Immunmodulation der IgE-Produktion durch autokrine Calcitriol-Synthese

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)
im Fach Biologie
eingereicht an der

Lebenswissenschaftlichen Fakultät
der Humboldt-Universität zu Berlin

von

Diplom-Biologin Juliane Lindner

Präsident der Humboldt-Universität zu Berlin
Prof. Dr. Jan-Hendrik Olbertz

Dekan der Lebenswissenschaftlichen Fakultät
Prof. Dr. Richard Lucius

Gutachter/innen: 1. Prof. Dr. rer. nat. Kai Matuschewski

2. Prof. Dr. rer. nat. Susanne Hartmann

3. Prof. Dr. med. Margitta Worn

Tag der mündlichen Prüfung: 25.04.2017
Inhaltsverzeichnis

Inhaltsverzeichnis .. II
Abbildungsverzeichnis .. V
Tabellenverzeichnis .. VII
Abkürzungsverzeichnis .. VIII
1 Zusammenfassung ... 1
2 Summary ... 3
3 Einleitung ... 5
 3.1 IgE-vermittelte Typ I–Allergien 5
 3.1.1 T-Zell-abhängige Sensibilisierung 5
 3.1.2 Allergien – Ergebnis einer fehlgeleiteten Immunantwort, die ursprünglich dem Schutz vor Parasiten diente? .. 6
 3.2 Der Nematode *Heligmosomoides polygyrus bakeri* ... 7
 3.2.1 Lebenszyklus des Nematoden *Heligmosomoides polygyrus bakeri* 8
 3.2.2 Immunantwort auf die Infektion mit dem Nematoden *Heligmosomoides polygyrus bakeri* .. 9
 3.2.3 Exkretorische und sekretorische Produkte des Nematoden *Heligmosomoides polygyrus bakeri* ... 10
 3.3 Vitamin D ... 11
 3.3.1 Biosynthese von Vitamin D 11
 3.3.2 Der Vitamin D-Rezeptor 12
 3.3.3 Wirkungsweise von Vitamin D 15
 3.4 Vitamin D und Allergie ... 18
 3.5 Knockout des *Cyp27b1*-Gens – ein Mausmodell für Vitamin D-Defizienz 19
4 Ziele der Arbeit ... 21
5 Material und Methoden ... 22
 5.1 Material ... 22
 5.1.1 Chemikalien und Reagenzien 22
 5.1.2 Puffer und Lösungen 24
 5.1.3 Antikörper und Enzyme 26
 5.1.4 Kits ... 28
 5.1.5 Verbrauchsmaterialien 28
 5.1.6 Laborgeräte .. 29
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.7</td>
<td>Software</td>
</tr>
<tr>
<td>5.2</td>
<td>Methoden</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Zellbiologische Methoden</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Molekularbiologische Methoden</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Immunologische Methoden</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Tierexperimentelle Arbeiten</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Parasitologische Methoden</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Statistische Auswertung</td>
</tr>
<tr>
<td>6</td>
<td>Ergebnisse</td>
</tr>
<tr>
<td>6.1</td>
<td>Expression von Cyp27b1, VDR und Cyp24a1 bei murinen B- und T-Lymphozyten</td>
</tr>
<tr>
<td>6.2</td>
<td>Verlauf der humoralen Immunantwort in einem Vitamin D-defizienten Maus-Modell</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Humorale Immunantwort nach Sensibilisierung mit Ovalbumin</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Allergen-spezifisches Immunglobulinprofil nach Sensibilisierung mit Ovalbumin</td>
</tr>
<tr>
<td>6.3</td>
<td>Einfluss der Vitamin D₃-Supplementierung auf die Bildung autoreaktiver Antikörper</td>
</tr>
<tr>
<td>6.4</td>
<td>Charakterisierung der Vitamin D-defizienten Cyp27b1⁻/⁻-Mäuse</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Konzentration von 25-Hydroxyvitamin D₃ und 1α,25-Dihydroxyvitamin D₃ im Blutplasma von Cyp27b1⁺/⁺- und Cyp27b1⁻/⁻-Mäusen</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Körpermasse</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Durchflusszytometrische Analyse der Leukopoese</td>
</tr>
<tr>
<td>6.5</td>
<td>Verlauf der Infektion mit dem Nematoden Heligmosomoides polygyrus bakeri in einem Vitamin D-defizienten Mausmodell</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Humorale Immunantwort nach Infektion mit dem Nematoden Heligmosomoides polygyrus bakeri</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Spezifisches Immunglobulinprofil nach Infektion mit dem Nematoden Heligmosomoides polygyrus bakeri</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Ausgang der Infektion mit dem Nematoden Heligmosomoides polygyrus bakeri bei Vitamin D-defizienten Cyp27b1⁻/⁻-Mäusen</td>
</tr>
<tr>
<td>7</td>
<td>Diskussion</td>
</tr>
<tr>
<td>7.1</td>
<td>Der Knockout des Cyp27b1-Gens bei Mäusen führt zu einer gesteigerten humoralen IgE-Immunantwort</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>7.2</td>
<td>Der Knockout des Cyp27b1-Gens bei Mäusen beeinflusst die Leukopoese</td>
</tr>
<tr>
<td></td>
<td>im Knochenmark und begünstigt das Auftreten autoreaktiver Antikörper</td>
</tr>
<tr>
<td></td>
<td>gegen nukleäre und zytoplasmatische Antigene</td>
</tr>
<tr>
<td></td>
<td>... 78</td>
</tr>
<tr>
<td>7.3</td>
<td>Der Knockout des Cyp27b1-Gens bei Mäusen führt zu einer erhöhten IgE-</td>
</tr>
<tr>
<td></td>
<td>Produktion, die jedoch keinen Einfluss auf die Abwehr des Nematoden</td>
</tr>
<tr>
<td></td>
<td>Heligmosomoides polygyrus bakeri hat 84</td>
</tr>
<tr>
<td>8</td>
<td>Literatur .. 91</td>
</tr>
<tr>
<td>9</td>
<td>Danksagung .. 116</td>
</tr>
<tr>
<td>10</td>
<td>Selbstständigkeitserklärung ... 118</td>
</tr>
<tr>
<td>11</td>
<td>Anhang ... 119</td>
</tr>
<tr>
<td>11.1</td>
<td>Nachweis aktivierter B- und T-Lymphozyten mittels Durchflusszytometrie</td>
</tr>
<tr>
<td></td>
<td>... 119</td>
</tr>
<tr>
<td>11.2</td>
<td>Gegenüberstellung verschiedener Subpopulationen des Immunsystems</td>
</tr>
<tr>
<td></td>
<td>von Cyp27b1+/+ - und Cyp27b1-/- -Mäusen 122</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 1: Entstehung einer Typ I-Allergie. ... 6
Abb. 2: Lebenszyklus des Nematoden *Heligmosomoides polygyrus bakeri*. 8
Abb. 3: Metabolismus von Calcitriol und dessen chemische Struktur. 12
Abb. 4: Molekularer Mechanismus der genomischen Wirkung des nukleären Vitamin D-Rezeptors. ... 14
Abb. 5: Versuchsablauf der T-Zell-abhängigen Sensibilisierung. 44
Abb. 6: Versuchsablauf der Infektion mit dem Nematoden *Heligmosomoides polygyrus bakeri*. .. 46
Abb. 7: Expression der mRNA von Cyp27b1, Vdr und Cyp24a1 bei CD19+ B-Lymphozyten. ... 49
Abb. 8: Expression der mRNA von Cyp27b1, Vdr und Cyp24a1 bei CD4+ T-Lymphozyten. ... 50
Abb. 9: Proteinexpression von CYP27B1 und VDR bei CD19+ B- und CD4+ T-Lymphozyten. ... 51
Abb. 10: Verlauf der humoralen Immunantwort bei OVA-sensibilisierten Cyp27b1+/–- und Cyp27b1–/–-Mäusen. .. 53
Abb. 11: Verlauf der antigenspezifischen Immunglobulinwerte bei OVA-sensibilisierten Cyp27b1+/–- und Cyp27b1–/–-Mäusen. 55
Abb. 12: Nachweis autoreaktiver Antikörper gegen nukleäre und zytoplasmatische Antigene im Blutplasma von Mäusen mit unterschiedlicher Vitamin D3-Supplementierung. .. 57
Abb. 13: Fluoreszenzmikroskopische Untersuchung autoreaktiver Antikörper gegen nukleäre und zytoplasmatische Antigene im Blutplasma von Mäusen mit unterschiedlicher Vitamin D3-Supplementierung. .. 58
Abb. 14: Konzentration von 25-Hydroxyvitamin D3 im Blutplasma von Cyp27b1+/–- und Cyp27b1–/–-Mäusen mit unterschiedlicher Vitamin D3-Supplementierung. .. 59
Abb. 15: Konzentration der Vitamin D3-Metabolite 25-Hydroxyvitamin D3 und 1α,25-Dihydroxyvitamin D3 im Blutplasma von Cyp27b1+/–- und Cyp27b1–/–-Mäusen. .. 61
Abb. 16: Gegenüberstellung der Körpermasse von Cyp27b1+/–- und Cyp27b1–/–-Mäusen. .. 61
Abb. 17: Vergleich der Gesamtzellzahlen von Knochenmark, Thymus, Milz und Peritoneum von Cyp27b1\(^{+/+}\) - und Cyp27b1\(^{-/-}\) -Mäusen .. 62
Abb. 18: Abweichende Leukozyten-Subpopulationen bei Cyp27b1\(^{-/-}\) -Mäusen 63
Abb. 19: Verlauf der humoralen Immunantwort bei \(H.p.\) bakeri-infizierten Cyp27b1\(^{+/+}\) - und Cyp27b1\(^{-/-}\) -Mäusen ... 66
Abb. 20: Verlauf der spezifischen Immunglobulinantworten bei \(H.p.\) bakeri-infizierten Cyp27b1\(^{+/+}\) - und Cyp27b1\(^{-/-}\) -Mäusen ... 68
Abb. 21: Anzahl der Nematodeneier in den Faeces \(H.p.\) bakeri-infizierter Cyp27b1\(^{+/+}\) - und Cyp27b1\(^{-/-}\) -Mäuse .. 70
Abb. 22: Anzahl der Nematoden im Dünndarm \(H.p.\) bakeri-infizierter Cyp27b1\(^{+/+}\) - und Cyp27b1\(^{-/-}\) -Mäuse am Versuchstag 90 .. 71
Abb. 23: Fekundität der weiblichen \(H.p.\) bakeri isoliert aus dem Dünndarm infizierter Cyp27b1\(^{+/+}\) - und Cyp27b1\(^{-/-}\) -Mäuse .. 72

Anhang Abb. I: Gating-Strategie zur Auswertung der Aktivierungsmarker stimulierter B- und T-Lymphozyten ... 119
Anhang Abb. II: Median der Fluoreszenzintensität (MFI) unstimulierter und stimulierter B220\(^{+}\) B-Lymphozyten ... 120
Anhang Abb. III: Median der Fluoreszenzintensität (MFI) unstimulierter und stimulierter CD4\(^{+}\) T-Lymphozyten ... 121
Tabellenverzeichnis

Tabelle 1:	Zusammensetzung eines Ansatzes für die cDNA-Synthese. 34
Tabelle 2:	Aufbau des PCR-Programms für die cDNA-Synthese. 34
Tabelle 3:	Zusammensetzung eines Ansatzes für die quantitative Real-Time-PCR. ... 36
Tabelle 4:	Übersicht über die in der quantitativen Real-Time-PCR verwendeten murinen Primer.. 36
Tabelle 5:	Antikörper und Reagenzien der Western-Blots. 38
Tabelle 6:	Antikörper und Reagenzien der Gesamt-Immunglobulin-ELISA. 39
Tabelle 7:	Antikörper und Reagenzien der OVA-spezifischen Immunglobulin-ELISA. .. 39
Tabelle 8:	Antikörper und Reagenzien der *H. p. bakeri*-spezifischen Immunglobulin-ELISA... 40
Tabelle 9:	Sequenzen der Genotypisierungsprimer. .. 42
Tabelle 10:	Zusammensetzung des PCR-Ansatzes zur Genotypisierung. 42
Tabelle 11:	Aufbau des PCR-Programms zur Genotypisierung................................. 43

Anhang Tab. I: Übersicht über Stimulation, Aktivierungsmarker und gemessene MFI nach 24 h. ... 120
Anhang Tab. II: Übersicht über Stimulation, Aktivierungsmarker und gemessene MFI nach 24 h. ... 121
Anhang Tab. III: B-Zellen .. 123
Anhang Tab. IV: Unreife B-Zellen ... 124
Anhang Tab. V: T-Zellen ... 125
Anhang Tab. VI: Myeloide Zellen .. 126
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25 D$_3$-MAARS</td>
<td>membrane associated rapid response steroid-binding, membranassozierte und schnelle Reaktion vermittelnde Steroid-Bindung</td>
</tr>
<tr>
<td>1,25(OH)$_2$D$_3$</td>
<td>1α,25-Dihydroxyvitamin D$_3$, Calcitriol</td>
</tr>
<tr>
<td>25(OH)D$_3$</td>
<td>25-Hydroxyvitamin D$_3$, Calcidiol</td>
</tr>
<tr>
<td>AID</td>
<td>activation-induced deaminase</td>
</tr>
<tr>
<td>Alum</td>
<td>Aluminiumhydroxid</td>
</tr>
<tr>
<td>ANA</td>
<td>anti-nukleäre Antikörper</td>
</tr>
<tr>
<td>AP</td>
<td>Alkalische Phosphatase</td>
</tr>
<tr>
<td>APC</td>
<td>Allophycocyanin</td>
</tr>
<tr>
<td>APC-Cy7</td>
<td>Allophycocyanin-Cyanin 7</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumperoxodisulfat</td>
</tr>
<tr>
<td>BCR</td>
<td>B cell receptor, B-Zell-Receptor</td>
</tr>
<tr>
<td>BL/6</td>
<td>Mausstamm</td>
</tr>
<tr>
<td>bp</td>
<td>base pair(s), Basenpaar(e)</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>BTK</td>
<td>Bruton's-Tyrosinkinase</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>Ca$_2^+$</td>
<td>Calcium-Ionen</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclisches Adenosinmonophosphat</td>
</tr>
<tr>
<td>CCS</td>
<td>charcoal stripped fetal calf serum, Aktivkohle-aufgereinigtes fötales Kälberserum</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation, Differenzierungscluster</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA, komplementäre DNA</td>
</tr>
<tr>
<td>Cyp27b1</td>
<td>Cytochrom P450, Familie 27, Subfamilie B, Polypeptid 1</td>
</tr>
<tr>
<td>Cyp27b1$^{+/+}$</td>
<td>homozygote Cyp27b1-Wildtyp-Mäuse</td>
</tr>
<tr>
<td>Cyp27b1$^{+/}$</td>
<td>heterozygote Cyp27b1-Mäuse</td>
</tr>
<tr>
<td>Cyp27b1$^{-/-}$</td>
<td>homozygote Cyp27b1-knockout-Mäuse</td>
</tr>
<tr>
<td>d</td>
<td>destilliert</td>
</tr>
<tr>
<td>DBP</td>
<td>Vitamin D-bindendes Protein</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid, Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DNB</td>
<td>DNA-bindende Domäne</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

- **dNTP**: Desoxynukleosidtriphosphat
- **DRFZ**: Deutsches Rheuma-Forschungszentrum
- **ds**: doppelsträngig
- **EDTA**: Ethylendiamintetraacetat
- **EPG**: *eggs per gram Faeces*, Eier pro Gramm Faeces
- **ES**: exkretorische / sekretorische *H. p. bakeri*-Produkte
- **ES-Zellen**: Embryonale Stammzellen
- **Fc**: Fc-Rezeptor
- **FITC**: Fluoresceinisothiocyanat
- **for**: *forward*, forwärts
- **FSC**: *forward scatter*, Vorwärtsstreulicht
- **g**: Erdbeschleunigung
- **GATA-3**: *GATA-binding protein 3*, GATA-bindendes Protein 3
- **GV-SOLAS**: Gesellschaft für Versuchstierkunde
- **h**: *hour(s)*, Stunde(n)
- **H. p. bakeri**: *Heligmosomoides polygyrus bakeri*
- **HEp2**: *human epithelial type 2*, humane Epithelzellen Typ 2
- **HPRT**: Hypoxanthin-Guanin-Phosphoribosyltransferase
- **HRP**: *horseradish peroxidase*, Meerrettichperoxidase
- **i.d.**: intradermal
- **i.p.**: intraperitoneal
- **IFN**: Interferon
- **Ig**: Immunglobulin
- **IL**: Interleukin
- **IP₃**: Inositol-1,4,5-trisphosphat
- **LAGeSo**: Landesamt für Gesundheit und Soziales
- **LBD**: Ligand-bindende Domäne
- **MACS**: *magnetic cell sorting*, Abtrennung von Zellpopulationen mittels Magnet
- **max.**: maximal
- **MFI**: *median fluorescence intensity*, Median der Fluoreszenzintensität
- **mu**: murin
- **n. d.**: nicht detektierbar
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFAT</td>
<td>nuclear factor of activated T cells, nukleärer Faktor aktivierter T-Zellen</td>
</tr>
<tr>
<td>NFDM</td>
<td>non-fat dry milk, fettarmes Trockenmilchpulver</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor of activated B cells, nukleärer Faktor aktivierter B-Zellen</td>
</tr>
<tr>
<td>OVA</td>
<td>Ovalbumin, Hühnereiweiß</td>
</tr>
<tr>
<td>p</td>
<td>probability, Wahrscheinlichkeit (Signifikanzwert)</td>
</tr>
<tr>
<td>PBMC</td>
<td>peripheral blood mononuclear cell, mononukleäre Zelle des peripheren Blutes</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline, phosphatgepufferte Salzlösung</td>
</tr>
<tr>
<td>PBS-T</td>
<td>phosphatgepufferte Salzlösung mit Tween 20</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction, Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PDDR</td>
<td>pseudo Vitamin D deficiency rickets, Pseudo-Vitamin D-Defizienz-Rachitis</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PE Vio770</td>
<td>Phycoerythrin-Vio770</td>
</tr>
<tr>
<td>PE-Cy5</td>
<td>Phycoerythrin- Cyanin 5</td>
</tr>
<tr>
<td>PerCP</td>
<td>Peridinin-Chlorophyll</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
<tr>
<td>PMA</td>
<td>Phorbol-12-myristat-13-acetat</td>
</tr>
<tr>
<td>pNPP</td>
<td>para-Nitrophenylphosphat</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
</tr>
<tr>
<td>RANK</td>
<td>receptor activator of nuclear factor-κB</td>
</tr>
<tr>
<td>RANKL</td>
<td>receptor activator of nuclear factor-κB Ligand</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell, Erythrozyten</td>
</tr>
<tr>
<td>rev</td>
<td>reverse, rückwärts</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid, Ribonukleinsäure</td>
</tr>
<tr>
<td>ROR-γt</td>
<td>retinoic acid receptor-related orphan receptor γt</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute, Umdrehungen pro Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transkription</td>
</tr>
<tr>
<td>RXR</td>
<td>9-cis-Retinsäure-Rezeptor</td>
</tr>
<tr>
<td>S. mansoni</td>
<td>Schistosoma mansoni</td>
</tr>
<tr>
<td>SA</td>
<td>Streptavidin</td>
</tr>
<tr>
<td>SA-HRP</td>
<td>Streptavidin-gekoppelte Meerrettichperoxidase</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate, Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SDS-Page</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean, Standardfehler</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemischer Lupus erythematodes</td>
</tr>
<tr>
<td>SMAD</td>
<td>mothers against decapentaplegic homologue</td>
</tr>
<tr>
<td>SSC</td>
<td>side scatter, Seitwärtsstreulicht</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethylethylendiamin</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor, transformierender Wachstumsfaktor</td>
</tr>
<tr>
<td>TH</td>
<td>T-Helferzelle</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor, Toll-like-Rezeptor</td>
</tr>
<tr>
<td>TMB</td>
<td>3,3',5,5'-Tetramethylbenzidin</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosefaktor</td>
</tr>
<tr>
<td>Treg</td>
<td>regulatorische T-Zelle</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>TRPV6</td>
<td>transient receptor potential cation channel, subfamily V, member 6, Ca²⁺-Kanal im Darm</td>
</tr>
<tr>
<td>U</td>
<td>international unit(s), internationale Einheiten</td>
</tr>
<tr>
<td>u. a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin D-Rezeptor</td>
</tr>
<tr>
<td>VDRE</td>
<td>vitamin D response element, Vitamin D-responsive Element</td>
</tr>
<tr>
<td>Vit.D₃</td>
<td>Vitamin D₃</td>
</tr>
<tr>
<td>κ</td>
<td>kappa-Kette</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

Für die meisten Menschen ist, neben der Zufuhr über die Nahrung, die Sonnenbestrahlung (UV-B) der Haut die Hauptquelle für die Bildung von Vitamin D. Trifft UV-B-Licht auf die Haut, entsteht aus 7-Dehydrocholesterol nach weiteren enzymatischen Prozessen in Leber und Niere, die bioaktive Form von Vitamin D, 1α,25-Dihydroxyvitamin D₃ (Calcitriol). Den finalen Stoffwechselschritt katalysiert das Enzym CYP27B1, eine 1α-Hydroxylase.

Die biologische Wirkung von Calcitriol wird über dessen Bindung an seinen nukleären Rezeptor VDR vermittelt, wodurch eine Reihe makromolekularer Interaktionen herbeigeführt werden, die letztlich zur Transkription der Zielgene führen.

Um die immunmodulatorische Bedeutung von endogen produziertem Vitamin D weitergehend zu charakterisieren, wurden Cyp27b1-knockout-Mäuse, die bedingt durch eine Deletion im Exon 8 des Cyp27b1-Gens nicht in der Lage sind die bioaktive Form von Vitamin D zu synthetisieren, in zwei Krankheitsmodellen näher analysiert.

Die in einem nächsten Schritt untersuchte Leukopoese der Vitamin D-defizienten Cyp27b1-knockout-Tiere zeigte, dass die untersuchten Organe Knochenmark, Thymus, Milz und Peritoneum verminderte Gesamtzellzahlen gegenüber Wildtyp-
Tieren aufwiesen. Die Präsenz und Verteilung in den jeweiligen Zellkompartimenten offenbarte jedoch keine wesentlichen Abweichungen zwischen Cyp27b1-knockout-Mäusen und deren Wildtyp-Pendants.

2 Summary

Vitamin D was detected in 1919 by Edward Mellanby and became well-known as a factor in preventing rickets by maintaining calcium homeostasis and bone metabolism.

The initial discovery of the vitamin D receptor (VDR) and vitamin D-activating enzymes like CYP27B1, which are expressed in numerous cell types of the immune system, led to the assumption that the functions of vitamin D are more extensive than previously thought.

Current studies demonstrate that low vitamin D levels associated with higher latitudes correlate with the occurrence of autoantibodies and linked diseases, such as type I-diabetes, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis.

Besides supplementation via food, sunlight is the main source for the formation of vitamin D. Following UV-B radiation of the skin, numerous enzymatic reactions in liver and kidneys causes 7-dehydrocholesterol to turn into the bioactive 1α,25-dihydroxyvitamin D₃ (calcitriol). The final and crucial step is thereby performed by the enzyme CYP27B1, an 1α-hydroxylase. The effect of calcitriol is mediated through binding to the VDR, resulting in the transcription of target genes.

To further investigate the immunomodulatory significance of endogenous vitamin D, we analyzed Cyp27b1-knockout mice in two disease models. These mice are unable to synthesize bioactive vitamin D due to a deletion in exon 8 of the corresponding gene.

T cell-dependent sensitization of Cyp27b1-wildtype- and Cyp27b1-knockout mice with ovalbumin (OVA) revealed an increased humoral immune response in Cyp27b1-knockout mice reflected by elevated concentrations of total and specific IgG₁, IgE and IgA.

Analysis of the leukopoiesis showed a diminished total cell count in bone marrow, thymus, spleen and peritoneum in Cyp27b1-knockout mice compared to Cyp27b1-wildtype mice. However, appearance and distribution of the analyzed cell compartments were comparable.

A second disease model using the intestinal nematode *Heligmosomoides polygyrus bakeri* (H.p. bakeri) demonstrated enhanced secretion of total and specific IgE in Cyp27b1-knockout mice, which confirmed our previous findings. However, this showed no effect on parasite rejection, as seen in comparable results for worm
burden, eggs per gram faeces (EPG) and fecundity of female worms in Cyp27b1-wildtype- and Cyp27b1-knockout mice.

Our work verified the role of endogenous vitamin D for lymphocyte development revealed by increased IgE-dependent immune responses in Cyp27b1-knockout mice. Infection with *H. p. bakeri* confirmed enhanced IgE-responses, however, these results revealed no benefit in parasite clearance. Conceivable reasons for these observations are a minor immunomodulatory impact of vitamin D as well as a limited immunological relevance of IgE in the employed model. For further investigations, a highly IgE-dependent model could help to verify a pathophysiologica significance of the Cyp27b1-deficiency.
3 Einleitung

3.1 IgE-vermittelte Typ I–Allergien

IgE-vermittelte Allergien manifestieren sich je nach Zielorgan als Nahrungsmittelallergie (Darm), atopische Dermatitis (Haut), Rhinokonjunktivitis allergica (obere Atemwege) und / oder in der Lunge als Asthma bronchiale. In den letzten beiden Jahrzehnten ist die Prävalenz dieser Erkrankungen weltweit stark angestiegen. In der deutschen Bevölkerung liegt die Sensibilisierungsrate gegenüber Allergenen wie z. B. Pollen, Milben und Tierepithelien derzeit bei 33%.

3.1.1 T-Zell-abhängige Sensibilisierung

Einleitung

Abb. 1: Entstehung einer Typ I-Allergie¹²-¹⁵.

b) Das von den B-Zellen sezernierte IgE bindet an den Fcε-Rezeptor I auf Mastzellen und wird dort nach einem erneuten Kontakt mit dem Allergen kreuzvernetzt, wodurch es zur Degranulation der Mastzelle und damit zur Freisetzung präformierter Entzündungsmediatoren kommt¹²,¹³.

3.1.2 Allergien – Ergebnis einer fehlgeleiteten Immunantwort, die ursprünglich dem Schutz vor Parasiten diente?

Die Tatsache, dass das Immunsystem auf scheinbar harmlose Stoffe mit einer unerwünschten, allergischen Antwort reagiert, ist bis heute nicht vollständig verstanden. Der vorherrschende Meinung nach haben sich Immunantworten, welche durch Th2-Zellen vermittelt werden und zur Freisetzung von IgE führen, ursprünglich zum Schutz vor Parasiten entwickelt¹⁶.

3.2 Der Nematode *Heligmosomoides polygyrus bakeri*

Einleitung

H.p. bakeri schnell ein beliebtes Labormodell um die immunologische Beziehung zwischen Wirt und Parasit zu erforschen\(^2\).

3.2.1 Lebenszyklus des Nematoden _Heligmosomoides polygyrus bakeri_

Heligmosomoides polygyrus bakeri ist ein in der wild-lebenden Mauspopulation natürlich vorkommender Parasit, der sich stark an das murine Immunsystem angepasst hat und dort chronische Infektionen hervorruft\(^2,\)\(^8,\)\(^9\).

Die Besiedlung des Wirtes beginnt mit der oralen Aufnahme infektiöser L3-Larven, die nach 24 h in das Gewebe des Duodenum eindringen und dort innerhalb von sieben Tagen zwei Häutungen vollziehen. Anschließend kehren die nun adulten Würmer in das Darmlumen zurück, wo sie sich vom Epithelgewebe des Wirtes ernähren\(^3\), paaren und ca. ab Tag zehn Eier produzieren, welche über die Faeces des Wirtstieres ausgeschieden werden. Nach dem Schlüpfen der Larven häuten sich diese erneut zweimal und werden so wieder zu infektiösen L3-Larven\(^9\) (Abb. 2).

Abb. 2: Lebenszyklus des Nematoden _Heligmosomoides polygyrus bakeri_.

3.2.2 Immunantwort auf die Infektion mit dem Nematoden Heligmosomoides polygyrus bakeri

Die primäre Infektion der Mäuse mit *H. p. bakeri* führt zu einer T\(_H2\)-Immunantwort, die entscheidend für die Kontrolle und den Ausstoß der Parasiten ist, jedoch eine chronische Infektion mit adulten Helminthen nicht verhindern kann. Das entscheidende Zytokin bei der Immunreaktion gegen *H. p. bakeri* stellt dabei IL-4 dar\(^{31}\). Begleitet wird dies durch die Aktivierung regulatorischer T-Zellen (Tregs)\(^{32, 33}\), die eine maßgebende Rolle bei der Entstehung einer chronischen Infektion mit *H. p. bakeri* spielen\(^{34}\). Dabei ist die erhöhte Anzahl von Tregs, die während einer Infektion mit dem Nematoden beobachtet wurde\(^{34, 35}\), sowohl für den Parasiten als auch für den Wirt vorteilhaft. Der Parasit profitiert von der Abschwächung einer für ihn schädlichen Immunantwort, während der Wirt durch die immunsuppressive Wirkung der Tregs\(^{36}\) vor, durch eine Abwehrreaktion verursachten, größeren Schädigungen bewahrt wird\(^{32, 37, 38}\).

In der Anfangsphase der adaptiven Immunantwort treffen naive T-Zellen in den drainierenden Lymphknoten auf antigenpräsentierende dendritische Zellen und werden so aktiviert\(^{41}\). Durch kostimulatorische B-Zell-Signale differenzieren aktivierte CD4\(^+\) T-Zellen weiter zu IL-4-produzierenden T\(_H2\)-Zellen\(^{39, 42}\). B-Zellen, die in Anwesenheit von IL-4 geprimed wurden, können große Mengen IL-2 freisetzen, das über die Verbesserung des Zugangs von Transkriptionsfaktoren zum IL-4-Genlocus weiter zur Differenzierung von T\(_H2\)-Zellen beiträgt\(^{39}\). Ein weiteres Zytokin, das von IL-4-beeinflussten B-Zellen produziert wird ist TNF-\(\alpha\), welches durch einen bisher unbekannten Mechanismus eine andauernde Antikörper-Freisetzung fördert\(^{39}\).

Im Gegensatz zu Infektionen mit anderen Helminthen wie z. B. *Nippostrongylus brasiliensis* spielen Antikörper bei der Abwehr von *H. p. bakeri* eine wichtige Rolle, da

3.2.3 Exkretorische und sekretorische Produkte des Nematoden

Heligmosomoides polygyrus bakeri

3.3 Vitamin D

Bereits seit der Antike ist die Knochenkrankheit Rachitis, welche primär durch einen Mangel an Vitamin D hervorgerufen wird, bekannt. Erstmals charakterisiert wurde die Rachitis zwischen 1645 und 1668 von Daniel Whistler (1645), Arnold Boot (1649), Francis Glisson (1650) und John Mayow (1668)\(^5^8\). Im Jahr 1824 beschrieb der deutsche Arzt D. Schütte Lebertran als wirksames Mittel zur Behandlung der Rachitis und 1919 bestätigte Edward Mellanby in einem Experiment mit Hundewelpen, dass eine Rachitis durch die Gabe von Lebertran verhindert werden kann. Dazu postulierte er folgende Theorie: “Rickets is a deficiency disease which develops in consequence of the absence of some accessory food factor or factors. It therefore seems probable that the cause of rickets is a diminished intake of an anti-rachitic factor, which is either fat-soluble factor A, or has a similar distribution to it”\(^5^8, 5^9\). Seine endgültige Bezeichnung als Vitamin D bekam der von Mellanby vermutete “accessory food factor” 1922 von McCollum et al.\(^5^8, 6^0, 6^1\).

3.3.1 Biosynthese von Vitamin D

Vitamin D tritt in zwei Formen auf, die sich lediglich in der Struktur ihrer Seitenketten unterscheiden: Vitamin D\(_2\) und Vitamin D\(_3\)\(^6^2\). Der in dieser Arbeit verwendete Terminus Vitamin D bezieht sich auf eine Kombination beider Formen, andernfalls wird dies durch die Benennung der zutreffenden Form verdeutlicht. Für die meisten Menschen ist neben der Zufuhr durch die Nahrung die Sonnenbestrahlung der Haut die Hauptquelle für die Versorgung mit Vitamin D\(^6^3, 6^4\). In der Haut kommt es durch die Absorption von UV-B-Strahlung mit einer Wellenlänge von 290 nm - 315 nm durch Isomerisierung und Spaltung einer Bindung innerhalb eines 7-Dehydrocholesterol-Moleküls zur Bildung von Prä-Vitamin D\(_3\). Dieses wird anschließend temperaturabhängig durch Isomerisierung zu Vitamin D\(_3\) (Cholecalciferol) umgeformt\(^6^5\). Vitamin D\(_3\) ist biologisch inaktiv und wird, an das Vitamin D-bindende Protein (DBP) gebunden\(^6^6\), über den Blutkreislauf in die Leber\(^6^7\) transportiert, wo es durch die enzymatische Aktivität des Cytochroms P450 2R1 (CYP2R1) zu 25-Hydroxyvitamin D\(_3\) (Calcidiol) umgewandelt wird\(^6^8\). Von dort wird es, erneut an das DBP gebunden, zu den proximalen Tubuli der Nieren\(^6^9, 7^0\) transportiert und dort durch die 1α-Hydroxylase-Aktivität des Cytochroms P450 27B1 (CYP27B1) zum biologisch aktiven 1α,25-Dihydroxyvitamin D\(_3\) (Calcitriol) umgeformt\(^7^1, 7^2\). Der
Einleitung

Abb. 3: Metabolismus von Calcitriol und dessen chemische Struktur.
a) Das in der Haut vorkommende 7-Dehydrocholesterol wird durch UV-B-Strahlung zu Prä-Vitamin D₃ und anschließend zu Vitamin D₃ umgewandelt. In der Leber wird das biologisch inaktive Vitamin D₃ enzymatisch zu 25-Hydroxyvitamin D₃ umgesetzt und in die Nieren transportiert, wo es durch das Enzym CYP27B1 zum biologisch aktiven 1α,25-Dihydroxyvitamin D₃ (b) umgeformt wird. Der Abbau von Calcitriol geschieht im Zielgewebe durch das Enzym CYP24A1.

3.3.2 Der Vitamin D-Rezeptor

Der biologisch aktive Vitamin D₃-Metabolit Calcitriol (1,25(OH)₂D₃) vermittelt seine Wirkung durch Bindung an den Vitamin D-Rezeptor (VDR)⁷⁴.

Der VDR ist ein Ligand-aktivierter Transkriptionsfaktor und gehört zur Familie der nukleären Hormonrezeptoren⁷⁵, ⁷⁶. Das VDR-Protein hat eine relative Molekulmasse von 48 kDa, setzt sich aus 427 Aminosäuren zusammen und kann in zwei funktionell-unterschiedliche Regionen unterteilt werden: eine C-terminale Ligand-bindende
Einleitung

Domäne (LBD) und eine hochkonservierte N-terminale DNA-bindende Domäne (DBD)64, 74, 77, 78.

Die Ligand-bindende Domäne weist eine hydrophobe Bindungstasche für den Liganden Calcitriol auf und vermittelt die Heterodimerisierung mit dem Rezeptor für 9-cis- Retinsäure (RXR)79, 80. Ebenso wird die Interaktion mit den für die Modulation der Genexpression der 1α,25-Dihydroxivitamin D\textsubscript{3}-Zielgene notwendigen koregulatorischen Proteinkomplexen von der LBD ermöglicht79, 81.

Die DNA-bindende Domäne beinhaltet zwei Zinkfinger Motive und vermittelt die Interaktion mit spezifischen DNA-Sequenzen in der Promotorregion von 1,25(OH)\textsubscript{2}D\textsubscript{3}-Zielgenen64, 82. Des Weiteren beinhaltet die DBD eine Kernlokalisierungssequenz, die mithilfe von Importinen den Transport des VDR/RXR-Komplexes entlang von Mikrotubuli in den Nukleus vermittelt78, 83, 84.

In Abwesenheit des Liganden Calcitriol liegt ein großer Teil der Vitamin D-Rezeptoren im Zytoplasma vor85. Durch die hochaffine Bindung von Calcitriol findet eine Umwandlung der Konformation des Rezeptors statt, welche die Bildung eines Heterodimers mit dem RXR begünstigt und in der Translokation des VDR/RXR-Komplexes in den Nukleus mündet86, 87. Dieser bindet an vitamin D-response elements (VDREs) in der Promotorregion der Zielgene und steuert dort deren Expression. Dies geschieht durch die Mobilisierung verschiedener koregulatorischer Proteine, die sowohl aktivierend als auch repressiv wirken können (Abb. 4)74, 81, 82.
Abb. 4: Molekularer Mechanismus der genomischen Wirkung des nukleären Vitamin D-Rezeptors.

Die Bindung des Liganden $1\alpha,25$-Dihydroxyvitamin D$_3$ an den im Zytoplasma vorliegenden VDR führt zur Bildung eines Heterodimers mit dem RXR. Der VDR/RXR-Komplex transloziert in den Nukleus, bindet dort an VDREs in der Promotorregion der Zielgene und moduliert durch die Aktivierung koregulatorischer Proteinkomplexe die Genexpression.

1,25 Vit. D, $1\alpha,25$-Dihydroxyvitamin D$_3$, $1,25(\text{OH})_2$D$_3$, Calcitriol; RNA Pol III, RNA-Polymerase III; RXR, 9-cis-Retinsäure-Rezeptor; VDR, Vitamin D-Rezeptor; VDRE, *vitamin D-response element*.

Neben der genomischen Wirkung des nukleären VDR, die mehrere Stunden bis Tage benötigt und durch Inhibitoren gestört werden kann, finden schnelle VDR-vermittelte Effekte statt, die nach etwa 1-45 min eintreten79,88. Die letztgenannten werden durch eine membranständige Form des VDR89 und / oder das $1\alpha,25$-Dihydroxyvitamin D$_3$-bindende, membranständige Protein 1,25 D$_3$-*Membrane Associated Rapid Response Steroid-binding* (MAARS)90,91 vermittelt. Sie umfassen den Transmembrantransport von Ionen wie z. B. Calcium- und Chlorid-Ionen sowie die Aktivierung intrazellulärer sekundärer Messenger wie cAMP72,92,93. Der VDR wird von nahezu allen zellkernhaltigen Zellen in unterschiedlichen Konzentrationen exprimiert. Zu den Zellen, die eine sehr geringe oder keine Expression des VDR aufweisen, gehören quergestreifte Muskelfasern, Erythrozyten und einige hochdifferenzierte Zellen des Gehirns wie z. B. die Purkinjezellen des Kleinhirns92,94.
Einleitung

Zusammenfassend reguliert 1α,25-Dihydroxyvitamin D₃ über genomische und nicht-genomische Wirkungen eine Vielzahl von Genen und ist Bestandteil zahlreicher zellulärer Funktionen wie DNA-Reparatur, Zelldifferenzierung und Apoptose⁹².

3.3.3 Wirkungsweise von Vitamin D

3.3.3.1 Klassische Wirkung von Vitamin D

3.3.3.2 Immunmodulatorische Wirkung von Vitamin D

Neben der länger bekannten klassischen Rolle von Vitamin D bei der Aufrechterhaltung der Calcium-Homöostase und des Knochenstoffwechsels, ließ die Entdeckung des VDR und Vitamin D-aktivierender Enzyme wie CYP27B1 in fast allen Zellen des Immunsystems weiterreichende Funktionen des Vitamins vermuten⁹⁹.

3.3.3.2.1 Angeborenes Immunsystem

CYP27B1 zur Produktion von 1,25(OH)$_2$D$_3$, wodurch es zur Bildung von Cathelicidin kommt$^{115-117}$.

3.3.3.2.2 Adaptives Immunsystem

So haben Studien gezeigt, dass die Proliferation von T-Zellen durch die Wirkung von Calcitriol (1,25(OH)$_2$D$_3$) über eine Verringerung der IL-2-Produktion inhibiert wird$^{120, 121}$, ebenso die durch CD8$^+$ T-Zellen vermittelte Zytotoxizität122.

Des Weiteren fördert Calcitriol die Differenzierung Foxp3$^+$ regulatorischer T-Zellen$^{124, 125}$ und IL-10-produzierender Typ 1-regulatorischer T-Zellen$^{116, 117}$ was besonders in Bezug auf Autoimmunkrankheiten, Transplantationen und Allergien bedeutsam ist$^{113, 126}$.

Bei B-Zellen wird durch die Wirkung von 1,25(OH)$_2$D$_3$ die Proliferation und Plasmazell-Differenzierung127, ebenso wie die Immunglobulinproduktion, besonders von IgG117 und IgE$^{128, 129}$, gehemmt. Für IgE wurde gezeigt, dass dies durch die vom VDR/RXR-Komplex vermittelte Unterdrückung des ε-Keimbahntranskripts geschieht130, welches die Voraussetzung für den Klassenwechsel zu IgE darstellt$^{7, 131}$. Ein weiterer für den Klassenwechsel unerlässlicher Faktor ist die Expression des Enyzms AID, welche ebenfalls durch Calcitriol inhibiert wird128.

Zusammenfassend lässt sich festhalten, dass Vitamin D$_3$ zahlreiche immunregulatorische Wirkungen entfaltet, die den Immunstatus von pro-inflammatorisch hin zu tolerogen modulieren können$^{99, 102, 113, 117}$.
3.4 Vitamin D und Allergie

Weltweit ist die Inzidenz allergischer Erkrankungen in den letzten beiden Jahrzehnten stark angestiegen. Innerhalb der deutschen Bevölkerung beläuft sich die Sensibilisierungsrate derzeit auf ca. 33\%4-6.

Dies liegt zu einem großen Teil an veränderten Umwelt- und Lifestyle-Bedingungen wie Luftverschmutzung, Ernährung und verbesserter Hygiene132. Jedoch könnte auch die Fehlversorgung mit Vitamin D ein entscheidender Faktor bei der Entstehung von Allergien sein.

Die Evolution des frühen Menschen fand in einer sonnenreichen Umwelt statt. Es wird daher angenommen, dass die erhöhte Vitamin D\textsubscript{3}-Produktion Melanin-ärmerer, und somit hellerer Haut, der Hauptgrund für deren Depigmentierung war133. Genetische Studien haben darüber hinaus gezeigt, dass die Depigmentierung der Haut während der Evolution des Menschen, nach dessen Auswanderung außerhalb Äquatorial-Afrikas, mehrfach unabhängig voneinander durch unterschiedliche Mechanismen stattgefunden hat134.

Passend zu diesen evolutionären Aspekten zeigen einige aktuelle Studien eine erhöhte Anfälligkeit für Anaphylaxie135 und Autoimmunerkrankungen wie entzündliche Darmerkrankungen136, Multiple Sklerose137 und Diabetes138 in Regionen höherer Breitengrade, die besonders im Winter eine geringere UV-B-Strahlung aufweisen und somit zu einer verminderten Vitamin D\textsubscript{3}-Synthese beitragen139. Zu den Risikofaktoren für einen Vitamin D-Mangel zählen heutzutage die Bedeckung der Haut, Aufenthalt in geschlossenen Räumen, mangelhafte Aufnahme von Vitamin D über die Nahrung bedingt durch Erkrankungen wie Zöliakie oder Adipositas sowie der Einsatz von Sonnenschutzmitteln135. Ebenso werden Polymorphismen in Genen, die an dem Vitamin D-Metabolismus beteiligt sind, als Ursache für einen Vitamin D-Mangel diskutiert140.

Ob ein Mangel an Vitamin D die Entwicklung von Allergien begünstigen kann oder die Supplementation mit Vitamin D vor dem Auftreten von Allergien schützt, bleibt umstritten135, 141-143.

Die immunmodulatorische Wirkung von Vitamin D wird durch dessen Einfluss auf eine Vielzahl von Immunzellen wie B- und T-Zellen, dendritische Zellen und Makrophagen vermittelt117. Diese können durch die Expression von CYP27B1 den biologisch aktiven Vitamin D-Metaboliten 1,25(OH)\textsubscript{2}D\textsubscript{3} selbst synthetisieren und so den Calcitriol-Spiegel lokal erhöhen103, 133. Ein daraus resultierender Effekt ist
Einleitung

beispielsweise die Begünstigung der Differenzierung regulatorischer T-Zellen117, 124,
die eine wichtige Rolle bei der Aufrechterhaltung des immunologischen
Gleichgewichts spielen144. Weitere Studien haben gezeigt, dass durch die Bindung
des Liganden Calcitriol an den VDR die Produktion des Allergie-relevanten IgE durch
die Repression des ε-Keimbahntranskripts inhibiert wird128, 130.

3.5 Knockout des \textit{Cyp27b1}-Gens – ein Mausmodell für Vitamin D-Defizienz

Um einen Knockout des \textit{Cyp27b1}-Gens in Mäusen zu erzielen, wurde dessen Exon
8, welches die Häm-Bindungsdomäne enthält, entfernt145. Die Häm-Bindungsdomäne
bindet die prothetische Gruppe Eisen (III)-Protoporphyrin IX (Häm), welche für die
Funktion des Enzyms CYP27B1 unerlässlich ist146, 147.

Der Knockout des \textit{Cyp27b1}-Gens erfolgte mit Hilfe eines Target-Vektors, in welchem
das Exon 8 des \textit{Cyp27b1}-Gens von loxP-Sequenzen flankiert wurde. Der Target-
Vektor wurde mittels Elektroporation in embryonale Stammzellen (ES-Zellen)
eingebracht. In diesen fand durch homologe Rekombination eine Integration der
veränderten Sequenz in das Genom statt. Nach Selektion der positiven ES-Zellklone
erfolgte die Cre-Rekombinase-vermittelte Entfernung von Exon 8 und die
anschließende Injektion der ES-Zelle in C57BL/6-Embryonen im
Blastozystenstadium. Die homozygoten Nachkommen dieser chimären Tiere sind
zunächst phänotypisch normal. Nach 3-8 Wochen zeigen sich jedoch Auffälligkeiten
wie Wachstumsverzögerungen, Hypokalzämie, sekundärer Hyperparathyreoidismus
und Abweichungen des Knochenaufbaus145. Durch Gabe einer mit 2 % Calcium,
1,25 % Phosphor und 20 % Laktose angereicherten Nahrung kann die Ausprägung
dieses Phänotyps jedoch größtenteils verhindert werden148. Der hohe Anteil an
Laktose diente dabei der Verbesserung der passiven Calcium-Absorption im
Darm149.

Über die Auswirkungen dieses gezielten Knockouts des \textit{Cyp27b1}-Gens auf die
Entwicklung des Immunsystems gibt es bisher nur wenige Studien. So wurde z. B.
bei der Analyse von Subpopulationen peripherer T-Zellen in Cyp27b1-knockout-
Mäusen gezeigt, dass diese eine verringerte Anzahl CD4+- und CD8+ T-Lymphozyten
aufweisen150. Eine Verringerung der T-Zell-Proliferation wurde auch bei Mäusen,
welche einen Knockout des VDR aufweisen gezeigt. Diese konnte jedoch durch die
Erhöhung der Calcium-Zufuhr durch die Nahrung korrigiert werden151.

Dementsprechend ist bisher wenig über die Entwicklung des Immunsystems und dessen Funktionsweise in einem Krankheitsmodell bei Vitamin D-defizienten Cyp27b1-knockout-Mäusen bekannt. Dies war daher Gegenstand der Untersuchungen der vorliegenden Arbeit.
4 Ziele der Arbeit

Aus zahlreichen Studien ist bekannt, dass ein niedriger Vitamin D-Status sowie die mit steigenden Breitengraden einhergehende, geringere UV-B-Strahlung mit der Bildung von Auto- bzw. IgE-Antikörpern und als Folge dessen, dem Auftreten von Autoimmunerkrankungen wie Typ-1-Diabetes, Multipler Sklerose, systemischem Lupus erythematodes, rheumatoider Arthritis sowie der Anfälligkeit für Anaphylaxie positiv korreliert.

Ein Ziel der vorliegenden Arbeit war es daher, in einem Vitamin D-defizienten Mausmodell die physiologische Bedeutung von Vitamin D für die Ausbildung der humoralen Immunantwort nach T-Zell-abhängiger Sensibilisierung zu untersuchen. Des Weiteren sollte die Auswirkung der Vitamin D-Defizienz auf die Entwicklung und Reifung von Lymphozyten sowie myeloiden Zellen geklärt werden. Darüber hinaus war es Ziel, die Rolle von Vitamin D in einem Krankheitsmodell zu analysieren. Folgende Fragen wurden in der vorliegenden Dissertation bearbeitet:

Welche Auswirkungen hat eine fehlende autokrine Vitamin D-Synthese auf die Ausbildung der humoralen Immunantwort nach T-Zell-abhängiger Sensibilisierung?

Ist die autokrine Vitamin D-Synthese eine Voraussetzung für die Etablierung eines intakten Immunstatus?

Führt die fehlende autokrine Vitamin D-Synthese im Rahmen einer Parasiteninfektion zu einer biologisch bedeutsamen, veränderten Immunantwort?

5 Material und Methoden

5.1 Material

5.1.1 Chemikalien und Reagenzien

<table>
<thead>
<tr>
<th>Chemikalie / Reagenz</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM desoxyNTPs</td>
<td>Rapidozym GmbH</td>
</tr>
<tr>
<td>10 x GenTherm Puffer</td>
<td>Rapidozym GmbH</td>
</tr>
<tr>
<td>100 bp DNA Ladder</td>
<td>New England BioLabs®</td>
</tr>
<tr>
<td>1α,25-Dihydroxyvitamin D₃, Calcitriol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>25-Hydroxyvitamin D₃, Calcidiol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>2-log DNA Ladder</td>
<td>New England BioLabs®</td>
</tr>
<tr>
<td>5 U/µl GenTherm Polymerase</td>
<td>Rapidozym GmbH</td>
</tr>
<tr>
<td>50 mM, Magnesiumchlorid, MgCl₂</td>
<td>Rapidozym GmbH</td>
</tr>
<tr>
<td>Advanced RPMI 1640</td>
<td>Gibco® Life Technologies</td>
</tr>
<tr>
<td>APS, Ammoniumperoxodisulfat, H₈N₂O₆S₂</td>
<td>Bio-Rad Laboratories, Inc.</td>
</tr>
<tr>
<td>Beriglobin</td>
<td>CSL Behring GmbH</td>
</tr>
<tr>
<td>BSA, Bovines Serumalbumin, fraction V, pH 7,0</td>
<td>Serva</td>
</tr>
<tr>
<td>Charcoal stripped FCS (CCS)</td>
<td>Pan-Biotech</td>
</tr>
<tr>
<td>Diethanolamin, C₄H₁₁NO₂</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Dinatriumhydrogenphosphat, Na₂HPO₄</td>
<td>Carl ROTH®</td>
</tr>
<tr>
<td>ECL Plus</td>
<td>Lumigen</td>
</tr>
<tr>
<td>EDTA, Ethylenediamintetraacetat, C₁₀H₁₆N₂O₆</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Ethidiumbromid, C₂₁H₂₀BrN₃</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>FACS Clean</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>Glycin, C₂H₂NO₂</td>
<td>Carl ROTH®</td>
</tr>
<tr>
<td>Imject™ Alum Adjuvant</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Ionomycin</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Isoflurane (Forane)</td>
<td>Abbott</td>
</tr>
<tr>
<td>Kaliumchlorid, KCl</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Kaliumdihydrogenphosphat, KH₂PO₄</td>
<td>Merck</td>
</tr>
<tr>
<td>LE Agarose</td>
<td>Biozym</td>
</tr>
<tr>
<td>Chemikalie / Reagenz</td>
<td>Hersteller</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>Biochrom AG</td>
</tr>
<tr>
<td>MACSQuant® Running Buffer</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>MACSQuant® Storage Solution</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>Magnesiumchlorid-Hexahydrat, MgCl₂ x 6 H₂O</td>
<td>Merck</td>
</tr>
<tr>
<td>Methanol, CH₄O</td>
<td>Merck Millipore</td>
</tr>
<tr>
<td>Natriumcarbonat, Na₂CO₃</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriumchlorid, NaCl</td>
<td>Merck Millipore</td>
</tr>
<tr>
<td>Natriumhydrogencarbonat, NaHCO₃</td>
<td>Merck</td>
</tr>
<tr>
<td>NFDM, Milchpulver blotting grade</td>
<td>Carl ROTH®</td>
</tr>
<tr>
<td>OVA, Ovalbumin, Grade V</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>PBS, ohne Mg²⁺ / Ca²⁺</td>
<td>Gibco® Life Technologies</td>
</tr>
<tr>
<td>Penicillin</td>
<td>Biochrom AG</td>
</tr>
<tr>
<td>PFA, Paraformaldehyd</td>
<td>Electron Microscopy Sciences</td>
</tr>
<tr>
<td>Pierce™ Bovine Serum Albumin Standard</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Pierce™ Coomassie Plus Assay Reagent</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>PMA, Phorbol-12-myristat-13-acetat</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>pNPP, para-Nitrophenylphosphat</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Precision Plus Protein™ Dual Color Standards</td>
<td>Bio-Rad Laboratories, Inc.</td>
</tr>
<tr>
<td>Primer</td>
<td>TIB-Molbiol</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>Macherey-Nagel</td>
</tr>
<tr>
<td>Proteinaseinhibitor complete mini, EDTA-frei</td>
<td>Roche</td>
</tr>
<tr>
<td>Pyrantel pamoate</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>rekombinates Maus Interleukin-4</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Rotiphorese® Gel 30</td>
<td>Carl ROTH®</td>
</tr>
<tr>
<td>RPMI 1640 Medium</td>
<td>Merck Millipore</td>
</tr>
<tr>
<td>Saccharose, C₁₂H₂₂O₁₁</td>
<td>Merck</td>
</tr>
<tr>
<td>Salzsäure, HCl</td>
<td>Carl ROTH®</td>
</tr>
<tr>
<td>Saponin</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Schwefelsäure, H₂SO₄</td>
<td>Merck</td>
</tr>
<tr>
<td>SDS, Natriumdodecylsulfat, C₁₂H₂₅O₄SNa</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Chemikalie / Reagenz</td>
<td>Hersteller</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>β-Mercaptoethanol, C₂H₆OS</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Streptavidin-HRP</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Biochrom AG</td>
</tr>
<tr>
<td>TEMED, N,N,N',N'-Tetramethylethyldiamin, C₆H₁₈N₂</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>TMB, 3,3',5,5'-Tetramethylbenzidin, C₁₆H₂₀N₂</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>TRIS, C₄H₁₁NO₃</td>
<td>Carl ROTH®</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Wasserstoffperoxid, H₂O₂</td>
<td>Merck</td>
</tr>
<tr>
<td>Western-Blot Entwickler, G153</td>
<td>AGFA</td>
</tr>
<tr>
<td>Western-Blot Fixierer, G354</td>
<td>AGFA</td>
</tr>
<tr>
<td>Zitronensäure, C₆H₈O₇</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>

5.1.2 Puffer und Lösungen

<table>
<thead>
<tr>
<th>Puffer / Lösung</th>
<th>Inhaltsstoffe</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 M TRIS-HCl, pH 6,8</td>
<td>H₂O<sub>dest.</sub></td>
<td>0,5 M TRIS</td>
</tr>
<tr>
<td>1,5 M TRIS-HCl, pH 8,8</td>
<td>H₂O<sub>dest.</sub></td>
<td>1,5 M TRIS</td>
</tr>
<tr>
<td>10 x Blocking Buffer (B6429-500ML)</td>
<td></td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>100 mM EDTA</td>
<td>H₂O<sub>dest.</sub></td>
<td>100 mM EDTA</td>
</tr>
<tr>
<td>50 x TAE-Puffer</td>
<td>TAE-Puffer</td>
<td>Genaxxon bioscience</td>
</tr>
<tr>
<td>Agarosegel</td>
<td>2 % Agarose</td>
<td>0,05 % (v/v) Ethidiumbromid</td>
</tr>
<tr>
<td>Puffer / Lösung</td>
<td>Inhaltsstoffe</td>
<td>Hersteller</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>FACS-Puffer</td>
<td>PBS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 % (w/v) BSA</td>
<td></td>
</tr>
<tr>
<td>MACS-Puffer</td>
<td>PBS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,5 % (w/v) BSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 % 100 mM EDTA</td>
<td></td>
</tr>
<tr>
<td>Natriumcarbonat-Puffer, pH 9,0</td>
<td>50 mM NaHCO₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 mM Na₂CO₃</td>
<td></td>
</tr>
<tr>
<td>PBS / 2 mM EDTA</td>
<td>PBS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 % 100 mM EDTA</td>
<td></td>
</tr>
<tr>
<td>PBS, pH 7,4</td>
<td>137 mM NaCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,7 mM KCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mM Na₂HPO₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 mM KH₂PO₄</td>
<td></td>
</tr>
<tr>
<td>PBS-T</td>
<td>PBS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,05 % Tween 20</td>
<td></td>
</tr>
<tr>
<td>pNPP-Puffer</td>
<td>9,7 % (v/v) Diethanolamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 mM MgCl₂ x 6 H₂O</td>
<td></td>
</tr>
<tr>
<td>Red blood cell (RBC)-Lysis Buffer</td>
<td>eBioscience</td>
<td></td>
</tr>
<tr>
<td>RIPA Lyse-Puffer</td>
<td>PBS</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Sammel-Gel (SDS-Page)</td>
<td>5 % (v/v) Acrylamid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 % (v/v) 0,5 M TRIS-HCl pH 6,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1 % (w/v) SDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1 % (w/v) APS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1 % (v/v) TEMED</td>
<td></td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Puffer / Lösung</th>
<th>Inhaltsstoffe</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBS-Puffer pH 7,4</td>
<td>10 mM Trizma Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>154 mM NaCl</td>
<td></td>
</tr>
<tr>
<td>TBS-T</td>
<td>TBS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,05 % Tween 20</td>
<td></td>
</tr>
<tr>
<td>TMB-Puffer, pH 5,5</td>
<td>200 mM Na₂HPO₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 mM Zitronensäure</td>
<td></td>
</tr>
<tr>
<td>Trenn-Gel (SDS-Page)</td>
<td>12 % (v/v) Acrylamid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 % (v/v) 1,5 M TRIS-HCl pH 8,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1 % (w/v) SDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1 % (w/v) APS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,04 % (v/v) TEMED</td>
<td></td>
</tr>
<tr>
<td>Western-Blot Lauf-Puffer</td>
<td>192 mM Glycin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24,8 mM Trizma Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1 % (w/v) SDS</td>
<td></td>
</tr>
<tr>
<td>Western-Blot Transfer-Puffer</td>
<td>192 mM Glycin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24,8 mM Trizma Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 % (v/v) Methanol</td>
<td></td>
</tr>
<tr>
<td>Western-Blot Lade-Puffer 5x</td>
<td>250 mM TRIS, pH 6,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 % SDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 % Glycerin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,02 % Bromphenolblau,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vor Gebrauch:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 % β-Mercaptoethanol dazu</td>
<td></td>
</tr>
</tbody>
</table>

5.1.3 Antikörper und Enzyme

<table>
<thead>
<tr>
<th>Antikörper / Enzym</th>
<th>Bezeichnung / Klon</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-CD4 PE-Cy5</td>
<td>RM4-5</td>
<td>Biolegend</td>
</tr>
<tr>
<td>anti-IgE-Biotin</td>
<td>EM95.3</td>
<td>DRFZ</td>
</tr>
<tr>
<td>Antikörper / Enzym</td>
<td>Bezeichnung / Klon</td>
<td>Hersteller</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>anti-Maus B220 FITC</td>
<td>RA3.6B2</td>
<td>DRFZ</td>
</tr>
<tr>
<td>anti-Maus CD137 PE Vio770</td>
<td>17B5-1H1</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>anti-Maus CD14 PE</td>
<td>rmC5-3</td>
<td>BD</td>
</tr>
<tr>
<td>anti-Maus CD19 APC-Cy7</td>
<td>6D5</td>
<td>Biolegend</td>
</tr>
<tr>
<td>anti-Maus CD19 MicroBeads</td>
<td></td>
<td>Miltenyi</td>
</tr>
<tr>
<td>anti-Maus CD28</td>
<td>37.51</td>
<td>DRFZ</td>
</tr>
<tr>
<td>anti-Maus CD3 PerCP</td>
<td>145-2C11</td>
<td>Biolegend</td>
</tr>
<tr>
<td>anti-Maus CD3e</td>
<td>145-2C11</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>anti-Maus CD4 APC</td>
<td>GK1.5</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>anti-Maus CD40</td>
<td>FGK-45</td>
<td>DRFZ</td>
</tr>
<tr>
<td>anti-Maus CD69 PE</td>
<td>H1.2F3</td>
<td>BD</td>
</tr>
<tr>
<td>anti-Maus CD8 Pacific Blue</td>
<td>53-6.7</td>
<td>DRFZ</td>
</tr>
<tr>
<td>anti-Maus CD86 Vio Blue</td>
<td>PO3.3</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>anti-Maus Fcγ-Rezeptor</td>
<td>2.4G2</td>
<td>DRFZ</td>
</tr>
<tr>
<td>Beriglobin</td>
<td></td>
<td>CSL Behring GmbH</td>
</tr>
<tr>
<td>H. p. bakeri-ES-Biotin</td>
<td></td>
<td>DRFZ</td>
</tr>
<tr>
<td>Kaninchen anti-Cyp27b1</td>
<td>ab95047</td>
<td>abcam</td>
</tr>
<tr>
<td>Kaninchen anti-ß-Aktin (sc-130656)</td>
<td>N21</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>Maus anti-OVA IgG1 (A6075)</td>
<td>OVA-14</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Maus IgA (0106-01)</td>
<td>S107</td>
<td>Southern Biotech</td>
</tr>
<tr>
<td>Maus IgE, κ (557079)</td>
<td>C38-2</td>
<td>BD</td>
</tr>
<tr>
<td>Maus IgG1, κ (557273)</td>
<td>MOPC-31C</td>
<td>BD</td>
</tr>
<tr>
<td>OVA-Biotin</td>
<td></td>
<td>DRFZ</td>
</tr>
<tr>
<td>Ratte anti-Maus IgE (553413)</td>
<td>R35-72</td>
<td>BD</td>
</tr>
<tr>
<td>Ratte anti-Maus IgG1-Biotin (553441)</td>
<td>A85-1</td>
<td>BD</td>
</tr>
<tr>
<td>Ratte anti-VDR</td>
<td>9A7</td>
<td>Millipore</td>
</tr>
<tr>
<td>Streptavidin-HRP</td>
<td></td>
<td>R&D</td>
</tr>
<tr>
<td>Ziege anti-Kaninchen-HRP (sc-2004)</td>
<td></td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>Ziege anti-Maus IgA (1040-01)</td>
<td></td>
<td>Southern Biotech</td>
</tr>
<tr>
<td>Ziege anti-Maus IgA-AP (1040-04)</td>
<td></td>
<td>Southern Biotech</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Antikörper / Enzym</th>
<th>Bezeichnung / Klon</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziege anti-Maus IgA-Biotin</td>
<td>(1040-08)</td>
<td>Southern Biotech</td>
</tr>
<tr>
<td>Ziege anti-Maus IgG₁ (1070-01)</td>
<td></td>
<td>Southern Biotech</td>
</tr>
<tr>
<td>Ziege anti-Maus IgG₁ (1070-04)</td>
<td></td>
<td>Southern Biotech</td>
</tr>
<tr>
<td>Ziege anti-Ratte – HRP (sc-2065)</td>
<td></td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>Zombie NIR™</td>
<td></td>
<td>Biolegend</td>
</tr>
</tbody>
</table>

5.1.4 Kits

<table>
<thead>
<tr>
<th>Kit</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-Hydroxy-Vitamin D EIA</td>
<td>immunodiagnosticsystems (ids)</td>
</tr>
<tr>
<td>ANA Hep-2 plus</td>
<td>GA Generic Assays</td>
</tr>
<tr>
<td>CD4⁺ T Cell Isolation Kit, mouse</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>NucleoSpin® RNA (740955.250)</td>
<td>Macherey-Nagel</td>
</tr>
<tr>
<td>NucleoSpin® Tissue (740952.250)</td>
<td>Macherey-Nagel</td>
</tr>
<tr>
<td>Rotor-Gene™ SYBR® Green PCR-Kit</td>
<td>Qiagen</td>
</tr>
<tr>
<td>TaqMan® Reverse Transcription Reagents</td>
<td>Applied Biosystems</td>
</tr>
</tbody>
</table>

5.1.5 Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well Mikrotiterplatte, flat-bottom, maxi sorb</td>
<td>NUNC</td>
</tr>
<tr>
<td>96-well Zellkulturplatte, F-bottom</td>
<td>Greiner Bio-One</td>
</tr>
<tr>
<td>Animal Lancet, 5 mm</td>
<td>Goldenrod</td>
</tr>
<tr>
<td>LS-Säulen</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>Microtainer® PST™ LH Amber Tubes</td>
<td>BD</td>
</tr>
<tr>
<td>Petrischalen</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Pipettenspitzen, 10 µl, 200 µl, 1000 µl</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Pre-Separation Filter</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>Reaktionsgefäße, 0,5 ml, 1 ml, 2 ml</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>serologische Pipetten, 5 ml, 10 ml, 25 ml</td>
<td>Falcon®</td>
</tr>
<tr>
<td>Western-Blot Polyvinylidenfluorid-Membran</td>
<td>GE Healthcare</td>
</tr>
</tbody>
</table>
Material

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western-Blot-Film (Hyperfilm)</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Whatman-Filterpapier (Mini Trans-Blot Filter paper)</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Zentrifugenröhrchen 15 ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>Zentrifugenröhrchen 50 ml</td>
<td>Falcon®</td>
</tr>
</tbody>
</table>

5.1.6 Laborgeräte

<table>
<thead>
<tr>
<th>Laborgerät</th>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASY®-Zellzähler</td>
<td>Casy 1, Modell TTC</td>
<td>Schärfe System</td>
</tr>
<tr>
<td>CO₂-Inkubator</td>
<td>Heracell 150</td>
<td>Thermo Electron Corporation</td>
</tr>
<tr>
<td>Durchflusszytometer</td>
<td>MACSQuant ®</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>ELISA-Reader</td>
<td>Dynex MRX Version 1.33</td>
<td>DYNA TECH</td>
</tr>
<tr>
<td>Geldokumentation</td>
<td>GeneGenius</td>
<td>Syngene</td>
</tr>
<tr>
<td>Gelelektrophorese-Laufkammer</td>
<td>Sub-Cell® GT</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Heizplatte und Magnetrührer</td>
<td>Sb 162</td>
<td>Bibby Sterilin</td>
</tr>
<tr>
<td>MACS-Magnete</td>
<td>QuadroMACSTM</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>MACS-Magnetständer</td>
<td>MACS Stand Multi</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>Mehrkanalpipette</td>
<td>10 µl - 100 µl</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Multistepper</td>
<td>Multipette® plus</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>pH-Meter 761</td>
<td>Calimatic</td>
</tr>
<tr>
<td>Pipetten</td>
<td>0,5 µl - 10 µl</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Pipetten</td>
<td>10 µl - 100 µl</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Pipetten</td>
<td>100 µl - 1000 µl</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Pipetten</td>
<td>2 µl - 20 µl</td>
<td>Brand</td>
</tr>
<tr>
<td>Pipetten</td>
<td>20 µl - 200 µl</td>
<td>Brand</td>
</tr>
<tr>
<td>Pipettierhelfer</td>
<td>pipetus®</td>
<td>Hirschmann Laborgeräte</td>
</tr>
<tr>
<td>Plattenschüttler</td>
<td>KS 501 digital</td>
<td>IKA Labortechnik</td>
</tr>
<tr>
<td>Rollmischer</td>
<td>Roller-Mixer</td>
<td>Ratek</td>
</tr>
<tr>
<td>Sicherheitswerkbank</td>
<td>HERAsafe</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Laborgerät</td>
<td>Bezeichnung</td>
<td>Hersteller</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Spektralphotometer</td>
<td>NanoDrop 1000</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Stromversorgung</td>
<td>PowerPac™ HV</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Stromversorgung</td>
<td>PowerPac 300</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Thermocycler</td>
<td>Px2 Thermal Cycler</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Thermomixer</td>
<td>comfort 1,5 ml</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Thermomixer</td>
<td>ThermoStat plus 2 ml</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Überkopf-Mischer</td>
<td>Intelli-Mixer</td>
<td>Neolab</td>
</tr>
<tr>
<td>Vortexmischer</td>
<td>REAX 2000</td>
<td>Heidolph</td>
</tr>
<tr>
<td>Waage</td>
<td>50 mg - 120 g</td>
<td>Sartorius</td>
</tr>
<tr>
<td>Waage</td>
<td>5 g - 4,84 kg</td>
<td>Sartorius</td>
</tr>
<tr>
<td>Western-Blot-Elektrophoresekammer</td>
<td>Mini-PROTEAN®</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Western-Blot-Glasplatten</td>
<td>1,5mm Spacer</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Western-Blot-Glasplatten</td>
<td>Cover Plates</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Western-Blot-Kämme</td>
<td>10 / 15 well, 1,5 mm</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Western-Blot-Kasette</td>
<td>Hypercassette</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Western-Blot-Transferkammer</td>
<td>Mini Trans Blot</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>centrifuge 5417 R</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>centrifuge 5427 R</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Megafuge 1.0R</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Multifuge 4 KR</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Sprout Minizentrifuge</td>
<td>Biozym</td>
</tr>
<tr>
<td>Fluoreszenzmikroskop</td>
<td>Axioplan 2</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>CKX 41</td>
<td>Olympus</td>
</tr>
<tr>
<td>Western-Blot</td>
<td>Dokumentationsanlage</td>
<td>Fusion FX7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vilber Lourmat</td>
</tr>
</tbody>
</table>
5.1.7 Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlowJo V10</td>
<td>Tree Star, Inc.</td>
</tr>
<tr>
<td>GeneSnap</td>
<td>Syngene</td>
</tr>
<tr>
<td>GraphPad Prism 5 und 6</td>
<td>GraphPad Software</td>
</tr>
<tr>
<td>Revelation G3.2</td>
<td>Dynex</td>
</tr>
<tr>
<td>Rotor-Gene Q</td>
<td>Qiagen</td>
</tr>
</tbody>
</table>
5.2 Methoden

5.2.1 Zellbiologische Methoden

5.2.1.1 Aufreinigung muriner Splenozyten

Zur Gewinnung muriner Splenozyten wurden BL/6-Mäusen die Milzen entnommen und in sterilem PBS / EDTA bei 4 °C aufbewahrt. Anschließend wurde jede Milz einzeln in einer Petrischale in einem 100 µm-Zellsieb platziert, mit kaltem PBS / EDTA inkubiert und mit einem 5 ml-Spritzenstempel zerdrückt, bis nur noch die Milzkapsel sichtbar war. Spritzenstempel und Sieb wurden gründlich mit PBS / EDTA abgespült und größere Gewebestücke durch Resuspendieren mittels einer 1000 ml-Pipette zerkleinert. Die so gewonnene Zellsuspension wurde anschließend mit einer 25 ml-Pipette über ein 40 µm-Zellsieb in ein 50 ml-Röhrchen überführt. Der Inhalt des Röhrchens wurde mit PBS / EDTA auf 50 ml aufgefüllt und 10 min bei 340 x g und 4 °C zentrifugiert. Der Überstand wurde verworfen, das Zellpellet aufgeklopf, in 2,5 ml 1x RBC-Lysis Puffer resuspendiert und 5 min auf Eis inkubiert. Zum Abstoppen der Reaktion wurde das Röhrchen mit PBS / EDTA auf 50 ml aufgefüllt und erneut 10 min bei 340 x g und 4 °C zentrifugiert. Nach dem Dekantieren des Überstandes wurde das Zellpellet in 10 ml MACS-Puffer aufgenommen und die Zellzahl im CASY®-Zellzählern bestimmt.

5.2.1.2 Separation muriner B- und T-Lymphozyten

Alle folgenden Mengenangaben von MACS-Puffer und MicroBeads beziehen sich, wenn nicht anders beschrieben, auf 1 x 10^7 Zellen. Die Bestimmung der Zellzahlen erfolgte im CASY®-Zellzählern.

Zur Auftrennung der Zellen mittels magnetic cell sorting (MACS) wurde die Zellsuspension nach Bestimmung der Zellzahl 10 min bei 340 x g und 4 °C zentrifugiert. Der Überstand wurde abgegossen, die Zellen in 90 µl MACS-Puffer resuspendiert und 10 µl CD19 MicroBeads hinzugefügt. Nach einer Inkubationszeit von 15 min im Kühlschrank bei 4 °C, wurden die Zellen mit 2 ml MACS-Puffer gewaschen und 10 min bei 340 x g und 4 °C zentrifugiert. Der Überstand wurde verworfen, das Zellpellet in 800 µl MACS-Puffer resuspendiert und über einen Pre-Separation-Filter auf eine befeuchtete LS-Säule aufgetragen. Die Säule wurde 3 x

5.2.1.3 Kultivierung und Stimulation muriner B- und T-Lymphozyten

Alle Zellkulturexperimente wurden unter sterilen Bedingungen durchgeführt. Die Zellen wurden in einer Konzentration von 1 x 10^6 Zellen/ml in Advanced RPMI mit 5 % charcoal stripped fetal calf serum (CCS), 4 mM L-Glutamin, 100 U/ml Penicillin und 100 µg/ml Streptomycin in einem Brutschrank bei 37 °C mit 5 % CO₂ kultiviert. Zur Bestimmung der Gen- sowie Proteinexpression von Cyp27b1, VDR und Cyp24a1 wurden frisch isolierte sowie für den angegebenen Zeitraum unstimulierte und stimulierte CD19⁺ B-Zellen bzw. CD4⁺ T-Zellen verwendet. Die Stimulierung der CD19⁺ B-Zellen erfolgte mit 10 µg/ml anti-CD40 und 20 ng/ml IL-4, die Stimulation der CD4⁺ T-Zellen mit 3 µg/ml anti-CD3 und 1 µg/ml anti-CD28. Die Stimulationsdauer lag bei 24 h, 48 h und 120 h.

5.2.2 Molekularbiologische Methoden

5.2.2.1 Ribonukleinsäure-Isolierung

Die Isolierung der Ribonukleinsäuren (RNA) erfolgte mithilfe des NucleoSpin® RNA-Kits gemäß Herstellerangaben. Dabei wurden die Zellen zunächst mit 350 µl RA1-

5.2.2.2 Synthese komplementärer DNA

Das Umschreiben der aus den Zellen isolierten Gesamt-RNA in komplementäre DNA (cDNA) erfolgte durch Verwendung der TaqMan® Reverse Transcription Reagenzien gemäß Herstellerangaben. Die cDNA-Synthese erfolgte dabei durch die enzymatische Aktivität der Reversen Transkriptase des Moloney Murine Leukemia Virus, die sowohl einsträngige RNA als aus DNA als Matrize zur Synthese eines komplementären DNA-Stranges nutzen kann152.

<table>
<thead>
<tr>
<th>Zusammensetzung</th>
<th>Volumen pro Probe</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x TaqMan RT-Puffer</td>
<td>2 µl</td>
<td>1 x</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>4,4 µl</td>
<td>5,5 mM</td>
</tr>
<tr>
<td>10 mM desoxyNTPs</td>
<td>4 µl</td>
<td>2 mM</td>
</tr>
<tr>
<td>50 µM Random Hexamer Primer</td>
<td>0,5 µl</td>
<td>1,25 µM</td>
</tr>
<tr>
<td>50 µM Oligo d(T)₁₆ Primer</td>
<td>0,5 µl</td>
<td>1,25 µM</td>
</tr>
<tr>
<td>20 U/µl RNase Inhibitor</td>
<td>0,4 µl</td>
<td>0,4 U/µl</td>
</tr>
<tr>
<td>50 U/µl MultiScribe Reverse Transcriptase</td>
<td>0,5 µl</td>
<td>1,25 U/µl</td>
</tr>
</tbody>
</table>

Tabelle 1: Zusammensetzung eines Ansatzes für die cDNA-Synthese.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer-RNA-Hybridisierung</td>
<td>25 °C</td>
<td>10 min</td>
</tr>
<tr>
<td>Reverse Transkription (RT)</td>
<td>48 °C</td>
<td>40 min</td>
</tr>
<tr>
<td>RT-Inaktivierung</td>
<td>95 °C</td>
<td>5 min</td>
</tr>
</tbody>
</table>

Tabelle 2: Aufbau des PCR-Programms für die cDNA-Synthese.
Material und Methoden

5.2.2.3 Quantitative Polymerase-Kettenreaktion

Alle hier angegebenen Primer wurden, sofern nicht bereits vorhanden, mit der Software Primer\(^\text{3}\)\(^\text{155}\) erstellt und über die Firma TIB Molbiol Berlin bezogen. Die Effizienz der Primer sowie deren optimale Hybridisierungstemperatur und die Elongationszeit wurden ermittelt und alle darauffolgenden Messungen als Doppelbestimmungen mit Wasser als Negativ-Kontrolle durchgeführt.

Zur Bestimmung der relativen Genexpression wurden die gemessenen Werte des Zielgens über die Expression des Referenzgens Hypoxanthin-Guanin-Phosphoribosyltransferase (HPRT) normalisiert\(^\text{156}\) und nach der \(\Delta\DeltaC_t\)-Methode berechnet\(^\text{157}\).
Zusammensetzung

<table>
<thead>
<tr>
<th></th>
<th>Volumen pro Probe</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x Rotor-Gene SYBR Green PCR Master Mix</td>
<td>5 µl</td>
<td>1 x</td>
</tr>
<tr>
<td>10 µM Primer for</td>
<td>0,2 µl / 0,5 µl / 1 µl</td>
<td>200 nM / 500 nM / 1 µM</td>
</tr>
<tr>
<td>10 µM Primer rev</td>
<td>0,2 µl / 0,5 µl / 1 µl</td>
<td>200 nM / 500 nM / 1 µM</td>
</tr>
<tr>
<td>cDNA</td>
<td>2 µl</td>
<td></td>
</tr>
<tr>
<td>dH₂O</td>
<td>auf 10 µl auffüllen</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Zusammensetzung eines Ansatzes für die quantitative Real-Time-PCR.

Tabelle 4: Übersicht über die in der quantitativen Real-Time-PCR verwendeten murinen Primer.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
<th>Hybridisierung</th>
<th>Primer-Effizienz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hprt for</td>
<td>5’-cgtcgtgattagctgagtag-3’</td>
<td>60 °C</td>
<td>1,91</td>
</tr>
<tr>
<td>Hprt rev</td>
<td>5’-aatccagcagttctcagcaaatgaag-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyp27b1 for</td>
<td>5’-cgccggcttacagcacgcc-3’</td>
<td>64 °C</td>
<td>1,8</td>
</tr>
<tr>
<td>Cyp27b1 rev</td>
<td>5’-ctctgggcaaaggcaaacatc-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vdr for</td>
<td>5’-acccctggtgccctct-3’</td>
<td>60 °C</td>
<td>1,96</td>
</tr>
<tr>
<td>Vdr rev</td>
<td>5’-ggcaatctctccactgataag-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyp24a1 for</td>
<td>5’-gaagatgtgaggaatatccttat-3’</td>
<td>62 °C</td>
<td>1,94</td>
</tr>
<tr>
<td>Cyp24a1 rev</td>
<td>5’-ccgagttgtgatgagcactc-3’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.2.4 Herstellen von Zelllysaten

Für die Gewinnung von Zelllysaten wurden pro Ansatz 2 x 10⁷ Zellen in ein 1,5 ml-Reaktionsgefäß überführt, mit PBS gewaschen und 10 min bei 2400 rpm und 4 °C zentrifugiert. Der Überstand wurde verworfen und 100 µl Lysepuffer mit Proteinase-Inhibitor zum Zellpellet gegeben. Das Gemisch wurde anschließend 2 h bei 4 °C unter ständiger Durchmischung inkubiert und bis zur weiteren Verwendung bei -80 °C gelagert.

5.2.2.5 Quantifizierung von Proteinen

Die Bestimmung der Proteinmenge erfolgte mittels Bradford-Test. Dieser beruht auf der Interaktion basischer Aminosäure-Reste wie beispielsweise Arginin, Lysin und
Histidin mit dem Farbstoff Coomassie-Brilliant-Blau G250 in saurer Lösung. Dabei führt die Bindung des Farbstoffs an die Proteine zu einer Verschiebung seines Absorptionsspektrums von 465 nm zu 595 nm158, was photometrisch gemessen werden kann. Durch die Verwendung einer Eichreihe mit bovinem Serumalbumin (BSA) bekannter Konzentration, wird die Berechnung der in der Probe enthaltenen Proteinkonzentration ermöglicht.

In der vorliegenden Arbeit wurden dazu je 150 µl Proteinstandard oder verdünnte Probe in eine 96-well Mikrotiterplatte gegeben, 150 µl Coomassie-Brilliant-Blau hinzugefügt und der Farbumschlag photometrisch bei 595 nm gemessen. Anhand der Eichgeraden wurde anschließend die in der jeweiligen Probe enthaltene Proteinmenge berechnet.

5.2.3 Immunologische Methoden

5.2.3.1 Western-Blot

5.2.3.1.1 Western-Blot von CYP27B1, VDR und β-Aktin

Die Methode des Western-Blots wurde in der vorliegenden Arbeit zum Nachweis der Proteine CYP27B1, VDR und β-Aktin bei frisch isolierten, unstimulierten und stimulierten T- und B-Lymphozyten murinen Ursprungs verwendet. Dazu wurde die gewünschte Menge der Proteinlösung zunächst auf Eis aufgetaut, mit Lade-Puffer versetzt und 5 min bei 95 °C inkubiert. Die Auftrennung der Proteine erfolgte in
einem SDS-Polyacrylamid-Gel (12 %) für 10 min bei 60 V und später für ca. 90 min bei 110 V. Anschließend wurden die Proteine auf eine PVDF-Membran transferiert und diese zum Vermeiden unspezifischer Bindungen 1 h bei Raumtemperatur mit 5 % non-fat dry milk / PBS (NFDM / PBS) geblockt. Die Inkubation mit dem gegen das Zielprotein gerichteten primären Antikörper erfolgte in 1 % NFDM / PBS-T bzw. 1 % NFDM / TBS-T über Nacht bei 4 °C. Nachdem die Membran 4 x mit PBS-T gewaschen wurde, erfolgte die Inkubation mit dem Meerrettichperoxidase (HRP)-gekoppelten sekundären Antikörper in 1 % NFDM / PBS-T bzw. 1 % NFDM / TBS-T für 1 h bei Raumtemperatur. Nach erneutem Waschen der Membran fand die Chemilumineszenzreaktion mittels Zugabe von Lumigen® ECL Plus statt, die durch Auflegen eines lichtempfindlichen Films sichtbar gemacht wurde.

<table>
<thead>
<tr>
<th>Western-Blot</th>
<th>primärer Antikörper</th>
<th>Blocken</th>
<th>Waschen</th>
<th>sekundärer Antikörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP27B1</td>
<td>Kaninchen anti-CYP27B1</td>
<td>5 % NFDM/ PBS</td>
<td>PBS-T</td>
<td>Ziege anti-Kaninchen IgG-HRP</td>
</tr>
<tr>
<td>VDR</td>
<td>Ratte anti-VDR</td>
<td>5 % NFDM/ PBS</td>
<td>PBS-T</td>
<td>Ziege anti-Ratte IgG-HRP</td>
</tr>
<tr>
<td>ß-Aktin</td>
<td>Kaninchen anti-ß-Aktin</td>
<td>5 % NFDM/ PBS</td>
<td>PBS-T</td>
<td>Ziege anti-Kaninchen IgG-HRP</td>
</tr>
</tbody>
</table>

Tabelle 5: Antikörper und Reagenzien der Western-Blots.

5.2.3.2 Enzyme-linked immunosorbent assay (ELISA)

Der *enzyme-linked immunosorbent assay* (ELISA) ist ein analytisches Verfahren zur Detektion und Quantifizierung spezifischer Antigene oder Antikörper in einer flüssigen Probe. Dabei führt die Bindung verschiedener Antigene und Antikörper letztendlich zu einem enzymatisch-vermittelten Farbumschlag, der das Vorhandensein der nachzuweisenden Substanz in der Probe anzeigt 160.

5.2.3.2.1 Immunglobulin-ELISA

In der vorliegenden Arbeit wurde diese Methode zum Nachweis spezifischer Immunglobuline im Blutplasma sensibilisierter bzw. infizierter Mäuse eingesetzt. Dazu wurde die Oberfläche einer 96-well Mikrotiterplatte mit einem Antigen bzw.

Tabelle 6: Antikörper und Reagenzien der Gesamt-Immunglobulin-ELISA.

<table>
<thead>
<tr>
<th>ELISA</th>
<th>Beschichtung</th>
<th>Blocken</th>
<th>Standard</th>
<th>Detektion</th>
<th>Enzym / Substrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG₁</td>
<td>anti-IgG₁</td>
<td>3 % BSA / PBS</td>
<td>IgG₁, κ</td>
<td>anti-IgG-AP</td>
<td>pNPP</td>
</tr>
<tr>
<td>IgE</td>
<td>anti-IgE</td>
<td>3 % NFDM / PBS</td>
<td>IgE, κ</td>
<td>anti-IgE-Biotin</td>
<td>SA-HRP / TMB</td>
</tr>
<tr>
<td>IgA</td>
<td>anti-IgA</td>
<td>3 % BSA / PBS</td>
<td>IgA, κ</td>
<td>anti-IgA-AP</td>
<td>pNPP</td>
</tr>
</tbody>
</table>

Tabelle 7: Antikörper und Reagenzien der OVA-spezifischen Immunglobulin-ELISA.

<table>
<thead>
<tr>
<th>ELISA</th>
<th>Beschichtung</th>
<th>Blocken</th>
<th>Standard</th>
<th>Detektion</th>
<th>Enzym / Substrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVA-IgG₁</td>
<td>OVA</td>
<td>3 % NFDM / PBS</td>
<td>anti OVA-IgG₁</td>
<td>anti-IgG₁-Biotin</td>
<td>SA-HRP / TMB</td>
</tr>
<tr>
<td>OVA-IgE</td>
<td>anti-IgE</td>
<td>3 % BSA / PBS</td>
<td>Plasmapool</td>
<td>OVA-Biotin</td>
<td>SA-HRP / TMB</td>
</tr>
<tr>
<td>OVA-IgA</td>
<td>OVA</td>
<td>3 % NFDM / PBS</td>
<td>Plasmapool</td>
<td>anti-IgA-Biotin</td>
<td>SA-HRP / TMB</td>
</tr>
</tbody>
</table>
5.2.3.2.2 25-Hydroxyvitamin D₃-ELISA

5.2.3.3 HEp2-Test zum Nachweis autoreaktiver Antikörper

5.2.3.4 Durchflusszytometrie

Die Durchflusszytometrie ist ein Messverfahren, das es erlaubt, einzelne Zellen einer Zellsuspension hinsichtlich spezifischer Eigenschaften zu analysieren.

Tabelle 8: Antikörper und Reagenzien der H.p. bakeri-spezifischen Immunglobulin-ELISA.

<table>
<thead>
<tr>
<th>ELISA</th>
<th>Beschichtung</th>
<th>Blocken</th>
<th>Standard</th>
<th>Detektion</th>
<th>Enzym / Substrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.p.-IgG₁</td>
<td>anti-IgG₁</td>
<td>1x Blocking Buffer / 5 % Saccharose / PBS</td>
<td>Plasmapool</td>
<td>H.p.-ES-Biotin</td>
<td>SA-HRP / TMB</td>
</tr>
<tr>
<td>H.p.-IgE</td>
<td>anti-IgE</td>
<td>3 % NFDM / PBS</td>
<td>Plasmapool</td>
<td>H.p.-ES-Biotin</td>
<td>SA-HRP / TMB</td>
</tr>
<tr>
<td>H.p.-IgA</td>
<td>anti-IgA</td>
<td>1x Blocking Buffer / 5 % Saccharose / PBS</td>
<td>Plasmapool</td>
<td>H.p.-ES-Biotin</td>
<td>SA-HRP / TMB</td>
</tr>
</tbody>
</table>

5.2.3.4.1 Durchflusszytometrische Analyse der Leukopoese von Cyp27b1⁻⁻-Mäusen

Um zu untersuchen, ob Mäuse mit einem Knockout des Cyp27b1-Gens eine vom Wildtyp abweichende Leukopoese aufweisen, wurden jeweils drei 7-Monate alte Cyp27b1⁺⁺⁻⁻ und Cyp27b1⁻⁻⁻⁻-Tiere durch Jana Winckler aus der Arbeitsgruppe von Prof. Dr. Fritz Melchers vom Max-Planck-Institut für Infektionsbiologie durchflusszytometrisch untersucht.

5.2.4 Tierexperimentelle Arbeiten

5.2.4.1 Zucht der Cyp27b1⁺⁻⁻⁻ und Cyp27b1⁻⁺⁻⁻-Mäuse

Die in dieser Arbeit verwendeten Cyp27b1⁺⁺⁻⁻ und Cyp27b1⁻⁻⁻⁻-Mäuse gehören zum Stamm C57BL/6NCr1 und wurden uns von Prof. René St-Arnaud zur Verfügung gestellt. Im Cyp27b1-Gen der Cyp27b1⁻⁻⁻⁻-Tiere wurde das Exon 8 deletiert, welches die Häm-Bindungsdomäne codiert. Dies hat zur Folge, dass keine funktionell-aktive 1α-Hydroxylase gebildet werden kann und dementsprechend kein endogenes Calcitriol verfügbar ist. Infolgedessen sind weibliche homozygote Cyp27b1⁻⁻⁻⁻-Mäuse unfruchtbar. Dies führt dazu, dass für die Zucht ausschließlich heterozygote Cyp27b1⁺⁻⁻⁻-Mäuse eingesetzt wurden, was eine Genotypisierung der Nachkommen erforderlich machte.

Material und Methoden

der Gesellschaft für Versuchstierkunde (GV-SOLAS). Futter und Wasser waren ad libidum verfügbar. Alle durchgeführten tierexperimentellen Arbeiten erfolgten gemäß dem Tierschutzgesetz und wurden zuvor vom Landesamt für Gesundheit und Soziales (LAGeSo) genehmigt (G0026/09 und G0363/10).

5.2.4.2 Genotypisierung der Mäuse

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyp27b1 gen for</td>
<td>5’-cctgttcctcaggtatca-3’</td>
</tr>
<tr>
<td>Cyp27b1 gen rev</td>
<td>5’-cctggctcaggtagcacttc-3’</td>
</tr>
</tbody>
</table>

Tabelle 9: Sequenzen der Genotypisierungsprimer.

<table>
<thead>
<tr>
<th>Zusammensetzung</th>
<th>Volumen pro Probe</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x GenTherm Puffer</td>
<td>2,5 µl</td>
<td>1 x</td>
</tr>
<tr>
<td>50 mM MgCl₂</td>
<td>1,25 µl</td>
<td>2,5 mM</td>
</tr>
<tr>
<td>10 mM desoxyNTPs</td>
<td>0,25 µl</td>
<td>100 nM</td>
</tr>
<tr>
<td>10 µM forward Primer</td>
<td>0,5 µl</td>
<td>200 nM</td>
</tr>
<tr>
<td>10 µM reverse Primer</td>
<td>0,5 µl</td>
<td>200 nM</td>
</tr>
<tr>
<td>5 U/µl DNA-Polymerase</td>
<td>0,25 µl</td>
<td>0,05 U/µl</td>
</tr>
<tr>
<td>DNA</td>
<td>2 µl</td>
<td></td>
</tr>
<tr>
<td>dH₂O</td>
<td>auf 25 µl auffüllen</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: Zusammensetzung des PCR-Ansatzes zur Genotypisierung.
Material und Methoden

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur</th>
<th>Dauer</th>
<th>Wiederholungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>95 °C</td>
<td>2 min</td>
<td>1 x</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>94 °C</td>
<td>20 s</td>
<td></td>
</tr>
<tr>
<td>Primerhybridisierung</td>
<td>65 °C</td>
<td>30 s</td>
<td>40 x</td>
</tr>
<tr>
<td>Elongation</td>
<td>72 °C</td>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>Finale Elongation</td>
<td>72 °C</td>
<td>10 min</td>
<td>1 x</td>
</tr>
<tr>
<td></td>
<td>4 °C</td>
<td></td>
<td>bis zum Ende</td>
</tr>
</tbody>
</table>

Tabelle 11: Aufbau des PCR-Programms zur Genotypisierung.

Zu 25 µl des PCR-Produktes wurden 2,5 µl 10 x Ladepuffer hinzugefügt und mittels Gel-elektrophorese in einem Agarosegel (2 %), dem 0,5 µg/ml Ethidiumbromid beigefügt wurde, aufgetrennt. Das Gel wurde unter UV-Licht fotografiert und die Banden zur Bestimmung des Genotyps ausgewertet.

5.2.4.3 Vitamin D-freie Diät

Aufgrund des Vitamin D-Mangels entwickeln Cyp27b1^{-/-}-Mäuse Symptome von Pseudo-Vitamin D-Defizienz-Rachitis (PDDR) mit sekundärem Hyperparathyreoidismus, Wachstumsverzögerung, Hypotonie, Rachitis und Osteomalazie. Um dies zu verhindern erhielten die Cyp27b1^{-/-}-Tiere Vitamin D-freies Futter, angereichert mit 2 % Calcium, 1,25 % Phosphor und 20 % Laktose¹⁴⁸.

5.2.4.4 Blutentnahme

Die Blutentnahme erfolgte durch Punktion der Vena facialis mittels einer Lanzette. Das entnommene Blut (max. 200 µl) wurde in einem Microtainer®-Röhrchen aufgefangen, bei 12000 x g 2 min zentrifugiert und das erhaltene Blutplasma bis zur weiteren Analyse bei -80 °C gelagert.

5.2.4.5 Bestimmung des 1α,25-Dihydroxyvitamin D₃-Plasmaspiegels

Zur Überprüfung der Konzentration von 1α,25-Dihydroxyvitamin D₃ (1,25(OH)₂D₃) im Blutplasma von Cyp27b1^{+/+}- und Cyp27b1^{-/-}-Mäusen wurde jeweils sechs Tieren
Blut entnommen und das daraus gewonnene Plasma von der Firma Immundiagnostik analysiert.

5.2.4.6 T-Zell-abhängige Sensibilisierung

Der tierexperimentelle Teil des folgenden Versuchs wurde von Dr. Kerstin Geldmeyer durchgeführt.

Die Sensibilisierung der weiblichen Vitamin D-defizienten Cyp27b1⁻⁻-Tiere und ihrer ebenfalls weiblichen Cyp27b1⁻⁺-Pendants erfolgte durch drei intraperitoneale (i.p.) Injektionen mit je 10 µg OVA adsorbiert an 1,5 mg Aluminiumhydroxid (Alum) in jeweils 100 µl 0,9 % NaCl-Lösung an den Tagen 0, 14 und 21. Der Boost am Tag 50 des Versuches wurde ebenfalls intraperitoneal mit 10 µg OVA in 100 µl 0,9 % NaCl-Lösung durchgeführt. Zur Verstärkung der humoralen Immunantwort wurde am letzten Versuchstag 58 eine Injektion mit 100 µg OVA in je 20 µl 0,9 % NaCl-Lösung intraperitoneal (i.p.) verabreicht. Am Tag 100 wurden die Tiere unter Narkose durch zervikale Dislokation getötet und Blut sowie Organe zur späteren Analyse entnommen.

Abb. 5: Versuchsablauf der T-Zell-abhängigen Sensibilisierung.

An den Tagen 0, 14 und 21 erfolgte die Sensibilisierung der ausschließlich weiblichen Tiere durch Injektion von 10 µg OVA adsorbiert an 1,5 mg Aluminiumhydroxid (Alum) in jeweils 100 µl 0,9 % NaCl-Lösung intraperitoneal (i.p.). Der Boost am Tag 50 erfolgte mit 10 µg OVA in 100 µl 0,9 % NaCl-Lösung und wurde ebenfalls intraperitoneal (i.p.) verabreicht. An den Versuchstagen 58 und 99 der Sensibilisierung erhielten die Mäuse eine Injektion mit 100 µg OVA in je 20 µl 0,9 % NaCl-Lösung intradermal (i.d.) ins Ohr. An den Tagen 0, 35 und 56 wurde Blut zur späteren Analyse entnommen. Die Mäuse wurden am Tag 100 getötet und Blut sowie Organe entnommen.
5.2.4.7 Infektion mit dem Nematoden *Heligmosomoides polygyrus bakeri*

Der folgende Versuch wurde in Kooperation mit Dr. Sebastian Rausch aus der Arbeitsgruppe von Prof. Dr. Susanne Hartmann vom Institut für Immunologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin durchgeführt.

Die primäre Infektion der sowohl weiblichen als auch männlichen Cyp27b1^{+/+} - und Cyp27b1^{−/−} -Tiere mit dem intestinalen Nematoden *Heligmosomoides polygyrus bakeri* erfolgte am Tag 0 des Experiments durch orale Gabe von je 200 L3-Larven mittels Schlundsonde. Zum Abbruch der Infektion erhielten die Tiere am Tag 14 oral je 2,5 mg des Anthelminthikums Pyrantel pamoate gelöst in 150 µl H₂O. Der Erfolg der Behandlung wurde durch die Untersuchung der Faeces der behandelten Tiere auf die Abwesenheit von Parasiteneiern hin mittels MacMaster-Zählkammer bestätigt. Am Tag 76 erfolgte eine sekundäre Infektion mit je 200 L3-Larven. Um die durch die Primärinfektion erworbene Protektion der Tiere bei einer sekundären Infektion zu ermitteln, erhielten ebenfalls am Tag 76 bisher naive Tiere eine primäre Infektion mit je 200 L3-Larven. Am Tag 90 des Experiments wurden alle Tiere unter Narkose durch zervikale Dislokation getötet, das Blut sowie Organe entnommen und zur späteren Analyse auf Eis gelagert (Abb. 6). Als parasitologische Erhebungsparameter wurden die Anzahl der Nematodeneier in den Faeces der Mäuse (EPG), die Wurmlast im Darm der Mäuse sowie die Fekundität der weiblichen *H.p. bakeri* bestimmt.

5.2.5 Parasitologische Methoden

5.2.5.1 Anzahl der Nematodeneier in den Faeces der infizierten Mäuse

5.2.5.2 Wurmlast der infizierten Mäuse

5.2.5.3 Fekundität der weiblichen *Heligmosomoides polygyrus bakeri*

Die Bestimmung der Fekundität erfolgte am Versuchsende am Tag 90. Dazu wurden pro Maus 5-8 weibliche Nematoden aus dem Dünndarm der infizierten Tiere entnommen, für 24 h in einer 96-well-Zellkulturplatte kultiviert und anschließend die Anzahl der in diesem Zeitraum produzierten Eier bestimmt.

5.2.6 Statistische Auswertung

6 Ergebnisse

6.1 Expression von Cyp27b1, VDR und Cyp24a1 bei murinen B- und T-Lymphozyten

Im Verlauf der Biosynthese von Vitamin D₃ kommt es durch die Wirkung von UV-B-Strahlung über zahlreiche Zwischenschritte zur Bildung des biologisch inaktiven 25-Hydroxyvitamin D₃ (Calcidiol). Dieses wird durch die 1α-Hydroxylase-Aktivität des Enzmys CYP27B1 zum biologisch aktiven 1α,25-Dihydroxyvitamin D₃ (Calcitriol) umgewandelt, das seine Wirkung durch Bindung an den Vitamin D-Rezeptor (VDR) vermittelt. Der Abbau von 1α,25-Dihydroxyvitamin D₃ geschieht durch die 24-Hydroxylase-Aktivität des Enzmys CYP24A1 (Abb. 3). Die Analyse der mRNA- sowie Proteinexpression der am Vitamin D-Stoffwechsel beteiligten Komponenten Cyp27b1, VDR und Cyp24a1 durch stimulierte CD19⁺ B- und CD4⁺ T-Lymphozyten erfolgte mittels quantitativer Echtzeit-PCR bzw. Western-Blot.

Die Untersuchung der mRNA-Expression der für den Vitamin D-Stoffwechsel relevanten Gene Cyp27b1, Vdr und Cyp24a1 bei frisch isolierten (ex vivo) und mit anti-CD40 und IL-4 stimulierten CD19⁺ B-Lymphozyten sowie bei frisch isolierten (ex vivo) und mit anti-CD3 und anti-CD28 stimulierten CD4⁺ T-Lymphozyten erfolgte mittels quantitativer Echtzeit-PCR. Die Stimulationsdauer lag bei 24 h, 48 h sowie 120 h. Dabei zeigte sich, dass Cyp27b1-mRNA von frisch isolierten (ex vivo) CD19⁺ B-Lymphozyten exprimiert wurde, die mRNA-Menge jedoch nach 24-stündiger Stimulation auf das 2,4-Fache anstieg. Im Gegensatz dazu zeigte sich nach 48-stündiger Stimulation ein Expressionsniveau ähnlich dem frisch isolierter (ex vivo) CD19⁺ B-Zellen. CD19⁺ B-Lymphozyten, die 120 h stimuliert wurden, zeigten eine sehr geringe Expression von Cyp27b1-mRNA, die unterhalb des Ausgangsniveaus lag (Abb. 7a). Eine mRNA-Expression von Vdr und Cyp24a1 war zu keinem der untersuchten Zeitpunkte in CD19⁺ B-Zellen nachweisbar (Abb. 7b, c).
Ergebnisse

Abb. 7: Expression der mRNA von Cyp27b1, Vdr und Cyp24a1 bei CD19⁺ B-Lymphozyten.

CD19⁺ B-Zellen wurden mittels MACS aus murinen Splenozyten isoliert und mit 10 µg/ml anti-CD40 und 20 ng/ml IL-4 für 24 h, 48 h und 120 h stimuliert. Als Kontrolle dienten aus murinen Nieren gewonnene Zelllysate. Anschließend erfolgte die Aufreinigung der mRNA, deren Umschreibung in cDNA und die Messung der Genexpression von a) Cyp27b1, b) Vdr und c) Cyp24a1 mittels quantitativer Echtzeit-PCR. Die horizontalen Balken der Scatterplots repräsentieren den Median (n=3).

Die Untersuchung der mRNA-Synthese von Cyp27b1 bei CD4⁺ T-Lymphozyten zeigte bereits bei frisch isolierten (ex vivo) Zellen eine Expression. 24 h nach Beginn der Stimulation war ein um das 6-Fache angestiegenes Expressionsniveau messbar, das nach 48-stündiger bzw. 120-stündiger Stimulation auf das Anfangsniveau zurückfiel (Abb. 8a). Wie zuvor bei CD19⁺ B-Lymphozyten war auch bei CD4⁺ T-Zellen keine Expression von Vdr- und Cyp24a1-mRNA nachweisbar. Lediglich nach 120-stündiger Stimulation war ein minimaler Anstieg der Vdr-und Cyp24a1-Expression zu erkennen (Abb. 8b, c).
Ergebnisse

Abb. 8: Expression der mRNA von Cyp27b1, Vdr und Cyp24a1 bei CD4⁺ T-Lymphozyten.
CD4⁺ T-Zellen wurden mittels MACS aus murinen Splenozyten isoliert und mit 3 µg/ml anti-CD3 und 1 µg/ml anti-CD28 für 24 h, 48 h und 120 h stimuliert. Als Kontrolle dienten aus murinen Nieren gewonnene Zell lysate. Anschließend erfolgte die Aufreinigung der mRNA, deren Umschreibung in cDNA und die Messung der Genexpression von a) Cyp27b1, b) Vdr und c) Cyp24a1 mittels quantitativer Echtzeit-PCR. Die horizontalen Balken der Scatterplots repräsentieren den Median (n=3).

Ergebnisse

Die Proteinexpression von VDR durch stimulierten CD19⁺ B-Lymphozyten war, anders als zuvor auf mRNA-Niveau, im Western-Blot sehr deutlich erkennbar. Auch stimulierte CD4⁺ T-Zellen zeigten eine, wenn auch sehr schwache Expression des VDR (Abb. 9).

ev, ex vivo; u, 48 h-unstimuliert; s, 48 h-stimuliert
CD19⁺ B- und CD4⁺ T-Zellen wurden mittels MACS aus murinen Splenozyten isoliert und mit 10 µg/ml anti-CD40 und 20 ng/ml IL-4 bzw. 3 µg/ml anti-CD3 und 1 µg/ml anti-CD28 für 48 h stimuliert. Zur Bestimmung der Proteinexpression mittels Western-Blots wurden die Zellen in RIPA-Puffer lysiert und jeweils 20 µg Protein aufgetragen.
6.2 Verlauf der humoralen Immunantwort in einem Vitamin D-defizienten Maus-Modell

Aus vorangegangenen Untersuchungen ist bekannt, dass Calcitriol die Bildung des Immunglobulins E unterdrücken kann128, 130. Um dies \textit{in vivo} in einem T-Zell-abhängigen Sensibilisierungsmodell zu überprüfen, wurden Vitamin D-defiziente Cyp27b1−/−-Tiere und ihre Cyp27b1+/--Pendants mit OVA sensibilisiert und die humorale Immunantwort untersucht (siehe Versuchsaufbau Abb. 5).

6.2.1 Humorale Immunantwort nach Sensibilisierung mit Ovalbumin

Beide Genotypen, Cyp27b1+/- und Cyp27b1−/−-Tiere, zeigten schon vor Beginn der Sensibilisierung messbare Konzentrationen der untersuchten Gesamt-Immunglobulin-Isotypen G\textsubscript{1}, E und A (Abb. 10a-c), wobei IgG\textsubscript{1} am Stärksten vertreten war (Abb. 10a).

Das mittlere Niveau des Gesamt-IgG\textsubscript{1}-Konzentration erreichte bei den Cyp27b1+/--Tieren einen maximalen Wert von 1,8 x 106 ng/ml am Tag 35, während dies bei den Cyp27b1−/−-Mäusen mit 2,7 x 106 ng/ml am Tag 56 der Fall war. Ebenfalls am Tag 56 war bei der Cyp27b1−/−-Gruppe die IgG\textsubscript{1}-Konzentration im Vergleich zu den Cyp27b1+/--Tieren um 154 % signifikant erhöht (p<0,001) (Abb. 10a).

Bereits vor Beginn der Sensibilisierung zeigten sich bei den Cyp27b1−/−-Mäusen höhere Gesamt-IgE-Werte als bei den Cyp27b1+/--Pendants (p=0,06). Dies setzte sich im weiteren Versuchsverlauf fort. Jedoch war erst am Tag 100 ein, mit einer statistischen Signifikanz von p<0,05, 6-fach erhöhter Wert gegenüber den Cyp27b1+/--Tieren nachweisbar (Abb. 10b).

Die Gesamt-IgA-Werte beider Genotypen wiesen über den gesamten Versuchsverlauf von 100 Tagen nur leichte Schwankungen auf. Jedoch waren die Gesamt-IgA-Werte der Cyp27b1−/−-Tiere am Tag 100 im Vergleich zur Cyp27b1+/--Gruppe 2-fach und signifikant erhöht (p<0,05) (Abb. 10c).
Ergebnisse

Abb. 10: Verlauf der humoralen Immunantwort bei OVA-sensibilisierten Cyp27b1⁺^{-/-}- und Cyp27b1^{-/-}-Mäusen.

Die Sensibilisierung der Tiere erfolgte durch intraperitoneale Injektionen von 10 µg OVA/Alum an den Tagen 0, 14 und 21. Am Tag 50 wurde ein intraperitonealer Boost mit 10 µg OVA verabreicht und an den Versuchstagen 58 und 99 des Experiments erhielten die Mäuse eine Injektion mit 100 µg OVA intradermal (i.d.) in das Ohr. An den Tagen 0, 35, 56 und am Versuchsende am Tag 100 wurden Blutproben gewonnen und zur Messung von a) IgG1, b) IgE und c) IgA mittels ELISA verwendet. Die Daten repräsentieren den Mittelwert +/- SEM von 5-9 Tieren pro Gruppe (p < 0,05 *, p < 0,001 ***).

6.2.2 Allergen-spezifisches Immunglobulinprofil nach Sensibilisierung mit Ovalbumin

In keiner der beiden Versuchsgruppen war vor Beginn der Sensibilisierung mit OVA ein Allergen-spezifischer Immunglobulin-Isotyp nachweisbar (Abb. 11a-c).

Die OVA-IgG₁-Antwort erreichte ihr Maximum in beiden Genotypen am Tag 35 mit 8632 µg/ml bei den Cyp27b1⁺^{-/-}- bzw. 11506 µg/ml bei den Cyp27b1^{-/-}-Tieren und fiel danach ab. Die Absenkung der OVA-IgG₁-Werte nach Tag 56 war bei Cyp27b1⁺^{-/-}-
Tieren stärker ausgeprägt. Daher zeigten die Cyp27b1\(^{-/-}\)-Mäuse am Tag 100 tendenziell höhere OVA-IgG\(_1\)-Konzentration verglichen mit Cyp27b1\(^{+/+}\)-Tieren (Abb. 11a).

Ein ähnlicher Verlauf war für Allergen-spezifische IgE-Antikörper zu beobachten. Nach einem starken Anstieg in beiden Gruppen bis Tag 56, folgte eine Verminderung bei der Cyp27b1\(^{+/+}\)-Gruppe während das Niveau bei den Cyp27b1\(^{-/-}\)-Tieren annähernd konstant blieb. Somit zeigten die Cyp27b1\(^{-/-}\)-Tiere am Tag 100 eine im Vergleich zu den Cyp27b1\(^{+/+}\)-Tieren tendenziell höhere OVA-spezifische IgE-Konzentration (\(p=0,06\)) (Abb. 11b).

Die Messungen der OVA-spezifischen IgA-Werte deckten größere Schwankungen zwischen den einzelnen Tieren eines Genotyps untereinander auf. So lagen die Werte am Tag 100 bei den Cyp27b1\(^{-/-}\)-Tieren zwischen 1483 LU/ml und 167000 LU/ml und bei den Cyp27b1\(^{+/+}\)-Tieren zwischen 609 LU/ml und 20400 LU/ml. Dennoch zeigte sich am Tag 100 bei den Cyp27b1\(^{-/-}\)-Tieren ein 7,8-fach erhöhter OVA-spezifischer IgA-Wert verglichen mit den Cyp27b1\(^{+/+}\)-Tieren (Abb. 11c).
Abb. 11: Verlauf der antigenspezifischen Immunglobulinwerte bei OVA-sensibilisierten Cyp27b1⁺/+ - und Cyp27b1^{-/-}-Mäusen.

Die Sensibilisierung der Tiere erfolgte durch intraperitoneale Injektionen von 10 µg OVA/Alum an den Tagen 0, 14 und 21. Am Tag 50 wurde ein intraperitonealer Boost mit 10 µg OVA verabreicht und an den Versuchstagen 58 und 99 des Experiments erhielten die Mäuse eine Injektion mit 100 µg OVA intradermal (i.d.) in das Ohr. An den Tagen 0, 35, 56 und am Versuchsende am Tag 100 wurden Blutproben gewonnen und zur Messung von OVA-spezifischem a) IgG₁, b) IgE und c) IgA mittels ELISA verwendet. Die Daten repräsentieren den Mittelwert +/- SEM von 6-9 Tieren pro Gruppe (p < 0,01 **).
6.3 Einfluss der Vitamin D₃-Supplementierung auf die Bildung autoreaktiver Antikörper

Abb. 12: Nachweis autoreaktiver Antikörper gegen nukleäre und zytoplasmatische Antigene im Blutplasma von Mäusen mit unterschiedlicher Vitamin D₃-Supplementierung.

Es wurden vier Versuchsgruppen mit unterschiedlicher Vitamin D₃-Supplementierung untersucht: Cyp27b1⁻/⁻-Tiere (n=4) und Cyp27b1⁺/+ -Tiere (n=5) ohne Vitamin D₃ im Futter, Cyp27b1⁺/+ -Mäuse (n=5) mit einer normalen Zufuhr von Vitamin D₃ (1 kU/kg Futter) und Cyp27b1⁺/+ -Mäuse (n=5) mit einer 10-fachen Zufuhr von Vitamin D₃ (10 kU/kg Futter). Das Blutplasma jedes Tieres wurde in den Verdünnungsstufen 1:100 und 1:400 auf die mit HEp2-Zellen versehenen Objektträger gegeben und durch Zugabe FITC-konjugierter anti-muriner Antikörper mittels Fluoreszenzmikroskopie detektiert. Jeder Datenpunkt repräsentiert positive Fluoreszenzsignale einer einzelnen Maus bei der angegebenen Verdünnung der Blutplasmas (n=4-5). n. d., nicht detektierbar; Vit.D₃, Cholecalciferol.

Wie in Abb. 13 dargestellt, wurden durch das Vorhandensein autoreaktiver Antikörper verschiedene zelluläre Strukturen detektiert. Neben Färbungen des Nukleus (Abb. 13a, d, e) und des Nukleolus (Abb. 13b) fanden sich positive Signale im Zytoplasma (Abb. 13c, f) von Hep2-Zellen.
Ergebnisse

Zum Nachweis autoreaktiver Antikörper im Blutplasma wurden vier Versuchsgruppen mit unterschiedlicher Vitamin D₃-Supplementierung untersucht: Cyp27b1⁻/⁻-Tiere und Cyp27b1⁺/⁺-Tiere ohne Vitamin D₃ im Futter, Cyp27b1⁺/⁺-Mäuse mit einer normalen Zufuhr von Vitamin D₃ (1 kU/kg Futter) und Cyp27b1⁺/⁺-Mäuse mit einer 10-fachen Zufuhr von Vitamin D₃ (10 kU/kg Futter). Das Blutplasma jedes Tieres wurde in den Verdünnungsstufen 1:100 und 1:400 auf die mit HEp2-Zellen versehenen Objektträger gegeben und durch Zugabe FITC-konjugierter anti-muriner Antikörper unter dem Fluoreszenzmikroskop sichtbar gemacht (n=4-5). Als Negativkontrolle diente das Blutplasma einer naiven C57BL/6-Maus. Auf der linken Seite (a-f) befindet sich jeweils die Negativkontrolle zur rechts abgebildeten getesteten Probe; Vitamin D₃, Cholecalciferol.

a) Cyp27b1⁻/⁻ / 0 kU Vitamin D₃/kg Futter, 1:100, homogene Färbung des Nukleus (Histone und doppelsträngige DNA)
b) Cyp27b1⁻/⁻ / 0 kU Vitamin D₃/kg Futter, 1:100, homogene Färbung von Nukleus und Nukleolus
c) Cyp27b1⁺/⁺ / 0 kU Vitamin D₃/kg Futter, 1:100, Färbung des Zytplasmas
d) Cyp27b1⁺/⁺ / 1 kU Vitamin D₃/kg Futter, 1:100, Färbung des Nukleus mit Rand
e) Cyp27b1⁺/⁺ / 1 kU Vitamin D₃/kg Futter, 1:400, Färbung des Nukleus mit Sprennelk
f) Cyp27b1⁺/⁺ / 1 kU Vitamin D₃/kg Futter, 1:100, Färbung des Zytplasmas mit zytplasmatischen Punkten.

Das Blutplasma der zuvor auf das Vorhandensein autoreaktiver Antikörper getesteten Tiere wurde mittels ELISA hinsichtlich der 25-Hydroxyvitamin D₃-Konzentration untersucht. Die Daten repräsentieren den Median mit Spannweite von 4-5 Mäusen pro Gruppe (p < 0,05 *, p < 0,01 **). Vit.D₃, Cholecalciferol.
6.4 Charakterisierung der Vitamin D-defizienten Cyp27b1⁻⁻⁻-Mäuse

6.4.1 Konzentration von 25-Hydroxyvitamin D₃ und 1α,25-Dihydroxyvitamin D₃ im Blutplasma von Cyp27b1⁺⁺⁺⁺ und Cyp27b1⁻⁻⁻⁻-Mäusen

Der Vergleich von Cyp27b1⁺⁺⁺⁺- und Cyp27b1⁻⁻⁻⁻-Mäusen hinsichtlich ihrer 25-Hydroxyvitamin D₃-Konzentrationen im Blutplasma zeigte, dass die untersuchten Cyp27b1⁻⁻⁻⁻-Tiere mit einem mittleren Wert von 3,7 ng/ml (Spannweite von 3,5-4,0 ng/ml) einen signifikant niedrigeren 25-Hydroxyvitamin D₃-Spiegel aufwiesen als ihre Cyp27b1⁺⁺⁺⁺-Pendants und somit defizient waren. Die mittlere Plasmakonzentration von 25-Hydroxyvitamin D₃ lag bei den Cyp27b1⁺⁺⁺⁺-Tieren bei 26,5 ng/ml (Spannweite von 21,4-26,5 ng/ml) und befand sich am oberen Rand des defizitären Bereichs (Abb. 15a).

Die Messung der Konzentrationen des bioaktiven Vitamin D₃-Metaboliten 1α,25-Dihydroxyvitamin D₃ im Blutplasma ergab für alle untersuchten Cyp27b1⁻⁻⁻⁻-Tiere einen Wert unterhalb der Nachweisgrenze, welche bei 4,8 pg/ml liegt. Der Plasmaspiegel der Cyp27b1⁺⁺⁺⁺-Tiere zeigte einen mittleren Wert von 35,5 pg/ml (Spannweite von 31-63 pg/ml) und lag damit im suffizienten Bereich der 1α,25-Dihydroxyvitamin D₃-Konzentration (Abb. 15b).
Ergebnisse

6.4.2 Körpermasse

Die Entwicklung der Körpermasse von zu Beginn der Messungen 9–13 Wochen alten Cyp27b1+/+ - und Cyp27b1−/- -Tieren wurde über einen Zeitraum von acht Wochen untersucht. Dabei zeigte sich, dass die Cyp27b1−/- -Mäuse eine im Mittel 0,7–2,1 g geringere Körpermasse als ihre Cyp27b1+/+ -Pendants aufwiesen (Abb. 16).

6.4.3 Durchflusszytometrische Analyse der Leukopoese

Die explorative durchflusszytometrische Untersuchung der Leukopoese von Cyp27b1+/+ und Cyp27b1−/−-Mäusen erfolgte in Kooperation mit Jana Winckler aus der Arbeitsgruppe von Prof. Dr. Fritz Melchers vom Max-Planck-Institut für Infektionsbiologie. Die Auswertung der Gesamtzellzahlen von Knochenmark, Thymus, Milz und Peritoneum von jeweils drei Cyp27b1+/+ und Cyp27b1−/−-Mäusen ergab bei den Cyp27b1−/−-Tieren eine um 17 % verringerte Gesamtzellzahl von Knochenmark und Peritoneum verglichen mit den Cyp27b1+/+-Tieren. Die Zellzahlen von Thymus und Milz waren bei den Cyp27b1−/−-Tieren um 80 % bzw. 57 % verringert (Abb. 17).

Abb. 17: Vergleich der Gesamtzellzahlen von Knochenmark, Thymus, Milz und Peritoneum von Cyp27b1+/+ und Cyp27b1−/−-Mäusen.

Die Gesamtzellzahlen von Knochenmark, Thymus, Milz und Peritoneum von 7 Monate alten Cyp27b1+/+ und Cyp27b1−/−-Mäusen wurden ermittelt und verglichen. Die horizontalen Balken der Scatterplots repräsentieren den Median (n=3).

Die Analyse verschiedener Leukozyten-Subpopulationen von B-, T- und myeloiden Zellen in Knochenmark, Thymus, Milz und Peritoneum von Cyp27b1+/+ und Cyp27b1−/−-Mäusen ergab hinsichtlich ihres Auftretens und ihrer prozentualen Anteile an der Gesamtzellzahl des jeweiligen Organs keine wesentlichen Unterschiede zwischen den beiden untersuchten Genotypen (Anhang Tab. III-VI).

Einzig im Knochenmark wiesen einzelne Zellpopulationen der Cyp27b1−/−-Mäuse einen geringeren Anteil an der Gesamtzellzahl des Organs, verglichen mit ihren Cyp27b1+/+-Pendants, auf. So waren Prä-B-1- und Prä-B-2-Zellen bei den untersuchten Cyp27b1−/−-Tieren um 60 % bzw. 61 % verringert und unreife B-Zellen
um 88 %, während geswitchte B-Zellen um 50 % und myeloide Zellen um 25 % verringerte Zellzahlen bei Cyp27b1/-/--Tieren, verglichen mit ihren Cyp27b1+/+-Pendants, aufwiesen (Abb. 18).

6.5 Verlauf der Infektion mit dem Nematoden *Heligmosomoides polygyrus bakeri* in einem Vitamin D-defizienten Mausmodell

6.5.1 Humorale Immunantwort nach Infektion mit dem Nematoden *Heligmosomoides polygyrus bakeri*

Die zunächst niedrigen Gesamt-IgE-Werte, mit 3,4 µg/ml bei den Cyp27b1°°° -Mäusen und 2,2 µg/ml bei den Cyp27b1°°-Tieren, am Tag 0 steigerten sich bei beiden Versuchsgruppen als Antwort auf die Primärinfektion bis Tag 13 stark, und zwar um das 20-Fache bei den Cyp27b1°°° - und das 55-Fache bei den Cyp27b1°°-Tieren (Abb. 19b). Die Immunantwort auf die Zweitinfektion am Tag 76 erfolgte schneller als die Reaktion auf die Erstinfektion. Im Gegensatz zu IgG1, welches keine signifikanten Unterschiede zwischen den untersuchten Genotypen aufwies, zeigten
die Cyp27b1⁻/⁻-Tiere am Tag 90 um 81 % signifikant höhere Gesamt-IgE-Werte als
die Cyp27b1⁺/⁺-Tiere (Abb. 19b).

Die Untersuchungen der Gesamt-IgA-Spiegel im Blutplasma beider Genotypen
zeigten schon zu Beginn des Versuchs messbare Konzentrationen, die im
Versuchsverlauf in beiden Gruppen relativ stabil waren. So lagen die gemessenen
mittleren Werte der Cyp27b1⁺/⁺-Tiere für IgA im gesamten Untersuchungszeitraum
zwischen 541 µg/ml und 836 µg/ml und bei den Cyp27b1⁻/⁻-Tieren zwischen
201 µg/ml und 442 µg/ml. Es ist außerdem zu erkennen, dass die Cyp27b1⁺/⁺-Tiere
im gesamten Versuchsverlauf tendenziell etwas höhere Gesamt-IgA-Titer aufwiesen
als Cyp27b1⁺⁻-Tiere, dies erreichte jedoch zu keinem Zeitpunkt statistische
Signifikanz (Abb. 19c).
Ergebnisse

Am Tag 0 des Versuchs wurden die Mäuse durch orale Gabe von je 200 L3-Larven mit H.p. bakeri infiziert und die Infektion am Tag 14 durch Gabe des Anthelminthikums Pyrantel pamoate abgebrochen. Eine zweite Infektion mit je 200 L3-Larven erfolgte am Tag 76. Das an den Tagen 0, 7, 13, 21, 35, 76, 83 und am Versuchsende am Tag 90 entnommene Blut wurden zur Messung der Konzentrationen von a) IgG1, b) IgE und c) IgA mittels ELISA verwendet. Die Daten repräsentieren den Mittelwert +/- SEM von 7-8 Tieren pro Gruppe (p < 0,001 ***).

6.5.2 Spezifisches Immunglobulinprofil nach Infektion mit dem Nematoden Heligmosomoides polygyrus bakeri

Sekundärinfektion am Tag 76 war bei beiden Gruppen eine sehr starke Zunahme der \textit{H.p. bakeri}-spezifischen IgG1-Konzentration messbar. Diese war bei den Cyp27b1+/+ -Tieren am Tag 90 mit statistischer Signifikanz um 70 % gegenüber den Cyp27b1−/− -Tieren erhöht. Die Steigerung der mittleren \textit{H.p. bakeri}-IgG1-Konzentration vom Tag 76 bis Tag 90 des Experiments erfolgte bei den Cyp27b1+/+ -Tieren um mehr als das 126.000-Fache und bei den Cyp27b1−/− -Tieren um mehr als das 44.000-Fache (Abb. 20a).

Bereits 13 Tage nach der ersten Infektion mit dem Nematoden war bei beiden Genotypen ein starker Anstieg des \textit{H.p.bakeri}-spezifischen IgE auf durchschnittlich 48 LU/ml bei den Cyp27b1+/+ -Tieren und 46 LU/ml bei den Cyp27b1−/− -Tieren nachweisbar. Dieser verstärkte sich nach der erneuten Infektion am Tag 76 nochmals bis zum Ende des Versuchs, und zwar um das 21-Fache bei den Cyp27b1+/+ - und um das 31-Fache bei den Cyp27b1−/− -Tieren. Sein Maximum erreichte das \textit{H.p.bakeri}-spezifische IgE am Tag 90 mit einem bei den Cyp27b1−/− -Tieren um 120 % signifikant erhöhten wurmspezifischen IgE-Wert gegenüber den Cyp27b1+/+ -Tieren (\(p<0,0001\)) (Abb. 20b).

Die \textit{H.p. bakeri}-spezifischen IgA-Konzentrationen zeigten über den gesamten Versuchszeitraum große Schwankungen zwischen den einzelnen Tieren beider Genotypen, so dass sich keine signifikanten Unterschiede zwischen den untersuchten Gruppen ergaben (Abb. 20c).
Am Tag 0 des Versuchs wurden die Mäuse durch orale Gabe von je 200 L3-Larven mit *H. p. bakeri* infiziert und die Infektion am Tag 14 durch Gabe des Anthelminthikums Pyrantel pamoate abgebrochen. Eine zweite Infektion mit je 200 L3-Larven erfolgte am Tag 76. Das an den Tagen 0, 7, 13, 21, 35, 76, 83 und am Versuchsende am Tag 90 entnommene Blut wurden zur Messung der *H. p. bakeri*-spezifischen Konzentrationen von a) IgG1, b) IgE und c) IgA mittels ELISA verwendet. Die Daten repräsentieren den Mittelwert +/- SEM von 7-8 Tieren pro Gruppe (*p* < 0,0001 ****).

6.5.3 Ausgang der Infektion mit dem Nematoden *Heligmosomoides polygyrus* *bakeri* bei Vitamin D-defizienten Cyp27b1+/+ -Mäusen
Um den Ausgang der *H. p. bakeri*-Infektion bei Vitamin D-defizienten Cyp27b1+/+ - und Cyp27b1-/- -Wildtyp-Tieren näher zu untersuchen, wurden verschiedene parasitologische Parameter im Verlauf und am Ende des Versuchs bestimmt. Dabei war zwischen unterschiedlich behandelter Tieren zu differenzieren: Jeweils eine
Ergebnisse

Gruppe der Cyp27b1+/+ - und Cyp27b1-/- -Tiere erhielt am Tag 0 eine Primärinfektion mit dem Nematoden \textit{H.p. bakeri}, die am Tag 14 medikamentös abgebrochen wurde, um diese Tiere am Tag 76 mit einer sekundären Infektion zu konfrontieren. Im Vergleich dazu wurden Cyp27b1+/+ - und Cyp27b1-/- -Tiere untersucht, die nur am Tag 76 eine primäre Infektion mit dem Parasiten erhielten (siehe Versuchsaufbau Abb. 6).

Zu den untersuchten parasitologischen Parametern gehörte u. a. die Anzahl der Nematodeneier pro Gramm Faeces der Cyp27b1+/+ - und Cyp27b1-/- -Tiere (EPG). Die Daten zeigen, dass 14 Tage nach einer Primärinfektion, d. h. an den Versuchstagen 14 bzw. 90 zahlreiche Eier in den Faeces nachweisbar waren. Deren Anzahl war bei Cyp27b1-/- -Tieren um das 2,4-Fache am Tag 14 und um das 3,6-Fache am Tag 90 gegenüber den Cyp27b1+/+ -Tieren signifikant erhöht (Abb. 21a, b). Nach dem Abbruch des Wurmbefalls und einer sekundären Infektion waren bei keiner der beiden Gruppen, Cyp27b1+/+ - oder Cyp27b1-/- -Tiere, Nematodeneier nachweisbar (Abb. 21a).
Ergebnisse

Abb. 21: Anzahl der Nematodeneier in den Faeces H.p. bakeri-infizierter Cyp27b1^{+/+} - und Cyp27b1^{-/-}-Mäuse.

a) EPG der Tiere, welche eine Primärinfektion am Versuchstag 0 und eine Sekundärinfektion am Tag 76 erhielten (n=7-9)
b) EPG der Tiere, welche nur eine Primärinfektion am Versuchstag 76 erhielten (n=9-11)

Die horizontalen Balken der Scatterplots repräsentieren den Median (p < 0,05 *, p < 0,01 **).

Die letztgenannten Ergebnisse der EPG hinsichtlich Abwesenheit von Nematodeneiern nach der sekundären Infektion, spiegeln sich in der Wurmlast, d. h. der Anzahl der Nematoden im Darm der infizierten Mäuse wider. Nach der Primärinfektion konnten bei einer Cyp27b1^{+/+}-Maus durchschnittlich 132 Nematoden und bei einer Cyp27b1^{-/-}-Maus durchschnittlich 140 Nematoden isoliert werden (Abb. 22b). Nach der Sekundärinfektion waren hingegen keine Würmer im Darm der infizierten Mäuse mehr nachweisbar (Abb. 22a). Zu keinem der untersuchten Zeitpunkte war hinsichtlich der Wurmlast ein Unterschied zwischen Cyp27b1^{+/+} - und Cyp27b1^{-/-}-Tieren erkennbar (Abb. 22).

Am Tag 0 des Versuchs wurden die Mäuse durch orale Gabe von je 200 L3-Larven mit *H. p. bakeri* infiziert (Primärinfektion) und die Infektion am Tag 14 durch Gabe des Anthelminthikums Pyrantel pamoate abgebrochen. Eine sekundäre Infektion mit je 200 L3-Larven erfolgte am Tag 76, ebenso wie eine primäre Infektion naiver Tiere mit je 200 L3-Larven.

a) Wurmlast der Tiere, welche eine Primärinfektion am Versuchstag 0 und eine Sekundärinfektion am Tag 76 erhielten (n=7-8).

b) Wurmlast der Tiere, die nur eine Primärinfektion am Versuchstag 76 erhielten (n=9-10)

Die horizontalen Balken der Scatterplots repräsentieren den Median.

Einen weiteren untersuchten parasitologischen Parameter stellte die Fekundität der weiblichen Nematoden dar. Um zu untersuchen, ob die Fekundität der aus den Vitamin D-defizienten Cyp27b1^{-/-}-Mäusen isolierten Nematoden verändert war, wurden die weiblichen *H. p. bakeri* isoliert und hinsichtlich ihres Eiausstosses innerhalb von 24 h untersucht. Dabei konnten keine Unterschiede zwischen Cyp27b1^{+/-} - und Cyp27b1^{-/-} -Tieren gefunden werden. Die Nematoden, die aus infizierten Cyp27b1^{+/-}-Tieren isoliert wurden, gaben im Untersuchungszeitraum durchschnittlich 80 Eier ab, während jene aus infizierten Cyp27b1^{-/-}-Tieren im gleichen Zeitraum durchschnittlich 88 Eier produzierten (Abb. 23).

7 Diskussion

7.1 Der Knockout des Cyp27b1-Gens bei Mäusen führt zu einer gesteigerten humoralen IgE-Immunantwort

Die Bedeutung von Vitamin D für die Entstehung und Aufrechterhaltung von Allergien ist bisher nicht hinreichend geklärt. Es gibt sowohl Studien, die eine protektive Wirkung des Vitamins gegenüber einer Allergieentstehung zeigen als auch solche, die einen Zusammenhang zwischen Vitamin D-Supplementation und dem Auftreten von Allergien vermuten lassen135, 141-143. Um die Bedeutung von Vitamin D bei der T-Zell-abhängigen Sensibilisierung genauer zu untersuchen, haben wir Vitamin D-defiziente Cyp27b1-/-- und Wildtyp-Cyp27b1+/+-Mäuse mit C57BL/6-Hintergrund eingesetzt. Durch Untersuchungen von Herz et al. ist bekannt, dass Tiere mit einem BALB/c-Hintergrund, verglichen mit BL/6-Mäusen, mit höheren Titern der TH2-typischen Immunglobuline IgG\textsubscript{1} und IgE auf Immunisierungen mit OVA reagieren167-169. Dies kann auf eine erhöhte Freisetzung von IL-4 bei den BALB/c-Tieren, im Vergleich zu BL/6-Tieren, zurückgeführt werden. Die Unterschiede in der IL-4-Produktion zwischen den Tieren verschiedener genetischer Hintergründe werden von den Autoren auf eine mögliche Verschiebung der TH1/TH2-Balance bei den BL/6-Tieren zurückgeführt, die somit im Gegensatz zu den phänotypisch TH2-geprägten BALB/c-Tieren einen gemischten TH1/TH2-Phänotyp aufweisen würden170. In unserem Modell zeigten jedoch auch BL/6-Mäuse eine starke humorale Immunantwort, welche sich in messbaren Immunglobulintitern widerspiegelte (Abb. 10 und Abb. 11)169. Dies kann zum Teil in der Dauer unseres Experiments von 100 Tagen begründet liegen, da die Konzentrationen der gemessenen Immunglobuline im Versuchsverlauf anstiegen und so höhere Werte erreichten, als dies bei den Versuchen von Herz et al. der Fall war, deren Versuchsdauer bei ca. 30 Tagen lag167. Neben dem genetischen Hintergrund der Versuchstiere sind die Applikationsformen der Allergene sowie die Wahl des Adjuvants von großer Bedeutung. In der Literatur findet sich dazu die systemische Sensibilisierung durch z. B. intraperitoneale Injektion des Allergens in Verbindung mit dem Adjuvant Aluminiumhydroxid (Al(OH)\textsubscript{3}) als bevorzugte Kombination zur Induktion einer TH2-Immunantwort168. Dies konnte durch eigene Untersuchungen in unserem Modell bestätigt werden, die durch einen deutlichen Anstieg der TH2-assoziierten Immunglobuline IgG\textsubscript{1} und IgE gekennzeichnet waren (Abb. 10 und Abb. 11).
Die Ergebnisse aus den hier präsentierten Untersuchungen zur T-Zell-abhängigen Sensibilisierung von Cyp27b1\(^{+/+}\)- und Cyp27b1\(^{-/-}\)-Tieren zeigen, dass Cyp27b1\(^{-/-}\)-Mäuse bereits vor Beginn der Sensibilisierung 5-fach erhöhte Gesamt-IgE-Werte im Vergleich zu Cyp27b1\(^{+/+}\)-Tieren aufwiesen (Abb. 10b). Dies bestätigen Daten von Wittke et al., die bei ebenfalls nicht-sensibilisierten VDR\(^{-/-}\)-Tieren erhöhte Gesamt-IgE-Werte beobachteten\(^{171}\). Die Steigerung der Gesamt-IgE-Werte bei Cyp27b1\(^{-/-}\)-Mäusen gegenüber denen der Wildtyp-Pendants blieb über den gesamten Versuchszeitraum bestehen. Dies wurde gleichfalls von Wittke et al. beschrieben, deren Untersuchungen jedoch keine weiteren Immunglobuline einschlossen\(^{171}\).

Unsere Analysen hingegen umfassten auch die Messungen von IgG\(_1\) und IgA. Die Gesamt-IgG\(_1\)-Werte nicht-sensibilisierter Cyp27b1\(^{+/+}\)- und Cyp27b1\(^{-/-}\)-Tiere waren zu Beginn des Versuchs vergleichbar. Im weiteren Versuchsverlauf zeigten die Cyp27b1\(^{-/-}\)-Tiere jedoch gegenüber ihren Wildtyp-Pendants stärkere Antworten von Gesamt-IgG\(_1\) (Abb. 10a). Für den Klassenwechsel zu IgG\(_1\), wie auch zu IgE, ist u. a. die Freisetzung von IL-4 durch T-Zellen notwendig\(^{172-174}\). Hier könnte ein Vitamin D-Mangel durch Erhöhung der IL-4-Produktion, wie von Staeva-Vieira et al. beschrieben\(^{175}\), zu einem verstärkten Klassenwechsel hin zu IgG\(_1\) bzw. IgE führen und so die erhöhten IgG\(_1\)- und IgE-Konzentration im Blutplasma Vitamin D-defizienter Cyp27b1\(^{-/-}\)-Tiere erklären.

Auch die Gesamt-IgA-Werte waren bei Cyp27b1\(^{-/-}\)-Mäusen gegenüber Cyp27b1\(^{+/+}\)-Tieren am Versuchsende erhöht (Abb. 10c). Die Expression von IgA benötigt u. a. das durch aktivierte T-Zellen sezernierte Zytokin IL-6\(^{176-178}\), dessen Freisetzung durch 1,25(OH)\(_2\)D\(_3\) inhibiert werden kann\(^{179}\). Die Erhöhung der Gesamt-IgA-Konzentration bei Cyp27b1\(^{-/-}\)-Mäusen verglichen mit Cyp27b1\(^{+/+}\)-Tieren könnte daher mit einer durch den Vitamin D-Mangel erhöhten IL-6-Produktion erklärt werden, welche zu einer Verstärkung des Isotypenklassenwechsels von IgM zu IgA führen könnte\(^{177}\).

Die Verlaufskurven der OVA-spezifischen Immunglobuline IgG\(_1\), IgE und IgA wiesen eine vergleichbare Entwicklung über den Versuchszeitraum von 100 Tagen auf (Abb. 11). Erwartungsgemäß waren vor Beginn der Sensibilisierung am Tag 0 in keinem der beiden Genotypen Allergen-spezifische Immunglobuline nachweisbar, während nach Abschluss der Sensibilisierungsphase am Tag 35 ein starker Anstieg der OVA-spezifischen Antikörper erkennbar war, wobei jedoch noch kein ausgeprägter Unterschied zwischen Cyp27b1\(^{+/+}\)- und Cyp27b1\(^{-/-}\)-Tieren gemessen

TH2-Immunantworten werden u. a. von Allergenen hervorgerufen und sind charakterisiert durch die Produktion von Zytokinen wie IL-4, IL-5 und IL-13 sowie der Freisetzung der Immunglobuline IgE und IgG₁. Die vorliegenden Ergebnisse der Analysen der beiden untersuchten Genotypen, Cyp27b1⁺/⁺- und Cyp27b1⁻/⁻-Tiere, hinsichtlich des Gesamt- und Allergen-spezifischen IgE und IgG₁, deuten auf eine für eine allergische Sensibilisierung charakteristische TH2-Immunantwort hin. Diese war möglicherweise, verglichen mit den Cyp27b1⁺/⁺-Pendants, bei den Vitamin D-defizienten Cyp27b1⁻/⁻-Tieren stärker ausgeprägt und könnte so zu den beobachteten, teilweise signifikant erhöhten Immunglobulinspiegeln geführt haben. Wie bereits weiter oben ausgeführt, könnte zusätzlich dazu der inhibierende Einfluss von 1,25(OH)₂D₃ auf die Freisetzung von IL-4 durch T-Zellen die beobachteten Effekte erklären. Als Konsequenz daraus könnte bei Vitamin D–defizienten Cyp27b1⁻/⁻-Tieren eine größere Anzahl der in beiden Genotypen prozentual gleich häufig auftretenden B-Zellen (Anhang Tabelle III und V) den Isotypenklassenwechsel zu IgG₁ und/oder IgE vollzogen haben und somit

Dem widersprechend ist aus der Literatur bekannt, dass 1,25(OH)2D3-behandelte T-Zellen verstärkt Th2-Immunantworten ausbilden können116,117,123 und die Freisetzung von IL-4 durch die Wirkung von 1,25(OH)2D3 erhöht wird185. Demzufolge wäre in unserem Versuchsauflauf bei Vitamin D-defizienten Cyp27b1−/−-Tieren ein gegenteiliger Effekt, d.h. eine abgeschwächte Th2-Antwort zu erwarten gewesen123. Daten von Froicu et al. mit VDR−/−-Tieren zeigen, dass diese eine mit Wildtyp-Tieren vergleichbare oder verringerte Th2-Antwort aufweisen, während die IgE-Produktion erhöht ist186. Hinweise für eine vergleichbare Situation bei unseren Cyp27b1−/−-Tieren ergaben sich im Rahmen der H.p. Bakeri-Infektion bei Cyp27b1+/- - und Cyp27b1−/−-Tieren. Messungen des Zytokins IL-13 in Vorversuchen zeigten dort einen signifikant geringeren Anstieg bei Cyp27b1−/−-Tieren verglichen mit Cyp27b1+/- -Mäusen, was auf eine durch die Vitamin D-Defizienz abgeschwächte Th2-Immunantwort hindeuten könnte (Daten nicht gezeigt).

7.2 Der Knockout des Cyp27b1-Gens bei Mäusen beeinflusst die Leukopoese im Knochenmark und begünstigt das Auftreten autoreaktiver Antikörper gegen nukleäre und zytoplasmatische Antigene

In der vorliegenden Arbeit wurde mit Cyp27b1−/−-Mäusen gearbeitet. Diese sind bedingt durch eine fehlende Expression des Enzyms 25-Hydroxyvitamin D₃-1α-Hydroxylase (CYP27B1) defizient für 1α,25-Dihydroxyvitamin D₃ (Calcitriol)¹⁴⁵. Durch diesen Mangel hervorgerufene mögliche Stoffwechselstörungen sollten durch die Anreicherung der Nahrung mit 2 % Calcium, 1,25 % Phosphor und 20 % Laktose vermieden werden¹⁴⁸.

Das tatsächliche Vorliegen einer Vitamin D-Defizienz des Cyp27b1−/−-Genotyps wurde entsprechend der Literatur¹⁴⁵ durch unsere Messungen von 25-Hydroxyvitamin D₃ sowie 1α,25-Dihydroxyvitamin D₃ im Blutplasma von Cyp27b1+/+ und Cyp27b1−/−-Tieren bestätigt (Abb. 15a, b).

Eine weitere mögliche Erklärung für das verzögerte Angleichen der Körpermasse junger Cyp27b1−/−-Tiere an jene der Cyp27b1+/+ -Tiere könnte die verspätet einsetzende Versorgung der Tiere mit Calcium-angereicherter Nahrung sein. Diese sollte sofort nach dem Absetzen der Cyp27b1−/−-Jungtiere verabreicht werden, was zum Teil durch notwendige Genotypisierungen und Transporte der Tiere verzögert wurde. In der Literatur ist dazu beschrieben, dass sich dadurch auftretende
Störungen wie beispielsweise Hypokalzämie durch die Gabe Calcium-angereichter Nahrung innerhalb von zwei Wochen normalisieren148.

Nach unserer Erkenntnis gibt es bis heute keine ausführlichen Untersuchungen bezüglich des Auftretens und der Verteilung einzelner Subpopulationen der Zellen des Immunsystems bei Vitamin D-defizienten Cyp27b1+/−-Mäusen. Unsere Analysen der Gesamtzellzahlen von Knochenmark, Thymus, Milz und Peritoneum von Cyp27b1+/−- und Cyp27b1−/−-Tieren ergab für den Cyp27b1−/−-Genotyp im Vergleich zu Cyp27b1+/+-Mäusen verringerte Zellzahlen von bis zu 80 % in allen untersuchten lymphatischen Geweben (Abb. 17). Trotzdem zeigten sich bei verschiedenen Leukozyten-Subpopulationen in den untersuchten Organen hinsichtlich ihres Auftretens und ihrer prozentualen Anteile an den Gesamtzellzahlen keine wesentlichen Unterschiede zwischen Cyp27b1+/−- und Cyp27b1−/−-Mäusen (Anhang Tab. III-VI). Eine mögliche Erklärung für die gefundenen geringeren Gesamtzellzahlen bei Cyp27b1−/−-Tieren könnte daher die ebenfalls von uns festgestellte geringere Körpermasse (Abb. 16) und die geringeren Organgrößen der Cyp27b1−/−-Mäuse verglichen mit Cyp27b1+/+-Tieren sein.

Unsere Untersuchungen verschiedener Zellpopulationen des Immunsystems umfassten Subpopulationen der B-Zellentwicklung, B1- und B2-Zellen, T-Zellen sowie myeloide Zellen. Die Daten zeigen, dass bei den Cyp27b1−/−-Mäusen alle untersuchten Subpopulationen vorhanden waren und durch den Vitamin D-Mangel keine wesentlichen Störungen der Entwicklung dieser Zellen des Immunsystems auftraten (Anhang Tab. III-VI). Einzig im Knochenmark zeigten sich starke Unterschiede zwischen den beiden Genotypen hinsichtlich der Zellzahlen einzelner Populationen, wobei die Cyp27b1−/−-Tiere stets geringere prozentuale Anteile als ihre Wildtyp-Pendants aufwiesen (Abb. 18). Mathieu et al. beschreiben bei VDR−/−-Tieren eine gestörte T-Zellentwicklung nach der Stimulation mit anti-CD3. Diese wird von den Autoren darauf zurückgeführt, dass die calciumabhängige Stimulation bei den hypokalzämischen VDR−/−-Tieren, bei normaler Diät ohne zusätzliches Calcium gestört ist151. Panda et al. fanden bei ihren Cyp27b1−/−-Tieren neben einer verringerten Ca2+-Konzentration im Blutserum auch eine geringere Anzahl CD4+ - und CD8+ T-Zellen im peripheren Blut150. Diese Befunde könnten ebenfalls durch eine vermindernte Ca2+-Konzentration erklärt werden, da deren Cyp27b1−/−-Tiere keine Calcium-angereicherte Nahrung erhielten150.150
Durch die Erhöhung der intrazellulären Calciumkonzentration z. B. durch Freisetzung aus dem endoplasmatischen Retikulum oder den Einstrom aus dem extrazellulären Raum wird die Translokation des nuclear factor of activated T cells (NFAT) in den Nukleus und damit die Expression von u. a. IL-2 bewirkt. Somit stellt Calcium einen essentiellen Faktor für die Proliferation und Differenzierung von T-Zellen dar\(^7\), \(^{192}\) und liefert eine mögliche Erklärung für die beobachteten Effekte in hypokalzämischen VDR\(^{-/-}\)- und Cyp27b1\(^{-/-}\)-Tieren. Mittels der Gabe einer mit Calcium und Laktose angereicherten Diät, wie sie auch unsere Cyp27b1\(^{-/-}\)-Tiere erhalten haben, konnten die von Mathieu et al. beschriebenen Effekte bei den VDR\(^{-/-}\)-Tieren korrigiert werden\(^92\), \(^{151}\). Für nachfolgende Analysen der Entwicklung des Immunsystems bei Cyp27b1\(^{-/-}\)-Tieren wäre es demnach notwendig, die Konzentration von Ca\(^{2+}\) im Blut der Tiere zu bestimmen. Hinsichtlich der gefundenen erniedrigten Zellzahlen einzelner Subpopulationen im Knochenmark unserer Cyp27b1\(^{-/-}\)-Tiere, die hauptsächlich Stadien der B-Zellentwicklung betraten, kann daher nicht ausgeschlossen werden, dass diese, trotz angereicherter Nahrung, auf einen Calciummangel zurückzuführen sind. Studien von Habib et al. unterstreichen diese Möglichkeit, da hier beschrieben wird, dass eine normale Ca\(^{2+}\)-Signalwirkung für die Reifung und Proliferation von B-Zellen benötigt wird\(^{193}\). Dabei führt die Bindung eines Antigens an den B-Zell-Rezeptor (BCR) zur Aktivierung verschiedener Tyrosinkinasen, wozu u. a. die Bruton’s-Tyrosinkinase (BTK) gehört. Diese aktivieren die Phospholipase C, welche daraufhin die Hydrolyse von Phosphatidylinositol-4,5-bisphosphat zu Diacglycerol und Inositol-1,4,5-trisphosphat (IP\(_3\)) katalysiert. Die Bindung von IP\(_3\) an seinen Rezeptor führt zur Freisetzung von Ca\(^{2+}\) aus dem Endoplasmatischen Retikulum, was letztendlich die Expression bzw. Aktivierung verschiedener Transkriptionsfaktoren wie Myc oder den nuclear factor of activated B cells (NF-κB) bewirkt\(^{193-195}\). Für Myc zeigen Habib et al. eine essentielle Funktion in der B-Zellentwicklung\(^{193}\). Der Transkriptionsfaktor NF-κB wiederum führt zur Expression von Proteinen wie beispielsweise B cell lymphoma 6 (BCL-6), das u. a. eine wichtige Rolle bei der B-Zelldifferenzierung spielt\(^{195}, \(^{196}\). Die Beteiligung von Ca\(^{2+}\) an diesen Prozessen erfordert die Aufrechterhaltung einer konstanten Calciumkonzentration im Blutserum, was u. a. durch die Mobilisierung von Ca\(^{2+}\) aus den Knochen ermöglicht wird, da diese 99 % des körpereigenen Calciumvorrats speichern\(^{197}\).
Die gestörte Entwicklung einiger B-Zell-Subpopulationen im Knochenmark von Cyp27b1\(^{-/-}\)-Tieren könnte überdies durch die Bedeutung von Vitamin D innerhalb des Knochenstoffwechsels hervorgerufen worden sein. Dort führt Calcitriol zusammen mit Parathormon, welches aus der Nebenschilddrüse freigesetzt wird, bei Osteoblasten zur Expression von RANKL. Die Bindung von RANKL an seinen Rezeptor RANK auf Osteoklasten-Vorläuferzellen induziert deren Differenzierung und Reifung zu Osteoklasten, die für den Abbau von Knochen verantwortlich sind, was letztendlich zu einer Erhöhung der extrazellulären Calciumkonzentration führt\(^{84,100,101}\). Durch die bei Vorliegen einer Vitamin D-Defizienz mögliche fehlende oder verminderte Expression von RANKL differenzieren weniger Osteoklasten-Vorläuferzellen zu reifen Osteoklasten, was zur Anhäufung von Knochengewebe (Osteopetrose) führt\(^{198}\). Von Osteopetrose betroffene Knochen zeigen einen Mangel an Knochenmark enthaltenden Hohlräumen, die den Ort der B-Zellentwicklung darstellen\(^{199}\). Durch ein so verändertes Umfeld beeinflusst und möglicherweise verstärkt durch einen Calciummangel, ließen sich die von uns beobachteten Defekte der B-Zellentwicklung erklären. Für zukünftige weiterführende Untersuchungen zur Entwicklung des Immunsystems bei Vitamin D-defizienten Cyp27b1\(^{-/-}\)-Tieren wäre es des Weiteren notwendig, eine größere Anzahl von Tieren einzusetzen, da insbesondere innerhalb der Gruppe der Cyp27b1\(^{-/-}\)-Mäuse zum Teil große Schwankungen zu beobachten waren (Abb. 18).

könnte die Instabilität von Vitamin D gegenüber direktem Licht sein200. Daher ist es möglich, dass der Vitamin D-Gehalt des Futters durch die Wirkung von direktem Licht bereits vor dem Verfüttern erniedrigt war. Ebenfalls führt eine längere Lagerung des Futters zu einer Vitamin D-Instabilität und könnte somit eine weitere Ursache für die erniedrigten 25-Hydroxyvitamin D\textsubscript{3}-Werte der Tiere sein201.

Mögliche Mechanismen, wie ein Vitamin D-Mangel zur Produktion von Autoantikörpern bzw. zur Entstehung von Autoimmunerkrankungen beitragen kann, sind in der Literatur zahlreich zu finden. Untersuchungen zum Einfluss von Calcitriol auf die Entwicklung von T\textsubscript{H}1-, T\textsubscript{H}9- und T\textsubscript{H}17-Zellen und Daten zu deren Aktivität als pathogenetische Faktoren vieler Autoimmunerkrankungen lassen vermuten, dass eine Vitamin D-Defizienz das Auftreten dieser Erkrankungen aufgrund einer gesteigerten Entwicklung von T\textsubscript{H}9- und T\textsubscript{H}17-Zellen begünstigt202. Dies geschieht möglicherweise z.B. mittels der bei Vitamin D-Mangel fehlenden suppressiven Wirkung von IL-10 auf T\textsubscript{H}9-Zellen. Die Förderung von T\textsubscript{H}17-Zellen hingegen ist infolge der fehlenden VDR-vermittelten Unterdrückung des \textit{lineage}-spezifischen Transkriptionsfaktors \textit{retinoic acid receptor-related orphan receptor \gamma t} (ROR-\gamma t) denkbar202, 203. Eine verstärkte Expression von ROR-\gamma t kann über die Aktivierung des \textit{signal transducer and activator of transcription 3} (STAT3) durch das proinflammatorische Zytokin IL-6 vermittelt werden204, 205. Dieser Effekt könnte durch einen Vitamin D-Mangel verstärkt werden, da u. a. Studien von Daniel et al. zeigen, dass 1,25(OH)\textsubscript{2}D\textsubscript{3} in einem murinen Colitis-Modell zu einer Reduzierung der IL-6-Produktion führt179.

Auch die fördernde Wirkung von 1,25(OH)\textsubscript{2}D\textsubscript{3} auf regulatorische T-Zellen (Treg)124, 125, 206 kann zur Erklärung für das Entstehen von Autoantikörpern bei Vitamin D-Mangel herangezogen werden. Als Bestätigung dafür wurde von mehreren Gruppen ein Zusammenhang zwischen dem Auftreten von Autoimmunerkrankungen und Defekten des Treg-Kompartments gezeigt207, 208.

Einen weiteren Ansatz, wie ein Vitamin D-Mangel die Entstehung von Autoantikörpern fördern kann, stellt die hemmende Wirkung von 1,25(OH)\textsubscript{2}D\textsubscript{3} auf die Proliferation und Plasmazell-Differenzierung von B-Zellen sowie die Immunglobulinfreisetzung dar127-129. Studien von Linker-Israeli et al. zeigen außerdem, dass \textit{peripheral blood mononuclear cells} (PBMCs) von Patienten mit systemischem Lupus erythematodes (SLE), die in Anwesenheit von 1,25(OH)\textsubscript{2}D\textsubscript{3}
kultiviert wurden, im Vergleich zu unbehandelten PBMCs eine verminderte Freisetzung von polyklonalem sowie dsDNA-spezifischem IgG zeigen209.
7.3 Der Knockout des Cyp27b1-Gens bei Mäusen führt zu einer erhöhten IgE-Produktion, die jedoch keinen Einfluss auf die Abwehr des Nematoden *Heligmosomoides polygyrus bakeri* hat

Der parasitäre Helminth *Heligmosomoides polygyrus bakeri* tritt in der wild-lebenden Mauspopulation natürlich auf (Abb. 2). Er hat sich stark an das murine Immunsystem angepasst und ruft chronische Infektionen hervor28, 29. Infektionen mit Helminthen zeichnen sich durch die Induktion einer starken T\textsubscript{H}2-Immunantwort aus, die durch eine erhöhte Zahl von CD4+ T-Zellen charakterisiert ist, die Zytokine wie IL-4, IL-5 und IL-13 produzieren. Das wesentliche Merkmal ist jedoch ein starker Anstieg des Immunglobulins E im Blut Helminthen-infizierter Organismen210.

In dem von uns durchgeführten Experiment wurden Cyp27b1+/+-Wildtyp-Mäuse und Vitamin D-defiziente Cyp27b1−/−-Tiere mit dem Nematoden *H. p. bakeri* infiziert und die humorale Immunantwort untersucht (Abb. 19 und Abb. 20).

In der Literatur ist zu finden, dass eine chronische Infektion von Mäusen mit adulten *H. p. bakeri* durch die bei einer primären Infektion mit den Helminthen hervorgerufene T\textsubscript{H}2-Immunantwort, nicht verhindert werden kann28. Dies wurde in der vorliegenden Arbeit durch die Bestimmung der Anzahl der Wurmeier in den Faeces (Abb. 21) sowie der Wurmlast der infizierten Tiere (Abb. 22b) bestätigt, welche eine andauernde Infektion mit den Parasiten zeigen. Ebenso und in Übereinstimmung mit der Literatur zeigen die eigenen Daten, dass infizierte Tiere durch das Verabreichen des Anthelminthikums Pyrantel pamoate von den Parasiten befreit werden können. Anschließend sollen die Tiere laut u. a. Reynolds et al. eine sehr effektive Gedächtnis-Immunantwort zeigen, die bei erneuter Infektion mit dem Nematoden eine erfolgreiche Abwehr ermöglicht29, 39, 40. Dementsprechend konnten in unseren Versuchen 14 Tage nach der sekundären Infektion mit *H. p. bakeri* keine ausgeschiedenen Eier mehr nachgewiesen werden (Abb. 21a) und auch im Darm der Mäuse waren keine Parasiten mehr vorhanden (Abb. 22a).

Bei einem Vergleich der Anzahl der Nematodeneier in den Faeces von Cyp27b1+/+-Wildtyp-Mäusen und Vitamin D-defizienten Cyp27b1−/−-Tieren vor der Behandlung mit dem Anthelminthikum, zeigten die Cyp27b1−/−-Tiere 14 Tage nach der Primärinfektion eine signifikant höhere Anzahl der Nematodeneier, gemessen pro Gramm Faeces (Abb. 21). Da diese Tiere jedoch ein anderes, mit Calcium, Phosphor und Laktose angereichertes, Futter als ihre Cyp27b1+/+-Pendants erhielten, ist wahrscheinlich ein

Vergleich zu unbehandelten Tieren zeigten infizierte Tiere beider Genotypen einen signifikanten Anstieg des zur T\(_{H2}\)-Zelldifferenzierung beitragenden Transkriptionsfaktors \textit{GATA-binding protein 3} (GATA3)\(^{212, 213}\) bei CD4\(^+\)-Lymphozyten sowie der Zytokine IL-10 und IL-13 (Daten nicht gezeigt). Dabei war sowohl GATA3 als auch das Zytokin IL-10 bei Vitamin D-defizienten Cyp27b1\(^{-/-}\)-Tieren tendenziell in geringeren Mengen nachweisbar als bei Wildtyp-Tieren. Das Zytokin IL-13 wurde bei Vitamin D-defizienten Cyp27b1\(^{-/-}\)-Tieren im Vergleich zu Cyp27b1\(^{+/+}\)-Wildtyp-Tieren sogar signifikant weniger sezerniert. Somit stimmen unsere Daten mit Ergebnissen von Studien überein, die eine T\(_{H2}\)-Immunantworten-fördernde Wirkung von Calcitriol beschreiben\(^{116, 117, 123}\). Diese ergibt sich möglicherweise durch die von Sloka et al. beobachtete Verstärkung des STAT6-Signalweges durch 1,25(OH)\(_2\)D\(_3\), die zu einer Heraufregulation der Expression des Transkriptionsfaktors GATA3 führt\(^{214}\). GATA3 wiederum vermittelt den Zugang weiterer Transkriptionsfaktoren zu den Genloci der Zytokine IL-4, IL-5 und IL-13\(^{212}\), welche somit ebenfalls vermehrt exprimiert werden.

Die Expression von IL-10 wird laut der Literatur ebenfalls durch die immunmodulatorische Wirkung von 1,25(OH)\(_2\)D\(_3\) verstärkt\(^{117}\). Heine et al. haben gezeigt, dass dies in aktivierten B-Zellen direkt durch Binden des VDR an den IL-10-Promotor und indirekt durch die Regulation des Calcium-Einstroms über den Ca\(^{2+}\)-Kanal TRPV6 geschieht\(^{187}\).

Sowohl für die Entwicklung der primären- als auch für die der Gedächtnis-T\(_{H2}\)-Antwort bei \textit{H.p. bakeri}-infizierten Mäusen sind B-Zellen von großer Bedeutung. Die von ihnen freigesetzten Antikörper\(^{39}\) inhibieren sowohl das Wachstum der Larven als auch deren Migration\(^{43}\). Dies führt zu einer verringerten Wurmlast der infizierten Mäuse, einer geringeren Anzahl an Wurmeiern in den Faeces der Wirtstiere sowie einer verminderten Fekulitität der weiblichen Nematoden\(^{44}\). Das dafür funktionell entscheidende Immunglobulin ist Studien zufolge IgG\(_1\)\(^{24, 45}\), obwohl zusätzlich auch große Mengen IgE freigesetzt werden\(^{24}\). In den Untersuchungen der vorliegenden Arbeit zeigten sowohl das Gesamt- als auch das \textit{H.p. bakeri}-spezifische IgG\(_1\) einen starken Anstieg, besonders nach der sekundären Infektion am Tag 76 (Abb. 19a und Abb. 20a). Einen Unterschied zwischen Cyp27b1\(^{+/+}\)- und Cyp27b1\(^{-/-}\)-Tieren war besonders am Tag 90 der spezifischen IgG\(_1\)-Immunantwort bei Cyp27b1\(^{+/+}\)-Tieren zu beobachten, die eine hochsignifikant stärkere Freisetzung von spezifischen IgG\(_1\) gegenüber den Cyp27b1\(^{-/-}\)-Tieren zeigten (Abb. 20a). Diese Ergebnisse stehen im Widerspruch zu Untersuchungen von Chen et al. und Lemire et al. die zeigen, dass...
Diskussion

Calcitriol bei B-Zellen bzw. bei humanen peripheren Zellen des Blutes in vitro die Produktion von IgG hemmt\(^{127, 215}\), demzufolge also ein erhöhter IgG\(_1\)-Titer bei Cyp27b1\(^{-/-}\)-Tieren zu erwarten gewesen wäre. Allerdings handelt es sich bei den Untersuchungen der genannten Autoren um in vitro-Studien, die nicht die komplexe Dynamik innerhalb eines Organismus widerspiegeln können. Es wäre zu erwarten, dass die starke Erhöhung von spezifischem IgG\(_1\), dem Immunoglobulin welches entscheidend für die Abstoßung von \textit{H. p. bakeri} ist\(^{45}\), eine effektivere Abwehr des Parasiten bei den Wildtyp-Tieren ermöglicht, was wir jedoch nicht nachweisen konnten (Abb. 22, Abb. 23). Jedoch zeigte sich die bei Cyp27b1\(^{+/+}\)-Wildtyp-Tieren gegenüber Cyp27b1\(^{-/-}\)-Tieren stark vermehrte Freisetzung von spezifischem IgG\(_1\) erstmals am Ende des Versuchs am Tag 90. Es wäre interessant gewesen, den Verlauf der Immunantwort über den Tag 90 hinaus weiter verfolgen zu können, um so einen eventuell später auftretenden Vorteil der Cyp27b1\(^{+/+}\)-Wildtyp-Tiere bei der Abwehr der Parasiten entdecken zu können.

Wie zuvor bereits bei den OVA-sensibilisierten Tieren beobachtet, zeigten Cyp27b1\(^{-/-}\)-Tiere gegenüber Cyp27b1\(^{+/+}\)-Mäusen während der Parasiteninfektion signifikant erhöhte Gesamt- und \textit{H. p. bakeri}-spezifische IgE-Werte (Abb. 19b und Abb. 20b). Dies scheint jedoch auch in unserem Modell, wie bereits von anderen\(^{24}\) gezeigt, keinen Einfluss auf die Abwehr der Parasiten zu haben (Abb. 22, Abb. 23). Der Klassenwechsel zu IgE wird, ähnlich wie der zu IgG\(_1\), durch das Zytokin IL-4 reguliert\(^{174}\). Dennoch sind im Verlauf der Infektion mit \textit{H. p. bakeri} Unterschiede von Gesamt- sowie spezifischem IgE und -IgG\(_1\) in Abhängigkeit des Vitamin D-Status zu erkennen (Abb. 19 und Abb. 20). Eine mögliche Erklärung dafür stellt die unterschiedliche Regulation der beiden Immunoglobulin-Isotypen durch IL-4 dar. Studien von Siebenkotten et al. zeigen eine Abhängigkeit des Klassenwechsels zu IgG\(_1\) und IgE von der Menge des vorhandenen IL-4. Demnach würde eine geringe Menge von IL-4 den Klassenwechsel zu IgG\(_1\) induzieren, während für den Wechsel zu IgE eine 5-fach höhere Menge des Zytokins notwendig wäre\(^{174}\). Die Bedeutung von Vitamin D für die Freisetzung von IL-4 ist bis heute unklar. Einerseits gibt es Studien die zeigen, dass Calcitriol die Produktion von IL-4 durch Th2-Zellen verstärkt\(^{185}\), andererseits solche, die einen inhibierenden Effekt von Calcitriol auf die IL-4-Produktion bei naiven murinen Th2-polarsierten Zellen darstellen\(^{175}\).

Die Ergebnisse unserer Untersuchungen bestätigen, dass die Wirkung von 1,25(OH)\(_2\)D\(_3\) Th2-Immunantworten verstärkt\(^{117, 123}\). Da Th2-Antworten über eine
verstärkte Expression von GATA3 auch zu einer vermehrten Freisetzung von IL-4 führen17 und dieses für den Klassenwechsel zu IgE benötigt wird183, 216, wären die höheren IgE-Werte anstatt bei den Vitamin D-defizienten Cyp27b11/- -Tieren, bei den Cyp27b11/+ -Mäusen zu erwarten gewesen. Da dies in unseren Untersuchungen nicht der Fall war, existieren möglicherweise über GATA3 hinaus weitere Wege, wie Calcitriol die IL-4-Produktion modulieren kann. So zeigen beispielsweise Staeva-Vieira et al., dass der VDR direkt die Transkription des \textit{IL-4}-Promotors herunterregulieren kann175. Anhand dieser Quelle ließen sich die Ergebnisse unserer Untersuchungen, Abschwächung der T\textsubscript{H2}-Antwort bei Vitamin D-defizienten Cyp27b11/- -Tieren bei gleichzeitiger Erhöhung der IgE-Freisetzung, durch eine fehlende Herabregulation des \textit{IL-4}-Promotors durch den VDR erklären. Um diese Hypothese zu bestätigen, wäre ein Profil des Zytokins IL-4 notwendig. Auch die Rolle von IL-10 könnte für eine Erklärung der ermittelten Unterschiede zwischen IgG\textsubscript{1} und IgE herangezogen werden. Studien von Jeannin et al. mit humanen PBMCs zeigen, dass IL-10 die IgE-Produktion über eine Verminderung der Expression des \textit{e}-Transskripts verringert. Ebenso wurde von den Autoren eine verstärkte Produktion von IgG\textsubscript{4}, was dem murinen IgG\textsubscript{1} entspricht217, durch IL-10 beobachtet218. Ergänzend zeigen Analysen von Punnonen et al. mit humanen PBMCs, dass IL-10 die IL-4-induzierte Synthese des \textit{e}-Keimbahntransskripts inhibiert und so eine Verringerung der IgE-Produktion bewirkt219. Diese Ergebnisse spiegeln sich in unseren Daten der \textit{H.p. bakeri}-spezifischen Immunglobulinantworten sowie Zytokinmessungen aus Vorversuchen wider: Cyp27b11/- -Mäuse haben bedingt durch den Vitamin D-Mangel eine geringere IL-10-Freisetzung, was zu den beobachteten niedrigeren IgG\textsubscript{1} - und erhöhten IgE-Konzentrationen geführt haben könnte. Untersuchungen zur Rolle von IgA legen nahe, dass das Immunglobulin keinen bedeutenden Einfluss auf die Abwehr des Nematoden \textit{H.p. bakeri} hat24, obwohl sich dessen Lebenszyklus zu einem großen Teil im Darmlumen des Wirtes abspielt29. IgA stellt die am stärksten vertretene Immunglobulinklasse im Darmlumen von Menschen und anderen Säugetieren dar220. In unseren Untersuchungen mit \textit{H.p. bakeri}-infizierten Cyp27b11/+ - und Cyp27b11/- -Tieren war im Verlauf der Gesamt-IgA-Antwort bei keinem der beiden Genotypen eine Reaktion im Sinne eines Anstiegs auf die Infektion erkennbar (Abb. 19c). Interessanterweise zeigt der Verlauf von Gesamt-IgA tendenziell höhere, jedoch nicht signifikant erhöhte Werte bei den Cyp27b11/+ -Tieren, verglichen mit den Werten der Vitamin D-defizienten Cyp27b11/- -Tiere. Eine
mögliche Ursache für diesen Unterschied könnte das von Vitamin D beeinflusste Homing der IgA-Antikörper-sezernierenden Zellen sein. Diese exprimieren den Chemokin-Rezeptor CCR10, der es ihnen erlaubt auf das Chemokin CCL28 anzusprechen, welches neben anderen Mukosa-assoziierten Geweben auch im Darm exprimiert wird221, 222. Studien von Shirakawa et al. haben gezeigt, dass der Chemokin-Rezeptor CCR10 bei B-Zellen durch Calcitriol induziert wird223. Dies könnte für unser Modell bedeuten, dass B-Zellen der Wildtyp-Mäuse, verglichen mit denen der Cyp27b1-/--Tiere, eventuell vermehrt in den Darm einwandern und zu IgA-produzierenden Plasmazellen differenzieren. Um dies zu verifizieren, wäre es für nachfolgende Untersuchungen notwendig, die Anzahl der IgA-Antikörper-sezernierenden-Zellen im Darm zu messen.

Die Werte des \(H. p. \text{bakeri}\)-spezifischen IgA zeigen bei beiden Genotypen einen Anstieg nach der primären sowie der sekundären Infektion (Abb. 20c). Auch hier war der Unterschied zwischen den beiden Genotypen nicht signifikant. Dennoch scheinen Cyp27b1+/--Tiere, trotz großer Schwankungen zwischen den Tieren der beiden Genotypen untereinander, tendenziell mit einer stärkeren \(H. p. \text{bakeri}\)-spezifischen IgA-Freisetzung auf die Infektion zu reagieren. Der Klassenwechsel zu IgA benötigt das Zytokin TGF-\(\beta\), welches von CD4+ T-Zellen freigesetzt wird. Durch Bindung des Zytokins an seinen Rezeptor (TGF\(\beta\)R) wird eine Signalkaskade aktiviert, die zur Phosphorylierung von \(\text{mothers against decapentaplegic homologue (SMAD)}\)-Proteinen führen, welche daraufhin an SMAD-binding elements in der Promotorregion ihrer Zielgene binden. Dazu gehört auch der Promotor der konstanten schweren Kette (C\(\alpha\)) des IgA-Moleküls177. Durch Studien ist bekannt, dass 1,25(OH)\textsubscript{2}D\textsubscript{3} den TGF-\(\beta\)-Signalweg negativ beeinflussen kann224-226. Dies geschieht nach Untersuchungen von Ito et al. durch Bindung des VDR an SMAD3, wodurch dessen Interaktion mit Promotorregionen von TGF-\(\beta\)-Zielgenen unterdrückt und deren Expression somit supprimiert wird226. Diese Ergebnisse stellen eine Erklärung für die gegenüber Cyp27b1+/--Wildtyp-Tieren tendenziell erhöhten spezifischen IgA-Werte bei Vitamin D-defizienten Cyp27b1-/--Tieren dar, da bei diesen möglicherweise durch die fehlende hemmende Wirkung von 1,25(OH)\textsubscript{2}D\textsubscript{3} auf den TGF-\(\beta\)-Signalweg vermehrt die konstante schwere Kette (C\(\alpha\)) des IgA-Moleküls exprimiert wird.

Der Vergleich der Verläufe von Gesamt-IgA und \(H. p. \text{bakeri}\)-spezifischem IgA zeigt, dass Cyp27b1+/--Tiere tendenziell mehr Gesamt-IgA produzieren während Cyp27b1-/--
-Mäuse höhere Werte des \textit{H. p. bakeri}-spezifischen IgA aufweisen. Dies erscheint zunächst widersprüchlich, kann jedoch dadurch begründet werden, dass spezifisches IgA nur einen geringen Teil des Gesamt-IgA darstellt, dementsprechend also keinen starken Einfluss auf die Gesamt-IgA-Werte ausübt, die zudem eine große Spannweite der beiden Genotypen untereinander aufzeigen.

Die nach Infektion von Cyp27b1+/-- und Vitamin D-defizienten Cyp27b1-/--Tieren mit dem Nematoden \textit{H. p. bakeri} erhaltenen Daten verifizieren erneut, dass Calcitriol die Bildung von IgE negativ reguliert128, 129 und ein Vitamin D-Mangel eine erhöhte Produktion des Immunglobulins E begünstigt. Unsere Untersuchungen bestätigen darüber hinaus, dass IgE bei der Abwehr von \textit{H. p. bakeri} keine zentrale Rolle zu spielen scheint24. Um den Einfluss von Vitamin D während einer Parasiteninfektion besser untersuchen zu können, wäre es sinnvoll, ein stärker IgE-abhängiges Modell zu wählen. Dies könnte beispielsweise die Infektion von Cyp27b1+/-- und Vitamin D-defizienten Cyp27b1-/--Tieren mit dem Trematoden \textit{Schistosoma mansoni} (S. mansoni) sein. In Untersuchungen mit Wildtyp- und IgE-defizienten Mäusen, die mit S. mansoni infiziert wurden, zeigten IgE-defiziente-Tiere eine höhere Wurmlast verglichen mit Wildtyp-Tieren, was nahelegt, dass IgE in diesem Modell eine Rolle bei der Abwehr der Parasiten zu spielen scheint227.

Zusammenfassend legen die vorgelegten Daten die Vermutung nahe, dass in unserem Modell Vitamin D keinen nachweisbaren Einfluss auf den Ausgang der akuten und chronischen Infektion mit dem Parasiten \textit{Heligmosomoides polygyrus bakeri} hat.
8 Literatur

Online-Referenz der University of Birmingham zur Auswertung der HEp2-Färbungen von Autoantikörpern gegen nukleäre und zytoplasmatische Antigene:

45. Pritchard DI, Williams DJ, Behnke JM, Lee TD. The role of IgG1 hypergammaglobulinaemia in immunity to the gastrointestinal nematode Nematodirus dubius. The immunochemical purification, antigen-specificity and in vivo anti-parasite effect of IgG1 from immune serum. Immunology 1983; 49:353-65.

68. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A 2004; 101:7711-5.

100. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004; 80:1689S-96S.

9 Danksagung

Als erstes möchte ich mich herzlich bei Frau Prof. Dr. med. Margitta Worm für die Überlassung dieses Themas sowie die Möglichkeit, diese Arbeit in ihrer Arbeitsgruppe an der Charité Berlin durchzuführen, bedanken. Weiterhin danke ich Frau Prof. Worm für ihre Unterstützung und Betreuung in allen Phasen dieser Arbeit. Des Weiteren bedanke ich mich bei Herrn Prof. Dr. rer. nat. Kai Matuschewski für die Bereitschaft meine Arbeit zu betreuen.

Ein Dankeschön an Herrn PD. Dr. med. Guido Heine für das Bekanntmachen mit dem Gebiet der Vitamin D-Forschung und zahlreiche Diskussionen.

Danke auch an Frau Dr. rer. nat. Magda Babina für viele nützliche Hinweise.

Der Arbeitsgruppe von Frau Prof. Dr. rer. nat. Susanne Hartmann, im Besonderen Dr. rer. nat. Sebastian Rausch, danke ich sehr für die nette Zusammenarbeit während der Untersuchung der *H.p.bakeri*-Infektion bei unseren Mäusen.

Der Arbeitsgruppe von Herrn Prof. Dr. rer. nat. Fritz Melchers, besonders Jana Winckler, danke ich für die durchflusszytometrische Untersuchung der Leukopoese unserer Mäuse.

Ein besonderer Dank an Dennis Ernst, der scheinbar alles weiß und alles kann und mir immer mit Rat und Tat hilfreich zur Seite stand.

Einen großen Dank an die Mitglieder der Arbeitsgruppe Worm, vor allem Dr. rer. nat. Kristin Franke, Dr. rer. nat. Maria Nassiri, Dr. rer. nat. Vandana Kumari, Davender, Tarek Hazzan, Marina Aparicio Soto, Josephine Scholz und Wojciech Francuzik.

Ganz besonders danken möchte ich meinen Büromitstreitern Sandra Treptow und Tina Krause für die vielen lustigen Momente, die gegenseitigen Aufmunterungen und Analysen sowie das eine oder andere Stück Kuchen.

Der größte Dank gilt aber meiner Familie, besonders meinen Eltern, für ihr Interesse, ihre Geduld und ihre Unterstützung in dieser Zeit.

Berlin, den 10.05.2016

Juliane Lindner
11 Anhang

11.1 Nachweis aktivierter B- und T-Lymphozyten mittels Durchflusszytometrie

Nach 24-stündiger Stimulation mit anti-CD40 und IL-4 war sowohl der MFI CD69-gefärbter Zellen (+173 %) als auch der MFI CD86-gefärbter Zellen (+62 %) bei B220^+ B-Zellen im Vergleich zu unstimulierten Zellen erhöht (Anhang Abb. IIa, b und Anhang Tab. I).
Anhang Abb. II: Median der Fluoreszenzintensität (MFI) unstimulierter und stimulierter B220⁺ B-Lymphozyten.

Jeweils 1 x 10⁶ Splenozyten wurden B-Zell-spezifisch mit 10 µg/ml anti-CD40 und 20 ng/ml IL-4 für 24 h stimuliert. Als Kontrollen dienten mit 20 ng/ml PMA und 149 ng/ml Ionomycin stimulierte sowie unstimulierte Splenozyten. Zur Diskriminierung von B- und T-Lymphozyten wurden die Zellen mit anti-B220 und anti-CD4 gefärbt. Als Marker für die Aktivierung dienten a) CD69 und b) CD86, (n=1).

<table>
<thead>
<tr>
<th>Lymphozyt</th>
<th>Stimulation</th>
<th>Aktivierungsmarker</th>
<th>MFI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unstimuliert</td>
<td>CD69</td>
<td>228</td>
</tr>
<tr>
<td>B220⁺</td>
<td>anti-CD40 / IL-4</td>
<td></td>
<td>622</td>
</tr>
<tr>
<td>B220⁺</td>
<td>PMA / Ionomycin</td>
<td></td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>unstimuliert</td>
<td>CD86</td>
<td>381</td>
</tr>
<tr>
<td>B220⁺</td>
<td>anti-CD40 / IL-4</td>
<td></td>
<td>619</td>
</tr>
<tr>
<td></td>
<td>PMA / Ionomycin</td>
<td></td>
<td>639</td>
</tr>
</tbody>
</table>

Anhang Tab. I: Übersicht über Stimulation, Aktivierungsmarker und gemessene MFI nach 24 h.

Auch bei CD4⁺ T-Zellen war nach 24-stündiger Stimulation mit anti-CD3 und anti-CD28 der MFI CD69-gefärbter Zellen (+189 %) und CD137-gefärbter Zellen (+23 %) im Vergleich zu unstimulierten Zellen erhöht (Anhang Abb. IIIa, b und Anhang Tab. II).
Anhang Abb. III: Median der Fluoreszenzintensität (MFI) unstimulierter und stimulierter CD4⁺ T-Lymphozyten.

<table>
<thead>
<tr>
<th>Lymphozyt</th>
<th>Stimulation</th>
<th>Aktivierungsmarker</th>
<th>MFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4⁺</td>
<td>unstimuliert</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>anti-CD3 / anti-CD28</td>
<td>CD69</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>PMA / Ionomycin</td>
<td></td>
<td>697</td>
</tr>
<tr>
<td>CD4⁺</td>
<td>unstimuliert</td>
<td></td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>anti-CD3 / anti-CD28</td>
<td>CD137</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>PMA / Ionomycin</td>
<td></td>
<td>255</td>
</tr>
</tbody>
</table>

Anhang Tab. II: Übersicht über Stimulation, Aktivierungsmarker und gemessene MFI nach 24 h.
11.2 Gegenüberstellung verschiedener Subpopulationen des Immunsystems von Cyp27b1\(^{+/+}\) - und Cyp27b1\(^{-/-}\) -Mäusen

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelltyp</th>
<th>Absolute Zellzahlen</th>
<th>Prozentualer Anteil / Organ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cyp27b1(^{-/-})</td>
<td>Cyp27b1(^{+/+})</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19(^{+}) B-Zellen(^{232,233})</td>
<td>3,31 x 10(^5)</td>
<td>2,64 x 10(^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,87 x 10(^4)</td>
<td>4,22 x 10(^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,74 x 10(^3)</td>
<td>5,24 x 10(^4)</td>
</tr>
<tr>
<td>Peritoneum</td>
<td></td>
<td>9,30 x 10(^5)</td>
<td>2,04 x 10(^6)</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>1,53 x 10(^4)</td>
<td>1,09 x 10(^5)</td>
</tr>
<tr>
<td>Milz</td>
<td>CD19(^{+}) IgM(^{+}) IgD(^{-}) unreife B-Zellen(^{234})</td>
<td>3,59 x 10(^4)</td>
<td>9,05 x 10(^4)</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19(^{+}) CD21(^{-}) CD23(^{-}) Transitional Typ 1(^{235})</td>
<td>6,90 x 10(^2)</td>
<td>3,76 x 10(^3)</td>
</tr>
<tr>
<td>Peritoneum</td>
<td></td>
<td>4,76 x 10(^4)</td>
<td>1,91 x 10(^5)</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>7,98 x 10(^4)</td>
<td>1,31 x 10(^5)</td>
</tr>
<tr>
<td>Milz</td>
<td>CD19(^{+}) CD21(^{+}) CD23(^{+}) Transitional Typ 2(^{235})</td>
<td>5,36 x 10(^4)</td>
<td>1,74 x 10(^5)</td>
</tr>
<tr>
<td>Knochenmark</td>
<td></td>
<td>5,01 x 10(^3)</td>
<td>2,09 x 10(^4)</td>
</tr>
<tr>
<td>Peritoneum</td>
<td></td>
<td>1,23 x 10(^5)</td>
<td>2,30 x 10(^5)</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>5,58 x 10(^3)</td>
<td>7,98 x 10(^3)</td>
</tr>
<tr>
<td>Milz</td>
<td>CD19(^{+}) CD21(^{+}) CD23(^{+}) Transitional Typ 2(^{235})</td>
<td>5,28 x 10(^2)</td>
<td>6,62 x 10(^2)</td>
</tr>
<tr>
<td>Knochenmark</td>
<td></td>
<td>1,76 x 10(^1)</td>
<td>1,28 x 10(^2)</td>
</tr>
<tr>
<td>Peritoneum</td>
<td></td>
<td>6,21 x 10(^4)</td>
<td>1,33 x 10(^5)</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>7,23 x 10(^2)</td>
<td>2,13 x 10(^3)</td>
</tr>
<tr>
<td>Milz</td>
<td>CD21(^{+}) CD23(^{-}) B-Zellen der Maginalzone(^{235})</td>
<td>1,12 x 10(^2)</td>
<td>1,10 x 10(^2)</td>
</tr>
<tr>
<td>Knochenmark</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peritoneum</td>
<td></td>
<td>9,24 x 10(^4)</td>
<td>2,81 x 10(^5)</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>3,40 x 10(^4)</td>
<td>1,46 x 10(^4)</td>
</tr>
<tr>
<td>Milz</td>
<td>CD19(^{+}) IgM(^{+}) IgD(^{+}) reife B-Zellen(^{234})</td>
<td>7,33 x 10(^3)</td>
<td>4,48 x 10(^4)</td>
</tr>
<tr>
<td>Knochenmark</td>
<td></td>
<td>7,78 x 10(^2)</td>
<td>7,16 x 10(^2)</td>
</tr>
<tr>
<td>Peritoneum</td>
<td></td>
<td>6,72 x 10(^4)</td>
<td>1,20 x 10(^5)</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>2,05 x 10(^3)</td>
<td>6,95 x 10(^3)</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Anhang Tab. III: B-Zellen

Angegeben ist jeweils der Median (n=3).

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelltyp</th>
<th>Absolute Zellzahlen</th>
<th>Prozentualer Anteil / Organ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peritoneum</td>
<td>B-Zellen nach Isotypenwechsel (switched) 236</td>
<td>3,78 x 10²</td>
<td>4,31 x 10²</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>9,28 x 10²</td>
<td>7,82 x 10³</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>1,27 x 10³</td>
<td>8,39 x 10³</td>
</tr>
<tr>
<td>Organ</td>
<td>Zelltyp</td>
<td>Absolute Zellzahl</td>
<td>Prozentualer Anteil / Organ [%]</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>Cyp27b1<sup>-</sup></td>
<td>Cyp27b1<sup>++</sup></td>
<td></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>+</sup></td>
<td>2,93 x 10<sup>3</sup></td>
<td>1,06 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Peritoneum</td>
<td>AA4.1<sup>+</sup> cKit<sup>+</sup></td>
<td>1,14 x 10<sup>2</sup></td>
<td>1,39 x 10<sup>2</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>Pro-B-Zelle<sup>237</sup></td>
<td>9,78 x 10<sup>2</sup></td>
<td>5,96 x 10<sup>2</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>+</sup></td>
<td>3,90 x 10<sup>4</sup></td>
<td>6,50 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Peritoneum</td>
<td>AA4.1<sup>+</sup> cKit<sup>+</sup></td>
<td>3,23 x 10<sup>2</sup></td>
<td>4,80 x 10<sup>2</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>Prä-B-Zelle<sup>237, 238</sup></td>
<td>1,24 x 10<sup>4</sup></td>
<td>2,40 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>+</sup></td>
<td>2,90 x 10<sup>4</sup></td>
<td>6,04 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Peritoneum</td>
<td>AA4.1<sup>+</sup> CD25<sup>+</sup></td>
<td>4,06 x 10<sup>2</sup></td>
<td>5,68 x 10<sup>2</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>Pro-B / Prä-B-1<sup>239</sup></td>
<td>8,80 x 10<sup>3</sup></td>
<td>2,06 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>+</sup></td>
<td>1,14 x 10<sup>4</sup></td>
<td>1,75 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Peritoneum</td>
<td>AA4.1<sup>+</sup> CD25<sup>+</sup></td>
<td>3,72 x 10<sup>1</sup></td>
<td>4,00 x 10<sup>1</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>Prä-B / Prä-B-2<sup>239</sup></td>
<td>5,15 x 10<sup>2</sup></td>
<td>7,15 x 10<sup>2</sup></td>
</tr>
</tbody>
</table>

Anhang Tab. IV: Unreife B-Zellen

Angegeben ist jeweils der Median (n=3).
<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelltyp</th>
<th>Absolute Zellzahl</th>
<th>Prozentualer Anteil / Organ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cyp27b1⁺⁺⁺⁻⁻⁻</td>
<td>Cyp27b1⁺⁺⁺⁻⁻⁻</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD4⁺ T-Zellen 240</td>
<td>1,50 x 10⁵</td>
<td>1,02 x 10⁵</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>8,40 x 10⁴</td>
<td>5,38 x 10⁶</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>4,56 x 10⁵</td>
<td>1,20 x 10⁶</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD4⁺ CD25⁺ regulatorische T-Zellen 241</td>
<td>2,35 x 10⁴</td>
<td>1,78 x 10⁴</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>2,19 x 10⁴</td>
<td>8,47 x 10⁴</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>6,29 x 10⁴</td>
<td>1,24 x 10⁵</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD4⁺ CD44⁺ Gedächtnis-T-Zellen 242</td>
<td>3,00 x 10⁴</td>
<td>2,95 x 10⁴</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>6,83 x 10³</td>
<td>7,55 x 10⁴</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>7,58 x 10⁴</td>
<td>1,25 x 10⁵</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD8⁺ cytotoxische T-Zellen 243</td>
<td>1,55 x 10⁵</td>
<td>7,20 x 10⁴</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>1,29 x 10⁵</td>
<td>6,48 x 10⁵</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>7,19 x 10⁵</td>
<td>9,35 x 10⁵</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD8⁺ CD25⁺ regulatorische T-Zellen 244</td>
<td>5,72 x 10²</td>
<td>3,20 x 10²</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>2,45 x 10⁴</td>
<td>7,27 x 10⁴</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>4,24 x 10³</td>
<td>4,32 x 10³</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD8⁺ CD44⁺ Gedächtnis-T-Zellen 242</td>
<td>1,76 x 10⁴</td>
<td>1,69 x 10⁴</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>3,05 x 10³</td>
<td>3,89 x 10⁴</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>3,16 x 10⁴</td>
<td>9,31 x 10⁴</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD4⁺ CD8⁺ doppelt positive T-Zellen 245</td>
<td>1,77 x 10³</td>
<td>7,26 x 10³</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>9,29 x 10⁵</td>
<td>9,33 x 10⁶</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>4,30 x 10³</td>
<td>1,44 x 10⁴</td>
</tr>
</tbody>
</table>

Anhang Tab. V: T-Zellen

Angegeben ist jeweils der Median (n=3).
<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelltyp</th>
<th>Absolute Zellzahl</th>
<th>Prozentualer Anteil / Organ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cyp27b1<sup>−</sup></td>
<td>Cyp27b1<sup>+</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> CD11b<sup>high</sup></td>
<td>2,07 x 10<sup>5</sup></td>
<td>3,06 x 10<sup>5</sup></td>
</tr>
<tr>
<td>Peritoneum</td>
<td>Makrophagen<sup>246</sup></td>
<td>1,33 x 10<sup>5</sup></td>
<td>2,98 x 10<sup>5</sup></td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>1,90 x 10<sup>3</sup></td>
<td>3,46 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td>5,80 x 10<sup>4</sup></td>
<td>6,00 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> Gr-1<sup>+</sup></td>
<td>7,51 x 10<sup>5</sup></td>
<td>1,33 x 10<sup>6</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>Granulozyten<sup>247</sup></td>
<td>5,28 x 10<sup>4</sup></td>
<td>8,28 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> CD11b<sup>+</sup> Gr-1<sup>−</sup></td>
<td>6,19 x 10<sup>5</sup></td>
<td>1,20 x 10<sup>6</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>Neutrophile<sup>248</sup> / myeloide Suppressorzellen<sup>249</sup></td>
<td>3,29 x 10<sup>4</sup></td>
<td>6,37 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> CD11b<sup>hi</sup> Gr-1<sup>−</sup></td>
<td>1,27 x 10<sup>5</sup></td>
<td>1,75 x 10<sup>5</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>CD19<sup>−</sup> CD11b<sup>hi</sup> Gr-1<sup>−</sup></td>
<td>8,39 x 10<sup>3</sup></td>
<td>1,19 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> CD11b<sup>int</sup> Gr-1<sup>−</sup></td>
<td>1,58 x 10<sup>5</sup></td>
<td>2,73 x 10<sup>5</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>CD19<sup>−</sup> CD11b<sup>int</sup> Gr-1<sup>−</sup></td>
<td>4,20 x 10<sup>3</sup></td>
<td>7,30 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> CD11b<sup>int</sup> Gr-1<sup>−</sup></td>
<td>7,37 x 10<sup>5</sup></td>
<td>1,31 x 10<sup>6</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>CD19<sup>−</sup> CD11b<sup>int</sup> Gr-1<sup>−</sup></td>
<td>2,60 x 10<sup>4</sup></td>
<td>1,02 x 10<sup>5</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> CD11c<sup>+</sup> Gr-1<sup>−</sup></td>
<td>7,29 x 10<sup>4</sup></td>
<td>1,78 x 10<sup>5</sup></td>
</tr>
<tr>
<td>Peritoneum</td>
<td>CD11c<sup>+</sup> Gr-1<sup>−</sup></td>
<td>4,56 x 10<sup>3</sup></td>
<td>1,10 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Thymus</td>
<td>Dendritische Zellen<sup>251</sup></td>
<td>1,52 x 10<sup>4</sup></td>
<td>9,68 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>Dendritische Zellen<sup>251</sup></td>
<td>1,43 x 10<sup>5</sup></td>
<td>1,12 x 10<sup>5</sup></td>
</tr>
<tr>
<td>Knochenmark</td>
<td>CD19<sup>−</sup> CD11c<sup>+</sup> Gr-1<sup>−</sup></td>
<td>2,56 x 10<sup>4</sup></td>
<td>3,78 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Milz</td>
<td>plazmytoide dendritische Zellen<sup>252</sup></td>
<td>1,43 x 10<sup>4</sup></td>
<td>2,09 x 10<sup>4</sup></td>
</tr>
</tbody>
</table>

Anhang Tab. VI: Myeloide Zellen

Angegeben ist jeweils der Median (n=3).