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Zusammenfassung 

Der Eintritt von Influenza A Viren in Wirtszellen erfolgt anhand des Hämagglutinin (HA) 

Proteins. Neueste Entwicklungen zielen darauf ab, die fusionsinduzierende Konformations-

änderung des HA und damit die Freisetzung des viralen Genoms in die Wirtszelle zu 

inhibieren. Der Fusionsprozess ist pH-abhängig da nur bei einem niedrigen pH-Wert (~5.0-

6.0) die Protonierung bestimmter Reste innerhalb des HA eine Konformationsänderung, und 

somit die Membranfusion, auslöst. Die Identifizierung von konservierten, titrierbaren Resten 

und die Aufklärung der Strukturveränderungen im HA ermöglichen eine gezielte Entwicklung 

neuer antiviraler Medikamente. 

In dieser Arbeit wurden bestimmte Histidine im HA mittels umfassender experimenteller und 

theoretischer Methoden als potentielle pH-Sensoren untersucht. Dabei konnte das Histidin 

an Position 184 als wichtiger Schalter der pH-induzierten Konformationsänderung 

identifiziert werden. Außerdem bewirkte der Austausch des geladenen Rests an Position 216 

in der Nähe des His184 eine Veränderung der pH-Abhängigkeit des H5 HA aufgrund der 

Beeinflussung des pKa-Werts des His184. Da die Mutation R216E im HA des 

hochpathogenen H5N1 Virus in allen Isolaten während der Vogelvirenseuche im Jahr 

2003/04 detektiert wurde, deutet das Ergebnis daraufhin, dass diese Mutation zur 

Entstehung des hochvirulenten Vogelvirus und dessen Adaptierung an den Menschen 

beigetragen hat. 

In diesem Zusammenhang wurde auch der Einfluss der pH-Abhängigkeit des HA auf die 

Fusion und Infektiosität von Viren in lebenden Zellen getestet. Eine destabilisierende 

Mutation im HA eines rekombinanten WSN-H3 Virus reduzierte dessen Infektions- und 

Replikationseffizienz in MDCK-Zellen, was auf den endosomalen pH-Wert dieser Zellen 

zurückgeführt werden konnte. Die Messung der Virus-Endosom-Fusionskinetik in lebenden 

Zellen machte außerdem die Bedeutung der pH-Abhängigkeit des HA für den Zeitpunkt der 

Membranfusion und dessen Einfluss auf die Effizienz der Virusinfektion deutlich. 
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Abstract 

The entry of influenza A virus into host cells is established by the hemagglutinin (HA) protein. 

New antiviral strategies aim to inhibit the fusion inducing conformational change of HA and 

thereby liberation of the viral genome into the cell. This process is strictly pH dependent 

since the conformational change of HA initiating the fusion of membranes only occurs upon 

protonation of yet unknown residues within HA at low pH (~5.0-6.0). The identification of 

conserved titrable residues and better understanding of the sequential structural 

rearrangements within HA may facilitate the development of new broad-spectrum antivirals. 

In the present work His184 and His110 were characterized as potential pH sensors by a 

comprehensive mutational and computational analysis. The results suggest that His184, but 

not His110, is an important regulator of HA conformational change at low pH. Furthermore, 

an exchange of charge at position 216 in vicinity to His184 was shown to alter the pH 

dependence of conformational change and of fusion in correlation to the known pKa 

dependence of histidines on neighboring residues. The result advocates that the mutation 

R216E, which emerged in the highly pathogenic H5 HA in 2003-2004, contributed to an 

altered acid stability of H5 HA via its effect on His184 and thus to the adaptation of avian 

H5N1 viruses to the human host. 

Therefore, the role of an altered acid stability of HA for viral fusion and infectivity in living 

cells was assessed. Recombinant viruses containing a destabilizing mutation in the HA 

protein were found to have a reduced infectivity and replication efficiency in MDCK cells 

compared to the respective wild type. Studying virus-endosome fusion kinetics in these cells 

we could resolve a significant difference in the timing of fusion induction suggesting that the 

time-point of fusion is a critical determinant of viral infection efficiency which depends on the 

endosomal acidification as well as on the acid stability of HA. 
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1 Introduction 

 1.1 Influenza A viruses 

1.1.1 Epidemiology and history of influenza viruses 

Infection with seasonal human influenza virus varies from year to year resulting in 3 to 5 

million cases of severe illness and 250 000 to 500 000 deaths annually (World Health 

Organization, WHO). In addition to these yearly epidemic outbreaks recurring influenza 

pandemics cause millions of human deaths worldwide. Historical reports suggest that 

influenza epidemics have already appeared since the Middle Ages or even since ancient 

times and at least 14 influenza pandemics were speculated to have occurred since 1500. 

However, it was not until 1931 that influenza viruses could be isolated by Richard Shope [1] 

coining the starting point of research in the field of virology. Now, we know that influenza 

viruses are enveloped negative stranded RNA viruses with a segmented genome assigned 

to the family of orthomyxoviridae. They are classified into influenza A, B and C viruses 

according to their host range and pathogenicity. Whereas B and C type viruses are 

exclusively isolated from humans, the natural reservoir of influenza A viruses are aquatic 

birds where they circulate mostly without causing any symptoms. Only when transmitted to 

poultry, low mammals and humans they cause respiratory disease. Based on the antigenic 

properties of the spike proteins hemagglutinin (HA) and neuraminidase (NA) influenza A 

viruses can be further classified into 18 HA and 10 NA subtypes. 

Influenza A and B type viruses are the causative agents of the seasonal flu outbreaks and 

are therefore included into the vaccine formulations every year, whereas influenza C viruses 

only cause mild infections and localized outbreaks. Avian derived influenza A viruses are 

additionally the major cause of epizootic disease and human pandemics. In the past 96 

years five confirmed human pandemics have occurred with the most devastating one in 1918 

(“Spanish influenza”). This pandemic was caused by an avian origin H1N1 virus which 

circulated since then in humans and was also the origin of the following pandemics in 1957 

(“Asian influenza”, H2N2), 1968  (“Hong Kong influenza”, H3N2), 1977 (“Russian influenza”, 

H1N1) and in 2009 (swine origin H1N1 influenza) [2–4]. 

These pandemics were typically caused by the introduction of a virus possessing an HA 

subtype new to the human population. The emergence of such a new virus strain is 
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facilitated by the genetic flexibility of influenza A viruses. The segmented genome allows 

them to exchange genes between different strains upon co-infection of a host so that novel 

viruses emerge constantly with a new composition of segments and subtypes (reassortment 

or “antigenic shift”) [5,6]. Furthermore, the high mutation rate during viral replication due to 

the infidelity of the viral polymerase results in multiple mutations in individual genes 

(“antigenic drift”). In some cases these point mutations produce selective advantages for the 

virus such as better binding and/or replication efficiency or by allowing them to escape pre-

existing immunity [7,8]. Of the past pandemics only human adapted H1N1 and H3N2 viruses 

still circulate in the human population as so called seasonal influenza A viruses (see above). 

A new influenza variant appeared in 2011 by reassortment of the pandemic H1N1 virus with 

an H3N2 swine influenza virus. However, this virus only transmitted from pigs to humans and 

rarely between humans which is considered as prime condition for pandemicity. 

In the last decades major poultry epizootics caused by viruses of H5, H7 and of H9 subtypes 

have caught public attention due to repeated spillover infections in humans. In particular, the 

great bird flu which has its origins in the 1996 epizootic in China and re-emerged in 2003 

raised major concerns for the outbreak of a new human pandemic. 661 human cases 

including 387 deaths have been reported from 2003 until 2014 (WHO). Fortunately, this virus 

has so far only transmitted from birds to humans. Spread among humans has only been 

observed in rare cases. However, only last year, in March 2013, human cases with the newly 

identified avian H7N9 virus raised new public concern. The virus has emerged from 

reassortment of several avian strains, mainly from H7N3 and H9N2 viruses in Asia. Although 

less pathogenic than the H5N1 virus (137 cases, 45 fatalities) it was shown to contain signs 

of mammalian adaptation in some of the viral genes of avian origin and transmitted more 

readily from animals to humans [9]. Again sustained human-to-human transmission has 

fortunately not been observed. 

The continuing circulation of these avian viruses in birds and the associated spillover 

infection in humans and other mammals pose a constant risk for the development of a new 

human pandemic. Although influenza viruses have been extensively studied since the 1930s 

which is reflected by the high amount of knowledge that has been gained over the last 

century, properties that contribute to the success of novel avian strains in the human host 

are still not clearly defined. 
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1.1.2 Structure and morphology of influenza A virus 

 

 

Figure 1.1: Structure and morphology of influenza A viruses. 

(A) Transmission electron micrograph of an influenza A/X-31. Regions of the lipid membrane (turquoise) and of the 
M1 capsid (yellow) as well as one RNP (red) are colorized. In the magnified section of the electron micrograph HA 
and NA were overlaid with surface representations of the corresponding crystal structures filtered to an EM-
comparable resolution (attainable by 3D-TEM-reconstruction techniques)1. (B) Schematic representation of an 
influenza A virus particle. The spike proteins hemagglutinin (HA, blue), neuraminidase (NA, green) and the proton 
channel protein M2 (purple) are embedded in the lipid envelope (turquoise) of the virus. The membrane is lined with 
the M1 capsid protein at the inside (yellow). The viral genome consists of eight ribonucleoprotein particles (RNPs, 
red). (C) Enlargement of a vRNP segment. Each segment is formed by viral RNA (vRNA), the nucleoprotein (NP) 
and the viral polymerase proteins (PB1, PB2 and PA, colored in white, gray and black, respectively). 
 

 

Influenza A viruses are enveloped viruses with pleomorphic morphology forming spherical 

structures of ~100 nm in diameter as well as filamentous virions reaching up to ~20 µM in 

length (Figure 1.1). In the lipid bilayer three integral membrane proteins are inserted: the 

antigenic glycoproteins HA and NA, and the multi-functional, proton-selective ion channel 

M2. Beneath the membrane the matrix protein M1 forms a protein layer which is essential for 

viral stability and integrity [10,11]. The single stranded negative-sense RNA is divided into 

eight segments, each encoding for at least one viral protein [12] (summarized in Table 1.1). 

Each segment is encapsulated by viral proteins into ribonucleoprotein complexes (vRNPs) 

[13,14] (Figure 1.1 C). The terminal sequences are bound by the trimeric viral RNA 

dependent polymerase complex (PB1, PB2 and PA) whereas the rest of the sequence is 

bound by multiple copies of nucleoprotein (NP) which upon binding oligomerizes into a 

double helical, rod-shaped structure [15,16]. Being capable of transcription and replication in 

the absence of other viral proteins these vRNPs are the minimal replicative units of influenza 
                                                      
1 The transmission electron micrograph was obtained from Dr. Kai Ludwig, Research Center of Electron Microscopy, 

Free University Berlin  
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and other orthomyxovirions. A full set of viral RNPs is sufficient to initiate infection [17–21]. 

Due to the membrane and RNP-binding activities of M1 the vRNPs are integrated into the 

viral membrane and by that M1 is also a determinant of virus morphology [11,22–24] (see 

1.1.3.2). 

 

 

Table 1.1: Viral proteins encoded by the eight vRNPs of influenza A virus. 

vRNP 
seg-
ment 

Viral 
protein Main protein function**  

Size in 
amino 
acids  

Refe-
rences 

1 PB2 Cellular mRNA cap recognition and binding 759 [25,26] 
2 PB1 RNA dependent RNA polymerase; RNA chain elongation 757 [26] 

 PB1-F2* Virulence factor; pro-apoptotic activity 90 [27] 
  N40* unknown; rescues viral replication in presence of PB1-F2 718 [28] 

3 PA Endonuclease; Cleavage of capped mRNAs (cap 
snatching)  716 [29] 

 PA-X* Repression of cellular RNA polymerase II gene 
expression 252 [30] 

 PA-N155* unknown; probably promote viral replication 568 [31] 
  PA-N182* unknown; probably promote viral replication 535 [31] 
4 HA Cell receptor binding, viral membrane fusion 560 [32] 

5 NP Component of vRNP complex; vRNA binding, nuclear 
import and replication 498 [33,34] 

6 NA Cleavage of terminal sialic acids (release of progeny 
virus) 465  

7 M1 Matrix protein;  Determinant of virus structure; involved in 
nuclear export of vRNPs, assembly and budding 252 [10,11,2

4,35] 

 M2 Proton selective ion channel; important for vRNP 
uncoating and virus budding 97 [36,37] 

  M42* unknown; can functionally replace M2 in M2-deficient 
viruses 99 [38] 

8 NS1 Antiviral response inhibition 217 [39,40] 

 NS2/NEP Nuclear export protein; M1 binding and vRNP export 121 [41,42] 

  NS3* Unknown; replicative gain-of-function in the mouse 
model 174 [43] 

*auxiliary proteins  
 

**for a more detailed description see Vasin et al. 2014 [12]. 
 

 
 

 

1.1.3 Replication cycle of influenza A viruses 

Transcription and replication of influenza A viruses take place in the nucleus and thus viral 

RNPs have to be transported from the cell periphery to the center of the cell for RNA 

synthesis. This involves passage of the nuclear envelope which is a tightly regulated process 

(see 1.1.3.3). However, it provides the virus with several advantages for transcription and 
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replication. Before import into and export from the nucleus the viral RNA is encapsulated in 

RNPs and thus remains hidden from antiviral host response factors such as the cytoplasmic 

RNA receptor retinoic acid inducible gene 1 (RIG-I) [44,45]. In addition, transcription inside 

the nucleus at the site of host transcription allows the virus to associate with the host RNA 

polymerase II (pol II) for mRNA synthesis and processing (splicing). Thus, the virus hijacks 

the host machinery thereby expanding its coding capacity [12] and at the same time 

inhibiting host gene expression by subsequent degradation of pol II [46,47]. 

The individual steps of the influenza A virus replication cycle can be divided into (i) binding 

and uptake, (ii) endocytic transport and fusion, (iii) nuclear import and replication, (iii) protein 

synthesis and nuclear export and (iv) viral assembly and budding. These steps are illustrated 

in Figure 1.2 and described in detail below. 

 1.1.3.1 Binding and uptake 

Influenza A virus entry is mainly mediated by binding of the viral HA to the terminal sialic 

acids (SAs) of host cell glycoproteins [32] triggering endocytosis of the virus. Of the different 

existing entry mechanisms that have been identified [48–50]  influenza A viruses were found 

to enter cells primarily by clathrin-mediated endocytosis (CME) [51–53]. Electron 

micrographs and live viral tracking additionally revealed a clathrin- and caveolin-indpendent 

entry pathway, especially for those of filamentous morphology, which was only discovered in 

2011 as macropinocytosis [54,55]. 

Virus internalization is not a simple process and seems to be highly cell-dependent. Recent 

studies suggest that post-attachment factors and associated host-specific signaling factors 

additionally to SA binding are required to trigger endocytic uptake of the virus [56–58]. For 

example, binding to the epidermal growth factor (EGF) receptor was shown to promote 

internalization of the virus by activating receptor tyrosine kinases [59]. Furthermore, the 

ability of influenza viruses to infect cells independent of SA binding suggests a more host-

specific uptake mechanism which may require the activation of cellular signaling molecules 

by yet undetermined co-receptors [60–62]. 
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Figure 1.2: Replication cycle of influenza A viruses. 
After the virus has bound to sialic acid containing receptors via HA (1) it gets endocytosed (2) and is transported 
within the endosome along microtubules (3). The declining endosomal pH triggers a conformational change of HA 
mediating the fusion of the viral and the endosomal membrane. As a consequence, the RNPs are released into the 
cytoplasm and are finally transported into the nucleus (4). There the viral RNA is transcribed into mRNA and new 
viral RNA (via cRNA intermediate) (5). From the newly synthesized mRNA viral membrane proteins (HA, NA and 
M2) are produced at the endoplasmic reticulum(ER) and travel through the Golgi apparatus to the plasma 
membrane of the cell (6). Other early (PB1, PB2, PA, NP and NS1) and late (M1 and NS2) viral proteins are also 
translated and transported back into the nucleus where new ribonucleoprotein particles (vRNPs) are formed with the 
nucleoprotein (NP) and the trimeric polymerase complex (PB1, PB2, PA) (7). These new vRNPs, as well as M1, are 
also transported to the plasma membrane, where assembly of new viral particles takes place which subsequently 
bud from the plasma membrane (8). 
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 1.1.3.2 Endocytic transport and penetration 

Transport inside endocytic vesicles enables the virus to circumvent the meshwork of 

microfilaments and cytoplasmic crowding on their way from the cell periphery to the 

perinuclear region. Travelling inside these cellular vesicles also prevents early detection by 

the antiviral immune response and allows the virus to release its genome in close vicinity to 

the nucleus [48,50,51]. Apart from these advantages resulting from endosomal transport 

along microtubules, the associated pH drop due to endosomal maturation from early 

endosomes to lysosomes is essential for release of the viral RNPs into the cell [49]. The low 

pH environment activates the proton channel M2 [63] resulting in the acidification of the viral 

interior and, as a consequence, in M1 dissociation (vRNP uncoating) [64,65]. At a specific 

pH HA is induced to undergo a conformational change triggering fusion of the viral with the 

endosomal membrane (see 1.4.2) which results in the ejection of the viral genome into the 

cytoplasm of the cell [32,66]. 

The exact functional compartment where influenza A virus membrane fusion occurs has long 

been unknown [67]. Early endosomes (EEs) can develop to recycling endosomes (REs), 

from where endocytosed material is transported back to the cell surface, or to late 

endosomes (LEs) and lysosomes (Lys). Rab GTPases are involved in targeting and 

formation of vesicles and were found to determine vesicle specificity [68] by their association 

with specific endosomal compartments (Rab5 associates with EE, Rab7 and Rab9 with LE, 

Rab11 and Rab4 with RE) [48,69]. Influenza virus infectivity was significantly inhibited in 

Rab5 and Rab7 dominant-negative mutants suggesting that both, early and late endosomes 

are required for trafficking and infection of influenza A viruses [67]. Indeed, tracking of 

labeled viruses in living cells revealed that an initial acidification step is essential for 

subsequent virus fusion in late endosomes [70]. Also recently, sequential exposure to early 

and late endosomes [71] as well as the influx of K+ ions [72] were reported to be required for 

proper vRNP uncoating and infection implying an excellent adaptation of the influenza A 

virus to the endosomal maturation pathway in mammalian cells. 

 1.1.3.3 Nuclear import and replication 

After release of the RNPs by membrane fusion they are transported to the nucleus by 

diffusion where they are shuttled through the nuclear pore complexes (NPCs) by binding to 

nuclear transport receptors (karyopherins) [73]. These karyopherins import and export 

structures larger than 20-30 kDa (such as vRNPs) with the help of Ran GTPases [74]. 

Binding to importins occurs via nuclear localization signals (NLSs) which are present on viral 

proteins [75] mediating rapid import with a half time of only 10 min [33]. Interestingly, only the 

NLSs of M1 and NP proteins but not of the polymerase subunits in packaged RNPs are 
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recognized by the importins, a fact that appears to be essential for regulating the import of 

incoming and the export of newly synthesized vRNPs [74]. In particular, it was found that M1 

prevents re-import of new vRNPs and is also required for the export of vRNPs to the cytosol 

[35,73]. Transport into the nucleus was found to occur by diffusion [76]. 

Replication of new viral RNA (vRNA) and transcription of mRNA for translation of viral 

proteins are two distinct modes of RNP function, however both include copying the negative 

sense viral RNA (vRNA) to a positive sense reverse complement (mRNA and cRNA) [77]. 

Initially, the m7GpppXm-cap of host mRNA is bound by PB2 enabling endonucleolytic 

cleavage 10-13 bases downstream of the 5’cap by the viral polymerase acidic subunit (PA) 

(cap snatching) [29]. The resulting short RNA fragment serves as primer for the production of 

5`-capped and 3’-polyadenylated mRNAs by PB1. Then, vRNA is transcribed into a perfect 

copy of its template (cRNA) without a cap or polyadenylation signal which again serves as 

template for the synthesis of new vRNA [34]. Transcription dominates early in infection 

whereas replication occurs more common as infection progresses. Factors controlling the 

switch from transcription to replication are still unknown however the source of polymerase 

and the accumulation of NP and virus-generated small RNAs have been suggested to play a 

role in this process [78]. 

 1.1.3.4 Protein synthesis and nuclear export 

Translation of the viral proteins occurs mainly in the cytoplasm of the cell. The first 

transcribed proteins are NP and the polymerase subunits (early proteins) as well as M1 and 

NS2 (NEP) which are subsequently imported back to the nucleus [79]. Newly synthesized 

vRNA, NP and the PA-PB1-PB2 complex assemble into new RNPs. However, export of 

vRNPs is only possible when bound to M1 (see above) and to the small nuclear export 

protein (NEP) [35,42]. Both contain nuclear export signals thus interacting with Crm1 which 

mediates export by binding to Ran-GTP. Nuclear export is also regulated by other 

mechanisms with the best understood one being the slow accumulation of NEP due to 

mRNA splicing [80]. Also phosphorylation of M1, NP and NEP as a result of HA 

accumulation at the plasma membrane [81] and the activation of the apoptotic pathway and 

as a result of caspase 3 have been proposed to promote vRNP export [82]. 

The exported vRNPs attach to Rab11 associated recycling endosomes (RE) which are then 

transported from the microtubule organizing center (MTOC) to the plasma membrane where 

viral assembly and budding takes place [83–85]. Recent evidence suggests that the vRNPs 

already assemble into complexes to be packaged on their way to the plasma membrane due 

to association with Rab11 positive vesicles [86]. HA, NA and M2 are synthesized by 

ribosomes at the endoplasmic reticulum (ER) (late proteins). As integral membrane proteins 
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they follow the secretory pathway including posttranslational modifications in the ER and the 

Golgi apparatus, from where they are transported to the apical plasma membrane. 

 1.1.3.5 Assembly and budding 

As infection progresses, viral proteins are increasingly enriched at the apical plasma 

membrane. HA and NA concentrate in lipid raft domains where they are thought to initiate 

the budding process of progeny virus by inducing curvature of the membrane [87]. M1 and 

M2 are also required for virus budding in infected cells but how these viral proteins interact to 

induce bud formation and membrane scission is still not completely understood [88]. 

The current model suggests that M1 binds to the cytoplasmic tails of HA and NA [89] 

inducing M1 polymerization [90,91]. However, evidence was recently provided that M1 

multimerizes upon binding to the plasma membrane in the absence of other viral proteins 

[92]. The matrix protein was also proposed to be responsible for subsequent filament 

formation [11,22–24] and for recruitment of vRNPs and M2 to the viral budozone [10]. 

Finally, the channel protein M2 concentrates at the boundary phase between raft and bulk 

plasma membrane at the neck of the budding virion. There it is thought to induce membrane 

scission by insertion of its amphipathic helix and resulting generation of positive curvature 

[37]. After completed membrane scission the new influenza virus particles are still tethered to 

the plasma membrane by HA-SA interaction. Only final cleavage of sialic acid receptors by 

neuraminidase leads to the release of budded virions from the cell surface [93]. Evidence 

has been achieved that both, spherical as well as filamentous particles only contain one 

copy of each vRNA segment  [94]. Thus, a highly selective mechanism of genome packaging 

has been proposed which seems to depend on functional, cis-acting packaging signals at 

either end of the vRNA segment [95,96]. A recent study on vRNP assembly reported the co-

localization of vRNPs in Rab11 associated vesicles (REs) in the cytoplasm before arrival at 

the budding site [86]. This study supports the previous idea of specific inter-vRNA 

interactions leading to the arrangement in a so called “7+1” configuration as revealed by 

electron tomography [97]. However, the exact gene sequences involved in direct vRNA-

vRNA base pairing are currently unknown and seem to differ among virus strains [98], a fact 

that might substantially influence the emergence of reassortant viruses [6,99]. 
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 1.2 Membrane fusion 

1.2.1 Biological significance 

Membrane fusion is the merger of two initially separated lipid membranes into a single 

continuous bilayer. This uniting mechanism plays an essential role for numerous functions in 

eukaryotic cells and for the formation of multicellular organisms. Intracellular fusion is 

fundamental for the distribution of lipids and proteins to different organelles (vesicular 

transport) as well as for intracellular communication by synaptic transmission. Extracellular 

fusion of two neighboring cells, also referred to as cell-cell fusion, is detrimental for 

developmental processes such as fertilization (fusion of a sperm with an oocyte) and tissue 

generation (e.g. myoblast fusion to form a muscle) [100–102]. 

However, also viral pathogens make use of this membrane uniting mechanism enabling host 

cell infection and the spread of disease [103–106]. Invasion by enveloped viruses including 

pathogens such as influenza, HIV and Ebola requires the fusion of their host cell derived lipid 

bilayer with the cellular membrane in order to deliver their viral genome into the host cell. 

Also the dissemination of non-enveloped reoviruses was found to depend on viral fusion of 

infected and non-infected cells [107]. 

1.2.2 The fusion-through-hemifusion pathway 

Despite the high diversity of cell-cell, virus-cell and intracellular fusion processes and 

involved proteins a common fusion pathway was found to exist in which hemifusion turned 

out to be a key intermediate [102,108–112]. The hemifusion intermediate is characterized by 

a lipid connection of the outer membrane leaflets while the inner leaflets remain distinct. 

Several models have been suggested for this fusion-through-hemifusion pathway with the 

most prevalent one depicted in Figure 1.3. Five steps have been proposed: (1) Local 

membrane bending creates a first site of contact. (2) Dehydration of this initial contact 

induces monolayer rupture establishing a local lipid connection between the two bilayers 

(hemifusion fusion stalk). (3) Subsequent radial expansion of the stalk results in a hemifusion 

diaphragm (HD) (4) Disruption of this diaphragm leads to the formation of a small fusion pore 

which allows for mixing of aqueous luminal contents. (5) A final enlargement of this pore 

leads to the complete fusion of membranes which is irreversible [109,113–115]. Alternatively, 

it has been proposed that the fusion stalk directly decays into a fusion pore omitting the 

stage of HD formation [116–118]. In any case, the hemifusion stalk is the most reliable 

intermediate structure which has been commonly found by modeling approaches and was 

confirmed experimentally [119]. 
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Another important intermediate structure in the fusion-through-hemifusion pathway is the 

fusion pore which is characterized by the lipid connection of outer and inner leaflets allowing 

for the mixing of aqueous contents which have been initially separated by the membranes. 

Both, hemifusion and fusion pore formation have been analyzed by electrophysiological 

approaches [120–123] and fluorescence assays monitoring lipid mixing (hemifusion) or lipid 

and content mixing (fusion pores) [108,124–126]. In these studies reversibility of the 

hemifusion intermediate was reported as well as reversible fusion pore opening, so called 

“pore flickering” [120], before its irreversible expansion. In general, the fate of two lipid 

bilayers - if they transit into a fusion stalk, a “restricted” or “unrestricted” hemifusion 

diaphragm, or into a small or expanded fusion pore - mostly depends on the type of fusion 

protein and its surface density [127]. However, several other factors such as lipid 

composition, lateral membrane tension and curvature of the fusing membranes have a 

substantial influence on the required energy at different stages of fusion. 

 

 

Figure 1.3: The fusion-through-hemifusion pathway and the lipid character in fusion. 
(1) After a first pre-fusion contact (2) point-like protrusions minimize the energy of the hydration repulsion 
between the proximal leaflets of the membranes coming into immediate contact. (3) A hemifusion stalk is formed 
with proximal leaflets fused and distal leaflets unfused. (4) Stalk expansion yields the hemifusion diaphragm 
(HD). (5) A fusion pore forms either in the HD bilayer or directly from the stalk. Dashed lines show the 
boundaries of the hydrophobic surfaces of monolayers. (B) Monolayers formed by inverted cone–shaped 
lysophosphatidylcholine (LPC) and by cone-shaped phosphatidylethanolamine (PE) and diacylglycerol (DAG). 
Cylindrical phosphatidylcholine (PC) forms an almost flat monolayer (adapted from Chernomordik et al. 2008) 
[119]. 

1.2.3 Role of lipids for membrane fusion 

Early studies on protein-free liposome and flat bilayer fusion in the presence of divalent 

cations have shown that the stage of membrane fusion largely depends on the lipid 

composition of the monolayers (114). Lipid molecules with relatively small polar heads (e.g. 
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phosphatidylethanolamine (PE) and diacylglycerol (DAG)) were shown to promote 

hemifusion due to their cone shaped structure which induces spontaneous negative 

curvature of the membrane (Figure 1.3 B). In contrast, those with larger polar heads and 

small hydrophobic moieties such as lysophosphatidylcholine (LPC) are molecules of inverted 

shape disturbing the leaflet configuration within the stalk and the HD thus inhibiting 

hemifusion. At the same time these inverted-shape-lipids promote fusion pore formation due 

to the induction of opposite curvature at the edge of the fusion pore [114]. Thus, the effect of 

the respective lipid depends on the monolayer of the membrane where it is inserted. The 

promoting effect of PE on the formation of the hemifusion intermediate as well as of LPC on 

pore formation was also found for viral [125,129–131] and intracellular fusion [132,133] 

supporting the role of lipids for the fusion of biological membranes. 

1.2.4 Role of membrane tension 

Another player driving the fusion of lipid bilayers is membrane tension. The minimal distance 

of artificial bilayers under normal conditions is 2-3 nm due to hydration of the lipid head 

groups [134]. Dehydration of these protein-free membranes brings them into very close 

contact (<1nm) generating a large amount of energy from intermembrane repulsion which is 

thought to be relaxed upon hemifusion [135–137]. Experimentally this can be achieved by 

direct dehydration [137] or by the addition of calcium ions or polyethylene glycol (PEG) 

[138,139]. Also other studies have proposed that the generation of membrane stresses at 

the fusion site initiate stalk formation [140–142]. In addition, simulations and experiments 

revealed that lateral tension in the external monolayers promotes stalk expansion and that 

opening and expansion of fusion pores is driven by the tension in the whole bilayers resulting 

from the forming HD [112,143–146]. 

 

1.2.5 Role and types of fusion proteins 

The activation energy of the fusion process has been estimated to be in the range of 40 

kcal/mol, most of which is required for enlargement of the initial fusion pore [147–149]. This 

energy is thought to be generated by the reversible or irreversible conformational change of 

one [150] or several fusion proteins [151,152] which bring the membranes in close 

apposition and drive the membrane rearrangements resulting in complete fusion 

[147,153,154]. 

Due to the simplicity of viral structures the fusion proteins of enveloped viruses have already 

been studied in depths and thus represent the best studied class of fusogens. Also the 
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intracellular fusion machinery composed of several proteins of the SNARE2 family has 

already been well characterized [100]. All of these fusion proteins are anchored in the 

membrane via a transmembrane anchor and establish a connection to the opposing bilayer, 

either by insertion of a hydrophobic anchor peptide (viral fusion) or by zippering up with 

another protein which is anchored in the opposed membrane by a transmembrane domain 

(TMD) (SNARE-mediated fusion). Of the proteins responsible for developmental fusion 

reactions only very few have been identified [102]. The fusion mediating mechanism of these 

so-called fusion failure (FF) proteins has only been discovered very recently. As 

demonstrated for the epithelial fusion failure protein EFF-1 it resembles that of the 

intracellular fusion machinery [155]. Although there are major differences in the pre-fusion 

structures of viral and cellular proteins driving membrane fusion, the conserved hairpin 

structure of these fusogens in the post-fusion state as well as the detection of a hemifusion 

intermediate in all processes suggests a conserved mechanism of coupling between protein 

and membrane rearrangements [119]. 

 1.3 Viral fusion proteins 

Enveloped viruses contain a lipid bilayer which protects the nucleocapsid and the genetic 

information from the environment. In order to mediate a new infection the genome has to be 

released by fusion of the viral with the cellular membrane. In contrast to cellular fusion, 

where the respective fusion proteins have to be present on both fusing membranes, the viral 

fusion machinery is exclusively provided by the virus and drives membrane fusion in the 

absence of an external energy source [100]. 

Depending on the viral family, the transition from the pre- to the post-fusion conformation is 

triggered by binding to one or multiple receptors at the plasma membrane (neutral pH) or, 

after endocytic uptake, by protonation in the acidic endosomal compartment (low pH) 

[103,105]. Critical histidines have been suggested as key residues, which upon protonation 

trigger the structural rearrangements in the acidic pH environment of endosomes, however 

only a few potential pH sensors have been identified to date [156–163]. Avian α-retroviruses 

even require a two-step fusion activation process (receptor binding followed by low pH) and 

fusion by severe acute respiratory syndrome (SARS) Coronavirus S and Ebola virus GP 

proteins is only initiated following enzymatic cleavage by endosomal enzymes such as 

cathepsins [105,164–166] (see Table 1.2). In any case, the induced conformational change 

involves common structural rearrangements for all fusion proteins (Figure 1.4). These are, 

first, the insertion of hydrophobic peptides or loops, referred to as fusion domains, into the 

target membrane (pre-hairpin intermediate) and second, the refolding of the extended 

                                                      
2 SNAP receptor; SNAP, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein 
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conformation into the characteristic hairpin fold positioning the TMD and the fusion domain at 

the same end of the rod-like structure [167]. If the pre-hairpin intermediate is monomeric or a 

homotrimer of several fusion subunits is still a matter of debate [168]. Recruitment of several 

pre-hairpins to the fusion site followed by a sequence of refolding steps to the energetically 

most stable hairpin structure is thought to help bringing the membranes into increasingly 

close contact and progress through hemifusion to fusion pore formation and finally to the 

enlargement of the fusion pore, which allows passage of the viral genome into the cytoplasm 

[105]. 

 

 

 

Figure 1.4: Schematic representation of events in membrane fusion promoted by a viral fusion protein. 
(1) The fusion protein in the pre-fusion conformation with the fusion peptide (yellow) at the N-terminal end of the 
cleaved structure. (2) Extended intermediate: The protein opens up, the fusion peptide or loop interacts with the 
target bilayer. (3) Refolding of the intermediate: A C-terminal segment of the protein folds back along the outside of 
the trimer core pulling the membranes into the hemifusion intermediate (4). As the hemifused bilayers open into a 
fusion pore (5) the final zipping up of the C-terminal ectodomain segments results in the fully symmetric, post-fusion 
conformation, preventing the pore from resealing (adapted from Harrison et al., 2008) [106]. 
 

1.3.1 Features of fusion and transmembrane domains 

The fusion and the transmembrane domain of viral fusion proteins play an essential role in 

the process of membrane fusion. Insertion of the fusion peptide or loop of 10-30 nucleotides 

in length into the target membrane brings the two bilayers in close proximity which is usually 

disfavored due to strong hydration repulsion forces [134,169]. Furthermore, this step is 

important for translating the force resulting from protein refolding to membrane merger [167]. 

However, some of the viral fusion proteins (vesicular stomatitis virus G (VSV G) and fusion-

associated small transmembrane (FAST) proteins of non-enveloped viruses) are not able to 

transfer a significant amount of energy to the target membrane required for membrane tilting 

[107,170]. Hence, there has been emerging evidence that additional to membrane anchoring 

the fusion peptides or loops induce membrane curvature by intercalation with the target 

membrane generating local membrane stresses which then initiate the formation of a fusion 

stalk [103,154,171–173]. Korte et al. demonstrated that the absence of negatively charged 
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Glu residues of the HA fusion peptide affected its interaction with lipid membranes probably 

by allowing better access to the bilayer [173]. Similarly, the kink in the fusion peptide and the 

conserved N-terminal glycine ridge were shown to be of functional importance for membrane 

insertion and perturbation [174,175]. 

A local deformation of membranes has also been suggested to result by the local 

concentration of TMDs in the membrane [176]. Indeed, isolated peptides derived from the 

transmembrane domain of SNARE proteins [177] as well as from VSV G [178] alone 

promoted fusion. Interestingly, mutations increasing the stability of their α-helical structures 

decrease the fusogenic activity of the TMD peptides suggesting that a certain structural 

flexibility is essential for fusogenicity [177,178]. A certain length requirement as well as the 

importance of (semi)conserved glycine motifs within the TMDs of viral proteins have also 

been reported [178–182]. Since GPI-anchoring of HA [121,125,126,183], VSV G [184] and 

HIV Env [185,186] as well as mutation or truncation of TMDs resulted in an arrest at the 

hemifusion stage or at the transient fusion pore intermediate, it is commonly believed that 

TMDs play a major role in the transition from the hemifusion or fusion pore intermediate to 

the final enlargement of fusion pores [187]. As a consequence, lateral interactions between 

the TMDs were suggested to be involved in the recruitment of viral fusion proteins to the 

fusion site, which is essential for fusion pore enlargement [188–190]. Another possibility 

involves the stabilization of the post-fusion structure by interactions of the fusion peptide with 

the transmembrane domain late in fusion as suggested by Li et al. [175]. 

1.3.2 Classes of viral fusion proteins 

Based on common structural motifs in the post-fusion conformation (α-helical coiled-coil, β-

sheet structures or both) viral fusion proteins have been classified into three groups: class I, 

class II and class III fusion proteins [191] (summarized in Table 1.2). Class I and II viral 

fusion proteins are synthesized as inactive precursors which have to be proteolytically 

cleaved to gain fusion competence. This priming step yields metastable spring-loaded 

structures [192–194], which upon receptor binding or activation by low pH transit into 

thermodynamically highly stable hairpin conformations. The soluble fusion subunits of HA 

and F expressed without the TMD were found to spontaneously fold into their hairpin 

configuration rather than to its native one [195–197] explaining the irreversible nature of 

class I and II refolding. In contrast, class III fusion proteins do not require proteolytic 

cleavage and the transition of the pre- to the post-fusion state is reversible [131]. 
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 1.3.2.1 Class I fusion proteins 

Viral class I fusion proteins include proteins of major pathogens such as influenza virus HA, 

human immunodeficiency virus (HIV) Env, the SARS coronavirus spike (S) and the Ebola 

virus glycoprotein (GP). Among these influenza virus HA and paramyxovirus F (Figure 1.5) 

represent the best characterized proteins. They have been crystallized first in their pre- and 

post-fusion conformation and thus most information about class I proteins was obtained from 

these structures [196,198–200]. Proteolytic cleavage of these class I fusion proteins results 

in the rescue of the initially buried fusion peptide. In the cleaved, metastable structure it is 

located at (e.g. HA2) or near the N-terminus (e.g. F1) of the fusion subunit [105]. The 

metastable structures of class I fusion proteins are activated by different fusion triggers to 

undergo the conformational changes resulting in the six-helix bundle (6HB) that is 

characteristic to this class of fusion proteins. Some require low pH (e.g. influenza HA) or 

binding to one (e.g. paramyxovirus F) or multiple receptors (HIV Env) or even both (avian 

retroviruses). The 6HB is composed of central N-terminal α-helical coiled-coil structures 

however its size and position varies significantly among different proteins [201]. 

 1.3.2.2 Class II fusion proteins 

Viral class II fusion proteins are mostly represented by the fusion proteins of flavivirus E and 

alphavirus E1 proteins [202]. The E proteins of the flaviviruses such as tick borne 

encephalitis (TBEV), dengue and west nile virus have similar structures as do the E1 

proteins of alphaviruses (e.g. semliki forest (SFV)). In general, this class of fusion proteins 

displays a molecular architecture completely different from that of class I proteins (Figure 

1.5). After proteolytic cleavage of the associated chaperone protein (p62 for E1, prM for E) 

[194,203], they form hetero- or homodimeric structures running parallel to the membrane and 

covering the icosahedral viral envelope [202]. Another striking difference is that the three 

domain architecture of these glycoproteins consists primarily of β-sheet structures. 

Furthermore, the fusion domains are internal loops at the tips of β-strands rather than 

terminal peptides as it is the case for most class I fusion proteins [204]. 

All class II fusion proteins identified to date are activated by protonation at low pH mediating 

their transition from the pre-fusion dimer through a monomeric or trimeric pre-hairpin 

intermediate to the post-fusion trimer. Once triggered, E1 of SFV and E of TBEV were found 

to form ring structures of five or six trimers suggesting a cooperative mechanism of 

membrane fusion [172,205]. Interestingly, also the recently solved crystal structure of rubella 

virus E1 from the rubivirus genus of Togaviridae has similar features [206] and a class II 

fusion protein was additionally discovered in the unrelated Bunyaviridae family [207]. In 

contrast, the fusion machinery of closely related hepatitis C and of pestiviruses such as 
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bovine diarrhea virus of the Flaviviridae family were suggested to define a new structural 

class of fusion proteins due to distinct folds of its surface glycoproteins and the lack of typical 

structural hallmarks for fusion [208]. 

 1.3.2.3 Class III fusion proteins 

The glycoproteins of rhabdo- and herpesviruses combine features of class I and class II 

fusion proteins and thus were assigned to class III of viral fusogens [152,209]. The 

successful crystallization of the pre- and post-fusion structures of VSV G further advanced 

understanding of this new class of fusion proteins [170,210]. As class I proteins they have a 

trimeric structure in the pre-and post-fusion state and form a central α-helical core in the 

hairpin structure (Figure 1.5). However, in striking similarity to class II fusion proteins, each 

fusion subunit contains two fusion loops which are located at the tip of an elongated β-sheet. 

VSV G mediates both, receptor binding and membrane fusion in the endosomal 

compartment at low pH whereas the gB protein of herpesviruses requires prior receptor 

binding to gD to be activated for fusion [105]. 

In contrast to all class I and II viral proteins the fusion loop of VSV G is very short and 

discontinuous not allowing for stable anchoring the viral membrane. Furthermore, it is 

exposed, not hidden in the oligomer interface [170]. Since the pre-fusion structure is not 

meta-stable, the refolding of G is reversible which allows for regeneration of the native 

structure after transport through the acidic Golgi complex. The structural rearrangements 

from the pre- to the post-fusion state also include a pre-hairpin intermediate. Thus, there is a 

pH-dependent equilibrium between three different states of the protein that is shifted toward 

the post-fusion state at low pH [211,212]. 
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Table 1.2: Classes and triggers of viral fusion proteins. 

Virus family Viral glycoprotein Fusion 
unit Fusion trigger 

  Class I    

Orthomyxo-
viridae 

Influenza A virus HA HA2 low pH 

Influenza C virus HEF HEF  

Paramyxo- 
viridae 

Human parainfluenza virus F F1 binding of single receptor 

Newcastle disease virus F F1  

 Respiratory syncytial virus F F1  

Coronaviridae SARS coronavirus S S2 binding of single receptor (a,b) 

Retroviridae HIV- 1 Env gp41 binding to multiple receptors 

 
Moloney Murine leukemia virus 
Env TM binding of single receptor by 

subunit 

 Avian α-retrovirus Env TM receptor binding followed by 
low pH 

Filoviridae Ebola virus GP gp2 low pH (b) 

 Class II   

Togaviridae Semliki forest virus E1/E2 E1 low pH 

 Chikungunya virus E1/E2 E1  

 Sindbis virus E1/E2 E1  

 Rubella virus E1/E2 E1  

Flaviviridae Tick borne encephalitis virus E E low pH 

 Dengue virus E E  

 West nile virus E E  

 Japanese encephalitis virus E E  

Bunyaviridae Rift valley fever virus Gc   

 Class III   

Rhabdoviridae Vesicular stomatitis virus G G low pH 

Herpesviridae Herpes simplex virus gD, gB, 
gH/L gB binding to single receptor (c) 

 Class IV (d)   

Flaviviridae Bovine diarrhea virus E E1/E2? unknown 

 Hepatitis C virus E E1/E2? unknown 
(a) for some types followed by low pH 
(b) low pH is required for cleavage by endosomal proteases which activate GP at acidic conditions  
(c) receptor binding by gD activates gB for fusion; gH/gL are also involved in fusion 
(d) to be proven 
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Figure 1.5: Ribbon illustrations of representative members of the three classes of viral fusion glycoproteins 
in their pre- and post-fusion conformations. 
The paramyxovirus F protein (class I) consists of a large C-terminal fragment (F1) and a small N-terminal fragment 
(F2). F1 is the fusion subunit containing the hydrophobic fusion peptide near the N terminus and two hydrophobic, 
heptad repeat regions (HRA and HRB). The globular head contains three domains per subunit (DI, DII and DIII) that 
extend around the trimer axis. In the pre-fusion form, a large cavity formed by DI and DII is covered by DIII which 
contains the HRA and the fusion peptide. At low pH the fusion peptide is exposed and inserts into the target 
membrane. Subsequent refolding and assembly of HRA and HRB into a 6HB (post-fusion) induces membrane 
fusion [196,200]. The monomer of flavivirus E protein (class II) also consists of three domains: the β-sandwich 
domain (DI) which organizes the structure, an elongated domain (DII) which bears the fusion loop at its tip and an 
Ig-like domain (DIII) [213]. The protein responds to acidic pH exposure with a hinge motion that exposes and inserts 
the hydrophobic fusion loop into the cell membrane. The protein then folds back on itself, directing the fusion loop 
towards the transmembrane anchor. Formation of additional trimer contacts between the stem-anchor and the 
ectodomain leads to fusion of the viral and cellular membranes (post-fusion form) [202]. Domains of the rhabdovirus 
G protein (class III) are colored and named according to Roche et al. [152]. Only the central domain (CD) that was 
initially ascribed to two domains (DI and DII) is depicted as a single domain which remains as a rigid block during 
the transition [168]. The overall architecture of G in its pre-fusion state resembles a tripod. Each monomer is 
composed of a fusion domain (FD) with the fusion loops pointing toward the viral membrane and a pleckstrin 
homology domain (PHD). Exposure to low pH causes a 94° rotation around the hinge between FD and PHD and the 
repositioning of PHD at the top of the trimerization domain (blue) (post-fusion form) [170,210]. Dash lines represent 
the unresolved segments at the C-termini of the ectodomain connecting them to the TM domain. Respective PDB 
codes of each protein are shown in parentheses (from Baquero et al., 2013) [168]. 
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1.3.3 Cooperativity in viral fusion 

Early data on influenza virus HA mediated fusion indicated that the stage of fusion pathway 

reached largely depends on the density of HA molecules at the cell surface [127]. Only at the 

highest number of activated HAs an expanding fusion pore was formed whereas its 

decrease arrested fusion at the (unrestricted) hemifusion stage. Furthermore, a ring-like 

organization of fusion proteins around the fusion site was reported to restrict lipid mixing but 

at the same time supports fusion pore formation [127]. Kozlov et al. suggested that an 

interconnected protein coat around the fusion site  deforming the membrane in an opposite 

direction resulting in the lateral membrane tension is not only needed for pore expansion but 

as well for early stages of membrane fusion [214]. Also experimentally it could be 

demonstrated that activated fusion proteins outside of the contact zone are required in order 

to achieve fusion pore expansion [215]. All of these studies suggest a cooperative process of 

HA-mediated membrane fusion, whereas only one single HIV Env protein was shown to be 

required for full fusion of membranes [150]. 

Cooperative interactions during fusion were also suggested for class II viral fusion proteins 

since the fusion inducing proteins of SFV [172], TBEV [205] and the newly identified E1 of 

rubella virus [206] form hexagonal lattices of five or six trimers at the surface of liposomes.  

For class III rhabdoviral G mediated fusion a minimal number of 15 spike proteins was found 

to be required [216]. 

The actual number of HA molecules required for the formation of a fusion pore has long 

been unknown as well as if aggregation occurs before or after acidification in the late 

endosome. Different models and experimental setups were used yielding quite distinct 

results. Three trimers were proposed by Danieli et al. [188] using HA expressing cells and 

labeled red blood cells (RBCs) as target membranes. This result could be confirmed by 

Floyd et al. using a rather new single-virion-imaging technique [217]. In contrast, Blumenthal 

et al. reported the requirement of six trimers for an expanding fusion pore [190]. Also others 

suggested that aggregates of at least six [218] or eight trimers [189] are required of which 

only two or three trimers undergo the fusion inducing conformational change [189,218]. A 

very recent study combining low pH-induced fusion kinetics of individual virions with 

computer simulation revealed that contact with the target membrane is established by 

independently triggered HA molecules [219]. Subsequent engagement of three or four 

extended intermediates and their cooperative fold-back was reported to induce the fusion of 

membranes. 
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 1.4 The influenza virus HA 

1.4.1 Structure of the HA protein 

HA is a homotrimeric glycoprotein covering around 90 % of the viral membrane. The first 

crystal structure of HA at neutral pH was obtained by bromelain cleavage of HA of A/Hong 

Kong/1968 (BHA) yielding the water soluble ectodomain of the glycoprotein [220]. It is 

comprised of a globular region of antiparallel β-sheets (HA1, head domain) and the central, 

triple-stranded coiled-coil of α-helices (HA2, stem domain) (Figure 1.8 A). The membrane-

distal HA1 globular head is the receptor binding domain which contains the receptor binding 

pocket and the highly variable loops for antigenic binding. HA2 is crucial for stabilizing the 

trimeric conformation and for anchoring the protein in the membrane by its TMD. 

Furthermore, HA2 is the fusion inducing subunit of the protein which carries the fusion 

peptide at its N-terminus [221,222]. 

The post-fusion structure was resolved by low pH incubation of BHA and subsequent 

digestion with trypsin and thermolysin (TBHA2) [198]. However, using this approach only 

information about the HA2 subunit could be obtained. As typical for class I fusion proteins, 

the post-fusion state of HA2 is mainly composed of α-helical structures forming a 6HB with 

the fusion peptide and the TMD positioned at the same end of the trimer (Figure 1.8 B). 

 1.4.1.1 Folding, transport and cleavage activation 

In infected cells HA is synthesized as fusion-inactive precursor protein (HA0) by membrane-

bound ribosomes in the ER. The precursor of approximately 560 amino acids gets co-

translationally inserted into the membrane following signal peptide cleavage and core 

glycosylation. With the help of chaperones these precursor proteins are assembled into non-

covalently linked homotrimers which are subsequently transported through the Golgi 

apparatus to the plasma membrane [223,224]. In the Golgi the trimeric proteins undergo 

further post-translational modifications such as trimming of carbohydrate side chains, 

terminal glycosylation and acylation [225–227]. In addition, H5 and H7 subtypes containing a 

polybasic cleavage site are intracellularly cleaved by proteolytic enzymes before arrival at 

the plasma membrane, whereas all other HA subtypes have a monobasic cleavage site 

which is typically targeted by trypsin-like proteases of the extracellular space. In any case, 

cleavage results in the two subunits HA1 and HA2, which remain disulfide linked [228], and 

the generation of the highly conserved fusion peptide at the HA2 N-terminus, the pre-

condition for membrane fusion activity [229–231]. The liberated peptide with its positively 

charged N-terminal amino group gets buried in a negatively charged cavity at the oligomer 
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interface of HA2 where it forms stabilizing interactions with other conserved residues such as 

Asp109 and Asp112 [232]. 

1.4.2 The fusion inducing conformational change 

After cleavage of the HA0 precursor the protein assumes a metastable structure that can be 

induced by the acidic pH in the endosome to undergo an irreversible conformational change 

mediating fusion of the viral with the endosomal membrane [193,233]. As described in 

section 1.3.1 the fusion peptide, as well as the TMD play an essential role in this process. 

Structural elements which were identified to undergo a major transition at acidic pH are the B 

loop which connects the long α-helix (helix A) in the stem domain with the shorter helix at the 

outside (helix C) and residues 106-112 of HA2, a part of helix A [198]. Cryo-EM studies and 

the characterization of HA mutants locking the protein in (mostly) reversible intermediates 

further advanced the current understanding of the HA conformational change.  

The generally accepted model suggests three major steps (Figure 1.6 C): (1) Protonation of 

specific residues results in the dissociation of intra-trimeric and inter-subunit contacts and 

thus of HA1 monomers allowing water to enter the ectodomain [234,235]. (2) Interaction of 

water with sequences that have originally been shielded from water triggers the B loop to 

undergo a loop-to-helix transition [236]. Thereby the fusion peptide gets exposed and inserts 

into the endosomal membrane resulting in the extended coiled-coil conformation of the three 

monomers. (3) The extended intermediate then collapses due to refolding of helix A into a 

loop which draws the fusion peptide towards the transmembrane region promoting 

membrane merger through hemifusion and fusion pore formation [106,198]. In support of this 

model partial opening of the HA1 monomers was observed by cryo-EM for the trimeric 

ectodomain (BHA) [234] as well as of HA in intact virus particles [64] upon incubation at low 

pH. Furthermore, mutations in the B-loop (F63P, F70P) inhibiting fusion by the incomplete 

formation of the extended coiled-coil intermediate emphasized the importance of a fully 

extended conformation for complete fusion [237]. 
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Figure 1.6: Conformational change of the influenza virus HA at acidic pH (5.0–6.0). 
(A) The steps of conformational change are illustrated (HA1 in pink, HA2 in gray and black, fusion peptide in purple). 
Upon acidification in the endosome protonation of HA1 leads to the dissociation of the HA1 monomers (1). Water 
can enter triggering the structural transition of the B-loop into a helix and liberating the fusion peptide which inserts 
into the endosomal membrane yielding the extended intermediate conformation of HA (2). Refolding of amino acid 
residues (aa) 106–112 of the helix A into a loop finally mediates the apposition of the two membranes triggering 
fusion (hairpin conformation of HA) (3). (B) Corresponding secondary structures of trimeric HA of A/X-31 (H3N2) at 
neutral (PDB ID: 2YPG) and low pH (hairpin structure, PDB ID: 1HTM) are shown in cartoon representation (H1 in 
pink, HA2 in gray) with structural elements undergoing a conformational change highlighted in black. TM is the 
transmembrane region of HA. 
 

  



1 Introduction 

 

 

    24 

1.4.3 Determinants of host range and pathogenicity 

 1.4.3.1 Receptor binding specificity 

Before mediating virus-endosome fusion HA initiates attachment of the virus to the cell 

surface by binding to sialic acid (SA) cell receptors (see 1.1.3.1). SA is the general term for 

N-acetyl-neuraminic acid, which inserts into the receptor binding pocket at the top of the HA1 

subunit. The pocket, also referred to as receptor binding site (RBS) is formed by three 

domains, the 130-loop (residues 134-138), the 190-helix (residues 188-195) and the 220-

loop (residues 221-228) (Figure 1.7). Only some of the residues of the pocket directly 

interact with the receptor sialic acid. In the H3 subtype Y98, W153, E190, Y195 and H183 

were identified to interact through hydrogen bonds with the side chains of SA [238,239]. 

Three of these residues (Y98, W153 and H183) are highly conserved throughout all HA 

subtypes except from the recently identified H17 and H18 subtypes of bat derived H17N10 

and H18N11 [240]. 

Rogers et al. [241] was the first to discover that human and avian influenza viruses display 

differences in the receptor specificity of HA which is determined by the kind of linkage 

between the carbohydrate (mostly galactose) and its terminal SA. Whereas avian HA have a 

preference for SA that are linked to galactose (Gal) by α-2,3-linkage (α-2,3-SA), the RBS of 

human HA preferentially binds to α-2,6 linked SA (α-2,6-SA). This difference in cell receptor 

binding is considered as major interspecies barrier since it was found to be an important 

determinant of host range and cell and tissue tropism [242–246]. The preference of avian HA 

to bind to α-2,3-SA matches the occurrence of this sugar on epithelial cells in the respiratory 

and intestinal tract of birds. In contrast, the upper respiratory tract (URT) of humans consists 

primarily of α-2,6-SA-glycans and thus might not be infected with avian influenza viruses 

[247]. However, the lower respiratory tract (LRT) contains a higher percentage of α-2,3-SA- 

than α-2,6-SA-glycans and was shown to be more readily infected by avian influenza viruses 

[248,249]. Interestingly, young children seem to express more α-2,3-SA and a lower level of 

α-2,6-SA in the respiratory tract than adults [250]. 

The specificity of HA for α-2,6-SA or α-2,3-SA has been found to mainly depend on the 

amino acid composition of its RBS. Adaptation of H2 and H3 subtypes to human type 

receptors has been shown to involve mutations Q226L and G228S (H3 numbering) [251–

253] whereas for human adapted H1 the substitutions E190D and/or L225D were 

responsible for a switch in receptor specificity [254,255]. These mutations did not only confer 

α-2,6-SA binding and human infection but also the ability of these viruses to transmit 

between humans [253,256,257]. Interestingly, the introduction of mutations Q226L and 

G228S in H5 and H7 subtypes also increased the ability of these mutant subtypes to bind to 

human type receptors [258–260]. Increased α-2,6-SA binding was also reported for 
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mutations N224K and Q226L resulting from experimental adaptation of recombinant H5N1 to 

ferrets [261]. Structural studies revealed that these mutations in the 220-loop resulted in a 

“widening” of the RBS allowing for insertion of the human type receptor with cis linkage 

instead of the avian trans motif [262] (Figure 1.7 B and C). In particular, the Q226L 

substitution facilitated binding to α-2,6-SA while α-2,3-SA binding was reduced. 

 

 

 

Figure 1.7: Receptor binding site of influenza virus HA in complex with the human or avian type receptor. 
(A) Cartoon representation of human influenza virus HA monomer in complex with the human-type receptor (PDB 
ID: 2YPG). In the magnification the RBS of (B) human adapted H3 (PDB ID: 2YPG) and of (C) avian H5 (PDB ID: 
4BH1) are shown in complex with their preferred receptor analog. The 190-helix, 220- and 130-loop are displayed 
with conserved residues (Tyr98, Trp153, His183 and Tyr195) represented as orange lines. N-acetyl-glucosamine 
(NAG, blue) and galactose (Gal, yellow) of the receptor are shown which are linked to sialic acid (violet) in α-2,6- (A, 
B) or α-2,3-linkage (C), respectively. HA from human influenza A/X-31 H3N2 has leucine at position 226 (orange 
stick) facilitating binding to the human type receptor (2-galactose (2-Gal) in cis conformation) (A, B) whereas HA 
from avian H5N1 has a glutamine at position 226, favoring the trans motif of avian type receptors (C). 
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 1.4.3.2 Cleavage by host proteases 

The number of activated HA molecules undergoing a conformational change is important for 

successful fusion of the viral with the endosomal membrane (see 1.3.3). Therefore, the 

efficiency of HA0 cleavage is an important determinant of fusogenicity and pathogenicity 

[263–267]. Cleavage of the HA protein occurs at the C-terminal end of a single basic residue 

(R/K) for all HA subtypes followed by removal of the basic residue by a carboxypeptidase C-

type enzyme [268]. However, the amino acid sequence of the cleavage site differs among 

HA subtypes, and accounts for the grade of host invasion [229,230,269] (Figure 1.8). 

The monobasic cleavage site of low pathogenic strains (LPAIV) depends on cleavage by 

trypsin-like serine proteases (e.g. cellular trypsin and tryptase Clara) secreted form epithelial 

cells that are present only in respiratory or intestinal tissues. Infection is therefore restricted 

to these organs [267]. In contrast, the polybasic cleavage site of some H5 and H7 subtypes 

is intracellularly cleaved by subtilisin-like proteases such as furin and PC6 which are 

ubiquitously distributed [270,271]. Thus, infection with such highly pathogenic avian 

influenza virus (HPAIV) strains results in non-restricted virus spread in the whole organism 

and as a consequence in a higher degree of virulence than LPAIV which cause only 

localized infections. 

The efficiency of cleavage has also been reported to depend on additional factors beyond 

the cleavage site. Residues in the flanking region have been shown to influence the 

efficiency of cleavage [272] and only recently, subtype specific differences in the cleavage 

efficiency of HA independent of mono- or polybasic character were reported [273]. These 

differences were not only ascribed to variations in the cleavage site flanking regions but also 

attributed to the kind of protease that is present in the infected cell as well as sequence 

specific targeting of the cleavage site [269]. For example, the cleavage efficiency of blood 

proteases such as plasmin, urokinase, plasma kallikrein and thrombin was found to differ 

between and within individual HA subtypes, which  was attributed to the presence of 

bacterial proteases promoting the pathogenicity of influenza viruses and the development of 

pneumonia synergistically [274,275]. In addition, influenza virus infection was shown to up-

regulate cellular trypsins, metalloproteinases and cytokines, and also ATP depletion in 

various infected cells which was suggested to change organ tropism of seasonal IAV and, as 

a consequence, resulting in severe disease [276]. 

In the mammalian airway epithelium type II transmembrane serine protease TMPRSS2 and 

TMPRSS4 as well as the human airway trypsin-like protease (HAT) were suggested to 

activate human adapted virus strains in the natural setting of the lung [277]. However, recent 

data indicate that TMPRSS2 also cleaves HA0 in the secretory pathway within the cell 

including the highly pathogenic H5 HA [273,278]. Also other members of this family were 

found to activate highly pathogenic HA subtypes: MSPL and TMPRSS13 [279]. Furthermore, 

Galloway et al. identified differences in the TMPRSS2-mediated HA cleavage profiles 
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compared to those obtained with HAT and trypsin [273] suggesting that also other factors 

beyond the cleavage site region and the kind of activating protease might influence the 

cleavage of HA. 

 

 

 

Figure 1.8: The cleavage site of the influenza virus hemagglutinin. 
(A) Cartoon representation of the cleaved HA trimer with two monomers colored in green and yellow (transparent) 
and  one monomer colored in pink (HA1) and gray (HA2), respectively. (B) The mono- and polybasic cleavage site 
of low (LPAIV) and highly pathogenic (HPAIV) avian viruses. Cleavage occurs at the C-terminal end of a single 
basic residue (R/K, green) for all HA subtypes. The first ten N-terminal amino acids of the fusion peptide are highly 
conserved (purple). (C) Magnification of the fusion peptide region with conserved residues represented as yellow 
sticks. After cleavage the fusion peptide of HA2 (purple) gets buried in a cavity at the oligomer interface of HA2 
where it forms stabilizing interactions, e.g. with negatively charged residues Asp109 and Asp112. (D) Schematic 
representation of HA before and after cleavage (SP, signal peptide; FP, fusion peptide; TMD, transmembrane 
domain; -S-S- disulfide bond). 
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 1.4.3.3 The acid stability of HA 

The conformational change of HA, and thus membrane fusion, do not only depend on the 

efficiency of cleavage and endosomal acidification inside cells but also on the stability of the 

protein itself. In the absence of a target membrane the irreversible conformational change of 

HA leads to the inactivation of its membrane fusion activity. Therefore, the pH threshold of 

conformational change provides a marker for the acid stability of the protein. Exposing HA to 

increased temperature leads to the biochemically identical conformational change and thus, 

the stability of HA can be measured over a range of different pH values or temperatures 

[261,280]. The acid stability has been shown to differ among HA subtypes [273,281,282] as 

well as between viruses of the same subtype [283–285]. This divergence is ascribed to 

structural variations in the protein ectodomain that have been identified by comparison of the 

various crystal structures [284,286–289]. However, the biological significance of HA stability 

has not yet been fully clarified but it seems to be another hallmark of HA affecting the 

infection potential of the whole virus. 

 1.4.3.3.1 Stabilizing interactions and potential triggers of conformational change 

The meta-stable HA1-HA2 structure resulting from HA0 cleavage is stabilized by the HA1 

domain acting like a “clamp” on HA2 thereby preventing its refolding at neutral pH [193,290]. 

Several ionic interactions between HA subunits and monomers contribute to the stabilization 

of this structure and the protonation of key residues located in these critical interface regions 

is thought to trigger the structural rearrangements leading to membrane fusion 

[162,245,291]. Analysis of a variety of so called “fusion mutants” has revealed the 

importance of some key residues and their interactions at several domain and subunit 

interfaces which are partially conserved throughout HA subtypes [162,284,285,291–298]. 

One of the most studied regions includes the fusion peptide and the pocket where it is 

intercalated. The first ten N-terminal residues of the fusion peptide and some residues in the 

fusion peptide pocket are highly conserved. Accordingly, amino acid deletions or 

substitutions in the peptide or the cavity surrounding it disturb these balanced interactions 

significantly affecting the fusion activity of HA  [162,173,291,292,297]. For example, highly 

conserved residues Asp109 and Asp112 of the pocket could act as potential triggers for the 

release of the fusion peptides since mutation of these residues significantly altered the pH 

dependent fusion of HA [162,292,297] and of mutant viral particles [219]. In contrast, 

mutations in the fusion peptide affecting the pH dependence of HA can as well be ascribed 

to its ability to interact with the target membrane (see 1.3.1). Other regions of structural 

importance are the HA1-HA1 interface as well as the region around the inter-helical loop B of 
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HA2 which undergoes a loop-to-helix transition upon protonation. Locking the HA1 

monomers by the introduction of disulfide bonds [183,299] or salt bridges [295] inhibited any 

conformational change of HA and abolished its ability to induce fusion demonstrating the 

essential role of globular head dissociation in the overall fusion mechanism. Furthermore, 

several mutational studies demonstrated the importance of interactions at the contact area of 

HA1 and HA2 such as a conserved tetrad salt bridge [295], interactions of conserved 

phenlyalanines of the B loop [237] and of helix 110 in the HA1 domain [284,300]. However, 

residues which, upon protonation, trigger the destabilization of these regions remain 

essentially unknown. 

 1.5 Aims of thesis 

Human infection with influenza A viruses is still one of the major health problems causing 

seasonal epidemics and as a consequence millions of cases of disease annually. In addition, 

avian influenza A viruses pose an ongoing risk to the human population due to their high 

pandemic potential [301,302]. Vaccination is currently the most effective method for 

preventing influenza infection however requires constant surveillance of circulating strains 

and annually changing vaccine formulations. In the case of a pandemic, a fast supply of high 

amounts of vaccine for the whole population is therefore critical. Furthermore, approved 

therapeutic drugs might soon become useless due to increasing emergence of resistant 

strains [303]. 

The influenza virus HA mediates the first crucial steps of viral entry and thus serves as major 

target for new antiviral strategies. New developments aim to inhibit the fusion inducing 

conformational change of HA [304–306], which is already quite well understood. However, 

critical residues that are protonated at low pH inducing the structural rearrangements remain 

essentially unknown. The identification of such conserved protonable residues and better 

understanding of sequential structural rearrangements within HA may facilitate the discovery 

of new drugable domains for the development of new broad-spectrum antivirals. Histidines 

have been proposed to function as molecular “switches” in class I and II viral fusion proteins 

due to their unique characteristic to get protonated and thus charged in the same acidic pH 

range as these viral proteins are activated (pKa~6.0) [156,158,159,163]. Thus, one of the 

aims was to identify critical histidines for their ability to act as pH sensors in the influenza 

virus H5 HA. We focused on His184 due to its high conservation grade within and among 

different subtypes (except H17 and H18) and its central position at the HA1-HA1 interface. 

Furthermore, it has already previously been proposed to function as molecular switch of the 

HA conformational change [163]. Likewise, we addressed His110 as potential pH sensor of 

H5 HA. Being located close to the B-loop at the HA1-HA2 interface His110 possibly triggers 

the structural rearrangement of this domain upon its protonation. However, different to 
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His184 it is only conserved within certain subtypes (H2, H5, H13 and H16). To illustrate 

His184 and His110 as possible molecular switches at low pH these two histidines were 

characterized by comprehensive experimental and computational methods for their influence 

on pH dependent conformational change and fusion of H5 HA. 

Due to its pivotal role in viral entry the HA protein is also a major determinant for the 

pathogenicity of avian influenza viruses in the human host. Binding to α-2,3- or  α-2,6-SA cell 

receptors determines host specificity whereas the high pathogenicity of some circulating 

H5N1 strains depends on the cleavage site within HA. In 2003-2004 a more aggressive form 

of the highly pathogenic H5N1 virus evolved which did not only result in massive bird-die offs 

in Asia, Africa and Europe, but also in an accumulating number of human spill-over 

infections. 

Apart from mutations in the RBS of HA resulting in increased α-2,6-SA binding, adaptation to 

the mammalian host has been suggested to require additional mutations preserving the acid 

stability of the HA protein and thus of the whole virus. A glutamate-to-arginine (E216R) 

mutation in H5 HP was identified which is located at the HA1-HA1 interface close to His184 

where it might affect its pKa and thus the acid stability of H5 HA [295]. Thus, the charge was 

exchanged in H5 HP and H5 LP and the effect on pH dependent conformational change and 

fusion was determined. 

However, little is known about the consequences of an altered acid stability for virus infection 

and its role for host adaptation. Therefore, another aim was to assess the effect of an altered 

acid stability of HA on intracellular fusion and host-specific infection efficiency of the virus. To 

this end recombinant viruses containing a destabilizing mutation in the H3 subtype were 

produced on the basis of the A/WSN/1933 (H1N1) plasmid system [19]. The pH threshold of 

fusion of wild type and mutant viruses was measured using a traditional fluorescence 

dequenching assay and the infectivity of these viruses was assessed in different cell lines. 

Virus labeling in combination with high-resolution microscopy further allowed us to observe 

fusion on the single virus level and assess the fusion kinetics of wild type and mutant viruses 

inside living cells. 

In summary, in this thesis we aimed to identify critical amino acids that are involved in 

triggering the fusion inducing conformational change of HA and of mutations in the H5 

subtype which might alter its acid stability thereby contributing to the evolution of the highly 

pathogenic H5N1 virus in 2003/04. Analyzing the effect of an altered acid stability on viral 

fusion and infectivity allowed us to gain more insight on the role of acid stability for host-

specific virus infection. 
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2 Material and Methods 

 2.1 Material 

2.1.1 Technical equipment 

Fluorescence spectrophotometer Fluoromax 4  Horiba Jobin Yvon GmbH, Unterhaching, 
D 

Biophotometer plus Eppendorf, Hamburg, Germany 

Centrifuge Avanti J-20XP (Rotor JLA10.500) Beckmann Coulter GmbH, Krefeld, D 
Ultracentrifuge Optima L-100K 
(Rotors: 45Ti, 70.1Ti, SW40Ti, SW60) Beckmann Coulter GmbH, Krefeld, D 

Confocal Microscope FluoView-1000, Olympus, Hamburg, D 

Incubator Heraeus, Berlin, D 

Semi-Dry Transfer cell “TransBlot SD” BioRad, Munich, D 

Thermo cycler “My Cycler” BioRad, Munich, D 

Odyssey Scanner LICOR Biosciences, Bad Homburg, D 

FACS Aria II BD Biosciences, Heidelberg, D 

Imager INTAS Science Imaging Instruments 
GmbH, Göttingen, D 

CASY ® cell counter 
Model TTC 45/60/150 OLS Omni Life Sciences, Bremen, D 

2.1.2 Biological material 

 2.1.2.1 Cell Lines 

CHO-K1 cells (Chinese hamster ovary cells)  ATCC number: CCL-61 

MDCK (Madin Darby canine kidney cells)  ATCC number: CCL-34 

A549 (human epithelial cells)    ATCC number: CCL-185 

Df-1 (chicken embryo fibroblasts)   ATCC number: CRL-12203 
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 2.1.2.2 Influenza virus strains 

A/Aichi/2/1968 (H3N2) from eggs 

A/WSN/1933 (H1N1) from recombinant plasmid system 

A/chicken/Vietnam/P41/2005 (H5N1) 

A/teal/Germany/Wv632/2005 (H5N1) 

 2.1.2.3 Bacteria 

DH5α (E.coli) F- endA1 recA1 hsdR17(rk- mk+) supE44 λ- thi-1 gyrA(Na1) 
relA1 Φ80 lacZΔMΔ(lacZY A-argF)  

 2.1.2.4 Antibodies 

Primary antibodies 

Rabbit anti H5 Ab1 and Ab2 antisera   Genosphere Biotechnologies, 

Paris, France 

Mouse monoclonal anti H5N1    Biomol, Hamburg, Germany 

  

(Vn04-2, -9 and -16) 

Mouse polyclonal Anti GFP     Roche 

Mouse monoclonal anti influenza A NP   Millipore 

Mouse monoclonal anti β-actin    Sigma 

 

Secondary antibodies 

Anti-mouse Alexa Fluor 568 Life technologies 

Anti-rabbit Cy3 Life technologies 

Anti-rabbit Alexa 488 Life technologies 

Goat anti-mouse IgG conjugated to HRP Life technologies 

Goat anti mouse IRDye 680 LICOR Biosciences 

Goat anti rabbit IRDye 800 LICOR Biosciences 
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2.1.3 Plasmids and Oligonucleotides 

Plasmids pEYFP-H3, pCAGGS-Esp-blue (pCAG) and pHW2000-Esp-blue (pHW) were used 

for cloning (Figure 2.1). The vector pEYFP-H3 is based on plasmid pEYFP-N1 which was 

provided by Dr. Michael Veit. The HA of A/Aichi/2/1968 (X-31) was inserted into the multiple 

cloning site (MCS) by Dr. Christian Sieben (Humboldt University Berlin) using restriction sites 

NheI and SacII. The resulting plasmid pEYFP-H3 was used as template for molecular 

cloning and for expression analysis. Plasmids pCAGGS-Esp-blue and pHW2000-Esp-blue 

containing the reporter gene lacZ were kindly provided by Dr. Volker Czudai-Matwich 

(Marburg). The plasmids for the production of recombinant virus particles based on 

A/WSN/1933 (H1N1) genetic background (pHW2000 1 - 8) were also obtained from Dr. 

Michael Veit (Free University, Berlin) (Table 2.1). 

The protocol for insertion of HA into pCAG was adapted from Dr. Volker Czudai-Matwich 

[307]. For cloning of highly (H5 HP) and low (H5 LP) pathogenic H5 HA proteins forward and 

reverse primers contained BsmBI restriction sites (correspond to Esp3I restriction sites) 

whereas for cloning of H3 HA proteins BsaI restriction sites were used. Mutations into H3 HA 

and highly and low pathogenic H5 HA were inserted by overlap extension PCR (see 2.2.1.8). 

In Table 2.2 used oligonucleotide primers for cloning H3 and H5 HA gene sequences into the 

respective plasmids and for the introduction of mutations into H3 and H5 HA are listed. 

 

 

Table 2.1: Plasmids used in this study. 

Plasmid Insert Source 

pcDNA3 H5 from 
A/chicken/Vietnam/P41/2005 provided by Dr. Timm Harder 

pEYFP-N1 H3 from A/X-31 provided by Dr. Christian Sieben 
pCAGGS-Esp-
blue lacZ provided by Dr. Volker Czudai-Matwich 

pHW2000-Esp-
blue lacZ provided by Dr. Volker Czudai-Matwich 

pHW2000 1-8 Viral genes of A/WSN/1933 provided by Dr. Michael Veit 

pTM1-H3 H3 from A/X31 provided by Dr. S. Rachakonda 

pTM1-H3 T212E-
N216R H3 mutant provided by Dr. S. Rachakonda 

 

  



2 Material and Methods 

    34 

The viral cDNA of H3 HA gene was obtained by reverse transcription from viral RNA of 

influenza virus A/Aichi/2/1968 (H3N2) according to Hoffmann et al. [308]. The H3 cDNA was 

amplified using H3 HA specific primers and cloned into pHW using the BsaI restriction sites 

[307]. The viral H5 LP gene sequence was also synthesized from viral RNA and cloned into 

pHW by overlap extension PCR [309,310]. 

2.1.4 Enzymes 

Restriction enzymes 
NheI New England Biolabs (NEB) 

BamHI New England Biolabs (NEB) 

SacII New England Biolabs (NEB) 

Esp3I Fermentas 

BsaI  Fermentas 

DpnI Fermentas 

Phosphatase  
CIP (Calf intestine phosphatase) NEB 

Ligase 
T4-DNA ligase  NEB / Fermentas 

Polymerase 
Phusion High-Fidelity DNA Polymerase Finnzymes 

Taq DNA polymerase  Peqlab 

Superscript II reverse transcriptase Life technologies 

2.1.5 Reagents 

Standard chemicals were purchased from Sigma, Roth and Merck; others are listed below.

Chemicals 

TPCK Trypsin Sigma 

Neuraminidase from Clostridium perfringens Sigma 

Mowiol Roth 

SYBR safe DNA gel stain Life technologies 

Roti safe Roth 

PageRuler ™ Prestained Protein Ladder Fermentas 
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Figure 2.1: Vector maps of pEYFP-N1, pHW2000-Esp-blue and pCAGGS-Esp-blue. 
. (A) Restriction Map and Multiple Cloning Site (MCS) of pEYFP-N1. Unique restriction sites are marked in bold. (B) 
Vector map of pHW2000-Esp-blue. The plasmid contains the human polymerase I (hpol I) and the mPol I terminator 
for the generation of viral negative strand RNA and the CMV promoter for the generation of mRNA for the 
production of viral proteins. (C) Protein expression in pCAGGS-Esp-blue is driven by the hCMV-IEenhancer. Both, 
pHW2000-Esp-blue and pCAGGS-Esp-blue have the gene encoding for lacZ between the Esp3I restriction sites 
(adapted from Czudai-Matwich et al., 2013). 
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Fluorescent Markers 

octadecylrhodamine B (R18) Life 

technologies 

1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI) Life 

technologies 

4,6-diamidino-2-phenylindole (DAPI) Life technologies 

Hoechst 33342 Life technologies 

FITC/Rhodamine-dextran (10.000 kDa) Life technologies 

Propidium iodide Sigma 

2.1.6 Tissue culture reagents 

DMEM with/without phenol red PAA 

PBS with/without Ca2+ Mg2+ (PBS+) PAA 

EMEM PAA 

0.05 % Trypsin + 0.2 % EDTA in PBS- PAA 

L-Glutamine (200 mM) Biochrom AG 

10 % Fetal Bovine Serum (FBS) PAA 

2.1.7 Kits 

Qiagen Plasmid Mini Kit QIAGEN 

QIAquick Gel Extraction Kit QIAGEN 

Qiagen Plasmid Plus Maxi Kit QIAGEN 

Qiagen OneStep RT-PCR Kit QIAGEN 

Micro BCA protein assay kit PIERCE 

Invisorb Spin Virus RNA Mini Kit STRATEC Molecular 

GmbH  
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2.1.8 Culture media 

Mammalian cell culture media 

Culture medium 

 

DMEM + phenolred, 10 % FBS, 1 % Penicillin-Streptomycin, 

2 mM L-Glutamine 

Cell detachment Trypsin/EDTA 

Cryo medium 20 % FBS, 10 % DMSO 

Selection medium DMEM, 10 % FBS, 1 % Penicillin-Streptomycin, 250-500 

μg/ml Geneticin 

  

  

Bacteria medium and plates 

LB-medium 

 

1 % Bacto™ Tryptone, 0.5 % Bacto™ Yeast Extract, 0.5 % 

NaCl, in ddH2O, pH 7.0 

Ampicillin-LB-plates 

 

1 % Bacto™ Tryptone, 0.5 % Bacto™ Yeast Extract, 0.5 % 

NaCl, 1.5 % Agar, 100 μg/ml Ampicillin in ddH2O, pH 7.0 

Kanamycin-LB-plates 

 

1 % Bacto™ Tryptone, 0.5 % Bacto™ Yeast Extract, 0.5 % 

NaCl, 1.5 % Agar, 50 μg/ml Kanamycin in ddH2O, pH 7.0 

 

Virus infection and cultivation  

Infection medium DMEM, 0.2 % BSA 

Virus cultivation medium 

 

DMEM, 0.1 % FBS, 0.2 % BSA, 2 mM Glutamine, 1 

%Penicillin/Streptomycin, 4 µg/ml TPCK Trypsin 

Agarose semi-solid medium 0.4 % sea-plaque agarose in EMEM supplemented with 0.1 % 

FBS, 0.2 % BSA, 2 mM glutamine, 1 % penicillin/streptomycin 

and 4 µg/ml TPCK Trypsin 

TCID50 infection medium DMEM, 50mM HEPES, 1 % BSA, 1 % Penicillin/Streptomycin 
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2.1.9 Buffers 

SDS PAGE and Western blot 

10x PBS 40 g NaCl, 1 g KCl, 7,1 g Na2HPO4 2H2O, 1 g KH2 PO4 in 

500 ml ddH2O 

10x Running buffer 30 g Tris-Base, 144 g Glycin, 10 g SDS in 1 l ddH2O 

4x sample buffer reducing 

 

25 % β-mercaptoethanol, 5 % SDS, 0,05 % Blue 

Bromophenol, 

25 % Glycerin, 12.5 % 1 M Tris-HCl buffer pH 6,8 

4x sample buffer non-

reducing 

 

5 % SDS, 0,05 % Blue Bromophenol, 25 % Glycerin, 12.5 % 1 

M Tris-HCl buffer pH 6,8 

1.5 M Tris-HCl, pH 8.8  181.71 g of Tris-base in 1 l ddH2O, pH iadjusted with 2 M 

NaOH  

0.5 M Tris-HCl, pH 6.8 60.57 g of Tris-base in 1 l ddH2O, pH adjusted with 2 M NaOH 

Blocking buffer 0.1 % Tween-20, 5 % dry Milk, 1 x PBS in ddH2O 

Odyssey blocking solution 

 

2 % Fish Gelatine, 1 % Ovalbumin 10 mM Tris pH 7.5, 150 

mM NaCl in 400 ml ddH2O 

Transfer buffer 
40 % Running buffer, 20 % Methanol, 6 ml SDS (10 %), in 1 l 

ddH2O 

Washing buffer 0.1 % Tween-20 in PBS- 

Lysis-Buffer for trimer 

formation assay (with DSP) 

50 mM NaOH, 150 mM NaCl, 1 % NP 40, 5 mM 

Iodoacetamide, 

1 mM PMSF 

RIPA-Buffer 1 % Triton X-100, 1 % Desoxylat, 0.1 % SDS, 0,15 M NaCl, 

20 mM Tris,10 mM EDTA, 10 mM Iodoacetamide, 1 mM 

PMSF, in ddH2O, pH 7.4 

Resolving gel (10 %) 

4 ml Acrylamide/Bisacrylamide (30 %), 2.5 ml 1.5 M Tris-HCl 

(pH 8.8), 100 μl SDS (10 %), 3,3 ml ddH2O, 4 μl TEMED, 100 

μl APS (10 %) 

Stacking gel (5 %) 

0.5 ml Acrylamide/Bisacrylamide (30 %), 0.75 ml 0.5 M Tris-

HCl (pH 6.8), 30 μl SDS (10 %), 1,7 ml ddH2O, 3 μl TEMED, 

30 μl APS (10 %) 

TNE-Buffer  
25 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, 1 % 

Triton X-100, 0.2 mM PMSF in ddH2O 
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Immunostaining  

Blocking solution 0.2 % BSA in PBS+ 

Permeabilization (FACS) 0.2 %Saponin in PBS+ 

Permeabilization 

(microscopy) 
0.1 % Triton-X, 0.2 % BSA in PBS+ 

Fixative 4 % paraformaldehyde (+0.1 % glutaraldehyde) in PBS+ 

  

TCID 50  

Fixative 80 % acetone in PBS- 

Wash buffer 0.3 % Tween-20 in PBS- 

Antibody diluent 0.3 % Tween-20, 5 % w/v milk in PBS- 

Substrate 
o-phenylenediamine dihydrochloride (OPD) in 0.05 M citrate 

buffer 

Stop solution 0.5 M sulfuric acid 

 

Virus-ghost fusion  

Hemolysis buffer 10 mM Na2HPO4 + 2 H2O, 1.76 mM KH2PO4, pH 7.4 

Fusion buffer 10 mM sodium acetate*3H20, 150 mM NaCl, pH 7.4 

pH adjustment 250 mM citric acid in ddH20 

Membrane disruption 20 % Triton-X 

 

RBC fusion assay  

Fusion buffer 
10 mM HEPES, 10 mM MES,100 mM NaCl in PBS+, pH 7.4-

5.0 

HA activation 4 µg/ml TPCK Trypsin, 0.5 U/ml Neuraminidase in PBS+ 
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 2.2 Methods 

2.2.1 Molecular cloning 

 2.2.1.1 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is an in vitro method for the amplification of a specific 

DNA sequence. For the DNA synthesis, a thermo-stable polymerase, two specific 

oligonucleotide primers, which flank the region of interest in the target DNA (template), and a 

mix of deoxynucleotides (dNTPs) are required. The reaction is carried out in a thermocycler 

machine which is able to switch very fast and accurately between temperatures. It is initiated 

by a denaturation step, where the template DNA strand is separated, followed by primer 

annealing to the separated strands so that the 3’ OH ends face each other and an extension 

step where both primers are elongated past the other primer site resulting in two new 

template strands. Thus, in each cycle the number of DNA sequences is doubled and 

depending on the number of cycles about a million-fold (220) amplification of the desired DNA 

sequence can be obtained [311]. In the table below the required reagents and a typical 

reaction scheme for the amplification of the HA sequence are shown. The temperature in 

each step depends on the used polymerase and the thermal stability of the primers 

(essential for the annealing temperature) whereas the length of the DNA template 

determines the extension time (Table 2.3). 

 

Table 2.3: Scheme of a typical PCR reaction 

PCR reagents PCR reaction 

50 ng Template 1.0 µl Cycle Temp. [°C] Time [min] 

Polymerase 0.2-0.5 µl Initial denaturation 98°C 0.5 

10 µM Primer fw 1.5 µl *Denaturation 98°C 0.5 

10 µM Primer rev 1.5 µl *Annealing 55°C 0.5 

10 mM dNTPs 0.4 µl *Extension 72°C 2.5 

5x Buffer 6.0 µl Final Extension 72°C 10.0 

ddH2O add up to 30 µl Cooling 12°C ∞ 

Total volume 30 µl    

*Denaturation, annealing and extension steps were repeated 30-35 times in this order. 
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 2.2.1.2 Purification of the PCR product 

In order to make sure, that the correct DNA sequence was amplified by PCR, the reaction 

mix is run on a 1 % agarose gel next to a standard DNA ladder. For visualization of the DNA, 

1x SYBR green or Roti safe were added before loading onto the gel. Both are DNA binding 

dyes and fluoresce upon UV exposure. The presence and size of the product was verified 

(HA: ~1700 bp) and in case of successful DNA synthesis the PCR product was cut out of the 

gel and purified from side products using the QiaQUICK Gel Extraction Kit. The purified DNA 

was collected in 30 µl ddH2O. 

 2.2.1.3 Restriction and Ligation 

The PCR product is inserted in to the desired vector using restriction enzymes, which cut the 

DNA within specific sequences, so called restriction sites, and produce overlapping or blunt 

ends. Since both, the PCR product (“insert”) and the plasmid, where the gene of interest 

should be inserted, are cut with the same enzymes, these can be subsequently linked using 

an enzyme called DNA ligase which catalyzes the formation of a phosphodiester bond. The 

plasmid is additionally treated with calf intestine phosphatase (CIP) which removes the 

phosphate groups at both ends of the vector preventing re-ligation of the “empty” vector and 

thereby promoting insertion of the gene of interest. The reaction mixture for enzymatic 

cleavage contains a selected buffer for optimized enzyme activity and the reaction is 

performed at least 1 h at 37°C. For cloning the H5 HA gene sequence into the pmYFP 

vector, the enzymatic cleavage of vector and insert was performed with two enzymes, NheI 

and BamHI, at 37°C over-night in a total volume of 10-50 µl. The reaction mixture for 

digestion of the plasmid additionally contained 1 µl of CIP. After digestion, enzymes were 

inactivated at 60°C for 20 min and DNA binding dye was added to both reactions. These 

were subsequently run on a 1 % agarose gel and digested products (vector and insert) were 

purified from the gel as described above. For efficient ligation vector and insert are mixed in 

a vector: insert-ratio of at least 1:3 which is calculated based on the number of base pairs 

(bp): 

 

ng of insert = 
50 ng of vector x bp of insert 

x 
3 

bp of vector 1 
 

 

Depending on the type of DNA ligase and the efficiency of the reaction, the ligation is 

performed at room temperature for 1 h, at 16°C for 3 h or at 4°C over-night in a total volume 

of 10µl. For the insertion of H3 and H5 HA gene sequences into pCAGGS- and of H3 HA into 
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the pHW2000-Esp-blue the protocol of Czudai-Matwich was used [307], which combines 

enzymatic cleavage and ligation in one step (Table 2.4). 

 
Table 2.4: One-step cloning of HA into pCAGGS 
and 
pHW2000 

 

This is only possible using the Esp3I or 

the BsaI restriction enzyme (Fermentas). 

Both have an optimal activity at 37°C, 

similar to the T4 DNA ligase with an 

optimal activity of 16 - 37°C (Fermentas). 

The reaction was incubated for 1 h at 

37°C followed by an additional incubation 

at 65°C for the inactivation of enzymes. 

To obtain higher yields of ligated plasmids 

another 0.5 µl ATP and of DNA ligase 

were added and the reaction mix was 

incubated at room temperature over-night. 

 

 2.2.1.4 Transformation 

The ligated plasmids were then transformed into E.coli DH5α. 1-5 µl of ligation reaction were 

mixed with 50 µl chemically competent bacteria and incubated for 30 min on ice. The 

transformation proceeds by a heat-shock of 45 sec followed by a fast transfer on ice for 2 

min. For the regeneration of bacteria 600 µl of pre-warmed LB-medium were added and the 

reaction mixture was incubated at 37°C for 1 h in a thermo shaker before plating the cells on 

LB-plates containing 50 µg/ml kanamycin (LB-Kan) or 100 µg/mg ampicillin (LB-Amp) for 

selection. The plates were incubated at 37°C over-night. 

Plasmids containing the gene for ampicillin resistance (pCAGGS-, pHW2000-Esp-blue) were 

transformed using Z-competent transformation into E.coli DH5α. Ligated plasmids and 50 µl 

competent bacteria are incubated for 2 min on ice before plating them on pre-warmed LB-

Amp plates. 

 2.2.1.5 Plasmid purification from bacteria culture 

After incubation of the transformed bacteria over-night at 37°C single-colonies were picked 

from the plates and inoculated in 3 ml LB medium containing 100µg/ml ampicillin. Cultures 

were incubated at 37°C with continuous shaking 13-16 h and plasmid DNA was extracted on 

Reagents Volume 

10 ng pCAGGS-Esp-blue 0.5 µl 

10 ng insert 1.0 µl 

100 mM ATP 0.5 µl 

100 mM DTT 1.0 µl 

Esp3I 1.0 µl 

T4 DNA Ligase 1.0 µl 

10x Tango Buffer 2.5 µl 

ddH2O 17.5 µl 

Total volume 25.0 µl 
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the next day using the QIAGEN Plasmid Mini Kit. Purified plasmid DNA was sent for 

sequencing or used for further cloning. 

To obtain higher yields of plasmid DNA (e.g. for transfection of mammalian cells) 100 ml LB-

Amp medium were inoculated with 200 µl over-night culture as described above. Plasmid 

DNA was extracted after 13-16 h using the QIAGEN Plasmid Plus Maxi Kit and collected in 

400 µl ddH2O. 

 2.2.1.6 Isolation of viral RNA and cDNA synthesis 

Viral RNA was isolated from supernatant of infected cells 24h post-infection using the 

Invisorb Spin Virus RNA Mini Kit from STRATEC Molecular GmbH. Subsequently, viral 

cDNA was synthesized from the viral RNA and the viral HA gene sequence for cloning into 

the pHW2000-Esp-blue plasmid for reverse genetics was amplified from the gained cDNA in 

one PCR reaction using the One Step RT-PCR Kit from Qiagen. 

 2.2.1.7 Cloning by target-primed plasmid amplification 

Established systems for the generation of influenza viruses solely from plasmids 

[19,312,313] require prior cloning of influenza gene sequences into the plasmids using the 

BsmBI restriction sites. However, as described above, the insertion of target sequences into 

circular vectors by restriction and ligation is laborious and time-consumable. Furthermore, 

many viral genes contain internal restriction sites for all available enzymes of this type (BsaI, 

BsmBI, Esp3I) generating a compatible overhang. Additionally, for reverse genetics of 

influenza viruses it is essential that the inserted cDNA is transcribed to viral RNA of precise 

length without additional terminal nucleotides. An alternative method for cloning, which is 

independent of restriction enzyme cleavage, is the overlap extension PCR or target-primed 

plasmid amplification [309,310]. It is based on a modified Quick change mutagenesis 

protocol for the integration of entire PCR amplicons between two neighbored nucleotides or 

by exchange of an entire vector region [314]. The two strands of the amplicon serve as mega 

primers. Each mega primer anneals to the complementary site in the plasmid and is then 

elongated from its 3’-end by the DNA polymerase (Figure 2.2). 

Primers pHW-H5 fw and rev were used to generate the PCR amplicon, which is the cDNA of 

HA with overlapping ends complementary to the sites in the vector where it shall be inserted. 

The PCR amplicon was gel purified as described in 2.2.1.2 and used for cloning into the 

vector pHW2000-Esp-blue following the protocol of Stech et al. [309]. Briefly, the plasmid 

was amplified using the PCR amplicon as mega primers as shown in . The PCR product was 

digested with DpnI, an enzyme which only targets methylated DNA sequences from bacteria 

and thus only digests the template plasmid (37°C, 1h). The digested product (which should 

http://www.stratec.com/en/molecular/Products_Molecular/Viral_NA/invisorb_spin_virus_rna_mini_kit/invisorb_spin_virus_rna_mini_kit.php
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contain the viral cDNA) was transformed into bacteria as described in 0 and colonies were 

screened for plasmid carrying the cDNA of the viral HA. 

 

 

Figure 2.2: Schematic representation of the principle of target-primed plasmid amplification. 
The two strands of the PCR amplicon serve as mega primers. Each 30-end of the mega primer anneals to the 
complementary annealing site within the plasmid pHW2000 and is elongated during target-primed plasmid 
amplification leading to replacement of the lacZ marker by the viral gene. The two newly synthesized strands 
hybridize to nicked circular molecules (from Stech et al. 2008) [309]. 

 

Table 2.5: Typical PCR reaction for the insertion of genes by target primed plasmid amplification 

PCR reagents PCR reaction 

150 ng pHW2000-Esp-blue 1.0 µl Cycle Temp. [°C] Time [min] 

2 units Phusion Polymerase 1.0 µl Initial denaturation 98°C 0.5 

150 ng PCR amplicon 1.0 µl *Denaturation 98°C 0.5 

10 mM dNTPs 1.0 µl *Annealing 48°C 1.0 

5x Buffer 10.0 µl *Extension 72°C 5.5 

ddH2O 34.5 µl Final Extension 72°C 10.0 

Total volume 50 µl Cooling 12°C ∞ 
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 2.2.1.8 Site-directed mutagenesis by overlap extension PCR (AB-PCR) 

Overlap extension PCR is primarily used in molecular biology to introduce mutations or 

splice smaller DNA fragments into one large polynucleotide [315]. Four primers are needed 

which are employed in two PCR reactions (PCR I and II): two complementary ones (a1 and 

b1), which contain the mutation and two oligonucleotides which flank the gene of interest (a2 

and b2) and contain restriction sites for subsequent cloning (Figure 2.3). In the first reaction 

two DNA fragments (A and B) with overlapping ends, which contain the nucleotide changes, 

are generated and gel purified. These fragments are combined in a subsequent 'fusion' 

reaction (AB-PCR) in which the overlapping ends anneal, allowing the 3' overlap of each 

strand to serve as a primer for the 3' extension of the complementary strand. The resulting 

fusion product is amplified further by PCR, gel purified and cloned into the desired plasmid. 

Sequencing was performed by GATC Biotech AG. 

2.2.2 Cell culture 

 2.2.2.1 Thawing, freezing and sub-culturing of cells 

1 ml of cell suspension was quickly thawed at 37°C in the water bath and transferred to 10 

ml DMEM supplemented with 10 % FBS, 2 mM glutamine and 1 % penicillin/streptomycin 

(DMEM full medium). After centrifugation at 1000 rpm for 3 min at room temperature (RT), 

the cell pellet was resuspended in 12 ml DMEM full medium and transferred to a T75 cell 

culture flask. Cells were cultivated at 37°C and 5 % CO2 until they reached 80 % confluence. 

For sub-culturing of confluent cells, the medium was aspirated and cells were washed using 

5 ml PBS. Cells were detached with 2 ml Trypsin/EDTA and the reaction was blocked after 2 

to 20 min (depending on the cell line) by the addition of 10 ml DMEM full medium. For a 1:12 

dilution 1 ml of the cell suspension was transferred to a new flask and 11 ml of DMEM full 

medium were added. The stable-transfected cell line CHO-K1-H3mYFP was sub-cultured in 

DMEM full medium supplemented with 500 µg/ml Geneticin. 

For freezing of cells, detached cells were centrifuged at 1000 rpm for 3 min at 4°C and the 

cell pellet was resuspended in 5 ml cold freezing medium which is composed of 1.5 ml cryo-

medium and 3.5 ml DMEM full medium (1:3). 1-1.5 ml aliquots in cryo-vials were stored at -

80°C over-night before transferring them to the liquid nitrogen tank for long-time storage. 
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Figure 2.3: Schematic illustration of an overlap extension PCR reaction for the introduction of mutations. 
Two PCR reactions are preformed generating two DNA strands with overlapping ends containing the nucleotide 
changes. These anneal in the subsequent reaction and serve as primers for the extension of the complementary 
DNA strand (AB-PCR). 

 2.2.2.2 Transient transfection 

Cells were transfected at 90 % confluence using Turbofect (Fermentas) according to the 

manufacturer’s protocol. Briefly, for a 35 mm dish 4 µg of plasmid-DNA were mixed with 400 

µl pure DMEM and 6 µl Turbofect reagent and the mixture was incubated for 15-20 min at 

RT. The medium was aspirated from the cells and the Turbofect-DNA complexes and DMEM 

full medium were added resulting in a final volume of 2 ml. The dishes were swirled were 

carefully to distribute the complexes in the whole dish. Cells were incubated at 37°C and 5 % 

CO2 for 24 or 48 h and then treated as indicated for each experiment. 

 2.2.2.3 Stable transfection 

For stable transfection of CHO-K1 cells with the plasmid pmYFP-H3 the transfection reagent 

Lipofectin (10 µl for 35 mm dish) and the selection antibiotic Geneticinsulfate (G418) were 

used.  Lipofectin and plasmid-DNA (4 µg) were each separately incubated with 100 µl pure 

DMEM for 45 min at RT before mixing and additional incubation for 15-20 min. The cells 

were washed twice with pure DMEM and then the Lipofectin-DNA complexes and 1.8 ml 
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pure DMEM were added. After 24 h incubation at 37°C and 5 % CO2 the medium was 

exchanged with DMEM full medium and cells were incubated another 24 h or more until cells 

were confluent. At 90 % confluence cells were split into a 94 mm dishes in dilutions 1:10, 

1:20 and 1:50 and grown in the presence of 500 µg/ml G418. At about 50 % confluence 

fluorescent (and thus resistant) colonies were picked and transferred into a 24 well plate with 

a cover slip. Again cells were grown until confluence in DMEM full medium containing 500 

µg/ml G418. Then, the cells on the cover slip are fixed with 4 % paraformaldehyde and 

imaged for detection of fluorescent protein expression. Positive clones are transferred to T25 

and subsequently to T75 flasks prior to freezing. For further cultivation of stable transfected 

cell lines DMEM full medium containing 500 μg/ml G418 is used. 

2.2.3 Protein biology 

 2.2.3.1 Expression of wild type and mutant HA proteins at the cell surface 

 2.2.3.1.1 Selection of expression system 

In order to study conformational change and membrane fusion of wild type and mutant HA 

proteins, high expression levels at the cell surface of CHO cells are required. A plasmid 

expressing the H3YFP fusion protein (pEYFP-H3) was obtained from Dr. Christian Sieben of 

the Molecular Biophysics group which was constructed by cloning HA of the influenza virus 

strain A/X-31 (H3N2) into the pEYFP-N1 plasmid (Life technologies) using the restriction 

sites NheI and SacII resulting in the H3YFP fusion protein (H3 carrying YFP at its C-

terminus). However, expression of HA proteins in mammalian cells is typically performed 

using the pCAGGS expression plasmid which contains a hybrid CMV-chicken β-actin 

promoter. 

To compare the levels of H3YFP expression obtained with the different plasmid systems the 

H3YFP fusion protein was subcloned into the pCAGGS-Esp-blue (pCAG) plasmid which was 

provided from Dr. Volker Czudai-Matwich (Institute of Virology, Philips University Marburg) 

[307]. Expression levels of H3 HA fusion proteins depending on the expression system were 

compared by analyzing the YFP-fluorescence of transfected cells using confocal microscopy 

and flow cytometry. Expression of H3YFP was indeed higher using the pCAG plasmid as 

observed by confocal microscopy (Figure 2.4 A). Quantification of the mean fluorescence 

intensity (MFI) of H3YFP expressed in CHO cells yielded a 3 times higher fluorescence 

intensity as analyzed by flow cytometry (Figure 2.4 B). Hence, for expressing HA proteins at 

the cell surface the pCAG plasmid was used in all subsequent experiments. Furthermore, 

different transfection reagents were tested for their ability to successfully deliver the gene 
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encoding plasmids into the cells. Turbofect (Fermentas) and Lipofectamine 2000 (Life 

technologies) showed the same efficiency with 34 and 36  % of transfected cells, 

respectively (Figure 2.4 C). Due to less cytotoxicity and easier handling Turbofect was used 

as transfection reagent in all subsequent experiments. 

 2.2.3.1.2 Cleavage activation of low pathogenic HA 

HA is synthesized as HA0 precursor protein which needs to be cleaved into HA1 and HA2 

after trimerization resulting in the release of the fusion peptide. Highly pathogenic HA 

proteins (H5 HP) carry a polybasic cleavage site which is cleaved by intracellular proteases 

in the course of transport to the cell surface. In contrast, low pathogenic HA proteins (H5 LP) 

have a monobasic cleavage site which can only be cleaved extracellularly by trypsin-like 

proteases. Thus, before acidification, the low pathogenic HA proteins (H3 and H5 LP) were 

treated with 4 µg/ml TPCK trypsin for 5 min at room temperature for cleavage activation. The 

reaction was stopped by the addition of DMEM full medium. 

 

 

Figure 2.4: Selection of expression plasmids and transfection reagents for HA expression using YFP as 
reporter. 
(A) Representative images of H3YFP expressed in CHO cells from the pCAG or pEYFP plasmid, respectively. (B) 
Quantitative analysis of H3YFP expression from different plasmids in CHO cells by flow cytometry. (C) Quantitative 
analysis of H3YFP expression in CHO cells using different transfection reagents. 
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 2.2.3.2 Expression analysis 

 2.2.3.2.1 Expression and cleavage analysis by SDS PAGE and Western Blot 

Expression and cleavage of mutant proteins was analyzed by SDS PAGE and Western 

blotting and by Immunostaining and flow cytometry (see 2.2.3.5) using the mouse 

monoclonal Vn04-2 antibody (dilution 1:1000). 48 h post-transfection cells were washed 

twice with PBS- and detached using 2 mM EDTA. After centrifugation at 385 g for 5 min the 

cell pellet was resuspended in 100 µl PBS-. Samples were divided and reducing or non-

reducing loading dye was added, respectively. Samples were incubated at 60°C (non-red.) 

or 95°C (red.) for 5 min before loading on a 10 % SDS PAGE. Proteins were transferred on a 

nitrocellulose membrane by semi-dry western blotting for 1.5 h and membranes were 

incubated for 1 h at room temperature in Odyssey blocking buffer. H5 HA was detected with 

primary Vn04-2 antibody (1:1000, at 4°C over-night) and secondary LICOR goat anti-mouse 

IRDye 680 (1:20 000, 1h at RT). Uncleaved H3YFP was taken as control which was 

detected using the mouse polyclonal anti GFP antibody (1:1000) and equal loading of wells 

was confirmed using the mouse polyclonal anti β-actin antibody (1:3000). 

 2.2.3.2.2 Trimer formation assay 

To increase the yield of detectable trimers, 3, 3-dithiobissuccinymidylpropionate (DSP) was 

used for the analysis of trimer formation of H5 wild type and mutant proteins. DSP covalently 

links the three monomers within a trimer which can be subsequently detected by SDS PAGE 

and Western blotting using the monoclonal anti H5 Vn04-2 antibody (dilution 1:1000). 48 

hours post-transfection cells in a 6 well plate were lysed by the addition of 250 µl ice-cold 

lysis buffer. After an incubation of 10 min cells were scraped off and shaken for 30 min at 

4°C. Cells were centrifuged at 12 000 g for 30 min and supernatants were treated with 0.8 

mM DSP in DMSO for 15 min at 15°C. The reaction was stopped by addition of 20 mM 

ammonium chloride and after addition of loading dye and incubation at 60°C for 5 min 

samples were subjected to a 6 % SDS PAGE and Western blot analysis under non-reducing 

conditions. H5 HA proteins were detected using antibodies Vn04-2 and LICOR goat anti 

mouse IRDye 680 as described above. Samples without DSP reagent were taken as 

controls for the respective protein. 

 2.2.3.3 Adjustment of pH in vitro 

The HEPES fusion buffer was adjusted with 1 M NaOH and 1 M HCl before adding the buffer 

to the HA expressing cell monolayers. In the red blood cell fusion assay cells were incubated 
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for 5 min with the buffer of the respective pH at 37°C with a subsequent re-neutralization 

step for 2 min at 37°C. For conformational change analysis by flow cytometry cell 

monolayers were incubated for 15 min with fusion buffer before re-neutralization. 

 2.2.3.4 Red blood cell fusion assay 

Fresh human red blood cells (RBCs) were double labeled with the lipoid dye octadecyl 

rhodamine B chloride (R18) and the content marker Calcein (Molecular Probes, Life 

technologies). HA expressing CHO-K1 cells were treated with 0.5 U/ml neuraminidase and 

with 4 µg/ml TPCK trypsin (if required) followed by incubation with DMEM supplemented with 

10 % FBS. CHO-K1 cells carrying the activated HA proteins were then incubated with the 

double labeled RBCs for at least 30 min to induce binding of the RBCs to HA at the cell 

surface. After the incubation time samples were washed three times with PBS+ to get rid of 

unbound RBCs and analyzed for RBC binding and, after low pH incubation, for fusion under 

the fluorescence microscope (Olympus Fluoview FV-1000).  

 2.2.3.5 Immunostaining and flow cytometry 

The expression of the HA proteins at the cell surface was quantified at neutral pH using the 

Vn04-2 antibody (dilution 1:1000). The conformation of HA at different pH was assessed 

using the monoclonal antibodies Vn04-9 or Vn04-16 (dilution 1:500) which have been 

previously described to preferentially bind the neutral (Vn04-9) or low (Vn04-16) pH 

conformation of H5 HA [297,316]. 48 h post-transfection cells growing in 24 well plates were 

incubated with neutral (pH 7.0) or low pH (pH 5.0-6.6) for 15 min at 37°C as described 

above. After re-neutralization with PBS+, cell monolayers were blocked with 0.2 % BSA in 

PBS+ for 15 min on ice and all subsequent steps were also performed on ice. For 

expression analysis cells were overlaid with the primary antibody Vn04-2 in 0.2 % BSA in 

PBS+ whereas for assessing the conformational change primary antibodies VN04-9 and -16 

were used. After incubation for 45 min samples were washed three times with 0.2 % BSA in 

PBS+ and overlaid with a fluorescently labeled secondary anti-mouse antibody for 30 min. 

Cells were detached using 2 mM EDTA in PBS- following analysis by flow cytometry using 

the FACS Aria II (BD Biosciences). Expression of mutant proteins relative to the wild type 

was evaluated by normalizing the median fluorescence intensity (MFI) values of 10 000 cells 

to that of the highly pathogenic H5 HA wild-type protein. The pH of conformational change 

was determined as the point at which 50 % change in signal occurred between minimum and 

maximum of respective Vn04-9/Vn04-16 ratios (Figure 2.5). 
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Figure 2.5: Determination of the pH of conformational change for H5 wild type and mutant proteins. 
The ratio of Vn04-9- to Vn04-16 binding was calculated and plotted as a function of pH. The pH of conformational 
change corresponds to the pH of 50 % of change in the Vn04-9/Vn0416-ratio. 
 

 2.2.3.6 Computational modeling 

Analysis of H3 and H5 crystal structures and computational modeling of mutations was 

performed by Tim Meyer (Macromolecular Modeling, FU Berlin). His184 mutations were 

modeled into the crystal structure of highly pathogenic H5 HA (PDB ID: 2IBX). The residue 

His184 in chain A, C and E was replaced. Missing atoms were added using default internal 

coordinates of CHARMM22 [317,318]. To obtain reasonable interactions of the mutated 

residue with its environment, the model was geometry optimized with CHARMM [318] using 

the CHARMM22 [317] force field. The influence of the solvent was considered implicitly with 

a dielectric constant of 80 by using the GBSW Generalized Born module [318] of CHARMM. 

To obtain the correct protonation state for the histidines at neutral pH an electrostatic energy 

calculation was also performed by Tim Meyer using the software Karlsberg+ [319]. 
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2.2.4 Virology 

 2.2.4.1 Construction of pHW plasmids for the production of recombinant WSN H3 

viruses 

To produce recombinant WSN viruses containing H3 wild type or mutant HA instead of H1 

HA, new pHW plasmids were constructed containing the respective HA segment. Each 

segment is composed of the viral cDNA which carries additional non-coding regions (NCR) 

at the 3’ and 5’ end (cRNA). These NCRs include conserved packaging signals which are 

crucial for vRNP synthesis. 

The viral RNA of the segment encoding H3 HA was extracted from A/Aichi/2/68 (X-31, 

H3N2) and the viral cRNA (including NCRs) was synthesized by reverse transcription using 

the Uni12 primer followed by amplification with H3 HA specific primers containing the BsaI 

restriction sites [308]. These restriction sites were used for cloning the cRNA of H3 HA into 

the pHW plasmid. The T212E-N216R mutation was inserted using an adapted Quick change 

mutagenesis protocol from Stratagene. Correct insertion of the segments was confirmed by 

sequencing (GATC Biotech AG, Germany). 

 2.2.4.2 Production of recombinant viruses 

For the production of recombinant viruses the eight-plasmid-system was used [19]. The pHW 

plasmids containing the cDNA encoding for all 11 viral proteins of A/WSN/1933 (H1N1) were 

kindly provided by Dr. Michael Veit (Free University Berlin). These plasmids contain the viral 

cDNA sequences encoding all required viral proteins of A/WSN/1933 (H1N1). The cDNA 

sequence in each plasmid is inserted between the pol I promoter (pIh) and the pol I 

terminator (tI) (Figure 2.6). This pol I transcription unit is flanked by the pol II promoter 

(pIICMV) of the human cytomegalovirus and the polyadenylation signal of the gene encoding 

bovine growth hormone (aIIBGH). 

To obtain recombinant WSN H3 viruses the plasmid encoding H1 HA was exchanged for the 

newly constructed plasmids encoding the H3 wild type or H3 T212E-N216R yielding WSN 

H3 wt and WSN H3 T212E-N216R mutant viruses, respectively. HEK-293T cells were 

simultaneously transfected with 0.5 µg of each plasmid in a 35 mm dish. After 6 h of 

incubation at 37°C and 5 % CO2 the medium was exchanged with virus cultivation medium 

(DMEM with 0.1 % FBS, 0.2 % BSA, 2 mM glutamine, 1 % penicillin/streptomycin and 4 

µg/ml TPCK Trypsin). After 2 days the virus was harvested by centrifugation of the cell 

supernatant at 2000 rpm to get rid of cell debris. 
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Figure 2.6: Schematic representation of the pol I-pol II transcription system and the generation of 
recombinant viruses from the eight plasmid system. 
(A) The viral cDNA of each of the eight influenza virus segments is inserted between the pol I promoter (pIh) and the 
pol I terminator (tI). This pol I transcription unit is flanked by the pol II promoter (pIICMV) of the human 
cytomegalovirus and the polyadenylation signal of the gene encoding bovine growth hormone (aIIBGH). After 
transfection of HEK-293T cells with the eight expression plasmids, two types of molecules are synthesized. From 
the human pol I promoter, negative-sense vRNA is synthesized by cellular pol I. Transcription by pol II yields 
mRNAs with 5’ cap structures and 3’ poly(A) tails; these mRNAs are translated into viral proteins (B). After 
packaging of vRNPs and transport to the cell surface, new infectious recombinant viruses are produced which can 
be harvested and amplified in MDCK cells (from Hoffmann et al. 2000) [19].  
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For amplification of recombinant viruses MDCK cells were infected in 6 well plates with 1 ml 

of 1:1, 1:10 and 1:100 dilutions of the cleared supernatant containing the virus. After 1 h 

incubation at 37°C and 5 % CO2 the medium was exchanged with virus cultivation medium. 

The virus was harvested after 48 h or when at least 70 % of cell death (CPE) was observed. 

Virus-containing supernatants were titrated using a TCID50 assay (see 1.1.1.1.4) and stored 

at -80°C. For further amplification MDCK cells were infected with virus-containing 

supernatant in T75 and T175 flasks at an MOI of 0.01. 

 2.2.4.3 Concentration and purification of recombinant viruses 

For of extra- and intracellular fusion measurements a concentrated and purified virus 

suspension is required. Therefore, the cell supernatant was (ultra-)centrifuged at 100 000 g 

for 2 h at 4°C. After drying of the pellet for 5-10 min the pellet was “swollen” in 200-500 µl 

TNE buffer and for 15 min at 4°C before resuspension. To get rid of cellular proteins and 

other vesicles, which are also present in the supernatant, the concentrated virus suspension 

was loaded on a 20-60 % sucrose gradient and centrifuged for an additional 4 h at 100 000 g 

at 4°C. The virus was carefully removed from the gradient and washed in 30-50 ml PBS-. 

After pelleting for 1.5 h at 100 000 g at 4°C the virus was resuspended in a small volume 

(200-300 µl) PBS- as described above. 

 2.2.4.4 Virus quantification and titration 

 1.1.1.1.1 Protein quantification 

Total protein concentration of viruses can be taken as measure of virus concentration in the 

concentrated and purified virus suspension since the viral membrane is covered by its spike 

proteins HA and NA. Thus, the protein or virus content respectively was determined using 

the BCA protein assay kit. Briefly, samples are diluted 1:10, 1:20 and 1:50 and incubated 

with the BCA reagent according to the manufacturer’s protocol for 30 min hours at 37 ºC. 

After cooling of samples the absorbance is measured at 562 nm on a spectrophotometer. 

Protein concentration of the unknown samples is determined based on a standard curve of 

bovine serum albumin (BSA). 

 1.1.1.1.2 Hemagglutination assay 

Another known assay for the determination of virus concentration in the sample is the 

hemagglutination assay (Figure 2.7). The virus titer is assessed based on the ability of HA to 
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agglutinate red blood cells (RBCs), which carry the sialic acid cell receptor at the surface. As 

each of the agglutinating molecules (HA) attaches to multiple RBCs, a lattice-structure will 

form in the presence of virus which can be observed from the top. If the virus concentration 

is too low or no virus is present at all the RBCs form a pellet at the bottom of the well. To 

assess the hemagglutination titer of a sample two-fold dilutions are prepared in 96- round or 

v- bottom well plates in PBS-. Then human or chicken RBCs (1 % in PBS-) are added to the 

samples followed by incubation for 30 min up to an hour at room temperature. The viral titer 

is then determined based on the last viable "lattice" structure found (approximately the HA 

titer multiplied by 107).  

 

 

 

Figure 2.7: Schematic depiction of the hemagglutination assay. 
(A) Influenza viruses bind to erythrocytes (RBCs, red) via their envelope protein hemagglutinin resulting in the 
formation of a lattice (hemagglutination positive, +). If the virus concentration is too low or no virus is present at all 
the RBCs form a pellet at the bottom of the well (hemagglutination negative, -). (B) To assess the concentration of 
influenza viruses in a sample, two-fold dilutions are prepared in a 96-well round bottom or v-bottom plate. After 
incubation with RBCs the hemagglutination titer is determined by the last dilution where a lattice structure can still 
be observed. 
 

 1.1.1.1.3 Plaque Assay 

Both above mentioned assays determine the total protein or hemagglutinin concentration in 

the sample and thus do not give any measure of viral infectivity. In contrast, in the plaque 

assay the number of infective particles within the sample is determined based on the CPE. 

Confluent monolayers of MDCK cells are infected with the virus at varying dilutions (usually 

in 10-fold) and covered with a semi-solid medium, such as agar or carboxymethyl cellulose 

which prevents the virus from spreading indiscriminately. When a cell of the monolayer gets 

infected, this cell will lyse and spread the infection to adjacent cells so that after repeated 

cycles of lysis and infection a plaque will emerge which can be discriminated by eye from the 
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surrounding monolayer. The number of plaque forming units per unit volume (Pfu/mL) is 

calculated by multiplying the number of plaques with the dilution factor and applied volume. 

Briefly, MDCK cells were seeded in 6 well plates to a confluence of 90-100 % and infected 

with 10 fold –dilutions of recombinant viruses as described in 2.2.4.1. After 1 h cells were 

washed two times with PBS+ and overlaid with agarose semi-solid medium (0.4 % sea 

plaque agarose in EMEM supplemented with 0.1 % FBS, 0.2 % BSA, 2 mM glutamine, 1 % 

penicillin/streptomycin and 4 µg/ml TPCK Trypsin). 
 

 1.1.1.1.4 50 % Tissue Culture Infectious Dose (TCID50) 

The TCID50 is an endpoint dilution assay which quantifies the amount of virus required to 

infect 50 % of inoculated tissue culture cells. Thus, this assay can be used to determine the 

amount of infectious virions in a sample irrespective of their ability to replicate. Several 

methods can be used to assess the TCID50. In this study infected cells were assessed by 

ELISA [320].  

Briefly, virus samples were diluted in ½ log10 steps in a 96 well plate (4-8 replicates). 1.5 

x104 MDCK cells were washed in virus diluent (DMEM supplemented with 1 % BSA, 1 % P/S 

and 20 mM HEPES) and added to the virus. After 20h of infection cells were washed in 

PBS+ and fixed with 80 % ice-cold acetone (10 min) following staining using the primary 

mouse influenza anti NP antibody (Millipore) and the secondary Goat anti-mouse IgG 

antibody (Life technologies) which is conjugated to horseradish peroxidase. After addition of 

the substrate σ-phenylenediamine dihydrochloride (OPD) and color formation the reaction 

was stopped by the addition of 0.5 M sulfuric acid and absorption was measured on the plate 

reader. The TCID50 was calculated using the Reed and Muench method [321]. 

 2.2.4.5 Infection studies 

The infectivity of recombinant viruses was assessed in MDCK and A549 cells. Therefore, 2 

x105 cells growing on glass cover slips were infected with the respective virus at an MOI of 

0.1 as determined by TCID50. 20h post-infection cells were fixed with 4 % PFA and 0.1 % 

glutaraldehyde in PBS+ (10 min), perforated using 0.1 % Triton-X (5 min) and then stained 

against the influenza virus NP protein using the primary mouse influenza anti NP antibody 

(Millipore) and the secondary Anti mouse Alexa488 (Life technologies). Nuclei were stained 

using DAPI (14nM). Images were taken at the confocal microscope (Olympus Fluoview 

1000) and the number of infected cells in percent of total cells in each image was analyzed 

using the cell image analysis software Cell Profiler (Broad Institute, Cambridge, USA). 
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 2.2.4.6 Fluorescence dequenching assay 

To assess the pH threshold of fusion for wild type and mutant recombinant viruses the fusion 

efficiency of these viruses was assessed by fluorescence dequenching in the pH range from 

5.0 to 6.5 using red blood cell ghosts as target membrane (Figure 2.8). 

 1.1.1.1.5 Preparation of red blood cell ghosts 

Purified human erythrocytes (Blutbank, Charité) were washed three times in PBS (2000 g, 

10 min). One volume of erythrocytes (RBCs) was resuspended in 10 times the volume ice 

cold hemolysis buffer. The cells were lysed for 30 - 50 min on ice and centrifuged for 20 min 

at 5000 g. The lysed RBCs were incubated on ice for 10 min with occasional stirring. These 

lysis-washing cycles were repeated until the pellet appeared white. The cells were washed in 

PBS, pelleted and stored at 4 C with 0.02 % sodium azide. 

 1.1.1.1.6 Virus labeling with R18 

100 µl of concentrated and purified virus (~106 Pfu) were labeled with 1 µl of 2 mM R18 by 

incubation for 30 min up to 1 h on ice. To get rid of non-incorporated R18 the virus-dye 

mixture was centrifuged at 100000 g for 5 min and virus-pellet was resuspended in 100 µl 

PBS. 

 1.1.1.1.7 Measurement of pH dependent fusion by fluorescence dequenching 

For the fusion measurement 10 µl of labeled virus were bound to a 1:10 dilution of red blood 

cell ghosts (5-10 mg ghosts/ml) in 40 µl of PBS for 20 min at room temperature. Unbound 

virus was removed by centrifugation for 5 min at 5000 g and ghosts with bound viruses were 

resuspended in 40 µl PBS. The virus-ghost suspension was subsequently added to 1.96 ml 

of pre-warmed sodium acetate fusion buffer in a cuvette and the fluorescent emission at 590 

nm was recorded by using a Horiba Yobin Yvon FluoroMax. After 100 seconds 250 mM citric 

acid was added to decrease the pH from neutral to acidic inducing fusion. The fluorescence 

increase due to R18 dequenching was measured for 500 sec. The maximal dequenching of 

R18 was achieved by addition of detergent (0.5 % Triton-X in ddH2O). The fusion efficiency 

obtained at the specific pH was calculated by the formula 

FDQ =  
F(t) – F(0) 

x 100 
Fmax – F(0) 

 



2.2 Methods 

 

 

61 

with F(0) as the fluorescence signal of quenched R18 (before the onset of fusion), Fmax, the 

maximal dequenching signal of R18 (after addition of Triton-X 100), and F(t), the signal 

obtained 500 sec after the onset of fusion. 

 

 

 

 

Figure 2.8: Fluorescence dequenching assay. 
Influenza viruses are labeled with R18 at self-quenched concentration. The labeled viruses bind to red blood cell 
ghosts due to the presence of SA receptors at the cell surface. After incubation for 20 min at RT with RBC ghosts 
unbound viruses are removed by centrifugation and the virus-ghost suspension is transferred to a glass cuvette 
containing pre-warmed fusion buffer (pH 7.4). The fluorescence is detected (ex = 560nm; em = 590 nm) in a 
spectrofluorometer (F(0)). By the addition of citric acid (0.25 μM) the pH is lowered triggering the fusion of 
membranes (pH 6.5-5.0). The fusion reaction is finally stopped by the addition of detergent (0.5 % Triton X-100) to 
obtain maximum R18 dequenching (Fmax). 

 

 2.2.4.7 Intracellular fusion assay 

In contrast to bulk fusion assays as described above imaging of single events of virus-

endosome fusion gives information of the time-point and exact site of fusion inside living 

cells [53,70,106]. Sakai et al. reported a dual wavelength imaging approach [322] facilitating 

the quantification of numerous single fusion events by a color shift from the red fluorescent 

R18 (here DiI) to the green fluorescent DiO. In the labeled virus, the green fluorescence is 

suppressed by both, self-quenching of DiO and fluorescent resonance energy transfer 
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(FRET) from DiO to DiI, whereas the red fluorescence from R18 is partly self-quenched. 

Upon membrane fusion of the viral with the endosomal membrane and dilution of both dyes, 

self-quenching and FRET is removed resulting in a dramatic increase of the green 

fluorescence which is plotted as a function of time (Figure 2.9 A)[322][322]. 

 1.1.1.1.8 Virus labeling with DiO and DiI 

33 µM DiO and 67 µM DiI were mixed in a ratio of 1:3 in Ethanol. 100 µg of the concentrated 

and purified virus suspension (100 µl of 1 mg/ml stock, ~106 Pfu) were diluted in PBS+ to a 

final volume of 1 ml in 2 ml round bottom Eppendorf tubes. 6 µl of the DiO/DiI mixture were 

added under vigorous mixing on the vortexer (final concentrations: 0.2 µM DiO and 0.4 µM 

DiI). The mixture was incubated under continuous shaking for 1 h at room temperature and 

then put on ice. Viral aggregates were removed by filtration using 0.45 µm pore size filters. 

Correct labeling was evaluated by measuring the fluorescence emission spectra of samples 

before and after the addition of 0.5 % Triton-X (Figure 2.9 B). 

 

 

 

Figure 2.9: Intracellular fusion assay. 
(A) Influenza viruses are labeled with 0.2 µM DiO and 0.4 µM DiI. Due to Foerster Resonance Energy Transfer 
(FRET) and quenching of DiO the labeled particles appear red. Upon fusion with the endosomal membrane FRET is 
removed and DiO is dequenched so that the fluorescence intensity of DiO increases. (B) Fluorescence emission 
spectra of DiO/DiI-labeled particles before/after the addition of detergent. The DiO signal in labeled viruses is 
suppressed due to self-quenching and FRET whereas DiI is only partly quenched (-Triton-X). Upon membrane 
solubilization with Triton-X the DiO fluorescence is rescued resulting in a significant increase of the DiO signal 
(+Triton-X). 
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 1.1.1.1.9 Imaging of intracellular virus fusion 

Cells were seeded in 35 mm MaTek dishes to reach a confluence of 60-70 % until the onset 

of the experiment. To label the nuclei cells were incubated 30 min with Hoechst in DMEM full 

medium. After 2 times washing with PBS+ on ice, 10 µl of labeled and filtered viruses were 

mixed with 40 µl of 0.2 % BSA in PBS+ and binding of viruses to the cells was induced by 

incubation for 10 min on ice. Unbound viruses were removed by washing with PBS+ and 1 

ml of pre-warmed DMEM full medium without phenol red was added. Cells were immediately 

transferred to the microscopic stage and imaged every 3 min at 37°C and 5 % CO2 in a 

climate chamber. 
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3 Results 

 3.1 Identification of protonable residues and of pH stability modulating 

mutations in H5 HP 

One of the aims of the present study was to identify critical pH sensors in the influenza virus 

HA which upon protonation trigger the conformational change of the protein and as a 

consequence, fusion of the viral with the endosomal membrane. We focused on His184 as 

potential molecular switch since it has already been previously hypothesized to trigger the 

conformational change of HA [163]. Indeed, due to its central position at the HA1-HA1 

interface protonation of His184 very likely could destabilize inter-monomeric pre-fusion 

contacts upon protonation (Figure 3.1). Furthermore, His184 is highly conserved among all 

subtypes (except H17 and H18) and within individual subtypes emphasizing its significance. 

Likewise, we addressed His110 as a potential pH sensor at the HA1-HA2 interface of H5 HA. 

His110 is located close to the B loop which is also rearranged at low pH (20, 21) and thus 

may trigger structural rearrangements of this domain upon its protonation. However, different 

to His184, His110 is only conserved in H2, H5, H13 and H16 subtypes. 

To characterize His184 and His110 as potential pH sensors we substituted these two amino 

acids for different amino acids and analyzed their effect on the pH dependence of 

conformational change and membrane fusion. Previous mutational studies of histidines 

(His17 and His18 of HA1 and His106/111 of HA2) in the HA protein revealed that the effect 

on fusion largely depends on the substituted amino acids [162,297,323]. Thus, in order to 

obtain comprehensive results we selected a subset of structurally diverse amino acids as 

substitutes for His184 and His1103. Asparagine was selected for replacing His184 (H184N) 

since it is structurally most similar to histidine. Therefore, it might be able to interact with 

neighboring residues at the interface like histidine but does not have the propensity to get 

protonated at low pH. In contrast, the neutral alanine at position 184 (H184A) was predicted 

to abrogate any interactions of His184 with neighboring residues which would provide 

information about the structural significance of histidine at position 184. Arginine with its 

positive charge was selected to mimic a protonated histidine which, at first glance, should 

destabilize inter-monomeric interactions. The negatively charged aspartate was chosen as a 

                                                      
3 Substitutes were selected based on computational prediction of protein stability in collaboration with Qiang Huang, 

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai and Tim Meyer, 

Institute of Chemistry and Biochemistry, Free University Berlin. 
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residue potentially stabilizing the HA1-HA1 interface. Correspondingly, we selected arginine 

as destabilizing (H110R), glycine as neutral (H110G) and glutamate as stabilizing (H110E) 

substitutes for His110. Tyrosine (H110Y) was selected due to its reported stabilizing effect 

on H5 HA when replacing histidine at position 110 [260,324]. All mutant proteins were 

expressed at the cell surface of CHO cells and the effect of individual mutations on the pH 

dependence of conformational change and fusion was assessed using two different assays 

(see 3.3). 

 

 

 
 

Figure 3.1: Crystal structure of the highly pathogenic H5 HA (PDB ID: 2IBX) in surface and cartoon 
representation. 
Monomers are marked in yellow, light and dark gray. Histidines at positions 184 and 110 (blue) as well as residue at 
position 216 (green) are depicted as spheres in the yellow colored monomer with selected substitutes for these 
residues in H5 HP and LP listed in the table next to it. The B-loop and the fusion peptide are marked in red. 

 

Another aim was to identify mutations in the influenza virus H5 HA which might have 

contributed to the evolution of the highly pathogenic phenotype in 2003-2004. Aligning the 

sequences of H5 HP and H5 LP we identified a Glu-to-Arg mutation at position 216 in the 

highly pathogenic H5 HA. Residue 216 is located close to His184 and the exchange of 

charge might thus affect the pKa of His184 and as a consequence, the acid stability of H5 HA 

(Table 3.1). To assess the effect of the present charge at position 216 in the highly and the 

low pathogenic H5 HA (H5 HP and LP) on the acid stability of the protein, we replaced the 
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positively charged arginine in H5 HP by the negatively charged glutamate (H5 HP R216E) 

and glutamate in the low pathogenic subtype (H5 LP) by arginine (H5 LP E216R). Apart from 

the charged residue at position 216, another charge is present at the HA1-HA1 interface of 

all H5 and H2 subtypes, where the H3 subtype does not carry any charge at neither position 

(Table 3.1). Therefore, the effect of these two additionally charges on the acid stability of the 

H3 subtype was also studied. 

 

Table 3.1: Sequence alignment of H5 HP and LP and of H2 and H3 subtypes. 

 
aStrains used in this study are marked in bold. H5 HA of highly pathogenic strains isolated from birds and mammals 
since 2003/04, carry a positive charge (arginine or lysine, green) at position 216 whereas all low pathogenic virus 
strains have a negative charge (glutamate, red) at that position. Interestingly, H2 subtypes, like H5 LP, also have 
Glu at position 216 and Arg at position 212 whereas H3 subtypes do not carry these charges. 
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 3.2 Expression of wild type and mutant proteins at the cell surface 

3.2.1 Construction of HA expression plasmids 

A fluorescent protein such as YFP or even a smaller tag facilitates the detection of HA, 

though at the same time may hinder the HA conformational change and thus the ability to 

induce fusion. Therefore, all wild type and mutant H3 and H5 proteins were cloned into the 

pCAG vector without the addition of a fluorescent protein or another easily detectable tag 

using the oligonucleotides listed in Table 3.2. The pcDNA3-H5 plasmid encoding for the H5 

HP wild type protein of influenza H5N1 A/Vietnam/P41 as well as the viral RNA of the low 

pathogenic influenza strain A/teal/Germany/632wv/2006 were obtained from Dr. Timm 

Harder (Friedrich Loeffler Institute, Insel Riems, Germany). 

 

Table 3.2: Constructs used for HA expression at the cell surface of CHO cells. 

Construct Names of oligonucleotides used for cloning 
pCAG-H5 HP Bsm-H5 pCAG fw and rev 
pCAG-H5 HP R216E H5 HP R216E fw and rev 
pCAG-H5 HP H184A H5 HP H184A fw and rev 
pCAG-H5 HP H184N H5 HP H184N fw and rev 
pCAG-H5 HP H184R H5 HP H184R fw and rev 
pCAG-H5 HP H184D H5 HP H184D fw and rev 
pCAG-H5 HP H110R H5 HP H110R fw and rev 
pCAG-H5 HP H110E H5 HP H110E fw and rev 
pCAG-H5 HP H110G H5 HP H110G fw and rev 
pCAG-H5 HP H110Y H5 HP H110Y fw and rev 
pCAG-H5 LP Uni12 for cDNA synthesis, pCAG H5 LP fw and rev for cloning 
pCAG-H5 LP E216R H5 LP E216R fw and rev 
pCAG-H3YFP BsaI-H3 pCAG fw and BsaI-YFP rev 
pCAG-H3 BsaI-H3 pCAG fw and rev 
pCAG-H3 T212E-N216R BsaI-H3 pCAG fw and rev 

 

 

Both, H5 HP and LP encoding sequences were subcloned into the pCAG plasmid using the 

BsmBI restriction sites [307]. The cDNA of H5 LP was obtained from the viral RNA as 

described by Hoffmann et al. [308] using the One-Step RT-PCR Kit from QIAgen. Thereby 

the viral cDNA is acquired by reverse transcription using the Uni12 primer and the H5 LP 

gene sequence is subsequently amplified using H5 specific primers which contained the 

BsmBI restriction sites for cloning into the pCAG plasmid. Mutations into H5 HP and LP were 

introduced by overlap extension PCR (see 2.2.1.8). H3 HA wild type and T212E-N216R 
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mutant were amplified from the pTM1-plasmids provided by Dr. Sivaramakrishna 

Rachakonda and cloned into pCAG using the BsaI restriction sites. 

3.2.2 Quantification of surface expression 

In order to quantify the expression level of all proteins at the cell surface immunostaining and 

flow cytometry using the Vn04-2 antibody was performed. The antibody was reported to 

have a broadly neutralizing activity against highly pathogenic H5N1 [316,325] and was 

shown to bind to cleaved and uncleaved H5 HA [297]. Therefore, antibody binding also 

serves as indication for correct protein folding of the mutant proteins. 

In general, substitution of His184 had a more pronounced effect on HA expression than 

substitution of His110 or mutation of residue 216 (Figure 3.2). H184R and H184D mutants 

exhibited a significantly higher (H184R) or lower (H184D) cell surface expression than the 

H5 HP wild type (p-values < 0.05) whereas mutants H184N and H184A were similarly 

expressed (p-values > 0.05). His110 as well as the H5 LP E216R and the H5 HP R216E 

mutants were also similarly expressed as the H5 HP wild type (p-values > 0.05); only the low 

pathogenic H5 HA and the H110R mutant showed a significantly higher expression (p-values 

< 0.05). However, the extent of surface expression cannot be simply deduced from reduced 

or elevated antibody binding but might also indicate a change of the binding epitope. 

Nevertheless, Vn04-2 binding, trimerization (see 3.2.3), and binding of RBCs (see 3.3.1) to 

HA expressing cells suggests that the wild type and all generated mutant HA proteins were 

correctly folded. 

3.2.3 Analysis of trimer formation by western blot 

Any mutation introduced can also interfere with other processes unrelated to the pH 

threshold of the fusion mediating conformational change such as protein folding, 

oligomerization, intracellular transport or maturation. Specifically the highly conserved 

histidine at position 184 might be indispensable for correct protein folding. Therefore, we 

analyzed H5 HP and LP mutants for trimer formation and cell surface expression (see below) 

using the H5 specific antibody Vn04-2. Wild type and mutant proteins were expressed in 

CHO cells and treated with trypsin (if required). Cells were detached and lysed in non-

reducing sample buffer before incubation at 60°C for 5 min. Samples were run on a 10 % 

SDS PAGE and after transfer to a nitrocellulose membrane antibody Vn04-2 was used to 

stain against the H5 HA protein. 

In our first attempt we could detect monomers, dimers and trimers of all histidine mutants, 

however not for the proteins with mutation at position 216. To avoid the dissociation of 

trimers due to processing and increase the yield of detectable trimers we used the 
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homobifunctional cross-linker DSP and ran the samples on a 6 % SDS PAGE to facilitate 

subsequent transfer of the trimeric proteins to the nitrocellulose membrane. By using this 

approach we could also detect trimers for the H5 HP R216E and H5 LP E216R mutants 

(Figure 3.2 E). Hence, mutation of His184, His110 and residue 216 did not affect 

trimerization of H5 HA. 

 3.3 Effect of histidine mutations on the pH dependence of H5 HA 

To assess the effect of mutations on the conformational change and fusion activity of H5 HA 

two methods were used: the red blood cell (RBC) fusion assay and the conformational 

change assay. In the RBC fusion assay the redistribution of fluorescent dyes from RBCs to 

HA expressing cells is used as read-out for a fusion inducing conformational change of HA 

upon low pH incubation, whereas in the conformational change assay the structural 

rearrangement of HA after low pH incubation is indicated by a change in antibody binding. 

The advantage of the RBC assay is that fusion of HA expressing cells with labeled RBCs 

can be directly observed by fluorescence microscopy reflecting the effect of a mutation on 

the ability to induce membrane fusion. However, being based on visual observation of dye 

redistribution the assay is prone to subjective error. Furthermore, the actual number of HA 

molecules undergoing a conformational change cannot be quantified using this assay. 

These drawbacks of the RBC fusion assay are compensated by the conformational change 

assay, where the number of HA molecules which essentially undergo a conformational 

change is quantified by flow cytometric analysis as described in 2.2.3.5. However, possible 

rearrangements of HA which do not result in fusion induction cannot be distinguished from 

the conformational change of HA driving the fusion of membranes. Therefore, using both 

assays the drawbacks of each assay can be counterbalanced by the other which enables to 

obtain comprehensive results for each mutant. 
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Figure 3.2: Cell surface expression of wild type and mutant HA of H5 HP and LP. 
Cell surface expression of mutant proteins was quantified by immunostaining and flow cytometry using the H5 
specific antibody Vn04-2. (A) and (B) are example images of flow cytometry measurements using the highly 
pathogenic wild type (A) and the H184R mutant (B) proteins, respectively. Gate Q1 represents the fluorescent 
positive cells of each measurement compared to the mock control with white crosses indicating the median 
fluorescence intensity of the respective gate. (C, D) The median fluorescence intensity (MFI) value of fluorescent 
cells (gate Q1) in each sample was normalized to the H5 HP wild type protein (relative MFI). Error bars represent 
the standard error of the mean from triplicate experiments. Significant differences are marked by asterisks with 
probability values P<0.05 denoted by ‘*’, P<0.01 by ‘**’ and P<0.001 by ‘***’, respectively; one-way ANOVA and 
Dunnett’s multiple comparison post-test was used. (E) Trimer formation of histidine mutants and of highly and low 
pathogenic H5 HA with mutation at position 216. HA trimers and the cellular protein β-actin were detected by SDS 
PAGE and Western blotting following incubation with the crosslinking agent DSP. 
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3.3.1 Effect of mutations on the pH of membrane fusion 

The RBC fusion assay is a well-established method to monitor the occurrence of membrane 

fusion induced by HA via the redistribution of fluorescent dyes upon incubation with acidic 

pH [237,282,295,326]. To this end, RBCs were labeled with a membrane (R18, red) and a 

content marker (calcein, green) to distinguish between full fusion (redistribution of both dyes 

to HA expressing cells) and hemifusion (only redistribution of lipids/R18). The labeled RBCs 

were bound to HA expressing CHO cells which were previously treated with trypsin (if 

required) and neuraminidase to prevent binding and fusion with neighboring HA expressing 

cells (see 2.2.3.4). After removal of unbound RBCs by washing fusion was triggered by 

incubating the cells in fusion buffer at different pHs ranging from 5.0 to 7.0 at 37°C and 5 % 

CO2 following observation under the microscope. Only full fusion of membranes represented 

by the redistribution of both dyes to an HA expressing cell upon low pH incubation was 

evaluated as fusion event. The hemifusion intermediate characterized by lipid/R18 mixing 

without content/calcein mixing was only observed in rare cases and was not rated as 

membrane fusion event. The ‘pH of fusion’ corresponds to the highest pH at which full fusion 

was still observed for at least 50 % of HA expressing cells. 

Mutation of His184 to Asn (H184N) and Ala (H184A) shifted the pH of fusion from 5.8 to 6.2 

and 6.4, respectively, whereas mutation to Asp (H184D) and Arg (H184R) abolished fusion 

of H5 HP even at pH 5.0 (Figure 3.3). For H184D the low cell surface expression of the 

mutant which is also indicated by the low level of RBC binding might explain the absence of 

fusion at low pH. In contrast, the H184R mutant showed high surface expression and thus 

higher levels of red blood cell binding than the wild type protein but still did not induce fusion. 

Thus, arginine at position 184 seems to stabilize the inter-monomeric interactions despite its 

positive charge which was predicted to disrupt the interfacial contacts. 

Also, the exchange of arginine to glutamate (positive against negative charge) in H5 HP 

caused a shift in the pH of fusion of +0.2 units (6.0 to 0.2) whereas the glutamate to arginine 

mutation (negative against positive charge) in the H5 LP produced a decrease in the pH 

threshold of membrane fusion of –0.2 units (6.0 to 5.8), respectively (Figure 3.4). In contrast, 

mutation of His110 did not show any effect on the pH of fusion except for the histidine-to-

tyrosine substitution (H110Y) (Figure 3.3). The latter shifted the fusion pH from 5.9 to 5.6 as 

also reported by Herfst et al. [260]. Thus, since replacement of His184 and of residue 216 in 

the highly and the low pathogenic H5 HA had a major impact on the pH of fusion, but 

mutation of His110 had no effect, we only investigated the role of His184 and of residue 216 

for the conformational change of H5 HA in detail (see 3.3.2). 
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Figure 3.3: pH of membrane fusion for histidine mutants of HA (H5 HP). 
(A) Representative images of the RBC fusion assay for wild type (WT) and histidine mutant H5 HA proteins 
expressed at the CHO cell surface. Only full fusion of membranes represented by redistribution of both, membrane 
marker (R18, red) and content marker (calcein, green) from RBCs to the HA expressing cells following incubation at 
the indicated pH at 37°C was rated as fusion event. The pH of fusion was generally assessed in steps of 0.2 pH 
units. Since for the His110 mutants there was no change in the pH of fusion compared to the wild type (except 
H110Y) a 0.1 pH unit resolution for these mutant proteins was used. (B) The pH of fusion corresponds to the highest 
pH at which full fusion was still observed for at least 50 % of HA expressing cells (n ≥ 3). Error bars represent the 
standard error of the mean, asterisks denote a statistical difference based on one-way ANOVA and Dunnett’s 
multiple comparison post-test with P <0.01 by‘**’ and P <0.001 by ‘***’, respectively. 
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Figure 3.4: Effect of the exchange of charge at position 212 and/or 216 of H5 and H3 HA on the pH of fusion. 
(A and B) Representative images of the RBC fusion assay for highly and low pathogenic H5 and of H3 wild type and 
mutant proteins. Only full fusion of membranes represented by redistribution of both, membrane marker (R18, red) 
and content marker (calcein, green) from RBCs to the HA expressing cells following incubation at the indicated pH 
at 37°C was rated as fusion event. The pH of fusion was assessed in steps of 0.2 pH units. (C) The pH of fusion 
corresponds to the highest pH at which full fusion was still observed for at least 50 % of HA expressing cells (n ≥ 3). 
Error bars represent the standard error of the mean, asterisks denote a statistical difference with independent t-test 
associated probability P<0.05 denoted by ‘*’ and P<0.01 by ‘**’; ‘ns’ - non-significant. 
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Fusion with RBCs was also assessed for the H3 wild type and the T212E-N216R mutant to 

measure the impact of introducing two additional charges at the HA1-HA1 interface on the 

acid stability of the protein. Furthermore, a possible difference in the pH dependence of 

fusion for the HA protein alone compared to the pH dependent fusion efficiency of whole 

virus particles should be assessed (see 3.5). The H3 wild type exhibited fusion until a pH of 

5.4 whereas the T212E-N216R mutant still induced fusion with RBCs at pH 5.8 and hence, 

0.4 units higher than that of the wild type. Notably, the introduction of two charges at the 

HA1-HA1 interface of H3 HA shifted the pH of fusion of the H3 subtype to a similar pH of 

fusion as H5 LP and HP, where these two charges are naturally present (Figure 3.4). 

3.3.2 Effect of mutations on the pH of HA conformational change 

Conformation specific antibodies were used to determine the pH dependence of 

conformational change for H5 HA wild type and mutant proteins. Antibody Vn04-2 was 

reported to bind equally well to the neutral and the low pH conformation of H5 HA, whereas 

antibodies Vn04-9 and Vn04-16 were shown to preferentially bind to the neutral (Vn04-9) or 

the low (Vn04-16) pH conformation, respectively [284,297]. 48h post-transfection HA 

expressing cells were treated with trypsin (if required) and incubated at the desired pH 

ranging from 5.0 to 7.4 for 15 min at 37°C. After re-neutralization cells were stained against 

H5 HA as described in section 2.2.3.5. Median fluorescence intensity (MFI) values of 

fluorescent cells were measured and normalized to the maximal MFI obtained with the 

respective antibody (relative MFI).  

As depicted in Figure 3.5 we found consistent pH dependent binding for the wild type H5 HP 

protein as it has been reported previously [284,297]. However, for the H5 HP mutant proteins 

and H5 LP pH dependent binding was only exhibited by antibody Vn04-9. Binding of 

antibody Vn04-16 was equal or even lower after incubation at low pH compared to binding 

after neutral pH incubation suggesting that this antibody is sensitive to mutational changes in 

the HA1 domain affecting its binding behavior. Therefore, the ratio of Vn04-9/Vn04-16 

reactivity was calculated and plotted as a function of pH. The pH of conformational change 

was determined as the point at which 50 % change in Vn04-9/Vn04-16 ratio was observed 

(Figure 3.6). 

Mutation to alanine and asparagine resulted in a shift in the pH of conformational change of 

+0.5 and +0.2 units, respectively, similar to the RBC assay. Also for the H184D we observed 

a decrease of the ratio with lowering of the pH. The data implicate an increase in the pH 

threshold of conformational change of +0.5 units, similar to the H184A mutant. However, it 

could be remarked that the change of ratio of antibody binding activity is rather smooth 

compared to the wild type HA and mutants H184N and H184A. For H184R we did not 
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observe a pH dependence of binding demonstrating that this mutant does not undergo a 

conformational change. This is supported by the failure to trigger fusion. 

As observed in the RBC fusion assay the R216E mutant caused a shift in the pH of 

conformational change of +0.2 units compared to the H5 HP wild type, from pH 5.7 to 5.9. 

Mutation E216R in the H5 LP protein led to a decrease in the pH of conformational change 

of 0.4 units whereas in the RBC fusion assay only a decrease of 0.2 units was detected. An 

anti-fusion peptide antiserum from rabbit which binds to the fusion peptide of H3 HA was 

kindly provided from Dr. Judith White. The fusion peptide is only exposed upon structural 

rearrangement of HA at low pH which allows distinguishing the neutral from the low pH 

conformation of H3 HA. However, using this antibody we could not detect a difference in 

antibody binding after incubation at low pH. Thus, we could not determine the pH of 

conformational change of H3 wild type and the T212E-216R mutant. 

 

 

 

 

 

Figure 3.5: Binding of conformation specific antibodies to highly and low pathogenic H5 HA. 
After incubating HA expressing cells at neutral  (green) or low pH (red) at 37°C for 15 min and re-neutralization cells 
were stained against H5 using antibody Vn04-9 or -16, respectively. Secondary anti-mouse Alexa568 antibody was 
used to obtain a fluorescent signal which was measured by flow cytometry. Mean fluorescence intensities (MFI) of 
fluorescent positive cells were normalized to the higher MFI obtained after incubation at pH 5 or pH 7, respectively. 
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Figure 3.6: pH dependence of conformational change for His184 mutants (A) and for H5 HP and LP wild type 
and mutant proteins (B). 
The conformational change was assessed by plotting the obtained Vn04-9/Vn04-16 ratios of median fluorescence 
intensities as a function of pH. The pH of conformational change which corresponds to the pH of 50 % change in the 
Vn04-9/Vn04-16 ratios obtained from Vn04-9/Vn04-16 ratios of wild type and mutant proteins are compared in the 
right panels (n ≥ 3). (C) The differences of the pH shift of fusion and conformational change of His184 mutants 
relative to the wild type are shown. Error bars represent the standard error of the mean, asterisks denote a 
statistical difference based on one-way ANOVA and Dunnett’s multiple comparison post-test with P<0.05 denoted 
by ‘*’, P <0.01 by ‘**’ and P <0.001 by ‘***’, respectively. 
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 3.4 Summary of 3.1 to 3.3 

The conformational change of the influenza virus HA was suggested to be triggered by the 

sequential protonation of specific histidines upon acidification [162,163]. However, evidence 

is still missing about the residues involved in this process. In this section different substitutes 

were used to study His184 and His110 as potential pH sensors in the highly pathogenic H5 

HA. The mutational effect was assessed by using the RBC fusion and a conformational 

change assay. The obtained results revealed that substitution of His184 has a significant 

effect on the pH dependence of conformational change and of membrane fusion of H5 HP, 

whereas mutation of His110 does not affect the ability of the protein to induce membrane 

fusion. The only exception was mutation to tyrosine (H110Y) which significantly decreased 

the pH of membrane fusion of the protein. 

Furthermore, by mutating Glu to Arg at position 216 in H5 HP and Arg to Glu in H5 LP we 

found that the exchange of charge at that position alters the pH dependence of 

conformational change and of fusion of both, H5 HP and H5 LP. Apart from the charged 

amino acid at position 216 an additional charge (arginine) was shown to be present at 

position 212 at the HA1-HA1 interface of H2 and H5 HA but not in the H3 subtype [295]. By 

introducing these two charges into H3 HA we found that the pH dependence of 

conformational change of this protein was even more significantly affected. 

These mutant HA proteins with significantly altered fusion pH provided the basis to study 

host-specific virus infection in dependence of the acid stability of HA. To this end we used 

reverse genetics to produce recombinant WSN H3 virus particles containing the pH 

modulating mutation T212E-N216R. The effect of the altered acid stability of H3 on pH 

dependent fusion and on infectivity in living cells was assessed. The results of these studies 

are described in the following section. 

 3.5 Production of recombinant influenza viruses in MDCK cells 

Recombinant WSN H1N1 viruses were produced by simultaneous transfection of HEK-293T 

cells with the eight pHW master strain plasmids encoding all viral proteins of the 

A/WSN/1933 virus (WSN H1 wt). However, to obtain recombinant viruses with H3 instead of 

H1 in the background of the WSN virus, the plasmid encoding H1 HA was exchanged 

against the newly constructed pHW plasmids containing the gene sequence of H3 wt or H3 

T212E-N216R, respectively. The virus-containing supernatant was harvested 48h post-

transfection and viruses were amplified by infection of MDCK cells in 6 well plates (see 

2.2.4.1). Purified virus concentrates were obtained by infection of MDCK cells growing in 
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T175 flasks or in roller bottles with respective viruses at an MOI 0.01. Harvested viruses 

were concentrated by ultra-centrifugation and purified over a sucrose gradient (20-60 %) 

(see 2.2.4.3). The content of recombinant virus in each sample was quantified using the BCA 

protein assay kit. Infection of 8 T175 flasks or 1 roller bottle typically yielded 300 µl of about 

6 mg/ml of concentrated and purified recombinant H3 viruses. Transmission electron 

microscopy (TEM) images4 of recombinant wild type and mutant H3 viruses are shown in 

Figure 3.7. All viruses produced had a spherical shape and were well decorated with HA 

molecules as revealed by the high density of spike molecules at the viral surface as well as 

by SDS PAGE analysis of purified virus samples. Also the presence of M1, NP and NA 

proteins could be confirmed. 

 

 

 

Figure 3.7: Purification of recombinant WSN H3 viruses. 
(A and B) Transmission EM micrographs of purified WSN H3 wild type (wt) (A) and T212E-N216R mutant (mut) (B) 
viruses after concentration and purification over a 20-60 % sucrose gradient. Scale bar 100 µm. (C) 5 µl of purified 
WSN H3 viruses were run on a 10 % SDS PAGE under non-reducing conditions and viral proteins were detected by 
coomassie blue staining. 

 

Recombinant viruses containing H5 LP in the WSN background were also produced. 

However, the yield obtained for these viruses was much lower than that of recombinant H3 

viruses limiting further characterization of the former. Efficient packaging of the viral RNP 

segments was reported to depend not only on the conserved packaging signals but also on 

other signals present in the coding and non-coding region (NCR) of each segment [6,327]. A 

lower compatibility of the H5 gene segment with the other vRNPs of the WSN H1N1 strain 

might thus explain the lower yields obtained for recombinant H5 viruses. 

The production of recombinant viruses containing a highly pathogenic avian HA such as H5 

HP was in general not allowed since this would require a biosafety level (BSL) 3 containment 

which was not present in the laboratory where the study was conducted. 

                                                      
4 Sample preparation and image acquisition was conducted by Dr. Kai Ludwig, Research Center of Electron 

Microscopy, Free University Berlin 
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 3.6 pH dependent fusion of recombinant viruses 

The introduction of two charges at the HA1-HA1 interface of H3 HA (mutation T212E-

N216R) had the greatest effect on the pH dependence of fusion of HA (see 3.3.1). H3 

T212E-N216R resulted in a shift in the pH of fusion of +0.4 units and thus in the 

destabilization of H3 HA. To assess how this mutation affects the pH dependent fusion 

efficiency of recombinant viruses the pH threshold of fusion was measured using the R18 

fluorescence dequenching assay. Concentrated and purified recombinant WSN H3 wt and 

T212E-N216R mutant viruses were labeled with 20 µM R18 and fusion of labeled viruses 

with RBC ghosts was assessed by the increase of R18 fluorescent signal upon acidification 

in the spectrophotometer (see 2.2.3.4). 

The fusion efficiencies measured in the pH range from 4.9 to 6.5 were plotted as a function 

of pH and the pH threshold was obtained by fitting the data to the Hill equation 

 

 

 

 

where a is the scaling factor, x the proton concentration [H+], n the Hill coefficient and k the 

proton concentration at half-maximal fusion efficiency. Parameters a, n and k were estimated 

from obtained data [328] and the pH threshold was calculated according to kpH = -log10(kH+)5. 

The pH threshold of fusion was also assessed for WSN H1 wt and for influenza virus X-31 

(H3N2) which carries the identical H3 HA as the recombinant WSN H3 wild type virus but 

differs in all other viral proteins. For both, recombinant WSN H3 wt as well as the A/X-31 

strain, we obtained a similar pH threshold of 5.5-5.6 confirming that pH dependent fusion 

induced by HA is independent from other viral proteins (Figure 3.8). The mutation T212E-

N216R in H3 resulted in an increase of the pH threshold of fusion as it was observed in the 

RBC fusion assay. However, the increase was less pronounced with a shift of around +0.2 

units from 5.6 to 5.8. Remarkably, whereas the fusion efficiency of the WSN H3 wild type 

reached its maximum at pH of 5.2 and decreased constantly with increasing pH (Hill 

coefficient n=1.8), the maximal fusion efficiency of the WSN H3 mutant virus remained rather 

constant until a pH of 5.6 and then dropped dramatically with increasing pH (n=3.6). For the 

recombinant WSN H1 wild type virus a pH threshold of 6.2 was obtained suggesting that the 

H1 subtype has a much lower acid stability than H3 HA. Similar to the WSN H3 T212E-

N216R mutant virus the fusion efficiency of WSN H1N1 virus remained rather constant until 

a pH of 6.0 followed by a steep decrease with increasing pH (n=3.2). 

 

                                                      
5 Data were fit by Max Schelker, Group of Theoretical Biophysics, Institute of Biology, Humboldt University Berlin 

y (x) = a* xn 
xn +  kH+n 
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Figure 3.8: pH dependent fusion efficiency of recombinant WSN viruses. 
(A and B) Relative fusion efficiencies measured for A/X-31 and recombinant WSN viruses were plotted as a function 
of pH. (C) The pH thresholds corresponding to the pH at half-maximal fusion efficiency were obtained by fitting the 
data to a Hill equation. 

 3.7 Infection studies of recombinant viruses in MDCK and A549 cells 

Following fusion of the viral with the endosomal membrane the released vRNPs are 

transported into the nucleus were RNA synthesis and assembly of newly produced vRNPs 

takes place. MDCK and A549 cells were shown to exhibit different endosomal acidification 

kinetics which might affect the time-point of vRNP release and thus of infection efficiency 

[329]. To observe a potential difference in the infectivity of recombinant viruses with an 

altered pH threshold of fusion infection studies in MDCK and A549 cells were performed 

using virus-containing supernatants from MDCK cells6. Cells were infected with the 

respective virus at the MOI of 0.1 and stained against influenza virus NP 20 h post-infection. 

Images were acquired at the confocal microscope. The number of infected cells in percent of 

total cells in each image was analyzed using the cell image analysis software Cell Profiler 

(Broad Institute, Cambridge, USA). 

Clear differences in the infection efficiencies of the recombinant WSN viruses were observed 

between viruses and cell lines (Figure 3.9). The WSN H3 wild type virus with the lowest pH 

threshold of fusion (pH 5.6) exhibited a much higher infection efficiency in MDCK cells than 
                                                      
6 Infection and replication studies were performed by Katjana Schneider in the course of her study project under my 

supervision. 
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the WSN H3 mutant and the WSN H1 wild type virus whereas in A549 cells it was similar to 

that of WSN H1 wt and the H3 mutant viruses. In contrast, the infection efficiencies of the 

WSN H3 mutant virus were similar in both cell lines. Interestingly, the WSN H1 wild type, 

which had the highest pH threshold (6.2), infected only a number of MDCK cells but in A549 

cells it displayed higher infection efficiency than the WSN H3 viruses. 

 

 

Figure 3.9: Representative images of MDCK and A549 cells infected with recombinant WSN viruses. 
MDCK (A) and A549 (B) cells were infected with WSN H1 wt, WSN H3 wt and the WSN H3 T212E-N216R mutant 
viruses at an MOI of 0.1 and stained against the nucleoprotein (NP) 20h post-infection. Nuclei were stained with 
DAPI. Images were acquired with an Olympus FV1000 microscope. Scale bar 100 µm. (C) The percent of positively 
infected cells was evaluated using the software Cell Profiler. The plotted values are the mean of three independent 
experiments with error bars representing the standard error of the mean. 

 3.8 Replication efficiency of recombinant viruses in MDCK cells 

By growing the recombinant H3 viruses in MDCK cells we could observe major differences in 

viral titers between the wild type and the T212E-N216R mutant. Viral titers obtained for the 

mutant were 0.2 to 1.0 order of magnitude lower than that of the WSN H3 wt virus as 

assessed by TCID50 (Figure 3.10 A). Thus, the replication efficiency of recombinant viruses 

was assessed by infection of MDCK cells for 10, 24, 36, 48 and 72 hours at an MOI of 0.001 

and titration of virus-containing supernatants by using the TCID50 assay. Log TCID50 values 

were normalized to the initial viral titers used for infection and plotted against time post-

infection. As shown in Figure 3.10 B, replication of the mutant virus was less efficient in 

MDCK cells than for the WSN H3 wild type explaining the higher viral titers that we obtained 
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for the wild type in these cells. However, the growth kinetics of WSN H3 wild type and 

mutant viruses were only measured once and thus need further characterization. 

 

 

Figure 3.10: Replication efficiency of WSN H3 recombinant viruses. 
(A) Viral titers obtained for WSN H3 wild type (wt) and the T212E-N216R mutant (mut) viruses as determined by 
TCID50 in MDCK cells. Plotted values are the mean of four independent experiments with error bars representing 
the standard error of the mean. (B) Growth kinetics of wild type and mutant H3 virus in MDCK cells (n=1). 

 3.9 Intracellular fusion kinetics of recombinant viruses 

The infection pathway of influenza A viruses is a complex, multistep process including 

binding, receptor-mediated endocytosis and movement from endocytic vesicles to early 

endosomes and finally to late endosomes where the viruses fuse with the endosomal 

membrane. The time-point of fusion as well as the fusion kinetics of virus-endosome fusion 

might strongly depend on the type of cell and host specific factors, such as endocytic 

transport, endosomal acidification kinetics and other host signaling factors [70,245]. 

To visualize pH dependent fusion kinetics of single recombinant virus particles inside living 

cells we used the dual wavelength imaging technique adapted from Sakai et al. [322]. This 

approach makes use of two fluorophores (DiO and R18) with overlapping fluorescence 

emission spectra allowing Foerster Resonance Energy Transfer (FRET) to occur from DiO 

(green) to R18 (red) due to their high proximity within the viral membrane. Fusion of the viral 

with the endosomal membrane leads to the dilution of fluorophores in the membrane 

reducing self-quenching and FRET which is expressed by an increase in the green 

fluorescence (DiO) (see 2.2.4.7). We applied this method to resolve a possible difference in 

the fusion kinetics of WSN H3 wild type and mutant viruses inside cells. However, instead of 

R18 we used DiI which has similar fluorescence excitation and emission spectra as R18. 

MDCK cells were infected with double-labeled recombinant H3 viruses and fluorescent 

signals of DiO and DiI upon excitation at 488 nm were recorded every 2-5 min for 40 min at 

37°C and 5 % CO2. At every time point image stacks of the whole cell were acquired, 
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summed and fluorescent intensities of DiI and DiO of each virion were analyzed using Cell 

Profiler. 

 

 

Figure 3.11: Single virus-endosome fusion events in living cells. 
MDCK cells were infected with double-labeled recombinant WSN H3 wt (A) or T212E-N216R mutant (B ), 
respectively and DiI and DiO fluorescent signals upon excitation at 488 nm were recorded for 40min at 37°C and 5 
% CO2. Images were taken every 2-5 min. In the first image (5 min post-infection) viruses appear red due to self-
quenching of DiO and FRET to DiI. Upon fusion with the endosomal membrane FRET and self-quenching of DiO is 
reduced resulting in an increase of the green fluorescence (marked by arrows). Nuclei are stained with Hoechst 
(blue). Scale bar 10 µm. 
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Figure 3.12: Intracellular fusion kinetics of recombinant H3 viruses. 
MDCK cells were infected with double-labeled H3 wild type (A) or H3 T212E-N216R mutant (B) viruses and DiO/DiI 
intensity-ratios (red: 0.2-0.3, orange:0.4- 0.5, yellow: 0.6-0.7, green: 0.8-1.0) of detected virions were acquired from 
one position in the sample between 0 and 40 min at 37°C and 5 % CO2 after initial binding for 10 min at 4°C. (C and 
D) The fusion kinetics of recombinant H3 wt ( ) and H3 T212E-N216R mutant viruses ( ) obtained from one 
(C) or from random positions in the sample are compared. Data were fit using Hill equation. 

 

Image sections recorded at different time-points are shown in Figure 3.11 and the results of 

averaging the DiO/DiI-ratios obtained from detected virions are displayed in Figure 3.12 A 

and B. Early post-infection (5-10 min) viruses appear red due to FRET and self-quenching of 

DiO. Upon fusion an increasing green fluorescence first results in a yellow spot representing 

virus-endosome fusion whereas higher green fluorescence late post-infection corresponds to 

endosome-endosome and virus-endosome fusion [322]. 

For the wild type an accumulating number of fusion events represented by an increasing 

number of yellow spots in the sample was only observed 20 min post-infection which turned 

green 30-40 min post-infection. In contrast, WSN T212E-N216R mutant viruses already 

started to fuse 10-15 min post-infection. The increase in green fluorescence was moderate 

and also saturated only 30-40 min post-infection. However, it is possible that the addition of 

pre-warmed DMEM after 10 min of binding at 4°C did not immediately yield 37°C in the 

sample resulting in the delayed onset of fusion. Furthermore, the number of fusion events 

observed for both viruses was low resulting in an overall weak increase of the DiO signal. 

Another problem of recording fusion events in one spot of the sample for long time-periods is 

the bleaching of fluorescent signals. Therefore, in a second analysis image stacks were 

acquired from random positions of the sample and DiO/DiI-ratios were obtained as described 

above (Figure 3.12 C). 
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Using this approach we found an earlier increase in green fluorescence for both, WSN H3 wt 

and T212E-N216R mutant viruses with half-maximal fusion reached at 16.4 and 7.6 min, 

respectively. Furthermore, movement of the viral particles to the nucleus could be observed 

with the fusion events primarily taking place in the perinuclear region of the cell. 

 3.10 Summary of 3.5 to 3.9 

In the second part of the thesis the effect of an altered acid stability of HA on host-specific 

virus infection was assessed. Therefore, recombinant viruses were produced containing the 

H1 or the H3 subtype, respectively or the destabilized H3 mutant protein (H3 T212E-N216R). 

Similar to the results obtained in the RBC fusion assay the pH threshold of fusion was also 

increased for WSN H3 viruses containing the T212E-N216R mutation within HA compared to 

the respective wild type. However, the pH shift was less pronounced with an increase of only 

0.2 units compared to 0.4 units determined for HA-mediated RBC fusion. For the WSN H1 

wild type an even higher fusion pH threshold was measured. Studying viral infectivity in 

MDCK and A549 cells we found that the fusion pH threshold affected the infectivity of WSN 

H3 and H1 viruses in MDCK but not in A549 cells. These two cell lines were reported to 

exhibit different endosomal acidification kinetics [330] which might affect the kinetics of virus-

endosome fusion and as a result the efficiency of vRNP release. To resolve a potential 

difference in the intracellular fusion kinetics of WSN H3 wild type and T212E-N216R mutant 

virus in MDCK cells we applied a dual-wavelength-imaging technique adapted from Sakai et 

al. [322]. Our results revealed that the timing of virus-endosome fusion in MDCK cells was 

indeed altered for the WSN H3 mutant virus which provides a possible explanation for its 

reduced infection efficiency in these cells. 
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4 Discussion 

The influenza virus HA mediates cell entry of influenza viruses, which after binding to sialic 

acid cell receptors includes membrane fusion between the viral and the endosomal bilayer. 

This process is strictly pH dependent since the conformational change of HA initiating the 

fusion of membranes only occurs upon protonation of yet unknown relevant residues within 

HA at low pH (~5.0-6.0). Due to the high abundance of protonable residues within HA 

subtypes and the difficulty to predict their protonation states the identification of such critical 

residues remains challenging. 

In the first part of the present study a comprehensive mutational analysis of His184 and 

His110 was performed including characterization of the pH dependence of conformational 

change and of fusion of wild type and mutant H5 HA. The results suggest that His184, but 

not His110 is an important regulator of HA conformational change at low pH. 

Another aim was to assess the effect of a Glu-to-Arg mutation at position 216 of H5 HP on 

the acid stability of the protein. This mutation evolved in 2003-2004 and thus, as we reason, 

might have contributed to adaptation of the virus to the human host. By mutating Glu to Arg 

at position 216 in H5 HP and Arg to Glu in H5 LP we found that the exchange of charge at 

that position indeed alters the pH dependence of conformational change and of fusion of 

both, H5 HP and H5 LP. The introduction of two additional charges into the H3 subtype 

(T212E-N216R) also resulted in a shift of the pH of fusion proposing that charges might play 

an essential role for the pH dependent stability of HA. 

However, little is known about the role of an altered acid stability in the context of host 

adaptation. Hence, in the second part of this study we used reverse genetics to assess the 

effect of an altered acid stability of HA on the fusion and infection efficiency of recombinant 

viruses in two different cell lines. We found that an alteration in the pH threshold of fusion 

affects the infection efficiency in MDCK, but not in A549 cells. Studying virus-endosome 

fusion kinetics in MDCK cells we could resolve a significant difference in the timing of fusion 

induction. These results suggest that the time-point of vRNP release is another critical 

determinant of viral infection efficiency which seems to depend on the endosomal 

acidification in different cell lines and the acid stability of the virus itself. 
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 4.1 His184 - a determinant of the pH dependence of conformational change? 

Stevens et al. [288,331] were the first to describe pH-sensitive histidine patches in the 

influenza virus HA that might play a role in triggering the dissociation of subunit and domain 

interactions. Later on histidine residues were also suggested to act as “pH sensors” in other 

class I and class II fusion proteins since their pH of protonation (pKa) matches the pH range 

of endosomes where the proteins are activated (pH 5.0-6.5) [156–159,163]. It was further 

proposed that sequential protonation of histidines at positions 18 and 38 in HA1 and at 

positions 106/111 and 142 of HA2 controls the structural transitions of HA [162,163,331]. 

Indeed, Kalani et al. demonstrated that protonation of His106/111 induces the bending of 

peptides of H3 and H1 subtypes [157]. However, mutational analysis of these histidines in 

H3 and H2 HA [162,290] as well as H5 HA [297] barely had any effect on membrane fusion 

and its pH threshold. 

In this study we focused on His184 at the HA1-HA1 interface and His110 at the HA1-HA2 

interface of the influenza virus H5 HA as potential molecular switches. Both histidines were 

replaced by a set of different amino acids in the highly pathogenic H5 HA and analyzed the 

mutational effect on pH dependent conformational change and fusion. In our model system 

using labeled RBCs as target membrane for binding and fusion, the pH of membrane fusion 

was completely unaffected by mutation of His110 to most selected residues (Table 4.1). Only 

mutation to tyrosine shifted the pH of fusion to a lower value (-0.3 units). This mutation 

(H110Y) was already previously shown to stabilize HA at this position owing to an additional 

hydrogen bond [260,324]. Apparently, the altered pH of fusion was not due to the absence of 

histidine but due to the interaction of tyrosine with Asn413 of the adjacent monomer. 

Therefore, we do not consider His110 as trigger of conformational change. In support of 

these findings a recent continuous constant pH molecular dynamics simulation (CPHMD) of 

H2 HA indicated that, in contrast to the significantly increased net charge of the HA1 globular 

heads and the fusion peptide region at low pH, the net charge in the B loop region does not 

change upon acidification. Thus, the B-loop is likely trapped in a meta-stable conformation in 

the pre-fusion state and acidification may be simply required for other steps of HA 

conformational change releasing the clamp [332]. In contrast to His110, we found a 

significant impact of mutating His184 on the pH dependence of conformational change and 

fusion. Mutation of His184 either abrogated the ability of HA to undergo a fusion triggering 

conformational change (H184R, H184D), or shifted the pH dependence of conformational 

change and fusion to a higher pH (H184A, H184N). 
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Table 4.1: Summary of data obtained for histidine mutants. 

 Protein 
 

Surface expression 
Mean ± SDa 

Δ pHb 
RBC fusion assay conf. change assay Average 

H5 HP wt 100 ±   5 5.9 5.7 5.8 
H5 HP H184A 109 ±   2 +0.5 +0.5 +0.5 
H5 HP H184N 111 ±  27 +0.3 +0.2 +0.3 
H5 HP H184D 73 ± 13 -  +0.5c +0.5c 
H5 HP H184R 140 ± 14 - - - 
H5 HP H110Y 87 ±   2 -0.3 ND -0.3 
H5 HP H110R 123 ± 22 0.0 ND 0.0 
H5 HP H110E 95 ±   1 0.0 ND 0.0 
H5 HP H110G 99 ±  10 0.0 ND 0.0 
a Relative MFI [%] 
b The values represent the average from a minimum of three experiments. In all cases the difference between the three 
measurements did not exceed 0.1 pH units. ND, not determined; - no fusion or conformational change detected at any pH 

c Data only indicate a conformational change. See Results and Discussion. 

 

 

In general, the pH of conformational change measured by antibody binding and flow 

cytometry was lower than the pH of fusion. The difference could be explained by the 

assumption that the number of activated HA molecules required to induce fusion is lower 

than that corresponding to the midpoint of change in Vn04-9/Vn04-16 ratio, which was 

defined as the pH of conformational change. However, the shifts in the pH of fusion and in 

the pH of conformational change caused by the individual mutation were mostly identical for 

both assays. Only for the H184D mutant the results obtained did not coincide. Although we 

observed a decrease of the ratio of antibody binding by lowering the pH, fusion was not 

observed for H184D. This might be related to the significantly lower expression of the mutant 

on the plasma membrane of CHO cells. Another explanation could be a conformational 

change not able to mediate fusion or even no conformational change at all. Indeed, the 

decrease of the Vn04-9/Vn04-16 ratio was moderate missing a sharp decline as observed, 

for example, the wild type. 

4.1.1 Protonation of His184 destabilizes the HA1-HA1 interface 

To gain insight into the structural basis for an altered pH of conformational change and 

fusion due to mutation of His184, we performed computational modeling of the neutral pH 

crystal structure of the highly pathogenic wild type H5 HA (PDB ID: 2IBX) containing the 

neutral or doubly protonated His1847. We addressed the influence of the protonation state of 

                                                      
7 Molecular modeling and pKa calculations of His184 were performed by Tim Meyer, Institute of Chemistry and 

Biochemistry, Free University Berlin 
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His184 on interactions with neighboring residues and, in turn, possible consequences for the 

pH dependent stability of the HA ectodomain. 

In the wild type H5 HA His184 forms an intra-monomeric salt bridge with glutamate at 

position 231 (Figure 4.1 A and D). Interestingly, a pair of positively charged arginine residues 

(Arg220 and Arg229) is located close to His184 at the interface of HA1 monomers. Being 

shielded from water the two charged amino acids need to be stabilized by a defined number 

of hydrogen bonds inside the protein which are mostly formed with the backbone amides of 

neighboring residues of the same monomer (Figure 4.1 B and C). Arg220 thereby interacts 

with the backbone of His184 and with the side chain oxygen of Asn210 from the adjacent 

monomer. These hydrogen bonds are at the same time the only inter-monomeric interactions 

in this region. HA, especially the association of HA1 monomers clamping the HA2 subunit at 

neutral pH is meta-stable so that small alterations at the HA1-HA1 interface could affect the 

stabilization of the complex leading to the fusion inducing conformational change. We 

surmise that at low pH His184 becomes doubly protonated and thus competes with Arg220 

for hydrogen bonding resulting in the destabilization of the structure and thus in the HA 

conformational change. By modeling of the doubly protonated His184 into the H5 HP crystal 

structure we could indeed confirm that protonation may cause His184 to interact with Asn210 

thereby weakening the hydrogen bond network of Arg220 (Figure 4.1 E). 

To obtain the protonation state of His184 at neutral pH we performed an electrostatic energy 

calculation using Karlsberg+ [319] based on the crystal structure of H5 HP HA (PDB ID: 

2IBX, resolved at pH 6.5). We obtained a pKa value for His184, which is below -10. Since the 

HA structure with charged histidines is not known, the real pKa of His184 cannot be predicted 

accurately using this approach and the obtained value very likely does not correspond to the 

actual pKa of this residue. However, the result clearly indicates that (i) His184 is 

deprotonated in the crystal structure at pH 6.5 as shown in Fig. 4D, (ii) therefore very likely 

also at neutral pH and (iii) that its pKa is below 6.5. Due to the complexity of the structural 

changes, that are expected to follow the protonation, the accurate prediction of the pKa of 

His184 is a challenging task that we leave open for future investigation.  
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Figure 4.1: Interactions of His184 and of neighboring residues at the HA1-HA1 interface in its neutral and 
doubly protonated state. 
(A) Interactions at the HA1-HA1 interface (PDB ID: 2IBX). Monomers (chain A in brown and chain E in yellow) are 
depicted in surface representation and residues which might be crucial for the regulation of HA1 monomer 
dissociation are shown in stick model. (B, C) Hydrogen bond network of residues Arg220 and Arg229. Interactions 
are formed between the polar atoms of residues Arg220 (B) and Arg229 (C) with those of the backbone amides, 
except from Asn210, where the hydrogen bond is formed with the side chain carbonyl-oxygen. The hydrogens were 
modeled as described in Material and Methods. (D, E) Crystal structure of the HA1-HA1 interface at neutral pH 
(PDB ID: 2IBX) (D) and its modeled conformation upon protonation of His184 at a pH below 5 (E). Secondary 
structures of chain A (brown) and E (yellow) are displayed in cartoon representation with residues His184, Arg216, 
Glu231 and Asn210 in stick model. For the modeling, the side chain of His184 has been rotated by 180 degrees and 
the structure has been subsequently energy minimized. We suggest that a strong hydrogen bond is formed between 
His184 and Asn210, while the interaction between Asn210 and Arg220 is significantly weakened.  
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Figure 4.2: Structural representation of the HA1-HA1 interface of H5 HP wild type and of modeled mutations 
at position 184. 
Secondary structures of chain A (brown) and E (yellow) are shown in cartoon representation with central residues of 
the interface represented in stick model. Interactions of the respective residue at position 184 are displayed (marked 
by arrows). For modeling the residue His184 in chains A, C and E was replaced by alanine (H184A) (B), asparagine 
(H184N) (C), arginine (H184R) (D) or aspartate (H184D) (E). 
 

4.1.2 Structural effect of mutations at position 184 

Modeling of the different amino acids at position 184 in the H5 HP structure at neutral pH 

(PDB ID: 2IBX) supports the hypothesis of His184 controlling the pH dependence of the 

conformational change at low pH (Figure 4.2). In the case of alanine at position 184 no 

interaction of this amino acid with surrounding residues occurs. However, being the smallest 

amino acid it leaves enough space for water to enter the hydrophobic cavity which possibly 

weakens the interfacial interactions in general. Asparagine as well as aspartate at this 

position forms a hydrogen bond with Asn210 in the neutral pH structure. As a result these 

residues have a strong influence on the hydrogen bond network of Arg220 and Arg229 near 

the inter-monomeric interface suggesting a destabilizing effect of these mutations. While for 

asparagine this is in line with our experimental results, for aspartate we could not observe 

fusion and only an indication for a conformational change, though with moderate pH 

dependence. This result illustrates and supports the high sensitivity of this region to the 

character of the amino acid which is present at position 184. Aspartate and asparagine are 

structurally very similar and thus both are able to form a hydrogen bond with Asn210 as 
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shown by computational modeling. However, due to its negative polarity aspartate might 

have a diverse effect on the stability of the complex than asparagine which we are not able 

to predict. 

According to our experimental studies arginine at position 184 prevents a conformational 

change of HA which is – at a first glance – an unexpected observation. Arginine is positively 

charged like a protonated histidine and the latter one is thought to support the dissociation of 

the monomers due to ionization. As revealed by modeling of the H184R mutation into the 

crystal structure of H5 HP, arginine at position 184 forms a double salt bridge with Glu231 

which is very stable. Furthermore, the polar atoms of the long residue are most distant to 

Asn210 and Arg220 and closer to the surrounding water what may result in a much weaker 

influence on the hydrogen bond network of Arg220 and Arg229 residues compared to the 

residues discussed before. Taken together, except for H184D, our modeling approach allows 

to rationalize the molecular basis for the influence of His184 mutations on the respective pH 

shift of the conformational change of HA and fusion. 

4.1.3 His184 is part of a conserved interaction network at the HA1-HA1 interface 

Crystal structure analysis of H5 HP and modeling of His184 mutants revealed that a pair of 

positively charged arginine residues (Arg220 and Arg229) and their hydrogen network 

formed with neighboring residues and Asn210 of the adjacent monomer may play an 

essential role for triggering the HA1-HA1 monomer dissociation at low pH. By aligning the 

protein sequences of subtypes from H1 to H18 we found that apart from His184 also both 

arginine residues (R220 and R229) are highly conserved (Table 4.2). Residue 210 is also 

partly conserved being an asparagine, a glutamine, a threonine or a serine in most subtypes. 

These amino acids are all structurally similar and polar enabling their interaction with 

Arg220. Interestingly, residue 231 directly interacting with His184 at neutral pH is also 

conserved to some degree, meaning that in most cases it is an amino acid which is able to 

form a hydrogen bond with His184. Only the degree of polarity of the participating side chain 

varies which could influence the pKa of His184 and thereby also contribute to the variances 

observed in the fusion pH of different HA subtypes [273]. However, there are remarkable 

differences in sequence and structure between subtypes which might conceal the effect of 

this single amino acid difference. 
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Table 4.2: Sequence alignment of subtypes H1 to H18a. 

 
 

 

The only exception of the consensus interactions at the HA1-HA1 interface are the four 

subtypes of the newly defined group 3 HAs (H13, H16, H17 and H18) [240,333,334]. H13 

and H16 carry tryptophan at position 229. However, both have a lysine at position 231 which 

might compensate for the “lost” Arg229. In bat-derived H17 and H18 position 184 is an 

asparagine and a glutamine, respectively. These two subtypes were suggested to have a 

different mechanism of fusion activation and might not necessitate a pH dependent 

conformational change of HA [240,334,335]. Thus, the absence of histidine at position 184 in 

H17 and H18 subtypes in contrast to its high degree of conservation not only between but 

also within all other subtypes reinforces the requirement of a histidine at position 184 for the 

pH dependent conformational change of histidine. Furthermore, the fact that the interactions 

of Arg229 (or Lys231), Arg220, His184 and residues 210 (and 231) are also conserved 

indicates that these residues as well play a crucial role for the pH dependent stability of HA. 
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4.1.4 Models of the pH induced conformational change of HA 

According to our results histidine is the only amino acid at position 184 which is able to 

stabilize or destabilize the HA1 monomers depending on its pH of protonation explaining its 

high degree of conservation in all subtypes (except H17 and H18). Other residues at position 

184 were shown to destabilize (Ala, Asn, and perhaps Asp) the associated HA1 monomers 

already at a higher sub acidic pH (>6.0) or to completely stabilize the HA1-HA1 interface 

(Arg) abrogating a conformational change and fusion even at rather low pH. Thus, we 

suggest that His184 is not the sole trigger of fusion but one determinant regulating the HA 

conformational change at low pH. Studying the requirement of histidine protonation in the E 

protein of West Nile virus Nelson et al. also found that the substitution of key histidines did 

not abolish the formation of reporter virus particles and the pH dependency of fusion but 

remarkably reduced viral titers [336]. These results indicate that individual histidines are 

dispensable for triggering fusion but might be required for the regulation of the pH of 

conformational change and thus of fusion. Also for the E1 protein of SFV the absence of a 

critical histidine (His230) did not affect the pH dependence of conformational change of E1 

but viral particles carrying the H230A mutation were completely non-infectious [156]. Thus, 

by regulating the dissociation of HA1 monomers, His184 is possibly required as one of 

several pH sensors controlling the time-point of the fusion inducing conformational change of 

HA which might be essential for viral infectivity. 

Zhou et al. suggested that the dissociation of the HA1 monomers is caused by an overall 

increase of the positive net charge of the HA1 subunits whereas fusion peptide release and 

the structural reorganization of the helical loop domain are triggered by step-wise protonation 

of critical pH sensors such as His18 and Glu89 of HA1 and Glu103 of HA2 [332]. The 

dissociation of HA1 monomers was also previously proposed to be triggered by the repulsion 

of the positively charged monomers [235] and subsequent interaction of HA2 with the 

incoming water was proposed to trigger the subsequent spring-loaded conformational of HA 

[236,337]. This model of HA conformational change is supported by a time-resolved study on 

single-virion fusion where the rate-limiting step of membrane fusion was assigned to the 

release of the fusion peptide from its pocket [219]. However, this step requires prior or 

simultaneous dissociation of the HA1 domains which was not considered in this study. 

Li et al. provided direct evidence that efficient genome release and infection requires 

sequential exposure to the pH of both, early and late endosomes which involves 

conformational changes in both, the M1 and the HA protein [71]. Furthermore, Zhou et al. 

identified His184 as a possible late stage pH sensor [332] which correlates with our 

proposed model described above. In summary, we believe that protonation of several 

residues in the HA1 as well as the HA2 domain simultaneously might be required for a 

controlled sequence of structural rearrangements resulting in the fusion inducing 

conformational change. However, in which order the identified residues are protonated and 
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which other residues participate in the complex rearrangement of HA still needs to be 

clarified. 

 4.2 Identification of mutations modulating the pH stability of H5 HP 

The adaptation of avian influenza A viruses to humans has been shown to require mutations 

in several viral genes, which enable the virus to cross the species barrier. These genetic 

traits are often associated with increased host range and virulence in the mammalian host 

[338]. Low and highly pathogenic avian H5N1 strains have been differentiated by the 

presence of a mono- or polybasic cleavage site, which was found to determine the virulence 

of these strains in infected chicken. However, in 2003-2004 a more aggressive form of the 

highly pathogenic H5N1 virus evolved which did not only result in a massive bird-die off but 

also in an accumulating number of human spill-over infections. Apart from mutations in the 

RBS of HA resulting in increased α-2,6-SA binding adaptation to the mammalian host has 

been suggested to require additional mutations preserving the stability of the HA protein and 

thus of the whole virus. We identified a glutamate-to-arginine mutation at position 216 in the 

highly pathogenic H5 HA which has evolved in the period of the so-called “bird flu” and thus 

might have contributed to the emergence of the highly aggressive H5N1 virus. 

 

Table 4.3: Summary of data obtained for the highly and low pathogenic H5 HA as well as for H3 HA carrying 
mutations at positions 212 and/or 216. 

 Protein Surface expression 
Mean ± SDa 

Δ pHb 

  RBC fusion assay conf. change assay Average 
H5 HP wt 100 ±   5 5.9 5.7 5.8 
H5 HP R216E 127 ± 13 +0.3 +0.2 +0.3 
H5 LP wt 158 ± 73 6.0 6.0 6.0 
H5 LP E216R 113 ± 13 -0.2 -0.4 -0.3 
H3 wt  ND 5.4 ND 5.4 
H3 T212E-
N216R  ND +0.4 ND +0.4 
a Relative MFI [%] 
b The values represent the average from a minimum of three experiments. In all cases the difference between the 
three measurements did not exceed 0.1 pH units. ND, not determined; - no fusion or conformational change 
detected at any pH 
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By exchanging the charge in H5 HP and LP we found that glutamate at position 216 

increases the pH threshold of the conformational change and fusion in H5 HP whereas 

exchanging glutamate by arginine in the low pathogenic subtype resulted in a decrease of 

the pH threshold (Table 4.3). In support of our study, an increase of the pH of fusion when 

exchanging residue 216 from a lysine, which is positively charged like arginine, to a glutamic 

acid (K216E) was reported for a highly pathogenic H5 subtype [284]. The authors argued 

that the effect of this K216E mutation on the pH of fusion was due to a change in hydrogen 

bonding with the adjacent monomer (from K216-N210 to E216-R212) [284]. However, 

analyzing the known crystal structures (PDB ID: 3S11 and 3S13) we could not identify any of 

the mentioned hydrogen bonds. 

4.2.1 Fine-tuning of the pKa of His184 - Implications for host adaptation 

Structural analysis revealed that residue 216 is located at the HA1-HA1 interface in vicinity to 

His184 (see Figure 4.2) suggesting that it may affect the acid stability of HA by a pKa-

modulating effect on His184. Histidine at position 184 is partially buried in the protein and 

thus its pKa depends on the residues in its local environment, i.e. it can be strongly affected 

and, by that, precisely adjusted by those residues and mutations thereof [339,340]. Although 

our experimental data do not provide direct evidence, they support this hypothesis. The 

obtained data correlate with the previously described pKa dependency of histidines on 

neighboring residues [163,339–342]. An additional negative charge is known to support 

protonation of histidine resulting in an increased pKa whereas in the environment of a 

positively charged residue the protonated and thus positively charged form is less favored 

shifting its pKa to lower values. Thus, we suppose that the exchange of charge at position 

216 causes an alteration in the pH of conformational change and of fusion via its effect on 

the pKa of His184. The exchange of residues in proximity to histidines was also reported in 

other studies to significantly affect the fusion pH proposing that some mutations exhibit a 

pKa-modulating effect on neighboring histidines [162]. However, what is the consequence for 

a shifted fusion-pH and how can it contribute to host adaptation? 

Several studies have provided evidence that the pH of fusion is crucial for influenza virus 

infection in distinct organisms [298,329,330]. It was further shown that viral adaptation to 

different host cells and species often necessitates mutations in the HA protein which alter the 

fusion pH to account for host specific variations in the endosomal pH and/or for different 

transmission modes [260,261,343–345]. In particular, there has been evidence that a high 

pH of fusion increases the pathogenicity of the virus in infected chicken and ducks [284,298] 

whereas it is not favorable for the infection of a mammalian host [329,330,343,344]. 

Sequence alignment of H5 HAs of isolated H5N1 strains revealed that the glutamate-to-

arginine (or –lysine) mutation is present in all highly pathogenic virus strains not only isolated 



4 Discussion 

 

 

98 

from birds and humans in 2003-2004 but also in subsequent years suggesting that the 

charge-charge mutation and the altered pH of fusion involved contributed to a highly 

pathogenic phenotype. We propose that this E216R/K mutation stabilizes the HA 

ectodomain of H5 HP shifting the fusion triggering conformational change to a more acidic 

pH. The mutation might also have compensated for other destabilizing mutations, preventing 

conformational change of H5 HP HA at elevated pH [284]. Also in previous studies the 

substitution of charged residues were suggested to play a dominant role in the course of 

virus adaptation [292,295]. In line with this, the introduction of two additional charges at the 

HA1-HA1 interface of the H3 subtype the pH of fusion was even more significantly affected, 

however the structural effect of the double-mutation was not characterized in detail. 

 4.3 The acid stability of HA–a new determinant of host range and 

pandemicity? 

4.3.1 Reviewing host adaptation of influenza A viruses 

Successful adaptation of avian influenza A viruses to humans was shown to require 

mutations in several viral genes, which enable the virus to efficiently infect and replicate in 

the human host, as well as to spread via the airborne route between humans. Several 

influenza viruses from the avian reservoir already have the ability to infect the human host 

(H5N1, H7N9, H9N2), but are not further transmitted via aerosols or respiratory droplets 

(RD) between humans. To avoid the emergence of a new pandemic it is of substantial 

importance to understand the mechanisms of host adaptation resulting in the acquisition of 

airborne transmissibility and increased virulence in the mammalian host. 

One of the best characterized mammalian adaptations is the E627K mutation in the 

polymerase subunit PB2, which enhances replication efficiency of the virus at lower 

temperature in the human lung (33°C versus 41°C in avian intestines) [346,347]. This 

substitution was reported to confer increased virulence and transmissibility in the mammalian 

host [348] and was also found in the highly pathogenic H5N1 strains isolated from humans in 

2004 [243]. In addition, most human H7N9 virus isolates carried the E627K mutation and/or 

the alternative adaptive substitution D701N [348,349]. The latter causes enhanced binding to 

mammalian importin-α1 resulting in increased transport of PB2 to the nucleus [350]. The 

presence of one of the two mutations, D701N or E627K, was shown to be required for 

transmission of influenza viruses suggesting that they are critical determinants for 

mammalian infection and transmissibility [348]. Adaptation to the mammalian host is also 

known to necessitate mutations in the RBS of HA which result in a switch in the receptor 

binding specificity from α-2,3- to α-2,6-SA. Recent studies reported that a Q226L mutation 
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conferred increased α-2,6-SA binding to many avian viruses such as H5N1, the natural 

occurring H9N2 [351] and the recent H7N9 strains [352,353]. The latter was even found to 

weakly transmit between ferrets via the airborne route [354–357] which was ascribed to the 

higher affinity of H7N9 to α2,6-SA than other H7 and H5 subtypes [352,358,359]. Also 

transmission of the H9 subtype in combination with human adapted genes was promoted by 

the presence of the Q226L mutation suggesting that this amino acid change in the RBS 

might be sufficient to confer human type receptor binding. 

While in several studies α-2,6-SA binding was clearly shown to be a pre-requisite for 

infection of the human host and transmissibility between ferrets [360–362], changing the 

receptor specificity of natural or recombinant H5N1 viruses from α-2,3- to α-2,6-SA was 

insufficient to confer airborne transmissibility [259–261]. Even with the proper HA-NA 

balance, a mutated H5 virus with α-2,6-receptor binding specificity supported only partial 

transmission via respiratory droplets [363]. Moreover mutations in the RBS were associated 

with reduced replication and virulence [259,364] suggesting that there are other mutations 

needed that retain viral fitness. In line with this hypothesis, two independent studies 

demonstrated that mutations additionally to human type receptor binding were required to 

confer efficient respiratory droplet transmission of H5N1 viruses between ferrets [260,261]. 

In both cases these additional mutations were associated with higher stability of the HA 

protein [261,262,324]. Also for the 2013 H7N9 virus the pH threshold of membrane fusion 

was found to be relatively high (pH 5.6-5.8) and might thus in part be responsible for the 

limited airborne transmissibility of this virus (Figure 4.3). 

The requirement of a stable HA for mammalian adaptation can be explained by the fact that 

transmission via respiratory droplets, which is also the primary transmission mode in 

humans, requires passage of the virus through the nasal airway epithelium which presents a 

significant extracellular barrier to influenza infection [344]. The mucociliary clearance system, 

viscous fluids, and macrophages interfere with the virus access to the cell surface. At the 

same time the nasal cavity is mildly acidic promoting a conformational change of HA 

resulting in viral inactivation. Indeed, the replication efficiency of an avian influenza H5N1 

virus in mice was reported to be enhanced by a stabilizing mutation in the stalk domain of 

HA (K582I). Due to a lower pH of activation it retained infectivity in the nasal cavity of mice 

whereas the infectivity of the wild type was reduced [344]. The K582I mutation was also 

reported in another study to support increased growth of the virus in mice and the upper 

respiratory tract of ferrets whereas in infected mallards no physiological symptoms were 

detected [298,329,330]. Hence, an increased acid stability of HA might not only be required 

for efficient viral transmission but also for increased infectivity in a specific host. 
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Figure 4.3: Requirements for adaptation of avian influenza virus HA to the human host. 
Apart from a change in the receptor binding specificity from avian (α-2,3-SA) to human (α-2,6-SA) type receptors, an 
increase of the acid stability of HA is mandatory. Higher acid stability of HA  is thought to promote spreading of the 
virus via respiratory droplets, a pre-condition for pandemicitiy. 

 

Replication of influenza viruses in different cell lines or hosts was also linked to a change in 

acid stability of HA [298,329,330,343,345,364]. In particular, a lower acid stability of HA (pH 

5.5-6.0) was shown to increase the pathogenicity of H5N1 viruses in the avian host [284] as 

well as replication of influenza viruses in ducks [298] whereas viral growth in mice and in the 

URT of ferrets was favored by mutant viruses containing an acid-stable HA protein (pH 5.0-

5.5) [329,330]. A recent characterization of avian and human-adapted HA subtypes further 

revealed that the fusion pH of HA of avian isolates was in general higher than that of human 

isolates [15]. These results suggest that infection and replication of avian viruses in the 

human host requires an increased acid stability of HA. In support of this hypothesis all 

human influenza viruses, including the recently appeared pandemic H1N1 virus were 

capable of infecting cells at acidic conditions while two highly pathogenic H5N1 viruses 

infected human nasal epithelial cells only at a neutral pH [344]. 

4.3.2 The acid stability of HA determines the pH threshold of fusion 

Knowledge of the molecular properties that govern efficient infection and growth of an 

influenza virus strain in one cell type, tissue, or host species versus another may help to 

understand the requirements for successful host adaptation. This is important in conducting 

surveillance and risk assessment of currently circulating viruses. Furthermore, it may help to 

optimize vaccine yield and efficacy and suggest novel ways to treat infection [329]. Thus, the 

aim in the second part of my study was to determine how a single destabilizing mutation in 

the HA protein influences pH dependent fusion when introduced into the background of the 
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WSN H1N1 influenza virus. Furthermore, the effect of an altered acid stability on host-

specific virus infection and intracellular fusion was assessed. 

Introduction of the destabilizing double mutation T212E-N216R into the H3 subtype of 

recombinant WSN viruses resulted in higher pH threshold of membrane fusion. However, the 

increase was less pronounced with a shift of only +0.2 units (see 3.6) compared to an 

increase of 0.4 units determined in the RBC fusion assay (see 3.3.1). The disparity in the 

delta pH is likely due to the fact that the RBC fusion assay was only measured in steps of 0.2 

pH unit increments and quantitative data about the number of HA molecules undergoing a 

conformational change were not obtained. Furthermore, the pH threshold of WSN H3 viruses 

was determined at half-maximal fusion efficiency of the respective virus, whereas in the RBC 

assay the pH of fusion is determined as the pH where more than 50 % of HA molecules 

undergo a fusion inducing conformational change. The pH dependent fusion efficiency of the 

WSN H3 wild type virus is maximal at pH 5.2 and decreases steadily reaching half-maximal 

fusion efficiency at pH 5.6. The maximal pH dependent fusion efficiency of the WSN H3 

mutant virus is at pH 5.6 and is thus 0.4 units higher than that of the wild type corresponding 

to the delta pH obtained in the RBC fusion assay. In contrast, due to a faster decrease in 

fusion efficiency with augmenting pH the half-maximal fusion efficiency is already reached at 

pH 5.8 and thus only 0.2 units higher than that of the wild type. 

Other sources possibly being responsible for the disparity in the obtained delta pHs are the 

HA protein itself, the curvature of the membrane where it is inserted and the curvature of the 

target membrane. All of these parameters can affect the pH dependent fusion efficiency of 

HA and therefore, the delta pH of fusion between wild type and mutant WSN H3 viruses 

strongly depends on the experimental system used and ranges from 0.2-0.4 units. 

4.3.3 The acid stability of HA affects cell-specific infectivity 

The human epithelial cell line A549 and Madin Darby canine kidney (MDCK) cells were 

recently shown to differ in their endosomal acidification using dextran-conjugated pH 

sensitive dyes. A pH of 5.4 was measured for MDCK and a pH of 5.9 for A549 cells after 

incubation for 15 min [329]. According to our results the lower acid stability of the mutant 

resulted in lower infection efficiency in MDCK cells whereas in A549 cells the infection 

efficiency was similar to that obtained for the wild type (see 3.7). Also the replication 

efficiency of the WSN H3 T212E-N216R mutant virus was reduced compared to the wild 

type (see 3.8). This means that the lower endosomal pH of MDCK cells might not be suitable 

for infection with a virus of a high fusion pH threshold. In line with this the WSN H1 wild type 

virus, for which an even higher pH threshold of fusion of 6.21 was determined, also exhibited 

reduced infection efficiency in MDCK but not in A549 cells. However, H1 HA is a different 

subtype and thus might differ from H3 HA in other factors additional to its modulated acid 
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stability, such as the receptor binding specificity and the associated uptake of the virus by 

the host cell. Therefore, the infection efficiency of this virus cannot be directly compared to 

that of the WSN H3 viruses. 

Zaraket et al. reported that recombinant viruses with a stabilizing mutation in the H5 subtype 

(fusion pH of 5.4 compared to 5.9 for the wild type) replicated equally well in MDCK cells as 

the wild type but less efficiently in A549 cells [329], which indirectly supports our result that a 

lower acid stability is favored for the infection in MDCK but not in A549 cells. Similarly, VSV 

which induces fusion at higher pH (6.0-6.5) than influenza virus (5.0-6.0) exhibits greater 

infectivity in Vero than in MDCK cells. In contrast to these findings indicating that the acid 

stability of HA affects host-specific virus infection, the replication efficiency of a highly 

pathogenic H5N1 virus was similar in all of these cell lines [365]. Also the acid-stable K582I 

mutant was reported to replicate equally well in MDCK, A549 and Vero cells [344]. Though, 

in that study a delta NS1 mutant strain was used and therefore does not represent the 

natural situation of an influenza virus infection. Nevertheless, several other studies on the 

adaptation of influenza viruses to a different host provided evidence for an existing link 

between acid stability of HA and host specificity. Passage of an egg-grown virus in 

mammalian cells resulted in an altered pH of membrane fusion of HA [294] as well as 

passage of a human-derived virus in mice [366]. In particular, adaptation of influenza virus 

H1N1 and H3N2 to the higher endosomal pH of Vero cells caused destabilizing mutations in 

the HA protein [343,345], which promoted its replication in these cells [33]. Also influenza 

viruses growing in the presence of amantadine hydrochloride, which blocks the M2 ion 

channel were reported to acquire mutations in the HA protein shifting the pH of fusion to 

higher values [289,292,293] which indicates a link between M1 and HA conformational 

changes during acidification. To conclude, an adjustment of the acid stability of HA seems to 

be required due to varying endosomal pHs among cell lines or hosts. 

4.3.4 The acid stability of HA regulates the time-point of membrane fusion 

By tracking virus-endosome fusion in MDCK cells we found a significant difference in the 

fusion kinetics of WSN H3 wild type and the T212E-N216R mutant viruses (see 3.9). For the 

mutant fusion of the viral with the endosomal membrane was already detected after 5 min 

whereas for the wild type an increased green fluorescence due to DiO dequenching and 

removal of FRET was only exhibited 10 to 15 min post-infection. Lakadamyali et al. using live 

cell imaging in combination with single particle tracking reported that influenza virus particles 

reached Rab5-positive early endosomes after 5 min and co-localized with Rab5 and Rab7 

on maturing endosomes (multivesicular bodies), where most of the fusion events were 

detected [367]. Fusion for influenza virus A/X-31 which contains the identical HA protein as 

the recombinant H3 viruses used in the present study was reported to occur already 10 min 
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post-infection in CHO cells [70]. A half-time of 10 min for A/X-31 virus-endosome fusion in 

HeLa cells was also reported by Sakai et al. whereas we found a half-time of virus-

endosome fusion of 16 min for the recombinant wild type H3 virus in MDCK cells using the 

same approach. However, my experiment was only conducted twice and thus might need 

some optimization. 

The determination of the exact timing of virus-endosome fusion is challenging due to a 

relatively “long” acquisition time of around 0.5 min between the first and the last points of a 

Z-stack and movement of the virus inside the cell which can lead to less precise 

observations. This limitation can be overcome by spinning disc confocal laser microscopy, a 

more powerful tool for rapid spatial and temporal imaging of living cells. Nevertheless, using 

the dual-wavelength imaging approach in combination with confocal microscopy we could 

show that the green fluorescence increased between 5 to 20 min for both, wild type and 

mutant virus which corresponds to virus-endosome fusion in MDCK cells. Fusion events 

were clearly detected in the perinuclear region after movement of the particle towards the 

center of the cell. This suggests the localization of major fusion events in the late endosomal 

compartment as also described by Lakadamyali [70] and Sakai et al. [322]. Furthermore, 

fusion of the WSN mutant viruses containing a destabilized HA protein was detected 7-9 min 

earlier compared to the wild type which correlates with the higher pH threshold of the virus 

measured in vitro. Thus, the stability of HA controls the pH threshold of the conformational 

change and thereby seems to affect intracellular fusion of the virus. 

A possible explanation how the pH of membrane fusion and the associated modulated 

intracellular fusion kinetics translate into altered infection efficiency is provided in Figure 4.4. 

(1) The earlier the viral genome is released from the endosome, the higher the probability 

that the cellular immune response is stimulated. For example, the released viral RNA is 

recognized by the RNA helicase RIG-I [44,45] which leads to the activation of transcription 

factors IRF3 and/or IRF7 and subsequent induction of type I interferon (IFN) and IFN 

inducible genes [60]. Other viral proteins including NP, M1 and HA within the cytoplasm 

activate nuclear factor κB (NF-κB) via activation of IκB kinase 2 (IKK2), which also results in 

interferon induction [368]. (2) At the same time, fusion has to occur before the endosome 

has matured into a lysosome where recognition of the viral RNA by Toll like receptors (TLR) 

3 and/or 7 would also result in the induction of immune signaling pathways leading to the 

expression of type I interferon as well as NF-κB [60]. Thus, the endosomal acidification as 

well as the acid stability of HA determine time and localization of virus-endosome fusion and 

thereby the fate of the virus after endocytic uptake providing a model for the requirement of 

an adapted pH of membrane fusion to a different endosomal pH. 
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Figure 4.4: Relevance of acid stability of HA for viral entry. 
After endocytosis of the viral particle, it is transported along microtubules (MT) towards the center of the cell. (1) The 
earlier the viral genome is released from the endosome, the higher the probability that the released vRNPs can be 
recognized by the RNA helicase RIG-I. Upon RIG-I binding transcription factors IRF3 and/or IRF7 are activated, 
which induce type I interferon (IFN) and IFN inducible genes. (2) At the same time, fusion has to occur before the 
endosome has matured into a lysosome where detection of the viral RNA by Toll like receptors (TLR) 3 and/or 7 
would also result in the induction of immune signaling pathways leading to the expression of type I IFN as well as 
NF-κB. Thus, the acid stability of HA has to be optimized to control time and localization of fusion. 

 

The lower acid stability of the T212E-N216R mutant virus was shown to result in an earlier 

time-point of viral fusion in the maturing endosome, possibly in higher distance to the 

nucleus. This in turn increases the probability of vRNA recognition by the cellular innate 

immune response resulting in the reduced infection observed in MDCK cells. Indirect 

evidence for this hypothesis was achieved by studies reporting that the induction of influenza 

virus fusion at the plasma membrane and resulting bypass of endocytic trafficking results in 

a more than 80 % lower infection efficiency of the virus [71,72]. While this effect was 

ascribed to inefficient uncoating of the viral genome, another reason might be the longer 

distance between plasma membrane and nucleus that the released vRNPs have to 

overcome by diffusion. This in turn increases the probability that the vRNA is recognized by 

cellular immune factors resulting in lower infection efficiency. In summary, we propose that 

the HA stability is an essential determinant which must be optimized to allow viral 

transmission between humans and to control time and localization of intracellular fusion for 

efficient infection and replication in the mammalian host. 
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Influenza A viruses are still one of the major health problems worldwide. Especially avian 

influenza viruses pose a great risk since they have already crossed the species barrier and 

infected humans. The currently available vaccine against flu is a tri- or quadrivalent 

formulation composed of the seasonally changing influenza A H1N1 and H3N2 virus strains 

and one or two influenza B virus strains, respectively (Centers for Disease Control and 

Prevention, CDC). Drawbacks of this strategy are the requirement of an annually changing 

formulation necessitating constant surveillance of circulating strains and a time-consuming 

production of these vaccines. To date only a limited number of therapeutic drugs are 

available, which include inhibitors of the M2 ion channel (amantadine and rimantadine) and 

of neuraminidase (oseltamivir and zanamivir). However, single amino acid substitutions in 

the M2, NA and HA protein resulted in increasing resistance among circulating influenza 

viruses (e.g. H7N9) which makes these drugs useless and emphasize the need to develop 

alternative approaches for the prevention and/or treatment of an influenza virus infection 

[303]. 

 

The entry of influenza virus into host cells is established by HA and thus represents a 

promising target for novel antiviral drug development. Several synthetic receptor mimics, 

which inhibit HA-SA binding and peptides blocking the fusion inducing conformational 

change of HA have been tested for their antiviral efficacy. However, these exhibited mostly 

subtype-dependent activities and low barriers against mutational drift of HA [369–371]. As a 

consequence, new antiviral strategies target conserved regions of HA such as the RBS or 

highly conserved structures of the HA2 domain which are involved in fusion. Also small 

molecules that perturb the membrane thereby inhibiting fusion have been sought [304–306]. 

To inhibit influenza virus infection at the stage of membrane fusion it is essential to 

understand the exact mechanism of conformational change and of fusion. The fusion 

inhibitor T20 which targets the fusion protein gp41 is already employed against HIV (Fuzeon, 

Roche) proving the therapeutic potential of such drugs. Thus, the elucidation of conserved 

protonable residues and their role in the fusion process might facilitate the identification of 

drugable domains of the influenza virus HA and the development of antivirals. 

 

In the first part of the study His184 was demonstrated to be a crucial molecular switch at the 

HA1-HA1 interface regulating the pH dependence of the conformational change of HA. 

His184 is highly conserved among all subtypes (except H17 and H18) as well as its 

neighboring residues including Arg220 and Arg229 and residues 210 and 231 which make 

the region a useful target for inhibitory peptides. At the same time, the residues are mostly 

buried at the HA1-HA1 interface and thus only become accessible upon protonation and 
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dissociation of the HA1 domains making it difficult to design a suitable inhibitor. In contrast, 

the His18 pH sensor group (His18, His38 of HA1 and His111 of HA2), which was described 

to facilitate fusion peptide release upon protonation, was recently demonstrated as suitable 

drug target. Protonation of this group could be successfully blocked by binding of the 

antibody CR6261 [332]. However, the existence of the pH sensor group and its fusion 

inhibition were only predicted by computational methods and experimental evidence such as 

provided in the current study for His184, is missing. Nevertheless, it demonstrates that the 

identification of conserved protonable residues might indeed be useful for the development 

of new viral inhibitors. 

 

In the present study His184 and its local environment are suggested to be important 

determinants for the pH of HA conformational change and membrane fusion, an essential 

step of the infection cascade. In support of this hypothesis mutation of residue 216, which is 

located in vicinity to His184, was shown to alter the pH threshold of conformational change 

and of fusion in H5 HP and LP in correlation to the known pKa dependence of histidines on 

the local environment. Therefore, the Glu-to-Arg mutation was suggested to modulate the pH 

dependence of H5 HA by its effect on the pKa of His184. Furthermore, the exchange of 

charge in H5 HP and associated fine-tuning of the pKa of His184 may have facilitated the 

adaptation of the fusion pH to the mammalian host which was shown to be required for 

efficient infection and spread of the virus [260,261]. Another example of such a mechanism 

of adaptation is provided by the experimental adaptation of a recombinant H5N1 virus to 

ferrets model. Apart from mutations conferring human type receptor binding the passage of 

the virus in ferrets resulted in the stabilizing mutation T318I in the fusion domain of HA1 

[262]. This residue was reported to increase the thermal stability of HA due to packing with 

hydrophobic residues Trp21 and two valine residues in proximity thereby stabilizing the 

fusion peptide and helix C. In combination with mutations increasing human type receptor 

specificity of H5 HA the T318I mutation was shown to confer respiratory droplet transmission 

to ferrets. However, Thr318 is located close to the His18 pH sensor group mentioned above 

and interacts with His111 in the H5 subtype. The exchange of Thr318 to isoleucine was 

shown to alter the conformation of His38 in the structure [262] and thus might as well 

abrogate the triggering function of the His18 pH sensor group at low pH (Figure 4.5). In 

contrast, the stabilizing mutation H110Y, which also enabled airborne transmissibility of a 

natural H5N1 strain between ferrets [260], is not associated with the loss of a protonable 

residue as initially believed, but with a loss of a hydrogen bond at the HA1-HA2 interface. 
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Figure 4.5: Crystal structure of the natural and the ferret-transmissible mutant H5 HA. 
(A) Cartoon representation of the monomer of H5 HA with the HA1 subunit shown in salmon and the HA2 subunit in 
gray (PDB ID: 4BH1). The fusion peptide is colored in purple. (B and C) In the magnification the His18 pH sensor of 
the natural (PDB ID: 4BH1) and the ferret-transmissible mutant (PDB-ID: 4BH3) H5 HA is shown with histidines 
residues His18 and His38 of HA1 and His111 of HA2 as well as residue 318 of HA1 depicted in stick representation. 

 

The two described studies [260,261] present the first evidence for the requirement of an 

increased acid stability for viral transmission between mammals. Studying the effect of a 

modulated pH threshold of fusion on virus infectivity revealed that the acid stability of HA 

also affects the infection and replication efficiency depending on the endosomal acidification 

in the respective cell line. This is in line with other studies reporting that the adaptation of 

influenza viruses to a given cell line or host containing a different endosomal pH caused 

mutations within HA altering the pH of fusion. However, the reason for this observation has 

long been unknown. Here, it is suggested that the pH of fusion controls the time and 

localization of vRNP release and thereby the infection efficiency of the virus. Following 

ejection of the viral genome into the cell cytoplasm the vRNPs are thought to be transported 

to the cell nucleus by diffusion [76]. Thus, if fusion occurs in greater distance to the nucleus 

the probability of detection by cellular immune factors such as RIG-I and resulting RNA 

degradation and induction of interferon signaling might be increased. Indirect evidence was 

provided that an earlier release of the viral genome reduces the efficacy of infection in 

MDCK cells suggesting that an optimal pH of fusion is required which allows the release of 
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the viral genome in close vicinity to the nucleus. However, this is only one possibility which 

still needs to be verified. 

 

It is likely that also other viral proteins additional to HA are involved in controlling the release 

of the viral genome. For example, Lee et al. [372] suggested a different model of membrane 

fusion where the dissolution of the matrix layer M1 controls fusion pore opening at pH 5.0 

and thus also the release of the viral RNPs. However, two recent studies provided evidence 

that efficient uncoating of the viral genome requires sequential acid exposure as well as the 

presence of K+ ions resulting in the irreversible disassembly of M1 at a higher pH (pH 5.5-

6.0) than that of HA conformational change [71,72]. This also explains that HA 

conformational change at pH < 6.0 is favored for efficient viral infection in the mammalian as 

well as the avian host [298,330]. Thus, an ensemble of events in the M1 and HA proteins 

seem to trigger the release of the viral genome. Detecting the release of vRNPs by the split-

GFP method published by Avilov et al. [373] and/or measuring the vRNP accumulation in the 

nucleus following fusion might shed more light on the role of HA acid stability for viral entry 

and infection. 
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Appendix 

Sequence alignment of H5 LP of A/teal/Germany/Wv632/2005 (H5N1) and of H5 HP of 

A/chicken/Vietnam/P41/2005 (H5N1) 
 
 
H5 LP    DQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKAHNGKLCSLNGVKPLILRDCSVAGW    60 
H5 HP    DQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKTHNGKLCDLDGVKPLILRDCSVAGW    60 
         ***********************************:******.*:*************** 
 110 
H5 LP    LLGNPMCDEFLNVPEWSYIVEKDNPVNGLCYPGDFNDYEELKHLLSSTNHFEKIRIIPRS   120 
H5 HP    LLGNPMCDEFINVPEWSYIVEKANPVNDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKS   120 
         **********:*********** ****.******************  ******:***:* 
 
 184 
H5 LP    SWSNHDASSGVSSACPYNGNSSFFRNVVWLIKKNNAYPTIKRSYNNTNQEDLLVLWGIHH   180 
H5 HP    SWPSHEASLGVSSACPYQGKSSFFRNVVWLIKKNSTYPTIKRSYNNTNQEDLLVLWGIHH   180 
         **..*:** ********:*:**************.:************************ 
 212 216 221 
H5 LP    PNDAAEQTKLYQNPTTYVSVGTSTLNQRSVPEIATRPRVNGQSGRMEFFWTILKPNDAIN   240 
H5 HP    PNDAAEQTKLYQNPTTYISVGTSTLNQRLVPRIATRSKVNGQSGRMEFFWTILKPNDAIN   240 
         *****************:********** **.****.:********************** 
 
H5 LP    FESNGNFIAPEYAYKIVKKGDSAIMKSGLEYGNCNTKCQTPMGAINSSMPFHNIHPLTIG   300 
H5 HP    FESNGNFIAPEYAYKIVKKGDSTIMKSELEYGNCNTKCQTPMGAINSSMPFHNIHPLTIG   300 
         **********************:**** ******************************** 
  Fusion peptide 
H5 LP    ECPKYVKSDRLVLATGPRNVPQKE---TRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQG   357 
H5 HP    ECPKYVKSNRLVLATGLRNSPQRERRKKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQG   360 
         ********:******* ** **:*   .******************************** 
 
H5 LP    SGYAADKESTQKAIDGITNKVNSIIDKMNTQFEAVGKEFNNLEGRIENLNKKMEDGFLDV   417 
H5 HP    SGYAADKESTQKAIDGVTNKVNSIIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDI   420 
         ****************:*******************:****** ***************: 
 
H5 LP    WTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMES   477 
H5 HP    WTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMES   480 
         ************************************************************ 
 
H5 LP    VRNGTYDYPQYSEEARLNREEISGVKLESMGTYQILSIYSTVASSLALAIMVAGLSFWMC   537 
H5 HP    VRNGTYDYPQYSEEAKLKREEISGVKLESIGIYQILSIYSTVASSLALAIMVAGLSLWMC   540 
         ***************:*:***********:* ************************:*** 
 
H5 LP    SNGSLQCRICI   548 
H5 HP    SNGSLQCRICI   551 
         *********** 
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Abbreviations 

4HB four-helix-bundle 

6HB six-helix-bundle 

BCA bicinchoninic acid 

BGH bovine growth hormone 

BHA bromelain cleaved hemagglutinin 

BSA bovine serum albumin 

CDC center disease control 

CHO Chinese hamster ovary 

CME clathrin mediated endocytosis 

CMV human cytomegalovirus 

CPE cytopathic effect 

Cryo-EM cryogenic electron microscopy 

DAPI 4',6-diamidino-2-phenylindole 

DAG diacylglycerol 

DiI 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate 

DiO 3,3′ -dioctadecyloxacarbocyanine perchlorate 

DMEM Dulbecco’s modified Eagle medium 

DMSO Dimethylsulfoxid 

dNTP deoxynucleotide 

DSP 3, 3-dithiobissuccinymidylpropionate 

EDTA Ethylenediaminetetraacetic acid 

EE early endosomes 

EGF epidermal growth factor 

Env envelope protein 

ER endoplasmic reticulum 

FAST protein fusion-associated small transmembrane protein 

FBS fetal bovine serum 

FD fusion domain 

FF fusion failure 

FP fusion peptide 

FRET Foerster resonance energy transfer 

Gal Galactose 

GFP green fluorescent protein 

Glc Glucose 
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GPI glycophosphatidylinositol 

HA hemagglutinin 

HA0 hemagglutinin precursor protein 

HAT human airway 

HCl hydrochloride 

HD hemifusion diaphragm 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HIV human immunodeficiency virus 

HP highly pathogenic 

HPAIV highly pathogenic avian influenza virus 

HRA/B heptad repeat region A/B 

IFN interferon 

LB medium Luria-Bertani medium 

LB-Amp Luria-Bertani medium containing ampicillin 

LB-Kan Luria-Bertani medium containing kanamycin 

LE late endosomes 

LP low pathogenic 

LPAIV low pathogenic avian influenza virus 

LPC lysophosphatidylcholine 

MDCK Madin Darby canine kidney 

MES 2-(N-morpholino)ethanesulfonic acid 

MFI mean fluorescent intensity 

MOI multiplicity of infection 

MTOC microtubuli organization center 

MSPL massive surface protein 

NA neuraminidase 

NaCl sodium chloride 

NAG N-acetylglucosamine 

NaOH sodium hydroxide 

NCR non-coding region 

NEB New England Biolabs 

NEP nuclear export protein 

NF-kB nuclear factor kB 

NLS nuclear localization signal 

NP nucleoprotein 

NSF N-ethylmaleimide-sensitive factor 

CMV human cytomegalovirus 

PBS- phosphate buffered saline without CaCl and MgCl 
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PBS+ phosphate buffered saline with CaCl and MgCl 

PC phosphatidylcholine 

PCR polymerase chain reaction 

PE phophatidylethanolamine 

PEG polyethylenglycerol 

PFA paraformaldehyde 

Pfu Plaque forming units 

PHD Pleckstrin homology domain 

R18 ocadecyl rhodamine B chloride 

RBC red blood cell 

RBS receptor binding site 

RE recycling endosome 

RIG-I retinoic acid inducible gene I 

RNP ribonucleoprotein 

RT room temperature 

-S-S- disulfide bond 

SA sialic acid 

SARS severe acute respiratory syndrome 

SDS sodium dodecyl sulfate 

SDS PAGE sodium dodecyl sulfate polyacrylamide gelelectrophoresis 

SFV semliki forest virus 

SNAP soluble NSF attachment protein 

SNARE SNAP receptor 

SP signal peptide 

TBEV tick borne encephalitis virus 

TBHA2 thermolysin treated and bromelain cleaved hemagglutinin 

TCID50 Tissue culture infectious dose 

TEM transmission electron microscopy 

TLR Toll like receptor 

TMD transmembrane domain 

TMPRSS type II transmembrane serine protease 

vRNP viral ribonuleoprotein 

VSV vesicular stomatitis virus 

WHO World Health Organization 

YFP yellow fluorescent protein 
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