
Software Product and Process

Quality Improvement Using

Formal Methods

Dissertation

zur Erlangung des akademischen Grades

(doctor rerum naturalium, Dr. rer. nat.)

im Fach Informatik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von

Herr Satish Mishra

Präsident der Humboldt-Universität zu Berlin

Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II

Prof. Dr. Elmar Kulke

1. Gutachter Prof. Dr. Joachim Fischer

2. Gutachter Prof. Dr. Bernd Krieg-Brückner

3. Gutachter Prof. Dr. Holger Schlingloff

Tag der mündlichen Prüfung 10.07.2014

http://informatik.hu-berlin.de
http://www2.informatik.hu-berlin.de/~hs/
http://www.hu-berlin.de

Contents

Abstract viii

1 Introduction 1

1.1 Software description . 2

1.2 Software evolution . 4

1.3 Software quality . 6

1.4 About this thesis . 10

1.4.1 Scope and objectives . 10

1.4.2 Thesis guideline . 12

1.4.3 Case study: MED overview 13

2 Preliminaries and related work 16

2.1 Formal methods . 16

2.1.1 CASL, Common Algebraic Specification Language 18

2.1.2 CSP, Communicating Sequential Process 20

2.1.3 CSP-CASL . 23

2.2 Process improvement model . 24

2.2.1 ISO . 25

2.2.2 Six-Sigma . 25

2.2.3 CMM/CMMI . 27

2.3 Product and process quality . 29

2.4 Related work . 30

2.4.1 Specification refinement . 31

2.4.2 Refinement Calculus . 32

2.4.3 Action refinement . 33

2.4.4 Data refinement . 34

2.4.5 Algebraic specification refinement 35

2.4.6 Software enhancement . 37

2.4.7 Software product quality . 39

2.4.8 Software process quality . 40

2.5 Summary . 41

3 Software evolution methodology 43

3.1 Software specification . 44

ii

3.1.1 Observable and internal behavior 45

3.2 Formal software specification . 46

3.3 Software refinement . 50

3.3.1 CASL refinement . 52

3.3.2 CSP refinement . 52

3.3.3 CSP-CASL refinement . 53

3.4 Software enhancement . 56

3.4.1 CASL enhancement . 57

3.4.2 CSP enhancement . 58

3.4.3 CSP-CASL enhancement . 58

3.4.4 Enhancement through extension 62

3.4.5 Enhancement through substitution 62

3.4.6 Enhancement through extension and substitution 62

3.4.7 Enhancement as software product line 62

3.5 Summary . 63

4 Product quality framework 64

4.1 Testing terminologies . 65

4.1.1 Test case . 65

4.1.2 Test verdict . 67

4.2 Vertical software evolution and test case reuse 69

4.2.1 Software refinement and testing theory 70

4.3 Horizontal software evolution and test case reuse 74

4.3.1 Software enhancement and testing theory 74

4.4 Summary . 77

4.5 CSP-CASL specification evolution and testing tool: ccFormTest . . 79

4.5.1 Tool architecture: ccFormTest 79

4.5.2 Syntax validation . 80

4.5.3 Specification evolution analysis 82

4.5.4 Test generation . 82

4.5.5 Test case evaluation and maintenance 84

4.5.6 Specification and test case traceability analysis 85

4.5.7 Tool summary . 86

5 Process model compliance framework 87

5.1 CMMI, Capability Maturity Model Integration 88

5.1.1 CMMI, process model architecture 88

5.1.2 CMMI, process area model components 90

5.2 CMMI process improvement model and Formal methods 91

5.2.1 Formal methods based idealistic approach to software devel-
opment . 92

5.2.2 Process model compliance grading scheme 94

5.2.3 CMMI, Process model compliance algorithm 96

5.3 Formal method based CMMI implementation strategy 97

5.4 CMMI, Process area compliance exploration 98

5.4.1 Requirements Management (RM) 99

5.4.2 Product Integration(PI) . 101

5.4.3 Requirements Development(RD) 102

5.4.4 Technical Solutions(TS) . 103

5.4.5 Validation . 104

5.4.6 Verification . 104

5.5 Compliance of Generic Goals (GG) 105

5.6 CMMI representations and their compliance 106

5.7 Summary . 107

6 Summary and outlook 109

6.1 Results . 109

6.2 Future work . 112

6.2.1 Observable and internal specification formalism 112

6.2.2 Constructive approach to specification refinement 113

6.2.3 Formal methods based positive and negative test case gen-
eration . 113

6.2.4 Formal methods for process model compliance 113

6.2.5 Industrial case studies and tool support 114

A List of publications 115

B List of articles which have cited this research 116

C Acknowledgments 118

Bibliography 121

List of Figures

1.1 Software system, Vertical and Horizontal evolution 5

1.2 Prominent software quality model 8

1.3 Formal methods, Product and Process Quality 9

1.4 Overview of heart supporting device 14

1.5 Medical Embedded Device (MED) architecture 15

2.1 CMMI representations . 28

2.2 Product development and quality factors 29

3.1 Observable and internal behaviors of a system 45

3.2 CSP-CASL specification syntax . 47

3.3 CSP refinements . 53

3.4 Refined CSP-CASL spefication syntax 55

3.5 Enhanced CSP-CASL specification syntax 60

4.1 Test refinement and Specification refinement 72

4.2 Test suite reusability framework for refined specification 74

4.3 Test enhancement and Specification enhancement 76

4.4 Test suite reusability framework for enhanced specification 77

4.5 Evolution and testing tool architecture 80

4.6 ccFormTest, Main Screen . 81

4.7 ccFormTest, Specification details 83

4.8 ccFormTest, Specification Trace and Positive Test Case 83

4.9 ccFormTest, Specification Failures and Negative Test Case 84

4.10 ccFormTest, Test Case and its Verdict 85

5.1 Details of process area and its components 89

5.2 Formal method based idealistic approach to software development. . 93

5.3 Formal method features appropriate for the compliance of CMMI
process area. 94

5.4 CMMI, process model evaluation strategy overview. 98

v

List of Tables

2.1 CSP syntax . 21

2.2 CSP semantics clauses for trace model 23

3.1 Abstract CSP-CASL specification of Basic MED 51

3.2 Refined CSP-CASL specification of Basic MED 56

3.3 Abstract CSP-CASL specification of Enhanced MED 61

4.1 Abstract Medical Device Test cases and expected test verdict 69

4.2 Refined Test cases and expected test verdict from Refined Specifi-
cation . 73

4.3 Test cases from Abstract Medical Device and expected test verdict
from Enhanced Specification . 77

4.4 Test verdict transition from Abstract to Refined Specification . . . 78

4.5 Test verdict transition from Initial to Enhanced Specification 78

5.1 Algorithm PA-Compliance . 96

5.2 Compliance of RM with FMBD . 100

5.3 Refinement relation . 101

5.4 Compliance of PI with FMBD . 102

5.5 Compliance of RD with FMBD . 103

5.6 Compliance of TS with FMBD . 103

5.7 Refinement relation in SDLC elements 104

5.8 Compliance of Validation with FMBD 104

5.9 Compliance of Verification with FMBD 105

5.10 Compliance of Generic Goals with FMBD 106

5.11 CMMI process areas and their compliance level 108

vi

Abstract

Currently, software systems are incorporating more and more functionalities, which

lead to an ever increasing complexity. The growing complexity is a major challenge

for the development of software systems. A systematic approach is required for

the development of such software systems. Formal methods have shown significant

benefits for the development of such software systems. Particularly, formal meth-

ods are well known for requirement analysis, correctness preserving techniques,

verification and validation aspects in software development. These development

aspects are viewed as product quality; generally concerned with product features.

On the other hand there is process quality which is a collection of best practices.

The best practices have been proposed by various process models such as ISO,

Six-Sigma, CMMI. These process models have benefited the development of pre-

dictable software systems in organizations. Generally, product and process quality

goals are achieved independently for the development of software systems. In this

research, we propose a unique approach to integrate these two aspects of software

system quality improvements.

This research is based on the foundations of formal methods such as software spec-

ification, refinement, enhancement, testing and the process improvement model

CMMI. We extend the existing foundations of formal methods as follows. In our

consideration a software specification is considered as a consolidation of observ-

able and internal behaviors. First, an abstract description of a software system

is written as observable behaviors. Further, design details are added as inter-

nal behaviors. The syntax and semantics of the proposed specification formalism

are described with an integrated structural and behavioral specification language

CSP-CASL. The approach of software refinement is extended as constructive re-

finement. It allows existing refinement techniques on observable behaviors. The

internal behaviors are refined by describing software design decisions as addition

of internal behaviors. The complete refinement framework is elaborated for a

CSP-CASL specification formalism.

Further, we formally define a concept of software enhancement within the frame-

work of our proposed specification technique. In this consideration, a software

enhancement is a process of adding new functional or performance requirements

to the existing software system by semantically preserving its existing function-

alities. The complete understanding of the software enhancement is described

with the process algebraic and algebraic specification language, CSP-CASL. Sub-

sequently, the syntax of CSP-CASL is extended to incorporate the failures of a

specifying system. This extended CSP-CASL syntax is used to generate positive as

well as negative test cases. This approach of test generation guarantees the ex-

pected as well as restricted properties of software system are in test cases. Further,

testing terminologies are described for the CSP-CASL specification and explored in

software refinement and enhancement. The given definitions are the fundamental

aspects in the proposal of our software product and process quality framework.

The proposed formalisms and the other properties of formal methods are used

to propose a framework of CMMI process model compliance. The core aspects

of the CMMI process model are the process areas. A process area is a collection

of best practices in a selected area. The CMMI compliance grading scheme is

developed to evaluate the level of compliance with formal method based software

development. A compliance algorithm is proposed to evaluate the process model

through the evaluation of its components. The CMMI process areas are evaluated

with a proposed algorithm. The compliance evaluation result is presented in the

thesis. The complete framework is supported with a developed tool. This tool

allows us to practically support our theoretical concepts. As a proof of concept,

we explore our proposed framework for a medical instrument development and

maintenance.

In this thesis, the understanding of formal methods applicability is extended to

the organizational process model, CMMI. The complete framework is presented for

a formal specification language, CSP-CASL and process model, CMMI. However,

similar result can be achieved with other formal methods for the compliance of

other process models. This research is a starting point of process model compliance

with formal methods. This has significant potential to automate the achievement

of process and product quality goals of software systems.

Zusammenfassung

Softwaresysteme vereinen heutzutage mehr und mehr Funktionen, was zu einer

stetig steigenden Komplexität der Anwendungen führt. Diese wachsende Kom-

plexität stellt eine der Hauptherausforderungen für Entwicklung, Test und Wartung

von Softwaresystemen dar. Formale Methoden haben gezeigt, dass sie bei En-

twicklung, Test und Wartung komplex Software erhebliche Vorteile mit sich brin-

gen. Insbesondere in der Anforderungsanalyse und Qualitätsprüfung sind formale

Methoden bereits ein etabliertes Werkzeug. Diese Bereiche der Softwareentwick-

lung betreffen die Qualität der Produktfunktionen. Ein weiteres Einsatzgebiet ist

die Prozessqualität im Sinne einer Sammlung von Best Practices. Vorgehens-

modelle wie ISO, Six-Sigma oder CMMI sind Leitfäden zur Optimierung von

Geschäftsprozessen. Durch ihren Einsatz profitieren Organisationen, die kom-

plexe Software entwickeln. In der Softwareentwicklung können die Ziele in den

Einsatzgebieten Softwarequalität und Prozessqualität grundsätzlich unabhängig

voneinander realisiert werden. Diese Arbeit soll jedoch die Möglichkeiten aufzeigen,

wie mittels formaler Methoden das Vorgehen zur Verbesserung der Produktqualität

und das Vorgehen zur Verbesserung der Prozessqualität integriert werden können.

Der hierfür dargestellte Ansatz ist ein individuelles Framework zur Verbesserung

der Produkt und Prozessqualität unter Einsatz von formalen Methoden.

Das beschriebene Framework basiert auf formalen Methoden und einem Prozes-

soptimierungsmodell. Das Framework unterscheidet in der Software-Spezifikation

zwischen sichtbarem und internem Verhalten. Diese Unterscheidung erlaubt auf

pragmatische Weise eine Unterteilung in Grob und Fein Spezifikation. Der formale

Aufbau der Spezifikation folgt der erweiterten und angepassten Syntax und Seman-

tik der formalen Sprache CSP-CASL. Das Vorgehen der Softwarespezifikationsver-

feinerung wird um eine konstruktive Komponente erweitert. Bei dieser Herange-

hensweise werden bestehende Techniken der Softwarespezifikationsverfeinerung auf

sichtbares Verhalten der Software angewendet. Das interne Verhalten der Software

wird optimiert durch die Beschreibung des Software Designs. Das gesamte Soft-

warespezifikationsverfeinerung Framework basiert auf den Formalismen von CSP-

CASL. Das Framework beinhaltet darüber hinaus ein Konzept zur funktionalen

Erweiterung von Software. Die Erweiterung von Software als ein Prozess betra-

chtet, in dessen Verlauf neue Anforderungen an Funktionen oder Leistungsfähigkeit

in einer Software implementiert werden ohne die bestehenden Funktionen

einzuschränken. Das Erweiterungs-Konzept wird formal ebenfalls beschrieben

durch CSP-CASL.

Die erweiterte CSP-CASL Syntax wird dazu verwendet, sowohl positive als auch

negative Testfälle zu generieren. Auf diese Weise wird sichergestellt, dass er-

wartetes und unerwünschtes Verhalten in den Testfällen enthalten ist. Ferner wer-

den Testterminologien für die CSP-CASL Spezifikation beschrieben, welche Soft-

wareverfeinerungen und Erweiterungen untersuchen. Anschließend wird die for-

male Definition von Softwareeigenschaften verwendet, um die Wiederverwend-

barkeit von Testbestandteilen zu überprüfen. Diese Definitionen beschreiben die

grundlegenden Eigenschaften im vorgeschlagenen Produkt und Prozessqualitäts-

Framework. Ferner wird die Möglichkeit untersucht, die vorgeschlagenen Formal-

ismus für die Entwicklung eines CMMI Prozesskonformen Frameworks zu verwen-

den. Dabei werden die Kernaspekte des CMMI Prozessmodells berücksichtigt. Das

CMMI Compliance Bewertungssystem wurde entwickelt, um den Grad der Konfor-

mität der eingesetzten Softwareentwicklungsmethoden mit formalen Methoden zu

bewerten. Ein generischer Algorithmus wird vorgeschlagen, um das Compliance

Level der CMMI Prozessfelder und ihrer Komponenten zu ermitteln. Das Frame-

work wird durch ein Tool unterstützt. Dieses Tool erlaubt es, die theoretischen

Aspekte der vorgeschlagenen Theoreme praktisch zu unterstützen. Die Verwend-

barkeit des vorgeschlagenen Frameworks wird an einem Anwendungsbeispiel aus

der Medizintechnik gezeigt.

Im Rahmen dieser Arbeit wird das Verständnis der Anwendung von formalen

Methoden auf das Organisatorische Prozessmodell CMMI erweitert. Das kom-

plette Framework wird repräsentiert durch die formale Spezifikationssprache CSP-

CASL sowie der Prozessmodell CMMI. Ähnliche Ergebnisse können auch mit an-

deren formalen Methoden und Prozessverbesserungsmodellen erzielt werden. Diese

Forschungsarbeit dagegen bildet einen Startpunkt für eine Prozessmodellkonfor-

mität mit einen auf formalen Methoden basierenden Softwaresystems sowie deren

Entwicklung und Wartung.

Chapter 1

Introduction

The ubiquitous presence of software systems requires incorporation of more and

more functionalities which results in ever increasing complexities. The develop-

ment and maintenance of such complex software systems pose new challenges for

the software industries. Generally, a systematic approach is required to manage

the complexity. This systematic approach is referred to as software engineering.

More precisely, software engineering is a systematic, disciplined, quantifiable ap-

proach to the development, operation, and maintenance of a software system [1].

Initially, the life span of software engineering was restricted to software system

development and maintenance. However, the growing complexity and size of the

software system requires software engineering at an organizational level. To man-

age the software system at the organizational level, various process improvement

models have been investigated. Some of these process improvement models are

CMMI [2], ISO 9000 [3], Six Sigma [4] etc.

The advantages of software engineering and process improvement models have

been realized for a long time. But they have not become the de facto standard for

the development of software systems. Generally, software engineering and process

improvement models are neglected when other constraints (such as time, cost etc.)

become bottle necks. The software industry faces a serious challenge to focus on

software engineering and process improvement models for the software product

development.

In this thesis, we explore the possibilities of necessary integration of formal meth-

ods, software engineering and a process improvement model. The complete ap-

proach is investigated as a framework of software product and process quality

1

Chapter 1. Introduction 2

improvement. Product quality improvement is concerned with the wellness of

capturing requirement, developing design, implementation and maintenance of

software products. Software process quality is concerned with the monitoring of

the software engineering related process at the product level as well as at the or-

ganization level. In this chapter, we first lay out the core issues associated with

software system development which concern our thesis. Subsequently, this chapter

presents an overview of the research as well as the scope and the objective of the

thesis. The chapter ends by presenting thesis guidelines and by providing certain

details of the subsequent chapters.

1.1 Software description

Inception of a software system starts by writing a precise description of software

system behaviors. The description of the software system is referred to as a soft-

ware specification or description. The complexity and variability of the software

system bring challenges for the selection of a software specification notion. There

are various notions of the software description but each of them possesses, along

with good features, some additional constraints. In general, we can categorize the

software specification notions as follows:

• Natural language based software description

• Graphical notation based software description

• Formal notation based software description

The presence of natural languages [5] has precedence for the description of the

software systems over any other notions of software description. A natural lan-

guage based software specification has the possibility of ambiguous interpretation,

particularly when it is interpreted by many people. However, this is one of the

most preferred techniques of software specification. Various research articles have

shown that most errors in software development are due to the misinterpretation

of software specifications [1]. A description might be interpreted differently if it is

not written with precise semantics.

Chapter 1. Introduction 3

Graphical notation or formal notation based specification approaches have been

developed with a concise set of rules. These rules are used to describe and inter-

pret the requirements of the software system. There have been many approaches

to graphical notation based software description widely known as graphical mod-

eling languages [1] [6]. In this approach, Unified Modeling Language (UML) has

made a significant contribution to the description and development of software

systems. Today, UML is one of the preferred standard when it comes to specifi-

cation, construction and documentation of a software intensive system. In 1997,

UML has been proposed as a standard by Object Management Group (OMG)

[7]. UML is known as a general purpose modeling language which has notions to

specify, visualize, construct and document the artifacts of a software system under

development. UML is not a development method by itself. However, it was de-

signed to be compatible with object-oriented approaches of software development.

The compatibility of UML with only object oriented approaches to software de-

velopment restricts its applicability with other development methodologies. The

graphical notation of UML semantics is imprecise which might lead to a subjective

interpretation. This is one of the major problems which restricts the applicability

of UML for automation of software development aspects.

The formal notation based software description is well-defined, complete, con-

sistent, unambiguous and precise. Formal methods are based on mathematical

notations which are key aspects for unambiguous syntax and semantics. Some

formal methods are Z, VDM, CSP, CCS, etc. The formal methods have been

considered to be very effective in the representation of a software description [8].

The increasing complexity of software systems demands a well-defined, complete,

consistent, unambiguous and precise description. These demands are very well

supported with formal method based software description. The formal method

based description is referred to as formal specification. A formal specification al-

lows describing a software system’s behavior at various levels of abstraction. Since

the formal specification has precise syntax and semantics it should allow to formu-

late a concrete relation between an abstract specification and its implementation.

This relationship is investigated in various techniques such as refinement, rewrite

rules and program transformations [9] [10] . In addition to this, formal methods

can lead to an automatic verification and validation of formally developed soft-

ware systems. Although a complete formal verification of a large complex system

is impractical, formal methods are applied to various aspects or properties of large

Chapter 1. Introduction 4

systems. More commonly, they are applied to the detailed specification, design,

and verification of critical parts of large systems.

Formal methods have shown significant advantages, but their industrial uses are

limited to certain domains. In this regard, formal methods are open for further

research. In this thesis, we extend the understanding of formal methods in two

directions. First, we present a pragmatic approach in the formalism of software

systems. Second, we extend the understanding of formal methods to process im-

provement models. We start by exploring a distinct approach to software specifi-

cation in order to tackle the pragmatic needs of software systems. We present an

algebraic and process algebraic specification based formalism approach. In further

sections, we give a general overview of the proposed approach and compare it with

the existing research work.

1.2 Software evolution

In our consideration, the evolution of a software system is categorized in two types.

In the first type of software evolution, the software system is stepwise developed

by fixing a design decision with the consideration of its implementation. This type

of software evolution is referred to as vertical software evolution. The second type

of software evolution is a software system upgrade with new functionalities. The

approach of adding new functionalities to an existing software system is referred to

as horizontal evolution. In horizontal evolution, the existing software system func-

tionalities are preserved, and new functionalities are added. Figure 1.1 presents

a graphical view where software refinement and software enhancement are used as

synonyms of vertical and horizontal evolutions, respectively.

Software evolution is not a new terminology for software industries. The impor-

tance of the software evolution has been realized since the proposal of software

development life-cycle waterfall model [11]. In this software development life-

cycle, the vertical evolution is considered to be part of the software development

process. The horizontal evolution is taken into account after the software system

deployment is finished. This means, the waterfall model was not flexible enough to

handle the requirement changes in the middle of the software development stage.

However, current demand of software systems has proved that software evolution

Chapter 1. Introduction 5

Software system
specification

Software system
implementation

Enhanced software
system specification

Refinement steps (Vertical evolution)

Enhancement steps (Horizontal evolution)

Figure 1.1: Software system, Vertical and Horizontal evolution

is an integral part of any software system. At any stage of a software develop-

ment life-cycle, software evolution support is required. There have been various

methodologies to support such demands. Some of the well known methodologies

are Agile software development, Model Driven Development etc.

The software enhancement has been studied as a product line [12] or as a compo-

nent based development [13]. In a product line, software systems are developed

from a common managed set of features from a specific domain of an industry.

The strength of a product line is realized through time to market, cost, produc-

tivity, quality etc. Component based software development is initiated from a

decomposition of software systems into functional and logical components. The

decomposition is carried out with a consideration of reusability [13]. A prod-

uct line and the component based development share the motto of reusability of

software artifacts. There have been various research enhancements regarding the

reusability of software artifacts such as [12][13]. But, the growing complexities

and requirements of software systems demand new techniques to improve software

products.

A systematic approach to vertical and horizontal evolutions is generally supported

by graphical notation based specifications or by formal notation based specifica-

tions. The graphical notation based specification methodology is a semi-formal

approach which restricts the possibilities of automation in vertical and horizontal

evolution. Formal notation based software evolution has been investigated since

Chapter 1. Introduction 6

the formal methods had been proposed. Various approaches to vertical software

evolution such as software refinement [9], rewriting [14], program transformation

[14] have been proposed. These approaches have made a significant contribution

to the formalization of vertical software evolution. Until now most of the re-

search has been carried out for vertical software evolution. Formal method based

horizontal software evolution is still at the initial level of research. The existing

scientific contributions to the software evolution are given in the further section

of the thesis.

The challenge of software artifact reusability remains a major concern for software

industries. Currently, software industries have invested a considerable amount

of time and effort to develop software as well as software components, test cases,

verification methods, validation methods and software correctness preserving tech-

niques. Standard approach to artifact reusability is not a routine practice of soft-

ware industries. Industries are always looking for a way to reuse existing software

artifact from one application to another as well as within one application. In this

thesis, we propose a formal specification, CSP-CASL based formalism for software

evolution. Furthermore, software artifact reusability is explored with the proposed

formalism of software evolution. The approach is elaborated with software evolu-

tion tool support. This tool allows one to understand the reusability of software

artifacts during the software evolution.

1.3 Software quality

As software systems become more and more pervasive, there has been a growing

concern about the software quality. The importance of the software quality has a

different value for different types of software systems. In safety critical systems,

there is no compromise on software quality, while in other applications, the soft-

ware quality might be viewed differently. The definition of software quality is

given as follows in IEEE Standard; software quality is (1) the degree to which

a system, component, or process meets specified requirements. (2) The degree to

which a system, component, or process meets customer or user needs or expec-

tations. Software quality measures the wellness of design, implementation and

maintenance properties of the software product. The quality of conformance is

concerned with the monitoring of the software engineering process and with the

methods used to ensure quality. The quality of design measures the validity of

Chapter 1. Introduction 7

design and the requirements for the development of a software system. Gener-

ally, a software product life cycle is very long; unlike the life cycle of mechanical

products where products are complete once they roll out from the assembly line.

A software product lives, grows and evolves during its life cycle. In this regard,

software systems require both product and process quality measurements which

can be used to validate the software system’s life cycle. In general, the software

system quality management approach can be divided into the following categories:

• Software product quality

• Software process quality

This consideration has already been integrated into the most renowned software

quality model known as the basis for all subsequent models. This model was pre-

sented by Jim Mcall [15]. This model has primarily aimed at software development

and the software development process. This model brings users and developers to-

gether by focusing on a number of software quality factors that reflect both the

view of user and the priorities of a developer. A graphical view of this model is

presented in the Figure 1.2. The terms used are very generic in nature and are

not elaborated in this context.

Currently, the importance of software quality is growing due to increasing pen-

etration of the software systems. Software system functionality and its quality

are the deciding parameters for existence of any software product. Inadequate

software quality has been a major deciding factor for the failure of many software

systems. The quality of a software system is evaluated via validation techniques.

The validation process checks whether a system behaves as expected. To validate

a software system, the desired behavior must be known. Two complementary val-

idation techniques are testing and verification. The testing and the verification

techniques are used to increase the level of confidence in the correct functioning

of systems. Verification aims at proving properties about the system and test-

ing is performed by exercising on the real implementation. Verification can give

certainty about satisfaction of a required property, but this certainty only applies

to the model of the system: any verification is only as good as the validity of

the system model [16]. Testing is based on observing only a small subset of all

possible instances of system behavior and is usually incomplete. Testing can show

Chapter 1. Introduction 8

Product
transition

Product
operations

Product
revision

Figure 1.2: Prominent software quality model

the presence of errors but not their absence [17]. The main prerequisite for testing

and verification is the description of the expected behavior of the software system.

Formal methods have shown significant benefits in the testing and verification

techniques of the software systems development [18] [19] [20]. However, formal

methods are not completely understood for process quality. In this thesis, we

consider process quality as a compliance of an organizational process model [2],

CMMI. Our aim is to develop a formal method based product and process qual-

ity framework as shown in figure 1.3. The framework proposes to start formal

method based software system development. Furthermore, software development,

product quality and process quality should be governed with formal method based

techniques. In brief, product development, product quality and process quality

are managed with a single base of formal methods.

Chapter 1. Introduction 9

Software system description

Product
quality

Process
quality

Software system implementation

Formal methods

Product
development

Figure 1.3: Formal methods, Product and Process Quality

The proposed process and product quality framework is based on the formalism of

software specification, software refinement and software enhancement. By giving

formal definition to these concepts, we develop a product and process quality

achievement framework for the development and maintenance of software systems.

As software process quality, we analyze the compliance of the CMMI [2] process

improvement model. CMMI (Capability Maturity Model Integration) is a well-

established process improvement model which has proved its benefits in hundreds

of companies and in thousands of projects. This model, however, does not enforce

or suggest a specific approach to the product development processes. However, for

the compliance of a process model systematic approach is required. Our proposal

to the systematic approach is formal methods based system development and

maintenance. Figure 1.3 shows a conceptual presence of formal methods into the

product and process quality of a software system. This conceptual representation

shows that formal methods are introduced as soon as requirements are drafted.

They are present throughout the life cycle of a software system. In this diagram,

the life cycle of a software system is represented with product quality, process

quality and product development. However, it is not clear in which way the two

aspects, i.e. a process quality and a product quality, influence each other. In

this research, we discuss the pros and cons of formal method based development

Chapter 1. Introduction 10

into the compliance of CMMI practices within an organization. Our integrated

approach of formal method based development in a CMMI environment can be

used as a guide to achieve a sustainable process and product quality.

1.4 About this thesis

The main aim of this thesis is to develop a product and a process quality im-

provement framework for the development and maintenance of software systems.

Particularly, this framework will be based on the uses of formal methods for the

software development. First, the research proposes a distinct approach to software

specification. This specification approach is further evaluated into the software sys-

tems life cycle. The software system life-cycle is concerned with software life-cycle

(refinement) as well as software system family development (enhancement). The

proposed framework is developed with an algebraic and process algebraic specifi-

cation language CSP-CASL [21]. In the further subsections we will give an overview

of the proposed product and process quality improvement framework.

1.4.1 Scope and objectives

Software product quality is determined by processes used to evolve and to de-

velop it [2]. However, in many situations, development processes are given lower

priority due to unavoidable constraints such as time, budget, complexity etc. In

our research we aim to develop a framework for product and process quality of a

software system development. Here, we briefly explain the scope and objectives

of our research. Specifically, we elaborate the boundaries and the accomplishment

plans of our research.

Foundation of this research is built on the formal methods. Formal methods have

contributed significantly to the development and quality improvements of software

systems. However, they have not been significantly explored for the possibilities to

improve the software system process quality. Particularly, in this research we ex-

plore the possibilities of formal methods into software product and process quality

improvement. We extend understanding of a software specification as an integra-

tion of observable and internal specifications. Formulation of this approach is pro-

posed with a syntactic extension to the existing specification language, CSP-CASL .

Chapter 1. Introduction 11

This specification formalism is based on an integrated language of process alge-

bra and algebraic specification language. The syntax of CSP-CASL specification

language is also extended for the specification of failures of software systems.

Further, the proposed specification formalism is explored for the syntactic and

semantic definition of software refinement and enhancement. The extended spec-

ification formalism is evaluated for a distinct approach of test case generation.

The possibilities of positive and negative test case generation are explored within

our proposed formalism. A test evaluation algorithm is proposed for a CSP-CASL

specification formalism. The generated test case properties are further explored

for software refinement and enhancement. Our approach of test evaluation is re-

stricted to the specification itself. The test evaluation properties are explored on

software specification, its refinement and enhancement. The test generation, evalu-

ation, and reusability of test cases in the specification refinement and enhancement

contribute significantly to the product quality framework.

As a process quality improvement framework, the compliance of a process im-

provement model is evaluated. Particularly, the properties of formal methods are

investigated for process model compliance. As a process model we have selected

CMMI which has been quite successful for the development of software systems.

To evaluate the compliance with formal methods based software development, a

compliance grading scheme is proposed. The grading scheme is further applied

into the proposed compliance algorithm to evaluate the extend of CMMI process

area compliance. Our proposed grading schemes assist into standard CMMI com-

pliance evaluation methodology SCAPMI (Standard CMMI Appraisal Method for

Process Improvement) A/B/C [22] to decide the level of CMMI compliance to an

organization. These grading schemes are not an alternative to the CMMI SCAMPI

methods, which are standard approach for an evaluation of CMMI compliance in

an organization.

The proposed process and product quality improvement framework is supported

with a developed tool. This tool helps to keep track on many aspects of software

development which forms the basis for the quality improvement framework. As

a proof of concept, an industrial case study is developed and evaluated within

our proposed framework. However, the complete implementation of CMMI process

requires many projects which is out of the scope of our current research. At this

stage, we can only elucidate the idea of combining process and product quality

improvement with our proposed quality framework.

Chapter 1. Introduction 12

1.4.2 Thesis guideline

This thesis is structured as follows. Chapter 2 introduces the terminologies adapted

from various literature such as publications and books. The adapted terminolo-

gies are briefly described within the scope of this thesis. This chapter starts with

general details about formal methods and their categories. Then syntax and se-

mantics of the algebraic specification language CASL and the process algebra CSP

are described within the scope of required details. Further, some process models

are described which are used in industries for the development of software systems

with a consistent and controlled approach. Formal methods and process mod-

els are subsequently co-related to product quality factors. The remaining part of

chapter 2 presents an overview of related research work.

Chapters 3, 4 and 5 represent the main contribution of this thesis. Parts of these

chapters have already been published in scientific articles and they all are listed

into the our publication list. Chapter 3 introduces the foundational part of this

thesis by giving details of our proposed terminologies of software specification,

refinement and enhancement. These terminologies are defined based on the spec-

ification formalism of process algebraic and algebraic specification language. We

introduce a distinct approach to software specification, which is based on observ-

able and internal behavior of a software system. On the basis of this specification,

the formalism of software refinement and software enhancement is defined. The

given definitions are supported with a case study which describes the applicability

of the given definitions.

Chapter four presents a product quality framework. Particularly, in this chapter,

testing methodologies for the CSP-CASL based specification formalism are inves-

tigated. Our previously defined formalisms of software specification, software re-

finement and software enhancement are used to propose testing terminologies in

the vertical and horizontal software development paradigm. Test generation and

evaluation are supported by a tool, which is developed to support a formal method

based product quality framework. Furthermore, this tool also provides a basis for

process model compliance as will be discussed in the upcoming chapter.

Chapter five presents a process model compliance framework which is one of the

very important achievement of this research work. Particularly, the CMMI process

model is elaborated and some basic definitions are given to measure the compliance

level with the formal method based product development. The complete details

Chapter 1. Introduction 13

of CMMI process compliance with formal method are presented. The compliance

algorithm is presented which helps to evaluate compliance level of CMMI process

areas, specific goals and specific practices.

Chapter six presents the results and the prospective of our research. After this

chapter, the thesis is concluded with references and other obligatory sections.

1.4.3 Case study: MED overview

To demonstrate our approach, we worked with an industrial partner for design,

development and maintenance of a Medical Embedded Device (MED). The MED

is a monitoring and control unit of a mechanical heart support system developed

by our industrial partner. An overview of the heart supporting device is shown

in Figure 1.4. Particularly, this diagram represents a broad view of this device

which includes MED, as a controlling and monitoring unit. The functionalities of

this device are controlled by a control unit which is referred to as Controller and

is shown at the lower part of the Figure 1.4. This part of the MED is designed to

monitor and control the human heart depending on the health of the patient. The

scope of our project was restricted with the configuration and monitoring of MED

by different mechanisms. Being a safety critical system, the importance of data

should be precisely considered before any data related activities are carried out.

Data integrity is a major concern, particularly for the transmission of patient’s

data. To achieve the above requirements of this safety critical system, we propose

to use a formal method to design and develop this Medical Embedded Device.

We demonstrate our research activities with a small part of the MED, which is

particularly concerned with the communication interface of the MED with other

devices. The function of the communication interface is divided into two parts:

configuration and monitoring. Being a safety critical system, access and manipu-

lation of patient’s data must be handled with appropriate care. With this consid-

eration, the first version, (Basic MED) provided a configuration and monitoring

facility with a serial interface of the computer. The Basic MED is developed in

such a way that patient’s data is sent with appropriate encryption to the respec-

tive departments (such as hospitals, monitoring centers, doctors) for the analysis,

monitoring and controlling of a patient’s health.

Chapter 1. Introduction 14

Heart
Supporting System

Controller
(Embedded Device)

Backup Battery

Main Battery

Figure 1.4: Overview of heart supporting device

Basic MED: To ensure data integrity, a customized encryption algorithm must

be developed for the exchange of patient’s data. Any communication with the

MED should start with an acknowledgment of a reliable connection with connected

device. The developed communication protocol should assure that patient’s data

is always transmitted in an encrypted format. In this device, communication with

any computer should only be possible through a serial interface.

Enhanced MED: However, technological developments and patient’s needs have

been incorporated with the evolution of MEDs. In the first advanced version of

the Enhanced MED, various types of connections were proposed. Particularly, due

to the advancement in web technologies, the Enhanced MED was incorporated

with additional connection possibilities of ethernet and dial up connections. A

brief overview of the MED is shown in the Figure 1.5.

In the Basic MED, communication was only possible via a serial interface. This

means, the patient had to be in hospital for the controlling and monitoring of her

or his health. This restriction was waved off, in the Enhanced MED, by incor-

poration of different connection mechanisms. Figure 1.5 shows an architectural

overview of MED. This self-explanatory figure shows details of MED communica-

tion possibilities. In further chapters we shall elaborate the development of this

MED using our proposed framework.

Chapter 1. Introduction 15

Hospital

Monitoring
center

Doctors

Communication
mechanism

MED

*Medical Embedded Device (Med)

MED

Figure 1.5: Medical Embedded Device (MED) architecture

Chapter 2

Preliminaries and related work

Research work is always based on existing foundational researches. However, the

citation of all related work is nearly impossible. This chapter includes references

to the existing researches which are related to the context of this thesis. In the

first part of this chapter; the contributions of formal methods to the software engi-

neering domain is elaborated. Particularly, the syntax and semantics of algebraic

and process algebraic specification languages are briefly explained.

Further, some known process improvement models are briefly discussed. This

part of the chapter is concluded by conceptualizing a relation between formal

method and the process improvement model. A pictorial view of this relationship

is presented to give a general understanding of this concept. For the next part of

this chapter, we describe related research work and their state of art. Especially,

software refinement, software enhancement, software product and process quality

related researches are elaborated within the confinement of this research. Addi-

tional details of related research work are cited whenever they are used within

thesis.

2.1 Formal methods

Formal methods have been a focus of software engineering research for many years

and they have established advantages in various stages of the software development

life cycle. Formal methods are based on mathematical techniques of specifying and

verifying software systems. They are better known for specifying complexity of

16

Chapter 2. Preliminaries and related work 17

software systems in a well-defined, complete, consistent, precise and unambigu-

ous manner. In particular, formal methods have been applied at various stages

of software development life cycle. Generally, they are well known for specifica-

tion, development, verification, semi-automatic and automatic proofs. The uses

of formal methods can be categorized into three levels: [8][23]

• Level 0 - Formal specification

• Level 1 - Formal development and formal verification

• Level 2 - Theorem proving

A formal specification of a software system is expressed in a language made of three

components: rules for determining the grammatical well-formedness of sentences

(syntax), rules for interpreting sentences in a precise, meaningful way within the

domain considered (semantics) and rules for inferring useful information from the

specification (proofs) [1]. In specific terms, a formal specification is a mathematical

description of the software system that can be used to develop an implementation.

This is fundamental (level 0) use of the formal method. At level 1, the formal

method is used for the formal verification techniques to demonstrate that system

design is correct with respect to the given formal specification. A formal develop-

ment of a software system starts from initial formal specification (level 0) and all

future design steps until the implementation are validated with the formal methods

based techniques (level 1 and 2).

The formal methods can be classified according to their approach of software sys-

tem specifications. This research related approaches to software specifications are

algebraic specification [7], model-based specification and process algebraic spec-

ification. In an algebraic specification approach, first operations of specifying

system are identified; further their behaviors are captured by describing relation-

ships among these operations. The description of software system behaviors are

referred to as axioms. Examples of algebraic specification languages are Larch,

Obj, CASL.

Another approach of specification is model-based specification, which is often con-

sidered to be a more concise specification approach. A model-based specification

provides a model of system’s state as a system’s state model. The state model is

Chapter 2. Preliminaries and related work 18

constructed using mathematical entities such as sets and functions. System’s op-

erations are defined in terms of how they modify the state model: pre-conditions

define valid input and the start state for an operation and post-condition defines

output and state of system after operation execution. Some widely used notions for

developing model based specifications[24] are VDM[25], Z[8]. The formal method

of this group is further divided for the specification of sequential and concurrent

systems. Process algebra is a formal description technique for complex software

systems, especially those involving communicating, concurrently executing com-

ponents. Well known examples of process algebra are CSP [8], CCS [23], ACP[26] ,

and LOTOS [27]. This thesis evolves around the features of algebraic specification

language CASL and process algebra CSP. This combined language has been found

most suitable for elaboration of our research concept. Particularly, this combined

language gives opportunity to investigate our research in the broad spectrum of

formal methods from data type development to the concurrent process evaluations.

2.1.1 CASL, Common Algebraic Specification Language

The specification language CASL is developed under Common Framework Ini-

tiative (CoFI) for algebraic specification and development of software. CASL is

consolidation of previous works on the design of algebraic specification languages

[28][29][30]. This specification language is well suited for writing formal specifica-

tion of functional requirements and modular software system design.

The CASL provides basic specifications, structured specifications, architectural

specification and library based specifications to describe software systems into

various layers. The CASL basic specification allows declaration of sorts, oper-

ations, predicates and axioms as the first order formula. Some of the CASL

keywords used for writing basic specification are sort/sorts (data type), op/ops

(operation), pred/preds (predicate), var/vars(variable). These symbols are self-

explanatory, however they are explained in the later phases of the thesis whenever

they are referenced.

A CASL structured specification is a combination of basic specifications into a

larger specification in a hierarchical and modular fashion. It mainly allows trans-

lation (keyword with), reduction (keyword hide), union (keyword and) and ex-

tension (keyword then) of specifications. An architectural specification allows

Chapter 2. Preliminaries and related work 19

systems to be developed as reusable components by describing the way mod-

ules/components are to be combined. A library based specification allows easy

distribution and reusability of components. A detailed description of algebraic

specification language CASL and its semantics can be found in CASL User Man-

ual [28] and CASL Reference Manual [29].

Like any algebraic specification language, a CASL specification SP is denoted as

a tuple of (Signature Σ, Axioms E). The CASL many sorted signature Σ is tuple

of (S, TF, PF, P), where:

• S is set of sorts

• TFw,s is total function, with profile over sequence of arguments w ∈ S∗(finite)
and result sort s ∈ S

• PFw,s is partial function, with profile over sequence of arguments w ∈ S∗ and

result sort s ∈ S. A function without argument is considered as a constant

symbol

• Pw is a predicate symbol, with profile over sequence of arguments w ∈ S∗

The semantics of CASL basic and structural specification are class of models over

the signature which satisfies all the specified axioms. The class of models of

specification is a subset of Mod[Σ] such that it satisfies all the axioms E. For a

given many-sorted signature Σ, a many-sorted model is interpreted by assigning

respective values to each symbols. For a signature Σ; a many sorted model M ∈
Mod[Σ] has the following interpretation:

• non empty carrier set sM to each s ∈ S

• a total function (f)M : wM → sM for each function symbol f ∈ TFw,s

• a partial function (f)M : wM → sM for each function symbol f ∈ PFw,s

• a predicate (p)M for each predicate symbol p ∈ Pw

A many sorted Σ homomorphism h : M → N is a family of functions h = (hs :

Ms → Ns)s∈S with the property such that all f ∈ TFw,s ∪ PFw,s and (a1, .., an) ∈
sM with fMw,s(a1, .., an) defined, we have

Chapter 2. Preliminaries and related work 20

hs((fw,s)
M(a1, .., an)) = (fw,s)

N(hs1(a1), .., hs1(an)))

and for all P ∈ Pw, and (a1, .., an) ∈ sM ,

(a1, .., an) ∈ (Pw)M implies (hs1(a1), .., hs1(an)) ∈ (Pw)N .

Let, σ : Σ → Σ′ be a many sorted signature morphism, M ′ be a Σ′ model. Then

the reduct M ′
|σ := M if M ′ is Σ model with

• sM := (σs(s))M
′

for all s ∈ S

• (f)M := (σF (f))M
′

for all f ∈ TFw,s ∪ PFw,s

• (p)M := (σp(p))M
′

for all p ∈ Pw

M |= ϕ holds for many sorted Σ model and a many sorted first order formula, iff

v ` ϕ for all variable valuations v into M [29].

The specification SP is referred to as consistent if models of SP are non-empty.

The specification language, CASL is developed for the specification of structural

properties of system; however dynamic properties are frequently required for the

complete specification of any system. This limitation of CASL is overcome by the

integration of CASL with another specification languages such as CCS and CSP

[31]. The integrated specification language well suited for a specification of static

and dynamic behaviors of specifying systems. In the further subsections, we give

a brief overview of process algebra CSP and its integration with CASL.

2.1.2 CSP, Communicating Sequential Process

CSP is action based formalism for describing and analyzing reactive systems. It

provides a set of mathematical symbols to model complexities of reactive systems

with clarity and preciseness. Action based formalism allows direct communication

among components of the system. CSP defines this direct communication as events

of the system.

In CSP, an object (e → P), is described with an event e and process P , which

states that the object first engages in an event e and then behaves like process

P . The operator → is referred to as prefixing operator which leads to a concept

of recursion. For example, the process P = (e → P) will be continuously willing

Chapter 2. Preliminaries and related work 21

to participate in the event e. Two primitive CSP processes are STOP and SKIP,

where STOP is a process which never engages in any event and SKIP is a process

which does nothing but terminates successfully. The process P = e → SKIP ,

offers the communication e and then behaves like SKIP, hence it terminates suc-

cessfully.

Table 2.1: CSP syntax

P := STOP no event is accepted
SKIP successful termination
e → P prefixing
?x:X → P prefix choice
P [] P external choice
P |~| P nondeterministic choice
P ||| P interleaving
P |{X}| P interface parallel
P \ X hiding
P ; P sequential composition
if ϕ then P else P boolean conditional

CSP has a rich syntax for describing processes; some of the syntax which are used

in this thesis is given in the Table 2.1. It involves element e ∈ A as communica-

tion, subset X ⊆ A as synchronization set used in parallel operator or for hiding

certain communications, and unspecified formulae ϕ in its conditional statement.

Let X be a set of communication, then ?x : X → P (x) is a process which will

communicate any value x ∈ X and then behave like P (x). This choice operator

allows the choice among the values to be communicated. We can also write the

same with the channeled version as c?x→ P (x), to send a value over channel we

write as c!x→ P (x).

The process P ;Q is a process which behaves like P , once P terminates, then it

behaves like process Q. For an example: P = e → SKIP and Q = f → SKIP ,

then the process R = P ;Q is equivalent to e → f → SKIP . CSP supports two

types of choice operators; external and internal choices. The external choice op-

erator, P []Q offers the environment the choice of first communication of P and

Q, and then behaves accordingly. For example: ExChoice= (e → SKIP) []

(f → STOP), if the environment offers e, then process ExChoice will communi-

cate e and then successfully terminates. Otherwise, if environment offers f , the

ExChoice will communicate f and then deadlock. In the internal choice oper-

ator, choice is made in nondeterministic way. The interleaving form of parallel

combination is supported by CSP where processes don’t communicate with each

Chapter 2. Preliminaries and related work 22

other. Nondeterminism is an important feature for writing an abstract specifica-

tion of communicating systems. In nondeterminism a process can choose amongst

several alternatives for its further elaboration. Hiding of events is supported for

abstraction; this may also lead to nondeterminism. Further details are given in re-

spective examples whenever they are used. The syntax shown in Table 2.1 seems

self-elaborative, however additional details of these syntax can be found in various

research articles and books such as [32] [33]. CSP offers three distinct approaches

to semantics. These semantics are known as:

• algebraic semantics

• operational semantics

• denotational semantics

Algebraic semantics of CSP allow definition of the most abstract specification by a

set of algebraic laws. The operational semantics interpret a CSP program as tran-

sition diagrams. The denotational semantics map a language into abstract model.

Further denotational semantics of CSP is represented based on the behaviors such

as traces, failures and divergences [32]. Our research is based on the denotational

semantics, further we give a brief overview of this semantics.

CSP, trace model denotes a process according to its traces, which are set of se-

quence of communications in which a process is willing to engage. Let A∗X =

A∗ ∪ {s_ 〈X〉 |s ∈ A∗} be alphabet of communications, where X /∈ A represents

the event of successful termination. In the trace model each process is identified

by a set T ⊆ A∗X. This set must satisfy two healthiness conditions. One, T is

nonempty, it always contains empty set 〈〉 and two, T is prefix closed, e_f ∈ T
then e ∈ T . For a given process P, the traces of P is denoted by traces(P). In

Table 2.2, we report the semantics of a trace model T.

The trace model of CSP is not capable of distinguishing traces of internal choice

and external choice. To overcome such issues of trace model, stable failure model,

failure divergence model has been proposed. A failure of process is a pair (s,X),

that describes sets of communications X which a process can fail to accept after

execution of trace s. The set X is referred as refusal set. The process will not

perform any events of set X, no matter how long it is offered. More details of

these can be found in a very well-known book on CSP by Roscoe [32]. In the next

Chapter 2. Preliminaries and related work 23

Table 2.2: CSP semantics clauses for trace model

traces(STOP) {〈〉}
traces(SKIP) {〈〉 , 〈X〉}
traces(e → P) {〈〉} ∪ {〈e〉_ s|s ∈ traces(P)}
traces(?x:X → P) {〈〉} ∪ {〈e〉_ s|s ∈ traces(P [e/x]), e ∈ X}
traces(P [] Q) traces(P) ∪ traces(Q)
traces(P |~| Q) traces(P) ∪ traces(Q)
traces(P || Q) traces(P) ∩ traces(Q)
traces(P \ X) {s\X|s ∈ traces(P)}
traces(P ; Q) (traces(P)∩A∗)∪{s_t|s_ 〈X〉 s ∈ traces(P), t ∈

traces(Q)}
traces(if ϕ then P else Q) traces(P); if ϕ true, else traces(Q);

subsection we would like to give an overview of a process algebraic specification

language CSP-CASL.

2.1.3 CSP-CASL

CSP-CASL is a language which combines the description of structural and be-

havioral properties of software system. In a formal specification of a software

system, the processes are specified in the CSP and communications between these

processes are the data type values which are described in CASL. The syntax of

CSP-CASL is an integration of CASL and CSP syntax . This integrated syntax is

limited to the CASL basic and structural specification constructs. Syntactically,

a CSP-CASL specification Sp consists of a data part D, which is a CASL specifica-

tion, an (optional) channel part Ch to declare channels, which are typed according

to the data specification, and a process part P written in CSP, where CASL terms

are used as communications. Thus, a generic syntax of a CSP-CASL specification

is:

ccSpec Sp = data D channel Ch process P end

In the semantics of CSP-CASL , the loose semantic nature of CASL induces a

family of process denotation. The complete semantics of CSP-CASL is defined in

three steps. In the first step each channel is encoded in CASL. In the second

step CASL data types are evaluated, where families of processes are generated

according to the data model of CASL. In the last step the evaluation according to

the CSP takes place. The definition of language CSP-CASL supports all possible

Chapter 2. Preliminaries and related work 24

CSP semantics. However, in our thesis we consider denotational semantics of CSP.

More details of this formalism are described in further chapters of this thesis.

2.2 Process improvement model

Modern technology helps to solve computational demands of the software sys-

tem development. However, modern technology should be supported with various

other activities to complete the software system development lifecycle. The needs

of processes were realized from the early 70s, for the development of software sys-

tems with consistent qualities (such as reliability, efficiency, evolvability, ease of

use, etc.). It was realized that these qualities could only be injected in the soft-

ware systems by following a disciplined flow of activities. Afterwards, the software

process was recognized by researchers as a specific subject. Later, this field de-

served a special attention and dedicated scientific investigation to understand its

foundations, develop useful models, identify methods, provide tool supports etc.

The software process is a set of activities for specifying, designing, implementing

and testing software systems. At the initial step, software process focus was more

on the software engineering aspects. Software engineering focus was to produce

quality software products through quality processes. Some of the well accepted

software process models were proposed and further they evolved as de facto stan-

dard for the development of software products. Such software process models are

waterfall model, prototyping, evolutionary development, formal systems develop-

ment, reuse-based development etc. The proposed models were quite successful for

the development of manageable software products. Further, software products be-

came part of all industrial domains which made software products unmanageable

only with initially proposed software process models.

Software process models were further enhanced with a consideration of organiza-

tional activities of software product development. The process models which have

shown significant benefits are ISO, Six-sigma and CMM/CMMI. Initially ISO 9000

and Six-Sigma were applied to mechanical and electrical domains. Further, their

advantages were recognized by software industries. Initially, CMM/CMMI was

used in software industries and then was adopted by other industries. In the

further subsections, brief overviews of these models are described.

Chapter 2. Preliminaries and related work 25

2.2.1 ISO

ISO (International Organization for Standardization) ensures that managed prod-

ucts and services are safe, reliable and of good quality. In an ISO certified organi-

zation errors are minimized, which subsequently increases productivity. ISO has

proposed various types of process models for different industrial domains. A well-

known quality management system ISO 9001:2000 has a very significant proposal

to condense and harmonize the goal of common applications. The core aspects of

this quality management system are:

• Understand the requirements

• Establish processes to meet those requirements

• Provide resources to run the processes

• Monitor, control, and measure the processes

• Improve continuously based on the results

These are considered best quality programs for customer satisfaction, or rather

to meet customer expectations. Software organization related quality manage-

ment program, ISO/IEC 15504 is formal reference to SPICE (Software Process

Improvement and Capability dEtermination) model which was developed as an

international initiative in 1995. ISO 15504 is a specially designed framework for

assessment of processes. This contains a reference model of process dimension

and capability dimension. This standard defines an approach to conformity of

the reference model. ISO 15504 process dimension defines customer-supplier, en-

gineering, supporting, management, organization level processes. Capability level

defines the scales such as Optimizing process, Predictable process, Established

process, Managed process, Performed process and Incomplete process. SPICE

currently has a narrower focus on the development aspect of software. Most of the

features of ISO 15504 are included in CMMI process compliance model.

2.2.2 Six-Sigma

Six-Sigma is a business performance measurement strategy process, initially pro-

posed by Motorola and further enhanced and refined by GE [4]. Six-Sigma seeks

Chapter 2. Preliminaries and related work 26

to identify and remove the causes of defects and errors in product development.

Six-Sigma has recently been adopted by the software industry which is looking for

better software products within a controlled environment. Six-Sigma is different

from ISO 9001 and CMMI in the sense that, it focuses on the measurement of ex-

isting processes with a view to make them more efficient and effective. Six-Sigma

assumes that processes are in place and they are formally or informally applied

through the process. At its core, Six-Sigma is a way to measure processes and

then modify them to reduce the number of defects found in the produced prod-

ucts. In this aspect, Six-Sigma is different from ISO 9000 and CMMI family but

it brings a lot of mathematical measurement into the practice. Statistically, the

measurement of Six-Sigma means that your system will turn out only 3.4 defects

per million opportunities for defects. The main idea behind Six-Sigma is to man-

age process improvement quantitatively. Six-Sigma acts as an evaluation side to

a process improvement program which makes it fit together with other process

models such as ISO 9001, CMMI etc.

Six-Sigma uses two basic methodologies to problem solving. The first is referred to

as DMAIC. DMAIC is used to improve existing processes in an organization. The

other methodology is DFSS (Design for Six-Sigma). DFSS is used to design a new

process and introduce it into an organization in a way that it supports Six-Sigma

management techniques. There are five basic steps in the methodology known as

DMAIC:

• Define

• Measure

• Analyze

• Improve

• Control

It is a process improvement methodology that employs incremental process im-

provement using Six-Sigma techniques. DFSS methodology also has five steps:

define, measure, analyze, design, verify. These terms are known with their names

and more details can be found [4]. The CMMI process model compliance can assist

into seamless implementation of Six-Sigma process.

Chapter 2. Preliminaries and related work 27

2.2.3 CMM/CMMI

Capability Maturity Model (CMM) was better known as a software development

process improvement model. When CMM is applied into a software development

organization, it helps to understand and improve the capability and maturity of

software development processes. The process model CMM, was first described

into the book Managing the Software Process [34] by Watts Humphrey. This

concept was fully elaborated in his book Quality is Free in 1979. However, the

active development of the model started in 1986 by US Department of Defense

Software Engineering Institute (SEI). From 1987 till now, there have been many

versions of this model which have undoubtedly benefited thousands of projects

and hundreds of organizations. Currently, CMMI (Capability Maturity Model

Integration (CMMI)) Version 1.2 [35] released in 2006 is a process improvement

framework for software engineering and organizational development. Now days,

a single organization usually does not develop all the components of a product

and services. In such case, organizations must be able to manage and control

this complex development and management process. These types of issues are

integrated in the proposal of CMMI which has broadened the applicability of CMM.

The CMMI defined best practices, that can be used in a project, or in a department

or in an entire organization to improve the chances of business success. CMMI is

designed to be used in three different areas of interest:

• product and service development (CMMI for Development)

• service establishment, management, and delivery (CMMI for Services)

• product and service acquisition (CMMI for Acquisition)

CMMI representation allows an organization to pursue its process improvement

objectives with two different approaches. In CMMI terminology they are referred

as Staged representation and Continuous representation as show into figure 2.1

A. The staged representation uses predefined sets of process areas to define an

improvement path for an organization. This approach of process areas compliance

is referred to as Maturity level. A maturity level is a well-defined evolutionary

plateau towards achieving improved organizational processes [2]. The figure 2.1

A, shows the set of maturity levels which an organization can achieve successively.

Chapter 2. Preliminaries and related work 28

On the other hand, in CMMI Continuous representation an organization selects

process areas according to their expertise in business functions. Then they improve

selected process area up to certain capability level. The CMMI capability levels are

shown into the Figure 2.1 B.

5 Optimizing
4 Quantitatively managed
3 Defined

2 Managed

1 Initial

A)Staged representation B) Continuous representation

5 Optimizing

4 Quantitatively managed

3 Defined

2 Managed

1 Performed

0 Incomplete

Figure 2.1: CMMI representations

The benefits of CMMI process implementation have been demonstrated both quan-

titatively and qualitatively. The organizations that have adopted its recommen-

dations and consciously applied them within their projects have seen measurable

performance improvements. Project planning, estimates and projections have be-

come more accurate. Work paths have become more established. Efficiencies have

increased. Defect rates and rework have dropped.

Particularly, CMMI for development consists of processes that address development

and maintenance activities and applies to products and services. These processes

cover the product’s life cycle from conception through delivery and maintenance.

The emphasis of our research is related to the CMMI for the development. More

details on this process model are given in further chapters of the thesis.

Chapter 2. Preliminaries and related work 29

2.3 Product and process quality

The previous sections have been dedicated to an introduction of required prelim-

inaries. On one hand, we described the formal methods and on the other hand,

we described process improvement models. Both of them are well known for the

improvement of product quality. Generally, product and process qualities are con-

sidered with different prospects. However, their goal is to develop a better software

product. A process is a set of activities which have some coherence and whose

objective is generally agreed within an organization. Generally, the collections of

processes are known as a process model. All process models have their own set

of objectives. Such process models have shown significant benefits for the devel-

opment of software systems with systematic and controlled process. On the other

hand the formal methods are better known for the improvement of product qual-

ity. The product quality is related to the functional aspect of software systems.

Subsequent part of this thesis, explores relationships among software quality fac-

tors. Figure 2.2 presents the factors which are important to develop a quality

software system.

Product
quality

Process
quality

Time and cost
investment

Development
technology

People
quality

Figure 2.2: Product development and quality factors

The presented quality factors explain that software product development is not

only dependent on the development technology. In addition to the technology, a

Chapter 2. Preliminaries and related work 30

good process is usually required to produce a good product. Not only process

and product but people, cost and time also play important roles for the devel-

opment of a quality product [36]. People can be motivated with good process

and technology. Cost and time can be reduced with proper use of process and

technology. This means that the fundamental aspect for software system quality

is process quality and product quality. Generally, the product quality and process

quality are considered two separate aspects for a software product development

and maintenance. Some tools are used for the software development life cycle and

some other tools are used for the process quality, particularly for the compliance

of used process models. In our thesis, we investigate the possible integration of

product and process quality with formal method based software development.

2.4 Related work

The software quality improvement researches are well-known for decades. There

have been significant achievements which are necessary to be taken into consid-

eration before the proposal of any new research. We consider various aspects of

existing state of art in the software product and process quality improvements.

Particularly, formal method based software development has been elaborated in

various research articles. Our research has extensively used algebraic specification

techniques which have been explored by various well-known research experts such

as [37] [38] [39] [40]. These articles are the basis of our research work. Specific

aspects of formal methods based research techniques are briefly discussed in the

further subsections. In a similar fashion, process models have been real paradigm

for the improvement of software products. We have considered CMMI [34] as a

process improvement model to elaborate our research. In this section, we explore

state of art of various other methodologies which have significantly contributed

to product and process improvements. Particularly, we give a brief overview of

product and process quality within the limitation of our research boundaries. Ad-

ditional related research articles are cited whenever they are used throughout the

thesis.

Chapter 2. Preliminaries and related work 31

2.4.1 Specification refinement

Inception of a software system starts with an abstract specification, which is pro-

gressively transformed into an implementation. The steps involved from an ab-

stract specification to an implementation are considered as steps of refinement

[41][42]. Each refinement step is based on some correctness preserving techniques.

The first article on refinement notion was written by Edsger W. Dijkstra, titled

as Constructive approach to the program correctness. A simple example to the

constructive approach of a program correctness can be given as follows:

Example 1. For a program S and postcondition x, wp.S.x is the weakest condition

that must hold prior to the execution of S to ensure that S terminates in a state

satisfying x.

The spectrum of Dijkstra’s research was diversified by Niklaus Wirth [43] as a

concept of stepwise refinement. Further, a logical foundation of refinement was

contributed by Rod Burstall [44], John Darlington [45] and C.A.R Hoare [46]. Di-

jkstra’s weakest precondition calculus was also extended by Ralf-Johan Back [47]

with the consideration of preserving total correctness instead of partial correctness

between the program statements. Back and Von Wright elaborated the refinement

calculus as a logical framework for reasoning about the program. The objective

of refinement calculus is related to improving the program while preserving its

correctness. The refinement calculus is formalized within higher order logic which

allows to prove program correctness and program refinement. This notion of re-

finement is given by a pre-condition/post-condition pair. For every pre-condition

P and post-condition Q, if S validates post-condition Q assuming pre-condition P

then T refining S validates also post-condition Q assuming pre-condition P . This

definition is further extended to data refinement and for the parallel and reactive

action systems by the author [48].

Carroll Morgan [49] and Joseph Morris extended the refinement calculus frame-

work with different specification statements. Morgan published a book about pro-

gram refinement, in this book he has elaborated the concepts of refinement with

various case studies. Further, there have been various researches for extending the

applicability of refinement calculus to various domains e.g. parallel programs [41],

reactive programs [50], object oriented programs [48], model based program [10],

algebraic specification based program [30]. Most of the refinement calculus related

researches use an imperative programming language based on Dijkstra’s guarded

Chapter 2. Preliminaries and related work 32

commands language, specification constructs and weakest precondition semantics.

Refinement calculus provides a foundation for the development of software tools

in the provable journey of correctness preserving transformations [51]. Existing

work of refinement is based on the principal’s of top-down design; where the pro-

gram development begins with writing a specification and subsequently developing

executable program by series of correctness preserving transformations.

A description of software system requires both structural and behavioral prop-

erties. Similarly, an implementation of such description requires refinement of

structural and behavioral properties as well. The refinement of behavioral prop-

erties is reduction in expressiveness and nondeterminism; refinement of structural

properties is concerned with the replacement of data types with simpler and more

efficient implementable type. There have been various refinement framework for

data and process refinement such as [52][10][43][51]. In this thesis, we elaborate

a concept of structural and behavioral property refinement with the extended

CSP-CASL specification language. State of art for these specification language re-

finement properties is initially described. Subsequently a pragmatic approach to

CSP-CASL refinement is presented. The presented refinement is an extension of

existing refinement approach with a consideration of observable and internal be-

haviors of specified software system. Here, we briefly describe the various well

known techniques of specification refinement which are directly or indirectly re-

lated to our research.

2.4.2 Refinement Calculus

Refinement calculus is a theory of program development. It includes a wide

spectrum of programming languages to express specifications and executable pro-

grams. Refinement calculus consists of a refinement relation capturing the notion

of correct program development and collection of laws expressing possible pro-

gram development steps. The refinement relation is defined, and refinement laws

are proved in terms of underlying semantics of the programming language. The

refinement laws then allow the program to be constructed and verified at the

programming language level. Various notion of refinement calculus have been im-

portant topics of research, some well-known researches are the works of authors

Ralf Back and Joakim von Write, Carrol Morgan, Ken Robinson, Joe Merris etc.

The programming language used in these research articles is a non-deterministic

Chapter 2. Preliminaries and related work 33

imperative language based on Dijkstra’s guarded command language. The refine-

ment relation is defined as the weakest precondition semantics. More details on

refinement calculus can be found in books such as [47][51]. Our research is more

concerned with the process algebra and algebraic specification based specification

languages and their refinement formalisms.

2.4.3 Action refinement

In the context of process algebra, a well-known refinement approach is often re-

ferred to as action refinement. The concept of action refinement was introduced

by Ursula Goltz and R.J. van Glabbeek [53] inspired by the design of concurrent

systems. The design of concurrent system is based on the actions which may occur

in a system. An action is any activity which is considered as a conceptual entity

on a chosen level of abstraction. This allows the representation of systems in a

hierarchical way, changing the level of abstraction by interpreting actions on a

higher level by more complicated processes on a lower level. This change of the

level of abstraction is referred to as refinement of action.

Action refinement is defined as the refinement of action as sequential execution of

several subactions, activities happening independently in parallel or an action can

be refined as a set of alternatives. This type of refinement is proposed in such a

way that behavior of refined system can be inferred compositionally from the be-

havior of the original system. The initial aim was to propose a suitable refinement

operator independent of any specific model for the description of concurrent sys-

tem. Some theoretical constraints have bounded this refinement approach suitable

to Petri nets [54].

Other process algebra CCS do not include the sequential composition operator.

Thus in order to support action refinement, action-prefixing is usually replaced

with sequential composition. CSP has been well known for its different semantics

and refinement theories. CSP has been quite successful for the development of a

commercial tool [23], to analyze the refinement relation between CSP specifica-

tions.

Chapter 2. Preliminaries and related work 34

2.4.4 Data refinement

Niklaus Wirth [43] proposed that process and data should be refined in parallel

to construct a program with a sequence of refinement steps. The research of data

refinement was further elaborated by C. A. R. Hoare as a powerful method of sim-

plifying the proofs of program correctness [46]. His paper presents an automatic

method of achieving the transition between an abstract and a concrete program

and proposes a method of proving its correctness. The proof method is proposed

by giving relationship between abstract and concrete representation as a function

which maps the concrete variable into the abstract object. The proof of pro-

gram correctness was more formally described in algebraic terms by Milner [55].

Gardiner and Morgan in 1993 proposed a practical definition for the refinement

as follows: a given pair of programs called concrete and abstract, the concrete

program refines the abstract program correctly whenever the use of the concrete

program does not lead to an observation which is not also an observation of the

abstract program. Let’s explain this with an example as given in the book [55].

Example 2. Let S1 and S2 denote statements, which are not involving variables s

and l. The following two programs represent a refinement relation:

begin begin
var s : finset of N ; s := null; var l : finset of N; l:= null;
S1; S1;
s:= S ∪ x; l:= append(l,x);
S2; S2;
y:=a member of s; y=first(l);

end end

In this example, refinement steps are achieved by replacement of variable and

operations. The variable s is refined by another variable l, similarly, the opera-

tions are refined by append and first. In this refinement approach, variables are

categorized as normal variable and data representation variable according to the

abstract level. This is a way to achieve a concrete program which is a refinement

of abstract program. Further, downward and upward simulation are proposed as

the sound techniques for proving data refinement [52].

Based on the collection of various research articles, the following general methods

were proposed in the book of data refinement:

• One or more concrete variables are introduced to store the representation of

one or more abstract variables.

Chapter 2. Preliminaries and related work 35

• A general invariant called the representation invariant is introduced, which

describes the relationship between the abstract and concrete variables.

• Each assignment to an abstract variable (or more generally, each assign-

ment that affects the representation invariant) is augmented with assign-

ments to the concrete variables that reestablish the representation invariant

(or achieve it, in case of an initialization).

• Each expression that contains an abstract variable but occurs outside of

an assignment to an abstract variable is replaced with an expression that

does not contain abstract variables but is guaranteed by the representation

invariant to have the same value.

Data refinement laws are basic requirements for refinement of an algebraic spec-

ification based software description. Algebraic specification is known for writing

abstract specification of software systems. Abstraction in specification allows to

hide implementation details from the users. The abstract specification is further

refined to an implementation level by following some rules of provable journey. In

the next subsection, we present the existing refinement approaches of algebraic

specification which are the basis for the proposal of our research.

2.4.5 Algebraic specification refinement

The theory of algebraic specification started with the pioneer work of Goguen [44],

Guttag [56] and Ziles [45]. The two important aspects of algebraic specification are

theories of formal specification and notion of refinement. There have been various

notions of algebraic specification and refinement such as [30] [29] [57] [9]. Algebraic

specification transformation into programs has been extensively presented into the

project PROSPECTRA (PROgram development by SPECification and TRAns-

formation) [58]. A significant contribution by Donald Sannela is a starting point

for the further development of algebraic specification and refinement notions [37].

His paper subsumes most of the algebraic specification based research activities

and extends the concept of loose semantics as well as initial semantics of algebraic

specification.

In algebraic specification, programs are modeled as many-sorted algebras consist-

ing of collection of sets of data values (S) together with operations (Ω) overs the

Chapter 2. Preliminaries and related work 36

sets of data types. The properties of specification are given with axioms which

are some type of first order logic with equality. The data types and operations

of a specification represent the signature(Σ) of specifying systems. The class of

(Σ)-algebra is denoted by Alg(Σ) and the class of (Σ)-homomorphism from A to

B is denoted by Alg(A)→ Alg(B). A homomorphism between two specifications

allows to establish relation between the specifications. Algebraic specification is

particularly known for the specification of Abstract Data Type (ADT), which con-

sists of a family of data types sharing abstract properties usually given by some

sort. For any abstract data type, there can exist many specifications characterizing

to that abstract specification. There are various notions of algebraic specification

refinement; below we present refinement notions of algebraic specification language

CASL:

• A simple refinement: SP ′ is refinement of SP (represented as SP SP ′

) iff SP ′ incorporates the requirements that any realization of SP ′ is correct

realization of SP . This relation is given as follows with an assumption of

Sig(SP) = Sig(SP ′) [29]:

SP SP ′ iff Mod(SP ′) ⊆Mod(SP)

• Constructor based refinement: Simple refinement is sufficient to prove

requirement relation when the specifications are sufficiently rich. However,

during stepwise refinement, successive specification is built with more and

more design decisions. Some parts become fixed and the remaining parts

of specification do not change until a concrete program is obtained. The

concept of constructor is proposed to tackle the finished part of specification

separately and then to proceed with unresolved parts. It is defined as fol-

lows:

Suppose SP and SP ′ are specifications and k is constructor such that

k : Alg(Sig(SP ′))→ Alg(Sig(SP)), then:

SP (k)SP ′ iff k(Mod(SP ′)) ⊆Mod(SP)

• Decomposition based refinement: Modeling of program with a separate

subtask is achieved by constructor implementation with multi-agent con-

structor as presented in paper [59]. Formally it is shown as follows:

SP (k)(SP1, SP2.., SPn) iff k(Mod(SP1, SP2.., SPn)) ⊆Mod(SP)

Chapter 2. Preliminaries and related work 37

2.4.6 Software enhancement

Business organizations are always required to upgrade existing software systems

to support their business function changes. The expectation is always to integrate

the changes into their software systems within minimum expenditure and time

frames. This could only be possible with reuse of existing software systems and

their artifacts. However, there is a major challenge to reuse the running software

systems artifacts and upgrade them to support the business dynamism. There

have been many research activities to describe the approach of software evolution

in terms of software enrichment, product line based development etc. Nevertheless,

software evolution is not commonly known and practiced for software artifact

reusability.

M M Lehmen wrote in his paper [60] as a first law of the software evolution as

follows:

• If the same software is operating for a long time with same functionalities,

it progressively becomes less satisfactory

Further, he proposed various rules of software evolution; even today we find his

laws of evolution are not fully addressed with theoretical details and tool sup-

ports. It is very commonly observed that software systems evolve to tackle the

requirements of day to day business needs. Generally, software evolution is not

only addition of more functionality, but also very often architectural changes,

re-engineering, and modifying existing functionality is considered as a part of soft-

ware evolution. Specially, we investigate the concepts of specification enhancement

with formal specification based software development. Our consideration of soft-

ware enhancement is addition of new features to the existing software specification

by preserving its existing features.

Formal methods have been known for describing specification in a structured man-

ner. Generally, structuring of specification allows to investigate software enhance-

ment. Particularly, this concept has been elaborated in algebraic specification

language [28]. Algebraic specification proposes three types of operations for build-

ing specification in a structured manner. These structuring methodologies are

taken as a basis for an investigation of specification enhancement. In our thesis,

we closely describe a formal approach of adding features and functionalities to

Chapter 2. Preliminaries and related work 38

the existing software system. The formal understanding of the software evolu-

tion is described with an integrated process algebraic and algebraic specification

language. At the initial step we formally define a syntax and semantics of soft-

ware enhancement which is further investigated as a concept of software artifacts

traceability and reusability.

• Enrichments: This is an approach to enhance a specification by adding

more elements(e.g. sorts, operations) to an existing specification. A given

specification SP is enriched by (Σ1, E1). Then the new signature of com-

plete specification is (sig(SP)∪Σ1) and a set of equations are based on the

signature (sig(SP) ∪ Σ1). Often, enrichments are required to preserve the

initial specification properties. This is satisfied as follows:

Model(Enriched SP)|SP = Model(SP)

• Union: An incremental specification building is supported by union of

two smaller specification in an algebraic specification formalism. Suppose

(Σ1, E1) and (Σ2, E2) are two small independent specification (no common

specification) then the resultant syntax of specification is (Σ1∪Σ2, E1∪E2)

which has semantics similar to simple algebraic specification. Union of two

smaller specifications can also have some sub-specification as common to

both the specifications. The common specification leads to a complexity

which is handled by renaming in algebraic specification. The complete de-

tail is not related to our thesis however, this is described in the research

article by Fernando Orejas [61].

• Derive: Sometimes expressiveness of existing specification has to be en-

hanced which gives better understanding to the existing specification. How-

ever, this over-specification can be avoided by hiding extra sorts and op-

erations of specification, by using (hide keyword) to hide these auxiliary

elements. For a given specification SP = (Σ, E) the meaning of derive Σ1

from SP is specification (Σ1, E1), such that E1 is the set of all Σ1 equa-

tions which are logical consequences of SP. Model of derived specification is

represented as (Σ1,Model(SP)|Σ1).

These are the very common features for any algebraic specification languages. We

have considered this type of specification manipulation for an investigation of a

new definition of software enhancement. Our proposed definition is based on the

Chapter 2. Preliminaries and related work 39

structural and behavioral specification languages; which provides more power to

describe software systems in precise manner.

2.4.7 Software product quality

Software product quality is concerned with correct implementation of the expected

software system behaviors. Software system behaviors are captured as user require-

ment. If a software system behavior is not properly known, then, there is very

little possibility to validate the system’s expected behavior. A validation is the

process of checking the system’s behavior with respect to the given system require-

ments. A description of desired behavior is called specification; it describes what

the system must do and not how to do. A system that is supposed to implement

desired behavior is called implementation, e.g. embedded system, software etc.

Here, based on this understanding, we define validation as a process of checking

whether implementation complies to its specification.

Generally, a validation process is supported by two complimentary techniques such

as verification and testing. Verification aims at proving properties about system

from a mathematical model of the system. On the other hand, testing is performed

by executing the implementation or its executable model. Verification limits its

existence to the model which might be different from real implementation. But

verification has been found very useful where testing cannot be done on the imple-

mentation. In this thesis, we want to be more close to the implementation or its

executable model. Our concern is related to the investigation of testing properties.

Current state of research has different importance to testing and verification. Peo-

ple from the realm of verification very often consider testing as inferior, because

it can only detect some errors, but it cannot prove correctness; on the other hand,

people from the realm of testing consider verification as impracticable and not

applicable to realistically-sized systems.

Testing has its presence at different levels of the software development life cycle

such as unit testing, component testing and system testing [62] [63] [48]. Each level

of testing contributes to the validation of the final software system. For each type

of testing, different aspect of tests can be performed such as stress, performance,

conformance and acceptance tests. In this thesis, we concentrate on conformance

testing based on the formal approach to the software system specification. Gener-

ally, test cases are derived from the formal specification and the derived test cases

Chapter 2. Preliminaries and related work 40

are used to test implementation or the executable formal specification. There have

been various research activities of these types of testing. Here, we briefly cite state

of art of testing advances and relations with our proposed approach.

Formal methods have shown significant benefits for an automatic test generation

[16] [19] [20] and test evaluation [64]. The formalization of software system be-

havior is the starting point for the formal specification based testing. A formal

specification of software system behaviors provides various means to generate and

evaluate the test cases. Some of the well-known formal specification languages

for these contributions are Estelle, LOTOS, or SDL. However, to test a software

system, access to the implementation is required. Broadly, this can be achieved

with three types of access to the implementation for the testing purpose. Based

on the access type, testing can be divided into three categories; white-box testing,

gray-box testing and black-box testing. In white-box testing internal structure

of an implementation is fully known. In black-box testing it is assumed that the

implementation can only be accessed through its interface with the environment,

and no knowledge of the internal structure of the implementation is known. Gray-

box testing lies in between black-box testing and white-box testing. In gray-box

testing it is assumed that only part of the internal structure of an implementation

is known. More details on the test generation and test evaluation is delineated

in subsequent part of this thesis, particularly, in the chapter on product quality

framework.

2.4.8 Software process quality

A software process is a method of developing software systems. Applicability

of software process has shown significant benefits for the development software

system, particularly in the improvement of product quality with various quality

factors. McCall [15] in 1977 presented a categorization of quality factors into 11

aspects e.g. efficiency, integrity, reliability, usability, accuracy, maintainability,

testability, flexibility, re-usability, transferability etc. The elaboration of these

quality factors can be found in the paper [15]. However, these terms are well

known for the society of software quality. The systematic approach is required to

achieve quality factors for a software product development. Software process qual-

ity is an approach of process conformance for the production of required quality

products. Our consideration of process quality is confined to the compliance of

Chapter 2. Preliminaries and related work 41

process model with formal method based software development approach. There

have been significant contributions on the formalization of development process by

Basin and Krieg-Brückner. In their book, the techniques for the transition from

requirement specification to verified design are elaborated.

Formal methods are well known for refinement process in the software develop-

ment, where they provide a provable journey from abstract specification to an

implementation of the abstract specification [65] [44]. Software enrichment has

been also established by many researchers where a formalization has been pro-

posed [44]. UML based software process quality has been the focus of software

industry which has achieved significant maturity in practice as well as in the-

ory. Our approach of formal method based process quality is a distinct approach

where software process compliance starts with investigation of formal methods

based software development.

2.5 Summary

In this chapter, a brief overview of required and related techniques is given. As

the required techniques, formal methods and process improvement models are con-

cisely elaborated. There have been various types of formal methods for a specifi-

cation, analysis, verification and validation of software systems. We have selected

process algebraic specification language CSP-CASL for our research. This specifi-

cation language is an integration of process algebra CSP, and algebraic specifica-

tion language CASL. This specification language has been considered appropriate

for the specification of dynamic and static behaviors of software systems.

As the process improvement models, first we briefly elaborated the three well-

known improvement models such as ISO, Six-Sigma and CMMI. Further, these

process improvement models have been co-related with each other, to analyze

the best of their approaches. In our research, we have selected the CMMI process

improvement model, this process model subsumes required improvement guidelines

for any software system development within an organizational environment.

As the related research work, we have briefly described the techniques of for-

mal methods based refinement and enhancement. The software refinement is well

known in the research community. We have briefly explained various techniques

of refinement which are directly, or indirectly related to this thesis. In addition

Chapter 2. Preliminaries and related work 42

to this, presence of formal methods with regard to product and process quality of

software system is briefly sketched out. At the end of this chapter, the concepts

of software product and process quality is briefly elaborated.

Chapter 3

Software evolution methodology

Today software systems are everywhere, from medical applications, automobiles,

telecommunications to large enterprise management systems. Software is no longer

a few hundred lines of code, but several hundred million lines of code to control

complicated systems. To manage the life cycle of such software systems a sys-

tematic approach is required. A software system life cycle is categorized into two

steps. In the first step, the software system evolves through software development

phases and in the second step, the software system evolves with the addition of

new features. To tackle these situations, notions of vertical and horizontal evo-

lution have been proposed. Vertical evolution and horizontal evolution are also

known as software refinement and software enhancement.

Vertical evolution of a software system is the process of developing a software

system from a given abstract specification. Software system development from

an abstract specification to an implementation is achieved with the steps of re-

finement. At the each refinement step, abstract specification is fixed with design

decisions by preserving its correctness from the previous step.

Horizontal evolution of a software system is the process of adding new features to

the existing software system. This type of evolution is referred to as software en-

hancement where new features are added by preserving its existing features. These

types of software evolution have been in practice. However, a precise understand-

ing of software evolution for software system development and maintenance is still

an active area of research. Particularly, it is still not clear what happens to the

existing software artifacts when a software product evolves vertically or horizon-

tally.

43

Chapter 3. Software evolution methodology 44

In the initial sections of this chapter, a pragmatic approach to software specifi-

cation is described. In the proposed methodology, we distinguish observable and

internal behaviors in the description of software systems. First, these concepts are

formally described and then based on the given definitions; a software evolution

methodology is presented. Particularly, software refinement and software enhance-

ment are defined based on the specification of observable and internal behaviors of

software system. Subsequently, these definitions of software refinement and soft-

ware enhancement are explored in the evolution of the proposed case study of the

medical embedded device.

3.1 Software specification

Inception of software system starts by gathering customer requirements in a clear,

complete, consistent, traceable, modifiable manner. The customer requirements

are generally broken in one or more functional requirements, where exact software

system functionalities are documented. The growing number of functions of a

software system increases the complexity in the description of software function-

ality. A function is described as a set of inputs, the behavior, and outputs [66].

Functional requirements are supported by non-functional requirements also known

as quality requirements. Functional requirements are distinguishing characteris-

tics of any software system. The non-functional requirements are also a subset

of software features. In IEEE 829, the term feature is defined as a distinguishing

characteristic of a software item (e.g., performance, portability, or functionality).

Generally, at the initial stage, software requirements are abstractly described with

a broad overview of system. In further steps, such an abstract specification must

be deterministic to be accepted by computers. The abstract specification should

evolve in such a way that it preserves the abstract properties and adds precise

implementation descriptions.

To give a formal approach to abstract and detailed specification, an observable

and internal behavior based software specification technique is presented. This is

very much related to a practical approach of developing a software system, where

first an abstract idea of software system is described and in the subsequent stages

implementation details are added. This approach of software specification allows

to track changes of specification during evolution of software system. In the further

Chapter 3. Software evolution methodology 45

subsections, we describe the fundamentals of our methodology and its application

for the formalism of software system evolution.

3.1.1 Observable and internal behavior

A software system is a consolidation of observable and internal behaviors. The

description of observable behaviors is confined to the functional requirements of

a software system. The observable behaviors are further elaborated with design

decisions for the purpose of implementation. These design decisions are considered

as internal behaviors, and they are included into observable behavior of specifying

system. In the initial stage of software specification, internal behaviors are omitted

to provide implementation freedom, such specification are considered as abstract

specifications.

En/e

• Data
• Ops
• Axioms
• Process

E1 E2 E3 E4

Observable behaviors

B) Detailed specification

e

Internal behaviors

e
E1 E2 E3 E4

Observable behaviors

A) Abstract specification

Figure 3.1: Observable and internal behaviors of a system

In this approach, at the initial stages, a software system is abstractly specified as

observable behaviors and further design decisions are added as internal behaviors.

In general, at the initial steps of software specification, only observable behaviors

are specified as a precise and complete description of software system. Further,

the internal behaviors are included to elaborate the design decisions. In the Figure

3.1, we give a rudimentary example to present a concise overview of observable

and internal behavior of a software specification. At the initial step only observ-

able behaviors (E1, E2, E3, E4) are described as functional requirements of the

specifying system. At the design level, observable behaviors are more determin-

istically represented by addition of internal behaviors (e). It is assumed, that

Chapter 3. Software evolution methodology 46

the functional requirements are completely captured at the initial stage and ab-

stractly represented as observable behaviors. Internal behaviors are only required

to elaborate implementation details for the observable behaviors.

The distinction between observable and internal behaviors of a software specifica-

tion allows a pragmatic approach for the refinement and enhancement of software

system. This approach allows to add internal behaviors at the steps of refinement

which is practically required for the implementation of an abstractly specified

software system by preserving specification correctness and fixing the design de-

cisions. The approach of observable and internal behavior based specification can

be elaborated with any specification language. This concept is not constrained to

any specific approach of specification. However in this research, we elaborate this

concept with an algebraic/process algebraic specification language CSP-CASL .

3.2 Formal software specification

A formal specification based technique is presented to describe the observable and

internal behaviors of a software system. The selection of specification language

is based on our experience with specification language which is suitable for the

specification of any kind of software system. The selected specification language is

particularly advantageous for an analysis of data type development in the process

modeling of a software system. The foundation of proposed specification language

is based on the specification language CSP-CASL . The CSP-CASL (Communicating

Sequential Processes-Common Algebraic Specification Language) is a specification

language; developed with an integration of process algebra (CSP) and algebraic

specification language (CASL). The complete syntax and semantics of this speci-

fication language has been described in the paper [21]. In our specification tech-

nique; we extend the syntax of CSP-CASL to support the software specification as

observable and internal behaviors. The extended syntax of CSP-CASL is formulated

as follows:

ccSpec spName= Data Dobs Dint [Channel Chobs Chint] Process Pobs Pint End

In the above syntax, keywords are represented in bold face. Here spName repre-

sents the name of a CSP-CASL specification. The complete syntax is consolidation

of data specification, channel specification and process specification. The data

Chapter 3. Software evolution methodology 47

part specification is an integration of observable Dobs and internal Dint data speci-

fication which is specified by algebraic specification language CASL. To distinguish

the observable and internal part of specification, we propose to append an under-

score () sign in the declaration of internal specification syntax. Chobs and Chint

represent observable and internal communication channels in the system specifi-

cation which are optional parts of specification. The last part of specification is

the process part where dynamic behaviors are described as observable Pobs and

internal processes Pint. The extended syntax of CSP-CASL is also presented in the

Figure 3.2. The CASL keywords And and Then are borrowed to represent the

integration of observable and internal data part specifications. The keyword And

allows to integrate an independent internal data part into the existing data part of

observable behaviors. The observable dataSpecobs and internal dataSpecint data

parts are specified with the CASL syntax as given in the manual [67]. In this

research, we are restricting our approach to CASL basic and structured specifica-

tion. This thesis does not provide complete CASL syntax, however all the required

keywords are explained whenever they are required.

Data
dataSpecobs And/Then dataSpecint

Channel
[channelSpecobs]
[channelSpecint]

Process
processSpecobs ; processSpecint

End

Figure 3.2: CSP-CASL specification syntax

processSpecobs and processSpecint represent CSP processes which describe the dy-

namic behaviors of specifying software system. A CSP process is described by one

or more events followed by a process. An event may be atomic or associated with

data. The complete syntax and semantics of CSP process are described in [1][9].

In this approach to specification, we propose a syntactic extension into CSP syn-

tax to describe failures into specification. In the extended CSP syntax a process

P := Pcs[Fe], where Fe is set of actions Pcs can refuse. Pcs is CSP syntax as shown

in the Table 2.1. This syntactical extension is further elaborated in the formalism

of our case study. An observable process processSpecobs is described with CSP

Chapter 3. Software evolution methodology 48

syntax where dataSpecobs is used as data for communication. Similarly an internal

process processSpecint is described with CSP syntax where the communication be-

tween processes is the value of data types specified by dataSpecobs or dataSpecInt.

A keyword ′;′ is concatenation syntax for the CSP processes and is borrowed from

basic CSP syntax which allows to concatenate internal and observable processes.

In the description of a software system, we confine our approach to denotational

semantics. Within this semantics, we consider only traces and failures denotation

of process which are sufficient to describe safety and liveness properties. Traces of

a given CSP process P ; traces(P) are set of sequence of events and failures(P/t)

is set of events which process P can refuse to perform after performing a trace

t. For a CSP-CASL specification formalism, CSP-CASL traces are categorised as

Complete trace and Incomplete trace. A complete trace is sequence of events

where last event of the trace successfully terminates according to definition of [32],

or last event of the trace is in the set of defined failures. An incomplete trace is

the trace of the expected behavior where last event of the trace does not terminate

successfully [32]. Furthermore, the syntax and semantics of this definition remains

the same as described in the paper [68]. A Figure 3.2 represents CSP-CASL based

syntactic formalism by presenting a distinction between data, channel and process

parts.

For simplicity of the specification formalism, we have not considered channel part;

in this case a CSP-CASL syntax can be represented as a tuple (Dobs, Dint, Pobs, Pint).

The data part (Dobs, Dint) is described with the CASL syntax and process part

(Pobs, Pint) is described with CSP syntax with an integration of data part. At

the abstract level of specification, this syntax reduces to (Dobs, Pobs) which has

similar syntax as proposed by [21]. The data part is described by algebraic spec-

ification language CASL, where a specification is a tuple of (Σ, E), such that

Σ=(S, TF, PF, P) is many sorted signature and E is set of axioms over signature

Σ. The complete details of syntax and semantics can be found in the CASL refer-

ence manual [29]. In this research, totality and partiality of a function is not dis-

tinguished, the main focus is to elaborate our concept with less complexity in spec-

ification. In this consideration CASL signature is written as Σ=(S, F, Pr) where S

is set of sorts, F is total or partial operations and Pr is set of predicates. A CASL

specification of (Dobs, Dint) can be represented as tuple of (Σobs ∪ int, Eobs ∪ int),

where Σobs ∪ int is tuple of (Sobs, Sint, Fobs, Fint, P robs, P rint).

Chapter 3. Software evolution methodology 49

Signature: A many sorted signature Σobs ∪ int=(Sobs, Sint, Fobs, Fint, P robs, P rint)

consists of

• Sobs is a set of observable sorts

• Sint is a set of internal sorts

• Fobs(w,s) is a function, with function profile over sequence of arguments w ∈
S∗obs(finite) and result sort s ∈ Sobs

• Fint(w,s) is a function, with function profile over sequence of arguments w ∈
S∗int ∪ S∗obs and result sort s ∈ Sint ∪ Sobs

• Probs(w) a predicate symbol, with profile over sequence of arguments w ∈ S∗obs

• Print(w) a predicate symbol, with profile over sequence of arguments w ∈
S∗obs ∪ S∗int

A signature morphism defines a mapping from the sort, operation, predicate names

in one signature to another signature. The signature morphism allows to es-

tablish a relation between two signatures where values of signature symbols are

preserved. Given two signatures Σobs ∪ int=(Sobs, Sint, Fobs, Fint, P robs, P rint) and

Σ′obs ∪ int=(S ′obs, S
′
int, F

′
obs, F

′
int, P r

′
obs, P r

′
int), a many sorted signature morphism σ :

Σobs ∪ int→Σ′obs ∪ int is represented as follows:

• a map σSobs : Sobs → S ′obs

• a map σSint : Sint → S ′int

• a map σFobs(w,s) : Fobs(w,s) → F ′
obs(σS∗

obs(w),σS
obs(s))

• a map σFint(w,s) : Fint(w,s) → F ′
int(σS∗

int(w),σS
int(s))

• a map σPobs(w) : Probs(w) → Pr′
obs(σS∗

obs(w))

• a map σPint(w) : Print(s) → Pr′
int(σS∗

int(w))

Models: A many sorted Sigma-model for a given many sorted signature Σobs∪int

= (Sobs, Sint, Fobs, Fint, P robs, P rint) consists of:

• a non empty career set sMo for each so ∈ Sobs

Chapter 3. Software evolution methodology 50

• a non empty career set sMi for each si ∈ Sint

• a function fMo : wM → sM for each fo ∈ Fobs

• a function fMi : wM → sM for each fi ∈ Fint

• a predicate prMo for each pro ∈ Probs

• a predicate prMi for each pri ∈ Print

Semantics of CSP-CASL : The semantics of this formalism is achieved in the two

steps approach as given in the original article [21] of CSP-CASL specification. In the

first step, evaluation is according to the data part (Dobs, Dint) where each model

M of data part (Dobs, Dint) gives rise to a process denotation (Pobs, Pint)M . In

the second step, evaluation is according to the CSP, which translates (Pobs, Pint)M

into chosen CSP semantics. CASL terms are used as communication and CASL

sorts denote set of communications. Further, we present CSP-CASL specification

of the industrial case study which is informally described into the chapter one.

Throughout our thesis, we shall refer the given CSP-CASL formalism of case study

to elaborate the proposed approach.

Example 1. In Table 3.1, we present CSP-CASL based formal specification of MED,

which is informally described in the earlier part of this thesis. Here, the case

study is abstractly specified with extended CSP-CASL syntax. At the abstract

level of this specification, internal behaviors are not described, only observable

behaviors are described. The CSP-CASL based formal specification starts by giving

the specification name as ComMedProtocol, further data, channel and process

part of communication protocol is described. The given formalism will be referred

throughout this thesis to explain the concepts of software evolution and compliance

of process improvement model.

3.3 Software refinement

In the previous section, we proposed a distinct approach to software specifica-

tion. Let’s see how our approach of formalism fits with existing approaches of

software refinements. In this research, we propose a slightly deviated approach

to software refinement. The proposed refinement technique is an extension of ex-

isting refinement techniques. The complete refinement framework is elaborated

Chapter 3. Software evolution methodology 51

Table 3.1: Abstract CSP-CASL specification of Basic MED

ccSpec ComMedProtocol
Data

sorts Message, EncrMessage, ConnPara, Ack, DevID
ops SerialConn: ConnPara→ Ack

SendMessage: Message X Ack→ EncrMessage
RecvMessage: Ack→ EncrMessage
CloseConn:→ Ack

Channel
EncrCh : EncrMessage
AckCh : Ack

Process

Send = AckCh! SerialConn(ConnPara)→
[Message] EncrCh ! SendMessage(Message,Ack)→
AckCh!CloseConn() → Send

Receive = AckCh! SerialConn(ConnPara)→ [Message] EncrCh ! RecvMessage(Ack)→
AckCh!CloseConn()→ Receive

End

for a CSP-CASL based specification formalism, however the proposed refinement

framework can be applied to any specification formalism.

In the proposed approach of software specification, structural and behavioral prop-

erties are separately considered. Similarly, the refinement of such a formal de-

scription requires refinement of structural and behavioral properties as well. The

refinement of behavioral properties is reduction in expressiveness and nondeter-

minism; refinement of structural properties is concerned with the replacement of

data types with simpler and more implementable type. There have been vari-

ous refinement frameworks for structural and behavioral specification refinement

such as [10][43][14]. In this thesis, we elaborate a concept of refinement which

is based on structural and behavioral specification of any software system. This

refinement approach is based on the extended CSP-CASL specification language.

Initially, state of art of CSP-CASL refinement is described. Subsequently, extended

CSP-CASL based software refinement is presented. This approach to refinement is

an extension of the existing refinement approach with a consideration of observable

and internal behaviors of specified software system.

Chapter 3. Software evolution methodology 52

3.3.1 CASL refinement

The algebraic specification is known for an abstract specification of the software

systems. The abstraction in the specification facilitates the understanding of com-

plex requirements [39] by hiding unnecessary details at the initial steps of require-

ment analysis. The abstract specification subsequently evolves with the steps of

refinement by fixing design details. The steps of refinement continue until specifi-

cation becomes straightforward for an implementation. The specification language

CASL is laced with simple refinement techniques that help to formalize the whole

software development life cycle. CASL refinement technique is based on the model

class inclusion [29] similar to any algebraic specification language. The refinement

approach is rather based on the loose semantics of CASL specification. A refine-

ment relation between two CASL specifications is defined as follows:

Definition 1. Given two CASL specifications Sp and Sp
′

such that Sig[Sp] =

Sig[Sp
′
], Sp

′
is refinement of Sp iff Mod[Sp

′
] ⊆Mod[Sp].

Formally, correctness of this refinement can be represented as M|σ ∈Mod[Sp] for

each M ∈ Mod[Sp
′
], where σ is a mapping of symbols from Sp to Sp

′
. The sim-

ple refinement concept is a basis for CASL specification refinement; further this

concept of refinement is elaborated for the CASL architectural specification in

paper [69]. Our research activities are confined to the basic and structured CASL

specification where CASL simple refinement is considered as a main refinement

approach. Additional details of CASL refinement are described in the paper [69],

particularly, CASL architectural specification is elaborated in depth. In the fur-

ther subsections we describe the structural and behavioral specification refinement

techniques.

3.3.2 CSP refinement

The CSP has various notions of refinements for proving equivalence between two

CSP processes. The given refinement notions are based on the semantics of their

specification. In denotational semantics of CSP, three well established refinement

notions are Trace, Failure and Failure-Divergence refinement. We restrict our

Chapter 3. Software evolution methodology 53

research activities to the trace and failure refinement notions for a CSP specifi-

cation. The CSP trace and failure refinement example is graphically presented in

Figure 3.3. Further details of these refinement techniques are given as follows:

Process: P1 Process: P2

b

a c

b d

e

a c

d f

e, f f

c, d c, da a

Figure 3.3: CSP refinements

Trace refinement

A process P1 is a trace refinement of another process P2 if all the traces of P1 are

in the traces of P2. This refinement notion preserves the safety properties of a

system. Formally we can write this refinement relation as follows:

P2 vT P1=traces(P1) ⊆ traces(P2)

Failure refinement

Failure refinement is defined by asserting all the failures of a refined process are

also failures of refining process. Formally, we can write this refinement relation

for process P1 and P2 as follows:

P1 vF P2=failures(P2) ⊆ failures(P1)

3.3.3 CSP-CASL refinement

A top-down approach of a software system development starts by formulating an

abstract description, which is further refined with an addition of design details at

the steps of refinement. The refinement process continues until the system spec-

ification describes all the required details for an implementation. Our approach

to software refinement is based on the consideration of observable and internal

Chapter 3. Software evolution methodology 54

behavior of the specifying software system. At the abstract level of specification

only observable behaviors are specified which is further refined by adding the in-

ternal behaviors of the software system. We elaborate this concept of refinement

with the formal specification language CSP-CASL in a two step approach; data

refinement and process refinement. To calculate data refinement, process part

of specification remains constant, and each data part induces process refinement.

Similarly, to calculate process refinement, data part of specification remains con-

stant. CSP-CASL specification refinement is defined with two steps approach:

Definition 2. Given, two CSP-CASL specifications SPr = (Drobs, Drint, Probs, Print)

and SP = (Dobs, Dint, Pobs, Pint). SPr is a refinement of SP (represented as

SP R ↘ SPr), iff they satisfy followingData refinement and Process refinement

conditions:

Data refinement:

• Σ(Dobs) = Σ(Drobs)

• Σ(Dint) ⊆ Σ(Drint)

• Mod(Drobs Drint)|Σ(Dobs Dint) ⊆Mod(Dobs Dint)

Process refinement:

• traces(Probs) ⊆ traces(Pobs)

• traces(Pint) ⊆ traces(Print)

• failures(Probs) ⊆ failures(Pobs)

• failures(Print) ⊆ failures(Pint)

Here Mod(Drobs Drint)|Σ(Dobs Dint) represents the Mod(Drobs Drint) restricted to the

Symbols(Dobs Dint); such that for all Symbols(Dobs Dint) there exists an injective

mapping to the Symbols(Drobs Drint) . In addition to the above conditions, all the

axioms of e ∈ Axioms(Dobs Dint) must be true in the refined model of specification

Mod(Drobs Drint)|Σ(Dobs Dint) |= e. Symbols(x) represents collection of data types,

operations and predicates for the selected specification context x.

Figure, 3.4 presents an overview of proposed syntax of extended CSP-CASL refinement.

As a refinement of data specification, additional internal specification dataSpecrint

Chapter 3. Software evolution methodology 55

ccsSpec refinedSpecName
Data

dataSpecobs and/then dataSpecint
then/and
dataSpecintR

[Channel
channelSpecobs
channelSpecint]

Process
processSpecobs ; processSpecint
; processSpecintR

End

Figure 3.4: Refined CSP-CASL spefication syntax

details can be added. However, an observable data part is refined as proposed in

theories of [37][43]. Similarly, the process part of specification is refined by addi-

tion of internal processes processSpecrint. The semantics of the this refinement

approach remain similar to [21].

Example 2. Here, we present a refinement of the medical case study which is given

in the Table 3.1. Particularly, design decisions are incorporated into this refined

specification. Additionally, axioms are declared to describe the properties of basic

specification. Design decision symbols are added as internal specification. This

is a simple step of refinement, which elaborates the pertinence of our proposed

approach. Let us see how this refined specification is derived from our given basic

specification in the Table 3.2 .

Generally, a CSP-CASL specification starts with the specification name, subse-

quently the required library functions are included. In the given example, for

simplicity reasons, libraries are not exclusively included. Further, the structural

specification is similar to the specification given in Table 3.1, where each symbol of

initial specification has mapping to the symbols of refined specification. Further,

the properties of specification are defined by axioms which reduces the class of

models [30]. Design decision’s data part is defined as internal specification. This

is a special feature of our proposed approach to specification where new symbols

can be added as the internal part of specification. Internal specification starts with

special sign ′ ′ which make it readable. The other part of specification is similar

to the initial specification only processes are enhanced with internal design deci-

sions properties. The complete specification is traceable with proposed definition

of refinement and verifiable with our tool.

Chapter 3. Software evolution methodology 56

Table 3.2: Refined CSP-CASL specification of Basic MED

ccSpec RefinedComMedProtocol
Data

sorts Message, EncrMessage, ConnPara, Ack, DevID
ops SerialConn: ConnPara→ Ack

SendMessage: Message X Ack→ EncrMessage
RecvMessage:→ EncrMessage
CloseConn:→ Ack

axioms Message= Message+DevID+Ack
EncrMessage != Message

then ValMsg(Message)→ Message
ValEncrMsg(EncrMessage)→ EncrMessage

Channel
EncrCh : EncrMessage
AckCh : Ack

Process

Send = AckCh! SerialConn(ConnPara)→
AckCh! ValidateMsg(Message)→
[Message]EncrCh!SendMessage(Message,Ack)→
AckCh!CloseConn()→ Send

Receive = AckCh! SerialConn(ConnPara)→
[Message] EncrCh!RecvMessage()→
ValidateMsg(EncrMessage)→ AckCh!CloseConn()→ Receive

End

3.4 Software enhancement

Software enhancement is a process of adding new features to the existing soft-

ware system. Additions of new features are routinely practiced in the industrial

environment. But more often, they are practiced with some ad-hoc approach.

There has been significant research in these aspects, such as specification enrich-

ment, product line based software development, component based development

etc. However, their industrial presence is limited to certain aspects of software

enhancement. These research activities are confined to specific parts of software

development. A framework for software artifact evolution parallel to software

system evolution is not fully elaborated.

In this research, we elaborate a formal method based software enhancement ap-

proach for adding features to the existing software system. At the initial steps, we

formally define a syntax and semantics of software enhancement. The defined con-

cept is further investigated for software artifacts traceability and reusability. The

complete understanding of the software evolution is described with the process

Chapter 3. Software evolution methodology 57

algebraic and algebraic specification language, CSP-CASL . Initially, CASL and

CSP based software enhancement is formally defined. Furthermore, this definition

software enhancement is used for a proposal of software artifact enhancement and

software artifact traceability. In this research, software enhancement is particu-

larly referred to as software specification enhancement as well as software artifact

enhancement.

3.4.1 CASL enhancement

Inception of algebraic specification started off as a method to formally describe

abstract data type but concerns of structuring and modularity were always in

research to make it applicable to the industrial practices. Industrial software

systems are generally huge in nature. Developments of such systems are always

based on their structuring and modularity. Here, we briefly explain these concepts

of software development with the help of algebraic specification language CASL.

The concept of structuring and modularity is supported by three types of software

specification mechanisms in CASL. These concepts of structuring and modularity

are fundamental basis for a formulation of software enhancement.

• Basic specification

• Structured specification

• Architectural specification

Algebraic specification language CASL has been developed with the adoption of

various research advantages. These advantages are integrated into the features

of CASL. CASL is an expressive language for a formal description of functional

requirements, structural and modular software design. CASL syntax is laced with

three types of extension to a CASL specification which are the basis for software

enhancement. First type of extension allows to add new symbols to existing spec-

ifications by using the CASL keyword ′then′. This type of specification extension

is an integral part of basic specification. The second type of specification en-

hancement in CASL is supported by keyword ′and′, which allows to unite two

independent specifications generally known as structured specification. It means

that enhanced features of software system can be integrated into the initial formal

Chapter 3. Software evolution methodology 58

specification by using the keywords ′then′ and ′and′ depending on the enhance-

ment type. An architectural specification provides the possibilities for specifying

components from which larger systems can be developed. Semantics of basic and

structured specification is a signature and a class of models. Architectural speci-

fication semantics represent its modular structure.

3.4.2 CSP enhancement

CSP enhancement is a concatenation of processes. There are a number of CSP

operations which combine two or more CSP processes; such as a combination

of processes in sequential or parallel manner. The CSP sequential composition

operator allows to combine two CSP processes in sequential fashion and this com-

bination produces a new CSP process. ′;′ is used as a sequential concatenation

operator. This operator can be used to facilitate modularity in the description.

Suppose P and Q are the CSP processes, a sequential composition of these can be

represented as P ;Q, which means that the composed process first behaves like P

until it terminates and then, it behaves like process Q. Termination of a process

in CSP is represented by an operator SKIP. We simply assume that all processes

terminate after finishing their sequence of events. There have been many research

activities for deadlock and divergence analysis such as [32][23].

Another way of a CSP process enhancement is adding more CSP processes in such

a way that they can interact with the original process by agreeing on some events.

CSP process denotation allows to add such type of processes as parallel processes.

In addition to these types, a CSP process can also be enhanced by adding new

CSP processes as an external or internal choice of the existing process.

3.4.3 CSP-CASL enhancement

Software artifact reusability has been considered as an important aspect in soft-

ware enhancement. However, software artifact reusability is a major challenge to

achieve. In this research, we formally define a concept of software enhancement

within the framework of our proposed specification technique. In this considera-

tion, a software enhancement is a process of adding new functional or performance

requirements to the existing software system by semantically preserving its existing

functionalities. The formal approach to software enhancement is the foundation

Chapter 3. Software evolution methodology 59

for software artifact reusability. The CSP-CASL based formal definition to the soft-

ware enhancement is a two step approach as given below:

Definition 3. Given, two CSP-CASL specifications SPe = (Deobs, Deint, Peobs, Peint)

and SP = (Dobs, Dint, Pobs, Pint). SPe is an enhancement of SP (represented as

SP SPe), iff they satisfy followingData enhancement and Process enhancement

conditions:

Data enhancement

• Σ(Dobs) ⊆ Σ(Deobs)

• Σ(Dint) ⊆ Σ(Deint)

• Mod(Deobs Deint)|Σ(Dobs Dint) = Mod(Dobs Dint)

Process enhancement

SPe is process enhancement of SP iff ∀ m ∈ Mod(Deobs Deint), satisfy following

conditions of their traces and failures.

• traces(Pobs) ⊆ traces(Peobs)

• traces(Pint) ⊆ traces(Peint)

• failures(Peobs/Peint) = failures(∆Peobs/∆Peint) ∪ ∀f ∈
failures(Pobs/Pint)|f /∈ traces(Peobs/Peint).

To calculate data enhancement, process part of specification remains constant, and

each data part induces process enhancement. Similarly, to calculate process en-

hancement, data part of specification remains constant. Mod(Deobs Deint)|Σ(Dobs Dint)

represents the Mod(Deobs Deint) restricted to the Symbols(Dobs Dint); such that for

all Symbols(Dobs Dint) there exists an injective mapping to the Symbols(Deobs Deint)

. In addition to the above conditions, all the axioms of e ∈ Axioms(Dobs Dint)

must be true in the enhanced model of specification Mod(Deobs Deint)|Σ(Dobs Dint) |=
e. Symbols(x) represents collection of data types, operations and predicates for

the selected specification context x. Process enhancement is an addition of new

traces into observable or internal part of specification. A software system is an

enhancement of earlier version, if it has more observable traces and all the fail-

ures from previous version are either failures of enhanced version or they are into

Chapter 3. Software evolution methodology 60

observable traces of enhanced version. All the failures of an enhanced software

system are the union of new failures(∆Peobs/∆Peint) which are specified as an

enhancement into specification and all the failures from previous version which

are not into observable traces of enhanced specification. Further, the proposed

theoretical concepts are elaborated with our industrial case study, initial version

of MED has specified that MED is only allowed to connect with the serial interface

of a computer, all other types of connection should not be permitted e.g Ethernet

based connection was not permitted. In initial MED, ethernet based connection

was into failures of specification however, in enhanced version of MED this became

a new feature.

ccsSpec enhancedSpecName
Data

dataSpecobs and/then dataSpecint
then/and
dataSpecobsE and/then dataSpecintE

[Channel
channelSpecobs
channelSpecint]

Process
processSpecobs ; processSpecint
; processSpecobsE ; processSpecintE

End

Figure 3.5: Enhanced CSP-CASL specification syntax

Figure 3.5 presents a visual view of our definition of software enhancement. A

software enhancement allows to add new data and process part to the existing

specification.

Example 3. Here in Table 3.3, we present an enhanced version of the medical case

study which is given in the Table 3.1. Particularly, the enhanced version of MED

is advanced with various types of connection possibilities such as Ethernet and dial

up connection. A CSP-CASL based formal specification to this enhanced version

of MED is given in the Table 3.3. Let us see how this enhanced specification is

related to given basic specification in the Table 3.1 .

With this enhancement definition, we can show a relation between these two spec-

ifications. To start with, we define the map between basic specification and en-

hanced specification. Clearly, enhanced specification has mapping for all the basic

specification sorts except two new functions EthernetConn and DialupConn. Sig-

nature of enhanced specification has grown with a conservative extension, such

Chapter 3. Software evolution methodology 61

that model of enhanced specification with the restricted signature to basic spec-

ification is equal to the model of basic specification. As the process part, basic

specification has only two process, Send and Receive, these processes are also part

of enhanced specification. However enhanced specification traces are enlarged

with traces of EthernetConn and DialupConn related connections. Number of

traces in enhanced specification are more than number of specification into basic

specification. All the traces and failures of basic specification are also part of en-

hanced specification. All the conditions of enhancement definition are true, thus

we can prove that CSP-CASL specification given in Table 3.3 is an enhancement

of CSP-CASL specification given in Table 3.1.

Table 3.3: Abstract CSP-CASL specification of Enhanced MED

ccSpec EnhancedComMedProtocol
Data

sorts Message, EncrMessage, ConnPara, Ack, DevID
ops SerialConn: ConnPara→ Ack

SendMessage: Message X Ack→ EncrMessage
RecvMessage:→ EncrMessage
CloseConn:→ Ack

then EthernetConn: ConnPara→ Ack
DialupConn: ConnPara→ Ack

Channel
EncrCh : EncrMessage
AckCh : Ack

Process

Send=AckCh!SerialConn(ConnPara)→
[Message] EncrCh!SendMessage(Message,Ack)→
AckCh!CloseConn()→ Send

[]
AckCh!EthernetConn(ConnPara)→
[Message] EncrCh!SendMessage(Message,Ack)→
AckCh!CloseConn()→ Send

[]
MsgCh!DialupConn(ConnPara)→
[Message] EncrCh!SendMessage(Message,Ack)→
AckCh!CloseConn()→ Send

Receive = MsgCh!SerialConn(ConnPara)→ [Message] EncrCh!RecvMessage()→
AckCh!CloseConn()?Receive

[]
MsgCh!EthernetConn(ConnPara)→[Message] EncrCh!RecvMessage()→
AckCh!CloseConn()→ Receive

[]
AckCh!DialupConn(ConnPara)→ [Message]EncrCh!RecvMessage()→
AckCh!CloseConn()→ Receive

End

Chapter 3. Software evolution methodology 62

3.4.4 Enhancement through extension

In this approach of software enhancement formalization, new user requirements are

integrated into the existing software system. The integration of new user require-

ment to the existing software specification is supported by formal specification syn-

tax. The CSP-CASL based formal definition to this type of software enhancement is

similar to the given definition of software enhancement, specially distinguished by

the keyword ′′then′′ of data part specification. Process part enhancement approach

is similar to as proposed into the definition of software enhancement.

3.4.5 Enhancement through substitution

This approach of software enhancement allows to add independently developed

new functional or performance requirements into the existing software system.

Typically, this type of enhancement is a component based software enhancement.

Here, new functional and performance requirements are separately developed and

later integrated as a component. The above CSP-CASL based formalism supports

this type of enhancement with the CASL keyword and, CSP keyword ; by allowing

the integration with the existing software specification.

3.4.6 Enhancement through extension and substitution

This approach of software enhancement allows to extend functional or performance

requirements by extension and substitution type of software enhancement as de-

fined in the above subsections. A formalism of this type of enhancement is the

integration of the above two type of software enhancements. Syntax and seman-

tics can easily be interpreted with the integration of the above two specification

formalisms.

3.4.7 Enhancement as software product line

The product line approach is based on a set of common features. Each element of

the product line contains some common features; they are used to identify products

as belonging to the same line. The common features are preserved and enhanced

in the development of any product of this line. Commonality of the features has

Chapter 3. Software evolution methodology 63

various significant advantages. Besides providing a familiar look-and-feel to the

end customer, it allows a systematic reuse of artifacts in the development process.

This can signicantly improve quality and cost efficiency. The CSP-CASL based

software enhancement definition allows to investigate product line based software

development. Particularly, the definition of enhancement through substitution and

enhancement through extension allow to elaborate concepts of product line based

software development.

3.5 Summary

In this chapter, a distinct formal specification technique is introduced which allows

to distinguish observable and internal behaviors of a specifying software system.

The proposed specification technique provides a pragmatic approach for the de-

scription of abstract and detailed specification of a software system. Generally,

at the initial steps of software specification only abstract behaviors are specified.

Subsequently, the abstract specification is evolved into detailed design by fixing

design details. The approach of fixing design details is considered as an addition

of internal behaviors. In this research, the CSP-CASL based syntax and semantics

is presented to describe a software system specification as observable and internal

behaviors.

This proposed approach of software specification is further investigated in vertical

and horizontal evolution of the software systems In vertical software evolution,

the established idea of software refinement is extended with the consideration of

observable and internal behaviors, CSP-CASL based software refinement is formally

described and elaborated with our proposed case study of medical embedded de-

vice. Further, as a horizontal software evolution, the idea of software enhancement

is formulated with extended CSP-CASL syntax and semantics. The defined con-

cept is investigated for software artifacts traceability and reusability. Software

enhancement techniques are categorized to tackle the needs of today’s industrial

environment.

These formulations of software specification, software refinement and software en-

hancement play a key role to formalize the concepts of software system evolution.

In further chapters these definitions are taken as a foundation for product and

process quality improvement framework development.

Chapter 4

Product quality framework

Software product quality planning should start with an unambiguous, precise and

complete description of user requirements. Requirement gathering is the most

important step for any software product development. The quality of a software

system is hugely dependents on the requirement specification. Software product

quality values vary with the criticality and applicability of software products. In

safety critical systems, software quality has a different meaning than a simple

business processing application e.g. (Mobile communication, Enterprise Resource

Planning, Business IT Management etc.). A lack of quality in a safety critical

system might lead to an unrecoverable loss. However a quality problem in a

simple business processing application might be tolerable by its users. In the

development of software systems, quality requirements are decided with various

business and operational aspects in mind. In general, software system quality is

assured by the combination of product and process quality. Product quality is

closely related to the conformance of the user requirement in terms of different

types of testing and verification techniques. However, process quality is more

concerned with defect prevention and efficient software life cycle management. A

good process is generally achieved with the support of standard process models

such as CMMI, ISO, SPICE, V-modelxt, Six sigma etc.

Our proposed product quality framework is established on the foundation of for-

mal method based software development and software evolution. Particularly, we

describe a distinct approach to test case derivation and maintenance based on ex-

tended CSP-CASL formalism. In the subsequent sections of this chapter, we present

a detailed view on the proposed software product quality framework. At the end

64

Chapter 4. Product quality framework 65

of this chapter, a brief description of the developed CSP-CASL evolution tool (cc-

FormTest) is presented. The developed tool provides pragmatic support to our

proposed software quality framework. The proposed software quality framework

is further explained by the development and maintenance of the selected medical

embedded system case study.

4.1 Testing terminologies

Formal methods based software system development has shown significant benefits

in the software verification and validation activities [41] [70] [18]. In this research,

we investigate the advantages of CSP-CASL based software system formalism in

testing domain. The proposed testing terminologies are built on the existing re-

search proposed by [71] [63] [72] [48]. Particularly, we have extended test case

derivation, test case maintenance and test case evaluation methodologies of the

existing research of our group [71]. In this paper, deep theoretical approach of

software refinement and testing is presented for a CSP-CASL based formalism. In

particular, for a test case the test oracle and test evaluation problem is separated

with a definition of expected result (green, red and yellow) and the test verdicts

(pass, fail and inconclusive). These concepts allow specification transformation,

refinement and test execution at all stages of software system’s design [71]. In this

thesis, we have considered more pragmatic approach to specification refinement

and test generation and test evaluation. The proposed framework is developed

with a consideration of product and process quality improvement.

4.1.1 Test case

A major challenge in a software testing is the selection of appropriate test cases.

Generally, functional requirements are the starting point to derive test cases either

manually or automatically. However, only functional requirement based testing is

not enough to guarantee the behaviors. The software systems are required to re-

spond properly for expected as well as for unexpected behaviors. This type of

desire has extended a need of testing for expected behaviors as well as for unex-

pected behaviors. In this consideration, we extend the understanding of software

testing with a direction of positive and negative test case generation. Positive

test case generation has been discussed in many research papers such as [72][73].

Chapter 4. Product quality framework 66

Negative test case generations are still at an initial stage. Generally, they are

practiced in industrial environments; however, they are explored less with differ-

ent specification approaches.

Proposed test generation mechanism is based on the CSP-CASL formalism of a

software system. For a CSP-CASL specification, we propose test cases generation

for expected behaviors (traces) as well as for the restricted behaviors (failures) of

the considered software system. Each test case confirms the expected or restricted

feature of the described CSP-CASL specification. A test case which confirms an

expected behavior is referred to as a Positive test case and a test case which

confirms a restricted behavior of is referred to as a Negative test case.

Definition 1. A test case is a CSP-CASL trace or failure.

As previously defined that for a CSP-CASL specification formalism, CSP-CASL traces

are categorised as Complete trace and Incomplete trace. Similarly, Positive

test cases(Tp) can be categorized as Complete positive test cases(Tc) and

Incomplete positive test cases(Ti) such as Tp = Tc ∪ Ti. A positive complete

test case is a trace of the expected behavior where each event of the trace termi-

nates successfully [32]. A positive incomplete test case is a trace of the expected

behavior where last event of the trace does not terminate successfully [32] . The

incomplete positive test case is used to debug the location of a bug in a software

system. If a software system passes a positive complete test case, then it also

passes all the incomplete test cases which are the subset of this positive complete

test case.

Definition 2. A test suite is a set of test cases.

This approach of test generation allows to test software system for the intended

as well as unintended behaviors. Modern programming languages are prepared

to handle intentional and unintentional behaviors with a mechanism of exception

handling. This methodology of test generation allows testing of intended behavior

as well as testing of behaviors which are supposed to throw exceptions. Specifi-

cation of failures has been in discussion since the proposal of CSP [32]. However

the testing methodologies of such behaviors are not considered in the researches.

Below, we present an example to elaborate the above concepts of test generation

for a CSP-CASL specification.

Example 1. Let there be a CSP-CASL process P1 with the traces (〈a, b〉 {a, d}) and

(〈a, b, c〉 {e}). The above definition of test case allows to derive following test

Chapter 4. Product quality framework 67

cases for the process P1. Few positive test cases derived from the process P1

are 〈a, b〉 , 〈a, b, c〉. Similarly, negative test cases derived from the process P1 are

〈a, b, a〉 , 〈a, b, d〉 , 〈a, b, c, e〉.

Generally a CSP-CASL specification has infinite traces and failures. Test selection

strategy is a challenging area of research, in this research test selection strategy

is considered out of scope. However, few selection strategies are considered from

research papers such as [19] [74]. The negative test case generation is more chal-

lenging than the positive test case. In our consideration, we have extended the

specification mechanism which allows to write the unintended behaviors as the

failures of specification. This part of specification allows to derive negative test

cases. The evaluation of test case execution on the specification or on the imple-

mentation is the next required step for testing. This is discussed in the further

subsections.

4.1.2 Test verdict

Test verdict is assessment of correctness of specification/implementation against

a test case. The executable specification or implementation is collection of all

possible processes of the considered CSP-CASL specification. The executable

specification or implementation is referred as SUT. Internal details of a SUT

is hidden, however any input and output can be accessed from outside. A test

case execution on the executable specification or implementation is like parallel

processes (Test Case || SUT), such that they agree on everything. Test case is

assumed to be derived with expected or restricted behavior. Test case evaluation

is a time consuming process, so it is always desirable to test a software system

against the test cases which are good enough to verify the properties of a soft-

ware system. The test verdict of a test case T on a given CSP-CASL specification

Sp = (Dobs, Dint, Pobs, Pint) is a value among {Pass, Fail, Inconclusive}. Test

verdict is assigned with following conditions:

• Pass:

– (Σ(T) ⊆ Σ(Sp)) ∧ (Mod(T) = Mod(Sp)|Σ(T))

– iff for all m ∈Mod(Sp) : Tm ∈ traces(Sp)m

• Fail:

Chapter 4. Product quality framework 68

– (Σ(T) ⊆ Σ(Sp)) ∧ (Mod(T) = Mod(Sp)|Σ(T))

– iff for all m ∈Mod(Sp) : Tm ∈ failures(Sp)m

• Inconclusive(Inc):

– Not in the above two conditions.

Interpretation of a test case against the execution of specification/implementation

is known as test oracle. Generally, test oracle is some type of comparison of

actual output for some input against calculated output for the same input. As the

formal specification is a complete and precise description of the system, it is easy to

calculate the expected output for a given input. The known issue with algebraic

specification is non-determinism in the specification. Since non-determinism is

not interesting from a practical point of view. In our research, we only consider

deterministic specification, non-determinism is considered out of scope for this

research.

These definitions of a test case and test verdict are further investigated in the

evolution of software systems. In further sections, we investigate the reusability

of test cases in the horizontal and vertical evolution of software systems. The

test case reusability is investigated with the persistence of test verdicts from the

initial specification to evolved specification. To explain testing life cycle, we start

with the derivation of test cases from the proposed case study and further, these

test cases are elaborated into the evolution of software system. Below, we present

few test cases and their verdicts from our proposed case study of MED. At the

initiation steps, we consider only functional test cases which are based on the

given observable CSP-CASL specification. The signature of a test case is a subset

of the signature of specification (test case definition). Once we execute these test

cases on the specification or on the implementation, we categorize the results of

execution according to proposed test verdict definition. This is decided with the

help of a procedure referred as test oracle [50].

Example 2. Here, we present a set of test cases derived from the CSP-CASL specifi-

cation of MED as given in Chap-3 Table 3.1. These test cases are presented in the

Table 4.1, each test case is either a trace(Positive test case) or a failure(Negative

test case) of ComMedProtocol within the given signature. The expected test ver-

dict of these test cases is determined by applying the definition of test verdict on

the ComMedProtocol CSP-CASL specification. The test case Tc1 is in the traces

Chapter 4. Product quality framework 69

Table 4.1: Abstract Medical Device Test cases and expected test verdict

Tc1 〈SerialConn(ConnPara)〉 Pass
Tc2 〈SerialConn(ConnPara)→ SendMessage(Message)〉 Pass
Tc3 〈SerialConn(ConnPara) → SendMessage(Message) →

CloseConn()→ Send〉
Pass

Tc4 〈SerialConn(ConnPara)→Message〉 Fail
Tc5 〈SerialConn(ConnPara)→ SerialConn(ConnPara)〉 Inc

of ComMedProtocol within the signature of specification. From the definition of

test verdict, an expected test verdict of this test case is Pass. In similar fashion,

Tc2 and Tc3 are in the traces of ComMedProtocol (test verdict Pass). The Tc4

has the last event as Message, which is in the failures of ComMedProtocol; this

produces a test verdict for this test case as Fail. Further, test case Tc5 is neither

in the traces nor in the failures of ComMedProtocol which leads to an expected

test verdict as Inc. In subsequent sections, these test cases are investigated to

elaborate the reusability into the evolution of MED.

In practice, execution of a test case is a time consuming and costly activity. Testing

of software system for the test cases which do not detect any bug should be avoided.

The test cases which return test verdict as Inc are not actually contributing for

the testing of software system. These test cases are derived at the abstract level

of specification. They are considered to be evolved at a refined or enhanced level

of specification. These test cases are categorized with unusable test cases before

starting actual testing to save testing effort and cost.

Definition 3. A test case is unusable for the testing of a specification or its imple-

mentation if the test verdict of this test case is Inc.

4.2 Vertical software evolution and test case reuse

Generally, development of a software system starts with an abstract specification

of desired properties. The abstract specification is further refined into the imple-

mentation by fixing design decisions. There is always a chance to introduce new

errors within the steps of abstract to subsequent levels of specification. The error

detection time and cost grows exponentially if they are not disclosed at the early

stage of software development [75] [76]. Early error detection is possible by start-

ing testing activities at very early phases of software system development. Overall

Chapter 4. Product quality framework 70

software system development time and cost can be minimized by starting testing

activities at the early phases of software development. However, this brings a new

challenge to reuse the test cases of abstract specification into the refined specifica-

tions. In this thesis, we present a pragmatic investigation into this challenge. The

complete methodology is based on the software system formalism into CSP-CASL .

In further subsections, we describe our proposed approach of software refinement

and testing.

4.2.1 Software refinement and testing theory

Software refinement allows a traceability of software artifacts from abstract specifi-

cation to a detailed specification for a software system development. However, the

relationship between abstract specification test cases and detailed specification

test cases is still not fully understood. There have been many research articles

about a reusability of the test cases [77] [74] however, the concept of test case

reusability by software refinement is not fully practiced. This research activity of

software refinement and test reuse methodology is a distinct approach from the

existing research. Formally, we define the proposed testing methodology for a

CSP-CASL based specification and test derivation as follows:

Definition 4. A test case is reusable at the refined specification by applying the

similar steps of refinement on specification as well as on the test case. Test cases

generated from an abstract specification should incorporate the refinement prop-

erties to test the refined specification.

Let’s assume, an abstract specification Spabs and test suite Ts, such that Ts is

derived from specification Spabs. If Spabs is refined to Spref by applying ∆r refine-

ment step then Ts should also be refined with ∆r step. Here, ∆r is assumed to be

a CSP-CASL refinement step. In further sections, we investigate this relationship

based on the given definitions of software refinement and testing terminologies.

Theorem 1. Given a CSP-CASL abstract specification Spabs and its refined specifi-

cation Spref , Ts is test suite derived from Spabs for the testing of Spabs. If Ts′ is

test suite for the testing of Spref then Ts′ must be a refinement of Ts.

Proof. Our goal is to prove the refinement relation Ts↘ Ts′. To prove this we are

required to establish the following relation(from the definition of CSP-CASL based

software refinement and test case):

Chapter 4. Product quality framework 71

• Σ(Ts) = Σ(Ts′)

• Mod(Ts′) ⊆Mod(Ts)

• traces(Ts′) ⊆ traces(Ts)

• failures(Ts′) ⊆ failures(Ts)

Given Spref is a refinement of Spabs, from the definition of refinement we can write:

• Σ(Spref) = Σ(Spabs)

• Mod(Spref) ⊆Mod(Spabs)

• traces(Spref) ⊆ traces(Spabs)

• failures(Spref) ⊆ failures(Spabs)

Let’s assume that the given specifications Spabs and Spref have only test cases T

and T ′ respectively. From the definition of test case and the refinement relation, we

prove the required condition for T and T ′ by replacing Spabs and Spref respectively.

Similarly with induction, we prove this for all the test cases of the given test suite,

which satisfies the required condition. Figure 4.1 represents a graphical view of

this theorem. Here, T is a test suite for the testing of initial specification SPI

and SPR1 is a refined specification of SPI , therefore all the test cases of T can be

used for the testing of SPR1 iff they are refined with similar steps of refinement as

SPR1.

Theorem 2. Refinement of abstract test cases leads to the categorization of test

cases into reusable or unusable.

Proof. Suppose, Spabs and Spref are given abstract and refined CSP-CASL specifications.

From the definition of refinement, the specifications Spabs and Spref satisfy the

following relation:

• Σ(Spref) = Σ(Spabs)

• Mod(Spref) ⊆Mod(Spabs)

• traces(Spref) ⊆ traces(Spabs)

Chapter 4. Product quality framework 72

SPI T

SPR1 TR1

Refinement
(R1)

Refinement
(R1)

Derived

Tests

Tests

Figure 4.1: Test refinement and Specification refinement

• failures(Spref) ⊆ failures(Spabs)

From the definition of test case, each traces and failures represent a test case for

a CSP-CASL specification. Let us assume, positive and negative test suites derived

from Spabs are TSp and TSn. From the definition of refinement relation between

Spabs and Spref ; ∃t ∈ traces(Spabs) : t /∈ traces(Spref). This proves that all

the positive test cases are not the test cases for refined specification. A test case

t has test verdict as ′′Pass′′ iff t ∈ traces(Spabs). If the test case is not in the

traces(Spabs), this might lead to the test verdict as Inc. Similarly we can prove for

negative test cases. Subsequently, we can say that refinement of test cases saves

testing effort by the categorization of test cases into reusable and unusable.

This theorem is the basis for deciding reusability of test cases, since an abstract

specification allows to select infinite number of test cases. These test cases must

be categorized as reusable or unusable, otherwise running unusable test cases on

an implementation is a waste of resource and time. Test case refinement will allow

to select only appropriate test cases which are required to test the refined specifi-

cation. Refinement properties such as model class of inclusion, data type selection,

non-determinism will allow to categorize test cases as reusable and unusable for

Chapter 4. Product quality framework 73

refined specification. In Table 4.2, we present the test cases and their test verdict

from the refined level of case study RefinedComMedProtocol.

Table 4.2: Refined Test cases and expected test verdict from Refined Specifi-
cation

Tc1 〈SerialConn(ConnPara)〉 Pass
Tc2Ref 〈SerialConn(ConnPara) → V alidateMsg(Message) →

SendMessage(Message)〉
Pass

Tc3Ref 〈SerialConn(ConnPara) → V alidateMsg(Message) →
Message〉

Fail

Tc4Ref 〈SerialConn(ConnPara) → V alidateMsg(Message) →
SendMessage(Message)→ CloseConn()→ Send〉

Pass

Tc5 〈SerialConn(ConnPara)→ SerialConn(ConnPara)〉 Inc

Table 4.2 presents the refined test cases of Table 4.1. The refined test case names

are postfixed with a Ref . The test case Tc1 is directly reusable from abstract

specification to a refined specification and the test verdict is also maintained. Test

cases Tc2 to Tc4 are refined according to specification refinement so that these

test cases are reusable at the refined specification. The steps of refinement are

similar to the test cases as well as to the abstract specification. These test cases

preserve their test verdict from abstract to refined specification. The abstract test

case of Tc3 has test verdict as ′Pass′ in abstract specification. Here, test case

Tc3Ref is refined according to specification refinement steps and produces test

verdict ′Pass′. The remaining two test cases preserve their properties from an

abstract model to a refined specification model.

Figure 4.2 represents a test suite reusability framework. This diagram shows

abstract CSP-CASL specification, refined CSP-CASL specification and test suite de-

rived from abstract CSP-CASL specification. Subsequently, the test suite is ana-

lyzed for the testing of refined specification and reusability analysis is presented.

This framework is based on theoretical definitions of testing terminologies, and

its implementation is supported by our developed tool. The framework gives an

overview of test suite reusability analysis by categorization of test cases. As the

name suggests that, reusable test suite can be used to test refined specification.

Unusable test suite is automatically separated from the test suite. This approach

allows to consider only reusable test cases for the testing of refined specification.

The presented framework is partially implemented in our proposed testing tool,

this tool is briefly described at the end of this chapter.

Chapter 4. Product quality framework 74

Abstract CSP-CASL
specification

Refined CSP-CASL
specification

Reusable
test suite

Unusable
test suite

Test suite
reusability analysis

Test suite from abstract
CSP-CASL specification

Figure 4.2: Test suite reusability framework for refined specification

4.3 Horizontal software evolution and test case

reuse

Horizontal software evolution is a process of adding new features to the exist-

ing software system by semantically preserving its existing features. Horizontal

software evolution is precisely referred to as software enhancement. Horizontal

software evolution is based on the common behaviors which are maintained at

subsequent levels of software evolution. Particularly, we investigate the possi-

bilities to reuse test aspects from initial software system to enhanced software

systems. In this thesis, the CSP-CASL based formal definition of software enhance-

ment is investigated into the testing domain. In further subsections we elaborate

our approach of software enhancement, where previously given formal definitions

of software enhancement and testing terminologies are used as foundation.

4.3.1 Software enhancement and testing theory

The previously defined formal definition of software enhancement allows to estab-

lish a relationship between the test cases of initial and enhanced specifications.

Chapter 4. Product quality framework 75

The formal definition of software enhancement is basis for the following definition

of test reusability.

Definition 5. A test case is reusable at the enhanced specification by applying

similar steps of enhancement on specification as well as on the test case. Test

cases derived from an initial specification should incorporate the properties of

enhanced features to test the enhanced specification.

This definition of test reusability allows to establish various testing aspects for

software enhancement. The suggested definition is the basis for the proposal of test

reusability framework for various types of software enhancement such as product

line and component based software development.

Theorem 3. Let Spi and Spe be initial and enhanced CSP-CASL specifications. A

test suite TS is derived from Spi to test specification Spi then TS is also a test

suite for the testing of enhanced specification Spe

Proof. Given Ts is derived from the given CSP-CASL Spi

⇒ ∀ t : TS t ∈ traces(Spi) or t ∈ failures(Spi)
Since Spe is enhancement of Spi so from the definition of enhancement we can

write

∀ t : TS : t ∈ traces(Spe) or t ∈ failures(Spe)
⇒ TS is also a test suite for the testing of enhanced specification Spe.

Theorem 4. A CSP-CASL based complete test case derived from an initial CSP-CASL

specification can be reused at the enhanced CSP-CASL specification iff complete

test case and specification are enhanced with similar steps of enhancement.

Proof. Let Tc be a complete test case for a CSP-CASL specification Spi such that

Tc is in the complete traces of Spi

⇒ Tc leads to a test verdict of either Pass or Fail

Let Spe be enhancement of Spi, such that trace of Spi has been added with a new

event. In this case Tc is a valid trace of enhanced specification Spe but this is not

a complete trace. By applying similar steps of enhancement on test cases, the test

case can be reused for the testing of enhanced specification.

Theorem 5. Let Spi and Spe be the initial and enhanced CSP-CASL specifications.

A CSP-CASL based positive test suite TSp preserves its test verdict from Spi to

Spe.

Chapter 4. Product quality framework 76

SPI TC

SPE1 TcE1

Enhancement
(E1)

Enhancement
(E1)

Derived

Tests

Tests

Figure 4.3: Test enhancement and Specification enhancement

Proof. Given, an initial CSP-CASL specification Spi and a test suite TSp such that

∀t ∈ TSp has test verdict Pass in the testing of Spi.

⇒ ∀t : TSp : t ∈ traces(Spi) and t /∈ failures(Spi) [definition of test case]

Given, Spe is enhancement of Spi, from the definition of enhancement we can write

⇒ ∀t : TSp : t ∈ traces(Spe) and t /∈ failures(Spe)
⇒ test verdict is preserved from initial to enhanced specification.

The above theorem proves the preservation of positive test cases in the enhance-

ment of a software system. Further in the Table 4.3, we present analysis on the

test cases derived from abstract MED. Especially, similar enhancement steps are

applied on the test cases to achieve reusability of test cases for the testing of en-

hanced specification. The test verdict for each test case is presented by applying

the definition of testing terminologies for enhanced specification and test case.

The definition of the enhancement relation allows us to prove equivalence between

the initial and the enhanced MED. But this equivalence is achieved by restricting

the signature of enhanced specification to the abstract specification. For the test-

ing of enhanced MED, all of its properties have to be considered. To achieve this,

the abstract test cases have to be enhanced with restricted properties of MED.

Chapter 4. Product quality framework 77

Table 4.3: Test cases from Abstract Medical Device and expected test verdict
from Enhanced Specification

Tc1 〈SerialConn(ConnPara)〉 Pass
Tc2 〈SerialConn(ConnPara)→ SendMessage(Message)〉 Pass
Tc3 〈SerialConn(ConnPara) → SendMessage(Message) →

Message〉
Fail

Tc4 〈SerialConn(ConnPara) → SendMessage(Message) →
CloseConn()→ Send〉

Fail

Tc5 〈SerialConn(ConnPara)→ SerialConn(ConnPara)〉 Inc

The Figure, 4.4 provides a test reusability framework for the testing of enhanced

specification. This framework allows to categorize test suite derived from initial

specification into reusable or unusable test suite. Reusable test suite can be used

for the testing of enhanced specification. The proposed framework is applied for

the development of our proposed testing analysis tool. The details of this tool are

presented in the further section.

Initial CSP-CASL
specification

Enhanced CSP-CASL
specification

Reusable
test suite

Unusable
test suite

Test suite
reusability analysis

Test suite from initial
CSP-CASL specification

Figure 4.4: Test suite reusability framework for enhanced specification

4.4 Summary

Today, software artifact reusability is considered an important software develop-

ment paradigm. The software artifact reusability allows software companies to

Chapter 4. Product quality framework 78

improve time to market, cost, productivity and quality. Particularly, we investi-

gated testing concepts for the CSP-CASL based specification formalism. Previously

defined formalisms of software specification, software refinement and software en-

hancement are used to propose testing terminologies in the vertical and horizontal

software development paradigm.

The software systems are required to respond appropriately for expected as well

as for unexpected behaviors. This type of desire has extended a need of testing for

expected behaviors as well as for unexpected behaviors. With this consideration,

we extend the understanding of software testing with a direction of positive and

negative test case generation. The proposed test generation mechanism is based

on the CSP-CASL formalism of a software system. This research presents a distinct

approach to test generation and test verdict interpretation during the evolution of

software systems. In the following table, we present the test verdict interpretation

from abstract to refined specification and from initial to enhanced specification.

Table 4.4: Test verdict transition from Abstract to Refined Specification

Abstract specification Refined specification
Pass Pass
Pass Inc
Fail Fail
Fail Inc
Inc Inc

Table 4.5: Test verdict transition from Initial to Enhanced Specification

Initial specification Enhanced specification
Pass Pass
Fail Pass
Fail Fail
Inc Pass
Inc Fail
Inc Inc

We proposed an approach to interpret the transformation of the test verdict in

the refined and enhanced model of the specification. This approach is based on

the formalism of CSP-CASL . Subsequently, based on given definitions test artifact

reusability theorems are proved. The details given in Table 4.4 and 4.5 are based

on the given definitions of test artifacts and proposed theorems . Further, the

Chapter 4. Product quality framework 79

formalism is enhanced to understand the test suite reusability by test suite cate-

gorization into reusable and unusable test suites. A simple categorization frame-

work is presented for specification refinement and specification enhancement. This

framework helps to automate the categorization of test cases. This categorization

will help to decide reusability of test cases for the testing of refined and enhanced

software systems. Refinement of a test suite will also allow to split the test cases

in such a way that they can be directly used for the testing of the implementation.

4.5 CSP-CASL specification evolution and test-

ing tool: ccFormTest

Formalism of the software system specification allows to automate various test-

ing processes such as test generation, test evaluation. Only few formal spec-

ification based testing tools have been proposed to support software evolution

and testing process relation. However, software evolution has been very com-

monly practiced in the vertical and horizontal software system development and

maintenance. Our theoretical research concept is practically elaborated with a

CSP-CASL specification and test case evolution tool support. This tool allows

to analyze CSP-CASL based specification and elaborates a possibility of test suite

reusability. Test suite reusability is especially elaborated in the software evolution.

An approach of positive and negative test generation is elaborated based on our

theoretical definitions. Further, we present tool architecture and its functionalities

in the further subsections.

4.5.1 Tool architecture: ccFormTest

ccFormTest architecture is presented in Figure 4.5. The complete architecture

is divided into various units of processing. Input units of ccFormTest accepts

specifications and external test suite. These units are represented as A,B,C in the

Figure 4.5, units A and B accept CSP-CASL specification as an input for specifica-

tion analysis, test case generation and evaluation. Unit C allows to accept external

test cases which can be evaluated on the specifications provided from units A and

B. Further inputs of units A,B,C are syntactically and semantically validated into

the unit D. Units E and F analyze the input specifications provided from units

Chapter 4. Product quality framework 80

A) CSP-CASL
specification one

D) Syntax validator

E) Specification one
analysis

F) Specification two
analysis

K) Specification
evolution relation

G) Specification
one test suit

I) Specification two
test suit

L) Test verdict

J) Test reusability

B) CSP-CASL
specification two

C) External test suite

H) External test suite
analysis

Figure 4.5: Evolution and testing tool architecture

A and B. The analysis report is shown as data and process part details of the

given specifications. Units G and I are test suite generation units based on the

inputs from units E and F. Test suite generation is based on given definitions of

positive and negative test generations. Units G,H,I also perform analysis on the

test suites for further use. Unit K is a specification relation analysis unit which

allows to present a relationship between given input specifications based on the

definitions of software refinement and enhancement. Further, units J and L repre-

sent test suite reusability and test verdict analysis on the respective specifications.

In the subsequent subsections, we will elaborate main features of ccFormTest by

presenting respective screen shots.

4.5.2 Syntax validation

This part of the tool accepts CSP-CASL specifications and test suite as input and

further passes them to the respective validations units. Syntax of input specifi-

cation and test suite is validated according to the definitions as given in chapters

Chapter 4. Product quality framework 81

3 and 4. Syntax of any CSP-CASL specification is according to the specification

formalism such as ccSpec spName = Data Dobs Dint [Channel Chobs Chint]

Process Pobs Pint End. Data part and process part syntax are validated accord-

ing to CSP-CASL syntax as given in the literatures [21] as well as in our proposed

formalism. This tool implements only required CSP-CASL syntax validation possi-

bility. Complete syntax validation is not considered as part of this tool develop-

ment. This part of the tool is also used to validate syntax of test cases which are

passed as an input.

A test case is defined as a positive or negative trace of CSP-CASL specification. Test

case syntax is validated with CSP syntax over the signature of data part. Figure

4.6 presents the main screen of the ccFormTest tool. From this screen, the tool

accepts CSP-CASL specifications as input which are syntactically validated once

user presses the button Analyze. For the analysis of test suite, the tool accepts it

as an input which can be provided from the another screen labeled as Test Suite.

The test suite goes through syntax validation before it is ready for further analysis.

Figure 4.6: ccFormTest, Main Screen

Chapter 4. Product quality framework 82

4.5.3 Specification evolution analysis

Specification evolution analysis is the most important functionality of this tool.

This block of the tool accepts the specifications once it is passed through the

syntax validation units. The CSP-CASL specifications are analyzed for establish-

ing the relationship of specification refinement or specification enhancement. The

specification refinement and specification enhancement analysis are carried out

according to the definitions proposed in chapter three. In the analysis, observ-

able and internal specification parts are considered for the specification relation

analysis.

The result of analysis is presented in another screen labeled as ′Details′. Here,

the details of the data and the process part of specification are separately elabo-

rated. Further, both the specification details are presented in a comparable view.

This analysis unit acts as a basis for test generation and specification evolution

relation. Specification evolution result is presented based on the definition of soft-

ware enhancement and software refinement. Figure 4.7 presents the screen which

shows the details of both the specifications. This functionality also allows to view

the extra traces of selected specification, which is presented in the last part of the

screen.

4.5.4 Test generation

Test generation is based on the simple definitions of test case as given in the

previous part of this chapter. This tool generates both positive and negative test

cases from the given specifications. A simple interface allows to generate test cases

from selected input specifications. Any trace or failure of the input specification

can be selected as a test case. At the tab of Traces and Failures, all the traces

and failures are presented from the selected input specification. These traces and

failures can directly be used as a test case for the selected specification.

Figure 4.8 and 4.9 present the screen shots for the test case generation function-

ality. Further, it allows to select traces or failures as a test case from the testing

of input specifications. The test verdict analysis is presented by selecting the test

case and running it against the specifications into the screen 4.10. The external

test suite can also be integrated into the tool once it is passed through syntax

Chapter 4. Product quality framework 83

Figure 4.7: ccFormTest, Specification details

Figure 4.8: ccFormTest, Specification Trace and Positive Test Case

Chapter 4. Product quality framework 84

validation mechanism. External test cases can be analyzed for the testing of both

the input specifications.

Figure 4.9: ccFormTest, Specification Failures and Negative Test Case

4.5.5 Test case evaluation and maintenance

This tool allows to analyze test cases on the given specifications. Especially, test

verdicts on the given specification are decided by the definition of test verdict as

given in previous part of this chapter. Once a test case is selected and button
′Trace as test case′ is pressed, then test verdicts from both the specifications are

presented. This also allows to view the transition of the test verdict from one

specification to another specification. The transition of the test verdict presents

an initial view on the maintainability of the test case. Figure 4.10 presents a test

case and its verdict on the selected specifications.

The test case reusability algorithm is implemented on the given definitions in the

previous part of this chapter. The possibility of test cases are refinement and en-

hancement are considered at a very primitive level. The complete implementation

Chapter 4. Product quality framework 85

Figure 4.10: ccFormTest, Test Case and its Verdict

of refinement relation requires interface with many other theorem provers which is

out of scope for the thesis. However, CSP-CASL refinement relation has been nicely

integrated into the tools developed by research group from Roggenbach [21]. The

screen shot of testing related functionality is shown in the Figure 4.9. The test

execution result is presented for both the input specifications. The tool gives the

possibility to understand the transition of test verdict from one specification to

another specification.

4.5.6 Specification and test case traceability analysis

ccFormTest allows to analyze a relation between two input specifications. Par-

ticularly, this relation is presented as specification refinement or specification en-

hancement. Once this relation is established, it allows to understand the properties

of testing artifacts. This tool specially allows to trace a test case from one specifi-

cation to another. Once a software refinement relation is established, it allows to

prove the properties of test cases from one specification to another. Traceability

Chapter 4. Product quality framework 86

is the basis to prove the CMMI process model properties which are described in

chapter five.

This tool reads two input specifications; subsequently it provides relation between

these two specifications. The specification relation is presented as specification

refinement or specification enhancement. Further, this tool gives the possibility

to derive test cases from input specifications. The test cases are further executed

on both the provided specifications and a comparable view of test verdict is pre-

sented. The test case derived from initial specification can be executed on the

enhanced specification and their test verdict is presented. Similarly, the test cases

derived from abstract specification can be executed on the refined specification

and their test verdict is presented. This allows to understand test case character-

istics from abstract to refined and from initial to enhanced specification. This tool

provides basic concept for specification and test suite traceability which is one of

the requirements for the CMMI process compliance. The complete details of this

are presented in the next chapter.

4.5.7 Tool summary

ccFormTest has assisted to prove our theoretical concepts of formal method based

process and product quality improvement. This tool allows to analyze CSP-CASL

based specification and elaborates a possibility of test suite reusability. Test suite

reusability is especially elaborated in the software evolution. An approach of posi-

tive and negative test generation is elaborated based on our theoretical definitions.

This tool is developed for a limited set of CSP-CASL syntax and semantics. In-

tegration of complete CSP-CASL syntax and semantics does not add much value

to this research, only tool applicability will be enhanced. However, ccFormTest

architecture supports interfaces with other tools, which will allow this to connect

with other CSP-CASL tools for syntax validation and theorem provers. Integra-

tion with other tools can be considered as a further enhancement of this research,

current state of art for this tool is limited with set of syntax and semantics.

Chapter 5

Process model compliance

framework

The importance of formal methods for the evolution of software systems has been

elaborated in the previous chapters. Generally, formal methods are used in the

software system development life cycle. Initially, the software system development

life cycle was confined to requirement, design, verification and validation activities.

However, nowadays, the software system life cycle has evolved from the develop-

ment level to the organization level. The software system life cycle does not end

with the implementation, but it is extended to the maintenance and evolution

phases of the developing software system. The contribution of formal methods at

all phases of software system development is not well understood.

Generally, process improvement models are used to manage software systems at an

organizational level. Some well known process improvement models are CMMI,

ISO family, SPICE etc. Process improvement models and formal methods are

viewed as two separate approaches for the development of software systems. How-

ever, they share the common goal to improve software system quality. In this

research, we propose a unique approach to integrate these two aspects of software

system quality improvements.

There are many process improvement models which have shown benefits to the

organizations. Each of these process improvement models provides a collection of

best practices for development and delivery of high-quality software systems. Pro-

cess improvement model CMMI provides twofold guidelines for the development and

maintenance of products. The first guideline is related to the process framework

87

Chapter 5. Process model compliance framework 88

setup and the second guideline is related to the measurement of organizational

capability and maturity for adopting the processes.

A software system development and maintenance life cycle is generally managed

with two type of activities. First, what has to be developed as a software system

and second, how the software system has to be developed and maintained. The

formal methods have been explored right from the writing of specifications to the

implementation of the requirements. The vast applicability of formal methods for

the development and maintenance of the software system makes it suitable for

the exploration of the what and how aspects of software development. In this re-

search, we explore the compliance possibilities for process model CMMI(Capability

Maturity Model Integration) with formal method based software development.

The proposed compliance framework is elaborated with CSP-CASL based formal-

ism methodologies.

5.1 CMMI, Capability Maturity Model Integra-

tion

A process model delivers process improvement results for software system devel-

opment when it is rightly used in the right environment. A process improvement

is concerned with changes, which can be implemented by a series of small steps to

reach an improved state or it can be applied as a complete change. There have been

many process improvement models supporting such types of industrial demands.

These types of process improvement models are based on continuous process im-

provement (CPI) [2] or on the business process re-engineering (BPR) approach.

In this research, we have selected continuous process improvement model CMMI .

This process improvement model allows two types of implementations which are

referred as Maturity Levels and Capability Levels. First, we describe architec-

ture of CMMI in the next subsection which is required to explain these levels of

CMMI implementation.

5.1.1 CMMI, process model architecture

CMMI (Capability Maturity Model Integration) is a framework for assisting or-

ganizations to improve their product development and maintenance process [33].

Chapter 5. Process model compliance framework 89

CMMI is based on the notion of Process Area (PA). A process area is a cluster

of related practices in an area. CMMI has 22 process areas which are consid-

ered important for the process improvement of an organization. CMMI offers two

representations for its implementation, a continuous representation and a staged

representation. The continuous representation offers more flexibility for process

improvement. An organization can choose a focused process area, determine the

dependent process areas, improve these at priority, and then concentrate on other

process areas. In the staged representation, process areas are grouped together

into capability maturity levels.

Process Management
(5 PA)

Project Management
(6 PA)

Engineering
(6 PA)

Support
(5 PA)

Subpractices Elaborations Subpractices

Process Area
(PA)

Generic Goals
GG

Specific Goals
SG

Generic
Practices

GP

Specific
Practices

SP

Work Products

Required Expected InformativeNotations:

Figure 5.1: Details of process area and its components

Let us see how the CMMI architecture fits into the capabilities of an organization.

In general, the domain of an organization can be divided into four groups: process

management, project management, engineering and support (as shown in Figure

5.1). These groups have a set of business functions associated with them. Gener-

ally, these business functions have a quite independent set of business activities.

Each organizational group has a set of process areas for improving the capabilities

Chapter 5. Process model compliance framework 90

of its processes. Each process area is associated with a set of goals which have

to be satisfied as a measure for the improvement in that process area. CMMI

describes these aspects of a process area by so-called model components.

5.1.2 CMMI, process area model components

The CMMI process area is described by three types of components, they are referred

to as model components. The compliance of CMMI process area is evaluated by

compliance of its model components. These model components are referred to as

follows:

• Required model components

• Expected model components

• Informative model components

Required model components describe what an organization must achieve to sat-

isfy a process area. Expected model components describe what it may implement

to achieve the associated required model components. Informative model com-

ponents provide details which help to initiate the approach followed by required

and expected model components (as shown in Figure 5.1). The description of a

process area starts with an introduction, purpose and relation with other process

areas. These are informative model components. The main characteristics of a

process area are described by following two types of goals:

• Specific Goals(SG)

• Generic Goals(GG)

The specific goals are unique characteristics that must be present to satisfy the

associated process area. A specific goal is a required model component. A Spe-

cific Practice (SP) is the description of an activity that is considered important

in achieving the associated specific goal. A specific practice is an expected model

component. A generic goal is the required characteristics component to institu-

tionalize the processes which implement a process area. Generic goals are called

Chapter 5. Process model compliance framework 91

generic because the same goal applies to multiple process areas. A generic prac-

tice is a description of an activity that is considered important in achieving the

associated generic goal. Thus, a generic practice is an expected model component.

For analyzing the compliance of CMMI process improvement models, we experi-

ment with unique characters of the process areas e.g. specific goals and its specific

practices. Generic goals are specially helpful to institutionalize a process area in

the organization. The generic goal compliance is briefly investigated after specific

goal compliance mechanism.

5.2 CMMI process improvement model and For-

mal methods

It is a well known fact that product quality depends on its development processes

[78]. A good process is usually required to produce a good quality product. The

development of a good quality software system on a predictable schedule and

planned costs is possible only with an efficient process model. Some exceptions

are also proved against the process model but these exceptions are proven for

the development of small software systems. The broadening area of computer

applications and interaction with different software systems is growing software

system size day-by-day. Subsequently, an efficient process model becomes part of

any software system development.

For the development of a software system, which nevertheless is reliable, both

product and process based quality assurance methods are necessary. Process and

product view of the quality assurance are the two main aspects for the development

and maintenance of software systems. Several standard models have been proposed

for a systematic process improvement, e.g., CMM/CMMI, Agile, SPICE, or the

ISO 9000, Six-sigma family. For a rigorous analysis of the software products,

formal method based software development has been proposed. Some examples of

formal languages are VDM, Z, LOTOS, CSP and CASL etc. These two approaches

are distinctly used for the development of software systems. However, the goal of

these aspects is to achieve best quality in the developed software system. Some

aspects of product and process quality views are brought together by research

papers such as [1] [79][6]. However, an integration of these two aspects is still

not understood in the theoretical and practical world of computer science. In our

Chapter 5. Process model compliance framework 92

research, we integrate product and process quality aspect of software system with

the formal methods based development approach. In particular, the presences of

formal methods are extended for software system development as well as for the

compliance of process improvement models.

5.2.1 Formal methods based idealistic approach to soft-

ware development

Software development process is divided into several stages to efficiently build a

software product within a specific budget and time frame. Generally, these stages

are common to every software development approach such as Waterfall model,

V-Model, Spiral Model, Iterative model, Agile development etc. Figure 5.2 shows

an ideal software development approach which has all the software development

stages. On the right hand side of these development stages we have collected

the formal methods based techniques which are supporting that particular stage.

However, in reality there is not a single formal specification language which is

appropriate for all the stages of software development. This is where we call this

as ideal software development, we assume there is a single formal specification

language which fulfills the requirements for all stages. Once we collect the formal

methods based techniques together, they look like as they are shown in the middle

part of Figure 5.3. In our research, we refer them as formal method features.

Later on, we investigate them for the compliance of process improvement model.

As shown in Figure 5.3, these features are common to any specification language

and they are separately explored with most of the specification languages. Gen-

erally, the development of a large software system requires various formal specifi-

cation languages for a precise description of required properties. Some integrated

specification languages have been proposed for the development of such a software

system. However, the proposed formal method features are fundamental proper-

ties for any specification language. Figure 5.3 presents the formal method features

which are well established for the formal development of a software system. These

features are further investigated for the compliance of selected process improve-

ment model. In particular, we explore a formal specification language (CSP-CASL)

based software development and investigate the properties of this language for the

compliance of CMMI requirements.

Chapter 5. Process model compliance framework 93

(A) FM based
requirement

 Formal abstraction
 Formal specification
 Formal modelling
 Formal test generation

(B) FM based
design

 Formal refinement
 Model checking
 Formal proofs
 Formal verification

(C) FM Based
detailed design

 Formal refinement
 Model checking
 Formal proofs
 Formal verification

(D) FM based
code generation

 Code generation
 Formal equivalence checking
 Formal synthesis

(E) FM based
testing

 Formal test automation
 Formal validation
 Formal verification

Customer needs

(statement of work)

Figure 5.2: Formal method based idealistic approach to software development.

Chapter 5. Process model compliance framework 94

Formal Methods

Compliance of Process Model

Refinement Enhancement Validation VerificationAnalysis Modeling

Figure 5.3: Formal method features appropriate for the compliance of CMMI
process area.

This is the first step to systematically combine formal methods based techniques

with process improvement models. The proposed idea is not only to bring formal

methods and process improvement model together but to develop a distinct ap-

proach to the compliance of the process improvement model. The advantage of

formal methods in software development life cycle automation brings a possibility

to automate the compliance of the process improvement model. This research will

elaborate an understanding of product and process quality parallel to the software

development life cycle. In the next section, we give a brief overview of the process

model compliance grading scheme for the compliance of CMMI components. In the

subsequent sections our results about the contribution of formal methods in the

compliance of CMMI process areas are presented.

5.2.2 Process model compliance grading scheme

We start our research activities of formal method based process model compliance

by giving a definition of compliance grading scheme. This definition is used to

evaluate compliance of the CMMI process area and its model components with

Chapter 5. Process model compliance framework 95

formal method based software development. These grading schemes evaluate the

compliance level of the model components of the selected process area with a for-

mal method based development. The grading scheme proposes the following levels

of evaluation:

• Fully Complied (FC): A process area is FC if 90-100% of its specific goals

are achieved as FC. A specific goal is considered as FC if 90-100% of its

activities can be performed with a formal method based development.

• Largely Complied (LC): A process area is LC if 60-89% of its specific

goals are achieved as LC or FC. A specific goal is considered as LC if 60-89%

of its activities can be performed with formal method based development.

• Partially Complied (PC): A process area is PC if 30-59% of its specific

goals are achieved as PC or LC. A specific goal is achieved as PC if 30-59%

of its activities can be performed with formal method based development.

• Not Complied (NC): A process area is NC if less than 29% of its specific

goals are achieved as NC or PC. A specific goal is NC when only 29% or less

of its activities can be performed with formal method based development.

This grading scheme is proposed with a detailed analysis of process improvement

model and its required components. This grading scheme is specially proposed for

a compliance of CMMI process model within an organization. This is not a replace-

ment to the standard SCAMPI (Standard CMMI Appraisal Method for Process

Improvement), which is designated to provide quality rating to the implementa-

tion of CMMI models. The proposed grading schemes support for the assessment

of CMMI with selected SCAMPI. A detailed analysis of CMMI implementation

process and formal method specification based development approach allow to in-

vestigate CMMI process compliance analysis in terms of the above grading schemes.

Similar results can be achieved with any formal specification language based devel-

opment approach. However, we present our result with CSP-CASL . This research

activity is a starting point to achieve the process compliance parallel to the product

development with formal methods.

Chapter 5. Process model compliance framework 96

5.2.3 CMMI, Process model compliance algorithm

Recall that the CMMI process model is based on the concepts of process areas. A

process area is a collection of related practices in an area. These practices are

considered important for the improvement of selected process area. This means

the compliance of a process area is based on the compliance of its practices. Based

on the elaboration of CMMI model components, we develop the following algorithm

for the compliance of any process area. The algorithm PA-Compliance evaluates

a level of compliance for a selected process area. This evaluation is categorized

with the proposed grading scheme based on the practices performed with formal

method based development for a select process area.

Table 5.1: Algorithm PA-Compliance

Steps Activities
1. Select a Process Area (PA)
2. For each Specific Goal (SG) of the selected PA
3. For each Specific Practices (SP) of the SG
4. Evaluate compliance level for the activities of SP with formal method based

software development and assign respective compliance level from grading
scheme (FC,LC,PC,NO)

5. Evaluate compliance level for SG based on the grading of SPs
6. Evaluate a grading scale of the process area based on the grading of all SGs

The algorithm PA-Compliance starts with a consideration of the Process Area.

This algorithm evaluates the compliance level of process area and its components

with formal method based development. Compliance level is evaluated with the

grading scheme as given in previous subsection. In further subsections, we present

a set of CMMI process areas which complied with the formal method based software

development approach.

A specific goal describes unique characteristics that must be present to satisfy the

process area. The activities of the specific goal are described by specific practices.

The specific goals are achieved by performing the activities of specific practices.

Specific practice is the starting point to achieve the specific goal which subse-

quently satisfies the process area.

Chapter 5. Process model compliance framework 97

5.3 Formal method based CMMI implementa-

tion strategy

The implementation of process model CMMI is a continuous process. However, it

starts with the development of Software Process Database (SPDB). A SPDB is a

depository where CMMI reference process guidelines are maintained. These guide-

lines are a collection of reference practices which always evolve for an incorporation

of best practices from the various learning aspects. A software system development

in the CMMI environment starts with the selection of appropriate guidelines from

the developed SPDB for the organization. Ownership of SPDB lies with a group

generally referred to as the Software Engineering Process Group (SEPG). SEPG

is responsible for the continuous improvement of SPDB practices with the help

of feedback from SQA (Software Quality Assurance) and PM (Project Manager)

groups. As the name suggests, the SQA group is responsible for maintaining prod-

uct and process quality for software system development. The PM is responsible

for the development of the software system according to the customer’s require-

ments by following best practices derived from SPDB. This is a general view of an

organization which is compliant with the CMMI process model.

Here, we develop a strategy for the compliance of the CMMI process model with

the formal method based software system development. The compliance of CMMI

components have been elaborated in the previous sections. Here, the compliance

of the process model is considered at an organizational level. This strategy of

formal method based CMMI process model compliance starts with the develop-

ment of a Formal Software Process Database (FSPDB). This depository consists

of CMMI practice guidelines and their compliance approach with formal method

based development. Some examples of these practice guidelines are the formal de-

scription of customer requirement, derivation of design document and formal test

cases generation etc. The overview of our proposed strategy for formal method

based CMMI implementation is shown in Figure 5.4.

In Figure 5.4, complete CMMI compliance process is presented along with respon-

sible groups. SEPG and PM are responsible for creation and selection of pro-

cess guidelines for the development of a software system. The process guidelines

are enhanced by feedback from the PM and the SQA. The proposed compliance

framework is a quite similar approach used in the industry. The only difference

is in the selection and evaluation of guidelines which requires knowledge of formal

Chapter 5. Process model compliance framework 98

FSPDB

SEPG

PM

SQA

SOFTWARE
SYSTEM

CMMI COMPLIANCE

T
E
C
H
N
O
L
O
G
Y

F
O
R
M
A
L

M
E
T
H
O
D

Figure 5.4: CMMI, process model evaluation strategy overview.

methods. The formal methods based SPDB provides various automation possibil-

ities which subsequently reduces the involvement of SEPG/PM/SQA. The process

model compliance evaluation is performed by the proposed algorithm and grading

scheme. The CMMI compliance methodologies SCAMPI(A/B/C) [80] can be inte-

grated with our grading scheme to evaluate process model implementation at an

organizational level.

5.4 CMMI, Process area compliance exploration

The advantages of the formal method start with a precise and unambiguous de-

scription of the product requirements. Formalism in the product specification

constitutes a basis for an automation possibility in the software development life

cycle as well as in the software artifact traceability. Software artifact traceabil-

ity is a process of tracking the product requirement and its components in other

software life cycle phases. Formal method allows automatic traceability of soft-

ware artifacts among software product artifacts e.g. requirement, design, detailed

design etc.

In general, compliance of CMMI process model requires various tools such as re-

quirement management tool, project management tool, quality management tool,

time management tool, configuration management tool etc. Most of the orga-

nizations have to use different tools for performing these activities. There is a

Chapter 5. Process model compliance framework 99

lack of tools which are appropriate for performing complete software development

life cycle activities. One of the important reasons for this problem is the lack of

standardization in the product requirement. Formal methods are by and large

accepted as a standard way for writing and analyzing the specification. We ex-

tend the applicability of formal methods throughout the product development as

well as for the process model compliance. The formal method based development

approach has distinct properties where CMMI process areas can be satisfied par-

allel to the product development. Below are the list of process areas and their

compliance grading scales based on our proposed process compliance algorithm

PA-Compliance.

We explore the features of formal methods (Figure 5.3) for the compliance of

CMMI process model. The compliance is evaluated with our proposed algorithm

PA-Compliance and grading scheme with formal method based software system

development. Formal methods based CMMI process area compliance is explored

parallel to the product development. This means formal method based software

system development gives a possibility to automate CMMI process area compli-

ance with minimum extra effort. In further subsections, we present our theoretical

evaluation of CMMI process areas which are complied with formal method based

software development. We reached the conclusion that there are six process areas

which can be satisfied up to a great extent with formal method based software

development. Our results are achieved with CSP-CASL based formal software de-

velopment however this approach is well suited for any specification language. In

the next subsection, we present a list of process areas and their grading scales

compliance with Formal Method Based Development(FMBD) by using Formal

Method Features (FMF).

5.4.1 Requirements Management (RM)

The process area Requirements Management provides guidelines for addressing

demands of product features and product component features. In addition to this,

it also provides guidelines for removing inconsistencies between requirements and

other work products. The compliance level of this process area and its component

by formal method based software development is presented in Table 5.2. This

table also presents the formal method features which are associated with each

specific practices compliance.

Chapter 5. Process model compliance framework 100

Table 5.2: Compliance of RM with FMBD

Specific Goals and Specific Practices FMF Grade
SG 1 Manage Requirements - LC

SP 1.1 Obtain an Understanding of Requirements Analysis, Modeling LC
SP 1.2 Obtain Commitment to Requirements - NC
SP 1.3 Manage Requirements Changes Enhancement LC
SP 1.4 Maintain Bidirectional Traceability Refinement, Enhance-

ment
LC

SP 1.5 Identify Inconsistencies Refinement, Enhance-
ment

LC

This process area is specially related to the management of user requirements

in such a way that completeness and consistency of requirements is maintained

throughout the software product development. Formal specification based soft-

ware development is significantly elaborated for writing user requirement, design

document and test case generation. In the previous chapters, we presented a prag-

matic definition of software specification, refinement, enhancement and test case,

they all together establishes the basis for compliance of this process area. Let us

investigate how specific goals of this process area are achieved by performing the

specific practices with a formal method based development. Formal method based

compliance evaluation of this process area is presented in the Table 5.2. In this

table, is the analysis of results with our proposed algorithm PA-Compliance.

Here, the first step of the algorithm starts by selection of the process area Require-

ments Management. The next step is the selection of a Specific Goal from the

selected PA. Here we select SG 1. The next step of the algorithm is to select a Spe-

cific Practice of the selected SG and assign evaluation with formal method based

development. Here, first SP of selected SG is SP 1.1 which is Obtain Understanding

of Requirements. Activities of this SP expect complete and clear understanding

and management of user requirements. A formal method is well known for the

implementation of these activities. The only concern with formal method based

development remains with the training and the specification writing effort which

bounds the number of users. With the consideration of these aspects for this SP

our proposed grading scheme evaluates it at the level LC. The next step of the

algorithm PA-Compliance is to select all SPs of selected SG. Depending on the

formal specification generic features and evaluation of activities for each SP we

assign SP 1.2 to SP 1.5 respective compliance level as shown in Table 5.2. Com-

pliance grading of SG is the average of all its SPs grading. Here SG 1 has grading

LC which is the average of the assigned grading to its SPs. Average of the SGs

Chapter 5. Process model compliance framework 101

grading is the grading of the Process Area. Here, it’s only one SG for this PA so

the PA has a grading as LC.

A precise and unambiguous semantic of formal development is basis for the com-

pliance of this process area. First, user requirement is formally specified and

further this formal specification is formally extended in the software development

life cycle. This approach of software development provides better software artifact

traceability and management which forms a basis for the compliance of the specific

goal and its specific practices for the Process Area Requirements Management.

Example 1. A small part of the previously proposed MED case study, is shown

in the table 5.3 to demonstrate a transition of user requirement in the software

development life cycle. The refinement relation among requirement, design and de-

tailed design allows to trace the inconsistencies in the requirement. Our proposed

tool CcFormTest allows us to verify the complete example formalism and its de-

velopment life cycle with relations among refinement, enhancement and generated

test cases.

Table 5.3: Refinement relation

In require-
ment

EncrMsg → SendMsg→ RecvMsg→ CheckAck→ TRUE

In design FormatAck→ GenData →EncrMsg →SendMsg →RecvMsg→ CheckAck
→TRUE \ { FormatAck , GenData } (Hiding internal functions makes equiv-
alent to requirement)

In test case EncrMsg→ SendMsg→ RecvMsg→ CheckAck →TRUE

5.4.2 Product Integration(PI)

The process area Product Integration guides the integration of the component’s

functions according to the requirements and the integration of components with a

complete product. The contribution of formal method to this process area, specific

goals and specific practices is shown in Table 5.4.

Formal method has been proposed for component based development, e.g. in [28].

In particular, CSP-CASL provides significant features for component based devel-

opment, such as giving a structural and architectural approach to requirements

engineering [67]. In addition to this, the advantage of CSP-CASL for product line

Chapter 5. Process model compliance framework 102

Table 5.4: Compliance of PI with FMBD

Specific Goals and Specific Practices FMF Grade
SG 1 Prepare for Product Integration - LC

SP 1.1 Determine Integration Sequence Analysis, Modeling LC
SP 1.2 Establish the Product Integration Environment Analysis, Modeling LC
SP 1.3 Establish Product Integration Procedures and

Criteria
Analysis, Modeling LC

SG 2 Ensure Interface Compatibility - LC
SP 2.1 Review Interface Completeness Descriptions Analysis LC
SP 2.2 Manage Interfaces Modeling LC

SG 3 Assemble Product Components and Deliver the
Product

Analysis PC

SP 3.1 Confirm Readiness of Product Components for
Integration

Modeling PC

SP 3.2 Assemble Product Components Modeling PC
SP 3.3 Evaluate Assembled Product Components Verification, Validation PC
SP 3.4 Package and Deliver the Product and Compo-

nent
- NC

based development has been studied in [24]. Process algebra [52] has very power-

ful features for mastering the complexity of processes via parallel and sequential

composition. This process area compliance evaluation with formal methods based

development is shown in Table 5.4.

5.4.3 Requirements Development(RD)

The purpose of this process area is to compile customer requirements, product

requirements and product component requirements in such a way that it is clearly

understandable by users. The process area component’s compliance grading is

presented in Table 5.5.

The formal method based unambiguous and precise description of product re-

quirements are appropriate starting point for the compliance of SG 1 and SG 2.

Compliance of SG 3 is achieved by formal method based validation and verification

framework. Formal method based verification and validation have been established

since decades and shown in various research articles [18] [42] etc. Briefly, we have

described the basics of CSP-CASL based on our proposed validation framework in

chapter three. The case study is evaluated in this validation framework for the

compliance of this process area and the compliance result is presented in Table

5.5.

Chapter 5. Process model compliance framework 103

Table 5.5: Compliance of RD with FMBD

Specific Goals and Specific Practices FMF Grade
SG 1 Develop Customer Requirements - FC

SP 1.1 Elicit Needs Analysis, Modeling LC
SP 1.2 Develop the Customer Requirements Modeling, Verification,

Validation
FC

SG 2 Develop Product Requirements - FC
SP 2.1 Establish Product and Product Component Re-
quirements

Analysis, Modeling, Re-
finement

FC

SP 2.2 Allocate Product Component Requirements Modeling, Refinement FC
SP 2.3 Identify Interface Requirements Modeling LC

SG 3 Analyze and Validate Requirements - LC
SP 3.1 Establish Operational Concepts and Scenarios Analysis, Modeling LC
SP 3.2 Establish a Definition of Functionality Analysis LC
SP 3.3 Analyze Requirements Analysis LC
SP 3.4 Analyze Requirements to Achieve Balance - PC
SP 3.5 Validate Requirements Validation FC

5.4.4 Technical Solutions(TS)

This process area provides guidance for design, development and implementation

of the given requirements. The main focus of this process area is to evaluate

and select a solution to develop a detailed design of the selected solution and

to implement the design as a product or product component. Table 5.6 shows

formal method based scale of compliance for this process area. The specification

Table 5.6: Compliance of TS with FMBD

Specific Goals (SG) and Specific Practices (SP) FSF Grade
SG 1 Select Product Component Solutions - LC

SP 1.1 Develop Alternative Solutions and Selection Cri-
teria

Modeling, Refinement LC

SP 1.2 Select Product Component Solutions Modeling, Refinement LC
SG 2 Develop the Design - PC

SP 2.1 Design the Product or Product Component Modeling, Refinement LC
SP 2.2 Establish a Technical Data Package Refinement PC
SP 2.3 Design Interfaces Using Criteria Modeling PC
SP 2.4 Perform Make, Buy, or Reuse Analyses - PC

SG 3 Implement the Product Design - LC
SP 3.1 Implement the Design Refinement LC
SP 3.2 Develop Product Support Documentation Analysis, Modeling PC

language based steps of refinement allow to establish traceability between abstract

specification and design documents which subsequently leads to the possibility to

generate an implementation code. In brief, the formal method based development

[81] is well suited for the compliance of SG 1, SG 2, SG 3 and most of its specific

practices. Below in Table 5.7, we show the aspect of refinement which is provable

with our definitions given in chapter four.

Chapter 5. Process model compliance framework 104

Table 5.7: Refinement relation in SDLC elements

Requirement Design Implementation
Sort Co-
mAck

ComAck = FormatAck(ComAck x SendData) language based
code

5.4.5 Validation

The purpose of the activities in this process area is to demonstrate that a prod-

uct or product component fulfills its intended use when placed in its intended

environment. The contribution of FMBD for this process is as follows in Table

5.8.

Table 5.8: Compliance of Validation with FMBD

Specific Goals and Specific Practices FMF Grade
SG 1 Prepare for Validation - FC

SP 1.1 Select Products for Validation Analysis, Validation LC
SP 1.2 Establish the Validation Environment Analysis, Validation FC
SP 1.3 Establish Validation Procedures Modeling, Validation FC

SG 2 Validate Product or Product Components - FC
SP 2.1 Perform Validation Validation FC
SP 2.2 Analyze Validation Results Validation LC

The formal methods based software development approach have major contribu-

tions to this process area. Starting from test case generation, test evaluation and

test execution have been extensively experimented with formal methods based

software development approach. They have been foundation for this process area

compliance. We have developed a testing framework for CSP-CASL based test

generation and execution which have already been elaborated into chapter three.

In our consideration, each trace acts like a test case which has to be refined to

be executable on the implementation. Steps of refinement should be similar re-

finement steps applied on specification. These are the basic considerations for

our validation framework; this makes formal methods very appropriate for the

compliance of SG 1 and SG 2.

5.4.6 Verification

The verification process area ensures that the products which are the result of

the processes under improvement meet their specified requirements. The FMBD

compliance grading of this process area is shown in the Table 5.9.

Chapter 5. Process model compliance framework 105

Table 5.9: Compliance of Verification with FMBD

Specific Goals and Specific Practices FSF Grade
SG 1 Prepare for Verification - LC

SP 1.1 Select Work Products for Verification Verification, Validation LC
SP 1.2 Establish the Verification Environment Verification LC
SP 1.3 Establish Verification Procedures Verification LC

SG 2 Perform Peer Reviews - NC
SP 2.1 Prepare for Peer Reviews Refinement PC
SP 2.2 Conduct Peer Reviews Refinement PC
SP 2.3 Analyze Peer Review Data Refinement PC

SG 3 Verify Selected Work Products - PC
SP 3.1 Perform Verification Verification, Validation LC
SP 3.2 Analyze Verification Results Verification, validation PC

Formal method based development has two ways to contribute to this process

area, namely, model checking and theorem proving. Model checking is the process

of building a model of a system and checking whether desired properties hold in

the proposed model. Theorem proving is the process of finding the proof of a

property from the axioms of a system, where the property and the system are

expressed in the formal specification language [18]. An enormous amount of work

has been done in these respects [42], [82]. Model checking and theorem proving

have established significant presence in the industry especially in the development

of complex systems. To investigate the compliance of this process area, formal

method based techniques are evaluated with our proposed algorithm and results

are presented in Table 5.9.

5.5 Compliance of Generic Goals (GG)

Compliance of the CMMI process area is not institutionalized until a process area

has achieved its generic goals. As depicted in Figure 5.1 generic goals have associ-

ated generic practices which are expected model component. The expected model

component explains the activities which are necessary to achieve CMMI model com-

ponents. To achieve GG, their generic practices have to be implemented for the

process area compliance at an organization level. CMMI degree of institutional-

ization is expressed with five levels of generic goals as shown in Table 5.10.

Formal method based CMMI process area compliance addresses the issues of insti-

tutionalization by its presence throughout the life cycle of product development.

Chapter 5. Process model compliance framework 106

Table 5.10: Compliance of Generic Goals with FMBD

Generic Goal Progression of Pro-
cesses

Compliance with FSF

GG 1 Performed process GP 1.1 Perform Specific Practices
GG 2 Managed process GP 2.1 Establish an Organizational Policy

GP 2.2 Plan the Process
GP 2.6 Manage Configurations
GP 2.8 Monitor and Control the Process
GP 2.9 Objectively Evaluate Adherence

GG 3 Defined process GP 3.1 Establish a Defined Process
GP 3.2 Collect Improvement Information

GG 4 Quantitatively managed
process

-

GG 5 Optimizing process -

Formal method based process area compliance contains one or more specific prac-

tices which fully implement generic practices that can be considered for the im-

plementation of generic practices. Some of the generic practices which are imple-

mented through the implementation of specific practices are shown in Table 5.10.

Generic practices are common components to all process areas. The meanings of

generic practices are interpreted according to the applying process area. Table

5.10 represents an overview of generic practices goals, further process area specific

goals derived from these understandings.

The remaining generic goals and their generic practices are more on the organiza-

tional issues. They are not in the context of formal method based product devel-

opment. Table 5.10 presents the results based on the Specific Goal’s Specific pro-

cess mapping with generic goal’s generic practice. The second column of the table

presents the name of generic goal which has similar meaning as CMMI compliance

maturity level description in earlier chapters.

5.6 CMMI representations and their compli-

ance

Formal method based CMMI process model compliance is achieved via compliance

of its process area and specific goals and generic goals. In the earlier sections,

we have presented the process areas which are compliant with formal method

based development. Process model CMMI is represented in the two ways in an

organization; continuous representation and staged representation. Continuous

Chapter 5. Process model compliance framework 107

representation uses the term capability level and staged representation uses the

term maturity level. To reach a particular level, an organization must satisfy all

the appropriate process area goals and set of targeted process areas based on the

selected representation.

Our research is specially based on the formal methods based process area compli-

ance. The process areas are common to both staged and continuous representation

which makes our research of formal method based a compliance applicable to both

representations. However, formal method based compliance is mostly related to

the engineering related process areas which makes this proposal of process model

compliance appropriate to continuous representation and to the capability level

implementation in an organization. In continuous representation, selected pro-

cess areas are implemented by achieving capability levels. Requirement gathering

and engineering related process areas can be implemented with this approach by

achieving various capability levels. Capability levels are means for incrementally

improving the process corresponding to a given process area.

In the staged representation a set of process areas are grouped together to achieve

organizational goal measured as maturity level. Each maturity level matures a

uniquely defined set of process areas. Maturity levels are measured by achievement

of specific goals and generic goals associated with set of process areas. Out of five

maturity levels; formal method based development is suitable for the compliance

of process areas of maturity levels one and two. Details of these process areas are

given in the above subsections.

5.7 Summary

In this research of CMMI process model compliance with formal methods based

development, we have reached to the significant contributions. First of all, this is a

very distinct approach to the process model compliance where advantages from the

process improvement model and formal method based software development are

combined. This approach to process model compliance parallel to formal methods

based software system development reduces process implementation effort and

guarantee for a good quality product.

To investigate the CMMI process model compliance, parallel to product develop-

ment, formal method based software development and maintenance approach is

Chapter 5. Process model compliance framework 108

proposed. Formal method features are mapped with the prerequisites of CMMI process

model. To establish a compliance level of the CMMI process area with formal

method based development, a compliance grading scheme is proposed. This grad-

ing scheme is based on the achievement of specific goals of a process area. A generic

algorithm is proposed for assigning a compliance level to a process area.

Table 5.11: CMMI process areas and their compliance level

Process area Formal method based compliance
Requirement Management LC
Product Integration LC
Requirement Development LC
Technical Solutions LC
Verification LC
Validation LC

A part of an industrial case study is presented to illustrate the details of formal

method based development for achieving the specific and generic goals of selected

process areas of the CMMI process model. Out of 22 process areas from CMMI, six

process areas can comply with a formal methods based product development. Our

approach leads to the possibility of automation in process compliance which sub-

sequently reduces the effort and cost for the implementation of a process model.

In this research, we concentrate on CSP-CASL as a formal specification language

however, our results are based on very generic features of specification formalism.

Since a compliance result is achieved on very generic features of formal methods, it

provides flexibility in the selection of any formal specification language. The simi-

lar compliance results can be achieved with any formal method based development

approach.

Chapter 6

Summary and outlook

This is not the end. It is not even the beginning of the end. But it is, perhaps, the

end of the beginning.

Sir Winston Churchill.

Software product and process quality improvement has been the main goal of this

thesis. This goal has been achieved on the foundations of formal methods and a

process improvement model. In this chapter, we outline the results of our research

and the prospective for future work. In the first part of this chapter the main

result of our research work is highlighted. The current state of this research leads

to various open questions which are discussed further in the second part of this

chapter.

6.1 Results

The goal of this thesis has been to improve quality of software systems. This goal

is achieved through approaching two aspects of software system quality: product

quality and process quality. To achieve our research goal, we have proposed a novel

framework for software product and process quality improvement. This framework

is developed on the foundations of formal methods and a process improvement

model. The complete framework is investigated with formal specification language

109

Chapter 6. Summary and outlook 110

CSP-CASL and the process improvement model CMMI . The main outcomes of this

research are described in the following paragraphs.

In chapter three, we proposed a distinct approach to software specification and

software evolutions. We introduce a formal specification technique that allows

to specify a software system in terms of observable and internal behaviors. The

consideration of observable and internal behavior allows to elaborate a distinction

between abstract and detailed specification in a pragmatic manner. The formalism

of this specification approach is described by extending the syntax and semantics

of the formal specification language CSP-CASL .

Further, vertical software evolution is proposed as a methodology of software re-

finement. The established ideas of software refinement are extended with the

consideration of observable and internal behavior in the specification. In this re-

search, the software refinement is proposed in a two step approach. In the first

step, the existing refinement techniques are applied to the observable specification.

In the second step, the internal specifications are refined by describing software

design decisions. The internal specification refinement is referred to as construc-

tive refinement. The complete syntax and semantics of this refinement approach

is described with structural and behavioral specification language CSP-CASL .

In addition to vertical software evolution, horizontal software evolution is proposed

as a methodology of software enhancement. The approach of software enhance-

ment explores a methodology to manage software system changes and upgrades.

The CSP-CASL based syntax and semantics are proposed for the enhancement of

structural and behavioral properties of specifying system. The proposed formalism

allows to investigate software enhancement and software artifact traceability.

Specially, CSP-CASL based software refinement and software enhancement is for-

mally described and elaborated with an industrial case study. These formulations

of software refinement and software enhancement play a key role to investigate

the evolution of software systems. In the further research, these definitions are

considered as a foundation for the development of product and process quality

improvement framework.

In chapter four, we described a product quality framework. Particularly, we in-

vestigated testing methodologies for the CSP-CASL based specification formalism.

Previously defined formalisms of software specification, software refinement and

Chapter 6. Summary and outlook 111

software enhancement are used to propose testing terminologies. Then the pro-

posed testing terminologies are further elaborated in the vertical and horizontal

software development paradigm.

The software systems are required to respond appropriately for expected as well

as for unexpected behaviors. This requirement has extended a need of testing for

expected behaviors as well as for unexpected behaviors. In this consideration, we

extended the understanding of software testing with a direction of positive and

negative test case generation. This research presents a distinct approach to test

generation and test verdict interpretation during the evolution of software systems.

Subsequently, given definitions are used to prove test artifact reusability theorems.

The complete testing framework is elaborated with extended CSP-CASL based for-

malism.

The pragmatism of the proposed framework is supported with a development

of a tool; ccFormTest. The main purpose of this tool is to elaborate test suite

reusability during software evolution. This tool gives an abstract overview of test

generation, test evaluation and test reusability. It is developed for a limited set of

CSP-CASL syntax and semantics. Integration of complete CSP-CASL syntax and

semantics does not add much value to this research, only tool applicability will be

enhanced. However, ccFormTest architecture supports interfaces with other tools,

which will allow this to connect with other CSP-CASL tools for syntax validation

and theorem provers.

The chapter five describes the approach of the process quality improvement frame-

work. The process quality improvement is considered as the compliance of process

improvement model with an efficient approach. In this thesis, the process qual-

ity framework is proposed particularly for the compliance of the CMMI process

improvement model. The compliance of the process model is based on the core

aspects of the CMMI process model; the process areas. The process model com-

pliance is proposed with formal methods based software development. Specially,

the features of CSP-CASL are investigated for the compliance of the CMMI process

model. The CMMI compliance grading scheme is developed to evaluate the level of

compliance with formal method base software development. Further, a compliance

algorithm is proposed to evaluate the process model through the evaluation of its

components. The CMMI process areas are evaluated with the proposed algorithm.

The result of compliance evaluation is presented in this thesis. The complete

framework is supported with a developed tool which allows to practically support

Chapter 6. Summary and outlook 112

our theoretical concepts. Parallel to our theoretical contribution we work with an

industrial partner where we applied the proposed framework for the development

and maintenance of a medical instrument.

The understanding of the applicability of formal methods is extended to the or-

ganizational process model CMMI . Here, the complete framework is presented

for formal specification language CSP-CASL and process model CMMI . However,

a similar result can be achieved with other formal methods for the compliance

with other process improvement models. This research is the starting point of

process model compliance with formal methods. This has significant potential to

automate the achievement of the process and product quality goals of software

systems.

6.2 Future work

Formal methods and process improvement models have already been an important

part of the software engineering domain. However, their presence is not a de-

facto standard for the development and maintenance of a software system. In

this thesis, we have explored the possibilities of product and process improvement

by investigating a relationship between formal methods and process improvement

model. Our research has extended the presence of formal methods from product

development/quality to process improvement. This research work is one of the

foundational works for the product and process quality integration. This research

still requires various scientific and industrial works to make this research results as

a standard approach for any software industry. As a continuation of this research,

we are proposing some directions of further work in the subsequent subsections.

6.2.1 Observable and internal specification formalism

A clear cut distinction between observable and internal specifications is not very

common, whenever it comes to specify a software system. But this is practiced in

almost all software projects. In this research, we have formulated this concept with

a particular formal specification language CSP-CASL . Furthermore, it is required

to enhance this concept into practice by investigating this approach with various

specification mechanisms and programming languages.

Chapter 6. Summary and outlook 113

6.2.2 Constructive approach to specification refinement

There have been various notions of refinement which have demonstrated significant

advantages in certain scenarios. It is not advisable to develop a new notion of

refinement for this specification formalism. Instead, other notions of refinement

should be investigated to support this approach of specification. Particularly, a

constructive refinement notion for existing approaches should be investigated to

support addition of internal specification at the subsequent levels of descriptions.

6.2.3 Formal methods based positive and negative test case

generation

Today’s software industry is required to develop software systems which comply

with requested features and behave properly under unexpected conditions. To

develop such a software system, the requirements are generally written for the

requested features as well as for the unexpected features. The fundamentals of

these aspects have been considered for a long time but they are not well practiced.

However, software development languages are well equipped to tackle such situa-

tions. In software development languages this is generally handled with exception

handling methodologies. Very little research has been carried out for the verifica-

tion and validation of such features. In this thesis, we considered an approach to

generate test cases to test the requested as well as the unexpected features. How-

ever, we believe that more research with different types of software specification

approaches is required.

6.2.4 Formal methods for process model compliance

In this thesis, formal specification language CSP-CASL has been investigated for

the compliance of the CMMI process improvement model. The approach of process

model compliance is independent of a particular formalism approach. However, to

demonstrate this research we have used the CSP-CASL and the process compliance

model CMMI . As an advancement to this research we would propose to investigate

various combinations of process improvement models and formal methods within

our proposed framework. In particular, we would suggest using model based for-

malism for the compliance of the process improvement model. This suggestion is

Chapter 6. Summary and outlook 114

based on industrial presence of model based development and process improvement

models.

6.2.5 Industrial case studies and tool support

In this thesis, only a small part of an industrial application is considered as a case

study to demonstrate applicability of the research results. However, to gain more

confidence on the research results relatively large case studies should be developed

within a CMMI certified organization.

Appendix A

List of publications

Some parts of this thesis are already published in various articles. The published

articles are listed below:

• Test Case Reusability During the Evolution of Software System, to CS&P

2008

• Compliance of CMMI Process Area with Specification Based Development,

SERA 2008, IEEE Conference

• Formal Specification Methods for the Improvement of Process and Product

Quality, PhD paper FM08, Turku Finland

• Using Formal Specifications in the Implementation of CMMI, CS&P 2007,

Poland

• CMMI Practices and Specification based development, SEE07, Munich Ger-

many

• Specification Based Software Product Line Testing: A case study, CS&P

2006, Berlin Germany

• Towards Reusability of test suite during evolution of software systems, CALCO-

Jnr UK Wales, 2005

• Loose semantics in the verification of communicating systems ETAPS-AVIS

2005 Edinburgh

115

Appendix B

List of articles which have cited

this research

Some parts of this thesis have already been cited from various research articles.

This research is cited by two different groups of scientific articles. Below is the list

of articles which have referenced our process compliance work:

• Towards a framework to evaluate and improve the quality of implementation

of CMMI practices, I Lopes Margarido, J Pascoal Faria - Product-Focused,

2012 - Springer

• Situational Process Improvement in Software Product Management WJ Bekkers

- 2012 - igitur-archive.library.uu.nl

• Towards CMMI-compliant MDD Software Processes, AM Lins de Vasconce-

los, G Giachetti - ICSEA 2011

• Utilizing VDM Models in Process Management Tool Development: an In-

dustrial Case, CB Nielsen - Proceedings Of The 9th Overture - eng.au.dk,

2011

• CMMI / SPICE based process improvement, N. Ehsan, A. Perwaiz, J. Arif,

E. Mirza, A. Ishaque,IEEE International Conference on Management of In-

novation and Technology - IEEE ICMIT, 2010

• Sistema de gestao da certificaao de software: CMMI, ALF Lito - 2009 -

ria.ua.pt

116

Appendix B. List of articles which have cited this research 117

Following articles have referenced our software evolution and product quality im-

provement research:

• Strategies for Testing Products in Software Product Lines, I do Carmo

Machado, JD McGregor, ES de Almeida, ACM SIGSOFT Software Engi-

neering Notes, Volume 37 Issue 6, November 2012

• Regression Testing in Software Product Line Engineering, P Runeson, E

Engström - Advances in Computers, 2012

• Software product line testing - A systematic mapping study, E Engström, P

Runeson - Information and Software Technology, 2011 - Elsevier

• Variabilitätsmanagement in Anforderungs und Testfallspezifikation für Software-

Produktlinien DWIA Wübbeke - 2010 - is.uni-paderborn.de

• Modeling variability and testability interaction in software product line en-

gineering, M Jaring, RL Krikhaar, J Bosch - Composition-Based Software,

2008

Appendix C

Acknowledgments

This research has been carried out with direct and indirect support of many peo-

ple. It is my pleasure to thank them for their contribution to make this thesis

possible. The first person I would like to thank is my Supervisor Prof Dr Holger

Schlingloff. I owe him lots of gratitude for providing support and encouragement,

good teaching, critical suggestions, time and company that was always available,

whenever I needed his advices and ideas. I would like to appreciate his teaching

and guiding me for the writing of scientific articles and this thesis. Additionally,

I would like to owe my thanks to thesis advisory committee members, Prof. Dr.

Joachim Fischer and Prof. Dr. Bernd Krieg-Brückner and thesis committee chair-

man Prof. Dr. Niels Pinkwart for their time and effort to read my thesis and

going through presentation.

Many thanks to Frau Heene for her ever smiling support and help in all respective

administrative procedures and making life easier being in Humboldt- University.

Also, many thanks to all members of the computer science department and library

for their prompt and efficient support. Special thanks to Fraunhofer FIRST and

its members where I have been given opportunity to have my desk and share ideas

with our group.

I would thank Dr Roggenbach and his group for all scientific and non scientific dis-

cussions that is a part of my thesis. I am very much thankful to Mr Sumit Satpathy

from IAL System GmbH, Dr Kallow from TeCNeT GmbH, Mr C. Rossenberg from

Emersion Climate Technology GmbH, who provided me financial support as well

as professional exposures with the understanding of scientific work. In addition to

this I am thankful to Alfabet AG for providing me professional environment where

118

119

I am implementing my scientific exposure to practical world. Special thanks goes

to my colleague and friend Arne Lex, Andrea Lex and Haider Karomi for their

effort to translate my abstract into German language.

The support of Berlin friends who never made me feels homesick. Specially, Na-

gendra, Geeta and family, Ashok Uncle, Nisha Aunty and family, Abhay Bhaiya

and Family, Bhumika and Ranjeet, Haider and Family, Chandresh and Family.

The weekends and other social events were full of fun due to Aniket, Rashmi,

Nimisha, Krishnan, Deepika, Rohan, Deepak, Shailaja, Ram, Umesh, Manu and

Mahesh, Naveen and many more for providing some cherishable moments during

my stay in Germany.

I am thankful to all my friends in India who kept me motivated though being

distant apart. I wish to express my deepest appreciation to my parents: Geeta

Mishra and Dayashankar Mishra, my late bade Papa Kripashankar Mishra, my

brothers: Dr Ambrish, Rajkumar, Vijay and my sisters: Rekha, Meena and their

families. Last but not the least I would like to thank my wife Shipra and her

family for tolerating, encouraging and supporting me throughout my research.

120

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig ohne unerlaubte Hilfe ver-

fasst und nur die angegebene Literatur und die angegebenen Hilfsmittel verwendet

zu haben.

Berlin, den

Bibliography

[1] Axel Van Lamsweerde. Requirements Engineering: From System Goals

to UML Models to Software Specifications. Wiley, March 2009. ISBN

0470012706. URL http://www.worldcat.org/isbn/0470012706.

[2] Paul E. McMahon. Integrating CMMI and Agile Development: Case Stud-

ies and Proven Techniques for Faster Performance Improvement. Addison

Wesley, USA, 2010. ISBN 9780321714107. URL http://www.sei.cmu.edu/

cmmi/.

[3] James R. Persse. Process Improvement Essentials: CMMI, Six Sigma, and

ISO 9001. O Reilly Media, USA, 2006. ISBN 9780321713207.

[4] Michael L. George, John Maxey, David T. Rowlands, and Malcolm Upton.

The Lean Six Sigma Pocket Toolbook: A Quick Reference Guide to 70 Tools

for Improving Quality and Speed. Mcgraw-Hill Professional, USA, 2004.

ISBN 0071441190.

[5] Zarina Shukur, Abdullah Zin, and Ainita Ban. M2Z: A Tool for Translating

a Natural Language Software Specification into Z, volume 2495 of Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, 2002.

[6] Muan Ng and Michael Butler. Tool support for visualizing CSP in UML. For-

mal Methods and Software Engineering, pages 287–298, 2002. doi: 10.1007/

3-540-36103-0\ 31. URL http://dx.doi.org/10.1007/3-540-36103-0_

31.

[7] Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An Initial

Algebra Approach to the Specification, Correctness, and Implementation of

Abstract Data Types. Prentice-Hall, New Jersey, 1978.

[8] Paul P. Boca, Jonathan P. Bowen, and Jawedd I. Siddiqi, editors. For-

mal Methods: State of the Art and New Directions. Springer, 1 edition,

121

http://www.worldcat.org/isbn/0470012706
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/
http://dx.doi.org/10.1007/3-540-36103-0_31
http://dx.doi.org/10.1007/3-540-36103-0_31

Bibliography 122

October 2009. ISBN 1848827350. URL http://www.worldcat.org/isbn/

1848827350.

[9] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement.

Software Engineering, IEEE Transactions on, 30(6):355–371, 2004. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1321059.

[10] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-

Oriented Proof Methods and their Comparison (Cambridge Tracts in Theo-

retical Computer Science). Cambridge University Press, January 2001. ISBN

0521641705. URL http://www.worldcat.org/isbn/0521641705.

[11] W. W. Royce. Managing the development of large software systems: concepts

and techniques. IEEE Computer Society Press Los Alamitos, CA, USA, Jan

1987. ISBN 0-89791-216-0.

[12] Klaus Pohl, Guenter Boeckle, and Frank van der Linden. Software Prod-

uct Line Engineering. Foundations, Principles, and Techniques, volume 1.

Springer, Berlin, USA, 2005. ISBN 3540243720.

[13] Katharine Whitehead. Component-based Development. Principles and Plan-

ning for Business Systems. Addison-Wesley Longman, Amsterdam, USA,

2002. ISBN 3540243720.

[14] Steve Reeves and David Streader. Proceedings of the International Workshop

on Formal Aspects of Computing. Springer Verlag, 2007.

[15] Jim Mcall. Software Quality Models and Philosophies, volume 2. Encyclo-

pedia of Software Engineering., USA, 1977. ISBN 0471377376.

[16] Sam Owre and Natarajan Shankar. A brief overview of pvs. Theorem Proving

in Higher Order Logics, pages 22–27, 2008. doi: 10.1007/978-3-540-71067-7\
5. URL http://dx.doi.org/10.1007/978-3-540-71067-7_5.

[17] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc.,

October 1976. ISBN 013215871X. URL http://www.worldcat.org/isbn/

013215871X.

[18] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-

ing. The MIT Press, January 1999. ISBN 0262032708. URL http:

//www.worldcat.org/isbn/0262032708.

http://www.worldcat.org/isbn/1848827350
http://www.worldcat.org/isbn/1848827350
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1321059
http://www.worldcat.org/isbn/0521641705
http://dx.doi.org/10.1007/978-3-540-71067-7_5
http://www.worldcat.org/isbn/013215871X
http://www.worldcat.org/isbn/013215871X
http://www.worldcat.org/isbn/0262032708
http://www.worldcat.org/isbn/0262032708

Bibliography 123

[19] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. Guided test

generation from CSP models. In Proceedings of the 5th international

colloquium on Theoretical Aspects of Computing, pages 258–273, Berlin,

Heidelberg, September 2008. Springer-Verlag. ISBN 978-3-540-85761-7.

doi: 10.1007/978-3-540-85762-4\ 18. URL http://dx.doi.org/10.1007/

978-3-540-85762-4_18.

[20] C. Nebut, F. Fleurey, Y. Le Traon, and J. Jezequel. Automatic test

generation: A use case driven approach. Software Engineering, IEEE

Transactions on, 32(3):140–155, 2006. doi: 10.1109/TSE.2006.22. URL

http://dx.doi.org/10.1109/TSE.2006.22.

[21] Luc De Raedt, editor. First Order Theory Refinement. IOS Press, Ams-

terdam, 1996. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.45.2389.

[22] Mary Beth Chrissis, Michael D. Konrad, and Sandra Shrum. CMMI for

Development: Guidelines for Process Integration and Product Improvement,

Third Edition. Addison-Wesley Professional, 1 edition, Jan 2010. ISBN

0-321-71150-5.

[23] Leo Freitas and Jim Woodcock. Fdr explorer. Formal Aspects of Computing,

21(1):133–154, February 2009. doi: 10.1007/s00165-008-0074-7. URL http:

//dx.doi.org/10.1007/s00165-008-0074-7.

[24] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z. Funda-

mental Approaches to Software Engineering, pages 205–220, 1998. doi:

10.1007/BFb0053592. URL http://dx.doi.org/10.1007/BFb0053592.

[25] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the

art and future directions. ACM Comput. Surv., 28(4):626–643, December

1996. ISSN 0360-0300. doi: 10.1145/242223.242257. URL http://dx.doi.

org/10.1145/242223.242257.

[26] J. A. Bergstra and J. W. Klop. Algebra of communicating processes. Math-

ematics in Computer Science, 1986.

[27] N. Rico, G. v. Bochmann, and O. Cherkaoui. Model-checking for real-time

systems specified in LOTOS. In Gregor von Bochmann and David Probst,

http://dx.doi.org/10.1007/978-3-540-85762-4_18
http://dx.doi.org/10.1007/978-3-540-85762-4_18
http://dx.doi.org/10.1109/TSE.2006.22
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.2389
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.2389
http://dx.doi.org/10.1007/s00165-008-0074-7
http://dx.doi.org/10.1007/s00165-008-0074-7
http://dx.doi.org/10.1007/BFb0053592
http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.1145/242223.242257

Bibliography 124

editors, Computer Aided Verification, volume 663 of Lecture Notes in Com-

puter Science, pages 288–301. Springer Berlin / Heidelberg, 1993. ISBN

3-540-56496-9. URL http://dx.doi.org/10.1007/3-540-56496-9-23.

10.1007/3-540-56496-9-23.

[28] Peter D. Mosses and Michel Bidoit. CASL User Manual: Introduction

to Using the Common Algebraic Specification Language CASL. Springer,

January 2004. ISBN 354020766X. URL http://www.worldcat.org/isbn/

354020766X.

[29] Peter D. Mosses, editor. CASL Reference Manual: The Complete Docu-

mentation Of The Common Algebraic Specification Language, volume 2960.

Springer, March 2004. ISBN 3540213015. URL http://www.worldcat.org/

isbn/3540213015.

[30] Egidio Astesiano. Algebraic Foundations of Systems Specification (Ifip State-

of-the-Art Reports). Springer, 1999. ISBN 3540637729. URL http://www.

worldcat.org/isbn/3540637729.

[31] Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrezj Tarlecki.

CASL a common algebraic specification language. Logics of Specification

Languages, pages 241–298, 2008. doi: 10.1007/978-3-540-74107-7\ 5. URL

http://dx.doi.org/10.1007/978-3-540-74107-7_5.

[32] A. Roscoe. Theory and Practice of Concurrency. Prentice Hall, USA, 1997.

ISBN 0136744095.

[33] Tony Hoare. Why ever CSP? Electronic Notes in Theoretical Computer

Science, 162:209–215, September 2006. doi: 10.1016/j.entcs.2006.01.031.

URL http://dx.doi.org/10.1016/j.entcs.2006.01.031.

[34] Watts Humphrey. Managing the Software Process. Addison-Wesley Profes-

sional (January 11, 1989), 1 edition, October 1989. ISBN 9780201180954.

[35] CMMI Product Team. CMMI for development, version 1.2, 1.3. ’CMU/SEI-

2010-TR-033’, 2006. URL www.sei.cmu.edu/cmmi/.

[36] D. Richard, Kuhn R. Chandramouli, and Ricky W. Butler. Cost effective

use of formal methods in verification and validation. Computer Security Di-

vision and CSRC, 1982. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.117.970.

http://dx.doi.org/10.1007/3-540-56496-9-23
http://www.worldcat.org/isbn/354020766X
http://www.worldcat.org/isbn/354020766X
http://www.worldcat.org/isbn/3540213015
http://www.worldcat.org/isbn/3540213015
http://www.worldcat.org/isbn/3540637729
http://www.worldcat.org/isbn/3540637729
http://dx.doi.org/10.1007/978-3-540-74107-7_5
http://dx.doi.org/10.1016/j.entcs.2006.01.031
www.sei.cmu.edu/cmmi/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.970
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.970

Bibliography 125

[37] Donald Sannella. Algebraic specification and program development by step-

wise refinement. Logic-Based Program Synthesis and Transformation, pages

1–9, 2000. doi: 10.1007/10720327\ 1. URL http://dx.doi.org/10.1007/

10720327_1.

[38] Manfred Broy. Algebraic specification of reactive systems. Theoretical Com-

puter Science, 239(1):3–40, 2000. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.4.9316.

[39] Donald Sannella and Andrzej Tarlecki. Algebraic Preliminaries. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1999. ISBN 3540637729. URL

http://portal.acm.org/citation.cfm?id=553529.

[40] A. Hall. Seven myths of formal methods. Software, IEEE, 7(5):11–19, 1990.

doi: 10.1109/52.57887. URL http://dx.doi.org/10.1109/52.57887.

[41] John Rushby. Theorem proving for verification. In Modeling and Veri-

fication of Parallel Processes, volume 2067 of Lecture Notes in Computer

Science, pages 39–57. Springer Berlin / Heidelberg, 2001. doi: 10.1007/

3-540-45510-8\ 2. URL http://dx.doi.org/10.1007/3-540-45510-8_2.

[42] Edmund Clarke. The birth of model checking. 25 Years of Model Checking,

pages 1–26, 2008. doi: 10.1007/978-3-540-69850-0\ 1. URL http://dx.

doi.org/10.1007/978-3-540-69850-0_1.

[43] Niklaus Wirth. Program development by stepwise refinement. Communi-

cations of the ACM, 14(4):221–227, April 1971. ISSN 0001-0782. doi: 10.

1145/362575.362577. URL http://dx.doi.org/10.1145/362575.362577.

[44] Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model theory

for specification and programming. J. ACM, 39(1):95–146, January 1992.

ISSN 0004-5411. doi: 10.1145/147508.147524. URL http://dx.doi.org/

10.1145/147508.147524.

[45] Pierre Salverda, Grigore Roeyu, and Craig Zilles. Formally defining and

verifying master/slave speculative parallelization. In John Fitzgerald, Ian J.

Hayes, and Andrzej Tarlecki, editors, FM 2005: Formal Methods, volume

3582 of Lecture Notes in Computer Science, pages 597–597. Springer Berlin

/ Heidelberg, 2005. URL http://dx.doi.org/10.1007/11526841.10.

10.1007/11526841-10.

http://dx.doi.org/10.1007/10720327_1
http://dx.doi.org/10.1007/10720327_1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.9316
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.9316
http://portal.acm.org/citation.cfm?id=553529
http://dx.doi.org/10.1109/52.57887
http://dx.doi.org/10.1007/3-540-45510-8_2
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1145/362575.362577
http://dx.doi.org/10.1145/147508.147524
http://dx.doi.org/10.1145/147508.147524
http://dx.doi.org/10.1007/11526841.10

Bibliography 126

[46] C. A. R. Hoare. Proof of correctness of data representations. Acta In-

formatica, 1(4):271–281, December 1972. doi: 10.1007/BF00289507. URL

http://dx.doi.org/10.1007/BF00289507.

[47] Ralph J. Back and Joakim Wright. Refinement Calculus: A Systematic

Introduction (Texts in Computer Science). Springer, April 1998. ISBN

0387984178. URL http://dx.doi.org/10.1007/11889229_99.

[48] Ana Cavalcanti and Marie C. Gaudel. Testing for refinement in

CSP. Formal Methods and Software Engineering, pages 151–170, 2007.

doi: 10.1007/978-3-540-76650-6\ 10. URL http://dx.doi.org/10.1007/

978-3-540-76650-6_10.

[49] Carroll Morgan. Programming from specifications. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1990. ISBN 0137262256. URL http://portal.acm.

org/citation.cfm?id=95423.

[50] Dirk Seifert. Conformance testing based on UML state ma-

chines. Formal Methods and Software Engineering, pages 45–65, 2008.

doi: 10.1007/978-3-540-88194-0\ 6. URL http://dx.doi.org/10.1007/

978-3-540-88194-0_6.

[51] Michael J. Butler. Stepwise refinement of communicating systems. Science

of Computer Programming, 27(2):139–173, September 1996. doi: 10.1016/

0167-6423(96)81173-7. URL http://dx.doi.org/10.1016/0167-6423(96)

81173-7.

[52] C. Hoare. Prespecification in data refinement. Information Processing Let-

ters, 25(2):71–76, May 1987. ISSN 00200190. doi: 10.1016/0020-0190(87)

90224-9. URL http://dx.doi.org/10.1016/0020-0190(87)90224-9.

[53] Ursula Goltz, Roberto Gorrieri, and Arend Rensink. On syntactic and se-

mantic action refinement. In Masami Hagiya and John Mitchell, editors,

Theoretical Aspects of Computer Software, volume 789 of Lecture Notes in

Computer Science, pages 385–404. Springer Berlin / Heidelberg, 1994. URL

http://dx.doi.org/10.1007/3-540-57887-0-106. 10.1007/3-540-57887-

0-106.

[54] Mark-Oliver Stehr, Jose Meseguer, and Peter Alveczky. Rewriting logic as a

unifying framework for petri nets. In Hartmut Ehrig, Julia Padberg, Gabriel

http://dx.doi.org/10.1007/BF00289507
http://dx.doi.org/10.1007/11889229_99
http://dx.doi.org/10.1007/978-3-540-76650-6_10
http://dx.doi.org/10.1007/978-3-540-76650-6_10
http://portal.acm.org/citation.cfm?id=95423
http://portal.acm.org/citation.cfm?id=95423
http://dx.doi.org/10.1007/978-3-540-88194-0_6
http://dx.doi.org/10.1007/978-3-540-88194-0_6
http://dx.doi.org/10.1016/0167-6423(96)81173-7
http://dx.doi.org/10.1016/0167-6423(96)81173-7
http://dx.doi.org/10.1016/0020-0190(87)90224-9
http://dx.doi.org/10.1007/3-540-57887-0-106

Bibliography 127

Juhs, and Grzegorz Rozenberg, editors, Unifying Petri Nets, volume 2128

of Lecture Notes in Computer Science, pages 250–303. Springer Berlin /

Heidelberg, 2001.

[55] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1989. ISBN 0-13-115007-3. URL http://portal.

acm.org/citation.cfm?id=63446.

[56] John V. Guttag. The specification and application to programming of ab-

stract data types. PhD thesis, University of Toronto, Toronto, Ont., Canada,

Canada, 1975. URL http://portal.acm.org/citation.cfm?id=908660.

[57] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1:

Equations and Initial Semantics. Springer-Verlag, 1992. ISBN 0387137181.

URL http://www.worldcat.org/isbn/0387137181.

[58] Berthold Hoffmann and Bernd Krieg-Brückner. The prospectra system.

In Christian Choffrut and Matthias Jantzen, editors, STACS 91, vol-

ume 480 of Lecture Notes in Computer Science, pages 539–540. Springer

Berlin / Heidelberg, 1991. URL http://dx.doi.org/10.1007/BFb0020829.

10.1007/BFb0020829.

[59] Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refine-

ment language for CASL. In JosLuiz Fiadeiro, PeterD. Mosses, and Fernando

Orejas, editors, Recent Trends in Algebraic Development Techniques, volume

3423 of Lecture Notes in Computer Science, pages 162–185. Springer Berlin

Heidelberg, 2005. ISBN 978-3-540-25327-3. doi: 10.1007/978-3-540-31959-7

10. URL http://dx.doi.org/10.1007/978-3-540-31959-7_10.

[60] Meir M Lehman. Programs, life cycles, and laws of software evolution.

Proceedings of the IEEE, 68, 1980.

[61] H. Ehrig, B. Mahr, I. Classen, and F. Orejas. Introduction to algebraic

specification part i and part ii. The Computer Journal 35 (5)(1993), 460 -

467, 1993.

[62] Glenford J. Myers. The Art of Software Testing, Second Edition. Wiley, 2

edition, June 2004. ISBN 0471469122. URL http://www.worldcat.org/

isbn/0471469122.

http://portal.acm.org/citation.cfm?id=63446
http://portal.acm.org/citation.cfm?id=63446
http://portal.acm.org/citation.cfm?id=908660
http://www.worldcat.org/isbn/0387137181
http://dx.doi.org/10.1007/BFb0020829
http://dx.doi.org/10.1007/978-3-540-31959-7_10
http://www.worldcat.org/isbn/0471469122
http://www.worldcat.org/isbn/0471469122

Bibliography 128

[63] Jan Tretmans. Testing concurrent systems: A formal approach. CON-

CUR’99 Concurrency Theory, page 779, 1999. doi: 10.1007/3-540-48320-9\
6. URL http://dx.doi.org/10.1007/3-540-48320-9_6.

[64] B. Korel. Automated software test data generation. Transactions on

Software Engineering, 16(8):870–879, 1990. doi: 10.1109/32.57624. URL

http://dx.doi.org/10.1109/32.57624.

[65] Antoni Diller. Z.: An Introduction to Formal Methods. John Wiley & Sons,

second edition, May 1994. ISBN 0471939730. URL http://www.worldcat.

org/isbn/0471939730.

[66] Anja Ebersbach, Markus Glaser, and Richard Heigl. Wiki : Web

Collaboration. Springer, November 2005. ISBN 3540259953. URL

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&

path=ASIN/3540259953.

[67] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Pro-

gramming. Manning Publications, July 2003. ISBN 1930110936. URL

http://www.worldcat.org/isbn/1930110936.

[68] M. Jackson. Software Requirements And Specifications (Acm Press Books).

Addison-Wesley Professional, August 1995. ISBN 0201877120. URL http:

//www.worldcat.org/isbn/0201877120.

[69] Michel Bidoit, Don Sannella, and Andrzej Tarlecki. Architectural specifica-

tions in CASL. In Proc. 7th Int. Conf. Algebraic Methodology and Software

Technology (AMAST’98), Amazonia, Brazil, Jan. 1999, volume 1548, pages

341–357. Springer, 1999. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.16.735.

[70] Monroe Newborn and Monty Newborn. Automated Theorem Proving: The-

ory and Practice. Springer, December 2000. ISBN 0387950753. URL

http://www.worldcat.org/isbn/0387950753.

[71] Temesghen Kahsai, Markus Roggenbach, and Holger Schlingloff.

Specification-based testing for software product lines. SEFM 2008 -

Proc 6th IEEE International Conference on. Software Engineering and

Formal Methods, 2008.

http://dx.doi.org/10.1007/3-540-48320-9_6
http://dx.doi.org/10.1109/32.57624
http://www.worldcat.org/isbn/0471939730
http://www.worldcat.org/isbn/0471939730
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/3540259953
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/3540259953
http://www.worldcat.org/isbn/1930110936
http://www.worldcat.org/isbn/0201877120
http://www.worldcat.org/isbn/0201877120
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.735
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.735
http://www.worldcat.org/isbn/0387950753

Bibliography 129

[72] Jan Tretmans. Model based testing with labelled transition systems. Formal

Methods and Testing, pages 1–38, 2008. doi: 10.1007/978-3-540-78917-8\ 1.

URL http://dx.doi.org/10.1007/978-3-540-78917-8_1.

[73] Lars Frantzen, Jan Tretmans, and Tim A. Willemse. Test generation

based on symbolic specifications. Formal Approaches to Software Test-

ing, pages 1–15, 2005. URL http://www.springerlink.com/content/

uu3va76k39megkke.

[74] Jon Edvardsson. A survey on automatic test data generation. In Pro-

ceedings of the Second Conference on Computer Science and Engineering in

Linköping, pages 21–28. ECSEL, October 1999. URL http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.20.963.

[75] Hans-Martin Hörcher and Jan Peleska. Using formal specifications to sup-

port software testing. Software Quality Journal, 4(4):309–327, Decem-

ber 1995. doi: 10.1007/BF00402650. URL http://dx.doi.org/10.1007/

BF00402650.

[76] Debra J. Richardson, Owen T. O’Malley, and C. Tittle. Approaches

to specification-based testing. In Symposium on Testing, Analysis, and

Verification, pages 86–96, 1989. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.55.2447.

[77] Roy P. Pargas, Mary J. Harrold, and Robert R. Peck. Test-data genera-

tion using genetic algorithms. Software Testing, Verification and Reliabil-

ity, 9(4):263–282, 1999. doi: 10.1002/(SICI)1099-1689(199912)9:4\%3C263::

AID-STVR190\%3E3.0.CO;2-Y. URL http://dx.doi.org/10.1002/

(SICI)1099-1689(199912)9:4%3C263::AID-STVR190%3E3.0.CO;2-Y.

[78] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. CMMI for Devel-

opment: Guidelines for Process Integration and Product Improvement, vol-

ume 3. Addison Wesley, 2008. ISBN 0321711505.

[79] Manfred Broy and Oscar Slotosch. Enriching the software development pro-

cess by formal methods. Applied Formal Methods â FM-Trends 98, pages

44–61, 1999. doi: 10.1007/3-540-48257-1\ 2. URL http://dx.doi.org/10.

1007/3-540-48257-1_2.

[80] Dennis M. Ahern, Jim Armstrong, Aaron Clouse, Jack R. Ferguson, Will

Hayes, and Kenneth Nidiffer. CMMI Scampi Distilled: Appraisals for Process

http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://www.springerlink.com/content/uu3va76k39megkke
http://www.springerlink.com/content/uu3va76k39megkke
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.963
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.963
http://dx.doi.org/10.1007/BF00402650
http://dx.doi.org/10.1007/BF00402650
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2447
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2447
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4%3C263::AID-STVR190%3E3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4%3C263::AID-STVR190%3E3.0.CO;2-Y
http://dx.doi.org/10.1007/3-540-48257-1_2
http://dx.doi.org/10.1007/3-540-48257-1_2

Bibliography 130

Improvement. Addison-Wesley Professional (January 11, 1989), 1 edition,

October 2005. ISBN 0321228766.

[81] Jifeng He and Tony Hoare. CSP is a retract of CCS. Unifying Theories of

Programming, pages 38–62, 2006. doi: 10.1007/11768173\ 3. URL http:

//dx.doi.org/10.1007/11768173_3.

[82] Joël Ouaknine and Steve Schneider. Timed CSP: A retrospective. Electronic

Notes in Theoretical Computer Science, 162:273–276, September 2006. ISSN

15710661. doi: 10.1016/j.entcs.2005.12.093. URL http://dx.doi.org/10.

1016/j.entcs.2005.12.093.

[83] C. A. R. Hoare, Jayadev Misra, Gary T. Leavens, and Natarajan Shankar.

The verified software initiative: A manifesto. ACM Comput. Surv., 41(4):

1–8, 2009. ISSN 0360-0300. doi: 10.1145/1592434.1592439. URL http:

//dx.doi.org/10.1145/1592434.1592439.

[84] Jim Davies. Using CSP. LNCS, 2006. doi: 10.1007/11889229\ 3. URL

http://dx.doi.org/10.1007/11889229_3.

[85] Till Mossakowski. CASL: From semantics to tools. In Tools and Algorithms

for Construction and Analysis of Systems, pages 93–108, 2000. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9631.

[86] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input gen-

eration with java pathfinder. In Proceedings of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis, volume 29, pages

97–107, New York, NY, USA, July 2004. ACM Press. ISBN 1581138202. doi:

10.1145/1007512.1007526. URL http://dx.doi.org/10.1145/1007512.

1007526.

[87] K. Bogdanov and M. Holcombe. Refinement in statechart testing. Software

Testing, Verification and Reliability, 14(3):189–211, 2004. ISSN 1099-1689.

doi: 10.1002/stvr.301. URL http://dx.doi.org/10.1002/stvr.301.

[88] Bertrand Meyer. Seven principles of software testing. Computer, 41(8):99–

101, 2008. doi: 10.1109/MC.2008.306. URL http://dx.doi.org/10.1109/

MC.2008.306.

http://dx.doi.org/10.1007/11768173_3
http://dx.doi.org/10.1007/11768173_3
http://dx.doi.org/10.1016/j.entcs.2005.12.093
http://dx.doi.org/10.1016/j.entcs.2005.12.093
http://dx.doi.org/10.1145/1592434.1592439
http://dx.doi.org/10.1145/1592434.1592439
http://dx.doi.org/10.1007/11889229_3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9631
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9631
http://dx.doi.org/10.1145/1007512.1007526
http://dx.doi.org/10.1145/1007512.1007526
http://dx.doi.org/10.1002/stvr.301
http://dx.doi.org/10.1109/MC.2008.306
http://dx.doi.org/10.1109/MC.2008.306

Bibliography 131

[89] Luciano Baresi and Mauro Pezzè. An introduction to software testing.

Electronic Notes in Theoretical Computer Science, 148(1):89–111, Febru-

ary 2006. doi: 10.1016/j.entcs.2005.12.014. URL http://dx.doi.org/10.

1016/j.entcs.2005.12.014.

[90] Antti Kervinen, Mika Maunumaa, Tula Päkkönen, and Mika Katara. Model-

based testing through a gui. Formal Approaches to Software Testing, pages

16–31, 2006. doi: 10.1007/11759744\ 2. URL http://dx.doi.org/10.

1007/11759744_2.

[91] I. S. W. B. Prasetya, T. E. J. Vos, and A. Baars. Trace-based reflexive testing

of oo programs with t2. Software Testing, Verification, and Validation, 2008

1st International Conference on, pages 151–160, 2008. doi: 10.1109/ICST.

2008.12. URL http://dx.doi.org/10.1109/ICST.2008.12.

[92] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, 3 edi-

tion, July 2003. ISBN 0471433349. URL http://www.worldcat.org/isbn/

0471433349.

[93] Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of formal

methods. IEEE Software, 12(4):34–41, July 1995. doi: 10.1109/52.391826.

URL http://dx.doi.org/10.1109/52.391826.

[94] P. Alencar, D. Cowan, and C. Lucena. A formal approach to architec-

tural design patterns. FME’96: Industrial Benefit and Advances in For-

mal Methods, pages 576–594, 1996. doi: 10.1007/3-540-60973-3\ 108. URL

http://dx.doi.org/10.1007/3-540-60973-3_108.

[95] Edmund M. Clarke, Jeannette M. Wing, Rajeev Alur, Rance Cleaveland,

David Dill, Allen Emerson, Stephen Garland, Steven German, John Guttag,

Anthony Hall, Thomas Henzinger, Gerard Holzmann, Cliff Jones, Robert

Kurshan, Nancy Leveson, Kenneth Mcmillan, J. Moore, Doron Peled, Amir

Pnueli, John Rushby, Natarajan Shankar, Joseph Sifakis, Prasad Sistla,

Bernhard Steffen, Pierre Wolper, Jim Woodcock, and Pamela Zave. For-

mal methods: state of the art and future directions. ACM Comput-

ing Surveys, 28(4):626–643, 1996. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.54.625.

http://dx.doi.org/10.1016/j.entcs.2005.12.014
http://dx.doi.org/10.1016/j.entcs.2005.12.014
http://dx.doi.org/10.1007/11759744_2
http://dx.doi.org/10.1007/11759744_2
http://dx.doi.org/10.1109/ICST.2008.12
http://www.worldcat.org/isbn/0471433349
http://www.worldcat.org/isbn/0471433349
http://dx.doi.org/10.1109/52.391826
http://dx.doi.org/10.1007/3-540-60973-3_108
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.625
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.625

Bibliography 132

[96] David Garlan. Formal modeling and analysis of software architecture: Com-

ponents, connectors, and events. Formal Methods for Software Architec-

tures, pages 1–24, 2003. URL http://www.springerlink.com/content/

2xedpxdgg209gdb7.

[97] Lijun Shan and Hong Zhu. A formal descriptive semantics of

UML. Formal Methods and Software Engineering, pages 375–396, 2008.

doi: 10.1007/978-3-540-88194-0\ 23. URL http://dx.doi.org/10.1007/

978-3-540-88194-0_23.

[98] Jean F. Monin. Understanding Formal Methods. Formal Approaches to

Computing and Information Technology. Springer, January 2003. ISBN

1852332476. URL http://www.worldcat.org/isbn/1852332476.

[99] Richard F. Paige and Phillip J. Brooke. Agile formal method engineering.

Integrated Formal Methods, pages 109–128, 2005. doi: 10.1007/11589976\ 8.

URL http://dx.doi.org/10.1007/11589976_8.

[100] Sten Agerholm and Peter Larsen. A lightweight approach to formal meth-

ods. In Applied Formal Methods FM-Trends 98, volume 1641 of Lecture

Notes in Computer Science, pages 168–183. Springer Berlin / Heidelberg,

1999. doi: 10.1007/3-540-48257-1\ 10. URL http://dx.doi.org/10.1007/

3-540-48257-1_10.

[101] Ben Potter, David Till, and Jane Sinclair. An Introduction to Formal Spec-

ification and Z. Prentice Hall International Series in Computer Science.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1996. ISBN 0132422077.

URL http://portal.acm.org/citation.cfm?id=547639.

[102] H. Ehrig, Groe M. Rhode, and U. Wolter. The role of category theory in

the area of algebraic specifications, 1996. URL http://citeseer.ist.psu.

edu/ehrig96role.html.

[103] Robin Milner. An algebraic definition of simulation between programs.

Technical report, Stanford University, Stanford, CA, USA, 1971. URL

http://portal.acm.org/citation.cfm?id=891902.

[104] R. De Nicola and M. C. B. Hennessy. Testing equivalences for pro-

cesses. Theoretical Computer Science, 34(1-2):83–133, 1984. doi: 10.1016/

0304-3975(84)90113-0. URL http://dx.doi.org/10.1016/0304-3975(84)

90113-0.

http://www.springerlink.com/content/2xedpxdgg209gdb7
http://www.springerlink.com/content/2xedpxdgg209gdb7
http://dx.doi.org/10.1007/978-3-540-88194-0_23
http://dx.doi.org/10.1007/978-3-540-88194-0_23
http://www.worldcat.org/isbn/1852332476
http://dx.doi.org/10.1007/11589976_8
http://dx.doi.org/10.1007/3-540-48257-1_10
http://dx.doi.org/10.1007/3-540-48257-1_10
http://portal.acm.org/citation.cfm?id=547639
http://citeseer.ist.psu.edu/ehrig96role.html
http://citeseer.ist.psu.edu/ehrig96role.html
http://portal.acm.org/citation.cfm?id=891902
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/0304-3975(84)90113-0

Bibliography 133

[105] Iain Phillips. Refusal testing. Automata, Languages and Programming, pages

304–313, 1986. doi: 10.1007/3-540-16761-7\ 80. URL http://dx.doi.org/

10.1007/3-540-16761-7_80.

[106] Michael Von Der Beeck. Behaviour Specifications:Equivalence And Refine-

ment. CiteSeer, 2000. URL http://citeseer.ist.psu.edu/673370.html.

[107] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner,

Peter D. Mosses, Donald Sannella, and Andrzej Tarlecki. CASL: the Com-

mon Algebraic Specification Language. Theoretical Computer Science, 286

(2):153–196, September 2002. doi: 10.1016/S0304-3975(01)00368-1. URL

http://dx.doi.org/10.1016/S0304-3975(01)00368-1.

[108] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Refinement: An

overview. LNCS, 2006. doi: 10.1007/11889229\ 1. URL http://dx.doi.

org/10.1007/11889229_1.

[109] Christie Bolton and Jim Davies. Refinement in Object-Z and CSP. Integrated

Formal Methods, pages 225–244, 2002. doi: 10.1007/3-540-47884-1\ 13.

URL http://dx.doi.org/10.1007/3-540-47884-1_13.

[110] Satish Mishra and Bernd H. Schlingloff. Compliance of CMMI process area

with specification based development. SERA IEEE Computer Society, pages

77–84, 2008. doi: 10.1109/SERA.2008.36. URL http://dx.doi.org/10.

1109/SERA.2008.36.

http://dx.doi.org/10.1007/3-540-16761-7_80
http://dx.doi.org/10.1007/3-540-16761-7_80
http://citeseer.ist.psu.edu/673370.html
http://dx.doi.org/10.1016/S0304-3975(01)00368-1
http://dx.doi.org/10.1007/11889229_1
http://dx.doi.org/10.1007/11889229_1
http://dx.doi.org/10.1007/3-540-47884-1_13
http://dx.doi.org/10.1109/SERA.2008.36
http://dx.doi.org/10.1109/SERA.2008.36

	Abstract
	1 Introduction
	1.1 Software description
	1.2 Software evolution
	1.3 Software quality
	1.4 About this thesis
	1.4.1 Scope and objectives
	1.4.2 Thesis guideline
	1.4.3 Case study: MED overview

	2 Preliminaries and related work
	2.1 Formal methods
	2.1.1 CASL, Common Algebraic Specification Language
	2.1.2 CSP, Communicating Sequential Process
	2.1.3 CSP-CASL

	2.2 Process improvement model
	2.2.1 ISO
	2.2.2 Six-Sigma
	2.2.3 CMM/CMMI

	2.3 Product and process quality
	2.4 Related work
	2.4.1 Specification refinement
	2.4.2 Refinement Calculus
	2.4.3 Action refinement
	2.4.4 Data refinement
	2.4.5 Algebraic specification refinement
	2.4.6 Software enhancement
	2.4.7 Software product quality
	2.4.8 Software process quality

	2.5 Summary

	3 Software evolution methodology
	3.1 Software specification
	3.1.1 Observable and internal behavior

	3.2 Formal software specification
	3.3 Software refinement
	3.3.1 CASL refinement
	3.3.2 CSP refinement
	3.3.3 CSP-CASL refinement

	3.4 Software enhancement
	3.4.1 CASL enhancement
	3.4.2 CSP enhancement
	3.4.3 CSP-CASL enhancement
	3.4.4 Enhancement through extension
	3.4.5 Enhancement through substitution
	3.4.6 Enhancement through extension and substitution
	3.4.7 Enhancement as software product line

	3.5 Summary

	4 Product quality framework
	4.1 Testing terminologies
	4.1.1 Test case
	4.1.2 Test verdict

	4.2 Vertical software evolution and test case reuse
	4.2.1 Software refinement and testing theory

	4.3 Horizontal software evolution and test case reuse
	4.3.1 Software enhancement and testing theory

	4.4 Summary
	4.5 CSP-CASL specification evolution and testing tool: ccFormTest
	4.5.1 Tool architecture: ccFormTest
	4.5.2 Syntax validation
	4.5.3 Specification evolution analysis
	4.5.4 Test generation
	4.5.5 Test case evaluation and maintenance
	4.5.6 Specification and test case traceability analysis
	4.5.7 Tool summary

	5 Process model compliance framework
	5.1 CMMI, Capability Maturity Model Integration
	5.1.1 CMMI, process model architecture
	5.1.2 CMMI, process area model components

	5.2 CMMI process improvement model and Formal methods
	5.2.1 Formal methods based idealistic approach to software development
	5.2.2 Process model compliance grading scheme
	5.2.3 CMMI, Process model compliance algorithm

	5.3 Formal method based CMMI implementation strategy
	5.4 CMMI, Process area compliance exploration
	5.4.1 Requirements Management (RM)
	5.4.2 Product Integration(PI)
	5.4.3 Requirements Development(RD)
	5.4.4 Technical Solutions(TS)
	5.4.5 Validation
	5.4.6 Verification

	5.5 Compliance of Generic Goals (GG)
	5.6 CMMI representations and their compliance
	5.7 Summary

	6 Summary and outlook
	6.1 Results
	6.2 Future work
	6.2.1 Observable and internal specification formalism
	6.2.2 Constructive approach to specification refinement
	6.2.3 Formal methods based positive and negative test case generation
	6.2.4 Formal methods for process model compliance
	6.2.5 Industrial case studies and tool support

	A List of publications
	B List of articles which have cited this research
	C Acknowledgments
	Bibliography

