The role of CCM proteins in β1 Integrin-Klf2-Egfl7-mediated angiogenesis
SUMMARY ... 9

ZUSAMMENFASSUNG .. 11

1 INTRODUCTION .. 13

1.1 CEREBRAL CAVERNOUS MALFORMATION .. 13

1.1.1 CCM proteins in the human pathology ... 13

1.1.2 Structure and functions of CCM proteins ... 14

1.1.2.1 KRIT1 (Krev interaction trapped 1)/ CCM1 ... 14

1.1.2.2 CCM2/ Malcavernin .. 17

1.1.2.3 CCM3/ PDCD10 (Programmed cell death 10) .. 19

1.1.2.4 HEG1 .. 20

1.2 CARDIOVASCULAR DEVELOPMENT IN THE ZEBRAFISH Danio rerio 22

1.2.1 Zebrafish as a model for vertebrate cardiovascular development 22

1.2.2 Heart development in zebrafish ... 22

1.2.3 Vascular development in zebrafish .. 25

1.2.3.1 VEGF-Notch signaling in tip and stalk cell specification during angiogenesis 27

1.2.3.2 Integrin signaling in angiogenesis .. 29

1.2.3.3 The role of EGFL7 in vascular development .. 31

1.3 THE TRANSCRIPTION FACTOR KLF2 IN CARDIOVASCULAR DEVELOPMENT . 33

1.3.1 KLF2 in angiogenesis and valvulogenesis .. 36

1.3.2 KLF2 in vascular tone regulation ... 38

2 AIMS OF THIS STUDY .. 39

3 MATERIAL AND METHODS ... 41

3.1 *IN VIVO* EXPERIMENTS .. 41

3.1.1 Fish maintenance and stocks ... 41

3.1.2 Embryo injections ... 41

3.1.3 Morpholino and expression construct injections .. 42

3.1.4 Heat-shock experiments .. 43

3.1.5 Pharmacological treatment ... 43
3.1.6 Embedding of embryos for live imaging .. 43

3.2 MOLECULAR BIOLOGY METHODS ... 44
 3.2.1 Total RNA extraction and cDNA synthesis ... 44
 3.2.2 In vitro transcription of DIG-labelled antisense RNA 44
 3.2.3 Extraction of cardiac tissue ... 45
 3.2.4 RNA extraction and processing .. 45
 3.2.5 Gateway cloning .. 46
 3.2.6 Quantitative RT-qPCR .. 46

3.3 HISTOLOGY .. 47
 3.3.1 Immunohistochemistry ... 47
 3.3.2 Zebrafish embedding .. 48
 3.3.3 Whole mount in situ hybridization ... 48

3.4 MICROSCOPY ... 49
 3.4.1 Confocal imaging .. 49

3.5 DATA ANALYSIS .. 50
 3.5.1 Statistical analysis of endocardial and lateral dorsal aorta cell numbers 50
 3.5.2 Statistical analysis of the subintestinal vein (SIV) branchpoints and sprouts ... 50
 3.5.3 RT-qPCR data analyses ... 50

3.6 SOFTWARE .. 51

3.7 SOLUTIONS ... 51

4 RESULTS ... 53
 4.1 LOSS OF CCM2 INFLUENCES ENDOCARDIAL AND MYOCARDIAL MORPHOGENESIS ... 53
 4.2 ENDOCARDIAL ATRIOVENTRICULAR CANAL MARKERS ARE MISEXPRESSED IN ZEBRAFISH CCM MUTANTS ... 56
 4.3 LOSS OF CCM PROTEINS LEADS TO ELEVATED CARDIAC KLF2 EXPRESSION LEVELS ... 58
4.4 Elevated KLF2 expression levels induce cardiovascular defects similar to the phenotype resulting from loss of Ccm proteins in zebrafish ... 60
 4.4.1 The knock-down of klf2a/b rescues the ccm mutant cardiac phenotype ... 60
 4.4.2 Klf2a and Klf2b expression is flow-independent in ccm mutants 63
 4.4.3 Vascular defects are due to increased Klf2 expression in ccm mutants ... 65
 4.4.4 Lack of blood flow mediates cerebral vascular sprout growth in ccm mutants ... 67

4.5 An anti-angiogenic activity of Ccm proteins contributes to normal cardiovascular development in zebrafish 69
 4.5.1 A loss of Ccm proteins triggers a VEGF-dependent angiogenic activity in endocardial cells ... 69
 4.5.2 Vascular defects are due to elevated VEGF-dependent angiogenesis in ccm mutants ... 72
 4.5.3 Klf2 up-regulation is independent of the VEGF signaling pathway in ccm mutants ... 73

4.6 Klf2 up-regulation in endothelial cells involves aberrant β1 integrin signaling ... 74

4.7 Epidermal growth factor-like domain 7 (EGFL7) as a mediator of pro-angiogenic Klf2 activity in endocardial and endothelial cells ... 76
 4.7.1 Klf2 mediates increased VEGF-dependent angiogenesis via Egfl7 in ccm2m201 mutants ... 76
 4.7.2 Klf2a/b and Egfl7 genetically interact to promote cardiovascular malformation defects in ccm2m201 mutants .. 78

5 Discussion ... 81
 5.1 The Ccm protein complex prevents extensive pro-angiogenic Klf2 activity in endocardial and endothelial cells 81
 5.2 The instructive role of β1 integrin signaling in Klf2-dependent cardiovascular defects ... 84
Table of Contents

5.3 Klf2 mediates pro-angiogenic activity via Egfl7 ... 86

5.4 Ectopic cerebral sprouts and vascular lumen formation in zebrafish CCM mutants .. 88

5.5 Outlook ... 89

6 Appendix .. 90

6.1 Statistical analysis of endocardial and lateral dorsal aorta cell numbers .. 90

6.2 Statistical analysis of SIV branchpoints and sprouts 91

6.3 RT-qPCR data analysis ... 91

References .. 94

Acknowledgement .. 111

Curriculum Vitae .. 113

Publications ... 115

Selbständigkeitserklärung .. 117
Angiogenesis is critical to most physiological processes and many pathological conditions. This process is controlled by physical interactions between the extracellular matrix (ECM) and endothelial cells. Klf2, a blood flow–sensitive transcription factor, promotes VEGF-dependent angiogenesis during zebrafish cardiovascular development. However, the mechanism by which biophysical stimuli regulate Klf2 expression and control angiogenesis remains largely unknown.

In my study, I show that elevated klf2 mRNA levels underlie the molecular and morphogenetic cardiovascular defects in zebrafish ccm mutants. Furthermore, I demonstrate that these defects are mediated by enhanced egfl7 expression and angiogenesis signaling. My study also revealed that Klf2 expression is regulated by the extracellular matrix-binding receptor β1 integrin in the absence of blood flow. The CCM protein complex and its associated β1 integrin-regulatory protein ICAP-1 prevents increased angiogenesis signaling in endothelial cells by limiting β1 integrin-mediated expression of Klf2.

In sum, my work uncovered a novel β1 integrin-Klf2-Egfl7 signaling pathway, which is regulated by the cerebral cavernous malformations (CCM) proteins.
Zusammenfassung

In meiner Studie zeige ich, dass erhöhte $klf2$ mRNA Expression den molekularen und morphogenetischen kardiovaskulären Defekten in Zebrafisch ccm Mutanten zugrundeliegen. Desweiteren zeige ich, dass diese Defekte durch verstärkte $egfl7$-Expression und Angiogenese vermittelt werden. Meine Studie zeigt außerdem, dass die Klf2-Expression unabhängig vom Blutstrom durch den Extrazellularmatrix-bindenden Rezeptor β_1 Integrin reguliert wird. Der CCM-Protein-Komplex, zusammen mit dem ihm verbundenen Integrin-regulierenden Protein ICAP-1 verhindert ein verstärktes Angiogenese-Signal in endothelialen Zellen, indem es die β_1 Integrin-abhängige Klf2 Expression begrenzt.

Zusammenfassend zeigt meine Arbeit einen neuen β_1 Integrin-Klf2-Egfl7 Signalweg, der durch zerebrale kavernöse malformations (CCM) Proteine reguliert wird.
1 Introduction

1.1 Cerebral Cavernous Malformation

1.1.1 CCM proteins in the human pathology

Cerebral cavernous malformations (CCMs) are vascular lesions within low blood flow venous capillary beds. They are characterized by mulberry-like clusters of thin-walled, enlarged blood vessels arranged to densely packed sinusoids without intervening neural parenchyma (Introduction Fig. 1) (Fischer et al., 2013). Ultrastructural analyses of CCMs revealed ruptures and damages in the luminal endothelium due to a lack of endothelial junctions and detachments between the endothelium and basal lamina. Furthermore, these lesions lack supporting subendothelial cells such as smooth muscle cells, elastic tissue, or astrocytic foot processes (Clatterbuck et al., 2001; Tanriover et al., 2013). Primarily, CCMs are found within the neurovasculature of the central
nervous system, where they can cause headaches, seizure, and neurological deficits caused by cerebral hemorrhages (Dobyns et al., 1987; Gil-Nagel et al., 1995), but they can also occur in the skin (Eerola et al., 2000; Labauge et al., 1999).

CCMs have a prevalence of approximately 0.5% of the entire population (Otten et al., 1989). CCMs may occur in both sporadic or familial forms. The sporadic form accounts for 80% of CCMs and is mostly associated with a single CCM formation. In contrast, most of the familial cases develop multiple CCMs (Krisht et al., 2010; Riant et al., 2010). Familial CCMs are autosomal-dominant and are associated with heterozygous germline loss-of-function due to a mutation in at least one of the three genes, CCM1 (Laberge-le Couteulx et al., 1999; Sahoo et al., 1999), CCM2 (Denier et al., 2004; Liquori et al., 2003), or CCM3 (Bergametti et al., 2005). A „second hit“, or Knudsonian mutation is needed for a somatic loss-of-function of the second allele (Akers et al., 2009; Gault et al., 2005; Pagenstecher et al., 2009). The total loss-of-function of any of these genes may then result in CCM lesions.

1.1.2 Structure and functions of CCM proteins

1.1.2.1 KRIT1 (Krev interaction trapped 1)/ CCM1

In human and mouse, KRIT1 is a 736 amino acid protein that consists of a N-terminal Nudix domain, three canonical NPxY/F motifs and a C-terminal FERM (band 4.1, ezrin, radixin, moesin) domain (Introduction Fig. 2) (Gingras et al., 2013; Li et al., 2012; Liu et al., 2013). It was identified in a yeast two-hybrid screen as an interaction partner of the small GTPase Krev-1 (Rap1) (Serebriiskii et al., 1997). During early embryogenesis, KRIT1 is broadly expressed with a preference to endothelial cells (Guzeloglu-Kayisli et al., 2004). Intracellularly, KRIT1 was found in different cellular compartments, including cell-cell junctions in endothelial cells (Glading et al., 2007; Zawistowski et al., 2005). The subcellular localization of KRIT1 appears to be dependent on its conformational organization (Beraud-Dufour et al., 2007; Francalanci et al., 2009). It has been suggested that intramolecular binding of the NPxY/F motifs with its FERM domain results in a „closed“ conformation which allows KRIT1 to bind to microtubules (Beraud-Dufour et al., 2007). KRIT1 is then transported along
Introduction

Microtubules to the plasma membrane. There, activated Rap1 binds to KRIT1 and causes an "open" conformation thereby enabling the relocalization of KRIT1 to the membrane and the stabilization of adherence junctions (Liu et al., 2011). Junctional stability is achieved by the association of KRIT1 with components of the adherence junctions (β-catenin, α-catenin, VE-cadherin, AF 6 and p120-catenin) (Glading et al., 2007). Loss of KRIT1 results in a translocation of β-catenin to the nucleus and a transcriptional up-regulation of β-catenin target genes. Rap1 binding stabilizes KRIT1 and prevents the dissociation of β-catenin from the junctional complex (Introduction Fig. 7) (Glading et al., 2010). In zebrafish, knock-down of Rap1b leads to intracranial hemorrhage due to damaged endothelial junctions. Intriguingly, combinatorial minor reduction of Rap1b and Krit1 results in intracranial hemorrhage, indicating that both genes act in a common pathway (Gore et al., 2008). However, proteomic analysis showed that Rap1 was not found in the CCM complex suggesting that KRIT1 and Rap1 act in an independent complex (Hilder et al., 2007). In addition, loss of KRIT1 resulted in defective endothelial cell polarity by impairing localization of the TIAM-PAR3-PKCζ complex, vascular lumen formation, and directed cell migration (Lampugnani et al., 2010). These findings are similar to human vascular lesions, where endothelial cells are loosely connected to each other (Clatterbuck et al., 2001).

Introduction Figure 2

Structural domains and interaction partners of KRIT1/CCM1. Krit1 comprises a C-terminal FERM (band 4.1, ezrin, radixin, moesin) domain and three N-terminal NPXY/F motifs. ANK: Ankyrin domain, NLS: Nuclear Localization Signal, MT: microtubules, PTB: PhosphoTyrosineBinding domain. (adapted from Faurobert and Albiges-Rizo, 2010)

Several lines of evidences suggested that the formation of CCM lesions could be driven by aberrant angiogenesis (Jung et al., 2003). Loss of KRIT1 reduces the
expression of the Notch target genes *DLL4*, *HEY1*, and *HEY2* and leads to enhanced sprouting formation in endothelial cells (Wustehube et al., 2010). Conversely, KRIT1 overexpression leads to increased expression of HEY1 and DLL4, arguing for a modulation of angiogenesis by a KRIT1-Notch signaling cascade.

Another binding partner of KRIT1 is the integrin cytoplasmic domain associated protein-1 (ICAP-1) (Introduction Fig. 3). ICAP-1 is a negative regulator of β1 integrin signaling (Liu et al., 2013; Millon-Fremillon et al., 2008). New data shows that KRIT1 stabilizes ICAP-1 in endothelial cells and prevents increased β1 integrin signaling. ICAP-1 levels are reduced upon loss of KRIT1 resulting in increased β1 integrin activation and actin stress fiber formation (Faurobert et al., 2013). Conversely, KRIT1 and the cytoplasmic tail of β1 integrin compete for the same binding site of ICAP-1. Hence, binding of KRIT1 to ICAP-1 prevents the inhibition of β1 integrin activation (Liu et al., 2013).

Blood vessels in CCM lesions are frequently characterized by a loss of junctional stability, vessel integrity, loss of cell polarity, and increased endothelial cell proliferation. These are hallmarks of a process known as endothelial-mesenchymal transition (EndMT). Recent data showed that the loss of KRIT1 or PDCD10 (CCM3) results in EndMT due to increased BMP6-SMAD signaling in endothelial cells (Maddaluno et al., 2013). Intriguingly, this signaling pathway is also up-regulated in human patient material with a loss of KRIT1 or CCM2 (Maddaluno et al., 2013).
17

1.1.2.2 **CCM2/ Malcavernin**

CCM2 consists of a N-terminal PTB domain (Liquori et al., 2003) and C-terminal harmonin-homology domain (HHD) (Introduction Fig. 4) (Fischer et al., 2013) and was identified in a yeast two-hybrid screen as a scaffold for the MEKK3/MKK3 complex (Uhlik et al., 2003). The MEKK3/MKK3 complex is required to restore cell volume and morphology upon osmotic shock by activation of its downstream target p38 MAPK.

P38 MAPK activates actin reorganization and stabilization by inducing the F-actin cap binding protein HSP27 (Heat Shock Protein 27). Upon osmotic shock, the CCM2-MEKK3 complex is recruited to membrane ruffles to interact with Rac1 and F-actin. Therefore, the CCM2-MEKK3 complex reorganizes actin polymerization in a RAC1-dependent manner (Uhlik et al., 2003). Proteomic analysis revealed a direct interaction between CCM2, Rac and MEKK3 (Hilder et al., 2007). Interestingly, the loss of CCM2 does not affect the p38 MAPK pathway, but rather the JNK (c-Jun N-terminal kinase), MKK4, MKK7 pathway (Whitehead et al., 2009). Reduction of *CCM2* transcript levels increased the phosphorylation of JNK and its upstream targets MKK4 and MKK7 via increased RhoA levels. Intriguingly, elevated RhoA levels are a common feature after RNA-interference-mediated knock-down of any of the CCM proteins (Crose et al., 2009; Glading et al., 2007; Stockton et al., 2010; Whitehead et al., 2009) and inhibition of RhoA-ROCK signaling abolished RhoA-dependent actin stress fiber formation in heterozygous *Krit1* or *CcM2* mice, and CCM-deficient cells (Borikova et al., 2010; Stockton et al., 2010; Whitehead et al., 2009). Co-immunoprecipitation assays showed that CCM2 interacts with the E3 ubiquitin ligase Smad ubiquitin regulatory factor 1.

![Introduction Figure 4](Image)

Structural domains and interaction partners of CCM2. The CCM2 PTB domain interacts with a Krit1 NPXY/F motif. (adapted from Faurobert and Albiges-Rizo, 2010)
(SMURF1) through a PTB/NPXY interaction. This interaction leads to proteosomal RhoA degradation required for normal endothelial cell function (Crose et al., 2009).

Besides direct interaction of CCM2 with Rac1 and RhoA, it has been suggested that CCM2 is also involved in Cdc42 activation during vascular lumenization (Kleaveland et al., 2009; Whitehead et al., 2009). Cdc42 and Rac1 mediate lumen formation via the regulation of components of the cytoskeletal signaling (Pak2 and Pak4), and the cell polarity complex (Par3 and Par6) (Koh et al., 2008). CCM2 loss-of-function studies in zebrafish and mice revealed a failure of vascular lumen formation, although vacuoles are normally formed in the intersegmental vessels in zebrafish. In contrast, CCM2-depleted HUVECs exhibit decreased numbers of vacuoles and lumen formation in a 3D in vitro culture (Whitehead et al., 2009). These results imply that CCM2 acts at different levels in vascular lumen formation. Further investigations are needed to solve these conflicting results.

As mentioned above, KRIT1 and ICAP-1 complexes in the regulation of β1 integrin dependent stress fiber formation (Introduction Fig. 7). Since KRIT1 and ICAP-1 have a NLS motif, both are able to shuttle between the nucleus and the cytosol and activate transcriptional programs and cellular proliferation (Fournier et al., 2005; Francalanci et al., 2009; Zawistowski et al., 2005). In vitro assays showed that CCM2 can bind to KRIT1-ICAP-1 in a ternary complex to inhibit the nuclear translocation of KRIT1-ICAP-1 (Francalanci et al., 2009; Zawistowski et al., 2005) and therefore transcriptional activation of downstream target genes.

It has been shown that CCM2 induces cell death in neuroblastoma or medullablastoma by binding to the receptor tyrosine kinase TrkA in nerve cells (Harel et al., 2009) and subsequently recruiting a complex composed of CCM3/PDCD10 and STK25 (Costa et al., 2012).

The identification of CCM2-like (CCM2L), a CCM2 paralogue, allowed further insights into the role of CCM proteins in cardiovascular developement (Zheng et al., 2012). CCM2L is expressed in activated endothelial cells during cardiovascular development. Loss of CCM2L reduced endocardial growth factor expression and phenocopied the zebrafish Ccm2 phenotype. Overexpression of CCM2 partially rescues the CCM2L phenotype (Rosen et al., 2013). Moreover, CCM2L completely blocks CCM2-mediated junctional stability and competes with CCM2 for binding to KRIT1.
The contribution of CCM2L in human CCM pathology is still unknown and needs to be elucidated.

1.1.2.3 CCM3/ PDCD10 (*Programmed cell death 10*)

In human, CCM3 is a 212 amino acid protein that consists of a N-terminal dimerization domain (Introduction Fig. 5) (Kean et al., 2011; Li et al., 2010) and a C-terminal focal adhesion targeting-homology (FAT-H) domain. (Li et al., 2010). CCM3 can interact with CCM2 with its FAT-H domain to build the ternary KRIT1-CCM2-CCM3 complex (Hilder et al., 2007). Furthermore, CCM3 heterodimerizes with several members of the germinal center kinase III protein family, including MST4/MASK, STK24/MST3 and STK25/YSK1/SOK1 (Sugden et al., 2013; Xu et al., 2013; Zhang et al., 2013a) within the striating interacting phosphatase and kinase (STRIPAK) complex to promote Golgi assembly and polarization (Fidalgo et al., 2010; Kean et al., 2011). CCM3-depletion in SaOS2 cells impaired directed cell migration due to a failure of correct Golgi repositioning towards the leading edge (Fidalgo et al., 2010). Recent studies discovered that CCM3 plays also a role in exocytosis. Loss of CCM3 or STK24 resulted in increased exocytosis of neutrophils due to a loss of interaction with UNC13 (Zhang et al., 2013b). In *Drosophila*, loss of CCM3 or GCKIII kinase resulted in dilated tracheal tubes (Song et al., 2013). These studies imply that defective lumen formation and vascular morphology in CCM pathology is in part caused by abnormal exocytosis.
CCM3-MST4 interaction has also been shown to be important in vascular cell polarity and junctional stability. Lkb1 is a tumor supressor gene and seems to control the subcellular localization of MST4 (ten Klooster et al., 2009), whereas CCM3 might regulate MST4 kinase activity (Ma et al., 2007). Loss of Lkb1 in endothelial cells leads to a marked reduction of vascular smooth muscle cells (vSMCs) and disruption of the vasculature due to a loss of TGFβ signaling in endothelial cells (Londesborough et al., 2008).

There is conflicting data on the function of CCM3: CCM3 promotes cell survival by binding to VEGFR2. Loss of CCM3 led to decreased VEGFR2 protein levels and to endocytosis of VEGFR2 after VEGF stimulation (He et al., 2010). In contrast, the loss of CCM3 increased cell survival and proliferation through increased VEGF signaling, inhibition of Notch signaling, or increased ERK activation (Louvi et al., 2011; You et al., 2013; Zhu et al., 2010). In zebrafish, which has two Ccm3 isoforms, it has been demonstrated that Ccm3-mediated signaling through Ste20-like kinases is involved in cardiovascular development (Zheng et al., 2010), and that CCM3 functions in a distinct manner from CCM1 and CCM2 (Yoruk et al., 2012). Indeed, neuronal-specific deletion of CCM3, but not CCM1 or CCM2, in mouse embryos resulted in vascular defects comparable to endothelial-specific knock-out of CCM1, CCM2, or CCM3 (Boulday et al., 2009; Boulday et al., 2011; Cunningham et al., 2011; Louvi et al., 2011). These results imply a neuronal contribution in the development of CCM lesions.

1.1.2.4 HEG1

Heart-of-glass (HEG1) is a transmembrane protein which is specifically expressed in endothelial and endocardial cells (Kleaveland et al., 2009). It contains an extracellular domain with two EGF-like repeats, a transmembrane region, and a cytoplasmic C-terminal NPXY/F domain within its short intracellular part (Introduction Fig. 6). Its only known binding partner is KRIT1. Since, loss of heg1 in zebrafish results in the same cardiovascular defects as the loss of krit1/ccm1 or ccm2 (Kleaveland et al., 2009; Mably et al., 2003; Mably et al., 2006), it has been proposed that these three genes act in a common pathway. Biochemical analyses demonstrated that HEG1, KRIT1, and CCM2 can bind in a ternary complex (Kleaveland et al., 2009). HEG1-KRIT1 binding
occurs through the interaction of the HEG1 NPXY/F domain and the KRIT1 FERM domain. Structural analyses also showed that KRIT1 is able to simultaneously bind HEG1 and Rap1 via its FERM domain. Thus, HEG1 could act as an anchor protein that can recruit the Rap1-KRIT1 complex to the plasma membrane (Gingras et al., 2013). Since human patients with CCMs do not have mutations in HEG1, its role in this disease is largely unknown.

Introduction Figure 6

Structural domains and interaction partners of HEG1. HEG1 carries two extracellular EGF-like repeats and interacts with Krit1 via its C-terminal NPXY/F motif. (adapted from Faurobert and Albiges-Rizo, 2010)

Introduction Figure 7

Molecular pathways of CCM proteins (adapted from Storkebaum et al., 2011)
1.2 Cardiovascular development in the zebrafish *Danio rerio*

1.2.1 Zebrafish as a model for vertebrate cardiovascular development

The zebrafish is an excellent model organism to study cardiovascular development, as the molecular mechanisms are highly similar to those in humans and other higher vertebrates. The eggs are fertilized extrauterinally and have an early stereotyped development. Since zebrafish embryos are optically transparent, organogenesis can be easily monitored during development. In addition, a variety of genetic and cell biological methods are available to manipulate and to investigate cellular processes in real time and to uncover the regulatory mechanisms involved in cardiovascular development.

1.2.2 Heart development in zebrafish

During vertebrate embryonic development, the heart is the first functional organ to form. Although the zebrafish heart has a less complex morphology, with just two heart chambers compared to the four chambered mammalian heart, genes responsible for essential steps of cardiac development are conserved throughout vertebrate evolution. Specification of endocardial and myocardial progenitor cells is the first step in cardiac development. Two pools of myocardial progenitor cells at either side in embryos of the 40% epiboly stage in the lateral marginal zone (Introduction Fig. 8A, Stainier et al., 1993). Ventricular progenitor cells are located more dorsally in the lateral marginal zone compared to atrial progenitor cells (Keegan et al., 2004). Myocardial progenitor cell number is restricted by retinoic acid (RA) signaling and the Hox5b transcription factor (Keegan et al., 2005; Waxman et al., 2008). Fgf signaling has also been shown to act downstream of RA. Retinoic acid signaling restricts the specification of cardiac progenitors by regulating Fgf signaling activity (Lin et al., 2010a; Sirbu et al., 2008). In contrast, endocardial progenitor cells are distributed throughout the marginal zone (Introduction Fig.8A; Keegan et al., 2004). During gastrulation, cardiac progenitor cells involute and are finally located in the anterior lateral plate mesoderm (ALPM) at the beginning of somitogenesis (Stainier et al., 1993; Warga et al., 1990).
Cardiogenic differentiation is initiated at the one- to three-somite stage and requires the expression of the homeobox-containing transcription factor Nkx2.5. Nkx2.5 expression is induced by bone morphogenic protein (Bmp) and Nodal signaling in the lateral plate mesoderm via the induction of the transcription factor Gata5 (Kishimoto et al., 1997; Reiter et al., 1999).

At the 14-somite stage myocardial cells start to express sarcomeric genes such as myosin light chain polypeptide 7 (myl7) (Introduction Fig. 8B; de Pater et al., 2009; Yelon et al., 1999). At the same time, myocardial cells express chamber-specific genes and are regionalized in a medial to lateral direction in the ALPM. At the 16-somite stage (Introduction Fig. 8C) the bilateral pools of myocardial cells start to migrate toward the embryonic midline and fuse 1 hour later: ventricular myocardial cells fuse first along the posterior half and then along the anterior half. The resulting structure is called heart cone (Yelon et al., 1999). In contrast to myocardial cells, four-dimensional
confocal microscopy has shown that endocardial cells migrate earlier and reach the midline at the 16-somite stage (Bussmann et al., 2007).

Once the heart cone has formed (Introduction Fig. 8D), myocardial cells from the right cardiac field involute ventrally and move towards the anterior/left with a simultaneous rotation in a clockwise direction (Baker et al., 2008; Bussmann et al., 2007; Rohr et al., 2008; Smith et al., 2008). As a consequence the heart cone is transformed into a tube at 28 hours post fertilization (Introduction Fig. 8E) with its arterial pole at the midline and the venous pole at the left side of the embryo. The endocardial cells are located within the lumen of the cardiac tube (Baker et al., 2008; Bussmann et al., 2007; Rohr et al., 2008). Asymmetric expression of Bmp and Nodal in the ALPM direct asymmetric heart morphogenesis (Baker et al., 2008; Smith et al., 2008; Veerkamp et al., 2013) and myocardial cell polarity and organization are essential for heart tube elongation (Rohr et al., 2008; Rohr et al., 2006; Peterson et al., 2001).

Between 30-48 hours post fertilization (hpf) the linear heart tube bends toward the right side and results in a displacement of the ventricle at the right side of the embryonic midline, whereas the atrium remains at the left side of the embryonic midline (Introduction Fig. 8E-G). Unequal speeds of rotation between the venous pole and arterial pole have been suggested to cause a torsion of the heart tube and to result in cardiac looping (Smith et al., 2008). During ventricular chamber morphogenesis, physical forces generated by blood flow have an impact on myocardial cell shapes and chamber ballooning (Auman et al., 2007; Dietrich et al, 2014).

Blood flow is also required for the formation of cardiac valves between the atrium and the ventricle to prevent blood from flowing back from the ventricle to the atrium. In amniotes, valve formation starts with a local swelling (cardiac cushions) at the atroventricular canal (AVC). Endocardial cells overlying the local swelling receive a myocardial signal, delaminate and migrate into the space between endocardium and myocardium. The delamination of these endocardial cells occurs via epithelial-to-mesenchymal transition (EMT). In zebrafish, cardiac cushion formation starts at 36 hpf where specialized squamous endocardial cells at the AVC become cuboidal. These cells start to express the cell adhesion molecule Dm-grasp (Beis et al., 2005) and form cellular protrusions that extend into the cardiac jelly. In contrast to epithelial-to-mesenchymal transition in amniote heart valve development (Timmerman et al., 2004),
zebrafish endocardial valves arise by invagination of endocardial cells (Scherz et al., 2008). Although the mechanisms by which heart valves develop differ between zebrafish and amniotes, the underlying molecular pathways are conserved. Several signaling pathways are involved in valve development including Notch, ErbB, TGFβ signaling, NFAT, and Wnt-beta-catenin signaling (Beis et al., 2005; Chang et al., 2004; Hurlstone et al., 2003; Scherz et al., 2008; Timmerman et al., 2004). Heart valve remodelling is also dependent on blood flow, since zebrafish silent heart mutants, which lack heart contraction, exhibit impaired valve formation (Bartman et al., 2004). Furthermore, expression of the shear stress transcription klf2a has been shown to regulate the invagination process of endocardial cells at the AVC by inducing Notch1 (Dietrich et al., 2014; Vermot et al., 2009).

1.2.3 Vascular development in zebrafish

In all vertebrates, endothelial and hematopoietic cells arise in close association with one another during embryonic development. In zebrafish, both cell types develop in the intermediate cell mass of the ventral mesoderm, whereas in birds and mammals, these cells develop in extraembryonic yolk sac blood islands (Detrich et al., 1995; Haar et al., 1971; Moore et al., 1965). Despite the spatially distinct manner across the species, they share the same genetic programs. During early embryonic development endothelial and hematopoietic cells are specified by the expression of stem cell leukemia (scl) and fetal liver kinase-1/ vascular endothelial growth factor receptor 2 (flk1/ vegfr2) (Kabrun et al., 1997). The fact that both cell lineages express the same genes and develop in close association in the primitive lateral mesoderm raised the hypothesis of a common precursor cell referred as the hemangioblast. In vivo studies in mice and zebrafish provided evidences for the existence of such a cell (Huber et al., 2004; Vogeli et al., 2006).

During early somitogenesis endothelial precursor cells (angioblasts) begin to express endothelial-specific genes (Fouquet et al., 1997; Kimmel et al., 1990). The expression of transcription factors of the ETS gene family can induce the expression of vegfr2 and vascular endothelial cadherin (vecdn) (Pham et al., 2007; Sumanas et al., 2006; Sumanas et al., 2008). Several studies also demonstrated that the binding of ETS
transcription factors with other factors, including members of the Forkhead (FOX) family of transcription factors (De Val et al., 2008) and KLF genes (Meadows et al., 2009) plays an important role in the specification of endothelial cells. At the 14 somite stage, after endothelial cells are specified, they start migrate to the embryonic midline above the endoderm. There, the dorsal aorta (DA) and the posterior cardinal vein (PCV), the two major trunk axial vessels (Jin et al., 2005; Lawson et al., 2002b) are formed de novo by fusion of endothelial cells called angioblasts (vasculogenesis). It has been proposed that hypochord-derived soluble Vegf acts as a guidance cue for angioblast midline migration (Cleaver et al., 1998; Lawson et al., 2002c) and requires the ventral endodermal layer (Jin et al., 2005).

For a functional circulatory system it is essential that blood vessel acquire a venous or arterial identity. Ephrin B2-EphB4 signaling is crucial in this process. EphB4 is preferentially expressed in veins, whereas its ligand Ephrin B2 is expressed in arterial endothelial cells (Wang et al., 2010c). Additional signaling pathways involved in Ephrin-Eph-mediated arterial-venous specification, including Hedgehog, VEGF, and Notch signaling. Notch ligands and receptors are exclusively expressed in arterial endothelial cells and help to promote arterial differentiation (Lawson et al., 2001; Lawson et al., 2002a; Lawson et al., 2003). Notch signaling restricts arterial-specific ephrinB2 and venous-specific ephb4 expression. Alterations in sonic hedgehog (shh) or vegf activity causes the same arterial-venous specification defects like the loss-of-function or gain-of-function of Notch signaling (Lawson et al., 2002c; Lawson et al., 2002a). Shh induces the expression of vegf in the somites, and that vegf then activates Notch signaling in endothelial cells of the developing dorsal aorta, resulting in arterial differentiation.

Following the formation of the lateral dorsal aorta and the posterior cardinal vein by vasculogenesis, new blood vessels are formed by a process called angiogenesis. During angiogenesis, new vessels develop from preexisting vessels. The intersegmental vessels (ISVs) of the trunk are the first angiogenic vessels formed in all vertebrates. They sprout from the dorsal site of the dorsal aorta and migrate dorsally along vertical somite boundaries and interconnect at the dorsal-lateral surface of the neural tube.

The primary cranial vasculature is established by vasculogenesis of mesodermal-derived angioblasts. Subsequently, the craniofacial vascular network develops by
angiogenesis (Lee et al., 2009). At around 20 hours post fertilization (hpf), angioblasts from the lateral plate mesoderm migrate medially as two anterior and posterior cell populations to form the paired lateral dorsal aorta (LDA). These vessels are essential to provide the arterial supply of blood for the entire head (Isogai et al., 2001). Angiogenic growth of the LDA in the caudal direction and the connection with the posterior dorsal aorta results in a Y-shaped junction between these vessels (Isogai et al., 2001; Siekmann et al., 2009). The primordial hindbrain channels (PHBC) provide the sole venous drainage of the head and are also formed by vasculogenesis at the same time as the LDA. The basilar artery (BA), the most important artery in the vertebrate head, is formed between the PHBCs and the bilateral LDA. The central arteries (CtAs) in the hindbrain form later and connect the primordial hindbrain channels and the basilar artery.

Angiogenesis of the cranial vasculature depends on VEGF signaling, as does the ISV formation in the trunk region (Covassin et al., 2006). Furthermore Cxcl12b/ cxcr4a chemokine signaling is also involved in cranial vascular development (Siekmann et al., 2009).

Cord or cell hollowing are thought to be the primary mechanisms controlling vascular lumen formation. During this process, lumina form by the creation of fluid-filled spaces between cells or within single cells (Lubarsky et al., 2003). *In vitro* studies demonstrated that lumen formation requires intracellular vacuolation and intercellular fusion of endothelial vacuoles (Bayless et al., 2000; Bayless and Davis, 2002; Kamei et al., 2006). These processes are controlled by integrins, Cdc42, Rac, and cell polarity complexes (Bayless and Davis, 2002; Davis et al., 1996; Koh et al., 2008). In addition, endothelial cells overlap extensively (Blum et al., 2008; Wang et al., 2010b).

1.2.3.1 VEGF-Notch signaling in tip and stalk cell specification during angiogenesis

Blood vessel formation by angiogenesis requires the tight control and coordination of endothelial cell behaviour. The hierarchical organization of sprouting endothelial ‘tip cells’(TCs) and trailing ‘stalk cells’(SCs) is a key aspect in branching morphogenesis (Introduction Fig. 9). Endothelial tip cells extend long filopodia that sense attractive and/or repulsive signals in their environment and direct vascular growth (De Smet et al.,
2009; Gerhardt et al., 2003). Endothelial stalk cells, that trail TCs are less motile but support the extension of the sprouting vessel by cell proliferation. The regulation of tip cell and stalk cell specification is directed by VEGF and Notch signaling. VEGFR2 activation by binding of its ligand VEGFA leads to an up-regulation of the Notch ligand Delta-like-4 (DLL4) in tip cells and an activation of Notch signaling in adjacent stalk cells, which promotes stalk cell behaviour by lateral inhibition of tip cell fate decision (Hellstrom et al., 2007; Leslie et al., 2007; Lobov et al., 2007; Siekmann et al., 2007; Suchting et al., 2007). Hence, endothelial cells experiencing the highest level of VEGF signaling will be selected as tip cells. Notch activation in stalk cells suppresses VEGFR2 and VEGFR3/FLT4 signaling and proangiogenic fate (Siekmann et al., 2007; Tammela et al., 2008). In zebrafish, \textit{flt4} is normally expressed in tip cells. Loss of Notch signaling results in an expansion of \textit{flt4} expression throughout the stalk cell domain and in an increase of endothelial cells showing tip cell behaviours, including the hyper-sprouting phenotype.

Besides a direct regulation of VEGF signaling, the DLL4-Notch pathway may indirectly influence local guidance of sprouting vessels. It has been shown that Notch
signaling can positively regulate FLTI expression (Funahashi et al., 2010). FLT1 in stalk cells act as decoy receptor for VEGFA to further prevent VEGFA-mediated tip cell specification. Hence, knock-down of flt1 in zebrafish promotes increased tip cell formation (Krueger et al., 2011). Tip cell specification is also promoted by the stalk cell-restricted expression of Jagged 1, another Notch ligand (Benedito et al., 2009). Glycosylation of Notch receptors by Fringe family glycosyltransferases enhances Notch signaling via DLL4 but represses signaling via Jagged 1. Stalk cell-restricted Jagged 1 competes with DLL4 for Notch binding and suppresses Notch signaling in tip cells. Thus, endothelial-specific Jagged1 knock-out mice exhibit retinal vessels with disrupted tip cell formation and vascular sprouting, whereas tip cell formation is enhanced upon endothelial Jagged 1 gain-of-function.

1.2.3.2 Integrin signaling in angiogenesis

Communication between endothelial cells and their environment plays an important role in angiogenesis and cancer progression. Thereby angiogenesis is regulated by integrins. Integrins belong to a family of receptors for ECM proteins and immunoglobulin superfamily molecules. They form heterodimers of non-covalent single-pass type I transmembrane α and β subunits (Humphries et al., 2006; Hynes et al., 2002). Integrins can bind to ECM proteins or receptors of adjacent cells with their extracellular domain to mediate cell adhesion and binding their cytoplasmic tails to the intracellular cytoskeleton (Calderwood et al., 2000; Evans et al., 2007). Besides cell adhesion, integrins mediate outside-in or inside-out signaling. These signals determine cellular responses such as migration, survival, motility, and differentiation (Calderwood et al., 2004; Hynes et al., 2002; Miranti et al., 2002). Integrin activation requires conformational changes of the heterodimer (Introduction Fig. 10) and can be modulated by the expression of different integrin genes or by growth factor or chemokine receptor signaling. Integrin signaling can be activated by binding of different intracellular proteins including talin and kindlin. Binding of the PTB domain of talin to the conserved WxxxxNP(I/L)Y motif of the β integrin cytoplasmic tail results in integrin activation (Wegener et al., 2007). Talin also binds to the actin cytoskeleton and various signaling proteins, thereby directly connecting activated integrins with the cytoskeletal
network (Critchley et al., 2008). In addition, it has been shown that proteins of the kindlin family can bind to the integrin NPxY motif via their FERM domain, and inhibition of talin suppresses integrin activation (Kloeker et al., 2004; Ma et al., 2008; Montanez et al., 2008; Moser et al., 2008). Activated integrins then assemble a multiprotein complex at their cytoplasmic tail, which includes focal adhesion kinase (FAK), Src-family kinases, integrin-linked kinase, vinculin, or paxilin and is responsible for outside-in signaling (Deakin et al., 2008; Giannone et al., 2006; Ginsberg et al., 2005; Legate et al., 2006; Mitra et al., 2005; Ziegler et al., 2006).

The role of αvβ3 in angiogenesis suggests that some pathological conditions might depend on αvβ3 signaling. Expression analyses of cerebral cavernous malformations (CCM) from human brain tissue revealed that αvβ3 is strongly expressed in CCM endothelium (Seker et al., 2006). Knock-out of β3 integrin in mice leads to embryonic lethality of 50% due to intrauterine bleeding or defective placental development (Hodivala-Dilke et al., 1999). Intriguingly, only postnatal mice lacking β3 integrin exhibit coronary capillaries of irregular endothelial thickness, with endothelial protrusions into the lumen, and expanded cytoplasmic vacuoles caused by enhanced...
VEGF signaling (Weis et al., 2007). Further studies in mice suggested that integrins of glial cell play an important role in maintaining the blood-brain barrier, since neuronal-specific integrin αv knock-out mice exhibit enlarged, disrupted blood vessels, with defective apposition of endothelial or glial cells (McCarty et al., 2002).

Besides β3 integrin signaling, fibronectin-mediated β1 integrin activation has a crucial role in vascular development. Fibronectin, a component of the ECM, is produced and secreted by endothelial cells during normal and tumor angiogenesis (Clark et al., 1982; Kim et al., 2000; Liao et al., 2002). Endothelial-specific deletion of β1 integrin in mice leads to severe vascular defects. Furthermore, endothelial cell proliferation and vessels branching is impaired, arguing for a essential role of β1 integrin in angiogenesis (Bloch et al., 1997). Integrin αvβ1 is poorly expressed by quiecent endothelial cells, but is up-regulated during tumor angiogenesis (Kim et al., 2000); their expression is regulated by the homeobox family transcription factor HOXD3 (Boudreau et al., 2004).

Integrin α4β1 is expressed on neovessels of tumors in response to VEGF, IL1β, bFGF, and TNFα signaling. Binding of VCAM1, expressed by smooth muscle cells (VSMCs), to endothelial cells promote adhesion between these two cell types. Loss of integrin α4β1 causes cell death of both endothelial cells and pericytes (Garmy-Susini et al., 2005).

1.2.3.3 The role of EGFL7 in vascular development

Epidermal growth factor-like domain 7 (EGFL7) is a secreted angiogenic signaling molecule, predominantly expressed by endothelial cells (Fitch et al., 2004). It consists of a N-terminal signal peptide domain, an EMI-like domain, and two centrally located EGF-like domains. During embryogenesis and pathological angiogenesis Egfl7 is mostly expressed by proliferating endothelial cells (Campagnolo et al., 2005; Fitch et al., 2004; Parker et al., 2004; Soncin et al., 2003). In the developing retinal vascular plexus, Egfl7 expression is restricted to sprouting vessels with a basal localization in stalk cells and a patchy expression in tip cells (Schmidt et al., 2007). EGFL7-depleted cultured human umbilical vein endothelial cells (HUVECs) fail to proliferate. Additionaly, depletion of EGFL7 supresses endothelial cell migration and inhibits
capillary sprouting (Nichol et al., 2010). It has been suggested that EGFL7 promotes these processes by modulating ECM rigidity. EGFL7 inhibits the deposition of mature elastic fibers by repressing lysil oxidase (LOX)-mediated conversion of tropoelastin into elastin (Lelievre et al., 2008).

In vivo studies in zebrafish demonstrated that knock-down of Egfl7 causes pericardial edema, hemorrhaging, and circulatory loop defects due to impaired tubulogenesis of the developing vessels. Furthermore, endothelial cell membranes exhibit disrupted tight, adherens and gap junctions (De Maziere et al., 2008; Parker et al., 2004). The study of the role of Egfl7 in vascular development has been complicated by the presence of the pro-angiogenic microRNA miR-126 within the EGFL7 gene (Kuhnert et al., 2008; Nicoli et al., 2010; Wang et al., 2008). Egfl7 loss-of-function mouse models exhibit partial embryonic lethality and vascular abnormalities (Schmidt et al., 2007). Later experiments showed that these vascular defects can be attributed to a loss of miR-126 rather than a loss-of-function of Egfl7 (Kuhnert et al., 2008). In addition, endothelial-specific miR-126 knock-out mice exhibit vascular defects similar to those of Egfl7 loss-of-function mice (Kuhnert et al., 2008; Wang et al., 2008).

Overexpression of Egfl7 in murine endothelial cells without affecting miR-126 levels resulted in a decrease in cranial blood vessels, collapsed arterial vessels, and abnormal endothelial cell aggregates (Nichol et al., 2010). These phenotypes are mediated, at least in part, by modulation of Notch signaling: EGFL7, as an endothelial secreted ECM protein may interact with Notch receptors in a paracrine or autocrine manner. Depletion of EGFL7 in HUVECs inhibited endothelial cell proliferation, sprout formation, and migration (Nichol et al., 2010), which could be also observed upon Notch signaling activation (Henderson et al., 2001; Noseda et al., 2004; Sainson et al., 2005; Taylor et al., 2002). It has also been shown that EGFL7 interacts with the Notch receptors Notch1 and Notch4 and with their ligand, DLL4 (Introduction Fig. 11A) (Nichol et al., 2010; Schmidt et al., 2009). Thus, EGFL7 could modulate Notch signaling by binding to the Notch receptors or its ligands. Studies in HUVECs suggested that, in contrast to the postnatal retina, EGFL7 enhances Notch signaling in the presence of DLL4 during embryogenesis (Introduction Fig. 11B). This finding is suggested to involve the binding of EGFL7 to Jagged1, an antagonist of Notch signaling. Then, EGFL7-Jagged1 binding
prevents the interaction between the Notch receptor and Jagged1, and in turn promotes DLL4/Notch signaling activation.

The findings that EGFL7 is strongly expressed in several tumors and cancer cell lines (Diaz et al., 2008; Huang et al., 2010; Wu et al., 2009), and its possible role in tumor angiogenesis make EGFL7 a potential target for antiangiogenesis therapy.

1.3 The transcription factor KLF2 in cardiovascular development

Blood flow and shear stress have an impact on endothelial cytoskeleton remodeling and therefore influence their cell morphology (Davies et al., 1997; Kim et al., 1989).
transduction of physical forces between the endothelium and the surrounding tissue is important for maintaining vascular homeostasis and function. Mechanical forces exerted by blood flow act on the apical surface of endothelial cells and are translated into molecular signals for vascular function. These forces can act parallel to the direction of flow and result in shear stress, or perpendicular to the vessel wall and tensile stress (White et al., 2007). Accordingly, different downstream signaling cascades may be activated and regulate endothelial cell behaviour and morphology. One of the best characterized genes is the zinc-finger transcription factor KLF2. The zebrafish genome harbours two KLF2 paralogues, klf2a and klf2b due to genome duplication. Zebrafish Klf2a is considered to be the ortholog of the human and murine KLF2. In adult human tissue samples, KLF2 mRNA was detected in the heart, skeletal muscle, pancreas, lungs, placenta, and vascular tissues (Wani et al., 1999). In the vasculature, KLF2 expression levels within the endothelium correlates with local shear stress patterns (Introduction Fig. 12). Decreased KLF2 expression is generally seen in areas of lower shear stress levels and disturbed flow patterns (Dekker et al., 2002; Dekker et al., 2005; Parmar et al., 2006). In HUVECs, it has been demonstrated that KLF2 overexpression results in stretched shaped endothelial cells with actin stress fiber formation even in the absence of blood flow. In contrast, the shear stress induced alignment of endothelial cells in flow direction is abolished after siRNA-mediated KLF2 silencing (Boon et al., 2010). Further studies demonstrated that KLF2 is not only expressed in large blood vessels, but also in the duodenal, hepatic, or the glomerular microvasculature (Gracia-Sancho et al., 2011; Kobus et al., 2012; Slater et al., 2012).

In zebrafish, klf2 expression starts at 70% epiboly in the ventral, animal portion of the epiblast (Oates et al., 2001). At 24 hours post fertilisation (hpf), klf2a is expressed in head vessels, the heart, clusters of cells lateral to the most posterior notochord, and in the anus. At 36 hpf klf2 mRNA expression can be detected in the trunk vasculature, and after two days in endocardial cells of the developing heart valves. Concomitant with human and mice, klf2 expression in the zebrafish vasculature is blood flow dependent (Parmar et al., 2006; Stainier et al., 1996; Wang et al., 2011).
Shear stress-induced expression of *KLF2* requires a single consensus myocyte enhancer factor 2 (MEF2)-binding site up-stream of the transcription start of the Klf2 gene (Introduction Fig. 12) (Kumar et al., 2005). Phosphorylation of MEF2 by the MEK5/ERK5 pathway is critical for the expression of *KLF2* under shear stress (Parmar et al., 2006; Young et al., 2009). Epigenetic modification of MEF2 is another mechanism for the regulation of KLF2 expression. Under low blood flow conditions, histone deacetylase 5 (HDAC5) binds to MEF2 and inhibits its transcriptional activity. Phosphorylation of HDAC5 in a Ca^{2+}/ calmodulin-dependent manner under high laminar shear stress results in dissociation of HDCA5 from MEF2 and transcription of *KLF2* (Wang et al., 2010a). Blood-flow dependent expression of *KLF2* can be also regulated by the endothelial thioredoxin-interacting protein (TXNIP). Under disturbed flow conditions *TXNIP* is up-regulated and binds as a part of a transcriptional repressor complex to the shear responsive region of *KLF2* promoter and inhibits KLF2 expression.
(Wang et al., 2012). Recent data demonstrated a contribution of microRNAs in blood flow-mediated regulation of KLF2: Under laminar flow, miR-92a is down-regulated which results in higher levels of KLF2 expression. Overexpression of miR-92a decreases KLF2 expression by binding to a miR-92a-binding site at the KLF2 3′-UTR region (Bonauer et al., 2009).

Besides the flow-dependent regulation of KLF2, many drugs have been found to induce KLF2 expression independently of flow. One of the best studied group of are statins. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a enzyme in cholesterol synthesis and are used in clinical practice. In addition, a combination of prolonged shear stress and statins have been shown to have a additive effect on KLF2-mediated expression of eNOS and thrombomodulin, because shear stress stabilizes KLF2 mRNA via inhibition of PI3K and results in higher KLF2 mRNA levels (Introduction Fig. 12) (van Thienen et al., 2006). Concomitant with these findings, it has been shown that rapamycin increases KLF2 expression in HUVECs by inhibition of mTOR, a component of the PI3K/AKT/mTOR pathway (Hay et al., 2004; Ma et al., 2012).

Blood-flow mediated gene expression plays a important role in vascular homeostasis, endothelial barrier function, vasodilation, angiogenesis, and inflammation. KLF2 regulates the expression of about 70% of shear-stress induced endothelial genes together with nuclear factor erythroid2-related factor 2 (Nrf2) (Fledderus et al., 2008).

1.3.1 KLF2 in angiogenesis and valvulogenesis

Several studies have shown that VEGF signaling is a key regulator of physiologic and pathologic angiogenesis by promoting EC cell migration, vascular permeability, inflammation, and endothelial cell survival (Ferrara et al., 2003; Kim et al., 2001; Leung et al., 1989; Maharaj et al., 2007; Senger et al., 1983). During zebrafish development, blood flow-mediated expression of klf2a has a pro-angiogenic role in aortic arch development (Introduction Fig. 13). Klf2a induces the expression of the endothelial-specific microRNA miR-126 which inhibits spread-1 a negativ regulator of VEGF signaling. Loss of klf2a down-regulates miR-126 and inhibits pro-angiogenic VEGF signaling by the up-regulation of spread-1 (Nicoli et al., 2010).
In Xenopus, Klf2 regulates Flk1 expression by binding, together with the ETS transcription factor ERG to the enancer of the Flk1 gene. Knock-down of Klf2 leads to severe vascular defects due to a significant decrease of Flk1 (Meadows et al., 2009). Together, these studies indicate that Klf2 has pro-angiogenic role during embryonic development. Conversely, studies in mice demonstrated an opposite effect of Klf2 overexpression on VEGF-mediated angiogenesis. Moreover, KLF2 competes with Sp1 for a binding site in the VEGFR2 promoter and overexpression of KLF2 in HUVECs inhibits VEGFR2 expression (Bhattacharya et al., 2005). Additionally, angiogenesis can also be induced under hypoxic conditions by the activation of the hypoxic-inducible factor 1 (HIF-1). KLF2 knock-down in HUVECs increases the expression of HIF-1 target genes including VEGF, whereas KLF2 overexpression inhibits their expression and also results in a failure endothelial tube formation (Kawanami et al., 2009).

In adult, endothelial progenitor cells (EPCs) participate in neovascularization (Asahara et al., 1997). EPCs are bone marrow-derived cells and circulate in the blood stream. Recent studies have shown that KLF2 overexpression in human EPCs increases their cell number and improves neovascularization capacity in an ischemic hind limb model (Egorova et al., 2012).

Cardiac valve formation in vertebrates is essential for a functional circulatory system. Cardiac cushions at the atrioventricular canal (AVC) are remodeled and become functional valves (Armstrong et al., 2004). In zebrafish, it has been shown that klf2a plays a major role cardiac valve development. Klf2a expression is up-regulated by retrograde flow at the AVC and knock-down of klf2a and its target genes bmp4, notch1b, edn1, and nrg1 results in valvular defects (Introduction Fig. 14) (Vermot et al., 2009). Studies in murine endothelial cells indicate that shear stress at the AVC activates
Tgfβ/Alk5 signaling. Then, Alk5 activates the MEK5/ERK5/MEF2 pathway and
induces \textit{Klf2} expression (Egorova et al., 2011). Analyses of the zebrafish mutant \textit{bungee}
\textit{(bngj}^{177}) revealed the important role of \textit{klf2a} in valve development. In these mutants,
the phosphorylation of Hdac5 is impaired. Consequently, Hdac5 remains in its active
state to the \textit{klf2a} promoter and inhibits the expression of \textit{klf2a} which results in cardiac
valve defects (Just et al., 2011).

\subsection{1.3.2 KLF2 in vascular tone regulation}

Vascular tone is controlled by various factors produced in endothelial cells. Among
these factors, eNOS, C-natriuretic peptide (CNP), and adrenomodulin act as a
vasodilator, whereas endothelin-1 (ET1) and angiotensin-converting enzyme (ACE)
have a vasoconstrictiv function (Chauhan et al., 2003; Drexler et al., 1999; Malek et al.,
1993). KLF2 binds to the eNOS promoter and induces its expression. Moreover, KLF2
also induces \textit{CNP} and inhibits \textit{ET1} and \textit{ACE} expression (Dekker et al., 2005;
SenBanerjee et al., 2004).
2 Aims of this study

The cerebral cavernous malformation (CCM) protein complex is crucial for normal blood vessel development and vascular integrity. Patients with cerebral cavernous malformations (CCMs) frequently suffer from hemorrhages and/or cavernoma leading to strokes or even death due to a loss of any of the three genes, KRIT1/CCM1, CCM2/OSM, or CCM3/PDCD10. However, the roles of CCM proteins during cardiovascular development remain largely unknown.

In this study, microarray expression analyses yield a first hint for potential candidate genes. Furthermore, knock-down experiments of candidate genes or pharmacological inhibition of different signaling pathways shed light on the molecular relationships between the CCM complex proteins and vascular signaling cascades during zebrafish embryonic cardiovascular development.
3 Material and Methods

3.1 In vivo experiments

3.1.1 Fish maintenance and stocks

Zebrafish embryos were kept in egg water (60µg/ml Instant Ocean Sea Salts, Aquarium Systems Inc., USA; 1µg/ml Methylene blue) at 28,5°C. To prevent pigmentation, embryos were kept in egg water supplied with 0,003% (w/v) PTU (1-Phenyl-2-thiourea, Sigma-Aldrich, USA). Embryos were staged according to morphological criterias (Kimmel et al., 1995). Adult zebrafish were maintained under standard conditions at 28,5°C (Westerfield et al., 1997).

The following fish lines were used:

Transgenic lines:
- Tg(myl7:GFP)twu34 (Huang et al., 2003)
- Tg(kdrl::GFP)y843 (Jin et al., 2005)

Mutant lines:
- heg m552 (Mably et al., 2003)
- krit 1b219c (Mably et al., 2006)
- ccm2 m201 (Mably et al., 2006)
- tmnt2a b109 (Chen et al., 1996)

3.1.2 Embryo injections

Glass injection needles (Drummond Scientific, USA) were pulled in a P-97 Flaming/Brown Micropipette puller Sutten Instruments). For injections, needles were fixed onto a micromanipulator (MM33 Micromanipulator, Maerzhaeuser, Germany) and connected to a microinjector (MPPI-2 Pressure Injector, BP15 back pressure unit,
Applied Scientific Instrumentation). Embryos were injected the stereomicroscope at 1-cell stage.

3.1.3 Morpholino and expression construct injections

Morpholino antisense oligonucleotides were purchased from GeneTools, LLC, USA. Morpholinos (MO)s were diluted with ddH$_2$O to 1mM stock solution and stored at -20°C. For experiments, MOs were further diluted in Danieau’s. Morpholinos were injected into one-cell stage embryos in the following amounts:

<table>
<thead>
<tr>
<th>Morpholino name</th>
<th>Morpholino sequence</th>
<th>Amount /embryo</th>
</tr>
</thead>
<tbody>
<tr>
<td>$klf2a$ ATG</td>
<td>5’-GGACCTGTCCAGTTCCATCCTTTCCAC-3’</td>
<td>12ng</td>
</tr>
<tr>
<td>(Nicoli et al., 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$klf2b$ ATG</td>
<td>5’-AAAGGCAAGGTAAAGCCATGTCACAC-3’</td>
<td>12ng</td>
</tr>
<tr>
<td>(Renz et al., 2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$egfl7$ ATG</td>
<td>5’-CAGGTGTGTCTGACACGACAGAAAGAG-3’</td>
<td>650pg</td>
</tr>
<tr>
<td>(Parker et al., 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$tnmt2a$ ATG</td>
<td>5’-CATGTTTGGCTCAGCTCAGACACGCA-3’</td>
<td>2ng</td>
</tr>
<tr>
<td>(Sehnert et al., 2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$itgb1b$ splice</td>
<td>5’-GCGGGTTTGAGTAATAACTCACCCT-3’</td>
<td>6.3ng</td>
</tr>
<tr>
<td>(Ablooglu et al., 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$icap-1$ ATG</td>
<td>5’-TCGAACATCCCTCCACCACGCCCC-3’</td>
<td>8.3ng</td>
</tr>
</tbody>
</table>

The plasmids hsp70l:klf2a_IRES_GFP or hsp70l:klf2b_IRES_GFP (Renz et al., 2015) were injected into one-cell stage embryos together with the tol2 transposase capped mRNA synthetized using the SP6 polymerase (mMessage Machine, Ambion, USA). For efficient genomic integration, a concentration of 12.5ng/µl plasmid DNA and
25ng/µl mRNA (diluted in Danieau’s) was used. Injected embryos were raised under standard conditions (see fish maintenance and stocks). Based on their strong EGFP expression, 1 transgenic fishline Tg(hsp70l:KLF2a_IRES_EGFP)md8 and 2 transgenic fishlines Tg(hsp70l:KLF2b_IRES_EGFP)md9,11 were further analyzed.

3.1.4 Heat-shock experiments

Prior to the heat-shock, up to 50 embryos were collected in 50ml tubes and pre-heated egg water was added. The heat-shock was performed at 37°C in a waterbath for 40 minutes. Time-points for the following experiments are detailed within the results section.

3.1.5 Pharmacological treatment

Dechorionated embryos were kept in E3 medium and treated with 12,5µM PTK787 (ChemicTek, USA, Lot# VT-ETJN-2A), a Vegf inhibitor at 28,5°C (Renz et al., 2015). Control embryos were treated with 0.01% DMSO (Dimethylsulfoxide, Sigma-Aldrich), at 28,5°C. Briefly, embryos were treated in a 1% agar-coated petridish to prevent sticking to it. After treatment, embryos were washed several times with E3 medium and then transferred to a new petridish. Treatment protocols for the different experiments are detailed within the results section.

3.1.6 Embedding of embryos for live imaging

Embryos were anesthetised with 0,03% Tricaine (3-amino benzoic acid ethylester, Sigma-Aldrich, USA) in E3 medium for 2 minutes and then embedded in 1% Low Melting Agarose (Lonza, Switzerland, cat# 50081)/0,03% tricaine solution on a Petridish. Embryos were covered with 0,03% tricaine solution to prevent dehydration of the agarose during imaging. Multiple z-stacks were recorded at the Zeiss confocal microscope LSM700 with 20x/dry objective. Between each timepoint, embryos were
removed from the agarose and incubated in petridishes in E3 medium without Tricaine at 28.5°C.

3.2 Molecular biology methods

3.2.1 Total RNA extraction and cDNA synthesis

20-30 live embryos were collected in a 2ml Eppendorf tube (Eppendorf, Germany) and 1ml Trizol (Invitrogen, USA, cat#15596-026) was added. Total RNA was extracted according to manufacturer’s protocol. The RNA pellet was dissolved in 25µl RNase-free ddH2O.

cDNA was generated from total RNA by using the Sensiscript Reverse Transcription Kit (Qiagen, Germany, cat#205211) according manufacturer’s protocols.

3.2.2 In vitro transcription of DIG-labelled antisense RNA

The templates for the in situ hybridization probes for klf2a and klf2b were generated by PCR amplification using 24hpf WT cDNA. The amplicons were cloned into the pSC-B vector with the StrataClone Blunt PCR Cloning Kit (Stratagene, cat#240207). Antisense RNA was generated by in vitro transcription using the DIG RNA Labeling Kit (Roche Diagnostics, Switzerland, cat#11175025910) in collaboration with Jana Richter.

PCR-Primer:

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klf2a_fwd</td>
<td>5'-GCAAGAGTCCAGAAACATGTACAACCCG-3'</td>
</tr>
<tr>
<td>Klf2a_rev</td>
<td>5'-GCGTTTAGTCCACATTTTCCAGAGTCCG-3'</td>
</tr>
<tr>
<td>Klf2b_fwd</td>
<td>5'-GGAGTTTTCCTGAAATCAAAGTGGAGCCG-3'</td>
</tr>
<tr>
<td>Klf2b_rev</td>
<td>5'-TAACAGTCTCGGATTGGACACCGATTTC-3'</td>
</tr>
</tbody>
</table>
3.2.3 Extraction of cardiac tissue

Whole hearts were extracted manually with collaborative support of Franziska Rudolph (MDC, Berlin) and Jana Richter (MDC, Berlin) (Lombardo et al., 2015). For heart extraction, a modified protocol after Burns (Burns et al. 2006) was used. 50-100 of wild-type or ccm2^{m201} mutant embryos in the transgenic line Tg(<i>myl7:GFP</i>)^{twu34} background were collected in a 1,5 ml Eppendorf tube and washed twice with 10% fetal bovine serum (FBS, Sigma-Aldrich, USA) in L-15 (Gibco, cat#11415-049). Embryos were ruptured by repeated uptake into a loading pipette and filtered on a 100 µM nylon mesh (BD Bioscience, cat#BD352360). Subsequently the flow-through was filtered again on a 30 µM mesh (Miltenyi Biotec., cat#130-098-458) which retained the hearts. Hearts were then washed out onto an agar-coated plate containing 10%FBS/L-15, collected under a stereomicroscope (Leica MZFLIII) and transferred into RNAlater (Ambion, USA, cat#AM7020) for RNA stabilization. This procedure was repeated several times to obtain sufficient heart tissue for RNA extraction.

3.2.4 RNA extraction and processing

Total RNA was extracted with the RNeasy Micro Kit (Qiagen, Germany, cat#74004). RNA was quantified on a ND-1000 spectrophotometer (Nanodrop Technologies). For quality analysis, the 2100 Bioanalyzer RNA 6000 Nano chip (Agilent Technologies) was used. RNA processing and chip hybridization was done by imaGenes GmbH (Berlin, Germany). Briefly, for each sample, 200ng of intact (RIN>8) total RNA was subjected to a single amplification step and Cy3 labeling reaction. 1,5 mg of labeled cRNA were hybridized to Zebrafish (V2) Gene Expression Microarrays (G2519F-019161, 4x44K) and spot intensities recorded on a G2565BA scanner (Agilent Technologies). Microarrays were performed in duplicates for WT and CCM2 samples. Raw expression values were adjusted in R (www.r-project.org) using variance stability normalization (Huber et al., 2002). Significance p-values for differentially expressed probes were calculated with the limma R package (G Smyth 2005) and associated false discoverythresholds determined according to the Benjamini and Hochberg FDR method (Benjamini et al., 1995).
3.2.5 Gateway cloning

The open reading frame of zebrafish klf2a (NM_131856, (Vermot et al., 2009) was amplified by PCR using the Phusion polymerase (Finnzymes, Finland) and cloned via BP Gateway (Kwan et al., 2007; Villefranc et al., 2002) recombination into the pDONR 221 vector (Invitrogen, USA) to generate a middle entry vector referred to as pME-klf2a. To generate an injection construct, a LR Gateway recombination reaction with pDestTol2, p5E-hsp70l, pME-klf2a and p3E-IRES_EGFP was performed to generate pTol2-hsp70l:KLF2a_IRES_EGFP. Similarly, the open reading frame of zebrafish klf2b (NM_131857) was amplified and cloned via BP Gateway (Kwan et al., 2007; Villefranc et al., 2007) recombination with pDONR 221 to generate the middle entry vector pME-klf2b. To generate an injection construct, a LR Gateway recombination reaction with pDestTol2, p5E-hsp70l, pME-klf2b and p3E-IRES_EGFP was performed to generate pTol2-hsp70l:KLF2b_IRES_EGFP. All Gateway plasmids were kindly provided by Nathan Lawson’s and Shu Chien’s lab.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>attB1_klf2a</td>
<td>5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCATCTCAGCTGCATAGCTGACCTAT-3’</td>
</tr>
<tr>
<td>attB2_klf2a</td>
<td>5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTTTACCTTGCCTTTTGCCT-3’</td>
</tr>
<tr>
<td>attB1_klf2b</td>
<td>5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTTTACCTTGCCTTTTGCCT-3’</td>
</tr>
<tr>
<td>attB2_klf2b</td>
<td>5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTTTACCTTGCCTTTTGCCT-3’</td>
</tr>
</tbody>
</table>

3.2.6 Quantitative RT-qPCR

The RT-qPCR was performed in collaboration with Dr. Cécile Otten (MDC, Berlin) as described (Renz et al., 2015) using 6ng total cDNA. Quantitative real-time PCR was performed with iTaqTM Universal SYBR Green Supermix (Bio-Rad) in a 20 µl reaction on a ABI Prism 7900 sequence detection system (Applied Biosystems). Product sizes were controlled by DNA gel electrophoresis and the melt curves were...
evaluated using the SDS 2.4 software (Applied Biosystems). Ct-values were determined with the same software. The following primers were used for RT-qPCR:

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence</th>
<th>UniGene identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klf2aDr_fwd</td>
<td>5’-CTGGGAGAACAGGTGGAAGGA-3’</td>
<td>Dr.29173</td>
</tr>
<tr>
<td>Klf2aDr_rev</td>
<td>5’-CCAGTATAAACTCCAGATCCAGG-3’</td>
<td></td>
</tr>
<tr>
<td>Klf2bDr_fwd</td>
<td>5’-GGATAGATGGAAGATTGAGGAGCA-3’</td>
<td>Dr.9976</td>
</tr>
<tr>
<td>Klf2bDr_rev</td>
<td>5’-CTCCAGGTCTAAATAATTGCTGAG-3’</td>
<td></td>
</tr>
<tr>
<td>Egfl7_fwd</td>
<td>5’-TTTACCCAGAATGCTGTCCG-3’</td>
<td>Dr.89996</td>
</tr>
<tr>
<td>Egfl7_rev</td>
<td>5’-AAAACTGCCCAGCGTATTCA-3’</td>
<td></td>
</tr>
<tr>
<td>Eif1bDr_fwd</td>
<td>5’-CAGAACCTCCAGTCTTGGATC-3’</td>
<td>Dr.162048</td>
</tr>
<tr>
<td>Eif1bDr_rev</td>
<td>5’-GCAGGCAATTTCTTTGGAAGGC-3’</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Histology

3.3.1 Immunohistochemistry

Embryos were fixed in 4% paraformaldehyde (PFA) in PBS (see 3.7) for 1 hr at RT on a shaker. Embryos were then washed four times in PBT for 5 min each at RT and subsequently 5 min in ddH₂O. Then embryos were briefly rinsed in PBDT. Embryos were incubated at least 2hrs at RT in PBDT/5% NGS (normal goat serum, Invitrogen, USA) solution for blocking. Embryos were incubated with the primary antibody Zn8/Alcam (1:100 Developmental Studies Hybridoma Bank) with PBDT/1%NGS overnight at 4°C on a shaker. Next, embryos were extensively washed several times with PBDT/1% NGS for at least 3 hrs and incubated with the secondary antibody Cy5-conjugated goat-anti-mouse (1:250; Jackson ImmunoResearch Laboratories, cat#968229) in PBDT/1%NGS overnight at 4°C. For actin staining, Rhodamine Phalloidine (1:100; Sigma-Aldrich, USA, cat#658740) was added together with the secondary antibody. After overnight incubation, embryos were washed several times extensively with PBDT/1% NGS for a total of 3hrs and then embedded for confocal imaging.
3.3.2 Zebrafish embedding

Hearts were dissected from whole embryos under a stereomicroscope (Leica MZFLIII, Germany) using forcep and needle, placed into a drop of 6µl Slow Fade Gold antifade reagent (Invitrogen, USA, cat#536938) on a slide (superfrost, 76x26mm, Menzel, Germany) in a ring of vaseline to prevent damages by the coverslip (18x18mm #1, Roth, Germany). For whole mount imaging, the embryos were embedded in 1% Low Melting Agarose (Lonza, USA)/ PBS.

3.3.3 Whole mount in situ hybridization

Whole mount in situ hybridizations were performed with the help of Dr. Cécile Otten (MDC, Berlin). For the solutions, see 3.7. Embryos were fixed with 4% PFA overnight at 4°C, washed several times in 100% methanol and stored at -20°C for dehydration. For in situ hybridization, embryos were rehydrated at RT with:

- 75% Methanol/ 25% PBT (5 min)
- 50% Methanol/ 50% PBT (5 min)
- 25% Methanol/ 75% PBT (5 min)
- 100% PBT (4x5 min)

Embryos were then permeabilized with Proteinase K (10µg/ml in PBT) for 15 minutes at RT and briefly washed in PBDT. After fixation with 4% PFA for 20 minutes, embryos were washed 5 times for 5 minutes with PBT. Embryos were incubated for at least 2 hrs in prehybridization buffer at 67°C. After prehybridization embryos were incubated overnight at 67°C in 5µg/ml of DIG-labeled RNA probe in pre-heated hybridization buffer. After overnight incubation, embryos were washed in different pre-heated (67°C) solutions:

- Hyb buffer (20 min)
- 50% SSCT (2x)/ 50% Formamide (3x20 min)
Material and Methods

- 75% SSCT (2x)/ 25% Formamide (20 min)
- SSCT (2x) (2x 20 min)
- SSCT (0.2x) (4x30 min)
- PBT (5 min)

Embryos were incubated in blocking solution for at least 2hrs on a shaker at RT, and subsequently incubated with 200μl anti-DIG antiserum (1:4000 in PBT + 2mg/ml BSA) overnight at 4°C. Embryos were washed several times (6-8 times over 3hrs) with PBT on a shaker at RT. Then embryos were washed 3 times (5 min each) in freshly prepared NTMT solution. During this step, the embryos were transferred into a 24 well plate. Then, embryos were incubated in staining solution at RT. The staining was stopped by washing the embryos three times in PBT. Embryos were transferred into 1.5ml Eppendorf tubes and cleared with benzyl-benzoate (2:1, Sigma-Aldrich, USA). For imaging, embryos were mounted in permount (Fisher Scientific, USA). Stained embryos were imaged at the Axioplan2 microscope (Zeiss, Germany) using a SPOT digital camera (Diagnostic Instruments Inc, USA) and the Metamorph software (Molecular Devices).

3.4 Microscopy

3.4.1 Confocal imaging

Immunostained embryos were scanned at the Zeiss confocal microscope LSM700 with 20x/dry or 40x/oil objectives. Images were analyzed with the LSM image browser 4.2 (Zeis, Germany) or Volocity 5.3 (Perkin Elmer, USA), and Adobe Photoshop CS5 (Adobe).
3.5 Data analysis

3.5.1 Statistical analysis of endocardial and lateral dorsal aorta cell numbers

In Figure 9, 12 and Figure 16, nuclei were visualized by Tg(kdrl:GFP)\(^{843}\) expression and were counted within the heart (for endocardium), or in both lateral dorsal aortae in an area defined between the branching point from the dorsal aorta and the branching point of the first aortic arch. Cell numbers are shown as means with S.E.M. Prism 5 (GraphPad) was used to perform unpaired t-tests and Bonferroni’s multiple comparisons test. Means are statistically significantly different when \(P < 0.05\) (for detailed information see appendix).

3.5.2 Statistical analysis of the subintestinal vein (SIV) branchpoints and sprouts

In Figure 13, SIVs were visualized at 72 hpf by Tg(kdrl:GFP)\(^{843}\) expression and branchpoints and sprouts were counted. Branchpoint and sprout numbers are shown as means with S.E.M. Prism 5 (GraphPad) was used to perform 1-way ANOVA tests. Means are statistically significantly different when \(P < 0.05\) (for detailed information see appendix).

3.5.3 RT-qPCR data analyses

Results were analyzed using the comparative threshold cycle (Ct) method (\(2^{-\Delta\Delta Ct}\)) to compare gene expression levels between samples as previously described (Livak and Schmittgen, 2001). As internal reference genes, zebrafish eif1b was used, yielding comparable results (Veerkamp et al., 2013). The results of the RT-qPCR experiments shown in Figure 24B and 20F,G are representative of more than 3 experiments. The mRNA expression levels of klf2a, klf2b, egfl7 (zebrafish) are shown as relative mean values with S.E.M. The statistical analysis was done with Prism 5 (GraphPad) using the following algorithm: unpaired t-test, 1-way ANOVA tests followed by Sidak’s Multiple Comparisons Tests, or 1-way ANOVA tests with Dunnett’s Multiple Comparison Test.
Means are statistically significantly different if \(P < 0.05 \) (for detailed informations see appendix).

3.6 Software

- LSM browser 4.2 (Zeiss, Germany)
- Adobe Photoshop CS5 (Adobe Systems Inc, USA)
- Adobe Illustrator CS5 (Adobe Systems Inc, USA)
- Volocity 5.3 (Perkin Elmer, USA)
- ImageJ 1.48
- Metamorph (Molecular Devices, USA)
- MacVector (MacVector Inc, USA)
- Bookends 12.2.4 (Sonny Software, USA)
- GraphPadPrism5
- SDS 2.4 (Applied Biosystems)

3.7 Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-DIG antiserum</td>
<td>Anti-Digoxigenin-AP (Roche Diagnostics, Switzerland)</td>
</tr>
<tr>
<td>blocking solution</td>
<td>5% sheep serum (Dianova, Germany), 10mg/ml BSA (Sigma-Aldrich, USA) in PBT</td>
</tr>
<tr>
<td>Danieau’s</td>
<td>58mM NaCl; 0,7mM KCl; 0,4mM MgSO₄; 0,6mM Ca(NO₃)₂; 5mM HEPES; pH 7,2</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide (Sigma-Aldrich, USA)</td>
</tr>
<tr>
<td>E3 medium</td>
<td>5mM NaCl; 0,17mM KCl; 0,33mM CaCl₂; 0,33mM MgSO₄</td>
</tr>
<tr>
<td>Material and Methods</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>hybridization buffer</td>
<td>5x SSC (20x); 0,1% Tween; 9mM citric acid; 50% formamide; 0,5mg/ml Torula yeast RNA (Sigma-Aldrich, USA); 50µg/ml heparin (Sigma-Aldrich, USA); pH 6-6,5</td>
</tr>
<tr>
<td>NTMT</td>
<td>100mM Tris HCl; 50mM MgCl₂; 100mM NaCl; 0,1% Tween 20; pH9,5</td>
</tr>
<tr>
<td>PBDT</td>
<td>PBS; 0,1% Tween (Sigma-Aldrich, USA)</td>
</tr>
<tr>
<td>PBS</td>
<td>2,7mM KCl; 80,9mM NaHPO₄; 1,5mM KH₂PO₄ in ddH₂O; pH 7,4</td>
</tr>
<tr>
<td>4% PFA</td>
<td>4% paraformaldehyde in PBS</td>
</tr>
<tr>
<td>pre-hybridization buffer</td>
<td>5x SSC (20x); 0,1% Tween; 9mM citric acid; 50% formamide</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>10µg/ml (Roche Diagnostics, Switzerland) in PBT</td>
</tr>
<tr>
<td>SSC (20x)</td>
<td>3M NaCl; 300mM citric acid in ddH₂O; pH 7,0</td>
</tr>
<tr>
<td>SSCT (0,2x)</td>
<td>SSC (20x); 0,1% Tween in ddH₂O, pH 7,0</td>
</tr>
<tr>
<td>SSCT (2x)</td>
<td>SSC (20x); 0,1% Tween in ddH₂O, pH 7,0</td>
</tr>
<tr>
<td>staining solution</td>
<td>NBT/BCIP (Roche Diagnostics, Switzerland)</td>
</tr>
</tbody>
</table>
4 Results

4.1 Loss of Ccm2 influences endocardial and myocardial morphogenesis

Previous studies have shown, that krit1, ccm2, and heg are expressed in endothelial and endocardial cells in zebrafish (Kleaveland et al., 2009; Mably et al., 2003; Mably et al., 2006). The role of Ccm complex proteins in endocardial morphogenesis is largely unknown. To analyze the role of Ccm proteins in endocardial development, I used a stable transgenic reporter line Tg(kdrl:GFP)s843, which expresses a green fluorescent protein (GFP) in endocardial and endothelial cells. In WT embryos, the heart is looped and the atrium and the ventricle are connected by the atrioventricular canal (AVC) at 48 hours post fertilization. In Ccm2-deficient zebrafish, I observed a dilation of cardiac chambers, heart looping defects, and an enlargement of the inflow tract region (Fig. 1 C). To visualize cardiac cushions, I performed an antibody counter staining with an

![Fig. 1 Cardiac cushion phenotype in ccm2m201 mutants.](image)

(A-D) Shown are hearts of different genotypes marked by the endocardial reporter line Tg(kdrl:GFP)s843 (green) and Alcam (red) at 48 hpf. (B-D) Details showing single confocal z-stacks of the atrioventricular canal (AVC). Endocardial cushion cells are marked by Tg(kdrl:GFP)s843 and Alcam (B-D, yellow asterisks) or by Alcam alone (B’-D’, inverted image, red asterisks). V, ventricle; A, Atrium; endo, endocardium; myo, myocardium. Scale bars, 25 µm.
Results

anti-ALCAM antibody (Activated Leukocyte Cell Adhesion Molecule), a specific marker of the AVC cushions. In WT embryos the cushions consist of compact, cuboidal endocardial cells, whereas in *ccm*^{2_{m201}} mutants the AVC completely lacks cardiac cushions. As previously mentioned, the heart chambers are dilated in *ccm*^{2_{m201}} zebrafish mutants compared to wild-type embryos. The dilation of cardiac chambers suggested an increased endocardial cell number. Cell counts of 2 dpf (days post fertilization) hearts showed that in comparison to wild-type embryos (n=3 embryos; average cell number=144.7; S.E.M. 1.202) endocardial cell numbers in *heg*^{m552} (n=2 embryos; average cell number=219.5; S.E.M. 3.5) and *ccm*^{2_{m201}} (n=3 embryos; average cell number=205.3; S.E.M. 6.692) mutant embryos was massively increased.

During zebrafish heart development, the myocardial layer grows by addition of new cardiomyocytes and in a concentric thickness of the myocardium (Mably et al., 2003; Mably et al., 2006). A loss-of-function of Ccm complex proteins has been associated with concentric growth defects of the myocardium (Mably et al., 2003; Mably et al., 2006). Nevertheless, a detailed characterization of cardiac defects in zebrafish *ccm* mutants was missing. To analyze the role of Ccm proteins in myocardial morphogenesis, I used an anti-ALCAM antibody, which marks myocardial cell membranes. Analyses of myocardial cell shapes showed that the loss of Ccm2 had a massive effect on myocardial cell morphology: in particular, ventricular myocardial cells were elongated and squamous in *ccm*^{2_{m201}} mutant embryos (Fig. 2B) causing a

![Fig. 2. Cardiac phenotype in ccm^{2_{m201}} mutants. Comparison of myocardial cell morphology in wild-type (A) and ccm^{2_{m201}} mutants (B) at 48 hpf using an anti-ALCAM antibody, which marks myocardial cell membranes. V, ventricle; A, Atrium; AVC, atrioventricular canal.](image)
thinning of the ventricular chamber (Fig. 3 F), in contrast to WT ventricular myocardial cells which are typically cuboidal (Fig. 3D). Furthermore, the dense myofibrilar network present in WT was less dense in ccm2^{m201} mutants Fig. 3 A, B).

Fig. 3. Loss of Ccm2 causes thinning of the ventricular chamber. (A,B) Myocardial chamber organization is visualized by myofibrillar Actin staining in different genotypes at 48 hpf. The dense myofibrillar Actin-rich network present in WT is less dense in ccm2^{m201} mutants. (C-F) Anti-Alcam staining indicates that WT ventricular myocardial cells are thicker (D) than in ccm2^{m201} mutants (F). For comparison, red brackets in (D) and (F) have same length. V, ventricle; A, Atrium; AVC, atrioventricular canal.

Taken together, my results showed that the loss of Ccm complex proteins has a major effect on endocardial and myocardial morphogenesis. Loss of Ccm2 affects myocardial cell shapes and prevents cardiac looping. Moreover, the Ccm complex is required to restrict endocardial cell number and is required for cardiac cushion formation.
4.2 Endocardial atrioventricular canal markers are misexpressed in zebrafish ccm mutants

To elucidate the molecular changes associated with the loss of cardiac cushions in zebrafish ccm mutants, a whole mount in situ hybridization (WISH) assay was performed. In collaboration with Dr. Cécile Otten, I assessed the expression of genes required for the establishment of the atrioventricular canal (AVC), including tbx2b, bmp4, and notch1b in ccm mutants. Tbx2b is a myocardially expressed transcription factor, which marks the AVC region at 48 hpf (Fig. 4 A). Since it is correctly expressed in ccm2m201 mutant hearts (Fig. 4 A), the atrioventricular canal is molecularly defined. A molecular signaling cascade, which involves the endocardial gene notch1b and the myocardial gene bmp4, triggers cardiac cushion formation (MacGrogan et al., 2011; Timmerman et al., 2004). Bmp4 is prominently expressed within the myocardial AVC region and the inflow-tract (IFT) (Fig. 4 B). Consistent with the expression of tbx2b, bmp4 was correctly expressed in ccm2m201, krit1b219c, and heg m552 mutant hearts (Fig. 4

Fig. 4. Expression patterns of atrioventricular canal markers in ccm mutants. Shown are whole mount in situ hybridizations in different genotypes at 48 hpf. The AVC region is correctly marked by the expression of tbx2b in ccm2m201 mutants (A, A’). (B-E) Expression of bmp4, a myocardial marker expressed at the AVC is similar in ccm2m201, heg m552, or krit1b219c mutants. (B’-E’) Expression of notch1b, an endocardial AVC marker, is altered within the entire heart in heg m552, ccm1b219, and ccm2m201 mutants. Arrowheads indicate the AVC. Insets are enlarged views of the AVC region. The dotted lines indicate the outline of the heart. AVC, antroventricular canal.
However, contrary to the expression of myocardially expressed genes, I found that the expression of endocardial notch1b was impaired in ccm2m201, krit1y219c, and hegm552 mutants (Fig. 4 C’-E’). In contrast to the AVC specific expression in wild-type embryos, notch1b was expressed throughout the entire endocardium in all ccm mutants.

Several lines of evidence suggest that AVC restricted expression of notch1b is crucial for normal cardiac cushion development, since both a loss- and gain-of-function of Notch signaling results in defects in AVC formation (Timmerman et al., 2004; Watanabe et al., 2006). Vermot et al. demonstrated that notch1b expression at the AVC was induced by blood flow. Zebrafish silent heart (tnnt2a) mutants, which lack cardiac contractility due to a mutation in the gene encoding cardiac Troponin t2a (Tnnt2a), do not express notch1b at the AVC. Furthermore, these mutants also lack cardiac cushions, arguing for an impact of blood flow, or of cardiac contraction, in cushion development (Chen et al., 1996). Although ccm2m201, krit1y219c, or hegm552 mutants have heart contractions, these mutants lack blood flow within the major blood vessels. To examine the role of heart contraction in the misregulation of notch1b, I used a previously

Fig. 5. Expression patterns of bmp4 and notch1b under no-flow conditions. Shown are whole mount in situ hybridizations in different genotypes at 48 hpf. (A-C) Expression of bmp4 at the AVC and the IFT in ccm2m201 mutant; tnnt2a morphant, and tnnt2a morphant is similar to WT. (B’) Expression of notch1b is abolished in tnnt2a morphants, whereas notch1b is still expressed within the entire endocardium in ccm2m201 mutant; tnnt2a morphants (C’) compared WT (A’). Arrowheads indicate the AVC. Insets are enlarged views of the AVC region. The dotted lines indicate the outline of the heart. AVC, antroventricular canal
Results

validated anti-sense oligonucleotide morpholino (MO) against Troponin t2a (Tnnt2a) (Sehnert et al., 2002), which prevents cardiac contraction. The bmp4 expression pattern was unchanged in tnt2a morphants (Fig.5 B) and ccm2mutant mutants; tnt2a morphants (Fig.5 C) compared to WT. In contrast, tnt2a morphants lacked notch1b expression within the heart (Fig.5 B`). Intriguingly, in ccmmutant mutants; tnta2a morphants, notch1b was still broadly expressed within the heart (Fig.5 C`).

Together, these data demonstrated that the loss of Ccm proteins prevents cardiac cushion formation, although the atrioventricular canal is molecularly defined. Furthermore, in contrast to wild-type embryos, the misexpression of notch1b in zebrafish ccm mutants is independent of blood flow.

4.3 Loss of Ccm proteins leads to elevated cardiac klf2 expression levels

To gain a deeper insight into the molecular changes responsible for cardiac defects in ccmmutant mutants, I performed, in collaboration with Franziska Rudolph and Jana Richter, a comparative transcriptome microarray analysis using highly purified cardiac tissue from 72 hpf ccmmutant and WT embryos. Analysis of transcriptional changes confirmed that the loss-of-function of Ccm2 affects both endocardial and myocardial gene expression, including genes involved in TGFβ signaling, angiogenesis, blood vessel development, and cardiac muscle development (data not shown). Since Krit1, Ccm2, and Heg are expressed within the endocardium but not the myocardium (Kleaveland et al. 2009 Mably et al., 2003; Mably et al., 2006), the altered expression of genes with a function in blood vessel development might be a direct consequence, whereas changes in myocardial gene expression might be an indirect consequence of the loss-of-function of Ccm proteins.

Among several endocardial genes misregulated in ccmmutants, the up-regulation of the zinc-finger transcription factors Klf2a and Klf2b was of particular interest. In zebrafish, klf2a plays a crucial role during endocardial cushion formation (Vermot et al., 2009). During cushion development, klf2a is induced by pulsatile blood flow at the AV boundary and regulates the expression of notch1b, neuregulin1, and
endothelin1 (Introduction Figure 14). The role of the klf2b gene during zebrafish cardiovascular development has not been elucidated so far. The fact that zebrafish ccm mutants lack blood flow, raised the hypothesis that the Ccm complex might regulate Klf2 expression within the heart independently of blood flow.

RT-qPCR for klf2a and klf2b was performed and confirmed the microarray results (Fig. 6). Of note, the microarray was done on heart tissue of 72 hpf old embryos, whereas the RT-qPCR analyses were done on 48 hpf old whole embryonic tissue. Furthermore, whole mount in situ hybridizations showed that klf2a and klf2b mRNA is misexpressed in ccm mutants. Endocardial klf2a and klf2b expression is restricted to the cardiac cushions at the AVC at 48 hpf in wild-type embryos (Fig. 7 A, A’). In contrast,
both factors are expressed within the entire endocardium in \textit{ccm2m201} (Fig. 7 B, B’) and \textit{krit1ty219c} (Fig. 7 C, C’) mutants.

Taken together, these results showed that the loss of CCM proteins causes an up-regulation of the blood flow sensitive transcription factor KLF2 in zebrafish hearts.

4.4 Elevated \textit{klf2} expression levels induce cardiovascular defects similar to the phenotype resulting from loss of Ccm proteins in zebrafish

4.4.1 The knock-down of \textit{klf2a/b} rescues the \textit{ccm} mutant cardiac phenotype

To functionally test whether the up-regulation of \textit{klf2a} and \textit{klf2b} contribute to the cardiac phenotype in \textit{ccm} mutants, I injected anti-sense oligonucleotide morpholinos (MOs) into \textit{ccm2m201} mutant embryos to partially reduce Klf2a and Klf2b protein levels. Since \textit{klf2a} and \textit{klf2b} are normally expressed in wild-type zebrafish embryos, a complete knock-down of Klf2 might have a phenotype on its own, but a partial reduction might restore normal Klf2 protein levels in \textit{ccm} mutants. To visualize cardiac cushion cells, I used an anti-ALCAM antibody. High dose injection of either \textit{klf2a} (12ng) or \textit{klf2b} (12ng) morpholino only partially rescued endocardial cushion formation in \textit{ccm2m201} mutants at 48 hpf: The AVC exhibited only few cushion cells in \textit{ccm2m201} mutant; \textit{klf2a} morphants or in \textit{ccm2m201} mutant; \textit{klf2b} morphants (Fig. 8 E-H). Remarkably, a combinatorial injection of only 5ng of each MO could rescue the cardiac phenotype in \textit{ccm2m201} mutants (no \textit{ccm2m201} phenotype among n>100 injected embryos; Fig. 8 I, J). The hearts were looped and cardiac cushion cells at the AVC were cuboidal, similarly to wild-type hearts. As the cardiac rescue was complete, \textit{ccm2m201} mutant; \textit{klf2a/b} morphants had to be genotyped to confirm that these were indeed \textit{ccm2m201} mutant embryos (n=8/16 mutants identified by genotyping).
As ccm2m201 and hegm552 mutants exhibited more endocardial cells than wild-type hearts, next I elucidated whether endocardial cell number could be restored when Klf2a/b protein levels were decreased in ccm2m201 and hegm552 mutants. Indeed, endocardial cell counts showed that endocardial cell numbers in ccm2m201 mutant/klf2a/b morphant embryos were comparable to wild-type embryos (Fig. 9; wt, n=3 embryos; average cell number=144.7; S.E.M. 1.202; ccm2m201, n=3 embryos; average cell number=205.3; S.E.M. 6.692; ccm2m201 mutant/klf2a/b morphant, n=3 embryos; average cell number=131; S.E.M. 2.082).

Intriguingly, not only the endocardial mutant phenotype was rescued by a reduction of Klf2a and Klf2b protein levels, but also myocardial defects. The ventricular actin network of ccm2m201 mutant; klf2a/b morphants was more dense than that of ccm2m201 mutants and morphologically indistinguishable from wild-type. Even the heart looping and the dilation of the heart chambers was rescued. Together, these results suggest that the myocardial morphogenesis defects in ccm2m201 mutants were caused by an up-regulation of Klf2 in the endocardium.

To test whether the knock-down of klf2a and klf2b has a similar effect on cardiac morphogenesis of hegm552 and krit1b219c mutants, I injected klf2a/b morpholinos in these mutants. Indeed, knock-down of klf2a/b (5ng of each morpholino) also rescued cardiac cushion formation, dilation of the atrial and ventricular chambers, and the myofibrils of the ventricular myocardium in hegm552 (n=10/27 mutants identified by genotyping; Fig. 8 K,L) and krit1b219c (n=11/32 mutants identified by genotyping; Fig. 8 M,N).

Together, these results showed that the shear-stress transcription factors Klf2a and Klf2b act together downstream of Ccm proteins and that overexpression of both contributes to cardiac defects in ccm mutants.
Results
4.4.2 Klf2a and Klf2b expression is flow-independent in ccm mutants

Expression of Klf2 is induced by pulsatile shear stress during cardiac cushion formation (Chiplunkar et al., 2013; Dekker et al., 2002; Vermot et al., 2009). As zebrafish ccm mutants lack blood flow but still have a contractile heart, I was interested whether oscillatory flow within the heart chambers is causative for the elevated klf2a and klf2b expression levels and the ccm mutant heart phenotype. To assess the role of oscillatory flow in the regulation of Klf2 expression, I injected an antisense oligonucleotide morpholino (MO) against tnt2a into ccm2m201 mutant embryos to block heart contraction.
Whole mount *in situ* hybridization against *klf2a/b* mRNA showed that *klf2a* and *klf2b* are expressed at the AVC in wild-type embryos at 48 hpf (Fig. 10 A, A’), whereas a lack of blood flow in *tnnt2a* morphants abolishes the expression of both genes (Fig. 10 C, C’). Contrary, in *ccm2m201* mutants which lack heart contraction and blood flow, *klf2a* and *klf2b* were misexpressed within the entire endocardium (Fig. 10 D, D). RT-qPCR on whole embryonic tissue was performed and support the finding that Klf2 expression levels are still elevated in *ccm2m201* mutant; *tnnt2a* morphants (Fig. 10 E).

Fig. 10. Klf2 expression is independent of blood flow in the heart of *ccm2m201* mutants. (A-D) Whole mount *in situ* hybridization against *klf2a/b* mRNA in different genotypes at 48 hpf. Loss of heart contraction abolishes *klf2* expression at the AVC in *tnnt2a* morphants (C-C’). (D-D’) *Klf2a* and *Klf2b* are misexpressed within the entire endocardium in *ccm2m201* mutant; *tnnt2a* morphants. (E) RT-qPCR demonstrates flow-independent overexpression of *klf2a/b* mRNA in whole embryos. V, ventricle; A, atrium; AVC, atrioventricular canal. Statistical data are means and S.E.M.; ns, not significant; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. (for details see appendix).
Taken together, these results indicated a previously unappreciated role of Ccm proteins in cardiac development in limiting the expression levels of the transcription factors Klf2a and Klf2b in a flow-independent manner.

4.4.3 Vascular defects are due to increased Klf2 expression in ccm mutants

So far, I could show that the loss-of function of Ccm proteins in the endocardium cause an up-regulation of the transcription factor Klf2. This raised the question of whether Klf2 expression is also affected in endothelial cells in ccm mutants. Whole mount in situ hybridization analyses showed that klf2a is expressed in endothelial cells, e.g. the intersomitic vessels (red arrowheads) and the vascular plexus (red arrow) in wild-type embryos (Fig. 11 A). In contrast, in ccm2m201 mutants klf2a was up-regulated in most endothelial cells including the caudal artery (CA, black arrowhead) and the posterior cardinal vein (PCV, white arrowhead) (Fig. 11 B). Since klf2a was strongly up-regulated within veins and arteries in zebrafish ccm2m201 mutants, I investigated whether the up-regulation of Klf2 affects different blood vessels in addition to the endocardium and directly causes the ccm mutant phenotype.

Using the stable transgenic reporter line Tg(kdrl:GFP)s843, I could observe an expansion of the lateral dorsal aorta (LDA) in ccm2m201 mutants (Fig. 12 B). Endothelial cells counts showed, that similar to endocardium, the expansion of the LDA is due to an
increase in endothelial cell numbers (wt; n=3 embryos; average cell number=57.6; S.E.M. 1.45; ccm2^{m201}, n=3 embryos; average cell number=83; S.E.M. 1.53). In addition to the lateral dorsal aorta, the subintestinal vein (SIV, Fig. 13, arrowhead) of ccm2^{m201} mutants exhibit increased numbers of sprouts compared to wild-type (wt, n=10 embryos; average number of sprouts=0.6; S.E.M. 0.339; ccm2^{m201}, n=10 embryos; average number of sprouts=7.3; S.E.M. 0.495) and vessel branch points (wt, n=10 embryos; average number of branchpoints=9.6; S.E.M. 0.371; ccm2^{m201}, n=10 embryos; average number of branchpoints=12.3; S.E.M. 0.882) at 72 hpf (Fig. 13 B, D). Vascular oversprouting and branchpoint defects are both hallmarks for increased angiogenesis (Ghajar et al. 2013, Yu et al., 2010; Avraham-Davidi et al., 2011). To asess whether these phenotypes were due to the up-regulation of klf2a/b, I injected a combination of klf2a/b MOs (5ng of each morpholino) into ccm2^{m201} mutants. Knock-down of klf2a/b rescued the endothelial cell number and the dilation defects of the LDA (Fig. 12 C, D; n=2 embryos; average cell number=56.5; S.E.M. 3.5). Furthermore, knock-down of klf2a and klf2b also restored the sprouting- and branchpoint defects of the SIV (n=5 embryos; average number of branchpoints=8.2; S.E.M. 0.583; average number of sprouts=2.6; S.E.M. 0.678) (Fig. 13 C, D).

For functional studies, I generated a Tg(hsp70l:klf2a)^{md8} transgenic zebrafish line for heat-shock-inducible klf2a overexpression in the entire embryo. Consecutive heat-shock
induction of this transgene at 15, 30, and again 38 hpf resulted in increased LDA cell numbers at 48 hpf (hsp70l:klf2a; n=2 embryos; average cell number=88.8; S.E.M. 4.5), which is comparable to ccm2m201 mutants (Fig. 12 D).

Together, these results supported the role of Klf2 as a pro-angiogenic factor in endothelial cells.

4.4.4 Lack of blood flow mediates cerebral vascular sprout growth in ccm mutants

Vascular malformations in iCCM2 knockout mice and in human patients occur predominantly in the cerebral vasculature (Boulday et al., 2009; Boulday et al., 2011). Therefore, I was particularly interested, whether these vessels were also affected in ccm mutant zebrafish embryos. Here, I describe for the first time the consequences of loss-of-function of the Ccm complex proteins on cerebral blood vessel development in zebrafish. The cerebral blood vessel are dilated and well perfused under normal conditions. Furthermore, endothelial cells exhibit a smooth surface in wild-type embryos (Fig. 14A’). In contrast, within the cerebral vasculature of ccm2m201, krit1i192, and heg4m552 mutants, several blood vessels including the middle and the posterior mesencephalic central arteries (pmCtA) are characterized by ectopic sprouts and a lack of vascular lumen at 48 hpf (Fig. 14 B’, C’, D’). Remarkably, ectopic sprouting in the
cerebral vasculature of ccm^{m201} mutants was suppressed by the simultaneous knockdown of $klf2a$ and $klf2b$ (Fig. 14 E-E'). Vascular lumen and blood flow could also be observed in some embryos. Since ccm mutants lack a functional circulatory system, I hypothesized that the observed phenotype might be due to hypoxia. To test this, I analyzed cerebral blood vessel development in zebrafish no-flow $tnnt2a^{b109}$ mutants.

Fig. 14. Cerebral blood vessel defects in different ccm mutants. (A,E) Dorsal views of the cerebral blood vessels in different genotypes marked by Tg($kdrl$:GFP)s843 at 48 hpf. (B-D) Vascular oversprouting in ccm^{m201}, $krit^{10-219}$, and heg^{m552} mutants (red arrowheads). (E) Rescue of sprouting and lumenization defects in ccm^{m201} mutants by knockdown of $klf2a/b$. pmCtA, posterior mesencephalic central artery. Scale bars, 25µm.
Similar to heg^{m552}, $krit^{o219c}$, and $ccm2^{m201}$, $tnnt2a^{b109}$ mutant cerebral blood vessels exhibit extensive vascular sprouts and vascular lumenization defects (Fig. 15 B-B’, n=5/5 embryos).

Taken together, knock-down of $klf2a$ and $klf2b$ not only rescued increased endocardial cell number but also ectopic sprouting of the cerebral blood vessels in zebrafish ccm mutants, possibly in part by re-establishment of blood flow, and therefore vascular lumen formation.

4.5 An anti-angiogenic activity of Ccm proteins contributes to normal cardiovascular development in zebrafish

4.5.1 A loss of Ccm proteins triggers a VEGF-dependent angiogenic activity in endocardial cells

Angiogenesis is the formation of new blood vessels from pre-existing vessels. Proliferation and sprout formation of endothelial cells drive this process. Studies in EC culture have shown that angiogenesis signaling activity is increased upon loss of Ccm proteins (Wustehube et al., 2010; Zhu et al., 2010). In human patients, cerebral cavernous malformation lesion growth was found to correlate with increased circulating
concentrations of VEGF, a growth factor required for angiogenesis (Jung et al., 2003).
Since the cardiovascular defects and microarray data suggested ongoing, active angiogenesis in ccm mutants, I investigated whether elevated angiogenesis signaling

Fig. 16. Increased VEGF signaling is involved in ccm mutant phenotypes. (A-E) Shown are hearts of different genotypes marked by the endocardial reporter line Tg(kdrl:GFP)1243 (green) and Actin (red) at 48 hpf. (A’-E’) Details showing single confocal z-stacks of the atrioventricular canal (AVC). Endocardial cushion cells are marked by Actin (inverted image, red asterisks). (F) Endocardial cell numbers are significantly reduced in PTK787 treated ccm2m201 and heg6552 mutants compared to untreated mutants. Statistical data are means and S.E.M. ns, not significant; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. (for details see appendix). Scale bars, 25µm.
was involved in the \textit{ccm2} mutant phenotype. Using a pharmacological approach, I inhibited the VEGF signaling pathway using the compound PTK787 (Chan et al., 2002). Pharmacological inhibition of VEGF signaling during different developmental periods helped to determine a critical time window between 15-17 hpf during which the inhibition of VEGF signaling could rescue the cardiac phenotypes of \textit{heg}^{m552} (n=6/8 mutants identified by genotyping), \textit{krit1}^{10b219c} (n=7/8 mutants identified by genotyping), or \textit{ccm2}^{m201} (n=8/8 mutants identified by genotyping) mutants at 48hpf (Fig. 16). Similar to the knock-down of \textit{klf2a/b}, PTK787-treated mutant embryos developed normal cardiac cushions consisting of compact, cuboidal endocardial cells. Additionally, cardiac looping occurred normally, and the ventricular myocardium exhibited a compact actin-rich myofibrillar network (Fig. 16 C-E). Furthermore, cell counts revealed a reduction of endocardial cell numbers comparable to wild-type embryos in \textit{heg}^{m552} and \textit{ccm2}^{m201} mutants treated with PTK787 (wt, n=3 embryos; average cell number=144,7; S.E.M. 1,202; \textit{heg}^{m552}, n= 2 embryos; average cell number=219,5; S.E.M. 3,5; \textit{ccm2}^{m201}, n=3 embryos; average cell number=205,3; S.E.M. 6,692; \textit{heg}^{m552} + PTK787, n=3 embryos; average cell number=170,3; S.E.M. 12; \textit{ccm2}^{m201} + PTK787, n=4 embryos; average cell number=162,5; S.E.M. 3,797). Due to the complete cardiac rescue, including blood flow in \textit{ccm} mutants, it was necessary to genotype these embryos. Moreover, I could show that VEGF signaling was dispensable for normal endocardial proliferation, since the inhibition with PTK787 had no impact on endocardial cell numbers at 48 hpf (wt, n=3 embryos; average cell number=144,7; S.E.M. 1,202; wt + PTK787, n=3 embryos; average cell number=146,7; S.E.M. 14,52) (Fig. 16 F) (Dietrich et al., 2014). Intriguingly, at 15-17 hpf the zebrafish heart is not yet formed and endocardial and myocardial progenitor cells are located as bilateral populations in the anterior lateral plate mesoderm (ALPM). Nevertheless, \textit{heg}^{m552}, \textit{krit1}^{10b219c}, or \textit{ccm2}^{m201} mutant hearts were rescued as a consequence of the early PTK787 treatment.

Taken together, these data showed that there is excessive VEGF-dependent angiogenesis in \textit{ccm} mutants. Therefore, one function of Ccm proteins is to control angiogenesis in endocardial progenitor cells at 15-17hpf.
4.5.2 Vascular defects are due to elevated VEGF-dependent angiogenesis in *ccm* mutants

To examine whether increased angiogenesis signaling was responsible for the vascular phenotype in *ccm* mutants, I treated *ccm2m201* mutant embryos between 24-48 hpf with PTK787 (12.5 µM). Analysis of the lateral dorsal aorta (LDA) showed that the increased endothelial cell number of this vessel was rescued upon inhibition of VEGF signaling (Fig. 17, wt, n=3 embryos; average cell number=57.6; S.E.M. 1.45; *ccm2m201*, n=3 embryos; average cell number=83; S.E.M. 1.53; *ccm2m201* + PTK787, n=3 embryos; average cell number=62; S.E.M. 1.53).

![Fig. 17. VEGF inhibition rescues the vascular phenotype in *ccm2m201* mutants.](image)

Cerebral blood vessel are highly sensitive to VEGF signaling. To avoid that an early inhibition of VEGF signaling may affect proper cerebral vascular development, I treated WT and *ccm2m201* mutant embryos at 48 hpf, a timepoint at which the head vasculature is already established. Treatment with PTK787 between 48-49 hpf had no obvious effect on cerebral blood vessels in wild-type embryos (Fig. 18 A-A''), whereas the short inhibition was sufficient to inhibit ectopic vascular sprout formation in *ccm2m201* mutants (Fig. 18 B''). Intriguingly, ECs of the cerebral vessels started sprouting upon the removal of the VEGF inhibitor PTK787 within 1 hour (Fig. 18 B'''). In summary, I found that Ccm complex proteins prevent aberrant pro-angiogenic VEGF signaling in endocardial and endothelial cells.
4.5.3 Klf2 up-regulation is independent of the VEGF signaling pathway in *ccm2* mutants

Because either *klf2a/b* knock-down or inhibition of VEGF signaling rescued the cardiovascular phenotype of *ccm* mutants, I next tested whether Klf2 expression is regulated by VEGF signaling (or vice versa). *Klf2a/b* mRNA levels were measured in PTK787-treated WT and *ccm2^{m201}* mutant embryos. RT-qPCR analyses showed that inhibition of the VEGF signaling pathway did not affect *klf2a/b* mRNA expression in either WT or *ccm2^{m201}* mutants (Fig. 19). Thus, Klf2 is not regulated by VEGF but seems rather to act upstream or in parallel of VEGF signaling.
Results

4.6 Klf2 up-regulation in endothelial cells involves aberrant β1 integrin signaling

Given that neither VEGF signaling nor blood flow regulates Klf2 expression in ccm mutants suggested that other mechanisms might be involved in the induction of klf2a/b mRNA expression. Previous studies showed that CCM proteins play an important role in the regulation of β1 integrin signaling (Faurobert et al., 2013) by interacting with and stabilizing the negative regulator integrin cytoplasmic domain-associated protein-1 (ICAP-1) (Faurobert et al., 2013; Hilder et al., 2007; Zawistowski et al., 2005; Zhang et al., 2001). Therefore, we tested whether Klf2 levels are changed upon knock-down of β1 integrin. Loss of CCM proteins in HUVECs resulted in elevated KLF2 expression levels, which could be suppressed by simultaneous depletion of ITGB1 (Renz et al., 2015).

To verify the role of β1 integrin signaling in ccm pathology in an animal model, I injected a morpholino against β1 integrin (itgb1b; 6,3ng) in zebrafish ccm2m201 mutants (Ablooglu et al., 2010). Similar to the knock-down of klf2a/b, the loss of Itgb1b rescued the cardiac phenotypes of ccm2m201 mutants including cushion formation and chamber morphogenesis (n=5/5 ccm2m201 mutants identified by genotyping; Fig. 20 C-C’) at 48 hpf.
In a complementary approach, I injected a morpholino against the negative regulator ICAP-1 (*icap-1*; 8.3ng) in wild-type embryos to test whether increased β1 integrin signaling is responsible for the cardiovascular phenotype in *ccm2*^{m201} mutants. Indeed,

Fig. 20. **Knock-down of *itgb1b* rescues cardiac phenotypes in *ccm2*^{m201} mutants.** (A-C) Shown are hearts of different genotypes marked by the endocardial reporter line Tg(*kdrl:GFP*)^{s843} (green) and Actin (red) at 48 hpf. Details showing single confocal z-stacks of the atrioventricular canal (AVC). Endocardial cushion cells are marked by Actin (A’-E’, inverted image, red asterisks). (C-C’) Reduction of *itgb1b* mRNA levels rescues cardiac defects including chamber differentiation and cardiac cushion formation in *ccm2*^{m201} mutants. Scale bars, 25μm

Fig. 21. **Loss of ICAP1 causes phenotypes similar to *ccm2*^{m201} in cranial blood vessel at 30 hpf.** (A-C) Lateral views of different genotypes marked by Tg(*kdrl:GFP*)^{s843}. (B) Dilation of the primordial midbrain channel (PMBC, arrow) and of the primitiv internal carotid artery (PICA, arrowhead) in *ccm2*^{m201} mutants. (C) Knock-down of ICAP1 phenocopies the *ccm2*^{m201} mutant phenotype. Scale bars, 50μm
knock-down of ICAP-1 caused a dilation of the primordial midbrain channel (PMBC, arrow) and of the primitiv internal carotid artery (PICA, arrowhead) (Fig. 21 C) at 30 hpf similar to the phenotype observed in *ccm2^{m201}* mutants (Fig. 21 B).

Taken together, these results suggested that aberrant β1 integrin signaling has a role in *ccm* mutants upon loss of the ICAP1-CCM complex.

4.7 Epidermal growth factor-like domain 7 (EGFL7) as a mediator of pro-angiogenic Klf2 activity in endocardial and endothelial cells

4.7.1 Klf2 mediates increased VEGF-dependent angiogenesis via Egfl7 in *ccm2^{m201}* mutants

The finding that *egfl7* has a putative binding site for Klf2 in its promoter region (Harris et al., 2010) and is involved in angiogenesis by binding to various receptors in the extracellular matrix (ECM), e.g. integrins (Nikolic et al., 2013) or the Notch pathway (Nichol and Stuhlmann, 2012; Schmidt et al., 2009), raised the hypothesis that elevated Klf2 levels may result in an overexpression of *egfl7* that might contribute to the *ccm* phenotype.

In zebrafish, cardiac microarray analysis and RT-qPCR experiments of whole embryonic tissue, done in collaboration with Dr. Cécile Otten, revealed significantly increased *egfl7* mRNA levels in *ccm2^{m201}* mutants compared to wild-type embryos, which can be reduced by the injection of *klf2a/b* MOs (Fig. 22 A). Conversely, the overexpression of either *klf2a* [Tg(*hsp70l:klf2a_IRES_GFP*)^{md8}] or of *klf2b* [Tg(*hsp70l_klf2b_IRES_GFP*)^{md9}] was sufficient to increase *egfl7* mRNA expression levels, validated by RT-qPCR analysis (Fig.22 A). To further investigate the role of *egfl7* in *ccm2^{m201}* mutant cardiovascular malformations, I knocked-down Egfl7, which rescued the *ccm2^{m201}* mutant cardiac cushion and dilation defects (n=15/24 mutants identified by genotyping; Fig. 22 D-D’). Moreover, the cerebral ectopic sprouts were suppressed in *ccm2^{m201}* mutants (n=5/5 mutants identified by genotyping; Fig. 23 C-C’), even in the absence of blood flow due to a failure of cardiac recovery in some *ccm2^{m201}* mutant embryos (n=3/3; Fig. 23 D-D’). This finding is intriguing, since *tnnt2α^{b109}*
Results

Mutants which also lack blood flow, exhibit ectopic sprouts of the cerebral vasculature (Fig. 15 B’). Together, these results suggested that Klf2 mediates increased VEGF-dependent angiogenesis via Egfl7 independent of blood flow in ccm2^{m201} mutants.

Fig. 22. Misregulation of the angiogenic signaling factor Egfl7 is involved in the zebrafish ccm2 mutant phenotype. (A) Loss of Ccm2 or overexpression of klf2_{a/b} in Tg(hsp70l:klf2a_ires_GFP)^{med} or Tg(hsp70l:klf2b_ires_GFP)^{med} transgenic embryos increased egfl7 mRNA levels as validated by RT-qPCR. (B-D) Shown are hearts of different genotypes marked by the endocardial reporter line Tg(kdrl:GFP)^{s843} (green) and Actin (red) at 48 hpf. (B’-D’) Details showing single confocal z-stacks of the atrioventricular canal (AVC). Endocardial cushion cells are marked by Alcam (inverted image, red asterisks). Knock-down of egfl7 rescues cardiac cushion development and chamber morphogenesis in ccm2^{m201} mutants. Statistical data are means and S.E.M. ns, not significant; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. (for details see appendix). Scale bars, 25 µm.
4.7.2 Klf2a/b and Egfl7 genetically interact to promote cardiovascular malformation defects in ccm2^{m201} mutants

To test whether klf2a/b and egfl7 genetically interact in a common pathway in ccm mutants, I injected low doses of either klf2a/b MOs (2.5ng each) or egfl7MO (0.3ng) into ccm^{m201} mutants. Whereas single injections did not rescue the lumenization defects of the intersegmental vessels (ISVs) of ccm^{m201} mutants (no rescue among n>50 ccm^{m201} mutants tested for each MO; Fig. 24 C,D), a combination of klf2a/b MOs and egfl7 MO re-established proper intersegmental vessel lumen formation (n=19/21 mutants identified by genotyping; Fig. 24 E).
In a complementary effort, I injected egfl7 MO into wild-type and ccm2m201 mutants and Dr. Cécile Otten measured klf2a/b mRNA levels by RT-qPCR to examine whether egfl7 activity affects klf2a/b expression. Indeed, analysis of egfl7 morphants and ccm2m201 mutant; egfl7 morphants showed a reduction of klf2a and klf2b mRNA levels in both WT and ccm2m201 mutants upon knock-down of egfl7 (Fig. 24 E). Thus, Klf2 may not only regulate Egfl7, but in turn Egfl7 may affect klf2 mRNA expression.

Fig. 24. Klf2a/b and Egfl7 genetically interact to regulate vascular lumen formation of the intersegmental blood vessels. (A-E) Shown are intersegmental blood vessels marked by Tg(kdrl:GFP)s843 at 48 hpf. (B) Lack of intersegmental vessels in ccm2m201 mutants (arrow). (C-D) Low doses of klf2a/b MOs or egfl7 MO do not rescue the lumenization defects (arrows). (E) Triple-injection of klf2a/b MOs and egfl7 MO completely rescues lumenization defects (arrowheads). (F) Knock-down of egfl7 affects klf2a and klf2b mRNA levels in WT and ccm2m201 mutants as detected by RT-qPCR. Statistical data are means and S.E.M. ns, not significant; *, p<0.05; **, p<0.01; ***, p<0.001. (for details see appendix). Scale bars, 25µm.
Taken together, these results showed that Klf2 and Egfl7 act together in the regulation of VEGF-dependent angiogenesis during cardiovascular development in zebrafish.
5 Discussion

In my study, I showed that the cardiovascular defects in zebrafish *ccm* mutants are caused by a β1 Integrin-Klf2-dependent up-regulation of VEGF angiogenesis signaling in endothelial and endocardial cells. Furthermore, I showed that the pro-angiogenic activity of Klf2 is mediated by the stimulation of *egf7* expression and that *klf2* expression in CCM-deficient cells is independent of blood flow (Fig. 25).

5.1 The CCM protein complex prevents extensive pro-angiogenic Klf2 activity in endocardial and endothelial cells

During vascular development, the CCM complex plays a major role in regulating vascular lumen formation, vascular integrity, and junctional stability (Hogan et al., 2008; Kleaveland et al., 2009; Lampugnani et al., 2010; Stockton et al., 2010; Whitehead et al., 2009). However, these findings could not explain why only small capillary veins are affected by cavernoma formation in patients and in mice. Compared to arteries, veins have a wider inner diameter and decreased blood pressure. Furthermore, arteries and veins differ from each other by their genetic program. This
genetic program may, in part, be regulated by CCM proteins and blood flow. Genes which are normally suppressed in venous tissue, are expressed upon loss of the CCM complex and may result in the formation of CCMs. Among several blood flow-regulated genes, the zinc-finger transcription factor KLF2 plays an important role in blood vessel biology. In endothelial cells, Klf2 activity is involved in vascular tone regulation (Dekker et al., 2005; Parmar et al., 2006; SenBanerjee et al., 2004), inflammation (Boon et al., 2007; Egorova et al., 2011; Fledderus et al., 2007; Helbing et al., 2011), thrombosis (Allen et al., 2011; Lin et al., 2005), oxidative stress (Dekker et al., 2006; Fledderus et al., 2008; Lee et al., 2012), endothelial barrier function (Lin et al., 2010b; Shi et al., 2013), and endothelial morphology (Boon et al., 2010; Dekker et al., 2006). Previous studies have shown that KLF2 has a vasoprotective function in the vasculature, dependent on blood flow patterns (Dekker et al., 2005; Huddleson et al., 2005; Parmar et al., 2006). Klf2 activity can be modulated at different levels, including at the transcriptional (Wu et al., 2011) and posttranscriptional level (Wu et al., 2011), or by posttranslational modifications (Wang et al., 2010a; Young et al., 2009). In contrast, several lines of evidence suggest a pro-angiogenic function of Klf2 in vascular biology. During zebrafish aortic arch blood vessel development, Klf2 regulates a signaling cascade involved in the expression of the endothelial-specific miR126, which promotes VEGF-dependent angiogenesis (Nicoli et al., 2010).

Based on the results obtained from the zebrafish cardiac microarray, I found that the shear-stress sensitive transcription factors klf2a and klf2b are up-regulated in zebrafish upon loss of Ccm2. These results were confirmed independently by collaborators working with CCM2-depleted HUVECs and iCCM2 knock-out mice (Renz et al., 2015), which demonstrates that this mechanism is conserved in higher vertebrates. This finding is intriguing since zebrafish ccm mutants fail to generate a functional circulatory system due to vascular lumen defects. Klf2 expression in ccm mutants should be blocked as in silent heart (tnnt2a) mutants. Furthermore, I could show that the up-regulation of klf2a and klf2b is necessary for causing CCM-dependent cardiovascular defects in zebrafish.

Whereas loss of VEGF signaling activity has no effect on endocardial cell number in WT embryos (Dietrich et al., 2014), elevated Vegf-dependent angiogenesis signaling in endocardial cells resulted in the endocardial overproliferation phenotype in ccm
Discussion

mutants. Since Heg, Krit1, and Ccm2 may act together in a complex, a lack of either one of these proteins may cause a break-down of the entire Ccm complex. This hypothesis is supported by the fact, that these mutants have similar cardiovascular phenotypes. Endocardial and endothelial overproliferation in zebrafish heg^{m552}, krit1^{y219c}, and ccm2^{m201} mutants were either rescued by Klf2 knock-down or by inhibition of VEGF signaling, arguing for a pro-angiogenic activity of Klf2. Furthermore, unchanged expression levels of klf2 upon pharmacological inhibition of VEGF signaling showed that Klf2 acts upstream of the VEGF signaling pathway. In addition, blocking VEGF signaling prior to heart tube formation and the onset of blood flow was sufficient to rescue the myocardial and endocardial defects in ccm mutants which shows that Klf2 regulates Vegf signaling in endocardial progenitor cells. In sum, the CCM protein complex regulates VEGF-dependent angiogenesis via the shear-stress responsive transcription factor Klf2 in a manner that is independent of flow in endocardial and endothelial cells.

CCMs are characterized by thin-walled, dilated blood vessels that resemble the primordial midbrain channel (PMBC), primitiv internal carotid artery (PICA), and the lateral dorsal aorta (LDA) phenotype of zebrafish ccm mutants. Additionally, endothelial cells of cavernoma lack associated vascular smooth muscle cells (VSMCs) in patients (Shenkar et al., 2008b; Shenkar et al., 2008a) and in mice (Cunningham et al., 2011). This finding is reminiscent of the observation that KLF2-overexpressing or shear-stress stimulated HUVECs secrete extracellular vesicles containing miR143/145 to control gene expression in neighbouring smooth muscle cells (Hergenreider et al., 2012). Therefore, overexpression of KLF2 in endothelial cells may explain the lack of vascular smooth muscle cells in patients. For cardiac development, it will be important to investigate whether this mechanism is also involved in endocardial-myocardial interaction.

Furthermore, it has been shown that cavernoma in human patients exhibit areas with proliferative activity of endothelial cells (Notelet et al., 1997). However, the correlation between elevated KLF2 expression levels and CCM formation in human patients remains to be elucidated. A possible explanation for the venous-specific defects in mice and in patients may come from the role of KLF2 in the endothelium. Klf2 is highly expressed in regions of high shear-stress, e.g. the carotid artery, where it has a
vasoprotective function. Therefore, elevated KLF2 activity would not enhance vasoprotection in these vessels. In contrast, in low-flow blood vessels, like venous capillaries, Klf2 is not expressed. An up-regulation of Klf2 due to a loss of CCM proteins may induce signaling cascades including VEGF signaling that lead to cerebral cavernous malformation defects.

In addition to VEGF signaling, a recent study demonstrated that postnatal endothelial-specific deletion of the CCM1 gene in mice induced a TGFβ-dependent endothelial-to-mesenchymal transition (EndMT), which contributes to the development of vascular malformations (Maddaluno et al., 2013). Intriguingly, Klf2 and TGFβ signaling act together during embryonic cardiac, and adult vascular development (Boon et al., 2007; Egorova et al., 2011). In this context, it will be important to investigate the role of Klf2 in TGFβ-mediated vascular malformations.

5.2 The instructive role of β1 integrin signaling in Klf2-dependent cardiovascular defects

Integrins are transmembrane cell adhesion receptors that allow the communication between the extracellular matrix (ECM) and intracellular signaling pathways (Hynes et al., 2002) involved in actin cytoskeleton organization (Shibue et al., 2013), cell adhesion (Papusheva et al., 2010), ECM deposition (Schwarzbauer et al., 2011), and cell polarity (Cox et al., 2001; Etienne-Manneville et al., 2001). Previous studies indicated that β1 integrin signaling is involved in CCM-related vascular defects by interacting with the negative regulator ICAP-1 through KRIT1 (Hilder et al., 2007; Zawistowski et al., 2005; Zhang et al., 2008). KRIT1 binds to and stabilizes ICAP-1 to prevent talin-mediated activation of the β1 integrin signaling pathway. Furthermore, in vitro and in vivo studies showed that a loss of either ICAP-1, KRIT1, or CCM2 destabilizes the entire ICAP-1-CCM complex and results in increased β1 integrin activation and actin stress fiber formation, while simultaneous depletion of β1 integrin in HUVECS abolishes actin stress fiber formation (Faurobert et al., 2013).

The flow-independent up-regulation of KLF2 in ICAP-1-, KRIT1-, or CCM2-depleted HUVECS is mediated by elevated β1 integrin signaling (Renz et al., 2015).
Additionally, the cardiovascular defects in zebrafish ccm2 mutants were rescued by knock-down of β1 integrin implying a conserved mechanism in the regulation of Klf2 by β1 integrin signaling. Complementary to these effects, the knock-down of icap-1 in zebrafish recapitulate the early vascular ccm2 phenotype. However, the dilation of the heart chambers could not be observed in these icap-1 morphant embryos.

β1 integrin signaling induces RhoA-dependent stress fiber formation by a crosstalk with Scr-family kinases and Rho-family GTPases (Huveneers et al., 2009). The CCM proteins have been shown to regulate RhoA activation and ROCK activity (Borikova et al., 2010; Chan et al., 2010; Stockton et al., 2010; Whitehead et al., 2009). In brain endothelial cells, CCM2 binding to the Smad ubiquitin regulatory factor-1 (Smurf1) increases Smurf1-mediated degradation of RhoA (Crose et al., 2009). Remarkably, Smurf1 is also required for the ubiquitination and degradation of KLF2 in human lung cancer H1299 cells (Xie et al., 2011), suggesting a potential role of the CCM complex, at least of CCM2, in regulating KLF2 protein levels by Smurf1-mediated degradation. Intriguingly, shear-stress induced overexpression of KLF2 in HUVECs also results in actin stress fiber formation (Boon et al., 2010). These actin stress fibers are assembled in the direction of flow and result in an elongation of endothelial cells along the flow in a Rho kinase-independent mechanism (Boon et al., 2010). Thus, the CCM complex may play a previously unappreciated role in the onset of CCM-dependent cardiovascular defects by the regulation β1 integrin-dependent induction of KLF2 via ICAP-1. Furthermore, CCM2 may regulate KLF2 protein levels by Smurf1-mediated degradation. However, whether CCM2 interacts with Smurf1 in this context remains to be elucidated.

So far, the molecular mechanism by which β1 integrin regulates Klf2 expression are unknown and need further investigation. Moreover, it is not known whether other integrins besides β1 integrin are also involved in KLF2 regulation at different developmental stages or in specific blood vessels.
5.3 Klf2 mediates pro-angiogenic activity via Egfl7

During vascular development, the VEGF signaling pathway can be regulated by pro-angiogenic miR-126 activity or by inhibition of the Notch signaling pathway. The role of the transcription factors Klf2a and Klf2b in this context is largely unknown.

Knock-out experiments in mice showed that a loss of EGFL7 caused severe vascular defects (Schmidt et al., 2007). These phenotypes were similar to the loss of miR-126. Endothelial-specific deletion of EGFL7, without affecting miR-126 expression, showed that knock-out mice were phenotypically normal, whereas the knock-out of miR-126 recapitulated the previously described Egfl7 vascular defects (Kuhnert et al., 2008). Thus, the vascular defects were attributed to the loss of miRNA-126 rather than to loss of EGFL7. In zebrafish, Klf2 regulates VEGF-dependent angiogenesis during aortic arches development by miRNA-126a (Nicolli et al., 2010). However, qRT-PCR analyses done by David Hassel’s lab showed that neither miR-126a nor miR-126b were up-regulated in zebrafish ccm2 m201 mutants compared to wild-type embryos (Renz et al., 2015).

Together, here I showed that Klf2 positively regulates the expression of the endothelial-specific gene egfl7, the host gene of miR-126, and that overexpression of this factor causes the VEGF-dependent cardiovascular defects in zebrafish ccm mutants independently of miR-126.

Several lines of evidence suggest an antagonistic role of Egfl7 in VEGF-dependent angiogenesis via the negative regulation of the Notch signaling pathway (Nichol et al., 2010). Endothelial overexpression of EGFL7 in mice caused partial lethality, hemorrhaging, cardiac morphogenesis defects, and a reduced number of major cranial blood vessels, findings which are similar to the cardiovascular phenotypes in zebrafish ccm mutants. Since the vascular defects in patients and in mice occur in mature venous blood vessels, venous-specific expression of Egfl7 and arterial-specific expression of components of the Notch signaling pathway argue against a Egfl7-Notch-mediated regulation of the VEGF signaling pathway in veins (Bambino et al., 2014; Poissonnier et al., 2014; Villa et al., 2001). Furthermore, the inhibition of Notch signaling in zebrafish by morpholino injection against RbpSuH (a transcriptional co-activator) did not recapitulate the Ccm cardiovascular defects (Siekmann et al., 2007). In follow-up
Discussion

experiments, analyses of zebrafish heg^{m52}, $krit1^{y219c}$, and $ccm2^{m201}$ mutant using different transgenic reporter lines for components of the Notch signaling pathway will be necessary to exclude or to validate whether angiogenesis defects upon loss of Ccm are Notch-dependent processes.

Besides the regulation of the VEGF signaling pathway by $miR-126$ or by inhibition of the Notch signaling pathway, Egfl7 may also affect angiogenesis by activating the $\beta3$ integrin signaling pathway (Nikolic et al., 2013; Takeuchi et al., 2014). In HUVECs, EGFL7 binds specifically to $\alpha_v\beta_3$ integrin via its RGD motif and positively affects blood vessel formation (Nikolic et al., 2013). Furthermore, Takeuchi et al. demonstrated that VEGF-induced up-regulation of phospho-Akt and phospho-Erk(1/2) was suppressed by knock-down of EGFL7. Hence, Egfl7 may regulate VEGF-dependent angiogenesis by activating $\beta3$ integrin signaling (Takeuchi et al., 2014).

Transferred to a pathological condition, a loss of Ccm complex proteins could induce aberrant $\beta1$ integrin activity, leading to increased Klf2 expression, and subsequently elevated Egfl7 expression. Egfl7 overexpression in turn may activate $\beta3$ integrin signaling resulting in enhanced VEGF-dependent angiogenesis signaling.

Fig. 26. Proposed model for Egfl7-dependent regulation of Klf2 via $\beta3$ integrin. The loss of the CCM/ICAP-1 complex induces $\beta1$ integrin-dependent up-regulation of Egfl7 via Klf2. In turn, Egfl7 may bind to $\beta3$ integrin and trigger Klf2 expression via a positive feedback-loop. Hence, knock-down of Egfl7 may decrease $\beta3$ integrin-dependent expression of Klf2.
The finding that egfl7 knock-down in zebrafish significantly decreased klf2a/b expression levels (Results Fig.24E) implies that Klf2 may also be regulated, in part, by an Egfl7/β3 integrin-dependent mechanism. Double knock-down of klf2a/b and egfl7 by low-dose morpholino injection into ccm mutants support the idea that these factors act together in VEGF-dependent angiogenesis. Knock-down of β3 integrin in zebrafish may be the first step in assessing its potential role in the regulation of Klf2 (Fig. 26).

5.4 Ectopic cerebral sprouts and vascular lumen formation in zebrafish ccm mutants

Investigations of primary defects in ccm-deficient cerebral blood vessels are complicated since ccm mutants lack a functional circulatory system. Blood flow is necessary to supply organs with nutrients and oxygen for proper function. Hypoxia, an undersupply with oxygen, induces neoangiogenesis from quiescent blood vessels by activating the HIF-1 signaling pathway (Forsythe et al., 1996; Goldberg et al., 1994; Liu et al., 1995; Shweiki et al., 1992). In zebrafish silent heart (tnnt2a) mutants, which lack blood flow, I noticed ectopic sprout formation of cerebral blood vessels similar to the vascular phenotype in heg m552, kritt f1219c, and ccm2 m201 mutants. Thus, this ectopic sprouting phenotype may be a secondary effect due to a lack of blood flow and hypoxia-induced angiogenesis signaling. Strikingly, sprout formation was suppressed by knocking-down either klf2a/b, itgb1b, or egfl7 in ccm mutants. For instance, in ccm2 m201 mutant; egfl7 morphants, vascular sprout formation was suppressed (n=3/3 embryos) even in the absence of blood flow, indicating that hypoxia-induced angiogenesis may also be affected by the β1 integrin-Klf2-Egfl7 signaling cascade. It will be interesting to test whether the oversprouting phenotype in tnnt2a mutants can also be rescued by knock-down of either of these factors.

As blood vessels in zebrafish tnnt2a mutants fail to form a vascular lumen, the partial rescue of the lumenization defects in ccm mutants injected with klf2a/b or egfl7 morpholino may be attributed to a recovery of the heart, and therefore circulation of fluid within blood vessels rather than a rescue of the endothelial cells themself. In addition, ccm2 m201 mutants injected with a combination of klf2a/b and egfl7 morpholino
exhibited cardiac rescue and circulating blood cells within the entire vascular network resulting in vascular lumen formation of intersegmental vessels. Hence, vascular lumenization defects in zebrafish \textit{ccm} mutants may be a consequence of a failure in blood circulation rather than a loss of Ccm proteins in endothelial cells.

5.5 Outlook

Further research is necessary to understand the biology of cerebral cavernous malformations. Pharmacological compound screens of known drugs may be a first step to identify new targets involved in Ccm-dependent diseases. The zebrafish, as an ideal model organism, allows to test many drugs in a short period of time. Subsequently, potential candidates can be tested in more disease relevant organisms, such as mice or rat.

In addition, clonal studies of \textit{ccm}-deficient endothelial cells in wild-type background are necessary to get a better understanding of how these cells behave under normal physiological conditions and whether they recapitulate the vascular defects observed in mice and human with respect to bleeding or cavernoma development.

Genetic and molecular evidence from inheritable forms of aneurysms points to an involvement of aberrant TGF-\(\beta\) signaling in vascular pathologies (Pardali et al., 2010; Lindsay and Dietz, 2011). Since murine \textit{KLF2} knockout animals frequently present with aortic aneurysms (Kuo et al., 1997) and aberrant TGF-\(\beta\) signaling is involved in cerebral cavernous malformations (Maddaluno et al., 2013), future research should reveal whether the signaling pathway elucidated in this study, is relevant for other pathologies of the human vasculature as well.
6 Appendix

6.1 Statistical analysis of endocardial and lateral dorsal aorta cell numbers

<table>
<thead>
<tr>
<th>Unpaired t-tests</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 9, endocardium</td>
<td></td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>*** P=0.0009</td>
</tr>
<tr>
<td>wt vs ccm2;klf2abMO</td>
<td>** P=0.0047</td>
</tr>
<tr>
<td>ccm2 vs ccm2;klf2abMO</td>
<td>*** P=0.0004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-way ANOVA test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 15F, endocardium</td>
<td></td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>** P=0.002</td>
</tr>
<tr>
<td>wt vs wt + PTK787</td>
<td>n.s. P=0.999</td>
</tr>
<tr>
<td>wt vs ccm2 + PTK787</td>
<td>n.s. P=0.971</td>
</tr>
<tr>
<td>ccm2 vs ccm2 + PTK787</td>
<td>* P=0.0174</td>
</tr>
<tr>
<td>wt vs heg + PTK787</td>
<td>n.s. P=0.3781</td>
</tr>
<tr>
<td>wt vs heg</td>
<td>*** P=0.0009</td>
</tr>
<tr>
<td>heg vs heg + PTK787</td>
<td>* P=0.0229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unpaired t-tests</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.12D, LDA</td>
<td></td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>*** P=0.0003</td>
</tr>
<tr>
<td>wt vs ccm2;klf2abMO</td>
<td>n.s. P=0.74</td>
</tr>
<tr>
<td>wt vs hsp70l:klf2a</td>
<td>** P=0.004</td>
</tr>
<tr>
<td>ccm2 vs hsp70l:klf2a</td>
<td>n.s. P=0.252</td>
</tr>
<tr>
<td>ccm2 vs ccm2;klf2abMO</td>
<td>** P=0.004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unpaired t-tests</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.17, LDA</td>
<td></td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>*** P=0.0003</td>
</tr>
<tr>
<td>wt vs ccm2 + PTK787</td>
<td>n.s. P=0.109</td>
</tr>
<tr>
<td>ccm2 vs ccm2 + PTK787</td>
<td>*** P=0.0006</td>
</tr>
</tbody>
</table>
6.2 Statistical analysis of SIV branchpoints and sprouts

<table>
<thead>
<tr>
<th>1-way ANOVA test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 13D (branchpoints)</td>
<td></td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>* P=0.0198</td>
</tr>
<tr>
<td>wt vs ccm2;klf2abMO</td>
<td>n.s. P=0.5214</td>
</tr>
<tr>
<td>ccm2 vs ccm2;klf2abMO</td>
<td>** P=0.0036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-way ANOVA test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 13D (sprouts)</td>
<td></td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>**** P<0.0001</td>
</tr>
<tr>
<td>wt vs ccm2;klf2abMO</td>
<td>* P=0.0108</td>
</tr>
<tr>
<td>ccm2 vs ccm2;klf2abMO</td>
<td>**** P<0.0001</td>
</tr>
</tbody>
</table>

6.3 RT-qPCR data analysis

<table>
<thead>
<tr>
<th>n=</th>
<th>klf2a</th>
<th>klf2b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>wt</td>
<td>Fig. 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,002</td>
<td>0,033</td>
</tr>
<tr>
<td>ccm2</td>
<td>5</td>
<td>1,779</td>
</tr>
</tbody>
</table>

Unpaired t-tests

<table>
<thead>
<tr>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>klf2a</td>
</tr>
<tr>
<td>klf2b</td>
</tr>
<tr>
<td>Fig. 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n=</th>
<th>klf2a</th>
<th>klf2b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>wt</td>
<td>Fig. 10H</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,002</td>
<td>0,033</td>
</tr>
<tr>
<td>tnt2aMO</td>
<td>5</td>
<td>0,740</td>
</tr>
<tr>
<td>ccm2</td>
<td>5</td>
<td>1,779</td>
</tr>
<tr>
<td>ccm2 + tnt2aMO</td>
<td>4</td>
<td>1,804</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>1-way ANOVA test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>klf2a</td>
</tr>
<tr>
<td>wt vs tnt2aMO</td>
<td>* P=0,0257</td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>**** P<0,0001</td>
</tr>
<tr>
<td>wt vs ccm2:tnt2aMO</td>
<td>**** P<0,0001</td>
</tr>
<tr>
<td>tnt2aMO vs ccm2:tnt2aMO</td>
<td>**** P<0,0001</td>
</tr>
<tr>
<td>ccm2 vs ccm2:tnt2aMO</td>
<td>n.s. P=0,990</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n=</th>
<th>klf2a</th>
<th>klf2b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>wt</td>
<td>1,001</td>
<td>0,029</td>
</tr>
<tr>
<td>ccm2</td>
<td>1,796</td>
<td>0,248</td>
</tr>
<tr>
<td>wt + PTK787</td>
<td>0,925</td>
<td>0,030</td>
</tr>
<tr>
<td>ccm2 + PTK787</td>
<td>1,713</td>
<td>0,163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-way ANOVA test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>klf2a</td>
</tr>
<tr>
<td>wt vs ccm2</td>
<td>* P=0,0225</td>
</tr>
<tr>
<td>wt vs wt + PTK787</td>
<td>n.s. P=0,9946</td>
</tr>
<tr>
<td>wt vs ccm2 + PTK787</td>
<td>* P=0,0395</td>
</tr>
<tr>
<td>ccm2 vs ccm2 + PTK787</td>
<td>n.s. P=0,9925</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n=</th>
<th>egfl7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Heat-shock control</td>
<td>3</td>
</tr>
<tr>
<td>hsp70l:klf2a_IRES_GFP</td>
<td>3</td>
</tr>
<tr>
<td>hsp70l:klf2b_IRES_GFP</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-way ANOVA test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>egfl7</td>
</tr>
<tr>
<td>ctrl vs hsp70l:klf2a_IRES_GFP</td>
<td>* P=0,0170</td>
</tr>
<tr>
<td>ctrl vs hsp70l:klf2b_IRES_GFP</td>
<td>*** P=0,0007</td>
</tr>
</tbody>
</table>
Table 1: Mean and SEM of KLF2a and KLF2b

<table>
<thead>
<tr>
<th>Fig. 22A</th>
<th>n=</th>
<th>egfl7</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>wt</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0,017</td>
</tr>
<tr>
<td>ccm2</td>
<td>3</td>
<td>3</td>
<td>1,188</td>
<td>0,221</td>
</tr>
</tbody>
</table>

Table 2: Unpaired t-tests

<table>
<thead>
<tr>
<th>Fig. 22A</th>
<th>P value</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>wt vs ccm2</td>
<td>** P=0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt vs ccm2;klf2abMO</td>
<td>n.s. P=0,446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ccm2 vs ccm2;klf2abMO</td>
<td>n.s. P=0,561</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Mean and SEM of KLF2a and KLF2b

<table>
<thead>
<tr>
<th>Fig. 24E</th>
<th>n=</th>
<th>klf2a</th>
<th></th>
<th></th>
<th>klf2b</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
<td></td>
</tr>
<tr>
<td>wt</td>
<td>3</td>
<td>3</td>
<td>1,000</td>
<td>0,002</td>
<td>1,000</td>
<td>0,021</td>
<td></td>
</tr>
<tr>
<td>egfl7MO</td>
<td>3</td>
<td>3</td>
<td>0,742</td>
<td>0,003</td>
<td>0,724</td>
<td>0,037</td>
<td></td>
</tr>
<tr>
<td>ccm2</td>
<td>3</td>
<td>3</td>
<td>2,033</td>
<td>0,046</td>
<td>1,406</td>
<td>0,113</td>
<td></td>
</tr>
<tr>
<td>ccm2 + egfl7MO</td>
<td>3</td>
<td>3</td>
<td>1,160</td>
<td>0,073</td>
<td>0,921</td>
<td>0,067</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: 1-way ANOVA test

<table>
<thead>
<tr>
<th>Fig. 24E</th>
<th>P value</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>wt vs ccm2</td>
<td>**** P<0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt vs egfl7MO</td>
<td>* P=0,0455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.s. P=0,2633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.s. P=0,4358</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ccm2 vs ccm2 + egfl7MO</td>
<td>**** P<0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.s. P=0,691</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.s. P=0,0122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ccm2 vs ccm2 + egfl7MO</td>
<td>n.s. P=0,4358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* P=0,0208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Benedito, R., Roca, C., Sorensen, I. et al. (2009). The notch ligandsDll4 and Jagged1 have opposing effects on angiogenesis. *Cell, 137*(6), 1124-1135.

Chang, C. P., Neilson, J. R., Bayle, J. H. et al. (2004). A field of myocardial-

References

Science, 316(5828), 1148-1153.

Gingras, A. R., Puzon-McLaughlin, W., & Ginsberg, M. H. (2013). The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1
GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem, 288(33), 23639-23649.

Labauge, P., Enjolras, O., Bonerandi, J. J. et al. (1999). An association between

Liao, Y. F., Gotwals, P. J., Koteliyansky, V. E. et al. (2002). The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem, 277(17), 14467-14474.

Lobov, I. B., Renard, R. A., Papadopoulos, N. et al. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA, 104(9), 3219-3224.

Schmidt, M., Paes, K., De Maziere, A. et al. (2007). EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. *Development,

References

References

Watanabe, Y., Kokubo, H., Miyagawa-Tomita, S. et al. (2006). Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in
mouse. *Development, 133*(9), 1625-1634.

Zhang, J., Basu, S., Rigamonti, D. *et al.* (2008). Krit1 modulates beta 1-integrin-
mediated endothelial cell proliferation. *Neurosurgery*, 63(3), 571-8; discussion 578.

Acknowledgement

First and foremost, I would like to thank Prof. Dr. Salim Seyfried for the valuable guidance and advice and for giving me this exiting project. I would also like to thank Prof. Harald Saumweber for being my supervisor at the Humboldt University Berlin. Special thanks go to all former and current members of the Seyfried lab, including Cecile Otten, Jana Richter, Robby Fechner, Björn Fiege, Stefan Donat, Veronica Lombardo, Marta Rocha Lourenco, Justus Veerkamp, Florian Priller and Ann-Christin Dietrich.

Finally, I am forever indebted to my family and Pia for their understanding, endless love and encouragement during my studies and my PhD.
Publications

Selbständigkeitsklärung

Datum ___ Unterschrift ___