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Abstract

In 1958, Kenneth W. Robinson proposed the usage of a magnetic correction device

to reduce the antidamping of the radial betatron oscillations in the Cambridge elec-

tron accelerator (Robinson, 1958). The essence of this correction device are short,

alternating dipoles with a strong gradient, such that the radiation loss decreases

with increasing radius of the trajectory. In 1986, four of these transverse gradient

“Robinson” Wigglers (RW) were installed to the Proton Synchrotron (PS) at CERN

so that the PS could serve in the Large-Electron-Positron-Collider (LEP) injector

chain for positron and electron acceleration (Baconnier et al., 1985). In recent years,

the RW concept came into focus again in the scope of synchrotron light sources. In

order to reduce the horizontal emittance, a RW could be installed as an upgrade

option for existing machines, e.g. at SOLEIL (Abualrob et al., 2012). Newly built

light sources, like MAX IV (Tavares et al., 2014), are optimized concerning their

damping distribution using combined function dipoles, which make use of the same

theoretical framework as the RW.

The Metrology Light Source (MLS), owned by the Physikalisch-Technische Bundes-

anstalt (PTB), is an electron synchrotron which was designed and is operated by

the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Abo-Bakr, 2000;

Klein et al., 2008). It is optimized for the production of synchrotron radiation in the

THz to the Extreme-Ultraviolet (EUV) spectral region. Compared to other light

sources, the MLS is a low electron energy synchrotron, with a nominal operation en-

ergy of 629 MeV. Unlike BESSY II, which is a 3rd generation, 1.7 GeV synchrotron

light source of HZB, the MLS does not feature a full energy injection and therefore

Top-Up operation is not possible. With a decaying beam current, the lifetime of

the stored beam is of importance for the user community, for reasons of temporal

stability and integrated photon flux.

It is proposed to install a RW at the MLS in order to improve the lifetime. With a

RW, it is possible to transfer damping from the longitudinal to the horizontal plane

in a way, that the energy spread increases by a factor of ∼ 3 and the emittance

reduces by a factor of ∼ 2. Doing so, the bunch length is increased by a larger
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fraction than the average horizontal bunch width is decreased. Thereby the electron

density is reduced which results in a lower loss rate of the electrons. This improves

the beam lifetime and reduces induced radioactivity of accelerator components and

shielding. The latter being of increasing significance for the developments towards

diffraction limited storage rings, where high scattering rates occur due to small beam

sizes.

With an increased energy spread and a reduced emittance, the contribution of

the dispersion to source size becomes more important. By carefully choosing the

magnet optics, the brilliance at the source point can be improved simultaneously to

increasing the lifetime. Simulations indicate that a RW, like the one proposed in

this thesis, is able to increase the beam lifetime in the standard user operation mode

at the MLS by a factor of 2.3, corresponding to an increase in integrated photon

flux for one standard user run of approximately 30 %. With installing such a device,

the damping partition numbers become tunable, opening access to new operation

modes and enhancing the existing ones.

Keywords: Robinson Wiggler, transverse gradient wiggler, lifetime, loss rate,

damping partition, emittance, energy spread, bunch lengthening
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Chapter1
Introduction

With the development of the theory of quantum mechanics in the early 20th century,

particles could be described as waves according to De Broglie’s wavelength

λ =
h

p
, (1.1)

with Planck’s constant h in the numerator and the momentum p of the particle in

the denominator. With increasing momentum, the associated wavelength shortens,

enabling the particle to reveal more detail during a scattering process. Limited

to ∼ 5 MeV, α-particles were a natural source of test particles to perform scatter-

ing experiments. In order to obtain higher resolution, particle accelerators were

invented. In addition to the finding of greater detail in the structure of matter,

more massive particles could be generated during collisions according to Einstein’s

E = mc2 (Wilson, 2001). Since their invention, particle accelerators have continued

to grow in accelerator complex size and achievable energy of the particle beams.

They opened the door to new particle physics such as finding quarks, gluons and

more recently the Higgs boson (Aad et al., 2012; Chatrchyan et al., 2012). Today,

particle accelerators are still the major tool for particle physics and, in the case of

the Large Hadron Collider (LHC) in Geneva, can reach up to 27 km in circumference,

delivering proton beams with energies up to 7 TeV.

When accelerating charged light particles, like electrons or positrons, the max-

imum achievable energy is limited due to radiation emitted by the particles undergo-

ing acceleration. This radiation was first observed at a 70 MeV electron synchrotron

of the General Electric Company Research Laboratory (New York State) in the late

1940’s. Synchrotron radiation was first seen as a negative effect, because the “lost”

energy had to be fed back to the beam additionally to the energy needed for acceler-

ation. However, several years later, scientists considered using the emitted radiation

1



2 Introduction

parasitically. What began as a by-product, became its own field of research in the

late 1960’s, when the first dedicated synchrotron radiation facility Tantalus, of the

Synchrotron Radiation Center in Madison, Wisconsin / USA, came into operation

(Lynch, 1997). Today, many so called “light sources” are in operation around the

world. These light sources store electrons for the sole purpose of emitting high in-

tensity, polarized, broad banded, exactly calculable, pulsed synchrotron radiation.

It is used in various fields of science such as materials science, physical chemistry,

biophysics, life science and metrology.

As a large number of particles is stored in the accelerator, it becomes probable

that a particle is lost due to scattering events with other particles or gas atoms.

Therefore, the stored beam is decaying with time. Hence, it is possible to define a

lifetime of the beam which should be as long as possible in order to provide stable ex-

perimental conditions and to minimize induced radioactivity by particle losses. The

beam lifetime of an electron synchrotron, namely the MLS of Germany’s national

metrology institute PTB, is the subject of this thesis. A concept to improve the

beam lifetime while simultaneously improving the brilliance at selected beamlines

is developed.

1.1 Synchrotron Radiation

Ultra-relativistic charged particles which are accelerated emit electromagnetic dipole

radiation. The power emitted by light particles such as electrons or positrons is

many orders of magnitude higher than that of heavier particles such as protons or

ions. Usually the energy losses due to synchrotron radiation are negligible for heavy

particles like protons. For electrons, due to their low mass, it is a strong effect. The

spectrum of the emitted radiation is shifted to higher photon energies depending on

the momentum of the emitting particles (comp. MLS at 105 MeV and 629 MeV in

Fig. 1.1).

The radiation is emitted by particle bunches. In the laboratory frame, these

bunches can be seen as delta peaks passing by the source point. The Fourier trans-

form of a delta peak gives a broad spectrum, which is one of the reasons why syn-

chrotron radiation became popular. The spectrum reaches from the Far-Infrared

(FIR) to the hard X-Ray regime. Users may choose the wavelength with which they

wish to conduct experiments using a monochromator. In Fig. 1.1, the spectra for

the Extreme-Ultraviolet (EUV) beamlines of PTB at the MLS and at BESSYII are

presented. Due to a smaller acceptance at the dipole beamline, the spectrum for
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Figure 1.1: Number of photons from a bending magnet through the acceptances at
PTB’s EUV-beamlines at the MLS and at BESSYII as a function of the photon
energy.

photon energies below 1 keV shows less intensity for BESSYII than for the MLS.

But as BESSY II operates at 1.7 GeV, its dipole spectrum covers also the X-Ray

regime up to several 10 keV.

In contrast to the MLS, BESSY II is a third generation light source. First gen-

eration light sources were parasitically used accelerators built for particle physics.

Second generation light sources were built solely for the generation of synchrotron

radiation. The radiation that was emitted in the deflecting dipoles was used and

beam parameters could be adjusted to meet user demands. Third generation light

sources, which most of today’s light sources belong to, feature insertion devices (ID)

in the straight sections between the deflecting dipoles as their main radiation source.

These ID’s, usually consisting of a sequence of short dipoles with alternating field,

send the beam on an alternating / undulating trajectory. With each oscillation

period, synchrotron radiation is emitted. Depending on the oscillation amplitude of

the trajectory, ID’s are distinguished between undulators and wigglers . Undulators

cause the electron beam to follow a gentle, periodic, undulating trajectory so that

the emitted wavefronts overlap and interference effects occur (Clarke, 2004). De-

pending on the wavelength, the interference is constructive and large enhancement

in intensity can be observed. Wigglers send the beam on higher oscillation amp-

litudes, resulting in no overlap between the wavefronts. Instead, the spectrum of

the emitted radiation compares to that of a single dipole with the exception that it

has the number of poles fold intensity. The MLS features one ID (U125, Fig. 1.2),
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Microtron

Cavity
Higher Order

Mode Damped

Undulator U125

Septum Magnet

Transfer Line

Straight K3
Robinson Wiggler

Figure 1.2: Scheme of the Metrology Light Source, with microtron and transfer line.

but mainly serves dipole beamlines. It is therefore part of an own class between the

second and third generation of light sources.

1.2 The Metrology Light Source

The MLS (Fig. 1.2) is an electron synchrotron situated in Berlin (Germany). It

is owned by the Physikalisch-Technische Bundesanstalt (PTB) and operated and

designed by the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). It

is dedicated to metrology and technological developments in the Ultraviolet (UV)

and EUV spectral range as well as in the Infrared (IR) and THz region. It can be

operated at any energy between 50 MeV and 629 MeV, while the stored current can

be varied from 200 mA down to a single electron (= 1 pA).

The electrons are extracted from a heated cathode and accelerated to 70 keV in

the electron gun. From there, they are injected into a racetrack microtron where

they are accelerated to 105 MeV. Through the transfer line, the electrons may then

be injected into the synchrotron. Here the electrons are accumulated up to the

desired beam current at 105 MeV. The highest possible beam current is 200 mA

due to radiation protection requirements. The electron energy in the synchrotron
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can be varied between 50 MeV and 629 MeV, the latter being the nominal energy

during user operation. The MLS consists of four double bend achromat (DBA) cells.

All together 24 individually powered quadrupoles are installed to provide transverse

focussing. The 24 sextupoles are grouped into three sextupole families, providing

control of the chromaticities in all three planes. Furthermore, each DBA structure

has an octupole magnet placed at its centre. Together with the third sextupole

family, the octupole is used to alter higher order momentum compaction factor

terms (Ries, 2014).

The MLS features multiple operation modes specialized for different applications.

The most important and regularly set up operation modes are the standard user

operation mode (SU), the low-α mode, and the low-ε mode (comp. Fig. 1.3). The

key figures for the MLS in standard user operation mode are listed in Tab. 1.1. If not

noted otherwise, all calculations in this thesis will be conducted for the standard user

operation mode at 629 MeV with a stored beam current of 150 mA. During a typical

standard user operation run at the MLS, the beam usually decays from 200 mA to

80 mA in a time interval of 6 h. Due to the varying beam current, the vertical beam

size has to be controlled using a stripline kicker and a random frequency generator.

Thus, the beam is vertically excited with “white noise”. Doing so, current dependent

ion effects on the source size are reduced and reliable conditions are maintained.

The excitation strength is varied according to the stored beam current in order to

maintain a vertical source size of 280 µm at one of the diagnosis beamlines.

Due to its low operation energy, in comparison to other light sources, the beam

lifetime at the MLS is dominated by the Touschek effect. Electrons scattering with

other electrons within the same bunch exchange momenta and may get lost to the

limiting acceptance. In order to reduce induced radioactivity due to beam losses and

to improve the timely stability of the radiation, as well as the integrated photon flux,

it is beneficial to improve the beam lifetime. To increase the lifetime, it is necessary

to improve the Touschek lifetime component. This is done by reducing the electron

density inside the bunch. One way to achieve this goal shall be investigated in

this thesis: by redistributing the damping partition of the beam, the bunch length

can be increased. Thus, the electron density is reduced, resulting in an increased

lifetime. The damping partition is altered using combined function magnets. For

an existing accelerator, an insertion device consisting of combined function magnets

can be used. Such a device is called a Robinson Wiggler (RW) and is presented in

the following section.
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Figure 1.3: Optical functions of the typical user operation modes at the MLS: the
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(c).
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Table 1.1: Key figures for the standard user operation mode at the MLS. Rows
marked with “(su)” are standard user operation mode specifics. The column “(rw)”
indicates the possible changes with a twelve poled Robinson Wiggler (dispersion at
RW: ηx = 1.1 m, excitation current density j = 7.1 A mm−2). Calculated values are
marked with c.

quantity value (rw) unit

circumference 48.0 m
electron energy E0 629.0 MeV
γ 1230.92
dipole bending radius ρ 1.528 m
magnetic induction dipoles By 1.373 T
beam current I:
Imin 1.0 pA
Imax 200.0 mA
beam lifetime τ at 150 mA (su) 6.0 12.0c h

tunes:
Qx (su) 3.178
Qy (su) 2.232
chromaticities without sextupoles:
ξx (su) −3.39 0.57c

ξy (su) −4.91 −5.62c

momentum compaction factor α (su) 0.031 0.034c

rf-cavity voltage Vrf (su) 500.0 kV
rf-frequency frf 499.648 MHz
revolution frequency frev 6.246 MHz
synchrotron frequency fs (su) 110.6 115.9c kHz
harmonic number h 80

damping constants:
jx (su) 1.055c 2.72c

jy (su) 1.0c

js (su) 1.945c 0.28c

damping partition D (su) −0.055c −1.72c

damping times:
τx (su) 21.05c 8.17c ms
τy (su) 22.21c ms
τs (su) 11.42c 79.32c ms
horizontal emittance εx (su) 117.37c 50.74c nm rad
energy spread σδ 0.44 1.16c ‰
bunch length σs (su) 20.75 54.7c ps

apertures:
full chamber height septum magnet 37.0 mm
full chamber width septum magnet 56.0 mm
full chamber height undulator chamber 24.0 mm
full chamber width undulator chamber 74.0 mm
full chamber height remaining magnets 42.0 mm
full chamber width remaining magnets 70.0 mm
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Figure 1.4: One of the four RW’s that had been installed at the PS for the electron
/ positron acceleration during LEP runs. Picture from (Nadolski, 2011).

1.3 Robinson Wiggler Concept

A Robinson Wiggler (RW) is a sequence of alternating combined function magnets.

Placed in a dispersive section, this arrangement enables one to redistribute damping

between the longitudinal and the deflection plane (usually the horizontal plane).

The idea first appeared in 1958, when Kenneth W. Robinson proposed the usage

of a magnetic correction device to reduce the antidamping of radial betatron oscil-

lations in the Cambridge electron accelerator (Robinson, 1958). The device consists

of alternating dipoles with a gradient, so that the radiation losses decrease with

increasing radius. Such, longitudinal and horizontal damping are coupled and the

damping distribution between the two planes can be controlled by the field strength

of the device and the value of the dispersion function at the place of the device. In

1986, four so called Robinson Wigglers were installed at the PS at CERN. The PS,

originally built for proton acceleration, had to serve in the injector chain for the

electron / positron runs at LEP. The bare PS lattice was horizontally antidamped

for electrons and positrons, therefore the damping had to be altered in order to use

PS as a pre-accelerator for LEP. In Fig. 1.4, a picture of one of the RW’s at PS is

presented.

When changing the damping partition, damping can be transferred between the

horizontal (i.e. deflection) and the longitudinal plane. Increasing the damping in the

horizontal plane reduces the horizontal emittance of the beam. At the same time,
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the damping in the longitudinal plane is reduced, resulting in an increased energy

spread of the beam and thus an increased bunch length. Synchrotron light sources

are constantly pushing for lower emittance. In recent years, the idea of using a RW

in a synchrotron light source in order to reduce the horizontal emittance and increase

the brilliance was developed (e.g. SOLEIL (Abualrob et al., 2012)). In general, the

minimum average source size is achieved for a damping partition D = −1. The

emittance is reduced by a factor of 2, whereas the energy spread increases by a

factor of
√

2.

At the MLS, another reason for installing such a device is given: the lifetime of

the stored beam may be improved considerably. The Touschek lifetime, depending

on the particle density inside the bunch, can be improved by increasing the bunch

volume. By redistributing the damping to values of D in the order of −1.75, the

bunch length can be increased by a factor of 3, whereas the average horizontal bunch

width stays constant. A lifetime improvement of more than 100 % is achievable. Due

to the increased energy spread, the horizontal source size in such a setup depends

significantly on the value of the dispersion function at the source point. By carefully

choosing the accelerator optics so that the dispersion at a given source point is small,

the RW may simultaneously increase the brilliance and improve the lifetime. The

available installation length for such a RW at the MLS is 1.9 m in the short straight

section (K3) opposite the septum magnet (comp. Fig 1.2).

The necessary accelerator physics and theoretical considerations will be covered

in Chapter 2. The RW design for the MLS is derived in Chapter 3. In addi-

tion, Chapter 3 features simulations concerning the resulting aperture with RW,

the tracking code FTRACK used to determine the aperture, and simulations regarding

the radiation characteristics of the device. An alternative superconducting design

is given at the end of Chapter 3. The effects of the RW on the operation of the

machine, including simulations for beam lifetime, emittance, and source sizes, are

discussed in Chapter 4. The conclusion is given in Chapter 5.
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Chapter2
Accelerator Physics & Theory

In this chapter, the fundamental accelerator physics, relevant for the design and

characterisation of a RW for a circular, multi-turn electron accelerator, will be

introduced. First, beam dynamics issues will be discussed, followed by remarks on

the physics of synchrotron radiation. In a next section, the effects of the emitted

synchrotron radiation on the particle beam will be reviewed. Finally, the different

beam lifetime contributions and their dependencies on the damping partition will

be elaborated.

2.1 Fundamental Accelerator Physics

2.1.1 Reference Frame

It is worthwhile to describe the particle motion in an accelerator with respect to a co-

moving reference frame, such as depicted in Fig. 2.1. This Frenet-Serret coordinate

system describes the individual particle trajectory with respect to an ideal path

r0(s)1 at azimuthal position s in the accelerator. Three unity vectors are defined

(Wiedemann, 2007):

ux(s) unit vector ⊥ to trajectory, ‖ to r0(s) (2.1)

us(s) =
dr0(s)

dz
unit vector ‖ to trajectory

uy(s) = us(s)× ux(s) unit binormal vector.

1Vector quantities will be printed in bold font in this thesis (e.g. r), whereas scalar quantities
will be printed in regular font (e.g. s).

11
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ρ

s

ux(s)

r0(s)

us(s)
uy(s)

reference orbit

actual orbit

centre of
curvature

Figure 2.1: Frenet-Serret coordinate system to describe the particle motion in an
accelerator with respect to the reference orbit.

The individual particles coordinates are then defined as (all with respect to the

reference particle and orbit):

x : the horizontal displacement of the particle in the direction of ux(s)

y : the vertical displacement of the particle in the direction of uy(s)

z : the longitudinal displacement of the particle in the direction of us(s),

z(s) = s(t)− β0ct, where t is the time of flight

x′: the horizontal angle defined as the ratio between the horizontal momentum px

and the reference momentum p0,

x′ ≡ px
p0

y′: the vertical angle defined as the ratio between the vertical momentum py and

the reference momentum p0,

y′ ≡ py
p0

δ : the relative momentum deviation (and ∼ relative energy deviation, for β ≈ 1)

of the particle with respect to the reference momentum p0,

δ = ∆p
p0

= 1
β2
0

∆E
E0
≈ ∆E

E0
.

2.1.2 Charged Particle in Electromagnetic Field

The governing force of a charged particle in an electromagnetic field is the Lorentz

force:

F L = q [E + (v ×B)] , (2.2)
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where q is the particles charge, v its speed, E is the electric field, and B is the

magnetic induction2. An accelerator is a 3d particle trap. To guide and to focus the

beam, magnetic structures are used. The reason why magnetic fields are used instead

of electric fields lies in the occurrence of the speed v in Eq. 2.2. The Lorentz force

component of a magnetic field is as high as FL,B = qvB, whereas the component

due to an electric field is FL,E = qE. The speed of the particles is close to the speed

of light. Therefore the impact of a magnetic field is much higher than that of an

electric field.

In the deflection plane (usually the horizontal plane), the force acting on a

particle in a magnetic field is equal to the centrifugal force:

FL = FC ,

qvB =
mv2

ρ
,

⇒ 1

ρ
=
q

p
B, (2.3)

where ρ is the radius of curvature of the trajectory, and p = mv is the particle

momentum. The quantity p/q = Bρ is referred to as the beam rigidity (for the

MLS: Bρ = 2.098 T m). Assuming deflection in the horizontal plane, a vertical field

component of the magnetic field is necessary.

The transverse beam dimensions are usually small compared to the radius of

curvature ρ. Therefore, the vertical field component of the magnetic field may be

expanded as a Taylor series in the vicinity of the reference trajectory as

q
p
By = 1

Bρ
·
(

By,0 + ∂By
∂x
x + 1

2!

∂2By
∂x2

x2 + 1
3!

∂3By
∂x3

x3 + . . .
)

= 1
ρ

+ kx + 1
2!
mx2 + 1

3!
ox3 + . . .

dipole quadrupole sextupole octupole .

(2.4)

The dipole field is used to deflect the beam on a curvature with radius ρ. The

quadrupole field is used to focus the beam. Depending on the horizontal (or vertical)

displacement of the particle, it experiences a magnetic field that scales linearly with

the particles displacement. Therefore, the kick, a particle accumulates in such a

quadrupolar field, depends on its initial displacement. The strength of the focussing

depends on the gradient of the field. The quantity for the strength of a quadrupole

2The magnetic induction will also be referred to as the “magnetic field” throughout this thesis.
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magnet is k, which is the gradient normalized to the beam rigidity.

As the beam has a certain energy spread, particles experience different focussing

from the quadrupolar fields, depending on their energy. To compensate energy

dependent focussing, sextupolar fields may be used. In a storage ring or synchrotron

all of the mentioned components are installed as dipole, quadrupole, and sextupole

magnets. At the MLS also octupole magnets are installed. These may be used to

influence higher order non-linear beam dynamics (Feikes et al., 2011).

2.1.3 Transverse Focussing

The transverse focussing is provided by quadrupole magnets (strong focussing) and

by dipole magnets (weak focussing). The particle motion can then be described by

Hill’s equation:

x′′(s) + k̃(s)x(s) = 0, (2.5)

with

k̃(s) =
1

ρ(s)2
− k(s).

The negative sign in front of the quadrupole strength k(s) is convention. For elec-

trons, a positive k is focussing in the horizontal plane. Assuming periodicity of the

focussing term k(s), the solution to Hill’s equation takes the form of a harmonic

motion (Wilson, 2001):

x(s) =
√
β(s)ε cos (φ(s) + φ0) .

The phase φ and the amplitude
√
βε depend on the focussing elements along the

azimuth s. Therefore, the “wavelength” of the harmonic motion is varying with s.

The constant ε is referred to as the emittance of the circulating particle. Multiplying

emittance ε by π gives the area of the ellipse in phase space, the particles path

encloses. Phase φ and amplitude function β are connected through

φ(s) =

∫ s

0

ds′

β(s′)
.

The amplitude function β(s) is usually called “β-function”. The phase advance

∆φ for one turn is called the tune. It is the number of betatron oscillations per
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revolution (Wilson, 2001):

Qi =
∆φi
2π

=

∮
ds

βi(s)
, (2.6)

where the subscript i represents either the horizontal or the vertical plane. Ho-

rizontal and vertical tune are called the working point of an accelerator. As the

focussing of particles depends on their energy, there exists an energy dependent

tune shift called chromaticity ξ. The following definition for chromaticity will be

used in this thesis:

∆Qi = ξi · δ. (2.7)

The natural chromaticity is the chromaticity of a linear lattice, i.e. a lattice con-

sisting of solely dipoles and quadrupoles. The natural chromaticity of an circular

accelerator is negative. It can be compensated and tuned to be small and positive

with sextupole magnets which are placed in a dispersive section (see Sec. 2.1.4 for

dispersion).

For circulating particle beams, Liouville’s theorem states that the area A = πε

of the ellipse in phase space is conserved. In terms of the Twiss (or Courant-Snyder)

parameters α, β, and γ, the equation of the ellipse takes the form (Wilson, 2001):

γ(s)x2 + 2α(s)xx′ + β(s)x′2 = ε (2.8)

with

α(s) = −β
′(s)

2
,

γ(s) =
1 + α2(s)

β(s)
.

The Courant-Snyder parameters α, β, and γ are periodic with circumference C:

α(s) = α(s+ C), β(s) = β(s+ C), γ(s) = γ(s+ C). (2.9)

The particle density distribution in the transverse planes takes the form of a Gaus-

sian distribution because of the stochastic emission of photons:

ρ(x, y) =
Ne

2πσxσy
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
. (2.10)
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The transverse beam sizes σx/y are defined as one standard deviation of the Gaussian

particle distribution. The beam size at azimuth s can be calculated from the β-

function and the emittance for a particle at one standard deviation of the coordinate

distribution in phase space:

σi(s) =
√
βi(s)εrms,i. (2.11)

The emittance corresponding to a particle with an amplitude of one σ in phase

space is usually referred to as the “beam emittance” or short “emittance”. It is

an important property of an accelerator as it impacts e.g. the brilliance of the

emitted photon beam. The emittance for electron beams will be discussed in detail in

Sec. 2.3, when damping and excitation due to the emission of synchrotron radiation

are discussed.

2.1.4 Dispersion and Momentum Compaction

Particles with different energies usually travel on different closed orbits through a

circular accelerator. These “dispersive” orbits arise from the different deflection

angles in the dipoles, depending on the particles energy deviation. Assuming deflec-

tion in the horizontal plane, the equation of motion for an off-momentum particle

is given by the inhomogeneous Hill’s equation (Wille, 2005):

x′′ +
1

ρ2
x =

1

ρ
δ. (2.12)

The trajectory corresponding to δ = 1 is defined as the dispersion function ηx(s).

Inserting ηx into Eq. 2.12 results in

η′′x(s) +
1

ρ2
ηx(s) =

1

ρ
.

With the initial conditions at s = 0, the solution to the differential equation is

(Wille, 2005):

ηx(s) = ηx,0 cos
s

ρ
+ η′x,0ρ sin

s

ρ
+ ρ

(
1− cos

s

ρ

)
(2.13)

η′x(s) = −ηx,0
ρ

sin
s

ρ
+ η′x,0 cos

s

ρ
+ sin

s

ρ
. (2.14)
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For non-zero values of the dispersion function, off-momentum particles will have an

additional dispersive displacement:

x(s) = xβ(s) + xη(s) = xβ(s) + ηx(s) · δ.

Off-momentum particles travel on dispersive orbits. These orbits have differing path

lengths. Therefore, the length of the path, along which a particle travels, depends

on the energy of the particle. The ratio between the relative change in path length

∆L/L and the corresponding momentum deviation δ is called the “momentum com-

paction factor” α:

α =
∆L/L

δ
. (2.15)

The total path length L can be written as (Wille, 2005):

L = L0 + ∆L =

∮
ρ+ xη
ρ

ds =

∮
ds

︸ ︷︷ ︸
L0

+ δ ·
∮
ηx(s)

ρ
ds

︸ ︷︷ ︸
∆L

⇒ α =
1

L0

∮
ηx(s)

ρ
ds. (2.16)

The momentum compaction factor may be controlled by altering the integrated dis-

persion function in the dipoles around the ring. For the standard user operation

mode at the MLS, the momentum compaction factor is α = 0.031. With an integ-

rated dispersion function close to zero, the momentum compaction factor can be

made small. As the bunch length depends on the momentum compaction factor,

it can be made short by reducing α (Ries, 2014). At the MLS and BESSY II such

operation modes exist, called low-α operation (Feikes et al., 2011; Abo-Bakr et al.,

2003). In Fig. 1.3b the optical functions for the low-α mode at the MLS are presen-

ted. The dispersion function oscillates between positive and negative values and its

integral is close to zero.

2.1.5 Beam Size

Because particles with different momenta travel on different orbits, the effective

beam size has to be adjusted. In Eq. 2.11, the beam size due to emittance and β-

function is presented. It has to be extended to take dispersive effects into account,
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resulting in the rms beam size as

σi =
√
βi · εi + σ2

δ · η2
i , (2.17)

where σδ is the energy spread of the beam. Dispersion exists both in the horizontal

and vertical plane. However, in the vertical plane it is usually negligible as long as no

vertical bending magnets are in operation. Therefore, in most cases the horizontal

and vertical beam size can be expressed as

σx(s) =
√
βx(s) · εx + σ2

δη
2
x(s) (2.18)

σy(s) =
√
βy(s) · εy. (2.19)

The vertical emittance εy is usually dominated by the horizontal emittance through

coupling and alignment errors of magnets. It can be expressed with the coupling

parameter κ as:

εy ≈ κ · εx. (2.20)

The divergence of the particle beam can be expressed as (Wiedemann, 2007):

σ′i(s) =
√
γi(s)εi + σ2

δη
′2
i (s). (2.21)

With the optical functions for the different operation modes at the MLS (comp.

Fig. 1.3), the source sizes and divergences at the individual beam lines can thus

be calculated. The results for these calculations in the standard user operation

mode are presented in Tab. 4.1 of Chapter 4, where the effects on operation of an

installation of a RW are discussed.

2.1.6 Longitudinal Focussing

Longitudinal electric fields are necessary in order to accelerate particles or, in the

case of light particles such as electrons or positrons, to store them at a certain

energy. These fields accelerate or decelerate the particles while the particles pass

through them. The accelerating fields are stored in radio frequency (rf) cavities.

A radio frequency signal is generated in e.g. a klystron and is then coupled into

the cavity structure in the beam pipe. The resonance frequency of the cavity is an
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Figure 2.2: Concept of phase focussing for an accelerator above transition.

integer multiple of the revolution frequency frev of the particles:

frf = h · frev,

with the integer harmonic number h. The amplitude of the longitudinal electric

field E inside the cavity is then oscillating as

E(t) = E0 · sin(ψ(t)), (2.22)

where ψ is the phase of the oscillation. Particles, which arrive at the right point in

time at the cavity experience an attractive field which increases their energy, whereas

particles arriving at the wrong phase experience a repelling field. Such arises a

“bunched” structure of the particle beam: the particle beam is not a continuous

one, but the particles are grouped in so called bunches. For protons, where, up

to certain energies, effects of synchrotron radiation are negligible, the cavities can

be switched off while the protons will still be stably stored in the accelerator. For

electrons (or positrons), where synchrotron radiation is not negligible, switching off

the cavities would result in a beam loss on the time scale of milli seconds, depending

on the damping times.

Apart from restoring or enhancing the energy of the particles, cavities provide

phase focussing to the beam: the particles in the beam will have slightly differ-

ent energies and will travel on different paths through the accelerator. Due to the

centrifugal force, particles with positive momentum deviation (δ > 0) will travel a

longer path through the accelerator than particles with negative momentum devi-

ation (δ < 0)3. For ultra relativistic particles, above transition, the speed of the

particles is v ≈ c. The change in energy is higher than the corresponding change in

3Assuming positive momentum compaction.
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velocity. Therefore, the high energy particles will arrive later at the cavity than low

energy particles (comp. Fig. 2.2). Hence, they experience a weaker field than the

low energy particles and get less accelerated.

This leads to an oscillation around the reference energy with a frequency called

the synchrotron frequency fs. It can be calculated as (Wiedemann, 2007):

f 2
s = f 2

rev

hηceVrf cosψs
2πβE0

, (2.23)

where Vrf is the amplitude of the rf-voltage, frev is the revolution frequency, h is the

harmonic number, which is the number of rf-oscillations per revolution, (h = 80 for

the MLS), and ηc = α− 1
γ2

is the phase slip factor with α being the momentum com-

paction factor (see Sec. 2.1.4). For the MLS in standard user operation mode, with

Vrf = 500 kV and ηc ≈ α = 0.031, the synchrotron frequency is fs,SU = 110.6 kHz.

By detuning the rf-frequency from its reference frequency, it is possible to in-

troduce momentum deviation δ to the beam to study for example the natural chro-

maticity of the beam. A change ∆f of the rf-frequency alters the revolution time

for the closed orbit. Assuming positive momentum compaction factor, positive ∆f

shortens the reference orbit. Due to phase focussing, the reference energy reduces to

adjust to the new orbit. For negative ∆f the reference orbit is lengthened, leading

to an increased reference energy. The revolution time in terms of the rf-frequency

frf is

T0 =
1

frev

=
h

frf

.

The change in revolution time due to ∆f is

∆T = (T0 + ∆T )− T0 =
h

frf + ∆f
− h

frf

.

The orbit length is given by L ≈ c · T . Substituting ∆L and L in Eq. 2.16 results

in

∆L

L
=
c
(

h
frf+∆f

− h
frf

)

c · h
frf

=
frf

frf + ∆f
− 1 = α · δ. (2.24)

Finally ∆f can be expressed in terms of the relative momentum deviation δ:

∆f = − αδfrf

αδ + 1
≈ −αδfrf. (2.25)
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For the MLS, a momentum deviation of e.g. 1 ‰ is achieved by altering the rf-

frequency by ∆f = −14.99 kHz.

2.1.7 Matrix Formalism

Each lattice element and groups of lattice elements may be approximated by a

transfer matrix. Equation 2.5 has solutions which can be tracked from one azimuthal

position si to another azimuthal position sf by a 2 × 2 transport matrix (Wilson,

2001):

(
x(sf )

x′(sf )

)
=

(
a b

c d

)
·
(
x(si)

x′(si)

)
= M fi ·

(
x(si)

x′(si)

)
. (2.26)

The matrix elements can be identified in terms of the optical functions α, β, and γ

in Eq. 2.8. The result is the so call Twiss matrix (Wilson, 2001):

M =

(
cos(φ) + α sin(φ) β sin(φ)

−γ sin(φ) cos(φ)− α sin(φ)

)
. (2.27)

To perform 6d particle tracking, accelerator elements are described by transport

matrices. In (Brown, 1968) a first and second order matrix theory is presented. The

particles coordinates xk(sf ) at azimuthal position sf are expressed in terms of a

linear 6 × 6 transport matrix R, a second order matrix T and the particles initial

coordinates xl(si) as:

xk(sf ) =
6∑

l=1

Rklxl(si) +
6∑

l=1

6∑

m=l

Tklmxl(si)xm(si), (2.28)

with x1 = x, x2 = x′, x3 = y, x4 = y′, x5 = z, x6 = δ. The transfer matrix elements

R21 and R43 describe the focussing characteristics of an element in the horizontal

and vertical plane respectively.
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2.2 Generation of Synchrotron Radiation

Relativistic charged particles undergoing acceleration emit synchrotron radiation.

The power emitted by an ultra-relativistic particle (v ≈ c) is given by (Wilson,

2001):

Pγ =
1

6πε0

e2a2

c3
· γ4. (2.29)

Apart from constants, a is the acceleration and γ Lorentz’ factor. The acceleration

a in the longitudinal plane due to the rf-system is small compared to the transverse

acceleration in the dipole magnets. Here a = v2/ρ and

Pγ =
1

6πε0

e2c

ρ2
· γ4 =

2

3

rec

(m0c2)3

E4

ρ2
. (2.30)

As the emitted power scales with the relativistic factor γ, it becomes clear why light

particles like electrons emit much more radiation than heavy particles like protons.

The power scales rapidly with the energy of the particles. The power lost per turn

of a particle and which has to be fed back by the rf-system is (Wilson, 2001):

U0 =
4

3
π

re
(m0c2)3

E4

ρ
MLS
= 9.062 keV. (2.31)

For high energy lepton rings like LEP with an electron energy of 100 GeV, the power

lost per turn was as high as 2.9 GeV. However, Eq. 2.31 only includes the power

radiated by the deflecting bending magnets, it does not include power radiated by

ID’s (Sec. 2.2.2).

2.2.1 Bending Magnet Radiation

The spectrum of photons emitted by electrons in a bending field is characterized by

the critical photon energy of the spectrum (Clarke, 2004):

Ec = ~ωc =
3

2

~cγ3

ρ
MLS
= 361 eV. (2.32)

Ec divides the spectrum into two half-spectra which both emit the same power. The

emitted power for photon energies smaller than Ec and the emitted power for photon

energies greater than Ec are equal. The maximum spectral flux is found for photon

energies of approximately E = 0.25Ec. In Fig. 2.3, the dipole radiation spectrum of
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Figure 2.3: Dipole radiation at the EUV-beamline at MLS compared to example
wiggler and undulator radiation. All calculations for MLS beam parameters and for
the acceptance at the EUV-beamline (87 mm hor., 40 mm ver., distance 5 m). ID
radiation calculated with WAVE (Scheer, 2012). Undulator: K = 0.5, λID = 4 cm, 50
periods. Wiggler: K = 40.0, λID = 30 cm, 6 periods.

a bending magnet at the MLS with the acceptance given by the EUV-beamline is

depicted (blue).

2.2.2 Insertion Device Radiation

3rd generation light sources are characterized by the employment of insertion devices

in the straight sections between the deflecting dipoles. ID’s usually consist of a

sequence of multiple bending magnets, where the particles are sent on an altern-

ating orbit. Within each bend, radiation is emitted. Depending on the deflection

parameter K, the emitted radiation overlaps and interference effects occur. The

deflection parameter is calculated as (Clarke, 2004):

K =
eB0λID

2πmc
≈ 93.37 T−1 m−1 ·B0λID. (2.33)

B0 is the peak magnetic field and λID is the period length of the magnetic structure

of the ID. For values of K smaller than 1, the electron trajectories overlap with

the emitted radiation fan (∼ 1/γ) and interference effects occur. For K � 1, little

overlap is present and the poles can be treated as independent, bend-like sources

(Clarke, 2004).

An ID with K smaller than 1 is referred to as an undulator , whereas an ID with

K � 1 is called a wiggler . The boundary between undulator and wiggler regime is
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soft as also for K > 1 interference effects occur for longer wavelengths.

The spectrum of a wiggler is characterized by the critical photon energy Ec

in Eq. 2.32. However, due to the varying field inside the wiggler, the spectrum

alters, depending on the observation angle. The spectrum of a wiggler is the sum

of the spectra of the individual poles. In Fig. 2.3, a spectrum of a fictional wiggler

is presented (green). The wiggler has the same on-axis peak field as the bending

magnet (B0 = 1.37 T). The number of poles was set to 13, which results in 13 times

the intensity of the EUV-dipole (blue). The dip in the wiggler spectrum at ∼ 100 eV

is due to the vertical acceptance of the beamline.

The spectrum of an undulator is characterized by the wavelengths of the undu-

lator harmonics (Clarke, 2004):

λn =
λID

2nγ2

(
1 +

K2

2
+ θ2γ2

)
, (2.34)

where λID is the period length of the device, θ the observation angle (θ = 0 for

x = 0), and n the order of the harmonic of wavelength λn. Due to interference

effects, the intensity of some wavelengths is enhanced, whereas in between these

wavelengths dark regions occur. In Fig. 2.3, a typical undulator spectrum for K =

0.5 of a fictional undulator is depicted (red). The wavelength of the first undulator

harmonic is calculated to be λ1 = 14.85 nm, which corresponds to a photon energy

of Eγ,1 = 83.50 eV.

Comparing the spectra for bending magnet radiation with the spectra for ID

radiation in Fig. 2.3 it becomes clear that todays 3rd generation synchrotron light

sources focus on ID’s as their main radiation sources. The flux obtained by undu-

lators are about 3 orders of magnitude higher for selected wavelengths than those

obtained by the bending magnets.

2.3 Effects of Synchrotron Radiation

The emission of synchrotron radiation is not only useful for the scientist conducting

experiments, but has different effects on the particle beam itself. For a detailed

review on effects of synchrotron radiation, the reader is referred to (Wolski, 2014).

Here, a brief version is presented.
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2.3.1 Radiation Damping and Quantum Excitation

In an electron storage ring, radiation damping and quantum excitation occur. Both

effects are related to the emission of synchrotron radiation. If a stored particle emits

a photon, it emits the photon in flight direction. The particle loses mainly longitud-

inal momentum, but also a small fraction transverse momentum. The momentum

is restored in the rf-cavity. However, in the cavity only the longitudinal momentum

is restored. Therefore, transverse momentum is carried away through the interplay

between emission of radiation and longitudinal acceleration in the cavity. Thus, the

transverse betatron oscillations are damped.

Due to synchrotron radiation not only damping but also excitation arises. In

the case of finite dispersion at the place of the photon emission, the reference orbit

jumps to a new transverse position according to the momentum lost to the photon.

The particle therefore performs betatron oscillations around its new reference orbit.

This corresponds to a “heating” of betatron oscillations (Wolski, 2014).

Radiation damping and quantum excitation result in an equilibrium state which

defines emittances (Eq. 2.53) and the energy spread (Eq. 2.61) of the beam. The

damping and excitation characteristics of an accelerator can be described in terms

of the synchrotron radiation integrals presented in the following section.

2.3.2 Synchrotron Radiation Integrals

The synchrotron radiation integrals are defined as (Wolski, 2013):

I1 =

∮
ηx
ρ

ds
MLS≈ 1.64 m, (2.35)

I2 =

∮
1

ρ2
ds

MLS≈ 4.11 m−1, (2.36)

I3 =

∮
1

|ρ|3 ds
MLS≈ 2.69 m−2, (2.37)

I4 =

∮
ηx
ρ

(
1

ρ2
+ 2k1

)
ds

MLS≈ −0.23 m−1, (2.38)

I5 =

∮
Hx

|ρ|3 ds
MLS≈ 0.88 m−1, (2.39)

with

k1 =
e

p0

∂By

∂x
=

1

Bρ

∂By

∂x
,

Hx = γxη
2
x + 2αxηxη

′
x + βxη

′2
x .
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The evaluation of the synchrotron radiation integrals was conducted for the MLS in

standard user operation mode according to (Helm et al., 1973).

The first synchrotron radiation integral is not directly connected to radiation

effects, but can be associated with the definition of the momentum compaction

factor α in Eq. 2.16:

α =
1

L0

∮
ηx(s)

ρ
ds =

1

L0

· I1. (2.40)

In Equation 2.31, the energy loss per turn was calculated by integrating the emitted

power (Eq. 2.30) over all dipoles assuming no other devices in which photons are

emitted. More generally, the energy loss per turn for a reference particle can be

found by integrating the radiation power along the reference trajectory around the

ring (Wolski, 2013):

U0 =

∮
Pγ dt ≈

∮
Pγ

ds

c
.

Pγ in Eq. 2.30 can be rewritten as:

Pγ =
Cγc

2π
· c

4p4

ρ2
≈ Cγc

2π
· E

4

ρ2
. (2.41)

Cγ is called the “radiation constant” with

Cγ =
q2

3ε0(mc2)4

e−≈ 8.846× 10−5 m GeV−3. (2.42)

The radiation loss per turn of the reference particle can now be expressed in terms

of I2 (Wolski, 2013):

U0 ≈
Cγ
2π
E4

0 · I2. (2.43)

The synchrotron radiation integrals three, four, and five, are derived alongside

with the equilibrium emittance and energy spread: The emittance εx can be defined

as the average horizontal action 〈Jx〉 of all particles in the bunch in terms of the

Courant-Snyder parameters (Eq. 2.8) (Wolski, 2013):

εx = 〈Jx〉, (2.44)
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with

2Jx = γxx
2 + 2αxxx

′ + βxx
′2. (2.45)

The average damping rate of horizontal action can be expressed in terms of the

emitted power, being the source of radiation damping (a detailed derivation is found

in (Wolski, 2013)):

dJx
dt

= − 1

T0

∮
w1
Pγ
pc

dt, (2.46)

with

w1 = αxxx
′ + βxx

′2 − ηx(γxx+ αxx
′)− η′x(αxx+ βxx

′).

Substituting dt with a more convenient dependency on ds and keeping in mind

curvatures:

dt =
dC

c
=

(
1 +

x

ρ

)
ds

c
,

where C is the circumference. Considering a variation of the dipole field such that

B = B0 + x
∂B

∂x
,

and substituting 1/ρ = B/Bρ in the expression for the emitted power Pγ in Eq. 2.41

results in:

∮ 〈
w1Pγ

(
1 +

x

ρ

)〉
ds = cU0

(
1− I4

I2

)
εx. (2.47)

The damping of the horizontal emittance in a purely classical model can now be

expressed as (Wolski, 2013):

dεx
dt

= − 1

T0

U0

E0

(
1− I4

I2

)
εx = − 2

τx
εx. (2.48)

Here, τx is the horizontal damping time defined with the horizontal damping parti-
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tion number jx as

τx =
2

jx

E0

U0

T0, (2.49)

jx = 1− I4

I2

. (2.50)

In analogy to the damping rate, a growth rate of the emittance due to quantum

excitation can be derived. The difference in the derivation is that not a classical

model is used as in the derivation of the damping rate, but a quantum model, where

photons are emitted in distinct quanta. The evolution of the horizontal emittance

can be derived to be (Wolski, 2013):

dεx
dt

= − 2

τx
εx +

2

jxτx
Cqγ

2 I5

I2

. (2.51)

Cq is the “quantum constant” with

Cq =
55

32
√

3

~
mc

e−≈ 3.832× 10−13 m. (2.52)

With the condition

dεx
dt

= 0,

the equilibrium emittance is found to be (Wolski, 2013):

εx,0 = Cqγ
2 I5

jxI2

. (2.53)

Not only the transverse planes are affected by radiation damping and excitation

but also the longitudinal plane. The change in energy deviation δ and longitudinal

coordinate z of a particle in one turn can be expressed as (Wolski, 2013):

∆δ =
qVrf

E0

sin

(
ψs −

frfz

c

)
− U

E0

, (2.54)

∆z = −αC0δ, (2.55)

where U is the energy lost per turn of the particle, which is not necessarily equal to

U0. Taking the time derivative of ∆δ results in

dδ

dt
=

qVrf

E0T0

sin

(
ψs −

frfz

c

)
− U

E0T0

.
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−U/E0T0 is a damping term of the momentum deviation δ. The synchrotron radi-

ation power by the particle depends on the energy deviation of the particle. In first

order of δ, U can be expressed as (Wolski, 2013):

U = U0 + E0δ
dU

dE

∣∣∣∣
E=E0

. (2.56)

With

dt =
dC

c
=

1

c

(
1 +

x

ρ

)
ds =

1

c

(
1 +

ηxδ

ρ

)
ds,

the energy loss per turn is

U =
1

c

∮
Pγ

(
1 +

ηxδ

ρ

)
ds. (2.57)

It follows in terms of I4 and I2:

dU

dE

∣∣∣∣
E=E0

=

(
2 +

I4

I2

)
U0

E0

= js
U0

E0

, (2.58)

with the longitudinal damping partition number

js = 2 +
I4

I2

. (2.59)

According to the horizontal plane, a longitudinal damping time is defined as

τs =
2

js

E0

U0

T0. (2.60)

Considering the quantum excitation for the longitudinal plane, results in an

equilibrium energy spread of the beam as (Wolski, 2013):

σ2
δ = Cqγ

2 I3

jsI2

. (2.61)

The bunch length σs can now be calculated from the energy spread, the momentum

compaction factor α and the synchrotron frequency fs:

σs =
αc

2πfs
σδ
[
m
]

=
α

2πfs
σδ
[
s
]
. (2.62)
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2.3.3 Damping Partition

As derived above, in the case of no vertical dispersion and coupling, horizontal and

longitudinal damping are connected. The damping partition numbers in all three

planes can be written as:

jx = 1− I4

I2

, jy = 1, js = 2 +
I4

I2

. (2.63)

The damping partition numbers obey Robinson’s damping theorem (Robinson,

1958):

jx + jy + js = 4. (2.64)

Although it is possible to shift damping between the individual planes, the overall

damping is conserved. The ratio between I4 and I2 is called the damping partition

D:

D ≡ I4

I2

. (2.65)

The damping times in all three planes are given as:

τx =
2

jx

E0

U0

T0, τy =
2

jy

E0

U0

T0, τs =
2

js

E0

U0

T0,
2E0

U0

T0
MLS
= 22.21 ms. (2.66)

In terms of the damping partition D, emittance εx and energy spread σδ can be

written as:

εx(D) = Cqγ
2 I5

I2

1

1−D = εx,0 ·
1

1−D, (2.67)

σ2
δ (D) = Cqγ

2 I3

I2

1

2 +D
= σ2

δ,0 ·
2

2 +D
, (2.68)

with εx,0 = εx(D = 0) and σδ,0 = σδ(D = 0). Because of the coupling between

horizontal and longitudinal damping, it is possible to transfer damping between

the two planes. Emittance and energy spread can therefore be altered such that

emittance reduces with increasing energy spread and vice versa. In Fig. 2.4, the

evolution of emittance and energy spread as a function of the damping partition D

is depicted. For the energy spread, a singularity occurs for D = −2, whereas for the

emittance, a singularity occurs for D = 1.
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Figure 2.4: Evolution of emittance εx and energy spread σδ, normalized to values
for D = 0, as a function of the damping partition D. Theoretical functionality is
presented by solid lines, whereas tracked results are marked with circles. Single
particle tracking was performed with MAD-X-PTC.

2.3.4 Controlling the Damping Partition with Combined

Function Magnets

In I4 occurs the product of a dipole field By, a gradient to that field k1 = 1
Bρ

∂By
∂x

,

and the dispersion function ηx (comp. Eq. 2.38):

I4 =

∮
ηx
ρ

(
1

ρ2
+ 2k1

)
ds =

∮ (
ηx
ρ3

+ 2
ηxk1
ρ

)
ds

=

∮ (
ηx
ρ3

+
2

(Bρ)2
· ηxBy

∂By

∂x

)
ds.

This product is zero when no combined function magnets are in operation. The

damping partition D, which is the ratio between I4 and I2, can be manipulated

with the introduction of such a non-zero product

ηx ·By ·
∂By

∂x
6= 0.

In order to alter the damping partition D to negative values, the product has to be

negative too. Therefore, the device, which is used to manipulate D, has to be placed

in a dispersive section of the accelerator. Furthermore, the device needs to induce a

field and a gradient whose product is negative, assuming positive dispersion. Such a

product is given for a device whose absolute value of the field reduces with increasing
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Figure 2.5: Function principle of the RW.

horizontal amplitude x.

The RW is a sequence of alternating combined function magnets. A simplified

view on the function principle of the RW is as follows (comp. Fig. 2.5):

• the dispersion sorts the particles according to their energy, with x ∝ ηx · δ,

• due to the gradient in the field, high energy particles experience a weaker field

than low energy particles,

• high energy particles, experiencing a weaker field, radiate less power than low

energy particles, according to Eq. 2.32, Eγ,c ∝ B0, 4

• therefore, high energy particles lose less energy than low energy particles,

4One may argue that the critical photon energy is also proportional to the cube of the Lorentz
factor in Eq. 2.32. A quick calculation example to show that B0 is the dominant part here:
Assuming two electrons with an energy deviation of ±1 % of the reference energy 629 MeV (Lorentz
factor γ = 1231). These electrons are sorted according to a dispersion function of value ηx = 1.0 m
in a field with on-axis dipole component By = 1.0 T and gradient ∂By/∂x = −14 T m−1. The high
energy electron (γ = 1243) experiences a magnetic field of 0.86 T, whereas the low energy electron
(γ = 1219) experiences a field of 1.14 T. Calculating the product of γ3 · By for both electrons
results in 2.06× 109 T for the low energy electron and 1.65× 109 T for the high energy electron.
Therefore, the impact of B on the radiated power is stronger than the impact of the cube of γ in
this regime.
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Figure 2.6: Tracked horizontal (a) and longitudinal (b) phase space for the MLS
without (red) and with RW (black), corresponding to D = −0.055 (red) and D =
−1.75 (black) respectively. For further visualization, the fitted normalized Gaussian
distributions for the individual coordinates are indicated at the respective axes.

resulting in an increased energy spread.

The overall damping of the accelerator is conserved because the amount of radiation

(including the additional radiation of the RW), being the source of the damping,

is conserved. Therefore, as the energy spread increases, the horizontal emittance

decreases as part of the damping is transferred from the longitudinal to the hori-

zontal plane. In Fig. 2.6, the horizontal and longitudinal phase space, tracked with

MAD-X-PTC, for D = −0.055, which is the damping partition for the MLS lattice,

and D = −1.75, corresponding to the MLS with RW, is presented. The phase space

was tracked at the septum, where the value of the dispersion function is zero. With

the transition from D = −0.055, corresponding to the colour red, to D = −1.75,

corresponding to the colour black, the distribution of the horizontal position of the

particle shrinks. In contrast, the distribution for the energy deviation, and the

longitudinal position, of the particle increase, as is shown in Fig. 2.6b. Thus, by

altering the damping partition, the bunches can be made more slim in the horizontal

plane, while they are lengthened in the longitudinal plane.

Tracking of Damping Effects with MAD-X-PTC

In order to study the damping effects of the RW, the RW was modelled in MAD-X-PTC by

a sequence of misaligned quadrupoles. Longitudinal field components between the

poles are not included in such a simplified model. As the longitudinal field com-
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ponents do not contribute to the damping redistribution, the simplified model is

sufficient to study damping effects. However, in order to study effects on the dy-

namic aperture, this approach is not sufficient. To study effects on the dynamic

aperture the program FTRACK was developed and is presented in Sec. 3.4.1.

Single particle tracking was performed for 1× 108 turns each, corresponding to

∼ 1400 longitudinal damping times for D = −0.055 and ∼ 180 longitudinal damp-

ing times for D = −1.75. The resulting phase space distribution was used to extract

the emittance and the energy spread. The RW was modelled by a set of misaligned

quadrupoles, together with a set of horizontal kickers between the quadrupoles in

order to compensate the ponderomotive drift (comp. Sec. 3.2.3). In Fig. 2.4, the

emittance and the energy spread together with the theoretical predictions as a func-

tion of the damping partition are presented. Minor deviations from the theoretical

predictions are due to the varying matched optical functions for the different values

of D.

Measurement of Damping Effects at the MLS

In a separate function lattice, the fourth synchrotron radiation integral I4 can be

altered in a limited range by steering the beam off-axis in quadrupole magnets.

Thus, a dipole field component is added on top of the quadrupole gradient. In first

order approximation, the change in I4 from a single quadrupole is:

∆I4 ≈ 2 · ηx(sq) · lq · k2
q ·∆xbeam. (2.69)

Here, ∆xbeam is the horizontal displacement of the beam inside the quadrupole

at azimuthal position sq, of strength kq, and length lq. The change in I2 by the

additional dipole fields is neglected here as they are assumed to be small compared

to the contribution of the remaining dipoles.

Such an experiment was conducted in the standard user operation mode at the

MLS. The horizontal displacement of the beam was set up by using the horizontal

corrector magnets and by readjusting the rf-frequency. The achieved displacement

was approximately ±10 mm in the entire machine. The beam position monitors

Table 2.1: Expected and measured changes in bunch length via off centered orbit.

∆xbeam / mm ∆σs,theo/% ∆σs,meas/%

10 −3.9(7) −3.8(7)
−10 4.6(10) 3.5(7)
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were not able to measure the beam position precisely for these high amplitudes.

The beam position had to be estimated from smaller displacements and by scaling

the applied orbit bump. Each quadrupole, independent of the polarity, contributed

to changing I4. The impact of each individual quadrupole depends on the value of

the dispersion function at the quadrupoles azimuthal position.

As the bunch length is proportional to the energy spread, the relative change in

energy spread is equal to the one in bunch length. Therefore, the relative change in

energy spread can be deduced by measuring the bunch length. The bunch length

can be measured with a streak camera at the MLS ((Hamamatsu, 2010), resolu-

tion ∼ 100 fs). In Tab. 2.1, the expected and measured relative changes in bunch

length are presented. The uncertainty of the orbit displacement was assumed to

be σ∆x = ±0.5 mm. The error introduced by the streak camera was assumed to be

σσ = ±0.1 ps. The reference bunch length for zero orbit displacement was measured

to be σs = 20.75 ps. The results agree within the boundaries given by the uncertain-

ties and show that damping effects cannot only be calculated, but also measured in

existing separated function accelerators.

2.4 Beam Lifetime

The number of stored particles in an accelerator is steadily decreasing because

particles might hit the aperture limit due to a scattering process, a resonance driven

high amplitude, or because the particles energy at some point does not comply with

the reference energy defined by the bending magnets. Either way, the particle beam

is decaying with time and therefore a beam lifetime5 can be defined as the time in

which the stored initial current I0 decays to I0/e
6(Bocchetta, 1996). The stored

beam current I decays with time following an exponential function as

I(t) = I0 · exp

(
− t

τ(I)

)
, (2.70)

where I0 is the initially stored current at time t = 0 and τ(I) is the beam lifetime.

The lifetime is current dependent and can locally be determined with approximating

τ(I) ≈ ∆t

∆I
· 〈I〉. (2.71)

5This lifetime is not to be confused with e.g. the half lifetime of an unstable isotope.
6Here, e is Euler’s number.
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Figure 2.7: Decaying current (a) for the MLS in standard user operation with the
corresponding lifetime (b). Data recorded on June 10th 2016.

Here, 〈I〉 is the average value of the stored current in the time interval ∆t, while

the beam current decays by ∆I. In Fig. 2.7, a decaying stored beam current for the

MLS in the standard user operation mode is presented together with the lifetime

determined by Eq. 2.71.

Different mechanisms are leading to particle losses. Each of these loss mechan-

isms contributes to the beam lifetime and has a lifetime contribution associated. In

order to determine the beam lifetime from the individual lifetime contributions, the

individual contributions have to be added inversely:

τ−1 =
∑

i

1

τi
=

1

τt
+

1

τg
+ . . . . (2.72)

The different lifetime contributions are presented in the following sections 2.4.2,

2.4.3, and 2.4.4. The main contributions to particle losses are:

• Gas scattering (Sec. 2.4.2)

Stored electrons perform Coulomb scattering at residual gas atoms. The scat-

tering process can be elastic and inelastic, and can be performed with the

nuclei or with the electrons of the gas atom or molecule. Stored particles may

be deflected and lost to the limiting aperture. The gas lifetime is controlled

by providing low vacuum pressure through continuous pumping.

• Touschek scattering (Sec. 2.4.4)

Particles inside the bunch perform elastic Coulomb scattering. Thereby mo-

menta may be exchanged between the particles. The changes in transverse

momenta get Lorentz transformed, when deflected into the longitudinal plane.
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The associated changes in longitudinal momenta lead to momentum deviations

that may exceed the limiting momentum acceptance of the accelerator. The

probability for such a scattering event depends on the electron density inside

the bunch. By reducing the electron density, the Touschek lifetime can be

improved.

Most lifetime contributions depend on the momentum acceptance of the accelerator.

The momentum acceptance is the maximum deviation in momentum a particle can

have from the reference momentum without being lost. If a particle exceeds this

limit, it hits the limiting aperture. Therefore, in the following section, different types

of acceptances are introduced. The smallest acceptance is the limiting acceptance.

2.4.1 Momentum Acceptance

The acceptance of an accelerator is a measure for the relative change in energy or

momentum a particle can have without being lost. Three types of acceptance are

important:

1. rf-acceptance,

2. dynamic acceptance,

3. geometrical / physical acceptance.

The smallest acceptance limits and defines the acceptance of the accelerator. In the

following paragraphs, the different types are discussed.

RF-Acceptance: The rf-acceptance is given by the height of the separatrix in

longitudinal phase space (comp. black curve in Fig. 2.8) (Wiedemann, 2007):

δ2
acc,rf =

U0

πh|ηc|E0

· F (q) (2.73)

with F (q) = 2

[√
q2 − 1− arccos

1

q

]
q→∞≈ 2q − π, (2.74)

and q =
eVrf

U0

=
1

sin(ψs)
,

where q is usually called the “overvoltage factor”. Particles with momentum devi-

ations larger than δacc,rf travel on non closed lines in phase space. The momentum

deviation increases until the particles eventually reach high horizontal amplitudes

due to dispersion and are lost to the aperture. If the rf-acceptance is the limiting
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Figure 2.8: Longitudinal phase space for the MLS in standard user operation mode
(Vrf = 500 kV, frf ≈ 500 MHz) without energy loss. The black curve indicates the
separatrix.

acceptance of an accelerator, the lifetime can be improved by upgrading the rf sys-

tem so that higher voltages can be achieved. With an increased overvoltage factor,

the rf-acceptance is increased likewise, resulting in an improved lifetime.

Dynamic Acceptance: The dynamic aperture limits the dynamic acceptance.

The dynamic aperture is defined by the maximum transverse amplitude a particle

can achieve without transcending into a divergent oscillation. Due to non-linear

fields and potential at high amplitudes, the motion becomes anharmonic and res-

onances occur. The amplitude of a particle on resonance will divergently increase.

The dynamic aperture can be determined by performing numerical particle tracking.

Particles are tracked for a number of turns, in the order of a fraction or one damping

time. If they exceed a certain amplitude they are declared as “lost”. This amplitude

is usually chosen to be much larger than the vacuum chamber. Particles are lost

depending on their initial starting amplitudes. The border for which particles with

higher initial amplitudes are lost is defined as the dynamic aperture. The dynamic

aperture becomes smaller when strong non-linear fields are present, as the tuneshift

with amplitude increases.

For the MLS in standard user operation mode, the dynamic aperture is larger

than the geometric aperture (comp. Fig. 2.9). However, for the installation of the

RW it has to be considered.

Geometrical Acceptance: If a particle spontaneously changes its energy by

emitting a photon or by performing Coulomb scattering, it will perform betatron
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Figure 2.9: Dynamic aperture for the MLS in standard user operation mode
without cavity and radiation, determined with FTRACK (Sec. 3.4.1). Particle en-
ergies: (green) on-energy, (red) −1 %, (blue) 1 %. The geometrical apertures
(black) were scaled according to the square root of the ratio of the β-functions
at the septum to the β-functions at the longitudinal position sa of the aperture:

ax/y,plot = ax/y(sa) ·
√

βx/y,septum
βx/y(sa)

. The geometrical apertures are the septum mag-

net (dashed), the undulator chamber (dotted), and the remaining vacuum chamber
(solid).

oscillations around a new dispersive closed orbit according to its new energy. If the

amplitude of the particle is too high, the particle hits the limiting physical aperture.

The minimum transverse displacement for which a particle is lost is xη = a(s)/2,

with a(s) being the limiting aperture at azimuthal position s. With assuming that

the beam is well centred, the geometrical acceptance can be described as:

δacc,g =

(
∆p

p

)

max

= min

[
a(s)

2ηx(s)

]
. (2.75)

In Fig. 2.10, the geometrical acceptance is presented as function of the longitudinal

position in the MLS. The minimum values for the geometric acceptance are found

in the centre of the DBA structures, where the dispersion function has its maximum

value of ηx = 1.48 m (comp. also Fig. 1.3a). The minimum value of the geometric

acceptance is found to be δacc,g,MLS = 1.15 %. It is not possible to decrease the peak

dispersion below 1.43 m without changing the optics significantly. This implies that

the geometric acceptance is limited to ∼ 1.22 %. It is therefore of limited use to

increase the cavity voltage significantly in order to improve the rf-acceptance at the

MLS.
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Figure 2.10: Geometrical acceptance for the MLS. The acceptance is calculated as
in Eq. 2.75.

2.4.2 Gas Lifetime

Stored particles in the accelerator may scatter with the residual gas molecules inside

the vacuum chamber and are lost due to their changed angle or momentum after the

scattering event. Such arises the gas lifetime contribution, which is mainly controlled

by pumping in order to maintain a sufficiently low pressure of the residual gas. There

are two major effects (Bocchetta, 1996):

• Elastic collision:

Elastic scattering leads to a deflection of the trajectory which increases the

betatron oscillations. The particles are lost if they hit the geometrical or

dynamic aperture.

• Inelastic collision:

The stored particles lose momentum to their scattering partner during an

inelastic collision. The particles are lost if their momentum deviation exceeds

the momentum acceptance.

The cross sections for elastic and inelastic scattering are derived in detail in (Boc-

chetta, 1996). The cross section for elastic scattering including particle loss is given

as:

σe = 2πr2
e ·

1

γ2
· Z2 · 〈βy〉βy,a

a2
y

, (2.76)
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where a2
y/βy,a is the minimum ratio between the square of the vertical aperture ay

and vertical β-function βy,a at aperture ay and azimuthal position s. Z is the atomic

number of the residual gas and 〈βy〉 is the average vertical β-function around the

ring.

The cross section for the inelastic scattering process including particle loss is

found to be:

σi =
4r2

e

137
·
{
F (Z) · 4

3

[
ln

(
1

δacc

)
− 5

8

]
+
Z(Z + 1)

9

[
ln

(
1

δacc

)
− 1

]}
,

(2.77)

with

F (Z) = Z2 ln

(
183

Z1/3

)
+ Z ln

(
1194

Z2/3

)
.

The total cross section is the sum of the cross sections for the individual events

(Bocchetta, 1996):

σloss = σe + σi. (2.78)

The gas lifetime can then be calculated as

τ−1
g = σlossβcρ, τg

MLS≈ 43.5 h, (2.79)

where ρ is the gas density depending on the composition of the molecules present

(Bocchetta, 1996). For the MLS, the theoretical value was calculated from the

results of a gas composition measurement for the MLS and assuming a constant

pressure of ρ = 1× 10−9 mbar (Dürr and Borninkhof, 2013; Goetsch, 2013). Due

to the emitted synchrotron radiation, desorption of gas molecules from the vacuum

chamber walls is a contributor to the residual gas pressure in light sources. Hence,

the pressure and the gas lifetime depend on the stored beam current.

Equations 2.76 and 2.77 are independent of the damping partition D. Hence,

changing the damping partition D does not affect the gas lifetime. It is therefore

assumed that the gas lifetime is constant for the remainder of this thesis.

The gas lifetime can be estimated by measuring the lifetime for different bunch

current settings: the same amount of current is distributed over a varying number

of buckets. Thereby, the total ring current (and with that the gas lifetime) stays

constant, whereas the bunch current varies (and with that the Touschek lifetime

contribution (see Sec. 2.4.4)). When plotting the inverse of the measured lifetime as
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Figure 2.11: Inverse lifetime as a function of the bunch current in the standard
user operation mode at the MLS. The ring current was kept constant, resulting in
a constant gas lifetime contribution τg = const.. The ring current was distributed
over a varying number of bunches to alter the bunch current.

a function of the bunch current, the gas lifetime can be estimated by the y-intercept

of the applied linear regression (comp. Fig. 2.11). A second order polynomial fit

showed to agree better with the experimental data than a first order polynomial fit

which theory would suggest. The first order polynomial fit results in a y-intercept

corresponding to a gas lifetime of 46.6(67) h. For the second order polynomial fit,

the gas lifetime would be estimated to be 42.8(21) h, which is close to the theoretical

predictions (τg,theo = 43.5 h).

The same kind of measurement was already performed in (Goetsch, 2013): the

gas lifetime contribution was estimated to be τg = 24.5 h for the MLS. The differ-

ences may be due to improved vacuum conditions in the meantime. For all following

calculations, the gas lifetime is assumed to have a value of 24.5 h. This is a worst

case scenario. Any higher value for the gas lifetime contribution would only further

increase the predicted lifetimes.

2.4.3 Quantum Lifetime

As discussed in Sec. 2.3, emission of synchrotron radiation leads to both radiation

damping and quantum excitation. Excitation and damping lead to a “random” walk

of the particles in phase space. Additionally, the particles perform multiple small

angle Coulomb scattering events with other particles inside the same bunch. This

effect is called intra-beam scattering and it leads to a continuous exchange of en-



2.4 Beam Lifetime 43

3 4 5 6 7 8
10−5

10−2

101

104

107

ay/σy

τ q
,y
/h

Figure 2.12: Vertical quantum lifetime as a function of the ratio between free vertical
aperture ay and vertical beam size σy.

ergy and momenta in all planes. Both effects lead to small random variations of the

particles coordinates. After several damping times, the distribution of the coordin-

ates a particle obtained approaches that of a Gaussian distribution, independent of

the particles initial conditions. The standard deviation of the Gaussian distribution

in the individual plane is a function of the lattice (Bocchetta, 1996). Particles with

very high amplitudes are lost at the limiting aperture in the respective plane. Due

to constant diffusion, caused by the effects mentioned above, a continuous loss of

these high amplitude (“halo”-) particles is given. The different quantum lifetimes

depend on the damping time τi in the respective plane i, the aperture ai, as well as

the standard deviation of the Gaussian distribution σi (Bocchetta, 1996):

τq,i =
τi
2

exp (ζ2)

ζ2
, (2.80)

with

ζ2 =
a2
i

2σ2
i

.

However, for the horizontal plane effects of the dispersion have to be taken into

account.
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Vertical Quantum Lifetime: As derived in Eq. 2.80, the vertical quantum life-

time is

τq,y = τy
σ2
y

a2
y

· exp

(
a2
y

2σ2
y

)
. (2.81)

The vertical quantum lifetime depends on the ratio between the free vertical aperture

ay and the bunch height σy. In Fig. 2.12, the vertical quantum lifetime for different

values of the ratio between ay and σy is depicted. For the MLS in standard conditions

(e.g. no scrapers near the beam), the ratio between vertical aperture ay = 12 mm

and vertical beam size σy ∼ 250 µm is in the order of 48. Therefore, the vertical

quantum lifetime is negligible. In fact, for ratios above 6.5, the vertical quantum

lifetime is longer than 100 h. In the remainder of this work, the vertical quantum

lifetime will not be considered because it is independent of the damping partition

at the MLS (no vertical bends are present).

Horizontal Quantum Lifetime: For the horizontal quantum lifetime, effects of

the dispersion as well as coupling between the longitudinal and the horizontal plane

have to be considered. In (Bocchetta, 1996), the horizontal quantum lifetime is

derived to be:

τq,x =
τx√
2π

σ3
x

a3
x

exp

(
a2
x

2σ2
x

)
τs

[τxr + τs(1− r)]
√
r(1− r)

, (2.82)

with

σ2
x = εxβx + η2

xσ
2
δ ,

r =
η2
xσ

2
δ

σ2
x

.

Like the vertical quantum lifetime, the horizontal quantum lifetime is high enough

to be neglected for the standard operation at the MLS. For the standard operation

it shows the same behaviour towards the ratio between free aperture and beam size

as the vertical quantum lifetime. However, with the installation of the RW, the

horizontal as well as the longitudinal quantum lifetime become important, as they

limit the maximum possible lifetime increasing effect of the RW. This dependency

will be explained after the longitudinal quantum lifetime is introduced.

Longitudinal Quantum Lifetime: The longitudinal quantum lifetime depends

on the energy spread σδ and the limiting momentum acceptance δacc of the acceler-
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ator. The longitudinal quantum lifetime is found to be (Bocchetta, 1996):

τq,s = τs
σ2
δ

δ2
acc

exp

(
δ2

acc

2σ2
δ

)
. (2.83)

The longitudinal quantum lifetime takes the same form as the vertical quantum

lifetime (Eq. 2.81). Therefore, a ratio between acceptance δacc and energy spread σδ

in the order of 6.5 would lead to a longitudinal quantum lifetime above 100 h. For an

energy spread of 4.4× 10−4, the acceptance would need to be as low as 2.86 ‰. At

the MLS, the acceptance is as high as 1.15 %. Therefore, the longitudinal quantum

lifetime is not important for the standard operation at the MLS.

However, as well as the horizontal quantum lifetime, the longitudinal quantum

lifetime depends implicitly on the damping partition through the energy spread.

Like the horizontal quantum lifetime, the longitudinal quantum lifetime becomes

important with the installation of the RW. In the following section, these depend-

encies are discussed.

Quantum Lifetime as a Function of the Damping Partition

Rewriting Eq. 2.82 and 2.83 in terms of the damping partition D and the initial

values for energy spread σδ,0 and damping time τi,0 for D = 0 results in

τq,x(D) =
1√
2π
τx,0

1

1−D ·
σx(D)3

a3
x

· exp

(
a2
x

2σx(D)2

)

·
τs,0

2
2+D

[τx,0
1

1−Dr(D) + τs,0
2

2+D
(1− r(D)]

√
r(D)(1− r(D)

, (2.84)

with

σx(D)2 = εx,0
1

1−Dβx + η2
xσ

2
δ,0

2

2 +D
,

r(D) =
η2
xσ

2
δ,0

σx(D)2
· 2

2 +D
.

for the horizontal quantum lifetime and

τq,s(D) = τs,0 ·
2

2 +D
·
σ2
δ,0

δ2
acc

· 2

2 +D
· exp

(
δ2

acc

4σ2
δ,0

· (2 +D)

)

= τs,0
σ2
δ,0

δ2
acc

· 4

(2 +D)2
· exp

(
δ2

acc

4σ2
δ,0

· (2 +D)

)
, (2.85)
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Figure 2.13: Horizontal and longitudinal quantum lifetime as a function of the
damping partition D according to Eq. 2.84 and 2.85.

for the longitudinal quantum lifetime.

In Fig. 2.13, the horizontal and longitudinal quantum lifetime as a function of

the damping partition D are presented. The MLS lattice in standard user conditions

has a damping partition of D = −0.055, corresponding to values for the emittance

and the energy spread of 117.67 nm rad and 4.42× 10−4 respectively. From that,

the values for emittance and energy spread for D = 0 can be calculated to be

εx,0 = 123.79 nm rad and σδ,0 = 4.36× 10−4. It was assumed that the dispersion

as well as the β-functions do not change with changing the damping partition and

are equal to the ones of the standard user operation mode (comp. Fig. 1.3). The

momentum acceptance was also assumed to be constant at δacc = 1.15 % (comp.

Sec. 2.4.1), whereas the limiting horizontal aperture was assumed to be the one of

the standard vacuum chamber with ax = 35 mm. The horizontal quantum lifetime

drops below 1000 h for D ≤ −1.9714 and D ≥ 0.9577, whereas it drops below 1 h

for D ≤ −1.9824 and D ≥ 0.9733. The longitudinal quantum lifetime drops below

1000 h for D ≤ −1.8823, and it drops below 1 h for D ≤ −1.9277.

Therefore, two lower and upper limits for a useful damping partition can be

defined. The first one is for the case that the horizontal and longitudinal quantum

lifetime yield negligible contributions to the total lifetime. For this case the damping

partition has to be part of the interval

iD,1 =
[
−1.8823, 0.9577

]
. (2.86)

The second interval is the limit for operation with a desired lifetime above 1 h. For
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this case the damping partition has to be part of the interval

iD,2 =
]
−1.9277, 0.9733

[
. (2.87)

Hence, horizontal and longitudinal quantum lifetime set a limit to the achievable

lifetime improvement by damping redistribution. This effect will also be of interest in

Sec. 2.5, where the total lifetime as a function of the damping partition is discussed.

2.4.4 Touschek Lifetime

The Touschek effect is one of the major loss rate contributors in storage rings. It

is the result of particles scattering within the same bunch. During the scattering

process, comparably small momenta in the transverse plane may get transferred to

the longitudinal plane. Due to the Lorentz shift, formerly small transverse momenta

lead to momentum deviations in the order of several percent, which is comparable

to the momentum acceptance of the accelerator. Particles which surpass the mo-

mentum acceptance of the accelerator are lost, giving rise to the Touschek lifetime.

An order of magnitude calculation for the MLS can be conducted as follows

(comp. (le Duff, 1989)): assuming a particle at betatron amplitude xβ = 1000 µm

at a place where the horizontal β-function has a value of βx = 10 m. The maximum

horizontal angle is then given as x′ = xβ/βx = px/p0. Assuming the operation

energy of the MLS with 629 MeV, the transverse momentum can be as high as

px = 62.9 keV c−1. When completely transferred into the longitudinal direction, it

becomes ∆p = γpx = 77.43 MeV c−1. This corresponds to a momentum deviation

of δ = 12.3 %, which is clearly larger than the limiting momentum acceptance of an

accelerator (δacc,MLS ∼ 1.15 %).

The Touschek lifetime is derived by integrating over all scattering angles leading

to particle losses. Here, the flat beam approximation presented by (le Duff, 1989)

is given and for further information the reader is directed to (Piwinski, 1998) and

(le Duff, 1989). According to (le Duff, 1989) the Touschek lifetime can be calculated

as:

1

τt
=

Nr2
ec

8πσxσyσs

1

δ3
accγ

2
D(ξ), (2.88)
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with a function D(ξ) as

D(ξ) =
√
ξ



−

3

2
e−ξ +

ξ

2

∞∫

ξ

lnue−u

u
du+

1

2
(3ξ − ξ ln ξ + 2)

∞∫

ξ

e−u

u
du



 ,

ξ =

(
δaccβx
γσx

)2

. (2.89)

The Touschek lifetime mainly depends on the limiting momentum acceptance

(τt ∝ δ3
acc), the beam energy (τt ∝ γ2), and the electron density (τt ∝ σxσyσs

N
). N is

the number of particles inside the bunch. For a long Touschek lifetime component,

the momentum acceptance of the accelerator should be as high as possible as it

has the strongest impact on the Touschek lifetime. If the momentum acceptance is

already optimized, the Touschek lifetime can be improved by reducing the scattering

rate. The scattering rate can be reduced by lowering the electron density inside the

bunch. This can be done in two ways: reducing the number of electrons or increasing

the bunch volume. With decreasing the number of electrons inside the bunch,

the intensity of the emitted radiation is reduced. As it is aimed to maintain the

intensity, reducing the number of particles is not a rewarding approach. Increasing

the transverse bunch sizes is also not useful as an increased transverse bunch size

results in a reduced brilliance at the beamlines. What can be adjusted is the bunch

length. With adjusting the damping partition, it is possible to increase the bunch

length while keeping the average bunch width constant. Thereby, the bunch volume

is increased, resulting in a reduced scattering rate and improved Touschek lifetime.

In Sec. 2.4.4, the dependencies of the Touschek lifetime contribution on the damping

partition D are discussed.

Measurement of the Touschek Lifetime Component

For the measurement presented in Fig. 2.11, the gas lifetime was kept constant by

keeping the ring current constant. The Touschek lifetime, depending on the bunch

current, was varied by distributing the total ring current over a varying number of

buckets. Assuming all other lifetime contributions negligible, the inverse of the total

beam lifetime as a function of the bunch current Ib is constituted as

1

τ
(Ib) =

1

τg
+

1

τt(Ib)
=

1

τg
+ c̃ · Ib, (2.90)
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with

c̃ =
1

efrev

·
〈

r2
ec

8πσxσyσs

1

δ3
accγ

2
D(ξ)

〉
. (2.91)

Therefore, it is possible to derive a value for the proportionality constant c̃ by means

of linear regression in Fig. 2.11. For the standard user operation mode at the MLS,

c̃ has a value of c̃ = 0.071(4) mA−1 h−1. The proportionality constant can be made

small by increasing the bunch volume, which is aimed for by operating a RW at the

MLS.

Touschek Lifetime as a Function of the Damping Partition

Rewriting Eq. 2.88 in terms of the damping partition D and the initial values for

energy spread σδ,0 and emittance ε0 results in

τ−1
t (D) =

Nr2
ec

8πδ3
accγ

2
· D(ξ(D))

σx(D)σy(D)σs(D)
, (2.92)

with

ξ(D) =

(
δaccβx
γσx(D)

)2

,

σx(D) =

√
εx,0

1

1−Dβx + η2
xσ

2
δ,0

2

2 +D
,

σy(D) =

√
εx,0

1

1−Dκβy,

σs(D) = σs,0 ·
√

2

2 +D
.

The vertical beam size depends on the damping partition via the emittance

coupling parameter κ = εy/εx. At the MLS in standard user operation, the vertical

beam size is controlled and kept constant with varying beam current using white

noise excitation. This reduces ion effects on the beam. Therefore, the vertical beam

size can be considered as independent of D while applying white noise excitation.

In Fig. 2.14, the Touschek lifetime normalized to the Touschek lifetime for D = 0

(τt,0 = 8.36 h at I = 150 mA) as a function of the damping partition is shown for

both varying σy with D and σy independent of D. As said, for the MLS the curve

for an independent σy of D is applicable. Therefore, the Touschek lifetime at the

MLS can be improved by decreasing the damping partition to negative values below

−1 instead of values below −1.5 for varying σy with D.
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Figure 2.14: Touschek lifetime normalized to the Touschek lifetime for D = 0 as a
function of the damping partition D.

2.5 Lifetime as a Function of the Damping

Partition

In the previous section, the different lifetime contributions were derived. The

Touschek lifetime and the horizontal and longitudinal quantum lifetime show a

dependency on the damping partition D, whereas the gas lifetime and the vertical

quantum lifetime are independent of it. The gas lifetime is treated as a constant

throughout this work. Although the gas lifetime, varies with the stored beam cur-

rent it is constant for a fixed current. The quantum lifetimes, usually high enough to

be neglected, do have an impact on the lifetime for the damping partition D close to

−2 and 1 (comp. Fig. 2.13). The Touschek lifetime increases for D approaching −2

and 1. When approaching D = −2, the Touschek lifetime increases because of the

increase in bunch length through the energy spread. When approaching D = 1, the

Touschek lifetime increases because of the increasing horizontal beam size through

the horizontal emittance.

In Fig. 2.15, the resulting lifetime as a function of the damping partition D is

presented, together with the variables emittance εx, energy spread σδ, and average

horizontal beam size σ̄x. The gas lifetime as well as the vertical beam size were

assumed to be constant. For approaching D = 1, the lifetime increases because

of the increasing Touschek lifetime until it drops sharply because of the horizontal

quantum lifetime at D = 0.9733. For approaching D = −2, the lifetime again

increases because of the increasing Touschek lifetime until it drops sharply because



2.5 Lifetime as a Function of the Damping Partition 51

−2 −1.5 −1 −0.5 0 0.5 1
0

1

2

3

4

5

D

σ̄x/σ̄x0
εx/εx0
σs/σs0
τ/τ0

impact of hor.
quant. lifetime

impact of long.
quant. lifetime

Figure 2.15: Effect of changing the damping partition D on the lifetime τ (for
constant vertical beam size), the horizontal emittance εx, the energy spread σδ, and
the average horizontal beam size σ̄x, all normalized to their initial values at D = 0.

of the longitudinal quantum lifetime at D = −1.9277.

For both positive and negative values of D an increase in lifetime of a factor of 2

or more can be achieved. However, negative values of D are preferable. For positive

values, the lifetime increasing effect is caused by an increase in emittance. This effect

reduces the brilliance at the experimental observation point and hence, should be

avoided. For negative values of D, the lifetime increasing effect is caused by an

increased bunch length, while simultaneously the horizontal emittance is reduced.

In order to increase the lifetime by a factor of 2 a damping partition below ∼ −1.75

is appropriate.

The horizontal beam size σ̄x, averaged along the azimuth s, has a minimum at

D = −1. This is the reason why the lattices for most storage ring based synchrotron

light sources today are designed for an initial damping partition around D = −1,

e.g. MAX IV with a design damping partition of DMaxIV = −0.847 (Tavares et al.,

2014). The emittance for D = −1 is reduced by a factor of 2 compared to D = 0,

while the energy spread is increased by a factor of
√

2. Thus, the minimum impact

of the energy spread and the maximum impact of the reduced emittance on the

source size is achieved.
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2.6 Further Techniques to Improve the Lifetime

through Bunch Lengthening

There are other techniques to increase the bunch length in a storage ring. Two

rather popular solutions that are commonly applied are presented in this section.

Namely, these are phase modulation of the rf-signal and the installation of a 3rd

harmonic cavity.

2.6.1 Phase Modulation of the RF

Phase modulation of the rf-signal is an easy and quick method to lengthen the

bunches and increase the lifetime. The rf-signal is modulated at a frequency two

times the synchrotron frequency. At the KEK photon factory, the beam lifetime

could thus be improved from 22 h to 36 h (Sakanaka et al., 2000). Another example

is the DELTA storage ring: here a lifetime increasing effect in the order of 20 % is

achieved while simultaneously reducing coupled-bunch instabilities (Sommer et al.,

2016).

At the MLS, this method was also applied. But, it turned out that the most

demanding user at the MLS, in terms of beam stability, measured a signal to noise

ratio an order of magnitude worse than without the modulation. The modulation of

the rf-signal was noticeable in the radiation signal at the beamline and measurements

could not be conducted. However, the underlying mechanism for this is still unclear.

This method may be applied at the MLS if the stability requirements of the users

are not too stringent.

2.6.2 Higher Harmonic Cavity

Operating higher harmonic (Landau) cavities are a common method to reduce the

electron density through bunch lengthening in storage ring based light sources.

These are passive cavities, usually operating at the 3rd harmonic of the base rf-

frequency. With the superposition of the base rf-voltage and the induced voltage

in the Landau cavities, the potential takes a form as depicted in Fig. 2.16. The

phase of the 3rd harmonic cavity is adjusted such, that the sum voltage has a flat

point corresponding to the energy loss per turn of the stored electrons. Thus, the

potential for stable storage of the particles is lengthened in time, which leads to

bunch lengthening. However, there are some reasons why a Landau cavity may not
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Figure 2.16: Superposition of base rf-voltage and induced voltage by a 3rd harmonic
cavity.

be the optimum choice for increasing the lifetime at the MLS, and why the RW does

have advantages compared to a Landau cavity in the case of the MLS:

• Tuneability

Other than the RW, a Landau cavity has only a limited tuning range, and

is therefore usually specified for a limited stored beam current interval (e.g.

100 mA to 200 mA in the case of the MAX II storage ring (Å. Anderson, 1998)).

This is not applicable for the MLS, as the beam current may vary rapidly by

two orders of magnitude during operation, depending on the user demands.

Concerning the lifetime this would not be problematic, as the lifetime is long

for small currents. However, the reliability and reproducibility of an acceler-

ator, dedicated to metrology applications, includes the bunch length. If the

Landau cavities do not work for small currents, the bunch length varies with

varying beam current.

• Beam interaction in parking position

When the Landau cavities are switched off, they may still interact with the

stored beam, as they add to the impedance budget of the machine. The RW

does not add to the impedance budget, as it is an out of vacuum device with

no interaction with the beam when switched off, apart from hysteresis effects.

• Beam loading

A Landau cavity would be sensitive to the fill pattern of the machine. The

demand for high flexibility of the MLS also includes the flexibility of the fill
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pattern varying from filling every bucket down to a single bunch, which is

troublesome for a passive Landau cavity.

• Brilliance

One major advantage of the RW over a 3rd harmonic cavity is the option to

change the emittance. With carefully choosing the beam optics, the users

of the synchrotron radiation may gain in brilliance, while simultaneously the

lifetime is increased.

Some of the above mentioned advantages of the RW over a 3rd harmonic cavity can

also be achieved by an actively powered 3rd harmonic cavity. The induced voltage

is then independent of the stored beam current and fill pattern. Up to now, no

such cavity is in operation. In future, such a cavity could further enhance the

performance of the MLS. For now, the RW is the first item to upgrade the MLS,

mainly because of the positive impact on the emittance and because there is no need

to install cryogenic systems.



Chapter3
A Robinson Wiggler for the MLS

Several constraints have to be considered when designing an additional magnetic

insertion device for an existing accelerator. The available free installation length in

the straight section is arguably one of the strongest limitations for the new magnet

structure. It is possible to move the remaining parts of the existing accelerator in

order to create additional space, but it should be avoided if possible. Reasons for

not breaking the existing lattice are:

• the downtime of the user operation can be minimized,

• no realignment of accelerator components is necessary,

• the position of the source points at the beamlines can be maintained,

• it is not necessary to develop new optics and settings for the operation modes

when the new magnet is switched off.

The limitation in available length, influences the design parameters of the ID, such

as the number of poles or the current density in the coils. Furthermore, the desired

field parameters such as field strength and gradient should be met within specified

boundaries to guarantee operation at long lifetimes while achieving the desired ef-

fect on the beam. A minor field quality affects the dynamic aperture and hence,

jeopardizes the lifetime of the beam and the operation of the accelerator.

In the following, the requirements for the RW in order to improve the lifetime

together with the limiting constraints will be introduced. According to these, a

normal conducting design is derived in Sec. 3.2, which is then further investigated

regarding its effects on the beam dynamics and its radiation characteristics in the

following sections. At the end of the chapter, an alternative superconducting design

is presented.

55
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Figure 3.1: Sketch of different requirements and quantities that are affected by the
operation of the RW and in turn set conditions for the design of the RW. The
thickness of the connecting arrows corresponds to the significance of the effect.
Green: accelerator related; orange: design related.

3.1 Requirements and Limitations

As described in Sec. 1.3 and 2.3.4, the RW consists of a set of alternating poles su-

perimposing both dipole and quadrupole field components. The RW is then placed

at a location in the accelerator where the dispersion function is non-zero. All three

quantities, i.e. dipole field By, gradient ∂By/∂x, and dispersion ηx need to have cer-

tain non vanishing values. Finding the optimum settings for each of these, depends

on constraints and requirements that are themselves interdependent. A sketch of

the different effects is presented in Fig. 3.1.

(A) Space Limitations: The RW is being designed for an accelerator that

has been successfully in user operation since 2008. It is desirable not to break the

existing magnet lattice in order to install the RW. Therefore, if possible, the RW has

to fit in the available space in the short straight section opposite the septum magnet.

If the maximum length of the device is limited, the minimally required on-axis field

in the poles, the maximum number of poles that can be installed, and consequently

the effects on the accelerator optics are affected. After optimization of the usage of

the free space in the remaining straight sections, the available longitudinal length

in the K3 straight is 1.9 m.
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Figure 3.2: Damping partition D in contour lines as a function of field and gradient
in the wiggler for a total length of 1.1 m and dispersion ηx = 1.0 m at the wiggler.

(B) Lifetime Improvement: The RW improves the Touschek lifetime com-

ponent of the electron beam through bunch lengthening. However, the Touschek

lifetime depends not only on the bunch length, but on multiple interconnected para-

meters that may be affected by the operation of the RW. For example, the Touschek

lifetime is proportional to the cube of the momentum acceptance (comp. Eq. 2.88).

But the value of the dispersion function at the RW, necessary to increase the effect

on the damping redistribution of the RW, has in turn a negative impact on the

momentum acceptance as it increases the momentum compaction factor α (comp.

Sec. 3.3.1, Fig. 3.12b). So in this case, although the RW could work properly re-

garding the damping redistribution and bunch lengthening, the net effect on the

lifetime may be lost because the momentum acceptance is too small.

In Fig. 2.15, the theoretically achievable beam lifetime as a function of the damp-

ing partition was presented. The lifetime does not increase linearly with decreasing

D, but the slope is getting steeper towards negative D. In fact, close to D equal

zero, the lifetime is actually decreasing for decreasing D. Therefore, a major effect

on the lifetime can only be achieved if the RW is working at the full extent regard-

ing its intentional ability to alter D to values below −1.75. For example, a lifetime

increasing effect of more than 50 % occurs for damping partitions smaller than −1.5

only. In Fig. 3.2 the damping partition is plotted as a function of field and gradient

of the poles of the wiggler. The wiggler is assumed to have a total length of 1.1 m,
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fringe fields were neglected, and the field was assumed to follow a step function

when transcending from the field of one pole to the field of the consecutive pole.

This showed to be a reasonable approximation for a real device of length 1.9 m, with

sinusoidal fields and distances between the poles. Furthermore it was assumed that

the dispersion at the wiggler has a value of ηx = 1.0 m.

In order to achieve a value of D = −2 for the damping partition, an on-axis field

of By ≈ 1.2 T together with a gradient to that field of ∂By/∂x ≈ 15 T m−1 are re-

quired. To obtain a lifetime improvement of 100 %, D needs to have a value around

−1.75 (green line in Fig. 3.2), i.e. an on-axis field of e.g. ∼ 1 T with a gradient

of ∼ 15 T m−1 is be required. If only e.g. 80 % of these values for either field or

gradient are met, the lifetime improvement is below 50 %. As the desired lifetime

improvements do not scale linearly with the excitation strength of the RW, it is

crucial that the requirements for field and gradient are met to full extent.

(C) Accelerator Optics: The MLS is a reliable and successfully established

synchrotron light source. A modest impact of the RW on the accelerator optics is

desirable, so that the RW optics are comparable to the current standard user optics.

Therefore, the RW’s focussing characteristics have to be moderate compared to the

remaining focussing elements in the accelerator. As the RW consists of alternating

poles, vertical focussing due to edge focussing cannot be avoided. But, as proven by

many well running 3rd generation light sources, the additional vertical focussing of

insertion devices can be compensated by the remaining quadrupoles in the lattice

(Clarke, 2004).

The horizontal gradient of the field in the poles of the RW will additionally

generate horizontal focussing. Both, horizontal and vertical focussing, depend on

the number of poles of the device. In Fig. 3.8, the tracked transfer matrix elements

R21 and R43 for RW’s with different numbers of poles are presented. The higher the

number of poles, the lower the net focussing due to the smaller integration length

of the individual pole (the focal length in thin lens approximation: f = 1/kl).

However, with increasing number of poles and constant excitation current density

in the coils, the on-axis field and the gradient reduce. Therefore, the integrated field

times gradient decreases with an increasing pole number. With a reduced integrated

field times gradient, the effect on the damping redistribution and on the lifetime (B)

is jeopardized.

(D) Transparency: The RW, like any insertion device, has to be magnetically

transparent: an on-energy particle entering the device on the reference orbit has to

exit the device on the same orbit (comp. Fig. 3.9b). In other words, the device

should not produce any additional angles or offsets. Referring to Sec. 3.2.3, this



3.2 Normal Conducting Design 59

y

x

s

Figure 3.3: Design option for the normal conducting RW consisting of twelve poles
(incl. endpoles). Gray: yoke, copper: coils.

requirement is particularly challenging for the RW as the gradient introduces a

ponderomotive drift (comp. Fig. 3.9a) which needs to be compensated.

The above mentioned constraints set limits to the design parameters of the RW.

Another constraint arises from non-linear field components of the device and their

effects on the chromaticities without excited sextupoles (see next section). The

normal conducting design of the RW is derived in the following section and in the

consecutive sections its characteristics are studied.

3.2 Normal Conducting Design

In this section, a possible layout for the normal conducting RW for the MLS is

presented. In Sec. 3.6 a superconducting alternative with its advantages and disad-

vantages over the normal conducting design is discussed.

The tool used for the hardware design of the RW is the RADIA package (version

4.29) (P. Elleaume, 1997; O. Chubar, 1997). RADIA is a Mathematica (Wolfram

Research, Inc., 2016) add on and features simulation techniques for numerous kinds

of magnets using the mathematical framework of Mathematica. In Sec. A.1, the

Mathematica notebook for producing the normal conducting RW model for the

MLS is given. After specifying the number of poles and the maximum length of the

device, the individual lengths of the poles are adjusted automatically.

In the following section, an option for the pole shape is derived. After that, a
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consideration for the number of poles is presented. In Sec. 3.2.3 the ponderomotive

drift, arising from the gradient in the field, is presented together with the planned

compensation scheme. In the end, the resulting design is introduced, whereas a

picture is given here already with Fig. 3.3 in order to provide an overview for the

following.

3.2.1 Poleshoe Design

The optimum pole shape for a multipole magnet with a ferromagnetic yoke can

be derived by the equipotential lines of the scalar potential of the desired magnetic

field. The underlying physics can be obtained in full detail in numerous sources, e.g.

(Wiedemann, 2007; Russenschuck, 2010). Here, a reduced version of (Wiedemann,

2007) is presented:

The magnetic field in a current free region is derived by a scalar potential V (x, y, z).

V is a solution of the Laplace equation

∆V = 0. (3.1)

The magnetic field is then derived by

B = −∇V. (3.2)

For simplicity, the azimuthal variation of V is neglected in order to derive the profile

for the transverse plane in the centre of a long magnetic pole. The potential for

single higher order multipole components can be derived in Cartesian coordinates

(Wiedemann, 2007):

Vn(x, y) = −Bρ · 1

n!
An(x+ iy)n, (3.3)

where Bρ is the beam rigidity, n is the multipole order and An are the potential

coefficients.

The imaginary part of the potential yields the normal components of the mul-

tipoles, whereas the real part of the potential yields the skew components of the

multipoles. The imaginary part is(Wiedemann, 2007):

= [Vn(x, y)] = −Bρ ·
(n+1)/2∑

m=1

An−2m+1,2m−1
xn−2m+1

(n− 2m+ 1)!
· y2m−1

(2m− 1)!
. (3.4)
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Figure 3.4: Equipotential lines in [T m] of = [VCFM] for values of By = 1.1 T on-axis
and ∂By/∂x = 14.0 T m−1.

Here, the potential coefficients have been rewritten as Aj,k, where the sum of j and

k is the multipole order and k gives information about the rotation of the magnet

around the azimuth. For upright magnets, i.e. no skew magnets, k is equal to 1.

For skew magnets k is zero.

The RW consists of an alternating sequence of combined function magnets.

These combined function magnets should have a dipole and a quadrupole field com-

ponent. Writing =[V ] up to n = 2 gives:

= [VCFM] = −Bρ ·
[
A0,1︸︷︷︸
= 1
ρ

y + A1,1︸︷︷︸
=kx= 1

Bρ

∂By
∂x

xy
]

= −
[
Byy +

∂By

∂x
xy

]
. (3.5)

In Fig. 3.4, the resulting potential is presented for values of By = 1.1 T on-axis and

∂By/∂x = 14.0 T m−1. The optimum pole shape is characterized by the equipoten-

tial line that is closest to the particle beam, in order to keep the excitation currents

small, while simultaneously being far enough from the beam so that the vacuum

chamber can fit between the pole tips. The vacuum chamber for the RW has a

full height (including walls) of 28 mm, which is the same value as for the undulator

chamber. The same design as for the undulator chamber was used for the RW cham-
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Figure 3.5: Explanatory scheme for horizontally cutting the pole shape in order to
bring the pole tips closer together (a). The initial horizontal amplitude for which
particles get defocused as a function of the horizontal starting position of the parallel
pole tip area xc relative to the reference orbit (b).

ber in order to not further minimize the vertical aperture. Therefore, the minimum

gap between the pole tips has to be larger than 28 mm. In Fig. 3.4, the green line

represents the equipotential line chosen for the RW poles. At the narrowest place

(x = −5 cm) it leaves a total gap of 29.4 mm, enough for the vacuum chamber to fit

in between.

In the equation for the ideal pole tip x and y can take any value between ±∞.

A real life magnet has finite dimensions, which means that at some point on the

hyperbolic surface, the yoke has to be cut. As the poles dimensions are finite, the

field linearity and purity are limited (higher order multipoles occur).

Furthermore, it is essential to keep the sloped surface to the full extent of the

horizontal pole dimensions. In the scope of this work the effects of a horizontal

cut in the hyperbolic pole shape were studied (comp. Fig. 3.5a). Vertically, this

cut should bring the two poles closer together in order to increase the on-axis By

and with that the effect on the damping partition D. However, doing so, the field

between the parallel pole tip areas becomes more “dipole like”. The ponderomotive

drift (see Sec. 3.2.3) between the parallel areas is reduced. Therefore, the correction

coil is overcompensating the drift in that area and the particles get defocused.

This effect is important, as it significantly cuts into the momentum acceptance. In

Fig. 3.5b, the y-axis describes the horizontal initial amplitude of a particle that

becomes defocused due to the overcompensating correction. Particles with initial

amplitudes smaller than the values plotted here are also defocused. The x-axis in

Fig. 3.5b shows the horizontal starting position of the parallel pole tip area (xc in
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Figure 3.6: Final pole design for the RW, including chamfers (a). Field distribution
in the median plane for a single pole as part of the RW (b).

Fig. 3.5a and 3.5b). From xc to the end of the pole tip in direction of negative x, the

pole tips are parallel. This correlation between defocussing and starting position of

the parallel pole tip area is crucial for the design. Hence, the sloped surface (be that

hyperbolic or tangential to it) needs to be maintained to the full horizontal extent

of the poles.

In Fig. 3.6a, the suggested pole design is presented. The chamfers were included

to reduce saturation effects during the ramping of the RW.
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Figure 3.7: Vertical field component as a function of horizontal position in the centre
of a single pole as part of a twelve poled RW (a). Deviation from linearity for a
region r = ±30 mm inside the vacuum chamber (b). ∆By = By,d − By, where By,d

is the design field (multipole orders 0 and 1) and By the actual field.

Pole Shoe Material

Considering the necessary high field strengths in order to alter the damping parti-

tion, the choice for the yoke material of a normal conducting device appears to be

a Cobalt-Iron steel called “AFK502” in RADIA. It is a compound of 49 % Fe, 49 %

Co, and 2 % V and yields a high saturation induction of 2.35 T, which is higher

than most materials are able to achieve. Other materials like standard iron steels

were also considered, but the fields yielded by these materials are not high enough

to achieve the desired effect on the damping redistribution while simultaneously

keeping a high number of poles in order to minimize the impact on the accelerator

optics (comp. Sec. 3.2.2).

As the Cobalt content of the material might get activated by beamlosses in the

material or shielding components, preliminary studies have been conducted by the

radiation protection group of HZB with FLUKA (Ferrari et al., 2005): the preliminary

results indicate that the activation is not critical. However, these studies are not

finalized, yet. More detailed studies including backscattered neutrons from the

concrete shielding have to be conducted.

In Fig. 3.6b, the field distribution for one pole pair in the centre of a RW with

twelve poles is presented. The field decreases with increasing horizontal amplitude.

The horizontal field distribution in the centre of the pole is depicted in Fig. 3.7a.

The contained multipoles are listed in Tab. 3.1. The multipoles are calculated as
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part of a Taylor series (Russenschuck, 2010):

By(x) = By,0 +
∂By

∂x
· x+ · · ·+ 1

n!

∂nBy

∂xn
· xn =

N∑

n=0

1

n!

∂nBy

∂xn︸ ︷︷ ︸
cn

·xn. (3.6)

The multipole coefficients cn were calculated in the horizontal arbitrarily chosen

interval between ±30 mm. The dipole and quadrupole component are the “design”

multipole components wanted. Assuming that the achieved dipole and quadrupole

component meet the requirements in a perfect way, it is possible to calculate the

relative field error introduced by the higher order multipole components at distance

r from the centre:

∆Br =
By(r)−Bd(r)

Bd(r)
. (3.7)

By(r) is the magnetic field including higher order multipoles and Bd(r) is the

design field excluding higher order multipole components. The errors introduced

by the higher order multipoles for the ten, eleven and twelve poled RW solutions at

r = ±30 mm are:

∆Br,10 = 3.95 %, ∆Br,11 = 4.44 %, ∆Br,12 = 4.81 %.

The relative field error of higher order multipoles increases with increasing the pole

Table 3.1: Multipole coefficients as derived in Eq. 3.6 contained in the vertical field
component in the median plane (y = 0) between x = ±30 mm for different numbers
of poles.

n ∂nBy/∂x
n

10 poles 11 poles 12 poles

0 1.1927 1.1002 1.0172
1 −1.4513× 101 −1.3878× 101 −1.3207× 101

2 7.1248 1.5738× 101 1.9373× 101

3 5.1300× 103 4.3552× 103 4.0563× 103

4 2.3466× 105 2.3430× 105 2.1312× 105

5 −1.9383× 107 −2.7770× 107 −4.3367× 107

6 −2.2774× 109 −3.1824× 108 3.0675× 109

7 7.3302× 1011 9.4700× 1011 1.3190× 1012

8 −4.0323× 1013 −1.1008× 1014 −2.3856× 1014

9 −1.1313× 1016 −1.1006× 1016 −8.6981× 1015
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number, as the on-axis “design” B0 and gradient decrease. However, the relative

error of higher order multipoles does not yield information about the absolute values

of the higher order multipoles. For example, the octupole component c3 reduces with

increasing pole number, whereas the sextupole component c2 increases.

3.2.2 Number of Poles

The choice of the number of poles influences both the focussing characteristics and

the achievable on-axis fields and gradients of the RW. The higher the number of

poles, the lower the impact on the accelerator optics (comp. Fig. 3.8 -R21 and

R43). But the lower the number of poles, the higher the attained field and gradient

(comp. Fig. 3.8 -By∂By/∂x). A low impact on the optics is desirable, but without

the necessary field, the original intention of improving the lifetime would not be

achieved.

Taking a closer look at the focussing characteristics, a difference between odd

and even numbered poles appears. Considering the horizontal plane (R21) it is

favourable to choose an odd number of poles (connected by the green dashed lines

in Fig. 3.8). For the vertical plane (R43) the even numbered solutions yield slightly

less focussing (connected by the red dashed lines in Fig. 3.8). Considering the

focussing and the achievable field times gradient, a number of poles between ten and

twelve seems preferable. Overall, it appears worthwhile to pick an odd numbered

solution. Especially a solution with eleven poles yields small additional focussing

in the horizontal plane while the field strengths are still high enough to achieve the

desired effect on the damping.

Besides the linear beam optics, the chromatic effects of such a device have to be

considered. The chromatic effect of the RW depends on energy dependent focussing

inside the RW, caused by gradient, dispersion, and in particular the octupole com-

ponent. The impact of this energy dependent focussing is very strong, as can be seen

in Tab. 3.2, where the chromaticities, without excited sextupoles, of the MLS with

Table 3.2: Chromaticities, without excited sextupoles, of the MLS with RW’s with
different numbers of poles.

ξx ξy

SU w/o RW −3.4904 −3.9929
RW 10 poles 5.0205 −5.6184
RW 11 poles 3.3264 −5.9562
RW 12 poles 0.5714 −5.6227
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RW, for different numbers of poles, are presented. Comparing the horizontal chro-

maticities with the octupole components listed in Tab. 3.1, the correlation between

the two can be observed.

The ten poled RW solution increases the horizontal “natural” chromaticity by

∆ξx = 8.51, which is too high to compensate using the existing sextupoles. Accord-

ing to simulations, it is possible to tune the chromaticities below 1 in both planes

for the eleven poled solution. However, it is not possible to tune the chromaticities

below 0.8. For the twelve poled solution, the span is not as high as for the eleven and

ten poled solution. Here, the “natural” chromaticities can be compensated with the

existing sextupoles, and even negative chromaticities can be set up. Therefore, only

the twelve poled RW is reasonable as the chromaticity without excited sextupoles

can be compensated by the existing sextupoles and the chromaticities can be tuned

in a wider range.

3.2.3 Ponderomotive Drift and Correction Scheme

In Fig. 3.9a, the trajectories of particles with different energies through a RW is

displayed. The amplitude of the field decreases with increasing x. The particles

drift towards the low field region, i.e. towards positive x. The reason for this is that

the gradient in the field introduces a ponderomotive force acting on the particles: the

horizontal kick, a particle accumulates in a high field amplitude region of one pole

cannot be compensated in the lower field amplitude region the particle experiences

in the consecutive pole. Therefore, a net force drives the particles towards the

low field region. The strength of this force depends on the accumulated kick and

therefore on the length of the poles and the gradient. The longer the poles (the

smaller the pole number), the stronger the ponderomotive drift.

The ideal compensation scheme would be to vary the pole length of every second

pole. Those poles in which the particles travel through a weak field region have to

be lengthened in order to achieve the same integrated field as in the poles where the

particles travel through the strong field region. However, this solution is static. It

would not be possible, for example, to change the polarity of the device if wanted.

A sufficient and easy manufacturable solution is to correct the drift by introdu-

cing a single longitudinal coil pair, which spans the complete length of the RW to

continuously correct the drift (comp. Fig. 3.10). In contrast to the pole lengthen-

ing, the correction coil creates additional horizontal focussing: low energy particles

travelling through the high field region experience a stronger ponderomotive force,

whereas high energy particles travelling through the low field region experience a
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Figure 3.8: Different quantities as a function of the number of poles in the RW. The
excitation current density of the main poles was kept constant, as well as the overall
length of the device. The ratio between coil width and pole length was kept constant
at 0.6. Therefore, the value of ampere turns per coil decrease with increasing pole
number. The top two plots show the tracked R21 and R43 (comp. Sec. 2.1.7),
describing the net focussing in the horizontal and vertical plane respectively. The
third plot shows the product of field and gradient in the centre of one of the main
poles. The last plot shows the necessary excitation current density in the corrector
coil in order to compensate the ponderomotive drift.
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Figure 3.9: Vertical field distribution for a non-transparent (a) and transparent (b)
device with twelve poles in the y = 0 - plane together with corresponding particle
trajectories. The particles have different momentum deviations between ±1 % and
are sorted by dispersion ηx = 1.2 m. The blue trajectory corresponds to the high
energy particle, red corresponds to the low energy particle.

smaller ponderomotive force. The corrector coil, inducing merely a dipole field,
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Figure 3.10: Longitudinal corrector coil, spanning the complete length of the RW,
used to compensate the ponderomotive drift.

will overcompensate the ponderomotive drift of high energy particles whilst under-

compensating the drift of low energy particles. For the twelve poles solution, this

additional focussing can be compensated by the quadrupoles in the lattice.

The current density jcorr inside the corrector coil, necessary to correct the pon-

deromotive drift, is presented in Fig. 3.8. As expected, the necessary current density

decreases with increasing the number of poles. In Fig. 3.9b, the resulting traject-

ories tracked through a twelve poled RW with applied corrector coil are presented.

As can be seen, the device becomes transparent for the reference particle, whereas

off-axis particles experience horizontal focussing.

3.2.4 Resulting Design

Because of the reasons derived in the previous sections, the preferred normal con-

ducting design is a twelve poled RW. The twelve poles are constituted of eight main

poles and four end poles. The outer end poles have quarter the length of the main

poles, whereas the inner end poles have three quarters of the length of a main pole:

+1/4,−3/4,+1,−1, . . . ,+1,−1,+3/4,−1/4.

The sign indicates the polarity of the pole. Such an arrangement was chosen in order

to have the beam undulating around the centre of the vacuum chamber instead of

an off-axis oscillation. In Fig. 3.3, the wiggler is presented. The correction coil

pair used to compensate the ponderomotive drift can be seen close to the pole tips,

spanning the complete length of the device.

The nominal operating current density for the main coils is set to jmain =

7.1 A mm−2. In Fig. 3.11b, the on-axis By and ∂By/∂x are illustrated as a function

of the current density jcoil in the coils. For high current densities above ∼ jmain, the
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Figure 3.11: The on-axis B0 as a function of the longitudinal position (a). The
on-axis B0 and gradient as a function of the excitation current density jcoil in the
coils (b). The correction coil pair was switched off.

magnetic field saturates and the gain in field by increasing the current is reduced.

Therefore, 7.1 A mm−2 were chosen to conduct the simulations. This gives some

margin for increasing the current density if required.

Generally, the maximum current density for normal conducting devices with

water cooled coils is ∼ 10 A mm−2 (Russenschuck, 2010). Therefore, looking at

Fig. 3.11b, the performance of the twelve poled RW can be pushed by another 24 %

when increasing the current density to the maximum.

With a current density of 7.1 A mm−2, the twelve poled RW is able to alter D

by

∆D = −1.49 · 〈ηx〉RW m−1.

This result has been determined by integrating By and the field gradient along

the reference trajectory through the field map (green line in Fig. 3.9b). The bare

MLS lattice has a damping partition of D = −0.055. Therefore, with a dispersion

of 1 m at the wiggler, the damping is shifted to −1.545. If a dispersion of 1.2 m

is set up, the damping would shift to −1.845, beyond the desired value of −1.75,

and therefore fully enabling the desired effect on the damping. Together with the

additional margin for the current density, the twelve poled RW would be able to

reach values of D = −2 for the damping partition.

In Fig. 3.11a, the on-axis field is presented as a function of the longitudinal

position. The overall length of the device is limited to 1900 mm by the available
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length in the short straight section opposite to the septum magnet. With twelve

poles, the period length is therefore λRW = 353.6 mm. Together with the average

on-axis peak field By = 0.99 T the deflection parameter K becomes

KRW =
eByλRW

2πmc
= 32.508. (3.8)

With an deflection parameter K � 1, the RW is expected to be a wiggler indeed

regarding its radiation characteristics (Clarke, 2004). This is discussed in detail in

Sec. 3.5.

3.3 Beam Optics Development

3.3.1 Dispersion

The value of the dispersion function ηx at the position of the RW determines the

impact on the damping redistribution of the RW. In I4 (Eq. 2.38) it is part of the

product that is aimed to be controlled by the RW, and therefore the dispersion

is a lever on how much the RW influences the damping distribution in a specified

optic. As the field strengths, achieved by normal conducting devices, are limited to

1 T to 2 T, it is worthwhile to have the dispersion as high as possible at the place

the RW is installed. Doing so, lower field strengths of the RW are sufficient to

achieve the same ∆D. The advantage is that the number of poles may be increased,

resulting in a lower net focussing and lower “natural” chromaticity (comp. Fig. 3.8

and Sec. 3.2.2).

However, at the MLS, one major constraint is that the dispersion needs to be

close to zero at the septum magnet. In Fig. 3.12a, the resulting current times lifetime

as a function of the set up dispersion at the septum magnet is presented. Even small

values of the dispersion of several cm have a measurable impact on the lifetime.

With this constraint arises another limitation: when keeping the dispersion zero

at the septum and increasing the dispersion at the RW (the opposite side of the

synchrotron), the integrated dispersion in the dipoles, and therefore the momentum

compaction factor α, increases. Increasing the momentum compaction factor in turn

decreases the rf-acceptance as in Eq. 2.73:

δ2
acc,rf ∝ |ηc|−1 ≈ |α|−1.

In Fig. 3.12b the momentum acceptance for different rf-voltages and without cavity



3.3 Beam Optics Development 73

(a)

−0.4 −0.2 0 0.2 0.4

700

800

900

ηx/m

τ
×
I
/m

A
h

(b)

0.4 0.6 0.8 1 1.2 1.4 1.6
1.2

1.4

1.6

1.8

2

ηx/m

δ a
cc
/%

2.5

3

3.5

·10−2

α

Figure 3.12: Measured current times lifetime as a function of the set up dispersion
ηx at the septum magnet (a). Tracked momentum acceptance for matched electrons,
neglecting synchrotron radiation, as a function of the dispersion at the RW for cavity
voltages of 800 kV (blue), 500 kV (red), and without cavity (grey) for standard
user operation mode at the MLS without RW (b). In green, the evolution of the
momentum compaction factor α is presented.

is presented as a function of the dispersion at the wiggler. The evolution of α is

indicated by the dashed green line.

In conclusion, the dispersion at the Wiggler has to be maximized without de-

creasing the acceptance below 1.15 % (comp. Sec. 2.4.1, geometrical acceptance), so

that the acceptance does not counteract the lifetime increasing effect. A dispersion

at the Wiggler of 1.1 m proves to be worthwhile (comp. Fig. 3.13). With increasing

the dispersion at the RW from the standard user optics value of 0.8 m to 1.1 m, the

gradient in the long straights becomes steeper while decreasing the peak dispersion

in the DBA structures in the vicinity of the RW (comp. Fig. 3.13). However, the

global maximum value for the dispersion is maintained and is still located in the

DBA structures in the vicinity of the septum magnet. This is a crucial point, as

the geometric acceptance depends on the ratio between dispersion and free aperture

and may become limiting if the peak dispersion increases (Eq. 2.75).

In Fig. 3.19, a close up of the evolution of the dispersion function inside a twelve

poled RW is presented.
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Figure 3.13: Comparison of the β-functions and dispersion for standard user opera-
tion mode (dashed) and for the RW lattice (solid).

3.3.2 β-functions

For the MLS, the β-functions are usually chosen to be smaller than 20 m to 25 m.

The reason for this are halo particles, that are more likely to get lost for high β-

functions, and the source size of the emitted synchrotron radiation. Therefore, an

arbitrary upper limit of 20 m for the β-functions was set.

In Fig. 3.13, the optimized β-functions for a twelve poled RW are presented

together with the ones for the standard user operation mode for comparison. Due

to the additional vertical focussing of the device, the maxima of the vertical β-

function increase from ∼ 15 m to 20 m. In Fig. 3.19, a close up of the evolution of

the β-functions inside the wiggler is obtained.

In Sec. 4.2, the impact on the dipole beamline performance by the change of

the optics will be discussed, whereas Sec. 4.3 covers the effects on the undulator

beamline.

3.4 Dynamic Aperture & Error Estimations

During the design phase of an insertion device, the error margins on the designed

field distributions have to be defined. The usual and straight forward way to do this

is to define the error margins through the first and second field integral. The first
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field integral

IF1 =

∫ ∞

−∞
By(s) ds (3.9)

is a measure for the exit angle, whereas the second field integral

IF2 =

∫ ∞

−∞

∫ s

−∞
By(s

′) ds′ ds (3.10)

is a measure for the position offset the particles accumulate in the horizontal (i.e.

deflection) plane (Clarke, 2004). In order to have no deflection and no residual kick

it is required to have IF1 = IF2 = 0. Assuming a planar device (i.e. no gradient and

therefore no ponderomotive drifts), the allowed field errors can be defined through

the ideal proximity of IF1 and IF2 to zero. The field integrals can be measured with

a stretched wire along a straight line through the planar device.

With regard to the RW this approach could only be used for defining the field

qualities when the correction coil is turned off. This approach is only of limited use

when the device is in operation as the additional dipole field of the correction coil

generates finite values of IF1 and IF2 for a transparent device if measured along a

straight line. Along the trajectory of the reference particle, IF1 and IF2 are equally

zero. However, the stretched wire measures along a straight line. Therefore this

approach is not effective and defining the required field qualities is challenging.

For the wiggler in operation, the parameters of concern are deflection, angle,

(dynamic) aperture and momentum acceptance. It is indeed time consuming to

calculate the aperture for many different reasonable error settings. But it is also

the most accurate method for the existing problem. To determine the allowed error

amplitudes the following scheme was used:

1. Generation of a 3d field map without errors from the RADIA model of the

device;

2. Application of different error types to the field map;

3. Determination of the (dynamic) aperture and momentum acceptance with

FTRACK (see Sec. 3.4.1).

Depending on the granularity of the 3d mesh-grid on which the field map is gener-

ated, the field map can be an accurate description of the real device. Implementing

the errors directly in RADIA, e.g. errors on the current in the coils or distortions of

field vectors due to surface roughness, would be desirable. But, as generating a field
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map with a certain granularity is time consuming (in the order of 24 h), this is not

an appropriate approach. Instead, the field map is generated once for a “perfect”

device and various error types are applied later. Another program was written that

can read the number of poles from the given field map and calculates the multipoles

of the vertical field component for each horizontal grid line. Errors are defined by

the user and then applied to the field map. The applied errors change the transpar-

ency of the device. Therefore, it is essential to make the field map as transparent as

possible again. FTRACK, described in Sec. 3.4.1, possesses this feature and calculates

and applies the additional dipole field required for transparency (which, in case of

the RW, is exactly what the correction coil does). If the tunes get mismatched by

the additional dipole field (and focussing), FTRACK features the option to rematch

the tunes, based on an iterative process including a predefined tune bump, using

the quadrupoles in the lattice.

The field map with errors can thus be used in FTRACK in order to calculate the

dynamic aperture and momentum acceptance. By comparing the dynamic aperture

for the error free device with the one containing errors, the allowed error limits

can be determined. The criterion for acceptable dynamic aperture is having more

than 20σ free aperture in each transverse plane in order not to reduce the aperture

significantly. This is combined with the criterion for the momentum acceptance: the

momentum acceptance has to be given by rf-acceptance corresponding to 800 kV

cavity voltage (δacc,800 kV = 1.7 % for α = 0.034), which is a possible upgrade value

for the existing 500 kV cavity.

In the following, FTRACK will be introduced, followed by calculations for the

dynamic aperture. Finally, estimations for the allowed field errors for the twelve

poled RW are presented.

3.4.1 FTRACK

Existing particle tracking codes like MAD-X-PTC (Deniau et al., 2015) lack the abil-

ity to properly include arbitrary field maps. Therefore, the program FTRACK1 was

developed. FTRACK features a symplectic integrator which enables tracking through

arbitrary field maps. For the standard lattice components, FTRACK uses MAD-like

routines for tracking through extended dipoles and quadrupoles, together with thin

lens approximations for tracking through sextupole and octupole magnets (all ac-

1Naming the program FTRACK may imply that this code does have some official status. This
is not the case. The name FTRACK is only used for simplicity. FTRACK is an in-house code, with
contributions from our working group and especially (Scheer and Wüstefeld, 2014; Ries and Feikes,
2013-2016).
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Figure 3.14: Tracked non integer parts of the tunes and fitted chromaticities for
MAD-X-PTC (red) and FTRACK (blue). The cavity was turned off in both cases. Meas-
ured non integer parts of the tunes and fitted chromaticities for the standard user
operation mode with sextupoles, skew quadrupoles and octupole turned off (black).
A momentum deviation of δ = 0.5 ‰ corresponds to a change in rf-frequency of
∆f = 7.5 kHz (see Eq. 2.25).

cording to (Brown, 1968)).

The program does not feature the TWISS functionality of MAD-X-PTC but is in-

deed able to calculate the β-functions, dispersion, tunes, chromaticities and primar-

ily the dynamic aperture and momentum acceptance through particle tracking.

Matching the tunes in MAD-X-PTC and using the matched quadrupole strengths

in FTRACK proofed to be functioning. Comparing the tunes between both pro-

grams for the standard user operation mode yields a deviation below accuracy

for the horizontal tune (on-energy), and 0.02 % for the vertical tune (on-energy).

The natural chromaticities for the standard user mode, calculated with both pro-

grams, deviate by 1.9 % for the horizontal plane and by 38.8 % for the vertical plane

(compare also Fig. 3.14). In Tab. 3.3 the absolute values of the mentioned quant-

ities are presented. The difference in the vertical chromaticity is mainly due to

the different dipole routines used in MAD-X-PTC and FTRACK. Measuring the nat-

ural chromaticity at the MLS results in ξx,meas = −3.39 and ξy,meas = −4.91 (see

Fig. 3.14). The value for the measured vertical natural chromaticity lies between the

ones calculated by FTRACK and MAD-X-PTC. Both codes deviate from the measured
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values. Therefore, slightly different sextupole settings will be used for the calcula-

tions in FTRACK in order to compensate the vertical chromaticity mismatch between

FTRACK and MAD-X-PTC.

It is also possible to generate 6 × 6 transport matrices for the given field maps

in FTRACK, which can be used in MAD-X-PTC in order to match the optical functions.

The quadrupole strengths matched in MAD-X-PTC are then used in FTRACK for de-

termining the dynamic aperture, momentum acceptance etc. with the more detailed

information from the actual field map. Comparing the matrix based matched tunes

from MAD-X-PTC with field map based tracked tunes in FTRACK yields a deviation

in the order of 0.4 % for the non-integer part of the horizontal tune, and 0.44 %

for the non-integer part of the vertical tune (both on-energy, comp. Tab. 3.4). As

the objective here is to find quadrupole settings for which the β-functions are reas-

onable and the tunes are matched to sufficient precision, the achieved accuracy is

acceptable.

The overall intention of FTRACK is to find the dynamic aperture for lattices

containing an arbitrary field map by means of integration. A small deviation from

the matched tunes will not affect the dynamic aperture calculation in a way that

would increase the dynamic aperture.

To benchmark FTRACK with MAD-X-PTC, calculations for the MLS standard user

operation mode, are compared in the following. For the calculations, the exact

same quadrupole strengths were used. However, as mentioned earlier, there appears

to be a difference in the tracked vertical chromaticities. As a consequence, slightly

different sextupole strengths were used in FTRACK in order to keep the chromaticities

close to 0.5 in both transverse planes to stay clear of resonances. The deviation of the

tunes in the order of sub-percentages between the two codes were already mentioned

in the introduction to this section (comp. Tab. 3.3). In Fig. 3.15 the β-functions

Table 3.3: Transverse non-integer parts of the tunes and natural chromaticities for
the standard user operation mode at the MLS tracked with MAD-X-PTC and FTRACK.
The tunes were calculated from a particle with starting coordinates x0 = y0 =
0.5× 10−5 m, δ = 0.5× 10−5, and the rest equal to zero. The cavity was turned off
for tracking the chromaticity.

MAD-X-PTC FTRACK ∆FTRACK,MAD-X-PTC / %

Qx 0.178 07 0.178 07 0.00
Qy 0.232 17 0.231 68 0.02
ξx −3.419 64 −3.484 77 1.90
ξy −6.525 81 −3.993 65 38.80
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Figure 3.15: Comparison of the β-functions and dispersion for MAD-X-PTC (black,
dashed) and FTRACK (colour, solid) for the standard user operation mode at the
MLS.

and the dispersion are presented for FTRACK and MAD-X-PTC. As expected from

the comparison of the tunes, there are no obvious differences between the optical

functions for the two codes.

Differences between FTRACK and MAD-X-PTC can be observed considering the tune

footprint of the tracked particles (comp. Fig. 3.16). Although the chromaticities

were corrected, the tuneshift with amplitude is different because of the different sex-

tupole strengths. As a consequence, the area which the particles cover in the tune

diagram differs. This does not affect the aperture presented in Fig. 3.17. For the cal-

culations, 6-d particle tracking was performed with the cavity voltage set to 800 kV.

The geometrical apertures of the vacuum chamber were also included. Therefore,

Fig. 3.17 shows the aperture in general, as it included all three acceptances listed

Table 3.4: Transverse non integer parts of the tunes for the RW lattice calculated
with MAD-X-PTC and FTRACK. The tunes were determined from a particle with start-
ing coordinates x0 = y0 = 1× 10−5 m, and all other coordinates equal to zero in
FTRACK. In MAD-X-PTC, the tunes were calculated with TWISS.

MAD-X-PTC FTRACK ∆FTRACK,MAD-X-PTC / %

Qx 0.178 00 0.178 71 0.40
Qy 0.232 00 0.230 97 0.44
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Figure 3.16: Tune footprint for the standard user mode at the MLS. The transverse
chromaticities were corrected to 0.5 in both planes for both codes. The orange dot
marks the reference tune (0.178/0.232).

in Sec. 2.4.1.

The aperture for the standard user operation mode at the MLS agrees well

between FTRACK and MAD-X-PTC (comp. Fig. 3.17). This circumstance justifies using

FTRACK to determine the aperture for the MLS including the RW on the premise

that the field map integration is working properly.

3.4.2 Dynamic Aperture for the Robinson Wiggler Lattice

As mentioned above, the optical functions and tunes for the RW lattice were matched

in MAD-X-PTC with 6×6 transfer matrices generated in FTRACK. The transfer matrix

is not as precise as the actual field map, and as a result, the deviations for the

tracked tunes between FTRACK and MAD-X-PTC increase compared to the standard

user mode calculations. Still, the deviations are small as can be seen by comparing

the optical functions for the RW lattice shown in Fig. 3.18 and Fig. 3.19. In Tab. 3.4

the matched tunes in MAD-X-PTC and corresponding tracked tunes from FTRACK are

compared. As said, the deviation of 0.4 % in the horizontal plane is larger than

for the standard user operation mode calculations. However, the intention of this

code is not to have ultimate precision regarding the tunes, but to have reasonable

precision for determining the dynamic aperture. All in all, a mismatch of the tunes

would, as long as the intended tunes for the machine are chosen wisely, if anything

decrease the dynamic aperture. Therefore, the accuracy with which the tunes are
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Figure 3.17: Dynamic aperture including geometrical apertures for standard user
operation mode at MLS calculated with MAD-X-PTC and FTRACK. Chromaticities
were corrected for FTRACK so that in both codes the chromaticities are around 0.5
in both transverse planes. The geometrical apertures (black) were scaled according
to the square root of the ratio of the β-functions at the septum to the β-functions

at the longitudinal position sa of the aperture: ax/y,plot = ax/y(sa) ·
√
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.

The geometrical apertures are the septum magnet (dashed), the undulator chamber
(dotted), and the remaining vacuum chamber (solid).

translated between the two programs is sufficient.

In Fig. 3.20a the aperture for the RW lattice is presented. The field map used

is the one for an “ideal” RW with 12 poles. Like for the standard user operation

mode in the previous section, 6-d particle tracking, including cavity (800 kV) and

geometrical apertures, was performed. Figure 3.20a also features the aperture for

standard user operation mode for comparison. The aperture with RW appears to be

smaller than without the RW. The reason for the smaller aperture is, that the results

shown in Fig. 3.20a do not take the change in emittance into account that occurs

when the RW is in operation. The change in damping partition leads to a decreased

emittance of roughly half of the initial value. Therefore, when comparing the two

apertures, it is necessary to include the changed emittance. Taking the change in

emittance into account, as in Fig. 3.20b, it becomes clear that the aperture would

actually increase for on-energy particles, with cuts for off-energy particles. However,

the aperture is larger than 20σ in every direction and therefore sufficiently large to

stably store the electron beam.

To achieve this, it is essential to find sextupole settings for which the chromaticity



82 A Robinson Wiggler for the MLS

0

5

10

15

20
β
x
,y
/m

0 12 24 36 48

0

0.5

1

1.5

s/m

η x
/m

Figure 3.18: Comparison of the β-functions and dispersion for MAD-X-PTC (black,
dashed) and FTRACK (colour, solid) for the RW lattice.

is small and positive, and for which the tuneshift with amplitude is also small.

Especially the vertical chromaticity is important as the vertical tune is close to a

resonance line at 0.25.

At some point, the value of the dispersion function at the RW also becomes a

factor limiting the aperture. But, with a dispersion of 1.1 m at the RW, the aperture

is sufficiently large to have stable operation, while maintaining the desired effect on

the damping. After all, it is not necessary to inject into a lattice where the RW is

fully powered, as the RW can be switched off for injection.

3.4.3 Error Estimations from FTRACK

To find the tolerances for field errors for the RW with twelve poles, the procedure as

described above was followed. Different error types were applied and for each type

the threshold was determined for which stable operation cannot be guaranteed. The

latter was done by (a) tracking in phase space, as a first-order-of-magnitude scan,

and (b) tracking the dynamic aperture for greater detail. The following error types

were applied to the field map:

• Relative noise

Every point on the grid in the x-s-plane or every individual pole gets a random

relative error assigned, depending on the initial field at that point; the same
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Figure 3.19: Close up of the comparison of the β-functions and dispersion for
MAD-X-PTC (black, dashed) and FTRACK (colour, solid) for the RW simulated as
a transfer matrix and as a field map respectively.

relative error is applied to each grid point in the y-direction;

• Multipole errors

Different multipole errors (up to order 10) are applied to each pole or to each

horizontal grid line in the x-s-plane; the multipole errors in the y-direction are

calculated with reference to the values for the x-s-plane.

As the multipole errors include order 0, the tolerance for allowed deviations from

design B0 between the individual poles can be determined. In principle, errors in B0

can be easily corrected with the correction coil, which is simulated in FTRACK with

the additional dipole field that can be applied to make the field map as transparent

as possible. What the additional dipole field is not able to correct to full extent are

the higher order multipole errors.

In Tab. 3.5 the determined thresholds for the different error types are presented.

The thresholds were determined for a field map with a step width of 5 mm in the

longitudinal plane, and 1 mm in the horizontal and vertical plane. Figure 3.21

shows the resulting aperture when all the errors are applied with the values of the

respective thresholds.

The aperture for the RW with the determined thresholds for the errors would

still be sufficiently large, as it is still larger than 20σ in both transverse planes.
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Figure 3.20: Dynamic aperture for the RW lattice calculated with FTRACK,
ηx = 1.1 m at the RW. The transverse chromaticities were corrected to be below
1.0 and of positive sign in both transverse planes. The optical functions were op-
timized to be below 20 m. The apertures take the change in beam size into account
for (b), whereas (a) shows the apertures in length units.

Apart from minor deviations in the vertical plane, the apertures for a RW with and

without errors are essentially similar.

However, in contrast to the standard user operation mode without RW, especially

in the horizontal plane, the dynamic aperture becomes more important and might

become limiting as it cuts into the apertures given by the geometry of the vacuum

chamber (comp. Fig. 2.9, 3.17 and 3.21). In that sense, the MLS with RW makes

more use of its potential regarding the dynamic aperture. Without RW, the dynamic
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Figure 3.21: Comparison of the dynamic apertures for the MLS with RW, with and
without errors. The geometrical apertures (black) are the septum magnet (dashed),
the undulator chamber (dotted), the remaining vacuum chamber (solid), and the
RW vacuum chamber (dash dotted).

aperture is larger than the geometrical aperture (Fig. 2.9). This potential is used

Table 3.5: Thresholds for the different error types. For the multipole orders 0 and 1,
which are the “design” orders for dipole and quadrupole field, the thresholds are the
allowed relative deviations from the design values. For the higher order multipoles,
the thresholds are the upper absolutes of the multipole coefficients (Eq. 3.6). The
thresholds were determined via dynamic aperture tracking with FTRACK.

each point / hor. grid line polewise

relative noise 1.0× 10−4 3.0× 10−3

multipole order 0 1.0× 10−2 4.0× 10−3

multipole order 1 7.0× 10−3 8.0× 10−3

|∂nBy/∂x
n|

multipole order 2 2.0× 101

multipole order 3 4.2× 103

multipole order 4 2.2× 105

multipole order 5 1.2× 108

multipole order 6 1.4× 1010

multipole order 7 3.5× 1012

multipole order 8 8.0× 1014

multipole order 9 7.3× 1016

multipole order 10 2.5× 1019
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when operating the RW. Regarding operation and lifetime, the resulting aperture is

sufficiently large.
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3.5 Radiation Characteristics

In order to study the radiation characteristics of the RW, as well as the new RW

optics’ influence on the undulator performance, the program WAVE was used. WAVE,

developed by Dr. Michael Scheer at HZB, offers the calculation of spontaneous

synchrotron radiation for arbitrary magnetic fields (Scheer, 2012). As an input, an

electron bunch with initial coordinates according to energy spread, emittance, and

dispersion and β-functions at the entrance of the wiggler, can be provided. Individual

particles are tracked and the produced radiation is folded taking coherence effects

into account.

At the end of the short straight section, opposite of the septum magnet, exists

a radiation port which enables the extraction of the radiation produced by the RW.

Therefore, the RW may be used as an additional radiation source. The acceptance

of this port is ±7.7 mrad in the horizontal plane and ±4.3 mrad in the vertical plane,

which is comparable to that of the EUV-dipole beamline at the MLS.

As derived in Eq. 3.8, the deflection parameter of the twelve poled RW is

KRW = 32.508. Therefore, a wiggler spectrum is expected. From the undulator

equation

λn =
λRW

2nγ2

(
1 +

K2
RW

2
+ θ2γ2

)
, (3.11)

it is possible to calculate the first undulator harmonic for the twelve poled RW.

For θ = 0, i.e. on-axis, the first undulator harmonic for the twelve poled RW

is expected at λ1,RW = 61.76 µm, or E1,RW = 2.01× 10−2 eV. In Fig. 3.22a, the

spectrum generated by the twelve poled RW is presented together with the spectra

of the EUV and the IR beamline dipoles (with the respective acceptances). The

wiggler spectrum, depicted in shades of blue, was determined in two different ways:

1. the RW as a wiggler: each individual radiation source (i.e. the poles) are

treated completely incoherently (light blue in Fig. 3.22a),

2. the RW as an undulator: interference effects are included, giving rise to un-

dulator harmonics (deep blue in Fig. 3.22a).

The RW spectra agree well for photon energies above ∼ 1× 10−1 eV and show the

characteristics of a wiggler spectrum. The expected position for the first undulator

harmonic is slightly off. As the on-axis field of the RW is comparable to that of the

dipoles at the MLS, it is expected that the spectrum shows more or less twelve times
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Figure 3.22: Photon spectrum for the twelve poled RW together with the spectra
for the IR and the EUV beamlines (a). All calculations were done with the existing
apertures at the respective beamlines. Power distribution in pinhole at distance
3.665 m from RW straight centre (b). The pinhole acceptance is indicated in yellow
in the horizontal plane.

the number of photons (because of twelve poles) as for the EUV-dipole beamline

(as the acceptance for the two is more or less the same). Comparing the spectra of

the EUV-beamline and the RW in Fig. 3.22a, confirms this.

The total power radiated by the device is 105.59 W of which 52.20 W are distrib-

uted inside the acceptance of the pinhole. In Fig. 3.22b, the power distribution of

the radiation from an aligned bunch is presented together with an indication of the
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Figure 3.23: Longitudinal power distribution on the inside of the vacuum chamber
due to the radiation of the RW. The longitudinal position is measured from the
center of the short straight section in K3 (= center of the RW). The power distri-
bution was calculated for different offsets and angles of the particles on the vacuum
chamber wall at x = 35 mm (a) and on the vacuum chamber wall at x = −35 mm
(b).

acceptance of the pinhole. The remainder of the produced radiation may hit the

vacuum chamber and cause heating which might not be cooled away by the existing

cooling system. In order to study these effects, the power distribution on the va-

cuum chamber walls for different beam angles was determined (compare Fig. 3.23).

The power distributions were then used to calculate the heat flow in the downstream

objects (Dirsat et al., 2014-2016). The result of these studies is that none of the

downstream objects will be endangered by the additional radiation of the device.
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Figure 3.24: Superconducting RW design consisting of racetrack coils (red and or-
ange) wound around a magnetization free yoke (black, e.g. made of copper).

3.6 Superconducting Design

Super conductivity offers high fields in rather small structures. A superconducting

design enables short period lengths and therefore a smaller impact on the accelerator

optics while preserving the ability to alter D.

Two superconducting design studies were conducted. The first design, consisting

of a set of Helmholtz coils, was oriented at a design given by (Rodŕıguez et al., 2013),

yielding high gradients in the order of 100 T m−1. A second design using racetrack

coils yields a smaller gradient but with a wider horizontal range of linear field gradi-

ent. The second design is depicted in Fig. 3.24, in the following called “racetrack

design”. It consists of several superconducting racetrack coils, wound around a

magnetization free yoke. This design yields an on-axis field of By = 1.387 T with a

gradient of 14.78 T m−1. The integrated product is high enough so that a dispersion

of ηx = 1.0 m would be sufficient to reach D = −1.75. The focussing is affected

as expected from the increased number of poles: R21 is equal to −0.012, for which

the absolute value is an order of magnitude smaller than for any of the presented

normal conducting design solutions. The vertical focussing stays comparable with

R43 = −0.327.

The decreased impact on the optics can be seen in Fig. 3.25, where the β-functions

and the dispersion are displayed for a lattice including the superconducting RW. The

oscillations of the β-functions and the dispersion inside the wiggler are only visible

when zooming in.

Due to the short period length of 80 mm, the horizontal oscillation amplitude
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Figure 3.25: Optical functions for the MLS with a superconducting RW of the
racetrack design. The complete ring is shown in (a) while (b) depicts the optical
functions inside the wiggler as a close up.

is in the order of 100 µm. The normal conducting devices introduce oscillation

amplitudes in the order of several milli meters. Due to the higher number of poles,

also the ponderomotive drift is smaller compared to the normal conducting RW’s.

Therefore, a smaller current in the correction coil is needed to make the device

transparent. The chromatic effects of the device are also small compared to the

normal conducting solutions: the chromaticities, without excited sextupoles, with

the superconducting device are ξx = −3.4536 and ξy = −5.2044, corresponding to

∆ξx = 0.0312 and ∆ξy = −1.2107. In the horizontal plane the chromaticity is

essentially the same as for the standard user operation mode without the RW, while

in the vertical plane the chromaticity is slightly lower as for all normal conducting

RW’s.

The overall length was again set to 1900 mm, being the available space in the

short straight section opposite of the septum magnet. Together with the period

length and the on-axis field, the deflection parameter K is calculated to be

KSCRW = 10.346.

With a K in the order of 10 it depends on the definition whether to speak of an

undulator or a wiggler, some would even call it a “wundulator” (Clarke, 2004), as

for longer wavelengths an undulator like behaviour with interference effects occurs,

whereas for short wavelengths the radiation of the device shows no interference
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Figure 3.26: Photon spectrum for the superconducting RW together with the spec-
trum for a normal conducting twelve poled RW. All calculations were done with the
existing apertures at the respective beamlines.

effects and is therefore more wiggler like.

Applying Eq. 3.11 on the superconducting design yields the wavelength for the

first undulator harmonic λ1,SCRW = 1.44 µm, or in terms of energy: E1,SCRW = 0.8615 eV

In Fig. 3.26, the calculated spectra for the superconducting and the normal con-

ducting RW are presented. The normal conducting spectrum is better described

by the pure wiggler spectrum than the superconducting one, which can be under-

stood by comparing the deflection parameters. The deflection parameter for the

superconducting device is closer to one than the deflection parameter for the nor-

mal conducting device. Therefore, the spectrum for the normal conducting device

should be closer to a pure wiggler spectrum than the spectrum of the supercon-

ducting device. Where the spectra of the normal conducting device agree well for

photon energies higher than ∼ 0.1 eV, the spectra for the superconducting device

agree for photon energies higher than ∼ 10 eV.

Comparing the peak value for the wiggler spectra at ∼ 100 eV, the supercon-

ducting device yields ∼ 5.5 times more photons than the normal conducting device.

The number of poles for the superconducting device is 43, which is 3.6 times higher

than the twelve poled normal conducting device. The on-axis By is 1.4 times higher,

and together that makes an estimated increase in flux by a factor of 5.04, which

agrees well with the simulations.
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Figure 3.27: Dynamic aperture for the MLS with a superconducting RW compared
to standard user mode. In (a) the dynamic aperture is depicted in units of length,
in (b) in units of beam size. The solid lines represent the standard user mode, the
dashed lines the RW lattice. Green stands for on-energy particles, whereas blue
indicates an initial energy offset of 1 %, and red indicates an initial energy offset of
−1 %.

The power radiated by the superconducting RW is 159.64 W, which is 51.2 %

higher than for the normal conducting version, and due to the higher on-axis By.

The dynamic aperture for the MLS with a superconducting RW would increase

slightly due to the shrinking beam size (compare Fig. 3.27). But as expected by the

focussing characteristics, there is no major impact of the superconducting RW.

The superconducting alternative seems very attractive regarding dynamic aper-

ture, additional focussing, and radiation characteristics. In all these fields it is

superior to the normal conducting design. However, concerning reliability, a su-

perconducting solution might be inferior compared to normal conducting solutions

which do not quench or are dependent on helium supply. Furthermore, the nor-

mal conducting solutions use well known technology and are realizable on shorter

time scales than the superconducting solution with the present resources at HZB.

Therefore, a normal conducting design seems preferable in the case of the MLS.

Nevertheless, the superconducting design could be the next step as it features many

advantages over the normal conducting design.
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Chapter4
Expected Effects on Operation

4.1 Beam Lifetime

In the previous chapter, the design of a twelve poled normal conducting RW was

derived. The ability of the RW to alter the damping partition depends on the

current density in the coils. For a current density of 7.1 A mm−2, D may be altered

to Df = −1.49 · 〈ηx〉RW m−1 +Di, depending on the dispersion set up at the RW.

With changing the damping partition, the equilibrium emittance and the energy

spread are altered. In Fig. 4.1, the evolution of the emittance and the energy

spread as a function of the dispersion set up at the RW is presented for different

excitation current densities. The emittance and the energy spread, determined with

FTRACK according to (Helm et al., 1973), are normalized to their initial values for

the standard user operation mode of εx,0 = 117.37 nm rad and σδ,0 = 4.42× 10−4.

The emittance depends not only on the damping partition, but also on I5. There-

fore, varying the dispersion at the RW has an effect on the emittance apart from the

damping effect. This is the reason why the emittance for high values of the disper-

sion at the RW increases again. The effect is stronger for small excitation currents

than for high excitation currents. In Fig. 4.2a and Fig. 4.2b, the fifth synchrotron

radiation integral I5 and the damping partition respectively are plotted as a func-

tion of the dispersion set up at the RW for different excitation current densities.

Looking at Fig. 4.2b, it is possible to reach the longitudinally antidamped regime

with damping partitions below −2 with the twelve poled RW.

From the evolution of the emittance and the energy spread, together with the

matched optical functions, the lifetime for each step of the set up dispersion can be

calculated. In Fig. 4.3, the evolution of the lifetime for different excitation current

densities as a function of the dispersion at the RW is presented. The gas lifetime,

95
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Figure 4.1: Emittance ε (solid) and energy spread σδ (dashed) normalized to the
standard user operation values ε0 and σδ,0 as a function of the dispersion set up at
the RW. Emittance and energy spread were calculated with FTRACK. The optical
functions for each step (0.1 m steps for the dispersion at the RW) were matched
with MAD-X.

determined in (Goetsch, 2013), was assumed to be constant at τgas = 24.5 h for the

calculations. The acceptance was assumed to be constant at δacc = 1.15 % (comp.

geometrical acceptance in Sec. 2.4.1) and the cavity voltage was set to 500 kV.

The emittance coupling was adjusted in a way that the lifetime for 150 mA in

standard user operation mode meets the measured lifetime of 6.0 h. A coupling

parameter of κwn = 0.022 proofed to result in a matching lifetime. This value for

the coupling is higher than the measured emittance coupling without white noise

excitation1 of κnwn = 0.005 for the standard user operation mode. But as during

the standard user mode operation the beam is vertically excited with white noise

excitation, it is necessary to calculate the lifetime with an increased coupling. For

the calculations of the lifetime with RW, the vertical beam size was assumed to stay

constant (apart from variations of the vertical β-function) as for the standard user

operation mode because the white noise excitation will still be applied when the

wiggler is in operation. Therefore, the vertical beam size for all calculations was set

1comp. Sec. 1.2
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Figure 4.2: The evolution of I5 (a) and the damping partition D (b) as a function
of the dispersion at the RW for different excitation current densities j.

to

σy(s) =
√
εx,0 · κwn · βy ≈

√
117.37 nm rad · 0.022 · βy =

√
2.58 nm rad · βy.

All calculations were performed assuming a stored current of 150 mA. In Sec. A.2,

the Python script used for calculating the lifetime is given.

The predicted lifetime in Fig. 4.3 shows that the twelve poled normal conduct-

ing RW is able to increase the beam lifetime at the MLS by a factor of 2.6. Fur-

ther increasing this factor is not possible because of the longitudinal quantum life-

time which decreases the total lifetime dramatically for damping partitions smaller

than −1.895. This effect can be seen in Fig. 4.3 for the current densities above

6.0 A mm−2. Nevertheless, it is possible to operate the MLS with a total lifetime

of above 14 h at 150 mA instead of 6 h at 150 mA. This corresponds to increasing
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Figure 4.3: Predicted lifetime as a function of the dispersion at the RW for different
excitation currents and a beam current of 150 mA.

current times lifetime for a standard user operation run from 900 mA h to above

2100 mA h.

The integrated stored beam current in a standard user run, starting at 200 mA

and decaying in a time interval of 6 h, increases from 749.1 mA h to 958.4 mA h,

corresponding to an increase in photon flux of 27.9 %. After a standard user run

of six hours, the remaining stored beam current increases from 80 mA to 127 mA.

Furthermore, it is possible to extend the duration of a standard user run from 6 h

to 12 h with a remaining beam current after twelve hours of 87 mA, which is higher

than 80 mA after six hours in the current standard user operation mode.

Such an increase in lifetime is a benefit for the user community of the MLS as

the temporal stability of the emitted synchrotron radiation is further improved and

the integrated photon flux increased.

4.2 Dipole Beamlines Performance

The MLS serves eight beamlines, of which seven use bending magnet radiation. The

optical functions for the MLS including a normal conducting twelve poled RW, are

depicted in Fig. 3.13. The changes regarding the optical functions are of minor

nature compared to the expected change in emittance and energy spread.
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Assuming a current density of 7.1 A mm−2 in the coils, and a value of the

dispersion function at the RW of 1.1 m, the emittance reduces in theory from

117.37 nm rad to 50.74 nm rad, whereas the energy spread increases from 4.42× 10−4

to 1.16× 10−3. Together with Eq. 2.18 and 2.21, the source sizes and divergences

before and after the installation of the RW can be calculated.

In Tab. 4.1, the source sizes for the different beamlines with and without RW are

listed. These calculations do not include white noise excitation used at the MLS to

compensate ion effects and which keeps the vertical source size constant. Therefore,

the vertical source sizes listed in Tab. 4.1 can be understood as possible lower limits

for the vertical source size that can be reached if the MLS is operated without white

noise excitation and at low currents with few bunches to reduce ion effects.

The standard user at the MLS is mainly concerned about the vertical source size,

its divergence, and how constant the two are. Assuming no white noise excitation

and no ion effects, the vertical source size is smaller with lower divergence for every

beamline. With white noise excitation, the vertical source size stays more or less

the same as before. It is not harmful that the horizontal source size increases for

the EUV, VUV, and THz beamlines, as the respective divergences all reduce so

that the brilliance stays more or less constant (comp. Tab. 4.2). However, the one

insertion device used at the MLS, namely the U125, will be affected by an increase

in source size of 7.1 % combined with an increase in divergence of 31.5 %. Because of

this and because of effects of the increased energy spread on the width of undulator

harmonics, it is important to study the effects on the U125 performance in detail in

the following section.
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Table 4.1: Source size and divergence for the different beamlines at the MLS, (a)
before and (b) after a possible installation of the RW. Calculations performed in
MAD-X for standard user mode and RW mode.

(a) εx = 117.37 nm rad, σδ = 4.42× 10−4, κ = 0.5 %

Beam- βx βy ηx η′x γx γy σx σ′x σy σ′y
line /m /m /m /m−1 /m−1 /µm /µrad /µm /µrad

IDB 4.73 3.91 0.20−0.10 0.21 0.26 750.32 163.1 47.90 12.35
QPD01 1.81 13.29−0.16 0.10 0.70 0.78 466.31 290.02 88.31 21.39
QNIM 1.50 11.53−0.10 0.32 0.83 0.78 421.91 342.67 82.26 21.39
EUV 1.10 4.41 0.41−0.28 1.19 0.57 402.43 393.68 50.87 18.29
VUV 1.49 5.2 0.35−0.13 0.57 0.35 445.88 264.96 55.24 14.33
THz 1.95 6.09 0.34−0.02 0.83 0.57 501.45 312.24 59.78 18.29
IR 1.22 9.91 0.03−0.52 0.95 0.78 378.64 405.37 76.26 21.39
QPD00 1.50 11.53−0.10−0.32 0.83 0.78 421.91 342.67 82.26 21.39

(b) εx = 50.74 nm rad, σδ = 1.16× 10−3, κ = 0.5 %

Beam- βx βy ηx η′x γx γy σx σ′x σy σ′y
line /m /m /m /m−1 /m−1 /µm /µrad /µm /µrad

IDB 7.11 6.64 0.46−0.17 0.14 0.15 803.42 214.46 41.04 6.17
QPD01 1.40 16.46−0.25 0.00 1.04 0.85 393.87 229.72 64.62 14.68
QNIM 1.04 14.37−0.21 0.23 1.19 0.85 334.83 362.72 60.38 14.68
EUV 0.80 3.68 0.38−0.14 1.34 0.49 484.66 307.19 30.56 11.15
VUV 1.05 4.26 0.36 0.01 1.24 0.49 477.14 251.10 32.87 11.15
THz 1.46 4.60 0.38−0.14 0.98 0.51 518.06 275.86 34.16 11.37
IR 0.84 13.43−0.11−0.47 1.32 0.92 242.7 603.51 58.37 15.28
QPD00 1.13 15.54−0.22−0.25 1.20 0.92 349.95 380.77 62.79 15.28
RW 9.77 1.39 1.13−0.18 0.54 0.76 1487.93 266.45 18.78 13.89

Table 4.2: Relative changes in horizontal source size and divergence for the MLS
with RW and without RW as in Tab. 4.1.

Beamline ∆σx/% ∆σ′x/% ∆σy/% ∆σ′y/%

IDB 7.08 31.49 −14.32 −50.04
QPD01 −15.53 −20.79 −26.83 −31.37
QNIM −20.64 5.85 −26.60 −31.37
EUV 20.43 −21.97 −39.93 −39.04
VUV 7.01 −5.23 −40.50 −22.19
THz 3.31 −11.65 −42.86 −37.83
IR −35.90 48.88 −23.46 −28.56
QPD00 −17.06 11.12 −23.67 −28.56
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Figure 4.4: Undulator harmonics for the U125 of MLS for energy spreads with
(blue, σδ = 1.3× 10−3) and without (green, σδ = 4.4× 10−4) RW. The spectra were
calculated with WAVE using measured field maps for a gap of 60 mm and 200 mA ring
current. In (a), the first undulator harmonic is presented. In (b) the ninth undulator
harmonic is displayed, being used by the most demanding undulator radiation user.

4.3 Undulator Beamline Performance

The performance of the U125 is affected by installing the RW. As presented in

Tab. 4.1, the horizontal source size increases by 7.1 % combined with an increase

in divergence of 31.5 %. It depends on the specific experiment the users at the ID-

beamline want to conduct whether this increase is harmful or not. If it is, the RW

has to be turned off for that specific experiment.

Furthermore, increasing the energy spread generally impacts the width of the

undulator harmonics. To study how much the undulator harmonics are affected

by installing the RW, the program WAVE was used. In Fig. 4.4, the first and ninth

undulator harmonic of U125 are presented for the MLS with and without RW,

corresponding to an energy spread of 1.3× 10−3 and 4.4× 10−4 respectively. The

change in optical functions was taken into account for the simulations. The most

demanding ID beamline user conducts experiments using the ninth harmonic. As

can be seen in Fig. 4.4b, the effect of the RW on the width of the harmonic is small

compared to the increase in photon flux resulting from the lifetime improvement.
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4.4 Low-α Operation Mode

The low-α operation mode is used to generate short electron bunches. The emitted

radiation of short pulses becomes coherent for wavelengths longer than the bunch

length, usually up to the THz regime (Ries, 2014). The bunches are made short by

reducing the momentum compaction factor α. The integrated dispersion function

has to be close to zero (comp. Fig. 1.3b), so that the momentum compaction factor

α becomes small and the electron bunches get shortened as in Eq. 2.62:

σs ∝
α

fs
· σδ ∝

√
α · σδ.

The RW enables to alter the damping distribution. With a negative dispersion at

the RW, like it is in the low α operation mode at the MLS, the energy spread may

be reduced resulting in a shortened bunch length. Assuming the optical function

in the low-α operation mode do not change with operating the RW, the dispersion

at the RW is ηx,RW = −0.55 m. Therefore, the damping partition can be altered to

D = 0.76 for an excitation current density of j = 7.1 A mm−2. Thus, according to

Eq. 2.68, the energy spread can be reduced by 14.9 % from 4.4× 10−4 to 3.7× 10−4.

The same relative reduction is achieved for the bunch length σs. This reduction in

bunch length happens on the cost of an increased emittance. The emittance in such

a setup increases by 316 %. However, during low α operation, the transverse beam

sizes are made large through coupling in order to have a long beam lifetime. Due

to the increased emittance, the coupling can be reduced while maintaining a long

lifetime. Therefore, the low-α operation mode can, additionally to the standard user

operation mode, benefit from the installation of the RW at the MLS.

4.5 Low-ε Operation Mode

The installation of the RW will not only benefit the standard user operation mode

at the MLS. It will also be possible to use the RW to adjust the horizontal source

size in a limited range for other operation modes like the low emittance operation

mode. In 2013, the low-ε operation mode at the MLS was developed and implemen-

ted. It is one result of a survey of beam optics solutions, for which the quadrupole

strengths were scanned and for each setting different beam parameters like emit-

tance, momentum compaction factor and Touschek lifetime were determined (Ries

et al., 2013). The optical functions for the low emittance mode at the MLS are

depicted in Fig. 1.3c. The dispersion is minimized in the dipoles in order to reduce
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the quantum excitation. In turn, the dispersion is relatively high in the straight

sections like the one where the RW can be installed.

The dispersion at the RW has a value of 0.87 m. In Fig. 4.1, it is obtained that

for a value for the dispersion of 0.9 m at the RW, an excitation current density of

6.0 A mm−2 is sufficient to reduce the emittance by a factor of ∼ 2, while increasing

the energy spread by ∼ 50 %. The optimum ratio for the horizontal source size is

found for D equal to −1. Here, the emittance is reduced by a factor of 2 while the

energy spread increases by a factor of
√

2 ≈ 1.414, corresponding to 41.4 %.

With an initial horizontal emittance of 41.2 nm rad for the low emittance oper-

ation mode, the resulting emittance is below 21 nm rad, when operating the MLS

at D = −1. Regarding the lifetime for this set up, the horizontal beam size is

dominated by the large dispersion in the straight sections and the energy spread.

Therefore, the lifetime is slightly reduced to ∼ 2.0 h compared to 2.06 h at 150 mA

for the current set up and a varying vertical beam size. For a constant vertical beam

size, the lifetime can be increased to ∼ 2.7 h at 150 mA.

As an example, the horizontal source size at the IR beamline is approximated,

assuming that the optical functions with RW stay the same as without the RW:

the value of the dispersion at the source point of the IR beamline is 0.18 m in the

low ε operation mode, while the horizontal β-function has a value of 0.75 m. The

gradient of the horizontal dispersion is η′x = −0.24 and γx = 1.35 m−1. As derived

above, the emittance can be reduced from 41.2 nm rad to 21 nm rad, while the energy

spread increases from 4.4× 10−4 to 6.2× 10−4. The source size therefore decreases

from 192.8 µm to 167.9 µm, which corresponds to a considerable reduction by 12.9 %.

The horizontal divergence σ′x reduces from 258.4 µrad to 224.7 µrad, corresponding

to a reduction by 13.0 %. Assuming constant vertical beam size and divergence

due to white noise excitation, the brilliance at the IR-beamline can be improved by

32.1 %.

Therefore, the performance of the low emittance operation mode at the MLS

can be improved with the RW. The IR-beamline, being currently the major user

of the low emittance operation mode, has an improved brilliance with RW due to

reduced source size and divergence.
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Chapter5
Conclusion & Outlook

Concepts of improving the performance of light sources with the installation of

transverse gradient Robinson Wigglers are currently investigated at different facilit-

ies around the world. In order to improve the performance of an existing accelerator,

such a transverse gradient device has been shown to be a powerful and cost effect-

ive upgrade. For the MLS, which is not as sensitive to an increased energy spread

as other facilities, it is possible to improve the lifetime by a factor of 2.3 while

simultaneously improving the brilliance for selected beamlines.

In this setup, the damping is redistributed such that the horizontal emittance of

the electron beam is reduced by a factor of 2 while the energy spread is increased

by a factor of 3. Analytical calculations were presented and verified using particle

tracking simulations. In addition, the effect was experimentally verified, though on

a small scale, with the existing MLS lattice by steering the electron beam off-axis

through quadrupole magnets.

The bunch length scales linearly with the increased energy spread. The bunch

width reduction due to the shrinking emittance is on average compensated by the

dispersive contribution to the bunch width from the increased energy spread. The

Touschek lifetime component, which is the dominant lifetime contribution at the

MLS, can thus be improved as the particle density inside the bunches is reduced.

With an increased lifetime, the integrated stored beam current, and corresponding

the integrated photon flux after a standard user operation run of six hours was

shown to increase by approximately 30 %.

The derived normal conducting design for a RW, consisting of twelve poles, serves

all requirements for machine integration and yields sufficiently high integrated fields

in order to alter the damping partition as desired. An alternative superconducting

design was developed and compared to the normal conducting solution. It shows

advantages regarding the focussing characteristics of the device. However, due to

105
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reliability reasons and the necessity to realize such a device in the coming year, the

normal conducting design is chosen for the MLS.

In order to study effects on dynamic aperture and momentum acceptance, a

simulation code was developed, which enables to implement arbitrary field maps into

an accelerator lattice. Comprehensive simulations with this tracking code indicate

that both devices yield sufficient dynamic aperture to guarantee operation of the

MLS after installation.

Furthermore, it is possible to use the RW as a parasitic radiation source. The

radiation spectra, calculated with WAVE (Scheer, 2012), show the characteristics of

wiggler spectra for both the normal conducting and the superconducting solution.

In addition to improving the lifetime in the standard user operation mode, the

RW may enhance the performance of the low-α operation mode as well as the low-

ε operation mode. With simulations regarding the dynamic aperture and momentum

acceptance, the allowed higher order multipole components for the normal conduct-

ing design were derived. These will be used for writing the technical specifications

for the manufacturing process of the RW. It is proposed to start the manufacturing

of a RW for the MLS in early 2017.

Outlook

Newly built light sources, like MAX IV, are optimized regarding their damping dis-

tribution using combined function magnets as deflecting magnets (Tavares et al.,

2014). Different existing light sources with separated function lattices around the

world aim to optimize their damping distribution with respect to emittance and

brilliance using insertion devices, like Robinson Wigglers.

Other concepts of using transverse gradient ID’s are currently investigated in

the scope of laser wakefield accelerators (e.g. (Rodŕıguez et al., 2013)). To com-

pensate large energy spreads, a transverse gradient undulator can be used to keep

the deflection parameter K constant for all energies inside the electron bunch.

Another field may also take advantage of the concept: assuming a lepton collider

with an initial damping partition equal to zero, the emittance can be reduced by a

factor of 2 in order to improve the luminosity of the collider. The RW can be seen

as a rather cost effective upgrade to push the luminosity (assuming that the vertical

emittance is dominated by coupling). The hourglass effect has to be considered

regarding the possible luminosity improvement because of the bunch lengthening by

a factor of
√

2 (Furman, 1991). According to preliminary calculations, the luminosity

can be improved by ∼ 50 %, for β-functions at the interaction point of several milli

metres.
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AppendixA
Codes

A.1 RADIA Notebook

1 geo [ ] : = (

2 poleshape = ReadList [ ”/path/ to / poleshape . txt ” ,{Number , Number } ] ;

3 poleshape [ [ All , A l l ] ]= poleshape [ [ All , A l l ] ] ∗ 1 0 0 0 ;

4

5 po le = radObjThckPgn [N[ po l e l eng th / 4 ] ,N[ po l e l eng th / 2 . ] ,N[ po leshape ] ] ;

6 p14=radObjThckPgn [N[−2∗ longgap−3∗po l e l eng th /4−po l e l eng th /8−po l e l eng th

/16− d e l t a e p o l e / 4 . ] ,N[ po l e l eng th /8.+ d e l t a e p o l e / 2 . ] ,N[ po leshape ] ] ;

7 p34=radObjThckPgn [N[− longgap−3∗po l e l eng th /16.−3∗ po l e l eng th / 8 . ] ,N[3∗
po l e l eng th / 8 . ] ,N[ po leshape ] ] ;

8

9 po le=radObjCutMag [ pole ,{N[ po l e l eng th / 4 ] ,N[ po leshape [ [ 1 , 1 ] ] ] ,N[

po leshape [ [ 1 , 2 ] ] + chamfer ]} ,{N[ 0 ] , − 1 , − 1 } ] [ [ 1 ] ] ;

10 p14=radObjCutMag [ p14 ,{N[−2∗ longgap−3∗po l e l eng th /4−po l e l eng th /8−
po l e l eng th /16 ] ,N[ po leshape [ [ 1 , 1 ] ] ] ,N[ po leshape [ [ 1 , 2 ] ] + chamfer ]} ,{N
[ 0 ] , − 1 , − 1 } ] [ [ 1 ] ] ;

11 p34=radObjCutMag [ p34 ,{N[− longgap−3∗po l e l eng th /16.−3∗ po l e l eng th / 8 . ] ,N[

po leshape [ [ 1 , 1 ] ] ] ,N[ po leshape [ [ 1 , 2 ] ] + chamfer ]} ,{N[ 0 ] , − 1 , − 1 } ] [ [ 1 ] ] ;

12

13 Do [

14 de l tay = N[ poleshape [ [ i +1 ,1]]− poleshape [ [ i , 1 ] ] ] ;

15 d e l t a z = N[ po leshape [ [ i +1 ,2]]− poleshape [ [ i , 2 ] ] ] ;

16 alpha =ArcTan [ d e l t a z / de l tay ] ;

17 po le=radObjCutMag [ pole ,{N[ 0 . 0 ] ,N[ po leshape [ [ i +1 ,1]]− Sin [ alpha ]∗
chamfer ] ,N[ po leshape [ [ i +1 ,2]]+Cos [ alpha ]∗ chamfer ]} ,{N[−de l tay ∗
chamfer∗Cos [ alpha ]− d e l t a z ∗ chamfer∗ Sin [ alpha ] ] ,N[ d e l t a z ∗ chamfer ] ,N

[−de l tay ∗ chamfer ] } ] [ [ 1 ] ] ;

18 p14=radObjCutMag [ p14 ,{N[−2∗ longgap−po le l ength−d e l t a e p o l e / 4 . ] ,N[

po leshape [ [ i +1 ,1]]− Sin [ alpha ]∗ chamfer ] ,N[ po leshape [ [ i +1 ,2]]+Cos [

V
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alpha ]∗ chamfer ]} ,{N[−de l tay ∗ chamfer∗Cos [ alpha ]− d e l t a z ∗ chamfer∗ Sin

[ alpha ] ] ,N[ d e l t a z ∗ chamfer ] ,N[−de l tay ∗ chamfer ] } ] [ [ 1 ] ] ;

19 p34=radObjCutMag [ p34 ,{N[− longgap−3∗po l e l eng th / 4 ] ,N[ po leshape [ [ i

+1 ,1]]− Sin [ alpha ]∗ chamfer ] ,N[ po leshape [ [ i +1 ,2]]+Cos [ alpha ]∗
chamfer ]} ,{N[−de l tay ∗ chamfer∗Cos [ alpha ]− d e l t a z ∗ chamfer∗ Sin [ alpha

] ] ,N[ d e l t a z ∗ chamfer ] ,N[−de l tay ∗ chamfer ] } ] [ [ 1 ] ] ;

20 ,{ i , 1 8 } ] ;

21 radObjDivMag [ pole , n1 ] ;

22 radObjDrwAtr [ pole , { 0 . 2 5 , 0 . 2 5 , 0 . 2 5 } , 0 . 0 0 1 ] ;

23

24 RadTrfZerPerp [ pole ,{N[ po l e l eng th / 2 ] , 0 , 0} ,{1 , 0 , 0} ] ;

25

26 c1=radObjRaceTrk [{N[ po l e l eng th / 2 ] , 0 ,N[ c o i l v e r t i c a l p o s M a i n ]} ,{N[ rmin ] ,N

[ 0 . 5 ∗ longgap+rmin−0 .5 ]} ,{N[ po le l ength −2∗rmin ] ,N[ width ]} ,N[

co i lhe i ghtMain ] , 2 0 , mcur ] ;

27 radObjDrwAtr [ c1 , { 0 . 7 2 , 0 . 4 5 , 0 . 2 } , 0 . 0 0 1 ] ;

28

29 p o l e c o i l=radObjCnt [{ pole , c1 } ] ;

30

31 RadTrfZerPara [ p o l e c o i l ,{0 , 0 , 0} ,{0 , 0 , 1} ] ;

32

33 RadTrfZerPara [ p o l e c o i l ,{N[ po l e l eng th +0.5∗ longgap ] , 0 , 0 } , { 1 , 0 , 0 } ] ;

34

35 I f [Mod[ npoles ,2]==0 ,

36 (∗ then : ∗)

37 radTrfMlt [ p o l e c o i l , radTr fTrs l [{N[2∗ po l e l eng th +2∗ longgap ] , 0 , 0 } ] ,N[ (

npoles −4) / 2 ] ] ,

38 (∗ e l s e : ∗)

39 radTrfMlt [ p o l e c o i l , radTr fTrs l [{N[2∗ po l e l eng th +2∗ longgap ] , 0 , 0 } ] ,N[ (

npoles −5) / 2 ] ] ;

40 expo le = radObjThckPgn [N[ ( 2∗ po l e l eng th +2∗ longgap ) ∗ ( ( npoles −5)/2)+

po l e l eng th / 4 ] ,N[ po l e l eng th / 2 . ] ,N[ po leshape ] ] ;

41 expo le=radObjCutMag [ expole ,{N[ ( 2∗ po l e l eng th +2∗ longgap ) ∗ ( ( npoles −5)

/2)+po l e l eng th / 4 ] ,N[ po leshape [ [ 1 , 1 ] ] ] ,N[ po leshape [ [ 1 , 2 ] ] + chamfer

]} ,{N[ 0 ] , − 1 , − 1 } ] [ [ 1 ] ] ;

42 Do [

43 de l tay = N[ poleshape [ [ i +1 ,1]]− poleshape [ [ i , 1 ] ] ] ;

44 d e l t a z = N[ poleshape [ [ i +1 ,2]]− poleshape [ [ i , 2 ] ] ] ;

45 alpha =ArcTan [ d e l t a z / de l tay ] ;

46 expo le=radObjCutMag [ expole ,{N[ ( 2∗ po l e l eng th +2∗ longgap ) ∗ ( ( npoles −5)

/2) ] ,N[ po leshape [ [ i +1 ,1]]− Sin [ alpha ]∗ chamfer ] ,N[ po leshape [ [ i

+1 ,2]]+Cos [ alpha ]∗ chamfer ]} ,{N[−de l tay ∗ chamfer∗Cos [ alpha ]−
d e l t a z ∗ chamfer∗ Sin [ alpha ] ] ,N[ d e l t a z ∗ chamfer ] ,N[−de l tay ∗ chamfer

] } ] [ [ 1 ] ] ;
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47 ,{ i , 1 8 } ] ;

48 radObjDivMag [ expole , n1 ] ;

49 radObjDrwAtr [ expole , { 0 . 2 5 , 0 . 2 5 , 0 . 2 5 } , 0 . 0 0 1 ] ;

50 RadTrfZerPerp [ expole ,{N[ ( 2∗ po l e l eng th +2∗ longgap ) ∗ ( ( npoles −5)/2)+

po l e l eng th / 2 ] , 0 , 0} ,{1 , 0 , 0} ] ;

51 exc1=radObjRaceTrk [{N[ ( 2∗ po l e l eng th +2∗ longgap ) ∗ ( ( npoles −5)/2)+

po l e l eng th / 2 ] , 0 ,N[ c o i l v e r t i c a l p o s M a i n ]} ,{N[ rmin ] ,N[ 0 . 5 ∗ longgap+

rmin−0 .5 ]} ,{N[ po le l ength −2∗rmin ] ,N[ width ]} ,N[ co i lhe ightMain ] , 2 0 ,

mcur ] ;

52 radObjDrwAtr [ exc1 , { 0 . 7 2 , 0 . 4 5 , 0 . 2 } , 0 . 0 0 1 ] ;

53 e x p o l e c o i l=radObjCnt [{ expole , exc1 } ] ;

54 RadTrfZerPara [ e x p o l e c o i l ,{N[ ( 2∗ po l e l eng th +2∗ longgap ) ∗ ( ( npoles −5)/2)+

po l e l eng th / 2 ] , 0 , 0} ,{0 , 0 , 1} ] ;

55 p o l e c o i l=radObjCnt [{ p o l e c o i l , e x p o l e c o i l } ] ;

56 ] ;

57

58 (∗End−po l e s and −c o i l s ∗)

59

60 radObjDivMag [ p14 , n1 ] ;

61 radObjDrwAtr [ p14 , { 0 . 2 5 , 0 . 2 5 , 0 . 2 5 } , 0 . 0 0 1 ] ;

62 RadTrfZerPerp [ p14 ,{N[−2∗ longgap−3∗po l e l eng th /4.− po l e l eng th

/ 8 . ] , 0 , 0 } , { 1 , 0 , 0 } ] ;

63

64 c14=radObjRaceTrk [{N[−2∗ longgap−3∗po l e l eng th /4.− po l e l eng th / 8 . ] , 0 ,N[

c o i l v e r t i c a l p o s M a i n ]} ,{N[ rmin ] ,N[ 0 . 5 ∗ longgap+rmin−0.5−4. ]} ,{N[ 0 ] ,N[

width ]} ,N[ co i lhe ightMain ] , 2 0 ,N[ mcur+de lcurep14 ] ] ;

65 radObjDrwAtr [ c14 , { 0 . 7 2 , 0 . 4 5 , 0 . 2 } , 0 . 0 0 1 ] ;

66

67 radObjDivMag [ p34 , n1 ] ;

68 radObjDrwAtr [ p34 , { 0 . 2 5 , 0 . 2 5 , 0 . 2 5 } , 0 . 0 0 1 ] ;

69 RadTrfZerPerp [ p34 ,{N[− longgap−3∗po l e l eng th / 8 ] , 0 , 0} ,{1 , 0 , 0} ] ;

70

71 c34=radObjRaceTrk [{N[− longgap−3∗po l e l eng th / 8 ] , 0 ,N[ c o i l v e r t i c a l p o s M a i n

]} ,{N[ rmin ] ,N[ 0 . 5 ∗ longgap+rmin−0 .5 ]} ,{N[ 0 . 7 5∗ po le l ength −2∗rmin ] ,N[

width ]} ,N[ co i lhe ightMain ] ,20 ,−N[ mcur+de lcurep34 ] ] ;

72 radObjDrwAtr [ c34 , { 0 . 7 2 , 0 . 4 5 , 0 . 2 } , 0 . 0 0 1 ] ;

73

74 epc14=radObjCnt [{ p14 , c14 } ] ;

75 epc34=radObjCnt [{ p34 , c34 } ] ;

76

77 RadTrfZerPara [ epc14 ,{0 , 0 , 0} ,{0 , 0 , 1} ] ;

78 RadTrfZerPara [ epc34 ,{0 , 0 , 0} ,{0 , 0 , 1} ] ;

79

80 epc=radObjCnt [{ epc34 , epc14 } ] ;
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81

82 I f [Mod[ npoles , 2 ] == 0 ,

83 RadTrfZerPara [ epc ,{N[ ( npoles −4)/2∗ po l e l eng th +(( npoles −4)/2−0.5)∗
longgap ] , 0 , 0} ,{1 , 0 , 0} ]

84 ,

85 RadTrfZerPerp [ epc ,{N[ ( npoles −4)/2∗ po l e l eng th +(( npoles −4)/2−0.5)∗
longgap ] , 0 , 0} ,{1 , 0 , 0} ]

86 ] ;

87

88 (∗ c o r r e c t o r c o i l s ∗)

89 CC=radObjRaceTrk [{N[ ( npoles −4)/2∗ po l e l eng th +(( npoles −4)/2−0.5)∗ longgap

] , 0 ,N[ c o i l v e r t i c a l p o s A d d ]} ,{ rmin ,N[ rmin+co i l th i cknesAdd ]} ,{N[ (

npoles −2)∗ po l e l eng th +(npoles −1)∗ longgap−2∗rmin ] ,N[ width−2∗rmin ]} ,N[

co i lhe ightAdd ] , 1 0 , ccur ] ;

90 radObjDrwAtr [CC, { 0 . 8 2 , 0 . 5 , 0 . 2 5 } , 0 . 0 0 1 ] ;

91 CCu=radObjRaceTrk [{N[ ( npoles −4)/2∗ po l e l eng th +(( npoles −4)/2−0.5)∗
longgap ] ,0 ,−N[ c o i l v e r t i c a l p o s A d d ]} ,{ rmin ,N[ rmin+co i l th i cknesAdd ]} ,{
N[ ( npoles −2)∗ po l e l eng th +(npoles −1)∗ longgap−2∗rmin ] ,N[ width−2∗rmin

]} ,N[ co i lhe ightAdd ] , 1 0 , ccur ] ;

92 radObjDrwAtr [CCu, { 0 . 8 2 , 0 . 5 , 0 . 2 5 } , 0 . 0 0 1 ] ;

93

94 (∗ br ing ing a l l t oge the r ∗)

95 backyoke1=radObjRecMag [{N[ ( npoles −4)/2∗ po l e l eng th +(( npoles −4)/2−0.5)∗
longgap ] , 0 , 2 0 0 . 0} ,{N[ LoA−longgap +2 ] , 135 , 100} ] ;

96 radObjDivMag [ backyoke1 , n2 ] ;

97 backyoke2=radObjRecMag [{N[ ( npoles −4)/2∗ po l e l eng th +(( npoles −4)/2−0.5)∗
longgap ] ,0 , −200 .0} ,{N[ LoA−longgap +2 ] , 135 , 100} ] ;

98 radObjDivMag [ backyoke2 , n2 ] ;

99 backyoke=radObjCnt [{ backyoke1 , backyoke2 } ] ;

100 radObjDrwAtr [ backyoke , { 0 . 3 , 0 . 3 , 0 . 3 } , 0 . 0 0 1 ] ;

101 TG = radObjCnt [{ p o l e c o i l , epc , backyoke ,CC,CCu} ] ;

102 radMatApl [ pole , mat2 ] ;

103 I f [Mod[ npoles ,2]==0 , , radMatApl [ expole , mat2 ] ] ;

104 radMatApl [ p14 , mat2 ] ; radMatApl [ p34 , mat2 ] ;

105 radMatApl [ backyoke , mat1 ] ;

106 radTrfOrnt [TG, radTr fTrs l [{N[ po l e l eng th +2.5∗ longgap ] , 0 , 0 } ] ] ;

107 radTrfOrnt [TG, radTrfRot [{0 , 0 , 0} ,{0 , 0 , 1} ,N[−Pi / 2 ] ] ] ; (∗ needed f o r in

rad ia t ra ck ing ∗)

108 )

109

110 radUt iDelAl l [ ] ;

111

112 width =131; (∗ width o f the po l e s ∗)

113
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114 npo le s = 12 ; (∗number o f po l e s ( i n c l u d i n g end po l e s ) ∗)

115

116 LoA = 1900 ; (∗ over a l l l ength o f the dev i c e ∗)

117

118 po l e l eng th=LoA/( npoles−2+npo le s ∗0 . 6 ) ; (∗ l ength o f main po l e s ∗)

119 d e l t a e p o l e =0.0 ;

120 longgap=po l e l eng th ∗ 0 . 6 ; (∗ gap between po l e s ( f i l l e d with c o i l s ) ∗)

121 chamfer =5;

122

123 co i l th i ckne sMa in=longgap /2−1;

124 co i l th i cknesAdd =0.5∗ longgap ;

125

126 c o i l v e r t i c a l p o s M a i n =90.0;

127 c o i l v e r t i c a l p o s A d d =25;

128

129 co i lhe ightMain =119;

130 co i lhe ightAdd =10;

131

132 rmin=20;

133 rmax=longgap /2−1;

134

135 (∗ cur rent d e n s i t i e s in A/mmˆ2 ∗)

136 mcur=−9.0; (∗ cur rent dens i ty in the main c o i l s ( i n c l u d i n g end po l e s ) ∗)

137 ccur =4.28; (∗ cur rent dens i ty in the c o r r e c t o r c o i l ∗)

138 de lcurep14 =1.15;

139 de lcurep34 = 0 . 0 ;

140 np=15;

141 nx=3;ny=3;nz=3;

142 n1={{nx ,1} ,{ny ,1} ,{ nz , 1 } } ;

143 n2 ={{100 ,1} ,{ny ,1} ,{ nz , 1 } } ;

144 n3={{nx ,1} ,{ny ,1} ,{ nz , 1 } } ;

145 n4={{nx ,1} ,{50 ,1} ,{ nz , 1 } } ;

146

147 mat1=RadMatXc06 [ ] ; (∗ standard s t e e l f o r backyoke ∗)

148 mat2=RadMatAFK502 [ ] ; (∗ coba l t s t e e l f o r po l e t i p s (49 percent cobalt ,

49 percent iron , 2 percent vanadium ∗)

149 geo [ ] ; (∗ with t h i s c a l l o f geo ( ) , the geometry i s b u i l t ∗)

150 re=radSolve [TG, 0 . 0 0 1 , 1 0 0 0 ] ;
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1 from pylab import ∗
2

3 import matp lo t l i b . pyplot as p l t

4 import numpy

5 import s c ipy . i n t e g r a t e as i n t e g r a t e

6 import argparse

7

8 de f tuneca l c ( f rev , gamma, alpha ,V, E0 , h) :

9 p s i = 0 .0

10 wrev = 2∗ pi ∗ f r e v

11 e tac = 1/gamma∗∗2 − alpha

12 omega = numpy . s q r t ( wrev∗∗2∗h∗numpy . abso lu t e ( e tac ) ∗V∗numpy . cos ( p s i )

/2/ p i /E0)

13 re turn omega

14

15 de f F( q ) :

16 y = 2 .0 ∗ (numpy . s q r t ( q∗∗2−1)−numpy . a r c co s (1/ q ) )

17 re turn y

18

19 de f d e l t a p c a l c (V, alpha ) :

20 V0 = V∗1000

21 U0 = 9062

22 q = V0/U0

23 de l tap = numpy . s q r t (U0∗F( q ) / p i / alpha /80/629 e6 )

24 re turn de l tap

25

26 de f Dint1 ( x ) :

27 y = (numpy . l og ( x ) ∗numpy . exp(−x ) ) /x

28 re turn y

29

30 de f Dint2 ( x ) :

31 y = numpy . exp(−x ) /x

32 re turn y

33

34 de f D( x ) :

35 q1 = i n t e g r a t e . quad ( Dint1 , x,+ i n f )

36 q2 = i n t e g r a t e . quad ( Dint2 , x,+ i n f )

37 y = numpy . s q r t ( x ) ∗(−1.5∗numpy . exp(−x ) + 0.5∗ x∗q1 [ 0 ] + 0 . 5∗ ( 3 . 0∗ x−x∗
numpy . l og ( x ) + 2 . 0 ) ∗q2 [ 0 ] )

38 re turn y

39
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40 de f touschek (gamma, betx , bety , dispx , de l ta , ep s i l on , vertemittance , dpp ,

s i g s , s , ne ) :

41 c l i g h t =299792458

42 dummy = 0.0

43 s i g x = numpy . empty ( ( betx . shape [ 0 ] , 1 ) )

44 s i g y = numpy . empty ( ( betx . shape [ 0 ] , 1 ) )

45 ze ta = numpy . empty ( ( betx . shape [ 0 ] , 1 ) )

46 K = numpy . empty ( ( betx . shape [ 0 ] , 1 ) )

47 tau = numpy . empty ( ( betx . shape [ 0 ] , 1 ) )

48 f o r i in range (0 , betx . shape [0 ]−1) :

49 s i g x [ i ] = numpy . s q r t ( e p s i l o n ∗betx [ i ]+ d e l t a ∗∗2∗ dispx [ i ]∗∗2 )

50 s i g y [ i ] = numpy . s q r t ( ve r temi t tance ∗bety [ i ] )

51 zeta [ i ] = ( ( dpp∗betx [ i ] ) /(gamma∗ s i g x [ i ] ) ) ∗∗2

52 K[ i ] = D( zeta [ i ] )

53 tau [ i ] = (8∗ pi ∗gamma∗∗2∗( s i g x [ i ]∗ s i g y [ i ]∗ s i g s ) ∗(dpp∗∗3) ) / ( (2 . 81794

e−15)∗∗2∗ c l i g h t ∗ne∗K[ i ] )

54 tau [ i ] = tau [ i ] / 3 600 . 0

55 dummy = dummy + ( s [ i +1]−s [ i ] ) / tau [ i ]

56 taut = 48 .0/dummy

57

58 re turn taut

59

60 de f quantx l t ( emit , betax , dispx , s i g e , taux , taus ) :

61 s i g t = numpy . s q r t ( emit∗betax+s i g e ∗∗2∗ dispx ∗∗2)

62 r = dispx ∗∗2∗ s i g e ∗∗2/ s i g t ∗∗2

63 tauqvs = taux∗ taus ∗numpy . exp (0 .035∗∗2/2/ s i g t ∗∗2) ∗ s i g t ∗∗3/0.035∗∗3/

numpy . s q r t (2∗ pi ) /( taux∗ r+taus ∗(1− r ) ) /numpy . s q r t ( r∗(1− r ) ) /3600

64 tauqges=numpy . sum(1/ tauqvs )

65 tauqges=1/tauqges

66 re turn tauqges

67

68 de f quantums ( taus , de l ta , d e l t a a c c ) :

69 tauq = taus ∗ d e l t a ∗∗2/ d e l t a a c c ∗∗2∗numpy . exp ( d e l t a a c c ∗∗2/2/ d e l t a ∗∗2)

/3600

70 re turn tauq

71

72 par s e r = argparse . ArgumentParser ( )

73 par s e r . add argument ( ’ f i l ename1 ’ )

74 par s e r . add argument ( ’ f i l ename2 ’ )

75 par s e r . add argument ( ’D ’ , type=f l o a t )

76 par s e r . add argument ( ’ emit ’ , type=f l o a t )

77 par s e r . add argument ( ’ d e l t a ’ , type=f l o a t )

78 par s e r . add argument ( ’ alpha ’ , type=f l o a t )

79 par s e r . add argument ( ’ vo l tage ’ , type=f l o a t )



XII Codes

80 par s e r . add argument ( ’ r i n g c u r r e n t ’ , type=f l o a t )

81 par s e r . add argument ( ’−a ’ , ’−−de l t aa c c ’ , type=f l o a t )

82 par s e r . add argument ( ’−v ’ , ’−−veremit ’ , type=f l o a t )

83 par s e r . add argument ( ’−c ’ , ’−−coup l ing ’ , type=f l o a t )

84 par s e r . add argument ( ’− l ’ , ’−− l i n e s ’ , type=i n t )

85 args=par s e r . p a r s e a r g s ( )

86 i f a rgs . l i n e s :

87 s k i p l i n e s=args . l i n e s

88 e l s e :

89 s k i p l i n e s =0

90

91 i f a rgs .D:

92 dam = args .D

93 e l s e :

94 dam = −0.052

95

96 i f a rgs . emit :

97 emittance = args . emit

98 e l s e :

99 emittance = 100 .E−9

100

101 i f a rgs . d e l t a :

102 s i g e = args . d e l t a

103 e l s e :

104 s i g e = 4 .4E−4

105

106 i f a rgs . r i n g c u r r e n t :

107 i r = args . r i n g c u r r e n t

108 e l s e :

109 i r = 200 .0

110

111 i f a rgs . coup l ing :

112 cp lg = args . coup l ing

113 e l s e :

114 cp lg = 0.022

115

116 i f a rgs . d e l t aa c c :

117 acceptance = args . d e l t aa c c

118 alphac = args . alpha

119 v0 = args . vo l tage

120 e l s e :

121 i f a rgs . vo l tage :

122 i f a rgs . alpha :

123 alphac = args . alpha
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124 v0 = args . vo l tage

125 acceptance = d e l t a p c a l c ( args . vo l tage , a lphac )

126 e l s e :

127 alphac = 0.03

128 v0 = args . vo l tage

129 acceptance = d e l t a p c a l c ( args . vo l tage , 0 . 0 3 )

130 e l s e :

131 i f a rgs . alpha :

132 alphac = args . alpha

133 v0 = 800 .0

134 acceptance = d e l t a p c a l c ( 8 0 0 . 0 , a lphac )

135 e l s e :

136 alphac = 0.03

137 v0 = 800 .0

138 acceptance = d e l t a p c a l c ( 8 0 0 . 0 , 0 . 0 3 )

139

140 data1 = loadtx t ( args . f i l ename1 , sk iprows=s k i p l i n e s )

141 data2 = loadtx t ( args . f i l ename2 , sk iprows=s k i p l i n e s )

142

143 s = data1 [ : , 0 ]

144 betx = data1 [ : , 1 ]

145 bety = data1 [ : , 3 ]

146

147 dispx = data2 [ : , 1 ]

148

149 taug = 24 .5

150

151 i f a rgs . veremit :

152 ver temi t tance=args . veremit

153 e l s e :

154 ver temi t tance=emittance ∗ cp lg

155

156 c l i g h t =299792458

157

158

159 ne = i r /80 ∗ (6 . 2415 e15 /299792458∗48.0)

160 pr in t ’No . o f e l e c t r o n s per bunch = ’ , ne

161

162 f syn = tuneca l c ( 6 . 2 5 e6 ,1231 , alphac , v0 ∗1000 ,629 e6 , 8 0 )

163

164 pr in t ’ synchrotron f requency = ’ , f syn

165

166 s i g s = alphac ∗ c l i g h t ∗ s i g e / f syn

167
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168 taux = 2/(1−dam) ∗629 e6 /9 .062 e3 /6 .25 e6

169 taus = 2/(2+dam) ∗629 e6 /9 .062 e3 /6 .25 e6

170

171 pr in t ’ Emittance = ’ , emittance , ’ Energy Spread = ’ , s i g e , ’ Bunch Length

= ’ , s i g s

172 pr in t ’ Acceptance = ’ , acceptance

173

174 pr in t ’ Ca l cu l a t ing the Touschek l i f e t i m e . . . ’

175 taut = touschek (1231 , betx , bety , dispx , s i g e , emittance , vertemittance ,

acceptance , s i g s , s , ne )

176 pr in t ’ Touschek l i f e t i m e = ’ , taut

177 pr in t ’ Ca l cu l a t ing the h o r i z o n t a l quantum l i f e t i m e . . . ’

178 tauqx = quantx l t ( emittance , betx , dispx , s i g e , taux , taus )

179 pr in t ’ Hor i zonta l quantum l i f e t i m e = ’ , tauqx

180 pr in t ’ Ca l cu l a t ing the l o n g i t u d i n a l quantum l i f e t i m e . . . ’

181 tauqs = quantums ( taus , s i g e , acceptance )

182 pr in t ’ Long i tud ina l quantum l i f e t i m e = ’ , tauqs

183

184 i f tauqs < 10000 :

185 i f tauqx < 10000 :

186 t t = 1/(1/ taug+1/taut+1/tauqx+1/tauqs )

187 e l s e :

188 t t = 1/(1/ taug+1/taut+1/tauqs )

189 e l s e :

190 i f tauqx < 10000 :

191 t t = 1/(1/ taug+1/taut+1/tauqx )

192 e l s e :

193 t t = 1/(1/ taug+1/taut )

194

195 pr in t ’ Resu l t ing l i f e t i m e = ’ , t t
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Python, 97
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