








8.3. Coding properties at the saddle-node-loop bifurcation

Figure 8.3.: Coding properties for the Wang-Buzsaki model with input IDC ≈ 0.16 µA/cm2

(about 2% above limit cycle onset). (a) Limit cycle period. (b) Magnitude of the Lyapunov
exponent, |λ|, of the locking state to a time-varying white noise stimulus. (c) Lower bound
on the mutual information rate (denoted info rate), with zoom below. Note the maxima in
proximity of both SNL bifurcations. Numerical continuation of phase-response curves and
limit cycles with AUTO-07P [31].

8.3.2. Information transmission

The amount and kind of information that a neuron can possibly transmit can be evalu-
ated based on the rate of information transmission, and the linear filtering properties.
Considering the neuron as an information filter, its output strength depends not only
on its input strength, but also on the frequency of its input. This dependence is cap-
tured by the first-order relation between input and output, the linear response filter
(Fig. 8.4). The linear response filter is the Laplace transform of the transfer function,
which can be calculated based on the phase-response curve [143]. Evaluating the linear
response function at different bifurcations, saddle-node-loop bifurcations facilitate the
transmission of higher frequencies compared to the saddle-node on invariant cycle
bifurcation (Fig. 8.4c).

Filter properties also determine the total amount of information that can be trans-
mitted. In a time-continuous system, the rate at which information on the input can
be gained by observing the output (or vice versa) is quantified by the mutual informa-
tion rate. This rate can be bounded below using the phase-response curve, under the
assumption of band-limited white noise as input [22, 143]. Intuitively, the lower bound
on the mutual information rate results from a summation of the transmission rate over
each frequency. With that, the facilitation of high frequency transmission around the
saddle-node-loop bifurcation explains the increase in the lower bound observed in
proximity of the saddle-node-loop bifurcation (Fig. 8.3c).

Information rate, high frequency transmission, and locking to an external signal (as
measured by the Lyapunov exponent) all increase in proximity of the saddle-node-loop
bifurcations (Fig. 8.3). This observation is explained both by a reduction of the limit
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8. The saddle-node-loop bifurcation

Figure 8.4.: Filter properties at small saddle-node-loop, saddle-node on invariant cycle and
big saddle-node-loop bifurcation for the Wang-Buzsaki model with input IDC ≈ 0.16 µA/cm2

(about 2% above limit cycle onset). Membrane capacitance reported in panel (b), units in
µF/cm2. (a) Sketch of the homoclinic orbit to the saddle-node fixed point. (b) Phase-response
curve for a perturbation with a current input. (c) Linear response function calculated based on
the phase-response curve. Filters at the saddle-node-loop bifurcations show a larger frequency
range than the filter at the saddle-node on invariant cycle bifurcation.

cycle period and by the changes in phase-response curve shape. Because the limit
cycle period scales the phase-response curve (the faster the spiking, the more robust is
the system to perturbations, and hence the smaller is the phase-response curve), the
change in period (Fig. 8.3a) contributes in particular to the peak at the small saddle-
node-loop bifurcation. Furthermore, the increase in the measures is related to the
changes in the phase-response curve. In the theoretical limit, the phase-response curve
is symmetric and composed of a single Fourier mode (the first cosine mode) at the
saddle-node on invariant cycle bifurcation. The phase-response curve gets asymmetric
components at the saddle-node-loop bifurcations, and the number of nonzero Fourier
modes increases considerably, each of which contributes also to the derivative of the
phase-response curve relevant for stochastic synchronization. As these properties occur
generically at saddle-node-loop bifurcations (see the second publication), the derived
coding properties may also be of interest in other information-processing systems.

8.4. Energy-efficient information processing

The functional implications summarized in the last section suggest that information
processing around the saddle-node-loop bifurcation may be interesting for neurons. As
any biological implementation of a dynamical regime requires energy in a real nervous
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system, this section discusses bifurcations from the perspective of energy consumption.
Two aspects are worth mentioning, the extreme sensitivity to parameter variations, and
the energetic costs of different spike generation mechanisms.

Compared to other bifurcations that were considered in the second publication, the
saddle-node-loop bifurcation induces the stronger change in coding properties. Hence,
minimal changes in parameters show the maximal effect. It would be interesting to
compare the energy required for changing the synchronization either with a bifurca-
tion parameter of the saddle-node-loop bifurcation, or with a change in the synaptic
coupling strength, which can also affect the entrainment range of δ-coupled oscillators
[124]. Potentially, the saddle-node-loop bifurcation allows to change coding properties
at minimal expenses.

The functional implications of the saddle-node-loop bifurcation result from the
associated change in spike onset bifurcation. While energy consumption has been
considered for spike initiation in different models [148], it has so far not been related to
the spike onset bifurcation. As illustrated below, it may be possible to relate dynamical
characteristics of the limit cycle on one hand, with the associated energy consumption
on the other hand. The energetic costs, in addition to the functional implications, may
also constrain a neuron’s dynamical state.

Already within one group of neuron models with the same spike onset bifurcation,
energetic costs depend largely on the parameters of the model. For example, the
number of ion channels is proportional to the sodium ion flow, and hence scales
the energetic costs3. Particularly, the overlap of potassium and sodium currents is
considered as energetically wasteful, because although ions flow, the net current is zero
when potassium and sodium ions flow simultaneously.

Both features of energy consumption are, potentially generically, affected by the spike
onset bifurcation (at least at spike onset where normal form theory holds). Here, a spike
onset at either a saddle-node on invariant cycle or a saddle-homoclinic orbit bifurcation
is considered4. Both bifurcations result in different dynamics around the fixed point
from which the limit cycle detaches, with quadratic dynamics at a saddle-node on
invariant cycle bifurcation and linear dynamics at a saddle-homoclinic orbit bifurcation.
The linear dynamics are faster, and hence may allow generically for a clearer separation
between the sodium and potassium flow, because the difference in ion channel time
constants (considerably faster sodium gating) is only visible when the dynamics are
faster than the slower potassium kinetics. Furthermore, the limit cycle resulting from
a small saddle-homoclinic orbit bifurcation reaches smaller maximal voltage values
than the saddle-node on invariant cycle bifurcation, at least in two-dimensional models.
This results from the continuous limit cycle deformation visible around the saddle-
node-loop bifurcation, compare Fig. 3.2. Smaller maximal voltages, combined with the
smaller afterhyperpolarization introduced in Sec. 3.3.2, suggest that at least the small
saddle-homoclinic orbit bifurcation results in limit cycles with particular little sodium
flow.

3Sodium ion flow reduces the concentration gradient between in- and outside of the cell, which is
reestablished by energy-consuming ion pumps, see Sec. 1.4.

4The two bifurcations between which the saddle-node-loop bifurcation switches.
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8.5. Phase response beyond spike onset

Strictly speaking, the analysis of the second publication with regard to the phase-
response curve shape is mainly valid in a small environment of the spike onset bifur-
cation under consideration. This section considers how the phase-response curve is
reshaped when the mean input is further increased, and concludes that besides the
spike onset bifurcation, also the excitation block may be relevant for a classification of
neuronal dynamics.

8.5.1. Spiking from onset to excitation block

While the generic phase-response curves considered so far only occur at limit cycle
bifurcations (Sec. 3.3.2), phase-response curves can be measured all along the limit cycle
branch. In typical neuron models, spiking starts at one bifurcation, e.g., a saddle-node
on invariant cycle bifurcation, and spiking stops at another bifurcation, the excitation
block, e.g. a supercritical Hopf bifurcation. When following the limit cycle from spike
onset to excitation block (without further bifurcations on the limit cycle branch), it is
transformed in a topological isomorphic manner, visible as a continuous deformation
of its shape. Assuming that the dynamical system is sufficiently differentiable [175],
this directly implies continuous (i.e., topological isomorphic) transformations of the
phase-response curve shape.

In the example mentioned above, the phase-response curve at spike onset will
have the (1− cos) shape typical for saddle-node on invariant cycle bifurcations. At
the excitation block, the phase-response curve will have the sine shape typical for
supercritical Hopf bifurcations. In between, for input values between spike onset and
excitation block, numerical continuation shows that the phase-response curve shape
corresponds to some interpolation between both stereotypical phase-response curves.
Starting at spike onset, the phase-response curve will gain an negative component for
early phases. This negative component will increase in size, until its amplitude equals
the amplitude of the positive component at the excitation block, resulting in a perfect
sine shape. While a continuous transformation of the phase-response curve can be
expected along any well-behaving branch of stable limit cycles, it remains so far unclear
whether such continuous transformations are also to be expected when the limit cycle
changes stability, as happens at the fold of limit cycles bifurcation discussed below.

8.5.2. Spike onset at subcritical Hopf bifurcations

In order to compare the saddle-node-loop bifurcation with other potential spike onset
mechanisms, this paragraph takes up the discussion of the subcritical Hopf bifurcation
in the second publication. The phase response has been derived for various bifurcations
that occur as spike onset or excitation block in neuron models [14]. So far missing
is the phase response in models in which spiking is initiated by a subcritical Hopf
bifurcation, for example in the original Hodgkin-Huxley model [73] or other so called
type-II models. The subcritical Hopf bifurcation in these cases has to be distinguished
from supercritical Hopf bifurcations, for which the phase-response curve is a well-
known sine curve [14]. The supercritical Hopf bifurcation is hardly relevant as onset
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for spiking, because, at the bifurcation, limit cycles have an infinitely small amplitude,
in contrast to the all-or-nothing spikes typically observed in neurons.

Figure 8.5.: Sketch of the relation between membrane voltage and input when the fixed point
loses stability at a subcritical Hopf bifurcation. The unstable branch of the fold of limit cycles
bifurcation either ends in a saddle-homoclinic orbit bifurcation (left) or directly in the Hopf
bifurcation (right), as in the original Hodgkin-Huxley model [73]. Fixed point voltage in violet,
limit cycle (LC) maximal and minimal voltage in green. Straight lines denote linearly stable
dynamics, dashed lines linear unstable dynamics.

When the resting state is destabilized by a subcritical Hopf bifurcation, the arising
limit cycle (also with infinitely small amplitude) is unstable. Neuron models that
allow for repetitive spiking show a stable limit cycle, on which the dynamics falls once
the resting state looses stability. This stable limit cycle is not directly related to the
subcritical Hopf bifurcation, and its phase-response curve can hence not be derived
from this bifurcation. Instead, the phase-response curve should be derived from the
bifurcation that creates the stable limit cycle. In conductance-based neuron models,
the stable limit cycle typically arises from a fold of limit cycles bifurcation (as in the
original Hodgkin-Huxley model [73]) or from a saddle homoclinic orbit bifurcation,
compare Fig. 8.5. In the latter case, the saddle-homoclinic orbit bifurcation must be a
big saddle-homoclinic orbit bifurcation, whose limit cycle encircles all three fixed points
(rest, saddle, and unstable node). With an increase in input, the unstable limit cycle that
is required for the subcritical Hopf bifurcation arises from a small saddle homoclinic
orbit bifurcation, and eventually disappears in the subcritical Hopf bifurcation. Note
that in this case, the stable and unstable limit cycle have no connection at all, and the
properties of the saddle homoclinic orbit bifurcation alone will decide on the phase-
response curve at the creation of the limit cycle. In alternative to the sequence of big
and small saddle-homoclinic orbit bifurcation, a fold of limit cycles bifurcation can
directly connect the unstable limit cycle created at the subcritical Hopf bifurcation
with the stable limit cycle corresponding to repetitive spiking. Note that this fold of
limit cycles bifurcation does not imply radially symmetric limit cycles as assumed
by Brown et al. [14], because radial symmetry would imply equal depolarization
and hyperpolarization around the stable fixed point, while biological neurons show
considerably larger positive excursions in the voltage dynamics. The fold of limit cycles
bifurcation that occurs before the subcritical Hopf bifurcation results in a bistability of
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stable limit cycle and stable fixed point5. The continuous limit cycle branch from the
subcritical Hopf bifurcation to the fold of limit cycles bifurcation may allow the former
to influence the phase-response curve at the stable branch of the latter, for example
by retaining a biphasic phase-response curve for which perturbations can advance or
delay the next spike.

An analytical derivation of the exact phase-response curve shape at a fold of limit
cycles bifurcation remains an open challenge that is further pursued in the lab. A
precise statement of this phase-response curve could ameliorate the confusion on
phase-response curves related to either sub- and supercritical Hopf bifurcations as
sometimes apparent in the literature. Many models with subcritical Hopf bifurcations
show a negative component in the early phase of the phase-response curve, which
is, in analogy to the phase-response curve at the supercritical Hopf bifurcation, often
related to the subcritical Hopf bifurcation. However, this connection was, to the best
of my knowledge, never properly established. As stated above, the dynamics falls
on a stable limit cycle once the subcritical Hopf bifurcation occurs. This limit cycle
is already at a certain distance from its creation bifurcation, because of the bistability
of limit cycle and resting state just before the subcritical Hopf bifurcation. The limit
cycle observed at the subcritical Hopf bifurcation is thus intermittent between limit
cycle onset and limit cycle destruction. Hence, the phase-response curve measured
for the stable limit cycle at the subcritical Hopf bifurcation is a combination of the
canonical phase-response curves at the excitation block on one hand, and the limit
cycle creation bifurcation on the other hand (i.e., a fold of limit cycles or big saddle-
homoclinic orbit bifurcation). If the excitation block is a supercritical Hopf bifurcation
as common in neuron models, this might explain the biphasic phase-response curve
observed at the subcritical Hopf bifurcation. Alternatively, the excitation block might
also be sequence of a subcritical Hopf bifurcation that stabilizes the unstable node, and
a fold of limit cycles bifurcation, that eliminates the stable limit cycle. A model that is
particularly interesting for the phase-response curve shape is one, in which the limit
cycle generation, in addition, happens at a fold of limit cycles bifurcation. In this case,
the limit cycle branch starts and ends at the same bifurcation type, which might lead
to less deformations of the phase-response curve than observed in common neuron
models with different bifurcations. If it turns out that the excitation block bifurcation is
indeed influencing neuronal dynamics in a reasonable spiking regime, as suggested in
this section, neurons with a finite firing rate may be better classified by both the spike
onset and spike termination bifurcation (i.e., excitation block).

5This bistability is also found in the fundamental bifurcation structure of conductance-based neuron
models by Kirst et al. [90], as long as the subcritical Hopf bifurcation is non-degenerated.
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9. Temperature as a control parameter in
biological systems

While direct consequences from the second publication were discussed in the last
chapter, the following two chapters present the implications of a saddle-node-loop
bifurcation when the bifurcation parameter is interpreted as temperature. The om-
nipresence of temperature variation in organisms (compare Sec. 3.6), makes this
bifurcation parameter particularly versatile, and allows even for a discussion of the
saddle-node-loop bifurcation in a medical context, as potential trigger mechanism for
temperature-induced seizures, as described in the introduction (Sec. 3.6.1). The search
for temperature-induced changes in synchronization originally motivated the study of
the saddle-node-loop bifurcation, and a publication on the subject is in preparation.

This chapter presents preliminary data which suggest that hallmarks of a saddle-
node-loop bifurcation can be observed with an increase in temperature. This is used in
the following chapter to suggest that the saddle-node-loop bifurcation may be relevant
for temperature-induced pathologies.

As summarized in the introduction (Sec. 3.5.2), temperature is a parameter that
influences the nervous system, and indeed the whole organism, in many aspects. While
endotherm animals spend a considerable amount of their energy on keeping the body
temperature more or less constant, the body temperature of ectotherm animals adapts to
the surrounding temperature. In ectotherm animals, the nervous system has to remain
functional over a particular large temperature range (e.g., day and night, or summer and
winter). But already the small changes in temperature observed in endotherm animals
can drastically alter neuronal dynamics, compare Sec. 3.6. The temperature dependence
of neuronal dynamics will be considered in this chapter, with a particular emphasize
on temperature as a bifurcation parameter of the saddle-node-loop bifurcation.

9.1. Regulation of temperature-dependence

Before considering changes in temperature as a bifurcation parameter, this paragraph
shortly reviews that neurons have also means to counter such changes. Such a counter
(temperature-compensation) is essential when neuronal function has to be ensured
over a certain range of temperatures.

While neurons can show a drastic temperature dependence in their dynamics (Sec.
3.5), in some cases it is useful to minimize the effect of temperature to remain functional.
This can be achieved by a well-chosen set of ion channels that counter each others
temperature dependence, allowing them to remain functional even when temperature
differences of 10°C occur, compare Roemschied et al. [134]. In addition, both vertebrates
and invertebrates use temperature-activated ion channels (e.g., TRP channels) for
thermo-regulation [176]. (Partial) temperature-compensation shows that the scaling of
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ion channel gating in response to temperature, as implemented in the models, is just
part of the story. As discussed later (Sec. 10.4.1), temperature compensation may be
seen in the experimental data.

9.2. Temperature-induced bifurcations

In direct analogy to the capacitance (Sec. 3.5.1), temperature can be used as bifurcation
parameter for the saddle-node-loop bifurcation. As mentioned in the introduction (Sec.
3.5.1), the saddle-node-loop bifurcation can be reached by an adaptation of the relative
time scale of the voltage and gating dynamics. In the second publication, this is done
by a change in the membrane capacitance, which adapts the voltage time scale. In
alternative, the relative time scale can be changed by an adaptation in the time scale
of the gating kinetics. This can be achieved by a change in temperature, whose main
effect is on the speed of active ion channel gating (Sec. 3.5.2). Both perspectives can be
transferred into each other by a simple rescaling of the time variable (for details see Sec.
3.5.1).

The temperature as bifurcation parameter will be particularly relevant for potential
medical implications of the second project. As discussed in the next chapter (Chapter
10), the increase in synchronization at the small saddle-node-loop bifurcation can serve
as a mechanism for seizure induction, when the seizure is induced by an increase in
temperature, as is the case for fever cramps and certain forms of epileptic seizures (Sec.
3.6.1). In analogy to the capacitance, an increase in temperature induces in models
a small saddle-node-loop bifurcation marked by an increasingly asymmetric phase-
response curve, and hence enhanced synchronization. The entrainment range against
different temperatures (implemented as a scaling of the ion channel kinetics) is plotted
in Fig. 8.2 for a two-dimensional sodium-potassium model (the bifurcation parameter
on the x-axis is described in the main text), in Fig. 10.1 for the Traub-Miles model, and
in Fig. 10.2 for other models.

9.3. Experimental evidence for a saddle-node-loop bifurcation
in hippocampal cells

In addition to the theoretical work presented in the second publication, the project on
saddle-node-loop bifurcations also has an experimental part in collaboration with the
Schmitz lab at the Charité. Together with Nikolaus Maier and Jan-Hendrik Schleimer1,
phase-response curves were measured at two different temperatures. The experiments
tested whether an increase in phase-response curve asymmetry as found in models
can be observed in hippocampal cells when the temperature is increased. This would
suggest an approach of a (small) saddle-node-loop bifurcation with temperature.

1 J.H., J.-H.S. and N.M. devised the experiment. N.M. performed the experiments (slice preparation,
patch clamping), and J.H. and J.-H.S. performed the phase-response curve recordings in successfully
patched neurons. J.H. programmed and performed the data analysis. J.H., J.-H.S. and N.M., together
with Susanne Schreiber and Dietmar Schmitz, discussed the results.
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9.3.1. Methods

Whole-cell patch-clamp recordings were done in slices from CA1 hippocampal pyrami-
dal cells (mice between age 22 and 30 days post-natal). Synaptic activity was blocked
with the GABAA receptor antagonist SR95531 (gabazine) and glutamate receptor block-
ers (CNQX and d-APV)2. Recordings were done using a Multiclamp 700A amplifier
(Axon Instruments, Union City, CA, USA), and the recorded data was analyzed us-
ing Spyke Viewer [126] extended with additional plug-ins for phase-response curve
measurements. Phase-response curves were measured at low (around 32°C) and high
(around 40°C) temperatures. Neurons were stimulated with a step current adapted
to obtain repetitive spiking with a firing rate around 10 Hz, and an additional noise
current with zero mean. The noise current represented an Ornstein-Uhlenbeck process
with a time constant of 4 ms, meant to simulate typical synaptic time-scales. The
membrane voltage was recorded and spikes were identified based on a voltage thresh-
old. The variations in spiking induced by the noise current were used to estimate the
phase-response curves.

In theory, it is possible to estimate phase-response curves from the deviations in
the mean firing rate due to the perturbations that the injected noise causes. While the
theory is based on infinitesimal perturbations in a deterministic, noise-free system,
the estimation of phase-response curves in more realistic, noisy systems is extremely
sensitive to the amplitude of the noise. Four methods for the reconstruction of the
phase-response curve were compared, one based on spike triggered averages [39], one
based on weighted spike triggered averages [118] and two based on the minimization
of spike-time prediction errors, adapted from Torben-Nielsen et al. [164] and Hong
et al. [76]. The appropriate amount of noise current (to perturb the spiking without
deviating too much from the mean firing rate that represents the limit cycle dynamics)
is difficult to adjust as it is different for every neuron (and may even change within one
recording session). Thus, the estimated phase-response curves do not only depend on
the temperature but also on the noise amplitude.

The experimental results were compared to simulations running on Brian2 [54, 156].
The phase-response curves were estimated in the simulations in the same way as for
the experimentally measured pyramidal cells, via an adaptation of the so-called STEP
method based on a minimization of spike-time prediction errors [164]. Simulations
used a simplified version of a model originally fitted to CA3 hippocampal pyramidal
cells, the Traub-Miles model [165], with a temperature-dependence on the gating
rates (Eq. 3.4 with φ = Q∆T/10

10 and Q10 between three and four). The model shows a
saddle-node on invariant cycle bifurcation at spike onset with the original parameters,
and reaches a saddle-node-loop bifurcation with an increase in temperature (Fig. 9.1,
Fig. 10.1).

9.3.2. Preliminary results

The estimation of phase-response curves from spike data requires around one thousand
spikes. Data of sufficient quality was obtained for 18 cells. In only half of those, the

2The synaptic blockers turned out to be temperature dependent; in order to block synaptic activity also
at higher temperatures, the blocker concentration was doubled to 2 µM gabazine, 40 µM CNQX and
60 µM d-APV.
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estimated phase-response curves suggest a comparable dynamical regime at low and
high temperatures (e.g., comparable noise amplitudes). The measured phase-response
curves of five cells demonstrate a shift of the maximum to earlier phases when the
temperature is increased, increasing asymmetry as expected with an approach to the
saddle-node-loop point (Fig. 9.1). The remaining cells showed similar phase-response
curves at low and high temperature, suggesting that the dynamics for those cells are
at both temperatures far from the saddle-node-loop point. An adaptation of the noise
amplitude and the temperature in the model allows to capture the phase-response
curve changes observed in the experiment (Fig. 9.1). A model close to the saddle-node-
loop point shows a similar shift in phase-response curve as observed in a subset of
hippocampal pyramidal cells.

Figure 9.1.: phase-response curves as measured in simulations and experiments. phase-
response curves were estimated based an adaptation of the so-called STEP method which uses
spike-time prediction error minimization [164].

The cells compatible with an approach of the saddle-node-loop point could be taken
as a hint that the saddle-node-loop bifurcation can be close to the dynamical state
of biological neurons. In this case, the saddle-node-loop bifurcation could indeed be
relevant for seizure induction under physiological conditions.
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10. The saddle-node-loop bifurcation as
seizure onset

The transfer of theoretical results into a medical context is a particular challenge for
future research [17, 50]. While this transfer requires extreme care to prevent over-
simplification and -generalization, theoretical ideas may provide useful inspirations
for medical interventions. This chapter investigates the potential of the saddle-node-
loop bifurcation as putative mechanism for seizure induction. In particular for febrile
seizures, so far unconnected observations may be united in the framework provided
by the saddle-node-loop bifurcation.

10.1. Temperature-induced seizures and saddle-node-loop
bifurcations

Around the transition at the saddle-node-loop bifurcation, synchronization can be
altered drastically in response to only infinitesimal changes in system parameters.
Changes in synchronization are also observed at the initiation of (epileptic) seizures,
which are often accompanied by a sudden increase in neuronal activity and synchro-
nization [110]. This invites the speculation that the approach of saddle-node-loop
bifurcations, and the resulting increase in synchronization ability of single neurons,
could be involved in seizure initiation. The saddle-node-loop bifurcation is particular
attractive as potential seizure onset, because it entails more drastic changes in the
entrainment range than other spike onset bifurcations, such as the Bogdanov-Takens
bifurcation (Fig. 5b in the second publication). To induce a seizure-prone regime, it
would probably be sufficient for a subset of neurons to approach the saddle-node-loop
bifurcation. The resulting facilitation of synchronization could act as a seed for seizure
dynamics.

Because bifurcations are in general difficult to pinpoint in experimental systems,
it will be demanding to test this hypothesis experimentally. The saddle-node-loop
bifurcation should hence be rather taken as a potential seizure mechanism that opens
up new perspectives on seizure induction. The multi-causality of seizure induction
is well documented in the literature, and the saddle-node-loop bifurcation is but one
of these causes, if at all. As the saddle-node-loop bifurcation is a mechanism acting
on the level of the dynamics, and not on the level of the biophysical implementation,
it could be the underlying mechanism of epilepsy conditions that are induced by
different parameters, as long as all of them can act as bifurcation parameter for the
saddle-node-loop bifurcation (see also Sec. 10.3).

The following sections suggest that the saddle-node-loop bifurcation hypothesis
could indeed be applicable for one seizure condition, febrile seizures (Sec. 3.6.1).
Febrile seizures occur during a period of high fever in about 5% of young children,
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inducing muscle cramps and, potentially, loss of consciousness [32]. The causes for
why fever triggers seizures has been identified as a key question [26]. One answer
may be the saddle-node-loop bifurcation and its potential role in the induction of
febrile seizures. The discussion relies on two bold assumptions: Seizures are induced
when synchronization becomes more probable, and synchronization probability of the
network can be inferred from single cell characteristics via the phase-response curve
(this is based upon the mathematical theory of weakly coupled networks). While the
results of the project are by far not sufficient to claim direct relevance in a medical
context, the theoretical and experimental observations discussed in this chapter support
the saddle-node-loop point as relevant for febrile seizures, and hence warrants further
research in this direction.

10.2. Experimental observations

If the saddle-node-loop point is related to febrile seizures, the rise in temperature
during a fever must be sufficient to approach the critical saddle-node-loop bifurcation
temperature, which enhances the synchronization in the network. This presupposes
that at least some neurons are already at normal body temperature close to a saddle-
node-loop bifurcation. Two observations suggest that this could indeed be the case, at
least for rat. Healthy rats reliably get seizures when the brain temperature is increased
to 42°C [58, 92, 105], and a temperature increase above 38°C induces epileptiform
activity in CA1 hippocampal slices from young rats [158]. In humans, certain patients
that are particular prone to febrile seizures (and often develop epilepsy in their later life)
also get seizures in response to hot water, and a lowering of the ambient temperature is
recommended as treatment, as reviewed by Cross [26]. These observations show that
temperature alone can induce seizures, which may be explained by neurons whose
dynamics are close to an saddle-node-loop bifurcation.

Febrile seizures are thought to involve mainly the hippocampus [3], in particular
CA1 and CA3 [81]. Compatibly, the experiments reported in Sec. 9.3 test neurons from
hippocampus CA1 in vitro for the change in phase-response curve asymmetry expected
at saddle-node-loop bifurcations. In a subset of neurons, the experimentally measured
phase-response curves show a temperature dependence that fits phase-response curves
predicted in silico. Whether these transitions are indeed responsible for the enhanced
synchronization observed with an increase in temperature (as described above) could
be tested by an experimental design that allows to balance heating and some other
bifurcation parameter of the saddle-node-loop bifurcation. This way, the approach of
the saddle-node-loop bifurcation by an increase in temperature could be countered
by a variation in some other parameter such as pH level1 (see Sec. 10.3). If this can
prevent synchronization of the network, this could be taken as further evidence that
the saddle-node-loop bifurcation underlies the transition to a synchronized network
state.

1As counter bifurcation parameter to temperature, the pH level has the advantage that it is relatively
easy changed in an experimental setting, and it is, as was tested for the experiments described in
Sec. 9.3, not affected by the temperature in a slice experiment. Yet, its disadvantage is that pH affects
neurons in many ways beyond the changes in ion channels that were implemented in the model, such
that its effect on the neuron is not well controlled.
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In general, an experimental result cannot proof a bifurcation itself, but only its
hallmarks, such as an asymmetric phase-response curve in the case of a saddle-node-
loop bifurcation. While the experiment described in Sec. 9.3 provides a first hint for
the saddle-node-loop bifurcation hypothesis, proper evidence demands for further
accumulation of experimentally observed hallmarks of a saddle-node-loop bifurcation
with an increase in temperature.

10.3. Shift in seizure temperature in response to pH or genetic
ion channel mutations

Febrile seizures can have many causes, including temperature, inflammatory cytokines,
mutated GABA receptors, or alkalosis, as reviewed by [26, 32]. The saddle-node-
loop bifurcation may provide a framework to understand these dependencies. This
is shown in the following at the example of the facilitation of febrile seizures under
either increased pH or genetic mutations of sodium ion channels. The effect of both
physiological changes on the sodium ion channels shifts the system closer to the
saddle-node-loop point, thereby lowering the critical saddle-node-loop bifurcation
temperature at which seizures would be expected to occur.

For both alterations, sodium ion channel mutations or pH increase, the models
analyzed in the next sections are based on experimental results. While the considered
alterations affect a biological neuron in potentially complex ways, the models focus on
the implementation of the qualitatively strongest effects on neuronal dynamics. That
these simplest models already show a reduction in critical temperature, and hence
enhanced likelihood of seizures, highlights the explicatory potential of the saddle-node-
loop bifurcation as unifying seizure initiation mechanism.

10.3.1. Increased pH shifts the saddle-node-loop bifurcation with respect to
temperature

Normal febrile seizures have been related to alkalosis (Higher than normal pH levels in
the blood) [146, 147]. In models, as shown below, higher pH affects the sodium channels
in a way that also reduces the critical temperature for seizure initiation (Fig. 10.1). This
suggests that lower temperatures are sufficient to observe increased synchronization
under alkalosis – temperatures low enough to be potentially reached during a fever.

Children with febrile seizures have a blood pH about 0.15±0.05 higher than children
with high fever but without febrile seizure [147]. On the level of ion channels, one of
the main effects of pH is a shift in the sodium activation curve to lower voltages [163].
Implementation of a pH-induced sodium activation shift in an adapted Traub-Miles
model lowers the critical temperature of the saddle-node-loop point (Fig. 10.1). A
decrease in the critical temperature would bring such neurons closer to the saddle-
node-loop point, and thus increase the probability of synchronization. The saddle-node-
loop bifurcation hypothesis could hence reconcile the reported effects of temperature
and pH for the induction of febrile seizures. While one or the other is sufficient to
induce seizures, febrile seizures are particularly likely to occur if the combined effect of
temperature and pH lowers the critical temperature to physiologically accessible fever
temperatures.

101



10. The saddle-node-loop bifurcation as seizure onset

Figure 10.1.: An shift in pH changes the critical saddle-node-loop bifurcation temperature
(adapted Traub-Miles model [165], with the pH change implemented as a shift in the sodium
activation curve [163]). Synchronization range in arbitrary units (a.u.) refers to the entrainment
range of two δ-coupled oscillators as used in the second publication.

10.3.2. Febrile seizure mutations shift the saddle-node-loop bifurcation
with respect to temperature

Patients with multiple febrile seizures are prone to develop epilepsy later in life. For a
small subgroup of these patients, the unusually high rate of febrile seizures has been
linked to genetic mutations that affect ion channels, see Cross [26] for an overview.
The implementation of the effect of some of these mutations in conductance-based
neuron models suggests that different mutations reduce the critical saddle-node-loop
bifurcation temperature, which potentially facilitates seizure occurrence.

This hypothesis can be tested based on conductance-based neuron models that mimic
the effect of mutations. The implemented model is based a model by Barela et al. [7]
(ModelDB accession number 87585 [108]) and Spampanato et al. [152]. The model
without mutations (control model) contains fast and slow sodium currents as well
as a delayed rectifier potassium current. This model was modified by one of three
mutations (T875M, R1648H, R859C). R859C affects the fast sodium activation curve
(shift to higher voltages) and the time constant of the slow gating variable (shift to
lower voltages)2, R1648H decreases the time constant of the sodium inactivation gating
variable, and T875M mainly decreases the time constant of the slow sodium gating
variable and shifts the activation curve of the slow gating variable to lower voltages.

In control and mutation models, the phase-response curve and the resulting entrain-
ment range (odd part of the phase-response curve, see Sec. 3.4.1) was measured. The
entrainment range of the models with mutations increases at lower temperatures, as
expected from a decrease of the critical temperature at which the saddle-node-loop
bifurcation occurs (Fig. 10.2). Thus, in a similar manner as an increase in pH, also these
mutations render neurons particularly prone to reach the saddle-node-loop point with
an increase in temperature. In line with the saddle-node-loop bifurcation hypothesis, a
higher probability of febrile seizures is exactly what would be expected when neurons
have a lowered critical saddle-node-loop bifurcation temperature.

A mouse model for SMEI mutations (one of the strong forms of febrile seizures)
seems to be in general more susceptible to other seizure inducers besides temperature,
for example certain drugs, as mentioned in Oakley et al. [116]. This fits the hypothesis

2The effect of the mutation R859C was implemented as a mean of the control model, and the reported
mutation values, because, for the full mutation model, limit cycle dynamics were not stable enough to
allow for the analysis of phase-response curves.
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Figure 10.2.: Mutations related to enhanced febrile seizure susceptibility [152] affect ion chan-
nels in ways that decreases the critical temperature at which the saddle-node-loop bifurcation
occurs.

that a susceptibility for febrile seizures arises from neurons whose dynamical state lies
in the proximity of a seizure-prone state, potentially resulting from a saddle-node-loop
bifurcation.

10.4. Medical applications

In summary, this chapter proposes that fever triggers seizures in response to an ap-
proach of the saddle-node-loop bifurcation, for which the temperature change during a
fever, and the pH level are possible bifurcation parameters. While the previous sections
have collected support for the saddle-node-loop bifurcation hypothesis from experi-
ments and models, this section shortly discusses the implications of the hypothesis for
the design and evaluation of medical interventions.

10.4.1. Seizure induction by absolute temperature or temperature increase?

With febrile seizures caused by an increase in body temperature, the seizure initiation
could either depend on the absolute brain temperature, or it could depend on its rate
of increase [26]. For example, in rat hippocampal slices, epileptiform activity with
increasing temperature is only observed if the temperature change is quite fast, which
may prevent some otherwise counteracting, temperature-induced regulations [158].
As shown in the following, the saddle-node-loop bifurcation hypothesis provides an
explanation for the potential occurrence of both possibilities.

The dependence of febrile seizures on either absolute temperature or change in tem-
perature may be based on different degrees of temperature-compensation in neurons3.

3Different degrees of temperature compensation could for example be observed in the recordings used
to analyze phase-response curves experimentally (Sec. 9.3). The input current required for a firing
rate of 10 Hz for some neurons was the same at low and high temperatures, for others the input
had to be increased at high temperatures (around 40°C). While some neurons continued to spike at
40°C qualitatively in the same way as at lower temperatures, others changed behavior, and showed
intermittent spiking with spike clusters or bursting. Sometimes neuron even retained the altered
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Without temperature compensation, neurons have a well-defined saddle-node-loop
bifurcation temperature that is reached independent of whether the temperature is
increased slowly or fast. Such neurons are likely to induce seizures in response to the
absolute temperature. On the other hand, with temperature compensation, the location
of the saddle-node-loop bifurcation may be shifted by the compensation, ensuring a
larger distance to this critical regime. In response to a slow increase in temperature,
the temperature compensation may have sufficient time to prevent an approach of
the saddle-node-loop bifurcation. This may not be possible when the temperature
changes faster than the compensation mechanisms can react. In this case, seizures are
only induced with a fast increase in temperature (too fast to fully activate temperature-
compensating mechanisms). The full development of temperature compensation could
be one potential explanation why febrile seizures do not occur in older children above
five years.

10.4.2. Brain heating

The observation that an increase in temperature can enhance synchronization lends
itself to a new perspective on long-duration epileptic seizures (status epilepticus): One
can suppose that the high levels of neuronal activity heat the brain tissue in the initial
part of the seizure above the normal temperature [91]. This heating may result in
temperature-induced synchronization, which acts as a kind of positive feedback for
the seizure activity. A prime candidate for temperature-induced synchronization,
strengthening seizure activity over a long period of time, are neurons that are brought
closer to a saddle-node-loop bifurcation by the increase in temperature. On the other
hand, the prevention of seizures by cooling of brain tissue [44] may result from an
increase in the distance to the saddle-node-loop bifurcation.

The saddle-node-loop bifurcation hypothesis should also be considered when using
deep-brain stimulations, for which a concurrent increase is local brain temperature was
reported [34]. This has again the potential to bring neurons closer to the saddle-node-
loop bifurcation, which may lead to a seizure.

10.4.3. Distance measure for anti-epileptic drugs

As discussed above, the distance to the saddle-node-loop bifurcation may be decisive
for the likelihood of seizures. A pathological closeness to the saddle-node-loop bifurca-
tion could be countered by targeted medical interventions. What is still missing is a
sound, parameter-independent distance measure that could be used to compare the
effect of different drugs.

The distance to the saddle-node-loop bifurcation could provide an interesting, in-
termediate measure for drug development. For example, a drug that reduces the leak

behavior after cooling back to lower temperatures, which suggests that the increase in temperature
(or some other internal process) induced some more fundamental change in the system than a simple
scaling in gating rates as assumed in models. Note, however, that is difficult to distinguish temperature
effects from effects that result from the recording duration and the concurrent degradation of the cell.
Yet, at least in some cases, the observations suggest that temperature-compensation in a subset of
neurons allows them to remain in the same functional regime over the temperature range used in the
experiments while other neurons responded more strongly to temperature changes, showing little
temperature-compensation.
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conductance, which is one of the bifurcation parameters of the saddle-node-loop bifur-
cation [90], could be a potential candidate for drug development. Speculatively, seizure
induction at a saddle-node-loop bifurcation would have the advantage that drugs
would not need to counter the biologically relevant parameter (such as the increase
in temperature during febrile seizures), but could act on any bifurcation parameter
affecting the closeness to the saddle-node-loop bifurcation (such as the pH, e.g., lowing
blood pH by respiratory control reduces febrile seizures [147]). Indeed, a rather unintu-
itive combination of drugs may turn out to be most effective in increasing the distance
to the saddle-node-loop bifurcation, and hence establishing a safety margin against
seizure induction.

10.5. Recapitulation

In this chapter, the potential application of the saddle-node-loop bifurcation in a
medical context was discussed. In a biological system, the increase in synchronization
when neurons reach a saddle-node-loop bifurcation could manifest itself as a seizure,
with devastating consequences for the patient. The discussion has focused on febrile
seizures, showing that the dependence of febrile seizures on pH levels and genetic
mutations can be reproduced in conductance-based neuron models. Furthermore,
experimental results in response to an increase in temperature were summarized with
respect to seizure induction, and the saddle-node-loop bifurcation. Both fit the saddle-
node-loop bifurcation hypothesis for the induction of febrile seizures, which may, in
analogy, also be relevant for hot water epilepsy. Beyond temperature as bifurcation
parameter, the saddle-node-loop bifurcation may also be relevant for other epilepsy
types.

105





11. Reflections on neuronal modeling

While the previous chapters have focused on the functional and evolutionary im-
plications of the two core publications of this thesis, this chapter discusses major
assumptions underlying their analyses. For both projects, the subject was first consid-
ered in models with a certain amount of biological realism, in (multi-compartmental)
conductance-based neuron models, and then it was shown that the essential features
can already be observed in simpler models (passive single compartmental models and
a quadratic integrate-and-fire neuron, respectively). The simpler models allow for an
analytical evaluation, and support the mathematical generality of the claims in this
thesis.

In many biological neurons, signal processing is considerably more sophisticated
than in the simple picture used in this thesis, the passive signal transmission between
dendrite and axon, and spike generation at the axon initial segment. Active conduc-
tances are for example also found in the cell body and in particular in the dendritic
tree, with considerable computational power [27]. Furthermore, synaptic connections
commonly target the soma besides the dendrites, and signals can also be exchanged via
gap junctions, i.e., electrical synapses that allow for a direct, typically bidirectional ion
flow between two neurons [45]. In contrast to models of higher complexity that include
these and other details, the advantage of a simplifying approach as used in this thesis
is a clearer separation of cause and effect and hence a more general understanding. The
phenomenon under consideration can in both studies be analyzed by mathematical
simple models that allow for an analytical treatment.

This thesis mainly considers neurons that show functional polarization, i.e., cells
with distinguishable input and output branches, compare Sec. 7.1. In the second
publication, this focus arises indirectly from the choice of a single-compartment model
(point neuron), because it produces one output from the summation of all inputs, which
implicitly assumes at least a dedicated axon. In the first publication, the focus on
functional polarization (arising from the consideration of signal transmission from
dendrite to axon) can be relaxed to not fully polarized cells, as long as a large part of
the information is still routed through the (central) soma or the T-junction. This thesis
does not consider neurons in which computations are mostly done on a local level
within single branches.

In the first publication, the current threshold, and its passive counterpart, signal
attenuation, was measured in order to assess energy-efficiency as previously discussed.
The publication investigates passive signal propagation between dendrite and axon,
with either a central or an externalized soma. In order to measure the current threshold,
the models were augmented by active conductances in the axon initial segment, and
the minimal step current amplitude sufficient to induce spiking was recorded. This
kind of excitability measure is widely used for an experimental characterization of
neurons, for example with different drugs or mutations. Yet, not for every neuron
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a current threshold is well-defined [79], and the activation threshold measured with
step currents (or ramps) provides little evidence on other aspects of signal processing
beyond simple thresholding of input. For example, all natural neurons are faced with
various sources of noise that influences their signaling [42]. To evaluate noise in the
context of unipolar and multipolar neurons of the first publication, the Supplemental
Information includes models with a noise source in the axon initial segment, where
the spike was initiated (simulating channel noise from stochastic channel opening and
closing). The signal-to-noise ratio measured in the axon initial segment in this specific
model increases when signal attenuation decreases ([67], Supplemental Information,
inset in Fig. 2c). This shows that efficient signal transmission from the dendrite to the
axon is also relevant to overcome noise in the axon initial segment. In particular, it
shows that enhanced signal transmission from dendrite to axon is not only explained
by an increased input resistance of the axon, as the axonal input resistance would boost
signal and noise equally.

The prediction of the synchronization in the second publication assumes weak
inputs, as it relies on the theory of weakly coupled networks [78]. Small connection
strength are for example not relevant for communication with graded potentials. Yet,
in practice, the restrictions on weak input are not too restrictive [142], in particular in
the dynamical regime with saddle-node on invariant cycle bifurcations as spike onset,
as well as for big and small saddle-node-loop bifurcation. This can be seen from the
limit cycle stability shown in the second publication, Fig. 5. The analysis focuses on δ-
coupled neurons, which is easily relaxed to synaptic coupling with sufficiently fast time
constants. Slower synapses and in particular synapses with temperature-dependence
have to be considered in future research.

The active models in this thesis mostly implement simple, voltage-gated ion channels.
This ignores many adapting processes common in neurons, such as firing rate adapta-
tion or changes in ion concentration gradients due to overstrained ion pumps. Both
modifications alter the firing rate at constant input and would hence complicate the
consideration of a constant mean firing rate required for the analysis of phase-response
curves in the second publication. Moreover, any kind of temperature-adaptation (apart
from faster ion channel gating) goes beyond the scope of this thesis, although such
adaptations were observed in the experiments (Sec. 10.4.1), and have been reported in
the hippocampus due to temperature-dependent TRP channels [151]. The analysis is
furthermore restricted to deterministic models without stochastic ion channel gating
and other noise sources. This is a major simplification, because stochasticity is, besides
non-linearity, the second source of the richness in neuronal dynamics.
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In this thesis, the influence of single cell properties on neuronal processing is inves-
tigated. It is shown that neuronal morphology and biophysical parameters affect
information transmission in substantial ways. The analysis can hence be seen as com-
patible with the old neuroscience claim that form follows function. This claim underlies
the identification of neuronal cell classes based on morphological characteristics. The
results of this thesis suggest furthermore that whether differences in parameters imply
functional differences (or not) depends fundamentally on the dynamical state of the
neuron, and its closeness to codimension-two bifurcations. This is particularly rele-
vant for recent results showing that functional heterogeneity is one potential basis for
synchronization codes in the electro-sensory system [173].

The influence of basic parameters such as morphology or passive properties on
neuronal function has been established in various studies: The membrane time con-
stant (product of membrane capacitance and resistance) and morphology influence
the temporal aspects of voltage dynamics [12, 79], the velocity of spike propagation
depends on leak and axial resistance, as well as on the amount of myeline, which
is dynamically regulated [6, 80], the location of the axon initial segment influences
excitability [57, 95, 109], and the addition of a dendritic tree can change the spike gen-
eration mechanism of a neuron1 [51, 89]. This thesis considers two additional effects:
The dependence of signal transmission on the soma location, and the capacitance as
bifurcation parameter for saddle-node-loop bifurcations.

The results of the first project suggest that different soma locations (central versus
externalized) observed in the animal kingdom may be explained by an evolutionary
development that optimizes signal transmission depending on the soma-to-neurite ratio
[67]. In turn, different soma-to-neurite ratios may have developed because neurons,
facing the disadvantage of a large central soma, externalized either the soma, or somatic
organelles (Sec. 7.4). Both adaptations are likely to lower the energetic costs of signal
transmission. The study illustrates that a restriction of the analysis to morphological
parameters can greatly obscure the picture. Neuronal function depends intrinsically
on the interplay between morphology and biophysics. In the first publication, the
relevant parameter to distinguish neurons with central or externalized soma is the
soma-to-neurite ratio, which depends not only on morphology (soma and neurite
diameter), but also on electrophysiological parameters (axial and membrane resistance).
The consideration of both allowed for the large parameter space considered in the
simulations to be collapsed on a single dimension, and to recognize a pattern in
the collected data. A comprehensive assessment of neuronal function requires also
in general the simultaneous consideration of morphology and electrophysiological
properties (including passive parameters).

1The change from type-II to type-I dynamics probably results from the current sink that the dendrite
provides, which acts similar to a change in leak conductance.
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This thesis also illustrates that, in order to obtain an appropriate characterization of
a neuron’s dynamics, the measurement has to be chosen with the functional state of the
neuron in mind: For a decision-making neuron, such as the escape-inducing neuron in
locust, the current threshold may be appropriate, as it reflects the behavioral threshold.
For a sensory neuron that selects a particular frequency band from its input, the transfer
function which characterizes its filtering properties may be appropriate. And for a
neuron that spikes continuously and is perturbed by small inputs (mean-driven regime
[145]), e.g., olfactory neurons [13, 77], the phase-response curve may be suited to survey
neuronal function. Detailed experimental measurements of neuronal dynamics beyond
classical electrophysiology may pave the way for a more fundamental understanding
of various nervous systems.

The second project illustrates the relevance of a transition in spike onset mechanism
at a saddle-node-loop bifurcation, and proves that, starting with spike onset at a
saddle-node on invariant cycle bifurcation, this bifurcation occurs ubiquitously in two-
dimensional conductance-based neurons models. The saddle-node-loop bifurcation
acts as a major switch in neuronal dynamics. Changes in spike onset bifurcations
are especially interesting when considering the robustness of neurons to parameter
variations. Robust encoding, for example, is facilitated if neurons remain in one
dynamical regime independent of particular parameter values. In this case, the system
must ensure a large distance to any co-dimension two bifurcation, which would switch
the spike onset bifurcation. On the other hand, the saddle-node-loop bifurcation
provides a particularly interesting coding regime for sensory neurons, which may
profit from faster locking to impending stimuli and enhanced reliability. Furthermore,
due to the anti-synchronization observed with excitatory coupling, the saddle-node-
loop bifurcation results in the emergence of a frustrated network state, which has been
suggested as relevant regime for cortical neurons [53]. The detailed investigation of
coding and network properties around the saddle-node-loop bifurcation is ongoing
research in the Computational Neurophysiology Group led by S. Schreiber.

The saddle-node-loop bifurcation considered in the second part of the thesis may
not only be relevant for neuronal processing in health, but may also offer potential
explanations for pathologies, as exemplified in Chapter 10 for febrile seizures and other
temperature-induced seizures. The causes of febrile seizures are still an open question
as temperature influences basically all biological processes, from gene expression and
protein synthesis over transportation rates to electrical signaling. This multitude of
effects poses a serious challenge for the investigation of temperature effects. This thesis
faces the challenge by strong simplifications that model brain dynamics with coupled
oscillators. While this approach is clearly too simple, it provides, so I hope, a good
starting point for a more thorough understanding of febrile seizures. In particular, the
saddle-node-loop bifurcation hypothesis has the potential to unite three observations
on febrile seizures: (i) Febrile seizures occur with an increase in brain temperature. (ii)
Febrile seizures occur in particular when the blood pH level is high (assuming that
this also affects the pH around the neuron). (iii) Certain ion channel mutations favor
febrile seizures. All of these parameters (temperature, pH, channel mutations) can tune
neuronal dynamics to a saddle-node-loop bifurcation, where synchrony is facilitated.

Much work in this thesis is comparative in nature. Contrasting morphologies present
in different animal clades, or different spike onset mechanisms found in various neu-
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ronal types, it sheds new light on their functional implications and ultimate reasons
for their existence. The generalization of the insights gained first from numerical con-
tinuation or simulations, followed by abstract mathematical arguments, ensures that
the conclusions hold beyond the chosen model parameters, lending the work, under
the stated assumptions, scope and applicability also to other systems. I hope that this
thesis, with its consideration of basic neuronal building blocks and their influence
on neuronal signaling, takes us one step further in the exploration of the principles
underlying the function of the nervous system.
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16. T. H. Bullock and E. Başar. Comparison of ongoing compound field potentials
in the brains of invertebrates and vertebrates. Brain Research Reviews, 13(1):
57–75, January 1988.

17. J. Bélair, L. Glass, U. a. d. Heiden, and J. Milton. Dynamical disease: Identifi-
cation, temporal aspects and treatment strategies of human illness. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 5(1):1–7, March 1995.

18. Q. Cai and Z.-H. Sheng. Molecular Motors and Synaptic Assembly. The Neu-
roscientist : a review journal bringing neurobiology, neurology and psychiatry, 15(1):
78–89, February 2009.

19. R. L. Calabrese and D. Kennedy. Multiple sites of spike initiation in a single
dendritic system. Brain Research, 82(2):316–321, December 1974.

20. C. N. Carlo and C. F. Stevens. Structural uniformity of neocortex, revisited.
Proceedings of the National Academy of Sciences, 110(4):1488–1493, January 2013.

21. B. C. Carter and B. P. Bean. Sodium Entry during Action Potentials of Mam-
malian Neurons: Incomplete Inactivation and Reduced Metabolic Efficiency in
Fast-Spiking Neurons. Neuron, 64(6):898–909, December 2009.

22. M. J. Chacron, B. Lindner, and A. Longtin. Noise Shaping by Interval Cor-
relations Increases Information Transfer. Physical Review Letters, 92(8):080601,
February 2004.

23. J. A. Coles. Glial cells: invertebrate. In L. R. Squire, editor, Encyclopedia of
Neuroscience, pages 749–759. Elsevier, Amsterdam, 2009. ISBN 978-0-08-045046-
9.

24. L. L. Colgin. Rhythms of the hippocampal network. Nature Reviews Neuroscience,
17(4):239–249, April 2016.

25. W. F. Colmers. Neuronal and synaptic organization in the gravity receptor
system of the statocyst of Octopus vulgaris. Cell and Tissue Research, 185(4):
491–503, December 1977.

114



Bibliography

26. J. H. Cross. Fever and fever-related epilepsies. Epilepsia, 53:3–8, September 2012.

27. H. Cuntz, M. W. H. Remme, and B. Torben-Nielsen. The Computing Dendrite:
From Structure to Function. Springer New York, November 2013. ISBN 978-1-
4614-8093-8.

28. W. J. Davis. Functional significance of motorneuron size and soma position
in swimmeret system of the lobster. Journal of Neurophysiology, 34(2):274–288,
March 1971.

29. E. D. De Schutter. Computational Neuroscience: Realistic Modeling for Experimental-
ists. CRC Press, Boca Raton, November 2000. ISBN 978-1-4200-3929-0.

30. M. Devor. Unexplained peculiarities of the dorsal root ganglion. Pain, 82,
Supplement 1(0):S27–S35, August 1999.

31. E. Doedel and B. Oldeman. Auto-07p: Continuation and bifurcation software
for ordinary differential equations. Technical report, Concordia University,
Montreal, Quebec, Canada, 2009.

32. C. M. Dubé, A. L. Brewster, C. Richichi, Q. Zha, and T. Z. Baram. Fever, febrile
seizures and epilepsy. Trends in neurosciences, 30(10):490–496, October 2007.

33. J. Dudel, R. Menzel, and R. F. Schmidt. Neurowissenschaft: Vom Molekül zur
Kognition. Springer, Berlin, 2001. ISBN 9783540413356.

34. M. M. Elwassif, Q. Kong, M. Vazquez, and M. Bikson. Bio-heat transfer model
of deep brain stimulation-induced temperature changes. Journal of Neural
Engineering, 3(4):306, 2006.

35. B. Ermentrout. Type I Membranes, Phase Resetting Curves, and Synchrony.
Neural Computation, 8(5):979–1001, July 1996.

36. G. B. Ermentrout. n:m Phase-locking of weakly coupled oscillators. Journal of
Mathematical Biology, 12(3):327–342, August 1981.

37. G. B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system
coupled with a slow oscillation. SIAM Journal on Applied Mathematics, 46(2):
233–253, 1986.

38. G. B. Ermentrout and D. H. Terman. Mathematical Foundations of Neuroscience.
Springer Science & Business Media, Berlin, July 2010. ISBN 978-0-387-87708-2.

39. G. B. Ermentrout, R. F. Galán, and N. N. Urban. Relating Neural Dynamics to
Neural Coding. Physical Review Letters, 99(24), December 2007.

40. C. G. Evans, B. C. Ludwar, and E. C. Cropper. Mechanoafferent Neuron With
An Inexcitable Somatic Region: Consequences for the Regulation of Spike
Propagation and Afferent Transmission. Journal of Neurophysiology, 97(4):3126–
3130, April 2007.

115



Bibliography

41. G. Eyal, M. B. Verhoog, G. Testa-Silva, Y. Deitcher, J. C. Lodder, R. Benavides-
Piccione, J. Morales, J. DeFelipe, C. P. d. Kock, H. D. Mansvelder, and I. Segev.
Unique membrane properties and enhanced signal processing in human neo-
cortical neurons. eLife, 5:e16553, October 2016.

42. A. A. Faisal, L. P. J. Selen, and D. M. Wolpert. Noise in the nervous system.
Nature Reviews Neuroscience, 9(4):292–303, April 2008.

43. M. R. Freeman and J. Doherty. Glial cell biology in Drosophila and vertebrates.
Trends in Neurosciences, 29(2):82–90, February 2006.

44. M. Fujii, H. Fujioka, T. Oku, N. Tanaka, H. Imoto, Y. Maruta, S. Nomura, K.
Kajiwara, T. Saito, T. Yamakawa, T. Yamakawa, and M. Suzuki. Application of
Focal Cerebral Cooling for the Treatment of Intractable Epilepsy. Neurologia
medico-chirurgica, 50(9):839–844, 2010.

45. G. Galizia and P.-M. Lledo. Neurosciences - From Molecule to Behavior: a university
textbook. Springer Science & Business Media, Berlin, July 2013. ISBN 978-3-642-
10769-6.

46. L. J. Gentet, G. J. Stuart, and J. D. Clements. Direct measurement of specific
membrane capacitance in neurons. Biophysical Journal, 79(1):314–320, July 2000.

47. W. Gerstner, A. K. Kreiter, H. Markram, and A. V. M. Herz. Neural codes:
Firing rates and beyond. Proceedings of the National Academy of Sciences, 94(24):
12740–12741, November 1997.

48. C. N. G. Giachello, P. G. Montarolo, and M. Ghirardi. Synaptic Functions of
Invertebrate Varicosities: What Molecular Mechanisms Lie Beneath. Neural
Plasticity, 2012:1–14, 2012.

49. R. Gillette. On the Significance of Neuronal Giantism in Gastropods. The
Biological Bulletin, 180(2):234–240, April 1991.

50. L. Glass. Dynamical disease: Challenges for nonlinear dynamics and medicine.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(9):097603, September
2015.

51. J. A. Goldberg, C. A. Deister, and C. J. Wilson. Response Properties and Synchro-
nization of Rhythmically Firing Dendritic Neurons. Journal of Neurophysiology,
97(1):208–219, January 2007.

52. D. S. Goldobin and A. Pikovsky. Antireliability of noise-driven neurons. Physical
Review E, 73(6):061906, June 2006.

53. L. L. Gollo and M. Breakspear. The frustrated brain: from dynamics on motifs
to communities and networks. Philosophical Transactions of the Royal Society B:
Biological Sciences, 369(1653):20130532–20130532, September 2014.

54. D. F. M. Goodman and R. Brette. The Brian simulator. Frontiers in Neuroscience,
3, 2009.

116



Bibliography

55. N. W. Gouwens and R. I. Wilson. Signal Propagation in Drosophila Central
Neurons. The Journal of Neuroscience, 29(19):6239–6249, May 2009.

56. C. M. Gray and W. Singer. Stimulus-specific neuronal oscillations in orientation
columns of cat visual cortex. Proceedings of the National Academy of Sciences of the
United States of America, 86(5):1698–1702, March 1989.

57. M. S. Grubb and J. Burrone. Activity-dependent relocation of the axon initial
segment fine-tunes neuronal excitability. Nature, 465(7301):1070–1074, June
2010.

58. G. Gulec and B. Noyan. Do recurrent febrile convulsions decrease the threshold
for pilocarpine-induced seizures?: Effects of nitric oxide1. Developmental Brain
Research, 126(2):223–228, February 2001.

59. G. F. Gwilliam and M. Burrows. Electrical Characteristics of the Membrane Of
An Identified Insect Motor Neurone. The Journal of Experimental Biology, 86(1):
49–61, June 1980.

60. D. Hansel, G. Mato, and C. Meunier. Synchrony in excitatory neural networks.
Neural Computation, 7(2):307–337, March 1995.

61. B. Hanström. Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter
Berücksichtigung seiner Funktion. Springer, Berlin, 1928.

62. J. J. Harris, R. Jolivet, and D. Attwell. Synaptic Energy Use and Supply. Neuron,
75(5):762–777, September 2012.

63. D. K. Hartline and D. R. Colman. Rapid Conduction and the Evolution of Giant
Axons and Myelinated Fibers. Current Biology, 17(1):R29–R35, January 2007.

64. A. Hasenstaub, S. Otte, E. Callaway, and T. J. Sejnowski. Metabolic cost as a
unifying principle governing neuronal biophysics. Proceedings of the National
Academy of Sciences of the United States of America, 107(27):12329–12334, July 2010.

65. W. J. Heitler and C. S. Goodman. Multiple Sites of Spike Initiation in a Bifurcat-
ing Locust Neurone. The Journal of Experimental Biology, 76(1):63–84, October
1978.

66. E. Henneman, G. Somjen, and D. O. Carpenter. Functional Significance of Cell
Size in Spinal Motoneurons. Journal of Neurophysiology, 28(3):560–580, May 1965.

67. J. Hesse and S. Schreiber. Externalization of neuronal somata as an evolutionary
strategy for energy economization. Current Biology, 25(8):R324–R325, April 2015.

68. J. Hesse, J.-H. Schleimer, and S. Schreiber. Qualitative changes in spike-
based neural coding and synchronization at the saddle-node loop bifurcation.
arXiv:1606.07398 [q-bio], June 2016.

117



Bibliography

69. J. Hesse, J.-H. Schleimer, and S. Schreiber. Qualitative changes in phase-response
curve and synchronization at the saddle-node loop bifurcation. Physical Review
E, 95(5):052203, May 2017. Reprinted from Physical Review E 95(5), Hesse,
Schleimer and Schreiber, Qualitative changes in phase-response curve and syn-
chronization at the saddle-node loop bifurcation, pages 052203-25, Copyright
2017, with permission from Elsevier.

70. B. Hille. Ion channels of excitable membranes. Sinauer, Sunderland, Mass, 3. ed
edition, 2001. ISBN 978-0-87893-321-1.

71. N. Hirokawa and R. Takemura. Molecular motors and mechanisms of direc-
tional transport in neurons. Nature Reviews Neuroscience, 6(3):201–214, March
2005.

72. B. Hochner and M. E. Spira. Preservation of motoneuron electrotonic character-
istics during postembryonic growth. The Journal of Neuroscience, 7(1):261–270,
January 1987.

73. A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
Physiology, 117(4):500–544, August 1952.

74. A. L. Hodgkin. The local electric changes associated with repetitive action in a
non-medullated axon. The Journal of Physiology, 107(2):165–181, March 1948.

75. A. J. Homburg and B. Sandstede. Homoclinic and heteroclinic bifurcations in vector
fields. Elsevier, 2010.

76. S. Hong, Q. Robberechts, and E. D. Schutter. Efficient estimation of phase-
response curves via compressive sensing. Journal of Neurophysiology, 108(7):
2069–2081, October 2012.

77. J. J. Hopfield. Pattern recognition computation using action potential timing for
stimulus representation. Nature, 376(6535):33–36, July 1995.

78. F. C. Hoppensteadt and E. M. Izhikevich. Weakly Connected Neural Networks.
Springer Science & Business Media, Berlin, July 1997. ISBN 978-0-387-94948-2.

79. E. M. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, 2007. ISBN
978-0-262-09043-8.

80. J. J. B. Jack, D. Noble, and R. W. Tsien. Electric current flow in excitable cells.
Clarendon Press, Oxford, 1975. ISBN 978-0-19-857365-4.

81. W. Jiang, T. M. Duong, and N. C. de Lanerolle. The neuropathology of hyper-
thermic seizures in the rat. Epilepsia, 40(1):5–19, January 1999.

82. C. Jozet-Alves, J. Modéran, and L. Dickel. Sex Differences in Spatial Cognition
in an Invertebrate: The Cuttlefish. Proceedings of the Royal Society B: Biological
Sciences, 275(1646):2049–2054, September 2008.

118



Bibliography

83. M. Kadekaro, A. M. Crane, and L. Sokoloff. Differential Effects of Electrical
Stimulation of Sciatic Nerve on Metabolic Activity in Spinal Cord and Dorsal
Root Ganglion in the Rat. Proceedings of the National Academy of Sciences, 82(17):
6010–6013, September 1985.

84. C. Kettner, P. Reimann, P. Hänggi, and F. Müller. Drift ratchet. Physical Review
E, 61(1):312–323, January 2000.

85. Y.-T. Kim and C.-F. Wu. Distinctions in growth cone morphology and motility
between monopolar and multipolar neurons in Drosophila CNS cultures. Journal
of Neurobiology, 22(3):263–275, April 1991.

86. D. G. King. Organization of crustacean neuropil. II. Distribution of synaptic
contacts on identified motor neurons in lobster stomatogastric ganglion. Journal
of Neurocytology, 5(2):239–266, April 1976.

87. D. G. King. Organization of crustacean neuropil. I. Patterns of synaptic connec-
tions in lobster stomatogastric ganglion. Journal of Neurocytology, 5(2):207–237,
April 1976.

88. B. Kirchhof and G. Bicker. Growth properties of larval and adult locust neurons
in primary cell culture. The Journal of Comparative Neurology, 323(3):411–422,
1992.

89. C. Kirst, A. Herz, and M. Stemmler. From Integrator to Resonator: The Effect
of Dendritic Geometry on Neuronal Excitability. event abstract, 4th Bernstein
Symposium for Computational Neuroscience, 2008.

90. C. Kirst, J. Ammer, F. Felmy, A. Herz, and M. Stemmler. Fundamental Struc-
ture and Modulation of Neuronal Excitability: Synaptic Control of Coding,
Resonance, and Network Synchronization. bioRxiv, page 022475, July 2015.

91. E. A. Kiyatkin, K. T. Wakabayashi, and M. Lenoir. Physiological Fluctuations
in Brain Temperature as a Factor Affecting Electrochemical Evaluations of
Extracellular Glutamate and Glucose in Behavioral Experiments. ACS Chemical
Neuroscience, 4(5):652–665, May 2013.

92. B. J. Klauenberg and S. B. Sparber. A kindling-like effect induced by repeated
exposure to heated water in rats. Epilepsia, 25(3):292–301, June 1984.

93. C. Koch and I. Segev. The role of single neurons in information processing.
Nature Neuroscience, 3:1171–1177, November 2000.

94. S. Kreissl and G. Bicker. Dissociated neurons of the pupal honeybee brain in
cell culture. Journal of Neurocytology, 21(8):545–556, August 1992.

95. H. Kuba, Y. Oichi, and H. Ohmori. Presynaptic activity regulates Na+ channel
distribution at the axon initial segment. Nature, 465(7301):1075–1078, June 2010.

96. Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer Science &
Business Media, Berlin, December 1984. ISBN 978-3-642-69689-3.

119



Bibliography

97. Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer Science &
Business Media, Berlin, March 2013. ISBN 978-1-4757-2421-9.

98. S. B. Laughlin and T. J. Sejnowski. Communication in Neuronal Networks.
Science, 301(5641):1870–1874, September 2003.

99. T. Le, D. R. Verley, J.-M. Goaillard, D. I. Messinger, A. E. Christie, and J. T.
Birmingham. Bistable behavior originating in the axon of a crustacean motor
neuron. Journal of Neurophysiology, 95(3):1356–1368, March 2006.

100. E. M. Leise. Modular construction of nervous systems: a basic principle of
design for invertebrates and vertebrates. Brain Research. Brain Research Reviews,
15(1):1–23, April 1990.

101. F. Libersat. Maturation of dendritic architecture: Lessons from insect identified
neurons. Journal of Neurobiology, 64(1):11–23, July 2005.

102. C. Luscher, J. Streit, P. Lipp, and H. R. Luscher. Action potential propagation
through embryonic dorsal root ganglion cells in culture. II. Decrease of conduc-
tion reliability during repetitive stimulation. Journal of Neurophysiology, 72(2):
634–643, August 1994.

103. Z. F. Mainen, J. Joerges, J. R. Huguenard, and T. J. Sejnowski. A model of spike
initiation in neocortical pyramidal neurons. Neuron, 15(6):1427–1439, December
1995.

104. S. Marella and G. B. Ermentrout. Class-II neurons display a higher degree of
stochastic synchronization than class-I neurons. Physical Review E, 77(4):041918,
April 2008.

105. T. Mashimo, I. Ohmori, M. Ouchida, Y. Ohno, T. Tsurumi, T. Miki, M. Wakamori,
S. Ishihara, T. Yoshida, A. Takizawa, M. Kato, M. Hirabayashi, M. Sasa, Y.
Mori, and T. Serikawa. A Missense Mutation of the Gene Encoding Voltage-
Dependent Sodium Channel (Nav1.1) Confers Susceptibility to Febrile Seizures
in Rats. Journal of Neuroscience, 30(16):5744–5753, April 2010.

106. T. Matheson. Invertebrate Nervous Systems. In eLS. John Wiley & Sons, Ltd,
2001. ISBN 978-0-470-01590-2.

107. S. Matsuda, N. Kobayashi, T. Terashita, T. Shimokawa, K. Shigemoto, K. Momi-
noki, H. Wakisaka, S. Saito, K. Miyawaki, K. Saito, F. Kushihata, J. Chen, S.-Y.
Gao, C.-Y. Li, M. Wang, and T. Fujiwara. Phylogenetic investigation of Dogiel’s
pericellular nests and Cajal’s initial glomeruli in the dorsal root ganglion. The
Journal of Comparative Neurology, 491(3):234–245, October 2005.

108. R. A. McDougal, T. M. Morse, T. Carnevale, L. Marenco, R. Wang, M. Migliore,
P. L. Miller, G. M. Shepherd, and M. L. Hines. Twenty years of ModelDB and
beyond: building essential modeling tools for the future of neuroscience. Journal
of Computational Neuroscience, 42(1):1–10, February 2017.

120



Bibliography

109. R. Melinek and K. J. Muller. Action potential initiation site depends on neuronal
excitation. The Journal of Neuroscience, 16(8):2585–2591, April 1996.

110. J. Milton and P. Jung. Epilepsy as a Dynamic Disease. Springer Science & Business
Media, Berlin, 2003. ISBN 978-3-662-05048-4.

111. J. W. Mink, R. J. Blumenschine, and D. B. Adams. Ratio of central nervous
system to body metabolism in vertebrates: its constancy and functional basis.
The American Journal of Physiology, 241(3):R203–212, September 1981.

112. E. Moser, I. Mathiesen, and P. Andersen. Association between brain temperature
and dentate field potentials in exploring and swimming rats. Science, 259(5099):
1324–1326, February 1993.

113. C. D. Moyes and P. M. Schulte. Tierphysiologie. Pearson Studium, München,
2008. ISBN 978-3-8273-7270-3. Principles of animal physiology, dt.

114. J. E. Niven and S. B. Laughlin. Energy limitation as a selective pressure on the
evolution of sensory systems. Journal of Experimental Biology, 211(11):1792–1804,
June 2008.

115. M. Nixon and J. Z. Young. The brains and lives of cephalopods. Oxford biology.
Oxford Univ. Press, Oxford, 2003. ISBN 0-19-852761-6.

116. J. C. Oakley, F. Kalume, F. H. Yu, T. Scheuer, and W. A. Catterall. Temperature-
and age-dependent seizures in a mouse model of severe myoclonic epilepsy in
infancy. Proceedings of the National Academy of Sciences, 106(10):3994–3999, March
2009.

117. H. Ogawa, Y. Baba, and K. Oka. Direction of action potential propagation
influences calcium increases in distal dendrites of the cricket giant interneurons.
Journal of Neurobiology, 53(1):44–56, October 2002.

118. K. Ota, M. Nomura, and T. Aoyagi. Weighted Spike-Triggered Average of a
Fluctuating Stimulus Yielding the Phase Response Curve. Physical Review Letters,
103(2):024101, July 2009.

119. E. Pannese. Neurocytology: fine structure of neurons, nerve processes, and neuroglial
cells. Thieme, Stuttgart [u.a.], 1994. ISBN 3-13-781801-X.

120. M. K. Park, Y. M. Choi, Y. K. Kang, and O. H. Petersen. The Endoplasmic
Reticulum as an Integrator of Multiple Dendritic Events. The Neuroscientist, 14
(1):68–77, February 2008.

121. E. Pena, M. T. Berciano, R. Fernandez, J. L. Ojeda, and M. Lafarga. Neuronal
body size correlates with the number of nucleoli and Cajal bodies, and with the
organization of the splicing machinery in rat trigeminal ganglion neurons. The
Journal of Comparative Neurology, 430(2):250–263, 2001.

122. J. A. Perge, J. E. Niven, E. Mugnaini, V. Balasubramanian, and P. Sterling. Why
Do Axons Differ in Caliber? The Journal of Neuroscience, 32(2):626–638, January
2012.

121



Bibliography

123. A. Peters and L. M. Kimerer. Bipolar neurons in rat visual cortex: A com-
bined Golgi-electron microscope study. Journal of Neurocytology, 10(6):921–946,
December 1981.

124. A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A Universal Concept
in Nonlinear Sciences. Cambridge University Press, April 2003. ISBN 978-0-521-
53352-2.

125. A. Pouget, P. Dayan, and R. Zemel. Information processing with population
codes. Nature Reviews Neuroscience, 1(2):125–132, November 2000.

126. R. Pröpper and K. Obermayer. Spyke Viewer: a flexible and extensible platform
for electrophysiological data analysis. Frontiers in Neuroinformatics, 7, 2013.

127. D. Purves, G. J. Augustine, W. C. Hall, A.-S. LaMantia, and L. E. White. Neu-
roscience. Sinauer, Sunderland, Mass., 5th ed. 2012 edition, 2012. ISBN 978-0-
87893-967-1.

128. S. Ramón y Cajal, P. Pasik, and T. Pasik. Texture of the Nervous System of Man and
the Vertebrates. Springer, 1999. ISBN 978-3-211-83057-4.

129. R. Reig, M. Mattia, A. Compte, C. Belmonte, and M. V. Sanchez-Vives. Tempera-
ture Modulation of Slow and Fast Cortical Rhythms. Journal of Neurophysiology,
103(3):1253–1261, March 2010.

130. M. J. E. Richardson, N. Brunel, and V. Hakim. From Subthreshold to Firing-Rate
Resonance. Journal of Neurophysiology, 89(5):2538–2554, May 2003.

131. J. Rinzel and G. B. Ermentrout. Analysis of neural excitability and oscillations,
pages 135–169. MIT Press, Cambridge, MA, USA, 1989. ISBN 978-0-262-11133-1.

132. M. Rivera-Alba, S. N. Vitaladevuni, Y. Mischenko, Z. Lu, S.-y. Takemura,
L. Scheffer, I. A. Meinertzhagen, D. B. Chklovskii, and G. G. de Polavieja.
Wiring economy and volume exclusion determine neuronal placement in the
Drosophila brain. Current Biology, 21(23):2000–2005, December 2011.

133. M. Rivera-Alba, H. Peng, G. G. d. Polavieja, and D. B. Chklovskii. Wiring
economy can account for cell body placement across species and brain areas.
Current Biology, 24(3):R109–R110, February 2014.

134. F. A. Roemschied, M. J. Eberhard, J.-H. Schleimer, B. Ronacher, and S. Schreiber.
Cell-intrinsic mechanisms of temperature compensation in a grasshopper sen-
sory receptor neuron. eLife, 3:e02078, May 2014.

135. M. M. Rolls. Neuronal polarity in Drosophila: Sorting out axons and dendrites.
Developmental Neurobiology, 71(6):419–429, June 2011.

136. M. M. Rolls, D. H. Hall, M. Victor, E. H. K. Stelzer, and T. A. Rapoport. Target-
ing of Rough Endoplasmic Reticulum Membrane Proteins and Ribosomes in
Invertebrate Neurons. Molecular Biology of the Cell, 13(5):1778–1791, May 2002.

122



Bibliography

137. M. M. Rolls, D. Satoh, P. J. Clyne, A. L. Henner, T. Uemura, and C. Q. Doe.
Polarity and intracellular compartmentalization of Drosophila neurons. Neural
Development, 2:7, 2007.

138. D. H. Sanes, T. A. Reh, and W. A. Harris. Development of the Nervous System.
Elsevier Academic Press, London, 2006. ISBN 978-0-12-618621-5.

139. H. B. Sarnat and M. G. Netsky. The brain of the planarian as the ancestor of the
human brain. The Canadian journal of neurological sciences. Le journal canadien des
sciences neurologiques, 12(4):296–302, November 1985.

140. H. B. Sarnat and M. G. Netsky. When does a ganglion become a brain? Evolu-
tionary origin of the central nervous system. Seminars in Pediatric Neurology, 9
(4):240–253, December 2002.

141. S. Schecter. The Saddle-Node Separatrix-Loop Bifurcation. SIAM Journal on
Mathematical Analysis, 18(4):1142–1156, July 1987.

142. J. H. Schleimer. Spike statistics and coding properties of phase models. PhD the-
sis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät I, July 2013.

143. J.-H. Schleimer and M. Stemmler. Coding of Information in Limit Cycle Oscilla-
tors. Physical Review Letters, 103(24):248105, December 2009.

144. S. Schreiber, I. Erchova, U. Heinemann, and A. V. M. Herz. Subthreshold
Resonance Explains the Frequency-Dependent Integration of Periodic as well
as Random Stimuli in the Entorhinal Cortex. Journal of Neurophysiology, 92(1):
408–415, July 2004.

145. S. Schreiber, I. Samengo, and A. V. M. Herz. Two Distinct Mechanisms Shape
the Reliability of Neural Responses. Journal of Neurophysiology, 101(5):2239–2251,
May 2009.

146. S. Schuchmann, D. Schmitz, C. Rivera, S. Vanhatalo, B. Salmen, K. Mackie, S. T.
Sipilä, J. Voipio, and K. Kaila. Experimental febrile seizures are precipitated by
a hyperthermia-induced respiratory alkalosis. Nature Medicine, 12(7):817–823,
July 2006.

147. S. Schuchmann, S. Hauck, S. Henning, A. Grüters-Kieslich, S. Vanhatalo, D.
Schmitz, and K. Kaila. Respiratory alkalosis in children with febrile seizures.
Epilepsia, 52(11):1949–1955, November 2011.

148. B. Sengupta, M. Stemmler, S. B. Laughlin, and J. E. Niven. Action Potential
Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates.
PLoS Comput Biol, 6(7):e1000840, July 2010.

149. B. Sengupta, A. A. Faisal, S. B. Laughlin, and J. E. Niven. The effect of cell size
and channel density on neuronal information encoding and energy efficiency.
Journal of Cerebral Blood Flow & Metabolism, 33(9):1465–1473, September 2013.

123



Bibliography

150. B. Sengupta, M. B. Stemmler, and K. J. Friston. Information and Efficiency in
the Nervous System—A Synthesis. PLoS Comput Biol, 9(7):e1003157, July 2013.

151. K. Shibasaki, M. Suzuki, A. Mizuno, and M. Tominaga. Effects of Body Temper-
ature on Neural Activity in the Hippocampus: Regulation of Resting Membrane
Potentials by Transient Receptor Potential Vanilloid 4. The Journal of Neuroscience,
27(7):1566–1575, February 2007.

152. J. Spampanato, I. Aradi, I. Soltesz, and A. L. Goldin. Increased Neuronal
Firing in Computer Simulations of Sodium Channel Mutations That Cause
Generalized Epilepsy With Febrile Seizures Plus. Journal of Neurophysiology, 91
(5):2040–2050, May 2004.

153. G. E. Spencer, N. I. Syed, E. van Kesteren, K. Lukowiak, W. P. M. Geraerts, and J.
van Minnen. Synthesis and functional integration of a neurotransmitter receptor
in isolated invertebrate axons. Journal of Neurobiology, 44(1):72–81, 2000.

154. L. Squire, F. E. Bloom, N. C. Spitzer, L. R. Squire, D. Berg, S. d. Lac, and A.
Ghosh. Fundamental Neuroscience. Academic Press, London, April 2008. ISBN
978-0-08-056102-8.

155. D. C. Sterratt. Q10: the Effect of Temperature on Ion Channel Kinetics. In D.
Jaeger and R. Jung, editors, Encyclopedia of Computational Neuroscience, pages
2551–2552. Springer New York, 2015. ISBN 978-1-4614-6674-1 978-1-4614-6675-8.

156. M. Stimberg, D. F. M. Goodman, V. Benichoux, and R. Brette. Equation-oriented
specification of neural models for simulations. Frontiers in Neuroinformatics, 8,
2014.

157. N. Sánchez-Soriano, W. Bottenberg, A. Fiala, U. Haessler, A. Kerassoviti, E.
Knust, R. Löhr, and A. Prokop. Are dendrites in Drosophila homologous to
vertebrate dendrites? Developmental Biology, 288(1):126–138, December 2005.

158. V. Tancredi, G. D’Arcangelo, C. Zona, A. Siniscalchi, and M. Avoli. Induction
of epileptiform activity by temperature elevation in hippocampal slices from
young rats: an in vitro model for febrile seizures? Epilepsia, 33(2):228–234, April
1992.

159. L. Tauc and G. M. Hughes. Modes of Initiation and Propagation of Spikes
in the Branching Axons of Molluscan Central Neurons. The Journal of General
Physiology, 46(3):533–549, January 1963.

160. J.-n. Teramae and D. Tanaka. Robustness of the Noise-Induced Phase Synchro-
nization in a General Class of Limit Cycle Oscillators. Physical Review Letters, 93
(20):204103, November 2004.

161. C. Thome, T. Kelly, A. Yanez, C. Schultz, M. Engelhardt, S. B. Cambridge, M.
Both, A. Draguhn, H. Beck, and A. V. Egorov. Axon-Carrying Dendrites Convey
Privileged Synaptic Input in Hippocampal Neurons. Neuron, 83(6):1418–1430,
September 2014.

124



Bibliography

162. S. M. Thompson, L. M. Masukawa, and D. A. Prince. Temperature dependence
of intrinsic membrane properties and synaptic potentials in hippocampal CA1
neurons in vitro. The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 5(3):817–824, March 1985.

163. G. C. Tombaugh and G. G. Somjen. Effects of extracellular pH on voltage-gated
Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. The Journal of Physiology,
493(3):719–732, June 1996.

164. B. Torben-Nielsen, M. Uusisaari, and K. M. Stiefel. A novel method for deter-
mining the phase-response curves of neurons based on minimizing spike-time
prediction error. arXiv:1001.0446 [q-bio], January 2010.

165. R. D. Traub, R. K. Wong, R. Miles, and H. Michelson. A model of a CA3
hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic
conductances. Journal of Neurophysiology, 66(2):635–650, August 1991.

166. O. Trujillo-Cenóz. Some aspects of the structural organization of the arthropod
ganglia. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 56(5):649–682,
1962.

167. S. Trunova, B. Baek, and E. Giniger. Cdk5 regulates the size of an AIS-like
compartment in Mushroom Body neurons of the Drosophila central brain. The
Journal of neuroscience : the official journal of the Society for Neuroscience, 31(29):
10451–10462, July 2011.

168. P. J. Uhlhaas and W. Singer. Neural Synchrony in Brain Disorders: Relevance for
Cognitive Dysfunctions and Pathophysiology. Neuron, 52(1):155–168, October
2006.

169. B. Ulfhake and S. Cullheim. Postnatal development of cat hind limb motoneu-
rons. III: Changes in size of motoneurons supplying the triceps surae muscle.
The Journal of Comparative Neurology, 278(1):103–120, 1988.

170. G. R. Ullal, P. Satishchandra, and S. K. Shankar. Effect of antiepileptic drugs
and calcium channel blocker on hyperthermic seizures in rats: animal model for
hot water epilepsy. Indian Journal of Physiology and Pharmacology, 40(4):303–308,
October 1996.

171. H. Vanegas, M. Laufer, and J. Amat. The optic tectum of a perciform teleost I.
General configuration and cytoarchitecture. The Journal of Comparative Neurology,
154(1):43–60, March 1974.

172. A. Verkhratsky. Physiology and Pathophysiology of the Calcium Store in
the Endoplasmic Reticulum of Neurons. Physiological Reviews, 85(1):201–279,
January 2005.

173. H. Walz, J. Grewe, and J. Benda. Static frequency tuning accounts for changes
in neural synchrony evoked by transient communication signals. Journal of
Neurophysiology, 112(4):752–765, August 2014.

125



Bibliography

174. H. Wang, B. Wang, K. P. Normoyle, K. Jackson, K. Spitler, M. F. Sharrock, C. M.
Miller, C. Best, D. Llano, and R. Du. Brain temperature and its fundamental
properties: a review for clinical neuroscientists. Frontiers in Neuroscience, 8,
October 2014.

175. A. T. Winfree. The geometry of biological time, volume 12. Springer Science &
Business Media, Berlin, 2001.

176. J. Zheng and M. C. Trudeau. Handbook of Ion Channels. CRC Press, London,
February 2015. ISBN 978-1-4665-5142-8.

126



List of Figures

2.1. Neurons with central or externalized soma. The neuron with central
soma on the left (multipolar neuron) is from cat cerebellar cortex by
Santiago Ramón y Cajal, the neuron with externalized soma on the
right (unipolar neuron) is from locust metathoracic ganglion by Andreas
Stumpner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Neurons with externalized soma are common in insects, those with
central soma in mammals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Hypothetical evolution of neuronal morphology from bipolar cells that
directly link sensation and behavior, over simple interneurons (suitable
for multi-sensory integration) to more complex unipolar and multipolar
cells typical for the central nervous system of higher animals. . . . . . . 10

2.4. Neuronal arrangement. Top: In the rabbit (left), the nervous system
is mostly organized in layered structures with somata and processes
in direct proximity to each other (middle). The individual neurons
are mostly multipolar (right). Bottom: In the locust (left), the nervous
system is mostly organized in ganglia with the processes in a central
neuropil, and the somata in a separate, superficial soma layer (middle).
The individual neurons are mostly unipolar (right). . . . . . . . . . . . . 11

3.1. Sketch of nullclines of a two dimensional conductance-based neuron
model with membrane voltage v and gating variable n. Fixed points
correspond to the intersection of the nullclines. With increasing input,
the saddle (open circle) and stable node (filled circle) collide in a saddle-
node (SN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2. An increase in capacitance deforms the limit cycle dynamics (two-
dimensional sodium-potassium model from Izhikevich [79], units of
the membrane capacitance Cm in µF/cm2). Around Cm = 1.3µF/cm2,
the homoclinic orbit switches from a saddle-node on invariant cycle to a
saddle-homoclinic orbit bifurcation. This transition corresponds to the
saddle-node-loop bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. An increase in capacitance deforms the spike shape, compare Fig. 3.2
(two-dimensional sodium-potassium model from Izhikevich [79], units
of the membrane capacitance Cm in µF/cm2). The saddle-node-loop
bifurcation happens around Cm = 1.3µF/cm2. . . . . . . . . . . . . . . . 24

127



List of Figures

3.4. Sketch of the relation between membrane voltage and input for different
spike onset bifurcations. Fixed point voltage in violet, limit cycle (LC)
maximal and minimal voltage in green. Straight lines denote linearly
stable dynamics, dashed lines linear unstable dynamics. A: Saddle-
node on invariant cycle bifurcation as typical for “type-I” neurons. B:
Saddle-homoclinic orbit bifurcation (for an example, see Fig. 3.2 and
Fig. 3.3 at the highest capacitance value). C: Bifurcation structure as
observable below the Bogdanov-Takens point in the second publication,
Figure 6. D: Subcritical Hopf bifurcation (“type-II”) as in the original
Hodgkin-Huxley model [73]. . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5. The phase-response curve measures the phase advance (or delay) of the
next spike in response to a delta perturbation. . . . . . . . . . . . . . . . 26

3.6. Top: Spike times of two neurons with different but similar inter-spike-
intervals. Bottom: Spike times of the same two neurons when coupled
with delta-synapses such that the interaction is ruled by the asymmetric
phase-response curve (black with red arrows). The symmetric phase-
response curve would not lead to a constant phase difference δ, as
both spikes would be advanced similarly (gray arrow), preserving the
difference in the inter-spike-intervals. . . . . . . . . . . . . . . . . . . . . 27

7.1. Following the results of the first publication, whether unipolar and
multipolar morphologies are favorable for energy-efficient signaling
depends on the soma and neurite size. . . . . . . . . . . . . . . . . . . . 67

7.2. Two solutions to the same problem. When evolution scales up the size
of neurons, the resulting large soma in the signaling path is a problem.
While higher invertebrates reacted with an externalization of the whole
soma, vertebrates may have relocated part of the somatic machinery into
proximal dendrites, such that the size of the soma could be decreased. . 77

7.3. Hypothetical organelle distribution in unipolar and multipolar cells. . . 77

7.4. A: Neurites have to circle around the soma if the soma is located inside
the neuropil (right), which requires more volume than if the neurite
can pass through the space taken up by the soma (left). B: A stem
neurite connects soma and neuropil. An exclusion of the somata from
the neuropil reduces the overall volume of the ganglion if the volume
reduction illustrated in A is larger than the volume of the stem neurite. 82

8.1. For the quadratic integrate-and-fire model with variable reset, a shift in
the reset value from negative to positive values passes by the saddle-
node-loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2. Entrainment range assuming δ-synapse-coupling versus the bifurcation
parameter for the conductance-based model (Na-K (sodium-potassium)
model from Izhikevich [79]), and for the reset model (IF model). . . . . 87

128



List of Figures

8.3. Coding properties for the Wang-Buzsaki model with input IDC ≈ 0.16
µA/cm2 (about 2% above limit cycle onset). (a) Limit cycle period.
(b) Magnitude of the Lyapunov exponent, |λ|, of the locking state to
a time-varying white noise stimulus. (c) Lower bound on the mutual
information rate (denoted info rate), with zoom below. Note the maxima
in proximity of both SNL bifurcations. Numerical continuation of phase-
response curves and limit cycles with AUTO-07P [31]. . . . . . . . . . . 89

8.4. Filter properties at small saddle-node-loop, saddle-node on invariant
cycle and big saddle-node-loop bifurcation for the Wang-Buzsaki model
with input IDC ≈ 0.16 µA/cm2 (about 2% above limit cycle onset). Mem-
brane capacitance reported in panel (b), units in µF/cm2. (a) Sketch of
the homoclinic orbit to the saddle-node fixed point. (b) Phase-response
curve for a perturbation with a current input. (c) Linear response func-
tion calculated based on the phase-response curve. Filters at the saddle-
node-loop bifurcations show a larger frequency range than the filter at
the saddle-node on invariant cycle bifurcation. . . . . . . . . . . . . . . . 90

8.5. Sketch of the relation between membrane voltage and input when the
fixed point loses stability at a subcritical Hopf bifurcation. The unstable
branch of the fold of limit cycles bifurcation either ends in a saddle-
homoclinic orbit bifurcation (left) or directly in the Hopf bifurcation
(right), as in the original Hodgkin-Huxley model [73]. Fixed point volt-
age in violet, limit cycle (LC) maximal and minimal voltage in green.
Straight lines denote linearly stable dynamics, dashed lines linear unsta-
ble dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.1. phase-response curves as measured in simulations and experiments.
phase-response curves were estimated based an adaptation of the so-
called STEP method which uses spike-time prediction error minimiza-
tion [164]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.1. An shift in pH changes the critical saddle-node-loop bifurcation tem-
perature (adapted Traub-Miles model [165], with the pH change imple-
mented as a shift in the sodium activation curve [163]). Synchronization
range in arbitrary units (a.u.) refers to the entrainment range of two
δ-coupled oscillators as used in the second publication. . . . . . . . . . . 102

10.2. Mutations related to enhanced febrile seizure susceptibility [152] affect
ion channels in ways that decreases the critical temperature at which the
saddle-node-loop bifurcation occurs. . . . . . . . . . . . . . . . . . . . . 103

129





Acknowledgments

I would like to thank Susanne Schreiber for her inspiring guidance on my way to be-
coming a scientist. In all our scientific discussions, I have greatly appreciated Susanne’s
ideas, in particular her clear-sighted vision for our projects, and her genuine perception
of logical fallacies. I am grateful for the opportunity to join her lab, and I feel truly
privileged that my PhD could encompass so many facets, ranging from theory based
on both simulations and mathematics, to experimental work including experimental
design and data analysis.

I very much enjoyed working at the Institute for Theoretical Biology (ITB), the multi-
disciplinarity of its members, and in particular their open doors. Thank you all. In
particular, I thank Jan-Hendrik Schleimer for our mathematical exploration of the
SNL bifurcation. He and Grigory Bordyugov have helped me with the continuation
software AUTO, and our seminar on homoclinic orbits was full of insights. Thanks also
goes to my comrades with whom I joined forces in the struggle with the simulation
environment NEURON, in particular Katharina Wilmes and Martina Michalikova. I
thank Adam Wilkins for sharing both his expertise in writing scientific articles and his
enthusiasm for biology. Besides the ITB, the graduate school of sensory computation
and the Bernstein Center provided welcome distractions to the PhD project, and I
thank my co-PhD-students, amongst others Achim Meyer and Robert Pröpper, for
our support team, numerous seminars, barbecues and retreats, which have broadened
my perspective on (neuro-)science. I would also like to thank our neighbors from
the group of Behavioural Physiology. I thank Bernhard Ronacher for acting as my
second supervisor, and for many details about insects relevant for the first project.
Also Matthias Hennig and Sarah Wirtssohn were a source of knowledge on locust and
crickets, and I especially thank Sarah for the opportunity to join her for a recording day
on locusts.

An unexpected, great possibility to actually participate in experimental work arose
from a phone call of Susanne in my fourth PhD year. Nikolaus Maier of the Schmitz lab
(Charité) agreed to test our predictions in patch-clamp experiments. I greatly enjoyed
the experience of working in an experimental lab, the ups and downs of a recording
day, and the incredible amount of things that just can go wrong during experiments. I
thank Dietmar Schmitz and his whole lab for their support, in particular those people
who prepared the brain slices for us. And the experiments would have never been
possible without Nikolaus endurance, his patience with stupid questions, and his never
ending optimism. Thank you.

I thank the Mathematical Biosciences Institute (The Ohio State University, USA)
and the organizers for inviting me to the workshop "Dynamical Systems and Data
Analysis in Neuroscience: Bridging the Gap". It was a very interesting and lively
meeting, and a great opportunity to present my work. I furthermore would like to
acknowledge funding by the German Federal Ministry of Education and Research

131



List of Figures

(Grants No. 01GQ0901, No. 01GQ1001A, and No. 01GQ1403) and the Deutsche
Forschungsgemeinschaft (SFB618, GK1589/1).

I would like to thank Elvira Lauterbach, Karin Winklhöfer, Vanessa Casagrande,
Robert Martin, Camilla Groiß and Margret Franke for helpful assistance in all adminis-
trative concerns. I thank Rike-Benjamin Schuppner, Andreas Hantschmann and Willi
Schiegel for constant support with computer and software related matters. A good
program takes a lot of work, and I would like to acknowledge the open source projects
brian2, AUTO, NEURON, spykeviewer, blender, inkscape, scribus, and git/gitlab,
which I used during my PhD project.

Last but not least, I thank those friends from outside of the Humboldt University who
continuously showed me the beauty of the world from their perspective, be it scientific
or artistic. My curiosity keeps fresh thanks to you. And I thank Helge Aufderheide, for
help with manuscripts and applications, and for a wonderful time, full of adventures
and ever-lasting impressions from all over the world.

132



Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der
angegebenen Literatur und Hilfsmittel angefertigt habe.

Berlin, den 11.05.2017 Janina Hesse

133


