Donaldson Hypersurfaces and Gromov-Witten Invariants

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)
im Fach Mathematik eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin
von
Dipl.-Math. Alexandre Krestiachine
Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Jan-Hendrik Olbertz
Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Elmar Kulke
Gutachter:

1. Prof. Dr. Klaus Mohnke
2. Prof. Dr. Kai Cieliebak
3. Dr. Chris Wendl

Summary. The question of understanding the topology of symplectic manifolds (M, ω) has received great attention since the work of A. Weinstein and V. Arnold. One of the established tools is the theory of Gromov-Witten invariants. A GromovWitten invariant counts intersections of rational cycles in M with the moduli space of J-holomorphic curves representing a fixed class $A \in H_{2}(M, \mathbb{Z})$ for an ω-tame almost complex structure $J: T M \rightarrow T M$. However, without imposing additional assumptions on (M, ω) such counts are difficult to define in general due to the occurence of multiply covered J-holomorphic curves with negative Chern numbers.

This thesis deals with an alternative approach to Gromov-Witten invariants introduced by K. Cieliebak and K. Mohnke. Their approach delivers a pseudocycle for any fixed $A \in H_{2}(M, \mathbb{Z})$, provided M is closed and $[\omega] \in H^{2}(M, \mathbb{R})$ admits a lift to a rational class. The main advantage is that the analysis of (domain-dependent) J-holomorphic curves involves standard Fredholm theory. Transversality is achieved by adding additional marked points at the intersections of a curve with a symplectic hypersurface $V \subset M$, whose Poincaré dual is $D[\omega]$ for $D>0$ an integer chosen sufficiently large. The existence of such hypersurfaces follows from a theorem of S . Donaldson, provided $[\omega]$ is a rational class.

Here this approach is extended to the case of an arbitrary symplectic form $\omega \in$ $\Omega^{2}(M, \mathbb{Z})$. As in the original work we consider only the case of holomorphic spheres. We show that for any class $[\omega]$ there exists an open neighbourhood $[\omega] \in U \subset$ $H^{2}(M, \mathbb{R})$, such that for any two rational symplectic forms ω_{1}, ω_{2} with $\left[\omega_{1}\right],\left[\omega_{2}\right] \in U$ the corresponding pseudocycles are rationally cobordant. The proof is based on an adaptation of the arguments from the original Cieliebak-Mohnke approach to a more general situation - a presence of two transversely intersecting hypersurfaces V_{1} and V_{2} coming from different symplectic forms (ω_{1} and ω_{2}). We pay additional attention to the construction of such hypersurfaces and their properties.

Zusammenfassung. Die Frage nach dem Verständnis der Topologie symplektischer Mannigfaltigkeiten (M, ω) erhielt immer größere Aufmerksamkeit, insbesondere seit den Arbeiten von A. Weinstein und V. Arnold. Ein bewährtes Mittel ist dabei die Theorie der Gromov-Witten-Invarianten. Eine Gromov-Witten-Invariante zählt Schnitte von rationalen Zyklen in M mit Modulräumen J-holomorpher Kurven, die eine fixierte Homologieklasse $A \in H_{2}(M, \mathbb{Z})$ repräsentieren, für eine ω-zahme fast komplexe Struktur $J: T M \rightarrow T M$. Allerdings ist es im Allgemeinen schwierig, solche Schnittzahlen zu definieren, ohne zusätzliche Annahmen an (M, ω) zu treffen, da mehrfach überlagerte J-holomorphe Kurven mit negativer Chernzahl vorkommen können.

Die vorliegende Dissertation folgt einem alternativen Ansatz zur Definition von Gromov-Witten-Invarianten, der von K. Cieliebak und K. Mohnke eingeführt wurde. Dieser Ansatz liefert für jede fixierte Homologieklasse einen Pseudozykel für jede geschlossene glatte Mannigfaltigkeit M mit einer rationalen symplektischen Form $[\omega] \in H^{2}(M, \mathbb{Z})$. Der Hauptvorteil einer solchen Vorgehensweise ist, dass die Analysis (domainabhängiger) J-holomorpher Kurven nur etablierte nichtlineare FredholmTheorie erfordert. Die Transversalität wird durch Hinzufügen zusätzlicher markierter Punkte erreicht, indem diese auf die Schnitte mit einer symplektischen Hyperfläche $V \subset M$ abgebildet werden. Dabei ist die Fundamentalklasse von V Poincaré-dual zu $D[\omega]$ für eine hinreichend große ganze Zahl $D>0$. Die Existenz solcher Hyperflächen folgt aus einem Theorem von S. Donaldson.

Wir erweitern diesen Ansatz in der vorliegenden Arbeit für eine beliebige symplektische Form $\omega \in \Omega^{2}(M, \mathbb{Z})$. Wie bereits in der ursprünglichen Arbeit betrachten wir nur den Fall holomorpher Sphären. Wir zeigen, dass für die Koholomogieklasse [ω] eine offene Umgebung $[\omega] \in U \subset H^{2}(M, \mathbb{R})$ existiert, so dass für zwei beliebige rationale symplektische Formen ω_{1}, ω_{2} mit $\left[\omega_{1}\right],\left[\omega_{2}\right] \in U$ die dazugehörigen Pseudozykel rational kobordant sind. Der Beweis basiert auf einer Modifikation der Argumente des Ansatzes von Cieliebak und Mohnke für den Fall von zwei sich transversal schneidenden Hyperflächen V_{1} und V_{2}, die jeweils zu verschiedenen symplektischen Formen gehören (ω_{1} und ω_{2}). Dabei schenken wir der Konstruktion und den Eigenschaften solcher Hyperflächen besondere Aufmerksamkeit.

Contents

Introduction 1
Moduli spaces of curves: idea vs. reality 2
Cieliebak-Mohnke approach and main result 4
Outline of the proof 6
Discussion and remarks 8
Structure of the thesis 8
1 Approximate holomorphic geometry 11
1.1 Localized sections 11
1.2 Controlled transversality 15
1.3 Lefschetz hyperplane theorem 20
1.4 Remarks and questions. 22
2 Preliminaries and modifications of Donaldson's construction 27
2.1 Hermitian linear algebra and deformations. 27
2.2 Preliminaries. 36
2.3 Ball cover relative to a hypersurface 41
2.4 Proof of Propositon 2.3 44
2.5 Singular polarizations and η-transversality 46
3 Trees, stable curves and domain-stable nodal maps 49
3.1 Trees and nodal curves 49
3.2 Coherent almost complex structures 53
3.3 Symplectic energy 54
3.4 Domain-dependent nodal and holomorphic maps 55
3.5 Transversality results and compactness 58
3.6 Tangencies and intersections 61
3.7 Holomorphic curves and symplectic hypersurfaces 62
4 Moduli spaces and Donaldson hypersurfaces 69
4.1 Moduli spaces and Donaldson pairs 69
4.2 Moduli spaces and Donaldson quadruples 72
4.3 Rational cobordisms for Donaldson quadruples 77
4.4 The irrational case 80
A Appendix 87
A. 1 Complex line bundles 87
A. 2 Pseudocycles 88
References 91

Introduction

The present thesis deals with closed symplectic manifolds (M, ω), i.e. M is a compact smooth manifold without boundary and a differential form $\omega \in \Omega^{2}(M, \mathbb{R})$, which is closed $(d \omega=0)$ and non-degenerate (ω induces an isomorphism $T M \rightarrow T^{*} M$). The latter condition implies that M is orientable and even-dimensional.
The study of symplectic manifolds as such emerged from the theory of dynamical systems. Especially in the aftermath of the work of Alan D. Weinstein and Vladimir I. Arnold in the early 1970's questions concerning symplectic geometry attracted more and more attention.
Naturally, one would look for symplectic invariants. Besides the obvious one (like the class $[\omega] \in H^{2}(M, \mathbb{R})$) an ideal invariant would be one that takes into account symplectic cycles or symplectic submanifolds of M. Unfortunately, no general existence results are available. However, Michail L. Gromov introduced pseudo holomorphic curves in his seminal paper Gro85 giving a starting point for invariants of a similar type.
Consider the space

$$
\mathcal{J}_{\tau}(M, \omega)=\left\{J \in \operatorname{Aut}(T M) \mid J \circ J=-\mathbf{I d}_{T M}, \omega(v, J v)>0 \text { for all } v \neq 0\right\}
$$

of ω-tame ${ }^{1}$ almost complex structures on M. This space is contractible and hence $c_{1}(T M, \omega):=c_{1}(T M, J)$ for $J \in \mathcal{J}_{\tau}(M, \omega)$ is well-defined. Consider a (closed) Riemann surface (Σ, j) of genus g and take $J \in \mathcal{J}_{\tau}(M, \omega)$ a J holomorphic (or pseudo holomorphic) curve in M is a smooth map

$$
u: \Sigma \longrightarrow M, \text { satisfying } \bar{\partial}_{J} u:=d u+J \circ d f \circ j=0 .
$$

Note that an embedded J-holomorphic curve is actually a symplectic submanifold.
A rich source for symplectic manifolds comes from complex geometry. Since

[^0]any Kähler manifold is symplectic and any complex submanifold of a Kähler manifold is also symplectic, it follows that any smooth projective variety carries a symplectic structure (induced by restricting the Fubini-Study form). However, the class of symplectic manifolds is different ${ }^{1}$ from that of complex manifolds. Indeed the Nijenhuis tensor N_{J} might not vanish, so $J \in \mathcal{J}_{\tau}(M, \omega)$ might be not complex ${ }^{2}$.

Moduli spaces of curves: idea vs. reality

We start with a simplified and idealistic version of what one could expect a Gromov-Witten invariant for a symplectic manifold to be.
Fix a class $A \in H_{2}(M, \mathbb{Z}), k \geq 0$ and $J \in \mathcal{J}_{\tau}(M, \omega)$ define the space

$$
\begin{aligned}
\mathcal{M}_{g, k}(A, J):= & \{u: \Sigma \rightarrow M \mid u \text { is J-holomorphic, }[u]=A, \\
& \left.z_{i} \in S^{2} \text { pairwise distinct for } i=1, \ldots, k\right\} / \operatorname{Aut}\left(S^{2}\right) .
\end{aligned}
$$

If the space $\tilde{\mathcal{M}}_{g, k}(A, J)$ turns out to be a closed smooth finite-dimensional (say the dimension is d) manifold. Then the evaluation map ev ${ }^{k}: \tilde{\mathcal{M}}_{g, k}(A, J) \rightarrow$ M^{k} via $u \mapsto\left(u\left(z_{1}\right), \ldots, u\left(z_{k}\right)\right)$ would represent a d-cycle in M^{k}. Then, by taking cycles $\alpha_{1}, \ldots, \alpha_{k} \in H_{*}(M, \mathbb{Z})$ with $\operatorname{deg}\left(\alpha_{1}\right)+\ldots+\operatorname{deg}\left(\alpha_{k}\right)=d$, an idealistic invariant would be given by intersection of cycles $\left[\mathrm{ev}^{k}\right] \cdot\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. However, such a situation almost never occurs due to the following problems.
(Transversality) One cannot expect the space $\tilde{\mathcal{M}}_{g, k}(A, J)$ to be a smooth manifold for all $J \in \mathcal{J}_{\tau}(M, \omega)$, even restricted to simple (non-multiply covered) curves ${ }^{3}$. One can expect this statement to hold only for a generic J (i.e. J is contained in a subset of second Baire category in $\left.\mathcal{J}_{\tau}(M, \omega)\right)$.
(Automorphisms) A reparametrization group $G=\operatorname{Aut}(\Sigma, j)$ acts on the space $\tilde{\mathcal{M}}_{g, k}(A, J)$. Even in the case $\Sigma=S^{2}$ it is $G=\operatorname{PSL}(2, \mathbb{Z})$ the group of Möbius transformations, i.e. a non-compact group.
(Compactness) It was observed by K. Uhlenbeck that the quotient $\tilde{\mathcal{M}}_{g, k}(A, J) / G$ might still be non-compact due to the bubbling phenomenon (see section 4.2 in MS04). This can be resolved by including Gromov limits of curves (or even better, Kontsevich's stable maps).

[^1](Pseudocycle) Even after establishing compactness it is not clear that the evaluation map defines a cycle in M^{k}, since a compactification might contribute as a topological boundary, so it is not clear how to define the fundamental class $\left[\mathrm{ev}^{k}\right]$ in order to get a well-defined intersection theory.
(Independence) In order to achieve a symplectic invariant, the intersection product should not depend on the choice of $J \in \mathcal{J}_{\tau}(M, \omega)$ required in the definition of $\tilde{\mathcal{M}}_{g, k}(A, J)$.

The first step towards a solution of above problems was done in the seminal work of Y. Ruan and G. Tian RT95. They established Gromov-Witten invariants for all genera $g(\Sigma) \geq 0$ assuming semi-positivity ${ }^{1}$ of (M, ω).

Independently, a treatment of the case $g(\Sigma)=0$, i.e. that of J-holomorphic spheres, appeared in MS94 and a very detailed exposition can be found in MS04, again under the assumption of semi-positivity of (M, ω). The outline of the argument is as follows. Consider the space of stable maps ${ }^{2}$ with $k \geq 3$ marked points $\overline{\mathcal{M}}_{k}$. Stability implies that there are no symmetries ${ }^{3}$ on constant (ghost) components. Perturbing J (actually, the existence of such perturbations follows from Sard-Smale theorem) one can achieve a stratification $\mathcal{M}_{T}(A, J)$ of $\overline{\mathcal{M}}_{k}$, with each stratum $\mathcal{M}_{T}(A, J)$ being a smooth orientable manifold ${ }^{4}$ of real dimension $2\left(n-3+c_{1}(A)+k-e(T)\right)$, where T is a k-labelled tree and $e(T)=|T|-1$. Then the evaluation map of the top stratum (T with only one vertex) yields a pseudocycle (see Appedix A.2), since by dimension formula all other strata have codimension at least two. The existence of a pseudocycle is sufficient to establish intersection theory (see section 6.5 in MS04.).
(Multiply covered curves with $c_{1}<0$) The semi-positivity assumption is essential in the above approach. Consider the following geometric situation (cf. p. 937 in [FO99]). Restrict to spheres without marked points and consider homology classes $A, A_{1}, A_{2} \in H_{2}(M, \mathbb{Z})$ with $A=A_{1}+l A_{2}$ for some integer $l>0$. Assume that $n-3+c_{1}\left(A_{2}\right) \geq 0$ and $c_{1}\left(A_{2}\right)<0$. Consider the moduli space $\tilde{\mathcal{M}}_{0}(A, J)=\left\{u: S^{2} \rightarrow_{\tilde{\mathcal{M}}} M \mid[u]=A, \bar{\partial}_{J} u=0\right\} / \operatorname{Aut}\left(S^{2}\right)$. Assume that there exists sequence $u^{\nu} \in \tilde{\mathcal{M}}_{0}(A, J)$ that has a Gromov limit

[^2]consisting of two J-holomorphic spheres $u_{1}, u_{2}: S^{2} \rightarrow M$ with $\left[u_{1}\right]=A_{1}$ and $\left[u_{2}\right]=l A_{2}$ and u_{2} is multiply covered. So there exists a holomorphic map $\phi: S^{2} \rightarrow S^{2}$ of degree l and a J-holomorphic sphere u_{2}^{\prime}, s.t $u_{2}=u_{2}^{\prime} \circ \phi$ so $\left[u_{2}^{\prime}\right]=A_{2}$. Assuming transversality, Riemann-Roch theorem implies that the (expected) dimension $\operatorname{dim} \tilde{\mathcal{M}}_{0}\left(A_{2}, J\right)=2 n-6+2 c_{1}\left(A_{2}\right) \geq 0$, on the other hand $\operatorname{dim} \tilde{\mathcal{M}}_{0}\left(l A_{2}, J\right)=2 n-6+2 l c_{1}\left(A_{2}\right)<0$ for l large. But any curve $u \in \tilde{\mathcal{M}}_{0}\left(A_{2}, J\right)$ induces a curve $u \circ \phi \in \tilde{\mathcal{M}}_{0}\left(l A_{2}, J\right)$ so $\tilde{\mathcal{M}}_{0}\left(A_{2}, J\right) \subset \tilde{\mathcal{M}}_{0}\left(l A_{2}, J\right)$. Hence such dimension count cannot be correct, i.e. the space $\tilde{\mathcal{M}}_{0}\left(l A_{2}, J\right)$ can not be made transversal for any $J \in \mathcal{J}_{\tau}(M, \omega)$. A similar issue occurs if one looks at the strata needed for a compactification of $\tilde{\mathcal{M}}_{0}(A, J)$. Note that above situation might occur only if $n>3$. The presence of curves with negative Chern numbers causes transversality problems in other situations - see section 5.1 in [Sal97].

Symplectic manifolds which are not semi-positive exist in abundance - see section 6.4 in MS04. A simple example is provided by a symplectic blow up of $\left(\mathbb{C} P^{4}, \omega_{\mathrm{FS}}\right)$ at one point. Then the exceptional divisor has a negative Chern number.

The definition of Gromov-Witten invariants for general symplectic manifold was etablished in

- FO99 using Kuranishi structures and multi-valued perturbations.
- LT98b adapting arguments from the definition of Gromov-Witten invariants of an algebraic variety (given in [LT98a]).
- Sie99b using a similar approach.
- Moreover, it was shown in Sie99a and LT99 that in the case of a projective algebraic variety the symplectic definitions coincide with a definition coming from algebraic geometry, given in Beh97.
- It is also expected that Hofer's polyfold theory Hof08 gives a solution.
- Recently, a more topological approach was presented in Par14.

However, all above mentioned methods have one similarity - the introduction of more general perturbation tools in order to achieve transversality for moduli spaces of J-holomorphic curves.

Cieliebak-Mohnke approach and main result

In CM07 a geometric approach to genus zero Gromov-Witten invariants was introduced. One of the main advantages is that the Fredholm analysis of J holomorphic curves is kept standard, just as in [MS04]. The idea is that moduli spaces of J-holomorphic maps with domain-dependent J, whose underlying curves are already stable, give rise to pseudocycles. Such (domain) stability is achieved by putting additional marked points on the intersection points with a fixed symplectic hypersurface ${ }^{1}$. The drawback of this approach is that the

[^3]perturbation spaces (subsets of $\mathcal{J}_{\tau}(M, \omega)$) become quite complicated.
A sequence of symplectic hypersurfaces is provided by the celebrated result of S. Donaldson in Don96. It provides for any fixed $J \in \mathcal{J}_{c}(M, \omega)$ and a positive ${ }^{1}$ $D \gg 0$ a symplectic hypersurface $V \subset M$ with $\mathrm{PD}([V])=D[\omega]$, assuming that the symplectic form represents a rational class, i.e. $[\omega] \in H_{2}(M, \mathbb{Z})$. Given such a pair (V, J), denote by $\mathcal{J}(M, V, J, \theta) \subset \mathcal{J}_{\tau}(M, \omega)$ the space of tame almost complex structures leaving $T V$ invariant and being θ-close ${ }^{2}$ to J. For $l \geq 3$ let $\overline{\mathcal{M}}_{l+1}$ be the Deligne-Mumford space of stable curves with $l+1$ marked 3 points. The (perturbation) space of coherent almost complex structures is a subset ${ }^{4}$
$$
\mathcal{J}_{l+1}(M, V, J, \theta) \subset \mathcal{C}^{\infty}\left(\overline{\mathcal{M}}_{l+1}, \mathcal{J}\left(M, V, J, \theta_{1}\right)\right)
$$

For a $K \in \mathcal{J}_{l+1}(M, V, J, \theta)$ and $k \geq 1$ let $\pi_{l}: \overline{\mathcal{M}}_{k+l+1} \rightarrow \overline{\mathcal{M}}_{k+1}$ be the map that forgets first k marked points and stabilizes. Then any $K \in$ $\mathcal{J}_{l+1}(M, V, J, \theta)$ induces $\pi_{l}^{*} K \in \mathcal{J}_{k+l+1}(M, V, J, \theta)$. Fix a $A \in H_{2}(M, \mathbb{Z})$ and denote the moduli space of $\pi_{l}^{*} K$-holomorphic spheres representing class A with $k+l$ marked points mapping last l points to hypersurface V by $\mathcal{M}_{k+l}(A, K, V)$.

Theorem A (Theorem 1.2 in [CM07]) Assume that (V, J) is a Donaldson pair ${ }^{5}$. Let $l=D \omega(A)$, then there exists a nonempty set $K \in \mathcal{J}_{l+1}^{\text {reg }}(M, V, J, \theta) \subset$ $\mathcal{J}_{l+1}(M, V, J, \theta)$, such that for any $k \geq 1$ the evaluation map at the first k marked points

$$
\mathrm{ev}^{k}: \mathcal{M}_{k+l}(A, K, V) \rightarrow M^{k}
$$

represents a pseudocycle $\operatorname{ev}^{k}(A, V, J, K)$ of dimension $2 n-6+k+c_{1}(A)$.
Moreover, it was shown in CM07 (Theorem 1.3) that the pseudocycle $\mathrm{ev}^{k}(A, V, J, K)$ does not depend on perturbation K, hypersurface V and a compatible almost complex structure J. In the sense that any two such pseudocycles are rationally cobordant (see Appendix A.2 for the definition). Hence, Theorem A actually yields (up to multiplication with a positive rational number) a pseudocycle $\mathrm{ev}^{k}(\omega, A)$. The proof requires Auroux's asymptotic uniqueness result for Donaldson hypersurfaces Aur97.

Remark 1 A generalization to the curves of higher genus was recently resolved in [Ger13] and independently also in [IP13]. The Cieliebak-Mohnke approach was used in Wen14 in order to obtain results on hypersurfaces of contact type (avoiding the semi-positivity assumption).

[^4]However, the assumption that ω represents an integer (or rational) homology class is essential for the approach. One cannot expect the existence of a symplectic hypersurface V (Poincaré dual to $D[\omega]$) for non-rational ω in order to control the intersection of V with holomorphic curves. Our main result is the following.

Theorem B Given any symplectic form ω on M. Fix $A \in H_{2}(M, \mathbb{Z})$. There exists an open neighbourhood of ω, say $U \subset \Omega_{2}(M)$, such that for any pair of rational symplectic forms $\omega_{1}, \omega_{2} \in U$ the corresponding (coming from Theorem A) pseudocycles $e v^{k}\left(\omega_{1}, A\right)$ and $e v^{k}\left(\omega_{2}, A\right)$ are rationally cobordant, up to multiplication with positive rational weights, for any $k \geq 3$.

Outline of the proof

Consider a symplectic manifold (M, ω) with an integral class $[\omega] \in H^{2}(M, \mathbb{Z})$ and fix $J \in \mathcal{J}_{c}(M, \omega)$. We sketch the main steps:
(I) Given a fixed energy level $E>0$ and a rational symplectic form ω^{\prime} near ω. There exists an ω-symplectic hypersurface V Poincaré dual to $D\left[\omega^{\prime}\right]$, such that assuming regularity of spaces of simple holomorphic spheres of energy at most $D \gg 0$ implies that all holomorphic spheres of energy at most E in V are constant and all non-constant spheres intersect V in at least three points in the domain. Holomorphicity means here with respect to a tame almost complex structure K near J (cf. section 3.7).
(II) We adapt the definition of a Donaldson quadruple from CM07 to the case where one of the hypersurfaces is Poincaré dual to $D^{\prime}\left[\omega^{\prime}\right]$ with $\omega^{\prime} \neq \omega$. Denote such a quadruple by $\left(V, V^{\prime}, \omega, J\right)$, see section 4.2 for a precise definition. Associate to such a quadruple the moduli space $\mathcal{M}_{k+l+l^{\prime}}\left(A, K, V \cup V^{\prime}\right)$ of K-holomorphic spheres (here K is allowed to be domain-dependent) with $k+l+l^{\prime}$ marked points in class A mapping middle l points to V and last l^{\prime} points to V^{\prime}.
(III) Establish perturbation spaces $\mathcal{J}_{l+1}^{*}\left(M, V \cup V^{\prime}, J, \theta, E\right)$ of coherent ${ }^{1} \omega$ tame almost complex structures leaving V and V^{\prime} invariant and being θ-close to J. Using similar arguments as in CM07 we show compactness for domainstable maps:

Theorem C. 1 (see Theorem 4.10) Fix an energy level $E>0$ and a Donaldson quadruple $\left(\omega, J, V, V^{\prime}\right)$. For $A \in H_{2}(M, \mathbb{Z})$ assume $\max \left\{\omega(A), \omega^{\prime}(A)\right\} \leq$ E and set $l:=D \omega(A), l^{\prime}:=D^{\prime} \omega^{\prime}(A)$. For $k \geq 0$ take a subset $I \subset$ $\left\{k+1, \ldots, k+l+l^{\prime}\right\}$ with $\{k+1, \ldots, k+l\} \subset I$ and fix $K \in \mathcal{J}_{|I|+1}^{*}(M, V \cup$ $\left.V^{\prime}, J, \theta_{1}, E\right)$. Assume that a sequence of K-holomorphic spheres

[^5]$f^{\nu} \in \mathcal{M}_{k+l+l^{\prime}}\left(A, K, V \cup V^{\prime}\right)$ has a Gromov limit - the stable map (f, \mathbf{z}). Then the underlying nodal curve \mathbf{z} is I-stable. Same statement holds if $\left\{k+l+1, \ldots, k+l+l^{\prime}\right\} \subset I$.
I-stability means that a nodal curve is stable after removing marked points outside of I.
(IV) Providing the existence of regular perturbations $\mathcal{J}_{l+1}^{\text {reg }}\left(M, V \cup V^{\prime}, J, \theta, E\right) \subset$ $\mathcal{J}_{l+1}^{*}(M, V \cup V, J, \theta, E)$ in order to achieve transversality of strata required for the compactification of $\mathcal{M}_{l}\left(A, K, V \cup V^{\prime}\right)$. This combined with Theorem C. 1 implies

Theorem C. 2 Assumptions as in Theorem C. 1 imply that for any $k \geq 1$ and any $K \in \mathcal{J}_{|I|+1}^{\mathrm{reg}}\left(M, V \cup V^{\prime}, J, \Theta_{1}, E\right)$ the evaluation map that evaluates first k-marked points ev ${ }^{k}: \mathcal{M}_{k+l+l^{\prime}}\left(A, K, V_{0} \cup V_{1}\right) \longrightarrow X^{k}$ defines the (rational) pseudocycle $\operatorname{ev}^{k}\left(A, V, V^{\prime}, J\right)$ of real dimension $d:=2\left(n-3+k+c_{1}(A)\right)$.
(V) In section 4.3 we show that, assuming the existence of a Donaldson quadruple $\left(\omega, J, V, V^{\prime}\right)$, arguments from CM07 together with Theorem C. 2 yield rational cobordisms of pseudocycles (provided by Theorem A) ev ${ }^{k}(A, \omega)$ and $\operatorname{ev}^{k}\left(A, \omega^{\prime}\right)$ up to a multiplication with positive rational weights. Note that the existence of a Donaldson quadruple is not just a transversal intersection of two symplectic hypersurfaces. We require that perturbation spaces $\mathcal{J}_{l+1}^{*}(M, V \cup V, J, \theta, E)$ are nonempty.
(VI) Given any symplectic form ω_{0} on M and fix $J_{0} \in \mathcal{J}_{c}(\omega)$. Using the results from section 2.2 we can find rational symplectic forms $\omega, \omega^{\prime} \rho$-nearby ω_{0} and $J \in \mathcal{J}_{c}(\omega)$, $J^{\prime} \in \mathcal{J}_{c}\left(\omega^{\prime}\right) \rho$-nearby J for some $\rho>0$. Then a modification of the Donaldson hypersurface theorem from chapter 2 yields a pair of ω-symplectic hypersurfaces V and V^{\prime} that intersect transversely. In section 4.4 we show that such V and V^{\prime} yield Donaldson quadruple (V, V^{\prime}, ω, J) provided ρ is chosen sufficiently small. Then Theorem C. 2 implies our main result - Theorem B.

Note that our quadruples depend on a previously fixed energy level $E>0$. Our geometric construction starts with rational $\left(\omega, \omega^{\prime}\right)$, however, we measure energy for each $A \in H_{2}(M, \mathbb{Z})$ with respect to $E(A):=\max \{N \omega(A), N \omega(A))$ with $N:=\min \left\{n \in \mathbb{N} \mid[n \omega] \in H^{2}(M, \mathbb{Z})\right.$ and $\left.\left[n \omega^{\prime}\right] \in H^{2}(M, \mathbb{Z})\right\}$. In a sense, we are using ω and ω^{\prime} for the geometric construction and ($n \omega, n \omega^{\prime}$) for transversality discussion, since assumptions on (Kähler) angles are invariant under scaling of the symplectic form ω.

It is important to understand that after considering $\left(\omega, \omega^{\prime}\right)$ we get N, hence the energy $E(A)$. Only after that we construct hypersurfaces of high degree in order to obtain a quadruple.

Another essential point is that we use Opshtein's observation (about the transversality constant η in Donaldson's construction) described in section 2.5 in order to construct our quadruples. More precisely, we need to guarantee that the corresponding perturbation spaces are actually nonempty.

Discussion and remarks

Observe that we are not defining moduli spaces of holomorphic curves for an irrational symplectic form ω directly. However, Theorem B allows us to define (genus zero) Gromov-Witten invariants for such an ω. For any fixed $A \in H_{2}(M, \mathbb{Z})$ and $k \geq$ pick a rational ω^{\prime} from the open neighbourhood U of ω, provided by Theorem B. Then, there exists a positive rational weight l, such that the cobordism class of pseudocycle $l \mathrm{ev}^{k}\left(A, \omega^{\prime}\right)$ from Theorem A does not depend on the particular choice of ω^{\prime}.
Hence, the definition works exactly as in CM07. Let $\alpha_{1}, \ldots, \alpha_{k}$ be nontorsion cohomology classes in M of total degree $2 n-6+2 k-2 c_{1}(A)$. Represent the Poincaré dual of the cup product of pullbacks of these classes to M^{k} by a cycle a in M. Assume that a is strongly transverse ${ }^{1}$ to $\operatorname{ev}^{k}\left(A, \omega^{\prime}\right)$. Then the (genus zero) Gromov-Witten invariant is given by the intersection

$$
\mathrm{GW}_{A, k}^{\omega}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\mathrm{GW}_{A, k}^{\omega^{\prime}}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\operatorname{lev}^{k}(A, \omega) \cdot a
$$

The statement of Theorem B is actually not that surprising. In the semipositive case Gromov-Witten invariants are known to be deformation ${ }^{2}$ invariant (see remark 7.1.11 in MS04]) as long as the deformation $\left(M, \omega_{t}\right)$ is semi-positive for all t. Other approaches to Gromov-Witten invariants assert similar deformation invariance. It was observed in CM07 that in the semipositive case both invariants are equal (the regularity condition for simple curves holds without any hypersurface).

Structure of the thesis

We emphasize that the thesis is not self-contained. Our main focus lies on geometric aspects of the theory. Regarding the analysis of holomorphic curves we heavily rely on CM07, which in turn is based on a very detailed exposition in MS04. Whenever possible our notation is kept identical to that used in CM07.

[^6]The first part of Chapter 1 contains an overview of Donaldson's construction of symplectic hypersurfaces. We provide some geometric details. In the second part we review some topological properties of such submanifolds and discuss related open questions.

In the second chapter we prove technical statements needed to control deformations of symplectic and almost complex structures. Then we show a modification of Donaldson's argument which produces transversal intersections of symplectic hypersurfaces. We finish the chapter with Opshtein's observation.

Chapter 3 contains definitions and statements from CM07 and MS04 needed for our main result. The last section deals with intersections between holomorphic curves and symplectic hypersurfaces of high degree (constructed by starting with a different symplectic form).

The last chapter contains our definition of a Donaldson quadruple together with compactness and transversality results for corresponding moduli spaces. In the final part we combine results from Chapters 2 and 3 in order to show Theorem B.

Acknowledgement. I would like to express particular gratitude to my advisor Prof. Klaus Mohnke for the support over the past years and for spending many hours in our meetings.
I would like to thank Chris Wendl and Viktor Fromm for answering many questions about holomorphic curves and Jonathan David Evans for a discussion on Donaldson hypersurfaces. I benefitted a lot from discussions with Helga Baum, Sebastian Boldt, Frank Lapp and Dorothee Schüth.
I am truly grateful to Judith Berthold and Marko Berghoff for proofreading the manuscript.
Finally, I would like to thank Berlin Mathematical School, SFB 647 and Dirk Kreimer for providing financial support.

Approximate holomorphic geometry

Here we review the celebrated Donaldson hypersurface theorem from Don96. Consider a closed symplectic manifold (M, ω) with $[\omega] \in H^{2}(M, \mathbb{Z})$ and a fixed ω-compatible almost complex structure $J \in \mathcal{J}_{c}(M, \omega)$. Consider a complex line bundle ${ }^{1} L \rightarrow M$ equipped with a Hermitian connection whose curvature form is given by $-\frac{i}{2 \pi} \omega$. We show that for any (sufficiently large) $k \gg 0$ there exist (approximate holomorphic) sections of $s_{k}: M \rightarrow L^{k}$. The sections s_{k} are uniformly transversal to the zero section, cutting out ω-symplectic hypersurfaces V_{k}. Also, see Section 2.2 of AS08 for a short exposition.
We review the main steps of the argument proving some geometric details. At the end of the chapter we collect some properties and open questions regarding submanifolds V_{k}.

1.1 Localized sections

Consider an \mathbb{R}-linear map $A: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and define

$$
A^{\prime}(z):=\frac{A(z)-i A(i z)}{2} \text { and } A^{\prime \prime}(z):=\frac{A(z)+i A(i z)}{2}
$$

Then we have $A=A^{\prime}+A^{\prime \prime}, A^{\prime}(i z):=i A^{\prime}(z)$ and $A^{\prime \prime}(i z):=-i A^{\prime \prime}(z)$, i.e. A^{\prime} and $A^{\prime \prime}$ decompose A in its complex linear and complex anti-linear part. The following lemma is fundamental to the Donaldson hypersurface theory.

Lemma 1.1. If $\left\|A^{\prime \prime}\right\|<\left\|A^{\prime}\right\|$, then the subspace $\operatorname{ker} A \subset \mathbb{C}^{n}$ is symplectic with respect to the standard symplectic form ω_{0}.

Proof. The following argument is due to Patrick Massot. Define the adjoint $\operatorname{map} A_{*}: \mathbb{C} \rightarrow \mathbb{C}^{n}$ via $\left\langle v, A_{*} z\right\rangle=\langle A v, z\rangle$ for $v \in \mathbb{C}^{n}$ and $z \in \mathbb{C}$.
The splitting of A enduces the corresponding \mathbb{C}-linear map $A_{*}^{\prime}: \mathbb{C} \rightarrow \mathbb{C}^{n}$ and

[^7]
1. Approximate holomorphic geometry

\mathbb{C}-antilinear map $A_{*}^{\prime \prime}: \mathbb{C} \rightarrow \mathbb{C}^{n}$.
Consider two vectors $v:=A_{*}^{\prime} 1$ and $w:=A_{*}^{\prime \prime} i$. Observe that $\left\|A_{*}^{\prime}\right\|=\|v\|$ and $\left\|A_{*}^{\prime \prime}\right\|=\|w\|$, so the inequality $\left\|A^{\prime \prime}\right\|<\left\|A^{\prime}\right\|$ implies $\|v\|<\|w\|$. We compute

$$
\begin{gathered}
A_{*} 1=A_{*}^{\prime} 1+A_{*}^{\prime \prime} 1=v-i A_{*}^{\prime \prime} i=v-i w \\
A_{*} i=A_{*}^{\prime} i+A_{*}^{\prime \prime} i=i v+w \\
\omega_{0}\left(A_{*} 1, A_{*} i\right)=\omega_{0}(v-i w, i v+w)=\|v\|^{2}-\|w\|^{2}-\underbrace{\omega_{0}(v, w)-\omega_{0}(i w, i v)}_{=0} .
\end{gathered}
$$

Hence, $\omega_{0}\left(A_{*} 1, A_{*} i\right) \neq 0$, i.e. $\operatorname{span}_{\mathbb{R}}\left\{A_{*} 1, A_{*} i\right\} \subset \mathbb{C}^{n}$ is symplectic. Finally,

$$
\operatorname{ker} A=\left(\operatorname{im} A_{*}\right)^{\perp}=i\left(\operatorname{im} A_{*}\right)^{\omega_{0}}
$$

and the claim follows.
Now, consider the trivial line bundle $\mathbb{C}^{n} \times \mathbb{C} \rightarrow \mathbb{C}^{n}$, equip the base \mathbb{C}^{n} with the standard symplectic and complex structure (ω_{0}, J_{0}) and define the 1-form

$$
A:=\frac{1}{4} \sum_{j=1}^{n} z_{j} d \bar{z}_{j}-\bar{z}_{j} d z_{j}, A \in \Omega^{1}\left(\mathbb{C}^{n}\right)
$$

Then $d A=-i \omega_{0}$. Denote the complex-antilinear part of A by $A^{0,1}:=$ $\sum_{j} z_{j} d \bar{z}_{j}$, so we can define the modified Cauchy-Riemann operator on sections

$$
\bar{\partial}_{A} f:=\bar{\partial} f+f \cdot A^{0,1} \text { for a smooth } f: \mathbb{C}^{n} \rightarrow \mathbb{C}
$$

Note that here we write $\bar{\partial}:=d^{0,1}$. Now, consider a specific real valued section $\tilde{\sigma}(z):=e^{-\frac{|z|^{2}}{4}}$ for $z \in \mathbb{C}^{n}$. Since $|z|^{2}=z \cdot \bar{z}$, we see that

$$
\bar{\partial} \tilde{\sigma}=\frac{1}{4}\left(\sum_{j=1}^{n} z_{j} d \bar{z}_{j}\right) e^{-\frac{|z|^{2}}{4}}
$$

We arrive at the next fundamental observation, namely $\bar{\partial}_{A} \tilde{\sigma}=0$, since

$$
\bar{\partial}_{A} \tilde{\sigma}=\bar{\partial} \tilde{\sigma}+\tilde{\sigma} \cdot A^{0,1}=\frac{1}{4}\left(\sum_{j=1}^{n}-z_{j} d \bar{z}_{j}+z_{j} d \bar{z}_{j}\right) e^{-\frac{|z|^{2}}{4}}=0 .
$$

Remark 1.2. In the literature this is sometimes referred to as the effect of positive curvature and might be interpreted as follows. One might think of A as a connection form on the trivial bundle. So this bundle possesses holomorphic sections (with respect to modified Cauchy-Riemann operator $\bar{\partial}_{A}$) which are rapidly decreasing at infinity, in contrast to the flat case.

On the other hand the complex linear part of A defines the operator

$$
\partial_{A} f:=\partial f+A^{1,0} f, \text { for a smooth } f: \mathbb{C}^{n} \rightarrow \mathbb{C},
$$

and again, here we denote $\partial f:=d^{1,0}$. Together both operators form a connection on the trivial line bundle, we denote it by $\nabla:=\bar{\partial}_{A}+\partial_{A}$. Moreover, observe that for $\tilde{\sigma}$ we have

$$
\nabla \tilde{\sigma}=\underbrace{\bar{\partial}_{A} \tilde{\sigma}}_{=0}+\partial_{A} \tilde{\sigma}=-\frac{1}{2}\left(\sum_{j=1}^{n} z_{j} d \bar{z}_{j}\right) e^{-\frac{|z|^{2}}{4}}
$$

Recall from Appendix A. 1 that we can consider the complex line bundle $L \rightarrow$ M together with a Hermitian connection with a curvature form $-i /(2 \pi) \omega$, if $[\omega] \in H^{2}(M, \mathbb{Z})$. For a given integer $k>0$ denote the tensor bundle by $L^{k}:=\underbrace{L \otimes_{\mathbb{C}} \ldots \otimes_{\mathbb{C}} L}_{k-\text { times }} . L^{k}$ is again a complex line bundle equipped with an induced Hermitian connection with a curvature form $-i k /(2 \pi) \omega$.
The main point of this section is to transport section $\tilde{\sigma}$ to a section of the line bundle L^{k}. We begin with preliminary definitions. Denote by g the metric induced by ω and J, then g induces the distance function $d: M \times M \rightarrow \mathbb{R}$. Then the rescaled metric $g_{k}:=k g$ induces the rescaled distance function set $d_{k}=k^{\frac{1}{2}} d$ and we define $e_{k}: M \times M \rightarrow \mathbb{R}$ via

$$
e_{k}(p, q):=\left\{\begin{array}{cl}
\exp \left(-\frac{d_{k}(p, q)^{2}}{5}\right) & \text { if } d_{k}(p, q) \leq k^{\frac{1}{4}} \\
0 & \text { else. }
\end{array}\right.
$$

Proposition 1.3 (cf. Proposition 9 in [Don96]). For any $p \in M$ and $k \gg 0$ there exists a smooth section σ_{p} of the line bundle L^{k} and constant $C>0$ (independent of k), such that at any $q \in M$ we have

1. there exists an $R>0$, indepedent of q, such that $d_{k}(p, q) \leq R$ implies $\left|\sigma_{p}(q)\right| \geq \frac{1}{C}$
2. $\left|\sigma_{p}(q)\right| \leq e_{k}(p, q)$
3. $\left|\nabla \sigma_{p}(q)\right| \leq C\left(1+d_{k}(p, q)\right) e_{k}(p, q)$
4. $\left|\bar{\partial} \sigma_{p}(q)\right| \leq C k^{-\frac{1}{2}} d_{k}(p, q)^{2} e_{k}(p, q)$
5. $\left|\nabla \bar{\partial} \sigma_{p}(q)\right| \leq C k^{-\frac{1}{2}}\left(d_{k}(p, q)+d_{k}(p, q)^{3}\right) e_{k}(p, q)$

The operators $\bar{\partial}$ and ∇ on L^{k} are induced by the corresponding operators defined on L.

1. Approximate holomorphic geometry

Remark 1.4. The lower bound from (1) together with the upper bound (2) imply that section σ_{p} is actually concentrated around the point p, which justifies the name of this section.
Sections with $|\bar{\partial} s| \ll|\partial s|$ are often called approximate holomorphic. Note that sections σ_{p} are approximate holomorphic, since a lower bound for $\left|\partial \sigma_{p}\right|$ follows from statement (1) in the above proposition.

Proof. The proof is basically Section 2 in Don96. The idea is simple, one cuts off section $\tilde{\sigma}$ and it transports to L^{k} via a suitable Dabroux chart. Here, we give the main steps of the argument.
(I) Take a standard cut-off function $\beta:[0, \infty) \rightarrow \mathbb{R}$ with

$$
\beta(x):=\left\{\begin{array}{cl}
1 & \text { if } x \leq \frac{1}{2} \\
0 & \text { if } x \geq 1 \\
\text { smooth monotone } & \text { else }
\end{array}\right.
$$

define a k-dependent cut-off function $\beta_{k}: \mathbb{C}^{n} \rightarrow \mathbb{R}$ via $\beta_{k}(z):=\beta\left(k^{-1 / 6}|z|\right)$. Note that $\operatorname{supp}\left(\beta_{k}\right) \subset\left\{|z| \leq k^{1 / 6}\right\}$.
(II) Let $B_{R}:=B(0, R) \subset \mathbb{C}^{n}$ be the Euclidean ball of radius R centered at the origin. Choose a Darboux chart $\phi: B_{R} \rightarrow V, \phi^{*} \omega=\omega_{0}$, such that $\phi(0)=p$. Note that ϕ can be chosen in a way that all its derivatives with respect to metric g do not depend on point p. Moreover, we assume that $\phi^{*} J(x)_{\mid x=0}=J_{0}$. Define the rescaled chart $\phi_{k}: B_{\sqrt{k} R} \rightarrow M$ via $\phi_{k}(x)=\phi\left(k^{-1 / 2} x\right)$, and we have then $\phi_{k}^{*} k \omega=\omega_{0}$.
(III) Lift ϕ_{k} to a bundle map. More precisely, consider the trivial line bundle $B_{\sqrt{k} R} \times \mathbb{C} \rightarrow B_{\sqrt{k} R}$ equipped with the connection $d+A$ (see above discussion). Using parallel transport one can lift the chart ϕ_{k} to $\tilde{\phi_{k}}$, i.e. the following diagram commutes

with the property that $\tilde{\phi}_{k}^{*} \nabla=d+A$, where ∇ is the Hermitian connection on the complex line bundle L^{k}.
(IV) Define section $\sigma_{p}: M \rightarrow L^{k}$ by setting

$$
\sigma_{p}(x):=\left\{\begin{array}{cl}
\tilde{\phi}_{k} \circ\left(\beta_{k} \cdot \tilde{\sigma}\right) \circ \phi_{k}^{-1} & \text { if } x \in \operatorname{Im}\left(\phi_{k}\right) \\
0 & \text { if } x \notin \operatorname{Im}\left(\phi_{k}\right)
\end{array}\right.
$$

Such σ_{p} satisfies above inequalities (cf. pp. 675-677 in Don96). The main point is that the chart ϕ_{k} is very close to being an isometry (it is one at the origin, by assumption).

1.2 Controlled transversality

Fix points $p_{i} \in M$ with $i=1 \ldots m$ for some integer $m>0$ and consider sections $\sigma_{i}:=\sigma_{p_{i}}$ from Proposition 1.3. Moreover, fix a collection of complex numbers $w:=\left\{w_{1}, \ldots, w_{m}\right\}$ with all $\left|w_{i}\right| \leq 1$. Then a linear combination yields a new section of L^{k}

$$
s_{w}:=\sum_{i=1}^{m} w_{i} \sigma_{i}
$$

The aim of this passage is twofold - first, it is to show that there exists an appropriate choice of points p_{i}, such that section s_{w} satisfies similar upper bounds as in Proposition 1.3. This is the easier part. Second, it is to show that there is an appropriate choice of the coefficients w_{i}, such that ∂s_{w} is bounded from below near the zero section. This part is considerably harder.

Definition 1.5. We call a cover $\left\{B\left(p_{i}\right)\right\}_{i \in\{1 . . m\}}$ of M with g_{k}-unit balls centered at $p_{i} \in M$ admissible if for any $q \in M$

$$
\sum_{i=1}^{m} d_{k}\left(q, p_{i}\right)^{r} e_{k}\left(q, p_{i}\right) \leq C, \text { for } r=0, . ., 3
$$

Lemma 1.6 (cf. Lemma 12 in Don96]). For any $k>0$ there exists an admissible covering of M with a constant C which does not depend on k.

Proof. The main point of the proof is that in the Euclidean case taking lattice

$$
\Lambda:=\frac{1}{2} \sqrt{\frac{n}{2 k}}\left(\mathbb{Z}^{n} \oplus i \mathbb{Z}^{n}\right) \subset \mathbb{C}^{n}
$$

and Euclidean balls of g_{k}-radius $\frac{1}{2}$ centered at the points of Λ cover \mathbb{C}^{n}. Choose a k-independent Darboux atlas consisting of charts $\phi_{j}: U_{j} \rightarrow M$ with bounded domains U_{j} and transport the lattice to M. See proof of Lemma 2.30 for a detailed argument.

Once the existence of an admissible covering is clarified, we have the following
Proposition 1.7 (cf. Lemma 14 in [Don96]). For any k and any collection $w_{1}, \ldots, w_{m} \in \mathbb{C}$ with $\left|w_{i}\right| \leq 1$ section σ_{w} associated to an admissible cover satisfies at any point of M the following inequalities

[^8]- $\left|s_{w}\right| \leq C$
- $\left|\bar{\partial} s_{w}\right| \leq C \frac{1}{\sqrt{k}}$
- $\left|\nabla \bar{\partial} s_{w}\right| \leq C \frac{1}{\sqrt{k}}$
where C is independent of k, ∇ and $\bar{\partial}$ are the corresponding operators on L^{k}.
Proof. Fix $q \in M$, then the first inequality follows from Proposition 1.3 (2):

$$
\left|s_{w}(q)\right| \leq \sum_{i=1}^{m}\left|w_{i}\right|\left|\sigma_{i}(q)\right| \leq \sum_{i=1}^{m} e_{k}\left(p_{i}, q\right) \leq m
$$

For the second and third statement we use Proposition 1.3 (4) resp. (5)

$$
\begin{gathered}
\left|\bar{\partial} s_{w}\right| \leq \sum_{i=1}^{m}\left|w_{i}\right|\left|\bar{\partial} \sigma_{i}\right| \leq C^{\prime} \frac{1}{\sqrt{k}} \sum_{i=1}^{m} d_{k}\left(p_{i}, q\right)^{2} e_{k}\left(p_{i}, q\right) \\
\left|\nabla \bar{\partial} s_{w}\right| \leq \sum_{i=1}^{m}\left|w_{i}\right|\left|\nabla \bar{\partial} \sigma_{i}(q)\right| \leq C^{\prime} \frac{1}{\sqrt{k}} \sum_{i=1}^{m}\left(d_{k}\left(p_{i}, q\right)+d_{k}\left(p_{i}, q\right)^{3}\right) e_{k}(p, q)
\end{gathered}
$$

Now, observe that $e^{\left(k^{1 / 2} x\right)^{2} / 5}\left(k^{1 / 2} x\right)^{r} \leq 5$ for any $k \geq 1, x \geq 0$ and $r=1,2,3$ implies

$$
\left|\bar{\partial} s_{w}\right| \leq 5 C^{\prime} m \frac{1}{\sqrt{k}} \text { and }\left|\nabla \bar{\partial} s_{w}\right| \leq 10 C^{\prime} m \frac{1}{\sqrt{k}}
$$

Claim follows by taking the maximum of all occuring constants.
Recall from Don96 the following
Definition 1.8. A smooth map $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is η-transverse to w for $\eta>0$ and $w \in \mathbb{C}^{n}$, if for any $z \in U:|f(z)-w|<\eta$ implies $\left|\left(D_{x} f\right)_{z}\right|>\eta$. A smooth section $s: M \rightarrow L$ of a complex line bundle is η-transverse to 0 , if $|s(x)|<\eta$ implies $\left|\nabla_{x} s\right|>\eta$.

Corollary 1.9. Given smooth maps $f, g: U \rightarrow \mathbb{C}$ with $\|f-g\|_{\mathcal{C}^{1}} \leq \delta$. If f is η-transverse to w then g is $(\eta-\delta)$-transverse to w.

Remark 1.10. Given a trivial line bundle $\mathbb{C} \rightarrow \mathbb{C}^{n}$ together with a smooth section $s: \mathbb{C}^{n} \rightarrow \mathbb{C}$. Assume that $s(0)=0$, then for a fixed $\eta>0 \eta$-transversality to 0 of s implies that s is transversal to the zero section over some neighbourhood of 0 in \mathbb{C}^{n}. However, the effect this definition becomes evident if one cosiders a sequence of sections s_{k}. Then η-transversality for all k implies uniform (independent of k) transversality near the zero section.

The main statement of this section is the following
Proposition 1.11 (cf. Proposition 15 in [Don96]). There exists an $\epsilon>$ 0 , such that for any sufficiently large k one can choose coefficients w_{i} with $\left|w_{i}\right| \leq 1$, such that the associated section satisfies $\left|\partial s_{w}\right|>\epsilon$ on the zero-set.

Proof. We indicate the main steps of the proof.
(I) Observe (see Lemma 16 in Don96) that for any $D>0$ there exists a number N independent of k, such that there exists a partition of the index set $\{1, \ldots, m\}$ into N disjoint subsets, i.e. $I=I_{1} \cup \ldots \cup I_{N}$ with the property that

$$
d_{k}\left(p_{i}, p_{j}\right) \geq D \text { for } i, j \in I_{\alpha} \text { and all } \alpha=1, \ldots, N
$$

One might think of this step as coloring balls centered at p_{i} in N different colors, such that this number is independent of the stage (current k), once D is fixed.
(II) Fix any $D>0$, hence the previous step gives us a partition $\left\{I_{\alpha}\right\}$ of I. Given this, define sets (denoting by B_{k} the g_{k}-unit balls)

$$
M_{\alpha}:=\bigcup_{i \in I_{\beta}, \beta \leq \alpha} B_{k}\left(p_{i}\right)
$$

One gets a sequence of nested sets, exhausting whole M

$$
\emptyset=M_{0} \subset M_{1} \subset M_{2} \subset \ldots \subset M_{N}=M .
$$

The idea is to achieve transversality stepwise, i.e. to find a (finite) sequence of sections s^{α} satisfying a lower bound $\left|\partial s^{\alpha}\right|>\epsilon$ on $M_{\alpha} \cap\left(s^{\alpha}\right)^{-1}(0)$.
Take charts $\phi_{j}: U_{j} \rightarrow M$ from Proposition 1.3 and assume that

$$
\phi_{j}^{-1}\left(B_{k}\left(p_{j}\right)\right) \subset \Delta \subset \Delta^{+}
$$

with $\Delta=\frac{11}{10} B_{k}(0)$ and $\Delta^{+}:=\frac{22}{10} B_{k}(0)$. Then over $\phi_{j}(\Delta)$ we have a standard trivialization of L^{k} together with section σ_{i} constructed in Proposition 1.3, hence locally section s_{w} is represented by $s_{w}=f_{i} \sigma_{i}$ for a function $f_{i}: \Delta^{+} \rightarrow \mathbb{C}$. And we say that section s_{w} is η-transverse over B_{i} if the function f_{i} is η-transverse to 0 over Δ.
(III) Given a section s_{w} with $\left|w_{i}\right| \leq 1$ then local representation functions f_{i} defined over Δ^{+}satisfy (see Lemma 18 in Don96)

- $\left\|f_{i}\right\|_{C^{1}\left(\Delta^{+}\right)} \leq C$
- $\left\|\bar{\partial} f_{i}\right\|_{C^{1}\left(\Delta^{+}\right)} \leq C k^{1 / 2}$
- For $k \gg 0$ and any $\epsilon>0$, the lower bound $\left|\partial f_{i}\right|>\epsilon$ on $f^{-1}(0) \cap \Delta$ implies $\left|\partial_{L} s_{w}\right|>C^{-1} \epsilon$ on $s_{w}^{-1}(0) \cap B_{i}$.

Hence, approximate holomorphicity of functions f_{i} imply approximate holomorphicity of section s_{w} near the the zero section.
(IV) Now, consider local representation functions of a nearby section. More precisely, let $w^{\prime}:=\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)$ be another coefficient vector with $\left|w_{i}^{\prime}\right| \leq 1$, such that for some fixed $\alpha \in\{1, \ldots, N\}$ and $\delta>0$ we have

$$
w_{j}^{\prime}=\left\{\begin{array}{cc}
w_{j} & \text { if } j \notin I_{\alpha} \\
w_{j}^{\prime} \text { with }\left|w_{j}-w_{j}^{\prime}\right| \leq \delta & \text { if } j \in I_{\alpha}
\end{array}\right.
$$

Denote the corresponding section by $s_{w^{\prime}}$. Then all local representation functions f_{j}^{\prime} satisfy (cf. Lemma 19 in Don96):

- $\left\|f_{i}^{\prime}-f_{i}\right\|_{C^{1}\left(\Delta^{+}\right)} \leq C \delta$, for all $i \in\{1, \ldots, m\}$
- $\left\|f_{i}^{\prime}-f_{i}-\left(w_{i}^{\prime}-w_{i}\right)\right\|_{C^{1}\left(\Delta^{+}\right)} \leq C \exp \left(-D^{2} / 5\right) \delta$, if $i \in I_{\alpha}$.
(V) Here, the existence of local perturbations is justified. Fix a $\sigma>0$ and denote

$$
\mathcal{H}_{\sigma}:=\left\{f: \Delta^{+} \rightarrow \mathbb{C} \mid\|f\|_{C^{0}\left(\Delta^{+}\right)} \leq 1 \text { and }\|\bar{\partial} f\|_{C^{1}\left(\Delta^{+}\right)} \leq \sigma\right\}
$$

Moreover, for an integer p define $Q_{p}:(0, \infty) \rightarrow \mathbb{R}$ via $Q_{p}(\delta):=\ln \left(\delta^{-1}\right)^{-p}$.

Fig. 1.1. Graph of Q_{p} for $p=3, p=2$ and $p=1$.

Then we have the following quantitative result for elements of \mathcal{H}_{σ} (cf. Theorem 20 in Don96):
There exists an integer $p=p(n)$, such that for any real $0<\delta<1 / 2$ the inequality $Q_{p}(\delta) \delta \geq \sigma$ (with some σ fixed above) implies that for any $f \in \mathcal{H}_{\sigma}$ there is a complex number w with $|w| \leq \delta$ with the property that $(f-w)$ is $Q_{p}(\delta) \delta$-transverse to 0 .
(VI) Fix an $0<\alpha \leq N$ and some section $s_{w^{\alpha-1}}$ of L^{k} which is $\eta_{\alpha-1}$-transverse over $V_{\alpha-1}$ for some $0 \leq \eta_{\alpha-1}<1$. Then an application of (V) together with (III) and (IV) yield the following statement (cf. Proposition 23 in Don96): There exist constants $\rho<1$ and $p \in \mathbb{N}$, such that assuming the inequalities

- $\eta_{\alpha-1} \leq \rho$
- $k^{1 / 2} \leq Q_{p}\left(\eta_{\alpha-1}\right) \eta_{\alpha-1}$
- $e^{-D^{2} / 5} \leq Q_{p}\left(\eta_{\alpha-1}\right)$
one can find a perturbation w_{α} of the vector $w_{\alpha-1}$, such that the associated section s_{α} of L^{k} is $\eta_{\alpha}:=\eta_{\alpha-1} Q_{p}\left(\eta_{\alpha-1}\right)$-transverse over V_{α}.

Note that $\eta_{\alpha} \leq \eta_{\alpha-1}$. The setup for the inductive process is now complete, since starting with any $s_{w^{0}}$ (eg. $s_{w^{0}}=0$), the above statement produces a section $s_{w^{1}}$ which is η_{1}-transverse over V_{1} for an $0<\eta<1$.
(VII) Finally, one has to see that assumptions from (VI) are satisfied at each step α and hence the induction produces the desired section transverse over the whole $V_{N}=M$. Observe (for an $\eta_{0} \leq \rho$)

$$
-\ln \eta_{\alpha}=-\ln (\underbrace{\eta_{\alpha-1} Q_{p}\left(\eta_{\alpha-1}\right)}_{=\eta_{\alpha}})=\ln \frac{1}{\eta_{\alpha-1}}-\ln Q_{p}\left(\eta_{\alpha-1}\right)
$$

Then Lemma 24 in Don96 implies that for any $q>p$ there exists an $\alpha_{1}=$ $\alpha_{1}(q, \rho)$, such that $-\ln \eta_{\alpha} \leq q\left(\alpha+\alpha_{1}\right) \ln \left(\alpha+\alpha_{1}\right)$, hence we have (assuming ρ sufficiently small)

$$
Q_{p}\left(\eta_{\alpha-1}\right)^{-\frac{1}{p}} \leq \ln \frac{1}{\eta_{\alpha-1}}-\ln Q_{p}\left(\eta_{\alpha-1}\right) \leq q\left(\alpha+\alpha_{1}\right) \ln \left(\alpha+\alpha_{1}\right)
$$

So we conclude that for some constant $C=C\left(p, \alpha_{1}\right)$

$$
Q_{p}\left(\eta_{\alpha-1}\right) \geq\left(q\left(\alpha+\alpha_{1}\right) \ln \left(\alpha+\alpha_{1}\right)\right)^{-p} \geq C(\alpha \ln \alpha)^{-p} \geq C(N \ln N)^{-p}
$$

Moreover, since by construction $N \leq \bar{C} D^{2 n}$ and choosing $D \gg 0$ implies

$$
Q_{p}\left(\eta_{\alpha-1}\right) \geq \bar{C}\left(D^{2 n p+1}\right) \geq e^{-D^{2} / 5}
$$

Hence, the conditions in (VI) depend now only on the value k. So choosing k sufficiently large the inductive process yields (after a finite number of steps) a section $s_{w^{N}}$ which is η_{N}-transverse over M.

Remark 1.12. Clearly, the central point of the proof sketched above is part (VI). The original proof of this statement occupies sections 4 and 5 in Don96 and uses Y. Yomdin's work about complexity of real algebraic sets. However, later on D. Auroux presented a significantly easier proof of a slightly weaker statement in Aur02.

Combining the statements of Proposition 1.7 and Proposition 1.11 one gets the celebrated result of Donaldson

Theorem 1.13 (cf. Theorem 5 in [Don96]). There exists a constant $C>$ 0 , such that for all $k \gg 0$ there exist sections s_{k} of $L^{k} \rightarrow M$ which restricted to its zero-set satisfies

$$
\left|\bar{\partial} s_{k}\right|<\frac{C}{\sqrt{k_{k}}}|\partial s|
$$

Given previous result together with considerations about sections of complex line bundles from Appendix A. 1 yield

Corollary 1.14 (Donaldson hypersurface theorem). For any $k \gg 0$ there exists symplectic $2 n-2$-dimensinal submanifolds $V_{k} \subset M$ with the property $\mathrm{PD}\left[V_{k}\right]=k[\omega]$.

Combining the statement of the above theorem with the definition of the Kähler angle (see Section 2.1 for the definition and properties) we get

Corollary 1.15. For any $k \gg 0$ the Kähler angles of Donaldson hypersurfaces satisfy $\theta\left(V_{k}\right)=O\left(k^{-1 / 2}\right)$.

Proof. At any point $p \in M$ the Kähler angle satisfies

$$
\theta\left(T_{p} V_{k}\right)=\arctan \left[2 \frac{\left(\left|\partial_{p} s\right|^{2}\left|\bar{\partial}_{p} s\right|^{2}-\left|\left\langle\partial_{p} s, \bar{\partial}_{p} s\right\rangle\right|\right)^{-1 / 2}}{\left|\partial_{p} s\right|^{2}-\left|\bar{\partial}_{p} s\right|^{2}}\right] \leq 2 \frac{\left|\bar{\partial}_{p} s\right|}{\left|\partial_{p} s\right|}
$$

Together with $\sqrt{k}\left|\bar{\partial}_{p} s\right|<C\left|\partial_{p} s\right|$ this yields

$$
\theta\left(V_{k}\right)=\sup _{p \in M} \theta\left(T_{p} V_{k}\right) \leq 2 C k^{-1 / 2}
$$

1.3 Lefschetz hyperplane theorem

We begin with several historical remarks. In the early 1920s Solomon Lefschetz showed a remarkable theorem. Given a nonsingular projective algebraic variety (over \mathbb{C}) V_{n} of dimension n and a generic hyperplane section V_{n-1} of it. Then the inclusion map $V_{n-1} \hookrightarrow V_{n}$ induces a bijection on homology groups with integer coefficients of dimension less than $n-1$ and a surjection in dimension $n-1$.
Andreotti and Frankel have shown a cohomological version of the Lefschetz theorem in AF59. Their proof relied on an idea of R. Thom to use Morse theory of Stein manifolds. The key to their proof is that for an n-dimensional Stein manifold Y, they have shown that $H_{i}(Y, \mathbb{Z})=0$ for $i>n$ and $H_{n}(Y, \mathbb{Z})$ is torsion free.
A modern version of the Lefschetz theorem was obtained by R. Bott in Bot59. Again using Morse theory, he showed the following:

Theorem 1.16 (R. Bott). Let X be a compact complex n-dimensional manifold and E a positive line bundle over X. Then for any nonsingular holomorphic section $s: X \rightarrow E, X$ can be obtained by attaching cells of real dimension $\geq n$ to the zero-set $s^{-1}(0)$. So there exists an $r>0$, such that

$$
X \cong s^{-1}(0) \cup e_{1} \cup \ldots \cup e_{r} \text { with } \operatorname{dim} e_{i} \geq n
$$

Corollary 1.17. In the setting of above theorem denote $S:=s^{-1}(0)$. Then the inclusion map $j: S \hookrightarrow X$ induces

- isomorphisms for $0 \leq p \leq n-2: \pi_{p}(S) \rightarrow \pi_{p}(X), H_{p}(S, \mathbb{Z}) \rightarrow H_{p}(X, \mathbb{Z})$ and $H^{p}(X, \mathbb{Z}) \rightarrow H^{p}(S, \mathbb{Z})$
- surjections: $\pi_{n-1}(S) \rightarrow \pi_{n-1}(X), H_{n-1}(S, \mathbb{Z}) \rightarrow H_{n-1}(X, \mathbb{Z})$
- injection: $H^{n-1}(X, \mathbb{Z}) \rightarrow H^{n-1}(S, \mathbb{Z})$.

Proof. The statement follows by the standard tool from algebraic topology applied to the cellular decomposition from Theorem 1.16. For holomogy see p. 137-146 in Hat09, coholomolgy p. 202-203 in Hat09 and for homotopy Section 4.1 in Hat09.

Note that since projective algebraic varieties always admit a positive line bundle, Bott's theorem contains Lefschetz' original statement. The main advantage of Bott's proof is the statement for homotopy groups. Note that the homology statement would not automatically imply the homotopy version, since $\pi_{1}(S)$ may act nontrivially on higher relative groups $\pi_{k}(X, S)$.

Remark 1.18 (affine Lefschetz theorem). A similar statement is still true if one allows a projective variety V to contain a finite number of singular points at infinity, i.e. in $V_{\infty}=\left\{\left[z_{0}: \ldots: z_{n+1}\right] \in V: z_{0}=0\right\}$, such that $V-V_{\infty}$ is smooth and is nowhere tangent to the hyperplane $\left\{z_{0}=0\right\}$. Then it was shown in How66] that a generic hyperplane section of $V-V_{\infty}$ has the same properties as the set S in Corollary 1.17 .

Considering the differences between Kähler and the symplectic category, it seems surprising that Donaldson hypersurfaces satisfy a Lefschetz-type theorem. Indeed, Donaldson has shown that a slight modification of Bott's argument yields

Proposition 1.19 (cf. Proposition 39 in [Don96]). Let V_{k} be a sequence of Donaldson hypersurfaces in $\left(M^{2 n}, \omega, J\right)$. Then for $k \gg 0$ the inclusion maps $j: V_{k} \hookrightarrow M$ have the same properties as in Corollary 1.17 .

Proof. The argument is a slight modification of the morse-theoretic proof in the complex case as it can be found in Chapter 3 in Nic11. Consider corresponding sections $s_{k}: M \rightarrow L^{k}$ and set $\psi_{k}(x):=\ln s_{k}(x)$ for $x \in M-V_{k}$. It is sufficient to show that any critical point of ϕ_{k} has Morse index at least n. It is equivalent to show that $\bar{\partial}_{J} \partial_{J} \psi_{k}$ is negative definite at any critical point of ψ_{l}. The main difference to the complex case is that $\bar{\partial}_{J} \partial_{J} \psi_{k}$ depends on $\bar{\partial}_{L^{k}} s_{k}$ which might not vanish, since s_{k} is not a holomorphic section. However, the fact that $\left|\bar{\partial}_{L^{k}} s_{k}\right| \ll\left|\partial_{L^{k}} s_{k}\right|$ is still sufficient to show the claim.

Remark 1.20. Observe that the Lefschetz hyperplane theorem implies that the restriction of ω to the complement $M-V_{k}$ is an exact symplectic form.

1. Approximate holomorphic geometry

1.4 Remarks and questions

Practically, nothing from this section is used later in the present thesis. However, we collect here several facts and questions concerning Donaldson's construction. Some of them might be useful within a further development of the Cieliebak-Mohnke approach to Gromov-Witten theory.
(A) Consider $\mathbb{C} P^{2}$ equipped with a symplectic form ω. The homology group $H_{2}\left(\mathbb{C} P^{2}, \mathbb{Z}\right)=\mathbb{Z}$ has a spherical generator, since $\pi_{2}\left(\mathbb{C} P^{2}\right)=H_{2}\left(\mathbb{C} P^{2}, \mathbb{Z}\right)$, we call it A. It was shown in Tau95 that A can be represented as a fundamental class of an embedded pseudo-holomorphic (so ω-symplectic) sphere. On the other hand Donaldson's result shows that for any symplectic 4-manifold (M, ω) there is an integer $D>0$ and a closed connected ${ }^{1}$ symplectic (embedded) surface $V \subset M$ such that $P D[V]=D[\omega]$. The adjunction formula then yields

$$
[V] \cdot[V]-\left\langle c_{1}(T M),[V]\right\rangle+\chi(V)=0
$$

combined with $\chi(V)=2-2 g(V)$ and Lemma 3.27 (Auroux's lemma, applied for some $K \mathcal{J}_{\tau}(\omega)$ with $\left.K T V \subset T V\right)$ it follows that

$$
g(V) \geq \frac{1}{2}\left[D^{2} \mathrm{PD}(\omega \wedge \omega)-D D_{*} \operatorname{PD}(\omega \wedge \omega)+1\right] .
$$

Note that the constant D_{*} depends on V at $\operatorname{rate}^{2} D^{-1 / 2}$, so for $D \gg 0$ it can be made D-independent. So, for large degree D the genus of V becomes very large. So Donaldson's construction is an existence proof for embedded symplectic curves in four dimensions, however there exists no symplectic surgery operation that would kill the degree in order to obtain Taubes' result ${ }^{3}$.
(B) One might ask if Donaldson's construction would imply a version of a Kodaira embedding theorem for almost complex manifolds. This is indeed the case, as in MPS02 the existence of a sequence of asymptotically holomorphic embeddings $\phi_{k}:\left(M^{2 n}, \omega\right) \rightarrow\left(\mathbb{C} P^{2 n+1}, \omega_{F S}\right)$ was shown, such that $\phi_{k}^{*}\left[\omega_{F S}\right]=[k \omega]$, provided ω is an integral class. However, a symplectic embedding of a symplectic manifold into $\mathbb{C} P^{N}$ for large N is a classical result due to Gromov (cf. Section 3.4.2 in Gro86 and Tis77]). Although Gromov used h-principle to obtain the result, the assumption on integrality of ω is still required. Since any symplectic form can be perturbed into a rational one and then multiplied by a positive integer in order to obtain an integral form (cf. last chapter), "symplectic projectivity" seems not that restrictive. This is a huge contrast to the complex case, where a celebrated result in Voi04 and Voi02 yields examples of Kähler manifolds of complex dimension $n \geq 4$,

[^9]whose homotopy type is not of a complex projective one. So, one cannot deform them in order to be projective. A natural question in this context is if asymptotically holomorphic embeddings of such Kähler manifolds are actually approximating singular complex subvarieties of $\mathbb{C} P^{2 n+1}$.
(C) It is a folklore fact that on an almost complex manifold $\left(M^{2 n}, J\right)$ one cannot expect to find any closed complex ${ }^{1}$ submanifolds of complex dimension greater than 1 . Intuitively, for generic J the Cauchy-Riemann equation yields an overdetermined system of PDEs, which is non-integrable. A precise treatment of this question was given in Kru03. B. Kruglikov showed that there exists an open and dense ${ }^{2}$ subset $\mathcal{J}^{\prime} \subset \mathcal{J}(M)$ of all almost complex structures on M. Such that for any $J \in \mathcal{J}^{\prime}$ one has no local complex submanifolds of dimension $2 m$ with $2 \geq m \geq n-1$. Hence, the Cieliebak-Mohnke approach starts constructing perturbation data with non-generic data, which is quite remarkable, because the outcome is a symplectic invariant.
(D) Hypersurfaces from Donaldson's construction seem to inherit certain properties from the ambient manifold. A smooth simply connected manifold M is called formal if its real homotopy groups $\pi_{*}(M) \otimes \mathbb{R}$ can be computed from the real cohomology ring $H^{*}(M, \mathbb{R})$. A fundamenal result in DGMS75 states that any Kähler manifold is formal. However, there exist simply connected symplectic manifolds that are not formal - the first example was given in [BT00]. It was shown in [FM05] that Donaldson hypersurfaces might inherit formality from the ambient manifold. See also Kut12 on essential manifolds. Proofs of above facts use Lefschetz hyperplane theorem for Donaldson hypersurfaces.
(E) A pretty unexpected application of the Donaldson construction was found in Eva12. Given a symplectic manifold $\left(M^{2 n}, \omega\right)$, for a $J \in \mathcal{J}_{c}(\omega)$ the Nijenhuis energy is given by $E_{J}=\int_{M}\left\|N_{J}\right\|_{J}^{2} \omega^{n}$, where N_{J} is the Nijenhuis tensor of J. It was shown that rationality of $[\omega]$ implies that the infimum of N_{J} taken over all $J \in \mathcal{J}_{c}(M)$ is zero. The statement follows by stretching the neck with respect to a tubular neighbourhood of a fixed Donaldson hypersurface (made J-complex), giving sequence of compatible almost complex structures J_{ν} whose $N_{J_{\nu}}$ converges to zero. It is an open question, whether N_{J} is zero for an irrational class [ω].
Note that a simple deformation argument does not work here. By taking a $J \in \mathcal{J}_{c}(\omega)$ we might approximate it by a rational ω^{\prime} together with a $J^{\prime} \in \mathcal{J}_{c}\left(\omega^{\prime}\right)$, which would leave the corresponding Donaldson hypersurface invariant (for large degree). However, the neckstretching process would produce a sequence J_{ν}^{\prime} which is not close to J^{\prime} and hence to J.

[^10](F) Consider a closed symplectic manifold $\left(M^{2 n}, \omega\right)$, then any $J \in \mathcal{J}_{c}(M, \omega)$, induces the Riemannian metric g_{J}, which in turn induces Laplace operator Δ_{J} acting on functions on M. Denote by $\lambda_{1}\left(M, g_{J}\right)$ the first eigenvalue of Δ_{J}. It was conjectured in Pol98 that $\sup _{J \in \mathcal{J}_{c}(M, J)} \lambda_{1}\left(M, g_{J}\right)=\infty$ and proved in the case of the existence of an isotropic Hörmander distribution on M. This stays in contrast to the Kähler case where an upper bound exists if one considers only integrable J in $\mathcal{J}_{c}(M, \omega)$ - see BLY94. This conjecture was recently proven by L. Buhovky in full generality Buh13 with a method that seems to be a real-analytic version of Donaldson's construction. He constructs a sequence of vector fields whose integral curves tend to fill out whole M, then, by associating complex-subspaces to them he constructs a sequence of almost complex structures and then, after rescaling (just as in Pol98) the sequence, produces metrics with arbitrary large λ_{1}.
Somehow, Buhovky's argument approximates an isotropic distribution that might not exist at all on M for topological reasons. Observe that it was shown in Proposition 40 from [Don96] that hypersurfaces V_{k} converge as currents to $\frac{k}{2 \pi} \omega$ for $k \rightarrow \infty$, i.e. there exists a constant $C>0$, such that for any form $\stackrel{\psi}{\psi} \in \Omega^{2 n-2}(M)$ we have
$$
\left|\int_{V_{k}} \psi-\frac{k}{2 \pi} \int_{M} \psi \wedge \omega\right| \leq C k^{1 / 2}\|d \psi\|_{L^{\infty}(M)}
$$

Hence, one could conjecture that there exists a sequence J_{k} of compatible almost complex structures associated to V_{k} having the same properties as in Buh13. One access point could be, considering S^{1}-bundles over V_{k}, obtaining embedded real hypersurfaces in M and then appealing to Cheeger's isoperimetric inequality Che70.
(F) In Chapter 2 we construct Donaldson hypersurfaces V_{k} that intersect transversely any fixed symplectic hypersurface $W \subset M$. We consider a situation in which we can find a ω-tamed almost complex structure K that leaves both $T W$ and $T V_{k}$ (for a fixed k) invariant. Such, K cannot be ω-compatible in general. It is an open question whether there exists another symplectic form ω^{\prime}, such that $K \in \mathcal{J}_{c}\left(M, \omega^{\prime}\right)$. If yes, is there any relation between the classes $\operatorname{PD}([W]),[\omega]$ and $\left[\omega^{\prime}\right]$? This question is related to Donaldson's "tame vs. compatible" problem - see TW11.
(G) One might wonder if one could obtain an analytic (non-constructive) proof of Donaldson hypersurface theorem. This question was attacked in BU00. Using Fourier integral operators and a spectral gap for high tensor powers of the line bundle $L \rightarrow M$ they showed the existence of approximate holomorphic sections and obtained a sharper version of Kodaira embedding as in (B), see also MM08 for an approach using Bergam kernels. However, it is still an open problem to deduce Donaldson's theorem by above approaches. One might speculate that a solution to this problem would give a better un-
derstanding in what sense (log) Kodaira dimension is a symplectic invariant, see also the recent work McL14].

Preliminaries and modifications of Donaldson's construction

Consider a symplectic manifold (M, ω) with $[\omega] \in H^{2}(M, \mathbb{Z})$ and closed ω symplectic submanifold $W \subset M^{2 n}$ with $k<n$. In this section we prove the following

Proposition 2.1. (M, ω) admits Donaldson hypersurfaces V_{k} which intersect W transversely, provided $k \gg 0$.

Remark 2.2. The statement of the above proposition is not new. It is stated for the case $\operatorname{PD}([W])=D[\omega]$ in CM07 (see Theorem 8.1). The general statement can be found in Pao01 (see Proposition 1.1), see also Moh03. The case of more than two hypersurfaces is considered in Ops13. The idea in all three cases is roughly the same. However, here we carry out some technical details. The actual statement proven in this section is the following
Proposition 2.3. Fix an almost complex structure $J \in \mathcal{J}_{c}(M, \omega)$. For a given compact complex submanifold $W \subset M$, i.e. $J T W \subset T W$, of real codimension 2, there exists an $\eta>0$, such that for all $D \gg 0$ there is a Donaldson hypersuface of degree D that intersects $W \eta$-transversely.
Results presented in the next section show that Proposition 2.3 implies Proposition 2.1. Moreover, it contains several definitions and technical tools used later on. At the end of the chapter we discuss Opshtein's observation from Ops13 that in a special case one can find a lower bound for the transversality constant η appearing in the statement of Proposition 2.3
Remark 2.4. Complementing the statement of Proposition 2.1, it was shown in Pao01 that in case of $\operatorname{dim}_{\mathbb{R}} W<2 n-2$ one can construct a Donaldson hypersurface containing the whole submanifold W.

2.1 Hermitian linear algebra and deformations

Consider a symplectic manifold $\left(M, \omega_{1}\right)$ with compatible almost complex structure J_{1}. Denote by g_{1} and $\|\cdot\|_{1}$ the induced Riemannian metric on M
and norm on $\Gamma(T M)$, respectively. Fix another symplectic form ω_{2}, with $\left\|\omega_{1}-\omega_{2}\right\|_{1}<\epsilon$, for some $\epsilon>0$.

The following lemma is very basic, but a key to the main result.
Lemma 2.5. Fix $J_{0} \in \mathcal{J}_{c}\left(\omega_{0}\right)$ and $J \in \mathcal{J}_{\tau}\left(\omega_{0}\right)$. Let ω_{1} be another symplectic structure with $\left\|\omega_{0}-\omega_{1}\right\|_{0}<\epsilon<1$ and assume $\left\|J-J_{0}\right\|_{0} \leq \frac{1-\epsilon}{1+\epsilon}$ then $J \in$ $\mathcal{J}_{\tau}\left(\omega_{1}\right)$.

Proof. Assume that J does not tame ω_{1}, so there exists an $v \neq 0$, such that $\omega_{1}(v, J v) \leq 0$. Since $\omega_{0}(v, J v)>0$, the inequality $\left\|\omega_{0}-\omega_{1}\right\|_{0}<\epsilon$ implies

$$
\epsilon>\frac{\left|\omega_{0}(v, J v)-\omega_{1}(v, J v)\right|}{\|v\|_{0}\|J v\|_{0}}=\frac{\omega_{0}(v, J v)-\omega_{1}(v, J v)}{\|v\|_{0}\|J v\|_{0}}
$$

Now, by the triangle inequality we get

$$
\|J v\|_{0} \leq\left\|J v-J_{0} v\right\|_{0}+\left\|J_{0} v\right\|_{0} \leq \frac{2}{1+\epsilon}\|v\|_{0}
$$

Similarly, we get $\|J v\|_{0} \geq \frac{2 \epsilon}{1+\epsilon}\|v\|_{0}$. Moreover, we observe

$$
\left\|\left(J-J_{0}\right) v\right\|_{0}^{2}=\omega_{0}\left(\left(J-J_{0}\right) v, J_{0}\left(J-J_{0}\right) v\right)=\|J v\|_{0}^{2}+\|v\|_{0}^{2}-2 \omega_{0}(v, J v)
$$

Hence we get $\omega_{0}(v, J v) \geq \frac{1}{2}\left(\|J v\|_{0}^{2}+\|v\|_{0}^{2}-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{2}\|v\|_{0}^{2}\right)$.
Summarizing above facts

$$
\begin{aligned}
\epsilon & >\frac{1+\epsilon}{2\|v\|_{0}^{2}}\left[\frac{1}{2}\left(\|J v\|_{0}^{2}+\|v\|_{0}^{2}-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{2}\|v\|_{0}^{2}\right)-\omega_{1}(v, J v)\right] \\
& \geq \frac{1+\epsilon}{2\|v\|_{0}^{2}}[\frac{1}{2} \underbrace{\left(\left(1-\frac{1-\epsilon}{1+\epsilon}\right)^{2}\|v\|_{0}^{2}+\|v\|_{0}^{2}-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{2}\|v\|_{0}^{2}\right)}_{=2 \frac{2 \epsilon}{1+\epsilon}\|v\|_{0}^{2}}-\omega_{1}(v, J v)] \\
& =\epsilon-\frac{1+\epsilon}{2\|v\|_{0}^{2}} \omega_{1}(v, J v) \geq \epsilon
\end{aligned}
$$

which is a contradiction. Hence, J tames ω_{1}. The non-linear version of the statement follows by taking supremum over all points of M.

Observe that once $\epsilon<\sqrt{2}-1$, the above lemma implies a simpler bound $\left\|J-J_{0}\right\|<\sqrt{2}-1$.
Remark 2.6. Note that once ω_{0}, ω_{1} and J, J_{0} satisfy the assumptions of the previous lemma, i.e. J tames ω_{1}, then J tames any positive multiple of ω_{1}.

Lemma 2.7. Given two symplectic forms ω_{0} and ω_{1}. Fix $J_{0} \in \mathcal{J}_{c}\left(\omega_{0}\right)$ and denote by $\|\cdot\|_{0}$ the norm induced by $\left(\omega_{0}, J_{0}\right)$. Assume that $\left\|\omega_{0}-\omega_{1}\right\|_{0} \leq \epsilon<1$. Then $c_{1}\left(M, \omega_{0}\right)=c_{1}\left(M, \omega_{1}\right) \in H^{2}(M, \mathbb{Z})$.

Proof. For $J \in \mathcal{J}_{\tau}\left(\omega_{0}\right)$ one defines $c_{1}\left(M, \omega_{0}\right):=c_{1}(T M, J)$. This definition is independent of the choice of J, since the space \mathcal{J}_{τ} is contractible and hence all complex bundles $(T M, J)$ with $J \in \mathcal{J}_{\tau}\left(\omega_{0}\right)$ are homotopy equivalent.
It follows from $|\underbrace{\omega_{0}(x, J x)}_{=\|x\|_{0}^{2}}-\omega_{1}(x, J x)| \leq \epsilon\|x\|_{0}^{2}$, that $J \in \mathcal{J}_{\tau}\left(\omega_{1}\right)$. Hence, by definition we have $c_{1}\left(M, \omega_{0}\right)=c_{1}\left(M, \omega_{1}\right)$.

Given a (linear) Hermitian space (V, ω, J) with the Hermitian metric $h(\cdot, \cdot):=\omega(\cdot, J \cdot)+i \omega(\cdot, \cdot)$.
Definition 2.8 (cf. p. 79 in CM07]). Consider a subspace $X \subset V$ with $\operatorname{dim}_{\mathbb{R}}(X)=2 k$. The Kähler angle of X is given by

$$
\theta(X)=\theta(X, \omega, J)=\cos ^{-1}\left(\frac{\omega_{\mid X}^{k}}{k!\Omega_{X}}\right)
$$

where Ω_{X} is the volume form on X.
The Kähler angle of a closed even dimensional submanifold $V \subset M$ of a Hermitian manifold (M, ω, J) is given by

$$
\theta(V)=\theta(V, \omega, J)=\sup _{x \in V} \theta\left(T_{x} V, \omega_{x}, J_{x}\right) .
$$

Lemma 2.9 (cf. Lemma 8.3 in [CM07]).

1. An even-dimensional submanifold $V \subset(M, \omega)$ is ω-symplectic iff $\theta(V)<$ $\pi / 2$.
2. For a smooth oriented real hypersurface W (i.e. $\operatorname{dim} W=2 n-2$) the Kähler angle satisfies

$$
\theta(W)=\theta(J W)=\theta\left(W^{\omega}\right)=\theta\left(W^{\perp}\right)
$$

Proof. All statements are simply the non-linear analogs of the linear counterparts from Lemma 8.3 in CM07.

Lemma 2.10. Given a symplectic hypersurface $V \subset(M, \omega)$, let $J \in \mathcal{J}_{c}(\omega)$ then the Kähler angle of V is given by

$$
\theta(V)=\angle_{M}(V, J V):=\sup _{z \in V} \sup _{y \neq 0 \in J_{z} T_{z} V} \inf _{x \neq 0 \in T_{z} V} \cos ^{-1}\left(\frac{|\langle x, y\rangle|}{\|x\|\|y\|}\right) .
$$

Proof. Follows from Lemma 8.3(d) in CM07 assuming that V is symplectic.
Note that $\frac{|\langle x, y\rangle|}{\|x\|\|y\|} \leq 1$ by Cauchy-Schwarz is equal to 1 iff x and y are linear dependent, hence $\angle_{M}(V, J V)=0$ iff V is J-complex.

Moreover, for a fixed $z \in V$ we see that

$$
\begin{aligned}
\angle_{M}\left(T_{z} V, J_{z} T_{z} V\right) & =\sup _{y \neq 0 \in J_{z} T_{z} V} \inf _{x \neq 0 \in T_{z} V} \cos ^{-1}\left(\frac{|\langle x, y\rangle|}{\|x\|\|y\|}\right) \\
& =\sup _{y^{\prime} \neq 0 \in T_{z} V} \inf _{x \neq 0 \in T_{z} V} \cos ^{-1}\left(\frac{\left|\left\langle x, J_{z} y^{\prime}\right\rangle\right|}{\|x\|\left\|J_{z} y^{\prime}\right\|}\right) \\
& =\sup _{y^{\prime} \neq 0 \in T_{z} V} \inf _{x \neq 0 \in T_{z} V} \cos ^{-1}\left(\frac{\left|\omega_{z}\left(x, y^{\prime}\right)\right|}{\|x\|\left\|y^{\prime}\right\|}\right) .
\end{aligned}
$$

We recall some facts from CM07 (cf. p. 84).
Definition 2.11. For an Euclidean space V, consider two subspaces $X, Y \subset$ V. The minimal angle between X and Y is given by
$\angle_{m}(X, Y):=\left\{\begin{array}{cl}0 & \text { if } X \text { and } Y \text { are not transverse, } \\ \inf _{\substack{x \neq 0 \in X^{\prime} \\ y \neq 0 \in Y^{\prime}}} \angle(x, y) & \text { where } X^{\prime}=(X \cap Y)^{\perp} \cap X, Y^{\prime}=(X \cap Y)^{\perp} \cap Y .\end{array}\right.$
We now consider two pairs on $M:\left(\omega_{0}, J_{0} \in \mathcal{J}_{c}\left(\omega_{0}\right)\right)$ and $\left(\omega_{1}, J_{1} \in \mathcal{J}_{c}\left(\omega_{1}\right)\right)$ and denote the induced norms by $\|\cdot\|_{0}$ and $\|\cdot\|_{1}$ respectively. Then we see that

$$
\begin{aligned}
\left\|J_{0}\right\|_{0}^{2} & =\sup _{\|v\|_{0}=1}\left\|J_{0} v\right\|_{0}^{2}=\sup _{\|v\|_{0}=1} \omega_{0}\left(J_{0} v, J_{0} J_{0} v\right)^{2}=\sup _{\|v\|_{0}=1} \omega_{0}\left(v, J_{0} v\right)^{2}=1, \\
\left\|\omega_{0}\right\|_{0}^{2} & =\sup _{\|v\|_{0}=\|w\|_{0}=1}\left|\omega_{0}(v, w)\right|^{2}=\sup _{\|v\|_{0}=\left\|J_{0} w^{\prime}\right\|_{0}=1}\left|\omega_{0}\left(v, J_{o} w^{\prime}\right)\right|^{2} \\
& \leq \sup _{\|v\|_{0}=\left\|J_{0} w^{\prime}\right\|_{0}=1}\|v\|_{0}\left\|w^{\prime}\right\|_{0} \leq 1
\end{aligned}
$$

hence, for $v=w^{\prime}$ we get $\left\|\omega_{0}\right\|_{0}^{2}=1$.
Now, we show that the norms $\|\cdot\|_{0,1}$ are equivalent.
Lemma 2.12. Assume that $\left\|\omega_{0}-\omega_{1}\right\|_{0}<\epsilon$ and $\left\|J_{0}-J_{1}\right\|_{0}<\eta$ for $\epsilon, \eta>0$.
Then for any $v \in V$ we have

$$
(1-\eta-\epsilon-\eta \epsilon)\|v\|_{0}^{2} \leq\|v\|_{1}^{2} \leq(1+\epsilon)(1+\eta)\|v\|_{0}^{2}
$$

Proof. Observe first that $\left\|\omega_{1}\right\|_{0} \leq\left\|\omega_{1}-\omega_{0}\right\|_{0}+\left\|\omega_{0}\right\|_{0}<\epsilon+1$. The same argument yields $\left\|J_{1}\right\|_{0}<\eta+1$. Using this we get

$$
\begin{aligned}
\|v\|_{1}^{2} & =\omega_{1}\left(v, J_{1} v\right)=\omega_{1}\left(\frac{v}{\|v\|_{0}}, \frac{J_{1} v}{\left\|J_{1} v\right\|_{0}}\right)\|v\|_{0}\left\|J_{1} v\right\|_{0} \\
& \leq \sup _{\|x\|_{0}=1} \omega_{1}\left(x, \frac{J_{1} x}{\left\|J_{1} x\right\|_{0}}\right)\|v\|_{0}^{2}\left\|J_{1}\right\|_{0}=\left\|\omega_{1}\right\|_{0}\left\|J_{1}\right\|_{0}\|v\|_{0}^{2} \\
& <(1+\epsilon)(1+\eta)\|v\|_{0}^{2}
\end{aligned}
$$

Now, consider the following:

$$
\begin{aligned}
\left|\|v\|_{0}^{2}-\|v\|_{1}^{2}\right| & =\left|\omega_{0}\left(v, J_{0} v\right)-\omega_{0}\left(v, J_{1} v\right)+\omega_{0}\left(v, J_{1} v\right)-\omega_{1}\left(v, J_{1} v\right)\right| \\
& \leq\left|\omega_{0}\left(v,\left(J_{0}-J_{1}\right) v\right)\right|+\left|\left(\omega_{0}-\omega_{1}\right)\left(v, J_{1} v\right)\right| \\
& \leq\|v\|_{0}\left\|\left(J_{0}-J_{1}\right) v\right\|_{0}+\epsilon\|v\|_{0}\left\|J_{1} v\right\|_{0} \\
& \leq \eta\|v\|_{0}^{2}+\epsilon(\eta+1)\|v\|_{0}^{2}=(\eta+\epsilon \eta+\epsilon)\|v\|_{0}^{2} .
\end{aligned}
$$

Using the preceding inequality we finally get

$$
\begin{aligned}
\|v\|_{0}^{2} & \leq\left|\|v\|_{0}^{2}-\|v\|_{1}^{2}\right|+\|v\|_{1}^{2} \\
& \leq(\eta+\epsilon \eta+\epsilon)\|v\|_{0}^{2}+\|v\|_{1}^{2} .
\end{aligned}
$$

Next, we discuss that there is always a good choice for an almost complex structure.

Lemma 2.13. Consider $\mathbb{R}^{2 n}$ equipped with the standard structure $\left(\omega_{0}, J_{0},\langle\rangle,\right)$. Let ω be another (linear) symplectic structure. Assume that $\left\|\omega_{0}-\omega\right\|_{0}<\epsilon$, then there exists an ω-compatible complex structure J with $\left\|J_{0}-J\right\|_{0}<3 \epsilon$.
Proof. We start with a standard approach (cf. Appendix in IP03). Given ω defines $A \in G L_{\mathbb{R}}(2 n)$ via $\langle A \cdot, \cdot\rangle=\omega(\cdot, \cdot)$. For any $x, y \in \mathbb{R}^{2 n}$ we have

$$
x^{T} A^{T} y=\omega(x, y)=-\omega(y, x)=-y^{T} A^{T} x=-x^{T} A y
$$

and hence $A^{T}=-A$. Since $-A^{2}=A^{T} A$ and for any $x \neq 0 \in \mathbb{R}^{2 n}$ we have $x^{T} A^{T} A x=\|A x\|^{2}>0$ (note that $A^{T} A$ has no kernel). Hence $\sqrt{-A^{2}}$ is well defined and we set $J:=A \sqrt{-A^{2}}$.
Observe that $i A$ is $\operatorname{Hermitian}^{1}$, so we can write it as $i A=U \Lambda U^{-1}$ for a unitary matrix U and a real diagonal matrix Λ. With $(i A)^{2}=-A^{2}$ we get $\sqrt{-A^{2}}=U|\Lambda| U^{-1}$. Hence, $\sqrt{-A^{2}}$ and A commute, so it follows that $J^{2}=$

$$
{ }^{1}(i A)^{*}=-i A^{T}=i A
$$

$-\mathbb{1}$ and $J^{T}=-J$, so that we get $\omega(J x, J y)=\langle A J x, J y\rangle=x^{T} J^{T} A^{T} J y=$ $x^{T} A^{T} y=\omega(x, y)$. Moreover, $\omega(x, J x)=x^{T} A^{T} J x=x^{T}\left(-A^{2}\right) \sqrt{-A^{2}} x>0$ for any $x \neq 0$, since the product $\left(-A^{2}\right) \sqrt{-A^{2}}$ is positive definite. Hence, J is ω-compatible.
Now, observe that for any $x, y \in \mathbb{R}^{2 n}$

$$
\left|\left\langle\left(A-J_{0}\right) x, y\right\rangle\right|=\left|\langle A x, y\rangle-\left\langle J_{0} x, y\right\rangle\right|=\left|\omega(x, y)-\omega_{0}(x, y)\right|<\epsilon\|x\|_{0}\|y\|_{0}
$$

hence, $\left\|\left(A-J_{0}\right) x\right\|_{0}^{2} \leq \epsilon\left\|\left(A-J_{0}\right) x\right\|_{0}\|x\|_{0}$ and so $\|J-A\|_{0} \leq \epsilon$. Same arguments as in Lemma 2.15 yield $\left\|\sqrt{-A^{2}}-I_{2 n}\right\|_{0} \leq \epsilon$. Moreover,

$$
\|A\|_{0} \leq\left\|A-J_{0}\right\|_{0}+\left\|J_{0}\right\|_{0} \leq 1+\epsilon
$$

So that we finally get the bound

$$
\begin{aligned}
\left\|J_{0}-J\right\|_{0} & =\left\|J_{0}-A J_{0}+A J_{0}-A \sqrt{-A^{2}}\right\|_{0} \\
& \leq\left\|J_{0}-A\right\|_{0}\left\|J_{0}\right\|_{0}+\|A\|_{0}\left\|J_{0}-\sqrt{-A^{2}}\right\|_{0} \leq \epsilon^{2}+2 \epsilon
\end{aligned}
$$

Hence, for $\epsilon<1$ we have $\left\|J_{0}-J\right\| \leq 3 \epsilon$.
The next lemma gives some control over Kähler and minimal angles under a small deformation.

Lemma 2.14. For any two pairs $\left(\omega_{i}, J_{i}\right)$ for $i=1,2$ such that $\left\|\omega_{0}-\omega_{1}\right\|_{0}<\epsilon$ and $\left\|J_{0}-J_{1}\right\|_{0}<\epsilon$. Denote by $\theta_{0,1}$ the induced Kähler angles. Given a $2 k$ dimensional submanifold $V \subset M$ with $\theta_{0}(V)<\eta<\frac{\pi}{2}$ then $\epsilon<\frac{1}{20}$ implies

$$
\theta_{1}(V) \leq \theta_{0}(V)+2 \epsilon^{\frac{1}{4}}
$$

Given two submanifolds $V, W \subset M$ with $V \cap W \neq \emptyset$. Denote by $\angle_{m}^{i}(V, W)$ the corresponding minimal angles induced by the pairs $\left(\omega_{i}, J_{i}\right)$ for $i=1,2$, then $\epsilon<\frac{1}{50}$ implies

$$
\angle_{m}^{1}(V, W) \geq \angle_{m}^{0}(V, W)-\epsilon^{\frac{1}{4}}
$$

Proof. First, consider the linear case. For any $x, y \in \mathbb{R}^{2 n}$

$$
\begin{aligned}
1 & \geq \frac{\left|\omega_{1}(x, y)\right|}{\|x\|_{1}\|y\|_{1}} \geq \frac{1}{(1+\epsilon)^{2}} \frac{\left|\omega_{1}(x, y)\right|}{\|x\|_{0}\|y\|_{0}} \geq \frac{1}{(1+\epsilon)^{2}}\left[\frac{\left|\omega_{0}(x, y)\right|-\left|\omega_{0}(x, y)-\omega_{1}(x, y)\right|}{\|x\|_{0}\|y\|_{0}}\right] \\
& \geq \frac{1}{(1+\epsilon)^{2}}\left[\frac{\left|\omega_{0}(x, y)\right|}{\|x\|_{0}\|y\|_{0}}-\left\|\omega_{0}-\omega_{1}\right\|_{0}\right] \geq \frac{1}{(1+\epsilon)^{2}}\left[\frac{\left|\omega_{0}(x, y)\right|}{\|x\|_{0}\|y\|_{0}}-\epsilon\right] \\
& \geq-\frac{\epsilon}{(1+\epsilon)^{2}} \geq-\frac{1}{4} .
\end{aligned}
$$

Hence, we have $\cos ^{-1}\left(\frac{\left|\omega_{1}(x, y)\right|}{\|x\|_{1}\|y\|_{1}}\right) \leq \cos ^{-1}\left(\frac{1}{(1+\epsilon)^{2}}\left[\frac{\left|\omega_{0}(x, y)\right|}{\|x\|_{0}\|y\|_{0}}-\epsilon\right]\right)$.
Now, applying the following inequalities:

$$
\begin{aligned}
& \cos ^{-1}(\alpha x) \leq \cos ^{-1}(x)+\cos ^{-1}(\alpha), \text { for }-1 \leq x \leq 1 \text { and } 0 \leq \alpha \leq 1 \\
& \cos ^{-1}\left(\frac{1}{(1+\epsilon)^{2}}\right) \leq \epsilon^{\frac{1}{4}}, \text { for } 0 \leq \epsilon \leq \frac{1}{20} \\
& \cos ^{-1}(x-\epsilon) \leq \cos ^{-1}(x)+\epsilon^{\frac{1}{4}}, \text { for } 0 \leq x \leq 1 \text { and } 0 \leq \epsilon \leq \frac{1}{5}
\end{aligned}
$$

we get the estimate

$$
\cos ^{-1}\left(\frac{\left|\omega_{1}(x, y)\right|}{\|x\|_{1}\|y\|_{1}}\right) \leq \cos ^{-1}\left(\frac{\left|\omega_{0}(x, y)\right|}{\|x\|_{0}\|y\|_{0}}\right)+2 \epsilon^{\frac{1}{4}} .
$$

By taking supremum over $x \neq 0$ and infimum over $y \neq 0$ the statement for the linear case follows. The general case follows by taking the supremum over every tangent space.
The proof for minimal angles is similar. Denote by $g_{i}:=\omega_{i}\left(\cdot, J_{i} \cdot\right)$ the induced metric. Then Lemma 2.12 implies for any non-zero vectors $v, w \in T_{x} M$ (and a fixed $x \in M)$:

$$
\begin{aligned}
\frac{\left|g_{0}(v, w)-g_{1}(v, w)\right|}{\|v\|_{0}\|w\|_{0}} & \leq \frac{\left|\omega_{0}\left(v,\left(J_{0} w-J_{1}\right) w\right)\right|}{\|v\|_{0}\|w\|_{0}}+\frac{\left|\omega_{0}\left(v, J_{1} w\right)-\omega_{1}\left(v, J_{1} w\right)\right|}{\|v\|_{0}\|w\|_{0}} \\
& \leq \underbrace{\left\|\omega_{0}\right\|_{0}}_{=1}\left\|J_{0}-J_{1}\right\|_{0}+\frac{\left|\omega_{0}\left(v, J_{1} w\right)-\omega_{1}\left(v, J_{1} w\right)\right|}{(1-\epsilon)^{2}\|v\|_{1}\|w\|_{1}} \\
& \leq \epsilon+\frac{\left|\omega_{0}(v, w)-\omega_{1}(v, w)\right|}{(1-\epsilon)^{2}\|v\|_{1} \underbrace{\left\|J_{1} w\right\|_{1}}}=\|w\|_{1}
\end{aligned} \leq \epsilon+\frac{\epsilon}{(1-\epsilon)^{2}} .
$$

Since $\epsilon\left(1+1 /(1-\epsilon)^{2}\right) \leq 10 \epsilon$ for $\epsilon<\frac{1}{2}$, we get $\left\|g_{0}-g_{1}\right\|_{0} \leq 10 \epsilon$. Now let $x \in V \cap W$, take any two vectors $v \in T_{x} V, w \in T_{x} W$ with $v \notin T_{x} W$ and $w \notin T_{x} V$. Then

$$
\begin{gathered}
\cos \left(厶^{1}(v, w)\right)=\frac{\left|g_{1}(v, w)\right|}{\|v\|_{1}\|w\|_{1}} \leq \frac{10 \epsilon}{(1-\epsilon)^{2}}+\frac{1}{(1-\epsilon)^{2}} \frac{\left|g_{0}(v, w)\right|}{\|v\|_{0}\|w\|_{0}}, \text { so } \\
\cos \left(\angle^{1}(v, w)\right) \leq \frac{1}{(1-\epsilon)^{2}}\left[10 \epsilon+\cos \left(\angle^{0}(v, w)\right)\right] .
\end{gathered}
$$

Observe that for $\epsilon<\frac{1}{50}$ and $\angle^{0}(v, w) \leq \pi / 4$ we have

$$
\cos ^{-1}\left(\frac{1}{(1-\epsilon)^{2}}\left[10 \epsilon+\cos \left(\angle^{0}(v, w)\right)\right]\right) \geq \angle^{0}(v, w)-\epsilon^{1 / 4}
$$

Note, the case $\pi / 2 \geq \angle^{0}(v, w) \geq \pi / 4$ is not relevant, since it would already imply that the minimal angle will not become small after an ϵ-perturbation, so the claim follows.

Given a $V \subset M$, such that $\theta_{0}(V)=\eta<\frac{\pi}{2}$ (i.e. V is ω_{0}-symplectic), then for any $\left(\omega_{1}, J_{1}\right)$ in the ϵ-ball around $\left(\omega_{0}, J_{0}\right)$ it follows that V is ω_{1}-symplectic,
as long as $\epsilon<\left(\frac{\pi-4 \eta}{8}\right)^{4}$.
Next, we show a slight improvement of Lemma 8.9 from CM07.
Lemma 2.15. Given two complex structures J_{0}, J_{1} compatible wrt. the standard linear symplectic structure on $\mathbb{R}^{2 n}$ with $\left\|J_{0}-J_{1}\right\|<\theta$, then there exists a path J_{t} of compatible complex structures, such that $\left\|J_{t}-J_{1}\right\|<\theta^{2}+2 \theta$ for all $0 \leq t \leq 1$.
In the case of tame complex structures we get the same statement with $\left\|J_{t}-J_{1}\right\|<\frac{\theta}{1-\theta}$ for all $0 \leq t \leq 1$.

Proof. Recall the standard construction of the connecting path (cf. proof of Proposition 2.50 in MS98]): we may assume that $J_{0}=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$. Then the linear homotopy $g_{t}(\cdot, \cdot)=(1-t) \omega_{0}\left(\cdot, J_{0} \cdot\right)+t \omega_{0}\left(\cdot, J_{1} \cdot\right)$ with $0 \leq t \leq 1$ defines via $\omega_{0}(\cdot, \cdot)=g_{t}\left(A_{t} \cdot, \cdot\right)$ a family of skew-symmetric non-degenerate matrices A_{t}. Then $J_{t}:=\sqrt{-A_{t}^{2}} A_{t}$ defines a compatible complex structure connecting J_{0} and J_{1}. And we compute (with norm induced by $\omega_{0}\left(\cdot, J_{0} \cdot\right)$)

$$
\begin{aligned}
\left\|J_{0}-J_{t}\right\| & \leq\left\|J_{0}-\sqrt{-A_{t}^{2}} J_{0}\right\|+\left\|\sqrt{-A_{t}^{2}} J_{0}-\sqrt{-A_{t}^{2}} A_{t}\right\| \\
& \leq\left\|I_{2 n}-\sqrt{-A_{t}^{2}}\right\|+\left\|\sqrt{-A_{t}^{2}}\right\|\left\|J_{0}-A_{t}\right\|
\end{aligned}
$$

Moreover, we have

$$
\left\|J_{0}-A_{t}\right\|=\left\|J_{0}-(1-t) J_{0}-t J_{1}\right\| \leq\left\|J_{0}-J_{1}\right\| \leq \theta
$$

For estimating $\left\|I_{2 n}-\sqrt{-A_{t}^{2}}\right\|$ note that, since A_{t} is anti-symmetric and nondegenerate it has purely imaginary eigenvalues ${ }^{1}$, say $\pm \sqrt{-1} \lambda_{i}$ for $i=1, \ldots, n$ and $\lambda_{i} \in \mathbb{R}$. Then for an eigenvector $v_{i}=a_{i}+\sqrt{-1} b_{i}$ we have $A_{t} a_{i}=-\lambda_{i} b_{i}$ and $A_{t} b_{i}=\lambda_{i} a_{i}$. The bound $\left\|J_{0}-A_{t}\right\| \leq \theta$ leads to

$$
\left\|a_{i}\right\|^{2} \theta^{2} \geq\left\|a_{i}-\lambda_{i} b_{i}\right\|=\left\|a_{i}\right\|^{2}+\lambda_{i}^{2}\left\|b_{i}\right\|^{2}+2 \lambda_{i}\left\langle J_{0} a_{i}, b_{i}\right\rangle
$$

and a similar bound with b_{i}, then by adding both inequalities and dividing by $\left\|v_{i}\right\|^{2}$ gives

$$
1+\lambda_{i}^{2}+2 \lambda_{i} \frac{2\left\langle J_{0} a_{i}, b_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} \leq \theta^{2}
$$

Moreover, since $0 \leq\left\|J_{0} a_{i}-b_{i}\right\|^{2}=\left\|J_{0} a_{i}\right\|^{2}+\left\|b_{i}\right\|^{2}+2\left\langle J_{0} a_{i}, b_{i}\right\rangle=\left\|v_{i}\right\|^{2}+$ $2\left\langle J_{0} a_{i}, b_{i}\right\rangle$, the previous inequality turns into $\left(1-\lambda_{i}\right)^{2} \leq \theta^{2}$.

[^11]Now, we see that $-A_{t}^{2} a_{i}=A_{t} \lambda_{i} b_{i}=\lambda_{i}^{2} a_{i}$ and $-A_{t}^{2} b_{i}=\lambda_{i}^{2} b_{i}$, i.e. λ_{i}^{2} are eigenvalues of $-A_{t}^{2}$ and hence $\left|\lambda_{i}\right|$ are eigenvalues of $\sqrt{-A_{t}^{2}}$. Choosing an orthonormal basis of eigenvectors w_{i} for $\sqrt{-A_{t}^{2}}$ we get for any vector $w=$ $\sum \alpha_{i} w_{i}$

$$
\left\|\left(I_{2 n}-\sqrt{-A_{t}^{2}}\right) w\right\|^{2}=\sum_{i}\left(1-\left|\lambda_{i}\right|\right)^{2} \alpha_{i}^{2}\left\|w_{i}\right\|^{2} \leq \theta^{2}\|w\|^{2}
$$

since $\left(1-\left|\lambda_{i}\right|\right)^{2} \leq\left(1-\lambda_{i}\right)^{2}$, so $\left\|I_{2 n}-\sqrt{-A_{t}^{2}}\right\| \leq \theta$.
Finally combining previous inequalities with

$$
\left\|\sqrt{-A_{t}^{2}}\right\| \leq\left\|\sqrt{-A_{t}^{2}}-I_{2 n}\right\|+\left\|I_{2 n}\right\| \leq \theta+1
$$

yields

$$
\left\|J_{0}-J_{t}\right\| \leq \theta+(\theta+1) \theta=\theta^{2}+2 \theta
$$

Proof for the tame case

The $\operatorname{map} \Phi(J):=\left(J+J_{0}\right)^{-1} \circ\left(J-J_{0}\right)$ defines a diffeomorphism from $\mathcal{J}_{\tau}(\omega)$ to the space of matrices $\left\{S \in M(2 n, \mathbb{R}) \mid S J_{0}+J_{0} S=0,\|S\|<1\right\}$ (cf. Propositon 1.1.6 in (Aud94]).
Hence, we can define the path J_{t} via $J_{t}:=\Phi^{-1}\left((1-t) \Phi\left(J_{0}\right)+t \Phi\left(J_{1}\right)\right)$, but $\Phi\left(J_{0}\right)=0$ and $\Phi^{-1}(S)=J_{0} \circ(\mathbf{I d}+S) \circ(\mathbf{I d}-S)^{-1}$, so we can bound $\left\|J_{t}\right\|$ for all $0 \leq t \leq 1$. Let $S_{t}:=t \Phi\left(J_{1}\right)$, hence $\left\|S_{t}\right\| \leq t\left\|\left(J_{1}+J_{0}\right)^{-1}\right\|\left\|J_{1}-J_{0}\right\| \leq$ $\theta\left\|\left(J_{1}+J_{0}\right)^{-1}\right\|$.
Next, we use the Neumann series in the following way. Assume that A and B are square matrices, B is invertible and $\|A-B\| \leq p\left\|B^{-1}\right\|^{-1}$ for $0<p<1$, where the norm is the operator norm, then $\left\|A^{-1}\right\| \leq \frac{1}{1-p}\left\|B^{-1}\right\|$. Indeed, by writing $A=B\left(\mathbf{I d}-\left(\mathbf{I d}-B^{-1} A\right)\right)$ and observing that

$$
\left\|\mathbf{I d}-B^{-1} A\right\| \leq\|B\|\|B-A\| \leq p<1
$$

the Neumann series yields $\left\|T^{-1}\right\| \leq\left\|\left(\mathbf{I d}-\left(\mathbf{I d}-B^{-1} A\right)\right)^{-1}\right\|\left\|B^{-1}\right\| \leq$ $(1-p)^{-1}\left\|B^{-1}\right\|$. Now we can bound $\left\|\left(J_{1}+J_{0}\right)^{-1}\right\|$. Since $\left\|J_{1}+J_{0}-2 J_{0}\right\| \leq$ $\theta=\frac{\theta}{2}\left\|\left(2 J_{0}\right)^{-1}\right\|^{-1}$, it follows that $\left\|\left(J_{1}+J_{0}\right)^{-1}\right\| \leq \frac{2}{2-\theta}\left\|\left(2 J_{0}\right)^{-1}\right\|=\frac{1}{2-\theta}$, moreover $\left\|S_{t}\right\| \leq \frac{\theta}{2-\theta}$. Finally, we compute

$$
\begin{aligned}
\left\|J_{0}-J_{t}\right\| & =\left\|J_{0}-\Phi^{-1}\left(S_{t}\right)\right\|=\left\|J_{0}-J_{0}\left(\mathbf{I d}+S_{t}\right)\left(\mathbf{I d}-S_{t}\right)^{-1}\right\| \\
& \leq\left\|\mathbf{I d}-\left(\mathbf{I d}+S_{t}\right)\left(\mathbf{I d}-S_{t}\right)^{-1}\right\| \\
& =\left\|\mathbf{I d}-\left(\mathbf{I d}+S_{t}\right) \sum_{k=0}^{\infty} S_{t}^{k}\right\| \\
& \leq 2\left\|S_{t}\right\|\left\|\left(\mathbf{I d}-S_{t}\right)^{-1}\right\| \leq 2 \frac{\theta}{2-\theta} \frac{1}{1-\frac{\theta}{2-\theta}}=\frac{\theta}{1-\theta}
\end{aligned}
$$

Corollary 2.16. Assuming $0 \leq \theta \leq \frac{1}{2}$ in the previous lemma yields a simpler bound $\left\|J_{0}-J_{t}\right\| \leq \frac{5}{2} \theta$, which is valid in both cases.
Corollary 2.17. Given a symplectic manifold (M, ω) together with a symplectic submanifold $V \subset M$. Fix a $J \in \mathcal{J}_{c}(\omega)$ and assume that $\theta(V) \leq \theta_{1}$ for some $\theta_{1}>0$. Then there exists another ω-compatible $K \in \mathcal{J}_{c}(\omega)$, such that

$$
K(T V) \subset T V \text { and }\|K-J\| \leq \frac{5}{2} \theta_{1}
$$

where the norm is induced by the pair (ω, J).
Proof. Lemma 2.19 implies that on V there exists an almost complex structure $K \in \mathcal{J}_{c}\left(V, \omega_{\mid V}\right)$, such that on V we have $\|J-K\| \leq \theta_{1}$. Hence, we need to extend K to an almost complex structure on M.
Denote by $d: M \times M \rightarrow \mathbb{R}$ the distance function induced by the metric $\omega(\cdot, J \cdot)$. Then the set $U_{\epsilon}:=\{x \in M \mid d(x, V) \leq \epsilon\}$ forms a tubular neighbourhood of V, provided $\epsilon>0$ is sufficiently small.
Consider a standard cut-off function $f:[0, \epsilon] \rightarrow \mathbb{R}_{+}$, i.e. f is monotone decreasing, $f(0)=1, f(\epsilon)=0$ and all derivatives of f vanish near 0 and ϵ.
Now, Lemma 2.15 implies that there is a family of compatible almost complex structures K_{t} with $K_{0}=K$ and $K_{1}=J$ with $\left\|K-K_{t}\right\| \leq \frac{5}{2} \theta_{1}$. Hence, we extend K over $U \epsilon$ by setting $K_{x}:=K_{f(x, V)}$ at any base point $x \in M$. Outside of U we just extend K by setting it equal to J.

2.2 Preliminaries

Before continuing with the proof of Proposition 2.3 we consider the following
Example 2.18. Equip \mathbb{R}^{6} with the standard symplectic structure $\omega=\sum_{i=1}^{3} d x_{i} \wedge$ $d y_{i}$. Consider the following subspaces

$$
\begin{aligned}
V & =\operatorname{span}_{\mathbb{R}}\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial y_{2}}\right\} \\
W & =\operatorname{span}_{\mathbb{R}}\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}+a \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{2}}+a \frac{\partial}{\partial y_{3}}, \frac{\partial}{\partial y_{2}}\right\} \text { for some } a>0
\end{aligned}
$$

Both V and W are symplectic, but their intersection

$$
V \cap W=\operatorname{span}_{\mathbb{R}}\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{2}}\right\}
$$

is not, since $\omega_{\mid V \cap W}=0$.
Now assume that there is a (linear) complex structure $K \in \mathcal{J}_{\tau}(\omega)$ which leaves both V and W invariant, i.e. $K V \subseteq V$ and $K W \subseteq W$. This implies that $K(V \cap W) \subseteq V \cap W$. Since K tames ω, it follows that $V \cap W$ is symplectic, giving a contradiction. Hence, no such K exists in this case ${ }^{1}$.

[^12]First, recall the following
Lemma 2.19 (cf. Lemma 8.5 (c) in [CM07]). Consider an ω-symplectic subspace of codimension two $W \subset V$. Then there exists an ω-compatible almost complex structure $K: V \rightarrow V$ that leaves W and W^{ω} invariant. And for a fixed $J \in \mathcal{J}_{c}(\omega)$ we have

$$
\|K-J\| \leq 2 \sin \left(\frac{\theta(W)}{2}\right) \leq \theta(W)
$$

Because of the central role played by the above lemma we present the proof here.

Proof. Denote the intersection by $W_{0}:=W \cap J W$. For $\operatorname{dim} W_{0}=2 n-2$ it follows that W is J-invariant and one simply sets $K:=J$. The other possible ${ }^{1}$ case is $\operatorname{dim} W_{0}=2 n-4$. Then we set $K_{\mid W_{0}}:=J$. Now by replacing V by $W_{0}^{\perp}=W_{0}^{\omega}$ we reduce the proof to the four-dimensional case.
For $\operatorname{dim} V=4$ let x, y be an oriented orthonormal basis of W. Denote by $\pi_{W}: V \rightarrow W$ the orthogonal projection. On W we define $K: W \rightarrow W$ via a positive rotation, i.e. $K x:=y$ and $K y:=-x$, hence we have $K^{2}=\mathbf{- 1}$. Now observe that

$$
\|J y-K y\|=\|J y+x\|=\|J x-y\|=\|J x-K x\| .
$$

From $\langle J x, x\rangle=0$ it follows that for some $\theta \in[0, \pi]$ we have $\langle J x, y\rangle=\cos \theta \cdot y$. Moreover $\langle J x, y\rangle=\omega(x, y)>0$ implies $\theta<\frac{\pi}{2}$ and (cf. Lemma 2.9 statement 1) yields $\theta \leq \theta(W)$. Combining this with

$$
\|J x-y\|^{2}=\|J x\|^{2}+\|y\|^{2}-2 \omega(x, y)=2+2 \cos \theta=4 \sin ^{2} \frac{\theta}{2}
$$

gives $\|J-K\| \leq 2 \sin \frac{\theta(W)}{2}$ on W. The constructed $K: W \rightarrow W$ is compatible with ω, since $\omega(x, K x)=\omega(x, y)>0$ and W is two-dimensional. The only thing left is to define K on W^{ω}. Since W is a symplectic hyperplane, we have $\operatorname{dim} W^{\omega}=2$ and for a fixed oriented orthogonal basis $\left\{x^{\prime}, y^{\prime}\right\}$ of W^{ω} we define $K x^{\prime}:=y^{\prime}$ and $K y^{\prime}:=-x^{\prime}$. Now, the same arguments apply for W^{ω} as for W and we get $\|J-K\| \leq 2 \sin \frac{\theta\left(W^{\omega}\right)}{2}$ on W^{ω}. Since $\theta(W)=\theta\left(W^{\omega}\right)$ (cf. Lemma 2.9 statement 22, we get the estimate on the whole space $V=W \oplus W^{\omega}$.

Now, we continue with the case of two symplectic hypersurfaces and start with the following

Example 2.20. Equip \mathbb{R}^{6} with the standard symplectic structure $\omega=\sum_{i=1}^{3} d x_{i} \wedge$ $d y_{i}$. Consider the following subspaces, given via inclusions (for a fixed real a):

[^13]$$
\phi_{a}: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{6}, \text { via }\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \mapsto\left(x_{1}, y_{1}, x_{2}, y_{2}, a \cdot y_{1}, a \cdot y_{2}\right)
$$

Denote the correpsonding linear subspaces by $V_{a}:=\operatorname{im}\left(\phi_{a}\right)$. By computing the pullback

$$
\omega_{a}:=\phi_{a}^{*} \omega=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}+a^{2} \cdot d y_{1} \wedge d y_{2}
$$

we see that $\omega_{a} \wedge \omega_{a}=2 \cdot d x_{1} \wedge d y_{1} \wedge d x_{2} \wedge d y_{2}$. Hence, for any $a \in \mathbb{R}$ the spaces V_{a} are symplectic hyperplanes of \mathbb{R}^{6}.
Let J be the standard complex structure. Then V_{0} is a complex subspace. Moreover, for any $a \in \mathbb{R}$ we compute the corresponding Kähler angle. The pullback of the standard metric $g(\cdot, \cdot)=\omega(\cdot, J \cdot)$ is given by

$$
g_{a}:=\phi_{a}^{*} g=d x_{1} \circ d x_{1}+\left(1+a^{2}\right) d y_{1} \circ d y_{1}+d x_{2} \circ d x_{2}+\left(1+a^{2}\right) d y_{2} \circ d y_{2}
$$

hence, for the volume form on V_{a} we get

$$
\Omega_{V_{a}}=\sqrt{\left|g_{a}\right|} d x_{1} \wedge d y_{1} \wedge d x_{2} \wedge d y_{2}=\left(1+a^{2}\right) d x_{1} \wedge d y_{1} \wedge d x_{2} \wedge d y_{2}
$$

Combining the previous statements we get the Kähler angle for V_{a} :

$$
\theta\left(V_{a}\right)=\cos ^{-1}\left(\frac{\omega_{\mid V_{a}}^{2}}{2!\cdot \Omega_{V_{a}}}\right)=\cos ^{-1}\left(\frac{\omega_{a} \wedge \omega_{a}}{2!\cdot \Omega_{V_{a}}}\right)=\cos ^{-1}\left(\frac{1}{1+a^{2}}\right)
$$

It follows that V_{a} is a complex subspace if and only if $a=0$.
Now fix some $a \neq 0$, then for the intersection of V_{0} and V_{a} we have

$$
V_{0} \cap V_{a}=\left\{\left(x_{1}, 0, x_{2}, 0,0,0\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\} .
$$

The subspace $V_{0} \cap V_{a}$ is not symplectic, since $\omega_{\mid V_{0} \cap V_{a}}=0$, i.e. this intersection is not positive (for any $a \neq 0$). Now we compute the minimal angle $\angle_{m}\left(V_{0}, V_{a}\right)$. First, consider the orthogonal complement

$$
\left(V_{0} \cap V_{a}\right)^{\perp}=\left\{\left(0, y_{1}, 0, y_{2}, x_{3}, y_{3}\right) \mid y_{1}, y_{2}, x_{3}, y_{3} \in \mathbb{R}\right\}
$$

and the following intersections

$$
\begin{gathered}
A:=\left(V_{0} \cap V_{a}\right)^{\perp} \cap V_{0}=\left\{\left(0, y_{1}, 0, y_{2}, 0,0\right) \mid y_{1}, y_{2} \in \mathbb{R}\right\} \\
B:=\left(V_{0} \cap V_{a}\right)^{\perp} \cap V_{a}=\left\{\left(0, y_{1}^{\prime}, 0, y_{2}^{\prime}, a y_{1}^{\prime}, a y_{2}^{\prime}\right) \mid y_{1}^{\prime}, y_{2}^{\prime} \in \mathbb{R}\right\} .
\end{gathered}
$$

Now take $v \in A$ and $w \in B$ and consider

$$
\frac{|\langle x, y\rangle|}{\|v\|\|w\|}=\frac{\left|y_{1} y_{1}^{\prime}+y_{2} y_{2}^{\prime}\right|}{\sqrt{1+a^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}} \sqrt{y_{1}^{\prime 2}+y_{2}^{\prime 2}}} \leq \frac{1}{\sqrt{1+a^{2}}}
$$

hence, it follows for the minimal angle

$$
\angle_{m}\left(V_{0}, V_{a}\right):=\inf _{0 \neq x \in A, 0 \neq y \in B} \cos ^{-1}\left(\frac{|\langle x, y\rangle|}{\|v\|\|w\|}\right) \geq \cos ^{-1}\left(\frac{1}{\sqrt{1+a^{2}}}\right) .
$$

Assuming $a \neq 0$, above statement implies that hyperplanes V_{0} and V_{a} intersect transversely. However, there is no ω-tame almost complex structure which would leave both V_{0} and V_{a} invariant, since their intersection is not symplectic, despite the fact that the maximum of the Kähler angle $\max \left\{\theta\left(V_{0}\right), \theta\left(V_{a}\right)\right\}=$ $\theta\left(V_{a}\right)$ can be made arbitrary small.

Remark 2.21. The previous example seems to contradict the statement of Lemma 8.7(b) from CM07. However, we show a slight modification of that lemma below by making an additional assumption about the intersection of hyperplanes (being symplectic). The main point is that this assumption will be always satisfied during the later construction.

Lemma 2.22 (modification of Lemma 8.7(b) from [CM07]). For a given pair of codimension two ω-symplectic subspaces W and W^{\prime} of (V, ω, J), such that their minimal angle satisfies $L_{m}\left(W, W^{\prime}\right) \geq \epsilon$ for an $\epsilon>0$. Moreover, assume that the maximum of their Kähler angles is bounded by $\theta(W) \leq \theta$ and $\theta\left(W^{\prime}\right) \leq \theta^{\prime}$ (with $0 \leq \theta, \theta^{\prime}<\frac{\pi}{2}$), moreover, the intersection $W \cap W^{\prime}$ is symplectic.
Then there exists an w-tame complex structure $K \in \mathcal{J}_{\tau}(V)$ which leaves both W and W^{\prime} invariant, such that

$$
\|K-J\|<\frac{4}{\epsilon} \max \left(\theta, \theta^{\prime}\right), \text { provided that } \max \left(\theta, \theta^{\prime}\right)<1
$$

Proof. First we construct a complex structure on the intersection $W \cap W^{\prime}$, in the case where $\operatorname{dim}\left(W \cap W^{\prime}\right)>0$. The case $\operatorname{dim}\left(W \cap W^{\prime}\right)=0$ appears if $\operatorname{dim} V=4$. We construct K by multiple application of Lemma 2.19
By applying Lemma $\sqrt[2.19]{ }$ to (M, W, J, ω) we get a compatible complex structure J^{\prime}, such that $\left\|J-J^{\prime}\right\| \leq 2 \sin (\theta / 2)$ and W is J^{\prime}-complex.
Restrict $\left(\omega, J^{\prime}\right)$ to W. Since $\angle_{m}\left(W, W^{\prime}\right) \geq \epsilon$, the intersection $W \cap W^{\prime}$ is a symplectic (by assumption) hypersurface. Hence, applying Lemma 2.19 to $\left(W, W \cap W^{\prime}, J^{\prime}\right)$ we get a complex structure $K \in \mathcal{J}_{c}\left(W, \omega_{\mid W}\right)$, such that $\left\|J^{\prime}-K\right\| \leq 2 \sin \left(\theta\left(W \cap W^{\prime}\right) / 2\right)$ and $W \cap W^{\prime}$ is K-invariant.
Let $\{x, y\}$ be an oriented J^{\prime}-orthonormal basis of $A:=\left(W \cap W^{\prime}\right)^{\omega} \cap W^{\prime}$, extend K to V via $K x:=y$ and $K y:=-x$. Hence, K leaves W and W^{\prime} invariant. And from the proof of Lemma 2.19 follows that, restricted to A, we get $\left\|J^{\prime}-K\right\| \leq 2 \sin (\theta(A) / 2)$.
Now, for the Kähler angles we have: $\theta\left(W \cap W^{\prime}\right) \leq \min \left(\theta, \theta^{\prime}\right)$, hence $\theta((W \cap$ $\left.\left.W^{\prime}\right)^{\omega}\right) \leq \min \left(\theta, \theta^{\prime}\right)$ and so $\theta\left(\left(W \cap W^{\prime}\right)^{\omega} \cap W^{\prime}\right) \leq \min \left(\theta, \theta^{\prime}\right)$. This implies $\left\|K-J^{\prime}\right\| \leq \max \left(\theta, \theta^{\prime}\right)$ on $W \cup W^{\prime}$ and hence

$$
\|K-J\| \leq\left\|K-J^{\prime}\right\|+\left\|J-J^{\prime}\right\| \leq \max \left(\theta, \theta^{\prime}\right)+2 \sin \left(\frac{\theta(A)}{2}\right) \leq 2 \max \left(\theta, \theta^{\prime}\right)
$$

To get the inequality on the whole space V, we look at $\left(W \cap W^{\prime}\right)^{\omega}$ which is by assumption 4-dimensional. Let $\operatorname{dim} V=4, W=\operatorname{span}\left\{x_{1}, y_{1}\right\}, W^{\prime}=$ $\operatorname{span}\left\{x_{2}, y_{2}\right\}$ and $W \cap W^{\prime}=0$. Take $v=a x_{1}+b y_{1}+c x_{2}+d y_{2} \in V$ and compute

$$
(K-J) v=a\left(y_{1}-J x_{1}\right)-b J\left(y_{1}-J x_{1}\right)+c\left(y_{2}-J x_{2}\right)-d J\left(y_{2}-J x_{2}\right)
$$

The assumption on the minimal angle implies $\left\langle w, w^{\prime}\right\rangle \leq \cos \epsilon\|w\|\left\|w^{\prime}\right\|$ for $w \in W$ and $w^{\prime} \in W^{\prime}$, which together with $\left\|y_{i}-J x_{i}\right\| \leq \sin \max \left(\theta, \theta^{\prime}\right)$ yields

$$
\begin{aligned}
\|(K-J) v\|^{2} \leq & \left(a^{2}+b^{2}\right)\left\|y_{1}-J x_{1}\right\|^{2}+\left(c^{2}+d^{2}\right)\left\|y_{2}-J x_{2}\right\|^{2} \\
& +2 \cos \epsilon \sqrt{\left(a^{2}+b^{2}\right)\left\|y_{1}-J x_{1}\right\|^{2}\left(c^{2}+d^{2}\right)\left\|y_{2}-J x_{2}\right\|^{2}} \\
\leq & \sin ^{2} \max \left(\theta, \theta^{\prime}\right)\left(a^{2}+b^{2}+c^{2}+d^{2}+2 \cos \epsilon \sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}\right) \\
\leq & \sin ^{2} \max \left(\theta, \theta^{\prime}\right)(1+\cos \epsilon)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
\end{aligned}
$$

Same reasoning together with $\left\|y_{i}\right\| \geq \cos \max \left(\theta, \theta^{\prime}\right)$ yields

$$
\begin{aligned}
\|v\|^{2} & \geq a^{2}+b^{2}\left\|y_{1}\right\|^{2}+c^{2}+d^{2}\left\|y_{2}\right\|^{2}-2 \cos \epsilon \sqrt{\left(a^{2}+b^{2}\left\|y_{1}\right\|^{2}\right)\left(c^{2}+d^{2}\left\|y_{2}\right\|^{2}\right)} \\
& \geq \cos ^{2} \max \left(\theta, \theta^{\prime}\right)(1-\cos \epsilon)\left(a^{2}+b^{2}+c^{2}+d^{2}\right) .
\end{aligned}
$$

Hence, we get $\|K-J\| \leq \frac{\sin \max \left(\theta, \theta^{\prime}\right)}{\cos \max \left(\theta, \theta^{\prime}\right)} \sqrt{\frac{1+\cos \epsilon}{1-\cos \epsilon}}$.
Note that $\sqrt{\frac{1+\cos \epsilon}{1-\cos \epsilon}} \leq 2 / \epsilon$ as long as $0<\epsilon<1$ and $\frac{\sin \max \left(\theta, \theta^{\prime}\right)}{\cos \max \left(\theta, \theta^{\prime}\right)} \leq 2 \max \left(\theta, \theta^{\prime}\right)$ as long as $0 \leq \max \left(\theta, \theta^{\prime}\right)<1$.

As already mentioned in CM07 the complex structure K from the previous lemma does not lie in $\mathcal{J}_{c}(V)$ in general. This happens exactly when the subspaces $\left(W \cap W^{\prime}\right)^{\omega} \cap W^{\prime}$ and W^{ω} do not coincide. We recall the following

Example 2.23. (cf. Remark 8.8 in CM07) Consider \mathbb{R}^{4} equipped with the standard structure $\left(\omega_{0}, J_{0}\right)$. Let

$$
W:=\left\{\left(x_{1}, y_{1}, 0,0\right) \mid x_{1}, y_{1} \in \mathbb{R}\right\} \text { and } W^{\prime}:=\left\{\left(\epsilon x_{2}, 0, x_{2}, y_{2}\right) \mid x_{2}, y_{2} \in \mathbb{R}\right\}
$$

Since $W \cap W^{\prime}=(0,0,0,0)$ and W, W^{\prime} are both 2-dimensional subspaces (for any ϵ) their intersection is transverse. The Kähler angles are given by $\theta(W)=$ 0 (since W is J_{0}-invariant) and

$$
\theta\left(W^{\prime}\right)=\cos ^{-1}\left(\frac{\omega_{0 \mid W^{\prime}}}{\Omega_{W^{\prime}}}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{\epsilon^{2}+1}}\right) \leq|\epsilon|
$$

i.e. W^{\prime} is approximately J_{0}-holomorphic for ϵ small.

Now assume we have an ω_{0}-compatible complex structure K that leaves both W and W^{\prime} invariant. Observe that $e_{1}:=(1,0,0,0) \in W$ and $\omega\left(v, e_{1}\right)=$ $\left\langle v, J_{0} e_{1}\right\rangle=0$ for any $v \in W^{\prime}$. Now, since K should leave W^{\prime} invariant, we get

$$
\omega\left(v, K e_{1}\right)=\omega\left(K v, e_{1}\right)=\left\langle K v, J_{0} e_{1}\right\rangle=0
$$

and using that $J_{0} e_{1} \in W$ and that K leaves W invariant, we get

$$
\begin{equation*}
0 \neq\left\langle v, e_{1}\right\rangle=\omega\left(v, J_{0} e_{1}\right)=\omega(\underbrace{K v}_{\in W^{\prime}}, \underbrace{K J_{0} e_{1}}_{\in W}) \text {, as long as } \epsilon \neq 0 . \tag{2.1}
\end{equation*}
$$

On the other hand $\left\{e_{1}, K e_{1}\right\}$ is a basis for W, which together with 2.1) would imply that $\left\langle v, e_{1}\right\rangle=0$ - a contradiction, hence no such ω-compatible K can exist if $\epsilon \neq 0$.
Note that for $\epsilon \neq 0$ we have $(\underbrace{W \cap W^{\prime}}_{0})^{\omega} \cap W^{\prime}=\mathbb{R}^{4} \cap W^{\prime}=W^{\prime} \neq W^{\omega}$.
Remark 2.24. Arguments from the previous example are not limited to dimension four, since any higher dimensional case can be reduced to four dimensions just by dividing out the (nonempty) intersection of hyperplanes.

2.3 Ball cover relative to a hypersurface

Consider a compact Riemannian manifold (M, g). For any $k>0$ define the rescaled metric $g_{k}:=k \cdot g$. Since any Riemannian metric (on a complete manifold) gives a distance function $d: M \times M \rightarrow \mathbb{R}$, we denote by d_{k} the distance function induced by g_{k}.
Lemma 2.25. $d_{k}(x, y)=k^{\frac{1}{2}} d(x, y)$ for any $x, y \in M$
Proof. The distance is given by

$$
d_{k}(x, y):=\inf _{\gamma}\left\{L_{k}(\gamma) \mid \gamma \in \mathcal{C}^{0}([0,1], M), \gamma(0)=x, \gamma(1)=y\right\}, \text { where }
$$

$L_{k}(\gamma):=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\|_{k} d t=\int_{0}^{1} \sqrt{g_{k}\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t=\sqrt{k} \int_{0}^{1} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t$.

We recall that (following [Don96]) we have defined for $x, y \in M$

$$
e_{k}(x, y):= \begin{cases}e^{-d_{k}(x, y)^{2} / 5} & \text { if } d_{k}(x, y) \leq k^{1 / 4} \\ 0 & \text { if } d_{k}(x, y)>k^{1 / 4}\end{cases}
$$

and that a cover $\left\{B\left(p_{i}\right)\right\}_{i \in\{1 . . s\}}$ of (M, g) with g_{k}-radius r balls centered at $p_{i} \in M$ is called admissible if there exists a constant (independent of k) $C>0$, such that

$$
\sum_{i=1}^{s} d_{k}\left(q, p_{i}\right)^{r} e_{k}\left(q, p_{i}\right) \leq C, \text { for } r=0, \ldots, 3
$$

Definition 2.26. Given a submanifold $W \subset M$, we call a covering $\left\{B\left(p_{i}\right)\right\}_{i \in\{1 . . s\}}$ of (M, g) with g_{k}-radius r balls centered at $p_{i} \in M$ admissible wrt. W if it is admissible and the restriction of the covering to W is also an admissible covering of W wrt. the restricted metric $g_{\mid W}$.

Given an equidistant lattice Λ on \mathbb{C}^{n}, i.e. $\Lambda=a\left(\mathbb{Z}^{n} \oplus i \mathbb{Z}^{n}\right) \subset \mathbb{C}^{n}$. Then there is a condition on a, such that we could cover \mathbb{C}^{n} by balls of radius r centered at the lattice points of Λ.

Lemma 2.27. The set $\left\{B_{r}(p) \subset \mathbb{R}^{n} \mid p \in \Lambda\right\}$ covers \mathbb{R}^{n}, if $a<\frac{2 r}{\sqrt{n}}$.
Proof. A sufficient condition for such set to be a covering is that a main hypercube diagonal (of an n-dimensional hypercube) is covered by two balls (of radius r) centered at its ends, i.e. the length of a main hypercube diagonal should be smaller than twice the radius of the balls, hence $a \sqrt{n}<2 r$.

First, we look at the local situation, for which we need the following technical result

Lemma 2.28. Fix a real number $\alpha>0$ and consider the lattice $\Lambda:=$ $\alpha\left(\mathbb{Z}^{n} \oplus i \mathbb{Z}^{n}\right)$. Then for any real numbers $a, r>0$ and $w \in \mathbb{C}^{n}$ the series

$$
\sum_{z \in \Lambda}\|z-w\|^{r} e^{-a\|z-w\|^{2}}
$$

is uniformly bounded in w.
Proof. By symmetry of the lattice we can assume that $w \in[0, \alpha]^{2 n}$, hence we can bound $\|z-w\|<\alpha \sqrt{2 n}$ if $z \in\left(\{0,1\}^{n} \oplus i\{0,1\}^{n}\right)$. So, we can bound the series

$$
\sum_{z \in \Lambda}\|z-w\|^{r} e^{-a\|z-w\|^{2}} \leq \sum_{l \in \mathbb{N}} l^{2 n}(\alpha \sqrt{2 n})^{r} e^{-a \alpha^{2} 2 n}
$$

Since the latter series is of the form $\sum_{l \in \mathbb{N}} l^{c} e^{-c^{\prime} l}$ with $c, c^{\prime}>0$ is convergent, the claim follows.

Lemma 2.29. Fix the subspace $\mathbb{C}^{n-1} \subset \mathbb{C}^{n}$ by taking the first $n-1$ components. Then the collection $\left\{B\left(p_{i}\right)\right\}$ of g_{k}-unit balls centered at the lattice points $p_{i} \in \Lambda=\frac{1}{\sqrt{2 k n}}\left(\mathbb{Z}^{n} \oplus i \mathbb{Z}^{n}\right)$ is an admissible covering of \mathbb{C}^{n} wrt. \mathbb{C}^{n-1} for any $k>0$.
Proof. Since $\frac{1}{\sqrt{2 k n}}<\frac{2}{\sqrt{2 n k}}$ (radius of g_{k}-unit ball is $k^{-1 / 2}$) Lemma 2.27 implies, that $\left\{B\left(p_{i}\right)\right\}$ covers \mathbb{C}^{n}. Moreover, for the balls centered at the sublattice $\Lambda^{\prime}:=\frac{1}{\sqrt{2 k n}}\left(\mathbb{Z}^{n-1} \oplus i \mathbb{Z}^{n-1}\right)$ cover \mathbb{C}^{n-1}. A direct application of Lemma 2.28 implies admissibility of both coverings (\mathbb{C}^{n} and \mathbb{C}^{n-1}).

Such sequence (wrt. k) of coverings will be used to apply Donaldson's argument twice in order to get the main result of this section. We show that such coverings exist on a smooth manifold.

Lemma 2.30. For a given symplectic hypersurface $W \subset M$, there exists a constant $C>0$, such that for all $k \gg 0$ there exists an admissible covering wrt. W by g_{k}-unit balls centered at $p_{i} \in M$ with $i=1 \ldots N$.

Proof. The proof is a modification of the arguments on pp. 678-679 in Don96. Since M is compact, we can cover it by charts $\phi_{s}: \tilde{U}_{s} \rightarrow M$ (with $s=1 \ldots S$), such that $\tilde{U}_{s} \subset \mathbb{C}^{n}$ are bounded and there exists a (small) $\gamma>0$, such that for any $x, y \in \tilde{U}_{s}$

$$
(1-\gamma)\|x-y\| \leq d\left(\phi_{s}(x), \phi_{s}(y)\right) \leq(1+\gamma)\|x-y\|
$$

Note that the same inequalities are valid for rescaled distance. Moreover, we require that $\phi_{s}^{-1}(W)$ is either empty or is contained in \mathbb{C}^{n-1} (first $n-1$ components in \mathbb{C}^{n}).
Denote by $d_{W, k}: W \times W \rightarrow \mathbb{R}$ the distance function on W, induced by restricting ω and J to W and rescaling by $k^{1 / 2}$. Recall that the rescaled distance function on M is denoted by d_{k}. Since W is also compact, we can assume, after suitable refinement of $\left\{\tilde{U}_{s}\right\}$ and denoting the new covering by $\left\{U_{s}\right\}$, that $x, y \in U_{s}$ implies

$$
(1-\delta) d_{W, k}(x, y) \leq d_{k}(x, y) \leq(1+\delta) d_{W, k}(x, y)
$$

for some small $\delta>0$, provided we have chosen k sufficiently large.
Let Λ be the lattice from Lemma 2.29 and denote the corresponding sublattice by $\Lambda^{\prime}:=\Lambda \cap \mathbb{C}^{n-1}$. Set $\Lambda_{s}:=\phi_{s}\left(\Lambda \cap U_{s}\right)$ and $\Lambda_{s}^{\prime}:=\phi_{s}\left(\Lambda^{\prime} \cap U_{s}\right)$. Then, by construction, g_{k}-unit balls centered at the points of Λ_{s} cover $\phi_{s}\left(U_{s}\right)$. Similarly, g_{k}-unit balls centered at the points of Λ_{s}^{\prime} cover $\phi_{s}\left(U_{s} \cap \mathbb{C}^{n-1}\right)$.
In analogy to e_{k} we define its restricted version (for $x, y \in W$)

$$
e_{W, k}(x, y):= \begin{cases}e^{-d_{W, k}(x, y)^{2} / 5} & \text { if } d_{W, k}(x, y) \leq k^{1 / 4} \\ 0 & \text { if } d_{W, k}(x, y)>k^{1 / 4}\end{cases}
$$

To show admissibility observe that, since the finite collection of charts ϕ_{s} does not depend on k, we have to bound for any fixed s the sums for any $x \in M$ and $y \in W$

$$
R_{s}(x):=\sum_{p \in \Lambda_{s}} d_{k}(p, x) e_{k}(p, x) \text { and } \sum_{p \in \Lambda_{s}^{\prime}} R_{s}^{\prime}(y):=d_{W, k}(p, y) e_{W, k}(p, y)
$$

By definition, $x \notin U_{s}$ and $y \notin U_{s} \cap \mathbb{C}^{n-1}$ imply $R_{s}(x)=0$ and $R_{s}^{\prime}(y)=0$ respectively. Now, let $x=\phi_{s}(z)$ for some $z \in \mathbb{C}^{n}$, so we can bound

$$
\begin{aligned}
R_{s}(x) \leq \sum_{p \in \Lambda} & (1+\gamma)^{r} \sqrt{k^{r}}\|z-p\|^{r} e^{-\frac{k\|z-p\|^{2}}{5(1-\gamma)^{2}}} \\
& =\sum_{p \in \Lambda_{0}}(1+\gamma)^{r}\|z-p\|^{r} e^{-\frac{\|z-p\|^{2}}{5(1-\gamma)^{2}}} \leq C,
\end{aligned}
$$

with a constant $C>0$ coming from Lemma 2.28 and the (unrescaled) lattice $\Lambda_{0}:=\frac{1}{\sqrt{2 n}}\left(\mathbb{Z}^{n} \oplus i \mathbb{Z}^{n}\right)$. For $y \in W$ let $y=\phi_{s}(w)$ for some $w \in \mathbb{C}^{n-1} \subset \mathbb{C}^{n}$ and consider

$$
\begin{gathered}
R_{s}^{\prime}(y) \leq \sum_{p \in \Lambda_{s}^{\prime}}(1+\gamma)^{r}(1+\delta)^{r} \sqrt{k^{r}}\|w-p\|^{r} e^{-\frac{k\|w-p\|^{2}}{5(1-\gamma)^{2}(1-\delta)^{2}}} \\
=\sum_{p \in \Lambda_{0}^{\prime}}(1+\gamma)^{r}(1+\delta)^{r}\|w-p\|^{r} e^{-\frac{\|w-p\|^{2}}{5(1-\gamma)^{2}(1-\delta)^{2}}} \leq C^{\prime}
\end{gathered}
$$

again, with a constant $C^{\prime}>0$ coming from Lemma 2.28 and the (unrescaled) sublattice $\Lambda_{0}^{\prime}:=\frac{1}{\sqrt{2 n}}\left(\mathbb{Z}^{n-1} \oplus i \mathbb{Z}^{n-1}\right)$. Since both constants C and C^{\prime} do not depend on k, the claim follows.

Remark 2.31. One of the central aspects why Donaldson's construction works at all is the independence of k in the above proof. It can only be achieved, by considering infinite sums in Lemma 2.28 .
Moreover, we do not require that the balls from the covering constructed above, which are not centered a the submanifold W, do not intersect W.

2.4 Proof of Propositon 2.3

Again, we divide the argument into several steps.
(A) Take a covering of M with g_{k}-unit balls from Lemma 2.30 which is both admissible for M and the submanifold W. Again, denote centers of the balls by p_{i} with $i \in I$ and let I^{\prime} be the subset indexing the centers of the balls lying on W.
(B) As in step (I) in Proposition 1.11 for any fixed $D>0$ we get a partition $\left\{I_{\alpha}\right\}$ of the index set I with $\alpha=1, \ldots, N$ (note that $N>0$ is independent of $k)$. This defines a partition of I^{\prime} via $I_{\alpha}^{\prime}:=I_{\alpha} \cap I$. Hence, we have

$$
d_{W, k}\left(p_{i}, p_{j}\right) \geq \frac{1}{1+\gamma} D \text { for } i, j \in I_{\alpha}^{\prime} \text { and all } \alpha=1 \ldots N .
$$

Moreover, by setting

$$
W_{\alpha}:=\bigcup_{i \in I_{\beta}^{\prime}, \beta \leq \alpha} B_{k}\left(p_{i}\right)
$$

we obtain an increasing sequence of sets covering W.
(C) For $p \in W$ let σ_{p} be a compactly supported section of the line bundle L^{k} from Proposition 1.3 . Provided k is chosen sufficiently large ${ }^{1}$, the pullback section $\sigma_{p}^{\prime}: W \rightarrow L_{\mid W}^{k}$ satisfies the following inequalities for any $q \in W$:

1. $d_{W, k}(p, q) \leq R$ implies $\left|\sigma_{p}^{\prime}(q)\right| \geq 1 / C$, for a fixed $R>0$ independent of q

[^14]2. $\left|\sigma_{p}^{\prime}(Q)\right| \leq e_{W, k}(p, q)$
3. $\left|\nabla^{\prime} \sigma_{p}(q)\right| \leq C\left(1+d_{W, k}(p, q)\right) e_{W, k}(p, q)$
4. $\left|\bar{\partial}^{\prime} \sigma_{p}(q)\right| \leq C k^{-1 / 2} d_{W, k}(p, q)^{2} e_{W, k}(p, q)$
5. $\left|\nabla^{\prime} \bar{\partial}^{\prime} \sigma_{p}(q)\right| \leq C k^{-1 / 2}\left(d_{W, k}(p, q)+d_{W, k}(p, q)^{3}\right) e_{W, k}(p, q)$
with a k-independent constant $C>0$ and $\nabla^{\prime}, \bar{\partial}^{\prime}$ denoting the restrictions of the corresponding operators to the bundle $L^{k} \rightarrow W$. The proof follows by combining Proposition 1.3 with the arguments from the proof of Lemma 2.29 .
(D) Consider the section $s_{1}: M \rightarrow L^{k}$ concentrated around W :
$$
s_{1}:=\sum_{i \in I^{\prime}} w_{i} \sigma_{p_{i}} \text { with } w_{i} \in \mathbb{C} \text { and }\left|w_{i}\right| \leq 1
$$

Observe that the restriction $s_{1}^{\prime}:=\left(s_{1}\right)_{\mid W}$ satisfies $\left|s_{1}^{\prime}\right| \leq C,\left|\bar{\partial}^{\prime} s_{1}^{\prime}\right| \leq C(1 / \sqrt{k})$ and $\left|\nabla^{\prime} \bar{\partial} s_{1}^{\prime}\right| \leq C(1 / \sqrt{k})$ for some k-independent $C \geq 0$. This follows analogously to Proposition 1.7 using inequalities from step (C). Now applying Proposition 1.11 to s_{1}^{\prime} we get coefficients w_{i}, such that the restricted section s_{1}^{\prime} is η_{1}-transverse to zero over W for some $\eta_{1}>0$.
(E) Consider another section $s_{2}: M \rightarrow L^{k}$, which is zero in the neighbourhood of W :

$$
s_{2}:=\sum_{i \in\left(I-I^{\prime}\right)} w_{i} \sigma_{p_{i}} \text { with } w_{i} \in \mathbb{C} \text { and }\left|w_{i}\right| \leq 1
$$

Any such section satisfies inequalities from Proposition 1.7 by construction. Hence, applying Proposition 1.11 to s_{2} we get new coefficients w_{i}, such that the new section (which we still denote by the same name) s_{2} is η_{2}-transverse to 0 . Finally, the section $s:=s_{1}+s_{2}$ is $\min \left(\eta_{1}, \eta_{2}\right)$-transverse to 0 over whole M and its restriction to W is also $\min \left(\eta_{1}, \eta_{2}\right)$-transverse to 0 . Therefore s is our desired section.
(F) The final ingredient is that η-transversality of section s restricted to W implies a lower bound for the minimal angle between W and $s^{-1}(0)$. But this is exactly the content of Lemma $8.7(a)$ in CM07. More precisely, denoting $V:=s^{-1}(0)$ we have for any $x \in V \cap W$

$$
\angle_{m}\left(T_{x} W, T_{x} V\right) \geq \frac{\nu\left(\operatorname{ker}\left(\nabla_{x} s\right)_{\mid W}\right)}{\left\|\nabla_{x} s\right\|}
$$

where $\nu(\cdot)$ denotes the minimal norm of the right inverse (which exists, since $\nabla_{x} s$ is surjective). Now, (E) implies that $\left\|\nabla_{x} s\right\| \geq \eta$ with $\eta:=\min \left(\eta_{1}, \eta_{2}\right)$ and $\nu\left(\operatorname{ker}\left(\nabla_{x} s\right)_{\mid W}\right) \geq 1 /\left\|\nabla_{x} s_{\mid W}\right\| \geq 1 / \eta^{\prime}$ for some $0<\eta^{\prime}<\eta$, hence

$$
\angle_{m}\left(T_{x} W, T_{x} V\right) \geq \frac{\eta}{\eta^{\prime}}>0
$$

Remark 2.32. Step (E) from the proof involves the application of Proposition 1.11 starting not with arbitrary coefficients w_{i}, but with some of them already chosen to achieve controlled transversality. The subsequent choice of all remaining coefficients corresponds to a small perturbation which does not destroy controlled transversality over W.

2.5 Singular polarizations and $\boldsymbol{\eta}$-transversality

The arguments from the sections above show the existence of two transversely intersecting closed symplectic hypersurfaces, say W_{1} and W_{2}, with the property that the Poincaré dual of W_{2} is a multiple of the symplectic form, while the fundamental class of W_{1} might be arbitrary. However, nothing essential prevents the above method from being applied more than twice. The main assumption is still rationality of the symplectic form.
Now, let ω be any (possibly non-rational) symplectic form, then using perturbations of ω (just like in the final part of the present thesis) one can find positive real $a_{i} \in \mathbb{R}$ and rational symplectic forms ω_{i}, such that we get a decomposition of ω on the cohomology level

$$
[\omega]:=a_{1}\left[\omega_{1}\right]+\ldots+a_{N}\left[\omega_{N}\right], \text { for some } N>0
$$

Clearly, each of these rational symplectic forms can be represented by a Donaldson hypersurface, but even more is true.

Theorem 2.33 (cf. Theorem 2 in $\mathbf{O p s 1 3]}$). For $\operatorname{dim}_{\mathbb{R}} M=4$ there exist symplectic hypersurfaces W_{1}, \ldots, W_{N}, which intersect pairwise transversely and positively, i.e. there is a decomposition (or singular polarization)

$$
[\omega]:=\sum_{i=1}^{N} a_{i} P D\left[\Sigma_{i}\right], a_{i}>0
$$

In higher dimensions a similar statement is available.
The proof can be deduced by an iterative application of Propositon 2.3, however, there is an alternative to that - an observation about η-transversality made by E. Opshtein. We will use this observation in the final part of the thesis.

Theorem 2.34 (cf. Theorem 5 in Ops13). Given a symplectic manifold (M, ω), fix $J \in \mathcal{J}_{c}(\omega)$ and denote by g the induced metric. For any sufficiently small $\epsilon>0$ and rational symplectic forms ω_{1}, ω_{2}. Fix $J_{1} \in \mathcal{J}_{c}\left(\omega_{1}\right), J_{2} \in$ $\mathcal{J}_{c}\left(\omega_{2}\right)$ and assume that

$$
\left\|\omega_{j}-\omega\right\|_{g} \leq \epsilon \text { and }\left\|J_{j}-J\right\|_{g} \leq \epsilon \text { for } j \in\{1,2\} .
$$

Then there exists an $\eta=\eta(\epsilon)>0$, such that the following holds. Let $L_{j} \rightarrow M$ be Hermitian line bundles with a connection of curvature $-i q /(2 \pi) \omega_{j}$ (with q
chosen, such that $\left[q \omega_{j}\right]$ is an integer class). Then for any $k \gg 0$ there exist sequences of sections $s_{j}=\left(s_{j}^{k}\right): M \rightarrow L_{j}^{k}$ with the following properties

1. s_{j} are approximately J_{j}-holomorphic (wrt. $g_{k}:=k q g$), i.e.

$$
\left\|s_{j}^{k}\right\|_{\mathcal{C}^{1}} \leq C,\left\|\bar{\partial}_{J_{j}} s_{j}^{k}\right\|_{\mathcal{C}^{1}} \leq \frac{C}{\sqrt{k}}
$$

for a k-independent constant $C=C(\epsilon)>0$.
2. Each s_{j} is η-transverse to 0 , i.e. $\left\|s_{j}^{k}\right\|_{g_{k}} \leq \eta$ implies $\left\|\partial_{J_{j}} s_{j}^{k}\right\|_{g_{k}} \geq \eta$.
3. The pair of (sequences of) sections $\left(s_{1}, s_{2}\right): M \rightarrow L_{1}^{k} \oplus L_{2}^{k}$ is η-transverse to 0 , i.e. for any $x \in M,\left\|\left(s_{1}^{k}(x), s_{2}^{k}(x)\right)\right\|_{g_{k}} \leq \eta$ implies the linear map $\left(\partial_{J_{1}} s_{1}^{k}, \partial_{J_{2}} s_{2}^{k}\right): T_{x} M \rightarrow \mathbb{C}^{2}$ has a right inverse of g_{k}-norms less than $1 / \eta$.

Remark 2.35. Although above statement seems to be a direct consequence of Donaldson's construction combined with Auroux's extensions, the main point is that η does not depend on the choice of $\left(\omega_{j}, J_{j}\right)$ but on the ϵ-neighbourhood around (ω, J). This is not obvious, since the bundles L_{j} are topologically different. However, the main point is that the construction of localized sections varies continuously wrt. the choice of ω_{j}.

Remark 2.36. Observe that Theorem 2.34 in the case $\omega=\omega_{1}=\omega_{2}$ and $J=$ $J_{1}=J_{2}$ implies the existence of a Lefschetz pencil on M, that was shown for any symplectic manifold with rational symplectic form in Don99. Recall that the proof of it Don99 is a straightforward generalization of the hypersurface statement from Don96 combined with a more refined transversality result. So in some sense Opshtein's result is an approximate version of a Lefschetz pencil, even if such might not exist if ω represents an irrational class itself. Note that we state Theorem 2.34 only for a pair of sections. Opshtein's original result is stated for any finite number of sections. The difference is that for more than two sections it is not quite clear how to show that the mutual transversality can be achieved. This problem disappears in dimension 4 , since then transversal intersection of three sections means that a pair of them is disjoint from the third. However, we are interested in the case of only two sections.

Corollary 2.37. Consider sections $\left(s_{1}, s_{2}\right): M \rightarrow L_{1}^{k} \oplus L_{2}^{k}$ from the preceding theorem. Then $V_{1}:=s_{1}^{-1}(0)$ and $V_{2}:=s_{2}^{-1}(0)$ are closed symplectic hypersurfaces of M, Poincaré dual to $k q\left[\omega_{1}\right]$ resp. $k q\left[\omega_{2}\right]$. The minimal angle wrt. g_{k} satisfies

$$
\angle_{m}\left(V_{1}, V_{2}\right) \geq \eta
$$

Proof. The first part of the statement follows from η-transversality, i.e. statement (2) of the Theorem 2.34 Hence, the only issue is the lower bound for the minimal angle.

Fix a point $p \in V_{1} \cap V_{2}$, for $j \in\{1,2\}$ set $u_{j}:=\partial_{J_{j}} s_{j}(p)$ and $H_{j}:=\operatorname{ker} u_{j}$. Denote by π_{2} the g_{k}-orthogonal projection on H_{2}. For a $y \in H_{1}$ we then have

$$
\|y\|^{2}=\left\|\pi_{2}(y)\right\|^{2}+\left\|y-\pi_{2}(y)\right\|^{2}
$$

Moreover, since π_{2} projects onto the kernel of u_{2} we get

$$
\left\|u_{2}(y)\right\|=\left\|u_{2}\left(y-\pi_{2}(y)\right)\right\| \leq\left\|u_{2}\right\|\left\|y-\pi_{2}(y)\right\|
$$

Hence, we have

$$
\frac{\left\|\pi_{2}(y)\right\|^{2}}{\|y\|^{2}} \leq 1-\frac{\left\|u_{2}(y)\right\|^{2}}{\left\|u_{2}\right\|^{2}\|y\|^{2}}
$$

Now assume $\|y\|=1$, then $u_{1}(y)=0$ together with statement (3) of Theorem 2.34 implies that $\left\|u_{2}(y)\right\| \geq \eta\|y\|$. Moreover, the global bound on the sections $\left\|s_{j}\right\| \leq C$ (with $C>0$ independent of k, ω_{1} and ω_{2}) implies $\left\|u_{2}\right\| \leq 2 C$, provided $k \gg 0$. So, the ratio $\left\|\pi_{2}(y)\right\|^{2} /\|y\|^{2}$ is bounded away from 1 by $\eta^{2} /(4 C)^{2}$, i.e. a constant that depends on η. Hence, the minimal angle between H_{1} and H_{2} is bounded below by a constant that depends on η, but is independent of k, ω_{1} and ω_{2}, which we denote again by η.
Finally, since $k \gg 0$, hyperplanes $H_{j}:=\operatorname{ker} u_{j}$ and $T_{p} V_{j}:=\operatorname{ker} d_{p} s_{j}$ become very close for $j=1,2$ respectively. So the minimal angle between $T_{p} V_{1}$ and $T_{p} V_{2}$ is again bounded below by η for any $p \in V_{1} \cap V_{2}$.

Finally, we indicated the main steps used for the proof of Theorem 2.34 (cf. Section 5.2 from Ops13).
(I) Observe that although the line bundles involving L_{1} and L_{2} are different, one can achieve a version of local sections $\sigma_{p, j}$ for $j=1,2$ as in Proposition 1.3 with constants independent of a sufficiently small perturbation of the metric (i.e. independent of $\left.\left(\omega_{j}, J_{j}\right)\right)$ and with a higher decay rate of the section away from p (see Lemma 5.4 in Ops13).
(II) Then the local to global construction as in Don99] yields for any k approximate holomorphic sections $s_{j}: M \rightarrow L_{j}^{k}$.
(III) Transversality can be now deduced using Auroux's simplification as stated in Aur02, yielding a transversality constant η which is independent of the perturbation $\left(\omega_{j}, J_{j}\right)$, since all constants in (II) can be chosen wrt. to (ω, J) and η does not depend on k (just as in the original case of a Lefschetz pencil).

Trees, stable curves and domain-stable nodal maps

In this chapter (excluding the last section) we recollect the theory of J holomorphic maps with a domain-dependent J developed in CM07. Basically, we recall the main definitions and cite compactness and transversality results. This exposition is kept as dense as possible. The main advantage of the Cieliebak-Mohnke approach is that the analysis of holomorphic curves is mainly based on the exposition from [MS04], which is very detailed. Note also that the idea of using domain-dependent J is not new, as it was already applied in Gromov's original work ${ }^{1}$ [Gro85].
The last section contains modifications of the arguments from section 8 in CM07] adapted to our slightly general situation - symplectic hypersurfaces whose Poincaré dual is a multiple of a possibly different symplectic form.

3.1 Trees and nodal curves

Definition 3.1. Given $k \geq 0$, a triple $T=(T, E, \Lambda)$ is called a \boldsymbol{k}-labelled tree if (T, E) is a connected cycle-free graph with vertices T and edges $E \subset$ $T \times T$, and $\Lambda=\left\{\Lambda_{\alpha}\right\}_{\alpha \in T}$ is a decomposition of the index set $\{1, \ldots, k\}=$ $\coprod_{\alpha \in T} \Lambda_{\alpha}$.

The labelling set Λ defines the map $\{1, \ldots, k\} \rightarrow T$ via $i \mapsto \alpha_{i}$, such that $i \in \Lambda_{\alpha_{i}}$.

Denote the number of edges of T by $e(T):=\#(T)-1$. Moreover, we write $\alpha E \beta$ if $(\alpha, \beta) \in E$. A map $\tau: T \rightarrow \tilde{T}$ is called a tree homomorphism if for any $\alpha^{\prime} \in \tilde{T}$ the preimage $\tau^{-1}\left(\alpha^{\prime}\right)$ is a tree and $\alpha E \beta$ implies either $\tau(\alpha)=\tau(\beta)$ or $\tau(\alpha) \tilde{E} \tau(\beta)$ for any $\alpha, \beta \in T$. If such a map τ is bijective and the inverse τ^{-1} is also a tree homomorphism, then τ is called a tree isomorphism. Intuitively, a tree homomorphism might collapse subtrees to vertices while an isomorphism is just a reordering of edges and vertices.

[^15]

Fig. 3.1. An 8-labelled tree.

Definition 3.2. A-labelled tree T is called stable if for any vertex $\alpha \in T$

$$
n_{\alpha}:=\# \Lambda_{\alpha}+\#\{\beta \mid \alpha E \beta\} \geq 3
$$

Given any k-labelled T it can be stabilized by collapsing vertices with $n_{\alpha}<3$ and modifying the edge relation. The resulting tree is then a stable k-labelled tree and we denote it by $\operatorname{st}(T)$.

Definition 3.3. A weighted k-labelled tree $\left(T,\left\{A_{\alpha}\right\}\right)$ is a k-labelled tree T together with $A_{\alpha} \in H_{2}(M, \mathbb{Z})$ for $\alpha \in T$. Such a tree is called stable if each vertex α with A_{α} carries at least 3 special points. Such a vertex is called a ghost component and a maximal subtree consisting of ghost components is called a ghost tree. A subset $R \subset\{1, \ldots, k\}$ is called the reduced index set if it contains all marked points on non-ghost components and the unique marked point z_{i} with maximal index i on each ghost tree.

Definition 3.4. A nodal curve of genus zero with k marked points modelled over a k-labelled tree T is a tuple

$$
\mathbf{z}=\left(\left\{z_{\alpha \beta}\right\},\left\{z_{i}\right\}\right) \text { such that } \alpha E \beta \text { and } 1 \leq i \leq k
$$

with $z_{\alpha \beta}, z_{i} \in S^{2}$, moreover we require that the special points

$$
S P_{\alpha}:=\left\{z_{\alpha \beta} \mid \alpha E \beta\right\} \cup\left\{z_{i} \mid \alpha_{i}=\alpha\right\}
$$

are pairwise distinct. A nodal curve is called stable if the underlying tree T is stable. We will denote the stabilization of \mathbf{z} by $\operatorname{st}(\mathbf{z})$.
Given two nodal curves \mathbf{z}, $\tilde{\mathbf{z}}$ modelled over T and $\tilde{T}, a \operatorname{morphism} \phi: \mathbf{z} \rightarrow \tilde{\mathbf{z}}$ between them is a tuple $\phi=\left(\tau,\left\{\phi_{\alpha}\right\}_{\alpha \in T}\right)$ consisting of

$$
\begin{array}{r}
\tau: T \longrightarrow \tilde{T}-\text { a tree homomorphism, } \\
\phi_{\alpha}: S_{\alpha} \longrightarrow S_{\tau(\alpha)}-\text { holomorphic maps },
\end{array}
$$

such that for $1 \leq i \leq k$ and any $\alpha, \beta \in T$ with $\alpha E \beta$ we have

$$
\begin{aligned}
& \tilde{z}_{\tau(\alpha) \tau(\beta)}=\phi_{\alpha}\left(z_{\alpha \beta}\right) \text { if } \tau(\alpha) \neq \tau(\beta) \\
& \phi_{\alpha}\left(z_{\alpha \beta}\right)=\phi_{\beta}\left(z_{\beta \alpha}\right) \text { if } \tau(\alpha)=\tau(\beta) .
\end{aligned}
$$

In addition we require that marked points are mapped onto marked points on the corresponding component, i.e. $\tilde{z}_{i}=\phi_{\alpha_{i}}\left(z_{i}\right)$ and $\tilde{\alpha}_{i}=\tau\left(\alpha_{i}\right)$.
A morphism of nodal curves is an isomorphism if τ is a tree isomorphism and each ϕ_{α} is biholomorphic.

Consider the set $\left\{S_{\alpha}\right\}$ with $\alpha \in T$ and each S_{α} a standard Riemann sphere. To a given nodal curve \mathbf{z} we associate a nodal Riemann surface

$$
\Sigma_{\mathbf{z}}:=\coprod_{\alpha \in T} S_{\alpha} / \sim
$$

with $z \sim w$ for $z \in S_{\alpha}, w \in S_{\beta}$ and $z=z_{\alpha \beta}, z=z_{\beta \alpha}$ and keep the marked points z_{i} on each component.

Fig. 3.2. A 6-labelled tree, a nodal Riemann surface (with 6 marked points) modelled over it and the stabilization of this curve.

Remark 3.5. Note that a labelled tree alone does not encode a nodal surface, since the latter contains marked and attaching points. However, information contained in a nodal curve is the same as in a nodal surface. A morphism of nodal curves $\tau: \mathbf{z} \rightarrow \tilde{\mathbf{z}}$ induces a continuous map $\Sigma_{\mathbf{z}} \rightarrow \Sigma_{\tilde{\mathbf{z}}}$, which is holomorphic if restricted to any spherical component.

Denote the space of all nodal curves (modelled over a fixed tree T with k marked points) by $\tilde{\mathcal{M}}_{T} \subset\left(S^{2}\right)^{E} \times\left(S^{2}\right)^{k}$.

Proposition 3.6. We summarize important statements about $\tilde{\mathcal{M}}_{T}$.

1. If $\mathbf{z} \in \tilde{\mathcal{M}}_{T}$ is stable, then the only isomorphism $\mathbf{z} \rightarrow \mathbf{z}$ is the identity.
2. Denote by G_{T} the group of isomorphisms of nodal curves, fixing T. For a stable tree T the action of G_{T} on $\tilde{\mathcal{M}}_{T}$ is free and proper.
3. For a stable tree T the quotient $\mathcal{M}_{T}:=\tilde{\mathcal{M}}_{T} / G_{T}$ is a smooth (complex) manifold of dimension $\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{T}=2 k-6-2 e(T)$.

Proof. For (1) see Remark D.3.3 and p. 580 in MS04. (2) and (3) are contained in the statement of Remark 2.1 in CM07.

Let $k \geq 3$ denote the space of all nodal curves with k marked points modelled over a tree T with only one vertex by $\tilde{\mathcal{M}}_{k}$ and the corresponding quotient by $\mathcal{M}_{k}=\tilde{\mathcal{M}}_{k} / G_{T}$.

Definition 3.7. Let $k \geq$ 3. The Deligne-Mumford space of genus zero with k marked points is defined as

$$
\overline{\mathcal{M}}_{k}:=\coprod_{T \text { stable }} \coprod_{k \text {-labelled tree }} \mathcal{M}_{T} .
$$

Proposition 3.8. We summarize facts about the topology of $\overline{\mathcal{M}}_{k}$ for $k \geq 3$.

1. The set $\overline{\mathcal{M}}_{k}$ equipped with Gromov topology is a compact connected metrizable space.
2. The space $\overline{\mathcal{M}}_{k}$ carries a structure of a smooth (complex) compact manifold of dimension $\operatorname{dim}_{\mathbb{R}} \overline{\mathcal{M}}_{k}=2 k-6$.
3. For a given stable k-labelled tree T the closure (wrt. Gromov topology) of \mathcal{M}_{T} in $\overline{\mathcal{M}}_{T}$ is given by $\overline{\mathcal{M}}_{T}=\coprod_{\tilde{T}} \mathcal{M}_{\tilde{T}}$, with \tilde{T} a k-labelled stable tree, such that there exists a surjective tree homomorphism $\tilde{T} \rightarrow T$.
4. The subspace $\overline{\mathcal{M}}_{T} \subset \overline{\mathcal{M}}_{k}$ is a (complex) submanifold of real codimension $2 e(T)$ for any stable k-labelled tree T.

Proof. The statements follow from Theorem 2.7 in Knu83. However, for a less algebro-geometric argument see sections D. 5 and D. 6 in MS04.

Proposition 3.9. We consider the projection

$$
\pi: \overline{\mathcal{M}}_{k+1} \longrightarrow \overline{\mathcal{M}}_{k}
$$

given by forgetting the last marked point and then stabilizing the resulting nodal curve.

1. π is a holomorphic map.
2. The fiber $\pi^{-1}([\mathbf{z}])$ is biholomorphic to $\Sigma_{\mathbf{z}}$.
3. For any $[\mathbf{z}] \in \overline{\mathcal{M}}_{k}$ each component of the preimage $\pi^{-1}([\mathbf{z}])$ is an embedded holomorphic sphere in $\overline{\mathcal{M}}_{k+1}$.
4. Denote the l-time composition of projections by $\pi_{l}:=\pi \circ \ldots \circ \pi$. The map π_{l} induces a morphism between corresponding nodal Riemann surfaces $\Sigma_{\mathbf{z}} \rightarrow \Sigma_{\pi_{l}[\mathbf{z}]}$ for any $[\mathbf{z}] \in \overline{\mathcal{M}}_{k+l}$, then there exists a collection of subtrees $T^{\prime} \subset T$, such that the morphism is constant on all components $\alpha \in T^{\prime}$ and biholomorphic otherwise.

Proof. For (1) see p. 581 in (MS04, (2) and (3) follow from Section D. 4 in MS04. Point (4) is Lemma 2.6 in [M07] and it follows from the definition of stabilization.

We finish this section by supplementing examples for $\overline{\mathcal{M}}_{k}$ (usually denoted by $\overline{\mathcal{M}}_{0, k}$). All examples are taken from Section D. 7 in CM07.

k	$\overline{\mathcal{M}}_{k}$	comment
3	$\{*\}$	$\exists!\{$ marked points $\} \mapsto\{0,1, \infty\} \subset \mathbb{C} P^{1}$
4	$\mathbb{C} P^{1}$	consists of stable trees with one edge and with two marked points on each component
5	$\mathbb{C} P^{2} \#{\overline{\mathbb{C}} \bar{P}^{2}}^{2}$consider singular fibration $\overline{\mathcal{M}}_{5} \rightarrow \overline{\mathcal{M}}_{4}$ with generic fiber $\mathbb{C} P^{1}$ and singular fiber homeo- morphic to an intersection of two copies of $\mathbb{C} P^{1}$	

3.2 Coherent almost complex structures

In this section we recall results and definitions from Section 3 in CM07. It is not essential for the understanding of our main result. However, the approach in CM07 uses the existence of almost complex structures parametrized by $\overline{\mathcal{M}}_{k+1}$ in a coherent way, i.e. they are independent of the domain near the double points. This should simplify gluing arguments in the future work.
Consider $\overline{\mathcal{M}}_{k+1}$. For a $(k+1)$-labelled stable tree T we define an equivalence relation on the marked points via $i \sim j$ if $z_{\alpha_{0} i}=z_{\alpha_{0} j}$ for $i, j \in\{0, \ldots, k\}$. Equivalence classes yield a decomposition $\{0, \ldots, k\}=I_{0} \cup \ldots \cup I_{l}$. Stability condition implies $l+1=n_{\alpha_{0}} \geq$. We call a decomposition $\mathbf{I}=\left(I_{0}, \ldots, I_{l}\right)$ stable if $I_{0}=0$ and $|\mathbf{I}|:=l+1 \geq 3$. We assume that I_{j} is ordered, such that the integers $i_{j}:=\min \left\{i \mid i \in I_{j}\right\}$ satisfy $0=i_{0}<\ldots<i_{l}$.
Fix a stable decomposition $\mathbf{I}=\left(I_{0}, \ldots, I_{l}\right)$, denote the union of all stable trees that induce \mathbf{I} by $\mathcal{M}_{\mathbf{I}} \subset \overline{\mathcal{M}}_{k+1}$. Such $\mathcal{M}_{\mathbf{I}}$ yields a stratification of $\overline{\mathcal{M}}_{k+1}$. The ordering convention defines the map $p_{\mathbf{I}}: \mathcal{M}_{\mathbf{I}} \rightarrow \mathcal{M}_{|\mathbf{I}|}$ by sending a stable curve z to special points on $S_{\alpha 0}$.
Given a Banach space Z, a map $F: \overline{\mathcal{M}}_{k+1} \rightarrow Z$ is called coherent if

1. $F=0$ in a neighbourhood of $\mathcal{M}_{\mathbf{I}} \subset \overline{\mathcal{M}}_{k+1}$ with $|\mathbf{I}|=3$
2. for any stable decomposition \mathbf{I} with $|\mathbf{I}| \geq 4$ there exists a smooth map $F_{\mathbf{I}}: \mathcal{M}_{|\mathbf{I}|} \rightarrow Z$, such that $F_{\mid \mathcal{M}_{\mathbf{I}}}=F_{\mathbf{I}} \circ p_{\mathbf{I}} \rightarrow Z$.
The space of such maps is denoted by $\operatorname{Coh}\left(\overline{\mathcal{M}}_{k+1}, Z\right)$.
Let P be a smooth manifold. Following CM07 we call a tamed almost complex structure on (M, ω) parametrized by P a smooth section in the (pullback) bundle $\mathbf{J}(T M, \omega) \rightarrow P \times M$, where $\mathbf{J}(T M, \omega)$ is the space of all ω-tame almost complex structures. For a fixed section J_{0} we set ${ }^{1}$

$$
T_{J_{0}} \mathcal{J}_{P}:=C^{\epsilon}\left(P \times, T_{J_{0}} \mathbf{J}(T M, \omega)\right)
$$

[^16]$$
\mathcal{J}_{P}(M, \omega):=\exp _{J_{0}}\left(\left\{Y \in T_{J_{0}} \mathcal{J}_{P} \mid Y(p, x) \in B\left(0, \rho\left(g(x), J_{0}(x)\right)\right)\right\}\right)
$$

The main point is that one can think of any $J \in \mathcal{J}_{P}$ as a map $J: P \rightarrow \mathcal{J}$. For practical use we define: ${ }^{1}$

$$
\mathcal{J}_{S^{2}}:=\mathcal{J}_{S^{2}}(M, \omega) \text { and } \mathcal{J}_{\overline{\mathcal{M}}_{k+1}}:=\mathcal{J}_{\overline{\mathcal{M}}_{k+1}}(M, \omega)
$$

Then the space \mathcal{J}_{k+1} of coherent almost complex structures is given by ${ }^{2}$

$$
\begin{aligned}
T_{J_{0}} \mathcal{J}_{k+1} & :=\operatorname{Coh}\left(\overline{\mathcal{M}}_{k+1}, T_{J_{0}} \mathcal{J}\right) \subset T_{J_{0}} \mathcal{J}_{\overline{\mathcal{M}}_{k+1}} \\
\mathcal{J}_{k+1} & :=\exp _{J_{0}}\left(T_{J_{0}} \mathcal{J}_{k+1}\right) \subset \mathcal{J}_{\overline{\mathcal{M}}_{k+1}}
\end{aligned}
$$

Lemma 3.10 (cf. Lemma 3.6 in [CM07]). For $I \subset\{1, \ldots, k\}$ with $|I| \geq 3$ let $\pi_{I}: \overline{\mathcal{M}}_{k+1} \rightarrow \overline{\mathcal{M}}_{|I|+1}$ be the projection forgetting marked points outside the set $I \cup\{0\}$ and stabilizing. Then we have an induced pullback map

$$
\pi_{I}^{*}: \mathcal{J}_{|I|+1} \longrightarrow \mathcal{J}_{k+1}
$$

3.3 Symplectic energy

We consider a closed Riemann surface $\left(\Sigma, j\right.$, dvol $\left._{\Sigma}\right)$ and fix $J \in \mathcal{J}_{\tau}(M, \omega)$. Any such J induces a Riemannian metric on M via

$$
g_{J}(\cdot, \cdot):=\frac{1}{2}(\omega(\cdot, J \cdot)-\omega(J \cdot, \cdot)) .
$$

Recall from MS04 the following
Definition 3.11. For any smooth map $u: \Sigma \rightarrow M$ the energy is given by

$$
E(u):=\frac{1}{2} \int_{\Sigma}\|d u\|_{J}^{2} d v o l_{\Sigma}
$$

where the norm of $d u \in \Omega^{1}\left(\Sigma, u^{*} T M\right)$, viewed as a linear map, is induced by g_{J}.

Lemma 3.12 (cf. Lemma 2.2.1 in [MS04]). For any J-holomorphic curve $u: \Sigma \rightarrow M$ we have the following energy identity

$$
E(u):=\int_{\Sigma} u^{*} \omega .
$$

[^17]Now, consider two symplectic forms ω_{0} and ω_{1}, both tamed by the same almost complex structure $J \in \mathcal{J}_{\tau}\left(M, \omega_{0}\right) \cap \mathcal{J}_{\tau}\left(M, \omega_{1}\right)$. Assume there is a J-holomorphic curve $u: \Sigma \rightarrow M$ representing some homology class $[u] \in$ $H_{2}(M, \mathbb{Z})$, then

Lemma 3.13. both pairings are positive: $\omega_{0}([u])>0$ and $\omega_{1}([u])>0$.
However, the above statement is only valid if a given homology class $A \in$ $H_{2}(M, \mathbb{Z})$ is represented by a J-holomorphic curve. Consider the following example

Example 3.14. For $\epsilon \geq 0$ equip $S^{2} \times S^{2}$ with the family of symplectic forms

$$
\omega_{\epsilon}=\pi_{1}^{*} d S^{2}+(1+\epsilon) \pi_{2}^{*} d S^{2}
$$

where $\pi_{i}: S^{2} \times S^{2} \rightarrow S^{2}$ are the canonical projections and $d S^{2}$ is the volume form of S^{2}. Let J be the standard complex structure on $S^{2} \times S^{2}$. It is compatible with ω_{0}. Assuming that ϵ is taken sufficiently small, J tames ω_{ϵ}.
For some $x \in S^{2}$ let $A:=\left[S^{2} \times\{x\}\right]-\left[\{x\} \times S^{2}\right]$, we get

$$
\int_{A} \omega_{\epsilon}=\operatorname{vol}\left(S^{2}\right)-(1+\epsilon) \operatorname{vol}\left(S^{2}\right)
$$

hence $\omega_{0}(A)=0$, but $\omega_{\epsilon}(A)>0$ for $\epsilon>0$.

3.4 Domain-dependent nodal and holomorphic maps

In this section we give a short exposition of Sections 4 and 5 from CM07. We adapt standard pseudo-holomorphic curve theory to domain-dependent almost complex structures.

Definition 3.15. Given (a family of ω-tame almost complex structures parametrized by $\left.S^{2}\right) J \in \mathcal{J}_{S^{2}}$, we define the Cauchy-Riemann operator associated to J

$$
\bar{\partial}_{J} f:=\frac{1}{2}(d f+J(z, f(z)) \circ d f \circ j)
$$

for any smooth map $f: S^{2} \rightarrow M, z \in S^{2}$ and a fixed complex structure j on S^{2}. We call f-holomorphic if $\bar{\partial}_{J} f=0$.

The common definition of energy of a smooth map $f: S^{2} \rightarrow M$ is given by $E(f):=\frac{1}{2} \int_{S^{2}}|d f|^{2}$. Note that norm $|d f|:=\|d f\|_{J}$ is given by the induced metric $g_{J}(\cdot, \cdot):=\frac{1}{2}(\omega(\cdot, J \cdot)+\omega(J \cdot, \cdot))$. Here the metric is domain-dependent, i.e. $|d f|(z):=\left\|d f_{z}\right\|_{J(z)}$ for $z \in S^{2}$. However, for a J-holomorphic map f we have still the usual energy identity (cf. p. 20 in MS04):

$$
E(f)=\int_{S^{2}} f^{*} \omega
$$

Next, we set up the standard nonlinear setting. Fix integers m, p, such that $m \geq 1, p>1$ and $m p>2$. Fix distinct points $z_{1}, \ldots z_{k} \in S^{2}$ and consider the following diagram (denote by $W^{m, p}$ the (m, p)-Sobolev space).

$$
\begin{aligned}
& \mathcal{B}:=W^{W_{\mathcal{E}_{f}}^{m, p}\left(: S^{m-1, p}\left(S^{2}, \Omega^{0,1}\left(f^{*} T M\right)\right)\right.} \\
& M^{k}:=\underbrace{\downarrow_{\downarrow} e v^{k}: f \mapsto\left(f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right)}_{k \text { times }}
\end{aligned}
$$

For a fixed $J \in \mathcal{J}_{S^{2}}$ the Cauchy-Riemann operator defines a section $\bar{\partial}_{J}: \mathcal{B} \rightarrow$ \mathcal{E}, it induces the section $\bar{\partial}: \mathcal{B} \times \mathcal{J}_{S^{2}} \rightarrow \mathcal{E}$ via $(f, J) \mapsto \bar{\partial}_{J} f(\bar{\partial}$ is called the universal Cauchy-Riemann operator). Moreover, \mathcal{B} is a Banach manifold, $\mathcal{E} \rightarrow \mathcal{B}$ is a Banach bundle, and both $\bar{\partial}_{J}$ and $\bar{\partial}$ are smooth sections of Banach bundles. A first transversality observation is the following
Proposition 3.16 (see Lemma 4.1 and Lemma 4.2 in [CM07]). For $k \in \mathbb{N}$ fix pairwise distinct points $\left\{z_{1}, \ldots, z_{k}\right\} \subset S^{2}$ and $J \in \mathcal{J}_{S^{2}}$. Then for any nonconstant $f \in \mathcal{B}$ with $\bar{\partial}_{J} f=0$ the linearization of

$$
\left(\bar{\partial}, \mathrm{ev}^{k}\right): \mathcal{B} \times \mathcal{J}_{S^{2}} \rightarrow \mathcal{E} \times M^{k}
$$

is surjective at (f, J). Moreover, if $f \in \mathcal{B}$, then the linearization of

$$
\left(\bar{\partial}, \mathrm{ev}^{1}\right): \mathcal{B} \times \mathcal{J}_{S^{2}} \rightarrow \mathcal{E} \times M
$$

is also surjective at (f, J).
Fix $A \in H_{2}(M, \mathbb{Z}), J \in \mathcal{J}_{S^{2}}, k \geq 1$, a smooth submanifold $Z \subset M^{k}:=$ $M \times \ldots \times M$ and pairwise distinct points $z_{1}, \ldots, z_{k} \in S^{2}$. Define the space

$$
\tilde{\mathcal{M}}(A, J, Z):=\left\{f: S^{2} \rightarrow M \mid \bar{\partial}_{J} f=0,[f]=A,\left(f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right) \in Z\right\}
$$

Proposition 3.17 (see Corollary 4.4 in [CM07]). For any submanifold $Z \subset M$ there exists a Baire set $\mathcal{J}_{S^{2}}^{\mathrm{reg}}(Z) \subset \mathcal{J}_{S^{2}}$, such that for any class $A \in H_{2}(M, \mathbb{Z})$, a fixed point $z_{1} \in S^{2}$ and a $J \in \mathcal{J}_{S^{2}}^{\text {reg }}(Z)$ the space $\tilde{\mathcal{M}}(A, J, Z)$ is a smooth manifold of dimension

$$
\operatorname{dim}_{\mathbb{R}} \tilde{\mathcal{M}}(A, J, Z)=2 n+c_{1}(A)-\operatorname{codim}_{\mathbb{R}} Z
$$

Moreover, for any $Z \subset M^{k}$ (with $k \geq 1$) exists a Baire set $\mathcal{J}_{S^{2}}^{\mathrm{reg}}(Z) \subset$ $\mathcal{J}_{S^{2}}$, such that for any nontrivial class $A \in H_{2}(M, \mathbb{Z})$, fixed distinct points $z_{1}, \ldots, z_{k} \in S^{2}$ and $J \in \mathcal{J}_{S^{2}}^{\mathrm{reg}}(Z)$, the space $\tilde{\mathcal{M}}(A, J, Z)$ is a smooth manifold of dimension

$$
\operatorname{dim}_{\mathbb{R}} \tilde{\mathcal{M}}(A, J, Z)=2 n+c_{1}(A)-\operatorname{codim}_{\mathbb{R}} Z
$$

Above-mentioned concept naturally generalizes to maps modelled over a tree. Fix a k-labelled tree T and define $\mathcal{J}_{T}:=\prod_{\alpha \in T} \mathcal{J}_{S_{\alpha}}$. Let \mathbf{z} be a nodal curve modelled over T and $\Sigma_{\mathbf{z}}$ the corresponding nodal Riemann surface.

Definition 3.18 (stable map). A continuous $\operatorname{map} \mathbf{f}: \Sigma_{\mathbf{z}} \rightarrow M$ is a collection of continuous maps $\left\{f_{\alpha}\right\} f_{\alpha}: S_{\alpha} \rightarrow M$ that match at the nodal points, i.e. $f_{\alpha}\left(z_{\alpha \beta}\right)=f_{\beta}\left(z_{\beta \alpha}\right)$ if $\alpha E \beta$.
Given a $\mathbf{J} \in \mathcal{J}_{T}$ define the Cauchy-Riemann operator $\bar{\partial}_{\mathbf{J}} \mathbf{f}$ to be equal $\bar{\partial}_{J_{\alpha}} f_{\alpha}(z)$ at a point $z \in S_{\alpha}$. A continuous \mathbf{f} is called \mathbf{J}-holomorphic ${ }^{1}$ if $\bar{\partial}_{\mathbf{J}} \mathbf{f}=0$. We call a pair (z,f) a nodal J-holomorphic map with k marked points. Define the homology class and energy of (\mathbf{z}, \mathbf{f}) via

$$
[\mathbf{f}]:=\sum_{\alpha \in T}\left[f_{\alpha}\right] \in H_{2}(M, \mathbb{Z}) \text { and } E(\mathbf{f}):=\sum_{\alpha \in T} E(f \alpha)
$$

Hence, (\mathbf{z}, \mathbf{f}) is modelled over the weighted tree $\left(T,\left\{A_{\alpha}\right\}\right)$ if \mathbf{z} is modelled over T and $A_{\alpha}=\left[f_{\alpha}\right]$ for all $\alpha \in T$. And (\mathbf{z}, \mathbf{f}) is called stable if $\left(T,\left\{A_{\alpha}\right\}\right)$ is a weighted stable tree. The space of all nodal maps modelled over $\left(T,\left\{A_{\alpha}\right\}\right)$ is denoted by $\tilde{\mathcal{M}}_{T}\left(\left\{A_{\alpha}\right\}, \mathbf{J}\right)$. For a fixed class $A \in H_{2}(M, \mathbb{Z})$ the space of stable nodal maps is given by

$$
\tilde{\mathcal{M}}_{T}(A, \mathbf{J}):=\coprod_{\sum A_{\alpha}=A} \tilde{\mathcal{M}}_{T}\left(\left\{A_{\alpha}\right\}, \mathbf{J}\right) \text {, such that }\left(T,\left\{A_{\alpha}\right\}\right) \text { is weighted stable. }
$$

Let $k \geq 3$, fix a stable curve \mathbf{z} modelled over a k-labelled tree T. Recall that the restriction of $J \in \mathcal{J}_{k+1}$ to $\pi^{-1}(\mathbf{z}) \cong \Sigma_{\mathbf{z}}$ produces an element $J_{\mathbf{z}} \in \mathcal{J}_{T}$, since $\Sigma_{\mathbf{z}}=\cup_{\alpha \in T} S_{\alpha}$ and the restriction of $J_{\mathbf{z}}$ to each component is smooth. Hence, above $\bar{\partial}$-operator can also be used here, namely

Definition 3.19 (domain-stable map). Given $J \in \mathcal{J}_{k+1}$. A continuous $m a p \mathbf{f}: \Sigma_{z} \rightarrow M$ is called $J_{\mathbf{z}}$-holomorphic if $\bar{\partial}_{J_{\mathbf{z}}} \mathbf{f}=0$. If \mathbf{z} is a stable curve, then the pair (\mathbf{z}, \mathbf{f}) is called a domain-stable map ${ }^{2}$.

Definition 3.20 (nodal J-holomorphic map for $J \in \mathcal{J}_{k+1}$). Given a nodal curve \mathbf{z} with k-marked points, its stabilization induces a holomorphic map st $: \Sigma_{\mathbf{z}} \rightarrow \Sigma_{s t(\mathbf{z})}$. Hence, as in the previous definition, J yields an element $J_{\mathbf{z}}^{s t} \in \mathcal{J}_{T}$, so $\bar{\partial}_{J_{z}^{s t}} \mathbf{f}$ is well-defined, and we call such (\mathbf{z}, \mathbf{f}) a J-holomorphic nodal map if $\partial_{J_{z}^{s t}} \mathbf{f}=0$. Again, for a fixed class $A \in H_{2}(M, \mathbb{Z})$ the space of stable nodal J-holomorphic maps modelled over a k-labelled tree T is denoted by

$$
\tilde{M}_{T}(A, J):=\coprod_{\sum A_{\alpha}=A} \tilde{M}_{T}\left(\left\{A_{\alpha}\right\}, J\right) .
$$

[^18]Any two nodal J-holomorphic maps $(\mathbf{z}, \mathbf{f})\left(\mathbf{z}^{\prime}, \mathbf{f}^{\prime}\right)$ are called isomorphic ${ }^{1}$ if the nodal curves $\mathbf{z}, \mathbf{z}^{\prime}$ are isomorphic via $\left(\tau,\left\{\phi_{\alpha}\right\}\right)$ and $f_{\tau(\alpha)}^{\prime} \circ \phi_{\alpha}=f_{\alpha}$ for all $\alpha \in T$.

Remark 3.21. The outcome of the above construction is that $J_{\mathbf{z}}^{s t}$ is constant on the components which are killed by the stabilization operation.

Denote the group of all isomorphisms of the space $\tilde{\mathcal{M}}(A, J)$ by G_{T}. The action of G_{T} is proper and stability (of holomorphic maps) implies that all isotropy groups are finite (cf. p. 55 in [CM07]). Hence, we have
Definition 3.22 (moduli spaces with $J \in \mathcal{J}_{k+1}$). For a fixed $k \geq 0$ the moduli space of stable maps is given by

$$
\overline{\mathcal{M}}_{k}(A, J):=\bigcup_{T \text { k-labelled tree }} \mathcal{M}_{T}(A, J):=\bigcup_{T \text { k-labelled tree }} \tilde{\mathcal{M}}_{T}(A, J) / G_{T}
$$

The spaces $\mathcal{M}_{T}(A, J)$ are called strata of $\overline{\mathcal{M}}_{k}(A, J)$ and $\mathcal{M}_{k}(A, J):=$ $\mathcal{M}_{T_{k}}(A, J)$ is the top stratum for T_{k}, a k-labelled tree with one vertex. The moduli space of domain-stable maps is denoted by

$$
\overline{\mathcal{M}}_{k}^{d s}(A, J):=\bigcup_{\text {Tstable }} \bigcup_{k \text {-labelled tree }} \mathcal{M}_{T}(A, J) \subset \overline{\mathcal{M}}_{k}(A, J) .
$$

Note that just as in [MS04] the space $\overline{\mathcal{M}}_{k}(A, J)$ can be equipped with the Gromov topology, becoming a metrizable space. Moreover, since the underlying tree of a domain-stable map is stable, the group G_{T} acts freely on $\tilde{\mathcal{M}}_{T}(A, J)$, hence, one has a decomposition

$$
\mathcal{M}_{T}(A, J)=\coprod_{\Sigma A_{\alpha}=A} \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, J\right) .
$$

3.5 Transversality results and compactness

A central feature of stable holomorphic maps with uniformly bounded energy is that one establishes (Gromov) compactness, i.e. any such sequence has a (Gromov) convergent subsequence. First, recall ${ }^{2}$ the definition of Gromov convergence.
Let $J \in \mathcal{J}_{k+1}$. A sequence of stable maps $\left(\mathbf{z}^{\nu}, \mathbf{f}^{\nu}\right) \in \overline{\mathcal{M}}_{k}(A, J)$ converges in the sense of Gromov to a stable map $(\mathbf{z}, \mathbf{f}) \in \overline{\mathcal{M}}_{k}(A, J)$, if for any $\nu \gg 0$ there exists a surjective tree homomorphism $H \nu: T \rightarrow T^{\nu}$ and a collection of automorphisms $\left\{\phi_{\alpha}^{\nu}\right\}$ with $\alpha \in T$, such that the following holds

[^19]- At any vertex $\alpha \in T$ the sequence $f_{H^{\nu}(\alpha)} \circ \phi_{\alpha}^{\nu}: S^{2} \rightarrow M$ converges uniformly to f_{α} on any compact subset of $S^{2} \backslash\left\{z_{\alpha \beta} \mid \beta \in T, \alpha E \beta\right\}$.
- At any node $\alpha E \beta$ the engergy ${ }^{1}$ equality holds:

$$
E_{\alpha \beta}(\mathbf{f})=\lim _{\epsilon \rightarrow 0} \lim _{\nu \rightarrow \infty}\left[E\left(f^{\nu}(\alpha), \phi_{\alpha}^{\nu}\left(B_{\epsilon}\left(z_{\alpha \beta}\right)\right)\right)+\sum_{\substack{\gamma \in T \\ \alpha E \gamma, z_{\alpha \gamma} \in \phi_{\alpha}^{\nu}\left(B_{\epsilon}\left(z_{\alpha \beta}\right)\right)}} E_{\alpha \gamma}(\mathbf{f})\right] .
$$

- If $\alpha E \beta$ and (after passing to a subsequence of ν) $f^{\nu}(\alpha)=f^{\nu}(\beta)$, then $\left(\phi_{\alpha}^{\nu}\right)^{-1} \circ \phi_{\beta}^{\nu}$ converges uniformly on any compact subset of $S^{2} \backslash\left\{z_{\alpha \beta}\right\}$.
- If $\alpha E \beta$, then (after passing to a subsequence of $\nu) f^{\nu}(\alpha) \neq f^{\nu}(\beta)$ implies $z_{\alpha \beta}=\lim _{j \rightarrow \infty}\left(\phi_{\alpha}^{\nu}\right)^{-1}\left(z_{f^{\nu}(\alpha) f^{\nu}(\beta)}^{\nu}\right)$.
- For all $i=1, \ldots, n$ we have $\alpha_{i}^{\nu}=f^{\nu}\left(\alpha_{i}\right)$ and $z_{i}=\lim _{\nu \rightarrow \infty}\left(\phi_{\alpha_{i}}^{\nu}\right)^{-1}\left(z_{i}^{\nu}\right)$.

Then, just as in the domain-independent case, a uniform energy bound implies compactness:
Theorem 3.23 (compactness, cf. Theorem 5.2 in CM07]). Given $J \in \mathcal{J}_{k+1}$ and consider a sequence of stable J-holomorphic maps $\left(\mathbf{z}^{\nu}, \mathbf{f}^{\nu}\right) \in$ $\overline{\mathcal{M}}_{k}(A, J)$, such that $E\left(\mathbf{f}^{\nu}\right) \leq C$ for some $C>0$ (and all ν). Then there exists a subsequence ν_{j}, such that $\left(\mathbf{z}^{\nu_{j}}, \mathbf{f}^{\nu_{j}}\right)$ converges in the sense of Gromov to a stable J-holomorphic map $(\mathbf{z}, \mathbf{f}) \in \overline{\mathcal{M}}_{k}(A, J)$.
Moreover, after passing to this subsequence the following holds:

- There exists a stable weighted tree $\left(T^{\prime},\left\{A_{\alpha^{\prime}}\right\}\right)$, such that $\left(\mathbf{z}^{\nu}, \mathbf{g}^{\nu}\right) \in$ $\mathcal{M}_{T^{\prime}}\left(\left\{A_{\alpha^{\prime}}\right\}, J\right)$.
- There exists a stable weighted tree $\left(T,\left\{A_{\alpha}\right\}\right)$ and a surjective tree homomorphism $\tau: T \rightarrow T^{\prime}$ with $\tau\left(\alpha_{i}\right)=\alpha_{i}^{\prime}, \sum_{\alpha \in \tau^{-1}\left(\alpha^{\prime}\right)} A_{\alpha}=A_{\alpha^{\prime}}$ and $(\mathbf{z}, \mathbf{f}) \in \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, J\right)$.
- Stabilizations $\mathrm{st}\left(\mathbf{z}^{\nu}\right)$ converge to stabilization $\mathrm{st}(\mathbf{z})$ and \mathbf{f} is $J_{\mathrm{st}(\mathbf{z})}$-holomorphic.

Note that here compactness holds for stable maps. In general, the subset of domain-stable maps would not be compact. However, it is an essential aspect in the Cieliebak-Mohnke approach that in a certain geometric situation the space of domain-stable maps with constraints ${ }^{2}$ becomes actually compact.

We continue by recapitulating transversality results from sections 5, 6 and 9 from CM07. We will use them without any modification, since they are valid for all closed symplectic submanifolds without specifying their fundamental classes. Transversality is basically achieved by perturbing almost complex structure on the complements of these submanifolds. We consider the following geometric setting:

[^20]- Fix a tame almost complex structure $J \in \mathcal{J}_{\tau}(M, \omega)$.
- Let $\mathcal{V}=\left\{V_{0}, V_{1}, \ldots\right\}$ be a countable set of submanifolds of M of positive codimension.
- Assume that all V_{i} are J-invariant (i.e. $J T V_{i} \subset T V_{i}$).
- Denote the complement of \mathcal{V} by $V^{c}:=M-\cup_{i} V_{i}$.
- For any $l \geq 3$ consider $\mathcal{J}_{l+1}\left(V^{c}\right)$ the set of coherent almost complex structures that agree along all V_{i}.

In this context we have
Proposition 3.24 (cf. Proposition 9.1 in CM07]). There exists a Baire set

$$
\mathcal{J}_{l+1}^{r e g}\left(V^{c}, \mathcal{V}, J\right) \subset \mathcal{J}_{l+1}\left(V^{c}\right)
$$

such that for any I-stable ${ }^{1} k$-labelled tree T, homology classes $A_{\alpha} \in H_{2}(M, \mathbb{Z})$ with $\alpha \in T$ and $K \in \mathcal{J}_{|I|+1}^{\text {reg }}\left(V^{c}, \mathcal{V}, J_{0}\right)$ the following holds.

- The moduli space $\mathcal{M}_{T}^{*}\left(\left\{A_{\alpha}\right\}, K, \mathcal{V}\right)$ of stable K-holomorphic maps modelled over $\left(T,\left\{A_{\alpha}\right\}\right)$, intersecting V_{i} at the points z_{j} with $j \in R$ (and R is the reduced index set) and without a non-constant component entirely contained in V_{i}, is a smooth manifold of dimension

$$
\begin{aligned}
\operatorname{dim} \mathcal{M}_{T}^{*}\left(\left\{A_{\alpha}\right\}, K, \mathcal{V}\right)= & 2 n-6+2 k-2 e(T)+\sum_{\alpha \in T} 2 c_{1}\left(A_{\alpha}\right) \\
& -\sum_{j \in R} \operatorname{codim}_{\mathbb{R}} V_{j}
\end{aligned}
$$

- The evaluation map ev^{k} factors as

$$
\mathrm{ev}^{k}: \mathcal{M}_{T}^{*}\left(\left\{A_{\alpha}\right\}, K, \mathcal{V}\right) \longrightarrow \mathcal{M}_{\pi_{R}(T)}^{*}\left(\left\{A_{\alpha}\right\}, K, \mathcal{V}\right) \longrightarrow M^{k}
$$

through a smooth manifold of dimension

$$
\begin{aligned}
\operatorname{dim} \mathcal{M}_{\pi_{R}(T)}^{*}\left(\left\{A_{\alpha}\right\}, K, \mathcal{V}\right)= & 2 n-6+2 k+2|R|+\sum_{\alpha \in T} 2 c_{1}\left(A_{\alpha}\right) \\
& -\sum_{j \in R} \operatorname{codim}_{\mathbb{R}} V_{j}-2 e\left(\pi_{R}(T)\right)
\end{aligned}
$$

- Suppose that only one of $\left\{A_{\alpha}\right\}$ is non-trivial, say $A_{\alpha_{0}} \neq 0$, fix integers $l_{j} \geq$ -1 for $j \in R$. Then the moduli space $\mathcal{M}_{\pi_{R}(T)}^{*}\left(A_{\alpha_{0}}, K, \mathcal{V},\left\{l_{j}\right\}\right)$ of stable K-holomorphic maps modelled over $\left(T,\left\{A_{\alpha}\right\}\right)$ tangent to V_{i} of order l_{j} at special points $z_{\alpha_{0} j}$ and not entirely contained in \mathcal{V}, is a smooth manifold of dimension

[^21]\[

$$
\begin{aligned}
\operatorname{dim} \mathcal{M}_{T}^{*}\left(A_{\alpha_{0}}, K, \mathcal{V},\left\{l_{j}\right\}\right)= & 2 n-6+2 k-2 e(T)+2 c_{1}\left(A_{\alpha_{0}}\right) \\
& -\sum_{j \in R}\left(l_{j}+1\right) \operatorname{codim}_{\mathbb{R}} V_{j} .
\end{aligned}
$$
\]

- The corresponding evaluation map ev^{k} factors as

$$
\mathrm{ev}^{k}: \mathcal{M}_{T}^{*}\left(A_{\alpha_{0}}, K, \mathcal{V},\left\{l_{j}\right\}\right) \longrightarrow \mathcal{M}_{|R|}^{*}\left(A_{\alpha_{0}}, K, \mathcal{V},\left\{l_{j}\right\}\right) \longrightarrow M^{k}
$$

through a smooth manifold of dimension

$$
\begin{aligned}
\operatorname{dim} \mathcal{M}_{|R|}^{*}\left(A_{\alpha_{0}}, K, \mathcal{V},\left\{l_{j}\right\}\right)= & 2 n-6+2 k+2|R|+2 c_{1}\left(A_{\alpha_{0}}\right) \\
& -\sum_{j \in R} \operatorname{codim}_{\mathbb{R}} V_{j} .
\end{aligned}
$$

3.6 Tangencies and intersections

In this section we consider intersections between a complex hypersurface and a holomorphic curve. Everything here is taken from Section 7 in CM07. We fix an almost complex manifold (M, J) and consider Riemann sphere S^{2} with a standard complex structure.

Definition 3.25. Given any smooth submanifold $V \subset M$ and a smooth map $f: S^{2} \rightarrow M$. Assume that $f(z) \in V$ for some $z \in S^{2}$, then we call $f(z)$ an isolated intersection of f and V, if there exists a closed disc $D \subset S^{2}$ containing z and a closed ball (of the same dimension as V) $B \subset V$ which contains $f(z)$, such that $f^{-1}(B) \cap D=\{z\}$.
Fix $z \in S^{2}$, then we define the local intersection number via

$$
\iota(f, V, z):=\left(f_{\mid D}\right) \cdot B
$$

after applying a small perturbation to f and counting with signs.
Assuming that $\partial V=\emptyset$, we define the intersection number of f and V by setting

$$
\iota(f, V):=f \cdot V
$$

Fix a tree T and $k \geq 1$, let \mathbf{f} be a non-constant (genus zero) nodal J holomorphic map with k modelled over T. Denote by \mathbf{z} the underlying curve and by f_{α} with $\alpha \in T$ the corresponding components. Assume that V is a closed J-complex hypersurface and that no non-constant components f_{α} are contained in V. Given a marked point z_{i} we define the intersection number via

$$
\iota\left(\mathbf{f}, V, z_{i}\right):= \begin{cases}\iota\left(f_{\alpha_{i}}, V, z_{i}\right) & \text { if } f_{\alpha_{i}} \text { is non-constant } \\ \sum_{\beta \in T_{2}} \iota\left(f_{\beta}, V, z_{\beta i}\right) & \text { if } f_{\alpha_{i}} \text { is constant }\end{cases}
$$

where T_{2} is defined as follows. Let T_{1} be the ghost tree containing α_{i}, then $T_{2} \subset T-T_{1}$ is given by vertices adjacent to T_{1}. Here, $z_{\beta i}$ denotes the nodal point connecting f_{β} and T_{1}.

As the following statements show, J-holomorphicity has strong implications ${ }^{1}$ on the intersection of such objects, even in a non-integrable setting.

Proposition 3.26 (cf. Proposition 7.1 and Lemma 7.2 in [CM07]). (A) Given a J-holomorphic map $f: S^{2} \rightarrow M$ and a J-complex closed hypersurface $V \subset M$. Assume that the image of f is not entirely contained in V then the set $f^{-1}(V)$ is finite and

$$
\iota(F, V)=\sum_{z \in f^{-1}(V)} \iota(f, V, z) .
$$

Moreover, at any intersection point $z \in f^{-1}(V)$ denote the tangency order l of f to V by l_{z}. Then l_{z} is finite, $l_{z} \geq 0$ and we have $\iota(f, V, z)=l_{z}+1$. Hence, the numbers $\iota(f, V, z)$ are positive for any $z \in f^{-1}(V)$.
(B) Fix a $k \geq 1$ and consider a sequence $\left(\mathbf{z}^{\nu}, \mathbf{f}^{\nu}\right)$ of non-constant nodal J holomorphic maps with k marked points. Assume that $\left(\mathbf{z}^{\nu}, \mathbf{f}^{\nu}\right) \rightarrow(\mathbf{z}, \mathbf{f})$ in the Gromov topology (cf. Section 3.5) and that \mathbf{f}^{ν} and \mathbf{f} have no non-constant components entirely contained in V. Let z_{i} be a marked point of \mathbf{z} with $i \geq 1$. If z_{1} is contained in a non-constant component of \mathbf{f}, then

$$
\iota\left(\mathbf{f}, V, z_{i}\right) \geq \limsup _{\nu \rightarrow \infty} \iota\left(\mathbf{f}^{\nu}, V, z_{i}^{\nu}\right)
$$

If z_{i} lies on a constant component of \mathbf{f}, then

$$
\iota\left(\mathbf{f}, V, z_{i}\right) \geq \limsup _{\nu \rightarrow \infty} \sum_{\alpha_{j} T_{1}} \iota\left(\mathbf{f}^{\nu}, V, z_{j}^{\nu}\right),
$$

where $T_{1} \subset T$ is a ghost tree containing the corresponding vertex and the above sum counts for each ghost tree $T^{\prime} \subset T^{\nu}$ at most one of the z_{j}^{ν} with $\alpha_{j} \in T^{\prime}$.

Proof. Part (A) follows from the Carleman similarity principle from MS04, see pp. 74-75 in CM07. The second part follows from (A) and the definition of Gromov convergence, see pp. 75-76 in CM07.

3.7 Holomorphic curves and symplectic hypersurfaces

First, we recall the following fact from CM07 which was suggested by D. Auroux. Because of its central role we give also a proof of it here. For a given pair (M, ω) we fix $J \in \mathcal{J}_{c}(M)$ and $\alpha \in \Omega^{2}(M)$ with $[\alpha]=c_{1}(M, \omega)$.

[^22]Lemma 3.27 (cf. Lemma 8.11 in CM07]). Let $K \in \mathcal{J}_{\tau}(M, \omega)$ with $\|J-K\|<\theta_{0}$. Then for any class $A \in H_{2}(M, \mathbb{Z})$ containing a non-constant closed K-holomorphic curve we have

$$
\left\langle c_{1}(T X), A\right\rangle \leq \frac{1+\theta_{0}}{1-\theta_{0}}\|\alpha\| \omega(A)=: D_{*} \omega(A)
$$

Proof. Take any $v \in T_{x} M$. By definition we have $\|v\|=\omega_{0}(v, J v)$ and continuity yields following estimates

$$
\begin{gathered}
\alpha(v, K v) \leq|\alpha(v, K v)| \leq\|\alpha\|\|v\|\|K v\| \leq\|\alpha\|\|v\|^{2}(1+\|J-K\|) \\
\omega(v, K v) \geq(1-\|J-K\|)\|v\|^{2} \geq 0
\end{gathered}
$$

Combining both statements with $\|J-K\|<\theta_{0}$ gives

$$
\alpha(v, K v) \leq \frac{1+\theta_{0}}{1-\theta_{0}}\|\alpha\| \omega(A)
$$

Now, for a closed K-holomorphic curve $f: \Sigma \rightarrow M$ representing A we have

$$
\left\langle c_{1}(T X), A\right\rangle=\int_{\Sigma} f^{*} \alpha \leq D_{*} \int_{\Sigma} f^{*} \omega=D_{*} \omega(A)
$$

Note that the constant D_{*} depends on the pair (ω, J) and on θ_{0}. However, it does not depend on the scaling of ω. We also remark that there is an apriori estimate in case of a deformation of ω. Consider, two pairs $\left(\omega_{1}, J_{1}\right)$ and $\left(\omega_{2}, J_{2}\right)$ denote the corresponding norms by $\|\cdot\|_{i}$ for $i=1,2$. Assume that $\left\|\omega_{1}-\omega_{2}\right\|_{1}<\epsilon$ and $\left\|J_{1}-J_{2}\right\|_{1}<\epsilon$ for some $0<\epsilon<1$, i.e. the intersection $\mathcal{J}_{\tau}\left(\omega_{0}\right) \cap \mathcal{J}_{\tau}\left(\omega_{1}\right)$ is not empty by Lemma 2.5. Then the combination of Lemma 2.9 and Lemma 2.12 yields

$$
D_{*}\left(\omega_{1}, J_{1}, \theta_{0}\right)<2 D_{*}\left(\omega_{0}, J_{0}, \theta_{0}+\epsilon^{1 / 4}\right)
$$

provided that $\epsilon^{1 / 4}<\max \left\{1-\theta_{0}, \sqrt{2}-1\right\}$. Note that we have used the fact $c_{1}\left(M, \omega_{0}\right)=c_{1}\left(M, \omega_{1}\right)$.

Definition 3.28. Given a symplectic manifold (M, ω), a tame almost complex structure $K \in \mathcal{J}_{\tau}(M, \omega)$, a K-complex submanifold $V \subset M$, positive integer $l>0$ and an energy level $E>0$. Then, the regularity condition $\mathcal{R}(M, \omega, V, K, E, l)$ is satisfied, if

- all moduli spaces of simple K-holomorphic spheres in M of energy at most E are smooth manifolds of the expected dimension and
- all moduli spaces of non-constant simple K-holomorphic spheres in M of energy at most E with prescribed tangency order to V of at most l are smooth manifolds of the expected dimension.

In case $V=\emptyset$ the second assumption becomes empty and we just write $\mathcal{R}(M, \omega, K, E)$.

Now, we observe that for a Donaldson hypersurface coming from a different symplectic structure but with additional assumption we have a similar statement as Proposition 8.13 from [M07.

Proposition 3.29. Consider a symplectic hypersurface $V \subset M$ with $\mathrm{PD}(V)=$ $D\left[\omega_{1}\right]$ for some integer $D>0$ and an integer class $\left[\omega_{1}\right] \in H^{2}(M, \mathbb{Z})$. Assume that $\theta\left(V, \omega_{0}, J_{0}\right)<\theta_{2}$. Fix a $K \in \mathcal{J}\left(M, \omega_{0}, V, J_{0}, \theta_{0}\right)^{1}, E>0$ and assume $K \in \mathcal{J}_{\tau}\left(\omega_{1}\right)$. Then the regularity assumption $\mathcal{R}\left(M, \omega_{0}, V, K, E, D_{*} E+n\right)^{2}$ implies that

1. if $D>\left(D_{*} E+n-4\right)$, then all K-holomorphic spheres in V of energy at most E are constant.
2. If $D>2\left(D_{*} E+n-2\right)$, then every non-constant K-holomorphic sphere in M of energy at most E intersects V in at least 3 distinct points in the domain.

Proof. The proof is very similar to the proof of Proposition 8.13 from CM07. For the first statement the only difference is the index calculation:

$$
\begin{aligned}
\operatorname{ind}(A) & =2(n-1)-6+2\left\langle c_{1}(T V), A\right\rangle \\
& =2 n-8+2\left\langle c_{1}(M), A\right\rangle-2 D \omega_{1}(A) \\
& \leq 2 n-8+2 D_{*} \omega_{0}(A)-2 D \omega_{1}(A) \\
& \leq 2\left(n-4+D_{*} E-D\right)
\end{aligned}
$$

where the inequalities follow from Lemma 3.27, $\omega_{0}(A) \leq E$ and $\omega_{1}(A) \geq 1$. Hence, the index is negative if $D>\left(D_{*} E+n-4\right)$. Note that the constant $D_{*}=D_{*}\left(\omega_{0}, J_{0}, \theta_{0}\right)$ is chosen wrt. $\left(\omega_{0}, J_{0}\right)$.
For the second statement, arguing in the same manner, we consider $f: S^{2} \rightarrow$ M a non-constant K-holomorphic curve representing class A of energy at most E intersecting V in at most 2 distinct points in the domain. We assume that f is simple, otherwise replace it by the underlying simple curve.
We consider the moduli space of simple K-holomorphic spheres representing A with the local intersection number at least $L \leq\left\lfloor D_{*} E\right\rfloor+n+1$ with V at one point, say $\tilde{\mathcal{M}}^{s}(M, V, L, A, K)$. By Proposition 3.24 this space is a smooth manifold of dimension

$$
\operatorname{dim}_{\mathbb{R}} \tilde{\mathcal{M}}^{*}(M, V, L, A, K)=2 n-4+2 c_{1}(A)-2 L \geq 0
$$

Hence, we have again by Lemma 3.27

[^23]$$
L \leq c_{1}(A)+n-2 \leq D_{*} \omega_{0}(A)+n-2 \leq D_{*} E+n-2 .
$$

Since K tames ω_{1}, we get $\omega_{1}(A) \geq 1$, so

$$
[f] \cdot[V]=D \omega_{1}(A)>2\left(D_{*} E+n-2\right) \geq 2 L \geq 2
$$

Hence, f intersects V in at least 3 distinct points in the domain.
We get an analogous statement for families of almost complex structures. We recall from p. 89 of CM07 the following:

Let $\mathcal{K} \subset \mathcal{J}\left(M, \omega_{0}, V, J_{0}, \theta_{0}\right)$ be a family of almost complex structures smoothly depending on a parameter $\tau \in P$ with P a smooth k-dimensional manifold. Then the moduli spaces of \mathcal{K}-holomorphic spheres are moduli spaces of pairs (u, τ) with $\tau \in P$ and u a K_{τ}-holomorphic sphere. The corresponding transformation groups should act on u only. So the expected dimension of such moduli spaces is increased exactly by k and we get the following

Proposition 3.30 (analog of Proposition 8.14 from [CM07], cf. Propositon 3.29). Consider a symplectic hypersurface $V \subset M$ with $\mathrm{PD}(V)=D\left[\omega_{1}\right]$ for some integer $D>0$, an integer class $\left[\omega_{1}\right] \in H^{2}(M, \mathbb{Z})$ and $\theta\left(V, \omega_{0}, J_{0}\right)<$ θ_{2}. Fix a $\mathcal{K} \subset \mathcal{J}\left(M, \omega_{0}, V, J_{0}, \theta_{0}\right), E>0$ and assume $\mathcal{K} \subset \mathcal{J}_{\tau}\left(\omega_{1}\right)$. Then the regularity condition $\mathcal{R}\left(M, \omega_{0}, V, \mathcal{K}, E, D_{*} E+n\right)^{1}$ implies that

1. if $D>\left(D_{*} E+n-4+k\right)$, then all \mathcal{K}-holomorphic spheres in V of energy at most E are constant,
2. if $D>2\left(D_{*} E+n-2\right)+k$, then every non-constant \mathcal{K}-holomorphic sphere in M of energy at most E intersects V in at least 3 distinct points in the domain.

The next statement is an adaptation of Lemma 8.18 from CM07.
Lemma 3.31. Given two transversely intersecting symplectic hypersurfaces $V_{0}, V_{1} \subset M$ with $P D\left(V_{0}\right)=D_{0}\left[\omega_{0}\right]$ and $P D\left(V_{1}\right)=D_{1}\left[\omega_{1}\right]$ for integers $D_{0}, D_{1}>0$ and an integer class $\left[\omega_{1}\right] \in H^{2}(M, \mathbb{Z})$. Fix a $K \in \mathcal{J}\left(M, V_{0} \cup\right.$ $\left.V_{1}, J, \theta_{0}\right)^{2}$ and an energy level $E>0$. Assume the regularity condition $\mathcal{R}\left(V_{0} \cap V_{1}, \omega_{0}, K, E\right)$ and that $K \in \mathcal{J}_{\tau}\left(\omega_{1}\right)$.
Then $D_{0}>\max \left\{D_{*}, D_{*}+n-5\right\}$ implies that any K-holomorphic sphere contained in $V_{0} \cap V_{1}$ with energy at most E is constant.

Proof. First, observe the decomposition of the pullback bundle

$$
T X_{\mid V_{0} \cap V_{1}}=T\left(V_{0} \cap V_{1}\right) \oplus N\left(V_{0} \cap V_{1}\right)=T\left(V_{0} \cap V_{1}\right) \oplus N\left(V_{0}\right) \oplus N\left(V_{1}\right)
$$

but since $c_{1}\left(N V_{i}\right)=\mathrm{PD}\left[V_{i}\right]$ and $\mathrm{PD}\left[V_{i}\right]=D_{i}\left[\omega_{i}\right]$, it implies

[^24]$$
c_{1}\left(T\left(V_{0} \cap V_{1}\right)\right)=c_{1}\left(T X_{\mid V_{0} \cap V_{1}}\right)-D_{0}\left[\omega_{0}\right]-D_{1}\left[\omega_{1}\right] .
$$

By regularity condition, the expected dimension of simple K-holomorphic spheres representing class A is given by

$$
\begin{aligned}
\operatorname{ind}(A) & =2(n-2)-6+2 c_{1}\left(T\left(V_{0} \cap V_{1}\right)\right)(A) \\
& =2 n-10+2 c_{1}\left(T X_{\mid V_{0} \cap V_{1}}\right)(A)-2 D_{0} \omega_{0}(A)-\underbrace{\operatorname{PD}\left[V_{1}\right](A)}_{=D_{1} \omega_{1}(A)>0} \\
& \leq 2 n-10+2\left(c_{1}\left(T X_{\mid V_{0} \cap V_{1}}\right)(A)-D_{0} \omega_{0}(A)\right) \\
& \leq 2 n-10+2\left(D_{*}-D_{0}\right) \omega_{0}(A) .
\end{aligned}
$$

The last inequality follows from Lemma 3.27 (with $D_{*}=D_{*}\left(\omega_{0}, J_{0}, \theta_{0}\right)$) and $c_{1}(T X)(A)=c_{1}\left(T X_{\mid V_{0} \cap V_{1}}\right)(A)$ for any A represented by a K-holomorphic curve lying in $V_{0} \cap V_{1}$.
Now, observe that $\omega_{0}(A) \geq 1$ for $A \neq 0$. Then $D_{0}>\max \left\{D_{*}, D_{*}+n-5\right\}$ would imply $\operatorname{ind}(A)<0$ and hence together with the regularity assumption the claim follows.

Remark 3.32. Observe that the lower bound for the degree of V_{0} does not depend on V_{1}, as long as $\mathcal{J}\left(M, V_{0} \cup V_{1}, J, \theta_{0}\right) \neq \emptyset$.

We fix constants $0<\theta_{2}<\theta_{1}<\theta_{0}<1, \eta>0$, such that (everything measured wrt. $\left.\left(\omega_{0}, J_{0}\right)\right)$

$$
\angle_{m}\left(V_{0}, V_{1}\right) \geq \eta \text { and } \theta\left(V_{i}, \omega_{0}, J_{0}\right)<\theta_{2} \text { for } i=1,2
$$

and the space ($\mathrm{of} \omega_{0}$-tame almost complex structures) $\mathcal{J}\left(M, V_{0} \cap V_{1}\right.$) contains a nonempty open subspace $\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}\right)$, whose any two elements can be connected in the space $\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{0}\right)$. Recall that $\mathrm{PD}\left[V_{0}\right]=D_{0}\left[\omega_{0}\right]$ and $\operatorname{PD}\left[V_{1}\right]=D_{1}\left[\omega_{1}\right]$ for integer classes $\left[\omega_{0}\right],\left[\omega_{1}\right] \in H^{2}(M, \mathbb{Z})$. We will see in the last chapter that such a choice of constants exists. Next, we give slight generalizations of the Definitions 8.15 and 8.19 from [M07.

Definition 3.33. For the hypersurface V_{1} and fixed $E>0$ we define

$$
\mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E\right) \subset \mathcal{J}\left(M, V_{1}, J_{0}, \theta_{1}\right)
$$

to be the space of ω_{0}-tame almost complex structures K, such that

1. all K-holomorphic spheres of energy at most E contained in V_{1} are constant,
2. every non-constant K-holomorphic sphere of energy at most E in M intersects V_{1} in at least 3 distinct points in the domain.

For the pair of hypersurfaces $\left(V_{0}, V_{1}\right)$ and again a fixed $E>0$ we set

$$
\mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right) \subset \mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}\right)
$$

as the subset of those K, such that the following holds

1. all K-holomorphic spheres of energy at most E contained in $V_{0} \cup V_{1}$ are constant,
2. every non-constant K-holomorphic sphere of energy at most E in M intersects each V_{i} in at least 3 distinct points in the domain for $i=1,2$.

Finally, we define the constant

$$
D^{*}=D^{*}\left(\omega_{0}, J_{0}, E, \theta_{0}\right):=2 D_{*}\left(\omega_{0}, J_{0}, \theta_{0}\right) E+2 n
$$

The following statement is a direct analog of Corollaries 8.16 and 8.20. Proofs easily carry over to our situation.

Lemma 3.34. Fix an energy level $E>0$. Consider a hypersurface V_{1} as above and assume $D_{1}>D^{*}=D^{*}\left(\omega_{0}, J_{0}, E\right)$. Then the spaces $\mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)$ are open and dense in $\mathcal{J}\left(M, V_{1}, J_{0}, \theta_{1}\right)$ for all $0<E^{\prime} \leq E$. Moreover, any two elements in $\mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)$ can be connected by a path in $\mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{2}, E^{\prime}\right)$.
For a pair of hypersurfaces V_{0}, V_{1} the assumption $D_{i}>D^{*}=D^{*}\left(\omega_{0}, J_{0}, E\right)$ implies that the spaces $\mathcal{J}^{*}\left(M, V_{0} \cap V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)$ are open and dense in $\mathcal{J}\left(M, V_{0} \cap V_{1}, J_{0}, \theta_{1}\right)$ for all $0<E^{\prime} \leq E$. Furthermore, any two elements from $\mathcal{J}^{*}\left(M, V_{0} \cap V_{1}, J_{0}, \theta_{2}, E^{\prime}\right)$ can be connected by a path in $\mathcal{J}^{*}\left(M, V_{0} \cap\right.$ $\left.V_{1}, J_{0}, \theta_{2}, E^{\prime}\right)$.

Proof. We start with a single hypersurface V_{1}.
Openness. Assume there exists for some $K \in \mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)$ a sequence $K^{\nu} \in \mathcal{J}\left(M, V_{1}, J_{0}, \theta_{1}\right)$ of non-constant K^{ν}-holomorphic spheres of energy at most E^{\prime} in V_{1} with $K^{\nu} \rightarrow K$. Hence, Gromov compactness would imply existence of a non-constant K-holomorphic sphere of energy at most $E^{\prime}<E$, contradicting condition (1) in the Definition 3.33 . So this condition is open.
Now, assume the existence of a sequence $K^{\nu} \in \mathcal{J}\left(M, V_{1}, J_{0}, \theta_{1}\right)$ converging to a $K \in \mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)$ not satisfying the condition (2) from Definition 3.33 So, there exists a sequence of K^{ν}-holomorphic spheres of energy at most E^{\prime} intersecting V_{1} in at most 2 points. Again, Gromov compactness yields a non-constant K-holomorphic curve intersecting V_{1} in at most 2 points, hence a contradiction. This shows that condition (2) is also open.
Density. The argument is literally the same as in CM07. The main point is that the set of all $K \in \mathcal{J}\left(M, V_{1}, J_{0}, \theta_{1}\right)$ satisfying the regularity condition $\mathcal{R}\left(M, \omega_{0}, V_{0}, K, E, D_{*} E+n\right)$ is actually dense. Indeed, the first point follows from Theorem 3.1.5 from MS04 and the second from Proposition 6.9 in CM07. Observe that, once the regularity condition is satisfied, the fact that V_{1} is not Poincaré dual to a multiple of ω_{0}, plays no role.
Connectedness. Given $K_{0}, K_{1} \in \mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{2}, E^{\prime}\right)$, Lemma 2.15 implies that they can be connected by a path $K_{t} \in \mathcal{J}\left(M, V_{1}, J_{0}, \theta_{1}\right)$ for $t \in[0,1]$. Again as in CM07 we can achieve the regularity condition by arbitrary small perturbation of the path, say K_{t}^{\prime}, such that K_{i}^{\prime} is arbitrary close to K_{i} for $i=1,2\left(\right.$ so $\left.K_{t}^{\prime} \in \mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)\right)$. So, openness of $\mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)$
implies that K_{0} and K_{1} can be connected by a path in $\mathcal{J}^{*}\left(M, V_{1}, J_{0}, \theta_{1}, E^{\prime}\right)$. The situation of the pair V_{0}, V_{1} is analogous to that in Corollary 8.20 in CM07. The only difference is that we, according to Lemma 3.31, have to rule out non-constant spheres in $V_{0} \cap V_{1}$.

Hence, we arrive at the following definitions for perturbation spaces consisting of coherent tame almost complex structures required in the last chapter.

Definition 3.35 (cf. Definition 9.9 in [CM07]). Fix $l \geq 3$, consider \mathcal{J}_{l+1} the set of coherent almost complex structures from Section 3.2 and define
$\mathcal{J}_{l+1}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}\right):=\left\{K \in \mathcal{J}_{l+1} \mid K(\zeta) \in \mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}\right) \forall \zeta \in \overline{\mathcal{M}}_{l+1}\right.$, $K(\zeta)_{\mid V_{0} \cup V_{1}}$ is independent of $\left.\zeta\right\}$.

For $\theta_{2}<\theta_{1}$ and $E>0$ a subset $B \subset \mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right)$ is called $\theta_{\mathbf{2}}$ contractible if it is contractible to a point lying in $\mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{2}, E\right)$. Using this define

$$
\begin{aligned}
\mathcal{J}_{l+1}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, \theta_{2}, E\right):=\{ & K \in \mathcal{J}_{l+1} \mid K(\zeta) \in B \forall \zeta \in \overline{\mathcal{M}}_{l+1}, \\
& B \subset \mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right) \theta_{2} \text {-contractible, } \\
& \left.K(\zeta)_{\mid V_{0} \cup V_{1}} \text { is independent of } \zeta\right\}
\end{aligned}
$$

Note that by Corollary 2.16 we can define for $0 \leq \theta_{1}<\frac{1}{2}$

$$
\mathcal{J}_{l+1}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right):=\mathcal{J}_{l+1}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, \frac{2}{5} \theta_{1}, E\right)
$$

This combined with Lemma 3.34 implies
Lemma 3.36. For fixed $l \geq 3$ and $E>0$ the subset

$$
\mathcal{J}_{l+1}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right) \subset \mathcal{J}_{l+1}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}\right)
$$

is nonempty and open.

Moduli spaces and Donaldson hypersurfaces

4.1 Moduli spaces and Donaldson pairs

In this section we recollect definitions and theorems from CM07 needed later on. We consider a symplectic manifold (M, ω) with $[\omega] \in H^{2}(M, \mathbb{Z})$ and $\operatorname{dim}_{\mathbb{R}} M=2 n \geq 4$.

Denote by $\overline{\mathcal{M}}_{l}$ the Deligne-Mumford space of stable genus zero curves with l marked points. Let $\pi_{l}: \overline{\mathcal{M}}_{l+k} \rightarrow \overline{\mathcal{M}}_{l}$ be the projection that forgets first k marked points. For a symplectic hypersurface $V \subset M$ we define the space

$$
\begin{aligned}
\mathcal{M}_{k+l}(A, K, V):=\{ & \left(z_{1}, . ., z_{k+l}, f\right) \mid f \in \mathcal{C}^{\infty}\left(S^{2}, M\right),[f]=A, \\
& f \text { is } \pi_{l}^{*} K \text {-holomorphic, } z_{i} \in S^{2} \text { pairwise distinct and } \\
& \left.\phi\left(z_{k+1}\right), \ldots, \phi\left(z_{l}\right) \in V\right\} / \operatorname{Aut}\left(S^{2}\right),
\end{aligned}
$$

for a fixed $A \in H_{2}(M, \mathbb{Z}), V \subset M$ symplectic hypersurface and $K \in$ $\mathcal{J}_{l+1}(M, V, J, \theta)$.
Let T be a $(k+l)$-labelled l-stable tree (cf. Chapter 3), and $A_{\alpha} \in H_{2}(M, \mathbb{Z})$ for vertices $\alpha \in T$. Define the space
$\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V\right):=\{(\mathbf{z}, \mathbf{f}) \mid(\mathbf{z}, \mathbf{f})$ nodal map modelled over l-stable
weighted tree $\left(T,\left\{A_{\alpha}\right\}\right), \mathbf{f}$ is $\pi_{l}^{*} K$-holomorphic, i.e.
$(\mathbf{z}, \mathbf{f}) \in \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K\right)$ and the last l marked points:
$\left.f_{\alpha_{k+1}}\left(z_{\alpha_{k+1}}\right), \ldots, f_{\alpha_{k+l}}\left(z_{\alpha_{k+l}}\right) \in V\right\}$.

Definition 4.1. Fix an energy level $E>0$ and constants $0<\Theta_{2}<\Theta_{1}<$ $\Theta_{0}<1$. A Donaldson pair of degree $D>0$ is a tuple (V, J) with $J \in \mathcal{J}_{c}(\omega)$ and an ω-symplectic hypersurface $V \subset M$, such that the following holds

- $P D([V])=D[\omega]$ and $D>D^{*}\left(\omega, J, E, \Theta_{0}\right)$ (degree assumption)
- $\theta(V)=\theta(V, J, \omega)<\Theta_{2}$ (smallness of the Kähler angle)
- The space $\mathcal{J}\left(M, V, J, \Theta_{1}\right)$ is nonempty and any two elements from it can be connected by a path lying in $\mathcal{J}\left(M, V, J, \Theta_{0}\right)$.

Remark 4.2. Existence of such pairs follows from the Donaldson hypersurface theorem combined with results from sections 3.7 and 2.1 (see end of this chapter). Although energy E was not in the original definition from CM07, we included it here in order to match our general construction. In the case of only one hypersurface (Poincaré dual to $D[\omega]$) one can indeed take $E=\omega(A)$, obtaining identical statements.

Observe that for $l:=D \omega(A)$ for any $A \in H_{2}(M, \mathbb{Z})$ with $\omega(A) \leq E$ assumption $D \geq D^{*}$ implies that the space $\mathcal{J}_{l+1}^{*}\left(M, V, J, \Theta_{1}, E\right)$ is nonempty. Note that l is the intersection number of V and A, since $D \omega(A)=\int_{A} D \omega=$ $\int_{A} P D[V]$.

Theorem 4.3 (cf. Theorem 1.1 in [CM07]). Fix an energy level $E>0$. Then for any Donaldson pair (V, J) of degree D and integer multiples $l \geq 3$ of D there exist nonempty sets $\mathcal{J}_{l+1}^{\text {reg }}\left(M, V, J, \Theta_{1}\right) \subset \mathcal{J}_{l+1}\left(M, V, J, \Theta_{1}\right)$, such that for any $K \in \mathcal{J}_{l+1}^{\text {reg }}\left(M, V, J, \Theta_{1}\right)$ the following holds.
Consider $A \in H_{2}(M, \mathbb{Z})$ with $l=D \omega(A)$ and $\omega(A) \leq E$. For $k \geq 3$ let T be an $(k+l)$ labelled l-stable tree with $A_{\alpha} \in H_{2}(M, \mathbb{Z})$ for $\alpha \in T$, such that $\sum A_{\alpha}=$ A and every ghost tree contains at most one of the last l marked points. Then the moduli space $\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V\right)$ is a smooth manifold of dimension

$$
\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V\right)=2\left(n-3+k+c_{1}(A)-e(T)\right) .
$$

Proof. For the proof we refer to pp. 96-97 (Section 9) of CM07. Note that the difference is just of formal nature. The original proof uses the spaces $\mathcal{J}^{*}\left(M, V, J, \Theta_{1}, E_{l}\right)$ with $E_{l}:=l / D=\omega(A)$. We are using the spaces $\mathcal{J}^{*}\left(M, V, J, \Theta_{1}, E\right)$ with $E_{l}<E$ instead, which are still open and dense by Lemma 3.34 and our (stronger) assumption $D \geq D^{*}\left(\omega, J, \Theta_{0}, E\right)$.

The key step in establishing Gromov-Witten invariants is to show that the evaluation map

$$
e v^{k}: \mathcal{M}_{k+l}(A, K, V) \longrightarrow M^{k}
$$

that evaluates first k marked points forms a pseudocycle. See Appendix A. 2 for details on pseudocycles.

Theorem 4.4 (cf. Theorem 1.2 in CM07]). Fix an energy level $E>0$. Given a Donaldson pair (V, J). Then for any $k \geq 1$ the evaluation map ev ${ }^{k}$: $\mathcal{M}_{k+l}(A, K, V) \longrightarrow M^{k}$ forms a pseudocycle ${e v^{k}}^{k}(A, J, V, K)$ of real dimension $2\left(n-3+k+c_{1}(A)\right)=: 2 d$.

Proof. We only sketch the proof here, see pp. 97-98 (Section 9) of CM07 for details. The first issue is to show that l-stability is preserved by Gromov convergence.

Assume that the sequence $\left(z^{j}, f^{j}\right) \in \mathcal{M}_{k+l}(A, K, V)$ converges to a stable map (z, f), such that z is not l-stable. By Gromov compactness (see Section 3.5) f is $K_{\pi_{l}(z)}$-holomorphic. The assumption implies that there is a non-constant component $f_{\alpha}: S_{\alpha} \rightarrow M$ with the domain S_{α} containing an intersection point with V, which is neither a node nor one of the last l points. Gromov convergence implies the same statement for f^{j} for large j. Hence, one gets $[V] \cdot\left[f^{j}\right]>[V] \cdot A=: l$, which is a contradiction, since $\left[f^{j}\right]=A$ (homology class is preserved by Gromov convergence).
It follows from Theorem 4.3 that for any stable tree T (with $e(T)>0$) the associated space $\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V\right)$ has at least codimension 2 in the space $\mathcal{M}_{k+l}(A, K, V)$, if any ghost tree $T^{\prime} \subset T$ contains at most one of the last l marked points.
If the ghost tree T^{\prime} has more than one vertex, the statement follows immediately from Proposition 3.24 . The case $\left|T^{\prime}\right|=1$ occurs if $A_{\alpha} \neq 0$ for exactly one vertex α, but by assumption that two of the last marked points belong to T^{\prime}, imply the intersection number of f_{α} with V is at least 2 , leading again to a strata of codimension at least 2 (see p. 98 of [CM07]).

It was shown (see Theorem 1.3 in [CM07]) that up to a rational cobordism the pseudocycle $\frac{1}{l!} \mathrm{ev}^{k}(A, J, V, K)$ does not depend on a particular choice of the perturbation K and the Donaldson pair (V, J).

The following is actually not needed for the proof of the main result. However, considerations from Section 3.7 allow us to show analogous results as above for a more general version of a Donaldson pair.

Definition 4.5. Fix an energy level $E>0$ and constants $0<\Theta_{2}<\Theta_{1}<$ $\Theta_{0}<1$. A (generalized) Donaldson pair of degree $D>0$ is a tuple (V, J) with $J \in \mathcal{J}_{c}(\omega)$ and an ω-symplectic hypersurface $V \subset M$, such that the following holds

- $P D([V])=D\left[\omega^{\prime}\right]$ with ω^{\prime} a symplectic form and $\left[\omega^{\prime}\right] \in H_{2}(M, \mathbb{Z})$
- $D>D^{*}\left(\omega, J, E, \Theta_{0}\right)$
- $\theta(V)=\theta(V, J, \omega)<\Theta_{2}$
- The space $\mathcal{J}\left(M, V, J, \Theta_{1}\right)$ is nonempty and any two elements from it can be connected by a path lying in $\mathcal{J}\left(M, V, J, \Theta_{0}\right)$
- $\mathcal{J}\left(M, V, J, \Theta_{0}\right)=: \mathcal{J}\left(M, V, \omega, J, \Theta_{0}\right) \subset \mathcal{J}_{\tau}\left(M, \omega^{\prime}\right)$.

The generalization of Theorems 4.3 and 4.4 to such a pair is straightforward. Once one assumes for any $A \in H_{2}(M, \mathbb{Z})$ that $\max \left\{\omega(A), \omega^{\prime}(A)\right\}<E$ and sets $l=D \omega^{\prime}(A)$, the proofs become identical, since the condition $D \geq D^{*}$ insures that the corresponding perturbation spaces are open and dense in $\mathcal{J}\left(M, V, J, \Theta_{0}\right)$. One also could take arguments from the next section for the case $V_{0}=\emptyset$.

4.2 Moduli spaces and Donaldson quadruples

In this section we sligthly extend the notion of Donaldson quadruple introduced in CM07 (cf. Definition 9.7, p. 99). In order to keep track of different symplectic structures, we fix a symplectic manifold $\left(M, \omega_{0}\right)$ with $\left[\omega_{0}\right] \in H^{2}(M, \mathbb{Z})$.

Definition 4.6. Fix an energy level $E>0$ and constants $0<\Theta_{3}<\Theta_{2}<$ $\Theta_{1}<\Theta_{0}<1,0<\eta$. A Donaldson quadruple of bi-degree $D_{0}, D_{1}>0$ consists of $J_{0} \in \mathcal{J}_{c}(\omega)$ and ω_{0}-symplectic hypersurfaces $V_{0}, V_{1} \subset M$, such that following conditions hold

- $\angle_{m}\left(V_{0}, V_{1}\right) \geq \eta$
- $\quad P D\left(\left[V_{0}\right]\right)=D_{0}\left[\omega_{0}\right]$
- $P D\left(\left[V_{1}\right]\right)=D_{1}\left[\omega_{1}\right]$ with ω_{1} a symplectic structure and $\left[\omega_{1}\right] \in H_{2}(M, \mathbb{Z})$
- $\min \left(D_{0}, D_{1}\right) \geq \max \left\{D^{*}\left(\omega_{0}, J_{0}, E, \Theta_{0}\right), D^{*}\left(\omega_{1}, J_{1}, E, \Theta_{0}\right)\right\}$ for $J_{1} \in \mathcal{J}_{c}\left(\omega_{1}\right)$ with $^{1}\left\|J_{0}-J_{1}\right\|_{0} \leq \Theta_{3}$
- $\theta\left(V_{i}\right)=\theta\left(V_{i}, J_{0}, \omega_{0}\right)<\Theta_{3}$ for $i=0,1$
- The space $\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{2}\right)$ is nonempty and any two elements from it can be connected by a path lying in $\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}\right)$
- $\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{0}\right)=: \mathcal{J}\left(M, V_{0} \cup V_{1}, \omega_{0}, J_{0}, \Theta_{0}\right) \subset \mathcal{J}_{\tau}\left(M, \omega_{1}\right)$.

Remark 4.7. Taking $\omega_{1}=\omega_{0}$ and $J_{0}=J_{1}$ yields (up to E-dependency) the original definition. In that case the last condition is empty.
Existence of quadruples as defined above is shown at the end of the chapter. The definition might look asymmetric concerning V_{0}, V_{1}, since we measure anything wrt. $\left(\omega_{0}, J_{0}\right)$. A symmetric version (with $\operatorname{PD}\left(\left[V_{i}\right]\right)=D_{i}\left[\omega_{i}\right]$ for $i=$ $1,2)$ is possible, but is not needed, since by assumption on degrees D_{1} it follows that for a $J_{1} \in \mathcal{J}_{c}\left(\omega_{1}\right)$ with $\left\|J_{0}-J_{1}\right\|_{0} \leq \Theta_{3}$ the tuple $\left(V_{1}, J_{1}\right)$ is a Donaldson pair wrt. symplectic form ω_{1} and a slightly smaller Θ_{1}.

In analogy to the previous section we define moduli space associated to a pair of symplectic hypersurfaces $V_{0}, V_{1} \subset M$.
Definition 4.8. Fix $k, l_{0}, l_{1}>0, A \in H_{2}(M, \mathbb{Z})$, and denote $z \in \overline{\mathcal{M}}_{k+l_{0}+l_{1}+1}$ via and $K \in \mathcal{J}_{\tau}(M, \omega)$ let

$$
\begin{aligned}
\mathcal{M}_{k+l_{0}+l_{1}}\left(A, K, V_{0} \cup V_{1}\right):=\{(& \left.f, z_{0}, \ldots, z_{k+l_{0}+l_{1}}\right) \mid f: S^{2} \rightarrow M, \bar{\partial}_{K} f=0 \\
& {[f]=A, z_{i} \in S^{2} \text { pairwise distinct; } } \\
& f\left(z_{k+1}\right), \ldots, f\left(z_{k+l_{0}}\right) \in V_{0} ; \\
& \left.f\left(z_{k+l_{0}+1}\right), \ldots, f\left(z_{k+l_{0}+l_{1}}\right) \in V_{1}\right\} / A u t\left(S^{2}\right) .
\end{aligned}
$$

Denote by $\overline{\mathcal{M}}_{k+l_{0}+l_{1}+1}$ the Deligne-Mumford space. For $I \subset\{k+1, \ldots, k+$ $\left.l_{0}+l_{1}\right\}$ let $\pi_{I}: \overline{\mathcal{M}}_{k+l_{0}+l_{1}+1} \longrightarrow \overline{\mathcal{M}}_{|I|+1}$ be the standard projection that forgets

[^25]marked points outside I and stabilizes. Given an I-stable $\left(k+l_{0}+l_{1}\right)$-labelled tree $T, A_{\alpha} \in H^{2}(M, \mathbb{Z})$ with $\alpha \in T$ and $\sum A_{\alpha}=A$. We define ${ }^{1}$
\[

$$
\begin{aligned}
\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right):=\{ & (\mathbf{z}, \mathbf{f}) \in \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K\right) \mid \\
& f_{\alpha_{k+1}}\left(z_{k+1}\right), \ldots, f_{\alpha_{k+l_{0}}}\left(z_{k+l_{0}}\right) \in V_{0}, \\
& \left.f_{\alpha_{k+l_{0}+1}}\left(z_{k+l_{0}+1}\right), \ldots, f_{\alpha_{k+l_{0}+l_{1}}}\left(z_{k+l_{0}+l_{1}}\right) \in V_{1}\right\} .
\end{aligned}
$$
\]

The next theorem is a transversality result for J-holomorphic spheres to a Donaldson quadruple. It extends Theorem 9.8 from CM07 to our definition of the Donaldson quadruple.

Theorem 4.9. Fix an energy level $E>0$. Given a Donaldson quadruple $\left(\omega_{0}, J_{0}, V_{0}, V_{1}\right)$. For any fixed $A \in H_{2}(M, \mathbb{Z})$ with $\omega_{0}(A)>0$ and

$$
\max \left\{\omega_{0}(A), \omega_{1}(A)\right\} \leq E
$$

let $l_{0}:=\operatorname{deg}\left(V_{0}\right) \omega_{0}(A)$ and let $l_{1}:=\operatorname{deg}\left(V_{1}\right) \omega_{1}(A)$. For any $\bar{l} \geq 3$ there exist nonempty sets

$$
\mathcal{J}_{\bar{l}+1}^{\mathrm{reg}}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right) \subset \mathcal{J}_{\bar{l}+1}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}\right)
$$

with the following property. Fix $k \geq 0$, a subset $I \subset\left\{k+1, \ldots, k+l_{0}+l_{1}\right\}$ of length $|I| \geq \max \left(3, \min \left(l_{0}, l_{1}\right)\right)$, and an I-stable $\left(k+l_{0}+l_{1}\right)$-labelled tree T. Take classes $A_{\alpha} \in H_{2}(M, \mathbb{Z})$ for $\alpha \in T$ with $\sum A_{\alpha}=A$ and assume that any ghost tree in $\left(T,\left\{A_{\alpha}\right\}\right)$ contains at most one of the last $l_{0}+l_{1}$ marked points. Then for any $K \in \mathcal{J}_{|I|+1}^{\text {reg }}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)$ the moduli space $\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right)$ is a smooth manifold of real dimension

$$
\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right)=2\left(n-3+k+c_{1}(A)-e(T)\right) .
$$

Proof. First, we set $E^{\prime}:=\max \left(\omega_{0}(A), \omega_{1}(A)\right)$. Then it follows from Lemma 3.34 that the subset of ω-tame almost complex structures

$$
\mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J, \Theta_{1}, E\right) \subset \mathcal{J}\left(M, V_{0} \cup V_{1}, J, \Theta_{1}\right)
$$

is open and dense, moreover by Lemma 3.36 it follows that the subset of coherent ω-tame almost complex structures

$$
\mathcal{J}_{|I|+1}^{*}\left(M, V_{0} \cup V_{1}, J, \Theta_{1}, E\right) \subset \mathcal{J}_{|I|+1}\left(M, V_{0} \cup V_{1}, J, \Theta_{1}\right)
$$

is nonempty and open. Now, fix I as above and recall that

$$
\pi_{I}: \overline{\mathcal{M}}_{k+l_{0}+l_{1}+1} \longrightarrow \overline{\mathcal{M}}_{|I|+1}
$$

[^26]is the projection given by forgetting marked points outside of I and stabilizing. Note that for a given $K \in \mathcal{J}_{|I|+1}^{*}\left(M, V_{0} \cup V_{1}, J, \Theta_{1}, E\right)$ a curve $f: S^{2} \rightarrow M$ is called K-holomorphic, if $\bar{\partial}_{\pi_{I}^{*} K} f=0$. So, for a fixed I stable tree T and classes $\left\{A_{\alpha}\right\}$ as above take $K \in \mathcal{J}_{|I|+1}^{*}\left(M, V_{0} \cup V_{1}, J, \Theta_{1}, E\right)$ and consider the moduli space of stable maps modelled over $\left(T,\left\{A_{\alpha}\right\}\right)$, i.e. the space $\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right)$. It follows by Lemma 3.34 that any nonconstant component $(\mathbf{z}, \mathbf{f}) \in \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right)$ intersects the complement $M-\left(V_{0} \cup V_{1}\right)$, since $\omega_{0}\left(A_{\alpha}\right) \leq E^{\prime}\left(\right.$ and $\left.\omega_{1}\left(A_{\alpha}\right) \leq E^{\prime}\right)$ for any α. Hence, for any $K \in \mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)$ Proposition 3.24 yields the Baire set $\mathcal{J}_{|I|+1}^{\text {reg }}\left(M-V_{0} \cup V_{1},\left\{V_{0}, V_{1}\right\}, K\right) \subset \mathcal{J}_{|I|+1}\left(M-V_{0} \cup V_{1}\right)$ with k replaced by $k+l_{0}+l_{1}$. Then define
\[

$$
\begin{aligned}
\mathcal{J}_{|I|+1}^{\mathrm{reg}}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E^{\prime}\right):= & \bigcup_{K \in \mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E^{\prime}\right)} \\
& {\left[\mathcal{J}_{|I|+1}^{\mathrm{reg}}\left(M-V_{0} \cup V_{1},\left\{V_{0}, V_{1}\right\}, J_{0}\right) \cap \mathcal{J}_{|I|+1}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E^{\prime}\right)\right] . }
\end{aligned}
$$
\]

Then, for any $K \in \mathcal{J}_{|I|+1}^{\text {reg }}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)$ and any I-stable tree T as above, Proposition 3.24 implies that the space $\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right)$ is a smooth manifold of dimension

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right)= & 2 n-6+2 c_{1}(A)+2\left(k+l_{0}+l_{1}\right)-2 e(T) \\
& -l_{0}\left(2 n-\operatorname{dim}_{\mathbb{R}}\left(V_{0}\right)\right)-l_{1}\left(2 n-\operatorname{dim}_{\mathbb{R}}\left(V_{1}\right)\right) \\
= & 2\left(n-3+c_{1}(A)+k-e(T)\right)
\end{aligned}
$$

The next statement is a compactness result. It shows that in our special situation the space of domain stable maps is actually compact. It is basically the statement of Proposition 9.10 in [CM07] for the case $\omega_{0} \neq \omega_{1}$.

Theorem 4.10. Fix an energy level $E>0$ and a Donaldson quadruple $\left(\omega_{0}, J_{0}, V_{0}, V_{1}\right)$. For $A \in H_{2}(M, \mathbb{Z})$ assume $\max \left\{\omega_{0}(A), \omega_{1}(A)\right\} \leq E$ and set $l_{0}:=\operatorname{deg}\left(V_{0}\right) \omega_{0}(A), l_{0}:=\operatorname{deg}\left(D_{0}\right) \omega_{0}(A)$. For $k \geq 0$ take a subset

$$
I \subset\left\{k+1, \ldots, k+l_{0}+l_{1}\right\} \text { with }\left\{k+1, \ldots, k+l_{0}\right\} \subset I
$$

and fix $K \in \mathcal{J}_{|I|+1}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}\right)$.
Assume that a sequence of K-holomorphic spheres $f^{\nu} \in \mathcal{M}_{k+l_{0}+l_{1}}\left(A, K, V_{0} \cup\right.$ $\left.V_{1}\right)$ has a Gromov-limit - the stable map (f, \mathbf{z}). Then the underlying nodal curve \mathbf{z} is I-stable.
Moreover, the same statement holds if $\left\{k+l_{0}+1, \ldots, k+l_{0}+l_{1}\right\} \subset I$.
Proof. The proof is very similar to the proof of Proposition 9.10 in CM07. Assume that \mathbf{z} is not I-stable, i.e. there is a non-constant component of (\mathbf{f}, \mathbf{z}), say $\left(f_{\alpha}, S_{\alpha}\right)$, such that S_{α} contains at most two special points, ignoring points
from I.
By compactness (see Section 3.5) it follows that \mathbf{f} is $K_{\pi_{I}(\mathbf{z})}$-holomorphic. Recall that π_{I} removes marked points not contained in I and stabilizes, hence the image of $\pi_{I}\left(S_{\alpha}\right)$ is a point. So there exists a $K_{\alpha} \in \mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right)$, such that $\bar{\partial}_{K_{\alpha}} f_{\alpha}=0$ and K_{α} does not depend on the points of S_{α}.
Since f_{α} is non-constant, Lemma 3.34 implies that $f_{\alpha}\left(S_{\alpha}\right) \not \subset V_{0} \cup V_{1}$ and $f_{\alpha}\left(S_{\alpha}\right)$ intersects each V_{0} and V_{1} in at least three distinct points in the domain. Hence, there exist extra intersection points, say $x_{0} \in V_{0}$ and (in the second case) $x_{1} \in V_{1}$, which are neither nodes nor marked points contained in $\left\{k+1, \ldots, k+l_{0}\right\}$ resp. $\left\{k+l_{0}+1, \ldots, k+l_{0}+l_{1}\right\}$.
Since the intersection number does not change under small perturbations (cf. Section 3.6), for sufficiently large ν such intersection points occur for f^{ν}, say x_{0}^{ν} and x_{1}^{ν}. Observe that f^{ν} is by definition a K-holomorphic curve with distinct marked points, and that the Proposition 3.26 implies that each marked point from $\left\{k+1, \ldots, k+l_{0}\right\}$ resp. $\left\{k+l_{0}+1, \ldots, k+l_{0}+l_{1}\right\}$ contributes to the intersection number by at least 1 .
Hence, existence of extra intersection points (after choosing ν sufficiently large) x_{0}^{ν} and x_{1}^{ν} would imply

$$
\left[V_{0}\right] \cdot\left[f^{\nu}\right]>l_{0}=\left[V_{0}\right] \cdot A \text { and }\left[V_{1}\right] \cdot\left[f^{\nu}\right]>l_{1}=\left[V_{1}\right] \cdot A,
$$

which is a contradiction to the assumption $\left[f^{\nu}\right]=A$.
The next theorem is an analog of Proposition 9.11 and Theorem 9.12 from CM07, adapted to our definition of a Donaldson quadruple. Again, most arguments carry over, however, we give a detailed proof for the sake of completeness.

Theorem 4.11. Fix an energy level $E>0$, consider a Donaldson quadruple $\left(\omega_{0}, J_{0}, \mathcal{V}_{0}, \mathcal{V}_{1}\right)$. Fix $A \in H_{2}(M, \mathbb{Z})$ with $\omega_{0}(A)>0$ and $\max \left\{\omega_{0}(A), \omega_{1}(A)\right\} \leq$ E. Set $l_{0}:=\operatorname{deg}\left(V_{0}\right) \omega_{0}(A)$ and $l_{1}:=\operatorname{deg}\left(V_{1}\right) \omega_{1}(A)$, then for any $k \geq 1$ and any $K \in \mathcal{J}_{|| |+1}^{\mathrm{reg}}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)$, the evaluation map that evaluates first k-marked points

$$
e v^{k}: \mathcal{M}_{k+l_{0}+l_{1}}\left(A, K, V_{0} \cup V_{1}\right) \longrightarrow X^{k}
$$

defines a pseudocycle of real dimension $d:=2\left(n-3+k+c_{1}(A)\right)$.
Proof. We start with computing the dimension of the strata.
(I) Consider an I-stable $\left(k+l_{0}+l_{1}\right)$-labelled tree T with $e(T)>0$ and fix a decomposition $\sum_{\alpha} A_{\alpha}=A$ with $\alpha \in T$.
(I.A) If any ghost tree in T contains at most one of the middle l_{0} or last l_{1} points, then we are exactly in the situation of Theorem 4.9, i.e. the corresponding moduli space is a smooth manifold of dimension

$$
\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K, V_{0} \cup V_{1}\right)=2\left(n-3+k+c_{1}(A)\right)-2 e(T) \leq d-2
$$

Recall that the reduced index set R is a subset of $k+l_{0}+l_{1}$ marked points, which contains only one marked point (of maximal index) per ghost tree and all other marked points on non-constant components. Denote by $T_{R}:=\pi_{R}(T)$ the stable tree corresponding to the reduced index set R.
Since $K \in \mathcal{J}_{|I|+1}^{\text {reg }}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right)$, the second statement in Proposition 3.24 implies that the evaluation map $e v^{k}$ factors through the smooth manifold

$$
\mathcal{M}_{T_{R}}^{*}\left(\left\{A_{\alpha}\right\}, K,\left\{(M, k),\left(V_{0}, l_{0}\right),\left(V_{1}, l_{1}\right)\right\}\right) .
$$

Now, assume the contrary of (I.A) - that there is a ghost tree $T^{\prime} \subset T$ that contains at least two of the last $l_{0}+l_{1}$ marked points.
(I.B) If $e\left(T_{R}\right)>0$, then the dimension formula in Proposition 3.24 implies that the corresponding moduli space has the (real) dimension $d-e\left(T_{R}\right) \leq d-2$.
(I.C) Consider the case $e\left(T_{R}\right)=0$, i.e. all other components of ($T,\left\{A_{\alpha}\right\}$) are ghost components, except one, say $A_{\alpha^{\prime}} \neq 0$. So this component contains, by assumption, at least two of the last $l_{0}+l_{1}$ marked points. Consider the following three subcases:
(I.C.1) Assume that the ghost tree T^{\prime} contains two of the middle l_{0} marked points, say z_{l} and $z_{l^{\prime}}$. Let $z_{\alpha_{0} i}$ be the special point at the node where the ghost tree T^{\prime} is attached to the (only) non-constant component α_{0}. Using Proposition 3.26 we get a lower bound for the local intersection number at $z_{\alpha i}$:

$$
\iota\left(\mathbf{f}, V_{0}, z_{\alpha i}\right) \geq \iota\left(\mathbf{f}, V_{0}, z_{l}\right)+\iota\left(\mathbf{f}, V_{0}, z_{l}^{\prime}\right) \geq 2
$$

i.e. the tangency order of \mathbf{f} to V_{0} is at least 1 in at least one intersection point. Consider the following collection

$$
C:=\left\{\left(V_{0}, v_{0}\right), \ldots,\left(V_{0}, v_{l_{0}-1}\right),\left(V_{1}, v_{l_{0}}\right), \ldots,\left(V_{1}, v_{l_{0}+l_{1}}\right)\right\}
$$

with $v_{i} \geq-1$ the corresponding orders of tangency at the last $l_{0}+l_{1}$ marked points. Above discussion implies that at least for one $0 \leq j \leq l_{0}-1$ we have $v_{j} \geq 1$. Now, we are in the situation of the second case of the Proposition 3.24 , i.e. the moduli space $\mathcal{M}_{T}^{*}\left(A_{\alpha_{0}}, K, C\right)$ is a smooth manifold and the evaluation map factors through a smooth manifold of dimension (note, that $|R| \leq k$)

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{|R|}^{*}\left(A_{\alpha_{0}}, K, C\right) & =2 n-6+2 c_{1}\left(A_{\alpha_{0}}\right)+2|R|-2 \sum_{i \in R} v_{i} \\
& \leq 2 n-6+2 c_{1}(A)+2 k-2=d-2
\end{aligned}
$$

(I.C.2) The case where T^{\prime} contains two of the last l_{1} points is similar to (I.C.1), since Proposition 3.26 applies also for intersections with V_{1}.
(I.C.3) The last case occurs if the ghost tree T^{\prime} contains one of the middle l_{0} points and one from the last l_{1} points. Geometrically this implies that the ghost tree T^{\prime} is attached to the point $z_{\alpha j}$ which is mapped to the intersection $V_{0} \cap V_{1}$. Consider the collection $C:=\left\{Z_{i}\right\}$ given by

$$
Z_{i}:= \begin{cases}V_{0} & k+1 \leq i \leq k+l_{0} \text { and } i \neq j \\ V_{1} & k+l_{0}+1 \leq i \leq k+l_{0}+l_{1} \text { and } i \neq j \\ V_{0} \cap V_{1} & i=j\end{cases}
$$

then the first case of Proposition 3.24 implies that the corresponding evaluation map $e v^{k}$ factors through a smooth manifold of dimension

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{|R|}^{*}\left(A_{\alpha_{0}}, K, C\right) & \leq 2 n-6+2 c_{1}\left(A_{\alpha_{0}}\right)+2|R|-\sum_{i \in R} 2 \\
& \leq 2 n-6+2 c_{1}(A)+2 k-2=d-2
\end{aligned}
$$

Hence, we have shown that for a tree T with $e(T)>0$ the corresponding moduli space has codimension 2 with respect to the dimension of the top stratum $\mathcal{M}_{k+l_{0}+l_{1}}\left(A, K, V_{0} \cup V_{1}\right)$.
(II) Now observe that Theorem 4.10 implies that the closure of the moduli space $\mathcal{M}_{k+l_{0}+l_{1}}\left(A, K, V_{0} \cup V_{1}\right)$ consists of stable maps (\mathbf{f}, \mathbf{z}), such that the underlying curve \mathbf{z} is I-stable. Hence, strata considered in (I) form a compactification, and since all of them, after evaluating at the first k points, factor through smooth manifolds of codimension at least 2 , it follows by definition that the evaluation map $e v^{k}: \mathcal{M}_{k+l_{0}+l_{1}}\left(A, K, V_{0} \cup V_{1}\right) \rightarrow M^{k}$ defines a pseudocycle.

4.3 Rational cobordisms for Donaldson quadruples

In this section we fix an energy level $E>0$, constants $0<\Theta_{3}<\Theta_{2}<\Theta_{1}<$ $\Theta_{1}<\Theta_{0}<1$ and $\eta>0$ as in the previous section. We consider Donaldson quadruple $\left(\omega_{0}, J_{0}, V_{0}, V_{1}\right)$ bi-degree $\left(D_{0}, D_{1}\right)$.

For a given $I \subset\left\{1, . ., l_{0}+l_{1}\right\}$ with $|I| \geq 3$ recall that the map π_{I} : $\mathcal{M}_{l_{0}+l_{1}+1} \rightarrow \mathcal{M}_{|I|+1}$ is given by forgetting marked points outside the set $I \cup\{0\}$ and stabilizing. For $I=\left\{1, \ldots, l_{0}\right\}$ we set $\pi_{l_{0}}:=\pi_{I}$.

Lemma 4.12. Given a Donaldson pair as above and $I=\left\{1, \ldots, l_{0}\right\}$. Then for any $l_{0}, l_{1} \geq 0$ with $E \geq \max \left\{l_{0} / D_{0}, l_{1} / D_{1}\right\}$ and any $K \in \mathcal{J}_{l_{0}+1}^{\text {reg }}\left(M, V_{0} \cup\right.$ $\left.V_{1}, J_{0}, \Theta_{1}, E\right)$ (the space from Theorem 4.9) we have

1. $K \in \mathcal{J}_{l_{0}+1}^{\text {reg }}\left(M, V_{0}, J_{0}, \Theta_{1}, E\right)$.

$$
\text { 2. } \pi_{l_{0}}^{*} K \in \mathcal{J}_{l_{0}+l_{1}+1}^{r e g}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right) \text {. }
$$

Analogous statement holds in the case $I=\left\{l_{0}+1, \ldots, l_{0}+l_{1}\right\}$.
Proof. First we observe the following inclusions for energy $E>0$:

$$
\begin{array}{ccc}
\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}\right) & \subset & \mathcal{J}\left(M, V_{0}, J_{0}, \Theta_{1}\right) \\
\text { open } \cup \text { dense } & \text { open } \cup \text { dense } \\
\mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right) \subset \mathcal{J}^{*}\left(M, V_{0}, J_{0}, \Theta_{1}, E\right) .
\end{array}
$$

The upper relation follows directly from the definition. The inclusions on the left and right side are open and dense by the degree condition ($D_{1}, D_{0} \geq D^{*}$) of the Donaldson quadruple. The lower inclusion follows, since by definition for any $K^{\prime} \in \mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}, E\right)$ all K^{\prime}-holomorphic spheres in $V_{0} \cup V_{1}$ of energy below E are constant and all non-constant K^{\prime}-holomorphic spheres of energy below E intersect each V_{0} and V_{1} in at least 3 distinct points in the domain. Hence, omitting V_{1} yields the lower inclusion.
Since $K \in \mathcal{J}_{l_{0}+1}^{\text {reg }}\left(M, V_{0} \cup V_{1}, J_{0}, \theta_{1}\right)$, by definition there exists a

$$
\bar{J}_{0} \in \mathcal{J}^{*}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{0}, E\right), \text { such that }
$$

$K \in \mathcal{J}_{l_{0}+1}^{\text {reg }}\left(M-V_{0} \cup V_{1},\left\{V_{0}, V_{1}, V_{0} \cap V_{1}\right\}, \bar{J}_{0}, \Theta_{1}\right) \cap \mathcal{J}_{l_{0}+1}^{*}\left(M, V_{0} \cup V_{1}, \bar{J}_{0}, \Theta_{0}, E\right)$.
Lemma 3.10 implies that the map $\pi_{l_{0}}$ induces a map on coherent almost complex structures $\pi_{l_{0}}^{*}: \mathcal{J}_{l_{0}+1} \rightarrow \mathcal{J}_{l_{0}+l_{1}+1}$, hence $\pi_{l_{0}}^{*} K \in \mathcal{J}_{l_{0}+l_{1}+1}^{*}\left(M, V_{0} \cup\right.$ $\left.V_{1}, \bar{J}_{0}, \Theta_{0}, E\right)$. Finally, it follows from Proposition 3.24 that $\pi_{l_{0}}^{*} K \in \mathcal{J}_{l_{0}+l_{1}+1}^{\text {reg }}(M-$ $\left.V_{0} \cup V_{1},\left\{V_{0}, V_{1}, V_{0} \cap V_{1}\right\}, \bar{J}_{0}, \Theta_{1}\right)$. This implies the second statement. Proof for the statement in the case $I=\left\{l_{0}+1, \ldots, l_{0}+l_{1}\right\}$ follows, if one starts with V_{1} instead of V_{0}.

Same arguments (i.e. a choice of a smooth path $K_{t} \in \mathcal{J}_{l_{0}+l_{1}+1}^{*}\left(M, V_{0} \cup\right.$ $\left.V_{1}, J_{0}, \Theta_{1}, E\right)$) as in the proof of Proposition 10.2 from CM07 yields independence of a perturbation, hence we have

Lemma 4.13. For a Donaldson quadruple as above, $A \in H_{2}(M, \mathbb{Z})$ with $\max \left\{\omega_{0}(A), \omega_{1}(A)\right\} \leq E$. Set $l_{0}=D_{0} \omega_{0}(A)$ and $l_{1}=D_{1} \omega_{1}(A)$. Then for any $K_{0}, K_{1} \in \mathcal{J}_{l_{0}+l_{1}+1}^{\text {reg }}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)$ the pseudocycles

$$
\mathrm{ev}^{k}: \mathcal{M}_{k+l_{0}+l_{1}}\left(A, K_{i}, V_{0} \cup V_{1}\right) \longrightarrow M^{k} \text { for } i=0,1
$$

are cobordant for any $k \geq 0$.
Hence, we will denote the pseudocycle given by above mentioned map ev ${ }^{k}$ as $\mathrm{ev}^{k}\left(A, V_{0}, V_{1}, J_{0}\right)$. Since an analogous statement for the Donaldson pair (V_{0}, J_{0}) was shown in CM07, we denote a pseudocycle associated to it by $\operatorname{ev}^{k}\left(A, V_{0}, J_{0}\right)$. Recall that Proposition 10.4 in CM07 implies the existence of a rational cobordism $\mathrm{ev}^{k}\left(A, V_{0}, J_{0}\right) \sim \operatorname{ev}^{k}\left(A, V_{0}, J_{0}^{\prime}\right)$ for any $J_{0}, J_{0}^{\prime} \in \mathcal{J}_{c}\left(\omega_{0}\right)$.

Finally, we get an analog of Proposition 10.3 from CM07. The main difference is again that our definition of the Donaldson quadruple is slightly more general and that we actually fix an energy level.

Proposition 4.14. Donaldson quadruple as above, $A \in H_{2}(M, \mathbb{Z})$ with $\max \left\{\omega_{0}(A), \omega_{1}(A)\right\} \leq E$. Set $l_{0}=D_{0} \omega_{0}(A)$ and $l_{1}=D_{1} \omega_{1}(A)$. Assume that there exists ${ }^{1}$ a $J_{1} \in \mathcal{J}_{c}\left(\omega_{1}\right)$, such that we have a pseudocycle $\operatorname{ev}^{k}\left(A, V_{1}, J_{1}\right)$ associated to the Donalson pair $\left(V_{1}, J_{1}\right)$. Moreover, assume that there exists a $\Theta_{1}^{\prime}>0$, such that the intersection $\mathcal{J}_{l_{1}+1}^{\text {reg }}\left(A, V_{0} \cup V_{1}, J_{1}, \Theta_{1}^{\prime}, E\right) \cap \mathcal{J}_{l_{1}+1}^{\text {reg }}\left(A, V_{0} \cup\right.$ $\left.V_{1}, J_{0}, \Theta_{1}, E\right)$ is nonempty ${ }^{2}$.
Then for any $k \geq 0$ we have rational cobordisms of pseudocycles

$$
\frac{1}{l_{0}!} \operatorname{ev}^{k}\left(A, V_{0}, J_{0}\right) \sim \frac{1}{\left(l_{0} l_{1}\right)!} \operatorname{ev}^{k}\left(A, V_{0}, V_{1}, J_{0}\right) \sim \frac{1}{l_{1}!} \operatorname{ev}^{k}\left(A, V_{1}, J_{1}\right)
$$

Proof. Fix a perturbation $K \in \mathcal{J}_{l_{0}+1}^{\text {reg }}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)$ provided by Theorem 4.9. Then Lemma 4.12 implies that $\pi_{l_{0}}^{*} K \in \mathcal{J}_{l_{0}+l_{1}+1}^{\text {reg }}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)$ and $K \in \mathcal{J}_{l_{0}+1}^{\text {reg }}\left(M, V_{0}, J_{0}, \Theta_{1}, E\right)$. Hence, we get two pseudocycles

$$
\mathrm{ev}^{k}: \mathcal{M}_{l_{0}+l_{1}+1}\left(A, V_{0} \cup V_{1}, \pi_{l_{0}}^{*} K\right) \rightarrow M^{k} \text { and } \mathrm{ev}^{k}: \mathcal{M}_{l_{0}+1}\left(A, V_{0}, K\right) \rightarrow M^{k}
$$

Forgetting the last l_{1} marked points, i.e. intersection points with V_{1} (such points are pairwise distinct, since coincidence leads to tangency order and a stratum of positive codimension - see Proposition 3.26 induces a covering map of degree l_{1} ! and we have a commutative diagram of pseudocycles

$$
\begin{aligned}
& \mathcal{M}_{l_{0}+l_{1}+1}\left(A, V_{0} \cup V_{1}, \pi_{l_{0}}^{*} K\right) \xrightarrow{\pi_{l_{0}}} \mathcal{M}_{l_{0}+1}\left(A, V_{0}, K\right)
\end{aligned}
$$

Hence, above statements imply equality as currents (i.e. a rational cobordism):

$$
\operatorname{ev}^{k}\left(V_{0}, K\right) \sim \frac{1}{l_{1}!} \mathrm{ev}^{k}\left(V_{0}, V_{1}, \pi_{l_{0}}^{*} K\right)
$$

For the second cobordism take a perturbation

$$
K \in \mathcal{J}_{l_{1}+1}^{\mathrm{reg}}\left(A, V_{0} \cup V_{1}, J_{1}, \Theta_{1}^{\prime}, E\right) \cap \mathcal{J}_{l_{1}+1}^{\mathrm{reg}}\left(A, V_{0} \cup V_{1}, J_{0}, \Theta_{1}, E\right)
$$

and observe that Lemma 4.12 implies again that

$$
\pi_{l_{1}}^{*} K \in \mathcal{J}_{l_{0}+l_{1}+1}^{\text {reg }}\left(A, V_{0} \cup V_{1}, J_{1}, \Theta_{1}^{\prime}, E\right) \text { and } K \in \mathcal{J}_{l_{1}+1}^{\text {reg }}\left(A, V_{1}, J_{1}, \Theta_{1}^{\prime}, E\right)
$$

so same reasoning as for V_{0} yields the full statement.

[^27]
4.4 The irrational case

First, we recall some standard Hodge theory. Here we mainly follow the exposition in Chapter 6 from War83. Given two p-forms $\alpha, \beta \in \Omega^{p}(M)$ their inner-product is given by $\langle\alpha, \beta\rangle=\int_{M} \alpha \wedge * \beta$. With $*$-Hodge star associated to the metric $\omega_{0}\left(\cdot, J_{0} \cdot\right)$. We denote the induced norm by $\|\cdot\|_{L^{2}}$. The HodgeLaplacian is given by $\Delta=\delta d+d \delta$ and we have

Theorem 4.15 (Hodge decomposition, cf. 6.8 in [War83]). For each $0 \leq p \leq 2 n$ the space of harmonic p-forms $H^{p}(M)=\left\{\alpha \in \Omega^{p}(M) \mid \Delta \alpha=0\right\}$ is finite dimensional and the space of all p-forms $\Omega^{p}(M)$ decomposes into three orthogonal direct summands:

$$
\Omega^{p}(M)=H^{p}(M) \oplus d\left(\Omega^{p-1}(M)\right) \oplus \delta\left(\Omega^{p+1}(M)\right)
$$

An immediate consequence of the Hodge decomposition is
Corollary 4.16 (cf. 6.11 in War83]). For any given de Rham cohomology class $A \in H_{D R}^{p}(M, \mathbb{R})$ there is a unique harmonic representative $\alpha \in \Omega^{p}(M)$, i.e. $[\alpha]=A$ and $\Delta \alpha=0$. Moreover, α minimizes the norm within the class A.

Proof. For the proof of the first statement see pp. 225-226 in War83. For the second statement take any $\beta \in \Omega^{p}(M)$ with $[\beta]=A$. Hodge decomposition yields $\beta=\beta_{H}+\beta_{d}+\beta_{\delta}$ with $\Delta \beta_{H}=0, \beta_{d}$ exact and β_{δ} co-exact. Since $\left[\beta_{H}\right]=A$, uniqueness implies $\beta_{H}=\alpha$. So, $\|\beta\|_{L^{2}}=\left\|\beta_{H}\right\|_{L^{2}}+\left\|\beta_{d}\right\|_{L^{2}}+$ $\left\|\beta_{\delta}\right\|_{L^{2}} \geq\|\alpha\|_{L^{2}}$.

Remark 4.17. Note that for any ω-compatible J and an associated Laplacian Δ to the metric $\omega(\cdot, J \cdot)$ we have $\Delta \omega=0$. Since the Riemannian volume form is $\frac{1}{n!} \omega^{n}$, we have $* \omega=\frac{1}{n-1} \omega^{n-1}$, hence $d * \omega=0$ so ω and is harmonic.
Remark 4.18. At this point, one should point out that we rely on the choice of a compatible almost complex structure J, since we are using standard Hodge theory. Note that there exists a natural Hodge theory for symplectic manifolds. One can define a purely symplectic analog of Hodge-* and $\delta:=* d *$ and call a form symplectic harmonic if it is d-closed and δ-closed. J.-L. Brylinski proved in Bry88 an analog of the uniqueness statement from Corollary 4.16 for Kähler manifolds. However, O. Mathieu proved in Mat95 that uniqueness holds if and only if the manifold has the strong Lefschetz property.

The outcome of Corollary 4.16 is that the Hodge map $h: H^{p}(M, \mathbb{R}) \rightarrow$ $\Omega_{p}(M)$ mapping a given class to the unique harmonic representative is welldefined and it induces a norm on $H_{D R}^{p}(M, \mathbb{R})$ via $\|A\|:=\|h(A)\|_{L^{2}}$ for any $A \in H_{D R}^{p}(M, \mathbb{R})$.

Then, the next statement might be considered pretty pedantic, since it is a sort of a technical folklore, but since it seems to be hard to find an exact reference for it in literature, we give a proof of it here.

Lemma 4.19. For any harmonic k-form α there exists a constant $C=$ $C(n, k)>0$ such that $\|\alpha\| \leq C\|\alpha\|_{L^{2}}$.
Proof. First, recall from Proposition 4.7 in Mor01] that $\alpha \wedge * \beta=\langle\alpha, \beta\rangle d v o l_{M}$ with $\langle\cdot, \cdot\rangle$ the induced by $\omega(\cdot, J \cdot)$ scalar product on the space of k-forms. Next, recall from Corollary 7.11 from [GT83]: There exists a constant $C=C(n, p)$, such that $\sup _{x \in M}|f(x)|=:\|f\| \leq C\|f\|_{p, 2}$ for any $p \geq n$. Here $\|\cdot\|_{p, 2}$ is the $(p, 2)$-Sobolev norm for functions

$$
\|f\|_{p, 2}:=\left(\int_{M} \sum_{|\lambda| \leq p}\left|D^{\lambda} f\right|^{2} d v o l_{M}\right)^{\frac{1}{2}}
$$

This norm induces the $(p, 2)$-Sobolev norm on forms. Now, since HodgeLaplacian is an elliptic operator of order 2 we have (cf. 6.29 in War83) for some constant $C^{\prime}=C^{\prime}(n, p)>0$ and $p \geq 0$

$$
\|\alpha\|_{p+2,2} \leq C^{\prime}\left(\|\Delta \alpha\|_{p, 2}+\|\alpha\|_{p, 2}\right)
$$

Since α is harmonic, multiple application of previous inequality implies that there exists a constant $C^{\prime \prime}=C^{\prime \prime}(p, n)>0$ for $p \geq 2$, s.t $\|\alpha\|_{p, 2} \leq C^{\prime \prime}\|\alpha\|_{L^{2}}$. Hence, we get for any $p \geq n$ and setting $\tilde{C}:=C C^{\prime \prime}$

$$
\sup _{M}\langle\alpha, \alpha\rangle^{\frac{1}{2}} \leq C\|\alpha\|_{p, 2} \leq \tilde{C}\|\alpha\|_{L^{2}}=\tilde{C}\left(\int_{M}\langle\alpha, \alpha\rangle d \operatorname{vol}_{M}\right)^{\frac{1}{2}}
$$

Now fix a base point $x \in M$ and choose orthonormal basis $\left(e^{1}, \ldots, e^{2 n}\right)$ of $T_{x}^{*} M$ hence $\alpha_{x}=\sum_{I} \alpha_{I} e^{I}$ with I an ordered index set of length $|I|=k$. Then $\langle\alpha, \alpha\rangle_{x}=\sum_{I} \alpha_{I}^{2}$. On the other hand

$$
\begin{aligned}
\sup _{\left|v_{1}\right|=1, \ldots,\left|v_{k}\right|=1}\left|\alpha_{x}\left(v_{1}, \ldots, v_{k}\right)\right| & \leq \sum_{I}\left|\alpha_{I}\right|\left|e^{I}\left(v_{1}, \ldots, v_{k}\right)\right| \leq \sum_{I}\left|\alpha_{I}\right| \\
& \leq \sqrt{\binom{2 n}{k}} \sqrt{\sum_{I}\left|\alpha_{I}\right|^{2}}
\end{aligned}
$$

We conclude that, $\|\alpha\| \leq \sqrt{\binom{2 n}{k}} \tilde{C}\|\alpha\|_{L^{2}}$.
Lemma 4.20. There is an $\epsilon=\epsilon(J, \omega)>0$, such that any form in the image of the restriction $h: B(\epsilon, \omega) \subset H^{2}(M, \mathbb{R}) \rightarrow \Omega_{2}(M)$ is symplectic.

Proof. Since the non-degeneracy condition is open and M is closed, we get an $\delta>0$ such that for any form $\omega^{\prime} \in \Omega_{2}(M),\left\|\omega-\omega^{\prime}\right\|_{g_{J}}<\delta$ implies $\left(\omega^{\prime}\right)^{n} \neq 0$. Hence, the statement follows by continuity of the Hodge map h, since its image contains only closed forms and $h([\omega])=\omega$.

Finally, we can combine results from the current and previous chapters in order to prove the main result of the thesis.

Theorem 4.21. Given any symplectic form ω on M. There exists an open neighbourhood of ω, say $U \subset \Omega_{2}(M)$, such that for any pair of rational symplectic forms $\omega_{1}, \omega_{2} \in U$ the corresponding pseudocycles ev ${ }^{k}\left(\omega_{1}\right)$ and ev ${ }^{k}\left(\omega_{2}\right)$ are rationally cobordant, up to multiplication with a positive rational weight, for any $k \geq 3$.

Proof. Fix a homology class $A \in H_{2}(M, \mathbb{Z})$ with $\omega(A)>0$. Fix $\Theta_{0}<1$. Fix an ω-compatible almost complex structure $J \in \mathcal{J}_{c}(\omega)$.
(A) Take $\epsilon>0$ from Lemma 4.20. Fix two classes $A_{1}, A_{2} \in H^{2}(M, \mathbb{R}) \cap$ $H^{2}(M, \mathbb{Q})$, such that $\left\|A_{1}-[\omega]\right\|_{J}<\epsilon$ and $\left\|A_{2}-[\omega]\right\|_{J}<\epsilon$. Then it follows that $\tilde{\omega}_{1}:=h\left(A_{1}\right)$ and $\tilde{\omega}_{2}:=h\left(A_{2}\right)$ are both (rational) symplectic forms, with h denoting the Hodge map. Moreover, Lemma 4.19 implies that $\left\|\tilde{\omega}_{1}-\omega\right\|_{J}<C \epsilon$ and $\left\|\tilde{\omega}_{2}-\omega\right\|_{J}<C \epsilon$, for some constant $C>0$, depending on ω and J.
Now, using Lemma 2.13 , we can find an $\tilde{\omega}_{1}$-compatible almost complex structure J_{1} with $\left\|J-J_{1}\right\|_{J}<3 C \epsilon$. Now, $\tilde{\omega}_{1}$ and J_{1} induce another metric and hence a norm which we denote by $\|\cdot\|_{1}$. Moreover, Lemma 2.12 implies that

$$
\left\|\tilde{\omega}_{1}-\tilde{\omega}_{2}\right\|_{1}<2 \epsilon[(1+C \epsilon)(1+3 C \epsilon)]^{\frac{1}{2}}<C_{1} \epsilon^{2}
$$

for a suitably chosen $C_{1}>0$. Again, by Lemma 2.13 we can find a $J_{2} \in \mathcal{J}_{c}\left(\omega_{2}\right)$ with the property

$$
\left\|J_{1}-J_{2}\right\|_{1} \leq 3\left\|\tilde{\omega}_{1}-\tilde{\omega}_{2}\right\|_{1} \leq 3 C_{1} \epsilon^{2} .
$$

For simplicity we can say that the pairs $\left(\tilde{\omega}_{1}, J_{1}\right)$ and $\left(\tilde{\omega}_{2}, J_{2}\right)$ lie in an ϵ neighbourhood of (ω, J). Hence, Theorem 2.34 (Opshtein's Theorem) and Corollary 2.37 delivers a transversality parameter $\eta=\eta(\epsilon, \omega, J)$, which does not depend on the choice of the pairs $\left(\tilde{\omega}_{i}, J_{i}\right)$. Note that we have $J_{1} \in \mathcal{J}_{\tau}\left(\omega_{2}\right)$, as long as $3 C_{1} \epsilon^{2}<1$ (cf. Lemma 2.5).
(B) For any given $0<\rho<\epsilon$ step (A) delivers pairs $\left(\tilde{\omega}_{i}, J_{i}\right)$, lying in a ρ-neighbourhood of (ω, J). Now, let N be the smallest positive integer, such that

$$
\left[N \tilde{\omega}_{1}\right] \in H^{2}(M, \mathbb{Z}) \text { and }\left[N \tilde{\omega}_{2}\right] \in H^{2}(M, \mathbb{Z}) .
$$

Set $\omega_{1}:=N \tilde{\omega}_{1}, \omega_{2}:=N \tilde{\omega}_{2}$. Note that we still have $J_{1} \in \mathcal{J}_{c}\left(\omega_{1}\right)$ and $J_{1} \in$ $\mathcal{J}_{\tau}\left(\omega_{2}\right)$. Moreover, $\left\|\omega_{1}-\omega_{2}\right\|_{\omega_{i}, J_{i}} \leq \rho$. We set the energy level via

$$
E:=\max \left\{\omega_{1}(A), \omega_{2}(A)\right\}
$$

and recall the constant D^{*} from Section 3.7 and set

$$
D^{*}:=\max \left\{D^{*}\left(\omega_{1}, J_{1}, E, \theta_{0}\right), D^{*}\left(\omega_{2}, J_{2}, E, \theta_{0}\right)\right\} .
$$

(C) By Theorem 2.34 and Corollary 2.37 applied to the pairs $\left(\tilde{\omega}_{1}, J_{1}\right)$ and $\left(\tilde{\omega}_{2}, J_{2}\right)$ there exist ω-symplectic hypersurfaces V_{0} and V_{1} satisfying

- $\mathrm{PD}\left(V_{1}\right)=D\left[\omega_{1}\right]$ and $\mathrm{PD}\left(V_{2}\right)=D\left[\omega_{2}\right]$
- Kähler angles are bounded by $\theta\left(V_{j}\right)<C D^{-1 / 2}$ for $j=1,2$
- V_{1} intersects V_{2} transversely and their minimal angle is bounded from below by $\angle_{m}\left(V_{1}, V_{2}\right) \geq \eta$
again, with constants $\eta=\eta(\epsilon)$ from part (A) and $C>0$ independent of D, provided D is chosen ${ }^{1}$ sufficiently large. Above angles are measured wrt. a rescaled metric induced by (J, ω), but since conformal change of the metric does not affect angles, we can view them as measured by (ω, J). By increasing D if necessary, we assume that

$$
D \geq D^{*} \text { and } \theta\left(V_{j}\right) \leq \Theta_{4} \text { for } j=1,2 .
$$

(D) Now, since $\left\|\omega-\tilde{\omega}_{1}\right\|_{J} \leq \rho$ and $\left\|J-J_{1}\right\|_{J} \leq \rho$ Lemma 2.14 implies for the Kähler angle $\theta_{1}(\cdot)$ measured wrt. $\left(\tilde{\omega}_{1}, J_{1}\right)$:

$$
\theta_{1}\left(V_{j}\right) \leq \theta\left(V_{j}\right)+2 \rho^{1 / 4} \leq \Theta_{4}+2 \rho^{1 / 4} \text { for } j=1,2
$$

and for the minimal angle \angle_{m}^{1} measured wrt. $\left(\tilde{\omega}_{1}, J_{1}\right)$:

$$
\angle_{m}^{1}\left(V_{1}, V_{2}\right) \geq \angle_{m}\left(V_{1}, V_{2}\right)-2 \rho^{1 / 4} \geq \eta-2 \rho^{1 / 4}
$$

Again, since conformal change of the metric does not affect angles, we regard above angles as measured wrt. $\left(\omega_{1}, J_{1}\right)$.
(E) Observe that the constants ρ, Θ_{4} and η are mutually independent in our construction. We proceed with a selection of constants (with $\Theta_{0}<1$ already fixed)

$$
0<\Theta_{3}<\Theta_{2}<\Theta_{1}<\Theta_{0}<1
$$

- Let $\Theta_{2}<\frac{2}{5} \Theta_{1}<\frac{2}{5} \Theta_{0}$, where the constant $2 / 5$ comes from Corollaries 2.17 and 2.16
- Let $\Theta_{3}<\frac{4}{\eta-2 \rho^{1 / 4}}\left(\Theta_{4}+2 \rho^{1 / 4}\right)$, cf. assumption in Lemma 2.22 .

Since η is fixed, we can choose ρ and Θ_{4}, such that $\Theta_{3}<\Theta_{2}$. Hence, we have shown that $\left(\omega_{1}, J_{1}, V_{1}, V_{2}\right)$ defines a Donaldson quadruple. Note that $\left(\omega_{1}, J_{1}, V_{1}\right)$ and $\left(\omega_{2}, J_{2}, V_{2}\right)$ are Donaldson Pairs, provided ρ was chosen sufficiently small. Recall that such choice of constants implies that the space

$$
\mathcal{J}\left(M, V_{1} \cup V_{2}, J_{1}, \Theta_{1}\right)=\left\{K \in \mathcal{J}\left(M, V_{1} \cap V_{2}\right) \mid\left\|K-J_{1}\right\|_{1}<\Theta_{1}\right\}
$$

is nonempty and that any two elements in it can be connected by a path lying in the space $\mathcal{J}\left(M, V_{1} \cup V_{2}, J_{1}, \Theta_{0}\right)$.
(F) Proposition 4.14 applied to $\left(\omega_{1}, J_{1}, V_{1}, V_{2}\right)$ yields a rational cobordism of pseudocycles

[^28]$$
\frac{1}{l_{1}!} \mathrm{ev}^{k}\left(A, V_{1}, \omega_{1}\right) \sim \frac{1}{l_{2}!} \mathrm{ev}^{k}\left(A, V_{2}, \omega_{2}\right)
$$
for any $k \geq 3$ with $l_{1}:=\operatorname{deg}\left(V_{1}\right) \omega_{1}(A)$ and $l_{2}:=\operatorname{deg}\left(V_{2}\right) \omega_{2}(A)$. Note that in our case we have $D=\operatorname{deg}\left(V_{1}\right)=\operatorname{deg}\left(V_{2}\right)$. Finally, since ω_{i} is $\tilde{\omega}_{i}$ multiplied by N for $j=1,2$, it follows that pseudocylcles associated to $\left(J_{1}, \tilde{\omega}_{1}\right)$ and $\left(J_{2}, \tilde{\omega}_{2}\right)$ are also rationally cobordant.

Remark 4.22. Clearly, one could try to substitute Opshtein's theorem in steps (A) and (C) by a combination of Theorem 1.13 and Proposition 2.3. Namely, take $\left(\omega_{1}, J_{1}\right)$ and $\left(\omega_{2}, J_{2}\right)$ from the first part of step (A). Now, applying Theorem 1.13 (Donaldson's theorem) for the pair $\left(\omega_{2}, J_{2}\right)$ we get an ω_{2}-symplectic hypersurface V_{2} with $\mathrm{PD}\left(V_{2}\right)=D_{2}\left[\omega_{2}\right]$ for $D_{2} \gg 0$ with the Kähler angle (measured wrt. ω_{2} and J_{2}) $\theta_{2}\left(V_{2}\right)<2 C^{\prime} D_{2}^{-1 / 2}=: \theta_{2}^{\prime}$. We can assume that $D_{2}>D_{*}$ and θ_{2}^{\prime} is sufficiently small. Lemma 2.14 implies that the Kähler angle of V_{2} measured wrt. the pair $\left(\omega_{1}, J_{1}\right)$ satisfies $\theta_{1}\left(V_{2}\right)<\theta_{2}^{\prime}+3 C_{1} \epsilon^{2}:=\theta_{2}$. So, V_{2} is ω_{1}-symplectic, provided $D_{2} \gg 0$ and $\epsilon \ll 1$. Note that the constant C_{1} depends only on (ω, J).
Lemma 2.19 provides an $\bar{J}_{1} \in \mathcal{J}_{c}\left(\omega_{1}\right)$, st. $\left\|J_{1}-\bar{J}_{1}\right\|_{1}<\theta_{2}$ and $\bar{J}_{1} T V_{2} \subset T V_{2}$. Hence, applying Proposition 2.3 to $\left(M, V_{2}, \omega_{1}, \bar{J}_{1}\right)$ yields for any fixed $\eta>0$ an ω_{1}-symplectic hypersurface V_{1} satisfying

- $\operatorname{PD}\left(V_{1}\right)=D_{1}\left[\omega_{1}\right]$ for a $D_{1} \gg 0$
- Kähler angle of V_{1} is given by $\theta\left(V_{1}\right)<2 C^{\prime \prime} D_{1}^{-1 / 2}=$: θ_{1}
- V_{1} intersects V_{2} transversely and the minimal angle is $L_{m}\left(V_{1}, V_{2}\right) \geq \eta$.

Note that latter angles are measured wrt. the pair $\left(\omega_{1}, \bar{J}_{1}\right)$. The problem now is that η seems to depend on V_{2}, which again depends on $\tilde{\omega}_{2}$. So, by choosing perturbation parameter ϵ small (which is necessary in order to make $\theta\left(V_{2}\right)$ small wrt. $\left.\left(\omega_{1}, J_{1}\right)\right)$ there is no guarantee that $\eta(\epsilon)$ is bounded from below, hence the constant from Lemma 2.22 might become large, so that no such $\Theta_{0}<1$ as in step (\mathbf{E}) would exist. Hence, the perturbation space $\mathcal{J}\left(M, V_{1} \cup V_{2}, J_{1}, \Theta_{0}\right)$ would be empty, although both constructions seem to produce similar geometric objects.

Previous discussion together with the proof of the preceeding theorem gives rise to a natural question. Namely, how does the construction of a Donaldson quadruple in the original setting work, since its existence is required in the proof of Theorem 1.3 (independence of a Donaldson pair) in CM07 and Opshtein's theorem was not available. We make the following

Remark 4.23. Consider a symplectic manifold (M, ω). The existence of a Donaldson quadruple $\left(V_{0}, J_{0}, V_{1}, J_{1}\right)$ as in CM07 (i.e. $\mathrm{PD}\left(\left[V_{i}\right]\right)=D_{i}[\omega]$, $\angle_{m}\left(V_{0}, V_{1}\right)>\eta, \theta\left(V_{i}, \omega, J_{i}\right)<\Theta_{3}$ and $\left\|J_{0}-J_{1}\right\|<\Theta_{3}$ for $\left.i=0,1\right)$ should follow from Proposition ${ }^{1} 2.3$. However, in this approach the transversality parameter η depends on the first hypersurface V_{0} (although it does not depend

[^29]on V_{1} for any $D_{1} \gg 0$), hence the existence of constants $\left(0<\Theta_{3}<\Theta_{2}<\right.$ $\left.\Theta_{1}<\Theta_{0}<1\right)$ ensuring that the space $\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{1}\right)$ is nonempty and path-connected in $\mathcal{J}\left(M, V_{0} \cup V_{1}, J_{0}, \Theta_{0}\right)$ is not obvious.
Indeed, Lemma 2.22 asserts $\Theta_{2}>\frac{1}{\eta} \max \left\{\theta\left(V_{0}, \omega, J_{0}\right), \theta\left(V_{1}, \omega, J_{0}\right)\right\}$. We have $\theta\left(V_{0}, \omega, J_{0}\right)<\Theta_{3}$ and Lemma 2.14 implies
$$
\left|\theta\left(V_{1}, \omega, J_{0}\right)-\theta\left(V_{1}, \omega, J_{1}\right)\right|<C \Theta_{3}^{1 / 4}
$$
i.e. above difference depends on the Kähler angle of V_{0}, but making it smaller might decrease η making it impossible to find a Θ_{2}, s.t $\Theta_{0}<1$.
However, it is still possible to show its existence. Instead of J_{0} we can take another $\bar{J}_{0} \in \mathcal{J}_{c}(\omega)$ with $\bar{J}_{0} T V \subset T V$ and measure wrt. $\left(\omega, \bar{J}_{0}\right)$. Then, $\theta\left(V_{0}, \omega, \bar{J}_{0}\right)=0$ and by choosing D_{1} large implies that $\theta\left(V_{1}, \omega, \bar{J}_{0}\right)$ might be chosen arbitrarily small. Combined with the fact that η (obtained from the application of 2.3 to $\left(V_{0}, \bar{J}_{0}\right)$) does not depend on D_{1}, it follows that ($V_{0}, \bar{J}_{0}, V_{1}, J_{1}$) is a Donaldson quadruple, up to the fact that we have to choose $D_{0}>D^{*}\left(\bar{J}_{0}, \omega, \Theta_{0}\right)$.
Observe that D^{*} depends on \bar{J}_{0}, which in turn depends on V_{0}, so on D_{0} ! However, by Lemma 2.19 we can choose \bar{J}_{0}, such that $\left\|J_{0}-\bar{J}_{0}\right\|<C \theta\left(V_{0}, \omega, J_{0}\right)$, hence by choosing D_{0} sufficiently ${ }^{1}$ small, we can (see discussion after Lemma 3.27) gain control over the difference $\left|D^{*}\left(J_{0}, \omega, \Theta_{0}\right)-D^{*}\left(\bar{J}_{0}, \omega, \Theta_{0}\right)\right|$, such that we can choose $D_{0}>D^{*}\left(\bar{J}_{0}, \omega, \Theta_{0}\right)$ and Θ_{3} to be small enough.

[^30]
Appendix

A. 1 Complex line bundles

In this section we review some standard facts about complex line bundles. For a detailed treatment of the subject we refer to the book Kob87.

Let M be a smooth n-dimensional manifold. We consider a smooth bundle $\pi: L \rightarrow M$ with the fiber diffeomorphic to \mathbb{C}. We recall the cocycle definition. Let $\left\{U_{i}\right\}$ be a good covering of M, i.e. the sets

$$
U_{i}, U_{i j}:=U_{i} \cap U_{j} \text { and } U_{i j k}:=U_{i} \cap U_{j} \cap U_{k} \text { are contractible. }
$$

Moreover, over each U_{i} we have trivialization $\psi_{i}: \pi^{-1} \rightarrow U_{i} \times \mathbb{C}$. Then, restricted to each $U_{i j}$ the compositions $\psi_{i} \circ \psi_{j}^{-1}$ define cocycles $G_{i j}(x) \in$ $G L(1, \mathbb{C})$ for any $x \in U_{i j}$. Such $G_{i j}$ satisfy cocycle conditions, namely

$$
G_{i j} \cdot G_{j k}=G_{i k} \text { and } G_{i j} \cdot G_{j i}=1
$$

In the case where all cocycles satisfy $G_{i j} \in U(1)$ we get a Hermitian structure on L. Denote the space of smooth sections of L by $\Gamma(L)$, then a connection on L is a map

$$
\nabla: \Gamma(L) \longrightarrow \Gamma\left(L \otimes T^{*} M\right)
$$

such that for any smooth function $f: M \rightarrow \mathbb{R}$ and any section $s \in \Gamma(L)$ we have

$$
\nabla(f \cdot s)=s \otimes d f+f \nabla s
$$

Let h be a Hermitian metric on L. A connection ∇ is called Hermitian if

$$
D h\left(s, s^{\prime}\right)=h\left(\nabla s, s^{\prime}\right)+h\left(s, \nabla s^{\prime}\right) \text { for any } s, s^{\prime} \in \Gamma(L)
$$

Locally, over each U_{i} a connection can be represented by $\nabla=d+A_{i}$ for some $A_{i} \in \Omega_{1}\left(U_{i}, \mathbb{C}\right)$. One can show that on the intersections $U_{i j}$ one has $d A_{i}=d A_{j}$, hence exterior derivatives $d A_{i}$ yield a globally defined complex
valued 2-form on M, which is called a connection 2-form on L. Note that in the Hermitian case all A_{i} take values in $i \mathbb{R}$. A basic fact in the Chern-Weil theory is the following

Proposition A.1. Given a section $s \in \Gamma(L)$ of a Hermitian line bundle L, assume it is transversal to the zero section and denote the zero locus of s by V. Let F be the curvature form and write $F=i \omega$ for some (closed) real valued 2-form ω. Then for any 2-cycle $S \subset M$ which intersects V transversely we have

$$
\frac{1}{2 \pi} \int_{S} \omega=V \cdot S
$$

The next theorem is a fundamental fact which is also used in the theory of geometric quantization.

Theorem A.2. Given a closed (real valued) 2 -form $\omega \in \Omega_{2}(M)$. Assume that ω represents an integer class, i.e. $[\omega] \in H^{2}(M, \mathbb{Z})$. Then there exists a line bundle $\pi: L \rightarrow M$ together with a Hermitian connection ∇ whose curvature form is given by $-\frac{i}{2 \pi} \omega$.

Given two complex line bundles $L, L^{\prime} \rightarrow M$ over the same base M. Then the tensor product $L \otimes L^{\prime}$ is a well defined complex line bundle over M and we have the relation on the Chern classes:

Lemma A. 3 (cf. Proposition 3.10 in [Hat09]).

$$
c_{1}\left(L \otimes L^{\prime}\right)=c_{1}(L)+c_{1}\left(L^{\prime}\right)
$$

Hence for $L^{k}:=\underbrace{L \otimes . . \otimes L}_{k}$ above lemma yields $c_{1}\left(L^{k}\right)=k \cdot c_{1}(L)$.

A. 2 Pseudocycles

Here we give a short account of definitions and results on pseudocycles from section 6.5 in MS04 and rational pseudocycles defined in CM07.
Given a smooth n-dimensional manifold M. A subset $A \subset M$ has dimension at most d (with $d \leq n$) if it is contained in the image of a smooth map $W \rightarrow M$ where W is a smooth manifold of the dimension less or equal to d.

Definition A.4. A d-dimensional pseudocycle in M is a smooth map f : $V \rightarrow M$ on a smooth oriented d-dimensional manifold V, such that $\overline{f(V)}$ is a compact set in M and $\operatorname{dim} \Omega_{f} \leq \operatorname{dim} V-2$.
The omega limit set is given by

$$
\Omega_{f}:=\bigcap_{K \subset V \text { compact }} \overline{f(V \backslash K)} .
$$

Any two d-dimensional pseudocycles $f: V \rightarrow M$ and $f^{\prime}: V^{\prime} \rightarrow M$ are cobordant if there exists a $(d+1)$-dimensional oriented manifold W with $\partial W=V \cup\left(-V^{\prime}\right)$ together with a smooth map $F: W \rightarrow M$, such that $F_{\mid V}=f$, $F_{\mid V^{\prime}}=f^{\prime}$ and $\operatorname{dim} \Omega_{F} \leq d-1$.

Remark A.5. Clearly, for a fixed M one could define a group of bordism classes of pseudocycles in M. Graded by the dimension denote it by $\mathcal{H}_{*}(M)$. It was shown in [Par01] and Sch99] for compact M that $\mathcal{H}_{*}(M)$ is naturally isomorphic to $H_{*}(M, \mathbb{Z})$. Such isomorphism fails if M is not compact. However, it was observed in [in08] that such isomorphism can be still established if one restricts to pseudocycles whose images are pre-compact sets in M.

Definition A.6. A rational pseudocycle in M is a pseudocycle multiplied with a positive rational number. We denote it by lf for $f: V \rightarrow M$ a pseudocycle and $l \in \mathbb{Q}$.
Given two pseudocycles $f: V \rightarrow M$ and $f^{\prime}: V^{\prime} \rightarrow M$, the rational pseudocycles f and $l f$ are equal as currents if there exists a covering map $\phi: V \rightarrow V^{\prime}$ of degree l such that $f=f^{\prime} \circ \phi$.
The equivalence relation on rational pseudocycles of M generated by equality as currents and cobordisms of pseudocycles is called rational cobordism.

Recall that two pseudocycles f and f^{\prime} are strongly transverse if $\Omega_{f^{\prime}} \cap \overline{f(V)}=\emptyset$, $\Omega_{f^{\prime}} \cap \overline{f(V)}=\emptyset$ and at any intersection point the intersection is transverse. It was shown in MS04 (Lemma 6.5.5) that for strongly transversal pseudocycles f, f^{\prime} of dimension k and $n-k$ respectively, there is a well-defined intersection number $f \cdot f^{\prime}$. It depends only on the bordism classes of f and f^{\prime}. Since geometric intersections are not affected by a rational weight and compositions with covering maps (after dividing by the degree of covering), this result carries over to rational pseudocycles.

Now observe that any smooth cycle, i.e. a smooth map $W \rightarrow M$ where W is a closed manifold, is of course a pseudocycle. A fundamental theorem of R . Thom states that for any homology class $\alpha \in H_{*}(M, \mathbb{Q})$ there exists an integer k such that $k \alpha$ is the fundamental class of a smooth closed submanifold of M. This fact makes perturbation theory available for rational cycles (representing classes in $\left.H_{*}(M, \mathbb{Z})\right)$ in order to achieve (strong) transversality. That allows to define intersection between (rational) pseudocycles and rational homology classes in M.

References

AF59. Aldo Andreotti and Theodore Frankel. The Lefschetz theorem on hyperplane sections. Ann. of Math. (2), 69:713-717, 1959.
ALP94. Michèle Audin, François Lalonde, and Leonid Polterovich. Symplectic rigidity: Lagrangian submanifolds. In Holomorphic curves in symplectic geometry, volume 117 of Progr. Math., pages 271-321. Birkhäuser, Basel, 1994.

AS08. Denis Auroux and Ivan Smith. Lefschetz pencils, branched covers and symplectic invariants. In Symplectic 4-manifolds and algebraic surfaces, volume 1938 of Lecture Notes in Math., pages 1-53. Springer, Berlin, 2008.

Aud94. Michèle Audin. Symplectic and almost complex manifolds. In Holomorphic curves in symplectic geometry, volume 117 of Progr. Math., pages 41-74. Birkhäuser, Basel, 1994. With an appendix by P. Gauduchon.
Aur97. D. Auroux. Asymptotically holomorphic families of symplectic submanifolds. Geom. Funct. Anal., 7(6):971-995, 1997.
Aur00. Denis Auroux. Symplectic 4-manifolds as branched coverings of $\mathbf{C P}^{2}$. Invent. Math., 139(3):551-602, 2000.
Aur02. D. Auroux. A remark about Donaldson's construction of symplectic submanifolds. J. Symplectic Geom., 1(3):647-658, 2002.
Beh97. K. Behrend. Gromov-Witten invariants in algebraic geometry. Invent. Math., 127(3):601-617, 1997.
BLY94. Jean-Pierre Bourguignon, Peter Li, and Shing-Tung Yau. Upper bound for the first eigenvalue of algebraic submanifolds. Comment. Math. Helv., 69(2):199-207, 1994.
Bot59. Raoul Bott. On a theorem of Lefschetz. Michigan Math. J., 6:211-216, 1959.

BP90. Larry Bates and Georg Peschke. A remarkable symplectic structure. J. Differential Geom., 32(2):533-538, 1990.
Bry88. Jean-Luc Brylinski. A differential complex for Poisson manifolds. J. Differential Geom., 28(1):93-114, 1988.
BT00. I. K. Babenko and I. A. Taŭmanov. On nonformal simply connected symplectic manifolds. Sibirsk. Mat. Zh., 41(2):253-269, i, 2000.
BU00. David Borthwick and Alejandro Uribe. Nearly Kählerian embeddings of symplectic manifolds. Asian J. Math., 4(3):599-620, 2000.

Buh13. Lev Buhovsky. Unboundedness of the first eigenvalue of the Laplacian in the symplectic category. J. Topol. Anal., 5(1):13-56, 2013.
Che70. Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pages 195-199. Princeton Univ. Press, Princeton, N. J., 1970.
CM07. Kai Cieliebak and Klaus Mohnke. Symplectic hypersurfaces and transversality in Gromov-Witten theory. J. Symplectic Geom., 5(3):281-356, 2007.

DGMS75. Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan. Real homotopy theory of Kähler manifolds. Invent. Math., 29(3):245-274, 1975.

Don96. S. K. Donaldson. Symplectic submanifolds and almost-complex geometry. J. Differential Geom., 44(4):666-705, 1996.

Don99. S. K. Donaldson. Lefschetz pencils on symplectic manifolds. J. Differential Geom., 53(2):205-236, 1999.
Dră99. Tedi Drăghici. The Kähler cone versus the symplectic cone. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 42(90)(1):41-49, 1999.
Eli89. Y. Eliashberg. Classification of overtwisted contact structures on 3manifolds. Invent. Math., 98(3):623-637, 1989.
Eli93. Yakov Eliashberg. Classification of contact structures on \mathbf{R}^{3}. Internat. Math. Res. Notices, (3):87-91, 1993.
Eva12. Jonathan David Evans. The infimum of the Nijenhuis energy. Math. Res. Lett., 19(2):383-388, 2012.
Flo88. Andreas Floer. The unregularized gradient flow of the symplectic action. Comm. Pure Appl. Math., 41(6):775-813, 1988.
FM05. Marisa Fernández and Vicente Muñoz. Formality of Donaldson submanifolds. Math. Z., 250(1):149-175, 2005.
FO99. Kenji Fukaya and Kaoru Ono. Arnold conjecture and Gromov-Witten invariant. Topology, 38(5):933-1048, 1999.
Ger13. A. Gerstenberger. Geometric transversality in higher genus gromovwitten theory. arXiv:1309.1426, 2013.
Gro85. M. Gromov. Pseudoholomorphic curves in symplectic manifolds. Invent. Math., 82(2):307-347, 1985.
Gro86. Mikhael Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1986.
GT83. David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
Hat09. Allen Hatcher. Vector bundles and k-theory, 2009.
Hof08. H. Hofer. Polyfolds and a general fredholm theory. arXiv:0809.3753, 2008.

How66. Alan Howard. On the homotopy groups of an affine algebraic hypersurface. Ann. of Math. (2), 84:197-216, 1966.
IP03. Eleny-Nicoleta Ionel and Thomas H. Parker. Relative Gromov-Witten invariants. Ann. of Math. (2), 157(1):45-96, 2003.
IP13. E.-N. Ionel and T. Parker. A natural gromov-witten virtual fundamental class. arXiv:1302.3472, 2013.

Knu83. Finn F. Knudsen. The projectivity of the moduli space of stable curves. II. The stacks $M_{g, n}$. Math. Scand., 52(2):161-199, 1983.

Kob87. Shoshichi Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5.
Kru03. Boris S. Kruglikov. Non-existence of higher-dimensional pseudoholomorphic submanifolds. Manuscripta Math., 111(1):51-69, 2003.
Kut12. Sergii Kutsak. Essential manifolds with extra structures. Topology Appl., 159(10-11):2635-2641, 2012.
LT98a. Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc., 11(1):119-174, 1998.
LT98b. Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. In Topics in symplectic 4-manifolds (Irvine, CA, 1996), First Int. Press Lect. Ser., I, pages 47-83. Int. Press, Cambridge, MA, 1998.
LT99. Jun Li and Gang Tian. Comparison of algebraic and symplectic GromovWitten invariants. Asian J. Math., 3(3):689-728, 1999.
LZ09. Tian-Jun Li and Weiyi Zhang. Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds. Comm. Anal. Geom., 17(4):651-683, 2009.
Mat95. Olivier Mathieu. Harmonic cohomology classes of symplectic manifolds. Comment. Math. Helv., 70(1):1-9, 1995.
McD84. Dusa McDuff. Examples of simply-connected symplectic non-Kählerian manifolds. J. Differential Geom., 20(1):267-277, 1984.
McL14. Mark McLean. Symplectic invariance of uniruled affine varieties and log Kodaira dimension. Duke Math. J., 163(10):1929-1964, 2014.
MM08. Xiaonan Ma and George Marinescu. Generalized Bergman kernels on symplectic manifolds. Adv. Math., 217(4):1756-1815, 2008.
Moh03. J.-P. Mohsen. Ph.d. thesis. unpublished, 2003.
Mor01. Shigeyuki Morita. Geometry of differential forms, volume 201 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2001. Translated from the two-volume Japanese original $(1997,1998)$ by Teruko Nagase and Katsumi Nomizu, Iwanami Series in Modern Mathematics.
MPS02. V. Muñoz, F. Presas, and I. Sols. Almost holomorphic embeddings in Grassmannians with applications to singular symplectic submanifolds. J. Reine Angew. Math., 547:149-189, 2002.

MS94. Dusa McDuff and Dietmar Salamon. J-holomorphic curves and quantum cohomology, volume 6 of University Lecture Series. American Mathematical Society, Providence, RI, 1994.
MS98. Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1998.
MS04. Dusa McDuff and Dietmar A. Salamon. J-holomorphic curves and symplectic topology, volume 52 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
MT93. Dusa McDuff and Lisa Traynor. The 4-dimensional symplectic camel and related results. In Symplectic geometry, volume 192 of London Math. Soc. Lecture Note Ser., pages 169-182. Cambridge Univ. Press, Cambridge, 1993.

Nic11. Liviu Nicolaescu. An invitation to Morse theory. Universitext. Springer, New York, second edition, 2011.
Ops13. Emmanuel Opshtein. Singular polarizations and ellipsoid packings. Int. Math. Res. Not. IMRN, (11):2568-2600, 2013.
Pao01. Roberto Paoletti. Symplectic submanifolds in special position. Israel J. Math., 123:241-251, 2001.
Par01. J. Pardon. Pseudohomology and homology. arXiv:math/0111223, 2001.
Par14. J. Pardon. An algebraic approach to virtual fundamental cycles on moduli spaces of j-holomorphic curves. arXiv:1309.2370, 2014.
Pol98. Leonid Polterovich. Symplectic aspects of the first eigenvalue. J. Reine Angew. Math., 502:1-17, 1998.
RT95. Yongbin Ruan and Gang Tian. A mathematical theory of quantum cohomology. J. Differential Geom., 42(2):259-367, 1995.
Sal97. D. A. Salamon. Lectures on floer homology. IAS/Park City Graduate Summer School, 1997.
Sal12. D. Salamon. Uniqueness of symplectic structures. arXiv:1211.2940, 2012.
Sch99. Matthias Schwarz. Equivalences for Morse homology. In Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999), volume 246 of Contemp. Math., pages 197-216. Amer. Math. Soc., Providence, RI, 1999.
Sie99a. Bernd Siebert. Algebraic and symplectic Gromov-Witten invariants coincide. Ann. Inst. Fourier (Grenoble), 49(6):1743-1795, 1999.
Sie99b. Bernd Siebert. Symplectic Gromov-Witten invariants. In New trends in algebraic geometry (Warwick, 1996), volume 264 of London Math. Soc. Lecture Note Ser., pages 375-424. Cambridge Univ. Press, Cambridge, 1999.

Tau95. Clifford Henry Taubes. The Seiberg-Witten and Gromov invariants. Math. Res. Lett., 2(2):221-238, 1995.
Thu76. W. P. Thurston. Some simple examples of symplectic manifolds. Proc. Amer. Math. Soc., 55(2):467-468, 1976.
Tis77. David Tischler. Closed 2-forms and an embedding theorem for symplectic manifolds. J. Differential Geometry, 12(2):229-235, 1977.
TW11. Valentino Tosatti and Ben Weinkove. The Calabi-Yau equation, symplectic forms and almost complex structures. In Geometry and analysis. No. 1, volume 17 of $A d v$. Lect. Math. (ALM), pages 475-493. Int. Press, Somerville, MA, 2011.
Voi02. Claire Voisin. A counterexample to the Hodge conjecture extended to Kähler varieties. Int. Math. Res. Not., (20):1057-1075, 2002.
Voi04. Claire Voisin. On the homotopy types of compact Kähler and complex projective manifolds. Invent. Math., 157(2):329-343, 2004.
War83. Frank W. Warner. Foundations of differentiable manifolds and Lie groups, volume 94 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition.
Wen13. C. Wendl. Lectures on holomorphic curves in symplectic and contact geometry. arXiv:1011.1690, 2013.
Wen14. Chris Wendl. Contact hypersurfaces in uniruled symplectic manifolds always separate. J. Lond. Math. Soc. (2), 89(3):832-852, 2014.
Zin08. Aleksey Zinger. Pseudocycles and integral homology. Trans. Amer. Math. Soc., 360(5):2741-2765, 2008.

[^0]: ${ }^{1}$ We will denote the space of all ω-compatible almost complex structures by $\mathcal{J}_{c}(M, \omega)$. Any such $J \in \mathcal{J}_{c}(M, \omega)$ induces a Riemannian metric via $g_{J}:=\omega(\cdot, J \cdot)$.

[^1]: ${ }^{1}$ See also section 1.4 for more facts on this topic.
 ${ }^{2}$ There exist symplectic manifolds with $N_{J} \neq 0$ for all $J \in \mathcal{J}_{\tau}(M, \omega)$. The first example was found in Thu76, see also McD84 for a simply-connected example.
 ${ }^{3}$ In general the linearization of Cauchy-Riemann operator $\bar{\partial}_{J}$ might be not surjective.

[^2]: ${ }^{1}$ A symplectic manifold $/ M, \omega$) is called semi-positive if for any spherical class $A \in H_{2}(M, \mathbb{Z})$ with $\omega(A)>0$ and $c_{1}(A) \geq 3-n$ it follows that $c_{1}(A) \geq 0$.
 ${ }^{2}$ Cf. section 3.4
 ${ }^{3}$ See p. 110 in MS04.
 ${ }^{4}$ One associates to J a Cauchy-Riemann operator $\bar{\partial}_{J}$, then its linearization is a Fredholm operator between Banach spaces; if it is surjective, for generic J the implicit function theorem implies that the kernel has finite dimension equal to the Fredholm index. The index is given the Riemann-Roch theorem for (real) linear CauchyRiemann operators. Smoothness follows by elliptic regularity. See also Wen13 for a detailed exposition.

[^3]: ${ }^{1}$ A symplectic submanifold of real codimension two.

[^4]: ${ }^{1}$ We will often call D the degree of V.
 ${ }^{2}$ If not explicitly stated, we always use C^{0} norms induced by (ω, J).
 ${ }^{3}$ The extra " +1 " marked point plays the role of a variable for domaindependence.
 ${ }^{4}$ The definition is located in section 3.2
 ${ }^{5}$ See section 4.1 for the precise definition.

[^5]: ${ }^{1}$ See section 3.2

[^6]: ${ }^{1}$ See Appendix A. 2
 ${ }^{2}$ See survey Sal12 on deformation relations of symplectic structures.

[^7]: ${ }^{1}$ See Appendix A. 1

[^8]: ${ }^{1}$ It deals with the case of a submanifold $V \subset M$, here we can just take $V=\emptyset$.

[^9]: ${ }^{1}$ Follows from the Lefschetz property of V.
 ${ }^{2}$ Distance of K to some previously fixed $J \in \mathcal{J}_{c}(\omega)$.
 ${ }^{3}$ Taubes' result is actually true for any closed symplectic 4-manifold with $b_{2}^{+}>1$.

[^10]: ${ }^{1}$ In the sense that their tangent bundle is J-invariant. Such submanifolds are also called pseudo-holomorphic.
 ${ }^{2}$ With respect to \mathcal{C}^{r}-topology for $r=\max \{2,6-n\}$.

[^11]: ${ }^{1}$ After complexifying the real vector space $\mathbb{R}^{2 n}$.

[^12]: ${ }^{1}$ One might say that the intersection $V \cap W$ is not positive.

[^13]: ${ }^{1}$ Note that other dimensions for W_{0} are not possible by the assumption of codimension two of W and the fact that W_{0} is by definition a complex subspace.

[^14]: ${ }^{1}$ Note that chosing k large implies that local sections σ_{p} become supported over small balls of radius $k^{-1 / 4}$.

[^15]: ${ }^{1}$ There it occurs in the form of perturbing the right side of $\bar{\partial}_{J} f=0$.

[^16]: ${ }^{1}$ The spaces $C^{\epsilon}(M, E)$ were introduced by A. Floer in Flo88, see also Remark 3.7 in CM07. $B(0, \rho)$ is an open ball of radius ρ-injectivity radius of the exponential $\operatorname{map} \exp _{J}: T_{J} \mathbf{J}(M, \omega) \rightarrow \mathbf{J}(M, \omega)$.

[^17]: ${ }^{1}$ For the second space recall that for any $\mathbf{z} \in \overline{\mathcal{M}}_{k}, \pi^{-1}(\mathbf{z})$ is biholomorphic to a nodal curve $\Sigma_{\mathbf{z}}$ and the restriction of $J \in \mathcal{J}_{\overline{\mathcal{M}}_{k+1}}$ to it yields a continuous map, which is smooth on any component of \mathbf{z}.
 ${ }^{2} \mathcal{J}$ is the space of almost complex structures of class C^{ϵ}, wrt. J_{0}.

[^18]: ${ }^{1}$ Note that $\bar{\partial}_{\mathbf{J}} \mathbf{f}=0$ implies here that the map over sphere S_{α} is J_{α}-holomorphic, so it is actually smooth by elliptic regularity for each α.
 ${ }^{2}$ Clearly, domain-stable maps are stable, but the converse is false in general.

[^19]: ${ }^{1}$ Note that Lemma 5.1 in CM07] states that J-holomorphicity is preserved under such isomorphisms.
 ${ }^{2}$ See Section 5.5. in MS04 for the definition in the domain-independent case. However, as asserted in CM07, compactness issues carry over to the case of coherent almost complex structures.

[^20]: ${ }^{1}$ Here $E_{\alpha \beta}$ is the sum energies of all components belonging to a maximal subtree which is attached to α and contains β.
 ${ }^{2}$ Intersection condition with a symplectic hypersurface of high degree - see Section 9 in CM07 and the last chapter.

[^21]: ${ }^{1}$ We take $I \subset\{1, \ldots, k\}$ with $|I| \geq 3$.

[^22]: ${ }^{1}$ Such a phenomenon is often called positivity of intersections.

[^23]: ${ }^{1}$ Recall, that $\mathcal{J}\left(M, \omega_{0}, V, J_{0}, \theta_{0}\right)$ is the space of all ω_{0}-tame almost-complex structures J, leaving $T V$ invariant, such that $\left\|J-J_{0}\right\|_{0}<\theta_{0}$.
 ${ }^{2}$ We actually consider an upper bound for the tangency order given by $l \leq$ $\left\lfloor D_{*} E\right\rfloor+n$.

[^24]: ${ }^{1}$ Here we consider \mathcal{K}-holomorphic spheres.
 ${ }^{2}$ We actually assume that the perturbation space $\mathcal{J}\left(M, V_{0} \cup V_{1}, J, \theta_{0}\right)$ is not empty. In the last chapter we show that such V_{0}, V_{1} and $\theta_{0}<1$ exist.

[^25]: ${ }^{1}$ We denote by $\|\cdot\|_{i}$ the norm induced by $\left(\omega_{i}, J_{i}\right)$ for $i=0,1$.

[^26]: ${ }^{1}$ See Section 3.4 for the definition of the space $\mathcal{M}_{T}\left(\left\{A_{\alpha}\right\}, K\right)$.

[^27]: ${ }^{1}$ Existence of such J_{1} is guaranteed in the proof of Theorem 4.21
 ${ }^{2}$ In the proof of Theorem 4.21 such Θ_{1}^{\prime} is an ϵ-small perturbation of Θ_{1} with $\epsilon \ll \Theta_{3}$.

[^28]: ${ }^{1}$ Here we use D instead of k, since we are talking about degrees of hypersurfaces instead of twisting parameters of line bundles.

[^29]: ${ }^{1}$ It is called the "stability property" in the original work.

[^30]: ${ }^{1}$ Since we have for the Kähler angle $\theta\left(V_{0}\right) \sim 1 / \sqrt{D_{0}}$, we actually assume $D_{0} \gg$ $1 /\left(1-\Theta_{0}\right)$.

