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1. Introduction 

Structure optimization is an important, and usually first, step of most quantum chemical 

investigations. It is a major component of all computational chemistry studies that are 

concerned with the structure and reactivity of molecules. A number of structure optimization 

methods exists. Those methods are used to optimize equilibrium geometries, locate transition 

structures (TSs), and follow minimum energy paths (MEPs), which correspond to reaction 

paths. Quantum chemistry is concerned with optimization methods that are applicable to 

electronic structure calculations.1, 2 Due to the high computational load of these calculations, 

structure refinement algorithms need to be fast, efficient and robust. Most major electronic 

structure packages have a selection of structure optimization algorithms.3-11 The choice of the 

algorithm is usually a trade-off between accuracy and speed of calculations, and is bound to the 

physical meaning of the problem in question, the size of the model used to represent the real–

life system, and a level of theory i.e. accuracy to which one wants to treat physical effects. 

Numerous reviews on structure optimization are available.12-20 Global optimization and 

conformational searching present problems that are even more difficult. 

Global minima are of great interest in quantum chemistry as they correspond to the 

configurations of atoms with the lowest total energy. These structures are the most likely to be 

found in the experiment, although this depends on experimental conditions, as some of the 

products might be kinetically, not thermodynamically, preferred structures. For a large enough 

system, the configuration can be difficult to determine, as the number of local energy minima 

rises exponentially with the size of the system. This rapid growth in the number of possible 

minima causes that already for small systems simple search methods may not exhaust all 

possible configurations and lead to biased results. Therefore global optimization methods, 

capable of searching for most stable configuration in an unbiased way, need to be introduced. 

One of such methods is the Genetic Algorithm method. However, no method guarantees to find 

the global minimum in finite number of steps.  

This thesis presents the implementation of the rigid body optimization, within a global 

optimization scheme of Genetic Algorithm (GA), and its utility for global search of 
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hydrocarbons adsorption on the MgO (001) surface. The presented scheme allows for reduction 

of computational effort needed to localize global minima, and proves to perform well for 

weakly-bound systems. The method was used to study methane, ethane, and propane adsorption 

on the MgO (001) surface. The obtained adsorption energies were related to previous theoretical 

investigations, as well as to experimental results. The comparison yielded a good agreement.  

The second chapter reviews topics connected with local optimization; importance of the 

Potential Energy Surface concept; the difference between coordinates systems; and comparison 

of optimization methods based on energy and gradient calculations. In the third chapter a 

number of methods for global optimization is discussed. Different techniques, using stochastic 

and deterministic approach are presented. Emphasis is put on evolution of genetic algorithm for 

clusters and periodic systems. In chapter number four, the concept of the Rigid Body Genetic 

Algorithm is presented. The chapter explain the main advantage of the method, i.e. optimization 

space reduction, and describes methodology of rigid body approximation together with 

implementation of this local optimization scheme within a genetic algorithm. In addition, 

performance of the Rigd Body Genetic Algorithm is presented. In the following chapter, chapter 

number five, the Rigd Body Genetic Algorithm is used to study hydrocarbons adsorption on the 

MgO (001) surface. Three different hydrocarbon molecules; methane, ethane, and propane, 

with various loadings were investigated. Obtained global minima and adsorption energies were 

compared with previous theoretical and experimental results. Chapter six and eight summarize 

the presented method and its results, and gives an outlook for possible directions in which the 

RBGA algorithm can be further develop.  
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2. Local Optimization 

A fast progress in optimizations methods for ab initio molecular-orbital calculations over last 

half-century has been observed. This progress has come about primarily because of two 

simultaneous circumstances: the development in algorithms and growth of computational 

power; as well as the introduction of energy gradient techniques.21-23 Analytical gradient-based 

optimization techniques are one order of magnitude faster than optimization algorithms based 

on energy alone. As a result, optimizing equilibrium geometries is now a routine even for fairly 

large systems and finding transition structures has become manageable. 

 

2.1. Potential Energy Surface 

The molecular structure is specified by the relative position of all atoms in the molecule. For a 

given position, and in particular electronic state, the molecule has an unequivocal energy. This 

energy varies as a function of electronic state and atomic coordinates, and is described by the 

potential energy surface (PES). Figure 1 presents a simplistic representation of a potential 

energy surface of two geometric variables.  

The concepts of potential energy surfaces arise from the Born-Oppenheimer 

approximation,24 which treats motions of nuclei and electrons separately. Since the nuclei are 

much heavier than electrons, they move much slower. This allows for separation of nuclei 

movements and electronic motions. Therefore, the electronic energy of a molecule can be 

obtained by determining the electronic structure for a fixed set of nuclear positions. This 

optimization can be performed for any nuclear configuration, giving a potential energy surface 

– a parametric function of the energy with respect to nuclear coordinates. Nevertheless, there 

are circumstances, like surface crossings, where non-adiabatic effects are important and the 

Born-Oppenheimer approximation is not valid anymore. In these cases classical meaning of 

chemical structures becomes less clear and special optimization methods may be necessary.  
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Figure 1. Model of PES showing its interesting features; minima, saddle points, and inflection 
points. (Reprinted Schlegel15) 

 

The potential energy surface is characterized by its stationary points: minima, maxima, 

and saddle points.25 Each point represents different states of the molecule, and can be identified 

in terms of its first and second derivatives. The first derivatives of energy with respect to 

coordinate of each atom form a vector called gradient. The mixed second derivatives form a 

matrix called the Hessian. Each stationary point is characterized by vanishing gradient. 

Additionally, in a minimum the Hessian is positive definite (all eigenvalues of Hessian matrix 

are positive), in a first-order saddle point Hessian matrix has only one negative eigenvalue. 

Chemically speaking – minima identify stable structures, whereas first-order saddle points can 

be related to transition states (TS). Higher-order saddle points on the potential energy surface 

are of no interest for structure optimization purposes (there are relevant for electronic structure 

calculations). The steepest descent reaction paths (SDP) from the transition state to the minima 

on both sides of the saddle point form the minimum energy path (MEP) or the intrinsic reaction 

coordinate (IRC), when mass-weighted coordinates are used. 

Taylor expansion allows to represent the potential energy surface, 𝐸(𝒙), as an infinite 

sum in neighbourhood of a point 𝒙𝟎, using the step 𝒙 and gradient 𝒈𝑻 vectors, and Hessian 

matrix, 𝑯, 

 𝐸(𝒙) =  𝐸(𝒙𝟎)  +  𝒈𝑻𝒙 +
1

2
𝒙𝑻𝑯𝒙+. .. (1) 
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Most optimization methods are constructed based on this representation.  

 

2.2. Coordinates 

Before a structure optimization can be carried out, an appropriate coordinate system must be 

chosen. The choice of the coordinate system is as important as the choice of the optimization 

strategy, and can easily influence the numerical stability and convergence of the algorithm. Any 

complete set of coordinates can be used as a representation of a molecular structure and its 

potential energy surface. Nevertheless, the nature of the quadratic approximation (equation (1)) 

to the potential energy surface gives insight for favourable features of a good coordinate system. 

If the Hessian has a mixture of very large and very small eigenvalues (i.e. it is an ill-conditioned 

matrix), the optimization will be inefficient, due to the presence of very stiff coordinates and 

very flexible coordinates, corresponding to these eigenvalues. Introduction of a different 

coordinate system (like the Rigid Body coordinates) alters the spectrum of the Hessian matrix, 

and therefore affect the stability and performance of the optimization. Another problem that can 

slow down the optimization process is the strong coupling between coordinates. This occurs if 

the off-diagonal Hessian matrix elements are of the same magnitude as the diagonal ones. 

However, it is usually possible to find a different set of coordinates that reduces the coupling. 

Strong anharmonicity (i.e. all terms beyond 2nd order in equation (1)) can also have a strong 

influence on the optimization performance. If the composition of the Hessian matrix changes 

rapidly during the optimization, the quadratic expression used to model the potential energy 

surface is poor, and convergence will be slow. A good choice of the coordinate system can 

affect anharmonicity of the PES as well as the eigenvector structure of the Hessian. 

The major advantage of all internal coordinate systems in structure optimization is that they 

significantly reduce the harmonic and anharmonic couplings between different coordinates. As 

a result a much smoother optimization is observed, with more rapid convergence in comparison 

to a more coupled set of coordinates, like the Cartesian coordinates. Natural internal coordinates 

are in general also preferred over the Z-matrix coordinates. The consideration of individual 

angles and torsions, which describe the molecular structure, can introduce strong coupling 

between the coordinates. This occurs in poorly constructed  

Z-matrices, when arbitrarily coordinates were omitted to avoid redundancy. However, internal 

coordinates also have disadvantages. Additional measures need to be taken to transform 

gradients and possibly Hessians, originally calculated in Cartesian coordinates, to the 

corresponding internal coordinate quantities. This involves construction of the transformation 
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matrix (the Wilson B-Matrix 26), its inversion, and a number of additional matrix 

multiplications, like the iterative back-transformation of a displacement in internal coordinates 

into Cartesians coordinates, to update the geometry and calculate the energy and gradient for 

the next optimization cycle. The back-transformation is the single most time consuming 

component of the optimization cycle, and scales cubically 𝑂(𝑁3), in terms of CPU time, with 

the number of primitive internal coordinates. This dependency becomes dominant as the system 

size increases. 

A number of coordinate systems is typically available to be used for structure optimization. The 

cartesian coordinates are naturally the first choice. The great advantage of them is that most 

energy and derivative calculations are carried out in them. Unfortunately, they do not reflect 

the ‘chemical structure’ of a molecule, and therefore are not well suited for structure 

optimization (strong coupling between 𝑥, 𝑦, 𝑧 coordinates). The internal coordinates, like bond 

lengths, valence and torsion angles, offer a much clearer description of the molecular structure, 

and are, therefore, a better choice for structure optimization. The couplings between these 

coordinates are usually much smaller than between the Cartesian coordinates. Furthermore, the 

curvilinear character of internal coordinates is much better suited for representing motions as 

valence angle bending and rotation about single bonds. It is easy to select a set 3𝑁 − 6 internals 

coordinates (3𝑁 − 5 for linear molecules). Z-matrix is an example of such a set of coordinates. 
27 Z-matrices are constructed using valence-type coordinates, i.e. by using bond lengths, bond 

and dihedral angles. The transformation of geometries and derivatives between Z-matrix and 

Cartesian coordinates is straightforward.28 Problems occur with cyclic molecules. For acyclic 

molecules, the set of all bonds, angles, and torsions represents the intrinsic connectivity of the 

molecule, for a cyclic molecule, the same set of all possible primitive coordinates introduces 

more than the 3𝑁 − 6 coordinates which are required to define properly the geometry of the 

molecule. Such a set of coordinates is redundant in some geometric parameters.28-40 Because 

only 3𝑁 − 6 of these redundant internal coordinates can be used to transform geometry back to 

Cartesian coordinates (in Z-matrix coordinates case), other coordinates must be left out from 

the optimization space during the optimization process. It is rather arbitrary which coordinates 

should be drop out. Optimizations in Z-matrix coordinates are in general significantly less 

efficient in comparison to these in internal coordinates.  

The set of all primitive coordinates (bonds, valence angles, torsions, additionally augmented by 

out-of-plane bends and linear bends if necessary) creates a primitive redundant coordinate 

system.28, 33 
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2.2.1. Natural Internal Coordinates 

Sometimes it is advantageous to form linear combinations of the primitive redundant internal 

coordinates to create symmetry-adapted redundant internal coordinates as well as natural or 

delocalized redundant internal coordinates.29-32 Additionally, for periodic systems like solids or 

surfaces, unit cell parameters need to be added.38-40 This can be done either explicitly or 

implicitly by defining coordinates that cross the boundaries of the unit cell. Additional 

coordinates for molecules in nonisotropic media are needed to specify the orientation of the 

molecule. Also for systems containing more than one fragment, additional coordinates that 

specify the positions of the fragments relative to each other may be required. The redundant 

internal coordinates for the reactants and products represent usually a good coordinate system 

for TS optimization.33 The transformation of Cartesian coordinates and derivatives to redundant 

internal coordinates is straightforward. The back transformation of a displacement in redundant 

internal coordinates to Cartesian coordinates usually is solved using an iterative procedure. 28, 

29, 31, 35, 37, 41, 42  

Natural internal coordinates, also referred to as natural valence coordinates, were first 

introduced to structure optimization by Pulay et al.21, 29, 43 The natural valence coordinates are 

local, eliminate most redundancies, and conform to local pseudosymmetry. They constitute a 

complete and nonredundant set of internal displacement coordinates, and therefore assures that 

in these coordinates Taylor expansion representation of the molecular potential energy 

(equation (1)) is unique. Character of coordinates originates from vibrational spectroscopy. This 

involves use of individual bond displacements as stretching coordinates, and linear 

combinations of bond angles and torsions as deformational coordinates. Choice of linear 

combinations of bends and torsions is based on local pseudosymmetry using group theory 

arguments. Construction of the coordinates enables the reduction of both harmonic and 

anharmonic coupling terms in the potential function in a purely geometrical way. For ring 

systems, extra attention has to be paid to eliminate redundancies between stretching and 

bending coordinates. This facilitates the comparison of ring rigidity. The original construction 

of the deformational coordinates for ring systems involves the whole ring and is therefore 

nonlocal. 

Displacements in the internal coordinates 𝒒 are related to the Cartesians displacements 

by the Wilson 𝑩 matrix,26 
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 ∆𝒒 =  𝑩∆𝒙 (2) 

Similarly, the Cartesian forces, 𝒈𝒙, are related to the internal forces, 𝒈𝒒, by the same matrix 

 𝒈𝒙  =  𝑩𝑻𝒈𝒒 (3) 

To express 𝒈𝒒 from equation (3) the 𝑩𝑩𝑻matrix cannot be singular, so that it is possible to 

construct general inverse matrix, 𝑩−𝟏, 

 𝑩−𝟏 = (𝑩𝑩𝑻)−𝟏𝑩 (4) 

To obtain internal forces, 

 𝒈𝒒  =  𝑩−𝟏  𝒈𝒙 (5) 

In the case of redundancy (when the rows of the 𝑩 matrix are linearly dependent), it is 

impossible to construct general inverse of the transformation matrix. 

 Nevertheless, natural internal coordinates have some disadvantages. Algorithms for 

automatic constructions of natural internal coordinates can be relatively complicated. For 

complex molecular topologies, like multiply fused rings or cages, the assigning algorithm may 

be unable to correctly generate a set of coordinates. Additionally, for more complex molecular 

topologies, where more natural internal coordinates are generated, problems of redundancy 

exist. This can be avoided by removing appropriate redundant coordinates. But this may be 

arbitrary, like in the case of omitting individual angles and torsions in a Z matrix, and may not 

give optimal set of natural internal coordinates, especially when a significant number of 

coordinates that were generated has to be excluded. The redundancy problem can be avoided 

by carrying out structure optimization in the redundant coordinate space.  

 

2.2.2. Redundant Internal Coordinates 

Redundant internal coordinates were also introduced by Pulay et al.28 due to problems in 

defining physically reasonable redundancy-free natural internal coordinates for bridged 

polycyclic compounds and cage structures. However, Schlegel44 was the first one who strongly 

emphasized the utility of redundant coordinates in geometry optimization by realizing that the 

strong-coupling terms in the potential function, observed for ring systems when using Z-matrix-

type coordinates, can be reduced by representing the potential function (in quadratic 
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approximation) in redundant valence coordinates, and transforming it to a nonredundant set. 

The disadvantage of this method is the need of specifying two sets of coordinates and in case 

of a significant change in geometry the transformation should be repeated. Redundant internal 

coordinates do not use intermediate coordinate systems. If the coordinates are redundant, the 

rows of the B matrix (equation (2)) are linearly dependent. By constructing the 𝑮  matrix (6) 

and after it diagonalization (7), the redundancy condition can be easily determined. 

 𝑮 =  𝑩𝒖𝑩𝑻 (6) 

 𝑮 (𝑲 𝑳) = (𝑲 𝑳) (
𝜦 𝟎
𝟎 𝟎

) (7) 

The 𝒖 matrix is usually the unit matrix (it has to be a non-singular matrix). In case 𝒖 is a 

diagonal matrix, consisting of triplets of inverse nuclear masses, it is then the same as the 

spectroscopic spectroscopic 𝑮 matrix.26  

Diagonalization provides two matrices; 𝑲 consists of the first n eigenvectors of 𝑮, 

corresponding to nonzero eigenvalues; and 𝑳 consists of the r redundant eigenvectors of 𝑮 

which correspond to the zero eigenvalues. These matrices are used to define displacements in 

nonredundant (𝑸), and redundant coordinates (𝑹), 

 ∆𝑸 = 𝑲𝑻∆𝒒, ∆𝑹 = 𝑳𝑻∆𝒒 (8) 

 ∆𝑸 = 𝑲𝑻𝑩∆𝒙, ∆𝑹 = 𝑳𝑻𝑩∆𝒙 (9) 

Both sets of coordinates are kept and used to construct the general inverse matrix  

 𝑮−𝟏  = (𝑲 𝑳) (𝜦−𝟏 𝟎
𝟎 𝟎

) (𝑲𝑻

𝑳𝑻 ) (10) 

which is used to transform Cartesian forces to forces in redundant coordinates (𝒈𝑮), in similar 

form to equation (5),  

 𝒈𝑮  = 𝑮−𝟏𝑩𝒖 𝒈𝒙 (11) 

By introducing projector 𝑷 

 𝑷 = 𝑮𝑮−𝟏 = 𝑮−𝟏𝑮 =  𝑲𝑲−𝟏 (12) 

it is possible to in obtain inverse Hessian in redundant coordinates: 
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 𝑯𝑮
−𝟏  = 𝑷(𝑷𝑯𝒙𝑷)−𝟏𝑷 (13) 

Using gradient and inverse Hessian in redundant coordinates it is possible to update the internal 

coordinates: 

 ∆𝒒 = 𝑯𝑮
−𝟏𝒈𝑮 (14) 

Displacement in Cartesian coordinates can be generated from the displacement in internal 

coordinates. Since this transformation between the internal and the Cartesian coordinates is 

nonlinear, this is usually done iteratively,43 using the first-order formula 

 ∆𝒙 = 𝒖𝑩𝑻𝑮−𝟏∆𝒒 (15) 

This process can be costly due to its iterative character and need for calculating the inverse 

matrix (𝑂(𝑁3) scaling). 

 

2.2.3. Delocalized Internal Coordinates 

An alternative form of natural internal coordinates present delocalized internal coordinates.30 

These coordinates are fully nonredundant and can be generated for any molecular topology. 

The scheme for generating a complete set of nonredundant coordinates is considerably 

simplified. Baker et al.30 argue that, in a mathematical sense, the obtained set of internal 

coordinate is optimal. The calculation overhead is significantly reduced by carrying the 

structure optimization in the nonredundant coordinate space. The reduction is particularly 

pronounced in the transformation of the displacement from the internal coordinate space back 

to Cartesian coordinates. The authors also introduced constrained optimization within 

delocalized internal coordinates. Constraints can be imposed by the appropriate Schmidt-

orthogonalization procedure. A unit vector corresponding to the primitive internal; bond length, 

bond angle, and dihedral angle, which should be kept constant, is projected onto the full active 

subspace and normalized. All other vectors are then Schmidt orthogonalized in turn to this 

vector. The last vector should be dropped out, due to linearly dependence on the other vectors, 

leaving 𝑛 − 1 active vectors and one constraint vector. This way opens a possibility to impose 

constraints on individual bond angles and torsions, as in the case of the Z-matrix approach, and 

still uses advantages of natural internal coordinates. 

The procedure starts by generating an initial set of primitive internal coordinates. Only 

three types of primitive internal coordinates are considered: all stretches, all planar bends, and 
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all proper torsions. The coordinates are obtained solely on the atomic connectivity, i.e., which 

atoms are bound to one another. This can be determined by simple distance criteria. This 

procedure will typically generate many more primitive internal coordinates than are necessary 

to describe the 3𝑁 − 6(5) degrees of freedom of a molecule consisting of 𝑁 atoms. The Wilson 

𝑩 matrix (equation (2)) is then constructed with all 𝑛 generated primitive coordinates. As a 

result many rows of the 𝑩 matrix will be linearly dependent. The redundancies are taken care 

of by constructing  𝑮 =  𝑩𝑩𝑻 matrix, analogous to one in equation (6), and it diagonalization, 

analogous equation (7),  

 𝑮 (𝑼 𝑹) = (𝑼 𝑹) (
𝜦 𝟎
𝟎 𝟎

) (16) 

giving 𝑼, a set of nonredundant eigenvectors, and 𝑹 corresponding to the redundant set. 

Eigenvectors in both sets are linear combinations of potentially all the original primitive 

internals. The 𝑼 set is the active coordinate set for an unconstrained optimization of a system 

with no symmetry. If there is any symmetry, then one or more additional coordinates can be 

eliminated. The active coordinates will then form a subspace of the nonredundant coordinates. 

Delocalized internal coordinates are superior over earlier introduced methods for 

generating internal coordinates. A complicated algorithm determining the molecular topology 

as well as generating natural internal coordinates is not needed. The generated set of internal 

coordinates is suitable for any molecular topology. No special consideration involving 

symmetry considerations are needed, which is often problematic when constructing natural 

internal coordinates for cages and multiply fused rings. The calculation overhead is reduced by 

carrying out the optimization in the nonredundant coordinate subspace 

To avoid costly iterative back-transformation, but still carry out the optimization in internal 

coordinates, hybrid delocalized internal Z-matrix approach31 was proposed. Determination of 

the optimization step is performed in delocalized internal coordinates, but at the same time the 

Z-matrix (constructed using individual primitive internal coordinates) is used to convert the 

new structure into the Cartesian coordinates. Unlike for delocalized internal coordinates, where 

each coordinate is a linear combination of primitive coordinates, generation of the Cartesian 

coordinates takes place in a one-step noniterative process, without the need to construct and 

invert the B-matrix. This approach allows for a highly efficient optimization in delocalized 

internal coordinates, but at the same time eliminates costly backtransformation (iterative 𝑂(𝑁3) 

process) which is replaced by with a simple trigonometric Z-matrix to Cartesian conversion 

(one-step 𝑂(𝑁) process) 
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2.3. Optimization Methods  

There is a number of methods for local minimization of nonlinear functions of many 

variables.45, 46 The usefulness of a particular method is difficult to assess without considering 

precise applications. Nevertheless one can define the most important features of an algorithm, 

like: speed of convergence; numerical stability; scaling with the model size, number of cores, 

and memory; the overall cost of the optimization. The choice of the best optimization method 

depends on the nature of the objective function, the number of variables, the availability and 

cost of evaluating the first and second derivatives. 

 Local optimization techniques allow for determination of stationary points on PES. 

Each local minimization performs a number of steps on the PES, usually gradually leading 

towards lower energy, until no further minimization of the energy is possible. The minimum 

found this way is the closest one to the starting point – hence the name local minimum. In other 

words, the starting point lies within the basin of attraction47, 48 of that local minimum. In general, 

the basin of attraction of a stationary point, whether it is a minimum or transition state, is a 

region of a model potential-energy surface for which each search starting from that region 

converges to one structure. These regions are a generalisation of the catchment areas considered 

by Mezey,49, 50 and, among other things, depend upon the choice of the search method and 

coordinates.  

 Methods for locating minima can be grouped into three categories, depending on the 

derivative information used: (a) function value only, (b) function with first derivatives, and (c) 

function with first and second derivatives. Except force fields methods, where 2nd analytical 

derivatives are relatively cheap, the most efficient methods, in terms of computational cost, rely 

on first derivatives of the energy calculated analytically; some use also approximate second 

derivatives. The first analytical derivatives can be calculated at a cost comparable to the cost of 

the energy calculations, for most levels of theory that are routinely used for optimization. 

Derivative-based methods are significantly more efficient than energy-only algorithms. It is 

always possible to use simplex and pattern search methods 51-54 in case analytic derivatives are 

not available. Nevertheless, these become less efficient with higher numbers of degrees of 

freedom.55, 56   

 The determination of equilibrium structures (minima and transition-state structures) is 

one of the most important areas of applied quantum chemistry. Geometry optimization is 

usually the first step of each investigation. For larger systems, it is only practical using 
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analytical gradient techniques. All efficient geometry optimization methods are based on a local 

quadratic approximation to the surface and involve the Newton-Raphson technique. This 

formalism utilizes the second derivatives (the Hessian) but since their exact evaluation 

especially in ab initio investigation is usually costly and inefficient, they are most often 

approximated by updating mechanisms, which involve analytically calculated gradients. Due 

to rapid increase of computer power, much larger systems became tractable. This, in turn, 

stimulates development of optimization methods, to better use that power.  

 The efficiency of structure optimizations can be measured by the number of energy and 

gradient evaluations needed to achieve convergence. Three factors influence this process: (1) 

the coordinates used to describe the geometry of the system, (2) the mathematical algorithms 

used for optimization, and (3) the quality of the quadratic approximation (numerical accuracy 

and stability of gradients and Hessian). 

 The significance of the coordinates on the optimization procedure may not be obvious 

at first sight, since two coordinate systems related by a linear transformation are equivalent in 

all gradient-optimization methods, given that the gradient vector and the Hessian matrix are 

properly transformed from one system to another. On this basis it has been claimed that 

Cartesians are equivalent,19, 57, 58 or even superior59 to valence type internal coordinates. This 

statement19, 57, 58 overlooks the fact that cubic and higher-order couplings may play an important 

role. It has been however demonstrated that for medium sized systems, with a reliable initial 

Hessian matrix and reasonable starting geometries, optimization in Cartesian coordinates can 

be just as efficient as in Z-matrix coordinates59 or natural internal coordinates.60 However, 

without the initial curvature information (i.e. without Hessian matrix) optimization in Cartesian 

coordinates is extremely inefficient, especially when the system is larger enough.59, 60 Cartesian 

coordinates are also less efficient in comparison to internal coordinates when optimization starts 

with poor geometries, even if the exact Hessian matrix is available at every optimization cycle.61 

When available, a molecular mechanics force constant matrix is usually good and cheap choice 

as a starting Hessian for ab initio calculations. 

  



18 
 

2.3.1. Direct Methods 

Minimization algorithms that do not use derivatives and only require the evaluation of the 

function are termed direct methods. They are described in a variety of standard textbooks on 

numerical analysis.45, 46, 62, 63 Since they do not use derivatives (which are often not available 

for all levels of theory) these methods have the widest range of applicability. Unfortunately, the 

downside is that they also have the slowest convergence of all optimization methods. 

 The simple direct search53 method is one of these method. By construction, it allows for 

solving optimization problems with no information about the gradient of the objective function. 

The algorithm uses a grid of points around the current point, searches for one with the lower 

value of the objective function than the value at the current point, and then moves the trial 

solution to this point. In contrast to derivative-based optimization methods, that use information 

about the gradient or higher derivatives to search for an optimal point, the direct search can be 

used to solve problems for which the objective function is not differentiable, or even is not 

continuous.  

 More sophisticated direct methods exist. For example, the simplex method, also called 

the Nelder–Mead method where a walk on the PES is defined by the coordinates of all points – 

the point with the lowest energy is moved to its mirrored image defined by the hyperplane 

constructed from the other point. The new point replaces the old one in the set and all procedure 

is repeated until distances and/or energies differences between points are smaller than the 

threshold. There is also a whole family of the pattern search methods,64, 65 which use predefined 

patterns of points around the current point independent of the objective function.  

 Another example of the direct methods is the sequential univariate search (axial 

iteration) algorithm.66 The sequential univariate search method cycles over the coordinates 

changing one of them at a time. This is performed once (or more times) for all coordinates. We 

calculate the energy at the initial geometry, then at two displacements along the one of the 

coordinates. New optimal displacement of the coordinate is found by fitting a parabola to the 

energy at these three points and displacing the coordinate to the point corresponding to the 

minimum on that parabola. Algorithm advances to the next coordinate and repeats fitting 

procedure. The cycle runs through all coordinates until the change in all the coordinates is small 

enough. 

 The modified Fletcher-Powell method is closely related to the axial iteration method, 

although it is actually a derivative based method, since it is using numerical derivatives. The 

method is significantly more efficient than the axial iteration algorithm. This is pronounced 



19 
 

especially for strongly coupled coordinates, where several optimization cycles over all 

coordinates are required. The energy is calculated at the starting geometry and for positive and 

negative displacements for all coordinates. A parabola is fitted for each of the coordinates 

giving a model of the potential energy surface. The predicted change in the coordinates is 

obtained by finding the minimum on the model surface. Steps are repeated until the change in 

coordinates is small. This procedure uses the gradients and diagonal elements of the Hessian 

matrix calculated numerically. The algorithm is not exact for a general quadratic surface, since 

the offdiagonal terms in the Hessian are neglected. There is, of course, a number of other 

algorithms that depend only on the function evaluation. Some of them may use derivatives 

evaluated numerically. These can be relatively efficient but are in general inferior to derivative-

based methods. The direct methods are not used for geometry optimization in ab initio 

calculations (unless analytical derivatives are not available); they simply require too many 

steps. 

 

2.3.2. Gradient Methods 

If analytical derivatives are available, derivative-based methods represent a better choice. They 

can be significantly more efficient with better convergence properties than the function-only 

algorithms. However, for numerically calculated gradients the overall efficiency is usually not 

better than for the function-only algorithms. The gradient-type optimization algorithms 

approximate the potential energy surface by a quadratic expression in terms of the position, 

energy, and gradient. These methods sometimes use also the approximate Hessian. The initial 

estimate of the Hessian (or its inverse), can be also updated as the optimization proceeds, and 

for most methods approaches the true Hessian (or its inverse) if the real surface is quadratic. 

Additionally, one-dimensional minimization may also be required along each new search 

direction. 

 The overall cost, numerical stability, and convergence rate of minimization of a non-

quadratic function depend on the accuracy of the line searches, as well as on the initial estimate 

of the Hessian and its updating scheme (if used). Of course, the nature of the function and the 

starting coordinates also have influence on the performance of the algorithm. Good initial 

estimates of the second derivative matrix, for geometry optimization, can be obtained from 

lower levels of theory or general concepts in chemical bonding. An accurate initial estimate of 

the Hessian can significantly improve the rate of convergence, but it will not affect the final, 



20 
 

optimized geometry. The final geometry depends only on the gradient (it goes to zero at the 

stationary point) and not the Hessian. 

 The simplest gradient method (based on a linear search) is the steepest-descent 

algorithm. In this algorithm the Hessian matrix is the unit matrix (or a constant times the unit 

matrix) and is not updated. Therefore the search direction is along 𝑝𝑘  =  − 𝑞𝑘. This is the 

direction in which the function decreases most rapidly. To achieve convergence an accurate 

linear search is required at each step. The function value decreases rapidly at first, but the final 

convergence is usually slow. The fixed metric method is closely related to this algorithm – the 

Hessian is a more general nondiagonal matrix that is not updated. 

 Another method based on a linear search is the conjugate gradient (CG) algorithm. In 

the conjugate gradient method, a new search direction is chosen to lower the energy but at the 

same time remaining at or near the minimum from the previous search direction. The idea arises 

from the fact that if the Hessian has coupling between the coordinates, the optimal search 

directions are not orthogonal (like it is in the case of steepest descent method) but are 

conjugated, i.e. 𝒙𝒏𝒆𝒘𝑯𝒙𝒐𝒍𝒅 = 0. Two of the most frequently used search directions in conjugate 

gradient methods are Fletcher–Reeves67 and Polak-Ribiere. 68 

 The conjugate gradient method is one of the older methods, and is suitable for very large 

systems where storage of the Hessian is not possible; they require less storage than limited 

memory quasi-Newton methods (only three vectors need to be stored). If the Hessian can be 

kept in memory, the quasi-Newton methods provide better convergence to the minimum.  

 

2.3.3. Newton Methods 

The Newton method is based on a local quadratic approximation of the potential energy surface. 

Differentiating the equation (1) with respect to the coordinates yields an approximation for the 

gradient, given by: 

 𝒈(𝒙) = 𝒈𝟎 + 𝑯𝟎∆𝒙 (17) 

By definition at stationary points the gradient must be zero (𝒈(𝒙) = 𝟎); equaling the right hand 

side of the equation (17) to zero and performing transformation we obtain the displacement 

(within the quadratic approximation) to the minimum: 

 ∆𝒙 = −𝑯𝟎
−𝟏𝒈𝟎 (18) 
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Where ∆𝒙 is called the Newton–Raphson step. In Newton's method, the Hessian, 𝑯𝟎, is 

calculated directly at each step. In quasi-Newton methods an approximate Hessian is updated 

at each step of the optimization. 

 Variable metric (or quasi-Newton) method falls between the extremes of the steepest 

descent methods and Newton's method, and represents the most frequently used gradient 

algorithm. By replacing the calculated Hessian with an approximate one this method increases 

its usability for extended systems. A starting Hessian is obtained from lower level of theory or 

taken as a unit matrix (usually scaled), and then is updated using the gradient information 

gathered during the course of the optimization. The quasi-Newton methods are the most 

efficient and widely used algorithms, and can be employed effectively for optimizing both 

minima and transition states.   

 Real potential energy surfaces are very rarely quadratic; therefore, usually a number of 

Newton or quasi-Newton steps is required to reach a stationary point. In case of minimization, 

eigenvalues of the Hessian must be positive (i.e., Hessian must be positive-definite matrix). If 

𝑛 eigenvalues are negative, then the step will be taken toward 𝑛𝑡ℎ-order stationary point. 

Therefore, without controlling the size and direction of the step, simple Newton’s methods are 

not robust. If we aim to find a transition state, we must assure that the Hessian has only one 

negative eigenvalue, with the corresponding eigenvector (the transition vector) roughly parallel 

to the reaction path. The Hessian updating methods guarantee right properties of the Hessian 

matrix, depending on optimization type (non-negative definite for minimization and indefinite 

with one negative eigenvector for TS search). 

 The quadratic approximation to the potential energy surface holds only for a small 

region around the current point. This region can be specified by a trust radius, 𝜏. Steps outside 

this region may lead to unreasonable structures. The optimization is more robust if the step size 

does not exceed its maximum possible value. An initial estimate of 𝜏 is usually updated during 

the course of the optimization. The update is based on how well the actual change of the energy 

on potential energy surface fit to energy change on an approximated surface from the previous 

step. The updating recipe is a ratio of the actual change in energy and predicted change in 

energy: 

 
𝜌 =

∆𝐸

𝒈𝟎
𝑻∆𝒙 +

1
2 ∆𝒙𝑻𝑯𝟎∆𝒙

 (19) 



22 
 

Depending on the 𝜌 value, the trust radius can be increased, kept the same, or decreased. Exact 

values can differ depending on the implementation. If the Newton step is too big, i.e. exceeds 

the trust radius, the simplest approach is to scale it back. A bit more elegant approach is to 

minimize the energy with a constraint that the step is not bigger than the radius.  

 

2.3.4. Constrained Optimization 

On many occasions, it is necessary to apply constraints while optimizing the geometry. These 

occasions may include scanning potential energy surfaces, coordinate driving, reaction path 

following, and many more. A nonredundant coordinate systems and simple constraints pose no 

problem. The constant coordinate can be easily removed from the space of variables being 

optimized. More general constraints and redundant internal coordinate systems call for more 

advanced methods like penalty functions, projection methods, or Lagrangian multipliers. 

 The penalty function method imposes the constraints, 𝐶𝑖(𝑥) = 0, by adding an extra 

term, 1
2

∑ 𝛼𝑖𝐶𝑖(𝑥)2, to the Taylor expansion of the PES energy (Equation (1)). Then, the energy 

is minimized in usual manner. The 𝛼𝑖 coefficients must to have large magnitude to ensure that 

the constraints are satisfied at the minimum. Thus, the optimization may converge much slower 

in comparison to the corresponding unconstrained optimization. 

For optimization in Cartesian space, the preferred method for including constraints is by using 

Lagrangian multipliers. By adding an extra term, the Lagrangian, 𝐿(𝒙), is defined, 

 𝐿(𝒙) =  𝐸(𝒙𝟎)  +  ∑ 𝜆𝑖  𝐶𝑖(𝒙) 

𝑖

  (20) 

Each constrain, 𝐶𝑖(𝒙), has a corresponding Lagrangian multiplayer, 𝜆𝑖. The derivative of the 

Lagrangian (equation (20)) with respect to the coordinates and the Lagrangian multipliers must 

be at the critical points zero.  

 𝜕𝐿(𝒙)

𝜕𝒙
=  𝐸(𝒙𝟎) +  𝒈 + 𝑯𝒙 +  ∑ 𝜆𝑖  

𝜕𝐶𝑖(𝒙)

𝜕𝒙
 

𝑖

  (21) 

The Lagrangian multipliers are optimized along with the geometric variables. Generally, this 

method converges much faster than the penalty function method and the constraints are satisfied 

exactly. 
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 Another way of applying linear constraints is the projection method. In this method a 

projector, 𝑷, with a set of orthogonal constraint vectors, 𝒄𝒊, is defined 

 𝑷 = 𝑰 − ∑  𝒄𝒊𝒄𝒊
𝑻/|𝒄𝒊|

𝟐

𝑖

 (22) 

The projector removes the constrained directions (where 𝛼 > 0).  

 𝑷𝒈𝟎  + 𝑷𝑯𝟎𝑷∆𝒙 + 𝛼(𝑰 − 𝑷) = 0 (23) 

In case of redundant internal coordinates, the projector has to remove the coordinate 

redundancies along with the constraint directions. 33 
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3. Global Optimization 

 

Global optimization methods are used to find the globally best solution of a problem in question. 

These methods are of great concern in modern science, technology, and economy. Because of 

this huge interest, a lot of effort has been dedicated to design, implementation, and testing of 

global searching algorithms. Many of them have been proposed, some finding application in 

field of quantum chemistry. The development of methods that efficiently determine the global 

minima of complex and rugged energy landscapes remains a challenge. 

 To undergo global optimization, the system has to be described by an objective function. 

The objective function defines quality of the trial solution. The optimal solution is reached when 

this function reaches the global minimum. In case of quantum chemistry, the objective function 

is usually the energy of the molecule; therefore, the optimal solution corresponds to the 

conformation with the lowest possible energy. This structure is identical with the deepest 

minimum on the Potential Energy Surface (PES) – the energy landscape of the molecule (see 

Section 2.1 on Page 7). For most applications of practical interest, physical characteristics of 

the system lead to an energy landscape with number of local minima, with high barriers between 

them. The conventional minimization techniques, based on information of the local PES, tend 

to be trapped within basin of attraction of the given local minimum. It is extremely difficult to 

find the global minimum using these local optimization methods. 

 The global structure optimization for big systems is a formidable theoretical challenge. 

Given that the most stable geometry is likely to be the global minimum, its localization is the 

object of interest. However, the number of possible global minima increases quickly with the 

number of atoms in the system, and it was showed by Hoare and McInnes69, 70 to grows 

exponentially for Lennard-Jones cluster. In practice, energy landscapes for potentials 

describing covalently bound materials possess much more rugged nature, which further 

increases difficulty of the problem. It is therefore suggested, by empirical observations and 

theoretical arguments, that the number of local minima will generally grow exponentially with 

number of atoms, i.e. 𝑛min(𝑁) = exp(𝑎𝑁).71-74 In the same way, the number of transition states 
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is anticipated to increase as 𝑛ts(𝑁) = 𝑎 exp 𝑏(𝑁).71 Both 𝑎 and 𝑏 are system-dependent 

constants. Obviously this scaling precludes exhaustive search in all dimensions, and methods 

based on a random walk in the configuration space are extremely improbable to find the global 

minimum. Therefore, a number of strategies for the search has been devised. 

 

3.1. Methods Review  

Minimization methods can be classified into two groups, deterministic and stochastic. Great 

strength of deterministic methods is that there are extremely fast. On the other hand, their 

weakness lies in their liability to be caught in a local minimum quite easily. On the contrary, 

stochastic methods have far less probability to be trapped in a local minimum, but there is no 

guarantee that any stochastic method can converge to the global minimum in a finite number 

of steps. 

 Stochastic methods use a rather different strategy for global minimization, and are less 

likely, in comparison to deterministic derivative-driven approaches, to become trapped in local 

minima. However, there is no guarantee that these methods will converge to a global minimum 

in a finite number of steps. Stochastic methods belong to the NP-hard problems. The NP-hard75 

problems are non-deterministic Polynomial-time hard problems. In contrast to a deterministic 

algorithm, nondeterministic algorithm is an algorithm that can exhibit different types of 

behaviour on different runs. An algorithm of polynomial time is one which running time is 

upper bounded by a polynomial expression in the size of its input (𝑇(𝑛) =  𝑂(𝑛𝑘), 𝑘 = const).  

 Stochastic methods offer a compromise between reliability and computational cost. For 

a fixed probability to locate the true minimum, the computational cost scales only as a power 

law with the number of variables.76 Stochastic methods perform global minimization through 

the simulation of a dynamical process for a system (or many systems) on the multidimensional 

potential energy surface.  

 There are many approaches that allow the optimizer to escape from local minima. One 

of such approaches is a popular method of simulated annealing (SA),77-79 which has enjoyed 

some success in this area. The SA method is an extension of Metropolis Monte Carlo 

techniques,80 which simulates process of slow cooling. The system point is allowed to move 

around the configuration space starting from an initial, high temperature. Then, the temperature 

is slowly reduced until it reaches absolute zero. By a slow reduction of the temperature, the trial 

solutions are less probable to be trapped in local minima. At the end of the cooling process, the 
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system will be in the global minimum. Unfortunately, this is only true when the cooling process 

is infinitesimally slow. In real applications, this is unfeasible. Additionally, the presence of 

high-energy barriers at the saddle points between minima may prevent optimizer to migrate to 

the adjacent basin of attraction – the system may be controlled kinetically, rather than 

thermodynamically. Success of the SA method depends strongly on the choice of the cooling 

schedule. Each geometric cooling schedule is characterized by three parameters: starting 

temperature, cooling rate, and number of cooling steps. All parameters must be optimized to 

obtain fine-tuned results. The SA method suffers from the freezing problem for many difficult 

problems with rugged energy landscapes, since the escape rate from local minima diverges with 

decreasing temperature. To address this problem a number of variation of the original 

algorithm81-86 has been proposed, many of them introduce additional parameters, making them 

less practical.  

 The stochastic tunnelling method87 (STUN) is generalization of the SA algorithm. This 

approach engages the freezing problem, at the same time reducing the number of problem-

dependent parameters to one. The freezing problem in stochastic minimization originates from 

high barriers between adjacent local minima on the PES. At high temperatures, a particle does 

not differentiate between the wells and can easily cross the barriers. As the temperature drops 

during the optimization, the particle will eventually become trapped in one of the wells, not 

necessarily in the one with the lowest energy minimum. The STUN method allows the particle 

to tunnel88, 89 into forbidden regions of the PES, enabling the system to abandon irrelevant 

minima. The tunnelling is accomplished by applying a nonlinear transformation to the PES. 

The transformation maps the entire PES from the current lowest minimum to the maximum of 

the potential onto the interval of [0,1]. The cut-off of the high-energy regions is controlled by 

the tunnelling parameter. The locations of all minima are preserved. The modification enables 

the dynamical process to pass through energy barriers of arbitrary height. By continuous 

updating of the reference energy to new lower laying minima irrelevant features of the PES are 

successively eliminated.  

 The J-walking90 and pivot91 methods are also related to simulated annealing. The J-

walking method is an easy to implement approach that greatly reduces the systematic errors. In 

standard Monte Carlo simulations, these errors result from quasi-ergodicity, or incomplete 

sampling of system configuration space due to large potential energy barriers. By coupling the 

usual random walker with the Boltzmann distribution generated by another random walker at a 

higher temperature, the J-walking method is able to jump over high barriers. The pivot method 
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utilizes a series of randomly placed points in optimization space. The points are moved based 

on their energy. The points with the highest energy are moved so that its energy decreases. This 

process is repeated iteratively until the system converges. The efficiency of the method depends 

on the choice of points’ distribution and the way they are moved. In the original lowest energy 

pivot method the pivot point is chosen with a probability based on its energy. In a more efficient 

version, the nearest neighbour pivot method, the pivot points are chosen to be the nearest 

neighbour points in the phase space. The main difference between these two methods is the way 

in which the pivot points are selected, resulting in different ways in which the phase spaces are 

being searched. There is also another concept, the excitable walkers,92 in which walkers perform 

parallel Monte Carlo walks on the potential energy surface, effectively repelling each other in 

the parameter space. 

 A different strategy to prevent the system from being trapped in a local minimum is to 

allow it to behave quantum mechanically, leading to the introduction of tunnelling. This can be 

accomplished by introducing Gaussian wave packets in imaginary time.93 The method finds the 

global energy minimum on a multidimensional PES by finding an approximate solution to the 

Schrödinger equation in imaginary time. For each particle, its wave function is represented as 

a single Gaussian wave packet. The whole system is then expressed as a Hartree product of 

theses single particle wave functions. For each Gaussian wave packet equations of motion are 

derived. The wave packet is allowed to evolve in time and tunnels through barriers searching 

for the global minimum on the PES. By setting Planck’s constant equal to zero, the classical 

minimum is found. Another approach imposing quantum mechanical behaviour on the system 

is the probabilistic quasi-quantal (QQ) method.94, 95 The method replaces the classical kinetic 

energy by its quantum mechanical counterpart. The resulting Schrödinger-like eigenvalue 

equation for a Hamiltonian is then solved. The usual quantum mechanical Hamiltonian is 

additionally scaled by a parameter, called the “annealing factor". The method is essentially 

probabilistic in nature. Also a combination of simulated annealing and quantum (or diffusion) 

Monte Carlo96 – referred to as ‘‘quantum annealing’’97 – uses delocalization and tunnelling to 

avoid metastable regions. In contrast to the simulated annealing approach, which exploits 

classical character of the function that is to be optimized, quantum annealing views the system 

as quantum-mechanical. Further advantage of Quantum annealing is that it does not require 

knowledge of the wavefunction. A random walker is allowed to wander through the 

conformational space. By reducing the system’s temperature to zero the resulting quantum 

ground state energy is obtained. Then, by gradually constraining the wave function (increasing 

the mass of the walkers), the ground state energy is reduced to its classical limit. The quantum 
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and simulated annealing avoid different local minima, and therefore, complement each other in 

general optimization applications. These methods perform well on relatively small atomic 

clusters, but the main problem is that they become increasingly difficult to implement as the 

number of dimensions rises. A recent review in an elegant pedagogical article on these and 

other related methods is available.98  

 Among the deterministic global optimization are the tunnelling method99 and the packet 

annealing method.100 The tunnelling method is composed of a sequence of cycles. Each cycle 

has two phases, minimization and tunnelling. The minimization phase lowers the current 

function value until a minimum is obtained. In the tunnelling phase, a new point is found, from 

which local minimization step will find a new stationary point with no greater value than the 

energy of the starting minimum. The packet annealing method mix temperature-annealing and 

spatial-averaging methods. Simulated Annealing contribute to the coarse-graining in objective-

function, whereas spatial-averaging methods provide spatial coarse-graining. 

 There is a number of global optimization techniques by potential energy 

transformations.101 By performing a search on deformed or smoothed energy landscape, 

entrapment in local minima can be avoided. These methods are of heuristic nature, i.e. represent 

experience-based techniques, which involve learning through optimization. As an example, 

lowering diffusion barriers,102 stochastic tunnelling,87 and various generalized ensemble 

approaches103-105 can be named. In the ideal case the original energy landscape is transformed 

into a funnel landscape that leads toward the global minimum. These methods have been very 

successful; nevertheless, most of them require a considerable amount of fine-tuning or 

additional a priori information on the system. Some surface deformations may displace or 

merge minima, causing problems with connecting back to the original landscape. Moreover, 

there is usual no guarantee of finding the global minimum. 

 The tabu search method is a discrete problems approach, which tries to transcend local 

optimality by penalizing certain moves. In this approach, the search is guided away from areas 

that have already been explored, trying to force the better coverage of all-important regions of 

the solution space. The tabu optimizer records visited parts of the optimization space keeping 

them unavailable for the system. After a predefined period, moves lose their tabu status, and 

become once again accessible. 

 The Local Elevation method106 enhances searching of conformational space in 

molecular dynamics simulations. The approach can be used for Molecular Dynamics (MD) and 

Monte Carlo (MC) simulations. Together with the conformational flooding method,107 the 
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Local Elevation method introduced memory-dependence into molecular simulations. The 

memory-dependent term modifies the potential energy surface and prevents the simulation to 

revisit already sampled configurations. This simple manipulation of the potential energy leads 

to increased probability of visiting new parts of the configuration space. The Local Elevation 

method can be seen as a continuous variant of the Tabu search method.108-110  

 Metadynamics111 is a powerful method for exploring the properties of the 

multidimensional free energy surfaces (FESs). The method improves sampling by means of 

coarse-grained non-Markovian dynamics (i.e. a stochastic process with memory) in the space 

defined by a few collective coordinates. The key aspect of the method is the presence of a 

history-dependent potential term. This term fills the minima in the FES, as the optimization 

proceed, allowing the optimization to efficiently escape from the local minimum and to further 

explore of the FES. The FES is represented as a function of a finite number of relevant collective 

coordinates. 

 The energy landscape paving (ELP) method112 combines ideas from energy surface 

deformation and tabu search. The method avoids some of their pitfalls, having a very general 

applicability. The approach performs a low-temperature Monte Carlo (MC) simulation, except 

that the energy expression is modified to steer the search away from regions that have been 

already explored. The modifications may lead to a slow convergence, since the optimizer does 

not distinguish between important and unimportant regions of the landscape. 

 The Basin-hopping method113,114 is a global optimisation approach that involves a 

transformation of the potential energy surface. The deformation of the hypersurface preserves 

the global minimum as well as the energies of all the local minima. The “basin-hopping” 

technique transforms the potential energy surface into a collection of interpenetrating staircases 

representing basins of attraction for all minima. The method exploits the features of energy 

landscape for efficient relaxation to the global minimum. Any point in the configuration space 

is associated with the local minimum obtained by a geometry optimization started from that 

point. This manipulation effectively removes transition state regions from the optimization 

problem. Global Optimization on Funneling Landscapes115 is a variant of basin-hopping 

method.  

 The Umbrella Sampling116 method represents another way to improve sampling of a 

system. An energy barrier that separates two regions of the configuration space may cause a 

poor sampling in Metropolis Monte Carlo simulation. Umbrella Sampling prevents this from 
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happening by replacing standard Boltzmann weighting for Monte Carlo sampling by a potential 

chosen to cancel the influence of the energy barrier. 

 In addition, there is a knowledge-based approach, which neither uses trial solutions nor 

involves modification of the PES. In geometry optimization problem, it is mainly used for 

prediction of the tertiary structures of proteins.117 The knowledge-based methods identify 

analogies between a given case, being a subject of the investigation, and a database, having all-

important information on similar cases. For protein folding, the amino acid (AA) sequence of 

the molecule is compared with AA chains of other proteins in the database, to recognise the 

secondary structures, motifs, domains or ligand interactions. Based on these similarities the 

three-dimensional structures can be predicted. Outside chemistry, it is also very often used in 

economics, machine learning, and others fields. 

 The method of genetic algorithm118-123 (GA) is a stochastic minimization global 

technique which requires no quantum formulation, does not modify the PES, is undeterred by 

barriers between minima, and does not require any a priori knowledge about the system. The 

GA method is inspired by concept of natural evolution. Similarly to the pivot methods, a 

population of candidate solutions (trial solutions) is kept. Members of the population compete 

with each other, through selection, breeding, and mutation operations, for survival. The fittest 

individuals are allowed to pass their genetic characteristics (geometry) on to later generations. 

This happens through many generations. Ultimately, at the end of the optimization process, the 

fittest candidate represents the best solution to the problem in question (the global minimum). 

In case of geometry optimization, trial solution is a geometry of a system, and global minimum 

is the solution with the lowest energy among the population. Each individual geometry is 

assigned a fitness based on its potential energy. The lower the potential energy of a structure, 

the fitter it is. The fitter the structure, the more often it is allowed to mate. Usually two parent 

solutions are mated to produce one offspring, which contains some genetic material from both 

parents. Of course, from conceptual point of view there is neither any limit on the number of 

parent structures contributing to the one child, nor how many children are being constituted. 

The size of the population is usually kept constant, so its average fitness changes by allowing 

fitter individuals to replace older one, with the lowest fitness score.  

 A very important modification of the standard genetic algorithm for optimization 

introduces local optimization step for each trial solution. Local relaxation of the structures 

additionally improves the gene pool of the population. All structures that were high in energy 

but, at the same time, were lying in the basin of attraction of low lying minimum can now 
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contribute to the final solution (by being included in the population – which would not be 

possible without relaxation). This modified GA algorithm is called the hybrid genetic algorithm. 

The hybrid GA algorithm is based on Lamarck’s concepts of evolution, since the members of 

the population pass on characteristics that thay acquired during their lifetime, i.e. they pass on 

parts of the relaxed geometry.  

 The main advantage of the GA approach is that it is not a greedy algorithm, i.e. it does 

not solve the local optimization problem at expense of the global solution. The genetic 

operations of breeding and mutation, which are stochastic in nature, very often yield children 

structures drastically different from their parents. These procedures enable structures to escape 

from local minima, and, therefore, enable algorithm to search the configuration space 

extensively, with the final goal of achieving the fittest possible individual. Some recent articles 

explore usage of GA in chemistry. 124-128 

 

3.2. Genetic Algorithm 

The genetic algorithm (GA) is a stochastic search technique, based on the principles of natural 

selection, which can be applied to find the best possible solution, the so-called global minimum. 

Each GA run starts with generation of random structures, i.e. trial solutions, for the initial 

population. In hybrid GA algorithm, the structures are then optimized using standard local 

optimization methods like quasi-Newton or Trust Radius Optimization (TRO), and afterwards 

undergo a fitness evaluation. Standard GA algorithms do not include a local optimization part. 

The fitness parameter, usually based on the energy of the structure, measures the quality of the 

trial solution. The population evolves, through crossing over and mutation, for a certain number 

of generations; with the priority to crossover and mutate based on the fitness parameter, so that 

structures with better fitness undergo recombination more often. The GA runs stop when either 

the convergence criteria, e.g. the difference in the average energy between two generations, is 

smaller than a threshold, or the number of generations is exceeded. 

 The Genetic Algorithm is a search technique inspired by concept of Darwinian natural 

evolution, although in case of combining it with local optimization it corresponds to 

Lamarckian evolution, since parents pass on a part of characteristic that their acquired, i.e. parts 

of the relaxed structure, to their children. This coupling of the local minimization with GA was 

proven to be efficient for global optimization,129 and leads to transformation of the potential 

energy surface (PES) into a stepped surface – with each step corresponding to a basin of 
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attraction of a local minimum. This simplification of the PES reduces the configuration space 

that the GA has to search.  

 Every GA algorithm starts by creating an initial population – a randomly generated set 

of structure, so called trial solutions (Figure 2). Each structure from this set is then optimized 

to the nearest local minimum; in the non-hybrid GA the local optimization step is omitted. 

Structures then undergo a fitness evaluation to measure the quality of the trial solution. The 

fitness (𝑓𝑖) of each structure is evaluated as a function of the structure’s dynamically scaled 

relative energy (𝜀𝑖),  

 
𝑓𝑖 =

𝑒𝑥𝑝(−𝛼𝜀𝑖 )

∑ 𝑒𝑥𝑝(−𝛼𝜀𝑗  )𝑗
 

(24) 

where 𝛼 is a constant, and  

 
𝜀𝑖 =

𝐸𝑖 − 𝐸𝑚𝑖𝑛 

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 (25) 

is the dynamically scaled relative energy of a given structure, 𝐸𝑖 is the energy of the structure, 

and 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 are the highest and lowest energies of structures in the population, 

respectively. Only a certain number of structures from the initial population is kept. These 

structures are allowed to evolve, by mating and/or mutation, to create a new generation of 

structures. The crossover generates child structures by taking two parents from the population, 

cutting them through an arbitrary plane, and recombining them. The method is similar to the 

one used by Chuang et al.,130 but had to be adopted to work with the Rigid Body approximation. 

Parent structures are chosen based on their fitness evaluation using a roulette wheel selection.131, 

132 The child structure is accepted if no atoms overlap, no atoms are unbound, and the new 

structure is not similar to any of previously obtained structures. After generating the declared 

number of children, all structures are optimized to local minima, and then incorporated into the 

existing population to create a new population. Structures in the new population undergo fitness 

evaluation, and only a predefined number of structures with the lowest energies is kept in the 

population. The whole cycle is repeated until the convergence criteria are met or the maximum 

number of generation is exceeded, then GA finishes and the last set of structures represents the 

result of the search – the so-called final population. A very important step of GA is similarity 

recognition. By comparing the structures no species with redundant information has been keep 

within the population. This increases the variety of the genes in the pool, and gives better quality 

of recombined structures. 
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 In the traditional Genetic Algorithm (TGA) the coordinates of the whole system are 

coded into strings of binary numbers. The mating process is carried on through a one-point 

crossover between two individuals. Mating is accompanied with an occasional mutation of a 

few bits into their complement. The problem with binary coding of the coordinates becomes 

pronounced with the increased number of atoms. For large systems, encoding and decrypting 

can become the bottleneck of the computation. For that reason, several GA approaches for 

locating global energy minima use real-valued coding of the coordinates. First attempts used 

internal coordinates, like atom distances or bonds angles. Finally, space-fixed (SF) coordinates 

were proposed, as an equivalent solution. Advantage of using directly Cartesian coordinates is 

that the size of the problem increases linearly with the number of atoms. For internal 

coordinates, the scaling is quadratic.  

 Holland's schema theorem explains the power of genetic algorithms. The theorem states 

that in each subsequent generation subsets of solution with above-average fitness increase 

exponentially.133 The Building Block Hypothesis attempt to explains the functioning of TGA 

based on the Holland's schema theorem. The hypothesis states that the genetic algorithm 

performs heuristic adaptation by identifying and recombining "building blocks", i.e. parts of 

the trial solutions. Instead of trying to construct a high-performance solution from every 

possible combination, the final solution is built from the best partial solutions of past samplings, 

through their gradual improvement. The theorem holds only if the coded bits of information are 

substantially related to the physical nature of the problem. This is certainly true for internal 

coordinates, but does not hold for SF coordinates, since one Euclidean distance can be mapped 

into an infinite set of Cartesian coordinates. Nevertheless, SF coordinates cope better with 

larger systems than binary coded. Moreover, the most successful applications of the GA method 

use derivative information to relax structures to a local minimum on the surface. These methods 

belong to the hybrid genetic algorithm (HGA). 
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Figure 2. Schemes of global and local optimizations of the genetic algorithm in our 
implementation of hybrid GA. Local optimization part, right side, incorporates derivatives 
transformation due to Rigid Body approximation. 

 

 The genetic algorithm scheme was firstly applied to the problem of cluster optimization. 

In the early 1990s, Hartke, as first, proposed the use of GA optimization method for cluster 

geometries. In his pioneer work134 he used TGA to localize the global minimum for the Si4 

cluster. The cluster geometry was binary encoded in a set of internal coordinates, and the genetic 

operators were acting in a bitwise fashion on the binary strings In later work,135 he extended 

this treatment to larger cluster using growth strategy, i.e. seeding Sin calculations with the Sin-1 

structure. Niesse and Mayne136 were able to minimize silicon cluster up to ten atoms without 

restrictions using SF real coding and gradient-driven minimization for each structure. The 
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results improved previously reported minima. Xiao and Williams137 used TGA to investigate 

molecular clusters of benzene, naphthalene, and anthracene. For each molecule, geometry was 

binary encoded as six parameters: three translations of the centre of mass and three rotations 

around the centre of mass. They obtained convergence for dimer cluster of each investigated 

molecule, and for the trimmers and tetramers of benzene. An important step in the evolution of 

GA algorithm was made by Zeiri.138 He used the real-valued Cartesian coordinates without 

further encoding. This way, the cluster could be represented in terms of continuous variables; 

and removed the costly requirement for encoding and decoding geometry into binary genes. 

The scheme was further improved by Deaven and Ho129 by introducing a gradient driven local 

minimisation of the cluster energy for each newly generated cluster. The introduction of local 

minimisation transforms the cluster PES into a stepped surface, with each step corresponding 

to a basin of attraction of a local minimum. This transformation reduces the space that the GA 

has to search, and therefore simplifies the PES and greatly facilitates the global optimization. 

Using local minimisation step, change character of the GA algorithm from Darwinian to 

Lamarckian evolution, since individual members pass on, to their offspring, a proportion of the 

characteristics that they have acquired during their “life time”. The acquired characteristics 

relate to the geometries after local minimisation. The hybrid GA algorithm has much improved 

efficiency in comparison to the traditional GA method. In the same article, Deaven and Ho 

made another significant improvement to the cluster optimisation GA method, they introduced 

the 3-dimensional cut and splice crossover operator, giving it more physical meaning. The 

operation was adapted into most subsequent works. The results on carbon clusters bound by a 

tight binding potential and Lennard-Jones clusters with 2–100 atoms from subsequent article,139 

show that the authors were able to localize many low energy minima that had not been found 

previously. Since the first application of the GA algorithm to geometry optimization there has 

been a fast and rapid development of this method. Further information on the current state of 

the advancement in the field can be found in recent reviews.140, 141 

In comparison to clusters, usage of genetic algorithms to obtain structural models for periodic 

systems like surfaces and crystals, is new concepts. Bush et. al., 142 used genetic algorithms 

together with energy minimisation to predict the crystal structures of complex inorganic solids. 

In their implementation of the GA algorithm, the binary string stored the coordinates of all the 

atoms in the cell. Two-point crossover scheme helped to retain genetic diversity, and conjugate 

gradient minimisations of several randomly chosen individuals served to improve the quality 

of ‘gene pool’ available for breeding. Top ten individuals of the GA step were output into the 

second stage of the calculation in which their lattice energy was minimised. The efficacy of the 
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method was demonstrated by yielding accurate solutions for complex crystal structures. In the 

following work, Woodley et. al.143 used genetic algorithm to generate plausible crystal 

structures with the unit cell dimensions and constituent elements as an input. The quality of the 

structures were assessed using a cost function based on the refined bond valence model. The 

lattice energy was minimised using a local. The effectiveness of the approach was showed by 

generating number of crystals, starting from configurations without knowledge of the atomic 

arrangement in the unit cell. Bazterra et. al.144 presented a new computational scheme to model 

crystal structures of organic compounds based on a modified genetic algorithm. The model had 

no assumptions on the crystallographic group nor to the number of molecules in the unit cell. 

Real-valued Cartesian coordinates and Euler angles between molecules were used as variables 

that were optimized in the genetic search. The molecules themselves were treated as rigid 

bodies. As an example, global optimization of crystal structures of the benzene, naphthalene, 

and anthracene molecules was performed. The results showed good agreement with the 

experimental data. Chuang et. al.130, applied the hybrid genetic algorithm to find the 

reconstruction of the semiconductor surface. The algorithm used Cartesian representation of 

atomic positions and real-space representations for crossover and mutation operators, and the 

trail structures were optimized locally. Additionally, authors maintained the structural diversity 

of the population using a similarity recognition scheme. In this scheme, the surface energies of 

the structures were compared, and if the energy deference fell within a given threshold, the 

structures were analyzed for topological similarity. Oganov et. al.,145 developed an efficient and 

reliable methodology for crystal structure prediction, by merging ab initio calculations with a 

specifically devised evolutionary algorithm. The method allows to predict the most stable 

crystal structure and a number of low-energy metastable structures without requiring any 

experimental input. Test cases included ionic, covalent, metallic, and molecular structures with 

up to 40 atoms in the unit cell. Authors reported the method to be highly successful. Abraham 

et. al.146 used genetic algorithm to determine the global minimum energy configurations of 

crystal structures. The algorithm requires no prior knowledge about the ionic configuration 

within the unit cell, nor information about size, shape, or symmetry of the unit cell. The 

algorithm uses a real-space representation of the coordinates, and performs periodic cut as the 

crossover operation. Briggs et. al.,147 presented genetic algorithm for determining the atomic 

configuration of crystallographic steps. To find the atomic structure of the steps oriented along 

given direction in the plane of the surface, the algorithm uses information on a stable surface 

orientation with a known reconstruction. The efficacy of the method was exemplify by finding 

structures for several types of monatomic steps on Si(114) surface. Zhu et. al.,148 presented an 
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evolutionary algorithm for the prediction of surface reconstructions. The authors used a 

representation in which the system has three parts: vacuum, surface, and substrate. Vacuum and 

substrate regions are predefined. Only the surface region is subject to the GA optimization. The 

number of surface atoms varies up to a predefined maximum number. To allow surface 

reconstruction, the cell size is also variable. The algorithm can be used to automatically explore 

stable and low-energy metastable configurations of surfaces.  

 Genetic algorithms for cluster and surfaces are conceptually the same. Both keep the 

population of trial solutions. At each cycle, new trial solutions are obtain by genetic operations 

like crossover, mutations. Creation of new structures proceeds until given convergence criterion 

is meet. The only difference is within the implementation of genetic operations. Of course, for 

cluster optimization additional criterion concerning 3D rotations of clusters has to be 

considered. For periodic calculations, coordinate system is fixed, and usually related to 

dimensions of the unit cell.  
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4. Rigid Body Genetic Algorithm  

 

4.1. Introduction 

The use of Rigid Body coordinates allows reducing the computational effort of finding local 

minima. Number of factors accomplishes the reduction: decreasing the number of degrees of 

freedom which have to be optimized; reduction of couplings between atoms coordinates, and 

separating stiff and flexible coordinates. All these elements provide a perfect mean to treat 

systems with distinguishable subsystems – like surface and adsorbate molecules – which can 

be then treated separately, as unchangeable entities during the course of optimization. 

 In the rigid body approximation the whole system is divided into disjoint sets of atoms 

or molecules which form rigid bodies. Determining the position of 𝑁at atoms requires a set of 

3𝑁at − 6  coordinates in a nonlinear molecule, while the same system with 𝑁rb predefined rigid 

bodies requires only 6𝑁𝑟𝑏 − 6  independent coordinates; and, therefore, the advantage of 

introducing rigid-body coordinates is pronounced for systems with a large number of atoms and 

a relatively small number of rigid bodies, i.e. when 𝑁rb ≪  𝑁at. In this case the reduction of the 

search space leads to a rapid and fast localization of a stationary point, a local minimum or 

saddle point, which can be cumbersome or even unfeasible in the unconstrained case. This, of 

course, can greatly decrease the computational cost of investigating a molecular system.  

 The RB method not only reduces the optimization space by freezing some degrees of 

freedom and, hence, reducing number of possible minima, but also restricts the optimizer from 

searching unwanted regions of the PES. These regions could correspond to very unlikely 

molecular conformations, like highly oxidised states, or cases when part of the molecule is 

“submerged” under the surface. Within the RB approach we strictly require that no alternation 

to the composition of the rigid body happens. Even more, rigid bodies cannot undergo any 

conformational changes. What is left as a subject of optimization is relative placement of the 

rigid bodies with respect to each other. We treat all atoms explicitly, yet we forbid them to 

move freely. This approach seems to be perfect to study physical phenomena like molecules 
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adsorption, aggregation, diffusion, melting, freezing, vaporization, condensation, sublimation, 

etc. Application of the RB method can range from homogenous/heterogeneous catalysis, to 

enzyme catalysis, photocatalysis, phase-transfer catalysis, and more. 

 The rigid body approximation also allows for separation of intra- and intermolecular 

degrees of freedom.42 In this method, the intramolecular interactions are neglected, while only 

intermolecular interactions are taken into account. This segregation of degrees of freedom leads 

to a division between weak and stiff modes. Again, the necessary assumption is that investigated 

system does not undergo a substantial change in molecules’ connectivity, like breaking or 

formation of the bond. This way, weakly bounded systems (i.e. systems with a distinct division 

between strong intermolecular forces, and weak intramolecular interactions) can be treated in a 

simplified fashion. The approach allows modeling of adsorption processes, nanoparticles 

interaction, liquids, molecular clusters and complexes, crystallization – i.e. every phenomenon 

that do not involve chemical reaction.  

 Throughout the optimization process each rigid body is kept frozen, i.e. all the internal 

degrees of freedom are fixed and only relative position of the rigid bodies, translation and 

rotation, are being subject to the optimization problem. The construction of rigid bodies 

precludes applications of this method to investigate chemical reactions in which an atom, or a 

group of atoms, is transferred from one molecule to another. Rigid bodies are defined using 

proper internal coordinates (i.e. rigid-body coordinates). Each rigid body can be fully described 

by six independent coordinates, the most general choice, following Chasles’ theorem,149 are 

three translations of the center of mass, and three rotations with respect to the center of mass of 

the rigid body.  

 There are three major ways to introduce rigid body scheme. The first one is to evaluate 

the derivatives in a rigid-body framework, and use them with standard optimization techniques. 

This approach is easy to implement for empirical and semi-empirical methods. It is, therefore, 

usually used with force fields and molecular dynamics calculations. The second option is to 

perform constrained optimization in Cartesian or internal coordinates. In the former case, this 

requires definition of a proper Lagrangian, in the latter, first a projection form Cartesian to 

internal coordinates has to be performed, and then all frozen coordinates have to be projected 

out. The third option is to introduce proper internal coordinates, ones that will intrinsically 

address issues of freezing parts of the system. This approach lacks overhead calculations due 

to constraining the system. It also seems to be much better suited for ab initio calculations, 
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since it can easily utilize Cartesian derivatives used by most of the quantum mechanics codes, 

and avoids need of redefining derivatives in the rigid-body framework.  

 Most of the standard quantum chemistry codes evaluate energy and its derivatives in the 

Cartesian coordinate system. To allow the rigid body optimization, a proper transformation of 

first- and second-order derivatives must be defined. To avoid singularities during derivatives 

transformation form Cartesian coordinates to rigid-body coordinates, Rodrigues’ rotational 

formula – an efficient algorithm for rotating each rigid body in space – was used. The advantage 

of this approach is that no backward transformation is required; the calculated step, in rigid-

body coordinates, corresponds directly to transition and rotation of a rigid body in the Cartesian 

coordinates. Of course, by performing a projection onto rigid-body subspace, we change the 

dimensionality of the problem in question, but this should not influence the topography of the 

PES. All stationary points should preserve the topology of the unconstrained PES, although 

some stationary points will be unavailable.  

 Each rigid body has assigned its own Cartesian coordinate system, attached and rotating 

with the molecule. The position of the Cartesian systems is defined with respect to the 

laboratory-fixed frame. The choice of translational degrees of freedom is straightforward, but 

care is required in case of the rotational coordinates. The Euler angles suffer from the problem 

of information loss during transformation of derivatives from Cartesian coordinates, due to 

singularities at the origin of the coordinate system. Similar problems occur when polar 

coordinates are used. Unit quaternions provide a singularity-free description of pure rotation, 

but the quadratic unit-norm constraints make it less attractive for structure optimization 

proposes. An alternative offers an angle-axis representation based on the Euler’s rotation 

theorem, which states that each arbitrary rotation of a rigid body around its center can be 

presented as rotation about one axis.  

 The main advantage of using rigid-body coordinates is that there is no back-transform 

step, like in standard internal coordinates. Therefore, there is no need to calculate inverse of the 

𝑩 matrix. This can be cumbersome for large number of particle, since matrix inversion scales 

𝑁3 with matrix size. Displacements obtained in rigid-body coordinates correspond directly to 

translations and rotations of the molecules (rigid bodies) in Cartesian coordinates. This is a one-

step procedure, involving substitution of the translations and rotation into the Rodrigues’ 

formula. In contrast, step transformation in standard internal coordinates is an iterative scheme. 

Additionally, imposed constraints are intrinsic to the design of internal coordinates. Therefore, 
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no additional procedures to impose constraints are needed; like projecting frozen distances and 

angles out of optimization space.  

 The idea of introducing constrained optimization, so as to obtain rigid bodies, is not new 

to the optimization problems; and it is widely used to answer a variety of questions in quantum 

chemistry.42, 150, 151 Nevertheless no use of it was reported so far for ab initio slab calculations 

with periodic boundary condition. In our implementation we introduce the Rigid Body 

approximation at the local optimization step, by implementing proper transformation 

coordinates and gradients from the Cartesian to the rigid-body coordinates, in the existing code. 

At the same time GA steps – initialization, crossover, and mutation – had to be modified to 

work within the same framework. In generation of the initial population predefined number of 

rigid bodies is taken and randomly distributed, using translation and rotation, on top of the 

surface. Obtained structures are checked if any rigid body is not unreasonably close or far from 

the surface or other rigid bodies; they are also compared with previously obtained structures, 

so as to not recalculate them.  

 

4.2. Methodology  

To describe a system in the rigid body approximation the relationship between the Cartesian 

coordinates and the rigid-body coordinates, which are specific type of internal coordinates, must 

be found. This relationship provides means to express the gradient (first derivatives of energy) 

and the Hessian (second derivatives of energy) in the rigid-body coordinates. Derivatives are 

then used to predict a step on the PES in the rigid-body frame.  

 In this work, we use the angle-axis representation for rotational coordinates of a rigid 

body (following Chakrabarti et.al.150). The rotation is described by the Rodrigues’ rotation 

formula. The formula allows for direct transformation of the step into Cartesian coordinates. 

The step in the Rigid Body (RB) coordinates corresponds to infinitesimal translation and 

rotation in Cartesian coordinates, and it is obtained in a one-step process by substituting the RB 

step into an equation describing rotations and translations of all rigid bodies in Cartesian 

coordinates. Therefore, we avoid costly back-transformation typical for other internal 

coordinates. In addition, since the design of the Rigid Body coordinates by definition imposes 

constraints of a desired character on the system, we avoid extra work in relation to introduction 

of constraints. For the Cartesian coordinates this is usually done using the Lagrange multiplier 

method, while for internal coordinates it is done by proper projection constructed to impose 
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expected constraints. Of course, in both cases the introduction of constraints leads to an increase 

in computational cost.  

Let us consider a system of 𝑁 molecules represented as rigid bodies. Following 

Schröder151 we define two coordinate systems; a complex-fixed Cartesian coordinate system, 

with origin in the center of mass of the complex; and space-fixed system, which axes coincide 

which axes of the complex-fixed Cartesian coordinate system. In addition each rigid body has 

defined Cartesian coordinate system with the origin in the center fo mass of rigid body. 

 The first rigid body, i.e. surface, is treated as frozen. Its position is not subject to the 

optimization process. Position of each other rigid body is fully describe by 6 coordinates: 3 

translations along the axes of space-fixed system, 𝒓𝒊 = [𝑟𝑖𝑥, 𝑟𝑖𝑦, 𝑟𝑖𝑧]  , and 3 rotations around 

the axes of rigid body’s coordinate system, 𝒕𝒊 = [𝑡𝑖𝑥, 𝑡𝑖𝑦, 𝑡𝑖𝑧]. In total, 𝑁 − 1 rigid bodies are 

defined using 6(𝑁 − 1) independent coordinates. Displacement in the rigid-body coordinates 

contains values of rotations and translations for each rigid body, 

 𝒔𝒒 = (𝒓𝟏 , 𝒕𝟐 , . . . , 𝒓𝑵−𝟏, 𝒕𝑵−𝟏)𝑇. (26) 

Displacements in the Cartesian coordinates (∆𝒙) can be expressed as a sum of rotations and 

translations of all N rigid bodies, 

 ∆𝒙 = 𝒙′ − 𝒙 =  ∑(𝒓𝑗 + 𝒕𝑗)

𝑁−1

𝑗

= ∑(𝑹𝑗𝒙𝑗 + 𝒕𝑗) ,

𝑁−1

𝑗

 (27) 

where 𝑹𝑗 is the rotation matrix acting on the Cartesian coordinates of 𝑗𝑡ℎ rigid body – 𝒙𝑗, the 

𝑹𝑗 matrix is given by Rodrigues’ rotation formula 

 𝑹𝑗 = 𝐈 + [𝒑]𝒙  sin 𝜃 + [𝒑]𝒙
2(1 − cos 𝜃) (28) 

Where [𝒑]𝒙 is a cross product matrix  

 [𝒑]𝒙 = [

0 − 𝑝3 𝑝2

 𝑝3 0 − 𝑝1

− 𝑝2 𝑝1 0
] (29) 

 𝜃 = √ 𝑝1
2 +   𝑝2

2 +  𝑝3
2 (30) 
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of a vector  𝒑 = [𝑝1 , 𝑝2 , 𝑝3], indicating direction of an axis of rotation of 𝑗𝑡ℎ rigid body and 𝜃 

is an angle of rotation about 𝒑.  

 More general, to find the transformation between derivatives, we consider a set of 𝑛 

Cartesian coordinates 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇, and a set of 𝑟 rigid body coordinates 𝒒 =

(𝑞1, 𝑞2, … , 𝑞𝑚)𝑇. Small changes in rigid-body coordinates transform to change in Cartesian 

coordinate as  

 
𝑑𝑥𝑖 =  ∑

𝜕𝑥𝑖

𝜕𝑞𝑗
𝑑𝑞𝑗  

𝑗

. 
(31) 

In matrix formulation, change in the Cartesian coordinates (𝛿𝒙) is given by change in rigid-

body coordinates (𝛿𝒒) 

 𝛿𝒙 = 𝑩𝛿𝒒. (32) 

The 𝑩 matrix is similar to Wilson’s matrix. Its elements are given by 

 
(𝑩)𝑖𝑗 =

𝜕𝑥𝑖

𝜕𝑞𝑗
.  

(33) 

Using the definition of gradients in the rigid-body coordinates and the Cartesian coordinates, 

the transformation of the coordinates (7), and the 𝑩 matrix (9), the relation between them can 

be given by 

 𝒈𝒒 = 𝑩𝑻𝒈𝒙  (34) 

Similarly, the relation between Hessians in the rigid-body coordinates and the Cartesian 

coordinates can be given by 

 𝑯𝒒 = 𝑩𝑻𝑯𝒙 𝑩 + 𝑲 (35) 

Where the 𝑲 matrix is the correction due to the non-zero Cartesian gradient 

 𝑲 = ∑(𝑩′)𝑘𝑖𝑗

𝑛

𝑘=1

[𝐠𝐱]𝑘 (36) 

 

and the 𝑩′ matrix is given by 
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 (𝑩′)𝑘𝑖𝑗 =
𝜕2𝑥𝑘

  𝜕𝑞𝑖𝜕𝑞𝑗
 (37) 

Equations (34) and (35) allow for direct transformation of gradients and hessians, using only 𝑩 

and 𝑩′ matrix; both can be derived from equation of displacement in Cartesian coordinates (27). 

 There is no additional effort needed to perform transformation from the rigid body 

coordinates to the Cartesian coordinates. The step prediction on the PES in the rigid-body 

coordinates 

 ∆𝒒 = 𝑯𝒒
−𝟏𝒈𝒒 (38) 

corresponds to translations and rotations of the rigid bodies. Rotational and translational 

coordinates can be substituted into equation (27), to yield a step directly in the Cartesian 

coordinates. Neither iterative method nor back transformation of coordinates is required (it 

scales as 𝑂(𝑛3), and can be the bottleneck for larger systems).  

 

4.3. Implementation  

To enable the usage of the rigid body approximation as a local optimization scheme 

with a genetic global optimization scheme, changes to the existing codes had to be done. 

In our implementation the global optimization part is performed by the DODO 

program,131 which uses an interface to the local optimization program (QMPOT152). The VASP 

program3 evaluates single point energies and gradients, which are then used by the QMPOT 

program to optimize the structure. The optimization is done by moving the structure on the 

potential energy surface (PES) towards the local minimum. The global optimization program 

keeps a population of structures during each global search, and also controls how many of these 

structures are being optimized at the same time.  

 Child structures are obtained by cutting parent structures by an arbitrary plane and 

recombining them. Whether rigid body is associated with one or the other part of the structure 

depends on which side of the cutting plain lays its centre of mass. In the recombined structure 

rigid bodies have the same orientation as in the parents’ structures. Mutation is performed by 

choosing random number of rigid bodies, rotating them around their centres of mass, and 

translating them along 𝒄-vector direction away from the surface. 
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This implementation is suited only for surface models with one type of rigid bodies. Further 

improvement of the algorithm to include optimizations for different types of rigid bodies and 

for cluster systems is possible and straightforward. 

 

4.4. Rigid Body Genetic Algorithm Performance 

The newly developed Rigid Body Genetic Algorithm (RBGA) method, was tested by running 

3 independent GA optimization runs for a system consisting of four methane molecules at the 

MgO(001) surface. The global minimum for this system is well known to be the ROT structure. 

It is a monolayer structure, with methane molecules adsorbed at every other magnesium site; 

each molecule is adsorbed in on-top position at the site maintaining the dipod configuration; 

neighboring molecules are rotated with respect to each other, by 90 degrees around surface 

normal going through the carbon atom. 

 The system was a subject of previous investigations, both experimental and theoretical. 

The global minimum structure is resolved and recent results are very consistent about its 

structure. Therefore, due to the possibility of relating the results to experimental and other 

theoretical studies, it is a perfect model to benchmark the performance of the RBGA method. 

The main concern was whether the RBGA algorithm will be able to localize this structure. 

However, so far all studies involved less strict methods based on chemical intuition. This is the 

first report of using global optimization methods to investigate methane monolayer structure at 

the MgO(001) surface. 

 The surface is a 2A × 2A slab model - A is two times the Mg-O distances. This gives 

eight magnesium and eight oxygen binding sites at the top of the model (more detailed 

description of the surface model can be find in Section 5.2 on page 56). Four methane molecules 

at that surface correspond to monolayer coverage (one methane molecule per 2 magnesium 

sites). Each GA run has begun with 100 structures in the initial population.  

 Figure 3 shows progress of all three independent GA investigations. The 𝑦-axis 

represents the energy difference with respect to the energy of the final structure – supposed 

global minimum – obtained during the optimization. The 𝑥-axis shows number of the structures 

calculated over the optimization. The solid line corresponds to structures with the lowest 

energies in each GA populations. The dotted lines correspond to the average energies of 20 and 

50 structures. All of the values are used to monitor convergence of the genetic algorithm. The 

calculation can be considered as converged when the average energies change by less than a 
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preselected threshold. The size of the threshold depends on the system. For the methane/MgO 

system, small differences in energies can translate to huge structural rearrangements. That calls 

for a very strict threshold. Small changes in the average energies also imply that the global 

minimum is stable, i.e. it has not changed over the last few cycles.  

 

 

Figure 3. Performance of Genetic Algorithms for each run: first run with 700 calculated 
structures, second and third run with 600 calculated structures. The lowest energy structure for 
second GA run is 0.24 kJ/mol higher in energy with respect to the two other. Energy difference 
is relative with respect to the final global minimum. The small difference in the final energy of 
the global minimum for second GA run will disappear at the full relaxation step of the 
optimization process.  

 

 The first and third RBGA runs localized the same global minimum. The first GA 

converged after optimizing 400 structures (green solid line). The second GA run did not 

converge to the same structure as the other two optimization runs. However, the difference 

between the final structures is only 0.24 kJ/mol in total energies, which translate to 0.06 kJ/mol 



48 
 

per molecule. This difference is negligible, since at the full optimization step all structures 

undergo further optimization, and in the end all structures converged to the same final global 

minimum structure. Also a visual check confirmed that the second GA final structure was 

indeed a slightly distorted ROT configuration. The reason why this has happened may be due 

to the fact that the local optimization ran out of cycles and, therefore, the structure did not fully 

converge. In the third run, the global minimum was already found after optimizing structures 

in the initial population (solid blue line). 

 

 

Figure 4. Average number of local optimization cycles needed to reach a local minimum, 
calculated as a simple moving average over last 100 optimizations. 

 

 Figure 4 shows average number of local optimization cycles for last 100 calculations. 

This value is relatively high for the initial populations, above 60 cycles, as the randomly 

generated structures are expected to be strongly disordered. Number of cycles drops 

significantly within second hundred structures, since the child structures inherit parts of the 
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ordered character from parents. The goal of the performance analysis was to confirm that all 

three RBGA optimizations were able to localize the global minimum for the monolayer 

coverage of the methane at the MgO(001). That goal was reached. The obtained geometries, 

along with interaction energies, thermodynamic frequencies, and frequency analysis are 

discussed in the Section 5.7.2 on page 72.  

 

 

 

 

  



50 
 

  



51 
 

 

5. Case Study: Methane, Ethane, Propane on MgO(001) 

 

After implementation and validation, the newly developed RBGA method was used to 

investigate interaction of hydrocarbons with a magnesium oxide surface.  

 

5.1. Motivation 

The interaction of individual molecules with crystal surfaces and with the internal surfaces of 

microporous materials such as zeolites or metal–organic frameworks is an active research area 

of catalysis. Interaction of hydrocarbon molecules with oxide surfaces is particularly interesting 

in the context of oxidative coupling of methane (OCM).153 As a support or an active catalyst 

MgO crystal plays an important role in the OCM process. Although, the OCM reaction requires 

irregularities154 and defects at the oxide surface, investigation of hydrocarbons interaction with 

the clean MgO surface allows for instructive insight on the adsorption, since adsorption is the 

first step of catalytic hydrocarbon conversion and synthesis reactions. MgO can be considered 

a prototype of square lattice metal oxide surface, which is of interest in the framework of 

heterogeneous catalysis. Similarly, methane can be considered the most basic example of a 

hydrocarbon. Therefore, the combination of these two model systems has been the subject of a 

numerous previous studies. The similarity in lattice parameters of methane and magnesium 

oxide (4.18 Å in the former155 and 4.21 Å in the latter156) drives methane to adopt a square 

lattice commensurate with the surface structure. 

 The structure of thin methane films was a subject of a number of diffraction 

experiments. The first investigation of the adsorption of methane on the MgO(001) surface was 

performed by Coulomb and his co-workers.157 In the neutron diffraction experiment they 

characterize the structure of deuterated methane film adsorbed on a highly homogenous 

MgO(100) surface. The main result of this study suggested that both the bilayer and the 

monolayer coverage of CD4 formed a square 𝑐(2 × 2) structure that commensurates with the 

surface lattice. The best matching with experimental data was obtained for a lattice constructed 
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with methane molecules in dipod configurations. Nevertheless, the diffraction data was not 

sufficiently precise to differentiate exactly between the possible orientations of the methane 

molecules. Helium atom scattering experiments and force field calculations for the MgO 

surface with adsorbed a CH4 layer exclude the face-down configuration (tripod) of methane as 

unlikely.158 Later experiments showed that CD4 grows as a commensurate square lattice to 3 

layers at 50 K159 and to 4 layers at77 K. 160 Subsequent helium atom scattering161 shows that 

the real-space lattice determined from magnetic-sector mass spectrometer (MSMS) for the 

CH4/MgO(001) monolayer is a commensurate 𝑐(2 ×  2) square lattice. The lattice was 

estimated to 4.21 Å (at 33–36 K), and adsorption energy to 136 meV (13.1 kJ/mol). Larese et 

al,162 used inelastic neutron scattering (INS) experiments to study rotational diffusion of an 

adsorbed methane monolayer. Matching the observed transition energies with molecular field 

potential function they arrived at the conclusion that methane molecules prefer the dipod 

configuration on the MgO(100) surface. Further studies by Larese and others159, 163, 164 

confirmed those results. Quasielastic neutron scattering, employed by Gay et al.165 to study 

rotational diffusion of an adsorbed methane monolayer, showed that the molecules are 

rotationally ordered below 20 K, rotationally disordered around the twofold axis perpendicular 

to the surface in the dipod configuration between 20 K and 40 K, and are in a free-rotor state 

above 40 K. The experiment also excludes the tripod configuration. The most recent 

calculations of monolayer and bilayer lattices of methane as a spherical molecule on the 

MgO(001)structure, reported by Bruch et al.,166 show that stability of c(2 × 2) commensurate 

square monolayer (and bilayer lattices) is reproduced with a surface energy corrugation that 

gives a large gap in phonon density of states of the commensurate methane monolayer, that is 

present in the incoherent inelastic neutron scattering. Tait et al.,167 obtained adsorption energies 

for seven small 𝑛-alkane molecules on the MgO(100) structure from high-quality temperature-

programmed desorption data. For methane, the adsorption energies are 11.1 kJ/mol and 12.6 

kJ/mol for zero-limit coverage and monolayer coverage, respectively. 

 Also a variety of theoretical methods have been utilized to investigate the orientation of 

a single methane molecule, as well as the whole methane monolayer. Deprick and Julg168 

performed Hartree-Fock electronic structure calculation using three model systems: a single 

methane molecule on a surface constructed of point charges, a CH4Mg4O4 cluster, and four 

methane molecules above a point charge surface. The results showed that out of three possible 

orientations an isolated molecule should have the dipod (010) configuration, with the monopod 

configuration being less stable, and the tripod configuration even more unstable. The monolayer 

could have the (010) orientation as well as the (011) configuration (ROT configuration with all 
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methane molecules rotated 45 degrees in the same direction around 2 fold axis perpendicular to 

the surface). In contrast, the results from the semi-empirical potential model used by Girard and 

Girardet to calculate the interaction energy of a methane molecule adsorbed on a MgO substrate 

with square symmetry, show that the tripod configuration is slightly favoured over the dipod 

configuration (by 13 meV – i.e. 1.25 kJ/mol) for an isolated molecule.169 Alavi170 has studied a 

monolayer molecular crystal of methane adsorbed on the (100) surface of MgO using molecular 

dynamics. Methane was modelled as a five interactions site rigid tetrahedral. The interaction 

between sites on different molecules was described by Lennard-Jones and electrostatic terms. 

The predicted structures configuration of molecules was over the magnesium sites with a tripod 

orientation. Semiempirical potentials used for classical determination of equilibrium structure 

of a single methane molecule193, 195 and monolayer 196 showed that the tripod orientation for the 

molecules was significantly more stable than the dipod one. Ferrari et al.,171 applied calculations 

at the density functional level of theory employing the LCGTO-DF (Linear Combination of 

Gaussian-Type Orbitals Density Functional) package combined with the gradient corrected 

Becke-Perdew (BP) functional, to predict methane interaction with the MgO clusters model. 

According to the results, methane bound weakly to Mg2+ and O2- corner sites, but did not adsorb 

on the 100 planar surface. The adsorption energies for the corner sites lie between 1-3 kcal/mol 

(4-13 kJ/mol). For interactions with the MgO (100) planar surface four on-top and bridge sites 

were investigated. The potential energy curves for the Mg2+ site at the MgO (100) planar surface 

were totally repulsive for all configurations. The potential energy curves for adsorption at the 

O2- site of the MgO(100) surface showed that the tripod structure interaction is purely repulsive, 

and while in cases of monopod and dipod-bridge positions a local minimum is present, both 

configurations become unbound after the Basis Set Superposition Error (BSSE) corrections. 

Nonetheless, the investigation considered dipod configuration only in bridge position. Todnem 

et al.172 employed embedded cluster models to investigate adsorption of methane at the 

MgO(001) surface employing Modified Coupled-Pair Functional (MCPF) method with 

extrapolation of the correlation energy to the full CI complete basis set limit (PCI-X). A single 

molecule adsorption was investigated at on-top magnesium and oxygen sites using MgO5
8− and 

Mg5O8+ surface model clusters, respectively. The results predicted that the dipod configuration 

is preferred over the tripod configuration; but only by 0.4 kJ/mol. Combining adsorption 

energies for a single molecule with interadsorbate interaction energies obtained as four times 

half the pair-interaction energy of two methane molecules (interaction energy of one methane 

molecule with four nearest neighbours), the authors arrived at adsorption energies at monolayer 

coverage. The reported value of the adsorption energy, 8.5 kJ/mol, substantially underestimates 
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the experimental one, probably due to finite cluster effects. Drummond et al.173 used the 

generalized-gradient approximation exchange-correlation functional of Perdew and Wang 

PW91, with the plane-wave basis set, and periodic boundary conditions to avoid disadvantages 

of employing point charges, of an arbitrary magnitude, to embed a finite, often small-size 

system. Both surface-methane interactions, and methane-methane interactions were 

investigated. The results confirmed the dipod configuration at the magnesium site to be 0.61 

kJ/mol lower then tripod at oxygen site; used models contained one methane molecule per unit 

cell which corresponded to monolayer converges (𝜃 = 1). In case of larger unit cell, containing 

four methane molecules but corresponding to monolayer coverage, result predicts the ROT 

structure (where neighbouring methane molecules are rotated 90 degrees with respect to each 

other) to be the most stable, with the PAR structure (methane molecules with the same relative 

orientation) 4.98 kJ/mol higher in energy. The authors do not provide the interaction energy, 

referring to the general failure of standard DFT in properly describing the dispersion effects 

(underestimation of binding). Further studies included investigation of the second and third 

layer.174, 175 Trevethan et al.176 utilized DFT level of theory with the B3LYP hybrid functional 

in an embedded cluster approach implemented in the Gaussian Used for Embedded Systems 

Studies (GUESS) methodology. The authors point that in the case of the methane there is 

virtually no binding to the MgO surface at all. Total binding energy is 20 meV (1.93 kJ/mol) 

for monopod and 50 meV (4.82 kJ/mol) for dipod. Tripod configuration was not investigated. 

The authors points out that the computational method they employed (B3LYP hybrid-DFT) 

underestimates the dispersion interactions. The dispersion interaction is expected to contribute 

dominantly to the binding of hydrocarbon molecules to the surface. Therefore, they suggested 

that more sophisticated and expensive quantum chemistry methods are required to evaluate 

more accurate binding energies. Pisani et a,.177 compared the physisorption of methane 

molecules at the (100) surface of MgO using three techniques: PBE, B3LYP, and Periodic Local 

MP2 (periodic LMP2) method. In contrast to the very weak binding obtained for the DFT level 

of theory (B3LYP, PBE), the periodic LMP2 calculations gave a pronounced adsorption to the 

surface.  The dipod geometry had a minimum at 8.1 kJ/mol, which was nearly 3 kJ/mol lower 

in energy then the tripod configuration. By taking into account the attractive interaction energy 

per molecule between the methane molecules (calculated by Todnem et al.172) which also 

contributes to the adsorption energy, authors estimated the periodic LMP2 adsorption energy 

to about 11 kJ/mol, which gives even better agreement with the experiment. Tosoni et al.178 

examined the methane adsorption by a hybrid approach, i.e. by combining MP2 calculations 

with the extrapolation to the complete basis set limit with DFT+D calculations. The hybrid 
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energies obtained by the authors are sum of the low-level energy for the periodic structure and 

the high-level correction for the methane–cluster and methane–methane pair interaction. The 

final estimate to the adsorption energy was 13.3 kJ/mol. In order to compare this result to the 

measured Arrhenius desorption barriers, authors used thermal enthalpy contributions and a 

substantial zero-point energy calculated from DFT+D vibrational frequencies to obtain 

experimental desorption energies.  

 Table 1 contains summary of the interaction energy between methane and the MgO(001) 

surface obtained from experiments and previous theoretical investigations. Additionally, where 

it was available the Mg-C distances are reported.  

 

Table 1. Summary of all interaction energies found by previous experimental and theoretical 
investigations.  

Method  
Interaction 

energy 
[kJ/mol] 

Distance 
Mg-C [pm] 

QMS/MSMS161 Experiment 13.12 - 

TPD (monolayer)167 Experiment 12.63 - 

TPD (zero coverage limit)167 Experiment 11.10 - 

LCGTO-DF/BP171 Cluster repulsive - 

PCI/ANO172 Cluster 8.5 290 

GUESS/B3LYP176 Cluster 4.82 280 

LMP2177 Periodic 11 300 

PBE+D (monolayer)178 Periodic 13.98 309 

MP2/CBS:PBE+D + ΔCCSD(T) + model corr.178 Cluster 13.31 329 

CCSD(T):MP2//MP2:PBE+D (monolayer)179 Cluster -15.7±0.7 310 

CCSD(T):MP2//MP2:PBE+D (single 
molecule)179 Cluster -13.0±0.6 - 

CRYSTAL 09 (QZVP)180 Periodic 14.52 307 
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5.2. MgO(001) Surface Model  

At monolayer coverage, one CH4 molecule adsorbs above every second magnesium site. 

Therefore to model monolayer coverage, the smallest possible model of the surface has to 

contain two magnesium sites in the top layer. This gives an A×A surface cell, where A is two 

times the Mg-O distance. To describe two CH4 molecules that are not related by symmetry a 

A√2×A√2 surface cell consisting of 4 Mg2+–O2- units, is required. In our investigation we use 

a larger model surface – 2A × 2A supercell that contains in total 16 adsorption sites, 8 

magnesium sites (green spheres) and 8 oxygen sites (red spheres) in the top layer (Figure 5). 

This is the smallest possible model allowing to describe 4 CH4 molecules in the ROT structure, 

with methane molecules adsorbed at magnesium sites, in a dipod configuration (two hydrogen 

atoms pointing down to the surface in directions of oxygen atoms). Moreover, neighbouring 

methane molecules are rotated by 90° with respect to each other. This structure is referred as 

the lowest energy configuration.  

 
Figure 5. Model of the MgO(001) slab. Red dots represent O2- ions (𝟏𝟐𝟒 − 𝟏𝟐𝟖 𝐩𝐦); green 
dots represent Mg2+ ions (𝟖𝟔 𝐩𝐦). Supercell has 𝟖𝟒𝟖 × 𝟖𝟒𝟖 × 𝟐𝟓𝟎𝟎 𝐩𝐦𝟑 size. Vacuum 
height, after subtracting surface height, is 𝟏𝟖𝟔. 𝟓 𝐩𝐦 which is enough for a proper description 
of the monolayer; no interaction takes place between upper and lower edges of the surface. 

 

2500 pm 

848 pm 

848 pm 
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 The MgO(001) surface model has high symmetry – plane symmetry group 𝑝4𝑚 – with 

two rotational centres of order four, and reflections in four different directions (diagonals, 

horizontal, and vertical). The high symmetry of the surface was taken into account during the 

similarity recognition step. To stay consistent within the method the lattice parameter for bulk 

MgO (without adsorbed methane) was optimized using the PBE+D method yielding a value of 

4.24 pm.  

 Additionally, for the adsorption of a single molecule we used a smaller unit cell - the A 

× A super cell, in order to compare results with previous calcualtions done by Drummond et 

al.173 This cell corresponds to monolayer coverage of methane. As already mentioned, the 

disadvantage of a small unit cell is that the ROT structure could not be investigated, due to 

translational symmetry.  

 

5.3. Methods 

Global structure optimizations is performed using a genetic algorithm of our 

implementation (DODO).131 Local structure optimizations are performed using the QMPOT152 

program. Both programs were accustomed to work within the rigid-body framework. The 

Vienna Ab initio Simulation Package (VASP),181, 182 with the Perdew, Burke, and Ernzerhof 

(PBE) exchange correlation functional,183, 184 and electron-ion interactions described by the 

projector augmented wave method (PAW),185, 186 is used to evaluate single point energies and 

gradients. Only the valence electrons are explicitly considered. A semiempirical C6-term is 

added to include long-range dispersion contributions as suggested by Grimme (PBE+D),187 and 

implemented by Kerber for periodic systems. Following previous study C6 parameters for Ne 

atom were used for Mg2+ ions.178 

 During the GA step, all calculations are performed with 1 × 1 × 1 Monkhorst-Pack k-

point mesh, which, for the final local structure optimization, was increased to a 2 × 2 × 1 mesh. 

 Local optimizations, during global optimization, are performed using soft potentials 

with an energy cutoff of 300 eV and a global threshold for energy change was set to 10−4 eV/Å, 

so as to assure good accuracy – time ratio. This is important due to vast number of local 

optimizations during each GA run. The final structure optimizations are obtained with standard 

potentials and a higher energy cutoff of  600 eV. The stationary point is localized if the forces 

acting on ions are smaller than 5 × 10−3 eV/Å. 
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 After the final optimization step, many structures still had imaginary frequencies. 

Therefore, further structure optimization had been performed using Normal Mode optimization 

code.188 The maximum gradient component threshold for Normal Mode calculations was set to 

 1 × 10−4 eV/Å in gradient. Nevertheless, in some cases it was impossible to remove all 

imaginary frequencies using this method.  

 The Normal Mode optimization189 introduce the harmonic approximation in order to 

define transformation between coordinates. Starting from the molecular harmonic vibrational 

Hamiltonian, and introducing the normal mode coordinates, the linear relation between the 

Cartesian displacements and the normal mode coordinates can be found. The search for the 

energy minimum is based on quadratic approximation. The normal mode gradient and the 

second derivatives of the energy at an optimization point, defines the step towards the minimum 

energy. The step is described by the RFO method (the modified Newton–Raphson formula). 

Normal Mode optimization achieves better accuracy and therefore allows for tighter 

convergence criterions. 

 

Table 2. Number of imaginary wavenumbers with respect to step size used to calculate finite 

differences (POTIM parameter). Reference structure: global minimum for six methane 

molecules the MgO(001) surface (Figure 16).  

Step Size [nm] Number of imaginary 
wavenumbers 

Imaginary wavenumbers 
[cm-1] 

0.0005 3 19, 32, 34 

0.0010 1 14 

0.0015 0 - 

0.0020 1 4 

0.0025 2 9, 16 

0.0030 2 9, 35 

0.0035 2 18, 54 

0.0040 4 8, 21, 43, 70 

 

To calculate the Hessian matrix, finite differences are used. Each ion is displaced in the 

direction of each Cartesian coordinate. The obtained forces are used to determine the Hessian 

matrix. In this study, the IBRION parameter was set to five, i.e. all atoms are displaced in all 
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three Cartesian directions, without any symmetry considerations. The POTIM parameter, which 

determines the step size used to calculate forces, was set to 0.0025 nm. As showed by later 

investigation, reduction of the step size to 0.0015 nm allows for elimination of imaginary 

wavenumbers (Table 2). Although, the test was performed only on one structure and further 

investigation would be needed. 

 

5.4. Optimization Strategy 

Each GA investigation consists of 4 subsequent steps. The first step is pre-optimization. 

At this stage each structure (methane, ethane, propane and surface models) are optimized 

separately. The second step is the genetic algorithm optimization. During that stage a vast 

number of local localizations have to be performed, with each one of them as an independent 

job. The global optimization program can easily control the number of local optimizations, 

which are done at the same time. Therefore, the global search can be easily parallelized over a 

number of independent local optimization jobs. To ensure fast convergence; and, consequently, 

good performance of the explorations of potential energy surface (PES), each structure 

optimization is performed using low convergence criteria. At the third stage, refinement, around 

100 structures, found by genetic algorithm, with the lowest energies are recalculated using 

tighter convergence criteria, in order to obtain better relaxed structures. The fourth and final 

step is full relaxation, where atoms are allowed to fully relax (except the two bottommost layer 

of the MgO, which simulate bulk characteristic). Around 20 of the most energetically 

favourable structures, from the refinement step, undergo a full relaxation with the same, tight 

convergence criteria. In case of methane, additional optimization with Normal Mode code was 

performed to eliminate imaginary wavenumbers.  

The algorithm starts with a population of 100 structures. Initial structures are obtained 

by random distribution of 4 rigid bodies on the MgO(001) surface model and optimized to the 

local minimum within the basin of attraction. One generation evolves to another through 

crossover operations. Two structures, called parents, are selected from the population to create 

one child. The selection probability is proportional to the value of the fitness function of the 

given structure. A constant number of children are allowed to mutate, through random rotations 

of 1 or 2 rigid bodies with respect to their centres of mass.  
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5.5. Thermodynamic Properties - Microscopic–Macroscopic Connection 

It is possible under certain circumstances to observe single molecules in the experiment, 

nevertheless, the vast majority of experimental methods measure macroscopic quantities of 

matter made of large numbers of molecules. The behavior of such ensembles of molecules is 

governed by the laws of thermodynamics. Chemical reactions and chemical properties can be 

defined in terms of fundamental variables of thermodynamics, such as enthalpy, entropy, free 

energy.  

 Transition from the microscopic regime to the macroscopic is made by recognition that 

the Born–Oppenheimer potential energy surface, although defined by electronic energy 

function of nuclei coordinates, is fundamentally a classical construct. The motion of the nuclei 

on the PES surface is also accounted for in a quantum mechanical way, by molecular vibrations, 

even at zero temperature, since the lowest vibrational energy level for any bound vibration is 

non-zero. The energy of the lowest vibrational level, in the harmonic oscillator approximation, 

can be determined as 1 2⁄ ℏ𝜔 (where ℏ is Planck’s constant divided by 2𝜋, and 𝜔 is the 

vibrational frequency). Therefore, the sum of energies of all molecular vibrations defines the 

zero-point vibrational energy (ZPVE). The internal energy at 0 K for a molecule can then be 

defined as 

 𝑈𝑇=0 = 𝐸𝑒𝑙𝑒𝑙 +  ∑
1

2
ℏ𝜔𝑖

𝑚𝑜𝑑𝑒𝑠

𝑖

 (39) 

 The harmonic oscillator approximation introduces implicit errors in calculations of 

ZPVE. Nevertheless, the weak modes, which are least harmonic in character, have very small 

vibrational frequencies associated with them, and therefore do not contribute much to the ZPVE 

(since it is linear in the frequencies). However, small frequencies have a significant influence 

on change in entropy. 

 To describe collections of molecules using the statistical mechanics, certain 

macroscopic variables must be held constant by external influence. The enumeration of these 

conditions defines an ‘ensemble’. One commonly used type of it is the ‘canonical ensemble’, 

sometimes referred to as the 𝑁𝑉𝑇 ensemble, where the constants are the total number of 

particles 𝑁, the volume 𝑉, and the temperature 𝑇. For the canonical ensemble, it is written as 

 𝑄(𝑁, 𝑉, 𝑇) =  ∑ 𝑒−𝐸𝑖(𝑁,𝑉) 𝑘𝐵𝑇⁄

𝑖

 (40) 
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where 𝑖 runs over all possible energies of the system. By assuming that the ensemble is an ideal 

gas of 𝑁 molecules (i.e. they do not interact with one another), the partition function may be 

rewritten as molecular partition function 𝑞. 

 𝑄(𝑁, 𝑉, 𝑇) =  
[𝑞(𝑉, 𝑇)]𝑁

𝑁!
 (41) 

Therefore, reduce the problem of finding the ensemble partition function 𝑄(𝑁, 𝑉, 𝑇) to finding 

the molecular partition function 𝑞(𝑉, 𝑇). By assuming that the molecular energy can be 

expressed as a sum of electronic, translational, rotational, and vibrational energies, a further 

simplification of the problem can be made.  

 𝑞(𝑉, 𝑇) =  𝑞𝑒𝑙𝑒𝑐(𝑇) ∙ 𝑞𝑡𝑟𝑎𝑛𝑠(𝑉, 𝑇) ∙ 𝑞𝑟𝑜𝑡(𝑇) ∙ 𝑞𝑣𝑖𝑏(𝑇) (42) 

and individual components – electronic, translational, rotational, and vibrational – of 

thermodynamic functions can be treated separately, within the respective approximations.  

 The partition function characterizes statistical properties of a macroscopic system in 

thermodynamic equilibrium; and allows thermodynamic functions of the system (𝑈 – the total 

energy, 𝐺 – Gibbs free energy, 𝑆 – entropy) to be expressed as its function or its derivatives. 

Within the canonical ensemble, and by thermodynamic definitions, 

 𝑈 = 𝑘𝐵𝑇2 (
𝜕 ln 𝑄

𝜕𝑇
)

𝑁,𝑉
 (43) 

 𝐻 = 𝑈 + 𝑝𝑉 (44) 

 𝑆 = 𝑘𝐵 ln 𝑄 +  𝑘𝐵𝑇 (
𝜕 ln 𝑄

𝜕𝑇
)

𝑁,𝑉
 (45) 

 𝐺 = 𝐻 − 𝑇𝑆 (46) 

The transformation of the potential energy surface, determined by the electronic structure 

calculation, to produce thermodynamic data is straightforward. It requires an optimized 

structure with its associated vibrational frequencies. Since experimental data are typically 

measured as heat (enthalpy) of formation (∆𝐻f) or free energy of formation (∆𝐺f), it is usually 

worthwhile to compute the frequencies and then the thermodynamic variables.  

In practice, what we are interested in is to find the standard enthalpy change of reaction, or any 

other thermodynamic function, 
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 ∆𝐻 =   𝐻product − 𝐻substrat (47) 

 

 In this work, change in any thermodynamic function (𝑋) is expressed as 

 

 ∆𝑋 =  
𝑋(𝑀𝑁 ∙ 𝑆) −  𝑋(𝑆) − 𝑁 ∙ 𝑋(𝑀)

𝑁
 (48) 

Where 𝑋(𝑀𝑁 ∙ 𝑆) – is the value of a thermodynamic function for the surface with adsorbate 

layer consisting of 𝑁 molecules per unit cell, 𝑋(𝑆) – is the value of a thermodynamic function 

for a clean surface, 𝑋(𝑀) – is the value of a thermodynamic function for the molecule. 

 Unfortunately, it was impossible to eliminate all imaginary frequencies for some of the 

structures. This is crucial, since these frequencies do not contribute to calculations of 

thermodynamic functions. Additionally, fact that they are present testifies that in some cases 

we are missing few small frequencies; and this, in turn, has an influence on entropy calculation, 

as changes in value of small frequencies have a huge influence on change in entropy. 

 

5.6. Interaction Energy 

In this work the formation energy, ∆𝐸form, is defined as the energy of surface with adsorbate 

layer consisting of 𝑁 molecules per unit cell, 𝐸(𝑀𝑁 ∙ 𝑆), minus the energy of a clean surface 

(𝐸(S)), and minus the energy of the adsorbed molecules (𝑁 ∙ 𝐸(𝑀)) 

 ∆𝐸𝑓𝑜𝑟𝑚 =  𝐸(𝑀𝑁 ∙ 𝑆) −  𝐸(𝑆) − 𝑁 ∙ 𝐸(𝑀) (49) 

Using definition of the formation energy, we can define the interaction energy per 

molecule, ∆𝐸, as: 

 
∆𝐸 =  

∆𝐸form

𝑁
 (50) 

Which can allows for an easy comparison between models with different number of molecules. 

The interaction energy can be further decomposed into the interaction energy between the 

surface and the whole adsorbate layer, ∆E∗, and the lateral interaction, ∆E𝐿,:  
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 ∆𝐸 =  ∆𝐸∗ + ∆𝐸𝐿 (51) 

 
∆E∗ =  

 E(MN ∙ S) −  E(S) − E(MN//MN ∙ S)

N
 

(52) 

 
∆𝐸𝐿 =  

 𝐸(𝑀𝑁//𝑀𝑁 ∙ 𝑆) − 𝑁 ∙ 𝐸(𝑀)

𝑁
 

(53) 

 

The notation 𝑀𝑁//𝑀𝑁 ∙ 𝑆 implies the calculation of a layer structure (𝑀𝑁) with the same 

geometry as if in the presence of the surface (𝑀𝑁 ∙ 𝑆).  

 The lateral interaction describes energy change due to interaction of the molecules in 

the layer, which can be both, attractive and repulsive.  Similarly, the surface-layer interaction 

describes interaction of the whole layer with the surface.  
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5.7. Methane at the MgO(001) Surface  

The first step of the investigation was to examine the adsorption of a single molecule at the 

MgO(001) surface. To do this, two models of the surface were used, one corresponding to one-

fourth coverage, second to monolayer coverage. Obtained PBE results, with and without 

dispersion corrections, were related to previous theoretical studies by Drummond et al.173 

 The next step was to model monolayer coverage with four methane molecules and the 

2𝐴 × 2𝐴 unit cell from the single molecule step. All three independent GA runs predicted the 

ROT structure to be the global minimum. This result is in an agreement with what earlier studies 

predicted to be the most stable monolayer structure.173 

 Subsequently, higher CH4 coverage of the MgO(001) surface was analysed: with five 

and six methane molecules. The global minimum structure for five molecules contains the ROT 

structure as the first adsorption layer. 

 Motivated by the results of five molecules on top of the MgO surface, we performed 

additional GA investigation with additional one, two, and four methane molecules on top of the 

ROT monolayer structure (neighbouring molecules rotated by 90° with respect to each other). 

The resulted structures contained 4+1, 4+2, amd 4+4 methane molecules. This way, we were 

able to observe the formation of the second layer of methane. 

 For ethane on the MgO surface, in the GA runs, each ethane molecule was modelled as 

two separate rigid bodies, i.e. as two methyl groups. The presented results contain structures 

with one, two, and four molecules in the 2A × 2A MgO supercell.  

 Finally, propanes, in the staggered conformation, were added to the MgO surface; with 

four different loadings spanning from one to four molecules in the 2A × 2A MgO supercell. 

Results for three and four propane molecules are only preliminary, and will need further 

investigation in the future. 
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5.7.1. Single Molecule Coverage 

Interaction of a single methane with the MgO(001) surface was subject of a number previous 

investigations.172, 173, 178 

 

Figure 6. Possible orientations of the methane molecule at the MgO(001).  

 

Figure 6 shows the three possible on-top orientations of the methane molecules. Bridge and 

hollow sites were found as disfavoured with respect to on-top binding as presented in the 

previous theoretical investigations.173 Also during this investigation bridge and hollow sites 

were not found in any of the obtained structures. In most of the results, the dipod configuration, 

on-top magnesium sites with two hydrogen atoms pointing into directions of adjacent oxygen 

sites, was predominant. Some of the molecules were significantly tilted, with third hydrogen 

atom pointing in the direction of yet another oxygen site. Also monopod configurations were 

present, especially for the structures with the second layer of methane. All molecules were 

adsorbed in on-top positions above magnesium sites. Other configurations were not observed.  

 The single molecule adsorption was investigated using two models of the surface: the 

smaller one – 424 × 424 × 2500 𝑝𝑚3 unit cell – corresponds to monolayer coverage (𝜃 = 1); 

the larger one – 848 × 848 × 2500 𝑝𝑚3 – corresponds to one quarter of the monolayer 

coverage (𝜃 = 0.25). Molecules were allowed to optimize freely, i.e. no local symmetry was 

imposed on them. Structure names indicate local symmetries of the initial configurations.  
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Table 3. Relative energies in kJ/mol (and distances C-X in pm) for six arrangements of methane 
above the MgO(001) surface. Smaller supercell: 4 layers slab, 𝟒 × 𝟒 × 𝟏 k-point grid. Larger 
supercell: 4 layers slab, 𝟐 × 𝟐 × 𝟏 k-point grid. Abbreviations mono, di, and tri stand for 
monopod, dipod, and tripod, respectively. Mg and O stand for on-top binding above magnesium 
and oxygen sites, respectively.   

Supercell 

[𝑝𝑚3] 
Functional di 

Mg 
mono

O 
di 
O 

tri 
Mg 

tri 
O 

mono 
Mg 

424 × 424 × 2500 

(𝜃 = 1) 

PW91 [1] 0.00 0.61 0.63 1.03 2.40 2.95 

Distances C-X (325) (350) (380) (325) (355) (369) 

PBE+D[2] 0.00 12.47 15.87 2.56 15.14 6.19 

Distances C-X (307) (357) (360) (349) (351) (374) 

PBE+D[3]//PBE+D[2] 0.00 21.34 25.16 9.27 24.07 13.39 

PBE//PBE+D[2] 1.86 9.47 12.98 0.00 12.10 3.30 

848 × 848 × 2500 

(𝜃 = 0.25) 

PBE+D[2] 4.15 0.00 9.82 5.85 1.73 4.50 

Distances C-X (302) (359) (366) (307) (359) (478) 

PBE+D[3]//PBE+D[2] 8.50 0.00 8.34 9.27 1.49 0.68 

PBE//PBE+D[2] 0.74 0.00 16.49 4.57 1.81 10.46 

CH4/Mg9O9 MP2[4] 0.00 --- --- 1.48 --- 4.26 

 Distances C-X (325) --- --- (350) ---- (334) 

[1] Drummond et al.173 (6 layers slab, 8 × 8 × 1 k-point grid)  
[2] Tosoni’s dispersion178 
[3] Standard dispersion 
[4] BSSE corrected MP2/aug’-cc-pVQZ energy, only C-Mg distance optimized (ESI Tosoni et 
al.178) 
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 Results for the smaller unit cell (Table 3) confirm that the dipod configuration on top of 

magnesium site is favourable arrangement, both for PW91 and PBE+D results. The energy 

differences between the structures are more pronounced for PBE+D results. The PW91 

approach predicts the monopod configuration on oxygen site, to be the next higher in energy 

minimum, but only by 0.61 kJ/mol, whereas, the PBE+D functional predicts the tripod 

configuration at magnesium site to be the second one in energy, exceeding the minimum by 

additional energy of 2.56 kJ/mol. PW91 and PBE are generalized gradient approximation 

(GGA) functionals. Although both functionals are independent from each other, they should be 

numerically equivalent for most purposes.190 Therefore, the difference in energies and energetic 

ordering of the structures can be attributed to dispersion correction used for PBE results.  

 PBE+D results for the larger unit cell points to the the monopod configuration as the 

preferred one over the dipod configuration by 4.15 kJ/mol. Tripod configuration over oxygen 

site lies between them, 1.73 kJ/mol above the monopod. PBE results without dispersion, still 

give the monopod configuration as the energy most preferable situation. Nevertheless, this time 

the dipod Mg configuration is only 0.74 kJ/mol higher in energy. In general, removing 

dispersion correction, or altering to standard one, does not change the global minimum, only 

relative order of other structures.  

 During optimization for the larger unit cell, the tripod configuration at the magnesium 

site yielded the dipod one, also at magnesium site but slightly tilted. The energy difference 

between these two structures is small (1.70 kJ/mol). Similarly, the dipod configuration at 

oxygen site yielded the monopod configuration at the same site. The dipod C2v-O configuration 

(which is in fact monopod configuration) is 7 pm higher above the oxygen site than the 

monopod C3v(1)-O structure. Additionally, in contrast to the monopod C3v(1)-O structure which 

do not have any symmetry, the dipod C2v-O structure possess Cs symmetry with respect to the 

surface. The energy difference between these structures is large by 9.82 kJ/mol. 

 Last row of Table 3 shows results by Tosoni et al.178 obtained with MP2 on the Mg9O9 

cluster model with one methane molecule (only at magnesium site). The energy separation 

between dipod and tripod for MP2 is similar with PBE+D results (1.70 kJ/mol), but the MP2 

method predicted monopod to be significantly higher in energy than PBE+D, 4.26 and 0.45 

kJ/mol, respectively. This difference might be due to the fact that, when fully optimized, 

methane molecule is tilted. In case of the MP2 results, one C-H bond, pointing towards the 

surface, is parallel to the surface normal.  
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Table 4. PBE+D interaction energies in kJ/mol. During optimization dipod C2v-O 
strucutre yield monopod C3v(1)-O structure (for larger unit cell). Tripod Cv3(3)-Mg 
structure optimized towards tilted dipod C2v-Mg structure (for larger unit cell).  

Supercell 

[𝑝𝑚3] 
 dipod  

C2v-Mg 
monopod  

C3v(1)-O 
dipod  
C2v-O 

tripod  
C3v(3)-Mg 

tripod  
C3v(3)-O 

monopod  
C3v(1)-Mg 

424 × 424 × 2500 

(𝜃 = 1) 

interaction energy -14.03 -1.56 1.84 -11.46 1.12 -7.84 

interaction surface 
– layer -7.41 5.28 8.39 -4.63 7.95 -1.29 

lateral interaction -6.62 -6.84 -6.54 -6.83 -6.83 -6.55 

Im freqeuncies 1 2 4* 3 2 4* 

848 × 848 × 2500 

(𝜃 = 0.25) 

interaction energy -12.61 -16.76 -6.94 -10.91 -15.03 -12.26 

interaction surface 
– layer -12.82 -16.78 -6.96 -11.07 -15.03 -12.26 

lateral interaction 0.21 0.02 0.02 0.16 0.01 0.00 

Im freqeuncies 0 2 2 1 2 5 

*not fully optimized 
 

Lateral interactions for the  424 × 424 × 2500 unit cell are very similar for all considered 

configurations. In case of the big unit cell the lateral interactions are slightly positive due to the 

deformation of the methane when in contact with the surface. 

 Even though structures were located as stationary points all of them, except one, are no 

local minima (Table 5). Only the dipod-Mg configuration, for the 848 × 848 × 2500 unit cell, 

is a minimum. Many of the obtained structures are higher stationary points – with two and more 

imaginary frequencies. Increasing the number of single point used for Hessian evaluation to 4 

points (Table 6) did not result in a significant decrease in the number of imaginary frequencies. 

What is worth mentioning is that now the dipod-Mg configuration of the smaller unit cell is the 

only minimum.  

Table 5. Values of imaginary wavenumbers in 𝒄𝒎−𝟏 obtained with two points central 
numerical differentiation for single methane molecule at the MgO(001) surface. Two 
top-most layers of MgO were unfrozen.  
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Supercell 

[𝑝𝑚3] 

Imaginary wavenumber 

dipod  
C2v-Mg 

monopod  
C3v(1)-O 

dipod  
C2v-O 

tripod  
C3v(3)-Mg 

tripod  
C3v(3)-O 

monopod  
C3v(1)-Mg 

424 × 424 × 2500 

(𝜃 = 1) 
46 

28 
86 

30 
71 
82 
148 

37 
69 
94 

28 
62 

20 
47 
146 
162 

848 × 848 × 2500 

(𝜃 = 0.25) 
- 

23 
51 

20 
45 

6 
7 
48 

19 
26 
37 
52 
66 

 

 

Table 6. Values of imaginary wavenumbers in 𝒄𝒎−𝟏 obtained with four points central 
numerical differentiation for single methane molecule at the MgO(001) surface. Two 
top-most layers of MgO were unfrozen.  

Supercell 

[𝑝𝑚3] 

Imaginary wavenumber 

dipod  
C2v-Mg 

monopod  
C3v(1)-O 

dipod  
C2v-O 

tripod  
C3v(3)-Mg 

tripod  
C3v(3)-O 

monopod  
C3v(1)-Mg 

424 × 424 × 2500 

(𝜃 = 1) 
- 

23 
42 

42 
63 
82 
132 

37 
77 
87 

32 
76 

40 
150 
160 

848 × 848 × 2500 

(𝜃 = 0.25) 
44 18 63 53 

51 
57 

53 
54 
77 

 

 Imaginary wavenumber for the dipod C2v-Mg structure, 46 cm-1 (Table 5) and 44 cm-1 

(Table 6), are rocking motions of a molecule through the vertical plane. Two imaginary 

wavenumbers for the monopod C3v(1)-O, in range of 18-28 cm-1 and 42-86 cm-1, correspond to 

rocking and twisting motions, respectively.  
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 Based on electronic energy alone dipod-Mg is the most stable configuration for the 

smaller supercell (Table 7), with stabilization energy of 14.03 kJ/mol, i.e. 2.57 kJ/mol higher 

than the tripod-Mg. However, after including corrections from ZPVE and thermal contributions 

this dissimilarity diminishes to 0.16 kJ/mol in the total energy and enthalpy.  

 

Table 7. Thermodynamic adsorption data in kJ/mol. Calculated for 𝑻 = 𝟒𝟕 𝑲 and 𝒑 =
𝟎. 𝟏𝐌𝐏𝐚 for the 𝟒𝟐𝟒 × 𝟒𝟐𝟒 × 𝟐𝟓𝟎𝟎 𝐩𝐦𝟑 supercell.  

supercell dipod 
C2v-Mg 

monopod 
C3v(1)-O 

dipod 
C2v-O 

tripod 
C3v(3)-Mg 

tripod 
C3v(3)-O 

monopod 
C3v(1)-Mg 

∆𝐸el -14.03 -1.56 1.84 -11.46 1.12 -7.84 

∆𝐸ZPV 3.06 2.18 0.43 0.47 1.11 0.44 

∆𝑈  -11.70 -0.16 1.49 -11.54 1.79 -8.24 

∆𝐺 -5.05 6.49 8.12 -5.30 7.67 -1.48 

∆𝐻 -12.09 -0.55 1.10 -11.93 1.40 -8.63 

− 𝑇∆𝑆  7.03 7.03 7.01 6.62 6.26 7.13 

∆𝑈 − ∆𝐸el − ∆𝐸ZPV* -0.73 -0.78 -0.78 -0.55 -0.44 -0.84 

∆𝑈 − ∆𝐸el 2.33 1.40 -0.35 -0.08 0.67 -0.40 

∆𝐻 − ∆𝐸el 1.94 1.01 -0.74 -0.47 0.28 -0.79 

∆𝐺 − ∆𝐸el 8.98 8.05 6.28 6.16 6.55 6.36 

*thermal contribution 

 

 For the big unit cell the difference between dipod-Mg, the one that is thought to be the 

most favourable configuration of a single molecule, and monopod-O is even more pronounced 

(Table 8); from 4.15 kJ/mol at the electronic energy level to 5.53 kJ/mol for the total energy. 

 

 

Table 8. Thermodynamic adsorption data in kJ/mol. Calculated for 𝑻 = 𝟒𝟕 𝑲and 𝒑 =
𝟎. 𝟏𝐌𝐏𝐚 for the 𝟖𝟒𝟖 × 𝟖𝟒𝟖 × 𝟐𝟓𝟎𝟎 𝒑𝒎𝟑 supercell. 

supercell dipod 
C2v-Mg 

monopod 
C3v(1)-O 

dipod 
C2v-O 

tripod 
C3v(3)-Mg 

tripod 
C3v(3)-O 

monopod 
C3v(1)-Mg 
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∆𝐸el -12.61 -16.76 -6.94 -10.91 -15.03 -12.26 

∆𝐸ZPV 3.70 2.24 1.22 3.32 1.18 0.22 

∆𝑈  -9.75 -15.28 -6.44 -8.06 -14.47 -12.93 

∆𝐺 -2.93 -8.64 0.09 -2.04 -7.98 -6.22 

∆𝐻 -10.14 -15.67 -6.83 -8.45 -14.85 -13.32 

− 𝑇∆𝑆  7.21 7.03 6.92 6.41 6.87 7.10 

∆𝑈 − ∆𝐸el − ∆𝐸ZPV -0.84 -0.76 -0.72 -0.47 -0.62 -0.89 

∆𝑈 − ∆𝐸el 2.86 1.48 0.50 2.85 0.56 -0.67 

∆𝐻 − ∆𝐸el 2.47 1.09 0.11 2.46 0.18 -1.06 

∆𝐺 − ∆𝐸el 9.68 8.12 7.03 8.87 7.05 6.04 

  



72 
 

5.7.2. Monolayer Coverage 

Monolayer coverage of the methane molecules at the MgO(001) surface was intensively 

investigated during validating performance of the RBGA implementation. As the result three 

independent GA runs were performed; one up to 700 calculated structures, two up to 600 

calculated structures. All runs predict the ROT structure as the global minimum for this system. 

The ROT structure consists of methane molecules adsorbed in the dipod configuration at 

magnesium sites. Every second magnesium site is occupied (monolayer coverage). 

Additionally, each methane molecule is rotated 90 degrees with respect to the surface normal 

passing through the carbon atom.  

 Although some of the structures possessed small imaginary frequencies (mostly within 

range of 5 to 20 cm-1), the structures were not optimized using Normal Mode optimization. In 

this cases, the NMopt optimization yielded structures with more imaginary frequencies than the 

starting one.  

 

5.7.2.1. Structures 

The final refinement of populations, each consisting of 60 structures, resulted in 20 

distinguishable final structures. Eight with the lowest relative energies are presented in Figure 

7 –Figure 14. All the structures contained methane molecules in the dipod configuration. Some 

of the slightly distorted – titled – due to the repulsive interaction between hydrogen atoms. 

There were structures with higher energy (not showed here) that contained methane molecules 

in monopod configuration, but these were rather negligible cases.  
 

 
Figure 7. Structure number 1 (ROT) - global minimum 
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Figure 8. Structure number 2 (1.51 kJ/mol) 

 
Figure 9. Structure number 3 (1.57 kJ/mol) 

 

 
Figure 10. Structure number 4 (PAR) (3.10 kJ/mol) 
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Figure 11. Structure number 5 (WIRE PAR) (4.57 kJ/mol) 

 

 
Figure 12. Structure number 6 (5.12 kJ/mol) 

 

 
Figure 13. Structure number 7 (5.37 kJ/mol) 
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Figure 14. Structure number 8 (6.00 kJ/mol) 

 

The first four structures are variations of possible dipod configurations of the methane 

molecules adsorbed at every other magnesium site, maximizing the distance between carbon 

atoms. Further four have methane adsorbed at adjacent magnesium sites, forming rows on the 

surface. Other structures, not shown, occasionally had methane molecules adsorbed in 

monopod configuration at oxygen sites. The methane molecules adsorbed at the ROT structure 

(Figure 7) are rotated with respect to each other 90 degrees around the normal axis to the surface 

going through the carbon atom. This way distances between neighboring are minimized, 

therefore minimizing repulsive interaction. Although methane molecules at the PAR structure 

(Figure 10) are not rotated with respect to each other, they are tilted so as to minimize repulsive 

interaction between hydrogen atoms of different methane molecules, by increasing the distance 

between them. The WIRE-type structures (Figure 11 –Figure 14) have methane molecules 

adsorbed in the dipod configuration; nevertheless all of the configurations are distorted due to 

repulsive interaction between hydrogen atoms.  

 

5.7.2.2. Energies 

 As we go along the structures numbers in the Table 9, the interaction energy steadily 

decreases; However by relatively small number. Along with declining interaction energy both 

surface-layer interaction and lateral interaction decline as well, but even at smaller rate. The 

change in total relative energies for structures 5-8 is less pronounced than in case of previous 

four structures. This is expected since molecules are very close to each other, so there is not 

much rotational freedom to try to decrease the repulsion between the molecules. Similarly, a 
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small difference in the interaction energy for structures 2 and 3 is not surprising. They differ by 

rotating 90 degree around C2v axis of one of the methane molecules.  

 

Table 9. Interaction energies, total relative energies and imaginary wavenumbers for methane 
monolayer structures. 

Structure 
Imaginary 

wavenumbers 
[cm-1] 

Total 
relative 
energies 
[kJ/mol] 

Energy per molecule [kJ/mol] 

Interaction 
energy  

Interaction 
energy surface 

- layer 

Lateral 
interaction 

1 (ROT) - 0.00 -14.79 -9.97 -4.82 

2 - 1.51 -14.41 -9.74 -4.67 

3 - 1.57 -14.40 -9.77 -4.63 

4 (PAR) - 3.10 -14.01 -9.49 -4.53 

5 (WIRE-PAR) - 4.57 -13.65 -9.19 -4.46 

6 8 5.12 -13.51 -9.04 -4.47 

7 12 5.37 -13.45 -9.07 -4.38 

8 20 6.00 -13.29 -8.86 -4.43 

 

 The structures were not optimized using Normal Mode optimization, since on average 

it produced structures with more imaginary frequencies than starting one. Therefore, structure 

1 (the ROT structure) has a smaller C-Mg distances then 4xCH4 structure (Table 14 – also the 

ROT structure), which was further optimized using NMopt (the resulting structure has lower 

energy of 0.11 kJ/mol).  

 The structure number 4 (PAR) corresponds to a single molecule in the smaller unit cell 

(Section 5.7.1 on page 65). The interaction energy of the smaller model (14.02 kJ/mol, Table 

4) and the larger one (14.01 kJ/mol, Table 9) is almost the same.  

 The C-Mg distances increase with increasing energy (Table 10). A significant jump in 

Mg-C distances occurs for structures number 6-8, with the WIRE-PAR structure being 

somewhere in between. 
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Table 10. Mg – C distances in pm, and wavenumbers of imaginary frequencies, for methane 
monolayer structures. 

Structure Mg – C distances [pm] Average 
wavenumber  

imaginary 
frequencies 

1 (ROT) 303 303 303 304 303 - 

2 305 306 306 307 306 - 

3 305 305 305 305 305 - 

4 (PAR) 304 304 305 305 305 - 

5 (WIRE-PAR) 307 308 308 308 308 - 

6 311 313 313 314 313 8 

7 308 311 311 314 311 12 

8 312 314 314 323 315 20 

 

 

Table 11. Thermodynamic adsorption data kJ/mol, at 𝐓 = 𝟒𝟕 𝐊 and 𝐩 = 𝟎. 𝟏𝐌𝐏𝐚 
obtained for methane monolayer structures, 𝟖𝟒𝟖 × 𝟖𝟒𝟖 × 𝟐𝟓𝟎𝟎 𝐩𝐦𝟑 supercell. 

#Structure 1 2 3 4 5 6 7 8 

∆𝐸el -14.79 -14.41 -14.40 -14.01 -13.65 -13.51 -13.45 -13.29 

∆𝐸ZPV 3.86 3.59 3.61 3.55 4.01 3.83 3.76 3.55 

∆𝑈  -11.58 -11.45 -11.39 -11.10 -10.37 -10.42 -10.40 -10.43 

∆𝐺 -5.08 -4.99 -5.08 -4.63 -3.73 -3.77 -3.82 -3.95 

∆𝐻 -11.97 -11.84 -11.78 -11.49 -10.76 -10.81 -10.79 -10.82 

− 𝑇∆𝑆  6.89 6.85 6.70 6.86 7.04 7.05 6.97 6.87 

∆𝑈 − ∆𝐸el − ∆𝐸ZPV -0.65 -0.63 -0.60 -0.64 -0.73 -0.74 -0.71 -0.69 

∆𝑈 − ∆𝐸el 3.21 2.96 3.01 2.91 3.28 3.09 3.05 2.86 

∆𝐻 − ∆𝐸el 2.82 2.57 2.62 2.52 2.89 2.70 2.66 2.47 

∆𝐺 − ∆𝐸el 9.71 9.43 9.32 9.39 9.92 9.74 9.62 9.34 
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5.7.3. Higher Coverage  

Another step of the investigation was to increase the loading of the methane molecules at the 

MgO(001) surface by adding one or two methane molecule (five or six in total). Since the result 

for five methane molecules at the MgO(001) surface resembled the ROT structure with an 

additional methane molecule on top of the first layer, we decided to follow that lead and 

investigated the formation of a second layer by putting additional one, two, and four methane 

molecules on top of the ROT structure. This procedure reduced the optimization problem since 

only one, two, or four molecules were allowed to optimize on top of the ROT layer of methane, 

that, in turn, lead to fast convergence of the calculations (lower degrees of freedom). This is 

similar to Drommund‘s approach for his investigation of second, and also third layer, of 

methane at the MgO(001) surface.173-175 Results for two methane molecules on top of the ROT 

structure were compared with results for six methane molecules at the MgO(001) surface (the 

same amount of methane molecules in total). The structure of the first layer differed in both 

cases. In case of six methane molecules at the MgO(001) surface it was determined to be the 

WIRE structure, even though this structure had lower interaction energy per molecule then the 

global minimum obtained for two methane molecules at the ROT structure. This result puts in 

question GA optimization ability to locate the global minimum in a robust way.  

 

5.7.3.1. Methane at Bare Surface 

The first step on investigating higher coverage of methane molecules was performed by 

introducing additional rigid bodies, and allowing all of them to freely optimize during GA 

calculations. Of course, this increased number of possible minima, and, therefore, 

computational load needed to search through the optimization space.   

 Firstly, coverage of five methane molecules, which corresponds to θ = 1.25 coverage, 

was examined. The results (Figure 15) lead to conclusion that the fifth molecule starts to form 

second layer on top of the ROT structure (Figure 7); this, in turn, motivated the investigation 

of the second layer of the methane by performing geometry optimization with the monolayer 

ROT structure as the “surface” (described in Chapter 5.7.3.2 at page 86).  

 The structure with six methane molecules (which corresponds to θ = 1.5 coverage) was 

investigated next. Contrary to expectation, the global minimum for this structure was not the 

ROT structure with two methane molecules forming the second layer on top of the first one. 

The first layer of the global structure for this system (Figure 16) is in the WIRE-type 
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configuration, similar to the structure number 6 form the monolayer results (Figure 12). Further 

investigation of the second layer at the ROT structure revealed that, in fact, was not the global 

minimum for this loading.  

 Interestingly, all methane molecules forming the second layer, for both structures, were 

in the monopod configuration. This turned out to be true also for the complete second layer, 

obtained later in the course of this study. In contrast, Drummond et al.174 predicted that the 

second layer will also consist of methane molecules in the dipod configuration.  

 

 

Figure 15. Global minimum for structure five methane molecules the MgO(001) surface. All 
molecules were allowed to optimize. 

 

 

Figure 16. Global minimum for structure six methane molecules the MgO(001) surface. All 
molecules were allowed to optimize.  

 The structure with five molecules (Figure 15) is identical to the ROT structure with an 

additional methane molecule in the monopod configuration (one hydrogen pointing in the 
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direction of magnesium site) forming a second layer. The structure with six molecules (Figure 

16) is different. Both “additional” methane molecules point with hydrogen atoms towards 

magnesium sites. One methane molecule is significantly lower than the second one. 

 The higher coverage systems were noticeably more difficult to re-optimize after the GA 

step. During the GA mating process, in some cases more than four methane molecules were 

placed in the first methane layer. This was possible due to fulfillment of the criterion that atoms 

are not too close to each other. Unfortunately, these structures, when optimized, yielded 

stationary points with more than one imaginary frequency (i.e. higher stationary points at the 

PES). 

 During re-optimization step these additional molecules (5th and 6th) present in the first 

layer, were pushed from it to form the second layer, on top of the first one. Nevertheless, the 

ejection of additional methane molecules from the first layer increase significantly to the 

computational load. Additionally, despite the fact that both structures were subject to the 

NMopt optimization, it was impossible to eliminate all imaginary frequencies (Table 12). 

 Most of the previous literature claims the dipod structure to be the preferable 

configuration for a single molecule, therefore, we additionally included energies for dipod 

configuration in Table 12, although results for the monopod configuration on-top of oxygen 

site yield lower values (Table 4).  

 Both structures, with five and six methane molecules, have two imaginary wavenumbers 

that correspond to translations (Table 12). Interaction energy per molecule increases with the 

number of molecules. This trend continues up to four molecules, when it starts to drop. Lateral 

interaction increases steadily with the number of molecules. This is expected, since lateral 

interaction is proportional to the coverage. Simultaneously, by increasing the number of 

molecules the surface-layer interaction contributes less to the interaction energy. This is also 

awaited, as the second monolayer starts to grow, the molecules within this layer interact less 

with the surface. They are shielded by the first layer, which has the strongest interaction with 

the surface. 
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Table 12. Interaction energies for different loading of methane molecules on the MgO(001) 
surface, all energies in kJ/mol per molecule, values of imaginary wavenumbers in 𝒄𝒎−𝟏. All 
unit cells are identical (𝟖𝟒𝟖 × 𝟖𝟒𝟖 × 𝟐𝟓𝟎𝟎 𝐩𝐦𝟑).  

# molecules 1* 1** 2 3 4 5 6 

Coverage 0.25 0.25 0.50 0.75 1.0 1.25 1.50 

interaction 
energy -12.61 -16.76 -12.82 -13.58 -14.82 -13.96 -13.03 

interaction 
surface – 

layer 
-12.82 -16.78 -10.68 -10.35 -9.97 -8.15 -6.45 

lateral 
interaction 0.21 0.02 -2.15 -3.22 -4.85 -5.81 -6.58 

Imaginary 
wavenumbers 

[𝒄𝒎−𝟏] 
0 23; 51 0 0 0 34 9; 16 

*dipod configuration (at Mg2+ site) 

** monopod configuration (at O2- site) 

 

 Single molecule in the monopod configuration has the strongest interaction energy – 

16.76 kJ/mol – that is almost 2 kJ/mol higher than interaction energy of a molecule in the ROT 

configuration (14.82 kJ/mol). This result suggests that for low coverage (θ = 0.25) all 

molecules should assume monopod configuration. For two methane molecules the drop in the 

interaction energy is significant, almost 4 kJ/mol. For this coverage, both molecules are 

adsorbed at the adjacent magnesium sites in dipod configuration, and rotated by 90 degrees 

with respect to each other (like in the ROT configuration).  

 The interaction energy increases with the number molecules, up to the monolayer ROT 

structure that has the strongest interaction energy. For coverages higher than monolayer 

coverage, the positive gain in attractive interaction between the molecules is counterbalanced 

by the decrease in the surface-layer interaction. In result, the total interaction energies for 

structures with higher coverage are lower than the interaction energy for the monolayer.  

 Comparing structures for five and six molecules loadings of methane molecules, some 

questions arise. Switching WIRE structure, the first layer for six-methane structure, to one with 

lower energy (i.e. the structure WIRE PAR from Figure 11), may produce structures with 
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stronger interaction energy per molecule. Additionally, further study revealed (Section 5.7.3.2, 

on page 86) that using the monolayer ROT structure as the first layer, and introducing additional 

methane molecules on top of it, yields structures with lower energies (stronger interaction 

energy per molecule). The fact that the GA optimization scheme was not able to localize this 

structure as the global minimum put in question its robustness, i.e. whether the GA can properly 

localize the global minimum. 

 

Table 13. Interaction energies obtained using embedded method (QMPOT) and CRYSTAL 09. 

Method Result 
[kJ/mol] 

Distance 
Mg-C [pm] 

CCSD(T):MP2//MP2:PBE+D (monolayer)179 -15.7±0.7 310 

CCSD(T):MP2//MP2:PBE+D (single molecule)179 -13.0±0.6 - 

CRYSTAL 09 (QZVP)180 14.52 307 

 

 Interaction energy for the ROT structure (Table 12) is very close to the result acquired 

for periodic calculations with orbital basis set with CRYSTAL 09 (Table 13). The model in this 

study corresponded to the ROT structure, although, it consisted of three MgO layer and two 

methane layers on the opposite surfaces of the slab. The difference (0.30 kJ/mol) in results 

between VASP and CRYSTAL 09 can be associated with dissimilarity in the models. The 

CCSD(T):MP2//MP2:PBE+D calculations – embedded CCSD(T):MP2 calculations at the 

structure optimized at the MP2:PBE+D level – gives higher desorption energies by almost 1 

kJ/mol with respect to TPD and periodic PBE+D,. This energy is also near to the estimated 

CCSD(T):MP2//MP2:PBE+D values for a single molecule in the dipod configuration (Table 

13). However, results obtained in this study show that a single molecule in the monopod 

configuration has stronger interaction energy.  

 Both structures, with five and six methane molecules, have two imaginary wavenumbers 

that correspond to translations (Table 12). Interaction energy per molecule increases with the 

number of molecules. This trend continues up to four molecules, when it starts to drop. Lateral 

interaction increases steadily with the number of molecules. This is expected, since lateral 

interaction is proportional to the coverage. Simultaneously, by increasing the number of 

molecules the surface-layer interaction contributes less to the interaction energy. This is also 
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awaited, as the second monolayer starts to grow, the molecules within this layer interact less 

with the surface. They are shielded by the first layer, which has the strongest interaction with 

the surface. 

 

Table 14. Distances between carbon atoms and magnesium sites for different loading of 
methane molecules on the MgO(001) surface, all distances in pm. Additionally for methane 
molecules in the second layer (monopod configurations) distances between hydrogen pointing 
towards the surface and magnesium sites are given. For structures with five and six methane 
molecules (5xCH4 and 6xCH4, respectively) hydrogen – magnesium distances (H-Mg) for the 
second layer molecules are reported (all in the monopod configuration, distance taken to the 
hydrogen from the C-H bond pointing towards the magnesium site).  

Structure 
 Distances  [pm] 

C-Mg  H-Mg 

1xCH4
* 302         

1xCH4
** 359         

2xCH4 302 302        

3xCH4 307 308 308       

4xCH4 308 308 308 308      

5xCH4 307 308 308 308 541   432  

6xCH4 313 315 318 316 494 545  389 448 

*dipod configuration (at Mg2+ site) 

** monopod configuration (at O2- site) 

 

 The monopod configuration at the oxygen site was only obtained for 𝜃 = 0.25 

coverage. The additional GA investigation (not included in this work) for two (𝜃 = 0.5) and 

three (𝜃 = 0.75) methane molecules showed as global minima structures with the dipod 

configuration only. That may suggest that for coverage higher than 𝜃 = 0.25 attractive 

interaction between molecules may cause them to form islands on the surface, forbidding the 

monopod configuration from being observed.  
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Table 15. Number of imaginary wavenumbers and their values [cm-1] for different loading of 
methane molecules on the MgO(001) surface, calculated with two and four point central 
differences. 

Number of 
Single Points 

# molecules 
Methane      

1* 2 3 4 5 6 

2 

Number of Imaginary 
wavenumbers 0 0 0 0 1 2 

Imaginary wavenumber - - - - 34 9; 16 

4 

Number of Imaginary 
wavenumbers 1 1 1 0 3 2 

Imaginary wavenumber 44 32 27 - 3;15; 21 10; 25 

*dipod configuration (at Mg2+ site), larger unit cell 

 

Table 16. Thermodynamic functions in kJ/mol, for different loading of methane 
molecules on the MgO(001) surface, 𝑻 = 𝟒𝟕𝐊, 𝒑 = 𝟎. 𝟏𝐌𝐏𝐚, 𝟖𝟒𝟖 × 𝟖𝟒𝟖 ×
𝟐𝟓𝟎𝟎 𝐩𝐦𝟑 supercell. 

# molecules 1* 1** 2 3 4 5 6 

∆𝐸el -12.61 -16.76 -12.82 -13.58 -14.82 -13.96 -13.03 

∆𝐸ZPV 3.70 2.24 3.88 3.40 3.56 3.36 3.34 

∆𝑈  -9.75 -15.28 -9.55 -10.73 -11.85 -11.19 -10.35 

∆𝐺 -2.93 -8.64 -3.26 -4.62 -5.47 -4.82 -3.83 

∆𝐻 -10.14 -15.67 -9.94 -11.12 -12.24 -11.58 -10.74 

− 𝑇∆𝑆  7.21 7.03 6.69 6.50 6.77 6.76 6.91 

∆𝑈 − ∆𝐸el − ∆𝐸ZPV -0.84 -0.76 -0.61 -0.55 -0.59 -0.59 -0.66 

∆𝑈 − ∆𝐸el 2.86 1.48 3.27 2.85 2.96 2.77 2.67 

∆𝐻 − ∆𝐸el 2.47 1.09 2.88 2.46 2.57 2.38 2.28 

∆𝐺 − ∆𝐸el 9.68 8.12 9.57 8.96 9.35 9.14 9.19 

*dipod configuration (at Mg2+ site) 

** monopod configuration (at O2- site) 
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 The C-Mg distances for the first layer of the 6xCH4 structure are significantly longer. 

The difference is due to the change in the structure of the first layer in presents of the second 

layer molecules. In comparisons to previous structures, the layer is significantly higher above 

the surface, and corresponds to the structure number six for monolayer coverage (Figure 12 on 

page 74). The C-Mg distances of these two structures are relatively close to each other (Table 

10 on page 77). 

 Imaginary wavenumber for structure with five methane molecules (Table 15), 34 cm-1, 

corresponds to a twisting motion. Two imaginary wavenumbers for structure with six methane 

molecules, 9 cm-1 and 16 cm-1, are rocking and twisting motions of two methane molecules 

belonging to the second layer.  
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5.7.3.2. Methane at the ROT Structure 

 

Motivated by results obtained for five methane molecules at MgO(001), we decided to 

investigate formation of the second methane layer at top of the ROT structure, assuming this 

would lead to global minima for five, six, and eight methane molecules structures. In this case 

the ROT structure was treated as a “surface”, above which one, two, and four methane 

molecules were randomly initialize, it the initialization phase of the GA, and then optimized 

during the optimization phase. Because there are only one, two, and four rigid bodies, the 

optimization space was further reduced. This lead to decrease in computational cost and, in 

turn, allowed the investigation of the full second layer. Additionally, since rigid bodies are not 

allowed to penetrate the surface, this prevented the GA optimizer from including more 

molecules into the first layer via the crossover method. This problem caused huge difficulties 

at the full optimization step, for structures with five and six ethane molecules. Of course, at the 

full relaxation step, the first layer was also optimized.  

 By increasing the number of molecules, formation of the second layer is observed. All 

additional methane molecules assume positions above magnesium sites that were not occupied 

by the first layer molecules. All second layer methanemolecules are in the monopod 

configuration.  

 

 

Figure 17. Global minimum for one methane molecule at the ROT structure (coverage 𝜽 =
𝟏. 𝟐𝟓). Throughout the GA step only one molecule in the second layer was allowed to freely 
optimize. 
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Figure 18. Global minimum for two methane molecules at the ROT structure (coverage 𝛉 =
𝟏. 𝟓𝟎). Throughout the GA step only two molecules in the second layer were allowed to freely 
optimize. 

 
 

 

Figure 19. Global minimum for four methane molecules at the ROT structure (coverage 𝛉 =
𝟐. 𝟎𝟎). Throughout the GA step only four molecules in the second layer ware allowed to freely 
optimize. 

 

 The second layer formation was also investigated by Drummond et al.174. By altering 

possible arrangements of the molecules in the first and second layer, they determined that the 

bilayer structure contain the ROT configuration as the first layer, and “rotated” configuration 

as the second layer. The “rotated” configuration corresponds to the ROT structure, but with all 

molecules rotated in the same direction by 45 degrees around normal to the surface. Molecules 

of the second layer adsorbed at the vacant surface magnesium sites. The global minimum 

structure obtained by the GA investigation, was also found in this study, but it lies 18.78 meV 

(18.12 kJ/mol) higher in energy than the Staggered-Rotated minimum. The Staggered-Rotated 



88 
 

minimum corresponds structure with first layer in the Staggered configuration (i.e. the ROT 

configuration) and second layer in the Rotated configuration (i.e. the ROT configuration with 

molecules rotated by 45 degrees with respect to the normal axis). The layers are translated with 

respect to each other, so that all magnesium sites are occupied. 

 

Table 17. Comparison of interaction energies for different loading of methane molecules on 
the MgO(001) surface, all energies in kJ/mol. Labels “1 at ROT”, “2 at ROT”, and “4 at ROT” 
correspond to one, two, and four methane molecules at the ROT structure, respectively. 

 Methane 

Structure 4xCH4 5xCH4 6xCH4 1 at ROT 2 at ROT 4 at ROT 

# molecules 4 5 6 5 6 8 

interaction 
energy 

-14.82 -13.96 -13.03 -13.93 -13.89 -14.37 

interaction 
surface – layer 

-9.97 -8.15 -6.45 -8.17 -6.97 -5.43 

lateral 
interaction 

-4.85 -5.81 -6.58 -5.76 -6.92 -8.94 

Imaginary 
frequencies 0 1 2 1 3 4 

 

 The energy difference between 5xCH4 and “1 at ROT” structures (Table 17) is 

negligible, the structures are essentially the same, difference comes from carbon distances to 

the surface (compare with Table 19). Similarly, the imaginary frequencies for both structures 

are similar (Table 18).  

 By comparing the fully optimized layer structure of six methane molecules (6xCH4) 

with only second layer optimized structure (2 at ROT), the latter has lower interaction energy. 

This shows that our hybrid RBGA algorithm was not able to localize global minimum in the 

case of six fully optimized molecules. The problem is caused by inability of the local 

optimization step to localize the minimum properly. The crossing-over routine generates 

structures with five and six methane molecules in the first layer. These structures correspond to 

higher order stationary points that are difficult to optimize to local minima.  
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 Interaction energies for the monolayer (4xCH4) and bilayer (4 at ROT) are very similar. 

The difference is only 0.45 kJ/mol per molecule. However the second layer has no interaction 

with the surface. The surface – layer interaction for the bilayer structure is almost a half of 

interaction for the monolayer structure.  

 

Table 18. Number of imaginary wavenumbers and their values [cm-1] for different loading of 
methane molecules on the MgO(001) surface, calculated with two and four point central 
differences. 

Number of 
Single Points 

 Methane 

# molecules 4xCH4 5xCH4 6xCH4 1 at ROT 2 at ROT 4 at ROT 

2 

Number of 
Imaginary 

wavenumbers 
0 1 2 1 3 4 

Imaginary 
wavenumber 

[cm-1] 
- 34 

9 
16 

43 
7 
15 
39 

5 
18 
23 
36 

4 

Number of 
Imaginary 

wavenumbers 
0 3 2 3 4 5 

Imaginary 
wavenumber 

[cm-1] 
- 

3 
15 
21 

10 
25 

21 
30 
41 

12 
28 
36 
41 

7 
11 
20 
32 
34 

*dipod configuration, larger unit cell 

 

 Number of imaginary wavenumbers rises with the number of molecules on the surface, 

both for bare MgO calculations and calculations at the ROT structure. The Normal Mode 

optimization was not able to eliminate all imaginary modes. The high number of imaginary 

wavenumbers is most probably caused by strongly anharmonic character of the PES. This 

increases with the number of single point used to evaluate frequencies. All imaginary 
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wavenumbers, for each of the structure, correspond to rocking and twisting motions of the 

molecules in the second methane layer.  

 Distance between the magnesium site and carbon atom of the second layer molecule 

increases with increasing number of molecules (Table 19). In addition, distances from the 

surface of the first layer increase slightly for the structure with full double layer coverage (from 

304 to 306 pm) In case of the 6xCH4 structure, the carbon-magnesium spacing is significantly 

different. This, as it was previously discussed, can be related to the substantial change of the 

first layer structure.  

 

Table 19. Distances between magnesium and carbon of methyl group adsorbed at magnesium 
side, and oxygen and hydrogen of the second methyl group (the one pointing to the surface). 
The presented hydrogen – magnesium distances (H-Mg) reported only for the second layer 
molecules (all monopod configurations, the distance between the hydrogen from the C-H bond 
pointing towards the magnesium site). 

Structure Layer 
Distances  [pm] 

C-Mg  H-Mg 

4xCH4 1st 308 308 308 308      

5xCH4 
1st 307 308 308 308  432    

2nd 541         

6xCH4 
1st 313 315 318 316  389 448   

2nd 494 545        

1 at ROT 
1st 304 304 304 304      

2nd 543     434    

2 at ROT 
1st 304 304 305 304      

2nd 550 543    445 436   

4 at ROT 
1st 306 306 306 306      

2nd 558 557 560 561  455 454 459 459 

 

 As already mentioned, the 5xCH4 and “1 on ROT” structures are essentially the same. 

However, after including ZPVE and thermal energies the difference is slightly bigger (Table 

20). 
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 The interaction energy of the “2 at ROT” structure is higher than for the 6xCH4 

structure. The “2 at ROT” global minimum in not present in the population for the 6xCH4 

structure. GA was not able to localize this structure. The problem may arise from the fact that 

more than four methane molecules are being pushed into the first layer during the crossover 

step of the GA. This generates higher order stationary points. The local optimizer was unable 

to full relax these strucutres. Consequently, the obtained minima were nowhere close to the 

stationary points. This may explain why GA failed to localize the global minimum with six 

methane molecules. On this account, the failure calls for more robust local optimizer. 

Alternative solution would be a better crossover mechanism that prevents the algorithm from 

placing too many molecules in the first layer.   

 

Table 20. Thermodynamic functions in kJ/mol per molecule, for different loading of 
methane molecules on the MgO(001) surface, 𝑻 = 𝟒𝟕𝐊, 𝒑 = 𝟎. 𝟏𝐌𝐏𝐚, 𝟖𝟒𝟖 × 𝟖𝟒𝟖 ×
𝟐𝟓𝟎𝟎 𝐩𝐦𝟑 supercell. 

# molecules 4xCH4 5xCH4 6xCH4 1 at ROT 2 at ROT 4 at ROT 

∆𝐸el -14.82 -13.96 -13.03 -13.93 -13.89 -14.37 

∆𝐸ZPV 3.56 3.36 3.34 3.48 3.26 3.02 

∆𝑈  -11.85 -11.19 -10.35 -11.03 -11.25 -11.94 

∆𝐺 -5.47 -4.82 -3.83 -4.72 -4.85 -5.57 

∆𝐻 -12.24 -11.58 -10.74 -11.42 -11.64 -12.33 

− 𝑇∆𝑆  6.77 6.76 6.91 6.69 6.79 6.76 

∆𝑈 − ∆𝐸el − ∆𝐸ZPV -0.59 -0.59 -0.66 -0.57 -0.62 -0.59 

∆𝑈 − ∆𝐸el 2.96 2.77 2.67 2.90 2.64 2.43 

∆𝐻 − ∆𝐸el 2.57 2.38 2.28 2.51 2.25 2.04 

∆𝐺 − ∆𝐸el 9.35 9.14 9.19 9.21 9.04 8.80 

 

 The electronic interaction energy for the 4xCH4 and “4 at ROT” structures are very 

similar, with 4xCH4 0.45 kJ/mol lower in energy. However, after incorporating ZPVE and 

thermal contributions, the “4 at ROT” structure occurred to be lower by 0.09 kJ/mol in the total 

internal energy and enthalpy.   
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5.8. Ethane at the MgO(001) Surface 

Ethane molecules, at the GA step, were modelled as two rigid bodies, two methyl groups, each 

optimizing separately. The goal was to gain additional freedom during optimization, through 

the possibility for the ethane molecules to switch between staggered and eclipsed conformations 

when in contact with the surface. Unfortunately, it also introduced some problems. During 

initialization and at the crossing over steps of the GA optimization, a lot of structures with 

unreasonable geometries were generated. Vast number of such cases signals necessity for 

introducing better way to model whole molecules with internal degrees of freedom, i.e. a way 

to notify system that two or more rigid bodies constitute a bigger molecule. In addition, while 

optimizing the relative position of them, the whole integrity should be preserved.  

 Study included three different coverage of the ethane molecules, starting from one 

molecule (𝜃 = 0.25 coverage), up to four molecules (monolayer coverage (𝜃 = 1.0)), without 

three molecules. The obtained structures (Figure 20 –Figure 22) correspond to three different 

coverages of ethane. For each system, ethane molecules assume the same configuration at the 

surface. One methyl group adsorbs at the magnesium site in the dipod configuration, the other 

methyl group adsorbs at the oxygen site in the monopod configuration. Overall, the ethane 

molecule preserves its staggered conformation. One molecule (Figure 20) adsorbs in the Cs 

symmetry with respect to the surface. For more molecules this symmetry is not present. Two 

ethane molecules adsorb at adjacent magnesium sites to maximize lateral interaction (Figure 

21). For the monolayer structure, the ethane molecules create a pine-tree pattern at the surface 

(Figure 22).  
 

 

Figure 20. Global minimum for one ethane molecule at the MgO(001) surface (coverage 𝜽 =
𝟎. 𝟐𝟓).  
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Figure 21. Global minimum for two ethane molecules at the MgO(001) surface (coverage 𝜽 =
𝟎. 𝟓𝟎). 
 

 

Figure 22. Global minimum for four ethane molecules at the MgO(001) surface (coverage 𝜽 =
𝟏. 𝟎𝟎). 

 

The interaction energies rise as the number of ethane molecules in the system increase (Table 

21). At the same time surface - layer interaction decreases. This is due to enlargement in 

distances between the surface and molecules (Table 22). This effect is counterbalanced with 

increase in lateral interactions.  

The interaction energy for the ethane monolayer coverage is by ~9 kJ/mol higher with 

comparison to the interaction energy of methane monolayer. The increase in the energy is 

mainly due to stronger lateral interaction, ~7 kJ/mol (4.85 kJ/mol for the methane monolayer, 

Table 12). Increase in the surface – layer interaction is less significant, ~2 kJ/mol (9.97 kJ/mol 

for the methane monolayer, Table 12).  
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The CCSD(T):MP2//MP2:PBE+D adsorption energy by Boese et al.,179 for an isolated 

molecule equals to 18.9±0.8 kJ/mol. It is almost by 4 kJ/mol higher than the interaction energy 

obtained with the plain periodic PBE+D calculations. The same difference in the energy for 

these methods was observed for an isolated methane molecule.  

 

Table 21. Interaction energies for different loading of ethane molecules at the MgO(001) 
surface, all energies in kJ/mol. 

  Ethane 

 # molecules 1 2 4 
Energies [kJ/mol]     

interaction energy  -15.03 -18.95 -23.83 

surface – layer 
interaction   -15.27 -13.93 -12.30 

lateral interaction  0.24 -5.03 -11.53 

Imaginary 
frequencies  0 0 0 

 

Table 22. Distances between magnesium and carbon of methyl group adsorbed at magnesium 
side, and oxygen and hydrogen of the second methyl group (the one pointing to the surface). 

structure 
Distances [pm] 

C-Mg H-O 

1xC2H6 305 281 

2xC2H6 
309 277 

308 277 

4xC2H6 

312 282 

315 315 

309 280 

328 286 

 



95 
 

 Introduction of additional ethane molecules leads to increase in distance between the 

surface and the molecules (Table 22). This fact is reflected in the decrease of surface – layer 

interaction, going down from 15.27 kJ/mol for a single molecule to 12.30 kJ/mol for four ethane 

molecules. The C-Mg distances for ethane monolayer are significantly longer with comparison 

to ones in the methane monolayer (Table 14), nevertheless the surface – layer interaction is 

higher (by ~2 kJ/mol) for methane structure.  

 The zero point vibrational energy correction (Table 23) for the monolayer structure 

slightly smaller than in case of methane calculations (Table 16). 

 

Table 23. Thermodynamic functions in kJ/mol, for different loading of ethane molecules on 
the MgO(001) surface, 𝑻 = 𝟕𝟓 𝐊 (desorption temperature), 𝒑 = 𝟎. 𝟏 𝐌𝐏𝐚, 𝟖𝟒𝟖 × 𝟖𝟒𝟖 ×
𝟐𝟓𝟎𝟎 𝐩𝐦𝟑 supercell. 

# molecules 1 2 4 

∆𝐸el -15.03 -18.95 -23.83 

∆𝐸ZPV 2.28 2.03 3.10 

∆𝑈  -12.63 -16.80 -21.10 

∆𝐺 -1.63 -5.61 -8.65 

∆𝐻 -13.26 -17.43 -21.72 

− 𝑇∆𝑆  11.61 11.81 13.07 

∆𝑈 − ∆𝐸el − ∆𝐸ZPV 0.12 0.12 -0.37 

∆𝑈 − ∆𝐸el 2.40 2.15 2.73 

∆𝐻 − ∆𝐸el 1.77 1.53 2.11 

∆𝐺 − ∆𝐸el 13.40 13.34 15.18 
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5.9. Propane at the MgO(001) Surface  

The last step of our study was an investigation of the layer formation for propane. Because with 

the present implementation there was no possibility to use different rigid bodies within one 

optimization, propane molecules in staggered configuration were modelled as whole rigid 

bodies. The adsorption was studied with four different coverages; from one molecule up to four 

molecules. The results obtained for three and four molecules are preliminary. More thorough 

investigation, involving more GA cycles, might be required.  

 For both coverages, with one (Figure 23) and two (Figure 24) molecules, propane is 

adsorbed with two methyl groups, each group in the dipod configuration. This way each 

molecule maximizes its interaction with the surface. For a single propane molecule, the methyl 

groups sit at the top of adjacent magnesium sites. In case of two propane molecules, the methyl 

groups of each molecule try to adsorb at the adjacent magnesium sites, but are slightly distorted. 

This happens most probably due to repulsion between hydrogen atoms of adjacent molecules. 

Each of the molecules adsorbs with one methyl group higher and the other one lower above the 

surface. The structure for three molecules is different (Figure 25). This global minimum has 

two molecules adsorbed with one methylene group, in the dipod configuration, each; and with 

one molecule adsorbed with one methyl group, also in the dipod configuration. All molecules 

are adsorbed at the further magnesium sites. The diversity of the molecule configurations is 

even bigger for four propane molecules global minimum (Figure 26). This minimum has one 

molecule adsorbed with one methyl group in monopod configuration (this CH3 group is leaning 

towards adjacent magnesium site to form something similar to the dipod configuration); one 

adsorbed with two groups (methyl and methylene) in configuration similar to ethane 

configuration; finally, two molecules with one methyl group in the dipod configuration.  

 Investigation of a monolayer constructed by hand with four molecules in configuration 

similar to configuration for one and two molecules may yield better strucutre. This way 

interaction with the surface will be maximized, which might lead to a significant increase in 

interaction energy. Similarly we can ask the question, what will be the interaction energy if we 

take the global minimum structure for the ethane monolayer (Figure 22), and for each ethane 

molecule substitute one hydrogen atom (the one from the methyl group in the dipod 

configuration, pointing away from the surface) with another methyl group? Will the obtained 

monolayer structure have higher interaction energy than the one localized by the GA algorithm?  
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Figure 23. Global minimum for one propane molecule in staggered conformation at the 
MgO(001) surface (coverage 𝛉 = 𝟎. 𝟐𝟓) 

 

 

Figure 24. Global minimum for two propane molecules in staggered conformation at the 
MgO(001) surface (coverage 𝛉 = 𝟎. 𝟓𝟎). 

 

 

Figure 25. Global minimum for three propane molecules in staggered conformation at the 
MgO(001) surface (coverage 𝛉 = 𝟎. 𝟕𝟓). 
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Figure 26. Global minimum for four propane molecules in staggered conformation at the 
MgO(001) surface (coverage 𝛉 = 𝟏. 𝟎𝟎). 

 

Table 24. Interaction energies per molecule for different loading of propane in staggered 
configuration molecules at the MgO(001) surface, all energies in kJ/mol. 

  Propane staggered  

# molecules 1 2 3 4 

interaction 
energy -15.52 -21.75 -26.28 -27.62 

interaction 
surface – 

layer 
-17.60 -14.81 -14.23 -10.56 

lateral 
interaction 2.08 -6.95 -12.05 -17.06 

Imaginary 
frequencies 0 0 0 0 

 

 The lateral interaction for one molecule (Table 24) is positive; this is due to deformation 

of the propane in contact with the surface. Adding one more molecule caused lateral interaction 

to jump up to the value of 6.95 kJ/mol. This value is increased by about 5 kJ/mol with each 

additional molecule.  

 The energy difference between the monolayer and single molecule is substantial. The 

monolayer has almost double interaction energy with respect to the single molecule. At the 

same time the interaction energy with the surface was nearly cut in half, from 17.60 kJ/mol for 
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a single molecule to 10.56 kJ/mol for the monolayer. This drop in the interaction can be 

correlated with the carbon-hydrogen distances (Table 25). For one molecule structure there are 

two carbon atoms interaction with magnesium sites. The distance between them is small, 315 

pm. Whereas for the monolayer structure, there is only one carbon atom interaction with the 

magnesium site at that small range. All other carbons atoms are considerably higher above the 

surface. Almost two thirds of the monolayer interaction energy comes from the lateral 

interaction.  

 There is also, of course, a question whether introducing more propane molecules can 

change the overall picture. Will increasing the propane coverage produce structure with higher 

interaction energies? One also needs to keep in mind that the final structures obtained for three 

and four molecules may not be global minima. Further investigation, involving more GA cycles, 

will be needed to confirm that these structures are indeed global minima. Also, propane was 

used in the staggered configuration at the GA step of the investigation. Allowing the molecule 

to change its conformations during GA cycles may result in structures with lower energies.  
 

Table 25. Distances between selected atoms, all distances in pm. The C1 and C2 labels 
corresponds to atoms of one molecule, C1 belongs to methyl or methylene group, C2 belongs 
to methyl group, H-O refers to monopod configuration or ethane like configuration. 

Structure Configuration 
Distances [pm] 

C1-Mg C2-Mg H-O 

1xC3H8 2 x -CH3 dipod 315 315  

2xC3H8 
2 x -CH3 dipod 352 325  

2 x -CH3 dipod 363 314  

3xC3H8 

-CH2 dipod 315   

-CH3 dipod 309   

-CH2 dipod 302   

4xC3H8 

monopod  344 248 

-CH3 dipod 305   

-CH3 dipod 324   

ethane-like 363  281 
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 The distance of the propane molecules to the surface (Table 25) can be straightforwardly 

correlated to the surface-layer interaction. For the lowest coverage, with only one propane 

molecule, the surface-layer interaction is the greatest. This molecule interacts with both methyl 

groups at a very close distance to the magnesium sites. In case of two molecules structure, both 

molecules also interacts with two methyl groups, but this time at a larger distance to the 

surface’s sites, hence the notable decline in surface-layer interaction. The system with three 

propane molecules has the same surface-layer interaction as the one with two molecules; 

although, in this case there are only three carbon atoms in contact with the surface, yet all of 

them are at the greatly smaller distance. The lowest interaction energy is observed for the 

highest coverage. In this case, the value of the energy drops by another 4 kJ/mol, which is due 

to the fact that this structure has only two propane molecules with carbon atoms substantially 

near magnesium adsorption sites.  

 The zero point vibrational energy correction (Table 26) is slightly bigger than in cases 

of methane (Table 16) and ethane (Table 23). 

 

Table 26. Thermodynamic functions in kJ/mol, for different loading of propane in staggered 
configuration molecules at the MgO(001) surface, 𝑻 = 𝟗𝟑 𝐊 (desorption temperature), 𝒑 =
𝟎. 𝟏 𝐌𝐏𝐚, 𝟖𝟒𝟖 × 𝟖𝟒𝟖 × 𝟐𝟓𝟎𝟎 𝐩𝐦𝟑 supercell. 

# molecules 1 2 3 4 

∆𝐸el -15.52 -21.75 -26.28 -27.62 

∆𝐸ZPV 1.73 1.96 3.09 4.19 

∆𝑈  -15.14 -21.23 -24.91 -25.52 

∆𝐺 -0.43 -6.52 -9.11 -8.93 

∆𝐻 -15.92 -22.01 -25.69 -26.29 

− 𝑇∆𝑆  15.47 15.48 16.56 17.35 

∆𝑈 − ∆𝐸el − ∆𝐸ZPV -1.35 -1.44 -1.72 -2.09 

∆𝑈 − ∆𝐸el 0.38 0.52 1.37 2.10 

∆𝐻 − ∆𝐸el -0.40 -0.26 0.60 1.33 

∆𝐺 − ∆𝐸el 15.09 15.24 17.17 18.69 
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5.10. Comparison with Experiment  

The computational results were compared with coverage-dependent desorption kinetics data 

obtained from temperature-programmed desorption (TPD) experiments for methane, ethane, 

and propane on high-quality MgO(100) film (Tait et al.167). The TPD experiments were 

conducted under ultrahigh-vacuum conditions (base pressure~1 ×  10−10 Torr i.e. ~1.3 ×

 10−14 MPa) by ramping the temperature of the sample at given heating rates and measuring 

the desorption of the molecule by quadrupole mass spectrometer (QMS). For each molecule, 

TPD experiments were conducted at many initial coverages, and at several other heating rates 

for each molecule. 

 In each TPD spectra two distinct peaks corresponding to desorption of the multilayer 

(low temperature) and desorption of the first monolayer (higher temperature) were observed. 

Calculation of the coverage-dependent desorption energy was made for each molecule by the 

inversion-optimization analysis191 to obtain the “best-fit” prefactor for desorption to simulate 

TPD data. Using this best-fit prefactor the desorption energy versus coverage for each of the 

molecules was calculated for each coverage from range of 0–0.8 ML (monolayers); and fitted 

with a solid lines (energy curves) representing an empirical equation that describes coverage 

dependence of desorption energy (𝐸d) 

 𝐸d(𝜃) =  𝐸0 +  𝛾𝜃 +  𝐸def𝑒
𝜃 𝜃def⁄  (54) 

The first term 𝐸0 represents the desorption energy obtained by extrapolating the linear region 

of the coverage-dependent energy curve back to the limit of zero coverage (i.e. zero-limit 

desorption energy), and can be interpreted as the activation energy for desorption of an isolated 

molecule from a MgO(100) terrace site (i.e., in the absence of defect sites and adsorbate-

adsorbate interactions). The factor 𝛾 is the increase in desorption energy due to lateral 

interactions between adsorbates (i.e. lateral interaction factor); 𝐸def factor is related to the 

difference between the adsorption energy of an alkane molecule adsorbed on a MgO terrace site 

compared to one adsorbed at a defect site (the energy difference between 𝐸0 and the measured 

desorption energy at zero coverage, 𝐸d(0)). 

 The 𝜃def  factor corresponds to the rate at which the influence of defect sites on the 

energy decays with increasing coverage (𝜃). It is related to density (fractional area) of defect 

sites on the surface, and their influence on the adsorption of near-by molecules. 
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 The interaction energies obtained from calculations cannot be directly compared with 

experimental desorption energies. The temperature-programmed desorption experiments167 

yield Arrhenius activation energies, 𝐸A, which differ from the enthalpies at the desorption 

temperature, ∆𝐻T, by 𝑅𝑇.2  

 ∆𝐻T = 𝐸A − 𝑅𝑇 (55) 

By subtracting the thermal energies, ∆𝐻𝑡ℎ, (thermal contributions to change in enthalpy due to 

non-zero temperature at which the experiment was performed)  

 ∆𝐻0 = ∆𝐻T − ∆𝐻th (56) 

and zero-point vibrational energy (ZPVE) one obtain desorption energy (∆𝐸), 

 ∆𝐸 = ∆𝐻0 − ∆𝐸ZPV (57) 

which can be then compared with calculated interaction energies for the energy minimum 

structures. 

 

Table 27. Experimental Arrhenius desorption barriers, obtained from equation (54), and 
temperatures (Tait et al.167). 

Alkane 
Desorption energy 

(𝜃 = 1) 
[kJ/mol] 

Desorption energy 
(Zero coverage limit) 

[kJ/mol] 

Desorption 
temperature [K] 

Methane 12.63 11.1 47 

Ethane 22.76 21.3 75 

Propane 29.40 28.0 93 

 

 Theoretically corrected experimental desorption energy for methane (Table 28) are very 

close to calculated interaction energies. For the small unit cell (Table 4), which corresponds to 

monolayer coverage in the PAR configuration, the interaction energy is 14.02 kJ/mol. The 

desorption energies from the experiment is 14.82 kJ/mol. Given the fact that the PAR structure 

is not the global minimum, the difference of 0.80 kJ/mol is relatively small. For the zero-
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coverage limit, the discrepancy between experiment (13.29 kJ/mol) and theory (16.76 kJ/mol, 

monopod) is significantly bigger, and amounts to 3.47 kJ/mol. However, if we assume the 

isolated dipod configuration (12.63 kJ/mol) to be the global minimum, the difference decreases 

to only 0.66 kJ/mol. The interaction energy obtained for the methane monolayer ROT structure 

(14.82 kJ/mol, Table 12) matches perfectly to the theoretically corrected experimental 

desorption energies. 

 

Table 28. Experimental desorption energies derived from equations (55), (56), and (57). Input 
values taken from table 27. Thermodynamic contributions were obtained from vibrational 
analysis of global minima structures corresponding to monolayer coverage. All energies are in 
kJ/mol. Experimental data obtained by Tait et al.167 

 monolayer coverage Zero-coverage limit 

 methane ethane propane methane ethane propane 

Arrhenius desorption 12.63 22.76 29.40 11.10 21.30 28.00 

Temperature [K] 47 75 93 47 75 93 

RT value 0.39 0.62 0.77 0.39 0.62 0.77 

thermal energy 

correction 
0.98 1.00 0.91 0.98 1.00 0.91 

ZPVE correction -3.56 -3.10 -4.19 -3.56 -3.10 -4.19 

desorption energies 14.82 24.24 31.91 13.29 22.78 30.51 

 

The difference between low coverage theoretical energy and zero-coverage limit extrapolated 

from experimental data might suggest that the extrapolation procedure fails. It is impossible to 

measure experimentally interaction energy of only one molecule, therefore the value have to be 

extrapolated from the coverage-dependent energy. Nevertheless, the extrapolation might not 

necessarily capture the nature of single molecule interaction. In presence of other molecules, 

single molecule may be prevented from assuming certain positions, due to the strong lateral 

interaction. The difference with respect to the zero-coverage limit estimation may be due to 

formation of methane islands, with methane molecules in the dipod configuration. To verify 
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which position of a single molecule is preferable, further calculation, e.g. cluster or embedded, 

need to be done.  

 The theoretical adsorption energy for the ethane monolayer (23.83 kJ/mol, Table 21) is 

close to the experimental adsorption energy (24.24 kJ/mol, Table 28). However, the zero-

coverage limit desorption energy, 22.78 kJ/mol (Table 28), is significantly higher than 

theoretical value for an isolated ethane molecule, 15.03 kJ/mol (Table 21). Stronger interaction 

for densely packed ethane molecules suggests that for lower coverage than monolayer, ethane 

will form islands of interacting molecules and bare surface. Therefore, the extrapolation 

procedure will not predict the interaction energy of a single, isolated molecule.  

 The experimental desorption energy for the propane monolayer, 31.91 kJ/mol (Table 

28), is relatively close to the calculated desorption energy – 27.62 kJ/mol (Table 24). Yet, the 

difference of 4.29 kJ/mol is significantly larger when compared with previous results for ethane 

and methane. In case of zero-limit coverage, the discrepancy between experimental and 

theoretical values is tremendous. The desorption energy, 30.51 kJ/mol (Table 28), is 

approximately double the theoretical value 15.52 kJ/mol (Table 24).  

 

 

Figure 27. Change in enthalpy as a function of hydrocarbon chain length for different coverage 
of molecules.  
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 Figure 27 shows the change in the adsorption enthalpy with increasing number of carbon 

atoms for different coverage. The enthalpy change dependence on the coverage is the smallest 

for methane. Exception is the single molecule coverage which has a significantly higher 

enthalpy change (15.67 kJ/mol, Table 16). For ethane and propane molecules loading on the 

surface has much more pronounced influence. Coverage shift for ethane molecules from 0.25 

to 1.00 increases the adsorption enthalpy by ~8 kJ/mol (from 13.26 to 21.72 kJ/mol, Table 23). 

The same coverage increase for propane results in the adsorption enthalpy increase by ~10 

kJ/mol (from 15.92 to 26.29 kJ/mol, Table 26). This tendency can be explained with dominating 

role of the lateral interaction for higher coverages (Table 29). For all three molecules, the 

interaction energy increases with the coverage of molecules. Difference between molecules 

interaction is most pronounced for the monolayer coverage. For the monolayer coverage, 

surface – layer interactions are comparable, but lateral interaction for ethane is 2.4 and for 

propane 3.5 times stronger than for methane.  

 

Table 29. Interaction energies for methane, ethane, and propane with different coverage. 

 Coverage Methane Ethane Propane 

Interaction energy 

0.25 -16.76 -15.03 -15.52 

0.50 -12.82 -18.95 -21.75 

1.00 -14.82 -23.83 -27.62 

Lateral interaction 
energy 

0.25 0.02 0.24 2.08 

0.50 -2.15 -5.03 -6.95 

1.00 -4.85 -11.53 -17.06 

Surface – layer 
interaction energy 

0.25 -16.78 -15.27 -17.60 

0.50 -10.68 -13.93 -14.81 

1.00 -9.97 -12.30 -10.56 
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6. Summary  

 

The present work was concentrated on developing the Rigid Body Genetic Algorithm (RBGA), 

and applying it to investigate the hydrocarbon adsorption on the MgO(001) surface. The RBGA 

method is a modified hybrid genetic algorithm with rigid body optimization at the local 

optimization step. The modification allows for a vast simplification of the optimization 

problem, and, in turn, to search a large number of possible configuration. The key assumption 

of the method is that individual parts of the system (rigid bodies) do not change their internal 

configuration throughout the global optimization. Therefore, this method is a perfect tool to 

study phenomena like adsorption, where all the subsystems – surface and individual molecules 

– preserve their internal structure. The algorithm allows to obtain global minima, which then 

can be fully optimized and to account for deformations due to the relaxation of the surface and 

adsorbate molecules.  

 The first step of this work was the design and implementation of the RBGA method. 

The RBGA method, as a hybrid genetic algorithm, uses local relaxation steps. This ensures that 

structures with high energies but within basin of attraction of a low lying minima can contribute 

to the population and ensuring faster convergence rate of the global search. In the local 

optimization step the RBGA method uses the rigid body approximation. To program the 

method, modifications to existing quantum mechanics programs had to be done. The rigid body 

optimization scheme was developed within the QMPOT code which performs the local 

optimization. The interface to the QMPOT program was written as a part of the DODO hybrid 

genetic algorithm program to enable usage of the rigid body optimization as a local relaxation 

step. Finally, the SURFACE program – program responsible for performing genetic operations 

(initialization, crossover, mutation) – was modified to work with the rigid body approximation, 

i.e. to make sure that during any of these operations the rigid bodies are kept intact.  

 The performance of the RBGA method was evaluated on the test system. The system 

consisted of four methane molecules on the magnesium oxide surface; a 2A × 2A slab model 

(A is twice the Mg-O distances) was employed. The concentration of the methane molecules 
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corresponded to the monolayer coverage. The performance was tested by running three 

independent RBGA optimizations. In all three runs the ROT configuration was located as the 

global minimum. This result is in an agreement with the previous theoretical investigations. 

 The outcome of the test confirmed that the RBGA is able to localize global minimum 

for the methane monolayer structure at the MgO(001) surface, and validated the usage of the 

method for further studies of the hydrocarbon adsorption.  

 In the second step of the study, a vast number of hydrocarbon-magnesium oxide 

systems, with different coverage, were investigated. Three system: methane, ethane, and 

propane, were of interest. Each hydrocarbon molecule was studied with multiple coverage 

loadings. All global minima from the RBGA calculations were fully optimized. Since a lot of 

obtained structures for methane systems possessed imaginary frequencies (i.e. they were not 

minima), an additional step – Normal Mode optimization – was introduced. Unfortunately, 

some imaginary frequencies were still present after this refinement. Lastly, the obtained 

desorption energies were corrected with the ZPVE and thermal energies. Final desorption 

energies are in a very good agreement with the experiment.  

 The methane adsorption at the MgO surface was found to be a very difficult case for the 

RBGA optimization. During local optimization, the structure of the system can change 

significantly; a small change in energy can correspond to huge structure rearrangements. The 

PES surface seems to be very shallow, with low barriers – causing the methane molecules to 

behave as spheres rolling on the flat surface of MgO(001). 

 In methane adsorption studies, each methane molecule was treated as a separate rigid 

body. For a single molecule adsorption two models of the surface were used, smaller and larger, 

corresponding to monolayer coverage and quarter of monolayer coverage, respectively. In 

contradiction to expectation, the isolated molecule in monopod configuration had the lowest 

energy, significantly lower than the one in the dipod configuration. The dipod configuration is 

believed to be the most favorable one. But this might be true only for higher coverage of the 

methane, as the experimental findings concern the adsorption of a methane film, not a single 

molecule. Interaction energies of the monolayer are in a perfect match with theoretically 

corrected experimental desorption energies (to account for ZPVE and thermal energies at the 

temperature of the experiment). Assuming the dipod to be the preferable configuration for the 

isolated molecule the match between experimental and theoretical values is also very close 

(within 1 kJ/mol). The same number for methane in the monopod configuration adsorbed at 

oxygen site is bigger (~3.50 kJ/mol). 
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 The RBGA method had no problem to localize global minima up to five methane 

molecules per unit cell. For six molecules structures, the crossing over procedure yielded 

unreasonable structures – with five and six methane molecules in the first layer. These 

structures optimized to higher order stationary points, which were then difficult to optimize to 

minima at the full optimization step.  

 The global minimum obtained for five methane molecules coverage revealed a probable 

formation pattern of the second layer. The structure consisted of the first layer in the ROT 

configuration, and additional methane on top of it. This suggested a way to validate results 

obtained for six methane molecules. To do so, the ROT structure was used as a “surface”, and 

two methane molecules were deployed on top of it. The studies confirmed that the RBGA did 

not locate the global minimum for the six methane system – the structure obtained by 

introducing two molecules on top of the ROT structure produced a lower energy configuration. 

Finally, by introducing four methane molecules on top of the ROT structure, the formation of 

the second methane layer was investigated. 

 In case of ethane adsorption, each molecule was treated as two separate rigid bodies – 

methyl groups. This allowed for additional conformational freedom within the ethane molecule, 

i.e. rotational freedom around the C-C bound. The drawback of this approach was that the 

initialization and mating steps produced structures with unreasonable geometries with very high 

energy (like CH4-CH2 adducts and CH3-CH3 structure with inverted one of the methyl groups). 

Nevertheless, the RBGA method was able to localize global minima with reasonable 

geometries, and the obtained monolayer structure yields an interaction energy very close to the 

experimental value. This comparison for the isolated molecules is ambiguous. The desorption 

energy, in that case, was almost half the experimental zero-coverage limit desorption energy, 

but on the other hand, very close to other theoretical CCSD(T):MP2//MP2:PBE+D studies. The 

energy difference between experiment and theory for ethane monolayer is very small (~0.5 

kJ/mol). For an isolated molecule this difference is much higher (almost 8 kJ/mol). 

 Since the implementation of the RBGA method does not allow for optimization of 

different rigid bodies, the propane molecule had to be treated as one, complete rigid body. 

Propane in staggered configuration was used. The interaction energy for the propane monolayer 

is close to the experimental desorption energy, but is significantly larger than in previous cases 

(4.29 kJ/mol). This difference can be accounted for the fact that the results for propane are 

preliminary, and the global minimum may not have been localized yet. Further investigation 

will be required to answer that question.  
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 Comparing molecule–surface interaction for isolated molecules, the larger the molecule, 

the greater is its interaction with the surface. This is most probably due to a larger surface of 

the molecule that can interact with the substrate. At the same time carbon–magnesium site 

distances elongate with growth of the hydrocarbon chain. The comparison of the interaction 

energies for isolated molecules suggests that the extrapolation method used to get zero-coverage 

limit from the experimental results may be missing some key element. In contrast, the surface-

layer interaction for monolayer structures is fairly constant (between 10 and 12 kJ/mol). 

However, the lateral interactions are increasing with the size of molecules.  

 The studies showed that the RBGA method can be of great advantage in simplifying 

adsorption optimization problem. The code performs well, and some of the results are in very 

good agreement with the experiment. Yet, still some questions are unanswered, especially in 

case of propane adsorption. Further studies will be needed to answer them. In addition, a 

correction to the RBGA code can be made to increase algorithm performance and convergence. 

Better performance at the mating step for the methane, i.e. keep better distances between 

molecules – to avoid squeezing of molecules in the first layer, is needed. Additionally, a 

mechanism to keep ethane molecules as a whole, i.e. to introduce an “internal” degrees of 

freedom (the rotation around C-C bond), could help to avoid unreasonable geometries with two 

methyl groups apart. Finally, introducing different rigid bodies would enable to model propane 

molecules as two methyl groups and one methylene group.  
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7. Zusammenfassung 

 

Die vorliegende Arbeit behandelt die Entwicklung des genetischen Starrkörper-Algorithmus 

(rigid body genetic algorithm, RGBA), und seine Anwendung zur Untersuchung der 

Kohlenwasserstoff-Adsorption auf der MgO (001) Oberfläche. Die RBGA Methode ist ein 

modifizierter hybrid-genetischer Algorithmus mit Starrkörper-Optimierung im lokalen 

Optimierungsschritt. Diese Modifikation führt zu einer großen Vereinfachung des 

Optimierungsproblems und ermöglicht damit, eine große Anzahl von möglichen 

Konfigurationen zu analysieren. Die zentrale Annahme der Methode ist, dass die einzelnen 

Teile des Systems (starrer Körper) während der gesamten globalen Optimierung nicht ihre 

interne Konfiguration ändern. Daher ist diese Methode ein geeignetes Werkzeug, um 

Phänomene wie Adsorption zu studieren, in dem alle Teilsysteme - Oberfläche und einzelne 

Moleküle - ihre interne Struktur bewahren. Der Algorithmus ermöglicht das Auffinden der 

globalen Minima für die Starrkörper, die dann im nächsten Schritt vollständig optimiert 

(„relaxiert“) werden, um Verformungen aufgrund der Entspannung der Oberfläche und des 

Adsorbats auszumachen. 

 Der erste Schritt dieser Arbeit war die Konzeption und Umsetzung der RBGA Methode. 

Als hybrid-genetischen Algorithmus verwendet die RBGA Methode lokale Relaxations-

schritte. Das stellt sicher, dass Strukturen mit hohen Energien, aber innerhalb Becken der 

Anziehung eines tief liegenden Minimums zur Bevölkerung beitragen können und führt so zu 

einer schnelleren Konvergenzrate der globalen Suche. In der lokalen Optimierung verwendet 

der RBGA die Starrkörper-Näherung. Um das Verfahren zu programmieren, mussten 

Änderungen der bestehenden Quantenmechanikprogramme durchgeführt werden. Das 

Starrkörper-Optimierungsschema wurde im Rahmen des QMPOT Codes entwickelt, welcher 

die lokale Optimierung ausführt. Die Schnittstelle zum QMPOT Programm ist als Teil des 

hybrid-henetischen Algorithmus-Programms DODO geschrieben um die Nutzung der Rigid 

Body Optimierung als lokale Relaxations-schritt zu ermöglichen. Schließlich ist das Programm 

SURFACE – ein Programm zur Durchführung genetischer Operationen (Initialisierung, 
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Crossover, Mutation) – modifiziert worden, um mit der Starrkörper-Näherung zu arbeiten, das 

heisst, um sicherzustellen, dass bei einer dieser Operationen die Starrkörper intakt bleiben. 

 Die Leistung des RBGA Methode wurde bei einem Testsystem untersucht. Das System 

bestand aus vier Methan-Molekülen auf der Magnesiumoxid-Oberfläche; ein 2A × 2A 

Oberflächenmodell (A ist zweimal der Mg-O-Abstand) wurde eingesetzt. Die Konzentration 

der Methanmoleküle entsprach einer Monolage. Die Performance wurde durch Ausführen von 

drei unabhängigen RBGA Optimierungen getestet. In allen drei Versuchen wurde die ROT-

Konfiguration als das globale Minimum identifiziert. Dieses Ergebnis ist in Übereinstimmung 

mit bisherigen theoretischen Untersuchungen. 

 Dieses Testergebnis bestätigt, dass der RGBA in der Lage ist, das globale Minimum für 

die Methan Monolage auf der MgO(001) Oberfläche zu finden und hat die Anwendung dieser 

Methode für weitere Untersuchungen zur Kohlenwasserstoff-Asorption validiert.  

 Im zweiten Schritt der Untersuchung wurden eine große Anzahl von 

Kohlenwasserstoff-Magnesiumoxid-Systemen mit verschiedenen Beladungen untersucht. Drei 

Systeme: Methan, Ethan und Propan sind von Interesse. Jedes Kohlenwasserstoffmolekül 

wurde mit unterschiedlicher Beladung untersucht. Alle globalen Minima der RBGA 

Berechnungen wurden vollständig optimiert. Da viele der für Methan erhaltenen Strukturen 

imaginären Frequenzen aufwiesen (was bedeutet, dass sie keine Minima waren), wurde ein 

zusätzlicher Schritt, die Normalmoden-Optimierung, eingeführt. Leider waren einige imaginäre 

Frequenzen auch nach dieser Verfeinerung vorhanden. Schließlich wurden die erhaltenen 

Desorptionsenergien mit ZPVE und thermischen Energien korrigiert. Endgültige 

Desorptionsenergien sind in einer sehr guten Übereinstimmung mit dem Experiment. 

 Für die Adsorption von Methan in der MgO-Oberfläche wurde gefunden, dass sie ein 

sehr schwieriger Fall für die RGBA-Optimierung ist. Während der lokalen Optimierung kann 

sich die Struktur des Systems erheblich verändern; einer kleinen Änderung in der Energie 

können riesige Struktur Umlagerungen entsprechen. Die Potentialfläche scheint sehr flach zu 

sein, mit niedrigen Barrieren – was bewirkt, dass die Methanmoleküle sich verhalten wie  

Kugeln, die auf der flachen MgO(001) Oberfläche rollen. 

 In Methanadsorptions-Studien wurde jedes Methanmolekül als separater starrer Körper 

behandelt. Für ein Molekül Adsorption zwei Modelle der Oberfläche verwendet wurden, 

kleinere und größere entsprechend Abdeckung und Viertelmonoschichtbedeckung 

Monoschicht auf. Entgegen der Erwartungen, hatte das isolierte Molekül in Monopod-

Konfiguration die niedrigste Energie, deutlich niedriger als die in der dipod Konfiguration. Von 
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der dipod Konfiguration wird angenommen, dass sie die energetisch günstigste sei. Aber dies 

könnte nur für höhere Methan-Beladungen zutreffen, da die experimentellen Befunde die 

Adsorption eines Methan-Films betreffen, nicht eines einzelnen Moleküls. 

Wechselwirkungsenergien der Monoschicht sind in einer seher guter Übereinstimmung mit 

theoretisch korrigierten, experimentellen Desorptionsenergien (zur Berücksichtigung von 

ZPVE und thermischen Energien bei der Temperatur des Experiments). Unter der Annahme, 

dass die dipod Konfiguration für das isolierte Molekül bevorzugt ist, ist die Übereinstimmung 

zwischen experimentellen und theoretischen Werten mit einer Abweichung von weniger als 1 

kJ/mol auch sehr gut. Dieser Wert ist für die Monopod-Konfiguration-bei-Sauerstoff 

Konfiguration größer (~3,50 kJ/mol). 

 Die RBGA Verfahren hatte kein Problem, globale Minima bis zu fünf 

Methanmolekülen pro Einheitszelle zu lokalisieren. Für Strukturen mit sechs Molekülen 

Strukturen, ergab das Crossover-Verfahren unvernünftige Strukturen - mit fünf und sechs 

Methanmolekülen in der ersten Schicht. Diese Strukturen wurden zu stationären Punkten 

höherer Ordnung optimiert, für die dann die Optimierung zu Minima im vollständigen 

Optimisierungsschritt schwer war. 

 Das globale Minimum für die Beladung mit fünf Methanmolekülen pro Einheitszelle 

ergab ein wahrscheinliches Bildungsmuster der zweiten Schicht. Die Struktur besteht aus der 

ersten Schicht in der ROT-Konfiguration und einem zusätzlichen Methanmolekül darauf. Dies 

legte einen Weg nahe, um die Ergebnisse, die für sechs Methanmoleküle erhalten wurden, zu 

validieren. Um dies zu tun, wurde die ROT-Struktur als "Oberfläche" verwendet wird, und zwei 

Methanmoleküle wurden auf ihm eingesetzt. Die Studien bestätigten, dass die RBGA nicht das 

globale Minimum für die sechs Methan System fand - die durch die Einführung von zwei 

Molekülen auf der Oberseite des ROT-Struktur erhalte Struktur erzeugt eine Konfiguration 

tieferer Energie. Schließlich wird durch die Einführung von vier Methanmolekülen auf der 

Oberseite der ROT Struktur  die Bildung der zweiten Methanschicht auf der ersten untersucht. 

 Im Falle der Ethan-Adsorption wurde jedes Molekül als zwei getrennte starre Körper – 

die Methylgruppen - behandelt. Diese zusätzliche konformative Freiheit inerhalb des Ethan-

Molekül erlaubt zum Beispiel eine Rotation um die C-C-Bindung. Der Nachteil dieser 

Vorgehensweise war, dass die Initialisierung und Paarungsschritt erzeugten Strukturen mit 

ungünstig Geometrien und sehr hoher Energie (wie CH4-CH2 Addukte und CH3-CH3 Struktur 

mit eine der Methylgruppen einer anderen Richtung orientiert). Dennoch war das RBGA 

Verfahren in der Lage, globale Minima mit vernünftigen Geometrien zu lokalisieren, und die 
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erhalte Monolage weist eine Wechselwirkungsenergie sehr nah an dem experimentellen Wert 

auf. Dieser Vergleich sieht für das isolierte Molekül weniger gut aus. Die Desorptionsenergie 

war in diesem Fall fast die Hälfte der experimentellen Grenz-Desoorptionsenergie für 

Nullbedeckung, jedoch, nahe an anderen theoretischen CCSD(T):MP2//MP2:PBE+D-Studien. 

Die Energiedifferenz zwischen Experiment und Theorie ist für die Ethan-Monoschicht sehr 

klein (~0,5 kJ/mol). Für ein isoliertes Molekül ist dieser Unterschied wesentlich höher (fast 8 

kJ/mol). 

 Da die Implementierung der RBGA Methode die Optimierung von freidefinierten 

starren Körpern nicht ermöglicht, musste das Propan-Molekül als ein ganzer starrer Körper 

behandelt werden. Die gestaffelte Konfiguration wurde für das Propanmolekül angenommen. 

Die errechnete Wechselwirkungsenergie der Propan-Einzelschicht liegt in der Nähe der 

experimentellen Desorptionsenergie, aber die Diskrepanz ist wesentlich größer als in den 

vorangegangenen Fällen (4.29 kJ/mol). Dieser Unterschied kann auf die Tatsache, dass die 

Ergebnisse für Propan noch vorläufig sind und das globale Minimum ist möglicherweise noch 

nicht lokalisiert werden konnte, zurückgeführt werden. Weitere Untersuchungen werden 

benötigt, um diese Frage zu beantworten. 

 Vergleicht man Molekül-Oberflächen-Wechselwirkungsenergien für isolierte 

Moleküle, so gilt: je größer das Molekül, umso größer ist seine Wechselwirkung mit der 

Oberfläche. Dies ist höchstwahrscheinlich auf eine größere Oberfläche des Moleküls, die mit 

dem Substrat interagieren kann zurückzuführen. Gleichzeitig wachsen Kohlenstoff-

Magnesium-Abstände mit der Länge der Kohlenwasserstoffkette. Der Vergleich der 

Wechselwirkungsenergien für isolierte Moleküle legt nahe, dass der Extrapolationsmethode zur 

Nullbedeckungs-Grenze aus den Versuchsergebnissen ein wichtiges Element fehlt. Im 

Gegensatz dazu ist die Oberflächen-Schicht-Wechselwirkung für Monopod-Strukturen 

ziemlich konstant (zwischen 10 und 12 kJ/mol). Jedoch sind die seitlichen (lateralen) 

Wechselwirkungen mit der Größe der Moleküle erhöht. 

 Die Studien zeigten, dass die RBGA Methode von großem Vorteil bei der 

Vereinfachung von Adsorptions-Optimierungsproblemen sein kann. Der Code funktioniert gut, 

und einige der Ergebnisse sind in sehr guter Übereinstimmung mit dem Experiment. Doch noch 

sind einige Fragen offen, insbesondere im Falle der Propan-Adsorption. Weitere Studien sind 

erforderlich, um sie zu beantworten. Darüber hinaus kann eine Korrektur der RBGA Code, um 

die Leistung und Konvergenzalgorithmus zu erhöhen, angestrebt werden. Bessere Leistung 

beim Paarungsschritt für das Methan – nämlich, bessere Abstände zwischen den Molekülen zu 
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halten, um das Zusammendrücken der Moleküle in der ersten Schicht zu verhindern, ist 

erforderlich. Zusätzlich könnte ein Mechanismus, um Ethan-Moleküle als Ganzes zu halten, 

das heisst, „interne" Freiheitsgrade (Rotation um die CC-Bindung) einzuführen, dazu beitragen, 

Geometrien mit zwei getrennt Methylgruppen zu vermeiden. Schließlich würde die Einführung 

unterschiedlicher, freidefinierbarer starrer Körper die Modellierung von Propan-Molekülen als 

zwei Methylgruppen und eine Methylengruppe ermöglichen. 
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8. Outlook 

 

The Rigid Body Genetic algorithm (RBGA) has proven to be a useful global optimization tool, 

which can be easily applied to investigate weak bound systems, like adsorption processes. 

Unfortunately, the RBGA method also has its short-comings. Refinement and development 

work is required to make this method more robust and widely applicable for a range of different 

theoretical problems. Moreover, the so far achieved results concerning adsorption of 

hydrocarbons could be further refined using more advance theoretical tools; and additional 

global optimization could be performed.  

From implementation point of view, addition of new functionality to resolve existing problems 

and address new ones is possible and straightforward. In application to adsorption of 

hydrocarbons at the magnesium oxide surface, one of the obstacles is the process of initiating 

and recombining structures, which yields to unreasonable geometries or structures with few 

imaginary frequencies. An important improvement to the code would be introduction of 

possibility to define and optimize different types of rigid bodies. The introduction of different 

rigid bodies would, for example, permit to examine phases consisting of different molecules, 

which co-exist on the surface or within a bulk. It would also allow investigating the coverage 

of the surface when different types of molecules are present. Another useful upgrade to the code 

would be to enable usage of the RBGA optimization for the bulk systems, like zeolites or MOFs 

(Metal-Organic Frameworks). The possibility to introduce optimization within bulk systems 

would facilitate investigation of oxidative coupling of methane (OCM) in aluminosilicate 

zeolite, like Chabazite; and also would available to study molecular crystals, like crystallization 

processes or rearrangement of molecules in organic semiconductors. In this approach each 

molecule would be treated as a separate rigid body. The genetic algorithm can be modified to 

additionally introduce internal degrees of freedom (DoF) within each rigid body. The internal 

DoF would introduce extra flexibility during optimization. This could prevent the algorithm 

from generating senseless geometries, especially for cases when we want to treat subparts of a 

given molecule separately. In turn, this would speed up optimization for these systems. 
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Modification to the RBGA code to enable working with clusters would make possible 

investigation of molecular clusters, or complex processes like protein solvation, protein folding 

(with each amino acid or group of amino acids as single rigid body), dynamics and formation 

of biological membranes like liposomes, micelles, lipid bilayers (each lipid molecule as a rigid 

body). An interesting variation of the RBGA algorithm would be a merge between rigid body 

optimization and unconstrained optimization. The composition of the molecule with predefined 

parts (like double or triple carbon bonds, benzene rings) could be specified. The specification 

could be used by the RBGA to construct molecule (or molecules) with predefined functional 

groups and single atoms. The genetic algorithm could be used to predict possible structures of 

molecules basing on partial information about their geometry. This might be useful to predict 

geometries of organic molecules, when only some information can be extracted from 

experiments. Alternation of this idea could be used to design drugs and enzyme inhibitors in 

cavity of the enzyme active site. With a given structure of the active site, treated as a rigid body, 

and a predefined set of organic fragments – also rigid bodies – the algorithm could search for a 

structure with desired character of the interaction with the protein. This algorithm could also 

use single atoms as well.  

From the hydrocarbon adsorption at the magnesium oxide surface point of view, there are still 

unanswered questions to which further studies could bring interesting insights. Some of them 

could be easily and fast addressed, by using so far obtained structures, and recalculating them 

with different levels of theory, especially to account for the incorrectness due to usage of 

empirical dispersion correction. Other questions which would include more time consuming 

investigation, with more RGBA optimizations, could be answered in a longer time perspective. 

Obtained interaction energies could be validated using higher level of theory. The energies 

could be recalculated using the Periodic Local MP2 (periodic LMP2) code to account for 

electron correlation. Structures for single molecule coverage could be optimized with a cluster 

model while employing higher level of theory methods like MP2 or CC to account for long 

range interactions and to obtain better estimation of the interaction energies. To investigate 

dynamic of the monolayer structures MD, calculations can be employed. More RBGA global 

optimization cycles are certainly required for higher loading of propane at the MgO(001) 

surface. The formation of third layer of methane, and second layers of ethane, and propane 

could be investigated the same way we investigated creation of the methane second layer. In 

addition, introducing point defects or irregularities to the surface, like steps, could give a 

valuable insight on what is their influence on the formation of hydrocarbon layers. A larger 

surface model could be used to see if it is possible to obtain stable coverage of separate methane 
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molecules in the monopod at oxygen site within lower loading of the gas. Other types of rigid 

bodies on the MgO(001), like carbon oxide, could also be an interesting study case for the 

RBGA algorithm.  
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131. Włodarczyk, R.; Sierka, M.; Kwapień, K.; Sauer, J.; Carrasco, E.; Aumer, A.; Gomes, 
J. F.; Sterrer, M.; Freund, H.-J. Structures of the Ordered Water Monolayer on MgO(001). The 
Journal of Physical Chemistry C 2011, 115, 6764-6774. 
132. Johnston, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster 
geometries. Dalton Trans. 2003, 4193. 
133. Holland, J. H. Adaptation in natural and artificial systems: An introductory analysis 
with applications to biology, control, and artificial intelligence. U Michigan Press: 1975. 
134. Hartke, B. Global geometry optimization of clusters using genetic algorithms. J. Phys. 
Chem. 1993, 97, 9973-9976. 
135. Hartke, B. Global geometry optimization of clusters using a growth strategy optimized 
by a genetic algorithm. Chem. Phys. Lett. 1995, 240, 560-565. 
136. Niesse, J. A.; Mayne, H. R. Minimization of small silicon clusters using the space-fixed 
modified genetic algorithm method. Chem. Phys. Lett. 1996, 261, 576-582. 



128 
 

137. Xiao, Y.; Williams, D. E. Genetic algorithm: a new approach to the prediction of the 
structure of molecular clusters. Chem. Phys. Lett. 1993, 215, 17-24. 
138. Zeiri, Y. Prediction of the lowest energy structure of clusters using a genetic algorithm. 
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 1995, 51, R2769-R2772. 
139. Daven, D.; Tit, N.; Morris, J.; Ho, K. Structural optimization of Lennard-Jones clusters 
by a genetic algorithm. Chem. Phys. Lett. 1996, 256, 195-200. 
140. Hartke, B. Global optimization. Wiley Interdisciplinary Reviews: Computational 
Molecular Science 2011, 1, 879-887. 
141. Hartke, B. Application of evolutionary algorithms to global cluster geometry 
optimization. In Applications of Evolutionary Computation in Chemistry, Springer: 2004; pp 
33-53. 
142. Bush, T.; Catlow, C. R. A.; Battle, P. Evolutionary programming techniques for 
predicting inorganic crystal structures. J. Mater. Chem. 1995, 5, 1269-1272. 
143. Woodley, S.; Battle, P.; Gale, J.; Catlow, C. A. The prediction of inorganic crystal 
structures using a genetic algorithm and energy minimisation. Phys. Chem. Chem. Phys. 1999, 
1, 2535-2542. 
144. Bazterra, V. E.; Ferraro, M. B.; Facelli, J. C. Modified genetic algorithm to model 
crystal structures. I. Benzene, naphthalene and anthracene. J. Chem. Phys. 2002, 116, 5984-
5991. 
145. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary 
techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704. 
146. Abraham, N.; Probert, M. A periodic genetic algorithm with real-space representation 
for crystal structure and polymorph prediction. Phys. Rev. B: Condens. Matter 2006, 73, 
224104. 
147. Briggs, R. M.; Ciobanu, C. V. Evolutionary approach for finding the atomic structure 
of steps on stable crystal surfaces. Phys. Rev. B: Condens. Matter 2007, 75, 195415. 
148. Zhu, Q.; Li, L.; Oganov, A. R.; Allen, P. B. Evolutionary method for predicting surface 
reconstructions with variable stoichiometry. Phys. Rev. B: Condens. Matter 2013, 87, 195317. 
149. Goldstein, H. Classical Mechanics. Addison-Wesley: 1980. 
150. Chakrabarti, D.; Wales, D. J. Simulations of rigid bodies in an angle-axis framework. 
Phys. Chem. Chem. Phys. 2009, 11, 1970-6. 
151. Schröder, K.-P. A method for the separate computation of intermolecular vibrational 
frequencies with application on the H2O - HF and (H2O)n ( n= 2–6) complexes. Chem. Phys. 
1988, 123, 91-101. 
152. Sierka M., S. J. Finding transition structures in extended systems - A strategy based on 
a combined quantum mechanics–empirical valence bond approach. J. Chem. Phys. 2000, 112, 
6983. 
153. Lunsford, J. H. The Catalytic Oxidative Coupling of Methane. Angew. Chem. Int. Ed. 
1995, 34, 970-980. 
154. Klabunde, K. J.; Nieves, I. Interaction of activated magnesium oxide surfaces with spin 
traps. J. Phys. Chem. 1988, 92, 2521-2525. 
155. Press, W. Structure and Phase Transitions of Solid Heavy Methane (CD). J. Chem. Phys. 
1972, 56, 2597. 



129 
 

156. Landolt-Börnstein. Magnesium oxide (MgO) crystal structure, lattice parameters, 
thermal expansion. In II-VI and I-VII Compounds; Semimagnetic Compounds Group III 
Condensed Matter, 1999; Vol. 41B, pp 1-6. 
157. Coulomb, J.; Madih, K.; Croset, B.; Lauter, H. Evidence of a Square Two-Dimensional 
Solid of Methane Physisorbed on the (100) Surface of Magnesium Oxide. Phys. Rev. Lett. 1985, 
54, 1536-1538. 
158. Jung, D.; Cui, J.; Frankl, D.; Ihm, G.; Kim, H. Y.; Cole, M. He atom near methane-
plated MgO: Interaction and scattering. Phys. Rev. B: Condens. Matter 1989, 40, 11893-11901. 
159. Larese, J. Neutron scattering studies of the structure and dynamics of methane absorbed 
on MgO (100) surfaces. Physica B 1998, 248, 297-303. 
160. Madih, K.; Croset, B.; Coulomb, J.; Lauter, H. Thin methane film growing mode on 
MgO/100 surface. Europhys. Lett. 1989, 8, 459. 
161. Jung, D.; Cui, J.; Frankl, D. Dynamics and kinetics of monolayer CH4 on MgO(001) 
studied by helium-atom scattering. Phys. Rev. B: Condens. Matter 1991, 43, 10042-10050. 
162. Larese, J. Z.; Hastings, J. M.; Passell, L.; Smith, D.; Richter, D. Rotational tunneling of 
methane on MgO surfaces: A neutron scattering study. J. Chem. Phys. 1991, 95, 6997. 
163. Larese, J.; Asmussen, B.; Adams, M.; Carlile, C.; Martin, D.; Ferrand, M. Rotational 
tunneling studies of methane films adsorbed on MgO: Crossover from two-to-three 
dimensions? Physica B 1996, 226, 221-223. 
164. Larese, J.; y Marero, D.; Sivia, D.; Carlile, C. Tracking the Evolution of Interatomic 
Potentials with High Resolution Inelastic Neutron Spectroscopy. Phys. Rev. Lett. 2001, 87. 
165. Gay, J.; Stocker, P.; Degenhardt, D.; Lauter, H. Rotational diffusion of methane 
molecules adsorbed on MgO(100). Phys. Rev. B: Condens. Matter 1992, 46, 1195-1197. 
166. Bruch, L. W.; Larese, J. Z. Initial stages of square lattice stacks of CH_{4}/MgO(001). 
Phys. Rev. B: Condens. Matter 2012, 85. 
167. Tait, S. L.; Dohnálek, Z.; Campbell, C. T.; Kay, B. D. n-alkanes on MgO (100). II. 
Chain length dependence of kinetic desorption parameters for small n-alkanes. J. Chem. Phys. 
2005, 122, 164708. 
168. Deprick, B.; Julg, A. A theoretical study of adsorption of CH4 on the (100) faces of 
MgO and NaCl. New J. Chem. 1987, 11, 299-302. 
169. Girard, C.; Girardet, C. Potential energy calculations for argon and methane adsorbed 
on MgO (001) substrate. Chem. Phys. Lett. 1987, 138, 83-89. 
170. Alavi, A. Molecular-dynamics simulation of methane adsorbed on MgO: Evidence for 
a Kosterlitz-Thouless transition. Mol. Phys. 1990, 71, 1173-1191. 
171. Ferrari, A.; Huber, S.; Knözinger, H.; Neyman, K.; Rösch, N. FTIR spectroscopic and 
density functional model cluster studies of methane adsorption on MgO. J. Phys. Chem. B 1998, 
102, 4548-4555. 
172. Todnem, K.; Borve, K. J.; Nygren, M. Molecular adsorption of methane and methyl 
onto MgO(100) - An embedded-cluster study. Surf. Sci. 1999, 421, 296-307. 
173. Drummond, M.; Sumpter, B.; Shelton, W.; Larese, J. Density functional investigation 
of the adsorption of a methane monolayer on an MgO(100) surface. Phys. Rev. B: Condens. 
Matter 2006, 73. 



130 
 

174. Drummond, M. L.; Sumpter, B. G.; Shelton, W. A.; Larese, J. Z. Electronic structure 
investigation of surface-adsorbate and adsorbate-adsorbate interactions in multilayers of CH4 
on MgO (100). Journal of Physical Chemistry C 2007, 111, 966-976. 
175. Drummond, M. L.; Sumpter, B. G.; Shelton, W. A.; Larese, J. Z. In Adsorption of 
Methane on the (100) Surface of MgO: Insight into Surface-Adsorbate and Adsorbate-
Adsorbate Interactions from First-Principles Calculations, MRS Proceedings, Cambridge Univ 
Press: 2006. 
176. Trevethan, T.; Shluger, A. Building blocks for molecular devices: Organic molecules 
on the MgO (001) surface. The Journal of Physical Chemistry C 2007, 111, 15375-15381. 
177. Pisani, C.; Maschio, L.; Casassa, S.; Halo, M.; Schutz, M.; Usvyat, D. Periodic local 
MP2 method for the study of electronic correlation in crystals: Theory and preliminary 
applications. J. Comput. Chem. 2008, 29, 2113-24. 
178. Tosoni, S.; Sauer, J. Accurate quantum chemical energies for the interaction of 
hydrocarbons with oxide surfaces: CH(4)/MgO(001). Phys. Chem. Chem. Phys. 2010, 12, 
14330-40. 
179. Boese, D.; Sauer, J. Accurate adsorption Energies for Small Molecules on Oxide 
Surfaces: CH4/MgO(001) and C2H6/MgO(001). manuscript 2013. 
180. Alessio, M. Personal communication. 
181. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals 
and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50. 
182. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy 
calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 1996, 54, 11169. 
183. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made 
simple. Phys. Rev. Lett. 1996, 77, 3865-3868. 
184. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made 
Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396-1396. 
185. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter 1994, 
50, 17953. 
186. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-
wave method. Phys. Rev. B: Condens. Matter 1999, 59, 1758. 

187. Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range 
dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799. 
188. Piccini, G.; Sauer, J. Quantum Chemical Free Energies: Structure Optimization and 
Vibrational Frequencies in Normal Modes. Journal of Chemical Theory and Computation 2013, 
9, 5038-5045. 
189. Bouř, P.; Keiderling, T. A. Partial optimization of molecular geometry in normal 
coordinates and use as a tool for simulation of vibrational spectra. J. Chem. Phys. 2002, 117, 
4126-4132. 
190. Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the 
exchange-correlation hole of a many-electron system. Phys. Rev. B: Condens. Matter 1996, 54, 
16533. 
191. Tait, S. L.; Dohnálek, Z.; Campbell, C. T.; Kay, B. D. n-alkanes on MgO(100). I. 
Coverage-dependent desorption kinetics of n-butane. J. Chem. Phys. 2005, 122, 164707. 



131 
 

 

  



132 
 

  



133 
 

 

10.Publications  

 

Kinetic Study of the Reaction of Vanadium and Vanadium-Titanium Oxide Cluster Anions with 
SO2 
E. Janssens, S. Lang, M. Brümmer, A. Niedziela, G. Santambrogio, K. Asmis, J. Sauer 
Phys. Chem. Chem. Phys 14 (2012) 14344-14353 
 
Structural Variability in Transition Metal Oxide Clusters: Gas Phase Vibrational Spectroscopy 
of V3O6-8+ 
K. R. Asmis, T. Wende, M. Brümmer, O. Gause, G. Santambrogia, E. C. Stanca-Kaposta, J. 
Döbler, A. Niedziela, J. Sauer 
Phys. Chem. Chem. Phys. 14 (2012) 9377-9388 

 

  



134 
 

  



135 
 

 

11. Acknowledgements 

 

I would like to thank Prof. Joachim Sauer for giving me the opportunity to work in his group 

and I would like to thank Prof. Marek Sierka for convincing him to do so.  

Special thanks go to Dr. Bischoff and Dr. Oncak for commenting and proofreading the thesis, 

making it better than it would have been otherwise.  

I would like to thank Frank Fischer for help with translating the summary.  

Many thanks go to group members for support on specific software: Asbjörn Burow 

(Turbomole), Dr. Joachim Paier (VASP), Radosław Włodarczyk (DODO, Surfaces), 

GiovanniMaria Piccini (NMopt, Thermo, Anharm). 

I want to recognize Cornelia Krell and Kristin Kuschnerik for help with bureaucracy and 

formalities. With their support I was able to concentrate on my scientific work. Likewise, 

without Thomas Dargel’s IT support no real science would be possible conduct.  

I would also like to thank the IMPRS school for giving me the financial support to attend 

external courses and conferences; and an opportunity to meet professors, professionals, and 

peers from different fields of chemistry.  

For general discussion and on MgO special acknowledgments go to: Dr. Florian Bischoff, Dr. 

Asbjorn Burow, Dr. Karolina Kwapien, Dr. Sabrina Sicolo, Dr. Daniel Boese, GiovanniMaria 

Piccini, Radosław Włodarczyk, Frank Fischer, Matthias Baldofski, Maristella Alessio 

I would like thank all current and former members of the quantum chemistry group and IMPRS 

school for giving me the chance to be the part of the international scientific community, to learn 

from you, to broaden and share my knowledge. 

  



136 
 

  



137 
 

 

12. Selbstständigkeitserklärung   

 

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig und nur unter 

Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe. 

 

Berlin,  

Andrzej Niedziela 

 

 



138 
 

 


	Table of Content 
	1. Introduction 
	2. Local Optimization 
	2.1. Potential Energy Surface 
	2.2. Coordinates 
	2.2.1. Natural Internal Coordinates 
	2.2.2. Redundant Internal Coordinates 
	2.2.3. Delocalized Internal Coordinates 

	2.3. Optimization Methods  
	2.3.1. Direct Methods 
	2.3.2. Gradient Methods 
	2.3.3. Newton Methods 
	2.3.4. Constrained Optimization 


	3. Global Optimization 
	3.1. Methods Review  
	3.2. Genetic Algorithm 

	4. Rigid Body Genetic Algorithm  
	4.1. Introduction 
	4.2. Methodology  
	4.3. Implementation  
	4.4. Rigid Body Genetic Algorithm Performance 

	5. Case Study: Methane, Ethane, Propane on MgO(001) 
	5.1. Motivation 
	5.2. MgO(001) Surface Model  
	5.3. Methods 
	5.4. Optimization Strategy 
	5.5. Thermodynamic Properties - Microscopic–Macroscopic Connection 
	5.6. Interaction Energy 
	5.7. Methane at the MgO(001) Surface  
	5.7.1. Single Molecule Coverage 
	5.7.2. Monolayer Coverage 
	5.7.2.1. Structures 
	5.7.2.2. Energies 

	5.7.3. Higher Coverage  
	5.7.3.1. Methane at Bare Surface 
	5.7.3.2. Methane at the ROT Structure 


	5.8. Ethane at the MgO(001) Surface 
	5.9. Propane at the MgO(001) Surface  
	5.10. Comparison with Experiment  

	6. Summary  
	7. Zusammenfassung 
	8. Outlook 
	9. Bibliography 
	10.Publications  
	11. Acknowledgements 
	12. Selbstständigkeitserklärung   

