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Abstract

This thesis deals with the theoretical computation of nucleon structure observables
as they can be experimentally obtained from inclusive and semi-inclusive scattering
experiments. I present two exploratory studies on spin and momentum structure
observables of the nucleon in the framework of lattice QCD. Throughout this work,
I use the twisted mass formalism with dynamical fermions at maximal twist, which
ensures an improved continuum limit scaling for the relevant quantities.

In the first part, I investigate the feasibility of a lattice calculation of the gluons’
average momentum fraction in the nucleon ⟨x⟩g, a quantity that is rarely studied in
lattice QCD. For this purpose, I study two different methods, namely the Feynman-
Hellman theorem, which enables an indirect computation of ⟨x⟩g by variation of
the action, and the direct computation of the relevant form factor. Applying the
latter method and combining it with several steps of stout gauge link smearing, I
obtain a statistically significant signal, yielding ⟨x⟩g = 0.309(25) for a pion mass of
mPS ≈ 370MeV and ⟨x⟩g = 0.28(4) for a physical value of the pion mass. In order
to obtain these renormalized values, the results of a perturbative computation are
applied.

The second study is concerned with the direct computation of the full momentum
and spin distribution of quarks and antiquarks within the nucleon. I investigate the
feasibility of a recently published approach proposing the computation of a purely
spatial quasi-distribution that can be related to the physical distribution. I test the
influence of gauge link smearing and different nucleon momentum boosts on the
lattice data. Ultimately, I obtain quark distributions featuring a good qualitative
agreement to quark distributions acquired from phenomenological fits and can re-
produce crucial features, for example the asymmetry between quark and antiquark
distributions. Finally, I present the resulting iso-vector quark distributions for the
unpolarized and the polarized case.

As a key result of this work, I demonstrate that the demanding calculation of
⟨x⟩g and the novel approach of computing quark distributions directly within lattice
QCD are feasible in principle, although significantly more effort has to be invested
into obtaining accurate results with reliable uncertainties, in particular concerning
systematic effects.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Berechnung von für die Struktur des Nukle-
ons relevanten Observablen, die experimentell durch inklusive und semi-inklusive
Streuexperimente bestimmt werden können. Es werden zwei Pilotstudien erörtert,
welche die Spin- und Impulsstruktur des Nukleons mithilfe von Gitter-QCD untersu-
chen. Hierfür werden dynamische Fermionen mit einem chiral rotierten Massenterm
verwendet (Twisted-Mass-Formalismus), um sicherzustellen, dass die untersuchten
Größen einen verbesserten Kontinuumslimes aufweisen.

Der erste Teil dieser Arbeit untersucht die Umsetzbarkeit einer Rechnung, die
sich mit dem durchschnittlichen Impulsanteil der Gluonen im Nukleon ⟨x⟩g ausein-
andersetzt. Diese Größe wurde bisher kaum im Rahmen der Gitter-QCD behandelt.
In diesem Zusammenhang werden zwei verschiedene Gittermethoden untersucht: das
Feynman-Hellman-Theorem, das über die Variation eines Parameters der Wirkung
indirekt eine Berechnung von ⟨x⟩g zulässt, sowie die direkte Berechnung der rele-
vanten Formfaktoren. Mithilfe der zweiten Methode und mehreren Iterationen des
Schmierens der Eichlinks ist es möglich, ein statistisch aussagekräftiges Resultat zu
erzielen: ⟨x⟩g = 0.309(25) für eine Pionmasse vonmPS ≈ 370MeV und ⟨x⟩g = 0.28(4)
für eine physikalische Pionmasse. Um diese Werte zu erhalten, wurde eine pertur-
bative Renormierung vorgenommen.

Die zweite Studie beschäftigt sich mit der direkten Berechnung der vollständi-
gen Impuls- und Spinverteilung von Quarks und Antiquarks im Nukleon. Hierfür
wird untersucht, ob eine kürzlich publizierte Methode praktikabel ist, nach der eine
räumliche Quasiverteilung zu berechnen und aus dieser die physikalische Verteilung
abzuleiten ist. In diesem Zusammenhang wird der Einfluß des Schmierens der Eich-
links und unterschiedlicher Impulsboosts des Nukleons auf die Gitterdaten erprobt.
Die anschließend berechneten Quarkverteilungen weisen eine gute qualitative Über-
einstimmung mit Verteilungen auf, die mithilfe von phänomenologischen Analysen
experimenteller Daten bestimmt wurden und können wichtige phänomenologische
Eigenschaften wie die Quark-Antiquark-Asymmetrie reproduzieren. Hierbei werden
die Isovektor-Quarkverteilungen sowohl für den unpolarisierten als auch für den po-
larisierten Fall erörtert.

Zentrale Erkenntnis dieser Arbeit ist der Nachweis, dass es auf dem Gitter prin-
zipiell möglich ist, die anspruchsvolle Berechnung von ⟨x⟩g auf einem quantitativ
signifikanten Niveau durchzuführen und die Quarkverteilung mithilfe einer neuen
Vorgehensweise direkt zu berechnen. Nichtsdestotrotz muss noch erheblich mehr
Arbeit aufgewendet werden, um verlässliche Resultate für diese Größen zu erhalten,
insbesondere in Hinblick auf systematische Unsicherheiten.



Contents

1 Introduction 10

2 The basic principles of hadron structure 14
2.1 Introduction to deep inelastic scattering . . . . . . . . . . . . . . . . 14
2.2 Nucleon-electron scattering . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 The structure functions of inelastic scattering . . . . . . . . . . . . . 16
2.4 The quark-parton model . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Obtaining parton distributions . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Operator analysis of DIS . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Lattice QCD and twisted mass fermions 23
3.1 Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Discretization of QCD on a lattice . . . . . . . . . . . . . . . . . . . . 24
3.3 Twisted mass lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Computing observables in lattice QCD . . . . . . . . . . . . . . . . . 27

3.4.1 Two-point correlation functions . . . . . . . . . . . . . . . . . 29
3.4.2 Three-point correlation functions . . . . . . . . . . . . . . . . 30
3.4.3 Extracting form factors . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The status of nucleon structure from lattice QCD . . . . . . . . . . . 34
3.5.1 The nucleon axial charge gA . . . . . . . . . . . . . . . . . . . 35
3.5.2 The quark momentum fraction ⟨x⟩u−d . . . . . . . . . . . . . . 35
3.5.3 The quark helicity ⟨x⟩∆u−∆d . . . . . . . . . . . . . . . . . . . 37

4 The gluon content of the nucleon 40
4.1 Theoretical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 The Feynman-Hellmann theorem . . . . . . . . . . . . . . . . . . . . 43
4.3 Direct operator approach . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Lattice setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Results and stout smearing . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8



CONTENTS 9

5 Quark distributions from lattice QCD 56
5.1 Parton physics on an Euclidean lattice . . . . . . . . . . . . . . . . . 58
5.2 Lattice calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Computing the all-to-all propagator . . . . . . . . . . . . . . . 61
5.2.2 Lattice setup and HYP smearing . . . . . . . . . . . . . . . . 62
5.2.3 Lattice results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Perturbative matching and mass correction . . . . . . . . . . . . . . . 67
5.4 The polarized parton distribution . . . . . . . . . . . . . . . . . . . . 74
5.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Summary 81

A Kinematic Factors 86

B Wave function and vertex corrections 88



1. Introduction

Ever since the discovery of the proton and the neutron as the essential building
blocks of the atomic nucleus, both their properties and structure have been one of
the most important research topics of particle physics. In order to make observations
on such a small scale, scattering experiments were conducted, which turned out to be
a crucial tool to explore the nature of nucleons. Soon, these experiments suggested
the existence of an inner structure. Yet, the components and characteristics of such a
structure remained unknown. In fact, while early experiments focused on properties
like the radius and the charge distribution of the proton, cf. [1] for example, only
later on, with increasing scattering energies, a possible internal structure of the
nucleon started to draw attention.

The vast amount of hadronic states that were produced in these high-energy
scattering experiments were puzzling and indicated that more fundamental building
blocks might exist. In 1964, it was Gell-Mann who first proposed quarks as the
fundamental constituents of the nucleon and other hadrons [2] in order to arrange
and classify the large amount of newly discovered mesons and baryons1.

Triggered by these theoretical developments, further experiments were designed
in the hope to unravel this inner structure. As a matter of fact, the first experimen-
tal evidence for fundamental particles inside the proton was found in high-energy
scattering experiments at the Stanford linear accelerator (SLAC) in 1969 [4, 5].
The observed structure functions that are used to parametrize the scattering cross-
section, were basically flat over a large range of Q2, in contrast to the proton elastic
form factors, which show a strong Q2 dependence in the same energy range. Q2 is
proportional to the momentum of the injected particles. Early measurements of this
feature are shown in Fig. 1.1.

This scaling behavior was first predicted by Bjorken [7] and explained in detail
by Feynman’s formulation of the parton model [8], which assumes that the proton is
composed of point-like objects called partons. While it was clear that Gell-Mann’s
quarks could be identified as partons, it was soon discovered that quarks alone do not
generate the complete proton momentum. This was determined by the measurement
of the quark momentum fraction from scattering data. The momentum fraction did

1In the same year, Zweig independently proposed aces as fundamental buildings blocks [3].
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Figure 1.1: Results for νW2, which can be related to the proton’s structure function, as a
function of q2 = −Q2 for several scattering angles. ω is the inverse of the Bjorken variable
x and will be defined in Section 2.2. Figure is taken from Ref. [6].

not add up to one, as the momentum sum rule for partons predicts, cf. Eq. (2.21).
This inconsistency could finally be explained by the formulation of quantum

chromodynamics (QCD), a non-abelian SU(3) gauge theory that introduces gluons
as exchange particles between quarks, inducing the corresponding strong force. Many
works contributed to this discovery, for instance Refs. [9, 10, 11, 12, 13]. In 2004, the
Nobel Prize in Physics was awarded to Gross, Politzer and Wilczek for their work
on this topic.

The presence of interacting quarks, however, is a fundamental extension to Feyn-
man’s parton model, since the model is only valid for non-interacting constituents
and thus does not include gluons. Nevertheless, the predictions of the parton model
were quite accurate. This could be explained by the discovery of asymptotic freedom
[12], which predicts quasi-free behavior of quarks for large energies and, correspond-
ingly, small distances. Yet, free quarks are a sufficient approximation only for certain
energy ranges, thus a QCD improved parton model is certainly necessary to explain
the hadron structure for arbitrary scales. In principle, this can be done by applying
the operator product expansion (OPE) to the corresponding hadronic currents [14],
which enables a perturbative QCD analysis of the parton model.

In practice, a universal quantity that can be used to characterize the internal
structure of hadrons was found to be helpful. In his work on the parton model,
Feynman already introduced parton distribution functions (PDFs). These are uni-
versal functions providing the momentum distribution for all partons in the parent
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hadron for different energy scales. Only much later, these PDFs were generalized
to functions that contain many more quantities, such as the spin distribution and
transverse momentum distributions, among others. These functions, which today
are most commonly known as generalized parton distributions (GPDs), were first
studied in detail in Ref. [15]. A comprehensive review on this topic can be found in
Ref. [16].

Consequently, it would be highly desirable to obtain these distributions or re-
spectively their moments directly from the equations of QCD. However, an analytic
determination is not possible due to the nature of QCD as a strong interacting theory.
Thus, the most common method to extract parton distributions is the phenomeno-
logical analysis of experimental scattering data. Latest analyses are presented in
Refs. [17, 18, 19, 20], for instance. Nevertheless, these results strongly depend on the
included scattering data and on the employed analysis, therefore an independent
extraction from first principles would be ideal.

An alternative fundamental approach to compute quantities from QCD is through
lattice gauge theories, which were introduced by Wilson in 1974 [21]. This approach
consists of the discretization of QCD on a four-dimensional space-time lattice and
the numerical calculation of the necessary Feynman integrals by Monte-Carlo meth-
ods. Lattice QCD is, in contrast to perturbation theory, able to make predictions in
a large energy range from low to high energy regimes. Thus, it can be utilized for the
computation of matrix elements of local operators, which are necessary for hadron
structure studies. In fact, lattice QCD has successfully been applied to compute
several hadronic form factors, including the moments of parton distributions. An
extensive review of these calculations can be found in Ref. [22], while most recent
results are presented in Ref. [23], for example.

Nevertheless, other hadron structure observables are rather hard to access on
the lattice and have therefore rarely been studied up to now. In this thesis, I will
study two particular quantities, namely the gluons’ average momentum fraction
⟨x⟩g and the full iso-vector quark distribution, each for the nucleon. Both are fun-
damental quantities and obtaining an ab initio estimate from lattice QCD could
provide valuable information on the interaction of quarks and gluons. The gluon
momentum fraction furthermore contributes to the computation of the gluon spin
and thus could be utilized to study the nucleon spin puzzle [24]. However, the gluon
momentum fraction suffers from a poor noise-to-signal ratio and has so far only
been computed with a quenched setup, where no dynamical fermions are present
[25, 26, 27]. Recent improvements of lattice algorithms though enabled the genera-
tion of large gauge ensembles with dynamical fermions, including ensembles with a
physical pion mass. Consequently, this thesis will focus on further studying ⟨x⟩g in
the named setup.

A determination of the quark distributions from lattice QCD could be directly
confronted with experimental scattering data and thus provide a crucial test of QCD
without the involvement of a phenomenological step. However, the direct computa-
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tion of PDFs is generally not possible in the framework of lattice QCD, since the
evaluation of the corresponding matrix elements requires light-cone dynamics, which
cannot be implemented on a Euclidean lattice. A possible solution was pointed out
recently in Ref. [28], where the author suggests the computation of a purely spa-
tial quasi-distribution, which can be related to the physical PDF by a perturbative
matching procedure in the large momentum limit. This proposal has already been
tested in Ref. [29] and will be further explored in this thesis.

Before discussing the actual research that has been done to study the gluon
momentum fraction and the quark distribution, I will give a brief summary on the
theory of hadron structure in Chapter 2. In this context, it is important to point out
the significance of deep inelastic scattering results on exploring the structure of the
nucleon. I will introduce the PDFs through the parton model, discuss their relation
to the structure functions and outline how they can be obtained.

In Chapter 3, I will give a brief overview of lattice QCD, twisted mass fermions
and the question of how observables can be computed when using the lattice dis-
cretization. In particular, it will be explained how hadron structure observables can
be extracted from lattice QCD calculation. Finally, I will give a short review on
present results for three important nucleon structure observables gA, ⟨x⟩u−d and
⟨x⟩∆u−∆d.

The lattice study of the first moment of the gluon distribution will be presented
in Chapter 4. I will outline and compare two different methods that can be used for
the calculation. The influence of gauge link smearing on the noise-to-signal ratio will
be studied and results for the gluon momentum fraction from two different gauge
ensembles will be presented. For this purpose, the necessary renormalization factors
were computed recently in lattice perturbation theory to one-loop order and will be
utilized in this work.

In the last part of this thesis, Chapter 5, I will study the possibility of com-
puting the full quark distribution of the nucleon from lattice QCD. I will present
the necessary matrix elements for three different lattice momenta in order to study
the large momentum behavior. I will apply multiple steps of gauge link smearing
to the operator and try to estimate the influence of renormalization by comparing
the resulting matrix elements. I will discuss and apply necessary corrections to the
resulting quasi-distribution in order to restore the physical quark distribution. Fi-
nally, I will present and discuss results for the iso-vector quark distribution and also
show first results for the polarized distribution.



2. The basic principles of
hadron structure

This chapter is intended as a preface to my actual work on hadron structure in
the framework of lattice QCD. I will give a very brief history of deep inelastic
scattering experiments, explain the parton model of the nucleon and sketch the
theory behind parton distribution functions. I would like to stress the importance
of these distributions as well as their moments, among others in modern collider
experiments and point out important relations that can later be used in lattice
QCD computations in order to extract those quantities.

Refs. [30, 31] were used as guidelines for this chapter.

2.1 Introduction to deep inelastic scattering

Scattering experiments have always been an important tool to explore the struc-
ture of the nucleon. First conclusions about an internal structure of the proton were
made from high energy proton-hadron collisions with more than 10GeV, e.g. in
Ref. [32]. They were found to produce a large number of pions, however little trans-
verse momentum transfer was observed. It was thus assumed that the proton was
not fundamental, but consisted of many loosely bound constituents.

In order to test this assumption, proton-electron scattering experiments with
large center of mass energy were performed at the SLAC linear collider in the late
1960s [4, 5]. These collisions were excellent tests of hadron structure due to the fact
that on a basic level they can be described as the electromagnetic scattering of an
electron with the proton, or its constituents respectively, which is well understood
in the framework of quantum electrodynamics (QED).

Surprisingly, the cross section of hard-scattered electrons at a large deflection
angle was large, which was inconsistent with the expected results from a complex
composite nucleon with softly bound constituents. Instead, the observed cross section
was comparable to elastic scattering at a point-like charged particle, e.g. electron-
muon scattering. However, the proton is certainly not a point-like object and rarely
a single proton emerged from these scatterings.

14
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Figure 2.1: Schematic diagram of nucleon-electron scattering.

Moreover, for a large momentum transfer (1 < Q2 < 10GeV2) and fixed x ∝
Q2 (cf. Eq. (2.5)), the proton’s structure functions showed little to no influence on
Q2, which is in contradiction to elastic scattering form factors of the proton. This
behavior in the deep inelastic scattering region is known as Bjorken scaling and
was predicted by Bjorken in 1969 [7]. Feynman extended this work, which led to
his formulation of the parton model [8]. This model states that the proton is a
compound of point-like constituents. These partons are fundamental particles able
to exchange large momenta q2 with each other through strong interactions and are
partly capable of electromagnetic interactions, e.g. with an electron.

In the next few sections, I will briefly sketch the important theoretical aspects
of these scattering experiments, the implications of the parton model and its limi-
tations, namely scaling violation.

2.2 Nucleon-electron scattering

Before studying the scattering process in detail, the relevant parameters of this two-
body scattering should be established. The nucleon-electron scattering is described
by the initial and final states

e(k) +N(P ) → e(k′) +X(P ′) , (2.1)

as sketched in Fig. 2.1, with the electron state e, the nucleonN and the final hadronic
state X. Here, the content of X determines the nature of the scattering process. If
the intact nucleon is found in the final state, i.e. X = N , the scattering is elastic. If
the nucleon is shattered during the scattering and thus X denotes various hadronic
states, the process is inelastic.

A virtual vector boson γ acts as the exchange particle and has the four-momentum

q = k − k′. (2.2)
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In addition, when studying these scattering processes it is helpful to introduce the
following Lorenz invariant quantities,

s = (P + k)2, (2.3)

Q2 = −q2, (2.4)

x =
Q2

2Pq
. (2.5)

The latter is called Bjorken x and is a crucial quantity in the following sections.
In case of elastic nucleon-electron scattering, it can be derived that x = 1 with

the premise that the nucleon mass is conserved throughout the process,

P 2 = (P ′)2 = (P + q)2 = P 2 + 2Pq + q2 (2.6)

⇒ 0 = 2Pq + q2 ⇒ Q2

2Pq
= 1 . (2.7)

However, the elastic scattering region is not the point of interest if one wants to
explore the structure of the nucleon. Instead, the experiments were designed to
probe the inelastic region where the nucleon is not intact after the scattering process.
Consequently, no nucleons were tagged in the final state of these experiments.

Thus, in order to make predictions for the expected cross section, one has to
study the theory behind inelastic nucleon-electron scattering.

2.3 The structure functions of inelastic scattering

Therefore, it is important to understand the internal structure of the scattering
process. For this purpose, one can express the cross section in terms of the leptonic
and hadronic tensor,

dσ ∝ Le
µνW

µν . (2.8)

These tensors can be related to the two vertices at which the photon interacts with
the electron and the hadron.

The structure of the leptonic tensor Le
µν is well-known, because the electromag-

netic current is known from QED and the interaction can be described as point-like.
The structure of the hadronic tensor W µν is not that simple, because it is a com-
posite object with no well-defined vertex. However, it can be decomposed into six
independent Lorenz invariant tensor objects

W µν =− gµνW1 + pµpν
W2

m2 − iϵµνσρpσpρ
W3

2m2 + qµqν
W4

m2

+ (pµqν + qµpν)
W5

m2 + i(pµqν − qµpν)
W6

2m2 . (2.9)
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Figure 2.2: Schematic diagram of the scattering of an electron with a parton from the
nucleon.

The coefficients of these terms are the real scalar functions W1 - W6, which are called
structure functions. When taking into account current conservation of the electron-
nucleon scattering and requiring a symmetric tensor, one can simplify the hadronic
tensor to

W µν = W1(
qµqν

q2
− gµν) +

W2

m2 (p
µ − pq

q2
qµ)(pν − pq

q2
qν) . (2.10)

The differential cross section for the electron-nucleon scattering can now be written
as

d2σ

dxdy
=

2πα2s

xQ4

(
(1 + (1− y)2)F2(x,Q

2)− y2FL(x,Q
2)
)
, (2.11)

where F1 = W1, F2 = W2pq/m
2 and FL = F2 − 2xF1.

In general, these structure functions will strongly depend on Q2. This, however,
contradicts the deep inelastic scattering experiments [4, 5], where the structure func-
tions have shown barely any influence on Q2.

2.4 The quark-parton model

Since the observed scattering cross section and the Q2 independence of the structure
functions cannot fully be explained by inelastic proton-electron scattering, a more
elaborate model has to be found.

It was mentioned earlier that the observed deep inelastic scattering cross sec-
tions showed a similar behavior to those of elastic scattering of an electron with a
fundamental point-like object. Thus, as a coherent approach, one can assume that
the nucleon itself is made up of fundamental point-like charged particles, called par-
tons, which are able to exchange momentum by the means of strong interaction. The
nucleon-electron scattering can then be described as parton-electron scattering as
depicted in Fig. 2.2. The parton momentum p can be expressed as a fraction of the
total nucleon momentum p = ξP , where 0 < ξ < 1. If one repeats the calculation
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shown in Eq. (2.7) for parton-electron scattering and consistently replaces P with
p = ξP one finds,

Q2

2Pq
= ξ. (2.12)

Thus, the momentum fraction ξ can be identified with the Bjorken x. From now on,
x will be used for both quantities.

It is assumed that the total scattering cross section can be written as an in-
coherent sum over single parton-electron scattering cross sections

∑
q σ
(
eq → eq),

where
∑

q is the sum over all possible partons in the nucleon. This, however, is only
possible if the momentum fraction the partons carry is known. It thus seems neces-
sary to define a function fq(x), which provides the probability density of finding a
parton q to have a momentum fraction x of the parent hadron’s momentum. These
functions are known as parton distribution functions (PDFs). The cross section of
the nucleon-electron scattering can eventually be expressed as

σ
(
e(k)N(P ) → e(k′)X(P ′)

)
=

∫ 1

0

dx
∑
q

fq(x)σ
(
e(k)q(xP ) → e(k′)q(p′)

)
. (2.13)

Combined with the parton-electron scattering cross section known from elastic two-
body scattering, one obtains the differential cross section for nucleon-electron scat-
tering

d2σ

dxdy
=

(∑
q

xfq(x)Q
2
q

)
2πα2s

Q4

(
1 + (1− y)2

)
, (2.14)

where Qq is the parton charge, α the fine-structure constant, and

y =
Pq

Pk
. (2.15)

In order to relate this result to the structure functions, one can compare Eq. (2.11)
with Eq. (2.14) and obtain the identities,

F2(x,Q
2) =

∑
q

xfq(x)Q
2
q (2.16)

FL(x,Q
2) = 0 . (2.17)

Thus, the structure functions do not depend on Q2 anymore. This means that the
Bjorken scaling observed in DIS experiments can be explained with a simple par-
ton model, where the partons do not interact with each other. This is remarkable,
because one would assume that the partons exchange gluons by means of strong
interaction. This issue was resolved in 1973 with the discovery of asymptotic free-
dom [12]. It states that at large energies, e.g. in the deep inelastic scattering region,
quarks can be seen as almost free particles.

Nevertheless, there is still a non-zero interaction between quarks in the nucleon,
which yields to a scaling violation. This will be discussed in the next section.
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Figure 2.3: Schematic parton distributions for different parton models of the proton.

2.5 Obtaining parton distributions

In the previous section, the PDF was introduced as an important function to char-
acterize the momentum distribution within the proton. In practice, it is highly de-
sirable to acquire these PDFs. First of all, they are a fundamental property of the
nucleon and can provide a deeper insight into its internal structure, as the schematic
picture in Fig. 2.3 suggests. Secondly, because they are universal, they can be used
for the evaluation of other scattering experiments, e.g. proton-proton scattering. In
particular, during recent LHC experiments, PDFs provided an important input for
the analysis of proton collisions.

Unfortunately, the PDFs cannot be directly measured in experiments. Thus, in
order to extract them from scattering data, one has to identify the distributions
with quantities that can be measured in these experiments, such as the structure
functions. In case of the non-interacting parton model, this identity can be found
in Eq. (2.16). For a precise determination of the PDFs, however, the naive parton
model is not sufficient anymore, since the strong interaction of the quarks is not
taken into account.

For the structure functions, for instance, one finds a slight dependence on Q2 at
a higher level of precision, which is known as scaling violation and is not predicted
by the parton model. These corrections to the Bjorken scaling emerged from the
fact that even in the DIS regime, where partons were supposed to be almost free
particles, a non-vanishing strong interaction exists. Since these corrections are of the
order αs, a precise measurement of the deviation from the parton model can help
with the determination of the strong coupling.

In order to make such predictions though, the theoretical corrections to the
parton model have to be known. Thus, one has to take into account QCD effects,
e.g. gluon exchange and quark pair production and use them to formulate a QCD
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improved parton model. This cannot be done analytically to all orders anymore.
Instead, perturbative methods have to be applied.

Using this QCD improved parton model, it is possible to obtain universal PDFs
from the structure functions by making phenomenological assumptions for their
parametrization, and to fit these to the QCD improved structure function relations.
Also, other scattering experiments, for example neutrino induced DIS, provide access
to additional structure functions of W µν , which can be used to further constrain the
PDF fit. A generic parametrization for an up-quark distribution might be

xfu(x) = Aux
au(1− x)buPu(x), (2.18)

where Pu(x) is a polynomial in x or
√
x and Au, au, bu are free parameters, with Au

being determined by the flavor sum rules, cf. Eq. (2.19). The parametrization differs
for other quarks and the gluons.

For the PDFs, there are other well-known constraints based on the number of
valence quarks in the hadron. For the proton for example, one finds∫ 1

0

dx
(
fu(x)− fū(x)

)
= 2,

∫ 1

0

dx
(
fd(x)− fd̄(x)

)
= 1 , (2.19)

on the basis of two up and one down quark in the proton. These identities already
take into account the presence of quark-antiquark pairs in the sea.

A further important constraint makes use of the first moment of the PDFs, which
is defined as

⟨x⟩q =
∫ 1

0

dx x
(
fq(x) + fq̄(x)

)
. (2.20)

This can be interpreted as the average momentum fraction x of the parton q. When
adding the average momentum of all partons, one obtains the total momentum of
the nucleon, thus the following identity should certainly hold for the momentum
fraction ∫ 1

0

dx x
(
fu(x) + fū(x) + fd(x) + fd̄(x) + fg(x)

)
= 1 , (2.21)

where the strange and all heavier quarks were ignored.

2.6 Operator analysis of DIS

For a more general description of the nucleon-electron scattering, one can express the
hadronic tensor in terms of hadronic currents, respectively their matrix elements.

W µν =
1

4π

∫
d4z eiq·z⟨P |[Jµ(z), Jν(0)]|P ⟩ (2.22)
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The tensor can be related to the forward Compton amplitude, using the optical
theorem,

W µν =
1

2π
ImT µν , (2.23)

where T µν can be written in terms of matrix elements of time-ordered currents

T µν = i

∫
d4z eiq·z⟨P |T{Jµ(z)Jν(0)}|P ⟩. (2.24)

It can be shown that in the Bjorken limit Q2 → ∞, the integral
∫
d4z is dominated

by the region close to the light-cone, z2 → 0.
In this limit, one can use the formalism of the operator product expansion (OPE)

to study the structure of the currents. Generally speaking, the OPE can relate the
two currents that are separated by a light-like distance to a linear combination
of singular coefficient functions (known as Wilson coefficients) multiplied with non-
singular local operators. While the Wilson coefficients can be computed by the means
of perturbation theory, the local operators have to be obtained by non-perturbative
methods.

As one example, one can relate the matrix elements of a twist-2 operator to
certain nucleon form factors, which can be identified with the moments of PDFs,

⟨P |Oµ1···µn
V |P ⟩ = 2An0P

{µ1 · · ·P µn}, , (2.25)

with
Oµ1···µn

V = q̄iγ{µ1Dµ2 · · ·Dµn}q , (2.26)

where |P ⟩ denotes a nucleon state with momentum P and {· · · } is the index sym-
metrization and the subtraction of trace.

One can relate these moments of PDFs to the original distribution by a Mellin
transformation. Thus, transforming Eq. 2.25 yields a formal definition of the quark
distributions in the nucleon via matrix elements of the light-cone operator

fq(x) =
1

4π

∫ ∞

−∞
dξ− e−ixξ

−
P

+

⟨P |ψ̄(ξ−)γ+ exp

(
−ig

∫ ξ
−

0

A+(η−) dη−
)
ψ(0)|P ⟩ ,

(2.27)
with the light-cone coordinates ξ± = 1/

√
2(ξ0− ξ3) and the gauge fields Aµ. In Chap-

ter 5, I will show how to use this light-cone operator to compute parton distributions
on the lattice.

Coming back to Eq.(2.25), the easiest possible operator can be used to extract
the F1 form factor, which is the conserved charge,

⟨P |q̄γµq|P ⟩ = ū(P )γµA10(0)u(P ) , (2.28)

where one can identify A10(0) = F1(0).
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As a next step, operators with two indices µ, ν, more specifically the energy-
momentum tensor of QCD, can be used to extract moments of PDFs

⟨P |T {µν}|P ⟩ = ū(P )A20(0)γ
{µP ν}u(P ) , (2.29)

where the form factor A20(0) can be related to ⟨x⟩. With the proper choice of T µν ,
several moments can be extracted. In Chapter 4, I will utilize this relation to compute
the first moment of the gluon distribution ⟨x⟩g.



3. Lattice QCD and
twisted mass fermions

After having outlined the theory of hadron structure and deep inelastic scattering in
the previous chapter, I would now like to give a short introduction to quantum chro-
modynamics (QCD) on a lattice. The lattice discretization of QCD used throughout
this thesis, is a non-perturbative method which is able to make ab initio predictions
for strongly interacting systems.

I will briefly explain the basics of lattice QCD, with a focus on the Wilson
Twisted Mass formalism, which is a particular fermion discretization used in this
thesis. I will outline how to obtain physical quantities by the computation of two-
and three-point correlation functions and illustrate how to extract hadronic form
factors from matrix elements of local operators. Finally, I will give a short review
on the status of hadron structure on the lattice by presenting selected results.

An extensive guideline to lattice QCD can be found in Refs. [33, 34]. For addi-
tional information on hadron structure calculations on the lattice, see Ref. [22].

3.1 Quantum chromodynamics

The interaction of quarks and gluons are described by the principles of QCD. This
is a SU(3) gauge invariant quantum field theory whose degrees of freedom are the
fermion fields ψ, ψ̄ and the gluon vector fields Aµ. The well-known QCD action is 1

SQCD =

∫
d4x ψ̄(x)

(
iγµD

µ −m
)
ψ(x)− 1

4
F µν
a (x)F a

µν(x) . (3.1)

Here, ψ and ψ̄ are QCD spinors with an internal spin index α ∈ {1 . . . 4} and color
index a ∈ {1 . . . 3}. Dµ is the covariant derivative given by

Dµ = ∂µ − igAµ , (3.2)

where Aµ(x) = T aAµ
a(x) and T a are the generators of the SU(3) gauge group. Aµ

a(x)
is the gluon field in the adjoint representation and has the color index a ∈ {1 . . . 8}.

1Following the conventions from Ref. [30] in Section 16.1.

23
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F µν
a is the field-strength tensor in the adjoint representation defined as

F µν
a = ∂µAν

a − ∂νAµ
a + gfabcAµ

b , A
ν
c , (3.3)

where g is the strong coupling constant and ifabcT c = [T a, T b]. fabc are called the
structure constants of SU(3).

In principle, the nature of strong interaction can be derived from these equations.
However, up to now, no analytic solution has been found for the group of non-abelian
Yang-Mills theories in four dimensions, which QCD belongs to.

3.2 Discretization of QCD on a lattice

A well-known formalism that can make non-perturbative ab initio predictions of
strong interactions is lattice QCD.

The basic principle of this formalism is to define QCD on a discrete Euclidean
space-time lattice with a lattice spacing a and to consequently express the action in
terms of discrete field variables

ψ(x) → ψx , ψ̄(x) → ψ̄x , Aµ(x) → (Aµ)x . (3.4)

For reasons of convenience, the form ψ(x) will be kept throughout this work for
discretized variables as well. Consequently, the integral

∫
d4x is replaced by a discrete

sum a4
∑

x.
The transition to Euclidean space-time is necessary in order to obtain a real

action in the weight factor of the Feynman integral Eq. (3.25), making it possible
to perform numerical simulations. Yet, the transition does not provide a challenge,
since Euclidean observables can usually be related to their Minkowski counterparts
by a Wick rotation and vice versa.

In a lattice gauge theory, it is further necessary to write the gauge degrees of
freedom as gauge links Uµ(x), which are defined as Uµ(x) = exp(iagAµ(x)), in order
to conserve gauge invariance. These are also known as parallel transporters, because
they can be seen as connecting links between two fermion fields at the lattice sites
x and x+ êµ due to their behavior under gauge transformation. êµ denotes one step
on the lattice in the µ direction.

In order to define a lattice gauge action, it is helpful to define the plaquette term,
which is a minimal non-trivial closed path of gauge links and written as

Uµν(x) = U1×1
µν (x) = Uν(x)

†Uµ(x+ êν)
†Uν(x+ êµ)Uµ(x) . (3.5)

This plaquette term can be related to the gluonic field strength tensor

Uµν(x) = exp
(
iga2Fµν +O(a3)

)
. (3.6)
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Thus, a simple gauge action can be constructed from plaquette terms in the following
way

SG[U ] =
β

3

∑
x

(∑
µ<ν

{1− Re Tr(U1×1
µν (x))}

)
. (3.7)

This concept can also be extended to include a rectangular path of gauge links,
which is denoted by U1×2

µν (x). The improved gauge action is then written as

SG[U ] =
β

3

∑
x

(
b0
∑
µ<ν

{1− Re Tr(U1×1
µν (x))}+ b1

∑
µ,ν

{1− Re Tr(U1×2
µν (x))}

)
,

(3.8)
with the coefficients b0 and b1 being defined as b0 = 1 − 8b1 and b1 = 0 for the
unimproved case and b1 = −0.331 for the Iwasaki gauge actions. The latter was
proposed by Iwasaki in Ref. [35] and is used for current lattice simulations with four
dynamical quark flavors in order to suppress unphysical short distant fluctuations
which cause dislocation. The strong coupling constant g is related to β by β = 6/g2.

One possible way to discretize the fermionic part of the action is the Wilson-Dirac
action

SF [ψ, ψ̄, U ] = a4
∑
x

ψ̄ (DW +m)ψ , (3.9)

where the covariant derivative,

DW =
γµ
2
(∇µ +∇∗

µ) +
ar

2
∇µ∇∗

µ , (3.10)

contains the Wilson term ar
2
∇µ∇∗

µ, which avoids fermion doubling, an unwanted
effect of the naive discretization of QCD. The derivatives ∇µ are defined as,

∇µψ(x) =
1

a

(
Uµ(x)ψ(x+ êµ)− ψ(x)

)
(3.11)

∇∗
µψ(x) =

1

a

(
ψ(x)− Uµ(x− êµ)

†ψ(x− êµ)
)
. (3.12)

For certain applications, it is useful to perform an expansion in powers of next-
neighbor interaction. Therefore, the hopping parameter is introduced as

κ =
1

8r + 2m
. (3.13)

The action from Eq. (3.9) can be written as

SF [ψ, ψ̄, U ] =
1

2κ

∑
x,y

ψ̄(x)Q(x, y)ψ(y) (3.14)
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where Q(x, y) is an operator acting on the spinors ψ(x). This operator can be split
into a diagonal and an off-diagonal part as

Q(x, y) = δx,y1+ κQ̃(x, y) , (3.15)

where the off-diagonal Q̃ contains only next-neighbor interactions. The additional
factor in Eq. (3.14) can be removed by rescaling the fields by a factor of

√
1/2κ,

ψ(x) →
√

1

2κ
ψ(x) , (3.16)

and likewise for ψ̄.
In this form, a hopping parameter expansion can be performed, as it has been

done in Ref. [36], for instance. Apart from this application, the parameter κ is still
frequently used in current lattice QCD formulations.

3.3 Twisted mass lattice QCD

In order to avoid large cut-off effects, it is highly desirable to remove the O(a) effect
that was introduced by inserting the Wilson term into the action. One possible way
to obtain an improved continuum limit scaling was pointed out in Ref. [37] and is
called the twisted mass formalism.

For this formalism, a new set of spinor doublets χ, χ̄ is introduced, which is
related to the physical bases ψ, ψ̄ by

ψ = exp
(
i
ω

2
γ5τ3

)
χ, ψ̄ = χ̄ exp

(
i
ω

2
γ5τ3

)
. (3.17)

The twist angle ω satisfies the relation

tanω =
µR

mR
, (3.18)

where µR and mR are renormalized masses and τi are the Pauli matrices in flavor
space. The renormalized mass is connected to the bare value by an additive mass
renormalization mcr

mR = m0 −mcr . (3.19)

For the light doublet, i.e. up- and down-quarks whose masses were chosen to be
degenerate, the new action contains one additional term, namely the twisted mass
term

SF,l[χ, χ̄, U ] = a4
∑
x

χ̄l (DW +m+ iµγ5τ3)χl . (3.20)
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In case of Nf = 2 + 1 + 1 simulation where strange and charm quarks are present
as well, one needs to insert two new terms into the action, taking into account the
distinctly different masses of these quarks

SF,h[χ, χ̄, U ] = a4
∑
x

χ̄h (DW +m+ iµσγ5τ1 + τ3µδ)χh , (3.21)

where the renormalized strange and charm quark masses are defined as

ms,R = Z−1
P

(
µh −

ZP

ZS

µδ

)
mc,R =

(
µh +

ZP

ZS

µδ

)
, (3.22)

where ZP and ZS are the renormalization constants of the pseudoscalar and scalar
densities in a massless quark scheme.

In order to achieve an automatic O(a) improvement, i.e. the operators being
automatically improved, the bare mass m0 needs to be tuned to the critical value
mcr so that the renormalized mass mR vanishes. This is called maximal twist and is
equivalent to a twist angle of ω = π/2. In practice, this is carried out by measuring
the PCAC mass, which is defined as

mPCAC =

∑
x⃗⟨∂0A0(x⃗, t)P (0)⟩

2
∑

x⃗⟨P (x⃗, t)P (0)⟩
(3.23)

with
Aµ(x) = χ̄(x)γµγ5

τ1
2
χ(x) P (x) = χ̄(x)γ5

τ1
2
χ(x) , (3.24)

and tuning κ to a critical value κcrit so that mPCAC ≈ 0. It can be shown that the
thus obtained κcrit can also be used for improvement of the heavy doublet [38].

Due to the use of twisted mass fermions, all quantities studied in this thesis are
automatically O(a) improved without any alteration of the used operators.

3.4 Computing observables in lattice QCD

After introducing the concept of lattice QCD and the associated action, one needs
to find suitable method to extract physical quantities from these equations. For this
purpose, Feynman’s path integral formalism can be employed to compute expecta-
tion values of local operators denoted O

⟨Ω|O|Ω⟩ = 1

Z

∫
DχDχ̄DU Oe−SE [χ,χ̄,U ] , (3.25)

with |Ω⟩ being the vacuum state and

Z =

∫
DχDχ̄DU e−SE [χ,χ̄,U ] , (3.26)
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where SE[χ, χ̄, U ] = SF [χ, χ̄, U ] + SG[U ] is the Euclidean action of the system,
consisting of the fermionic part SF and the gauge part SG.

It is possible to relate these expectation values to physical observables by choos-
ing appropriate local operators and combining them in the right way. Unfortunately,
due to the nature of QCD and the high dimensionality of the integral, it is not pos-
sible to find an exact analytic solution. Instead numerical methods, e.g. important
sampling, can be used to approximate the result.

In practice, a Monte Carlo simulation can be applied to produce a Markov chain
of representative gauge field configurations. It is possible to utilize the Grassmann
properties of the fermion fields χ, χ̄ to write the fermion integral as the determinant
of the Dirac operator Q, cf. Eq. (3.14),∫

DχDχ̄ e−Sf [χ,χ̄,U ] = det[Q(U)] , (3.27)

where it is assumed that Q is positive definite. The determinant can further be
related to the bosonic Gaussian integral

det[Q] ∝
∫
Dϕ eϕ

†
Q

−1
ϕ , (3.28)

where ϕ labels complex scalar fields that are referred to as pseudo fermionic fields.
In this way, the fermions can be included in the weight factor for the Monte-Carlo
algorithm. The integral is highly non-local though due to the inverse matrix Q−1.
Hence, modern lattice QCD algorithms use a Hybrid Monte Carlo (HMC) method,
which is a powerful global algorithm including many improvements and being capa-
ble of simulating at small quark masses. In case of twisted mass lattice QCD, the
underlying HMC algorithm is explained in detail in Ref. [39].

From the thus obtained gauge field configurations, the expectation value of an
operator can now be computed as the average of the operator on this gauge ensemble

1

N

∑
Un

O(Un) ≡
⟨
O
⟩
= ⟨Ω|O|Ω⟩+O

(
1√
N

)
, (3.29)

where a statistical error of the order O(1/√N) is expected for the standard Monte
Carlo methods. From now on, the expression

⟨
O
⟩

will be used to denote the average
over gauge field configurations.

Although there are no fermion fields present in the ensemble, fermionic quantities
can be computed by using the quark propagator which can be related to the inverse
Dirac operator Q−1 through Wicks theorem⟨

χA(x)χ̄B(y)
⟩
= Q−1

AB(x, y) , (3.30)

where A,B are spin and color indices.
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3.4.1 Two-point correlation functions

As the next step, the expectation value of local operators has to be related to
quantities that can be measured in experiments. For this purpose, one can employ the
method of spectral decomposition on certain well-chosen combinations of operators.

A rather simple choice is the two-point correlation function which can be used
to extract masses and decay constants of physical states, but is also needed for the
proper normalization of matrix elements of operators later on. A typical two-point
correlation function in position space is defined as

C2pt(x, x′) = ⟨Ω|N(x)N(x′)|Ω⟩ , (3.31)

where Ω is the QCD vacuum state andN(x) is an arbitrary hadronic state at position
x. In general, this can be interpreted as a hadron propagator, i.e. the probability
that a hadron propagates from space-time point x′ to x. As pointed out earlier, this
can generally be acquired in lattice QCD by computing the average value of this
combination of operators on a gauge field ensemble, as defined in Eq. (3.25)

C2pt(x, x′) =
⟨
N(x)N(x′)

⟩
. (3.32)

Since one is interested in states with a well-defined momentum, the momentum-
projected two-point function can be defined by applying a Fourier transformation

C2pt(P, t, t′) =
∑
x

e−iP(x−x
′
)
⟨
N(x, t)N(x′, t′)

⟩
, (3.33)

where the source point x′ is fixed. Instead of transforming the two-point function,
one can equivalently transform the interpolating fields N(P ) =

∑
x e

−iPxN(x, t).
In order to extract physical observables from this two-point function, one can

perform the spectral decomposition of Eq. (3.31) by inserting a set of eigenstates

C2pt(P, t, t′) =
∑
n

e−En(t−t
′
)

2En

⟨Ω|N(P )|n⟩⟨n|N(P )|Ω⟩ . (3.34)

Here, for convenience, the momentum-projected version of the interpolating fields
was used. By considering large time separations t ≫ t′, the sum will be dominated
by the ground state2 |0⟩ due to the fast decay of the coefficient e−En(t−t

′
) for the

condition En < En+1. One then obtains

C2pt(P, t, t′)
t≫t

′

=
e−E0(t−t

′
)

2E0

⟨Ω|N(P )|0⟩⟨0|N(P )|Ω⟩ . (3.35)

2Not to be confused with the vacuum state |Ω⟩
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As a result, one can use the two-point function to extract the ground state’s energy
E0 by its exponential decay over time. Furthermore, its normalization can be used
to compute the decay constant.

If one wants to study a particular hadron, the interpolating fields N(x) have to
be chosen in order to match the state’s quantum numbers. For the proton, a possible
form is

Nα(x) = ϵabcuaα(x)
(
db

T
(x)Cγ5uc(x)

)
, (3.36)

where C = iγ0γ2 and u(x), d(x) are up- and down-quark fields. Since this spinor
does not have a well-defined parity, one needs to project it with a suitable parity
projector, e.g. Γ = (1 + γ4)/2 for positive parity. Thus, one obtains the proton
two-point function

C2pt(P, t, t′) =
∑
x

e−iP(x−x
′
)Γαβ

⟨
Nα(x, t)Nβ(x

′, t′)
⟩
. (3.37)

This two-point function can now be expressed in terms of quark propagators by
performing the relevant Wick Contractions, e.g. u(x)ū(x′) = Q−1

u (x, x′), where Q−1
u

is the up component of the inverse Dirac operator, cf. Eq. (3.30). The latter can be
computed on the provided gauge field configurations by solving the linear equation
Qϕ = ξ, where ξ is a source that has to be chosen adequately.

Here, usually sources with a single entry in space-time ξ(x) = δxx0
are used, called

point sources. One hereby obtains a point-to-all propagator, i.e. the propagator from
a fixed lattice point x0 to every other one.

3.4.2 Three-point correlation functions

If one is interested in hadron structure, it is not sufficient to only compute the two-
point correlation function, because hadronic form factors cannot be accessed this
way.

However, as seen in Eq. (2.25), the matrix elements of local operators can be
related to these form factors. The operators can be interpreted as currents which
are inserted into the hadronic correlation function in order to probe its structure. The
hadronic matrix elements can be computed with a three-point correlation function,

C3pt(x, y, x′) = ⟨Ω|N(x)O(y)N(x′)|Ω⟩ , (3.38)

where the operator O was inserted at space-time point y = (y, τ). Again, in order
to obtain a momentum projected three-point function, a Fourier transformation can
be used

C3pt(t, τ, t′;P,P′) =
∑
x,y

e−iP(x−y)e−iP
′
(y−x

′
)⟨Ω|N(x)O(y)N(x′)|Ω⟩ , (3.39)
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where the difference q = P − P′ can be interpreted as the momentum transfer at
the operator insertion.

In this thesis, however, only matrix elements for zero momentum transfer will
be computed. Thus, Eq. (3.39) simplifies to

C3pt(t, τ, t′;P) =
∑
x,y

e−iP(x−x
′
)⟨Ω|N(x)O(y)N(x′)|Ω⟩ . (3.40)

The matrix elements can be isolated from this three-point function by inserting two
sets of eigenstates

C3pt(t, τ, t′;P) =
∑
n,m

e−En(t−τ)e−Em(τ−t
′
)

2En2Em

⟨Ω|N(P )|n⟩⟨n|O|m⟩⟨m|N(P )|Ω⟩ . (3.41)

Again, the momentum-projected hadron fields are used.
In order to extract the relevant form factors from this equation, one needs to

perform a form factor decomposition of the matrix elements. For baryons, this is

⟨n, P |O|m,P ⟩ = ū(P )Onmu(P ) , (3.42)

where Onm contains the form factors and u, ū are the well-known spinor amplitudes.
In addition, the decomposition of the nucleon field matrix elements is needed

⟨Ω|Nα(P )|n, P ⟩ = Znuα(P ) . (3.43)

Here, Zn is the normalization of the state n and it is always assumed that only the
states |n⟩ and |m⟩ with momentum P survive.

Finally, the spinor completeness relation can be applied,∑
uα(P )ūβ(P ) = (/P +m)αβ , (3.44)

where /P = Pµγ
µ and

∑
is the sum over the spin states, which were implicitly defined

within the fields here. Combining the last four equations yields

C3pt
αβ (t, τ, t

′;P) =
∑
n,m

e−En(t−τ)e−Em(τ−t
′
)ZnZm

2En2Em

(
(/P n +m)Onm(/Pm +m)

)
αβ
.

(3.45)
Again, the ground state form factors can be extracted by choosing large time sepa-
rations

C3pt
αβ (t, τ, t

′;P)
t≫τ≫t

′

=
e−E0(t−t

′
)Z2

0

4E2
0

(
(/P 0 +m)O00(/P 0 +m)

)
αβ
. (3.46)
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The open spinor indices imply that a suitable Γ needs to be defined equivalently to
the two-point function in order to perform the parity projection

C3pt
Γ (t, τ, t′;P,P) = ΓβαC

3pt
αβ (t, τ, t

′;P,P) . (3.47)

The choice of this projector strongly depends on the operator that is used and the
form factors one wants to extract. In Section 3.5, two examples for possible projectors
will be given.

In practice, the three-point correlation function can be computed on the lattice
by expressing the hadronic field in terms of quark fields and by finding the possible
Wick contractions. The type of Wick contractions that can be performed strongly
depends on the form of the inserted operator. There are three general types of
diagrams that can be computed. They are shown in Fig. 3.1.

For operators of type O = ψ̄Λτ3ψ, where Λ is an arbitrary γ structure, only the
first type of diagrams occurs. In this case disconnected quark loops cancel due to
the flavor structure of the operator. This type is referred to as connected diagrams.

If this cancellation is not present, e.g. for operators of type O = ψ̄Λ1ψ, the
second type of diagrams has to be considered in addition to the connected ones.
This type is referred to as disconnected diagrams.

Lastly, the operator can consist only of gluonic quantities. Here, only the third
type appears, since there is no possible connection between the quark fields in the
hadron and the gluon fields in the operator. Consequently, the loop will be purely
gluonic. This diagram type will be computed in Chapter 4 in order to obtain the
gluon momentum fraction.

3.4.3 Extracting form factors

Up to now, every necessary step was taken to isolate the term O00, which contains
the relevant form factors. However, it can still not be computed, because in particular
the wave function renormalization constants Z are not known.

To solve this issue, it is helpful to perform the spectral decomposition of the
two-point function by applying Eqs. (3.43) and (3.44) to Eq. (3.35).

C2pt
Γ (P, t, t′)

t≫t
′

= Tr

(
Γ
e−E0(t−t

′
)Z2

0

2E0

(/P 0 +m)

)
. (3.48)

Clearly, one can now remove the Z factors by computing the ratio of Eq. (3.46) with
Eq. (3.48):

C3pt
Γ (t, τ, t′;P,P)

C2pt
Γ
′ (t, t′;P)

t≫τ≫t
′

=
Tr
(
Γ(/P 0 +m)O00(/P 0 +m)

)
2E Tr

(
Γ′(/P 0 +m)

) . (3.49)
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N(x, t)N(x′, t′)

O(y, τ)

N(x, t)N(x′, t′)

O(y, τ)

N(x′, t′) N(x, t)

O(y, τ)

Figure 3.1: Schematic picture of possible Wick contractions of three-point functions. Each
continuous line represents a quark propagator, while the curly line represents a gluon loop.
Top: connected three-point function, middle: disconnected three-point function with a
quark loop, bottom: disconnected three point function with a gluon loop.
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To proceed here, the exact structure of O00 from Eq. (3.49) has to be known from
the form factor decomposition. For a rather simple case, this can be the form factor
multiplied with a combination of Dirac matrices Λ and momenta P .

O00 = Λf(P )A(0) , (3.50)

where f(P ) is a function of the momenta and A(0) is the form factor at zero mo-
mentum transfer. For non-vanishing momentum transfer or special operators, this
can take a more complicated form though.

Finally, Eq. (3.49) can be evaluated by inserting Eq. (3.50), defining the projec-
tors and eventually applying trace algebra. Usually one finds a kinematic factor K,
which can be some function of P and relates the ratio with the form factor

C3pt
Γ (t, τ, t′;P,P)

C2pt
Γ
′ (t, t′;P)

t≫τ≫t
′

= K(P )A(0) . (3.51)

Since this ratio is a frequently occurring quantity within this thesis, it is convenient
to introduce the quantity R(N(P );O;N(P )), which is defined as the ratio of a three-
point function with initial and final fields N(P ) and an inserted operator O with an
appropriate two-point function

RΓ,Γ
′
(
N(P );O;N(P )

) t≫τ≫t
′

=
C3pt

Γ (t, τ, t′;P,P)

C2pt
Γ
′ (t, t′;P)

. (3.52)

From now on, this ratio will be used whenever calculating nucleon structure form
factors, meaning that both two- and three-point functions need to be provided in
most of the cases.

In order to relate the obtained form factors from the lattice to the physical
equivalents, an appropriate renormalization procedure has to be found. Yet, this
issue will not be addressed in detail in this thesis.

3.5 The status of nucleon structure from lattice QCD

In the last section of this introduction to lattice QCD and hadron structure, I will
give a short review on selected important nucleon structure quantities that have
been computed using lattice QCD. The following results are taken from the latest
European Twisted Mass Collaboration (ETMC) paper on nucleon structure [23],
which includes the latest ETMC results from lattice simulation at a physical value
of the pion mass, as well as results from other groups, employing different fermionic
actions.
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3.5.1 The nucleon axial charge gA
The nucleon axial charge gA is an important quantity for nucleon structure calcula-
tions on the lattice. First of all, it is an experimentally well-known quantity which
can be determined from the β-decay of the neutron and is connected to the chi-
ral structure of the nucleon. Secondly, it serves as an excellent benchmark quantity
for lattice calculations, since it can be computed rather straightforwardly at zero
momentum transfer.

The relevant operator inserted into the nucleon correlator is the axial-vector
quark current

Oµ
A = ψ̄γ5γ

µτ3ψ , (3.53)

where τ3 is a Pauli matrix in flavor space and ψ = (u, d), ψ̄ = (ū, d̄).
From the relevant decomposition of its nucleon matrix elements, the axial form

factor Ã10(0) = gA can be extracted as

⟨P |Oµ
A|P ⟩ = i ū(P )Ã10(0)γ

µγ5u(P ) . (3.54)

Consequently, gA can be extracted from the ratio of three- and two-point functions
as defined in the previous section,

gA = i RΓj

(
N(0);Oj

A;N(0)
)
, (3.55)

where a special projector Γj = iγjγ5(1 + γ4)/2 has to be used due to the γ5 in the
operator. In all cases, the parity plus projector Γ+ = (1+ γ4)/2 will be used for the
two-point function.

In recent years, different groups have put a lot of effort into computing gA.
Results for different pion masses and fermion actions are shown in Fig. 3.2.

In order to obtain these physical results, the bare lattice results have to be
renormalized. In case of gA, this is done with the renormalization constant of the
axial current ZA, which can be computed non-perturbatively on the lattice.

An important observation from Fig. 3.2 is the fact that most of the results tend
to be lower than the experimental result gA = 1.272(2) [46]3. Yet, the ETMC result
at the physical point does agree with experiments, although its error still has to be
reduced to make a better statement. In general, further calculations with a physi-
cal pion mass, in particular at different volumes and lattice spacings, are certainly
necessary.

3.5.2 The quark momentum fraction ⟨x⟩u−d

Considering other twist-2 operators, the next relevant quantity is the first moment of
the iso-vector quark PDF, which can be interpreted as the average iso-vector quark

3Taken from the β decay parameters of the neutron review.



36 CHAPTER 3. LATTICE QCD AND TWISTED MASS FERMIONS

0.00 0.05 0.10 0.15 0.20 0.25

m2  [GeV2 ]

0.9

1.0

1.1

1.2

1.3

1.4

gu
d

A

Nf =2 TMF : a =0.089, 0.07, 0.056 fm
Nf =2 +1 +1 TMF : a =0.082, 0.064 fm
Nf =2 TMF/Clover : a =0.093 fm
Nf =2 +1 MILC/DWF : a =0.124 fm

Nf =2 clover : a =0.08, 0.07, 0.06 fm
Nf =2 +1 clover : a =0.116, fm
Nf =2 +1 +1 HISQ/clover : a =0.12, fm
experiment

Figure 3.2: Results for the nucleon axial charge as a function of the pion mass for different
fermion actions. Twisted mass fermion results are shown with open green squares for Nf = 2
ensembles [40], with filled blue squares for Nf = 2+1+1 [41] and with the open red triangle
for the physical ensemble using the plateau value at ts/a = 14 [23]. Results are also shown
using Nf = 2 clover fermions (filled purple diamonds) [42]; Nf = 2 + 1 + 1 staggered
sea and clover valence quarks (filled light blue inverted triangles) [43]; Nf = 2 + 1 with
domain wall fermions (DWF) on a staggered sea (filled yellow circles) [44]; and Nf = 2+1
clover (black x-symbols) [45]; experimental result from Ref. [46]. The figure is taken from
Ref. [23].
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momentum fraction in the nucleon ⟨x⟩u−d =
∫ 1

0
dx x (fu(x) + fū(x)− fd(x)− fd̄(x)).

This quantity is particularly interesting for several reasons. Most importantly, as
discussed in the previous chapter, the PDF and their moments cannot be directly
measured in experiments. Instead, perturbation theory has to be applied and phe-
nomenological assumptions have to be made in order to perform a fit to experimental
data. Lattice QCD, on the other hand, can give a non-perturbative estimate of the
moments and thus provide additional insight into the PDFs.

The operator used for the extraction of the momentum fraction can be related
to Eq. (2.26) and involves a covariant derivative

Oµν
V = ψ̄γ{µDν}τ3ψ . (3.56)

Hence, the form factor decomposition of the nucleon matrix element at zero momen-
tum transfer is

⟨P |Oµν
V |P ⟩ = ū(P )A20(0)γ

{µP ν}u(P ) . (3.57)

Thus, the average momentum fraction can be extracted from the ratio

⟨x⟩u−d = A20(0) =
1

mN

RΓ+

(
N(0);O44

V − 1

3
Okk

V ;N(0)
)
, (3.58)

where mN is the nucleon mass and the parity plus projector was used this time.
Similar to gA, the average momentum fraction has been computed by several groups
in recent years, especially because the results for heavier pion masses were mostly
in clear contradiction to the experimental results. A selection of different results can
be seen in Fig. 3.3.

The average momentum fraction is renormalized with the vector derivative renor-
malization constant ZDV , which is computed non-perturbatively and converted to
the MS scheme at a scale of µ = 2GeV.

From these results, which are close to the physical point, it seems that the devi-
ation from the experimental result is decreasing. However, larger statistics and thus
smaller errors, are certainly necessary to confirm this behavior. Here, the compu-
tation of the full PDF on the lattice could provide additional input to explain the
deviation for larger quark masses. A first attempt to compute this distribution will
be presented in Chapter 5. In addition, the lattice result for the singlet momen-
tum fraction ⟨x⟩u+d can be extracted from the computation. This quantity needs to
be included in the renormalization of the gluon momentum fraction, which will be
addressed in the following chapter.

3.5.3 The quark helicity ⟨x⟩∆u−∆d

Another twist-2 operator that can be studied is the axial-vector derivative operator
which, like ⟨x⟩u−d, is extracted for zero momentum transfer. It can be used to com-
pute the first moment of the polarized PDF and can be interpreted as the average
helicity of quarks in the nucleon.
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Figure 3.3: Iso-vector nucleon momentum fraction ⟨x⟩u−d. Twisted mass fermion results
are shown for Nf = 2 ensembles (open green squares), for two Nf = 2 + 1 + 1 ensembles
(blue filled square) and for the physical ensemble with a clover term (open red triangle).
Also shown are results from RBC-UKQCD using Nf = 2+1 DWF (magenta right pointing
triangle) [47], from LHPC using DWF on Nf = 2 + 1 staggered sea (blue crosses) [44],
QCDSF/UKQCD using Nf = 2 clover fermions (filled magenta diamonds) [48], LHPC
using Nf = 2 + 1 clover with 2-HEX smearing (filled black triangles) [45] and Nf = 2
clover (open black circle) [49]. All values are extracted using the plateau method and
ts ∼ (1 − 1.2) fm, except the result at the physical point for which ts ∼ 1.3 fm was used;
experimental result from Ref. [50]. The figure is taken from Ref. [23].
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Figure 3.4: Nucleon helicity ⟨x⟩∆u−∆d. Symbols are identical to Fig. 3.3; experimental
result from Ref. [51] and figure is taken from Ref. [23].

Again, the operator involves a covariant derivative and has an additional γ5
matrix in contrast to the vector derivative operator

Oµν
A = ψ̄γ5γ{µDν}τ3ψ . (3.59)

From the nucleon matrix element decomposition

⟨P |Oµν
A |P ⟩ = i ū(P )Ã20(0)γ5γ

{µP ν}u(P ) , (3.60)

one can derive

⟨x⟩∆u−∆d = Ã20(0) =
i

mN

RΓj

(
N(0);Oj4

A ;N(0)
)
, (3.61)

for the helicity, where Γj is the same projector as in the computation of gA. The
physical results are renormalized with the axial-vector derivative renormalization
constant ZDA and are shown in Fig. 3.4.

In general, most of the lattice results are significantly larger than the result
obtained from phenomenology. Even for the ETMC result that is computed at a
physical value of the pion mass, there is still a slight discrepancy present. Again, in
order to understand this deviation, the full computation of the polarized PDF will
provide valuable information, cf. Chapter 5.



4. The gluon content of the
nucleon from lattice QCD

Following the introduction to lattice QCD and the short review on latest hadron
structure results from the lattice, I will now move on to current research within the
ETM collaboration that I contributed to.

This chapter will deal with the calculation of the gluons’ average momentum
fraction within the nucleon, which can be identified with the first moment of the
gluon distribution

⟨x⟩g =
∫
dx xfg(x) . (4.1)

For various reasons, this is an interesting quantity to study, as I will discuss in
the following. Since the gluons themselves are partons contributing to the total
momentum of the nucleon, their momentum fraction certainly has to be considered
in the momentum sum rule, cf. Eq. (2.21)∑

q

⟨x⟩q + ⟨x⟩g = 1 , (4.2)

where
∑

q is the sum over all quarks.
The analysis of phenomenological PDF data [19] suggests that at a scale of

Q2 = 6.25GeV2 for example, all quarks only contribute about 57 percent to the
total nucleon momentum fraction. This implies that the gluons carry an essential
amount of the nucleon momentum so that the momentum sum rule is satisfied.

A further topic that can be studied by the calculation of the gluons’ average
momentum fraction is the spin structure of the nucleon. According to Ref. [52], the
nucleon spin can be decomposed as a gauge invariant sum of the total angular
momentum of the gluons and the total angular momentum of the quarks, which
itself can be written as a sum of the quarks’ spin and orbital angular momentum.
This gauge invariant decomposition of the nucleon spin is known as Ji’s sum rule
and is usually written as

1

2
∆Σq + Lq + Jg =

1

2
. (4.3)

40
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In this sum rule, the gluon’s angular momentum can be written in terms of gluon
form factors as

Jg =
1

2
(Ag

20(0) +Bg
20(0)) . (4.4)

The Ag
20 form factor at zero momentum transfer gives the gluons’ average momentum

fraction and thus will be available thanks to the computation done in this thesis.
In order to obtain the Bg

20 form factor however, additional calculations with non-
zero momentum transfer at the operator have to be performed. Studying the spin
structure of the nucleon is particularly interesting because of the nucleon spin puzzle,
which states that the quark spin only contributes a surprisingly small fraction to
the total nucleon spin [24]. Thus, the remaining fraction must be provided by the
gluons or an orbital angular momentum. For a more extensive discussion of the spin
puzzle, see Section 4 of Ref. [41] and the references therein.

Therefore, a non-perturbative computation of ⟨x⟩g can help to understand the
momentum and spin structure of the nucleon and confirm the gluons’ significant
momentum contribution. Yet, despite the fact that there are plenty of results from
lattice QCD for the quark structure of the nucleon (see e.g. Refs. [23, 41, 49]), there
are currently just a few results for the gluon structure [25, 26, 27]. Moreover, these
results are only obtained from quenched computations. In a quenched setup, one
neglects the influence of dynamical fermions when generating the gauge field config-
urations by omitting the fermion determinant, cf. Eq. (3.28), in the calculation.

This is why this study aims at giving a first estimate for the gluon content
using gauge configurations with dynamical fermions and testing the feasibility of
different methods. It is not intended to give a precise value with all systematic
effects considered. In the following sections, I will first discuss the theoretical setup
employed for the computations. I will introduce two possible methods that can be
applied to extract ⟨x⟩g and compare the feasibility of both methods. I will briefly
cover the complicated renormalization pattern of this quantity and finally present
results for two different gauge ensembles, one of them at a physical value of the pion
mass.

4.1 Theoretical setup

The gluon momentum fraction ⟨x⟩g can be identified with the Ag
20(0) form factor

that can be extracted from matrix elements of the gluon operator, which is the gauge
part of the QCD energy momentum tensor, as pointed out in Ref. [53]

⟨P |T {µν}
g |P ⟩ = 2Ag

20(0)P
{µP ν} , (4.5)

where the normalization ⟨P |P ⟩ = 2E was used and {· · · } is again symmetrization
and subtraction of the trace, cf. Eq. (2.25).
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The gluonic energy momentum tensor is defined as

T {µν}
g =

1

4
gµνFαβF

αβ − F µσFσ
ν , (4.6)

where Fµν = T aF a
µν which is given in Section 3.1. Here and in the following equations,

a trace over the implicit color indices of the field strength tensor and later also the
plaquette term is present.

Following the conventions used in Refs. [25, 26], one can now construct the fol-
lowing Euclidean operator from the gluon field strength tensor,

Oµν = −FµσFνσ . (4.7)

From this tensor operator, one can define the following vector and scalar operators

OAi = Oi4 (4.8)

OB = O44 −
1

3
Ojj . (4.9)

With the help of Eq. (4.5), the matrix elements of these operators can be directly
related to ⟨x⟩g as

⟨P |OAi|P ⟩ = −2iEPi⟨x⟩g (4.10)

⟨P |OB|P ⟩ = 2(E2 − 1

3
P2)⟨x⟩g . (4.11)

Eq. (4.10) indicates that in order to extract the gluon momentum fraction from ma-
trix elements of OA, a non-zero momentum for the nucleon fields is required, whereas
the kinematic factor for operator OB stays finite for zero momentum. Since nucleon
fields with zero momentum are known to feature a better signal-to-noise ratio than
boosted nucleon fields, the first choice for the operator will be OB. Extracting ⟨x⟩g
from OA to study the quality of the signal and compare it to OB would certainly be
an interesting task for future research.

As explained earlier, the zero momentum form factors can be extracted on the
lattice by computing

R
(
N(0);OB;N(0)

)
= mN⟨x⟩g , (4.12)

where the definition of R is given in Eq. (3.52).
One can now utilize Eq. (4.7) in order to express the operator in terms of the

field strength tensor

OB =
2

3

∑
i

∑
j<k

(
F 2
jk − F 2

4i

)
. (4.13)

On the lattice, the field strength tensor can be related to the plaquette terms in the
following way, cf. Eq. (3.6)

Uµν(x) = exp
(
iga2Fµν +O(a3)

)
. (4.14)
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When performing a Taylor expansion of the right-hand side, one finds that the field
strength tensor can eventually be isolated by computing

Re(1− Uµν(x)) =
1

2
g2a4F 2

µν =
3

β
a4F 2

µν . (4.15)

Consequently, the OB operator can be written by means of plaquette terms as

OB =
2

9

β

a4

(∑
i

Re(Ui4)−
∑
i<j

Re(Uij)

)
. (4.16)

The crucial part when calculating the operator is the subtraction of the plaquettes.
Here, two large quantities which are yet very similar in magnitude have to be sub-
tracted. Hence, the precision of the result will depend on the correlation of the two
terms. Nevertheless, precise measurements are certainly required to calculate the
form factors.

The next challenge is to find a suitable method to compute the left-hand side of
Eq. (4.12) on the lattice. In following sections, two possible methods to do so will be
presented.

4.2 The Feynman-Hellmann theorem

One possible approach to extract ⟨x⟩g can be found in Ref. [26]. Here, an Euclidean
lattice version of the Feynman-Hellmann theorem is employed. The original quantum
mechanical form of this theorem was for example proposed by Feynman in Ref. [54].

Furthermore, the Feynman-Hellmann theorem has already been used on the lat-
tice, for example to calculate the axial charge gA [55] or the pion-nucleon sigma term
[56].

The theorem states that if one includes a λ dependent operator λO into the
action of the system, the operator’s nucleon form factors can be related to the
derivative of the nucleon energy with respect to λ. Naturally, this can be extended
to any hadronic state.

A convenient approach to show this relation is to compute the derivative of the
zero momentum nucleon two-point correlation function with respect to λ. When
starting at the path integral representation of the two-point correlation function, cf.
Eq. (3.25), one obtains

∂

∂λ

⟨
N(t)N(0)

⟩
=
⟨
N(t)

∂S(λ)

∂λ
N(0)

⟩
−
⟨
N(t)N(0)

⟩⟨∂S(λ)
∂λ

⟩
. (4.17)

For simplicity
∑

x

⟨
N(x)N(x′)

⟩
is written here as

⟨
N(t)N(0)

⟩
.
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On the other hand, one can express the two-point correlation function by the
spectral decomposition like in Eq. (3.35)⟨

N(t)N(0)
⟩
= AN(λ)e

−EN (λ)t , (4.18)

where the derivative of this expression is

∂

∂λ

⟨
N(t)N(0)

⟩
= −∂EN(λ)

λ
tAN(λ)e

−EN (λ)t +
∂AN(λ)

∂λ
e−EN (λ)t . (4.19)

For large time separations t, only the first term has to be considered and the equation
can be rewritten as

∂

∂λ

⟨
N(t)N(0)

⟩
= −∂EN(λ)

λ
t
⟨
N(t)N(0)

⟩
. (4.20)

To proceed further, one can now compare the right-hand sides of Eq. (4.17) and
Eq. (4.19) to obtain

−∂EN(λ)

λ
t =

⟨
N(t)∂S(λ)

∂λ
N(0)

⟩⟨
N(t)N(0)

⟩ −
⟨∂S(λ)

∂λ

⟩
. (4.21)

Here, the operator ∂S(λ)/∂λ contains an implicit sum over the insertion time τ due to
the nature of the action. From the application of the summation method, e.g. see in
Ref. [57], it is known that

t∑
τ=0

R
(
N(P );O(τ);N(P )

)
= tR

(
N(P );O(τ);N(P )

)
. (4.22)

Applying this relation to Eq. (4.21) thus yields

∂EN(λ)

∂λ
= R

(
N(P );

∂S(λ, τ)

∂λ
;N(P )

)
−
⟨∂S(λ, τ)

∂λ

⟩
. (4.23)

The second term is the vacuum expectation value of the operator which has to be
subtracted.

Hence, in order to extract the gluon momentum fraction, is it helpful to alter
the Wilson gauge action in the following way

S(λ) =
β

3

∑
x

(
(1 + λ)

∑
i

Re(1− Ui4(x)) + (1− λ)
∑
i<j

Re(1− Uij(x))

)
, (4.24)

where λ = 0 corresponds to the standard Wilson plaquette action. The reason of
this modification can be understood when looking at the derivative of the action
appearing in Eq. (4.23)

∂S(λ)

∂λ
=
β

3

∑
x

(∑
i<j

Re(Uij(x))−
∑
i

Re(Ui4(x))

)
, (4.25)
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which can be related to OB by Eq. (4.16). Consequently, one can relate the left-hand
side of Eq. (4.23) to ⟨x⟩g by using Eq. (4.11) and finds

∂EN

∂λ

⏐⏐
λ=0

= −3

2

(
EN − P2

3EN

)
⟨x⟩g . (4.26)

This relation only holds if the vacuum expectation value of the operator vanishes
⟨Ω|OB|Ω⟩ = 0. In the present setup, this is certainly the case due to rotational sym-
metry on the lattice, which implies that the vacuum expectation value of temporal
and spatial plaquettes is equal.

When considering the nucleon at rest, one can simplify Eq. (4.26) and compute
the gluon momentum fraction as

⟨x⟩g =
2

3mN

∂mN

∂λ

⏐⏐
λ=0

. (4.27)

Next, in order to compute the derivative at λ = 0, several values for the nucleon
mass at different λ values are required. It is assumed that for λ close to zero, mN(λ)
can be approximated by a linear function so that the derivative at λ = 0 can be
extracted from the slope of a linear fit.

In order to compute the nucleon mass for non-zero λ values of the action, new
gauge ensembles have to be generated. This, however, induces certain difficulties,
because due to the change of the action the hopping parameter κ has to be re-tuned
to its critical value κcr for each ensemble in order to regain the automatic O(a)
improvement, cf. Section 3.3.

To explore the feasibility of this method an initial test was conducted on a small
lattice with rather heavy quark masses to keep the computational cost affordable.
The simulations are carried out on 243 × 48 lattices with Nf = 2 + 1 + 1 flavors
of maximally twisted mass fermions. The coupling is set to β = 1.95 corresponding
to a lattice spacing of a ≈ 0.082 fm. The twisted mass parameter is chosen to be
aµ = 0.085, which amounts to a pion mass of mPS ≈ 490 MeV. As gauge action the
Iwasaki action [35] is used. However, only the Wilson part, i.e. the pure plaquette
part, is multiplied with 1± λ as in Eq. (4.24). The rectangular plaquettes remained
untouched. The results for three different λ values on ∼ 200 gauge configurations
and the nucleon mass at λ = 0 which is taken from Ref. [58], are shown in Fig. 4.1.

In order to extract ⟨x⟩g, a linear fit in λ is applied to the data. The fact that
the data shows a λ dependence suggests that one can obtain a non-zero signal for
the gluon moment. From the result for the slope, one can extract the following bare
lattice result

⟨x⟩bareg = 0.46(14) . (4.28)

The statistical error of the result is rather large, but the systematic error is probably
even larger, because it is not fully clear in which λ region a linear fit is justified.
To study this systematic effect, one has to compute the nucleon mass with a better
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Figure 4.1: Results for the nucleon mass as a function of λ. Linear fit parameters:
amN = −0.39(12)λ+ 0.563(3). The nucleon mass at λ = 0 is taken from Ref. [58].



4.3. DIRECT OPERATOR APPROACH 47

precision for more λ points than used here. Furthermore, the plateau fit that is used
to extract the nucleon masses introduces yet another uncertainty.

All in all, it is possible to employ the Feynman-Hellmann theorem to extract the
gluon momentum fraction. However, there are rather large systematic uncertainties
and the method is quite costly, especially for twisted mass fermions where the action
has to be re-tuned to maximal twist for each new λ. Therefore, the method seems
quite unfeasible, in particular for large lattices and pion masses close to the physical
point.

4.3 Direct operator approach

Since the application of the Feynman-Hellmann theorem has proved to be rather
cumbersome, an alternative, more straightforward method is tested in this work. It
involves the direct computation of the right-hand side of Eq. (4.12), i.e. the compu-
tation of relevant three- and two-point functions in terms of quark propagators and
gluon loops as well as the extraction of the form factors as it was explained in the
previous chapter. The gluon content can be extracted as

⟨x⟩g =
1

mN

R (N(0);OB;N(0)) . (4.29)

For this purpose, the relevant unprojected three-point function is the expectation
value of two nucleon fields and the operator OB

C3pt(t, τ, t′;P = 0) =
2

9
β
∑
x,y

⟨
N(x)

(∑
i<j

Re(Uij(y))−
∑
i

Re(Ui4(y))

)
N(x′)

⟩
.

(4.30)
The definition of the nucleon operator in terms of quark fields can be found in
Eq. (3.36), while the operator can be written by means of plaquette terms as shown
in Eq. (4.16). Thus, because there are no quark fields in the operator, performing
the Wick contractions in the three-point function is a trivial task, as there are no
possible contractions between the gluon operator and the interpolating fields of the
nucleon. The three-point function can in fact be written as the expectation value of
a product of nucleon correlators with a gauge link dependent operator. A schematic
image of the resulting diagram was shown in the previous chapter at the bottom
part of Fig. 3.1.

The advantage of this method is that existing two-point functions can be re-used
and only the gluon operator has to be calculated on the very same configurations by
computing the plaquette terms from the gauge links. This can be done with rather
small computational effort. Since this is a disconnected diagram, the subtraction
of the expectation value of OB from the ratio R generally has to be performed.
Technically, this is not necessary in this setup, because the vacuum expectation
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Nf β L/a, T/a csw κ aµ mPS a

[MeV] [fm]

B55.32 2+1+1 1.95 32,64 0 0.161236 0.0055 370 0.082

cA2.09.48 2 2.1 48,96 1.57551 0.13729 0.0009 130 0.093

Table 4.1: Parameters of two different gauge ensembles that were used in the computation
of the gluon moment.

value of the operator is supposed to vanish as was explained earlier. Nevertheless,
the expectation value of the operator is rather noisy. Hence, it is beneficial to subtract
the term in this case.

4.4 Lattice setup

The results shown in this work are computed on two different gauge ensembles.
The first being a 323 × 64 lattice from an ETMC (European Twisted Mass Col-
laboration) production ensemble [59] labeled B55.32. It features Nf = 2 + 1 + 1
flavors of maximally twisted mass fermions, i.e. two degenerate light quarks and non-
degenerate strange and charm quarks. The ensemble has a bare coupling correspond-
ing to β = 1.95, which yields a lattice spacing of a ≈ 0.082 fm [60] and the twisted
mass parameter aµ = 0.0055, corresponding to a pion mass of mPS ≈ 370MeV. The
two-point correlation functions were provided by the ETMC as well and computed
with 15 different source positions on each of the 2298 gauge field configurations. This
sums up to 34470 measurements each, for proton and neutron and two different time
directions, which all can be averaged. Admittedly, these measurements are slightly
correlated, yet, several tests suggest an error scaling close to 1/

√
N.

A second ensemble labeled cA2.09.48 that has recently been generated is used
to compute ⟨x⟩g as well and has the feature of a physical value of the pion mass [61].
Here, Nf = 2 flavors of maximally twisted mass fermions are employed, together
with a clover term and csw = 1.57551 on a 483 × 96 lattice. The bare coupling
corresponds to β = 2.1, which is a lattice spacing of a ≈ 0.093 fm set with the
nucleon mass. The twisted mass parameter is set to aµ = 0.0009, which corresponds,
within errors, to a setup with physical pion masses. The analysis is done on 1558
configurations with 100 different source positions each, which amounts to a total of
155800 measurements.

For the quark fields that make up the nucleon interpolating field, standard smear-
ing methods (Gaussian and APE) were used, which are known to increase the overlap
of the fields with the nucleon ground state while decreasing the overlap with excited
states and thus improving the results for nucleon spectroscopy and structure, cf.
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Figure 4.2: Results for the effective gluon momentum fraction as a function of the
operator insertion time with 34470 measurements on the B55.32 ensemble, cf. Tab. 4.1. No
smearing was applied to the operator.

Ref. [41] and references therein. In fact, 50 steps of Gaussian smearing with α = 4
were applied to the quark fields while the gauge fields that were used for this purpose
are smeared with 20 steps of APE smearing with α = 0.5.

4.5 Results and stout smearing

Initial results for the effective gluon momentum fraction are shown in Fig. 4.2. The
effective gluon momentum fraction denotes the τ dependent result of Eq. (4.29)
where ⟨x⟩g can be extracted from a constant fit to an existing plateau. Unfortunately,
the thus obtained signal is too noisy to extract any significant result.

One possible solution for this problem can be found in [62], where it is suggested
to use HYP smearing [63] for the links in the gluon operator. Initial tests with up
to five steps of HYP smearing with parameters from [63] were successful, however
this smearing is not well suited for the purpose of renormalization by a perturbative
lattice calculation. Since HYP smearing cannot be expressed as an analytic function
and the gauge links need to be re-projected to SU(3) after each step of smearing, the
perturbative lattice calculation is not feasible due to the enormous computational
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Figure 4.3: Noise-to-signal ratio as a function of the number of stout smearing steps.
Noise-to-signal ratio is the average error of plateau values divided by result of a plateau
fit for 10 steps of smearing. B55.32 ensemble was used, cf. Tab. 4.1.

effort it involves.
Instead, stout smearing of the gauge links as introduced in Ref. [64] is used in this

work. This is an analytic link smearing method where the gauge links are smeared
according to

U (n+1)
µ = exp

(
iQ(n)

µ

)
U (n)
µ , (4.31)

where Qµ is a particular linear combination of perpendicular gauge link staples that
are weighted with the factor1 ω, cf. Ref. [64] for details. In this work, the isotropic
four-dimensional scheme is used and ω is tuned so that the plaquette reaches a
maximal value. Up to 14 steps of stout smearing were applied and the noise-to-
signal ratio of the result was determined, by computing the average error of the
plateau values and weighting it with a generic plateau value that was extracted
using 10 steps of smearing. The noise-to-signal ratio as a function of the number of
stout smearing steps is shown in Fig. 4.3.

A significant reduction of the resulting noise with an increasing number of stout
smearing steps can be observed from this analysis. While the improvement for a

1This parameter is called ρ in the original work, but in recent works and in this thesis is labeled
as ω.
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⟨x⟩bare
g Zgg Zgq ⟨x⟩bare

u+d ⟨x⟩g
B55.32 0.300(25) 1.0134 0.0084 0.677(5) 0.309(25)

cA2.09.48 0.28(4) 0.9590 0.0218 0.522(16) 0.28(4)

Table 4.2: Bare and renormalized lattice results for the gluon moment along with the
perturbatively computed Z factors at µ = 2GeV in the MS scheme and the iso-scaler
quark moment on two different gauge ensembles. Iso-scalar quark moments are taken from
Ref. [23] with ts/a = 12. For ⟨x⟩bare

g , only statistical errors are given.

smaller number of steps is quite substantial, one notices a saturation for a larger
number of steps. Thus, in order to not overextend the smearing, 10 steps of stout
smearing with the parameter ω = 0.1315 are used in this work. The results are
shown in Fig. 4.4.

In contrast to the results involving an unsmeared operator, one now obtains a
rather distinct signal with a reasonable error. In order to analyze the influence of
excited states on the plateau value, results for three different source-sink separations
ts = t−t′ are shown. Usually, a strong excited state influence is present if the plateau
values differ for different ts. Such a discrepancy cannot be observed for this setup,
since the computed points belonging to the plateau are compatible within errors
for different separations. Finally, the lattice value of the gluon moment is extracted
from a plateau fit on the ts/a = 12 data and is shown in Tab. 4.2.

The results for the second ensemble with a physical value of the pion mass are
presented in Fig. 4.5. Again, one obtains a rather distinct signal. However, the noise
is larger than for the previous ensemble, thus smaller source-sink separations are
featured in the figure. Still, there is no evidence of a large influence of excited states.

The lattice value of the gluon momentum fraction is extracted from a plateau fit
on the ts/a = 11 data and given in Tab. 4.2. The error is rather large in comparison
to the previous result. Therefore a larger statistic is certainly necessary here in order
to extract a more precise signal. These results differ slightly from the one that was
extracted by using the Feynman-Hellmann theorem. However, the two lattice results
cannot be compared, since the application of stout smearing certainly alters the
way the gluon operator has to be renormalized. As it turns out, the renormalization
pattern of this quantity is rather delicate due to the mixing of operators. In the
following section, this issue will be explained in some more detail.

4.6 Renormalization

Yet another challenge regarding the computation of the physical value of the gluon
momentum fraction is the fact that the lattice result has to be renormalized. Since
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applied to the operator. bottom: ⟨x⟩bare
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ts/a = 12. 34470 measurements on the B55.32 ensemble were used, cf. Tab. 4.1.
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the gluon operator is a singlet operator, it certainly mixes with other singlet op-
erators, for example the quark operator. Consequently, ⟨x⟩g mixes with the quark
momentum fraction ⟨x⟩q. The mixing of these quantities has been studied in Ref. [65]
and can be described by a 2× 2 mixing matrix( ⟨x⟩g∑

q⟨x⟩q

)
=

(
Zgg Zgq

Zqg Zqq

)( ⟨x⟩bare
g∑

q⟨x⟩bare
q

)
. (4.32)

Thus, the physical result of the gluon momentum fraction can be related to the
lattice results for ⟨x⟩g and ⟨x⟩q by

⟨x⟩g = Zgg⟨x⟩bare
g + Zgq

∑
q

⟨x⟩bare
q , (4.33)

where a certain scheme, e.g. MS and an energy scale µ have to be chosen.
In this setup, however, it is not yet known how to define a renormalization

condition in order to extract the factors from a non-perturbative lattice calculation,
as it has been done for other operators relevant for nucleon structure [66]. Thus, a
different approach has to be found.

The initial method of choice is a one-loop perturbative lattice computation. De-
tails of this rather difficult calculation will be published Ref. [67]. Results for the
Z factors at a scale of 2 GeV in the MS scheme can be found in Tab. 4.2. These
factors were computed for operators with a maximum of two steps of stout smear-
ing, because a larger number of steps is not feasible to compute anymore. Still, a
clear saturation in particular for Zgg can be observed when comparing the results
for zero, one and two steps of smearing. Consequently, the Z factors for two steps
of stout smearing are used to renormalize ⟨x⟩g. The necessary iso-scalar quark mo-
ments were taken from Ref. [23]. The resulting gluon momentum fractions can be
found in Tab. 4.2 as well.

4.7 Conclusion and outlook

In this chapter, two methods were tested which can potentially be used to obtain an
accurate value for the gluon momentum fraction of the nucleon ⟨x⟩g from a lattice
QCD calculation. The first method makes use of the Feynman-Hellman theorem and
has the advantage of yielding a statistically significant signal for a rather moderate
number of configurations. On the downside, the calculation needs dedicated simu-
lations with different values of λ to establish the linear dependence of the results
on λ in an unambiguous way. Furthermore, each simulation has to be tuned to a
critical value of κ in order to ensure automatic O(a) improvement. Therefore, the
computational cost associated with this method is too large for it to be feasible,
especially when aiming at lattice simulation at a physical value of the pion mass.
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The second method directly computes ⟨x⟩g from a ratio of three- and two-point
correlation functions of the nucleon. In this setup, the three-point functions are
purely disconnected and thus can be written as the expectation value of a product
of a two-point correlator and the gluon operator on each configuration. In order
to obtain a non-zero signal, one can apply several steps of stout smearing to the
gauge links forming the gluon operator. Admittedly, the amount of nucleon two-
point correlation functions that are needed to extract a significant signal is large.
However, if existing correlators can be used the overall cost is rather small.

Thus, I employed the direct approach for an extensive study and obtained lattice
results for the gluon momentum fraction on two different lattice ensembles, including
an ensemble with a physical value of the pion mass. These results could be related to
the physical value through a one-loop perturbative lattice calculation of the relevant
renormalization and mixing factors.

To compare the results to phenomenological data one can use the PDF data
that is provided by several groups and can be accessed via the LHAPDF library
[68]. Here, data points for various x and Q2 are given so that arbitrary x and
Q2 data can be obtained by an interpolation. The moments of PDFs can then be
calculated by numerical integration of the data. Using ABM12 data [19] for example,
one obtains a value of ⟨x⟩g ≈ 0.43 for a scale of Q2 = 6.25GeV2. Due to the nature
of the simplified analysis here employed, this is not a precision results and no error
is given, although it will not exceed 5 percent. In the future, it would certainly
be helpful to have a better value with a realistic error estimate from some expert
groups extracting PDFs. Obviously, the results that were obtained from the lattice
are clearly smaller than what the analysis of experimental data suggests. This issue
should certainly be addressed in future studies. Note, however, that in the analysis
presented here no continuum limit is performed and the systematic errors are not
yet included.

Among possible goals for future projects should clearly be the reduction of the
error in order to make precise predictions for ⟨x⟩g. Of course, this can be achieved by
an increase of statistics, which involves severe computational costs though. An other
possibility might be to study the feasibility of using the operator OA to extract the
relevant form factors. A further interesting project is the computation of the gluon
contribution to the nucleon spin. However, the computation of the Bg

20 form factor
that is additionally needed in this case is highly demanding, because it requires the
computation of a three-point correlation function with momentum transfer at the
operator. It remains to be seen if it is even possible to extract a meaningful signal for
this quantity. Since the method that was used in this study can easily be generalized
to other hadrons, the computation of the pion’s gluon content is another possible
project. Here, the existing gluon loops have to be contracted with pion two-point
correlation functions. Concerning the renormalization, the possibility to utilize the
findings of the perturbative renormalization in order to perform a non-perturbative
renormalization should certainly be explored.



5. Quark distributions
from lattice QCD

In the last chapter of my work, I will present another lattice study I contributed
to, namely the determination of parton distribution functions directly from lattice
QCD. This thesis is based on, but also extends a study recently published in Ref. [69].

It has already been stressed in Chapter 2 that parton distribution functions
provide an important insight into the structure of hadrons by giving information on
the momentum distribution of quarks and gluons in the hadron. In addition, the
generalized parton distributions (GDPs) provide access to further quantities such as
angular momentum and spin distribution [16].

Consequently, a direct prediction of the parton distributions from quantum chro-
modynamics would be desirable, because the results could be directly confronted
with results from deep inelastic scattering and other experiments and thus used as a
rigorous test of QCD. Also, it would provide precious information on the interactions
between quarks and gluons in the nucleon.

Since an analytic determination of PDFs from QCD is not possible though, reli-
able parton distributions can only be obtained through the phenomenological analy-
sis of experimental results, as has been done in Refs. [17, 18, 19], for instance. These
groups provide precise PDFs at various values of Q2, yet the result strongly depends
on the choice of experimental data included and the form of the fit that is used,
among other factors.

Naturally, lattice QCD methods, which can provide ab initio results for a variety
of QCD observables would be most suitable for an alternative determination of PDFs
and could avoid the intermediate phenomenological step. Yet, such a calculation
requires light-cone dynamics or an infinite momentum frame. Both cannot be fulfilled
on an Euclidean space-time lattice, because a non-zero and in practice rather large
lattice spacing makes it impossible to go to zero distance or employ an infinite
momentum. Nevertheless, as already discussed, moments of PDFs can be accessed
through lattice QCD calculations, because they can be expressed as matrix elements
of local operators. However, the reconstruction of the PDFs from their moments is
rather unfeasible on the lattice, since higher moments show a poor signal-to-noise
ratio and are very hard to compute.

56
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A possible solution for the calculation of PDFs from lattice QCD is proposed in
Ref. [28] and involves the computation of a parton quasi-distribution function which
can be accessed on the lattice for finite momenta. This quasi-distribution can be
related to the physical distribution through a matching procedure. The necessary
matching coefficients have already been computed in one-loop perturbation theory
for the iso-vector case in Ref. [70]. In addition, the obtained distribution has to be
corrected for a finite nucleon mass, which otherwise can be neglected in the infinite
momentum frame. A first test of this approach has been carried out in Ref. [29],
using staggered fermions.

This work aims at providing an additional independent study on the feasibility
and potential of the proposed method. Thus, the focus will be on the exploration of
different methods and parameters, not on a precise determination of the distribution
and the estimation of systematic uncertainties. In the following sections, I will at
first briefly sketch the necessary framework to compute quasi-distributions on the
lattice and relate them to the physical PDFs. In the following, I will present results
for the relevant matrix elements using a boosted nucleon with the three lowest lattice
momenta, 2π/L, 4π/L and 6π/L. It is not possible to extract any meaningful signal from
larger momenta due to the large noise-to-signal ratio.

Different levels of gauge link smearing in the operator are applied and their
influence on the result is studied. This is done to investigate the possible impact
of renormalization on the parton distribution. A large variation of the result for
different steps of smearing could indicate a significant effect of renormalization,
since different levels of smearing lead to different renormalization constants. This is
necessary, because the renormalization scheme for the relevant operators is not yet
known on the lattice.

Subsequently, after the quasi-distribution is extracted from the matrix elements,
the matching conditions and nucleon target mass corrections will be applied in order
to relate the quasi-distribution to the physical PDF. These corrections are momen-
tum dependent and the employed momentum is matched to the lattice momentum
of the boosted nucleon. I will show results for the obtained PDF using the momenta
4π/L and 6π/L. In addition, I will present results from a hypothetical setup where the
momentum used for the corrections is chosen to be larger than the nucleon boost in
order to estimate the behavior of the results for larger momenta.

Finally, I will show first results for the polarized parton distribution from lattice
QCD, a computation that has been suggested in Ref. [28] as well. The polarized
distribution can be obtained by employing the proposed method and only slightly
altering the inserted operator and the corrections given by the matching condition.
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5.1 Parton physics on an Euclidean lattice

The relation of the full parton distribution to matrix elements of a local operator can
be obtained from the OPE, either directly [71] or from the Mellin transformation of
the relation between moments of PDFs and matrix elements of local operators given
in Eq. (2.25).

The result, as already stated in Eq. (2.27), is

q(x) =
1

4π

∫ ∞

−∞
dξ− e−ixξ

−
P

+

⟨P |ψ̄(ξ−)γ+ exp

(
−ig

∫ ξ
−

0

A+(η−) dη−
)
ψ(0)|P ⟩ ,

(5.1)
where |P ⟩ denotes a nucleon state with momentum P , light-cone coordinates ξ± =
1/

√
2(ξ0−ξ3) and the gauge fields Aµ. Here, the quark distribution is denoted by q(x)

instead of fq(x), matching the notation of the other works on this topic. This expres-
sion, however, cannot be computed on an Euclidean lattice. The matrix elements
are dominated by an area close to the light-cone ξ2 ≈ 0, as shown in Section 3.7.1
of Ref. [31] for example. In Euclidean space-time, the light-cone area is given by
ξ2 = x2 + t2. Thus, one needs to consider a separation very close to zero. This
cannot be done on a lattice with non-zero lattice spacing.

A new method that was proposed in Ref. [28] employs the computation of a
purely spatial distribution in a finite momentum frame. This distribution is called
quasi-distribution and can be computed as

q̃(x,Λ, P3) =

∫ ∞

−∞

dz

4π
e−izk3⟨P |ψ̄(z)γ3W3(z, 0)ψ(0)|P ⟩ , (5.2)

where Wj(z, 0) is the Wilson line from 0 to z in the spatial j direction. Furthermore,
one needs to define k3 = xP3 and the Euclidean momentum P = (0, 0, P3, P4). It is
required that the Wilson line and the spatial nucleon momentum boost point into
the same direction.

Here and in most of the following equations, only the dependence on the relevant
space-time index is shown for the spinors ψ and the Wilson line W , while the rest is
omitted, e.g. ψ(z) ≡ ψ(0, 0, z, 0). In order to restore the physical quark distribution
from this quasi-distribution, a number of corrections have to be applied. To account
for the finite momentum frame used on the lattice, one has to perform a computation
of the wave function and vertex corrections, which is done perturbatively here

q(x, µR) = q̃(x,Λ, P3)−
αs

2π
q̃(x,Λ, P3)δZ

(1)
F

(
µR

P3

,
Λ

P3

)
− αs

2π

∫ 1

−1

dy

|y|Z
(1)

(
x

y
,
µR

P3

,
Λ

P3

)
q̃(y,Λ, P3) +O(α2

s) . (5.3)
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The wave function and vertex corrections δZ
(1)
F and Z(1) were computed up to

one loop order for the iso-vector combination in Ref. [70] and can be found in Ap-
pendix B.

A further correction that has to be performed is caused by the existence of a
finite nucleon mass on the lattice when employing a finite momentum frame, in
contrast to the physical distribution, where the infinite momentum frame causes the
nucleon mass to vanish. One has to take into account this finite mass on the lattice
and correct either the quasi-distribution or the quark distribution for it. Details on
how to perform the correction can be found in Ref. [72]. For the quark distribution,
one finds

q̃(x, P3) =
1

1 +Mξ2
q̃(0)(ξ, P3), (5.4)

where q̃ is the distribution with finite nucleon mass, q̃(0) the distribution without
nucleon mass, M = m

2
N/4P 2

3 and

ξ =
2x

1 +
√
1 + 4Mx2

, (5.5)

which is called the Nachtmann variable. The result is correct to all orders.

5.2 Lattice calculation

After discussing the theoretical setup for the computation of PDFs on the lattice,
the first step is to compute the form factors h(P3, z) of the matrix elements directly
on the lattice. These form factors are related to the matrix elements in the following
way

⟨P |ψ(z)γ3W3(z, 0)ψ(0)|P ⟩ = ū(P )γ3h(P3, z)u(P ) . (5.6)

Consequently, the relevant quasi-distribution can be computed from the form factors
as

q̃(x,Λ, P3) = 2P3

∫ L
2

−L
2

dz

4π
e−izxP3h(P3, z) . (5.7)

It is important to mention that this form does not just hold for the 3-direction. Due
to the spatial rotational symmetry on the lattice, the calculation can be straightfor-
wardly applied to any other spatial directions. Nevertheless, the given notation, in
particular for P3, will be kept throughout this work.

The relevant form factors are extracted as a ratio of suitable three- and two-point
functions, cf. Section 3.4.3. The three-point functions that are used are constructed
in the familiar way with boosted nucleon fields

C3pt
Γ (t, τ, 0;P) = Γ

⟨
N(P, t)O(τ)N(P, 0)

⟩
, (5.8)
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N(x, t)N(x′, t′)

O(y, τ)

z

Figure 5.1: Schematic picture of a possible Wick contraction of the quark fields in the
three-point function used to extract the matrix elements for the computation of the PDF.
Due to the momentum structure, the highlighted propagator is an all-to-all propagator.

where the nucleon interpolating fields are the momentum projected versions of those
from Eq. (3.36). For this setup, an appropriate choice for the projector is the parity
plus projector Γ+ = (1 + γ4)/2.

The operator at vanishing momentum transfer Q2 = 0 can be obtained by choos-
ing

O(z, τ, Q2 = 0) =
∑
y

ψ̄(y + ê3z)γ3W3(y + ê3z, y)ψ(y) , (5.9)

where y = (y, τ) and êj denotes one single step in the j direction on the lattice. The
Wilson line is computed as a product of gauge links along the according axis, where
only the shortest path is considered

Wj(y + zêj, y) = Uj(y + (z − 1)êj) . . . Uj(y + êj)Uj(y) , (5.10)

The resulting three-point function can then be expressed by products of quark prop-
agators and gauge links, see Fig. 5.1 for a schematic picture of such a Wick contrac-
tion.

Finally, the ratio of this three-point function and the usual nucleon two-point
function can be related to the form factors as

RΓ+

(
N(P );O;N(P )

)
=

−iP3

EN

h(P3, z), (5.11)

where EN =
√
(P3)

2 +m2
N is the total energy of the nucleon. A detailed computation

of the kinematic factors can be found in Appendix A.
For the operator, the iso-vector quark combination, i.e. a τ 3 matrix in flavor

space, is considered to avoid operator mixing and disconnected contributions. The
resulting form factors are denoted by hu−d.
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Due to the symmetric structure of the operator, there is certainly a relation
between the form factors in the positive and negative z direction. Indeed, if one
applies the gauge link identity U−µ(x) = Uµ(x − êµ)

† to Eq. (5.10), it is possible to
show that Wj(y+ êjz, y) = Wj(y, y+ êjz)

†. Thus, one obtains the relation O(z, τ) =

−O(−z, τ)† for the Euclidean operator defined in Eq. (5.9), due to its translational
invariant structure. Taking into account the kinematic factor in Eq. (5.11), one finds
the following behavior for the form factors

h(P3, z) = h(P3,−z)† . (5.12)

On the lattice, this relation might only be approximate, depending on how the
quark propagators in the three-point function are calculated. This will be further
elaborated in the next section. Thus, this relation will not be enforced, but used as
a cross-check for the lattice results.

5.2.1 Computing the all-to-all propagator

When computing the necessary three-point functions, there is some flexibility re-
garding the treatment of the quark propagator connecting the sink position with the
operator insertion point. This propagator is highlighted in Fig. 5.1. Due to momen-
tum projection, there is a spatial sum on both ends of the propagator, which naively
requires an all-to-all propagator. However, such a computation needs V = L3 × T
sets of inversions, which is not feasible in this setup due to the large temporal and
spatial extension of the lattice.

In principle, there are two different methods that are used to calculate this
propagator. The first one is the sequential method [73], where the calculation of the
three-point function is divided into two parts. The first step involves the computation
and contraction of all the propagators that can be treated as one-to-all propagators.
These are represented by the plain black lines in Fig. 5.1. Secondly, the all-to-all
propagator is computed by an additional inversion, where the result of the first part
is used as the source ξ, cf. end of Section 3.4.1. Finally, the result can be contracted
together with the operator in order to obtain the three-point correlation function.
The drawback of this method is that it requires the sink position and the nucleon
momentum at the sink to be fixed.

An alternative method is the stochastic method, where stochastic sources which
contain Z4 noise on one single time-slice are used for the estimation of the all-to-all
propagator. For hadron structure calculation, this method was studied in Ref. [74],
for instance. The estimation of an all-to-all propagator by using stochastic methods
was proposed in Refs. [75, 76] and successfully applied for a variety of lattice compu-
tations. The advantage of the stochastic method is its flexibility, allowing to freely
choose the momentum at the sink position as well as to vary the time-slice of the
current insertion. The drawback is the stochastic noise that is added to the system.
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A stochastic source ξ with noise on a single time-slice ts is constructed in the
following way

ξnA(x) = δt ts(Z4)
n
A(x) , (5.13)

where A labels spin and color, and n denotes the stochastic sample. A natural choice
for the noise terms are numbers randomly selected from four equidistant entries of
the complex unitary circle, e.g. Z4 ∈ {1/√2, −1/

√
2, i/

√
2, −i/

√
2}. In principle, other

types of noise can be used as well, as long as the following condition holds

∞∑
n=1

(ξnA(x))
†ξnB(y) = δxyδAB . (5.14)

It is rather simple to show that the Z4 noise does in fact fulfill this condition. As
the next step, a sink spinor ϕ is generated by solving the Dirac equation

QA,B(x, y)ϕ
n
B(y) = ξnA(x) . (5.15)

Finally, the quark propagator can be extracted from the product of the sink spinor
with the complex conjugated source

Q−1
A,C(y, x) =

∞∑
n=1

ϕn
A(y)(ξ

n
B(x))

† . (5.16)

Thus, one only obtains the unbiased quark propagator when using an infinite number
of samples. In practice, there are additional stochastic noise terms which are of the
order O(1/√N) when computing the propagator for a finite number N of stochastic
samples.

The application of the two different methods for the computation of the necessary
form factors was explored in a previous study on a smaller gauge ensemble, cf.
Ref. [77]. It was found that both methods yield comparable errors for the same
computational effort. Since this work is intended as an exploratory study which
especially focuses on the calculation and comparison of different nucleon momenta,
the stochastic method will be used due to its larger flexibility. Consequently, the
relation in Eq. (5.12) only holds approximately, due to the different treatment of the
propagators on either side of the operator.

5.2.2 Lattice setup and HYP smearing

All results presented in this and the following sections are computed on the B55.32
ETMC ensemble that was already utilized for the computation of the gluon moment,
cf. Tab. 4.1 and the corresponding section for the relevant parameters.

In an early study, the influence of excited states on the result was explored by
comparing two different source-sink separations. The results shown in Fig. 5.2 are
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Figure 5.2: Results for the real part of the unrenormalized form factors with different
source-sink separations, employing ∼ 1000 measurements, top: P3 = 2π/L, bottom: P3 =
4π/L.
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mostly compatible within errors, suggesting only a slight influence of excited states.
A further study is certainly necessary in order to discriminate excited state effects
in detail. For all following computations, the smaller separation ts = t − t′ = 8a
is chosen in order to reduce the resulting noise, which is particularly useful for the
computation with larger momenta.

Before presenting any results, another issue needs to be addressed. As for most of
the observables used in hadron structure, the form factors need to be renormalized.
The computation of the necessary renormalization factors is an ongoing work that
will eventually be presented in Ref. [78]. In this work, an alternative approach to
obtain an estimate of the importance of renormalization will be used.

In Ref. [29], the authors applied HYP smearing [63] to the gauge links in the
inserted operator. This is a lattice technique used to smoothen the gauge links and
expected to bring the necessary renormalization factors closer to the corresponding
tree-level value. The latter is particularly useful for the current setup, because the
renormalization constants for the local quark operators are known. Thus, in order
to obtain an estimate on how renormalization could influence the presented results,
two and five steps of HYP smearing are applied to the operator and compared with
the unsmeared results. For the HYP smearing, the standard parameters α1,2,3 =
{0.75, 0.6, 0.3} suggested in Ref. [63] are used.

The initial tests (Figs. 5.3 and 5.4) are performed with 5430 measurements on 181
gauge field configurations. All other results are computed with 10410 measurements
on 694 gauge field configurations.

5.2.3 Lattice results

To compare the results for a different number of HYP smearing steps in the operator,
the real and the imaginary part of the form factors for P3 = 8π/L are shown in Fig. 5.3.

It can be observed that applying HYP smearing to the gauge links in the operator
clearly affects the value of the form factors, both the real and the imaginary part. In
general, the impact on the imaginary part seems considerably stronger than on the
real part. When comparing the different number of smearing steps, the change from
zero to two steps appears to be more significant than from two to five steps. This
indicates a saturation of the smearing effect. A decrease of the noise-to-signal ratio
for the form factors that has been observed for the gluon moment in the previous
chapter, respectively Ref. [79], cannot be detected for this setup.

In order to illustrate the effect of HYP smearing on the quasi-distribution, Fig. 5.4
shows the real part of the Fourier transformation of the form factors, cf. Eq. (5.7).
It should be noted that in all setups studied in this context, the imaginary part of
the quasi-distribution vanishes within errors.

Considering the form of Fourier transformation, one expects a strong x asym-
metry for the quasi-distribution if the form factors feature a large imaginary part.
Indeed, a strong asymmetry can be observed for two and five steps of HYP smearing,
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which cause an increase of the imaginary part of the form factors. Assuming that
the qualitative behavior of the quasi-distribution is already similar to the behavior
of the physical PDF, one can conclude that the HYP smearing reveals the expected
quark-antiquark asymmetry in the distribution, since antiquarks can be interpreted
as quarks in the negative x region, according to the crossing relation [80]

q̄(x) = −q(−x) . (5.17)

This relation also implies that the iso-vector u − d distribution in the negative x
region can be interpreted as the d̄− ū distribution.

The goal of studying the effect of HYP smearing was to estimate the influence
of proper renormalization on the PDF. The obtained results clearly point to the
fact that renormalization will play an important role when looking at the quark
distributions from lattice calculations in the future. Without renormalization, there
would barely be an asymmetry between the quark and the antiquark PDF. In the
following calculations five steps of HYP smearing will be employed, because the
presented results do not indicate any significant impact from a larger number of
steps. The corresponding results for P3 = 2π/L, P3 = 4π/L and P3 = 6π/L are presented
in Fig. 5.5. For P3 = 4π/L, selected results for the effective form factors and the fitted
plateau are shown in Fig. 5.6.

The resulting form factors show, within errors, a symmetry in z for the real part
and an asymmetry in z for the imaginary part, as was expected from Eq. (5.12). A
further valuable cross-check of the obtained results can be done by examining the
form factor at z = 0. This is the F1 form factor, which can at Q2 = 0 be identified
with the local vector current gV . Since the local vector current is strictly conserved,
it represents the net number of quarks in a hadron. Consequently, gu−d

V = 1 should
hold for the proton, cf. [22]. The corresponding operator is renormalized with the
vector current renormalization constant ZV , which is ZV = 0.625(2) for the used
ensemble, as computed in Ref. [41].

Indeed, one finds ZV hu−d(0) = 0.95(17) for P3 = 6π/L and ZV hu−d(0) = 0.96(2)
for P3 = 4π/L. For P3 = 2π/L, one obtains ZV hu−d(0) = 0.944(8), which is rather low
and is probably caused by excited state effects1.

5.3 Perturbative matching and mass correction

In order to extract the physical PDF from the form factors hu−d(z, P3), the Fourier
transformation in Eq. (5.7) has to be applied. Prior to that, the form factors have
to be multiplied by the vector current renormalization constant ZV .

1 When using a larger source-sink separation of 10a, one finds ZV hu−d(0) = 0.98(4), cf. Fig. 5.2,
which is compatible with a value of one. The larger error is induced by the larger source-sink
separation and the fact that less measurements were used.
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This yields the quasi-distribution q̃(x). It should be noted that the renormaliza-
tion with ZV is correct for z = 0 and only approximate for all other form factors if
HYP smearing is applied. Once the proper renormalization scheme is known, each
form factor will be individually renormalized with the corresponding Z factor.

Subsequently, one can extract the physical quark distribution q(x) from q̃(x),
using Eq. (5.3) and afterwards applying the nucleon target mass corrections in
Eq. (5.4). The value of the momentum cut-off in the matching is chosen to be the
same as the value of the lattice cut-off itself, which is Λ = 1/a ∼= 2.5GeV. The
renormalization scale µR is chosen to be the same. This is a plausible, but only pre-
liminary choice, since the running with µR will be known once the renormalization
has been performed.

The integrals in the matching procedure have a cut-off at xc = Λ/P3 limiting
the x region in which the integrands are valid. It is illustrated in more detail in
Refs. [70] and [69]. The matching also requires the bare coupling constant as an
input parameter. Here, a value corresponding to β = 1.95 of the lattice calculation
αs = 6/(4πβ) ≈ 0.245 is used. The region of |x| < 1/L will be omitted in the following,
because the x resolution is certainly limited by the ratio of the smallest to the largest
lattice momentum.

Results for the quasi-distribution q̃(x), the PDF with finite target mass q(x)
and the final PDF q(0)(x) for the momenta P3 = 4π/L and P3 = 6π/L are presented in
Fig. 5.7. These momenta correspond to physical momenta of 0.98 GeV and 1.47 GeV.
The lowest lattice momentum P3 = 2π/L is not shown in the following, because both
matching as well as target mass corrections feature a poor convergence for such a
small momentum.

The behavior of the computed parton distributions partly features a qualitative
agreement with the distributions extracted from phenomenological analyses [17, 18,
50], which are obtained at Q2 = 6.25GeV2, matching the lattice scale Λ. For quark
as well as antiquark distributions, one finds q(x) ≈ 0 for |x| > 1. The computed
u(x)− d(x) distributions show a peak at intermediate values of x, which cannot be
observed in the phenomenological distributions. This peak however moves to smaller
values of x as the nucleon momentum increases. This behavior will be discussed later
in some more detail. For the d̄(x)− ū(x) distributions, one can observe an increase
for the small x region, which is in agreement with phenomenology.

Regarding the nucleon target mass correction, it can be seen that it generates
a decrease of the distributions in the large x region. This is in full accordance with
expectations from phenomenology and affirms that the nucleon mass corrections
are essential to restore the energy-momentum relations, thus ensuring the partonic
interpretation of the distributions. With increasing nucleon momentum, the mass
corrections decrease, as expected from Eq. (5.4).

For the smaller of the two momenta in particular, one finds a slightly oscillatory
behavior in the large x region. It appears to be an effect of changing the Fourier
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transformation from an infinite integral to a sum over a finite extension, which in
this work is limited by the extension of the used lattice. This can be tested by
decreasing the range of summation from −L/2 and L/2 to smaller values. Here, one
observes an increase of the oscillatory behavior for large x. This problem should be
addressed in future studies by choosing a lattice with a larger spatial extension.

Although the obtained distributions do not seem to agree with the phenomeno-
logical distributions on a quantitative level, there is a clear tendency to converge
to the phenomenological parameterizations when P3 is increased. Consequently, re-
sults for larger momenta would be highly desirable, yet, as already mentioned, it
is not possible to compute the form factors on the lattice for momenta larger than
P3 = 6π/L due to the large uncertainties. At the same time, however, Fig. 5.5 shows
that the difference between the form factors for the largest two lattice momenta is
only small. Thus, it can be assumed that the difference to results for P3 = 8π/L might
be small as well.

Therefore, it might be possible to study the behavior of the distribution for larger
momenta by employing a hypothetical setup. In this, the quark distribution will be
extracted from an analysis with P3 = 8π/L, i.e. Fourier transformation, perturbative
matching and mass correction. At the same time, the form factors going into this
analysis will have a smaller momentum of P3 = 4π/L and P3 = 6π/L. If these form
factors are similar to the ones extracted from a larger momentum, the resulting
distribution will probably be very close to the distribution obtained from a proper
analysis. This particular setup will be denoted as the mixed momentum setup. The
resulting distributions are shown in Fig. 5.8.

It certainly needs to be stressed that this exercise is only hypothetical and the
resulting distributions should only be used to estimate the behavior for momenta
larger than the ones currently available. Nevertheless, the observed quark distribu-
tion seems to converge to the phenomenological parameterizations of the distribu-
tions, especially for the intermediate and large x region. The antiquark distribu-
tions even show a decent agreement for the full x region. Altogether, it can be seen
that momenta larger than P3 = 6π/L are certainly needed to obtain a quantitative
agreement to the phenomenological distributions, at least in certain regions of x. A
possible method to gain lattice results for large momenta might be the extrapola-
tion from the available data. However, precise measurements of the form factors for
all three momenta and thus substantially higher statistics are necessary to succeed
with this approach. Although a big difference to the mixed momentum setup is not
expected, a full analysis with real data is of course mandatory and will be presented
in a forthcoming work [78].

For the small and positive x region, on the other hand, it seems that increasing
the nucleon momentum is not sufficient when it comes to reaching an agreement
with phenomenology. In this case, the lattice distributions feature rather small val-
ues for small x, which in this particular x region contradicts the phenomenological
parameterizations. This discrepancy might be related to the calculation’s limitation
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in the small x region due to the presence of the infrared 1/L and ultra-violet 1/a cut-
off regulators on a finite lattice. These cut-offs define an x region in which naively
a reliable computation of the distributions is expected, yet, the present deviation is
well within this range.

Therefore, the x region might also be limited by the employed momentum P3,
which enters into the Fourier transformation Eq. (5.2), where the momentum space
is defined as k3 = xP3. Assuming that k3 should be larger than the smallest possible
lattice momentum, would set a rather strict bound to the x region. For P3 = 4π/L,
the lattice distribution would only be valid for x > 1/2, for P3 = 6π/L, it would be
x > 1/3.

This issue might be clarified when larger lattices and smaller values of the lattice
spacing become available and larger momenta can be considered. Furthermore, it
should be stressed that the presented results are obtained at only one, non-physical
value of the pion mass and the shape of the distribution might as well depend on
the quark mass. Here, the calculation of the lattice distribution from an ensemble
with a physical pion mass can be used to study the quark mass dependence in the
future.

5.4 The polarized parton distribution

As pointed out in Ref. [28], the applied method can easily be extended to compute the
quark helicity distribution, which is also called polarized parton distribution. This
distribution is defined as the difference between parton distributions with positive
and negative helicity as opposed to the unpolarized distribution, which is the sum
of the two.

In Euclidean space-time, the polarized distribution can be related to matrix
elements of the following operator

∆q̃(x,Λ, P3) =

∫ ∞

−∞

dz

4π
e−izk3⟨P |ψ̄(z)γ5γ3W3(z, 0)ψ(0)|P ⟩ . (5.18)

Equivalently to the unpolarized distribution, the polarized distribution can be re-
stored from the quasi-distribution by applying vertex and wave-function corrections

∆q(x, µ) = ∆q̃(x,Λ, P3)−
αs

2π
∆q̃(x,Λ, P3)δZ

(1)
F

(
µ

P3

,
Λ

P3

)
− αs

2π

∫ 1

−1

dy

|y|∆Z
(1)

(
x

y
,
µ

P3

,
Λ

P3

)
∆q̃(y,Λ, P3) +O(α2

s) . (5.19)

The corrections computed in Ref. [70] differ only slightly from those of the unpolar-
ized distribution and can also be found in Appendix B.
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In order to extract the polarized quark distribution from the lattice, one needs
to alter the operator that is inserted into the nucleon correlator. In contrast to the
previous operator in Eq. (5.9), it contains an additional γ5 matrix

O(z, τ, Q2 = 0) =
∑
y

ψ̄(y + ê3z)γ5γ3W3(y + ê3z, y)ψ(y). (5.20)

This, however, will certainly alter the form factor decomposition and thus the cal-
culation of the kinematic factors. Indeed, it is found that a different projector for
the three-point function is necessary for this setup in order to obtain a non-zero
kinematic factor. Thus, the projector Γj = iγjγ5(1 + γ4)/2 is chosen, equivalently
to the computation of gA, cf. Section 3.5, where j = 3 for the present setup. Again,
the calculation can easily be extended to all spatial directions.

With this choice of the projector, the kinematic factor simplifies to 1 and the
computed ratio can be related to the necessary form factors as

RΓj

(
N(P );O;N(P )

)
= ∆h(P3, z) . (5.21)

The form factors can be related to the polarized distribution as

∆q̃(x,Λ, P3) = 2P3

∫ L
2

−L
2

dz

4π
e−izxP3∆h(P3, z) . (5.22)

The following results are computed on the same ensemble as the unpolarized results
and similarly five steps of HYP smearing are employed. In Fig. 5.9, the real and the
imaginary part of the iso-vector flavor combination for the form factors ∆hu−d(P3, z)
are shown.

The observed behavior of the matrix elements’ form factors looks very similar to
that of the unpolarized form factors, only with a few differences. In particular, the
imaginary part of the form factors is small for the smallest momentum, yet grows
fast for larger values. Here, a more precise determination of the form factors for
P3 = 6π/L is certainly necessary to estimate the behavior for larger momenta.

The form factors at z = 0 can be identified with the axial charge of the nu-
cleon. After renormalizing with the relevant factor ZA = 0.757(3) [41], one obtains
ZA∆hu−d(0) = 1.34(15) for P3 = 6π/L, ZA∆hu−d(0) = 1.12(2) for P3 = 4π/L and
ZA∆hu−d(0) = 1.139(6) for P3 = 2π/L. These values are compatible within errors
with the previously computed lattice value gA = 1.141(18) on this ensemble, cf.
Ref. [41].

Similar to the computation of the unpolarized distribution, one can obtain the
quasi-distribution from the form factors by applying a Fourier transformation. The
matching can then be performed according to Eq. (5.19). The mass correction is
identical to the unpolarized setup, cf. Eqs. (5.4), (5.5). The resulting distributions
for P3 = 6π/L and P3 = 4π/L are shown in Fig. 5.10. Here, the relevant parameters
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αs, Λ, µR and xc were chosen to be the same as in the unpolarized case given at the
beginning of the previous section. The quark distribution in the negative x region
can again be related to the antiquark distribution by a crossing relation, which
however differs from the unpolarized case [80]

∆q(−x) = ∆q̄(x) . (5.23)

Again, one observes a qualitative, but not quantitative agreement with iso-vector
distributions ∆u(x) − ∆d(x) and ∆ū(x) − ∆d̄(x), which were obtained from phe-
nomenological analyses [20, 81]2, with the exception of the small x behavior for
the quark distribution. Still, the lattice distribution shows a strong quark-antiquark
asymmetry and the expected behavior for large |x|. The agreement with the phe-
nomenological curves seems to improve for larger momentum. Consequently, the
mixed momentum setup employed in the previous section will be studied here as
well in order to estimate the effect of larger momenta. The results for a mixed
momentum setup with P3 = 8π/L are shown in Fig. 5.11.

The thus obtained distributions show a decent, partly quantitative agreement to
the phenomenological quark distributions for x > 0.25. In the antiquark sector, the
lattice distribution is much larger than the phenomenological curve. However, the
experimental situation for the polarized antiquark distribution is not as good as for
the unpolarized one and it thus features a rather large uncertainty.

5.5 Conclusion and outlook

In the last part of my thesis I have presented a first exploratory study for the
calculation of the unpolarized and polarized quark distribution from lattice QCD,
following the approach proposed in Ref. [28]. Parts of the results were published in
Ref. [69]. Together with the work from Ref. [29], these are the first attempts to study
the proposed method and acquire results for the parton distribution from lattice
QCD. For the polarized distributions, no other published results are available up to
now.

The comparison of the form factors and quasi-distributions for different steps
of HYP smearing presented in this work clearly emphasizes the importance of a
proper renormalization of all relevant form factors, in particular if the corresponding
operator contains a spatial Wilson line. Only when doing so one recovers a large
quark-antiquark asymmetry, which is expected from phenomenological distributions.
The renormalization scheme of the relevant operators is currently studied and will
be included in a forthcoming work [78]. It should be noted, however, that it is
presently not known if it is possible to find a renormalization scheme that can be
straightforwardly applied to the computed data.

2In contrast to the unpolarized case, the parametrizations are given with uncertainties, since
these are rather large and should not be neglected.



78 CHAPTER 5. QUARK DISTRIBUTIONS FROM LATTICE QCD

0

0.5

1

1.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

P
D
F
∆
u
−
∆
d

∆q̃

∆q

∆q(0)

DSSV08

JAM15

P
D
F
∆
u
−
∆
d

x

∆q̃

∆q

∆q(0)

DSSV08

JAM15

Figure 5.10: Results for the polarized quasi-distribution ∆q̃, polarized PDF without sub-
tracting the mass correction ∆q, and final polarized PDF ∆q(0) with 5 steps of HYP smear-
ing, top: P3 = 4π/L, bottom: P3 = 6π/L, comparison with phenomenological parametriza-
tions at Q2 = 6.25GeV2 (DSSV [20], CJ12 [81]).



5.5. CONCLUSION AND OUTLOOK 79

0

0.5

1

1.5

2

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

P
D
F
∆
u
−
∆
d

∆q(0)

DSSV08

JAM15

P
D
F
∆
u
−
∆
d

x

∆q(0)

DSSV08

JAM15

Figure 5.11: Results for the polarized distributions from a hypothetical mixed momentum
analysis using different values of the momentum in the computation of the lattice form
factors (top: P3 = 4π/L, bottom: P3 = 6π/L) than in the Fourier transformation, matching
and mass corrections (P3 = 8π/L) with 5 steps of HYP smearing.



80 CHAPTER 5. QUARK DISTRIBUTIONS FROM LATTICE QCD

The results for both the polarized and unpolarized distribution that were shown
for P3 = 4π/L and P3 = 6π/L indicate a convergence of the lattice distribution to-
wards the phenomenological parametrizations for larger momenta. Nevertheless, the
results from the mixed momentum setup indicate that momenta above P3 = 6π/L are
certainly necessary to obtain a decent agreement with phenomenology. A significant
increase of the statistics is necessary to have access to larger momenta, which might
be extracted by an extrapolation of results for the smaller momenta. The feasibility
and form of such an extrapolation have yet to be studied. The problem of strong
deviation from the phenomenological quark distribution for small x should be ad-
dressed in the future as well. In particular, the question of in which x range the
obtained distributions are actually reliable needs to be explored in more detail.

For the results presented here, the utilized gauge ensemble exhibits an unphysical
large quark mass, which certainly affects the momentum and spin structure of the
nucleon. This potential bias should be excluded by repeating the calculation on
the newly acquired gauge ensemble featuring a physical value of the pion mass
[61]. In addition, the calculation of the PDF from lattice ensembles with different
lattice spacing and extension will certainly provide information on the influence on
systematic cut-off and finite-size effects.

Potential extensions of this model have been proposed in Ref. [28] and include
for example the computation of the transverse PDF, the gluon PDF and other
generalized parton distributions (GPDs). In principle, the computation of the pion
PDF seems feasible, too. Yet, a significant amount of work has to be invested into
further understanding the method before these challenges can be approached.

To sum up, I successfully demonstrated that it is feasible in principle to ex-
tract quark distribution functions from lattice QCD. Certainly, a lot of effort has to
be invested into this topic in the future before reliable distributions with realistic
systematic uncertainties can be shown. Nevertheless, I have presented promising re-
sults for the lattice distributions that might encourage other groups to conquer this
new and exciting approach in order to unravel the structure of hadrons from first
principle QCD calculations.



6. Summary

In this thesis, I have presented two different studies dealing with aspects of hadron
structure calculations from lattice QCD with a special focus on the spin and momen-
tum structure of quarks and gluons in the nucleon. To be more precise, this involves
the computation of the gluons’ average momentum fraction as well as a direct calcu-
lation of the iso-vector momentum and spin distributions of quarks in the nucleon.
Up to now, both topics have rarely been studied in the context of lattice QCD,
because the associated calculations are either rather cumbersome or conceptually
not clear. The aim of this work was to investigate whether such computations are
feasible and if significant results can be extracted from lattice QCD computations.
This included studying the practicability of available methods and exploring new
ideas as well as giving a first estimate for the resulting quantities. A precise study of
all systematic uncertainties is beyond the scope of this thesis and has to be subject
of future research.

In the first study, I have explored the lattice QCD calculation of gluons’ average
momentum fraction in the nucleon, which can be interpreted as the first moment of
the gluon momentum distribution. This quantity is difficult to study, because only
disconnected diagrams contribute to the result and consequently strong gauge field
fluctuations induce a poor noise-to-signal ratio. Thus, the main goal for this quantity
was to show if a meaningful signal for the necessary form factor can be extracted
from recent lattice gauge ensembles featuring dynamical fermions with intermediate
to small quark masses, i.e. pion masses from 370MeV to a physical value of 130MeV.

For this purpose, two different methods were tested which potentially can be
used to compute the gluon momentum fraction ⟨x⟩g. In this context, I was able to
utilize the Feynman-Hellmann theorem to compute ⟨x⟩g, although only on a rather
small lattice with a large quark mass. The feasibility of this method for modern
gauge ensembles with a large volume and physical pion masses seems rather unlikely,
since the generation of additional sets of gauge field configurations, including the
tuning to a maximal twist, is too costly. For the second method, ⟨x⟩g was extracted
from a ratio of a three- and a two-point function, which can be straightforwardly
computed on the lattice, yet yields a noisy signal when using the original unaltered
gauge field configurations. I was able to show that the large statistical uncertainty
of the obtained results can be significantly reduced when applying stout smearing
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the lattice data for d̄− ū with experimental data from the E-866 NuSea experiment [83, 84]
and the HERMES experiment [85]. Plot provided by Ref. [86].

to the gauge links in the operator. Using the latter method, I was able to give a
very first estimate of ⟨x⟩g on two gauge ensembles with dynamical fermions, one of
them featuring a physical value of the quark mass. These lattice values could be
related to their physical counterparts by a recently performed one-loop perturbative
calculation using an appropriately defined renormalization scheme. All results are
shown in Tab. 4.2 with only statistical uncertainties included. Most of the systematic
uncertainties, including a continuum limit analysis, have yet to be addressed in
follow-up works. Nevertheless, I was able to successfully show that it is possible in
principle to access the gluon’s momentum fraction using the lattice discretization of
QCD. Moreover, the obtained results are in consistency with ETMC lattice results
for the quark momentum fraction, i.e. the momentum sum rule (4.2) is satisfied
within the given uncertainties. A graphical representation of this sum rule is shown
on the left-hand side of of Fig. 6.1.

The gluon’s average momentum fraction can be identified with the Ag
20(0) form

factor, which contributes to the total angular momentum of the gluons in the nucleon
Jg = 1

2
(Ag

20(0) + Bg
20(0)). The second form factor Bg

20 can be extracted from gluon
operator matrix elements with non-zero momentum transfer q2, a calculation that
will be attempted in future studies. The total angular momentum Jg is the gluons’
contribution to the nucleon spin and can currently not be measured in experiments.
Therefore, the results of this work and future lattice QCD studies can provide a
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valuable contribution in understanding the structure of the nucleon spin.
A further future focus of research should certainly be the reduction of the still

significant statistical error. This might be accomplished by studying other repre-
sentations of the gluon operator or constructing an improved operator by including
higher order Wilson loops. Further noise reduction techniques could be tested, for
example the Wilson flow, yet a theoretical concept for its application still needs to
be worked out.

The goal of the second part of my thesis was to study the momentum and spin
structure of the quarks in the nucleon by directly computing the relevant quark dis-
tributions. A direct computation of these distributions from matrix elements of local
operators requires light-cone dynamics which cannot be achieved within lattice QCD
due to a non-zero lattice spacing. For this reason, I have tested a newly published
method which proposes the computation of a spatial quasi-distribution from matrix
elements of local operators and the restoration of the physical distribution in the
large momentum limit by a perturbative matching and a target mass correction. The
main goal of this study was to explore if the necessary matrix elements are feasible
to compute within lattice QCD and to investigate whether the proposed method
can be used to eventually make a direct contact to the physical quark distributions.

In this context, I have computed the necessary nucleon form factors for three
different on-axis momenta and found that a stochastic estimation of the involved
all-to-all propagator is preferable in this setup. It allows a greater flexibility con-
cerning the choice of the nucleon momenta, because no additional quark propagator
calculations are necessary. I have applied several steps of HYP gauge link smearing
to the operator and studied the effect on the resulting form factors and consequently
on the quasi-distribution. In this context, the smearing has been used as a tool to
investigate the effect of renormalization, since it is supposed to alter the operator
renormalization. To be more precise, higher levels of smearing might bring the Z
factors closer to a tree-level value. Ultimately, I have used a maximal number of five
smearing steps to estimate the influence of renormalization on the final distribution
and found a significant increase of the imaginary part of the form factors, which in-
duces a distinct quark-antiquark asymmetry in the quark distribution. I have applied
the necessary matching and target mass correction to the computed form factors and
presented the resulting unpolarized distributions in Fig. 5.7. In order to study the
effect of larger momenta, I have employed a mixed momentum setup and shown the
results in Fig. 5.8. All obtained distributions feature a qualitative agreement with
distributions obtained from phenomenology, except in the small x region, where the
method is not supposed to work well due to the infrared and ultraviolet cut-offs
which are present in the lattice calculation. In the mixed momentum setup, the
distributions even partly feature a quantitative agreement. Furthermore, this work
was able to reproduce crucial non-trivial experimental findings such as the mostly
positive d̄(x) − ū(x) distribution, as can be seen on the right-hand side of Fig. 6.1.
In this plot, the lattice result of the d̄(x) − ū(x) distribution is compared to two
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different experimental measurements of this quantity. Although there is no perfect
quantitative agreement with these measurements, particularly with the very precise
NuSea experiment, the lattice results are able to reproduce the qualitative behavior
of the experiments.

I was able to compute first results for the polarized quark distributions, which
are shown in Fig. 5.10 and Fig. 5.11 for the mixed momentum setup. For both, a
qualitative agreement with phenomenological distributions was found as well. All
in all, at least a qualitative agreement with phenomenological predictions could be
achieved in all cases, which is a key result of this thesis.

In order to make reliable predictions for the quark distribution within the nucleon
there are certainly more tasks that have to be tackled in the future. This includes,
among other things, the ideally non-perturbative renormalization of all the form
factors and the computation of the quark distribution at a physical value of the
pion mass. Nevertheless, it was successfully shown in this thesis that lattice QCD
is a capable tool to explore the momentum and spin structure of the quarks and
the gluons in the nucleon. Eventually, lattice QCD might be able to venture even
further and predict quantities like the transversity distribution or generalized parton
distributions.

Altogether, both works discussed in this thesis successfully studied the feasibility
of the lattice calculation of two important hadron structure quantities. I tested
various methods, applied new ideas and presented exciting results for the involved
quantities. Hopefully, these findings will encourage more groups to participate in
future efforts to precisely calculate these observables and overcome the challenges
that are still present.
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A. Kinematic Factors

The spectral decomposition of the ratio of a three- and a two-point function is given
in Eq. (3.49) and can be written using Eq. (3.52) as

RΓ

(
N(P );O;N(P )

)
=

Tr(Γ(/P 0 +m)O00(/P 0 +m))

2E Tr(Γ(/P 0 +m))
. (A.1)

For the calculation of quark distributions on the lattice, one employs the operator
given in Eq. (5.9). The corresponding decomposition of the matrix elements is given
in Eq. (5.6). Consequently, one obtains the following relation, where the Euclidean
notation is used

RΓ

(
N(P );O(z);N(P )

)
=

Tr(Γ(−i /P +m)γjh(Pj, z)(−i /P +m))

2E Tr(Γ(−i /P +m))
, (A.2)

where for matters of convenience the ground state momentum is simply denoted
by P . The spatial index j is kept general to account for all possible cases. The
parity projector Γ+ = (1+γ4)/2 is used for the calculation of the unpolarized quark
distribution.

A few trace identities are useful for the following calculation

Tr(γµ) = 0 (holds for any odd number of gammas) (A.3)
Tr(γµγν) = 4δµν (A.4)

Tr(γµγνγργσ) = 4(δµνδρσ − δµρδνσ + δµσδνρ) . (A.5)

The following relation between energy and Euclidean momentum will be used as
well

P4 = iE . (A.6)
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The trace algebra for the two-point function can be performed and yields

Tr
(
1 + γ4

2
(−i /P +m)

)
=

1

2
Tr(−iPµγµ +m− iPµγµγ4 +mγ4)

=
1

2

⎛⎝Tr(−iPµγµ)  
=0

+Tr(m) + Tr(−iPµγµγ4) + Tr(mγ4)  
=0

⎞⎠
= 2m− 2iPµδµ4

= 2(m+ E) . (A.7)

For the three-point function one finds

Tr
(
1 + γ4

2
(−i /P +m)γjh(Pj, z)(−i /P +m)

)
=
h(Pj, z)

2
Tr
(
(1 + γ4)(−PµγµγjPνγν − iPµγµγjm− imγjPµγµ + γjm

2)
)

=
h(Pj, z)

2
Tr(−PµγµγjPνγν − iPµγµγjm− imγjPµγµ + γjm

2

− γ4PµγµγjPνγν − iγ4Pµγµγjm− imγ4γjPµγµ + γ4γjm
2)

=
h(Pj, z)

2

⎛⎝Tr(−PµγµγjPνγν)  
=0

−Tr(iPµγµγjm)− Tr(imγjPµγµ) + Tr(γjm
2)  

=0

+Tr(−γ4PµγµγjPνγν)− Tr(iγ4Pµγµγjm)  
=0

−Tr(imγ4γjPµγµ)  
=0

+Tr(γ4γjm
2)

⎞⎠
=
h(Pj, z)

2

(
− 4iPµmδµj − 4imPµδjµ

−4PµPν(δ4µδjν − δ4jδµν + δ4νδµj) + 4m2δ4j  
=0

⎞⎠
=
h(Pj, z)

2
(−8iPjm− 8PjP4)

= −i4Pj(E +m)h(Pj, z) . (A.8)

Combining Eqs. (A.2), (A.7) and (A.8) yields the final result

RΓ+

(
N(P );O(z);N(P )

)
= −iPj

E
h(Pj, z) . (A.9)



B. Wave function and vertex
corrections for PDFs

The wave function and vertex corrections in Eq. (5.3) were calculated in Ref. [70].
The vertex corrections are given by

Z(1)(ξ)

CF

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1− ξ
ln

ξ

ξ − 1
+ 1 +

1
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Λ
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ln

(P3)
2

µ2
R

+
1 + ξ2

1− ξ
ln 4ξ(1− ξ)

− 2ξ

1− ξ
+ 1 +

1

(1− ξ)2
Λ

P3

(0 < ξ < 1)

1 + ξ2

1− ξ
ln
ξ − 1

ξ
− 1 +

1

(1− ξ)2
Λ

P3

(ξ < 0) .

(B.1)

The wave function corrections are given by

δZ(1) = CF

∫ ∞

−∞
dξ δZ(1)(ξ) , (B.2)

where

δZ(1)(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 + ξ2

1− ξ
ln

ξ

ξ − 1
− 1− 1

(1− ξ)2
Λ

P3

(ξ > 1)
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1− ξ
ln

(P3)
2

µ2
R

− 1 + ξ2

1− ξ
ln 4ξ(1− ξ)

+
2ξ(2ξ − 1)

1− ξ
+ 1− 1

(1− ξ)2
Λ

P3

(0 < ξ < 1)

−1 + ξ2

1− ξ
ln
ξ − 1

ξ
+ 1− 1

(1− ξ)2
Λ

P3

(ξ < 0) .

(B.3)
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For the polarized PDF the vertex corrections are given by

Z(1)(ξ)

CF

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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ln

ξ

ξ − 1
+ 1 +

1
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Λ

P3

(ξ > 1)
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ln

(P3)
2

µ2
R

+
1 + ξ2

1− ξ
ln 4ξ(1− ξ)

− 2

1− ξ
+ 3 +

1

(1− ξ)2
Λ

P3

(0 < ξ < 1)

1 + ξ2

1− ξ
ln
ξ − 1

ξ
− 1 +

1

(1− ξ)2
Λ

P3

(ξ < 0) .

(B.4)

The self-energy correction is identical to the unpolarized case.
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