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Abstract

Cryptocurrencies are more and more used in official cash flows and exchange of goods.

Bitcoin and the underlying blockchain technology have been looked at by big compa-

nies that are adopting and investing in this technology. The CRIX Index of cryptocur-

rencies hu.berlin/CRIX indicates a wider acceptance of cryptos. One reason for its

prosperity certainly being a security aspect, since the underlying network of cryptos is

decentralized. It is also unregulated and highly volatile, making the risk assessment at

any given moment difficult. In message boards one finds a huge source of information

in the form of unstructured text written by e.g. Bitcoin developers and investors.

We collect from a popular crypto currency message board texts, user information and

associated time stamps. We then provide an indicator for fraudulent schemes. This

indicator is constructed using dynamic topic modelling, text mining and unsupervised

machine learning. We study how opinions and the evolution of topics are connected

with big events in the cryptocurrency universe. Furthermore, the predictive power

of these techniques are investigated, comparing the results to known events in the

cryptocurrency space. We also test hypothesis of self-fulling prophecies and herding

behaviour using the results.

JEL classification: C19, G09, G10
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1 Introduction

Cryptocurrencies such as Bitcoin have become more mainstream over the years with big

companies adopting and investing in the technology. Once seen to be the domain of

technophiles and radicals, cryptocurrencies are now widely traded on many exchanges

throughout the world. Governments have also discussed the possibilities of adopting cryp-

tocurrencies as a means to offer digital currency. The underlying network (called the

blockchain) of cryptocurrency is decentralised, unregulated and highly volatile, making its

situation at any given moment difficult to assess. On the other hand, an almost bottomless

source of information can be found in the form of unstructured text written by cryptocur-

rency users on the internet. Crowd wisdom found in such networks can be a powerful

indicator of major events affecting cryptocurrencies. We attempt to take advantage of

this to analyse and assign quantitative meaning to such resources.

Early academic statistical analysis of Bitcoin includes Cheah and Fry (2015) and Che-

ung et al. (2015), both looked at speculative bubbles using Bitcoin price data. More

related to this paper are works that looked at social media information and search engine

data such as Kristoufek (2013), Mai et al. (2015) and Matta et al. (2015).

Utilizing techniques from dynamic topic modelling (DTM), text mining and machine

learning, we pull data from a popular cryptocurrency forum and attempt to detect events

such as new trends in currencies, fraudulent schemes or legal and economic issues. The

DTM technique, as a type of unsupervised learning, is demanded when the taxonomy is

unclear. Some important topics may be left out if one does a subjective judgement for

taxonomy. The DTM is designed for summarizing the unknown but important features in

the world. In addition to ”discover” and ”quantify” the hidden topics, the DTM is able

to characterize the evolution of the hidden topics, which may be useful of evaluating the

importance and persistence. Specifically, we collect user information and text associated

with time stamps and apply unsupervised dynamic topic modelling, studying how opinions

and the evolution of topics are connected with big events in the cryptocurrency universe.

Furthermore, the predictive power of these techniques are investigated, comparing the

results to known events in the cryptocurrency space.We also test hypothesis of self-fulfilling

prophecies and herding behaviour using the results. For example, Smailović et al. (2013)

were able to improve predictive power for stock markets by using sentiment derived from

Twitter feeds. Cryptocurrency discussion forums tend to be very responsive and sensitive

to events; this makes it a suitable candidate to test the predictive ability of dynamic topic

modelling.

2 Data

A good, consistent and representative source of information regarding the cryptocurrency

community can be found on talk forums such as bitcointalk.org. Acquiring the data from

this platform requires deploying a web scraper to download the relevant html pages from

the server and extract the embedded information. Good practices of web scraping were

1
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used to ensure there was no risk of overloading servers such as waiting fifteen seconds be-

tween each request and respect for the robots.txt protocol. Information regarding thread

ids, post ids, usernames, time stamps, post titles, post texts, quotes of other posts and

links were collected and stored in a database. There are three main discussion boards

which was used in this study, they are ”Bitcoin”, ”Economy” and ”Alternative Cryp-

tocurrencies”. The two remaining discussion boards were ”Other” which was discarded as

it mainly deal with non-related topics and ”Local” which is also discarded as discussions

are in local languages. Each of the main discussion boards were divided into subforums

such as ”Trading Discussions” and ”Scam Accusations”. In total there were little under

200 subforums, half a million different threads with over 15 million posts (including lo-

cal discussion). For the purpose of our study, we concentrate on the Bitcoin discussion

subforum.

Knowledge is power so the more information we have, the better. Aside from this, the

main motivations behind collecting these bits of information are as follows: Thread ids and

post ids are used to uniquely identify posts and the thread they come from; usernames are

used to associate each post with an agent in order to create a graph for herding and social

network analysis; time stamps are used to classify posts into time slices for the dynamic

topic model; post titles and post texts are used in conjunction to form a document for the

dynamic topic model; links and quotes are used in order to analyse how posts relate to

each other and other websites which is useful for herding and social network analysis.

3 Topic Modelling

We apply topic modelling to these forums in order to model trends in the community and

to see how real life events effect the topics discussed and vice versa. The most commonly

used model to model topics in machine learning is LDA (Latent Dirichlet Allocation) by

Blei et al. (2003).

This model, however, makes the assumption that all documents modelled are exchange-

able and therefore the aspect of time is completely lost and the idea of detecting events

becomes pointless. Therefore, the model we use is the dynamic topic model proposed by

Blei and Lafferty (2006), which is a variant of LDA that analyses documents in a set of

predetermined discrete time slices and assumes topics evolve smoothly from slice to slice

with Gaussian noise.

LDA is a generative probabilistic model for text, however it has also been applied suc-

cessfully to other types of discrete data sets such as images. This model differs from most

as it is completely unsupervised, therefore removing the bottleneck of having to acquire

a trained model, and the problem it tries to solve is not classification into topics, but

rather assigning topic distributions to documents. These properties mean that it is ideal

to apply to large quantities of unstructured text where it would be impossible to obtain

reliable training data to produce a model and simply classifying documents into topics

would produce confusing and unrealistic results. Bao and Datta (2014)apply the LDA
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method to extract the risk types (meaningful topics) in Security Exchange Commission

10-K forms, and find many plausible and meaningful risk types that have been left out in

a supervised learning scheme proposed by Huang and Li (2011). The inferred topics from

a supervised learning only cover 78% of topic pools.

The Dirichlet distribution is defined on a (k − 1) dimensional simplex

∆k =

{
q ∈ Rk :

k∑
i=1
qi = 1, qi ≥ o, i− 1, 2, . . . , k

}
. (1)

It can be thought of as a distribution of random probability mass/density functions

(pdf). An excellent example based introduction can be found in Frigyik et al. (2010).

Definition 1 Let Q be a real value in ∆k and suppose that α ∈ Rk, αi > 0 and define

α0
def
= αT 1. Then Q has a Dir(α) distribution with pdf f(q;α) = Γ(α0)∏

i=1

Γ(αi)

k∏
i=1
qαi−1
i .

Figure 1: Plots of sample pmfs drawn from Dirichlet distributions for various values of α

XFGtdmDirichlet

Density plots are given in Figure 1 for different α. Given a document with a certain

word distribution, the task is obviously to determine α from the set of documents.

The gamma function is a generalization of the factorial function, Γ(s) = sΓ(s − 1)

with Γ(1) = 1. The mean of a Dir(α) random variable is EQ = α/α0. Note that α

determines the ”location” of words in documents, a ”small” α creates sharp peaks on

defined locations. You may think of the document that has been written by the poet in

the flim ”Shining”, in the described Dir(α) framework, there is just one ”big” peak of

the words at ”all work and no play makes Jack a dull boy”. With just k = 2 words in a

document the Dir(α) reduces to the Beta distribution with pdf

f(x; a, b) =
Γ(a+ b)

Γ(a) + Γ(b)
xa−1(1− x)b−1. (2)

For α = (a, b)T with Q = (X, 1−X) ∼ Dir(α) for X ∼ Beta(a, b).
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In a Bayesian context, employed here entirely for numerical and computational reasons,

one finds that the multinomial distribution with pdf

f(x;n, q) =
n!
k∏
i=1
xi!

k∏
i=1
qxii , x, q ∈ Rk (3)

is a so called conjugate prior.

As the binomial distribution (for k = 2) is the conjugate prior for the Beta distribution,

one finds that if (X | q) ∼MultR(n, q) and Q ∼ Dir(α), then (Q | X = x) ∼ Dir(α+ x).

Again we refer for a proof of this to Frigyik et al. (2010).

The basic idea of a static Topic Model (TM) is to take a document as a sample of

words generated by a Dir(θ) distribution, where θ represents the topic. More precisely it

is assumed that a document is generated via the following imaginary random process:

1. For each topic k, draw a distribution over words ~βk ∼ Dirv(η)

2a. For each document d, draw topic proportions θd from over the (k − 1) simplex

2b. For each word Wd,n within the document:

i. Draw a topic assignment Zd,n ∼Mult(~θd), Zd,n ∈ {1, ..., k}
ii. Draw a word Wd,n ∼Mult(~βzd,n),Wd,n ∈ {1, ..., V }
βz is a vector of β, one for each topic. β is a matrix of word|topic parameters.

The number of topics is assumed known beforehand though determining the number of

topics (clusters) is rather challenging in unsupervised learning. One can easily find some

methods being proposed for estimating the number of topics automatically, but one has

to be aware of several restrictions. Firstly, Wallach et al. (2010) find that the estimated

numbers of topics are strongly model-dependent. Besides, merely using fit statistics such

as perplexity may be problematic due to a negative relation between the best fitted model

and the substantive fit (Chang et al. (2009)). To balance the substantive fit and statistical

fit, Bao and Datta (2014) propose strategic procedures - Firstly, employing statistical fit

to reduce the set of candidate models with different numbers of topics. Relying on the

predefined perplexity, one can optimize the predictive power of model. In their case, the

numbers can be chosen as 30, 40 and 50 in terms of perplexity and a converge in the

range [30,50] is shown. Secondly, the substantive fit for semantic coherence is compared

among the competing models. To be specific, the model precision in word intrusion task is

evaluated. It’s so called ”semantic validation”. The semantic coherence of topics perhaps

is the most useful indicator w.r.t the quality of topics, reflecting to how well the topic

matches a human concept through a list of keywords. The number, 30, is therefore chosen

due to its best semantic coherence performance.

Let us provide an example that sheds some light on this generation mechanism. Sup-

pose that the ”word universe” corresponds to the most frequent words in the NASDAQ

analysis study by Zhang et al. (2016) and Bommes et al. (2017), as given in Table ??.

The idea is now that different topics have different word distribution as given by

Mult(βz). Suppose there were k = 2 topics/sectors, corresponding to ”finance” and ”IT”
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Word Freq. (in k) Freq. for Top 5 Sectors

free 649 10
well 238 9
gold 235 1
best 207 9
fool 200 5
strong 196 5
like 172 5
top 167 3
better 162 0
motley 152 2

Table 1: Most frequent words used in NASDAQ articles

and further suppose that the distribution of words over topics are generated by Dir(θ).

To be precise, for k = 2, the Dirichlet distribution boils down to a Beta(θ) distribution.

It could be the case that for the topic ”finance”, the third most frequent word ”gold” is

more concentrated. Whereas, for the topic ”IT”, concentration would be more around the

words ”fool” and ”motley”. See figure 2 below for an illustration that shows the random

outcomes ~β1 and ~β2. In such as scenario, we would prefer a different word distribution for

each these topics.
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Figure 2: Distribution of words by topic (~β1 and ~β2)

XFGdtmWDistr

Step 2bi. now refers to the random mechanism that a word to be written down is

drawn from ~β1 or ~β2. Suppose that the first has to be drawn from ~β1 since Z1,1 = 1, for

d = 1 (1st document) and n = 1 (first word). So a random outcome as described in Step

2bii. could be the word W1,1 = ”gold” (the word with the second highest frequency in ~β1.

For the next word (n = 2), Z1,2 could take the value 1 again and now W1,2 = ”strong”

could be the outcome. A third word could be via Z1,3 = 2, W1,3 = ”free”, and so on. The

task of TM is now to invert this mechanism and calibrate the observed documents to the

parameters of the Dir and Mult distributions.

The problem of static TM though is that there is no timeline, an issue that is of course

necessary for the questions we would like to study here. The dynamic topic model, on
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the other hand models each time slice with LDA, but its parameters β and α are chained

together in a state space model which evolves with Gaussian noise:

βt,k|βt−1,k ∼ N(βt−1,k, σ2I) (4)

αt,k|αt−1,k ∼ N(αt−1,k, δ2I) (5)

Like this we get a smooth evolution of topics from slice to slice. The state space

diagram describes the model well:

Figure 3: State space diagram of the dynamic topic model

Due to the nonconjugacy of the Gaussian and multinomial distributions, exact infer-

ence is intractable so the authors present two methods for approximate inference using

variational methods: variational Kalman filtering and variational wavelet regression.

4 Preprocessing

Preprocessing steps make a big difference to the outcome of topic models. Especially when

working in the domain of a forum where thousands of users post everyday, most likely

without looking words up in the dictionary or worrying about the correctness of their

grammar, we will find many spelling mistakes, slang and proper names that aren’t going

to be simple to handle. Therefore, a natural approach to preparing the data appropriately

would be to use a POS tagging algorithm coupled with a tokeniser to infer from context

what words have which function. Stop words will appear multiple times in each sentence

without conveying any meaning and therefore are removed and so are functional words,

verbs, adjectives and adverbs leaving us only with nouns, proper nouns and foreign words.

In this way we have all the most important information from each post without losing out

on non-standard vocabularies that arise in the community. To combat typos, the words

occurring in fewer than 10 documents were removed and to get rid of generic words, the

words appearing in more than 10% of the documents were also removed. In the end, from

a dictionary of 500,000 words, we obtained one of 10,000 meaningful words. Once we had

6



the cleaned text, the preparation for the dynamic topic model (code by Gerrish) consisted

of converting the corpus to a sparse matrix representation whereby each line represented

a document and was in the following form:

N unique words word id : word count word id : word count.....

Also a file containing information about the time slices was prepared of the following

format:

N time slices

N docs slice 1

N docs slice 2

...

Where N denotes number of documents in the corresponding slice. On top of these

necessary files, for each corpus a file containing metadata, a dictionary file and a vocabulary

file were also produced. The metadata file contains a header describing the fields and

then each line represents a document with the following informations: thread id, post

id, date time, username, post text, post quotes and post links. This will come in handy

for information retrieval and herding analysis. The dictionary file is a python dictionary

object which maps ids to words and contains word count information. The vocabulary

file is a human readable file where each line is a word from the dictionary and its position

maps to its key.

5 Trends

As mentioned in the introduction, the data acquired from the forum was divided into sub-

forums. The main subforums by posting volume are: ‘Economics’, ‘Bitcoin Discussion’,

‘Altcoin Discussion’ and ‘Speculation’. The dynamic topic model was run on these sub-

forums and in addition also with the subforum ’Scam Accusations’. The commonly used

50/k heuristic by Griffiths and Steyvers (2004) for the alpha parameter was chosen and a

varying number of topics were modelled. All models were run with weekly data over the

2009/11/22 (when the forum was created) to 2016/08/06 period.

Each topic in the hidden structure is represented as a distribution over words and

therefore the most human interpretable way of understanding what a topic is about is to

look at the most probable words in each distribution. An example representation can be

found in Table ?? in which some topics are shown for the last time slice in the Bitcoin

Discussion subboard. Each time slice will have it’s own similar representation. While

the words may change over time as new trends emerge and fall, the topic will intuitively

remain the same. For example, in the table shown we can see that topic 50 is about Bitcoin

mining, but the top words in the first time slice are rather different even though we would

still assign the same topic label to it; cpu, difficulty, proof, mining, adjustment, proof-of-

work, power, attack were the top words in 2009 in topic 50, demonstrating how Bitcoin

mining has evolved to cope with the increasing mining difficulty. In fact we can directly

compare different mining hardware and how they were relevant over different periods of
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Topic Number Most Probable Words

1 value, gold, bar, dollar, rate, demand, interest, asset
2 business, casino, house, trust, gambling, run, strategy, player
5 government, control, criminal, law, study, regulation, state, rule
7 use, service, option, cash, good, spend, fiat, convert

12 account, payment, fund, card, paypal, party, merchant, credit
18 score, online, pay, shop, bill, product, purchase, phone
20 wallet, key, paper, computer, storage, code, data, secure
23 price, trade, market, trader, drop, volume, sell, stock
24 trading, term, hold, buy, pump, dump, earn, gamble
30 exchange, bitfinex, lesson, cryptocurrency, crash, platform, altcoins, popularity
32 investment, risk, invest, aim, impact, salary, making, way
33 year, altcoins, end, today, adoption, prediction, happen, trend
35 transaction, block, fee, chain, confirmation, hour, minute, hardfork
38 altcoin, company, loss, hack, scam, hacker, scammer, road
42 bank, system, security, fiat, banking, role, function, institution
45 ethereum, split, advantage, issue, side, change, fork, core
48 forum, post, topic, member, bitcointalk, thread, index, php
50 mining, miner, network, power, pool, cost, reward, electricity

Table 2: Notable topics from 50 topic model on Bitcoin Discussion subforum from 2016/07/31 to

2016/08/06

time in Figure 4.

As we can see, in topic 50 the word CPU was very prominent initially and all the

others were non-existent. Then when the network grew to an extent that the quantity

of Bitcoins produced by CPU mining were worth less than what it cost to operate, GPU

mining came into play. Another stride in mining hardware was the usage of application

specific integrated circuits (asic). The first asic mining hardware project called the ‘Avalon

Project’ was announced in 2012 on the forum and the peak in the third plot in January

2013 corresponds to the release of their first chip. In the fourth plot we see the timeline

of Antminer, a brand of asics considered to be the current top of the line. As expected

we can see a positive trend over the last years with peaks in discussion around releases of

new models.

As an up and coming and fast growing technology, Bitcoin has had its fair share of

issues. In fact, due to its unregulated nature and uncertainty of legality or legitimacy

as currency in most corners of the world, the cryptocurrency history is laden with high

profile hacks, ponzi schemes and scam websites. Many of these go undetected for months

until a certain point where gradually complaints start to stack up and a realisation or

confirmation of the events takes place.

Probably the biggest example of such an event in Bitcoin history is the insolvency of

the MtGox Bitcoin exchange in 2014. MtGox originally started off in 2007 as a platform

for trading Magic: The Gathering Online trading cards which is where it got its name

(Magic: The Gathering eXchange). In 2010, however, it was rebranded as one of the first

exchanges where people could buy and sell Bitcoins. The exchange grew gradually and

watched the price of Bitcoin go from less than USD0.1 in 2010 to parity with the US dollar
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XFGdtmMining

in 2011. At this point however, the owner of MtGox decided to sell the exchange in order

to dedicate himself to ‘other projects’. An internal email dating back from after the sale of

the exchange revealed that already 80,000 Bitcoins (worth over $60,000 at the time) had

already been missing before any of the public fiascos had occurred and had never been

recovered. However, it was only three months later that a major event occurred. 60,000

accounts were exposed publicly and a compromised MtGox auditors account was used to

create huge sell orders and crash the Bitcoin price from $17.51 to $0.01. As a result of

this event the site was down for a week and many of the exposed accounts were used

to steal coins from other bitcoin services due to password reuse. However, unlike many

other Bitcoin services, MtGox managed to recover its reputation and became the largest

Bitcoin exchange, handling 70% of all trades worldwide. Fast forwarding to 2013, when

their real problems began, in June withdrawals of US dollars were suspended and even

though a couple of weeks later in July it had been announced that withdrawals had fully

resumed, as of September few withdrawals had successfully been completed. Complaints

piled up over the next few months and on 7 February 2014 all Bitcoin withdrawals had been

suspended for good. On the 24th of February all activities had halted, the website went

offline and a leaked internal crisis management document claimed that 744,408 Bitcoins

(worth almost half a billion dollars) had been lost and the company was insolvent.

As we can see, MtGox has had a roller coaster of a past with repeated security issues

and poor management and has therefore been a major topic of discussion among users of

the main Bitcoin forum. The main topics in which MtGox arises are predictively topic 23

about Bitcoin trading and markets and topic 38 about scams and hacks. Naturally the

word/topic probability plot in Figure 5 reflects this and we can see peaks corresponding

to the main events. In topic 38 there is a clear peak in mid 2011 during the first hack and

in February 2014 also. Meanwhile in topic 23 there is a gradual peak starting in mid 2013
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when the transaction issues first occurred and trailing off at the same time MtGox starts

to gain momentum in topic 38.
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Figure 5: MtGox word evolution 22/11/2009 - 06/08/2016

XFGdtmMtGox

MtGox is only one example of the many scams and hacks resulting in huge losses that

have occurred over the years and it is because of this that cryptocurrencies get a bad rap.

Many services have come and gone, but none quite so spectacularly as MtGox.

Currency exchanges, mining hardware manufacturers, technology startups, mining

pools and many other cryptocurrency related services have almost infallibly been vic-

tims of hacks and inside jobs, revealed as ponzi schemes, virus promoters etc. As soon

as such events occur or are discovered, we would expect there to be gradual buildups or

sudden explosions of discussion on the forum depending on the situation. In general, we

would expect any event in the Bitcoin universe to be discussed on the forum and therefore

be a part of the inferred generative process of the topic structure.

We want to evaluate the effectiveness of topic models in discerning these types of

events. In our MtGox example, the word probabilities over time are characterised by

relatively flat probabilities in general and spikes at the time of events. We can take

advantage of this structure and hypothesise that it extends to other events. First we

must validate this against other events. A curated list of Bitcoin services which have

been victims of hacks or perpetrators of scams have been compiled over the years in a

thread on bitcointalk.org (https://bitcointalk.org/index.php?topic=576337.0). This list

will form our basis for event discovery validation. This could be done for other types of

events however the most complete information can be found regarding scam/hack events

since they are of relevance and interest to all involved with Bitcoin. We look at the

topic prominence for this set of words and see if the model correctly partitions them in a

scam/hack topic.
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Number of Topics k µ σ

10 -185.74 66.62
20 -204.28 65.57
30 -176.46 52.80
40 -202.10 68.99
50 -205.83 63.17

Table 3: Topic coherence statistics

6 Choosing k and Analysis

The choice of the number of topics has been an issue ever since topic models were first

introduced in 2003. For this particular study, we used the Umass coherence metric by

Mimno et al. (2011) to evaluate which number of topics was optimal. This method involves

taking the top N words for each topic and taking measures of their occurrences and co-

occurrences in the corpus. Formally it is defined as:

N−1∑
i=1

N∑
j=i+1

D(wi, wj) + ε

D(wi)
(6)

Where wi and wj are the ith and jth ranked words in a given topic respectively and

D(w) is the number of documents in which word w occurs. We set N = 20.

It has been shown to correlate well with human interpretations of what constitutes a

coherent topic. In addition, the metric does not require external validation, simplifying

the procedure and making it more versatile. To make the repeated training of models

viable, we calculated Umass coherence on a subsample of 100 weeks of data. In Table ??

we can see the results of the coherence evaluation. We have taken the arithmetic mean and

standard deviation of the output values over the 100 chained LDA models; higher values

mean more human understandable topics. Clearly our model is optimal when we choose

30 for the k parameter since on average the topics are more coherent and stable over time.

We also observe that lower numbers of k are more coherent than higher values, but are

also less stable over time. While this method does a good job at finding the number of

topics more attuned to human intuition, we would also like to study how this effects event

detection.

The generative process described now gives us a multi-layer interpretation of the data.

We have K topics with D documents and W words. Each topic can be described by a

vector of length W of word/topic probabilities. Each document can be described by a

vector of length K of topic/document probabilities. Each topic changes over each of the

T time slices and therefore each topic/document distribution acquires a different meaning

depending on where it is in the timeline.

Say we have a particular word w in our vocabulary we would like to learn something

about. The best way to do this is to look at the word probabilities over a certain time

slice in the topics. We can call this concept the word prominence and we would like to
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maximize this in order to find the most relevant topic.

arg max
k

1

tj − ti

tj∑
t=ti

p(w|k, ti) (7)

Once we have found this topic (or topics if we want to find several), looking at the

topics top words will allow us to discover in which context this term is discussed the most.

We can also plot the evolution of the probability over time of this particular word in this

topic and see when it was most used, when it came into use or passed out of use. Quite

often words with same spelling but different meaning (homonyms) occur or words that can

be discussed in different contexts (for example price could be present in a stock market

topic or in a groceries topic). Whereas usually it wouldn’t be a simple task to discern

these words, topic models account for them very nicely and provide a useful perspective.

In addition to analysing the word/topic distribution we can also take a look at the

topic/document distributions and determine in which time slice which topics were ‘hotter’

and which were ‘colder’ and identify trend starters. The hotter a topic k at time t, the

more documents are going to exhibit higher mixtures of the topic. The inverse is true for

colder topics. We can define the topic temperature as follows by Hall et al. (2008):

∑
d:td=t

p(k|d)p(d|t) =
1

Dt

∑
d:td=t

p(k|d) (8)

Where Dt is the number of documents in time slice t and td is the date document d

was written.

7 Detection

From the list of events acquired from the forum, all those solely concerning individuals

or causing losses of fewer than 1000 Bitcoins were removed. As a consequence of this

procedure, we were left with 33 different Bitcoin services (and 37 different events). For

each word we determine which topics the word achieves a topic prominence larger than

a certain threshold. Typically, any given word will only appear in a handful of topics

and most in just 1 or 2. Even though a certain topic may not have anything to do with

a chosen word, topic models have the property that the probability of a word occurring

in a topic is never 0, albeit negligible. Therefore we use a very low empirically tested

threshold to determine which topics to test and discard the noisy ones. Then we analyse

the topic prominence of the words conditioned on topics through time and determine an

event occurring to be when its upper control limit is breached. I.e. when:

p(w|k, ti+1) > µ(p(w|k, t1:i)) + 3 σ(p(w|k, t1:i)) (9)

Table ?? contains the information regarding of our events and the dates they occurred.

We compared these events against those detected in our model using the method described
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and have marked with an asterisk those that went undetected.

Most of the events causing losses of circa 2000 Bitcoins and under (indicated) went

undetected and almost all of those causing larger losses were identified. As hypothesized

in the previous section, the large majority of these events were found to be in a single

topic (topic 38), demonstrating the effectiveness of topic models in discriminating event

types and providing an indicator for future such events.

This event detection algorithm was also run on our 10, 30 and 50 topic models. For

the varying number k we can see what effect it has on our event distribution in Figure 6.

With the number of topics considered to be most coherent, our events are grouped mainly

into a single topic. On the other hand, the less coherent topics are composed of many

junk topics in the higher k case, or more general topics in the lower, therefore resulting

in inconsistency in the experiment. A lower k results in fewer detections as our topics

will each be less relevant and a higher k results in many junk topics and detections across

more topics.
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Figure 6: Event partitioning over varying k parameters, 10 topics (no filling), 30 topics (dashed

filling), 50 topics model (densely dashed filling)

XFGdtmEvents

In addition, for each event we can observe the impact it has on the topic structure

by measuring the deviation of the topic temperature from the mean at the time in which

it occurred. Since our timeline and number of time slices is large and we are using a

symmetric Dirichlet prior, our topics are going to be rather general and fixed through time

and the change in temperature between different times won’t be significant. However, one

can note in Figure 7 that all values are positive at the times the events occurred and

appreciate the event hierarchy that follows.

8 Conclusion

In the above piece of work we have introduced and explained topic models. A dataset has

been created from user posts on bitcointalk.org by using web scraping; then text-mining

techniques were used to prepare the data for dynamic topic modelling and consequently a
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Event Dates Topic

Ubitex* (1,138b) 2011-04 to 2011-07 None
Allinvain 2011-06-13 23
MtGox 2011-06-19 23
Mybitcoin 2011-06-20, 2011-07 23
Bitomat 2011-07-26 23
Mooncoin 2011-09-11 23
Bitscalper 2012-01 to 2012-03 23
Linode 2012-03-01 23
Betcoin* (3,171b) 2012-04-11 None
Bitcoinica 2012-04-12, 2012-07-13 23
Btc-e 2012-07-13 12
Kronos 2012-08 23
Bitcoin Savings and Trusts 2012-08-28 23
Bitfloor 2012-09-04 23
Btcguild* (1,254b) 2013-03-10 None
OkPay (main victim of 2013 Fork) 2013-03-11 30
Ziggap* (1,708b) 2013-02 to 2013-04 None
Just-Dice 2013-07-15 23
Basic-Mining* (2,131b) 2013-10 None
Silkroad2 2013-10-02 23
Vircurex* (1,454b) 2013-10-05 None
GBL 2013-10-26 12
Bips* (1,294b) 2013-11-17 None
Picostocks* (5,896b) 2013-11-29 None
MtGox 2014-02-24 23
Flexcoin 2014-03-02 23
Cryptorush 2014-03-11 23
Mintpal 2014-10-14 23
Silkroad2 2014-11-06 23
Bitstamp 2015-01-04 23, 25
Bter 2015-02-14 23
Cryptsy 2016-01-01 23
Shapeshift 2016-04 23
Gatecoin* 2016-05-13 None
Bitfinex 2016-08-03 12

Table 4: Events in chronological order, an asterisk means undetected in the 50 topic model
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Figure 7: Plot of ordered topic temperatures at time of event with k being the event topic and

t being the time of the event

XFGdtmTemperature

walk through of all the steps for constructing such a model has been provided. We have

presented a study and exploration of the popular cryptocurrency forum in this framework

and employed an event detection technique to capture the effect of high profile scamming

and hacking on the community. The number of topics parameter has been shown to be

optimal for event detection when it accords with a measure of topic coherence. In addition,

the constructed model partitions almost all of the events above a certain severity in a single

topic.
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