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very end of our assumed 60-year LCA (Fig. 2). A tree planting initiative of 100,000 trees (+ 

35 ktC at population half-life of 69 years) is likely to extend the amount of alive biomass for 

long-term purposes. 

 

 

Figure IV - 3: Potential tree planting initiative of 100,000 trees. Calculations of alive biomass were based on a mixture of 

dominant tree species in Berlin (Class mix, Table 1) with a 70-year growth period. The carbon weight is presented in 

kilotons (ktC). Tree population half-life is shown for high, moderate and low annual mortality. High uncertainty (red 

border) is generally assumed due to lack of knowledge concerning factors such as young tree mortality and other natural 
and anthropogenic disturbances. 

 

In this case study, we could make use of recent progress in high resolution remote sensing 

to increase consistency of an LCA inventory on urban forest carbon offset. We did this by 

providing area-wide details of remotely sensed individual tree species. To the best of our 

knowledge, this is the first urban study combining individual tree metrics with spatially 

explicit species information for a LCA of urban forest carbon offset. Our results point out 

the challenges of assumed tree growth and mortality of street trees, mixed areas and parks, 

which greatly affect the future role of urban forest carbon offset. Furthermore, our findings 

call attention to the potential of tree planting to compensate for losses of alive biomass. 

Our results show that urban forest carbon offset is dominated by our assumed tree mortality. 

The significant impact of an increasing mortality rate on urban forest carbon offset was also 



Progress in High Resolution Remote Sensing to Advance  

Life Cycle Assessments of Urban Forest Carbon Offset 

 

 

 

88   

confirmed by Strohbach et al. (2012). Only park trees have a positive balance of alive 

biomass minus accumulated dead biomass for a 60-year LCA. In particular, the high loss of 

street and mixed trees reduced the overall growth potential of the remaining tree population. 

The increasing average age structure is also likely to augment the risk of tree loss. Therefore, 

our results certainly underline the necessity of adequate forest management applications 

across the city. It remains unclear, in how far the high amount of dead biomass contributes 

to net carbon offset, which grew twice as much as alive biomass after 60 years (Table 2). 

Other LCA approaches utilized advanced processing of dead biomass, such as composting 

or wood chip production for energy consumption (Strohbach et al. 2012; McPherson and 

Kendall 2014). Consequently, the decomposition of dead biomass means a release of carbon 

emissions, and urban forests of our case study would be a net carbon source. However, our 

case study can become a net carbon sink if dead biomass is used for energetic purposes and 

substitutes fossil energy. 

Our results show the possibilities of extensive tree planting. Replanting 100,000 trees has 

the capability to compensate for losses in alive biomass. However, this potential requires 

rapid replanting, low mortality rates (< 2% p.a.) as well as extended tree longevity exceeding 

80 years. The lack of relevant data on future tree replanting rates, mortality, growth and 

longevity make it difficult to provide long-term prognoses for our case study. Increasing 

disturbances in growth, mortality and replanting rates would affect the spatial expanse and 

quantity of alive biomass. Today’s financial constraints of cities might limit investments into 

green infrastructure, such as an extensive tree replanting program (Kabisch 2015). In 

particular, the lack of young tree mortality data causes high uncertainty concerning the true 

quantitative requirements to compensate for tree loss (Roman et al. 2014). As such, further 

discussion is needed on urban forest management plans and political decision-making 

concerning urban dwellers’ desires and climate change adaptation in particular (Ordóñez 

Barona 2015). In this context, our city-wide average of carbon density in Berlin most likely 

falls in the lower range of urban forest studies obtained from globally selected cities of 

temperate climate zones (11–38 tC/ha) (Strohbach and Haase 2012). The temporal 

development of our carbon density shows that estimates will remain in the lower range if 

management plans do not consider extensive replanting and densification. 
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It should be made clear that, in reality, our assumed values for tree growth, mortality and 

planting would be an exception rather than the rule. These values can vary widely and be 

extremely site- and species-specific (Roman 2014; Moser et al. 2017). Climate change 

especially could increase stresses on urban forests and change their value, which would then 

require adapted management strategies (Yang 2009; Ordóñez Barona 2015). Our assumed 

constant mortality rates did not describe the complexity of natural and anthropogenic 

disturbances adequately (Roman et al. 2016). However, the lack of mortality relevant 

statistics and in-situ data from Berlin did not allow us to further calibrate or validate our case 

study. Moreover, the high uncertainty of our case study results refers to the high average age 

of the tree population, which had already reached an average of 80 years after 30 years of 

our LCA. Therefore, our results should be taken carefully and one should consider the 

possibility of an extensive underestimation of dead biomass for the period from 2038 till 

2068. In this regard, only few studies exist on urban tree growth and longevity and require 

further improvements in quantitative assessments (Leibowitz 2012). Due to limitations we 

did not consider pruning trees, which would increase the amount of dead biomass for our 

estimates. Pruning of 10 % above-ground biomass at 10-year intervals could be considered 

a common practice according to recent studies (Strohbach et al. 2012; McPherson and 

Kendall 2014). Our simplified case study also excluded emissions related to tree planting, 

such as maintenance, tree production, transportation, planting, irrigation, processing of dead 

biomass and tree removal. These might be considered less relevant for the net carbon offset 

of our case study because recent studies on LCA of urban tree planting showed a relative 

small share on emissions of 1–5 % of the total tree biomass (alive plus dead) (Strohbach et 

al. 2012; McPherson and Kendall 2014). However, an accounting for decomposition of dead 

biomass, dead roots and irrigation can significantly increase the share of carbon emissions. 

In general, our LCA inventory data of remotely sensed individual tree species contributed 

consistent details across large areas, and therefore avoided current disadvantages of general 

field data-based methods or requirements of widely used approaches of the i-Tree ECO 

model. Zhao and Sander (2015) confirmed the advantages of LiDAR data and individual tree 

detection to retrieve consistent and area-wide LCA inventory data, which our case study 

could increase in precision by providing additional tree species information. However, 

Zhao’s and our LiDAR-based remote sensing approach did not include understory and very 
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small trees (< 3 m) (Tigges et al. 2017), which might grow to a considerable quantity in the 

long term. Further differentiation for our tree species (Table 1) is also a suggestion for 

improvement because our mixed class covered a considerable fraction (> 25 %) of the total 

tree population. This can be of utmost importance when considering the role of invasive 

species. For instance, Horn et al. (2015) pointed out the role of invasive species on urban 

forest carbon offset, which was approximately 5 % for a subtropical urban forest. Even more 

relevant were temporal changes of the urban species structure. Nowak et al. (2016) showed 

slight changes in tree canopy size from 1999 to 2009, in Syracuse, New York; however, the 

number of trees increased by more than 20 % with invasive species as the main cause. This 

indicates the importance of the individual tree level and changes in forest composition. 

Therefore, high resolution remote sensing has great potential to monitor necessary 

environmental details and should considerably improve tree species classification and 

individual tree detection in urban settings.  

We can conclude that our simplified LCA of urban forest carbon offset offers new insights 

into how high resolution remote sensing can be used as a consistent baseline of individual 

tree species. Future progress in remote sensing will show if we can extend the classification 

of tree species and the detection of individual trees with increasing precision. This might 

change the way we assess major knowledge gaps regarding the role of invasive tree species 

and private properties in particular. Time series of remotely sensed data can offer the 

potential to validate and calibrate predictive models due to changes in tree size, species 

structure, age structure and replanting. This is particularly true for the current lack of urban 

tree mortality data, where remote sensing can help to detect potential risks and stresses and 

reveal irregular or chaotic spatiotemporal patterns of disturbances. All of this can help cities 

and other stakeholders to consider the role of urban forest carbon offset more adequately; 

for instance, to complement current carbon balances. 

 

2.3 Improvements—Remotely Sensed Changes over Time 

Remotely sensed high resolution monitoring would certainly contribute to improving an 

LCA of urban forest carbon offset by providing additional data for calibration and validation. 

Researchers and professional practitioners have requested long-term ecological studies to 

extend the knowledge of urban forest dynamics. However, few studies on urban tree growth 
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and related changes exist, and they all rely on regional networks or research related projects, 

such as the International Tree Failure Database (ITFD), for instance. Experts are aware of 

remote sensing’s opportunities for developing a more consistent urban forest database, but 

it is still far from being realized as a common international standard (Leibowitz 2012). 

 

Tree Growth and Pruning  

Diameter at breast height (DBH) has commonly been used for tree growth analysis (Peper et 

al. 2001; Stoffberg et al. 2008). Nonlinear and linear regression models have successfully 

shown accurate estimates of DBH using crown width or a combination with tree height 

(Kalliovirta and Tokola 2005; Popescu 2007). Performing ITD with high resolution remote 

sensed data is appropriate for predicting crown width and tree height, but the variability of 

the resulting estimates can be high. For example, additional age to DBH-growth functions 

allow for estimating the urban forest age structure, but available studies rarely address the 

various urban tree species, tree dimensions and site conditions. Additionally, increasing 

climate change effects can cause water and heat stress, substantially reducing tree growth 

(Semenzato et al. 2011; McPherson and Peper 2012; Moser et al. 2015; Moser et al. 2017). 

The variability of remotely sensed tree dimensions, as mentioned earlier in this review, does 

not allow for deriving the specific age of a single tree. We rather suggest providing a certain 

range of the tree age, which can be used as a baseline for additional processing or modeling.  

Recent progress in high resolution remote sensing has placed greater focus on urban forest 

dynamics. Detailed characterizations and monitoring highly benefit from increasing 

temporal resolution in particular. This allows for potential change detection of urban tree 

growth and pruning and for monitoring abrupt changes like replanting or tree loss. However, 

precise estimates would come at a high price, as change detection errors are likely to 

significantly increase as a function of heterogeneity, quality and resolution of imagery, or 

misregistration errors of remotely sensed time series (Wang and Ellis 2005). This makes it 

difficult to reliably estimate changes over time for an individual tree. Regarding precise 

estimates of urban forests, little is known on monitoring the changes of individual trees using 

very high resolution remote sensing. Ardila et al. (2012) successfully used a region-based 

active contours approach for a time series of multispectral data to detect abrupt and gradual 
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changes of individual trees. Due to the variability of remotely sensed tree dimensions, we 

suggest stretching the intervals for monitoring urban forests in order to retrieve notable 

physical changes of tree growth and derived parameters. For this very reason, further 

research is necessary to confirm the precision of gradual changes like tree growth (height 

and crown) and pruning using high temporal resolution remote sensing. For example, 

remotely sensed tree dimensions would allow for improved monitoring of residual biomass, 

large quantities of which can be obtained from urban forests for energy purposes (Velázquez-

Martí et al. 2013). Additionally, Sajdak et al. (2014) applied predictive modeling approaches 

and showed correlations between residual biomass and the parameters of crown diameter or 

stem DBH, which could be derived from remotely sensed individual trees.  

 

Mortality and Replanting  

Temporal increases and decreases of the urban forest canopy is crucial information for a 

LCA of urban forest carbon offset. Until now, few studies have addressed urban forest 

dynamics across large areas, and most of them use moderate resolution (30 m pixel size) and 

adapt ground-based carbon measures to vegetation indices using spectral bands of Landsat 

satellite data (Myeong et al. 2006; Yao et al. 2015). Moderate resolution of Landsat satellite 

imagery is likely to underestimate urban forest cover. However, Landsat satellite time series 

was sufficient for indicating a long-term trend of urban forest increase (growth + replanting) 

and decrease (mortality), which was likely to be balanced for urban forests in Syracuse, US 

from 1985–1999 (Myeong et al. 2006), or to have highly increased for urban forests and 

shrubs in Xi’an, China from 2004–2010 (Yao et al. 2015). The importance of temporal 

changes has also made remote sensing a source for validating reported facts. Nowak and 

Greenfield (2012) chose higher resolution time series to better address the trend of urban tree 

cover across the US. They manually digitized high resolution paired aerial photographs and 

Google Earth imagery (selection of 2001–2009 for 20 US cities and 1,000 randomly selected 

urbanized areas). The results of this sampling approach indicated a decline of forest cover 

for most US cities at a rate of approximately 7,900 ha/year, or 4 million trees per year. The 

tree canopy cover report of Boston, US showed significant overestimation due to 
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misclassification of grass and shrubs as tree canopy compared to an assessment performed 

with high resolution QuickBird satellite and LiDAR data (Raciti et al. 2014).  

Due to the increasing availability of high resolution three-dimensional remote sensing data, 

the individual tree level is the most promising level for future applications of urban forest 

dynamics (Zhen et al. 2016). Multiple reasons of mortality and replanting have remained 

unresolved as of yet, but a time series of individual trees across large areas would provide 

spatially explicit information, which is rarely available. This would at least contribute to 

better understanding urban forest dynamics, such as hot spots of mortality, species and site-

specific differences, for example. Multitemporal LiDAR is of growing interest for better 

understanding and monitoring spatiotemporal dynamics of forest carbon (Goetz and 

Dubayah 2011; Hudak et al. 2012; Liang et al. 2012; Srinivasan et al. 2014). To the authors’ 

knowledge, multitemporal LiDAR has not yet been applied to changes of urban forest 

carbon. However, due to a lack of resources a precise timing of acquiring a single image at 

the growing season (leaf development) might be considered advantageous for detecting dead 

trees (no leaf development). Additionally, tree health issues, which, for instance, correlate to 

multispectral information of remote sensing data, should be used to indicate areas of 

potential risk (Xiao and McPherson 2005). This can advance an LCA to better consider the 

effects of temporal urban forests' stresses. 

 

2.4 At Different Scales—From Local to Global 

Urban forest carbon estimates at different scales exemplify the importance of spatially 

explicit information. The local carbon estimates (individual tree level) of Boston, US were 

highly underestimated by available national datasets of the same area by 30 % (NBCD, 

National Biomass and Carbon Dataset, 30 m pixel size) to more than 90 % (United States 

Department of Agriculture Forest Service Forest Inventory and Analysis, USDA FS-FIA, 

250 m pixel size) (Raciti et al. 2014). Less uncertainty for increasing resolution has been 

confirmed for urban forest carbon estimates at the neighborhood level by up to 11 % (LiDAR 

point density 1.2 to 5.8 points/m2) (Chen et al. 2017). Singh et al. (2015) addressed the 

challenges of decreasing resolution from a maximum of ca. 14 to 0.15 points/m2 for regional 

carbon estimates of urban forests in Charlotte, North Carolina, US because processing very 
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high point density LiDAR data is resource intensive and is likely to hold redundant 

information. Just 40 % of the available LiDAR points were sufficient without compromising 

the accuracy of biomass estimates. This was also confirmed by Garcia et al. (2017) for 

national forest carbon estimates, who found that a reduction of LiDAR point density could 

be sufficient (10 to 5 points/m2) except for very low point density. It remains unclear for 

urban forest carbon estimates if metrics derived from processed discrete returns of a crown 

height model show a higher dependence on point density than metrics derived from the 

original echo-based LiDAR data as they did for forests in the study by Garcia et al. (2017).  

Regarding a national scale of urban forest carbon offset, Nowak and Crane (2002) set a 

standardized urban forest carbon value from selected cities and upscaled it across the US 

using national tree canopy data retrieved from 1991 remote sensing imagery of advanced 

very high resolution radiometer (AVHRR). Due to its coarse spatial resolution of 1 km pixel 

size, higher resolution Landsat TM satellite imagery of 28.5 m pixel size was used for 

defined regions to determine their proportion of tree canopy within a coarse AVHRR pixel, 

which correlates to the magnitude of the spectral response. Such an unmixing approach could 

then be used to determine the tree canopy’s density within other AVHHR pixels (Zhu 1994). 

Nowak et al. (2013) updated this approach in 2002 due to an increased availability of better 

tree cover estimates derived from high resolution remote sensing imagery, which led to a 

correction of the national average of urban forest carbon density (2002: 92.5 tC/ha per unit 

of tree cover; corrected 2013: 76.9 tC/ha per unit of tree cover). Pasher et al. (2014) assessed 

Canada’s urban forests at the national scale, with carbon storage and sequestration data 

adapted from US urban forests by Nowak et al. (2013): They selected administrative 

boundaries (reconciliation units) of dominant urban land use. These selected areas were 

divided by a 1 km grid. A random selection of grid cells was used for each reconciliation 

unit to classify the urban tree canopy using a point sampling approach. Samples were 

manually classified using very high resolution remote sensing orthophotos (10–25 cm pixel 

size) and upscaled for the total urbanized area of each associated reconciliation unit, which 

resulted in a final carbon estimate. Due to the extensive requirements of resources and 

manual workload, Pasher et al. (2014) suggested (semi) automated processing of remote 

sensing imagery to advance their approach for assessing the urban tree canopy or to provide 

general rapid re-assessments. They referred to medium resolution satellite imagery (20–30 
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m pixel size), which is widely available at the national scale and can improve the upscaling 

process of regional estimates. 

The local results of Zhao and Sander (2015) made a promising step towards extending 

spatially explicit information on carbon storage and sequestration at the individual tree level 

using high resolution remote sensing, which should be further extended. Both Nowak et al. 

(2013) and Pasher et al. (2014) were able to update national urban forest carbon storage and 

sequestration estimates, especially concerning higher resolution remote sensing data for a 

precise urban tree canopy. Their applied methodologies of estimated urban forest carbon 

removals of Canada and the US are consistent with IPCC (2006) standards and can therefore 

be used for annual inventory reporting to the United Nations Framework Convention for 

Climate Change (UNFCCC). As such, this could be a first step towards a consistent global 

approach for urban forest carbon offset and related dynamics. Unfortunately, the individual 

tree level is too resource intensive to be applied globally as of yet, though a global urban tree 

density map would highly advance carbon estimates for an LCA equivalent to a recent 

available global tree density map of 1 km2 resolution by Crowther et al. (2015). In this 

context, continuous evaluation of recent satellite missions of extensive area coverage could 

further improve global urban forest estimates, such as RapidEye (6.5 m pixel size, 5 spectral 

bands, daily revisit), TerraSAR X Tandem (e.g. global digital surface model, 12 m pixel 

spacing) or Sentinel 2 (down to 10 m pixel size, 13 spectral bands) (RapidEye AG 2012; 

DLR 2017; ESA 2017). 

 

3 Conclusion and Outlook 

 

Recent progress in high resolution remote sensing and methods is adequate for delivering 

more precise details on the urban tree canopy, individual tree metrics, species, and age 

structures compared to conventional land use/cover class approaches. These area-wide 

consistent details can update life cycle inventories for more precise future prognoses. 

Additional improvements in classification accuracy can be achieved by a higher number of 

features derived from remote sensing data of increasing resolution, but first studies on this 
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subject indicated that a smart selection of features already provides sufficient data that avoids 

redundancies and enables more efficient data processing. Automated and efficient 

processing of very high resolution data should be employed if possible due to the increasing 

workload, variability of data and user interaction, which can cause unresolved uncertainties. 

More consistent reporting of uncertainties and a better understanding of today’s locally 

tailored approaches would allow for more generic and transferable approaches. However, 

this will not neglect today’s advantages of high resolution remote sensing, which already 

extend the possibilities of traditional field-based retrieval of heterogeneous urban forest 

structures across large and private areas and should be applied more frequently. 

In the matter of temporal changes and reliable estimates, more attention is required to detect 

the changes of gradual growth, pruning and abrupt changes to the planting and mortality of 

individual trees. Therefore, precise long-term ecological monitoring of urban forest 

dynamics should be intensified, especially due to increasing climate change effects. The 

results would be beneficial for calibrating and validating recent studies of urban forest carbon 

offset, which have so far focused on the status quo and net sequestration for the following 

year but have scarcely addressed a longer timeframe. Furthermore, precise change detection 

is highly relevant for the supply and demand of urban forest carbon offset.  

A precise global estimate of urban forest carbon offset is still missing. However, upscaling 

approaches have improved national estimates in the US and Canada using higher resolution 

remote sensing data, which should be continued to reach an initial global coverage. 

The future role of urban forest carbon offset can be made more relevant if more standardized 

assessments are made available for science and professional practitioners, and the ever 

increasing availability of high resolution remote sensing data and the progress in data 

processing allows for exactly that. 
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1 Findings, Plausibility and Transferability 

 

Rapid urbanization, a heterogeneous and fragmented urban environment, and natural and 

anthropogenic disturbances make it essential to monitor changes in order to better 

understand them (Kraas 2007; Kuttler 2011; Pickett et al. 2011). Recent developments in 

high resolution remote sensing are likely to contribute essential details for urban ecosystem 

service analyses for future cities and their environment (Kadhim et al. 2016). Hence, this 

work is valuable for showing recent options in high resolution remote sensing for more 

precisely addressing urban forest dynamics by classifying tree species from seasonal 

differences. Furthermore, those tree species results could be combined with remotely sensed 

individual tree dimensions, which present spatially explicit information on related urban 

ecosystem services. This information would be best used as a baseline for more holistic 

approaches, such as LCAs of urban forest carbon offset. Additionally, high resolution remote 

sensing showed promising options for reducing the uncertainty of such advanced holistic 

approaches in order to improve future prognoses. 

As stated previously, urban forests are the main object of this work. Unveiling the potential 

benefits of high resolution remote sensing required in-depth scientific analysis and was 

answered concerning our research questions (1–3, Chapter I). Although our findings are 

novel, the plausibility of our research results are discussed in the following. We also point 

out further requirements for methodological improvements and transferability. 

 

1) Can we advance the classification of urban forest details by considering seasonal 

changes using recent technological options of RapidEye satellite imagery? 

According to our findings, the answer to this question would be “yes.” Frequent tree genera 

can be derived from urban forests using past events reflecting a RapidEye time-series of 

seasonal changes, which correlated well with the phenology of different tree genera. This is 

a substantial finding for spatially explicit environmental information across large cities. Very 

little temporal and spectral information were able to notably increase classification accuracy, 

which can be used to provide more efficient data processing. The red-edge band of RapidEye 
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imagery supported classification of tree genera, which outlined the benefits of additional 

spectral information that is sensitive to vegetation. 

Time-series of RapidEye satellite imagery seems to be a promising avenue for classifying 

tree species. To the authors’ knowledge, few studies have examined time-series of 

multispectral data for classifying tree species, but the authors underlined the findings of the 

studies that remotely sensed seasonal changes supporting tree species classification 

(Blackburn and Milton 1995; Mickelson et al. 1998; Key et al. 2001; Hill et al. 2010). Aside 

from these, this is the first area-wide urban study of tree species’ classification (Tigges et al. 

2013). In this context, Li et al. (2015a) also confirmed a substantial increase in overall 

accuracy for selected urban tree species classification in Beijing, China using seasonal 

differences of WorldView-2 and WorldView-3 satellite imagery. The red-edge band was 

also highly relevant. 

Machine learning has recently gained attention due to the increasing amount of data to be 

handled. It performed well for this case study, especially considering the heterogeneous and 

fragmented urban forest structure, and it is recommended for use in future urban studies. The 

ranking and importance of features should be used in order for more efficient processing 

using few selected features, and to better understand why selected tree species can be 

classified. The published results of previous studies showed multitemporal data of high 

seasonal differences to be of utmost importance for classifying tree species, which was also 

notably affected by red-edge spectral information, which underlines the plausibility of this 

RapidEye case study. It is important to mention that the ranking of features could be affected 

by the randomized selection process and any redundancy problems in the features, and 

variations within the SVM training data could cause variations in the accuracy ranking. 

This study’s results work could be indirectly supported by other studies, but further steps 

would be required to draw a more generic approach for an intra-annual time-series of 

remotely sensed data to classify tree species. Future studies should cover most tree species 

of the study site’s tree population to better address class variability. Additional comparisons 

with in-situ data under varying site conditions could then allow a first general hypothesis. A 

more systematic approach is suggested, which acquires monthly or weekly remote sensing 

imagery, because most datasets of available studies were limited to very few stages of the 
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phenological cycle of vegetation. A higher temporal resolution could also reveal more 

precise spatially explicit differences, as a 2006 field survey of vegetation phenology in 

Berlin found significant phenological differences in the same trees species related to 

microclimatic characteristics of the urban heat island effect (Chmielewsky and Henniges 

2006; Mimet et al. 2009). This can help to better address class variability, and therefore, 

which dates are best for classifying most or a specific tree species. If future research 

generally confirms that specific seasonal differences allow the differentiation of (selected) 

tree species, regular flight campaigns could adapt their schedule to guarantee a continuous 

combination of seasonal differences. This would increase urban environmental information 

without additional costs. In this context, RapidEye’s advantages of consistent large area 

coverage should be used to extend the validation of results beyond the boarder of the 

intended study site in order to better point out spatially explicit transferability, such as across 

elevation differences or different regional climate zones. This would be beneficial for a more 

robust approach. 

 

2) To what extent do details on additional remotely sensed tree species provide more 

precise estimates of urban forest carbon storage? 

To the authors’ knowledge, this is the first study to apply city-wide, high resolution, remotely 

sensed data combining individual tree detection and tree species information. Tree species 

information on the individual tree level enhances the analysis of carbon estimates within 

cities and can better point out small-scale differences. This helped to prevent notable 

percentages of underestimation or overestimation on the neighborhood scale in particular. 

City-wide carbon estimates were quite sufficient using an average estimate of dominant tree 

species information without its spatially explicit location. This already prevented 

underestimation compared to a national forestry estimate. Therefore, the results of this case 

study indicate that improved consistency and comparisons of urban forest carbon estimates 

can be achieved by further developing combined approaches of individual tree detection and 

tree species classification, especially if the study site lacks up-to-date information or any 

information at all. 
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This study used individual tree detection and tree species information to better address 

spatially explicit differences, which supports a more generic approach. Other than that, urban 

forest carbon storage cannot simply be extrapolated to other regions, because forest 

structures differ significantly between cities and countries (Davies et al. 2011). The results 

of this study showed notable variation in urban forest carbon estimates, which can suggest 

that local and regional tree species populations are not well represented in national scale 

allometric equations (Aguaron and McPherson 2012). There is currently a lack of species-

specific equations adapted to the urban environment, regional differences and tree age 

classes, making it rare and expensive to produce such equations (McHale et al. 2009). This 

can cause substantial uncertainty in carbon estimates if a tree population is dominated by a 

single tree species (very large fraction) and would need to be addressed more adequately. 

This is particularly true for the mixed class (fraction of > 25%) of this study, to which a 

specific tree species could not be assigned. Therefore, comparing spatially explicit carbon 

estimates on the individual tree species level would actually require more locally or 

regionally adapted allometric biomass equations. Consequently, the results of this study are 

more likely to be suggested for the neighborhood scale and above. 

The underlying tree species classification improved the retrieval of urban forest carbon 

estimate details across large cities. However, unclassified species covered a remaining 

uncertainty, which would need to be more adequately addressed. This study’s individual tree 

detection approach referred to a local maxima filter algorithm that is integrated into FUSION 

software (McGaughey 2013). In this study an underestimation of 36% was corrected for the 

diameter at breast height for each individual tree. Similar underestimation of LiDAR-derived 

tree measures had been stated by Edson and Wing (2011) within a conifer forest stand using 

FUSION. This could suggest an improved individual tree detection approach. However, 

there is no consistent comparison of different methods and data for urban forests, as few 

exist for forest stands, as stated in a study by Kaartinen et al. (2012), for instance. However, 

algorithms based on local maxima findings, such as FUSION, have produced usable results 

so far. In the matter of derived count, height and species information, the count of trees 

contributed the most to biomass calculations. The results of this study delivered a good level 

of accuracy for the count of dominant trees concerning a heterogeneous urban forest 

structure. This underlines that the selected individual tree detection algorithm was 
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appropriate for this urban study. Tree density was an important and dominant indicator of 

high carbon estimates. Furthermore, this study’s above-ground carbon storage approach 

excluded very young trees of small size, understory, bushes and shrubs. This was due to a 

height threshold, which was applied to retrieve the urban tree canopy. It prevented bushes 

and shrubs from being misclassified as small trees. Therefore, above-ground carbon 

estimates of vegetation could be expected to be higher.  Additionally, tree roots could 

significantly influence carbon storage estimates, but there is currently not enough 

information to address the high degree of uncertainty (Johnson and Gerhold 2003). 

The effects of tree species composition should not be ignored, as functional diversity is 

highly related to the richness of the prevalent species at the study site, which is likely to 

affect the magnitude and direction of future disturbances and environmental changes. The 

number of classified tree species should therefore be extended to provide more precise 

information regarding the study site’s tree population. This will help to refine the high range 

of urban forest carbon estimates if differences are addressed at the individual tree level. 

Unmixing (separating) approaches of multitemporal RapidEye (6.5 m pixel size) or very 

high resolution WorldView series satellite imagery (< 1.5 m pixel size, down to 0.31 m using 

pan-sharpening) could provide options for improved classification of area-wide tree species. 

However, a higher spatial resolution can cause higher spectral variability, which would need 

to be investigated regarding its effects on tree species classification. High resolution remote 

sensing combining individual tree detection and tree species information can be 

recommended as a cost-efficient method for acquiring more sufficient data on local 

differences. It is independent on land use classes and considers in-class variability. It is scale-

invariant due to the individual tree level. However, it is resource intensive to develop a high 

number of species-specific allometric biomass equations, which are adapted to urban 

conditions. In this context, experts and practitioners should agree to a more common 

standard for selecting allometric equations from the current available pool rather than 

selecting to their best knowledge independently. The validation of results should more 

adequately address the heterogeneity of urban forest structure. All of this can improve the 

consistency of above-ground carbon storage, which is necessary to compare estimates 

between and within cities. It is recommended to further develop individual tree detection 

algorithms adapted to a heterogeneous urban forest structure rather than choosing locally 
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tailored area-based regression models. Improvements in the development of allometric 

biomass equations can then be simply updated if individual tree metrics are available. In this 

context, individual tree detection could contribute to a more systematic and consistent 

approach for future assessments and can act as a baseline reference. Recent options of full 

waveform LiDAR warrants further possibilities for improved understory assessments and 

small tree detection. 

 

3) How can recent progress in remote sensing advance life cycle assessments of urban 

forest carbon offset? 

It can be stated that recent progress in high resolution remote sensing and methods are 

adequate to deliver precise information on the urban tree canopy, individual tree metrics, 

species and age structures. This is important for LCA studies on urban forest carbon offset 

to better address the lack of area-wide and up-to-date information. An increasing spatial, 

spectral and temporal resolution allows for better addressing spatially explicit information 

of a heterogeneous forest structure and its dynamics across a city. Besides updating an LCA 

inventory using remotely sensed tree information, few studies have addressed LCAs of urban 

forest carbon offset so far. Therefore, remotely sensed data would be beneficial for more 

consistently calibrating and validating recent and future studies. Consequently, remote 

sensing and LCAs could be an effective tool for creating environmental awareness, 

monitoring targets of a recommend environmental aim or identifying the challenges of future 

growth. 

Automated and efficient processing of very high resolution remote sensing data should be 

followed if possible due to the increasing workload, variability of data and requested user 

interaction, which can cause unresolved uncertainties. In this context, more generic and 

transferable approaches could benefit from more consistently reported uncertainties and 

from a better understanding of today’s locally tailored approaches. Regarding temporal 

changes and reliable carbon estimates, more attention is required for detecting the changes 

in gradual growth, pruning and abrupt changes in the planting and mortality of individual 

trees. Therefore, more precise long-term ecological monitoring of urban forest dynamics 

should be intensified. Additionally, precise change detection is highly relevant for the supply 
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and demand of urban forest carbon offset, for instance, if urban forest carbon offset markets 

were established, high precision would become necessary. 

Today’s limitations of high resolution remote sensing should not be neglected concerning a 

complex LCA of urban forest carbon offset. A complex LCA could skip aspects of tree 

maintenance and related emission because available studies have stated a small effect on the 

net carbon balance. However, emissions due to maintenance could increase and play a bigger 

role in other climate regions or due to future climate change effects, such as increasing 

irrigation requirements. Global warming and regional effects, as well as micro-climate 

conditions, will significantly affect tree growth and mortality, which is currently a major 

research gap (Roman et al. 2014; Moser et al. 2017). The limitations of a simplified statistical 

model could be overcome by using more complex dynamic modeling approaches. However, 

intended spatially explicit improvements in modeling still lack empirical in-situ data on 

individual trees, which would be helpful in more precisely revealing the mechanisms of 

climate change effects. Stem growth, for instance, is highly dynamic, species and site-

specific, and related to water and carbon changes inside the stem (Steppe et al. 2016). 

A precise global estimate of urban forest carbon offset is still missing as of yet. However, it 

would be relevant concerning the role of organization in the global carbon cycle, which lacks 

data regarding the distribution and types of vegetation in cities globally (Churkina 2016). 

Upscaling approaches have improved national estimates of the United States and Canada 

using higher resolution remote sensing data, which should be continued to reach an initial 

global coverage. A global remotely sensed height model—the TanDEM-X (DLR 2017), for 

instance—would certainly improve the calibrations for such a global approach concerning a 

consistent base year. The increasing availability of high resolution remote sensing could also 

close the gap of less frequently analyzed forests of different climate zones, such as 

subtropical urban forests and their temporal dynamics (Tucker Lima et al. 2013). 
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2 Main Conclusion 

 

This work provides an example of recent progress in high resolution remote sensing of cities 

using a multi-dimensional feature space of 3-dimensional data, temporal changes and 

additional spectral information. This allowed for a consistent area-wide assessment of 

transformation processes like seasonal changes, which can be used to retrieve more details 

like tree species and should be continued toward a more robust and potentially generic 

classification approach. State-of-the-art methodological approaches of machine learning and 

individual tree detection proved to be highly advantageous for analyzing urban ecosystem 

services within a heterogeneous urban environment. This increasing precision of 

environmental information has helped to reduce the uncertainty of estimates like urban forest 

carbon storage. It also indicated high potential for improved future prognosis and decision-

making using a life cycle assessment. This work is not intended to overemphasize urban 

forest carbon storage besides the diversity of urban ecosystem services. Rather, it is about 

recent technological options for monitoring urban biodiversity and spatially explicit 

information of a heterogeneous forest structure. It can be used to retrieve a consistent 

baseline to better address aspects of resilience, which might refer to long-term requirements 

of a minimum value of urban forest stock, biodiversity and stress resistance. In this context, 

future research should emphasize spatially explicit tree growth and mortality, which is still 

a major gap in the knowledge concerning urban forests and forests in general (Roman et al. 

2014; Ryan 2015; Moser et al. 2017). Methods should be improved to better monitor gradual 

and abrupt changes, especially where very high resolution remote sensing and automated 

processing is promising. 

 

3 Outlook 

 

High Resolution Remote Sensing for Improved Vegetation Phenology Data Across Cities  

Our findings of a RapidEye intra-annual time-series and individual tree detection can be used 

for a straightforward mapping of individual tree species information. Beyond this scope, it 
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allows to extend additional research options and applications. For example, a gap could be 

narrowed concerning today’s lack of area-wide, high spatial and temporal resolution data on 

vegetation phenology due to RapidEye’s pixel size of 6.5 m, swath with of 77 km, continuous 

mapping of 6000 km2 and a high revisit time (RapidEye AG 2012). This could help to better 

identify spatially explicit differences or shifts in phenology across large cities and beyond 

administrative boundaries due to increasing climate change effects. By contrast, most 

phenological information has usually been derived and interpolated from selected sites or 

contains a high degree of spatial phenological variability within coarser-scales of remotely 

sensed satellite imagery (Landsat, 30 m; MODIS, 500 m; AVHRR; 1 km) (Fisher and 

Mustard 2007). As such, RapidEye time-series could be an essential value for future climate 

research across multiple “urban laboratories.” A systematic and continuous mapping of 

selected sites would be required. Area-wide time-series of recent satellites like Sentinel 2 

(down to 10 m pixel size, 13 spectral bands) also need to be considered for improved urban 

area-wide assessments (ESA 2017). 

Additional applications refer to area-wide, comparable and up-to-date results on a species 

level, which can be used as an indicator for pollen emissions and is of great interest to 

epidemiological studies (Ranta and Satri 2007). High resolution remote sensing studies of 

phenological phases would be beneficial for improving the prediction of temporal pollen 

distribution. Additionally, the knowledge of remotely sensed allergy relevant plants could 

then improve a risk assessment adapted to the regional or urban neighborhood level, which 

is scarcely available (Seyfang 2008). 

 

Innovative Future – Drones and Big Data 

The recent progress of drones, also referred to as unmanned aerial vehicles (UAV), is very 

promising for urban applications in retrieving spatially explicit environmental information 

concerning automated acquisition and vegetation analysis (Valavanis et al. (eds.) 2009; 

Kaneko and Nohara 2014). Low-cost and low-altitude UAV acquisitions could be the first 

choice for consistent long-term ecological research with very high spatial and temporal 

resolution. This rapidly evolving field could extend today’s limitations of city-wide coverage 
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by combining multiple UAVs and swarm intelligence in the near future (Wei et al. 2013; 

Hocraffer and Nam 2017). 

Open data sharing platforms have offered democratized online access to extend applications 

between users of different background knowledge in order to handle the increasing amount 

of digital data and to reduce necessary expertise for data processing (www.lidar-online.com, 

www.opentopography.org). The increasing possibility of deep learning to handle extremely 

large data has initiated new projects like “terrapattern,” which offers simplified access for 

visual query-by-example from satellite imagery (http://terrapattern.com) (Levin et al. 2016). 

Additional progress refers to spatially explicit real-time in-situ data, which is rare but highly 

important for climate change research. For example, Treewatch.net is a tree water and carbon 

monitoring network initiated by the University of Ghent, Belgium. Sensors attached to trees 

twitter on the internet in real time, which can be used for long-term ecological research, 

education or public awareness (https://treewatch.net) (Steppe et al. 2016). 

 

Dissemination – A Critical Turning Point to Make Use of Knowledge 

A former heavy storm event, and urban residents start to remove healthy trees to reduce risks 

of property damage by trees (Conway and Yip 2016). This points out why better 

documentation of disservices and urban ecosystem services is required. It can prevent an 

impulsive behavior, which does not properly account for risks. This behavior also stands for 

a large discrepancy between what we know and what we do, and it requires more 

transdisciplinary approaches. It will not be enough to simply promote nature-based solutions 

of urban forests if we fail to guarantee continuous tending. It remains vague whether we 

have the necessary resources, knowledge and willingness to implement more nature based 

solutions to adapt to climate change in particular, and the answer cannot be solely limited to 

prevailing financial constraints (Kabisch 2015). Cities already have to consider limited 

natural resources, for instance, increasing water requirements for large tree planting 

initiatives in Los Angeles, US concerning its already limited water resources and arid climate 

exacerbated by future climate change effects and population growth. This raises the question 

of what we can actually demand from urban ecosystem services besides political intentions. 

Hence, initiatives of making cities more green should not be misunderstood, rather cities, 
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experts and practitioners have to supply and demand scientifically sound information of 

more locally adapted conditions (Pincetl 2013). To that end, remote sensing of precise 

environmental information and life cycle assessments are suggested as complementary tools 

to make experts and non-professionals more sensitive to future changes and the value of 

urban nature. Future cities and their environment will demonstrate just how much use we 

have made of this increasing amount and ongoing process of digital environmental 

information. 
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