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Zusammenfassung

Wiederholte Messungen mehrerer Individuen sind von entscheidender Bedeutung für
die entwicklungspsychologische Forschung. Nur solche Datenstrukturen erlauben die
notwendige Trennung von Unterschieden innerhalb von und Unterschieden zwischen Per-
sonen. Beispiele sind längsschnittliche Paneldaten und Elektroenzephalografie-Daten
(EEG-Daten). In dieser Arbeit entwickle ich für jede dieser beiden Datenarten neue
Analyseansätze, denen Methoden des maschinellen Lernens zu Grunde liegen.

Für Paneldaten entwickle ich Gauß-Prozess-Panelmodellierung (GPPM), die auf der
flexiblen Bayesschen Methode der Gauß-Prozess-Regression basiert. Damit GPPM dem
psychologischen Fachpublikum zugänglich wird, leite ich außerdem begleitende frequen-
tistische Inferenzverfahren her. Der Vergleich von GPPM mit längsschnittlicher Struk-
turgleichungsmodellierung (SEM), welche die meisten herkömmlichen Panelmodellie-
rungsmethoden als Sonderfälle enthält, zeigt, dass längsschnittliche SEM wiederum als
Sonderfall von GPPM aufgefasst werden kann. Im Gegensatz zu längsschnittlicher SEM
eignet sich GPPM gut zur zeitkontinuierlichen Modellierung, kann eine größere Menge
von Modellen beschreiben, und beinhaltet einen einfachen Ansatz zur Generierung per-
sonenspezifischer Vorhersagen. Wie ich ebenfalls zeige, stellt auch die zeitkontinuierliche
Modellierungstechnik der Zustandsraummodellierung – trotz vieler Unterschiede – einen
Spezialfall von GPPM dar. Ich demonstriere die Vielseitigkeit von GPPM anhand zweier
Datensätze und nutze dazu die eigens entwickelte GPPM-Toolbox. Für ausgewählte
populäre längsschnittliche Strukturgleichungsmodelle zeige ich, dass die implementierte
GPPM-Darstellung gegenüber bestehender SEM Software eine bis zu neunfach beschle-
unigte Parameterschätzung erlaubt.

Für EEG-Daten entwickle ich einen personenspezifischen Modellierungsansatz zur
Identifizierung und Quantifizierung von Unterschieden zwischen Personen, die in konven-
tionellen EEG-Analyseverfahren ignoriert werden. Im Rahmen dieses Ansatzes wird aus
einer großen Menge hypothetischer Kandidatenmodelle das beste Modell für jede Person
ausgewählt. Zur Modellauswahl wird ein Verfahren aus dem Bereich des maschinellen
Lernens genutzt. Als Kandidatenmodelle werden Vorhersagefunktionen verwendet, die
die EEG-Daten mit Verhaltensdaten verbinden. Im Gegensatz zu klassischen Anwen-
dungen maschinellen Lernens ist die Interpretation der ausgewählten Modelle hier von
entscheidender Bedeutung. Aus diesem Grund zeige ich, wie diese sowohl auf der
Personen- als auch auf der Gruppenebene interpretiert werden können. Ich validiere
den vorgeschlagenen Ansatz anhand von Daten zur Arbeitsgedächtnisleistung. Die
Ergebnisse verdeutlichen, dass die erhaltenen personenspezifischen Modelle eine genauere
Beschreibung des Zusammenhangs von Verhalten und Hirnaktivität ermöglichen als kon-
ventionelle, nicht personenspezifische EEG-Analyseverfahren.
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Abstract

Repeated measures obtained from multiple individuals are of crucial importance for de-
velopmental research. Only they allow the required disentangling of differences between
and within persons. Examples of repeated measures obtained from multiple individuals
include longitudinal panel and electroencephalography (EEG) data. In this thesis, I
develop a novel analysis approach based on machine learning methods for each of these
two data modalities.

For longitudinal panel data, I develop Gaussian process panel modeling (GPPM),
which is based on the flexible Bayesian approach of Gaussian process regression. For
GPPM to be accessible to a large audience, I also develop frequentist inference procedures
for it. The comparison of GPPM with longitudinal structural equation modeling (SEM),
which contains most conventional panel modeling approaches as special cases, reveals
that GPPM in turn encompasses longitudinal SEM as a special case. In contrast to longi-
tudinal SEM, GPPM is well suited for continuous-time modeling, can express a larger set
of models, and includes a straightforward approach to obtain person-specific predictions.
The comparison of GPPM with the continuous-time modeling technique multiple-subject
state-space modeling (SSM) reveals, despite many differences, that GPPM also encom-
passes multiple-subject SSM as a special case. I demonstrate the versatility of GPPM
based on two data sets. The comparison between the developed GPPM toolbox and
existing SEM software reveals that the GPPM representation of popular longitudinal
SEMs decreases the amount of time needed for parameter estimation up to ninefold.

For EEG data, I develop an approach to derive person-specific models for the iden-
tification and quantification of between-person differences in EEG responses that are
ignored by conventional EEG analysis methods. The approach relies on a framework
that selects the best model for each person based on a large set of hypothesized candidate
models using a model selection approach from machine learning. Prediction functions
linking the EEG data to behavior are employed as candidate models. In contrast to
classical machine learning applications, interpretation of the selected models is crucial.
To this end, I show how the obtained models can be interpreted on the individual as
well as on the group level. I validate the proposed approach on a working memory data
set. The results demonstrate that the obtained person-specific models provide a more
accurate description of the link between behavior and EEG data than the conventional
nonspecific EEG analysis approach.

v



Contents

Eidesstattliche Erklärung i

Acknowledgements ii

Contributions iii

Zusammenfassung iv

Abstract v

Acronyms ix

1. Introduction 1
1.1. Gaussian Process Panel Modeling . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Person-Specific EEG Modeling . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Statistical Inference and Supervised Machine Learning 7
2.1. Foundations of Statistical Inference . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Statistical Inference as a Decision Problem . . . . . . . . . . . . . . . . . . 11
2.3. Frequentist Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1. Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2. Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3. Set Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1. Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2. Set Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5. Supervised Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6. Connections Between Supervised Learning and Statistical Inference . . . . 24
2.7. Model Validation and Model Selection . . . . . . . . . . . . . . . . . . . . 25

2.7.1. Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.2. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Gaussian Process Panel Modeling 27
3.1. General Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



Contents

3.2. Structural Equation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1. Structural Equation Models . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2. Frequentist Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3. Model Validation and Selection . . . . . . . . . . . . . . . . . . . . 35
3.2.4. Longitudinal Structural Equation Modeling . . . . . . . . . . . . . 36

3.3. Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1. Weight-Space View . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2. Function-Space View . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4. Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4. Gaussian Process Time Series Modeling . . . . . . . . . . . . . . . . . . . 45
3.4.1. Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2. Extension to Multivariate Time Series . . . . . . . . . . . . . . . . 47

3.5. Gaussian Process Panel Models . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.1. Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2. Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6. Inter-Individual Variation in Gaussian Process Panel Models . . . . . . . 51
3.6.1. Observed Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.2. Introduction to Unobserved Heterogeneity . . . . . . . . . . . . . . 53
3.6.3. Implementation of Unobserved Heterogeneity . . . . . . . . . . . . 54
3.6.4. Mixing Observed and Unobserved Heterogeneity . . . . . . . . . . 55
3.6.5. Limitations for Unobserved Heterogeneity . . . . . . . . . . . . . . 55

3.7. Statistical Inference for Gaussian Process Panel Models . . . . . . . . . . 57
3.7.1. Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.2. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.3. Confidence Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.4. Person-Specific Prediction . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.5. Model Selection and Validation . . . . . . . . . . . . . . . . . . . . 60

3.8. Implementation of Gaussian Process Panel Modeling . . . . . . . . . . . . 62
3.8.1. Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8.2. Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . 62
3.8.3. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4. Advantages of Gaussian Process Panel Modeling 67
4.1. Relationships to Conventional Longitudinal Panel Modeling Approaches . 67

4.1.1. Longitudinal Structural Equation Modeling . . . . . . . . . . . . . 67
4.1.2. State-Space Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2. Demonstration of Gaussian Process Panel Modeling . . . . . . . . . . . . 80
4.2.1. Exponential Squared Covariance Function as Alternative to the

Autogressive Model . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2. Extending LGCMs With Autocorrelated Error Structures . . . . . 88

vii



Contents

4.3. Fitting Speed Comparison of Gaussian Process Panel Modeling and Struc-
tural Equation Modeling Software . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1. Theoretical Comparison . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2. Empirical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 103

5. Person-Specific EEG Modeling Based on Supervised Learning 110
5.1. Identifying Person-Specific Models: The Supervised Learning Approach . 111

5.1.1. Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.2. Candidate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.3. Spatial Interpretation of the Best Estimated Model . . . . . . . . . 116

5.2. Working Memory Data Set and Preprocessing . . . . . . . . . . . . . . . . 120
5.2.1. Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.2. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.3. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1. Performance Evaluation Against Chance and the Best Nonspecific

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.2. Person-Specific Results . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.3. Group Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.4. Performance Comparison Against Simpler Person-Specific Models . 132

6. Summary and Discussion 136
6.1. Gaussian Process Panel Modeling . . . . . . . . . . . . . . . . . . . . . . . 136
6.2. Person-Specific EEG Modeling . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

References 143

A. Probability Theory 154
A.1. Foundations of Probability Theory . . . . . . . . . . . . . . . . . . . . . . 154
A.2. Conditional Distributions and Independence . . . . . . . . . . . . . . . . . 156
A.3. (Co)Variance Rules and the Gaussian Distribution . . . . . . . . . . . . . 158

B. Person-Specific Results 162
B.1. Attentional Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.2. Working Memory Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

viii



Acronyms

AIC Akaike information criterion

ANOVA analysis of variance

AR autoregressive

BAC balanced accuracy

BCI brain–computer interface

BIC Bayesian information criterion

CI confidence interval

CSP common spatial pattern

DV dependent variable

EEG electroencephalography

ERP event-related potential

GLM general linear model

GP Gaussian process

GPML Gaussian processes for machine learning

GPR Gaussian process regression

GPPM Gaussian process panel modeling/model

GPTSM Gaussian process time series modeling/model

HLM hierarchical linear modeling/model

ICA independent component analysis

iff if, and only if,

iid independent and identically distributed

IV independent variable

ix



Acronyms

LGCM latent growth curve model

MAP maximum a posteriori

MLR multiple linear regression

ML maximum likelihood

MRI magnetic resonance imaging

LDA linear discriminant analysis

LLDA Ledoit’s linear discriminant analysis

PCA principal component analysis

pdf probability density function

RAM reticular action model

SDE stochastic differential equation

SEM structural equation modeling/model

SSM state-space modeling/model

WM working memory

x



1. Introduction

Repeated measures obtained from multiple individuals potentially on multiple variables
are of crucial importance for developmental research. Only such data allow implementa-
tion of the corresponding rationales put forward by Baltes and Nesselroade (1979). These
encompass: the “direct identification of intra-individual change [and variation]” (Baltes
& Nesselroade, 1979, p. 23), the “direct identification of inter-individual differences”
therein (Baltes & Nesselroade, 1979, p. 24), and the “analysis of interrelationships of
. . . change” (Baltes & Nesselroade, 1979, p. 26). To analyze such data, a model for
inter-individual as well as intra-individual variation is required. In this thesis, I adopt
a machine learning perspective on modeling repeated measures data. Besides recontex-
tualizing traditional inference methods for model selection and validation, this mainly
involves proposing two novel modeling approaches, each tailored to a specific instance
of multiple individuals’ repeated measures data. For longitudinal panel data, I propose
Gaussian process panel modeling (GPPM), and for EEG data, I propose a method to de-
rive person-specific models. Both approaches extend conventional modeling approaches.
Specifically, they are not subject to assumptions rarely met for psychological phenomena
and thus model multiple individuals’ repeated measures data more appropriately.

1.1. Gaussian Process Panel Modeling

For longitudinal panel studies (referred to as panel studies in the following), the most
widely used method for formulating a model of intra-individual variation is the general
linear model (GLM) with chronological time as independent variable (IV) and the char-
acteristic of interest as dependent variable (DV). Often, other than time, further IVs
that are hypothesized to explain both intra-individual and inter-individual variation are
included. To allow for inter-individual variation that is not explained by the IVs, the
GLM is typically extended to the hierarchical linear model (HLM), in which, in con-
trast to the GLM, the mapping from the IVs to the DV can vary between persons. A
prominent example of a HLM for panel data is the latent growth curve model (LGCM)
in which linear growth rates are assumed to vary between persons.
Structural equation modeling (SEM) is a modeling technique that generalizes all

linear, multivariate statistical models such as the t-test, paired t-test, or analysis of
variance (ANOVA) (Fan, 1997; Knapp, 1978). It can be shown that the HLM is also a
special case of SEM (Curran, 2003). SEM is widely used to model panel data. In this
thesis, longitudinal SEM will refer to using SEM for panel data.

Model specification in SEM consists of formulating a set of linear equations that
describe the hypothesized relationships between a set of variables. Accordingly, it suffers

1



1. Introduction

from two major limitations: First, only linear relationships between variables can be
modeled, and second, the number of variables is necessarily finite. The second limitation
is especially problematic for panel data. It leads to the problem that longitudinal SEM
only allows expression of discrete-time models. Thus, longitudinal SEM does not permit
to model development over time as what it is, namely a continuous-time process. To
model continuous-time processes, it is necessary to employ continuous-time modeling.

Besides this conceptual advantage, continuous-time modeling also has the advantage
that it does not rely on assumptions that can seldom be met in practice. Using discrete-
time models, it is assumed that all measurements have been taken at the same time points
for all individuals, and that the interval between any two successive measurements is the
same. This assumption is rarely met in actual panel studies, in which an occasion of
measurement needs to be spread over weeks or months, typically due to limited testing
facilities.

One remedy to the problem of longitudinal SEM only being able to express discrete-
time models is to use an underlying continuous-time model and generate the correspond-
ing discrete-time structural equation model (SEM) for a given data set. For LGCM this
can be straightforwardly achieved. Voelkle, Oud, Davidov, and Schmidt (2012) use this
approach to derive a SEM representation of the continuous-time autoregressive (AR)
model. However, their solution relies on extensions of the conventional SEM approach.
The resulting modeling technique is known as extended SEM (Neale et al., 2016), which
captures a broader scope of models. This solution is in the spirit of fitting available tools
to new problems.

In this thesis, I propose a different approach. Instead of using SEM or extensions of it,
I suggest that a more suitable technique that is able to represent continuous-time models
directly should be employed. To this end, I systematically introduce the continuous-time
time series modeling technique Gaussian process time series modeling (GPTSM) as a
novel tool for statistical modeling of psychological time series data.

GPTSM is based on Gaussian process regression (GPR), which is a flexible function-
fitting approach. GPR has recently gained popularity in the field of machine learning
as a Bayesian nonparametric regression technique. GPTSM has already been used in
fields such as machine learning (Cunningham, Ghahramani, & Rasmussen, 2012; Saatçi,
Turner, & Rasmussen, 2010) and physics (Roberts et al., 2013). Within psychology,
I am only aware of two applications of GPTSM (Cox, Kachergis, & Shiffrin, 2012;
Ziegler, Ridgway, Dahnke, & Gaser, 2014). Both applications adapt GPTSM for specific
problems rather than introducing and discussing the method for psychological research
in a broader context.

I extend the time series method GPTSM for use on panel data. A panel data set can be
interpreted as consisting of a time series for each person. Thus, to extend the time series
method GPTSM to panel data, a mechanism allowing formulation of a simultaneous
model for multiple time series needed to be composed. I develop one straightforward
and unified approach, and call the resulting model family Gaussian process panel models
(GPPMs). In principle, the Bayesian inference methods used for Gaussian process time
series models (GPTSMs) could also be used for GPPMs. However, within psychology

2



1. Introduction

frequentist inference is still the de-facto standard approach. Thus, for the method to
be interpretable within common statistical reference frames and to be accessible to a
large audience, I also develop frequentist inference procedures for GPPMs, and call the
resulting method Gaussian process panel modeling (GPPM).

While an extension of GPTSM for panel data has already been discussed briefly within
the field of statistics (Hall, Müller, & Yao, 2008), a full presentation of a panel modeling
approach based on GPTSM, with a full set of corresponding inference procedures and a
detailed comparison with conventional panel methods, as I perform here, is still lacking.
Also, GPPM is substantially different then the approach proposed by Hall et al. (2008).
One main difference is that I propose using parametric estimators, whereas Hall et al.
(2008) propose applying nonparametric estimators. To the best of my knowledge, my
work is the first work to discuss the extension of GPTSM for modeling of psychological
panel data.

Besides GPTSM, other continuous-time modeling techniques could have been used as
a basis for a panel modeling framework. Indeed, Oud and Singer (2008), Boker (2007a)
have extended the continuous-time time series method state-space modeling (SSM) for
panel data (i.e., for multiple subjects). I will come back to the difference between
multiple-subject SSM and GPPM later.

In this thesis, I examine the properties of GPPM in detail. Specifically, I compare
GPPM against longitudinal SEM and multiple-subject SSM. Interestingly, this compar-
ison reveals that both longitudinal SEM and multiple-subject SSM can be regarded as
special cases of GPPM. At the same time, GPPM extends both methods. I provide
examples of models that can only be expressed using GPPM, and show that they are vi-
able alternatives to related models that are typically used in psychological research. One
interesting difference between the continuous-time modeling methods multiple-subject
SSM and GPPM is that in GPPM the to-be-modeled process is described explicitly as a
function of the IVs, whereas in multiple-subject SSM the process is described implicitly
via the dynamics of the process.

In this thesis, I also examine whether expressing longitudinal models as GPPM and
using GPPM software to estimate parameters is faster then using the equivalent longi-
tudinal SEM. My findings suggest that GPPM software is indeed faster, and, thus, the
use of GPPM software for conventional SEM may either allow the use of larger-scale
models or a significant increase of fitting speed.

1.2. Person-Specific EEG Modeling

Since GPPM is a parametrical method, it is well suited as a data-analytic approach for
situations in which a parametric model for intra-individual and inter-individual variation
is available, for example, based on theory or previous empirical work. However, in many
situations such a model might not be readily available. A typical example are brain
imaging data such as EEG data. In this case, the conventional analysis approach treats
both the intra-individual and the inter-individual variation as measurement error. In
the second part of this thesis, I propose a new analysis strategy based on techniques

3



1. Introduction

from the field of machine learning to account for inter-individual variation in EEG data
sets by adopting a person-specific analysis approach (e.g., Molenaar & Campbell, 2009).
The approach is general enough that it could also be applied to other brain-imaging
methods such as magnetic resonance imaging (MRI).

In EEG studies, researchers are typically interested in estimating event-related poten-
tials (ERPs). An ERP is the measured brain response caused by a given behavior, such
as looking at a certain stimulus. To estimate person-specific ERPs, the behavior of in-
terest is repeated multiple times for each person. The repetitions are commonly referred
to as trials. The person-specific ERPs are obtained by averaging across all repetitions
for each person. Thus, intra-individual variation in the the brain–behavior mapping is
considered as measurement error.

To compare ERPs evoked by a given behavior between groups like younger and older
adults, conventional statistical procedures like the t-test or ANOVA are commonly em-
ployed. Certain features of interest of the person-specific ERPs are used as the DV,
e.g., the mean amplitude in a given time window. Group membership is the IV. Thus,
while this approach specifically focuses on variation between groups, the inter-individual
variation within each group is treated as measurement error. Consequently, conventional
ERP analysis treats both inter-individual and intra-individual variation as measurement
error. Accordingly, in order for the group-average ERPs to be representative of the true
brain response for a given person at a given time point, both the intra-individual and
inter-individual variation have to be sufficiently low. Empirical data suggests that at
least the assumption of small inter-individual variation is not met for children and older
adults, since an increased heterogeneity of functioning in behavioral tasks is observed
(e.g., Astle & Scerif, 2011; Nagel et al., 2009; Werkle-Bergner, Freunberger, Sander,
Lindenberger, & Klimesch, 2012).

One solution to account for the observed inter-individual variation is to adopt a person-
specific analysis strategy as propagated, for example, by Molenaar (2013). Using the
conventional ERP analysis approach, this could in principle be achieved by performing
a separate statistical analysis for each person. However, the signal-to-noise ratio in
EEG data is typically not high enough to make this approach feasible in practice. The
statistical power of this approach would be too low for most available EEG data sets.
Even worse, since the very idea of performing the analysis on the person-specific level
means allowing the link between behavior and EEG signal to vary between persons, many
statistical tests would have to be performed, one for each hypothesized univariate link
between behavior and brain (i.e., for each feature of the EEG like the mean amplitude
within a given channel and time window), decreasing statistical power even further.

To solve the problems of a low signal-to-noise ratio and low statistical power, I propose
adapting techniques from the field of brain–computer interface (BCI) research (Wolpaw
& Wolpaw, 2012). Here, the goal is to predict a participants’ brain state given the
data of only a single trial. Thus, one may see this data analysis method as a reversal
of the conventional ERP approach. Instead of finding a mapping from a behavior to
one feature of an ERP, and repeating this process for different features (a so-called
mass univariate approach), one tries to find a mapping from the complete EEG signal

4
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of one trial to the behavior (multivariate approach). In the MRI literature the former
approach is known as encoding (from behavior to data) and the latter as decoding (from
data to behavior). Another name for the decoding approach within the MRI community
is multi-voxel pattern analysis (MVPA). Aggregating over time and space solves the
two main problems of person-specific ERP analysis, as previously identified. First, the
signal-to-noise ratio can be increased by aggregating. Second, only one statistical test
has to be performed per person.

In conventional BCI studies the ultimate goal is to enable people to control a device
just with their thoughts, more precisely through specific, reliable activity patterns of
their brains. To evaluate the utility of such an approach, the accuracy of the estimated
brain–behavior mapping is of interest. In this study, however, interpreting individual
brain–behavior mapping as person-specific model is of primary interest. The techniques
employed within BCI research as well as in this work stem from the field of machine
learning. In that field, mappings from IVs to the DV are typically found by using
algorithms that select the best mapping based on a set of candidate mappings and a
data set. Rather than a theory-driven confirmatory approach, the BCI approach may be
seen as exploratory and entails selection between a large set of competing hypotheses that
are data-driven. In BCI, an interpretation of the selected mapping is not of interest, and
arbitrary complex mappings can be used as candidate mappings as a result. In contrast,
the space of candidate mappings needed to be carefully restricted to be interpretable
but still powerful enough to achieve a satisfying accuracy in this work. A complex,
neural network regression approach, for example might be powerful but not interpretable.
A simple threshold model on a particular feature of the EEG signal (e.g., the mean
amplitude within a given fixed time windows and channel) on the other hand might be
interpretable but not powerful enough. To this end, I use a set of candidate models
based on common spatial pattern (CSP) and linear discriminant analysis (LDA), which
is commonly used for creating BCIs based on rhythmic neural activity (e.g., Blankertz
et al., 2010; Fazli et al., 2009), and show how the resulting mapping can be meaningfully
interpreted as person-specific models. In a second step, I demonstrate how the inter-
individual variation of the found person-specific mappings can be explored as a proxy
for the inter-individual variation of the true brain–behavior mapping.

To test the feasibility and utility of my approach, I re-analyzed data from a study
that targeted brain oscillatory mechanisms for working memory (WM) selection and
maintenance in a sample including children, younger, and older adults (Sander, Werkle-
Bergner, & Lindenberger, 2012). We (Karch, Sander, von Oertzen, Brandmaier, &
Werkle-Bergner, 2015) selected this data set because we expected true inter-individual
variation in the brain–behavior mapping, particularly in the older adults. Mixed results
on the link between EEG and behavior exist with regard to the mechanism of WM.
Specifically, Sander et al. (2012) found evidence for attentional effects on the modulation
of alpha power, whereas Vaden, Hutcheson, McCollum, Kentros, and Visscher (2012) did
not observe any attention-related modulation in older adults. One explanation for the
mixed results may be the increased inter-individual variation in older adults as compared
to younger adults, which is ignored when using conventional analysis approaches but not
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when applying the new analysis approach suggested here.
The results of using the proposed person-specific method to analyze the WM data

set show that my approach leads to more accurate models than does the conventional
analysis approach ignoring inter-individual variation. Thus, I challenge the implicit
assumption that the observed inter-individual variation is measurement error. Interest-
ingly, some aspects of the within-group inter-individual variation, as obtained by the
proposed person-specific analysis strategy, was lower in older than in younger adults,
which is contrary to what we (Karch et al., 2015) expected.

Thus, in this thesis, I present two new methods for the analysis of psychological
data based on machine learning methods. The first, GPPM, is a new analysis method
for panel data that both generalizes and extends conventional panel methods such as
longitudinal SEM. The second method is a new analysis method for EEG data in which
multivariate models are first estimated on the person level and then aggregated on the
group level, explicitly addressing the within-group inter-individual variability, which is
ignored by conventional analysis approaches.

1.3. Outline

In Chapter 2, I will start with a recapitulation of basic modeling principles that are
necessary to understand the methods I will introduce later. The psychological curriculum
rarely goes beyond frequentist statistics, which I will repeat nevertheless for the sake
of completeness. Bayesian statistics and machine learning principles for modeling are
usually left out. I will explain all three approaches from a single, unified perspective.

Before presenting the new longitudinal panel modeling method GPPM in chapter
Chapter 3, I will introduce the techniques it is based on, the flexible Bayesian regression
method GPR, and the time series analysis method GPTSM, which in turn is based
on GPR. Because GPPM is later compared to the classical panel modeling method
longitudinal SEM, and SEM was used as a source of inspiration for the development of
GPPM, I also introduce SEM and, in particular, longitudinal SEM in Chapter 3.

I will discuss the advantages of GPPM over conventional panel methods, in particular
longitudinal SEM and multiple-subject SSM, in Chapter 4, both theoretically and by
providing examples. The examples also serve as a demonstration of GPPM. In this
chapter, I furthermore compare the fitting speed of SEM and GPPM software, theoreti-
cally and empirically. This was done to investigate whether formulating models in their
GPPM representation may speed up parameter estimation as compared to the SEM
representation.

In Chapter 5, I will present the person-specific EEG analysis in which first person-
specific models are obtained and then second these person-specific models are summa-
rized on the group level. I will also present the validation of the method based on data
from the study targeting brain oscillatory mechanisms for WM selection and mainte-
nance.

In Chapter 6, I summarize and discuss the results and contributions of my thesis as
well as future research directions.
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2. Statistical Inference and Supervised
Machine Learning

Statistical inference revolves around making probabilistic statements about the proper-
ties of a population based on a random, observed subset of the population. In psychology,
an example for a property is the average general intelligence factor g of a given group, for
example, older adults. The dominating approach to statistical inference in psychology
is frequentist inference.

Supervised machine learning (abbreviated as supervised learning in the remainder)
on the other hand, focuses on obtaining a prediction function on the base of a random,
observed subset of the population. This function should predict a variable reliably
based on some other variables for the complete population. Both statistical inference
and supervised learning use a finite data set to obtain knowledge that should generalize
to the population.

The popularity of Bayesian inference, in particular, (Lee & Wagenmakers, 2005; Wa-
genmakers, Wetzels, Borsboom, & van der Maas, 2011) but also of supervised learning
(Markowetz, Blaszkiewicz, Montag, Switala, & Schlaepfer, 2014; Yarkoni, 2012) is grow-
ing within psychology. However, both are still not part of many psychological curricula.
This chapter, thus, serves the purpose of introducing Bayesian inference and supervised
learning as alternative methods for modeling empirical data and making inferences from
random samples. Before introducing Bayesian inference, it seems useful to reintroduce
frequentist inference in a more formal manner than typically done in psychology teach-
ing. This paves the way for the presentation of frequentist inference, Bayesian inference,
and supervised learning within a single, coherent framework.

I will start this chapter by introducing the foundations of statistical inference in Sec-
tions 2.1 and 2.2. A section explaining the frequentist and the Bayesian variants of
statistical inference will follow. Then, I will introduce supervised learning and its connec-
tion to statistical inference. In the final section, I will compare the different approaches
(Bayesian, frequentist, and supervised learning) to model selection.

2.1. Foundations of Statistical Inference

A huge number of good textbooks introduce probability theory (e.g., DeGroot & Schervish,
2011; Rice, 2007; Taboga, 2012b; Wasserman, 2004). Thus, I provide only a swift re-
minder to refamiliarize readers with probability theory in Appendix A. As the probability
theory terminology differs slightly between authors, Appendix A also serves to present
the terminology as used in this work.
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2. Statistical Inference and Supervised Machine Learning

The statistical literature aimed at psychologists typically introduces the topic of statis-
tical inference in a rather informal manner (compare, for example, the current standard
statistics book for psychologists in Germany [Eid, Gollwitzer, & Schmitt, 2013] with
any general statistics text book [e.g., Wasserman, 2004]). This level does not suffice
to understand the following chapters. Literature aimed at mathematicians or statisti-
cians, however, requires more background knowledge than even the typical quantitative
psychologist has learnt. Thus, I have tried to make this chapter as rigorous as possible
without using advanced mathematical concepts (e.g., measurement theory and Borel
sets) but limit myself to high school-level mathematics, that is, a good understanding
of set theory, linear algebra, and calculus. I also assume that the reader has had first
contact with frequentist inference.

The central task of statistical inference is to make probabilistic statements about the
properties of a population based on a sample. Formally, a sample is defined as follows.

Definition 2.1.1. A sample y is a realization of a random vector Y .

Remark 2.1.2. A random vector is the generalization of a random variable. It is simply
a vector that contains multiple random variables as entries. For a formal definition see
Equation A.1.3 in Appendix A.1.

Example 2.1.3. For a longitudinal study during which 3 properties of 100 persons have
been measured at 10 different time points the 3 × 100 × 10 data cube is a sample.

Thus, the task of making probabilistic statements about the population is formalized
as making statements about the distribution that generated the sample. For now, I will
describe this distribution via its distribution function F ∗

Y and call it the true (generating)
distribution in the following.

The statistical model is a central concept of statistical inference. It encodes the as-
sumptions about the true distribution F ∗

Y before having observed the sample y. The
assumptions are described by a set of candidate probability distributions for F ∗

Y . Thus,
a statistical model is merely a (typically infinite) set of probability distributions. For
example, a statistical model is that the generating distribution F ∗

Y is a Gaussian distri-
bution. Formally, a statistical model can be described as follows.

Definition 2.1.4. Let y be a sample with the corresponding n-dimensional random
vector Y . Let B be the set of all n-dimensional distribution functions:

B := {F : Rn → R+such that F is a distribution function}

A subset M ⊂ B is called a statistical model for Y .

Remark 2.1.5. As notation, I will often use

Y ∼ M,
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2. Statistical Inference and Supervised Machine Learning

which reads that the statistical model for the random vector Y is M, or in other words
that the random vector is distributed according to one of the distributions within M.

If the assumptions about the generating distribution F ∗
Y are wrong, the statistical

model is said to be misspecified; otherwise it is correctly specified.

Definition 2.1.6. Let F ∗
Y be the true generating distribution function and M a corre-

sponding statistical model. If F ∗
Y ∈ M, then the statistical model is said to be correctly

specified ; otherwise it is misspecified.

In other words: the true generating distribution F ∗
Y has to be one of the probability

distributions that constitute the statistical model.
Model specification is a crucial part of statistical inference. It refers to the process

of developing a statistical model for an unknown distribution F ∗
Y . It is important to

realize that all traditional statistical inference procedures rely on the assumption that
the statistical model is correctly specified. Otherwise, inference is formally invalid and
to an unknown extent wrong.

In general, a statistical model M can be indexed by a possibly infinite dimensional
index set Θ such that

M = {Fθ : θ ∈ Θ}.

In the following, I will refer to this index set Θ as the parameter space and to its elements
θ ∈ Θ as parameter values. If a statistical model is correctly specified, a parameter θ∗

exists such that Fθ∗ = F ∗
Y . Thus, in accordance with the literature, I will denote the

generating distribution F ∗
Y by θ∗.

This work is only concerned with statistical models for continuous random vectors
Y , for which the statistical model can equivalently be expressed in terms of a set of
probability density functions (pdfs) instead of a set of distribution functions. Therefore,
in the remainder, statistical models will be described as a set of pdfs:

M = {pθ(y) : θ ∈ Θ}.

In psychology, a sample y is typically a sample from a population of persons. That
is, the sample has the form y = [y1, . . . , yN ]⊤, where N refers to the number of persons.
Every yi refers to the observed data for one person. The corresponding random vector
Yi, of which yi is a realization, contains the variables of interest, for example, the general
intelligence factor g and socioeconomic status for a cross-sectional data set or repeated
measurements of general intelligence factor g and socioeconomic status for a panel data
set.

Typically, the assumption is made that the observations yi for the different persons do
not influence each other, for example, if it is known that the general intelligence factor g
for person 7 is 110, this will not alter the expectation regarding the general intelligence
factor of any other (unrelated) person. Formally, this is represented by the assumption
that the random vectors {Yi : i ∈ 1, . . . , N} are mutually independent.
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Another assumption that is commonly made is that the observed data yi for each
person are a realization of the same probability distribution. That is, the random vec-
tors {Yi : i ∈ 1, . . . , N} are not only independent; every random vector is distributed
according to the same distribution. Taken together, these two assumptions are known
as the independent and identically distributed (iid) assumption.

Definition 2.1.7. A set of random vectors {Yi : i ∈ 1, . . . , N} is independent and
identically distributed (iid) if, and only if, (iff) each random vector Yi has the same
probability distribution and if the random vectors are mutually independent.

If the iid assumption is made, the statistical model for the random vector Y can be
determined by specifying a statistical model for the random vectors Yi. Because the
random vectors are identically distributed, it is reasonable to use the same statistical
model for each random vector Yi. The statistical model for the sample follows from
the mutual independence assumption. Formally, if for all i ∈ {1, . . . , N} the statistical
model for each random vector Yi is

Yi ∼ {pθ(yi) : θ ∈ Θ},

it follows that

Y ∼

{
N∏

i=1

pθ(yi) : θ ∈ Θ

}
.

The two most common types of inference are estimation and hypothesis testing. In
estimation, the aim is to eliminate some of the members of the statistical model as
candidates for the true probability distribution θ∗. That is, in estimation, a restriction,
which is formalized via a subset ΘR ⊂ Θ of the parameter space Θ, is selected such that
a desirable property is fulfilled. For point estimation, the desired restriction implies a
single point, that is, |ΘR| = 1. In point estimation it is common to denote the subset that
implements the restriction via θ̂ ∈ Θ. In psychology, the most common point estimation
technique is maximum likelihood (ML) estimation.

Example 2.1.8. Let Y consist of N iid random vectors Yi and the statistical model for
the random vectors Yi be Yi ∼ {N (µ, 1) : µ ∈ R}, then the ML estimate µ̂ for the mean
µ based on a sample y = [y1, . . . , yN ]⊤ is

µ̂ =
1

N

N∑

i=1

yi.

If the restriction ΘR can contain more than one point, that is |ΘR| > 1, one speaks of
set estimation. Confidence intervals are a popular example for set estimation.

Example 2.1.9. Let the situation be set up as in Example 2.1.8, then a 95% confidence
interval for the mean µ is

[µ̂− 1.96, µ̂ + 1.96].

Hypothesis testing is strongly linked to set estimation. A restriction ΘR ⊂ Θ is
proposed and either rejected or not.
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Example 2.1.10. Let the situation be set up as in Example 2.1.8. A hypothesis test
that rejects the restriction µ = 0 if |µ̂| > 1.96 has the size α = 0.05.

Frequentist and Bayesian inference provide all these central inference types but achieve
them in quite a different manner. I will try to convey the differences in the following.
However, I will first present the endeavor of statistical inference as a decision problem.
This will provide the formal basis to delineate the difference between the Bayesian and
the frequentist approaches.

I will use the following notation without explicitly repeating it in all subsequent theo-
rems and definitions. Y is the random vector for which a statistical model M = {pθ(y) :
θ ∈ Θ} is proposed, y denotes one realization of Y , i.e., a sample, ΩY is the support of
the random vector Y , that is, the set of all possible values that the realizations y can
obtain, i.e., y ∈ ΩY .

2.2. Statistical Inference as a Decision Problem

All types of statistical inference can be interpreted as decision problems. Given a sample
y, a decision to (a) reject a hypothesis or not, (b) for a set of likely parameters ΘR ⊂ Θ,
or (c) for a point estimate θ̂ ∈ Θ has to be made. With decision rules and actions,
statistical decision theory provides the necessary tools for a unifying treatment of these
different types of statistical inference. For hypothesis testing, for example, the decision
rule is a hypothesis test and the action is to either reject the hypothesis or not. More
generally, a decision rule is defined as follows.

Definition 2.2.1. A (deterministic) decision rule is a function δ : ΩY → A that maps
every sample y ∈ Ωy onto an action δ(y) = a ∈ A (Berger, 1993, p. 9). The set of
actions A can be any non-empty set.

Remark 2.2.2. For point estimation, the decision rule is an estimator (often denoted
θ̂(y)) that maps every data set to one particular parameter θ̂; typically called an estimate.
Thus, in this case the set of possible actions is the parameter space, A = Θ. For set
estimation, the set of possible actions A is the set of all possible subsets of the parameter
space, called power set and denoted 2Θ. A set estimator maps every data set onto one
member of the power set. For hypothesis testing, the set of possible actions is to either
reject the proposed restriction ΘR ⊂ Θ of the parameter space or not. A hypothesis test
maps every sample y to the decision to either reject a proposed restriction or not.

To evaluate a decision rule, its actions need to be evaluated. Each action is given
a cost that depends on the true state of nature, i.e., the true generating probability
distribution F ∗

Y of Y . For the moment I ignore the fact that the true distribution F ∗
Y is

not known. The true distribution is assumed to be a member of the statistical model. As
a consequence, the true distribution can be described by the parameter θ∗. By choosing
a loss function, one can quantify how good an action is under the reality that is described
by the true distribution θ∗.
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Definition 2.2.3. Let A be a set of possible actions of a decision function δ : ΩY → A ,
then any non-negative function L defined on Θ × A is a loss function.

Example 2.2.4. For point estimation, the set of possible actions A corresponds to the
parameter space. Thus, for point estimation the loss function is a function that maps
the true parameter θ∗ and a point estimate θ̂ to a cost. One example for a loss function
used for point estimation is the squared loss: Lsq(θ∗, θ̂) = (θ∗ − θ̂)2.

Remember that the loss function was introduced to evaluate decision rules. To do so,
one can replace the action in the loss function by a decision rule δ that produces actions:

L(θ∗, δ(Y )). (2.2.1)

However, Y is a random vector and, hence L(θ∗, δ(Y )) too. Even worse, the true state of
nature θ∗ is unknown. Therefore, there are two unknowns to get rid of before a decision
rule δ can be evaluated. This is where Bayesian and frequentist inference disagree and
branch off (Jordan, 2009). They solve this problem fundamentally differently, which is
partly due to their different interpretations of the concept of probability.

Before I describe the respective frequentist and Bayesian solutions to the aforemen-
tioned problem, I want to recapitulate the three central forms of inference introduced at
the beginning of this section in the language of statistical decision theory:

A point estimator is a decision function that maps any sample to one point within the
parameter space, and therefore to a probability distribution.

Definition 2.2.5. A point estimator is any function δ : ΩY → Θ. For a specific sample
y, δ(y) is called the point estimate.

A set estimator is a function that maps any sample to a subset of the parameter space,
and hence to a set of probability distributions.

Definition 2.2.6. A set estimator is any function δ : ΩY → 2Θ. For a specific sample
y, δ(y) is called the set estimate.

The central task of hypothesis testing is to either reject a restriction, a subsection of
the parameter space ΘR ⊂ Θ, or not.

Definition 2.2.7. Let {ΘR,Θ
∁
R} = Θ be a partition of Θ. The hypothesis H0 : θ∗ ∈ ΘR

is called the null hypothesis.

Definition 2.2.8. Let H0 be a null hypothesis, then a (measurable) function
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φ : ΩY → {0, 1} is called a statistical test if it is used in the following way:

φ(y) = 1 =⇒ reject the null hypothesis H0

φ(y) = 0 =⇒ do not reject the null hypothesis H0

The set R = {y ∈ ΩY : φ(y) = 1} is called the rejection region. For the vast majority
of statistical tests, the rejection region R can be expressed in the following form:

R = {y : T (y) > c},

where T : ΩY → R is called test statistic and c ∈ R critical value.

Definition 2.2.9. When performing a statistical test, two kinds or errors can occur:

• Rejecting the null hypothesis H0 even though θ∗ ∈ ΘR. This is called a type I
error.

• Not rejecting the null hypothesis H0 even though θ∗ /∈ ΘR. This is called a type II
error.

2.3. Frequentist Inference

2.3.1. Foundations

This section is a generalization of the treatment in Wasserman (2004, Chapter 12).
Frequentist inference is the most popular approach to statistical inference. The second
most popular approach is Bayesian inference. As I have described in the previous section,
a share of the differences between Bayesian and frequentist inference can be traced back
to their different interpretations of probability.

In frequentist inference only probability measures belonging to random experiments
that can (in theory) be repeated indefinitely are considered. Probability measures are
defined via limiting frequencies of the outcomes of a corresponding random experiment.

Definition 2.3.1. Let (Ω,F ,P) be a probability space (see Definition A.1.1 in Appendix
A.1) with the sample space Ω, the Sigma-algebra F , and the probability measure P
corresponding to a random experiment that can be repeated indefinitely. Let n be the
number of times that the experiment has been repeated so far. For a given event Ai ∈ F ,
let ni be the number of times the event Ai occurred after n repetitions of the experiment,
then the objective probability of event Ai is defined as

P(Ai) = lim
n→∞

ni

n
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A direct consequence of this is that frequentist inference interprets the true state of
nature θ∗ as a fixed unknown constant. Thus, frequentists do not allow themselves to
impose a probability distribution on the parameter space Θ to express the uncertainty
about the true state of nature θ∗, as is common in Bayesian inference.

The second central idea of frequentist inference is that the decision function should
lead to good actions for all possible samples y. Therefore, the first step in frequentist
inference is to take the expectation across all possible samples y to make the loss function
independent of the currently observed sample. This expectation is called frequentist risk.
Optimally, one would take this expectation with respect to the generating distribution
θ∗. However, since the true distribution is not known, the frequentist risk of a decision
rule depends on the assumed true distribution θ∗ = θ. Thus, a frequentist risk for each
value θ within the parameter space Θ of the statistical model exists.

Definition 2.3.2. The frequentist risk of a decision rule δ and parameter value θ is
the expectation of a loss function over samples assuming that θ represents the true
distribution:

R(θ, δ) = Eθ[L(θ, δ(Y ))] =

∫

ΩY

L(θ, δ(y))pθ(y)dy.

Note that the frequentist risk depends on the assumption θ about the true distribution
in two places, (1) in the loss function and (2) in the pdf. One approach to make the
frequentist risk independent of the assumption about the true distribution θ would be to
try to find a decision rule that has the lowest risk (over all decision rules) for all possible
true distributions, as represented by θ ∈ Θ. However, such a decision rule hardly ever
exists. Consider the following example adapted from Wasserman (2004, p. 194):

Example 2.3.3. Let Y ∼ N (θ, 1) and the loss function be the squared loss L(θ, θ̂) =
(θ − θ̂)2. Two point estimators are compared: θ̂1(y) = y and θ̂2(y) = 1. The frequentist
risk for estimator θ̂1 is Eθ[(Y − θ)2] = 1. The frequentist risk for estimator θ̂2 is (θ−1)2.
Hence, for 0 < θ < 2 estimator θ2 has less risk than estimator θ1. For θ ∈ {0, 2} the risk
of both estimators is 1. For θ < 0 or θ > 2, estimator θ1 has less risk. Thus, neither of
the estimators has less risk for all possible true states of nature θ ∈ Θ.

In the previous example, even the naive, constant estimator θ̂2 had less risk than the
much more sensible estimator θ̂1 for some true states of nature θ. This motivates the
need for different approaches to make the frequentist risk independent of the assumption
that the true state of nature is θ.

One popular approach is the so-called maximum risk. This risk is defined as the risk
of a decision rule in the worst possible scenario.

Definition 2.3.4. The maximum risk of a decision rule δ is

R̄(δ) := sup
θ∈Θ

R(θ, δ).
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Loosely speaking, the maximum risk is calculated by iterating through all probability
distributions as represented by θ, assuming that the true state of nature θ∗ is θ, calcu-
lating the corresponding frequentist risk, and then using the least upper bound for all
risks as maximum risk.

Note that the maximum risk is independent of both the sample y and the assumption
about the true state of nature θ. Therefore, it provides a single number performance
metric for a decision rule. Naturally, one would like to find the decision rule that
minimizes this metric. If a decision rule has this property, it is called a minimax rule.

Definition 2.3.5. A decision rule δ∗ is minimax iff

R̄(δ∗) = inf
δ∈∆

R̄(δ),

where ∆ is the set of all decision rules.

Thus a minimax rule, for a given statistical model, has the least maximum risk among
all decision rules.

I will now introduce frequentist point estimation, set estimation, and hypothesis test-
ing. In each section, I will first introduce them similarly as they are presented conven-
tionally and will then link each technique to the decision theoretic perspective developed
here.

2.3.2. Point Estimation

Remember, a point estimator is a function that maps any sample to one point within
the parameter space, and consequently to a probability distribution.

In frequentist inference, ML estimators are typically used for parametric models.

Definition 2.3.6. Let M = {p(y; θ) : θ ∈ Θ} be a parametric statistical model and y a
sample. The likelihood function for parameter value θ is then defined as L(θ) = p(y; θ).
The ML estimate θ̂ is obtained by choosing θ̂ such that it maximizes the likelihood
function. An estimator that maps every sample to the corresponding ML estimate is
called a ML estimator.

The link between ML estimation and the decision theoretic perspective developed in
the previous section is less pure than for set estimation and hypothesis testing. Starting
out from the decision theoretic perspective, one would ideally use the minimax estimator
based on a given loss function and statistical model for point estimation. However,
finding minimax estimators is difficult for most common combinations of statistical model
and loss function. In contrast, ML estimators are applicable to every parametric model.
Luckily, “for parametric models that satisfy weak regularity conditions the maximum
likelihood estimator is approximately minimax” (Wasserman, 2004, p. 201). For more
information on the favorable properties of the maximum likelihood estimator, see Taboga
(2012d).
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ML estimation is not a frequentist method per se. It can also be derived from a
Bayesian perspective. However, ML estimation is often used as the first step for fre-
quentist inference procedures. It is required for many important frequentist hypothesis
tests and confidence intervals, both of which, as I will show in the following sections, are
inherently frequentist approaches. In SEM, for example, the ML estimate is required for
the likelihood-ratio test as well as Wald- and likelihood-based confidence intervals (see
Section 3.2.2).

2.3.3. Set Estimation

Remember that a set estimator is a function that maps any sample to a subset of the
parameter space, and thus to a set of probability distributions.

The frequentist idea of set estimation is that an accurate estimate is produced for any
sample y. How well a set estimator performs is quantified by the probability that its set
estimates contain the true value θ∗. In the following definition and the remainder of this
section, Pθ denotes the probability measure implied by the probability distribution that
is described by the parameter value θ.

Definition 2.3.7. Let θ∗ be the true state of nature and δ a set estimator, then

Pθ∗(θ∗ ∈ δ(Y ))

is called the coverage probability of the set estimator δ.

The true state of nature θ∗ is usually unknown. Therefore, the maximum risk idea is
applied again. A set estimator is evaluated in terms of its coverage probability in the
worst case. This is called level of confidence. That is, if a set estimator has a confidence
level of x%, this means that repeated application of it yields at least x% of the set
estimates containing the true value.

Definition 2.3.8. Let δ be a set estimator. Its level of confidence is

γ = inf
θ∈Θ

Pθ(θ ∈ δ(Y )).

For a particular sample y, δ(y) is called the confidence region. If the confidence region
is univariate, i.e., δ(y) ⊂ R, it is called the confidence interval.

Remark 2.3.9. Often the level of confidence is ascribed to the confidence region instead
of the set estimator. It is for example common to speak of a 95% confidence region,
which implies that there is a probability of 95% that the confidence region contains the
true parameter. I do not think that this is a particularly wise choice of words. One
particular confidence region either contains the true state of nature θ∗ or not. The level
of confidence is a property of the set estimator that generated the confidence region. I
think that this choice of words has contributed to the fact that confidence sets are often
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misunderstood.

I have not yet explained why confidence set estimators are a frequentist concept.
The following theorem explicitly links confidence set estimators to the maximum risk
principle developed in Section 2.3.1. The theorem was taken from Berger (1993, p. 22).
The proof is my own work. For this theorem and the remainder of this section, Eθ[f(Y )]
denotes the expectation of a random variable f(Y ) given that the distribution for the
random variable Y is as described by the parameter value θ. f may be any deterministic
mapping.

Theorem 2.3.10. An equivalent definition of a set estimator with confidence level γ is
a decision rule δ : ΩY → 2Θ with a maximum risk supθ∈ΘR(θ, δ) = 1 − γ under the loss
function

L(θ, δ(y)) =

{
0 if θ ∈ δ(y)

1 if θ /∈ δ(y)
.

Proof:
Pθ(θ ∈ δ(Y )) = 1 − Eθ[L(θ, δ(Y )] = 1 −R(θ, δ)

Thus,
inf
θ∈Θ

Pθ(θ ∈ δ(Y )) = 1 − sup
θ∈Θ

R(θ, δ) = γ.

□

2.3.4. Hypothesis Testing

Remember that a hypothesis test is a function that maps any sample to the decision
either to reject or not to reject the null hypothesis.

The main idea of frequentist hypothesis testing is again to make the correct decision
for the majority of observed samples y. That is, the probability of making type I and
type II errors should both be as small as possible.

To quantify the type I and type II error of a given statistic test the power function is
employed.

Definition 2.3.11. The power function β(θ) of a statistical test φ expresses the prob-
ability of rejecting the null hypothesis under the assumption that the true distribution
θ∗ is θ

β(θ) = Pθ(φ(Y ) = 1) = Eθ [φ(Y )] =

∫

ΩY

φ(Y )pθ(y)dy

If the null hypothesis is true, that is, θ∗ ∈ ΘR, the power function β(θ∗) quantifies the
probability of a type I error for a given statistical test. If the null hypothesis is false,
that is, θ∗ /∈ ΘR, the inverse of the power function 1 − β(θ∗) quantifies the probability
of a type II error. Thus, the value of the power function β(θ∗) of a perfect test would
be 1 if θ∗ /∈ ΘR and 0 if θ∗ ∈ ΘR.
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However, the true state of nature is not known. Therefore, one can only obtain upper
bounds for the type I and the type II error. First, for the type I error:

Definition 2.3.12. The size of a statistical test is

α = sup
θ∈ΘR

β(θ).

The size of a statistical test is a least upper bound for the type I error. For the type
II error:

Definition 2.3.13. The power of a statistical test is

β = inf
θ∈Θ∁

R

β(θ).

The power of a statistical test is the greatest lower bound for the probability of re-
jecting the null hypothesis if the null hypothesis is false. Thus, 1 − β is a least upper
bound for a type II error.

Typically, there is a trade-off between the inverse of the power 1− β and the size of a
statistical test. Extending the rejection region R of a statistical test increases its power
and size, whereas reducing the rejection region decreases its power and size.

Instead of fixing a rejection region corresponding to a given power and size, an alter-
native approach can be used. The alternative procedure is to start with a statistical test
of size α = 1 and decrease α until the null hypothesis is no longer rejected.

Definition 2.3.14. Let H0 be a null hypothesis and φα a corresponding statistical test
of size α, then

p = inf{α : φα(y) = 1}

is called p-value.

For frequentist hypothesis tests I will establish the link to the decision theoretic per-
spective indirectly by showing that they are strongly connected to confidence set es-
timators. The following theorem shows how confidence set estimators can be used to
construct hypothesis tests and vice versa.

Theorem 2.3.15.

1. Assume that for every point null hypothesis θ∗ = θ there is a statistical test φθ of
size α, then the set estimator

δ(y) = {θ ∈ Θ : φθ(y) = 0}

has a confidence level of 1 − α.
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2. Let δ be a set estimator with confidence level γ, then by using the rejection region

Rθ = {y : θ /∈ δ(y)}

a statistical test φθ with the size α of 1-γ can be obtained for every point null
hypothesis θ∗ = θ.

Proof: For every statistical test φθ the restriction that is tested is that θ∗ = θ.
Remember that the size of a statistical test α is defined as the maximum probability
of rejecting the null hypothesis if it is true. If the null hypothesis only contains one
distribution, it follows that for every statistical test the corresponding size is:

α = βφθ
(θ),

where βφθ
denotes the power function of the corresponding test.

1. The confidence level of a set estimator δ(y) is

inf
θ∈Θ

Pθ(θ ∈ δ(Y )).

For every parameter value θ ∈ Θ, the corresponding hypothesis test φθ is used
to decide whether the parameter value should be in this confidence set or not.
Thus, the random set δ(Y ) is {θ : φθ(Y ) = 0}. For every parameter θ, the
probability of it being in the confidence set is thus Pθ(φθ(Y ) = 1); or equivalently
1 − Pθ(φθ(Y ) = 0). Hence, the confidence level can be reexpressed as

inf
θ∈Θ

(1 − Pθ(φθ(Y ) = 1)) = 1 − sup
θ∈Θ

Pθ(φθ(Y ) = 1).

supθ∈Θ Pθ(φθ(Y ) = 1) is the least upper bound for any test φθ to reject the null
hypothesis θ∗ = θ if it is true. By assumption, this term is α for any hypothesis
test φθ. Using the power function, this can be formally expressed as follows

Pθ(φθ(Y ) = 1) = βφθ
(θ) = α.

It follows that 1− supθ∈Θ Pθ(φθ(Y ) = 1) = 1−α, which concludes the proof of the
first part.

2. The size α of a statistical test φθ for the hypothesis θ∗ = θ is

α = βφθ
(θ).

By substituting the power function by its definition, one obtains

βφθ
(θ) = Pθ(φθ(Y ) = 1).

The probability of the hypothesis test φθ to reject the null hypothesis is equal
to the probability of the sample being in the rejection region Pθ(Y ∈ Rθ). The
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rejection region is built such that every sample creating a confidence set that does
not include the null hypothesis parameter value θ is included. Thus, the probability
of the sample being within the rejection region is equal to the probability of the
null hypothesis parameter value θ not being in the confidence region Pθ(θ /∈ δ(Y )).
This in turn can be described by its complement 1 − Pθ(θ ∈ δ(Y )). Since the
confidence level of the confidence region estimator is γ, Pθ(θ ∈ δ(Y )) ≥ γ. Thus,
1 − Pθ(θ ∈ δ(Y )) ≤ 1 − γ

□

Remark 2.3.16. The direction of constructing set estimators from statistical tests will
be of particular importance in the remainder of this work. For a unidimensional param-
eter space, Theorem 2.3.15 shows how to create a confidence interval for the parameter
θ. For a multidimensional parameter space, the application of Theorem 2.3.15 leads to
a confidence region, but it is often of interest to construct a confidence interval for one
parameter θp. This can be achieved in analogy to Theorem 2.3.15 by using hypothesis
tests for the null hypothesis θ∗p = θp.

2.4. Bayesian Inference

Bayesian inference also starts with the problem that for the evaluation of a decision
function δ through equation

L(θ∗, δ(Y )) (2.4.1)

the true parameter θ∗ is unknown and Y is a random variable.
As I have shown in the last section, the defining characteristics of frequentist inference

are to solve this problem by taking the expectation across samples and not making any
distributional assumptions about the value θ of the true parameter θ∗.

The Bayesian solution is somehow the opposite. Instead of taking the expectation
across samples, all inferences are conditioned on the actual observed data set. Addition-
ally, distributional assumptions about the value θ of the true parameter θ∗ are made.
Bayesians are allowed to impose a distribution over model parameters because they are
more liberal in their interpretation of the concept of probability. For a Bayesian, a prob-
ability measure is simply a function that describes the degrees of beliefs for the different
events. Therefore, a pdf p(θ) can be imposed over the different parameter values θ. p(θ)
is commonly called the prior distribution. In Bayesian inference the prior distribution is
part of the statistical model.

Having observed a sample and making all inferences conditional on this, the prior
distribution can be updated to a posterior distribution using Bayes’ rule (Theorem A.2.10
in Appendix A.1). To do this, note that if it is assumed that θ is a realization of a random
vector, the pdf describing the statistical model p(y; θ) is a conditional pdf p(y|θ). Thus,
the pdf describing the posterior distribution over the parameters θ is

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
Θ p(y|θ)p(θ)

. (2.4.2)

20



2. Statistical Inference and Supervised Machine Learning

Many proponents of Bayesian inference typically report the posterior distribution as
end result of statistical inference. However, set and point estimation, and hypothesis
testing are also used. Bayesian inference procedures can be considered decision functions
in equivalence to their frequentist counterparts. However, the Bayesian expected loss is
used to evaluate them rather then the frequentist risk.

Definition 2.4.1. Let the pdf p(θ) describe the prior distribution of the parameters θ,
L(θ, a) be a loss function, and y the observed sample, then

RB(δ, y, p) = Ep(θ|y)[L(θ, δ(y))] =

∫

Θ
L(θ, δ(y))p(θ|y) (2.4.3)

is the Bayesian expected loss for the decision rule δ, given the prior p(θ) having observed
the sample y.

The frequentist risk is an expectation across samples whereas the Bayesian expected
loss is an expectation across parameters. The Bayesian expected loss can be directly
calculated as it does not directly depend on the true state of nature θ∗. Since the poste-
rior distribution p(θ|y) contains all information about the belief about θ∗, all statistical
procedures only describe certain features of the posterior and are thus easy to derive.

2.4.1. Point Estimation

One popular Bayesian point estimator is the mean of the posterior distribution, that is,

δ(y) =

∫

θ∈Θ
θp(θ|y)dθ.

Since the full posterior is typically known, the mean estimator can be directly calculated.
The mean estimator is the point estimator that minimizes the Bayesian expected loss
with respect to the squared loss.

Another popular Bayesian point estimator is the maximum a posteriori (MAP) esti-
mator. It is simply the mode of the posterior distribution. If the prior is flat, that is,
p(θ) = c for some constant c, the MAP estimator is equivalent to the ML estimator.

2.4.2. Set Estimation

Credibility regions are the Bayesian counterparts to confidence regions. In contrast to
confidence regions, credibility regions are easy to conceptualize.

Definition 2.4.2. A so-called x% credibility region ΘR ⊂ Θ is a subset of the parameter
space that contains x% of the probability mass of the posterior distribution, that is, a
subset ΘR of the form such that

∫

ΘR

p(θ|y)dθ ≥ x%.
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2.4.3. Hypothesis Testing

Bayesian hypothesis testing is more evolved than point estimation and set estimation.
First, note that a null hypothesis can also be interpreted as a statistical model. Treating
the parameters as random variables allows calculation of the probability (or density) of
the data given the model, which is

p(y|m) =

∫

Θ
p(y|θ,m)p(θ|m)dθ,

where m is the realization of a random variable M that encodes the choice of the statis-
tical model as well as the prior. The probability of the model given the data is thus

p(m|y) =
p(y|m)p(m)

p(y)
,

where p(m) is the prior probability of the model. The probability of the data p(y) is
hard to compute. However, when comparing two models m1,m2, as done in hypothesis
testing, one is only interested in the ratio of the probabilities

p(y|m1)p(m1)

p(y|m2)p(m2)
,

for which p(y) disappears. The additional assumption that the prior probability p(m)
for every model is the same further simplifies this term to

K =
p(y|m1)

p(y|m2)
.

This term is known as the Bayes factor. If the ratio K > 1, the data support model m1

over m2. The greater K is, the stronger is the support for m1.

2.5. Supervised Machine Learning

Ultimately, the main task of statistical inference is to reduce the uncertainty about
the true generating distribution θ∗ using a sample. Supervised machine learning is
similarly concerned with finding a prediction function based on a finite data set that
generalizes beyond the observed data set. I will first describe supervised machine learning
without making the connection to statistical learning explicit as is typically done. For
an elaborate introduction to machine learning, see e.g., Bishop (2006), Duda, Hart, and
Stork (2001), Hastie, Tibshirani, and Friedman (2001), Murphy (2012).

The task is to find a function f(x) based on IVs contained in the vector x (e.g., a pixel
image of a digit) that predicts a DV y (e.g., the corresponding digit). Every pair (x, y) is
assumed to be generated by an underlying probability distribution p(x, y). Thus, every
pair (x, y) can be interpreted as a sample. Additionally, it is typically assumed that all
samples are independent of each other. The difference between unsupervised learning,
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which I will not cover here, and supervised learning is that for unsupervised learning no
observations of the DV y are available.

Learning algorithms are employed in order to obtain a prediction function. As input,
a learning algorithms needs multiple examples (xi, yi), which are commonly gathered in
a data set D = {(xi, yi) : i ∈ 1, . . . , N}.

Definition 2.5.1. A learning algorithm I(D) is a function that maps a data set D onto
a prediction function f(x). The data set D used as input for a learning algorithm is
called the training set.

After a prediction function f(x) has been obtained, a central question is how well it
will perform on new examples that were not part of the training set. The first step to
answering this question is to quantify what good performance means. This is done via
a loss function, which assigns a cost to every prediction f(x) based on the true value y.

Note that while both the loss functions used in statistical inference and supervised
machine learning match the general definition (see Definition 2.2.3), they are used dif-
ferently. For statistical inference, the true state of nature is represented by the true
generating distribution, which is unknown. For supervised machine learning, the true
state of nature is the true value y, which is directly observed and thus known. For sta-
tistical inference the action corresponds to the results of a statistical inference procedure
(e.g., a point estimate). For supervised learning the action is the prediction f(x).

For regression tasks, a popular loss function is again the squared loss

L(y, f(x)) = (y − f(x))2.

Given a loss function, the performance of a prediction function f(x) is simply the
expected loss, which is again called risk.

Definition 2.5.2. The risk of a prediction function is

R(f) = Ep[L(y, f(x))] =

∫ ∫

ΩX×ΩY

L(y, f(x))p(x, y)dxdy.

The risk depends on the unknown generating distribution p(x, y). To estimate the
risk, a finite data set Dh, the so-called test set, data set is used. To obtain an unbiased
estimate, the test set Dh must not contain any sample that was included in the training
set Dt.

Definition 2.5.3. The empirical risk of a prediction function based on a data set D,
|D| = N is

R(f) =
1

N

∑

(x,y)∈D

L(y, f(x)).
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In practice, the training set and the test set are typically obtained by splitting a data
set D. Thus, every member (x, y) of the data set is used for either training or testing.

Cross-validation can be employed to use every member (x, y) for training and testing.
This method basically repeats the splitting into training and test set a number of times.
The data set D is partitioned into n disjunctive subsets. The number of subsets n is
commonly referred to as folds. For each subset Di, the learning algorithm gets the
remainder of the data D \Di as input. The loss of all examples in Di is calculated, and
the overall estimate for the expected loss is simply the mean of the loss of all examples.
Formally, the cross-validation risk is as follows.

Definition 2.5.4. Given a learning algorithm I, a data set D of size N , a loss function
L, and a partition P of the data set D, the cross-validation risk of a learning algorithm
is

R(I) =
1

N

∑

Di∈P

∑

(x,y)∈Di

L(y, I(D \Di)(x)).

In contrast to the empirical risk, the cross-validation risk is not a property of a pre-
diction function but rather of a learning algorithm. It provides an estimate for the
to-be-expected risk of the prediction function f(x) that results from training a learning
algorithm with a training set of the size |D \ Di|. I speak of the set size despite the
fact that |D \Di| might be different for every Di, because in practice the partition P is
chosen such that |D \Di| is roughly the same for every Di.

2.6. Connections Between Supervised Learning and Statistical
Inference

An obvious question is why new methods were developed for supervised learning instead
of simply using the established statistical inference procedures. I will try to answer
this question by describing the statistical inference solution to the supervised learning
problem.

First, instead of using a learning algorithm I(D) to obtain the prediction function,
a statistical modeler could start with specifying a statistical model for the conditional
distribution of dependent variable given the independent variables p(y|x; θ). Given a
training set D, which in their terminology is a sample with many iid observations, they
perform statistical inference. A frequentist might compute a point estimate for the
parameter θ and use this to get a point estimate for the expected value of the DV Y ,
given some observed IVs x E(Y |x). Alternatively, a frequentist could compute confidence
regions for the parameter θ and then use them to compute a confidence interval for
E(Y |x). A Bayesian could obtain a posterior distribution p(θ|D) and link this with the
likelihood function p(y|x, θ) to obtain a posterior predictive distribution p(y|x,D) for
the DV Y given the IVs x.

The problem with applying a purely statistical approach to solve the supervised learn-
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ing problem is the core assumption of statistical inference, namely that the true gener-
ating distribution is a member of the statistical model. This assumption itself can be
tested. However these tests typically lack power (Breiman, 2001, Section 5.2). Besides,
for statistical inferences to be valid the correctly specified assumption needs to be guar-
anteed to be correct. This level of certainty can not be reached with any procedure that
depends on data.

For typical supervised learning problems, making inferences that rely on the correctly
specified assumption would be even more problematic than for conventional statistical
inference problems. Statistical inference was originally developed for relatively simple
problems, for which arguments that a statistical model is correctly specified might exist.
Supervised learning on the other hand has been dealing with problems where the number
of IVs is typically in the thousands, if not greater. Here, it becomes unrealistic to specify
a set containing the true generating distribution. The prediction intervals obtained based
on a misspecified statistical model, using either a frequentist or a Bayesian approach,
are essentially meaningless. One remedy could be to use very broad statistical models.
This however is accompanied by the problem that it would require huge data sets to
obtain reasonable prediction intervals.

Supervised learning solves this issue by treating the learning algorithm as a black box.
Inferences are only made about the outcome of the learning algorithm, the prediction
function. The learning algorithm may be a statistical model in combination with an
estimator. Indeed, many learning algorithms were developed using statistical inference
ideas. However, other learning algorithms are motivated completely differently.

To estimate the risk without making any assumptions about either the learning algo-
rithm or the true generating distribution, the risk is estimated nonparametically based
on a holdout set or via cross-validation.

Reversing the question whether statistical inference can be used for supervised learn-
ing, the advantages of using supervised learning methods for typical statistical inference
tasks will be addressed in the context of EEG analysis in Chapter 5.

2.7. Model Validation and Model Selection

2.7.1. Model Validation

I have emphasized that statistical inference, be it Bayesian or frequentist, relies on the
assumption that the employed statistical model is correctly specified. Model validation
in the context of statistical inference refers to the process of assessing this assumption.
For a family of statistical models such as the GLM, there are typically a number of
recommended approaches to assess model validity. For the GLM, for example, residual
analysis is one approach to assess model specification. An alternative to model validation
is sensitivity analysis (Saltelli, Chan, & Scott, 2000).

One general frequentist approach for model validation, which is used for many families
of statistical models, is hypothesis testing. The rationale for doing this is to use the
statistical model as the null hypothesis within the encompassing model of “all probability
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distributions.” If a null hypothesis test at a given size α does not reject the statistical
model, the model is assumed to be correctly specified. The main problem with this
approach is that it is an improper use of hypothesis tests as it accepts a non-rejection
of the null hypothesis and is in contradiction to the underlying decision theory. In other
words, we can never confirm the veracity of a model and can only fail to do so (Tomarken
& Waller, 2003).

In Bayesian inference, the statistical model as well as the accompanying prior have
to be validated. There are numerous approaches to do this. For a review, see Gelman
et al. (2013, Chapter 6). One particular popularly approach involves comparing data
generated by the posterior predictive distribution with actual observed data. For more
details about this, see Gelman et al. (2013, Chapter 6).

In supervised learning, model validation consists of estimating the empirical risk of the
prediction function. Thus, whereas the goal of model validation for frequentist inference
and Bayesian inference is ultimately the same, it is very different for supervised machine
learning.

2.7.2. Model Selection

An issue closely related to model validation is model selection. The task here is to choose
the best model for a given data set. In practice, a set of candidate models is proposed and
the best model is selected based on a model-scoring method. A model-scoring method
typically trades off model fit against the parsimony of the model. A vast amount of
different model-scoring methods exist. For some of the most popular, see Claeskens and
Hjort (2008) and Burnham (2013).

One particular popular model selection procedure within frequentist inference is again
a method based on the hypothesis test. Hypothesis testing for model selection works
much like hypothesis testing for model validation. It can only be used to decide between
two models. However, by repeating the process a decision can be taken between many
models, but it only works if the models are nested within each other. That is, one model
(called the restricted model) must be interpretable as the null hypothesis within the
other model (called the full model). If the corresponding statistical test rejects the null
hypothesis, the full model is chosen. Otherwise, the reduced one is selected.

For Bayesian inference, essentially the same strategy as the one for Bayesian hypothesis
testing (Section 2.4.3) is commonly used: For every model m, the probability of the data
under this model p(y|m) is computed. The one that results in the highest probability of
the data is selected. The models do not have to be nested.

For supervised learning, model selection corresponds to prediction function selection.
The prediction function with the least empirical risk is commonly selected.
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In this chapter, I present the new panel modeling technique Gaussian process panel
modeling (GPPM). GPPM is a powerful technique that includes most conventional
panel modeling techniques as special cases. However, it is also able to represent new
models that cannot be represented using available methods. In addition, it provides a
new perspective on known models, since its language for model specification is different.

GPPM is based on the flexible function-fitting approach Gaussian process regres-
sion (GPR), which has recently gained popularity in the field of Bayesian supervised
machine learning (Rasmussen, 2006). GPR is originally a Bayesian method. As a conse-
quence, adapting the inference procedures used in GPR for GPPM also leads to Bayesian
procedures. However, I have also developed frequentist inference procedures for GPPM.
To do this, I borrowed ideas from SEM.

Before I introduce SEM, I will introduce the GLM in Section 3.1, to prepare the
introduction of SEM and GPR. Both GPR and SEM can be interpreted as extensions of
the GLM. I then focus on SEM and its accompanying frequentist inferences procedures
in Section 3.2. Knowledge of SEM is also important for the comparison of longitudinal
SEM and GPPM presented in the next chapter. In Section 3.3, I turn to GPR. In the
following section, I will take the first step towards adapting GPR for the analysis of
panel data by reviewing how GPR is used for time series analysis, which I call Gaussian
process time series modeling (GPTSM).

In Section 3.5, I will extend the time series modeling method GPTSM to the panel
data method GPPM, whose favorable properties I will delineate in Chapter 4. A time
series can be regarded as a special case of a panel data set for which only one person
has been observed. Thus, to extend a time series modeling method to a panel modeling
technique a mechanism to specify a simultaneous model for multiple persons has to be
developed. My proposal for extending GPTSM constitutes the core of Section 3.5.

Since it is a time series modeling method, the focus of GPTSM is on modeling intra-
individual variation. GPTSM allows specification of a wide range of models for intra-
individual variation that exceed conventional time series methods such as autoregres-
sive–moving average models by far. In a panel modeling method like GPPM, modeling
the inter-individual variation is also crucially important. In Section 3.6, I will describe
the possibilities to model inter-individual variation in GPPM.

Bayesian inference techniques, as derived from GPR, can be used as a statistical infer-
ence framework for GPPMs. However, frequentist inference is still the de-facto standard
approach within psychology. Additionally, most existing panel modeling techniques are
commonly employed in conjunction with frequentist inference. I will present a ML esti-
mator, a frequentist hypothesis test procedure, and a confidence set estimator based on
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the hypothesis test procedure for GPPM in Section 3.7. I will also provide recommen-
dations for model selection and validation.

In Section 3.8, I will provide a brief overview of how I have implemented GPPM before
closing this chapter with a comparison to related work.

3.1. General Linear Model

Both GPR and SEM can be interpreted as extensions of the GLM. The GLM is one
of the most widely used statistical modeling techniques. While the term strictly only
describes a family of statistical models, it is commonly used in conjunction with ML
estimation and frequentist inference. The GLM is extensively used in statistics as well
as in machine learning. In machine learning, it is commonly known as multiple linear
regression (MLR). Within statistics, it is known under both names, MLR and GLM.

The GLM in conjunction with its ML estimator can be interpreted as a learning
algorithm that is motivated by statistical inference principles. Statistical models of the
conditional distribution of the DV Yi given an observation for the IVs xi that can be
represented as GLM are of the form

Yi|xi ∼ {N (x⊤i β, σ
2
ϵ ) : (β, σ2

ϵ ) ∈ RP × R+
0 }.

The vector β is known as the weight vector in supervised learning. In psychology, the
entries of β are typically referred to as regression coefficients. P denotes the number
of IVs and consequently the dimensionality of the vector β. σ2

ϵ is commonly known as
error variance. For GLM, the iid assumption is employed. It follows that the statistical
model for a data set D = {(xi, yi) : i ∈ 1, . . . , N} of size N is

Y |X ∼ {N (Xβ, σ2
ϵ IN ) : (β, σ2

ϵ ) ∈ RP × R+
0 }.

The matrix

X =

⎡
⎢⎣
x⊤1
...

x⊤N

⎤
⎥⎦

gathers the observed values. The random vector Y = [Y1, . . . , YN ]⊤ represents the N
observations of the DV. Thus, y = [y1, . . . , yN ]⊤ is a realization of the random vector
Y . IN is the identity matrix of size N ×N .

When the GLM is used for statistical inference, the goal is to make probabilistic state-
ments about the values of the parameters (β, σ2

ϵ ). Most often the statements of interest
are about the regression coefficients within β, and not about the error variance. Most
parametric tests as employed in psychological research (like the t-test and ANOVA) em-
ploy a variant of the GLM as the statistical model (Cohen, Cohen, West, & Aiken, 2003).
They usually differ in the employed design matrix X and the probabilistic statements
that are made about the coefficients within β. For inference, frequentist concepts (ML
estimator, frequentist confidence regions, and hypothesis tests) are commonly used. For
a detailed treatment of this topic, see, e.g., Cohen (1968, 6, Pt.1).
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When the GLM is used for supervised learning, its statistical model is employed as
the basis of a learning algorithm. Recall that a learning algorithm returns a prediction
function f(x) based on a data set D.

Here, it is worth commenting on slight notational differences between the GLM as
used in psychology and the GLM as used in supervised learning. In supervised learning,
to emphasize that the prediction function should produce good predictions for any value
of the IV, one particular value of the IVs is denoted by x. In psychology, one particular
value of the IVs is typically denoted as xi to emphasize that it is typically part of an
observed data set and refers to the IVs of one person. Thus, in the remainder of this
section Y |x equates to Yi|xi in the notation of the GLM introduced at the beginning of
this section.

I have already presented one approach to turn a statistical model on a conditional
distribution into a learning algorithm. Specifically, a point estimate θ̂ for the statistical
model is first obtained. The point estimate represents a particular conditional distribu-
tion. The expected value of the DV given the IVs under this conditional distribution θ̂
is used as prediction function, that is, f(x) = Eθ̂[Y |x]. For the GLM, any parameter

estimate θ̂ represents a different Gaussian distribution for the conditional distribution
of Y |x. Since the mean of a Gaussian random vector is independent of its variance,
Eθ̂[Y |x] is independent of the value of the error variance σ2

ϵ . Thus, it suffices to obtain
a point estimate for the weights β. Given a data set D = (X,y), the ML estimate for
the weights β is

β̂ = (X⊤X)−1X⊤y.

Proofs of this can be found in, e.g., Bishop (2006, Section 3.1.1). Using the ML estimate
β̂, the prediction function becomes f(x) = x⊤β̂. This prediction function can then be
evaluated, for example, by measures of explained variance (which is proportional to the
squared loss). To obtain an estimate, either the hold-out method or cross-validation is
typically employed. For a detailed treatment of MLR as used in supervised learning,
see, e.g., Bishop (2006, Chapter 3).

3.2. Structural Equation Modeling

For the development of frequentist inference procedures for GPPM, I borrowed cen-
tral ideas from SEM. I will later also compare GPPM with longitudinal SEM. Thus,
providing an introduction to SEM seems appropriate.

SEM is a statistical method widely used within psychology. SEM allows the joint anal-
ysis of latent and observed variables and their interrelations, while explicitly account-
ing for measurement error. Importantly, SEM provides an unified and comprehensive
statistical approach to test hypotheses on these interrelations, and allows for complex
inferences on multivariate, correlational data.

A large body of work on the topic of SEM exists. The conventional reference remains
Bollen (1989). Kaplan (2009) covers more recent developments. The most exhaustive
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treatment is Hoyle (2014). For the mathematically less inclined readers, Kline (2011)
provides a good introduction. SEM is virtually unused in machine learning. It is tra-
ditionally used in conjunction with frequentist inference. Of the different equivalent
notations for SEM, I have selected the reticular action model (RAM) notation (McArdle
& McDonald, 1984).

3.2.1. Structural Equation Models

The SEM can be interpreted as a generalization of the GLM. In the GLM, using the
notation common in psychology, the DV Yi is modeled as a linear function of the IVs xi
plus a random perturbation, which usually is thought to represent measurement error
but subsumes any kind of unsystematic perturbation of the system of equations

Yi = x⊤i β + ϵi, ϵi ∼ N (0, σ2
ϵ ). (3.2.1)

In SEM, this concept is extended to a system of linear equations between a set of
variables. All variables are contained within the random vector V . In contrast to GLM,
in texts about SEM, the person index i is usually omitted for the random vector Vi.
Thus, I will also omit it here, although the logic of GLM notation would recommend
writing Vi. A system of noisy linear equations among the variables represented in the
vector V can be expressed as follows:

V = AV + U (3.2.2)

The A matrix contains all linear equations between the variables, and the random vector
U represents the random perturbations for the equations. The random vector U is
assumed to be distributed according to a Gaussian distribution, i.e., U ∼ N (m,S). The
covariance matrix S is allowed to be any valid covariance matrix, i.e., any symmetric,
positive semidefinite matrix. Thus, the random perturbations for the different equations
can be assumed to be correlated.

In order to obtain an equation that has the variables V on only one side of the equality
sign, Equation 3.2.2 can be rearranged as follows:

V = AV + U

⇐⇒ V −AV = U

⇐⇒ (I −A)V = U

⇐⇒ V = (I −A)−1U (3.2.3)

I is an appropriately sized identity matrix.
For known and fixed matrix A, mean vector m, and covariance matrix S, (I − A)−1

is a matrix and U a Gaussian random vector. Thus, using the linear transformation of
Gaussian random vectors Theorem (Theorem A.3.8 in Appendix A.3), the distribution
for variables within the random vector V implied by Equation 3.2.3 is

V ∼ N
(

(I −A)−1m, (I −A)−1S(I −A)−1⊤
)
. (3.2.4)
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SEM uses the concept of latent variables. These are variables within V that are
not directly observable. Thus, V may be partitioned in observable variables within the
random vector Y and latent variables within the random vector L: V = [Y ⊤, L⊤]⊤.

The implied distribution for the random vector Y , which represents the observed
variables, is obtained by marginalizing over the joint distribution displayed in Equation
3.2.4. Marginalization can be expressed by a multiplication with a filter matrix F , such
that Y ∼ FV . The filter matrix F is a matrix of ones and zeros of the following form.
Let H be the number of observed variables and J the number of latent variables, then
F = [IH , 0HJ ], where IH is the H × H identity matrix and 0HJ the H × J matrix of
zeros. Using the linear transformation of Gaussian random vectors Theorem (Theorem
A.3.8 in Appendix A.3) again, the implied distribution for Y is

Y ∼ N
(
F (I −A)−1m,F (I −A)−1S(I −A)−1⊤F⊤

)
. (3.2.5)

This describes one particular distribution for the observed variables within Y .
In order to obtain a statistical model, the matrices A,m, and S are parameterized.

This leads to the following statistical model:

Y ∼
{
N
(
F (I −A(θ))−1m(θ), F (I −A(θ))−1S(θ)(I −A(θ))−1⊤F⊤

)
: θ ∈ Θ

}
.

In SEM, every entry of A,m, S may be replaced by a single free parameter. Alternatively,
the entry may be set to a fixed value. As a core assumption of SEM, for every parameter
value θ ∈ Θ, the resulting distribution has to be Gaussian. This condition can be
equivalently expressed as:

1. S(θ) is a covariance matrix, that is, a symmetrical positive semidefinite matrix.

2. m(θ) is a valid mean vector, that is m(θ) ∈ RJ+H .

3. (I −A(θ)) is invertible.

Taken together the formal definition of a SEM is as follows.

Definition 3.2.1. A structural equation model (SEM) is a statistical model of the form

Yi ∼
{
N
(
F (I −A(θ))−1m(θ), F (I −A(θ))−1S(θ)(I −A(θ))−1⊤F⊤

)
: θ ∈ Θ

}
,

where every entry aij(θ) of A(θ), every entry mi(θ) of m(θ), and every entry sij(θ)
of S(θ) is either a constant or corresponds to exactly one entry θp of the parameter
vector θ. Additionally, for every parameter value θ ∈ Θ, S(θ) has to be a symmetrical
positive semidefinite matrix, m(θ) has to be in RJ+H , and the matrix I − A(θ) has to
be invertible.

Under the iid assumption, the statistical model for a data set y = {yi : i ∈ 1, . . . , N}
of multiple realizations yi of the observable variables Y follows directly. Let µ(θ) =
F (I−A(θ))−1m(θ) be the function describing the model-implied mean given a parameter
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value θ, and let Σ(θ) = F (I−A(θ)−1S(θ)(I−A(θ))−1⊤F⊤ be the corresponding function
describing the model-implied covariance. The statistical model for the data set y is then

Y ∼

{
n∏

i=1

N (yi;µ(θ),Σ(θ)) : θ ∈ Θ

}
,

where Y now is the random vector of which the N observations y are a realization. In
psychology, every observation yi typically corresponds to the data of one person.

Instead of specifying a SEM algebraically by a parameterization of the A,S,m matri-
ces, it can also be graphically represented using a path diagram. Every path diagram
corresponds to a certain algebraic representation and vice versa. For an introduction to
path diagrams as used for SEM, see, e.g., Kline (2011).

For some applications it is important to be able to individualize the model for each
person. For example, the LGCM requires individualization to allow the measurement
time points to vary between persons. This motivates an extension of standard SEM,
called definition variables.

Definition variables allow personalization of the matrices A,S,F , such that the fixed
values are potentially different for each person. However, the entries of the matrices that
contain free parameters are the same across all persons. Formally, the parameterization
of the SEM matrices changes as exemplified for the A matrix in the following. Instead of
only being parameterized by the parameters, the A matrix also depends on the definition
variables values xi for every person i: A(θ;xi). As a result, the model-implied mean and
covariance matrices additionally depend on the definition variables. Thus, formally,
definition variables change the statistical model for a data set D to

Y ∼

{
N∏

i=1

N (yi, µ(θ;xi),Σ(θ;xi)) : θ ∈ Θ

}
.

Another extension of standard SEMs is to drop the assumption that every entry of
A(θ), S(θ), and m(θ) is either a fixed value or a parameter θp. Instead of a single param-
eter, arbitrary functions of one or multiple parameters are allowed. Combining this idea
with definition variables allows each entry of the SEM matrices to be an arbitrary func-
tion of multiple parameters and the person-specific definition variables of the value xi.
The only constraint is that for every parameter value θ, and every person, as represented
by their corresponding definition variables value xi, the result has to be a Gaussian. I
will call the resulting method extended SEM (Neale et al., 2016). It is covered by the
formalism introduced for definition variables.

3.2.2. Frequentist Inference

Inference in the context of SEM refers to making probabilistic statements about the
parameters of a SEM. The frequentist approach to inference still dominates SEM. I will
briefly explain how this inference procedure is typically applied to SEMs. For simplicity,
I will restrict the presentation to standard SEMs. All introduced procedures can be
expanded to be applicable to extended SEMs.
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Point Estimation

The most commonly used point estimator for SEMs is the ML estimator. The ML
estimate θ̂ for any SEM, as represented by parameterized mean vector µ(θ), covariance
matrix Σ(θ), and corresponding parameter space Θ, and given a data set y = {yi : i ∈
1, . . . , N}, is

θ̂ = arg max
θ∈Θ

N∏

i=1

N (yi;µ(θ),Σ(θ)).

Hypothesis Testing

By far the most used hypothesis test for SEM is the likelihood-ratio test. The test
statistic for the likelihood-ratio test is the likelihood-ratio statistic.

Definition 3.2.2. Let M = {p(y; θ) : θ ∈ Θ} be a parametrical statistical model,
H0 : θ∗ ∈ ΘR ⊂ Θ a null hypothesis, and y = {yi : i ∈ 1, . . . , N} a data set. Furthermore,
let θ̂ be the unrestricted ML estimate, that is, the parameter value θ̂ ∈ Θ that maximizes
the likelihood p(y; θ), and θ̂R the restricted ML estimate, that is, the parameter value
θ̂ ∈ ΘR that maximizes the likelihood p(y; θ), then

T (y) = −2 log

(
p(y; θ̂R)

p(y; θ̂)

)

is called likelihood-ratio statistic.

The restricted parameter space ΘR is a real subset of the parameter space Θ. There-
fore, the fraction p(y; θ̂R)/p(y; θ̂) is always smaller than 1, and, consequently, the likelihood-
ratio statistic is always greater than 0. The larger the likelihood-ratio statistic, the
greater the discrepancy between the likelihood given the null hypothesis and the likeli-
hood given the full model, and, thus, the more evidence there is for rejecting the null
hypothesis.

To obtain a proper statistical test based on the likelihood-ratio statistic a critical value
cα is needed such that the statistical test with the rejection region R = {T (y) > cα}
has size α. The strategy to obtain the critical value cα is to derive the distribution as
represented by the pdf p(T (y)) of the test statistic T (Y ) if the null hypothesis is true.
By then choosing cα such that

∫ ∞

cα

T (y)p(T (y))dT (y) = α

or equivalently ∫ cα

−∞
T (y)p(T (y))dT (y) = 1 − α (3.2.6)

one obtains a test of size α. For a limited class of statistical models and corresponding
null hypotheses, the distribution of the test statistic T (Y ) under the null hypothesis can
be derived. However, the exact distribution is not known for the general case.
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But, the distribution of the likelihood-ratio test statistic T (Y ) under the null hypoth-
esis can be approximated using only a fairly general set of conditions (Taboga, 2012c).
One of the two major conditions is that both the restricted ML estimator θ̂R(Y ) and the
unrestricted ML estimator θ̂(Y ) are asymptotically distributed according to a Gaussian.
This is typically fulfilled for a large enough data set y if the observations yi are iid,
as is the case for SEM. Multiple other rather technical conditions have to fulfilled for
the maximum likelihood estimators to be approximately Gaussian (Taboga, 2012d). For
SEMs, these conditions are typically met.

The second major condition is that the null hypothesis is nested within the statistical
model, which is defined as follows.

Definition 3.2.3. Let M = {p(y; θ) : θ ∈ Θ} be a parametrical statistical model with
corresponding P -dimensional parameter space Θ ⊂ RP , and null hypothesis H0 : θ∗ ∈
ΘR. The null hypothesis H0 is nested within the statistical model M iff a function
g : RP → RQ with Q ≤ P exists such that the restricted parameter space ΘR can be
represented as follows:

ΘR = {θ : θ ∈ Θ ∧ g(θ) = 0}

The nested hypothesis H0 is said to have Q degrees of freedom difference as compared
to the statistical model M.

For nested hypotheses the following theorem derives the approximate distribution of
the test statistic T (Y ) under the null hypothesis.

Theorem 3.2.4. Let T (Y (N)) be the random variable that describes the distribution of
the likelihood-ratio test statistic for data sets of size N . If the null hypothesis g(θ) = 0 is
true, g is differentiable with a Jacobian matrix Jg(θ) of full rank Q, and the requirements
for both the unrestricted und the restricted ML estimator to have asymptotic Gaussian
distribution (see Taboga, 2012c) are fulfilled, then the distribution of likelihood-ratio
test statistic

T (Y (N))

converges in distribution (Taboga, 2012a) to a Chi-squared distribution with Q degrees

of freedom. In shorthand one writes T (Y (N))
d−→ χ2(Q).

Knowing the approximate distribution of T (Y (N)) under the null hypothesis, a hy-
pothesis test with approximate size α can be constructed (see also Equation 3.2.6).

Theorem 3.2.5. Let M be a parametrical statistical model, H0 : θ∗ ∈ ΘR a nested
hypothesis with Q degrees of freedom difference, y = {yi : i ∈ 1, . . . , N} a data set, and
T (y) the corresponding likelihood-ratio statistic, then the critical value cα such that the
statistical test with rejection region {T (y) > cα} has the size α is

cα = F−1
Q (1 − α),
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where F−1
Q is the inverse of the cumulative distribution function of a Chi-squared distri-

bution with Q degrees of freedom.

The statistical test using the likelihood-ratio statistic in correspondence with the crit-
ical value from the last theorem is known as the likelihood-ratio test or Chi-squared
test.

Confidence Regions

There are two common approaches to obtaining confidence regions for SEMs, Wald-type
and likelihood-based. While Wald-type confidence regions were more popular histor-
ically, it has recently been argued that likelihood-based confidence regions should be
favored (Pek & Wu, 2015). Thus, I will only present likelihood-based confidence regions.

The main idea of likelihood-based confidence regions is to use the likelihood-ratio test
to construct confidence regions for the values of a parameter vector θ and confidence
intervals for the values of a parameter θp. As I have shown in Theorem 2.3.15, confidence
regions can be constructed from hypothesis tests for point hypotheses θ∗ = θ. The idea
is to build a confidence interval such as if we would test every point θ ∈ Θ of a parameter
space using a hypothesis test with corresponding null hypothesis H0 : θ∗ = θ of size α. If
the point is rejected, it is not included in the confidence region. This procedure produces
a confidence region with confidence level 1 − α.

A point hypothesis θ∗ = θ is a special case of a nested hypothesis. Thus, the likelihood-
ratio test can be used to generate confidence regions.

In Remark 2.3.16 I have elaborated how Theorem 2.3.15 can be extended to obtain
confidence intervals for the values of a single parameter θp in a multi-parameter model.
Essentially, the same strategy can be used as for confidence regions, but instead of a
statistical test for the point hypothesis θ∗ = θ, a statistical test for the hypothesis
θ∗p = θp is required. Hypotheses of the form θ∗p = θp that only fix one parameter are
also nested hypotheses. Thus, confidence intervals can also be constructed using the
likelihood-ratio test.

3.2.3. Model Validation and Selection

As in the case of all statistical inference methods (see Section 2.7.1), model validation
in the context of SEM refers to validation of the assumption that the statistical model
is correctly specified. The approach originally proposed to assert this assumption for
SEMs is the hypothesis test approach (see also Section 2.7.1). The model is interpreted
as null hypothesis within the larger model of “all Gaussian distributions.” If the null
hypothesis is not rejected, it is assumed that the model is correctly specified. Thus, this
approach assumes that the true distribution is a Gaussian distribution without assessing
this assumption. The likelihood-ratio test statistic for this hypothesis test is

χ2 = −2 log

(
sup(µ,Σ)∈ΘR

N (y;µ,Σ)

sup(µ,Σ)∈ΘN (y;µ,Σ)

)
. (3.2.7)
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ΘR contains all combinations of the mean vector µ and covariance matrix Σ that the
proposed SEM allows, and Θ contains all µ and Σ combinations of the appropriate size.

Besides it being generally problematic to use hypothesis tests for model validation (see
Section 2.7.1), a further problem of using the likelihood-ratio test for model evaluation
is that the null hypothesis is almost always rejected, since the χ2 value is highly sensitive
to the sample size N (Little, 2013, Chapter 4, Section “Statistical Rationale”). This,
however, is not a defect of the likelihood-ratio test. It is simply a consequence of the
fact that statistical power increases with sample size and that virtually all SEMs are
misspecified.

As a remedy, multiple other approaches, so-called fit indices, have been developed to
validate SEMs. Almost all fit indices involve a trade-off between goodness of fit (i.e., the
likelihood of the data at the ML estimate) and model complexity. For an introduction
see, e.g., Little (2013, Chapter 4) or Kaplan (2009, Chapter 6). However, the problem
with fit indices is that none of them accesses the correct specification of a model (Barrett,
2007). They are simply heuristics for scoring statistical models. Despite this fact, in
practice, fit indices are commonly used to validate SEMs. Given thresholds of acceptable
fit that are results of negotiations in a particular field, the model is then used as if it
were certain that it is correctly specified.

Model selection is closely related to model validation. Instead of validating one par-
ticular model, a best of a set of models is selected. As such, the fit indices that are used
to validate a SEM can also be employed to select between a set of competing SEMs.
One simply selects the SEM with the highest score.

One alternative approach for model selection in the context of SEM is the hypothesis
testing approach (see Section 2.7.1). That is, one starts with a basic model and extends
the basis model as long as the model fit is improved. A likelihood-ratio test judges
whether the model fit is improved by the extension. The extended model takes the role
of the statistical model and the restricted model represents the null hypothesis. As a
consequence, the restricted model has to be nested in the extended model.

3.2.4. Longitudinal Structural Equation Modeling

In longitudinal SEM, SEM is used for the analysis of panel data. For extended coverage
of the topic, see Little (2013). I will limit the presentation to one example, namely the
LGCM, which is particularly relevant for developmental and lifespan psychology, as it
allows modeling of development using individual trajectories, thus, capturing between-
person differences in development.

Assume that a univariate panel data set y = {yi : 1, . . . , N} has been observed. Every
observation yi is a realization of a random vector Yi and contains all data for person
i. The jth entry Yij of of the random vector Yi corresponds to the jth observation for
person i.

SEM can be used to specify a model for one person as represented by the random vector
Yi. The model for all persons follows from the iid assumption. One straightforward model
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(a) Fixed effects LGCM (b) Regular LGCM

Figure 3.1.: Path diagrams displaying two LGCMs for three time points with uncorre-
lated latent factors and homogeneous residual error variances. Panel (a) dis-
plays the fixed effects LGCM that does not allow any variation in the slope
and intercept parameters between persons. Panel (b) shows the LGCM that
allows for variation in both parameters. a refers to the latent variable rep-
resenting the intercept and b to the latent variable representing the slope.
µa refers to the mean intercept and µb to the mean slope. In the case of
the fixed effects LGCM, the means correspond to the value of each person,
since there is no variation between persons. σ2

a and σ2
b refer to the variance

of the mean and the slope respectively. σ2
ϵ denotes the measurement error

variance. t2, t3 encode the time points of the respective observation. The
time point of the first observation is implicitly encoded. Finally, Y1, Y2, Y3
are the observed variables, each corresponding to one time point.

for a person’s data yi is to assume a linear trend. That is,

Yi,j = a + btj + ϵi,j , (3.2.8)

with a ∈ R representing the intercept, b ∈ R representing the slope, tj ∈ R encoding the
time point of the jth measurement, and ϵi,j ∼ N (0, σ2

ϵ ) representing the measurement
error. Figure 3.1a displays the corresponding path diagram of the resulting SEM for
three time points.

It is common to allow the intercept a as well as the slope b to vary between persons.
This is achieved by allowing each person to have their individual slope and intercept
parameter:

Yi,j = ai + bitj + ϵi,j . (3.2.9)
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Additionally, it is assumed that the person-specific parameters ai, bi are realizations
of a Gaussian between-person distribution. Formally, this can be equivalently but more
compactly represented by stating that every person-specific parameter ai, bi is distributed
as follows:

ai ∼ N (µa, σ
2
a), bi ∼ N (µb,Σ

2
b). (3.2.10)

Correlation between ai and bi can also be modeled.
This is also a SEM, commonly known as the LGCM. The corresponding path diagram

is shown in Figure 3.1b. In the standard SEM representation of the LGCM the jth
observation has to be made at the same time point for every person. Definition variables
can be used to avoid this restriction. For this, the quantities tj that encode the time
point of the measurements are included as definition variables ti,j .

3.3. Gaussian Process Regression

3.3.1. Weight-Space View

In this section, I will present GPR, the Bayesian regression technique on which GPPM
is based. In the last section, I have shown that SEM can be seen as an extension of the
GLM insofar that it allows the formulation of a set of linear equations instead of only
one. The so-called weight-space view introduced in this section allows interpretation of
GPR as a further extension of the GLM. In contrast to SEM, GPR only allows one
linear equation.

GPR is motivated by the fact that the GLM can only represent linear relationships
between the IVs and the DV. In the real world, however, many nonlinear relationships
exist. The so-called basis function approach is to extend the GLM allowing nonlinear
relationships. A basis function ϕ maps the independent variables into a different space.
That is, instead of finding a function of the form f(x) = x⊤β, one obtains a function of
the form

f(x) = ϕ(x)⊤β,

where the basis function ϕ may describe any function. Thus, the basis function approach
largely increases the set of statistical models that can be represented. However, model
specification necessarily becomes more complex, since in addition to selecting the vari-
ables one of infinitely many basis functions has to be chosen. The interpretation of the
parameter estimates becomes more difficult due to the introduction of nonlinearities.

GPR is commonly used for supervised learning problems. Typically, the data sets
are large as compared to psychological data sets. Given large data sets, a model that
allows for nonlinearities usually results in a more accurate prediction function. Also,
since interpretation of the parameter estimates is typically not of interest, the increased
difficulty of interpretation is no problem.

The derivation of the ML estimate and the remaining statistical inference procedures
remain unchanged. Every observed value x of the IVs simply needs to be replaced by
its image ϕ(x). As a result, a data set D = {(xi, yi) : i ∈ 1, . . . , N} is transformed to
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{(ϕ(xi), yi) : i ∈ 1, . . . , N}. As shorthand for all observations of IVs in a data set, I
again use

X =

⎡
⎢⎣
x⊤1
...

x⊤N

⎤
⎥⎦ .

For the image of all IVs X in a data set, I use the abbreviation

Φ(X) =

⎡
⎢⎣
ϕ(x1)

⊤

...
ϕ(xN )⊤

⎤
⎥⎦ ,

which I will further abbreviate as Φ in the following. The modified statistical model for
the random vector Y of which y = {yi : i ∈ 1, . . . , N} is a realization is:

Y |Φ ∼ M = {N(Φβ, σ2
ϵ IN ) : (β, σ2

ϵ ) ∈ RP × R+
0 }.

P refers to the dimensionality of the weight vector β and thus, to the dimensionality of
the transformed IVs ϕ(x).

In GPR, Bayesian inference is commonly used. In order to perform Bayesian inference
on the statistical model M, a prior on the parameters β and σ2

ϵ is needed. In GPR,
it is commonly assumed that the prior for the weight vector is a Gaussian, i.e., p(β) =
N (β;µp,Σp). The error variance σ2

ϵ is assumed to be part of the statistical model. Thus,
the statistical model changes to

M = {N(Φβ, σ2
ϵ IN ) : β ∈ RP }.

Remember, in Bayesian inference, the pdf describing the statistical model is expressed
as a conditional pdf: p(y|Φ, β) = N (y; Φβ, σ2

ϵ IN ). By using Bayes’ rule, one obtains the
posterior distribution of the parameter

p(β|Φ,y) =
p(y|Φ, β)p(β)

p(y|Φ)
,

with p(y|Φ) =
∫
RP p(y|Φ, β)p(β)dβ, which follows from p(y, β|Φ) = p(y|Φ, β)p(β) and

marginalization.
Since GPR is mainly used in supervised machine learning, the posterior over the

weight vector β is just an intermediate step. The main goal is to obtain a distribution
for function values f(x∗) at a set of values of the IVs that have not been observed for
making predictions. I summarize a set of new IVs variables as matrix

Φ∗ =

⎡
⎢⎣

ϕ (x∗1)
...

ϕ
(
x∗N2

)

⎤
⎥⎦ .
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In the language of machine learning this set is the holdout set whereas the data set
(X,y) used to obtain the posterior distribution of the parameters is the training set.
The posterior distribution for the holdout set predictions

f(Φ∗) =

⎡
⎢⎣
f(ϕ(x∗1))

...
f(ϕ(x∗N2

))

⎤
⎥⎦

is obtained by linking the posterior distribution over the weights p(β|Φ,y) with the like-
lihood function p(f(Φ∗)|Φ∗, β) = N (f(Φ∗); Φ∗β, σ2

ϵ IN ) implied by the statistical model.
It is

p(f(Φ∗)|Φ, y,Φ∗) =

∫

RP

p(f(Φ∗)|Φ∗, β)p(β|Φ,y)dβ,

and commonly known as predictive distribution. I will derive an analytical expression
for the predictive distribution in the next section.

3.3.2. Function-Space View

The function-space of GPR is essentially equivalent to the weight-space view. However,
it introduces a central ingredient of this thesis, namely the Gaussian process (GP). It
also allows description of the statistical model and the prior in an alternative, more
compact fashion.

The prior over weights p(β) = N (β;µp,Σp) can be transformed into a prior over
functions. For any value of the IVs x, the random vector f(ϕ(x)⊤β) is distributed
according to the following Gaussian distribution:

N (ϕ(x)⊤µp, ϕ(x)⊤Σpϕ(x)).

Thus, for any data set D = (X,y), the prior over the corresponding functional values
f(X) = Φ(X)β is

f(X) ∼ N (Φµp,ΦΣpΦ
⊤).

Therefore, the prior over functions implies a prior for every possible data set X. The
prior over functions can be described by the implied expected prediction for the DV
based on any value of the IVs x

E[f(x)] = ϕ(x)⊤µp (3.3.1)

and the implied covariance for every pair of values x, x′

Cov(f(x), f(x′)) = ϕ(x)⊤Σpϕ(x′)⊤. (3.3.2)

Hence, the indirect prior over weights can be transformed into a direct prior over func-
tions. However, in contrast to the prior over weights, the prior over functions cannot
be described by a multivariate Gaussian. The reason for this is that the set of possible
values X that the IVs can obtain might be, and in most applications of GPR is, infinite.
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The prior over function values is over the “random vector” {f(x) : x ∈ X}, which as
a consequence has infinite dimensionality. But, a random vector can not have infinite
dimensionality. Hence, {f(x) : x ∈ X} is not a random vector. It is a so-called stochastic
process.

Definition 3.3.1. Let (Ω,F ,P) be a probability space, then a stochastic process is a
collection of random variables {f(x) : x ∈ X} indexed by an index set X where each
f(x) is a random variable on the sample space Ω.

The prior over functional values {f(x) : x ∈ X} is indeed a particular kind of a
stochastic process, namely a Gaussian process (GP).

Definition 3.3.2. A Gaussian process (GP) is a stochastic process for which any finite
subset of {f(x) : x ∈ X} (which is a random vector) is distributed according to a
Gaussian distribution.

Remark 3.3.3. Because the index set for all GPs used in this work and the set of
possible values for the vector of IVs are identical I will use the same symbol for them
even though, in general, they are distinct concepts.

Instead of being described by a mean vector and a covariance matrix, a GP is described
by a mean function m(x) and a covariance function k(x, x′) (called kernel function or
simply kernel in machine learning). Equations 3.3.1 and 3.3.2 are examples for a mean
and a covariance function. It is convenient to extend the mean and covariance functions
to subsets of the index set X .

Definition 3.3.4. For any two subsets of the index set X,X∗ ⊆ X of size |X| =
N1, |X| = N2, mean function m(x) and covariance function k(x, x′), let

M(X) = [m(x1),m(x2), . . . ,m(xN1)]⊤

be the mean of the random vector {f(x) : x ∈ X} implied by the mean function m(x),
and

K(X,X∗) =

⎡
⎢⎢⎢⎢⎣

k(x1, x
∗
1) k(x1, x

∗
2) . . . k(x1x

∗
N2

)

k(x2, x
∗
1) k(x2, x

∗
2)

...
...

. . .

k(xN1 , x
∗
1) . . . k(xN1 , x

∗
N2

).

⎤
⎥⎥⎥⎥⎦

be the cross-covariance matrix of the random vectors {f(x) : x ∈ X} and {f(x∗) : x∗ ∈
X∗}.

Remark 3.3.5. Note that K(X,X) describes the covariance matrix of the random
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vector {f(x) : x ∈ X}.

Using this notation, one can state which properties two functions m(x) and k(x, x′)
need to fulfill to describe a valid GP, i.e., to be valid mean and covariance functions.

Theorem 3.3.6. The triple of an index set X , mean function m : X → R and covariance
function k : X ×X → R+

0 describes a GP iff M(X) is a valid mean vector and K(X,X)
is a valid covariance matrix for every subset X ⊂ X .

The transformation of the prior over weights into a prior over functional values makes
it possible to obtain the predictive distribution p(f(X∗)|y,X,X∗) in one step. Instead
of the two-step approach, first finding the posterior distribution p(β|X,y) based on the
data set D = (X,y), and then obtaining the predictive distribution by linking it with
the likelihood.

Expressing the prior as a GP over function values allows formulation of the prior dis-
tribution of training predictions f(X) = Φ(X)β and test predictions f(X∗) = Φ(X∗)β.
Let m and k be the mean and the covariance functions that describe the GP prior, then
the joint distribution of f(X) and f(X∗) is

[
f(X)
f(X∗)

]⏐⏐⏐⏐X,X∗ ∼ N
(
M

([
X
X∗

])[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
.

By describing the prior over functions, the likelihood, which maps the predictions f(X)
to the observations y, changes to p(y|f(X)) = N (f(X), σ2

ϵ IN ). Thus, the random vector
Y of which y is one realization can be described as Y = f(X) + ϵ, with ϵ ∼ N (0, σ2

ϵ IN ).
Note that the prior over functions and the error variance describes the statistical model
completely. It follows that

[
Y

f(X∗)

]⏐⏐⏐⏐X,X∗ ∼ N
(
M

([
X
X∗

])[
K(X,X) + Inσ

2
n K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
. (3.3.3)

Finally, the predictive distribution is obtained by conditioning the joint distribution
in Equation 3.3.3 on the training targets y. It is:

f(X∗)|X,X∗,y ∼ N (E(f(X∗)|X,X∗,y),Cov(f(X∗)|X,X∗,y)), with

E(f(X∗)|X,X∗,y) = M(X∗) + K(X∗, X)[K(X,X) + σ2
ϵ IN ]−1(y −M(X))

Cov(f(X∗)|X,X∗,y) = K(X∗, X∗) −K(X∗, X)[K(X,X) + σ2
ϵ IN ]−1K(X,X∗).

3.3.3. Model Selection

Model selection in the context of GPR refers to selecting a GPR model, that is, a mean,
a covariance function, and the amount of measurement error σ2

ϵ . Up to this point it was
assumed that these three quantities were given. These quantities encode the statistical
model as well as the prior of its parameters. Thus, they encode a Bayesian model. In
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GPR one popular approach to select a model is model evidence maximization (Bishop,
2006, Section 3.4).

The model evidence or marginal likelihood is the probability of the data given the
model. In the following I will provide an explanation as to why a model section based on
the marginal likelihood is reasonable and how the marginal likelihood is computed. For
alternative treatments, see Bishop (2006, Section 3.4) in the context of MLR, Claeskens
and Hjort (2008, Section 3.2) with an emphasis on the connection to the Bayesian in-
formation criterion (BIC) or Rasmussen (2006, Section 5.2) in the context of GPR. An
alternative reason for using the model evidence for model selection to the one presented
here is that it corresponds to choosing the model with the highest probability given the
data under a uniform model prior. Thus, it corresponds to the Bayesian standard pro-
cedure of selecting the model with the highest probability given the data, as introduced
in Section 2.7.2.

Let H be a random vector that encodes the chosen model and h a realization that
describes one model. h encodes a particular statistical model {p(y|θ) : θ ∈ Θh}, with
corresponding model-specific parameter space Θh, as well as the corresponding prior
p(θ|h). Equivalently, a model can encode a mean and a covariance function. Let the
index set Θ describe all possible probability distributions instead of a parameter space
as usual. If one sets p(θ|h) = 0 for all parameter values θ ∈ Θ that are not within Θh,
the statistical model can be completely described as a prior distribution p(θ|h) over all
possible distributions. Using this formalism, Bayes’ rule (displayed in Equation 2.4.2)
can be re-expressed as the following to emphasize that all inferences made are conditional
on the choice of the model:

p(θ|y, h) =
p(y|θ, h)p(θ|h)

p(y|h)
.

In a so-called fully Bayesian treatment one would impose an unconditional prior p(h)
over models to be able to marginalize over all possible models. Every model h comes
with its own parameter space Θh and corresponding prior p(θ|h). Remember that every
parameter value corresponds to a probability distribution. Thus, specifying a prior
over models and a prior over parameters for each model is simply a hierarchical way
of specifying a prior over all probability distributions. Mathematically, this can be
expressed as

p(θ) =

∫
p(θ|h)p(h)dh.

Using this prior, Bayes’ rule can be written hierarchically:

p(θ|y) =
p(y|θ)

∫
p(θ|h)p(h)dh∫

p(y|h)p(h)dh
.

The fully Bayesian approach is computationally unfeasible, since it requires integration
over all possible probability distributions. Additionally, a prior over all possible proba-
bility distributions is needed, which is also impractical for most problems.
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Therefore, an empirical Bayesian treatment is often used in practice. It approximates
the fully Bayesian posterior p(θ|y) by

p(y|θ, h∗)p(θ|h∗)
p(y|h∗)

,

where h∗ is the model that maximizes the model evidence

p(y|h) =

∫
p(y|θ)p(θ|h)dθ.

The rationale for using this strategy is that for a flat model prior p(h), the posterior
distribution based on the model with the highest evidence is a good approximation if
the model evidence p(y|h) is highly peaked at its maximum p(y|h∗).

Given a data set D = (X,y), the model evidence for a given GP prior

f(x) ∼ GP(m(x), k(x, x))

and measurement error σ2
ϵ is

p(y|X,m, k, σ2
ϵ ) = N (y;M(X),K(X,X) + INσ2

ϵ ).

Typically for GPR, the set containing the candidate models is not finite, but un-
countably infinite. The model set can commonly be described by a parameterization
of the mean m(x; θ) and the covariance function k(x, x′; θ). Note that every value of
the parameter θ now refers to a statistical model instead of a parameter value within
a statistical model (i.e., a distribution). Therefore, the parameters of the mean and
covariance functions are called hyper-parameters.

A simple example for a parameterized mean function is the so-called constant mean
function

m(x; c) = c,

with c ∈ R. Probably the most prominent parameterized covariance function is the
exponential squared covariance function

k(x, x′; [σ, l]) = σ2 exp

(
(x− x′)2

−2l2

)
,

with σ, l ∈ R+, which is often inappropriately called exponential squared covariance.
For a given data set D = {(xi, yi) : i ∈ 1, . . . , N}, the uncorrelated measurement

error can be included into the parameterization of the covariance function by using
ky(x, x′; [θ, σ2

ϵ ]) = k(x, x′; θ) + δ(x − x′)σ2
ϵ , where δ(x) is the Dirac delta function, i.e.,

it is 0 everywhere but at 0. If the set of candidate models used for model selection via
model evidence maximization can be described by the parameterized mean m(x; θ) and
covariance function ky(x, x′; θ) with a corresponding parameter space Θ, the selected

model is represented by a parameter value θ̂, that is,

θ̂ = arg max
θ∈Θ

N (y,M(X; θ),Ky(X,X; θ)).
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3.3.4. Model Validation

GPR is typically used as a supervised learning method. In this context, model validation
refers to estimating the supervised learning risk of the prediction function f(x) = y (see
Section 2.7.1).

GPR returns a predictive distribution p(y|x,D) instead of a prediction function. One
can extract a prediction function from the predictive distribution by minimizing the
Bayesian expected loss (see Definition 2.4.1) for a given loss function. If the true target
value y is known, the loss of making the prediction f(x) is L(y, f(x)). However, the true
value y is unknown. Thus, the expectation with respect to the posterior distribution
p(y|x,D) is used instead. That is, the action with the smallest Bayesian expected loss
is chosen. The Bayesian expected loss for a prediction function f(x) under the posterior
p(y|x,D) with loss function L is

RB(f(x), p, x) =

∫
L(y, f(x))p(y|x,D)dy.

Thus, the prediction function f̂(x) that minimizes this is

f̂(x) = arg min
f(x)

RB(f(x), p, x).

If the squared loss is used, the optimal f̂(x) is

f̂(x) = E(Y |x,D) =

∫

ΩY

yp(y|x,D)dy.

The supervised learning risk of the optimal prediction function f̂(x) can now be esti-
mated as for any other prediction function (see Section 2.5).

Alternatively, there are ways to validate the predictive distribution directly (Ras-
mussen, 2006, Section 5.4).

3.4. Gaussian Process Time Series Modeling

3.4.1. Foundations

In this chapter, I adapt GPR for using it for panel data. These can be interpreted as
an extension of time series data. Instead of one time series originating from one person,
they consist of multiple time series, each originating from a different person.

GPR has already been adapted for the analysis of time series data (see, e.g., Roberts
et al., 2013). Thus, as the first step, I will review using GPR to analyze time series data
in this section, which I will refer to as Gaussian process time series modeling (GPTSM).

First, I will briefly recapitulate how GPR is typically used. Given a set of IVs for an
object a DV of the object is predicted. An application example within psychology could
be the use of genetic data to predict the general intelligence factor g of a person.
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GPR can be used for modeling time series data as follows. Psychological time series
typically consist of repeated measures of some properties of a single person. An example
for a psychological time series is the general intelligence factor g of a person being
measured repeatedly at different ages across the life-span. While not belonging to the
standard time series modeling approaches, using GPR for the analysis of time series
data has already received some attention. For example, it has been used to model data
from a weather sensor network (Roberts et al., 2013), water levels of the Nile (Roberts
et al., 2013), the development of stock indices (Damouras, 2008; Roberts et al., 2013),
the brightness of stars (Roberts et al., 2013), respiration data (Brahim-Belhouari &
Bermak, 2004), the trajectory of a computer mouse controlled by a participant in a
cognitive science experiment (Cox et al., 2012), human arm movements (Cunningham
et al., 2012), the number of spots on the sun (Damouras, 2008), clinical time series such
as the blood parameters after surgery (Liu, Wu, & Hauskrecht, 2013), the trajectory
of the dance of honey bees (Saatçi et al., 2010), and snowfall in Canada (Saatçi et al.,
2010).

I will start by describing GPTSM for univariate time series. After that, I turn to
GPTSM for multivariate time series data. In this case, univariate time series refers to
the fact that their is only one DV. At least one IV exists, namely time. Further IVs can
also be included. As long as there is only one DV, I still consider this a univariate time
series, even though the actual data are multivariate, since they include at least one IV.
Multivariate time series contain more than one DV.

In univariate time series analysis a time series [y1, . . . , yT ] = y with corresponding IVs
X = [x1, . . . , xT ] for each observation is observed. In the simplest case the IVs correspond
to some representation of time (e.g., age). Besides time, the IVs may contain other
information that explain the DV. The goal of time series analysis is to make predictions
for unobserved values y∗ of the time series using the corresponding IVs value x∗, and to
find the true generating distribution. This is different to conventional GPR where the
true generating distribution is typically not of interest.

As for GPR, the starting point of GPTSM is a set of models as represented by a
parameterized GP

{GP(m(x; θ), k(x;x′; θ)) : θ ∈ Θ},

with a corresponding index set x, x′ ∈ X . To choose the hyper-parameter value θ one can
proceed as in the conventional application of GPR and use model evidence maximization.
Once the hyper-parameter has been identified, the predictive distribution for new time
points x∗ can be obtained as for GPR.

The problem with the inference approach used for GPR is that it does not directly in-
fer the true generating distribution. Thus, in GPTSM another approach with a different
interpretations of a GP is popular. In GPR, a GP is interpreted as a prior over functions,
that is, as a compact representation of a statistical model and its corresponding prior.
In this formalism, every GP corresponds to a particular statistical model and its corre-
sponding prior. Selecting a GP out of a set of GPs using model evidence maximization
is thus interpreted as model selection. However, for time series analysis a GP is often
interpreted as a stochastic process of which the time series y1, . . . , yT is a realization.
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Thus, a set of GPs can also be interpreted as a single statistical model instead of a set
of statistical models. To emphasize this, I write

Y (x) ∼ M = {GP(m(x), k(x, x′) : θ ∈ Θ},

where Y (x) refers to the random variables representing the hypothetical observation of
the time series at the point described by the value x of the IVs. The ML estimate θ̂ML

of the parameters of the statistical model M is identical to the hyper-parameter value θ̂
that maximizes the model evidence of the set of models M. In the following, I will use
the interpretation that the set of GPs M is a statistical model. Taking this approach,
the hyper-parameters should rather be called parameters again.

By imposing a prior on the parameters θ, standard Bayes’ rule inference can be em-
ployed to compute the posterior:

p(θ|y, X) =
p(y|X, θ)p(θ)∫
p(y|X, θ)p(θ)dθ

.

The model evidence

p(y|X, θ) = N (y;M(X; θ),K(X,X; θ))

as introduced for GPR acts as the likelihood function. The posterior distribution over
stochastic processes expresses the belief which process might have generated the observed
time series. The integral

∫
p(y|θ,X)p(θ)dθ is typically not exactly computable. However,

various approximation techniques such as Markov Chain Monte Carlo techniques can be
utilized (Roberts et al., 2013).

The predictive distribution for a new value of IVs x∗ is obtained using the usual rule:

p(y∗|X,y, x∗) =

∫
p(y∗|x∗, θ)p(θ|X,y)dθ,

where y∗ refers to the hypothetical values of the random variable Y (x∗). Note that the
regular GPR inference approach is a special case of the approach discussed here. As
prior p(θ), the delta prior (i.e., the prior that assigns all mass to one parameter value θ)
maximizing the model evidence is used. In sum, using GPR for univariate time series
analysis is relatively straightforward.

3.4.2. Extension to Multivariate Time Series

In a multivariate time series multiple variables are repeatedly observed. Using the ap-
proach developed in the previous section such time series can be modeled using GPTSM,
as long as only one variable is treated as DV. However, many analyses performed in
psychology require treatment of more than one variable as the DV. In a cross-lagged
panel model (Burkholder & Harlow, 2003), for example, the lagged influence of at least
two variables onto each other is of interest. To perform such analyses using GPTSM,
this approach needs to be extended to allow for the simultaneous modeling of multiple
DVs, each contributing one time series. I will call this approach multivariate GPTSM.
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A straightforward approach to specifying a multivariate GPTSM is to give each DV
a distinct label l, and to use the label as an additional IV. Using this approach, the
covariance function is of the form k([x, l], [x′, l′]). Thus, there is one joint covariance
function for all time series, which can represent arbitrary relationships between and
within the time series.

Separating the joint covariance function k([x, l], [x′, l′]) into L autocovariance functions
kl(t, t

′), one for each time series l, and L(L− 1)/2 cross-covariance functions kll′(x, x
′),

one for each unique time series pair l, l′, simplifies model specification. While this de-
composition allows a relatively comprehensible description of the joint covariance func-
tion k([x, l], [x′, l′]), it is hard to check whether a certain covariance function is valid.
A necessary but not sufficient condition for the validity of the joint covariance func-
tion k([x, l], [x′, l′]) is that all the autocovariance functions kl(x, x

′) are positive definite.
Additionally to that, the cross-covariance functions kll′(x, x

′) need to fulfill certain con-
ditions that depend on the form of the autocovariance function (see Boyle, 2007, Section
3.1).

An unproblematic but less general way to define a valid joint covariance function
k([x, l], [x′, l′]) for a multivariate time series is the following approach, taken from Turner
(2012, Section 3.6.2): A set of M independent latent GPs {gi, i ∈ 1, . . . ,M}, with typ-
ically M ≤ L, is specified using arbitrary autocovariance functions ki(x, x

′). In this
context, independence is identical to all cross-covariance functions kll′(x, x

′) being 0.
Then a matrix A ∈ RL×M is used to link the independent GPs to the potentially de-
pendent unobserved true values of the multivariate time series f(x) = Ag(x). The true
values are again linked to the observed values by incorporating measurement error in
the form

Y = f(x) + ϵx ϵx ∼ N (0,Σϵ).

This always leads to a valid covariance function (see Turner, 2012, Section 3.6.2). How-
ever, taking this approach does not allow expression of every joint covariance function.

To summarize, while univariate GPTSM is relatively straightforward, multivariate
GPTSM is more evolved, since the specification of the covariance function becomes more
complex. Propositions that make specifying a multivariate GPTSM easier do exist, but
they cannot express every multivariate GPTSM.
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3.5. Gaussian Process Panel Models

3.5.1. Foundations

In the following sections, I will extend GPTSM for panel data. I call the resulting
method Gaussian process panel modeling (GPPM).

I first introduce the necessary notation for panel data. In a panel data set, N time
series {yi ∈ 1, . . . , N} have been observed. Each time series yi originates from one person.
Each time series yi contains observations yij ∈ R with corresponding IVs xij ∈ RK .
Multivariate time series are also covered within this formalism. Here, the IVs simply
contain a label variable (see previous section).

One possibility to analyze panel data is to use GPTSM, and perform a separate
analysis for each person, which means that for each person, the data of all others are
ignored. This approach is reasonable if it can be assumed that people are not connected
to each other. Formally, it is assumed that each person’s time series is a realization of a
GP such that

Yi(x) ∼ GP(m∗
i (x), k∗i (x, x′)).

x refers to the value of the IVs describing the observation represented by the random vec-
tor Yi(x). The statistical inference task is to deduce the mean and covariance functions
m∗

i , k
∗
i for each person. This is carried out separately for each person.

If the assumption that there is no connection between people is not justified, some
relationship between the person-specific GPs needs to be introduced. Arguably, the
easiest approach is to assume that each person’s time series is a realization of the same
GP, and that the person-specific GPs are mutually independent (iid assumption). Note
that this is not equivalent to assuming that there is no inter-individual variation. Indeed,
I will show in Section 3.6 that many forms of inter-individual variation can be specified
using this assumption. Also, this is the same approach as the one taken in SEM: One
starts with a model for one person, and the model for everyone follows from the iid
assumption.

If the generating GP is assumed to be the same for each person, it is justified to
postulate the same statistical model

Yi(x) ∼ {GP(m(x), k(x, x′)) : θ ∈ Θ} (3.5.1)

for every person, as expressed by a pair of parameterized mean and covariance functions.
I call such a model a GPPM.

Equation 3.5.1 denotes a set of GPs. A GP can be interpreted as a infinite dimensional
probability distribution. Classical statistical inference requires a statistical model that
represents a set of finite dimensional distributions. For every finite, observed time series
yi a set of finite dimensional distributions is implied by a GPPM. Let Ti be the number
of observed time points, and Xi a matrix with Ti rows where each row xij contains the
IVs for the jth observation of person i, that is, for yij , then the statistical model for the
time series yi implied by the GPPM 3.5.1 is
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p(yi|Xi) ∈ {N (yi;M(Xi; θ),K(Xi, Xi; θ)) : θ ∈ Θ}.

The statistical model implied for a panel data set D = (X,y), with X = (X1, . . . , XN )
and y = (y1, . . . , yN ), follows from the mutual independence assumption and is

p(y|X) ∈

{
N∏

i=1

N (yi;M(Xi; θ),K(Xi, Xi; θ)) : θ ∈ Θ

}
.

This is a regular statistical model.

3.5.2. Model Specification

Model specification in the context of GPPM refers to the process of specifying a set of
GPs that formalizes the assumptions about the process of interest. The first step is to
define which IVs to use: The IV shared by all GPPMs is some representation of time.
Besides that, arbitrary variables can be included as IVs.

The second important step to specify a GPPM is to define parameterized mean and
covariance functions. There are many ways to derive the parameterized mean and covari-
ance functions. One fruitful approach seems to be to (1) specify the person-level GPPM,
describing the assumptions about the intra-individual variation, and to (2) use the rules
that will be established in Section 3.6 to allow observed and unobserved inter-individual
variation.

The specification of the person-level GPPM itself can also be challenging, because
parameterized mean and covariance functions that express the assumptions about the
process of interest need to be formulated. The following rule makes it possible to break
down the specification of the mean and the covariance functions into smaller, better
manageable components.

Theorem 3.5.1. Let W,Z be two independent GPPMs using the same IVs or more
formally the same index set x ∈ X

Wi(x) ∼ {GP(mw(x; θw), kw(x, x′; θw) : θw ∈ Θw}
Zi(x) ∼ {GP(mz(x; θz), kz(x, x′; θz) : θz ∈ Θz},

then the weighted sum Y = aW + bZ of the two models is a GPPM on the index set X
of the form:

Yi(x) ∼ {GP(my(x; θy), ky(x, x′; θy)) : θy ∈ Θw × Θz}
my(x; [θw, θz]) = amw(x; θw) + bmz(x; θz)

ky(x, x′; [θw, θz])) = a2kw(x, x′; θw) + b2kz(x, x′; θz).

Proof: This follows from the fact that for two independent univariate Gaussian vari-
ables W ∼ (µw, σ

2
w), Z ∼ (µz, σ

2
z), the weighted sum aW + bZ is distributed according

50



3. Gaussian Process Panel Modeling

to a Gaussian with mean aµw + bµz and variance a2σ2
w + b2σ2

z . This in turn follows as a
special case of the linear transformation theorem of a Gaussian random vector (Theorem
A.3.8 in Appendix A.3). □

Example 3.5.2. An unrealistic assumption for illustrative purposes could be that each
person’s general intelligence factor g develops according to a linear trend across the
lifespan. However, systematic within-day general intelligence g variation may also occur.
The linear trend, including measurement error σ2

ϵ , can be represented by the following
GPPM. In this and the following GPPM, I refer to the value of the IV, as s, t ∈ R instead
of as x, x′ ∈ RK . This is commonly done if there is only one IV that is a representative
of time.

Wi(t) ∼ {GP(a + bt, σ2
ϵ ) : (a, b, σ2

ϵ ) ∈ Θw}

The systematic periodic changes can be represented by the GPPM

Zi(t) ∼
{
GP

(
0, σ2 exp

(
−2 sin2(π|s− t|/p)

l2

))
: (σ2, p, l2) ∈ Θz

}
.

The combination of linear change and systematic periodic fluctuations can be represented
by the GPPM

Yi(t) ∼
{
GP

(
a + bt, σ2

ϵ + σ2 exp

(
−2 sin2(π|s− t|/p)

l2

))
: (a, b, σ2

ϵ , σ
2, p, l2) ∈ Θy

}
.

More combination rules for GPPMs can be derived from the combination rules for
GPR models (e.g., Rasmussen, 2006, pp. 94–95). However, the sum rule seems to be
the most useful for GPPMs, as indicated by the number of times it is employed in the
remainder of this monograph.

3.6. Inter-Individual Variation in Gaussian Process Panel
Models

Assuming that the data of every person constitute a realization of the same GP might
seem like as if any inter-individual variation were disallowed. However, this is not the
case. In this section, I will show this assumption allows incorporation of both observed
and unobserved heterogeneity. In accordance with the literature, I use observed het-
erogeneity as a synonym for inter-individual variation that can be explained using IVs.
Unobserved heterogeneity refers to inter-individual variation that is not explained by
IVs, as typically modeled by the random effects approach.

3.6.1. Observed Heterogeneity

I formalize observed heterogeneity in GPPMs as follows. Let

Yi(x) ∼ {GP(m(x; θ), k(x, x; θ)) : θ ∈ Θ}
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be a GPPM. It is assumed that some additional IVs x̃i that are stable within a person
have been observed. The IVs x̃i influence the assumption about the person-specific
process and, thus, the value of some parameters within the parameter vector θ. This can
be formalized by using a person-specific parameter θi that is computed by a deterministic
function f(θ, x̃i, θ̃), which in turn encodes the assumptions about the ways the IVs x̃i
influence the parameters. The function itself also typically contains to-be estimated
parameters θ̃.

In the examples in this section the only IV that explains intra-individual variation is
some representative of time. Thus, in accordance with the literature, I will refer to a
pair of values for the IV as s, t, instead of as x, x′. Since the IV encodes time, s, t ∈ R

Example 3.6.1. As a motivating example for modeling observed heterogeneity, consider
the following GPPM, which encodes the assumption that all persons follow the same
linear trend described by an intercept a and a slope b.

m(t; [a, b]) = a + bt k(s, t;σ2
ϵ ) = δ(s− t)σ2

ϵ

Imagine that this model describes the learning curve during a cognitive training study.
At time point t = 0 the training begins. It may be unrealistic to assume that everybody’s
ability at the beginning a is the same. Additionally, the scalar-valued IV x̃i, parents’
income, has been measured. It is assumed that parents’ income x̃i increases the starting
ability ai linearly, i.e.,

ai = c + dx̃i.

c, d ∈ R are scalar-valued parameters. Parents’ income does not influence the steepness
of the learning curve b or the amount of measurement error σ2

ϵ . Thus, the function
mapping the IV x̃i and the parameters a, b, c, d, σ2

ϵ onto a person-specific parameter θi
is

θi = f([a, b, σ2
ϵ ], x̃i, [c, d]) =

⎡
⎣
c + dx̃i

b
σ2
ϵ

⎤
⎦

Note that only the starting level a is individualized. The function does not change the
remaining parameters.

Observed heterogeneity, as defined here, can be incorporated into GPPMs. The
parameter-influencing function f(θ, x̃i, θ̃) simply implies a new mean m̃ and covariance
function k̃. The new mean and covariance functions are as follows:

m̃([xi, x̃i]; [θ, θ̃]] = m(xi; f(θ, x̃i, θ̃))

k̃([xi, x̃i], [x
′
i, x̃i]; [θ, θ̃]] = k(xi, x

′
i; f(θ, x̃i, θ̃)).

Thus, the parameters of the new GPPM become [θ, θ̃] and the IVs [xi, x̃i]. It needs to be
ensured that the function f(θ, x̃i, θ̃) is such that the new mean and covariances function
are still valid. However, this still allows for a vast number of functions.
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Example 3.6.2. For the cognitive training example the GPPM becomes

m̃([t, x̃i]; [b, c, d]) = c + dx̃i + bt

k̃([s, x̃i], [t, x̃i]; [σ2
ϵ ]) = k(s, t;σ2

ϵ ) = δ(s− t)σ2
ϵ .

3.6.2. Introduction to Unobserved Heterogeneity

Unobserved heterogeneity refers to inter-individual variation that is not explained by
IVs. In psychology, the most popular approach to model unobserved heterogeneity is
the random effects approach. Let θp be a particular parameter and θip its person-
specific counterpart. The random effects approach is to assume that the person-specific
parameters θip vary across persons around a mean of the parameter with some variance.
More generally, the random effects approach refers to imposing any between-person
distribution on a parameter. Every person-specific parameter θip is considered to be a
realization of the random variable θp ∼ N (µθp , σ

2
θp

). Formally, this can be equivalently
expressed by assuming that every person-specific parameter is a random variable with the
distribution θip ∼ N (µθp , σ

2
θp

). Hence, the random effects approach effectively changes
some parameters from fixed to random variables. Both the mean µθp and the variance
σ2
θp

of the random variable θp are typically estimated and thus become parameters of
the statistical model. If multiple parameters are converted to random variables, the
covariances between them also have to be specified or estimated.

Example 3.6.3. Returning to the cognitive training example, a reasonable assumption
would be to assume that the starting point a as well as the learning rate b vary between
persons. For implementation, one can assume that each person-specific vector [ai, bi]

⊤

has the joint distribution

[
ai
bi

]
∼ N

([
µa

µb

]
,

[
σ2
a σab

σab σ2
b

])
.

In comparison to observed heterogeneity the specification of unobserved heterogeneity
is more limited for GPPMs. There are many parameters for which a between-person
variation cannot be specified without violating the central assumption of GPPM that
each persons’ data are a realization of a GP. This restriction is not unique to GPPM.
The types of random effects that are employed in hierarchical linear modeling (HLM)
and SEM can all be specified using GPPM.

In the remainder of Section 3.6, I will describe for which kinds of parameters random
effects can be specified. Essentially, random effects can be specified for linear param-
eters of the mean function. I will also show how the approach to modeling observed
heterogeneity and the random effects approach can be combined. Specification of ran-
dom effect leads to a violation of the assumptions that a persons data are a realization
of a GP for most parameters that are not linear parameters of the mean function.
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3.6.3. Implementation of Unobserved Heterogeneity

One important family of parameters for which random effects can be specified with-
out violating the assumption that a persons’ data are a realization of a GP are linear
parameters of the mean function. Let the mean function be of the form

m(x; θ) = f(x; θ1)
⊤θ2 + h(x; θ3), (3.6.1)

where the parameter vector θ = [θ1, θ2, θ3] is partitioned into parameters θ1, θ2, θ3. f(θ1)
is a vector-valued, and h(θ3) a scalar-valued function. Using the random effects approach,
unobserved heterogeneity is introduced by individualizing the parameter θ2 and assuming
that for each person the corresponding individualized parameter θi2 has the distribution
N (µθ2 ,Σθ2). In this way, the mean function itself becomes a GPPM. To see this, first
note that for every value x of the IVs the corresponding value of the mean function
m(x; θi) is the result of a linear transformation of the Gaussian random vector θi2 and,
thus, a Gaussian random variable. The mean of this random variable is

E[m(x; θi)] = E[f(x; θ1)
⊤θi2 + h(x; θ3)] = E[f(x; θ1)

⊤θi2] + h(x; θ3)

= f((x; θ1)
⊤µθi2 + h(x; θ3).

The covariance between the two random variables m(x; θi) and m(x′; θi) is as follows.
Note that, for every x, m(x; θi) can be interpreted as a random variable that is obtained
by linearly transforming the random vector θi2 with the matrix f(x; θ1)

⊤. Thus, the
covariance matrix Σm of the random vector [m(x; θi),m(x′; θi)] can be obtained through
Σm = AΣθ2A

⊤ with

A =

[
f(x; θ)⊤

f(x′; θ)⊤

]
.

The covariance between the random variables m(x; θi) and m(x′; θi) amounts to the only
non-diagonal entry (i.e., to the entry in the second row and first column, or equivalently
in the first row and second column) of Σm, which is f(x; θ1)

⊤Σθ2f(x′; θ1).
Since the mean is now a GPPM, the fact that the sum of two GPPMs is a GPPM

again (see Theorem 3.5.1) can be used to obtain the GPPM that implements the random
effects approach. Let k(x, x′; θ) be the original covariance function. The new mean m̃
and covariance function k̃ function are as follows

m̃(x; θ) = f(x; θ1)µθ2 + h(x; θ3) (3.6.2)

k̃(x, x′; θ) = k(x, x′; θ) + f(x; θ1)
⊤Σθ2f(x′; θ1) (3.6.3)

The mean vector µθ1 and the covariance matrix Σθ2 of θ2 have become parameters.

Example 3.6.4. For the cognitive training example we wanted to allow the starting
ability a, as well as the learning rate b to vary between persons. Thus, the model
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changes to

m(t; [ai, b]) = ai + bit

k(s, t;σ2
ϵ ) = δ(s− t)σ2

ϵ

with

[
ai
bi

]
∼ N

([
µa

µb

]
,

[
σ2
a σab

σab σ2
b

])

We identify f(x; θ1)
⊤ = [1, t], with x = t, and θ1 = {}, θi2 = [ai, bi], µθ2 = [µa, µb]

⊤,

Σθ2 =

[
σ2
a σab

σab σ2
b

]
,

h(x; θ3) = 0, and k(x, x′; θ) = δ(s− t)σ2
ϵ , with x = s, x′ = t. By inserting in Equations

3.6.2 and 3.6.3, the corresponding random effects GPPM can be derived:

m̃(t; θ) =
[
1 t

] [µa

µb

]
= µa + µbt (3.6.4)

k̃(s, t; θ) = δ(s− t)σ2
ϵ +

[
1 s

] [σ2
a σab

σab σ2
b

] [
1
t

]

= δ(s− t)σ2
ϵ + σ2

a + σab(s + t) + sσ2
b t. (3.6.5)

This is the GPPM representation of the LGCM (see Section 3.2.4).

3.6.4. Mixing Observed and Unobserved Heterogeneity

Mixing unobserved and observed heterogeneity is common in hierarchical models where
between-person differences are partly unobservable but one also attempts to be explain
them by available IVs. It is also possible using GPPM. First, the parameters θ1, θ3 for
f(x; θ1) and h(x; θ3) can be made person-specific via a deterministic function f(θ, x̃i, θ̃) .
Second, the mean vector µθ2 and the covariance matrix Σθ2 are parameters of a GPPM.
Thus, they can also be made person-specific using a deterministic function.

Example 3.6.5. The effect of parents’ income on the starting point a of the cognitive
training study can be included in the random effects GPPM previously developed as
follows: µia = µ0 + cx̃i, where µ0 is now the expected mean at parents’ income of zero.
Through substituting µa by µia in Equation 3.6.4, the new mean function is obtained:

m̃([t, x̃i]; θ) = µ0 + cx̃i + µbt

The covariance function remains unchanged.

3.6.5. Limitations for Unobserved Heterogeneity

While allowing for random effects on nonlinear parameters of the mean function or pa-
rameters of the covariance function might be conceptually desirable to model unobserved
heterogeneity in those parameters, this poses a technical problem.
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A nonlinear mean parameter is any parameter that cannot be written in the form as
θ2 in Equation 3.6.1. For nonlinear mean parameters, the technical problem is that for
many common nonlinear transformations, the resulting random vector is not Gaussian.
For example, a standard normal random variable Y , results in Y 2 being Chi-squared
and exp(Y ) log normally distributed. As a consequence, imposing a random effect on a
nonlinear parameter of the mean function typically leads to the mean function becoming
a parameterized stochastic process that is not a GP. Thus, within the definition of
GPPM used in this work, random effects are not possible for many nonlinear parameters
of the mean function.

Example 3.6.6. An exponential growth function for the mean might be a more realistic
assumption in the training study. This changes the mean function to

m(t; a, b) = a(1 − e−bt).

a ∈ R is now the theoretical ability level that is reached with unlimited training time
and b ∈ R+

0 characterizes the learning speed. The bigger b is, the faster learning occurs.
As in the case of the linear learning model, it is probably a good assumption to allow
for unobserved heterogeneity in the form of random effects for the maximally achievable
ability level a as well as the learning speed b. Within GPPM, this is possible for the
ability level a but not for the learning speed b. If it is assumed that bi is a random variable
that is distributed according to a Gaussian distribution, it follows that the mean function
is a random variable that is distributed according to a log-normal distribution. Thus,
the resulting model cannot be described as GPPM.

Similarly, reasonable between-person distributions on any parameter in the covariance
function will likely lead to a violation of the GP assumption. That is, the statistical
model becomes a set of non-GP stochastic processes. Investigating which combinations
of between-person distributions and covariance function parameters do not violate the
GP assumption needs to be examined in the future. However, the conjecture is that
no reasonable between-person distribution on any parameter of the covariance function
complies with the GP assumption. For present purposes, I will only show that imposing
a uniform distribution on the constant covariance function k(s, t) = σ2, which imposes
a constant variance σ2 for every time point, violates the GP assumption.

The Gaussian distribution might be the first choice for the between-person distribution
of a variance parameter. However, the variance parameter may not be positive. This
cannot be implemented using the Gaussian distribution. One easy approach to ensure
that only positive values are possible is to use the uniform distribution over some positive
range.

Let m(x; θ) be any mean function and the covariance function be k(s, t) = σ2. If a
uniform distribution [0, c] over the variance parameter σ2 is imposed, the model-implied
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distribution for any value x of the IVs becomes

p(y|x) =

∫ ∞

0
N (y;m(x; θ), σ2)p(σ2)dσ2 (3.6.6)

=

∫ c

0
N (y;m(x; θ), σ2)

1

c
dσ2

=
1

c

∫ c

0
N (y;m(x; θ), σ2)dσ2

  
not a Gaussian density

.

As a consequence, the statistical model is no longer a GPPM.
Whether random effects on nonlinear parameters of the mean function or on param-

eters of the covariance function are necessary for the modeling situations that typically
occur in psychology needs to be investigated. Classical psychological analysis methods
like SEM also exclude random effects on these parameters. Thus, typical psychological
analyses are performed without random effects on these parameters. At the same time,
it is straightforward to come up with convincing examples where random effects on these
parameters intuitively seem reasonable, if not even necessary (see Example 3.6.6).

Extending GPPM to allow for random effects on any parameter seems relatively diffi-
cult, as the core assumption that every persons’ data are a realization of a GP is violated.
However, it should be possible.

3.7. Statistical Inference for Gaussian Process Panel Models

With GPR stemming from the Bayesian inference tradition, performing Bayesian in-
ference for GPPMs is the natural choice. Bayesian inference for GPPMs is concep-
tually straightforward. Given a data set D = (X,y), with X = (X1, . . . , XN ) and
y = (y1, . . . , yN ), GPPMs

Yi(x) ∼ {GP(m(x), k(x, x′)) : θ ∈ Θ}

reduce to regular statistical models of the form

p(y|X) ∈

{
N∏

i=1

N (yi,m(Xi; θ), k(Xi, Xi; θ)) : θ ∈ Θ

}
.

By imposing a prior p(θ) on the parameters θ, the posterior density p(θ|y, X) can be
calculated using Bayes’ rule.

For many combinations of prior, mean, and covariance functions the posterior will not
be a Gaussian distribution. Even worse, for many combinations an analytical solution
for the posterior density does not exist. Thankfully, the Bayesian community has devel-
oped many solutions to this problem, which are general enough to also be applicable to
GPPMs. Markov chain Monte Carlo methods (Diaconis, 2009) in particular can be used
to perform Bayesian inference for any GPPM, prior combination.
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While using Bayesian inference for GPPMs is possible, I will concentrate on developing
frequentist inference procedures for GPPM. Researchers familiar with frequentist infer-
ence can then move from their known longitudinal modeling approaches (e.g., HLM or
SEM) to GPPM more easily by just learning a new formal language to express their hy-
potheses about change trajectories and dynamics. This voids the need for familiarization
with Bayesian inference.

As a reminder, the central forms of frequentist inference are point estimation, set
estimation, and hypothesis testing. In the remainder of Section 3.7, I develop frequentist
inference procedures for these three central forms of inference for GPPM. In Section
3.7.4, I will demonstrate how person-specific predictions can be obtained. I close this
section with a recommendation regarding model selection and validation.

3.7.1. Point Estimation

I propose using the ML estimator as the point estimator for GPPMs. For a given data
set D = (X,y) the likelihood function for a GPPM is

L(θ|D) = p(y|X, θ) =
N∏

i=1

N (yi;M(Xi; θ),K(Xi, Xi; θ)).

The ML estimate is thus
θ̂ = arg max

θ∈Θ
L(θ|D).

For most GPPMs the maximum of the likelihood function can not be derived exactly.
As a remedy, numerical optimization methods can be used. Any numerical optimiza-
tion method that only relies on repeated function evaluations can be employed. For
details about the optimization algorithm used in my implementation of ML estimation
for GPPMs, see Section 3.8.2.

3.7.2. Hypothesis Testing

As the hypothesis test for GPPMs, I propose using the likelihood-ratio test, which is also
used for SEMs. Remember that one important condition for the likelihood-ratio test is
that the null hypothesis can be expressed by a constraint g(θ) = 0. A GPPM can be
restricted in such a way. For the likelihood-ratio test to be valid, i.e., for the test statistic
to converge to a Chi-squared distribution both the restricted ML estimator θ̂R(Y ) and
the unrestricted estimator θ̂(Y ) need to be asymptotically Gaussian (Taboga, 2012c).

A complete proof of the asymptotical normality of the estimators is not within the
scope of this text. However, I will provide a sketch of a proof: I assume that the number
of time points observed for each person is equal. It is known that the ML estimator and
the restricted ML estimator are asymptotically Gaussian for SEMs. Both a SEM and
the statistical model implied by GPPM for a particular data set can be written in the
form

p(y|X) ∈

{
N∏

i=1

N (yi;µ(Xi; θ),Σ(Xi; θ) : θ ∈ Θ

}
.
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For a SEM the implied mean µ(Xi; θ) and covariance matrix Σ(Xi; θ) are the same
for every person. Furthermore, the mean µ(Xi; θ) and the covariance matrix Σ(Xi; θ)
are restricted to be of the forms denoted in Definition 3.2.1. In contrast to that, the
implied mean µ(Xi; θ) and covariance matrix Σ(Xi; θ) for GPPMs may be different for
every person and can in principle have any form (as long as Σ(Xi; θ) is always a valid
covariance matrix).

Thus, GPPM extends SEM in two ways: first, there is no restriction on the parame-
terization of the mean vector and the covariance matrix, and second, the mean and the
covariance matrix may be different for every person. The first extension does not violate
any of the assumptions for asymptotic normality (Taboga, 2012d). The second exten-
sion violates the iid assumption. However, since the person-specific differences in the
mean and the covariance matrix are produced by entering the IVs into template mean
and covariance matrices, the conditional iid assumption still holds. The conditional iid
assumption is sufficient for the restricted as well as the unrestricted (conditional) ML
estimator to be Gaussian.

3.7.3. Confidence Regions

As is the case for SEMs, likelihood-based confidence regions can be used for GPPMs.
This is done by applying the likelihood-ratio test to generate confidence regions. The
rationale is identical to the one presented for SEM in Section 3.2.2. For convenience, I
briefly repeat it here.

Let {θ1, . . . , θP } be the parameters of a GPPM. To obtain a confidence region for
an arbitrary subset of parameters θs ⊂ {θ1, . . . , θP }, the following strategy can be used.
Let Θs be the subspace of the parameter space Θ that corresponds to the parameters
of interest and θs ∈ Θs a particular parameter value. Let φθs(y) be the likelihood-ratio
test for the hypothesis that the true value θ∗s for the parameters is θs with the size α,
then a confidence set estimator δ(y) with the confidence level 1 − α for the parameters
θs can be obtained as follows:

δ(y) = {θs ∈ Θs : φθs(y) = 0}.

Thus, the resulting confidence set contains all parameter values θs ∈ Θs for which the
corresponding hypothesis test φθs(y) did not reject the null hypothesis.

3.7.4. Person-Specific Prediction

Person-specific prediction refers to making predictions for the DV of a particular person i
based on the corresponding IVs. Thus, in particular, it applies to extra- and interpolation
over time for a person i.

When using GPPM, performing person-specific predictions comes naturally. The ML
estimator returns a parameter θ̂, which represents a GP. The joint distribution implied
by the GP for the random vector Yi(Xi) = [Yi(xi1), . . . , Yi(xiJ)], representing the ob-
served time points as indexed by the IVs within xij , and the random vector Yi(X

∗
i ),
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representing the unobserved time points as indexed by the IVs within x∗ij , is

[
Yi(Xi)
Yi(X

∗
i )

]⏐⏐⏐⏐Xi, X
∗
i ∼ N

(
M

([
Xi

X∗
i

])
,

[
K(Xi, Xi) K(Xi, X

∗
i )

K(X∗
i , Xi) K(X∗

i , X
∗
i )

])
(3.7.1)

Because a realization of the random vector Yi(Xi) has been observed, it is natural to
compute the conditional distribution of Yi(X

∗
i ) given the observation yi for Yi(Xi). Note

that this is a Bayesian argument. In parallel to the predictive distribution in GPR, the
conditional distribution of the unobserved time points Yi(X

∗
i ) given the observation yi

is

Yi(X
∗
i )|Xi, X

∗
i , yi ∼ N (E(Yi(X

∗
i )|Xi, X

∗
i , yi),Cov(Yi(X

∗
i )|Xi, X

∗
i , yi)), with

E(Yi(X
∗
i )|Xi, X

∗
i ) = M(X∗

i ) + K(X∗
i , Xi)[K(Xi, Xi)]

−1(yi −M(Xi))

Cov(Yi(X
∗
i )|Xi, X

∗
i ) = K(X∗

i , X
∗
i ) −K(X∗

i , Xi)[K(Xi, Xi)]
−1K(Xi, X

∗
i ).

If point estimates for the unobserved time points represented by Yi(Xi) are required, the
MAP estimate or any other Bayesian point estimation technique can be used.

3.7.5. Model Selection and Validation

Remember model selection refers to selection of a model out of a set of candidate models,
whereas model validation refers to assessment whether a model is correctly specified.

Since GPPM is similar to SEM, one can adapt the model selection and validation pro-
cedures used for SEM. These can be categorized into the likelihood-ratio test against a
saturated model and penalty-based fit indices (see Section 3.2.3). Adapting these meth-
ods for model selection is relatively straightforward. I have shown that the likelihood-
ratio test can be used for GPPMs in Section 3.7.2. Thus, the likelihood-ratio test can
also be used to select between two GPPMs. Fit indices as used in SEM can also be
used for selecting between GPPMs. I have implemented both the Akaike information
criterion (AIC) and the BIC for GPPMs. In Section 4.2, I will demonstrate how the
likelihood-ratio test and these fit indices can be used for selecting between GPPMs.

Adapting the methods used in SEM for model validation is less straightforward. For
the likelihood-ratio test it is not obvious what the saturated model corresponding to a
given GPPM should be. Since SEMs describe a statistical model for a random vector, the
saturated model is “all Gaussian distributions.” GPPMs describe a model for a stochastic
process. Thus, the natural saturated model is “all Gaussian processes.” Whether this
is the correct translation and how the ML can be obtained under the saturated GPPM
remains to be investigated.

To validate GPPMs, fit indices like the AIC and the BCI together with their rec-
ommended thresholds can, in principle, be used. However, it is not obvious that the
thresholds developed for SEMs are also valid for GPPMs. I will not investigate these
issues here for reasons of space. Instead, I will introduce cross-validation for the selection
and validation of GPPMs in this section. My motivation to use cross-validation is as
follows:
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I have mentioned several concerns about model validation and selection practices in
SEM before (see Section 3.2.3). Essentially, neither the likelihood-ratio test nor the
proposed fit indices are suitable to validate the assumption that a model is correctly
specified.

The likelihood-ratio test is the only procedure that tries to test the assumption that
the model is correctly specified. Besides being seriously flawed (see Section 3.2.3), the
likelihood-ratio test for the null hypothesis, “the model is correctly specified,” almost
always rejects it, providing strong evidence for the hypothesis that in practice, models
will almost always be misspecified.

The penalty-based fit indices used for SEM acknowledge that every model will be
misspecified and measure how well a given model approximates the reality instead (see
also Little (2013, p. 108).

Like the fit indices, cross-validation does not directly assess whether a model is cor-
rectly specified. It rather estimates the validity of a given model in terms of how well
it predicts data points that were not included in the data set D that was used for sta-
tistical inference. Many fit indices, for example the AIC, have actually been motivated
as instruments to estimate the out-of-sample predictive performance solely on the basis
of the data set D. Thus, the results obtained by cross-validation should be relatively
similar to the ones obtained by the AIC approach. Which measure to choose for model
selection and validation might depend on the family of models employed and the goal
of the data analysis. However, I agree with Kearns, Mansour, Ng, and Ron (1997), who
have compared many model selection methods: because of the favorable properties and
the generality of cross-validation the burden of proof that a given penalty-based method
performs better for a given model and data class combination lies with the practitioner
who favors penalty-based procedures.

In the remainder of this section, I will discuss how to apply cross-validation to GPPMs.
I have already introduced cross-validation for learning algorithms that return a prediction
function, but GPPM does not contain a learning algorithm that returns a prediction
function. However, the combination of a GPPM and the ML estimator can be interpreted
as learning algorithm. Instead of a prediction function, the learning algorithm returns
a GP. The GP could be transferred into a conventional prediction function by simply
using its mean as the prediction. This would, however, ignore the covariance structure.
Therefore, I propose evaluating the GP directly. To do this, I employ a utility function
in parallel to the concept of a loss function. For every person yi, the utility function is
simply the log-likelihood of this person’s data under the GP. Thus, for a data set D of N
persons with corresponding partition P , the cross-validated log-likelihood of a GPPM,
as represented by its corresponding parameterized mean m and covariance function k
and parameter space Θ, is

R(m, k,Θ) =
1

N

∑

Dl∈P

∑

(Xi,yi)∈Dl

log
(
N
(
yi;M

[
Xi; θ̂ (D \Dl)

]
,K
[
Xi, Xi; θ̂ (D \Dl)

]))
.

D \Dk denotes the set difference. That is, the set D \Dl contains the elements, in this
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case persons, that are in D but not in Dl. θ̂(D \Dl) describes the ML estimate of the
parameters based on the data set D \Dl. Assuming that the data sets D \Dl are of the
same size, the cross-validated likelihood describes the expected log-likelihood of the data
of a new person under the GP that is obtained by fitting a GPPM with a data set of
the size |D \Dl| using ML. Thus, selecting the GPPM with the highest cross-validated
log-likelihood selects the GPPM that leads to the GP best explaining the reality.

For model validation the cross-validated log-likelihood needs to be accessed in absolute
quantities. One approach to achieve this is to compare the cross-validated log-likelihood
of the proposed model to the cross-validated log-likelihood of other models.

In the remainder of this text, I will report the negative cross-validated log-likelihood.
I do this since for fit indices, like the BCI and the AIC, a lower value usually refers to a
better model.

3.8. Implementation of Gaussian Process Panel Modeling

In this section, I will explain how I implemented the core procedures presented in the pre-
ceding sections. As the basis for the implementation, I used the GPR toolbox Gaussian
processes for machine learning (GPML) (Rasmussen & Nickisch, 2010) implemented in
MATLAB.

3.8.1. Model Specification

The specification of a GPPM

Yi(x) ∼ {GP(m(x), k(x, x′) : θ ∈ Θ)}

is formally identical to the specification of the set of statistical models

f(x) ∼ {GP(m(x), k(x, x′) : θ ∈ Θ)}

as used for model selection in GPR. Both require parameterized mean and covariance
functions. Thus, the existing procedure to specify parameterized mean and covariance
functions can be reused as the model specification procedure for GPPM.

3.8.2. Maximum Likelihood Estimation

If the number of persons N = 1 in a GPPM, the ML estimate θ̂ML for the statistical
model

Yi(x) ∼ {GP(m(x), k(x, x′) : θ ∈ Θ)}

is identical to the model θ̂ that maximizes the model evidence out of the set of models

f(x) ∼ {GP(m(x), k(x, x′) : θ ∈ Θ)}

in the context of GPR. Thus, the algorithm for model selection via model evidence
maximization could be reused to obtain the ML estimate. However, in the language of
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GPPM, conventional GPR applications only deal with N = 1 data sets. Thus, I had to
extend the model selection algorithm to allow for an arbitrary number of persons.

The available model selection algorithm works for one time series yi and corresponding
IVs Xi. It maximizes the likelihood function

p(yi|Xi, θ) = N (yi;M(Xi; θ),K(Xi, Xi; θ))

with respect to θ. For arbitrary GPPMs an algorithm that maximizes the likelihood
function

p(y|X, θ) =

N∏

i=1

N (yi;M(Xi),K(Xi, Xi))

with respect to the parameters θ is needed.
To find the parameter value θ̂ that maximizes the likelihood function, the existing

algorithm minimizes the negative log-likelihood − log(p(yi|Xi, θ)). To find the minimum
of the negative log-likelihood, a gradient descent algorithm is employed. The employed
gradient descent algorithm can in principle find the (local) minimum of any function
f(θ). To do this it requires a helper function that returns the value of the function f(θ)

for any parameter value θ and the corresponding gradient ∂f(θ)
∂θ . The gradient ∂f(θ)

∂θ is
defined as follows

Definition 3.8.1. For any differentiable function f : RP → R, the gradient is the vector
of partial derivatives:

∂f(θ)

∂θ
:=

[
∂f(θ)

∂θ1
, . . . ,

∂f(θ)

∂θP

]⊤

Thus, to extend the existing algorithm to allow for an arbitrary number of people,
a function that computes the joint negative log-likelihood for everyone − log(p(y|X, θ))

and its gradient ∂−log(p(y|X,θ))
∂θ was required. The function that computes the negative

log-likelihood − log(p(yi|Xi, θ)) for one person and its gradient ∂−log(p(yi|Xi,θ))
∂θ already

existed. The joint negative log-likelihood for all persons is

− log(p(y|X, θ)) = − log

(
N∏

i=1

p(yi|Xi, θ))

)
=

N∑

i=1

− log(p(yi|Xi, θ))

Similarly, the gradient of the joint negative log-likelihood for all persons is

∂ log(−p(y|X, θ))

∂θ
=

∂
∑N

i=1− log(p(yi|Xi, θ))

∂θ
=

N∑

i=1

∂ − log(p(yi|Xi, θ))

∂θ
.
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Thus, the required function that returns the value as well as the gradient of the joint
negative log-likelihood for all persons merely consists of a summation of the person-level
negative log-likelihoods and its gradients.

As a consequence of using a gradient descent algorithm for ML estimation, only mean
and covariance functions that can be differentiated at least once can be used. The
likelihood function p(yi|Xi, θ) is as often differentiable with respect to the parameters θ
as M(Xi; θ) and K(Xi, Xi; θ) are differentiable.

In principle neither M(Xi; θ) nor K(Xi, Xi; θ) have to be (once) differentiable. For
example m(x; θ) = k(x, x′; θ) = |θ|, with θ ∈ R, are both in principle valid parameter-
izations but are not differentiable for θ = 0 and any x, x′. However, in practice most
used parameterized mean and covariance functions do lead to matrices M(Xi; θ) and
K(Xi, Xi; θ) that are differentiable at least once.

3.8.3. Hypothesis Testing

The likelihood-ratio test is not available in the GPML toolbox so I implemented it to
allow frequentist hypothesis testing in GPPM.

Computing the likelihood-ratio test requires two central values: The unconstrained ML
estimate θ̂, and the restricted ML estimate θ̂R, i.e., the ML estimate under the constraint
g(θ) = 0. Together with the degrees of freedom difference, which is a property of g(θ),
these two values determine if the hypothesis g(θ) = 0 is rejected or not.

I already developed the functionality for obtaining the unconstrained ML estimate
for the sake of point estimation (see Section 3.8.2). The algorithm for obtaining the
ML estimate under the constraint g(θ) = 0 requires a constraint optimization algorithm,
which accepts functional constraints. The GPML toolbox does not provide such a general
constraint optimization algorithm since it is not needed for GPR. Thus, implementing
the likelihood-ratio test in its general form requires substantial changes to the GPML
toolbox.

For this purpose, I aimed at providing an algorithm that is able to find the constrained
ML estimate for constraints of the form g(θ) = [θp1 − c1, . . . , θpQ − cQ], with p1, . . . , pQ ∈
{1, . . . , P} and c1, . . . , cQ ∈ R, that is, constraints that set Q < P parameters to a fixed
value. There were two reasons for concentrating on this special case of the more general
constraint class g(θ) = 0. First, many hypotheses used in practice are of this form;
second, this hypothesis class is sufficient to compute likelihood-based confidence regions.

For implementing this constraint class, I reused a model selection approach from the
GPML toolbox that allows a specification of a prior over the hyper-parameters θ. In this
approach a hyper-prior p(θ) is specified. Instead of selecting the hyper-parameter value
that maximizes the model evidence p(y|Xi, θ), the hyper-parameter value that maximizes
the following term is selected: p(y|Xi, θ)p(θ). One form of hyper-prior supported by the
GPML toolbox are so-called delta priors. A delta prior takes on the form

p(θ) =

{
1 if θp = c, for a c ∈ R
−∞ otherwise

.
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The delta prior effectively constrains the optimization to θp = c. GPML also allows the
combination of multiple delta priors, which results in the following prior

p(θ) =

{
1 if θp1 = c1 and θp2 = c2 and . . . θpQ = cQ

−∞ otherwise
.

As desired, this prior is equivalent to the constraint g(θ) = [θp1 − c1, . . . , θpQ − cQ].

3.9. Related Work

Related work can be placed into four categories: (1) Using GPR as nonlinear regression
techniques for psychological data, (2) applying GPTSM to psychological data, (3) other
applications of GPs in psychology, and (4) extending GPTSM for multiple time series.

Besides the work by Cox et al. (2012), to which I will return later, I was not able to
find any publications within psychology that used GPR. However, GPR has been used
in the related field of neuroimaging (Ashburner & Klöppel, 2011; Doyle et al., 2013;
Friston et al., 2008; Hughes et al., 2014; Kaden, Anwander, & Knösche, 2008; Kauppi
et al., 2015; Kostro et al., 2014; Macke, Gerwinn, White, Kaschube, & Bethge, 2011;
Marquand et al., 2010; Marquand, Brammer, Williams, & Doyle, 2014; Ruigrok et al.,
2014; Salimi-Khorshidi, Nichols, Smith, & Woolrich, 2011; Ziegler et al., 2014). The
most popular application of GPR within neuroimaging uses it as a decoding method. In
this context, decoding refers to using supervised learning to predict a DV on the basis
of the IVs MRI data.

The work by Ziegler et al. (2014) poses an exception within neuroimaging. This group
used GPTSM to generate a predictive distribution for the grey matter volume of a
voxel based on biological age and other IVs. Although the data they employed is cross-
sectional they model it as if it stemmed from one person, that is as a time series, and
thus estimate a cross-sectional age gradient on volumetric changes in the brain. They
allow for inter-individual variation by additionally using IVs beyond biological age.

Griffiths, Lucas, Williams, and Kalish (2009) use GPR quite differently. Instead of
using it as a statistical method, they propose a process model for human function learning
that is based on GPR.

I could also find a paper discussing the extension of GPTSM for the analysis of panel
data. Within the field of statistics, Hall et al. (2008) propose using GPs to model panel
data. They share my assumption that the data for each person yi are considered an iid
realization of the same GP

Yi(x) ∼ GP(m∗(x), k∗(x, x′)).

However, they estimate the mean and covariance functions differently. In this work, I
propose basing inference on a set of GPs, which is represented by parameterized mean
and covariance functions and estimating the parameters using ML. In contrast, they
use nonparametric estimation techniques. They only discuss ways to obtain point esti-
mates for the mean and covariance functions. In contrast to this work, they do not go
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into obtaining set estimates or performing model selection. These differences might be
explained by different foci of attention. Hall et al. (2008) seemed to be most interested
in obtained person-specific predictions, whereas the interpretation of the estimates for
the mean and covariance functions is also of interest in this work. Hall et al. (2008)
also discuss how to include link functions to model non-Gaussian data such as count or
binary data.

Within psychology, the work by Cox et al. (2012) is closest to this work. These
authors have adapted GPR for trajectory analysis as used in cognitive psychology. This
is applied to analyze a trajectory of a computer mouse used by a participant. A trajectory
corresponds to a series of (t, x, y) triples, where t denotes time, and x, y the x and y
position of the cursor. They model the x and y position as independent GPs. Thus,
they treat the series of x and y positions as univariate time series. Experiments typically
consist of multiple trials. A trajectory is observed in every trial . Thus, the data of one
participant consist of multiple observed time series. As a consequence, it is formally
identical to a panel data set. However, in contrast to panel data, the time series all
originate form one person. To model multiple trials originating from one person Cox
et al. (2012) suggest concatenating the data of all trials into one trial, that is, treating all
trials from one person as large time series. To extend the method to trials from different
conditions, they use the same approach as taking in this work to extend GPTSM to
GPPM. The concatenated trials from each condition are modeled as the iid realization
of one GP that is the same across all conditions. They further extend their method to
multiple persons, which I will not discuss here because it complicated and not relevant
in the present context. Their method is different to the iid assumption used here and
consequently distinguishes itself from virtually all panel modeling methods. Cox et al.
(2012) suggest using the exponential squared covariance function without performing
model selection, that is, they do not suggest any measures for model selection. For
estimation, in contrast to this work, they use conventional Bayesian techniques as are
typically applied for GPTSM. For person-specific predictions they use the same approach
as the one advocated here.

Thus, my work is the first work to discuss how to adapt GPTSM for the modeling
of psychological panel data. While there have been some efforts to extend GPTSM for
the hierarchical modeling of multiple time series (Cox et al., 2012) or even panel data
(Hall et al., 2008), my work is also the first work to introduce a complete panel modeling
method based on GPTSM. Specifically, the discussion of what kind of inter-individual
variation a GPPM can accommodate, the frequentist inference procedures proposed for
GPPM, and the in-depth comparison with existing panel modeling approaches that will
follow in the next chapter are unique to this work.
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In the previous chapter, I introduced the new panel modeling method Gaussian process
panel modeling (GPPM). In this chapter, I will examine its properties by comparing
GPPM and two commonly used modeling methods, longitudinal SEM and multiple-
subject state-space modeling (SSM). This direct comparison will reveal multiple advan-
tages that GPPM has vis-à-vis to the existing methods.

Among the practical advantages of GPPM are its ability to express a larger space of
models of practical relevance, the ease with which it is able to represent continuous-time
models, and its built-in mechanism for performing person-specific predictions. I will
demonstrate these and further advantages on two example data sets that I analyzed
using GPPM. This also serves as a practical demonstration of GPPM.

The comparison of longitudinal SEM and GPPM will reveal that longitudinal SEMs
can be regarded as a special case of GPPMs. Thus, every longitudinal SEM can be
translated into an equivalent GPPM. This provides the opportunity to use GPPM soft-
ware to obtain ML estimates for longitudinal SEMs. Initial pilot studies have suggested
that GPPM software might be able to compute ML estimates faster than conventional
SEM software. Indeed, I will show in this chapter that GPPM software is indeed typi-
cally faster for the same model. Depending on the model, this difference is of different
magnitude.

4.1. Relationships to Conventional Longitudinal Panel
Modeling Approaches

4.1.1. Longitudinal Structural Equation Modeling

To investigate the relationship of GPPM to conventional longitudinal analysis methods
and its benefits in comparison to conventional methods, I compare it against longitudinal
SEM. Arguably, longitudinal SEM and hierarchical linear modeling (HLM) are the most
widely used panel methods, and HLM can be considered a special case of longitudinal
SEM (Curran, 2003).

First, I will show that any SEM can be described as an equivalent GPPM. It follows
that any longitudinal SEM can be described as an equivalent GPPM. I will not restrict
the proof to ordinary SEMs, but rather prove it for the broader family of extended SEMs
with definition variables.
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Theorem 4.1.1. For every extended SEM with definition variables, there is an equiva-
lent GPPM.

Proof. To prove this theorem, I will provide a recipe with which every SEM can be
translated into an equivalent GPPM. Both modeling techniques derive the model for all
persons by specifying a model for one of them and making the iid assumption. Thus, it
suffices to show that every person-level SEM can be specified using GPPM.

SEMs imply a person-level model for the random vector Yi representing the data of
person i of the form

Yi ∼ {N (F (I−A(di; θ))−1m(di; θ), F (I−A(di; θ))−1S(di; θ)(I−A(di; θ))−1⊤F⊤) : θ ∈ Θ}.
(4.1.1)

For the definition of all terms see Section 3.2.1.
GPPMs imply a person-level model for the random process Yi(x) of person i of the

form

Yi(x) ∼ {GP(m(x; θ), k(x, x′; θ)) : θ ∈ Θ},

with x, x′ ∈ X .
Note that both SEM and GPPM use the symbol m. In SEM, this symbol refers to

the mean vector of the disturbances, whereas it refers to the mean function in GPPM.
To avoid confusion, I will denote the mean vector in SEM by m(sem) in the following.

A central difference between SEMs and GPPMs is that a SEM represents a statis-
tical model for a random vector, whereas a GPPM represents a statistical model for a
stochastic process. However, for a particular panel data set {(Xi, yi), i ∈ 1, . . . , N} a
GPPM is translated into a statistical model for a random vector:

xYi(Xi) ∼ {N (M(Xi; θ),K(Xi, Xi; θ) : θ ∈ Θ}. (4.1.2)

Thus, to show that every SEM can be represented as a GPPM, it remains to be demon-
strated that a parameterized mean m(x; θ) and covariance function k(x; θ), and corre-
sponding matrix of IVs Xi can be chosen such that any statistical model represented by
a SEM (Equation 4.1.1) is identical to the statistical model implied by the corresponding
GPPM for a particular data set (Equation 4.1.2).

Parametrical statistical models are determined by the parameter space Θ as well
as by the functions that map every parameter value within the parameter space to a
distribution. In the cases of SEM and GPPM, the parameter values are mapped to a
corresponding distribution by mapping them to a mean vector and a covariance matrix,
which I will refer to as moments in the remainder. Neither SEM nor GPPM demand
any restrictions regarding the form of the parameter space Θ. Thus, it suffices to show
that a set of independent variables Xi, a mean function m(x), and a covariance function
k(x, x′) can be found such that the moments implied by the SEM and the corresponding
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GPPM are the same for each person i and parameter value θ.

M(Xi; θ)
!

= F (I −A(di; θ))−1
i

(sem) (4.1.3)

K(Xi, Xi; θ)
!

= F (I −A(di; θ))−1S(di; θ)(I −A(di; θ))−1⊤F⊤ (4.1.4)

For didactic reasons, I will first show how to find a mean function m(x; θ) and cor-
responding values of IVs Xi for a sample model. As an example, I use a LGCM with
three measurement occasions. The corresponding path diagram has already been shown
in Figure 3.1. The full algebraic representation is as follows:

m(sem)(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1 0

Y2 0

Y3 0

a µa

b µb

⎤
⎥⎥⎥⎥⎥⎥⎦
, A(di; θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1 Y2 Y3 a b

Y1 0 0 0 1 ti1

Y2 0 0 0 1 ti2

Y3 0 0 0 1 ti3

a 0 0 0 0 0

b 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

S(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1 Y2 Y3 a b

Y1 σ2
ϵ 0 0 0 0

Y2 0 σ2
ϵ 0 0 0

Y3 0 0 σ2
ϵ 0 0

a 0 0 0 σ2
a σab

b 0 0 0 σab σ2
b

⎤
⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎣

Y1 Y2 Y3 a b

Y1 1 0 0 0 0

Y2 0 1 0 0 0

Y3 0 0 1 0 0

⎤
⎥⎦.

(4.1.5)

The corresponding parameter is vector θ = [µa, µb, σ
2
ϵ , σ

2
a, σ

2
b , σab]. Only the A(di; θ) ma-

trix is individualized using the definition variables di = [ti1, ti2, ti3]. Thus, by replacing
di with [ti1, ti2, ti3] in Equation 4.1.3, the property of the desired mean function is

M(Xi; θ)
!

= F (I −A([ti1, ti2, ti3]; θ]))−1m(sem).

It remains to be shown that a mean function m(x; θ) and a matrix of IVs Xi exist that
leads to fulfillment of this condition. As matrix Xi, I choose

Xi =

⎡
⎣
ti1 ti2 ti3 1
ti1 ti2 ti3 2
ti1 ti2 ti3 3

⎤
⎦ .

The last column indexes the observed variables. In the remainder, I will denote the
index by j. Constructing a mean function that produces the same model-implied mean
using this matrix of IVs Xi as the LGCM is trivial. It simply is

m([ti1, ti2, ti3, j]; θ) = (F (I −A([ti1, ti2, ti3], θ]))−1m)j ,

69



4. Advantages of Gaussian Process Panel Modeling

where (z)j denotes the jth entry of the vector z.
The desired covariance function can be constructed on the same matrix Xi in similar

fashion. I will not describe the construction but rather continue with the proof for
the general case. In the general case m(sem)(di; θ), A(di; θ), S(di; θ) all depend on the
definition variables di. First, I again use repetitions of the definition variables augmented
with an index for the corresponding observed variable as matrix Xi for each individual:

Xi =

⎡
⎢⎣
di 1
...

...
di T

⎤
⎥⎦ .

T refers to the number of observed variables in the SEM. In the mean function I denote
the index of the observed variable as j, and the index for the second observed variable
as k in the covariance function.

The mean function

m([di, j]; θ) = (F (I −A(di; θ))−1m(di; θ))j

fulfills the desired property. Equivalently, the covariance function

k([di, j], [di, k]; θ) = (F (I −A(di; θ))−1S(di; θ)(I −A(di; θ))−1⊤F⊤)jk

fulfills the desired property. □

Thus, the family of extended SEMs is a subset of the family GPPMs. The modeling
approaches may still differ in the types of inferences that are typically performed. How-
ever, inference for SEMs as well as GPPMs is performed using ML as point estimation
technique, the likelihood-ratio test as hypothesis test, and likelihood-based confidence
intervals. Thus, every standard analysis that can be performed using SEM can equally
be performed using GPPM.

The interesting question now is if the reverse is also true: Is GPPM a special case of
SEM, and, thus, would both method be equally expressive? I also first start answering
this question by answering the question: Can every GPPM be expressed as an equivalent
SEM? Strictly, this cannot be the case since a GPPM describes a statistical model for
a stochastic process whereas a SEM describes a statistical model for a random vector.

The second important difference is that GPPM poses no restriction on the parame-
terization of the mean and the covariance function, whereas conventional SEM restricts
the parameterization of the mean and covariance matrices. This restriction, however, is
removed when considering extended SEM.

Indeed, with extended SEM and definition variables the statistical model implied by
a GPPM for a particular data set can be described. For every data set (X,y), a GPPM
reduces to a statistical model for a random vector of the form

p(y|X) ∈

{
N∏

i=1

N (yi,M(Xi; θ),K(Xi, Xi; θ)) : θ ∈ Θ

}
.

70



4. Advantages of Gaussian Process Panel Modeling

Figure 4.1.: Path diagram illustrating the translation of a GPPM into a SEM.

Thus, in parallel to the translation of a SEM into an equivalent GPPM one needs to
find SEM matrices and definition variables such that

F (I −A(di; θ))−1
i

(sem) !
= M(Xi; θ) (4.1.6)

F (I −A(di; θ))−1S(di; θ)(I −A(di; θ))−1⊤F⊤ !
= K(Xi, XI ; θ). (4.1.7)

By restricting the set of candidate SEMs to those for which A(di; θ) = 0, the conditions
that need to be fulfilled simplify to

msem(di; θ) = M(Xi; θ) S(di; θ) = K(Xi, Xi; θ)

If the number of observations is the same across all persons, this does not pose a problem.
One simply equates the definition variables di and the IVs Xi, and defines the template
matrices as

A(Xi; θ) = 0 msem(Xi; θ) = M(Xi; θ) S(Xi; θ) = K(Xi, Xi; θ).

This can be done because extended SEM allows arbitrary complex functions of the
definition variables and of the parameters for all entries of the SEM matrices. Assuming
that the number of observations per person is 3, the GPPM translated from a SEM has
a path diagram as displayed in Figure 4.1. However, even extended SEM does not allow
the number of observations to differ between persons as is possible in GPPM. This
problem can be solved by setting the number of observed variables to the maximum
number of observations per person. For persons with fewer observations, the remaining
observations are simply treated as missing values.

I have shown that every longitudinal SEM can be transformed into an equivalent
GPPM. The statistical model implied by a GPPM can be transformed into an extended
SEM. Using conventional SEM, this is not possible. The translation from SEM to
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GPPM seems useful at least for some models. For a LGCM, for example, the GPPM
representation provides a compact, alternative representation of the model (compare
Equations 3.6.4 and 3.6.5 with Equation 3.2.9). In contrast, the translation of a GPPM
into a SEM, as introduced in this section, hardly ever seems to be reasonable. The
resulting SEM will necessarily be artificial and the graphical representation as offered
by SEM will be cluttered. Most importantly, the SEM will not contain any linear
regression, since the A matrix is 0. Thus, one might not even call this model a SEM
but rather a generic covariance model. As a consequence, I will ignore the existence of
this translation in the remainder. From a technical viewpoint, however, the translation
is valuable. It shows that GPPM can be implemented by building on extended SEM
software. The only major extension required is a function that translates a GPPM into
an equivalent SEM.

The inference procedures proposed for GPPM in this work are not all commonly
used for SEM. For point estimation, hypothesis testing, and confidence intervals, the
procedures are identical, but I propose using cross-validation for model selection and
validation, which is not common in the SEM community. Brandmaier, von Oertzen,
McArdle, and Lindenberger (2013), however, do use cross-validation for SEMs.

Person-specific prediction (as presented in Section 3.7.4 for GPPM) is not commonly
performed in longitudinal SEM. A recent book devoted to longitudinal SEM (Little,
2013) does not include anything about the topic. However, the problem of estimat-
ing person-specific factor scores, which has been discussed in the SEM literature (e.g.,
Estabrook & Neale, 2013), is closely related. Both problems consist of estimating a
person-specific value based on the data for a person and a joint distribution for the data
of all persons. Like the person-specific prediction method for GPPM, the expected pos-
terior method to estimate factor scores (Estabrook & Neale, 2013) uses the conditional
distribution of the factor score given the observed data to estimate the person-specific
factor scores. Thus, although person-specific predictions are currently rarely used within
longitudinal SEM, the expected posterior method to get factor scores may potentially
be general enough to be reusable for obtaining person-specific predictions that would be
identical to the GPPM-generated person-specific predictions.

Ultimately, SEM and GPPM differ in how they describe the model-implied moments,
i.e., the model-implied mean and covariance matrices. In SEM, the model-implied mo-
ments of the observed variables are described using noisy linear equations. Thus, a SEM
describes a statistical model for a Gaussian random vector. The moments of the ran-
dom vector are implicitly described by the structural equations and have to calculated
as shown in Equation 4.1.3 and Equation 4.1.4. Furthermore, not all parameterizations
of the moments are possible; they are restricted to those that can be expressed via
structural equations.

In GPPM, the model-implied moments of a GP are explicitly described via arbitrarily
parameterized mean and covariance functions. Thus, there are four central differences
compared to SEM. In GPPM:

1. The statistical model is described for a stochastic process rather than a random
vector.
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2. The model-implied moments are described explicitly, not implicitly.

3. Every parameterization of the model-implied moments is allowed not only those
expressible by linear structural equations.

4. The concept of latent variables is not used explicitly.

These four, rather technical differences lead to a variety of practical differences. By de-
scribing the statistical model on a stochastic process, GPPM is well suited for continuous
as well as discrete-time modeling. SEM, on the other hand is well suited for discrete-time
modeling, but since a SEM is a statistical model for a random vector, continuous-time
analyses are more cumbersome.

For readers not familiar with the concepts of discrete-time and continuous-time mod-
eling, I provide a brief introduction. (for an in-depth discussion of continuous- versus
discrete-time modeling in psychology, see, e.g., (Oud & Jansen, 2000; Oud & Singer,
2008; Voelkle et al., 2012)). In discrete-time modeling, variables that emerge over time
are modeled at distinct time points, and for all time points in-between, no model is
imposed. In contrast, continuous-time modeling treats the observed variables as dis-
crete snapshots of an underlying continuous process. The continuous process is modeled
directly rather than the discrete time points. Arguably, continuous-time modeling is
better suited to model panel data, since the concept of interest is the continuous process
and not a series of discrete snapshots. Besides this conceptual benefit, continuous-time
modeling also has several practical advantages. Among the most important are: Dif-
ferent time intervals between as well as within persons are properly accounted for and
inference results between studies are directly comparable.

Another advantage of the continuous-time perspective in combination with Bayesian
inference as used for GPPM is that it makes person-specific prediction (i.e., inter- and
extrapolations) straightforward. In the panel modeling context, person-specific predic-
tions can most prominently be used to obtain person-specific trajectories that extend the
observed time frame. For example, one could obtain a prediction for how the cognitive
ability of a person develops as they age. Importantly, the prediction approach taken by
GPPM does not only use the data for the respective person but also takes the data of
all other persons into account. Additionally, GPPM does not only enable to estimate a
most likely trajectory but also an uncertainty for the trajectory. As such, person-specific
predictions as obtained by GPPM can be easily used as a screening device for interven-
tions. To stay with the example, if the 95% credibility interval for the cognitive ability
of a given person at a given age contains only values that are considerably worse than
would normally be expected at this age, an intervention should be performed.

By specifying the model-implied moments directly rather than implicitly, ML esti-
mates, and in turn likelihood-based confidence intervals can potentially be computed
more efficiently for GPPMs. I will investigate this topic in depth in Section 4.3.

The direct specification of the model-implied moments also influences how a model
is determined by a researcher. Describing the model-implied moments implicitly via
structural equations and especially via path diagrams might be more straightforward
than describing them explicitly. In GPPM, translating a theory into mean and covariance

73



4. Advantages of Gaussian Process Panel Modeling

functions potentially places a higher burden on the researcher. However, using the rule
to compose the mean and covariance functions as the sum of simple mean and covariance
functions established in Theorem 3.5.1, they can be constructed from a set of already
available functions that represent important model classes.

A related topic is the non-existence of latent variables in GPPM. While not supporting
latent variables directly, they can be included implicitly. As an example, review the
specification of the LGCM in Equations 3.6.4 and 3.6.5. This approach allows inclusion
of latent variables on the level of model specification, estimation, and hypothesis testing.
However, person-specific predictions cannot be obtained for latent variables. To do this,
a joint distribution of all measurements and latent variables is required. If an observed
variable is simply a latent variable plus some measurement error, this can already be
done using GPPM. For an example, see the person-specific predictions presented in
Section 4.2.1. Extending GPPM to arbitrary combinations and roles of latent variables
will be the subject of future work.

The fact that GPPM allows every parameterization means that a larger model space
can be represented by GPPM. In other words, GPPM offers a variety of new ways to
think about the temporal evolution of psychological processes. Indeed any model that is
a set of GPs can be expressed. For example, a GPPM could be “any smooth process,”
for a given definition of smoothness. Using SEM this is not possible.

The model “any smooth process” as an example of a model that can be expressed in
GPPM but not in SEM deserves a little more attention. It is a long-standing assumption
in the natural sciences that “nature does not make jumps” (“natura non facit saltus”).
This has been promoted by thinkers such as Leibniz (1704/1886) and Darwin (1859).
The most straightforward mathematical implementation of this principle is continuity.
Informally, a continuous function f(x) = y can be drawn without removing the pen
from the paper, i.e., there are no jumps in the function. The principle can also be
extended to the derivative of a function. For example, not only the function describing
the location of a car is continuous, but also the function describing its velocity. This can
be further extended to the acceleration. Repeating this principle indefinitely leads to
the requirement that the function f(x) = y is infinitely often differentiable, and that all
derivatives are continuous. A function satisfying this property is called smooth. Thus,
it can be argued that if no more is known about a phenomenon that emerges over time
the best assumption is smoothness.

A GP is not a function, it is a stochastic process. To extend the definition of smooth-
ness to a stochastic process, one can look at the properties of the realization of a stochas-
tic process (also known as sample path in the literature). Every realization of a GP can
be described by a function f(x) = y. Thus, for every realization, properties of the re-
sulting function such as continuity or smoothness can be examined. For the exponential
squared covariance function

k(x, x′; [σ, l]) = σ2 exp

(
(x− x′)2

−2l2

)
σ, l ∈ R+

every realization is smooth. Thus, the exponential squared covariance function can
be interpreted as a mathematical implementation of the “nature does not make jumps”
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principle. In contrast to this, realizations of the popular LGCM and the continuous-time
AR(1) model are continuous but not smooth.

Another more practical difference between SEM and GPPM is that they originate from
quite different communities and as such come with different “default models.” Faced
with the problem of data analysis, many applied researchers working with panel data
simply choose from a set of default longitudinal SEMs. Interestingly, while there is some
overlap, the default models used for Gaussian process time series modeling (GPTSM)
and longitudinal SEM differ although the problems for which they are used are similar.
Therefore, GPPM extends the repertoire of default models from which applied researcher
can choose. In this vein, I will compare the AR model as used in the SEM community to
the similar exponential squared covariance function, which implements the “nature does
not jump” assumption and is commonly used in the GPTSM community (cf. Section
4.2.1).

To summarize: every longitudinal SEM can be expressed as a GPPM. GPPM extends
the space of expressible models. One example of a worthwhile model that can only be
expressed using GPPM is the exponential squared model, which implements the “na-
ture does not jump” assumption. Furthermore, GPPM is well suited for discrete-time
and continuous-time modeling, whereas continuous-time modeling in SEM is cumber-
some. The combination of continuous-time modeling and the deep rooting in Bayesian
inference equips GPPM with a straightforward mechanism for providing person-specific
predictions, which are not as easily obtained in longitudinal SEM. The model implied
moments are described implicitly in SEM and explicitly in GPPM. Whether this differ-
ence leads to GPPM software being faster will be investigated in Section 4.3.

4.1.2. State-Space Modeling

Since one of the main differences between GPPM and SEM is that the former is able
to express a statistical model for a stochastic process and is thus better suited for
continuous-time modeling, it is obvious to compare GPPM against other techniques that
are also able to do this. Within the social sciences, one of the most relevant methods
is multiple-subject state-space modeling (SSM), as advocated by Boker (2007a, 2007b),
Driver, Oud, and Voelkle (in press), Oud and Jansen (2000), Oud and Singer (2008),
Voelkle et al. (2012).

I will only be able to briefly introduce multiple-subject SSM. For a more detailed
introduction to the topic see Oud and Jansen (2000), Oud and Singer (2008), Voelkle
et al. (2012).

Similarly to GPPM, multiple-subject SSM is originally a time series analysis approach
that was extended to a panel modeling technique (Oud & Singer, 2008). Linear time-
invariant Gaussian SSMs are of the form

State equation:
dL(t)

dt
= AL(t) + Bx(t) + ζ(t)

Output equation: Y (t) = CL(t) + Dx(t) + ϵ(t)
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L(t) is a latent stochastic process. Its description, the state equation, is a so-called
stochastic differential equation (SDE). A SDE can be seen as the continuous-time equiva-
lent of a difference equation (Voelkle et al., 2012); for an elaborate introduction to SDEs,
see Kuo (2006). The output equation encodes how the latent process L(t) is mapped to
the observable process Y (t). A,B,C,D are matrices of appropriate size. x(t) contains
the values of some IVs at time point t. For every t, both ζ(t) and ϵ(t) are Gaussian
random vectors with distribution ζ(t) ∼ N (0, Q) and ϵ(t) ∼ N (0, R).

A SSM is only fully specified by making assumptions about the value of the latent
process L(t0) at some initial time point t0. This value is an additional parameter of the
model. Thus, the parameters of a SSM are θ = [A,B,C,D,Q,R,L(t0)].

Given a value L(t0) of the latent process at an initial time point t0, the solution of
the state equation for all following time points t > t0 is

L(t) = eA(t−t0)L(t0) +

∫ t

t0

eA(t−s)Bx(s)ds +

∫ t

t0

eA(t−s)QdW (s). (4.1.8)

I will now show that every SSM can be expressed as an equivalent GPPM.

Theorem 4.1.2. Every SSM can be expressed as an equivalent GPPM.

Proof: I will show that for every parameter value θ the solution for Equation 4.1.8 is
a GP, and that consequently the set of stochastic processes for the observable process
Y (t) defined by any SSM is a set of GPs. It follows that every SSM can be expressed as
an equivalent GPPM.

In the first term of Equation 4.1.8, eA(t−t0) is a matrix exponential, the result of which
is again a matrix. Thus, the first term is a vector.

The second term is an ordinary Riemann integral. However, the values of the IVs
x(s) are not known for all relevant time points s ∈ [t0, t]. The values of the IVs x(s) are
only observed for a finite set of time points [t0, . . . , tT ], which typically coincide with the
time points for which a realization of observable process Y (t) is obtained. To solve this
problem, it is usually assumed that the IVs x(s) do not change between two observations.
It follows that for all time points s, such that si ≤ s < si+1, x(s) = x(si). Under this
assumption, the Riemann integral can be computed and results in a vector.

The third term is a so-called Wiener integral (Kuo, 2006, Chapter 2.3). The solution

of a Wiener integral
∫ b
a f(x)dW (x) is a Gaussian random vector with a mean of 0 and the

covariance matrix
∫ b
a f(x)f(x)⊤dx. Thus, the third term represents a Gaussian random

vector with a mean of 0 and the covariance matrix

Cov

(∫ t

t0

eA(t−s)QdW (s)

)
=

∫ t

t0

eA(t−s)Q(eA(t−s)Q)⊤ =

∫ t

t0

eA(t−s)QQ⊤eA
⊤(t−s).

As a consequence, for every time point t, the latent process L(t) is a Gaussian random
vector. In other words, the latent process is a multivariate GP.

Since the observable process Y (t) is the result of a linear mapping of the latent process
L(t), the observable process Y (t) is also a GP. As to why this is the case, note that
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for every time point t the value of the latent process L(t) is a Gaussian random vector,
and that the linear transformation of a Gaussian random vector results in a Gaussian
random vector (see Theorem A.3.7 in Appendix A.3).

By parameterizing the model matrices A,B,C,D,Q,R,L(t0), a set of GPs, or in other
words a GPPM, is described. □

The approach used to extend SSM to multiple subjects is the same as the one I used
to extend GPTSM to GPPM. Each person’s time series is considered an iid realization
of the same GP as represented by a SSM. The modifications to allow for more forms of
inter-individual variation added, for example, by Driver et al. (in press), Oud and Jansen
(2000), Oud and Singer (2008), Voelkle et al. (2012), can all be considered special cases
of the procedures to introduce inter-individual variation for GPPMs that I described in
Section 3.6. Thus, the multiple-subject SSM can be considered a special case of GPPMs.

The reverse question, whether GPPMs can also be expressed as multiple-subject SSM,
naturally arises. For some GPPMs, there is an equivalent multiple-subject SSM. How-
ever, there are GPPMs that can not be expressed as an equivalent multiple-subject SSM,
and, thus, GPPM cover a truly larger model space than multiple-subject SSM. Consider,
for example, the GPPM represented by the exponential squared covariance function

k(s, t) = σ2 exp

(
−(s− t)2

ρ

)
,

with ρ > 0. There is no SSM that can represent this covariance function (Hartikainen
& Särkkä, 2010). However, for any GPTSM that only has time as the IV a SSM ap-
proximating it can be found (Hartikainen & Särkkä, 2010). Consequently, this probably
pertains to any GPPM with only time as the IV.

The Kalman filter algorithm is commonly used in multiple-subject SSM for parame-
ter estimation. The Kalman filter algorithm can be interpreted as an alternative way
of computing the person-level likelihood. ML is also used as estimation method. The
likelihood-ratio test is used as hypothesis test, and likelihood-based confidence inter-
vals are the recommended approach to compute confidence intervals. Thus, GPPM
can perform all those conventional analyses (parameter estimation, confidence intervals,
hypothesis tests) that can be carried out with multiple-subject SSM.

To obtain person-specific predictions based on a multiple-subject SSM, the Kalman
filter algorithm, which is used to compute person-level likelihoods, can also be used.
This algorithm contains a prediction step, which computes the conditional distribution
of the state L(t) at time point t given all previous observations. The Kalman smoother
algorithm can be used to obtain the conditional distribution of the state L(t) given all
other observations p(L(t)|yi). Arguably, Kalman filter predictions should only be used
in psychology when they are identical to the Kalman smoother predictions, i.e., when
only data preceding the time point of interest have been observed. Thus, performing
person-specific predictions, as in GPPM, is implemented by computing the conditional
distribution of the unknowns given all the knowns. In contrast to GPPM, the predic-
tion is not about the value of the observable process Y (t) but rather about the latent
state process L(t). In principle, GPPM can also be extended to allow for latent predic-
tions. Indeed, in Section 4.2.1, I provide person-specific predictions for latent constructs.
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However, GPPM currently does not support latent predictions in the general form sup-
ported by multiple-subject SSM. Predictions about the observable process Y (t) as used
in GPPM can also be obtained using multiple-subject SSM. Using the output equation,
the prediction of the state of the latent process L(t) as returned by the Kalman smoother
can be mapped to a prediction for the observable process Y (t).

GPPM and multiple-subject SSM mostly differ in how the model-implied moments
are specified, in analogy to the difference I noted earlier between longitudinal SEM
and GPPM. However, in contrast to longitudinal SEM, both GPPM and multiple-
subject SSM describe the statistical model as a set of GPs. Thus, they are both well
suited for continuous-time modeling. In GPPM, the set of GPs is specified explicitly
by a parameterized mean and covariance functions, whereas it is defined implicitly by
a linear Gaussian SDE in multiple-subject SSM. Therefore, any set of GPs can by
described in GPPM, whereas only those sets that can by described by a parameterized
linear Gaussian SDE are possible in multiple-subject SSM.

The form of a researcher’s theory determines whether translating it into a mean and
covariance functions representation is easier than translating it into a SDE. If the theory
is about the way a system changes from one time point to another, as is the case for
a AR(1) model, deriving the corresponding multiple-subject SSM should be the easier
approach. Models that focus on describing the change of a system from one time point
to another are referred to as dynamic models (Hertzog & Nesselroade, 2003; Voelkle, in
press). If the theory on the other hand comprises a complete analytic description of the
to-be-expected change, which is usually represented as a function of some representation
of time, as is the case for LGCMs, GPPM seems to be better suited. Models that focus
on describing the change of system as a function of some IVs, especially time, are called
static models (Hertzog & Nesselroade, 2003; Voelkle, in press). However, it is worth
noting that GPPMs can also represent dynamic models. As I have previously shown,
there is an equivalent GPPM for any multiple-subject SSM.

In general, the amount of mathematical machinery needed for multiple-subject SSM
seems higher than for GPPM. The only advanced concept needed for GPPM are GPs
and their descriptions, mean and covariance functions. Mean and covariance functions,
however, are simple generalization of mean vectors and covariance matrices. In contrast,
the concept of SDEs is rather complicated. It extends the already complex topic of
regular differential equations. Thus, GPPM may provide easier access to continuous-
time modeling than multiple-subject SSM.

Similarly, as pertains to longitudinal SEM, the fact that multiple-subject SSM and
GPPM originate from different communities and have consequently developed different
default models can be leveraged. Furthermore, as I have noted earlier, there are models
that can be expressed with GPPM but not with multiple-subject SSM. In the next sec-
tion, I will provide an example for the way the exponential squared covariance function,
which is popular within machine learning and cannot be expressed using multiple-subject
SSM, is a viable alternative to the AR(1) model, a multiple-subject SSM which is popular
within psychology (Hertzog & Nesselroade, 2003).

To summarize, both multiple-subject SSM and GPPM are viable methods for continuous-
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time modeling. However, GPPM is more general because every multiple-subject SSM
can be represented as a GPPM but not vice versa. An important representative of the
models that can only be expressed using GPPM is again the exponential squared covari-
ance model. While different algorithms are employed to derive the results, the central
forms of inference are conceptually identical in GPPM and multiple-subject SSM. An
important difference between GPPM and multiple-subject SSM is the language of model
specification. In GPPM, a GP is defined via its mean and covariance functions, whereas
it is described via a SDE in multiple-subject SSM. Thus, multiple-subject SSM allows
dynamic description a model, i.e., by making assumptions about the form of the change
from one time point to another, whereas the model is described in static fashion in
GPPM, that is, as a function of the IVs.
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4.2. Demonstration of Gaussian Process Panel Modeling

This section serves two purposes. First, I demonstrate how GPPM and more specifically
the GPPM toolbox can be used for data analysis. Second, I present concrete exam-
ples for some of the advantages of GPPM over conventional panel modeling techniques
introduced in the previous section.

This section is divided into two parts. The first is devoted to exploring the usefulness of
the exponential squared covariance function for psychological data analysis. As I have
already mentioned, this covariance function encodes the assumption that the process
under investigation is smooth. It is popular within the GPR community. I will show
that the exponential squared GPPM is similar to the continuous-time AR(1) model,
which is commonly used in psychology. Importantly, however, the AR(1) model leads to
continuous but not smooth processes. To explore whether the exponential squared model
is a viable alternative to the AR(1) model, I will compare the GPPM expressed by the
exponential squared covariance function against the continuous-time AR(1) model based
on a longitudinal panel study (Heitmeyer, 2004), in which authoritarianism was measured
repeatedly. Data from this study have previously been analyzed with a continuous-time
AR(1) model using multiple-subject SSM (Voelkle et al., 2012). I will demonstrate that
the exponential squared GPPM is selected over the continuous-time AR(1) model on the
authoritarianism data set.

In the second part, I show how GPPM can be used to easily avoid the often unrealistic
assumption of uncorrelated errors when using the LGCM. To this end, I implement
the LGCM with AR(1)-correlated errors using GPPM. While this model can also be
expressed using both extended SEM and multiple-subject SSM, I argue that GPPM
provides the easiest approach. The reason for this is that it is well suited for static
(Hertzog & Nesselroade, 2003; Voelkle, in press) continuous-time modeling. I will also
demonstrate that the LGCM with AR(1)-correlated errors is selected over the regular
LGCM on a data set originating from the COGITO study (Schmiedek, Bauer, Lövdén,
Brose, & Lindenberger, 2010). COGITO participants underwent an extensive cognitive
training, during which their positive affect was also assessed. I concentrate on the
positive affect data here.

4.2.1. Exponential Squared Covariance Function as Alternative to the
Autogressive Model

Foundations

Again, in this section I will explore wheter the exponential squared GPPM is a viable
alternative to the AR(1) model. I will first introduce the discrete-time AR(1) model,
then continue with the continuous-time AR(1) model and its GPPM representation,
the exponential covariance function. After that, I will present the exponential squared
covariance function in detail and relate it to the exponential covariance function.

The conventional AR(1) model is a discrete-time model. Let Yi,j be the random
vector representing the jth time point for the ith person, then the AR(1) model can be
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represented by the following formula:

Yi,j = c + aYi,j−1 + ϵi,j ,

where c, a are scalars and ei,j ∼ N (0, σ2). Within psychology, the AR(1) model is
typically represented as a SEM.

The discrete-time AR(1) model can be interpreted as a special case of the continuous-
time AR(1) model for which all intervals between two successive measurements are the
same. The continuous-time AR(1) model is typically represented as a SSM, that is, in
the form of the following SDE

dLi(t)

dt
= c + aLi(t) + ϵi(t). (4.2.1)

c, a are scalars again and ϵi(t) ∼ GP(0, δ(s− t)σ2) is a white noise GP. Since Equation
4.2.1 is a special case of the state equation, as used in a SSM, it describes a set of GPs.
The set of GPs can equivalently be described by parameterized mean and covariance
functions, that is, a GPPM

Li(t) ∼ GP(m(t), k(s, t)).

Assuming that the value of the process at some arbitrary time point t0 is yt0 for everyone,
the corresponding mean and covariance functions for all time points t0 > 0 are

m(t) = − c

a
+
(
yto +

c

a

)
eat k(s, t) =

σ2

−2a
(ea|s−t| − ea(s+t)).

a has to be smaller than 0 as otherwise k(s, t) would not be a valid covariance function.
In the stationary variant of the AR(1) model it is assumed that the process has been

observed for a long time. That is, the behavior of the process for large time values t is
of interest. This is achieved by letting t and s go to infinity:

lim
t→∞

m(t) = − c

a
lim
s→∞
t→∞

k(s, t) =
σ2

−2a
ea|s−t|.

The mean and covariance functions can be simplified, by replacing c = −µa, where
µ ∈ R, and σ2 = −2σ2

ϵa, with σϵ ∈ R:

m(t) = µ k(s, t) = σ2
ϵ e

a|s−t|.

The covariance function can be further reparameterized to

k(s, t) = σ2 exp

(
−|s− t|

ρ

)
,
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by setting a = −1/ρ with ρ ∈ R+. This covariance function is known as the exponential
covariance function in the GPR community, and known to represent the continuous-time
AR(1) model if the IV is time.

The exponential covariance function is not particularly popular for GPR. In contrast
to that, an initially similar covariance function, the exponential squared covariance func-
tion, is among the most used covariance functions. The exponential squared covariance
function is commonly presented as

k(s, t) = σ2 exp

(
−(s− t)2

2l2

)
,

with σ2 > 0 and l > 0. It can equivalently be written as

k(s, t) = σ2 exp

(
−(s− t)2

ρ

)
,

with σ2 > 0 and ρ > 0. Thus, the exponential covariance function and the exponential
squared covariance function differ in the fact that only for the latter the distance |s− t|
is squared.

A different perspective on the differences between the two covariance functions can be
obtained by comparing the model-implied auto-correlations. Let Ys, Yt be two random
variables from a GP that are r = |s− t| time units apart. The variance for each of these
variables under both covariance functions is simply σ2. It is the implied correlation in
which the two covariance functions differ. For the exponential covariance function the
implied correlation is Corr(Ys, Yt) = exp(− r

ρ), whereas it is Corr(Ys, Yt) = exp(− r2

ρ ) for
the exponential squared covariance. The model-implied correlation for the latter can be
written as

c(r)r,

where c(r) = exp(− r
ρ) is the model-implied correlation of the exponential covariance

function. The ratio of two covariance function is thus

c(r)r

c(r)
= c(r)r−1.

Thus, the correlation implied by the exponential squared covariance function for the
same length scale parameter ρ is higher for a time distance of r < 1, lower for r > 1,
and identical to the correlation implied by the exponential covariance function for r = 1.
The differences grow exponentially the further away from 1 the distance r is.

In Figure 4.2, I provide a graphical illustration of the differences. The sample re-
alizations of the exponential and the exponential squared covariance function provide
a good illustration of a smooth and a non-smooth trajectory. While both realizations
are continuous (no jumps), the derivative (i.e., the change) of the realization from the
exponential covariance function clearly is not continuous, that is, the realization is not
smooth, whereas the first and the second derivative (and all other derivatives) are con-
tinuous for the realization of the exponential squared covariance function, making it
smooth.
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Figure 4.2.: Graphical illustration of the differences between the exponential squared
and the exponential covariance function. In the upper two panels, a corre-
sponding realization of each covariance function is shown. The lower two
panels display the model-implied correlations for two time points that are
∆t apart. To generate the data, I set σ2 = 2 and ρ = 400.
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Demonstration Data Set: Stability of Authoritarianism

I reuse data that were analyzed by Voelkle et al. (2012) to motivate the use of the
continuous-time AR(1) model to compare the continuous-time AR(1) model (exponential
covariance function) and the exponential squared covariance function. The data originate
from a German panel study (Heitmeyer, 2004), measuring people aged 16 years and
older who do not have an immigration background using computer-assisted interviews.
Measurements were performed in 2002, 2003, 2004, 2006, and 2008, but not in 2005 and
2007.

Among other variables, authoritarianism was measured. According to Voelkle et al.
(2012, p. 24–26),

. . . to date, most researchers . . . agree that authoritarianism reflects a) an
individual preference for submission under authorities (authoritarian submis-
sion), b) a strict orientation along the perceived conventions of the ingroup
(authoritarian conventionalism), and c) aggressive stances toward outgroups
(authoritarian aggression). . . . .

Authoritarianism was measured by four items . . . . Items were presented on
a 4-point rating scale providing response options from 1 (agree totally) to 4
(do not agree at all). The original response options were recoded, so that
higher values indicate higher agreement. The item wording was “In order to
preserve law and order, it is necessary to act harder against outsiders,” “One
should punish criminal acts harder,” “One should be obedient and respectful
to authorities,” and “One should be grateful to leaders who tell us what to
do.” The average of the four items was used for all subsequent analyses.

N = 2, 722 people took part in the study. Response rates were 100% in the first wave,
43% in the second wave, 30% in the third wave, 48% in the fourth wave, and 21% in the
last wave. While the dropout rate is substantial, it is typical for longitudinal surveys.

Employed Exponential and Squared Exponential Model

Here, I present the details of the exponential as well as the exponential squared model
as used for the analysis of the authoritarianism data. For both models, I wanted to
avoid stable between-person differences in the mean influencing the results. Therefore,
I started with the following model that allows for person-specific means:

m(t) = µa, k(s, t) = σ2
a.

For every person i, a person-specific mean ai is modeled. They are assumed to be
realizations of a Gaussian distribution N (µa, σ

2
a). For the exponential model, I added

the exponential covariance function to the covariance function, and for the exponential
squared model, I added the exponential squared covariance function. This leads to the
following GPPM:
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Measure Exponential Model Exponential Squared Model Ratio

AIC 10846.59 10820.84 1.002
BIC 10876.14 10850.39 1.002
nCV 10846.54 10821.99 1.002

Table 4.1.: Akaike information criterion (AIC), Bayesian information criterion (BIC),
and negative cross-validated log-likelihood (nCV) for the exponential and the
exponential squared model. The ratio is exponential / exponential squared.
Bold face marks the model selected on the basis of the corresponding measure.
The smaller value of a measure indicates which model to select.

Li(t) ∼ GP(µa, σ
2
a + km(s, t)),

where km(s, t) represents the part of the covariance function specific to the particular
model. For the exponential model it was the exponential covariance function

km(s, t) = σ2 exp

(
−|s− t|

ρ

)
, (4.2.2)

and for the exponential squared model the exponential squared covariance function

km(s, t) = σ2 exp

(
−(s− t)2

ρ

)
. (4.2.3)

I included a term allowing for measurement error for both models. Thus, the GPPM
for the observations is a mixture of the latent process Li(t) and a white noise GPPM
such that

Yi(t) = Li(t) + ϵi(t)

with ϵi(t) ∼ GP(0, δ(s− t)σ2
ϵ ).

Results

To investigate which model is better suited for the authoritarianism data, I compared the
exponential and the exponential squared model using three model-scoring methods, the
AIC, the BIC, and the negative cross-validated log-likelihood as introduced in Section
3.7.5. For cross-validation, I used 10 folds. The scores for both models and the three
scoring methods are shown in Table 4.1. They do not differ substantially between the
two models. However, the exponential squared model is favored by all three, providing
evidence that it is worth considering as an alternative to the exponential model, which
is widely used within psychology.

Did the parameter estimates differ by model? Note that the meaning of the length scale
parameter ρ is substantially different for the exponential squared and the exponential
covariance functions. Comparing ρ between the two models is similar to comparing the

85



4. Advantages of Gaussian Process Panel Modeling

Parameter Lower Bound Estimate Upper Bound

µa 2.82 2.85 2.87
σ2
a 0.00 0.00 0.11

σ2 0.37 0.47 0.50
ρ 13.24 13.42 15.26
σ2
ϵ 0.04 0.05 0.06

(a) Exponential Model

Parameter Lower Bound Estimate Upper Bound

µI 2.82 2.85 2.87
σ2
a 0.21 0.26 0.30

σ2 0.16 0.19 0.23
ρ 20.95 21.39 30.54
σ2
ϵ 0.07 0.08 0.08

(b) Exponential Squared Model

Table 4.2.: 95%-confidence intervals (CIs) as well as maximum likelihood (ML) estimates
for the parameters from exponential and the exponential squared model.

slope parameter b of a linear model bx with the coefficient c of a quadratic model cx2.
The remaining parameters are comparable between the two models.

The parameter estimates and their corresponding 95%-confidence intervals (CIs) are
displayed in Table 4.2. The estimates for the mean parameter µa are identical, whereas
the estimates for the variance of the mean σ2

a, the variance σ2, and the error variance σ2
ϵ

are all different. Conclusions based on the exponential model would thus be substantially
different in comparison to those based on the exponential squared model.

Using GPPMs, one can also compare the person-specific predictions obtained by the
different models. This is possible for any combination of GPPMs even if the parameters
are not comparable. In Figure 4.3, I show the person-specific predictions using both
models for one person. Predictions for both the observable process Yi(t) and the latent
process Li(t) are shown. While the predictive distributions are relatively similar, there
are substantial differences between them. Most notably, the predictive mean and the
predictive variance for the exponential squared model are both smooth, as desired by
the “nature does not jump” assumption, whereas this is not the case for the exponential
model.

To summarize, the exponential squared model, which implements the “nature does
not jump” assumption, and is only expressible via GPPM is selected over the AR(1)
model on the authoritarianism data set. This is the first empirical evidence that the
exponential squared model may be important for psychology.
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Figure 4.3.: Person-specific predictions of the exponential squared and the exponential
model for one person i. The predictions for the observable process Yi(t)
are shown in the first row. The predictions for the latent process Li(t) are
shown in the second row. The bold line indicates the mean of the predictive
distribution for every time point. The grey area displays the 95% credibility
region.
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4.2.2. Extending LGCMs With Autocorrelated Error Structures

In this section, I show how GPPM can be used to easily avoid the often unrealistic
assumption of uncorrelated errors when using the LGCM. To this end, I implement the
LGCM with AR(1)-correlated errors using GPPM.

Latent Growth Curve Model

The general idea of the LGCM is that within each person the variable of interest develops
according to a linear trend. Its slope and intercept may vary between persons according
to a Gaussian distribution. Formally, this can be expressed as follows

Yi(t) = ai + bit + ϵi(t)

ai ∼ N (µa, σ
2
a), bi ∼ N (µb, σ

2
b ) ϵi(t) ∼ N (0, σ2

ϵ )

Cov(ai, bi) = σab Cov(ϵi(s), ej(t)) = 0 if s ̸= t or i ̸= j

(4.2.4)

The parameters of the model are thus θ = [µa, σ
2
a, µb, σ

2
b , σab, σ

2
ϵ ]. For every parameter

value Yi(t) is a GP. Thus, the model for the GP Yi(t) can be represented by mean and
covariance functions as follows. I have already shown the mean and covariance functions
representing a LGCM in Example 3.6.4. Here, I repeat the result for convenience.

m(t; θ) = µa + µbt

k(s, t; θ) = σ2
a + σab(s + t) + sσ2

b t + δ(s− t)σ2
ϵ

Latent Growth Curve With AR(1) Error

The assumption that the error process is a white noise process, that is, there is no corre-
lation between the error terms at different time points, might not always be reasonable
for the situations in which the LGCM is applied. Indeed, correlations between error
terms often emerge in panel data (Sivo, Fan, & Witta, 2005). The main problem in
modeling panel data with error correlations when applying a model that does not as-
sume such correlations is that it introduces systematic bias in the parameter estimates
(Sivo et al., 2005). The solution to this problem is to include correlations among the
error terms in the model.

The most popular approach to introducing correlations among the error terms in
discrete-time modeling is to use a stationary AR(1) process among the error terms.
That is, the covariance between two error terms ϵi,j and ϵi,j+r that are r ∈ N units of
time apart is

Cov(ϵi,j , ϵi,j+r) = σ2
ϵa

r

with |a| < 1. When using any SEM program this approach can easily be implemented
by adding regressions on the error terms.

The continuous-time AR(1) model has to be employed to account for AR(1)-error
correlations in continuous-time models. This can be implemented by using an extended
SEM software such as OpenMx (Neale et al., 2016). However, setting up the model
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becomes relatively complex, as it relies on definition variables and nonlinear transfor-
mations of parameters. In contrast, as I will show here, changing the error process from
a white noise process to a stationary AR(1) process is straightforward using the GPPM
toolbox. Exchanging the default uncorrelated error process for another process, like the
exponential squared process, is also easy.

To implement a continuous-time AR(1) error structure using GPPM, the white noise
covariance function δ(s− t)σ2

ϵ is replaced by the exponential covariance function

kexp(s, t) = σ2
ϵ exp

(
−|s− t|

ρ

)
, ρ > 0,

such that the new covariance function, representing a LGCM with AR(1)-correlated
errors, is

k(s, t; θ) = σ2
a + σab(s + t) + sσ2

b t + σ2
ϵ exp

(
−|s− t|

ρ

)
.

To implement any other error structure (for example the exponential squared function)
the appropriate covariance function has simply to be used instead of the exponential
covariance function.

Note that the two limiting covariance functions of the exponential covariance function
are the white noise covariance function

lim
ρ→0

kexp(s, t) = δ(s− t)σ2
ϵ

and the constant covariance function

lim
ρ→∞

kexp = σ2. (4.2.5)

Thus, the LGCM with uncorrelated errors is nested within the LGCM with an AR(1)
error, with the constraint ρ = 0. Figure 4.4 visualizes the different error structures,
by presenting a sample from one LGCM with the three different error structures: The
AR(1) structure (moderate ρ values), the white noise structure (ρ = 0) and the constant
structure (ρ = ∞).

Model Specification

Since one of the main points of this section is that it is easy to define different error
structures for a LGCM using GPPM, I will also present how the model is specified
in practice using the GPPM toolbox. Remember that model specification for GPPMs
consists of specifying parameterized mean and covariance functions.

I start with the specification of the mean and the covariance function representing the
LGCM without a measurement error. The mean function

m(t; [µa, µb]) = µa + µbt

consists of an addition of a constant (µa) and a linear mean (µbt). In MATLAB code it
is specified as follows:
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Figure 4.4.: Illustration of the different error structures: the standard white noise error
process (ρ = 0), the continuous-time AR(1) error structure (ρ = 10) and
the constant error process (ρ = ∞). The same two example trajectories
were generated from a LGCM without error for each plot. The resulting
trajectories are indicated by dashed lines in each plot and the same for all
three plots. The plots differ in the error added to the error-free LGCM.
The solid lines denote the resulting trajectories. The plot demonstrates
that under the different error structures the observations (solid line) differ,
even though the latent concept of interest (dashed line) is identical.
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LGCMMean ={@meanSum,{@meanConst @meanLinear}};

This reads that the mean function is a sum (@meanSum) of a constant mean(@meanConst)
and a linear mean (@meanLinear) function.

The LGCM covariance function without the measurement error

k(s, t) = σ2
a + σab(s + t) + sσ2

b t

can also be expressed as a sum of different covariance functions. σ2
a is simply a constant

covariance function. sσ2
b t can be expressed as a scaled version of the linear covariance

function (st). For the last term σab(s+t), I had to implement a new covariance function,
which I named covCorr. In MATLAB code the specification of the covariance function
is as follows

LGCMCov = {@covSum, {@covConst, {@covScale {@covLIN}} , @covCorr}};

This reads that the covariance function is a sum (@covSum) of the constant covari-
ance function (@covConst), a scaled version of the linear mean function ({@covScale
{@covLIN}}), and the covCorr covariance function, which represents the correlation
between the intercept and the slope.

To add the measurement error, the white noise covariance function k(s, t) = δ(s− t)σ2
ϵ

has to be added.

LGCMCovError = {@covSum, {LGCMCov, @covNoise}};

This reads that the covariance function is a sum (@covSum) of the covariance function
for the latent growth curve model without error (LGCMCov), as previously defined, and
the white noise covariance function (@covNoise).

To implement the continuous-time AR(1)-error assumption, the white noise covariance
function has to be replaced with the exponential covariance function. The exponential
covariance function is a special case of the so-called Matérn covariance function. The
MATLAB code for the specification of it is:

expCov = {@covMaterniso 1};

This reads that the exponential covariance function is the Matérn covariance func-
tion with d = 1, and respectively ν = 1/2 (for details, see Rasmussen [2006, Section
4.2]). Thus, the code generating the full covariance function for the LGCM with AR(1)-
correlated errors is:

covF = {@covSum {LGCMCov expCov}};

The mean and the covariance function are saved in a model object.

91



4. Advantages of Gaussian Process Panel Modeling

model.meanf = LGCMMean;
model.covf = covF;

In principle, the definition of the mean and covariance functions is sufficient to specify
a GPPM. However, the iterative optimization algorithm used to obtain the ML estimate
requires starting values for all parameters. These are provided as follow: Note that the
mean function has two parameters (the mean of the intercept µa and the mean of the
slope µb), and the covariance function has five (the variance of the intercept σ2

a and the
slope σ2

b , the covariance between the intercept and the slope σab, the error variance σ2
ϵ ,

and the length scale ρ).

model.hyp.mean = [0 1];
model.hyp.cov = [2 3 0 6 1];

This reads that the starting values for the parameter vector [µa, µb, σa, σb, σab, ρ, σ
2
ϵ ] are

[0, 1, 2, 3, 0, 6, 1].
To obtain the ML estimate, a data set {(Xi, yi) : i ∈ 1, . . . , N} is required. The jth

row of the matrix Xi contains the time information for the jth observation of person i.
The entry yij of the vector yi contains the observed value for the jth observation. In
MATLAB the sequence of matrices (X1, . . . , XN ) is stored in a cell array denoted by
X, and the corresponding sequence of vectors (y1, . . . , yN ) in a cell array denoted by Y .
Joining the model and the data, parameter estimation is then performed as follows.

model.X = X;
model.Y = Y;
fittedModel = gpPanel(model)

The object fittedModel contains all kinds of information, most importantly the ML
estimate for all parameters.

Demonstration Data Set: Trajectories of Positive Affect During Cognitive Training

As a demonstration data set, I use data from the COGITO study (Schmiedek et al.,
2010). The aim of the study was to investigate the intra-individual variability and
plasticity of cognitive abilities of younger and older adults. To this end, participants
underwent an extensive training regime of cognitive abilities. During training, they were
measured on an average of 101 time points spread across an average of 158 days.

A set of emotional variables was also measured in addition to cognitive abilities. Pos-
itive and negative affect was assessed using the Positive and Negative Affect Schedule
(Watson, Clark, & Tellegen, 1988). Here, I only use the positive affect data. The Posi-
tive and Negative Affect Schedule assesses positive affect using the question, “Indicate to
what extent you feel this way right now, that is, at the present moment”, coupled with
the adjectives: excited, strong, interested, enthusiastic, proud, inspired, determined,
attentive, active, and alert. For each adjective, participants had to indicate to what ex-
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Index LGCM LGCM + AR(1) Ratio

AIC 1802.56 1798.55 1.002
BIC 1818.25 1816.86 1.001
nCV 1805.60 1800.30 1.003

Table 4.3.: Akaike information criterion (AIC), Bayesian information criterion (BIC),
and negative cross-validated log-likelihood (nCV) for the regular LGCM and
LGCM with AR(1)-correlated errors. The ratio is regular LGCM / LGCM
with AR(1)-correlated errors. Bold face marks the model selected on the
basis of the corresponding measure. The smaller value of a measure indicates
which model to select.

tent they feel this way on a scale from “not at all” (0) to “extremely” (7). As a general
marker for positive affect, I used the mean across all 10 adjectives such that a higher
value indicates higher positive affect.

For simplicity, I limited my analysis to the data from the younger adults (N = 100;
51.5% women; age: 20–31, M = 25.6; daily sessions: 87–109, M = 101; days in study:
116–372, M = 165). I limited my analysis to the measurements that occurred within 9
days of beginning training because I expected the strongest change in this period due to
the adaptation to the study.

The most important characteristic of COGITO for this demonstration is that the time
intervals between two measurement occasions varied both between and within partici-
pants, making continuous-time modeling a necessity.

Results

To investigate whether the AR(1)-correlated error assumption is more adequate than
the regular white noise error assumption, I compared the regular LGCM and the LGCM
with AR(1)-correlated errors based on the three model-scoring methods: negative cross-
validated log-likelihood, AIC, and BIC. Additionally, I could perform a likelihood-ratio
test for model selection, since the regular LGCM is nested within the LGCM with AR(1)-
correlated errors. The scores for the two models are displayed in Table 4.3. All model
scores favor the LGCM with AR(1)-correlated errors. Also, the likelihood-ratio test
approach clearly favors the AR(1)-correlated errors with a p-value of 0.0142.

To investigate whether using the regular LGCM still leads to the same parameter
estimates even though the LGCM with AR(1)-correlated errors is favored, I compared
the parameter estimates for the two models. They are shown with corresponding 95%-
CIs for both models in Table 4.4. Overall, the parameter estimates are relatively similar.
The means of the intercept and the slope are essentially the same for both models. The
average starting level of positive affect is roughly 3.59. The 95%-CI for the average
slope level µb is [−0.08,−0.03]. Thus, both models predict that on average positive
affect decreases slightly over the first 9 days of the study. Using the ML estimate from
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Parameter Lower Bound Estimate Upper Bound

µa 3.37 3.58 3.79
µb -0.08 -0.05 -0.03
σ2
a 0.64 0.90 1.26

σ2
b 0.00 0.00 0.01

σab -0.03 -0.00 0.02
σ2
ϵ 0.41 0.46 0.52

(a) Regular LGCM

Parameter Lower Bound Estimate Upper Bound

µa 3.38 3.59 3.79
µb -0.08 -0.06 -0.03
σ2
a 0.57 0.83 1.19

σ2
b 0.00 0.00 0.01

σab -0.02 0.01 0.03
ρ 0.29 0.54 0.75
σ2
ϵ 0.43 0.50 0.57

(b) LGCM with AR(1)-correlated errors

Table 4.4.: 95%-CIs as well as ML estimates for the parameters of the regular LGCM
and the LGCM with AR(1)-correlated errors.
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the LGCM with AR(1)-correlated errors, on average positive affect decreases from 3.59
to 3.15 in that period. Both models predict that there is hardly any between persons
variance in the slope parameter. The same applies to the little correlation between the
intercept and the slope.

There is a difference between the two models in the variance of the intercept σ2
a and

the error variance σ2
ϵ . The estimated intercept variance is higher for the regular LGCM.

The respective CI is [0.64, 1.26] for the regular LGCM, whereas it is [0.57, 1.19] for the
LGCM with AR(1)-correlated errors terms. The error variance, in contrast, is slightly
higher for the latter LGCM.

I do not report person-specific predictions here because I have not yet implemented
latent predictions for a LGCM with AR(1)-correlated errors. This remains to be done
in the future.

To summarize, I have shown how the GPPM can be used to relax the assumption
that the error terms in a LGCM are uncorrelated, a condition that is often not met in
practice, and consequently leads to parameter bias. I have also demonstrated that the
error structure can be easily replaced in GPPM. Here, I used the continuous-time AR(1)
error structure. On the COGITO data set, the LGCM with AR(1)-correlated errors is
preferred over the regular LGCM with uncorrelated errors. Also, the estimates for the
parameters of the LGCM differ between the two models.
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4.3. Fitting Speed Comparison of Gaussian Process Panel
Modeling and Structural Equation Modeling Software

One of the differences between SEM and GPPM, which I have identified in Section 4.1.1,
is that the model-implied moments are defined explicitly in GPPM while being defined
implicitly in SEM. In SEM multiple matrix multiplications have to be performed to
obtain the model-implied moments. Obtaining the model-implied moments thus should
require less time with GPPM. Also, my initial pilot studies have been promising in
terms of the possibility that GPPM may speed up ML estimation as compared to SEM
software. I will investigate this topic in this section.

Increasing the speed of ML estimation (abbreviated as fitting speed in the remainder)
is important because obtaining ML estimates for longitudinal SEMs is typically slow if
the number of time points is large, making analyses on those kind of data sets cum-
bersome, if not practically impossible. Many time points per person are, for example,
typical for diary or experience sampling studies (Bolger & Laurenceau, 2013).

The first part of this section is a theoretical running time analysis of the fitting al-
gorithms used in SEM and the GPPM toolbox. In the second part of this section, I
compare the empirical running time of one SEM toolbox and the GPPM toolbox for two
important longitudinal SEMs, the LGCM and the AR(1) model.

4.3.1. Theoretical Comparison

Introduction to Run-time Analysis

Before proceeding with the running time analysis, I will provide a short introduction to
the topic. For a more elaborate treatment, the interested reader is pointed to Cormen,
Leiserson, Rivest, and Stein (2009, Chapters 2 and 3).

The running time of an algorithm is defined by the number of steps it performs until
terminating. The number of steps required typically depends on the size and additional
properties of the input. For a given input size, one usually calculates the expected
running time for the worst-case input. The reason for this is primarily that the worst-
case running time is an upper bound for any running time. Additionally, for many
algorithms, the worst case is in fact a typical case, and the running time of the average
case is often within the same order of magnitude as the worst-case running time (Cormen
et al., 2009, pp. 27–28).

In algorithmic complexity theory, the worst-case running time is not calculated exactly.
Instead, one rather computes the asymptotic behavior of the worst-case running time
by only considering the fastest growing terms. This is done because a sufficiently large
input renders the impact of the smaller terms negligible.

As the notational formalism, the big O notation is commonly used. In this thesis, I
use the big O notation such that if (the running time of) an algorithm is in O(g(n)),
the asymptotic worst-case running time of the algorithm is tightly bounded by g(n).
This is how the big O notation is commonly used in practice. For a technically correct
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definition and an explanation why the definition is abused in practice, see Cormen et al.
(2009, Chapter 3).

In the remainder of this section, I will often employ the following rules for the big O
notation.

Theorem 4.3.1. Let there be two algorithms A1 and A2 with corresponding running
times T1(n) ∈ O(g(n) and T2(n) ∈ O(h(n)), then:

1. The running time of executing both algorithms Tb(n) = T1(n) + T2(n) is in
O(max(g(n), h(n)).

2. The running time of executing algorithm A1 m times is in O(m ∗ g(n)).

Overview Maximum Likelihood Algorithm

The ML estimation algorithm finds the maximum of the likelihood function with respect
to the parameter value θ, or equivalently, the minimum of the minus-two log-likelihood
function

−2LL(θ;y) = −2
N∑

i=1

log

(
(2π)−

T
2 |Σi(θ)|−

1
2 exp

(
−1

2
(yi − µi(θ))⊤Σi(θ)−1(yi − µi(θ))

))
.

The input for the ML estimation algorithm is the observed data set y and the corre-
sponding GPPM or SEM. For GPPM, the matrix containing all IVs Xi is also required
for every person i. A SEM as well as a GPPM imply a mean vector µi(θ) as well as a
covariance matrix Σi(θ) for every person i and parameter value θ.

For the sake of simplicity, I assume that the same number of measurements have been
performed for every person. The size of the data set can, thus, be described by the
number of persons N and the total number of variables measured per person T . For
a univariate panel data set, the total number of variables measured T is equal to the
number of measurements. For multivariate data, the total number of variables T is equal
to the product of the number of measurements and the number of variables assessed. For
SEMs, the number of both observed and latent variables is important for the analysis.
I will denote the number of all (latent and observed) variables as K. The number of
observed variables is equal to the number the total number of variables measured per
person T .

The minimum of the minus-two log-likelihood function can typically not be computed
exactly. Numerical optimization methods are used as a remedy. As I have already men-
tioned, there are many different numerical optimization methods. Many SEM toolboxes
use a quasi-Newton method (for example, OpenMx [Neale et al., 2016], lavaan [Rosseel,
2012], and Mplus [Muthén & Muthén, 1998–2012]). The GPPM toolbox uses a conju-
gate gradient method. Both methods start at a value for the ML estimate, and then
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iteratively refine the estimate. In each iteration, the computation of the gradient of the
minus-two log-likehood

∂ − 2LL(θ,y)

∂θ
(4.3.1)

is the central (most complex) computation. The gradient of a function f(θ) is the vector
containing all partial derivatives

∂f(θ)

∂θp
(4.3.2)

(see also Definition 3.8.1). The gradient can either be computed exactly or approximated
numerically.

Time Complexity of Computing the Model-Implied Moments

As I will show later, the central ingredients for both the numerical and the exact gradient
are the model-implied person-level mean µi(θ) and covariance matrix Σi(θ), denoted as
model-implied moments in the remainder.

For GPPMs, the mean function (x; θ), the covariance function k(x, x′; θ), and the
matrix containing all IVs Xi are needed to compute the model-implied moments µi(θ)
and Σi(θ). The model-implied moments are computed by evaluating the mean function
m(x; θ) T times and the covariance function k(x, x′) T (T − 1)/2 times. The computa-
tional complexity of evaluating the mean and covariance functions mostly depends on
the number of IVs used, that is, the dimensionality of the input space X . The size of
the input space does not depend on that of the data set used. Therefore, I will treat
the computational cost of evaluating the mean function m(x) or the covariance function
k(x, x′) as constant, i.e., it is in O(1). Thus, the computational cost of computing the
model-implied mean vector µi(θ) is in O(T ), and that of computing the model-implied
covariance matrix Σi(θ) is in O(T 2)

For SEM, the model-implied mean vector µi(θ) and covariance matrix Σi(θ) are deter-
mined by the person-level SEM matrices Ai(θ) and Si(θ), mi(θ) and F . Individualization
of the SEM matrices is typically achieved via the definition variables approach (see Sec-
tion 3.2.1). The model-implied moments are determined by the following calculations:

µi(θ) = F (I −Ai(θ))−1mi(θ)

Σi(θ) = F (I −Ai(θ))−1Si(θ)((I −Ai(θ))−1)⊤F⊤.

The calculation of both the person-level mean µi(θ) and the person-level covariance
matrix Σi(θ) requires the matrix F (I − Ai(θ))−1, whose calculating involves inverting
a K × K matrix, requiring O(K3) steps. The remaining calculations necessary for
computing the model-implied moments all require fewer steps. Thus, computing the
person-specific matrices requires O(K3) steps for SEMs and is therefore at least one
order of magnitude slower then for GPPMs, since K ≥ T .
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Time Complexity of Computing the Gradient Numerically

I will continue with the analysis of the complexity of computing the gradient given the
person-level model-implied moments for all persons.

To compute this gradient numerically, the partial derivatives ∂f(θ)
∂θp

are approximated
numerically. There are different approaches to do this, but they all rely on some samples
of the objective function f(θ) from the line [θ−a1ep, θ+a2ep], where a1, a2 are arbitrary
positive scalars and ep the pth unit vector of the parameter space. Thus, for every
parameter the minus-two log-likelihood has to be evaluated a constant number of times.
So, if P denotes the number of parameters in a model, the minus two log-likelihood has
to be evaluated an O(P ) number of times.

The minus-two log-likelihood −2LL(θ;y) consists of a sum of the person-level log-
likelihoods:

LL(θ; yi) = log

(
(2π)−

T
2 |Σi(θ)|−

1
2 exp

(
−1

2
(yi − µi(θ))⊤Σi(θ)−1(yi − µi(θ))

))
.

(4.3.3)
For the person-level log-likelihoods, the model-implied moments µi(θ) and Σi(θ) are
required. As I have established earlier, computing them for a GPPM requires O(T 2) op-
erations, and O(K3) operations for SEMs. Given their computation, calculation of the
person-level log-likelihood LL(θ; yi) requires O(T 3) operations, since it encompasses in-
verting the model-implied covariance matrix Σi(θ) as well as computing the determinant
of the model-implied covariance matrix Σi(θ). For GPPMs calculation of the inverse and
of the determinant of the model-implied covariance matrix thus dominates the comput-
ing of the person-level log-likelihood. Hence, the time complexity is O(T 3). For SEMs,
in contrast, the computation of the model-implied covariance matrix dominates the time
complexity. Thus, the time complexity is O(K3). As a result, computing the gradient
numerically requires O(PNT 3) steps for SEM and O(PNK3) steps for GPPM.

Time Complexity of Computing the Gradient Exactly

I continue with the complexity analysis of computing the gradient exactly. The gradient
of the minus-two log-likelihood function can be derived as the sum of the gradients of the
person-level log-likelihoods LL(θ; yi). Using the sum rule of differentiation, the gradient

of the person-level log-likelihood function ∂LL(θ;yi)
∂θ can be further decomposed into

∂LL(θ; yi)

∂θ
=

∂f1(θ)

∂θ
+

∂f2
∂θ

+
∂f3
∂θ

, (4.3.4)

with

f1(θ) = log
(

(2π)−
T
2

)

f2(θ) = log
(
|Σi(θ)|−

1
2

)

f3(θ) = −1

2
(yi − µi)

⊤Σi(θ)−1(yi − µi).
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The partial derivatives of the first term ∂f1(θ)
∂θ are 0 because the first term f1(θ) does

not depend on the value of the parameter θ. Thus, the computational complexity for
the first term is O(1).

The partial derivatives of the second term are

∂f2(θ)

∂θp
= tr

(
Σi(θ)−1∂Σi(θ)

∂θp

)
. (4.3.5)

Given the inverse Σi(θ)−1 and the partial derivative ∂Σi(θ)
∂θp

of the model-implied covari-
ance matrix, the most complex operation is the multiplication of these two matrices.
The multiplication does not need to be carried out fully. Only the diagonal elements of
Σ−1
i

∂Σi
∂θp

have to be computed. Thus, the second term in Equation 4.3.5 can be computed

in O(T 2) steps. I will examine the computational complexity of calculating the partial

derivatives ∂Σi(θ)
∂θp

and the inverse Σi(θ)−1 later, since it is also required for the partial

derivatives of the third term f3(θ), which is the central one.
The partial derivatives for this third term are as follows. To unclutter the notation, I

drop the dependency of the model-implied moments on the parameter.

−2
∂f3(θp)

∂θp
=
∂y⊤i Σ−1

i yi
∂θp

−
∂2y⊤i Σ−1

i µi

∂θp
+

∂µ⊤
i Σ−1

i µi

∂θp

= y⊤i
(
−Σ−1

i

) ∂Σi

∂θp
Σ−1
i yi + (µ⊤

i − 2y⊤i )

(
Σ−1
i

∂µi

∂θp
− Σ−1

i

∂Σi

∂θp
Σ−1
i µi

)

+
∂µ⊤

i

∂θp
Σ−1
i µi

(4.3.6)

Computing the inverse of the model-implied covariance matrix Σi(θ)−1 requires O(T 3)
steps. This can be done once and does not need to repeated for every parameter θp.

The partial derivatives of the model-implied moments ∂µi(θ)
∂θp

and ∂Σi(θ)
∂θp

do have to be
computed for each parameter θp. Calculating these partial derivatives differs between
GPPM and SEM. For now, I assume that they have already been computed. By
executing the computations in favorable order, the most complex operation in Equation
4.3.6 is a matrix vector multiplication. Thus, the complexity of Equation 4.3.6 is O(T 2).

For SEM, the partial derivatives of the model-implied moments can be calculated as
follows. The matrices Bi := (I − Ai(θ))−1 and Ei := BiSi(θ)B⊤

i will prove useful to
express them (von Oertzen & Brick, 2014). As von Oertzen and Brick (2014) show:

∂µi(θ)

∂θp
= FBi

∂Ai(θ)

∂θp
Bimi + FBi

∂mi(θ)

∂θp

and

∂Σi(θ)

∂θp
=

[
FBi

∂Ai(θ)

∂θp
EiF

⊤
]sym

+ FBi
∂Si(θ)

∂θp
B⊤

i F
⊤,
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with Asym = A+A⊤. The computations of Bi and Ei are both in O(K3). Bi and Ei only
need to be computed once for each person. The calculation of the partial derivatives
∂Ai(θ)
∂θp

and ∂Si(θ)
∂θp

are both in O(K2). If executed in the correct order, the computations

needed for the partial derivative of the model-implied mean ∂µi(θ)
∂θp

only consists of matrix
vector multiplications and vector additions. The most complex multiplication is a K×K
matrix with a K-dimensional vector (∈ O(K2)). If again executed in the correct order,
the most complex operation for computing the partial derivative of the model-implied
covariance matrix ∂Σi

∂θp
is the multiplication of a T ×K by a K ×K matrix, which is in

O(TK2).
For GPPM, the partial derivatives of the person-level model-implied moments are

calculated differently. Together with the specification of mean and covariance functions,
the partial derivatives with respect to all parameters are also required. This supplies the
partial derivatives of the person-level model-implied moments. Given these, the partial
derivatives of the minus-two log-likelihood function can be computed as for SEM, using
Equations 4.3.5, 4.3.6, and 4.3.4. In general, as applies to the evaluation of the mean and
covariance functions, the partial derivatives can also be obtained in O(1). Hence, the

time complexity for computing the partial derivative of the model-implied mean ∂µi(θ)
∂θp

is O(T ) whereas it is O(T 2) for the model-implied covariance matrix ∂Σi(θ)
∂θ .

Summary

To summarize, the pseudo code for calculating the person-level gradient exactly is as
follows.

Algorithm 1 Algorithm for exact computation of the person-level gradient. If the O
notation has two functions split by | the first function is for GPPM and the second for
SEM

1: procedure Gradient
2: ▷ Precompute shared values
3: Compute µi(θ) and Σi(θ) ∈ O(T 2|K3)
4: Compute Σ−1

i ∈ O(T 3)
5: For SEM, compute Bi and Ei ∈ O(K3)
6: ▷ Compute all partial derivatives
7: for every parameter θp do

8: Compute ∂µi

∂θp
∈ O(T |K2)

9: Compute ∂Σi
∂θp

∈ O(T 2|TK2)

10: Compute ∂LL
∂θp

∈ O(T 2)
11: end for
12: end procedure

Thus, the computational complexity of calculating the gradient exactly is O(K3 +
PTK2) for SEM, and O(T 3 + PT 2) for GPPM.
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The computational complexity of calculating the gradient numerically and exactly for
both SEM and GPPM is summarized in Table 4.5.

Type GPPM SEM

Exact O(N(T 3 + PT 2)) O(N(K3 + PTK2))
Numerical O(PNT 3) O(PNK3)

Table 4.5.: Computational complexity for calculating the gradient numerically and ex-
actly for both SEM and GPPM. T refers to the total number of variables
measured per person, N to the number of persons, P to the number of pa-
rameters of the model, and K to the number of all variables in a SEM.

Since the number of persons N appears as a linear term in all terms, it can be removed,
which leads to Table 4.6.

Type GPPM SEM

Exact O(T 3 + PT 2) O(K3 + PTK2)
Numerical O(PT 3) O(PK3)

Table 4.6.: Computational complexity for calculating the gradient numerically and ex-
actly for both SEM and GPPM per person. T refers to the total number of
variables measured per person, P to the number of parameters of the model,
and K to the number of all variables in a SEM.

The number of all variables K does not exist for GPPM. This makes a comparison
of the computational complexities difficult. However, the number of all variables K can
be related to the total number of variables measured per person T . In the majority of
SEMs, an upper bound for the number of latent variables can be derived using a linear
function with the total number of variables measured per person T as input, K ≤ aT +b.
This assumption further simplifies the table comparing the time complexities to Table
4.7.

Type GPPM SEM

Exact O(T 3 + PT 2) O(T 3 + PT 3)
Numerical O(PT 3) O(PT 3)

Table 4.7.: Computational complexity for calculating the gradient numerically and ex-
actly for both SEM and GPPM per person. T refers to the total number
of variables measured per person and P to the number of parameters of the
model. Here, it is assumed that the number of all variables in a SEM K is
linearly related to the total number of variables measured per person T .
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The table shows that the computational complexity of computing the gradient numer-
ically is identical for both SEM and GPPM. For the exact computation, the computa-
tional complexity differs slightly. However, since the number of parameters is typically
relatively small compared to the total number of variables measured per person and only
contributes linearly, the computational complexity is essentially the same.

Thus, the time complexity of the ML algorithm does not substantially differ between
GPPM and SEM. However, the central computations of calculating the model-implied
moments and their partial derivatives can be performed faster using GPPM. Therefore,
GPPM software may still be significantly faster in practice, as to be shown in the next
section.

4.3.2. Empirical Comparison

In the previous section, I have established that the model-implied moments and their
partial derivatives can be computed faster using GPPM. Besides this, there may be
technical differences in the implementation of the ML algorithm that lead to substantial
speed differences.

Methods

As SEM software I chose OpenMx (Neale et al., 2016). This choice was guided by the fol-
lowing rationale. Among the popular SEM software packages are the R (R Core Team,
2015) packages sem (Fox, Nie, & Byrnes, 2015), lavaan (Rosseel, 2012) and OpenMx
(Neale et al., 2016), the first widely used SEM software LISREL (Scientific Software In-
ternational Inc., 2015), CALIS a module of SAS (SAS Institute Inc., 2015), SEPATH a
module of Statistica (Statsoft Inc., 2015), and the standalone softwares Mplus (Muthén
& Muthén, 1998–2012) and Ωnyx (von Oertzen, Brandmaier, & Tsang, 2015). I only
considered open source software, namely, sem, lavaan, OpenMx and Ωnyx, because a
detailed profiling of the different parts of the ML estimation algorithm required modifi-
cations in the code. At time of writing, Ωnyx was not suited for running time analysis,
as it does not feature a documented command line interface. Only a graphical user
interface is provided. In principle, sem and lavaan would be suited. However, they
both do not implement the concept of definition variables, making the implementation
of a continuous-time LGCM, which I used as one example SEM for the comparison,
cumbersome. Thus, I used OpenMx.

During a pilot study I realized that OpenMx was considerably slower than expected.
This was caused by an algorithm that is supposed to speed up the inversion of the
(A(θ) − I) matrix. For an AR(1) model, using the naive implementation proved signifi-
cantly faster, which is why I used it for all my experiments.

As the GPPM implementation, I used the GPPM toolbox developed for this thesis.
Since this thesis introduces GPPM, this is the only implementation of GPPM available.

Besides the total running time, I was interested in measuring the time required to
compute the model-implied moments and their partial derivatives, since these are the
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terms for which the computational complexity differs between GPPM and SEM. How-
ever, since OpenMx uses numerical gradients, the partial derivatives are not computed
directly. Thus, I could only measure the running time taken to obtain the model-implied
moments. I modified both the GPPM toolbox and OpenMx for this purpose.

I wanted to choose the subset of all possible inputs of the ML estimation algorithm to
be of maximum relevance for panel studies while remaining computationally manageable.
As representatives for the models, I chose the univariate LGCM and the univariate AR(1)
model. These models are among the most frequently applied panel models (Hertzog &
Nesselroade, 2003). As representatives for the data sets, I employed simulated data using
members of the respective models as defined by random parameter values as generating
distributions.

The data sets for the LGCM were generated by drawing a parameter from a distri-
bution p(θ) for every data set. I specified the probability distribution p(θ) such that
all parameters except the covariance of the intercept and the slope σab are mutually
independent. As the probability distribution for the mean parameters µa,µb, I used
N (0, 1). For the variance parameters σ2

a, σ
2
b , and σ2

ϵ , I used the probability distribution
Gamma(2, 1), where Gamma(α, β) denotes the gamma distribution with shape param-
eter α and scale parameter β (e.g., Wasserman, 2004, pp. 29–30). For the covariance
parameter σab, I used the uniform distribution between −1 and 1 to select a value for
the correlation. Using the variances for the intercept and the slope, I computed the
resulting covariance.

The time points on which measurements are obtained I determined by generating a
vector τi that encodes the time points of measurement for each person i. For a given
data set, I drew the jth measurement time point, that is the entry τi,j from the following
probability distribution

τi,j = j + wj + ϵi,j

wj ∼ unif(0, 0.2), ϵi,j ∼ unif(−0.1, 0.1).

Here, unif(a, b) denotes the continuous uniform distribution over the interval [a, b]. The
rationale for using this probability distribution was as follows. j represents the time
point that was planned for a given wave of measurements j. The js are equally spaced
between the beginning of the study at time point 0 and the end of the study, which
coincides with the number of time points T − 1. The random variable wj represents
the deviation of this planned time point of the whole measurements wave and encodes
the fact that measurement of a wave often occurs later than planned. ϵi,j accounts for
the fact that more than a few participants can rarely be measured at exactly the same
time point. Thus, the measurements of the participants are spread around the planned
measurement of the wave.

As the range of the number of participants N and measurements per participant T ,
I used N ∈ {10, 50, 100} and T ∈ {10, 100, 200, 300, 400, 500}. I generated 100 different
data sets for every combination.
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For the AR(1) model, I only generated data for one participant, as this model is most
often used with time series data. The model for the jth observation was

Yj = c + φYj−1 + ϵj ,

where ϵj ∼ N (0, σ2) is a white noise process with a constant variance σ2. I ensured that
|φ| < 1. It follows that the model-implied mean and variance are the same for all time
points. They are:

E(Yj) =
c

1 − φ
Var(Yj) =

σ2

1 − φ2
.

I used these formulas to determine the model-implied mean and variance for the first
time point.

As for the LGCM, I generated data by drawing from probability distributions from
within the AR(1) model. To randomly select a probability distribution within the AR(1)
model, I drew parameter values from a distribution specified over the parameters p(θ)
such that they were mutually independent. For the c parameter, I drew from a standard
Gaussian distribution (N (0, 1)); for the φ parameter, from a uniform distribution ranging
from 0.1 to 0.9; and for for the σ2 parameter, from a Gamma(2, 1) distribution.

As the range of the number of measurements I used T ∈ {10, 100, 200, 300, 400, 500}
again and generated 100 different data sets per value. In contrast to the LGCM, I did
not use the continuous-time AR(1) model, because it is not as commonly used as the
discrete-time model.

Results

Before comparing the fitting speeds, I wanted to ascertain that the parameter estimates
obtained by OpenMx and the GPPM toolbox are identical. Indeed, for all but 14 of 1800
(LGCM) and 45 of 600 (AR(1)) of the estimated data sets, the estimates were identical
up to a tolerance of 0.01 per parameter. I excluded all data sets for which the parameter
estimates did not match from the remaining analysis.

Before I discuss the results, I want to present my expectations. This depends on the
optimization algorithm used. The GPPM toolbox uses a conjugate gradient optimizer
with analytic gradients. Hence, the expected time complexity is O(Q1N(T 3 + PT 2)),
with Q1 being the number of iterations. The exact computation of the person-level
gradient requires O(T 3 + PT 2) steps, which needs to be taken for each person. This in
turn has to be computed in every iteration.

In the version employed for this thesis, OpenMx uses the SLSQP optimizer (Kraft,
1994) with numerical gradients, a quasi–Newton method. Thus, the central computation
in each iteration is also the gradient. However, in contrast to the GPPM toolbox,
OpenMx approximates the gradient numerically. Thus the expected time complexity of
the OpenMx algorithm is O(Q2N(K3+PTK2)), with Q2 being the number of iterations.
The numerical approximation of the gradient requires O(K3 + PTK2) steps. This has
to be done in each iteration for each person.
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Hence, the time complexity of the GPPM toolbox algorithm is O(Q1N(T 3 + PT 2))
whereas it is O(Q2N(K3+PTK2)) for the OpenMx algorithm. Assuming that there are
no dramatic differences in the number of iterations required Q1 and Q2, the difference is
only in the time complexity of calculating the person-level gradient, which is O(T 3+PT 2)
for GPPM and O(K3 + PTK2) for SEM. By using the relationship K ≤ aT + b again,
which applies to both the LGCM and the AR(1) model, the time complexity for SEM
can also be expressed as a function of the number of time points T and the number of
parameters P only. Furthermore, the number of parameters is a constant for both the
LGCM and the AR(1) model. Thus, the time complexity changes to O(T 3) for both,
which means that at least in the asymptote no differences between the two methods are
to be expected.

The averages of the empirical running time of the ML estimation algorithm, as well
as the respective 95%-CIs for both methods, are shown in Figure 4.5. For the LGCM,
I only show the running time for the number of persons N = 500. The results for the
other participant numbers are qualitatively the same. For both, the LGCM and the
AR(1) model, the running time of the GPPM toolbox is smaller from T = 100. For
the LGCM, at T = 500, the running time is 19437 seconds (or 5.4 hours) in OpenMx
compared to 13921 seconds (or 3.9 hours) with the GPPM toolbox. The difference is
greater for the AR(1) model. For T = 500 the average running time is 160 seconds
(OpenMx) compared to 18 seconds (GPPM toolbox).

Contrary to my expectations, the running time plots suggest that the asymptotical
running time differs between GPPM and SEM for the AR(1) model. However, after
changing the scale to a log-log scale, the two lines seem to be parallel at the asymptote,
suggesting that the asymptotic running time is the same after all. For the LGCM the
same is true. The effect is clearer here, with the lines very close to each other. However,
it is worth noting again that in practice, OpenMx is roughly 9 times slower for the AR(1)
model and 1.4 times slower for the LGCM for N = 500.

As a last point, I wanted to validate the part of the theoretical analysis that re-
vealed that there are differences in the time complexity of calculating the model-implied
moments. To do this, I identified the respective code segments in both programs and
obtained the time spent in these segments. The theoretical analysis predicts that the
time complexity for GPPM is O(T 2) whereas it should be O(T 3) for OpenMx.

The average time spent calculating the model-implied moment for one person is shown
in Figure 4.6. For OpenMx, the slopes of the log-log curves are 2.6 for the AR(1) model
and 2.5 for the LGCM. This is roughly in the range of 3, which was expected on the
basis of the theoretical analysis. For the GPPM toolbox, the slopes of the log-log curves
are almost exactly as expected (2), namely 1.9 for the AR(1) model and 2 for the LGCM.

To summarize, using GPPM instead of SEM in order to speed up ML estimation
for the AR(1) model seems worthwhile because the expected acceleration is substantial
(roughly 9 times faster). For the LGCM, the speedup is not as substantial.

The greatest promise in terms of speeding up ML estimation lies in the many ap-
proximation algorithms available for GPR models (e.g., Csató, 2002; Freytag, Rodner,
Bodesheim, & Denzler, 2012; Hartikainen & Särkkä, 2010; Särkkä & Hartikainen, 2012)
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Figure 4.5.: Empirical running time of the ML estimation algorithm for the two models
investigated using the SEM software OpenMx and the GPPM toolbox. The
solid lines denote the mean over the up to 100 data sets. The vertical lines
denote the 95%-CIs. In the first row, the running time is displayed in a
regular, linear scale. In the lower row, the same data are presented but in a
log-log scale.
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Figure 4.6.: Empirical running time for computation of the person-level moments for one
person for the two models investigated using the SEM software OpenMx and
the GPPM toolbox. The solid lines denote the mean over all calculations
of the person-level moments. The vertical lines denote the corresponding
95%-CIs. In the first row, the running time is displayed in a regular, linear
scale. In the lower row, the same data are presented in a log-log scale.
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designed to substantially reduce the running-time at the cost of introducing small im-
precision. Investigating the usefulness of theses algorithms for GPPMs will be subject
of future work (see also the discussion in Chapter 6).
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5. Person-Specific EEG Modeling Based on
Supervised Learning

In the previous chapters, I have introduced the novel longitudinal panel modeling ap-
proach GPPM, which is based on the supervised learning method GPR. In this chapter,
I present a novel EEG analysis method able to estimate person-specific models, and thus,
accounts for within-group inter-individual variation in brain–behavior mappings. The
method is also based on supervised learning methods, but its inspiration is specifically
drawn from analysis approaches as employed in BCI research.

I will briefly recapitulate the rationale for the novel EEG analysis method previously
presented in the introduction. The conventional approach, based on estimating ERPs,
concentrates on between-group variation. It treats both the intra-individual variation
and the inter-individual variation within a group as measurement error. Thus, for the
estimated group ERPs to be representative of the ERP for a given person, both the
within-group inter-individual variation and intra-individual variation need to be suffi-
ciently small (e.g., Astle & Scerif, 2011; Nagel et al., 2009; Werkle-Bergner et al., 2012).
However, empirical data suggests that, at least for children and older adults, the inter-
individual variation is not sufficiently small to allow such simplified analysis approaches
as they still prevail in the literature.

As one approach to account for this problem, I suggest deriving person-specific models
(Molenaar, 2013) that describe the brain–behavior relationship on the person level. To
this end, rather than using conventional analysis methods, I employ machine learning
methods to increase the signal-to-noise ratio. This is crucial for obtaining person-specific
models, as the signal-to-noise ratio cannot be increased by the conventional strategy of
averaging across persons. Specifically, I propose using a model selection framework based
on nested cross-validation that selects the best brain–behavior mapping out of a set of
candidate models and at the same time validates it.

In Section 5.1, I will introduce the supervised learning approach to derive person-
specific models. First, I will present the general model selection and validation frame-
work, and then the candidate models employed for the analysis of the WM data set that
was used to validate the proposed method. Next, I show how the derived person-specific
models can be interpreted spatially on the person level.

In the following section (Section 5.2), I will provide details about the WM data set and
about the preprocessing performed prior to applying the method for deriving person-
specific models.

I close this chapter with a presentation of the results (Section 5.3). I first show that
my proposed method indeed results in person-specific models with better discrimination
performance as compared to conventional person-nonspecific models on the WM data
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set. I also indicate how the obtained models can be interpreted on a person level as well
as on a group level.

5.1. Identifying Person-Specific Models: The Supervised
Learning Approach

5.1.1. Foundations

The core idea of my framework is the derivation of person-specific models that optimally
discriminate between behavioral conditions and, thus, allow evaluation of the neural
underpinnings of interindividual differences in behavioral responses.

In the previous parts of this text, the term model referred to a statistical model.
Here, a person-specific model conceptually refers to any mathematical person-specific
model relating EEG data to behavior. My framework finds a function f(x) that predicts
a specific behavior of a participant based on their EEG data x of a trial. This is an
example of a mathematical model and will therefore also be called a model. To obtain
the prediction function f(x), learning algorithms are employed. One can describe all of
the learning algorithms used here as a combination of a set of candidate models, i.e.,
a set of prediction functions, in combination with a loss function, which is minimized
to select a particular prediction function. Thus, the candidate models used are similar
to a statistical model, but a set of predictions functions is described instead of set of
probability distributions. In the literature and here, these sets are consequently also often
called models. To distinguish the mathematical model f(x) from a learning algorithm
used to derive the mathematical model f(x), I refer to the former as an estimated model
and the latter as a candidate model whenever the distinction is not clear from the context.

Person-specific models are estimated models selected from a set of candidate models
that vary across multiple dimensions of the observed data space. In EEG, this space typ-
ically entails electrode channels, time points, and/or frequencies; but my considerations
generally apply to any spatio-temporal method of brain imaging. Candidate models can
be derived from a template model class and vary parametrically according to multiple
dimensions, first and foremost, to the spatio-temporal segments of the original data they
are exposed to. In particular, models operate on different time windows and on subsets
of channels or their geometric projections. In the remainder of this subsection, I will
describe the proposed framework to estimate person-specific models.

In the following, the number of measured variables per trial will be denoted by M and
the number of trials per individual will be denoted by T , as those typically refer to trials
ordered in time. For each person, a data set (xt, yt) ∈ D with t ∈ {1, . . . , T} is measured,
which is a set of tuples of observed brain responses xt ∈ RM and a corresponding
dichotomous target variable yt ∈ {0, 1} that typically corresponds to a given external
condition, task, or state. A candidate model, mapping brain responses to the target
variables, can then be conceived as a θ-parameterized function fθ(x) = y, linking the
observed neural responses xt and behavioral states yt. The specific parameters θ can
be estimated by minimizing a loss function on data (usually called the training set).
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Figure 5.1.: Schematic representation of the nested cross-validation procedure for model
selection and evaluation. The schema shows a three-fold nested cross-
validation procedure instead of the 10-fold procedure I employed. The model
selection takes place in the inner loop (light blue and light red), while model
evaluation of the best inner model is performed in the outer loop (dark blue
and dark red). The evaluation metric is the balanced accuracy (BAC).
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Each estimated model can then be evaluated with respect to its accuracy in predicting a
behavioral condition from brain responses, whereby selection of the best model is carried
out for each person separately. I propose to use the balanced accuracy (BAC), a loss
function accounting for unbalanced target variables that are often encountered in EEG
data sets, as the performance measure for each candidate model. The BAC is the average
of the accuracies obtained for each target variable state (condition) (Brodersen, Ong,
Stephan, & Buhmann, 2010). This metric allows me to select the best of all competing
models and interpret the idiosyncratic brain–space information of that model as person-
specific information.

To avoid an overoptimistic bias by confounding parameter estimation and model eval-
uation (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009; Stone, 1974), I estimate the
BAC for a given candidate model using 10-fold stratified cross-validation (Kohavi, 1995).
The resulting person-specific models can be interpreted as both a measure of interindi-
vidual heterogeneity in the sample and as a parsimonious indicator of the location and
magnitude of these interindividual differences in brain space. In the remainder of this
subsection I will describe the procedure of choosing the best person-specific model in
more detail (see also Figure 5.1).

Selection of an optimal model for each person from a set of candidate models entails a
cherry picking problem. This cherry picking causes an overoptimistic accuracy estimate
if the best accuracy of the model selection phase is reused as the estimate for the overall
performance of the selected model (Stone, 1974; Varma & Simon, 2006). To obtain
an unbiased BAC estimate, I separately use 10-fold stratified cross-validation for model
selection and model validation, which leads to a nested cross-validation procedure with
an inner and an outer loop. Nested cross-validation is the de-facto standard procedure for
performance evaluation in BCI research (Lemm, Blankertz, Dickhaus, & Müller, 2011).
The cross-validated model selection takes place in the inner loop, while cross-validated
model validation is performed in the outer loop. To this end, I randomly partition a
data set into ten exhaustive and mutually exclusive subsets. For each of the ten outer
cross-validation runs, a temporary training set is formed by leaving out one of the ten
folds whereas a temporary test set is formed by the remaining folds. The temporary
outer training set forms the basis for the inner cross-validation runs aiming to determine
the temporary best model (see below). The performance of the latter is evaluated on the
current outer test set. To identify the best model in each run of the outer loop, an inner
cross-validation procedure is used. Here again, the available data (i.e., the current outer
training set) are split into ten exhaustive and mutually exclusive subsets (i.e, the inner
training and test sets for model selection). In each run of the inner loop, the parameters
for the candidate models are estimated on the temporary inner training set and their
performance is evaluated on the current inner test set. The overall performance estimate
for a given candidate model is obtained by aggregating the test set performance across
all 10 iterations of the inner loop. The candidate model with the highest average BAC
is selected as the current best model and its performance is evaluated on the remaining
outer test set.

Technically, the outer cross-validation does not estimate the BAC of the best candidate
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Figure 5.2.: Graphical description of the decision function learnt by the proposed can-
didate models. Prior to applying this decision function, the EEG is pre-
processed. First, the EEG trial is reduced by only considering the signals
within a selected time window. After that, the 2k selected components of
the projection matrix C, as learnt by the common spatial pattern (CSP)
method, are applied to the remaining signals. This yields 2k component
time series. Next, the variance of each of these time series is calculated.
The resulting power features are classified by the linear decision function as
learnt by Ledoit’s linear discriminant analysis (LLDA).

model but rather the BAC of the model selection procedure as a whole. Particularly, in
each fold of the outer cross-validation, a different model may be selected as the best one.
In other words, nested cross-validation provides an unbiased estimate of the expected
BAC when applying the model selection of the inner cross-validation to the whole data set
of one person. Put differently, I estimate the expected accuracy of picking a model from
my candidate set based on cross-validated predicted accuracy. Consequently, after the
nested cross-validation evaluation, the model selection phase (i.e., only the logic of the
inner loop) is applied to the complete data set to obtain the best person-specific model.
As a final step, the parameters θ of the best model are estimated using the complete data
set. The BAC estimate obtained by nested cross-validation is a conservative estimate
for the performance of the model using parameters derived from the whole data set.

5.1.2. Candidate Models

To obtain accurate and interpretable brain–behavior mappings, the candidate models
that are used in the proposed framework to obtain person-specific models have to be
carefully chosen for each data set. The WM data I re-analyzed to test the applicability of
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my approach originate from a lifespan study that targeted oscillatory brain mechanisms
for WM selection and maintenance in a sample including children, younger, and older
adults (Sander et al., 2012). The study used a color change–detection task (Vogel &
Machizawa, 2004), in which participants were cued to attend to either the left or the
right hemifield and asked to remember the colors of varying numbers of items. Hence, by
design, it is possible to identify modulations of rhythmic neural responses that (a) relate
to the attentional focus and (b) reflect the varying levels of WM load. I operationalized
(a) attentional focus as the hemifield to which spatial attention should be shifted and
(b) WM load as the number of items to be remembered in a change–detection task.

In the following, I describe the set of candidate models I constructed for predict-
ing attentional focus and WM load. Both WM load and attentional focus have been
found to be related to power modulations in the alpha range (Kelly, Lalor, Reilly, &
Foxe, 2006; Sander et al., 2012; Worden, Foxe, Wang, & Simpson, 2000; Sauseng et al.,
2009). To capture differences in signal power I chose the CSP method (Müller-Gerking,
Pfurtscheller, & Flyvbjerg, 1999; Ramoser, Müller-Gerking, & Pfurtscheller, 2000). CSP
finds a transformation matrix C, mapping the EEG channels onto a set of component
projections such that the variances of the resulting time series discriminate optimally
between conditions (Ramoser et al., 2000). In order to find the respective transformation
matrix C, the eigenvalue decomposition of the mean between-channel covariance matrix
is computed. Thus, CSP requires an invertible mean between-channel covariance ma-
trix. If the goal is to discriminate conditions 0 and 1, the projected CSP components are
ordered such that the variance of the first component is maximal for condition 0 while
being minimal for 1. Vice versa, the last projected component has maximal variance
for condition 1 while it is minimal for 0. Hence, the respective components from both
ends form complementary pairs with regard to condition prediction. Like other dimen-
sionality reduction approaches such as principal component analysis (PCA), a subset
of components can be selected. Due to their complementarity, CSP components are
typically picked in pairs, with each subsequent pair adding less predictive information
to the overall task. In the following, I refer to the number of these CSP filter pairs as
k. To reiterate, a classifier relying on a single filter pair (k = 1) bases its prediction on
two projected components, for each of which the variance is most informative about the
respective target outcome. Consequently, the variances of the EEG projected onto the
CSP filters are used as features, that is, as classifier input.

Classification is done by LDA. LDA is a linear classifier, meaning that, its decision
function is of the form sign(w⊤x+c), where x are the features, w is called weight vector,
and c bias. For the training of LDA, the feature means and covariance matrices for
each class have to be estimated. If the number of trials is large in comparison to the
number of features, the sample covariance matrix is a sufficiently precise estimate of the
population covariance matrix. For the typical EEG classification problem, the number
of trials is roughly equal to or smaller, than the number of features. Hence, the sample
covariance matrix is systematically biased (Friedman, 1989). To correct for this bias,
regularization is commonly used (Friedman, 1989). The regularization hyper-parameter
was set by the analytical solution of Ledoit and Wolf (2004). I refer to the resulting
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classifier as Ledoit’s linear discriminant analysis (LLDA). The combination of CSP and
LDA is commonly used to realize BCIs based on rhythmic neural activity (e.g., Blankertz
et al., 2010; Fazli et al., 2009).

A further interest of ours (Karch et al., 2015) was the identification of the most dis-
criminative time window per person. To achieve this, only data from within a single
time window are considered for each candidate model. Hence, the models differ with
regard to the onset and the duration of the employed time window. The different can-
didate models were derived from the following settings: Duration of the time windows:
{100, 150, 200, . . . , 700} ms, onset of the time window: {0, 33, 66, 99, . . . , L} ms relative
to the onset of the memory array (see Section 5.3 for a detailed description of the trial
design). The limit L for the onset depended on the duration of the time window. It
was chosen such that the latest time windows did not contain signals later than 1000
ms after the onset of the memory array. This was done in order to prevent inclusion of
EEG activity evoked by the onset of the test stimulus. As candidates for the number k
of the CSP filter pairs I employed {2, 3, 4, 5, 6}. These candidates were motivated by the
rationale of exploring the values around the recommendation to use k = 3 by Blankertz,
Tomioka, Lemm, Kawanabe, and Mülller (2008). The full grid of all possible combina-
tions of settings was explored, leading to 5 (filter pairs) × 244 (time windows) = 1220
different candidate models.

5.1.3. Spatial Interpretation of the Best Estimated Model

Based on the features of the candidate models, the best estimated model has the prop-
erties: selected time window, CSP matrix C, and LLDA vector w′. Additionally, I
used PCA for preprocessing (see Section 5.2.2). Strictly speaking, the PCA matrix P is
also part of the model. Interpreting the selected time window is straightforward. The
matrices describe how the information contained within the selected time windows was
aggregated across the EEG channel, i.e., spatially. Here, I will show how this spatial
information can be interpreted as spatial filters and patterns (Bießmann et al., 2012;
Parra, Spence, Gerson, & Sajda, 2005).

Filters and patterns assume that the observed data obey a linear measurement model.
That is, we assume a set of sources mapped to the observed values by a linear trans-
formation. For raw EEG potentials it is generally assumed that a linear measurement
model holds true. A pattern describes the contribution of one source to all electrodes
(forward model). A filter describes the linear reconstruction of one source given the
observed data (backward model). For a linear classifier the filter simply corresponds to
the weight vector w.

To elaborate, the EEG surface potentials x(t) ∈ RU are believed to be a linear mixture
of a set of sources s(t) ∈ RV plus noise (e.g. Blankertz, Lemm, Treder, Haufe, and Müller
(2011), Bießmann et al. (2012), Parra et al. (2005))

x(t) = As(t) + n(t).

U denotes the number of channels and V the number of sources. The matrix A ∈ RU×V

is called the forward model. Every given column (a1, a2, . . . , aV ) = A describes how
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each of the sources contributes to the surface potentials. Therefore, the column ai of
A is called the pattern of source si(t). In the following, I will assume that for a given
measurement, the time courses of all sources are stored in S = [s(t1), s(t2), . . . S(tT )]
and that the time series for all electrodes are stored in X = [x(t1), x(t2), . . . , x(tT )].

If the sources and the EEG surface potentials are known, a task of interest is to find
the corresponding backward model. That is, a matrix W ∈ RV×U that recovers the
original sources from the observed surface potentials s(t) = Wx(t). An estimate Ŵ can
be obtained by minimizing a distance measure between the original sources s(t) and the
reconstructed sources Wx(t). The simplest distance measure is the Euclidean distance.
The resulting estimate is called least squares estimate

Ŵ⊤ = arg min
W

T∑

t=1

(s(t) −Wx(t))2 = SX⊤(XX⊤)−1.

The rows (w1, w2, . . . , ws)
⊤ = W of W are referred to as filters, as they describe the

contribution of each electrode to a given source.
Typically the sources are not directly observable. Rather, a backward model Ŵ that

optimizes certain properties of the resulting sources is estimated. Independent compo-
nent analysis (ICA) (Bishop, 2006), for example, is a method to estimate a backward
model that optimizes the statistical independence of the recovered sources.

After a backward model Ŵ has been obtained, the least squares estimate of the cor-
responding forward model Â can be derived in analogy to the least squares estimator of
the backward model and is hence,

Â = XŜ⊤(ŜŜ⊤)−1 = XX⊤Ŵ (ŴXX⊤Ŵ⊤)−1, (5.1.1)

with Ŝ = ŴX. This estimator is not invariant to constant shifts of the signals or the
sources. Constant shifts in a signal originate from a constant source, which generally is
not of interest in neuroscience (Parra et al., 2005). Therefore, their mean is subtracted
from all rows of X and Ŝ before the application of Equation 5.1.1. This is equivalent to
including a constant source in S and ignoring its parameter estimate.

A particularly easy form of a backward model is a filter w⊤, that is, a backward model
that only reconstructs one source. Linear classifiers, i.e., parametric classifiers with a
linear decision function of the form f(x) = sign(w⊤x + c), can be regarded as a method
to obtain a filter. The optimized property of the reconstructed source is discriminability
between two conditions. The filter is simply w⊤ and the reconstructed source w⊤x + c.
The corresponding pattern can be obtained by applying Equation 5.1.1.

Neuroscientific interpretations are typically facilitated by the use of patterns instead
of filters (Bießmann et al., 2012; Parra et al., 2005), as patterns are not disturbed by
correlated noise sources. Filters and patterns are identical (up to scaling) if XX⊤ is
a multiple of the identity matrix (see Equation 5.1.1). This is equivalent to the EEG
channels being uncorrelated and therefore almost never the case.

In contrast to previous work that employed classifiers to obtain person-specific filter
and patterns (Parra et al., 2005; Philiastides & Sajda, 2006), I did not use raw EEG
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potentials as features for my classifier. Instead, the model class that I proposed in Section
5.1.2 yields a linear classifier with the variances of the CSP component time series as
features. As I will show in the following, this is equivalent to a linear classifier with all
entries of the covariance matrix between all channels as features, and thus produces a
filter with (M+1)M

2 entries, where M is the number of channels.

Theorem 5.1.1. The proposed candidate models, which consist of a combination of
PCA, CSP, and LLDA, can be equivalently expressed as a linear classifier with the
entries of the within-trial covariance matrix as features.

Proof: Let X(i) ∈ RU×T be the EEG within a selected time window observed for
trial i and Σ̂(i) ∈ RU×U the corresponding estimate of the between-channel covariance
matrix. Furthermore, let M be the transformation matrix resulting from the composition
of PCA and CSP. So, R2k×U ∋ M := CP , where C is the transformation matrix learned
by the CSP method, P the transformation matrix learned by PCA, and k the number of
filter pairs selected for CSP. Let w′ be the weights as learned by LLDA. Additionally,
let Var : RU×T → RU be the mapping from a matrix containing U time series of length
T to the vector containing the variance of each time series. In addition to that, let
diag : Rn → Rn×n be the mapping of a vector to the corresponding diagonal matrix,
diag : Rn×n → Rn the mapping of a matrix to the vector containing the entries of its
diagonal, tr:Rn×n → R the trace of a matrix, and vec : Rn×p → Rnp the mapping of a
matrix to a vector containing the columns of the matrix stacked on top of each other,
then the classification function fθ(X(i)) for trial i is as follows. For notational clarity I
drop the dependence of X and Σ on i.

fθ(X) = sign(

=:f ′
θ(X)  

w′⊤ Var(MX) + c) (5.1.2)

⇒ f ′
θ = w′⊤ diag(M Σ̂M⊤) + c (5.1.3)

= tr(diag(w′)M Σ̂M⊤) + c (5.1.4)

= tr(M⊤ diag(w′)M Σ̂) + c (5.1.5)

=
⊤

vec((M⊤ diag(w′)M))⊤  
w⊤:=

vec(Σ̂)  
x:=

+c. (5.1.6)

This shows that all candidate models lead to a linear classifier with the entries of the
between-channel covariance matrix as features. Hence, w is the filter learnt by my
candidate models.

□
For 5.1.3, I made use of the linear transformation theorem of a Gaussian random

vector (Theorem A.3.8 in Appendix A.3). For 5.1.5, I employed the fact that the trace
is invariant under cyclic permutations. For 5.1.6, tr(XY ) = vec(X⊤)⊤ vec(Y ) applies.

It follows directly from the linear model assumption for EEG data that the observed
covariance data does not comply with a linear model.
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Theorem 5.1.2. Under the assumption of a linear model for EEG data, the spatial
covariance matrix of the sources is not linearly related to the between-channel covariance
matrix of the channels.

Proof: Let Cov : RU×T → RU×U be the mapping from a matrix containing U time
series of length T to the corresponding between-time series covariance matrix. Let
X(i) ∈ RU×T be the EEG observed for trial i, S(i) ∈ RU×T the activity of the sources
and N(i) ∈ RU×T the noise. Dropping the dependence on i, the linear model for EEG
can then be formulated as X = AS + N . To simplify the proof, I assume that there is
no noise, i.e., N = 0. It follows that the between-channel covariance matrix Cov(X) can
be related to the spatial covariance of the sources Cov(S) as follows:

Cov(X) = Cov(AS)

= ACov(S)A⊤.

This shows that the relationship between the covariances of the sources and the covari-
ances of the electrodes is quadratic and therefore not linear. This also holds true if we
drop the assumption that there is no noise. □

The resulting filter still corresponds to the classifier weights w and the pattern can
also still be computed. In order to obtain the pattern corresponding to the classifica-
tion function learnt by the proposed candidate models I employed Equation 5.1.1, with
X = [Var(X(1)), . . . ,Var(X(I))] and Ŝ = [f ′

θ(X(1)), . . . , f ′
θ(X(I))]. Prior to that, I

subtracted their means from all rows of X and Ŝ as explained in earlier.
The interpretation of the filter as forward and the pattern as backward model is

no longer valid. However, there is still a meaningful interpretation for both filter and
pattern. The weight wp of the filter corresponding to the pth feature expresses that an
increase of the pth feature by one increases the classification score w⊤x+ c by wp. Thus,
for positive/negative weights, higher values increase/decrease the classification score and
hence, the support for the positive/negative class. Positive class refers to the class that
is predicted if sign(w⊤x + c) ≥ 0. For my prediction tasks “Attention left” and “Low
WM load” are the positive classes and “Attention right” and “High WM load” are the
negative classes (see Section 5.2.1).

For the pattern the opposite logic applies. If the classification score increases by
one, the expected observed value of the pth feature changes by ap. As pattern and
filter are not invariant to the scaling of the features I normalized both. For illustration
purposes I show only the weights corresponding to the variances. Note, however, that
for classification and for calculation of the pattern I included all terms, omitting the
covariances proved considerably worse (see Section 5.3.4).
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+ + + +
500 ms 100 ms 1000 ms max. 5000 ms

Figure 5.3.: Experimental paradigm. Each trial starts with the presentation of a cue
indicating the relevant hemifield. The memory set is presented for 100 ms
and followed by a fixed retention interval of 1000 ms. The probe display is
shown until a response is given. Different patterns of the squares represent
different colors. Adapted with permission from Sander, Werkle-Bergner,
and Lindenberger (2012).

5.2. Working Memory Data Set and Preprocessing

5.2.1. Study Design

Here, I will describe the WM data set used to validate my approach. Details on proce-
dures, task design, and EEG data recording can be found in Sander et al. (2012). For
convenience, I outline the study design as it is important for the understanding of my
analysis approach as well as the results.

Participants

For the present study, I used data from 22 children (Mage = 11.9 years, range 10–13
years), 12 younger adults (Mage = 24.2 years, range 20–25 years), and 22 older adults
(Mage = 73.3 years, range 70–75 years). Given that groups of children and older adults
are typically more heterogeneous in comparison to younger adults, sample sizes for these
two age groups were larger in the initial report. The initial sample included 31 children,
19 younger adults, and 31 older adults. Details about exclusion criteria and descriptive
marker tests documenting the age typicality of the sample can be found in Sander et al.
(2012). The ethics committee of the Max Planck Institute for Human Development,
Berlin, approved the study.

Experimental Paradigm

The exact procedures are described in Sander et al. (2012). In short, a hemifield ver-
sion of the change–detection task (Vogel & Machizawa, 2004) was used to probe age
differences in visual WM capacity (see Figure 5.3). Memory arrays of colored squares
were presented to the participants for 100 ms or 500 ms. Targets were defined as the
squares presented in the hemifield indicated by a centrally placed cue before each trial.
To keep the difficulty of the task comparable for the different age groups, memory arrays
of 2, 4, or 5 targets were presented to younger adults while they involved 2, 3, or 4 tar-
gets for the older adults and children. Besides the number of targets, the experimental
procedure was identical for all age groups. For the present work, I only analyzed the
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common set sizes 2 and 4. In the following, they will be referred to as low (2) and high
(4) levels of WM load. Trials were presented in four blocks. The first two and the last
two blocks were always presented at the same presentation time, and the order of the
presentation time was counterbalanced across participants. Set sizes were randomized
within blocks. After a retention interval of 1000 ms, a probe array of colored squares
was shown and participants had to indicate whether all the colors of the probe array’s
targets were identical to the memory array or whether one of the squares had changed in
color. I only considered subsegments of the time segment starting with the presentation
of the memory array and ending 1000 ms after that for my analysis (see Section 5.1.2).
The presentation of each block started with 12 practice trials. Then, each participant
completed 360 trials of varying set size. Set sizes were randomized within blocks. After
each block, participants got feedback about the accuracy of their responses. Given that
Sander et al. (2012) assumed older adults and children would have additional difficulties
with a cued hemifield presentation, they always presented the cue for 500 ms and showed
it until the memory array was presented to minimize cue-related memory load. The cue
direction was also blocked for 30 consecutive trials to prevent a task-switching situation
that could differentially affect the age groups (e.g., Kray & Lindenberger, 2000).

5.2.2. Preprocessing

For preprocessing, the EEG was re-referenced to the two mastoid channels. Afterwards,
an ICA was used to correct for remaining eye blink, noise, and muscle activity (Jung
et al., 2000). Independent components representing artifactual sources were visually
identified and removed from the data. Thereafter, trials with an incorrect response were
removed. As the last preprocessing step PCA was used to project the EEG onto the
principal components that explained 99% of the variance. This was done to restore the
invertibility of the mean between-channel covariance matrix, which was violated by the
removal of independent components in the previous preprocessing step. As explained
above, the CSP method that I chose as part of the candidate models (see Section 5.1.2)
requires an invertible mean between-channel covariance matrix. An almost identical but
more elegant way to restore invertibility would have been to simply project the EEG
onto the retained independent components. We (Karch et al., 2015) chose the ICA, PCA
combination for practical reasons. As the exact location of individual frequency bands
may change across the lifespan (Klimesch, 1999), the individual alpha peak frequency
was estimated for each individual participant based on independently assessed resting
state data. To determine the individual alpha peak frequency we (Karch et al., 2015)
computed power spectra for eyes-closed resting state data and averaged them across all
occipito-parietal electrodes. The individual alpha peak frequency was then defined as
the maximum peak of the averaged power spectra between 7 and 13 Hz (see Sander
et al., 2012, for more details). The cut-off frequencies for band-pass filtering into the
alpha frequency ranges were determined in relation to individual alpha frequency based
on suggestions by Doppelmayr, Klimesch, Pachinger, and Ripper (1998).
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5.2.3. Data Analysis

Previous studies have examined load modulations of lateralized alpha power activity at
100 ms presentation times (Sauseng et al., 2009). Therefore, the analyses presented in
this study are focused on this presentation time condition, which is the standard condi-
tion used in change detection paradigms (e.g., Luck & Vogel, 1997; Vogel & Machizawa,
2004). Analyses were conducted with custom-made MATLAB code based on the Field-
trip software package (Oostenveld, Fries, Maris, & Schoffelen, 2010).

5.3. Results

First, I validate my framework and the set of candidate models by comparisons against
chance and a theory-driven nonspecific model class. After that, I present detailed person-
specific results for selected participants, followed by group results. The set of candidate
models is comparatively flexible, making the results hard to interpret. Thus, I close this
section with an evaluation of the impact of reducing the flexibility in order to arrive at
potentially simpler models.

5.3.1. Performance Evaluation Against Chance and the Best Nonspecific
Model

To validate my framework and the set of candidate models, I will demonstrate that my
approach resulted in a classification performance significantly different from chance in
each age group. Moreover, I will show that the accuracy is higher than for a conventional
theory-driven model.

To test my approach against chance, I compared it against a model that guesses class
membership on each trial. Such a decision function guessing for each trial will, in the
limit, achieve a BAC of 0.5. Therefore, I concluded that the prediction accuracy of
the person-specific models within an age group was reliably different from chance if the
respective 95% CI of the mean BAC did not include 0.5. I calculated CIs based on the
t-distribution, for each age group. To test for univariate normality of BACs within each
group the Shapiro-Wilk test (Royston, 1995) and quantile-quantile plots were used. For
all CIs the p-values for the Shapiro-Wilk test were larger than 0.05. Visual inspection
of the quantile–quantile plots also suggested that the data were normally distributed.
Furthermore, ceiling effects, typical for accuracy data, were not present. I therefore
believe that the CIs based on the t-distribution were a reasonable choice for quantifying
the reliability of my estimates. I conclude that the prediction accuracy of the person-
specific models within an age group is reliably different from chance if the p-value of the
one-sided t-test lies below 0.05. As Figure 5.4 shows for all age group–task combinations
the CIs of the person-specific models did not include 0.5. Consequently, the p-value of
the one-sided t-test was below 0.05 for all age groups. Hence, the person-specific models
allowed for a reliable classification of attentional foci and WM load based on neural
activity in the alpha frequency range. As effect size I report the difference between
the mean BAC and 0.5. The effect sizes for children, younger adults, older adults
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Figure 5.4.: Mean balanced accuracy (BAC) and CI for the person-specific (blue dots)
and the nonspecific model (red dots). Shown for (a) the attentional focus,
(b) and working memory (WM) load classification for each of the three age
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respectively were: attentional focus prediction: 0.0538, 0.1390, 0.1669; and WM load
prediction: 0.0276, 0.0701, 0.0565.

To compare my person-specific approach against conventional theory-driven, nonspe-
cific analysis schemes that assume the same model for each person, I needed an appro-
priate a-priori model. Previous studies have observed effects of shifted attention in early
time windows (e.g., Freunberger et al., 2008), whereas effects of load were usually re-
ported from the maintenance period of the change–detection task (Grimault et al., 2009;
Vogel & Machizawa, 2004). Thus, I used 0–400 ms as the theory-driven time window
for attentional focus prediction and 400–1000 ms for WM load prediction. In line with
conventional analysis schemes (e.g., Pfurtscheller & Aranibar, 1977), the variances of
the bandpass-filtered signals were used as features for the prediction instead of CSP.
Conventional analysis techniques are univariate in nature. Therefore, the equivalent of
a weight vector (or any other function that integrates evidence), as needed for linear
prediction, is not available. Therefore, I used LLDA to learn the weight vector and
classify the power features. I again used 10-fold cross-validation to evaluate its perfor-
mance. To obtain the single best weight vector I applied cross-validation to the data
of all participants simultaneously, but separately for both tasks. That is, I treated the
data of all persons as a single person. As a result, I obtained an unbiased BAC estimate
for the best estimated nonspecific model, explicitly implementing the expectation that
the same neural mechanisms are present in all participants (Danziger, 1990; Molenaar
& Campbell, 2009; Nesselroade, Gerstorf, Hardy, & Ram, 2007).

First, to examine whether there is an effect across all age groups of using the non-
specific or the person-specific model, I performed a repeated measures ANOVA with
age group as the between factor and model type (person-specific or nonspecific) as the
within factor. For the attentional focus prediction the main effect of model (F (1, 53) =
61.44, p = 2 × 10−10) as well as the interaction effect of model and age group were sig-
nificant (F (2, 53) = 7.62, p = 0.0012). The interaction was ordinal, thus just revealing
differences in the strength of the main effect between age groups. The main effect of
model was positive. Hence, across all age groups, the person-specific model improved
the BAC for the attentional focus prediction. For the WM load prediction the main
effect of model (F (1, 53) = 14.80, p = 0.0003) was significant. The interaction effect of
model and age missed the conventional significance level (F (2, 53) = 3.01, p = 0.0577).
Hence, the positive main effect of model is interpretable. Thus, across all age groups,
the person-specific model improved the BAC for the WM load prediction.

Figure 5.4 depicts the mean BAC for the nonspecific as well as the person-specific
model. With regard to the classification of the attentional focus, for all three age groups
the person-specific model was more accurate than the nonspecific model. The respective
95% CIs, effect sizes (mean difference), and p-values obtained by the paired one-sided
t-test are shown in Table 5.1a. Similar results were obtained for the WM load prediction.
Here, with exception of the children, the person-specific model was more accurate than
the nonspecific model. The respective 95% CIs, effect sizes (mean difference), and p-
values obtained by the paired one-sided t-test are shown in Table 5.1b.

Cross-validation results are not necessarily well approximated by a normal distribu-
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Nonspecific Person-Specific p-value Mean Difference

Children [0.5061, 0.5412] [0.5332, 0.5744] 0.0258 0.0302
Younger adults [0.5040, 0.5605] [0.5749, 0.7031] 0.0018 0.1068

Older adults [0.5298, 0.5735] [0.6305, 0.7033] 9 × 10−8 0.1152

(a) Attentional focus

Nonspecific Person-Specific p-value Mean Difference

Children [0.4988, 0.5400] [0.5117, 0.5435] 0.2520 0.0082
Younger adults [0.4942, 0.5390] [0.5166, 0.6236] 0.0313 0.0535

Older adults [0.4739, 0.5119] [0.5220, 0.5910] 0.0015 0.0636

(b) WM load

Table 5.1.: Mean balanced accuracy (BAC) and CI for the person-specific and the non-
specific model for (a) attentional focus and (b) WMs load. Corresponding
p-values from the paired one-sided t-test. These CIs are visualized in Figure
5.4

tion, and the variances for two classification methods are different depending on the
means of the two distributions. Hence, a t-test is only an approximation of a valid test
– in both cases, the test against chance and the comparison of the models against each
other. However, in here the large effect sizes justify the t-test. To substantiate the test
further, I repeated the test with a permutation test (Nettleton & Doerge, 2000) for the
case with the smallest effect size (WM load prediction in children with person-specific
model vs chance), confirming my results that even this effect size is significant (p = 0.02).

Overall the previous comparison clearly demonstrates that on average person-specific
models were more accurate than the conventional approach, which assumes that the
same neural mechanisms operate similarly in each person, a prediction captured in the
nonspecific model. Moreover, for both tasks and all age groups, performance was better
than random guesses for each trial.

5.3.2. Person-Specific Results

Now that I have established that the person-specific models were more accurate than
chance and the nonspecific model, the question is how to interpret the resulting estimated
models both on an individual and on a group level. In the following I will describe how
I interpreted the person-specific models and how I summarized the individual results on
the group level.

In Appendix B, I show the person-specific results for all persons in both tasks. In
Figure 5.5, I show the results for the person with the most accurate estimated model in
each age group and task. The properties of the selected person-specific models quantify
different aspects of the observed data. Each candidate model was derived from the
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Figure 5.5.: Person-specific results. Examples of results for a) attentional focus and
b) working memory (WM) load prediction for single individuals, one from
each age group. Column (a) shows the estimated balanced accuracy (BAC)
for the different candidate models. The x-axis describes the onset and the
y-axis the duration of the corresponding time window. Colors refer to the
estimated BAC of the respective candidate model, with hot colors indicating
higher BAC and cold colors lower BAC. The crosshair depicts the location of
the selected model. Column (b) shows the estimated source component for
each trial as reconstructed by the best estimated model, including the BAC
of the best model. The trials are sorted by their true class. The vertical line
separates the classes. The horizontal line marks 0. For a perfect classifier
the estimated source must be positive for all trials to the left and negative
for all trials to the right of the vertical line. Column (c) shows the entries of
the normalized filters. Column (d) shows the normalized pattern. Column
(e) shows the mean time series for the first common spatial pattern (CSP)
filter for both classes. Column (f) shows the mean time series for the last
CSP filter for both classes. The x-axis describes the time elapsed since the
onset of the memory array. The vertical dotted lines indicate the selected
time window. The horizontal line in columns e and f) marks 0.

same basic class, but they vary with regard to exposure to certain spatio-temporal
features of the observed brain responses. The onset and duration of time windows each
model is exposed to precisely describe the temporal information used by a given model.
Within the spatial domain, the resulting spatial filter and pattern coefficients reflect the
topographical information exploited by the chosen model.

The BACs estimated for the different candidate models (column a in Figure 5.5) map
out a space of information content across different choices of time windows. They also
quantify the uncertainty of the model selection procedure. If there is only one model
with a high BAC, one can be relatively certain that the truly best model was selected.
If there is almost no difference between the model with the highest BAC and several
other models, however, model selection is mostly determined by random variation. I only
report the BACs of the candidate models that have the same number of CSP filter pairs
as the most accurate candidate model. This is motivated by the fact that we (Karch
et al., 2015) were mostly interested in the location of the time window. In addition,
the number of CSP filter pairs was the least critical setting by which the candidate
models differed (see Section 5.3.4). Furthermore, I report the following properties of the
person-specific models: the BAC estimate as obtained by nested cross-validation, the
classifier output (= reconstructed source) w⊤xt + c for each trial t sorted by true class
membership as a visualization of the predictive behavior (both column [b]), the filter
(column [c]) and the pattern (column [d]) to describe the spatial information that was
employed by the model, the selected time window to quantify which time segment was
employed for prediction, and the mean (over trials) time series of the first (column [e])
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and last (column [f]) CSP component for each class as a visualization of the time course
of the most discriminative projected components.

I will exemplarily describe the results for the younger adult in the attention task
(second row in Figure 5.5). The grid of candidate model BACs shows that candidate
models employing time windows starting early have a high BAC (column [a]), while none
starting later than 200 ms achieves a comparable BAC. The reconstructed source shows
the nice separability of the two conditions for this person, which is also reflected in a
BAC of 0.8464 (column [b]). The filter has a high negative value at Pz, indicating that
higher power at this electrode is evidence for the “Attention right” condition (column
[c]). The pattern has high positive values in parieto-occipital areas, indicating that if
the decision function predicts “Attention Left”, these areas show higher power (column
[d]). The longest possible time window was selected (700 ms) and starts directly after
stimulus onset. The CSP components both show the desired effect within the chosen
time window: increased variance for one class and decreased variance for the other class.
This effect is not present outside the selected time window (columns [e] and [f]).

5.3.3. Group Results

Figures 5.6 and 5.7 show the group results. The scatter plot of onsets and durations
of the selected time windows (Figures 5.6a and 5.7a) illustrate their between-persons
variability. The mean (across persons) BAC for the different candidate models is shown
in Figures. 5.6b and 5.7b. As for the person-level results, we (Karch et al., 2015)
were most interested in the location of the time window, so I only report the mean by
onset and duration of the employed time window. To achieve this I averaged across
the different numbers of CSP filter pairs within a person prior to averaging across all
persons. The mean BAC for the different candidate models map out a space of mean
information content across different choices of time windows.

Figures 5.6c–e and Figures 5.7c–e show three time series. The first expresses how often
each time point was part of the selected model (Figures 5.6c and 5.7c respectively). For
each time point, I counted the number of persons for whom this time point was included
in the person-specific model and then divided this by the total number of persons in this
group. This is a way of visualizing the information per time point. However, as it only
relies on the best estimated model it ignores the useful information of the candidate
models that were not selected. Therefore, for a second time series I compressed the
mean BAC of the candidate models in a similar fashion by calculating the mean BAC
for every time point (Figures 5.6d and 5.7d). I did this by averaging the mean BACs of all
estimated models that contain the respective time point. For models that employ a very
long-lasting time window, however, this could be misleading as the high performance
may be driven by a localized part. To remedy this, I also report the mean BAC for
every time point but limited to the candidate models based on the shortest time window
(100 ms) (Figures 5.6e and 5.7e). I will refer to these results as coarse (Figures 5.6d and
5.7d) and fine mean (Figures 5.6e and 5.7e) BAC by time.

I do not report any averages of the person-specific filters and pattern, as they originate
from different time windows and thus, their interpretation is difficult.
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Figure 5.6.: Group results for the attentional foci prediction. In row (a) and (b), each
column shows the results for one age group. In row (a) each point represents
the corresponding time window of one person-specific model. Double rings
indicate that the corresponding time window was selected for two persons.
The x-axis describes the onset and the y-axis the duration of the selected
model. The step function encloses the region of possible time windows.
In row (b) the mean BAC for the candidate models by onset (x-axis) and
duration (y-axis) are shown. Colors refer to the estimated BAC of one
candidate model, with hot colors referring to higher BAC and cold colors to
lower BAC. Panel (c) shows for each time point the proportion of persons
whose model used the respective time point, for each age group. Panel (d)
shows the mean BAC by time using all candidate models (coarse mean BAC
by time). Panel (e) shows the mean BAC by time using only the candidate
models with a time window lasting 100 ms (fine mean BAC by time).
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Figure 5.7.: Group results for the WM load prediction. For a description see Figure 5.6.
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Attentional Focus

Figure 5.4a showed that mean BAC was highest for the older adults (0.6669), followed
by the younger adults (0.6390), and lowest for the children (0.5538) for attentional focus.
Figure 5.6 shows the group results.

For the children, the employed time window of the best estimated model varied across
the whole range of durations and onsets (Figure 5.6a). This finding may indicate larger
variability in the group of children compared to the other age groups. However, given
that the mean BAC was only slightly higher than chance level, this must be interpreted
with caution.

For the majority of younger adults, models that start earlier than 250 ms after memory
array onset were selected (Figure 5.6a). For the remaining three younger adults, models
starting later than 400 ms were picked. No model beginning later than 600 ms was
selected. However, some of the early models contain data for almost the complete trial
because of their duration (see Appendix B). The fine mean BAC by time plot (Figure
5.6e) shows two distinctive peaks around 200 ms and around 700 ms for the younger
adults. This is a consequence of the fact that in the group of younger adults, I observed
two clusters: For one cluster, an early time window provided good discriminability, and
for the other, a later time window discriminated well. This is reflected by the fact that
the BAC for the candidate models peaked around the best model and was relatively low
for the remaining candidate models for every younger adult (see Appendix B).

The distribution of time windows in the older adults is strongly shifted to the stimulus
onset. For only one older adult a model starting later than 200 ms post-stimulus was
selected, with a relatively low BAC of 0.5417 (Figure 5.6a). The best estimated model
contains data after 700 ms post-stimulus for only one person, while almost all person-
specific models contain data around 200 ms post-stimulus. The coarse (Figure 5.6d)
and fine (Figure 5.6e) mean BAC by time plots clearly show an early peak (at roughly
200 ms) followed by a sudden decline. This indicates that for almost all older adults,
discriminability was best if early time windows were employed. It is noteworthy that the
accuracy of these models was superior to those of the younger adults (see Figure 5.4a).

Working Memory Load

The mean BAC for WM load was highest for the younger adults (0.5701), followed by
the older adults (0.5565), and lowest for the children (0.5276) (see Figure 5.4b). Figure
5.7 shows the group results for the WM load prediction.

For the children, the employed time window of the best estimated model varied across
the whole range of duration and onset (Figure 5.7a). Again, this finding may indicate
larger variability in the group of children compared to the other age groups. However,
given that the mean BAC was only slightly higher than chance level, this finding must
be treated with caution. For many of the younger adults and the older adults (6 of
12 younger adults and 18 of 22 older adults), models that started earlier than 250 ms
after memory array onset were chosen (Figure 5.7a). After a gap, there is another group
of people with models that start after 450 ms (6 younger adults and 4 older adults).
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Note that the group of persons for whom early models were picked is much larger in the
older than in the younger adults. Some of the early models contain data for almost the
complete trial because of their duration.

Accordingly, the mean BAC for the candidate models shows two peaks for the younger
and the older adults (Figure 5.7b). One represents early models and the other late
models. For the younger adults, both peaks are equally strong. For them, the coarse
BAC by time plot (Figure 5.7d) is therefore almost constant. Consequently, their fine
BAC by time plot (Figure 5.7e) shows an early and a late peak.

Despite the fact that there is a peak for late models, the coarse BAC by time plot
(Figure 5.7d) for the older adults is qualitatively the same as for the attentional focus
prediction: An early peak around 200 ms and then a sudden drop. The fine mean BAC
by time reveals both peaks.

For both age groups, the reasons for the late and the early peak are less clear than
for the attentional focus prediction. There are persons for whom only early models were
accurate, persons for whom only late models were accurate, and persons for whom early
and late models were accurate (see Appendix B).

5.3.4. Performance Comparison Against Simpler Person-Specific Models

The set of candidate models that I proposed in order to obtain person-specific models
is comparatively flexible (i.e., it adapts many parameters to the data) and uses sophis-
ticated algorithms: model estimation entails parameter selection over time windows, a
spatial projection, and a subsequent estimation of regularized regression weights. As a
consequence results are hard to interpret. In the following, I report the results of an
evaluation of the impact of reducing parameters to arrive at potentially simpler mod-
els. To this end, I gradually reduced the complexity of the candidate models. All the
p-values that I report in this section were calculated using a two-sided paired t-test,
as I hypothesized that the simpler model classes would be either better or worse then
my original model class. At first sight it might seem unreasonable to hypothesize that
a simpler model class leads to better predictive performance, as more complex model
classes always lead to a better model fit. However, a better model fit does not necessarily
lead to better predictive performance. This is due to the fact that a more flexible model
class is more vulnerable to noise in the data. This is called overfitting in the literature
(Bishop, 2006; Duda et al., 2001; Hastie et al., 2001).

In a first step, I abandoned the optimization across the time window by fixing it to
a theory-driven estimate for each task (0–400 ms for attentional focus, 400–1000 ms for
WM load). I call this model class the fixed time model in the following. By fixing the
time windows I reduced the number of candidate models from 1220 (244 time windows
by up to 5 components) to 5. For the attentional focus prediction, the mean BAC
of the fixed time model was not significantly different from the mean BAC of the full
model class for both the children (p = 0.9605) and the older adults (p = 0.9265). The
mean BAC of the full model was slightly higher for the younger adults (p = 0.1455).
The results for the older and younger adults are not surprising considering my previous
analysis: For almost every older adult, a model with an early component was accurate.
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Figure 5.8.: Mean BAC and CI for the five different model classes for each of the three
age groups within the attentional focus (a) and WM load prediction tasks
(b). Each dot describes the BAC of one person. The box plots denote
the respective mean values and 95% CI intervals. The red horizontal line
describes the BAC as expected by the null hypothesis. “CH” stands for
children, “YA” for younger adults, and “OA” for older adults. “FTM”
stands for “fixed time model,” “FTFCM” for “fixed time fixed CSP model,”,
“VM” for “variance model,” and “FTVM” for “fixed time variance model”
(see text for details).
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For the younger adults, time window optimization improved the results as there were two
clusters: one for which an early, and one for which a late component is most predictive
of the behavioral difference. For the children this again suggests that the observation of
large variability might in fact be due to noise.

Regarding the WM load prediction, the mean BAC of the fixed time model was not
significantly different from the mean BAC of the full model class for both the children
(p = 0.3465) and the younger adults (p = 0.5731). For the older adults, the mean BAC
of the fixed time model was higher than the mean BAC of the full model (p = 0.0013).

As a further step of model simplification, I abandoned the optimization of the number
of CSP filter pairs. Instead, I picked the first three filter pairs. This was previously found
to yield good predictive performance (Blankertz et al., 2008). I refer to this model as the
fixed time fixed CSP model. Across all age groups and tasks, the additional restriction of
the model space did not significantly influence the accuracy in comparison to the fixed
time model (attentional focus: children: p = 0.6075, younger adults: p = 0.4311, and
older adults: p = 0.5450; WM load: children: p = 0.5600, younger adults: p = 0.4184,
and older adults: p = 0.6980). This is further evidence that three filters represent a
reasonable choice.

To judge if CSP is a reasonable feature extraction method for the present data, I
introduced two more model classes that do not rely on CSP features but directly operate
on the variance of each channel. The two classes differed from each other in the following:
In one class, I optimized the time window as before. I call this model class variance model
in the following. I compared this class against the full model. For the other class, I fixed
the time window to my theory-driven estimates (0–400 ms for attention, 400–1000 ms
for load). I call this model class fixed time variance model. I compared this class against
the fixed time model. For the attentional focus prediction the variance model was less
accurate than the full model for both the younger and the older adults (p = 0.0256 and
p = 0.0004). For the children there was no significant difference (p = 0.7986). For the
WM load prediction there was no significant difference between the variance model and
the full model for any age group (children: p = 0.9193, younger adults: p = 0.2728,
and older adults: p = 0.1355). The fixed time model was more accurate than the
fixed time variance model for both tasks and all age groups (attentional focus: children:
p = 0.0902, younger adults: p = 0.0533, and older adults: p < 0.0001; WM load:
children: p = 0.0019, younger adults: p = 0.0382, and older adults: p = 0.0007). Thus,
for most comparisons, CSP features led to more accurate models. However, especially
for WM load prediction for the older adults the combination of CSP and time selection
seems to lead to overfitting.

The discussion of the results will be solely based on the full model. However, from a
classification perspective, the full model was only as accurate as a simpler model class
using fixed time windows (fixed time model) in conjunction with CSP and LDA. These
time windows were derived from the literature and were constrained to an early time
window for the classification of the attentional focus and to a later time window for
the classification of the WM load. Using these fixed windows, with exception of the
WM load prediction in the older adults, I almost achieved the same BACs as with time
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window optimization. Hence, two models, the full model and the fixed time model, do
not differ significantly in predictive accuracy. In other words, the hypothesis that their
performance on a new observation is equal can not be rejected. It is generally taken
for granted that more parsimonious explanations for a set of observations are preferable
under comparable goodness-of-fit (Akaike, 1998). In my case the more parsimonious
explanation corresponds to the fixed time model, as it is a special case of the full model.
But, since I relied on cross-validation to estimate the predictive accuracy, I implicitly
accounted for the unequal complexity between the models in terms of numbers of free
parameters. Hence, unless model fit was evaluated directly for new observations, choos-
ing the simpler model may be a good heuristic – or it may not. Insofar, I allow myself to
draw conclusions from the two hypotheses in head-to-head competition. In other words,
the full model provides evidence for interindividual variability in brain responses, which
would have remained covered by the fixed time model analysis alone. Hence, the mod-
els based on the full model, although not superior with regard to prediction accuracy,
provide additional insights about reliable idiosyncrasies in brain–behavior mappings use-
ful for further theory-building. Interestingly, for older adults the BAC achieved by my
time-optimizing model was even worse than that of the fixed time model. One possible
explanation may be that for the WM load prediction, the discriminating signal is too
weak so that my complex model class, containing many candidate models, resulted in
overfitting of the data. That is, the model selection process is disturbed by the noise in
the data such that a theory-driven model selection leads to more accurate predictions.
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Repeated measures obtained from multiple individuals are of crucial importance for
developmental research. To analyze such data, a model for inter-individual as well as
intra-individual variation is required. In this thesis, I developed two new modeling
approaches for repeated measures obtained from multiple individuals: (1) GPPM, a new
panel modeling method based on the flexible function fitting approach GPR, and (2) a
method to obtain and summarize person-specific models for EEG data based on machine
learning techniques.

6.1. Gaussian Process Panel Modeling

The motivation for developing GPPM was the observation that panel data are typically
modeled with longitudinal SEM or a special case thereof (like HLM). While using SEM
is a viable option for modeling panel data, it also possesses multiple weaknesses. First
and foremost, longitudinal SEMs are inherently discrete-time models and, thus, model
intra-individual variation inappropriately, since the observed intra-individual variation
is typically the result of a continuous-time process. Also, due to its restriction to linear
equations, SEM can only express a relatively limited number of models of intra-individual
variation.

To develop GPPM, I extended the Bayesian continuous-time time series modeling
method Gaussian process time series modeling (GPTSM) to be applicable to multiple
independent time series, i.e., a panel data set (see Chapter 3). I showed that the resulting
method can incorporate a large set of models for the intra-individual and inter-individual
variation. Besides introducing the Bayesian inference procedure used for GPTSM for
GPPM, I also developed frequentist inference procedures for GPPM because this con-
nects to conventional data-analysis procedures and merely modifies the range of models
available for applied psychologists without requiring a change of inference approach.
For model selection, that is, selecting between a set of different GPPMs, I proposed
using cross-validation, as popularized in machine learning, as there is evidence that it
is in general favorable over other approaches (Kearns et al., 1997). I also showed how
person-specific predictions can be obtained using GPPM.

To further illustrate the strengths and weaknesses of GPPM, I compared it to existing
panel methods, particularly longitudinal SEM and multiple-subject SSM (see Section
4.1). I showed that both longitudinal SEM and multiple-subject SSM can be regarded
as special cases of GPPM. At the same time, GPPM is able to express more models
than the existing panel methods.

The main technical difference between longitudinal SEM and GPPM, besides the latter
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being more general, lies in the way how the model-implied moments (the mean and the
covariance matrix) are specified. In longitudinal SEM, the model-implied moments are
implicitly described via linear structural equations, whereas they are explicitly described
via mean and covariance functions in GPPM. This rather technical difference leads to
multiple practical differences. First and foremost, in contrast to longitudinal SEM,
GPPM is well suited for continuous-time modeling. In line with previous work (Oud
& Singer, 2008; Voelkle et al., 2012), I argue that adapting continuous-time modeling
for the analysis of panel data is among the most important methodological shifts that
need to happen within developmental psychology. Using discrete-time modeling results
in introduction of unnecessary assumptions, which are never fulfilled, that therefore lead
to invalid inferences.

Another important advantage of GPPM over longitudinal SEM is that person-specific
predictions can be obtained readily. This makes it possible to estimate person-specific
trajectories that also take into account the data of all other persons. Person-specific
predictions can, for example, be used as screening devices for interventions by identifying
those persons who are at risk of developing into a unsatisfactory direction. I exemplarily
demonstrated the versatility of GPPM as compared to longitudinal SEM by showing
that it allows easy extension of a continuous-time LGCM by a continuous-time AR(1)
error structure. Thus, GPPM addresses the two weakness of longitudinal SEM that I
identified earlier. In contrast to SEM, GPPM is well suited for continuous-time modeling
and it is able to express a richer family of models for intra-individual variation, as it is
not restricted to models for intra-individual variation that can be expressed using linear
equations.

Besides being more general, GPPM also has other advantages over multiple-subject
SSM. First and foremost, the description of the model-implied moments is again distinct.
Whereas multiple-subject SSM implicitly represents the model-implied moments of a
GP using SDEs, GPPM delineates them directly. Thus, GPPM can be seen as a static
(Hertzog & Nesselroade, 2003; Voelkle, in press) continuous-time modeling method,
whereas multiple-subject SSM can be regarded as dynamic (Hertzog & Nesselroade,
2003; Voelkle, in press). Depending on the form of a researchers’ theory, translating it
into either a dynamic or a static model might be easier. In this way, GPPM and multiple-
subject SSM allow complementary perspectives on the modeling of change. However,
GPPM does not only offer an alternative perspective. GPPM also extends the range of
models that multiple-subject SSM offers.

As an example for a GPPM that cannot be expressed using multiple-subject SSM
or SEM, I presented the exponential squared model, which implements the “nature
does not jump” assumption put forward by thinkers such as Darwin (1859) and Leibniz
(1704/1886) (see Section 4.2.1). I showed that the exponential squared model is similar to
the continuous-time AR(1) model, but in contrast to the AR(1) model it implies smooth
trajectories. I presented the finding that the exponential squared model is selected over
the AR(1) model using conventional model selection methods on a authoritarianism
data set (Heitmeyer, 2004), which has previously been analyzed using the AR(1) model
(Voelkle et al., 2012). Thus, I could show that the stability of authoritarianism is
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better represented by the exponential squared model than by the common AR(1) model.
This provides first empirical evidence that the exponential squared model is well worth
considering for psychological research.

As an example for the versatility of GPPM, I showed how the error process in a LGCM
can be easily replaced in its GPPM representation (see Section 4.2.2). Particularly, I
presented the way that continuous-time AR(1)-correlated errors can be implemented.
In parallel to the example introducing the exponential squared model, I demonstrated
that the LGCM with AR(1)-correlated errors is selected over the regular LGCM with
uncorrelated errors on the positive affect data from the COGITO study (Schmiedek et
al., 2010). This demonstrates the flexibility of GPPM.

Thus, I was able to show that GPPM addresses multiple shortcomings and provides
a different perspective as compared to the existing methods multiple-subject SEM and
SSM. Accordingly, it represents a viable addition to the modeling toolbox. GPPM
adds a new perspective on modeling with a broader class of models, and thereby should
contribute to a broader application of continuous-time models in psychological data
analysis. To the best of my knowledge, the proposed GPPM approach constitutes the
first proposal for using GPs for the analysis of panel data within psychology. This
thesis also contains the first unified perspective on SEM, multiple-subject SSM, and
GPPM. Previous work compared the two methods that GPPM is based on and thus
closely related to, namely GPR and GPTSM, with SSM (Hartikainen & Särkkä, 2010;
Särkkä & Hartikainen, 2012), but there no work comparing SEM and GPR.

One weakness of GPPM in comparison to both SEM and multiple-subject SSM is that
the concept of latent variables is not explicit. Extending GPPM in this vein should be
straightforward and remains to be done.

A further weakness is that the specification of a GPPM for a multivariate time series
is still cumbersome (see Section 3.4.2). To this end, I envision a combination of SEM
and GPPM: GPPM is used to describe a model of change for potentially multiple latent
variables and SEM is used to describe the measurement model, that is, how the latent
variables are mapped onto the actual observations. In this vein, the strength of both
methods could be leveraged. On the time dimension the model can be described using the
powerful concept of a set of GPs used by GPPM. On the measurement model dimension,
the restrictions of SEM are not as harmful, since the number of measurements per time
point are finite. At the same time, the theory of constructing appropriate measurement
models is well developed within the SEM community. Note that the resulting model is
technically still a GPPM.

Since GPPM contains most conventional panel methods as special cases, it might also
be useful for software development. Instead of developing and maintaining a separate
software for each modeling approach (e.g., SSM, HLM, SEM), only the GPPM software
would need to be maintained. For the specific approaches, only respective input and
output interfaces would be required. The input interface would allow model specification
in the customary language of each approach, and the output interface would likewise
represent the results in the approach-specific fashion. Besides saving time, using the
same core for all modeling approaches would allow more people to work on this core
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and at the same time a larger user base would profit from improvements to it, in a clear
betterment of the current situation, where independent software for each approach is
developed.

The utility of GPPM as basis for a universal software package would be greatly en-
hanced if it were able to model non-Gaussian data, for example binary or count data.
Indeed, an extension of GPPM to model non-Gaussian data is straightforward. In GPR,
as for generalized linear models, so-called link functions (Rasmussen, 2006, Chapter 3
and Chapter 9.3) are used to accommodate non-Gaussian data. Using these slightly
complicates parameter estimation. However, the appropriate algorithms have been de-
veloped for GPR and are included in the GPML toolbox (Rasmussen & Nickisch, 2015).
Translating the relevant work to GPPM should be simple.

Another interesting direction for future work would be to use the established connec-
tions of GPR to multiple other machine learning methods, in order to further under-
standing of the connection between what seem to be very different methods at first sight.
GPR is closely related to Bayesian regression (Rasmussen, 2006, Chapter 2). There is
also work connecting GPR to many other methods from supervised machine learning
(Rasmussen, 2006, Chapter 6) such as support vector machines. In Section 4.1.1, I pre-
sented the connection between GPPM, which is closely related to GPR, and SEM and
SSM. Thus, GPPM provides a good starting point for understanding the differences
and commonalities of many methods such as SEM, as used in psychology, and support
vector machines, as used in machine learning.

Since GPPM is more general than SEM, I also investigated the question whether
transforming SEMs into their equivalent GPPMs speeds up the time required to obtain
parameter estimates (see Section 4.3). Speeding up parameter estimation for longitu-
dinal SEM is of crucial importance, especially for data sets with many time points,
which are increasingly collected in diary and experience sampling studies (Bolger &
Laurenceau, 2013). My results suggest that GPPM software is indeed faster than SEM
software. However, the obtained speedups were not as substantial as hoped for. For
the AR(1) model, the speedup was large enough to recommend using GPPM instead
of SEM. Yet, the AR(1) model can be fitted much faster by the Kalman Filter, using
its multiple-subject SSM representation. For the LGCM the speed enhancement was
not great enough to recommend using GPPM instead of SEM. However, translating a
SEM to a GPPM has the potential to reduce the time needed for parameter estimation
much more dramatically. Within the GPR community, there are already many different
approximation algorithms designed to speedup parameter estimation at the cost of a
slightly reduced accuracy (e.g., Csató, 2002; Freytag et al., 2012; Park & Choi, 2010;
Särkkä & Hartikainen, 2012). Using these algorithms for the estimation of the param-
eters of a GPPM might dramatically reduce the time taken for parameter estimation.
To what degree the reduced accuracy is tolerable in practice is also an issue for further
research. Possibly, the most promising algorithm is the one proposed by Särkkä and
Hartikainen (2012). They have proposed converting a GPR model into the equivalent
SSM. This is not possible for every GPR model, but each one can be approximated. The
parameter estimates of a SSM can be obtained linearly in time rather than to cubically
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(x3) for SEM and GPPM. Adapting the approximation algorithms developed for GPR
for GPPM may thus have the potential to fit GPPMs and consequently longitudinal
SEMs linearly in time. This would constitute a tremendous speedup compared to the
current cubical running time.

6.2. Person-Specific EEG Modeling

The motivation for developing the approach to derive person-specific models for EEG
data was based on the fact that increased behavioral and neuronal inter-individual vari-
ation in both children and older adults is observed in lifespan samples (Lindenberger,
Burzynska, & Nagel, 2013; Nagel et al., 2009; Werkle-Bergner et al., 2012). At the
same time conventional EEG analysis approaches ignore within-group inter-individual
variation with the aforementioned consequence that the group model might not be rep-
resentative for any person within the group.

To derive person-specific EEG–behavior mappings, or in other words, models, I devel-
oped an approach relying on machine learning methods (see Section 5.1). The general
idea was to select the best model from a set of candidate models and at the same time
obtain an unbiased estimate of the accuracy of the selected candidate model. The al-
gorithm was tailored to problems in which all inferences are to be performed on typical
EEG data sets, that is, the number of examples (trials) per person is small. There-
fore, I proposed using a framework involving a nested cross-validation loop to allow for
unbiased model selection and performance estimation.

To validate the proposed method I re-analyzed EEG data from a study that targeted
brain oscillatory mechanisms for WM selection and maintenance in a lifespan sample
including children, younger, and older adults (Sander et al., 2012). My aim was to
find person-specific models that describe the mapping from the modulations of rhythmic
neural alpha band activity to (a) the focus of spatial attentional and (b) the number of
items in WM load.

To derive the person-specific models on the WM data set, I employed the combination
of CSP and LDA as core techniques from which to derive a set of candidate models. This
setup is popular for building BCIs based on rhythmic neural activity (e.g., Blankertz et
al., 2008; Blankertz et al., 2011; Ramoser et al., 2000). The candidate models differed in
terms of the spatio-temporal information they were exposed to. In terms of the temporal
dimension, each candidate model was exposed to a particular time-window within each
trial. In terms of the spatial dimension, an optimal spatial weighting was obtained by
the combination of CSP and LDA.

My work is distinct from typical BCI research in that I did not aim to construct a real-
time classification system but rather used the same methods to obtain person-specific
models. Thus, in contrast to classical BCI research, the interpretation of the obtained
mappings as person-specific models was important. I showed how the spatial information
contained in the estimated models from the proposed model class can be meaningfully
interpreted as patterns and filters, a usual way to summarize multivariate models for
EEG data. Interpretation on the temporal dimension is straightforward, since every
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model is exposed to a particular time window.
The results demonstrate the potential of the proposed approach to derive person-

specific models (Nesselroade et al., 2007) in age-comparative EEG studies (see Section
5.3). WM load as well as the focus of spatial attention could be discriminated reliably in
all three age groups based on rhythmic neural activity in the alpha frequency range. In
all three age groups, the BAC of person-specific models provided a significantly above-
chance classification for the prediction of both attentional focus and WM load. Also,
across age groups and for both prediction targets, the person-specific models were more
accurate than a theory-driven nonspecific model disregarding inter-individual variation,
with the exception of the children’s model for the prediction of WM load. Hence, the
present framework demonstrates the feasibility of deriving person-specific models based
on EEG data.

Usually, the spatio-temporal differences in the neural responses between persons are
assumed to reflect measurement error (e.g., Luck, 2005). However, my approach shows
that individually-tailored models do not just fit noise, as exemplified by above-chance
BAC derived from nested cross-validation. Rather, in terms of prediction accuracy,
they outperform conventional nonspecific models that assume no within-group inter-
individual variation (e.g., Danziger, 1990). This finding underscores the idiosyncrasy
of neural responses underlying similar overt behaviors, and calls for further studies to
investigate how this is related to inter-individual variation both on the neural level (e.g.,
in terms of differences in brain structure; cf. Breakspear, Jirsa, & Deco, 2010; Deco,
Senden, & Jirsa, 2012; Valdes-Hernandez et al., 2010) and on the behavioral level (e.g.,
in terms of differences in strategy use; cf. Corbin & Marquer, 2009).

One of the major challenges when dealing with person-specific models is how to ex-
tract and aggregate the person-specific information across individuals in order to allow
group comparisons. Here, I suggest summarizing person-specific models with regard to
their different properties. These properties refer to the timing of the processes (here:
time windows with a certain onset and duration), the reliability of classification within
the person (BAC), and the topographical distribution of classification information (i.e.,
filters and patterns). For each property, I suggest an appropriate summary strategy that
takes its corresponding characteristic into account. When, summarized in this way, the
information can be taken to visualize the inter-individual variation and to compare the
distribution of model properties across groups. Summarizing person-specific models on
the group level poses a serious challenge both on a conceptual and on a methodological
dimension. I regard my approach as a first step in this direction.

On the substantive level, in terms of classification accuracy, differences between the
age groups were observed. With regard to the attentional focus prediction, the BAC was
highest for older adults, followed by younger adults, and lowest for children. Concerning
the WM load classification, the highest BACs were obtained for the younger adults,
followed by the older adults, with the lowest values again for children.

In the group of younger adults, both prediction tasks revealed inter-individual differ-
ences in the onset and duration of time windows that discriminated optimally between
conditions. In most younger adults, a model was selected that starts earlier than 250
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ms after memory array onset. However, the fine mean BAC by time plot (see Fig. 5.6e)
revealed two peaks in this group, one early peak at around 200 ms and a later one at
around 700 ms. In older adults, I found a strong shift of the time windows towards
stimulus onset. In all but one participant, the best model’s onset was found to be before
200 ms. For a more detailed discussion of the substantive results, see Karch et al. (2015).

One limitation of my approach is that for the attentional focus prediction, the ex-
perimental condition remained the same for blocks of 30 trails each. If slowly varying
background activity that could be exploited by the classification algorithm were present
in a blocked experimental design, using k-fold cross-validation might overestimate the
performance of the classifier. A general remedy would be to use leave-one-block-out
cross-validation instead (Lemm et al., 2011).

An interesting topic for future work is to explore the amount of individualization
necessary. While standard EEG analysis approaches assume the same model for each
person, I made the assumption that a different model is required for every person. The
two approaches represent the extremes of a continuum. It would be very interesting to
systematically explore this continuum, that is, to examine how much individualization
of the models is necessary. I envision two different approaches to reach this goal. The
first would start with one model for all participants and recursively split the participants
into groups with the same model. The participants are only split further if a significant
gain in prediction accuracy can be obtained. Brandmaier et al. (2013) already developed
this framework for SEMs. An alternative approach would be a hierarchical model that
penalizes the person-specific models for a derivation from the group model. The best
amount of penalty could be estimated and would be informative regarding the amount
of individualization necessary for a given task. Both approaches are accompanied by
their own methodological and computational challenges.

6.3. Conclusion

In sum, the present thesis introduces two novel modeling approaches for multiple indi-
viduals’ repeated measures data based on machine learning methods. The first, GPPM
aims at improving the modeling of panel data by, for example, extending the space of
expressible models as compared to conventional panel methods. The second, a method
to obtain person-specific models for EEG data, focuses on improving the appreciation of
inter-individual variation in brain–behavior mappings in cognitive neuroscience, partic-
ularly in EEG data, by providing a way to obtain multivariate person-specific models.
Both aspects, improving the analysis of panel data as well as developing modeling ap-
proaches that better account for idiosyncrasies in mappings between neural and cognitive
processes, are necessary for progress in lifespan psychology.
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A. Probability Theory

A.1. Foundations of Probability Theory

Definition A.1.1. A probability space is a triple (Ω,F ,P), where Ω is a sample space,
F a σ-algebra on the power set of the sample space 2Ω, and P a probability measure.
The sample space Ω is an arbitrary non-empty set.
A σ-algebra F must satisfy the following properties:

1. Ω ∈ F

2. A ∈ F ⇒ A∁ ∈ F , where A∁ = Ω \A

3. If An ∈ F for all n ∈ N, it follows that
⋃

n∈NAn ∈ F

The elements A ∈ F are called events. The elements ω ∈ Ω are called outcomes. A
function P : F → R is a probability measure on the sample space σ-algebra pair (Ω,F)
if it satisfies the following properties:

1. P(A) ≥ 0 for every A ∈ F

2. P(Ω)=1

3. If An ∈ F for all n ∈ N and for any two events An, Am for which n ̸= m, An∩Am =
∅, it follows that P(

⋃
n∈NAn) =

∑
n∈N P(An)

Definition A.1.2. A random variable on a probability space (Ω,F ,P) is a mapping

X : Ω → R

that assigns a real number X(ω) to each outcome ω ∈ Ω and fulfills the following
condition (Prokhorov, n.d.):

for all x ∈ R : {ω : X(ω) ≤ x} ∈ F .

Definition A.1.3. A random vector X is a n-dimensional vector X = [X1, . . . , Xn] of
random variables Xi. All Xi are random variables on the same probability space.
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Remark A.1.4. A random variable is a 1-dimensional random vector.

Theorem A.1.5. Let X be a n-dimensional random vector on a probability space
(Ω,F ,P) and FX the class of subsets FX ⊂ 2R

n
with corresponding members AX ∈ FX

for which
{ω : [X1(ω), . . . , Xn(ω)] ∈ AX} ∈ F ,

then FX is a σ-algebra. The function PX defined on FX by

PX(AX) = P({ω : [X1(ω), . . . , Xn(ω)] ∈ AX})

is a probability measure. Hence, the triple (Rn,FX ,PX) is a probability space. It is
called the probability space induced by the random variable X. For every outcome
ω ∈ Ω the vector X(w) is called a realization. The sample space Rn is called the support
of the random vector X. (generalization of the treatment in Prokhorov [n.d.])

Remark A.1.6. I denote the set {ω : [X1(ω), . . . , Xn(ω)] ∈ AX} as simply {X ∈ AX}
in the remainder.

Definition A.1.7. Let (Rn,FX ,PX) be a probability space induced by a random vector
X. A random vector X is continuous iff a function pX exists such that pX(x) ≥ 0 for
all realizations x = X(w),

∫
RnpX(x)dx = 1, and for every event AX ∈ FX

PX(AX) =

∫

AX

pX(x)dx.

The function pX is called the (joint) probability density function (pdf) of X. (general-
ization of Wasserman, 2004, p. 23)

Remark A.1.8. There are also discrete random variables. The equivalent function for
them is the probability mass function. In this work only continuous random vectors are
considered. Therefore, the rest of the treatment will be limited to pdfs. However, note
that everything can easily be generalized to discrete random variables. The difference is
more or less that all integrals are exchanged by sums.

Definition A.1.9. The expected value of a continuous random vector X : Ω → Rn with
pdf pX is defined as

E(X) =

∫

Rn

pX(x)xdx.
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Theorem A.1.10. Let X : Ω → Rn be a random vector and r : Rn → Rm a function,
then Y = r(X) is also a random vector.

A.2. Conditional Distributions and Independence

Definition A.2.1. A set of events {Ai : i ∈ I} is mutually independent iff

P

(⋂

i∈J
Ai

)
=
∏

i∈J
P(Ai)

for every finite subset J of I. (Wasserman, 2004, p. 25)

Definition A.2.2. Let A, B be two events. If P(B) > 0, then the conditional probability
of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

Bayes’ rule follows From the definition of conditional probability.

Theorem A.2.3. Let A, B be two events and P(B) > 0, then

P(A|B) =
P(B|A)P(A)

P(B)
.

The notation of conditional probability and independence can be extended to random
vectors.

Definition A.2.4. A set of random vectors {Xi : i ∈ I} is mutually independent iff

P

(⋂

i∈J
{Xi ∈ Ai}

)
=
∏

i∈J
P({Xi ∈ Ai})

for every finite subset J of I. This has to hold no matter which event Ai ∈ AXi is chosen
for a random vector Xi.

For continuous random vectors mutual independence can also be expressed in the form
of pdfs.
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Theorem A.2.5. n continuous random vectors Xi with corresponding pdfs pXi(xi) are
mutually independent iff the joint pdf pX can be decomposed as follows:

pX(x1, . . . , xn) =
n∏

i=1

pXi(xi).

Thus, if mutual dependence holds, the joint pdf of n random vectors can easily be
obtained given the pdf of each random vector Xi. The other direction is also often
important: Obtaining the pdf of one random vector Y given a joint pdf that involves Y .

Theorem A.2.6. Let pX,Y (x, y) be the joint pdf of the random vectors X and Y , then
the marginal pdf of the random vector Y is obtained by

∫

Rn

pXY (x, y)dx,

where n is the dimensionality of the random vector X.

Remark A.2.7. Concatenating random vectors results in a random vector. Therefore,
this theorem generalizes to all possible scenarios. X is simply defined as the random
vector containing all the random vectors for which the marginal distribution is desired
and Y as the remaining random vectors.

Let X, Y be two random vectors. Note that {X ∈ AX} and {Y ∈ AY } are events.
Therefore, P({X ∈ AX}|{Y ∈ AY }) is a conditional probability. Furthermore, for a fixed
event B P(·|B) is a probability measure. Often of special interest is the conditioning on
one realization of Y , i.e. |AY | = 1. These observations lead to the conditional probability
distribution, which is expressed as a conditional pdf for continuous random variables.

Definition A.2.8. Let X, Y be two random vectors, then a function pX|Y=y is the
conditional pdf of X given Y = y iff

P(X ∈ AX |Y = y) =

∫

AX

pX|Y=y(x)dx.

The question now of course is how to obtain the conditional pdf. All that is needed is
the joint pdf of X and Y .

Theorem A.2.9. Let [X,Y ] be a partitioned continuous random vector, pXY (x, y) its
joint pdf, and pY (y) the marginal pdf of Y , then the conditional pdf of X given Y = y
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is given by

pX|Y=y(x) =
pXY (x, y)

pY (y)
.

This fact leads to the most important rule for Bayesian inference, Bayes’ rule for pdfs.

Theorem A.2.10.

pX|Y=y(x) =
pY |X=x(x)pX(x)

pY (y)

Using marginalization, one obtains

pX|Y=y(x) =
pY |X=x(x)pX(x)∫
ΩY

pXY (x, y)dy
.

Using Theorem A.2.9, the joint pdf can be factorized into the marginal and the condi-
tional pdf:

pX|Y=y(x) =
pY |X=x(x)pX(x)∫

ΩY
pX|Y=y(x)pY (y)dy

.

Remark A.2.11. The conditional pdf is often written as pX|Y (x|y). This notation is
a little sloppy, as pX|Y (x|y) is not a pdf. In the applied literature and especially in the
Bayesian literature, the notation is even simplified one step further to p(x|y). Indeed, p is
used a placeholder for any pdf and the respective pdf is identified only by its arguments.
While in a purely mathematical sense this is wrong, I will use this notation in this work
as it is so widespread.

A.3. (Co)Variance Rules and the Gaussian Distribution

Definition A.3.1. Let X,Y be two random variables, then

Cov(X,Y ) = E([X − E(X)][Y − E(Y )])

is called covariance between X and Y. The special case Cov(X,X) is called variance.
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Furthermore, for a random vector X : Ω → Rn the matrix

Cov(X) =

⎡
⎢⎢⎢⎢⎣

Cov(X1, X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Cov(X2, X2)
...

...
. . .

Cov(Xn, X1) . . . Cov(Xn, Xn)

⎤
⎥⎥⎥⎥⎦

= E
(

[X − E(X)][X − E(X)]⊤
)

is called the covariance matrix.

Theorem A.3.2. Let A ∈ Rm×n be a matrix, b ∈ Rm a vector, and X a n-dimensional
random vector with expected value µ and covariance matrix Σ, then the random vector
Z = AX + b has the expected value and covariance matrix

E(Z) = Aµ + b,Cov(Z) = AΣA⊤.

Proof:

E(AX + b) =

∫

Rn

p(x)(Ax + b)dx =

∫

Rn

p(x)Axdx +

∫

Rn

p(x)bdx

= A

∫

Rn

p(x)xdx + b

∫

Rn

p(x)dx = Aµ + b

Cov(AX + b) = E
(

[AX + b− E(AX + b)][AX + b− E(AX + b)]⊤
)

= E
(

[AX + b−AE(X) − b][AX + b−AE(X) − b]⊤
)

= E
(
A[X − E(X)][X − E(X))⊤]A⊤

)

= AE
(

[X − E(X)][X − E(X)]⊤
)
A⊤

= AΣA⊤

□
The central probability distribution for this work is the multivariate Gaussian distri-

bution.

Definition A.3.3. A random vector X : Ω → Rk has a multivariate Gaussian proba-
bility distribution iff its pdf is of the form

p(x) = π
k
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

The parameters of the pdf are µ and Σ. X ∼ N (µ,Σ) denotes that the probability
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distribution of the random vector X is the multivariate Gaussian distribution, with
parameters µ and Σ.

Remark A.3.4. In this work the adjective Gaussian is used. If a random vector is Gaus-
sian, it means that the probability distribution of the random vector is the multivariate
Gaussian distribution.

Theorem A.3.5. The expected value of a Gaussian random vector X ∼ N(µ,Σ) is
E(X) = µ, and the covariance matrix is Cov(X) = Σ. Thus, the probability distribution
of a Gaussian random vector is fully described by its expected value and covariance
matrix.

Remark A.3.6. Therefore, the parameters of the Gaussian distribution are referred to
as the mean vector and covariance matrix. Mean is simply another word for expected
value.

Theorem A.3.7. If the random vector X is Gaussian, then the random vector AX + b
is also Gaussian.

Corollary A.3.8. Let A be a matrix, b a vector, and X a Gaussian random vector with
distribution X ∼ N (µ,Σ), then the random vector Y = AX + b is also Gaussian with
distribution Y ∼ N (Aµ + b, AΣA⊤).

Theorem A.3.9. Let Z = [X,Y ]⊤ be a partition of a Gaussian random vector Z such
that

Z =

[
X
Y

]
∼ N

([
µX

µY

]
,

[
ΣXX ΣXY

Σ⊤
XY ΣY Y

])
,

then

1. The marginal distribution of X is X ∼ N(µX ,ΣX).

2. The conditional distribution of Y given X = x is

Y |X = x ∼ N (µY + Σ⊤
XY ΣXX(x− µx),ΣXX − Σ⊤

XY Σ−1
XXΣXY ).

Theorem A.3.10. Let X1, . . . , Xn be n mutually independent Gaussian random vectors
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with Xi ∼ N (µi,Σi), then the joint distribution of these random vectors is

⎡
⎢⎣
X1
...

Xn

⎤
⎥⎦ ∼ N

⎛
⎜⎝

⎡
⎢⎣
µ1
...
µn

⎤
⎥⎦ ,

⎡
⎢⎣

Σ1 0 0

0
. . . 0

0 0 Σn

⎤
⎥⎦

⎞
⎟⎠ .
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B. Person-Specific Results

Here I show the person-specific results for each participant as obtained by the person-
specific modeling approach introduced in Chapter 5. The following figures (B.1 for
atttentional focus; B.2 for working memory (WM) load) are all in the same format:
Column (a) shows the estimated balanced accuracy (BAC) for the different candidate
models. The x-axis describes the onset and the y-axis the duration of the corresponding
time window. Colors refer to the estimated BAC of the respective candidate model, with
hot colors indicating higher BAC and cold colors lower BAC. The crosshair indicates
the location of the selected model. Column (b) shows the estimated source component
for each trial as reconstructed by the best estimated model, including the BAC of the
best model. The trials are sorted by their true class. The vertical line separates the
classes. The horizontal line marks 0. For a perfect classifier, the estimated source needs
to be positive for all trials to the left and negative for all trials to the right of the vertical
line. Column (c) shows the entries of the normalized filters, column (d) the normalized
pattern, column (e) the mean time series for the first CSP filter for both classes, and
column (f) the mean time series for the last CSP filter for both classes. The x-axis
describes the time elapsed since the onset of the memory array. The vertical dotted lines
indicate the selected time window. The horizontal line in columns (e) and (f) marks 0.
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B.1. Attentional Focus
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B.2. Working Memory Load
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