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Abstract

Signal processing in nervous systems is shaped by the connectome as well
as the cellular properties of nerve cells. In this thesis, two cellular properties
are investigated with respect to the functional adaptations they provide: It is
shown that neuronal morphology can improve signal transmission under energetic
constraints, and that even small changes in biophysical parameters can switch
spike generation, and thus information encoding. In the first project of the thesis,
mathematical modeling and data are deployed to suggest energy-efficient signaling
as a major evolutionary pressure behind morphological adaptations of cell body
location: In order to save energy, the electrical signal transmission from dendrite to
axon can be enhanced if a relatively small cell body is located between dendrite and
axon, while a relatively large cell body should be externalized. In the second project,
it is shown that biophysical parameters, such as temperature, membrane leak or
capacitance, can transform neuronal excitability (i.e., the spike onset bifurcation)
and, with that, spike-based information processing. This thesis identifies the
so-called saddle-node-loop bifurcation as the transition with particularly drastic
functional implications. Besides altering neuronal filters and stimulus locking,
the saddle-node-loop bifurcation leads to an increase in network synchronization,
which may potentially be relevant for the initiation of seizures in response to
increased temperature, such as during fever cramps.
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Zusammenfassung

Signalverarbeitung im Nervensystem hängt sowohl von der Netzwerkstruktur,
als auch den zellulären Eigenschaften der Nervenzellen ab. In dieser Abhandlung
werden zwei zelluläre Eigenschaften im Hinblick auf ihre funktionellen Anpas-
sungsmöglichkeiten untersucht: Es wird gezeigt, dass neuronale Morphologie
die Signalweiterleitung unter Berücksichtigung energetischer Beschränkungen
verstärken kann, und dass selbst kleine Änderungen in biophysikalischen Para-
metern die Aktivierungsbifurkation in Nervenzellen, und damit deren Informa-
tionskodierung, wechseln können. Im ersten Teil dieser Abhandlung wird, unter
Verwendung von mathematischen Modellen und Daten, die Hypothese aufge-
stellt, dass Energie-effiziente Signalweiterleitung als starker Evolutionsdruck für
unterschiedliche Zellkörperlagen bei Nervenzellen wirkt. Um Energie zu sparen,
kann die Signalweiterleitung vom Dendrit zum Axon verstärkt werden, indem
relativ kleine Zellkörper zwischen Dendrit und Axon eingebaut werden, wäh-
rend relativ große Zellkörper besser ausgelagert werden. Im zweiten Teil wird
gezeigt, dass biophysikalische Parameter, wie Temperatur, Membranwiderstand
oder Kapazität, den Feuermechanismus des Neurons ändern, und damit gleich-
falls Aktionspotential-basierte Informationsverarbeitung. Diese Arbeit identifiziert
die sogenannte “saddle-node-loop” (Sattel-Knoten-Schlaufe) Bifurkation als den
Übergang, der besonders drastische funktionale Auswirkungen hat. Neben der Än-
derung neuronaler Filtereigenschaften sowie der Ankopplung an Stimuli, führt die
“saddle-node-loop” Bifurkation zu einer Erhöhung der Netzwerk-Synchronisation,
was möglicherweise für das Auslösen von Anfällen durch Temperatur, wie bei
Fieberkrämpfen, interessant sein könnte.
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Part I.

Introduction

1





1. Overview

One of the hallmarks of modern times is arguably an increase in interactions on many
levels of daily life. Examples include the enhanced information flow in society due to
new media, the increased number in social relations, and globalization of both economy
and politics. Such complex systems are marked by a set of individual players, whose
interactions result in sometimes perplexing dynamics as compared to the individual. In
real-world systems, the emerging dynamics depends on both the connectivity and the
properties of the players. For example, global economy can be influenced either on the
level of the connections (via tolls or free trade agreements) or on the level of individual
players (via support by subsidies). In a similar way, the spreading of an infectious
disease in a network of individuals can be stopped on both levels, by quarantine, cutting
the connections of infected individuals, or by vaccination, changing the properties
of individuals (reducing the susceptibility of a subpopulation). Also in the nervous
system, the global network dynamics depends both on the connections (the synapses)
and on the players (the neurons). While the impact of synaptic connections on network
dynamics has been considered elsewhere [125], this thesis mainly investigates single
neurons, and shows how cellular properties affect signal transmission and spike-based
information transmission, which will influence network performance. It is shown how
the morphology can optimize energy-efficient signal transmission, and how spike-
based coding is influenced by passive parameters such as membrane capacitance and
temperature. Both projects provide examples for the intricate relationship between
cellular properties and neuronal processing.

1.1. Information processing in the nervous system

On the level of individual neurons, signaling involves the conversion of (synaptic)
inputs to spikes as output. The first project of the thesis focuses on the transmission
of dendritic signals to the axon, where the spike is typically generated. A theoretical
analysis supported by data shows that the associated energetic cost is minimized by
different neuronal morphologies, which may explain differential cell body locations
observed in mammalian and insect neurons. The second project of the thesis consid-
ers spike generation from a dynamical system’s perspective, and identifies a switch
between different spike generation mechanisms that strongly influences the neuron’s
contribution to network synchronization and information transmission. It is shown that
the switch occurs in many neuron models and is induced by various cellular parame-
ters such as membrane capacitance and leak conductance. With this, its environment
provides an interesting, accessible regime for highly flexible spike-based coding.
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1. Overview

1.2. Signaling in different morphologies

The first project of this thesis is motivated by the observation that neuronal morpholo-
gies of insects and mammals often differ in the location of the cell body (the soma).
While the typical mammalian neuron locates the soma between dendrite and axon,
insect neurons often externalize the soma at the end of an additional neurite, compare
Fig. 2.1. The first publication of this thesis shows that both morphologies contribute
to energy-efficient signaling [67]. Multi-compartmental modeling with different soma
locations and analytical solutions are used to investigate signal transmission from
dendrite to axon. This kind of signal transmission is essential for neuronal signaling,
because in most neurons, the dendrites provide a prominent location for synaptic
input, while the output is generated in the axon. The dendritic input hence needs to be
transferred to the axon, or more precisely, to the beginning of the axon (the axon initial
segment), where the spike is typically initiated. While a central soma, as in mammals,
requires that the signal is transmitted trough the soma, an externalized soma, as in
insects, allows the signal to be directly transmitted between dendrite and axon. The
first publication of Part II shows that the morphology with stronger, more energy-
efficient signal transmission depends on several basic model parameters, including the
dimensions of soma and dendrites.

1.3. Spike generation and spike-based coding

While the spatial transmission of neuronal inputs to the axon is considered in the first
project, the second project focuses on the generation of the spike once the input has
reached the axon. The transformation of the input into spikes requires the generation
of spikes, which involves a transition (bifurcation) in the voltage dynamics from rest to
repetitive spiking. The second project investigates how spike generation at different
bifurcations influences signal processing. While parameter changes affect signal pro-
cessing only quantitatively as long as the same bifurcation reigns neuronal dynamics,
qualitative changes occur when the bifurcation type itself becomes different. As shown
in this thesis, particular drastic changes result from a switch in spike generation from
a saddle-node on invariant cycle bifurcation to a saddle homoclinic orbit bifurcation. This
happens at the saddle-node-loop bifurcation, the analysis of which forms the core of the
second publication [69]1. In particular, it is shown how this transition changes the
sensitivity of the spike train to weak perturbations. The analysis is based on a phase
reduction, which allows to capture major features of neuronal processing by a single
measure, the phase-response curve. Once the relation between spike generation and
phase-response curve is established, important implications for neuronal function can
be inferred. For example, the neuron’s ability to synchronize can be highly enhanced
by an approach of the saddle-node-loop bifurcation. The functional implications of the
saddle-node-loop bifurcation are only relevant for neuronal processing if the bifurca-
tion can indeed be reached in a biological neuron. That this is often the case is shown
in the second publication. Not only is the saddle-node-loop bifurcation accessible
by various system parameters such as membrane capacitance, leak conductance or

1Shared first authorship with Jan-Hendrik Schleimer.

4



1.4. Energetic costs of signal processing

temperature, it also occurs generically in two-dimensional conductance-based neuron
models (under mild assumptions). This, together with the increased synchronization
around the saddle-node-loop bifurcation, make this transition potentially relevant for
medical conditions marked by enhanced synchronization (Chapter 10).

1.4. Energetic costs of signal processing

The implementation of information processing in biological tissue requires energy for
the maintenance of the cell and, above all, the signaling itself. As the energetic costs will
be considered in both project, energy consuming aspects of neuronal signal processing
are introduced in the following.

For an organism with nervous system, fast and reliable signaling is essential for the
survival in a world with restricted resources and able competitors (meaning that the
signaling has to be sufficiently fast and reliable to compete). The advantages resulting
from a nervous system come, however, at a cost: The brain is one of the organs with
the highest energy consumption, estimated to account for up to 20% of the total energy
used by the organism [111]. As signal processing is particularly costly, with large
amounts of energy spent for synaptic transmission as well as spiking [64], solutions
with low energetic costs are thought to be evolutionary favored [98, 114, 150]. This
poses a constraint on signal processing, encouraging solutions with a minimal, or at
least relatively low energetic cost. This perspective is taken up by the first project,
which proposes signal transmission at a low energetic cost as a major driving force for
the divergent development of the soma location in neurons.

For neurons, the voltage across the cell membrane is used as encoding medium for
information processing. Three elements of the encoding can be distinguished. (i) In
absence of input, the membrane voltage is typically constant around−60 mV (the resting
potential). (ii) Inputs are typically received at synaptic connections, where the opening
of ion channels in response to neurotransmitters result in small voltage excursions
(post-synaptic potentials). (iii) In response to sufficient input, a voltage elevation in the
axon triggers the generation of a full-blown spike (also called action potential).

Coding, based on resting potential, synaptic potentials and spikes, requires a tight
control of the membrane voltage. This consumes a large proportion of the energy
available to the nervous tissue (the estimates amount to 50% to 80% in Hasenstaub
et al. [64], and 20% to 60% in Sengupta et al. [150]). A considerable amount of the
energy is consumed by ion pumps that actively reestablish the ion-concentration
gradient between in- and outside of the cell. Different ion concentrations on both
sides of the membrane result in an electric potential difference, the membrane voltage.
The membrane voltage is controlled by the permeability of the membrane to ions.
Ion channels, trans-membrane proteins that can open or close, dynamically regulate
the flow of ions through the membrane, and with that the voltage. Ion channels
open, for example, in response to neurotransmitters (such ion channels are used at
chemical synapses) or in response to an increase in the membrane voltage (as used
for spike generation). Open ion channels enable ions to move down the concentration
gradient. This ion flow changes the membrane potential, but it also decreases the
ion-concentration gradient over the cell membrane. The concentration gradient is
reestablished by the ion pumps under the consumption of a fixed amount of energy
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1. Overview

per transported ion.
Different parts of a neuron consume different amounts of energy, each allowing for

specific ways to save energy. Energetically costly are, in particular, the spike initiation
site and synapses, due to their high density of ion channels. The enhanced ion channel
density results in a potentially large ionic current, and energy has to be deployed
subsequently in order to reverse this flow. At the spike initiation site, ion channels
typically open in response to an increase in the axonal voltage (which results from
the accumulation of synaptic inputs all over the neuron). Energy can be saved by a
decrease of the ionic current during the action potential, for example by an increased
temporal separation of the counteracting sodium and potassium currents [21, 148].
At post-synaptic terminals, ion channels open in response to synaptic transmission.
In addition to the energy spent there, synaptic transmission also requires energy on
the pre-synaptic side, for example, to pack the neurotransmitters in vesicles [154].
Synaptic coupling has been estimated to be the major sink of energy in the brain. In
mammals, synaptic transmission accounts for about half of the energy required by
the brain [4, 62, 148]. Energy can be saved by reducing synaptic coupling, as fewer or
smaller post-synaptic potentials result in lower ion flow. The mean amplitude of the
synaptic coupling, sometimes called the coupling strength, is in the following used as
approximation for synaptic energy consumption.

Energetically less costly than synaptic and neuronal signaling, but still relevant for
the discussion of the soma location, is the synthesis of ion channels and other proteins,
which happens to a large part in the soma. Ion channels are, for example, replaced
every three days, as reviewed by Devor [30]. This implies that ion channels first need to
be synthesized, and then transported to their location, both of which consumes energy
[18, 71]. An open question is how costly the synthesis is compared to the transport
of ion channels. This is particular interesting in light of recent reports on protein
synthesis in axons and dendrites, as reviewed by Spencer et al. [153], which saves on
the costs related to transportation from the soma to the distal parts of the neuron. The
energetic costs of protein transportation will be relevant for the discussion of neuronal
morphologies.

The following sections will introduce background information for the two publica-
tions of Part II that form the core of this cumulative thesis. Both publications are put
into a broader context in Part III.
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2. Signal transmission in uni- and
multipolar neurons

The first project of this thesis investigates the transmission of signals, from the dendritic
tree to the axon, in two different morphologies, unipolar versus multipolar neurons.
Neurons with dendrites and axons show two potential locations for the cell body
(also called soma). The soma can either be located between axon and dendrite (bi- or
multipolar neuron), or it can be externalized at the end of an additional neurite, the
stem neurite (Fig. 2.1). The first publication of this thesis shows that both morphologies
contribute to energy-efficient signaling. This chapter provides background information
on the soma location, in particular from an evolutionary perspective (Sec. 2.2), and
reviews alternative explanations for different soma locations (Sec. 2.3), both of which
are reconsidered in the discussion (Chapter 7).

axons

central soma: externalized soma:

Figure 2.1.: Neurons with central or externalized soma. The neuron with central soma on the
left (multipolar neuron) is from cat cerebellar cortex by Santiago Ramón y Cajal, the neuron
with externalized soma on the right (unipolar neuron) is from locust metathoracic ganglion by
Andreas Stumpner.

2.1. The soma location

For the typical mammalian neuron, the soma is located between dendrites and axon.
This morphology is called bipolar or multipolar, depending on whether a single or multi-
ple proximal dendrites arise from the soma. Unipolar neurons (sometimes also called
monopolar neurons), in contrast, locate the soma out of the path of signal transmission.
A single neurite, which is called primary neurite or stem neurite, leaves the soma. Several
tens to hundreds of micrometer proximal from the soma, the stem neurite commonly
broadens and branches into an axon and the dendritic tree. The connection point
between stem neurite and other processes is often called T-junction.
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2. Signal transmission in uni- and multipolar neurons

In old publications, the term pseudo-unipolar cell is sometimes used in alternative to
the term unipolar cell to describe, for example, dorsal root ganglion cells in the spinal
cord of mammals. These cells have an externalized soma, but differ from other unipolar
cells, because the stem does not connect to the beginning of the axon, but arises from its
middle part; the branches on both sides of the T-junction are wrapped in myelin. Recent
literature does no longer make this distinction, and nor does this thesis. To facilitate
readability, the term unipolar neurons is used to refer to neurons with an externalized
soma, i.e., unipolar or pseudo-unipolar cells, and the term multipolar neuron is used to
refer to neurons with a central soma, i.e., bipolar or multipolar cells. In this terminology,
bipolar cells are multipolar cells that have, next to the axon, only a single dendrite
arising from the soma.

For many cells of the central nervous system in insects and mammals, dendritic
and axonal trees are distinguished. The separation of neuronal processes into input-
receiving dendrites and output-transmitting axon is assumed for the analysis in the first
project, where signal transmission from dendrite to axon is investigated. This implies a
directionality of signaling which is known as functional polarization. Different aspects of
functional polarization are discussed in Sec. 7.1. Note that functional polarization is
not related to the purely morphological terms unipolar and multipolar.

While the processes of a neuron are mainly engaged with signal processing, the
soma, in addition, plays an essential part in the maintenance of the neuron. Most of
the metabolic and protein-synthesizing machinery is found in and around the soma
[169]1. Hence, the location of the soma can be expected to influence both neuronal
maintenance and signal processing, as discussed in Chapter 7.

2.2. Evolutionary account of the soma location

The investigation of signal transmission in neurons with central and externalized
soma was inspired by their distribution throughout the animal kingdom. In particular,
neurons with central soma are commonly found in the central nervous system of
mammals, while neurons with externalized soma are commonly found in the central
nervous system of insects. This section summarizes the evolutionary development of
unipolar and multipolar cells, which will be further discussed in Sec. 7.4. The overview
begins with bipolar neurons, and then considers the derived morphologies of unipolar
and multipolar cells more in detail, both on a cellular level, as well as in their network
arrangement. The evolutionary perspective on the first project provides the framework
within which I develop my arguments.

For simplicity, I will use higher and lower animals to denote species that are evolu-
tionary later, respectively earlier derived, where the meaning of later and earlier should
be understood in the context of the trait under consideration. In order to facilitate
readability for the non-biologist, I also take the liberty to use the old-fashioned, but
still common, terms of vertebrates and invertebrates. A more appropriate separation
of the animal kingdom for the evolution of the soma location would be the use of
super-phyla: Multipolar neurons are predominant in the central nervous system of all

1Ulfhake and Cullheim [169] refers to Peters et al., Fine Structure of the Nervous System: Neurons and Their
Supporting Cells from 1976.
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2.2. Evolutionary account of the soma location

deuterostomia including besides the vertebrates, for example, the closest cousins of the
vertebrates, the echinodermata (sea urchin, starfish, sea cucumber, ...). Unipolar neurons,
in contrast, are predominant in the central nervous system of most higher protostomia,
such as hexapoda (insects), crustacea or cephalopoda. The soma location of various species
can be found in the first publication, Supplemental Information.

Figure 2.2.: Neurons with externalized soma are common in insects, those with central soma
in mammals.

2.2.1. Evolutionary origin

The evolutionary oldest morphology with dedicated axon and dendrite is probably the
bipolar neuron. Most phyla with a nervous system evolved during the Cambrian explo-
sion 570 to 530 million years ago [70]. Probably the first neurons were receptor cells that
directly affected muscle tissue. The bipolar morphology lends itself to the transmission
of signals from sensory receptors at the dendritic end, to a neuro-muscular junction at
the axonal end. Indeed, the bipolar shape of motor neurons is much conserved over
many phyla. In contrast to motor neurons, sensory neurons are commonly bipolar or
unipolar2. Yet, the bipolar shape is more common and probably the original shape of
primary sensory cells [61]. Bipolar neurons are also abundant in the nervous system of
lower invertebrates such as C. elegans, where a clear separation between periphery and
central nervous system is often difficult. Together, these data suggest that the bipolar
shape is one of the evolutionary oldest neuronal morphologies.

2.2.2. Complex signal processing

The development of interneurons, which relay information between sensory and motor
neurons, allowed for more complex signal processing. The multipolar morphology with
additional dendrites is a rather simple ramification of the bipolar shape, and probably
evolutionary older than the unipolar morphology. Indeed, most lower invertebrates
predominantly show multipolar neurons [157]. In more complex central nervous
systems, such as those of insects or mammals, neurons have undergone a divergent

2Bipolar sensory neurons are common in invertebrates (exceptions are found, e.g., in the tentacles of
the actinia (sea anemones) and pulmonata (snails and slugs)) [61], as well as in lower vertebrates such
as fish and in the cochlear and vestibular ganglia of higher vertebrates such as mammals. Unipolar
sensory neurons predominate in all other sensory ganglia of higher vertebrates [119].
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2. Signal transmission in uni- and multipolar neurons

Figure 2.3.: Hypothetical evolution of neuronal morphology from bipolar cells that directly
link sensation and behavior, over simple interneurons (suitable for multi-sensory integration)
to more complex unipolar and multipolar cells typical for the central nervous system of higher
animals.

evolution of the soma location [154, 157]. Evolutionarily, the morphology with a central
soma is probably the original, as suggested by the predominance of the multipolar
shape in platyhelminthes (flatworms) and echinodermata. A flatworm is probably similar
to the ancestor of the vertebrates before invertebrates and vertebrates split3, and
echinodermata are our closest cousins along the branch of the deuterostomia, compare the
first publication, Supplemental Information.

A continuous development away from multipolar cells to unipolar cells is suggested
by the increasing proportion of neurons with externalized soma from turbellaria over
annelida and some mollusca until in the central nervous system of arthropods nearly
all neurons have an externalized soma [61]. Unipolar cells have developed several
times during evolution. For example, dorsal root ganglion cells are bipolar in fish, but
unipolar in birds and mammals [107], and hence clearly separate from the evolution of
unipolar neurons in invertebrates4.

2.2.3. Centralization of the nervous system

In addition to a potential increase in complexity, the divergent evolution of unipolar
and multipolar cells co-occurs with an increased centralization of the nervous system.

3Besides the multipolar shape, their neurons have dendritic spines, a single axon, and relatively little
activity, while invertebrates show a tenfold higher spontaneous activity than planaria and vertebrates
[139, 140].

4Neurons with externalized soma are, for example, also common in the optic tectum of fish [171].
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2.2. Evolutionary account of the soma location

Classically, the development of unipolar neurons in higher invertebrates is associated
with centralization of their nervous system in ganglia. In ganglia, neuronal processes lie
in the central neuropil, while the somata are located on the surface in a separate soma
layer (the cortex layer), see Fig. 2.4. Not only the predominance of unipolar neurons,
also the separation between central neuropil and cortex layer increase from turbellaria
over annelida and some mollusca, and is, eventually, fully developed in arthropods [61].

Figure 2.4.: Neuronal arrangement. Top: In the rabbit (left), the nervous system is mostly
organized in layered structures with somata and processes in direct proximity to each other
(middle). The individual neurons are mostly multipolar (right). Bottom: In the locust (left), the
nervous system is mostly organized in ganglia with the processes in a central neuropil, and
the somata in a separate, superficial soma layer (middle). The individual neurons are mostly
unipolar (right).

In contrast to the common claim that the separation between somata and neurites
is related to the unipolar morphology, such a separation can also be observed in
vertebrates with multipolar cells. The evolutionary oldest organization of the tectum in
vertebrates is a laminar structure of alternating layers of somata and neuropil [33], and
more examples can be found in Rivera-Alba et al. [133]. Furthermore, the separation
of somata and neurites seems to have little consequence for function, as separated
and non-separated somata and neurites can be observed in homologue structures:
Homologue brain regions in mammals and sauropsida can show different histological
organizations, the neocortex in mammals is for example layered, while the dorsal
ventricular ridge in sauropsida forms nucleoids (ganglion-like structures) [33]. I take
these observations as a hint that an explanation of unipolar and multipolar neurons is
more likely to be found on the level of single neurons than on the level of the network
arrangement, in line with the hypothesis from the first publication that soma location
may optimize signal transmission in single cells.

11



2. Signal transmission in uni- and multipolar neurons

2.2.4. Cellular similarities between unipolar and multipolar neurons

Besides their morphology, unipolar and multipolar neurons seem to be surprisingly
similar. The cellular organization of neurons is, irrespective of their soma location,
remarkably conserved throughout evolution. For example with regard to ion channels
and signal transmission at chemical synapses, neurons function similarly across phyla
[138]. It seems that evolution has not so much changed the cell biology of neurons, but
rather their number and arrangement [154].

The cellular similarity between unipolar and multipolar neurons becomes particu-
larly evident during neuronal development. Neurons of both morphologies go through
similar phases, with the only apparent difference that the dendritic tree of unipolar
neurons develops from the axon and not from the soma [135]. In fact, a small propor-
tion of usually unipolar neurons from higher invertebrates naturally develop dendrites
arising from the soma [87, 135]. On the other hand, dendrites growing off the axon
have also been observed in healthy mammals [161]. The distinction between unipolar
and multipolar neurons becomes especially fuzzy when grown outside of their natural
environment: Insect neurons, which are unipolar in vivo, become multipolar when
grown in vitro [85, 88, 94]. On the other hand, multipolar cells also develop dendrites
branching from the axon [85].

The developmental flexibility of soma location in neurons shows that unipolar and
multipolar neurons are indeed very similar. In particular, the flexibility of the soma
location in vitro shows, so I would argue, that an evolutionary switch between unipolar
and multipolar morphologies is conceivable (and has indeed happened several times
throughout evolution, for example the above mentioned dorsal root ganglion cells in
the mammalian spinal cord, which developed independently from the insect unipolar
shape). The reason for the clear dominance of one or the other morphology in insects
and mammals is hence of functional nature, and does not arise from an evolutionary
“dead end”.

2.3. Soma location under spatial constraints

The literature provides mainly two explanations for the externalization of the soma in
unipolar neurons: Minimization of wiring length or tissue volume, and better access to
superficial neuronal somata. These explanations use mostly spatial arguments, in con-
trast to the efficient energy argument put forward in the first publication (via efficient
signaling). Evolution is, in most cases, multifactorial, and probably all alternatives
have contributed to the divergent evolution of the soma location. While their explica-
tory power is analyzed more in detail in Chapter 7, a short overview over alternative
explanations for different soma locations is presented in the following.

2.3.1. Volume minimization

Tissue volume and wiring length is thought to be minimized by externalized somata,
because neurites and synapses can be packed more tightly when the somata are dis-
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located to the surface5 [157]. Also the somata can be packed tighter when separated
from the rest, because supporting glia can be restricted to the soma layer. That minimal
wiring is indeed an evolutionary constraint is suggested by studies that reproduce the
spatial arrangement of Drosophila neurons in simulations when optimizing minimal
wiring cost under simultaneous volume exclusion (i.e., neurons are not allowed to
overlap in space) [132].

2.3.2. Supply of nutrition to the soma

Superficially located somata provide a good point of access for many substances, such
as nutrients or neuromodulators, especially when an open circulatory system is used.
The mammalian brain is interlaces with a dense net of blood vessels that allow for a
targeted supply of nutrients and other substances to somata and neurites independent
of their location (closed cardiovascular system). In contrast, in the open circulatory
system of insects, nutrients are not confined by vessels but are simply dissolved in the
hemolymph that surrounds all organs, and the supply of nutrients to neurons relies
mostly on diffusion. Especially in insects, the location of the somata at the surface is
thought to allow for a better access to the nutrients of the hemolymph [61, 157].

This argument does not hold generically. Unipolar neurons are common in cephalopods
(e.g., octopus) with a closed cardiovascular systems [113], and even with a open car-
diovascular system, blood vessels form a dense net inside the neuropil of lobster [86].
Moreover, both in higher invertebrates and vertebrates, neurons are separated from the
blood or hemolymph by glia cells, who supply energy to the neurons based on neuronal
activity, as reviewed by Freeman and Doherty [43]. Specialized glia cells are also found
in the neuropil, where they wrap neuronal processes, and help to maintain the axons
by supply of trophic support [43]. In general, glia cells are much more abundant in
vertebrates compared to invertebrates. While the ratio of the number of glia cells to the
number of neurons is only one sixth in C. elegans [20], and about one in insects [23], it
is typically around three in mammals [127], and in the human cortex even four [20].
Maybe it is the development of glia cells with an efficient transportation system that
allowed neurons to become independent from the proximity of nutrient carrying fluids,
such as blood or hemolymph.

Somata located on the surface of a ganglion may have the advantage that nutrients
have a shorter path through the supporting glia cells. This may be more relevant
for insects and other higher invertebrates than for lower invertebrates, because the
centralization of the nervous systems in higher invertebrates increases the local energy
demand. However, this advantage is diminished by the larger distance between soma
and neurites. Any substance taken up or synthesized by the soma has to travel down
the stem neurite before reaching dendritic tree and axon, often with the help of energy-
consuming active transportation mechanisms [18, 71].

One additional advantage of a spatially separated soma layer and neuropil may be
the independent adjustment of the ion concentration of the extracellular medium [157],

5Tight packing may be especially important when many afferents converge on relatively few neurons:
If many axonal processes have to connect to few dendritic trees, the separation of neuronal somata
prevents the neurites from encircling the somata, and may hence allow for a tighter packing (illustration
in Fig. 7.4) [100].
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or intracellularly, as further discussed in Sec. 7.2.2. In the neuropil, for example, a
larger difference between ion concentrations in- and outside of the cell leads to a larger
driving force on the ionic currents and could hence facilitate spiking.

2.4. Energy-efficient signal transmission

Most of the alternative explanation from the last section derive the unipolar shape as
a secondary adaptation in response to ganglia formation. In addition to these spatial
considerations, already Santiago Ramón y Cajal suspected that externalization of the
soma also increases the conduction speed of the neuron, whereas multipolar neurons
are better adapted for supporting large dendritic trees with many connections [128].
This intuition is confirmed in the first publication with the help of simulations (simple
multi-compartmental models) and with biological data. The models suggest that an
externalization of the soma can decrease the stimulation amplitude required to activate
the neuron. This decreases the amount of synaptic activation and thereby the synaptic
energy consumption. As minimization of energy consumption appears to be one
of the main driving forces in evolution [150], the divergent evolution of central and
externalized somata may hence be explained by energetic arguments.

In the first publication, strong signal transmission from dendrite (input region) to
axon (output region) is considered as energetically favorable. The relation between
signal transmission and energy consumption can be considered from two alternative
perspectives. From the first perspective, a fixed dendritic input is assumed, and optimal
signal transmission then minimize the amount of ion channels required to initiate a
response, i.e., a spike. The more ion channels are required, the more energy is spend on
signal transmission. However, the relation between amount of ion channels and energy
is non-trivial, as the actual ion flow (and hence the energy) depends the properties and
the location of the ion channels (e.g., dendritic, somatic or axonal).

The relationship between energy and signal transmission is better visible in the
following, second perspective. This perspective concentrates on the amplitude of
the input, and assumes that a spike is triggered when a certain voltage threshold is
reached in the axon. Energy can be reduced by a minimization of the amplitude of
the dendritic input required to reach threshold, because less dendritic input demands
for less energetically costly synapses. In the first publication, the required input is
minimized by optimization of the signal transmission between dendrite and axon. The
scaling of synaptic numbers with input strength suggests a simple (potentially linear)
relation between synaptic energy consumption and desired dendritic input (compare
Sec. 1.4). This underlies the energy arguments used in the first publication. Neurons are
considered as energetically favorable when the signal transmission between dendrite
and axon is high.

In the models used in the first publication, a weighted ratio of the soma size and
the process dimension decides on whether an externalization of the soma optimizes
energy efficiency. This result allows to structure experimental observations on the
soma location over many animals in an unprecedented way, and, as shown in the first
publication, the experimental data qualitatively supports the trend suggested by the
theoretical analysis.
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2.5. Recapitulation

2.5. Recapitulation

This chapter has reviewed the evolution of unipolar and multipolar neurons as parallel
developments starting from neurons with a multipolar morphology, but potentially
with a weaker functional polarization as typical for mammalian cells. In contrast to
multipolar cells, unipolar neurons are often organized in ganglia, with the somata
on the surface of a central neuropil. This arrangement has led other researchers to
explain the morphology of unipolar neurons by their ganglionic arrangement, and the
associated spatial advantages. The results of the first project suggest an alternative
explanation based on energy efficient signal transmission.
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3. Signal processing in mean-driven
neurons

While the first project mainly considers signal transmission (along the neuron from den-
drite to axon), the second project focuses on signal transformation (from input to a spike
train as output). Signal processing depends intrinsically on the dynamical properties of
the neurons, which are determined both by active properties, such as voltage-gated ion
channels, and passive properties, such as leak conductance or membrane capacitance.
While many aspects of neurons are evolutionary conserved, in particular the diversity
of ion channels has increased throughout evolution [113]. The intricate interplay of a
neuron’s ion channels decides on the transformation of input signals into a spike train,
the relation of which is captured by the response properties of the neuron. The response
properties do not only depend on active conductances, but also on passive properties
such as membrane capacitance or leak conductance. The second project of the thesis
demonstrates that passive parameters can induce transitions in neuronal dynamics. At
these bifurcation points, particular drastic changes in the response properties are to
be expected because bifurcations are generally marked by qualitative changes in the
underlying dynamics.

This chapter provides background on neuronal dynamics that is important for an
understanding of the second part of the thesis. It introduces conductance-based neuron
models, which allow for a rich set of dynamics (Sec. 3.2). Attractors in the dynamics
are fixed points as well as limit cycles (Sec. 3.3), both of which are essential for the
analysis of neuronal processing in the second publication. In order to assess spike-
based coding, the analysis assumes a mean-driven neuron with constant firing rate,
subjected to small perturbations. In this case, the neuron model corresponds to a weakly
perturbed oscillator, which allows for a phase reduction (Sec. 3.4). The advantage
of a phase reduction is that major features of the dynamics are captured by a single
measure, the phase-response curve. Once the phase-response curve is identified, as
done in the second publication, various implications for spike-based coding follow. The
theory how the second publication derives synchronization properties from the phase-
response curve is summarized in Sec. 3.4.1, while other functional implications are
considered later (Sec. 8.3). From a functional perspective, the dynamical regime around
a saddle-node-loop bifurcation allows for a minimal change in neuronal parameters
to induce a transition in spike onset dynamics. The resulting switch in the neuron’s
synchronization capacity has potential relevance for health and disease.

3.1. Spike onset dynamics

The second project considers spike-based coding in a mean-driven neuron, i.e. a neuron
with a mean input large enough to induce repetitive firing. The transition from rest to
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tonic spiking occurs at a bifurcation, which is decisive for certain coding properties.
Bifurcations that can induce spiking are shortly reviewed below.

At rest, the membrane voltage is, without input, typically constant around -60 mV.
This resting membrane potential suggests the existence of a fixed point in the dynamics,
the resting state. In contrast to the resting state, repetitive spiking observed with
sufficient input indicates limit cycle dynamics. The transition from rest to spiking (in
the deterministic model1) requires (i) the destabilization of the resting state, and (ii)
the creation of a limit cycle. In neuronal models, the resting state can lose stability
either at a saddle-node bifurcation, or at a Hopf bifurcation [79]. In contrast to these
bifurcations of the fixed point, the creation of the limit cycle typically involves one
of four possible codimension-one bifurcations [79]. All relevant bifurcations will be
shortly described in Sec. 3.3.

The transition from rest to spiking allows neurons to encode information. The as-
sociated bifurcation occurs with the input as bifurcation parameter. With a single
bifurcation parameter, this is an example for a codimension-one bifurcation2. The tran-
sition between different codimension-one bifurcations happens at codimension-two
bifurcations. Because the codimension-one bifurcation leading from rest to spiking is
decisive for spike-based coding, and because this bifurcation changes qualitatively at
the associated codimension-two bifurcation, exceptionally drastic changes in spike-
based coding can be expected at such a bifurcation. The second project of this thesis
identifies the saddle-node-loop bifurcation as highly relevant codimension-two bi-
furcation in neuronal dynamics: A large group of neuron models can be tuned to a
saddle-node-loop bifurcation, and the numerical analysis shows particularly strong
changes in spike-based coding at this bifurcation (Sec. 8.3). The saddle-node-loop
bifurcation is reached with the separation of time-scales as additional parameter be-
sides input, affected, e.g., by temperature or membrane capacitance (see Sec. 3.5.1). At
the saddle-node-loop bifurcation [141], two codimension-one bifurcations meet and
induce a switch in neuronal dynamics when the bifurcation is passed. At this point,
the limit cycle onset bifurcation switches from a saddle-node on invariant cycle to
a saddle-homoclinic orbit bifurcation (or vice versa). The switch in the limit cycle
onset bifurcation changes the response properties of the neuron, with fundamental
consequences for signal processing, see Sec. 8.3, that may provide an attractive regime
for neuronal dynamics.

From a methodological perspective, the second publication is based upon the ob-
servation that a neuron’s functional characteristics, such as firing rate at spike onset,
or the ability to synchronize in a network, can be derived from a dynamical system’s
perspective [79]. Commonly, neuronal function is investigated in models with a spike
onset at a saddle-node on invariant cycle or Hopf bifurcation [35, 60]. The abundance of
these two bifurcations in neuroscience is probably due to the empirical classification of
neurons based on their firing rate-input curve introduced by Hodgkin: saddle-node on
invariant cycle bifurcations mimic class-I (sometimes also type-I) neurons with arbitrary
slow firing and Hopf bifurcations mimic class-II (type-II) neurons with a nonzero lower

1In an excitable system, spikes can also be triggered by sufficiently large noise deviations despite the
stability of the resting state.

2The number of bifurcation parameters required to reach the bifurcation point corresponds to the
codimension of a bifurcation [97]
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bound on the firing rate [37, 74, 131]. The functional implications of saddle-node on
invariant cycle and subcritical Hopf bifurcations have been discussed in distinct models
[130, 131, 144]. Distinct models were required in these studies, because, as shown in
the second publication, the stable limit at a saddle-node on invariant cycle bifurcation
cannot be transformed into the stable limit cycle at a subcritical Hopf bifurcation with
an infinitesimal change in system parameters. In contrast, the limit cycle onset bifur-
cations occurring at a saddle-node on invariant cycle and a saddle-homoclinic orbit
bifurcation meet in an saddle-node-loop bifurcation, where an infinitesimal change
in model parameters can indeed switch between a spike onset at a saddle-node on
invariant cycle or a saddle-homoclinic orbit bifurcation. This is interesting because the
switch in spike onset implies a switch in coding properties. As the switch happens in
response to only a small parameter change, saddle-node-loop bifurcations constitute a
particularly interesting regime for a neuronal ensemble that aims to achieve maximal
functional diversity at minimal heterogeneity in system parameters. Assuming that any
change in neuronal parameters is associated with some form of cost function, a small
parameter variation around the saddle-node-loop bifurcation allows for substantial
changes in signal processing at minimal cost (an example for such a cost is the energy
required to increase the number of ion channels in the membrane).

The analysis of the saddle-node-loop bifurcation poses a particular challenge: Fixed
point bifurcations are often local bifurcations with dynamics confined to a small area
that allows for a linear approximation of the dynamics (e.g., saddle-node bifurcations).
In contrast, saddle-node on invariant cycle, saddle-node-loop and saddle-homoclinic
orbit bifurcations are global bifurcations where a limit cycle emerges with a nonzero
amplitude. The challenge of global dynamics is solved in the second publication by
considering not the whole limit cycle, but just the part that is particularly slow, and
hence dominates the dynamics.

Bridging the scales from single cells to network dynamics, this study draws from a
broad methodological background. In the following, I will introduce the essential tools
required to follow my discussion3.

3.2. Conductance-based neuron model

In both publications from part II, neuronal spiking is modeled using conductance-based
neuron models that describe the dynamics of the membrane voltage, and the ion channel
gating, by ordinary differential equations.

The dynamics of the membrane voltage are given by a current balance of input,
capacitive and ion currents, Iin = Icap + Iion. The electrical resistance of the membrane
(and of the embedded ion channels) is often given by its inverse, the conductance (leak
conductance gL and maximal gating conductances gion). The ion current depends on
the opening and closing of ion channels, which, in its simplest form used here, depend
exclusively on the membrane voltage. The voltage changes the probability of ion
channel opening and closing, and the fraction of open ion channels at fixed voltage,
e.g., n∞(v) for the potassium current, is modeled by a sigmoid curve for each gating
variable. The resulting conductance-based neuron model has the following structure,

3For a complete presentation, please refer to the references in the following.
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v̇ = 1/Cm (Iin − Iion(v, u)) ,
ṁ = 1/τm (m∞ −m) ,
ṅ = 1/τn (n∞ − n) ,

...,

(3.1)

where v is the membrane voltage, u = (m, n, ...) is the vector of all gating variables of
the ion channels included in the model, and Iion(v, u) = ∑i gi ∏k upk

k (v− vi) is the ionic
current of ion channel i, with maximal conductance gi and reversal potential vi, gated
by a subset of u (where the kth entry of u, uk, is possibly taken to the power of pk). For
a detailed discussion of conductance-based neurons models please refer to Ermentrout
and Terman [38] or any other book on the basics of theoretical neurosciences.

3.3. Neuronal dynamics

This thesis considers neuronal dynamics described by Eq. 3.1 that show fixed point and
limit cycle dynamics in analogy to resting membrane potential and spiking observed
in real neurons. For low input Iin (subthreshold input), the voltage will relax to some
constant voltage value. For sufficiently high input (suprathreshold input), the fixed point
that underlies the stable membrane potential loses stability and is replaced by a stable
limit cycle. In principle, it is possible to include more complicated dynamics, such as
spike adaptation4, but this level of detail is not essential for the following analysis.

The sudden and qualitative change in neuronal dynamics at the transition from rest
to spiking happens at a bifurcation. Because a single parameter is sufficient to induce
the bifurcation (the amplitude of the input current), this type of bifurcation is called a
codimension-one bifurcation. The following paragraphs shortly introduce the notions
relevant for the subsequent discussion. For more detail, please refer to Kuznetsov [97]
for a mathematical discussion of bifurcations, or to Izhikevich [79] for their relevance
in neuron models.

3.3.1. Fixed points

The mathematically simplest dynamics observable in neuron models is fixed point dy-
namics (e.g., the resting state). From a biophysical perspective, the constant membrane
voltage in response to a subthreshold, constant input is set by a balance of the ions
flowing in and out of the cell5. From a dynamical system’s perspective, the observable
voltage corresponds to a fixed point that appears at the intersection of the system’s
nullclines (defined by ẋ = 0 for every dynamical variable x). Fig. 3.1 shows a two-
dimensional example with voltage and potassium gating as dynamical variables. A

4Spike adaptation is indeed observed in the experiments described in Sec. 9.3.
5For each ion species, the difference between membrane potential and reversal potential sets the driving

force for the ion flow. Around the resting membrane potential, the potential between the reversal
potential of potassium (around -90 mV) and of sodium (around +50 mV) allows to balance these main
contributors of the ion flow. For higher membrane potentials, the voltage-dependent gating of the ion
channels must be taken into account.
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fixed point attracts trajectories in its environment if it is linearly stable. The stability can
be evaluated based on a linear approximation of the dynamics around the fixed point.
The linear approximation is given by the Jacobian, which is given for the dynamical
system (3.1) as

J(v, u) =


∂vv̇ ∂mv̇ ∂nv̇ ...
∂vṁ ∂mṁ ∂nṁ ...
∂vṅ ∂mṅ ∂nṅ ...
...

 . (3.2)

The stability can be read from the eigenvalues of the Jacobian evaluated at the fixed
point. Stable dynamics are associated with a negative real part of all eigenvalues. Fixed
points with negative and positive eigenvalues are called saddle and with exclusively
negative or positive eigenvalues nodes (or focus for complex eigenvalues).

Figure 3.1.: Sketch of nullclines of a two dimensional conductance-based neuron model with
membrane voltage v and gating variable n. Fixed points correspond to the intersection of the
nullclines. With increasing input, the saddle (open circle) and stable node (filled circle) collide
in a saddle-node (SN).

As already mentioned, the transition from rest to spiking, i.e., from fixed point
dynamics to limit cycle dynamics, requires the creation (or existence) of a limit cycle,
and the destabilization (or destruction) of a fixed point. Fixed-point and limit-cycle
bifurcation can occur simultaneously or in sequence. Relevant bifurcations are shortly
introduced in the following paragraphs.

Bifurcations are associated with qualitative changes in fixed point dynamics. A stable
fixed point, such as the resting state, can disappear in a saddle-node bifurcation, or
it can lose stability at a Hopf bifurcation. The fixed-point bifurcation has functional
implications on the subthreshold dynamics, e.g., subthreshold oscillations that arise
from Hopf bifurcations may be relevant for frequency selection, and also influence
spiking [130, 144].

A Hopf bifurcation changes the stability of a focus, as the complex eigenvalues of the
Jacobian (Eq. 3.2) cross the imaginary axis. A Hopf bifurcation furthermore involves
the creation of a limit cycle that can be stable (supercritical Hopf ) or unstable (subcritical
Hopf ) [97]. Limit cycles are introduced in the next section (Sec. 3.3.2).

Besides the Hopf bifurcation, also the saddle-node bifurcation is a common fixed-
point bifurcation in neuronal models, which destroys a node and a saddle fixed point.
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The node collides with a saddle in a saddle-node, as depicted in Fig. 3.1, and then
disappears. For the Jacobian (Eq. 3.2), this corresponds to a zero-crossing of one
eigenvalue along the real axis. The zero eigenvalue at the saddle-node bifurcation
reflects infinitely slow dynamics in the direction of the associated eigenvector, along
the so-called semistable manifold. When the input is adapted such that the limit cycle
passes intimately close to the former location of the saddle-node (its ghost), the slow
dynamics in the direction of the semistable manifold allows for arbitrary long inter-
spike intervals (i.e., limit cycle periods). In this case, the ghost of the saddle-node
dominates the dynamics of any trajectory along the semistable manifold, in particular
the limit cycle at spike onset, which is used in the derivation of the second publication.

3.3.2. Limit cycles

The second project assumes repetitively spiking neurons with a constant mean firing
rate. Repetitive spiking is observed when the stable dynamics are attracted by a limit
cycle, a closed trajectory in state space. This section introduces the saddle-node-loop
bifurcation as transition between different limit-cycle bifurcations.

When a trajectory leaves the saddle-node along the semistable manifold, it can loop
around and reenter the saddle-node, such that a homoclinic orbit is formed. This orbit
can become a limit cycle once the saddle-node disappears. In biologically inspired
model neurons, the homoclinic orbit typically approaches the saddle-node along the
semistable manifold, and hence has a smooth shape as shown in Fig. 3.2. This limit-
cycle bifurcation is called saddle-node on invariant cycle (SNIC) bifurcation (alternative
names are, e.g., SNIPER or saddle-node on a limit cycle, see Izhikevich [79]) and is
often associated with so called type-I dynamics. In alternative to the approach along
the semistable manifold, the homoclinic orbit can also approach the saddle-node along
one of the other directions, which are called strongly stable manifolds (strongly stable
compared to the weakly (in-)stable dynamics along the semistable manifold). This
bifurcation, the saddle-node-loop bifurcation, occurs when the membrane capacitance
is increased from Cm = 1µF/cm2 to Cm ≈ 1.3µF/cm2, compare Fig. 3.2. As shown in
detail in the second publication, for even higher capacitance values, a limit cycle is
born already at lower inputs at a saddle-homoclinic orbit (HOM) bifurcation. In this
case, unstable and stable manifold of the saddle (instead of the saddle-node) overlap
and form a homoclinic orbit, which, when it detaches from the saddle, can give rise
to a limit cycle. The saddle-node is in this case not associated with a homoclinic orbit,
see Fig. 3.4B in contrast to the saddle-node on invariant cycle bifurcation illustrated in
Fig. 3.4A. At the transition from saddle-node on invariant cycle to saddle-homoclinic
orbit bifurcation lies a codimension-two bifurcation, the saddle-node-loop bifurcation.
This bifurcation, and its properties, form the core of the second publication.

At the saddle-node-loop bifurcation, the homoclinic orbit switches its approach of
the saddle-node from the semistable to the strongly stable manifold (compare the
second publication, Fig. 3 and 4). Due to this flip in the trajectory, the saddle-node-loop
bifurcation is also called orbit flip bifurcation [75].

The flip changes the spike shape when observing the membrane voltage over time
(Fig. 3.3). A non-degenerated saddle-node on invariant cycle bifurcation always shows
an afterhyperpolarization. In a model neuron stimulated with a constant current input
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3.3. Neuronal dynamics

Figure 3.2.: An increase in capacitance deforms the limit cycle dynamics (two-dimensional
sodium-potassium model from Izhikevich [79], units of the membrane capacitance Cm in
µF/cm2). Around Cm = 1.3µF/cm2, the homoclinic orbit switches from a saddle-node on
invariant cycle to a saddle-homoclinic orbit bifurcation. This transition corresponds to the
saddle-node-loop bifurcation.

just above threshold, this results in spikes that are followed by a period, in which the
membrane potential is lower than the voltage observed in response to a constant, but
subthreshold current input. The afterhyperpolarization can, potentially, be abolished
by the orbit flip at the small saddle-node-loop bifurcation (Fig. 3.3). An afterhyperpo-
larization must be observed at a saddle-node on invariant cycle bifurcation, because
the semistable manifold, along which the orbit moves, has a nonzero component in
voltage direction, as is evident from the eigenvectors stated explicitly by Kirst et al. [90].
The flip at the small saddle-node-loop bifurcation abolishes the afterhyperpolarization
if the angle between voltage direction and the strongly stable manifold (on which the
dynamics jumps) is pointed. In the case of a small saddle-node-loop bifurcation6, the
membrane voltage can remain above the voltage of the saddle-node fixed point during
the whole orbit, such that no afterhyperpolarization is observed. In contrast, afterhy-
perpolarization do always occur at the big saddle-node-loop bifurcation, where the
generated limit cycle encircles the ghost of the saddle-node. A decrease in temperature
has been reported to increase afterhyperpolarization in hippocampal neurons [162].
This might be related to an increased distance to the saddle-node-loop bifurcation,
because, as shown below (Sec. 3.5.1), a lower temperature increases the distance to the
small saddle-node-loop bifurcation similar to a decrease in capacitance. While such
changes in afterhyperpolarization could, in principle, be related to a small saddle-node-
loop bifurcation, there are several alternative explanations including adaptations in
calcium concentration or ion channel composition [2].

In theory, the flip from the semistable manifold to the strongly stable manifold should
also be visible in the speed of the voltage, dv

dt . Limit cycles arising from saddle-node on
invariant cycle or saddle-node-loop bifurcations differ qualitatively in the velocity of
the dynamics around the saddle-node. The speed on the exit of the saddle-node should

6The small (big, respectively) saddle-node-loop bifurcation refers to the transition at a small (big,
respectively) saddle-homoclinic orbit bifurcation, such that the limit cycle does not (does, respectively)
encircle the saddle fixed point to which the homoclinic orbit is formed (see Fig. 3 of the second
publication).
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3. Signal processing in mean-driven neurons

Figure 3.3.: An increase in capacitance deforms the spike shape, compare Fig. 3.2 (two-
dimensional sodium-potassium model from Izhikevich [79], units of the membrane capacitance
Cm in µF/cm2). The saddle-node-loop bifurcation happens around Cm = 1.3µF/cm2.

be quadratic for both, while the approach should be quadratic for the saddle-node
on invariant cycle, but linear for the saddle-node-loop bifurcation. In practice, this
may be hard to observe, in particular in noisy systems, because the quadratic or linear
dynamics are only expected in a small environment around the saddle-node.

In the second publication, spike onset in proximity of the saddle-node-loop bifur-
cation is contrasted with another bifurcation that is common in neuron models, and
is often referred to as type-II dynamics [131]. Spike onset is in this case a sequence of
two bifurcations with an intermittent region of bistability in between, a fold of limit
cycles bifurcation followed by a subcritical Hopf bifurcation, see Fig. 3.4D. At the
subcritical Hopf bifurcation, the stable fixed point (corresponding to the resting state)
becomes unstable, and the dynamics relax to the limit cycle that was born at lower
input, where it folds with the unstable limit cycle that was born at the Hopf bifurcation.
Note that a supercritical Hopf bifurcation that directly creates a stable limit cycle is not
a good model for the all-or-nothing spikes observed in biological models, because the
resulting limit cycle implies infinitely small spikes. Also the unstable limit cycle that
originates from the subcritical Hopf bifurcation is not relevant for neuronal dynamics,
because neuronal dynamics typically fall on an already established, stable limit cycle
at a subcritical Hopf bifurcation. Hence, the main contribution of the subcritical Hopf
bifurcation in a neuronal context is the (de-)stabilization of a fixed point.

Spike onset at a subcritical Hopf bifurcation and fold of limit cycles bifurcation is
for example observed in the original Hodgkin-Huxley model [73], which is used in
the first publication as spike generation mechanism in the axon initial segment. A
hallmark of this dynamics is a nonzero firing rate at spike onset. In contrast, spike
onset at a saddle-node on invariant cycle bifurcation occurs with an infinite period,
because the limit cycle dynamics is arbitrary slow in proximity of the saddle-node
fixed point. This does not allow for the definition of a clear current threshold for
finite simulation time, because a spike can or cannot be observed in a certain input
range depending solely on the simulation duration [79]. The Hopf bifurcation with
finite period at spike onset, however, allows for a clear current threshold. This is
why the original Hodgkin-Huxley model [73] was used in the first publication for
the models with active conductances. With a clear current threshold, and for long
enough stimulation durations, the occurrence of a spike depends on the amplitude
of the dendritic input and the signal transmission from dendrite to spike initiation
zone, but not on the simulation duration. This allows for a clear definition of successful
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3.4. Phase dynamics

Figure 3.4.: Sketch of the relation between membrane voltage and input for different spike onset
bifurcations. Fixed point voltage in violet, limit cycle (LC) maximal and minimal voltage in
green. Straight lines denote linearly stable dynamics, dashed lines linear unstable dynamics. A:
Saddle-node on invariant cycle bifurcation as typical for “type-I” neurons. B: Saddle-homoclinic
orbit bifurcation (for an example, see Fig. 3.2 and Fig. 3.3 at the highest capacitance value). C:
Bifurcation structure as observable below the Bogdanov-Takens point in the second publication,
Figure 6. D: Subcritical Hopf bifurcation (“type-II”) as in the original Hodgkin-Huxley model
[73].

signal transmission in the first publication.

3.4. Phase dynamics

While conductance-based neuron models allow for a detailed analysis of neuronal
dynamics, depending on a variety of biologically inspired parameters, particular as-
sumptions allow to capture the essential spike dynamics of the (potentially multi-
dimensional) dynamical system already with a single dynamical variable, the phase
ϕ. The phase reduction is in general applicable to (stable) limit cycle dynamics that are
weakly perturbed [96]. How weak the perturbation has to be depends on the limit
cycle itself, more precisely on its attractiveness. The more attractive the limit cycle is
in its immediate environment, the stronger the perturbations that are still admissible.
As a result, the perturbation hardly influences the shape of the limit cycle, but only
advances or delays the limit cycle dynamics in time.

The phase reduction can be applied to neurons that spike continuously in time.
Perturbations, i.e., input from synaptic coupling or stimulation electrode, are required
to advance or delay the occurrence of the next spike (and only the next spike, to be
strict), while leaving the spike shape mostly undisturbed.
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3. Signal processing in mean-driven neurons

These assumptions form the starting point for the analysis in the second project. The
dynamics can then be captured with a considerably simpler equation compared to the
original system in Eq. 3.1, which is given for the phase ϕ as

ϕ̇ = 1/T + Z(ϕ)s(t), (3.3)

with limit cycle period T, a time-dependent input s(t) and phase-response curve (PRC)
Z(ϕ), which is determined from the original system Eq. 3.1 [96]. The definition of
the phase is translational invariant in time. As a convention, integer crossings of the
phase are identified with the voltage maximum of subsequent spikes. In real time,
spikes are correspondingly observed at times Tϕ for ϕ ∈ Z. For the unperturbed case,
i.e., s(t) = 0, the phase is just a scaled version of the time ϕ = t/T. With nonzero
stimulus, the multiplication with the phase-response curve in Eq. 3.3 translates the
stimulus into an advance or delay in the occurrence time of the next spike (phase
advance/delay). The phase-response curve gives the phase advance or delay for a delta
perturbation as sketched in Fig. 3.5, and the so called infinitesimal phase-response curve
used in the following has a unit that is in Hz/[stim], where [stim] denotes the unit of
the stimulus s(t) [39]. The phase-response curve is also known by the names phase
resetting curve, phase sensitivity or phase susceptibility. For mathematical details on
the phase reduction and the phase-response curve please refer to the classical book by
Kuramoto [96], or for an overview in the context of neuroscience to Ermentrout and
Terman [38], as well as the references given in those.

Figure 3.5.: The phase-response curve measures the phase advance (or delay) of the next spike
in response to a delta perturbation.

The phase-response curve is, via its mathematical properties as solution to the adjoint
equation of the dynamics, tightly related to the limit cycle period and the flow field
around the limit cycle [142]. In the second publication, the membrane capacitance is
changed, which directly affects the relaxation time of the voltage dynamics (Eq. 3.1).
This changes the amplitude and the direction of the flow field in the phase space of
voltage and each gating variable, and hence affects the phase-response curve in a direct
way, both via the limit cycle period and the flow field. The phase-response curve
changes particularly drastic around the saddle-node-loop bifurcation. The saddle-node-
loop bifurcation not only deforms the flow field around the limit cycle, but the orbit
flip lets the limit cycle (or at least half of it) jump to a new location, with a substantially
different flow field than before. At the saddle-node-loop bifurcation, the orbit flips from
the semistable manifold to the strongly stable manifold for the approach of the saddle-
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3.4. Phase dynamics

node fixed point. This speeds up half of the limit cycle such that it can be effectively
neglected in the phase description. This is also reflected in the phase-response curve,
which is practically halved. This has drastic consequences for synchronization and
other coding properties. A more detailed presentation of these points can be found in
the second publication and Sec. 8.3.

3.4.1. Synchronization inferred from individual cells

The analysis in the second publication uses the phase-response curves around the
saddle-node-loop bifurcation to derive drastic changes in the ability of cells to syn-
chronize. What follows is an intuitive presentation of how synchronization on the
network level can be inferred, via the phase-response curve, from properties of a single
cell. The full mathematical derivation of the relation between synchronization and
phase-response curve can be found in Kuramoto [96].

For a repetitively firing neuron, the phase-response curve measures how much a
small input influences the timing of the next spike. When two neurons are synaptically
coupled, they mutually affect each other’s spiking. The interaction can synchronize the
spiking, i.e., the spikes occur at a fixed phase relation (the spike of one neuron occurs
always at the same phase of the other). Note that this definition of synchronization (so-
called phase synchronization) also includes what is sometimes called anti-synchronization,
for which spiking alternates between both neurons. While anti-synchronization may
not be easily recognized when observing more than a few units, in-phase synchro-
nization has been proposed as a mechanism to link, for example, spatially separated
representation of the same object [56]. Synchronization may also underlie rhythm gen-
eration in the hippocampus, important for memory [24], and has been related to several
diseases such as schizophrenia, Parkinson’s or epilepsy [168]. Spike synchronization to
a common input, which is also facilitated around the saddle-node-loop bifurcation (see
Sec. 8.3), is for example used to encode odors in the olfactory system [13, 77].

Figure 3.6.: Top: Spike times of two neurons with different but similar inter-spike-intervals.
Bottom: Spike times of the same two neurons when coupled with delta-synapses such that
the interaction is ruled by the asymmetric phase-response curve (black with red arrows). The
symmetric phase-response curve would not lead to a constant phase difference δ, as both spikes
would be advanced similarly (gray arrow), preserving the difference in the inter-spike-intervals.

In the example of Fig. 3.6, the two neurons synchronize when their mutual influence
is asymmetric. Synchronization is reached when the neuron with the higher baseline
firing rate is able to advance the spiking of the neuron with the lower baseline firing rate
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3. Signal processing in mean-driven neurons

more than vice versa. With excitatory coupling, the inter-spike-interval of each neuron
will be shorter than the uncoupled inter-spike-interval due to the input it receives
from the other neuron. A possible common inter-spike-interval duration is therefore
shorter than both baseline inter-spike-interval. For synchronization, one neuron fires
at a constant time delay δ before the other neuron. That implies that the first neuron
receives the perturbation from the second neuron at a time δ after the first spikes, while
the second neuron receives the perturbation from the first neuron at a time δ before
the second spikes. A symmetric phase-response curve implies in such a symmetric
coupling that the change in the inter-spike-intervals of both neurons is the same, and
thus the difference between the baseline inter-spike-intervals cannot be reduced by the
coupling. However, if the phase-response curve has an asymmetric component, this
asymmetry can balance the asymmetry in the baseline inter-spike-intervals, and thereby
allows for synchronization. Also in general, the asymmetry of the phase-response curve
is related to the maximal frequency detuning (difference in firing rate) between two
neurons that still allows them to synchronize. Assuming delta-synapses (coupling
where a spike in one neurons induces an instantaneous increase in voltage in the other),
the amplitude of the odd part of the phase-response curve is also related to their ability
for synchronization in larger networks. In summary, (twice) the odd part of the phase-
response curve corresponds to the entrainment range of two coupled oscillators, i.e., the
maximal phase difference (resulting from different baseline firing rates) that still allows
for phase synchronization between the two. For details see Kuramoto [96].

While it seems at first glance counterintuitive to infer synchronization from a single
cell, analog reasoning is used in everyday life. For example, for the Olympic discipline
“synchronized swimming”, the performance of the swimmers is evaluated based on
their synchrony. While normally the synchrony is assessed from the actual performance
of the whole group, it could, in principle, be already predicted based on the precision of
one of the performers: The more professional each individual, the better the individual
can be expected to observe the co-swimmers during his or her own action, and the
more synchronous the group may perform. In a comparable way, synchronization of
interacting neurons can also be estimated from the individual characteristics of the
neurons.

3.5. Capacitance and temperature as bifurcation parameters for
the saddle-node-loop bifurcation

As mentioned before, the saddle-node-loop bifurcation can be induced by various
system parameters. While a considerable part of the discussion considers the tempera-
ture as bifurcation parameter (Chapter 10), the membrane capacitance, as an integral
part of all conductance-based neuron models, is used as bifurcation parameter for the
analysis in the second publication. The following sections establish the mathematical
equivalence between membrane capacitance and a simplified temperature parameter,
and set the latter into the broader context of temperature dependence in the nervous
system.
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3.5. Capacitance and temperature as bifurcation parameters for the saddle-node-loop bifurcation

3.5.1. Relative relaxation time constant as bifurcation parameter

The capacitance changes the velocities in the flow field of the dynamics in voltage
dimension, while keeping the velocities in the gating dimensions unaffected. An
increase in capacitance decreases the speed in voltage direction relative to the ion
channel kinetics (Fig. 3.2). Slower dynamics in voltage direction effectively “squeezes”
the flow field along the voltage dimension as the velocity vector becomes steeper,
leading to a limit cycle that is less broad in the voltage dimension (Fig. 3.2). As shown
in detail in the second publication, the deformation of the flow field by the membrane
capacitance will, under mild assumptions, induce an saddle-node-loop bifurcation.

The second paper and Sec. 8.1 show that the capacitance as such is already an
interesting parameter that could be regulated by nature. Yet, instead of using the
capacitance to slow down the voltage dynamics, one can equally well use a parameter
to speed up the gating dynamics. A prime candidate for this is the “temperature
parameter” φ commonly introduced in conductance-based models [38] as prefactor to
the right side of the gating dynamics. For example, for a gating variable a this gives

da
dt

= φ
a∞ − a

τa
. (3.4)

Whether the capacitance or φ is used as bifurcation parameter, one will observe the
same bifurcations, because the capacitance can be transformed into a φ-like parameter
by a simple scaling in time, t̃ = t/Cm. With this new time scale, Eq. 3.1 becomes

dv
dt̃

= Iinput − Iion(v,u), (3.5)

dm
dt̃

= 1/Cm1/τm(m∞ −m), (3.6)

dn
dt̃

= 1/Cm1/τn(n∞ − n), (3.7)

..., (3.8)

and with the identification φ = 1/Cm, a set of equations as in Eq. 3.4 is recovered.
The parameter φ is called “temperature parameter” because, as reviewed in the next
section, a scaling of the gating time constants is one of the main effects of temperature
(Sec. 3.5.2).

3.5.2. Temperature affects the relative time constant

Temperature affects virtually any biological process, because an increase in temperature
generically increases chemical reaction rates and diffusion. Hence, for conductance-
based models of voltage-gated ion channels, basically all parameters should show
some form of temperature dependence. Yet, experimental results suggest that the
qualitatively strongest effect of temperature is on the opening and closing rates of the
ion channels7.

7Temperature influences not only ion channel kinetics and various other aspects of conductance-based
ion channels, but also synaptic connections, neuronal properties and network dynamics, as reviewed
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3. Signal processing in mean-driven neurons

Observables such as gating rates tend to grow exponentially with an increase in
temperature. A common measure for temperature dependence hence relies on the rela-
tive change in the parameter when the temperature is increased by 10°C, the so called
Q10-values [155]. Opening and closing rates typically show Q10 values between two and
four [70]. Moreover, temperature has a medium effect on the maximal conductances of
leak and ion channels, and a negligible effect on the membrane capacitance Cm and the
reversal potentials Vk [70]. On the level of single neurons, these and potentially also
other effects of temperature influence the resting membrane potential, the membrane
time constant, and the firing rate, as reviewed by Wang et al. [174]. Action potentials
and post-synaptic excitatory potentials (EPSPs) are faster and change in amplitude.
For the conductance-based models used in Chapters 9 and 10, these various effects of
temperature on neuronal dynamics are simplified, with a temperature dependency
exclusively on the gating rates. To this end, the model definition Eq. 3.1 is augmented
with the parameter φ introduced in Eq. 3.4. For simplicity, it is furthermore assumed
that the scaling of the gating rates is equal for all gating variables, and that temperature
does not affect the input. Note that a temperature dependence of the inputs would, for
example, result from a network of connected, temperature-dependent neurons.

The assumption that the temperature dependence relies only on the gating rates
(via the parameter φ) is quite restrictive. The following arguments show under which
conditions this assumption can be relaxed. A rescaling of the time allows to take into
account the temperature dependence of the maximal conductances and potentially
the input current, and furthermore allows ion channel gating rates to differ between
different gating variables, as reported experimentally. Temperature dependence is
introduced in the general conductance-based model by scaling all conductances gi by
φg i = Q∆T/10

g i , input Iext by φext = Q∆T/10
ext and all right-hand sides of the gating vari-

ables by φa = Q∆T/10
a (where Q are different Q10 values for all parameters). Choosing

φA = mina(φa) for some fixed temperature difference ∆T, a rescaling of the time to
t̃ = φAt replaces Eq. 3.1 by

Cm
dV
dt̃

=
1

φA

(
φext Iext + φg leakgleak (v−Vleak) + ∑

k
φg kgk ak0...akj (v−Vk)

)
,

da
dt̃

=
φa

φA

a∞ − a
τa

,

....

With this time scaling, it is obvious that, as long as max(φext, φg i) < mina(φa) = φA,
an increase in temperature will slow the voltage dynamics, and, for the gating variables,
it will keep the rates constant or even increase them. Based on the results in the second
publication, an approach of the saddle-node-loop bifurcation with temperature can
hence be expected if max(Qext, Qg i) < mina(Qa).

by Wang et al. [174], modulating for example brain rhythms [129].
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3.6. Temperature variation in animals

3.6. Temperature variation in animals

If a change in brain temperature takes the dynamics of a neuron to the proximity of
a saddle-node-loop bifurcation, this could have drastic consequences for neuronal
processing. Below, examples for temperature dependence in animals as well as human
pathologies are presented. The discussion of this thesis will in particular focus on the
latter, suggesting that the saddle-node-loop bifurcation may act as a potential trigger
for pathological brain states.

Variations in brain temperature are clearly critical for animals that do not actively
regulate body temperature (ectotherms). Yet, variations in brain temperature also occur
for endotherms, animals that control their body temperature. The brain temperature
in endotherms depends on the brain metabolism, the cerebrospinal fluid and blood
temperature, as reviewed by Wang et al. [174]. During ATP production for energy
supply, about 33% of the energy is released as excess heat into the brain tissue [174].
The heat is emitted via blood-flow or via the surface of the head. Correspondingly, the
temperature of deep brain areas is up to 1◦C larger than the temperature of cortical
brain areas (in rat even up to 1.5◦C). The most superficial 2 to 3 cm of the cortex can be
influenced by external heating and cooling (at least in monkeys), and in humans, the
temperature gradient between brain tissue and blood can be up to 1◦C [174].

In most ectotherms, brain and blood temperature are coupled, leading to an increase
in brain temperature during physical exercise. Brain temperature in rat can increase by
up to 2◦C when the rat starts running [112], and significant increase in brain tempera-
ture during exercise has also been documented in humans [174]. Also without exercise,
several experiments have shown physiological fluctuations in brain temperature in
endotherms by 1 to 3◦C [174].

In contrast to most animals that show an exercise-induced increase in brain temper-
ature, certain mammals such as panting ungulates and carnivores have developed a
mechanism that counters heating up: Air-cooled venous blood cools the arterial blood
before it reaches the brain [5]. This allows them to keep their brain temperature 0.7 to
1.8◦C below body core temperature even during physical activity. In my opinion, this
highlights the importance of brain temperature for (endotherm) animals.

Functional alterations have already been reported for a change of 1◦C, as reviewed by
Wang et al. [174]. Compared to the physiological fluctuations of 1 to 3◦C, this suggests
that, even in healthy endotherms, temperature has a functional impact. In light of the
results from the second project, drastic alteration in neuronal processing are expected
when the change in temperature, acting as bifurcation parameter, drives neuronal
dynamics into the proximity of saddle-node-loop bifurcations.

3.6.1. Medical conditions with temperature dependence

Temperature-induced alterations in brain function are particularly dramatic in pathol-
ogy. The approach of a saddle-node-loop bifurcation with its drastic functional impli-
cations lends itself as one potential mechanism that could explain sudden transitions
into a pathological state. The following presentation concentrates on pathologies
where temperature can induces seizures. Seizures are devastating conditions during
which controlled brain dynamics are replaced by abnormal enhanced and synchronous
neuronal activity.
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3. Signal processing in mean-driven neurons

The most common type of temperature-dependent seizures are febrile seizures, also
called fever fits or fever cramps. Around 5% of young children get, once in their life,
a seizure during a period of high fever, with muscle cramps and, potentially, loss of
consciousness [32]. Febrile seizures can have many causes, including temperature,
inflammatory cytokines, mutated GABA receptors, or alkalosis, as reviewed by Cross
[26], Dubé et al. [32]. Yet, rat experiments suggest that already an increase in brain
temperature alone is sufficient to induce febrile seizure-like conditions. In wild-type rat,
seizures are induced at a rectal temperature of a little above 42°C (commonly induced
by hot air or bathing in hot water), see for example Gulec and Noyan [58], Klauenberg
and Sparber [92], Mashimo et al. [105].

The precise mechanism for the induction of seizures with an increase in temperature
is not yet known. One potential mechanism that emerges from this thesis is the
approach of a (small) saddle-node-loop bifurcation, as discussed in Chapter 10.

Febrile seizures are particularly common in children with epileptic disorders. Tem-
perature sensitivity is also known from other types of epilepsy, in which a hot bath
(“hot-water epilepsy” [170]) or an abrupt change in air conditioning can be sufficient
to induce seizures. In all these cases, an increase in temperature by just a few degree
is sufficient to push brain dynamics into a seizure regime with abnormally enhanced
and synchronous neuronal activity. On the other side, local cooling can stop emerging
seizures, which is for example used during operations of patients with non-treatable
epilepsy. As discussed later, the saddle-node-loop bifurcation may also be relevant for
these conditions (Chapter 10).

3.7. Recapitulation

The last chapters have provided an overview over neuronal morphologies with differ-
ent soma locations, spike generation mechanisms and signal processing. Going from
dynamics over phase-response curves to synchronization, the second publication iden-
tifies the saddle-node-loop bifurcation as an interesting point for neuronal processing,
accessible in a broad set of neuron models. The flexibility in spike-based coding that
occurs at this transition point can also be interpreted as a lack of robustness, which
may lead to system breakdowns such as observed during febrile seizures. With the
temperature as bifurcation parameter, this perspective will be further elucidated later
(Chapter 10). The main hypothesis of the first publication proposes energy-efficient
signaling as a major driving force for different soma locations. This hypothesis is best
assessed with the evolutionary outline and the alternative explanations reviewed in
the last chapter in mind, and will be further considered in the discussion (Chapter 7).
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Externalization of 
neuronal somata 
as an evolutionary 
strategy for energy 
economization
Janina Hesse1,2 
and Susanne Schreiber1,2,*

Neuronal morphology of vertebrates 
and many invertebrates differs in a 
fundamental aspect: the location of 
neuronal cell bodies (somata) relative 
to their dendritic and axonal trees. The 
somata of most vertebrate neurons are 
located centrally between dendrites and 
axon. In contrast, neurons of various 
invertebrates, such as arthropods and 
cephalopods, typically externalize their 
somata to the end of a single process 
called a ‘stem neurite’ (Figure 1A). 
While this difference has been related 
to advantages of a spatial separation of 
neuropil and externalized somata [1–5], 
we here propose that the right soma 
location also reduces signal attenuation 
and consequently the energetic cost of 
signaling. Neurons commonly transfer 
signals from their dendrites to the 
axon, such that signals depolarize a 
centrally located soma before reaching 
the axon. The signal attenuation 
resulting from leakage through the soma 
membrane can be decreased through 
externalization of the soma, resulting in a 
reduction of the depolarized membrane 
area. In the light of evolutionary pressure 
towards energy-effi cient signaling [6,7], 
we argue that an externalization of the 
soma is advantageous for relatively large 
somata. We support this hypothesis on 
the basis of compartmental models and 
previously published experimental data. 

Typically, synaptic inputs depolarize 
the neuronal membrane. This signal 
propagates from the dendrites to the 
axon, where a spike can be initiated. 
On the way, depolarization amplitude 
is attenuated by passive properties 
of the membrane — a process that 
is counteracted by active membrane 
properties, such as voltage-activated 
sodium conductances. The lower the 
passive attenuation, the lower the 
amount of metabolic energy that needs 
to be invested in its compensation 

(either by boosting of the signal via 
active membrane properties or a larger 
synaptic input [8,9]). We here suggest 
that the right soma location decreases 
passive signal attenuation and hence 
also metabolic cost.

For a ‘central soma’ located between 
dendrites and axon, passive signal 
attenuation increases with the size of the 
soma membrane surface. A relocation 
of the soma to the end of a stem neurite 
(an ‘externalized soma’) removes the 
soma membrane from the signaling path 
(Figure 1A). Instead, signal attenuation 
occurs at the additional membrane 
provided by the stem neurite. An 
effi cient soma location must therefore 
respect the trade-off between (central) 
soma surface and extra surface provided 
by the stem neurite.

In simulations of multicompartmental 
models with different soma locations 
and otherwise identical parameters 
(Figure S1A in Supplemental Information, 
published with this article online), we 
quantifi ed the signal attenuation by 

the minimal dendritic signal amplitude 
required to reach a target depolarization 
in the axon (a spike, or, for passive 
models, a voltage threshold). The 
smaller this minimal dendritic signal, the 
smaller the signal attenuation between 
dendrites and axon. We show that the 
ratio of signal attenuation between 
models with central and externalized 
somata increases with the ‘soma-to-
neurite ratio’, i.e., the ratio of the soma 
surface A and the ‘depolarized’ stem 
neurite surface, A/ d . The latter ratio 
depends on both morphological and 
electrophysiological parameters (see 
Supplemental Information). The critical 
soma-to-neurite ratio, defi ned as the 
value where attenuation in both models 
is equal, increases slightly with signal 
duration (Figure 1C, dashed curve). The 
simulations agree with corresponding 
analytical calculations (Figure 1C, solid 
curve). The calculations demonstrate 
that for short stimuli, externalized 
somata yield larger voltage responses 
than central somata (Figure 1B). All 
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Figure 1. Signal attenuation in neurons with central or externalized soma location.
(A) Distinct morphology of neurons in the central nervous system of various invertebrates and 
 vertebrates: in the former, the soma is externalized, while in the latter, a central location of the soma 
predominates (examples from blowfl y and rat). (B) Left: circuit diagrams representing the analytical, 
simplifi ed models. Right: voltage response to injected current pulses. The build-up of depolariza-
tion is initially faster for externalized somata, rendering them well adapted for the transmission of 
brief stimuli or high frequencies. (C) Color-coded morphology (either externalized in green, or cen-
tral in blue) that is advantageous for signal attenuation as a function of the stimulus duration and the 
soma-to-neurite ratio for passive analytical models. Curves depict the critical soma-to-neurite ra-
tios: analytical solution (solid curve), multicompartmental models with purely passive conductanc-
es (dashed), active models including spike generation (dotted). Above the critical soma-to-neurite 
ratio, externalization enhances energy effi ciency. For illustration, the red box marks the soma-to-
neurite interval corresponding to a biologically relevant range of stimulus durations (0.1 m – 0.4 m). 
(D) Experimental data on the soma-to-neurite ratio for neurons from various species (each vertical 
bar corresponding to one cell type; for details see Supplemental Information). Top: based on axial 
 resistances as measured in dendrites or axons of the respective neurons, average soma-to-neurite 
ratio is larger in cells with externalized soma than in those with central soma. Bottom: assuming a 
higher axial resistance in the stem neurite (model prediction) increases this trend. 
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results qualitatively hold for models 
including active (Hodgkin–Huxley type) 
conductances in the axon (Figure 1C, 
dotted curve).

In summary, externalization of the 
soma reduces signal attenuation 
in cases of a large soma, a thin 
stem neurite, or a leaky membrane. 
Consequently, we predict that 
neurons with externalized soma tend 
to have a high soma-to-neurite ratio. 
For neurons with central soma, the 
soma-to-neurite ratio is not defi ned. 
Still, we can ask whether the central 
soma location would be more energy 
effi cient, if the alternative was to 
move the soma to the end of a 
neurite whose diameter is assumed 
to scale with the diameter of the cell’s 
proximal dendrites. Thus defi ning 
a soma-to-neurite ratio based on a 
‘virtual’ stem neurite for neurons with 
central soma, we evaluate previously 
published morphological and 
electrophysiological data from various 
species and cell types (Table S1). 
Indeed, the soma-to-neurite ratio is 
signifi cantly larger for neurons with 
externalized soma compared to 
neurons with central soma (Figure 1D, 
top traces, directed Mann-Whitney-U 
test with p < 0.01).

The soma-to-neurite ratio also 
depends on the length constant  of 
the stem neurite, and hence on its 
axial resistance (see Supplemental 
Information). Experimental values of 
the latter were mostly derived from 
axons, where a low axial resistance 
facilitates signal propagation. A higher 
axial resistance in the stem neurite, 
however, would shield the soma and 
thus reduce signal attenuation. Based 
on our analysis, we hence predict that 
axial resistance in the stem neurite 
should be larger than in the axon. 
Assuming a higher, yet biologically 
plausible, axial resistance for the 
calculation of the soma-to-neurite 
ratio (250 cm2) allows for a better 
separation of soma-to-neurite ratios 
between central and externalized 
neurons (Figure 1D, bottom traces), 
in quantitative agreement with 
the optimal morphologies derived 
from the model (Figure 1C). This 
prediction on an electrophysiological 
parameter distinguishes our study 
from approaches based entirely on 
morphological aspects, and can be 
tested experimentally.

Our results suggest that an 
externalization of large somata decreases 
signal attenuation between dendrites 
and axon, benefi ting information transfer 
in the context of noise, and saving 
metabolic energy otherwise required for 
an active boosting of neuronal signals. 
Previous work emphasized advantages 
of an externalization of the soma to 
the ganglion surface in the context 
of a separation of neuropil and soma 
layer, i.e., wiring length minimization 
[1,4], the use of graded potentials [5], 
and somatic access to nutrients [2,3]. 
Externalization has been proposed to 
shorten conduction times [1], which is 
a trend that is also found in our models. 
Our analysis adds a new perspective 
to the differential evolution of neuronal 
morphologies based on considerations 
of energy effi ciency and reduced 
signal attenuation. While these effects 
hold for signals of different durations, 
quantitatively, externalization of the soma 
is particularly advantageous if inputs are 
short (Figure 1C).

Whether externalized somata of large 
size or central somata of small size — 
relative to the neurites — are favorable, 
is likely to be determined by additional 
factors. Those include constraints 
on the axial resistance of the stem 
neurite, the required soma volume for 
maintenance of the cell (such as for 
the synthesis machinery), the need for 
a central point of action for recurrent 
connections, and the frequency content 
of inputs. 

It is noteworthy that even in mammals 
there are exceptions to the central soma 
location. Dorsal root ganglion cells 
transmit information from peripheral 
sensory areas along the spinal cord to 
the brain. These neurons exhibit large, 
externalized somata attached to stem 
neurites, the latter of which oftentimes 
are artifi cially prolonged by extensive 
wrapping around the soma [10]. We 
argue that this externalized morphology 
matches neuronal function: a central 
action point for recurrent connections 
is not required, somata can be larger to 
meet the maintenance demands of these 
extended cells, and a long stem neurite 
facilitates transmission of short signals 
(i.e., action potentials). 

Interestingly, a look at the phylogenetic 
tree suggests that the Ur-bilaterian did 
not show an extensive externalization 
of neuronal somata (see Supplemental 
Information). Externalization of somata 

in higher invertebrates may hence have 
constituted an evolutionary strategy 
reducing neuronal energy consumption 
and signal attenuation while allowing for 
larger soma sizes (potentially desirable 
to accommodate more synthesis 
machinery for progressively elaborate 
nervous systems). Vertebrate neurons 
with central soma morphology may, on 
the other hand, have been preserved 
due to additional constraints and 
alternative optimization strategies, 
potentially including a higher recurrent 
connectivity or the outsourcing of 
organelles from soma into proximal 
dendrites.

SUPPLEMENTAL INFORMATION

Supplemental Information contains methods, 
one fi gure, and one table and can be found with 
this article online at http://dx.doi.org/10.1016/j.
cub.2015.02.024.
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Supplemental Data 
Based on our analysis, we predict that the soma-to-neurite ratio should be larger for neurons 
with externalized soma (also called (pseudo-)unipolar neurons) and smaller for neurons with 
central soma (also called bi- and multipolar neurons). To test this prediction, we scanned the 
literature for neurons with known morphological and electrophysiological data. The data in 
Table S1 were obtained from previously published experimental data. Table S1 summarizes 
soma surface area, axial resistance, specific membrane resistance, and soma location for 
neurons from different species. For neurons with externalized soma, the stem neurite diameter 
is provided in addition. For neurons with central soma, the equivalent dendrite diameter of the 
proximal dendrites is given instead, measured as the equivalent cylinder diameter after Rall’s 
formula 

��

ddend
3 / 2 = di

3 / 2¦ , with di marking the diameter of proximal dendrite i.  
For reconstruction data, soma surfaces could be obtained directly, while neurite diameters 

were quantified as the mean diameter along the proximal process until the first bifurcation. 
For two-dimensional stainings, soma surface was estimated as A = SS if the somatic area S of 
the soma projection was provided in the original publication. Otherwise we assumed A = Sab, 
where a and b are the lengths of the two main axes of the soma projection. The neurite 
diameters were quantified proximal to the soma at a distance corresponding to the somatic 
radius.  
Note that the surface area of externalized somata may be biased towards smaller values, 

and the data presented in Figure 1D may hence underestimate the corresponding soma-to-
neurite ratios. This bias arises from a considerable increase of the surface of externalized 
somata due to invaginations [S1, S2]. Our estimates of the soma-to-neurite ratios of neurons 
with externalized soma hence are conservative. 

Relation between stem neurite and dendrite diameter: 
 The soma-to-neurite ratio of neurons with externalized soma can be calculated based on the 
data given in Table S1. Neurons with central soma, however, lack a stem neurite. To allow for 
a comparison of both morphologies, we compared central morphologies to morphologies with 
a “virtual” stem neurite. Because the maintenance of axonal and dendritic trees requires 
proteins supplied by synthesis machinery predominantly located in the soma, it seemed 
reasonable to assume a relation between the diameter of the stem neurite and the dimensions 
of axonal and dendritic trees. Based on experimental data, we assumed that the stem neurite 
diameter dstem is proportional to the equivalent diameter of the proximal dendrites ddend 
(Figure S1F). Least-squares regression (excluding one outlier) results in 0.53ddend – 0.04, with 
a correlation coefficient of r = 0.97. We hence assumed stem neurites with dstem = 0.5ddend. 

Supplemental Methods 
Signal attenuation was compared in models with central or externalized soma, differing 
exclusively in the soma location. Multicompartmental models (Figure S1A) with purely 
passive membranes, as well as additional active conductances in the axon initial segment, 
were considered. Moreover, simplified single-compartment models were used to compare 
simulation results to analytical calculations (Figure 1B). 
Signal attenuation was quantified based on the axonal membrane potential in response to 

dendritic current stimulation. Specifically, the amplitude of a dendritic current pulse was 
increased stepwise until a predefined depolarization (i.e., a voltage threshold) was reached in 
the axon for the passive models. For active models, the amplitude of the dendritic pulse was 
increased until a spike was initiated. The minimal dendritic current amplitude required to 



reach the predefined voltage (or to elicit a spike) defined our estimate of signal attenuation. 
The larger the dendritic current required to elicit a specified axonal response, the larger the 
signal attenuation. 
Our results showed for any model parameter combination whether a central or an 

externalized soma location implied less signal attenuation. Our interpretation relies on the 
assumption that a larger signal attenuation eventually entails a larger metabolic cost. In order 
to reach a given signal amplitude at the axon, neurons can counteract a passive attenuation of 
the signal by active ion channels that increase the signal either directly at the synapse, or 
along the signaling path. However, this kind of boosting is energetically costly. In fact, 
neurons have been found to spend large parts of their energy budget on reversing signal-
related ion flow across the membrane both at synapses as well as along dendrites and axons 
[S3, S4, S5], for a discussion on the recent development of energy-efficient signaling also see 
[S6]. A minimization of signal attenuation may hence be desirable from an evolutionary 
perspective, benefiting an efficient usage of scarce energetic resources. Consequently, a soma 
location that decreases signal attenuation between dendrite and axon may be favored by 
evolution. 

Multicompartmental models: 
 Multicompartmental models consisted of one dendrite and one axon, either with a central 
soma compartment in between, or with the soma compartment at the end of an additional stem 
neurite compartment (Figure S1A). Despite possible deviations from these morphologies, 
most neurons in both vertebrates and invertebrates exhibit one main output process with a 
spike initiation zone at its proximal end, see for example [S7, S8]. We replaced the elaborated 
axonal and dendritic trees found in vertebrates and invertebrates by single axon and dendrite 
cylinders. This simplification is exact for branched trees that follow Rall’s d3/2 constraint on 
branch diameters, such that the whole tree can be replaced by an equivalent cylinder. The 
axon comprised three compartments: a proximal axon initial segment (passive), a distal axon 
initial segment (the site of recording and, for the active model, spike initiation) and a long 
axon compartment (for the sake of simplicity passive and unmyelinated).  

Model specification: 
 The passive membrane properties were given by the specific membrane capacitance of 
Cm = 1PF/cm2, the passive reversal potential of Epassive = –65mV, and the specific membrane 
resistance Rm that was varied in the interval of [3000,30000] :cm2. The axial resistance Ra 
was varied in [40,400] :cm. 
In order to compare results from models with different axial and membrane resistances, we 

set the length of processes in electrotonic units. The space constant O characterizes the spatial 

spread of a depolarization; it is defined as 
4
d

R
R

a

m O , with d specifying the process 

diameter. Axonal and dendritic d was set to 2Pm. The two proximal axon compartments (axon 
initial segment compartments) had a length of 0.05O; lengths of dendritic and distal axon 
compartment were set to 2O, which was sufficient to prevent boundary effects.  
For the active models, the distal axon initial segment compartment was equipped with 

original Hodgkin-Huxley ion channels [S9]. Their density was adapted to allow for action 
potential initiation in the relatively small axon initial segment (peak sodium conductance 

  

gNa = 1/Rm 50666S/cm
2, a proportional peak potassium conductance of 

  

gK  = 0.3

  

gNa, and no 
additional leak, 

  

gL = 0). Temperature was set to 23°C.  
The stem neurite diameter dstem was investigated in the interval [0.8,15] Pm. Stem neurite 

length was fixed to Lstem = 0.5O unless stated otherwise. The soma diameter and length were 
identical (matching the surface area of a sphere with the same diameter) and were explored in 
the interval [4,100] Pm, i.e., the soma surface ranged from around�200Pm2 to more than 
105Pm2.  



The models were implemented in NEURON [S10] via its python interface [S11]. Temporal 
resolution was 0.01ms. The stimulation electrode (current clamp of NEURON) was located in 
the dendrite compartment, 0.1O from the proximal end. This location was required to prevent 
a broadening of the dendritic signal due to the passive cable properties of the dendrite. For 
stimulation, step currents of fixed duration were used. Stimulus duration was adapted to the 
membrane time constant, Wm = CmRm, to allow for a comparison between models of different 
specific membrane resistance. Voltage responses were recorded in the distal axon initial 
segment. 

Measurements: 
 We compared signal attenuation in models with central or externalized soma location: axon 
and dendrite compartments were either both attached to the soma compartment (central soma), 
or to the stem neurite compartment at the end opposite the soma (externalized soma). For all 
parameter combinations of axial resistance, specific membrane resistance, soma diameter, and 
stem neurite diameter, we evaluated the relative signal attenuation of the models with central 
versus externalized soma. Parameter ranges (as specified above) were sampled equidistantly 
with at least 10 data points for each parameter. 
Minimal dendritic stimulation was used to measure signal attenuation (requiring a crossing 

of the voltage threshold set to 30mV in passive models, or the initiation of a spike in active 
models). Spikes were identified by voltage changes faster than 100V/s, dV/dt > 100V/s. 
Relative attenuation was defined as the ratio of the minimal dendritic current amplitude 
measured in the model with central soma and the minimal dendritic current amplitude 
measured in the model with externalized soma (Figure S1B).  
We note that in our model the relative minimal dendritic stimulation is (approximately) 

equivalent to the relative axonal signal strength (i.e., the ratio of the maximal voltage 
observed in response to a dendritic current step of equal amplitude). The latter data are 
depicted in the inset to Figure S1C, showing the relative maximal axonal depolarization 
without noise, and – as measure of the signal-to-noise level – the relative mean axonal 
depolarization normalized by the standard deviation of the voltage fluctuation for the case 
with an additional white noise current input in the axon initial segment. Our measure hence 
quantifies either energy consumption (assuming a signal is boosted) or signal attenuation (i.e., 
the extend by which the signal is reduced if not actively amplified). In the presence of axonal 
noise, smaller axonal signal amplitudes reduce the signal-to-noise ratio and hence information 
transfer. 

Supplemental Results 

Multicompartmental models: 
 Relative attenuation substantially increased with soma-to-neurite ratio for both passive and 
active models (Figure S1C and Figure S1D). This effect prevailed when prolonging the 
stimulus duration, shortening the stem neurite, or increasing dendrite and axon diameter, 
though the curves became shallower. For soma-to-neurite ratios above the critical value (i.e. 
favorable externalization), longer stem neurites led to better shielding of the externalized 
soma and thus to larger relative signal attenuation, and relative signal attenuation also 
increased for shorter stimuli (Figure S1E). The effect of signal duration on relative attenuation 
is explained by differences in the total capacitive current between models with central versus 
externalized soma. In the central morphology, the whole soma is depolarized when a signal 
passes, and hence contributes to the capacitive current (and to signal attenuation). In the 
externalized morphology, only those parts of the stem neurite that are depolarized contribute. 
For shorter stimuli, spread of the depolarization into the stem neurite is smaller and hence also 
the total capacitive current. This effect explained the dependence of the critical soma-to-
neurite ratio on the duration of the stimulus pulse (Figure 1C), and may contribute to the 
reliable transmission of action potentials reported for dorsal root ganglion cells [S12]. 
Furthermore, the critical soma-to-neurite ratio showed a weak dependence on stem neurite 



length (data not shown) and was mostly independent of dendrite and axon diameter as well as 
specific membrane capacitance.  
While in passive models the critical soma-to-neurite ratio was well confined, it more 

strongly depended on model parameters in active models (exemplified by the larger horizontal 
width of the gray area at an attenuation ratio of 1, Figure S1D). In the main text, the dotted 
curve in Figure 1C depicts the mean critical soma-to-neurite ratio across active models.  
For completeness, we note that in general, our results also hold for somata with active 

conductances. Active somatic conductances can boost the propagating signal and hence 
reduce signal attenuation. This process is comparable to a boosting of the signal in the 
dendrite (like in the minimal-dendritic-stimulation paradigm). In both cases, it is the ionic 
charges “lost” through the membrane leak that are compensated for by a flow of charges, 
either via the dendritic or somatic membrane. The energetic cost in both scenarios is directly 
related to this charge transfer, and for the most energy-efficient location of the soma, it is of 
minor relevance whether the signal is boosted at the dendrite or at the soma. 

Single-compartment models: 
 Simplification of the multicompartment models allowed us to derive an analytical formula for 
the critical soma-to-neurite ratio that almost precisely matched the passive models with long 
stem neurite (Figure 1C, dashed and straight curve). The central soma amounted to an iso-
potential sphere of surface area A. The externalized soma was not explicitly included under 
the assumption that a long stem neurite shielded the soma. The stem neurite corresponded to a 
semi-infinite cable of diameter d and with length constant O. See Figure 1B for corresponding 
circuit diagrams. 
For both models, the relation between a current step input and the resulting voltage are 

known [S13]. The maximal depolarization in response to a step current (amplitude I and 
duration '·Wm) for the central soma model is given by � � AReI=V /1 mcentral

'�� . For the 

externalized soma model it is given by � � � �2
aexternal /4erf dRI=V SO' , where erf denotes the 

error function.  
At the critical soma-to-neurite ratio, current amplitudes and maximal voltage responses of 

both models have to be equal in the minimal stimulation paradigm. Consequently, the critical 
soma-to-neurite ratio was given by � � � � � �'� '� erf/1/ e=dA OS . Note that the analytical 
model showed directly that the effect of stimulus duration on the critical soma-to-neurite ratio 
(Figure 1C) agrees to the dependence of depolarization spread on stimulus frequencies in 
passive cables [S14]; stimuli of lower frequency spread further.  
Intuitively, the soma-to-neurite ratio can be interpreted as the ratio of the soma surface A to 

the depolarized parts of the stem neurite surface (i.e., SdO). For step current inputs of infinite 
duration, the critical soma-to-neurite ratio is one. In this case, signal attenuation at the central 
soma is larger than at the stem neurite because the soma surface, and thereby the total somatic 
leak current, is larger than the depolarized surface of the stem neurite and the corresponding 
leak current. 
The equation � � AReI=V /1 mcentral

'��  shows that, in principle, for a central soma 
location signal attenuation could also be reduced by increasing the somatic membrane 
resistance (corresponding to a decrease in leak conductance). While such a strategy may help 
to maintain a large signal amplitude despite a central soma location, the increase in membrane 
resistance results in an increase of the membrane time constant and hence significantly slows 
down processing. In contrast, the externalization of the soma advocated in this study does not 
require an increase in membrane resistance, and increases processing speed even further by a 
reduction of the capacitive load. 



 
 
Figure S1: (A) Structure of multicompartmental model neurons with central and externalized 

soma. (B) Minimal dendritic stimulation paradigm. Signal attenuation is derived from the 

minimal amplitude of a current pulse required to cross a predefined voltage threshold (passive 

models) or to elicit a spike (active models). (C) Relative attenuation across models with 

different soma-to-neurite ratio (across all parameter combinations of soma diameter, stem 

neurite diameter, axial resistance and specific membrane resistance, with a stimulus duration 

of 0.3Wm); medians (black curve) and 10th and 90th percentiles (gray area). Inset: Same 

analysis for the relative signal strength with and without noise for a constant dendritic current 

injection. Externalization is favorable for relative signal strengths above one. (D) Active 

models; same analysis as in C. (E) Relative signal attenuation as a function of stem neurite 

length for three different stimulus pulse durations. Example with a soma-to-neurite ratio that 

favors the externalized morphology. (F) Stem neurite diameter correlates well with primary 

dendrite diameter. Data points corresponding to all experimental data from neurons with 

externalized soma location (Table S1, with the exception of one cell not exhibiting a primary 

dendrite). Linear regression, excluding the outlier (open circle), yielded a slope of 0.53 

(intercept = �0.04, r = 0.97). 



Supplemental Discussion 
Neurons with externalized soma (unipolar neurons) or with central soma (bi- and multipolar 
neurons) are observed in various phyla. While a detailed analysis goes beyond the scope of 
our study, the following picture emerged from an investigation of a subset of species. Cnidaria 
and Ctenophora, which are derived earlier than all Bilateria, have multipolar neurons with 
processes that do not show neuronal polarity (no clear dendrites and axons) (e.g., [S15, S16, 
S17]). The Bilateria are separated into the Deuterostomia and Protostomia. Within the 
Deuterostomia (e.g., vertebrates [S18], Echinodermata [S15, S19], lencelet [S20]), animals 
seem to have predominantly bi- and multipolar neurons. Within the Protostomia, a clear 
predominance of unipolar neurons within the central nervous system is observed for 
Arthropoda (e.g., [S21]), Nemertea (e.g., [S22]), and Rotifera (e.g., Asplanchna brightwellii 
[S23]). A mixture of unipolar, bi- and multipolar neurons with a predominance of unipolar 
neurons is found for Annelida (e.g., Pogonophora [S24]) and Mollusca (e.g., [S25]). A mixture 
of both morhologies, but with clear predominance of bi- and multipolar neurons, is found for 
Platyhelminthes (flat worms, e.g., Mesostoma [S26], policlads, and probably other Turbellaria 
[S27]) and Nematoda (e.g., C. elegans [S24]). 
We conclude that it is highly unlikely that the evolutionary older morphology is the unipolar 
one, because  

• bi- and multipolar neurons dominate in certain species from both Deuterostomia and 
Protostomia, especially in earlier derived branches,  

• unipolar neurons do not dominate in any Deuterostomia, 
• and non-Bilaterian phyla do not show unipolar neurons at all.  

 

Neuron example images: 

The neurons with central and externalized soma shown in Figure 1A were drawn with Py3DN 
[S28] and Blender (blender.org) based on reconstructions from NeuroMorpho.Org [S60]. The 
neuron with externalized soma on the left is a tangential cell (interneuron) from the blowfly 
visual lobe (lobula plate) from [S29], NeuroMorpho.Org ID: NMO_06636. The neuron with 
central soma on the right is a layer 2/3 pyramidal cell from rat neocortex (medial prefrontal 
cortex) from [S30], NeuroMorpho.Org ID: NMO_09626.  



 
Neurons with externalized soma Ra Rm Soma area Stem diameter Source 
 [:cm] [:cm2] [Pm2] [Pm]  
blowfly CH cell 60 2500 2265 2.6 [S31, S29]a 
blowfly HS cell 40 2000 2113 6.1 [S31, S29]a 
blowfly VS cell 40 2000 1600 5.0 [S31, S29]a 
fruit fly DM1 neuron 178 16500 385 0.8 [S32]b 
fruit fly HS cell 400 8166 336 1.0 [S33]c  
locust ocellar L-neuron 24 2000 13397 19.3 [S34] 
locust LGMD neuron 60 4500 8214 10.0 [S35]d  
cricket MG interneuron 100 4000 7521 5.0 [S36, S37] 
cockroach motorneuron (nymphal) 130 30000 1087 2.1 [S38] 
cockroach motorneuron (adult) 130 30000 3318 3.9 [S38] 
cockroach giant interneuron 132 16200 8874 8.5 [S39, S40] 
lobster motorneuron 60 2290 19254 10.8 [S41, S42]a 
crayfish MG neuron 60 1996 122554 11.0 [S43] 
crayfish LG interneuron (nymphal) 60 8600 2942 2.0 [S44] 
crayfish LG interneuron (adult) 60 20900 13685 12.2 [S44] 
rat DRG cell (cultured) 70 3300 3217 1.4 [S12] 
Neurons with central soma Ra Rm Soma area Dendrite 

diameter 
Source 

 [:cm] [:cm2] [Pm2] [Pm]  
goldfish area II neuron 150 33333 2679 7.5 [S45] 
turtle granule cell 100 30300 79 1.6 [S46] 
guinea-pig Purkinje neuron 250 500 1948 5.5 [S47]a 
mouse granule cell 194 38000 514 5.2 [S48]b 
rat DG interneuron (GCLP) 200 10300 1520 5.2 [S49]a 
rat DG interneuron (IMLP) 200 15100 1100 5.3 [S49]a 
rat DG interneuron (OMLP) 200 23400 1890 5.2 [S49]a 
rat DG interneuron (TMLP) 200 13400 740 9.2 [S49]a 
rat Purkinje neuron 115 122000 1214 3.1 [S50] 
rat ventral horn neuron 87 5300 2064 11.4 [S51] 
rat DG basket cell 172 7600 1051 6.4 [S52]b 
rat pyramidal cell (CA1) 178 87736 578 6.5 [S53]b 
rat pyramidal cell (visual cortex) 390 120000 1500 12.6 [S54] 
rat pyramidal cell (neo-cortex) 100 25000 1566 9.9 [S55]b 
rat pyramidal cell (barrel cortex) 150 4500 349 6.5 [S56]e 
cat X cell 200 5534 688 10.3 [S57, S58] 
cat Y cell 200 4451 1549 15.6 [S57, S58] 
cat motorneuron 70 2500 10000 34.3 [S59] 
 
Table S1: Parameters of all neurons used in the study; morphological and electrophysiological 
data taken from the literature, references noted under Source. Soma area specifies the surface 
area of the soma. Axial resistance Ra and specific membrane resistance Rm are stated as 
reported in the corresponding publications (noted under Source). Dendrite diameter refers to 
the equivalent cylinder diameter representing all proximal dendrites.  
 
a Reconstructions from NeuroMorpho.Org [S60]. 
b Neuronal parameters from ModelDB [S61]. 
c Data kindly provided by Hermann Cuntz. 
d Data kindly provided by Fabrizio Gabbiani. 
e Data kindly provided by Guy Leyal and Idan Segev. 
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Prominent changes in neuronal dynamics have previously been attributed to a specific switch in onset
bifurcation, the Bogdanov-Takens (BT) point. This study unveils another, relevant and so far underestimated
transition point: the saddle-node-loop bifurcation, which can be reached by several parameters, including
capacitance, leak conductance, and temperature. This bifurcation turns out to induce even more drastic changes in
synchronization than the BT transition. This result arises from a direct effect of the saddle-node-loop bifurcation
on the limit cycle and hence spike dynamics. In contrast, the BT bifurcation exerts its immediate influence upon
the subthreshold dynamics and hence only indirectly relates to spiking. We specifically demonstrate that the
saddle-node-loop bifurcation (i) ubiquitously occurs in planar neuron models with a saddle node on invariant
cycle onset bifurcation, and (ii) results in a symmetry breaking of the system’s phase-response curve. The latter
entails an increase in synchronization range in pulse-coupled oscillators, such as neurons. The derived bifurcation
structure is of interest in any system for which a relaxation limit is admissible, such as Josephson junctions and
chemical oscillators.

DOI: 10.1103/PhysRevE.95.052203

I. INTRODUCTION

Different states of macroscopic network dynamics are a
hallmark of complex systems such as the brain. In nervous
systems, transitions between dynamical states constitute im-
portant switch points. For example, the emergence of so-
called frustrated synchronization states (i.e., high-entropic,
multistable network states verging between order and dis-
order) is thought to play a role in neural function and its
pathologies [1]. Such transitions can, on the one hand, emerge
as a consequence of the network topology, as it is found
in the human connectome [2]. Here, we present a general
case where a specific variation in single-neuron properties
can drastically switch network synchronization properties,
provided the cells’ parameters are close to a critical transition
point: the saddle-node-loop (SNL) bifurcation.

While this bifurcation is not unknown [3], our results
demonstrate that its substantial, qualitative consequences
for neural dynamics have so far not been sufficiently ac-
knowledged. Moreover, we show that the SNL bifurcation
is a ubiquitous feature in (planar) type I neuron models.
Because a vast proportion of models [4–6] belongs to this
class (describing neurons ranging from isolated gastropod
somata [7] to hippocampal neurons [8,9]), this transition point
and its implication need to be taken into account for biological
function.
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Different types of spike generation were first classified
by Hodgkin [10] and later linked to particular bifurcations
ruling the transition from rest to spiking [11,12]. Recently,
the ability of neurons to change the mechanism of spike
generation under physiological conditions has attracted the
interest of both theoreticians and experimentalists [13–16].
Attention was mostly directed at the transition between the
two traditional excitability types, which involve either a fold
(saddle node) or a Hopf bifurcation [Fig. 1(a)], along with their
differential subthreshold filtering properties [17–20]. Here,
we investigate an alternative transition, which switches the
spike onset from a saddle node on an invariant cycle (SNIC)
bifurcation to a saddle homoclinic orbit (HOM) bifurcation
[Fig. 1(b)]. This transition is organized by a codimension-two
bifurcation: the SNL bifurcation [21,22]. As we demonstrate,
the SNL bifurcation causes an abrupt change in the phase-
response curve, with far-reaching functional consequences.
For example, the increased ability of individual cells to form
antiphase synchronization observed at an SNL bifurcation
affects the dynamics of networks (Fig. 2), with potential
relevance for various pathological conditions ranging from
epilepsy to Parkinson’s disease [25,26].

SNL bifurcations can occur with several bifurcation param-
eters, including the time constant of the gating kinetics [23].
In this study, we identify the separation of time scales between
voltage and gating dynamics as the decisive bifurcation
parameter, underlying the effect of other parameters, such as
capacitance or temperature. Starting at a SNIC bifurcation in
planar general neuron models, we demonstrate that a variation
in the separation of time scales provokes a generic sequence
of firing onset bifurcations. Compared to other bifurcation
studies, which rely on a local unfolding of a codimension-
three bifurcation [27,28], our approach proves the generic
bifurcation structure including the appearance and ordering of
codimension-two bifurcations on a global scale not restricted
to local analysis. The composed bifurcation diagram hence

2470-0045/2017/95(5)/052203(12) 052203-1 Published by the American Physical Society
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FIG. 1. The transition from rest to spiking in response to an
increase in input current IDC requires (a) that the resting state loses
stability (illustrated are fold and subcritical Hopf bifurcations) and
(b) the creation of a limit cycle [illustrated are saddle homoclinic
orbit (HOM) and SNIC bifurcations]. The membrane capacitance Cm

makes it possible to switch between these bifurcations. The separation
function, sep, marked in red, measures the distance between the stable
and unstable manifold of the saddle. The overlap of both, i.e., sep = 0,
results in a homoclinic orbit.

FIG. 2. (a) Spike raster plot of two small globally coupled
networks of five Wang-Buzsaki models (see Appendix A), one close
to the SNL bifurcation with Cm = 1.47 μF/cm2, the other at a
SNIC bifurcation with Cm = 1 μF/cm2. Synaptic connections are
modeled as voltage perturbations of ε = 0.39 mV. The frequency
detuning of the neurons is approximately equally spaced between
5 and 11 Hz. (b) Phase-locking index, calculated between pairwise
neurons i and j with phase φi,j as 〈ei2π (φi−φj )〉, where brackets denote
temporal averaging. Error bars denote standard deviations. (Top)
Locking index for the network when the capacitance is changed [as
in panel (a)]. (Bottom) Locking index for the network when the leak
conductance gL is changed (instead of capacitance). ε = 0.08 mV,
Cm = 1 μF/cm2, and SNIC at gL = 0.1 mS/cm2 and SNL at
gL ≈ 0.57 mS/cm2; all other parameters are identical to those in
the top panel. Locking at both SNL bifurcations exceeds locking at
the corresponding SNIC bifurcation.

predicts the behavior of a class of neurons over the whole
range of time-scale parameters and thereby warrants a direct
comparison with biological neurons.

The organization of this article is as follows. Section II
describes how the phase-response curve can be identified
from the limit cycle of a dynamical system. With this
relation established, Sec. III proves that a symmetry breaking
of the phase-response curve occurs at SNL bifurcations.
The functional consequences for synchronization in spiking
systems are discussed in Sec. IV. The significance of these
consequences is perpetuated by the results in Sec. V, where
we prove that SNL bifurcations generically occur in planar
neuron models.

II. CONDUCTANCE-BASED NEURON MODEL
AND PHASE REDUCTION

To investigate spike-based synchronization, our detailed,
conductance-based model neurons are reduced to a phase
description. The latter assumes tonic responses of a mean-
driven neuron [18]; i.e., spikes are emitted with a mean spike
rate, f , in response to a constant mean intensity, IDC, and their
occurrence is modulated by inputs sufficiently weak to only
shift spike times {t sp

k }. The spike train is y(t) = ∑
k δ(t sp

k − t).
The dynamics of the membrane voltage v follows a current

balance equation, IDC = Icap + Iion. The input equals the ca-
pacitive current, Icap = dCmv

dt
(with membrane capacitance Cm)

and an ionic current, Iion = Iion(v,mi,...), which is a function
of v itself and the open probability of ion channels given by
their gating variables, mi . Combined, this conductance-based
neuron model forms a dynamical system, Ẋ = F (X), with the
structure ⎛

⎝ v̇

ṁi

...

⎞
⎠ =

⎛
⎜⎝

1
Cm

[IDC − Iion(v,mi,...)]
m∞

i (v)−mi

τmi
(v)

...

⎞
⎟⎠, (1)

where the overdot denotes the derivative with respect to
time and F determines the dynamics of the unperturbed
system. Synaptic inputs are modeled as instantaneous voltage
perturbations: If a spike occurs at time t sp in the presy-
naptic neuron, then vpost(t

sp
pre) �→ vpost(t

sp
pre) + ε, where ε =

IsynC
−1
m

∫ t sp+�

t sp−�
dr δ(r − t sp) results from the integration of δ

currents of amplitude Isyn. The dynamical variables consist of
the voltage and the gating variables. The gating is typically
modeled by first-order kinetics (for details, see Appendix A).

The input IDC acts as bifurcation parameter for both the
fixed-point destabilization and the limit-cycle creation (Fig. 1).
For our analysis, we focus on neuron models in which the fixed
point loses stability at a fold bifurcation.

The study of spike synchronization is facilitated by
reducing the high-dimensional dynamics to a single phase
equation. One way to formally obtain such a reduction from
a biophysical model of membrane-voltage dynamics is to find
the input-output (I/O) equivalent phase oscillator [29]. The
mapping of input to spike times is given by the phase-response
curve (PRC) of the neuron [30]. The PRC, Z, relates the
timing of the occurrence of a weak perturbation to the
resulting temporal advance or delay of the following spike,
Z : φ �→ �φ. The spike times {t sp

k } correspond to the level
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crossings of the phase, φ(t sp
k ) = k for k ∈ Z, so that the

spike train can be written as y[φ(t)] = ∑
k δ[φ(t) − k]. The

occurrence of spikes in neuron i, if receiving inputs from
another neuron j , is governed by the phase equation

φ̇i = fi + Z(φi)y(φj ) + ξi(t). (2)

The intrinsic noise ξi(t) of each neuron is assumed to be a
zero-mean white-noise process, 〈ξi(0)ξi(�t)〉 = σ 2δ(�t).

In the following, the mean spike rate, f , in response to the
mean drive, IDC, and the PRC, Z(φ), are implicitly taken to
be functions of the parameters of the detailed neuron model
introduced above in Eq. (1). The phase oscillator in Eq. (2)
is then used throughout the paper to predict synchronization
properties of neurons.

To identify the I/O equivalent phase model in Eq. (2), the
PRC needs to be calculated for the conductance-based model
in Eq. (1). From a dynamical systems perspective, the PRC Z

is the periodic solution to the adjoint of the first variational
equation of the unperturbed dynamics in Eq. (1), Ẋ = F (X),

dZ

dφ
(φ) = −J	(φ)Z(φ), (3)

where 	 denotes the matrix transpose and J = ∂F
∂X

is the
Jacobian evaluated on the limit cycle. To comply with
Eq. (2), the PRC associated with voltage perturbations needs
to be normalized as Z(φ)F (φ) = f,∀ φ. The resulting relation
between PRC and parameters of the conductance-based neuron
model allows us to consider synchronization at different firing
onset bifurcations. In the following, we use the dynamics on the
homoclinic orbit to deduce PRC properties of the limit cycle
that arises from the homoclinic orbit, and, for convenience,
we refer to the limit cycle PRC as the PRC at the limit-cycle
bifurcation (SNIC or SNL), i.e., ZSNIC or ZSNL.

III. A FLIP IN THE DYNAMICS ALTERS THE PRC
SYMMETRY AT AN SNL BIFURCATION

In a first step, we infer the PRC from the dynamics
at firing onset bifurcations, in particular around the SNL
bifurcation. As bifurcations imply in general qualitatively
different dynamics [31], limit-cycle dynamics are expected
to change at the switch in firing onset dynamics at the SNL
bifurcation. However, what are the specific consequences for
the PRC and hence the synchronization ability of neurons?
To answer this question, we start by discussing changes in
limit-cycle dynamics at the SNL bifurcation. We then show
that this also alters the PRC in such a profound way that it has,
in turn, drastic implications for the resulting synchronization
ability discussed in Sec. IV.

A. Orbit flip

We consider models with classical type I excitability where
the transition from rest to repetitive firing is marked by (i)
the elimination of the resting state in a fold bifurcation and
(ii) the existence of a limit cycle to which the dynamics relax
instead. This limit cycle is born at a limit-cycle bifurcation,
which is in type I neurons typically a SNIC bifurcation. At a
codimension-two SNL bifurcation, the limit-cycle bifurcation
switches between a SNIC and a HOM bifurcation [Fig. 1(b)].

FIG. 3. (Top to bottom) (a) Schematic illustration of the orbits
at small SNL bifurcation, nondegenerated SNIC bifurcation, and
big SNL bifurcation, with semistable (small single arrow) and
strongly stable manifold (double arrows). These bifurcations oc-
cur in the Wang-Buzsaki model for IDC ≈ 0.16 μA/cm2, Cm ≈
[1.47, 1, 0.09] μF/cm2. (b) The associated phase-response curves
measured for IDC 2% above the fold bifurcation.

The following, model-independent analysis focuses on the
small SNL bifurcation that transitions from a SNIC orbit
to a small HOM orbit [Fig. 3(a)], because it entails more
drastic changes in PRC shape, as discussed later. The big SNL
bifurcation (transitioning to a big HOM orbit) will be studied
with numerical continuation (Sec. IV).

The limit cycle created at a HOM, SNIC, or SNL bifurcation
arises from a homoclinic orbit to a saddle (HOM) or saddle
node (SNIC, and also SNL). Under the assumption of
sufficiently large limit-cycle periods, the slow velocity in the
vicinity of these fixed points contracts the dynamics such that
limit-cycle properties, e.g., period or PRC, can be extracted
from a linear approximation around the fixed point.

The linearized dynamics around the saddle-node fixed
point is given by its Jacobian. Assuming nondegeneracy, the
Jacobian has a single zero eigenvalue, associated with the
semistable manifold, while the other eigenvalues are strictly
negative (strongly stable manifolds). Trajectories always leave
the saddle node along the semistable manifold. When a
trajectory loops around in a homoclinic orbit, it can either
reapproach the saddle node along the same manifold (SNIC
bifurcation) or along the much faster, strongly stable manifold
(SNL bifurcation). The approach of the saddle node at an SNL
bifurcation flips from the semistable manifold to one of the
strongly stable manifolds (hence, orbit flip bifurcation [24])
[Fig. 3(a)]. For neuron models, this flip can be induced by a
scaling of the relative speed in the voltage and gating kinetics
(Fig. 4). When the saddle node disappears after the fold
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FIG. 4. Phase-response curve (left) and phase plot around the
saddle node (right) for (a) a nondegenerated SNIC bifurcation
with Cm = 1 μF/cm2 and (b) a small SNL bifurcation with Cm ≈
1.47 μF/cm2 in the Wang-Buzsaki model with the limit-cycle period
fixed in both cases to 2 Hz.

bifurcation, its remaining ghost still dominates the resulting
limit-cycle dynamics. The limit-cycle period drastically de-
creases around the SNL bifurcation (Fig. 5(a); see also [3]),
mainly because of the separation of time scales between
strongly stable and semistable manifold, which renders the
approach along the strongly stable manifold much faster than
the approach along the semistable manifold.

B. PRC symmetry and Fourier modes

Numerical continuation of several neuron models shows
that the PRC is drastically altered at the SNL bifurcation.
Exemplified in Fig. 3(b) for the Wang-Buzsaki model
(Appendix A), the symmetric PRC at a (nondegenerated)
SNIC bifurcation becomes increasingly asymmetric when an

FIG. 5. Variation of the membrane capacitance Cm for the Wang-
Buzsaki model with input fixed at 2% above limit-cycle onset at
IDC ≈ 0.16 μA/cm2. (a) Limit-cycle period (black) and relative
limit-cycle (LC) stability (gray) given by the ratio of the limit-cycle
attraction time (inverse of the Floquet exponent) and the period. A
small LC stability supports the validity of the phase description [36].
(b) Maximal amplitude of the odd part of the PRC, corresponding
to the entrainment range when normalized by the coupling strength
assuming δ coupling (abbreviated sync).

increase in membrane capacitance tunes the model towards
the SNL bifurcation. The strong asymmetry at the SNL
bifurcation directly affects the synchronization ability of the
neuron (see Sec. IV).

The sudden occurrence of PRC asymmetry at an SNL
bifurcation can be directly inferred from the orbit flip in the
dynamics described in the last section (Sec. III A). The PRC
peaks when the phase reaches the ghost of the saddle node,
where the slow dynamics allow infinitesimal perturbations to
maximally advance phase. In the case of the SNIC bifurcation,
the same velocity governs the approach and exit of the ghost,
both aligned with the semistable manifold (Fig. 4; for details,
see Appendix B). The orbit flip to the strongly stable manifold
at the SNL bifurcation either decreases or increases the time
spent on the approach compared to exit for the small or big
SNL, respectively. This, in turn, breaks the symmetry of the
PRC at the SNIC bifurcation by advancing or delaying the
phase at which the maximum of the PRC resides.

Neglecting the fast approach at the small SNL bifurcation,
it seems as if the flow of the limit-cycle trajectory is
directly injected at the ghost. Because the exit dynamics
at SNL and SNIC bifurcations are similar, the PRC at
the small SNL bifurcation appears as a rescaled version
of the second half of the PRC at the SNIC bifurcation,
Zsmall SNL(φ)∝∼ZSNIC(0.5φ + 0.5). This reasoning is supported
by numerical continuation [Figs. 3(b) and 4] and explains
the observation that the limit-cycle period is approximately
halved at the SNL bifurcation [Fig. 5(a)].

The necessity of the PRC symmetry breaking at the SNL
bifurcation can also be seen from normal form theory. For
the SNIC bifurcation (and the supercritical Hopf bifurcation),
the PRC is a simple trigonometric function, ZSNIC(φ) ∝
1 − cos(2πφ) [ZHopf(φ) ∝ sin(2πφ)] [11,32,33]. Approached
from the SNIC, the small SNL bifurcation, however, registers
a sudden emergence of higher Fourier modes in the PRC. On
the other side of the small SNL bifurcation, the canonical
PRC at a small HOM bifurcation is an exponential with some
decay constant τ , ZHOM(φ) ∝ exp(−φ/τ ) [33,34]. Hence, in
contrast to the trigonometric PRCs with a single Fourier mode
at the SNIC or supercritical Hopf bifurcations, the PRCs at
HOM and small SNL bifurcations have an infinite amount of
Fourier modes. This results in Gibb’s phenomenon if finite
approximations are used.

The significant increase in PRC Fourier modes, as well as
the breaking in PRC symmetry, are generic properties of SNL
bifurcations.

IV. SYNCHRONIZATION PEAKS AROUND SNL
BIFURCATIONS

The asymmetry of the PRC scales the frequency detuning
over which a neuron entrains to its input (the width of the
Arnold tongue [35,36]). The input can be either a periodic
signal or the recurrent input from other neurons in a network.
Here, we use synchronization in the sense of a constant phase
relation between oscillators; compare Fig. 2. The relation
between PRC and synchronization can be illustrated by two
δ-coupled phase oscillators, φ1,2, as defined in Eq. (2),

φ̇1,2 = f1,2 + Q(φ1,2 − φ2,1) + ξ1,2, (4)
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where the coupling function Q results from an averaging step
if the interaction between both oscillators are assumed to be
weak [37]. In the present pulse-coupled case this means

Q(�) =
∫ ∞

0
Z(ϕ)δ(ϕ + �)dϕ = Z(�).

The phase difference, ψ = φ1 − φ2, evolves as ψ̇ = �f +
Qodd(ψ), where Qodd(ψ) = Q(ψ) − Q(−ψ) is twice the odd
part of the coupling function. Synchronization (i.e., a constant
phase lag ψ) requires ψ̇ = 0, and the maximal admissible
frequency detuning �f = f1 − f2 is given by the image of
Qodd. In the case of δ coupling, Qodd is equal to twice the odd
part of the PRC, Zodd, so that phase locking occurs only if �f ∈
[min Zodd, max Zodd]. In Fig. 5(b), the synchronization range
max Zodd– min Zodd is plotted. The increased synchronization
range will also manifest itself in globally coupled networks of
the type studied in Refs. [38,39]. For two coupled oscillators,
a small SNL bifurcation favors alternated spiking, which is
sometimes called antiphase synchronization. This is in contrast
to the stable in-phase locking that is observed for PRCs shaped
like a negative sine (see Supplemental Material in Ref. [27]).

The decisive factor for increased synchronization around
the SNL points is the PRC symmetry breaking with the
emergence of high-frequency Fourier modes, which govern
the existence and stability of fixed points in the phase
differences between oscillators. Of minor importance for the
peak observed in Fig. 5(b) is the period reduction observed in
Fig. 5(a), which counteracts the increase in synchronization in
approach of the SNL points by scaling the PRC with the period.
The network example from Fig. 2 also shows a significant
change in synchronization when the period is held constant by
a fixation of the mean firing rate. The PRC symmetry breaking
with the emergence of high-frequency Fourier modes occurs
generically at SNL bifurcations (Sec. III), such that the conse-
quences derived in this section generalize to other oscillators
beyond neuroscience. In particular, neurons close to an SNL
bifurcation synchronize differently from what is expected for
SNIC neurons that show traditional type I excitability.

V. GENERIC OCCURRENCE OF SNL BIFURCATIONS

The consequences of the SNL bifurcation discussed in
Sec. IV will be of particular relevance for neuronal pro-
cessing [40] if the SNL bifurcation generally occurs in
realistic neuron models. Next, we demonstrate that indeed any
two-dimensional, type I conductance-based neuron model can
always be tuned to SNL bifurcations. More precisely, we show
that the SNL bifurcation is an essential element in the bifurca-
tion diagram that uses input current and membrane capacitance
as control parameters. This bifurcation diagram also allows us
to relate the SNL bifurcation to other bifurcations such as
the Bogdanov-Takens (BT) bifurcation, classically termed the
switch of type I/II excitability [37,41].

Concentrating on bifurcations relevant for neuronal spiking
(i.e., bifurcations affecting a stable limit cycle), Fig. 6 shows a
bifurcation diagram of the Wang-Buzsaki model (Appendix A)
with input current and membrane capacitance as control
parameters. Along the dimension spanned by the capacitance,
two SNL bifurcations enclose the SNIC bifurcation. The
lower SNL bifurcation corresponds to a big SNL bifurcation
for which the arising limit cycle encircles the ghost of the

FIG. 6. (a) Bifurcation diagram of the Wang-Buzsaki model
under variation of membrane capacitance Cm and input current IDC.
With Cm = 1 μF/cm2, the limit cycle arises from a SNIC bifurcation.
Increasing Cm leads to the small SNL at Cm ≈ 1.47 μF/cm2. Hatched
areas mark bistability. (b) Decreasing Cm leads to the big SNL and
then to a Bogdanov-Takens (BT) bifurcation. Note that a change
of stability in the big HOM branch, not shown here, follows from
Ref. [42]. (c) Schematic illustration for the limit Cm → 0, in which
the system corresponds to a relaxation oscillator. Drawn in the state
space of gating variable n versus voltage v, the solid line with an
inverted N shape represents the voltage nullcline, and the dashed
line represents the gating nullcline. At some IDC, the resting state
loses stability and a big HOM orbit around all fixed points (green) is
created.

saddle node and the upper SNL bifurcation corresponds to
a small SNL bifurcation for which the ghost of the saddle
node lies outside of the limit cycle [Fig. 3(a)]. In particular,
decreasing the capacitance, an SNL point is passed before the
BT bifurcation is reached.

We show in Appendix C that this bifurcation structure
generalizes (under mild assumptions) to planar neuron models.
The membrane capacitance Cm is used as a bifurcation parame-
ter in the general bifurcation diagram that we construe, because
it simply changes the time scale of the voltage dynamics
[Eq. (1)]. The proof separately considers the lower and the
upper parts of the bifurcation diagram. The lower part is based
on the so-called relaxation limit with infinitely fast voltage
dynamics that arises from the limit Cm → 0 [Fig. 6(c)], where
the bifurcation structure is known [42]. Nonzero capacitance
values are deduced from several observations that restrict the
path of limit-cycle bifurcation branches in planar systems.
The upper part of the bifurcation diagram is extracted from the
unfolding of a BT point.

Our derivation may be an interesting starting point for
similar results in other dynamical systems in which the time
scale of a single dynamical variable is used as a bifurcation
parameter. For our planar neuron models, we find that the
SNIC bifurcation branch is generically enclosed by two SNL
bifurcations that are reached by an adaptation of the voltage
time scale. In particular, our results show that a continuous
variation of the voltage time scale reaches the BT point only
after passing one of the SNL bifurcations.

VI. DISCUSSION

This article explores the intricate relation between SNL
bifurcations, the changes in associated PRCs, and the resulting
consequences for the ability of neurons to synchronize (Fig. 5).
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In a mean-driven regime [18] (i.e., in the presence of a
stable limit cycle), drastic changes in neuronal processing
in general [40], and synchronization in particular, can be
expected if a bifurcation directly affects the stable limit cycle
(and not only the fixed points). This is the case for the
SNL bifurcation, with strong implications for synchronization,
as we have shown here. In contrast, at a Bogdanov-Takens
bifurcation, which is classically regarded as the transition point
between type I and type II excitability, stable limit cycles
are not directly involved. The BT-associated Hopf bifurcation
in neuron models is typically subcritical, and the limit cycle
arising at the subcritical Hopf bifurcation is unstable. Hence,
the limit cycle changes bear only indirect relevance for
mean-driven spiking. This provides an intuitive explanation
for why the changes in synchronization we observed at the
BT transition are minor compared to those of the saddle-
node-loop bifurcation [Fig. 5(b)]. While the subcritical Hopf
bifurcation can lead to substantial changes in subthreshold
dynamics and filtering [17,19,27,37,43], synchronization is
modified only if the system behaves like a fluctuation-driven
escape problem [44,45], and not like the mean-driven regime
considered here.

Moreover, we note that models in the vicinity of a BT
point have a different bifurcation structure than the original
Hodgkin-Huxley (HH) model [46]. In the HH model, the
unstable limit cycle is born at a fold of limit cycles bifurcation
(together with the stable limit cycle) and terminates in the
subcritical Hopf bifurcation (destabilizing the fixed point). In
contrast, in the normal form of the BT bifurcation, the unstable
limit cycle is born at a HOM bifurcation [47]. This difference
will probably affect the PRC of the stable limit cycle, for which
the canonical shape is still unresolved [48]. Furthermore, the
identified generic bifurcation sequence shows that a smooth
change in time-scale parameters does not justify the previously
used heuristic formula that exploits a single Fourier mode to
interpolate between ZSNIC and ZHopf [40,49,50].

As codimension-two bifurcation, the SNL bifurcation is
reached in neuron models by an appropriate tuning of both the
input current and one additional model parameter. Examples
for the second control parameter are the membrane capac-
itance, maximal gating conductances, tonic inhibition [27],
neuromodulators [14], or gating time constants [23]. With
the membrane capacitance as a bifurcation parameter, we
demonstrate for planar conductance-based models with a
SNIC bifurcation that, ubiquitously, an SNL bifurcation is
the first bifurcation reached for lowered or increased capac-
itance, respectively. With the three bifurcation parameters—
capacitance, input, and leak conductance—the identified se-
quence of bifurcations collapses into a codimension-three cusp
BT point [27,28]. This potentially generalizes the described
bifurcation structure beyond the planar case.

Focusing on neuron models that spike at low firing rates,
where the dynamics is dominated by the bifurcation that
creates the limit cycle, allows us to draw model-independent
conclusions. Furthermore, the phase description employed
here demands for small inputs compared to the limit-cycle
stability. The strong stability of the limit cycle around the
SNL point [Fig. 5(a)] validates the phase reduction even
for reasonably sized inputs. The low firing rates required
for the center manifold reduction to be valid and the rel-

atively weak synaptic connections are typical for cortical
neurons [4,5].

Our mathematical arguments (Appendix C) require one
bifurcation parameter to be the relative time scale between
state variables, which can take us to the relaxation limit. The
membrane capacitance is one such parameter. The effective
membrane capacitance depends on cell parameters, such as
the morphology of the neuron or the myelination of its
axon [51], and may hence be adapted on developmental
or evolutionary time scales. Recent studies report reduced
capacitance in human neurons [52,53], potentially due to
the lipid composition of the membrane. While these studies
consider mainly passive membrane properties, our work
extends beyond and reports the implications of changed
capacitance for spike dynamics. In contrast to the general
assumption that the membrane capacitance is constant across
all neurons, the reported variability in membrane capacitance
suggests that evolution could directly tune the membrane
capacitance to the proximity of an SNL point. Indeed, it
seems that not only evolution, but also development acts on
the membrane capacitance; for example, aging reduces Cm in
rhesus monkeys [54].

Among the biologically relevant bifurcation parameters
is the leak conductance gL, which affects the time-scale
separation in a more indirect way than capacitance. Changes
in leak can equally lead to an SNL bifurcation [27], with
the accompanying increase in (antiphase) synchronization
[Fig. 2(b)]. For example, the effective leak conductance
can be changed by the amount of inhibition the neurons
receives (shunting inhibition) [27] or by certain neuromod-
ulators [55,56].

Based on our results, we predict that SNL points can
be identified experimentally via the characteristic breaking
of PRC symmetry. Experimental measurement of PRCs
[27,57–61] can help to assess whether cellular dynamics are
close to an SNL bifurcation. Moreover, our analysis sug-
gests that a specific experimental technique—infrared neural
stimulation—may require a careful interpretation. Specifically,
infrared neural stimulation could not only excite neuronal
tissue, but potentially also alter neuronal dynamics, because it
has been shown to rely on a change in membrane capacitance,
Cm, to depolarize neurons and thus stimulate networks [62].
Hence, during infrared neural stimulation extended changes
in capacitance could push the neurons closer to an SNL
bifurcation, with consequences for neuronal dynamics and
functionality exceeding a pure excitation.

Last but not least, our results provoke the question as to
why neurons should, under natural conditions, favor a position
close to an SNL point. On the one hand, the facilitation of
antiphase synchronization around the SNL point may result
in a frustrated network state with rich dynamical attractors
for memory or information processing [1,65]. On the other
hand, SNL bifurcations may also be relevant in pathology
(e.g., epilepsy). Beyond neural networks [66], frustrated
systems also underlie power blackouts [71], repressive gene
networks [65], and social networks [72].

In summary, our study consists of two parts. First, we
extracted the phase-response curve from the dynamics at
an SNL bifurcation and used this knowledge to infer the
associated synchronization abilities. Both the PRC asymmetry

052203-6



QUALITATIVE CHANGES IN PHASE-RESPONSE CURVE . . . PHYSICAL REVIEW E 95, 052203 (2017)

and its high Fourier modes are generic properties at SNL
bifurcations. Thereby, our results generalize across neuron
models, and are equally applicable to any system that allows
for a phase reduction. Second, we have demonstrated that
SNL bifurcations occur ubiquitously in a set of planar neuron
models. With the time scale of one dynamical variable as
bifurcation parameter, the structure of our proof is likely to
extend to other systems with a subcritical Hopf bifurcation
in the relaxation limit, such as lasers [73,74], Josephson
junctions [75–78], and chemical reactions [79,80]. Together,
both parts highlight the SNL bifurcation as a hitherto under-
estimated bifurcation with prominent importance for neuronal
dynamics.
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APPENDIX A: GENERIC DEFINITION OF
CONDUCTANCE-BASED NEURON MODELS

We consider a generic class of conductance-based neuron
models [27],

v̇ = Icap(v,...)

Cm
= 1

Cm
[Iin − gL(v − vL) − Igating], (A1)

Igating =
n∑

i=0

gi(v − vi)
K∏

k=0

m
pik

ik , (A2)

where ion channel i has maximal conductance gi and reversal
potential vi and its open probability is given by a product
of gating variables (potentially to some power of pik). Each
gating variable mik of ion channel i is either a function
of the voltage, mik = mik∞(v), or relaxes exponentially to
its steady state value mik∞(v), with gating kinetics given
by

ṁik = mik∞(v) − mik

τik(v)
. (A3)

For numerical continuation, we use a single-compartmental
version of the Wang-Buzsaki model for hippocampal pyrami-
dal cells [9] with the dynamics

v̇ = [I + gL (EL − v) + Igate]/Cm,

ḣ = 5 [αh(v) (1 − h) − βh(v) h],

ṅ = 5 [αn(v) (1 − n) − βn(v) n],

with membrane capacitance Cm = 1 μ F/cm2; maximal
conductances gL = 0.1 μ S/cm2, gNa = 35 μ S/cm2,
gK = 9 μ S/cm2; reversal potentials EL = −65 mV,
ENa = 55 mV, EK = −90 mV; and the following

functions:

Igate = gNam∞(v)3h(ENa − v) + gKn4(EK − v),

m∞(v) =
v+35

exp[−0.1 (v+35)]−1
v+35

exp[−0.1 (v+35)]−1 − 40 e−(v+60)/18
,

αh(v) = 0.07 exp[−(v + 58)/20],

βh(v) = 1

1 + exp[−0.1 (v + 28)]
,

αn(v) = −0.01
v + 34

exp[−0.1 (v + 34)] − 1
,

βn(v) = 0.125 exp[−(v + 44)/80].

APPENDIX B: PRC SYMMETRY

The PRC asymmetry at the SNL bifurcation is a direct
consequence of the broken symmetry in the dynamics at
the SNL bifurcation. This section gives more detail on the
relationship between dynamics and PRC, both intuitively and
with a mathematical argument. We will describe first how
the dynamics at the SNIC bifurcation leads to a symmetric
PRC and then show that these conditions are not met at the
SNL bifurcation, predicting an asymmetric PRC at an SNL
bifurcation. While the arguments are presented with a small
SNL bifurcation in mind, they hold in a similar way for a big
SNL bifurcation.

As introduced in the main text, the orbit at a SNIC
bifurcation follows the semistable manifold of the saddle-node
fixed point, which corresponds to the central manifold of a fold
bifurcation. The zero eigenvalue of the Jacobian J at the saddle
node on the semistable manifold eliminates the linear term.
The leading second-order term results in a parabolic normal
form. For dynamics centered around x = 0, stimulated with
input s, the dynamics is

ẋ = s + x2, (B1)

where all variables are chosen unitless for convenience.
The dynamics is symmetric around the saddle-node fixed

point; i.e., the orbit has corresponding velocities at the
approach and exit of the saddle node. The orbit flip at the
SNL bifurcation breaks this symmetry in the dynamics, and,
as we will show, also in the PRC.

From a mathematical perspective, the normal form allows
for a calculation of the PRC. We, however, will use the
normal form to directly analyze PRC symmetry. For the
SNIC bifurcation, the reflection symmetry of the PRC can
be inferred from the symmetry of the dynamics: If x(t) is
a solution of the dynamical system given by Eq. (B1), then
the same holds for −x(−t); x(t) is hence point symmetric
in time, x(t) = −x(−t). Derivation of the right-hand side
of Eq. (B1) by x results in a Jacobian linear in x, which
is hence point symmetric in x, J (x) = −J (−x). Inserting
both into the adjoint equation [Eq. (3)] directly leads to a
PRC reflection symmetric in time, ZSNIC(t) = ZSNIC(−t). In
contrast, the asymmetric dynamics at the SNL bifurcation lead
to an asymmetric PRC.

Intuitively, on an orbit that connects to a saddle-node fixed
point, the dynamics becomes arbitrary slow at the fixed point.
The limit cycle shows the slowest dynamics in the same region
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in state space, in proximity to the ghost of the former saddle
node. A perturbation that propels the dynamics over the ghost
of the saddle node will therefore maximally advance the next
spike. The maximum of the PRC is at the phase value that
corresponds to the saddle node. For a SNIC bifurcation,
the PRC maximum lies at φ = 0.5 because the symmetric
dynamics of a SNIC take equal time for the approach (from
φ = 0 to φ = 0.5) and the exit (from φ = 0.5 to φ = 1) of
the saddle node. In comparison, the PRC maximum is shifted
towards the left at the SNL bifurcation, because the accelerated
entry along the strongly stable manifold advances the saddle
node to earlier phases. The shift of the maximum away from
the center destroys the symmetric shape of the PRC.

The symmetry breaking generalizes beyond the SNL
bifurcation: A saddle homoclinic orbit shows an asymmetric
PRC [33] if the saddle has different stabilities along stable
and unstable manifold and, hence, nonsymmetric dynamics.
In summary, we showed that the symmetry breaking in the
PRC is an immediate consequence of the symmetry breaking
in the dynamics that occurs as orbit flip at the SNL bifurcation.
Hence, the observed symmetry breaking in the PRC is a general
property of the SNL bifurcation.

APPENDIX C: MATHEMATICAL ARGUMENT FOR
THE GENERIC OCCURRENCE OF THE SNL

BIFURCATION IN PLANAR MODELS

We show in the following that, with a variation of a
time-scale parameter, such as capacitance, in a broad set
of planar conductance-based models, a SNIC bifurcation is
always enclosed by two SNL bifurcations and that a decrease
in capacitance passes the big SNL bifurcation and only
afterwards reaches the BT point. Beyond the BT point, a
Hopf bifurcation destabilizes the resting state before the fold
bifurcation occurs.

To this aim, we prove that the general structure of the
bifurcation diagram (Fig. 6) holds for any planar neuron model
that conforms with our assumptions stated below.

1. Model definition

We consider a generic class of type I planar conductance-
based neuron models. The single gating variable, n, commonly
models the opening and closing of a restorative current origi-
nating, say, from the potassium ion channel. The dynamics is
given by (

v̇

ṅ

)
= F (v,n) =

(
1

Cm
(IDC − Iion)
n∞(v)−n

τn(v)

)
, (C1)

with Iion(v,n) = gL(v − vL) + gNa m∞(v)(v − vNa) +
gK n (v − vK); compare Eq. (A1).

We chose the model such that it fulfills the following
assumptions.

(A1) The firing onset of the model occurs, for some capac-
itance value CSNIC and a specific input current IDC = ISN1 (the
threshold current), at a nondegenerated SNIC bifurcation.

(A2) We demand that at the capacitance CSNIC the sub-
threshold dynamics for IDC < ISN1 relax to a single stable
fixed point, the resting state. We furthermore assume that
with an increase in input current, the limit-cycle dynamics

eventually terminates in a bifurcation denoted excitation block,
after which the dynamics relaxes again to a stable fixed point.
This assumption prevents diverging dynamics.

(A3) The nullcline of the voltage has an inverted N shape.
(A4) We require that n∞(v) from Eq. (C1) is an increasing,

positive, bounded, twice differentiable function that becomes
sufficiently flat in the limit v→±∞, limv→±∞ v ∂vn∞(v)=0.
This assumption allows us to use results from Ref. [27].

All of these assumptions are fulfilled in common neuron
models with type I excitability.

2. Construction of the bifurcation diagram

The following proof establishes an ordering in a sequence
of limit-cycle bifurcations, whereby a SNIC is enclosed by two
SNL bifurcations. The ordering is established by analyzing the
relaxation limit as an anchoring point. We thereby capitalize
on recent results from the relaxation limit, Cm → 0. As we will
show, the ordering that arises in this limit along IDC implies
the same ordering along Cm, mainly because limit-cycle
bifurcation branches cannot cross in planar systems.

The limit-cycle bifurcation branches that we consider lie
in the region with IDC � ISN1, because, for neuronal firing,
the limit-cycle creation has to happen before (i.e., at lower
IDC) or at the fold bifurcation at which the resting state is
eliminated. CSNIC separates the region IDC � ISN1 into a lower
and an upper subregion. Since the occurrence of limit-cycle
bifurcations at CSNIC is prevented by the requirement (A2)
that stable dynamics are given by a unique fixed point, all
limit-cycle bifurcation branches lie either in one or the other
subregion. In the proof, we start with the lower subregion and
then consider the upper one.

3. The lower part of the bifurcation diagram, Cm < CSNIC

Observation 0: Vertical fold bifurcation branches—Fixed
point location depends on IDC, but not on Cm. The nullclines
of Eq. (C1) are given by IDC − Iion(v,n) = 0 and n = n∞(v).
The nullclines are independent of Cm, and therefore also the
location of the fixed points, because the fixed points sit at
intersections of the nullclines. Hence, the location of the fold
bifurcations is also independent of Cm, which ensures that the
fold branches [marked with SN in Fig. 6(a)] are vertical in a
bifurcation diagram of Cm versus IDC.

Based on the inverted N shape of the voltage nullcline and
the monotonous shape of the gating nullcline, we can infer
the existence of one to three fixed points. For the following
discussion, we name these fixed points; a visualization of our
nomenclature is shown in Fig. 6(c). The number and location
of the fixed points is set by the input current IDC, which shifts
the voltage nullcline up or down in the state space. For low, i.e.,
subthreshold IDC, the model has a single, stable fixed point,
Prest. With an increase in IDC, the knee of the voltage nullcline
approaches the gating nullcline from below and results in a fold
bifurcation at some IDC = ISN0. The fold bifurcation creates a
saddle, Psaddle, and a node, Pblock. Our assumptions ensure that
Pblock is unstable because (A2) requires that Prest is the only
stable fixed point at Cm = CSNIC. Increasing the input current
further leads to a second fold bifurcation at some IDC = ISN1.
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This fold bifurcation annihilates Prest and Psaddle. Beyond the
bifurcation, Pblock remains as the only surviving fixed point.

The saddle fixed point Psaddle exists only between ISN0

and ISN1. The association of HOM bifurcations with saddles
directly constrains their bifurcation branches to the region
ISN0 � IDC � ISN1. In an analogous way, Hopf bifurcation
branches are constrained by the existence of the associated
focus fixed point: The Hopf branch that destabilizes the resting
state Prest is restricted to input currents below ISN1, and
the other Hopf branch that changes the stability of Pblock is
restricted input currents above ISN0. Further constraints will
be developed throughout the following arguments.

Observation 1: Starting points for the branches of big HOM
and neighboring Hopf bifurcation—Anchoring the bifurcation
diagram in the limit Cm → 0 yields Ibig HOM < IHopf . In the
limit Cm → 0, the conductance-based model is transformed
into a relaxation oscillator with voltage as the fast variable, as
sketched in Fig. 6(c) [82]. For this limit, de Maesschalck and
Wechselberger have identified the full bifurcation structure
for generic planar neuron models [42]. Their Theorem 2
demonstrates for sufficiently small Cm that an increase in
IDC results for model neurons such as ours in a generic
sequence of bifurcations. Relevant for our consideration is
the occurrence of a big HOM bifurcation at input Ibig HOM

and a subcritical Hopf bifurcation that destabilizes Prest at
IHopf. Their full bifurcation structure ensures furthermore that
neither the big HOM branch nor the Hopf branch returns to the
limit Cm → 0, which is important to ensure the existence of
a codimension-two bifurcation at the other end. They state an
ordering of the bifurcation currents, Ibig HOM < IHopf < ISN1,
which will be used in the following to infer the same ordering
at finite values of Cm.

Lemma 1: HOM branches cannot “bend backwards”—
A variation in Cm generically breaks homoclinic orbits to
hyperbolic fixed points. In order to constrain the location
of HOM bifurcations in subsequent paragraphs, we want to
show that the tracing of a HOM branch leads us always in
one direction along the input current (increasing or decreasing
input). Equivalently, we can show that a HOM branch cannot
“bend backwards” along the input current dimension. This is
the case if we show that HOM branches cannot have “vertical
parts”: A HOM branch cannot align with a parameter variation
exclusively in Cm, because, as we show with this lemma, a
variation in Cm generically breaks the homoclinic orbit.

Homoclinic orbits arise when the trajectory of the unstable
direction of a fixed point connects to its stable direction, i.e.,
stable and unstable manifold overlap. A parameter variation
can separate stable and unstable manifolds from each other,
allowing for the definition of a distance. This distance is
measured by the so-called separation function, sep [Fig. 1(b)].
For parameter values that lie on the HOM branch, the
separation function is zero, sep(CHOM) = 0, and becomes
nonzero, sep(Cm) = 0, if a variation in the parameter breaks
the homoclinic orbit, i.e., leaves the HOM branch. This is
analogous to a nonzero value of the partial derivative of the
separation function, which is known as the Melnikov integral,
M [for a derivation in planar systems, see, for example,
Ref. [83], leading to Eq. (6.12), which we use in Eq. (C2)].

A variation in Cm breaks the homoclinic orbit if the
corresponding Melnikov integral evaluated on the homoclinic

orbit is nonzero [24]. The Melnikov integral with respect to
Cm for a homoclinic orbit with flow h(t) is

M =
∫ ∞

−∞
K(t)F (h(t))

∂F (h(t))
∂Cm

dt

= −
∫ ∞

−∞
K(t)

[IDC − Iion(h(t))]2

C3
m

dt, (C2)

where K(t) = exp [− ∫ t

0 divF (h(s))ds]. For our system, the
Melnikov integral is strictly positive, 0 < M , because (i) K(t)
is, as an exponential function, strictly positive, ∀ t : 0 < K(t),
and (ii), because we implicitly assume the existence of a
homoclinic orbit, the difference of ionic and injected currents
cannot be zero at all times; hence, ∃t : [IDC − Iion(h(t))]2 > 0.
With that, the capacitance breaks the homoclinic orbit, and
thus tracing a HOM branch along one direction results either
in continuously increasing or decreasing input current values
on the branch. This lemma is used in the following Observation
2 in order to pursue the big HOM branch starting in the limit
Cm → 0 (see Observation 1).

Observation 2: The big HOM branch eventually approaches
the fold bifurcation at ISN1. Based on the directionality of the
big HOM branch derived in the literature, we will show in this
observation that the big HOM branch eventually approaches
the fold bifurcation branch at which the resting state collides
with the saddle. The point of contact corresponds to an SNL
bifurcation, as we will show in subsequent paragraphs.

The statement of Theorem 2 by de Maesschalck and
Wechselberger states for sufficiently small Cm, in addition to
the ordering used in Observation 1, that the big HOM branch
departs from its starting point to the right, i.e., in the direction
of increasing input current [42]. This directionality of the big
HOM branch generalizes to larger values of Cm, because
Lemma 1 prevents “backward bends” of HOM branches.
Given that the big HOM branch does not return to the limit
Cm → 0 (Observation 1), the big HOM branch eventually
has to approach the fold bifurcation at ISN1. The next lemma
ensures that the connection point is an SNL point.

Lemma 2: A HOM branch and the fold branch at ISN1

connect in an SNL bifurcation—A HOM branch is stable when
it connects to a nondegenerated fold bifurcation involving a
stable node. An SNL bifurcation involves a stable homoclinic
orbit that transitions between a HOM bifurcation and a SNIC
bifurcation. The homoclinic orbit of the HOM branch is
stable if the associated saddle quantity is negative (the sum
of the two eigenvalues of the associated fixed point). At
the connection point with the fold branch, the homoclinic
orbit is associated with a saddle-node fixed point arising
from the collision of a stable node and a saddle. It has one
zero eigenvalue (prerequisite for the fold bifurcation) and one
negative eigenvalue (the former stable node sets the stability of
the strongly stable manifold). The sum evaluates to a negative
saddle quantity, ensuring a stable homoclinic orbit, and hence
an SNL bifurcation.

Lemma 3: The bifurcation sequence in the lower part of
the bifurcation diagram—For IDC = ISN1, increasing Cm from
zero passes first a BT point, then an SNL point, before a
nondegenerated SNIC bifurcation occurs, CBT1 < Cbig SNL <

CSNIC. Combining Observation 2 and Lemma 2, we conclude
that the big HOM branch connects to the fold bifurcation
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branch at ISN1 with a stable homoclinic orbit, i.e., in an
SNL bifurcation. This big SNL bifurcation happens at some
point (ISN1,Cbig SNL), with Cbig SNL < CSNIC because the big
HOM branch cannot pass the capacitance value of CSNIC as
(A2) prohibits stable limit-cycle bifurcations for IDC < ISN1.
From Observation 1, we know for Cm → 0 that a Hopf
branch starts at IHopf and that this branch does not return to
the limit Cm → 0. Because limit-cycle bifurcation branches
cannot cross each other in a planar system, the Hopf branch
can furthermore not cross the big HOM branch. Instead, it
connects to the fold bifurcation branch in a BT bifurcation at
some point (ISN1,CBT1). The ordering Ibig HOM < IHopf from
Observation 1 immediately implies an ordering in Cm, i.e.,
CBT1 < Cbig SNL. In summary, we have shown in this lemma
that CBT1 < Cbig SNL < CSNIC.

These arguments have proven the bifurcation sequence in
the lower part of the bifurcation diagram arising from the
limit Cm → 0. In the following, we use the unfolding of a
second BT point to show the upper part of the bifurcation
diagram.

4. The upper part of the bifurcation diagram, Cm > CSNIC

Observation 3: The bifurcation diagram contains exactly
two BT points. Kirst et al. identified the BT point for a generic
class of conductance-based neuron models (including our
model group) at a capacitance value that can be calculated from
the input current at which the fold bifurcation occurs (Ref. [27],
Supplemental Material). With the twofold bifurcation branches
occurring in our model group at input currents ISN0 and ISN1,
we find one unique BT point on each fold branch. Lemma
3 identified one of them at the BT point (ISN1,CBT1), and
the second BT bifurcation occurs at some point (ISN0,CBT0).
From the BT point at (ISN0,CBT0) arises by normal form theory
a Hopf bifurcation branch and a branch of a small HOM
bifurcation. Both depart in the direction of increasing input
IDC, which will be used as before to constrain their location.

Observation 4: The second BT point lies in the upper
part of the bifurcation diagram—The BT point at (ISN0,CBT0)
occurs at CBT0 > CSNIC. We restrict the region accessible to
the Hopf branch that arises from the BT point at (ISN0,CBT0):
A limit cycle bifurcation branch cannot cross other limit

cycle bifurcation branches (in a planar system), and hence the
Hopf branch cannot pass the SNIC bifurcation line between
(ISN1,CSNIC) and (ISN1,Cbig SNL) or the big HOM branch.
Furthermore, (A2) demands that no stable fixed point exists for
IDC < ISN1 for Cm = CSNIC, effectively preventing the Hopf
branch to pass this line. The Hopf branch lies, hence, either
entirely within or outside of the region bounded by these lines.

We show that the Hopf branch lies outside of this region by
identifying this branch with the excitation block occurring at
Cm = CSNIC: (A2) demands that the excitation block at some
IDC > ISN1, i.e., outside of the identified region. Around the
excitation block, Pblock is stabilized by a Hopf bifurcation.
This Hopf bifurcation affects Pblock and hence belongs to the
same branch of Hopf bifurcations that arises at the BT point at
(ISN0,CBT0), because this is where Pblock is created. With that,
the Hopf branch must lie outside the region denoted above
and correspondingly also the BT point at its end. We hence
conclude CBT0 > CSNIC.

Lemma 4: The small SNL bifurcation—A second SNL
bifurcation occurs at some Csmall SNL > CSNIC. The branch of
the small HOM bifurcation that arises from the BT point at
(ISN0,CBT0) (see Observation 3) continues by Lemma 1 in
the direction of increasing input IDC. Hence, we find some
Cm = Csmall SNL for which the small HOM branch connects to
the fold bifurcation at ISN1. At the connection point, the HOM
branch must be stable by Lemma 2. We identify the point
(ISN1,Csmall SNL) as small SNL bifurcation.

For the overall proof, it remains to show the ordering
Csmall SNL > CSNIC. For that, we observe that a limit cycle
exists between the small HOM and the Hopf branch arising
from the BT point and contrast this with the limit cycle
arising from the SNIC bifurcation. As the Hopf bifurcation
has to terminate the limit cycle of the SNIC bifurcation at
CSNIC [following (A2)], it cannot terminate the limit cycle
arising from the small HOM bifurcation at this capacitance
value. This leaves only the possibility for the SNL point to
occur at some Csmall SNL > CSNIC.

In summary, we have shown that CBT1 < Cbig SNL <

CSNIC < Csmall SNL. This generic bifurcation structure occurs
with the membrane capacitance Cm as bifurcation parameter
at IDC = ISN1. For a model starting at a SNIC bifurcation, a
variation in the capacitance will thus pass an SNL bifurcation
before a BT point is reached.
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[15] S. A. Prescott, S. Ratté, Y. D. Koninck, and T. J. Sejnowski,
J. Neurophysiol. 100, 3030 (2008).

[16] E. Phoka, H. Cuntz, A. Roth, and M. Häusser, PLoS Comput.
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6. Outline

The publications of Part II investigate different aspects of neuronal information pro-
cessing. Both studies show that cellular parameters have a considerable impact on
neurons, either by determining neuronal morphology, or by setting neuronal dynamics,
potentially, to a transition point highly influential on neuronal function.

The first publication investigates signal transmission from dendrite to axon under
energetic constraints. Depending on the soma size and other basic parameters, neurons
can increase their signal transmission and thereby decrease their energy consumption
by externalizing their soma. This may explain the divergent evolution of the soma
location in mammals and insects, as considered in the next chapter (Chapter 7). If the
soma is relatively large, an externalization of the soma can enhance signal transmission
between dendrite and axon. This allows for spike initiation in response to a number of
synaptic inputs that is smaller compared to a morphology with a central soma, and
which hence consumes proportionally less energy. This result predicts measurable
differences between unipolar and multipolar cells, which can indeed be qualitatively
found in experimental data.

The second publication focuses on the signal transformation into a spike, identifying a
regime that is particular interesting for flexible information encoding. Spike generation
changes qualitatively around the saddle-node-loop bifurcation, and, with it, various
aspects of neuronal coding. The analysis considers signal processing in a neuron
with constant mean firing rate, whose response to input can be captured by its phase-
response curve, i.e., a spike-timing code [47]. In the second publication, it is shown that
the changes in phase-response curve at the saddle-node-loop bifurcation can drastically
enhance synchronization. As detailed in Sec. 8.3, the phase-response curve also informs
about the filtering properties of the neurons and other measures quantifying neuronal
coding [143]. The second publication also demonstrates that the saddle-node-loop
bifurcation occurs in generic two-dimensional conductance-based neuron model with
so-called type-I dynamics (in the sense of a saddle-node on invariant cycle bifurcation
at spike onset), and that it can be reached with any parameter that affects the relative
speed of voltage and gating. While the publication mainly considers the membrane
capacitance, temperature has similar effects (see Sec. 3.5.1), which has potentially
important implications for pathologies, as discussed in Chapter 10.

Neuronal processing in health and disease fundamentally depends on ion channels
and their characteristics [93]. This thesis, in addition, highlights the importance of
morphological and so-called passive parameters such as leak conductance, capacitance,
or axial resistance. In contrast to ion channels, whose characteristics can vary greatly
between phyla1, the parameters considered in this thesis are shared by all bilaterian

1In fact, the number of ion channel isoforms has increased throughout evolution and correlates better
with increased complexity of an organism than other properties of single neurons [113].
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animals since more than 555 million years ago2. While passive parameters can be
significantly different between neurons (see Table I in the Supplementary Information
of the first publication), they are fundamental to any neuron3, and for parameters
such as leak and capacitance, the impact on neuronal dynamics is well established and
easily described in models (Sec. 3.2). The focus on passive parameters hence allows
to investigate signal processing on a fundamental level, emphasizing the similarities
between neurons more than their differences.

The following chapters expand on the results of the publications (Chapters 7 - 10),
and summarize modeling assumptions (Chapter 11). Chapter 7 proposes a potential
evolutionary path that could explain the development of unipolar and multipolar
morphologies based on two hypotheses. First, the functional polarization and other
potential advantages of central or externalized somata are reviewed, and the size of the
soma, one essential parameter in the soma-to-neurite ratio, is discussed. The discussion
culminates in the formulation of a hypothesis on the distribution of organelles in
unipolar and multipolar neurons, which could explain the different soma-to-neurite
ratios observed in nature. Together with the dependence of the soma location on the
soma-to-neurite ratio, this entails a consistent picture for the divergent evolution of the
soma location. The picture is furthermore discriminated from alternative explanations
resting on the advantages of ganglionic arrangements by a second hypothesis, which
delimits ganglion size.

The second project of this thesis is discussed in the following chapters. Chapter
8 provides more background on bifurcations, with further results supporting the
generality of the saddle-node-loop bifurcation, and a discussion of its implications.
As an outlook, phase-response curves at other bifurcations and beyond spike onset
are considered. In Chapter 9, the temperature is discussed as bifurcation parameter
for the saddle-node-loop bifurcation, in alternative to the membrane capacitance used
in the second publication, and experimental results are presented. The temperature
as bifurcation parameter is particularly interesting with respect to febrile seizures,
and as medical application of the results of the second publication, Sec. 10 illustrates
the potential of the saddle-node-loop bifurcation as unifying mechanism for seizure
induction.

2Many aspects of the nervous system can also be found in even older phyla such as jellyfish.
3Membrane leak and capacitance are indeed fundamental to every living cell even beyond the nervous

system.
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Depending on the soma size (and other parameters), neurons can increase signal
transmission between axon and dendrite by an externalization of their soma. The
associated decrease in energy consumption could be evolutionary favorable. The
results of the first publication challenge the believe of Santiago Ramón y Cajal that the
difference in soma location is only of minor importance, due to the functional similarity
he observed for retinal amacrine cells that are unipolar or multipolar, and dorsal root
ganglion cells that are bipolar in fish and unipolar in mammals [128]. The results of the
first publication, in contrast, predict that it is the soma-to-stem ratio of these neurons
that advocates different soma locations for optimal signal transmission, at minimal
energetic costs. The soma-to-neurite ratio is given by the size of the soma in comparison
with the diameter of the stem neurite, weighted by axial and membrane resistance.
Experimental data fit the resulting prediction qualitatively. The externalization of the
soma is especially effective in optimizing signal transmission with an increased axial
resistance along the stem neurite. Hence, one prediction of the first publication is that,
for neurons with externalized soma, the stem neurite has a higher axial resistance than
the low value that is typically reported in the literature for the dendritic or axonal tree
of these cells (Sec. 7.5.3).

Figure 7.1.: Following the results of the first publication, whether unipolar and multipolar
morphologies are favorable for energy-efficient signaling depends on the soma and neurite
size.

In the following, the results of the first publication will be put into a broader context.
The discussion leads to two hypotheses, one that speculates on the evolutionary de-
velopment of different soma locations more in detail, and another that rejects certain
advantages of ganglionic arrangements (commonly used to explain unipolar mor-
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phologies) by suggesting an upper bound on the ganglion size. Before this, main
assumptions of the study, functional polarization and the existence of a dedicated spike
initiation zone in the beginning of the axon, are considered in biological neurons. The
discussion then contrasts energy-efficient signaling with other potential advantages of
central or externalized somata. Next, the conclusion of the first publication, that the
divergent evolution of the soma location may result from different soma-to-neurite
ratios, is taken one step further by the development of a potential explanation for the
broad range of soma-to-neurite ratios observed in nature. Finally, unipolar neurons
are considered in their ganglionic arrangement, which was repeatedly related to their
morphology (compare Sec. 2.3.2). A maximal ganglion size is derived based on volume
minimization.

7.1. Functional polarization

The hypothesis from the first publication, that soma location optimizes signal trans-
mission, implicitly relies on the assumption that the signal has to be transmitted from
dendrites to the axon, either through a central soma, or directly from dendrite to axon
for an externalized soma. This assumption requires that one process can be identified
as the axon that predominantly transfers information to other cells, while the other
branches predominantly collect information as dendrites. A preference for unidirec-
tional information flow in neurons has already been hypothesized by Ramón y Cajal at
the end of the 19th century [128], and is one of the central assumptions for the analysis
in this study. Especially for more complex animals such as mammals or insects, many
neurons in the central nervous system abide to this form of functional polarization.

7.1.1. Neuronal polarity of unipolar cells

Examples for neurites with simultaneously occurring pre- and postsynaptic terminals
can be found for both vertebrates and higher invertebrates, but neuronal polarity
is in general less strictly established in invertebrates than in vertebrates [48]. Yet,
even with pre- and postsynaptic terminals on the same branch, the proportion of
input to output is in most cases different enough to distinguish dendritic and axonal
structures [106]. Especially for insects, increasing evidence suggests that dendritic and
axonal structures are homologue to vertebrate structures, for example based on the
microtubule orientation1 [137, 157], and the complexity of the dendritic tree of certain
insect neurons is comparable to that of vertebrate neurons [101].

7.1.2. Spike initiation zone

In the first publication, the signal transmission is evaluated between dendrite and the
initial part of the axon. In vertebrates, this location is a major spike initiation zone,

1A hallmark of neuronal polarization on the level of neurite ultrastructure is the orientation of micro-
tubules. Microtubule orientation is to a large part set by function. For example, the removal of an
axon in both mammals and insects leads to the transformation of a dendrite into an axon, with a full
reversal of microtubule polarity [135]. Moreover, a lack of strict microtubule polarization is observed
in neuronal cultures of vertebrates as well as invertebrates, probably due to the missing functional
input [135].
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it is called axon initial segment and can be recognized by specific molecular markers.
A recent study found evidence for a specialized axon initial segment also in fly [167].
More in general, for both unipolar and multipolar neurons, spike initiation zones have
been reported mostly right after the multipolar soma or the unipolar dendritic tree
(Aplysia [159], gastropods [49]). The functional relevance of a dedicated spike initiation
is best illustrates by recent experiments that show a shift in the location of this structure.
Both vertebrates and invertebrates can shift their spike initiation zone in an activity-
dependent manner (unipolar neuron [109], multipolar neurons [57, 95]). The distance
by which the spike initiation zone moves further up into the axon effectively decreases
the excitability of the neuron2.

If already a small shift in spike initiation zone can influence spike initiation consider-
ably, the different distances between dendrite and axon depending on the soma location
is likely to be even more influential (the direct communication between dendrite and
axon for an externalized soma, compared to the increased distance between dendrite
and axon due to a central soma).

7.2. Output control

The output of a neuron that is generated at the spike initiation site is in general a
nonlinear function of its past inputs (and potentially noise). While both central and
externalized soma locations allow to regulate neuronal output, they do so differently,
as discussed below. With a central soma, the regulation depends mainly on active
conductances, while the morphology with an externalized soma can control spike
initiation also by passive parameters.

7.2.1. Signal regulation in central somata

The membrane voltage of a central soma directly influences spike initiation in the axon
initial segment, and hence provides the means to control neuronal output. A central
soma can effectively separate different parts of the neuron, because its large somatic
surface provides a considerable current sink (sometimes called a large capacitive and
resistive load). For example, a central soma can ensure a certain independence of
different proximal dendritic branches by clamping the background voltage at a rather
low level [8]. Moreover, it can separate axonal and dendritic activity, on one hand as a
noise filter, on the other hand as a region with low-probability spike transmission: The
filtering of noise arises from the capacitive load of a (large) central soma, which acts as
a low pass filter (a filter that passes low frequencies and suppresses high frequencies).
The somatic dampening of high frequencies may be useful to filter synaptic noise, both
from dendritic and somatic synapses. On the other hand, a central soma can control
excitability and even block spikes, and thereby provides a region with a low safety factor,
as this was called in the older literature [19]). With that, it may hinder dendritic spikes
to invade the axon, or, vice versa, it may also prevent the spread of axonal activity into
the dendrite, so called backpropagating action potentials (bAPs) [19]. Due to its privileged
location, a central soma can directly regulate neuronal output, and may hence provide

2Excitability is used here in the sense of current threshold.
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an attractive target for synaptic input, which is for vertebrate central neurons typically
inhibitory [33].

7.2.2. Signal regulation in externalized somata

In order to understand signal regulation in neurons with externalized soma, it is
helpful to categorize neurons by the length of their stem neurite with respect to signal
transmission. The latter is given by the electrotonic length, the ratio of the spatial length,

L, divided by the length constant3, λ, i.e., L
λ = 2L

√
Ra

Rmd . An electrotonically short
neurite transmits signals with less attenuation than an electrotonically long neurite.
With an electrotonically short stem neurite, the externalized soma is hardly shielded
from dendritic and axonal trees, and hence acts in all practical purposes similar to a
central soma. The following discussion, and the first publication, only consider neurons
with an electrotonically long stem neurite when talking about unipolar neurons or an
externalized soma. In the simulations, an electrotonic length of the stem neurite of at
least 0.1 was required to distinguish central and externalized somata. Only for such
neurons, the signal, at least partly, bypasses the externalized soma.

Some animals do show unipolar neurons with electrotonically short stem neurites.
Spike initiation in such neurons has been reported to be influenced by somatic hyperpo-
larization [99]. In gastropoda, neurons may show an excitable, externalized soma that is
spatially and electrotonically close to the spike initiation zone, as reviewed by Gillette
[49]. The externalized soma can, in this case, act with respect to its capacitive and
resistive load similar a central, excitable soma. However, compared to a central soma,
the propagation of the somatic action potential along the stem neurite delays the so-
matic action potential compared to the axonal action potential. Neurons with excitable,
externalized neurons seem to control the delay introduced by the stem neurite: The
stem neurite grows in concert with the ganglion, which may preserve the synchrony
between soma and axon [49] when the electrotonic length is fixed by a coordinated
growth of length and diameter (as is mentioned in Sec. 7.6). Especially with a long
stem neurite, the delayed arrival of the somatic spike may lead to conflicting signals
from axon and soma [49]. The stem neurite may hence induce disadvantageous signal
reflections, which are not known in mammals [15].

The neurons mainly considered in this thesis are unipolar neurons with an electroton-
ically long stem neurite, which are found, for example, in insects and cephalopods [49].
These neurons typically have an inexcitable soma that is electrotonically separated from
dendritic and axonal trees. Especially for a large soma, a passive membrane is probably
energetically favorable, saving on the inclusion of energy-expensive ion channels in
the somatic surface. This suggests that in particular large somata should be passive
and show long stem neurites.

For unipolar neurons with long stem neurite, signal processing is more influenced by
the T-junction (at which the stem neurite connects to the axon), than by the externalized
soma itself. Similar to a central soma, the T-junction of the stem neurite can serve as

3The length constant for a neurite of diameter d is given as λ =
√

Rm
Ra

d
4 , with axial resistance Ra and

membrane resistance Rm. It corresponds to the distance over which an input signal decays to 1/e, and
thereby provides a measure of the passive signal spread along a neurite.
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low pass filter, e.g., in the frog dorsal root ganglion neuron [102]. Moreover, unipolar
neuron can control their threshold by the coupling of axon initial segment and soma
via the passive properties of the stem neurite (by changing internal resistances or
dimensions). Passive properties can control excitability without the costs associated
with an increase in the number of ion channels4 (with energetic costs on the level of
ion channel synthesis and gating activity which requires the reestablishment of ion
concentration by ion pumps).

An electrotonically long stem neurite provides a shielding between somatic and
axonal membrane potential that may be useful for ionic balancing. The shielding
allows the resting potential in the soma to be higher than the resting potential in the
processes. A higher resting potential in the soma compared to the neurites might save
energy because less drastic concentration gradients have to be established by somatic
ion pumps5. A somatic membrane potential closer to zero may also be useful for the
uptake of negatively charged substances, which have to be taken up against the barrier
provided by the potential difference. Indeed, a preliminary literature review suggests
that while somatic recordings often report membrane potentials around -50 mV, neurite
recordings tend to lie around -70 mV, for example in Drosophila neurons, the reported
resting potentials vary between -25 mV to -70 mV [55]. More experimental results are
required to allow for a thorough comparison of the resting potential in the soma and in
the neurites of unipolar cells.

An interesting example with respect to the previous discussion are unipolar dorsal
root ganglion cells. As described above, neurons with an electrotonically long stem
neurite should have passive somata, whereas, with an electrotonically short stem
neurite, active somata that boost the arriving signal may be more advantageous. The
externalized somata of dorsal root ganglion cells can either be passive or active, and
the length of their stem neurite seems to increase throughout evolution. A passive
soma with a short stem neurite has been suggested as potential mechanism to control
signal transmission by clamping the axonal voltage (allowing for spike initiation only
when the soma is depolarized) [40]. A long stem neurite, in contrast, increase the
electrical isolation between soma and axon, and hence decreases the somatic clamping
of the axon [30]. This has been suggested as the evolutionary pressure for the increase
of the stem neurite length of dorsal root ganglion cells [30]. In mammals, the stem
neurite is commonly elongated by curling around the soma, and this curling increases
from frog over chicken to mammals [107]. A long stem neurite effectively isolates the
soma from the axon, such that somatic signaling cannot interfere with axonal signals.
An active soma, in contrast, can directly influence signaling. Active conductances
are typically distributed over soma and stem neurite, and, upon depolarization, the
resulting currents may contribute to the signal in the axon [30]. The function of active
conductances in the soma (and stem neurite) is unclear. It may be an evolutionary

4Multipolar neurons with a central soma can adapt their threshold by energetically costly, additional ion
channels in the soma or the axon initial segment, or by morphological changes in the dendritic tree.

5The resting potential is a weighted average of the reversal potentials of different ions, each of which

is a function of the ion concentration (vk = RT
zF ln

(
[k]out
[k]in

)
is the reversal potential for ion k, with

intra-/extracellular concentrations [k]in/out, gas constant R, Faraday constant F, absolute temperature
T and ionic valence z) [45]. Estimates of the energy spend at rest on the maintenance of the resting
potential in the whole neuron vary between 11% and 20% of the overall energy spend on neuronal
signaling [62, 148].
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left-over from the times of bipolar dorsal root ganglion cells, as they are found in
fish. If it is experimentally possible to obtain electrophysiological and morphological
data from the same cell, it would be interesting to test whether active somata show in
general shorter stem neurites than passive somata.

7.3. Spatial proximity

The somata of unipolar and multipolar cells influence signal processing in different
ways. While a central soma is close to the spike initiation zone, an externalized soma
is often located in proximity of the surrounding hemolymph, facilitating hormonal
communication.

7.3.1. Support of axon initial segment by a central soma

Adjacent localization of central soma and axon initial segment allows the soma to
support the spike generation zone in the restoration of ionic concentrations after
spiking. The central soma could either provide ATP to fuel the ion pumps in the spike
initiation zone, or act as drainage for sodium molecules such that the sodium load of
the axon initial segment is reduced. In the latter case, the combination of thin axon and
thick soma produces an asymmetric structure that facilitates unidirectional diffusion
from axon to soma (acting similar to periodic asymmetric structures known as drift
ratchets [84]). Somatic support may be especially relevant for spike initiation zones
in thin processes as common in vertebrates, which contain disproportionally small
densities of energy-supplying mitochondria compared to larger processes [122].

7.3.2. Hormonal communication

Functional advantages of the separation of somata and neurites in insects may be
related to neuro-secretion. While vertebrates commonly show specialized non-neuronal
glands for hormonal communication, such glands are considerably less common in
invertebrates [33]. This suggests that neuro-secretory cells are particularly important
in invertebrates, where often a clear distinction between non-secretory and neuro-
secretory cells is difficult because also many typical neurons with chemical synapses
can non-synaptically emit neuromodulators [33]. The large number of neuro-secretory
cells in invertebrates is widely distributed, probably to affect in an effective way the
relatively large volume of the hemolymph (which can be 20-30% of the body volume
compared to a blood volume of 5-8% typical for vertebrates) [33]. Neuro-secretion
is energetically costly and requires cellular machinery, which is probably easier to
provide in large, externalized somata than in small, central somata. Externalized
somata distributed on the surface of ganglia led themselves for neuro-secretion on a
local level, as common in invertebrates [33]. The somata in the environment of such
local neuro-secretion provide a well-defined target for regulation, while in a situation
where somata are intermingled with various processes, potentially from distant brain
areas, the latter may be activated simultaneously with the local somata. In summary,
neuro-secretory cells are more prevailing in invertebrates compared to vertebrates,
and may profit from a superficial arrangement in the ganglia. As neuro-secretory

72



7.4. Organelle exclusion hypothesis

cells require more somatic machinery, neuro-secretion may be one of the evolutionary
pressures for large somata in invertebrates.

7.3.3. Support of somatic synapses

The large volume of a central soma could not only provide energy for the spike initi-
ation, but also for postsynaptic terminals. Synapses are commonly found on central
somata, and the large volume-to-surface ratio may allow for a higher synaptic density
on the soma than on a dendritic process. High input densities may be especially rele-
vant in vertebrates with their high amount of recurrent connections. The environment
of central somata preferentially receives input from inhibitory neurons [33], somatic
surface and proximal dendrites are densely populated with inhibitory postsynaptic
terminals. Because inhibitory interneurons can show high firing rates, it is likely to
observe numerous inhibitory post-synaptic potentials. Synaptic activation implies
high energetic costs on the postsynaptic side, which may explain the predominance of
somatic inhibitory inputs, because the soma is probably the location in a neurons with
the highest buffer capacities for short and strong energy demands.

7.4. Organelle exclusion hypothesis

The divergent evolution of the soma location seems to provide alternative solutions
to the same problem: How to transmit signals efficiently from the dendrite to the
axon. Both solutions bear slightly different advantages, as discussed above. Which
neuronal morphology is observed depends on the soma-to-neurite ratio, as suggested
by the analysis in the first publication. This raises the question of the causes for the
divergent evolution of the soma-to-neurite ratio. In this section, I will present the
hypothesis that the difference in soma-to-neurite ratio might be explained by the
ultrastructural organization of the neurons. Starting with the idea that soma size
underlies evolutionary constraints (e.g., signal transmission), the main hypothesis is
that neurons with a large amount of somatic organelles require a larger soma, and may
hence be better off with an externalized soma.

7.4.1. Increased soma size through evolution

The size of the soma is correlated with the size of the neuron, which increases with
body size and complexity of the nervous system throughout evolution6 [119]. The
correlation in size probably originates from the need of the soma to satisfy the increased
demand of support and maintenance of a large neuron.

Soma size correlates with neurites

As the soma is responsible for the maintenance of the cell, a correlation between the
size of the soma, and the extent and dimensions of the axonal and dendritic branches
can be expected. In several studies, the soma diameter could be correlated with the

6Also during development, the neuron increases with body size [61, 128], and in some cases the soma
diameter even relates linearly to the body length [72].
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axon diameter [28, 66], more precisely, the soma volume correlates positively with
the diameter of the axon [119]. Furthermore, the soma diameter correlates with the
dendritic innervation field for both vertebrates and higher invertebrates [119] and
weakly with the sum of proximal dendrite diameters [169]. The total somatic-dendritic
membrane surface area of geniculate cells, and the surface area of their somata, grows
about square-root like [9]. In accordance to the correlation between soma size and the
dimensions of their neurites, giant neurons contain more nucleic acids, proteins and
DNA (analyzed for gastropoda [49]).

Soma size determined by DNA

The soma contains the nucleus with the DNA, and its size is hence bounded below by
the nucleus size [119]. More in general, it was claimed that the cell size is determined
by the DNA content and the transcriptional activity, see Pena et al. [121]. As the DNA
content is fixed in a neuron (or any other cell), the soma size seems to mainly depend
on transcriptional activity, which has been correlated for frog motor neurons [121].
Transcription rate is also positively correlated with the activity of the innervation of the
neuron [121]. This may be the direct link responsible for the correlation between soma
and axon dimensions, because the axon diameter has been reported to be linear to
the typical mean firing rate (experimental measurements from nine different neurons
by Perge et al. [122]). The relation between size and transcriptional activity forms the
bases for the organelle exclusion hypothesis presented in this section.

Soma size in bipolar cells

The lower bound on soma size given by the nucleus is for example accomplished by
bipolar cells. The soma of these cells appears to be just large enough to accommodate
the nucleus. For example, only a thin rim of somatic cytoplasm surrounds the nucleus
in cortical bipolar cells [123]. The soma is slightly elongated, it looks like a flexible
tube in which the nucleus was squeezed. The soma is relatively small, only the largest
bipolar neurons reach 30 nm. At least for peripheral cells, the bipolar shape was
explained by their clear functional polarity (one end receiving, the other one sending,
and no feedback needed) [154]. In view of the first publication, the straight signal
transmission executed by these neurons (relaying information without recurrent input)
is indeed a cause of their bipolar morphology, but only an indirect one: Information
transmission as observed in these cells, without more complicated forms of processing,
such as complex dendritic calculations, probably requires less somatic support and
maintenance. These cells hence tolerate a small soma, for which then the bipolar
shape, facilitating signal transmission, is advantageous. Bipolar cells may represent
an example where the morphology (a soma so small that it hardly fits the nucleus)
is optimizing signal transmission (essential for peripheral neurons), supporting the
relevance of soma size as an evolutionary constraint.

7.4.2. Externalized somata support large cells

Externalized somata seem to support larger neurons size than central somata. Many
invertebrates show so called giant neurons, whose thick axons allow for an increased
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conduction speed [63]. Giant neurons are considerably less frequent in vertebrates7,
probably because of the abundance of myelination8, which also increases conduction
speed. Moreover, one of the largest cell types in the mammalian nervous system are
dorsal root ganglion cells, which have an externalized soma.

The following arguments show that, in large cells, the relative size of neurites and
soma can lead to a large soma-to-neurite ratio that, as shown in the first publication,
favors externalization. When neurons become larger, it seems reasonable to assume
some form of correlated growth between soma and stem neurite, because proteins
important for the maintenance of axonal and dendritic trees are synthesized in the soma,
and must subsequently be transported through the stem neurite. This transportation,
independent of whether the transport is active or passive, is probably bounded by
the cross section of the stem neurite, which is proportional to the square of the stem
neurite diameter, d2

stem. The somatic protein synthesis is probably bounded by the soma
volume, which is proportional to the cube of the soma diameter, d3

soma. A proportional
growth between soma volume and stem neurite cross section seems reasonable in order
to allow for a balanced protein synthesis and dispersion, which suggests the relation
d3

soma ∝ d2
stem throughout the evolutionary increase in neuron size. This allows for an

assessment of the development of the soma-to-neurite ratio, R ∝ d2
soma/dstem:

d3
soma ∝ d2

stem → R ∝ d1/2
soma,

which suggests that an increase in neuron size leads to an increase in soma-to-neurite
ratio with the square root of the soma diameter. This makes an externalization of the
soma more and more favorable with an evolutionary increase in neuron size.

7.4.3. Why large somata?

Various aspects of neuronal anatomy and physiology have been related to a trade-off
between energy and information [149]. Also the size of neurons may arise from such a
trade-off because, at least in single-compartment models, larger models have the lowest
energy-efficiency (but also a higher information rate) compared to smaller models [149].
This led the authors to suggest a Law of Diminishing Returns that reduces coding capacity,
neuronal size and channel density to the possible minimum [149]. Externalization of
the soma may relax the constraints on energy consumption such that large specialized
neurons can develop. Driving forces for large neurons may include the requirements of
a large soma surface, volume minimization and spike initiation at multiple locations,
as discussed in the following.

Soma surface for substance uptake

The membrane surface per neuronal volume has to be large enough to allow for
the exchange of nutrients and gases [128]. This may explain repeatedly reported
somatic invaginations in arthropods [59, 166] and dorsal root ganglion cells [30]. Those
invaginations increase the somatic surface above the value estimated from the soma

7Examples for large vertebrate neurons are Mauthner cells in fish and reptiles.
8Myelination developed (probably independent) in vertebrates, annelids, and crustacea [63], and also in

insects examples for enhance signal transmission by wrapping of axons is known.
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diameter. Microvilli or perikaryal projections in dorsal root ganglion cells, for example,
can increase the soma surface by up to 40%, as reviewed by Pannese [119]. When the
somatic surface has to be enlarged in neurons with central soma, an increase in soma
diameter is preferable over invaginations, because the latter increase the capacitive
and resistive load without decreasing the axial resistance, which an increase in soma
diameter would provide. Invaginations in vertebrate neurons would only be expected
due to spatial constraint, and no corresponding reports are found in the literature. For
unipolar neurons with sufficiently long stem neurite, the signal transmission is not
hindered by invaginations on the soma surface, and they hence provide an efficient
way to increase the surface-to-volume ratio at minimal spatial costs.

Volume minimization

One large neuron instead of multiple smaller ones can use space more effectively as
part of the cellular machinery is only needed once. Large somata are, for example,
economically advantageous when several axons can share one soma [65]. The DNA,
which sets the lower bound of the soma size, is in this case only required once. As
the somatic volume grows correlated to the axon diameter [119], the soma diameter
grows slower than the axonal diameter, and hence the somatic surface area per axon
decreases for multiple axons. Multiple axons are, for example, found in locust [65]
and invertebrate motor neurons that commonly innervate distinct areas (e.g., bilateral
stimulation of muscle tissue [61]), in contrast to the typical vertebrate motor neuron.

Multiple spike initiation sites

Computations of different axonal branches can be independent, and thereby more
variable, if the neuron lacks a unique, central integration zone. Such an integration
zone is for example given by a central soma [103]. An externalized soma, in contrast,
could facilitate parallel computations as the dendritic signal is directly transmitted
to the axon. Independent computations are furthermore facilitated by multiple spike
initiation sites, which are relatively common in invertebrates. Independent spikes
are known to occur for different axonal branches of locust [65] or Aplysia neurons, as
well as for crustacean heart, crayfish [159], and cricket neurons [117]. With multiple
spike initiation sites, a higher degree of integration is reached in a single cell, such
that complex computations need fewer cells. In neurons with multiple spike initiation
zones, compartments can interact with each other via spikes, as reviewed by Bucher
and Goaillard [15]. In general, the literature may even suggest that invertebrate neurons
are marked by a higher degree of specialization compared to vertebrate neurons.

7.4.4. Divergent evolution of unipolar and multipolar neurons

The common ancestors of higher invertebrates and vertebrates [139, 140] probably had
multipolar neurons. The increase in soma size with evolution suggests that the neurons
had large somata relative to their neurites, in particular compared to peripheral bipolar
neurons (Sec. 7.4.1).

Further increase in the soma size during evolution may have hindered signal trans-
mission because of the large capacitive and resistive load. I suggest that higher inverte-
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brates and vertebrates found different solutions to cope with those large somata: While
higher invertebrates externalized their whole soma, vertebrates externalized somatic
machinery into the proximal dendrites. This allows for a smaller soma at the cost of
thicker proximal dendrites, which leads to a lower soma-to-neurite ratio.

Figure 7.2.: Two solutions to the same problem. When evolution scales up the size of neurons,
the resulting large soma in the signaling path is a problem. While higher invertebrates reacted
with an externalization of the whole soma, vertebrates may have relocated part of the somatic
machinery into proximal dendrites, such that the size of the soma could be decreased.

An example for the externalization of somatic machinery is the rough endoplasmic
reticulum. In higher invertebrates, it is restricted to the soma [136], whereas in verte-
brates, it is also found in proximal dendrites [120], as also reviewed by Sánchez-Soriano
et al. [157]. The endoplasmic reticulum synthesizes proteins [172], and regulates
metabolism [120] and excitability of the neuron [172]. As a large rough endoplasmic
reticulum is especially prominent in secretory cells [120], and neuro-secretion is ubiqui-
tous in invertebrates (Sec. 7.3.2), it is possible that invertebrates in general tend to have
a larger rough endoplasmic reticulum than vertebrates. A large rough endoplasmic
reticulum might simply not fit into proximal dendrites, which could explain why inver-
tebrates left the rough endoplasmic reticulum in the soma, and externalized the soma
instead.

Figure 7.3.: Hypothetical organelle distribution in unipolar and multipolar cells.
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7.5. Predictions of the organelle exclusion hypothesis

7.5.1. Relative nucleus volume

The DNA of a neuron, constant over the lifetime of the cell, is contained in the nucleus.
The machinery required for protein synthesis surrounds the nucleus and increases
the soma size. Considering the volume ratio of soma and nucleus for unipolar and
multipolar neurons, my hypothesis predicts a larger ratio for unipolar neurons (because
of additional somatic machinery), and a ratio closer to one for multipolar neurons.
Indeed, unipolar invertebrate motor neurons have typically a quite large soma with
lots of cytoplasm [61]. A quantitative consideration of this ratio could be analyzed
in future research. Estimates for the ratio of the soma-to-nucleus volume could in
particular be extracted from electron microscopy data that is used for three-dimensional
reconstructions of neurons.

7.5.2. Mitochondria distribution

Mitochondria are small organelles that produce ATP and thereby satisfy a large propor-
tion of the energetic requirements of eukaryotic cells [1]. Mitochondria are in general
distributed all over the neuron, and are observed both in the soma and the neurite9

[166]. Mitochondria are particularly important for structures that transmit signals, for
example, activity in unipolar dorsal root ganglion cells increases the energy consump-
tion of the neurites, but not of the somata10 [83]. For multipolar neurons, where the
central soma also participates in signaling, activity should increase energy consumption
both in the neurites and the soma.

For both unipolar and multipolar neurons, mitochondria are required in and around
the soma to supply energy for protein synthesis. If the somatic machinery in unipolar
neurons is indeed confined to the soma proper, as suggested by the organelle exclusion
hypothesis, this may be reflected in a higher number of mitochondria in the soma
compared to the neurites. In this case, the ratio of the mitochondria number of soma
and neurites is expected to be larger for unipolar neurons.

The localization of mitochondria in regions with high ATP consumption has the
advantage that ATP is synthesized and consumed at the same spot, such that ATP is
not transported through the neuron. On the other hand, this requires that nutrients
consumed by the mitochondria are transported to this location. In vertebrates, this
is at least partly accomplished by astrocytes which provides nutrients to the neuron
at different locations. In invertebrates, nutrients are mainly taken up by the soma
[61, 157] (compare Sec. 2.3.2), which requires a subsequent nutrient transportation
along the neurites. If the transportation of ATP is easier than the transportation of
nutrients, it also seems reasonable to locate a high density of mitochondria in regions
with easy access to nutrients, such as the soma in the case of unipolar neurons. From
this perspective, a higher proportion of mitochondria in the soma compared to the

9In some cells, mitochondria can move through the cytoplasm, in other cells they are located permanently
in regions with high ATP consumption [1].

10Indeed, the soma is not essential for signal transmission at all, as dorsal root ganglion cells transmit
signals even when their somata are mostly degenerated after blocking blood supply [61].
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neurites in invertebrates could support the organelle exclusion hypothesis, but it could
also result from an easy access to nutrients.

While the energy consumption related to protein synthesis may be concentrated in
unipolar neurons in the externalized soma, the overall energy consumption of a central
soma may still be higher due to its active conductances and synaptic inputs. Hence, a
fair comparison of energy consumption between unipolar and multipolar neurons may
in general be difficult to ensure. Yet, as energy is considered an important evolutionary
pressure [98, 114], I believe the mitochondria distribution to be an interesting starting
point for the investigation for neuronal signaling.

7.5.3. Axial resistance in organelle-dense neurites

The axial resistance models the resistance that an ion in the cytoplasm is subjected
to. Impediments such as organelles and the endoplasmic reticulum increase the axial
resistance [29]. Externalization of cellular components into the dendrites may hence
implicate a higher axial resistance in the dendrites of vertebrates compared to higher
invertebrates. Indeed, higher axial resistances are reported for vertebrate than for higher
invertebrate neurons (24− 150Ωcm in higher invertebrates, once 70Ωcm and otherwise
200− 390Ωcm in vertebrates, see the first publication, Supplementary Information,
Table I). For invertebrates, on the other hand, an increase in the axial resistance of the
stem neurite may be advantageous for signal transmission, see the first publication.
This may be achieved by a tighter packing of the stem neurite compared to dendritic
and axonal trees. A large density of molecular structures in the stem neurite could
furthermore explain how the thin stem neurite can transport sufficient proteins for the
support of the thicker axonal and dendritic trees.

7.6. Wiring optimization in ganglionic structures

While the previous sections discuss aspects of different soma locations with respect
to the individual neuron, this section draws conclusions with respect to the network
arrangement of neurons. The arrangement of unipolar neurons in ganglia, with a
central neuropil and a superficial soma layer, was used to explain their morphology
(see Sec. 2.3.1). Yet, the advantages of a superficial arrangement of somata, such as
facilitated access to the surrounding hemolymph, deteriorates when the number of
neurons is so large that several layers of somata have to be stacked one over the other.
Based on efficiency arguments, as used in the first publication, an upper bound on
the ganglion size is derived in this section. Following the size considerations inspired
by the first publication, I first review the ordering of somata of different sizes within
a ganglion. Using the electrotonic length (one of the decisive parameters in the first
publication), I then derive a maximal ganglion size based on arguments of volume
minimization. Both observations on the ganglionic arrangement of unipolar neurons
are based on an efficient use of space, which poses an additional constraint besides
energy efficiency.
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7.6.1. Spatial ordering in the ganglionic soma layer

Typically, unipolar neurons are arranged in a ganglionic structure, with the neurites
intermingled in a central neuropil, surrounded by a dense layer consisting of external-
ized somata (and glia cells, see Sec. 2.3.2). The somata are arranged in sheets with the
largest the furthest out, smaller ones at the inside, and some very small neurons may
also be found in the neuropil, e.g., in cephalopods [11].

This ordering has three conceivable advantages. The first advantage is related
to optimal stacking. Arguably, the ordering facilitates the passage of stem neurites
through the soma layer. The small size of the more central (inner) somata may allow
for a relatively straight passage of the stem neurites of more superficial (outer) neurons,
minimizing the length of the stem neurite. The second advantage is a comparable
electrotonic lengths for all stem neurites, with similar functional implications. Outer
somata have longer stem neurites than inner somata. Outer somata furthermore have
thicker stem neurites, because their larger soma volume allows for a larger amount of
somatically synthesized proteins, which demands for a thicker stem neurite with higher
throughput (Sec. 7.4.2). The thicker and longer stem neurites of outer somata and the
shorter and thinner stem neurites from inner somata may have a similar electrotonic
length, because a constant electrotonic length requires that the spatial length of the
stem neurite increases with the square root of its diameter, see Sec. 7.4.2. Furthermore,
the third advantage is that the ordering puts the larger cells, which probably consume
more energy, in closer contact with the surrounding nutrients.

7.6.2. Upper bound on ganglion size

The separation of neuronal somata from the neuropil, as typical for unipolar neurons, is
thought to save tissue volume, see Sec. 2.3.1. When neuronal somata are located inside
the neuropil, neurites have to circle around the somata (Fig. 7.4A). This, besides others,
elongates the neurites, for which the negative consequences, such as an increase in
signal transmission delay, have been summarized by Rivera-Alba et al. [133]. Whether
a ganglion-like structure with separated soma layer, or somata embedded within the
neuropil minimizes tissue volume depends on the relative size of soma and connecting
neurite (the stem neurite in the case of unipolar cells). Under the assumption that tissue
minimization is indeed evolutionary favorable11, one can derive an upper bound for
the size of a ganglionic structure, because, with a sufficiently large number of soma
sheets, the length of the stem neurites required to reach the neuropil implies a larger
volume than is saved by an separation of the somata and the neuropil, see Fig. 7.4.
Hence, the advantage for volume minimization of a separated soma layer depends not
only on neuronal morphology, but also on the number of neurons.

The constraint of minimal tissue volume allows for an educated guess on the maximal
number of soma sheets. Tissue volume is reduced when the neuropil is void of somata,
as then a dendritic or axonal neurite does not need to circumvent somata (Fig. 7.4). Yet,
the exclusion of somata from the neuropil requires a stem neurite which connects the

11Minimization of volume (or wiring length) is in the literature common regarded as an evolutionary
pressure, see Sec. 2.3.1. Yet, I am not aware of empirical evidence for this claim. While it makes sense
that neuronal systems should not be larger than they need to be, to me it seems to be of only minor
importance compared to other evolutionary pressures such as an increase in complexity.
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soma with the dendritic and axonal trees. Each additional sheet of somata increases
the distance between somata and neuropil, and hence lengthens the stem neurite by
at least one soma diameter. This increases the required volume with each additional
soma sheet. The exclusion of somata from the neuropil hence saves volume as long as
the volume decrease due to straight dendrites is larger than the volume increase due to
longer stem neurites.

The minimization of volume can be bounded in the simple model depicted in Fig. 7.4.
For a soma intermingled within the neuropil, the volume is increased by the difference
between the volume of the straight dendrite, and the encircling dendrite. In any
neuropil, this would affect several dendrites (and axons). Yet, the largest volume
saving occurs for the thickest dendrite because the change in length between straight
and circling is the same for thick and thin dendrites, such that the volume saving is
larger for thicker dendrites. For simplicity, all dendrites but a single, thick dendrite are
hence ignored. The volume saved in this case is compared with the minimal volume
of the stem neurite required to locate the soma on top of the some layer consisting
of n sheets of somata. This comparison allows to predict under which condition the
exclusion of somata from the neuropil saves tissue volume.

For a soma with diameter s within the neuropil that is encircled by a dendrite of
diameter d, the dendrite volume required for wrapping around the soma is Varound =
π/4d2(π/2s), while a straight passage without soma in the way amounts to Vdirect =
π/4d2s. An exclusion of the soma from the neuropil is useful as long as the difference of
both is larger than the stem neurite volume required to exclude the soma. The diameter
d of the thickest part of a dendrite is often related to the stem neurite diameter, and
a value of 0.5d is supported by data, as shown in the first publication, Supplemental
Information. For an estimate of the volume decrease, the stem neurite diameter is
denoted as p ∗ d, where p is the ratio between stem neurite diameter and neurite
diameter. An exclusion of the soma will save tissue volume only if the minimal volume
required by the stem neurite is smaller than the decrease in volume due to the straight
dendrite,

Vstem < Varound −Vdirect

π/4(pd)2 (n− 1)s < π/4d2s(π/2− 1)
p2(n− 1) < π/2− 1 ≈ 0.57

where n is the number of stacked somata in the soma layer, see Fig. 7.4. Choosing
p = 0.5 as in the first publication, we find n < 3.3 as condition for volume-minimizing
soma exclusion. This simple estimate predicts that, from three layers of somata on,
additional somata should rather be located inside the neuropil, instead of adding
them as an additional sheet of somata on the surface of the ganglion. This estimate
is conservative, because the stem neurite will be longer than estimated as it often
passes also part of the neuropil, and as it may also need to encircle somata when
passing underlying sheets. Note that this educated guess compares a dendrite which
typically participates in signal transmission with the stem neurite which is typically
only partly depolarized by the signal. Partial depolarization is probably energetically

81



7. Evolution and functional consequences of the soma location

less costly than full depolarization of a dendrite, such that exclusion of somata may be
energetically favorable even when increasing tissue volume.

Figure 7.4.: A: Neurites have to circle around the soma if the soma is located inside the neuropil
(right), which requires more volume than if the neurite can pass through the space taken up by
the soma (left). B: A stem neurite connects soma and neuropil. An exclusion of the somata from
the neuropil reduces the overall volume of the ganglion if the volume reduction illustrated in A
is larger than the volume of the stem neurite.

The prediction of maximal three soma layers per ganglion demands for a quantitative
analysis of the soma layer number for different animals. While this is left for future
research, many species considered in the first publication show indeed only a small
number of soma layers.

As a side note, it seems that a living example for an upper bound on the number
of soma sheets is provided by the octopus. The octopus has mostly unipolar neurons.
While many neurons are arranged in ganglia as known from other invertebrates, its
neurons are partly arrange in layers rather than spherical ganglia [61, 115]. In the
light of the hypothesis of this section, the disintegration of spherical ganglia in the
octopus could result from its large number of neurons, too large for a pure ganglionic
arrangement. Moreover, in the highly developed optical lobe of octopus, multipolar
neurons can also be found besides the typically unipolar shape [61, 115]. Maybe this
could be explained by one of the advantages of a multipolar neuron discussed in Sec.
7.2, such as a facilitation of recurrent connections. While I consider it as unlikely that
intelligence is constrained by neuronal morphology or arrangement, as there is general
agreement that intelligence rather arises from the connection pattern of neurons, it
is nevertheless interesting that brain activity in octopuses shows oscillations in the
field potential, similar to vertebrates and in contrast to most other invertebrates [16],
and that the large brain of the octopus allows it to compete on a cognitive level with
vertebrates of the sea [82]. In summary, the octopus is one example that shows increased
neuron number and a deviation of the ganglionic arrangement. The question whether
this relation is indeed causal, as suggested by the hypothesis above, is left for future
research.
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7.7. Recapitulation

The first project of this thesis shows that signal transmission can be optimized by
a central or externalized soma12. In addition, further advantages of unipolar and
multipolar morphologies were discussed, with an emphasis on signal processing and
the spatial environment of the soma. The discussion portrays (energy-)efficient signal
transmission as a mayor driving force for the divergent evolution of neurons with
central or externalized soma. As detailed above, I hypothesize that the divergent
evolution arises from different solutions to the problem that a large central soma
poses for signal transmission: While invertebrates externalized the large soma that
evolved to support complex neurons, vertebrates retained the central soma location,
but externalized part of the somatic machinery into proximal dendrites.

12Energetic or other advantages may also have driven the development of unipolar neurons in vertebrates
(e.g., spinal dorsal root ganglion cells), and multipolar neurons in invertebrates (e.g., octopus gravity
receptor system [25]).
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8. The saddle-node-loop bifurcation

The saddle-node-loop bifurcation was identified in the second publication as a funda-
mental transition in conductance-based neurons models. This chapter provides aspects
on the generality and relevance of the saddle-node-loop bifurcation that extend beyond
the second publication. The saddle-node-loop bifurcation can be reached by various
bifurcation parameters. One of them is the membrane capacitance, whose biological
relevance is discussed below (Sec. 8.1). Similar to what is observed at a small saddle-
node-loop bifurcation, a reduction in limit cycle period and an increased asymmetry in
the phase-response curve emerge in the one-dimensional model identified in Sec. 8.2 (a
quadratic integrate-and-fire model with variable reset). The changes in phase-response
curve at a small saddle-node-loop bifurcation have drastic consequences not only for
synchronization (as shown in the second publication), but also for other aspects of
neuronal processing discussed in Sec. 8.3. With these functional implications, the
saddle-node-loop bifurcation may provide an energetically favorable coding regime
described in Sec. 8.4. Because the discussed implications are largely based on the
shape of the phase-response curve, phase-response curves are then discussed beyond
the saddle-node-loop bifurcation, both for higher firing rates and at other spike onset
bifurcations (Sec. 8.5.2). This chapter is based on joint work with Jan-Hendrik Schleimer
(equal contribution to Secs. 8.2, 8.3, 8.5), and builds upon work from Schleimer [142].

8.1. The membrane capacitance as biological parameter

In the second publication, the membrane capacitance was used as bifurcation parameter.
Yet, capacitance can only have biological relevance as bifurcation parameter, if it can be
adapted in real neurons. In the literature, the membrane capacitance is often treated as
a parameter that is fixed by the biophysical properties of the bilipid membrane of the
cell, and hence universal between species and neuron types. Indeed, the membrane
capacitance of cortical pyramidal neurons, spinal cord neurons, and hippocampal
neurons in rat show very similar values around 0.9µF/cm2 [46]. On the other hand,
recent reports show reduced capacitance in human neurons [10, 41]. This may be due
to the lipid composition of the cell membrane [41].

Changes in membrane composition are for example known to occur in invertebrates
in response to changes in temperature [106]. The ratio of saturated and unsaturated
fatty acids has been shown to affect spiking, in a way that can stabilize neuronal
dynamics against changes in temperature [106]. One could even speculate that the
ratio of different fatty acids changes the capacitance in a way that directly counteracts
the change in temperature, such that an increase in temperature results in a mem-
brane composition that decreases the membrane capacitance. This could be tested
experimentally.
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8.2. Quadratic integrate-and-fire neurons as model of the
small saddle-node-loop bifurcation

As was shown in the second publication, conductance-based models show specific
changes in limit cycle period and phase-response curve around a small saddle-node-
loop bifurcation. As shown in this section, both characteristics also appear in a simple
quadratic integrate-and-fire (qIF) model with variable reset. The existence of such a
simple model supports the ubiquitousness of the saddle-node-loop bifurcation pro-
posed in the second publication. The model furthermore allows to investigate the effect
of saddle-node-loop bifurcations in networks with reasonable computational resources,
compared to numerically involved network simulations of conductance-based neuron
models.

The model consists of a single variable x with the dynamics ẋ = I + x2 with reset
to x = xreset for x → ∞, see for example Izhikevich [79]. This reset model allows for an
analytical expression for the phase-response curve derived in the following.

Figure 8.1.: For the quadratic integrate-and-fire model with variable reset, a shift in the reset
value from negative to positive values passes by the saddle-node-loop.

For a one dimensional model, an analytical expression of the trajectory allows to
directly state the phase-response curve [14, 36]. For a generalized integrate-and-fire
model given by ẋ = f (x) with x between reset and threshold value, the phase-response
curve is given as Z = 1/ f (x0), where x0(t) is a solution of the system [14].

The reset model shows two fixed points for negative input, I < 0, which are de-
stroyed in a saddle-node bifurcation at I = 0. In the following, small positive inputs
are considered, i.e., inputs nearby threshold. For I > 0, the trajectory of the system
is given as x(t) = −

√
I cot( t−T

I ), with T = 1
I arccot(xreset/

√
I) (with the image of

arccot ∈ [0, π)), where t is restricted to t ∈ [0, T]. With this, the phase-response curve
of the reset model evaluates to

Z(θ) =
1

2IT
(1 − cos(2

√
IT(θ − 1))), (8.1)

with θ ∈ [0, 1).
In the limit xreset → −∞, this phase-response curve recovers the symmetrical (1 −

cos) shape typically observed at saddle-node on invariant cycle bifurcations [35]. With
increasing reset value, the phase-response curve becomes increasingly asymmetric,
until it finally resembles for positive reset values the exponential decay expected for
saddle-homoclinic orbit bifurcations [14]. A reset value of xreset = 0 can be identified
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with the saddle-node-loop bifurcation. The analytical phase-response curve is then
half of the phase-response curve at a saddle-node on invariant cycle bifurcation, as
expected from the consideration in the second publication.

The phase-response curve allows to assess the synchronization ability of neurons
coupled with δ-synapses, as introduced in Sec. 3.4.1. The entrainment range is given
by the odd part of the phase-response curve. The entrainment range of the reset model
can be matched with that of a conductance based neuron model1 (the two-dimensional
sodium-potassium model as stated in Izhikevich [79], and the relative time scale of
voltage and gating dynamics was changed, in alternative to the capacitance, by adding
a prefactor to the gating kinetics, mimicking a temperature dependence in the gating
rates of ion channel conductances in the form of Eq. 3.4). When the entrainment
range of both models is aligned by the (putative) saddle-node-loop bifurcation, the
bifurcation parameters of both models can be scaled in a way that the entrainment
range fits qualitatively around the saddle-node-loop bifurcation, see Fig. 8.2.

Figure 8.2.: Entrainment range assuming δ-synapse-coupling versus the bifurcation parameter
for the conductance-based model (Na-K (sodium-potassium) model from Izhikevich [79]), and
for the reset model (IF model).

While the reset model nicely reproduces phase-response curves around the small
saddle-node-loop bifurcation, the following arguments show that one-dimensional
models are probably not sufficient to capture a big saddle-node-loop bifurcation. The
symmetry of the phase-response curve changes at the big (small, respectively) saddle-
node-loop bifurcation by a shift to the right (left, respectively), compare the second
publication. A similar shift of the phase-response curve maximum can be observed
can be observed in models in which the threshold acts as a parameter in addition
to the reset value, ẋ = I + x2 with reset to x = xreset for x = xthreshold. The phase-
response curve maximum shifts to the right for −xreset > xthreshold, and to the left for
−xreset < xthreshold. A starting point for a simple model with a big saddle-node-loop
bifurcation may be a model with a negative reset value, in which the threshold value
decreases from a large positive value to the reset value, with the saddle-node-loop
equivalent for a threshold value of zero. In this model, a non-degenerated saddle-node

1The entrainment range observed here is qualitatively similar to the entrainment range observed in
higher-dimensional neuron models, see Fig. 10.1 (adapted Traub-Miles model [165]) and Fig. 5b
(adapted Wang-Buzsaki model with the capacitance as bifurcation parameter).
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on invariant cycle bifurcation would be observed for threshold and reset values with
equal magnitude but different signs. However, the dynamics at a big saddle-node-loop
bifurcation suggests that a one-dimensional model is in general insufficient: The limit
cycle dynamics at a big saddle-node-loop bifurcation are slow at two different phases,
because, both on the exit and on the approach to the saddle-node fixed point, the
trajectory runs parallel to the semi-stable manifold2, compare Fig. 3a in the second
publication. A second slowing down in the dynamics can probably only be captured
by a model with at least two dimensions.

8.3. Coding properties at the saddle-node-loop bifurcation

The saddle-node-loop bifurcation is not only interesting for synchronization, but also
for spike-based coding in general. The following discussion demonstrates the impact
of the small saddle-node-loop bifurcation on various measures that can be derived
from the phase-response curve. Considered below is the locking to an external signal,
filter properties, and the rate of information transmission. A more detailed discussion
on the consequences of saddle-node-loop bifurcations for neuronal coding is provided
in the preprint Hesse et al. [68].

8.3.1. Locking to external inputs

The entrainment range quantified in the second publication is related to the ability of
neurons to synchronize within a population of identical, weakly coupled oscillators [96].
A population of identical neurons can also appear synchronized due to common input,
even without coupling within the population (stochastic synchronization, see Marella
and Ermentrout [104], Pikovsky et al. [124]). Starting from random conditions, an
uncoupled population with white-noise input synchronizes over time. The correspond-
ing relaxation time constant is related to the stability of the state with zero phase lag
between two oscillators entrained by the same stimulus, i.e., the state where both spike
simultaneously. The stability of the phase fixed point corresponding to this state is
given by its Lyapunov exponent, whose inverse gives the relaxation time constant. The
Lyapunov exponent, λ, can be calculated based on the derivative of the phase-response
curve Z(ϕ) [52, 160],

λ = −σ2
∫ 1

0

(
dZ(ϕ)

dϕ

)2

dϕ, (8.2)

here σ2 is the correlation of the common input ν, 〈ν(0)ν(∆t)〉 = σ2δ(∆t). The steeper
slopes of the phase-response curve at the saddle-node-loop bifurcations leads to larger
Lyapunov exponents in their proximity (Fig. 8.3b).

2The orbit flip at the big saddle-node-loop bifurcation brings the limit cycle off the semi-stable manifold
(along the approach of the saddle-node fixed point), but only off by a tiny bit, and it still runs in
parallel for a large part of the limit cycle orbit before it approaches the saddle-node fixed point along
the strongly stable manifold.
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Figure 8.3.: Coding properties for the Wang-Buzsaki model with input IDC ≈ 0.16 µA/cm2

(about 2% above limit cycle onset). (a) Limit cycle period. (b) Magnitude of the Lyapunov
exponent, |λ|, of the locking state to a time-varying white noise stimulus. (c) Lower bound
on the mutual information rate (denoted info rate), with zoom below. Note the maxima in
proximity of both SNL bifurcations. Numerical continuation of phase-response curves and
limit cycles with AUTO-07P [31].

8.3.2. Information transmission

The amount and kind of information that a neuron can possibly transmit can be evalu-
ated based on the rate of information transmission, and the linear filtering properties.
Considering the neuron as an information filter, its output strength depends not only
on its input strength, but also on the frequency of its input. This dependence is cap-
tured by the first-order relation between input and output, the linear response filter
(Fig. 8.4). The linear response filter is the Laplace transform of the transfer function,
which can be calculated based on the phase-response curve [143]. Evaluating the linear
response function at different bifurcations, saddle-node-loop bifurcations facilitate the
transmission of higher frequencies compared to the saddle-node on invariant cycle
bifurcation (Fig. 8.4c).

Filter properties also determine the total amount of information that can be trans-
mitted. In a time-continuous system, the rate at which information on the input can
be gained by observing the output (or vice versa) is quantified by the mutual informa-
tion rate. This rate can be bounded below using the phase-response curve, under the
assumption of band-limited white noise as input [22, 143]. Intuitively, the lower bound
on the mutual information rate results from a summation of the transmission rate over
each frequency. With that, the facilitation of high frequency transmission around the
saddle-node-loop bifurcation explains the increase in the lower bound observed in
proximity of the saddle-node-loop bifurcation (Fig. 8.3c).

Information rate, high frequency transmission, and locking to an external signal (as
measured by the Lyapunov exponent) all increase in proximity of the saddle-node-loop
bifurcations (Fig. 8.3). This observation is explained both by a reduction of the limit
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Figure 8.4.: Filter properties at small saddle-node-loop, saddle-node on invariant cycle and
big saddle-node-loop bifurcation for the Wang-Buzsaki model with input IDC ≈ 0.16 µA/cm2

(about 2% above limit cycle onset). Membrane capacitance reported in panel (b), units in
µF/cm2. (a) Sketch of the homoclinic orbit to the saddle-node fixed point. (b) Phase-response
curve for a perturbation with a current input. (c) Linear response function calculated based on
the phase-response curve. Filters at the saddle-node-loop bifurcations show a larger frequency
range than the filter at the saddle-node on invariant cycle bifurcation.

cycle period and by the changes in phase-response curve shape. Because the limit
cycle period scales the phase-response curve (the faster the spiking, the more robust is
the system to perturbations, and hence the smaller is the phase-response curve), the
change in period (Fig. 8.3a) contributes in particular to the peak at the small saddle-
node-loop bifurcation. Furthermore, the increase in the measures is related to the
changes in the phase-response curve. In the theoretical limit, the phase-response curve
is symmetric and composed of a single Fourier mode (the first cosine mode) at the
saddle-node on invariant cycle bifurcation. The phase-response curve gets asymmetric
components at the saddle-node-loop bifurcations, and the number of nonzero Fourier
modes increases considerably, each of which contributes also to the derivative of the
phase-response curve relevant for stochastic synchronization. As these properties occur
generically at saddle-node-loop bifurcations (see the second publication), the derived
coding properties may also be of interest in other information-processing systems.

8.4. Energy-efficient information processing

The functional implications summarized in the last section suggest that information
processing around the saddle-node-loop bifurcation may be interesting for neurons. As
any biological implementation of a dynamical regime requires energy in a real nervous
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system, this section discusses bifurcations from the perspective of energy consumption.
Two aspects are worth mentioning, the extreme sensitivity to parameter variations, and
the energetic costs of different spike generation mechanisms.

Compared to other bifurcations that were considered in the second publication, the
saddle-node-loop bifurcation induces the stronger change in coding properties. Hence,
minimal changes in parameters show the maximal effect. It would be interesting to
compare the energy required for changing the synchronization either with a bifurca-
tion parameter of the saddle-node-loop bifurcation, or with a change in the synaptic
coupling strength, which can also affect the entrainment range of δ-coupled oscillators
[124]. Potentially, the saddle-node-loop bifurcation allows to change coding properties
at minimal expenses.

The functional implications of the saddle-node-loop bifurcation result from the
associated change in spike onset bifurcation. While energy consumption has been
considered for spike initiation in different models [148], it has so far not been related to
the spike onset bifurcation. As illustrated below, it may be possible to relate dynamical
characteristics of the limit cycle on one hand, with the associated energy consumption
on the other hand. The energetic costs, in addition to the functional implications, may
also constrain a neuron’s dynamical state.

Already within one group of neuron models with the same spike onset bifurcation,
energetic costs depend largely on the parameters of the model. For example, the
number of ion channels is proportional to the sodium ion flow, and hence scales
the energetic costs3. Particularly, the overlap of potassium and sodium currents is
considered as energetically wasteful, because although ions flow, the net current is zero
when potassium and sodium ions flow simultaneously.

Both features of energy consumption are, potentially generically, affected by the spike
onset bifurcation (at least at spike onset where normal form theory holds). Here, a spike
onset at either a saddle-node on invariant cycle or a saddle-homoclinic orbit bifurcation
is considered4. Both bifurcations result in different dynamics around the fixed point
from which the limit cycle detaches, with quadratic dynamics at a saddle-node on
invariant cycle bifurcation and linear dynamics at a saddle-homoclinic orbit bifurcation.
The linear dynamics are faster, and hence may allow generically for a clearer separation
between the sodium and potassium flow, because the difference in ion channel time
constants (considerably faster sodium gating) is only visible when the dynamics are
faster than the slower potassium kinetics. Furthermore, the limit cycle resulting from
a small saddle-homoclinic orbit bifurcation reaches smaller maximal voltage values
than the saddle-node on invariant cycle bifurcation, at least in two-dimensional models.
This results from the continuous limit cycle deformation visible around the saddle-
node-loop bifurcation, compare Fig. 3.2. Smaller maximal voltages, combined with the
smaller afterhyperpolarization introduced in Sec. 3.3.2, suggest that at least the small
saddle-homoclinic orbit bifurcation results in limit cycles with particular little sodium
flow.

3Sodium ion flow reduces the concentration gradient between in- and outside of the cell, which is
reestablished by energy-consuming ion pumps, see Sec. 1.4.

4The two bifurcations between which the saddle-node-loop bifurcation switches.
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8.5. Phase response beyond spike onset

Strictly speaking, the analysis of the second publication with regard to the phase-
response curve shape is mainly valid in a small environment of the spike onset bifur-
cation under consideration. This section considers how the phase-response curve is
reshaped when the mean input is further increased, and concludes that besides the
spike onset bifurcation, also the excitation block may be relevant for a classification of
neuronal dynamics.

8.5.1. Spiking from onset to excitation block

While the generic phase-response curves considered so far only occur at limit cycle
bifurcations (Sec. 3.3.2), phase-response curves can be measured all along the limit cycle
branch. In typical neuron models, spiking starts at one bifurcation, e.g., a saddle-node
on invariant cycle bifurcation, and spiking stops at another bifurcation, the excitation
block, e.g. a supercritical Hopf bifurcation. When following the limit cycle from spike
onset to excitation block (without further bifurcations on the limit cycle branch), it is
transformed in a topological isomorphic manner, visible as a continuous deformation
of its shape. Assuming that the dynamical system is sufficiently differentiable [175],
this directly implies continuous (i.e., topological isomorphic) transformations of the
phase-response curve shape.

In the example mentioned above, the phase-response curve at spike onset will
have the (1− cos) shape typical for saddle-node on invariant cycle bifurcations. At
the excitation block, the phase-response curve will have the sine shape typical for
supercritical Hopf bifurcations. In between, for input values between spike onset and
excitation block, numerical continuation shows that the phase-response curve shape
corresponds to some interpolation between both stereotypical phase-response curves.
Starting at spike onset, the phase-response curve will gain an negative component for
early phases. This negative component will increase in size, until its amplitude equals
the amplitude of the positive component at the excitation block, resulting in a perfect
sine shape. While a continuous transformation of the phase-response curve can be
expected along any well-behaving branch of stable limit cycles, it remains so far unclear
whether such continuous transformations are also to be expected when the limit cycle
changes stability, as happens at the fold of limit cycles bifurcation discussed below.

8.5.2. Spike onset at subcritical Hopf bifurcations

In order to compare the saddle-node-loop bifurcation with other potential spike onset
mechanisms, this paragraph takes up the discussion of the subcritical Hopf bifurcation
in the second publication. The phase response has been derived for various bifurcations
that occur as spike onset or excitation block in neuron models [14]. So far missing
is the phase response in models in which spiking is initiated by a subcritical Hopf
bifurcation, for example in the original Hodgkin-Huxley model [73] or other so called
type-II models. The subcritical Hopf bifurcation in these cases has to be distinguished
from supercritical Hopf bifurcations, for which the phase-response curve is a well-
known sine curve [14]. The supercritical Hopf bifurcation is hardly relevant as onset
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for spiking, because, at the bifurcation, limit cycles have an infinitely small amplitude,
in contrast to the all-or-nothing spikes typically observed in neurons.

Figure 8.5.: Sketch of the relation between membrane voltage and input when the fixed point
loses stability at a subcritical Hopf bifurcation. The unstable branch of the fold of limit cycles
bifurcation either ends in a saddle-homoclinic orbit bifurcation (left) or directly in the Hopf
bifurcation (right), as in the original Hodgkin-Huxley model [73]. Fixed point voltage in violet,
limit cycle (LC) maximal and minimal voltage in green. Straight lines denote linearly stable
dynamics, dashed lines linear unstable dynamics.

When the resting state is destabilized by a subcritical Hopf bifurcation, the arising
limit cycle (also with infinitely small amplitude) is unstable. Neuron models that
allow for repetitive spiking show a stable limit cycle, on which the dynamics falls once
the resting state looses stability. This stable limit cycle is not directly related to the
subcritical Hopf bifurcation, and its phase-response curve can hence not be derived
from this bifurcation. Instead, the phase-response curve should be derived from the
bifurcation that creates the stable limit cycle. In conductance-based neuron models,
the stable limit cycle typically arises from a fold of limit cycles bifurcation (as in the
original Hodgkin-Huxley model [73]) or from a saddle homoclinic orbit bifurcation,
compare Fig. 8.5. In the latter case, the saddle-homoclinic orbit bifurcation must be a
big saddle-homoclinic orbit bifurcation, whose limit cycle encircles all three fixed points
(rest, saddle, and unstable node). With an increase in input, the unstable limit cycle that
is required for the subcritical Hopf bifurcation arises from a small saddle homoclinic
orbit bifurcation, and eventually disappears in the subcritical Hopf bifurcation. Note
that in this case, the stable and unstable limit cycle have no connection at all, and the
properties of the saddle homoclinic orbit bifurcation alone will decide on the phase-
response curve at the creation of the limit cycle. In alternative to the sequence of big
and small saddle-homoclinic orbit bifurcation, a fold of limit cycles bifurcation can
directly connect the unstable limit cycle created at the subcritical Hopf bifurcation
with the stable limit cycle corresponding to repetitive spiking. Note that this fold of
limit cycles bifurcation does not imply radially symmetric limit cycles as assumed
by Brown et al. [14], because radial symmetry would imply equal depolarization
and hyperpolarization around the stable fixed point, while biological neurons show
considerably larger positive excursions in the voltage dynamics. The fold of limit cycles
bifurcation that occurs before the subcritical Hopf bifurcation results in a bistability of
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stable limit cycle and stable fixed point5. The continuous limit cycle branch from the
subcritical Hopf bifurcation to the fold of limit cycles bifurcation may allow the former
to influence the phase-response curve at the stable branch of the latter, for example
by retaining a biphasic phase-response curve for which perturbations can advance or
delay the next spike.

An analytical derivation of the exact phase-response curve shape at a fold of limit
cycles bifurcation remains an open challenge that is further pursued in the lab. A
precise statement of this phase-response curve could ameliorate the confusion on
phase-response curves related to either sub- and supercritical Hopf bifurcations as
sometimes apparent in the literature. Many models with subcritical Hopf bifurcations
show a negative component in the early phase of the phase-response curve, which
is, in analogy to the phase-response curve at the supercritical Hopf bifurcation, often
related to the subcritical Hopf bifurcation. However, this connection was, to the best
of my knowledge, never properly established. As stated above, the dynamics falls
on a stable limit cycle once the subcritical Hopf bifurcation occurs. This limit cycle
is already at a certain distance from its creation bifurcation, because of the bistability
of limit cycle and resting state just before the subcritical Hopf bifurcation. The limit
cycle observed at the subcritical Hopf bifurcation is thus intermittent between limit
cycle onset and limit cycle destruction. Hence, the phase-response curve measured
for the stable limit cycle at the subcritical Hopf bifurcation is a combination of the
canonical phase-response curves at the excitation block on one hand, and the limit
cycle creation bifurcation on the other hand (i.e., a fold of limit cycles or big saddle-
homoclinic orbit bifurcation). If the excitation block is a supercritical Hopf bifurcation
as common in neuron models, this might explain the biphasic phase-response curve
observed at the subcritical Hopf bifurcation. Alternatively, the excitation block might
also be sequence of a subcritical Hopf bifurcation that stabilizes the unstable node, and
a fold of limit cycles bifurcation, that eliminates the stable limit cycle. A model that is
particularly interesting for the phase-response curve shape is one, in which the limit
cycle generation, in addition, happens at a fold of limit cycles bifurcation. In this case,
the limit cycle branch starts and ends at the same bifurcation type, which might lead
to less deformations of the phase-response curve than observed in common neuron
models with different bifurcations. If it turns out that the excitation block bifurcation is
indeed influencing neuronal dynamics in a reasonable spiking regime, as suggested in
this section, neurons with a finite firing rate may be better classified by both the spike
onset and spike termination bifurcation (i.e., excitation block).

5This bistability is also found in the fundamental bifurcation structure of conductance-based neuron
models by Kirst et al. [90], as long as the subcritical Hopf bifurcation is non-degenerated.
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9. Temperature as a control parameter in
biological systems

While direct consequences from the second publication were discussed in the last
chapter, the following two chapters present the implications of a saddle-node-loop
bifurcation when the bifurcation parameter is interpreted as temperature. The om-
nipresence of temperature variation in organisms (compare Sec. 3.6), makes this
bifurcation parameter particularly versatile, and allows even for a discussion of the
saddle-node-loop bifurcation in a medical context, as potential trigger mechanism for
temperature-induced seizures, as described in the introduction (Sec. 3.6.1). The search
for temperature-induced changes in synchronization originally motivated the study of
the saddle-node-loop bifurcation, and a publication on the subject is in preparation.

This chapter presents preliminary data which suggest that hallmarks of a saddle-
node-loop bifurcation can be observed with an increase in temperature. This is used in
the following chapter to suggest that the saddle-node-loop bifurcation may be relevant
for temperature-induced pathologies.

As summarized in the introduction (Sec. 3.5.2), temperature is a parameter that
influences the nervous system, and indeed the whole organism, in many aspects. While
endotherm animals spend a considerable amount of their energy on keeping the body
temperature more or less constant, the body temperature of ectotherm animals adapts to
the surrounding temperature. In ectotherm animals, the nervous system has to remain
functional over a particular large temperature range (e.g., day and night, or summer and
winter). But already the small changes in temperature observed in endotherm animals
can drastically alter neuronal dynamics, compare Sec. 3.6. The temperature dependence
of neuronal dynamics will be considered in this chapter, with a particular emphasize
on temperature as a bifurcation parameter of the saddle-node-loop bifurcation.

9.1. Regulation of temperature-dependence

Before considering changes in temperature as a bifurcation parameter, this paragraph
shortly reviews that neurons have also means to counter such changes. Such a counter
(temperature-compensation) is essential when neuronal function has to be ensured
over a certain range of temperatures.

While neurons can show a drastic temperature dependence in their dynamics (Sec.
3.5), in some cases it is useful to minimize the effect of temperature to remain functional.
This can be achieved by a well-chosen set of ion channels that counter each others
temperature dependence, allowing them to remain functional even when temperature
differences of 10°C occur, compare Roemschied et al. [134]. In addition, both vertebrates
and invertebrates use temperature-activated ion channels (e.g., TRP channels) for
thermo-regulation [176]. (Partial) temperature-compensation shows that the scaling of
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ion channel gating in response to temperature, as implemented in the models, is just
part of the story. As discussed later (Sec. 10.4.1), temperature compensation may be
seen in the experimental data.

9.2. Temperature-induced bifurcations

In direct analogy to the capacitance (Sec. 3.5.1), temperature can be used as bifurcation
parameter for the saddle-node-loop bifurcation. As mentioned in the introduction (Sec.
3.5.1), the saddle-node-loop bifurcation can be reached by an adaptation of the relative
time scale of the voltage and gating dynamics. In the second publication, this is done
by a change in the membrane capacitance, which adapts the voltage time scale. In
alternative, the relative time scale can be changed by an adaptation in the time scale
of the gating kinetics. This can be achieved by a change in temperature, whose main
effect is on the speed of active ion channel gating (Sec. 3.5.2). Both perspectives can be
transferred into each other by a simple rescaling of the time variable (for details see Sec.
3.5.1).

The temperature as bifurcation parameter will be particularly relevant for potential
medical implications of the second project. As discussed in the next chapter (Chapter
10), the increase in synchronization at the small saddle-node-loop bifurcation can serve
as a mechanism for seizure induction, when the seizure is induced by an increase in
temperature, as is the case for fever cramps and certain forms of epileptic seizures (Sec.
3.6.1). In analogy to the capacitance, an increase in temperature induces in models
a small saddle-node-loop bifurcation marked by an increasingly asymmetric phase-
response curve, and hence enhanced synchronization. The entrainment range against
different temperatures (implemented as a scaling of the ion channel kinetics) is plotted
in Fig. 8.2 for a two-dimensional sodium-potassium model (the bifurcation parameter
on the x-axis is described in the main text), in Fig. 10.1 for the Traub-Miles model, and
in Fig. 10.2 for other models.

9.3. Experimental evidence for a saddle-node-loop bifurcation
in hippocampal cells

In addition to the theoretical work presented in the second publication, the project on
saddle-node-loop bifurcations also has an experimental part in collaboration with the
Schmitz lab at the Charité. Together with Nikolaus Maier and Jan-Hendrik Schleimer1,
phase-response curves were measured at two different temperatures. The experiments
tested whether an increase in phase-response curve asymmetry as found in models
can be observed in hippocampal cells when the temperature is increased. This would
suggest an approach of a (small) saddle-node-loop bifurcation with temperature.

1 J.H., J.-H.S. and N.M. devised the experiment. N.M. performed the experiments (slice preparation,
patch clamping), and J.H. and J.-H.S. performed the phase-response curve recordings in successfully
patched neurons. J.H. programmed and performed the data analysis. J.H., J.-H.S. and N.M., together
with Susanne Schreiber and Dietmar Schmitz, discussed the results.
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9.3.1. Methods

Whole-cell patch-clamp recordings were done in slices from CA1 hippocampal pyrami-
dal cells (mice between age 22 and 30 days post-natal). Synaptic activity was blocked
with the GABAA receptor antagonist SR95531 (gabazine) and glutamate receptor block-
ers (CNQX and d-APV)2. Recordings were done using a Multiclamp 700A amplifier
(Axon Instruments, Union City, CA, USA), and the recorded data was analyzed us-
ing Spyke Viewer [126] extended with additional plug-ins for phase-response curve
measurements. Phase-response curves were measured at low (around 32°C) and high
(around 40°C) temperatures. Neurons were stimulated with a step current adapted
to obtain repetitive spiking with a firing rate around 10 Hz, and an additional noise
current with zero mean. The noise current represented an Ornstein-Uhlenbeck process
with a time constant of 4 ms, meant to simulate typical synaptic time-scales. The
membrane voltage was recorded and spikes were identified based on a voltage thresh-
old. The variations in spiking induced by the noise current were used to estimate the
phase-response curves.

In theory, it is possible to estimate phase-response curves from the deviations in
the mean firing rate due to the perturbations that the injected noise causes. While the
theory is based on infinitesimal perturbations in a deterministic, noise-free system,
the estimation of phase-response curves in more realistic, noisy systems is extremely
sensitive to the amplitude of the noise. Four methods for the reconstruction of the
phase-response curve were compared, one based on spike triggered averages [39], one
based on weighted spike triggered averages [118] and two based on the minimization
of spike-time prediction errors, adapted from Torben-Nielsen et al. [164] and Hong
et al. [76]. The appropriate amount of noise current (to perturb the spiking without
deviating too much from the mean firing rate that represents the limit cycle dynamics)
is difficult to adjust as it is different for every neuron (and may even change within one
recording session). Thus, the estimated phase-response curves do not only depend on
the temperature but also on the noise amplitude.

The experimental results were compared to simulations running on Brian2 [54, 156].
The phase-response curves were estimated in the simulations in the same way as for
the experimentally measured pyramidal cells, via an adaptation of the so-called STEP
method based on a minimization of spike-time prediction errors [164]. Simulations
used a simplified version of a model originally fitted to CA3 hippocampal pyramidal
cells, the Traub-Miles model [165], with a temperature-dependence on the gating
rates (Eq. 3.4 with φ = Q∆T/10

10 and Q10 between three and four). The model shows a
saddle-node on invariant cycle bifurcation at spike onset with the original parameters,
and reaches a saddle-node-loop bifurcation with an increase in temperature (Fig. 9.1,
Fig. 10.1).

9.3.2. Preliminary results

The estimation of phase-response curves from spike data requires around one thousand
spikes. Data of sufficient quality was obtained for 18 cells. In only half of those, the

2The synaptic blockers turned out to be temperature dependent; in order to block synaptic activity also
at higher temperatures, the blocker concentration was doubled to 2 µM gabazine, 40 µM CNQX and
60 µM d-APV.
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estimated phase-response curves suggest a comparable dynamical regime at low and
high temperatures (e.g., comparable noise amplitudes). The measured phase-response
curves of five cells demonstrate a shift of the maximum to earlier phases when the
temperature is increased, increasing asymmetry as expected with an approach to the
saddle-node-loop point (Fig. 9.1). The remaining cells showed similar phase-response
curves at low and high temperature, suggesting that the dynamics for those cells are
at both temperatures far from the saddle-node-loop point. An adaptation of the noise
amplitude and the temperature in the model allows to capture the phase-response
curve changes observed in the experiment (Fig. 9.1). A model close to the saddle-node-
loop point shows a similar shift in phase-response curve as observed in a subset of
hippocampal pyramidal cells.

Figure 9.1.: phase-response curves as measured in simulations and experiments. phase-
response curves were estimated based an adaptation of the so-called STEP method which uses
spike-time prediction error minimization [164].

The cells compatible with an approach of the saddle-node-loop point could be taken
as a hint that the saddle-node-loop bifurcation can be close to the dynamical state
of biological neurons. In this case, the saddle-node-loop bifurcation could indeed be
relevant for seizure induction under physiological conditions.
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10. The saddle-node-loop bifurcation as
seizure onset

The transfer of theoretical results into a medical context is a particular challenge for
future research [17, 50]. While this transfer requires extreme care to prevent over-
simplification and -generalization, theoretical ideas may provide useful inspirations
for medical interventions. This chapter investigates the potential of the saddle-node-
loop bifurcation as putative mechanism for seizure induction. In particular for febrile
seizures, so far unconnected observations may be united in the framework provided
by the saddle-node-loop bifurcation.

10.1. Temperature-induced seizures and saddle-node-loop
bifurcations

Around the transition at the saddle-node-loop bifurcation, synchronization can be
altered drastically in response to only infinitesimal changes in system parameters.
Changes in synchronization are also observed at the initiation of (epileptic) seizures,
which are often accompanied by a sudden increase in neuronal activity and synchro-
nization [110]. This invites the speculation that the approach of saddle-node-loop
bifurcations, and the resulting increase in synchronization ability of single neurons,
could be involved in seizure initiation. The saddle-node-loop bifurcation is particular
attractive as potential seizure onset, because it entails more drastic changes in the
entrainment range than other spike onset bifurcations, such as the Bogdanov-Takens
bifurcation (Fig. 5b in the second publication). To induce a seizure-prone regime, it
would probably be sufficient for a subset of neurons to approach the saddle-node-loop
bifurcation. The resulting facilitation of synchronization could act as a seed for seizure
dynamics.

Because bifurcations are in general difficult to pinpoint in experimental systems,
it will be demanding to test this hypothesis experimentally. The saddle-node-loop
bifurcation should hence be rather taken as a potential seizure mechanism that opens
up new perspectives on seizure induction. The multi-causality of seizure induction
is well documented in the literature, and the saddle-node-loop bifurcation is but one
of these causes, if at all. As the saddle-node-loop bifurcation is a mechanism acting
on the level of the dynamics, and not on the level of the biophysical implementation,
it could be the underlying mechanism of epilepsy conditions that are induced by
different parameters, as long as all of them can act as bifurcation parameter for the
saddle-node-loop bifurcation (see also Sec. 10.3).

The following sections suggest that the saddle-node-loop bifurcation hypothesis
could indeed be applicable for one seizure condition, febrile seizures (Sec. 3.6.1).
Febrile seizures occur during a period of high fever in about 5% of young children,
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inducing muscle cramps and, potentially, loss of consciousness [32]. The causes for
why fever triggers seizures has been identified as a key question [26]. One answer
may be the saddle-node-loop bifurcation and its potential role in the induction of
febrile seizures. The discussion relies on two bold assumptions: Seizures are induced
when synchronization becomes more probable, and synchronization probability of the
network can be inferred from single cell characteristics via the phase-response curve
(this is based upon the mathematical theory of weakly coupled networks). While the
results of the project are by far not sufficient to claim direct relevance in a medical
context, the theoretical and experimental observations discussed in this chapter support
the saddle-node-loop point as relevant for febrile seizures, and hence warrants further
research in this direction.

10.2. Experimental observations

If the saddle-node-loop point is related to febrile seizures, the rise in temperature
during a fever must be sufficient to approach the critical saddle-node-loop bifurcation
temperature, which enhances the synchronization in the network. This presupposes
that at least some neurons are already at normal body temperature close to a saddle-
node-loop bifurcation. Two observations suggest that this could indeed be the case, at
least for rat. Healthy rats reliably get seizures when the brain temperature is increased
to 42°C [58, 92, 105], and a temperature increase above 38°C induces epileptiform
activity in CA1 hippocampal slices from young rats [158]. In humans, certain patients
that are particular prone to febrile seizures (and often develop epilepsy in their later life)
also get seizures in response to hot water, and a lowering of the ambient temperature is
recommended as treatment, as reviewed by Cross [26]. These observations show that
temperature alone can induce seizures, which may be explained by neurons whose
dynamics are close to an saddle-node-loop bifurcation.

Febrile seizures are thought to involve mainly the hippocampus [3], in particular
CA1 and CA3 [81]. Compatibly, the experiments reported in Sec. 9.3 test neurons from
hippocampus CA1 in vitro for the change in phase-response curve asymmetry expected
at saddle-node-loop bifurcations. In a subset of neurons, the experimentally measured
phase-response curves show a temperature dependence that fits phase-response curves
predicted in silico. Whether these transitions are indeed responsible for the enhanced
synchronization observed with an increase in temperature (as described above) could
be tested by an experimental design that allows to balance heating and some other
bifurcation parameter of the saddle-node-loop bifurcation. This way, the approach of
the saddle-node-loop bifurcation by an increase in temperature could be countered
by a variation in some other parameter such as pH level1 (see Sec. 10.3). If this can
prevent synchronization of the network, this could be taken as further evidence that
the saddle-node-loop bifurcation underlies the transition to a synchronized network
state.

1As counter bifurcation parameter to temperature, the pH level has the advantage that it is relatively
easy changed in an experimental setting, and it is, as was tested for the experiments described in
Sec. 9.3, not affected by the temperature in a slice experiment. Yet, its disadvantage is that pH affects
neurons in many ways beyond the changes in ion channels that were implemented in the model, such
that its effect on the neuron is not well controlled.
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In general, an experimental result cannot proof a bifurcation itself, but only its
hallmarks, such as an asymmetric phase-response curve in the case of a saddle-node-
loop bifurcation. While the experiment described in Sec. 9.3 provides a first hint for
the saddle-node-loop bifurcation hypothesis, proper evidence demands for further
accumulation of experimentally observed hallmarks of a saddle-node-loop bifurcation
with an increase in temperature.

10.3. Shift in seizure temperature in response to pH or genetic
ion channel mutations

Febrile seizures can have many causes, including temperature, inflammatory cytokines,
mutated GABA receptors, or alkalosis, as reviewed by [26, 32]. The saddle-node-
loop bifurcation may provide a framework to understand these dependencies. This
is shown in the following at the example of the facilitation of febrile seizures under
either increased pH or genetic mutations of sodium ion channels. The effect of both
physiological changes on the sodium ion channels shifts the system closer to the
saddle-node-loop point, thereby lowering the critical saddle-node-loop bifurcation
temperature at which seizures would be expected to occur.

For both alterations, sodium ion channel mutations or pH increase, the models
analyzed in the next sections are based on experimental results. While the considered
alterations affect a biological neuron in potentially complex ways, the models focus on
the implementation of the qualitatively strongest effects on neuronal dynamics. That
these simplest models already show a reduction in critical temperature, and hence
enhanced likelihood of seizures, highlights the explicatory potential of the saddle-node-
loop bifurcation as unifying seizure initiation mechanism.

10.3.1. Increased pH shifts the saddle-node-loop bifurcation with respect to
temperature

Normal febrile seizures have been related to alkalosis (Higher than normal pH levels in
the blood) [146, 147]. In models, as shown below, higher pH affects the sodium channels
in a way that also reduces the critical temperature for seizure initiation (Fig. 10.1). This
suggests that lower temperatures are sufficient to observe increased synchronization
under alkalosis – temperatures low enough to be potentially reached during a fever.

Children with febrile seizures have a blood pH about 0.15±0.05 higher than children
with high fever but without febrile seizure [147]. On the level of ion channels, one of
the main effects of pH is a shift in the sodium activation curve to lower voltages [163].
Implementation of a pH-induced sodium activation shift in an adapted Traub-Miles
model lowers the critical temperature of the saddle-node-loop point (Fig. 10.1). A
decrease in the critical temperature would bring such neurons closer to the saddle-
node-loop point, and thus increase the probability of synchronization. The saddle-node-
loop bifurcation hypothesis could hence reconcile the reported effects of temperature
and pH for the induction of febrile seizures. While one or the other is sufficient to
induce seizures, febrile seizures are particularly likely to occur if the combined effect of
temperature and pH lowers the critical temperature to physiologically accessible fever
temperatures.
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Figure 10.1.: An shift in pH changes the critical saddle-node-loop bifurcation temperature
(adapted Traub-Miles model [165], with the pH change implemented as a shift in the sodium
activation curve [163]). Synchronization range in arbitrary units (a.u.) refers to the entrainment
range of two δ-coupled oscillators as used in the second publication.

10.3.2. Febrile seizure mutations shift the saddle-node-loop bifurcation
with respect to temperature

Patients with multiple febrile seizures are prone to develop epilepsy later in life. For a
small subgroup of these patients, the unusually high rate of febrile seizures has been
linked to genetic mutations that affect ion channels, see Cross [26] for an overview.
The implementation of the effect of some of these mutations in conductance-based
neuron models suggests that different mutations reduce the critical saddle-node-loop
bifurcation temperature, which potentially facilitates seizure occurrence.

This hypothesis can be tested based on conductance-based neuron models that mimic
the effect of mutations. The implemented model is based a model by Barela et al. [7]
(ModelDB accession number 87585 [108]) and Spampanato et al. [152]. The model
without mutations (control model) contains fast and slow sodium currents as well
as a delayed rectifier potassium current. This model was modified by one of three
mutations (T875M, R1648H, R859C). R859C affects the fast sodium activation curve
(shift to higher voltages) and the time constant of the slow gating variable (shift to
lower voltages)2, R1648H decreases the time constant of the sodium inactivation gating
variable, and T875M mainly decreases the time constant of the slow sodium gating
variable and shifts the activation curve of the slow gating variable to lower voltages.

In control and mutation models, the phase-response curve and the resulting entrain-
ment range (odd part of the phase-response curve, see Sec. 3.4.1) was measured. The
entrainment range of the models with mutations increases at lower temperatures, as
expected from a decrease of the critical temperature at which the saddle-node-loop
bifurcation occurs (Fig. 10.2). Thus, in a similar manner as an increase in pH, also these
mutations render neurons particularly prone to reach the saddle-node-loop point with
an increase in temperature. In line with the saddle-node-loop bifurcation hypothesis, a
higher probability of febrile seizures is exactly what would be expected when neurons
have a lowered critical saddle-node-loop bifurcation temperature.

A mouse model for SMEI mutations (one of the strong forms of febrile seizures)
seems to be in general more susceptible to other seizure inducers besides temperature,
for example certain drugs, as mentioned in Oakley et al. [116]. This fits the hypothesis

2The effect of the mutation R859C was implemented as a mean of the control model, and the reported
mutation values, because, for the full mutation model, limit cycle dynamics were not stable enough to
allow for the analysis of phase-response curves.
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Figure 10.2.: Mutations related to enhanced febrile seizure susceptibility [152] affect ion chan-
nels in ways that decreases the critical temperature at which the saddle-node-loop bifurcation
occurs.

that a susceptibility for febrile seizures arises from neurons whose dynamical state lies
in the proximity of a seizure-prone state, potentially resulting from a saddle-node-loop
bifurcation.

10.4. Medical applications

In summary, this chapter proposes that fever triggers seizures in response to an ap-
proach of the saddle-node-loop bifurcation, for which the temperature change during a
fever, and the pH level are possible bifurcation parameters. While the previous sections
have collected support for the saddle-node-loop bifurcation hypothesis from experi-
ments and models, this section shortly discusses the implications of the hypothesis for
the design and evaluation of medical interventions.

10.4.1. Seizure induction by absolute temperature or temperature increase?

With febrile seizures caused by an increase in body temperature, the seizure initiation
could either depend on the absolute brain temperature, or it could depend on its rate
of increase [26]. For example, in rat hippocampal slices, epileptiform activity with
increasing temperature is only observed if the temperature change is quite fast, which
may prevent some otherwise counteracting, temperature-induced regulations [158].
As shown in the following, the saddle-node-loop bifurcation hypothesis provides an
explanation for the potential occurrence of both possibilities.

The dependence of febrile seizures on either absolute temperature or change in tem-
perature may be based on different degrees of temperature-compensation in neurons3.

3Different degrees of temperature compensation could for example be observed in the recordings used
to analyze phase-response curves experimentally (Sec. 9.3). The input current required for a firing
rate of 10 Hz for some neurons was the same at low and high temperatures, for others the input
had to be increased at high temperatures (around 40°C). While some neurons continued to spike at
40°C qualitatively in the same way as at lower temperatures, others changed behavior, and showed
intermittent spiking with spike clusters or bursting. Sometimes neuron even retained the altered
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10. The saddle-node-loop bifurcation as seizure onset

Without temperature compensation, neurons have a well-defined saddle-node-loop
bifurcation temperature that is reached independent of whether the temperature is
increased slowly or fast. Such neurons are likely to induce seizures in response to the
absolute temperature. On the other hand, with temperature compensation, the location
of the saddle-node-loop bifurcation may be shifted by the compensation, ensuring a
larger distance to this critical regime. In response to a slow increase in temperature,
the temperature compensation may have sufficient time to prevent an approach of
the saddle-node-loop bifurcation. This may not be possible when the temperature
changes faster than the compensation mechanisms can react. In this case, seizures are
only induced with a fast increase in temperature (too fast to fully activate temperature-
compensating mechanisms). The full development of temperature compensation could
be one potential explanation why febrile seizures do not occur in older children above
five years.

10.4.2. Brain heating

The observation that an increase in temperature can enhance synchronization lends
itself to a new perspective on long-duration epileptic seizures (status epilepticus): One
can suppose that the high levels of neuronal activity heat the brain tissue in the initial
part of the seizure above the normal temperature [91]. This heating may result in
temperature-induced synchronization, which acts as a kind of positive feedback for
the seizure activity. A prime candidate for temperature-induced synchronization,
strengthening seizure activity over a long period of time, are neurons that are brought
closer to a saddle-node-loop bifurcation by the increase in temperature. On the other
hand, the prevention of seizures by cooling of brain tissue [44] may result from an
increase in the distance to the saddle-node-loop bifurcation.

The saddle-node-loop bifurcation hypothesis should also be considered when using
deep-brain stimulations, for which a concurrent increase is local brain temperature was
reported [34]. This has again the potential to bring neurons closer to the saddle-node-
loop bifurcation, which may lead to a seizure.

10.4.3. Distance measure for anti-epileptic drugs

As discussed above, the distance to the saddle-node-loop bifurcation may be decisive
for the likelihood of seizures. A pathological closeness to the saddle-node-loop bifurca-
tion could be countered by targeted medical interventions. What is still missing is a
sound, parameter-independent distance measure that could be used to compare the
effect of different drugs.

The distance to the saddle-node-loop bifurcation could provide an interesting, in-
termediate measure for drug development. For example, a drug that reduces the leak

behavior after cooling back to lower temperatures, which suggests that the increase in temperature
(or some other internal process) induced some more fundamental change in the system than a simple
scaling in gating rates as assumed in models. Note, however, that is difficult to distinguish temperature
effects from effects that result from the recording duration and the concurrent degradation of the cell.
Yet, at least in some cases, the observations suggest that temperature-compensation in a subset of
neurons allows them to remain in the same functional regime over the temperature range used in the
experiments while other neurons responded more strongly to temperature changes, showing little
temperature-compensation.
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conductance, which is one of the bifurcation parameters of the saddle-node-loop bifur-
cation [90], could be a potential candidate for drug development. Speculatively, seizure
induction at a saddle-node-loop bifurcation would have the advantage that drugs
would not need to counter the biologically relevant parameter (such as the increase
in temperature during febrile seizures), but could act on any bifurcation parameter
affecting the closeness to the saddle-node-loop bifurcation (such as the pH, e.g., lowing
blood pH by respiratory control reduces febrile seizures [147]). Indeed, a rather unintu-
itive combination of drugs may turn out to be most effective in increasing the distance
to the saddle-node-loop bifurcation, and hence establishing a safety margin against
seizure induction.

10.5. Recapitulation

In this chapter, the potential application of the saddle-node-loop bifurcation in a
medical context was discussed. In a biological system, the increase in synchronization
when neurons reach a saddle-node-loop bifurcation could manifest itself as a seizure,
with devastating consequences for the patient. The discussion has focused on febrile
seizures, showing that the dependence of febrile seizures on pH levels and genetic
mutations can be reproduced in conductance-based neuron models. Furthermore,
experimental results in response to an increase in temperature were summarized with
respect to seizure induction, and the saddle-node-loop bifurcation. Both fit the saddle-
node-loop bifurcation hypothesis for the induction of febrile seizures, which may, in
analogy, also be relevant for hot water epilepsy. Beyond temperature as bifurcation
parameter, the saddle-node-loop bifurcation may also be relevant for other epilepsy
types.
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11. Reflections on neuronal modeling

While the previous chapters have focused on the functional and evolutionary im-
plications of the two core publications of this thesis, this chapter discusses major
assumptions underlying their analyses. For both projects, the subject was first consid-
ered in models with a certain amount of biological realism, in (multi-compartmental)
conductance-based neuron models, and then it was shown that the essential features
can already be observed in simpler models (passive single compartmental models and
a quadratic integrate-and-fire neuron, respectively). The simpler models allow for an
analytical evaluation, and support the mathematical generality of the claims in this
thesis.

In many biological neurons, signal processing is considerably more sophisticated
than in the simple picture used in this thesis, the passive signal transmission between
dendrite and axon, and spike generation at the axon initial segment. Active conduc-
tances are for example also found in the cell body and in particular in the dendritic
tree, with considerable computational power [27]. Furthermore, synaptic connections
commonly target the soma besides the dendrites, and signals can also be exchanged via
gap junctions, i.e., electrical synapses that allow for a direct, typically bidirectional ion
flow between two neurons [45]. In contrast to models of higher complexity that include
these and other details, the advantage of a simplifying approach as used in this thesis
is a clearer separation of cause and effect and hence a more general understanding. The
phenomenon under consideration can in both studies be analyzed by mathematical
simple models that allow for an analytical treatment.

This thesis mainly considers neurons that show functional polarization, i.e., cells
with distinguishable input and output branches, compare Sec. 7.1. In the second
publication, this focus arises indirectly from the choice of a single-compartment model
(point neuron), because it produces one output from the summation of all inputs, which
implicitly assumes at least a dedicated axon. In the first publication, the focus on
functional polarization (arising from the consideration of signal transmission from
dendrite to axon) can be relaxed to not fully polarized cells, as long as a large part of
the information is still routed through the (central) soma or the T-junction. This thesis
does not consider neurons in which computations are mostly done on a local level
within single branches.

In the first publication, the current threshold, and its passive counterpart, signal
attenuation, was measured in order to assess energy-efficiency as previously discussed.
The publication investigates passive signal propagation between dendrite and axon,
with either a central or an externalized soma. In order to measure the current threshold,
the models were augmented by active conductances in the axon initial segment, and
the minimal step current amplitude sufficient to induce spiking was recorded. This
kind of excitability measure is widely used for an experimental characterization of
neurons, for example with different drugs or mutations. Yet, not for every neuron
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a current threshold is well-defined [79], and the activation threshold measured with
step currents (or ramps) provides little evidence on other aspects of signal processing
beyond simple thresholding of input. For example, all natural neurons are faced with
various sources of noise that influences their signaling [42]. To evaluate noise in the
context of unipolar and multipolar neurons of the first publication, the Supplemental
Information includes models with a noise source in the axon initial segment, where
the spike was initiated (simulating channel noise from stochastic channel opening and
closing). The signal-to-noise ratio measured in the axon initial segment in this specific
model increases when signal attenuation decreases ([67], Supplemental Information,
inset in Fig. 2c). This shows that efficient signal transmission from the dendrite to the
axon is also relevant to overcome noise in the axon initial segment. In particular, it
shows that enhanced signal transmission from dendrite to axon is not only explained
by an increased input resistance of the axon, as the axonal input resistance would boost
signal and noise equally.

The prediction of the synchronization in the second publication assumes weak
inputs, as it relies on the theory of weakly coupled networks [78]. Small connection
strength are for example not relevant for communication with graded potentials. Yet,
in practice, the restrictions on weak input are not too restrictive [142], in particular in
the dynamical regime with saddle-node on invariant cycle bifurcations as spike onset,
as well as for big and small saddle-node-loop bifurcation. This can be seen from the
limit cycle stability shown in the second publication, Fig. 5. The analysis focuses on δ-
coupled neurons, which is easily relaxed to synaptic coupling with sufficiently fast time
constants. Slower synapses and in particular synapses with temperature-dependence
have to be considered in future research.

The active models in this thesis mostly implement simple, voltage-gated ion channels.
This ignores many adapting processes common in neurons, such as firing rate adapta-
tion or changes in ion concentration gradients due to overstrained ion pumps. Both
modifications alter the firing rate at constant input and would hence complicate the
consideration of a constant mean firing rate required for the analysis of phase-response
curves in the second publication. Moreover, any kind of temperature-adaptation (apart
from faster ion channel gating) goes beyond the scope of this thesis, although such
adaptations were observed in the experiments (Sec. 10.4.1), and have been reported in
the hippocampus due to temperature-dependent TRP channels [151]. The analysis is
furthermore restricted to deterministic models without stochastic ion channel gating
and other noise sources. This is a major simplification, because stochasticity is, besides
non-linearity, the second source of the richness in neuronal dynamics.
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In this thesis, the influence of single cell properties on neuronal processing is inves-
tigated. It is shown that neuronal morphology and biophysical parameters affect
information transmission in substantial ways. The analysis can hence be seen as com-
patible with the old neuroscience claim that form follows function. This claim underlies
the identification of neuronal cell classes based on morphological characteristics. The
results of this thesis suggest furthermore that whether differences in parameters imply
functional differences (or not) depends fundamentally on the dynamical state of the
neuron, and its closeness to codimension-two bifurcations. This is particularly rele-
vant for recent results showing that functional heterogeneity is one potential basis for
synchronization codes in the electro-sensory system [173].

The influence of basic parameters such as morphology or passive properties on
neuronal function has been established in various studies: The membrane time con-
stant (product of membrane capacitance and resistance) and morphology influence
the temporal aspects of voltage dynamics [12, 79], the velocity of spike propagation
depends on leak and axial resistance, as well as on the amount of myeline, which
is dynamically regulated [6, 80], the location of the axon initial segment influences
excitability [57, 95, 109], and the addition of a dendritic tree can change the spike gen-
eration mechanism of a neuron1 [51, 89]. This thesis considers two additional effects:
The dependence of signal transmission on the soma location, and the capacitance as
bifurcation parameter for saddle-node-loop bifurcations.

The results of the first project suggest that different soma locations (central versus
externalized) observed in the animal kingdom may be explained by an evolutionary
development that optimizes signal transmission depending on the soma-to-neurite ratio
[67]. In turn, different soma-to-neurite ratios may have developed because neurons,
facing the disadvantage of a large central soma, externalized either the soma, or somatic
organelles (Sec. 7.4). Both adaptations are likely to lower the energetic costs of signal
transmission. The study illustrates that a restriction of the analysis to morphological
parameters can greatly obscure the picture. Neuronal function depends intrinsically
on the interplay between morphology and biophysics. In the first publication, the
relevant parameter to distinguish neurons with central or externalized soma is the
soma-to-neurite ratio, which depends not only on morphology (soma and neurite
diameter), but also on electrophysiological parameters (axial and membrane resistance).
The consideration of both allowed for the large parameter space considered in the
simulations to be collapsed on a single dimension, and to recognize a pattern in
the collected data. A comprehensive assessment of neuronal function requires also
in general the simultaneous consideration of morphology and electrophysiological
properties (including passive parameters).

1The change from type-II to type-I dynamics probably results from the current sink that the dendrite
provides, which acts similar to a change in leak conductance.
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This thesis also illustrates that, in order to obtain an appropriate characterization of
a neuron’s dynamics, the measurement has to be chosen with the functional state of the
neuron in mind: For a decision-making neuron, such as the escape-inducing neuron in
locust, the current threshold may be appropriate, as it reflects the behavioral threshold.
For a sensory neuron that selects a particular frequency band from its input, the transfer
function which characterizes its filtering properties may be appropriate. And for a
neuron that spikes continuously and is perturbed by small inputs (mean-driven regime
[145]), e.g., olfactory neurons [13, 77], the phase-response curve may be suited to survey
neuronal function. Detailed experimental measurements of neuronal dynamics beyond
classical electrophysiology may pave the way for a more fundamental understanding
of various nervous systems.

The second project illustrates the relevance of a transition in spike onset mechanism
at a saddle-node-loop bifurcation, and proves that, starting with spike onset at a
saddle-node on invariant cycle bifurcation, this bifurcation occurs ubiquitously in two-
dimensional conductance-based neurons models. The saddle-node-loop bifurcation
acts as a major switch in neuronal dynamics. Changes in spike onset bifurcations
are especially interesting when considering the robustness of neurons to parameter
variations. Robust encoding, for example, is facilitated if neurons remain in one
dynamical regime independent of particular parameter values. In this case, the system
must ensure a large distance to any co-dimension two bifurcation, which would switch
the spike onset bifurcation. On the other hand, the saddle-node-loop bifurcation
provides a particularly interesting coding regime for sensory neurons, which may
profit from faster locking to impending stimuli and enhanced reliability. Furthermore,
due to the anti-synchronization observed with excitatory coupling, the saddle-node-
loop bifurcation results in the emergence of a frustrated network state, which has been
suggested as relevant regime for cortical neurons [53]. The detailed investigation of
coding and network properties around the saddle-node-loop bifurcation is ongoing
research in the Computational Neurophysiology Group led by S. Schreiber.

The saddle-node-loop bifurcation considered in the second part of the thesis may
not only be relevant for neuronal processing in health, but may also offer potential
explanations for pathologies, as exemplified in Chapter 10 for febrile seizures and other
temperature-induced seizures. The causes of febrile seizures are still an open question
as temperature influences basically all biological processes, from gene expression and
protein synthesis over transportation rates to electrical signaling. This multitude of
effects poses a serious challenge for the investigation of temperature effects. This thesis
faces the challenge by strong simplifications that model brain dynamics with coupled
oscillators. While this approach is clearly too simple, it provides, so I hope, a good
starting point for a more thorough understanding of febrile seizures. In particular, the
saddle-node-loop bifurcation hypothesis has the potential to unite three observations
on febrile seizures: (i) Febrile seizures occur with an increase in brain temperature. (ii)
Febrile seizures occur in particular when the blood pH level is high (assuming that
this also affects the pH around the neuron). (iii) Certain ion channel mutations favor
febrile seizures. All of these parameters (temperature, pH, channel mutations) can tune
neuronal dynamics to a saddle-node-loop bifurcation, where synchrony is facilitated.

Much work in this thesis is comparative in nature. Contrasting morphologies present
in different animal clades, or different spike onset mechanisms found in various neu-
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ronal types, it sheds new light on their functional implications and ultimate reasons
for their existence. The generalization of the insights gained first from numerical con-
tinuation or simulations, followed by abstract mathematical arguments, ensures that
the conclusions hold beyond the chosen model parameters, lending the work, under
the stated assumptions, scope and applicability also to other systems. I hope that this
thesis, with its consideration of basic neuronal building blocks and their influence
on neuronal signaling, takes us one step further in the exploration of the principles
underlying the function of the nervous system.
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