over-representation/enrichment pathway analysis of the genes putatively targeted 

by miRNAs with significant sex*surgery interaction effect was performed with the 

ConsensusPathDB-mouse (http://cpdb.molgen.mpg.de/ MCPDB).178-181

This database integrates different types of interactions from numerous resources into a 

global network. In this network, physical entities (genes, proteins, metabolites, etc.) from 

different sources are matched depending on their accession number and interactions are 

matched depending on their participants to reduce data redundancy. ConsensusPathDB 

allows searching, visualising and retrieving the integrated interaction data, and might 

complement other tools that use these data for interaction- and pathway-centric analysis of 

genes, proteins and metabolites.178-181
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In order to perform this analysis, the group miRNAs with significant sex*surgery 

interaction effect was analysed with TargetScan to find the genes that could be putatively 

targeted by them. This obtained list was then shortened, excluding the genes that were only 

targeted by one miRNA.

The final gene group was analysed by ConsensusPathDB-mouse through the over-

representation analysis and the pathways were selected according to their involvement in 

cardiac hypertrophy.

Figure 7. ConsensusPathDB: over-representation analysis start screen.
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3.3. Rat cardiac fibroblasts isolation

3.3.1. Buffers and solutions

3.3.1.1. Collagenase/Dispase buffer

Table 11. Collagenase/Dispase buffer components I.

Compound Quantity

DNAse 20mg (>2000U/mg)

NaCl 16g

KCl 0.74g

Na2HPO4 0,2g

HEPES 12g

Glucose 4g

Water up to 2L

- set to pH 7,3
- sterile filtered
- stored at -20ºC in 500mL aliquots

- added before starting:

Table 12. Collagenase/Dispase buffer components II.

Compound Quantity

BSA 5g/500mL

Collagenase type I (187U/mg) 2mg/mL

Dispase (6U/mg) 2mg/mL

3.3.1.2. Solutions

CaCl2 solution (sterile filter) 0.1M

3.3.2. Preparation

Before starting, we prepared per each heart:

- 1x 50mL Falcon tube with 25mL  Collagenase/Dispase buffer (room 

temperature) + 120µL 2.5% Trypsin/EDTA + 188µL 0.1M CaCl2
- 1x 50mL Falcon tube with 25mL PBS (on ice)

- 1x 15mL Falcon tube with 10mL PBS (on ice)

- 1x 50mL Falcon tube with 15mL FCS

- 1x 50mL Falcon tube with 10mL DMEM-Medium (without supplements)
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3.3.3. Medium

Table 13. Rat cardiac fibroblasts medium components.

Compound Quantity (per 100mL)

DMEM (high Glucose) 88mL

FCS (10%) 10mL

PSG (1%) 1mL

HEPES (1%) 1mL

3.3.4. Procedure

The rats were euthanized by throat cut after narcotisation with isofluoran. The heart 

was immediately removed and the LV was transferred to a 25mL Falcon tube with cold 

DMEM medium (10mL). Next, the erythrocytes were washed in a new Falcon tube 

containing 25mL of PBS (cold) and placed in a Petri dish with 10mL of new PBS (cold) to 

dissect in 1-2mm2 fragments. The tissue fragments and the PBS were transferred with a 

pipette into a 15mL Falcon, left to sediment, washed repeatedly with PBS until the 

erythrocytes were completely eliminated and placed on ice. 

After a new wash with PBS, 5mL of Collagenase/Dispase buffer were added and the 

Falcon tube was placed in the water bath (37ºC; agitation) for 15min. The tubes were 

vigorously shaken, and left to sediment. The supernatant (containing the fibroblasts) was 

removed for a new 50mL tube containing FCS (15mL) and the procedure was repeated until 

the fragments were totally digested.

After all the tissue was digested, the tubes were centrifuged (500xg at 4ºC) for 5min. 

The medium was removed and the pellet washed with 10mL of PBS. After a new 

centrifugation (500xg at 5min), the supernatant was removed and the pellet re-suspended in

10-20mL of full medium and kept on ice. 

In order to obtain homogeneous samples, the biological samples were pooled (male 

and female cells kept separate), plated in 10cm cell culture dishes (10mL/dish) and 

incubated (37ºC; 5% CO2). After 1h, the medium was removed, the cells were washed with 

PBS (2x 10mL/dish) and new full medium was added (passage 0). During the first two days, 

the medium was changed daily and after every second day. 

When full confluence was achieved, the medium was removed and the plate washed 

with PBS (10mL/dish). The cells were then detached using 2mL Trypsin/EDTA (37ºC; 

5%CO2; ≈5min) and the reaction was stopped with full medium (6mL). The cell suspension 

was transferred to 50mL Falcon tubes and centrifuged (500xg at 10ºC). The supernatant 

was removed and new full medium was added (20mL per number of initial dishes). The cell 

suspension was then distributed (10mL/dish) for a 1:2 passage (passage 1) and incubated 

(37ºC; 5% CO2). The different treatments were performed at passage 1.
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3.4. Cell culture

3.4.1. Cardiomyocyte cell line

The AC16 cells were cultured in DMEM/F12 medium, supplemented with 12.5% FCS 

and 1% Penicillin/Streptomycin, in T75 bottles. They were incubated under at 37ºC and 5% 

CO2.

The cells were detached using 3mL of Trypsin, during 3-5 min at 37ºC, 5%CO2 and the 

reaction was stopped using 9mL of supplemented medium. They were then seeded in 24-

well plates in supplemented medium and incubated O.N. at 37ºC, 5%CO2.

24h before the start of each stimulation, the medium was changed for a starvation 

medium, which consisted of DMEM/F12 medium without phenol red, supplemented with 

2.5% FCS and 1% Penicillin/Streptomycin.

The stimulations were performed adding 10-8M of E2 or 10-7M of ERα or ERβ agonist 

to a DMEM/F12 medium without phenol red, supplemented with 2.5% FCS and 1% 

Penicillin/Streptomycin, during 3, 6, 18, 24 and 48h. The medium was changed every day.

The cells were collected using 500μL of RNAzol per well, for total RNA isolation.

3.4.2. Primary rat cardiac fibroblasts

Rat primary cardiac fibroblasts were cultured in DMEM medium with phenol red, 

supplemented with 10% FCS, 1% PSG and 1% HEPES.

Prior to the cell treatment (with 10-8M E2, 10-7M ERα agonist, 10-7M ERβ agonist, 10-

7M AngII or 10-8M E2 + 10-7M AngII) the cells were washed with PBS (10mL/dish) and 

starved for a period of 24h in phenol red-free medium containing 2.5% FCS-CS, 1% PSG 

and 1% HEPES (37ºC; 5% CO2).

The cells were treated for an additional time of 24h in every case. In the case of the 

co-treatment with E2 and AngII, the cells were pre-incubated with E2 for 1h before AngII was 

added. The samples were collected using 500μL of RNAzol per well, for total RNA isolation.
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3.5. Methods with RNA, cDNA and miRNA

3.5.1. Total RNA isolation

For 1000μL of cell lysate in RNAzol, 500μL of chloroform were added, homogenised 

through 2min of a strong vortexing and left for 5 min on ice. The lysates were then 

centrifuged 20800xg for 10 min at 4ºC. The aqueous phases were separated into new tubes. 

After the addition of an equal volume of 100% isopropanol, the samples were left O.N. at -

20ºC for precipitation.

The day after, the samples were centrifuged 20800xg for 30 min at 4ºC. Next, the 

samples were washed with 750μL of ethanol and centrifuged 6800xg for 5 min at 4ºC. After 

the repetition of the washing step, the RNA was air-dried and resuspended in 20-50μL of 

DEPC-treated H2O. 

3.5.2. Qualitative and quantitative measurement of RNA

The quantitative measurement of the obtained RNA was performed using a NanoDrop 

ND-1000 device and the respective program (ND-1000 V3.3.0).

When a qualitative RNA measurement was required, we used a Agilent 2100 

Bioanalyzer and the corresponding RNA 6000 Nano Kit.

3.5.3. Reverse transcription of mRNAs and miRNAs into cDNA

The reverse transcription (RT) of the RNA was performed using miScript I RT Kit and 

following the manufacturer’s protocol. When RT reactions are performed using this kit, all 

RNA species are converted into cDNA. Mature miRNAs are polyadenylated by poly(A) 

polymerase and reverse transcribed into cDNA using oligo-dT primers. The oligo-dT primers 

have a 3' degenerate anchor and a universal tag sequence on the 5' end allowing 

amplification of mature miRNA in the qRT-PCR step. This allowed the miRNA quantification 

to be done using the sequence of the miRNA of interest as a 5’ primer and the commercially 

available miScript Universal Primer as 3’ primer. All other RNA species (including precursor 

miRNA, other noncoding RNA, and mRNA) are also converted into cDNA using oligo-dT and 

random primers. Polyadenylation and RT are performed in parallel in the same tube.
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Figure 8. Reverse Transcription of mRNAs and miRNAs in cDNA with miScript I RT Kit 

(Qiagen).

3.5.4. RT reaction mix

Table 14. Reverse transcription reaction mix components.

Component Vol/Reaction 
(μL)

miScript RT Buffer, 5x 2
miScript Reverse Transcriptase Mix 0,5

RNase-free water (variable)

Template RNA 500ng

Total 10
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3.5.5. RT Reaction protocol

Table 15. Reverse transcription reaction 

protocol.

Step Temperature
(ºC)

Duration
(min)

1 37 60min

2 95 5min

3 4 ∞

3.5.6. Quantitative real time PCR
3.5.6.1. Quantitative real time reaction mix

The quantitative real time PCR (qRT-PCR) reaction was performed using the following 

mix, in a total volume of 20 μL.

Table 16. Quantitative real time reaction mix components.

Component Volume (μL)

PowerSYBR Green / FastSYBR Green 10

3’ Primer (5 pmol/μL) 0,8

5’ Primer (5 pmol/μL) 0,8

H2O 4

cDNA (125ug/uL) 4

Total 20 μL

3.5.6.2. Quantitative real time PCR protocol

3.5.6.2.1. Endogenous small RNAs control

Table 17. Small RNAs control quantitative real time PCR protocol.

Function Temperature
(ºC)

Duration
(min)

Number of
cycles

Denaturing 95 10 1

Denaturing 95 00:15

40Annealing 55 1

Elongation 70 1

Dissociation curve

95 00:15

160 1

95 00:15
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3.5.6.2.2. General miRNA quantification

Table 18. General miRNA quantification real time protocol

Function Temperature
(ºC)

Duration
(min)

Number of
cycles

Denaturing 95 10 1

Denaturing 95 00:15
40

Annealing 55 1

Dissociation curve

95 00:15

160 1

95 00:15

3.6. Statistical analysis

The statistical analysis was performed using the software GraphPad Prism, version 

6.03 (GraphPad Software Inc.). The statistical tests were chosen according to the groups of 

samples in each experiment.

Table 19. Statistical analysis performed in the results of each experiment.

Experiment Statistical Test Post-Hoc test

WT mice, Sham/TAC, Male/Female two-way ANOVA Bonferroni

ERβ-/- mice, Sham/TAC, Male/Female two-way ANOVA Bonferroni

Female mice; WT/ERβ-/- unpaired t-test -

Sham mice; WT/ERβ-/-; Male/Female two-way ANOVA Bonferroni

Female cardiomyocytes (AC16 cells) unpaired t-test -

Primary cardiac fibroblasts; E2 treatment unpaired t-test -

Primary cardiac fibroblasts; ERα and ERβ treatments one-way ANOVA Bonferroni

Sham mice; WT/ERα-/-; Male/Female two-way ANOVA Bonferroni

Primary cardiac fibroblasts; AngII and AngII+E2 treatments one-way ANOVA Bonferroni
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4.1. Computational analysis of mRNA microarrays results

4.1.1. Genes show sex differences in their expression 9 weeks after TAC

Our group described previously sex-differences in gene expression in mice, 9 weeks 

after TAC surgery60. In this study, WT males exhibited a stronger induction of matrix related 

and cell proliferation genes as well as a repression of mitochondrial genes than female 

animals. ERβ-/- male mice revealed a stronger expression of pro-apoptotic genes with a 

higher expression in males. After TAC male WT animals developed higher fibrosis than their 

female siblings, but in the absence of ERβ the sex differences in cardiac fibrosis were 

abolished. WT TAC females also exhibited, 9 weeks after TAC, a better maintenance of 

cardiac energy metabolism, having mitochondrial function encoding genes less suppressed 

than males.

In order to identify the miRNAs with a possible sex-specific regulation in TAC, the 

genes that were sex-specifically regulated, up-/down-regulated in one of the sexes or 

regulated in an opposite way, were identified to analyse them concerning the existence of 

binding sites for miRNAs. Table 20 shows the list of sex-differently regulated genes utilized 

in the next step (TargetScan).

Table 20. Genes dysregulated in opposite ways in males and females.

Analysed genes

Abca6
Abcc3
Abl1
Ace2
Actn1
Adamts6
Adat1
Adh1
Agbl3
AI646023
Akr1c20
Alg14
Angptl4
Apitd1
Apoc3
Aqp4
Arsg
Atg9b
Atp2c1
B3gat3
BB045044
BC030477
BC059841
Becn1
Brms1
Brunol4
Bst1
Bub3
C1qtnf3
C79407

Cables1
Cacna1a
Cacng6
Calcb
Ccdc16
Ccdc83
Ccl28
Ccnd3
Ccnjl
Cdc2l5
Cdca5
Cdon
Cebpb
Centd1
Ces3
Ces5
Chl1
Clasp2
Clcn2
Cldn22
Cntn4
Cpsf6
Crispld1
Cugbp1
Cugbp2
Cxcl7
Cxxc6
Cyp20a1
Cyp2c38
D16Bwg1494e

D18Ertd289e
Dbil5
Dbp
Dcamkl1
Ddx3y
Depdc5
Dirc2
Dlg2
Dnajc2
Dnase1l2
Dnm1
Dock2
Dpp6
Dppa3
Edn3
Egfr
Eif2s3y
Enpp2
Evc2
Eya4
Ezh1
Fbxo17
Fetub
Fgf14
Fgf7
Fkbp1b
Flrt2
Fmr1nb
Frem1
Fscn1

Fsip1
Fst
Gabrp
Gcnt2
Glt25d2
Gm129
Gm410
Gnb3
Gng8
Gp1ba
Grem1
H2-K1
Hdh
Hipk2
Hlf
Hmmr
Hsd17b11
Hspa1a
Hspa1b
Igfbp5
Igk-V28
Ints8
Iqwd1
Isg20l1
Itga9
Jarid1d
Kcnh3
Klf6
Klhdc8a
Lima1

Lman1l
LOC230010
LOC667085
LOC77413
Loxl2
Lrba
Mamdc1
Marcksl1
Mark1
Mfap4
Micalcl
Mon2
Mpa2l
Mrc2
Ms4a1
Ms4a6d
Mt1
Mtap1b
Mup1 /// Mup2
Myl7
Nbr1
Ncor1
Nek11
Nkd2
Nox4
Npas2
Npnt
Nr4a1
Nr4a3
Olfm1

Olfr690
P2ry10
Padi4
Panx1
Pax5
Pcdhb16
Pdk4
Per2
Phc2
Phospho1
Pik3r1
Pkib
Plcxd3
Pou2af1
Pou2f2
Ppfia1
Prepl
Prokr1
Psmd7
Ptgs2
Punc
Pygo1
Rad50
Rasgef1a
Rbx1
Rhod
Robo1
Rorb
Rps10
Rptn

Rrbp1
Rttn
Runx1
S100a8
S100a9
Scel
Sele
Senp8
Serpina1c
Serpina3n
Serpine1
Sfrs12
Skp2
Slc13a3
Slc26a3
Slc2a10
Slc35f1
Slc39a6
Slc7a9
Snrpn
Snx15
Sort1
Spbc25
Stfa2l1
Stmn3
Sunc1
Syp
Sytl3
Tcte1
Tef

Thoc1
Timp4
Tmem100
Tmem108
Tmod3
Tnfrsf9:
Tnrc6c
Trim24
Trpm3
Tsc22d3
Ttr
Txnip
Tyr
Uap1
Ubtf
Ucp3
Ugcgl2
Uty
Vav2
Vps33a
Wdr20a
Wnt5b
Xist
Xlkd1
Zbtb16
Zc3h13
Zfp192
Zkscan1
Zmynd19
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4.1.2. miRNAs predicted by TargetScan binding site analysis

The TargetScan analysis (gene target miRNA) of the dysregulated genes in 

hypertrophy (previously published data; Table 20) allowed identifying miRNAs that could 

contribute to it, therefore being also possibly dysregulated in a sex-specific manner. The 

genes that did not have any predicted binding site and the genes that only showed putative 

binding sites for miRNAs that are not expressed in the heart have been withdrew. The 

analysis of the remaining 80 genes identified 157 different miRNAs with putative binding 

sites in their 3’UTR sequence. From these, 97 miRNAs were discarded because they were 

not detected in the heart. The remaining 60 miRNAs were selected for quantification using 

qRT-PCR, (Table 21).

Table 21. MiRNAs selected for further quantification

mmu-let-7b mmu-miR-15b mmu-miR-24
mmu-let-7c mmu-miR-16 mmu-miR-26a
mmu-let-7d mmu-miR-181a mmu-miR-27a
mmu-let-7e mmu-miR-185 mmu-miR-27b
mmu-let-7g mmu-miR-193 mmu-miR-29a
mmu-let-7i mmu-miR-195 mmu-miR-29b
mmu-miR-100 mmu-miR-199a-3p mmu-miR-29c
mmu-miR-103 mmu-miR-199a-5p mmu-miR-290-5p
mmu-miR-106a mmu-miR-199b-5p mmu-miR-301a
mmu-miR-106b mmu-miR-19b mmu-miR-30a
mmu-miR-107 mmu-miR-203 mmu-miR-30b
mmu-miR-130a mmu-miR-208a mmu-miR-30c
mmu-miR-133a mmu-miR-20a mmu-miR-30d
mmu-miR-133b mmu-miR-21 mmu-miR-30e
mmu-miR-143 mmu-miR-212 mmu-miR-34a
mmu-miR-145 mmu-miR-22 mmu-miR-378
mmu-miR-149 mmu-miR-221 mmu-miR-486
mmu-miR-152 mmu-miR-222 mmu-miR-497
mmu-miR-154 mmu-miR-23a mmu-miR-499
mmu-miR-15a mmu-miR-23b mmu-miR-99a
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4.2. Altered miRNA expression in a hypertrophy mouse 
model

The first experimental approach of this project was made as a screening of the 

selected miRNAs in a mouse hypertrophy model. The samples consisted of 4 groups: WT 

males/females, Sham/TAC operated. The statistical analysis performed was two-way 

ANOVA, followed by Bonferroni post-hoc test. 

The results are shown first as two-way ANOVA analysis results (Table 22). This 

analysis determines how a response is affected by two different factors, the sex and the 

surgery in this case, independently, as well as the sex*surgery interaction effect. The latter is 

a test whether the average surgery effect is the same for each sex or not.

Table 22. Two-way Anova analysis of miRNA 

quantification.  

miRNA

two-way ANOVA

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y

In
te

ra
ct

io
n

let-7b *** 0,068 ns

let-7c ns ns ns

let-7d 0,068 ns ns

let-7e **** *** **

let-7g * ** ns

let-7i *** ns ns

miR-100 ns ns ns

miR-103 * 0,053 ns

miR-106a * * ns

miR-106b * * 0,098

miR-107 ns ns ns

miR-130a *** ** *

miR-133a **** ** **

miR-133b * ns *

miR-143 ns * 0,052

miR-145 ns 0,084 ***

miR-149 ns ns ns

miR-15a ** * ns

miR-15b ** 0,060 ns

miR-152 * ns ns

miR-154 * ns ns

miR-16 *** ** ns

miR-181a ns ns ns

miR-185 ns 0,054 ns

miR-19b * * 0,069

miR-193b ns ns ns

miR-195 *** ns 0,071

miR-199a-3p *** ns ns

miR-199a-5p *** ns ns
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miRNA

two-way ANOVA

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y

In
te

ra
ct

io
n

miR-199b-5p *** ns *

miR-20a * * ns

miR-203 ns ns ns

miR-208a ns * ns

miR-21 **** *** *

miR-212 * ns ns

miR-22 * * 0,096

miR-221 *** ns ns

miR-222 ns ns 0,084

miR-23a 0,062 ns **

miR-23b * * *

miR-24 ** ** ns

miR-26a ** * 0,067

miR-27a * ** ns

miR-27b ** * ns

miR-29a *** ** *

miR-29b ns * ns

miR-29c 0,090 ns ns

miR-290-5p **** ns ns

miR-30a ns ns ns

miR-30b ns ns *

miR-30c ns ns ns

miR-30d ns ns ns

miR-30e ns ** 0,052

miR-301a * 0,078 ns

miR-34a 0,079 ns ns

miR-378 ns * ns

miR-486 ns ns ns

miR-497 *** ns **

miR-499 ns * ns

miR-99a ** ns ns

All the 60 miRNAs quantified by qRT-PCR in WT, 

male/female, Sham/TAC operated mice. The 

statistical analysis was performed with two-way 

ANOVA: * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001. Note: The values 0.05<p<0.1 were not 

discarded, as they could be important hints for further 

analysis.



4. Results

_________________________________________________________________________
51

4.2.1. Sex and LVH influence miRNA expression – summary of the two-
way ANOVA analysis

4.2.1.1. Surgery effect – miRNAs dysregulated in hypertrophy

This statistical analysis of surgery effect compiles operated and non-operated animals 

in two different groups, without distinguishing males and females. The surgery effect was 

significant in 35 cases in the two-way ANOVA analysis (see Table 22), namely:

 let-7b, let-7e, let-7g, let-7i, miR-103, miR-106a, miR-106b, miR-130a, miR-133a, 

miR-133b, miR-15a, miR-15b, miR-152, miR-154, miR-16, miR-19b, miR-195, miR-

199a-3p, miR-199a-5p, miR-199b-5p, miR-20a, miR-21, miR-212, miR-22, miR-221, 

miR-23b, miR-24, miR-26a, miR-27a, miR-27b, miR-29a, miR-290-5p, miR-301a, 

miR-497, miR-99a.

Figure 9 illustrates the surgery effect results. Males and females are represented 

together, according to the type of operation. The relative expression is represented as fold of 

the average of male and female Sham.

Figure 9. 35 miRNAs showed a significant surgery effect after two-way ANOVA analysis. 34 miRNAs presented an up-

regulation as a TAC effect and only one was down-regulated after surgery (miR-290-5p). 

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

Four miRNAs, let-7d, miR-23a, miR-29c and miR-34a, showed p-values between 0.1 

and 0.05, being considered borderline values to a significant surgery effect. Figure 10. is a 

graphical representation of surgery effect on these miRNAs.
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Figure 10. Four miRNAs showed borderline p-

values (0.05<p<0.1) for the surgery effect after 

two-way ANOVA analysis. All of these 

miRNAs were induced by the surgery. 

The p-values are indicated.

Finally, surgery didn’t produce any significant effect in 21 miRNAs of the 60 analysed

(Figure 11).

Figure 11. Twenty-one miRNAs didn‘t show surgery effect after two-way ANOVA analysis.
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4.2.1.2. Sex effect – Sex differences in the miRNA expression in 
control and hypertrophic hearts

In the two-way ANOVA analysis the sex effect was significant for the expression of 24 

miRNAs. In this case, the analysis compiles males and females in 2 different groups, without 

distinguishing between Sham and TAC surgery. 

The sex effect might be due a number of different causes. In this project we focused 

on the E2 effect on miRNA expression. The miRNAs with a significant sex effect are:

 let-7e, let-7g miR-106a, miR-106b, miR-130a, miR-133a, miR-143, miR-15a, miR-16, 

miR-19b, miR-20a, miR-208a, miR-21, miR-22, miR-23b, miR-24, miR-26a, miR-27a, 

miR-27b, miR-29a, miR-29b, miR-30e, miR-378, miR-499

Figure 12 is a graphical representation of the sex effect on miRNA expression. Sham 

and TAC operated animals are represented together, according to the sex. The average 

expression of Sham and TAC male animals are represented as fold of the expression in 

female mice. 

Interestingly, all 24 miRNAs with significant sex effect were higher expressed in males 

than in females.

Figure 12. Twenty four miRNAs are stronger expressed in male mice. The values of Sham and TAC are represented together, 

according to the sex.

Two-way ANOVA; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
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Six miRNAs (let-7b, miR-103, mir-145, miR-15b, miR-185 and miR-301a) presented a 

borderline significance for the sex effect. Figure 13 shows the results for these miRNAs 

graphically.

Figure 13. Six miRNAs showed a borderline p-value (0.05<p<0.1) 

for the sex effect after two-way ANOVA analysis. Let-7b, miR-103, 

miR-15b, miR-185 and miR-301a are higher expressed in males 

than in females, while miR-145 shows the opposite result.

The p-values are indicated.

In the case of 30 of the 60 miRNAs, sex didn’t have any significant effect (Figure 14).

Figure 14. Thirty miRNAs didn’t show a significant value for the sex effect after two-way ANOVA analysis.
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4.2.1.3. Sex*Surgery interaction effect – Sex specific effect after 
surgery

The two-way ANOVA analysis shows also the effect of the interaction of the two 

factors explored in the experiment, sex and surgery. There were 12 miRNAs with a 

significant interaction effect, which means that the surgery had an opposite or at least a 

different effect in males and females, i.e. they represent a sex-specific effect of surgery in

miRNA expression:

 let-7e, miR130a, miR-133a, miR-133b, miR-145, miR-199b-5p, miR-21, miR-23a

miR-23b, miR29a, miR30b, miR-497

Other eight miRNAs presented borderline p-values, between 0.1 and 0.05: miR-106b, 

miR-143, miR-19b, miR-195, miR-22, miR-222, miR-26a and miR-30e.

The Venn diagram (Figure 15) shows a summary of the obtained data of the two-way 

ANOVA results in a simplified way.

Figure 15. Summary scheme of the statistical analysis results of the miRNA quantification in WT mice. 30 miRNAs presented 

significant sex and/or sex*surgery interaction effect. 

Two-way ANOVA analysis.
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4.2.1.3.1. miRNAs with sex*surgery interaction effect – over-

representation/enrichment analysis

In order to understand the possible effects of this sex-specific regulation of miRNA 

expression in hypertrophy, an over-representation/enrichment analysis of putatively targeted 

genes in known pathways using ConsensusPathDB-mouse (http://cpdb.molgen.mpg.de/ 

MCPDB) was performed.178-180 The TargetScan analysis of putative targets of those miRNAs 

with significant sex*surgery effect (let-7e, miR130a, miR-133a, miR-133b, miR-145, miR-

199b-5p, miR-21, miR-23a miR-23b, miR29a, miR30b and miR-497) was compiled, counting 

932 different genes. Assuming that important genes are regulated by more than one miRNA, 

this list was then filtered according to the number of miRNAs with the same putative target 

(≥2), giving a final list of 127 genes for analysis. The final gene list was inserted in the 

ConsensusPathDB-mouse software and the results were selected according to the 

relevance in cardiac hypertrophy. Table 23 shows selected hypertrophy-relevant pathways 

obtained by the analysis. 

Table 23. Pathway enrichment analysis results after analysis using ConsensusPathDB-mouse. MAPK and PI3K-Akt signalling 

pathways presented the biggest set size with the lowest p-value, according to KEGG pathway database.

Pathway name
Set size

Candidates
p-value q-value Pathway source

( Mus musculus (mouse)) contained

MAPK signalling pathway 257 8 (3.1%) 3.64e-05 0.000692 KEGG

PI3K-Akt signalling pathway 356 9 (2.6%) 5.33e-05 0.000868 KEGG

Oxidative Damage 17 3 (17.6%) 7.89e-05 0.000999 Wikipathways

TGF-beta Receptor Signalling Pathway 150 6 (4.0%) 0.000102 0.00122 Wikipathways

Wnt Signalling Pathway 60 4 (6.7%) 0.00023 0.00238 Wikipathways

MAPK Cascade 29 3 (10.3%) 0.000406 0.0037 Wikipathways

Elastic fibre formation 31 3 (9.7%) 0.000496 0.00419 Reactome

oestrogen signalling 74 4 (5.4%) 0.000515 0.00419 Wikipathways

p38 MAPK Signalling Pathway 34 3 (8.8%) 0.000653 0.0048 Wikipathways

Mitochondrial Gene Expression 19 2 (10.5%) 0.00406 0.0162 Wikipathways

Ras signalling pathway 230 5 (2.2%) 0.00561 0.0194 KEGG

Signalling by FGFR 144 4 (2.8%) 0.00579 0.0194 Reactome

Signalling by FGFR in disease 155 4 (2.6%) 0.0075 0.0229 Reactome

Calmodulin induced events 27 2 (7.4%) 0.00812 0.0229 Reactome

CaM pathway 27 2 (7.4%) 0.00812 0.0229 Reactome

Apoptosis 83 3 (3.6%) 0.00843 0.0234 Wikipathways

Oxidative Stress 28 2 (7.1%) 0.00872 0.0239 Wikipathways

Ca-dependent events 29 2 (6.9%) 0.00933 0.0247 Reactome

Uploaded list: 127; mapped entities: 69; enriched pathway-based sets: 87

According to ConsensusPathDB-mouse, the selected miRNAs have the majority of the 

putative targets related to MAPK and PI3K-Akt signalling pathways. MAPKs are known to be 

intimately involved in cardiac remodelling. PI3K-Akt pathway, on its turn, regulates 
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cardiomyocyte size, survival, angiogenesis, and inflammation in both physiological and 

pathological cardiac hypertrophy. Among other results, oestrogen signalling is of interest and 

it has also been shown previously that E2 influences MAPK activity, through both 

phosphorylation and deactivation proteins.182 Moreover, it has also been shown the ability of 

this hormone to activate Akt through a direct, non-nuclear pathway involving the regulatory 

subunit of PI3K, as well as its effects on MAPK signalling pathway.183

Furthermore, a significant number of mitochondrial genes were previously shown by 

our group to be sex-differently regulated in a mouse hypertrophy model60, for what the 

appearance of mitochondrial gene expression in the over-representation analysis is not 

surprising.



4. Results

_________________________________________________________________________
58

4.2.2. Sex and LVH influence miRNA expression – identical expression 
patterns comparison

4.2.2.1. Excluded miRNAs

From the 60 miRNAs quantified, 16 miRNAs didn’t show any significant effect (Table 

24) and 14 miRNAs showed only significant surgery effect after two-way ANOVA analysis 

(Table 25). These miRNAs were not considered relevant for the questions to be answered in 

this study, where the effects of interest are sex and sex*surgery interaction effects, and were 

discarded from the subsequent analysis

Table 24. Sixteen miRNAs in WT mice without any significant effect after two-way 

ANOVA analysis. 

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC effect Sex-differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
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ra
ct
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n
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es

M
al

es

Sh
am

TA
C

let-7c ns ns ns

let-7d 0,068 ns ns ↑

miR-100 ns ns ns

miR-107 ns ns ns

miR-149 ns ns ns

miR-181a ns ns ns

miR-185 ns 0,054 ns

miR-193b ns ns ns

miR-203 ns ns ns

miR-222 ns ns 0,084 ↑ (♂>♀)

miR-29c 0,090 ns ns

miR-30a ns ns ns

miR-30c ns ns ns

miR-30d ns ns ns

miR-34a 0,079 ns ns

miR-486 ns ns ns

Two-way ANOVA; Bonferroni post-hoc test; ns – not significant. ↑↓ significant up-

/down-regulation; (♂>♀) borderline p-values.
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Table 25. Fourteen miRNAs in WT mice with only significant surgery effect after two-

way ANOVA analysis. 

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC effect Sex-differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
te

ra
ct

io
n

Fe
m

al
es

M
al

es

Sh
am

TA
C

let-7b *** 0,068 ns ↑ ♂>♀

let-7i *** ns ns ↑ ♂>♀

miR-103 * 0,053 ns

miR-15b ** 0,060 ns ↑ ♂>♀

miR-152 * ns ns ↑

miR-154 * ns ns

miR-195 *** ns 0,071 ↑ ♂>♀

miR-199a-3p *** ns ns ↑

miR-199a-5p *** ns ns ↑ (♂>♀)

miR-212 * ns ns ↑

miR-221 *** ns ns ↑

miR-290-5p **** ns ns ↓ (↓)

miR-301a * 0,078 ns

miR-99a ** ns ns ↑

Two-way ANOVA; Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001. ♂>♀ significant sex differences; ↑↓ significant up-/down-regulation; (↑↓)

and (♂>♀) borderline p-values.
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4.2.2.2. miRNAs with sex and/or sex*surgery interaction effect

Table 26 shows the results of Bonferroni post-hoc test performed on miRNAs that 

showed significant sex and/or sex*surgery interaction effect after the two-way ANOVA 

analysis, as well as the ratios between the comparable groups. The FT/FS and the MT/MS 

ratios show the dysregulation of miRNAs under TAC conditions in females and males, 

respectively. The FS/MS and the FT/MT ratios are used to reveal the sex differences of the 

miRNA expression in basal and hypertrophic conditions, respectively.

Table 26. MiRNA expression ratios in WT mice. 

miRNA

Ratios
(Bonferroni post-hoc test)

Ratio TAC/Sham
(p-value)

Ratio Female/Male
(p-value)

Females Males Sham TAC

- FT/FS - - MT/MS - - MS/FS - - MT/FT -

let-7e 1,38 2,24 1,22 1,98
ns **** ns ****

let-7g 1,40 1,37 1,58 1,54
ns ns 0,097 *

miR-106a 1,55 1,63 1,39 1,46
ns * ns ns

miR-106b 1,14 1,78 1,10 1,72
ns ** ns *

miR-130a 1,26 1,97 1,21 1,89
ns *** ns ***

miR-133a 1,32 2,47 0,99 1,85
ns **** ns ***

miR-133b 1,02 1,79 0,92 1,62
ns ** ns *

miR-143 0,92 1,72 1,13 2,10
ns * ns **

miR-145 0,52 1,46 0,48 1,36
** ns ** ns

miR-15a 1,22 1,63 1,13 1,52
ns ** ns **

miR-16 1,81 1,79 1,67 1,64
ns ** ns **

miR-19b 1,25 2,34 1,07 2,00
ns ** ns *

miR-199b-5p 1,29 3,17 0,66 1,63
ns **** ns *

miR-20a 1,52 1,42 1,62 1,52
ns ns ns 0,078

miR-208a 0,85 1,19 1,39 1,93
ns ns ns 0,072

miR-21 1,80 2,53 1,55 2,18
ns **** ns ***

miR-22 1,06 1,53 1,11 1,60
ns * ns *

miR-23a 0,81 2,47 0,53 1,64
ns ** ns *

miRNA

Ratios
(Bonferroni post-hoc test)

Ratio TAC/Sham
(p-value)

Ratio Female/Male
(p-value)

Females Males Sham TAC

- FT/FS - - MT/MS - - MS/FS - - MT/FT -

miR-23b 1,07 1,77 1,06 1,75
ns ** ns **

miR-24 1,51 1,72 1,49 1,70
ns ** ns **

miR-26a 1,12 1,63 1,04 1,51
ns ** ns *

miR-27a 1,41 1,50 1,54 1,63
ns * ns *

miR-27b 1,39 1,84 1,22 1,62
ns ** ns **

miR-29a 1,17 1,73 1,07 1,59
ns *** ns ***

miR-29b 1,21 1,13 1,75 1,62
ns ns ns ns

miR-30b 0,83 1,66 0,80 1,61
ns * ns *

miR-30e 0,82 1,53 1,22 2,26
ns * ns **

miR-378 0,99 1,32 1,18 1,56
ns ns ns *

miR-497 1,14 2,97 0,68 1,79
ns **** ns **

miR-499 0,94 0,95 1,51 1,54
ns ns ns ns

WT mice. Eypression ratios and corresponding Bonferroni 

post-hoc test performed on the 32 miRNAs that showed 

sex and/or sex*surgery effect after two-way ANOVA 

analysis. FT/FS, MT/MS, FS/MS and FT/MT ratios and p-

values represented. 

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 

As seen in Table 26, the strongest TAC effects in males (MT/MS≥2.00) were on the 

expression of let-7e, miR-133a, miR-19b, miR-199b-5p, miR-21, miR-23a and miR-497. 

Concerning the sex differences in TAC the biggest differences between males and females 

(MT/FT≥2.00) were found in miR-143, mR-19b, miR-21 and miR-30e.
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The following tables and graphics show the results in different groups of miRNAs 

according to similar results between them.

4.2.2.2.1. miRNAs with sex-differences in TAC caused by an up-

regulation in males and lack of TAC effect in females

Twenty-two miRNAs showed significant sex differences between TAC groups. This 

difference was always due to an up-regulation in males TAC, that didn’t occur in females. 

The following tables and graphics show these miRNAs grouped according to the ANOVA 

result.

Group 1 (Table 27 and Figure 16.) comprises six miRNAs (let-7e, miR-130a, miR-

133a, miR-21, miR-23b and miR-29a) that, besides the sex differences and the up-regulation 

in males after TAC, show both significant sex and sex*surgery interaction effects. All of 

these miRNAs show also a significant surgery effect.

Table 27. Group 1: miRNAs with significant sex and sex*surgery effect.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC effect Sex-differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
te

ra
ct

io
n

Fe
m

al
es

M
al

es

Sh
am

TA
C

let-7e **** *** ** ↑ ♂>♀

miR-130a *** ** * ↑ ♂>♀

miR-133a **** ** ** ↑ ♂>♀

miR-21 **** *** * ↑ ♂>♀

miR-23b * * * ↑ ♂>♀

miR-29a *** ** * ↑ ♂>♀

Two-way ANOVA; Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001.♂>♀ significant sex differences; ↑↓ significant up-/down-regulation.
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a. b. c.

d. e. f.

Figure 16. Graphic representation of group 1:  miRNAs with significant sex and sex*surgery effect.

Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001

b

d f
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Group 2 (Table 28 and Figure 17) includes other six miRNAs (miR-106b, miR-143, 

miR-19b, miR-22, miR-26a and miR-30e) with a similar profile to group 1, but with a 

borderline p-value for sex*surgery interaction effect (0.05<p<0.1). MiR-143 and miR-30e

didn’t show significant surgery effect.

Table 28. Group 2: miRNAs with significant sex effect and borderline p-value for 

sex*surgery interaction effect.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC effect Sex-differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
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ra
ct
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n

Fe
m

al
es

M
al

es

Sh
am

TA
C

miR-106b * * 0,098 ↑ ♂>♀

miR-143 ns * 0,052 ↑ ♂>♀

miR-19b * * 0,069 ↑ ♂>♀

miR-22 * * 0,096 ↑ ♂>♀

miR-26a ** * 0,067 ↑ ♂>♀

miR-30e ns ** 0,052 ↑ ♂>♀

Two-way ANOVA; Bonferroni post-hoc test;* p<0.05, ** p<0.01, ns - not significant; 

numbers indicate borderline p-values. ♂>♀ significant sex differences; ↑↓ significant 

up-/down-regulation; (↑↓) and (♂>♀) borderline p-values.

a. b. c.

d. e. f.

Figure 17. Graphic representation of group 2: miRNAs with significant sex effect and borderline p-value for sex*surgery 

interaction effect.

Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

f
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Group 3 (Table 29 and Figure 18) contains five miRNAs (miR-133b, miR-199b-5p, 

miR-23a, miR-30b and miR-497) with significant sex*surgery interaction effect but no sex 

effect. Surgery effect was not significant for miR-30b expression and for miR-23a showed a 

borderline p-value.

Table 29. Group 3: miRNAs with significant sex*surgery interaction effect and no sex 

effect.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC

effect
Sex-

differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 
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ra
ct
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n

Fe
m

al
es

M
al

es

Sh
am

TA
C

miR-133b * ns * ↑ ♂>♀

miR-199b-5p *** ns * ↑ ♂>♀

miR-23a 0.0617 ns ** ↑ ♂>♀

miR-30b ns ns * ↑ ♂>♀

miR-497 *** ns ** ↑ ♂>♀

Two-way ANOVA; Bonferroni post-hoc test;* p<0.05, ** p<0.01, *** p<0.001, ns - not 

significant. ♂>♀ significant sex differences; ↑↓ significant up-/down-regulation; (↑↓)

and (♂>♀) borderline p-values.

a. b. c.

d. e.
Figure 18. Graphic representation of group 3: miRNAs with significant sex*surgery interaction effect and no sex effect. 

Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
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Group 4 (Table 30 and Figure 19) includes five miRNAs (miR-15a, miR-16, miR-24, 

miR-27a and miR-27b) with significant sex effect but no interaction effect. All five miRNAs 

show significant surgery effect and a tendency for an up-regulation also in females.

Table 30. Group 4: miRNAs with significant sex effect and no sex*surgery interaction 

effect.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC effect Sex-differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
te

ra
ct

io
n

Fe
m

al
es

M
al

es

Sh
am

TA
C

miR-15a ** * ns ↑ ♂>♀

miR-16 *** ** ns ↑ ♂>♀

miR-24 ** ** ns ↑ ♂>♀

miR-27a * ** ns ↑ ♂>♀

miR-27b ** * ns ↑ ♂>♀

Two-way ANOVA; Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, ns - not 

significant. ♂>♀ significant sex differences; ↑↓ significant up-/down-regulation; (↑↓)

and (♂>♀) borderline p-values.

a. b. c.

d. e.
Figure 19. Graphic representation of group 4: miRNAs with significant sex effect and no sex*surgery interaction effect. 

Bonferroni post-hoc test; * p<0.05, ** p<0.01.

All the miRNAs of all previous groups have in common the up-regulation in males after 

TAC surgery, the non-existence (or non-significant) effect in females and the significant 

difference of their expression between both sexes after TAC surgery. The next groups will 

show miRNAs with different characteristics.
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4.2.2.3. miRNAs with sex differences in TAC or up-regulation in 
males

This section encloses smaller groups, where all miRNAs have in common the 

significant sex effect, no sex*surgery interaction effect but they either show up-regulation in 

males after TAC, sex differences in TAC or no other significant effect.

Group 5 (Table 31 and Figure 20) contains one miRNA (miR-106a) with significant sex 

effect but no significant sex differences in TAC. However, like the miRNAs in 2.2.2.1., still 

presents an up-regulation in males and no effect in females after TAC.

Table 31. Group 5: miR-106a showed significant up-regulation in males but no 

significant sex differences after TAC.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC

effect
Sex-

differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
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ct
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n
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es

M
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es
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C

miR-106a * * ns ↑
Two-way ANOVA; Bonferroni post-hoc test; * p<0.05, ns - not significant. ♂>♀

significant sex differences; ↑↓ significant up-/down-regulation; (↑↓) and (♂>♀)

borderline p-values.

Figure 20. Graphic representation of group 5: 

miR-106a showed significant up-regulation in 

males but no sex differences after TAC. 

Bonferroni post-hoc test; * p<0.05
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Group 6 (Table 32 and Figure 21) comprises two miRNAs (let-7g and miR-378) with 

significant sex differences in TAC but no significant up-regulation in males after surgery. 

However, let-7g presented a borderline p-value for sex differences in Sham animals.

Table 32. Group 6: miRNAs with significant sex differences after TAC but no 

significant up-regulations in males.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC

effect
Sex-

differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
te

ra
ct

io
n

Fe
m

al
es

M
al

es

Sh
am

TA
C

let-7g * ** ns (♂>♀) ♂>♀

miR-378 ns * ns ♂>♀

Two-way ANOVA; Bonferroni post-hoc test; * p<0.05, ** p<0.01, ns - not significant.

>♀ significant sex differences; ↑↓ significant up-/down-regulation; (↑↓) and (♂>♀)

borderline p-values.

a. b.

Figure 21. Graphic representation of group 6: miRNAs with significant sex differences after 

TAC but no significant up-regulations in males.

Bonferroni post-hoc test; * p<0.05
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4.2.2.3.1. miRNAs with no significant effects after TAC

Group 7 (Table 33 and Figure 22) includes four miRNAs (miR-20a, miR-208a, miR-29b

and miR-499) with no up-regulation or sex differences after TAC. However, the significant 

sex effect is visible in the higher expression in males compared to females, either in Sham or 

TAC operated mice, but this difference was not significant in the Bonferroni post-hoc test.

Table 33. Group 7: miRNAs with no significant up-regulation in males or sex 

differences after TAC.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC

effect
Sex-

differences
Su

rg
er

y

Se
x

Se
x*

Su
rg

er
y 
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ra
ct
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n
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es

M
al

es

Sh
am

TA
C

miR-20a * * ns (♂>♀)

miR-208a ns * ns (♂>♀)

miR-29b ns * ns

miR-499 ns * ns

Two-way ANOVA; Bonferroni post-hoc test;  * p<0.05, ** p<0.01, ns - not significant.

(♂>♀) borderline p-values.

a. b.

c. d.

Figure 22. Graphic representation of group Group 7: miRNAs with no significant up-

regulation in males or sex differences after TAC.
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4.2.2.3.2. miRNAs with sex differences in Sham

Group 8 (Table 34 and Figure 23) includes the only miRNA (miR-145) with a significant 

down-regulation in TAC. MiR-145 presented a remarkably different expression profile, being 

down-regulated after TAC in female mice and showing no significant effect in males. In 

Sham operated animals significant sex differences were observed, being higher in females 

than in males. Sex*surgery interaction effect was significant and sex effect showed a 

borderline p-value.

Table 34. Group 8: miR-145 was the only miRNA down-regulated after TAC in female 

mice and with sex differences in Sham operated mice.

miRNA

two-way ANOVA
(p-value)

Bonferroni post-hoc test
TAC

effect
Sex-

differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
te

ra
ct

io
n

Fe
m

al
es

M
al

es

Sh
am

TA
C

miR-145 ns 0,084 *** ↓ ♂<♀

Two-way ANOVA; Bonferroni post-hoc test;  * p<0.05, ** p<0.01, *** p<0.001, ns - not 

significant. ♂>♀ significant sex differences; ↑/↓ significant up-/down-regulation; (↑/↓)

and (♂>♀) borderline p-values.

Figure 23. Graphic representation of group 

8: miR-145 was the only miRNA down-

regulated after TAC in female mice and with 

sex differences in Sham operated mice.

Bonferroni post-hoc test; ** p<0.01.



4. Results

_________________________________________________________________________
70

4.2.2.3.3. Summary of the TAC effects and sex differences in WT mice

Table 35 is a summary of the significant TAC effects in males and females. The 

majority of miRNAs are up-regulated in males and only one miRNA showed a down-

regulation after TAC.

Table 35. Summary of the TAC effects in WT mice by sex. Bonferroni post-hoc test results.

Females Males
Down-

regulated Up-regulated Down-
regulated Up-regulated

miR-145 --- let-7b
let-7i
miR-106a
miR-106b
miR-133b
miR-143
miR-15a
miR-15b
miR-152
miR-16
miR-19b
miR-195
miR-199a-3p
miR-199a-5p

miR-199b-5p
miR-212
miR-22
miR-221
miR-23a
miR-24
miR-26a
miR-27a
miR-27b
miR-30b
miR-30e
miR-497
miR-99a

Table 36 summarizes of the significant sex differences observed in Sham and TAC 

operated mice. The majority of the miRNAs showed sex differences after TAC and only one 

miRNA presented significant sex differences in Sham operated animals.

Table 36. Summary of the sex differences in Sham and 

TAC operated mice. Bonferroni post-hoc test results.

Sham TAC
miR-145 let-7e

miR-106b
miR-130a
miR-133a
miR-133b
miR-143
miR-15a
miR-16
miR-199b-5p
miR-19b
miR-21

miR-22
miR-23a
miR-23b
miR-24
miR-26a
miR-27a
miR-27b
miR29a
miR-30b
miR-30e
miR-497
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4.3. ERβ is required for sex differences in miRNA expression

4.3.1. Sex and sex*surgery interaction effects disappear in the absence 

of ERβ

After a careful statistical analysis of the data obtained in WT mice, most of the 

interesting miRNAs (sex*surgery interaction and/or sex significant effect) were measured in 

ERβ-/- mice. As already mentioned above, for the aims of this project these two groups were 

considered the most interesting. Sex*surgery interaction effect group shows the sex-specific 

effect on miRNA expression after TAC and on the other hand, sex effect group is a good hint 

for a possible regulatory effect of sex hormones on these miRNAs. The two-way ANOVA 

results of the miRNAs quantification in ERβ-/- mice are represented in Table 37.

Table 37. Two-way ANOVA analysis of miRNA 

quantification in ERβ-/- mice.

miRNA

two-way ANOVA
(p-value)

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
te

ra
ct

io
n

let-7e * ns ns

miR-106a ns 0,0835 ns

miR-106b ** ns ns

miR-130a ns ns ns

miR-133a * ns ns

miR-133b ns 0,0505 ns

miR-143 * ns 0,0883

miR-145 ns ns ns

miR-16 * ns ns

miR-199b-5p ** ns ns

miR-20a ** ns ns

miR-208a 0,056 ns ns

miR-21 * ns ns

miR-23a * ns ns

miR-24 ns ns ns

miR-27a 0,0823 ns ns

miR-27b ** ns ns

miR-29a ns ns ns

miR-29b ** ns ns

miR-30e ** ns ns

miR-378 ** ns ns

miR-497 * ns ns

Two-way ANOVA;* p<0.05, ** p<0.01, *** p<0.001, 

**** p<0.0001.
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From the quantification in ERβ-/- mice of 22 selected miRNAs (with sex and/or 

interaction effect in WT mice) it’s possible to make a first and major observation, which is the 

disappearance of all these significant effects with the absence of ERβ. The only significant 

effects observed after two-way ANOVA analysis is surgery effect.

Surgery effect was found significant in the expression of 14 miRNAs, (Table 37), 

however not all of these miRNAs showed results identical to the observed in WT animals. 

Six miRNAs (let-7e, miR-106, miR-133a, miR-16, miR-20a and miR-21) show significant 

surgery effect in both phenotypes, but in contrast to what happens in WT the TAC effect 

observed in males is a down-regulation or a tendency for it. Four miRNAs (miR-143, miR-

29b, miR-30e and miR-378) didn’t show this effect in WT, but in ERβ-/- all of them presented 

significant (or tendency for) a down-regulation in males.

Figure 24. Scheme of the statistical analysis (two-way ANOVA) results of the 

measurements in ERβ-/- mice. 

Sex and sex*surgery circles are empty due to the lack of significant results.
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4.3.2. Sex differences in miRNA expression after TAC also disappear in 
the absence of ERβ

Table 38 shows the Bonferroni post-hoc test results after two-way ANOVA analysis. 

These results help to the understanding of the different expression patterns that led to the 

differences observed between WT and ERβ-/- mice.

Table 38. Bonferroni post-hoc test performed on 22 miRNAs in ERβ-/- mice.

miRNA

Ratios

(Bonferroni post-hoc test)

Ratio TAC/Sham Ratio Female/Male

Females Males Sham TAC

- FT/FS - - MT/MS - - MS/FS - - MT/FT -

let-7e
0,73 0,81 0,86 0,95

ns ns ns ns

miR-106a
0,95 0,83 1,28 1,11

ns ns ns ns

miR-106b
0,63 0,72 1,08 1,22

* 0,053 ns ns

miR-130a
0,77 0,91 0,96 1,13

ns ns ns ns

miR-133a
0,91 0,79 0,96 0,83

ns 0,0925 ns ns

miR-133b
1,11 0,93 1,27 1,06

ns ns 0,0671 ns

miR-143
0,88 0,47 1,30 0,70

ns * ns ns

miR-145
1,03 0,84 1,09 0,89

ns ns ns ns

miR-16
0,70 0,84 0,86 1,04

* ns ns ns

miR-199b-5p
2,07 2,11 1,19 1,22

0,0593 * ns ns

miR-20a
0,62 0,66 1,03 1,10

* * ns ns

miR-208a
0,56 0,75 1,20 1,60

ns ns ns ns

miR-21
2,27 2,57 0,97 1,09

ns ns ns ns

miRNA

Ratios

(Bonferroni post-hoc test)

Ratio TAC/Sham Ratio Female/Male

Females Males Sham TAC

- FT/FS - - MT/MS - - MS/FS - - MT/FT -

miR-23a
1,27 1,31 1,00 1,04

ns ns ns ns

miR-24
1,16 1,16 1,01 1,01

ns ns ns ns

miR-27a
1,16 1,39 0,97 1,16

ns ns ns ns

miR-27b
1,37 1,50 0,90 0,99

ns * ns ns

miR-29a
0,83 0,87 0,86 0,89

ns ns ns ns

miR-29b
0,75 0,68 1,12 1,01

ns * ns ns

miR-30e
0,68 0,63 0,93 0,86

0,0709 * ns ns

miR-378
0,75 0,62 0,98 0,82

ns * ns ns

miR-497
1,86 1,30 1,33 0,93

* ns ns ns

FT/FS, MT/MS, FS/MS and FT/MT ratios and p-values 

represented. Bonferroni post-hoc test; * p<0.05, ** p<0.01, 

*** p<0.001, **** p<0.0001; ns – not significant.
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Comparing the significant results in the post-hoc test of ERβ-/- mice with the results in 

WT mice it is possible to observe many differences in the regulation of the expression of 

miRNA in response to TAC.

In female WT mice, miR-106b, miR-16 and miR-20a showed no significant effect after 

TAC, or at least a tendency for up-regulation (Table 26. Ratios FT/FS: 1.14, 1.81 and 1.52, 

respectively). However, these miRNAs were significantly down-regulated after TAC surgery 

in knock-out female mice (Ratios FT/FS: 0.63, 0.70 and 0.62, respectively).

MiR-497 was the only miRNA significantly up-regulated in ERβ deficient females after 

TAC (FT/FS=1.86).

In ERβ-/- males, miR-143, miR-20a, miR-29b, miR-30e and miR-378 were significantly 

down-regulated (Ratios MT/MS: 0.47, 0.66, 0.68, 0.63 and 0.62, respectively), while in WT 

animals they were significantly or tended to an up-regulation (Ratios MT/MS: 1.72, 1.42, 

1.13, 1.53 and 1.32, respectively).

MiR-199b-5p and miR-27b were significantly up-regulated in males in both models, 

WT and ERβ-/- mice.

4.3.3. Summary of the TAC effects and sex differences in ERβ-/- mice

Table 39 represents a summary of all significant up-/down-regulated miRNAs after 

TAC in ERβ deficient females and males. The majority of miRNAs up-regulated after TAC in 

WT males, is not up-regulated in ERβ-/-.

Table 39. TAC effects in ERβ-/- mice by sex. 

There were no significant sex differences in miRNA expression in Sham or TAC 

operated animals.

Females Males
Down-

regulated Up-regulated Down-
regulated Up-regulated

miR-106b
miR-16
miR-20a

miR-497 miR-143
miR-20a
miR-29b
miR-30e
miR-378

miR-199b-5p
miR-27b
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4.4. Direct comparison of WT and ERβ-/- female mice 
confirms the involvement of the receptor on miRNA 

expression

Given the observed differences between the WT and the ERβ-/- mice, the female Sham 

groups were then directly compared through qRT-PCR. Some of the miRNAs presenting 

surgery and sex effect were measured. All the significant sex effects were abolished in the 

knock-out model. The ratio ERβ-/-/WT was calculated and the groups were compared 

through unpaired T-test. 

Table 40. Direct comparison of WT and ERβ-/-

female Sham mice.

miRNA
Ratio Unpaired t-test

ERβ-/-/WT (p-value)

let-7e 2,77 ***

miR-106a 0,90 ns

miR-106b 1,17 0,0952

miR-130a 1,37 *

miR-133a 1,70 ***

miR-20a 1,69 ***

miR-21 1,65 ***

miR-24 1,70 ***

miR-27a 0,95 ns

miR-27b 1,62 ***

miR-29a 2,15 ***

T-test; * p<0.05, ** p<0.01, *** p<0.001; ns – not 

significant.

This comparison revealed the expected differences: most of miRNAs analysed were 

higher expressed in the ERβ deficient females (Table 40 and Figure 25). A higher basal 

(Sham operated animals) expression in ERβ-/- females is one of the mechanisms 

responsible for the different miRNA expression profile from the WT mice.

Figure 25. Direct comparison of WT and ERβ-/- female Sham mice revealed a higher 

expression in ERβ deficient mice. WT and ERβ-/- FS animals directly compared by qRT-PCR.

T-test; * p<0.05, ** p<0.01, *** p<0.001.
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4.5. ERβ plays a role in miRNA expression in Sham operated 
mice

After the confirmation that the expression of several miRNAs with surgery and sex 

effect is different in WT and ERβ-/- animals, all the values of the previous measurements of 

WT and ERβ-/- males and females Sham operated mice were corrected in order to be 

directly compared. The correction factor used was calculated in the following way:

, for WT and ERβ-/- females.

After the correction, the values were analysed by two-way ANOVA (Table 41). Table 

42 shows the ratios between ERβ-/- and WT or females and males, as well as Bonferroni 

post-hoc test results.

Table 41. Two-way ANOVA analysis of 

corrected WT and ERβ-/- miRNA expression 

values.

miRNA

two-way ANOVA
(p-value)

Se
x

G
en

ot
yp

e

Se
x*

G
no

ty
pe

 
In

te
ra

ct
io

n

let-7e ns **** ns

miR-
106

* ns ns

miR-
106b

ns ns ns

miR-
130

ns ns ns

miR-
133

ns **** ns

miR-20a ns 0,085 ns

miR-21 ns ns ns

miR-24 ns * ns

miR-27a ns * 0,099

miR-27b ns * ns

miR-29a ns **** ns

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001; 

ns – not significant.

Table 42. MiRNA expression ratios.

miRNA
Ratios

(p-value)
Females
ERβ-/-/WT

Males
ERβ-/-/WT

WT
M/F

ERβ-/-

M/F

let-7e
2,64 1,86 1,22 0,86
*** ** ns ns

miR-106a
0,89 0,82 1,39 1,28

ns ns ns ns

miR-106b
1,12 1,09 1,10 1,07

ns ns ns ns

miR-130a
1,29 1,02 1,21 0,96

ns ns ns ns

miR-133a
1,65 1,60 0,99 0,96

** ** ns ns

miR-20a
1,72 1,09 1,62 1,03

ns ns ns ns

miR-21
1,60 1,00 1,55 0,97
0,070 ns 0,094 ns

miR-24
1,66 1,13 1,49 1,01
0,060 ns ns ns

miR-27a
0,89 0,56 1,54 0,97

ns * 0,057 ns

miR-27b
1,59 1,18 1,22 0,90

* ns ns ns

miR-29a
2,13 1,71 1,07 0,86
*** ** ns ns

Corrected WT and ERβ-/- miRNA expression ratios values 

(ERβ-/-/WT and Males/Females) and the corresponding 

Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001; ns 

– not significant.
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4.5.1. miRNAs without genotype or sex effect

MiR-106b, miR-130a and miR-21 didn’t present any significant effect of ERβ in Sham

operated animals (Figure 26).

a. b. c.

Figure 26. Graphical representation of WT and ERβ-/- Sham operated animals of miRNAs without sex or genotype effect.

The higher expression of miR-106a in male mice is independent of the genotype. MiR-

106a was the only miRNA that showed a sex effect, being higher expressed in males than in 

females. This sex effect was already visible in WT Sham/TAC animals, as well as it was 

almost significant in ERβ-/-, and for that reason this effect was expected.

a. b.
Figure 27. MiR-106a was the only miRNA with a significant effect in this analysis. a. 

Graphical representation of WT and ERβ-/- Sham operated animals of miR-106a. b. 

Graphical representation of the sex effect in miR-106a. 

WT and ERβ-/- are represented together, according to the sex. 

Two-way ANOVA; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

/

b
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4.5.2. Genotype effect on miRNA expression

The main expected effect was the genotype effect (different expression in WT than in 

ERβ-/- independent of the sex), which shows that the receptor affects miRNA expression. 

From the six miRNAs (let-7e, miR-133a, miR-24, miR-27a, miR-27b and miR-29a) of the 

direct comparison showing a genotype effect (Figure 28.), five presented a higher 

expression in ERβ-/- animals, when compared to WT. MiR-27a was the only one with a lower 

expression in the ERβ deficient mice.

Figure 28. 6 miRNAs showed a significant genotype effect in two-way 

ANOVA analysis. 

The values of females and males are represented together, according to 

the genotype.

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

After a detailed analysis of the expression of these six miRNAs with significant 

genotype effect we looked for the sex effect in each genotype. A general higher expression 

in ERβ-/- females (borderline p-value in the case of miR-24, p=0.06) was observed. In males, 

the up-regulation with the lack of ERβ was only observed in 3 miRNAs (let-7e, miR-133a and 

miR-29a).

a. b. c.
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d. e. f.

Figure 29. Most miRNAs with genotype effect after two-way ANOVA are higher expressed in female ERβ-/- mice.

Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

Finally, miR-27a was the only miRNA with a borderline value for sex*genotype 

interaction effect in the two-way ANOVA analysis. This miRNA presented a significant lower 

expression in ERβ-/- than in WT males, but the same didn’t happen in females. In the latter, 

the sex differences in miR-27a expression observed in WT animals (higher expressed in 

males than females), disappeared in the absence of ERβ.

Figure 30. miR-27a was the only miRNA with a 

borderline value for sex*genotype interaction effect in 

the two-way ANOVA analysis.

Bonferroni post-hoc test; * p<0.05.
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4.6. Summary of the in vivo results

A general overview of the in vivo results of the ERβ deletion effect is given in the 

following table.

Table 43. Overview of the in vivo effects of ERβ deletion.

miRNA

Sham and TAC Sham only

WT and ERβ-/-

initial screening
WT and ERβ-/-

Sham comparison
ERβ deletion effect by sex
(Bonferroni post-hoc test)

Sex effect Sex 

effect

Genotype 

effect
Females Males

WT ERβ-/-

let-7e ♂>♀ ♂=♀ ♂=♀ ERβ-/- > WT ↑ ↑

miR-106a ♂>♀ (♂>♀) ♂>♀ - - -

miR-106b ♂>♀ ♂=♀ ♂=♀ - - -

miR-130a ♂>♀ ♂=♀ ♂=♀ - - -

miR-133a ♂>♀ ♂=♀ ♂=♀ ERβ-/- > WT ↑ ↑

miR-20a ♂>♀ ♂=♀ ♂=♀ (ERβ-/- > WT) - -

miR-21 ♂>♀ ♂=♀ ♂=♀ - ↑ -

miR-24 ♂>♀ ♂=♀ ♂=♀ ERβ-/- > WT ↑ -

miR-27a ♂>♀ ♂=♀ ♂=♀ ERβ-/- < WT - ↓

miR-27b ♂>♀ ♂=♀ ♂=♀ ERβ-/- > WT ↑ -

miR-29a ♂>♀ ♂=♀ ♂=♀ ERβ-/- > WT ↑ ↑

Note: Effects between () refer to borderline p-values.
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4.7. E2, ERββ and ERα affect miRNA expression in female 

cardiomyocytes

After the observed sex differences in miRNA expression in hypertrophy and the 

determinant influence of ERβ on them, the question whether the effect of the hormone was 

cell-specific and whether both receptors are involved in similar way arose. For this purpose 

AC16177, a human female cardiomyocyte cell line, was used, although being aware of the 

inability of testing sex-differences in this model.

AC16 cells were treated with E2 or specific agonists for ERβ or ERα for 48h. Table 44

shows miRNA expression of the 11 miRNAs described in Table 41 after 48h treatment with 

the 3 compounds as ratios of the corresponding control group (vehicle). The statistical 

analysis is also depicted. Of note, all these miRNAs presented surgery and sex effect in WT 

mice. 

Table 44. The treatment of AC16 cells with E2, ERβ and

ERα specific agonists reduces miRNA expression

miRNA

E2 ERβ ag ERα ag
Ratio
48h treat/
vehicle

Ratio
48h treat/
vehicle

Ratio
48h treat/
vehicle

p-value p-value p-value

let-7e 0,81 0,72 1,02
* * ns

miR-106a 0,65 0,54 0,56
* ** **

miR-106b 0,72 0,68 0,75
* ** *

miR-130a 0,85 0,99 0,79
* ns **

miR-133a 0,87 0,75 1,01
ns * ns

miR-20a 0,72 0,78 0,76
** * *

miR-21 0,80 0,76 0,66
* * *

miR-24 0,74 0,70 0,75
* ** *

miR-27a 0,76 0,64 0,97
* * ns

miR-27b 0,70 0,66 0,78
* * *

miR-29a 0,91 0,78 0,70
* * ***

T-test; * p<0.05; ** p<0,01; *** p<0.001.

Each of the 11 selected miRNAs showed a significant response to at least one of the 

treatments, always being repressed after treatment. After E2 treatment all except miR-133a

were significantly down-regulated.

All miRNAs were down-regulated after ERβ specific agonist treatment with the 

exception of miR-130a with an unaltered expression.
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Concerning ERα specific agonist, a significant down-regulation compared to the 

control was observed in a group of eight miRNAs (miR-106a, miR-106b, miR-130a, miR-20a, 

miR-21, miR-24, miR-27b and miR-29a).

The results summary is represented in Figure 31 as a Venn diagram. MiR-106a, miR-

106b, miR-20a, miR-21, miR-24, miR-27b and miR-29a were repressed after treatment with 

E2 and both ER specific agonists. Let-7e and miR-27a showed effects with both E2 and ERβ

specific agonist but not with ERα, whereas miR-130a responded only to E2 and ERα specific 

agonist. Finally, the expression of miR-133a was affected only by ERβ specific agonist.

Figure 31. MiRNAs down-regulated in AC16 cells by 48h treatment with E2, 

ERβ or ERα specific agonists.
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4.8. E2 and ERβ regulate fibrosis related miRNAs

A previous study from our group, based in the same biological samples, showed for 

the first time that ERβ plays different actions in each sex and plays a role in sex differences 

in the development of LVH and heart failure60. Male WT mice presented a more pronounced 

hypertrophy than females and these differences were specifically found in myocyte 

hypertrophy as well as in fibrosis content. The deletion of ERβ reduced these differences, 

promoting fibrosis in females.

MiR-21 was previously identified as a fibrosis regulator. This miRNA was shown to be 

an inducer of interstitial fibrosis, augmenting cardiac MAPK/ERK activity in fibroblasts 

through the inhibition of sprouty homologue 1 (SPRY1).111

Because nothing is known about sex-specific expression of miR-21, the role of this and 

other miRNAs putatively regulating the same pathway was investigated.

4.8.1. miR-21, a validated fibrosis inducer, is regulated by ERββ

Given the high importance of the role of miR-21 in fibrosis we recalled the comparison 

of its expression in both genotypes. In this project, miR-21 expression was clearly affected 

by ERβ, showing significant sex and sex*surgery interaction effects in WT animals (Table 22)

that were abolished in ERβ-/- mice (Table 37). This effect was mainly due to an induced 

expression in female ER deficient mice. Both expression profiles are represented in Figure 

32.

a. b.

Figure 32. MiR-21 expression in WT (a) and ERβ-/-(b) mice, males and females, 9w after TAC.

Although male WT mice showed a higher expression in Sham (FS=1.00; MS=1.55) 

and TAC (FT=1.80; MT=3.93), this difference was only significant under hypertrophic 

conditions. In contrast, in ERβ deficient animals the sex differences in hypertrophy 

disappeared, mainly because in hypertrophic females the expression of miR-21 was higher 

/
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than in WT and similar to the MT group (FT=3.64; MT=3.93). Moreover, in ERβ-/- Sham 

animals the expression in both sexes had also similar mean values (FS=1.60; MS=1.55) 

(Table 45).

Table 45. MiR-21 expression in WT and ERβ-/- mice..

Genotype
Females Males

FS FT MS MT

WT 1,00 1,80 1,55 3,93

ERβ-/- 1,60 3,64 1,55 3,98

The expression is represented as mean values after the correction 

performed in 1.5. Values normalized to WT FS group.

As seen in point 4.4, miR-21 expression was higher in the ERβ-/- than in the WT female 

animals (Figure 25). Figure 33 shows the two-way ANOVA analysis which confirms that 

surgery effect prevails between genotypes, but not the sex effect.

a. b.

c. d.
Figure 33. Sex differences in miR-21 expression disappear in ERβ-/- mice.

Two-way ANOVA results, after the correction (see point 4.5). Only TAC effect persists with the absence of ERβ.

b

d
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These data correlate with the results concerning fibrosis described before that show in 

WT animals the strong development of fibrosis occurring only in males while in ERβ-/-

animals it occurs similarly in both sexes.60

Knowing that MAPK/ERK pathway has other negative regulators than SPRY1 and the 

knowledge that miRNAs frequently act in networks, encouraged us to look for other miRNAs 

that could target other genes directly involved in this pathway.

4.8.2. miR-21 is not the only miRNA which targets MAPK/ERK pathway 
negative regulators

Analysing MAPK/ERK pathway and its negative regulators other than SPRY1, we 

selected other possible targets as interesting for the study, namely SPRY2, RASA1 and 

RASA2 (RAS p21 protein activator 1 and 2). These repressors were analysed with 

TargetScan in order to find which miRNAs could putatively target them (Figure 34).

Figure 34. Partial screenshots of the TargetScan analysis of SPRY1, SPRY2, RASA1 and RASA2.

miRNAs of interested highlighted.
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SPRY2 was selected because, as SPRY1, this gene was already a described target 

for miR-21.139 Apart of miR-21, the TargetScan analysis of the 3’UTRs of these genes, 

predicted the existence of binding sites for miR-27 in both sequences.

On the other hand the TargetScan analysis of RASA1 and RASA2 3’UTRs also 

identified putative binding sites for miR-21 and in the case of RASA2 for miR-27 as well.

Surprisingly, all the three miRNAs (miR-21, miR-27a and miR-27b) have similar expression 

profiles in the WT TAC model previously analysed.

Other interesting miRNAs expressed in the heart, with RASA1 and RASA2 as putative 

targets and with similar expression profiles in the studied model include miR-106 and miR-

24. RASA1 has putative conserved binding sites for miR-24 and miR-106, whereas RASA2 

has putative conserved binding sites for miR-106. The summary of the miRNAs with putative 

binding sites in all the analysed MAPK/ERK pathway inhibitors are represented in Table 46.

Table 46. MiRNAs with binding sites in the selected MAPK/ERK pathway inhibitors, SPRY1, SPRY2, RASA1 and RASA2.

MAPK/ERK signalling pathway inhibitor miRNAs with binding sites in the 3’UTR

RASA1 miR-21, miR-106, miR-24
RASA2 miR-21, miR-27, miR-106
SPRY1 miR-21, miR-27
SPRY2 miR-21, miR-27

4.8.3. ERβ regulates the miRNAs with putative binding sites on fibrosis 
repressors in mice

All miRNAs selected in 4.8.2 and represented in Table 46, have similar expression 

profiles in the mouse TAC models. In WT mice, the six miRNAs show significant surgery and 

sex effect, with an up-regulation observed only in male TAC animals and only miR-106a

didn’t present significant sex differences in TAC.

Table 47.Statistics analysis summary of the six miRNAs expression in WT mice.

miRNA

two-way ANOVA
(p-value)

TAC effect Sex-differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
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ra
ct
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n
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es

M
al

es

Sh
am

TA
C

miR-106a * * ns ↑

miR-106b * * 0,098 ↑ ♂>♀

miR-21 **** *** * ↑ ♂>♀

miR-24 ** ** ns ↑ ♂>♀

miR-27a * ** ns ↑ ♂>♀

miR-27b ** * ns ↑ ♂>♀

* p<0.05; ** p<0,01; *** p<0.001; ns – not significant.
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Table 48. Statistics analysis summary of the six miRNAs expression in ERβ-/- mice.

miRNA

two-way ANOVA
(p-value)

TAC effect Sex-differences

Su
rg

er
y

Se
x

Se
x*

Su
rg

er
y 

In
te

ra
ct

io
n

Fe
m

al
es

M
al

es

Sh
am

TA
C

miR-106a ns 0,0835 ns

miR-106b ** ns ns ↓

miR-21 * ns ns

miR-24 ns ns ns

miR-27a 0,0823 ns ns

miR-27b ** ns ns ↑

* p<0.05; ** p<0,01; *** p<0.001; ns – not significant.

As shown in Table 47 and Table 48, all the sex and surgery effects were abolished 

with the absence of ERβ and only miR-27b maintained the significant up-regulation in males. 

The absence of ERβ also led to a significant down-regulation of miR-106b in female TAC 

operated animals. Figure 35 shows the individual expression profiles in both genotypes.

a. b.

c. d.

b

d
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e. f.

g. h.

i. j.

Figure 35. miRNA expression in Sham and TAC operated WT and ERβ-/- mice.

Two-way ANOVA; Bonferroni post-hoc test; * p<0.05, **p<0.01, ***p<0.001.

As observed in miR-21, ERβ deletion had also an effect in the expression of all five 

miRNAs (Figure 35), abolishing the surgery and the sex effects either through a higher basal 

expression in female Sham operated animals (miR-106b, miR-24 and miR-27b), as seen in 

point 4.4, or through a lower expression in male Sham (miR-106a and miR-27a). Once

again, ERβ deletion also abolished the sex effect observed in these miRNAs expression in 

WT mice (Figure 36)

f

h

j

/
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a. b.

c. d.

e. f.

b
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g. h.

i. j.
Figure 36. Genotype influence on sex effect. WT (a, c, e, g, i) and ERβ-/- (b, d, f, h, j) mice, Sham and TAC operated animals 

are represented together, according to the sex.

Two-way ANOVA; Bonferroni post-hoc test; * p<0.05, **p<0.01.

These comparisons demonstrated that the selected miRNAs with MAPK/ERK pathway 

repressors as possible targets are regulated by ERβ. However it was necessary to prove this 

hypothesis in the main cell type involved in fibrosis development, the fibroblasts (in vitro).

4.8.4. E2 regulates miRNA expression in cardiac fibroblasts in different 
ways according to the sex

Knowing that ERβ has an effect in fibrosis60 and given the visible effect on miRNA 

expression in the whole heart, it was expectable that E2 would have also an effect in 

collagen producer cells, cardiac fibroblasts. For this, primary cardiac fibroblasts were treated 

with E2 for 24h to measure its effect on the expression of Col1, Col3 and the selected 

miRNAs.

h

i j
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a. b.

c. d.
Figure 37. E2 induces Col1 and Col3 only in male primary cardiac fibroblasts. Col1 (a, b) and Col3 (c, d) expression in male 

and female primary cardiac fibroblasts, treated with E2.

T-test; * p<0.05, ** p≤0.01.

As shown in Figure 37 and also by our group previously184, 24h of E2 treatment 

caused an up-regulation of Col1 and Col3 mRNA in male fibroblast, whereas in female 

fibroblasts the expression of both collagens was down-regulated by the hormone. These

results were used as positive control for the fibroblasts treatment in order to investigate the 

direct effects of E2 on miRNA expression in isolated fibroblasts.

In the case that these miRNAs influence fibrosis regulating the expression of the 

MAPK/ERK pathway, an increase in miRNA expression will reduce the amount of repressor 

molecules, inducing fibrosis. In contrast, a reduction of these miRNAs will facilitate the 

expression of the repressor, reducing fibrosis.

The first in vitro evidence of sex differences in these selected miRNAs appeared with 

the measurement of miR-21. E2 treatment had no effect in male fibroblasts, while in females 

it caused a down-regulation of this miRNA (Figure 38).

b

d
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a. b.
Figure 38. MiR-21 expression in male and female primary cardiac fibroblasts, treated with E2.

T-test; * p<0.05.

Like miR-21, also miR-106a, miR-106b, miR-24, miR-27a and miR-27b were down-

regulated by E2 treatment in female fibroblasts. However, the same treatment had a different 

effect in male cells, causing an up-regulation of these miRNAs (Figure 39).

a. b.

c. d.

b

b

d
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e. f.

g. h.

i. j.
Figure 39. MicroRNAs expression is down-regulated by E2 in female and up-regulated in male primary cardiac fibroblasts MiR-

106a (a, b), miR-106b (c, d), miR-24 (e, f) miR-27a (g, h) and miR-27b (i, j).

T-test; * p<0.05, ** 0.001<p≤0.01.

4.8.5. ERβ and ERα regulate miRNA expression in cardiac fibroblasts in 

different ways according to the sex

In order to unveil the role of each ER subtype in fibroblasts in each sex, primary rat 

cardiac fibroblasts were stimulated for 24h with ERα (PPT) or ERβ (Comp A) specific 

agonists.
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a. b.

c. d.

e. f.

g. h.

b

d

f

h



4. Results

_________________________________________________________________________
95

i. j.

k. l.
Figure 40. MiR-106a (a, b), miR-106b (c, d), miR-21 (e, f), miR-24 (g, h), miR-27a (i, j) and miR-27b (k, l) expression in male 

and female primary cardiac fibroblasts, treated with ERα or ERβ specific agonists. 

One-way ANOVA; Bonferroni post-hoc test; * p<0.05, ** 0.001<p≤0.01, *** p≤0.001.

A clear sex different response to the treatment was observed. In female cardiac 

fibroblasts, the treatment with ERβ-specific agonist caused a significant down-regulation of 

miR-106a, miR-106b, miR-24, miR-27a and miR-27b expression and ERα specific agonist 

caused also a significant down-regulation of miR-106a, miR-21, miR-24, miR-27a and miR-

27b expression. None of the 6 miRNAs was induced by the agonist treatment in female cells.

Male cardiac fibroblasts had a remarkably different response to these compounds. The 

only down-regulation observed was caused by the ERβ-specific agonist on miR-21

expression. This same agonist also caused a significant up-regulation of miR-106b in 

comparison to the vehicle. Moreover, ERα-specific agonist significantly up-regulated the 

expression of four miRNAs (miR-106a, miR-24, miR-27a and miR-27b).

In general, the responses of the analysed miRNAs to the E2 and ER agonists are 

different between male and female fibroblasts. E2 caused down-regulations in female cells 

and up-regulations in male cells (except miR-21). In what concerns to ERs, both receptors, 

or at least one, caused down-regulation of the analysed miRNAs’ expression in female cells 

while in males a majority of these miRNAs are up-regulated by the ERα agonist.

j

k l
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4.8.6. Summary of the sex-specific effect of E2 and ERβ effect on miRNA 
regulation in fibroblasts

Table 49 represents a summary of all significant up-/down-regulated miRNAs in 

cardiac fibroblasts, after treatment with E2, ERβ or ERα specific agonists. The three 

treatments caused down-regulations of all six miRNAs in female cells, except miR-21 and 

miR-106b that were not affected by ERβ and ERα specific agonists, respectively.

Table 49. E2, ERβ and ERα sex-specific effect on cardiac fibroblasts

miRNA

Cardiac fibroblasts
Females Males

E2
ERα

specific 
agonist

ERβ
specific 
agonist

E2
ERα

specific 
agonist

ERβ
specific 
agonist

miR-21 ↓ ↓ - - - ↓
miR-24 ↓ ↓ ↓ ↑ ↑ -
miR-27a ↓ ↓ ↓ ↑ ↑ -
miR-27b ↓ ↓ ↓ ↑ ↑ -
miR-106a ↓ ↓ ↓ ↑ ↑ -
miR-106b ↓ - ↓ ↑ - ↑

T-test results; ↑/↓ significant up-/down-regulation.
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4.9. Analysis in ERα-/- mice confirms the effect observed in 
fibroblasts

The results showed above describe very distinct effects of the ER subtypes depending 

on the sex. This opens the question of whether the influence of ERα on the expression of 

miRNAs in primary cardiac fibroblast is comparable to the LV. A set of samples of ERα-/-

animals, males and females, Sham operated, was compared to the corresponding WT 

siblings.

The analysis was restricted to the same group of miRNAs selected by a possible 

relation to fibrosis (miR-21, miR-24, miR-27a, miR-27b, miR-106a and miR-106b) analysed 

previously.

Table 50. ERα deletion effect on miRNA expression in the LV. 

Two-way ANOVA results.

miRNA

two-way ANOVA
(p-value)

Se
x

G
en

ot
yp

e

Se
x*

G
en

ot
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e 
In

te
ra

ct
io

n

miR-106a *** ns ns

miR-106b * * ns

miR-21 ns * **

miR-24 ** ns *

miR-27a *** ns *

miR-27b ** * 0,0545

WT and ERα-/- miRNA expression values analysed by 

two-way ANOVA. * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001; ns – not significant.

Table 51. ERα deletion effect on miRNA expression in LV. 

Bonferroni post-hoc test.

miRNA

Ratios
(Bonferroni post-hoc test result)

Females
ERα-/-

/WT

Males
ERα-/-

/WT
WT
M/F

ERα -/-

M/F

miR-106a
0,93 0,97 0,75 0,78

ns ns * *

miR-106b
0,95 0,80 0,95 0,81

ns * ns *

miR-21
1,08 0,58 1,46 0,78

ns *** ** ns

miR-24
1,06 0,77 0,96 0,70

ns * ns **

miR-27a
1,07 0,71 0,91 0,60

ns * ns ***

miR-27b
0,97 0,68 0,90 0,63

ns * ns **

ERα-/-/WT and Males/Females ratios and the corresponding 

Bonferroni post-hoc test; * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001; ns – not significant.

Interestingly, in female mice the absence of ERα does not influence the expression of

any of these six miRNAs. In contrast, significant effects of this deletion were detected in 

male animals. MiR-106b, miR-21, miR-24, miR-27a and miR-27b were down-regulated in 

male ERα-/- animals, when compared to the WT siblings. Besides the significant sex effect, 

miR-106a also showed significant sex differences in both ERα-/- and WT animals. On the 

other hand, miR-106b, miR-24, miR-27a and miR-27b presented sex differences in the ERα-

/- animals, not observed in WT (Figure 41).
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a. b.

c. d.

e. f.

Figure 41. ERα deficiency affects only male mice . WT and ERα-/- mice, Sham operated animals.

Two-way ANOVA analysis; Bonferroni post-hoc test; * p<0.05, **p<0.01, ***p<0.001.
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4.10. AngII regulates miRNA expression in cardiac fibroblasts 
in different ways according to the sex

AngII is described as an important inducer of fibroblast growth and Col1 synthesis.185

In order to induce fibrosis in vitro and to understand the possible protective role of E2 in 

fibroblasts with a fibrotic stimulus in each sex, primary cardiac fibroblasts were treated with 

AngII or co-treated with AngII and E2.

The expression of Col1 and Col3 was quantified by qRT-PCR and used as a control 

for these treatments.

a. b.

c. d.
Figure 42. Col1 (a, b) and Col3 (c, d) expression in primary cardiac fibroblasts after treatment with Ang II and E2.

The statistical analysis was performed using 1-way anova, followed by Bonferroni post-hoc test. ; * p<0.05, **p<0.01, 

***p<0.001.

The treatment with AngII induced Col1 and Col3 in male fibroblasts (Figure 42 a, c) but 

had no effect on collagen expression in female cells (Figure 42 b, d). The co-treatment with 

E2 did not compensate the effect of AngII in male fibroblasts, but in female fibroblasts 

E2+AngII treatment down-regulated both Col1 and Col3 expression.

b

d
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Next, miRNAs (miR-21, miR-24, miR-27a, miR-27b, miR-106a and miR-106b) 

expression was quantified.

a. b.

c. d. 

e. f.

b

d

f
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g. h.

i. j.

k. l.
Figure 43. MiRNA expression in primary cardiac fibroblasts after treatment with AngII and E2. MiR-106a (a, b), miR-106b (c, d), 

miR-21 (e, f), miR-24 (g, h), miR-27a (i, j) and miR-27b (k, l).

The statistical analysis was performed using 1-way anova, followed by Bonferroni post-hoc test. ; * p<0.05.

The treatment with AngII affected the expression of miRNAs on cardiac fibroblast in a 

completely different manner depending on the sex of the cells. In male cardiac fibroblasts, 

AngII caused an induction of miR-106b, miR-24, miR-27a and miR-27b. The co-treatment 

with AngII and E2 of male fibroblasts attenuated or even abolished the effect of AngII on 

miR-106b, miR-24, miR-27a and miR-27b. Once again, there was no visible effect on miR-

106a expression and miR-21 showed a tendency for a down-regulation in comparison to the 

control. MiR-106a and miR-21 didn’t show any significant effect with any of the treatments. 

In contrast to the effect on male cells in female fibroblasts AngII didn’t induce any of the six 
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measured miRNAs. Instead, a down-regulation was observed in three of the six miRNAs 

(miR-24, miR-27a and miR-27b). In female fibroblasts, the co-treatment down-regulated 

miR-106a, miR-106b, miR-21 and miR-24 in comparison to the vehicle and abolished the 

effect of AngII alone on miR-27a and miR-27b expression.

The present results show clear sex-differences in miRNA expression in the heart. Both 

sex and ERβ were shown to influence their response to a hypertrophic stimulus (TAC). In 

individual female cell types, E2 and ERα and β agonists tend to down-regulate miRNA 

expression in both cardiomyocytes and fibroblasts while in male fibroblasts E2 and ERα are 

mostly causing up-regulations of miRNA expression. However, the response a fibrotic 

stimulus (AngII) can be compensated by E2 to basal levels in both sexes.
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This study reports for the first time sex differences in miRNA expression in a mouse 

hypertrophy model. The sex differences were shown to be ERβ-dependent, as they were 

abolished in its absence. Furthermore, E2 and ERs specific agonists presented a strong effect 

on miRNA expression in female cardiomyocytes, as well as a sex-specific regulation of their 

expression in cardiac fibroblasts.

5.1. miRNAs are sex-differently expressed in cardiac 

hypertrophy

Our group described previously that sex-differences are present in a late stage model of 

cardiac hypertrophy, in morphology as well as gene expression level. After 9 weeks of TAC, in 

WT animals, males presented, among other differences, a more pronounced hypertrophy than 

females, associated with greater myocyte hypertrophy and higher fibrosis level.60 As in the last 

few years the understanding of the role of miRNAs as regulators of gene expression has gained 

importance, the first proposed aim in the present study was to elucidate whether it exists a sex-

specific regulation of miRNAs in a late stage of cardiac hypertrophy mouse model that could 

explain the observed sex difference. As expected the results described in this report show that 

an important group of miRNAs are sex-differently expressed in TAC. More than the half of the 

miRNAs selected for analysis was dysregulated in hypertrophy, being the majority up-regulated 

in males and showing no TAC effect in females. 

5.1.1. Incomplete definition of experimental conditions and different 
methodologies lead to a difficult comparison of the results

Many studies have described miRNAs’ dysregulated expression in mouse models of 

hypertrophy but they often omit the sex, the age and even the strain of the animals, as seen in

Table 1.100, 122-125

We published recently that the genetic background influences oestrogen signalling and 

that it plays a role in the E2-dependent regulation of postnatal cardiac growth mediated by β-

catenin.186 Concerning the sex of the animals used for the various experiments, males are 

commonly used, despite not always reported. This factor was an important trigger for the 

present study. Up to our knowledge this is the first report distinguishing males and females in a 

late time point of hypertrophy. Other determining factors may also vary, like the methods and the 

duration used for the in vivo hypertrophy induction. Typically, TAC surgery is the most common 

method used, but various transgenic models and different chemical treatments might also be 
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used (e.g. isoproterenol, phenylephrine), thus respectively affecting different genes, pathways 

and consequently different miRNAs. The choice of the 9 week TAC model for this study was 

mainly due to our previously reported results that show sex differences in LV/TL at 6 and 9 

weeks after TAC, but not on the early stage of 2 weeks.38

MiRNA’s relevance in cardiac hypertrophy is also often studied, or at least confirmed, 

using in vitro methods. The variety of in vitro methods used may be even wider, going from gain-

/loss of function of genes or miRNAs, to chemical treatments (aldosterone, phenylephrine, 

isoproterenol, lysophosphatidic acid, etc.) applied either in immortalized cell lines or in isolated 

cardiomyocytes/fibroblasts.

Despite the methodological differences found, the role of the miRNAs in cardiac 

development and disease is nowadays not questioned and has been object of numerous 

studies. As seen in Table 2, many miRNAs have been shown to target genes directly involved in 

cardiac hypertrophy and through in vivo or in vitro gain/loss of function experiments been 

proved to cause or to inhibit cardiac hypertrophy (pro- and anti-hypertrophic miRNAs 

respectively).

In the present report, 50% of the miRNAs (30/60) selected for analysis in the WT TAC 

model, presented significant sex and/or sex*surgery interaction effect after 2-way ANOVA 

analysis, which means that they are either generally higher expressed in one of the sexes than 

in the other or that they have a sex-dependent response to TAC, respectively. 

5.1.2. miRNAs with sex-differences in TAC that are directly related to 
hypertrophy in other reports

Several previously published studies (Table 2) make direct associations of specific 

miRNAs and cardiac hypertrophy. In general, to prove a pro-hypertrophic action of a miRNA, the 

studies show clear hypertrophic responses (e.g. HW/BW, cardiac function and ANP and BNP 

expression) caused by over-expression of a specific miRNA. As for an anti-hypertrophic effect 

demonstration, usually the methods include a hypertrophic response to an external factor (TAC, 

transgenic animals, chemical induction) that is abolished or attenuated by the over-expression 

of a specific miRNA. Some of our results and methodology are worth to correlate or compare 

with previously published data.
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5.1.2.1. miRNAs previously shown as pro-hypertrophic

Among the analysed miRNAs that present sex and/or sex*surgery interaction effect, up-

regulation in males, no effect in females and significant sex differences in TAC are miR-19(b), 

miR-199b-5p, miR-21, miR-22, miR-23a, miR-23b, miR-24 and miR-27b, which are all described 

as being pro-hypertrophic miRNAs (Table 2). 

Their described targets include genes like MuRF-1 (miR-19b136 and miR-23a145), Atrogin-1

(miR-19b136), Dyrk1a (miR-199b138), Sprouty1 (miR-21111), Sprouty2 (miR-21139), PTEN, Purb, 

PGC-1α, PPARα, SIRT1 and Hdac4 (miR-22140-143), FoxO3 (miR-23a146), LPA1 (miR-23a147), 

JP2 (miR-24148, 149) or PPARγ (miR-27b151), and with exception of miR-199b and miR-22, all of 

them were previously described as up-regulated in mouse models of TAC.100, 122-125

The methodology used for these reports does, however, differ. In the animal experiments 

used for the cited reports, the mouse TAC model is the most commonly used and unless some 

exceptions that did not perform any in vivo experiments100, 136, 140, 147, only the reports that show 

the direct targeting of MuRF1 by miR-23a145 and the targeting of Sirt1 and Hdac4 by miR-22143

use an alternative model of hypertrophy, with an isoproterenol infusion. The duration of the TAC 

induction also varies in these reports from 2 to 6 weeks, which means that none of them 

achieved the late stage of hypertrophy presently studied. Most of the above mentioned reports 

specify the usage of C57BL/6 male animals, from 8138, 145, 146, 151 to 12 weeks-old111, 139, one does 

not specify the strain but specifies the age of 12 weeks141, other does not specify the sex143 and

one demonstrating the targeting of Dyrk1a by miR-199b138 that does not refer the sex of the 

animals. The report of the targeting of PGC-1α, PPARα and SIRT1 by miR-22 uses FVB mice 

instead but also does not refer the sex of the animals.142 The same happens in the previous 

reports that describe simply the up-regulation in hypertrophy (Table 1): the age of the animals 

varies between 6122 and 12 weeks124, 125, but as discussed above the strain, the gender and the 

age of the animals at the time of TAC is not always referred.

The in vitro experiments are most commonly performed in isolated neonatal 

cardiomyocytes, but the studies mentioned above differ from mouse111, 146 to rat 100, 136, 138, 140, 142, 

143, 145, 147, 148, 151, one report does not specify whether they used mouse or rat cells139 and others 

use only or as an additional system adult cardiomyocytes from adult mice141 or rats142. Despite 

the male sex being the most commonly used, none of these reports discriminates whether the 

cells were isolated from male or female animals.

The fact that all these miRNAs were up-regulated in our male mice, but not in females, 

together with the fact that they were all considered as pro-hypertrophic and found to be up-

regulated in experiments where only male animals were used, suggests that more importance 



5. Discussion

____________________________________________________________________________
108

should be given to the sex differences in cardiovascular research, specifically in cardiac 

hypertrophy.

MiR-208a and miR-499 are other miRNAs previously reported as pro-hypertrophic and 

showing sex effect in ANOVA analysis, but unlike the previously mentioned miRNAs did not 

present significant up-regulation in males nor the significant sex differences after TAC, as it has 

been previously published.123, 157 However, The study describing the up-regulation of miR-208 in 

TAC does not discriminate whether it corresponds to miR-208a or miR-208b123 and the report 

about miR-499 includes only human samples.157 MiR-208b was described as up-regulated in 

female TAC animals, but this miRNA was not included in our analysis.125 MiR-208a and miR-

499, together with miR-208b, are of a high importance in heart diseases, especially in cardiac 

hypertrophy as they have in common the fact that they belong to particular family of miRNAs 

referred to as MyomiRs. As mentioned in the introduction, this family is encoded by MHC genes, 

and they act within a network to control myosin expression and skeletal myofiber phenotypes 

through the repression of a collection of transcriptional repressors of slow myofiber genes. 

Thus, myosin genes control muscle gene expression and performance through this network of 

intronic miRNAs.116 MiR-208a induces cardiac remodelling and modulates the expression of 

hypertrophy-associated genes and its deletion in mice reduces pressure overload-induced 

hypertrophy187, through a post-transcriptional repression of Thrap1, a component of the thyroid 

hormone nuclear receptor complex, and myostatin, a repressor of hypertrophic growth in 

skeletal muscle.110, 112 Elevated levels of miR-499 in hearts of transgenic mice result in 

cardiomyocyte hypertrophy and stress-dependent cardiac dysfunction, through an alteration of 

the immediate early gene response to cardiac stress.157 In this report, when analysing sexes 

separately, both miRNAs show at least a tendency for sex differences either in Sham and in 

TAC operated animals (miR-208a: MS/FS=1.39 and MT/FT=1.93; miR-499: MS/FS=1.51 and 

MT/FT= 1.54), being p-value for the sex differences of miR-208a in TAC animals a borderline p-

value. It is known that gender and β1-AR-mediated signalling control cardiac β-MHC levels 

under physiological and pathological conditions. The levels of β-MHC, but not α-MHC, were 

shown to be 10-fold higher in the LV of fertile female mice compared with the age matched 

males and these differences disappeared after ovariectomy or in immature mice.188, 189 As other 

studies have shown the beneficial effects of β-MHC in the heart190-192, it has been suggested 

that the greater expression of β-MHC in the fertile female LV could have a role in the anti-

hypertrophic effect of oestrogen.189 Knowing that this regulatory network works as a positive 

feedback loop where miR-208a regulates the expression of two slow myosins and their intronic 

miRNAs, Myh7/miR-208b and Myh7b/miR-499 respectively116, the sex effect observed in the 
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expression of miR-208a and miR-499 in WT animals (and eventually miR-208b that was not 

analysed in this study) might as well be related with the oestrogen protective role.

5.1.2.2. miRNAs previously shown as anti-hypertrophic

MiR-145, let-7 family, miR-133a and miR-378, are miRNAs previously described as having 

anti-hypertrophic characteristics that show also relevant sex differences in our screening.

MiR-145 was the only miRNA that presented sex differences in Sham operated mice 

besides a TAC effect in females (down-regulation) but not in males. This miRNA was recently 

described as an important cardiac hypertrophy regulator, being considered an anti-hypertrophic 

miRNA. Mir-145 was shown to regulate both expression and localisation of GATA6, thus 

protecting the heart against isoproterenol (ISO)-induced cardiomyocyte hypertrophy. However, 

the same study shows a dynamic pattern of miR-145 expression in ISO-treated cardiomyocytes 

and in the hearts of TAC mice. In the latter, the expression of miR-145 is up-regulated after 1 

week of TAC, but this expression goes down to values similar to Sham 4 weeks after TAC 

operation.135 The expression pattern observed in our experiments for miR-145, distinct from all 

the other miRNAs analysed, does not correlate with the described above and might have 

different interpretations. On one hand, the TAC stress might cause the up-regulation observed in 

males in a later time of hypertrophy, not analysed by the cited authors, as a later intent for an 

anti-hypertrophic response. On the other hand, we would expect also an up-regulation in female 

animals after TAC, which was not observed, at least after 9 week TAC. The higher expression in 

females in Sham animals might be associated with a possible protective role in a basal state, 

which is not existent anymore after 9 weeks of TAC stress. Once again, the animals used by the 

authors were only male, and although the age is slightly different (8- to 12-week old, while ours 

are 12- to 14-week old) nothing is described about the behaviour of miR-145 in female animals. 

Further experiments would be necessary to find an explanation for this discrepancy. 

Let-7 family, as part of a bigger miRNA family (miR-98/let-7) is also associated to an anti-

hypertrophic effect. Thioredoxin (Trx1), a cardiac hypertrophy suppressor with cell protective 

actions in the heart, up-regulates the expression of the miR-98/let-7 family which in turn inhibits 

AngII–induced cardiac hypertrophy. The up-regulation of miR-98/let-7 family, together with the 

inhibition of cyclin D2, a component of the cell cycle machinery and a validated target of this 

family, appears to play a role in mediating the suppression of cardiac hypertrophy by Trx1. 

Although miR-98 and let-7f are the top 2 miRNAs of this family up-regulated by Trx1 in 

transgenic mice (tg-Trx1) in the referred study, let-7e (but not let-7g) is also one of the family 

members responding to Trx1.193 The results obtained in our WT model, are apparently not in 
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accordance to the published data. Similarly to miR-145, we would expect a significant up-

regulation in females but not in males of the miRNAs of this family, to justify the anti-

hypertrophic role in the TAC-induced hypertrophy. Different hypertrophic stimuli induce different 

pathways and in this case it might be the explanation for the discrepant results.

MiR-133a, a muscle specific miRNA194 and one of the most studied miRNAs in the context 

of cardiovascular diseases, is another miRNA previously characterised as anti-hypertrophic113, 

128, 195, was shown previously to have no changes122 or to be down-regulated100, 124, 125 in TAC. 

Another report describes the same down-regulation but does not discriminate the miRNA, 

referring to it only as miR-133.113 In our experiments, the results are not consistent with the 

previously described, being miR-133a significantly up-regulated in males and although there is 

the same tendency in females, the sex differences are significant after 9 weeks of TAC. The 

results might differ, for example, due to the hypertrophy model, including time of TAC. The 

reports mentioned either omit the time of TAC113, either use between 1 and 3 weeks of TAC122, 

124, 125 or even use transgenic mouse models of hypertrophy (Cna Tg100). Moreover, these 

reports often omit the sex of the animals100, 122, 124 or use only female animals113, 125. MiR-133a is 

considered as an anti-hypertrophic miRNA, as result of in vitro and in vivo experiments.113 In 

one study, miR-133a was shown to target genes that are relevant for cardiac hypertrophy, as 

RhoA and Cdc42, which are both genes associated with cytoskeletal and myofibrillar 

rearrangements during hypertrophy, and Whsc2, whose overexpression up-regulates 

myocardial foetal gene expression.113 Others described that the negative regulation of NFATc4 

by miR-133a, contributes to a hypertrophy repression128 as well as reciprocal repression 

between miR-133 and calcineurin regulates cardiac hypertrophy.129 However, contradictory 

results have been published: one study measured miR-133a’s expression in four different forms 

of murine hypertrophy matched for age and genetic background. MiR-133a was down-regulated 

in TAC and ISO-induced hypertrophy, but not in two genetic hypertrophy models, suggesting 

that miR-133a can be a double-edged sword, depending on the pathophysiological context.196

MiR-378 was previously shown to be down-regulated in hypertrophy122, 156 in reports that 

either used male animals156 or did not specify the sex of the animals.122 Thus, our results are, 

once again, not consistent with these: females do not show any alteration of the expression of 

miR-378 and males show a tendency for an up-regulation after TAC. Highly abundant in the 

heart, this miRNA is considered to have an anti-hypertrophic effect, being associated with 

postnatal cardiac remodelling and with the regulation of cardiomyocyte survival during stress. 

By targeting IGF1, miR-378 was shown to be involved in a negative feedback loop between 

miR-378, IGF1R, and IGF1.197 Furthermore, miR-378 was found to be both necessary and 

sufficient to repress cardiomyocyte hypertrophy in isolated primary cardiomyocytes and the 
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restoration of miR-378 levels significantly attenuated in vivo TAC-induced cardiac hypertrophy. 

MiR-378 exerted its activity by targeting four key components of the MAPK pathway: MAPK1 

itself, IGFR1 (Insulin-like Growth Factor Receptor 1), GRB2 (Growth Factor Receptor-Bound 

protein 2), and Ksr1 (Kinase Repressor of Ras 1).156 The expression of miR-378 is down-

regulated during the development of hypertrophy and in heart failure, which prevents Ras 

activation and its over-expression inhibits hypertrophic growth of cardiomyocytes, by interfering 

with the nuclear accumulation of NFAT and induction of the fetal gene program.155

Other miRNAs with sex and/or sex*surgery interaction effect do not have yet described 

targets or functions, but the all these sex differences observed in TAC (MT/FT or interaction 

effect) as well as the sex differences independent from TAC (sex effect) suggest a potential role 

of sex, sex hormones or their receptors.

5.2. Sex differences in miRNA expression in TAC are ERβ-

dependent

The second aim of this study was to figure out the putative role of ERβ in the sex 

differences observed in the WT mice. Interestingly, the sex differences observed in WT 

hypertrophic mice were totally abolished in the absence of the receptor. Besides the effect in the 

hypertrophic response, the sex effect observed in WT animals as well as the significant sex 

differences in Sham mice, were not present in ERβ-/- animals.

The fact that these differences disappeared in the absence of ERβ correlates with the 

protective role of this receptor, especially in females, as it has been suggested.57-60

Sex differences between men and pre-menopausal women in the normal heart exist 

(Figure 2) and that they are particularly relevant in what concerns to the amount of oestrogen,

testosterone, and ERβ. However, the higher amount of ERβ in males28 does not necessarily 

implicate that they benefit of a protective role of ERβ. We showed before that in human 

hypertrophic hearts ERβ mRNA amount is increased in both sexes, but as the basal amount is 

significantly higher in males the increment observed in females is more pronounced.28 A

following report using only female animals showed that ERβ, but not ERα, has an important 

protective role in the female heart.58 Our own studies went further and using animals from both 

sexes we identified the hormone receptor as an important regulator of sex differences in cardiac 

hypertrophy. Once again, based on the fact that the protective role was observed only in 

females and in our in vitro experiments results using cardiac fibroblast isolated from male and 

female rats reported here, demonstrated that the observed sex different effect of ERβ is not 

simply due to a different availability of E2 (discussed below), but also the factor sex is also
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essential. Endogenous ERβ was shown to act differently in males and females, influencing 

cardiac remodelling, limiting cardiac fibrosis, apoptosis and the development of cardiac 

hypertrophy in a sex-specific manner. The study proposes that ERβ predominantly contributes 

to the maintenance of energy homeostasis and limits the development of eccentric cardiac 

hypertrophy and fibrosis in females, while in males it restricts cardiomyocyte hypertrophy and 

apoptosis.60

The mechanisms through which ERβ plays this protective role are still not completely 

known but some of the studied mechanisms at the moment involve lipoprotein lipase (LPL), 

calcineurin and histone deacetylase proteins (HDACs). 

ERβ has been suggested to be involved in a complex relationship between gender, 

hypertrophy and lipoprotein lipase (LPL), a protein proposed to having a role modulating 

cardiovascular diseases, like hypertrophy and others. This protein was found to be down-

regulated at the baseline in ERβ-/- females, but not in males, in comparison to WT animals. On 

the opposite, males, and not females, showed an up-regulation of LPL in ERα-/- animals. 

Besides, LPL’s down-regulation after TAC was more pronounced in WT males than in females 

and within females subjected to TAC ERβ-/- had the most substantial down-regulation.57

A protective effect of ERβ by inhibiting calcineurin activation has also been suggested. E2 

significantly inhibited AngII-stimulated calcineurin in WT and ERα-/- mice, but had little effect in 

the absence of ERβ. This inhibition occurred through the up-regulation of the modulatory 

calcineurin interacting protein (MCPI1) gene. The report proposes that oestrogen, when acting 

through ERβ, stimulates MCIP1 gene via PI3 kinase signalling, the protein product of which 

binds/clamps the catalytic activity of calcineurin. This prevents NFAT translocation to the 

nucleus inhibiting the expression of hypertrophic genes required for cardiomyocyte to increase 

in size (hypertrophy). When activating both ERα and ERβ, oestrogen stimulates ANP and BNP 

genes, whose secreted protein products bind the guanylate cyclase A receptor and inhibit AngII-

induced ERK activation.198

Other studies confirm the protective effect of ERβ showing for example that engaging ERβ

with an agonist significantly inhibits the ability of AngII to stimulate hypertension, cardiac 

hypertrophy, and cardiac fibrosis in female animals49 and even showing ERβ agonist as a 

potential treatment for cardiac diseases, acting as a regulator of histone deacetylase proteins 

(HDACs), important modulators of hypertrophy.199

Like the studies of E2 effects on miRNAs (Table 4), also the effects of ERs on miRNA 

expression are mainly performed towards cancer research, with a greater incidence in breast 

cancer and a high usage of MCF-7 cells. Breast cancer cells often lack endogenous ERβ, but its 

presence correlates with a better prognosis and a less aggressive clinical outcome of the 
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disease. MCF-7 cells do not express this receptor and studies often focus on ERα. However, 

using engineered cells expressing equal amounts of both receptors reports show that ERβ

influences miRNAs’ biogenesis, binding in close proximity of several miRNA genes200 and

controls synthesis, maturation and steady-state levels of a significant number of miRNAs, by 

interfering with ERα activity (for the miR-23b/27b/-24-1 cluster) or acting autonomously (for miR-

30 gene). The authors demonstrated a profound effect on miRNome expression and activity in 

tumours expressing ERβ, which could help to explain their less aggressive phenotype.176

Furthermore, knowing that ERβ, and not ERα, shows significant oestrogen-independent 

activities including the ability to inhibit cell cycle progression and to regulate gene transcription 

in the absence of the ligand, the following studies revealed a significant effect of ligand-free ERβ

on breast cancer cell functions. This occurred via modulation of the cell proteome, suggesting 

that miRNA regulation may represent a key event in the control of the biological and clinical 

phenotype of hormone-responsive breast cancer by this nuclear receptor.201 Other studies than 

breast cancer studies found relationship between ERβ and miRNAs in colorectal cancer202, 203,

prostate cancer204 lung adenocarcinoma205.

Given all the suggestions of a protective role of ERβ in the heart, the several reports 

indicating a miRNA regulation by this receptor in different systems and the lack of knowledge 

about miRNA regulation by ERβ in the heart and heart diseases, the study here described has a 

major importance as part of the necessary understanding of the sex differences in cardiac 

hypertrophy, as well as the role of oestrogen in females.

5.3. Pathway enrichment analysis of miRNAs with significant 

sex*surgery interaction effect

The group of 12 miRNAs with significant sex and sex*surgery effect in WT mice (two-way 

ANOVA) was found particularly interesting for this study. As mentioned before, these miRNAs 

responded to TAC in a sex-specific manner in WT mice, but they did not present the same effect 

in ERβ-/- animals. In order to try to understand better the possible roles of these sex-specifically 

regulated miRNAs in TAC, we performed a pathway enrichment analysis, using their putatively 

predicted targets by TargetScan and analysing them through ConsensusPathDB.

The analysis revealed an interesting output, showing a great number of pathways 

hypertrophy-related. The most prominent results point out the strong association of the putative 

targets with MAPK and PI3K-Akt signalling pathways and oxidative damage. Among others, the 

results also include oestrogen signalling or mitochondrial gene expression.
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Intracellular MAPK signalling cascades likely play an important role in the pathogenesis of 

cardiac and vascular disease. All the three major MAPK pathways are activated in cardiac 

tissue of mice under TAC conditions.206 Over-expression studies lead to the model that the 

simultaneous activation of ERK, JNK and p38 MAPK in heart after pressure overload contribute 

to the development of pathological cardiac hypertrophy. In this model, ERK activation promotes 

the growth of cardiomyocytes, JNK activation leads to reduced gap junction formation, p38 

MAPK activation promotes cardiac fibrosis, and activation of all three pathways promotes 

reduced diastolic compliance.207 MAPK-ERK1/2 pathway was shown to be regulated by miR-21

through the direct targeting of Spry1, one of the pathway’s negative regulators.111 We found sex 

differences in the regulation of this and other miRNAs with putative targets in other MAPK 

inhibitors208 and this will be discussed ahead in this report.

Concerning mitochondrial gene expression, it is an expected result since our own data 

shows that gene encoding for mitochondrial function and fatty acid oxidation were less down-

regulated in female hearts, compared to male.60 Among the genes belonging to the 

mitochondrial fatty acid oxidation that have putative targets for several of the analysed miRNAs

are:

Decr1 (2,4-dienoyl CoA reductase 1),

Hadha (hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-

CoA hydratase alpha subunit),

Hadhb (hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-

CoA hydratase beta subunit).

Ndufs4 (NADH dehydrogenase (ubiquinone) iron-sulfur protein 4) and

Auh (AU RNA binding protein/enoyl-CoA hydratase).

The questions whether these miRNAs binding sites are functional or not remain unknown 

and will be under investigation in the near future.

5.4. ERβ represses miRNA expression in Sham animals

The direct comparison of WT and ERβ-/- female Sham, as first analysis of the receptor’s 

role, revealed a higher expression of 9 of the 11 selected miRNAs in the absence of the 

receptor (see 4.4, Figure 25), even though miR-106b had a borderline p-value. The exceptions 

were observed for miR-106a and miR-27a that did not show any difference between the 

expression in WT and ERβ-/- females. MiR-27a’s expression was only affected by the deletion of 

ERβ in male animals and not in females.
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The different behaviour of miR-106a and miR-27a under the deletion of ERβ could 

eventually have an explanation with a look over the effect of E2, or the ERs agonists on 

cardiomyocytes and cardiac fibroblasts from both sexes. In fibroblasts, both miRNAs are down-

regulated by E2, ERα and ERβ specific agonists in female cells. In males, both are up-regulated 

by E2 and ERα and none of them suffers any change by ERβ specific agonist. However, this is 

also a pattern shared with miR-24 and miR-27b (Table 49). In female cardiomyocytes, we saw a 

down-regulation of miR-106a under the 3 different stimulations and a down-regulation of miR-

27a by E2 and ERβ agonist. As the stimulations in cardiomyocytes were only performed in 

female cells, it remains unknown what would happen in male cells. Further experiments using 

cells from both sexes would be necessary to unveil whether a different behaviour of these 

miRNAs is also observed between male and female cardiomyocytes, thus influencing the overall 

expression in the heart tissue.

Few published studies correlate these two miRNAs with heart, oestrogen or ERs. In 

cardiomyocytes, miR-27a was previously found to strongly up-regulate β-MHC, but not α-MHC. 

This regulation occurs by direct targeting of thyroid hormone receptor β1 (TRβ1), which 

negatively regulates β-MHC transcription.209 In breast cancer studies, miR-27a was shown to 

indirectly regulate E2-responsiveness in MCF-7 cells through suppression of ZBTB10, a 

specificity protein (Sp) repressor, thereby enhancing expression of ERα.210 E2 treatment can 

also up-regulate the expression of miRNAs belonging to miR-106a≈363 (and miR-17≈92) 

cluster in ERα-positive breast cancer cells, and this is mediated by direct recruitment of 

oestrogen-inducible c-MYC to the promoter region of these miRNA cluster.211 However, due to 

the fact that negligible levels of c-myc were observed in quiescent cell of non-cancer tissue212,

the influence of c-MYC on miRNA expression at cardiac tissue level is limited to proliferating 

cells.

5.5. Estradiol repression of miRNAs as a possible cause of the 

sex effect observed in WT mice

Another exciting observation in this study was that almost half (24/60) of the miRNAs 

analysed in WT animals presented a sex effect in the statistical analysis (and 6 more miRNAs 

had a borderline value for this effect). Interestingly, with the exception of miR-145, all the other 

miRNAs were higher expressed in male than in female animals (Table 26).

Sex hormones, particularly oestrogen, are generally expected to mediate sex differences. 

The remarkable number of miRNAs showing sex effect correlates with other reports that 

demonstrated previously a modulation of the transcription of several miRNAs by E2 stimulation. 
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One report suggested widespread repression of miRNAs in ERα-positive breast cancer cells, 

which included miR-21, miR-23b, miR-26a, miR-26b from our list of miRNAs with sex effect.169

E2 was also shown to induce the expression of the let-7 family members and miR-21 in MCF-7

cells168, which does not correlate with our data, but the differences are sometimes due to the 

array platform used, the data analysis method or even the cells used (cell lines express c-MYC

and quiescent cells not213) and sub-clones used. The same study also shows that Dicer is 

associated with ERα-binding sites and found to be induced by E2, showing that oestrogen does 

not only regulate the expression of specific miRNAs, but might also have global effects on 

miRNA-regulated gene expression by altering their rate of processing.168 A differential 

expression of miRNA biogenesis pathway genes was found between ERα-positive and ERα-

negative breast cancer cells. ERα-positive cells showed increased DICER and TRBP 

expression, but also decreased Ago1 and Ago2 expression, suggesting that the lower 

abundance of the Ago proteins in ERα-positive tumours could limit the functional activity of the 

RISC complex without repression of miRNA maturation by Dicer.214 Later, E2 was found to 

regulate the distribution and activity of all three RNA polymerases and virtually every class of 

non-coding RNA that has been described to date, also in MCF-7 cells.215

Interestingly, many of the miRNAs negatively regulated by E2 are predicted to target 

several components of the miRNA biogenesis pathway.111 Targeting of Dicer mRNA by E2-

regulated let-7, miR-29a and miR-21 has been confirmed experimentally216-218, suggesting a 

potential negative feedback mechanism between miRNAs and their biogenesis machinery which 

may be influenced by oestrogen signalling. 

While all these studies were performed in breast cancer cells, we could not find published 

data about oestrogen-regulated miRNAs in the heart. However, our results obtained with E2-

stimulation of female cardiomyocytes are in accordance with the ones mentioned above. We 

show a repression of the expression of 10 miRNAs, most of which are also repressed by ERα

and ERβ specific agonists. Although we could not include male cardiomyocytes within our 

experiments, the higher level of oestrogen in females than in males might not be the main cause

for the sex effect observed. As seen on our cardiac fibroblasts experiments, the same amount of 

E2 can have different effects in male and female cells. 

5.6. E2 and ERs regulate miRNA expression in cardiac 

fibroblasts in different ways according to the sex

Among our results, we found an up-regulation of miR-21 nine weeks after TAC, in a sex-

dependent manner. MiR-21 presented a statistically significant higher up-regulation in males 



5. Discussion

____________________________________________________________________________
117

than in females, and this sex difference was abolished in the absence of ERβ, with a higher up-

regulation of this miRNA by TAC in ERβ-/- females in comparison to WT. Furthermore, our results 

show that the basal expression of miR-21 is already higher in knock-out females, and that E2 

has a repressing effect over miR-21 expression in female cardiomyocytes. 

MiR-21 is a miRNA previously linked to fibrosis, known to be up-regulated in fibroblasts of 

the failing heart augmenting mitogen-activated protein kinase (MAPK)-ERK1/2 activity. Through 

the inhibition of the MAPK/ERK pathway negative regulator sprouty homologue 1 (Spry1), miR-

21 contributes to myocardial disease affecting the proliferation and survival of cardiac 

fibroblasts.111 Some contradictory results have however been published, showing that miR-21

knock-down had no significant effect under similar pressure overload conditions.219 This might 

have an explanation in the  different biological half-lives of the antagomiRs used in both 

studies220, in a suppression of multiple miRNAs with the same seed sequence as miR-21 or 

even in non-specified effects of high levels of a cholesterol modified antagomiR on the heart.221

Finally, the sex of the animals, which is not specified, could play a significant role.

Knowing that MAPK/ERK pathway has other negative regulators than Spry1 and that 

miRNAs frequently act in networks, we searched for miRNAs that could putatively target Spry2, 

Rasa1 and Rasa2. The finding of 5 other miRNAs with putative targets within these genes, with 

a similar expression pattern to miR-21 in WT and also a loss of the sex differences and the sex 

effect in the knock-out animals, made us believe that these miRNAs could really act as a 

fibrosis-regulating network, mediated by oestrogen and ERβ.

Primary fibroblasts with cardiac origin isolated from male and female animals allowed the 

in vitro study of the influence of E2 and its receptors independently from the endogenous 

hormonal effect in vivo, treating cells from both sexes with the same amount of E2 or ER 

specific agonists.

We reported previously that the effects of E2 on collagen synthesis differ between male 

and female adult rat fibroblasts in vitro. E2 increases Col1 and Col3 expression in cardiac 

fibroblasts from male rats, whereas it suppresses Col1 and Col3 in cells from female animals.184

In fact, like for Col1 and Col3 expression, we also found a sex-specific effect of E2 on miRNA 

expression in cardiac fibroblasts. While E2 causes in female cells a down-regulation of all the 

miRNAs selected (miR-106a, miR-106b, miR-21, miR-24, miR-27a, miR-27b), in males cells the 

general effect is an up-regulation, with the only exception observed in miR-21. Consistently, also 

the effect of ERα and ERβ showed a sex-specific effect on cardiac fibroblasts. While in females 

all the 6 miRNAs are negatively regulated by both or at least one of the ER specific agonists, in 

males the tendency is for an up-regulation by ERα agonist. 
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By demonstrating this targeting, a down-regulation of this group of miRNAs with 

MAPK/ERK pathway negative regulators as common targets would mean that the expression of 

the regulators would be higher, thus causing a higher inhibition of the pro-fibrotic MARP/ERK 

signalling pathway and consequently less fibrosis (in females) and vice-versa (in males). In fact, 

in a recent publication where we published some of these results, we also confirmed the 

targeting of Rasa1 by miR-21 and miR-24 and the targeting of Rasa2 by miR-21, miR-27 and 

miR-106. Moreover, miR-21, miR-24, miR-27a and miR-106a were able to induce ERK1/2 

phosphorylation in cardiac cells.208

Sex differences in the miRNA processing machinery could be an explanation, as 

oestrogen was previously demonstrated to exert a post-transcriptional control of the maturation 

of miRNAs by attenuation of the processing of pri-miRNAs through oestrogen-dependent 

association of the ERα with the Drosha complex.222 It is important to mention that for the 

referred study the authors used female mice and although the study does not include data about 

ERβ, our results with ERα specific agonist in female cardiac fibroblasts also correlate with them. 

This present study indicates that E2 may influence the development of fibrosis in a sex-

specific manner, regulating the expression of different repressors of the MAPK/ERK signalling 

cascade, through miRNAs. Sex is an important factor to determine whether the mediation of 

oestrogen occurs via ERα or ERβ, since ERβ appears to have a protective role in females and 

ERα to lead to an opposite effect in males. The analysis of these miRNAs in an ERα-/- mouse 

model confirmed that the absence of this receptor, only affects male heart tissue.

5.7. miRNA therapeutics applied to cardiac hypertrophy and 

fibrosis

Cardiac hypertrophy and fibrosis therapeutically approaches based on miRNAs have 

nowadays a growing interest. The first report of a miRNA knock-down in vivo in a mammalian 

system used a cholesterol-conjugated antagomiR to obtain an inhibition of miR-122, and 

abundant liver miRNA. Nonetheless, the same report shows that cholesterol-based chemistry 

was also able to knock-down miRNA expression in cardiac tissue after intravenous injection.223

After this important report, an antagomiR against miR-133 was implanted subcutaneously 

in mice, using osmotic mini-pumps for a continuous delivery. After one month of treatment, the 

mice presented an increase in cardiac hypertrophy, suggesting a high importance of this miRNA 

in preventing the pathology.113

In vivo inhibition of miR-199b by a specific intraperitoneally administrated antagomiR 

normalized reduced NFAT (nuclear factor of activated T-cells) activity and caused inhibition and 
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even reversal of cardiac hypertrophy and fibrosis in mouse models of heart failure. MiR-199b is 

a direct target of calcineurin/NFAT with an increased expression during heart failure, thus being 

an interesting potential target for therapies.138

Studies using systemic delivery of an LNA-modified antagomiR subcutaneously delivered 

showed that therapeutic silencing of miR-208a, a cardiac specific miRNA, prevents pathological 

cardiac remodelling, functional deterioration and lethality during diastolic heart disease.187

The in vivo knock-down of miR-21 with an antagomiR was initially demonstrated to blunt 

cardiomyocyte hypertrophy, inhibit and reverse interstitial fibrosis and attenuate cardiac 

dysfunction after TAC.111 However, others demonstrated that both genetic deletion and 

antagomiR mediated inhibition of miR-21 failed to block cardiac remodelling during stress.219

These differences were attributed to different chemistries and nucleotide sequences used, that

led to different efficacies.220

The knowledge of miRNAs’ role and regulation in diseases is extremely important for a 

better understanding of the mechanisms involved and the identification of new targets for 

therapeutic approaches. Advances in the miRNA delivery systems are needed to improve the 

specificity, efficacy and the efficiency of the targeting. However, the fact that each miRNA can 

target several different mRNAs and that each mRNA might be targeted by several miRNAs is 

yet an obstacle to these therapies.
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5.8. Conclusions and implications for further research

Sex differences in cardiac hypertrophy exist and oestrogen and its receptors play a role in 

them. We show that ERβ plays a protective role mainly in the female heart, by regulating the 

expression of hypertrophy and fibrosis linked miRNAs. This effect was also observed in vitro, in 

cardiomyocytes and cardiac fibroblasts. This protective role leads to sex differences, in normal 

and hypertrophic hearts. In contrast, ERα affects only the expression of fibrosis linked miRNAs 

in the male hearts. Furthermore, E2, ERα and ERβ regulate a miRNA network in a sex specific 

manner

The mechanisms through which this sex-specific miRNA regulation occurs remain 

unknown. Concerning ERβ, some possibilities worth to investigate could be either a post-

translational modification of ERβ that could influence its activity or cellular levels, or a regulation 

of the length of the mRNA 3’UTR sequence by utilization of alternative polyadenylation sites. 

These topics are interesting approaches for further investigation in the near future.
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