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Abstract

In the last decades, accelerator based synchrotron radiation (SR) has become a
central tool for spectroscopic and structural imaging of samples for a wide range of
scientific fields, including solid state physics, life science and information technology.
The increasing demand for high brilliance and short pulse length is continuously
leading to the upgrade or new construction of SR facilities, among which BESSY
Variable Pulse Length Storage Ring (BESSY VSR) is the upgrade project for the
third generation light source BESSY II, located at Helmholtz-Zentrum Berlin für Ma-
terialien und Energie GmbH (HZB), Germany. It will provide a previously uncovered
time regime of intense ps bunches in a multi-user facility, achieved by the novel con-
cept of utilizing super conducting (SC) multi-cell cavities. New technological and
accelerator physical challenges need to be addressed. This includes coupled bunch
effects, a beam-cavity interaction that causes coupled bunch instabilities (CBIs) and
transient beam loading. The former are transverse or longitudinal bunch oscillations
that spoil the beam quality and the latter is a steady distortion of the longitudinal
dynamics, introduced by unevenness in the bunch fill pattern affecting the bunch
length and synchronous phase.
In the scope of this thesis, the strength of CBIs driven by longitudinal monopole

higher order modes (HOMs) and transverse dipole and quadrupole HOMs is evalu-
ated for BESSY VSR, based on analytic calculations and tracking simulations, and
compared to the performance of an active bunch-by-bunch feedback (BBFB). Algo-
rithms for tracking codes are derived, and a semi-empirical formula for the estimation
of transverse quadrupole CBIs is presented. CBI studies are an integral part of the
benchmarking of the cavity models for BESSY VSR and have been accompanying
and influencing their entire design process. Based on the BESSY VSR cavity model
with highly advanced HOM damping, beam stability is likely to be reached with a
BBFB system, independent of the bunch fill pattern. Additionally, measurements
of CBIs have been performed at BESSY II and the Metrology Light Source of the
Physikalisch-Technische Bundesanstalt (MLS), where the longitudinal long range
impedance was characterized.
Transient beam loading is evaluated by means of analytic formulas and new exper-

imentally verified tracking codes. For the baseline bunch fill pattern of BESSY VSR,
it is shown that the particular setup of cavity frequencies amplifies the transient ef-
fect on the long bunch, limiting its elongation and potentially resulting in increased
Touschek losses, which has already triggered studies regarding alternative bunch fill
pattern.

Keywords: collective effects, coupled bunch instabilities, short bunches,
synchrotron light source, transient beam loading
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Zusammenfassung

Von Elektronenbeschleunigern erzeugte Synchrotronstrahlung hat sich in den letz-
ten Jahrzehnten zu einem zentralen Werkzeug für spektroskopische und strukturelle
Analysen in vielen Wissenschaftsbereichen entwickelt, einschließlich Festkörperphy-
sik, Lebenswissenschaften, und Informationstechnologie. Der steigende Bedarf nach
hoher Brillanz und kurzen Pulsen führt zum Um- und Neubau von Synchrotron-
strahlungsquellen. BESSY Variable Pulse Length Storage Ring (BESSY VSR) ist das
Ausbauprojekt von BESSY II, einer Synchrotronstrahlungsquelle der dritten Gene-
ration des Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) in
Deutschland. Durch den neuartigen Einsatz von supraleitenden mehrzelligen Hohl-
raumresonatoren wird es intensive Elektronenpakete (Bunche) in einem bisher nicht
abgedeckten Picosekundenzeitbereich bieten. Neue technologische und beschleuniger-
physikalische Herausforderungen müssen darin adressiert werden, einschließlich der
gekoppelten Effekte auf Elektronenpakete. Ursprung des obigen Effekts ist die Strahl-
Hohlraumresonator-Wechselwirkung, die zu einer Multibunch-Instabilität (MBI) füh-
ren kann, bei der longitudinale oder transversale Elektronenpaketoszillationen die
Strahlqualität zerstören. Außerdem kann sie bei Variationen in der Speicherringfül-
lung zu transienter Strahllast (engl. beam loading) führen, welche die Länge und
synchrone Phase der Elektronenpakete stört.
Im Rahmen dieser Dissertation wird die Stärke der MBI, die von longitudina-

len Dipol-, transversalen Dipol- und Quadrupolschwingungsmoden höherer Ordnung
getrieben werden mithilfe von analytischen Rechnungen und Trackingsimulationen
untersucht und mit dem vorhanden aktiven Dämpfungssystem verglichen. Algorith-
men für Trackingsimulationen werden hergeleitet und eine halbempirische Formel zur
Abschätzung der transversalen quadrupolaren MBI wird präsentiert. MBI Studien
bilden einen wesentlichen Teil der Beurteilung der BESSY VSR Hohlraumresonato-
ren und begleiteten und beeinflussten ihren Entwicklungsprozess. Mit Berechnungen
auf Grundlage des neusten BESSY VSR Hohlraumresonatormodels kann Strahlsta-
bilität als wahrscheinlich und unabhängig vom Füllmuster angesehen werden. Des
weiteren wurden Messungen der MBI an BESSY II und der Metrology Light Sour-
ce (MLS) der Physikalisch-Technischen Bundesanstalt durchgeführt, bei welcher die
longitudinale langreichende Impedanz charakterisiert wurde.
Transiente Strahllast wird in dieser Arbeit mit analytischen Formeln und neuen,

experimentell überprüften Trackingsimulationen berechnet. Für das Standardfüll-
muster von BESSY VSR wurde gezeigt, dass die besondere Konfiguration der Hohl-
raumresonatorfrequenzen zu einer relativ starken Beeinflussung der langen Elektro-
nenpakete führt. Diese verkürzt das Elektronenpaket und vergrößert die Touschek-
verluste, was bereits Studien bezüglich alternativen Füllmustern anstieß.

Schlagwörter: Kollektive Effekte, Kurze Elektronenpakete, Multibunch-Instabilitä-
ten, Synchrotronstrahlungsquelle, Transiente Strahllast
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1. Introduction
The first section of this chapter, Section 1.1, shortly introduces synchrotron radiation,
accelerator based sources and its relevance for the scientific community.
After that, the BESSY II [1] storage ring and the concept of BESSY Variable Pulse

Length Storage Ring (BESSY VSR) [2] are described in Sections 1.2 and 1.3 alongside an
introduction to selected aspects of beam dynamics, necessary to follow the discussions in
this thesis.
Finally, the specific topic of coupled bunch effects is introduced in Section 1.4, and its

particular importance for BESSY VSR is highlighted, leading to the motivation of this
thesis.

1.1. Synchrotron Radiation
Synchrotron radiation (SR) is the electromagnetic radiation emitted by ultra-relativistic
charged particles when they are accelerated perpendicular to their trajectory. For in-
stance, relativistic electrons passing through magnetic fields will generate SR.
Due to the Lorentz boost from the ultra-relativistic electrons to the laboratory frame,

the SR is shifted to high photon energies and is radiated in a cone directed forward parallel
to the momentary velocity vector of the electrons with a half opening-angle of θ ≈ 1/γ,
inversely proportional to the Lorentz factor γ. In typical synchrotron light sources with
electron energies in order of 1 GeV to 10 GeV, the SR is a highly collimated photon beam
with a small divergence and small source size defined by the properties of the electron
beam. The energy spectrum of the SR created in a bending magnet is continuous with
its maximum at a photon energy in the order of a few keV, depending on the electron
energy and the magnetic field.
Since its first observation in 1947 [3], SR has become an increasingly demanded and

indispensable tool for a wide range of scientific communities. At present SR facilities, the
SR is used from THz radiation up to hard x-ray photons in the order of 100 keV for a
large variety of experiments, where the interaction of the photons with the sample matter
reveals its properties that are otherwise inaccessible.
The scientific questions addressed with the experiments with SR cover many of the

grand scientific and societal challenges of mankind, including energy technologies, envi-
ronmental remediation, climate change, information technology, material science, chem-
istry, biology and medicine [4]. More specifically, spectroscopic and structural imaging

1



1. Introduction

of nanoscale regions of homogeneous or inhomogeneous materials can be performed with
nm spatial resolution and the temporal evolution of electrons, spins, atoms and chemical
reactions can be studied down to the fs range [4]. For instance, modern molecular biology
would not exists without the high-throughput determination of the structures of proteins
by x-ray crystallography performed at SR facilities [4]. Additionally, SR can serve as
a primary source standard, as done for example at the Metrology Light Source of the
Physikalisch-Technische Bundesanstalt (MLS) [5].
The SR used for experiments is produced in bending magnets or insertion devices (IDs).

An ID consists of a series of alternatingly oriented magnets that force the beam on an
undulated path where the emitted SR can coherently interact leading to an intense photon
beam. Depending on the field strength and period length of the magnets, an ID may be
called undulator, wiggler or wavelength shifter. In the former, the emitted synchrotron ra-
diation is monochromatic, otherwise, a continuous spectrum is found, similar as produced
by bending magnets.
Depending on the particular experiment, important figures of merit of the SR include

photon flux, brightness, i. e., flux per solid angle, brilliance, i. e., brightness per spot size,
coherence and the time structure of the pulsed photon beams.
The first experiments with SR were performed parasitically at electron or positron

storage rings dedicated for high energy physics. They are called first generation light
sources.
The second generation synchrotron light sources are electron or positron storage rings

dedicated for the generation and usage of SR with the first being Tantalus [6].
As the demand of the users of SR continuously increases in terms of the quality of the

photon beam, the third generation synchrotron light sources were optimized to deliver
a much smaller beam emittance, i. e., transverse beam size and divergence, leading to
higher brilliance and are designed to provide space for many IDs. The bunch length
in third generation synchrotron light sources is typically in the order of 10 ps to 100 ps.
BESSY II is a typical third generation synchrotron light with a focus primarily on the
soft x-ray regime.
Presently, the development in accelerator based light sources continues in three direc-

tions.
First, improvements of the electron storage ring based light sources are emerging, con-

sidered as an enhanced third generation where recent technological advances are utilized
and well established schemes are optimized, leading to a reduction of the emittance by
about one to two orders of magnitude [7], with the MAX IV 3.0 GeV storage ring [8]
the first of its kind. The trend is towards the so called diffraction limited light sources,
where an additional reduction of the beam emittance no longer increases the brilliance
of the photon beam as the beam emittance is in the same order as the intrinsic photon
emittance given by the diffraction limit at the desired photon energy. However, in the
present schemes of this kind, the longitudinal dynamics is affected in a sense that it is
more difficult to achieve a short bunch length.

2



1.1. Synchrotron Radiation

Second, free-electron lasers (FELs) [9] are another class of accelerator based sources
for SR, basically consisting of a linear particle accelerator (linac) and a section with
a long undulator. A strong enhancement in the emitted SR is obtained by the fact
that the emitted photons at the beginning of the undulator modulate the substructure
of the electron bunch, which in turn causes it to radiate coherently, i. e., with a power
proportional to the square of the number of electrons. In addition, the electrons are used
only for a single pass, i. e., the beam properties are mainly defined by the source. Thus,
the photon beam produced in FELs has a very high peak brilliance and additionally,
its pulse length can be as short as a few fs which is far below the typical bunch length
of third generation light sources. As the beam is dumped at the end of the undulator,
it is impossible to sustain a high average current at high energies, thus the repetition
rate of FELs is usually several orders of magnitude below a storage ring based facility.
Furthermore, the light from a FEL can only be delivered to one user at a time. The
much larger need for accelerating structures, the low repetition rate and the limitation
to one experiment at a time causes FEL experiments to be much more expensive than
experiments at a storage ring based facility. FELs are presently available and considered
complementary to third generation light sources.
Third, the concept of energy recovery linacs (ERLs) [10] is becoming increasingly rec-

ognized. In a simplified manner, it combines the single pass advantages of an FEL with
the energy efficiency of storage rings. This is achieved by decelerating the beam before
it is dumped and simultaneously transferring its energy to other electrons that are be-
ing accelerated. Thus, the electrons are exchanged each turn but the energy is reused.
ERLs are presently still in a phase of development, for instance, the test facility bERLin-
Pro [11] is currently under construction at the Helmholtz-Zentrum Berlin für Materialien
und Energie GmbH (HZB), Berlin, Germany.
Apart from enhanced brilliance by means of emittance, the temporal structure of SR

is gaining increasing interest, both in the regime of shortest pulses produced by FELs
as well as in the intermediate regime, from a few 100 fs to a few ps seconds range [12,
13]. In addition, the short pulses at storage rings are used as a source for THz radiation
as the bunches emit coherent synchrotron radiation (CSR) up to a frequency inversely
proportional to their length, reaching to higher frequencies with shorter bunches.
The project BESSY VSR intends to satisfy demands for intense short pulses in a regime

which is presently unoccupied in terms of repetition rate and pulse length, see Fig. 1.1, by
providing short pulses in the standard user operation of a third generation light source.
A similar project is discussed in [14] along with alternative options to produce short

pulses of SR at third generation light sources, for example [15–17]. A method that is suc-
cessfully operated since several years at a number of light sources is the laser-slicing [18].
However, the latter can only provide limited pulse intensities at low repetition rates.
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Figure 1.1.: Approximate performance range of BESSY VSR in comparison to present
and future synchrotron radiation facilities in terms of repetition rate and
pulse duration. Figure extracted from [12] and modified.

1.2. BESSY II
BESSY II [1] is a third generation synchrotron light source located at the HZB, Berlin,
Germany, which is in user operation since 1998. The drawing of the storage ring along
with the booster synchrotron and the experimental hall is shown Fig. 1.2 and a summary
of basic machine parameters is given in Tab. 1.1.
At the very beginning of the process of acceleration, the electrons are emitted from a

cathode in the electron gun and accelerated to a kinetic energy of 90 keV [20]. From the
electron gun, they enter the linac where they are accelerated to 50 MeV and transferred
to the booster synchrotron, see Fig. 1.2.
The booster synchrotron serves the purpose of accelerating the electrons to the final

energy of 1.7 GeV. Its magnets are wired in a “White circuit” [21] allowing for resonant
oscillations between a state suitable for the injection energy of 50 MeV and a state for
high energy somewhat above the needed 1.7 GeV. At 1.7 GeV, the electrons are extracted
from the booster and transferred to the storage ring.
In the storage ring, the electrons of each booster cycle are accumulated until the nominal
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linac

beam lines

booster
synchrotron

storage ring

Figure 1.2.: Floor plan of the synchrotron light source BESSY II with the linac, the
booster synchrotron, the 1.7 GeV electron storage ring and its beam lines
stretching tangentially outwards into the experimental hall. Bending mag-
nets are colored yellow, quadrupole magnets red, sextupole magnets green,
cavity structures blue and IDs are dark green.

current of IDC = 300 mA is reached. After that, electrons are only injected every few min-
utes to compensate continuous electron losses, hence the nominal current is maintained.
This is called top-up operation.
The BESSY II storage ring has a circumference of 240 m and consists of 32 bending
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Table 1.1.: Relevant machine parameters of BESSY II standard user operation and
BESSY VSR. Note: Some values may slightly deviate from [2, Tab. 1.1]. The
deviation is always below the claimed accuracy of the predictions made in this
thesis and can therefore be ignored.

Parameter Value
Energy E 1.7 GeV
Horizontal emittance εx 5 nm rad
Coupling εy/εx 2 %
Momentum compaction factor α, nominal 7.3× 10−4

Relative natural energy spread, root mean square (rms) δ0 7× 10−4

Total beam current IDC 300 mA
Circumference 240 m
Revolution frequency frev 1.25 MHz
Harmonic number 400
Fundamental RF frequency 500 MHz
Fundamental RF sum voltage 1.5 MV
Fundamental RF quality factor Q 26 700a

Fundamental RF sum shunt impedance Rs,0 12.4 MΩa

Synchrotron frequency fs 8.0 kHzb

Zero-current bunch length σ0 10.0 psb

Transverse tunes Qx, Qy 17.85, 6.74
Betatron functions at super conducting (SC) cavities βx, βy 4 mc

Longitudinal radiation damping time τ‖ 8 ms
Transverse radiation damping time τ⊥ 16 ms
Landau cavity RF frequency 1.5 GHz
Landau cavity RF sum voltage 0.225 MV

aCorresponding to the original BESSY II cavities before their replacement [19].
bCorresponds to the long bunch in BESSY VSR and BESSY II without Landau cavities.
cConservative number, see Fig. 5.3.

magnets, arranged in 16 arcs, connected by 16 straight sections where two are needed for
the injection and the radio frequency (RF) cavities and the rest is occupied by IDs, see
Fig. 1.2.
The magnet structure, also called lattice or optics, is a so called double bend achromat

(DBA) lattice [22], where the dispersion function is small in the straight sections, hence
the name “achromat”. A vanishing or small dispersion function in the straight sections
is typical for third generation synchrotron light sources because it ensures a small beam
size, thus high brilliance for the SR from IDs.
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Figure 1.3.: Magnet lattice of BESSY II with horizontal betatron function (βx), vertical
betatron function (βy) and 10 fold magnified horizontal dispersion function
(ηx) in the standard user operation. Rectangles illustrate the length and
position of magnets where bending magnets are yellow, quadrupole magnets
are red and sextupole magets are green.

The BESSY II lattice along with the horizontal and vertical betatron functions and the
horizontal dispersion function for the standard user operation are shown for an eighth of
the ring in Fig. 1.3. Due to extra quadrupoles placed at the edges of every other straight
section, the 16-fold symmetry is broken resulting in a remaining 8-fold symmetry. As
a result, half of the straight sections have a relatively large horizontal beta function of
βx > 15 m and are called high-β straight sections. The other half is called low-β straight
sections as βx reaches a local minimum of about βx ≈ 1 m, see Fig. 1.3. The low β is
required for the SC IDs of BESSY II with magnetic fields up to 7 T which would otherwise
noticeably worsen the emittance. Additional asymmetries, such as an adjustment of the
lattice for improved injection and requirements for in-vacuum undulates are not discussed
here.
Part of the magnets of BESSY II can be powered individually, offering the possibility of

alternative lattices. For about two weeks a year, the machine is set to the so called low-α
lattice, where the momentum compaction factor α is reduced by a factor of approximately
20 compared to its nominal value. This leads to a reduction of the bunch length of a
factor of approximately 5 according to the formula for the zero-current bunch length [22,
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Eq. 8.48],

σ0 = δ0

√√√√ E|α|
efrev|V ′|

, (1.1)

with the relative natural energy rms spread δ0, the electron energy E, the momentum
compaction factor α, the elementary charge e, the revolution frequency frev and the time
derivative of the net accelerating voltage at the bunch position V ′. In this thesis, the
bunch length is measured in units of time and is an rms value, more precisely it is equal
to the one standard deviation of a bunch with Gaussian shape. The use of absolute values
are introduced here in order to leave the sign conventions open.
If no explicit time dependence stated, V ′ is assumed to be the time derivative of the

net accelerating voltage evaluated at the bunch position,

V ′ = dV ‖acc(t)
dt

∣∣∣∣
bunch position

, (1.2)

with V ‖acc(t) the momentary effective accelerating voltage a bunch experiences when pass-
ing the cavity at a time t.
The gradient V ′ of a single cavity system with resonance frequency fr and operating

voltage Vop can be estimated as follows if it is operated close to its resonance frequency
and close to zero-crossing:

|V ′| ≈ 2πfrVop. (1.3)
This approximations are valid for the active cavities of BESSY II and BESSY VSR.
Equation 1.1 can also be expressed in terms of the synchrotron frequency fs [22,

Eq. 6.35],

σ0 = |α|δ0

2πfs
, (1.4)

with the following explicit expression for fs:

fs = 1
2π

√
efrev|α||V ′|

E
. (1.5)

A drawback of low-α operation is the appearance of a single bunch instability, the so
called microwave instability or bursting instability, driven by CSR, see for example [23,
24]. The name bursting refers to a non-equilibrium state where the emitted CSR, usually
in the THz regime, appears in bursts instead of a quasi continuous radiation. Correlated
with the bursts are modulations of the bunch structure. Usually no beam loss occurs, but
the average bunch length and energy spread can be significantly increased. The SR from
a beam in this state is unusable for most applications. As a consequence, the total stored
current in low-α operation needs to be reduced to about 15 mA to achieve stability. This
is done in 50% of the scheduled low-α runs, while the rest of the time, a current of 100 mA
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is stored with a certain level of bursting that can be accepted by some but not all users.
In low-α operation, most other users of SR are unable to perform regular experiments,
either because the intensity is too low or the beam is too unstable.
At constant bunch length, the threshold current for this instability primarily scales with

α,
Ithr ∝ α. (1.6)

A more detailed discussion on the expected scaling for the parameter space of BESSY VSR
is given in [2].
Another effect that changes the bunch length at realistic currents it the potential well

effect [25], a single bunch effect caused by the machine impedance. For BESSY II and
BESSY VSR, where the bunch current of most bunch types is in a stable regime close to
the threshold current, this effect increases the bunch length by about 50%.

1.3. BESSY VSR
The purpose of BESSY VSR [2] is to provide short bunches with high intensity in the
multi-user facility BESSY II in the standard operation mode without reducing the beam
quality or availability for user experiments that are transparent to the time structure.
As was discussed before, low-α cannot provide this demands, thus an alternative ap-

proach has been perused. It became clear, that with a massive increase of V ′, the bunch
length can also be significantly reduced while only slightly reducing the threshold current
of the microwave instability [26], see Eqs. 1.1 and 1.6. The idea presented therein utilizes
SC multi-cell cavity structures operated at high fields to provide an increase of V ′ in the
order of a factor of 100 which allows to store stable bunches at high current with a 10
times reduction in length.
If a single RF frequency was used for the additional focusing cavities, all bunches in

the ring would be short. In BESSY II, a setup with 300 mA stored current in short
bunches is believed to be impossible due to the strong impedance heating caused by short
bunches [2].
The solution is an alternating bunch length scheme, presented in [27], now known as

BESSY VSR [2], where only every other bunch is short and the total current can be
distributed in short and long bunches according to the need of the users and possible
limitations of the machine. Typically, the majority of the total current will be stored in
long bunches, where no impedance issues are expected and only a small fraction of the
beam is stored in short bunches with high bunch current. This satisfies the demands
of both user groups, those who are transparent to the time structure as a high average
current is provided and those who use short pulses, as there are a few, intense short
bunches continuously available.
The multi-functionality of this scheme is illustrated in the BESSY VSR baseline fill

pattern shown in Fig. 1.4. The bunch fill pattern includes two trains of long bunches,
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Figure 1.4.: Baseline fill pattern of BESSY VSR showing two chopper gaps and indicating
the bunch current and expected bunch length for each bunch type [2].

providing the average current for users who are transparent to the time structure. The
trains are interrupted by a gap of 100 ns each, which is enough to allow a separation of the
SR of this fraction of the fill from the rest by means of a mechanical chopper wheel [2].
For this purpose, a single short bunch and a single high current long bunch are placed in
the center of the first and second gap respectively, which appear as pure single bunches
at the experiments where the choppers are applied. The chopper wheel is the baseline
scheme for the separation of long and short bunches; other means are discussed in [2].
Other fill patterns are possible, e. g., all short bunches in the bunch trains can be filled
with a reduced bunch charge to provide intense CSR in the THz regime.
The bunch currents and bunch lengths shown in Fig. 1.4 are based on scaling laws for

the microwave instability, illustrated in Fig. 1.5, and estimations including the lengthening
by CSR and potential well lengthening [2]. The single short bunch is operated close to
the threshold of the microwave instability. The shift of the threshold current at constant
bunch length by a factor of 80 for the short bunches in BESSY VSR is depicted in Fig. 1.5.
Analogously, the RF upgrade reduces the bunch length approximately by a factor of 9 at
constant current.
The alternating bunch length of BESSY VSR is achieved by the voltage beating of

two SC multi-cell cavity systems of difference frequency, resulting in a beat frequency of
250 MHz, i. e., alternatingly long and short bunches of 500 MHz bunch repetition rate. The
basic RF parameters of the two cavity systems are given in Tab. 1.2 and the superposition
of the two SC cavity systems and the normal conducting (NC) 500 MHz cavity system is
shown in Fig. 1.6.
At even bucket positions, i. e., t = n × 2 ns with n even, all gradients add up with

the same sign, see Fig. 1.6. This results in a large focusing, thus a small bunch length
via Eq. 1.1. At odd bucket positions, i. e., t = n × 2 ns with n odd, the gradients of
the two SC cavity systems have opposite sign, thus cancel each other and lead to long
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Table 1.2.: Relevant RF parameters of the SC cavity systems for BESSY VSR [2, Tab. 3.1].
Parameter Value
RF frequency 1.5 GHz 1.75 GHz
Operating voltage 20 MV 17.14 MV
Number of cavities and cells 2× 5 2× 5
Normalized shunt impedance Rs,0/Q 500 Ω 500 Ω
Loaded quality factor Q 5× 107 5× 107

Cavity detuning ∆fr at IDC = 300 mA −11.25 kHz 15.3 kHz

bunches whose length is defined by the remaining gradient given by the NC cavity. The
long bunch approximately matches the properties of the bunches in BESSY II in standard
user operation.
With the frequencies and voltages of the SC cavity systems from Tab. 1.2 and the

NC cavity system from Tab. 1.1 and ignoring beam loading, cavity detuning, and energy
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Figure 1.6.: Superposition of cavity voltages at BESSY VSR. At t = 0 ns and t = 4 ns, the
sum voltage (black curve) has a large slope leading to short bunches (blue
circles). In between, i. e., t = 2 ns, the sum voltage is almost flat, leading
to long bunches (red circles). No beam loading, cavity detuning, or energy
losses are considered.

losses, the gradients of the three cavity systems can be calculated:

|V ′|
∣∣∣∣
500 MHz

= 2π × 1.5 MV× 0.5 GHz = 2π × 0.75 MV GHz (1.7)

|V ′|
∣∣∣∣
1.5 GHz

= 2π × 20 MV× 1.5 GHz = 2π × 30 MV GHz (1.8)

|V ′|
∣∣∣∣
1.75 GHz

= 2π × 17.14 MV× 1.75 GHz = 2π × 30 MV GHz . (1.9)

The net gradient at even and odd buckets is found to be

|V ′|
∣∣∣∣
even

= |V ′|
∣∣∣∣
500 MHz

+ |V ′|
∣∣∣∣
1.5 GHz

+ |V ′|
∣∣∣∣
1.75 GHz

= 2π × 60.75 MV GHz (1.10)

|V ′|
∣∣∣∣
odd

= |V ′|
∣∣∣∣
500 MHz

+ |V ′|
∣∣∣∣
1.5 GHz

− |V ′|
∣∣∣∣
1.75 GHz

= 2π × 0.75 MV GHz, (1.11)

which means the focusing gradient of the short bunches is 81 times larger than for the
long bunches. Thus, the short bunches are expected to be 9 times shorter than the
long bunches. With a zero-current bunch length for the long bunches of 10 ps, the zero-
current bunch length of the short bunches is around 1.1 ps. If the current dependent
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1.4. Coupled Bunch Effects in BESSY VSR

Figure 1.7.: Illustration of bunch coupling transmitted by the electromagnetic field in-
duced by the interaction of a bunch with a cavity. Figure reproduced from
[28].

bunch lengthening is considered, the expected bunch length is 1.7 ps, see Fig. 1.4. This
is significantly shorter than anything presently offered at reasonably high bunch currents
at synchrotron light sources.

1.4. Coupled Bunch Effects in BESSY VSR
Coupled bunch effects describe phenomena where the bunches influence each other in
contrast to single bunch effects which are independent of the existence or behavior of
other bunches. In this thesis, the bunches are considered to be coupled only through
the electromagnetic interaction with RF cavities, because the installation of SC multi-cell
cavities is the major change from BESSY II to BESSY VSR. Hence, the focus of this
thesis is on coupled bunch effects that are caused by the introduction of the SC multi-cell
cavities.
The interaction of the bunches with an RF cavity is illustrated in Fig. 1.7. If a bunch

passes an RF cavity, it induces an oscillating electromagnetic field which remains for some
time in the cavity after the bunch has passed. At the same time, the bunch interacts with
the electromagnetic fields already present in the cavity, e. g., fields produced by an RF
generator or previous bunches. In this case, the electromagnetic fields can be expressed
as an sinusoidally oscillating and decaying voltage that acts accelerating or decelerating
on a bunch. Thus, energy is transmitted by the interactions of the bunches with the fields
in the cavity and couples the bunches to each other.
As the bunch interaction repeats each revolution, it is plausible that under certain con-

ditions, the electromagnetic fields may add up from turn to turn and reach a significant
field strength. In such a situation, there are two effects possible. On the one hand, it
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Figure 1.8.: Beam spectrum of BESSY II for even bunch fill pattern with 400 bunches,
2 ns bunch spacing and σ = 20 ps bunch length.

can lead to a constant voltage without beam motion, known as beam loading, covered
in Chapter 6. On the other hand, it can lead to an instability where the bunches oscil-
late longitudinally or transversely with increasing amplitude until a saturation occurs or
the beam is lost, known as the coupled bunch instability (CBI), explained in detail in
Chapter 2.
For further understanding, it is convenient to consider the effect in the frequency do-

main. The bunch fill pattern is Fourier transformed to obtain the beam spectrum. The
beam spectrum is illustrated in Fig. 1.8 for BESSY II parameters with even bunch fill
pattern, i. e., all bunches have the same current, 2 ns bunch spacing and a bunch length
of σ = 20 ps. The bunch length determines the frequency limit of the amplitude of the
beam spectrum, which is given by a Gaussian envelop with rms value of σf = 1/(2πσ).
The cavity is represented by a sum of impedances, where the fundamental mode and all

higher order modes (HOMs) are each described by a resonator impedance. The interaction
of the beam with the impedance is, in a simplified form, the product of beam spectrum
with impedance.
As illustrated in Fig. 1.9, interaction occurs where an impedance overlaps with the beam

spectrum or its side bands generated by longitudinal motion (synchrotron oscillations)
or transverse motion (betatron oscillations). In operation with even bunch fill pattern,
there are no beam spectrum components other than at multiples of the fundamental
RF frequency. However, as will be shown later in this thesis, in a manner of speaking,
the impedance is still sampled at the side bands of all revolution harmonics. The side
bands are located at both sides at multiples of the revolution frequency with a distance
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Figure 1.9.: Beam spectrum for even bunch fill pattern with location of synchrotron side
bands indicated. As an example, a typical location of a passive Landau cavity
(orange curve) and a possible position of an HOM (magenta curve) are shown.

corresponding to the synchrotron frequency or a betatron frequency, respectively.
In Fig. 1.9, the synchrotron side bands are schematically drawn to indicate at which

frequencies the impedances are sampled. If the beam spectrum (black line) overlaps
with an impedance, a constant voltage is induced, e. g., a passive Landau is driven as
illustrated in Fig. 1.9. If a synchrotron side band (blue line) overlaps with an impedance,
an instability might be driven. This may occur close to a beam spectrum component,
e. g., a passive Landau cavity, or far away at any other harmonic, e. g., an HOM.
The cavities for BESSY VSR need to be operated in continous wave (CW) and provide

very high focusing gradients V ′ within the limited space of one straight section of the
BESSY II storage ring. This requires high frequency, large accelerating voltages, a multi-
cell design and super conductivity.

1.5. Motivation of this Thesis
The novel approach of BESSY VSR, i. e., using SC multi-cell cavities in an storage ring
based light source leads to great technological and accelerator physical challenges, among
which the coupled bunch effects play a major role.
In a synchrotron light source, beam stability is crucial in all three planes in order

to guarantee the high quality of the SR for the user experiments. At BESSY VSR,
the particular risk are strong HOMs, typical for high-frequency SC multi-cell cavities,
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potentially leading to CBIs, with the theory described in Chapter 2 and methods for
tracking simulations in Chapter 3 and measurements in Chapter 4.
Therefore, one major goal of this thesis is the investigation of the expected appearance

and strength of CBIs in BESSY VSR, covered in Chapter 5. Further, an estimation needs
to be given how much the HOM damping or other countermeasures, such as beam based
damping mechanisms, need to be improved in order to reach stability.
The other major aspect covered by this thesis is the previously unanswered question of

transient beam loading in BESSY VSR, induced by unevenness in the bunch fill pattern
by the interaction with the SC cavities. As the scheme of BESSY VSR relies on the
almost complete cancellation of the large RF gradients to obtain the long bunches, as
depicted in a Fig. 1.6, a disturbance of the amplitude or phases of the SC cavities may
significantly change the longitudinal dynamics, particularly for the long bunch. Thus, this
effect is investigated in Chapter 6 and predictions are made for the baseline fill pattern of
BESSY VSR in terms of expected bunch length, synchronous phase positions and spread
in synchrotron frequency leading to Landau damping.
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2. Theory of Coupled Bunch
Instabilities

The theory of CBIs is thoroughly described in [29, 30]. This chapter will review the
theory, use formulas from both sources and point out important aspects that are needed
for the cases discussed in this work.
In Section 2.1, the concept of wakes and impedances is introduced. This thesis will

restrict on CBIs that are driven by localized impedances, described by the resonator model
derived from the LRC equivalent circuit, as discussed in Section 2.1.4. This covers the
HOMs of the SC cavities, described in Section 2.2, which are the only type of impedances
that are expected to change in BESSY VSR compared to BESSY II. Other causes for
CBIs, e. g., driven by ions, geometric impedances and restive wall impedances are not
discussed, as those effects are equally present at BESSY II where they seem to be under
control.
Sections 2.3 and 2.4 describe the longitudinal CBIs for the case of even and uneven

bunch fill pattern, followed by a brief introduction of longitudinal Landau damping in
Section 2.5. The transverse dipole CBIs for even and uneven fill are described in Sec-
tion 2.6, along with a discussion of the transverse quadrupolar CBI.

2.1. Wakes and Impedances
The concept of wakes and impedances is essential to study CBIs driven by a cavity, as the
entire beam-cavity interaction can be described in terms of relatively simple expressions of
wake functions or impedances respectively. This section describes a definition of the wake
function, the shunt impedance, their relation to each other and other relevant quantities
that allow for a complete and unambiguous description of the physics in terms of a multi-
pole decomposition in transverse beam moments.

2.1.1. Decomposition in Terms of m-th Moment of the Beam
The major decomposition to describe the interaction of the beam with its surrounding
structure, is made in transverse beam moments. It means that the interaction of the
beam with its surrounding through electromagnetic fields is decomposed in the transverse
multipoles of the beam. The transverse m-th moment Mm of the beam or a single bunch
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Figure 2.1.: Illustration of wakes appearing if the surrounding shows a structure. Perfectly
conducting walls are assumed. Figure reproduced from [31].

is defined as
Mm = 〈rm cosm(θ − θ0)〉, (2.1)

where the angle brackets indicate the averaging of the expression in the brackets given
all cylindrical coordinates (r, θ) of the electrons of the beam or a single bunch and θ0 is
a constant indicating an absolute orientation. In Cartesian coordinates, the freedom of
choosing θ0 results in two components of the m-th moment, a normal and a skewed one,
out of which the normal one is always used in this thesis, without loss of generality. The
normal transverse m-th moment in Cartesian coordinates can then be calculated by

Mm =
〈

m∑
k=0

(
m

k

)
xkym−k cos

(1
2(m− k)π

)〉
, (2.2)

with (x, y) the transverse coordinates of the electrons. See Appendix A.1 for a derivation
of this formula.
The electromagnetic fields that arise during the interaction of a bunch with its sur-

rounding are also called wakes due to their apparent similarity to the disturbance a boat
inflicts on a water surface. For a beam pipe with infinity conductivity, wakes appear only
if the beam pipe exhibits a change in the cross section, see Fig. 2.1. For finite con-
ductivity, the phenomenon commonly referred to as resistive wall occurs and the arising
wakes can become significant1. However, as mentioned above, this effect is not discussed
in this thesis, as they are not expected to change in BESSY VSR. The interaction of each
beam multipole Mm is fully described by a so called wake function or equivalently by an
impedance.

1In a more generalized context, wakes and impedances can also be used to describe phenomenons such
as coherent synchrotron radiation, e.g. [32], or active elements, such as feedback systems.

18
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Note, the decomposition indicated by m is a priori different from the ordering of solu-
tions of the Maxwell equations of a pillbox cavity, which may also be called “monopole”,
“dipole”, etc. In fact, solutions to the Maxwell equations of a realistic cavity must be
decomposed [33] in orders of m to be of use in the instability theory described in this
thesis.

2.1.2. Wake Function and Wake Potential
At high energies, the beam can be considered rigid, i. e., during its interaction with the
surrounding neither its velocity, nor its direction of path, nor its shape changes. Hence,
the net effect of the wake on a test particle can be obtained by integrating the force ~F
of the electromagnetic fields along the longitudinal coordinate z over a distance L that
includes the localized source of the electromagnetic interaction:

c∆~p =
∫ L/2

−L/2
dz ~F . (2.3)

The integral describes the net effect on the test particle and is called the wake potential
c∆~p or the integrated wake force impulse. For instance, the sources for the electromag-
netic interaction can be a cavity structure, i. e., a relatively short structure where the
approximations are well justified.
With those assumptions, the Panofsky-Wenzel theorem [34] follows, forming the basis

of potentials and impedances [30, p. 3]. It relates the transverse and longitudinal wake
potentials, via [30, Eq. 1.12]

∂

∂z
(c∆~p⊥m) = ~∇(c∆p‖m), (2.4)

stating that the transverse derivative of the longitudinal impulse is equal to the longitu-
dinal derivative of the transverse impulse.
Furthermore it is assumed that the structure is axially symmetric and cylindrical co-

ordinates can be used to describe the dynamics. This leads to the definition of the wake
function, Wm(z), a quantity closely related to the wake potential. It is a function solely
dependent on z, the distance of the test particle from the source particle. If the wake
function is known, neither the calculation of the force ~F is needed, nor is it necessary
to perform an integration over the distance L. In this sense, the wake function already
comprises the integrated effect of the localized source. Or in other words, quoting [29,
p. 59], the wake function describes the shock response of the vacuum chamber environment
to a δ-function beam which carries an m-th moment, where z describes the distance of
the test particle from the δ-function beam and z > 0 means the test particle is ahead of
the beam.
In the ultra-relativistic limit, as always assumed in this thesis, the wake function must
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2. Theory of Coupled Bunch Instabilities

be zero for z > 0. The relation of the wake function to the wake potential for all orders
of m can be expressed in cylindrical coordinates as [29, Eq. 2.50]

c∆p‖m = −eqMmW
′
m(z)rm cosmθ

c∆~p⊥m = −eqMmWm(z)mrm−1(r̂ cosmθ − θ̂ sinmθ),
(2.5)

with Mm the m-th moment of the beam, q the total charge of the beam and e the charge
of the test particle. Note that W ′

m(z) is the derivative of Wm(z),

W ′
m(z) = d

dzWm(z). (2.6)

The fact that both the longitudinal and transverse wake potentials, i. e., the net forces on
the particles, can be described by a single quantity and its derivative is a consequence of
the Panofsky-Wenzel theorem.
In Eq. 2.5, the beam is the source that generates the wake, and can also be a single

bunch. Note that if the charge of the test and source particle have the same sign, a
positive value of W ′

m must lead to deceleration of the test particle. If the wake function is
known for a structure, Eq. 2.5 can be used to calculate the kick that a particle experiences
if it passes the structure.
The wake function Wm(z) contains all information about the structure causing the

interaction with the beam through the wake. The derivative of the wake function with
respect to z, W ′

m(z), relates to the longitudinal wake potential c∆p‖m while the wake
function Wm(z) itself relates to the transverse wake potential c∆~p⊥m. Therefore, Wm(z) is
also called the transverse wake function and W ′

m(z) the longitudinal wake function. For
the case of resonators that can be described with the equivalent circuit, Wm(z) takes a
simple explicit form, as discussed in the next sections. The relation for the first four beam
moments is given explicitly in Tab. 2.1 in Cartesian coordinates.
Strictly speaking, Eq. 2.5 is only valid for axially symmetric structures. In non-axially

symmetric structures, different orders of the impedance are mixed, i. e., different orders
may contribute to the same multipole order of motion. In other words, the wake potentials
c∆p‖m on the left hand side (l.h.s.) of Eq. 2.5 would not only have a single contributing
W ′
m(z) on the right hand side (r.h.s.), but a sum of contributing wake functions of all

different orders ofm. Covering this behavior requires a generalized definition of impedance
and wakes where different orders are allowed to couple [35]. For realistic cavities, this effect
is expected to be small and therefore ignored in this thesis. In non-axially symmetric
structures, the transverse wake function can be separated into two perpendicular wake
functions, indicated by x and y respectively.
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2.1. Wakes and Impedances

Table 2.1.: Relation of wake potentials to wake functions for the first four orders of m.
The test particle with charge e and coordinates (x, y) follows the beam at a
distance |z|. The wake is created by the beam with charge q and transverse
normal moment Mm which can be calculated with the coordinates (x̄, ȳ) of its
electrons. x̂ and ŷ are the unit vectors indicating the transverse direction of
the resulting wake forces.

m Mm c∆p‖m c∆~p⊥m

0 〈1〉 −eqW ′
0(z) 0

1 〈x̄〉 −eqM1xW
′
1(z) −eqM1W1(z)x̂

2 〈x̄2 − ȳ2〉 −eqM2(x2 − y2)W ′
2(z) −2eqM2W2(z)(xx̂− yŷ)

3 〈x̄3 − 3x̄ȳ2〉 −eqM3(x3 − xy2)W ′
3(z) −3eqM3W3(z)[(x2 − y2)x̂− 2xyŷ)]

2.1.3. Impedance
The impedance is defined by a Fourier transform of the wake function [29, Eq. 2.69,
Eq., 2.71],

Z‖m(ω) =
∫ ∞
−∞

dz
c
e−iωz/cW ′

m(z) (2.7)

Z⊥m(ω) = i
∫ ∞
−∞

dz
c
e−iωz/cWm(z), (2.8)

where Z‖m is called longitudinal impedance and Z⊥m transverse impedance. The dimensions
of Z‖m and Z⊥m are Ω m−2m and Ω m−2m+1 respectively. The Fourier transform adds the
dimension of seconds to the wake functions, hence the dimensions of W ′

m(z) and Wm(z)
are VC−1m−2m and VC−1m−2m+1 respectively.
The wake function and the impedance are equivalent methods to describe the physics.

The wake function is a function of longitudinal position, i. e., applicable in the time domain
while the impedance is a function of frequency, used in the frequency domain. Depending
on the particular problem, the most suitable method is used.

2.1.4. Resonator in LRC Model (Equivalent Circuit)
Impedances, such as those extracted from the modes of a RF cavity can be described by a
parallel LRC resonator circuit with a resistance Rs,m, an inductance Lm and a capacitance
Cm. For the longitudinal impedance at an angular frequency ω, the following is obtained,
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Figure 2.2.: Real and imaginary component of the resonator impedance for Q = 8 for the
longitudinal case (left) and the transverse case (right).

1
Z
‖
m(ω)

= 1
Rs,m

+ i

ωLm
− iωCm, (2.9)

which can be rearranged with the substitutions Q = Rs,m

√
Cm/Lm and ωr = 1/

√
CmLm

to yield an explicit expression for the impedance [30, Eq. 1.56]

Z‖m(ω) = Rs,m

1 + iQ
(
ωr
ω
− ω

ωr

) , (2.10)

with the quality factor Q and the angular resonance frequency ωr where the index m is
omitted as those quantities have the same dimensions for allm. In accelerator physics, the
quantity Rs,m is called shunt impedance2 and has the dimension Ω m−2m. The transverse
resonator impedance, valid for m > 0, is then given by [30, Eq. 1.57]

Z⊥m(ω) = c

ω

Rs,m

1 + iQ
(
ωr
ω
− ω

ωr

) , (2.11)

with the speed of light c. The longitudinal m = 0 and the transverse m = 1 case are
shown in Fig. 2.2.

2See Section 2.1.6 for a discussion on the different definitions of the shunt impedance used in literature.

22



2.1. Wakes and Impedances

5 4 3 2 1 0 1
zωr/(2πc)

1.0

0.5

0.0

0.5

1.0
W
′ m
Q
/(
ω

rR
s,
m
) Q=8

5 4 3 2 1 0 1
zωr/(2πc)

1.0

0.5

0.0

0.5

1.0

W
m
Q
/(
cR

s,
m
) Q=8

Figure 2.3.: Longitudinal (left) and transverse (right) resonator wake function.

With Eq. 2.7 the longitudinal wake function is given by [29, Eq. 2.84]

W ′
m(z) =



0 , z > 0
ωrRs,m

2Q , z = 0

ωrRs,m

Q
e
ωrz
2Qc

(
cos ω̄z

c
+ ωr

2Qω̄ sin ω̄z
c

)
, z < 0,

(2.12)

with ω̄ =
√
ω2

r −
(
ωr
2Q

)2
and Q > 1

2 assumed. The transverse wake function is obtained
analogously. With the approximation of a sharply peaked resonator, i. e., Q � 1, the
wake functions simplify significantly to the following for z < 0 [29, Eq. 2.86, Eq. 2.90]:

W ′
m(z) = ωrRs,m

Q
e
ωrz
2Qc cos ωrz

c
(2.13)

Wm(z) = cRs,m

Q
e
ωrz
2Qc sin ωrz

c
. (2.14)

This approximation is clearly valid for fundamental modes but also for HOMs of a cavity
with typical Q values of at least a few hundred. The wake functions of Eq. 2.13 and
Eq. 2.14 are depicted in Fig. 2.3.

2.1.5. Extraction of Shunt Impedance from Cavity Fields
Cavity modes are eigenmodes of the Maxwell equations where the cavity geometry and
surface defines the boundary conditions. The fundamental mode of a cavity is the lon-
gitudinal mode which is used for acceleration. In a single-cell cavity, this is usually the
mode with the lowest resonance frequency. In general, all eigenmodes of cavity with a
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2. Theory of Coupled Bunch Instabilities

(a) (b)

Figure 2.4.: (a) Example of a dipolar HOM [2]. (b) Five-cell cavity model “HZB 2c coax.
coupler” as of May 2015 [37].

frequency larger than the fundamental mode are called HOMs. In case of a multi-cell
cavity, the fundamental mode is usually the highest frequency of the fundamental band.
In this case, the other modes of the fundamental band are called same passband modes
(SPMs).
A realistic cavity is not exactly axially symmetric and the eigenmodes need to be

decomposed according to impedances ordered in m in order to describe their interaction
with the beam [33]. In consideration of the numerical uncertainties of computed cavity
models, this is a good approximation whose error can be ignored, even if the decomposition
in Eq. 2.5 itself is strictly speaking only valid for axial symmetry.
If an eigenmode of a cavity is known to be a resonator impedance of the order m,

the normalized shunt impedance Rs,m/Q can be obtained by integration through the
electromagnetic fields [36, Eq. 2.66],

Rs,m

Q
= |V

‖
acc(r)|2

2ωrUr2m , (2.15)

where V ‖acc represents the integrated longitudinal accelerating voltage parallel to the lon-
gitudinal axis at an offset r, ωr the angular resonance frequency and U the energy stored
in the field. The procedure is graphically illustrated in Fig. 2.4a for a dipole mode. Note
that both the azimuth and the overall phase have to be chosen such that V ‖acc(r) is at its
maximum. In case of m > 0, the azimuth then defines the orientation of the impedance
in the transverse plane.
The special case of m = 1 can also be calculated by on-axis integration of the transverse
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2.2. Higher Order Modes in Cavities

force [36, Eq. 15.55],
Rs,1

Q
= |

~V ⊥acc(r = 0)|2ωr

2Uc2 , (2.16)

with the integrated transverse voltage |~V ⊥acc|. The validity of this formula becomes clear
when looking at Eq. 2.5 or Tab. 2.1, as on-axis (x = 0, y = 0) contributions to the
transverse force are zero for all orders but m = 1.
With the relation of the quality factor Q to the dissipated power Pdiss given by [22,

Eq. 15.49]
Q = ωrU

Pdiss
, (2.17)

Eq. 2.15 can be written for m = 0 in the following, frequently used form [36, Eq. 2.63]:

Rs ≡ Rs,0 = V ‖acc
2

2Pdiss
. (2.18)

When considering the fundamental mode, the shunt impedance is loosely speaking, the
amount of accelerating voltage V ‖acc obtained for a given power dissipated in the cavity
with the typical goal of making acceleration as efficient as possible [38]. For this reason, Rs
is a very important quantity and frequently introduced via Eq. 2.18, especially when the
subject is addressed from a more technical view and the discussion of m > 0 is neglected.

2.1.6. Other Definitions of Shunt Impedance
In accelerator physics, there are different definitions of shunt impedance, especially when
only the fundamental mode, m = 0, is discussed. They mostly differ by a factor of two.
The definition Rs,0 of this thesis is the so called circuit definition, named after the fact
that the shunt impedance is equal to the resistance that appears in the equivalent circuit,
see Section 2.1.4.
Another common definition is the so called accelerator definition, denoted in this thesis

with an index a, where the numerical values are twice as large as in the circuit defini-
tion [36, Eq. 2.63],

Ra = 2Rs. (2.19)

2.2. Higher Order Modes in Cavities
The RF cavities considered in this thesis are designed to provide a high shunt impedance
of the fundamental mode which is used for acceleration in longitudinal direction. For the
purpose of BESSY VSR, the cavities need to provide a very large time derivative of the
accelerating voltage. This is achieved by the combination of high frequency (1.5 GHz and
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2. Theory of Coupled Bunch Instabilities

1.75 GHz) and high electric fields. As the space is limited, a multi-cell design was chosen
and superconductivity is mandatory due to the required operation in continuous wave.
Figure 2.4b shows the 1.5 GHz cavity model “HZB 2c coax. coupler” presently in

the development for BESSY VSR [37]. Unfortunately, the strength of HOMs increases
with frequency, the number of cells and with the transition from normal conductivity to
superconductivity. Despite significant progress in the HOM damping [37, 39], the HOM
spectrum cannot be fully suppressed. Figure 2.4a shows an example of a dipolar HOM
along with the integration line used for the calculation of the shunt impedance.
The entire impedance spectrum up to 3.0 GHz of the cavity model “HZB 2c coax.

coupler” is shown in Fig. 2.5. It is based on calculations that were stopped at 3.0 GHz
due limited computationally resources.
The fundamental mode, having the largest longitudinal impedance, can be seen at

1.5 GHz. The other four modes of the fundamental band, the SPMs, have frequencies
slightly below the fundamental and a significantly lower impedance. Longitudinal HOMs
are visible around 2.7 GHz. Dipole modes seem to appear in four bands below 3.0 GHz
with the strongest modes around 2.8 GHz. Quadrupole modes show two bands with the
strongest modes also located around 2.8 GHz.

2.3. Longitudinal Bunch Motion for Even fill
This section presents the derivation of the longitudinal bunch motion under the influence
of a longitudinal resonator impedance with the goal of obtaining expressions for the tune
shift and growth rate of the CBI for the case of a homogeneous bunch fill pattern, also
called even fill, i. e., all buckets filled with the same charge.
Up until here, all formulas are valid for arbitrary longitudinal bunch profiles. In the

following discussions, the bunches are assumed to be point charges in the longitudinal
direction, which is a justified approximation as the typical bunch length is much smaller
than the wave length of the resonant structure, see Appendix A.2 for a quantitative
estimate.
In time domain, the equations of motion forM equally spaced bunches are given by [29,

Eq.4.121],

z̈n + ω2
s zn ∝

∑
k

M−1∑
l=0

W ′
0(l, k), (2.20)

with the longitudinal coordinate zn of bunch n = 0, . . . ,M − 1 as a function of time,
ωs the unperturbed synchrotron frequency, k an index representing points in time of
bunch passages in the time range −∞ . . . t and W ′

0 a longitudinal wake function given in
parameters of l and k. Equation 2.20 is a system of M differential equations coupled by
the wake fields of all other bunches produced by all their previous passages. This formula
is only shown to depict the general structure of the dynamics, namely the positions of the
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Figure 2.5.: Impedance spectrum of the 1.5 GHz cavity model “HZB 2c coax. cou-
pler” [37]. Real part (blue line) and absolute value of imaginary part (green
line) of longitudinal m = 0 impedance (top), transverse m = 1 impedance
(center) and transverse m = 2 impedance (bottom) corresponding to the sum
of longitudinal modes (top), dipole modes (center) and quadrupole modes
(bottom). Blue dots correspond to the Rs,m values of the individual cavity
modes.

bunches are affected by all wake fields previously produced, in a form not yet specified.
In Eq. 2.20, a small amplitude approximation was applied on the terms that form the
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2. Theory of Coupled Bunch Instabilities

r.h.s. so that the expression is a driven harmonic oscillator. This is well justified as the
purpose of this instability theory is to determine the onset of an instability at arbitrarily
small amplitudes. Statements about the behavior of the motion at larger amplitudes,
such as a possible saturation are not covered with this approach.
With the typical ansatz to solve a harmonic oscillator and the introduction of a coherent

frequency Ω for zn,
zn(t) = z̃ne

−itΩ, (2.21)
with z̃n a constant complex amplitude, Eq. 2.20 can be transformed into the frequency
domain which turns the wake function into an impedance, in analogy to [29, Eq. 4.126].
The equations of motion of the M bunches are then still coupled to each other. The
decoupling can be performed by the following ansatz, which implies a fixed phase relation
from bunch to bunch given by the number of full phase revolutions per turn µ

z̃n ∝ ein2πµ/M . (2.22)

The bunch modes described by Eq. 2.22 are the coupled bunch modes (CBMs). More
specifically, they are called the even fill eigen mode (EFEM), as they are only exact
solutions if the bunch fill pattern is even. With those EFEM, Eq. 2.20 decouples and
using [29] or [30], the following, very central equation that forms the starting point for
many of the following discussions, can be stated:

ω2
µ − ω2

s = −iωrevIDCα

2πE/e

∞∑
p=−∞

[
pMωrevZ

‖
0(pMωrev)

−((pM + µ)ωrev + ωµ)Z‖0((pM + µ)ωrev + ωµ)
]
.

(2.23)

It consists of M equations with µ the number of the CBM, ωrev the angular revolution
frequency, IDC the average (DC) beam current, α the momentum compaction factor, E
the electron energy and e the elementary charge. The solutions to this equation, ωµ, are
the coherent angular frequencies of the CBM µ. Equation 2.23 is a full description of the
bunch dynamics in the frequency domain including the interaction with the impedance
that may consists of a large number of longitudinal resonators. The CBMs for a case of
M = 4 are illustrated in Fig. 2.6.
In case of a single bunch M = 1, µ = 0, the index µ can be omitted and Eq. 2.23

simplifies to [29, Eq. 4.8]

Ω2 − ω2
s = −iωrevIDCα

2πE/e

∞∑
p=−∞

[
pωrevZ

‖
0(pωrev)− (pωrev + Ω)Z‖0(pωrev + Ω)

]
, (2.24)

with the coherent frequency Ω = ω1.
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2.3. Longitudinal Bunch Motion for Even fill

Figure 2.6.: Illustration of all CBMs for the case of four bunches M = 4. The bunch
number is drawn on the horizontal axis. All bunches are drawn at one point
in time with yn expressing their momentary amplitude of the coordinate of in-
terest (e. g., longitudinal or transverse position). Arrows indicate the momen-
tary momentum. Its absence identifies a turning point. Figure reproduced
from [29].

2.3.1. Growth Rate and Frequency Shift
The complex angular frequencies ωµ are directly related to the growth rate and the fre-
quency shift caused by the impedances. As z ∝ e−itωµ , see Eq. 2.21, the real part of ωµ
determines the oscillating frequency of the bunch motion while the imaginary part of ωµ
determines whether the amplitude of the motion is exponentially growing or decaying.
The angular frequency shift ∆ωµ and growth rate τ−1

µ can then be defined as

∆ωµ = <(ωµ)− ωs (2.25)
τ−1
µ = =(ωµ). (2.26)

A positive growth rate indicates that the amplitude of the motion increases exponentially,
i. e., a CBI is occurring. Analogously, negative τ−1

µ indicates damping. A frequency shift
does not influence the stability in this context and is usually ignored in the discussions of
stability.
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2.3.2. Case of Small Complex Frequency Shift
A common approximation is the case of small complex frequency shift, namely

ωµ ≈ ωs, (2.27)

which is given when the induced field is not too strong. At full current, this approximation
is valid for all realistic HOMs considered in this thesis. However, for the fundamental
mode of a cavity, this approximation is typically violated. For the other modes of the
fundamental pass band it must be checked on a case to case basis.
In this approximation, the l.h.s. of Eq. 2.23 can be written as (ωµ−ωs)2ωs which yields

a linear algebraic equation in ωµ. Furthermore, ωµ on the r.h.s. can be replaced by ωs,
resulting in the following explicit expression for ωµ:

ωµ − ωs = −iωrevIDCα

4πωsE/e

∞∑
p=−∞

[
pMωrevZ

‖
0(pMωrev)

−((pM + µ)ωrev + ωs)Z‖0((pM + µ)ωrev + ωs)
]
.

(2.28)

This expression can also be separated in real and imaginary parts to obtain the growth
rate and the frequency shift [29, Eq. 4.9, Eq. 4.10]:

∆ωµ = ωrevIDCα

4πωsE/e

∞∑
p=−∞

[
pMωrev=Z‖0(pMωrev)

−((pM + µ)ωrev + ωs)=Z‖0((pM + µ)ωrev + ωs)
] (2.29)

τ−1
µ = ωrevIDCα

4πωsE/e

∞∑
p=−∞

((pM + µ)ωrev + ωs)<Z‖0((pM + µ)ωrev + ωs). (2.30)

Despite the assumptions and simplifications, Eq. 2.30 is the most useful formula in the
study of HOM driven longitudinal CBIs. Hence, a short discussions is presented in the
following.
Equation 2.30 reveals the scaling of the growth rate with all relevant machine parame-

ters. The appearance of most of the parameters in Eq. 2.30 can be justified readily. The
growth rate scales with the average current, the value of the impedance and inversely to
the beam energy. The latter via the beam rigidity. The proportionality to the revolution
frequency becomes clear if it is considered that it describes how often the bunch passes
the impedance in a given time. The more often it passes, the more kicks are accumulated
and the more voltage is induced. The proportionality to the frequency of the induced
voltage, (pM + µ)ωrev + ωs, is plausible if it is considered that the synchrotron frequency
is related not only to the voltage but to the product of voltage and frequency, as known
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Figure 2.7.: Qualitative illustration of beam spectrum and CBM numbering for an even
beam fill pattern at BESSY II along with the real part of the impedance of
an HOM. For each side band, the triangles indicate the magnitude (vertical
position) and sign (vertical pointing direction) of the contribution to the
growth rate to the CBM. The CBM and p are defined as in Eq. 2.30.

from Eqs. 1.3 and 1.5.
Furthermore, Eq. 2.30 explains the relation of the CBMs to the frequencies of the beam

spectrum. The even fill beam spectrum of BESSY II with its synchrotron side bands
and the numbering of the CBMs and p along with an illustrative HOM impedances is
shown in Fig. 2.7, i. e., it depicts the term ((pM + µ)ωrev + ωs) in Eq. 2.30. In analogy
to a spectrum analyzer, negative frequencies are mirrored into the positive frequency
space. They can be identified by a negative p value. In even fill, the beam spectrum has
components only at multiples ofMfrev = 500 MHz. However, the possibility to sample the
impedance and drive CBIs is equally large at all synchrotron side bands of all revolution
harmonics. In a spectrum analyzer, a particular synchrotron side band is only visible if
the beam performs an oscillation in the corresponding CBM, as used in the measurements
explained in Section 4.2.2.
Figure 2.7 shows an example of an HOM with a resonance frequency close to 504 MHz.

As can be seen, this particular HOM causes µ = 3 to be unstable and µ = 397 to be
damped as indicated by the vertical position and pointing direction of the triangles. At
other CBMs, the contribution to growth and damping is rather small.
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2. Theory of Coupled Bunch Instabilities

Single sharply peaked resonator impedance

If the impedance consists of a single sharply peaked resonator impedance, i. e., described
by Eq. 2.10, it is driven significantly at most by the two synchrotron side bands of one
positive beam harmonic pM + µ with its angular frequency ωbeam = (pM + µ)ωrev. Thus,
the summation over p can be omitted and only two CBMs remain, µ+ = µ and µ− =
M −µ+. With another well justified approximation, ωbeam � ωs, the following expression
for the frequency shift and growth rate is obtained,

∆ωµ± = ωrevIDCα

4πωsE/e

[
δ0µωbeam=Z‖0(ωbeam)− ωbeam=Z‖0(ωbeam ± ωs)

]
(2.31)

τ−1
µ± = ±ωrevIDCα

4πωsE/e
ωbeam<Z‖0(ωbeam ± ωs), (2.32)

with the Kronecker delta δ0µ indicating that the first term in Eq. 2.31 vanishes for µ 6= 0.
The first term in Eq. 2.31 is the static contribution induced by the beam spectrum itself,
not its synchrotron side bands. As an even fill is assumed in this section, it has no other
contributions but µ = 0.

Case of µ = 0 or AC Robinson instability

The special case of µ = 0 of Eq. 2.31 reveals the so called AC Robinson instability [40] in
the approximation of a small complex frequency shift, i. e., a relatively weak disturbance
of the longitudinal dynamics. It is used to calculate the complex frequency shift of a
fundamental cavity or of a higher harmonic cavity, such as a passive Landau cavity. For
µ = 0, µ+ and µ− are identical and zero, µ = µ+ = µ− = 0, hence omitted in the following
formulas for the angular frequency shift and growth rate:

∆ω = ωrevIDCα

4πωsE/e
ωbeam

[
2=Z‖0(ωbeam)−=Z‖0(ωbeam + ωs)−=Z‖0(ωbeam − ωs)

]
(2.33)

τ−1 = ωrevIDCα

4πωsE/e
ωbeam

[
<Z‖0(ωbeam + ωs)−<Z‖0(ωbeam − ωs)

]
. (2.34)

If Eq. 2.34 gives a positive growth rate (instability), the so called AC Robinson instability
is occurring. The sign of τ−1 is given by the difference of the real part of the impedance
sampled at the left and right synchrotron side band. For a positive momentum compaction
factor α, and recalling the shape of the real part of a longitudinal resonator impedance,
Fig. 2.2 left, it is clear that the sign of τ−1 depends on the sign of the detuning ∆fr,
i. e., whether the resonance frequency of the cavity is tuned above or below the beam
frequency. The detuning ∆fr is defined as

∆fr = fr − fbeam, (2.35)
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Figure 2.8.: Qualitative illustration of the AC Robinson stability criterion in the approx-
imation of small frequency shift for positive α. For each side band, the tri-
angles indicate the magnitude (vertical position) and sign (vertical pointing
direction) of the contribution to the growth rate to the CBM µ = 0. The
CBM µ and p are defined as in Eq. 2.30. Left: Instability as ∆fr > 0. Right:
Stability as ∆fr < 0.

with fbeam the frequency of a beam harmonic, e. g., fbeam = 400frev for the fundamental
RF cavities of BESSY II. The symbol fbeam is intentionally defined in a loose manner in
order to be applicable to a wide range of problems where the appropriate beam harmonic
depends on the particular case.
The application of Eq. 2.34 for the case of BESSY II, i. e., positive α, is illustrated

in Fig. 2.8 for the fundamental RF cavities where the magnitude of the contribution of
the side bands is indicated by triangles with the triangles pointing upwards for positive
growth rates and pointing downwards for negative growth rates. The left panel shows a
situation with ∆fr > 0, i. e., unstable because the right synchrotron side band samples
an impedance value that is greater than the value where the left synchrotron side bands
samples the impedance. Thus, the net impedance sampled by the CBM 0 is positive and
the oscillation amplitude grows. The opposite situation, i. e., stability, is shown in the
right panel.
Note that Eqs. 2.33 and 2.34 are not applicable for the SC cavities in BESSY VSR which

are intended to provide very high fields to dominate the longitudinal dynamics instead of
being a minor perturbation. Hence, the assumption in Eq. 2.27 is strongly violated for
most cases. Further discussion on the subject of Robinson instabilities in BESSY VSR
can be found in Section 5.5.
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2. Theory of Coupled Bunch Instabilities

2.4. Longitudinal Bunch Motion for Uneven Fill
The case of small complex frequency shift discussed in Section 2.3.2, e. g., applicable
for HOM driven CBIs, can be extended to arbitrary fill pattern, also called uneven fill
in contrast to the even fill discussed above [41]. In an even fill, the solutions to the
equations of motion, the CBMs, are the so called EFEMs defined in Eq. 2.22, together
with the eigenvalue given by the complex coherent frequency ωµ. In case of an uneven
fill, the CBMs are a different set of solutions, consisting of linear combinations of the
EFEMs. Their eigenvalues, corresponding to the complex tune shift, also take different
values, meaning the instability threshold, defined by the fastest growing CBM, may be
enhanced or reduced. The problem of obtaining the new CBMs along with their new
eigenvalues reduces to a M -dimensional eigenvalue problem [30, Eq. 8.143],

(Ω− ωs)z̄l = i
M−1∑
m=0

Almz̄m, (2.36)

with l the index of the vector z̄ = (z̄1, . . . , z̄M) with theM×M matrix Alm defined as [30,
Eq. 8.144]

Alm = ωrevIDCα

4πωsE/e
MωrevIl−mZlm(ωs), (2.37)

with the usual constants and with Il−m the complex amplitude of the (l −m)-th revolution
harmonic in the beam spectrum Ip defined as

Ip =
M−1∑
k=0

ike
−i2πkp/M , (2.38)

where p = 0, . . . ,M − 1 indicates the harmonic, ik the current of the k-th bunch and the
so called mode-coupling impedance Zlm, given by

Zlm(ω) = 1
Mωrev

∞∑
p=−∞

[
(pMωrev + lωrev + ω)Z‖0(pMωrev + lωrev + ω)

− (pMωrev + (l −m)ωrev)Z‖0(pMωrev + (l −m)ωrev)
]
.

(2.39)

There areM solutions to Eq. 2.36, labeled with the CBM index µ, yieldingM eigenvec-
tors z̄µ expressed in the basis of EFEM along with their M eigenvalues λµ = −i(ωµ−ωs).
The angular frequency shift ∆ωµ and growth rate τ−1

µ are then given by

∆ωµ = <(ωµ)− ωs = −=(λµ) (2.40)
τ−1
µ = =(ωµ) = <(λµ). (2.41)
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2.5. Longitudinal Landau Damping

Common methods of linear algebra can be applied. In this thesis, a software in C++ was
written which delivers the complex synchrotron frequencies based on input files specifying
the machine parameters and the impedance spectrum and further provides a graphical
output of the eigenvectors. A similar program exists but does not supply the needed flexi-
bility for this thesis [42, 43]. The software in this thesis utilizes the “ROOT” libraries [44]
and the “Eigen” library [45] for the eigendecomposition of the complex matrix Alm. Ap-
plications of the software along with a description of its full workflow are presented in
Section 5.3.

2.5. Longitudinal Landau Damping
In accelerator physics, Landau damping, refers to a phenomenon where coherent oscilla-
tions are damped by means of decoherence. It is named after Lev Davidovich Landau
who first described the general effect [46] which is now widely used in instability theory
for accelerator physics, see references in [47] for details.
In this thesis, Landau damping will be discussed for cases where there is a frequency

spread from bunch to bunch but not within individual electrons of a single bunch. For
the cases presented in this thesis, i. e., transient beam loading in Chapter 6, this is the
dominating effect. The theory is the same in both cases.
A very thorough analysis of longitudinal Landau damping in electron storage rings

is given in [47]. The result extracted from that work and presented here describes the
problem of Landau damping in terms of an equation for the angular coherent synchrotron
frequency Ω, called the dispersion relation. By numerically solving this equation, solutions
for Ω are obtained which immediately tell about the stability of the system. The dispersion
relation can be considered as a generalization of Eq. 2.24, allowing each bunch to have its
own synchrotron frequency.
The dispersion relation for a single HOM is defined as [47],

d(Ω) = IDCωbeamZ
‖
0(ωbeam + Ω), (2.42)

with the dispersion function d,

d(Ω) =
i µ̃
M

M∑
q=1

1
ω2

sq − Ω2 + 2iδnΩ

−1

, (2.43)

and the “condensed machine parameter” µ̃,

µ̃ = α

TrevE/e
, (2.44)

with Ω the angular coherent frequency, IDC the beam current, ωbeam some harmonic of the
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2. Theory of Coupled Bunch Instabilities

revolution frequency, Z‖0 a longitudinal resonator impedance of an HOM,M the number of
bunches, ωsq the unperturbed angular synchrotron frequency of bunch q, δn the dissipative
damping rate (e. g., radiation damping) and the usual constants.
Solving Eq. 2.42 is not trivial as it is a nonlinear algebraic equation in the complex

space. However, a simplification can be made if only the threshold of the instability is of
interest. In this case, the search for solutions can be limited to cases where the growth
rate is zero,

τ−1 = −=(Ω) = 0. (2.45)

This reduces the parameter space for Ω from C to R, thus greatly enhancing the speed of
a numerical calculation. Graphically, the search for Ω can be expressed by first plotting d
for all real Ω in a reasonable interval and then increasing IDC until the r.h.s. of Eq. 2.42
intersects with the line drawn by d.
If the resonance frequency of the HOM is not exactly known, it is reasonable to take

a worst case approach which is realized by plotting the r.h.s. of Eq. 2.42 not only for
a small interval of Ω but for all real Ω. This draws a circle with both the center and
radius equal to IDCωbeamRs,0/2 with Rs,0 the shunt impedance of the HOM. Then, IDC
is increased until the circle intersects with the line drawn by d anywhere. Examples and
applications of this method are shown in Section 6.3.4.

2.5.1. Small Effect Approximation and Vanishing Landau Damping
Instead of a complete deviation of the dispersion relation, it will only be shown that
Eq. 2.42 is indeed a generalization of the formulas obtained in Section 2.3.
For small expected synchrotron shifts and small frequency spread, ωsq ≈ Ω ≈ ωs, the

same approximations as in Eq. 2.28 can be applied to Eq. 2.42, which yields the following
relation,

d(Ω) =
i µ̃
M

M∑
q=1

1
(ωsq − Ω)2ωsq + 2iδnωsq

−1

= IDCωbeamZ
‖
0(ωbeam + ωs). (2.46)

This is not a linear equation in Ω, however the r.h.s. of Eq. 2.42 has become a constant,
especially independent of Ω. The threshold is given by the largest IDC where all Ω that
solve Eq. 2.46 have no positive imaginary part.
If it is additionally assumed that there is no frequency spread from bunch to bunch,

ωs = ωsq, the dispersion function becomes

d(Ω) =
(
i
µ̃

M

M

ω2
s − Ω2 + 2iδnΩ

)−1

= −i
µ̃

(ω2
s − Ω2 + 2iδnΩ). (2.47)
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2.6. Transverse Bunch Motion

The dispersion relation then yields

(ωs
2 − Ω2) = iµ̃IDCωbeamZ

‖
0(ωbeam + Ω)− 2iδnΩ. (2.48)

If the small amplitude approximation is used again on the l.h.s., i. e., ωs
2 − Ω2 ≈

(ωs − Ω)2ωs the following is obtained,

(ωs − Ω) = i
µ̃IDCωbeamZ

‖
0(ωbeam + Ω)

2ωs
− iδn. (2.49)

Again, the imaginary part of Ω relates to the growth rate. Note that due to the
definition made in Eq. 2.42, the sign is opposite to what is used elsewhere in this thesis,
compare Eq. 2.26. The growth rate can be calculated as

τ−1 = −=(Ω) = =(ωs − Ω) = =(i µ̃IDCωbeam<Z‖0(ωbeam + Ω)
2ωs

− iδn)

= ωrevIDCα

4πωsE/e
ωbeam<Z‖0(ωbeam + Ω)− δn,

(2.50)

which is identical to Eq. 2.32 if the term of the dissipative damping rate, δn, is dropped
and only the upper side band is considered.

2.6. Transverse Bunch Motion
In this section, formulas for the HOM driven transverse CBIs will be derived. The for-
mulas for the dipole oscillation, i. e., oscillations of the center of mass, use a point charge
approximation. Consequently, the formulas are very similar to the longitudinal cases stud-
ied above, both for even and uneven fill. In addition, transverse quadrupolar motion, i. e.,
density oscillations may occur in the interaction with quadrupolar HOMs, more precisely
with m = 2 resonator impedances, as described in Section 2.6.4.

2.6.1. Even Fill
In point charge approximation, the bunches can perform only dipole betatron oscillations
in the horizontal or vertical plane. Due to the strong focusing in the transverse planes,
the angular betatron oscillation frequency ωβ is much larger than the angular synchrotron
frequency, i. e., ωβ � ωs. As a consequence, the approximation of a small perturbation
to the betatron oscillation frequency ωβ is almost always well justified. In this thesis,
it is justified for all applications because the transverse impedance is given by HOMs of
moderate strength.
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2. Theory of Coupled Bunch Instabilities

In this approximation and assuming even fill, an algebraic equation for the coherent
frequencies can be obtained in analogy to the longitudinal case, Eq. 2.28. The complex
betatron frequency shift ωµ − ωβ is given by [29, Eq. 4.114]

ωµ − ωβ = −iωrevIDC

4πE/e
c

ωβ

∞∑
p=−∞

Z⊥1 ((pM + µ)ωrev + ωβ), (2.51)

with ωµ the coherent betatron frequency of CBM µ, Z⊥1 the transverse m = 1 impedance
and the other M the number of equidistant bunches. It can be applied to both the
horizontal or vertical plane.
There is no static term in the transverse case, i. e., proportional to Z⊥1 (pMωrev) for

even fill, because the transverse force of the m = 1 wake potential does not depend on the
offset [29, p. 174]. Without the static contribution, there is no transverse Landau damping
effect expected from uneven fill patterns unlike in the longitudinal case [30, p. 348].
This formula can be made more accurate by the substitution c/ωβ = β, which takes

the value of the betatron function β as a weight for the localized impedance [30, Eq. 9.5]
instead of a sort of averaged value. The betatron frequency shift and the growth rate are
then given by

∆ωµ = ωrevIDC

4πE/e β
∞∑

p=−∞
=Z⊥1 ((pM + µ)ωrev + ωβ) (2.52)

τ−1
µ = −ωrevIDC

4πE/e β
∞∑

p=−∞
<Z⊥1 ((pM + µ)ωrev + ωβ). (2.53)

Equation 2.53 is the most useful formula for the calculation of HOM driven CBIs for
the transverse case, similar to the meaning of Eq. 2.30 for the longitudinal case. The
scaling with machine parameters is the same as in Eq. 2.30 for the revolution frequency,
the current, the impedance and the current. A difference is the fact that the growth rate
does not scale with the product of frequency and impedance, but only with the impedance
itself. This is plausible, as the tune shift is not achieved by the time dependence of the
field but only depends on its amplitude. The scaling with β is plausible as it describes how
transverse momentum is translated into transverse displacement, i. e., a large β amplifies
the feedback loop of the instability mechanism.

2.6.2. Chromaticity Dependence of Transverse CBIs
The mechanism of increasing the stability of transverse CBIs by increasing the chromatic-
ity is not completely understood [48]. Apart from the effect described below, chromaticity
causes transverse Landau damping which may contribute to increased stability. As will
be shown, in terms of the effect described below, chromaticity is not particularly effective
to increase the stability of HOM driven CBI, hence it is ignored in most parts of this
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thesis.
In the transverse planes, the chromaticity ξ is defined via

∆Qx = ξδ, (2.54)

with δ the relative momentum deviation and ∆Qx the horizontal chromatic tune shift
respectively. The vertical plane is defined analogously. The betatron angular frequency
shift due to chromaticity ∆ωξ is defined as

∆ωξ = ξωrev

α
, (2.55)

with the momentum compaction α.
Among other parameters, the effect of the chromaticity on transverse instabilities in

general strongly depends on the type of impedance and the bunch length. For long bunches
in combination with a broad band impedances, such as the resistive wall impedance,
chromaticity can have a strong effect on stability [49].
For a narrow impedance, such as cavity HOM, the effect of the chromaticity can be

estimated by an additional form factor [49]. Equation 2.51 then becomes

ωµ − ωβ = −iωrevIDC

4πE/e
c

ωβ

∞∑
p=−∞

Z⊥1 (ω)F ′0(ω −∆ωξ), (2.56)

with ω = (pM + µ)ωrev +ωβ and a form factor that can be estimated for Gaussian bunch
shape by

F ′0(ω) ≈ h0(ω) ≈ exp
(
− ω2

(2π/σ)2

)
(2.57)

and h0(ω) the squared absolute value of the envelope of the beam spectrum and σ the
rms bunch length measured in units of time. For BESSY II, the form factor is nearly
one for reasonable chromaticity values. For instance, for σ = 20 ps and an unreasonably
large chromaticity of ξ = 20, the form factor is about 0.65. This is not a very significant
reduction and considering the fact that the chromaticity is typically restricted to values
ξ . 5 by other machine parameters, such as dynamic aperture, chromaticity is not a
useful handle to reduce transverse CBIs driven by HOMs.

2.6.3. Uneven Fill
Equation 2.51 can also be extended to the case of uneven fill. Analogous to the longitudinal
case, Section 2.4, the task of solving the equations of motion can be expressed as a M -
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dimensional eigenvalue problem

(Ω− ωβ)z̄l = i
M−1∑
m=0

Almz̄m, (2.58)

with l the index of the vector z̄ = (z̄1, . . . , z̄M) with the M ×M matrix Alm defined as,

Alm = ωrevIDC

4πE/e βMωrevIl−mZ
⊥
l (ωβ), (2.59)

with the usual constants, the complex amplitude of the beam spectrum defined in Eq. 2.38
and the so called transverse mode-coupling3 impedance Z⊥l , given by

Z⊥l (ω) =
∞∑

p=−∞
Z⊥1 (pMωrev + lωrev + ω). (2.60)

As explained above, the static term does not exists in the transverse case, leading to the
increased simplicity of Eq. 2.59 compared to Eq. 2.37.
Again, there areM solutions to Eq. 2.58, yieldingM eigenvectors with their eigenvalues

λµ = −i(ωµ− ωβ). The angular frequency shift ∆ωµ and growth rate τ−1
µ are again given

by

∆ωµ = <(ωµ)− ωβ = −=(λµ) (2.61)
τ−1
µ = =(ωµ) = <(λµ). (2.62)

The computer code presented in this thesis includes the transverse case as well.

2.6.4. Quadrupolar Higher Order Modes
The effect of quadrupolar HOMs of cavities in circular accelerators does not seem to
be a subject of studies published to date. Generally, longitudinal cavity HOMs can be
considered to be the most critical plane in circular accelerators. HOM driven transverse
dipole CBIs are typically much weaker compared to their longitudinal counterpart and
often even below a recognizable limit [50, 51]. Transverse quadrupole HOMs are expected
to be even weaker in comparison to transverse dipole HOMs, thus are usually not of
interest.
However, in ERLs, the transverse instabilities are typically more critical than the lon-

gitudinal instabilities and instability studies for both, dipole and quadrupole HOMs are
available [52–55].

3This unfortunate naming convention must not lead to a confusion with the mode-coupling instabilities
in the sense of e.g. [30, Chap. 11].
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In the context of BESSY VSR, where a new class of cavities is going to be installed
in an electron storage ring, it is also be possible that a parameter space is being entered
where the quadrupole HOMs may not be negligible anymore. Thus, a method for the
estimation of transverse quadrupole CBIs has been developed in this thesis.
The following formula for the growth rate of transverse quadrupole CBIs in a circu-

lar accelerator has been found empirically based on numerical studies with the tracking
software presented in Section 3.2.1, based on the algorithm described in Section 3.1.4,

τ−1(M2) ≈ M2

2
ωrevIDC

4πE/e β<Z
⊥
2 (ωbeam + 2ωβ), (2.63)

with M2 the transverse quadrupole moment w. r. t. the reference orbit. Unlike the m = 0
and m = 1 case, the growth rate explicitly depends on the amplitude of the oscillation,
i. e., the momentary quadrupole moment. Hence, the growth as a function of time of a
point-like bunch with coordinate x, M2 = x2, is much faster than exponential,

x(t) ∝ e
x(t)2t

τ−1(x2
0)

x2
0 , (2.64)

with x0 > 0 some constant.
Unfortunately, no experimental measurements to further validate Eq. 2.63 exists to-

day. This naturally lies in the weak nature of quadrupolar HOMs, which has made it
neither particularly pressing nor easy to measure and characterize the phenomenon in
existing electron storage rings. Future experimental validation would require a cavity
with strong quadrupolar HOMs and a suppression of dipolar HOM driven CBIs during
the measurement, e. g., by means of a bunch-by-bunch feedback (BBFB).
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3. Tracking Codes for Coupled Bunch
Effects

This chapter depicts how the physics of coupled bunch effects can be addressed in the
time domain by means of tracking codes based on the wake potential of a resonator
impedance. In Section 3.1, the basic formulas for the interaction of the beam with a
resonator impedances are derived explicitly for the longitudinal case and the transverse
dipole and quadruple case. Moreover, instructions for self-consistent algorithms are stated
that are applicable to study CBIs as well as transient beam loading.
Some examples for the implementation of the algorithms are given in Section 3.2. In

Section 3.3, general findings regarding HOM driven CBIs are obtained with the tracking
codes which complement and extend the analytic results of Chapter 2.

3.1. Beam Interaction with Resonator Impedances
This section describes formulas necessary for the implementation of a self-consistent track-
ing code that describes the interaction of the beam with a resonator impedance.
The interaction of transverse beam moments of infinitesimally small longitudinal exten-

sion with resonator impedances of the first four orders in m are given by the relation of
wake potentials to the wake functions in Tab. 2.1 and the wake functions of the resonator
impedance Eqs. 2.13 and 2.14. The approximations made in Eqs. 2.13 and 2.14 are well
justified for the cases studied in this thesis.
The accelerating voltage a bunch1 experiences from a wake which was induced by a

previous bunch1 is given by the wake potential c∆~p defined in Eq. 2.3, divided by the
charge of the test particle, e,

~Vacc = 1
e

∫ L/2

−L/2
dz ~F . (3.1)

In this section, the bunches are assumed to be short compared to the wave length of

1or a longitudinal slice thereof or an individual electron
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the resonator impedances2.

3.1.1. Longitudinal Case
The lowest order, m = 0, describes longitudinal resonators. As can be read out from
Tab. 2.1, the transverse wake potential is zero, i. e., no transverse kicks are to be expected
from such a resonator impedance. Furthermore, the longitudinal wake potential scales
with the m = 0 beam moment, i. e., the charge q, hence it is independent of the transverse
extension of the beam.
For m = 0, the accelerating voltage a bunch experiences from the wake induced by a

previous bunch of charge q at a distance −z can be written using Eqs. 2.5, 2.13 and 3.1,

V ‖acc(z) = −qW ′
0(z) = −qωrRs,0

Q
e
ωrz
2Qc cos ωrz

c
. (3.2)

The bunch also experiences a kick from its own induced field. According to the so called
fundamental theorem of beam loading [56], the accelerating voltage the bunch experiences
equals half the voltage it induces in the resonator impedance. For a bunch of charge q,
the self-induced field is then given by

V ‖acc

∣∣∣∣
self

= −q2W
′
0(0−) = −q2

ωrRs,0

Q
, (3.3)

with 0− indicating that the function is evaluated at a negative value very close to zero. In
order to comply with conservation of energy, the voltage in Eq. 3.3 must act decelerating,
which is in accordance with the sign convention mentioned in Section 2.1.
The term on the r.h.s. of Eq. 3.3 represents the incoherent impedance losses which are

sometimes described by means of a so called loss factor in literature [36, 57, 58].
With t = −z/c, time dependent wake functions can be defined and Eq. 3.2 can be

written in time coordinates, expressing the accelerating voltage a probe would experience
passing the impedance at a time t > 0 after a bunch with charge q has induced the wake,

V ‖acc(t) = −qW ′
0(t) = −qωrRs,0

Q
e−

ωrt
2Q cosωrt. (3.4)

In a circular accelerator, the bunches pass the impedance resonator many times and if
there are multiple bunches in the ring, also many different bunches induce wakes in the
impedance resonator. Hence, the accelerating voltage of a resonator impedance depends

2The restriction to short bunches is not a requirement to derive the formulas in this section and is only
done to simplify the wording. E.g., Eq. 3.2 can also be used for long bunches if it is described as the
accelerating voltage an infinitesimally small longitudinal slice of a bunch experiences from the wake
induced by a previous infinitesimally small longitudinal slice of charge q at a distance −z. The effect
on a slice is then the superposition of the wakes of all previous slices.
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on all previous bunch passages by all bunches,

V ‖acc(t) = −
tk∑

ti=t0
q(ti)W ′

0(t− ti), (3.5)

where t0, . . . , tk are the times at which a bunch has passed the impedance and q(ti) is the
bunch charge of the bunch that passes at time ti. A tracking code works as an iterative
calculation, where the momentary acceleration field is calculated based on the last known
field previously calculated. The time behavior of the wake function, Eq. 3.4, consists of
an exponentially decaying term and a sinusoidal function. The frequency and the rate of
the exponential decay are constants which allows to use trigonometric identities to reduce
any sum of such wake functions to a single expression, characterized by an amplitude and
a phase, see Appendix A.3. This means, the history of previous bunch interactions does
neither need to be kept in memory, nor is it needed to compute the exact phasor at present
time, which dramatically lowers the computational effort. For other types of wakes, e. g.,
the resistive wall wake, a reduction similar to Appendix A.3 is not possible [59].
The momentary acceleration field at time t can be calculated if the amplitude A(tlast)

and phase φ(tlast) of the last calculation are known,

A(t) = A(tlast)e−
ωr(t−tlast)

2Q (3.6)
φ(t) = φ(tlast) + ωr(t− tlast) (3.7)

V ‖acc(t) = A(t) cosφ(t). (3.8)

Instead of amplitude and phase, it is more convenient to use the phasor notation in the
complex plane. The accelerating voltage V ‖acc is represented by the real part of the complex
phasor V . The phasor at time t and the accelerating voltage can be obtained by

∆φ = ωr(t− tlast) (3.9)

V (t) = V (tlast)ei∆φe−
∆φ
2Q (3.10)

V ‖acc(t) = <V (t), (3.11)

with ∆φ the angle by which the phasor needs to be rotated since the last passage. Con-
veniently, the imaginary part of the phasor, =V , is proportional to the time derivation of
<V , hence it is proportional to the focusing gradient V ′ defined in Eq. 1.2,

V ′(t) = ωr=V (t), (3.12)

where an arbitrary sign convention has been chosen. For instance, V ′ can be used to
obtain the synchrotron frequency for point-like bunches using Eq. 1.5.
The interaction of a bunch with charge q with the impedance at the time t simply adds
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Figure 3.1.: Examples of the phasor representation of the beam impedance interaction and
phasor rotation and decay in the complex plane. Left: Transient behavior of
bunch interaction (blue arrows) and bunch rotation and decay (green arrows)
for 60 consecutive bunch passes. The tips of the arrows converge to the steady
state phasor values just before and after a bunch pass and are indicated by
solid lines after the first 60 bunches for better visualization. Right: Steady
state of a passive third harmonic Landau cavity tuned to bunch lengthening
for even bunch fill pattern with 400 bunches. The steady state is manifested
in the fact that the induced field of each bunch (blue arrow) exactly equals the
net effect of decay and rotation (green spiral arrow). For bunch lengthening,
a positive detuning, i. e., ∆fr > 0, is required. As a consequence, the phasor
rotates faster than the third harmonic of the bunch frequency, resulting in a
little more than three full revolutions, visualized by the spiral arrow.

a constant to the real part of the phasor,

V (t+) = V (t−)− qωrRs,0

Q
. (3.13)

The imaginary part of the phasor is unchanged.
Figure 3.1 shows two examples to illustrate the behavior of the phasor V . The instan-

taneous change of the phasor due to the bunch interaction, Eq. 3.13, is expressed by blue
arrows. Green arrows indicate the rotation and decay of the phasor between two con-
secutive bunch passe, Eq. 3.10, where the arrow either represents the net effect (straight
arrow) or the entire path (spiral arrow).
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3.1. Beam Interaction with Resonator Impedances

The energy lost or gained by the bunch by this interaction is described by the self-
induced losses, Eq. 3.3, plus the energy loss or gain by the accelerating field given by the
present state of the phasor, Eq. 3.11. Together, the net voltage a bunch experiences by
the interaction at time t reads as

V ‖acc = V ‖acc

∣∣∣∣
self

+ <V (t−). (3.14)

A tracking code only needs three steps for a self-consistent treatment of the bunch-
impedance interaction:

1. Keep the values of tlast and V (tlast) in memory (3 floating point scalars).

2. Calculate the new values of V at each passage of bunch with Eqs. 3.9, 3.10 and 3.13.

3. Calculate the new energy of the bunch after each passage with Eq. 3.14.

Similar implementations with phasor addition and rotation can be found in other track-
ing codes [59–65].

3.1.2. Feedback Controlled Cavities
The scheme discussed in Section 3.1.1 can also be used for the fundamental mode of a
cavity which results in a realistic behavior of a passive cavity. An active cavity can be
described as a passive cavity that is continuously driven by a generator current [36]. In
this thesis, a very simplified model of a the generator is used, as described in the following.
First, target values are set for the active cavity in terms of phase and amplitude. After

each turn, the feedback loop compares the target values with the momentary values and
calculates the difference in terms of phase an amplitude. The calculated difference is
then added to cavity phasor in equal discrete steps over the course of the next turn. The
discrete steps are chosen such that the phasor addition takes place between the arrival
times of nominal bucket positions.
The motivation of this implementation is to obtain a feedback that does not react within

a turn but reacts quickly from one turn to another. This resembles a realistic feedback in
the sense that for times scales in the order of the revolution period, a feedback can barely
react [2], but it is relatively fast in reaching the equilibrium state that any slow feedback
will eventually reach. Hence, the simplified model allows to study quite realistically
transient beam loading induced by uneven fill, see Chapter 6.
Similar work with the goal to implement feedback controlled cavities in a tracking code

for beam dynamics is ongoing at another laboratory [66]. Other simulation codes, for
example [67, 68], come with a much stronger focus on realistic cavity control theory and
are considered complementary to the software presented in this thesis.
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3. Tracking Codes for Coupled Bunch Effects

3.1.3. Transverse m = 1 Case
The next order, m = 1, describes dipolar resonators. Unlike the m = 0 case, both the
transverse wake potential and the longitudinal wake potential are non-zero, see Tab. 2.1,
and scale with the m = 1 beam moment, i. e., the transverse dipole moment. The longi-
tudinal wake potential further scales with the transverse coordinate of the probing bunch
while the transverse wake potential is independent of the transverse coordinate, which
equals the behavior of common dipole magnet.
For m > 0, there are two orthogonal multipoles possible for each m. Without loss of

generality, the bunch is assumed to posses a purely normal dipole in x direction. The
m = 1 transverse moment of the bunch is given by,

M1 = 〈x〉, (3.15)

where the angle brackets indicate the averaging over the x coordinates of all electrons of
the bunch. M1 is the center of mass in x direction.
The phasor can be defined by its calculation after a bunch passage with charge q and

dipole moment M1,

V (t+) = V (t−)−M1q
ωrRs,1

Q
, (3.16)

and the transformation rules given in Eqs. 3.9 and 3.10. Here, the important point is
the usage of the charge and the dipole moment of the bunch as a weight when the wake
functions are added to form a phasor. The longitudinal and transverse kicks on the bunch
that passes the impedance are given by Tab. 2.1,

V ‖acc = −M2
1
q

2
ωrRs,1

Q
+ x<V (t−) (3.17)

~V ⊥acc = − c

ωr
=V (t)x̂, (3.18)

with x̂ the unit vector in x direction. The first term in Eq. 3.17 is the energy loss due
to its self induced fields. The transverse kick, Eq. 3.18, is obtained from the transverse
wake function given in Eq. 2.14 and the fact that the transverse wake function is defined
as the derivative of the longitudinal wake function with respect to z, yielding the relation

d
dz=V (t) = −1

c

d
dt=V (t) = ωr

c
<V (t). (3.19)

The transverse kick does not have a self-induced component, as the transverse wake
function goes as a sine, i. e., it is zero at small arguments.
A self-consistent tracking code can be written following the steps in Section 3.1.1 and
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using Eqs. 3.16 to 3.18 instead of Eqs. 3.13 and 3.14.

3.1.4. Transverse m = 2 Case
In the m = 2 case describes the interaction with quadrupolar resonator impedances.
Compared to the m = 2 case, the transverse wake potential is additionally dependent on
the transverse coordinates of the probing bunch. The dependence equals the behavior of
a common quadrupole magnet.
The normal m = 2 transverse moment of the bunch is given by

M2 = 〈x2 − y2〉, (3.20)

see Tab. 2.1, where the angle brackets indicate the averaging over both transverse coordi-
nates over all electrons of the bunch. M2 is the normal quadrupole moment in the x− y
plane. The phasor can be defined by its calculation after a bunch passage with charge q
and quadrupole moment M2,

V (t+) = V (t−)−M2q
ωrRs,2

Q
, (3.21)

and the transformation rules given in Eqs. 3.9 and 3.10. Again, the charge and the
moment of the bunch are used as a weight when the wake functions are added to form a
phasor. The longitudinal and transverse kicks on the electrons of the bunch that passes
the impedance are given by Tab. 2.1 and depend on the position x and y of the electron
within the bunch,

V ‖acc(x, y) = −(x2 − y2)M2
q

2
ωrRs,2

Q
+ (x2 − y2)<V (t−) (3.22)

~V ⊥acc(x, y) = −2(x̂x− ŷy) c
ωr
=V (t), (3.23)

with x̂ and ŷ the unit vectors in x and y directions. The fact that the position infor-
mation appears in a squared form, i. e., independent of the sign, gives rise to a potential
quadrupolar motion. The structure of Eqs. 3.22 and 3.23 can be explained as above and
a self-consistent tracking code can again be written following the steps in Section 3.1.1
and using Eqs. 3.21 to 3.23 instead of Eqs. 3.13 and 3.14.

3.2. Implementations in Tracking Codes
A number of implementations of the algorithms above have been written in the course of
this thesis. This includes a very demonstrative Python code, a more complex longitudinal
C++ code, and personal extensions to the existing software “mbtrack” [69].
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3. Tracking Codes for Coupled Bunch Effects

3.2.1. Minimal Demonstrative Code
The Python source code of a so called minimal working example of the m = 1 and m = 2
implementations described in Sections 3.1.3 and 3.1.4 is presented in Appendix A.4. The
coupling between the transverse and longitudinal plane has been ignored and only one
transverse coordinate, the horizontal one, is considered. Another simplification is the fact
that only one bunch is in the machine, consisting of one macro particle. Otherwise, the
BESSY VSR parameters are used. Despite the simplifications, the code is very useful as
it allows to study scenarios not covered with the analytic formulas, e. g., their valilidy in
terms of Q, see Section 3.3.4. In addition, it was used to provide an empirical formula for
the prediction of the growth rate of the CBI for the m = 2 case, see Section 3.3.2.

3.2.2. Longitudinal Stand-alone Tracker
A somewhat more advanced, self-consistent tracking code for the longitudinal plane was
written in C++. The bunches are still described by one macro particle each, but any
number of bunches and bunch fill pattern can be simulated. The effect of the magnet
optics on the longitudinal dynamics is expressed by a constant momentum compaction
factor. The transverse planes are not simulated.
The cavities can be modeled either by exact sinusoidal functions applying a kick without

being affected by the beam or they can be feedback controlled cavities that are continu-
ously powered by a generator and interact with the beam as a resonator impedance, as
explained in Section 3.1.2.
An individual constant energy loss per turn for each bunch, Gaussian noise and exponen-

tial damping of the energy coordinate are available to emulate the effects of synchrotron
ration losses, quantum excitation and radiation damping.
Longitudinal resonators, e. g., passive cavities or HOMs, are treated by the method

described in Section 3.1.1.
The tracking code can be used to study longitudinal CBI for arbitrary fill pattern,

including its fill pattern dependency and Landau damping from the bunch to bunch
spread in synchrotron frequencies [70]. Furthermore, the effects of transient beam loading
induced by the fundamental modes of any number of active and passive cavities can be
studied [2, 71]. See Section 6.1.3 for examples presented in this thesis.

3.2.3. Extensions to the Third Party Software “mbtrack”
In addition to the stand-alone tracking codes described above, a personal copy of the
full-feature three dimensional tracking code “mbtrack” [69] was extended for this thesis
to support the interaction of the beam with transverse m = 1 and m = 2 resonator
impedances. Longitudinal resonator impedances are already supported by “mbtrack” [59,
72]. In the course of writing the extensions for transverse resonator impedances, an
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3.3. General CBI Findings Obtained from Tracking Codes

implementation of the longitudinal case was also written and agreement with “mbtrack”’s
original functions could be shown.
“mbtrack” is a multi-particle tracking code. The implementations were done in three

different longitudinal methods. In the first method, only the longitudinal center of mass
is taken to calculate the induced field and the kick which is the same for all electrons
of the bunch. Second, a binned method was implemented, very similar to the exisiting
methods in “mbtrack”. In those methods, the longitudinal bunch distribution is binned
and each slice is treated consecutively. This allows for intra-bunch effects transmitted by
long range resonators. The third implementation is an unbinned calculation, meaning the
entire set of macro particles is ordered by arrival time and each macro particle induces
its own field and experiences a kick depending on the field already present and induced
by previous macro particles. Obviously, the computational efforts strongly increase from
the first to the third method, if the number of macro particles is large.
For short bunches, the center of mass mode is usually accurate enough, see

Appendix A.2. However, longitudinal intra-bunch Landau damping can be seen only in
binned or unbinned methods.
Another tracking code that was not used in this thesis but officially supports m ≤ 2

resonator impedances is described in [73].

3.3. General CBI Findings Obtained from Tracking Codes
All the general findings obtained from tracking simulations in this section are obtained
with the Python code described in Section 3.2.1 and printed in Appendix A.4. However,
the general dynamics of the longitudinal stand-alone tracker described in Section 3.2.2
has also been successfully cross checked against analytic expectations. Hence, the same
results in the longitudinal cases can also be obtained from this code as well.

3.3.1. Comparison of Growth Rate with Analytic Formulas
In this section, the tracking algorithm is applied to the case of HOM driven CBIs and
compared to the analytic expressions given in Eqs. 2.53 and 2.63.
The code can be used to obtain the growth rate of the instability by fitting an ex-

ponential function to the envelop of the transverse coordinate of the trajectory. The
transverse coordinate along with the imaginary part of the phasor is shown in Figs. 3.2
and 3.3. Those plots are obtained from the arrays produced in the code segments labeled
“demo 1” and “demo 2” shown in Appendix A.4. Except for the export and plotting
of the arrays ax and aV, the code shown in Appendix A.4 is complete for the exact re-
production of the trajectories shown in the figures. It includes the BESSY II standard
parameters from Tab. 1.1 and realistic HOM parameters with fr ≈ 1 GHz, Q = 1× 104,
Rs,1 ≈ 1.9× 108 Ωm−2, Rs,2 = 1× 1013 Ωm−4 and a horizontal start amplitude of 1 mm.
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Figure 3.2.: Simulation of a transverse m = 1 impedance with the code described in
Section 3.2.1. Transverse coordinate and fit to its envelop (top) and imaginary
part of phasor (bottom) as a function of time. The analytic expectation for
the growth rate is obtained by means of Eq. 2.53.

One difference to a realistic scenario is the fact that only one bunch containing the entire
charge is simulated in the ring, which does not change the results unless Q becomes too
small, as discussed in Section 3.3.4.
As can be seen, the agreement in terms of growth rate of simulation and analytic

expectation is in the order of 95% for the m = 1 case. The remaining difference can be
attributed to the discrete nature of the simulation and the finite number of simulation
steps. For them = 2 case, no analytic expectation for the growth rate is available which is
why the analytic expression given in Eq. 2.63 was derived based on studies with this very
code. The agreement of simulation and the expectation is then given by construction, of
course.

3.3.2. Empirical Formula for the m = 2 Growth Rate
The empirical formula for the m = 2 growth rate given in Eq. 2.63 has been found by
evaluating the scaling of all input parameters in the simulation code. Furthermore, a
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Figure 3.3.: Simulation of a transverse m = 2 impedance with the code described in
Section 3.2.1. Transverse coordinate and fit to its envelop (top) and imaginary
part of phasor (bottom) as a function of time. The expectation for the growth
rate is obtained by means of Eq. 2.63.

comparison with the known m = 1 formula given in Eq. 2.53 was made and finally a
numerical comparison revealed another constant factor of two.
The major difference of m = 2 compared to m = 1 and the longitudinal m = 0 case

is the amplitude dependence of the growth rate, i. e., the scaling with M2. In the m = 1
and m = 0 cases, the frequency and growth rate do not dependent on the amplitude of
the oscillation, as expected from a perfect harmonic oscillator. In reality, an amplitude
dependence might still occur in those cases but it is usually very small.
In contrast, the amplitude dependence for the m = 2 growth rate seems to be very

strong, as illustrated in Fig. 3.4 for simulation runs with different starting values for the
transverse coordinate xstart. In Fig. 3.4 left, it can be seen that the growth is faster than
exponential. The right panel of Fig. 3.4 shows that the growth rate scales withM2 = x2

start
up until a point where the growth is so fast that the amplitude has grown too much in
the interval that is used to fit the growth rate.
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Figure 3.4.: Left: Tracking simulation of time behavior of the envelop of the transverse
coordinate (solid lines) during an instability driven by a transverse m = 2
impedance for three different starting amplitudes (colors). Dashed lines indi-
cate the expected behavior for the hypothesis of exponential growth. Right:
Tracking simulation of growth rate as a function of squared starting ampli-
tude. The linearity is clearly visible until very large growth rates where the
change of amplitude during the course of the simulation is large and the fit
of the growth rate by applying an exponential function begins to fail.

3.3.3. Dependence of Transverse HOM Offset
The simulation code can also be used to study the effect of a transverse displacement of
the electromagnetic HOM center with respect to the reference orbit of the beam. This
may happen by misalignment of the cavities, by steering the beam through the cavities
with an offset or by HOMs with an intrinsically shifted center, see for example [33].
The equations describing the HOM interaction of the longitudinal m = 0 case are

independent of the transverse coordinate, so no offset dependence can occur. In the
transverse m = 1 case, transverse coordinate appears in the equations and the question
of the influence of a transverse offset on the dynamics has to be studied. From analytic
considerations, the growth rate of the CBI is not expected to be dependent on the trans-
verse offset. Instead, the center of oscillation of the CBI will be changed to the offset.
The independence of the offset is confirmed by the simulations shown in the tracking
simulations in the left panel in Fig. 3.5, where the growth rate is virtually constant over
the entire rage of realistic transverse HOM offsets for the m = 1 case.
In the m = 2 case, the situation is very different. It shows a strong dependence on the

offset, as shown in the tracking simulation in Fig. 3.5 right panel. The relationship of the
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Figure 3.5.: Left: Tracking simulation of growth rate of an instability driven by a trans-
verse m = 1 impedance as a function of transverse HOM offset. Right:
Tracking simulation of growth rate divided by the expected growth rate eval-
uated by Eq. 3.24 for an instability driven by a transverse m = 2 impedance
as a function of transverse HOM offset.

transverse HOM offset xoffset to the growth rate can be expressed by an explicit formula,

τ−1
expected(M2, xoffset) ≈

M2 + 1
2xoffset

2

2
ωrevIDC

4πE/e β<Z
⊥
2 (ωr). (3.24)

which is a generalization of Eq. 2.63. The approximate validity of this formula is shown
in Fig. 3.5 right panel where the tracking simulation differs by no more than about 10%
for realistic values of xoffset.
The xoffset dependence of quadrupolar HOMs can also be understood by looking at

Eqs. 3.21 and 3.23. If small oscillation amplitudes x0 are considered at a constant offset,
i. e., setting x = x0 + xoffset with x0 � xoffset in those equations and implying y = 0 and
M2 = x2, the phasor addition and kick take the following form:

V (t+) = V (t−)−M2q
ωrRs,2

Q
≈ V (t−)− (xoffset

2 + 2x0xoffset)q
ωrRs,2

Q
(3.25)

~V ⊥acc = −2x̂x c
ωr
=V (t) ≈ −2x̂xoffset

c

ωr
=V (t). (3.26)

The approximations (x0 + xoffset)2 ≈ xoffset
2 + 2x0xoffset and (x0 + xoffset) ≈ xoffset were

used to obtain the results. As can be seen, the x0 dependence of those equations is now
exactly as in the m = 1 case, see Eqs. 3.16 and 3.18. In other words, a transversely
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Figure 3.6.: Growth rate of longitudinalm = 0 case as a function of Q for constant Rs,0/Q.
The tracking simulation (blue) is compared to the analytic estimation given
by Eq. 2.30 (green). The cycles per bunch spacing define a lower limit for Q
while an upper limit s given by the inverse of the characteristic fill time τc.

shifted quadrupole impedance acts like a dipole impedance with an equivalent m = 1
shunt impedance given by the offset xoffset,

(Rs,1)equivalent = 4xoffset
2Rs,2. (3.27)

The factor 4xoffset
2 complies with the comparison of Eq. 2.53 with Eq. 3.24.

3.3.4. Q Limits for Analytic Formulas
The tracking code can also show the limits of the analytic estimations of the growth rates,
Eqs. 2.30 and 2.53, in term of the quality factor Q.

Longitudinal m = 0 case

With slight changes in the tracking code described in Section 3.2.1, the longitudinalm = 0
case described in Section 3.1.1 can be studied as well.
The comparison of the growth rate obtained with the tracking code and Eq. 2.30 is

shown in Fig. 3.6 for a reasonable parameter set. As can be seen, a lower and an upper
limit for the validity of Eq. 2.30 in terms of Q appears.
The lower limit can be explained by the fact that the estimations in Eq. 2.30 require

that the HOM field has not decayed significantly between two bunch passes. This is
expressed by the relation of oscillation cycles to bunch repetition frequency and defines a
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lower limit for Q as ωr/2/(Mfrev). In this case, the lower limit for Q is ωr/2/frev because
only one bunch is simulated in the machine for simplicity. For more realistic calculations,
e. g., even fill with 400 bunches and an HOM at ωr = 2.0 GHz, the lower limit for Q is
estimated as 12.5, which is a very low quality factor, even for strongly damped HOMs.
Hence, the lower limit is not expected to become relevant for the calculation of HOM
driven CBIs.
An upper limit in Q for the validity of Eq. 2.30 is given by the characteristic fill time

of a resonator,
τc = 2Q

ωr
. (3.28)

As the name suggests, it describes how fast a resonator, e. g., a cavity, is filled when
a constant current is applied. In the theory of CBIs, the field in the resonator grows
proportionally to the oscillation amplitude of the bunches. If τc is very large, i. e., high
Q, the growth is limited and does not scale linear with Q anymore as Eq. 2.30 would
normally suggest for constant Rs,1/Q. Instead, the simulation suggests that the growth
rate does actually reach a limit given by

τ−1
limit = ωr

√
1
2
Rs,0

Q

ωrevIDCα

4πωsE/e
, (3.29)

to be found at the intersection of the curves given by the inverse of τc and given by formula
for the analytic approximation. The Q value for this intersection defines the limit at

Qlimit = 1√
2Rs,0

Q
ωrevIDCα
4πωsE/e

. (3.30)

As an example, the SPMs are a candidate where the upper Q limit may be reached as
they posses very high Q at very low Rs,0/Q values. Table 3.1 shows the calculation of the
growth rate and its limit for the cavity model “HZB 2c coax. coupler”. The calculations
indeed show that the analytic formula given in Eq. 2.30 overestimates the expected growth
rates by factors up to several hundred. Hence, the SPMs appear to be much less hazardous
than expected from their shunt impedance Rs,0 alone. With those results, only one SPM
exceeds the BBFB threshold by a factor of about two, see also discussions in Chapter 5.

Transverse m = 1 case

The equivalent comparison for the m = 1 case is shown in Fig. 3.7. An empirical limit
for the growth rate in terms of Q is found to be

τ−1
limit =

√
c

2
Rs,1

Q

ωrevIDC

4πE/e β, (3.31)
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Table 3.1.: Longitudinal growth rates of the CBI given if the SPMs of the cavity model
“HZB 2c coax. coupler” are driven on resonance for BESSY VSR parameters.
The growth rate τ−1 is estimated with the analytic formula given in Eq. 2.30
and τ−1

limit is calculated with Eq. 3.29.
Frequency Q Rs,0/Q τ−1 τ−1

limit
GHz 1× 108 Ω (ms)−1 (ms)−1

1.455 15.1 0.0210 464.66 1.19
1.467 4.19 0.0065 40.19 0.67
1.483 2.38 0.0865 307.79 2.45
1.496 2.15 0.0065 21.06 0.68
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Figure 3.7.: Growth rate of transverse m = 1 case as a function of Q for constant Rs,1/Q.
The tracking simulation (blue) is compared to the expectation (green) given
by Eq. 2.53. It is limited by the cycles per bunch spacing, here ωr/2/frev, for
low Q and by the inverse characteristic fill time τc

−1 for high Q.

with the corresponding quality factor defining this limit,

Qlimit = ωr√
2cRs,1

Q
ωrevIDC
4πE/e β

. (3.32)

Calculations show that the growth rate of transverse HOMs is not limited by the mecha-
nism described here for a realistic cavity model, such as “HZB 2c coax. coupler”
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4. Observation of Coupled Bunch
Instabilities

This chapter covers examples of the observation of CBIs along with crucial methods of
the analysis and implementation of the measurements. First, Section 4.1 covers BBFB
systems as they are the most important tool to observe CBIs. In Section 4.2, different
methods of observation are presented by means of examples, combined with the purpose of
demonstrating the general behavior and features of the CBI, confirming the applicability
of the theoretical and numerical models presented earlier in Chapters 2 and 3.
Sections 4.3 and 4.4 present additional measurements, including the characterization

of the longitudinal long range impedance at the MLS and measurements evaluating the
performance of the BBFB system at BESSY II, a crucial parameter for the calculation of
the instability threshold in BESSY VSR.

4.1. Bunch-by-Bunch Feedback Systems
A BBFB system is a very effective tool to suppress all types of dipole instabilities, i. e.,
instabilities where the center of mass of the bunches are oscillating in the longitudinal or
transverse plane [74]. Among others, this includes some ion instabilities, the transverse
resistive wall instability and HOM driven CBIs. Instabilities that primarily lead to density
oscillations with unchanged center of mass cannot be damped with such a feedback.
A BBFB system is routinely in operation at many synchrotron light sources, including
BESSY II and the MLS.

4.1.1. Hardware
Figure 4.1 shows the block diagram of the BBFB system of BESSY II [75] manufactured
by [76]. The same system is installed at the MLS.
When a bunch passes the beam position monitor (BPM), it induces signals in the four

pickups according to its transverse position and its charge.
The so called hybrid network takes differences and sums of the four signals of the pickups

of the BPM to provide simultaneously three signals corresponding to the horizontal and
vertical displacement (x, y) and the sum signal which is used to detect the longitudinal
position (t) [77].
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Figure 4.1.: Block diagram of the present BBFB system at BESSY II showing the beam
position monitor (BPM), the hybrid network (Hybrid), the front end (FE),
the digital processing units (iGp), the back end (BE), the amplifiers, the
stripline kicker (Stripline), the longitudinal kicker cavity (long. Cavity) and
an external source for trigger signals (Trigger). See text for details. Figure
extracted from [75] and changed.

The analog front end receiver (FE) performs further tasks of signal processing [78],
most importantly, the measured signal is mixed with a multiple of the fundamental RF
frequency, which turns the sum signal into a signals whose amplitude is proportional to
the bunch arrival time.
Each signal is then passed to a digital processing unit called iGp [76], consisting of a

12-bit analog-to-digital converter (ADC) and a finite impulse response (FIR) filter with
32 coefficients implemented on a field-programmable gate array (FPGA) with the full
digital chain running at 500 MHz.
Note that this BBFB treats each bunch in the storage ring completely independently

from all other bunches. A correlated bunch motion is neither assumed, nor is it used in
order to damp the oscillation.
The filtered signals are then converted back to an analog signal and transmitted to

the amplifiers and finally to a stripline to perform horizontal or vertical kicks and to a
cavity to perform longitudinal kicks [79]. In the longitudinal case, the signal first passes
a backend (BE) which transforms the signal to a higher band, i. e., close to the resonance
frequency of the longitudinal kicker cavity of 1.374 GHz.
Additionally, the digital processing unit can be triggered to synchronize its data acqui-

sition with external events, such as beam loss or injection.
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4.1. Bunch-by-Bunch Feedback Systems

4.1.2. Data Acquisition
The digital BBFB system can be used for diagnostics as the digitized input data can be
written to an internal memory and from there it can be transferred to and stored on other
computers. In the case of the hardware discussed here, the data with a length of about
1.25× 107 samples can be read out twice a second. This corresponds to a duty cycle of
about 5%.
However, for the study of CBIs, continuous data taking is usually not needed. Instead,

transient measurements, e. g., turning on or off of the feedback, provide the highest amount
of information. More details and applications are presented in Section 4.2.
Another valuable application of the data acquisition are the studies of beam loss events.

4.1.3. Damping
Typically, the coefficients of the filter, also known as taps, are set to a pure sine function
with a suitable phase and with a frequency that corresponds to the betatron or synchrotron
frequency. With that, the filter becomes nothing but a frequency filter and phase shifter.
In order for the feedback to damp bunch motion most efficiently, the phase must be
selected such that the kick applied to the bunch is delayed by 90◦ compared to its input
signal. This is because the input signal is proportional to the amplitude coordinate of
the motion but the kick is applied on the momentum coordinate of the motion. They are
related by their time derivatives, i. e., shifted by 90◦ for sinusoidal motion. By changing
the sign, anti-damping is achieved.
The output from a 32-tap filter is simply obtained by multiplying the coefficients with

the last 32 turns of the measured bunch signals (input). As a formula, the output signal
on from a 32-tap filter with coefficients ai is given by

on =
32∑
i=1

sn−32+iai, (4.1)

with sn the input signal and n the turn number. Conventions may differ regarding the
ordering of the taps.
Figure 4.2 illustrates the working principle of a sinusoidal tap filter. The coefficients of

the filter are plotted in the left panel of Fig. 4.2. In the right panel, a noisy input signal
is drawn along with the output signal obtained with the given tap filter and Eq. 4.1. As
can be seen, the filter rejects the noise, i. e., acts as a frequency filter, and provides an
output with a well defined phase relation to the input, i. e., a phase shift is obtained. In
this case, the phase shift is 90◦ to provide damping/anti-damping with highest efficiency.
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Figure 4.2.: Illustration of working principle of a BBFB with a sinusoidal tap filter. Left:
Tap filter matching the frequency of the input signal and causing a phase shift
of approximately 90◦ between input and output signal. Right: Noisy input
signal (blue) and output signal (green) obtained by the tap filter on the left.

4.1.4. Limitations and Future Ideas
At this point, some qualitative discussions on some limitations of the damping perfor-
mance of a BBFB system are presented. Among other parameters, the strength of the
kicker is an important factor.
The damping rate of a BBFB system scales approximately linearly with the strength

of the kicker [74, Eqs. 25 and 30]. Hence, to raise the damping rate, either the power of
the amplifiers that drive the existing kickers can be increased (scaling with square root
of power), or the number of kickers with new amplifiers can be increased (linear scaling
with number of kickers), if there is enough space in the storage ring. For BESSY VSR,
this can be considered both for the transverse planes and the longitudinal plane.
However, an additional limit will manifest itself in the longitudinal plane, where the

synchrotron frequency is rather low compared to the betatron frequencies.
A sinusoidal tap filter, as explained above, only works efficiently if the filter length

includes a significant fraction of one synchrotron oscillation period. The exact size of the
fraction of one period is not discussed here. If it is assumed the needed filter length is one
full period, this means for BESSY VSR with fs = 8 kHz, that the filter length is about
125 µs or approximately 150 turns. Thus, the delay from amplitude detection until the
kick is applied is of the order of 125 µs. In other words, the kick is applied about 150 turns
after the amplitude has been measured. It becomes plausible, that if an instability has a
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4.2. Methods and Example Measurements at the MLS

growth rate comparable to the inverse of this time interval, i. e., 8000 s−1, a fundamental
limit arises if such a filter is used. It is likely that in such a case the damping performance
will no longer scale linearly with the strength of the kicker.
From a CBM theory’s point of view, the fact that it should be waited for 150 turns after

an amplitude has been measured before the corrector kick is applied, appears unnecessary,
as explained in the following. If all bunches are considered individually, as done in the
present implementation of the BBFB, it is indeed necessary to sample the synchrotron
motion for a significant fraction of a period in order to determine its present phase.
However, if all bunches in the storage ring are measured and correlated to each other,

already after one turn, the amplitudes and phases of all bunches are known up to the
determination of their mirror CBMs, e. g., CBM 1 is indistinguishable from CBM399.
With a correlation over time, i. e., after at least two turns, this ambiguity is resolved as
well. This works for bunch fill pattern that are approximately even, because it is known
from CBM theory that the bunches can perform correlated motion in exactly M different
CBMs.
Essentially, the idea is to combine a mode based feedback [74] with a digital BBFB

and in the case of BESSY II use 400 times more information for the kicks applied on the
bunches. With this argumentation, the delay in the longitudinal plane could dramatically
reduced, hence the damping rate could be increased.
Potential pitfalls of this idea and questions of technical realizations are subject to future

studies.

4.2. Methods and Example Measurements at the MLS
Three methods to observe CBIs are presented in this section. The procedures are described
with example measurements taken at the MLS.

1. Bunch-by-bunch data acquisition and active beam manipulation with a BBFB sys-
tem as explained in Section 4.1. This is the most valuable method of diagnostics for
CBI.

2. Spectrum analysis at electronic pickup. With a spectrum analyzer attached to an
electronic pickup that is sensitive to transverse or longitudinal bunch motion, the
transverse or longitudinal CBMs can directly be measured as the side bands of the
revolution harmonics.

3. Streak camera imaging. The longitudinal position of individual bunches can be
measured with a streak camera which allows to see the CBMs directly on the camera
image. This method is not shown in this thesis.

Note that the last two options are basically only suitable for situations where the oscil-
lation amplitude of the CBI saturates without beam loss. This is usually the case for

63



4. Observation of Coupled Bunch Instabilities

Table 4.1.: Relevant machine parameters of the MLS in the standard user operation
mode [24]. Some numbers are rounded.

Parameter Value
Energy E 629 MeV
Momentum compaction factor α 0.03
Total beam current IDC 200 mA
Fill pattern homogeneous
Circumference 48 m
Revolution frequency frev 6.2457 MHz
Harmonic number 80
Fundamental RF frequency 499.654 MHz
Synchrotron frequency fs 105 kHz
Longitudinal radiation damping time τ‖ 11 ms
Transverse radiation damping time τ⊥ 22 ms

the longitudinal plane but not the transverse planes. The focus in this thesis will be on
the observations with the BBFB. Relevant machine parameters of the MLS are given in
Tab. 4.1.

4.2.1. Bunch-by-bunch Data and Active Beam Manipulation
This section describes the procedure of obtaining the growth rate and tune shift of
each CBM from bunch-by-bunch data, taken at a single pickup on the basis of an ex-
ample obtained with the longitudinal BBFB of the MLS showing 10 ms of a growth-
damp experiment at IDC =124 mA. The theory presented here can be found in [41, 80].
MATLAB R© [81] scripts for this purpose come along with the delivery of the BBFB sys-
tems manufactured by [76]. In the context of this thesis, implementations of the procedure
have been written by the author in C++ and Python. The latter is a more recent im-
plementation that is now collaboratively maintained in-house and is available for online
diagnostics in the control systems of BESSY II and the MLS, see Fig. 4.3.
The procedure can be separated into three steps. First, the Hilbert transform, which

is used to obtain the desired information on the oscillation of each bunch individually.
Second, the Fourier transform that gives the correlation from bunch to bunch, i. e., the
CBMs. Finally, the fitting of CBM amplitudes which yields the growth rate and tune
shift for each CBM.
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BBFB system

filter

overview panels

mode amplitudes

Figure 4.3.: Screen capture of the iPython [82] interface in the BESSY II control room
for online diagnostics of bunch-by-bunch data of the BBFB systems.
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4. Observation of Coupled Bunch Instabilities

Hilbert transform: Individual bunch motion

The raw signals of the example measurement, a longitudinal growth-damp experiment
performed at the MLS, are shown in Fig. 4.4a for all bunches. Even though the actual
synchrotron oscillations are well resolved by the data acquisition, they are not resolved by
the binning in the particular image shown here. Nonetheless, areas with large oscillation
amplitudes are still visible due to the binning effect. The raw signal of a single bunch is
shown in Fig. 4.4b. Here, the mechanics of the grow-damp measurement can be nicely
seen. First, the feedback is switched off and the instability grows until about 6 ms when
the feedback is switched on again and the motion is damped again, indicated by vertical
dashed lines in Figs. 4.4b, 4.4d and 4.4f. The exact time between the switch-off of the
feedback until the visible onset of the growth is of statistical nature as random fluctuations
create the initial conditions for the CBI.
Now, a Hilbert transform is applied on the raw signals to obtain a so called analytic

signal. In contrast to the measured raw signals, the analytic signal is complex valued.
The real part of the analytic signal corresponds to the raw signals but the added value lies
in the fact that the imaginary part is available, thus the amplitude of the motion and its
phase is given at every single point. This assumes that the motion is dominated by one
oscillation frequency so that the resulting phase is given with respect to that oscillation.
To ensure this, a frequency filter is applied along with the Hilbert transform, see below.
Logically, the increase of information, i. e., the knowledge of the phase, is explained by the
fact that the Hilbert transform takes the entire time series of a bunch into consideration
instead of processing the data points individually. The amplitudes, i. e., the envelop of
the synchrotron oscillation, is shown in Fig. 4.4c for each bunch. The real part of the
analytic signal along with its envelop are shown in Fig. 4.4d for a single bunch. As can
be seen from the comparison with the raw signal in Fig. 4.4b, any motion other than
the synchrotron motion is removed from the signal. This includes a constant offset, slow
drifts and low and high frequency noise.
The phase information of the analytic signal can also be used to extract the instanta-

neous frequency of the motion, i. e., the phase advance from one data point to another
divided by the time interval, see Fig. 4.4f. For non-existing oscillation and very low oscilla-
tion amplitudes until about 4 ms, no clear frequency signal is obtained with this method.
After that, from about 4 ms to about 6 ms, the synchrotron frequency shows a decline
with increasing amplitude. A possible explanation is the non-linearity of the longitudinal
dynamics resulting in a tune shift with amplitude. When the feedback is turned on, at
about 6 ms, the behavior gets more complex which is plausible as the feedback, acting
as an impedance, changes the synchrotron frequency in a non-trivial way. As mentioned
before, the Hilbert transform works best if a filter is applied. In this case, a Gaussian
filter that fully encompasses the synchrotron frequency has been used, see Fig. 4.4e.
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(c) Envelop of filtered signal of each bunch.
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(d) Filtered signal (blue) with its envelop
(red) of bunch 10.
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(e) Fourier spectrum of raw signals (blue)
and Gaussian filter (green).
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(f) Instantaneous frequency of bunch 10.

Figure 4.4.: Illustration of the Hilbert transform in the analysis of bunch-by-bunch data
of a grow-damp experiment at the MLS.
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(a) CBM signals vs time.
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(b) CBM signals averaged over time.

Figure 4.5.: Illustration of the amplitude of the CBMs obtained from the analysis of
bunch-by-bunch data taken at the MLS.

Fourier transform: Correlation of bunch motions

With the analytic signal, it is now possible to obtain the CBMs simply by applying a
complex Fourier transform along the bunches at each point in time individually. The
amplitude of the CBM is then given by the absolute value of the Fourier transform. The
CBMs as a function of time are shown in Fig. 4.5a and averaged over time in Fig. 4.5b. It
can be seen that CBM 43 is the strongest mode, arising simultaneously with the amplitude
of the oscillation. In other words, it is shown that the bunch oscillations seen in Fig. 4.4
are in fact correlated, hence a CBI is occurring.
This can also be nicely visualized by looking at the phase of the oscillation. Figure 4.6a

displays the phase as a function of time for all bunches. Note that the actual oscillation
is not resolved in the binning that is displayed, however, the regular pattern visible from
about 3 ms to 6 ms appears due to a regularity in the phase relations from bunch to bunch.
This is confirmed by looking into a close magnification in time. Figure 4.6b top shows
an interval around 5 ms where the bunch phases are fully correlated. The center plot is
a snapshot of one turn at around 5 ms. The phase advance from bunch to bunch can be
read out directly from Fig. 4.6b center, confirming that the dominating mode is the CBM
43 with a phase advance from bunch to bunch of 43

802π. At an interval close to zero, the
bunch phases are mostly uncorrelated with a slight dominance of CBM 0, see Fig. 4.6b
bottom.
If the real signals, i. e., raw signals, where taken instead of the analytic signal, the

Fourier transform along the bunches would result in a symmetric spectrum which contains
less information. More precisely, the CBM µ would be indistinguishable from its mirror
mode M − µ with M the number of bunches.
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Figure 4.6.: Illustration of the phase of the synchrotron oscillations obtained from the
analysis of bunch-by-bunch data taken at the MLS.

Fitting the CBM amplitudes: Growth rate and tune shift

With the amplitudes of all CBMs as a function of time, the growth rate can be obtained
by applying an exponential fit. The amplitudes of the 8 strongest CBMs are shown in
Fig. 4.7 along with their fits to exponential functions and the obtained growth rates. For
the selection of the strongest modes, the strength of the CBMs were determined by their
amplitudes at 4.5 ms which is a time well within the period of growth but before non-
linearities in the longitudinal dynamics limit the growth. In general, the non-linearities
in the longitudinal dynamics eventually lead to a saturation of the amplitudes without
beam loss even if the BBFB is not switched on again.
The fits are performed as least square fits of a straight line in the logarithmic amplitude.

The lower fit limit is set to a factor of 5 above the noise level of the mode while the upper
fit limit is set to a point where the mode has reached the third of its maximum value.
The uncertainty shown in Fig. 4.7 corresponds to the standard deviation errors on the
slope of the straight line, i. e., it is a statistical uncertainty. This value is very small as the
data set consists of 5× 103 to 1× 104 data points for each mode, depending on the choice
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Figure 4.7.: Amplitude of CBMs (solid lines) with exponential fits (dashed lines) and
fitted growth rates τ−1

µ displayed. The annotations in the vicinity of the lines
indicate the CBM.

of the fit limits. It is not a direct measure of how well the data points follow a straight
line. Strictly speaking, the CBM signals are not a series of independent measurements
anymore but they are correlated as a consequence of the frequency filter applied in the
Hilbert transform. Those subtleties are ignored as the statistical uncertainties are most
certainly much smaller than possible sources of systematic uncertainties.
As can be seen, CBM 43 has the largest growth rate, as expected from previous discus-

sions. After 43, the strongest modes seem to be 71, 29, 12 and 11. Note that modes 42
and 46 grow almost proportional to CBM 43 but with a much smaller amplitude. This
suggests that the modes 42 and 46 are not actually independent modes but there is a
physical eigenmode that is made up of a linear combination of the EFEM 43, 42 and 46.
This analysis performs a decomposition in EFEMs while in reality a slightly uneven fill
was present, explaining the different set of eigenmodes, see also Section 2.4. However,
this effect is typically small and can be neglected in all measurements presented in this
thesis.
Obtaining the tune shift of the CBMs appears to be a more difficult task. Figure 4.8

shows the attempt for the four strongest modes. The frequency, extracted from the mode
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Figure 4.8.: Frequency of CBMs (solid lines) with their averages (dashed lines and num-
bers displayed) calculated in the interval limited by the vertical black lines.
The frequency is smoothed out by a moving average in the entire range plot-
ted. The colored annotations in the vicinity of the lines indicate the CBM.

signal is rather noisy and smoothing with a moving average has been applied in the graph.
Furthermore, the range where the frequency is calculated needs to be chosen carefully as a
rather strong amplitude dependence seems to dominate the growth-damp measurements.
The uncertainty stated corresponds to the standard deviation errors of the mean value

found on the interval. As can be seen, the frequencies of the strongest CBMs do note
deviate much. At most, the difference is about 150 Hz, between CBM 29 and CBM 12,
with an uncertainty almost of the same order. It is noteworthy that the frequency of CBM
43 does not deviate much from those of other the modes. This suggests that the beam
samples the impedance that drives CBM 43 closely to its resonance frequency, where the
real part is much larger than the imaginary part, i. e., a strong growth rate and little
frequency shift.

71



4. Observation of Coupled Bunch Instabilities

4.2.2. Spectrum Analysis at Electronic Pickup
The amplitude of the oscillation that the bunches perform in a certain CBM µ can be
read out directly from the amplitude of the spectral component at the corresponding
frequency. The signal can be obtained from a BPM. For the longitudinal plane, where
the synchrotron frequency fs is much smaller than the revolution frequency frev, the
corresponding frequencies for each µ are given by

fµ = pMfrev + µfrev + fs, (4.2)

with p an integer and M the number of buckets. Even though this equation is exact only
for even bunch fill pattern, it can be applied for uneven fill pattern as well. Projected
onto positive frequencies, as done by a spectrum analyzer, the corresponding positive
frequencies are

fµ = pMfrev +
{
µfrev + fs , 0 ≤ µ < M/2
(M − µ)frev − fs , M/2 ≤ µ < M.

(4.3)

This means, the entire set of CBMs can be obtained from any spectral interval of the
length Mfrev/2, i. e., 250 MHz for BESSY II and the MLS.
As fs � Mfrev/2, some spectrum analyzers cannot provide the needed range and

resolution simultaneously to obtain the full set of CBMs. Hence, a simple software,
similar to [51, 83], has been written in LabVIEWTM [84] to interact with a spectrum
analyzer and automatically obtain the amplitudes of longitudinal CBMs at the MLS, see
Fig. 4.9. During measurement, the software applies the appropriate frequency range and
center frequency consecutively to the corresponding CBM frequencies fµ and reads the
amplitude of the peak. The software can be used to measure the amplitudes of all CBMs
or repetitively the amplitude of an individual CBM. The simplicity and possible sensitivity
are advantages of this method compared to measurements with a BBFB system. In a scan
of decreasing current with more than one hundred points of measurement, the method
showed very good agreement with BBFB measurements.
The particular measurement shown in Fig. 4.9 was taken during a MLS machine setting

with negative α. As the growth rate is proportional to α, see for example Eq. 2.30, a change
in the sign of α changes unstable into stable CBMs and vice versa. If the synchrotron
frequency is smaller than the revolution harmonic and approximately smaller than the
width of the resonator impedance that drives the instability, each damped mode µ has
a corresponding anti-damped mode with the index M − µ and approximately the same
absolute value of the growth/damping rate. With nominal alpha, the most unstable CBM
in the MLS is µ =43 as shown in detail in Section 4.3. Hence, if operated with negative
α, µ = 37 is expected to be unstable while µ = 43 is damped by the same resonator
impedance, which is exactly what is seen in Fig. 4.9.
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unstable

damped

Figure 4.9.: Screenshot of simple LabVIEWTM program to interact with a spectrum ana-
lyzer in order to automatically obtain amplitudes of the CBMs. The central
graph shows the amplitudes of the CBMs. This measurement was taken
during a machine setting with negative α which explains why µ =37 is the
most unstable mode (largest amplitude) in contrast to the usual mode µ =43,
which is highly damped (smallest amplitude) in this case, see red circles.

4.3. Measurements of Longitudinal CBM at the MLS
With its high diagnostic capabilities, the MLS is a good example to study CBI. While
there are no transverse CBIs visible in the typical operation modes, the longitudinal plane
clearly shows CBIs driven by narrowly peaked resonators at the nominal momentum
compaction factor α = 0.03 [50].
At nominal α, the threshold current given by longitudinal radiation damping is rather

low, around 10 mA. If operated above this threshold, the beam is unstable and so called
grow-damp measurements with the BBFB are needed to obtain the growth rate and
frequency shift of the CBMs.
This has been done in an automated over-night scan where data has been taken after
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each step of reducing the stored current. The data is used to obtain the growth rate
as a function of current, see Fig. 4.10, where each point is obtained from the fit proce-
dure explained above. A number of cuts have been applied on the data set to remove
measurements where the evaluation of the growth rates of the modes was less successful.
This occurs throughout the automated scan, as the growth contains a stochastic behav-
ior leading to a fluctuation in the degree of success of the growth rate extraction. The
cuts include a lower limit on the maximum amplitude, a lower limit on the amplitude
normalized w. r. t. the current, an upper limit on the current and an upper limit on the
uncertainty of the fit of the growth rate of less than 1%, hence the individual error bars
are not shown.
As can be seen, the scaling of the growth rates is quite linear, as expected from the an-

alytic consideration, e. g., Eq. 2.30. The uncertainties stated in Fig. 4.10 are the standard
deviation errors on the fit parameters of the straight lines. Again, this is a statistical
uncertainty with limited applicability to the question how well the data matches the
assumption of a straight line.
The growth rate of CBM 43 can be obtained with the highest precision as it is the

strongest mode and produces the strongest signals. Generally, the measurement confirms
that Eq. 2.30 is applicable for the case of the MLS despite its various approximations.
Especially, the growth rate is not “too strong” for the small disturbance approximation
used for Eq. 2.30 which would appear as a deviation from the linear scaling towards high
currents.
Note that the extrapolated growth rate of CBM 43 for zero current is −357± 3 s−1,

corresponding to a damping time of approximately 3 ms. This is much smaller than the
radiation damping time at the MLS which is τ‖ = 11 ms. This is an indication for other
damping effects, for example caused by the interaction with other impedances or ions. A
similar discrepancy has been found at another storage ring [65], where the argument is
given that the BBFB system only detects the center of mass motion and no higher order
motion, e. g., bunch lengthening.

4.3.1. Aliased Resonator Impedance
The fit results obtained in Fig. 4.10 can be used to obtain the aliased resonator impedance,
i. e., the information about the source of the instability.
The expression for the growth rate, Eq. 2.30, can be rearranged such that all known

parameters are shown on the r.h.s.,

fµ<Z‖0(fµ) = dτ−1

dI ·
2E/efs

frevα
. (4.4)

Only a single resonator is assumed here and dτ−1

dI is the slope of the growth rate τ−1 as a
function of current I, obtained from the fit results shown in Fig. 4.10. The corresponding
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Figure 4.10.: Measured growth rate of the strongest longitudinal CBMs at the MLS in
standard user settings as a function of stored beam current (dots) and linear
fit (dashed lines) with its result written in the top left corner. The colored
annotations in the vicinity of the lines indicate the CBM.

frequencies fµ for each µ are

fµ = pMfrev + µfrev + fs, (4.5)

where p is a non-negative integer as only unstable modes are observed.
The l.h.s. of Eq. 4.4 is called the aliased resonator impedance because it is multiplied

with a frequency that is only known up to multiples of 500 MHz. Thus, the measurements
only yield the product of frequency and impedance. A combination with measurements of
the phase transient could be used in future studies to obtain the unaliased frequencies [85].
If it is assumed that the resonator is driven closely to its resonance frequency, i. e.,

fr ≈ fµ, the value of the measured impedances approximately equals the shunt impedance
of the resontor, i. e., Rs,0 = <Z‖0(fr) ≈ <Z‖0(fµ).
With this approximation, the results from Fig. 4.10 are summarized in Tab. 4.2 for some

reasonable choices for p. The statistical uncertainty, obtained from the fit in Fig. 4.10
is given in percent. The systematic uncertainties have not been studied quantitatively
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4. Observation of Coupled Bunch Instabilities

Table 4.2.: Possible combinations of shunt impedance Rs,0 and resonance frequency fr ≈
fµ of the three strongest longitudinal resonator impedances at the MLS, ob-
tained from the fit results of the measurements shown in Fig. 4.10.

CBM fµ<Z‖0(fµ) p fµ Rs,0 Stat. Uncertainty
GHz kΩ MHz kΩ %

43 17.98 0 268.67 66.9 0.2
1 768.32 23.4
2 1267.98 14.2
3 1767.63 10.2

71 7.47 0 443.55 16.8 2.8
1 943.20 7.9
2 1442.86 5.2
3 1942.51 3.8

29 6.56 0 181.23 36.2 4.3
1 680.88 9.6
2 1180.54 5.6
3 1680.19 3.9

but it can be suggested that they include the uncertainty of the exact machine setting
at the time of measurement, the uncertainty of the current measurement, the fill pattern
unevenness and other impedances that may influence the growth and damping behavior.
The source of the strong longitudinal impedances at the MLS is not known. Possible

candidates are HOMs of the RF cavity [19] or the impedance of the slotted-pipe kicker
magnet [86]. If the possible frequencies in Tab. 4.2 are compared with HOMmeasurements
of the RF cavity [87], no direct agreement can be found, which is an indication that the
longitudinal impedances are not the HOMs of the RF cavity.

4.4. Measurements at BESSY II
BESSY II is equipped with the same digital BBFB systems as the MLS. In standard user
operation, the BBFB is active and needed in all three planes to ensure stability at the
maximum current of IDC = 300 mA.
The strongest CBIs usually occur in the horizontal plane which is why this plane was

chosen for characterizations of the transverse damping performance of the BBFB system
at BESSY II [50]. The damping performance of BESSY II is approximately equal in both
transverse planes.
Figure 4.11 shows a recent grow-damp measurement in the horizontal plane at

BESSY II, taken during machine commissioning in August 2015. The four strongest
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Figure 4.11.: Amplitude of CBMs (solid lines) with exponential fits for growth (dashed
lines) and decay (dotted lines) and resulting growth rates (top left corner)
and damping rates (top right) in a grow-damp experiment at BESSY II in
the horizontal plane. The annotations in the vicinity of the lines indicate
the CBM.

CBMs are shown and their growth rates and damping rates are fitted the same way as
in Fig. 4.7. In this case, several CBMs are strong, including very low mode numbers.
The strongest mode seems to be CBM 0. The damping performance of the BBFB can
be estimated by the evaluating of the CBM with the strongest amplitude, where the
growth rate of the instability has to be added to the observed damping rate. With the
values shown in Fig. 4.11 for mode 0, the damping performance is approximately
2776 s−1 + 915 s−1 ≈ 3.7× 103 s−1.
In [50], the number of τ−1

fb = 4000 s−1 was found as the damping performance of the
BBFB system, which is in good agreement with the single measurement shown in Fig. 4.11,
as fluctuations from measurement to measurement as well as dependencies on the precise
machine settings are expected. The number from [50] is used throughout this thesis
whenever calculations for BESSY VSR are done where growth rates of transverse CBIs
are compared to the damping performance of a BBFB, see for example Chapter 5.
Similar measurements have been done with the longitudinal BBFB system. An example
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Figure 4.12.: Amplitude of CBMs (solid lines) with slow growth (dashed lines) and fast
decay (dotted lines) and resulting damping rates (top right) in a grow-damp
experiment at BESSY II in the longitudinal plane [50]. The four lines cor-
respond to the CBMs 361 to 364.

of the measurements used in [50] is shown in Fig. 4.12. In this example, the longitudinal
growth rate was very slow, resulting in oscillations at an almost constant amplitude.
From those studies, the damping performance in the longitudinal plane was estimated as
τ−1

fb = 1.33× 103 s−1, which is the number used in this thesis when longitudinal CBIs are
compared with the damping capabilities provided by the BBFB system.
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5. Predictions of Coupled Bunch
Instabilities for BESSY VSR

This chapter covers calculations for the predictions of CBIs for BESSY VSR. In Sec-
tion 5.1, the CBIs are estimated based on the simple method of impedance thresholds
where first conclusions are already given. In Section 5.2, a more complex method is
applied that includes the frequency uncertainty of the HOMs. Section 5.3 presents the
effects of different fill pattern on CBIs in BESSY VSR. Finally, Sections 5.4 to 5.6 shortly
discuss possible CBIs in the low-α mode in BESSY VSR, CBIs driven by the fundamental
mode of the SC cavities and potential CBIs arising in the BESSY II booster synchrotron
with upgraded RF.

5.1. Threshold Impedance
5.1.1. The m = 0 and m = 1 Case
For reasonably weak HOMs, the well established formulas given in Eqs. 2.30 and 2.53
can be used to calculate the lowest order longitudinal and transverse growth rate for
each HOM. The threshold of the instability is defined by the point where the growth rate
equals the damping rate of the system, typically given by radiation damping or the BBFB
systems, see Section 4.1. For a given damping rate τ−1

d , a frequency dependent threshold
impedance can also be calculated.
By rearranging Eq. 2.30 and Eq. 2.53, the longitudinal and transverse threshold

impedance Z‖th and Z⊥th are found as

Z
‖
th(ω, τ−1

d ) = τ−1
d
ω

4πωsE/e

ωrevIDCα
(5.1)

Z⊥th(τ−1
d ) = τ−1

d
β

4πE/e
ωrevIDC

, (5.2)

with the usual constants mentioned before and summarized in the List of Symbols on
Page xi. The summation over p in Eq. 2.30 and Eq. 2.53 has been omitted, which means
that the unlikely case of several HOMs contributing significantly to the same CBM has
been ignored.
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5. Predictions of Coupled Bunch Instabilities for BESSY VSR

Comparing a cavity impedance spectrum with the threshold impedance is a common
measure to evaluate the HOM damping of a cavity, see for example [2, 37, 51, 70, 88–91].
Unless otherwise stated, the strongest damping mechanism for BESSY VSR is assumed

to be the BBFB system with damping rates equal to the performance of the present
feedback system of BESSY II [50]. The damping rate of the BBFB system τ−1

fb then takes
the following numerical values depending on the plane [50]:

τ−1
fb =

1.33× 103 s−1 long.
4.0× 103 s−1 trans.

(5.3)

With the parameters given in Tab. 1.1, the frequency dependent longitudinal and trans-
verse threshold impedance can be stated numerically:

Z
‖
th(f, τ−1

fb ) = 132 kΩ× GHz
f

(5.4)

Z⊥th(τ−1
fb ) = 9.07 MΩ m−1. (5.5)

A comparison of the impedance spectra of different cavity models with the threshold
impedance given by the BBFB system can be seen in Fig. 5.11. For an additional compar-
ison, the threshold impedance given by radiation damping is also shown with the damping
rates given in Tab. 1.1. The cavity models “HZB 2c” and “HZB 2c coax. coupler” refer
to two recent developments at HZB, with “HZB 2c coax. coupler” being the most recent
considered in this thesis. They are also compared with another 1.5 GHz high current cav-
ity developed at Jefferson Lab, the “JLab HC” [92, 93]. The “JLab HC” cavity is suitable
for a comparison as it matches the BESSY VSR requirements in terms of field strength,
frequency and compactness. Moreover, the cavity has already been manufactured and
simulations have been compared with measurements made with a copper model [92].

5.1.2. The m = 2 Case
The growth rate of the instability induced by transverse m = 2 impedances can be
estimated by the empirical formula given in Eq. 2.63. With this formula, the transverse
m = 2 threshold impedance can be given in analogy to Eq. 5.2,

Z⊥2,th(τ−1
d ,M2) ≈ 2

M2

τ−1
d
β

4πE/e
ωrevIDC

. (5.6)

1A very similar comparison has been presented in [37].
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Figure 5.1.: Comparison of impedance spectra of different cavity models with the CBI
threshold impedance given by the damping performance of the present BBFB
of BESSY II and radiation damping. Other parameters are given in Tab. 1.1.
See text for details. Top: Longitudinal m = 0 impedance with SPMs (left)
and HOMs (right). Bottom: Transverse m = 1 impedance of HOMs.

With the transverse radiation damping time given in Tab. 1.1 a semi-numerical expression
can be stated,

Z⊥2,th(τ−1
⊥ ,M2) ≈ 283 kΩm−3 × 1 m2

M2
. (5.7)
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5. Predictions of Coupled Bunch Instabilities for BESSY VSR

In order to state a number, plausible values of M2 have to be given. The following
items are considered as plausible, though extreme, scenarios:
• The beam is stable andM2 is made up of the transverse dimensions of the beam. At
BESSY VSR as well as BESSY II, the beam has a low horizontal-vertical coupling.
As a consequence, the beam is flat, i. e., its horizontal extension is much greater
than the vertical extension, see Tab. 1.1. With the values for the emittance and the
value of the betatron function taken from the same table, the quadrupole moment
is M2 = εxβ = 2× 10−8 m2.

• The beam has a momentary displacement from its reference orbit, i. e., it is perform-
ing dipole betatron oscillations. With a displacement of x = 5 mm at the position
of the HOM, the quadrupole moment is M2 = x2 = 2.5× 10−5 m2. Note that in this
case, the oscillation can be damped by a BBFB providing much stronger damping
than radiation. This includes also the case of a static displacement of the beam with
respect to the HOM center. According to Eq. 3.24, the equivalent static displacement
would be

√
2× 5 mm.

• The beam is momentarily extended in horizontal direction, i. e., it is performing
quadrupole betatron oscillations. With a horizontal rms width of σx = 1 mm at the
position of the HOM, the quadrupole moment is M2 = σ2

x = 1× 10−6 m2. In this
case the beam performs pure density oscillations which are transparent to a BBFB
system.

With those scenarios, three numbers for the threshold impedance are stated:

Z⊥2,th(τ−1
⊥ , 2× 10−8 m2) ≈ 1.42× 1013 Ωm−3 (5.8)

Z⊥2,th(τ−1
fb , 2.5× 10−5 m2) ≈ 7.25× 1011 Ωm−3 (5.9)

Z⊥2,th(τ−1
⊥ , 1× 10−6 m2) ≈ 2.83× 1011 Ωm−3. (5.10)

A comparison of the transverse m = 2 impedance spectrum of different cavity models
with those three numbers for the threshold impedance can be seen in Fig. 5.2.

5.1.3. Discussions
All important direct means to influence the thresholds of CBIs are covered with the simple
formulas presented in Section 5.1.
This includes many machine parameters, for example, the longitudinal threshold scales

with the synchrotron frequency whilst the transverse instabilities scale with the value of
the betatron function.
In case of BESSY VSR, most machine parameters are tightly constrained, i. e., cannot

be used to influence the thresholds of CBIs. In detail, the restrictions of the machine
parameters are discussed in the following:
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Figure 5.2.: Comparison of transverse m = 2 impedance of different cavity models with
three possible thresholds for the instability as described in the text.

α Restrained as the DBA will be kept as basic lattice layout.

E Restrained by demands of the users of synchrotron radiation.

ωrev Restrained by the circumference of the ring.

IDC Restrained by demands of the users of synchrotron radiation.

β Restrained by the transverse beam optics at the location of the SC cavities. As
transverse impedances are effectively weighted by the value of the beta function, see
Eq. 5.2, the place for the module containing the SC cavities was chosen to be a so
called low-β straight section, where the values of the horizontal and vertical betatron
function are small, see Fig. 5.3. From this figure, it can be seen that all cavities are
located at positions where both betatron functions are below 4 m. Thus, a value of
β = 4 m was chosen as a conservative value for all calculations.

fs Restrained by impedance heating and transient beam loading. Impedance heating
gives an upper limit for fs because high fs means the bunches are short which can
lead to problems of impedance heating if the amount of current that is stored in
short bunches is large [2]. As shown in Chapter 6, the maximum elongation of
long bunches is limited by the bunch fill pattern. Realistic values for the average
synchrotron frequency are expected to be similar to the nominal value of fs, hence
no significant change is expected. In terms of beam lifetime, long bunches, i. e., low
fs is also desirable [2].
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Figure 5.3.: Top: Horizontal betatron function (βx), vertical betatron function (βy) and
100 fold magnified horizontal dispersion function (ηx) of BESSY II, shown
near a so called low-β straight section. Bottom: Drawing of the BESSY VSR
cryomodule (blue) between quadrupole magnets (red), sextupole magnets
(green) and dipole magnets (yellow), drawn to scale. Image extracted from
[2]. The beginning and end of the SC cavities is indicated by vertical dashed
lines.

τ−1
d No direct restriction. Increasing the damping rate does not conflict any other aspect

of machine operation, thus it is a good handle to influence CBIs. Indeed, it is the
strongest handle from the beam dynamics point of view. The BBFB is typically the
strongest damping mechanism and increasing the performance of the BBFB is a good
way to raise the CBIs threshold. Physical and technical limits for the performance
of the BBFB systems may arise, see Section 4.1.4.

5.1.4. Conclusions
Already at this point, first conclusions regarding CBIs at BESSY VSR can be made.
Except for increasing the damping rate provided by a BBFB system, none of the machine
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5.1. Threshold Impedance

parameters can significantly be changed to raise the instability thresholds. Thus, the
question of stability depends almost only on the impedance spectrum and the performance
of the BBFB system.
From Fig. 5.2, it can be seen that the quadrupole CBI is generally weak and no quad-

rupole HOM of the cavity model “HZB 2c coax. coupler” seems to threaten the stability.
A similar behavior is seen with the longitudinal HOMs of “HZB 2c coax. coupler”,

which are about a factor of ten below the BBFB threshold, see Fig. 5.1 top right panel.
The SPMs shown in Fig. 5.1 top left panel, exceed the threshold significantly. However,
it must be noted that Eq. 5.1 overestimates the growth rate of such modes with a very
high Q value, as discussed in Section 3.3.4 and explicitly calculated in Tab. 3.1. With this
consideration, only one SPM exceeds the threshold, thus the likelihood of this instability
to occur is not very large.
The transverse dipole HOMs are also found below the CBI threshold except for a single

outlier, see Fig. 5.1 bottom panel.
Essentially, the latest cavity model, “HZB 2c coax. coupler”, performs well in a sense

that HOM driven CBIs are expected to be under control by the present BBFB system if
the final cavity has the same HOM spectrum2.
The fact that those calculations are made for one 1.5 GHz cavity only does not diminish

their validity as simply increasing the number of cavities does not necessarily increase the
strongest impedance3. In fact, the fabrication uncertainties leading to a spread in the
HOM frequencies make it unlikely that the strongest HOMs exactly overlap.

5.1.5. Restrictions Regarding the Reliability of CBI Predictions
It is not part of this thesis to estimate HOM spectra or their uncertainty. However, as
the HOM spectra and their uncertainty have such a large influence on one of the key
questions of this thesis, some comments are in order.
It is not known if the final 1.5 GHz cavity will have the same HOM spectrum as the

calculated spectrum of the “HZB 2c coax. coupler” cavity model. Generally, the finite
fabrication precision leads to a randomization of the shunt impedance, the quality factor
and the frequency for each HOM, which is characterized by a rms spread. While the spread
in the shunt impedance and quality factor has not been evaluated for the BESSY VSR
cavities, the spread in the HOM frequency can be estimated and is used in Section 5.2
for a statistical study.
In addition to the uncertainty of shunt impedance and quality factor, limitations in the

simulation software are known [94] and the 1.75 GHz cavity is not designed yet.
Furthermore, the four cavities of BESSY VSR need to be brought closely together and

connected to the beam pipes at both ends, forming a super-structure. The impedance
2Comments on this question are given in Section 5.1.5
3However, bringing multiple cavities close together may result in an entirely new impedance spectrum,
see Section 5.1.5.
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5. Predictions of Coupled Bunch Instabilities for BESSY VSR

spectrum of the super-structure may have significant additional contributions from the
sections between the cavities and the transitions to the beam pipes that are not included
in the sum of the impedance spectra of the individual cavities [94]. The design and study
of the BESSY VSR superstructure is presently ongoing.
With the impedance data available to date, the question of HOM driven CBIs looks

promising in a sense that stability can be reached. However, the situation needs to
be reevaluated with upcoming information on fabrication uncertainties, the overcome
of limitations in the simulation software, the design of the 1.75 GHz cavity, the final
HOM spectrum of the super-structure, results from measurements with copper models
and finally with the results from a SC niobium prototype.

5.2. Uncertainty of HOM Frequencies
The statistical approach presented in the following is an extension to the simple method of
using impedance thresholds to address HOM driven CBIs, as discussed in Section 5.1. This
approach includes the frequency spread of HOMs due to fabrication and yields additional
information about the likelihood of HOM excitation that helps to judge how critical a
scenario is in terms of CBIs, especially if there are HOMs close or above the impedance
thresholds. The approach has been used in [70]4. The spread of shunt impedance or
quality factor has not been evaluated as those uncertainty studies for the BESSY VSR
cavities are not concluded yet.
The question of stability in HOM driven CBIs is to determined whether the growth rate

τ−1 of the fastest growing CBM is larger or smaller than the damping rate available to the
system. A statistical approach to the question of stability is reasonable if the frequencies
of the HOMs are not precisely known. For evaluations based on calculated HOM spectra,
such as always in this thesis, this is the case because the fabrication at finite mechanical
precision introduces a randomized disturbance to the modeled geometry. In turn, the
frequencies of the HOMs of each final cavity take random values with a certain spread
compared to the predicted value obtained from calculation. The distribution is usual
Gaussian with a typical relative frequency spread σf/f of 1× 10−3 to 5× 10−3, which is
for HOMs with f > 1.5 GHz a value in the order of several MHz [95].

5.2.1. Algorithm Using Tracking Software
Statistical approaches similar to the one described in this section are well known in the
calculation of the so called beam break up instability in ERLs, see for example [96–98].
However, there is a difference, namely the fact that those studies usually take a large
number of cavities into account whilst here only the HOMs of one cavity are considered.

4Results shown in this thesis may vary from values presented in [70] up to a factor of two due to
overestimations of the impedance data that was used for the publication.
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Figure 5.4.: Illustration of the statistical approach for a discrete case with tracking simu-
lation of a statistical sample of 412 generated cavities [70]. Left: Probability
mass function (pmf) or equivalently the number of cavities at each growth
rate x. Right: Cumulative distribution function (cdf) showing the probability
of stability for a given threshold growth rate x or equivalently the number of
cavities with a growth rate less or equal to the threshold growth rate x.

The statistical approach can be formulated in terms of discrete probability theory and
is realized with the use of tracking software.
In a practical scenario, a so called Monte Carlo approach is used. A finite number

of cavities is created, each with a set of HOM frequencies that was randomly generated
according to the expected frequency spread of the HOMs. Each cavity is then evaluated
by means of tracking simulations to obtain the threshold growth rate. For instance, the
threshold growth rate can be retrieved by increasing an artificial damping mechanism in
the simulation by discrete steps until stability is found. The result is binned and drawn
in a histogram, see Fig. 5.4 left. If it is drawn in a normalized histogram, it represents
the probability mass function (pmf),

fX = P (X = x), (5.11)

of the random variable X where the outcome of X is the growth rate of the instability
and x the threshold growth rate.
If an accumulated summation over the histogram is performed, a quantity is obtained

that shows how many of the simulated cavities have a growth rate equal to or below a
certain threshold growth rate, see Fig. 5.4 right. For a normalized histogram, it describes
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the probability of stability P , given by the cumulative distribution function (cdf) FX(x),

FX(x) = P (X ≤ x) =
X∑
x=0

fX(x). (5.12)

Figure 5.4 shows the statistical sample used in [70] with the pmf shown in left panel
and the cdf in the right panel. It consists of 412 generated cavities, each with a finite
number of longitudinal HOMs.

5.2.2. Algorithm Using Analytic Formulas
In the case of BESSY VSR, the simple analytic formulas Eqs. 5.1 and 5.2 are in most
situations sufficiently valid to study CBIs, avoiding time consuming tracking simulations.
In addition, the Monte Carlo approach can be replaced by formulas that explicitly state
a probability. Considering this, the statistical approach can be formulated purely on
explicit analytic expressions, making its calculation very fast.
The growth rate induced by an HOM depends on the relative spectral location of its

resonance frequency to the beam spectrum. By varying either quantity, the growth rate
may change significantly and even become negative, i. e., damped. The beam samples the
HOM spectrum at intervals of the revolution frequency frev, i. e., if an HOM resonance
frequency is shifted by frev, the growth rate remains equal and only the index of the
CBM has changed by one. Therefore, the problem of driving the HOM can be reduced
to the frequency interval of frev, i. e., the frequencies are “aliased” resulting in an aliased
spectrum, as shown in the figures introduced later in this section.
The growth rate is determined by the maximum real part of the impedance at any

of the spectral beam components. As the spread due to fabrication is expected to be
larger than frev, the Gaussian distribution can be approximated by a continuous uniform
distribution in the aliased spectrum. The impedance is then equally likely to be sampled
at any point in the aliased spectrum of width frev. The likelihood of the growth rate to be
above a given value can then be read out by the range on the frequency axis in the aliased
spectrum where the real part of the impedance is above a certain value, see Fig. 5.5. The
mathematical description in terms of probability theory is given in the following.
Let N be the number of HOMs of a cavity, then N random variables Xn can be defined

where the outcome is the growth rate of the instability induced by the n-th HOM. The
variables Xn itself follow a non-trivial probability density function (pdf), which appears
very difficult to obtain. However, as the frequency distribution can be assumed uniform,
the cdf FXn(x) = P (Xn ≤ x) can be obtained more easily as described in the following
and illustrated in Fig. 5.5.
The probability of stability given by the n-th HOM, i. e., the growth rate Xn is equal

or below a threshold growth rate x, is given by a modified width wn of the impedance
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Figure 5.5.: Illustration of the calculation of the probability of stability for one HOM at a
given threshold growth rate x. The width w of the HOM is evaluated at the
threshold impedance Zth corresponding to the threshold growth rate x and
includes an additional safety margin a. The probability can then be read out
by comparing w (green bar) with the length of the interval, frev. The symbol
mod is the modulo operation. The operation (f mod frev)/frev is implicitly
also applied to all other variables that are shown on the horizontal axis.

peak at the threshold impedance Zth

FXn(x) = P (Xn ≤ x) = frev − wn(Zth(x))
frev

, (5.13)

see Fig. 5.5 for an illustration. The width wn is defined as follows

wn(Zth) =


0 for Rs ≤ Zth,

frev for 2(fb + a− fr) > frev,

2(fb + a− fr) otherwise,

(5.14)
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with

fb = fr

 2ZthQ
2 − Zth +Rs

2ZthQ2

+

√√√√−4Zth
2Q2 + Zth

2 + 4ZthQ2Rs − 2ZthRs +R2
s

4Zth
2Q4


1
2

,

(5.15)

with fr the resonance frequency of the n-th HOM, Q the quality factor of the n-th HOM,
and a = 50 kHz an extra safety margin that is added to both sides of the peak in order
to account for relative changes of the resonance frequency of the HOMs w. r. t. the beam
spectrum during deployment, see Appendix A.5. All relevant parameters are shown in
Fig. 5.5 to illustrate their graphical representation.
Equation 5.15 is the analytic expression of a solution to the equation <(Z‖0(f))−Zth = 0,

with Z‖0 the longitudinal resonator impedance, Eq. 2.10. The equation has four solutions
for Z‖0 < Rs out of which the solution with the frequency f > fr was chosen. It is
basically the inverse of the Lorentzian function, which allows to calculate the frequency
as a function of the impedance value, i. e., it tells about the width of the Lorentzian peak
as a function of its height. A special case would be the full width half maximum, defined
as fFWHM = fr/Q for a resonator impedance. It can be obtained as 2(fb − fr) ≈ fFWHM
by setting Zth = 0.5Rs and Q� 1.
The threshold impedance Zth(x) explicitly depends on the threshold growth rate x and

the angular frequency ω at which the impedance is sampled. However, as a reasonable
approximation, this frequency can be set constant over the interval of frev and equal to
the resonance frequency of the HOM, fr. The threshold impedance Zth then only depends
on the threshold growth rate x.
The shunt impedance Rs and the threshold impedance Zth are kept general in the

formulas above and can be replaced by the following expressions depending on whether
the longitudinal or transverse case is calculated:

Rs =
Rs,0 long.
Rs,1 trans.

Zth(x) =
Z

‖
th(ωr, x) long.

ωr
c
Z⊥th(x) trans.

(5.16)

The definitions of Z‖th and Z⊥th can be found in Eq. 5.1 and Eq. 5.2 respectively. The factor
ωr/c in front of Z⊥th is introduced to avoid a redefinition of fb for the transverse case.
The random variables Xn are all independent. Therefore, the probability of global

stability is then given by the multivariant cdf FX(x) which can be defined in a simplified
form as all random variables Xn are considered at the same outcome x,

FX(x) = P (X1 ≤ x) · P (X2 ≤ x) · · ·P (XN ≤ x). (5.17)
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Figure 5.6.: (a) Cumulative distribution function (cdf) FX stating the probability of sta-
bility vs. threshold growth rate x for the longitudinal case. (b) and (c) Aliased
HOM impedance illustrating the calculation of the probability of stability for
each HOM at the threshold growth rate equal to the BBFB damping perfor-
mance τ−1

fb for different cavity models. Colors and line styles see Fig. 5.5.

In other words, the probability of global stability is simply obtained by multiplying the
individual probabilities of stability given by each HOM. The function FX(x), i. e., global
stability, is plotted for a number of cavity models in Fig. 5.6a for the longitudinal case
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and in Fig. 5.7a for the transverse case. Note that the cdf FX(x) is exactly the same
quantity as shown in Fig. 5.4 with the difference that here it is a continuous function.
The HZB models [37] and the “JLab HC” model [92] are 1.5 GHz cavities with five

cells. The models “Cornell ERL” [53] and “bERLinPro” [99] are 1.3 GHz cavities with
seven cells designed as main linac cavities for the ERL projects Cornell ERL [100] and
bERLinPro [11] respectively.

5.2.3. Discussion
Figures 5.6 and 5.7 show the results of the calculation, the probability of stability for
BESSY VSR as a function of threshold growth rate, e. g., given by the performance of the
BBFB system for a number of different cavity models. For two cavity models, “HZB 2c
coax. coupler” and “JLab HC”, the aliased impedance spectrum is additionally shown.
In the longitudinal case, the effect of the SPMs is somewhat special in BESSY VSR

where they will have very highQ values, hence be very narrow. The solid lines of the model
“HZB 2c coax. coupler” in Fig. 5.6a tell that the probability of stability is approximately
(1 − 2a/frev)4 ≈ 70% if no precautions to actively avoid the excitation of the SPMs are
considered. The number is obtained by the multiplication of four narrow modes, each
having a width at the threshold approximately equal to twice the extra margin a.
Note that the analytic formulas used in this section seem to overestimate the growth

rate of SPMs, as discussed in Section 3.3.4. Using the conclusions in Section 3.3.4, the
probability of stability would be given by only one SPM above the threshold, i. e., 1 −
2a/frev ≈ 92%.
If repetitive steps of mechanical deformation and tuning of the cavity are performed

until no SPM is close to a beam harmonic, the question of stability is not a statistical
anymore and stability could be ensured.
The longitudinal HOMs of the latest HZB models seem to pose no thread to stability.
The transverse HOMs of the latest HZB model are also well below the threshold except

for one mode which is of very narrow type. The probability of instability by exciting this
mode is small, namely about 2a/fr ≈ 8%.
Generally, it is confirmed that a small number of narrow HOMs pose a low risk on the

instability, as already suspected in Section 5.1.4.
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Figure 5.7.: (a) Cumulative distribution function (cdf) FX stating the probability of sta-
bility vs. threshold growth rate x for the transverse case. (b) and (c) Aliased
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mance τ−1

fb for different cavity models. Colors and line styles see legend in
Fig. 5.5.

93



5. Predictions of Coupled Bunch Instabilities for BESSY VSR

5.3. Fill Pattern Dependency
The theory of fill pattern dependent CBI was discussed in Section 2.4 and Section 2.6.3.
Note that the following discussion does neither include the Landau damping induced by
the effect of transient beam loading in the fundamental modes of the cavities nor the
Landau damping provided by a spread in the synchrotron tune induced by HOMs. It is
assumed that the unperturbed synchrotron frequencies are identical for every bunch, even
though the (small) tune spread induced by HOMs is calculated by this algorithm. As will
be shown in this section, the sole effect of uneven fill has a minor impact on the instability.
Unlike, e. g., Landau damping caused by transient beam loading in the longitudinal case.
In the following, the algorithm will be explained along with the calculation of an ex-

ample in the longitudinal and the transverse plane. After that, a number of fill patterns
are studied with respect to CBIs and general conclusions are stated.

5.3.1. Longitudinal Case
Figures 5.8 to 5.11 show the calculation steps for the BESSY VSR baseline fill pattern
Fig. 1.4 and the longitudinal HOMs of the 1.5 GHz cavity model called “HZB 2c coax.
coupler”.
First, the beam spectrum is calculated by means of Eq. 2.38. The fill pattern and the

absolute value of the beam spectrum components Ip are shown in Fig. 5.8. As can be
seen, the beam spectrum has a very strong component at p = 200, corresponding to a
frequency of 250 MHz which is caused by the fact that he majority of the current is placed
in odd buckets, i. e., long bunches. Only a small fraction of the current occupies even
buckets, i. e., short bunches. The two gaps in the fill pattern are manifested as relatively
strong components at p = 2 and p = 398.
Next, the mode-coupling impedance Zlm, defined in Eq. 2.39, must be computed. It

contains the information about the impedance spectrum, i. e., the sum of all resonator
impedances, at discrete points. The first index, l, adds the contribution of the impedance
spectrum sampled at the frequency of the side bands of CBM l multiplied with the fre-
quency, i. e., it is the dynamic contribution. The second index, m, adds the contribu-
tions of the impedance spectrum sampled at the frequency of the beam harmonic l −m
multiplied with the frequency, i. e., it is the static contribution. For l = m, the static
contribution is zero for all harmonics except for multiples of the beam frequency, i. e.,
pMfrev, which then equals the even fill case.
Thus, the diagonal elements Zll have a simple interpretation. They are the product of

the impedance Z‖0 and the frequency f of CBM l. Here, the frequency f can be positive or
negative, hence the real values of Zll can be positive or negative, even though <(Z‖0) > 0
for all resonators. A positive real value, i. e., <(Zll) > 0, indicates that the CBM l will
have a positive growth rate. Analogously, <(Zll) < 0 indicates a damped CBM. The
normalization with Mωrev in Eq. 2.39, cancels the angular frequency in the dimension
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Figure 5.8.: Top: BESSY VSR baseline fill pattern, also shown in Fig. 1.4. Bottom:
Absolute value of the corresponding beam spectrum Ip.

and Zlm remains an impedance with units in Ω. For even fill, <(Zll) is proportional to the
growth rate of CBM l and =(Zll) is proportional to the tune shift of CBM l. The real and
imaginary part of the diagonal elements of the mode-coupling impedance Zlm are shown
in Fig. 5.9.
Third, the Alm matrix, defined in Eq. 2.37 has to be calculated. Basically, the calcula-

tion of Alm is the multiplication of the impedance with the current and all other machine
parameters.
In case of even fill, Ip is non-zero only for p = 0 and Zlm becomes diagonal. The complex

frequency shift, i. e., the growth rate and tune shift, of all CBMs can then directly be read
out from the diagonal elements of Alm.
For uneven fill, the multiplication of Ip and Zlm leads to the so called mode coupling,

which may influence the growth rate of the strongest growing mode [101]. Figure 5.10
depicts the absolute value of the Alm matrix as a 400 × 400 color-code image. Values
significantly other than zero are only visible along the diagonal axis and along the diagonal
lines shifted by ±200 columns. The latter is a consequence of the fact that the fill pattern
almost exclusively consists of long bunches with a spacing of two buckets, leading to 200
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Figure 5.9.: Longitudinal case. Real and imaginary part of the diagonal elements of the
so called mode-coupling impedance Zlm. It corresponds to the product of
frequency and impedance sampled by the synchrotron side bands summed
over all harmonics of Mfrev. See text for details.

pairs of almost identical eigenvalues.
Fourth, the eigenvalues of Alm need to be obtained. In case of even fill, Alm is diagonal

and the diagonal elements are the eigenvalues. For uneven fill, common methods of linear
algebra are applied. The eigenvalues obtained from the eigendecomposition of the matrix
Alm are directly related to the tune shift and growth rate of the coherent frequencies, see
Eqs. 2.40 and 2.41. The growth rate and tune shift obtained from the eigenmodes of the
uneven fill are shown in Fig. 5.11 in comparison with the case of even fill.
Note that the eigenvalues of the uneven solution are not ordered by any particular

criterion by the numerical algorithm. Thus, a sorting was applied based on the similarity
of the absolute values of the eigenvectors with the M -dimensional unit vectors, using an
M -dimensional Euclidean norm, i. e., the similarity S of the complex eigenvector ~a with
the n-th unit vector ên is given by,

S(~a, n) = ‖|~a| − ~en‖2 =

√√√√ M∑
i=0

(|~ai| − ên,i)2, (5.18)

where |~a| means the absolute values of ~a are taken elementwise and i is the index for the
elements of the vectors. This sorting is not perfect, but it can be seen that the even fill
and uneven fill case look rather similar in Fig. 5.11, thus the effect of the fill unevenness
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Figure 5.10.: Longitudinal case. Absolute values of the Alm matrix whose eigenvalues are

the coherent frequencies for uneven fill, yielding the growth rate and tune
shift.

is not very strong on the growth rates in this example.
In addition to the ordering, Fig. 5.11 bottom panel shows a more significant difference

between the cases of even and uneven fill. This stems from the tune shift induced by the
static contributions, i. e., the beam spectrum and not its synchrotron side bands. Those
contributions only occur at uneven fill and only in the longitudinal case.
The corresponding eigenvectors can also be obtained but as the ordering of the eigen-

values is different compared to the even fill, showing the eigenvectors adds little value to
the understanding of the algorithm.
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sponding to the real part of the eigenvalues. Bottom: Angular frequency
shift, corresponding to the negative imaginary part of the eigenvalues. Note
that the CBMs labeled in the horizontal axis are different for the even and
uneven fill as they correspond to a different set of eigenvectors.

98



5.3. Fill Pattern Dependency

0 50 100 150 200 250 300 350 400
index l

3

2

1

0

1

2

3
Z
l

(ω
β
)/

(M
Ω

m
−

1
)

Re
Im

Figure 5.12.: Transverse case. Real and imaginary part of the so called transverse mode-
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5.3.2. Transverse Case
Figures 5.12 to 5.14 show the calculation steps for the BESSY VSR baseline fill pattern
Fig. 1.4 and the transverse HOMs of the “HZB 2c coax. coupler” cavity model.
The fill pattern and the beam spectrum is the same as above, see Fig. 5.8. The Real

and imaginary part of the transverse mode-coupling impedance Z⊥l is shown in Fig. 5.12.
In the transverse case, there is no static contribution and Z⊥l directly corresponds to the
product of frequency and impedance spectrum at the all side bands. Compared to the
longitudinal case, the spectrum contains more HOMs including some with very high and
low Q.
Figure 5.13 depicts the absolute value of the Alm matrix as a 400×400 color-code image.

Similar to the longitudinal case, values significantly other than zero are only visible along
the diagonal axis and along the diagonal lines shifted by ±200 columns.
The eigenvalues and in turn the growth rate and tune shift obtained from the eigende-

composition of the matrix Alm are shown in Fig. 5.14 in comparison with the case of even
fill. The same sorting as for the longitudinal case has been used and the similarity of the
solutions of even fill and uneven fill case can be seen.
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5.3.3. Results
The same calculation as above has been done for a number of fill patterns shown in
Tab. 5.1. The average current of all fills is 300 mA and the synchrotron frequency is
assumed to be exactly fs = 8 kHz for all 400 possible bunches. Hence, neither the effect of
Landau damping, nor the longitudinal decoupling of long and short bunches is taken into
account. The description of the fill patterns of Tab. 5.1 and a discussions of the results
of the calculations are given in the following:

(a) Even fill with 400 bunches. All following growth rates are normalized to the results
of this even fill.

(b) Even fill with 200 bunches, corresponding to long bunches in BESSY VSR. Very
small effect on growth rates.

(c) BESSY VSR baseline fill pattern defined in Fig. 1.4. The effect on the growth rates
appears to be very small, except for the longitudinal modes of the HZB cavity where
the maximum growth rate is reduced by about 17%.

(d) A realistic BESSY II fill pattern with rather strong variations, a 200 ns gap and four
high current bunches. The effect on the growth rates appears to be about 10% or
less.

(e) Another realistic BESSY II fill pattern with variations introduced by the injection
system, a 200 ns gap and four high current bunches. The effect on the growth rates
appears to be similar as to fill pattern (d).

(f) A fill pattern tailored to maximize the so called mode coupling of the fastest growing
longitudinal CBM with its mirror mode for the HZB cavity. Essentially, it is a
sinusoidal fill pattern with period length of 1.156 buckets, for details on the method
of calculation see [101, 102]. As desired, the growth rate of the fastest growing
longitudinal CBM is reduced for the HZB cavity. However, the reduction is only
about 40%.

(g) A fill pattern tailored to maximize the mode coupling of the fastest growing longitu-
dinal CBM with its mirror mode for the “JLab HC” cavity. With the same approach
as above, it is a sinusoidal fill pattern with period length of 1.869 buckets. Similar to
the case above, the growth rate of the fastest growing longitudinal CBM is reduced
by about 40% for the “JLab HC” cavity.
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Table 5.1.: Fill pattern dependency of longitudinal and transverse relative growth rate of
fastest growing CBM for different fill pattern and two cavity models at a fixed
tuning setting (not necessarily optimized). The cavity models are the HZB
model “HZB 2c coax. coupler” [37] and the “JLab HC” model [92]. More
details on the fill pattern (a) to (g) are given in the text.

Fill Pattern Relative CBI Growth Rate
HZB “JLab HC”

long. trans. long. trans.

(a) 1 1 1 1

(b) 1.002 1.040 1.000 1.049

(c) 0.836 0.994 0.987 1.001

(d) 0.875 0.892 0.998 0.919

(e) 0.908 0.896 0.999 0.933

(f) 0.618 1.043 1.029 0.960

(g) 0.669 1.256 0.616 0.984
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5.3.4. Conclusion
As was shown, the sole effect of the fill pattern on CBIs is small. Even with a specially
tailored fill pattern, Tab. 5.2f and Tab. 5.2g, the effect on CBIs stays below a factor of
two. In this case, the specially tailored fill pattern are unfeasible due to the high single
bunch charge. Similar findings have been made at other machines and experimentally
confirmed [102]. The effect of realistic fill pattern, such as the BESSY VSR baseline
fill pattern, Tab. 5.2c or the realistic BESSY II fill patterns with additional variations,
Tab. 5.2d and Tab. 5.2e, are generally small and in all cases below 20%. If the number of
buckets is much larger than the number of strong HOMs, such as in the scenarios evaluated
here, the modulation coupling introduced from the uneven fill is likely to couple a strongly
growing mode with a non-growing one, which explains why most fill patterns lead to a
small reduction of the maximum growth rate.

5.4. Low-α Operation
The option to operate the storage ring in a low-α optics will remain in BESSY VSR and
is in consideration for a special operation mode for shortest bunches [2]. With an optics
similar to the low-α optics of BESSY II, a momentum compaction factor of α = 3.5× 10−5

will lead to a reduction of the bunch lengths by a factor of approximately 5.
As discussed in Sections 1.2 and 1.3, the microwave instability will then limit the

bunch current. For BESSY VSR, it is estimated that a non-bursting low-α mode would
be operated with about 13 mA current, divided approximately equally to short and long
bunches [2]. If a bursting beam is accepted, a current in the order of 100 mA could be
possible.
In terms of CBIs, those changes significantly affect the growth rate of the instability.

For transverse CBIs, it will be the scaling with the current that linearly reduces the growth
rate, see Eq. 2.53. However, the change of the linear optics also changes the value of the
vertical betatron function at the location of the SC cavities, see Fig. 5.15. With a value
of βy = 9 m, the growth rate is then increased by factor of approximately two compared
to the standard user optics.
The growth rate of the longitudinal CBIs is reduced by the current and additionally

by the low momentum compaction factor. This can be seen from Eq. 2.30 when the
synchrotron frequency is replayed by fs ∝

√
α, according to Eq. 1.5. The effective scaling

is then given by the following expression if only α is changed:

τ−1
µ ∝

√
α. (5.19)

Thus, an additional reduction of 5 in the growth rate of longitudinal CBI is expected in
the low-α optics.
It can be concluded, that CBIs are significantly suppressed in BESSY VSR low-α mode.
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The growth rate goes down linearly with the current in all planes and an additionally
suppression of a factor of 5 is given for the longitudinal plane. However, a moderate
increase of the vertical transverse growth rate is expected.

5.5. Instabilities Driven by Fundamental Modes
The interaction of the beam with the fundamental modes of the SC cavities can also lead
to instabilities, the so called Robinson instabilities [40].
The Robinson instabilities are separated into an AC instability and an DC instability,

named after that fact that the former defines an instability where oscillations grow and the
latter refers to an instability where the bunch phase positions runs away in one direction.
The AC Robinson instability is nothing but the CBI with CBM 0 and a fundamental

cavity mode as driving impedance. The small effect approximation of the AC Robinson in-
stability was mentioned in Section 2.3.2. In the case of BESSY VSR, the shunt impedance
of the fundamental modes of the SC cavities is in the order of Rs,0 = 1× 1011 Ω. With
such an impedance, the argument of a small disturbance is not valid. In the contrary, the
induced fields are theoretically in the order of 1× 1010 V, which is much more than the
1.5 MV that defines the nominal longitudinal dynamics. Hence, the small effect approxi-
mation in Section 2.3.2 is inapplicable.
A possibility would be to solve Eq. 2.23 directly to obtain the growth rate of the

instability. However, in a realistic setup, the effective impedance as seen by the beam
is significantly modified by the RF feedback, see for example [104], which is not covered
in this thesis. As a consequence, the possible occurrence and strength of both Robinson
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instabilities strongly depends on the specific RF feedback parameters [2]. Hence, it is
refrained from making any statements regarding AC or DC stability in this thesis, as the
plausibility without the inclusion a realistic RF feedback would be too questionable.

5.6. Booster Synchrotron
An RF upgrade is also proposed for the BESSY II booster synchrotron to shorten the
stored bunches in order to increase the injection efficiency into short bunches stored in
BESSY VSR during top-up operation.
While ramping the SC RF cavities down shortly to lengthen the short bunches would

be feasible from the beam dynamics point of view [91], it appears unfeasible as neither the
RF can be detuned quickly, nor is the generator power sufficient to reduce the operating
voltage [2].
The booster runs at a frequency of 10 Hz, where the beam is stored for about 45 ms

from the point of injection to the first possible extraction point. With frev = 3.125 MHz,
the bunches remain for about 1.4× 105 turns in the synchrotron. This is long enough for
CBIs to build up and the question of HOM driven CBIs in the booster synchrotron arises
if additional cavities with potentially strong HOMs are installed in the ring.
CBIs in the booster synchrotron would lead to a reduced injection efficiency which must

be avoided in terms of radiation safety.
With the relevant machine parameters of the BESSY II booster synchrotron given in

Tab. 5.3, the impedance thresholds can be calculated using Eqs. 5.1 and 5.2 and compared
to the impedance spectrum of the cavities considered for the RF upgrade. Note that the
calculation is done at extraction energy and fs = 305 kHz was chosen in the calculation
which includes the RF upgrade. Below extraction energy, the beam may be more unstable
due to the reduced rigidity and lower radiation damping rate. However, if the beam is
unstable at the first extraction point, it is possible to extract at the second point to gain
some time in a high energy regime for the damping mechanisms to stabilize the beam.
Figure 5.16 shows the booster threshold impedance for the longitudinal m = 0 case

and the transverse m = 1 case for a threshold based on the radiation damping at high
energy, see Tab. 5.3 and an estimated BBFB performance, see below. The thresholds are
compared to the impedance spectra of the 1.5 GHz BESSY VSR cavity model “HZB 2c
coax. coupler” and to a NC 3.0 GHz cavity option.
The impedance spectrum of the NC 3.0 GHz is extracted from preliminary studies with

a NC 15-cell 3.0 GHz cavity [106] which was obtained by means of scaling a NC multi-cell
2.45 GHz MAMI structure [107].
The BBFB performance was estimated based on the BBFB performance of the

BESSY II storage ring mentioned in Section 5.1, scaled up by a factor of 2.5 which
corresponds to the ratio of circumferences of the storage ring to the booster synchrotron.
This estimate assumes that a similar BBFB hardware including the kickers would be
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5.6. Booster Synchrotron

Table 5.3.: Relevant machine parameters of the BESSY II booster synchrotron [2, 105].
Some numbers are rounded.

Parameter Value
Energy E 1.7 GeVa

Momentum compaction factor α 0.033
Total beam current IDC 2.5 mA
Circumference 96 m
Revolution frequency frev 3.125 MHz
Harmonic number 160
Fundamental RF frequency 500 MHz
Synchrotron frequency fs, presently 38 kHza

Synchrotron frequency fs, after RF upgrade 305 kHza

Betatron functions at cavities βx, βy 6 m
Longitudinal radiation damping time τ‖ 3 msa

Transverse radiation damping time τ⊥ 6 msa

aAt extraction energy.
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Figure 5.16.: Threshold impedances for CBIs at the BESSY II booster synchrotron in com-
parison with different cavity models. Left: Longitudinal m = 0 impedance.
Right: Transverse m = 1 impedance. See text for details on the cavity
models and threshold calculations.
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5. Predictions of Coupled Bunch Instabilities for BESSY VSR

installed in the booster and that the damping rates would be faster simply because the
bunches pass the kickers more frequently. It should be considered very preliminary, with
the following numerical values:

τ−1
fb

∣∣∣∣
very preliminary booster estimate

≈

3.33× 103 s−1 long.
10.0× 103 s−1 trans.

(5.20)

The following conclusions can be drawn from Fig. 5.16. The thresholds in the longitu-
dinal plane are surprisingly large despite the relatively large α and small circumference
of the booster. The main reason for the large threshold is the very high synchrotron
frequency of fs = 305 kHz, which is a consequence of the increased longitudinal focusing
of the RF upgrade, and the small current of 2.5 mA, see Eq. 5.1 for the scaling.
In comparison with the highly HOM damped cavity model “HZB 2c coax. coupler”, no

longitudinal CBIs are expected even if only radiation damping is considered. However,
the non-optimized NC 15-cell cavity without HOM dampers shows a mode spectrum with
significantly larger impedances, which is not surprising as highest frequencies and large
numbers of cells generally favor strong HOMs. This cavity might lead to longitudinal CBIs
if only radiation damping is considered, thus, a BBFB system would be recommended in
this case to ensure stability.
The thresholds in the transverse plane are also rather large due to the small current.

Unfortunately, no studies of the transverse HOMs of the NC 15-cell cavity exists yet
but for the “HZB 2c coax. coupler” cavity, it can be concluded that it is likely that no
transverse CBIs will arise even if only radiation damping is considered.
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6. Transient Beam Loading
This chapter covers the studies of transient beam loading. Section 6.1 introduces the
general concept and presents methods for its calculation. In Section 6.2, a measurement
performed at BESSY II is shown, analyzed and used for the verification of the calculation
methods. Finally, Section 6.3 presents the calculations for BESSY VSR, where the effect
on the short and long bunches are presented and consequences are discussed, such as an
effect on the beam lifetime as well as possible longitudinal Landau damping.

6.1. Definition and Methods of Calculation
In this thesis, the term transient beam loading refers to a steady state where the net
complex voltage seen by a probe at the nominal bucket positions is not equal for all
buckets. This typically occurs through beam loading in active and passive cavities if the
fill pattern is not even, e. g., if it exhibits a gap. The net voltage then shows a variation
at the nominal bucket positions that does not change over time.
Furthermore, beam loading refers to the induced complex voltage in the fundamental

mode of an active or passive cavity. In particular, the induced voltage may be real or
imaginary, i. e., the beam loading may be called resistive, reactive or capacitive. Hence,
beam loading solely depends on the beam and the properties of the impedance but not
on other contributions to the state of the momentary phasor such as a generator.
In the following, different methods for the calculation of transient beam loading are

discussed. The most insightful way is using a form of Ohm’s law and the beam spectrum,
whereas a tracking simulation is a straight forward approach with few pitfalls, see for
example [63, 108].

6.1.1. Induced Voltage
The induced voltage in a cavity is basically given by Ohm’s law, where the voltage equals
the resistance times the current. In the case of a cavity, the resistance is replaced by
the impedance, in turn yielding a complex voltage which contains additional information
on the phase relation of the current to the induced fields. An additional factor of two is
needed to account for the strongly bunched beam, i. e., a series of delta functions, and
the circuit definition of the shunt impedance which is used in this thesis.
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6. Transient Beam Loading

Together, the complex voltage V induced by a bunched beam with a DC (average)
current IDC at a beam harmonic ωbeam is given by

V |ωbeam = 2IDCZ
‖
0(ωbeam), (6.1)

with the impedance Z‖0 of the cavity defined in Eq. 2.10 via the shunt impedance Rs,0,
the quality factor Q and the angular resonance frequency ωr of the fundamental mode.
Equation 6.1 implies that Q is sufficiently large and that the system has reached a

steady state with no beam oscillations. Both is true for the cases studied in this chapter.
Note that the induced voltage in Eq. 6.1 now oscillates at the frequency of the beam,

i. e., ωbeam and not at the resonance frequency of impedance. The phase of the voltage
relative to the beam current is given by arg V and the amplitude is given by |V |. At even
fill, the only harmonics in the beam spectrum are multiples of the bunch frequency defined
by the fundamental cavity, i. e., 500 MHz for BESSY II. Equation 6.1 further assumes that
the bunches are so short that the drop of the amplitude at the beam harmonic Ip can
be ignored at the angular frequency ωr, i. e., |Ip| = IDC, which is usually justified, see
Fig. 1.8.
In case of uneven fill, the beam spectrum may have nonzero contributions at other

revolution harmonics. The amplitude of each beam harmonic p is given by the complex
amplitude of the beam spectrum Ip, defined in Eq. 2.38. The beam now induces a voltage
at every revolution harmonic p according to the amplitude of the beam spectrum Ip,

V |ωp = 2IpZ‖0(ωp), (6.2)

with ωp = 2πfrevp the angular frequencies of the p-th revolution harmonic. The net effect
on a bunch is then given by the superposition of all induced voltages oscillating at their
individual frequencies.
The beam spectrum Ip is repetitive with respect to multiples of M , the number of

buckets. As the cavity impedance is a rather narrow impedance, p can be restricted
to the interval from 0 to M and the angular frequencies have to be chosen at a suitable
interval that includes the resonance frequency of the cavity. For instance, a third harmonic
cavity at BESSY II would be close to the harmonic h = 3M = 1200 and a suitable choice
for ωp would be

ωp =
{

2πfrev(3M + p) , 0 ≤ p < M/2
2πfrev(2M + p) , M/2 ≤ p < M,

(6.3)

which defines a frequency interval with the resonance frequency of the cavity in its center.
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The net complex voltage Vm seen at a nominal bucket position m is then given by

Vm =
M−1∑
p=0

V |ωpe2πimp
M , (6.4)

the superposition of each contribution evaluated at the nominal bucket position. With
the Fourier transform defined as F [xk]p = ∑M−1

k=0 xke
−2πi kp

M , Eq. 6.4 can also be directly
obtained from the fill pattern,

Vm = MF−1[2F [ik]p · Z‖0(ωp)]m, (6.5)

with the bunch current ik of bunch k. Here, the length of the discrete series M (the
number of buckets) is needed to cancel the normalization in the inverse Fourier transform
F−1[xk]p = M−1∑M−1

k=0 xke
2πi kp

M .
Equation 6.5 reveals the simplicity of the underlying physics, which is nothing but the

calculation of the product of current and impedance to obtain a voltage. However, this
needs to be done not only with a single DC current at one frequency, but simultaneously at
all frequencies with their corresponding contributions. For this purpose, the multiplication
is done in the frequency domain and then transferred back to the time domain.

Example

An example of this procedure is shown in Fig. 6.1 with graphs in the frequency domain
in Fig. 6.1a and graphs in time domain in Fig. 6.1b. The example is performed with
BESSY II parameters and a cavity that approximates the passive third harmonic Landau
cavities of BESSY II with values set to Q = 13 900, Rs,0/Q = 247.48 Ω and detuned
by ∆fr = 443 kHz above the 1200-th revolution harmonic so that bunch lengthening
is achieved. The absolute value of the impedance of the cavity is shown in Fig. 6.1a
top. The frequency axis has been limited to a few revolution harmonics around the
resonance frequency of the cavity as the impedance drops quickly with the distance from
its resonance frequency. The fill pattern used in this example, shown in Fig. 6.1b top, is
a realistic BESSY II fill pattern.
The first step is to calculate the amplitude of the beam spectrum Ip by performing a

Fourier transform on the fill pattern and choose the corresponding angular frequencies
ωp such that the resonance frequency is in the center of the interval. In this case, the
choice given in Eq. 6.3 is made. The absolute value of Ip is shown in Fig. 6.1a center.
As expected, |Ip| is symmetric around the 1200-th revolution harmonic and because the
fill pattern exhibits one large gap, the amplitudes of plus and minus one harmonic are
relatively large.

111



6. Transient Beam Loading

104

105

106

107

|Z
0
|/

Ω

0
50

100
150
200
250
300

|I
p
|/

m
A

1196 1198 1200 1202 1204
ωp /ωrev

0
50

100
150
200
250
300

|V
| ω

p
|/

k
V

(a) Frequency domain.

0
3
6

I/
m

A

70
80
90

φ
/d

eg

sum

40
0

40
80

<
V
/k

V

sum

-2 -10 1
2

0 100 200 300 400
bunch number

100
0

100
200
300

=
V
/k

V

sum

-2 -1

0

12

(b) Time domain.

Figure 6.1.: Visualization of the analytic calculation of transient beam loading with the
steps in the frequency domain (a) and steps in time domain (b). (a) from
top to bottom: Absolute value of resonator impedance (fundamental mode
of Landau cavity), absolute value of amplitude of beam spectrum, absolute
value of induced voltage oscillating at frequency ωp. (b) from top to bottom:
Bunch fill pattern, phase φ, real part and imaginary part of induced voltage at
nominal bucket positions. In the latter three, lines annotated with a number
refer to the contribution given by the beam harmonic indicated with the
number whereas solid blue lines refer to the sum of all contributions and
dashed blue lines refer to the sum of those contributions that are shown. See
text for details.

Second, the impedance is multiplied with the amplitudes of the beam spectrum Ip,
yielding the complex voltages V |ωp , oscillating at their individual frequencies. The ab-
solute value of those voltages is shown in Fig. 6.1a bottom. The strongly peaked shape
of the impedance leads to the fact that only contributions very close to the resonance
frequency induce a significant voltage. The visible asymmetry is caused by the detuning
of the cavity.
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6.1. Definition and Methods of Calculation

Now, each V |ωp contributes to the voltage seen by a probe at the nominal bucket posi-
tions. The five strongest contributions are drawn in the bottom two graphs in Fig. 6.1b.
The upper one of those graphs shows the real part of the voltage seen by a probe at the
nominal bucket positions and is obtained by a cosine function with the amplitude given
by |V |ωp |, the angular frequency ωp and a phase offset given by arg V |ωp . The real part of
the voltage is the longitudinal accelerating voltage a particle experiences when it passes
the cavity. The imaginary part of the contributions is plotted in the lower graph, obtained
from the corresponding sine function. A particle at the nominal bucket position does not
see the imaginary part of this voltage directly but the imaginary part is proportional to
the time derivative of the acceleration voltage, hence it is the voltage gradient leading to
longitudinal focusing or defocusing. The dashed blue lines show the sum of those con-
tributions which are plotted in the same graphs. If all M contributions are considered,
i. e., Eq. 6.4 is evaluated, the exact solution is obtained, which is drawn by the solid blue
lines. The second graph from above in Fig. 6.1b shows additionally the phase of the
induced voltage with respect to the beam spectrum. In this case, a phase of 90◦ describes
a defocusing cavity, hence bunch lengthening is obtained.
Generally, it can be seen that the solid blue lines are not constant in the lower three

graphs in Fig. 6.1b which is the manifestation of transient beam loading. If the fill pattern
was completely even, all those curves would be constants as only the 0-th contribution
would exist. Comparing the fill pattern with those graphs, direction relations can be seen.
As the cavity is operated relatively far away from its resonance, beam loading is mostly
reactive, i. e., inductive or capacitive. In other words, a bunch passing the cavity causes a
phase shift rather than a change of the absolute value of the cavity voltage. This behavior
can be clearly seen in the graphs that show a strong variation in phase and much larger
imaginary parts than real parts.
Note that the algorithm assumes that the current that induces the voltage is bunched

and located exactly at the nominal bucket positions. Of course, the real bucket position
is determined by the shape of the accelerating voltage and if this voltage is different
at each bucket, the bucket position and consequently the position of the bunch must be
different for each bunch. In turn, if the bunch position deviations from the nominal bucket
position, the bunch passes the cavity at a different phase and a different induced voltage is
expected. In some cases, e. g., BESSY II standard user mode, this effect is non-negligible,
as will be shown later in this thesis along with methods of its calculation.

Extension

One possibility of including realistic bucket positions in the analytic formulas is the fol-
lowing extension. If the current of each bunch ik is considered to be a complex value,
it contains additional information about the phase between the bunch and the phasor,
hence also with respect to the resulting complex induced voltage. With this approach, the
relative position of the individual bunches to the nominal bucket center can be taken into
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6. Transient Beam Loading

account by rotating ik by an angle equivalent to the relative position, expressed as the
phase difference at the resonance frequency of the cavity. It has been shown by calculation
that this approach leads to self-consistent solutions. In order to find the self-consistent
solution, a recursive algorithm can be used, as explained in the next section.

6.1.2. Algorithm to Obtain Synchronous Phase Positions
Other studies regarding the analytic relationship between synchronous phase positions of
the bunches and fill pattern are availibe [41, 109], however with the limitations of a linear
voltage gradient, small induced voltages and approximately equidistant bunches.
In this section, a recursive algorithm is presented that overcomes all of the above

limitations. It is based on the idea that the relative position ∆tk of each bunch k with
respect to its nominal bucket position can be expressed by the argument of the complex
current ik of each bunch. Each iteration of the algorithm goes through the following steps:

1. Take the bunch positions ∆tk of the previous iteration and calculate the corre-
sponding phase with respect to the resonance frequency ωr and take it as argument
of complex bunch current ik,

ik = |ik|e−iωr∆tk . (6.6)

For the first iteration, start with ∆tk = 0 for all k.

2. Calculate the net complex voltage Vm seen at the nominal bucket positions by means
of Eqs. 6.3 and 6.5.

3. Repeat the first two steps for all cavities. An active cavity can be approximated
by adding an additional complex current igen to all buckets, including empty ones,
before step 2 is performed for the cavity, i. e., ik = ik + igen. For a cavity operated
near zero crossing, igen can be approximated as purely imaginary and chosen so that
the real part of the induced voltage has a sign that corresponds to acceleration rather
than deceleration. This then changes the voltage transient of the cavity. However,
for realistic scenarios, the use of igen is a rather small correction.

4. Calculate the new bunch positions ∆tk by evaluating the sum voltage of all cavities
in the vicinity of each nominal bucket position. For instance, without radiation
losses, the zero crossing has to be found. If the solution is not unique, the one
macro-particle model is an inadequate approach1. If desired, the focusing gradients
at the new bunch positions can also be obtained directly by evaluating the time
derivative, i. e., the imaginary part, of the sum voltage at ∆tk.

1Two solutions may exist if the defocusing of a higher-harmonic cavity exceeds the focusing of the
fundamental cavity and a double bucket with two synchronous positions appears.
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Figure 6.2.: Relative error of the total phase transient of the algorithm described in Sec-
tion 6.1.2 with respect to tracking simulations as a function of the iteration
step. The setup is a realistic BESSY II scenario with active fundamental
cavities and passive Landau cavities.

The algorithm has been successfully verified with tracking simulation for a BESSY II
setup with active fundamental cavities and passive Landau cavities where it shows very
rapid convergence to the tracking simulation, see Fig. 6.2. In principle, the remaining
difference is only given by the discrete nature of the tracking simulation.
Note that the question of absolute phases and relative phases of multiple cavities is

not resolved in the algorithm above. For a single cavity, the absolute bunch position
may run away with the iterations. This can be compensated by a phase offset applied
on ik according to the frequency detuning of the cavity or by a generator current igen.
For more complex cavity setups, such as BESSY VSR the relative phases seem to have
a stronger influence on the behavior of this algorithm and its results. The question of
how this algorithm is applied to such cases is left to future studies. To date, the exact
choice and possible restrains of the relative phases of the cavities in BESSY VSR is an
open question, currently under investigation from a beam dynamic’s point of view and
also from the RF control’s point of view.

6.1.3. Tracking
Transient beam loading is readily obtained from tracking simulations. The interaction of
the beam with a longitudinal resonator, as described in Section 3.1.1, is fully applicable
to the case of fundamental cavity modes as there are no approximations made that would
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exclude very high shunt impedances.
In this thesis, the longitudinal stand-alone tracker described in Section 3.2.2 is used for

all tracking simulations regarding transient beam loading. As mentioned in Section 3.1.1,
the tracking code considers only one macro particle per bunch. This approximation is well
justified as long as the bunch length is much smaller than the resonance frequencies of the
cavities and as long as the bunch shape does not deviate much from a Gaussian shape.
The latter may occur if the gradient, i. e., the time derivative of the accelerating voltage,
is non-linear, which is usually the case only if it becomes very small at one point. For all
cases shown in this thesis, this effect is negligible unless explicitly stated. For BESSY II,
this approximation is also well justified. Calculations with this tracking code have been
published in [2, 71].

6.2. Experiments at BESSY II
As BESSY II is typically operated with a gap of about 200 ns in the fill pattern, transient
beam loading is expected. Furthermore, four passive 1.5 GHz Landau cavities are usu-
ally operated in bunch lengthening mode to increase stability and beam lifetime. With
their poor ratio of peak accelerating voltage to normalized shunt impedance, namely
V ‖acc/(Rs,0/Q) < 1 kV Ω−1 [110] relatively strong transient beam loading is expected [63]2.
In such operation modes, the total phase transient, i. e., the range of the sychronous
phase positions, is about 80 ps [71]. The following discussion repeats the results presented
in [71].

6.2.1. Observation
Figure 6.3 shows simulations and measurements of two of the most visible effects of tran-
sient beam loading for a BESSY II standard user setup typical for the year 2014. The top
panel shows the bunch fill pattern, obtained from the control system by measurement.
The center plot shows the longitudinal location of the bunches, more precisely, the de-
viation of the bunch position from its nominal bucket position, ∆t, measured as a time
difference. It is also known as the phase transient or synchronous phase positions. The
bottom plot shows the synchrotron frequency for each bunch.
As expected, the gap in the fill pattern of 200 ns causes a strong phase transient. The

transient is almost linear along the bunch train, with small variations correlated to the
small unevenness in the fill with a period of about 100 ns. The high current bunches in
the bunch train locally increase the slope of the phase transient. The single high current

2 The argument here is that for time scales shorter than the characteristic fill time, τc = 2Q
ωr

, Eq. 6.1 is
not valid but the induced voltage is proportional to the normalized shunt impedance Rs,0/Q which
appears in the wake function, Eq. 2.10.
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Figure 6.3.: Tracking simulation (blue dots) and measurements (green dots) showing ef-
fects of transient beam loading of a typical BESSY II standard user setup
of 2014 with the fill pattern shown in the top panel. The bunch position,
measured as deviation from its nominal bucket position ∆t is shown in the
central panel. The bottom panel shows the synchrotron frequency. See text
for more details and discussions of the outliers.

bunch is already in the recovering slope with less displacement from its nominal bucket
position than other bunches.
The behavior of the synchrotron frequency is less intuitive. Both, measurement and

simulation show that the synchrotron frequency is largest in the center of the bunch train
and smallest at its tail and front. Analogously, the bunches are shorter in the center of
the bunch train compared to its tail and head.

6.2.2. Setup of Simulation and Measurements
The simulations are performed with the stand-alone tracking code, as mentioned in the
previous section. The input parameters to the simulation are BESSY II standard param-
eters from Tab. 1.1 with the fill pattern as measured and shown in Fig. 6.3 top panel.
The shunt impedance and quality factor of the Landau cavities were taken from [110].
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The Landau cavities were detuned such that the dissipated power and the average
voltage approximately matches the values that the control system returned during the
measurement. Herein lies a possible source of uncertainty as the measurement of the
voltage is rather imprecise and also the measured dissipated power is not entirely accurate.
While the uncertainty of the value for the shunt impedance could not be obtained, the
quality factor of the four Landau cavities has been measured, see Appendix A.6. It is about
5% less than the number quoted in [110]. However, as it is unclear if the normalized shunt
impedance or the shunt impedance should be considered as the more accurate number and
considering the fact that the detuning was chosen to match control system parameters,
the simulation was performed exclusively with numbers stated in [110]. The damping time
was set to τ‖ = 8× 10−5 s instead of τ‖ = 8× 10−3 s which does not change the equilibrium
state but accelerates its approach. With those settings, tracking for 1500 turns is enough
to reach the equilibrium state and allows the extraction of the bunch positions ∆t and
the focusing gradient V ′ at each bunch position via Eq. 3.12. The synchrotron frequency
is then obtained by scaling according to Eqs. 1.3 and 1.5,

fs = 8 kHz
√

|V ′|
2π × 1.5 MV× 0.5 GHz . (6.7)

Both, the bunch positions and the synchrotron frequency were measured with the di-
agnostics of the BBFB systems [50]. The longitudinal feedback unit can measure the
bunch positions by digitizing a signal that is approximately proportional to the arrival
time difference from a reference clock and approximately proportional to the charge of
the bunch. To obtain ∆t, the digital signals were multiplied with a calibration constant
and divided by the bunch currents. The non-perfect calibration is a source of uncertainty
for the measured data. Looking at the center panel in Fig. 6.3, it can be seen that the
measurements at and around the high current bunches in the bunch train deviate signifi-
cantly from the local trend. This might be explained by a non-linear current dependency
of the signal generation in the chain of signal processing. Furthermore, it can be seen that
those high current bunches also distort the measurement of neighboring bunches, which
is explained by non-perfect compensation of the ringing of the pickup signal.
The synchrotron frequencies of each bunch are obtained with the horizontal BBFB sys-

tem. The horizontal tune spectrum is measured for each bunch individually and averaged
over some time, see Fig. 6.4. As the chromaticity is non-zero, the horizontal and longitudi-
nal bunch motion are coupled and the spectrum shows a betatron signal with synchrotron
side bands. The distance from the central peak to the side bands is considered to be the
synchrotron frequency, which is only an approximation. In this analysis, only the left side
band was used to obtain the synchrotron frequency, as it proved to have a better signal
to noise ratio compared to the right side band, see Fig. 6.4. For each bunch, a Gaussian
fit was applied on the central peak and on the left side band and the difference in their
central values is then plotted as the synchrotron frequency in Fig. 6.3 bottom panel. The
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Figure 6.4.: Screen capture of the control panel of the bunch-by-bunch tune measure-
ment in the horizontal plane at BESSY II. The top panel shows the spectrum
averaged over all bunches with a central peak corresponding to the horizon-
tal betatron oscillation and the side bands corresponding to a horizontal-
longitudinally coupled motion. In the bottom panel, the amplitude of the
spectrum is given by the color code for a selection of about 300 bunches (ver-
tical axis). The smooth lines correspond to fit results that are not used in
this thesis. Figure reproduced from [50].

three outliers correspond to the three high current bunches in the bunch train. Possible
reasons for the deviation might be a current dependent tune shift.
Despite the numerous possible sources of uncertainties, the agreement of simulation

and measurement can be considered satisfying. The major features of the transient beam
loading, i. e., the magnitude of the phase transient and the magnitude and shape of the
synchrotron frequency as a function of bunch number, are well reproduced by the simu-
lation. The remaining discrepancy is believed to stem from the numerous uncertainties,
both in the input parameters to the simulation as well as in the measurement.

6.2.3. Understanding the Physics
To understand the transient beam loading in the case of BESSY II, it is convenient to
look at the simulation where the time behavior of all voltages can easily be extracted.
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Figure 6.5.: Absolute value of voltage and phase w. r. t. their resonance frequencies
of the 500 MHz main RF cavity (left panels) and 1.5 GHz Landau cavity
(right panels) at the nominal bucket positions, extracted from the tracking
simulation shown in Fig. 6.3. In this case, a phase close to zero indicates zero
crossing with a focusing gradient.

Absolute value of voltage and the phase are shown Fig. 6.5 for both cavity systems. With
a phase variation of less than 4◦ and an amplitude variation of less than 2 %, the main RF
system shows a rather small relative modulation. This is due to its favorable ratio of peak
accelerating voltage to normalized shunt impedance, namely V ‖acc/(Rs,0/Q) ≈ 3 kV Ω−1

and the lower frequency, also scaling with the induced voltage, see Eq. 2.10 and Footnote 2
on Page 116. The dominating effect regarding transient beam loading comes from the
Landau cavities. According to this simulation, the amplitude of the voltage varies by
almost a factor of two along the fill pattern with its minimum around the center of the
bunch train. The phase varies by almost 40◦ along the bunch train, centered around
180◦, which corresponds to zero crossing with defocusing gradient. From those graphs,
it is evident that the net accelerating voltage and focusing gradient a bunch sees in the
vicinity of its nominal bucket position strongly depends on its position in the bunch fill
pattern.
Experiments at BESSY II confirm that the Landau cavities are the dominant cause
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Figure 6.6.: Contributions and sum of the focusing gradient seen at the synchronous bunch
positions, extracted from the tracking simulation shown in Fig. 6.4.

for the transient beam loading effect. If the Landau cavities are tuned to their home
positions, i. e., tuned to a frequency exactly between two revolution harmonics, and at
different harmonic, all of them away at least one harmonic away from 1200, the total
phase transient over the entire bunch train is reduced by a factor of approximately 5.
The synchronous phase positions, shown in Fig. 6.3 center panel, are generally a conse-

quence of radiation damping and energy loss per turn. In equilibrium, each bunch takes
a longitudinal position where the energy loss per turn is exactly compensated by the net
accelerating voltage of all cavities so that the bunch is neither accelerated nor deceler-
ated. For BESSY II, the energy loss is about one tenth of the amplitude of the main RF,
i. e., the over-voltage factor is approximately 10, hence the bunch position is close to zero
crossing. With transient beam loading, the shape of the net voltage is different for each
bunch and consequently the equilibrium position differs from bunch to bunch.
The time derivative of the net voltage at the equilibrium positions of the bunches finally

determines the synchrotron frequency and bunch length. The contributions of the Landau
cavities and the main RF system to the total focusing gradient are shown in Fig. 6.6. It
can be seen that the variation in the main RF system is not very strong but again, the
variation coming from the Landau cavities is significant. As deduced earlier, the gradient
is largest around the center of the bunch train and falls of towards its ends.
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6. Transient Beam Loading

6.3. Predictions for BESSY VSR
Having understood the general behavior of transient beam loading in theory, simulation
and experiment at BESSY II, predictions for BESSY VSR can be made.

6.3.1. Simulation Setup
The simulation is based on the BESSY VSR standard parameters given by Tabs. 1.1
and 1.2 and the BESSY VSR baseline fill pattern shown in Fig. 1.4. For easy comparison,
the bunch fill pattern is shown again in Fig. 6.7 top panel. The detuning of the 1.75 GHz
cavity and in turn its average voltage was changed to a value slightly different from the
nominal position. The relative phases of the cavity systems were chosen to be equal
each turn at the beginning of the bunch fill pattern. This choice approximates a realistic
scenario where the SC cavity systems are operated very close to the setting of passive
cavities, i. e., no net energy transfer from or to the beam.
The damping time was reduced by a factor of 100 to τ‖ = 8× 10−5 s which does not

change the equilibrium state but accelerates its approach. Furthermore, the quality fac-
tors of the SC cavities were set to Q = 2× 106 which accelerates the approach of the
equilibrium state and ensures that the implementation of the simplified cavity feedback
remains stable. The change of Q has little influence on the effects of transient beam
loading discussed in this chapter, as they depend primarily on Rs,0/Q which was kept
unchanged. In this simulation, precise detuning of the cavities was not necessary as the
generator power was not limited. Instead, the amplitudes and phases were set such that
the average bunch length is maximized while no net energy transfer from or to the beam
occurs. This reflects the realistic scenario.
Both, coherent and incoherent synchrotron radiation losses are simulated by constants

that are subtracted from the electron energy every turn. The coherent synchrotron radi-
ation of short bunches at BESSY VSR is expected to have a significant contribution to
the electron losses. In this simulation, the net energy loss per turn is set to 178 kV for
the long bunches (no coherent radiation) and to 689 kV for the single bunch located in
the gap and to 603 kV for the short bunches in the bunch train [2].
Figure 6.7 shows the transient beam loading in all three cavity systems induced by

the fill pattern shown in the top panel. It can be seen that the relative variation of
the absolute value of the voltage (center panel) is small for all cavity systems. This is
expected as all cavity systems are operated close to zero crossing. The variation of the
phase (bottom panel) is also rather small, especially if compared to Fig. 6.5. This can
be explained by a relatively large ratio of voltage to normalized shunt impedance, which
makes the BESSY VSR setup generally less prone to transient beam loading than the
present BESSY II setup with its Landau cavities.
However, the small phase shifts are enough to have a strong impact on the long bunches

in BESSY VSR. At the nominal bucket positions of the long bunches, the weak focusing
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Figure 6.7.: Simulations of transient beam loading in BESSY VSR. Bunch fill pattern
(top), relative variation of absolute value of voltage (center) and cavity phase
w. r. t. its resonance frequency (bottom).

gradient is achieved by the cancellation of two large numbers. A small relative variation
then causes a relatively large effect on the result of the subtraction, as discussed in the
next section.

6.3.2. Synchronous Phase and Bunch Length
The modulation in phase and amplitude of all three cavity systems over the bunch fill
pattern shown in Fig. 6.7 has an effect on the net voltage at each nominal bucket position.
As an example, the long bunches at the nominal bucket position 51 (beginning of first

bunch train), 133 (center of first bunch train) and 399 (end of second bunch train) are
shown in Fig. 6.8 along with the sum voltage and voltages of the individual cavity systems
in their vicinity. The sum voltage is dominated by the SC cavities, hence the 500 MHz
cavity system can be ignored in the following argumentation. The small phase shifts of the
SC can be seen in the figures, manifested in an increasing difference in the zero crossings
of SC cavity systems from left to right. In turn, the sum voltage is altered and the
synchronous positions and the slope of the voltage at the synchronous position changes.
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sient beam loading in BESSY VSR. The black dot indicates the synchronous
bunch position. The constant synchrotron losses are subtracted.

In Fig. 6.8, the constant synchrotron losses are subtracted so that the synchronous phase
position is found at zero voltage.
The bunch position relative to the nominal bucket position is shown for all bunches

in Fig. 6.9 top row. The synchrotron frequency is shown in the center row, obtained by
means of Eq. 6.7. In addition, the bottom row shows the relation of the zero current bunch
length σ0 to the nominal zero current bunch length of BESSY II, σ0,BESSY II = 10 ps,

σ0

σ0,BESSY II
=
√

2π × 1.5 MV× 0.5 GHz
|V ′|

, (6.8)

calculated by means of Eqs. 1.1 and 1.3. The bunch length scales inversely to the syn-
chrotron frequency calculated in Eq. 6.7.

6.3.3. Discussion
The results presented in Fig. 6.9 show that the effects of transient beam loading are
expected to be strong for the long bunches in BESSY VSR. On the other hand, the effect
on the short bunch is weak and can most likely be ignored.
The long bunches show a strong phase transient, in total more than 80 ps along the

bunch fill pattern. This itself does not seem to be of particular concern, as it is in the
same order as the present phase transient of BESSY II, see Fig. 6.3.
In addition, a variation in the synchrotron frequency and consequently in the bunch

length is found with the consequence that the maximum average bunch length seems to
be limited. The bunch length of the long bunch is a critical parameter as it determines
the Touschek lifetime [111] of the long bunches which is of concern in BESSY VSR [2].
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Furthermore, the bunch length changes the frequency up to which impedance interactions
take place, resulting in heating issues of the beam pipe if the bunch length becomes too
short at high currents stored in those bunches.
The simulation setting presented here is already optimized to maximize the average

bunch length which yields an average bunch length approximately equal to σ0,BESSY II.
However, as the number of long bunches halves in BESSY VSR compared to BESSY II,
the Touschek lifetime will be reduced by a factor of two even if the bunch length is
unchanged. A more detailed discussion on the Touschek lifetime in BESSY VSR is found
in [2].
The process of the optimization is illustrated in Fig. 6.10, where the cavity voltage of

the 1.75 GHz cavity is used as the free parameter to change the resulting net focusing
for the long bunches. Other parameters can be used analogously. If the voltage of the
1.75 GHz cavity is increased, the defocusing becomes stronger and a longer bunch is
generally expected. However, as seen in the left panel of Fig. 6.10, this is true only for a
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Figure 6.10.: Scaled bunch length (color code) of all bunches (left panel) and averaged

(right panel) as a function of the voltage of the 1.75 GHz cavity system.

small number of bunches, while the rest of the bunches experience an enhanced focusing
and become increasingly short. The optimum for this setup in terms of averaged bunch
length can be read out from the right panel of Fig. 6.10.
It is clear that an approximately even fill pattern, i. e. without significant gaps, would

significantly reduce the effect of transient beam loading. In turn, the gradient for the long
bunches could be reduced more easily for a larger number of bunches and the average
bunch length of the long bunches would increase.
As a consequence of these findings, intense feasibility studies have been launched to

asses the necessity of the gaps in the fill pattern. This includes accelerator physical
studies [112] and studies from the point of view of synchrotron users [113, 114], where the
gaps are needed for pulse separation.

6.3.4. Landau Damping of Coupled Bunch Instabilities
Another consequence of the transient beam loading is the relatively large variation of the
synchrotron frequency of the long bunches, seen in Fig. 6.9 left column, center panel.
This bunch-to-bunch fs spread causes Landau damping, as discussed theoretically in Sec-
tion 2.5.
Figure 6.11 shows the fs histogram of the long bunches from the same simulation as in

Fig. 6.9. Figure 6.12 depicts the graphical solutions of the dispersion relation d(Ω), defined
in Eq. 2.42. The rms value of this distribution is about 1.34 kHz. If the distribution was
continuous and approximated as normally or uniformly shaped, simplified expressions for
the expected Landau damping could be used [29, Ch. 5]. This is not done here, instead, the
formalism presented in Section 2.5 is used which is applicable to discrete fs distributions
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Figure 6.11.: Histogram of synchrotron frequencies of the long bunches in the simulation
of transient beam loading for BESSY VSR.

of arbitrary shape.
The solid lines are the dispersion function as defined in Eq. 2.43, i. e., (i µ̃

M

∑M
q=1(ω2

sq −
Ω2 + 2iδnΩ)−1)−1, drawn for all real Ω in a reasonable interval around the unperturbed
synchrotron frequency, i. e., solutions at the threshold where the growth rate is exactly
zero. This function contains the information about the fs distribution and the dissipative
damping term. The top panel of Fig. 6.12 shows two examples with radiation damping
as the only dissipative damping, which is very similar to the study presented in [71]. The
blue line is calculated with the fs distribution shown in Fig. 6.11 and the green line with
a constant synchrotron frequency of fs = 8 kHz for all bunches, i. e., no Landau damping.
The bottom panel of Fig. 6.12 shows two examples with the longitudinal BBFB damping
with τ−1

fb = 1.33× 103 s−1 as the dissipative damping with the red line including the fs
distribution discussed above and the magenta line line with a constant fs = 8 kHz for all
bunches, i. e., no Landau damping.
The dashed lines in Fig. 6.12 represent the r.h.s. of the dispersion relation, i. e.,

IDCωbeamZ
‖
0(ωbeam + Ω) in the worst case approximation for HOMs where the resonance

frequency is not exactly known, thus becoming a circle. It is drawn at the threshold
current, i. e., the very IDC at which the circle interacts with the solid line given by d,
according to the corresponding dispersion function (color lines matching).
It can be seen in Fig. 6.12 top panel, that the Landau damping stemming from the fs

distribution increases the threshold current by a factor of approximately 15 compared to
a constant synchrotron frequency of fs = 8 kHz, if radiation damping is considered the
only dissipative damping mechanism.
If a BBFB with the performance of the present BBFB feedback of BESSY II is consid-

ered as the dissipative damping mechanism, the gain from Landau damping appears to
be a factor of approximately 4.
The results are summarized in Tab. 6.1 and suggest that Landau damping can be sig-
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Figure 6.12.: Graphical solution of the dispersion relation of Landau damping (Eq. 2.42)
for different combinations of radiation damping, damping provided by the
BBFB and Landau damping produced by a fs distribution obtained from
the expected transient beam loading of BESSY VSR. See text for details.

nificant and may add a convenient additional safety margin to the over-all longitudinal
damping performance of BESSY VSR. Nonetheless, it should be noted that is not experi-
mentally confirmed that the formulas applied in this study are reliable to make predictions
in a regime where Landau damping exceeds radiation damping by up to two orders of
magnitude. In this sense, it is recommended to perform further studies on the subject of
Landau damping in BESSY VSR, e. g., aided by tracking simulations or measurements if
possible.
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Table 6.1.: Results of the graphical solutions of the dispersion relation of Landau damping
for BESSY VSR with the expected transient beam loading for the baseline fill
pattern.

Damping mechanisms Threshold
IDCωbeamRs,0 Rs,0

a

MV GHz kΩ
Synchrotron radiation 0.023 12.4
Synchrotron radiation and Landau 0.355 188.3
BBFB 0.249 132.1
BBFB and Landau 1.043 553.3

aAt IDC = 300 mA and ωbeam = 2π × 1 GHz for direct comparison with Eq. 5.4.
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7. Conclusion
In the context of this thesis, a novel challenge for beam dynamics has been addressed, the
operation of high frequency SC multi-cell cavities at high currents in an electron storage
ring based synchrotron light source that enables new experimental possibilities for the
users of synchrotron radiation. More explicitly, the important question of coupled bunch
effects has been studied for BESSY VSR, serving as an example for this new class of
machines.
The coupled bunch effects are separated into the study of CBIs, see Chapter 2, and the

study of transient beam loading, see Chapter 6. For the calculation of CBIs, a number
of numerical formulas and simulation algorithms are presented along with ready-to-use
code for simulation, see Chapter 3. Additionally, software for the data analysis of CBI
measurements is presented in Chapter 4. Explicit formulas for transient beam loading
are presented along with software to simulate advanced setups of multi cavity systems at
arbitrary fill pattern. In this thesis, the tools are applied to BESSY VSR for the study
of HOM driven CBIs, see Chapter 5 and transient beam loading induced by the baseline
fill pattern in Chapter 6.
For BESSY VSR, the HOM driven CBIs are evaluated based on the latest BESSY VSR

1.5 GHz cavity model, suggesting that they are likely to be under control if damping is
provided by a BBFB system performing equally well or better than the present BBFB
system of BESSY II, as discussed in Chapter 5. This is also true for the proposed low-
α operation in BESSY VSR, which is expected to be even more stable, as shown in
Section 5.4. Furthermore, it was shown in Section 5.3 that the bunch fill pattern generally
has little direct influence on HOM driven CBIs. This includes the baseline fill pattern of
BESSY VSR.
In the longitudinal plane, the HOMs are about one order of magnitude below the

impedance threshold defined by the BBFB system, see Section 5.1. The longitudinal SPMs
exceed this threshold, but as they have a very high Q paired with a small normalized shunt
impedance, a correction on the calculation of its strength should be applied, as discussed
in Section 3.3.4. Thus, only one SPM exceeds the threshold, which, being a small number
in combination with its narrow peak, may be an acceptable risk regarding the question
of the likelihood it is driven by the beam.
For the most part, the transverse dipole HOMs of the latest BESSY VSR cavity model

are below the BBFB threshold. A single HOM exceeds the threshold, which, for the same
reasons as above, may be an acceptable risk. If needed, improvements to the transverse
BBFB by means of hardware upgrades are possible with no foreseeable limit, as long as
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space for additional kickers is made available in the storage ring. The hazard of transverse
quadrupole HOMs has been studied for three possible extreme cases of beam parameters.
In all cases, the impedance threshold is at least one order of magnitude above the HOMs,
thus making it unlikely that quadrupole CBIs will appear.
It should be noted that all predictions for BESSY VSR are stated on the condition that

the cavity model “HZB 2c coax. coupler” is an adequate representation of the reality. As
discussed in Section 5.1.5, the model is still under development, the 1.75 GHz cavity is not
designed yet, studies of the HOM spectrum of the super-structure are not finalized and
comparative measurements with copper or niobium prototypes have not been performed
yet. Hence, it is recommend that the evaluations presented in this thesis are repeated
as soon as more accurate data is available. Nonetheless, the consequences of fabrication
uncertainties in terms of scattered HOM frequencies were studied in Section 5.2 for the
present model with the result that narrow HOMs that exceed the instability threshold
can still allow stable operation, with the likelihood of stability scaling approximately as
0.92n with n the number of such HOMs.
The influence of transient beam loading on the longitudinal beam dynamics of

BESSY VSR has been studied in Chapter 6, where a strong effect on the long bunch was
found. Due to the fact that the long bunch is achieved by the cancellation of the two
large gradients of the SC cavity systems, relatively small transient changes in the phases
and amplitudes cause a relatively large disturbance of the longitudinal phase space. The
consequence is the hindrance of an elongation of the long bunch in BESSY VSR
compared to BESSY II as long as a fill pattern with large gaps is applied. This leads to
increased Touschek losses, i. e., reduced beam lifetime, and more impedance interactions
at high frequencies. Another, rather beneficial consequence of the transient beam
loading is a bunch-to-bunch spread in the synchrotron frequency, causing Landau
damping that may significantly mitigate longitudinal CBIs, as discussed in Section 6.3.4.
Analytic estimations on the damping performance are given, where the threshold is up
to four times increased compared to BBFB damping only. However, experimental
verification is recommend before reliable consequences should be drawn from this effect.
The formulas and algorithms presented in this thesis, as well as the software for pre-

dictions and data analysis of measurements developed in the course of this thesis, are
ready to be applied to future studies, including other cavity setups and electron storage
rings. They will continue to serve as an important tool for the benchmarking of the
BESSY VSR cavities and the prediction, understanding and analysis of coupled bunch
effects in BESSY VSR during its design phase, commissioning and beyond.
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A. Appendix

A.1. Transverse Moments in Cartesian Coordinates
The transverse m-th moment of the beam or a single bunch, Mm, is defined in Eq. 2.1.
With the trigonometric identities

cosmθ =
m∑
k=0

(
m

k

)
cosk θ sinm−k θ cos

(1
2(m− k)π

)
(A.1)

sinmθ =
m∑
k=0

(
m

k

)
cosk θ sinm−k θ sin

(1
2(m− k)π

)
, (A.2)

and the relations

x = r cos θ (A.3)
y = r sin θ, (A.4)

the expression can also be given in Cartesian coordinates. If m > 0, the freedom of
choosing θ0 results in two components of the m-th moment in Cartesian coordinates, a
normal and a skewed moment. They can be obtained by means of the following two
equations,

rm cosmθ =
m∑
k=0

(
m

k

)
xkym−k cos

(1
2(m− k)π

)
(A.5)

rm sinmθ =
m∑
k=0

(
m

k

)
xkym−k sin

(1
2(m− k)π

)
, (A.6)

where the first equation is used for normal moments and the second equation for skewed
moments. The first six moments are shown in Tab. A.1.
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Table A.1.: First six transverse moments Mm in Cartesian coordinates.
m Normal Skewed
0 〈+1〉
1 〈+x〉 〈+y〉
2 〈−y2 + x2〉 〈+2xy〉
3 〈−3xy2 + x3〉 〈−y3 + 3x2y〉
4 〈+y4 − 6x2y2 + x4〉 〈−4xy3 + 4x3y〉
5 〈+5xy4 − 10x3y2 + x5〉 〈+y5 − 10x2y3 + 5x4y〉

A.2. Longitudinal Higher Order Motion
This section studies longitudinal higher order motion, i. e., the possible motion arising
if bunches of finite longitudinal extension are considered instead of longitudinal point
charges, as done in Chapter 2.
In a longitudinally extended bunch, the electrons can also perform longitudinal intra-

bunch oscillations, i. e., density oscillations. The lowest order of this intra-bunch motion,
l = 2, is the quadrupole oscillation. Analogously to the motion of the center of mass,
the dipole oscillation l = 1, the higher order oscillations can also be written down in an
equation of motion and the question of an instability can be studied. The longitudinal
impedance Z‖0 couples to all those modes but the disturbance of the complex synchrotron
frequency decreases with the order l. The exact scaling depends on the bunch shape.
For a uniform bunch distribution, the so called “water-bag model”, the scaling can be
expressed analytically. For disturbances not too strong, the growth rate of the multi-
bunch instability for the longitudinal oscillation of order l is given by [30, Eq. 8.41]

τ−1
l = l

(l!)2

(
ωrτ̂

2

)2l−2

τ−1
l=1, (A.7)

with ωr the angular resonance frequency of the impedance, τ̂ the half bunch length and
τ−1

l=1 the growth rate of longitudinal dipole oscillation which is studied in detail in
Chapter 2.
The rms bunch length of the long bunches at BESSY VSR is expected to be not larger

than σ = 20 ps. Assuming the strongest HOM to be at fr = 3 GHz and approximating the
Gaussian bunches with the “water-bag model” by setting the half width equal to the half
with half maximum of the Gaussian distribution, τ̂ = HWHM =

√
2 ln 2σ, the following
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scaling factors for the higher orders is obtained:

τ−1
l ≈ τ−1

l=1 ×


1/40 for l = 2
1/5000 for l = 3
. . .

(A.8)

The l > 1 oscillation cannot be damped by a BBFB system which only acts on the
center of mass. Therefore, radiation damping and Landau damping must be sufficient to
ensure that l > 1 oscillations are not growing. With the parameters assumed above, the
longitudinal quadrupole instability is expected to be less critical than the longitudinal
dipole instability. Higher orders are suppressed even more.
If strong HOMs with frequencies significantly larger than 3 GHz are assumed, the growth

rate of the longitudinal quadrupole instability may exceed the radiation damping rate
while the dipole instability is still under control with the BBFB system. This would
necessitate Landau damping to reach stability or the mode-coupling of l = 1 with l = 2 is
strong enough to allow the BBFB system to damp the quadrupole oscillation sufficiently
well.

A.3. Principle of Phasor Addition
The iterative approach used in Section 3.1 is based on the idea that any sum of wake
functions of the same resonator impedance can be exactly reduced to a single expression
with the mathematical form of a single wake function of the resonator impedance. The
proof can be made by calculating the sum voltage given by two bunches of charge q1 and
q2 passing the impedance at times t1 and t2 using Eq. 3.4 and complex phasor notation:

V (t) = a1e
iωr(t−t1)e−

ωr(t−t1)
2Q + a2e

iωr(t−t2)e−
ωr(t−t2)

2Q (A.9)

= eiωrte−
ωrt
2Q [a1e

iωr(t1)e−
ωr(t1)

2Q + a2e
iωr(t2)e−

ωr(t2)
2Q︸ ︷︷ ︸

X

] (A.10)

= |X|ei argXeiωrte−
ωrt
2Q , (A.11)

with a1,2 = q1,2
ωrRs,0
Q

and X constants.

135



A. Appendix

A.4. Minimal Demonstrative Tracking Code
Source code of m = 1, 2 tracker used in Section 3.2.1 to be interpreted with Python 2.7:

1 from pylab import *
2
3 # BESSY II / BESSY VSR Parameters
4 frev = 1.25e6 # revolution frequency
5 q = 2.4e-07 # beam charge, corresponding to 300mA
6 E = 1.7e9 # beam energy
7 beta = 4.0 # value of beta function
8 c = 3e8 # speed of light
9 omegabeta = 17.85 * frev * 2*pi # angular betatron frequency

10
11 # a single point-like bunch with y=0 initial values
12 def track(omegar, omegabeta, Q, Rs, x=1e-3, m=2, xoffset=0, beta=4.0, N=1001):
13 V = 0 # phasor
14 ax = []
15 aV = []
16 for i in xrange(0,N):
17 # transform phasor
18 V = V * exp(omegar/frev * (1j - 1.0/2/Q))
19 # betatron phase advance
20 x = x * exp(1j * omegabeta/frev)
21
22 # optional shift HOM center w.r.t. reference orbit
23 xreal = x.real - xoffset
24
25 # transverse kick on bunch
26 if m == 1:
27 xkick = - c/omegar * V.imag
28 elif m == 2:
29 xkick = -2.0 * xreal * c/omegar * V.imag
30 x = x + 1j * beta/E*xkick
31
32 # new phasor after bunch passage
33 V = V - xreal**m * q * omegar * Rs / Q
34
35 ax.append(x)
36 aV.append(V)
37 return ax,aV
38
39 ######################### demo 1 (m=1) #########################
40 Rs1 = 1.898653e+08 # should result in 4 kHz growth rate..
41 omegar = 782*frev*2*pi + omegabeta
42 # arrays with complex coordinate and phasor used for plot in thesis
43 ax, aV = track(omegar, omegabeta, Q=1e4, Rs=Rs1, m=1, x=1e-3, N=501)
44 # ...
45
46 ######################### demo 2 (m=2) #########################
47 Rs2 = 1e13
48 omegar = 765*frev*2*pi + 2*omegabeta
49 xstart = 1e-3
50 # arrays with complex coordinate and phasor used for plot in thesis
51 ax, aV = track(omegar, omegabeta, Q=1e4, Rs=Rs2, m=2, x=xstart, N=501)
52 # ...
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A.5. Justification of Margin a in the Statistical Approach
This section tries to justify the use of the extra safety margin a in the calculation of the
width of a resonator impedance in the statistical approach in Section 5.2.
The statistical approach is based on the idea that the probability of stability should

be valid for the entire time of deployment of a cavity in BESSY VSR, i. e., several years.
Furthermore, the stability should cover the majority of possible operation modes. This
means that operational changes in the cavity, i. e., change of HOM resonance frequencies,
and changes in the beam, i. e., change of beam spectrum should be included.
In the following, a list of effects that influence the relation of beam spectrum to reso-

nance frequency of the HOMs is given and the size of the effect is quantitatively estimated:

1. The synchrotron frequency may vary depending on the desired operation mode and
the fill pattern, see also Chapter 6. The range is estimated to be from zero to 15 kHz.
This adds a span of ∆f = 15 kHz to the frequencies at which the beam samples a
longitudinal impedance.

2. The betatron frequencies are controlled by the quadrupole magnets and are usually
kept at fixed values. However, the betatron frequencies change if a different magnet
optics is applied, e. g., the so called low-α mode or other special purpose modes
presently in development or consideration [2, 113, 114]. For simplicity, the range
is estimated to be the same as for the synchrotron frequency, leading to a span of
∆f = 15 kHz to the frequencies at which the beam samples a transverse impedance.

3. The master oscillator, also known as master clock, is changed continuously during
operation to account for different machine settings and long term drifts. Figure A.1
shows the variation of the frequency of the master oscillator at BESSY II during
beam storage as a function of time. Annual variations are visible as well as short
term changes accounting for a change in the machine settings. The span of the
variation in the considered time frame, beginning of the year 2013 until May 2015,
amounts to 14.4 kHz.
The master oscillator is fed to all cavity systems, thus the resonance frequency of the
SC cavities has to follow the change, scaled with the harmonic factor of the cavities.
For a 1.5 GHz cavity this amounts to a span of 43.2 kHz. When the fundamental
frequency of a cavity is changed, the resonance frequency of the HOMs shift by a
factor that strongly depends on the mode and the exact variation of the geometry
by the tuner system. Depending on the mode, the shift can be of the same or
opposite sign, and also smaller, equal or up to four times larger than the shift of
the fundamental frequency [115]. For the bands that typically contain the strongest
HOMs, namely TM110 and TM010, the magnitude of the shift is not larger than
approximately a factor of two of the fundamental mode [115]. Combined, this adds
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Figure A.1.: Archive data of the master clock frequency during beam storage at BESSY II
from beginning of the year 2013 to May 2015.

a span of ∆f = 3 × 2 × 14.4 kHz = 86.4 kHz to the frequencies at which the beam
samples an impedance.

4. The drifts of HOM frequencies due to temperature, helium pressure and other me-
chanical influences are rather small and can be ignored in comparison to the effects
mentioned above [116].

The spans above can be added to account for the worst case where all shifts add up in
the same direction, yielding a total span of approximately ∆f = 100 kHz. Note that this
estimation is a rather coarse guess.
The extra margin a, added to the width of an impedance on both sides, then takes the

value a = 50 kHz, see Section 5.2 for its application.

A.6. Quality Factor Measurements of Landau cavities at
BESSY II

In the course of investigations towards improving the accuracy of simulations of transient
beam loading at BESSY II, Section 6.2, the quality factor the Landau cavities of BESSY II
was obtained from measurements.
The spectrum of the four Landau cavities was measured during beam storage with a

spectrum analyzer connected to a pickup in each of the cavities [117]. A Lorentzian three
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Figure A.2.: Power spectra (blue) of the four Landau cavities of BESSY II, measured with
a spectrum analyzer connected to voltage pickups in the Landau cavities in
April 2015. Lorentzian fits (dashed red lines) are applied to the resonance
curves of the Landau cavities, which are tuned between the 1200-th and
1201-th revolution harmonic, i. e., they are operated in a bunch-lengthening
mode. The resulting Q values with standard deviation errors are displayed
for each cavity.

parameter fit is applied on the data to obtain the quality factor by means of

Q = fr

fFWHM
, (A.12)

with the resonance frequency fr and the full width half maximum fFWHM. Fig. A.2 shows
the spectrum along with the Lorentzian fit curves and the resulting Q value for all four
cavities. The average value is found to be Q = 13271± 47, i. e., a relative error of 0.36%.
The average value is about 5% less than the value quoted in [110].
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