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Zusammenfassung

Sensorische Nervenzellen kodieren Informationen über die Umwelt oder Zustände des
Körperinneren mittels elektrischer Impulse, sogenannte Aktionspotentiale oder Spikes.
Diese werden weitergeleitet zu postsynaptischen Neuronen im zentralen Nervensystem,
welche unterschiedliche Auslesestrategien verwenden. Integratorzellen summieren alle
ankommenden Aktionspotentiale auf, wodurch sie die Gesamtaktivität einer präsynap-
tischen Population messen. Koinzidenzdetektoren hingegen, werden nur durch das syn-
chrone Feuern der zuführenden Neuronenpopulation aktiviert.

Die grundlegende Frage dieser Dissertation lautet: Welche Information eines zeitab-
hängigen Signals kodieren die synchronen Spikes einer Neuronenpopulation im Ver-
gleich zu der Summe all ihrer Aktionspotentiale? Hierbei verwenden wir die Theo-
rie stochastischer Prozesse: wir berechnen Spektralmaße, die es ermöglichen Aussagen
darüber zu treffen welche Frequenzkomponenten eines Signals vorwiegend transmit-
tiert werden. Im Gegensatz zu früheren Studien, verstehen wir unter einem synchro-
nen Ereignis nicht zwangsläufig, dass die gesamte Population simultan feuert, sondern,
dass ein minimaler Anteil („Synchronizitätsschranke") gleichzeitig aktiv ist. Diese Def-
inition von Synchronizität ist realistischer, da sie berücksichtigt, dass Koinzidenzdetek-
toren eine festgelegte Aktivierungsschranke aufweisen.

Unsere Analyse zeigt, dass die synchrone Populationsaktivität als ein Bandpass-
Informationsfilter agieren kann: die synchronen Spikes kodieren hauptsächlich schnelle
Signalanteile. Diesen Effekt bezeichnen wir als ’Synchrony Code’. Damit stellt die
Selektion simultaner Neuronenaktivität ein potentielles Mittel dar um gleichzeitig an-
wesende, konkurrierende Signale voneinander zu trennen. Dabei hängen die genauen
Charakteristika der Informationsfilterung ausschlaggebend von der Synchronizitäts-
schwelle ab. Insbesondere zeigt sich, dass eine Symmetrie in der Schwelle vorliegt, die
die Äquivalenz der Kodierungseigenschaften von synchronem Feuern und synchronem
Schweigen offenlegt. Wir führen ein einfaches Qualitätsmaß des Synchrony Codes ein,
welches die Abschätzung einer optimalen Synchronizitätsschwelle ermöglicht. Unsere
analytischen Ergebnisse, welche nicht an ein bestimmtes Neuronenmodell gebunden
sind, testen wir mittels numerischer Simulationen vom Leaky Integrate-and-Fire Modell.

Die afferenten Neuronen der Elektrorezeptoren von schwach elektrischen Fischen stel-
len ein biologisches Modellsystem für unsere Fragestellung dar. Auswertungen von
in-vivo-Versuchen an diesem Organismus belegen, dass unsere theoretischen Vorher-
sagen qualitativ auch für reale Nervenzellen gültig sind. Die Güte der Informations-
übertragung der synchronen Aktivität hängt jedoch wesentlich von den physiologischen
Eigenschaften der sensorischen Zellen ab. Anhand theoretischer Untersuchungen zeigen
wir, dass eine minimale Leck-Leitfähigkeit der Zellmembran (Durchlässigkeit für Io-
nen im Ruhezustand der Zelle) eine notwendige Bedingung für einen Synchrony Code
darstellt. Im schwach elektrischen Fisch findet man zwei Arten von sensorischen Neuro-
nen mit sehr unterschiedlichen Kodierungseigenschaften vor: P-Units weisen einen aus-
geprägten Synchrony Code auf, wohingegen die synchronen Spikes von Ampullärzellen
kaum Information über einen Stimulus beinhalten. Unsere theoretischen Resultate legen
demnach nahe, dass P-Units effektiv eine viel höhere Leck-Leitfähigkeit aufweisen als
Ampullärzellen.
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Abstract

Populations of sensory neurons encode information about the environment into elec-
trical pulses, so called action potentials or spikes. Neurons in the brain process these
pulses further by using different readout strategies. Integrator cells sum up all incoming
action potentials and are thus sensitive to the overall activity of a presynaptic popula-
tion. Coincidence detectors, on the other hand, are activated by the synchronous firing
of the afferent population.

The main question of this thesis is: What information about a common time-dependent
stimulus is encoded in the synchronous spikes of a neuronal population in comparison
to the sum of all spikes? We approach this question within the framework of spectral
analysis of stochastic processes, which allows to assess which frequency components of
a signal are predominantly encoded. Here, in contrast to earlier studies, a synchronous
event does not necessarily mean that all neurons of the population fire simultaneously,
but that at least a prescribed fraction (’synchrony threshold’) needs to be active within
a small time interval. This more realistic form of synchrony takes into account that a
coincidence detector has a certain activation threshold. We derive analytical expres-
sions of the correlation statistics and test them against numerical simulations of the leaky
integrate-and-fire neuron model.

We show that the information transmission of the synchronous output depends highly
on the synchrony threshold. We uncover a symmetry in the synchrony threshold, un-
veiling the similarity in the encoding capability of the common firing and the common
silence of a population. Our results demonstrate that the synchronous output can act
as a band-pass filter of information, i.e. it extracts predominantly fast components of
a stimulus, which can be considered as a ’synchrony code’. If signals in different fre-
quency regimes are concurrently present, the selection of synchronous firing events can
thus be a tool to separate these signals. Introducing a simple measure of the quality of
the band-pass filtering effect allows us to make predictions about an optimal synchrony
threshold.

The electroreceptor afferents of the weakly electric fish constitute a biological model
system for our problem. In vivo recordings from this organism show that our theoretical
predictions are qualitatively found in real neurons. The potential coding efficiency of the
synchronous output is, however, determined by physiological properties of the sensory
cells: we deduce from theoretical considerations that a minimal leak conductance of
the membrane (permeability for ions in the cell’s resting state) is necessary to obtain a
synchrony code in terms of information filtering. In the weakly electric fish one finds
two types of sensory neurons: P-units show a pronounced synchrony code, whereas the
synchronous spikes of ampullary cells hardly carry any information about the stimulus.
Our theoretical results thus suggest that P-units have a much higher leak conductance
than ampullary cells do.
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Chapter 1.

Introduction

Sensory neurons transfer information about the environment (like light, sound, skin
pressure, scent, etc.) to other elements of the nervous system via the language of ac-
tion potentials (spikes). One of the key challenges of neuroscience is to understand how
information about the outer world is encoded in this activity of sensory neurons, i.e. to
comprehend the ’neuronal code’. The brain has to recover analogue, dynamic signals
(input) from a digital sequence of spikes (output). This reconstruction problem needs
to be addressed by a probabilistic approach because neurons are not deterministic sys-
tems: when repeatedly exposed to an identical stimulus, a neuron’s response differs
at each trial. Information theory, pioneered by Claude Shannon, provides a theoretical
framework that is able to quantify neuronal signal transmission in a probabilistic and
model-free way. Information-theoretical measures, such as the mutual information or
the related coherence function, do not tell us how, but how much information about a
stimulus is transferred by a spike train. This allows to make statements about the effi-
ciency of a neuronal system to encode a certain stimulus. This way one can test which
stimuli or stimulus aspects are transmitted best and thus learn more about the neuronal
code.

Usually, a signal is encoded not by a single cell, but by an ensemble of sensory neu-
rons that convey their spikes to postsynaptic cells in a feed-forward, converging manner.
One finds different readout strategies by the postsynaptic neuron: integrators sum up all
incoming spikes, whereas coincidence detectors are activated only if the population fires
synchronously. The aim of this thesis is to investigate and to compare the encoding prop-
erties of both population outputs: the summed and the synchronous population activity.
Novel in this work is that we keep the requirement for synchrony as a free parameter,
i.e. not the entire population but a minimal fraction of it (’synchrony threshold’) needs
to fire simultaneously. We call the time series of these synchronous events the partially
synchronous output (PSO).

1.1. Thesis outline

The thesis is organized as follows: in the remainder of this chapter we give a brief
overview about basic neurophysiological mechanisms and concepts (generation of ac-
tion potentials, types of postsynaptic cells, sources of neuronal noise). Then, we intro-
duce the mathematical and statistical description of neuronal activity and discuss the
model that we use in this thesis. Furthermore, we introduce the weakly electric fish as
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Chapter 1. Introduction

an important model organism to study sensory information transmission. We expound
that they possess two types of electroreceptor afferents that feature very different cod-
ing properties. Finally, we review earlier findings about the mathematical mechanism
behind a synchrony code for the simple case of pairs of neurons.

In Chapter 2 we show in theoretical terms that the distinct coding behaviors of the
electrosensory afferents in weakly electric fish are much likely linked to different levels
of the leak conductance.

In Chapter 3 we investigate the distribution of the summed activity of a neuronal
population driven by common noise. We show that under weak stimulation the summed
output of a large population can be approximated by a Gaussian process.

In Chapter 4 we investigate the statistical properties of the partially synchronous out-
put. We derive analytical approximations of the mean of the PSO, its power spectrum
and its cross-spectrum with a weak common stimulus. We employ two different ap-
proaches and test the results against numerical simulations of leaky integrate-and-fire
neurons. From the analytical results we can deduce general properties of the PSO, in
particular we unveil a symmetry in the synchrony threshold around the mean popula-
tion activity.

Finally, in Chapter 5, we put together all previous results to examine the spectral co-
herence function of the PSO. We show that in contrast to the broadband coding of the
summed population output, the PSO can act as a band-pass filter of information. We
discuss under which circumstances one can expect a pronounced ’synchrony code’. We
show that these predictions are in line with simulation results of leaky integrate-and-fire
neurons and hold qualitatively true for recordings from the weakly electric fish.

Some of the results in this thesis have been published in three papers. Plots from
recordings of the weakly electric fish that occur in the introduction and parts of Chap.
2 were published in (Grewe et al., 2017). The results in Chap. 3 have been published in
(Kruscha and Lindner, 2015) and the main part of Chap. 4 was published in (Kruscha
and Lindner, 2016).

1.2. Biological properties of neuronal activity

In this section we briefly introduce basic properties of neuronal activity. A detailed in-
troduction to neurophysiology and neuroanatomy can be found, for example, in Kandel
et al. (2000).

A neuron is said to get ’activated’ if its electrical membrane potential crosses an indi-
vidually defined threshold value, which leads to the opening of ion channels, such that
the voltage potential rapidly rises and falls again (within 1-2 ms). This event is called
action potential or spike (the neuron ’fires’) and it is believed that all important informa-
tion is encoded in the times or rate at which action potentials occur. The time series of
consecutive action potentials is called spike train.

Sensory neurons, also called receptor afferents, are nerve cells that transmit sensory
information about the environment to other elements of the nervous system. A stimu-
lus generates action potentials in the sensory neuron that travel along the axon to the
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1.2. Biological properties of neuronal activity

receptor
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Figure 1.1.: Sketch of a sensory neuron. Sensory neurons [purple] transmit the
stimulus-induced activation of receptors [cyan] into electrical impulses that
travel along the axon towards the central nervous system. The activated sen-
sory neuron releases neurotransmitters in the synaptic cleft, which may acti-
vate a postsynaptic cell [grey].

central nervous system, where it may activate a postsynaptic neuron by releasing neu-
rotransmitters into the synaptic cleft between the two cells (see Fig. 1.1 for illustration).

The receptive field of a sensory neuron is the particular region of the sensory space
(e.g., the body surface, the visual field, or a location in space) in which a stimulus will
modify the firing of that neuron. Typically, the receptive fields from adjacent sensory
neurons overlap. This means that a stimulus is usually encoded by a population of
neurons that project their electrical impulses to postsynaptic cells (’projection neurons’)
in a convergent manner (see Fig. 1.2 for illustration).

1.2.1. Rate coding vs coincidence coding

There are different readout strategies how a postsynaptic neuron extracts information
from a presynaptic population. Integrator cells have a small leakage current, such that
they are able to sum up incoming action potentials over a comparatively long time win-
dow. For these cells, it is rather the firing rate that is important instead of the exact timing
of the presynaptic spikes (’rate coding’). On the other hand, there are coincidence detectors
that only get activated if a certain number of action potentials arrives within a very short
time window, i.e. when the presynaptic neurons fire simultaneously (’synchrony cod-
ing’). This would imply that the precise timing of a spike matters, such that coincidence
detection is a form of temporal coding (see Fig. 1.2 for illustration).

The main goal of this thesis is the investigation of the coding properties of these dis-
tinct readout mechanisms. Do integrators and coincidence detectors extract different in-
formation about a weak sensory stimulus? Put differently, what information is encoded
in the synchronous spikes in comparison to the summed spikes of a neuronal popula-
tion? We will in particular focus on the case of uncoupled sensory neurons (which do
not interact with each other), such as can be found, for example, in the olfactory (in
Drosophila) and the auditory system. In the following, we introduce these two sensory
systems in order to underline the relevance of our model. The electroreceptor affer-
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Figure 1.2.: Illustration of sensory information encoding. A population of sensory neu-
rons receives a common stimulus as an input, due to overlapping receptive
fields. These neurons project their output to postsynaptic cells, which either
sum up all incoming spikes (integrators) or which select only synchronous
firing events (coincidence detectors).

ents of weakly electric fish are another example of uncoupled sensory neurons that are
specialized to encode weak stimuli. We introduce them in more detail in the end of the
introduction, because they will serve as the main biological application of our theoretical
considerations.

Olfactory system

In most mammals and insects, the olfactory receptor neurons (ORNs) that are activated
by a distinct odor converge onto projection neurons (PN) in the same glomerulus (Vosshall
et al., 2000). The convergence ratio is high, on the order of 50 ORNs per PN in Drosophila
and 5000 ORNs per PN in rodents (Wilson and Mainen, 2006). The high convergence ra-
tios are believed to allow for the integration and amplification of weak signals (Su et al.,
2009). In fact, the PNs are most sensitive to low firing rates of the ORNs, indicating that
they are specialized in detecting weak stimuli (Olsen et al., 2010). In the third stage of
sensory processing pyramidal cells receive synapses from multiple glomeruli and thus
multiple odor receptor types. The pyramidal neurons are known to act as coincidence
detectors. This form of processing is believed to enhance the capacity of the system to
discriminate structurally similar odorants (Poo and Isaacson, 2009).

Auditory system

Sounds induce vibrations of the basilar membrane in the cochlea, which are transduced
into electrical signals by the cochlear hair cells. There are around 16,000 of these receptor
cells in each ear of a mammal. The hair cells are spatially arranged in a tonotopic manner:

4



1.2. Biological properties of neuronal activity

every hair cell is most sensitive to stimulation at a specific frequency. Hair cells trigger
action potentials in the spiral ganglion neurons, which do not interact with each other
and whose axons project to the brain via the auditory nerve. The auditory nerve fibres
(axons of the spiral ganglion neurons) synapse onto diverse target cells in the cochlear
nucleus. There are at least six classes of projecting neurons, each of which exhibits a
different topology of dendrites and of activation patterns.

Stellate cells, for example, have dendrites that lie parallel to the auditory nerve fibres.
They are narrowly tuned, fire very regular with a rate that depends on the strength of
the auditory input (Young et al., 1992). They thus encode the frequencies present in an
auditory stimulus. On the contrary, the dendrites of octopus cells extend perpendicular
to the paths of the auditory nerve fibres (Osen, 1969) and thus get input from ganglion
cells representing a broad range of frequencies. Accordingly, octopus cells exhibit broad
tuning curves and are effectively driven by transient broadband stimuli such as clicks
(Godfrey et al., 1975; Bal and Oertel, 2000). At least 50 ganglion cells converge to an
octupus cell (Golding et al., 1995). Because each input contributes only a small submil-
livolt depolarization to the postsynaptic response, the initiation of an action potential
requires strong synchronous presynaptic activity. Hence, octopus cells detect the coin-
cident activity of a large population of auditory nerve fibres encoding a broad range of
frequencies (Golding et al., 1995). These two types of projecting neurons demonstrate
that very different readout strategies are used to extract information about auditory in-
put from the activity of receptor afferents.

1.2.2. Noise in neuronal activity: sources and benefits

Neurons are not deterministic systems. When a neuron is subject to a fixed stimulus,
its output varies over repeated trials (see Fig. 1.3 for an example recording). Even if no
stimulus is present, the spontaneous firing activity of a neuron displays degrees of ran-
domness. This variability is called neuronal noise and is believed to have the following
major sources: first of all, there is so called ’channel noise’, which accounts for the fact
that the ion channels in the neuron’s membrane open and close stochastically and solely
the probability with which they do so changes with the membrane voltage or the concen-
tration of neurotransmitter. This leads to fluctuations in the total membrane conductance
(White et al., 2000).

The main cause of the noise experienced by a neuron at later processing stages orig-
inates in its synaptic input. The amount of neurotransmitters that are released into the
synaptic cleft as well as the exact timing of their release are governed by probabilities that
depend on the history of both the pre- and the postsynaptic neuron (Allen and Stevens,
1994; Koch, 1999). Furthermore, a neuron in the central nervous system usually has a
myriad of synapses made by other cells onto it. The irregularity of the arrival time of
each presynaptic action potential in addition to the synaptic release noise leads in sum-
mation to postsynaptic voltage fluctuations. This ’synapse bombardment’, also called
’synaptic noise’ is the dominant source of the firing variability in cortical neurons (Des-
texhe and Rudolph-Lilith, 2012). The term ’synaptic noise’ can be misleading though,
because the irregularly arriving spikes from presynaptic cells may contain important in-
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Figure 1.3.: Neuronal response is variable. Response of a neuron in the visual cortex of
a macaque to repeated trials of the same moving visual stimulus. The spike
times for different trials are marked as dots in (b), the rate of their spiking in
short time bins is shown in (a). Adapted from Bair and Koch (1996). ©1996,
Massachusetts Institute of Technology.

formation and only appear in their sum and complex nature random to us. The term
synaptic noise does not mean that the entire input to postsynaptic cells is random in its
nature, but that it can be described with statistical tools.

In this thesis we are mainly concerned with peripheral sensory neurons, i.e. neurons at
the first stage of signal processing. These cells often receive no synaptic input from other
neurons, but they are affected by the precision and reliability of the receptors (Berg and
Purcell, 1977; Bialek and Setayeshgar, 2005). In addition, external sensory stimuli may
first be converted into a chemical signal (e.g., through photon absorption by photorecep-
tors or ligand-binding of odour molecules by olfactory receptors) or into a mechanical
signal (such as the vibration of hair cells in the cochlea). The subsequent transduction
process amplifies the sensory signal and converts it into an electrical one, which may
lead to additional noise [’transducer noise’ (Lillywhite and Laughlin, 1979)].

Neuronal noise can be advantageous

Noise limits the accuracy of a neuron’s response to a signal or stimulus and thus inter-
feres with the encoding of a signal. This limited information transmission is quantified
by the signal-to-noise ratio, which is the ratio of signal power to noise power (Rieke
et al., 1996).

However, noise is not necessarily detrimental for signal encoding. For instance, for
weak signals that by themselves are not able to excite the neuron, noise can help to
amplify the signal such that the latter can be encoded in the firing pattern. This concept
of noise making it possible for a weak stimulus to pass a threshold in a nonlinear system
is called stochastic resonance (Gammaitoni et al., 1998). The term ’resonance’ refers to the
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1.3. Important statistics of stochastic processes

fact that there is an optimal non-zero amount of noise that maximises the signal-to-noise
ratio.

Another case where noise is beneficial occurs when a signal is encoded by a homoge-
neous population of neurons 1. Without noise, every neuron would respond to the signal
in the same way, such that the population would act as a single threshold unit. How-
ever, when each neuron is subject to independent noise, the firing thresholds become
effectively variable and vary over the population, such that more features of the signal
can be encoded by the neuron ensemble. This concept is called suprathreshold stochastic
resonance (SSR) (Stocks, 2000; Stocks and Mannella, 2001) 2. In conclusion, variability in
neural firing can be beneficial for signal encoding.

1.3. Important statistics of stochastic processes

As discussed above, single neurons are noisy encoders, i.e. their output can be regarded
as a stochastic process. As a consequence, also the summed or synchronous output of a
neuronal population are stochastic. In this section, we introduce the notation and defini-
tion of important statistical measures which allow us to classify a stochastic process and
the correlation between two different processes. The introduced measures and detailed
theory about stochastic processes can be found, for example, in Gardiner (1985).

Let X(t) and Z(t) be two stationary, real valued stochastic processes, where the term
stationary indicates that the statistics does not change over time.

Mean Value and Variance

By 〈X〉 we denote the average value of process X. If one knows the probability density
pX of X, then for any function g : R 7→ R holds

〈g(X)〉 =
∫ ∞

−∞
pX(x)g(x)dx .

The variance σ2
X quantifies how strongly the process X fluctuates around its mean value

σ2
X := 〈X2〉 − 〈X〉2 .

Autocorrelation

The autocovariance tells us how a process is correlated with its own history. It reads

CX,X(τ) := 〈X(0)X(τ)〉 − 〈X〉2 . (1.1)

By CX,X(τ) := 〈X(0)X(τ)〉 we denote the autocorrelation function of X.

1Here, the term ’homogeneous’ means that all neurons have the same firing threshold and that the deter-
ministic part of the single dynamics has the same nonlinearity.

2The term ’suprathreshold’ in SSR came up in order to distinguish the effect from the occurrence of stochas-
tic resonance in a single threshold system, which only occurs if the signal is subthreshold.
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Chapter 1. Introduction

Noise intensity

Noise is characterized by a zero mean and the intensity of a noise process X is defined
via an integral of the autocorrelation function

D :=
∫ ∞

0
CX,X(τ)dτ . (1.2)

Cross-correlation

The cross-covariance between two processes X and Z tells us how much a process X is
correlated with Y at different points in time

CX,Z(τ) := 〈X(0)Z(τ)〉 − 〈X〉〈Z〉 . (1.3)

The two processes X and Z are independent of each other, if CX,Z(τ) = 0 for all τ ≥ 0.
The cross-correlation function is defined by the first term of Eq. (1.3).

Power spectrum and cross-spectrum

The power spectrum of a stochastic process describes the distribution of power (vari-
ance) of frequency components of the process. The cross-spectrum is a measure of
frequency-resolved cross-correlation between two processes. In numerical simulations
we calculate the power spectrum of X and the cross-spectrum between two stationary
stochastic processes X and Z by

SX( f ) =
〈X̃T( f )X̃∗T( f )〉

T
and (1.4)

SX,Z( f ) =
〈X̃T( f )Z̃∗T( f )〉

T
,

where the brackets 〈 〉 denote averaging over repeated trials and the T � 1 is the record-
ing time. The asterisk stands for the complex conjugate and X̃T is finite-time-window
Fourier transform

X̃T( f ) =
∫ T/2

−T/2
dt X(t)ei2π f t,

where the measurement time window is centered around t = 0. The integral of the
power spectrum gives the variance of a process:

σ2
X =

∫ ∞

−∞
SX( f ) . (1.5)

In the analytical calculations we make use of the Wiener-Khinchin-Theorem and de-
rive the power spectrum by the Fourier transform of the autocovariance and the cross-
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1.4. Information transmission by neuronal activity

spectrum via the Fourier transform of the cross-covariance:

SX,Z = C̃ZX , (1.6)

SX = C̃XX . (1.7)

The tilde indicates the formal Fourier transform (FT)

X̃( f ) = FT(X) :=
∫ ∞

−∞
dt X(t)ei2π f t.

Note that we define the spectra without the DC-peak (The mean values are subtracted
in Eq. (1.1) and Eq. (1.3) such that the spectra do not have a δ-peak at zero frequency). If
we want to include the DC-peak, we indicate this by a bar:

SX := SX + 〈X〉2δ( f ) .

Coherence function

The spectral coherence function between two stochastic processes X and Z is the abso-
lute square of the cross-spectrum between these processes, normalized by the respective
power spectra:

CX,Z( f ) :=
|SX,Z( f )|2

SX( f )SZ( f )
. (1.8)

The coherence function is the squared linear correlation coefficient between two stochas-
tic processes in the frequency domain and satisfies 0 ≤ CX,Z ≤ 1. It takes the value one,
if X is a noiseless linear transformation of Z or vice versa.

1.4. Information transmission by neuronal activity

Of special interest is the coherence between a stimulus s(t) and a neuronal output x(t),
such as the spike train of a single neuron or the summed or the synchronous activity of
a neuronal population. The stimulus-response coherence is related to the mean square
error, ε2, of the best linear reconstruction of the stimulus by the response (Wessel et al.,
1996):

ε2 =
∫ ∞

0
d f Ss( f )[1− Cx,s( f )] . (1.9)

Hence, if the coherence equals one at a certain frequency, the stimulus component be-
longing to this frequency can be perfectly reconstructed from the output. The coherence
is smaller than one if the output is a non-linear transformation of the signal or because
correlation is lost due to noise. The spike train of a neuron is a highly non-linear encoder
due to the firing threshold. In addition, neurons are generally noisy. The coherence be-
tween the output of a single neuron and a stimulus will thus always be smaller than
one.

9



Chapter 1. Introduction

If the stimulus is a Gaussian process, the coherence provides a lower bound, Rinfo,
on the Shannon mutual information rate (Shannon, 1948) between stimulus and output
(Bialek et al., 1993; Gabbiani, 1996):

Rinfo = −
∫ ∞

0
d f log2[1− Cx,s( f )] . (1.10)

Eq. (1.10) has been used in many studies to quantify information transmission in the
neural context (Bialek et al., 1993; Gabbiani, 1996; Rieke et al., 1995; Borst and Theunis-
sen, 1999). This approximation of the mutual information is very convenient because
it requires only second-order statistics, such that fewer data is needed in comparison
to the direct definition of mutual information (Strong et al., 1998). Another advantage
compared to the Shannon information (which is only a single number of bits per second)
is that the coherence function is a frequency-resolved measure of information transmis-
sion (Stein et al., 1972; Chacron et al., 2003; Oswald et al., 2004; Krahe et al., 2008a; Massot
et al., 2011). It is therefore an indicator of whether a neuron preferentially encodes infor-
mation about slow, intermediate, or fast components of a stimulus. This gives rise to the
concept of information filtering. According to the frequency band where the coherence
amplitude is maximal, one can characterize a neural system as a low-pass, band-pass
or high-pass filter of information (see Fig. 1.4). An overview about different neuronal
mechanisms that lead to information filtering is presented in (Lindner, 2016).
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Figure 1.4.: The coherence function reveals spectral information filtering properties.
Sketch of different shapes of the coherence function between an input and
output process. According to the frequency where the coherence ampli-
tude is maximal, one can characterize the output as a low-pass (coherence
is maximal at low frequencies), band-pass (coherence is maximal at inter-
mediate frequencies), high-pass (coherence is maximal at high frequencies)
or broadband (coherence is high for a broad range of frequencies) filter of
information.

In order for the coherence to really make a statement about the information filter-
ing properties of the encoder, the stimulus should contain all frequencies with equal
power and different frequency components of the stimulus should be independent of
each other. Gaussian white noise fulfils these demands and is therefore used as a stimu-
lus in theoretical calculations or experiments (as appropriate with a cutoff frequency) to
obtain the coherence function.

In the following we will occasionally denote the cross-spectrum or spectral coherence
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1.5. Models of single neuron activity

function between a neuronal output x(t) and a stimulus simply as the ’cross-spectrum/
coherence of x’, if it is clear what kind of stimulus process is used.

Limitations of the coherence function

When using the coherence function one needs to be aware that it is blind to nonlin-
ear correlations between input and output. Frequency components that are suppressed
according to the coherence may be encoded in higher-order correlations between the
stimulus and the neuronal response. This issue was thoroughly addressed by Bernardi
and Lindner (2015), where the coherence was compared to a frequency-resolved Shan-
non information measure. Bernardi et al. showed that for weak stimuli, the lower bound
formula Eq. (1.10) equals indeed the Shannon mutual information rate for single Poisson
and LIF neurons. However, qualitative differences were disclosed for the synchronous
output of pairs of LIF neurons in certain parameter regimes.

1.5. Models of single neuron activity

In this section, we introduce theoretical concepts that allow us to describe, classify and
model neural activity. Detailed introductions to concepts and methods used in compu-
tational neuroscience can be found in the text books by e.g. Rieke et al. (1996); Dayan
and Abbott (2001) and Gerstner et al. (2014).

Mathematical representation of a neuron’s output

The spike train x(t) of a neuron can be formally written as a sum of δ-peaks,

x(t) = ∑
i

δ(t− ti) , (1.11)

{ti} being the times of the action potentials. This somehow artificial representation has
the advantage that the firing rate of the neuron can be written as an ensemble average
(average over all noise sources) over the spike train:

r0 = 〈x(t)〉 . (1.12)

The number of spikes occuring within a time window [a, b] is [using Eq. (1.11)] given by
∫ b

a x(t′)dt′.
The instantaneous firing rate r(t) is the average number of spikes that occur within an infinitesimal
time interval [t− dt/2, t + dt/2] divided by the with of the interval, i.e.

r(t) = lim
dt→0

〈∫ t+dt/2

t−dt/2
x(t′)dt′

〉
/dt = lim

dt→0
〈x(t)dt〉/dt = 〈x(t)〉 .

If the average is the same for all times (stationarity), we denote the constant mean firing rate by r0.

If the neuron is subject to a time dependent stimulus, the trial average of the spike train
(keeping the stimulus realization s fixed) leads to the time-dependent instantaneous firing
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Chapter 1. Introduction

rate which captures the mean response of the neuron to a fixed stimulus:

r(t)[s] = 〈x(t)〉 . (1.13)

The distribution of the times between two consecutive spikes, {ti+1− ti}i, the so-called
interspike intervals (ISI), is often used to study the variability (the ’noisiness’) of the
output of a neuron. A popular meassure of the neurons variability is the coefficient of
variation (CV), which is the ratio between the standard deviation of the ISI and its mean
value 〈ISI〉 = 1/r0,

CV :=
σISI

〈ISI〉 . (1.14)

We will also consider a filtered version of Eq. (1.11), which we call the box train, b(t). It
is defined by convolving the spike train with the boxcar function B(t) = θ(t)− θ(t− ∆)
(where θ is the Heaviside funtion):

b(t) := B ∗ x(t) =
∫ t

t−∆
x(t′) dt′ , (1.15)

i.e. each spike at time ti is replaced by a box of height one, going from ti to ti + ∆. Hence,
if ∆ is much smaller than the mean ISI, b(t) = 1, if the neuron spiked within [t− ∆, t],
otherwise it is zero (see Fig. 1.5 for illustration). The (stationary) mean value of the box
train is then the probability that a neuron spikes within a time bin of width ∆:

〈b(t)〉 =
∫ t

t−∆
r0 dt′ = r0∆ := R0 . (1.16)

0 2 4 6 8 10 12 14 16
time

0

1

Figure 1.5.: Spike train vs box train. Example of a spike train, where the stripes indicate
δ-peaks [magenta]. The corresponding ’box train’, Eq. (1.15), [green] is ob-
tained by convolving the spike train with a box of height one and width ∆.
In this example, r0∆ = 0.33.
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1.5. Models of single neuron activity

Integrate-and-fire neuron model

In this thesis we will use the leaky integrate-and-fire (LIF) neuron model (Stein, 1965;
Knight, 1972). In this model the entire neuron is characterized by the membrane voltage
potential v(t), which is assumed to have the same value along the entire neuron. Its
one-dimensional subthreshold dynamics is determined by

Cv̇(t) = −gLv(t) + I(t) , (1.17)

where C is the capacitance of the neuron, gL is the effective leak conductance and I(t)
is the effective current that flows into the neuron. The creation of action potentials is
added artificially through a fire- and-reset rule: whenever the voltage crosses the thresh-
old voltage vT, a spike is registered and the voltage is then reset to a value vR where it
is clamped for an absolute refractory period τre f before the sub-threshold dynamics con-
tinues. In all our simulations we use the parameter values vR = 0, vT = 1 and τre f = 0.

The term ’leaky’ refers to the fact, that the neuron is not a perfect insulator, such that
ions diffuse through open ion channels in the membrane when some equilibrium (the
effective leak potential, which we set to zero) is not reached in the cell. For this reason,
the input current has to exceed the threshold IT = gLvT in order to cause the cell to fire,
else the current will simply leak out of the cell. This can be seen from the solution of
Eq. (1.17) for a constant net current I(t) = I0, which reads

v(t) =
I0

gL

[
1− exp

(
− t

τm

)]
, (1.18)

where τm = C/gL is the effective membrane time constant, which determines how
quickly the subthreshold voltage increases towards the threshold value.

If the mean net current is very large in comparison to the leak conductance, the leak
term can be neglected, which leads to the dynamics of the perfect-integrate-and-fire (PIF)
model

Cv̇(t) = I(t) . (1.19)

As mentioned above, neurons are noisy systems. The intrinsic noise can be explicitly
introduced by specifying the current as a sum of a mean base current µ and Gaussian
white noise

v̇(t) = −v(t) + µ +
√

2Dξ(t) , (1.20)

where D is the intensity of the additive intrinsic noise and 〈ξ(t)ξ(t′)〉 = δ(t − t′). In
Eq. (1.20), time is measured in multiples of the effective membrane time constant τm.
Depending on the value of µ one can distinguish two firing regimes:
If µ < (vT − vR) = 1, the base current by itself is not strong enough to excite the neuron
(subthreshold regime). However, the voltage can be pushed above the firing threshold by
the intrinsic noise. That is why this regime is also called ’fluctuation driven regime’. If
µ ≥ (vT − vR) (suprathreshold regime), the base current alone is sufficient to induce firing,
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Chapter 1. Introduction

which is why this case is called ’mean driven regime’. Examples of realizations of the
LIF model are shown in Fig. 1.6.
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Figure 1.6.: Membrane voltage traces of the LIF neuron model, Eq. (1.20), in the
suprathreshold firing regime (µ = 1.2; magenta) and in the subthreshold
regime (µ = 0.9; green). Spikes at threshold crossings at vT = 1 are added
for the purpose of illustration. Intrinsic noise intensity D = 0.02.

1.6. Linear response theory

Linear response of a single neuron to a weak stimulus

If we consider a stimulus s(t) to be weak, one can make the ansatz that the instantaneous,
time dependent firing rate of the neuron is modulated only linearly by the stimulus
(Fourcaud and Brunel, 2002; Gerstner and Kistler, 2002):

r(t) = 〈x(t)〉ξ ≈ r0 + K ∗ s(t) =: r̂(t) , (1.21)

where ξ denotes the intrinsic noise of the neuron, r0 is the mean firing rate, and K(t) is
the linear response function. The asterisk in Eq. (1.21) stands for the convolution;
K ∗ s (t) =

∫ ∞
−∞ K(t− t′)s(t′) dt′. Whenever we use the linear response ansatz, Eq. (1.21),

to approximate a quantity, we mark the variable name of that quantity with a hat.

Usually one does not measure or compute the linear response function but its Fourier
transform χ = K̃ which is called susceptibility. One can derive the susceptibility, for
example, by measuring the cross-spectrum between the spike train and a stimulus noise
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1.6. Linear response theory

process via the relation

χ( f ) =
Sx,s( f )
Ss( f )

. (1.22)

To get acquainted with calculation methods used in this thesis we show how relation Eq. (1.22) can be
derived. The cross-covariance between x and s reads

Cs,x(τ) = 〈s(0)x(τ)〉ξ,s = 〈s(0)〈x(τ)〉ξ〉s , (1.23)

where we used that the signal s and the intrinsic noise ξ are independent of each other and that
〈s(t)〉s = 0 for all t. Using the linear response ansatz Eq. (1.21), we can approximate the cross-
covariance by

Ĉs,x(τ) =

〈
s(0)

(
r0 +

∫ ∞

−∞
K(τ − t′)s(t′) dt′

)〉
s

(1.24)

=
∫ ∞

−∞
K(τ − t′)〈s(0)s(τ)〉s dt′ (1.25)

= [K ∗ Cs,s](τ) . (1.26)

By taking the Fourier transform of both sides and applying the convolution theorem
( FT[g1 ∗ g2] = g̃1 · g̃2) we obtain the desired relation between cross-spectrum and susceptibility

Ŝx,s( f ) = χ( f )Ss( f ) . (1.27)

For the PIF and the LIF model there are analytical expressions for the susceptibility
for an additive Gaussian white noise stimulus (Fourcaud and Brunel, 2002; Lindner and
Schimansky-Geier, 2001; Brunel et al., 2001) 3. The formula for the LIF model is stated in
appendix Sec. A.1.

From Eq. (1.21) one can deduce a linear response approximation of the mean box train
value, i.e. for the instantaneous windowed firing rate R(t) =

∫ t
t−∆ r(t′) dt′:

〈b(t)〉ξ = 〈B ∗ x(t)〉ξ =
∫ t

t−∆
r(t′) dt′

≈ r0∆ + B ∗ K ∗ s(t)

=: R0 + ŝ(t) = R̂(t) . (1.28)

In this approximation, the probability that a neuron fires within the interval [t− ∆, t] is
modulated by the effective stimulus

ŝ(t) := B ∗ K ∗ s (t) . (1.29)

Its Fourier transform reads

˜̂s( f ) = B̃( f )χ( f )s̃( f ) . (1.30)

The stochastic process ŝ(t) is a linear functional of the Gaussian process s and therefore
Gaussian as well. Like s(t), the effective stimulus is centered around zero (〈ŝ〉 = 0), and

3Richardson (2007) presented a numerical scheme for deriving the susceptibility of an arbitrary integrate-
and-fire neuron.

15



Chapter 1. Introduction

its power spectrum is by Eqs. (1.4) and (1.30) given by

Sŝ( f ) = |B̃( f )χ( f )|2Ss( f ) . (1.31)

The variance of the effective stimulus reads (by Eq. (1.5))

〈ŝ2〉 =
∫ ∞

−∞
Sŝ( f ) d f

= ∆2
∫ ∞

−∞
sinc2(∆π f )|χ( f )|2Ss( f ) d f , (1.32)

where the sinc function, sinc(x) = sin(x)/x, emerges from the Fourier transform of the
box filter:

|B̃( f )| = ∆ sinc(∆π f ) . (1.33)

1.7. Main model considered in this thesis

Motivated by the topology of sensory neurons, which we discussed in section 1.2, we
study the following model. We consider a homogeneous population of N uncoupled
spiking neurons, each of which has intrinsic, independent Gaussian white noise sources
ξk(t), k ∈ {1, . . . , N} with 〈ξk(t)ξk′(t′)〉 = δk,k′δ(t− t′). By homogeneous we mean that
every neuron is defined by the same stochastic dynamical system receiving an identical
mean input and therefore exhibiting the same average firing rate r0. In addition, every
neuron is stimulated by the same realization of a zero-mean Gaussian noise process s(t),
which we will refer to as the common stimulus. This common noise has a prescribed
power spectrum Ss( f ) and an intensity of cD (c ∈ [0, 1], D ≥ 0), i.e.∫ ∞

0
〈s(0)s(τ)〉 dτ = cD . (1.34)

When applying our theory to particular models, we will mostly consider white noise
as a stimulus having a constant power spectrum of Ss( f ) = 2cD with an optional cutoff
frequency fc , i.e. Ss( f ) = 0 for | f | > fc. This choice is useful to see how the system reacts
to an arbitrary frequency component of an input. However, white noise is certainly
not a very natural stimulus. That is why we will also consider stimuli with a temporal
correlation (’colored noise’).

The constant D is the noise intensity of the total noise (common plus intrinsic noise)
the single neuron is subject to, i.e. the total noise input of each neuron reads

Nk(t) = s(t) +
√
(1− c)2D ξk(t) . (1.35)
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The noise intensity of Eq. (1.35) is given by∫ ∞

0
〈Nk(0)Nk(τ)〉 dτ =

∫ ∞

0
〈s(0)s(τ)〉 dτ + (1− c)2D

∫ ∞

0
〈ξk(0)ξk(τ)〉 dτ

= cD + (1− c)2D
∫ ∞

0
δ(τ) dτ = D ,

where we used Eq. (1.34) and that ξk(t) is a Gaussian white noise process.

The parameter c quantifies the fraction of the total noise which is identical for each neu-
ron. It is the correlation coefficient of the inputs of two different neurons and determines
how large the common external stimulus is in comparison to the independent intrinsic
fluctuations.

The correlation coefficient between the inputs of two different neurons (k 6= k′) is determined by∫ ∞
0 〈Nk(0)Nk′ (τ)〉 dτ√∫ ∞

0 〈Nk(0)Nk(τ)〉 dτ
√∫ ∞

0 〈Nk′ (0)Nk′ (τ)〉 dτ
=

∫ ∞
0 〈s(0)s(τ)〉 dτ

D
=

cD
D

= c ,

where we used the independence of the processes s, ξk and ξk′ , Eq. (1.34) and the last auxiliary calcu-
lation.

If c = 0 there is no common stimulus and all neurons are completely independent. For
c = 1, the independent fluctuations vanish such that every neuron in the population
receives exactly the same input and thus behaves asymptotically (in the long-time limit)
just the same way. In the analytical calculations we focus on the case of a weak common
stimulus, being small in comparison to the other inputs of the neuron (c� 1).

Our theoretical considerations are general and do not assume a specific spiking neuron
model. To compare our analytical results to numerical simulations we apply our theory
to a population of LIF neurons, each of which follows the voltage dynamics

v̇k = −vk + µ + s(t) +
√
(1− c)2D ξk(t) ; k = 1, ..., N (1.36)

complemented by the fire-and-reset rule (vR = 0, vT = 1).

1.7.1. Summed vs synchronous population output

Motivated by the different readout mechanisms of postsynaptic cells we will consider
two population outputs of the model described above: the summed population activity
and the synchronous activity (see Fig. 1.7 for a schematic illustration) 4. The sum of all N
spike trains is the accessible input of a postsynaptic integrator. By the summed activity of
a population we mean the sum of all presynaptic spike trains convolved with a boxcar
function. This continuous time series can be also interpreted as the firing rate of an
integrator cell.

A postsynaptic coincidence detector is only activated by synchronously arriving im-
pulses, such that the synchronous presynaptic population output can be regarded as

4The explicit mathematical representations of the summed and synchronous activity will be introduced in
chapter 3 and 4, respectively.
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Figure 1.7.: Schematic illustration of the model. A population of N uncoupled neu-
rons is subject to a common stimulus s(t) and independent noise sources
ξk(t), leading to variable single neuron output spike trains xk(t). The sum of
all spike trains (’all-spikes’) [cyan] can be interpreted as the accessible input
of an integrator cell. The partially synchronous output measures the times
where at least a fixed fraction γ of the population has spiked within a short
time window of width ∆ [shaded stripes]. This time series [purple spike
train] can be interpreted as the effective input of a postsynaptic coincidence
detector, but also as its output.

the accessible or effective input of a coincidence detector. The activation threshold of
the coincidence detector determines the minimal fraction of the population that needs
to fire simultaneously. We will therefore consider the partially synchronous output of the
presynaptic population, which we define as the time series that is one if at least a cer-
tain fraction γ of the population fired in synchrony within a short time interval of width
∆ (’synchrony precision’), otherwise it is zero. Such a time series can be interpreted as
the effective input, but also as the output of a coincidence detector, which needs γ · N
simultaneously arriving action potentials in order to fire.

For a population of only two neurons (which we consider in the next chapter), only
γ = 1 is meaningful, i.e. a synchronous event is recorded if both neurons fire simulta-
neously. However, for large populations, a lower value of γ will be biologically relevant
because then it is very unlikely that all neurons fire at the same time if the common
stimulus is weak.

The main goal of this thesis is to compare the coding properties of the summed to
the synchronous population output. Do they extract different information about the
common stimulus? Hence, in contrast to many other recent studies we are not primarily
interested in measuring how much a population (or network) is synchronized, but rather
we want to investigate the encoding capacity of the time series of synchronous events.
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communication: global signal prey: local signal  

EOD amplitude modulation of EOD 
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Figure 1.8.: Weakly electric fish communicate and sense their environment by us-
ing electromagnetic fields. Weakly electric fish, such as Apteronotus lep-
torhynchus [a], emit an electric field, called EOD, around their body. Elec-
troreceptors in the skin of the fish sense perturbations like amplitude mod-
ulations [d] of the field caused by nearby objects or conspecifics. Communi-
cation signals lead to a global modulation of the EOD field [b, left], whereas
perturbations caused by small prey animals effect only a localized, limited
part of the sensory receptors [b, right]. Adapted from (Krahe and Gabbiani,
2004). ©2004, Nature Publishing Group.

In particular, we will examine the role of the synchrony threshold γ on the information
transmission of the partially synchronous output.

1.8. Weakly electric fish: a model organism for studying
neuronal information transmission

A popular model organism to study sensory information transfer is the weakly electric
fish. This animal has developed an electro sense that enables it to communicate with
conspecifics, to navigate, and to detect objects, such as prey. There are two classes of
electroreceptors: passive and active ones. The passive or ampullary receptors are most
sensitive to low-frequency (below 20 Hz) and spatially localized signals like those emit-
ted by muscle activity of prey (Kalmijn, 1974; Engelmann et al., 2010). Weakly electric
fish are, however, also able to actively generate an electromagnetic field around their
body by discharging an electric organ in their tail (Bullock and Heiligenberg, 1986; Benda
et al., 2013; Krahe and Maler, 2014). This regularly oscillating high-frequency field is
called EOD (’electric organ discharge’). For the species Apteronotus leptorhynchus, EOD
frequencies range from 600 to 800 Hz for females and from 800 to 1100 Hz for males
(Meyer et al., 1987). The active tuberous organs detect distortions of the fish’s own EOD
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and those of conspecifics. The most prominent type of these active electroreceptors are
P-units, which mainly encode amplitude modulations of the EOD (Scheich et al., 1973;
Bastian, 1981; Kreiman et al., 2000) [see Fig. 1.8 for illustration]. Compared to ampullary
cells, P-units code for a much wider frequency range up to about 400 Hz (Stamper et al.,
2010; Walz et al., 2014; Henninger, 2015).

The electroreceptor afferents project onto postsynaptic cells in a feedforward- conver-
gent manner and do not influence each other. In this model system the relevance of weak
stimulation becomes evident, because weakly electric fish communicate at the limit of
sensation (Henninger, 2015). They need to detect rivals and to communicate with con-
specifics at large distances, leading to extremely low field intensities. Even if the distance
between communication partners is small, a mismatch between signal frequency and P-
unit tuning can lead to a weak activation of the receptors (Henninger, 2015; Walz et al.,
2014; Stamper et al., 2010). Hence, the missing lateral connection between sensory recep-
tors and their ability of encoding weak stimuli makes the weakly electric fish a suitable
biological counterpart to our model setup presented in section 1.7.

Synchronous spikes of P-units code for high frequencies - ampullary cells do
not show a synchrony code

A recent study by Grewe et al. (2017) investigated and compared the baseline (sponta-
neous) firing statistics and response properties of P-units to the ones of ampullary cells
in the weakly electric fish Apteronotus leptorhynchus. Without stimulation, P-units fire
very irregularly, having a high coefficient of variation of 0.5 on average. On the contrary,
ampullary cells stand out by their regular spiking activity (mean CV of 0.1). This sug-
gests that P-units are subject to much more intrinsic noise than ampullary cells are. The
study revealed two main findings concerning the response of the receptors to a broad-
band white noise stimulus:

i) The synchronous output of pairs of P-units carries more information about a com-
mon stimulus than the synchronous output of ampulary cells does: the magnitude of
the coherence of the synchronous spikes, which we abbreviate by ’synchro coherence’, is
higher for P-units than for ampulary cells (compare dashed lines in Fig. 1.9 C and F and
see Fig. 1.10 A), even though the opposite holds true for the coherence of the summed
output (compare solid lines in Fig. 1.9 C and F). Hence, ampullary cells encode stim-
uli more reliably (when taking all spikes into account), but there is hardly information
encoded in their synchronous spikes, although the occurrence of synchronous events is
comparable to the one of P-units if the synchrony precision ∆ is fixed (see Fig. 1.10 C).

ii) Confirming the results from Middleton et al. (2009), the synchronous output of
P-units acts as a band-pass filter of information in the case of weak stimulation. Com-
pared to the coherence of the summed spike trains, the synchronous spikes discard low-
frequency information and encode predominantly higher frequencies matching the ones
of communication signals (see Fig. 1.9C). In contrast, the synchronous spikes of am-
pullary cells do not filter out special information about a stimulus. The synchro coher-
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Figure 1.9.: Comparison of stimulus-response spectra of P-unit and ampullary affer-
ents. [A–C] Cross-, power and coherence spectra of an example P-unit.
Stimulus standard deviation was calibrated to 2.5 % of the EOD amplitude
(’weak stimulus’). Cross- and powerspectrum are normalized by their av-
erage value. Solid lines show the single-neuron response and dashed lines
the response of the synchronounous output of pairs of trials (synchrony pre-
cision: ∆ =1ms). Vertical colored line in C marks the peak position of the
coherence of the synchronous output f̂ . [D-F] Same analysis for an example
ampullary cell. Adapted from (Grewe et al., 2017). ©2017, National Academy
of Sciences.

ence of ampullary cells is strongly reduced in all frequency bands compared to the one
of the single neuron (see Fig. 1.9F).

The band-pass filtering effect was quantified by measuring the peak position of the
synchro coherence relative to the mean baseline firing rate. The all-spikes coherence has
its maximum at a low frequency for both cell types. Hence, a synchro-coherence peak
position close to the firing rate was regarded as an indicator for a synchrony code. In
Fig. 1.10 B one sees that for weak stimulation (small response modulation) the peak of
the synchro-coherence of P-units is closer to the baseline firing rate than it is the case for
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Figure 1.10.: Coding efficiency and information filtering of the synchronous output of
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spectral coherence of the synchronous spikes of ampullary afferents [red
triangles] and P-units [blue dots] as a function of response modulation (ef-
fective stimulus strength). Black circles mark the example cells shown in
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summed response. [B] Position of the maximum of the coherence of syn-
chronous spikes relative to the respective baseline firing rate. [C] Firing rate
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tion. Dashed lines are linear regressions for the two types of electroreceptor
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ampullary cells.
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1.9. The mechanism behind a synchrony code of pairs of neurons

Put differently, i) and ii) suggest that there is a synchrony code in P-units but none
in ampullary cells (see Fig. 1.11 for a schematic illustration of a ’synchrony code’). This
disparity seems biologically very plausible. Ampullary receptors need to encode low-
frequency signals as reliable as possible (Nelson and MacIver, 1999; Wilkens and Hof-
mann, 2005; Neiman and Russell, 2011). However, there is no need for ampullary affer-
ents to encode or to extract high frequencies from a stimulus. P-units, on the other hand,
encode signals with a much wider frequency range. It has been shown that during forag-
ing and navigation low-frequency signals dominate (Nelson and MacIver, 1999; Fotowat
et al., 2013; Krahe and Maler, 2014; Clarke et al., 2015), whereas high frequencies up to
400 Hz are relevant in the context of communication (Stamper et al., 2010; Walz et al.,
2014; Henninger, 2015). Hence, a filtering mechanism that is able to extract certain fre-
quency bands, such that these two types of signals can be distinguished, seems to be
desirable for P-units. The synchronous output could be a candidate for such a filter.

What are the physiological properties that determine whether a sensory neuron is ca-
pable of a synchrony code? Is it solely the different intrinsic noise levels of the P-units
and ampullary cells that lead to the distinct coding properties or do other characteris-
tics like the leak conductance play a role as well? We address this question in detail in
chapter 2.

1.9. The mechanism behind a synchrony code of pairs of
neurons

The theoretical mechanism behind a synchrony code, as described in the last section,
was uncovered in Sharafi et al. (2013). In their paper, analytical expressions were de-
rived for the spectral statistics of the total synchronous output (SO) of a population of
arbitrary size. ’Total’ means that a synchronous event is recorded when all neurons of
the population fire simultaneously within a certain time precision.

In the following, we want to recapitulate their results for the case of a pair of neurons.
In Sharafi et al. (2013) the SO was measured by first convolving each individual spike
train with a fixed Gaussian filter and then multiplying the convolved spike trains with
each other 5. In this thesis, we choose a different filter, namely the causal boxcar filter
B(t) = θ(t)− θ(t− ∆). The synchronous output of a pair of spike trains x1(t) and x2(t)
is then given by the product of the respective box trains bk = B ∗ xk :

YSO = b1 · b2 . (1.37)

Choosing the box filter has the advantage of having a discrete synchrony condition:
YSO(t) measures whether both neurons spiked within the interval [t− ∆, t].

If a neuron spiked at time ti, the corresponding box train equals one for t ∈ [ti, ti + ∆]. If both neurons
spiked within [t − ∆, t], both box trains have consequently the value one at time t, such that their
product, YSO, equals one as well. If however one neuron has not spiked within this interval, the
corresponding box train is zero at time t, such that YSO is zero as well. Hence, YSO measures indeed
the synchronous spiking of the two neurons.

5A similar measure was used in (Schreiber et al., 2003) in order to assess the spike timing reliability.

23



Chapter 1. Introduction

We define the summed output for a pair of neurons by

A =
1
2
(b1 + b2) . (1.38)

Cross-spectrum of the total synchronous output has the same shape as the
cross-spectrum of the single and summed output

Sharafi et al. (2013) showed that the cross-spectrum between the total synchronous out-
put and a weak common stimulus has approximately the same relative shape as the
cross-spectrum of the single neuron or the summed output 6 , i.e.

SYSO,s( f ) ∝ Sb,s( f ) = SA,s( f ) . (1.39)

Here, we demonstrate this result for the synchronous output of a pair of neurons. The cross-covariance
between the synchronous output, Eq. (1.37), and the common stimulus reads

〈YSO(0) s(τ)〉 = 〈b1(0)b2(0) s(τ)〉 = 〈〈b1(0)〉ξ1 〈b2(0)〉ξ2 s(τ)〉s , (1.40)

where we used that the intrinsic noise processes ξ1 and ξ2 are independent of each other and of
s(t). Using the linear response ansatz Eq. (1.28), 〈b(t)〉ξ ≈ R0 + ŝ(t), we can approximate the cross-
correlation by

〈YSO(0) s(τ)〉 ≈ 〈(R0 + ŝ(0))2 s(τ)〉s
= 2R0〈ŝ(0) s(τ)〉 , (1.41)

where we used that the stimulus s and the effective stimulus ŝ are both Gaussian processes with zero
mean value, such that 〈ŝ2(0)s(τ)〉 = 0.

The cross-covariance between the summed output, A = (b1 + b2)/2, and the stimulus equals the one
of the single box train bi and reads in linear response

〈A(0) s(τ)〉 = 〈b(0) s(τ)〉 = 〈〈b(0)〉ξ s(τ)〉s ≈ 〈(R0 + ŝ(0))s(τ)〉s
= 〈ŝ(0) s(τ)〉 . (1.42)

Combining Eq. (1.41) and Eq. (1.42), and applying the Wiener-Khinchin-Theorem, we derive the de-
sired relation

SYSO ,s( f ) = 2R0 Sb,s( f ) = 2R0 SA,s( f ) . (1.43)

Because of Eq. (1.39), a change in the shape of the synchro coherence function,
CYSO,s = |SYSO,s|2/(SYSO · Ss), in comparison to the one of the single neuron or summed
output, must originate in an altered shape of the synchro power spectrum.

Synchro power spectrum is determined by self-convolutions of the single neuron
power spectrum

Sharafi et al. showed that the power spectrum of the SO can be expressed by convo-
lutions of the single neuron’s power spectrum with itself. At this point, we want to

6We show in chapter 4 that this proportionality holds true for the more general partially synchronous
output as well.
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1.9. The mechanism behind a synchrony code of pairs of neurons

recapitulate this finding for the simple case of an independent pair of neurons (without
stimulation).

The autocorrelation of process Eq. (1.37) reads

〈YSO(0)YSO(τ)〉 = 〈b1(0)b2(0)b1(τ)b2(τ)〉
s=0
= 〈b1(0)b1(τ)〉〈b2(0)b2(τ)〉 ,

where we used in the last line that b1 and b2 are independent of each other if no common
stimulus is present. By taking the Fourier transform and applying the convolution theo-
rem, we obtain the power spectrum of the spontaneous synchronous output, reading

S̄YSO( f ) = S̄b ∗ S̄b( f ) , (1.44)

where we used that both spike trains are identically distributed. The bars in Eq. (1.44)
indicate that the DC peaks are taken into account ( S̄b( f ) = Sb( f ) + 〈b〉2δ( f ) ). The
power spectrum of the synchronous output is therefore the single box train power spec-
trum convolved with itself (’self convolution’). Because usually, the single neuron power
spectrum features a major nonzero-width peak around the firing rate, the self convolu-
tion results in an additional peak at zero frequency.

For the sake of completeness, we demonstrate the occurence of the additional peak, replicating the
calculations in Sharafi et al. (2013). Lets consider the function

S( f ) := T−g( f ) + T+g( f ) + R2
0 δ( f ) , (1.45)

where g( f ) is a function with some nonzero-width peak at f = 0 and T± are shift operators that shift
a function by the value f̂ . The last term is the DC-peak of a box train. Hence, Eq. (1.45) is a prototype
of the power spectrum, S̄b, of a single box filtered spike train, having a firing rate around f̂ . Using
the translation invariance of the convolution, i.e. (T±g) ∗ (T±g)( f ) = T2

±(g ∗ g)( f ), the convolution
of S( f ) with itself brings

S ∗ S( f ) = [T−g( f ) + T+g( f ) + R2
0δ( f )] ∗ [T−g( f ) + T+g( f ) + R2

0δ( f )]

= 2R2
0(T−g + T+g)︸ ︷︷ ︸

†

+ T2
+(g ∗ g)︸ ︷︷ ︸

††

+T2
−(g ∗ g) + 2 g ∗ g︸ ︷︷ ︸

†††

+R4
0δ( f ) . (1.46)

Hence, restricting to only positive frequencies, the function S ∗S( f ) has a peak at f̂ (term † in Eq. (1.46)),
scaled by 2R2

0, at 2 f̂ (higher harmonics) (††) and at zero frequency († † †). The latter two peaks are pro-
portional to g ∗ g( f ) and have therefore increased in width. This means that, compared to the original
spectrum S, its self convolution has a peak with an increased width at f = 0.

Fig. 1.12 shows this phenomenon for the power spectrum of the box train of an LIF neuron S̄b( f ) =
|B̃|2Sx0 ( f ) + R2

0 δ( f ), where |B̃( f )| = ∆ sinc(∆π f ) and the power of the single LIF spike train, Sx0 , is
stated in the appendix (Eq. (A.4)).

The power spectrum of the synchronous output thus exhibits an additional peak around
zero frequency and is flattened compared to the power spectrum of the single neuron or
of the summed output 7. If the neuron pair is subject to a common stimulus, the power
spectrum of YSO will have additional terms to Eq. (1.44), which we state in the appendix

7The summed population activity of a pair of independent neurons, A = (b1 + b2)/2, has the power
spectrum SA = Sb/2 and thus exhibits the same shape as the power spectrum of the single box train.
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Figure 1.12.: Self-convolution of single neuron power spectrum leads to additional
peak at zero frequency. The power spectrum of the single LIF box train
[blue] is compared to its self-convolution [red]. [a] Absolute value. [b]
Functions are rescaled by their maximal value. The convolution S̄b ∗ S̄b
leads to additional peaks at zero frequency and at twice the frequency
f̂ there Sb has its global maximum. The peak frequency f̂ equals ap-
proximately the firing rate r0 (here: f̂ = 0.61, r0 = 0.58). Parameters:
µ = 1.2, D = 0.01, R0 = 0.2.

A.2. The major term in the case of weak stimulation, however, will still be the self con-
volution of the power spectrum of the single filtered spike train.

The additional peak at zero frequency of the synchro power spectrum leads to a syn-
chro coherence that is reduced at low frequencies (see Fig. 1.13). However, whether
there is a ’synchrony code’ as described in Fig. 1.11, is also determined by the shape and
magnitude of the single neuron cross-spectrum in relation to the single neuron power
spectrum, which we demonstrate in the following chapter.

Sharafi et al. (2013) showed that the total synchronous output of populations of ar-
bitrary size also shows a band-pass filtering effect, if the cross-spectrum of the single
neuron features a pronounced peak around the firing rate. However, for large popula-
tions one cannot speak of a synchrony code, because then the magnitude of the synchro
coherence is close to zero. The event that the entire population fires in synchrony is
simply so rare that almost no information about the stimulus is encoded by the SO. In
Chapter 5 we will show that the biologically more relevant partially synchronous output
can indeed exhibit a synchrony code.
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Chapter 2.

The role of leak conductance in information
transmission

In Sec. 1.8 we reviewed that P-units and ampullary cells, although being closely related
electroreceptor afferents in weakly electric fish, differ in their encoding properties. In
contrast to the P-units, the synchronous output of ampullary cells does not encode spe-
cial features of a stimulus. In this chapter we investigate the question whether these
different coding properties are solely a consequence of the different intrinsic noise levels
of the two cell types or whether other physiological properties play a role as well. We
employ a modified version of the simple LIF neuron model, which is able to reproduce
the different spectral statistics of both cell types. We show that in order to obtain a syn-
chrony code, a moderate level of spiking variability is necessary but not sufficient; the
neurons also need to feature a noticeable leak current.

Integrate-and-fire-neuron model with variable leak term

The usual LIF model Eq. (1.36) is not capable of mimicking the spectra of the ampullary
cells. Choosing a low value of the intrinsic noise and a high mean input current can lead
to similar coherence functions of the summed and synchronous output of pairs of neu-
rons observed in ampullary cells, but one major limitation is the shape of the stimulus-
response cross-spectrum. The cross-spectrum of the LIF model features a pronounced
peak around the firing rate if the noise is weak (Vilela and Lindner, 2009a). Ampullary
cells show in general a rather flat, declining cross-spectrum exhibiting only a small peak
around the firing rate (see Fig. 1.9 D for an example). Such a cross-spectrum can be de-
rived by reducing the leak current in the LIF model. We do so by introducing a new
parameter α ≥ 0 to the usual LIF voltage dynamics:

v̇k = −α vk + µ +
√

2Di ξk(t) + s(t) , k = 1, 2 , (2.1)

complemented by the usual fire-and-reset rule (vR = 0, vT = 1). Like in the experiments,
the common stimulus s(t) is modelled by broad-band Gaussian white noise with cutoff
frequency fc and noise intensity Ds. The parameter α can be regarded as setting the leak
conductance of the cell membrane. In the circuit model, Eq. (1.17), α = gL/C describes
the ratio between the effective leak conductance (inverse resistance) and the capacitance
of the cell. The conductance gL is directly connected to the number of open ion channels
in the subthreshold (resting) state, whereas the capacitance is proportional to the cell’s
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Chapter 2. The role of leak conductance in information transmission

surface area. The case α = 1 corresponds to the ordinary LIF model. If α = 0, Eq. (2.2)
generates the spike train of a perfect integrate-and-fire neuron (PIF).

Figure 2.1 shows that we can find parameter values such that the spectra of the sim-
ulated model neurons look similar to the ones of the example cells presented in figure
1.9. An ampullary-cell-like behavior is obtained for low intrinsic noise intensity and a
small leak term (Di = 0.002, α = 0.1 → CV = 0.06). A dynamics similar to the one
observed in P-units is obtained by setting the intrinsic noise and leak to higher values
(Di = 0.02, α = 1→ CV = 0.3).

The role of the intrinsic noise is to a great extent clear. A higher value of Di leads to
more irregular spiking (higher CV), and consequently to widened spectra and in general
to a reduced stimulus-response coherence. But how does the leak influence the statistics
of the single neuron and the population activity? In the next section we investigate this
question in detail.
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Figure 2.1.: LIF model with variable leak term can qualitatively reproduce experimen-
tal results. Same analysis as in Fig. 1.9 for simulation results of model
Eq. (2.1). Left column: α = 1.0, Di = 0.02, fc = 3.0; Right column:
α = 0.1, Di = 0.002, fc = 1.3. Coinciding parameters: µ = 1.2, Ds =
0.01, r0∆ = 0.2.
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2.1. Consequences of leak reduction in the LIF model

2.1. Consequences of leak reduction in the LIF model

First, we investigate the baseline statistics of the single neuron, obeying the dynamics

v̇(t) = −α v(t) + µ +
√

2D ξ(t) . (2.2)

In Fig. 2.2 voltage traces are shown for α = 1 and for α = 0.1, keeping all other parame-
ters fixed.
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Figure 2.2.: Top row: voltage trace of LIF neuron with high leak term (α = 1.0). Bottom
row: voltage trace of low-leak neuron (α = 0.1). Spikes at threshold crossings
at vT = 1 are added for the purpose of illustration. Remaining parameters:
µ = 1.2, D = 0.02.

Equivalent LIF dynamics

Dividing both sides of Eq. (2.2) by α we obtain the Langevin equation for the equivalent
ordinary LIF dynamics:

d
αdt

v(t) = −v(t) +
µ

α
+

√
2D
α

ξ(t)

↔ d
dt̂

v
(

t̂
α

)
= −v

(
t̂
α

)
+

µ

α
+

√
2D
α

ξ

(
t̂
α

)
, (2.3)

where we introduced a new time scale t̂ = αt. If we further use that ξ(t̂/α) =
√

α ξ(t̂),
because by definition〈

ξ

(
t̂
α

)
ξ

(
t̂′

α

)〉
= δ

(
t̂
α
− t̂′

α

)
= α δ(t̂− t̂′) = α〈ξ(t̂)ξ(t̂′)〉 ,
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Chapter 2. The role of leak conductance in information transmission

Eq. (2.3) reads

v̇ = −v +
µ

α
+

√
2

D
α

ξ(t̂) . (2.4)

Eq. (2.2) is therefore equivalent to an ordinary LIF neuron with mean current µ/α, in-
trinsic noise strength D/α and rescaled time αt (↔ rescaled frequency f /α).

Hence, one can apply the analytical formulas for the firing rate r0[µ, D], power spec-
trum Sx( f )[µ, D] and susceptibility χ( f )[µ, D] of the LIF, stated in appendix A.1, to
Eq. (2.2), by inserting the rescaled parameter values. The corresponding functions for
the α-model are then in the original time scale given by

r(α)0 = α · r0[µ/α, D/α] (2.5)

S(α)
x ( f ) = α · Sx( f )[µ/α, D/α] (2.6)

χ(α)( f ) = χ( f /α)[µ/α, D/α] . (2.7)

Note that quantities having the units of a frequency, like the firing rate and power spec-
trum, need to be multiplied by α in order to retain the original time scale.

Reduced leak leads to higher firing rate and more regular spiking

From Eq. (2.4) we see that for a neuron with low leak, i.e. for α < 1, the effective mean
current and intrinsic noise increases. The higher mean drive leads to an increased firing
rate and a more regular output (lower CV), despite of the increased intrinsic noise level.
This behavior can be observed Fig. 2.2 and in Fig. 2.3, where we see that the firing rate
is a monotonically decreasing function of the leak α, whereas the CV is an increasing
function of α. The low variability for small values of α leads to a power spectrum which
is sharply peaked and concentrated around the firing rate r0 (compare green graph for
α = 0.1 to the broader power spectrum [purple] for α = 1.1 in Fig. 2.4).

Potential picture

It is insightful to picture v(t) as the position of an overdamped Brownian particle that
diffuses inside an potential U(v) with absorbing boundary at the firing threshold:

v̇(t) = −U′(v) +
√

2D ξ(t) with U(x) =
α

2
v2 − µv . (2.8)

This analogy was first introduced by Bulsara et al. (1996) and used to characterise dif-
ferent firing regimes of integrate-and-fire neurons in (Vilela and Lindner, 2009b). As can
be seen in Fig. 2.5, the ordinary LIF model [purple] has a distinctive quadratic potential
that becomes less steep towards the threshold value vT

1, i.e. the ’particle’ slows down
towards the firing threshold. Reducing the leak parameter α [green line in Fig. 2.5] leads

1This holds true in the suprathreshold regime where µ > vT .
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Figure 2.3.: Leak reduction leads to higher firing rate and more regular spiking. Firing
rate and coefficient of variation for neuron model Eq. (2.2) in dependence on
the leak constant α for two different intrinsic noise strengths as indicated.
Vertical dashed line marks the ordinary LIF neuron. The case α = 0 is equiv-
alent to a PIF neuron. µ = 1.2.

essentially to an almost linear potential with a steeper ’ramp’, such that the particle rolls
down the potential more quickly (→ increased firing rate).

The different curvature of the potentials also influence the response to noise. If the
derivative of the potential changes with the position of v, noise has a much higher influ-
ence on the firing statistics. Noise can push the particle to a region where it stays longer
or the opposite: help it to escape slow regions more quickly. This leads to a more vari-
able firing statistics than in the low-leak scenario, where the potential looks essentially
the same for all v-values, such that noise does not influence the interspike time interval
too strongly (→ decreased coefficient of variation).

Impact of leak on coding properties

How does the leak influence the response properties of the single neuron and the syn-
chronous output of pairs of neurons to a common stimulus? In Fig. 2.6 the cross-/power
and coherence spectra of the summed [solid lines] and synchronous activity [dashed
lines] of a pair of LIF neurons with α = 1 is compared to the ones of a low-leak pair with
α = 0.1 . The synchrony precision ∆ is chosen, such that the mean spiking probability of
the single neuron within a ∆-interval, given by R0 = r0∆, is kept constant. This allows a
fair comparison. All other parameters are fixed 2.

2In Fig. 2.6 we also plot the linear response approximations of the spectra [black solid lines]. The equa-
tions are derived in chapter 4 and explicitly stated in the appendix A.2 for the case of pairs of neurons.
Deviations from numerical simulation results are due to the high intensity of the stimulus compared to
the strength of the intrinsic noise (Ds = 5Di in Fig. 2.6a).
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Figure 2.6.: Change in spectral statistics due to leak reduction. Spectra for the summed
population activity [solid colored lines] and the synchronous output [dashed
lines] of neuron model Eq. (2.1) for α = 1 [purple] and α = 0.1 [green] for
two intrinsic noise levels Di = 0.001 [left] and Di = 0.01 [right]. Top row: ab-
solute square of the cross-spectrum between output and common stimulus.
Second row: absolute square of the cross-spectrum relative to its mean value.
Third row: output power spectrum. Bottom row: coherence function. Ver-
tical dotted lines mark the single neuron firing rate. Black solid lines show
analytical results from linear response theory (see appendix A.2). To ease
the comparison, the power and cross-spectra are divided by ∆2 (which oc-
curs in the Fourier transformed box filter |B̃|2 = ∆2 sinc2(∆π f )). Remaining
parameter: µ = 1.2, Ds = 0.005, fc = 4.0, R0 = 0.2.
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Leak reduction leads to a decreased and flattened susceptibility/cross-spectrum

In the absence of a leak current (α = 0), Eq. (2.1) is the voltage dynamics of a PIF neuron,
which has a flat or monotonically decreasing susceptibility |χ( f )| [cf. blue solid line in
Fig. 2.7]. The ordinary LIF neuron has in general a susceptibility which is peaked around
the firing rate [cf. purple graph in Fig. 2.7]. A neuron with very low leak α has a suscep-
tibility similar to the flat one of the PIF neuron but with a small peak at the firing rate [cf.
green line in Fig. 2.7]. One notices that the magnitude of |χ( f )| decreases with a lower
leak value, if one keeps all other parameters unchanged. The potential picture Eq. (2.8)
can again supply some intuition for this behavior. For a distinct quadratic potential the
response to a signal is dependent on the voltage value, or put differently, on the phase
of the particle (whether it is close to the reset value or to the threshold). This results for
a high leak neuron to a resonant response, i.e. the susceptibility is increased and peaked
around the firing rate and multiples of it. For a linear potential, the signal acts the same
way on the ’particle’, independently on the voltage position, such that the susceptibility
is a flat function.

The cross-spectrum between the spike train and a weak white stimulus reads |Sx,s( f )| =
2Ds|χ( f )| (see Eq. (1.22)) , such that the stated properties of the susceptibility hold true
for the cross-spectrum of the single spike train and summed activity as well 3. Accord-
ingly, the cross-spectrum of the low-leak neuron is decreased and less peaked (compare
green and purple solid lines in the top two rows of Fig. 2.6 and Fig. 2.9).

3The cross-spectrum of the summed activity, A = (b1 + b2)/2, includes the box-filter: |SA,s( f )| =
2Ds|B̃( f )χ( f )| with |B̃( f )| = ∆ sinc(∆π f ).
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2.1. Consequences of leak reduction in the LIF model

For low leak, the coherence of the summed and synchronous activity is close to zero
at the firing rate

The coherence function of the summed activity of a low-leak neuron is close to zero at
the firing rate (see green solid line in bottom row of Fig. 2.6 and Fig. 2.9). This is be-
cause a flat cross-spectrum is divided by a power spectrum that has a sharp peak at the
firing rate. Because the synchronous spikes carry less information about the stimulus
than the summed spikes, the synchro coherence is always smaller than the coherence
of the summed activity. Consequently, the coherence of the synchronous output is like-
wise close to zero at the firing rate (see green dashed line in bottom row of Fig. 2.6 and
Fig. 2.9).

Reduction of leak leads to less synchronous spiking and to a reduced synchro
coherence

One main experimental observation in (Grewe et al., 2017) was that the coherence be-
tween the synchronous output and the stimulus is much smaller for ampullary cells
than for the P-units. For the α-model we notice that a leak reduction leads to a reduced
synchro coherence (compare dashed green lines to dashed purple lines in Fig. 2.6 d,h).
In Fig. 2.8b we compare the lower bound of the mutual information rate, Rin f o, of the
summed activity to the one of the synchronous output for various stimulus intensities.
While Rin f o of the summed activity of the low-leak neuron [solid green] is above the
one of the LIF neuron [solid purple], the opposite holds true for the synchronous output
[dashed lines]. There is less information encoded in the synchronous spikes if the leak is
reduced. How can this behavior be explained?

In Fig. 2.8a one sees that the probability of a synchronous event, which equals the
mean synchronous output, 〈YSO〉, decreases for smaller values of α. This can be a simple
explanation for the reduction in the synchro coherence: fewer synchronous spikes carry
less information. But why does the mean SO decrease although we fix the single cell
spiking probability R0 within a ∆-bin? This is a consequence of the reduced susceptibility
of a low-leak neuron: If the single neuron is less susceptible to a stimulus, a population
will be less synchronized by a common signal. This can be directly seen in mathematical
terms if we look at the linear-response approximation of the mean SO (using Eq. (1.28)):

〈YSO〉 = 〈b1 · b2〉 = 〈〈b1〉ξ1〈b2〉ξ2〉s
≈ 〈(R2

0 + ŝ )2〉s = R2
0 + 〈ŝ2〉 , (2.9)

where 〈ŝ2〉 = 2Ds∆2
∫ ∞
−∞ sinc2(∆π f )|χ( f )|2 d f is the variance of the effective stimulus.

Here, the mean synchronous output depends on the integral over the absolute value
of the susceptibility (which we have shown to decrease with vanishing leak term). In
addition, the bin width ∆ also decreases for smaller values of α, because the firing rate
r0 increases, while the product r0∆ = R0 is kept constant. In conclusion, approximation
Eq. (2.9) predicts a decreased synchronous output for a low-leak neuron.
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Figure 2.8.: Leak reduction leads to less synchronous firing and to diminished infor-
mation transmission of the synchronous output. [a] Mean synchronous
output 〈YSO〉 (probability of having a synchronous event within a ∆-time bin)
vs noise intensity of the common stimulus for low [green] and high [purple]
leakage current. Black lines show the theoretical approximation from linear
response theory, Eq. (2.9). [b] Lower bound of the mutual information rate
Rin f o for the summed [solid] and synchronous activity [dashed]. Remaining
parameters: µ = 1.2, Di = 0.01.

As can be seen in Fig. 2.8a the simple approximation Eq. (2.9) [dashed lines] underes-
timates the measured mean SO, but it qualitatively captures the decrease of 〈YSO〉 with
decreasing α.

At the first glance, this result seems to be in contradiction to Fig. 1.10C. There, the
rate of synchronous spikes, rsynch = 〈YSO〉/∆, relative to the mean single neuron firing
rate, r0, is plotted against the response modulation σr (standard deviation of the instan-
taneous firing rate). The graphs overlap for P-units and ampullary cells 4. However,
using our notation, Fig. 1.10C shows 〈YSO〉/(r0∆) versus

√
〈ŝ2〉/∆ = σr. Hence, in this

plot the mean synchronous output is already arranged in order of the effective suscep-
tibility

√
〈ŝ2〉, such that it is no surprise that the data points of both cell types overlap.

In fact, this is a confirmation of our theory that the mean synchronous output is most
notably determined by the response modulation of the single cell, which corresponds in
the linear response regime to the effective susceptibility.

In table 2.1 we summarize the influence of the leak current on the baseline and re-
sponse statistics of the single neuron and the summed and synchronous population ac-
tivity.

4In the experiments, the synchrony bin width ∆ was the same for all cells.
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single neuron/summed activity synchronous output
• firing rate increases
• CV decreases
⇒ power spectrum is sharply peaked
and concentrated around the firing rate
⇒ coherence function is high at low fre-
quencies and approx. zero at firing rate

⇒ synchro coherence function is approx.
zero at the firing rate

• reduced and flattened susceptibility ⇒ probability of a synchronous event de-
creases

⇒ cross-spectrum of all-spikes is rather
flat

⇒ overall reduced synchro coherence

Table 2.1.: Overview of the consequences of reducing the leak current in the LIF model
(decrease of constant α in Eq. (2.1)).

High-leak neuron can imitate coding properties of low-leak neuron but not the other
way around

We have seen that a leak reduction in the LIF model leads to an increase in the firing rate
and to a decrease in the variability. Are the different coding properties of high- and low-
leak neurons simply a consequence of these two single-neuron statistics? To investigate
this question we adjust the mean current input µ and the intrinsic noise strength Di first
of the ordinary LIF neuron (α = 1) to match the firing rate and CV of the low-leak neuron
(α = 0.1).

In Fig. 2.9a IV we see that the coherence function of the summed and synchronous
spikes of a low-leak neuron can be obtained by a usual LIF neuron, if the latter is subject
to the same intrinsic noise and stimulus, but is driven by a high mean current µ, such
that the mean firing rate and CV are matched. The low ISI-variabilty of this strongly
driven LIF neuron leads to a power spectrum that matches the one from the low-leak
neuron 5, i.e. it is sharply peaked around the firing rate and is strongly decreased at
low frequencies (see Fig. 2.9a III). As a consequence, the all-spikes coherence is high
at low frequencies and close to zero at the firing rate, regardless of the shape of the
cross-spectrum, which is still very different in both cases (see Fig. 2.9a I and II). Also,
the mean synchronous output still differs slightly for both cells (〈YSO〉α=1 = 0.05 and
〈YSO〉α=0.1 = 0.04), which is a consequence of the weaker susceptibility of the low-leak
neuron (cross-spectrum for α = 0.1 is smaller than the one for α = 1).

In conclusion, the information filtering of a low-leak neuron can be mimicked by a
high-leak neuron that is driven by a strong mean input current. Or phrased differently:
A high-leak neuron becomes a low-leak neuron for strong input currents, because then
the leak term is simply negligible in Eq. (2.1). Here, it is the low variability (small CV)
that determines the filtering properties and the drop of the synchro coherence.

5This is in accordance with Vilela and Lindner (2009b), where the authors show that the power spectra of
the LIF and PIF model under white-noise stimulation are often very similar if the mean firing rate and
CV are matched.
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Figure 2.9.: LIF can mimic low-leak neuron but not the other way around. Moderate
noise and high leak are necessary for a synchrony code. Mean input current
µ and intrinsic noise strength Di have been adjusted, such that the firing rate
r0 and the CV of the high- and low-leak neuron match ([a] r0 = 1.15, CV =
0.1, [b] r0 = 0.46, CV = 0.25, [c] r0 = 0.35, CV = 0.42 ). Same spectral
statistics as in Fig. 2.6 for parameters: [a] green: α = 0.1, µ = 1.2, Di = 0.001,
magenta: α = 1.0, µ = 1.72, Di = 0.001, [b] green: α = 0.1, µ = 0.51, Di =
0.01, magenta: α = 1.1, µ = 1.2, Di = 0.001, [c] green: α = 0.1, µ = 0.4, Di =
0.027, magenta: α = 1.1, µ = 1.09, Di = 0.007. In all graphs: R0 = 0.2, Ds =
0.005, fc = 4.
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2.2. Summary

However, it does not work the other way around: the information filtering proper-
ties of a high-leak neuron can not be mimicked by a low-leak neuron, even if the mean
current and intrinsic noise strength are adjusted such that the firing rate and CV are
matched. (Please note, that the strength of the common signal and the time scale stay
unchanged.6) In the middle and right column of Fig. 2.9 we plot the spectra for the low-
leak (α = 0.1, green) and the high-leak model (α = 1.1, magenta), respectively, for a
moderate CV of 0.25 (Fig. 2.9b) and a high CV of 0.42 (Fig. 2.9c). Even though the CV
and firing rate are matched, the coherence functions of the summed and synchronous
spikes are qualitatively very different for high CV values. For low leak, the coherence of
both, the summed and the synchronous output, is generally smaller and especially low
around the firing rate compared to the high-leak model (Fig. 2.9b and c IV). In contrast,
the synchronous output of the high-leak pairs show a pronounced bandpass filtering
effect (see dashed magenta line in Fig. 2.9b and c IV).

Here, the shape of the cross-spectrum does indeed matter. Also in this case, the
cross-spectrum of the high-leak neuron is larger in magnitude and shows a more pro-
nounced peak around the firing rate. A a consequence, the coherence of the summed
and synchronous output is comparatively high around the firing rate. In contrast, the
flat and low-magnitude cross-spectrum of the low-leak neuron leads to a coherence of
the summed output that is small around the firing rate, such that the synchro-coherence
is very low in all frequency bands; no information filtering effect is established (see
green dashed line in Fig. 2.9b and c IV). In conclusion, a synchrony code, by means
of a bandpass-filtering effect can only be obtained by a high-leak neuron.

2.2. Summary

Motivated by the different coding properties of P-units and ampullary cells in weakly
electric fish, we investigated the simple leaky-integrate-and-fire neuron model with a
variable amount of leak current. Real neurons are of course more complex than this
model, but from our findings it can be concluded, that the effective leak conductance
could indeed account for the different coding properties of the two cell types.

The LIF model with high leak and moderate intrinsic noise can mimic the coding prop-
erties of a P-unit: the synchronous output of pairs of neurons exhibits a bandpass filter-
ing effect; the synchro coherence is strongly reduced at low frequencies but close to the
all-spikes coherence around the firing rate.

Reducing the leak in the model leads to more regular firing and a flattened and re-
duced susceptibility. The regular firing (sharply peaked power spectrum) induces a
higher all-spikes coherence, that is however small around the firing rate. The reduc-
tion in the stimulus response leads to less synchronization of a population by a common
stimulus, such that the mean synchronous output is reduced resulting in a lower syn-
chro coherence. All these properties were observed in ampullary cells. It is therefore

6By Eq. (2.4), adjusting the parameters to µ̂ = αµ, D̂i = αDi, D̂s = αDs and the time scale to t̂ = t/α,
transforms the usual LIF neuron to a neuron with a formal leak conductance α. Here, however, we want
to compare cells on the same time scale.
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plausible to hypothesize that ampullary cells have effectively a much lower leak con-
ductance than P-units do. We have demonstrated that in order to obtain a synchrony
code, moderate noise is a necessary but not a sufficient condition. The neuron has to
exhibit a considerable leak conductance as well.
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Chapter 3.

Distribution of the summed population
activity

In the last chapter we have looked at the coding properties of pairs of neurons. In gen-
eral there can be hundreds of neurons that process a common signal. In this chapter
we examine the summed output of a population of arbitrary size. The statistics of the
summed activity of a neuronal population receiving a common external signal has been
in the focus of several studies. Expressions of the activity distribution have been de-
rived by Amari et al. (2003) for simple Dichotomized Gaussian (DG) neurons in the limit
of infinite large populations. Recently, Leen and Shea-Brown (2015) showed that when
matching the mean firing rate and correlation between two neurons, the DG-model gives
a good estimation of the activity distribution of populations of the more complicated
exponential integrate-and-fire neuron model. These results, however, require computa-
tional fitting of model parameters. Here, we present analytical approximations (where
no fitting of parameters is needed) of the distribution of the summed activity of a gen-
eral homogeneous population which is driven by a weak common noise stimulus. This
distribution will be a crucial ingredient for calculations of the synchronous population
output.

3.1. Definition of the summed population activity

We define the time-dependent summed population activity A(t) as the fraction of a spiking
population which has been active within the small time interval [t − ∆, t]. It can be
formally written as a sum of integrals over the N spike trains

A(t) =
1
N

N

∑
k=1

∫ t

t−∆
xk(t′)dt′ . (3.1)

Because the spike trains xk(t) are mathematically represented by δ-peaks, the integral of
them over a given time window gives the number of spikes within that window. Hence,
Eq. (3.1) is the normalized population spike count and differs from the standard defini-
tion of a rate (Gerstner et al., 2014). Here, the summed activity is a dimensionless discrete
variable, A ∈ {0, 1/N, 2/N, ..., 1}. If A(t) = 0, then there was no spike within [t− ∆, t],
whereas A(t) = 1 corresponds to the case where all neurons fired simultaneously (as-
suming a sufficiently small bin width ∆, such that the probability that a single neuron
fires twice in one bin can be neglected).
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Figure 3.1.: Definition of the summed population activity. A population of four neu-
rons is driven by a common stimulus (upper panel). Middle panel: Each
spike train (blue) is convolved with a box of width ∆, resulting in a box train
(black). The summed activity (lower panel) is given by the sum of all box
trains divided by the population size N.

By using the definition of the box train, Eq. (1.15), we can write the summed activity
as a sum over the single box trains

A(t) =
1
N

N

∑
k=1

bk(t) . (3.2)

Because b(t) ∈ {0, 1} for small ∆, representation Eq. (3.2) has the advantage of seeing
immediately that A is a sum of binary stochastic processes, i.e. Bernoulli processes.
Fig. 3.1 shows an example of a raster plot and the corresponding population activity.

3.1.1. Summed activity in dependence on input correlations

Our aim is to find the distribution pA of the summed activity for the model described in
section 1.7. In Fig. 3.2a we show simulation results for the distribution of A for a moder-
ately sized population of N = 30 LIF neurons and different values of input correlation c.
With increasing correlation, the density changes from a narrow unimodal to a bimodal
distribution. The shift of probability towards the extremes can be regarded as the syn-
chronizing effect of the common noise, resulting in common firing (A ≈ 1) and common
silence (A ≈ 0). The mean value of the population activity is however independent of
the input correlation:

〈A〉 = 1
N

N

∑
k=1

〈bk〉 = R0 , (3.3)

where we used Eq. (1.16). Hence, the average activity is given by the probability R0 =

r0∆ that a single neuron spikes within a ∆-bin.
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3.1. Definition of the summed population activity

Figure 3.2.: Synchronizing effect of common noise. [a] Activity distribution for
different values of the input correlation c (from left to right: c =
0.0, 0.05, 0.4, 0.99, 1.0). For comparison, the density pA for totally indepen-
dent input (c = 0) is plotted in gray. [b] Respective difference between the
activity distribution for positive c and the one for the uncorrelated case re-
veals the synchronization of the population that is solely induced by the com-
mon external noise. Positive weight close to zero corresponds to a common
’silence’ of the population, whereas positive weight close to one, depicts en-
hanced common firing. Parameters: N = 30, µ = 1.2, D = 0.2, ∆ = 0.25.

It is important to bring to mind, that even in the case of no input correlation, neurons
fire simultaneously by chance. In fact, R0 · N neurons fire on average simultaneously
inside a ∆-interval. To extract the synchrony which is solely induced by the common
noise, it is revealing to subtract from the activity distribution the independent baseline
activity (see Fig. 3.2b). For our analytical calculations, we focus on the weak correlation
regime (c� 1), in which linear response theory can be applied.

General theoretical considerations

We consider the bin width ∆ to be substantially smaller than the mean interspike interval
1/r0, i.e. R0 � 1, such that the probability for one neuron to spike more than once inside
a bin is negligible. Hence, the individual neuron either spikes with some probability R
and it does not spike with probability 1− R. For a fixed realization s of the common
stimulus every neuron of the homogeneous population spikes with the same probability
R[s]. Here, R[s] = R[s(t′), t′ ≤ t] is a functional of a single realization s up to time t
due to causality. Because the spiking probability is the same for each neuron and the
neurons are statistically independent of each other for a fixed stimulus realization, the
number of active neurons inside [t − ∆, t] obeys a binomial distribution. To obtain the
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Chapter 3. Distribution of the summed population activity

distribution of A(t), this conditional firing probability needs to be averaged over all
possible realizations of the stimulus. The total probability that exactly m ∈ {0, 1, ..., N}
out of N neurons are active is given by

P
(

A =
m
N

)
=

〈(
N
m

)
(R[s])m(1− R[s])(N−m)

〉
s

. (3.4)

This equation has already been used for specific neuron models by Amari et al. (2003);
Leen and Shea-Brown (2015). In order to get a probability density pA for A, such that
P (A) = pA(A) ∆A with ∆A = 1/N, Eq. (3.4) must be multiplied by 1/∆A = N

pA(A) = N
(

N
AN

)〈(
(R[s])A(1− R[s])(1−A)

)N
〉

s
. (3.5)

How to perform the average over all stimulus realizations is a nontrivial problem be-
cause one must specify R[s]. We approximate R[s] for a weak stimulus in sec. 3.1.2.
Alternatively, one can incorporate the stochasticity of s into R directly: R can be inter-
preted as a random variable with probability density pR. If this density is known, we
can express the probability density Eq. (3.5) by

pA(A) = N
(

N
AN

) ∫ 1

0

(
RA(1− R)(1−A)

)N
pR(R) dR . (3.6)

This means, that one only needs to know the distribution of the single neuron spiking
probability/firing rate within a time bin. Then, using Eq. (3.6), one can analytically
compute the distribution of the population activity.

It is instructive to consider the limit cases concerning the input correlation. In the
absence of correlation (c = 0), the firing rate is not modulated by a common stimulus,
such that there is only one firing probability, given by the mean firing rate. Hence,

pc=0
R (R) = δ(R− R0) . (3.7)

For full correlation (c = 1), i.e. in the absence of independent noise, the system is com-
pletely deterministic for a frozen stimulus. The probability to spike at a given time is
then either one or zero, such that

pc=1
R (R) = R0 δ(R− 1) + (1− R0)δ(R) . (3.8)

The transition between these extremes of pR for different input correlation is sketched in
Fig. 3.3a with the corresponding activity distributions in Fig. 3.3b.

An important connection between pR and pA is

pR = lim
N→∞

pA . (3.9)

This relation is obtained from Eq. (3.6), using that the binomial distribution converges to
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3.1. Definition of the summed population activity

Figure 3.3.: Sketch of the qualitative change in the distributions of pR and pA for vary-
ing input correlation c. [a] Probability density of the stimulus-conditioned
windowed firing rate. [b] Corresponding population activity distributions.
For comparison, pA of the stimulus-free case (c = 0) is shown in shaded gray.

a normal distribution, which in turn approaches a δ function in the limit of infinite N:

N
(

N
AN

)(
RA(1− R)(1−A)

)N
≈
√

N
2πR(1− R)

exp
[

N(A− R)2

2R(1− R)

]
−−−→
N→∞

δ(A− R) .

(3.10)

An intuitive way of deriving Eq. (3.9) is to think about how one would measure pR. If
we fix a stimulus realization s and simulate the response of a single neuron in n trials, we
can perform an average over the intrinsic noise. For a chosen time bin [t− ∆, t] we then
obtain the firing probability R[s] by adding up the spikes of all n trials within this interval
and divide it by n. This value is indeed nothing but the activity of a homogeneous
population of size N = n driven by s. Hence, in order to numerically estimate the
distribution of R, one simply measures the distribution (average over many realizations
s) of the activity A for a very large value of N.

In the following two sections we present analytical approximations for pR and pA for
the case of weak common stimuli.

3.1.2. Approximation of the firing probability distribution

The probability for a single neuron to fire within a time interval [t−∆, t] can be formally
derived by integrating the instantaneous firing rate r(t) over this interval

R(t) =
∫ t

t−∆
r(t′)dt′ = B ∗ r(t) , (3.11)
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where again B(t) = θ(t)− θ(t− ∆) is the boxcar filter. For a fixed stimulus realization
s, the instantaneous firing rate is the spike train averaged over the intrinsic noise, i.e.
r(t) = 〈x(t)〉ξ . The time-dependent spiking probability R(t) can be regarded as the
instantaneous windowed firing rate and is the box train, b(t) = B ∗ x(t), averaged over the
intrinsic noise:

R[s](t) = 〈b(t)〉ξ . (3.12)

For a weak stimulus s(t), we can use the linear response approximation Eq. (1.28):

〈b(t)〉ξ = R0 + ŝ(t) ,

where the firing probability is modulated by the time-dependent effective stimulus ŝ(t) =
B ∗ K ∗ s(t). As elaborated in Sec. 1.6, ŝ(t) is a Gaussian process centered around zero
with variance

〈ŝ2〉 = ∆2
∫ ∞

−∞
sinc2(∆π f )|χ( f )|2Ss( f ) d f .

In conclusion, if one assumes a linear response of the instantaneous firing rate, the con-
ditional spiking probability R is like the effective stimulus ŝ normally distributed with
variance 〈ŝ2〉, such that

p̂R(R) = N (R0, 〈ŝ2〉) = 1√
2π〈ŝ2〉

exp
[−(R0 − R)2

2〈ŝ2〉

]
. (3.13)

Eq. (3.13) has to be regarded as a coarse approximation of the true distribution pR. It has
one clear limitation: as a probability, R is supposed to take values only on [0, 1], whereas
the density p̂R is formally distributed (and normalized) on R. However, if ŝ is small
enough and ∆ is not chosen too small (such that R0 is not too close to zero), the main
support of p̂R will be on [0, 1].

In Fig. 3.4 we compare the linear response approximation Eq. (3.13) with the numer-
ically measured distribution for various parameter settings. For weak common noise
(c = 0.01), the normal distribution Eq. (3.13) provides an adequate description both
in the suprathreshold regime as well as in the subthreshold regime [see left column in
Fig. 3.4a and b]. For higher input correlations c, the distribution of R differs from a Gaus-
sian. In particular, the density becomes significantly skewed and looks like a log-normal
distribution, which is a plausible behavior: a larger value of c means a larger variance of
the effective stimulus, leading to a broadening of the distribution pR. As a probability,
R can only take positive values, such that its density needs to become skewed to the
right, because the mean value R0, is unaffected by c (see Fig. 3.5). This observation is in
agreement with the finding by Koulakov et al. (2009), where a log-normal distribution
of firing rates has been recorded for a network of neurons receiving highly correlated
input.

In Fig. 3.5 we compare the first three moments of the density pR from numerical simu-
lations to the linear response prediction p̂R (Eq. (3.13)). While the mean value remains R0
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Figure 3.4.: Probability distribution of the stimulus-conditioned firing probability.
Simulation results [blue solid lines] are compared to the linear response ap-
proach Eq. (3.13) [red dashed lines] in [a] the suprathreshold regime with
µ = 1.2 and [b] in the subthreshold regime with µ = 0.9 for different values
of the input correlation c [from left column to right: c = 0.001, 0.1, 0.2] for
total noise intensity D = 0.01 [top row] and D = 0.1 [bottom row], respec-
tively. In all graphs the mean firing probability was fixed to R0 = r0∆ = 0.1.

(Fig. 3.5a), the variance first increases in a linear fashion with the input correlation c (just
like the approximation) but shows a stronger growth for larger c (Fig. 3.5b). The skew-
ness of the density increases (Fig. 3.5c) in a non-linear fashion, whereas the Gaussian
approximation is unskewed.
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Figure 3.5.: First three central moments of the stimulus-conditioned rate vs input cor-
relation. Simulation results [blue solid] are compared to the linear response
approximation [red dashed]. Parameters: D = 0.01, µ = 1.2 (corresponding
to Fig. 3.4a upper row).

3.2. Approximations of the summed activity distribution

Combining the general result for the activity distribution with the linear response result
from the previous section, yields an integral expression for pA. In the following, we
also derive a simpler Gaussian approximation of this distribution, which is based on a
central-limit argument. Both expressions are compared to numerical simulations of the
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LIF model in different dynamical regimes.

3.2.1. Integral approximation

By inserting approximation Eq. (3.13) into Eq. (3.6) we obtain an integral expression of
the activity distribution, which should be valid for weak input correlation (c � 1) and
arbitrary population sizes

p̂A(A) = N
(

N
AN

) ∫ 1

0

(
RA(1− R)(1−A)

)N
p̂R(R) dR . (3.14)

Result Eq. (3.14) requires the numerical evaluation of an integral over p̂R. Next, we
derive an integral-free approximation for the activity distribution.

3.2.2. Gaussian approximation

As shown in the introduction of this chapter, the population activity can be written as a
sum of the single box-trains

A =
1
N

N

∑
k=1

bk . (3.15)

For fixed time t, A(t) is a sum of random variables {bk(t)}k, having identical distribu-
tions (because we consider a homogeneous population), which are only weakly corre-
lated due to the common stimulus.

The central limit theorem states that the sum of independent and identically distributed
random variables {Xk}k=1,...,N ,

ZN =
1
N

N

∑
k=1

Xk , (3.16)

converges with increasing N to a Gaussian random variable with mean 〈X1〉 and vari-
ance σ2

X1
/N. The obvious constraint that impedes a rigorous application of the central

limit theorem to Eq. (3.15) is the non-zero global correlation between the box trains due
to the common stimulus. However, because we only consider weak correlations, it is still
plausible to approximate A by a Gaussian process for large N, which is fully described
by the mean and variance of A.

By Eq. (3.3) 〈A〉 = R0. The second moment of A reads

〈A2〉 = 1
N2

N

∑
k=1

N

∑
k′=1
〈bkbk′〉

=
1

N2

(
N〈b2

k〉+ N(N − 1)〈bkbk′〉
)

, k 6= k′
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Because ξk and ξk′ are independent for k 6= k′

〈bkbk′〉 = 〈〈bk〉ξk〈b′k〉ξ ′k〉s = 〈R[s]
2〉s ,

where we applied again Eq. (3.12). Using furthermore that b2
k = bk, because bk ∈ {0, 1}

we obtain

〈A2〉 = 1
N
(
〈R[s]〉s + (N − 1)〈R[s]2〉s

)
. (3.17)

This relation for the second moment holds true for arbitrary correlation strength. Us-
ing once more the linear response ansatz, R̂[s] = R0 + ŝ, such that 〈R[s]2〉s ≈ R2

0 + 〈ŝ2〉,
we can further approximate Eq. (3.17) by

〈A2〉 ≈ R2
0 + 〈ŝ2〉

(
1− 1

N

)
+

R0(1− R0)

N
. (3.18)

Hence, if we assume in the case of large N and weak input correlation a normal distri-
bution, N (〈A〉, σ2

A), for the population activity, its density can be approximated by

pG
A = N

(
R0 , 〈ŝ2〉

(
1− 1

N

)
+

R0(1− R0)

N

)
, (3.19)

where the ’G’ stands for ’Gaussian approximation’.
By Eq. (3.9), we know that limN→∞ pA = pR. Consistently, both approximations, p̂A

and pG
A, approach p̂R, i.e. a normal distribution centered at R0 with variance 〈ŝ2〉.

3.2.3. Comparison to simulation results

In Fig. 3.6 both approximations, p̂A and pG
A, of the activity distribution are compared to

simulation results of populations of LIF neurons in the supra- and subthreshold regime
and various combinations of population size and correlation strength.

For weak input correlation [see Fig. 3.6a/b, top row; c = 0.01] the simulation results
are well approximated by the linear response approach, Eq. (3.14), for all values of the
system size. The simple Gaussian approximation, Eq. (3.19), works well at larger system
size. Surprisingly, the Gaussian is a reasonable description of the histogram already for
N = 30.

For larger input correlations, c = 0.1 and c = 0.2 [Fig. 3.6 middle and bottom rows] we
find in the suprathreshold regime small deviations between the linear response theory
and the simulation results. The deviations are larger in the subthreshold regime. As
anticipated by Eq. (3.9), both approximations converge for large N and show therefore
the same discrepancy to the skewed true distribution [e.g. for N = 500 in Fig. 3.6a/b
right column]. The main character of the distribution is nevertheless still captured by
the linear response theory, which in particular performs nicely for small populations
even in the case of strong input correlation [see N = 10, left column of Fig. 3.6a/b].

Why does the approximation p̂A work so well for small populations? For small values
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Figure 3.6.: Comparison of simulation results of the activity distribution [blue lines]
with the linear response approximation Eq. (3.14) [red dashed lines] and
the Gaussian approximation Eq. (3.19) [green lines] for [a] the suprathresh-
old (µ = 1.2) and [b] the subthreshold regime (µ = 0.9) of the LIF model
for different values of the population size N [from left column to right:
N = 10, 30, 100, 500] and input correlation c [from top row to bottom:
c = 0.01, 0.1, 0.2]. Remaining parameters: D = 0.01, R0 = 0.1.

of N, the first two moments of the distribution of R matter the most for the activity
distribution. For example, for N = 2, only the mean and variance of R appear in Eq. (3.5)

pA

(
A =

m
2

)
= 2

(
2
m

) 〈
(R)m(1− R)2−m〉 ; m ∈ {0, 1, 2}. (3.20)

The mean, 〈R〉, equals R0 (cf. Fig. 3.5a) and the variance is well described by the linear
response theory up to c = 0.2 (cf. Fig. 3.5b). Hence, pA is expected to be well described
for N = 2. For larger N, also higher central moments and by that also higher cumulants
will enter Eq. (3.5) which are not captured by the Gaussian description of pR. However,
their values are much smaller compared to the first two cumulants (see e.g. the skewness
in Fig. 3.5c). Only when higher-order cumulants make up many terms in Eq. (3.5), as for
larger N, these will notably contribute.

We can quantify the deviations between theory and simulations more systematically.
To this end, we use the normalized Jensen-Shannon (JS)-divergence (Lin, 1991; Leen and
Shea-Brown, 2015) between the approximation p̂A and the measured distribution pA,
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Figure 3.7.: Jensen-Shannon divergence between theory and simulation vs popula-
tion size and total noise intensity. [a,b] JS-divergence, Eq. (3.21), between
the simulated population activity distribution pA and its linear response ap-
proximation p̂A vs population size for two different input correlations c as
indicated. [c,d] JS-divergence vs the total noise intensity D for a population
of N = 1000 neurons. Remaining parameters: R0 = 0.1, µ = 1.2 in [a,c], and
µ = 0.9 in [b,d].

which is given by

JS-div =
DKL(pA||M) + DKL( p̂A||M)

2 ln(N)
, (3.21)

where M = (pA + p̂A)/2 and

DKL(P||Q) =
1
N

N

∑
k=0

P(k) ln
(

P(k)
Q(k)

)
(3.22)

is the Kullback-Leibler divergence. The JS-divergence quantifies the discrepancy be-
tween two probability densities. In Fig. 3.7 we see that even for moderate input correla-
tions c, the approximation p̂A is very similar to the real distribution if the population is
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small. As N increases the deviation grows and reaches a plateau, which corresponds to
the difference between pR and p̂R. For stronger input correlation, the plateau is reached
for smaller N.

Finally, we discuss how the range of validity of the approximation depends on the
total noise intensity [see Fig. 3.7c,d]. This dependence differs for the suprathreshold and
subthreshold firing regimes of the LIF model. Increasing the total noise intensity D has
three effects on the single neuron dynamics: i) the mean firing rate increases (Vilela and
Lindner, 2009b); ii) the intrinsic noise becomes stronger, leading to a linearization of the
neuron model (Brunel et al., 2001); iii) the signal intensity is increased (for fixed c), which
potentially leads to nonlinear rectification effects in the modulation of the firing rate.
Rectification means that very strong negative inputs suppress firing and contribute to
the event A = 0. This effect results in pronounced non-Gaussian features of the activity
distribution and leads in the suprathreshold regime to a growth of the JS-divergence
with increasing noise (cf. Fig. 3.7c). In the subthreshold regime we observe however
a minimum of the divergence at a non-vanishing value of the noise intensity. If the
fluctuations are very low, the mean firing rate of single neuron is almost zero, such that
only positive values of the stimulus will lead to a notable change in the instantaneous
firing rate. Hence, for very small D the response of the firing rate is highly non-linear
in the subthreshold regime. Large values of D lead to the same effects as stated for
the suprathreshold case. This implies that our linear response theory works best for an
intermediate total noise level in the fluctuation driven regime.

3.3. Summary

In this chapter we investigated the distribution of the summed activity of a homoge-
neous population which is driven by a common noisy stimulus. First, we demonstrated
how the distribution depends on the input correlation. A strong input correlation results
in vigorously synchronized spiking of the population, such that the activity distribution
is bimodal with weights around the extremes zero (total silence) and one (all neurons
fire). Our main focus was to find an analytical approximation of the summed activity
density pA for weak input correlation (weak stimulus). To this end, we applied linear
response theory to first, approximate the probability R that a single neuron spikes within
a small time bin (windowed firing rate), conditioned on a Gaussian stimulus. This ap-
proach leads naturally to a normal distribution pR.

We showed that the distribution of the summed population activity A is uniquely de-
termined by pR via an integral transformation (Eq. (3.6)), such that the linear response
approximation of pR yields directly an approximation for pA. We tested its validity for
different parameter settings, which works especially well for small populations. Fur-
thermore, we derived a second, simpler approximation of pA that assumes the activity
to be a Gaussian process which is shown to be valid for large population sizes and weak
input correlation. Both approximations coincide for large system size.

Next, we will investigate the statistics of the synchronous population activity, which
we will show is a nonlinear transformation of the summed activity. In order to derive an-
alytical expressions for large populations, we will employ the Gaussian approximation
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of pA, such that we can utilize the pleasant features of a Gaussian process.
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Chapter 4.

The partially synchronous output (PSO) of a
neuronal population

We have seen in chapter 2 that the synchronous output of pairs of neurons can extract
information about high frequency components of a common stimulus. In this chapter
we examine the properties of the synchronous activity of an arbitrarily sized popula-
tion, where the demand on synchrony can be freely chosen. We first define the partially
synchronous output in mathematical terms and then derive analytical approximations
of important statistics, like its mean value, its cross-correlation/spectrum with the com-
mon stimulus and its autocorrelation/power spectrum. These measures are necessary
ingredients of the coherence function, which reveals further coding properties of the syn-
chronous output. We will in particular elaborate the role of the synchrony demand, i.e.
the minimal fraction of the population which needs to fire simultaneously. The theory is
tested against numerical simulations of the LIF model, using white and colored noise as
a common stimulus.

4.1. Definition and mathematical representation of the PSO

We define for a population of N neurons the partially synchronous output (PSO) with syn-
chrony threshold γ in the following way:

Yγ(t) :=


1, if at least γN neurons

spike within [t− ∆, t]

0, else

. (4.1)

Here again, ∆ is to be chosen small, such that Yγ can be truly regarded as a measure
of synchrony. The partially synchronous output is a two-state process and can be inter-
preted as a coarse representation of a postsynaptic cell which is activated (having the
value one) if at least γN out of N presynaptic neurons fired together in a time window
of width ∆ (see again Fig. 1.7 for illustration). In this interpretation, ∆ corresponds to
the time over which the postsynaptic neuron integrates incoming inputs. Because we
choose ∆ to be small, this postsynaptic cell can be regarded as a coincidence detector.

The choice of γ determines the strictness of synchrony that one wants to measure. If γ

is close to one, then Yγ will be one only at very few times, because it is very unlikely that
almost the entire population fires together, especially for large populations (see purple
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Figure 4.1.: The PSO is a threshold function of the summed population activity.
Illustration of the measurement of the partially synchronous output Yγ(t),
given by Eq. (4.2) for different synchrony thresholds γ for a population of
N = 4 neurons. [a] Common stimulus and single box trains. [b] Summed
population activity [green line]. [c] PSO for different synchrony thresholds
γ ∈ {1, 0.75, 0.5, 0.25} (corresponding thresholds are marked as horizontal
lines in [b]). LIF-parameters: µ = 1.2, D = 0.01;→ r0 = 0.58, R0 = 0.2
(corresponding to the box width ∆ = 0.35).

line in bottom subplot in Fig. 4.1). On the other hand, if γ is set close to zero, then the
demand on synchronous firing is very low, such that Yγ is most of the times one and only
at rare occasions zero. Here, the PSO measures rather the events where the population
is simultaneously silent (see blue line in bottom subplot of Fig. 4.1 and Fig. 4.2). Another
interesting scenario is γ = R0, i.e. if the synchrony threshold is set to the mean value of
the summed population activity. If the distribution of the activity is symmetric around
its mean, then the synchronous output YR0 is half of the time zero, half of the time one,
and can be seen as a two-state version of the summed activity (see red line in bottom
subplot of Fig. 4.2). For this case, the naming ’synchronous output’ might be misleading,
because on average R0N neurons of the population fire simultaneously, such that the
value of YR0 does not tell us anything about above-average synchronous behavior.

We define by Eq. (4.1) a simple measure of dynamic synchrony that allows us to apply
analytical tools. Other ways of quantifying synchrony among neurons are summarized
in Kreuz et al. (2009).
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Figure 4.2.: The PSO can measure common firing or common silence. Top: Raster plot
of a population of 100 LIF neurons, driven by a common stimulus. Mid-
dle: Corresponding summed activity [green line]. Bottom: PSO for different
synchrony thresholds γ ∈ {0.3, 0.2, 0.1} (top to bottom; also marked as hor-
izontal lines in plot above). Parameters: µ = 1.2, D = 0.01, c = 0.3, R0 =
0.2, N = 100.

Mathematical representations of the PSO

We now introduce two distinct but completely equivalent ways of representing Yγ in
mathematical terms. The first approach represents the PSO as a threshold function of
the summed activity, while the second one uses products of the individual box trains.

4.1.1. Activity based representation of the PSO

If we know the summed population activity A(t), i.e. the fraction of the population
which is active within [t−∆, t], a synchronous event with synchrony threshold γ at time
t is simply given if A(t) ≥ γ. The PSO can be therefore written as

Yγ(t) = θ

(
A(t)− γ +

1
2N

)
, (4.2)

where θ is the Heaviside step function. The term 1/(2N) assures that Yγ does not depend
on the exact definition of the theta function at zero, in addition it is necessary if we want
to approximate the activity by a continuous process taking values on R. Fig. 4.1 and
4.2 illustrate this activity-based representation of the PSO for a population of four and a
hundred neurons, respectively.
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Chapter 4. The partially synchronous output (PSO) of a neuronal population

4.1.2. Combinatorial product representation of the PSO

The Heaviside function in Eq. (4.2) is a strongly nonlinear transformation of A, such
that analytical derivations of important statistics of Yγ are incomprehensible, unless one
can assume the summed activity to be a Gaussian process. We can, however, avoid the
Heaviside function by generalizing an ansatz introduced in Sharafi et al. (2013).

Not only the sum of the box-trains, but also their products contain information about
the population’s synchrony. If there are for example exactly n neurons (lets say the first
n of the population) that fired within [t − ∆, t], then the product of their box trains,
∏n

k=1 bk = b1 · b2 · ... · bn, is one at time t, whereas all higher order products are zero.
In order to check if at least j neurons fired, one must look at all combinations of products
of j neurons:

κj := ∑
over all(N

j )
combinations π

j

∏
k=1

bπk . (4.3)

The term κj(t) is non-zero if at least j neurons fired within [t − ∆, t]. However if more
than j fired, lets say n, then κj = (n

j), because there are (n
j) combinations that contribute

with a one in Eq. (4.3). In order to derive again a two-state process for the synchronous
output, one must take into account all higher order products:

Yγ(t) =
N

∑
j=γN

qjκj(t) . (4.4)

where qj are normalizing constants that we can derive in the following way.

Let n = N · A(t) be again the actual number of simultaneously spiking neurons at
time t. Then, κj(t) = (n

j) if n ≥ j and it is zero otherwise. If n < γN, then Yγ(t) = 0 (as it
should be) because by definition κj(t) = 0 for n < j. If n ≥ γN terms with j > n do not
contribute to the sum and we obtain

Yγ(t) =
n

∑
j=γN

qj

(
n
j

)
. (4.5)

In order for Yγ(t) to have the value one for any n with N ≥ n ≥ γN, the following
recursive formula must hold

qn = 1−
n−1

∑
j=γN

qj

(
n
j

)
, (4.6)

which can be translated to the explicit form

qj = (−1)j−γN
(

j− 1
j− γN

)
. (4.7)
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4.2. Mean synchronous output

The partially synchronous output can thus be represented by

Yγ(t) =
N

∑
j=γN

(−1)j−γN
(

j− 1
j− γN

)
∑

over all(N
j )

combinations π

j

∏
k=1

bπk(t) . (4.8)

Eq. (4.8) gives the same output as the activity based representation Eq. (4.2), but it
is certainly not as compact as the latter one. However, its advantage is that we can
analytically calculate statistics of the PSO without assuming Gaussianity of the summed
population activity. Whenever we use this representation of the PSO we refer to it as the
combinatorial product approach.

4.2. Mean synchronous output

How often does a synchronous event occur and how does this depend on the synchrony
threshold? This question can be addressed by looking at the expectation value of the
PSO. If we use the activity-based definition, Eq. (4.2), the mean value of the synchronous
output reads

〈Yγ〉 =
〈

θ

(
A− γ +

1
2N

)〉
, (4.9)

where 〈·〉 denotes the average over all independent intrinsic noise sources
ξ = {ξ1, ξ2, ..., ξN} and the common stochastic signal s. Eq. (4.9) is in a simple way
related to the cumulative probability of the summed activity:

〈Yγ〉 =
∫ 1

γ− 1
2N

pA(A) dA = P(A ≥ γ− 1/(2N)) . (4.10)

For finite population sizes, A is a discrete variable, such that

〈Yγ〉 =
N

∑
j=γN

P

(
A =

j
N

)
= P(A ≥ γ) . (4.11)

The mean synchronous output is therefore the probability that the activity is equal to or
above γ. Because P(A ≥ γ) = P(Yγ = 1), the mean value 〈Yγ〉 is the probability of
having a partially synchronous event.
To give an overview over the possible limit cases, Fig. 4.3 shows how the mean syn-
chronous output depends on the input correlation c. If the driving noise is identical for
all neurons (c = 1), they all act asymptotically as one neuron, such that the activity can
only take two values, zero or one with P(A = 1) = R0 and P(A = 0) = 1− R0. By
Eq. (4.11), the mean value of the synchronous output is consequently R0 for any γ > 0
[purple circles in Fig. 4.3]. The other extreme is the case where all neurons are completely
independent of each other (c = 0). For the limit of an infinitely large population the ac-
tivity becomes a deterministic process, because the sum averages out the independent
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Figure 4.3.: Sensitivity of the mean synchronous output depends on the input correla-
tion. Probability of having a partially synchronous event (〈Yγ〉 = P(Yγ = 1))
vs synchrony threshold γ for different input correlations c as indicated. Sym-
bols mark simulation results. Solid lines show the Gaussian approximation
Eq. (4.14) for the cases c ∈ {0, 0.5}. For an infinite large population and with-
out any correlation [red dashed line], the mean PSO is either one for γ ≤ R0
or zero for γ > R0. For full correlation (c = 1) [purple circles] the mean syn-
chronous output equals the mean activity R0 for any γ > 0 (and is one for
γ = 0). LIF-parameters: µ = 1.2, D = 0.01, R0 = 0.2, N = 100.

noise:

lim
N→∞

A(t) = lim
N→∞

1
N

N

∑
k=1

bk(t)
c=0
= 〈b〉 = R0 . (4.12)

Hence, the probability of having a synchronous event for c = 0 is therefore either one for
γ ≤ R0 or zero for γ > R0 [see red dashed line]. For a finite population this step function
is smoothed, resulting in a sigmoid function [see blue diamonds], because the activity
can take different values around R0. As c is increased, 〈Yγ〉 undergoes a transformation
from this sigmoid to the constant case for c = 1. We now show how the mean PSO can
be calculated for small input correlations c.

Gaussian approach to the mean PSO

If we use the Gaussian approximation of the probability density of the summed activity,
Eq. (3.19), we can approximate Eq. (4.10) by

〈Yγ〉G =
∫ ∞

γ− 1
2N

pG
A(A) dA , (4.13)
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4.2. Mean synchronous output

leading to the complementary error function

〈Yγ〉G =
1
2

erfc
(

γ− R0 − 1/(2N)√
2 σA

)
, (4.14)

where the activity’s variance is approximated by σ2
A = 〈ŝ2〉[1− 1/N] + R0(1− R0)/N.

For increasing population size the mean synchronous output approaches

lim
N→∞
〈Yγ〉G =

1
2

erfc

(
γ− R0√

2〈ŝ2〉

)
. (4.15)

Combinatorial approach to the mean PSO

If we use the combinatorial product representation of Yγ, Eq. (4.8), we can directly com-
pute the average of the synchronous output:

〈Yγ〉 =
N

∑
j=γN

qj ∑
over all(N

j )
combinations π

〈〈
j

∏
k=1

bπk〉ξ〉s

ˆ〈Yγ〉 =
N

∑
j=γN

qj

(
N
j

)
〈〈b〉jξ〉s , (4.16)

where we used the independence of the intrinsic noise sources ξk of different neurons.
Applying again the linear response ansatz, Eq. (1.28), we can approximate Eq. (4.16) by

ˆ〈Yγ〉 =
N

∑
j=γN

qj

(
N
j

)
〈(R0 + ŝ)j〉s . (4.17)

By the binomial theorem we can further evaluate

〈(R0 + ŝ)j〉s =
j

∑
k=0

(
j
k

)
Rj−k

0 〈ŝk〉 . (4.18)

Considering only orders up to the variance of the effective stimulus, we get the following
combinatorial approximation of the mean synchronous output

ˆ〈Yγ〉 =
N

∑
j=γN

qj

(
N
j

)
R j

0

[
1 +

j(j− 1)
2

〈ŝ2〉
R2

0

]
. (4.19)

In Fig. 4.4 both approximations of the mean PSO are compared to numerical simu-
lations of LIF populations for a weak common stimulus (c = 0.1). Fig. 4.4a shows the
mean synchronous output for comparatively small populations, while in Fig. 4.4b the
large population limit is explored. As can be seen in Fig. 4.4a the combinatorial approx-
imation, Eq. (4.19), [dashed lines] is in excellent agreement with the numerical simula-
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Figure 4.4.: The probability of having a synchronous event is a sigmoid function of the
synchrony threshold. Mean PSO in dependence of the synchrony threshold
γ for LIF populations of various sizes N as indicated. [a] For small popula-
tions, simulation results [symbols] are compared to the Gaussian approxima-
tion, Eq. (4.14) [solid lines] and to the combinatorial theory, Eq. (4.19) [dashed
lines]. [b] For large populations simulations are compared to the Gaussian
theory only. The red dashed line in b marks the limit case for an infinite large
population given by Eq. (4.15). The vertical line marks the mean population
activity R0. Parameters: µ = 1.2, D = 0.01, c = 0.1, R0 = 0.2.

tions [symbols]. One limitation of its applicability, however, is the numerically expensive
evaluation of the combinatorial factors in Eq. (4.19), which becomes intractable for large
values of N. For this reason we apply the combinatorial approach only to small or mod-
erately sized populations (N < 50). The Gaussian approach, Eq. (4.14), [solid lines] gives
a reasonable approximation of the mean synchronous output, even though we consider
only small populations in Fig. 4.4a. In Fig. 4.4b we see that for large population sizes,
the Gaussian approximation gives an adequate description of 〈Yγ〉.

Discussion of the mean PSO for weak stimuli

If the input correlation is small, the probability of having a synchronous event is a sig-
moidal function of the synchrony threshold γ. When γ is set notably below the mean
population activity R0, the probability that the activity is above γ is close to one. In this
case the population fires almost always ’in synchrony’. In the other extreme, when γ is
set exceedingly above R0, i.e. when we demand a very large fraction of the population to
fire simultaneously, the probability that the activity exceeds the value γ is close to zero.
In this scenario there is hardly ever a synchronous event. Both extremes are therefore
unfavorable to encode a weak time-dependent signal. The common signal is encoded in
the change of the instantaneous population activity A(t). In fact, for large populations,
the activity is approximately given by A(t) = 〈b〉ξ = R0 + ŝ(t) (see Eq. (1.28)). If γ is set
too far away from the mean activity R0, then this small change of A will not influence
the synchronous output. Hence, we can expect that the cross-correlation between the
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Figure 4.5.: Mean synchronous output for fixed input correlation c = 0.1 and for dif-
ferent total noise intensities D ∈ {0, 0.01, 0.2} leading to the mean firing
rates r0 ∈ {0.56, 0.58, 0.80}. Simulation results [symbols] are compared to
the Gaussian approximation, Eq. (4.14) [solid lines]. Remaining parameters:
µ = 1.2, R0 = 0.2, N = 100.

synchronous output Yγ and the common signal s is maximal for γ = R0.
Fig. 4.5 shows the mean synchronous output for different values of the total noise

intensity D for a fixed input correlation c = 0.1. An increase in the total noise results in
an increase of the variance of the stimulus and with it to a larger value of the variance
of A (see Eq. (3.19)). As a consequence, the integral over the distribution pA, Eq. (4.13),
i.e. 〈Yγ〉, displays a slower decay in γ. Also for the deterministic case (D = 0), 〈Yγ〉 is
a sigmoid function if we assume an asynchronous initial state (random initial voltage
values of the single neurons), resulting in a normally distributed activity.

4.3. Cross-spectrum between synchronous output and common
stimulus

An important statistics telling us how each frequency component of the common stim-
ulus influences the synchronous output, is the cross-spectrum between these two pro-
cesses.

4.3.1. Gaussian approach to the cross-spectrum

If we assume the population activity to be a Gaussian process, we can apply the Buss-
gang theorem (Bussgang, 1952). It states that for any two stationary Gaussian processes,
the cross-correlation function taken after one of them has undergone a nonlinear trans-
formation is identical to the cross-correlation of the two original processes up to a factor.
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Chapter 4. The partially synchronous output (PSO) of a neuronal population

Bussgang theorem

Let X and Z be stationary Gaussian processes with 〈Z〉 = 0 and variances σ2
X and σ2

Z, having
the cross-covariance CXZ(τ) = 〈X(0)Z(τ)〉. Then, for any distortion V : R 7→ R, the cross-
covariance between the distorted process V(X) and the original signal Z is given by

CV(X),Z(τ) = a CX,Z(τ) (4.20)

with the proportionality factor

a =
1

σ2
X

∫ ∞

−∞
V(x)(x− 〈X〉)pX(x)dx . (4.21)

In the original version of the Bussgang theorem, both processes, X and Z, have a mean
value of zero and a variance of one. We show the proof of the version we use in the
Appendix A.3. Because

〈V(x)〉 =
∫ ∞

−∞
V(x)

1√
2πσ2

X

exp
[
− (x− 〈X〉)2

2σ2
X

]
dx

we can rewrite Eq. (A.11) by:

a =
d

d〈X〉 〈V(X)〉
∣∣∣∣
σX=const

. (4.22)

If we apply this theorem to the Gaussian approximation of the population activity A(t)
[↔ X(t)] and to the distortion V(A) = θ(A− γ + 1/(2N)) = Yγ we obtain the follow-
ing relation for the cross-covariance between the synchronous output and the common
stimulus s(t) [↔ Z(t)]:

CYγ,s(τ) = aγCA,s(τ) = aγCb,s(τ) . (4.23)

The last equality holds true because all box trains are equally distributed, such that
〈A(0)s(τ)〉 = 〈N−1 ∑N

k=1 bk(0)s(τ)〉 = 〈b(0)s(τ)〉. According to Eq. (4.22) the propor-
tionality factor aγ is obtained by taking the derivative of Eq. (4.14) with respect to the
mean activity R0

aγ =
d

dR0
〈Yγ〉G

∣∣∣∣
σA=const

= pG
A

(
γ− 1

2N

)
=

1√
2πσ2

A

exp

[
−β2

γ

2

]
. (4.24)

In the last line we have expressed the dependence on γ by the important parameter

βγ :=
γ− R0 − 1/(2N)

σA
. (4.25)
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The proportionality factor aγ is thus a Gaussian function in γ, centered around R0 +

1/2N. For a large population we obtain

lim
N→∞

aγ =
1√

2π〈ŝ2〉
exp

[−(γ− R0)2

2〈ŝ2〉

]
. (4.26)

Turning now to the Fourier domain, by virtue of Eq. (1.6) and Eq. (4.23), the cross-
spectrum between PSO and common stimulus has the same frequency dependence as
the cross-spectrum between the summed activity with the stimulus (which is propor-
tional to the cross-spectrum between the single box train and the stimulus)

SG
s,Yγ

( f ) = aγ SA,b( f ) = aγ Ss,b( f ) . (4.27)

Because 〈s〉 = 0 and because the intrinsic noise is independent of the stimulus

Cb,s(τ) = 〈b(0)s(τ)〉 = 〈〈b(0)〉ξ s(τ)〉s (4.28)

= 〈R(0)s(τ)〉s ≈ 〈ŝ(0)s(τ)〉 , (4.29)

where we used the linear response ansatz for the conditioned firing probability R̂(t) =
R0 + ŝ(t) (Eq. (1.28)). The single box-train cross-spectrum is consequently given by

Ŝs,b( f ) = B̃χSs( f ) (4.30)

with absolute value (using Eq. (1.33))

|Ŝs,b( f )| = ∆ sinc(∆π f )|χ( f )|Ss( f ) . (4.31)

For the cross-spectrum between the synchronous output and the common stimulus we
therefore obtain in the Gaussian approximation

|SG
s,Yγ

( f )| = e−β2
γ/2√

2πσ2
A

∆ sinc(∆π f )|χ( f )|Ss( f ) . (4.32)

From the derived formulas we can deduce interesting properties of the PSO-stimulus
cross-spectrum.

4.3.2. Properties of the PSO cross-spectrum that can be deduced from the
Gaussian approach

i) Cross-spectrum between PSO and stimulus shares the same relative frequency
dependence with the cross-spectrum between the summed activity and stimulus

Eq. (4.27) predicts that for all values of γ the cross-spectrum between the synchronous
output and the stimulus is proportional to the cross-spectrum between the summed ac-
tivity and the stimulus. (The activity cross-spectrum SA,s( f ) equals in turn the single
box-train cross-spectrum Sb,s( f ), because we assume a homogeneous population.)
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Figure 4.6.: Cross-spectrum between partially synchronous output and common noise
is proportional to the one of the single box train Absolute value of the cross-
spectrum, |Ss,Yγ

( f )|, rescaled by its maximal value for various synchrony
thresholds γ. Simulation results (colored solid lines) are compared to the
theoretical prediction, Eq. (4.32), normalized by the maximum (black dashed
line). Parameters: D = 0.01, c = 0.1, R0 = 0.2, N = 10, (a): µ = 1.2, (b):
µ = 0.9

Fig. 4.6 shows the absolute value of the PSO cross-spectrum for a population of ten
simulated LIF neurons, relative to its maximum for different synchrony thresholds γ

[colored solid lines] for supra-threshold (a) and subthreshold (b) mean current. One
sees that these rescaled spectra almost overlap, i.e. they share indeed approximately
the same frequency dependence, which is well described by the single box train cross-
spectrum |Ss,b( f )| given by Eq. (4.31) [black dashed line]. One observes slight deviations
for small frequencies, which are not captured by the linear response approach. In con-
clusion, the temporal correlations between the synchronous events and the stimulus are
similar to those between the single or summed spike trains and the stimulus. This is
somewhat surprising because the synchronous output is a strongly non-linear function
of the summed activity.

While the relative frequency dependence of the PSO cross-spectrum is roughly the
same for all synchrony thresholds, the absolute amplitude of the cross-spectrum de-
pends strongly on γ. The two key parameter βγ and aγ are of particular importance
to understand the influence of the synchrony threshold.

ii) The cross-spectrum between PSO and stimulus scales with the sensitivity of the
PSO

Meaning of the constants βγ and aγ

The constant

βγ =
γ− R0 − 1

2N
σA
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is the distance of the synchrony threshold to the mean population activity relative to the
activity’s standard deviation. It appears in the proportionality factor

aγ =
e−β2

γ/2√
2πσ2

A

,

which is the approximated probability that the summed activity A takes the value γ−
1/(2N). The factor aγ can also be interpreted as the sensitivity of the synchronous output.
It tells us how much the PSO is influenced by a change in the population activity, which
can be quantified by the average of the derivative of the PSO with respect to the activity:〈

dYγ

dA

〉
=

〈
d

dA
θ(A− γ + 1/(2N))

〉
=
∫ 1

0
δ

(
A− γ +

1
2N

)
pG

A(A) dA

= pG
A

(
γ− 1

2N

)
= aγ .

Knowing this connection it is quite plausible that the cross-correlation between the PSO
and the stimulus should scale with aγ. The cross-correlation CYγ,s is related to the amount
of information the PSO can linearly carry about the stimulus. Of course, Yγ(t) can only
encode information about s(t), if it is able to respond to a change in the input. The
stimulus is encoded in the population activity A(t). So only if a change in A(t) leads
in average to a change of the PSO, i.e. if 〈dYγ/dA〉 6= 0, the PSO is capable of encoding
information about the stimulus. The overall magnitude of the PSO cross-spectrum scales
with the sensitivity aγ, which is maximal for γ = R0 + 1/(2N) and considerably larger
than zero only for γ ∈ [R0 − 2σA, R0 + 2σA].

It is in particular instructive to consider the relative sensitivity of the PSO, which we
define by the ratio between aγ and the maximal possible sensitivity of the PSO:

aγ

αR0+1/(2N)
=

e−β2
γ/2/

√
2πσ2

A

1/
√

2πσ2
A

= e−β2
γ/2 . (4.33)

Eq. (4.33) shows that the sensitivity of the PSO diminishes exponentially with the squared
distance of the synchrony threshold to the mean value of the activity. Note that for any
γ ≤ R0 there is always a γ′ > R0, namely γ′ = 2R0 + 1/N − γ, such that β2

γ = β2
γ′ ,

leading to the same sensitivity aγ.
In Fig. 4.7 we compare the Gaussian approximation of the sensitivity aγ, Eq. (4.24),

[solid lines] to the proportionality factor between the numerically simulated PSO cross-
spectrum and the cross-spectrum of the single box-train [symbols] for LIF populations
of different size. The approximation slightly underestimates the proportionality factor
for small population sizes, but gives good results for larger populations (e.g. N = 100).

In the following, we derive an alternative approximation of the cross-spectrum by
using the combinatorial product representation of the PSO.

69



Chapter 4. The partially synchronous output (PSO) of a neuronal population

0.0 0.2 0.4 0.6 0.8 1.0
synchrony threshold γ

0

2

4

6

8

10

P
S

O
fle

xi
bi

lit
y
a
γ

R0

N →∞
N = 100

N = 25

N = 10

N = 5

Gauss theory
Combi theory

Figure 4.7.: Absolute value of the cross-spectrum is maximal if the synchrony thresh-
old is set to the mean population activity. The proportionality constant aγ

quantifies the ratio between the stimulus cross-spectrum of the PSO in com-
parison to the one of the summed activity [Ss,Yγ

( f ) = aγ Ss,A( f )]. It can be
interpreted as the sensitivity of the PSO, aγ = 〈dYγ/dA〉. The constant aγ is
plotted over the synchrony threshold γ for various population sizes N as in-
dicated. In the simulations [symbols] aγ was taken as the ratio of the maxima
of SYγ,s and Ss,bk . The simulation results are compared to the Gaussian the-
ory, Eq. (4.24), [solid lines] and the combinatorial approximation, Eq. (4.38),
[dashed lines]. The red solid line shows the limit case for infinite large pop-
ulations, given by Eq. (4.26). The vertical line marks the mean activity value
R0. Parameters: µ = 1.2, D = 0.01, c = 0.1, R0 = 0.2.

4.3.3. Combinatorial product approach to the cross-spectrum

Using the combinatorial product definition of Yγ, Eq. (4.8), the cross-covariance between
the partially synchronous output and the common stimulus reads

CYγ,s(τ) = 〈Yγ(0)s(τ)〉

=
N

∑
j=γN

qj ∑
over all(N

j )
combinations π

〈
j

∏
k=1
〈bπk(0)〉ξπk

s(τ)

〉
s

=
N

∑
j=γN

qj

(
N
j

)〈
〈b(0)〉jξs(τ)

〉
s

, (4.34)

where we used that the stimulus noise is independent of the intrinsic noise and that all
individual box trains, bk(t), are independent and identically distributed. Using the linear
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response ansatz Eq. (1.28), we further evaluate Eq. (4.34) up to the second order of the
variance of s :〈

〈b(0)〉jξs(τ)
〉

s
≈ 〈(R0 + ŝ(0))js(τ)〉s

= jRj−1
0 〈ŝ(0)s(τ)〉s +

(
j
3

)
Rj−3

0 〈ŝ3(0)s(τ)〉s , (4.35)

where we used again the binomial formula Eq. (4.18) and that the stimulus s and the ef-
fective stimulus ŝ are both Gaussian processes with zero mean value, such that 〈ŝ2(0)s(τ)〉 =
0.
For any Gaussian random variables X1, X2, X3, X4 with zero mean holds
〈X1X2X3X4〉 = 〈X1X2〉〈X3X4〉 + 〈X1X3〉〈X2X4〉 + 〈X1X4〉〈X2X3〉 (Isserlis, 1918), such
that

〈ŝ3(0)s(τ)〉s = 3〈ŝ2〉〈ŝ(0)s(τ)〉s = 3〈ŝ2〉Cŝ,s(τ) . (4.36)

Inserting Eq. (4.35) and Eq. (4.36) into Eq. (4.34) yields the following relation of the
cross-covariance

ĈYγ,s(τ) = â Cŝ,s(τ) (4.37)

with the proportionality factor

â =
N

∑
j=γN

qj

(
N
j

)
jRj−1

0

(
1 +

(j− 1)(j− 2)
2

〈ŝ2〉
R2

0

)
. (4.38)

Because of Eq. (1.28), Cŝ,s = Cb,s and thus Eq. (4.37) reads in the Fourier domain

Ŝs,Yγ
( f ) = â Ss,b( f ) . (4.39)

Using the combinatorial product representation of the PSO leads, like the Gaussian ap-
proach, to a cross-spectrum which is proportional to the single box-train cross-spectrum
Ss,b( f ). Note that we did not use the Bussgang theorem to derive this proportionality.
Also, using Eq. (4.38) in combination with Eq. (4.19) yields the same relation between
the proportionality factor a and the mean PSO as in the Gaussian approach:

â =
d

dR0

ˆ〈Yγ〉 . (4.40)

This means, that the general relation, Eq. (4.22), holds true in this approximation as well.
It is not obvious why this relation should hold. However, if we again think of the pro-
portionality factor as the sensitivity of the PSO, 〈dYγ/dA〉, and keep in mind that R0 =
〈A〉, relation Eq. (4.40) is less surprising.

In Fig. 4.7 the combinatorial approximation of the proportionality factor, Eq. (4.38),
is plotted in dashed lines. This approach is in excellent agreement with the simulation
results. However, as mentioned before, applying this approach to large populations
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Chapter 4. The partially synchronous output (PSO) of a neuronal population

yields erroneous results, because of the failing numerical implementation of the huge
binomial factors. (That is why we do not show the combinatorial approximation for
N = 100.)

4.4. Power spectrum of the synchronous output

The common noise does not only affect the cross-correlation but also the autocorrelation
of the synchronous activity. However, even if no common stimulus is present, the calcu-
lation of the power spectrum of Yγ is a non-trivial problem. To approximate the power
spectrum, SYγ

( f ), we will again employ the two different approaches.

4.4.1. Gaussian approach to the power spectrum

If we assume the summed population activity to be Gaussian distributed, we can make
use of the Malakov theorem (Malakhov, 1952) which connects the autocorrelation of a
Gaussian process with the one of its nonlinear distortion.

Malakov theorem

For any stationary Gaussian process X and any smooth transformation V(X) = Y, the autoco-
variance CYY(τ) = 〈Y(0)Y(τ)〉 − 〈Y〉2 of process Y can be expressed by the autocovariance of
X via

CY,Y(τ) =
∞

∑
n=1

1
n!

〈
dn

dXn V(X)

〉2

C n
X,X(τ) . (4.41)

If we assume the activity A to be normally distributed, we can apply Eq. (4.41) to get an
expression for the autocovariance of the PSO, Yγ = θ(A− γ + 1/(2N)):

CG
Yγ,Yγ

(τ) =
∞

∑
n=1

1
n!

〈
dn

dAn θ

(
A− γ +

1
2N

)〉2

C n
A,A(τ) . (4.42)

Although the Heaviside step function is not a smooth transformation, we can formally
differentiate it, which leads to a δ-distribution. Eq. (4.42) includes only averages of the
derivatives of the θ-function. These are integrals over the probability distribution pG

A and
hence, it is clear how this δ-function and its further derivatives need to be evaluated. For
n ≥ 1 we obtain 〈

dn

dAn θ(A− γ + 1/(2N))

〉
= (−1)n−1

∫ 1

0
δ

(
A− γ +

1
2N

)
dn−1 pG

A(A)

dAn−1 dA

= (−1)n−1 dn−1

dAn−1 pG
A(A)

∣∣∣
A=γ− 1

2N

. (4.43)
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4.4. Power spectrum of the synchronous output

The nth derivative of the normal distribution can be expressed in terms of Hermite poly-
nomials (Bronstein et al., 2012) [here, we use the probabilistic version]:

Hen(x) := (−1)nex2/2 dn

dxn e−x2/2 ,

such that

dn

dAn pG
A(A)

∣∣∣
A=γ− 1

2N

=
(−1)n

σn
A

Hen(βγ)pG
A

(
γ− 1

2N

)
= (−1)n aγ

σn
A

Hen(βγ), (4.44)

where βγ and aγ are given in Eq. (4.25) and Eq. (4.24).

Plugging Eq. (4.43) and Eq. (4.44) into Eq. (4.42), we obtain

CG
YγYγ

(τ) =a2
γ

∞

∑
n=0

He2
n(βγ)

(n + 1)! σ2n
A

CAA
n+1(τ) . (4.45)

The Fourier transform of this autocovariance function yields an expression for the
power spectrum of the PSO

SG
Yγ
( f ) = a2

γ

[
SA( f ) +

∞

∑
n=1

He2
n(βγ)

(n + 1)!
1

σ2n
A
∗

n
SA ( f )

]
, (4.46)

where by ’∗n S’ we denote the n-fold convolution of the function S( f ) with itself
(∗1 S := S ∗ S, ∗2 S := S ∗ S ∗ S, ...). The power of the synchronous output can
be thus expressed by a weighted sum of convolutions of the summed activity’s power
spectrum SA.
The power spectrum of the population activity is according to Eq. (3.2) given by

SA =
1
N

Sb +

(
1− 1

N

)
Sbk ,bk′ . (4.47)

Using the linear response ansatz Eq. (1.28), the cross-spectrum between two different
box trains equals the power of the effective stimulus (Shea-Brown et al., 2008; Ostojic
et al., 2009; Vilela and Lindner, 2009a)

Ŝbk ,bk′ ( f ) = Sŝ( f ) (4.48)

and the power spectrum of the single box train is given by the product of the Fourier
transformed box filter and the power spectrum of the single spike train Sx

Sb( f ) = |B̃( f )|2Sx( f ) . (4.49)

(For an LIF-neuron Sx( f ) is given by Eq. (A.4).) Thus, the power spectrum of the activity

73



Chapter 4. The partially synchronous output (PSO) of a neuronal population

can be approximated by

ŜA =
1
N

Sb +

(
1− 1

N

)
Sŝ , (4.50)

where Sŝ is described by Eq. (1.31).

We now have all the ingredients to evaluate Eq. (4.46). However, there is an infinite
sum of convolutions that needs to be evaluated numerically and it turns out that the
sum cannot be truncated without making a seizable error for most parameter regimes.
Nonetheless, we can derive an alternative expression (completely equivalent to Eq. (4.46))
for the power spectrum as follows.

The Hermite polynomials appearing in Eq. (4.45) satisfy the so called Mehler’s formula
(Watson, 1933):

∞

∑
n=0

an

n!
(Hen(x))2 =

1√
1− a2

exp
[

x2

1 + a−1

]
. (4.51)

In order to apply this formula we rewrite the terms in Eq. (4.45):

He2
n(βγ)

(n + 1)!
σ2

A

(
CA,A(τ)

σ2
A

)n+1

= σ2
A

∫ ρA(τ)

0

an

n!
He2

n(βγ) da , (4.52)

where

ρA(τ) =
CA,A(τ)

σ2
A

=
IFT(SA)

σ2
A

(4.53)

is the normalized autocorrelation function of the population activity, which can be de-
rived by taking the inverse Fourier transform (IFT) of Eq. (4.50). With Eq. (4.52) and
Eq. (4.51), the infinite sum in Eq. (4.45) can be replaced by an integral, resulting in the
desired alternative expression for the autocovariance of the PSO

CG
Yγ,Yγ

(τ) = a2
γ Iγ(τ) (4.54)

with the time-lag dependent integral

Iγ(τ) = σ2
A

∫ ρA(τ)

0

1√
1− a2

exp

[
β2

γ

1 + a−1

]
da . (4.55)

The power spectrum of the partially synchronous output reads therefore

SG
Yγ
( f ) = a2

γ Ĩγ( f ) (4.56)
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and explicitly

SG
Yγ
( f ) =

e−β2
γ

2π
FT

(∫ ρA(τ)

0

1√
1− a2

exp

[
β2

γ

1 + a−1

]
da

)
. (4.57)

where FT stands for the Fourier transform with respect to τ.

4.4.2. Properties of the PSO power spectrum that can be deduced from the
Gaussian approach

The evaluation of expression (4.57) involves three integrals, two Fourier transforms (ρA
is calculated by a FT of SA) and the integral over a. This is manageable compared to
the large number of convolutions that potentially have to be evaluated in Eq. (4.46).
Unfortunately, there is no closed analytical solution of the integral Eq. (4.55) for a general
value of γ. However, one can deduce a number of qualitative and quantitative properties
about the autocorrelation and power spectrum of the PSO from this approximation.

i) If the synchrony threshold is set to the mean activity value, the PSO power
spectrum is proportional to the power spectrum of the summed activity

A special case where we can solve the integral Eq. (4.55) is the case γ = R0, i.e for βγ ≈ 0.
1 Because

∫ x
0 1/

√
1− a2 da = arcsin(x), we obtain

IR0 ≈ σ2
Aarcsin(ρA) . (4.58)

For time lags τ considerably larger than zero the activity autocorrelation has a small
amplitude, such that arcsin(ρA(τ))ρA(τ) (see Fig. 4.8). With this approximation we can
further estimate Eq. (4.58)

IR0(τ)σ
2
AρA(τ) = CA,A(τ) . (4.59)

For γ = R0 the power spectrum of the PSO, Eq. (4.56), can be consequently approximated
by

SG
YR0

( f ) ≈ 1
2π

FT[arcsin(ρA)] (4.60)

1
2π

SA( f )
σ2

A
= a2

R0
SA( f ) . (4.61)

Eq. (4.60) describes simulation results indeed very well (see Fig. 4.9), and even the simple
approximation Eq. (4.61) gives a rough estimate. In conclusion, if the synchrony thresh-
old is set to the mean population activity, the power spectrum of the PSO is approxi-
mately proportional to the power spectrum of the summed activity, i.e. to the power of
’all spikes’.

1Formally βγ̂ = 0 for γ̂ = R0 + 1/(2N). For reasons of clarity we will omit the summand (2N)−1 most of
the times, which is after all only important for small populations.
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Figure 4.8.: Normalized autocorrelation function of the activity, ρA(τ) [red dashed line],
compared to arcsin[ρA(τ)] [cyan solid line]. Here, arcsin[ρA(τ)] ≈ ρA(τ) for
τ > 0.16, which is smaller than the synchrony box width ∆ [vertical gray
line]. LIF-parameters: µ = 1.2, D = 0.01, c = 0.1, N = 100.
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Figure 4.9.: For γ = 〈A〉 the power spectrum of the PSO is approximately proportional
to the power spectrum of the summed population activity. Power spectrum
of the partially synchronous output if the synchrony threshold γ is set to the
mean activity 〈A〉 = R0. Simulation results [circles] are compared to the
Gaussian approximation Eq. (4.60) [solid line] and to Eq. (4.61) [dashed line].
The spectra have their maximum at roughly the single neuron firing rate
r0 = 0.58 (vertical dotted line). Parameters: µ = 1.2, D = 0.01, c = 0.1, R0 =
0.2, N = 100.
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4.4. Power spectrum of the synchronous output

ii) The PSO power spectrum is symmetric in the synchrony threshold around the
mean activity value

Eq. (4.57) illustrates that within the Gaussian approach the power spectrum depends on
the synchrony threshold γ only through the key parameter β2

γ = (γ−R0− 1/(2N))2/σ2
A,

i.e. the normalized distance between γ and the expected population activity. In Fig. 4.10
we compare the Gaussian approximation, Eq. (4.57), to simulations of a population of
100 LIF neurons. The theory agrees well with the simulation results. As predicted by the
theory, the power spectra corresponding to γ-values with the same β2

γ-value are very
close to each other, especially for larger frequencies. At low frequencies however, the
power spectrum for γ < R0 is larger than for γ′ > R0, if β2

γ = β2
γ′ (see inset in Fig. 4.10).

iii) The magnitude of the PSO power spectrum decreases exponentially with β2
γ

From Eq. (4.46) we see that the overall magnitude of the PSO power spectrum/autocorrelation
is scaled by the sensitivity aγ = e−β2

γ /(2πσ2
A). Hence, the overall synchrony power is

maximal for γ = R0 and drops exponentially as γ diverges from the mean activity value.
Fig. 4.12a illustrates the strong reduction in the magnitude of the PSO power spectrum
with increasing β2

γ.

iv) Autocorrelation of the PSO concentrates around τ = 0 for large |βγ|, leading to a
flat power spectrum.

The relative time dependence of the PSO autocorrelation (Eq. (4.54)) is given by the inte-
gral

Iγ(τ) = σ2
A

∫ ρA(τ)

0

1√
1− a2

exp

[
β2

γ

1 + a−1

]
da .

The second factor in the integrand, exp[β2
γ/(1 + a−1)], amplifies the pole at a = 1 of the

first term 1/
√

1− a2 by a factor of eβ2
γ/2, which becomes huge for large values of |βγ|.

For small values of a < 1, the exponential factor has less and less influence, because
lima→0 exp[β2

γ/(1 + a−1)] = 1. For a given time lag τ, only values of a contribute to the
integral Iγ(τ) for which hold |a| ≤ |ρA(τ)|. The pole value a = 1 does only appear for
τ = 0 (because for τ > 0, ρA(τ) < ρA(0) = 1). In conclusion, the ratio between Iγ(0) and
Iγ(τ) for a time lag τ > 0 increases with β2

γ. As a consequence, the correlation function
is strongly peaked around τ = 0 for large values of β2

γ. This behavior can be observed in
Fig. 4.11b. A strongly peaked autocorrelation leads in the Fourier domain to a flat power
spectrum

SYγ
( f ) ≈ const for β2

γ � 1 , (4.62)

This behavior is intuitively not surprising. For large values of β2
γ, i.e. if the synchrony

threshold is set far away from the expected activity, the PSO is almost always zero for
γ > 〈A〉 or almost always one for γ < 〈A〉 (see Sec. 4.2). Deviations from these values,
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Figure 4.10.: The distance of the synchrony threshold γ to the mean activity deter-
mines the magnitude of the power of the synchronous output. Power
spectrum of the partially synchronous output for a population of N = 100
LIF neurons for various synchrony thresholds γ. The Gaussian theory,
Eq. (4.57), predicts the identical result for γ-values which lead to the same
value of β2

γ = (γ − R0 − 1/(2N))2/σ2
A. The inset in (a) shows the power

spectrum for small frequencies. Parameters: D = 0.01, c = 0.1, R0 = 0.2, (a)
µ = 1.2, (b) µ = 0.9.
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Figure 4.11.: Autocorrelation function of the PSO is strongly peaked around zero for
high synchrony demand. [a] Autocovariance function of the PSO for dif-
ferent synchrony thresholds γ ∈ {0.2, 0.3, 0.4} (corresponding to β2

γ ∈
{0.0, 2.6, 11.0}). For comparison, the autocovariance of the summed activity
(divided by 2πσ2

A) is plotted in dashed green. [b] Rescaled PSO autocorre-
lation Iγ(τ), Eq. (4.55). For large values of β2

γ, the autocovariance function
of the PSO is strongly peaked at τ = 0 and diminishes quickly for τ > 0.
Parameters: µ = 1.2, D = 0.01, c = 0.1, N = 100.

i.e. synchronous events (common firing for βγ > 0 or common silence for βγ < 0)
become very rare and statistically independent of each other. This leads to a rare-event
(Poissonian) statistics which is characterized by a flat power spectrum.

The limits of extreme γ-values are explored in Fig. 4.12. In panel (b) the power spectra
are rescaled by their maximal value in order to compare their frequency dependence.
One can observe the flattening of the spectra as γ → 1 and γ → 0. The power spectrum
becomes indeed constant as γ approaches one and is already rather flat for γ ≥ 0.6 in
the shown frequency range.

v) Negative correlations get more suppressed than positive ones

From Eq. (4.55) one can easily derive that for all γ1 and γ2 with |βγ1 | > |βγ2 | holds

Iγ1(τ) > Iγ2(τ) (4.63)

for all τ ≥ 0. If ρA(τ) is positive, i.e. for 0 ≤ a ≤ 1, holds true that exp
[
β2

γ1
/(1 + a−1)

]
≥

exp
[
β2

γ2
/(1 + a−1)

]
, such that Eq. (4.63) is fulfilled. For negative ρA(τ), i.e. for−1 < a <

0, holds exp
[
β2

γ1
/(1 + a−1)

]
< exp

[
β2

γ2
/(1 + a−1)

]
. Because both integrals are negative

in this case, one finds again that Iγ1(τ) > Iγ2(τ).
From relation Eq. (4.63) we see that for any γ with |βγ| > 0 holds

Iγ(τ) > IR0(τ) ≈ CA,A(τ) , (4.64)

where we used Eq. (4.59) for the last equality. In conclusion, by distorting the popula-
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Figure 4.12.: The power spectrum of the synchronous output converges to a constant
as γ→ 1 or γ→ 0. Power spectrum of the partially synchronous output for
various synchrony threshold values γ. [a] Total value in log-scale. [b] SYγ

scaled by its maximal value. The power spectrum is maximal and the most
peaked for γ = R0 [red line]. As γ approaches one or zero, the power spec-
trum converges to a flat spectrum as predicted by Eq. (4.62). Parameters:
µ = 1.2, D = 0.01, c = 0.1, R0 = 0.2, N = 100.
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Figure 4.13.: Negative autocorrelations get more suppressed than positive ones.
Rescaled PSO autocovariance Iγ(τ), Eq. (4.55), for different synchrony
thresholds (this is a zoom of Fig. 4.11b). For γ = 〈A〉 [red line] the PSO
autocovariance shares approximately the same relative τ-dependence as
the autocovariance of the summed activity [dotted green line]. As β2

γ in-
creases negative autocorrelations of the summed activity are stronger sup-
pressed than positive ones by the synchrony threshold criterion. Parame-
ters: µ = 1.2, D = 0.01, c = 0.1, N = 100.

tion activity with a threshold function, negative autocorrelations are stronger suppressed
than positive ones. In Fig. 4.13 we can see this effect, which becomes more and more
pronounced for increasing |βγ|. (Remember that Iγ is the rescaled autocovariance of the
PSO: Iγ = CYγ,Yγ

/a2
γ. )

This behavior can be understood intuitively. It is a consequence of the lack of sensitiv-
ity of the PSO for large values of |βγ|. The summed activity has negative autocorrelations
for times larger than the box width ∆. If there was for example a large activity in one
bin, the activity in the following bins necessarily has to be smaller on average, such that
the mean value R0 is preserved (see Fig. 4.8). On the contrary, for large values of |βγ|,
i.e. for vanishing sensitivity aγ, the PSO is almost constant, such that autocorrelations
are mostly positive (if Yγ(t) is almost always one, then it is very likely that the following
values Yγ(t + τ) are one as well).

4.4.3. Combinatorial product approach to the power spectrum

The derivation of the PSO power spectrum in the combinatorial product approach is
much more cumbersome than the respective calculation in the Gaussian approach. We
will first show the analytical derivation for the stimulus-free case. The derivation of the
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power spectrum in the first order of the common stimulus’ variance is more tricky and
involves a rather unorthodox linear response approach. Both approximations are tested
against numerical simulations of small LIF populations and compared to the Gaussian
estimation.

Combinatorial approach to the PSO power spectrum in absence of a stimulus

Using the combinatorial representation of the PSO, Eq. (4.8), the autocorrelation function
of the partially synchronous output reads

〈Yγ(0)Yγ(τ)〉 = CYγYγ
(τ) + 〈Yγ〉2

=
N

∑
j,j′=γN

qjqj′ ∑
over all(N

j )
combinations π

∑
over all(N

j′ )
combinations π′

〈P j,j′

π,π′〉 , (4.65)

where

P j,j′

π,π′ :=
j

∏
k=1

bπk(0)
j′

∏
k′=1

bπk′ (τ) . (4.66)

The mean value of P j,j′

π,π′ depends on the number of matching pairs, bk(0)bk(τ), i.e. when
the same neuron index appears twice in Eq. (4.66). If there are exactly m matching pairs
we find

〈P j,j′

π,π′〉 =
〈
〈b(0)b(τ)〉mξ 〈b(0)〉

j−m
ξ 〈b(τ)〉j

′−m
ξ

〉
s

. (4.67)

If we neglect the influence of the weak stimulus s(t), Eq. (4.67) reads

〈P j,j′

π,π′〉 = (Cb,b(τ) + R2
0)

mRj+j′−2m
0 , (4.68)

where Cb,b(τ) = 〈b(0)b(τ)〉− 〈b(0)〉2 is the autocovariance of the single box-train. Hence,
instead of summing over all combinations π and π′ in Eq. (4.65), we only need to sum
over the number of matching pairs m, resulting in

CYγYγ
(τ) + 〈Yγ〉2 =

N

∑
j,j′=γN

qjqj′ Rj+j′
0

min(j,j′)

∑
m=max(0,j+j′−N)

#j,j′,m

(
Cb,b(τ) + R2

0

R2
0

)m

, (4.69)

where

#j,j′,m =

(
N
m

)(
N −m
j−m

)(
N − j
j′ −m

)
(4.70)

is the number of possible combinations of having exactly m matching pairs given a fixed
number j of boxtrains at time zero and j′ at time τ. Fig. 4.14 illustrates the derivation of
this factor.
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Figure 4.14.: Illustration of the derivation of the prefactor #j,j′,m in Eq. (4.69) Example:
N = 6, j = 3, j′ = 4, m = 2. The series of numbers represent the in-
dices of the individual neurons, e.g. the left "123" represents the product
b1(0)b2(0)b3(0), and the right "1245" represents b1(τ)b2(τ)b4(τ)b5(τ). The
first factor (N

m) in Eq. (4.70) is the number of possibilities to choose m differ-
ent indices out of N. Once m indices have been fixed (in the example indices
1 and 2), one can still vary the j−m indices that label the possible boxtrains
b•(0) that can be chosen from N − m remaining indices. There are N − j
indices to choose from to fill the j′ − m indices that label the not matching
boxtrains b•(τ).

By the convolution theorem we obtain for the power spectrum of Yγ ( f 6= 0)

Ŝ(0)
Yγ

( f ) =
N

∑
j,j′=γN

qjqj′ Rj+j′
0

min(j,j′)

∑
m=max(1,j+j′−N)

#j,j′,m

R2m
0
∗

m− 1
Sb ( f ) (4.71)

with Sb( f ) = Sb( f ) + R2
0 δ( f ) being the power spectrum of the single box train includ-

ing the DC-peak. Taking into account the δ-function in Sb is important, because it affects
the convolutions. By∗m Sb we again denote the m-fold convolution of Sb with itself
(∗0 Sb = Sb ,∗1 Sb = Sb ∗ Sb , ... ).

In Fig. 4.15 a,b approximation Eq. (4.71) [solid lines] is compared to simulation re-
sults [symbols] of a population of ten uncorrelated (c = 0) LIF-neurons. For both, the
suprathreshold (a) and subthreshold regime (b), the combinatorial approach predicts
well the power spectrum of the synchronous output. As a matter of fact, it performs
better than the Gaussian approximation for small populations, which is plotted for com-
parison in Fig. 4.15c and d.

However, we were originally interested in the response of the PSO to a weak common
stimulus. We now derive an approximation of the PSO power spectrum which includes
the stimulus, up to the first order of its variance.
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Figure 4.15.: Combinatorial theory predicts well the spontaneous PSO power spec-
trum of a small population. Power spectrum of the partially synchronous
output for a population of N = 10 independent (c = 0) LIF-neurons for
various synchrony-thresholds γ. Symbols mark simulation results (same
symbols mark the same value of γ in all plots as indicated in the leg-
end in [b]). [a,b] Combinatorial product approximation Eq. (4.76) [colored
solid lines]. [c,d] Gaussian approximation Eq. (4.57) [black solid lines] com-
pared to same simulation results as in [a,b]. The Gaussian approximation
is identical for γ-values with equal values of β2

γ [see legend]. Parameters:
µ = 1.2, D = 0.01, c = 0, R0 = 0.2, (a, c) : µ = 1.2, (b, d) : µ = 0.9
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4.4. Power spectrum of the synchronous output

Combinatorial approach to the PSO power spectrum with weak common stimulus

In order to incorporate the influence of the common stimulus we extend the linear re-
sponse ansatz for the windowed firing rate, 〈b(t)〉ξ ≈ R0 + ŝ(t), to a formal linear re-
sponse ansatz for a single realization of the boxtrain:

”b(t) ≈ b0(t) + ŝ(t)” , (4.72)

where b0 is the spontaneous boxtrain, i.e. for the case c = 0. This ansatz, introduced
in (Lindner et al., 2005), is to be understood as a tool to derive spectral statistics. It
has been successfully employed for calculating spectral measures in neural networks
(Lindner et al., 2005; Marinazzo et al., 2007; de la Rocha et al., 2007; Shea-Brown et al.,
2008; Sharafi et al., 2013). Technically, the process b(t) can only take the values one and
zero, whereas ŝ(t) can be any real number. The approximation Eq. (4.72) does therefore
only make proper sense if ensemble averages are involved.
Using ansatz Eq. (4.72) we can directly evaluate the first term in Eq. (4.67)

〈b(0)b(τ)〉mξ ≈ 〈b0(0)b0(τ) + b0(0)ŝ(τ) + b0(τ)ŝ(0) + ŝ(0)ŝ(τ)〉mξ
= [Cb0,b0(τ) + R0 ŝ(τ) + R0 ŝ(0) + ŝ(0)ŝ(τ)] m

= C m
b0,b0

(τ) + mC m−1
b0,b0

(τ)[ R0 ŝ(τ) + R0 ŝ(0) + ŝ(0)ŝ(τ) ]

+

(
m
2

)
C m−2

b0,b0
(τ)R2

0 [ ŝ2(τ) + ŝ2(0) + 2 ŝ(0)ŝ(τ) ] , (4.73)

where we used the binomial formula and considered only terms up to the order of the
variance of the common stimulus (∼ O(ŝ2)). Cb0,b0(τ) = 〈b0(0)b0(τ)〉 is the autocorrela-
tion function of the spontaneous boxtrain. The second and third term in Eq. (4.67) can
be evaluated by using the usual linear response ansatz for the firing rate, Eq. (1.28):

〈b(0)〉j−m
ξ ≈ (R0 + ŝ(0))j−m

≈ Rj−m
0 + (j−m)Rj−m−1

0 ŝ(0) +
(

j−m
2

)
Rj−m−2

0 ŝ2(0) . (4.74)

Plugging Eq. (4.73) and Eq. (4.74) into Eq. (4.67) yields

〈P j,j′

π,π′〉 = Rj+j′−2m
0 {

C m
b0,b0

(
1 +

[(
j′ −m

2

)
+

(
j−m

2

)] 〈ŝ2〉
R2

0
+ (j′ −m)(j−m)

Cŝ,ŝ

R2
0

)
+ m C m−1

b0,b0
[ (j′ + j− 2m){〈ŝ2〉+ Cŝ,ŝ}+ Cŝ,ŝ ]

+ m(m− 1) C m−2
b0,b0

R2
0[ 〈ŝ2〉+ Cŝ,ŝ ] } , (4.75)

where Cŝ,ŝ(τ) = 〈ŝ(0)ŝ(τ)〉s is the autocorrelation function of the effective stimulus.
By incorporating Eq. (4.75) into Eq. (4.65) and taking the Fourier transform, the power
spectrum of the synchronous output up to the first order of the variance of the common
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stimulus reads

S(1)
Yγ

( f ) =
N

∑
j,j′=γN

qjqj′ Rj+j′
0

min(j,j′)

∑
m=max(0,j+j′−N)

#j,j′,m

R2m
0

ωj,j′,m( f ) , (4.76)

where

ωj,j′,m =

{(
1 +

[(
j′ −m

2

)
+

(
j−m

2

)] 〈ŝ2〉
R2

0

) ∗
m− 1

Sb

+ R−2
0 (j′ −m)(j−m)Sŝ ∗ ∗

m− 1
Sb

+ m[j + j′ − 2m]〈ŝ2〉 ∗
m− 2

Sb

+ m[j + j′ − 2m + 1] Sŝ ∗ ∗
m− 2

Sb

+ R2
0 m(m− 1)

[
〈ŝ2〉 ∗

m− 3
Sb + Sŝ ∗ ∗

m− 3
Sb

]}
.

In Fig. 4.16 a,b Eq. (4.76) is compared to simulation results of ten LIF neurons driven
by weak common white noise. The approximation gives reasonable results, but deviates
from the numerics especially at higher frequencies. The deviations are more pronounced
in the subthreshold regime (see Fig. 4.16b). Fig. 4.16 c,d compares the same simulation
results to the Gaussian approximation, Eq. (4.57), which performs much worse than the
combinatorial approach for this small system size.

4.5. Application to non-white common stimuli

So far, in all simulations, we considered the common noise to be white, which is useful
in order to see how the system reacts to an arbitrary frequency component of a common
input. However, white noise is certainly not a very natural stimulus. We can in principle
apply our results to a Gaussian stimulus of arbitrary temporal correlation as long as it is
weak. For instance, we can consider the Ornstein-Uhlenbeck process (OUP)

τs ṡ = −s +
√

2Dc ξs(t) , (4.77)

where ξs is Gaussian white noise. The stationary (t � 1) autocorrelation function of s
reads

〈s(t)s(t + τ)〉 = Dc
τs

e−τ/τs .
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Figure 4.16.: For small populations, the combinatorial approach works better than the
Gaussian one. PSO power spectrum of a population of N = 10 LIF-neurons
driven by weak common noise for various synchrony-thresholds γ. Sym-
bols mark simulation results (same symbols mark the same value of γ in
all plots as indicated in the legend in [b]). [a,b] Combinatorial product ap-
proximation Eq. (4.76) [colored solid lines]. [c,d] Gaussian approximation
Eq. (4.57) [black solid lines] compared to same simulation results as in [a,b].
The Gaussian approximation is identical for γ-values with equal values of
β2

γ [see legend]. Parameters: µ = 1.2, D = 0.01, c = 0.1, R0 = 0.2, (a, c) :
µ = 1.2, (b, d) : µ = 0.9

Hence, Dc =
∫ ∞

0 〈s(t)s(t + τ)〉dτ is again the intensity of s, but now it has a non-zero
(exponential) autocorrelation time τs. The power spectrum of process Eq. (4.77) reads

Ss( f ) =
2Dc

1 + (2π f τs)2 . (4.78)

Fig. 4.17 shows the cross- and power spectrum of the synchronous output with syn-
chrony threshold γ = 0.25 of an LIF population driven by a common OUP for two
different autocorrelation times. The power spectrum of the corresponding stimulus is
shown in the inset in Fig. 4.17a. We see that the theory agrees well with simulation
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Figure 4.17.: Theory is also applicable to colored noise. PSO spectra for an LIF popu-
lation which is driven by a common Ornstein-Uhlenbeck process, given by
Eq. (4.77), with two different autocorrelation times τs as indicated. The inset
in [a] shows the power spectrum of the OUP. Symbols mark simulation re-
sults and the solid lines show the theoretic predictions Eq. (4.32),Eq. (4.78)
and Eq. (4.57). Remaining parameters: µ = 1.2, D = 0.01, c = 0.1, R0 =
0.2, N = 100, γ = 0.25.

results, also in the case of colored input.
For small autocorrelation times τs [purple circles in Fig. 4.17] we see a similar behavior

to the white noise case. For larger values of τs [blue triangles in Fig. 4.17] the power of
the stimulus (and, consequently that of the effective stimulus) is diminished already
at moderate frequencies, such that the cross-spectrum between the synchronous output
and the stimulus is concentrated at low frequencies. As a consequence, the ratio between
the PSO power at low and high frequencies increases with τs [see Fig. 4.17b]. Because we
fix the noise intensity, an increase in the autocorrelation time τs leads to a decrease in the
variance of the stimulus, such that the mean magnitude of the power of the synchronous
output is decreased as well.

4.6. Comparison of the Gaussian to the combinatorial product
approach

We employed two different approaches to derive analytical approximations of the PSO
statistics: the Gaussian and the combinatorial product approach. In both approaches
the common stimulus was incorporated by using linear response theory. In the combi-
natorial approach, the synchronous output is expressed by products of the box-filtered
spike trains. As a generalization of the ansatz introduced in Sharafi et al. (2013), this
was originally our first attempt to deal with the problem and it yields generally more
accurate results of the PSO statistics. In contrast to the Gaussian approach it differ-
entiates between γ-values that have the same distance to the mean activity and it can
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4.7. Summary

quantitatively describe the small differences between these cases. However, the result-
ing equations are quite cumbersome and do not provide much insight about the roles
of parameters. In addition, in practice they can be evaluated only for small populations
because of the required numerical effort to compute the combinatorial factors occurring
in the formulas.

In the Gaussian approach the PSO is a threshold function of the summed population
activity and the activity is assumed to have a Gaussian distribution. Under this assump-
tion, all statistics of the PSO can be expressed in terms of the statistics of the summed
activity. The Gaussian approach results in reasonable, sometimes even excellent approx-
imations of the investigated statistics, especially for large populations. The advantage of
the Gaussian approach is the simplicity of the formulas, making the role of the synchrony
threshold γ more transparent. For instance, it predicts symmetries in γ: the cross- and
power spectra are indistinguishable if the synchrony threshold has the same distance
to the mean activity R0, i.e. for values of γ that lead to the same value of |βγ|. This
symmetry reflects the statistical similarity of joint firing and joint silence of the neurons.
In numerical simulations this symmetry is found to be valid to a good approximation,
especially in large populations.

4.7. Summary

In this chapter we have studied statistical properties of the partially synchronous output
of a homogeneous neuronal population which is driven by a common time-dependent
stimulus (Gaussian noise). By employing linear response theory, we derived analytical
approximations in two different approaches for the PSO mean value, power spectrum,
and its cross-spectrum with a weak stimulus. These approximations were tested against
numerical simulations of LIF neurons that are driven by common white Gaussian noise
or an Ornstein-Uhlenbeck process.

We investigated how the derived statistics depend on the synchrony threshold γ, i.e.
the minimal fraction of the population that needs to be simultaneously active such that
a synchronous event is recorded. As a key parameter emerged βγ - the effective distance
of the synchrony threshold to the expected value of the population activity. We demon-

strated that the related constant aγ = e−β2
γ/2/

√
2πσ2

A ≈ pA(γ) quantifies the sensitivity
of the PSO, i.e. how much the PSO is influenced by a small change in the summed
population activity A(t). From the results of the mean value of the PSO (which equals
the probability of having a synchronous event) we saw that the PSO is variable only
for small distances |βγ|. For large values of |βγ| the PSO is almost constantly one [for
γ → 0, i.e. for βγ � 0, there is almost always a synchronous firing event] or constantly
zero [for γ → 1, i.e. for βγ � 0, there is practically never a synchronous firing event].
These different variability regimes impact the auto- and cross-correlation properties of
the synchronous output.

We showed that for all values of γ and for any population size, the cross-spectrum of
the synchronous output with the common stimulus is approximately proportional to the
cross-spectrum between the single neuron (or summed activity) and the stimulus. This
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result is in line with Sharafi et al. (2013), where the authors showed this proportional-
ity for the case of γ = 1. In conclusion, the relative temporal correlations between the
synchronous events and the stimulus are similar to those between the single or summed
spike trains and the stimulus. This is somewhat surprising because the synchronous
output is a strongly non-linear function of the summed activity. The proportionality
factor, however, i.e. the overall amplitude of the cross-spectrum between PSO and stim-
ulus is given by the value of the sensitivity aγ. The amplitude is therefore maximal for
γ = 〈A〉 = R0 and decays exponentially with increasing distance |βγ| from this value.

The most demanding challenge was the approximation of the autocorrelation or power
spectrum of the PSO. For these functions the synchrony threshold does not only influ-
ence their magnitude, but also their relative time or frequency dependence. The overall
amplitude is again mainly determined by the sensitivity aγ. In comparison to the pro-
cess of the summed activity, the synchrony threshold suppresses autocorrelations. We
showed that negative autocorrelations get more suppressed than positive ones, which is
a consequence of the invariable nature of the PSO for large values of |βγ|. We saw that for
γ = R0 the PSO power spectrum is approximately proportional to the power spectrum
of the summed activity. This is due to the fact that in this case the synchronous output
is a symmetric two-state version of the summed output. In the opposite limits, as γ goes
to one or zero, the power spectrum approaches a flat function, revealing the Poisson-like
character of rare synchronous firing or silence events if the synchrony threshold is set far
away from the mean activity.

We now have all ingredients to obtain the coherence function of the PSO, which reveals
the spectral coding properties of the synchronous output. In the following chapter we
analyze the PSO coherence in detail.
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Chapter 5.

Coherence function of the synchronous
output vs summed output

In the introduction we showed that the synchronous output of pairs of neurons can act
as a band-pass filter of information and in chapter 2 we discussed requirements of cer-
tain cell properties that are necessary to obtain such a ’synchrony code’. The theoretical
study by Sharafi et al. (2013) showed that the total synchronous output (all neurons need
to fire simultaneously) of arbitrary sized populations can exhibit information filtering as
well. However, as discussed in the previous chapter, considering only the times where
the entire population is active (corresponding to a synchrony threshold of γ = 1) is quite
inexpedient for the case of large populations, because such events hardly ever happen
and are consequently inappropriate to encode a weak time dependent stimulus. In this
chapter we look at the information filtering properties of the partially synchronous out-
put. By discussing the spectral coherence function of the PSO, we demonstrate how the
synchrony threshold influences the range of frequencies that are preferentially encoded,
as well as the amount of information that is transmitted by the synchronous output. Of
particular interest is the comparison to the coherence of the summed population activ-
ity, i.e. to the encoding capacity of ’all spikes’. Finally, we compare our results with
experimental recordings of the weakly electric fish.

5.1. Coherence of the summed population activity

Using Eq. (4.30),(4.50), and (4.49) (and keeping in mind that SA,s = Sb,s for a homoge-
neous population), the coherence of the summed population activity can be approxi-
mated by

CA,s( f ) =
|SA,s( f )|2

SA( f )Ss( f )
≈ |Ŝb,s|2

[Sb/N + (1− 1/N) Sŝ]Ss
(5.1)

=
|B̃χ|2S2

s

[ |B̃|2Sx/N + (1− 1/N) |B̃χ|2Ss ]Ss
(5.2)

=

(
1

N2cD
Sx( f )
|χ( f )|2 +

(
1− 1

N

))−1

, (5.3)

where we used that we consider a white noise stimulus (or broadband noise) with Ss( f ) =
2Dc. The coherence function of the population activity is therefore independent of the
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chosen filter B each spike train is convolved with. The frequency dependence of CA,s( f )
is solely given by the ratio between the power spectrum of the single spike train Sx( f )
and the absolute square of the susceptibility of the single neuron firing rate |χ( f )|2. In
fact, we can express the activity’s coherence by the coherence of the single spike train,
Cx,s = |χ|2Ss/Sx:

CA,s( f ) =
N Cx,s( f )

1 + (N − 1)Cx,s( f )
. (5.4)

For N = 1 it holds consistently CA,s = Cx,s.

For large populations the coherence of the summed activity approaches one

The activity coherence, Eq. (5.4), increases with population size N. A larger number of
noisy neurons can encode more features of the stimulus and, in addition, the summing
averages out the intrinsic noise. Fig. 5.1 illustrates the elevation of the activity’s coher-
ence with growing population size. In the limit of an infinitely large population, Eq. (5.4)
converges to one:

lim
N→∞

CA,s( f ) = 1 . (5.5)
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Figure 5.1.: Coherence of ’all spikes’ is low-pass for small populations and converges
to one with increasing population size. Coherence function of the summed
population activity, CA,s( f ), for various population sizes N. Simulation re-
sults [symbols] are compared to approximation Eq. (5.3) [solid colored lines].
The theory overestimates the coherence for large populations, revealing the
limit of the linear response approach. Parameters: µ = 1.2, D = 0.01, c =
0.1, R0 = 0.2.
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5.1. Coherence of the summed population activity

This limit is the consequence of the linear response ansatz. As the population size in-
creases to infinity, the activity is in fact equivalent to the single box train, averaged over
the intrinsic noise:

lim
N→∞

A(t) = lim
N→∞

1
N

N

∑
k=1

bk(t) = 〈b(t)〉ξ (5.6)

≈ R0 + ŝ(t) , (5.7)

where the last line is the linear response ansatz introduced in section 1.6. In the lin-
ear response approach, limN→∞ A(t) is therefore a deterministic linear distortion of s(t),
which results into a coherence of one. This means that the activity of an infinitely large
population is a perfect transmitter of information if the stimulus is linearly encoded in
the time-dependent firing rate. However, the linear response is only an approximation.
In Fig. 5.1 we see that the theoretic activity coherence for a population of 1000 LIF neu-
rons is indeed close to one [green solid line], but although having a similar frequency
dependence, the numerical simulations [green circles] exhibit a slightly lower coherence
magnitude. This suggests that in fact less information is encoded linearly in the instan-
taneous firing rate than is anticipated by our ansatz.

Coherence of the summed spike trains has the same extrema as the coherence of the
single spike train

The coherence of the summed activity has the same position and kind of extrema as the
coherence of the single spike train, which can be deduced by differentiating Eq. (5.4)
with respect to the frequency:

C ′A,s( f ) =
N

[1 + (N − 1)Cx,s( f )]2
C ′x,s( f ) , (5.8)

C ′′A,s( f ) =
−2N(N − 1)(C ′x,s( f ))2 + N[1 + (N − 1)Cx,s( f )]C ′′x,s( f )

[1 + (N − 1)Cx,s( f )]3
. (5.9)

Eq. (5.8) reveals that whenever there is a frequency f0 with C ′x,s( f0) = 0 ⇒ C ′A,s( f0) = 0
and by Eq. (5.9) C ′′A,s( f0) has the same sign as C ′′x,s( f0). Hence, if Cx,s has a local maximum
or minimum at f0, then so does CA,s.

In conclusion, the coherence of the summed population activity, i.e. of ’all spikes’,
should show similar information filtering properties as the single spike train. The sin-
gle integrate-and-fire neuron model (perfect, quadratic and leaky) has been shown to
act as a low-pass filter of information (Stein et al., 1972; Vilela and Lindner, 2009b). We
therefore expect the summed activity to be always maximal at zero frequency, which we
indeed observe (see Fig. 5.1). However, A(t) does not always act as a low-pass filter. For
small population size it does indeed preferentially encode slow stimuli, because then the
activity coherence is similar to the one of the single neuron (see Eq. (5.4)). However, for
large populations, by Eq. (5.5), the summed output becomes close to a perfect transmit-
ter of information in all frequency bands, such that the activity does hardly show any
frequency filtering (see green graph for N = 1000 in Fig. 5.1).
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5.2. Coherence of the partially synchronous output

In chapter 4 we have derived analytical approximations of the PSO power and cross-
spectrum, such that we have all ingredients to obtain the coherence function of the syn-
chronous output. We now state qualitative and quantitative properties of the PSO coher-
ence that can be deduced from these approximations (of the ’Gaussian approach’) and
test them against numerical simulations.

i) PSO coherence is maximal for γ = R0 and decreases with increasing |βγ|

By Eq. (4.27) the cross-spectrum of the synchronous output is approximately propor-
tional to the one of the summed activity

SYγ,s ≈ aγSA,s , (5.10)

where the proportionality factor is given by the ’sensitivity’ aγ = e−β2
γ/2/

√
2πσ2

A. For
the power spectrum of the PSO we obtained in the Gaussian approach

SG
Yγ
( f ) = a2

γ Ĩγ( f ) , (5.11)

with the time-lag dependent integral Iγ(τ) given by Eq. (4.55). The coherence between
the synchronous output and the common stimulus can thus be approximated by

CG
Yγ,s( f ) =

|SG
Yγ,s|2

SsSG
Yγ

=
|SA,s( f )|2
Ss Ĩγ( f )

. (5.12)

In this approximation, only the integral Iγ depends on the synchrony threshold. In sec-
tion 4.4.2v) we have shown that for all γ1 and γ2 with |βγ1 | > |βγ2 | holds
Iγ1(τ) > Iγ2(τ). Together with Eq. (5.12) this relation leads to

CG
Yγ1 ,s( f ) < CG

Yγ2 ,s( f ) for |βγ1 | > |βγ2 | . (5.13)

The overall magnitude of the coherence function decreases the more the synchrony thresh-
old deviates from the mean population activity. This prediction can be directly observed
in Fig. 5.2 [compare red with blue curve].

The same γ-dependence holds true for information measures which involve integrals
of the coherence, like the lower bound of the mutual information rate, Rin f o = −

∫ ∞
0 d f log2[1−

CYγ,s( f )]. We plot Rin f o versus γ for a population of 100 LIF neurons in Fig. 5.3a, where
we see indeed a maximum for βγ = 0. The mutual information between the PSO and the
stimulus drops with increasing distance between γ and R0. This behaviour is intuitively
plausible. As we have argued in detail in section 4.3.2ii), a large value of |βγ| means a
low sensitivity of the PSO. This leads to a synchronous output which is not able to encode
a weak time dependent stimulus. Put differently, the stricter the synchrony threshold,
the more spikes are thrown away that contain information about the stimulus.
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Figure 5.2.: Coherence function of the PSO in comparison to the coherence of the
summed activity [green line] for [a] N = 100 and [b] N = 1000. Simulation
results [symbols] are compared to the analytical approximation Eq. (5.12)
[solid lines]. Parameters: µ = 1.2, D = 0.01, R0 = 0.2, c = 0.1.

We now discuss how the relative frequency dependence (i.e. the shape) of the PSO
coherence function is influenced by the choice of γ.

ii) For γ ≈ R0 the PSO acts predominantly as a broadband filter of information

For the special case that the synchrony threshold is set to the value of the mean activity,
we showed in Sec. 4.4.2 i) that the power spectrum of the PSO is approximately propor-
tional to the power spectrum of the summed activity (see Eq. (4.61) and Eq. (4.59)), such
that

ĨYR0
( f )SA( f ) . (5.14)

Inserting this relation into Eq. (5.12) we obtain a rough estimate of the coherence function
for γ = R0, i.e. for βγ ≈ 0:

CYR0 ,s( f )
|SA,s|2
SASs

= CA,s( f ) . (5.15)

This crude estimate suggests that the PSO coherence for γ = R0 is smaller, but close to
the coherence function of the summed population activity. As can be seen in Fig. 5.2,
CA,s( f ) [green graph] is not really close nor proportional to CYR0 ,s( f ) [red graph]. How-
ever, for this value of γ the PSO shows the less pronounced bandpass filtering behavior.
Hence, if the synchrony threshold is set to the expected activity of the population, the
frequency selectivity of the synchronous output is similar to that of the summed activity.
From the point of view of a postsynaptic cell, there would be no advantage in selecting
this synchrony threshold, because it leads to a more or less equal loss of information in
all frequency components of the stimulus compared to an integrator cell that registers
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Figure 5.3.: The better the bandpass filtering effect the less information is transmit-
ted. [a] Lower bound of the mutual information versus synchrony thresh-
old. Corresponding values of the distance parameter βγ = (γ − R0 −
1/(2N))/σA are shown in the top axis. Most information is transmitted
by the PSO if βγ = 0. [b] The peakedness of the PSO coherence at pos-
itive frequency, Eq. (5.17), (as a measure of the band-pass filtering effect)
shows the opposite behavior. The band-pass filtering effect is minimal at
γ = R0 − 1/(2N) [dashed red line] and increases as γ deviates from this
value, i.e. as |βγ| increases. Parameters: µ = 1.2, D = 0.01, R0 = 0.2, c =
0.1, N = 100.

all spikes.

iii) For large |βγ| the PSO can act as a bandpass filter of information

In Sec. 4.4.2 iv) we showed that the power spectrum of the PSO becomes flat for large
values of |βγ|. This results in a coherence function that is approximately proportional to
the cross-spectrum of the summed activity 1 (see Eq. (5.12)):

CYγ,s( f ) ∝ |SA,s( f )|2 = |Sb,s( f )|2 for |βγ| � 1. (5.16)

In Fig. 5.4 we see that relation Eq. (5.16) is approximately fulfilled already for γ = 0.4
(corresponding to βγ = 4.0 (for µ = 1.6), βγ = 3.0 (for µ = 1.2) and βγ = 2.0 (for µ = 0.9)
[compare dark blue line for γ = 0.4 with green/black dashed line for |Sb,s( f )|2].

1This is true if a white noise (or broad-band) stimulus with a constant power spectrum is presented, which
we do in all following applications.
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Figure 5.4.: Synchrony threshold determines information filtering properties. Coher-
ence function of the PSO, rescaled by the maximal value, for different syn-
chrony thresholds γ as indicated. For γ = R0 [red] the PSO acts as a low pass
filter. For large values of |βγ|, the coherence is approximately proportional
to the absolute square of the cross-spectrum between the single box-filtered
neuron and the stimulus [green-black dashed line]. Vertical gray dashed line
indicates the respective firing rate. Parameters: D = 0.01, c = 0.1, R0 =
0.2, N = 100.

As anticipated above, the PSO coherence shows indeed a low-pass/broadband shape
for small values of |βγ| [see red graph]. Hence, Eq. (5.16) tells us that theoretically, the
best bandpass filter the PSO can act as is restricted by the shape of the cross-spectrum
between the single-neuron and the stimulus. Only if |Sb,s( f )|2 is a peaked function, the
coherence of the PSO can be peaked as well for large values of |βγ|. For instance, we
see that the PSO coherence is generally less peaked in the subthreshold case, because the
single neuron cross-spectrum has a less pronounced peak (due to a higher coefficient of
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Chapter 5. Coherence function of the synchronous output vs summed output

variation) compared to the suprathreshold case [compare green dashed lines in Fig. 5.4a
(µ = 1.6→ CV = 0.15), b (µ = 1.2→ CV = 0.24) and c (µ = 0.9→ CV = 0.55)].

In the simulation results we see however, that the coherence can be even more sup-
pressed at low frequencies and can thus show a more pronounced peak than the single
neuron cross-spectrum has [compare dark blue triangles with green dashed line]. This
is due to the fact that the PSO cross-spectrum is only approximately proportional to the
single neuron cross-spectrum. For γ > R0, the amplitude of the PSO cross-spectrum is
slightly decreased at low frequencies compared to the one of the single cross-spectrum
(see Fig. 4.6).

In conclusion, depending on the shape of the single-neuron cross-spectrum, the PSO
can indeed show a pronounced bandpass filtering effect. We now introduce a simple
way to quantify the quality of such a bandpass filter.

5.3. Quality of information filtering

One way of quantifying the bandpass filtering effect is to measure the ’peakedness’ of
the coherence function which we define by the fraction

Q := 1− CYγ,s(0)

CYγ,s( f̂ )
, (5.17)

where f̂ is the frequency at which the PSO coherence has its global maximum 2. The
fraction Q equals zero if the coherence has its maximum at zero frequency, indicating
a low-pass filtering behavior of Yγ. The maximal value of Q is one, which occurs if
the coherence vanishes at zero frequency, indicating a pronounced bandpass filtering
effect. The factor Q is of course a very simple and rough indicator of a filter, since it only
includes two values of the coherence and does not take into account the width of the
peak. While Eq. (5.17) is supposed to quantify differences in the shape of the coherence
function, it does not take into account the absolute magnitude of the coherence, such that
it makes no statement about the amount of information that is transmitted by the output.
A high value of Q, however, is worthless if there is practically no mutual information
between the PSO and the stimulus. Fig. 5.3 shows that an increase in Q goes in hand
with an undesirable decrease in transmitted information.

If one is interested in a pronounced bandpass filtering effect, but without the cost of
loosing too much information, the synchrony threshold should be optimized in order to
accomplish the best compromise between these two reverse effects. To this end we define
a new fraction which quantifies the bandpass filtering quality, but which also takes into
account the drop in transmitted information. We do so by multiplying Eq. (5.17) by the

2A similar measure was used in (Blankenburg et al., 2015) to quantify the bandpass filtering effect. There,
the quality was defined by Q = CYγ ,s( f̂ )/CYγ ,s(0), which has the disadvantage that it is not bounded if
CYγ ,s(0)→ 0.
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Figure 5.5.: Optimal quality of the bandpass filtering effect is given by the synchrony
threshold which leads to the best compromise between the peakedness of
the coherence and its magnitude. [a] Motivation of definition Eq. (5.18). The
PSO acts as a good bandpass filter of information if its coherence function
[blue line] is peaked at f̂ > 0 (=̂ large black arrow) and if it has not dropped
too much in the optimal frequency band compared to the summed activity
[green line] (=̂ small red arrow). [b] Bandpass filtering quality of the PSO,
Eq. (5.18), vs synchrony threshold for a population of 100 LIF neurons. The
top x-axis shows the corresponding values for βγ. The maximum of Qbp
gives an estimate of the optimal synchrony threshold [cyan dashed line] in
order to achieve the best bandpass filtering effect. Parameters: µ = 1.2, D =
0.01, R0 = 0.2, c = 0.1, N = 100.

ratio between the PSO coherence and the all-spikes coherence at the peak position f̂ :

Qbp := Q · CYγ,s( f̂ )

CA,s( f̂ )
=

CYγ,s( f̂ )− CYγ,s(0)

CA,s( f̂ )
. (5.18)

Qbp is again a number between zero and one. If Qbp is close to zero, then either the
PSO coherence is maximal at zero frequency (indicating low-pass filtering behavior) or
the coherence overall magnitude is so small that the PSO basically does not transmit
any information. The factor Qbp equals one, if CYγ,s(0) = 0 and if the maximum of the
PSO coherence coincides with the activity coherence evaluated at the peak frequency
f̂ , implying that no coherence is lost in the desired frequency domain (see Fig. 5.5a for
illustration). In conclusion, Qbp = 1 indicates a desirable bandpass filtering effect.

Fig. 5.5b shows the quality factor Qbp versus the synchrony threshold for a population
of 100 LIF neurons. As expected, Qbp tends to zero for large values of |βγ|, because of the
vanishing overall magnitude of the PSO coherence. Qbp is close to zero (shows a local
minimum) at γ = R0 + 1/(2N) (βγ = 0) because for this value the PSO acts approx-
imately as a low-pass filter of information. The best case of Qbp = 1 is in general not
accomplished. We can however look for the synchrony threshold γ̂ which maximizes
Qbp. In Fig. 5.6a we see that the optimal synchrony threshold γ̂ [indicated by dashed

99



Chapter 5. Coherence function of the synchronous output vs summed output

−6 −4 −2 0 2 4 6
βγ

0.0

0.2

0.4

0.6
N = 10

N = 100

N = 1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
synchrony threshold γ

0.0

0.2

0.4

0.6
ba

nd
-p

as
s

fil
te

rq
ua

lit
y

(a) (b)

Figure 5.6.: Optimal synchrony threshold for bandpass filtering depends on the sys-
tem size. [a] Bandpass quality factor Qbp, Eq. (5.18), vs synchrony threshold
γ for different system sizes N. The synchrony threshold which maximizes
Qbp is marked by a dashed line. [b] Bandpass quality Qbp vs ’synchrony
demand’ βγ. The value of βγ which maximizes Qbp (dashed lines) is approx-
imately the same for all population sizes. The optimal filter quality increases
with system size. Parameters: µ = 1.2, D = 0.01, R0 = 0.2− 1/(2N), c = 0.1.

lines] depends highly on the system size. If we however plot the bandpass quality factor
versus the ’synchrony demand’ βγ (Fig. 5.6b), we notice that the different γ̂ lead to ap-
proximately the same value of βγ̂ (dashed lines overlap at βγ̂ ≈ 1.6). Hence, a synchrony
threshold γ ∈ [R0 + σA, R0 + 2σA] seems to be a good choice in order to accomplish a
desired bandpass filtering behavior, since it is far enough from the mean activity, such
that it contains different information than the sum of all spikes, but on the other hand
it is close enough such that the PSO contains still a noticeable amount of information
about the stimulus. In Fig. 5.6 we also see that the quality of the optimal bandpass filter
increases with the system size (Qbp ≈ 0.4 for N = 10 and Qbp ≈ 0.6 for N = 1000).

In the following section we show that our predictions on the γ-dependent information
filtering behavior of the PSO can be observed in real neurons as well.

5.4. Application to experimental data

Measuring the bandpass quality Qbp from experimental data can be difficult because
experimentally measured spectra tend to be very noisy and discontinuous at zero fre-
quency. One way of investigating whether there is a notable change in the shape of the
coherence function is to measure the position of its global maximum, as was already dis-
cussed in chapter 2 for pairs of neuron. A low-pass filter of information is indicated by a
coherence maximum that is close to zero frequency, whereas a bandpass filtering effect
is connected to a coherence peak position that is noticeably larger than zero, preferably
close to the firing rate.
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Figure 5.7.: Maximum of PSO coherence shifts towards firing rate for increasing |βγ|.
[a] Coherence function of the PSO for different synchrony thresholds γ as
indicated for an LIF population of ten neurons. Gray dashed line indicates
the firing rate r0 of the single neuron. [b] Coherence peak position (marked
by arrow in [a]) relative to r0 vs γ. Parameters: µ = 1.2, D = 0.01, R0 =
0.25, c = 0.1.

Fig. 5.7a shows the PSO coherence functions for all possible values of γ < 0.8 for an
LIF population of ten neurons. As discussed above, for γ = R0 + 1/(2N) [red graph],
the PSO acts as a low-pass filter of information - the coherence is maximal at a frequency
close to zero. As predicted by Eq. (5.16), for large |βγ| the peak of the coherence function
[indicated by arrows in Fig. 5.7a] shifts towards the peak of the cross-spectrum, which
is usually located around the firing rate [gray dashed line]. The peak position relative to
the firing rate is plotted in Fig. 5.7b.

Experimental data shows similar shift in PSO coherence peak position

Fig. 5.8a shows the coherence peak position of the PSO for ten trials of P-unit recordings
(corresponding to a homogeneous population of ten cells) for several cells [black dots].
The solid blue line shows the average peak position relative to the firing rate. Just as
the theory predicts, we see a minimum at γ = R0 + 1/(2N) [dashed cyan line]. Here,
the peak frequency is not zero, because already the single cell coherence is maximal at
small, but positive frequencies (see solid blue line in Fig. 1.9C), which is however still
considered as a low-pass filtering behavior. Also, as γ tends to zero or one, the PSO
coherence peak position increases, but is still below the firing rate. One reason is that
already the cross-spectra of the individual cells have their maximum considerably below
the baseline rate (for the example cell in Fig. 1.9A it is at half the firing rate).

Fig. 5.8b shows the peak position of the PSO coherence for the recorded ampullary
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Figure 5.8.: Comparison to experimental data. Coherence peak position of the PSO rel-
ative to the mean baseline firing rate of a population/trials of ten [a] P-Units
and [b] ampullary cells vs the synchrony threshold. Bottom row: simulation
results of a high-leak population [c] and a low-leak population [d] (Same pa-
rameters were used as in Fig. 1.9). In all plots, N = 10 and the box-width
∆ was chosen such that the mean activity R0 = r0∆ = 0.25. Cyan dashed
line marks the theoretically expected minimum at γ = R0 + 1/(2N). Experi-
ments and data evaluation were performed by Jan Grewe, Institute for Neu-
robiology, Eberhardt Karls Universität Tübingen. Same experimental data
was used as in (Grewe et al., 2017). Simulation Parameters of model Eq. (2.1):
[c] α = 1.0, Di = 0.02, Ds = 0.01, µ = 1.2, [b] α = 0.1, Di = 0.002, Ds =
0.01, µ = 1.2.

cells. Compared to the P-units we see that the peak position is generally lower, which
is in agreement with chapter 2. There, we saw that the peak of the coherence of the
synchronous output of two ampullary cells does not shift as close to the firing rate as it
is the case for P-units. It is therefore plausible that the same holds true for the partially
synchronous output as well. As a consequence, there is not a pronounced minimum of
the peak position at γ = R0 + 1/(2N) 3.

In Fig. 5.8c and d the PSO coherence peak position is shown for simulations of the

3For γ = 1 the data suggests a strong shift, which is however not to be taken seriously because the PSO
coherence is so low and noisy that the determination of the position of its maximum is not easy and
quite unreliable. This becomes manifest in a broad distribution of the data points for γ = 1.
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α-model neurons (Eq. (2.1)) with the same parameters used in Fig. 2.1. Despite the fact
that the minima are much more pronounced for the model, the synchro-coherence peak
position shows for the high-leak population (Fig. 5.8b) just like the P-unit ensemble a
pronounced minimum at γ = R0 + 1/(2N) [dashed cyan line]. The coherence peak
position of the low-leak model population (Fig. 5.8c) shows like the ampullary cell en-
semble a much lower dependence on the synchrony threshold. Here, the peak of the
synchro coherence is for all synchrony thresholds far below the firing rate and far above
zero. In conclusion, also for larger populations, a minimal leak current is necessary for a
synchrony code of the partially synchronous output.

5.5. Summary

In this chapter we have analyzed the information filtering properties of the summed
and synchronous output of a homogeneous neuronal population that is driven by weak
common noise. The coherence of the summed activity, i.e. of ’all spikes’, shows for small
population size a frequency dependence similar to the one of the single neuron and thus
exhibits a low-pass filtering behavior. For large population size, the independent noise
of the single neurons leads to a summed output that is able to encode more features of
the stimulus, such that the all-spikes coherence approaches a broadband filter with value
one.

The information filtering of the synchronous output depends highly on the choice of
the synchrony threshold γ. Most information is transmitted by the PSO if the threshold
is set to the mean activity value. However, for this value, the shape of the coherence is
close to the one of the summed output. This is in accordance with the previous chapter,
where we saw that Yγ=〈A〉(t) is simply a two-state version of A(t). Thus, there would
be no gain for a postsynaptic cell to operate with this threshold, because it would only
mean an overall loss of information without a ’synchrony code’.

The more the synchrony threshold deviates from the mean activity, i.e. for high values
of |βγ|, the PSO coherence approaches approximately the shape of the absolute square of
the cross-spectrum between the single box train and the stimulus. This is a consequence
of the flattening of the PSO power spectrum for high values of |βγ| due to the rareness of
synchronous events. If the cross-spectrum is a peaked function, the PSO can thus act as a
bandpass filter of information. However, an increase in |βγ| goes in hand with a decrease
of transmitted information (which we quantified by measuring the lower bound of the
mutual information rate between PSO and stimulus). This being the case, we employed
a simple measure, Qbp, that is supposed to roughly evaluate the quality of the bandpass
filter. This measure takes into account the peakedness of the PSO coherence but also the
loss of information in the frequency band that is preferentially encoded by the PSO. We
then looked for the ’optimal’ synchrony threshold which maximises this quality factor. It
turned out that a threshold value γ ∈ [〈A〉+ σA, 〈A〉+ 2σA] is the most effective choice
because it finds the best compromise between actually measuring more than average
synchrony, but still having enough output in order to transmit a reasonable amount of
information.

Furthermore, we showed that the optimal filter quality that can be achieved by the
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PSO increases with population size. This indicates that it is beneficial if sensory neurons
have broadly overlapping receptive fields if their synchronous spikes are used for band-
pass filtering. In addition, the postsynaptic target cells should read out a large number of
sensory neurons, i.e. coincidence detectors that are supposed to extract high frequencies
should have large receptive fields.

Finally, in order to apply our results to experimental data of P-units and ampullary
cells of the weakly electric fish, we have measured the peak position of the PSO coher-
ence as an indicator for information filtering. For the P-units (where already the syn-
chronous output of pairs of neurons shows a bandpass filtering behavior) we measure
qualitatively the same synchrony threshold dependence of the bandpass filtering effect
of the PSO as predicted by the theory. For the ampullary cells (where the synchronous
firing of pairs of cells does not exhibit a filtering effect), the PSO does not show a syn-
chrony code regardless of the choice of γ. The same behavior is qualitatively confirmed
by the LIF model with variable leak term that we used in Chapter 2 to mimic the spectra
of the two cell types. We can thus conclude that also for large populations, a minimal
leak conductance is necessary for the existence of a synchrony code.
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Chapter 6.

Concluding remarks

Motivated by the individual activation threshold of a postsynaptic coincidence detec-
tor we have established a new measure of the dynamic synchronous output of a neu-
ronal population. Using the formalism of stochastic processes and applying linear re-
sponse theory, we were able to derive analytical expressions of important statistics of
the summed and synchronous output of a general spiking population that is driven by
a weak common stimulus. At this point, we summarize the main insights we achieved
within this work about neuronal coding capacities.

New description of dynamic partial synchrony reveals similarity in common
firing and common silence

We extended the two-neuron problem to a population of arbitrary size with arbitrary
synchrony demand. We generalized the mathematical analysis of the total synchronous
output by Sharafi et al. (2013) to the biologically more relevant partially synchronous
output. Furthermore, we found a second approach to analytical calculations that as-
sumes the population activity to be normally distributed, which we showed to be valid
for large system size and weak common noise. This Gaussian approach led to more
comprehensible and compact expressions that allowed us, for instance, to discern the
symmetry in the synchrony threshold around the mean population activity. This formal
symmetry unveils that the statistical coding properties of the common firing and com-
mon silence of a population are similar. In conclusion, a postsynaptic cell receiving input
from a large number of afferents, but exhibiting a low activation threshold, can also act as
a bandpass filter of information. Such a cell could be regarded as a coincidence detector
of common pauses in presynaptic firing.

Coincidence detection - a tool for extracting high frequency signals

We have shown that, depending on the synchrony threshold, the synchronous output
of a population suppresses slow components of a common stimulus and can thus po-
tentially filter out certain frequency bands of a signal. Coincidence detection can there-
fore be regarded as a mechanism to distinguish between multiple signals that are con-
currently present. The cause of this synchrony code is essentially the annihilation of
autocorrelations of the population’s summed activity by the strong nonlinearity of the
synchrony threshold. This leads to a flattened power spectrum and thus to a coherence
shape which is similar to the one of the cross-spectrum.
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We have further shown that whether a synchrony code is established is not solely de-
termined by the firing variability, but to a substantial degree by the leak conductance
of the sensory neuron. The spiking variability was originally the first candidate to ac-
count for the different coding performances of P-units and ampullary cells in weakly
electric fish observed by Grewe et al. (2017), because it was the most obvious distinction
between these two types of electrosensory afferents. Our analysis, however, showed
that the sensory cells also need to feature a minimal leak conductance in order to enable
a synchrony code. Only then, the cross-spectra with the stimulus are peaked enough,
such that a bandpass filter of information can be established. We were thus able to make
predictions about experimentally not easily accessible physiological properties of elec-
troreceptor afferents in the weakly electric fish.

Choice of the postsynaptic receptive field size and activation threshold allows
to optimize the synchrony code

The shape of the PSO coherence depends strongly on the synchrony threshold, i.e. on
the activation threshold of the postsynaptic cell. We defined a coarse but simple quality
measure of the bandpass filtering effect of the PSO, which allowed us to estimate an opti-
mal synchrony threshold. This way we were able to make quantitative predictions about
the range of synchrony thresholds that leads to the most efficient synchrony code. We
saw that this optimal filtering quality increases with the population size. This suggests
that a large receptive field (RF) of the postsynaptic coincidence detector is of advantage,
if bandpass filtering is desired.

Our results are therefore in line with the study by Middleton et al. (2009), where the
authors show that a postsynaptic cell having a large RF and a high activation threshold,
requires synchronous presynaptic input and selectively encodes higher frequencies. We
showed it the other way around: a postsynaptic cell is best tuned to high frequencies, if
it exhibits a large RF and a suitable (high, but not too high) activation threshold.

The topology of the electrosensory system in the weakly electric fish provides further
evidence that the synchronous output might be used as a separate information channel.
P-units project their output to different types of pyramidal cells. While target cells in
the centro-medial segments (CMS) integrate only over a few tens of electroreceptor af-
ferents (small RF) and exhibit low activation thresholds, postsynaptic cells in the lateral
segments (LS) integrate over 30 times more afferents (large RF) and display higher acti-
vation thresholds (Mehaffey et al., 2008; Maler, 2009). Hence, pyramidal cells in the LS
seem to be perfect candidates to extract a synchrony code, and indeed, they are shown
to tune for high frequencies (Chacron et al., 2003; Krahe et al., 2008b; Ellis et al., 2007).
On the other hand, target cells in the CMS tune to low frequencies, indicating that they
read out the summed output of the afferents.

All this implies that the theoretical effect described in this thesis, i.e. the extraction
of different information contents of a stimulus by reading out either the summed or the
partially synchronous output of the stimulus-encoding units, is actually used in nature.
These different processing channels seem to be optimized by a heterogeneity in the re-
ceptive field size and activation thresholds of the target cells.
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6.1. Outlook

Here, we want to point out certain limitations of our model and propose possible future
projects for further research.

Generalization to heterogeneous populations

In this thesis, we look exclusively at homogeneous populations, which is certainly a re-
striction. It would be interesting to extend the problem to heterogeneous systems where
each neuron exhibits an individual baseline current and intrinsic noise level. We hy-
pothesize that our theory can be easily adapted to a heterogeneous population, if the
summed activity can still be approximated by a Gaussian process. This should be the
case for large populations with weak/moderate heterogeneity level and weak common
noise (Beiran, 2016). It can be assumed that the heterogeneity influences the variance of
the population activity, but that the derived formulas in the Gaussian approach remain
valid. In particular, we believe that the qualitative properties of the PSO remain valid. It
would be an interesting future project to test this hypothesis.

Population versus network

We restrict our model to neuronal populations, i.e. the single elements have no lat-
eral connection between each other. As mentioned in the introduction, such a topology
of sensory neurons can be found in the olfactory, auditory and electrosensory system.
However, there are sensory neurons that do influence each other. One example is the lat-
eral inhibition between photoreceptors in the visual system: activated receptor neurons
inhibit activity in neighbors (Yantis, 2013). Also in the visual system, stimulus-evoked
synchrony has been recorded (Usrey and Reid, 1999). It is an interesting question how
the PSO coding properties presented here, will change in the presence of lateral connec-
tions. This would also allow to make statements about recurrent networks of neurons at
a later processing stage. The analytical treatment of this challenging problem - if possi-
ble at all - would require new tools that go beyond our approach. Most certainly, further
insight could be gained by employing numerical simulations.
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A.1. Specific equations for the LIF-model

To implement our theory to the special case of the stochastic leaky integrate-and-fire
neuron model with the voltage dynamics

v̇ = −v + µ +
√

2Dξ(t) (A.1)

with 〈ξ(t)ξ(t′)〉 = δ(t− t′), zero reset value and threshold one, the following expressions
are necessary.
The mean firing rate is given by (Ricciardi, 1977)

r0 =

√π

µ/
√

2D∫
(µ−1)/

√
2D

ey2
erfc(y) dy


−1

. (A.2)

The susceptibility of the firing rate can be expressed in terms of parabolic cylinder func-
tions Dα(z) (Lindner and Schimansky-Geier, 2001; Brunel et al., 2001)

χ( f ) =
r02πi f√

D(2πi f − 1)

D2πi f−1(
µ−1√

D
)− eεD2πi f−1(

µ√
D
)

D2πi f (
µ−1√

D
)− eεD2πi f (

µ√
D
)

, (A.3)

where ε = (2µ− 1)/(4D) . The power spectrum (without DC peak) of the spike train
reads (Lindner et al., 2002)

Sx( f ) = r0

|D2πi f (
µ−1√

D
)|2 − e2ε|D2πi f (

µ√
D
)|2

|D2πi f (
µ−1√

D
)− eεD2πi f (

µ√
D
)|2

. (A.4)
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A.2. Equations for pairs of neurons

In chapter 4 we have derived analytical approximations for the statistics of the summed
population activity and the partially synchronous output for an arbitrarily sized popula-
tion and synchrony threshold. Here, we explicitly state the analytical expressions for the
special case of pairs of neurons, i.e. for N = 2 and γ = 1. In order to apply the results to
a concrete neuron model, the single neuron firing rate r0, its power spectrum Sx( f ) and
susceptibility χ( f ) must be known. For the α-model, which we introduced in chapter
2, these quantities can be obtained by using the transformations Eq. (2.5)-(2.7), together
with appendix A.1.

The power spectrum of the single box train, b(t) = B ∗ x(t), reads

Sb( f ) = |B̃( f )|2Sx( f ) ,

where |B̃( f )| = ∆ sinc(∆π f ) is the Fourier transformed boxcar filter and ∆ is the syn-
chrony bin width. The cross-spectrum between the single box train (or the summed
activity A) and a weak stimulus reads

|Sb,s( f )|2 = |SA,s( f )|2 = Sŝ( f ) ,

where Sŝ( f ) is the power spectrum of the effective stimulus1. For a broadband white
noise stimulus with intensity Ds and cutoff frequency fc holds

Sŝ( f ) = 2Ds|B̃χ( f )|2 θ(| fc − f |) . (A.5)

The power spectrum of the summed population activity is given by (cf. Eq. (4.50))

SA( f ) =
1
2
[Sb( f ) + Sŝ( f )] . (A.6)

The mean of the synchronous output, YSO(t) = b1(t) · b2(t), reads in the combinatorial
product approximation (cf. Eq. (4.19))

〈YSO〉 = R2
0 + 〈ŝ2〉 , (A.7)

where R0 = r0∆ is the mean activity and 〈ŝ2〉 = 2Ds
∫ fc
− fc
|B̃( f )χ( f )|2 d f is the variance

of the effective stimulus. The approximations of the power and cross-spectrum of the
synchronous output (cf. Eq. (4.76) and Eq. (4.39)) read

SYSO( f ) = Sb ∗ Sb + 2R2
0Sb + 2Sb ∗ Sŝ + 4R2

0Sŝ and (A.8)

|SYSO,s( f )|2 = 4R2
0|Sb,s( f )|2 . (A.9)

1We defined the ’effective stimulus’ by the effective linear modulation of the firing probability within a
∆-time bin: R(t) = r(t)∆ ≈ r0∆ + ŝ(t).
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A.3. Proof of the Bussgang theorem

Here, we want to proof the version of the Bussgang theorem that we use in Sec. 4.3.1,
reading

Let X and Z be stationary Gaussian processes with 〈Z〉 = 0 and variances σ2
X and σ2

Z, having
the cross-covariance CXZ(τ) = 〈X(0)Z(τ)〉. Then, for any distortion V : R 7→ R, the cross-
covariance between the distorted process V(X) and the original signal Z is given by

CV(X),Z(τ) = a CX,Z(τ) (A.10)

with the proportionality factor

a =
1

σ2
X

∫ ∞

−∞
V(x)(x− 〈X〉)pX(x)dx . (A.11)

Proof:

The joint probability density of the Gaussian random variables x := X(τ) and z :=
Z(0) (with 〈z〉 = 0 is given by (Bronstein et al., 2012):

p(x, z) =
1

2πσXσZ
√

1− ρ2
exp

[
− 1

2(1− ρ2)

(
z2

σ2
Z
+

(x− 〈x〉)2

σ2
X

− 2ρ z (x− 〈x〉)
σXσZ

)]
,

where

ρ =
〈(x− 〈x〉)(z− 〈z〉)〉

σXσZ
=
〈x · z〉
σXσZ

is the correlation coefficient between x and z (where we used that 〈z〉 = 0). The covari-
ance between the distorted variable V(x) and z is defined by:

〈V(x) z〉 =
∫ ∞

−∞
V(x)z p(x, z) dxdz

=
1

2πσXσZ
√

1− ρ2

∫ ∞

−∞
V(x)z exp

[
− 1

2(1− ρ2)

(
z2

σ2
Z
+

(x− 〈x〉)2

σ2
X

− 2ρ z (x− 〈x〉)
σXσZ

)]
dxdz

(A.12)

For any a > 0 and b ∈ R holds true that

∫ ∞

−∞
z exp

[
− z2

a
+ bz

]
dz =

√
π

2
b
√

aa exp
[

ab2

4

]
.

Using this relation with a = 2(1− ρ2)σ2
Z and b = ρ(x−〈x〉)

(1−ρ2)σXσZ
we can evaluate the integral
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over z in Eq. (A.12) by:

∫ ∞

−∞
z exp

[
− 1

2(1− ρ2)

(
z2

σ2
Z
− 2ρ z (x− 〈x〉)

σXσZ

)]
dz

=
√

2π(x− 〈x〉)ρ(1− ρ2)
σ2

Z
σ2

X
exp

[
1
2

ρ2

1− ρ2
(x− 〈x〉)2

σ2
X

]
.

Eq. (A.12) reads therefore

〈V(x) z〉 = ρ
σZ

σX

∫ ∞

−∞
V(x)(x− 〈x〉) 1√

2πσ2
X

exp
[
− (x− 〈x〉)2

2σ2
X

]
dx

= 〈x · z〉 1
σ2

X

∫ ∞

−∞
V(x)(x− 〈x〉)pX(x)dx .

This calculation holds true for any τ ∈ R, such that the last line is identical with Eq. (A.10).
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