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Abstract

Deregulation of the Ras/MAPK signaling is implicated in a wide variety of human diseases,
including developmental disorders and cancer. In the last years, a group of developmental
disorders, characterized by an overlapping phenotype in patients, was clustered under the
term RASopathies. These disorders result from germline mutations in genes encoding key
components of the Ras/MAPK signaling cascade. Although the incidence of solid tumors in
patients suffering from these disorders is rather low, reports on different forms of leukemia
have considerably increased.
In this work, a group of mutations in the genes SHP2/PTPN11 and BRAF, both key
regulators of the MAPK signaling pathway and implicated in RASopathies and cancer,
were selected for expression in well-established cell systems for a comprehensive molecular
and phenotypic characterization using high-throughput approaches and functional assays.
Synthetic cDNA sequences carrying the SHP2 mutations T42A, E76D, I282V (Noonan
syndrome-associated), E76G, E76K, E139D (Noonan- and leukemia-associated), T468M
(LEOPARD syndrome -associated) and the BRAF mutations Q257R, S467A, L485F and
K499E (cardio-facio-cutaneous syndrome-associated) were shuttled into the modified lentivi-
ral vector pCDH-EF1-IRES-GFP. The non-tumorigenic human cell lines MCF10A, BJ-ELB
and HA1EB and the rat preneoplastic 208F fibroblasts were transduced with recombinant
lentiviral particles carrying either SHP2 or BRAF mutations to identify their potential roles
in neoplastic transformation. MCF10A and BJ-ELB cells overexpressing SHP2 mutations
displayed a growth arrest morphology, while BRAF mutations induced cell proliferation and
a transformation phenotype. In contrast, both SHP2 and BRAF mutations promoted a
spindle-like cell morphology, cell proliferation, density- and anchorage-independent growth
in 208F rat fibroblasts. These results suggested that RASopathies-associated mutations in
SHP2 and BRAF confer a transformation phenotype in vitro similar to the classical H-Ras
and BRAF oncogenes. To further investigate whether mutations in SHP2 contribute to
tumor growth in vivo, 208F cells expressing either SHP2 wild-type, E76G or T468M muta-
tions were subcutaneously injected in nude mice. Interestingly, cells harboring mutations on
SHP2, as well as overexpressing wild-type SHP2, promoted tumor growth.
Reverse-phase protein array (RPPA) and immunoblot assays revealed that RASopathies-
associated mutant SHP2 and BRAF proteins constitutively activate the Ras/MAPK signaling
pathway in a moderate manner compared to the oncogenic BRAF V600E. Furthermore,
to identify modifications in the protein interaction mechanisms of SHP2 mutant proteins,
tandem affinity purification (TAP) and yeast-two-hybrid assays were performed using the
isogenic dox-inducible HEK-TREx cell system. E76G and T42A SHP2 mutant proteins
showed an increased binding strength to GAB1 compared to the wild-type protein. Fi-
nally, to investigate the impact of these mutations on gene transcription, a microarray
analysis of mRNA from HEK-TREx cells expressing mutant transgenes was conducted. A
gene cluster was found to be commonly regulated in both RASopathies-associated BRAF
and the oncogenic V600E mutation. This is the first report on transcriptome analysis of
RASopathies-associated mutations.
The findings of this study might be useful for a better understanding of the downstream
mechanisms of RASopathies-related signaling pathways and their involvement in cancer
progression. Moreover, new candidate therapeutic targets for the effective treatment of
patients suffering from Ras/MAPK pathway-associated developmental disorders could be
evaluated in the future.
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1 INTRODUCTION

1.1 The Ras/MAPK signaling pathway

The Ras/mitogen-activated protein kinases (MAPK) pathway is among the most wide-

ranging regulatory mechanisms of signal transduction in the eukaryotic organisms.

The MAPK pathway has been associated with diverse biological processes varying

from development, cell growth, proliferation, differentiation, migration and apoptosis.

Therefore, it is not surprising that deregulation of the MAPK pathway plays also a

central role in many cancer types, not only because its extensive capability to crosstalk

with other signaling pathways, but also because many of its core components are encoded

by oncogenes frequently found mutated, including the small GTPase Ras and RAF

proteins and the receptor tyrosine kinase epidermal growth factor receptor (EGFR).

This signaling cascade becomes activated when extracellular growth factors or cytokines

bind to the corresponding receptors, commonly receptor tyrosine kinases (RTK). (fig.

1.1). After ligand binding, activation of the receptor leads to the recruitment of adaptor

proteins to the cytosolic membrane, which in turn, transduce the extracellular signal

stimulus to intracellular components (Lemmon and Schlessinger, 2010).

1.1.1 Post-translational regulation of the MAPK signaling pathway by

protein tyrosine phosphatases

There are a variety of molecular mechanisms that regulate the activation of core compo-

nents of the MAPK pathway. Ras proteins, for example, undergo palmitoylation and

farnesylation to enable membrane association under normal physiological conditions

(for review, see Roberts and Der, 2007). Also SUMOylation of MEK1 and MEK2 pro-

teins has been reported to act as a negative modulation mechanism to downregulate

the MAPK pathway (Kubota et al., 2011). Nevertheless, phosphorylation of protein

kinases is the most well elucidated post-translational modification (PTM) that acts as a

positive regulator of this signaling cascade. Equivalently, dephosphorylation by protein

phosphatases has gained strength as a key regulation event that influences not only

protein activation, but also localization and stability.

Protein phosphatases are derived from different ancestors and are classified in mainly

two groups: protein serine/threonine phosphatases and protein tyrosine phosphatases

(PTPs). To date, 107 members of the human PTP superfamily have been identified to

share the common cysteine-dependent signature motif HC(X)5R to remove a phosphate

group from the substrate (Tonks, 2006). According to its structural homology and

1



SHP2


RTK


Ras-GTP


Raf


MEK


ERK


SHC

RasGEF
GRB2


Cell proliferation and


 differentiation


Ras-GDP


RasGAP


RasGEF


Cytoplasm


Nucleus


Transcription 
factor activation


GAB1


Figure 1.1: The Ras/MAPK signaling pathway. Extracellular growth factors or cytokines binds to
receptor tyrosine kinases (RTKs), leading to its dimerization and cross-phosphorylation of tyrosine
residues. Phosphorylation of the RTK leads to the recruitment of adaptor proteins such growth-factor
receptor bound protein 2 (GRB2), which binds to the guanine nucleotide exchange factor (RasGEF) Son
Of Sevenless (SOS). SOS activates Ras by binding to Ras-GDP complexes and promotes the exchange of
GDP (guanosine diphosphate) to GTP (guanosine triphosphate). Next, Activated Ras (Ras-GTP) binds
the serine/threonine kinase RAF, which then activates a phosphorylation cascade of MEK and ERK
proteins that are translocated to the nucleus and activate transcription factors. Modified from Lemmon
and Schlessinger (2010); Ahearn et al. (2012).

substrate specificity, the PTP family is subdivided in four classes: phosphotyrosine-specific

phosphatases, dual-specificity phosphatases, cdc25 phosphatases and low molecular PTPs.

1.1.2 The protein tyrosine phosphatase SHP2

Mammalian SHP2 (also known as SH-PTP2, SH-PTP3, PTP2C, PTP1D and Syp) is an

ubiquitously expressed non-transmembrane protein-tyrosine phosphatase that belongs

to the phosphotyrosine-specific phosphatases and is encoded by the gene PTPN11 in

the human chromosome 12q24. It shares homologues in Drosophila (Corkscrew) and

C. elegans (Ptp2). SHP2 was identified by R. M. Freeman et al. (1992), shortly after

corkscrew (csw) (Perkins et al., 1992).

1.1.2.1 SHP2 protein activation

SHP2 contains two tandemly arranged src-homology 2 region domains (SH2 domains),

followed by a catalytic phosphatase domain (PTP domain), two tyrosine residues at the

C-terminus and a proline-rich sequence. The crystal structure revealed an autoinhibitory

mechanism of the catalytic site that regulates its basal state (Hof et al., 1998). SHP2

activity is suppressed by intramolecular interactions between residues in the backside loop

of the N-terminal SH2 domain (N-SH2) and the catalytic surface of the PTP domain (fig.

1.2). Upon growth factor or cytokine stimulation, SHP2 is recruited, via its SH2 domains,
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to phosphorylated tyrosine residues on RTKs, cytokine receptors, and/or scaffolding

adaptors, such as insulin receptor substrate, fibroblast growth factor receptor substrate,

or GRB2-associated binding (GAB) proteins. Phosphotyrosyl (pY) peptide binding to

the N-SH2 domain disrupts the autoinhibitory interaction leading to an equilibrium

shift and hence to an open conformation of the PTP domain and its catalytic activation

(Ahmad et al., 1993; R. M. Freeman et al., 1992).
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N-SH2


N-SH2
 C-SH2
 PTP
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 Substrate

P
 P


Y Y Y P

Inactive


Active


P
 P


Figure 1.2: Activation of the protein tyrosine phosphatase SHP2. SHP2 is conformed by two src-
homology 2 domains (N-SH2 and C-SH2), a protein tyrosine phosphatase domain (PTP) and two C-tail
tyrosine residues (Y542 and Y580). SHP2 is kept in a closed conformation by the interaction of N-SH2
and the PTP domains that blocks the catalytic site. Upon binding of phosphotyrosine proteins (pY)
to SH2 domains, the PTP domain is exposed, so substrates can bind the active site. Adapted from
Grossmann et al. (2010); Qiu et al. (2014).

Bennett et al. (1994) identified SHP2 as a positive regulator of the platelet-derived

growth factor receptor β (PDGFR) by binding GRB2 and the PDGF receptor directly.

Additionally, SHP2 has been found to act as a modulator upstream of the Ras/MAPK

signaling cascade by regulating Sprouty activity through tyrosine dephosphorylation. This

results in dissociation of Sprouty proteins from GRB2, enabling the positive regulation of

ERK activation (Hanafusa et al., 2004; Jarvis et al., 2006). Additionally, SHP2 binding

to c-Met-activated GAB1 leads to c-Met specific signaling activation (Schaeper et al.,

2000)

1.1.2.2 Biological relevance of SHP2

Due to its ubiquitous expression and its cell-type specific signaling outcome, SHP2 acts

as a positive regulator in many signaling cascades that includes the Jak/STAT, the NFkB

and the Ras/MAPK pathway (Grossmann et al., 2010). Therefore, it is not surprising

that SHP2 plays a central role in a broad spectrum of cellular processes such as cell

proliferation, differentiation and embryonic development. For example, Saxton et al.

(1997) demonstrated that Shp2 is essential during gastrulation in the organization of

axial mesoderm. They generated a mouse model by introducing an internal deletion of

residues 46-110 in the N-terminal SH2-domain and found that mice homozygous for the

mutant allele died in utero at mid-gestation. The mutant embryos showed uncompleted
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turning, recognized by the disorganized neuroectoderm, and perturbed development

of the vascular system. These observations were later confirmed in tissue-specific null

mutations by different groups (Kontaridis et al., 2008; Princen et al., 2009).

Additionally, SHP2 is required for branching morphogenesis of the kidney in mammals

(Schaeper et al., 2000; Willecke et al., 2011) and the development and maintenance

of the nervous system (Grossmann et al., 2010). It also regulates cell fate during

cardiomyogenesis and angiogenesis (Mannell et al., 2008). Recently, SHP2 has been also

found to influence the differentiation of goblet and paneth cells in the murine intestine by

controlling of the canonical Wnt/β-catenin signaling pathway (Heuberger et al., 2014).

1.1.2.3 Role of SHP2 in cancer

According to the Catalogue of Somatic Mutations in Cancer (COSMIC), there are 142

mutations in the PTPN11 gene associated with cancer. Most of them are located

in the N-SH2 domain, followed by mutations encoding for the terminal tail of the

PTP domain. These somatic mutations are frequently associated with hematopoietic

malignancies, from which approximately 35% are related with juvenile myelomonocytic

leukemia (JMML) and in a lower incidence, with acute myeloid leukemia (AML), chronic

myelomonocytic leukemia (CMML), myelodysplastic syndrome (MDS), and B-acute

lymphoblastic leukemia (B-ALL) (Forbes et al., 2008; Grossmann et al., 2010).

To date, 65 substitution mutations in 21 amino acid positions of the N-SH2 domain have

been reported, being the position Glu76 the most frequently mutated aminoacid. The

E76K mutation alone has been reported in 85 cancer samples, most of them related

with different forms of leukemia, but also in single cases of lung and colon cancer. Two

additional amino acids, Ala72 (A72) and Asp61 (D61), are also frequently mutated.

The PTP domain has as well a relative high incidence of mutations (70 substitution

mutations in 38 positions). Only the position Gly503 (G503) accounts for 36 reported

cancer samples closely followed by Ser502 (19 counts). On the other hand, the C-SH2

domain shows a relative low mutation frequency (16 substitution mutations) compared

to the N-SH2 domain, being mutations in the position Glu139 (E139) the most common.

SHP2 and H. pylori-CagA

Epidemiological studies have demonstrated that there is a strong correlation between

increased SHP2 protein expression and gastric carcinogenesis in patients infected with

Helicobacter pylori CagA-positive strains. H. pylori CagA is a 120-145 KDa protein and

a tyrosine-phosphorylated by Src family protein-tyrosine kinase. CagA was first identified

as a virulence factor of H. pylori (CagA positive strains) and associated with peptic ulcers.

Additionally, infections with cagA-positive H. pylori strains are strongly associated with

gastric adenocarcinoma (Hatakeyama, 2006b; Kim et al., 2010; Jiang et al., 2013). Not

only the increased expression of SHP2 but also the activation of the IL6/gp130/STAT3

signaling pathway has been shown to be implicated in the development of gastric cancer

(Lee et al., 2010). The interaction of the phosphorylated CagA protein with SHP2

triggers its activation and posterior inactivation of the focal adhesion kinase (FAK) by

4



dephosphorylation, promoting an elongated host-cell shape termed the ”hummingbird

phenotype” and increased cell motility (Higashi et al., 2002; Tsutsumi et al., 2006).

Moreover, the effector protein CagA may also modulate a similar cell motility response

by targeting the c-Met receptor, which in turn, recruits the adapter proteins GAB1 and

SHP2 in epithelial cells (Churin et al., 2003).

1.1.3 Post-translational regulation of the MAPK signaling pathway by

the protein kinase BRAF

BRAF, encoded in the human chromosome 7q34, is a serine/threonine protein kinase that

belongs to the RAF family, key regulators of the MAPK pathway. Somatic mutations

in this gene are associated with 8% of all human cancers, including colorectal cancer,

malignant melanoma, thyroid carcinoma and non-Hodgkin lymphoma (Davies et al., 2002).

Recent studies associate germline mutations in BRAF with developmental disorders,

such as the cardio-facio-cutaneous syndrome (CFC syndrome).

BRAF protein consists of three conserved regions, which share the following domains

with other RAF proteins: two regulatory CR1 and CR2 domains and a CR3 region that

contains a motif called the negative-charge regulatory region (N-region), a glycine-rich

loop, a catalytic loop and the activation domain or kinase domain (Sithanandam et al.,

1990; Wellbrock and Marais, 2005). The most frequently somatic point mutation found

in cancer is V600E (>90%) is located in the activation segment of the kinase domain

(CR3). As a consequence, the V600E mutation derives in a BRAF protein with an

elevated kinase activity.

BRAF Activation

There are three Raf paralogs in humans (A-Raf, B-Raf and C-Raf) coding for Raf

proteins that are activated after extracellular stimuli and by binding of Ras-GTP to the

cysteine-rich domain located in the CR1 region (fig. 2.1).

BRAF is a protein kinase that catalizes the phosphorylation of serine and threonine

residues in consensus sequences of protein substrates using ATP. The products of this

reaction are ADP and a phosphorylated protein. Under normal conditions, BRAF is

kept inactive by auto-inhibition of the Ras-GTP-binding CR1 domain and the hinge

domain. In contrast, oncogenic BRAF is constitutively active independently of mitogenic

activation.

BRAF plays an important role in endothelial development. This feature was demonstrated

by Wojnowski et al. (1997), who developed a mouse with a targeted disruption in the

Braf gene. Heterozygous mice did not exhibited obvious defects. However, homozygous

Braf-deficient mice showed an increased number of endothelial precursor cells, enlarged

blood vessels and died of vascular defects during midgestation.

In 2007, Schubbert et al. (2007) reviewed the developmental disorders associated with

mutations in the Ras/MAPK signaling pathway. In the CFC syndrome, there was neither

an overlap in the mutation pattern, nor an association with cancer, quite opposite from

the other developmental syndromes. Nevertheless, another study identified mutations in
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different components of the MAPK cascade, including BRAF, that were implicated in

acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (Aoki and Matsubara,

2013).

1.2 Ras/MAPK pathway deregulation in developmental

disorders

The term “RASopathies”was coined in an attempt to cluster developmental disorders

that result from germline mutations in genes encoding components of the canonical

Ras/MAPK signaling pathway. Some affected genes include PTPN11, NRAS, HRAS,

BRAF, RAF1, SOS, MEK1, MEK2 (fig. 1.3), and share phenotypic features that

includes craniofacial manifestations, cardiac, skin, muscular and ocular abnormalities,

neurocognitive disabilities and an increased risk of developing cancer (Rauen et al.,

2011). Some of these disorders, such as the cadio-facio-cutaneous syndrome (CFC),

Noonan, LEOPARD (acronym for multiple Lentigines, Electrocardiographic conduction

abnormalities, Ocular hypertelorism, Pulmonic stenosis, Abnormal genitalia, Retardation

of growth, and sensorineural Deafness) and Costello syndromes are difficult to diagnose

due to overlapping symptoms.
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Figure 1.3: Regulation of Ras/MAPK pathway by SHP2 and genes affected in developmental disorders.
RTK: Receptor tyrosine kinase. SOS1: Son Of Sevenless 1. NF1: Neurofibromin 1. NF1: Neurofi-
bromatosis type 1. NS: Noonan syndrome; LS: LEOPARD syndrome; CS: Costello Syndrome; CFCS:
Cardio-facio-cutaneous syndrome. Modified from Tartaglia et al. (2010).

In 2011, Kratz et al. revised 1900 cases of diverse RASopathies reported in the literature

since 1937 and its association with cancer. They found that, indeed, there is an increased

incidence of cancer, particularly in patients with Costello syndrome (11%), followed

by Noonan (3.9%), CFC (3.5%) and LEOPARD (1.6%) syndromes. The cancer types

ranged from diverse leukemia forms such as acute lymphocytic leukemia (ALL), acute
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myeloid leukemia (AML), juvenile myelomonocytic leukemia (JMML) to neuroblastomas.

1.2.1 Noonan syndrome

In the late 50's the pediatrician Jacqueline Noonan described a new syndrome that

had similarities in phenotype with the previously reported Turner syndrome but with

associated congenital heart disease (Noonan and Nadas, 1958). The Noonan syndrome

(OMIM163950) is a relatively common autosomal dominant disorder with an estimated

incidence of 1 in 1000-2500 live births. The most characteristics of Noonan patients

comprise dysmorphic facial features, proportionate short stature, pulmonic stenosis and

hypertrophic cardiomyopathy, webbed neck, chest deformity, cryptorchidism, mental

retardation and bleeding diatheses.

It took approximately 40 years to identify the genes responsible for this syndrome.

Tartaglia et al. (2001) performed a mutation screening of two families with Noonan

syndrome and identified a series of substitution mutations in the gene PTPN11. These

missense mutations were found to be involved in switching the SHP2 protein into a

constitutionally active conformation. Most of the Noonan-associated mutations are

located in the exon 3, which encodes for the N-SH2 domain and in the PTP domain.

In addition to PTPN11, germline mutations in KRAS, RAF1 and SOS1 have been found

to be associated with Noonan syndrome, though in a lower frequency.

Figure 1.4: Mutations associated with Noonan syndrome and leukemia. From Grossmann et al. (2010).

Then, Araki et al. (2004) generated a knock-in mouse model for the Noonan syndrome

by inserting the Noonan-related mutation D61G by cre recombination. Homozygous

mice for the D61G mutation died, whereas less than 50 % of heterozygous mice were

viable. Here, they demonstrated that the SHP2 phosphatase activity increased, while the

highest level was reached in homozygotic cells. Consistent with the phenotype observed

in individuals with Noonan syndrome, heterozygotic mice also showed short stature
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and, after some months, mice developed splenomegaly and myeloid expansion. They

concluded that D61G+/- mice developed a myeloproliferative syndrome.

1.2.2 LEOPARD Syndrome

Leopard syndrome (LS; OMIM 151100) is a rare multisystemic disorder, mainly charac-

terized by facial, skin and cardiac anomalies. LEOPARD is an acronym described by

Gorlin et al. (1969) that resumes the major features that characterize this disorder.

By 2008, there were approximately 200 LEOPARD patients worldwide, though it is

considered that there are many underdiagnosed or misdiagnosed cases (Sarkozy et al.,

2008).

Mutations associated with this disorder have been identified mostly in the gene PTPN11

and RAF1 (Tartaglia and Gelb, 2005; Pandit et al., 2007). Interestingly, the mutations

associated with NS and LS are exclusive. Most NS mutations occur within the N-SH2

domain that results in gain-of-function with increased phosphatase activity (Keilhack

et al., 2005). However, LS mutants in zebrafish are found to have dominant negative

effects (Jopling et al., 2007).

1.2.3 Cardio-facio cutaneous syndrome

The CFC syndrome (OMIM115150) was first described in the late 1980’s by Reynolds et al.

and Neri et al. Typical manifestations include congenital heart defects, characteristic

facial appearance, ectodermal abnormalities and mental retardation. CFC patients carry

germline mutations in four different genes: KRAS, MEK1, MEK2 and BRAF (for review,

see Roberts and Der, 2007). Approximately 75% of the patients have BRAF mutations,

found to be the most frequently mutated locus in CFC patients.

Anastasaki et al. (2009, 2012) expressed a panel of BRAF and MEK alleles in zebrafish

embryos. Both kinase-activating and kinase-impared CFC mutants promoted similar

developmental outcome during early development. There was a developmental time

window in which a constant low-dose therapeutic MEK inhibition restore the normal

development.

In 2011, Urosevic et al. presented a mouse model for the CFC syndrome with a germline

mutation in the V600E hypomorphic allele which resembled partially phenotypical aspects

observed in humans, including cardiomegaly, small dysmorphism and a reduced life span.

However, these mice developed neuroendocrine tumors, which have not been observed in

CFC patients.
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1.3 MUTANOM Consortium

This thesis was accomplished as part (subproject 7) of the MUTANOM Project - Sys-

tems Biology of Genetic Diseases funded through the NGFN Plus Research Initiative

(http://www.mutanom.org/). The overall objectives of the MUTANOM consortium were

to characterize the functional consequences of somatic mutations in cancer and to develop

models that predict the outcome of such genetic alterations on a molecular pathway,

cellular and organism level. Initially the consortium concentrated on characterizing

driver mutations selected from databases and publications (Table 1.1). Based on comple-

mentary expertise in the fields of proteomics, functional genomics (available from the

partner institutions Max-Planck-Institute for Molecular Genetics, Max-Delbrück-Center

for Molecular Medicine, German Cancer Research Center Heidelberg and Charité), a

systematic assessment of the downstream consequences of driver mutations using mass

spectrometry analysis, expression profiling and phenotypic analysis was performed (Fig.

1.5).

The task of subproject 7 (Cellular Signalling Networks) was to investigate the roles

of candidate genes in controlling proliferation, cellular survival and various neoplastic

properties. The standard approach for testing putative oncogenes was to express the

candidate gene and its mutated derivative under the control of heterologous promoters

in appropriate recipient cells and to assess their impact on cellular parameters, typically

associated with the transformed state such as proliferation without anchorage. Conversely,

putative tumor suppressing activity of candidate genes was assayed in tumorigenic cell

lines by RNA interference or forced expression of the candidate gene in tumorigenic cell

lines (see Ph.D. thesis by Sha Liu, in preparation). At the molecular level, the effects

of candidate genes on receptor tyrosine kinase/Ras/ MAP-kinase signal transduction

and related pathways were analyzed. To begin to understand candidate gene effects at

the systems level, their impact on the genetic program of cells expressing the candidate

cancer or anti-cancer gene by expression profiling was assessed as well.

Table 1.1: Cancer mutations selected for analysis in the MUTANOM consortium.
Somatic mutations in the candidate genes were selected according to their number of reported cases from

the COSMIC database.

Gene Gene name
Mutation

Nucleotide Aminoacid

APC Adenomatous polyposis coli 4348C→T R1450∗
4666insA T1556fs*6

BRAF v-raf murine sarcoma 1798GT→AA V600K

viral oncogene homolog B1 1799T →A V600E

770A→G Q257R

1399T→G & S467A

1455G→C & L485F

1495A→G & K499E

CDH1 cadherin 1, type 1, 786 794CAC

CCAGGA→T

T263fs*3

E-cadherin (epithelial) 1108G →C D370H

CDKN2A cyclin-dependent kinase inhibitor 2A 172C→T R58*

(melanoma, p16, inhibits CDK4) 238C→T R80*

9



Gene Gene name
Mutation (continued)

Nucleotide Aminoacid

CTNNB1 catenin (cadherin-associated protein), 121A→G T41A

beta 1, 88kDa 134C→T S45F

c.110C→T S37F

EGFR epidermal growth factor receptor del2235 2249 del E746-A750

2573T→G L858R

FBXW7 F-box and WD repeat domain contain-

ing 7

1393C→T R465C

1394G→A R465H

HRAS v-Ha-ras Harvey rat sarcoma 182A→G Q61R

viral oncogene homolog 35→G G12V

350A→G K117R

IDH1 Isocitrate dehydrogenase 1 (NADP+),

soluble

395G→A R132H

JAK2 Janus kinase 2 1849G→T V617F

1624-

1629delAATGAA

N542 E543del

16111616delTCA

CAA

F537 K539→L

1615 1616AA→TT K539L

KIT Mast/stem cell growth factor receptor

Kit

1676T→A V559D

(Proto-oncogene tyrosine-protein 2447A→T D816V

kinase Kit (c-kit) (CD117 antigen) 1669 1672TGGA→G W557 K558del

1509 1510insGC

CTAT

Y503 F504insAY

KRAS v-Ki-ras2 Kirsten rat sarcoma 35G→A G12D

viral oncogene homolog 35G→T G12V

101C→G P34R

458A→T D153V

467C→A F156L

MLH1 mutL homolog 1, colon cancer, 1151T→A V384D

nonpolyposis type 2 697T→C C233R

MSH6 mutS homolog 6 insC3261 F1088fs*3

3261delC F1088fs*2

NF1 neurofibromin 1 1381C→T R461*

2033delC P678fs*10

NRAS neuroblastoma RAS 37G→C G13R

viral (v-ras) oncogene homolog 35G→A G12D

182A→G Q61R

181C→A Q61K

NRK Nik related kinase 1270A→T S424G

PIK3CA phosphoinositide-3-kinase, 1633G→A E545K

catalytic, alpha polypeptide 3140A→G H1047R

c.1258T→C C420R

PTCH1 patched homolog 1 2975A→G E992G

PTEN phosphatase and tensin homolog 697C→T R233*

800delA K267fs*9

388C→G R130G

389G→A G132

PTPN11 protein tyrosine phosphatase, 227A→G E76G

non-receptor type 11 226G→A E76K

417G→T E139D

1403C→T T468M

RET ret proto-oncogene 2753T→C M918T

1894 1906→AGCT E632 T636→SS

1900T→C C634R

MYLK4 Myosin Light Chain Kinase Family,

Member 4

232G→T A78S

SMAD4 SMAD family member 4 1051G→C D351H
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Gene Gene name
Mutation (continued)

Nucleotide Aminoacid

733C→T Q245*

SMO smoothened homolog c.1210G→A V404M

1604G→T W535L

1918A→G T640A

SRC v-src sarcoma (Schmidt-Ruppin A-2)

viral oncogene homolog

1591C→T Q531*

STK32B serine/threonine kinase 32B 940G→T E314*

TP53 tumor protein p53 743G→A R248Q

818G→A R273H

c.524G→A R175H
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Figure 1.5: Experimental workflow of the MUTANOM consortium
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1.4 Aims of this work

This thesis focuses on the characterization of mutations in PTPN11/SHP2 and BRAF

genes. Both genes have been associated with the so-called ”RASopathies”, a group of

developmental disorders caused by germline mutations of members of the RAS/MAPK

pathway (Tartaglia and Gelb, 2005), and with somatic mutations that have been found

in different forms of leukemia. (Grossmann et al., 2010).

Although somatic mutations in SHP2 associated with cancer have been phenotypically

well characterized, it is still unclear whether RASopathies-associated mutations have the

potential for oncogenic transformation.

Therefore, the aim of this work was to investigate the influence of leukemogenic and

RASopathies-associated mutations in SHP2 and BRAF on the cellular phenotype, prolif-

eration and anchorage-independent growth using non-transformed cell systems.

Furthermore, to elucidate the molecular mechanisms that stimulate modifications of

the cellular phenotype, protein signaling and gene transcription analysis using high-

throughput methods were explored. The experimental work-flow applied for this study

is shown in fig. 1.6.
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Figure 1.6: Experimental workflow of this project

1Following cell lines were generated for the MUTANOM consortium as part of the selection of
candidate cancer mutations for characterization: stable TAP-tagged expressing HEK-TREx cell lines
were generated for TAP assay and tested for protein expression of the Ras-MAPK signaling components
by western blot (each with and without Stop codon): A). K-Ras wt, G12D (35G→A), G12V (35G→T),
D153V (458A→T), P34R (101C→G) and F156L (467C→A); B). SMAD4 wt, Q245∗ (733C→T) and
D351H (1051G→C).

2 Human breast epithelial MCF10A populations were generated by lentiviral transduction to stable
express H/K-Ras wt and G12V and BRAF wt, V600E and V600K. The resulting cell lines were tested
for cell morphology and proliferation, anchorage-independent growth (except for BRAF V600K), and
activation of the MAPK signaling pathway.

3 To test whether the YFP-tagged TREx-HEK cell system was suitable for anchorage-independent
growth assay, a soft agar assay was performed with the following cell lines (YFP-tagged expressing cells
generated by Sha Liu): K-Ras wt and its corresponding mutations G12D, G12V, P34R, D153V and
F156L. The TREx-HEK cell system resulted not appropriate for functional assays due to its ability to
form colonies in soft agar assay without the expression of the corresponding oncogene mutation. An
additional test under serum starvation conditions (0.2% FCS) showed that the HEK-TREx cells were
unable to form colonies even though an oncogene such as H-Ras G12V was expressed.

4 Yeast-two-hybrid assay was performed with SHP2 wt.
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2 RESULTS

2.1 Generation of an efficient gene transfer approach to

meet Mutanom requirements

2.1.1 Description of the selected mutations

To select the appropriate PTPN11 and BRAF mutations, a wide literature search was

performed using the PubMed database. The query was focused on reported mutations

without a biological characterization. Additionally, a search was performed in the

Catalogue of Somatic Mutations in Cancer (COSMIC) (Forbes et al., 2008) for frequency

in leukemia and solid tumors (Table 2.1).

Table 2.1: Missense mutations in PTPN11 and BRAF selected for functional studies.

Gene
Substitution

Syndrome Cancer type Reference
Nucleotide Aminoacid

PTPN11

124A→G T42A NS - (Tartaglia et al., 2002)
228G→C E76D NS - (Tartaglia et al., 2002)
227A→G E76G NS Colon adenocarci-

noma, JMML
(Tartaglia et al., 2003)

226G→A E76K NS JMML, AML (Tartaglia et al., 2003)
417G→T E139D NS JMML (Tartaglia et al., 2002)
844A→G I282V NS - (Tartaglia et al., 2002)

1403C→T T468M LS Rectal adenocarci-
noma

(Digilio et al., 2002)

BRAF

770A→G Q257R CFC - (Niihori et al., 2006;
Rodriguez-Viciana et al.,

2006)
1399T→G S467A CFC - (Rodriguez-Viciana et al.,

2006)
1455G→C L485F CFC Malignant

melanoma
(Niihori et al., 2006;
Rodriguez-Viciana et al.,
2006; Gallagher et al.,
2008)

1495A→G K499E CFC - (Niihori et al., 2006)
1799T→A V600E* - Malignant

melanoma, thy-
roid carcinoma,
colon cancer

(Davies et al., 2002)

*control; NS: Noonan syndrome; NS/JMML: Noonan syndrome with juvenile myelomonocytic leukaemia;
LS: LEOPARD syndrome: lentigines, ECG conduction abnormalities, ocular hypertelorism, pulmonic
stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness syndrome; CFC: Cardio-
facio-cutaneous syndrome; JMML: juvenile myelomonocytic leukaemia; AML: acute myeloid leukaemia.

The reference sequences, corresponding to Homo sapiens, were taken from the Concensus

Coding Sequence Database (CCDS), accession numbers CCDS9163.1 for PTPN11/SHP2

and CCDS5863.1 for BRAF. Each mutated and wild-type gene variant was synthe-
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sized containing a stop codon (TAA) and assembled into a vector backbone contain-

ing the flanking sequences attB for posterior gateway cloning (GeneArt, Germany).

BRAFK499E , SHP2wt and its mutant derivates were assembled into the vector pMK-RQ

(Kanamycinr), BRAFL485F in pMA (Ampicillinr), BRAFS467A and BRAFQ257R in pMS

(Spectinomycinr). BRAFwt and BRAFV 600E were also synthesized by GeneArt and

assembled in the entry vector pDONR221 (kindly provided by Bodo Lange, MPI, Berlin).

The mutations are located across all domains of both SHP2 and BRAF proteins as

indicated in fig. 2.1.

BRAF


E139D*
 I282V

T468M+


N-SH2 C-SH2 PTP
Y542 Y580

T42A

E76D

E76G*+


E76K*


Q257R


RRBD
 CR
 Kinase - CR3
CR2


CR1


S467A

L485F

K499E


SHP2


Figure 2.1: SHP2 and BRAF protein domains with the localization of leukaemogenic, Noo-
nan/LEOPARD and CFC mutations. N-SH2: N-terminal src-homology domain; C-SH2: C-terminal
src-homology domain; PTP: Phosphotyrosine domain. Mutations marked with an asterisk (*) correspond
to those reported in juvenile myelomonocytic leukaemia (JMML) and with a cross (+) reported in
adenocarcinoma. N-SH2: N-terminal src-homology domain; C-SH2: C-terminal src-homology domain;
PTP: protein tyrosine phosphatase domain. CR: conserved region; CR1 corresponds to the Ras-binding
domain (RBD) and a cystein-rich domain (CR); CR2: serine- and threonine-rich regulatory domain;
CR3: kinase domain.

2.1.2 Selection of the gene transfer conditions

To develop a pipeline for the evaluation of mutations by functional assays, different

mammalian cell lines were tested for overexpression by combining transfection reagents,

transfection time and expression vectors.

The first issue to assess was the suitability of the expression vector. The isogenic and

doxycycline-inducible TREx-HEK cell system, which was selected by the MUTANOM

consortium for functional and high-throughput assays, resulted not appropriate for

functional assays due to its ability to form colonies in soft agar assay without the

expression of the corresponding oncogene mutation (Sha Liu, personal communication).

An additional test under serum starvation conditions (0.2% FCS) showed that the HEK-

TREx cells were unable to form colonies even though an oncogene such as H-RasG12V

was expressed.

For this reason, the following target cell lines were used for selection of the gene transfer

conditions: 208F (rat fibroblasts), MCF10A (human breast epithelial cell line) and
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Cos7 (simian kidney fibroblast-like cells), this latter used as an easy-to-transfect control,

were transiently transfected with the CMV-driven, YFP-tagged expression vector N-

eYFP-amp carrying HRaswt. The cells were treated with different transfection reagents

(Lipofectamine2000, Polyethylenimine [PEI], Amaxa, Fugene and Effectene) overnight,

and the transfection efficiency was monitored 48h later by fluorescence microscopy.

As expected, Cos7 cells showed a moderate to high transfection efficiency with all

tested reagents. Amaxa nucleofection and Lipofectamine2000 transfection were toxic

for MCF10A, whereas PEI and Effectene did not affect the cell viability, though they

were not effective for the target cell lines. Fugene was the less toxic reagent but still not

efficient enough to detect YFP protein expression in 208F and MCF10A. In contrast, the

transfection efficiency of the empty vector, as well as the YFP-amp-Ras vector in Cos7

cells was moderate (Fig 2.2A). Since the expressed proteins were N-terminal YFP-tagged,

it might be possible that the YFP-tag or the polypeptide linker interfered with the

protein folding, thus affecting the protein structure as reported previously (Prescott

et al., 1999). To test the protein expression of YFP-HRas cell lysates were obtained from

transiently transfected cells (96-120h after transfection) and subjected to SDS-PAGE and

western blot. Both Cos7 and 208F cells showed a homogeneous expression of endogenous

H-Ras protein. Although YFP-H-Ras was expressed with the predicted protein size in

Cos7 cells under the CMV promoter, 208F cells failed to expressed YFP-HRas (Fig.

2.2B). These results are consistent with the lack of fluorescence in 208F cells compared

to Cos7.
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Figure 2.2: Transfection efficiency of target cell lines. Cos7, 208F and MCF10A were transfected with
the expression vector N-YFP-Amp or N-YFP-H-Raswt. 48h after transfection, the expression of the
YFP-HRas protein was monitored by fluorescence microscopy (A). 96h-120h after transfection, cells were
subjected to SDS-lysis. Ras protein expression was evaluated by western blot for Cos7 and 208F cells
(B). (-): parental cell line, Empty: N-YFP-Amp, H-Raswt: N-YFP-H-Raswt.

Since 208F and MCF10A were selected for functional assays, a lentiviral transduction

protocol was used to enhance the gene transfer efficiency. This approach was chosen due

to the high-efficiency gene transfer that is required for a well-detectable and constitutive

expression of the gene of interest. For this purpose, SHP2wt and BRAFwt were cloned

into the lentiviral vector pLenti6-CMV-YFP to obtain a N-terminal YFP-tagged protein

and lentiviral particles were produced (for method description, see 4.2.9 and 4.2.10).

208F and MCF10A cells were seeded in 6-well plates until they reached 70% confluency

and infected with the corresponding high-titer lentiviral particles. YFP-tagged SHP2

expression was monitored by fluorescence microscopy 48-72h after infection. 208F cells

overexpressing SHP2 showed no significant morphological changes and low fluorescence,

that disappeared two weeks after being puromycin selected (data not shown).

Taking together, both expression vectors, eYFP-CMV-amp and pLenti6-CMV-YFP

used for constitutive expression in 208F showed an early low transfection/transduction

efficiency, but they were not able to produce YFP-protein expression over time. This

fact might be explained by a possible promoter silencing effect, as it has been previously

observed in the generation of human stable tumor cell lines, where the CMV-driven

promoter showed a significant low expression efficiency compared to the human elongation

factor 1-alpha (EF1α) promoter (Teschendorf et al., 2002). Furthermore, another
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study demonstrated that when rats were given intramuscular injections of CMV-driven

adenovirus containing the human fibroblast growth factor 4 (hFGF4), a sustained decrease

of hFGF4 transcription was observed as a result of the extensive methylation of CpG-

and non CpG-sites of the CMV promoter (Brooks et al., 2004). Furthermore, Qin et al.

(2010) compared the most common used promoters across different cell types and came

to the conclusion that the CMV promoter performance varies considerably depending on

the cell type in contrast to other promoter sequences such as the EF1α or the chicken

β-actin promoter coupled with the CMV early enhancer (CAGG) promoters.

2.1.3 Comparison of different lentiviral vectors

Due to the inefficient protein expression under the control of the CMV promoter, the

CMV sequence of the pLenti6-CMV-YFP was excised and replaced by the EF1α promoter

(for details, see section 4.2.3). The correct insertion was verified by restriction digestion

with AflII and PstI (fig. 2.3). This new vector was denominated pLenti6-EF1a-YFP.

Additionally, the lentiviral vector pCDH-EF1a-IRES-GFP, a bicistronic vector, also EF1α-

driven and with an internal ribosomal enhanced sequence (IRES), was simultaneously

tested.

CMV  attB1 V5 GOI 

ClaI SpeI 

eYFP attB2 

ClaIl SSSpeIaI SSS

EF1a  

AflII PstI 
   L   1    2    3    4   5    C   E    1    2   3    4    5   C   E 

6000 
5000 
4000 
3000 
2000 
1500 

 

1000 
 

 

500 

Kb

pLenti6-CMV 

attB1 V5 GOI eYFP attB2 EF1a  pLenti6-EF1a 

Figure 2.3: EF1α promoter cloning in pLenti6 expression vector. The CMV promoter was replaced by
the EF1α promoter obtained by PCR. After cloning, five clones (1-5) of the new vector pLenti6-EF1a-
V5-eYFP were picked, DNA isolated and restriction digested with AflII or PstI. AflII corresponding
bands for are 4466 bp, 3656 bp and 1906 bp. PstI restriction bands are 7145 bp, 1580 bp, 505 bp, 400 bp
and 398 bp. C: pLenti6-CMV-V5-eYFP. E:pEF1-V5-HisC.

To test the transduction efficiency of both vectors, 208F and Cos7 were seeded in 6-well

plates for posterior infection with pLenti6-CMV, pLenti6-EF1α or pCDH-IRES-GFP

lentiviral particles. 48-72h after infection, cell morphology and eYFP/GFP expression

was monitored by fluorescence microscopy. 208F cells performed substantially better with

pCDH-IRES-GFP, showing an homogeneous fluorescence pattern and no decrease in GFP

expression along time (fig. 2.4). Although pCDH-IRES-GFP did not contain a resistance

marker for selection, it met the requirements for a homogeneous and stable constitutive
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Figure 2.4: Comparison of lentiviral vectors in infection efficiency in 208F and Cos7.

expression of GFP, and hence the target protein, with the additional advantage that

GFP was transcribed independently from the target gene due to the IRES sequence.

Therefore pCDH-IRES-GFP was chosen for further assays.

2.1.4 Generation of the new lentiviral vector pCDH-EF1a-Puro

As a strategy for cloning simplification, all target genes from the MUTANOM were

synthesized as cDNAs to be compatible with the gateway cloning system, which required

that the gene of interest contained attB-flanking sequences to allow cloning by recom-

bination. Consequently, the first step was the construction of a gateway-compatible

destination vector (fig. 2.5. For details, see section 4.2.4).

To test the expression efficiency of pCDH-Gate-GFP, expression clones were obtained by

recombination of the destination vector pCDH-Gate-GFP with the entry clones H-Raswt

or H-RasG12V and lentiviral particles were generated. 208F and HEK293FT cells were

seeded in 6-well plates until 70% confluency was reached. Then, cells were transduced

with the empty vector, pCDH-Gate-HRaswt or pCDH-Gate-HRasG12V . fter 48h after

transduction it was possible to visualize a homogeneous fluorescence, which indicated a

successful IRES-GFP expression, with a high infection efficiency (data not shown).

To ensure the stable expression of the gene of interest by selection, the puromycin cassette

under the control of SV40 was cloned into the vector pCDH-Gate-GFPin a further cloning

step. This new expression vector was used for functional assays and was denominated

pCDH-Gate-Puro.
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Figure 2.5: Generation of the expression vector pCDH-gate-Puro.

2.1.5 Optimization of protein expression using the destination vector

pCDH-Gate-Puro

To check the suitability of the expression vector pCDH-Gate-Puro for ectopic expression,

expression clones and lentiviral particles containing H-Raswt and its mutant derivate H-

RasG12V were generated (pCDH-HRaswt-puro and pCDH-HRasG12V -puro, respectively).

HEK293FT and 208F cells were seeded in 6-well plates and transduced with 10 μl of

high-titer lentivirus-containing concentrate carrying pCDH-empty, H-Raswt or G12V .

Cell morphology was monitored by light microscopy for up to 6 days after infection.

HEK293FT cells expressing either the emtpy vector or H-Ras did not show an altered

morphological phenotype (data not shown). 208F cells carrying the pCDH-empty vector

were morphologically similar to the 208F parental cells. In contrast, HRaswt-expressing
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208F cells showed a modest cell elongation pattern four days after infection. This

phenotype strengthened in the sixth day with a strong cell elongation and islet-like

growth. Additionally, HRasG12V -expressing 208F cells showed the classical feature of

transformation, that is cell density-independent growth and light refraction, cellular

characteristics became more evident on prolonged cultivation (fig. 2.6A). Additionally,

cell lysates were prepared and the overexpression of Ras in both cell types was evaluated

by immunoblot (fig. 2.6B).
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Figure 2.6: Optimization of H-Ras ectopic expression in 208F rat fibroblasts. 208F fibroblasts were
transduced with pCDHempty, H-Raswt or H-RasG12V . Cell morphology was evaluated 2, 3 and 6 days
after infection (A). On the 6th day, cell lysates were prepared and subjected to immunoblot (B). Different
amounts of lentiviral particles were tested for influence on cell morphology (C) and protein expression
(D). GAPDH was used as a loading control.

In order to test whether small amounts of lentiviral particles were enough to trigger a

detectable protein expression to generate a differential morphology phenotype, 208F cells

were transduced with increasing concentrations of pCDH-H-Ras. Ras protein expression

was evaluated by immunoblot after 48h of infection. As expected, by increasing the

concentration of lentiviral particles, Ras protein expression also increased as well as ERK

phosphorylation (fig. 2.6D). These factors led to a constitutive activation of the MAPK

signaling pathway, which in turn, was also reflected in the strong transformed phenotype

(Fig. 2.6C).

Taking together, it was possible to establish the appropriate lentiviral expression vector

pCDH-Gate-Puro to be used for the functional assays. Additionally, the rat fibroblasts

208F were also suitable for lentiviral infection and a well-studied cell system for functional

assays, in contrast to other recipient cells used within the MUTANOM consortium.
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2.2 Influence of SHP2 and BRAF mutations on cell phe-

notype

Additional to the 208F cells, human cell line models that exhibit a non-transformed

morphology were also tested for lentiviral infection suitability, efficient ectopic expression

and cell morphology. The breast epithelial MCF10A, the bladder fibroblast BJ-ELB and

the kidney epithelial HA1EB cell lines were transduced with lentiviral particles carrying

SHP2, BRAF or H-Ras wild-type or their corresponding mutant derivatives.

HEK-TREx cells, an inducible cell system used also in this work for proteomic approaches

(see 4.3.10), were not adequate for transformation assays due to their ability to grow in

an anchorage-independent manner in soft agar (Sha Liu, personal communication).

2.2.1 SHP2wt/mutantsdo not affect cell morphology of the epithelial HA1EB

cells but BRAFwt/mutants influence cell growth pattern

The human kidney epithelial cell line HA1EB was originally derived from the parental

HEK cells transfected with the telomerase catalytic subunit (hTERT), followed by a trans-

fection with the simian virus 40 large-T (SV40-ER), and a control vector, and described as

non-tumorigenic (Hahn et al., 1999; Zimonjic et al., 2001). HA1EB were transduced with

the corresponding SHP2 or BRAF lentiviral particles and cell morphology was monitored

for one week by microscopy. As a positive control for oncogenic transformation, both

H-Raswt- and HRasG12V -carrying cell lines were also generated. The parental HA1EB

and the HA1EBpCDH−empty showed an adherent appearance without overgrowth. Cells

carrying the oncogenic Ras variant exhibited a clear overgrowth and crisscross growth

pattern when confluency was reached. In contrast, cells expressing SHP2wt displayed

a relaxed distribution and a flattened morphology but were not significantly different

from the parental cell line, as well as all SHP2 mutants. In the case of BRAF, the cells

grew tighter, with an apparent reduced cytoplasmatic area and with a higher cell density

growth compared to SHP2 or the empty vector, but with no significant differences in

morphology. Moreover, there was no particular divergence in morphology among BRAF

mutants (fig. 2.7).

Since this cell line already used three selection markers, including puromycin, it was not

possible to generate stable populations. This issue was essential to maintain the ectopic

expression during functional assays. For these reasons, HA1EB cells were not further

considered for additional tests.
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Figure 2.7: Morphological changes of HA1EB after transduction with SHP2 or BRAF. 1x105 HA1EB
cells were seeded in 6-well plates and infected with 1x105 TU of the concentrated lentiviral particles
carrying the corresponding mutation. Non-infected HA1EB and HA1EB transduced with the empty
lentivirus pCDH-gate-Puro were used as a negative and HA1EBH−Ras cells as positive control for
oncogenic transformation. The pictures show cells after one week of infection.

2.2.2 SHP2, but not BRAF, decelerates cell growth of BJELB fibrob-

lasts

The human BJELB fibroblast cell line was derived from primary human neonatal foreskin

fibroblasts after sequential transduction with hTERT, SV40-ER and a control vector. This

cell line has disrupted Rb- and p53-regulated checkpoints but remains non-tumorigenic

and grows anchorage-dependent (Bodnar et al., 1998; Hahn et al., 1999).

BJ fibroblasts were transduced with the corresponding lentiviral particles, and were

monitored for one week after infection. HRaswt-expressing cells displayed a homogeneous

morphology that did not greatly differ from the parental and pCDH-empty BJ fibroblast

cells, while HRasG12V -expressing cells exhibited a heterogeneous appearance compared

to HRaswt. In contrast, although the same amount of cells were seeded and all variants

were infected simultaneously, SHP2wt/mutants decelerated cell growth and resulted in cell

loss suggesting apoptosis (fig. 2.8 and 2.9). This was not the case of the BRAFwt/mutants-

expressing cells, which phenotype was comparable to the observed oncogenic phenotype

in cells overexpressing H-Ras (fig. 2.8).
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Due to the inherent tendency of the parental cell line to regress to a transformed state in

a confluence-dependent mode, the preservation of a consistent phenotype is challenging,

with the additional issue that its phenotype depend on the constant selection pressure

(hygromycin, geniticin and puromycin), this cell line was not further considered for

functional assays.

BRAF


BJELB
 pCDH empty HRaswt HRasG12V

wt
 T42A
 E76D
 E76G


SHP2

E76K
 E139D
 I282V
 T468M


wt
 K499E
Q257R
 S467A


V600E


Figure 2.8: Cell morphology of BJELB after transduction with SHP2 or BRAF. 1x105 BJ fibroblasts
were seeded in 6-well plates and infected with 1x105 TU of the concentrated lentiviral particles. Non-
infected BJELB and BJ transduced with the empty lentivirus pCDH-gate-Puro were used as a negative
and BJELBHRas cells as positive control for oncogenic transformation. The pictures show cells after one
week of infection.

Figure 2.9: Overexpression of mutant SHP2/BRAF reduce cell proliferation in BJ-ELB cells. 2000
BJ-ELB fibroblasts/well were seeded in 96-well plates and cell growth was measured by XTT assay every
day for 4 days. Representative results of two independent experiments.
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2.2.3 The MCF10A epithelial cells exhibited a senescence-like state

with SHP2wt/mutants and a transformed phenotype with BRAFmutants

The human MCF10A is a well-characterized breast epithelial cell line obtained from

spontaneous immortalized cells, with a non-transformed phenotype that lack the ability

to form colonies in soft agar (Heppner and Wolman, 1999).

MCF10A cells, as HA1EB and BJELB, were proposed by the MUTANOM consortium

for oncogene characterization. This cell line was infected with concentrated lentiviral

particles and monitored for one week after transduction. MCF10A cells do not contain

any selection marker, and this fact made this cell line useful for the generation of

stable populations. MCF10A epithelial cells overexpressing either H-Raswt or H-RasG12V

displayed a clear transformed phenotype, also described in previous studies by Li et al.

(2012), with a high degree of crisscross formation, a reduced cytoplasmic area and a cell

density-independent growth. This phenotype was stronger when cells were infected with

lentiviral particles containing BRAFmutants (fig. 2.10). Cells expressing CFC-associated

BRAF mutant proteins were round-shaped, with a reduced cytoplasmic area, increased

light refractory membrane and showed a tendency to surface detachment, while MCF10A

cells expressing BRAFwt did not differ substantially from the parental and pCDH-empty

cell lines. Additionally, MCF10A cells expressing mutated BRAF proteins showed an

increased ERK activation moderate higher than the cells overexpressing BRAFwt (fig.

2.11). On the other hand, either SHP2wt or SHP2mutants-expressing cells revealed a

similar phenotype regardless of phosphatase gain- or loss-of-function activity, with the

common features of growth arrest, cytoplasmatic expansion and difficulties to reach

confluency, when compared to the empty vector-carrying or the parental cell lines.

After the generation of stable populations by puromycin selection, BRAF-MCF10A

epithelial cells conserved the transformed phenotype described here, while SHP2-MCF10A

cells stopped cell division and entered in growth arrest. Therefore, SHP2-MCF10A was

not further considered for functional assays.

2.2.4 SHP2 Mutations confer a transformed phenotype in rat fibrob-

lasts

The 208F rat fibroblast cell line are a derivate from HPRT− Rat-1 cells (Griegel et al.,

1986). The parental 208F as well as the 208FpCDH−empty cells showed a flattened

morphology and grew as an adherent monolayer on the culture flask (fig. 2.12 and 2.13).

208F expressing H-Raswt or H-RasG12V displayed a transformed phenotype, which made

them an appropriate model system for oncogenic transformation. When 208F fibroblasts

were transduced with SHP2wt or SHP2mutants, the cells showed an elongated shape,

with a density-independent growth and crisscross morphology, typical of a transformed

phenotype. Particularly, cells expressing the phosphatase gain-of-function, Noonan-

and leukemia-associated mutations exhibited a stronger phenotype than the loss-of-

function, LEOPARD-associated SHP2T468M mutation (fig. 2.12). Cells overexpressing

either BRAFwt or the CFC-associated BRAFmutants did not differ significantly from the
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Figure 2.10: Morphological phenotype of MCF10A after transduction with SHP2 or BRAF. 1x105

MCF10A cells were seeded in 6-well plates and infected with 1x105 TU of the concentrated lentiviral
particles. Non-infected MCF10A and MCF10A transduced with the empty lentivirus pCDH-gate-Puro
were used as a negative and MCF10AHRas cells as positive control for oncogenic transformation. The
pictures show cells after one week of infection, without selection.

BRAF
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ERK1
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Ras

Figure 2.11: CFC-associated BRAF mutations lead to moderate ERK1/2 activation in mammary
epithelial cells. MCF10A cells were transduced with lentiviral particles carrying the corresponding
mutant BRAF. 72h after infection, lysates were prepared and subjected to immunoblot.
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parental or the pCDH-empty-carrying cells. They conserved a cell flat appearance, but

showed light refraction (fig. 2.13).

The observed phenotype in both SHP2 and BRAF expressing cell lines was conserved

even after puromycin selection and multiple passaging.

To quantify to which extent the cell length was affected by the expression of mutant

SHP2 and BRAF variants, the length of thirty cells from each strain was measured.

As shown in fig. 2.14, SHP2wt expressing cells did not affect substantially the cell

length, as well as the LEOPARD-associated mutation T468M. On the other hand, the

Noonan-associated mutations significantly affected the elongation of the rat fibroblasts,

being the longest E76D, followed by E139D, I282V, E76G and E76K. Furthermore, 208F

fibroblasts expressing CFC-associated BRAF mutations exhibited a shorter appearance

compared to BRAFwt cells (fig. 2.14 right).

Taking together, a divergent morphology phenotype was observed in the human cell

lines BJELB and MCF10A between SHP2 and BRAF mutants. In contrast, there was

no significant differences between SHP2 and BRAF expressing cells nor among wt and

the mutations in HA1EB cells. In 208F rat fibroblasts, SHP2-expressing cells showed a

strong oncogene-mediated transformed phenotype, equivalent to Ras oncogene, while

BRAF-overexpressing 208F cells showed a similar phenotype to BRAFwt expressing cells

and the parental cell line. This fact was surprising, considering that both SHP2 and

BRAF mutations exhibit overlapping phenotypes on human disorders.
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Figure 2.13: Morphological changes of 208F after transduction with BRAF. 208F cells were seeded in 6-
well plates and infected with 1x105 TU of the concentrated lentiviral particles. After 48h of infection, cells
were selected for 2 weeks with puromycin (10μg/ml) to generate stable populations. Non-infected 208F
and 208F transduced with the empty lentivirus pCDH-EF1-puro were used as a negative transformation
control.
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Figure 2.14: Cell length effect of SHP2 and BRAF mutations on 208F. The longitudinal length of each
cell line (n=30) was measured as indicated (top).

2.2.5 CFC-associated BRAF and SHP2 mutations stimulate cell pro-

liferation in rat fibroblasts

To test whether mutations in SHP2 and BRAF influenced cell proliferation, lentiviral-

transduced 208F cells were subjected to a XTT assay. 2x103 cells/well were seeded

in 96-well plates and the cell growth was measured every day for up to six days by a

colorimetric approach that registers active cell metabolism. The 208F cells carrying the

pCDH-empty vector showed a similar growth rate as the parental and SHP2wt expressing

cells. Cells overexpressing SHP2mutants proliferated more slowly than 208F cells carrying
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the pCDH-empty vector and the parental 208F cells, but once they reached confluence

after day 4, they overcame density-dependent growth control and reached higher cell

densities (fig. 2.15). In fact, cells overexpressing the SHP2 mutations E76G/K and D,

and T468M triggered the strongest proliferation phenotypes among the SHP2 group, and

was comparable to the growth pattern observed in HRaswt and HRasG12V expressing

cells. In contrast, 208F cells carrying the BRAF mutations S467A, Q257R and the

oncogenic V600E, but not K499E, promoted a steady growth rate over the parental and

pCDH-empty cell line.
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Figure 2.15: SHP2/BRAF mutants influences density-dependent cell proliferation. 2000 cells/well
were seeded in 96-well plates and cell growth was measured by XTT assay every day for one week.
Non-infected 208F and 208F transduced with the empty lentivirus pCDH-EF1-puro were used as a
negative and 208FHRas cells as positive control.
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2.2.6 Mutations in SHP2 and BRAF promote anchorage - independent

growth of 208F cells

In order to evaluate whether cells expressing the leukaemia-, Noonan-associated SHP2

and CFC-associated BRAF mutations were able to grow in a non-adherent context, soft

agar assays were performed. The parental 208F and pCDH-empty cell lines were used

as negative controls and HRaswt and HRasG12V expressing cells were used as positive

controls of anchorage-independent growth. 102, 103 and 104 SHP2- and BRAF-208F

cells were seeded in 25-cm2 culture flasks containing soft agar and incubated for up to

six weeks at 37℃ and 5% CO2. The absence or presence of colonies were checked once a

week.

Colonies arose after two weeks of culture in those cells expressing HRaswt, HRasG12V

and BRAFV 600E , but not in the parental 208F and those carrying the empty vector cells

(fig. 2.16). Oncogenic HRasG12V overexpressing 208F cells formed larger colonies than

208F-HRaswt. BRAFwt and BRAFV 600E expressing cells strongly differed in colony size,

but not significantly in colony number. After six weeks, all colonies expressing SHP2 and

BRAF mutants gave rise to anchorage-independent colonies, particularly SHP2E76G,K

and SHP2T42A. Despite CFC-associated BRAFmutatnt-carrying 208F cells did not show

a higher number of colonies, the colony size was significantly larger than the observed in

SHP2.
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Figure 2.16: SHP2 and BRAF mutations promote anchorage-independent growth of 208F cells. 1x105

208F cells were seeded in 6-well plates and infected with 1x105 TU/ml of the corresponding concentrated
lentiviral particles. After 48h of infection, cells were trypsinized and 102, 103 and 104 cells were seeded in
duplicates in 25-cm2 culture flasks containing soft agar and incubated for up to 6 weeks. Results from the
103 dilution are here depicted. The mean of the number of colonies is shown as a bar diagram (bottom).
Non-infected 208F and 208F transduced with pCDH-empty were used as a negative and 208FHRas cells
as positive control.

2.2.7 NS- and LS-associated SHP2 mutations promote tumor growth

in nude mice

To evaluate whether mutations on SHP2 lead to tumor growth in vivo, 208F cells that

stably expressed either the empty vector pCDH-Gate-Puro, SHP2wt, or the mutant
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variants E76G or T468M were injected subcutaneously in nude mice. The protein level

of each cell line was previously evaluated by immunoblot, to guarantee the homogeneous

protein expression (fig. 2.23). Tumor volume was monitored every 3-4 days for six weeks

(Fig. 2.17A). There was no tumor growth in the empty vector 208F mice, whereas mice

injected with SHP2wt expressing cells gave rise to small xenografts after the 3rd week.

Similarly, cells carrying the mutation E76G formed a tumor after the 2nd week, with

a constant tumor volume that after five weeks achieved a similar size comparable to

SHP2wt expressing xenografts. Surprisingly, cells expressing the LEOPARD-associated,

loss of function mutation T468M not only generated a steady tumor volume during the

time course analysis, but also it seemed to be highly irrigated with strong development

of angiogenesis compared to the tumors generated from WT- and E76G-expressing

cell populations (fig. 2.17B). To corroborate this observation, the xenograft tissues

were subjected to immunohistochemistry analysis with the angiogenesis marker platelet

endothelial cell adhesion molecule-1 (PECAM-1), also known as CD31 (Wang et al., 2008).

PECAM-1 is a transmembrane glycoprotein that is highly expressed in endothelium. Its

localization at the endothelial cell junctions suggests an important role in transendothelial

cellular migration (Zocchi et al., 1996), interendothelial cell migration and angiogenesis

(Piali et al., 1995). As shown in fig. 2.17C, SHP2wt and E76G-carrying tumors exhibited

a homogeneous staining, with a slight blood vessel formation, while tumors generated

from T468M-carrying 208F cells displayed a higher blood vessel density. Additionally,

immunoblot analysis of the tumors showed an increased MEK/ERK activation that

correlated with SHP2 overexpression (fig. 2.18).

TT468M wt E76G 

wt 

E76G T468M 

0


0.5


1


1.5


2


0
 1
 2
 3
 4
 5


Tu
m

o
r 

vo
lu

m
e 

(c
m

3 )



Time (weeks)


pCDH empty

wt

E76G

T468M


A
 B


C

Figure 2.17: SHP2 mutations promote tumor growth in nude mice. (A) Time course analysis of tumor
growth after subcutaneous injection of 1x106 cells that stably expressed either the control vector pCDH
empty or the SHP2-lentiviral vectors wt, E76G or T468M. Three animals with a single flank injection were
used in each group. After six weeks the tumors were excised (B) and subjected to immunohistochemistry
analysis for the angiogenesis marker PECAM-1 (C).
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Figure 2.18: MEK/ERK activation in xenografts of rat fibroblasts carrying NS/LS-associated SHP2 mu-
tants. Three animals were used in each group. Six weeks after subcutaneous injection of the corresponding
208F cells, the tumors were excised and subjected to lysis for protein analysis by immunoblot.
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2.3 Effects on the MAPK signaling cascade

2.3.1 Signaling studies in isogenic HEK-TREx cells by Reverse Phase

Protein Array (RPPA)

To investigate possible signaling perturbations as a result of mutations on SHP2 or

BRAF, stable doxycycline-inducible isogenic Flp-in HEK293-TRex cells were generated

(for details, see section 4.3.10). These cell lines allow an homogeneous expression of the

protein of interest. The expression of the corresponding YFP-tagged protein was induced

by doxycycline (dox) for 48h, and monitored by fluorescence microscopy (for SHP2 fig.

2.19 and BRAF fig. 2.20). All generated cell lines exhibited an homogeneous fluorescent

pattern, an evidence of the YFP-SHP2/BRAF fusion protein expression. However, none

of the SHP2 or BRAF mutations triggered any significant change on cell morphology

after induction.

E76G


N-YFP


wt

T42A


E76D


48h dox-induction


E76K


E139D


I282V


T468M


Figure 2.19: Induction of YFP-SHP2 overexpression in HEK-TREx cell lines. Isogenic HEK293-TRex
cells carrying a dox-inducible YFP-tagged SHP2 were treated with doxycycline for 48h. YFP-SHP2
TRex cells were generated for posterior RPPA analysis and mRNA profiling.

Whole protein lysates were prepared in triplicate for 0h, 24h and 48h after induction

and subjected to RPPA assay (in collaboration with Artur Muradyan, MPI Berlin and

Julia Starmann, DKFZ Heildelberg), a quantitative approach that allows the analysis

of a wide range of targets in a high-throughput manner (Spurrier et al., 2008). The
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background signal generated by the second antibody was used as blank. Each signal

value was normalized against the housekeeping protein GAPDH and median values were

calculated. A second normalization was performed against N-YFP with or without dox

for each time point.

48h dox-induction


Q257R


wt
 L485F


S467A
 V600E


K499E


Figure 2.20: Induction of YFP-BRAF overexpression in HEK-TREx cell lines. Isogenic HEK293-TRex
cells carrying a dox-inducible YFP-tagged BRAF were treated with doxycycline for 48h.

The protein expression of targets from the MAPK, mTOR, Jak/STAT and PI3K/Akt

signaling pathways was evaluated (table 2.2). The role of SHP2 as an active adapter

protein on the signal transduction of the mentioned pathways, particularly MAPK, has

been extensively described. In Drosophila, the SHP2 ortologue Corkscrew (Csw) acts

downstream not only of the receptor tyrosine kinase Torso (Perkins et al., 1992) but also

of the Drosophila epidermal growth factor receptor (DER) and the fibroblast growth

factor receptor Breathless (Btl) activating the MAPK pathway (Perkins et al., 1996;

Hamlet and Perkins, 2001; Wilson et al., 2005). Additionally, the positive function of

SHP2 upstream of the MAPK pathway has been demonstrated to be essential during

the embryogenesis of Xenopus (Tang et al., 1995) and the vulva morphogenesis in C.

elegans but with a negative function in the PI3K/Akt signaling cascade in this latter

organism (Gutch et al., 1998; Hopper, 2006). Moreover, SHP2 is not only required for a

sustained MAPK activation during mouse development but also it is implicated in the

enhanced Erk activation in defective embryonic tissues in a mouse model for Noonan

syndrome (Saxton et al., 1997; Araki et al., 2004).

Recently, SHP2 was also described as a key component of the Jak/STAT pathway in the

pathogenesis of H. pylori (Hatakeyama, 2006a; Lee et al., 2010), during hematopoiesis

and leukemia development (Zhang et al., 2004; Yu et al., 2003; Grossmann et al., 2010).

In contrast, SHP2 acts as a negative regulation in the mTOR pathway in fibroblast cell

growth and rat cardiomyocytes (Zito et al., 2007; Marin et al., 2008).
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Table 2.2: Protein targets selected for RPPA analysis

SSignaling pathway Targets

MAPK
MEK1/2, pMEK1/2,       
ERK1/2, pERK1/2,             
Ras, Braf, SHP2

mTOR
 mTOR, pmTOR,         
p70S6K, p-p70S6K

JAK/STAT STAT3, pSTAT3

PI3K/Akt

Akt, pAkt,                          
PI3K-p85α,                      
PI3K-p110α/β,           
GSK3α/β , pGSK3α/β

The ectopic expression of YFP-SHP2 fusion protein was measured in all three time

points (0, 24 and 48h). Surprisingly, no differential expression was observed in any of the

induced SHP2-cell lines (fig. 2.21A, left). The same result was obtained for pERK1/2

(fig. 2.21A, center) and pAKT (fig. 2.21A, right) as well as for the additional targets

(Appendix A.1-3). Since the dox-induced cell lines previously showed a clear fluorescence

pattern after 48h of induction, a validation by immunoblot with the same protein lysates

was performed. The corresponding intensity value for each band was quantified and

normalized to GAPDH, followed by a second normalization against the N-YFP intensity

value for each time point, as also performed with the RPPA data. In contrast to the

obtained results by the RPPA assay, a significant YFP-SHP2 protein expression, was

observed in all cell lines after 24h and 48h of dox treatment that was at least 20-fold

higher compared to the control cell line expressing N-YFP (fig. 2.21B, left).

In the case of ERK1/2 activation, a strong protein expression was observed after 24h of

induction, specially in cells expressing wt, E76D, E139D and I282V that dropped after

48h. Interestingly, Cells carrying the loss-of-function mutant T468M showed a sustained

increase of phosphorylated ERK1/2 (fig. 2.21B, center). Again, these results did not

correlate with those obtained by the RPPA assay. Conversely, pAKT protein expression

on western blot did not reflect any significant regulation, which correlates with the RPPA

data.

In contrast, the YFP-BRAF expressing cells showed phospho-ERK1/2 and phospho-

MEK1/2 protein overexpression after 24h- and 48h-induction, particularly the cell lines

expressing the CFC-associated mutations S467A, L485F and K499E (Fig. 2.22A left

and center and Appendix A.5). The oncogene BRAF-expressing cells (V600E) exhibited

a lower YFP-BRAF and pERK1/2 protein expression than BRAFwt and the CFC-

associated SHP2 mutants. On the other hand, Ras protein amount did not show any

significant regulation after BRAF induction (Fig. 2.22A, right). These three targets were

validated by western blot and provided similar results for the CFC-associated mutants

in both YFP-BRAF and pERK1/2, but not for Ras (Fig. 2.22B). All cell lines exhibited

the same downward tendency in the Ras expression after 24h induction and persisted

even after 48h of induction. The RPPA analysis of the other target proteins did not

show a significant difference after induction (Appendix A.4-6).
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Figure 2.21: RPPA analysis of SHP2 mutations in isogenic HEK-TEx cell lines. Shown are the median
values for 0, 24 and 48h of Dox induction after normalization to GAPDH and against N-YFP with or
without dox for each time point and cell line (A). These data were validated using western blot (B). Data
were first normalized to GAPDH and then to N-YFP. Each experiment was performed in triplicate.
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Figure 2.22: RPPA analysis of BRAF mutations in isogenic HEK-TEx cell lines. Shown are the median
values for 0, 24 and 48h of Dox induction after normalization to GAPDH and against N-YFP with or
without dox for each time point and cell line (A). These data were validated using western blot (B). Data
were first normalized to GAPDH and then to N-YFP. Each experiment was performed in triplicate.
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2.3.2 SHP2 and BRAF mutations effects on signaling in 208F cells

To further investigate whether ERK activation, as observed in the HEK-TREx cell lines,

was also altered in the cell system with a transformed cellular phenotype or whether an

additional molecular mechanism was involved in the phenotype output, whole lysates

from each cell line were prepared and subjected to immunoblot.

SHP2


SHP2


pERK1/2


ERK1/2


Ras


GAPDH


Figure 2.23: MAPK signaling after overexpression of SHP2 mutants.

Stable 208F rat fibroblast populations overexpressing either the wild-type or the mutant

variant of SHP2 or BRAF were generated by lentiviral transdution and selected with

puromycin. H-Raswt and H-RasG12V -expressing 208F populations were also tested and

used as a control for strong pERK activation pattern. As expected, both H-Ras cell

played a high pERK expression, specially cells overexpressing the oncogenic G12V

compared to the parental and the 208F cells carrying the empty vector. On the other hand,

SHP2wt expressing 208F cells showed a slight lower pERK level than the parental- and

empty-208F. Cells expressing the SHP2 mutants T42A, E76K and T468M were able to

induce higher p-ERK1/2 levels compared to SHP2wt expressing cells, which

lated with the increased number of colonies after anchorage-independent growth (fig.

2.16). Ras protein expression was homogeneous in all cell lines (Fig. 2.23). Furthermore,

pAKT as well as pSTAT3 levels were considerably low to be detected (data not shown).

Moreover, BRAF overxpression was detected in all BRAF-208F cell lines, with a sub-

stantial band shifting compared to cells overexpressing BRAFwt (Fig. 2.24). Moreover,

BRAF levels were almost identical in cells transduced with either WT-BRAF, V600E

and S467A BRAF mutants, but clearly reduced in Q257R and K499E expressing cells.

Both wt and oncogenic HRas expressing 208F cells showed activation of pAKT, com-

parable to the parental, the empty-carrying and BRAFwt cell lines. pAKT activity

was markedly decreased in 208F cells carrying the oncogenic V600E or CFC-associated

mutations on BRAF. Furthermore, the CFC-associated mutant BRAFS467A showed a

strong ERK activation similar to V600E. BRAFK499E pERK levels resulted lower than

40



the other BRAF mutants, but comparable to H-Raswt. This observations correlated

with the increased cell growth proliferation rate compared to the parental and empty-

vector expressing cells (fig. 2.15). On the other hand, BRAFQ257R exhibited a reduced

ERK phosphorylation compared to BRAFwt expressing and the parental 208F cells. Ad-

ditionally, increased Ras protein levels could only be detected for H-Raswt and H-RasG12V .

Altogether, these results showed that Noonan-, LEOPARD- and Leukemia-associated

SHP2 mutations modulate positively ERK activation, albeit in a lower level, in rat

fibroblasts, while CFC-associated BRAF mutations exhibited a stronger positive influence

not only on the MAPK pathway, but also a negative effect on AKT phosphorylation.
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Figure 2.24: MAPK signaling after overexpression of BRAF mutants.

2.4 Effects of mutations in SHP2 on Protein-protein inter-

actions

2.4.1 Yeast Two-Hybrid Assay

Next, to investigate whether protein-protein interactions were affected by mutations in

SHP2, a yeast two-hybrid (Y2H) screening was performed for SHP2wt (Sean-Patrick

Riechers, MDC Berlin). First, a meta-database retrieve in the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING, version 9.1, Franceschini et al. (2013))

and in the Unified Human Interactome (UniHI, version 7, Kalathur et al. (2014)) predicted

212 and 301 interaction partners, respectively. When results from both databases were

compared, 146 common targets were found (fig. 2.25 top left ; for the complete list of

targets, see Appendix A.2). From these, 18% of the protein partners were clustered

as Tyr-protein kinases (26 proteins), followed by the cytokine receptor family and

immunoglobulin superfamily (Fig. 2.25 right).

The yeast two-hybrid screening for SHPwt was performed in 4 repetitions against a prey

library with approximately 17.000 components. From this assay, 70 interacting partners

were found, but only one protein (TYK2) matched the components of the meta-database

survey to characterize potential interaction partners (fig. 2.25 bottom left). To prioritize
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Figure 2.25: Comparison of Meta-database search of experimental/predicted protein partners. 146
binding proteins were found to overlap both STRING and UniHI databases (top left) and sorted in
protein family groups (right). Then, the preys obtained from the yeast two-hybrid assay were contrasted
with this group, finding a single prey matching the interaction partner list for SHP2.

interacting proteins, a Support Vector Machine (SVM) score for predicting protein-protein

interactions was calculated. The SVM score considered true or false assumption between

known interactions and random protein pairs in the seven dimensional scoring space:

1). the gene-atlas based co-expression scoring, 2). known orthologous protein-protein

interaction scoring, 3). protein domain complementarity analysis, 4). and 5). biological

process and cellular component GO term semantic similarity scoring, 6). and 7). shortest

path analysis number and length scoring. Interaction protein pairs were classified into

high confidence (HC), medium confidence (MC) or low confidence (LC), according to

the SVM score. Protein interactions classified as high confidence are listed in the table

2.3 (for the complete interaction partners list, see table A.10).

Protein-protein interactions with the preys MSRB2, PI4KAP2, TYK2, ANKRD22, NLK,

MYEOV, TCTE1, PTPRO, TOX2 and MEI1 reached a SVM score of more than 0.90.

Nevertheless, these proteins not only belong to different protein families, but also they

have not been predicted or described to be related to SHP2 to any extend. TYK2, a

member of the Janus (JAK) kinases that precipitates with SHP2, was found to have no

influence on SHP2 phosphorylation in human fibrosarcoma cells (Schaper et al., 1998).

A search in different protein-protein interaction databases (UniHI, STRING) of the

HC-identified proteins showed that they do not interact with each other. Moreover, five

proteins (TYK2, NLK, MYEOV, PI4KAP2 and TOX2) share the common interaction

partner Ubiquitin C (UBC), which have been reported as a common false positive in

Y2H-assays. Additionally, the remaining proteins comprised a diverse group. MSRB2,

a mitochondrial enzyme with methionine sulfoxide reductase properties (Ugarte et al.,

2013), PTPRO is a transmembrane protein tyrosine phosphatase recently found to be

methylated in several cancer types (Hsu et al., 2013; Huang et al., 2013; Yu et al., 2012),

ANKRD22 encodes a membrane integrated protein with unknown biological function,
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MEI1 is mainly expressed in testis and is involved in meiotic synapsis (Li and Schimenti,

2007) and TCTE1 is expressed in early stages of the spermatogenesis but its function is

still unknown (Juneja et al., 1998).

Due to the large number of false positives, and the lack of detection of well-described

SHP2 binding partners, the yeast two-hybrid results were not further considered. Instead,

a tandem affinity purification (TAP) assay was performed.
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Table 2.3: High confidence preys from the yeast two-hybrid assay with SHP2wt as bait.

BBait Prey

5781 22921 MSRB2 methionine sulfoxide 
reductase B2 1.19 Catalyzes the reduction of free and protein-bound 

methionine sulfoxide to methionine
MSRA, CALM1, TXN, 
CLCN1, PRDX5

5781 375133 PI4KAP2
phosphatidylinositol 4-kinase, 
catalytic, alpha pseudogene 
2

1.15
Acts on phosphatidylinositol (PtdIns) in the first 
committed step in the production of the second 
messenger inositol- 1,4,5,-trisphosphate

 PIK3R1,  PIK3R2, 
PIK3C3, CDIPT, 
PIK3C2B, PLCD1, 
PIK3C2G, PLCD4, 
INPP5B, PTEN

5781 673 BRAF_1799TA v-raf murine sarcoma viral 
oncogene homolog B1 1.02 Involved in the transduction of mitogenic signals 

from the cell membrane to the nucleus

HRAS, MAP2K2, 
KRAS, RAF1, NRAS, 
MAP2K1, YWHAB, 
CCND1, RAP1A, 
MAPK3

5781 7297 TYK2 tyrosine kinase 2 1.02
Probably involved in intracellular signal transduction 
by being involved in the initiation of type I IFN 
signaling. 

IFNAR1, STAT1, 
SOCS3, STAT3, IFNG, 
STAT5A, STAT2, IL4, 
IL23A, IL12RB1

5781 118932 ANKRD22 ankyrin repeat domain 22 1 - -

5781 51701 NLK nemo-like kinase 0.98

Role in cell fate determination, required for 
differentiation of bone marrow stromal cells. Acts 
downstream of MAP3K7 and HIPK2 to negatively 
regulate the canonical Wnt/beta- catenin signaling 
pathway and the phosphorylation and destruction 
of the MYB transcription factor. 

MYB, LEF1, STAT3, 
MYBL1, MAP3K7, 
TCF7L2, TCF7L1, 
GPI, TAB2, AMFR

5781 26579 MYEOV
myeloma overexpressed (in a 
subset of t(11;14) positive 
multiple myelomas)

0.97 -
CTTN, CCND1, 
TPCN2, SLC25A26, 
ANO1 

5781 202500 TCTE1 t-complex-associated-testis-
expressed 1 0.97 - HSP90AB1, DYNLT1

5781 5800 PTPRO protein tyrosine phosphatase, 
receptor type, O 0.96 -

PTS, PRODH2, 
SYNPO, ACTN4, 
NPHS2, WT1, TCF21

5781 84969 TOX2 TOX high mobility group box 
family member 2 0.94 Putative transcriptional activator involved in the 

hypothalamo-pituitary-gonadal system ZNF461, ST5

5781 150365 MEI1 meiosis inhibitor 1 0.94
Required for normal meiotic chromosome synapsis. 
May be involved in the formation of meiotic double-
strand breaks (DSBs) in spermatocytes 

SPO11, DMC1

5781 11019 LIAS lipoic acid synthetase 0.84
Catalyzes the radical-mediated insertion of two 
sulfur atoms to the lipoyl domains of lipoate-
dependent enzymes.

LIPT1, LIPT2, TFB2M, 
C19orf26, TFAM, ALB, 
UCN3, AES, TFB1M, 
KLHDC2 

5781 3064 HTT huntingtin 0.84  May play a role in microtubule-mediated transport 
or vesicle function

HIP1, HAP1, 
ZDHHC17, OPTN, 
HIP1R, TCERG1, 
GAPDH, REST, 
SH3GL3, TRIP10

5781 343263 MYBPHL myosin binding protein H-like 0.46 PSRC1, CELSR2

5781 23436 CELA3B chymotrypsin-like elastase 
family, member 3B 0.37 Efficient protease with alanine specificity but only 

little elastolytic activity SP8, BAT3, PHF1

5781 999 CDH1 
_1108GC

cadherin 1, type 1, E-
cadherin (epithelial) 0.37

Involved in mechanisms regulating cell-cell 
adhesions, mobility and proliferation of epithelial 
cells. Has a potent invasive suppressor role.

CTNNB1, CTNNA1, 
CTNND1, JUP, 
PSEN1, KLRG1, 
ZEB1, ZEB2, VCL, 
CBLL1

5781 29934 SNX12 sorting nexin 12 0.31 May be involved in several stages of intracellular 
trafficking SNX12

5781 23769 FLRT1 fibronectin leucine rich 
transmembrane protein 1 0.24 May have a function in cell adhesion and/or 

receptor signaling -

5781 10227 MFSD10 major facilitator superfamily 
domain containing 10 0.19

Confers cellular resistance to apoptosis induced by 
the non-steroidal anti-inflammatory drugs 
indomethacin and diclofenac.

-

5781 5519 PPP2R1B protein phosphatase 2, 
regulatory subunit A, beta 0.16

The PR65 subunit of protein phosphatase 2A 
serves as a scaffolding molecule to coordinate the 
assembly of the catalytic subunit and a variable 
regulatory B subunit

PPP2CA, PPP2R5A, 
PPP2CB, PPP2R5C, 
PPP2R2A , PPP2R2D, 
PPP2R2B, PPP2R4, 
STRN3, STRN 

PPredicted functional     
partners (STRING)

GGeneID PPrey            
(Protein ID) PProtein name SSvm 

sscore FFunction (STRING)

SVM score: support vector machine scoring (see text for details). Database search parameters for
predicted functional partners: high confidence (0.7). For the complete Y2H-prey list, see Appendix B.5.
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2.4.2 Tandem Affinity Purification assay

In order to contrast the results obtained from the yeast two-hybrid assay, a tandem

affinity purification (TAP) assay was performed. In addition to SHP2wt, it was tested

whether mutations on SHP2 had an effect on protein-protein interactions. For this assay,

isogenic dox-inducible cell systems were generated from HEK-TREx cells, expressing a

TAP-SHP2wt fusion protein or the corresponding mutants. The TAP tag consists of a

calmodulin binding peptide (CBP), the tobacco etch virus (TEV) protease cleavage site

and Protein A, a construction that allows a sequential purification process. To evaluate

TAP-SHP2 protein expression, HEK-TREx cell lines were dox-induced for 48h, lysed and

probed by immunoblotting (fig. 2.26). In addition to SHP2, ERK phosphorylation was

also tested. All HEK-TREx-cell lines overexpressed TAP-tagged SHP2 in an homogenous

manner. Interestingly, cells expressing SHP2 mutants displayed an increased ERK

phospholylation status in comparison with SHP2wt and the negative control TAP-eGFP.

Particularly cells expressing the mutant T42A showed the highest pERK levels closely

followed by cells carrying mutations in the position Glu76. Together with T42A, the

E76G mutant were chosen for the TAP assay.

TAP        wt        E76G     E76D       E76K     T42A      E139D     I282V    T468M


SHP2


TAP-SHP2




End. SHP2




pERK1/2






ERK1




Figure 2.26: Overexpression of SHP-2-TRex cells after induction with doxycycline. Isogenic HEK293-
TRex cells carrying a dox-inducible TAP-tagged SHP-2 were treated with doxycycline for 48h. TAP-SHP2
was detected by using the SHP2 and calmodulin binding antibody (CBP ab). Red rectangles show the
protein expression of the mutants used for the Tandem Affinity Purification assay.

The TAP assay was performed twice with independent samples. HEK-TREx cells were

induced for 48h with dox, whole protein lysates were prepared and eluted from calmodulin

beads twice, followed by TCA/acetone precipitation. Then, protein pellets were resolved

in SDS-PAGE for silver/coomassie gel staining prior to mass spectrometry analysis. In

all three cell lines a high amount of TAP-SHP2 fusion protein was achieved (fig. 2.27A).

Furthermore, not only SHP2 interacting protein partners were detected, but also the

interaction strength. The interacting partners were selected according to the quantified

unique spectra (qusm) with a threshold of more than 4 qusm value for each protein. To

determine the fold-change of the binding strength/weakness, the ratio between mutant

and wt (mutant/wt) was calculated and a threshold was set as a selection criteria for

binding strength (>1.5) or binding weakness (<0.8) according to previous experiments

(Gerard Joberty, Cellzome).

By comparing both TAP assays there was no overlap of decreased binding protein

complexes for both mutants. However, an overlap of increased binding of six and one

protein complexes were found in E76G and T42A lysates, respectively (fig. 2.27B; for the
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complete list of proteins, see Appendix A.3). Among the proteins that built complexes

with SHP2E76G following proteins were found: one ubiquitin peptidase (USP11), two

ribosomal proteins (RPS10 and RPS19), one ribonucleoprotein (HNRNPU), one helicase

(DHX9), which additional to the ribosomal proteins, has been described as a common

false positive in TAP experiments (Chen and Gingras, 2007) and the scaffolding protein

GAB1 (3- to 7-fold). Interestingly, an increased GAB1 binding strength was also found in

T42A (7- to 9-fold). GAB1 is a well-known interaction partner of SHP2. The increased

binding of GAB1 to the mutated SHP2 proteins has not been yet reported.

R
P

L2
3A

 

R
P

S
11

 

R
P

S
15

A
 

R
P

L2
4 

R
P

S
25

 

R
P

S
13

 

R
P

S
7 

R
P

L1
1 

R
P

L2
6 

R
P

S
4X

 

R
P

S
3A

 

R
P

S
3 

R
P

S
15

 

R
P

L3
0 

R
P

L1
2 

R
P

S
10

 

R
P

S
16

 

R
P

S
19

 

H
N

R
N

PA
2B

1 

D
H

X
9 

G
A

B
1 

M
P

Z
L1

 

FA
B

P
5 

0 

2 

4 

6 

8 

10 

Ribosomal proteins


M
A

N
2C

1


FL
N

A



G
A

B
1


0 

2 

4 

6 

8 

10 

T42A


G
A

B
1 

G
A

B
11

M
FA

P
4 

LR
P

P
R

C
 

FA
B

P
5 

D
H

X
9 

U
S

P
11

 
M

P
Z

L1
 

G
A

B
1 H
IS

T1
H

1C
 

N
C

L 
N

P
M

1 
M

R
P

S
9 

H
N

R
N

P
C

 
R

P
S

20
 

R
P

S
19

 
H

N
R

N
PA

3 
R

P
S

3 
R

P
S

10
 

H
N

R
N

PA
2B

1 
R

P
S

15
A

 
R

P
S

3A
 

R
P

S
16

 
H

N
R

PA
1L

-2
 

H
N

R
N

P
U

 
R

P
S

25
 

R
P

S
7 

R
P

S
13

 
R

P
S

15
 

R
P

L1
1 

R
P

L1
2 

R
P

S
11

 
R

P
L3

0 
R

P
L2

6 
R

P
S

4X
 

R
P

L2
3A

 
R

P
LP

0-
LI

K
E

 
R

P
L2

4 

0 

2 

4 

6 

8 

10 

D
ec

re
as

ed
/in

cr
ea

se
d

 a
m

ou
nt

  
 (

Fo
ld

-c
ha

ng
e 

m
ut

an
t/w

t)
 

S
IR

T1
 

M
A

N
2C

1 
E

P
P

K
1 

U
B

R
4 

H
N

R
N

PA
2B

1 
R

P
S

19
 

H
N

R
N

P
U

 
R

P
S

10
 

S
N

R
N

P
20

0 
D

D
B

1 
C

U
L9

 
FL

N
A

 
C

U
L7

 
FB

X
W

8 
FA

S
N

 
E

FT
U

D
2 

U
S

P
11

 
N

IS
C

H
 

P
P

P
2C

A
 

D
H

X
9 

IR
S

4 
P

P
P

2R
2A

 
U

S
P

9X
 

P
N

M
A

2 
P

P
P

2R
1A

 
O

B
S

L1
 

V
P

S
16

 
C

A
D

 
V

P
S

41
 

TU
B

A
1A

 
E

E
F2

 
V

P
S

18
 

G
A

B
1 

0 

2 

4 

6 

8 

10 

E76G


G
A

B
1 

M
P

Z
L1

M
G

A
B

1 
G

A
H

IS
T

H
IS

Co-precipitated proteins 

1st TAP
 2nd TAP


Ribosomal proteins


1st TAP
 2nd TAP


TAP-SHP2 





TAP-eGFP 


A


B


Figure 2.27: Tandem Affinity Purification (TAP) assay revealed an increased binding of SHP2 mutants
to GAB1. HEK-TRex cells harboring dox-inducible TAP-tagged SHP2 expression vectors were generated.
TAP-tagged SHP2wt, SHP2T42A and SHP2E76G expression was induced for 48h and total lysates were
subjected to immunoblotting and comassie/silver staining after TCA/acetone precipitation for posterior
purification and mass spectrometry (A). An increased binding of SHP2E76G (3- to 7-fold) and SHP2T42A

(7- to 9-fold) to Gab1 compared to SHP2wt was observed (B).

46



2.4.2.1 Validation of the SHP2mutants-GAB1 complex.

To confirm the altered GAB1-SHP2 binding complex detected in the SHP2 mutants by

the TAP approach, a co-immunoprecipitation (co-IP) assay was performed.

First, a stable SHP2-overexpressing cell system was generated. HEK293 cells, the parental

cell line of HEK-TREx (O’Gorman et al., 1991), were transduced with recombinant

lentiviral particles and stable populations expressing the corresponding SHP2 proteins

were generated and tested on western blot for SHP2, pERK1/2 and GAB1 protein levels

(fig. 2.28). GAB1 expression was present in all cell lines, however, with an heterogeneous

pattern: a stronger expression was observed in cells overexpressing SHP2wt, and the

mutant derivatives SHP2T42A, SHP2E76D/K , and SHP2E139D, while cells expressing the

mutants E76G and T468M displayed a very weak expression similar to the parental

HEK293 and the control pCDH-empty cell lines. Increased ERK phosphorylation was

observed particularly in cells expressing the mutants T42A and and E76K compared to

wt.

SHP2


GAB1




SHP2





pERK1/2





ERK1




GAPDH


Figure 2.28: Stable SHP2-overexpressing HEK293 cells.

Subsequently, GAB1 was detected after co-immunoprecipitation with a SHP2 pull down

from whole lysates of HEK293-SHP2 cell lines. In general, GAB1 co-precipitated with

SHP2 in all cell lines, but not in the same manner. SHP2wt, together with E76D/K SHP2

proteins were able to bind more GAB1 as the rest of the mutants, including T42A and

E76G (fig. 2.29A). Although these results showed the formation of a SHP2-GAB1 protein

complex, it did not answer the question of the eventual increased binding strength in

the Noonan-associated T42A and the leukemia-associated E76G mutations. Hence, it

was tested how GAB1 binding would respond under growth factor stimulation during a

time course experiment. Cells were grown under normal conditions until they reached

approximately 80 % confluency. Next, cells were starved for 16-18h and treated with 25

ng/ml of human epidermal growth factor (EGF) for 5, 10, 30 and 60 min. Homogeneous

GAB1 protein levels were detected in the parental as well as in the pCDH-empty-carrying

HEK293 cells. In SHP2wt expressing cells, GAB1 reached a sustained SHP2 binding with

a protein complex peak between 10-30 min after stimulation, similar to E76G, where the

maximal protein amount was observed after 10 min. On the other hand, T42A SHP2

protein did not show a significant increased binding time after treatment (fig. 2.29B).
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Figure 2.29: SHP2-GAB1 interaction complex in HEK293-SHP2 cells. HEK293-SHP2 lysates were
subjected to co-IP after normal culture conditions with 10% FCS (without EGF stimulation) (A) or
after 16-h starvation followed by 25 ng/ml EGF treatment (B).

To further investigate whether GAB1 protein binding strength was increased in SHP2

mutant proteins, 48h dox-induced YFP-HEK-TREx cells were also starved for 18h and

stimulated with EGF for up to 60 min. Then, whole protein lysates were subjected

to co-IP with a SHP2 antibody and GAB1 was detected by western blotting. Shortly

after EGF stimulation, all SHP2-YFP expressing cell lines respond with an increased

precipitated GAB1 level, but not the control eGFP-YFP. While SHP2wt-YFP showed a

sustained GAB1-SHP2 binding for 30 min that then decayed, SHP2E76G-GAB1 displayed

a constant binding for up to 1h. Additionally, SHP2T42A bound less GAB1 during the

first 30 min, but the SHP2T42A-GAB1 complex was bound for a longer time than E76G

and SHP2wt (fig 2.30).
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Figure 2.30: SHP2-GAB1 interaction complex in YFP-HEK-TREx cells after EGF treatment. Cell
lysates were subjected to co-IP with a SHP2 antibody after 25 ng/ml EGF treatment for up to 1h, and
probed on western blot. GAB1 levels after co-IP and western blot were quantified and normalized to IgG
or MEK, respectively (right diagrams).
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On the other hand, when lysates were subjected to immunoblot, GAB1 levels did not

show a significant increase or decrease band intensity. However, cells overexpressing

SHP2wt showed a higher GAB1 protein amount than the mutant proteins (fig. 2.30

bottom right). Activation of the MEK1/2 was markedly stronger in T42A, while ERK

phosphorylation was similar in both mutants.

Although these results indirectly suggested a stronger binding effect of SHP2-GAB1

complex with SHP2 mutant proteins and are difficult to quantify by co-IP, it clearly

reflected the trend of a sustained binding that takes longer than the wild-type protein to

dissociate.
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2.5 Gene regulation in SHP2 and BRAF mutants at the

transcription level

To determine the effects of the cancer- and RASopathies-associated mutations in SHP2

and BRAF on gene regulation, a global gene expression profiling was performed. For

this aim, high-quality RNA was prepared from isogenic HEK-TRex cells expressing

YFP-tagged proteins 48h after induction (see 4.2.7). Each sample was prepared in

biological triplicates and hybridized on Illumina HumanHT-12 v3 Expression BeadChips.

Then, raw data of all arrays, except for the BRAF-TRExK499E array, which showed

strong hybridization artifacts, was quantile normalized and log2-transformed. Then,

all arrays were compared to the expression profile of the control YFP-HEK-TREx cell

line (vs. YFP) followed by the comparison with the corresponding wild-type array (vs.

wt). Significant regulated genes were selected after an adjusted p-val<0.05 and a log2

fold-change of 0.7< and >1.4 (table 2.4).

Table 2.4: Number of significant regulated genes in SHP2- and BRAF-HEK-TRex cells

Cell line vs. YFP vs. wt

BRAF

wt 21 -
Q257R 30 266
S467A 472 1758
L485F 1075 1875
V600E 544 1033

SHP2

wt 645 -
T42A 3 124
E76D 41 22
E76G 87 221
E76K 22 33
E139D 6 196
I282V 98 177
T468M 4 550

Each value represents the number of Illumina-ID probes obtained after
an adj. p-val<0.05 and a log2 fold change of <0.7 and >1.4.

Overall, the number of differentially regulated genes in the BRAF-expressing cell lines

was distinctly higher than in the SHP2-TREx group.

2.5.1 Overlapping gene sets within BRAF- and SHP2-HEK-TREx

To determine whether mutations on SHP2 or BRAF have an influence on similar targets

at the transcription level, all groups were analyzed for gene sets commonly regulated

within both BRAF and SHP2 TREx cell lines. An overlap analysis showed that 230 genes

were commonly regulated in CFC-associated BRAF expressing TREx cells (fig. 2.31 A,

top left). When these CFC-associated BRAF profiles were compared to the profile of the

oncogenic mutation BRAFV 600E , 156 genes were found commonly regulated (fig. 2.31

A, top right). On the other hand, a first glance analysis of the SHP2 group revealed

no commonly regulated targets. However, a second analysis omitting the SHP2E76D

and SHP2E76K arrays, which displayed only 22 and 33 regulated genes, respectively,

showed 31 differentially regulated genes (fig. 2.31 B, bottom left). Interestingly, the genes

CDH1, CDH3, involved in cell-cell adhesion and cell proliferation, were upregulated in
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the compared SHP2 cluster (Appendix A.4, table A.13). However, when this set of 31

genes were compared to the oncogenic BRAFV 600E gene profile, only a target, that did

not match any annotated gene (ILMN 1862013), was found to be regulated.

Comparing each single SHP2 profile against BRAFV 600E , additional targets were revealed.

From all SHP2 mutants, T468M had the largest group of overlapping genes with the

oncogenic BRAF (Appendix A.4, table A.15). Among this group, the gene TSPAN7,

encoding for the tetraspanin 7, and IRS4, encoding the insulin receptor substrate 4, were

found to be upregulated in both SHP2T468M and BRAFV 600E (both 0.9 and 0.7/0.9

logFC in T468M/V600E over wt, respectively).

∩ BRAFV600E = ILMN_1862013  
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Figure 2.31: Common targets in SHP2- and BRAF-TREx expression profiles. Significantly regulated
genes (Illumina probe IDs) were compared within each CFC-associated BRAF arrays (A) and cancer- and
NS/LS-associated SHP2 arrays (B). Additionally, the ID probes that were commonly regulated in CFC-
associated gene profiles were compared with the oncogenic BRAF mutation V600E. Differentially regulated
genes in SHP2 mutant profiles were also compared to V600E, but only a single probe (ILMN 1862013)
was found.
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2.5.2 Overlapping gene sets within CFC-associated mutants and onco-

genic BRAF

The differential regulated genes in both CFC-associated BRAF mutants and the oncogenic

BRAFV 600E , were subjected to GO analysis for a better understanding of their biological

significance (fig. 2.32 and appendix A.4, table A.15). From the 156 commonly significant

probes of the BRAF mutants, 128 corresponded to annotated genes. The GO analysis

was performed using the WEB-based Gene Set Analysis Toolkit (WebGestalt) with a

Benjamini-Hochberg multiple test adjustment (adj. p-val <0.05) and a minimum of

two genes for each category. Most of the hits were classified in the biological process

(BP) GO terms response to stimulus (GO:0050896), organ development (GO:0048513)

and cell differentiation (GO:0030154). Interestingly, the most proximal CFC-associated

mutant to V600E was Q257R, followed by L485F and S467A in the cell differentiation

cluster. The transcription factors JUNB, STAT1, HEY1 and CYR61, were upregulated

in all BRAF groups. In contrast, the tumor suppressor TP53 was downregulated in both

CFC-associated mutants and oncogenic V600E, as well as MAP2K2 and DVL1.
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Figure 2.32: GO analysis and heatmap of commonly regulated genes in CFC-associated and V600E
BRAF HEK-TREx cells. Shown are GO terms with an adj. P-val <0.05. The hits found under the GO
term ”cell differentiation” (GO:0030154) are represented in the heatmap.

To investigate which pathways are particularly affected by single mutations in the CFC-

and cancer-associated BRAF cluster, the gene IDs were contrasted with 27 signaling

pathways reported in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

From the 128 gene IDs, 18 genes matched at least one of the resulting seven signaling

pathway, being the most representative the Ras-MAPK and the PI3K signaling cascades
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(table 2.5).

In summary, these results provide interesting insights in the gene regulation of SHP2

and BRAF mutations associated with RASopathies and cancer. NS/LS-associated SHP2

mutations expressed in HEK-TREx cells did not show a significant influence on gene

transcription. In contrast, CFC-associated BRAF mutations showed a cluster of genes

that overlap with the BRAF oncogene V600E. Further validation analysis would clarify

the role of the regulated genes in each case.

Table 2.5: Signaling pathways affected by CFC- and cancer-associated BRAF
mutations

KEGG pathway Pathway ID Gene name
Hematopoietic hsa04640 IL4R interleukin 4 receptor
cell lineage CD44 CD44 molecule

CSF1R colony stimulating factor 1 receptor
HIF-1 hsa04066 MAP2K2 mitogen-activated protein kinase kinase 2

NOS3 nitric oxide synthase 3 (endothelial cell)
TIMP1 TIMP metallopeptidase inhibitor 1

PI3K-Akt hsa04151 TP53 tumor protein p53
COL2A1 collagen, type II, alpha 1
MAP2K2 mitogen-activated protein kinase kinase 2
THBS4 thrombospondin 4
IL4R interleukin 4 receptor
CSF1R colony stimulating factor 1 receptor
NOS3 nitric oxide synthase 3 (endothelial cell)

Ras-MAPK hsa04014, TP53 tumor protein p53
hsa04010 MAP2K2 mitogen-activated protein kinase kinase 2

MAPK8IP2 mitogen-activated protein kinase 8 interacting protein 2
CACNA1H calcium channel, voltage-dependent, T type, alpha 1H subunit
CSF1R colony stimulating factor 1 receptor
FOS FBJ murine osteosarcoma viral oncogene homolog

Toll-like receptor hsa04620 MAP2K2 mitogen-activated protein kinase kinase 2
STAT1 signal transducer and activator of transcription 1
FOS FBJ murine osteosarcoma viral oncogene homolog

VEGF hsa04370 MAP2K2 mitogen-activated protein kinase kinase 2
NOS3 nitric oxide synthase 3 (endothelial cell)
SPHK1 sphingosine kinase 1

Wnt hsa04310 TP53 tumor protein p53
DVL1 dishevelled segment polarity protein 1
SFRP2 secreted frizzled-related protein 2

Commonly regulated genes in CFC- and cancer-associated BRAF mutants were compared to all signal
transduction pathways listed in the KEGG database. Signaling pathways with at least three genes are
listed here.
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3 DISCUSSION

The Ras/MAPK signaling pathway is a key network that is involved in cell proliferation,

differentiation and survival. Alterations in its regulation are related to cancer and the

recently described RASopathies, a variety of developmental disorders caused by germline

mutations in genes that encode regulator proteins or components of this signaling cascade.

Gene sequencing studies in the early 2000′s, almost 40 years after the first reports on

clinical features describing the Noonan syndrome, showed that germline mutations in the

genes PTPN11, RAF1, NRAS, KRAS, SHOC2, SOS1, BRAF and CBL were associated

with this disorder (Sarkozy et al., 2009). Furthermore, patients with neurofibromatosis,

Noonan, Costello, Legius and CFC syndrome show predisposition to some types of cancer

(Rauen, 2013).

Although somatic mutations associated with cancer have been phenotypically well

characterized, it is still unclear whether RASopathies-associated mutations have the

potential for oncogenic transformation. Therefore, the aim of this work was to investigate

the influence of leukemogenic and RASopathies-associated mutations in SHP2 and BRAF

on the cellular phenotype.

3.1 Phenotype comparison of SHP2 in human cell lines

To assess the outcome of single mutations, finding a suitable cell model was crucial

step. To date, the availability of an appropriate human cell system that resembles the

normal, non-transformed state of human cells is limited, considering that many of the

immortalized cells were obtained by expression of the SV40 large T antigen to prolong

life span. As side effect, SV40-transformed phenotype includes altered cell proliferation,

density- and anchorage-independent growth (Ahuja et al., 2005). Moreover, primary

cell lines are difficult to obtain and keep under culture conditions for a prolonged time

due to the inherent feature of diploid cells to reach growth arrest and become senescent

(Hayflick and Moorhead, 1961).

Here, different cell lines of human and rat origin were tested for transduction efficiency

and versatility in transformation phenotype and functional assays. Each cell line was

transduced with lentiviral particles carrying mutant SHP2, BRAF and H-Ras variants.

Initially, the human kidney epithelial HA1EB cell line expressing mutant and wild-

type SHP2 displayed a flattened morphology, similar to the parental cell line and

HA1EBpCDH−empty (fig. 2.7). In contrast, HRas-HA1EB and BRAFV 600E-expressing

HA1EB cells, used as a positive oncogenic transformation phenotype, showed a clear cell
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density-independent growth. Mutant and wt BRAF-HA1EB expressing cells exhibited an

apparent reduced cytoplasmic area compared to the parental cell line, with a moderate

crisscross arrangements where cell confluency was higher.

HA1EB was originally obtained after a two-step transfection with the SV40-ER followed

by the hTERT gene, and described as near-diploid (44% diploid, 42% tetraploid, and

14% intermediate) without anchorage-independent growth in soft agar (Hahn et al.

(1999); Zimonjic et al. (2001); Andrea Solf, Dissertation). This almost-euploid state

might be responsible for the robust cellular phenotype and act as a protection against

overexpression of the oncogene SHP2 or BRAF. Unfortunately, little is known about

this cell line to date, and additional studies are difficult, as its maintainance require the

permanent use of three selection markers.

The fibroblast cell line BJELB was also simultaneously tested. BJ cells were obtained

after the sequential introduction of the hTERT gene, the SV40-ER and an emtpy vector

(Zimonjic et al., 2001). In contrast to HA1EB, BJ cells overexpressing wt and mutant

SHP2 variants drastically changed the cell appeareance to near apoptotic (fig. 2.8) and

reduced cell proliferation (fig. 2.9 left). BJ-ELB fibroblasts lack both pRB and p53

(Hahn et al., 1999). As reported by Shinohara et al. (2006), these cells have the ability to

continue the cell cycle after knocking down ERK1/2 by siRNA with an evident reduction

of cytoplasmatic pERK up to 90%.

This observations, together with the cellular phenotype obtained after overexpresion of

gain-of-function SHP2 variants, show that SHP2 act a robust regulator of cell morphology

and proliferation as a consequence of the active saturation of the MAPK signaling cascade

in BJ fibroblats.

Similar phenotypical features have been previously observed in cells infected by adeno-

associated virus (AAV). The activation of the apoptosis mechanism via THOC1/Caspase-6

was described as a consequence of a defective p53 and pRb pathway and the subsequently

deregulation of E2F1 (Garner et al., 2007; Pickering and Kowalik, 2006). Furthermore, a

recent study suggested that SHP2, together with PTEN and PTP1B, might be directly

activated by the absence of Rb/E2F1 repression, leading to cell death (Morales et al.,

2014). This mechanism might explain the striking apoptotic-like phenotype observed in

cells overexpressing gain-of-function proteins (T42A, E76D/G/K, E139D and I282V) and

the moderate cell death in those with wt or phosphatase loss-of-function SHP2 (T468M).

Interestingly, CFC-associated mutant BRAF expression in BJ fibroblasts sufficed to also

decelerate cell proliferation, but in a less dramatic manner (fig. 2.9 right).

Additionally, the mammary epithelial cell line MCF10A overexpressing cancer- and

Noonan-associated SHP2 mutants displayed a a similar phenotype as BJ cells, which

involved growth arrest and morphological changes (fig. 2.10 top), while MCF10A cells

expressing CFC-associated BRAF mutants showed a clear transformed morphology (fig.

2.10 bottom). MCF10A was originally obtained from spontaneous immortalized cells

from adherent cells of a patient with fibrocystic disease (Soule et al., 1990; Heppner and

Wolman, 1999). Due to its non-tumorigenic character, this cell line have been used to

investigate oncogenic alterations. Oncogenic Ras-mediated transformation of MCF10A
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was associated with increased focal adhesions, stress fibers and modified adherens

junctions as a consequence of the increased tyrosine phosphorylation of β-catenin Kinch

et al. (1995).

Different studies that aimed to investigate gene-specific copy number variation in MCF10A

cells identified alteration in the chromosome 9, 13q21 and chromosome 20, a deletion

of the CDKN2A/B locus, encoding for the tumor suppressor p16INK4A/B and MYC

amplification (Worsham et al., 2006; Jonsson et al., 2007; Kadota et al., 2010). Both

alterations confered sensitization to oncogenic-mediated transformation, as previously

shown (Dawson et al., 1996) and was replicated here by the overexpression of wt and

oncogenic HRasG12V (fig. 2.10 top right). Moreover, MCF10A cells overexpressing

CFC-associated mutant BRAF proteins not only displayed an evident transformed

phenotype, but also a moderate increased activation of the MAPK pathway (fig. 2.11).

This observations, together with the growth arrest phenotype of SHP2-MCF10A, might

indicate that SHP2 and BRAF regulate signaling by different pathways. BRAF mutations,

regardless of its MAPK activation potential, evidently impinge a strong oncogenic

phenotype in cell system models. Moreover, SHP2 mutations might not act as a driver-

mutation but as a precursor alteration that could lead to the growth arrest phenotype

observed in MCF10A epithelial cells and BJ-ELB fibroblasts.

3.2 Analysis of the effects of NS/LS- and leukemia-associated

SHP2 mutations in rat fibroblasts

As previously discussed, it is a challenging task to find an appropriate model for the

characterization of the oncogene-mediated transformation in vitro. As shown in this

study, the available human cell lines with a non-transformed and non-tumorigenic

phenotype, such as HA1EB, have a restricted selection marker choice as for their

generation, multiple transfection plasmids were used to gene transfer genetic elements

to allow the lifespan prolongation. Additionally, other cell models, such as BJ-ELB,

tend to display transformed-related features under low selection conditions (absence of

selection during cell culture) and high cell density. This conditions make the use of this

latter cell line problematic, when oncogenic-mediated effects overlap with an spontaneous

transformation of the parental cell line.

Therefore, the 208F rat fibroblasts, a non-tumorigenic non-transformed derivative of

HPRT− Rat-1 cells that do not require selection markers (Griegel et al., 1986), represented

an interesting choice. 208F fibroblasts are characterized by a flattened, cobblestone-like

morphology and a monolayer growth on the culture flask. The expression of oncogenic

proteins and evaluation by functional assays in rat fibroblasts was, in comparison with

the human cell lines, more appropriate for the evaluation of mutant SHP2 and BRAF

effects. The refractory character of human cells against oncogenic H-Ras transformation

in vitro has been well documented (Akagi et al., 2003; Holliday, 1996). Human diploid

fibroblasts require the overexpression of hTERT and the inactivation of both p53 and Rb

elements to allow an elongation of life span and the expression of oncogenic proteins. In
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contrast, rodent fibroblasts such as 208F, have been successfully used in oncogene studies

due to its non-transformed phenotype and oncogene-mediated susceptibility (Griegel

et al., 1986; Tchernitsa et al., 1999; Miller et al., 2004; Rangarajan et al., 2004).

Transient and stable wt and oncogene H-Ras overexpression in 208F led to a transformed

phenotype even when the cells were transduced with small amounts of lentiviral particles

(fig. 2.6, right and fig. 2.12, top right). Additionally, the transformation phenotype was

proportional to the used amount of lentiviral particles.

Rat fibroblasts overexpressing mutant SHP2 displayed a density-independent growth

and crisscross morphology. Interestingly, in cells carrying a gain-of-function PTPN11

mutation not only the transformation phenotype was stronger but also cells appeared

elongated than those with the loss-of-function T468M mutation (fig. 2.14). SHP2 is

a regulator of the MAPK signaling cascade, and thus an important adaptor protein

in the regulation of development and cell proliferation. This influence on the MAPK

pathway was recently corroborated, when 208F overexpressing the NS/LS-associated

mutants T42A and T468M, and the NS/leukemia-associated E76G/K mutants were

treated with the MEK inhibitor U0126 and two PI3K inhibitors (LY294002 or PX-

866). While the LY294002 treatment led to cell detachment of all mutant cells, MEK

inhibition resulted in a regression of the oncogene-mediated transformation phenotype,

characterized by a shortened cell length and a cobblestone-like phenotype similar to the

parental cell line (Stefan Meltendorf, Master thesis). The influence of NS/LS-mutants on

the Ras/MAPK pathway has been previously reported. For example, mouse fibroblasts

NIH3T3 overexpressing E76K failed to show a transformed phenotype in a focus-formation

assay (Miyamoto et al., 2008). In contrast, 208F fibroblasts overexpressing either

NS/LS- or leukemia-associated mutant SHP2 displayed a density-independent growth,

an increased cell proliferation and anchorage-independent growth in soft agar (figs. 2.12,

2.15 and 2.16).

LS-associated mutants has been described as catalytically impared thus loss-of-function

phosphatases (Kontaridis et al., 2006). T468M-208F fibroblasts, however, displayed

a transformed phenotype similar to SHP2wt and formed colonies in soft agar assay.

Furthermore, when these cells were subcutaneously injected in nude mice, T468M gave

rise to tumors even larger than those obtained from 208F cells overexpressing SHP2E76G

(fig. 2.17A). In accordance to the present results, a recent biochemical report showed

that although there is a reduced phosphatase activity, the alteration of intramolecular

bindings drives SHP2 to a prolonged interaction with other adaptor proteins, guaranting

the moderate but constant ERK activation (Yu et al., 2014). This effect might explain the

increased MEK1/2 activation and the moderate phosphorylated ERK1/2 levels compared

to wt and E76G (fig. 2.18) and perhaps this event might support the high blood vessel

density observed in the xenografts from T468M rat fibroblasts (fig. 2.17 B and C).

3.2.1 Effects of SHP2 mutations on signal trasduction

One of the challenges working with high-throughput data is the concordance between

the genetic background of the in vitro cell model and the biological significance of the

57



proposed hypothesis. Under optimal conditions, the experimental design might allow

the use of the same cell system model to measure oncogene-mediated transformation,

proteomics and transcriptomics.

Since this project was conceived as part of the MUTANOM consortium, human cell line

models were chosen for signaling studies and transcriptomics to be in a similar species

genetic background. However, as previously discussed, human cell systems are difficult to

test for oncogene-mediated transformation due to the complexity of the cellular defense

mechanisms (Hahn, 2002). In this case, a human cell system (isogenic HEK-TREx cells)

was used for proteomics and transcriptomics, and a rat cell system (208F) was used

for functional assays. One of the used tools to investigate signaling deregulation in

BRAF and SHP2 mutants was the reverse phase protein array (RPPA) approach, which

represents a powerful tool to explore qualitative- and quantitatively cellular signaling

in a large number of samples. During this work, the high threshold detection and the

specificity of the antibodies were the principal obstacles. This fact was evident when

samples tested for ERK phosphorylation remained constant in three time points after

induction of SHP2 expression in HEK-TREx cells, while the validation on western blot

of the same samples with the same antibodies showed activation of the MAPK pathway

after SHP2 induction (fig. 2.21). Additionally, as the protein presence is measured in a

dot-blot platform, it is not possible to distinguish between the genuine protein signal

and the background noise of unspecific bands. Here, the HEK-TREx cell line expressing

a YFP-tagged protein was chosen for the analysis, due to a high background noise

produced by the TAP-tag detected in isogenic HEK-TREx cells expressing a TAP-tagged

protein. Nevertheless, this approach is a valuable tool in the exploration of large data,

but validation by immunoblot or other method is required.

The non-receptor protein tyrosine phosphatase SHP2 is a positive regulator in many

signaling cascades, including of the MAPK pathway and modulates a variety of biological

processes such as embryonic development, cell proliferation, differentiation and survival

(for review see Grossmann et al., 2010). As previously described, germline mutations in

components of the canonical MAPK signaling cascade, including SHP2, are associated

with developmental disorders that share phenotypic features. Currently, an increased

incidence of cancer in patients affected by RASopathies has been documented.

To understand the influence of leukemia- and NS/LS-associated SHP2 on the MAPK

signaling pathway in the transformed phenotype of preneoplastic rat fibroblasts, ERK

activation was evaluated by immunoblot (fig. 2.23). Ectopic expression of SHP2 resulted

in a subtle ERK1/2 phosphorylation, more pronounced in cells overexpressing the SHP2

mutants T42A, E76K and T468M. Additionally, isogenic HEK-TREx cells displayed a

moderate activation of the MAPK pathway compared to the full activation in H-RasG12V -

expressing cells after 24 and 48h protein induction (fig. 2.21). These mutations lead to

conformational changes of the SHP2 protein, inducing to either constitutive activation

or loss-of-function of the phosphatase activity. Mice transplanted with SHP2E76K-

transduced bone marrow developed leukocytosis, a symptom that involves increased

leukocyte cell count associated with leukemia and other malignancies. Additionally,
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Ba/F3 cells expressing the E76K SHP2 mutation displayed an enhanced cell motility

and activation of the RhoA family small GTPases (Wang et al., 2009). These findings

provide a complementary understanding of the signaling regulation by SHP2.

3.3 CFC-associated BRAF mutations confer a transformed

phenotype in preneoplastic rat fibroblasts

In the case of CFC-BRAF mutations, 208F fibroblasts morphology did not differ strongly

from the parental cell line. In fact, they conserved the cobblestone-like and density-

dependent growth and were slightly shorter than BRAFwt expressing 208F cells (fig. 2.13

and 2.15). However, compared to SHP2-208F cells, mutant BRAF expression endowed

rat fibroblasts with a steady growth above BRAFwt and cells transduced with the empty

vector. Furthermore, all tested BRAF mutations induced anchorage-independent growth,

forming larger colonies than those observed in mutant SHP2-expressing cells (fig. 2.16).

All these features might indicate that the analyzed mutations gave rise to a transformed

phenotype.

Nevertheless, previous studies aimed to functionally characterize the germline BRAF

mutations T241P, W531C, L597V, E275K, T599R and K601Q associated with NS, CFC

and LS. Sarkozy et al. (2009) concluded that, compared to the oncogenic V600E, the

selected mutations did not confer any transfomation potential. Although the difference

in the foci number between V600E and the studied germline mutations was significant,

this conclusion results controversial, considering that the untransfected or empty vector-

transfected cells, the NIH3T3 mouse fibroblast cell line, had the ability to form foci in

the focus assay.

3.3.1 MAPK and AKT signaling impairment in CFC-associated BRAF-

expressing cells

Among the studied group, cells expressing the mutant Q257R SHP2 displayed a moderate

tranformed phenotype. The mutation Q257R is one of the most frequent alteration

found in CFC patients and is located in the phorbol-ester/DAG-binding zinc finger motif

(residues 234-280) of the cysteine-rich domain 1 (CR1) of the BRAF protein, responsible

for BRAF membrane docking after interation with Ras (Morrison and Cutler, 1997).

To date, there are no reports of cancer-associated mutations at this residue. However,

further studies are needed to understand the relevance of the mechanism behind the

phenotype observed in preneoplastic rat fibroblasts, as a mutation in this residue (Q257H)

was recently reported in lung adenocarcinoma (Imielinski et al., 2012).

The mutants K499E and S467A are located in the protein kinase-CR3 domain, which

responsible for the kinase activity of the BRAF protein. The mutation at S467 plays

a central role in the activation of the protein. Located at the phosphate binding loop

(P-loop) together with S465, S467 is described as a catalytically impared form that is able

to stimulate downstream targets. A recent biochemically characterization showed that

S467A had a higher catalytic activity than BRAFwt and were inhibited but not activated

59



by diffent BRAF inhibitors, meaning that the ATP activity at Ser467 is required for

compound activation of BRAF (Wan et al., 2004; Holderfield et al., 2013). This might

explain the oncogene-mediated transformed phenotype observed in all tested cell lines (all

parental cell lines are BRAFwt) and the low but constant MAPK activation compared to

oncogenic V600E (fig. 2.24). There are five cases of mutations in this residue associated

with cutaneous melanoma, lung adenocarcinoma (S467L) and colon carcinoma (S467P)

(Seo et al., 2012; Akslen et al., 2008). Indeed, a mutation-sensitive hotspot is located in

the region 459-469, which comprises mainly missense substitutions in 55 cases of different

cancer types (COSMIC database). On the other hand, the mutation K499E has not

been reported in cancer, nor the Lys499 residue. However, the phenotype exhibited in

the functional assays implies a key role of this residue or the region for the activation of

downstream factors.

A previous report found that the outcome of the impaired kinase activity, which was

similar to V600E, was the activation of the downstream factors ERK and MEK (Rodriguez-

Viciana et al., 2006). These findings correlate with the signaling studies performed in

this work in a wide variety of cell lines: MCF10A, rat fibroblasts and HEK-TREx

cells. Additionally, the transformed phenotype displayed by the CFC-associated mutant

BRAF-expressing cells is directly associated with the increased catalytic activity of the

mutant proteins and its subsequent MAPK pathway activation.

Moreover, cancer- and CFC-associated mutations, but not BRAF/H-Raswt or H-RasG12V ,

led to a reduced AKT phosphorylation in preneoplastic rat fibroblasts (fig. 2.24). The

protein kinase B or PKB/AKT plays a key role in cell survival, cell proliferation and cell

migration and its activation is associated with melanoma progression (Dhawan et al.,

2002; Stahl et al., 2004; Song et al., 2005). However, ERK hyperactivation have been

associated with impaired tuberus sclerosis complex (TSC1/2), which in a heterodimer

form negatively regulate the mamalian target of rapamycin complex 1 (mTORC1).

Subsequently, hyperactive ERK lead to suppression of pAKT through a negative feedback

loop to the IGF-1 (Zhang et al., 2006). Furthermore, in the MLL-AF9-induced leukemia

murine model, which resembles the human acute myeloid leukemia (AML), AKT was

demonstrated to be repressed and FOXO, which is frequently found activated in AML

patients, was active. By AKT activation or deletion of FOXO, a decrease of cell growth

and promotion of apoptosis was observed (Sykes et al., 2011). Interestingly, it is claimed

that CFC patients may have a predisposition to acute lymphoblastic leukemia (ALL),

but this assertion is still controversial, due to the number of reported cases (van Den Berg

and Hennekam, 1999; Makita et al., 2007; Rauen et al., 2011). Further studies are needed

to investigate whether CFC-associated mutations are linked to a negative regulation of

the mTORC and GSK3 signaling pathways.
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3.4 Modified protein interactions in NS- and cancer- asso-

ciated SHP2 mutations

To test whether cancer- and NS-associated SHP2 mutations generate modifications on

protein-protein interactions, cells overexpressing the SHP2 mutants T42A and E76G,

which significantly induced ERK phosphorylation in TAP-tagged SHP2 HEK-TREx cells

(fig. 2.26), were selected For the tandem affinity purification (TAP) assay. Additionally,

a yeast-two-hybrid (Y2H) assay of SHP2wt was performed (section 2.4.1). In the case of

the Y2H assay, only one target (TYK2) coincided with the reported SHP2 interactors to

date. However, previous attempts to finding SHP2 interaction partners using the same

method reported overlapping interactions with GRB2 and FRS2, (Delahaye et al., 2000;

Yamada et al., 2001), PDGFRB (Lechleider et al., 1993; Keilhack et al., 2001), GAB1,

(Nishida et al., 1999) and GAB2 (Crouin et al., 2001; Cholay et al., 2010). Although

the Y2H screening represents a valuable tool for the early identification of unknown

interaction partners, the high sensitivity to bait a relevant number of false positive hits

reduces substantially the confidence of the results. Furthermore, the selection of the prey

library plays a crucial role in the identification of binding partners.

On the other hand, the TAP assay showed that both mutants had an increased binding

strength to GRB2-associated binding protein 1 (GAB1) and later validated in co-IP

experiments after EGF stimulation (figs. 2.27, 2.29 and 2.30). GAB1 is a 110-KDa

docking protein that mediates the response from extracellular stimuli through the receptor-

tyrosine kinase (RTK) signaling. The SHP2-GAB1 binding was previously described in

yeast-two-hybrid screenings and in 293 cells after insulin/EGF stimulation (Rocchi et al.,

1998; Agazie and Hayman, 2003). A recent report investigated the network signaling of

GRB2 on HEK293T cells and found that GAB1-GRB2 binding only took place after

PDGF but not EGF stimulation (Bisson et al., 2011).

Additionally, the T42A and E76G mutations are located in the β-chain C and the α-chain

B of the N-terminal SH2-domain, respectively. Prediction studies could identify that a

single mutation in the SH2-domain is sufficient to change the protein configuration and

thus the strength to interaction partners (Huyer and Ramachandran, 1998). In a recent

biochemical approach the binding specificity of different protein tyrosine phosphatases

was explored. Ren et al. (2011) found that the PTP- and SH2- domains of SHP1 and

SHP2 have similar specificity to substrates that contained at least two acidic residues.

These findings were consistent with the in vivo dephospholylation sites in EGFR, FAK,

HER2, PDGFRβ, RhoGAP and SPRY1. Moreover, a predicted dephosphorylation motif

(EADG ELpY285VFNTP and PTPGNTpY317QIPRT) was proposed for GAB1.

Despite previous evidence in other NS-associated mutations suggesting that increased

ERK activation was only observed after GAB1 coexpression and stimulation-dependent

(Fragale et al., 2004), the present work demonstrated that, in the rat fibroblast context, an

increased ERK activation was observed without previous stimulation with growth factors

(fig. 2.23). This differences might have an explanation on a cell context-dependent action

of SHP2, which has been also observed in Noonan mouse models, where an increased
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Erk activation was observed in embryonic tissues, later affected by developmental

abnormalities, but not in MEFs derived from these embryos (Araki et al., 2004).

3.5 Microarray analysis

3.5.1 Effects of cancer- and NS/LS-associated SHP2 mutations on

gene transcription

The overall effect of mutations on SHP2 was rather moderate on the transcriptome.

Even an overlap analysis of probe IDs among five SHP2 mutants (T42A, E76G, E139D,

I282V and T468M) did not provide significant results (table 2.4 and fig. 2.31). However,

a group of upregulated genes were interesting. The genes CDH1 and CDH3, which

encode members of the cadherin superfamily and play a key role in cell-cell adhesion

and proliferation, were upregulated in the compared SHP2 arrays (Appendix D, table

D.1). Expression of both genes have been associated with tumor-suppressing and

tumor-promoting activities (van Roy, 2014). CDH1 is involved in tumor-promotion

by supporting EGFR signaling in glioblastoma, inflammatory breast carcinoma and

ovarian cancer (Rodriguez et al., 2012). On the other hand, CDH3, encoding the protein

P-Cadherin, supports CDH1 when co-expressed (Paredes et al., 2008). The used cell

system for the transcription profile was the isogenic dox-inducible HEK-TREx cell line.

The results obtained here are contrasting with those observed from the protein-protein

interaction and protein signaling analysis, where SHP2 mutations not only altered the

activation of the MAPK signaling cascade, but also the binding strength to one of its

prominent binding partners. This might indicate, that SHP2 has a stronger regulatory

potential at the protein level than on gene transcription in HEK-TREx cells. However,

it would be necessary to test the impact of these mutations in other cell systems and

with a longer induction of protein expression.

3.5.2 Effects of CFC-associated BRAF mutations on gene transcrip-

tion

BRAF mutations had a significant impact on the gene transcription in the inducible HEK-

TREx cell system. Surprisingly, the compared CFC-associated BRAF mutants had a gene

cluster that overlapped with the oncogenic BRAFV 600E . Among the regulated genes, the

transcription factors JUNB, HEY1, CYR61 and STAT1 were upregulated in all BRAF

mutant array profiles. Increased STAT1 activation has been recently correlated with

tumor progression in different types of cancer, including breast cancer (Hix et al., 2013).

CYR61 upregulated also plays a role in cell proliferation, differentiation, angiogenesis,

apoptosis, and extracellular matrix. By contrast, TP53 gene downregulation was found

in all BRAF HEK-TREx profiles, including the oncogenic V600E. P53 plays a crucial

role in cell growth regulation and apoptosis and its downregulation might be implicated

in cell proliferation in breast cancer cells (Zheng et al., 2004)

Somatic mutations in BRAF occur with high frequency in human cancer and they are con-
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centrated mostly in the kinase domain (COSMIC database). In contrast, BRAF germline

mutations associated with the CFC syndrome are widely distributed (Rodriguez-Viciana

et al., 2006). Although CFC syndrome has not been considered a cancer-predisposing syn-

drome, new reports of CFC patients with predisposition to acute lymphoblastic leukemia

(ALL) indicate that this statement is not fully true (van Den Berg and Hennekam, 1999;

Makita et al., 2007; Rauen et al., 2011).

Despite of the fact that there is a single report of the here studied CFC-associated mutant

in cancer, the similarity of the transcription profiles with V600E indicates the essential

role of BRAF on signaling and transformation phenotype.

It is still unclear, which are the mechanisms that differ downstream each BRAF mutation.

In conclusion, further studies are necessary to elucidate the paradoxical mechanisms of

SHP2 and BRAF on MAPK signaling pathways.

3.6 Outlook

In this work, the application of high-throughput approaches and functional assays was

explored in different cell systems to characterize mutations implicated in RASopathies

and cancer. Non-tumorigenic human and rat cell systems were used for the ectopic

overexpression of SHP2 and BRAF mutations associated with diverse developmental dis-

orders and cancer. Both SHP2 and BRAF mutations conferred a transformed phenotype

to rat 208F fibroblasts, including increased cell proliferation, density-independent and

anchorage-independent growth. Further studies are needed to understand the reprogram-

ming events that take place during anchorage-independent growth in both SHP2- and

BRAF-expressing rat fibroblasts. To explore this, evaluation of signaling regulation at

transcription and protein level of the colonies from soft agar assay is necessary.

Additionally, it could be demonstrated that NS/LS-associated SHP2 as well as CFC-

associated BRAF mutations constitutively activate the Ras/MAPK signaling pathway in

a moderate manner compared to the oncogenic BRAFV 600E mutation in rat fibroblasts

and HEK-TREx cells. This findings might be useful for choosing an effective treatment

of patients suffering from developmental disorders, having the components of the MAPK

cascade, such as MEK1/2, as a target for therapy.

Using additional human cell systems for the morphological characterization after expres-

sion of SHP2/BRAF mutations was shown that, although both genes confer a clinical

overlapping phenotype when mutated, the implications at the signaling level and their

influence of the cellular phenotype are quite divergent as shown in the human cell lines

BJ-ELB and MCF10A. Cells overexpressing SHP2 mutations were growth arrested,

while BRAF mutations induced cell proliferation and a transformation phenotype. It

would be necessary to consider the use of siRNA or pharmacological SHP2 inhibition to

evaluate the regression of the oncogene-driven transformation phenotype in 208F cells,

and the rescue of growth arrest phenotype in BJ-ELB and MCF10A cells. In addition

to this, a knockdown of key components downstream of the SHP2 signaling such as

RasGAP, Sprouty and Src, would deliver information about the regulatory mechanisms
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of the MAPK signaling upstream of Ras. This effect might be explored as a therapeutic

strategy to increase apoptosis in those cancer types were SHP2 activity is upregulated

and thus increase apoptosis events of cancer cells. Furthermore, the differences in the

mechanisms of action between BRAF and SHP2 might implicate the participation of

additional signaling pathways that need to be further investigated.

It was also shown that SHP2 mutations have a relevant influence on the SHP2-GAB1

protein interaction. Two NS-associated SHP2 mutations showed an increased binding

strength to the scaffold protein GAB1. In future studies, it would be interesting to extend

the approach to evaluate the effect of other growth factors such as the platelet derived

growth factor (PDGF) and the fibroblast growth factor (FGF). Additionally, it would be

highly relevant to evaluate not only phospho-Tyr protein pattern but also investigate

the outcome on the MAPK signaling activation and explore how this increased GAB1

binding leads to crosstalk signaling.

The impact on gene transcription was also analyzed. Interestingly, a gene cluster was

found to be similarly regulated in both CFC-associated BRAF and the oncogenic V600E

mutation. This is the first report on transcriptome analysis of CFC-associated mutations.

Additional validation assays are needed to confirm the results presented here.
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4 MATERIALS AND METHODS

4.1 Materials

4.1.1 Chemicals

Chemical Source

1 Kb DNA ladder NEB

2-Mercaptoethanol Promega

6x DNA loading dye Thermo Scientific

acrylamide Roth

Agarose Serva

Ampicillin (50 mg/ml) Sigma-Aldrich

APS Merk

Bacto Agar BD Biosciences

Bacto yeast extract BD Biosciences

Bacto-Tryptone BD Biosciences

Boric acid Merck

Bovine serum albumin (BSA) Sigma-Aldrich

Bromphenol blue (BPB) Sigma-Aldrich

Complete mini EDTA-free Roche

DEPC-treated water Sigma-Aldrich

Dithiothreitol (DDT) Sigma-Aldrich

DOC Sigma-Aldrich

Dynabeads Protein A Novex, Life Technologies

EDTA Merk

Ethanol J.T.Baker

Ethidium bromide Sigma-Aldrich

Formaldehyde J.T.Baker

Glycerol Merk

Glycine Merck

Isopropanol J.T.Baker

LI-COR blocking buffer LI-COR

M-PER Mammalian Protein Extraction Reagent Pierce

Methanol Merck

N-Methyl-Pyrolidione Sigma-Aldrich
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Chemical Source (continued)

PageRuler prestained protein ladder Fermentas

Paraformaldehyde (PFA) Merck

PhosSTOP Roche

Potassium chloride (KCl) Merk

potassium dihydrogen orthophosphate (KH2PO4) Merk

S.O.C. medium Life Technologies

Sodium acetate (C2H3NaO2) Merck

Sodium chloride (NaCl) Merck

Sodium dodecyl sulfate (SDS) Serva

Sodium hydroxide (NaOH) Merck

Sodium phosphate dibasic (Na2HPO4) Merck

Tetramethylethilenediamine (TEMED) Sigma-Aldrich

Tris-Base Merk

Tris-HCl Merk

Triton X-100 Sigma-Aldrich

Trypan blue Merk

Tween20 Serva

4.1.2 Cell culture reagents

Reagent Source

4,6-Diamidino-2-phenylindole dihydrochloride (DAPI) Sigma-Aldrich

5x PEG-it™Virus Precipitation Solution System Biosciences

Agar noble BD Biosciences

Amaxa nucleofector kit Lonza

Blasticidin (10 mg/ml) Invitrogen

Dimethyl sulfoxide (DMSO) Sigma-Aldrich

DMEM Invitrogen

DMEM, 10X Sigma

Effectene Qiagen

Fetal calf serum (FCS) Biochrom AG

Fugene6 Promega

G-418 sulfate solution Invitrogen

Glucose, 45% Sigma-Aldrich

Hygromycin B (50 mg/ml) Gibco

Kanamycin (50 mg/ml) Sigma-Aldrich

Lipofectamine2000 Invitrogen

Medium-199 Lonza

MEGM bullet kit Lonza

MEGM mammary epithelia cell growth medium kit Lonza

MEM-alpha (M4526) Sigma-Aldrich
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Cell culture solutions Source (continued)

Oligofectamine Invitrogen

OptiMEM Invitrogen

Penicilin/Streptomycin (10 mg/ml) Biochrom AG

Poly-L-Lysine Sigma-Aldrich

Polyethylenimine (PEI) Polysciences

PolyHEMA Sigma-Aldrich

Protamine-sulfate Sigma-Aldrich

Puromycin dihydrochloride Sigma-Aldrich

Recombinant human EGF Peprotech

Sodium bicarbonate, 7.5% (NaHCO3) Biomol

Trypsin/EDTA Biochrom AG

Ultraglutamine (200mM) Lonza

Vitro-Clud R. Langenbrick

Zeocin (100 mg/ml) Invitrogen

4.1.3 Restriction enzymes

Restriction enzymes source

Afll NEB

ClaI NEB

PstI NEB

SalI NEB

SpeI NEB

SwaI NEB

XhoI NEB

4.1.4 Consumables

Consumables Source

0.2 m, 0.45 μm syringe filters Sarstedt

0.5 μl PCR tubes Applied Biosystems

1.5 ml, 2 ml reaction tubes Eppendorf

10 cm, 15 cm cell culture dishes BD Falcon

10 μl, 100 μl, 1000 μl pipet tips Eppendorf

10 μl, 100 μl, 300 μl, 1250 μl filter tips Sarstedt

2 ml, 5 ml, 10 ml, 25 ml plastic pipets BD Falcon

25 cm2, 75 cm2, 175 cm2 cell culture flasks BD Falcon

2 ml, 5 ml Cryovials Nalgene

5 ml polypropylene round tubes Sarstedt

5 ml, 15 ml, 50 ml reaction tubes BD Falcon

6-, 12-, 24-, 96-well plates BD Falcon

96-well PCR plates Biozym
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Cell scraper, 25 cm Sarstedt

Illumina HumanHT-12 v3 Expression BeadChip Illumina

Lab glassware Duran

Protran Nitrocelullose transfer membrane Whatman

Glass coverslips Carl Roth

4.1.5 Commercial kits

Name Source

BCA protein assay kit Pierce

CalPhos™Mammalian Transfection Kit Clontech Laboratories

Cell Proliferation Kit II (XTT) Roche

Dako kit for immunohistochemistry Dako

EndoFree Plasmid Midi/Maxi Kit Qiagen

Fast-Link™DNA Ligation Kit Epicentre

Gateway®BP- and LR-Clonase®II Enzyme mix Life Technologies

Protease-Inhibitoren Roche

QIAprep Spin Miniprep Kit Qiagen

QIAquick Gel Extraction Kit Qiagen

QuickChange™Sitedirected Mutagenesis Kit Agilent Technologies

Rneasy mini-kit (50) Qiagen

Western Blot Recycling Kit Alpha Diagnostic

4.1.6 Antibodies

Antibody Dilution conditions Source

Primary antibodies

goat PECAM-1 (CD31,

clone M20)

1:500 in Real Antibody Diluent

(Dako)

Santa Cruz, sc-1506

mouse BRAF (F7) 1:500 in PBST:Licor (1:1) Santa Cruz, sc-5284

mouse ERK1/2 1:1,000 in PBST:Licor (1:1) BD Biosciences, 612358

mouse Gab1 (H-7) 1:1,000 in PBST:Licor (1:1) Santa Cruz, sc-133191

mouse GAPDH (6C5) 1:10,000 in PBST:Licor (1:1) Ambion, AM4300

mouse MEK1/2 1:1,000 in PBST:Licor (1:1) CST, 4694

mouse Pan Ras 1:1,000 in PBST:Licor (1:1) BD Biosciences, 610002

rabbit AKT 1:1,000 in PBST:Licor (1:1) CST, 2146

rabbit β-tubulin 1:1,000 in PBST:Licor (1:1) CST , 4267

rabbit BRAF 1:1,000 in PBST:Licor (1:1) CST, 9434

rabbit CyclinD1 1:1,000 in PBST:Licor (1:1) CST, 2922

rabbit ERK1/2 1:1,000 in PBST:Licor (1:1) CST, 9102

rabbit Gab1 1:1,000 in PBST:Licor (1:1) CST, 3232

rabbit GSK3α 1:1,000 in PBST:Licor (1:1) CST, 4337

rabbit GSK3β 1:1,000 in PBST:Licor (1:1) CST, 9315

rabbit MEK1/2 1:1,000 in PBST:Licor (1:1) CST, 9122

rabbit p70S6K 1:1,000 in PBST:Licor (1:1) CST, 9202
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Antibody Dilution conditions Source (continued)

rabbit phospho-AKT 1:1,000 in PBST:Licor (1:1) CST, 9271

rabbit phospho-ERK1/2 1:1,000 in PBST:Licor (1:1) CST, 9101

rabbit phospho-GSK3αβ 1:1,000 in PBST:Licor (1:1) CST, 9327

rabbit phospho-GSKα 1:1,000 in PBST:Licor (1:1) CST, 9316

rabbit phospho-GSKβ 1:1,000 in PBST:Licor (1:1) CST, 9315

rabbit phospho-MEK1/2 1:1,000 in PBST:Licor (1:1) CST, 9121

rabbit phospho-p70S6K 1:1,000 in PBST:Licor (1:1) CST, 9206

rabbit phospho-STAT3 1:1,000 in PBST:Licor (1:1) CST, 9136

rabbit PI3 Kinase p85α 1:1,000 in PBST:Licor (1:1) CST, 4292

rabbit SHP2 1:1,000 in PBST:Licor (1:1) CST, 2297

rabbit STAT3 1:1,000 in PBST:Licor (1:1) CST, 4904

Secondary antibodies

IRDye680CW goat anti-

mouse

1:15,000 in PBST:Licor (1:1) LI-COR Biosciences

IRDye800CW goat anti-

rabbit

1:15,000 in PBST:Licor (1:1) LI-COR Biosciences

Rabbit anti-goat HRP IgG

Conjugate

1:350 in Real Antibody Diluent

(Dako)

Invitrogen, 81-1620

4.1.7 Buffers and media

Buffer/Media Formula/Preparation

10% APS 1 g APS in 10 ml aq. dest.

Cryopreservation

medium

10% DMSO, 90% D10

Culture medium for

BJELB

400 ml DMEM, 100 ml Medium-199, 15% IFS, 1% ultraglutamine, 1%

penicillin/streptomycin, 100 g/ml hygromycin, 400 μg/ml G418, 0.15 μg/ml

puromycin.

Culture medium for

HA1EB

500 ml MEM-alpha, 15% IFS, 1% ultraglutamine, 1% peni-

cillin/streptomycin, 100 g/ml hygromycin, 400 g/ml G418, 0.15g/ml

puromycin.

2x D10 for soft agar

assay

100 ml 10x DMEM, 10% FCS, 1% penicillin/streptomycin, 2 mM ultraglu-

tamin, 0.37% NaHCO3. Adjust to 500 ml with sterile aq. dest.

2x agar solution for

soft agar assay

0.3% agar noble in aq. dest. Autoclave at 121°C for 30 min

Culture medium for

MCF10A

500 ml MEGM medium, 1x MEGM bullet kit, 1% penicillin/streptomycin

Culture medium for

T-Rex-293

500 ml D10 high glucose, 15 μg/ml blasticidin, 100 μg/ml zeocin

D10 cell culture

medium

500 ml DMEM, 10% FCS, 2 mM Ultraglutamine, 100U/ml peni-

cillin/streptomycin.

D10 high glucose 500 ml D10, 3.5g/L glucose.

human EGF Dilute in 0.1% BSA/PBS for a 1 mg/ml stock concentration.

LB-agar 15 g Bacto Agar in 1 l 1x LB

LB-medium 10 g Bacto Tryptone, 5 g Bacto yeast extract, 10 g NaCl. Add 1 l aq dest.

pH 7.5

Low salt LB-medium 10 g Bacto Tryptone, 5 g Bacto yeast extract, 5 g NaCl. Add 1 l aq dest.

pH 7.5
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Buffer/Media Formula/Preparation (continued)

Lysis buffer 1 ml 10x PhosSTOP solution, 400 l 25x complete EDTA-free solution, 9 ml

M-PER mammalian protein extraction reagent.

PBS, 10x 80 g NaCl, 2 g KCl, 14.4 g Na2HPO4, 2.4 g KH2PO4. Add 1 l aq. dest.,

pH 7.4

PBST 0.1% Tween20 in 1x PBS

Poly-HEMA solution 5 mg/ml PolyHEMA to 96% Ethanol. Mix by RT until disolved.

Resolving gel 12.5%

(SDS-PAGE)

6.3 ml 1.5 M Tris pH 8.6, 10 ml 30 % acrylamide, 240 l 10% SDS, 130 l

10% APS, 25 l TEMED, 8.3 ml aq dest.

Resolving gel 8%

(SDS-PAGE)

6.3 ml 1.5 M Tris pH 8.6, 6.6 ml 30 % acrylamide, 240 l 10% SDS, 130 l

10% APS, 25 l TEMED, 11.7 ml aq dest.

Running buffer, 5x

(SDS-PAGE)

15.1 g Tris-Base, 72 g Glycine, 5 g SDS. Add 1 l aq dest pH 8.3

SDS sample buffer,

2x

Tris-HCl pH 6.8 0.25 M, SDS 8 %, Glycerin 40 %, β-Mercaptoethanol 20

%, Bromphenol blue

Stacking gel 4% (SDS-

PAGE)

2.5 ml 0.5 M Tris pH 6.8, 1.33 ml 30 % acrylamide, 100 l 10 % SDS, 50 l

10 mM APS,10 l TEMED, 6.1 ml aq dest.

TAE buffer, 10x 242 g Tris Base , 18.6 g EDTA. Add 1 l aq dest, pH 8.0

Transfer buffer, 2.5x

(SDS-PAGE)

14.5 g Tris Base, 7.3 g Glycine, 4.7 ml 20% SDS, 500 ml Methanol. adj. to

1 l aqua dest

4.1.8 Vector backbones

Vector backbone Description Marker Source

pBabe-Puro Puro

pCDH-EF1a-IRES-GFP Amp System Biosciences

pCDH-gate-GFP ccdB cassette inserted for

gateway cloning

pCDH-gate-GFP-Puro

pcDNA5-FRT-TO-N-TAP-

eGFP-Hygro

destination vector Amp

pcDNA5-FRT-TO-N-YFP-

eGFP-Hygro

destination vector Amp

pDONR221 Gateway entry vector Amp, Cm Life Technologies

pEF1/V5-HisC Amp Life Technologies

pLenti6-CMV-YFP Gateway expression vector Amp, Cm kindly provided by

B.Maier, Berlin

pLenti6-EF1-YFP Generated from pLenti6-

CMV-YFP

pMD2G Amp kindly provided by

B.Maier, Berlin

pOG44 Expresses Flp recombinase

psPAX2 Amp kindly provided by

B.Maier, Berlin

pDONR/Zeo entry vector Zeo Life Technologies
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4.1.9 Competent bacteria strains

Strain Transformation use Source

E.coli ccdB survival Gateway empty vectors Life Technologies

E.coli DH10B entry vectors Life Technologies

E.coli DH5a entry vectors Life Technologies

E.coli Stlb3 Lentiviral vectors Life Technologies

4.1.10 Cell lines

All cell lines were incubated at 37°C and with 5% CO2 atmosphere.

Cell line Description Culture conditions source

208F Non-tumorigenic rat immortal fi-

broblasts

D10 (Griegel et al., 1986)

BJELB Human hTERT-immortalized BJ

foreskin fibroblasts

DMEM:Medium 199 kindly provided by

Prof. W.C. Hahn

HA1EB Human kidney epithelial cells MEM-alpha kindly provided by

Prof. R.A. Weinberg

HEK293FT Human embryonic kidney cells,

transformed with the SV40 large T-

antigen

D10 high glucose Kindly provided by

AG Kramer, Charité

Berlin

Flp-In T-

REx™-293
Human embryonic kidney cells; con-

tains a stably integrated FRT site

D10 high glucose,

15g/ml blasticidin,

100g/ml zeocin

Invitrogen, Life Tech-

nologies

MCF10A Human breast epithelial cells MEGM ATCC CRT-10317

Cos 7 African green monkey kidney fibrob-

lasts, SV40 transformed

D10 ATCC CRT-1651
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4.1.11 Software

Tool URL/Source

Addgene http://www.addgene.org/

BioGRID http://thebiogrid.org/

cBioPortal http://www.cbioportal.org/

Concensus CDS project http://www.ncbi.nlm.nih.gov/CCDS/

COSMIC http://cancer.sanger.ac.uk/

DAVID http://david.abcc.ncifcrf.gov/

GeneCards http://www.genecards.org/

KEGG http://www.genome.jp/kegg/

NEBcutter v. 2.0 http://tools.neb.com/NEBcutter2

OMIM http://www.ncbi.nlm.nih.gov/omim/

STRING http://string-db.org/

UniHI http://www.unihi.org/

Venny http://bioinfogp.cnb.csic.es/tools/venny/

WebGestalt http://bioinfo.vanderbilt.edu/webgestalt/

Software

ApE plasmid editor v. 2.0.45 OpenSource

Gimp image manipulation programm v. 2.8.6 OpenSource

ImageJ v. 1.48 OpenSource

Microplate Manager v. 5.2.1 Bio-Rad

Microsoft Office 2011 Microsoft

Photoshop v. 5.0 Adobe

XPlasMap plasmid editor v. 0.96 OpenSource

4.1.12 Lab equipment

Equipment Source

Agarose gel chamber Bio-Rad

Balance Sartorius

Centrifuge Allegra 6R Beckman Coulter

Centrifuge Allegra X15R Beckman Coulter

Centrifuge Avanti J-25 Beckman Coulter

Electrophoresis gel chamber Bio-Rad

ELISA- plate reader Bio-Rad

Fluorescence microscope Keyence

Incubator Hera cell 240 Hera

Microcentrifuge 5415 C Eppendorf

Mini-Protean Tetra Cell electrophoresis

system

Bio-Rad

Neubauer Improved cell counting chamber Carl Roth

Nanophotometer Implen

Nucleofector™2b Device Lonza

Odyssey CLx infrared imaging system LI-COR Biosciences
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Phase contrast microscope Leica DMIL

Thermocycler Genius, Progene

Thermomixer Eppendorf

4.1.13 Company register

Company Location

Agilent Technologies Bblingen, Germany

Alpha Diagnostic San Antonio, TX, USA

Applied Biosystems

BD Biosciences Heidelberg, Germany

BD Falcon Bedfore, MA, USA

Beckman Coulter Krefeld, Germany

Bio-Rad GmbH Mnchen, Germany

Biochrom GmbH Berlin, Germany

Biomol Hamburg, Germany

Biozym GmbH Hamburg, Germany

Carl Roth Karlsruhe, Germany

Cell Signaling Technology (CST) Leiden, Nethelands

Cellstar, Greiner Bio-One Frickenhausen, Germany

Clontech Laboratories Mountain View, CA, USA

Duran Group Wertheim, Germany

Epicentre Madison, USA

Eppendorf Wesseling-Berzdorf, Germany

Eurons MWG Operon Ebersberg, Germany

Fermentas Darmstadt, Germany

GeneArt AG Regensburg, Germany

Illumina, Inc San Diego, CA, USA

Implen GmbH Mnchen, Germany

J.T.Baker Deventer, Netherlands

Keyence Neu-Isenburg, Germany

Leica DMIL Wetzlar, Germany

LI-COR Biosciences Bad Homburg, Germany

Life Technologies Karlsruhe, Germany

Lonza Group Ltd. Basel, Switzerland

Merck Darmstadt, Germany

Nalgene Rochester, NY, USA

New England Biolabs (NEB) Ipswich, MA, USA

Peprotech Rocky Hill, NJ, USA

Pierce Thermo Scientific Rockford, IL, USA

Polysciences Inc. Eppelheim, Germany

Promega Mannheim, Germany

Qiagen Hilden, Germany

R. Langenbrick Emmendingen, Germany

Roche Mannheim, Germany

Santa Cruz Biotechnology Heidelberg, Germany

Sarstedt AG Nmbrecht, Germany

Sartorius AG Gttingen, Germany
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Company Location (continued)

Serva Heidelberg, Germany

Sigma-Aldrich Mnchen, Germany

System Biosciences Mountain View, CA, USA

Thermo Scientific Darmstadt, Germany

Whatman Freiburg, Germany

4.2 Molecular biology methods

4.2.1 Synthesis of wild-type and mutated genes

Mutated and wild-type PTPN11 (CCDS accession number CCDS 9163.1) and BRAF

(CCDS accession number CCDS 5863.1) genes were synthesized by GeneArt. Each

construct contained a stop codon (TAA) and was assembled in a vector backbone

flanked with attB sequences for posterior generation of entry clones. The constructs

BRAFK499E , PTPN11wt and its mutant variants were assembled in the vector pMK–RQ

(Kanamycinr), BRAFL485F in pMA (Ampicillinr), BRAFS467A and BRAFQ257R in pMS

(Spectinomycinr) and BRAFwt and BRAFV 600E in the entry vector pDONR221.

4.2.2 Gateway® Cloning

The Gateway cloning is based on site-specific recombination, which facilitates the shuttle

of DNA coding sequences into multiple vectors. As previously mentioned, mutated and

wild-type coding sequences were synthesized with attB flanking sequences to generate

entry and destination clones (see subsection 4.2.1).

Generation of entry clones

Except for BRAFwt and BRAFV 600E , synthesized in pDONR221, all synthesized attB-

flanked coding sequences were cloned in the pDONR/Zeo entry vector. Each BP

recombination reaction was prepared with 1 μl of 150 ng/μ pDONR/Zeo vector, 1 μl of
150 ng/μl of the corresponding insert, 6 μl of TE buffer pH 8.0 and 2 μl of BP clonase.

After 1 h incubation at RT, DH5α competent bacteria were transformed with 2 μl of
the BP reaction and grew in low salt LB medium at 37℃ ON as described in subsection

4.2.3.

Generation of expression clones

To generate expression clones, a recombination LR reaction was prepared as follows: 1 μl
of the corresponding entry vector (150 ng/μl), 1 μl destination vector, 6 μl of TE buffer

pH 8.0 and 2 μl of LR clonase. After 1 h incubation time at RT, DH5α or Stbl3 (for

lentiviral vectors) competent bacteria were transformed with 2 μl of the LR reaction and

grew in LB medium as described in subsection 4.2.3.
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4.2.3 Generation of the EF1α promoter-driven pLenti6 expression vec-

tor

The EF1α promoter insert was obtained by PCR using the pEF1/V5-HisC promoter as

template. The CMV sequence of the pLenti6-CMV-YFP was excised and replaced by the

EF1α promoter. The cloning primers were designed as follows: the forward primer 5’-

CGTCACATCGATGAGGAATCTT TGCAGCTAATGGACC-3’ contained a 5’ ClaI re-

striction site and the reverse primer 5’-CTAACGACTAGTCAAGCTAATTCCTCACGA

CACCTG-3’ contained a 3’ SpeI restriction site. The PCR reaction was performed in 30

cycles with the following conditions: denaturation 30 sec at 95℃, annealing 30 sec at 64℃
and elongation 1,5 min at 72℃. After confirming the promoter insert by sequencing, both

the PCR product (EF1α promoter) and the vector (pLenti6-CMV-YFP) were subjected

to restriction digestion with ClaI and SpeI, to generate cohesive ends for the ligation.

The correct insertion was verified by restriction digestion with AflII and PstI (fig. 2.3).

This new vector was denominated pLenti6-EF1a-YFP.

4.2.4 Generation of the new lentiviral expression vector pCDH-EF1a-

Puro

The Gateway reading frame cassette B (Invitrogen), containing two attR-flanking se-

quences, a chloramphenicol resistance gene (Cmr) and the ccdB gene was cloned into

the vector pCDH-EF1a-IRES-GFP and digested with SwaI at the multiple cloning site

(MCS) to generate blunt ends and dephosphorylated with calf intestinal phosphatase

(CIP) for 1h at 37℃to prevent self-ligation (fig. 2.5). The vector and gateway cassette

insert were ligated in a ratio of 1:2 ON at room temperature. After ligation, ccdB

survival T1 competent bacteria were transformed with 2 μl of the ligation reaction and

incubated at 30℃ ON to reduce the number of random recombinations. The destination

vector was sequenced and verified. This new expression vector, pCDH-gate-GFP, was

verified by restriction digestion and sequencing. Next, the puromycin cassette, under the

control of SV40, was cloned into the vector pCDH-Gate-GFP. This selection cassette

was obtained by PCR from the vector pBabe-Puro, available at our plasmid collection.

Both PCR forward primer 5’-CGTTACGTCGACTACGTAGGAATTCGCCAG-3’ and

reverse primer 5’-CTAATGGTCGACTCGTGCGCTCCTTTCGGTC-3’ were designed

with a SalI restriction site, to allow the integration between GFP and the woodchuck

postranscriptional response element (WPRE). The PCR reaction was performed in 40

cycles with the following parameters: binding 30 sec at 95℃, annealing 30 sec at 62℃ and

extension 2 min at 72℃. The synthesized fragment was 1000 bp, and was directly digested

with SalI. It was necessary to introduce a XhoI unique restriction site by site-directed

mutagenesis next to GFP. Complementary primers at 25 bp, except for a single G→C

nucleotide exchange, were designed to generate the overhang 5’-TCGA, also compatible

with SalI. The site-directed mutagenesis reaction was conducted in 14 cycles under the

following conditions: binding 30 sec at 95℃ annealing 30 sec at 66℃ extension 10 min

at 68℃. Once finished, the reaction tube was cooled down to 37℃ and 1 μl of DpnI
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enzyme was added to digest the parental supercoiled dsDNA for 1h at 37℃. Next, the

vector was digested with XhoI and ligated 45 min in a vector:insert ratio of 1:2 at room

temperature. One Shot® ccdB-Survival competent bacteria were transformed with 2 μl

of the ligation reaction, spreaded on ampicillin LB-agar plates and incubated ON at 30℃.

At least five clones were picked and grew ON at 30℃ in ampicillin LB- broth media.

To confirm the insertion of the puromycin cassette, the resulting expression vector was

digested with NcoI. This new expression vector was used for functional assays and was

denominated pCDH-Gate-Puro.

4.2.5 Transformation of plasmid DNA in competent cells

For transformation, at least 200 ng plasmid DNA or 2 μl of recombination reaction were

gently mixed with 50 μl of thawed competent bacteria and incubated on ice for 30 min.

After a 40 sec heat-shock at 42°C and 2 min on ice to cool down, 120 μl SOC medium

was added and the bacteria were incubated for 1 h at 30°(for lentiviral vectors) or 37°C
with shaking. 80-100 μl of transformed bacteria were plated on LB-agar plates with the

corresponding antibiotics and incubated at 30°(for lentiviral vectors) or 37°C ON.

4.2.6 Plasmid DNA purification from transformed bacteria

To screen for positive colonies containing the expected plasmid DNA, at least three

colonies were picked and grew in 3 ml LB-medium with the corresponding antibiotics

overnight at 37°C in an horizontal shaker. Then, plasmid DNA was isolated from 2 ml of

the growing culture with the QiaPrep mini kit according to manufacturers instructions

and analyzed by restriction digestion. Once a positive colony was found, 150 ml of

selection LB-medium was inoculated with 1 ml of the growing culture and incubated at

30°(for lentiviral vectors) or 37°C in an horizontal shaker ON. Plasmid DNA was prepared

with the endoFree Plasmid Midi/Maxi kit according to manufacturer’s instructions and

eluted with 80-100 μl TE buffer pH 8.0.

4.2.7 Agarose gel electrophoresis

DNA gel electrophoresis was performed to separate DNA fragments by size. 1.2 %

agarose gel was prepared by heating v/w agarose in 1x TAE buffer and 2 μl ethidium
bromide. DNA samples mixed with 6x loading dye were subjected to electrophoresis

at 70-90 V for 40 min. According to the expected DNA fragment size, 1-Kb or 100 bp

DNA ladder were simultaneously loaded. DNA bands were detected by UV-light. To

purify expected DNA fragments, bands were cut and transferred into a 1.5 ml reaction

tube. DNA was extracted from the agarose gel using the QIAquick Gel Extraction Kit

according to the manufacturer’s protocol.

4.2.8 RNA Isolation

RNA was isolated from confluent mammalian cells (approximately 1x106 cells) grown in

6-well plates using the RNeasy Mini Kit. Culture medium was removed and cells were
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washed twice with ice-cold 1xPBS. Subsequently, cells were lysed with 2-mercaptoethanol-

containing RLT lysis buffer and treated according to the manufacturer’s instructions.

RNA was eluted with 40μl Nuclease-free water and stored at -80°C. RNA was quantified

by a wave length of 260 nm with a Nanophotometer. To evaluate RNA quality, samples

were measured with the Agilent Bioanalyzer (performed by Ute Ungethuem, Laboratory

for Functional Genomics Charité).

4.3 Cell biology methods

4.3.1 Culture of mammalian cell lines

Cell lines were kept in 75 cm2 flasks under the culture conditions described in the

subsection 4.1.10. Once cells reached 80-90% confluence, medium was removed and they

were rinsed once with 1x PBS and trypsinized with 2 ml trypsin/EDTA solution at

37°C until cells detached from the bottom. The reaction was stopped with 8 ml of fresh

medium followed by suspension by pipetting. Then, cells were pelleted by centrifugation

at 800 rpm for 5 min and resuspended with 10 ml fresh complete medium and seeded in

a ratio 1:10.

4.3.2 Thawing of cell lines

Cryovials containing frozen cells were fast thawed in a water bath at 37°C by gently

shaking. Next, cells were carefully transferred to a 15-ml tube and 10 ml fresh complete

medium were dropwise added and mixed by gently tapping. To remove preservation

medium, cells were centrifuged at 800 rpm for 5 min and resuspended with 10 ml fresh

medium. The cell suspension was seeded in a 75 cm2 flask and incubated at 37°C and

5% CO2.

4.3.3 Cryopreservation of cell lines

Cells grown at 70% confluence were trypsinized as described (subsection 4.3.1). Cell

pellets containing approximately 1x106 cells were resuspended in 2 ml of culture medium

with 10% DMSO and transferred to cryovial tubes. To avoid cell death, cryovials were

frozen gradually in isopropanol-filled container and stored at -80°C overnight. Finally,

cryovials were kept in the gas phase over liquid nitrogen until use.

4.3.4 Proliferation assay

To measure cell growth, a proliferation assay based on the cell metabolic activity was

used. This colorimetric assay is based on the reduction of the tetrazolium dye XTT

to the orange-colored and soluble formazan by mitochondrial oxidoreductases. 1000

208F cells/well in 100 μl culture medium were seeded in 96-well plates in triplicate for

each time point and incubated at 37°C and 5% CO2 overnight. Blank wells containing

only culture medium were simultaneously prepared for each time point to obtain a

background absorbance value. Then, 50 μl XTT solution containing the labeling and an
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electron coupling reagent were added to each well and incubated for at least 4 h before

measurement. Absorbance was quantified in an ELISA plate reader at a wavelength of

490 nm with a reference wavelength of 690 nm. The final cell growth value was obtained

by subtracting the blank value from each sample mean.

4.3.5 Soft agar assay

In order to evaluate the anchorage-independent growth ability of 208F cells carrying

PTPN11 or BRAF mutations, cells were grown in soft agar. 208F fibroblasts in logarith-

mic growth phase were trypsinized and resuspended in 10 ml D10 culture medium (see

subsection 4.3.1). Cells were counted using a Neubauer cell chamber and prepared in

two dilutions (100 and 1000 cells) in duplicate in 1 ml D10 medium pipetting several

times to prepare homogeneous single-cell suspensions. 25 cm2 culture flasks were filled

with 25 ml 37°C pre-warmed 2x D10 medium, followed by 25 ml of 45°C pre-warmed

0.3% agar noble solution and 1 ml of the corresponding cell suspension. After gently

mixing the suspension, the culture flasks were placed on ice for 10-15 min to cool down

and harden the agar. Finally, the cells were incubated vertically at 37°C and 5% CO2

for up to 4 weeks without refreshing the medium and visually monitored for growing

colonies. Visible colonies were quantified for each dilution.

4.3.6 Trasient tansfection of cells

MCF10A, 208F and Cos7 cells were transfected using the following transfection reagents

according to the manufacturer’s protocol: Lipofectamine2000, PEI, Fugene6 and Effectene.

Briefly, 2x104 cells were seeded in 6-well plates and incubated for at least 16 h at 37°C
and 5% CO2. Then, two separate solutions were prepared: 1). 2 μg plasmid DNA were

mixed with 250 μl Optimem and 2). 3 μl transfection reagent diluted 250 μl Optimem. 5

min incubation at room temperature both solutions were dropwise mixed while gently

shaking the reaction tube and incubated 20 min at room temperature. Finally, the

transfection suspension was added dropwise over the cells. After 16 h incubation, old

medium was replaced by fresh culture medium.

Amaxa nucleofection

Additional to the classical chemical-based transfection methods, the gene transfer by

electroporation, or nucleofection, was also tested. 2x106 cells were used to gene transfer 2

μl DNA with the Amaxa nucleofection kit according to the manufacturer’s protocol. 80%

confluent cells were tripsinized (see subsection 4.3.1), quantified and 106 cells pelleted

in 1.5 ml reaction tubes. Cell pellets were shortly resuspended in 100 μl Nucleofector
solution and transfered into a sterile cuvette. After samples were subjected to the

nucleofection with the program T20 in the Nucleofector I Device, 500 μl were added

and cells were tranfered into 6-well plates previuosly filled with 1.5 ml fresh medium.

The following day cell viability was monitored by microscopy and culture medium was

replaced.
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4.3.7 Production of lentiviral particles

The production of lentiviral particles was carried out under biosafety level 2 conditions

in HEK293T cells in 75-cm2 culture flasks, to harvest approximately 20 ml lentiviral

supernatant or 200 μl of concentrated lentiviral particles. 70% confluent HEK293T cells

were trasiently co-transfected with 8.4 μg of the lentiviral expression plasmid, 6 μg of

the packaging psPAX plasmid and 3.6 μg of the envelope pMD2G plasmid using the

CalPhos transfection kit. To prepare the transfection reaction, plasmids were diluted

with 526 μl of the supplied H2O and 74 μl of 2M Calcium solution in a 1.5 ml reaction

tube. Then, this solution was added dropwise into a 15 ml reaction tube containing 600

μl 2x HBS. After 20 min incubation time at room temperature, 1.2 ml of the transfection

solution was added dropwise to the cells and incubated at 37 °C ON. The next morning,

culture media was replaced. Lentivirus-containing supernatant were harvested 48h and

72h after transfection. To remove remaining cell debris, the supernatant was centrifuged

at 4100xg for 15 min at 4 °C and passed through a 0.45 μm filter. To concentrate the

lentiviral particles, 1-volume of 5x PEG-it solution was gently mixed with the filtered

supernatant and incubated ON at 4°C. After 30 min centrifugation by 3070 rpm at 4°C,
the supernatant was carefully discharged and the white pellet containing the lentiviral

particles was resuspended in DMEM a dilution factor 1/100 from the starting volume

(in this case, 200 μl of DMEM). Lentiviral particles were stored at -80 °C.

4.3.8 Lentiviral transduction

2x105 cells were seeded in 6-well plates and incubated overnight at normal cell culture

conditions (see subsection 4.1.10). After medium was replaced with fresh medium

containing 8 μg/ml protamin sulfate, cells were transduced with 15 μl of the corresponding
concentrated lentiviral particles and incubated overnight under biosafety level 2 conditions.

Then, culture medium was carefully replaced after washing the cells twice with 1x PBS.

Cell viability and morphology was supervised under the light microscope. Ectopic

protein expression was evaluated 48h to 72h after transduction. To generate stable

cell populations, transduced cells were selected with puromycin 48h after infection (see

subsection 4.3.9).

4.3.9 Generation of stable transduced cell populations

To generate stable cell lines after lentiviral transduction, cells were cultured and trans-

duced as described in 4.3.8. 48h after infection, cells were trypsinized and seeded into a

75-cm2 culture flask containing a final volume of 10 ml culture medium with 10 μg/ml

puromycin. Cell populations were monitored daily for viability and morphology under the

microscope. Culture medium was replaced every 3rd day until cells were confluent. After

two weeks of culture with selection medium, ectopic protein over-expression was verified

by western blot and positive cell populations were frozen in liquid nitrogen (subsection

4.3.3). For subsequent experiments, cells were always kept in selection medium.
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4.3.10 Generation of stable dox-inducible T-REx-HEK293 isogenic cell

lines

T-REx HEK293 cells were used to generate stable isogenic cell populations that expressed

the tagged protein after doxycycline induction. This cell line harbors a single stably

integrated FRT site that allows the flp-mediated recombination of the expression vector

containing the gene of interest. Two destination vector backbones, designed for the

assays listed in table 4.9, were selected to generate expression clones using the gateway

cloning strategy.

Table 4.9: Assays performed with T-REx-HEK293 cells

Vector backbone Tag Assay

pcDNA5-FRT-TO-N-TAP-
EGFP-Hygro

N-ter TAP Tandem Affinity Purification (TAP)

pcDNA5-FRT-TO-N-YFP-
EGFP-Hygro

N-ter YFP Reverse Phase Protein Array
(RPPA) and Illumina microarrays

One day before co-transfection, 3x105 cells were seeded in 6-well culture plates with D10

high glucose containing 15 μg/ml blasticidin and 100 μg/ml zeocin and incubated at 37°C
and 5% CO2. After replacing the medium with D10 high glucose 1 h prior to transfection,

the reaction was prepared as follows: 0.1 μg of the expression plasmid was mixed with 0.9

μg pOG44 plasmid in 100 μl Optimem. Then, 3 μl of PEI solution was diluted in 100 μl
Optimem. This PEI-mix was gently combined with the plasmid DNA-mix and incubated

for 15 min at room temperature. The transfection mix was added dropwise to the culture

wells and cells were incubated ON at 37°C and 5% CO2. 24 h after transfection, the

medium was replaced with D10 high glucose without rinsing the cells with PBS to avoid

cell detachment. 48 h after transfection, cells were trypsinized and resuspended in 2

ml final volume of D10 high glucose, from which 1 ml was seeded in a 75-cm2 culture

flask and 1 ml in a 10-cm2 culture dish with D10 high glucose containing 15 μg/ml

blasticidin and 100 μg/ml hygromycin for selection of the stable cell clones and posterior

immunobloting for protein expression, respectively. Cells grown for selection were kept

in culture for 2 weeks, replacing the selection medium twice a week, until the clones were

visible and expanded for freezing cell aliquots. To test for tagged protein expression,

cells grown on the 10-cm2 culture dishes were induced with 50 μg/ml doxycycline for

48 h. YFP-tag protein expressing cells were monitored by both fluorescence microscopy

and immunoblot. TAP-tagged protein expression was evaluated by western blot.

4.4 Protein biochemistry methods

4.4.1 Whole cell protein extraction

Protein lysates were prepared from confluent cell cultures grown in 10-cm culture dishes.

Cells were washed twice with ice-cold 1xPBS and lysed with 200 μl M-Per lysis buffer

containing phosSTOP and complete EDTA-free (see 4.1.7) for at least 15 min at 4°C.
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Then, cells were scraped from the dish surface and the cell lysate mix was transfered to

a 1.5 cm reaction tube. To remove cell debris, the lysates were centrifuged 15 min at

13.000 rpm at 4°C. The supernatant containing the protein lysate was then transferred

to a new reaction tube and stored at -80°C until analysis.

4.4.2 Determination of protein concentration

Protein concentration was determined by the bicinchoninic acid (BCA) assay. 5 μl of
the sample lysate were added to 200 μl BCA solution (prepared in a 50:1 proportion,

according to instructions) and incubated for 30 min at 37 °C. A standard concentration

scale with BSA (0.5-10 μg/ml) was also measured. Then, the colorimetric reaction was

quantified in an ELISA reader, and protein concentration was determined according to

the BSA standard concentration.

4.4.3 SDS-polyacrylamid gel electrophoresis

Proteins were separated according to their size by SDS-polyacrylamid gel electrophoresis

(SDS-PAGE). The SDS-polyacrylamid resolving gels were prepared according to the

expected protein size as indicated in 4.1.7, and covered with 1 ml of isopropanol to

obtain a flat surface. After polymerization, the isopropanol was removed entirely and the

stacking gel was poured. At least 40 μg protein lysate were mixed with 2x SDS sample

buffer and heat-denaturated for 5 min at 95 °C. Protein samples and 3 μl PageRuler
Pre-stained Protein Ladder were then loaded onto the gel and run at 70 V for 30 min.

Once the samples reached the resolving gel, the voltage was increased to 115 V.

4.4.4 Western blotting

After proteins were separated by SDS-PAGE, sample proteins were transfered to a

nitrocellulose membrane using a semi-dry blotting chamber. For this, gel, nitrocellulose

membrane and 6 sheets of Whatmann filter paper were rinsed for 5 min in 1x transfer

buffer. Three layers of Whatmann paper were first put on the blotting chamber, followed

by the membrane, the gel and three Whatmann paper sheets. For each gel to transfer,

100 mA were applied, and depending on the protein size, the transfer time varied between

30-80 min (for Ras 30 min, for proteins between 40-80 KDa 1 h and for Gab1 80 min).

After blotting, the membrane was rinsed once in 1x PBS to eliminate traces of methanol

and blocked with a 1:1 1xPBS:Licor blocking solution for 1 h at room temperature. After

washing the membrane with 1x PBST for 5 min, the primary antibody solution was

added and incubated at 4 °C overnight. Then, the membrane was washed four times each

5 min with 1x PBST previous to the incubation with the fluorescent second antibody

solution for 1 h. Again, the membrane was washed four times each 5 min with 1x PBST

and rinsed once in 1x PBS. Finally, the membrane was scanned and analyzed in the

Odyssey Infrared Imaging System.
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4.4.5 Reverse-phase protein array

To quantify protein expression of inducible YFP-T-REx HEK293 cells in a high-throughput

manner, a reverse-phase protein array (RPPA) was performed. The RPPA assay was

performed by Dr. Julia Starmann from the Cancer Genome Research group at the Ger-

man Cancer Research Center (DKFZ, Heidelberg) within the framework of the Mutanom

Consortium. T-REx HEK293 cells were seeded in 6-well plates in triplicate for three

induction time points (0, 24 and 48 h) in different densities: 4x105 (0 h), 3x105 (24 h)

and 2x105 (48 h). For each time point, there was a control group of non-induced cells.

After incubation overnight at 37 °C and 5% CO2, culture medium was replaced and cells

were induced with 50 μg/ml dox for the corresponding time. To prepare protein lysates,

cells were rinsed with ice-cold 1x PBS and 50 μl of M-Per lysis buffer was added. Protein

samples were then prepared and quantified as described (see subsections 4.4.1 and 4.4.2)

and sent for RPPA to the DKFZ. Protein lysates were serially diluted with lysis buffer

and printed onto nitrocellulose coated glass-slides. Slides were blocked overnight at 4

μC with a mix of Licor blocking buffer and PBS containing 1% BSA and 0.02 % NP40.

Then, samples were incubated with the primary antibodies for 2 h and subsequently

washed four times each 5 min with wash buffer (1xPBS, 0.02 % NP40 and 0.02 % SDS).

Then, slides were incubated with secondary antibody for 30 min and washed again four

times each 5 min with wash buffer. Finally, slides were rinsed with water and air-dried

at room temperature (for further details, see Brase et al. (2011)). In order to compare

protein expression against the control cell line N-YFP, median values were calculated and

normalized against the housekeeping protein GAPDH. Then, each value was subjected

to a second normalization against the control group (empty vector N-YFP) among the

same time point and treatment type (induced or non-induced).

4.4.6 Tandem affinity purification

To identify new protein binding partners, a tandem affinity purification (TAP) assay

was performed. The TAP purification was performed by Dr. Artur Muradyan from

the Max Planck Institute for Molecular Genetics (Department of Vertebrate Genomics,

Berlin) and the TAP assay was done by Dr. Gerard Joberty from Cellzome (Heidelberg)

within the framework of the Mutanom Consortium. To obtain approximately protein,

TAP-T-REx HEK293 cells were expanded to 100 15-cm culture dishes. For this, confluent

cells were grown and expanded in thirty 75-cm2 culture flasks until they reached 80 %

confluency. Twenty 15-cm culture dishes were obtained from one culture flask with an

approximate cell density of 2.5x106 cells/dish. After 24h of incubation at 37 °C and 5%

CO2, cells were induced with 50 μg/ml dox. After 48 h of induction, cells were rinsed

twice with ice-cold 1x PBS, harvested with 1xPBS and pelleted by centrifugation at

1000 rpm, 4 °C for 5 min. For the TAP purification, cell lysates were prepared and

bound to IgG sepharose beads at 4 °C for 4 h. After cleavage with the tobacco etch virus

protease (TEV) overnight, the samples were bound to calmodulin-sepharose beads. All

the probes were then eluted from calmodulin beads twice with 40mM TRIS (pH 9) and
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4 % SDS. Eluates were combined and precipitated with TCA/Acetone. Protein pellets

were dissolved in 2x Laemmli buffer (4% SDS, 20% glycerol, 10% 2-mercaptoethanol,

0.004% bromphenol blue and 0.125 M Tris pH 6.8), boiled at 99 °C for 15 min and stored

frozen. For the protein complex identification, samples were resolved in a denaturating

polyacrylamid NuPAGE 4-12 % Bis-Tris gel. After protein fixation, bands were cut out

and proteins were identified by mass spectrometry following isobaric tag for relative

and absolut quantitation (iTRAQ) labelling. The Mascot 2.2 (Matrix Science) software

was used to query peptide mass and fragmentation data. Then, the obtained data were

compared against an internally curated version of the International Protein Index, and

quantification was registered when at least four unique spectra were observed.

4.4.7 Yeast two-hybrid system assay

To identify possible protein-protein interactions of SHP2, a yeast two-hybrid screening

(Y2H) was performed. The Y2H assay was done by Dr. Sean-Patrick Riechers from the

Max Delbrück-Center for Molecular Medicine (Proteomics and Molecular Mechanisms

of Neurodegenerative Diseases Group, Berlin) within the framework of the Mutanom

Consortium. A prey library of approximately 16.000 unique full-length cDNAs was

individually transformed in the L40ccα MATα yeast strain [MATα his3�200 trp1-910

leu2-3,112 ade2 LYS2::(lexAop)4HIS3 URA3::(lexAop)8-lacZ GAL4 gal80 can1 cyh2].

The prey plasmids (pACT4-DM derivatives) coded for a Gal4 activation domain fusion

products. The yeast clones were inoculated in a 384-well format. After 2-3 days of

incubation, the prey matrix was stamped onto SDI (-Leu) agar plates. The bait plasmids

(pBTM116-D9 derivatives coding for LexA DNA binding domain fusions) were introduced

intro a L40ccua MATa yeast strain [MATa his3�200 trp1-901 leu2-3,112 LYS2::(lexAop)4-

HIS3 ura3::(lexAop)8-lacZ ADE2::(lexAop)8-URA3 GAL4 gal80 can1 cyh2]. Bait pools

were made of eight bait strains per pool. To select the protein-protein interactions, diploid

yeasts were spotted onto SDIV (-Leu-Trp-Ura-His) agar plates and nylon membranes

placed on SDIV agar plates. After 5-6 days of incubation at 30 °C, digitalized images

of both agar plates and nylon membranes were assessed for growth and β-galactosidase

activity using the Visual Grid software (GPC Biotech). To confirm protein interactions,

the eight baites from each pool were mated with the positive preys identified in the first

mating screen, After 36 h of incubation, yeast strains were spotted onto SDII agar plates

for selection of diploid cells expression both protein fusions. Yeast colonies that grew

four days later were assayed on SDIV aar plates and nylon membranes. then, a Support

Vector Machine (SVM) score for predicting protein-protein interactions was calculated.

The SVM score considered true or false assumption between known interactions and

random protein pairs in the seven dimensional scoring space: 1). the gene-atlas based

co-expression scoring, 2). known orthologous protein-protein interaction scoring, 3).

protein domain complementarity analysis, 4). and 5). biological process and cellular

component GO term semantic similarity scoring, 6). and 7). shortest path analysis

number and length scoring. Interaction protein pairs were classified into high confidence

(HC), medium confidence (MC) or low confidence (LC), according to the SVM score.
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4.4.8 Co-immunoprecipitation

To validate the data obtained from the TAP assay approach by precipitation of protein

binding partners, a co-immunoprecipitation (co-IP) assay was performed after epidermal

growth factor (EGF) stimulation. 2x106 YFP-TREx HEK293 cells were seeded in 10-cm

culture dishes with 5 ml medium for five stimulation time points (0, 5, 10, 30 and 60 min)

and incubated overnight at 37°C and 5% CO2. Then, YFP-tag protein expression was

induced with 50 μg/ml dox for 48 h. Subsequently, the culture medium was removed and

cells were serum starved for approximately 18 h before EGF stimulation. After the cells

were stimulated with 25 ng/ml human EGF for the indicated time, cells were carefully

rinsed once with ice-cold 1xPBS, schock-frozen on dry ice. Protein lysates were prepared

with 250 μl of M-Per lysis buffer and concentration was determined as described in 4.4.1

and 4.4.2. 1 mg of whole protein was gently mixed with 50 μl of Dynabeads Protein A

overnight at 4 °C by continuous rotation. Then, the supernatant was removed and the

rabbit SHP2 primary antibody diluted in PBST 1:100 was incubated with the magnetic

beads for 3 h at 4 °C with gentle rocking. The protein-bead pellets were carefully washed

three times with 100 μl of M-Per lysis buffer and eluted in 20 μl of 2x SDS sample buffer.

After denaturation at 80°C for 10 min, protein samples were analysed by western blotting

(see subsection 4.4.4). Additionally, a western blot with 40 μg whole protein was also

performed.

4.5 Phenotypic characterization methods

4.5.1 Xenotransplantation

To evaluate the ability of SHP2 mutations to confer an oncogenic potential in 208F cells

that lead to solid tumors in vivo, a xenotransplantation assay on nude mice was done.

This assay was performed by Maria Stecklum (EPO GmbH, Berlin). 208F cells were

seeded in a 75-cm2 culture flasks and grown to confluency. From this initial inoculum,

five 75-cm2 culture flasks were prepared to obtain 5x107 cells. Then, the cells were

trypsinized with 2 ml EDTA-trypsin solution and resuspended in 8 ml of D10 culture

medium. For harvesting, cells were centrifuged for 5 min at 800 x g and resuspended in

500 μl 1x PBS. Cells were kept on ice until inoculation the same day of collection. For

each group, three mice were subcutaneously (s.c.) inoculated with 1x107 cells/100 μl 1x
PBS. Mice were supervised and tumor growth documented every week. After completion

of the growth time, tumors were excised, shock-frozen and stored at -80°C. Tumor size

was measured in two dimensions with a caliper. Individual tumor volume was calculated

with the formula: Volume = 0.5x(length x width2)

4.5.2 Immunohistochemistry

For immunohistological analysis 3 μm thick paraffin sections of tumor tissue from

xenografts from nude mice were dewaxed at 70°C for 20 min and afterwards rehydrated

as follows: three times for 5 min with xylol, twice for 5 min with 100 % ethanol and
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for 3 min with each 96%, 90%, 80% and 70% ethanol and H2O. For antigen retrieval

the sections were incubated in citrate buffer at 100°C for 20 min followed by a slowly

cooling down step for 15 min and incubation for 10 min in 3 % H202 solution. Then,

blocking was carried out with 150 μl Dako Real Peroxidase-Blocking Solution for 30

min in a wet chamber prior to incubation with the rat monoclonal anti-mouse primary

antibody against the endothelial cell marker CD-31 (PECAM1) diluted 1:500 in Dako

Antibody Diluent overnight at 4°C. Binding was detected with the rabbit anti-goat HRP

conjugated secondary antibody (Invitrogen) diluted 1:350. The colored reaction was

detected using the Dako Kit. Next, sections were incubated in haematoxylin for 10 sec

and washed with H2O. Subsequently, each section was covered with cover slides and

sealed with 1:1 xylol:Vitro-Clud (Langenbrink, Germany) and evaluated under the light

microscope.

4.6 Bioinformatic analysis

4.6.1 Microarray experiments and data analysis

To study the gene expression profile of dox-inducible stable SHP2 or BRAF express-

ing HEK-TRex cells, 500 ng of total RNA in 11 μl were labelled and hybridized on

Illumina HumanHT-12 v3 Expression BeadChips (in cooperation with the Genomics

deparment, MPI for molecular genetics and the Laboratory for Functional Genomics

Charité). Following washing and staining, the 12-probe arrays were scanned using the

BeadArray™Reader controlled by the Bead Array Scan Software (version 3.0).

4.6.1.1 Data pre-processing

Raw data was processed with the Illumina BeadStudio Software. Then, background was

subtracted and normalized within each chip using the Bioconductor limma package in

the R software (Smyth, 2004). The mean value of the raw data was calculated from all

arrays, except for the arrays corresponding to BRAF-TRExK499E , which were removed

due to strong hybridization artifacts. The intensity values were adjusted by quantile

normalization and the batch effect was removed. Next, a linear model was fitted to

the expression data for each gene and empirical Bayes method was applied. Then,

p-values were adjusted by a false discovery rate (FDR) correction. To check for possible

batch effects, the top 1000 significantly expressed genes from each array were compared

within the group and a cluster diagram was generated. Next, normalized data were

log2-transformed and quantile-normalized. Differential expressed genes were selected

after a q-value <0.05 and a threshold of <0.7 or >1.4 fold-change. To compare differential

gene expression between wild-type and mutant groups, log2 fold change values were

calculated by subtraction of the mutation-value from wild-type.
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4.6.1.2 Gene Ontology and pathway analysis

To classify the regulated genes of the microarray data in relevant categories, a Gene

Ontology (GO) analysis was performed using the Database for Annotation, Visualization

and Integrated Discovery (DAVID) and the WEB-based Gene Set Analysis Toolkit

(WebGestalt) with a Benjamini-Hochberg multiple test adjustment (adj. p-val <0.05)

and a minimum of two genes for each category. Here, different categories were selected,

according to the three main groups: molecular function (MF), biological process (BP)

and cellular component (CC). As background, the complete list of Ilumina identifiers

was used. To identify genes in a signaling pathway, the enriched Kyoto Encyclopedia of

Genes and Genomes (KEGG) was used.
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Figure A.1: RPPA analysis of AKT, STAT3 and GSK3α β in isogenic SHP2-TREx cells. Shown are
the median values for 0, 24 and 48h of Dox induction after normalization to GAPDH for each time point
and cell line.
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Figure A.2: RPPA analysis of MEK1/2, ERK1/2, Ras and cyclin D1 in isogenic SHP2-TREx cells.
Shown are the median values for 0, 24 and 48h of Dox induction after normalization to GAPDH for each
time point and cell line.
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Figure A.3: RPPA analysis of PI3K-p85α/110α β, mTOR, and p70S6K in isogenic SHP2-TREx cells.
Shown are the median values for 0, 24 and 48h of Dox induction after normalization to GAPDH for each
time point and cell line.
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Figure A.4: RPPA analysis of AKT, STAT3 and GSK3α β in isogenic BRAF-TREx cells. Shown are
the median values for 0, 24 and 48h of Dox induction after normalization to GAPDH for each time point
and cell line.
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Figure A.5: RPPA analysis of MEK1/2, ERK1/2 and mTOR in isogenic BRAF-TREx cells. Shown
are the median values for 0, 24 and 48h of Dox induction after normalization to GAPDH for each time
point and cell line.
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Figure A.6: RPPA analysis of p70S6K and PI3K-p85α/110αβ in isogenic BRAF-TREx cells. Shown
are the median values for 0, 24 and 48h of Dox induction after normalization to GAPDH for each time
point and cell line.
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A.2 Y2H assay

Table A.10: Literature search for SHP2 protein interaction partners.
Common binding targets found in both STRING and UniHI databases.

Gene

ID

Gene

symbol

Name Gene

ID

Gene

symbol

Name

284 ANGPT1 angiopoietin 1 3667 IRS1 insulin receptor substrate 1

338 APOB apolipoprotein B 8660 IRS2 insulin receptor substrate 2

558 AXL AXL receptor tyrosine kinase 8471 IRS4 insulin receptor substrate 4

9564 BCAR1 breast cancer anti-estrogen resistance 1 3716 JAK1 Janus kinase 1

613 BCR breakpoint cluster region 3717 JAK2 Janus kinase 2

151888 BTLA B and T lymphocyte associated 3791 KDR kinase insert domain receptor (a type III

receptor tyrosine kinase)

847 CAT catalase 3802 KIR2DL1 killer cell immunoglobulin-like receptor,

two domains, long cytoplasmic tail, 2

857 CAV1 caveolin 1, caveolae protein, 22kDa 3804 KIR2DL3 killer cell immunoglobulin-like receptor,

two domains, long cytoplasmic tail, 3

867 CBL Cas-Br-M (murine) ecotropic retroviral

transforming sequence

3815 KIT v-kit Hardy-Zuckerman 4 feline sarcoma

viral oncogene homolog

919 CD247 CD247 molecule 4254 KITLG KIT ligand

915 CD3D CD3d molecule, delta (CD3-TCR com-

plex)

3821 KLRC1 killer cell lectin-like receptor subfamily

C, member 1

916 CD3E CD3e molecule, epsilon (CD3-TCR com-

plex)

3845 KRAS v-Ki-ras2 Kirsten rat sarcoma viral

oncogene homolog

917 CD3G CD3g molecule, gamma (CD3-TCR com-

plex)

3903 LAIR1 leukocyte-associated immunoglobulin-

like receptor 1

920 CD4 CD4 molecule 3932 LCK lymphocyte-specific protein tyrosine ki-

nase

961 CD47 CD47 molecule 3953 LEPR leptin receptor

8832 CD84 CD84 molecule 3977 LIFR leukemia inhibitory factor receptor al-

pha

942 CD86 CD86 molecule 11006 LILRB4 leukocyte immunoglobulin-like receptor,

subfamily B (with TM and ITIM do-

mains), member 4

1003 CDH5 cadherin 5, type 2 (vascular endothe-

lium)

8543 LMO4 LIM domain only 4

634 CEACAM1 carcinoembryonic antigen-related cell

adhesion molecule 1

4063 LY9 lymphocyte antigen 9

1398 CRK v-crk sarcoma virus CT10 oncogene ho-

molog (avian)

4067 LYN v-yes-1 Yamaguchi sarcoma viral related

oncogene homolog

1399 CRKL v-crk sarcoma virus CT10 oncogene hom

(avian)-like

5595 MAPK3 mitogen-activated protein kinase 3

1437 CSF2 colony stimulating factor 2 (granulocyte-

macrophage)

4233 MET met proto-oncogene (hepatocyte growth

factor receptor)

1438 CSF2RA colony stimulating factor 2 recep-

tor, alpha, low-affinity (granulocyte-

macrophage)

9019 MPZL1 myelin protein zero-like 1

1439 CSF2RB colony stimulating factor 2 recep-

tor, beta, low-affinity (granulocyte-

macrophage)

4893 NRAS neuroblastoma RAS viral (v-ras) onco-

gene homolog

1441 CSF3R colony stimulating factor 3 receptor

(granulocyte)

9423 NTN1 netrin 1

1445 CSK c-src tyrosine kinase 55824 PAG1 phosphoprotein associated with gly-

cosphingolipid microdomains 1

1493 CTLA4 cytotoxic T-lymphocyte-associated pro-

tein 4

5133 PDCD1 programmed cell death 1

1499 CTNNB1 catenin (cadherin-associated protein),

beta 1, 88kDa

5155 PDGFB platelet-derived growth factor beta

polypeptide

7852 CXCR4 chemokine (C-X-C motif) receptor 4 5159 PDGFRB platelet-derived growth factor receptor,

beta polypeptide

1630 DCC deleted in colorectal carcinoma 5290 PIK3CA phosphoinositide-3-kinase, catalytic, al-

pha polypeptide

1950 EGF epidermal growth factor 5291 PIK3CB phosphoinositide-3-kinase, catalytic,

beta polypeptide

1956 EGFR epidermal growth factor receptor 5294 PIK3CG phosphoinositide-3-kinase, catalytic,

gamma polypeptide

1969 EPHA2 EPH receptor A2 5295 PIK3R1 phosphoinositide-3-kinase, regulatory

subunit 1 (alpha)

2057 EPOR erythropoietin receptor 5296 PIK3R2 phosphoinositide-3-kinase, regulatory

subunit 2 (beta)

2064 ERBB2 v-erb-b2 erythroblastic leukemia

viral oncogene homolog 2,

neuro/glioblastoma derived oncogene

homolog (avian)

8503 PIK3R3 phosphoinositide-3-kinase, regulatory

subunit 3 (gamma)

2065 ERBB3 v-erb-b2 erythroblastic leukemia viral

oncogene homolog 3 (avian)

29992 PILRA paired immunoglobin-like type 2 recep-

tor alpha

2213 FCGR2B Fc fragment of IgG, low affinity IIb, re-

ceptor (CD32); Fc fragment of IgG, low

affinity IIc, receptor for (CD32)

29990 PILRB paired immunoglobin-like type 2 recep-

tor beta
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Gene

ID

Gene

symbol

Name Gene

ID

Gene

symbol

Name (continued)

2321 FLT1 fms-related tyrosine kinase 1 (vascular

endothelial growth factor/vascular per-

meability factor receptor)

5335 PLCG1 phospholipase C, gamma 1

2322 FLT3 fms-related tyrosine kinase 3 5518 PPP2R1A protein phosphatase 2 (formerly 2A),

regulatory subunit A, alpha isoform

10818 FRS2 fibroblast growth factor receptor sub-

strate 2

5617 PRL prolactin

10817 FRS3 fibroblast growth factor receptor sub-

strate 3

5618 PRLR prolactin receptor

2534 FYN FYN oncogene related to SRC, FGR,

YES

5747 PTK2 PTK2 protein tyrosine kinase 2

2549 GAB1 GRB2-associated binding protein 1 2185 PTK2B PTK2B protein tyrosine kinase 2 beta

9846 GAB2 GRB2-associated binding protein 2 5777 PTPN6 protein tyrosine phosphatase, non-

receptor type 6

139716 GAB3 GRB2-associated binding protein 3 5829 PXN paxillin

2690 GHR growth hormone receptor 2889 RAPGEF1 Rap guanine nucleotide exchange factor

(GEF) 1

2885 GRB2 growth factor receptor-bound protein 2 5979 RET ret proto-oncogene

2904 GRIN2B glutamate receptor, ionotropic, N-

methyl D-aspartate 2B

6464 SHC1 SHC (Src homology 2 domain con-

tain)transforming protein 1

3127 HLA-

DRB5

major histocompatibility complex, class

II, DR beta 5

114132 SIGLEC11 sialic acid binding Ig-like lectin 11

3265 HRAS v-Ha-ras Harvey rat sarcoma viral onco-

gene homolog

140885 SIRPA signal-regulatory protein alpha

3448 IFNA14 interferon, alpha 14 27240 SIT1 signaling threshold regulating trans-

membrane adaptor 1

3449 IFNA16 interferon, alpha 16 6504 SLAMF1 signaling lymphocytic activation

molecule family member 1

3440 IFNA2 interferon, alpha 2 114836 SLAMF6 SLAM family member 6

3442 IFNA5 interferon, alpha 5 8651 SOCS1 suppressor of cytokine signaling 1

3443 IFNA6 interferon, alpha 6 9021 SOCS3 suppressor of cytokine signaling 3

3445 IFNA8 interferon, alpha 8 6654 SOS1 son of sevenless homolog 1 (Drosophila)

3454 IFNAR1 interferon (alpha, beta and omega) re-

ceptor 1

10253 SPRY2 sprouty homolog 2 (Drosophila)

3456 IFNB1 interferon, beta 1, fibroblast 6714 SRC v-src sarcoma (Schmidt-Ruppin A-2) vi-

ral oncogene homolog (avian)

3458 IFNG interferon, gamma 6772 STAT1 signal transducer and activator of tran-

scription 1, 91kDa

3459 IFNGR1 interferon gamma receptor 1 6773 STAT2 signal transducer and activator of tran-

scription 2, 113kDa

3460 IFNGR2 interferon gamma receptor 2 6774 STAT3 signal transducer and activator of tran-

scription 3 (acute-phase response factor)

3480 IGF1R insulin-like growth factor 1 receptor 6776 STAT5A signal transducer and activator of tran-

scription 5A

3562 IL3 interleukin 3 (colony-stimulating factor,

multiple)

6777 STAT5B signal transducer and activator of tran-

scription 5B

3563 IL3RA interleukin 3 receptor, alpha (low affin-

ity)

7010 TEK TEK tyrosine kinase, endothelial

3566 IL4R interleukin 4 receptor 8764 TNFRSF14 tumor necrosis factor receptor superfam-

ily, member 14

3567 IL5 interleukin 5 (colony-stimulating factor,

eosinophil)

28755 TRAC T cell receptor alpha constant

3568 IL5RA interleukin 5 receptor, alpha 340205 TREML1 triggering receptor expressed on myeloid

cells-like 1

3569 IL6 interleukin 6 (interferon, beta 2) 7297 TYK2 tyrosine kinase 2

3570 IL6R interleukin 6 receptor 7311 UBA52 ubiquitin A-52 residue ribosomal pro-

tein fusion product 1

3572 IL6ST interleukin 6 signal transducer (gp130,

oncostatin M receptor)

7314 UBB ubiquitin B

3635 INPP5D inositol polyphosphate-5-phosphatase,

145kDa

7316 UBC ubiquitin C

3643 INSR insulin receptor 8633 UNC5C unc-5 homolog C (C. elegans)

3394 IRF8 interferon regulatory factor 8 7525 YES1 v-yes-1 Yamaguchi sarcoma viral onco-

gene homolog 1
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Table A.11: Preys obtained after yeast-two-hybrid with SHP2 wild-type as bait.

Gene ID
Protein name

Co-

expression
Domain

Sem

sim bp

Sem

sim cc
Topo x Topo y

Svm

score
CategoryBait Prey

5781 22921 MSRB2 0.01 0 0.16 0.92 0.54 0.2 1.19 HC

5781 375133 PI4KAP2 0.01 0 0.71 0.74 0.2 0.54 1.15 HC

5781 673 BRAF 1799TA 0.01 1 0.72 0.65 0.2 0.2 1.02 HC

5781 7297 TYK2 0.01 0.96 0.7 0.4 0.99 0.2 1.02 HC

5781 118932 ANKRD22 0.01 0.46 0.54 0.74 0.54 0.2 1 HC

5781 51701 NLK 0.01 0.96 0.61 0.53 0.38 0.2 0.98 HC

5781 26579 MYEOV 0.01 0 0.54 0.74 0.54 0.2 0.97 HC

5781 202500 TCTE1 0.01 0 0.54 0.74 0.54 0.2 0.97 HC

5781 5800 PTPRO 0 0.96 1 0.01 0.99 0.2 0.96 HC

5781 84969 TOX2 0.01 0.46 0.43 0.51 0.54 0.2 0.94 HC

5781 150365 MEI1 0.01 0 0.48 0.74 0.54 0.2 0.94 HC

5781 11019 LIAS 0.01 0 0.36 0.73 0.54 0.2 0.84 HC

5781 3064 HTT 0.01 0.46 0.5 0.52 0.83 0.2 0.84 HC

5781 343263 MYBPHL 0.01 0.76 0 0 0.54 0.2 0.46 HC

5781 23436 CELA3B 0.01 0.46 0.51 0 0.54 0.2 0.37 HC

5781 999 CDH1 1108GC 0.01 0 0.54 0.39 0.92 0.2 0.37 HC

5781 29934 SNX12 0.01 0 0.02 0.74 0.38 0.2 0.31 HC

5781 23769 FLRT1 0.01 0 0.03 0.01 0.54 0.2 0.24 HC

5781 10227 MFSD10 0.01 0 0.05 0.02 0.54 0.2 0.19 HC

5781 5519 PPP2R1B 0.01 0.46 0.54 0.74 0.2 0.2 0.16 HC

5781 3845 KRAS2 C467A 0.01 0.46 0.71 0.36 0.2 0.2 0.03 MC

5781 64396 GMCL1L 0.01 0 0.76 0.36 0.54 0.2 0.02 MC

5781 6788 STK3 0.01 0.96 0.65 0.63 0.54 0.38 -0.03 MC

5781 8061 FOSL1 0.01 0.46 0.53 0.62 0.38 0.38 -0.12 LC

5781 4763 NF1 2033del c 0.01 0.46 0.61 0.35 0.83 0.38 -0.26 LC

5781 6754 SSTR4 0.01 0.46 0.72 0.01 0.38 0.54 -0.3 LC

5781 284001 CCDC57 0.01 0 0.54 0.74 0.2 0.2 -0.31 LC

5781 6122 RPL3 0.01 0.46 0.45 0.65 0.2 0.2 -0.35 LC

5781 89874 SLC25A21 0.01 0 0.04 0.43 0.54 0.2 -0.43 LC

5781 26009 ZZZ3 0.01 0 0.43 0.51 0.54 0.2 -0.49 LC

5781 166793 ZBTB49 0.01 0 0.54 0.47 0.54 0.2 -0.51 LC

5781 10794 ZNF460 0.01 0 0.47 0.49 0.54 0.2 -0.55 LC

5781 374899 ZNF829 0.01 0 0.47 0.49 0.54 0.2 -0.55 LC

5781 3816 KLK1 0.01 0.46 0.42 0.74 0.38 0.54 -0.55 LC

5781 3188 HNRNPH2 0.01 0.46 0.21 0.47 0.2 0.2 -0.73 LC

5781 23466 CBX6 0.01 0 0.46 0.4 0.54 0.2 -0.92 LC

5781 4118 MAL 0 0 0.54 0.33 0.54 0.2 -0.96 LC

5781 64114 TMBIM1 0.01 0 0.54 0.02 0.54 0.2 -0.97 LC

5781 81501 TM7SF4 0.01 0 0.58 0.01 0.54 0.2 -0.97 LC

5781 135927 C7orf34 0.01 0 0.54 0 0.2 0.54 -0.98 LC

5781 5805 PTS 0 0 0.39 0.84 0.54 0.38 -0.99 LC

5781 2189 FANCG 0.01 0 0.66 0.73 0.89 0.38 -0.99 LC

5781 271 AMPD2 0.01 0 0.26 0 0.2 0.38 -1 LC

5781 10169 SERF2 0.01 0 0.54 0.74 0.38 0.38 -1 LC

5781 6697 SPR 0.01 0 0.08 0.75 0.38 0.38 -1 LC

5781 8431 NR0B2 0.01 0 0.6 0.73 0.96 0.38 -1 LC

5781 26574 AATF 0.01 0 0.48 0.49 0.92 0.38 -1 LC

5781 10480 EIF3M 0.01 0 0.44 0.6 0.76 0.38 -1 LC

5781 55658 RNF126 0.01 0 0.54 0.74 0.66 0.38 -1 LC

5781 51621 KLF13 0.01 0 0.43 0.49 0.54 0.38 -1 LC

5781 391104 VHLL 0.01 0 0.55 0.51 0.2 0.38 -1.01 LC

5781 89866 SEC16B 0.01 0 0.02 0.3 0.2 0.38 -1.01 LC

5781 3792 KEL 0.01 0 0.44 0.01 0.38 0.38 -1.01 LC

5781 892 CCNC 0.01 0 0.43 0.51 0.76 0.38 -1.01 LC

5781 8883 NAE1 0.01 0 0.39 0.49 0.76 0.38 -1.01 LC

5781 11282 MGAT4B 0.01 0 0.3 0.18 0.38 0.38 -1.01 LC

5781 6598 SMARCB1 0.01 0 0.41 0.38 0.2 0.2 -1.01 LC

5781 2628 GATM 0 0 0.55 0.57 0.38 0.38 -1.02 LC

5781 3887 KRT81 0.01 0 0.54 0.49 0.2 0.38 -1.02 LC

5781 55048 VPS37C 0.01 0 0 0.2 0.38 0.38 -1.02 LC

5781 8493 PPM1D 0.01 0 0.4 0.51 0.38 0.38 -1.02 LC

5781 55718 POLR3E 0.01 0 0.32 0.51 0.2 0.38 -1.03 LC

5781 468 ATF4 0.01 0.46 0.44 0.32 0.2 0.2 -1.03 LC

5781 10099 TSPAN3 0 0 0.54 0.02 0.2 0.38 -1.04 LC

5781 10899 JTB 0.01 0 0.54 0.23 0.2 0.38 -1.05 LC

5781 28973 MRPS18B 0.01 0 0.5 0.61 0.38 0.38 -1.06 LC

5781 4688 NCF2 0.01 0.91 0.17 0.56 0.76 0.38 -1.07 LC

5781 7541 ZFP161 0.01 0 0.46 0.49 0.2 0.38 -1.08 LC

5781 7745 ZNF192 0.01 0 0.35 0.58 0.54 0.54 -1.14 LC

5781 9367 RAB9A 0.01 0.46 0.26 0.26 0.2 0.38 -1.4 LC

Biological process GO term semantic similarity scoring (Sem sim bp), cellular component GO term semantic
similarity scoring (Sem sim cc), the shortest path length scoring (Topo x), the shortest path length scoring (Topo
y), scoring vector machine (svm). HC: high confidence; MC: medium confidence; LC: low confidence.
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A.3 Tandem affinity purification

Table A.12: Tandem affinity purification assay of SHP2-HEK-TRex cells.

TT42A E76G T42A E76G
ACTB 9 0.9 1.3 CAD 37 1.3 3.7
CLTC 5 1.3 1.3 CALM1 6 1.2 1.0
DHX9 43 0.6 1.7 CAPNS1 34 1.2 1.4
FABP5 4 1.6 1.7 CUL7 101 1.0 2.2
GGAB1 27 7.0 2.8 CUL9 4 0.8 2.1

HIST1H1C 7 1.0 3.7 DDB1 17 1.1 2.0
HNRNPA2B1 19 0.7 2.2 DHX9 4 0.9 2.7

HNRNPA3 6 0.8 2.1 DLG5 10 1.3 0.7
HNRNPC 4 0.7 1.8 EDD1 9 0.9 1.7
HNRNPU 37 0.8 2.7 EEF2 5 1.4 3.9

HNRPA1L-2 14 0.8 2.7 EFTUD2 4 1.0 2.4
HSPA5 12 1.2 1.1 EPPK1 18 2.0 1.6

LRPPRC 4 0.7 1.4 FASN 4 0.9 2.3
MFAP4 5 1.0 0.7 FBXW8 6 1.3 2.4
MPZL1 15 1.7 2.2 FLNA 5 1.6 2.2

MRPS22 7 1.0 1.3 GAB1 9 8.8 7.4
MRPS9 5 0.8 1.7 HNRNPA2B1 5 1.2 1.5

NCL 7 0.9 4.6 HNRNPU 7 1.2 2.0
NPM1 6 0.7 7.6 HSPA5 5 1.1 1.3

PTPN11 1338 1.0 1.0 IRS4 10 1.2 2.8
RPL11 7 0.5 3.1 MAN2C1 84 1.5 1.6
RPL12 5 0.5 3.1 NIN 5 0.7 1.7

RPL23A 8 0.4 4.2 NISCH 8 1.3 2.6
RPL24 5 0.4 6.6 OBSL1 5 1.2 3.4
RPL26 8 0.5 3.6 PNMA2 11 1.4 3.3
RPL30 4 0.5 3.6 PPP2CA 10 1.0 2.8

RPLP0-LIKE 8 0.7 4.4 PPP2R1A 12 1.3 3.3
RPS10 11 0.6 2.2 PPP2R2A 13 1.3 3.0
RPS11 8 0.4 3.2 PTPN11 893 1.0 1.0
RPS13 15 0.4 2.8 RPS10 5 1.4 2.0
RPS15 8 0.5 2.9 RPS19 8 1.2 1.8

RPS15A 8 0.4 2.3 RPS3 7 0.8 0.9
RPS16 6 0.6 2.7 SIRT1 4 1.5 1.6
RPS19 23 0.7 2.1 SNRNP200 12 1.0 2.1
RPS20 5 0.8 2.0 TLN1 4 1.0 1.8
RPS25 8 0.4 2.7 TUBA1A 11 1.1 3.9
RPS3 12 0.5 2.2 UBR4 8 1.0 1.8

RPS3A 7 0.5 2.6 USP11 5 0.9 2.3
RPS4X 9 0.5 4.0 USP9X 14 1.3 3.1
RPS7 11 0.4 2.7 VPS16 5 1.1 3.5

USP11 9 1.2 1.7 VPS18 13 1.1 4.4
VPS41 10 1.4 3.9

22nd TAP

Protein name qusm
Fold change

11st TAP
Fold change

qusmProtein name

Fold change: represents the ratio mutant/wt. Protein below the threshold (0.8-1.4) are light-coloured.
Qusm: quantified unique spectra.
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A.4 Microarray analysis

Table A.13: Significant regulated genes in NS/LS-associated SHP2 mutants

Illumina ID Gene symbol
logFC wt-mutant

T42A E76G E139D I282V T468M

ILMN 1732296 ID3 -1.00 -1.11 -0.92 -1.25 -1.75
ILMN 1704056 RPPH1 -0.79 -0.88 -0.78 -0.91 -1.08
ILMN 1788547 GCLM -0.60 -0.59 -0.72 -0.59 -0.80
ILMN 1862013 NA 0.53 0.63 0.51 0.60 0.63
ILMN 1803945 HCP5 0.92 0.97 0.55 0.73 0.90
ILMN 1752299 RAB6B 0.66 0.60 0.61 0.62 0.77
ILMN 1770940 CDH1 0.85 0.80 0.62 0.65 0.74
ILMN 1704294 CDH3 0.87 0.86 0.70 0.77 1.04
ILMN 1680996 ALOX5 0.87 0.62 0.74 0.73 1.20
ILMN 1776157 SEPT4 0.91 0.73 0.77 0.76 1.13
ILMN 1674236 HSPB1 0.77 0.63 0.78 0.89 0.97
ILMN 1671703 ACTA2 1.03 0.72 0.79 0.97 1.35
ILMN 1672536 FBLN1 0.79 0.81 0.82 0.92 1.22
ILMN 1752199 LHPP 1.18 0.92 0.83 0.89 1.29
ILMN 2077952 GALNT16 1.07 0.70 0.88 0.96 1.06
ILMN 1895327 NA 0.88 0.89 0.90 0.94 1.39
ILMN 2305225 NDRG4 0.93 0.92 0.91 0.99 1.12
ILMN 1779071 FEZ1 1.07 0.92 0.98 1.11 1.49
ILMN 1803423 ARHGEF6 0.93 0.88 0.98 0.65 1.14
ILMN 1723480 BST2 1.18 0.92 0.99 0.95 1.55
ILMN 1740234 GSTO2 1.19 1.15 1.02 0.89 1.33
ILMN 1657111 AHNAK2 0.92 0.78 1.04 0.66 1.22
ILMN 1912171 NA 1.08 0.96 1.05 0.97 1.66
ILMN 2309534 RDM1 1.29 1.11 1.07 1.15 1.43
ILMN 1801246 IFITM1 1.14 0.79 1.07 1.00 1.28
ILMN 1666503 DENND2A 1.09 1.07 1.10 0.82 1.28
ILMN 1765446 EMP3 1.00 0.93 1.11 0.80 1.06
ILMN 1769520 UBE2L6 1.26 1.19 1.15 1.45 1.60
ILMN 1779015 ZNF467 1.13 0.95 1.15 1.13 1.32
ILMN 1708778 ASS1 1.16 0.76 1.21 1.01 1.86
ILMN 1709257 RIPPLY3 1.42 1.02 1.32 1.61 2.10

Each logFC value was obtained after subtraction from the corresponding
gene in the wild-type group. For better understanding of the data, each
value was multiplied by -1. All listed genes were selected with a fold-
change of <0.7 and >1.4 (ratio <-0.5 and >0.5) with a adjusted p-val
of <0.05.
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Table A.14: Significant regulated genes in cancer- and CFC-associated BRAF
mutants

Illumina Ids Gene symbol
logFC wt-mutant

Illumina Ids Gene symbol
logFC wt-mutant

S467A Q257R L485F V600E S467A Q257R L485F V600E

ILMN 1757497 VGF 4.17 3.20 4.11 3.56 ILMN 2188862 GDF15 4.37 3.34 3.56 3.32
ILMN 1751607 FOSB 2.59 2.21 3.45 2.55 ILMN 1780255 KLK6 1.94 1.55 3.45 2.65
ILMN 1677402 C11orf96 4.01 2.87 3.25 2.47 ILMN 1798256 UPP1 3.02 1.94 2.70 2.10
ILMN 1762899 EGR1 3.03 2.78 2.91 2.33 ILMN 2086077 JUNB 3.09 2.05 2.39 2.03
ILMN 1711566 TIMP1 2.26 1.93 2.55 2.27 ILMN 1867119 NA 2.70 1.77 2.75 1.95
ILMN 1711120 ARC 2.37 1.78 2.56 2.19 ILMN 2232463 ARL14 2.00 1.69 2.07 1.85
ILMN 1687978 PHLDA1 2.19 1.39 1.75 1.78 ILMN 1769013 ASGR1 2.57 2.18 2.36 1.78
ILMN 1669523 FOS 1.50 1.51 1.99 1.55 ILMN 1775708 SLC2A3 2.71 2.00 2.33 1.65
ILMN 1703123 CSRNP1 2.31 1.57 2.02 1.49 ILMN 2357134 SPHK1 1.70 1.30 2.05 1.55
ILMN 1714861 CD68 2.08 1.56 2.42 1.41 ILMN 1775224 NOS3 1.53 1.25 1.94 1.33
ILMN 1723978 LGALS1 1.60 1.13 1.94 1.37 ILMN 2157099 CCNA1 1.86 1.30 1.76 1.32
ILMN 1659936 PPP1R15A 1.70 1.20 1.97 1.37 ILMN 2208903 CD52 2.18 1.21 2.36 1.24
ILMN 1699931 HCST 1.60 1.08 1.63 1.30 ILMN 1884160 NA 1.24 1.23 2.81 1.21
ILMN 1699829 CTGF 1.14 1.12 1.75 1.29 ILMN 2384745 PSG4 1.17 1.30 2.25 1.15
ILMN 1736078 THBS4 1.37 0.96 0.81 1.29 ILMN 2355831 FHL2 1.11 0.83 1.05 1.12
ILMN 1689004 TNFRSF12A 2.04 1.66 1.69 1.28 ILMN 2367883 GEM 1.65 0.89 1.48 1.11
ILMN 1743199 EGR2 1.96 1.60 1.90 1.16 ILMN 1768534 BHLHE40 2.07 1.48 1.80 1.08
ILMN 1686623 CSF1R 1.11 0.78 1.78 1.11 ILMN 1813704 CEMIP 0.80 0.78 1.05 1.02
ILMN 1652185 IL4R 1.31 0.84 1.19 1.10 ILMN 2211065 TMEM91 1.44 1.02 1.30 1.02
ILMN 1725271 GPR3 1.31 1.24 1.68 1.02 ILMN 2286014 CATSPER2 1.15 0.87 1.26 0.99
ILMN 1663042 SDC4 0.97 0.81 1.27 1.00 ILMN 1769299 MTMR11 1.06 0.84 1.46 0.97
ILMN 1725726 DHRS2 0.77 0.86 1.68 0.99 ILMN 2188264 CYR61 1.34 0.82 1.06 0.94
ILMN 1658847 NRARP 1.71 0.96 1.39 0.99 ILMN 2121408 HBEGF 1.00 0.74 1.19 0.94
ILMN 1666733 IL8 1.45 1.30 2.79 0.93 ILMN 1778136 ZMYND15 1.56 1.05 1.34 0.92
ILMN 1667239 INPP1 1.53 1.03 1.31 0.87 ILMN 2387090 CGGBP1 1.08 0.74 1.27 0.90
ILMN 1742332 KCTD12 1.59 1.31 1.96 0.84 ILMN 1794017 SERTAD1 1.42 0.95 1.71 0.88
ILMN 1662390 ASPHD1 1.13 0.69 1.08 0.79 ILMN 1803429 CD44 0.98 0.97 1.57 0.84
ILMN 1677691 NA 0.88 0.74 0.92 0.77 ILMN 2397028 SERPINB8 1.01 0.64 1.50 0.75
ILMN 1661631 LILRA3 0.91 0.76 1.59 0.72 ILMN 1904238 NA 0.88 0.73 1.41 0.74
ILMN 1761762 NA 0.65 0.67 1.04 0.70 ILMN 1777881 TSPAN17 1.11 0.65 1.16 0.73
ILMN 1706579 SHBG 1.06 0.73 1.09 0.69 ILMN 1771376 PEA15 0.99 0.71 1.13 0.72
ILMN 1718960 SERPINB8 1.05 0.67 1.45 0.68 ILMN 2368971 PSMD12 0.65 0.50 0.92 0.72
ILMN 1724782 NA 1.16 0.86 1.39 0.67 ILMN 1805192 ITPRIP 1.04 0.64 0.85 0.71
ILMN 1723953 NA 0.95 0.64 1.11 0.63 ILMN 2064860 NA 0.91 0.52 0.79 0.70
ILMN 1671263 CACNA1H 1.24 0.74 0.85 0.62 ILMN 2188119 ARL16 0.62 0.60 0.62 0.69
ILMN 1658569 NA 0.90 0.57 0.94 0.62 ILMN 2041190 F2RL1 0.84 0.69 0.82 0.67
ILMN 1721922 NAB2 0.98 0.69 0.89 0.61 ILMN 2349071 GPR64 1.02 0.65 0.85 0.66
ILMN 1680139 MAFF 0.90 0.62 1.06 0.61 ILMN 1788223 RSPH3 1.17 0.73 1.00 0.63
ILMN 1751615 COQ10B 1.10 0.70 0.92 0.61 ILMN 2179083 LOXL4 1.04 0.83 0.97 0.62
ILMN 1699160 ITK 1.04 0.68 1.37 0.60 ILMN 1788203 HEY1 0.96 0.69 0.79 0.62
ILMN 1680856 MAMLD1 1.13 0.64 0.85 0.57 ILMN 1789244 SOX8 1.18 0.61 0.86 0.60
ILMN 1691364 STAT1 0.98 0.74 0.81 0.54 ILMN 2220187 GFPT1 0.69 0.66 0.79 0.60
ILMN 1719543 MAF 0.87 0.63 0.77 0.54 ILMN 1812070 ABCB1 0.89 0.78 1.31 0.60
ILMN 1729453 TSPAN9 0.77 0.57 0.67 0.52 ILMN 1795298 GPER1 0.75 0.79 1.14 0.59
ILMN 1752046 SH2B3 0.59 0.64 0.77 0.50 ILMN 2219618 AOC4P 0.82 0.67 0.92 0.58
ILMN 1715424 KLHL10 0.92 0.58 1.00 0.49 ILMN 2384056 GPER1 0.72 0.72 1.04 0.55
ILMN 1659142 MDK -0.90 -0.69 -0.76 -0.52 ILMN 1763265 CHMP1B 0.75 0.49 0.79 0.49
ILMN 1696099 ALDH4A1 -1.00 -0.62 -1.13 -0.52 ILMN 1805807 SLC30A3 0.72 0.62 0.81 0.49
ILMN 1674038 CTSD -0.95 -0.56 -0.88 -0.54 ILMN 1764970 JMJD1C 0.59 0.62 0.71 0.49
ILMN 1715024 LSS -0.67 -0.59 -0.86 -0.54 ILMN 2405991 TRAF7 -0.80 -0.59 -1.16 -0.52
ILMN 1715384 B3GNT1 -0.80 -0.57 -1.16 -0.55 ILMN 2345016 PTGES2 -0.87 -0.64 -0.73 -0.54
ILMN 1726410 APRT -0.92 -0.66 -1.08 -0.56 ILMN 2362126 AGAP3 -0.76 -0.55 -0.80 -0.55
ILMN 1712583 METRN -1.10 -0.80 -1.31 -0.56 ILMN 2075065 FADS2 -0.95 -0.66 -1.05 -0.57
ILMN 1701966 FIRRE -0.62 -0.52 -0.53 -0.56 ILMN 2338963 SLC29A1 -0.79 -0.55 -0.91 -0.58
ILMN 1714445 SLC6A9 -0.75 -0.68 -0.58 -0.57 ILMN 1785731 MAPK8IP2 -1.47 -0.76 -1.10 -0.60
ILMN 1660965 PRR22 -1.11 -0.55 -0.69 -0.58 ILMN 1780799 ENPP2 -1.10 -0.76 -1.01 -0.61
ILMN 1742507 LRRC45 -0.99 -0.56 -0.75 -0.58 ILMN 2131936 NA -0.69 -0.56 -0.61 -0.62
ILMN 1697812 MNX1 -0.83 -0.61 -1.01 -0.60 ILMN 1769702 GPAA1 -0.95 -0.62 -1.04 -0.64
ILMN 1736575 TRIM28 -1.15 -0.76 -1.24 -0.60 ILMN 2144401 GLB1L2 -1.18 -0.68 -1.17 -0.65
ILMN 1730307 MED16 -0.98 -0.68 -1.11 -0.61 ILMN 1813671 SLC25A1 -1.04 -0.68 -1.22 -0.66
ILMN 1657968 MAP2K2 -0.95 -0.83 -1.17 -0.62 ILMN 1783444 DVL1 -0.81 -0.66 -0.97 -0.66
ILMN 1704672 NABP2 -1.37 -0.71 -0.95 -0.62 ILMN 2295620 MAZ -1.37 -0.79 -1.77 -0.71
ILMN 1722898 SFRP2 -0.57 -0.53 -0.67 -0.62 ILMN 2346769 FAM189B -1.19 -0.70 -1.29 -0.77
ILMN 1722491 APRT -1.11 -0.75 -1.14 -0.63 ILMN 1804522 CCDC47 -1.10 -0.77 -0.93 -0.82
ILMN 1668960 MID1IP1 -0.65 -0.65 -0.87 -0.65 ILMN 2248725 TYSND1 -1.09 -0.75 -1.00 -0.83
ILMN 1657347 PODXL2 -0.90 -0.63 -0.85 -0.67 ILMN 2399523 JAG2 -1.15 -0.89 -1.48 -0.84
ILMN 1754827 LRRC45 -0.91 -0.56 -0.85 -0.67 ILMN 2386205 C21orf33 -0.80 -0.61 -1.04 -0.87
ILMN 1723971 SLC29A1 -1.19 -0.66 -1.09 -0.72 ILMN 2409793 MAZ -1.61 -0.78 -1.65 -0.87
ILMN 1660288 ZNF503-

AS2
-1.00 -0.62 -0.92 -0.79 ILMN 1794595 GAMT -1.23 -0.75 -1.29 -0.89

ILMN 1669321 MATK -0.74 -0.58 -0.84 -0.81 ILMN 2175317 CYP4X1 -1.93 -1.14 -1.92 -0.96
ILMN 1674785 COL2A1 -0.82 -0.67 -1.27 -0.81 ILMN 2275803 LRRC45 -1.35 -0.78 -1.18 -0.97
ILMN 1691861 FASTK -0.97 -0.73 -0.84 -0.82 ILMN 1765640 MAZ -1.58 -0.84 -1.62 -1.10
ILMN 1708743 NT5DC2 -1.40 -0.76 -1.46 -0.84 ILMN 1779356 TP53 -1.75 -0.88 -1.53 -1.11
ILMN 1755582 PCSK1N -1.46 -0.83 -1.24 -0.88 ILMN 2227968 NTHL1 -1.73 -0.99 -2.07 -1.14
ILMN 1682812 C21orf33 -0.90 -0.71 -1.18 -0.92 ILMN 2276952 TSC22D3 -1.47 -1.06 -1.38 -1.21
ILMN 1673681 SLC46A1 -1.13 -0.69 -0.67 -0.95 ILMN 2376403 TSC22D3 -2.41 -1.32 -2.01 -1.52
ILMN 1728645 STMN3 -1.59 -0.87 -1.51 -0.96 ILMN 1805132 PCDH19 -2.30 -1.04 -1.96 -2.07

ILMN 1748124 TSC22D3 -2.07 -1.10 -1.61 -1.16

ILMN 1716237 ACOT2 -1.34 -0.91 -1.26 -1.18

Each logFC value was obtained after subtraction from the corresponding gene in the wild-type group. For
better understanding of the data, each value was multiplied by -1. All listed genes were selected with a
fold-change of <0.7 and >1.4 (ratio <-0.5 and >0.5) with a adjusted p-val of <0.05.
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Table A.15: Overlapping regulated genes between NS/LS-associated SHP2
mutations and BRAFV 600E

Illumina ID Gene
symbol

T468M Illumina ID Gene
symbol

I282V Illumina ID Gene symbol E76G

ILMN 1681679 TSPO 1.51 ILMN 1674785 COL2A1 1.40 ILMN 2393296 GK 1.15
ILMN 2393296 GK 1.78 ILMN 1789627 NA 1.18 ILMN 2131936 NA -1.05
ILMN 1725471 GK 1.62 ILMN 1765796 ENO2 0.84 ILMN 1725471 GK 1.05
ILMN 2349658 TSPO 1.39 ILMN 1862013 NA 0.60 ILMN 1862013 NA 0.63
ILMN 2276952 TSC22D3 1.58 ILMN 2108735 EEF1A2 0.92 ILMN 2120695 TSPAN7 0.95
ILMN 1797668 INSM1 1.14 ILMN 1690464 SLC35G1 -0.83 ILMN 2184184 ANXA1 1.46
ILMN 2376403 TSC22D3 1.78 ILMN 1690170 CRABP2 1.84 ILMN 2072622 ERVMER34-1 -0.72
ILMN 1664861 ID1 -1.27 ILMN 1734814 HSPA4 -0.72 ILMN 1729596 INF2 -0.75

ILMN 2131293 ALG1L 0.97 ILMN 1809291 TSPAN7 0.86
ILMN 1668960 MID1IP1 0.75 E139D ILMN 2052373 RAB17 0.64

ILMN 2260991 TSPO 0.85 ILMN 2393296 GK 1.31 ILMN 1805807 SLC30A3 0.66
ILMN 1748124 TSC22D3 1.59 ILMN 1725471 GK 1.24 ILMN 2390853 CTSH 0.96
ILMN 1862013 NA 0.63 ILMN 1681679 TSPO 0.91 ILMN 1849494 EFR3B 0.60
ILMN 1765796 ENO2 0.86 ILMN 1901770 NA -1.03 ILMN 1765796 ENO2 0.66
ILMN 1789627 NA 1.07 ILMN 2349658 TSPO 0.81 ILMN 2108735 EEF1A2 0.79
ILMN 2131936 NA -0.92 ILMN 2276952 TSC22D3 1.03 ILMN 1762899 EGR1 2.59
ILMN 1718972 MFSD3 0.77 ILMN 1789627 NA 0.98 ILMN 1757467 H1F0 0.96
ILMN 1660965 PRR22 -0.84 ILMN 2227757 PCDHB2 0.63 ILMN 1901770 NA -0.82
ILMN 2110908 MYC 1.10 ILMN 2131293 ALG1L 0.73 ILMN 2371055 EFNA1 0.61
ILMN 2319000 MATK 1.05 ILMN 1862013 NA 0.51 ILMN 1695311 HLA-DMA 0.62
ILMN 1669321 MATK 0.82 ILMN 2108735 EEF1A2 0.80 ILMN 1754969 LMCD1 0.73
ILMN 1729596 INF2 -0.76 ILMN 1797668 INSM1 0.75 ILMN 2315979 LBH 0.75
ILMN 2120695 TSPAN7 0.88 ILMN 1712774 IRS4 0.69 ILMN 1664861 ID1 -0.80
ILMN 1901770 NA -0.95 ILMN 1729596 INF2 -0.67 ILMN 2349071 GPR64 0.71
ILMN 1886846 NA 0.81 ILMN 2376403 TSC22D3 1.19 ILMN 1687501 MOXD1 0.53

ILMN 1812976 DDX54 -0.87 ILMN 1805807 SLC30A3 0.63
ILMN 1902929 NA -0.65 ILMN 1762899 EGR1 2.53 E76D

ILMN 2390853 CTSH 1.00 ILMN 2319000 MATK 0.87 ILMN 1681679 TSPO 1.03
ILMN 1880982 NA 0.82 ILMN 1660965 PRR22 -0.65 ILMN 1725471 GK 1.11
ILMN 2385173 U2AF2 -0.80 ILMN 1665425 RPRM 1.00 ILMN 2393296 GK 1.12
ILMN 1807719 CTNS -0.90 ILMN 1765796 ENO2 0.60 ILMN 1862013 NA 0.64

ILMN 1690170 CRABP2 1.79 ILMN 1669321 MATK 0.64

ILMN 2203588 MYL5 0.73 E76K

ILMN 1805807 SLC30A3 0.66 T42A ILMN 1862013 NA 0.70

ILMN 1712774 IRS4 0.70 ILMN 1725471 GK 1.39 ILMN 2108735 EEF1A2 0.96

ILMN 1653432 HNRNPDL 0.79 ILMN 2393296 GK 1.36

ILMN 1701918 KLHDC9 0.50 ILMN 1789627 NA 1.07
ILMN 1809291 TSPAN7 0.81 ILMN 2052373 RAB17 0.76
ILMN 1659086 NEFL 0.52 ILMN 1681679 TSPO 0.72
ILMN 1813837 C9orf9 0.60 ILMN 2319000 MATK 1.03
ILMN 1746948 MYL5 0.66 ILMN 1666594 IRF8 0.81
ILMN 1674038 CTSD -0.72 ILMN 1901770 NA -0.94
ILMN 1716733 MYOM2 1.05 ILMN 1862013 NA 0.53

Each logFC value was obtained after subtraction from the corresponding gene in the wild-type group. For
better understanding of the data, each value was multiplied by -1. All listed genes were selected with a
fold-change of <0.7 and >1.4 (ratio <-0.5 and >0.5) with a adjusted p-val of <0.05.
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Table A.16: GO analysis and heatmap of commonly regulated genes in CFC-associated and V600E
BRAF HEK-TREx cells

.

Group GO-ID Name Hits Size adj. P-val

BP

GO:0048513 organ development 41 2421 7.00E-04
GO:0000003 reproduction 28 1475 2.80E-03
GO:0022414 reproductive process 28 1470 2.80E-03
GO:0009888 tissue development 27 1377 2.80E-03
GO:0090196 regulation of chemokine secretion 3 8 3.40E-03
GO:0050793 regulation of developmental process 26 1351 3.60E-03
GO:0044702 single organism reproductive process 22 1066 4.20E-03
GO:0032504 multicellular organism reproduction 15 588 4.60E-03
GO:0048870 cell motility 19 869 4.60E-03
GO:2000145 regulation of cell motility 12 407 4.60E-03
GO:0007166 cell surface receptor signaling pathway 34 2194 4.60E-03
GO:0050896 response to stimulus 71 6110 4.60E-03
GO:0031325 positive regulation of cellular metabolic process 30 1795 4.60E-03
GO:0002009 morphogenesis of an epithelium 11 357 7.00E-03
GO:0030154 cell differentiation 37 2509 7.00E-03
GO:0043009 chordate embryonic development 13 491 7.00E-03
GO:1901342 regulation of vasculature development 7 156 8.50E-03
GO:0016477 cell migration 17 804 8.50E-03

MF
GO:0003690 double-stranded DNA binding 7 142 9.90E-03
GO:0008134 transcription factor binding 11 391 1.32E-02
GO:0008083 growth factor activity 5 150 6.49E-02
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