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Summary

This dissertation studies various channels through which information processing
affects market decisions.

Markets have the essential function of aggregating information that is dispersed
among participants. In this respect, markets that fully aggregate information
are efficient in that they enable participants to easily access necessary informa-
tion.

A considerable theoretical and empirical literature examines the extent to which
markets aggregate information.1 All in all, informational efficiency is sensitive
to technicalities of market designs, including information costs (Grossman and
Stiglitz, 1980), transparency (i.e. common knowledge of preferences in Forsythe
and Lundholm 1990), and pricing rules (Pouget, 2007). While mis-aggregation
can be partly rationalized by frictions (e.g. due to limited arbitrage), it is not
always compatible with standard economic theory. Standard economic theory
assumes rational decision-makers, who perfectly process all available informa-
tion. It does not account for trading decisions varying with market features that
are irrelevant to optimal decision-making.

If anything, information aggregation relates to participants’ ability to process
information. For instance, in the asset market experiments of Plott and Sunder
(1988) and Forsythe and Lundholm (1990), trading experience improves price
discovery.
The extent to which agents accurately process information depends on exoge-
nous factors like the nature of information or the decision context (Olshavsky,

1Important early contributions are, among others, Fama (1970); Grossman (1976, 1978);
Radner (1979); Grossman and Stiglitz (1980); Hellwig (1980); Diamond and Verrecchia
(1981); Glosten and Milgrom (1985); Plott and Sunder (1988); Forsythe and Lundholm
(1990).
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1979; Gigerenzer and Hoffrage, 1995; Evans, 2007). In addition, decision-makers’
inherent abilities generate differences in information usage. This dissertation an-
alyzes these two aspects of information processing in markets. First, it seeks to
identify decision contexts that systematically affect belief revision and, conse-
quently, market behavior. Second, it explores whether human inference corre-
lates with inherent risk attitudes.

Analyzing decision-making in markets is, however, a delicate endeavor. Various
factors flow into market decisions. Beliefs, preferences, and strategic considera-
tions in the interaction with other participants determine traders’ best responses.
To control for non-relevant determinants, trading decisions are studied in indi-
vidual decision-making experiments. Moreover, as market functioning is the
main interest, the focus in all experiments lie in trading decisions as opposed to
belief elicitation. To this end, the experiments study under different conditions
how decisions vary with belief revision. Comparing decisions across treatments
enables then to deduce the effect of information processing.

The first chapter, based on joint work with Georg Weizsäcker, investigates how
traders process information contained in realized versus hypothetical stimuli.
We focus on markets with diverse information and informative prices. More
precisely, agents receive private signals and trade at prices that reveal addi-
tional information held by other market participants. Agents with rational
expectations condition their beliefs on both their private information and the
information contained in the price. However, conditioning on observable prices
requires a different level of sophistication than conditioning on future prices,
which demands more forward-thinking reflection.

In view of this, it is noticeable that market mechanisms differ with respect
to whether they require hypothetical thinking. In simultaneous markets, for
instance, subjects submit their trading strategies before knowing prices or other
participants’ actions. Thus, trading strategies are defined for all contingencies.
In sequential markets, on the other hand, they know prices at which trade
might occur and, therefore, specify their preferences for a single price. Hence,
different trading mechanisms demand different levels of cognitive sophistication.
This difference is irrelevant under rational expectations, but possibly accounts
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for deviations from optimal decisions observed in simultaneous markets, like in
sealed-bid auctions (Levin et al., 1996).

We explore the relevance of hypothetical thinking in information processing by
comparing investment decisions in simultaneous and sequential markets. Un-
der rational expectations, the two market mechanisms in our experiment are
isomorphic with respect to strategies and payoffs and should therefore entail
the same investment decisions. The results, however, reveal that hypothetical
thinking impedes subjects’ ability to consider implicit information. In simulta-
neous markets, where subjects submit their trading strategies before knowing
the stimulus (here the price), subjects tend to neglect information contained in
prices. In sequential trading mechanisms, where subjects observe stimuli first,
they consider price’s informativeness and make more rational decisions.

This information neglect is robust to various treatment variations. For instance,
removing strategic uncertainty by setting a pre-defined pricing algorithm does
not eliminate the bias. Making information in the price more salient and more
important by increasing its precision relative to private information also does
not reduce the bias. In addition, we explore the underlying mechanisms that
make learning from hypothetical events so difficult. The difficulties in hypothet-
ical thinking may stem from two sources. First, anticipating information from
an event that takes place in the future requires sophisticated forward think-
ing. Second, hypothetical thinking entails reflecting about several contingencies.
That is, the number of possible outcomes dictates the computational, cognitive
challenge. A treatment variation simplifies the decision context by reducing the
dimension of possible prices, but retains the difficulty of conditioning on a future
price. Results in this treatment disclose that difficulties in hypothetical thinking
cannot be assigned to a single source. Reducing the dimension of hypothetical
outcomes improves trading decisions, but does not fully eliminate information
neglect in simultaneous markets.

In sum, Chapter one shows that the nature of information matters for infor-
mation usage. Yet, it also shows that market behavior can be improved with a
mechanism design, in which implicit information is revealed by realized rather
than hypothetical stimuli. Market design, however, may have limited effects on
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other determinants of information processing, like the type of uncertainty that
makes information valuable. The second chapter compares information process-
ing for decisions under risk and ambiguity. While under risk, investors know
the distribution of states of nature, ambiguity describes the lack of such precise
knowledge.

Despite ambiguity being the more natural setting of uncertainty, fundamen-
tal concepts like Rational Expectation Equilibria are defined for risky markets
only. One of the reasons is that little is known about how subjects learn un-
der ambiguity. Even with rational expectations, there is no unique benchmark.
Theoretically, belief revision under ambiguity could result in either extreme sen-
sitiveness to information, or a conservative update. The utilized updating rule,
in turn, determines the speed at which prices converge to true values. Chapter
two discloses how belief revision affects decisions in ambiguous markets.

The experiment is implemented with two treatments in a two-by-two design,
where decisions vary along the dimension of uncertainty and along the dimen-
sion of belief revision. In one treatment, subjects make investment decisions
under both risk and ambiguity, but do not need to revise beliefs. In the second
treatment, subjects make decisions under risk and ambiguity as well, but have
to revise beliefs after the arrival of an informative signal. If information pro-
cessing is similar under ambiguity and risk, belief revision should not alter the
general difference between investments under risk and ambiguity.

As expected, decisions in risky and ambiguous markets differ: Subjects reduce
their market participation in ambiguous markets relative to risky markets, and
display thereby ambiguity aversion. Learning, on the other hand, does not af-
fect this difference: Average market participation is the same with and without
belief revision. Learning alters, however, the quotes at which investors are will-
ing to trade: subjects tender more extreme bids and asks. The results feature
heterogeneity in decisions, but are, on average, consistent with a model of recur-
sive smooth preferences. A consequence of recursive preferences is that breaking
down information into pieces yields more extreme average beliefs. Hence, with
rational recursive preferences, information processing under ambiguity differs
from learning under risk in the sense that the frequency of information release
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determines how quickly prices converge toward true values.

On the other hand, the speed of price discovery also depends on heterogeneity
in trading decisions. The degree of heterogeneity might even alter equilibria in
some markets (Chapman and Polkovnichenko, 2009; Haltiwanger and Waldman,
1985, 1989). In the experiment, trading decisions are heterogeneous, even when
controlling for information. In such markets where agents are symmetrically in-
formed, heterogeneity emanates from random errors, differences in preferences,
or differences in belief formation. To understand the origins of heterogeneity,
we need to gauge the importance of and the correlation between single determi-
nants. Over and above interpreting aggregate statistics, Chapter three estimates
the correlation between preferences and decisions. The analysis combines data
on investment decisions under risk and data on elicited risk preferences. Even
after correcting for measurement error in elicited preferences, risk preferences
have a moderate weight in investment decisions. The weight is, however, ampli-
fied when learning occurs. As the correlation between preferences and decisions
varies across the information condition, the interaction between learning abili-
ties and risk preferences is also studied. Testing for Bayesian inference reveals
that risk-averse subjects update more conservatively, and have therefore a dif-
ferent risk perception in the investment task. Hence, the analysis discloses that
variance in preferences determines variance in decisions not only directly, but
also through belief revision.

In sum, the individual decision-making experiments in this dissertation point
to different aspects of information processing that systematically affect market
decisions. The necessity to engage in hypothetical thinking impedes optimal
decision-making. A market mechanism that dispenses with hypothetical think-
ing, however, yields decisions close to the rational benchmark. The environment
in which information is obtained matters as well: Under ambiguity, beliefs be-
come more extreme with gradual information release. Over and beyond exoge-
nous factors, the inherent preferences of decision-makers impact their learning
abilities and, in this way, determine heterogeneity in decisions after belief re-
vision. Certainly, the findings’ robustness to market feedback and effects on

xi



market parameters like price volatility or efficiency remain to be explored in
future research.
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1 Learning from unrealized versus realized prices

This chapter is based on joint work with Georg Weizsäcker.

1.1 Introduction

Market prices reflect much information about fundamental values. The extent
to which traders are able to utilize this information has important welfare con-
sequences but is difficult to measure as one often lacks control of the traders’
restrictions, beliefs and preferences. One possibility to detect a bias in price
inference is to modify the informational environment in a way that is irrelevant
for rational traders. If trading reacts to a framing variation that is uninfor-
mative under rational expectations, the latter assumption is questionable. We
focus on an important dimension of variability between markets, the condition-
ality of price. In simultaneous markets, the price realization is unknown to the
traders at the time when they make their decisions—examples are financial mar-
kets with limit orders or other supply/demand function regimes. Theoretically,
traders would incorporate the information of each possible price into their bids,
as in the Rational Expectations Equilibrium prediction by Grossman (1976),
inter alia. But the price information is hypothetical and traders may find it
hard to make the correct inference in hypothetical conditions. A host of evi-
dence on Winner’s Curse and other economic decision biases is consistent with
this conjecture, as is the psychological evidence on accessibility (Kahneman,
2003) and contingent thinking (Evans, 2007).1 Simultaneous asset markets with
price-taking agents are a relevant point in case for such failures of contingent
thinking; one that has not previously been researched, to our knowledge. In
contrast, sequential markets—e.g. many quote-based markets and sequential
auctions—have the traders know the price at which they can complete their

1Experiments analyzing the Winner’s Curse include, for example, Bazerman and Samuelson
(1983); Kagel and Levin (1986); Kagel, Levin, Battalio, and Meyer (1989). For a thorough
review on the Winner’s Curse literature see Kagel and Levin (2009).
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1 Learning from unrealized versus realized prices

trades. Here, it may still be nontrivial to learn from the price; but both the
psychological research on contingent reasoning and the related economic exper-
iments that include treatment variations where simultaneity is switched on and
off (Carrillo and Palfrey 2011, Esponda and Vespa 2014; 2016 and Li 2016) sug-
gest that the task is more accessible in a sequential trading mechanism than in a
simultaneous one. Our series of experiments confirms this hypothesis, in a sim-
ple and non-strategic market environment where agents act as price takers.2 In
such an environment, the failure to learn from the price is especially noteworthy
because the price explicitly reflects the asset value, conditional on the available
information. To shed further light on the importance of this failure, we study
its potential sources and discuss possible implications in financial markets.
The comparison between the two extreme trading mechanisms enables us to
identify sets of trades that can be directly attributed to imperfect contingent
thinking. We prefer avoiding claims about external validity but we note that the
necessity to think contingently is ubiquitous in real-world markets, at various
levels, despite the fact that a clear distinction between pure simultaneous and
sequential markets vanishes. Order-driven markets, especially in the form of call
auctions, require investors to supply liquidity without knowledge of the liquidity
demand (Malinova and Park, 2013; Comerton-Forde et al., 2016). Examples of
pure order-driven markets are the stock exchanges in Hong Kong, Japan and
several other Asian countries, whereas the London SEAQ, for instance, functions
as a pure quote-driven market.
Markets that represent hybrid versions of order- and quote-driven mechanisms
also exhibit important features of simultaneous trading. For example, equity
markets with low liquidity may be cleared throughout the day with periodi-
cally conducted call auctions; other markets open or close the day’s trading via
call auctions. Additionally, an increasing flow of retail orders is internalized
(Comerton-Forde et al., 2016). These orders are not executed on public ex-
changes but are executed internally through dark avenues or routed to different
exchanges, making it difficult for retail investors to monitor the market condi-

2While technically incompatible, our evidence may be viewed as supporting the main idea of
Li’s (2016) obvious strategy proofness: in a sequential market, the set of prices that are
still possible is smaller than in simultaneous markets, enabling the trader to identify an
optimal strategy.
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1.1 Introduction

tions prior to trade. Thus, even for continuously traded assets the increasing
market fragmentation and the increasing speed of trades force (slow) retail in-
vestors to post orders without precise knowledge of transaction prices, requiring
contingent thinking.
The difference in informational efficiency between simultaneous and sequen-
tial trading mechanisms has been discussed both theoretically (e.g. Kyle 1985;
Madhavan 1992; Pagano and Roell 1996) and experimentally (Schnitzlein, 1996;
Theissen, 2000; Pouget, 2007). A consensus is that, in the presence of per-
fectly informed insiders, the temporal consolidation of orders in call auctions
allows markets to aggregate information as efficiently as with continuous trad-
ing.3 With heterogeneous information, in contrast, the possibility to learn from
market prices becomes essential when private information is at odds with the
aggregate information, and determines the speed of price discovery. This holds
in particular when new information flows into markets. Yet, an established pat-
tern is that prices in real and experimental call markets adjust relatively slowly
to incoming information (Amihud et al., 1997; Theissen, 2000). Contributing
to a possible explanation of this pattern, we further document and examine
the discrepancies between stylized simultaneous and sequential markets, with a
focus on the extent to which traders learn from the price.
Our participants trade a single, risky, common-value asset. To trade optimally,
a participant considers two pieces of information: her private signal and the
information conveyed by the asset price. The latter is informative because it
is influenced by the trading activity of another market participant who has
additional information about the asset value. To manipulate the accessibility
of the price information, we perform the experiment in two main treatments,
simultaneous (SIM) versus sequential (SEQ). In treatment SIM, participants
receive a private signal and submit a limit order. If the market price realizes
below the limit, the trader buys one unit of the asset, otherwise she sells one
unit.4 Despite the fact that the price has not yet realized, SIM traders would

3Pouget’s experimental call market is informationally efficient because of the high share of
insiders, but liquidity provision in call markets deviates more from equilibrium predictions.
This finding is consistent with ours and Pouget, too, assigns the deviation from equilibrium
strategies to bounded rationality and partly to strategic uncertainty.

4Traders also have the option to reverse their limit order, selling at low prices and buying at
high prices. This ensures the equivalence between the treatments, see Section 1.2. In each
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1 Learning from unrealized versus realized prices

optimally infer the extent to which a high price indicates a high value and,
thus, soften the demand’s downward reaction to a higher price, relative to the
case that the price is uninformative. The possibility that traders may fail to
learn from hypothetical prices is examined by comparing to the treatment with
sequential markets, SEQ, where the price is known when traders choose to buy
or sell. Conditional thinking is not necessary here but treatments SIM and SEQ
are nevertheless equivalent: they have isomorphic strategy sets and isomorphic
mappings from strategies to payoffs.
Section 1.2 presents the experimental design in detail and Section 1.3 discusses
our behavioral hypotheses. We present three benchmark predictions for com-
parison with the data: first, full naiveté, where the trader learns nothing from
the price; second, the Bayes-Nash prediction, where a trader assumes that pre-
vious trades are fully rational and accounts for it; and third, the empirical
best response that takes into account the actual distribution of previous trades,
which may deviate from optimality. We use the latter as our main benchmark
for optimality as it maximizes the traders’ expected payments. That is, we ask
whether naiveté fits the data better than the empirical best response, separately
by treatment.
The data analysis of Section 1.4 shows that the participants’ inference of in-
formation from the price varies substantially between simultaneous versus se-
quential markets. In SIM, participants often follow the prediction of the naive
model, thus showing ignorance of the information contained in the price. Price
matters mainly in its direct influence on the utility from trade—a buyer pays
the price, a seller receives it. In contrast, in SEQ, where transaction prices are
known beforehand, asset demand is signigficantly more affected by the informa-
tion contained in the price and the large majority of trades are as predicted by
empirical best response. Averaging over all situations where the naive bench-
mark differs from the empirical best response, the frequency of naive trading
decisions is twice as high in SIM relative to SEQ, at 38% versus 19%.
Section 1.5 identifies various possible sources underlying the difficulty of hypo-
thetical thinking in our markets. One possibility is that the participants feel
rather well-informed by their own signals, relative to what they can learn from

treatment, we restrict the trades to a single unit of supply or demand per trader.
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1.1 Introduction

the price. We thus repeat the experiment with two treatments where early
traders are much better informed than later traders, rendering learning from
the price more important and more salient. We find that the replication only
exacerbates the differences between simultaneous and sequential markets, both
in terms of behavior and payoff consequences. This evidence makes it implau-
sible that the bias is driven by negligence or the lack of salience of the price’s
informativeness.

A further hypothesis is that the effect arises due to the difficulty in correctly
interpreting human choices. As in the literature examining inference in games
versus in single-person tasks (Charness and Levin, 2009; Ivanov et al., 2010), we
therefore ask whether the bias also occurs if the price’s informativeness is gen-
erated by an automated mechanism. The corresponding treatment comparison
replicates the main results. We can therefore rule out that the effect is driven
by the necessity of responding to the behavior of others.

Finally, we ask whether the difficulty in contingent reasoning lies in the cog-
nitive load of required inference, or rather in the hypothetical nature of price.
To this end, we run another treatment where only one of the possible prices is
considered, but still not yet realized. The rate of optimal choices in this treat-
ment lies mid-way between that of the two main treatments, illustrating that
the difficulty on contingent thinking is significantly fueled by both the amount
and the hypothetical nature of possible prices in simultaneous markets.

We then combine the different treatments into an aggregate estimation of infor-
mation use (Section 1.5.4). The analysis of the combined simultaneous treat-
ments shows that relative to empirical best response, the participants under-
weight the information contained in the price to a degree that is statistically
significant (at p = 0.09 in a one-sided test) and that they strongly over-weight
their own signal’s importance. In the sequential treatments, they over-weight
both price and their own signal. Overall, the estimates indicate that traders far
under-weight the prior distribution of the asset’s value but that they neverthe-
less learn too little from the price in simultaneous markets.

Taken together, the experiments provide evidence of an interaction between
market microstructure and the efficiency of information usage. In the language
introduced by Eyster and Rabin (2005), we find that the degree of ‘cursedness
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1 Learning from unrealized versus realized prices

of beliefs’ is higher when the information contained in the price is less acces-
sible: with price not yet realized, traders behave as if they tend to ignore the
connection between other traders’ information and the price. Aggregate de-
mand therefore decreases too fast with the price. The economic bearing of the
effect is further discussed in Section 1.6. We examine the predictions of Hong
and Stein (1999) and Eyster et al. (2015) that markets with naive traders, who
cannot learn from the price, generate an inefficient and slow price discovery.
Naive traders tend to speculate against the price, pushing it back towards its
ex-ante expectation also in cases where their own signals are consistent with the
direction of price movement. Their erroneous speculation reduces the extent to
which the price reveals the underlying value. Confirming this prediction, we
simulate a standard price setting rule with our data and find that price discov-
ery is slower in simultaneous treatments than in sequential treatments. Any
(hypothetical) subsequent traders can therefore learn less from the price. But
naiveté is detrimental not only to later players: also the observed payoffs of our
market participants themselves are lower in SIM than in SEQ, albeit not to a
large extent.
While we focus on financial markets, we again emphasize that our findings are
also consistent with evidence in very different domains. The experimental liter-
atures in economics and psychology provide several sets of related evidence that
conditional inference is suboptimal. Psychologists have confirmed quite gener-
ally that decision processes depend on task complexity (Olshavsky, 1979) and
that participants prefer decision processes with less cognitive strain. They focus
on one model, one alternative or one relevant category when reflecting about
possible outcomes and their consequences (Evans, 2007; Murphy and Ross, 1994;
Ross and Murphy, 1996). They also process salient and concrete information
more easily than abstract information (see e.g. Odean 1998 and the literature
discussed there).
Several authors before us have pointed out that a possibility to reduce the
complexity of learning is to proceed in a sequential mechanism, like in quote-
driven markets.5 Our experiment suggests a specific manifestation of this effect,

5Shafir and Tversky (1992) note that participants see their preferences more clearly if they
focus on one specific outcome. As they observe, "[t]he presence of uncertainty [...] makes
it difficult to focus sharply on any single branch [of a decision tree]; broadening the focus
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1.2 Experimental design

namely that drawing the attention to the realized price may enable the decision
maker to interpret more easily the information underlying the price. In the re-
lated bilateral bargaining experiment by Carrillo and Palfrey (2011), buyers also
trade more rationally in a sequential trading mechanism than in a simultaneous
one. They process information more easily and exhibit less non-Nash behavior
when facing a take-it-or-leave-it price instead of bidding in a double auction.
Auction experiments similarly find that overbidding is substantially reduced in
dynamic English auctions compared to sealed-bid auctions (Levin et al., 1996).
Other contributions suggest that traders may systematically disregard relevant
information that is conveyed by future, not yet realized events: overbidding
decreases when finding the optimal solution does not necessitate updating on
future events (Charness and Levin, 2009; Koch and Penczynski, 2014).6 An-
other related study is the voting experiment of Esponda and Vespa (2014) who
find that when the voting rules follow a simultaneous game that requires hypo-
thetical thinking, the majority of participants behave nonstrategically, whereas
in the sequential design they are able to extract the relevant information from
others’ actions and behave strategically.
We complement the described evidence on contingent thinking in strategic sit-
uations (bilateral bargaining games, auctions and strategic voting games) by
addressing financial markets that clear exogenously and where traders are price
takers. The simple structure of the traders’ decision problems may make it
easy for our participants to engage in contingent thinking—a possibility that
the data refute—and helps us to straightforwardly assess whether the average
retail trader makes too much or too little inference from the price.

1.2 Experimental design

The basic framework is identical across treatments, involving a single risky asset
and money. A market consists of two traders, trader 1 and trader 2, who each
either buy or sell one unit of the risky asset.7 The asset is worth θ ∈ {θ, θ}, with

of attention results in a loss of acuity" (p.457).
6Charness and Levin (2009) analyze the Winner’s Curse in a takeover game, whereas Koch

and Penczynski (2014) focus on common-value auctions.
7Because of a possible reluctance to sell short, we avoid any notion of short sales in the

experimental instructions. Participants are told that they already possess a portfolio that
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1 Learning from unrealized versus realized prices

equal probabilities. Traders do not observe the fundamental value θ but they
each receive a private signal si ∈ [0, 1]. The true value θ determines which of two
triangular densities the signal is drawn from, such that in the low-value state
the participants receive low signals with a higher probability, and vice versa:

f(si|θ) =

⎧⎨⎩2(1 − si) if θ = θ

2si if θ = θ
i ∈ {1, 2} (1.1)

Conditional on θ, the signals of the two traders are independent.
Each trader i faces a separate transaction price pi. Trader 1’s price p1 is uni-
formly distributed in [θ, θ] and is uninformative about the fundamental value
θ. Trader 1 observes his private signal s1 and states his maximum willingness
to pay by placing a limit order b1. If p1 lies weakly below b1, he buys one unit
of the asset. If p1 strictly exceeds b1, he sells one unit.8 By checking an addi-
tional box, trader 1 may convert his limit order into a “reversed” limit order.
A reversed limit order entails the opposite actions: the trader buys if p1 weakly
exceeds b1, otherwise he sells. (Only few participants make use of it; we defer
the motivation for allowing reversed limit orders to Section 1.2.2.) Let Z1 denote
the indicator function that takes on value 1 if a limit order is reversed. Trader
1’s demand is X1:

X1 = Y1(1 − Z1) − Y1Z1 (1.2)

Y1 =

⎧⎨⎩ 1 if p1 ≤ b1

−1 if p1 > b1
where p1 ∼ U(θ, θ)

The task of trader 2 varies across the two main treatments, a simultaneous and
a sequential mechanism.

needs to be adjusted by selling or buying one unit of a given asset.
8The design does not allow for a “no trade” option because of the possibility that it may add

noise and complications to the data analysis. We opted for a minimal set of actions that
enables participants to state their preference to buy and sell with a single number.
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1.2 Experimental design

1.2.1 Simultaneous treatment (SIM)

Trader 2 observes trader 1’s price p1 and her own private signal s2. Like trader
1, she chooses a limit order or, optionally, a reversed limit order. When submit-
ting her decision, she does not know her own price p2.
Participants are informed that the price p2 reflects the expectation of an exter-
nal market maker who observes trader 1’s buying or selling decision and who
assumes that trader 1 bids rationally upon receipt of his signal s1. Importantly,
to avoid any ambiguity in the description, they learn the pricing rule that maps
p1 and the realized value of X1, denoted by x1, into p2:

p2 =

⎧⎪⎪⎨⎪⎪⎩
θ+p1

2 , if x1 = 1

θ+p1
2 , if x1 = −1

(1.3)

Participants also receive a verbal explanation of the implied fact that for given
p1, trader 2’s price p2 can take on only one of the two listed possible realizations,
depending on whether trader 1 buys or sells. Through X1, p2 is influenced by
trader 1’s private signal s1; p2 is therefore informative about the asset value θ
and trader 2 would ideally condition her investment decision on both s2 and p2.

1.2.2 Sequential treatment (SEQ)

In treatment SEQ, trader 2 observes the price p2 as specified in (1.3) before
making her decision. The game proceeds sequentially, with trader 1 first choos-
ing his (possibly reversed) limit order b1. As in treatment SIM, his demand X1

determines the price for trader 2, p2. Trader 2 observes the realized value of
{p1, p2, s2} and chooses between buying and selling at p2.
It is straightforward to check that treatments SIM and SEQ are strategically
equivalent. Treatment SEQ allows for four possible strategies contingent on
p2 ∈ { θ+p1

2 , θ+p1
2 }: {buy, buy}, {buy, sell}, {sell, buy} and {sell, sell}. In treat-

ment SIM, the possibility to reverse the limit order enables the same four com-
binations of buying and selling contingent on p2. The two strategy spaces are
therefore isomorphic.
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1 Learning from unrealized versus realized prices

1.2.3 Payoffs

In each of the treatments, the experimenter takes the other side of the market,
which therefore always clears. In case of a buy, the profit Πi of trader i ∈ {1, 2}
is the difference between the asset value and the market price, and vice versa if
the asset is sold:

Πi = (θ − pi)Xi (1.4)

Between treatments SIM and SEQ, payoffs arising from each combination of
strategies and signals are identical. Any rational response to a fixed belief
about trader 1 leads to the same purchases and sales in the two treatments.9

1.3 Predictions

We mainly focus on trader 2 and compare the participants’ behavior to three
theoretical predictions. The first two are variants of the case that trader 2 has
rational expectations and properly updates on her complete information set. As
the third benchmark, we consider the case that trader 2 fully neglects the price’s
informativeness. For all three predictions, we assume traders to be risk-neutral.

1.3.1 Rational best response

Trader 1 has only his private signal s1 to condition his bid upon. His optimal
limit order b∗

1 is not reversed and maximizes the expected profit conditional on
s1. It is easy to show (using the demand function (1.2)) that b∗

1 increases linearly
in the signal:

b∗
1(s1) = arg max

b1
E[(θ − p1)X1|s1] = E[θ|s1] = θ + (θ − θ)s1 (1.5)

Under rational expectations about trader 1’s strategy, trader 2 maximizes her
expected payoff conditioning on both her private signal s2 and the informative
price p2. If her maximization problem has an interior solution, it is solved by

9This statement holds under the assumptions of subjective utility theory. Probability weight-
ing and other generalizations of expected utility can lead to different weighting of outcomes
between the two treatments.

10
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the following fixed point:10

b∗
2(s2) = E[θ|s2, p2 = b∗

2(s2)] (1.6)

The optimal bidding of trader 2 never uses reversed limit orders but follows a
cutoff strategy that switches from buying to selling as the price increases. At
a price equal to the (interior) cutoff b∗

2, the trader is indifferent between a buy
and a sell.
The Bayes-Nash (BN) strategy of trader 2, however, simplifies to a step func-
tion: p2 reflects the market maker’s expectation (see (1.3)), implying that in
equilibrium p2 would make trader 2 indifferent in the absence of her own signal
s2. The additional information contained in s2 breaks the tie, such that trader
2 buys for s2 ≥ E[s2] = 1

2 , and sells otherwise.
However, the BN best response is not the most payoff-relevant ’rational’ bench-
mark. In the experiment, participants in the role of trader 1 deviate from their
best response b∗

1 and participants acting as trader 2 would optimally adjust to
it. Their price p2 is still informative about θ because it reflects s1, but p2 does
not generally equal E[θ|X1] if X1 is subject to deviations from b∗

1. For a stronger
test of naive beliefs, we therefore consider the empirical best response (EBR)
to the participants acting as traders 1. The computation of the empirical best
response is computed via a numerical approximation to the fixed point equation
(1.6).
The two benchmarks BN and EBR are depicted in Figure 1.1 (for the parameters
of the actual experiment that are reported in Section 1.4, and using the empirical
behavior described in Section 1.5 for the calculation of EBR), together with the
naive prediction that we describe next.11 The graphs represent the prices at
which, for a given signal, trader 2 is indifferent between buying and selling. She
is willing to buy at prices below the graph and willing to sell at prices above the
graph. The EBR graph is less steep than that of BN: e.g. for an above-average

10For a simple proof of this statement, verify that if b∗
2 were to violate (1.6) then there would

exist realizations of (p2, s2) such that p2 lies in the vicinity of E[θ|s2, p2 = b∗
2] and profits

are forgone.
11The kinks in the EBR function arise because of the numerical approximation to the fixed

point, which is done for signals that are rounded to lie on a grid with step size 0.1 for close
approximation.
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1 Learning from unrealized versus realized prices

level of p2, EBR requires trader 2 to buy only if she has additional positive
information (large s2).

1.3.2 Best response to naive beliefs

Contrasting the optimal behavior, a trader 2 with naive beliefs does not infer
any information from the price. She fails to account for the connection between
trader 1’s signal s1 and his demand X1 and, instead, conditions on her own
signal s2 only. The maximization problem with naive beliefs is then analogous
to that of trader 1 and leads to the same bidding behavior:

bN2 = arg max
b2

E[(θ − p2)X2|s2] = E[θ|s2] = θ + (θ − θ)s2 (1.7)

The naive strategy is depicted as the straight line in Figure 1. Its underlying
belief is equivalent to level-1 reasoning or fully cursed beliefs. In the level-k
framework (for a formulation with private information, see e.g. Crawford and
Iriberri (2007)) level-0 players ignore their information and randomize uniformly
and a naive trader 2, as defined above, is therefore equivalent to a level-1 agent.
In our setting, this prediction also coincides with a fully cursed strategy of Eyster
and Rabin (2005) and Eyster et al. (2015) that best responds to the belief that
agent 1’s equilibrium mixture over bids arises regardless of their information.12

1.3.3 Hypotheses

As outlined in the Introduction, we conjecture that the updating on additional
market information is more difficult in the simultaneous treatment than in the
sequential treatment. Using the benchmarks from the previous subsection, we
translate the conjecture into a behavioral hypothesis:
12In fully cursed equilibrium, trader 2 believes that trader 1 with signal s1 randomizes uni-

formly over his possible bids: trader 2 expects that trader 1 with signal s1 has a bid
distribution equal to that resulting from the optimal bids given in (1.5), independent of s1.
The perceived mixture of bids by each type of trader 1 therefore follows the distribution
F ( b−θ

θ−θ
) = F (s1), with density 1

2 f(s1|θ) + 1
2 f(s1|θ) = 1. The analysis of Eyster and Ra-

bin (2005) and Eyster et al (2015) also allows for intermediary levels of cursedness, where
agents may only partially ignore the information revealed by other agents’ actions. Our
estimations in Subsection 1.5.4 also allow for milder versions of information neglect.
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Figure 1.1: Naive, Bayes Nash and empirical best re-
sponses.

Hypothesis 1 Naive bidding is more prevalent in treatment SIM than in treat-
ment SEQ.

The hypothesis is tested in the next section by considering those decisions of
trader 2 where EBR and Naive bidding differ, separately for each of the two
treatments. As shown in Figure 1.1, EBR and Naive bidding predict different
decisions in the area between the two graphs. For instance, at prices within this
area, a naive agent with a signal below 0.5 would buy whereas she would sell
according to EBR.

Our second hypothesis considers the possibility that all participants acting as
trader 2 have naive beliefs. In this case, the symmetry of the two traders’
decision problems would induce symmetry between their bid distributions. We
can therefore use trader 1’s bid distribution as an empirical benchmark for naive
traders 2. We restrict the comparison to treatment SIM, where the two traders
have identical action sets.

Hypothesis 2 In treatment SIM, bids of trader 2 do not significantly differ
from bids of trader 1.

13
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1.4 Experimental procedures and results

1.4.1 Procedures

The computerized experiment is conducted at Technical University Berlin, using
the software z-Tree (Fischbacher, 2007). A total of 144 students are recruited
with the laboratory’s ORSEE database (Greiner, 2004). 72 participants are in
each of the treatments SIM and SEQ, each with three sessions of 24 participants.
Within each session, the participants are divided into two equally sized groups
of traders 1 and traders 2. Participants remain in the same role throughout the
session and repeat the market interaction for 20 periods. At the beginning of
each period, participants of both player roles are randomly matched into pairs
and the interaction commences with Nature’s draw of θ, followed by the market
rules as described in Section 1.2. At the end of each period, subjects learn the
value θ, their own transaction price (if not already known) and their own profit.
Upon conclusion of the 20 periods, a uniform random draw determines for every
participant one of the 20 periods to be paid out for real.
Participants read the instructions for both roles, traders 1 and 2, before learning
which role they are assigned to. The instructions include an elaborate computer-
based simulation of the signal structure as well as an understanding test. The
support of the asset value is {40, 220}.13 Each session lasted approximately 90
minutes and participants earned on average EUR 22.02. Total earnings consist
of a show-up fee of EUR 5.00, an endowment of EUR 15.00 and profits from
the randomly drawn period (which could be negative but could not deplete the
entire endowment). Units of experimental currency are converted to money by
a factor of EUR 0.08 per unit.

1.4.2 Results

Trader 1

Figure 1.2 shows the implemented buys and sells of participants acting as trader
1 in treatment SIM, with the corresponding market price on the vertical axis
13See the Online Appendix for a set of instructions for treatments SIM and SEQ. We chose the

possible asset values {θ, θ} = {40, 220} in an attempt to minimize midpoint effects, which
are often observed in experiments.
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Note: The average bidding curve corresponds to θ + (θ − θ) · P̂ (X1|s1), where P̂ (X1|s1) is the
probit estimate of the probability of trader 1 buying in treatment SIM.

Figure 1.2: Bids of traders 1.

and their private signal on the horizontal axis. (Results for trader 1 in treatment
SEQ are very similar.) The figure also includes the theoretical prediction and
the results of a probit estimate of the mean bid. The mean bid increases in the
signal, even slightly stronger than is predicted by the benchmark theory. This
overreaction is not significant, though.

Trader 2: Testing hypotheses

Hypothesis 1. To evaluate the degree of naiveté, we focus on the area of Figure
1.1 where naive and optimal strategies make different predictions. Within this
area, we calculate the proportion η of naive decisions:

η = dN
dN + dB

(1.8)

where dN and dB denote the number of orders consistent with naive and EBR
predictions, respectively.
Figures 1.3 and 1.4 show the relevant observations in treatments SIM and SEQ,
respectively. For these observations, naive expectations induce buys for signals
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Figure 1.3: Sells and buys within the relevant area in treatment
SIM.
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Figure 1.4: Sells and buys within the relevant area in treatment
SEQ.
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below 0.5 and sells for signals above 0.5, while rational expectations induce
opposite actions. The empirical measures dN and dB correspond to the number
of triangle markers and cross markers, respectively. Hypothesis 1 is confirmed
if the proportion of naive choices is larger in treatment SIM than in treatment
SEQ: ηSIM > ηSEQ.
Indeed, we find that neglect of information contained in the price is stronger
in a simultaneous market. Appendix Table A4 shows that the share of naive
decisions in treatment SIM (η = 0.38) is twice as large as in treatment SEQ
(η = 0.19). The difference is statistically significant (p = 0.0091, Wald test).
An especially strong difference between the two treatments appears in situations
where trader 2 has a relatively uninformative signal, s2 ∈ [0.4, 0.6], i.e. when
traders have the strongest incentive to make trading contingent on the price. In
these cases, the frequency of buying at a price below the ex-ante mean of p2 =
130 is at 0.68 in SIM and at 0.37 in SEQ (see Appendix Table A1). Similarly,
the frequency of buying at a high price, above p2 = 130, is at 0.28 in SIM
and at 0.48 in SEQ (see Appendix Table A2). This illustrates that treatment
SEQ’s participants were less encouraged by low prices and less deterred by
high prices, respectively, than treatment SIM’s participants, consistent with a
relatively more rational inference in the sequential market.
In Appendix A.3, we also consider the evolution of decisions in the course of the
experiment. We cannot detect any learning success over 20 repetitions.14

Hypothesis 2. Hypothesis 2 compares the buy and sell decisions of traders 1
and 2 in treatment SIM. Figure 1.5 reveals that the two traders’ average bid
functions do not significantly, or even perceivably, differ from each other. Just
like trader 1, trader 2 shows no significant deviations from a linear bidding
function, an observation that is consistent with full naiveté of trader 2.15

We note that in the variations of the simultaneous game, featuring in the next
section, fully naive bidding does not always appear.

14Carrillo and Palfrey (2011) report similar evidence of constantly naive play in their experi-
ment.

15In contrast, there do appear significant differences from naive actions in treatment SEQ,
which is in line with the previously examined Hypothesis 1. Results are available upon
request.
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Figure 1.5: Estimated average bids of traders 1 and 2 in treatment
SIM.

1.5 Possible drivers of information neglect

1.5.1 Signal strength
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Figure 1.6: Signal distributions for trader
1 (solid) and trader 2 (dashed)
in LSQ treatments.

One possible driver of the observed information neglect is that the participants’
strong private signals might distract them from the information contained in
the price. In a challenging and new environment, participants may perceive
the benefit from interpreting the price as relatively low. In real markets, in-
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1.5 Possible drivers of information neglect

vestors may be more attentive to the price’s informativeness, especially when
they themselves have little private information.16

We examine the hypothesis by introducing an asymmetric signal strength be-
tween trader 1 and trader 2, keeping the rest of the design unchanged. In two
additional treatments with “Low Signal Quality”, LSQ-SIM and LSQ-SEQ (with
N = 70 and N = 68, respectively), trader 2’s signal is less informative. The
densities in the new treatments are depicted in Figure 1.6 and take the following
form.

f(si|θ = θ) = 1 − τi(2si − 1)

f(si|θ = θ) = 1 + τi(2si − 1)

with τ1 = 1 and τ2 = 0.2.

Behavior of trader 2 deviates from the naive prediction in both treatments LSQ-
SIM and LSQ-SEQ. Trader 2s react to their signals more strongly than predicted
by naive bidding (see Figure A1). A comparison with the bids in the main
treatments SIM and SEQ thus supports the conjecture that subjects pay more
attention to market information when they are less informed privately.

However, the discrepancy between the two market mechanisms increases with
information asymmetry.

The share of naive decisions in treatment LSQ-SEQ (22%, black triangles in
Figure 1.7b) is much smaller than in LSQ-SIM (44%, black triangles in Fig-
ure 1.7a). This significant difference (p = 0.0003, Wald test) corresponds to
a steeper estimate of the average bidding curve in LSQ-SEQ, see Appendix
Figure A1. Tables A1 to A3 in the appendix also show that differences in fre-
quencies of buys and sells between the two mechanisms are highly significant for
various signal ranges, and that they tend to be larger than in the comparison
of SIM and SEQ. For example, participants in the role of trader 2 of LSQ-SEQ
act very frequently against their own signal. In sum, the importance of trading
mechanisms for rational decision making prevails under the new informational
conditions.

16We thank an anonymous referee for raising this hypothesis.
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Figure 1.7: Buys and sells consistent with either naive bidding or EBR in
treatments LSQ-SIM and LSQ-SEQ, respectively.

1.5.2 Strategic uncertainty

Strategic uncertainty adds to the complexity of the trading game. For an accu-
rate interpretation of price, participants in the role of trader 2 need to consider
the trading behavior of trader 1 and their ability to do so may vary between
simultaneous and sequential mechanisms. In other words, the necessity to as-
sess the human-driven EBR (not just the simpler BN response) may lead to less
optimal behavior by trader 2 in treatment SIM relative to SEQ.
We therefore examine whether the treatment effect appears also in two ad-
ditional treatments with “No Player 1” (NP1), containing 40 participants in
NP1-SIM and 46 in NP1-SEQ, all of whom act in the role of trader 2. In these
treatments we delete trader 1’s presence. Participants acting as trader 2 are
informed that the price is set by a market maker who receives an additional
signal. This additional signal follows a distribution that mimics the information
of the market maker in the two main treatments when observing the demand
X1 of a trader 1 who behaves rationally.17

For better comparison with the main treatments, the instructions of the NP1
treatments retain not only much of the wording but also the chronological struc-
ture of the main treatments. Participants in NP1 treatments thus learn about
the existence of p1, which is presented to them as a random “initial value” of
the asset’s price, and they learn that the market maker observes an additional
17The distributions of the additional signals (one for each asset value) are shown in a graphical

display. The instructions do not explain how the distributions are determined.
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1.5 Possible drivers of information neglect

signal that is correlated with the asset’s value. Like in the main treatments, the
instructions display the updating rule (1.3) and explain that it results in the
price p2 at which the participants can trade and which reflects the expectation
of the asset’s value, conditional on the market maker’s additional signal but not
conditional on the participants’ own signal.

The data show no strong differences between the NP1 treatments and the main
treatments. Appendix Figure A2 shows that the estimated bidding curve in
NP1-SIM exhibits the same slope as the curve in SIM, with a mild downward
shift, whereas behavior in NP1-SEQ is very close to that of SEQ.18

Most notably, the effect of simultaneous versus sequential trading persists. The
share of naive decisions is two and a half times higher in NP1-SIM than in NP1-
SEQ (45.27% vs. 17.67%). We also observe significantly more buys at high prices
and more sells at low prices in NP1-SEQ (see Tables A1 and A2 in Appendix
A.1). Figure 8 shows the individual decisions for cases where naive and rational
predictions differ, in treatments NP1-SIM and NP1-SEQ, respectively.
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Figure 1.8: Naive v Bayesian in NP1-SIM and NP1-SEQ.

18The downward shift in NP1-SIM is more pronounced for low signals and leads to a significant
deviation from the naive benchmark (Multiple binomial testing with Bonferroni correction
rejects 1 out of 9 hypotheses at .0055 significance level, see Appendix A.2). Despite this
deviation, the average bid does not increase disproportionally in the private signal as the
rational benchmark predicts. Another mild difference is that the use of reversed limit orders
is smaller in NP1-SIM (9%) than in SIM (15%).
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1 Learning from unrealized versus realized prices

1.5.3 Number of decisions per treatment

Our last treatment addresses the question whether the higher frequency of naive
decisions in SIM may be driven by the additional cognitive strain that condi-
tional thinking requires. Perhaps, it is not conditionality per se that is difficult
for the participants, but rather the fact that they have to make two decisions in
treatment SIM (one for each possible price realization) but only one in treatment
SEQ.
We therefore introduce a “hypothetical” sequential treatment (Hyp-SEQ) with
62 participants, which rules out higher dimensionality of strategies as a source
of difficulty. Treatment Hyp-SEQ is analogous to SEQ in that after learning
trader 1’s price p1, participants in the role of trader 2 specify their buying or
selling preferences for only a single price p̂2. However, p̂2 is only a candidate
price as p̂2 is equiprobably drawn from the two price values that are possible
after updating via rule (1.3). Participants decide whether they would buy or sell
at p̂2 and the decision is implemented if and only if trader 1’s demand induces
the realization p2 = p̂2. Otherwise, trader 2 does not trade and makes zero
profit.
Participants in treatment Hyp-SEQ thus face only one price and make only
one decision, rendering the task dimensionality identical to that in SEQ. (The
instructions are almost word-for-word identical.) But the nature of the decision
in Hyp-SEQ is conditional, like in treatment SIM. We can therefore assess the
importance of task dimensionality by comparing SIM versus Hyp-SEQ, and the
role of conditionality by comparing SEQ versus Hyp-SEQ.
Average bidding shows no large difference between treatments SIM and Hyp-
SEQ, or between traders 1 and 2 of treatment Hyp-SEQ: The estimated bid
functions in Appendix Figures A3a and A3b exhibit approximately the same
slope. Moreover, the Appendix A.2 also shows that naive bidding cannot be
rejected for treatment Hyp-SEQ, in multiple binomial testing.
However, Figure 1.9 and Table A4 in the Appendix show that the frequency of
making suboptimal decisions (η) in Hyp-SEQ lies well in between those of SEQ
and SIM. The significant difference between treatments SIM and Hyp-SEQ (0.38
versus 0.28, p=0.022, one-sided t test) shows that reducing the set of hypothet-
ical prices considerably improves decision-making. Yet, the frequency of naive
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Figure 1.9: Naive v EBR in Hyp-SEQ.

decisions is still significantly higher in Hyp-SEQ than in the fully sequential
treatment SEQ, (0.28 versus 0.19, p=0.081, one-sided t test).19 Altogether, we
conclude from the above tests that reducing the number of hypothetical trading
decisions reduces the degree of naiveté, but does not eliminate it.20

1.5.4 Random utility model

This subsection pools the data for a statistical comparison of sequential versus
simultaneous mechanisms. We combine the data from all simultaneous treat-
ments into a data set “SIM+” and those from sequential treatments into a data
set “SEQ+”. (Data from the hybrid treatment Hyp-SEQ are excluded.) We
assume that the probability with which trader 2 buys the risky asset follows a
logistic distribution, allowing for an over-weighted or under-weighted relevance
19Notice that the lower rate of suboptimal decisions in Hyp-SEQ relative to SIM is consistent

with the main idea of Li’s (2016) obvious strategy proofness: in Hyp-SEQ, the set of relevant
prices is reduced to a singleton, helping the participants to detect the optimal strategy.

20Our working paper version, Ngangoue and Weizsäcker (2015) shows a first version of the
experiment where the simultaneous treatment elicits buy and sell preferences for a list
of 26 hypothetical prices (treatment “Price List”), instead of 2 as in the present paper’s
treatment SIM. There, we find the neglect of the price informativeness to be even more
pronounced, which is also consistent with an effect of task dimensionality. The previous
experiment, however, also has other differences to the present one.
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1 Learning from unrealized versus realized prices

of the available pieces of information:

P (X2 = 1|ui, s2, p2) = eλ(Ê[θ|p2,s2]−p2+ui)

1 + eλ(Ê[θ|p2,s2]−p2+ui)
(1.9)

with

Ê[θ|p2, s2] = 40 + 180 · P̂ (θ = 220|p2, s2) (1.10)

P̂ (θ = 220|p2, s2) = [1 + LR(s2)−β · LR(p2)−α]−1 (1.11)

The choice probability (1.9) depends on subjectively expected payoff, Ê[θ|p2, s2]−
p2. The parameter λ reflects the precision of the logistic response and ui is the
random utility shifter, which we assume to be normally distributed with mean
0 and variance σ2

u. To allow for irrational weighting of information, we intro-
duce the subjective posterior probability of the event that θ = 220, given by
P̂ (θ = 220|p2, s2). Analogous to the method introduced by Grether (1992),
we let the posterior probability depend on the likelihood ratios of the signal
and the price, LR(s2) ≡ P (θ=220|s2)

P (θ=40|s2) and LR(p2) ≡ P (θ=220|p2)
P (θ=40|p2) , respectively.

The likelihood ratios are exponentiated by the potentially irrational weights β
and α that the participant assigns to the signal’s and the price’s informational
content. A participant with naive beliefs (a ‘fully cursed’ participant) would cor-
rectly weight the signal, β = 1, but would ignore the information in the price,
α = 0. An intermediary level of cursedness translates into α between 0 and 1.
A rational trader would correctly weight the signal and the price, β = α = 1.
The model also allows for an over-weighting of the signal or the price, by letting
β or α exceed 1.
We estimate the model via Maximum Simulated Likelihood (MSL). To arrive
at LR(p2), we estimate the distributions P (p2|θ = 220) and P (p2|θ = 40) for
each treatment individually via kernel density estimation and infer P (θ=220|p2)

P (θ=40|p2)
for each p2 in the data set.
The estimates are reported in Table 1.1 and confirm the findings of the previous
subsections. Trader 1’s model estimates serve as a benchmark. Participants in
the role of trader 1 overweight their private signal (β = 2.05), inducing a slight
S-shape of the estimated bid function (see Figure A4). Traders’ 2 weighting of
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1.5 Possible drivers of information neglect

Table 1.1: Results of MSL estimation

Trader 1 Trader 2

SIM+ SEQ+

β 2.05∗∗∗ 2.54∗∗ 1.36∗∗∗

(0.31) (0.90) (0.36)

α - 0.60∗ 1.85∗∗∗

(0.26) (0.22)

λ 0.0314∗∗∗ 0.0230∗∗∗ 0.0373∗∗∗

(0.003) (0.004) (0.006)
σu 0.0010 0.0010 0.0039
N 3435 2220 2260

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Std.
Err. in parentheses. Hypothesis testing for β and
α refers to one-sided tests of deviations from 1. The
estimation for trader 1 pools all treatments with par-
ticipants acting as trader 1 since their data do not
significantly differ across treatments.
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1 Learning from unrealized versus realized prices

the private signal decreases from 2.54 to 1.36 between the simultaneous and the
sequential treatments. Both of these β estimates significantly differ from 1, but
in the sequential treatments β lies significantly below trader 1’s weighting of the
private signal (p = 0.0298, Wald test).
In the simultaneous mechanisms, the estimated α of 0.60 lies well below the
optimal value 1, albeit at a somewhat marginal statistical significance of p =
0.09. While this difference from 1 reflects the hypothesis that participants pay
too little attention to the price’s informativeness, we can also reject the extreme
formulation of Hypothesis 2, stating that participants are fully naive: α differs
significantly from 0.
In the treatments with sequential mechanisms, the perceived levels of infor-
mativeness of signal relative to price are reversed. These treatments induce a
significant over-weighting of the price’s likelihood ratio (α = 1.85).21 Overall,
the evidence from sequential treatments shows that the prior distribution of θ
is under-weighted and that, confirming Hypothesis 1, sequential markets reveal
a significantly stronger inference from the price than simultaneous markets.

1.6 Discussion: Information neglect in markets

This section discusses the possible impact of naiveté on market efficiency. We
begin by stating a classical question of market prices: how do prices that arise
after a given trading pattern differ from equilibrium prices? Notice that this
question addresses the welfare of subsequent traders in the same market, i.e.,
traders outside of the set of traders that we consider in the experiment. We
therefore have to resort to auxiliary calculations. Yet, we also consider the pay-
off of our actual participants.

Pricing. A natural measure of price efficiency is the speed at which price ag-
gregates traders’ dispersed pieces of information and converges to fundamental
value. With naive traders in the market, this speed may be reduced. Moreover,
naive traders may distort the price recovery process by suppressing some subsets
of possible signals more than others. Two theoretical contributions that study
21This relates to Levin et al. (1996)’s finding that participants in the English auction put

relatively more weight on the latest drop-out prices compared to their own signal.
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1.6 Discussion: Information neglect in markets

the implications of naiveté on price are by Hong and Stein (1999) and Eyster
et al. (2015). They both find, with different models, that the presence of naive
traders creates a bias of prices leaning towards their ex-ante expectation. The
reason is that naive traders are likely to engage in excessive speculation based
on their own signal—they bet against the market price too often. This pushes
price towards its ex-ante mean.22

Testing this implication requires the simulation of a specific price mechanism
after trader 2 has completed her trades. For simplicity and for consistency with
the rule governing p2, we calculate the price that a market maker would set in
Bayes Nash equilibrium: the market maker sets the price p3 equal to E[θ|x1, x2],
where x1, x2 ∈ {−1, 1} denote the realized demand of traders 1 and 2, assumed
to follow the Bayes-Nash prediction. In our main treatments SIM and SEQ, the
price for a hypothetical trader 3 is thus a simple function of p2 and x2:23

p3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−8800+310p2

50+p2
if x2 = 1

−8800+50p2
310−p2

if x2 = −1

Under the given pricing rule, price moves towards its extremes fast if both
signals s1 and s2 deviate from their expectation in the same direction. In this
case either both traders buy or both traders sell, in Bayes Nash Equilibrium.
For all cases where s1 and s2 lie on the same side of 0.5, Figure 1.10a shows
the resulting distribution of Bayes Nash price p3 as a dotted line, with much
probability mass located towards the extremes. In contrast, if trader 2 bids
naively, then she will tend to sell at high prices and buy at low prices, creating
excessive density of p3 near the center of the distribution (light grey line).
Figure 1.10a also depicts the kernel densities of the price p3 that would arise from
the actual trading in treatments SIM and SEQ. The price distribution under SIM
22Hong and Stein (1999) analyze a dynamic model where information dispersion is staggered

in the market and where naive traders are myopic but can be exploited by sophisticated
(yet cognitively restricted) traders who start betting against the naive traders eventually.
Price can therefore overshoot at a later stage in the cycle. Eyster et al.’s (2015) model uses
partially cursed equilibrium to show the bias in pricing, using a more standard (and more
static) model of financial markets with incomplete information akin to that in Grossman
(1976).

23In treatments LSQ, we obtain p3 = 1030(−8.54p2)
770+p2

if x2 = 1, p3 = −770(11.43p2)
p2−1030 else.
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Figure 1.10: Kernel density of efficient price 3 after naive, rational and actual
demand of traders 1 and 2 in SIM and SEQ .

is close to that of naive bidding. In SEQ, prices deviate more from the prior
expectation and the distribution lies far closer to its equilibrium prediction.
Figure 1.10b shows the kernel densities when the two signals are on opposite
sides of their ex-ante expectation. Here, the aggregate information is not very
informative, prices with naive and Bayes-Nash traders do not differ much and
markets yield prices that revolve around prior expectations. Figure 1.10c de-
picts the densities when taking into account all observations. Overall, the price
distribution in treatment SEQ has a more pronounced bi-modal shape.
In a nutshell, prices in the simultaneous mechanisms incorporate information
slowly. This finding is consistent with the momentum effect in call auctions
documented in Amihud et al. (1997) and Theissen (2000).
To quantitatively assess price efficiency under the two treatments, we ask about
the variance of fundamental value conditional on the price, V ar[θ|p3]. It cap-
tures the error in market expectations given information contained in p3. Con-
ditional variance is significantly lower in treatment SEQ than in SIM, at high
level of significance (p=0.00, nonparametric median test, taking each market
as a unit of observation) and with a somewhat sizable difference: in treatment
SIM, the price explains on average 21% of the variance in the asset value, versus
27% in treatment SEQ.24

24This uses a measure for informational efficiency (IE) that is standard in the finance literature
(see e.g. Brown and Zhang 1997; De Jong and Rindi 2009): IE = 1 − E[V ar[θ|p3]]

V [θ] .
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1.7 Conclusion

Profits. The difference between simultaneous and sequential mechanisms also
affects the distribution of profits of trader 2. A corresponding difference occurs
in each of the relevant treatment comparisons, but it is economically small (our
experiments were not designed to generate big payoff differences between treat-
ments) and is statistically significant only in the comparison LSQ-SIM versus
LSQ-SEQ, i.e. with asymmetry in the informativeness of signals. Less informed
traders benefit from sequential information processing, where the employed up-
dating is more rational. The results on mean and median profits of each treat-
ment is in Table A5 in the Appendix. It is also noteworthy that the distribution
of profits conditional on price p2 in LSQ-SEQ is mirror-inverted to the one in
LSQ-SIM (see Figure A5b): the majority of traders in LSQ-SIM lose signifi-
cant amounts, whereas the majority of traders in LSQ-SEQ make gains. This
hints at the importance of pre-trade transparency to restrain insider trading in
real-world markets. Naive later traders may suffer if they are poorly informed.
Trading volume. Naive beliefs may not only affect prices and profits, but may
also trigger speculative trade (Eyster et al., 2015). Naive traders who receive
differential information develop different beliefs as they neglect information re-
vealed by trades. When beliefs are sufficiently divergent, they agree to speculate
against each other and thus generate excessive trade. By means of a simple sim-
ulation described in Appendix A.4, we compute for each treatment the potential
number of trades that would occur if participants acting in the role of trader 2
were to trade with each other, at the stated levels of their willingness to buy
and sell. We find that simultaneous mechanisms generate significantly more
potential for trades than the sequential ones. (The “Low Signal Quality” treat-
ments, whose shares of trades do not differ from each other, are the exception.)
This analysis, albeit simplistic, supports the conjecture that naive traders who
neglect disagreement in beliefs spawn additional trade.

1.7 Conclusion

How well traders are able to extract information in markets may depend on
the markets’ designs over and above ‘rational’ reasons. Although different but
isomorphic trading mechanisms should entail the same outcomes, decisions may
vary. Our experiments provide an example where a specific subset of infer-
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1 Learning from unrealized versus realized prices

ences are weak: traders in simultaneous markets, where optimal trading re-
quires Bayesian updating on hypothetical outcomes, do not account for the
price’s informativeness. They therefore neglect information revealed by others’
investments. However, when the reasoning is simplified to updating on a single
realized event, such ‘cursedness’ is mitigated. Traders are thus more likely to
detect covert information while focusing on a single outcome. In this sense, the
degree of inference and consequently the quality of informational efficiency in-
teract with market design. Of course, this is only a single setting and despite the
numerous robustness checks in the paper we must not presume generalizability.
It’s a stylized experiment, no more and no less. Subsequent work may address,
for example, the largely open research question of price efficiency in sequential
trading with more than two consecutive traders.
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2 Trading under ambiguity and the effect of learning

2.1 Introduction

The link between ambiguity and trading activity is not obvious. Ambiguity
is a fundamental feature of financial markets, where objective probabilities of
the states of nature are often unknown. The extent to which traders perceive
ambiguity determines whether ambiguity begets more or less trading activity.
Speculative trade increases, for instance, when ambiguity enables investors to
develop subjective beliefs that are sufficiently heterogeneous. Several studies
that find a positive correlation between trading volume and measures of uncer-
tainty support this hypothesis (see Karpoff 1987 for an extensive survey of this
literature).
In contrast, trading activity decreases if investors dislike events with unknown
probabilities. In that case, investors who already have state-invariant positions
will not re-allocate their portfolio. In incomplete markets, staying out of the
market might even be the sole possibility to avoid ambiguous trades. Diminished
willingness to trade can therefore be rationalized with ambiguity-averse prefer-
ences. Various models of ambiguity aversion (e.g. Choquet expected utility
(CEU), maxmin expected utility (MEU), α-maxmin expected utility (α-MEU))
depart from expected utility theory by modeling decision-makers who consider
different distributions for opposite actions: one for going long and one for going
short. The ambiguity-averse seller short-sells at higher prices, the ambiguity-
averse buyer displays a lower willingness to pay. In between, there is a range
of prices at which buyer and seller do not agree on trade. In line with this
rationale, Antoniou et al. (2015) find equity flows to be negatively related to
ambiguity.
The different movements in trading volume can be reconciled if one acknowl-
edges that only ambiguity perceived as such can impede trading (Dimmock
et al., 2016). While ambiguity-averse traders conceive a set of probability dis-
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2 Trading under ambiguity and the effect of learning

tributions, traders with subjective beliefs do not perceive any ambiguity. The
extent to which traders perceive ambiguity is, however, likely to vary with incom-
ing information. As ambiguity often triggers enhanced information acquisition,
understanding traders’ reactions requires first examining how they process in-
formation under ambiguity. The way investors update ambiguous beliefs upon
incoming information defines their perception of ambiguity and, hence, their
willingness to trade.

This paper offers a systematic comparison of willingness to trade assets with am-
biguous and unambiguous return distributions, in a stylized incomplete market
with one uncertain asset and money. To examine the relevance of learning, the
experiment studies investment decisions under ambiguity across two information
conditions: one where investors base their decisions on given probabilities; and
a second where investors receive additional information before investing. Two
main updating rules serve as theoretical benchmarks: full Bayesian updating
(henceforth FBU, Jaffray 1989; Pires 2002) and maximum likelihood updating
(henceforth MLU, Gilboa and Schmeidler 1993). With FBU, subjects update a
set of priors prior by prior and evaluate the resulting set of posteriors according
to their ambiguity preferences. With MLU, on the other hand, subjects con-
sider a subset of priors that maximizes ex-ante the probability of receiving the
observed information. Additional information leads an agent to discard unlikely
priors and to perceive substantially less ambiguity. Eventually, he will come to
a single posterior belief and will not perceive any ambiguity at all. In this way,
the arrival of information may generate a singleton posterior, which depends on
the nature of the arrived information and, therefore, might be heterogeneous
across agents.

The experiment is designed as an individual decision-making environment where
subjects cannot learn from the market. In addition, any risk-sharing motive to
trade is excluded because subjects start with a riskless position. A 2x2 design
allows comparing decisions across two dimensions. The first dimension varies
the degree of uncertainty by comparing decisions under risk versus ambiguity.
The second dimension distinguishes between situations where information about
return distributions is released at once and those where information is processed
sequentially. The design is implemented with 2 treatments, such that the first
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2.1 Introduction

dimension of variation is analyzed in a within-subject comparison and the second
dimension between subjects. Treatment “No Learning” (NL) investigates the
relation between ambiguity and investment decisions when belief updating is
not required. Treatment “Learning” (L) examines the ambiguity effect when
traders receive additional information after prior distributions are specified.

In the two treatments, participants submit a bid and an ask quote for an un-
certain asset. In some rounds, participants learn the objective probability dis-
tribution of the asset’s value and, thus, invest in a risky asset. In other rounds,
they receive imprecise information about the distribution, which makes the lat-
ter ambiguous. While in treatment NL information about the distribution is
revealed at once, participants in treatment L learn the distribution across two
stages: They first receive information about a prior distribution, and observe
then an additional signal.

One main result is that participants express a lower willingness to trade by
choosing significantly wider bid-ask spreads when returns have ambiguous dis-
tributions. The decrease in market participation even persists when subjects
learn distributions progressively. This result adds to the evidence of ambiguity
aversion found in a multitude of Ellsberg experiments (i.a. Chow and Sarin
2002; Halevy 2007, and Camerer and Weber 1992 for a review of the literature).
It shows that ambiguity aversion manifests itself in spreads when portfolio re-
allocation is not possible. The average ambiguity premium in long and short
positions amounts to 20% and 16.4% of the expected value, respectively, and is
in line with previous findings (Yates and Zukowski 1976; Bernasconi and Loomes
1992 and the references in Camerer and Weber 1992). The ambiguity premium
over and above the risk premium cuts down trade by, on average, 12 percent-
age points, and mean profits by 30%. These findings confirm that ambiguity
aversion is well suited to model freezes in trading activity.

A second main result is that learning generates more extreme quotes. Yet, there
is no evidence of subjects being predominantly MLU agents. MLU predicts small
to zero spreads, but subjects choose the same average spread when the same
ambiguous distribution is learned progressively. The evidence in favor of FBU,
too, is limited: Bids and asks are significantly lower (higher) after the arrival
of a low (high) signal. The chosen quotes are rather consistent with updating
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2 Trading under ambiguity and the effect of learning

second-order beliefs on ambiguous probabilities. A bulk of 36.87% decisions for
ambiguous prospects is centered around Bayesian updates of the mid-prior. The
remainder of quotes discloses heterogeneity in the way of updating ambiguous
beliefs. One noticeable group is insensitive to additional information and refrains
from trading. Another major group consists of extreme updaters who choose to
trade at all prices.

In sum, the results identify a negative relation between ambiguity and will-
ingness to trade that is robust to the information condition. The relation be-
tween ambiguity and trading volume, though, is not conclusive since a lower
willingness to trade does not directly translate into lower trading volume. De-
spite ambiguity-averse trading preferences, differential information combined
with Bayesian updating of recursive preferences may generate updated beliefs
that are divergent enough to spawn speculative trading. This effect of learn-
ing matters, in particular, because the link between ambiguity and liquidity is
characterized by feedback effects. Traders who do not perceive ambiguity nur-
ture liquidity, which, in turn, encourages price discovery. In contrast, whenever
ambiguity engenders a drop in liquidity, prices fail to aggregate information
and are more prone to excess volatility (Dow and Werlang, 1992b; Guidolin
and Rinaldi, 2010). In that case, ambiguity produces market frictions that may
persist over longer periods. The experimental data suggest that gradual infor-
mation processing can mitigate ambiguity effects if quotes become sufficiently
heterogeneous.

Moreover, subjects’ more extreme reactions with gradual information release
have direct implications for discretionary disclosure policy. Miller (2002) and
Kothari et al. (2009) find evidence for an asymmetric disclosure of bad and good
news: While managers disclose good news immediately, they accumulate bad
news before releasing them. The experimental findings indicate that the asym-
metric disclosure has effects beyond the one of supporting managers’ careers: It
possibly dampens negative, but fosters positive stock price reactions.

This paper relates two strands of research. One strand examines the effect of
ambiguity on market parameters. In theoretical models of market microstruc-
ture, for instance in Cao et al. (2005); Ui (2011), and Easley and Hara (2010),
ambiguity aversion is used to model limited market participation. In line with
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this theoretical literature, this paper uses a stylized decision experiment to test
the hypothesis that market participation decreases with ambiguity. Two other
experimental studies analyze the effects of ambiguity on financial decisions. Ahn
et al. (2014) individual-decision experiment confirms the heterogeneity in am-
biguity attitudes, providing evidence for subjective expected utility (SEU), am-
biguity aversion as well as for pessimism. Bossaerts et al. (2010) show in their
market experiment that heterogeneity in ambiguity attitudes does not only affect
portfolio choices, but also asset prices. Standard price predictions do not hold
and prices do not aggregate beliefs if only the least ambiguity-averse traders
provide the total supply of ambiguous assets. In contrast, the design in the
present experiment identifies ambiguity aversion not through portfolio alloca-
tion but with chosen spreads. It focuses on individual willingness to trade and,
thus, extends the study of ambiguity aversion to markets that do not provide the
opportunity to fully insure against ambiguous states. A related study is Sarin
and Weber (1993). They find bids and the resulting market prices for ambiguous
assets to be consistently lower in sealed-bid and oral double auctions, although
ambiguous and unambiguous assets had identical expected payoffs.1 As they
conclude, subjects are less willing to pay for ambiguous assets that they appar-
ently consider as more risky. Another related work is the experimental study
of Eisenberger and Weber (1995). They find no interaction between ambiguity
and the buying/selling price ratio. As their focus lies on the buying/selling price
ratio, willingness to pay and willingness to accept are elicited from different de-
fault positions. This study, in contrast, focuses on the individual willingness to
trade by keeping the starting position constant and state-invariant. This allows
for testing the prediction made in Dow and Werlang (1992a) under varying con-
ditions.

Another strand of the literature analyzes belief updating under ambiguity. The
current work contrasts from Epstein and Schneider (2008), which models updat-
ing of ambiguous information. Instead, this research evaluates belief updating
of ambiguous priors when information is precise. Cohen et al. (2000) use in this
context a dynamic extension of the Ellsberg experiment to differentiate between

1Note, in their oral double auctions subjects are endowed with assets. In that case, ambiguity-
averse traders want to get rid of their uncertain endowment and drive down the offer price.
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FBU and MLU behavior. They, too, find heterogeneity in updating behavior.
The behavior of a non-negligible amount of subjects is consistent with MLU, but
FBU seems to be the more predominant updating rule in their implementation
of the Ellsberg-experiment. The current paper emphasizes the importance of
these two updating rules for trading activity and provides another framework to
distinguish between them, and possibly more updating rules. The relevance of
alternative or modified updating rules is shown in De Filippis et al.’s (2016) ex-
periment with both social learning and private signals, where subjects’ updated
beliefs are more consistent with likelihood ratio test updating, a generalization
of MLU. Another related experiment also studies learning in ambiguous asset
markets: Baillon et al. (2013) investigate learning with a natural source of un-
certainty. In their individual decision-making design, subjects submitted ask
prices for options on initial public offerings (IPOs). Using the neo-additive
model (Chateauneuf et al., 2007), they find no evidence for pessimism (ambigu-
ity aversion). Furthermore, whereas pessimism is not affected by the arrival of
new information, sufficient information reduces likelihood insensitivity. The fol-
lowing experiment adds to this literature and contrasts markets with ambiguity
shocks and ambiguous markets with gradual information release. Moreover, it
compares learning in ambiguous markets to learning in risky markets to identify
learning effects that are specific to ambiguity.

The paper is organized as follows. Section 2.2 presents the stylized decision
model and the theoretical predictions. Section 2.3 describes the implementation
in the experiment. The results are presented in Section 2.4. Section 2.5 discusses
their implications and concludes.

2.2 The theoretical framework

2.2.1 Investing in ambiguous versus risky prospects

A stylized decision problem

Consider a simple investment opportunity in a market with two states and
one risky asset. The investor may invest in one unit of the risky asset with
value V ∈ {VL, VH}. The probability for the high-value state corresponds to
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Pr(V = VH) =: π.
The investor is endowed with cash W0 and tenders both a bid quote, b, and an
ask quote, a, before knowing the transaction price, p. The price p is exogenous
and is drawn from a uniform distribution, i.e. p ∼ U [VL, VH ]. The agent’s
demand corresponds to:

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1 if p ≤ b

−1 if p ≥ a

0 otherwise

The agent is a price taker: At the end, he will pay a price p that he cannot
influence and that will possibly differ from his quotes b and a. The quotes b
and a merely determine the probability that a buy or a short-sale (henceforth
sell) occurs. A higher bid b, for instance, increases the probability to buy, as the
random price p is more likely to fall below it. Notice that the agent will always
trade whenever the bid equals the ask. The investor’s wealth at the end of the
period is W1 = W0 + (V − p) ·X.

Predictions

Denote Π∗ as the agent’s subjective set of beliefs about π, the probability for
the high-value state.
For the benchmark analysis of expected utility, assume that the agent holds a
single probability belief π, i.e. Π∗ is a singleton. Under risk-neutrality, he buys
at prices below his expected valuation, sells at prices above it, and therefore
sets a∗ = b∗ = E[V ]. A risk-averse agent, on the other hand, chooses a strictly
positive spread between bid and ask, with b∗ < E[V ] and a∗ > E[V ] (the simple
proof is in the Appendix B.2).

Optimal values of bid and ask may change when the agent perceives ambiguity
about π. That is, if he contemplates an interval of probabilities Π∗ = [πl, πh],
bid and ask quotes adjust to his ambiguity preferences. Different models of
ambiguity aversion will then predict different trading quotes. The present ar-
gumentation follows Dow and Werlang (1992a), but uses the intuitive model
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Figure 2.1: Expected payoff of a buy and a sell as a func-
tion of the price for risk-neutral EU (dashed
lines) and MEU (solid lines) agents.

(a) EU (b) MEU

Figure 2.2: Expected payoff with optimal strategy of risk-neutral (a) EU
and (b) MEU agent.

of maxmin expected utility (MEU - Gilboa and Schmeidler 1989) instead of
Choquet expected utility.
An MEU agent evaluates different actions with different probability distribu-
tions. He considers the worst possible expected outcome, which differs between
the cases where he buys and sells. A risk-neutral MEU agent buys if

p ≤ min
∀π∈[πl,πh]

E[V |π].

He sells if
p ≥ max

∀π∈[πl,πh]
E[V |π].

The expected payoff functions of ambiguity-averse buying and selling strategies
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are shifted downwards, relative to the case of expected utility (see Figure 2.1).
Due to the fact that willingness to buy and willingness to sell do not intersect at
a single strictly positive price, there is a region of prices at which zero holding of
the asset is optimal (cf. Dow and Werlang 1992a, see Figure 2.2).2 Given risk-
neutrality, models of ambiguity aversion with kinked preferences predict wider
spreads for ambiguous than for unambiguous prospects. Predictions under risk
aversion, however, depend on the preferences and can vary widely. Importantly,
for smooth ambiguity preferences like those studied in Klibanoff et al. (2005)
(henceforth KMM), the spread converges to the spread of an expected utility
maximizer when ambiguity aversion converges to neutrality. The validity of
smooth preferences is discussed in Section 2.4.3. The main objective of the
experiment is not to identify kinked from smooth preferences, but to generally
compare spreads for ambiguous and unambiguous assets. Differences in spreads
are used to test whether ambiguity leads to a premium that is, on average, larger
than the risk premium.

2.2.2 Introducing information

Consider now an environment where the agent receives an informative signal
prior to investing. The signal s ∈ {ϑL, ϑH} is binary, symmetric and correct
with probability q = P (s = ϑL|V = VL) = P (s = ϑH |V = VH). Hence-
forth, the prior and posterior beliefs are denoted with Pr(V = VH) =: µ and
Pr(V = VH |s, µ) =: ρ, respectively.

For exposition, predictions are presented for risk-neutral EU and MEU agents.
The difference in predictions holds under risk aversion as well.

Bayesian updating

A rational agent who has a single prior belief µ applies Bayes rule, then quotes
a bid and an ask b = a = E[V |s]. That is, the risk-neutral EU agent adjusts the
quotes to information, but holds a zero spread before and after information. A

2When the starting position is risky instead of riskless, the general result holds as long as the
returns of risky and ambiguous assets are negatively correlated. The possibility to hedge
the ambiguous asset with the risky one decreases the range of non-participation, but does
not fully eliminate it (Epstein and Schneider, 2010).
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risk-averse EU agent holds the same non-zero spread for the same belief value,
regardless of the belief being a prior or a posterior belief.

In contrast, if the prior is ambiguous, optimal quotes depend on the way the
agent updates ambiguous beliefs. It is still an open question how agents update
ambiguous beliefs. The literature has proposed various updating rules (see Ep-
stein and Schneider 2007, Gilboa and Schmeidler 1989; Hanany and Klibanoff
2007; Jaffray 1989; Klibanoff et al. 2009). Here we focus on two main concepts
that do not require any specific preference model. Moreover, the two paradigms
make maximum opposite predictions with respect to the spread.

Full Bayesian updating

Agents with multiple priors apply FBU when they update prior by prior to end
up with a set of posteriors. In the case where an agent considers solely the
support of prior probabilities (without having second-order beliefs over priors),
he will update the two extreme priors to two extreme posteriors. Therefore,
unless q = 1, FBU does not fully eliminate ambiguity. The choice of the rele-
vant posterior and hence the evaluation of an action depend then on ambiguity
preferences. For instance, an MEU agent with a high signal (s = ϑH) buys an
asset if

p ≤ min
µ∈[µl,µh]

E[V |s = ϑH , µ].

He therefore bids b = E[V |s = ϑH , µl]. Analogously, his ask corresponds to
a = E[V |s = ϑH , µh], with b < E[V |s = ϑH ,

µl+µh
2 ] < a.

Hence, the ambiguity-averse trader chooses a non-zero spread both before and
after the updating. Its value depends on Π∗, the set of probabilities that the
trader considers as possible.

Maximum likelihood updating

With MLU, the information received pins down the set of priors that will be
updated. The prior that has ex-ante the highest probability to generate the in-
formational event is given ex-post the highest likelihood. In our specific setting,
an agent observing a high signal (s = ϑH) assigns the highest likelihood to the
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highest prior µh. The agent therefore postulates a single posterior whenever a
single prior maximizes the likelihood of having generated the informative event.
If so, the signal completely eliminates the perception of ambiguity. The agent
adjusts his belief to one of the two extremes, depending on the signal being high
or low.

The optimal bid satisfies then:

p ≤ E[V |µ∗, s] with µ∗ = arg max
µ∈[µl,µh]

ℓ(µ|s),

where ℓ(µ) represents the likelihood of a prior. The same prior µ∗ satisfies the
likelihood in the condition for the optimal ask:

p ≥ E[V |µ∗, s] with µ∗ = arg max
µ∈[µl,µh]

ℓ(µ|s),

Hence, a risk-neutral MLU trader with (s = ϑH) and a unique posterior belief
ρ(µ∗, s = ϑh) chooses equal bid and ask b = a = E[V |µ∗, s = ϑH ].

A fundamental difference between FBU and MLU in this setting is, therefore,
that the ranking of states is determined by different factors. When an agent
applies FBU, the ranking of states depends on his ambiguity preferences and is
determined by the long or short position (Mukerji and Tallon, 2001). An agent
using MLU ranks the states according to his information.

2.2.3 Hypothesis and treatment effect

As shown in Section 2.2.1, under the assumption of risk-neutrality, ambiguity
aversion introduces a bid-ask spread. In the case of risk-averse preferences,
ambiguity aversion leads to wider spreads than the spread chosen at the mid-
probability. Furthermore, the analysis of ambiguity aversion goes beyond any
spread increase that can be explained with subjective expected utility. Con-
sider, for instance, an ambiguous set of probabilities [πl, πh] that encompasses
the probability π = .50, at which theory predicts a maximum spread with risk-
averse utility functions. If the mid-probability of the set differs from 50% (i.e.(πl+πh

2
)

̸= .50), a subjective belief of Π∗ = .50 can rationalize a wider spread
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than the spread chosen at the mid-probability. In contrast, subjective beliefs fail
to rationalize spreads that are wider than any chosen spread at every unambigu-
ous probability π ∈ [πl, πh]. In this context, the experiment targets evidence
in favor of ambiguity aversion that cannot be simultaneously rationalized by
subjective expected utility.

Hypothesis 3 Ambiguous probabilities induce wider bid-ask spreads than un-
ambiguous probabilities:

E[a− b|π ∈ [πl, πh]] > E[a− b|π], ∀ π ∈ [πl, πh]. (2.1)

Therefore, bid-ask pairs for an ambiguous set [πl, πh] that are more divergent
than bid-ask pairs chosen at any π ∈ [πl, πh], i.e. at all unambiguous probability
values in the same set, are interpreted as evidence in favor of ambiguity aversion.

If subjects are ambiguity-averse, changes in their perception of ambiguity can
translate in variation of the spread. In a second step, differences in quotes
are used to assess how gradual information processing affects the perception of
ambiguity.

The experiment is designed such that full Bayesian updaters would quote the
same bid-ask pairs for ambiguous prospects in the two treatments NL and L. In
contrast, maximum likelihood updaters would perceive substantially less ambi-
guity and choose smaller spreads in treatment L. To this effect, the comparison
across treatments focuses on rounds with identical sets of marginal and FBU
probabilities. Identical spreads in the two treatments indicate that subjects per-
ceive the same support of probabilities, which would provide evidence in favor
of FBU:

Under FBU: E[a− b|ρ ∈ [ρFBUl , ρFBUh ]] = E[a− b|π ∈ [πl, πh]]

with [ρFBUl , ρFBUh ] = [πl, πh].

However, smaller observed spreads in treatment L are more consistent with
beliefs resulting from MLU than from FBU, suggesting that subjects react more
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strongly to information and perceive less ambiguity than an FBU agent would:

Under MLU: E[a− b|ρ ∈ [ρFBUl , ρFBUh ]] < E[a− b|π ∈ [πl, πh]]

with [ρFBUl , ρFBUh ] = [πl, πh].

Thus, comparing the average spread between treatments NL and L for the same
support of marginal and FBU probabilities allows for differentiating between
FBU or MLU.

2.3 Experimental design

2.3.1 Treatment No Learning (NL)

Treatment NL consists of 20 rounds. In each round, subjects start with an
endowment of cash W0 and tender both a bid and an ask (b, a ∈ [VL, VH ],
b < a).3 At the beginning of each round, subjects receive information about the
uncertainty of the investment. At that stage, they learn whether π is ambiguous
or not. The uncertainty in the asset’s value is visualized by displaying “urn A”
that contains 100 balls in a mixture of red and blue balls. To determine the
asset value, the computer draws a ball (henceforth “value ball”) from urn A: If
a red ball is drawn, the asset takes the value VL. The asset takes the value VH ,
if the value ball is blue.
The proportion of red and blue balls in urn A varies across rounds (see Table 2.1
for the chosen parameters) and is shown to the subjects. That is, subjects learn
π for risky prospects by observing the exact number of red and blue balls in urn
A. When the distribution is ambiguous, the exact proportion of red and blue
balls is not disclosed: Instead, subjects observe a minimum number of red and
a minimum number of blue balls. The remaining balls in urn A are depicted as
grey. Thus, subjects learn an interval range for π (e.g. π ∈ [.15, .85]), but they
do not know its exact value (see Figures B1 in Appendix B.1 for examples of
urn A with unambiguous and ambiguous distributions).
To implement payoffs in ambiguous rounds, the computer chooses with equal
probability a value in [πl, πh]. Subjects, however, did not receive any information

3The submission of two separate quotes allows subjects to reflect on a buy and a sell separately,
as presumed in models with kinked preferences.
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about how the true composition of urn A is determined when π is ambiguous.
Subjects quote then bid and ask on a second, separate screen.

2.3.2 Treatment Learning (L)

Treatment L is almost identical to treatment NL, except that it contains an
interim, second stage in which subjects are given an additional signal about the
asset value.
In the first stage, subjects receive information about the prior µ. Like the
subjects in treatment NL, they observe the composition of urn A, which is
ambiguous or unambiguous, depending on the round of the experiment.
In a second stage, they receive an additional signal. They observe the color of
another ball (henceforth “signal ball") that is drawn from a second urn. The
choice of the second urn sets the correlation between the signal and the asset
value: If the value ball is red, i.e. the asset has value VL, the signal ball is drawn
from “urn L” that consists of 75 pink and 25 green balls. If the value ball is
blue, the signal is drawn from “urn H” that consists, in turn, of 75 green and 25
pink balls. Hence, the signal is correct, i.e. a pink (green) ball is drawn when
the value ball is red (blue), with a probability of 75%.
Subjects observe the color of the signal ball (pink or green), but they do not
know whether the signal ball is drawn from urn L or urn H (in other words, they
do not know whether the asset has value VL or VH). Figure B2 in Appendix B.1
depicts an example of the screen at the second stage.

2.3.3 Experimental procedures

The computerized experiment was run in the laboratory of Technical University
Berlin.4 In total, 67 and 66 students participated in treatments NL and L,
respectively. Each treatment was run with 3 sessions of ca. 22 subjects.
The trading game started once all participants read the instructions and an-
swered an understanding test correctly. After all subjects completed the trad-
ing game, control measures of general attitudes towards risk, uncertainty and
ambiguity were elicited.

4The experimental interface was programmed with the software z-tree (Fischbacher, 2007).
Participants were recruited with the ORSEE database (Greiner, 2004).

44



2.3 Experimental design

The asset can take either the value VL = 0 or VH = 100. Subjects start each
round with a cash endowment W0 = 100.

Table 2.1: Chosen values for the probability π and the
prior µ with corresponding Bayesian posterior
ρ

No Learning Learning

ρ(s = ϑL) ρ(s = ϑH)

Risk π = .05 µ = .05 ρ = .02 ρ = .14
π = .15 µ = .15 ρ = .05 ρ = .35
π = .35 µ = .35 ρ = .15 ρ = .62
π = .50 µ = .50 ρ = .25 ρ = .75
π = .65 µ = .65 ρ = .38 ρ = .85
π = .85 µ = .85 ρ = .65 ρ = .95
π = .95 µ = .95 ρ = .86 ρ = .98

TR = 7 × 2 = 14 TRI = 7 × 2 = 14

Prior Prior Posterior (with FBU)

Ambiguity π ∈ [.05; .65] ρ(s = ϑL) ∈ [.05; .65]
π ∈ [.15; .85] µ ∈ [.15; .85]
π ∈ [.35; .95] ρ(s = ϑH) ∈ [.35; .95]

TA = 3 × 2 = 6 TAI = 1 × 6 = 6

Total TNL = 20 TL = 20
Note: Subjects in treatment L are informed about the prior µ and the signal, but not

about the Bayesian posterior ρ. Posterior probabilities are rounded to two decimal places.
The parameter T denotes the number of rounds. Each parameter value occurs in two
rounds, except for the ambiguous prior in L: The 6 ambiguous rounds start with the same
set [.15, .85].

The set of possible probability values is chosen to be parsimonious to have
enough observations for the comparison between treatments. Each treatment
consists of 14 rounds with unambiguous as well as 6 rounds with ambiguous
probabilities, amounting to 20 rounds in total. The variation in the unambiguous
probabilities π and µ is identical in both treatments NL and L. The ambiguous
rounds, on the other hand, differ between the two treatments: In L, the set
of priors is fixed to [.15; .85] (see Table 2.1). There, the variation in beliefs
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comes from the signal’s value that implies either a low range for the set of FBU
posteriors(ρ(s = ϑl) ∈ [.05; .65]) or a high range ρ(s = ϑh) ∈ [.35; .95]). As
described in Subsection 2.2.3, the two set of probabilities [.05; .65] and [.35; .95]
in NL were chosen to equal the set of posterior beliefs under FBU in L. This
enables to compare bids and asks for the same dispersion in probabilities, when
information on the distribution is provided immediately or sequentially.
Within each treatment, participants made their decisions in alternating blocks
of 7 consecutive risky and 3 consecutive ambiguous rounds. Within each block,
probabilities were ordered in increasing or decreasing order for less confusion
(Vieider et al., 2015). In one out of the three sessions (per treatment), the
ordering of blocks were reversed. In addition, subjects played 4 trial rounds with
different parameter values. Two of the trial rounds had ambiguous probabilities.
Decisions were incentivized with a random incentive system. To encourage sub-
jects to consider each decision problem in isolation, the payoff-relevant round
was chosen at the beginning of the trading game (Baillon et al., 2015). For this
purpose, subjects threw a twenty-sided dice after the trial rounds, but before
playing the 20 rounds. That is, they were aware that the payoff-relevant round
was fixed during the experiment, but learned which round was chosen only at
the end of the trading game.5

Earnings consist of a show up fee (5 EUR), plus two-third of the randomly
drawn round in the trading game plus one-third of a randomly chosen task for
the elicitation of preferences. The exchange rate was 0.13 EUR per experimental
currency units (ECU). Minimum and maximum earnings were 5 EUR and 28.84
EUR, respectively. Subjects earned, on average, 19.50 EUR for approximately
100 minutes.

2.4 Results

2.4.1 Treatment NL

Decisions for risky prospects. Subjects make mostly risk-averse choices: A ma-
jority of bid-ask pairs have a non-zero spread. Since the distribution of spreads

5The instructions as well as the computer screen emphasized accordingly that hedging across
rounds makes no sense once the payoff-relevant round is determined.
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is highly right-skewed, analyses focus mainly on quantiles.6 The median spread
matches the risk of investing: It is hump-shaped in the probability, with a
maximum at a probability of 50% (see Figure 2.3a). Furthermore, the spread
is asymmetric around the probability, reflecting that increasing the bid (the
ask) becomes more (less) risky with an increasing probability (see Figure 2.3b).
Buying and selling are not equally risky as long as the low-value and high-value
states are not equally probable. When the expected value is high, bidding is
more risky than asking the expected value: A high bid entails the risk to pay
a high price for a low-value asset, whereas a high ask price limits the risk of
selling a high-value asset. The reverse holds when the expected value is low.7

Overall, subjects choose a median spread of 5 ECU.

Table 2.2: Median and mean spread for various ranges of ambiguous and
unambiguous probabilities.

π [5% − 65%] [15% − 85%] [35% − 95%] Total obs.

Median Mean Median

Risk 9 10 10 18.50(.825) 5
Amb. 20 28 20 29.23(1.464) 20

Diff. -11∗∗∗ -18∗∗∗ -10∗∗ -10.73∗∗∗ -15∗∗∗

N 804 804 804 1340

Note: Median test (and two-sample test in means): ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-
value<.01. Robust standard errors clustered at subject level (CRSE) in parentheses. The
variable Amb. represents the indicator variable for rounds with an ambiguous probability.

Decisions for ambiguous prospects. Ambiguity about the probability reduces sig-
nificantly subjects’ willingness to trade. The median bid is shifted downwards,
the median ask increases, leading to significantly wider spreads for ambiguous
prospects (see Table B3 in Appendix B.3.1). Median spreads for prospects with

6Most analyses yield even more significant results for mean values.
7Subjects are more risk-averse in buying than in selling. I thank Marina Agranov for pointing

to me that this finding is consistent with recent evidence showing that the willingness to
sell is better at reflecting market beliefs, whereas willingness to buy reflects more personal
preferences.
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Figure 2.3: Median spreads and quotes as a function of unambiguous priors.

ambiguous probabilities are four times as high as for unambiguous probabilities
(see Table 2.2). Despite the asymmetry in risk premia for long and short posi-
tions, the ambiguity premium is almost symmetric. Subjects exhibit a median
risk premium of 20% and 6.7% of the expected value in the bid and the ask,
respectively. Ambiguity adds a premium of 20 and 16.4 percentage points in
the bid and the ask (see Table B2 in Appendix B.3.1). In sum, Hypothesis 1 is
confirmed.

Result 1 Ambiguity in probabilities engenders wider spreads.

As a direct consequence of the design, subjects trade and earn less when the
return distribution is ambiguous. Subjects trade risky prospects in 82% of all
rounds. Trades fall by 14.8% (12 percentage points) when probabilities are
ambiguous. The greatest reduction of 19.3% occurs when the probability is
between 15% and 85% (see Table 2.3).

The reduction in trading activity translates into significantly smaller profits.
Subjects earn, on average, 41.98% (p=.0015, two-sample t-test) more in risky
rounds than in ambiguous rounds (See Table B1 in Appendix B.3.1).
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Table 2.3: Percentage of trades across different ranges
of probabilities

π [5% − 65%] [15% − 85%] [35% − 95%] Total obs.

Risk 80.44 79.55 79.55 81.77
(1.5) (1.6) (1.6) (1.3)

Amb. 71.89 64.17 73.88 69.65
(3.9) (4.2) (3.8) (2.3)

Diff. 9.55∗∗ 15.37∗∗∗ 5.67 12.12∗∗∗

(4.2) (4.4) (4.1) (2.6)
N 804 804 804 1340

Note: P-values of binomial test with CRSE: ∗: p-value<.1,∗∗: p-value<.05,
∗∗∗: p-value<.01.

2.4.2 Treatment L

This section describes first how information processing affects investment deci-
sions. It then compares learning with ambiguous and unambiguous priors by
fitting decision weights functions.

Ambiguity effects with gradual information processing. The general effects of
ambiguity on the spread are robust to incoming information. In the aggregate,
choices in treatment L are ambiguity-averse. Subjects choose wider spreads for
ambiguous than for risky asset distributions, with increasing difference in the
mean in the last 10 periods (see Table 2.4).

Yet, under ambiguity, subjects are not insensitive to information. Starting with
a set of priors µ ∈ [.15, .85], full Bayesian inference reduces the interval of prob-
abilities by 10 percentage points (Π∗(s = ϑl) = [.05, .65] or Π∗(s = ϑh) =
[.35, .95]), while MLU even eliminates ambiguity. The diminished ambiguity is
expressed in subjects’ quotes. The ambiguous rounds in treatment L show more
trading activity than the rounds with the same set of marginal probabilities
π ∈ [.15, .85] in NL: The average spread for ambiguous prospects is smaller by
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Table 2.4: Median and mean spread with ambiguous and unambiguous pri-
ors in Treatment L.

Rounds 1-10 11-20 1-20 .

Med. Mean Med. Mean Med. Mean

Risk 8.5 20.29(1.24) 10 18.79(1.13) 10 19.54(.84)
Amb. 19 24.38(1.85) 20 28.29(2.10) 20 26.33(1.40)

Diff. -10.5∗∗∗ -4.09∗∗ -10∗∗ -9.5∗∗∗ -10∗∗∗ -6.79∗∗∗

Note: One-sided median test and two-sample test in means: ∗: p-value<.1,∗∗: p-value<.05,
∗∗∗: p-value<.01. Standard errors in parentheses.

29% (median (mean) spread of 28 (35.10) in NL vs. 20 (26.33) in L, p=.01,
median test). Trading activity is higher by 22% (64% in NL vs. 79% in L,
p=0.011 binomial test with CRSE). Mean profits are 34% higher (6.29 ECU
more on average, p=0.088, two-sample test).

However, controlling for the range of marginal and FBU probabilities, no dif-
ference in the aggregate distribution of spreads is observable (p-value=.92 in
Kolmogorov-Smirnov test, see Figures B5a and B5b in the Appendix B.3.2).
Comparing rounds where marginal probabilities (π) and FBU posteriors (ρ) lie
in the same interval [.05; .65] discloses a small difference in the spread: Par-
ticipants in NL choose a median spread of 20, whereas the median spread in
L equals 15. This non-significant difference carries even less weight in the ag-
gregate since the two treatment groups choose identical median spreads of 20
when both π and ρ(s = ϑh) ∈ [.35; .95]. Apparently, subjects do not perceive
substantially less ambiguity when the same information is released gradually.

Result 2 Given the same range of marginal and FBU posterior probabilities,
the aggregate distribution of spreads with ambiguous posterior beliefs does not
differ from the one with ambiguous marginal beliefs.

Therefore, data do not lend support to MLU theory. Yet, data are not com-
pletely consistent with FBU theory either: Subjects react differently to ambi-
guity in final probabilities than to ambiguity in posteriors. Although spreads
are, in the aggregate, constant, chosen bids and asks are more extreme after
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information. Participants in treatment NL choose a median bid and ask of 17.5
and 50 when π ∈ [.05; .65]. Participants in treatment L, however, choose a me-
dian bid and ask of 10 and 40 for an FBU posterior ρ ∈ [.05; .65] (significant
differences at 5% level each). Analogously, the median bid and ask is 40 and
70.5 in the rounds where π ∈ [.35; .95], but 50 and 81 in the rounds with a set
of FBU posteriors ρ ∈ [.35; .95] (significant differences at 1% level each). To
examine the extent to which these quotes are compatible with either updating
rule, we next consider subjects’ probabilistic sophistication.

Analysis of quotes

Updating unambiguous priors. The probabilistic sophistication is analyzed with
the decisions for risky prospects. First, the risky rounds in NL are used to es-
tablish a pattern between decisions and objective probabilities. Subjects should
react in the same way to probabilities, regardless of probabilities being given or
updated. Second, assuming that this pattern is stable - even if information is
released gradually -, this pattern serves as benchmark to discuss the validity of
Bayesian posterior probabilities.
The underlying regression model assesses the extent to which the bid and the
ask follow the asset’s expected value. Beliefs are estimated with nonlinear least
squares in a seemingly unrelated regression with robust standard errors (NNLS-
SUR):

⎧⎨⎩ bi = (1 −RPb) · E[V |τ̃ ] + ϵi,b

ai = (1 +RPs) · E[V |τ̃ ] + ϵi,s
(2.2)

where E[V |τ̃ ] = VH · τ̃ .

It is therefore assumed that bids and asks both follow the subject’s expecta-
tion about the fundamental value, but potentially in a distorted way. Because
subjects in treatment NL are more risk-averse in buying than in selling, the
risk premium in selling RPs is allowed to differ from the risk premium in buy-
ing RPb. The subject’s expectation is a function of his belief τ̃ , which does
not necessarily equal the objective probability. The mapping between objec-
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tive probabilities and beliefs is represented with a weighted probability function
proposed by Prelec (1998):

τ̃i = e(−β(− ln τ)α)

The subject’s belief τ̃ is a weighted function of the objective probability τ . In
treatment NL, τ = π, whereas in treatment L, the objective probability is as-
sumed to be the Bayesian posterior τ = ρ.8 The coefficient α regulates the
curvature of the function. The parameter β determines the inflection point of
the curve.

Table 2.5: Coefficient estimates for probability weighting
function and risk premia

NL L

β 0.7971 (.0576) 0.7940 (.0424)
α 0.6861 (.0612) 0.7411 (.0722)

RPs 0.0110 (.0316) 0.0272 (.0326)
RPb 0.2583 (.0366) .2420 (.0280)

Note: Nonlinear least squares estimation with
CRSE. Estimates are not significantly different.

The probability weighting function is in general inverse s-shaped, reflecting a
general over-weighting of small and under-weighting of high probabilities. The
functions do not differ between the two treatments. That is, subjects react to un-
ambiguous, given probabilities in the same way as to unambiguous Bayesian pos-
teriors. Assuming a stable relation between decisions and probabilities, Bayesian
inference cannot be rejected.

Updating ambiguous priors. Analogous to the analysis of risky decisions, I use
the data in treatment NL to establish a pattern between decisions and ambigu-

8An alternative definition of Bayesian inference is that subjects apply Bayes’ rule to the
weighted priors. As I compare subjects’ reaction to objective probabilities, I use the defi-
nition of Bayesian updating that is closest to the objective probabilities.
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Figure 2.4: Estimated probability weighting
function for unambiguous probabil-
ities in NL & L.

ous priors. Assuming that the pattern does not change when information is
released gradually, this pattern is used to discuss the validity of FBU and MLU
posteriors.
The probability weighting function has single probability values as an argument.
Ambiguous distributions, however, are characterized by intervals of probabili-
ties. I approximate the estimates of the weighting function by using the midpoint
of the set of probabilities. In treatment NL, the set corresponds to the ambigu-
ous set of priors [πl, πh]. In treatment L, the set equals the set of posteriors that
varies with the updating rule. The midpoints of the set of FBU posteriors are
less extreme than the midpoints of the set of MLU posteriors, which here is a
singleton.
The solid line in Figures 2.5a and 2.5b depicts the relation between subjects’ es-
timated beliefs and ambiguous probabilities in NL. This inverse s-shape relation
serves as benchmark for the relation between estimated beliefs and ambiguous
posterior probabilities in L. The dashed line in Figure 2.5a represents the model
fit with FBU posteriors. Estimated beliefs are slightly s-shaped in FBU pos-
teriors, rather than inverse s-shaped. The discrepancy between the benchmark
(solid line) and the fit with FBU posteriors (dashed line) points out that deci-
sion weights with FBU posteriors are too extreme. That is, trading decisions
are too extreme to be explained by the range of beliefs under FBU.
The dashed line in Figure 2.5b depicts the model fit with MLU posteriors. The
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weighting function is inverse s-shaped, but deviates from the benchmark (solid
line) as well. Given MLU probabilities, estimated beliefs are not sufficiently
extreme to match the benchmark. Trading decisions are too close to the belief
of 50% to be explained by extreme MLU posteriors. Section B.3.2 in the Ap-
pendix displays the estimates of the NNLS-SUR with ambiguous probabilities
and the results of a Lagrange-Multiplier test, which shows a significant differ-
ence between the benchmark model and the model fit under both FBU and
MLU probabilities.
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(a) Assuming FBU in L.
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(b) Assuming MLU in L.

Figure 2.5: Estimated probability weighting function for ambiguous probabilities in
NL & L.

In a nutshell, quotes based on ambiguous posteriors are not extreme enough to
be explained by MLU beliefs, but too extreme to be explained by FBU beliefs.

Heterogeneous updating rules

Heterogeneity in updating behavior partly accounts for the bad fit of FBU and
MLU models. To illustrate the heterogeneity in quotes, the midpoints of bid
and ask pairs (henceforth mid-quotes) are depicted in Figure 2.6. The top
two panels 2.6a & 2.6b show the distribution of mid-quotes for the ambiguous
probabilities π ∈ [.05, .65] and π ∈ [.35; .95], respectively. Without incoming
information, mid-quotes are distributed symmetrically around the midpoint of
the set of probabilities. The distributions differ clearly in the bottom two panels
2.6c & 2.6d, that show mid-quotes for the same intervals of FBU posteriors
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(i.e. ρ ∈ [.05, .65] and ρ ∈ [.35; .95]). Mid-quotes are clustered at 3 mass points
({0−5; 20−25; 45−50}, {50−55; 70−75; 95−100}) suggesting 3 main updating
methods.
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Figure 2.6: Mid-quotes for π or ρ ∈ [.05, .65] (left) and π or ρ ∈ [.35, .95] (right).
Treatment NL in top panels, L in bottom panels.

The cluster analysis in Appendix B.3.3 illustrates how trading decisions differ.
In sum, a substantial share of quotes (25.75%) match highly ambiguity-averse
trading behavior, that favors non-participation. These subjects center their bids
and asks around the mid-prior 50 and choose wide spreads. Another substantial
share (21.72%) is consistent with MLU: They choose extreme quotes and mini-
mal spreads. The majority of trading decisions (42.17%) is consistent with less
extreme Bayesian quotes. However, these Bayesian quotes do not reflect FBU
posteriors. Under FBU, participants in treatment NL and L should consider
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the same support of probabilities and therefore make similar trading decisions.
Bid-ask pairs in treatment L should resemble the ones in NL and should be sim-
ilarly centered around the midpoints of the sets of probabilities, which are here
{35, 65}. However, the bid-ask quotes based on incoming information encompass
beliefs that are more extreme than the ones in treatment NL. Controlling for the
range in marginal and FBU probabilities, 36.19% of bid-ask pairs in treatment
NL encompass the value 50 versus 29.54% in treatment L (p-value=0.07 in bi-
nomial test). Table B6 in Appendix B.3.3 shows that the same cluster analysis
in treatment NL provides ranges of bid-ask pairs that are less extreme, with
observations that are distributed more evenly across the clusters.
Chosen quotes can be rationalized with the updating of the prior π = .5, the
midpoint of the set of priors. Indeed, the Bayesian posterior ρ(s, π = .5) fits
the relation between trading decisions and probabilities (see Figure 2.7): The
probability weighting functions with marginal and posterior probabilities do
not differ, when posterior probabilities correspond to Bayesian updates of the
midpoint of ambiguous priors.9

In a nutshell, generally subjects are ambiguity-averse, even after receiving infor-
mation about ambiguous priors. Learning does not impact the spread, but in-
duces different and more heterogeneous quotes. Furthermore, Bayesian updates
of the mid-prior describe aggregate quotes better than FBU or MLU posteriors.
These results point out the relevance of conditional smooth preferences. The
next section outlines to what extent Bayesian smooth preferences explain data.

2.4.3 Conditional smooth preferences

This section shows that chosen quotes in the two treatments are consistent
with second-order preferences over probabilities. In a first step, I show that
ambiguity-averse, but midpoint-preserving recursive preferences generate a bid-

9Since the conditional probability for a correct signal is q = .75, the mass points around
25 and 75 suggest base-rate neglect as a possible explanation. However, base-rate neglect
is unlikely to cause this pattern. Base-rate neglect should become apparent in decisions
regarding both ambiguous and unambiguous return distributions. Yet, subjects - even those
who fall in this specific cluster of Bayesian updaters - adjust their quotes to the prior in
risky rounds. Figure B6 in Appendix B.3.2 shows how mid-quotes increase in the prior for
the different signal values. Bids and asks are not heavily centered around 25 or 75.
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Figure 2.7: Estimated probability weighting
function for ambiguous probabili-
ties in NL & L assuming BU of mid-
prior in L.

ask spread around the midpoint of possible priors. In a second step, I show that
quotes match Bayesian updates of recursive preferences.

Following the model of smooth preferences in Klibanoff et al. (2005), a strictly in-
creasing and concave function φ(·) is used to represent ambiguity-averse second-
order preferences. The agent’s value function is assumed to take the double
expectational form: ∫ πh

πl

φ
(
EπU(·)

)
ψ(π)dπ (2.3)

where ψ(π) represents the subjective probability over the set of priors [πl;πh].
The operator Eπ computes the expected value with respect to a specific Bernoulli
distribution f(π) with success probability π.

Like in standard expected utility models, attitudes towards risk are captured
by the concavity of a von Neumann-Morgenstern utility function U(·). In addi-
tion, attitudes towards ambiguity are captured separately by the function φ(·).
Agents assign subjective second-order beliefs ψ(π) to some probability distri-
bution π. In their decision-making, they evaluate subjective expectations over
expected utilities. Ambiguity aversion corresponds to a dislike of spreads around
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the mean expected utility and is reflected by the concavity of the function φ(·).
The following analysis assumes that subjects have second-order beliefs, whose
mean corresponds to the midpoint in the range of priors. This assumption is in
line with the principle of insufficient reasons, under which agents assign equal
probabilities to mutually exclusive events if they have no explicit reason to do
differently.10

I first show that ambiguity-averse second-order preferences generate a bid-ask
spread. The optimal bid for going long is the certainty equivalent that satisfies:∫ πh

πl

φ
(
EπU(W0 + V − b)

)
ψ(π)dπ = φ(U(W0)) (2.4)

Denote
∫ πh
πl

(·)ψ(π)dπ =: Eψ(·). By Jensen’s inequality:

Eψφ(EπU(W0 + V − b)) <φ(EψEπU(W0 + V − b)) (2.5)

Under mean-preserving second-order beliefs, the subjective probability functions
ψ(π) satisfies

∫ πh
πl
πψ(π)dπ = Eψ(π) = π̄, where π̄ represents the midpoint of

priors. The RHS in Equation (2.5) equals then:

φ(EψEπU(W0 + V − b)) = φ(Eπ̄U(W0 + V − b)) (2.6)

Consider an agent who bids for a risky asset with Bernoulli distribution f(π̄).
The optimal bid makes the agent indifferent between buying the asset and keep-
ing the endowment. It satisfies :

φ(Eπ̄U(W0 + V − bR) = φ(U(W0)). (2.7)

From equations (2.4), (2.5) and (2.7) it follows that:

φ(Eπ̄U(W0 + V − bR) < φ(Eπ̄U(W0 + V − b)). (2.8)

Because φ(·) is strictly increasing, U(·) strictly concave, the optimal bid under
ambiguity aversion is smaller than the optimal bid under risk, bAA < bR. Analo-
gously, aAA > aR. Ambiguity-averse smooth preferences produce wider spreads

10Henceforth, the notion "mean-preserving" refers to "midpoint-preserving" in this context.
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than the spread under risk. With mean-preserving second-order beliefs, bid and
ask quotes converge to the expected value under risk with decreasing ambiguity
and risk aversion.

Incoming information alters the optimization problem at two points. First,
expected utility is computed with posterior probabilities ρ(s, µ) instead of given
probabilities π. Second, the incoming information affects directly second-order
beliefs ψ(s, µ) by shifting more weight to more likely probability values (Epstein
and Schneider, 2007; Klibanoff et al., 2009). With standard Bayesian updating:

ψ(s, µ) = ψ(µ)f(s, µ)∫ µh
µl
ψ(µ̃)f(s, µ̃)dµ̃

where

f(s, µ) =

⎧⎨⎩qµ+ (1 − q)(1 − µ) if s = ϑh

(1 − q)µ+ q(1 − µ) if s = ϑl

The function f(s, µ) is the probability of receiving signal s given a prior Bernoulli
distribution with success probability µ. In particular, because ψ(s, µ) ̸= ψ(µ):

Eψ(s=ϑl,µ)φ
(
E{s=ϑl,µ}U(·)

)
< Eψ(µ)φ

(
E{s=ϑl,µ}U(·)

)
(2.9)

Eψ(s=ϑh,µ)φ
(
E{s=ϑh,µ}U(·)

)
> Eψ(µ)φ

(
E{s=ϑh,µ}U(·)

)
(2.10)

Therefore, bCSP,{s=ϑl} < bSP{s=ϑl}: With conditional smooth preferences (CSP), second-
order beliefs over priors that are updated upon the signal (s = ϑl) induce a bid
bCSP that is lower than the optimal bid obtained with the same second-order
beliefs over marginal probabilities. Analogously, bCSP,{s=ϑh} > bSP{s=ϑh}. Thus, con-
ditional smooth preferences generate more extreme beliefs than marginal smooth
preferences if traders have mean-preserving second-order beliefs. Consequently,
gradual information release induces more extreme quotes compared to an envi-
ronment where information is released all at once. Figures 2.8a and 2.8b display
second-order beliefs with and without learning for the same support of probabil-
ities. The dashed line depicts a uniform density over probabilities, which can be
interpreted as subjects’ uniform second-order beliefs over marginal probabilities
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(applicable to treatment NL). The solid lines represent second-order beliefs over
posteriors after Bayesian updating of uniform second-order beliefs over priors
(applicable to treatment L). With smooth preferences, final expectations are
more extreme if information is learned progressively.

(a) π, ρ ∈ [.05, .65] (b) π, ρ ∈ [.35, .95]

Figure 2.8: Marginal and Bayesian second-order beliefs for a low (a) and a high (b)
support of probabilities.

In addition, it can be shown that under the assumption of mean-preserving
spreads: bCSP < bR. The risk-neutral agent quotes: bRN = aRN = E(V |s, µ̄),
where µ̄ = E[µ]. With decreasing ambiguity and risk aversion: bCSP −→
E(V |s, µ = E[µ]). Analogously, aCSP > aR and aCSP −→ E(V |s, µ = E[µ])
with decreasing ambiguity and risk aversion.

With the principle of insufficient reasons, for instance, the mean prior belief
corresponds to E[µ] = .5 for µ ∈ [.15, .85]. Bids and asks would be centered
around E[V |s, µ = .5], i.e. E[V |s = ϑl, µ = .5] = 25 after a low signal and
E[V |s = ϑh, µ = .5] = 75 after a high signal. In this context, Bayesian up-
dating of second-order preferences can explain why quotes are more extreme in
treatment L than in NL for the same support of probabilities.

2.5 Conclusion

The evidence of ambiguity aversion found so far in Ellsberg-type experiments
extends to other frameworks. The experiment shows that, in cases where port-
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folio reallocation is limited, ambiguity impedes willingness to trade - with and
without sequential information processing. These results confirm the intuition
that investors appear to consider ambiguous assets as more risky (Sarin and
Weber, 1993; Epstein and Wang, 1994).

A second main insight of the experiment is that ambiguity effects cannot be
disentangled from the information condition. The same degree of ambiguity
leads to different trading decisions, depending on how many pieces of information
have been available so far. Despite the same willingness to trade, investors
choose more extreme quotes when they receive information in pieces.

In addition, incoming information introduces more heterogeneity in trading be-
havior. A substantial share of agents is insensitive to additional information,
another non-negligible share adopts extreme beliefs, and the majority of agents
appears to update second-order preferences in a Bayesian way.

The heterogeneity in information processing advises caution on the general con-
clusion in Baillon et al. (2013) "[...] that pessimism is a stable trait of decision
makers, not affected much by information received." Indeed, the aggregate dis-
tribution of spreads remains stable when information is released sequentially.
However, the heterogeneity in updating rules shows that the stability of ambi-
guity attitudes may not hold for everyone. This is in line with Bossaerts et al.
(2010), who argue that heterogeneity has important implications for markets,
which are, therefore, not best described by a representative agent. Heterogeneity
in updating behavior, though, probably impacts markets differently than het-
erogeneity in ambiguity attitudes. For instance, heterogeneity in trades might
be amplified if specific traders are more prone to use specific updating rules.
This raises the question of whether the updating rule is inherently influenced
by ambiguity preferences. If highly ambiguity-averse subjects are insensitive to
information and less ambiguity-averse subjects are instead more prone to apply
MLU, gradual information flow may reinforce disparities in ambiguity prefer-
ences. In particular, asset pricing would be determined by extreme updaters, if
those who update cautiously refrain from trading.

Other important questions remain to be clarified in future research. First, ambi-
guity effects possibly differ in markets. There is a difference between individual
willingness to trade and its counterpart in markets, e.g. liquidity or market
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depth. The risk of adverse selection may incite investors to avoid ambiguous
markets even more. Alternatively, trade may possibly be driven by one’s knowl-
edge relative to other market participants (Zeckhauser 2006, cf. competence
hypothesis in Heath and Tversky 1991). To be willing to trade, it might be
sufficient to be not at informational disadvantage compared to other traders.
Furthermore, the interaction between investors might eliminate any perception
of ambiguity, especially if markets are dominated by aggressive traders. The
findings in Sarin and Weber (1993), though, indicate that ambiguity effects are
robust to market feedback. Yet, the extent to which information aggregation
abates ambiguity effects is still not clear.
Second, the observed divergence in beliefs casts doubts on the hypothesis that
trading volume falls with ambiguity. Even if ambiguity weakens individual will-
ingness to trade, beliefs resulting from learning might be so divergent that dif-
ferent trading parties agree on speculative trade.
Third, updating behavior may vary with the type of information. Information in
itself can be ambiguous. Extreme updating possibly disappears when the preci-
sion of signals is not known. The reactions to information matters in particular,
if the decision to acquire information is endogenous. A correlation between
willingness to pay for information under ambiguity and a subject’s ambiguity
preferences might abate or reinforce ambiguity effects.
In sum, it is important to identify conditions under which ambiguity effects
are self-enforcing. A faster resolution of ambiguity and a concomitant increase
in liquidity benefit not only trading venues through higher profits, but also
investors through lower transaction costs and, potentially, higher price efficiency.
This study draws the attention to frequent information release as a mechanism
to avoid or correct frictions in trades.
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3.1 Introduction

Decisions under risk are characterized by heterogeneity. Heterogeneity in de-
cisions might be driven by random errors in decision-making, by variation in
preferences, or variation in beliefs. There is robust evidence of heterogeneity
in preferences, in particular with respect to risk (Bruhin et al., 2010; Conte
et al., 2011). In addition, agents hold different beliefs because of information
asymmetry. But even in markets with symmetric information, beliefs may differ
once agents process incoming information. Differences in updating behavior are
documented, for instance, in Grether (1980, 1992), and El-Gamal and Grether
(1995).
While random errors are likely to cancel out in aggregate outcomes, heteroge-
neous preferences or beliefs are shown to impact equilibria in some markets.
Chapman and Polkovnichenko (2009), for instance, demonstrate how hetero-
geneous preferences affect risk premia and risk-free rate when agents depart
from expected utility. Haltiwanger and Waldman (1985, 1989) show that, under
strategic complementarities, heterogeneous abilities to process information alter
equilibrium outcomes. More generally, market equilibria are often derived with
representative agents. The degree of heterogeneity, though, might determine
whether and how quickly markets converge to these defined equilibria.
Rather than focusing on the consequences, the present paper examines the ori-
gins of heterogeneity. To this end, I estimate the importance of preferences in
decision-making and study the interaction between preferences and belief for-
mation. Depending to what extent belief formation correlates with preferences,
markets that require belief revision might exhibit more or less variance in deci-
sions.
To the best of my knowledge, no previous study addresses the question of a sys-
tematic link between preferences and belief updating. One of the reasons is that
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expected utility theory (EUT), the main paradigm in economic theory, assumes
separability of utilities and probabilities. Yet, a large body of experimental ev-
idence proves this assumption wrong.1 Allais (1953), for instance, points to the
common ratio effect, in which a downward scaling in probabilities often reverses
choices. Moreover, the experimental literature on risk attitudes robustly doc-
uments this fourfold-pattern: Subjects are, on average, risk-seeking for small
(large) but risk-averse for large (small) probabilities in the gain (loss) domain.
Such systematic violations of EUT have prompted the development of several
non-expected utility theories that model an alternative weighting of the valua-
tion of outcomes (e.g. disappointment aversion, Bell 1985; Loomes and Sugden
1986), probabilities (e.g. subjective expected utility (SEU), see Fishburn 1981
and references therein), rank-dependent utility (RDU, Quiggin 1982), or both
(e.g. prospect theory, Kahneman and Tversky 1979).
Using the experiment described in Chapter two (cf. Ngangoue 2016), I find
supportive evidence of an interaction between risk preferences and belief revi-
sion. To arrive at this conclusion, I first estimate the correlation between risk
preferences and investment decisions in the case where decision-makers (DMs)
know the final distribution of states of nature and then investigate whether the
effect is strengthened or dampened when belief updating comes into play.
An ubiquitous problem with elicited preferences is that their variance is driven
to a substantial part by measurement error (e.g. 30-40% in the data analysis
of Gillen et al. 2015). After correcting for measurement error with simulation
extrapolation (Cook and Stefanski, 1994; Devanarayan and Stefanski, 2002), the
weight of risk attitudes in investment decisions not only deviates from the the-
oretical benchmark, but also differs across the information condition. Without
learning, an increase in risk aversion induces a moderate increase in spreads.
Upon belief revision, in contrast, spreads react more to increased aversion. The
substantial change in estimates casts doubts on the independence assumption
between risk preferences and updating behavior.
Motivated by this observation, I test whether belief revision deviates from Bayes
rule for different types of risk attitudes. While decisions of risk-seeking and risk-
neutral subjects conform with Bayesian inference, risk-averse subjects display

1See Kahneman and Tversky (1979); Loomes and Sugden (1983, 1987); Starmer and Sugden
(1989); Battalio et al. (1990); Conlisk (1989), inter alia.

64



3.2 Data

more conservatism in their decisions. In this experiment, differences in prefer-
ences determine the variance in decisions, not only directly but also indirectly
through belief revision. Further inquiries are needed, but neglecting this in-
teraction may result in underestimating the importance of risk preferences for
decision-making with learning dynamics.
The following section describes the data, which consists of investment decisions
and elicited risk preferences. Section 3.3 defines the decision model and the
hypothesis to be tested. Section 3.4 presents results, followed by a test on inde-
pendence between learning abilities and risk preferences in Section 3.5. Section
3.6 concludes.

3.2 Data

The analysis is conducted with the individual decision-making experiment de-
scribed in Chapter two (Ngangoue, 2016). The computerized experiment con-
sisted of two treatments, called “No Learning” and “Learning,” each containing
two parts. In Part 1, subjects made several investment decisions. After all sub-
jects had completed Part 1, their risk preferences (among other measures) were
elicited in Part 2. Treatment “No Learning” had 67 participants, while a dif-
ferent pool of 66 subjects participated in treatment “Learning.” The difference
between the two treatments is explained in the following description of Part 1.

3.2.1 Investment decisions

In Part 1, subjects have the possibility to invest in a risky asset. The asset
value, θ ∈ {0, 1}, follows a Bernoulli distribution with success probability π,
B(π).2 Before making any decision, subjects receive information about the
Bernoulli distribution. In the treatment “No Learning” (NL), they learn the
final success probability π = Pr(θ = 1). In the treatment “Learning” (L),
subjects first learn a prior probability µ and then receive an additional binary
signal s ∈ {0, 1}. The signal’s precision is symmetric and given by the inverse

2For simplicity, the experimental design and the following analysis are described with nor-
malized values between 0 and 1. The actual experiment was conducted with parameters
between 0 and 100, which, in turn, make the current analysis cumbersome without provid-
ing any further insights.
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3 Preference-dependent learning

of q = Pr(s = θ|θ) = 0.75.
Subjects in both treatments submit a bid and an ask quote, {b, a} ∈ [0, 1]. A
random price p ∈ [0, 1] determines subsequently whether a buy, a sell, or no
trade occurs. A subject buys one share if the asset price falls below her bid,
but short-sells it if the price exceeds her ask. No trade occurs if a subject states
a spread between bid and ask, within which the price realizes. The variable X
summarizes subject’s demand:

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1 if p ≤ b

0 if b < p < a

−1 if p ≥ a

(3.1)

Under expected utility maximization, risk-neutral DMs set b = a = E(θ) (cf.
Ngangoue 2016). Quotes of risk-averse DMs, however, include a risk premium
Γ(π), leading to b = E(θ) − Γ(π) < E(θ) and a = E(θ) + Γ(1 − π) > E(θ).
In each treatment, the investment task is repeated across 14 independent rounds
with varying Bernoulli probabilities π or µ ∈ [0.05, 0.95].3 Subjects begin each
round with a cash endowment W0 of 1 currency unit. Figures C1a and C1b in
Appendix C.1 show the distribution of chosen spreads in each treatment.

3.2.2 Risk preferences

Risk preferences are elicited with a multiple price list task akin to Abdellaoui
et al. (2011) and Gillen et al. (2015). In two replicate measurements, subjects
face a list of pairwise choices between a sure payoff and a lottery. Define the
lottery (x, π; 0) as the chance to win prize x with probability π, and win nothing
else. The lotteries in the first and second measurement correspond to (100, 0.5; 0)
and (150, 0.5; 0), respectively. The lottery is illustrated on the left side of the
computer interface, where subjects see an urn with 10 (15) yellow and 10 (15)
black balls in the first (second) measurement. The lottery pays out if a black
ball is drawn. The right side of the interface shows a list of sure payoffs in [0;x],
with increments of 5 ECU per row. Subjects must then, for each row, make a

3The exact probabilities are as follows: {0.05; 0.15; 0.35; 0.5; 0.65; 0.85; 0.95}. Every probabil-
ity value is used twice. This procedure leads to posterior probabilities between [0.02; 0.98]
in treatment L (see Table 2.1 in Chapter 2).
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pairwise choice between the lottery and the sure payoff. Monotonicity is enforced
as subjects can only switch once from preferring the lottery to preferring a sure
payoff. Figure C2 in Appendix C.1 depicts the computer interface for the first
measurement with lottery (100, 0.5; 0). Feedback on payoff was provided only
after completion of Part 2.

The certainty equivalent (CE) is the lowest sure payoff that the DM prefers to
the lottery. Figure C3 in Appendix C.1 depicts the distribution of relative risk
premia (RPP = E(x)−CE

E(x) ), averaged across both measurements. On average,
57.9% of all subjects choose a positive risk premium, exhibiting thereby risk
aversion.

The decision-model described in Section 3.3 assumes constant relative risk aver-
sion (CRRA). For consistency, imputed CRRA coefficients γ serve as a measure
of risk aversion and are obtained by solving the equation U(CE) = EU(Lottery)
with U(z) = z1−γ

1−γ (see summary statistics in Table 3.1). The relevant range of
CRRA coefficients is given by the CE in two rows: the last row for which the
DM prefers the lottery and the first row for which she prefers the sure payoff.
For instance, if she plays the lottery up to a sure payoff of 40 ECU and then
prefers a sure payoff of at least 45 ECU, the relevant range of her risk attitude is
given by imputed coefficients with a CE of 40 and 45 ECU. Following standard
procedures, the analysis is then conducted with the arithmetic mean of the two
imputed CRRA coeffcients (e.g. Habib et al. 2017).

Dealing with inconsistent responses. Subjects who always prefer the lottery or
the sure payoff are excluded from the analysis. Choosing the safe or the risky
option for all rows could be rationalized by pure indifference or erroneous rea-
soning, but is unlikely to be an indicator of extreme preferences. This procedure
leads to the exclusion of 3 subjects in treatment L. Furthermore, I assume that
single extreme choices of no switching - more present in the first measure - stem
from mistakes or curiosity. To limit their bias on the arithmetic mean, I replace
6 and 2 of these observations in NL and L by their duplicates.

Subjects in treatment L display less risk-aversion than the ones in treatment
NL (see Table 3.1). At this point, however, it is not possible to discern whether
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3 Preference-dependent learning

Table 3.1: Summary statistics of imputed CRRA coefficients

NL & L NL L

Median γ 0.0556 0.1296 -0.0172
% averse 55.38 62.69 47.62

Mean | γ > 0 0.3225 0.3155 0.3325
Median | γ > 0 0.3171 0.3014 0.3380
St. Dev. 0.21 0.19 0.24

N 130 67 63

Note: Inconsistent responses are excluded. Statis-
tics correspond to mean values of the two replicate
measures. Medians between the treatments differ at
marginal significance (p=0.05 for overall medians in
non-parametric median test), but do not differ when
conditioning on positive values (p=0.811 in median
test).

this difference is due to random difference in sampling or whether preference
elicitation is directly affected by Part 1 of the experiment. Conditional on risk
aversion (i.e. γ > 0) though, treatments do not significantly differ (p=0.811 in
non-parametric median test).

Eliciting preferences in two replicate tasks has one main advantage. It enables
to assess how much of the variance in responses is driven by random errors. For
a crude assessment of the error size, assume that the individual coefficient γi
follows a distribution with mean E[γi] = γ and variance V ar[γi] = σ2

γ . Fur-
thermore, assume that the replicate measures are error-contaminated variables
of the true risk aversion parameter γi: γ̃ij = γi + σiuij , with E[γ̃ij ] = γi,
V ar[γ̃ij ] = σ2

γ + σ2
i , E[uij ] = 0 and E[uiluik] = 0 for l ̸= k. The correla-

tion between replicate responses can be used to estimate the importance of
measurement error σu in elicited preferences. In the case of homoscedasticity
(σ2
i = σ2

u ,∀i), the correlation coefficient is given by τ = Corr(γ̃i1, γ̃i2) = σ2
γ

σ2
γ+σ2

u
.

Rearranging the equation provides an estimate for the proportion of the error
variance relative to the variance in preferences: σ2

u = 1−τ
τ σ2

γ . In the experiment,
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the low correlation between the replicate measures (τ = 0.66) discloses substan-
tial choice switching across tasks.45 In other words, the measurement error σ2

u

accounts for a third of the variance in elicited preferences (σ2
u ≈ 1

2σ
2
γ , implying

V ar[γ̃ij ] ≈ 3
2σ

2
γ = 3σ2

u).6 This within-subject variance highlights the necessity
to correct for measurement error.

It needs to be emphasized that the two risk measures are an indication for risk
preferences, but have serious limitations (Fehr-Duda and Epper, 2012). Due
to time constraints and an interest of keeping instructions as simple as possi-
ble, risk preferences were elicited using prospects with single non-zero outcomes
and a fixed probability of 50%. Consequently, nothing can be inferred about
individual, non-linear probability weights. The individual utility curvature is
also not assessable, unless a functional form for utils is imposed. Nevertheless,
these limitations hold for both treatments and are unlikely to account for major
differences between them.

Payoffs were determined with a random incentive system at the beginning of
Parts 1 and 2 (Baillon et al., 2015). That is, at the beginning of each part, a
round or task was randomly drawn for payoff. The exchange rate was 0.13 EUR
per ECU.7 Subjects’ earnings were between 5 and 28.84 EUR, with an average
of 19.50 EUR for approximately 100 minutes.

4Pearson’s correlation coefficients τ in the total sample, treatment NL, and treatment L
correspond to 0.66, 0.502, and 0.84, respectively.

5Similar fluctuations in choices are observed in various experimental studies (Mosteller and
Nogee, 1951; Hey, 2001; Camerer, 1989; Hey and Orme, 1994; Starmer and Sugden, 1989;
Ballinger and Wilcox, 1997; Loomes and Sugden, 1998). Choices are also found to be
sensitive to the elicitation procedure (Andersen et al., 2006; Lévy-Garboua et al., 2012).
Some errors in the present experiment are likely to come from the fact that preferences
were elicited after the investment task, where subjects’ attention might not have been as
high anymore.

6The relative sizes of the error variance, 1−τ
τ

, in the total sample, treatment NL, and treat-
ment L equal 0.53, 0.99, and 0.19, respectively.

7The exchange rate is defined for the original parameters of the experiment, which, here, have
been normalized to [0, 1] in the description of Part 1.
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3 Preference-dependent learning

3.3 Decision model under EUT

3.3.1 Theoretical model

The analysis is based upon a decision model that postulates a relation between
chosen spreads in the investment task and the risk aversion measure γ. Using
the Arrow-Pratt approximation, the optimal bid and ask is approximated by:

b∗ = π − 1
2 A(W0) · Vθ (3.2)

a∗ = π + 1
2 A(W0) · Vθ (3.3)

whereA(W0) denotes the Arrow-Pratt measure of absolute risk aversion at initial
wealth W0 (the derivation can be found in Appendix C.2).8 The term Vθ =
π(1 − π) corresponds to the variance of the asset value when the DM holds
belief π. For the class of utility functions with coefficient of constant relative
risk aversion γ, the optimal spread is approximated (for small γ) by:

a∗ − b∗ = max(0,m(γ, Vθ)) (3.4)

with m(γ, Vθ) = γ Vθ

The optimal spread is the investment risk, Vθ, weighted by the DM’s risk attitude
γ. Equation (3.4) illustrates in particular the separability between probability
and risk preferences under EUT: The coefficient of CRRA, γ, captures the cur-
vature in the utility function, while the risk of the investment, Vθ, only depends
on probability beliefs.

3.3.2 Econometric model

Decision model (3.4) provides the structural model for estimating the weight of
the two relevant factors in subjects’ decisions: risk preferences and investment
risk. To this end, a non-linear two-limit Tobit regression is used to estimate the

8The optimal bid and ask do not lie exactly symmetric around belief π, but for |γ| → 0, the
Arrow-Pratt approximation converges toward the optimal quotes. Here, for the majority
of risk-averse subjects with γ ≤ 0.5, the Arrow-Pratt approximation deviates from the
optimal spread by less than 0.0001 ECU.
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following latent variable model for the observed spread yi:

yi = ai − bi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if yi

∗ ≥ 1

yi
∗ if yi

∗ < yi
∗ < 1

0 if yi
∗ ≤ yi

∗

(3.5)

where y∗
i = em(γ,Vθ)+ϵi = eβ0+ γ

β1
i Vθ

β2 +ϵi , yi∗ = em(0,Vθ) and ϵi ∼ N(0, σϵ).

The latent decision variable y∗
i is a function of m(γ, Vθ) and some disturbance ϵi.

In the econometric analysis, the function m(·) takes the general form m(γ, Vθ) =
β0 + γβ1 Vθ

β2 , where the coefficient vector (β0, β1, β2)′ contains the main esti-
mates of interest. For (β0, β1, β2)′ = (0, 1, 1)′ the function m(γ, Vθ) coincides
with decision model (3.4), but DMs may also assign alternative weights to their
inherent risk preference and the objective investment risk.
The spread, which has a right-skewed distribution, is assumed to be lognormal.
The variable y∗

i takes therefore the exponential form. The DM chooses a max-
imum spread of 1 when y∗

i exceeds the value 1. Analogously, she chooses zero
spread when y∗

i falls below a lower threshold yi∗. Theoretically, only risk-averse
DMs, i.e. DMs with γi > 0, choose a positive spread whereas yi = 0 for all DMs
with γ ≤ 0. Thus, with strictly positive investment risk (Vθ > 0), the lower
threshold yi

∗ is given by em(0,Vθ).
The two error-contaminated CRRA coefficients γ̃ij , j = {1, 2}, serve as a mea-
sure of risk attitude and are integrated in the estimation with the following
assumptions: γ̃ij = γi + σiuij where uij ∼ i.i.d N(0, 1).910

Measurement error is extrapolated with the simulation extrapolation (SIMEX)
procedure for heteroscedastic errors with unknown variances and replicate mea-
surements (Devanarayan and Stefanski, 2002; Carroll et al., 2006). The SIMEX

9Because the function m(·) is not continuous in β1 for γ < 0, I estimate the Tobit model
for ( γ+∆

∆+1 ). Consequently, I interpret marginal effects rather than coefficients (β0, β1, β2)
directly.

10The model is estimated assuming ((σiuij)ϵi)′ ∼ N(0, Σi) with Σi =
(

σ2
i 0

0 σ2
ϵ

)
. The

assumption that disturbances (σiui, ϵi) in the investment task and the preference elicitation
task are uncorrelated might be strong, but there is no indication of a significant correlation
in the data.
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procedure is applicable to various estimation methods and is approximately con-
sistent in nonlinear models. Its basic idea is to estimate the relation between
error variance and parameter estimates. To this end, different data sets are
created by inflating to various extents the error-contaminated variables with ad-
ditional error.11 Estimates are then obtained for each of these variance-inflated
data sets, and allow for estimating the relation between error variance and corre-
sponding estimates. By means of a polynomial extrapolation, this link function
is finally extrapolated to the case where error variance equals zero (see Appendix
C.3 for more details).

3.3.3 Hypothesis

Treatment NL, where no learning occurs, serves as benchmark for the general
weights of risk attitudes in model (3.5). In case of independence between risk
preferences and belief updating, coefficients for risk preferences in treatments
NL and L should be equal.

Hypothesis 4 Under EUT:

H0 : βNL1 = βL1

where the coefficient β1 renders the weighting of risk preferences.

Any interaction between preferences and updating behavior, in contrast, would
bias β1. With preference-dependent learning, the variance Vθ = ρ̃(1 − ρ̃) with
subjective posterior belief ρ̃ becomes a function of γ. The function m(γ, Vθ)
is then no longer separable in utilities and probabilities. In an extreme case,
perfect collinearity between γ and Vθ would render estimates unidentifiable.

3.4 Results

In the following, we discuss the estimates obtained with SIMEX, even though
correcting for measurement error has a moderate effect. The SIMEX proce-
11In the case of heteroscedastic errors, the variance is inflated by means of contrast vectors

(Devanarayan and Stefanski, 2002).
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dure yields coefficient estimates that are near the original ones, especially in
treatment L, where preferences are measured with smaller errors.

In both treatments, the spread is an increasing concave function of the invest-
ment risk Vθ. The estimate β2 is significantly smaller than 1: β2 = 0.39 in
NL and β2 = 0.09 in L (see Appendix Table C1). Thus, subjects assign dis-
proportionately high weights to assets with low risks, especially in treatment
L.

In comparison, risk preferences have a smaller weight (β1 = 0.81 > β2 = 0.39 in
NL and β1 = 1.93 > β2 = 0.09 in L). In both treatments, the investment risk is
more important in determining the width of the spread than the inherent risk
aversion.

To evaluate Hypothesis 1, we study the correlation between risk preferences and
decisions in the two treatments by comparing estimates, marginal effects and
predicted values.

Under Hypothesis 1, decisions with and without learning display the same coeffi-
cient β1. Yet, the coefficient β1 in treatment L is more than twice the coefficient
in treatment NL. The difference is illustrated in Figures 3.1a and 3.1b that de-
pict the mean spread in each treatment as a function of the CRRA coefficient γ
for low (Vθ = 0.05) and high (Vθ = 0.23) investment risk. After belief updating,
mean spreads increase more in risk aversion (dashed lines) compared to the case
where no learning takes place (solid lines).

The same effect, albeit attenuated, prevails for the median spread. Figure C4
in Appendix C.3 shows the estimated median spread for risk-averse subjects
in treatments NL (solid line) and L (dashed line) in comparison to the EUT
benchmark given by decision model (3.4) (dotted line). Note, median spreads
in both treatments are higher than in decision model (3.4), but vary less with
risk aversion.

The difference in β1 is not significant, though. The coefficients β2, on the
other hand, significantly differ across the two treatments. The weights (β1, β2)
in treatment L diverge more from each other than in treatment NL. Because
collinearity between preferences and subjective beliefs on the investment risk
affects both estimates, it is more appropriate to consider the two factors jointly
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Figure 3.1: Estimated mean in treatments NL and L for (a) low and (b) high asset
variance.

when comparing treatments. I analyze next differences in predicted values and
marginal effects.

Table C3 shows the difference in predicted mean spreads with and without
learning. Not only differ the treatments with respect to mean spreads, but the
difference also increases in risk aversion. An average marginal effect of 0.29 on
the difference between predictions casts doubts on Hypothesis 1 (p=0.000 in
F-test of zero effect, see Table C3).

As shown in Figures 3.2a and 3.2b, marginal effects on the median spread are
significantly lower than marginal effects under the EUT benchmark (dotted
line). But more importantly, marginal effects in treatment L are higher than in
treatment NL. Without learning, increasing the median risk-averse parameter
(γ = 0.32) by one standard deviation increases the median spread by 1.65% at
most (i.e. under the highest variance Vθ = 0.2275 considered in the tables) and
has almost no effect on mean spread (maximum increase of 0.10%) (see Appendix
Table C2). In contrast, the same effects in treatment L are 3 to 5 times higher
for the median, and 40 to 80 times higher for the mean. The difference in
marginal effects with and without learning is not significant, though.

In a nutshell, the difference in marginal effects is driven by both the large but
non-significant difference in β1 and the significant difference in β2. The sig-
nificant difference in β2 indicates that subjects’ posterior beliefs deviate from
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Figure 3.2: Marginal effects on the median (with Vθ = 0.2275) in treatments (a) NL
and (b) L.

objective probabilities. It is nevertheless not yet clear whether this deviation is
unrelated to risk preferences. The importance of risk attitudes after information
processing raises the question of whether risk preferences affect investment de-
cisions not only directly through γ, but also through the DM’s subjective belief
about asset variance Vθ(γ) = ρ̃(γ)(1 − ρ̃(γ)). To further explore this question,
the following section investigates subjects’ inference.

3.5 Testing Bayesian inference

In this section, I analyze to what extent subjects’ decisions are consistent with
Bayes rule. Furthermore, I examine subjects’ probabilistic sophistication sepa-
rately for different categories of risk attitudes.

Beliefs are not elicited during the investment task. Therefore, I approximate
subjects’ posterior beliefs using their bid and ask quotes. Under decision model
(3.2), the DM’s belief corresponds to the midquote, defined as the midpoint of
the bid-ask spread: a∗+b∗

2 = ρ.12

Under Bayes rule, the odds for a high asset value given posterior belief ρ sim-

12Analogously, midquotes in treatment NL proxy beliefs on marginal probabilities: a∗+b∗

2 = π.
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plifies to:

ρ

1 − ρ
= LR(s) · LR(µ) (3.6)

where the likelihood ratio of signal and prior is given by LR(s) = q
1−qs+ 1−q

q (1−
s) and LR(µ) = µ

1−µ , respectively.

The DM’s sensitivity to the signal and the prior is then estimated with the
following model (Grether, 1992; El-Gamal and Grether, 1995):

ez
∗
ik =

[
ρ

(1 − ρ)

]
ik

= eα0LR(sk)α1LR(µk)α2euik (3.7)

with i = 1, .., N subjects and k = 1, ..., 14 rounds.

Taking the log gives the equation model for the log odds, z∗
ik:

z∗
ik = α0 + α1 ℓ(sk) + α2 ℓ(µk) + uik (3.8)

where ℓ(·) denotes the log of likelihood ratios.

Bayesian DMs weight the likelihood ratios of the signal and the prior equally as
in ( 3.6).

Therefore, under Bayes rule:

⎛⎜⎜⎝
α0

α1

α2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
1
1

⎞⎟⎟⎠.

The sensitivity of posterior beliefs to risk preferences is analyzed by adding
interaction effects into the regression model:

z∗
ik =α0 + α1 ℓ(sk) + αRA1 IRA ℓ(sk) + αRS1 IRS ℓ(sk)+ (3.9)

α2 ℓ(µk) + αRA2 IRA ℓ(µk) + αRS2 IRS ℓ(µk) + uik

The indicator variables IRA and IRS categorize subjects into risk-averse, and
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risk-seeking DMs, respectively.13 The classification is as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(IRA = 1) ∧ (IRS = 0) if C̄E − E(θ) < −5%E(θ)

(IRA = 0) ∧ (IRS = 0) if |C̄E − E(θ)| < 5%E(θ)

(IRA = 0) ∧ (IRS = 1) otherwise

(3.10)

A subject is classified as risk-neutral (IRA = IRS = 0) if her average certainty
equivalent deviates from the expected value by less than 5%. Larger negative
(positive) deviations define risk-aversion (risk-seeking).

Results in treatment L are compared to the estimates in treatment NL. The
log odds in treatment NL take the form: z∗

ik = α0 + α3 ℓ(πk) + uik, where
ℓ(πk) denotes the log likelihood ratio of marginal probabilities. Without belief
revision, the weight assigned to LR(π) significantly deviates from 1 (α3 = 0.80,
see Appendix Table C4). That is, subjects conceive the likelihood ratio as
biased toward 1. This behavior is consistent with the robust evidence of inverse
s-shaped probability weighting functions (see Figure 3.3a).14

This inverse s-shape weighting is also found in treatment L, where the likelihood
ratio of both the signal and the prior is under-weighted (α1 = 0.85 and α2 =
0.88, see Appendix Table C4). However, this inverse s-shape weighting is less
pronounced as both coefficients do not significantly differ from 1.
The effect of risk preferences varies with the information condition. Generally, it
stands out that risk attitudes do not interact with information that is provided.
They do not affect decision weights in treatment NL. Similarly, they do not
interact with given prior beliefs in treatment L.
On average, decisions of risk-neutral subjects are consistent with Bayes rule.
The weights assigned to signal and prior information are close to 1 (α1 = 1.05
and α2 = 0.95), as well as the weighting of marginal probabilities (α3 = 0.93).
Decisions of risk-seeking subjects also do not deviate from Bayesian inference
((α1 + αRS1 = 0.95) and (α2 + αRS2 = 0.92)). Risk-averse subjects, on the other
13Classifying subjects into richer categories does not improve the fit as there are no significant

differences between moderate and highly risk-averse (risk-seeking) subjects.
14Evidence on inverse s-shaped probability weighting can be found in Lattimore et al. (1992);

Tversky and Kahneman (1992); Camerer and Ho (1994); Gonzalez and Wu (1999), inter
alia.
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hand, update their beliefs more conservatively (α1 + αRA1 = 0.54). Their prior
belief, too, has a smaller weight (α2 +αRA2 = 0.71) and is thus biased toward the
value 0.50, but this deviation is not significant. Figure 3.3b depicts the chosen
mid-quotes as a function of objective posterior probabilities. Estimated be-
liefs of risk-seeking subjects (dotted line) approximate posteriors (dashed line),
whereas risk-averse subjects choose, on average, less extreme midquotes. This
difference in belief revision becomes more visible in Figures 3.4a and 3.4b that
show mean posterior beliefs as a function of priors, separately for risk-seeking
and risk-averse subjects. While decisions of risk-seeking subjects (dashed lines)
are consistent with Bayesian posteriors, midquotes of risk-averse subjects (solid
lines) are closer to priors. Hence, risk-averse subjects update their beliefs more
conservatively and, as a result, perceive, on average, a higher investment risk.
This finding conforms with the higher correlation between risk-aversion coeffi-
cients and chosen spreads in treatment L relative to treatment NL.
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Figure 3.3: Mean subjective belief as a function of objective probabilities in
treatments (a) NL and (b) L.
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Figure 3.4: Mean subjective belief as a function of prior probabilities after
(a) low and (b) high signals.

3.6 Conclusion

There is extensive experimental literature showing that revealed preferences in-
teract with probabilities. Risky choices are therefore sometimes better modeled
with non-expected utility models. However, little is known about how informa-
tion processing distorts the relation between decisions under risk and objective
probabilities.
The analysis in this paper discloses an interaction between information pro-
cessing and risk attitudes: Learning in this investment setting amplifies the
link between decisions and preferences, resulting in a positive correlation be-
tween risk aversion and perceived investment risk. A test on Bayes’ theorem
reveals that risk-averse subjects deviate from Bayesian inference by updating
more conservatively. The over-weighting of prior beliefs relative to new evi-
dence is already documented in Edwards (1968); Slovic and Lichtenstein (1971),
inter alia. Yet, there is little consensus on the locus of conservatism. Some
putative explanations are anchoring on prior information (Slovic and Lichten-
stein, 1971), mis-perception or mis-aggregation of information (Edwards, 1968).
Alternatively, it might be an aversion toward extreme probabilities (DuCharme,
1970) or a simple heuristic (Gigerenzer and Hoffrage, 1995).
In light of this finding, the question arises whether this observation is driven by
a latent effect of cognitive abilities. Unfortunately, the data lacks of cognitive
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reflection tests. Therefore, the extent to which elicited preferences in this exper-
imental design negatively correlate with cognitive abilities is unknown. Given
the salience of expected prize in the preference elicitation task (50 and 75 in
the first and second measurement, respectively), it may well be that subjects
perceived the task as an assessment of their mathematical skills. In that case,
subjects with higher cognitive skills would choose CE closer to the expected
prize. However, this argument would not explain the behavior of risk-seeking
subjects, whose certainty equivalents deviates from expected prizes but whose
inferences conform with Bayes rule.
Despite the necessity of further robustness checks, the results pinpoint to a
potential source of conservatism, encouraging future research. A systematic
correlation between preferences and belief formation may amplify heterogeneity
in decisions, which, in turn, under certain conditions distorts market equilibria.
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A Appendix to Chapter 1

A.1 Descriptive statistics

We compute the share of buys for different ranges of signal values. Table A1
refers to the trades with a transaction price that lies below its prior expectation
of 130. The observations in Table A2 refers to rounds with transaction prices
above 130. The rows “Diff.” show the differences between the shares in the se-
quential and simultaneous mechanisms, for the main, the “Low Signal Quality”
and the “No Player 1” treatments, respectively.
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Table A1: Share of buys at low prices for varying signal
intervals

Treatment All signals [0 - 0.2] [0.2 - 0.4] [0.4 - 0.6] [0.6 - 0.8] [0.8 - 1]

SEQ .4138 .0825 .16 .3704 .7647 .9048
(.031) (.032) (.034) (.065) (.058) (.043)

SIM .4847 .12 .3053 .6818 .875 .8545
(.041) (.037) (.061) (.054) (.048) (.065)

Diff. -.0709 -.0375 -.1453∗∗ -.3114∗∗∗ -.1103 .0503
N 736 197 170 147 116 118

LSQ-SEQ .4106 .1667 .2432 .4231 .6 .6897
(.044) (.042) (.060) (.067) (.081) (.067)

LSQ-SIM .5714 .3171 .4783 .56 .7407 .7733
(.037) (.063) (.066) (.072) (.056) (.066)

Diff. -.1606∗∗∗ -.1504∗ -.2351∗∗ -.1369 -.1407 -.0836
N 736 160 143 153 156 133

NP1-SEQ .3403 .0392 .1048 .3333 .6538 .8462
(.030) (.023) (.035) (.051) (.058) (.060)

NP1-SIM .4495 .1214 .1939 .5789 .8088 .9245
(.033) (.042) (.048) (.062) (.058) (.044)

Diff. -.1092∗∗ -.0823∗ -.0891 -.2456∗∗∗ -.155∗ -.0784
N 825 209 203 163 146 118

Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01 in two-sample t test with unequal variances. CRSE in
parentheses.
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Table A2: Share of buys at high prices for varying signal
intervals

Treatment All signals [0 - 0.2] [0.2 - 0.4] [0.4 - 0.6] [0.6 - 0.8] [0.8 - 1]

SEQ .6190 .0555 .2388 .4828 .9054 .9406
(.033) (.036) (.056) (.066) (.037) (.026)

SIM .5140 - .1724 .2778 .7419 .84
(.033) (.) (.053) (.063) (.053) (.043)

Diff. .105∗∗ - .066 .205∗∗ .1635 .1006∗∗

N 692 69 125 130 167 201

LSQ-SEQ .6151 .2537 .5294 .7 .8 .7848
(.038) (.067) (.070) (.066) (.056) (.053)

LSQ-SIM .3050 .2239 .2 .1818 .4464 .5079
(.038) (.059) (.058) (.047) (.066) (.081)

Diff. .3101∗∗∗ .0298 .3294∗∗∗ .5182∗∗∗ .3536∗∗∗ .2769∗∗∗

N 635 134 106 147 106 142

NP1-SEQ .6738 .1475 .3889 .7 .8817 .9626
(.027) (.047) (.062) (.063) (.042) (.018)

NP1-SIM .4523 .1132 .0882 .225 .6813 .8302
(.030) (.042) (.053) (.044) (.063) (.035)

Diff. .2215∗∗∗ .0343 .3007∗∗∗ .475∗∗∗ .2004∗∗∗ .1324∗∗∗

N 821 114 140 170 184 213
Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01 in two-sample t test with unequal variances. CRSE in

parentheses.
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Table A3 shows the shares of buys when prices and signals reflect contrary
information because they lie on opposite sides of their corresponding prior ex-
pectation. Trading decisions that conform rather with the information in the
price than with the information in the signal indicate that participants give
thought to the price’s informativeness. In all treatment variations, traders 2 in
the sequential mechanisms trade more often against the information contained
in their own signal: they sell (buy) more often than their peers in the simultane-
ous mechanism when the price is low (high). The differences between the buys
and sells in the two mechanisms are significant for the variations “Low Signal
Quality” and “No Player 1”.
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Figure A1: Estimated average bids in treatments LSQ-SIM and
LSQ-SEQ.
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Table A3: Acting against one’s own signal (treatment prices)

p2 ≤ 130 p2 > 130
s2 > .5 s2 ≤ .5

SEQ .7834 .2357
(.042) (.044)

SIM .8332 .1460
(.036) (.040)

Diff. -.0498 .0877
N 293 277

LSQ-SEQ .5976 .4323
(.059) (.047)

LSQ-SIM .7326 .1939
(.049) (.044)

Diff. -.135∗ .2383∗∗∗

N 351 320

NP1-SEQ .6815 .3584
(.049) (.040)

NP1-SIM .8446 .1198
(.045) (.045)

Diff. -.1631∗∗ .2386∗∗∗

N 327 340
Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01 in

two-sample t test with unequal variances.
CRSE in parentheses.
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Figure A2: Estimated average bids in treatments NP1-SIM and
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Hyp-SEQ.
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Table A4: Shares of naive decisions

SIM SEQ LSQ-SIM LSQ-SEQ Hyp-SEQ NP1-SIM NP1-SEQ

η .3760 .1851 .4449 .2222 .2830 .4527 .1767
(.047) (.052) (.045) (.033) (.042) (.053) (.033)

N 118 108 227 261 106 148 181
Note: CRSE in parentheses. Significant difference at 1% level between SIM & SEQ, between

LSQ-SIM & LSQ-SEQ and between NP1-SIM & NP1-SEQ (Wald test). Significant difference in
1-sided Gauss test between Hyp-SEQ and SIM (p=0.022), and Hyp-SEQ and SEQ (p=0.081).
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Figure A5: Kernel density of profits of traders 2 in treatments SIM, SEQ, LSQ-
SIM, LSQ-SEQ and NP1-SIM,NP1-SEQ.
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Table A5: Profits of traders 2

Mean S.E. Median

SIM 27.63 2.98 44
SEQ 30.65 2.86 43.25

LSQ-SIM -1.24 3.19 -18.25
LSQ-SEQ .85 3.21 21

HYP-SEQ∗ 27.48 4.30 43.25

NP1-SIM 25.30 2.78 50.5
NP1-SEQ 28.36 2.65 52.5

Note: S.E. refers to standard errors of
mean. ∗Excluding rounds that gener-
ated zero profit in Hyp-SEQ because
no trade occurred.

A.2 Multiple binomial testing

This section describes how we identify significant deviations from naive bidding.
We test the hypothesis that the propensity to buy conforms with the probability
of buying with naive expectations. With naive expectations, the probability that
a trader buys equals her posterior belief for the high asset value, which (given
uniform priors) equals the signal’s value. Thus, the null hypothesis of naive
posterior beliefs corresponds to:

H0 : π(sj) = sj , j = 1, ..., 9.

We round signals to decimals. We merge extreme signals close to 0 and 1 to
the nearest category to satisfy testing criteria in the approximate binomial test.
We then perform (one-sided) binomial tests for each of the nine categories.
The first column of Table A6 denotes the alternative hypothesis HA for each
test. The alternative hypothesis is chosen to reject naiveté in favor of Bayesian
probabilities. The other columns in Table A6 report the p-values for each test
for the corresponding treatment.
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Table A6: P-values in multiple binomial testing

HA SIM SEQ Hyp-SEQ NP1-SIM NP1-SEQ

π < .1 .7695 .2716 .9999 .9303 .7555
π < .2 .4754 .0364 .3399 .1616 .0194
π < .3 .1751 .0083 .2765 .0002∗ .0369
π < .4 .1320 .2614 .0214 .0110 .1658
π ̸= .5 .7962 .2642 .7854 .0114 .9146
π > .6 .4000 .0874 .0427 .7092 .0201
π > .7 .1084 .0009∗ .0206 .0293 .0808
π > .8 .0506 .1063 .0103 .7250 .0227
π > .9 .9962 .3770 .7435 .9228 .5131

Note:∗p < 0.0055 (Bonferroni significance level.). Tests for H0 : π = .5
are two-sided.

We account for the multiple testing problem using the Bonferroni significance
level of 0.0055 (with a significance level of α = .05 for individual tests). Two
treatments, SEQ and NP1-SIM, display trading decisions that significantly dif-
fer from the naive prediction. In treatment SEQ, the more extreme trading
decisions lead to a rejection of the null, while in treatment SIM the share of
buys is consistent with naive beliefs. In treatments Hyp-SEQ, NP1-SIM and
NP1-SEQ the null is rejected in four out of 9 categories, but only in treatment
NP1-SIM the null is rejected after correcting for the multiple testing problem.
This significant deviation in the simultaneous mechanism is driven by the overall
increased tendency to sell, especially at low signal values. Figure A2 reveals an
estimated bidding curve that lies below the naive function for almost all signal
values.

For the treatments with low signal quality, the likelihood for the high asset value
is bounded in [.4,.6] due to the signal’s low precision. The null adjusts to:

H0 : π(sj) = 0.4 + 0.2 · sj , j = 1, ..., 11.

The multiple binomial tests detect in both treatments LSQ-SIM and LSQ-SEQ
significant deviations from the share of buys that would be expected under
naiveté. The deviations occur at both low and high signal values, reflecting the
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Table A7: P-Values in multiple binomial testing (LSQ)

HA LSQ-SIM LSQ-SEQ

π < .4 + .2 ∗ .0 .0422 .3546
π < .4 + .2 ∗ .1 .0191 .0000∗

π < .4 + .2 ∗ .2 .0495 .0235
π < .4 + .2 ∗ .3 .0133 .0195
π < .4 + .2 ∗ .4 .0000∗ .3714
π ̸= .4 + .2 ∗ .5 .4060 .3172
π > .4 + .2 ∗ .6 .4643 .0722
π > .4 + .2 ∗ .7 .0209 .0347
π > .4 + .2 ∗ .8 .6458 .0000∗

π > .4 + .2 ∗ .9 .0191 .0007∗

π > .4 + .2 ∗ 1 .3047 .5000
Note:∗p < 0.0045 (Bonferroni significance level.)

Tests for H0 : π = .5 are two-sided.

higher steepness of the bidding curves shown in Figure A1. The information
asymmetry helps trader 2 to take into account the price’s informativeness.
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A.3 Learning

A.3 Learning

To investigate whether participants learn over time, we divide observations into
two time subsections: an early time interval for the rounds one to ten and a
late interval for later rounds. In the subset of price-signal realizations where
naive and Bayesian predictions differ, the proportion of naive decisions does
not change significantly over time in all treatments except treatment LSQ-SEQ,
as shown in Table A8. Furthermore, plotting the share or number of naive
decisions across periods does not display any systematic pattern of decay. Even
pooling treatments into simultaneous and sequential variants does not reveal
any learning effect.

Table A8: Proportion of naive decisions

SIM SEQ LSQ-SIM LSQ-SEQ Hyp-SEQ NP1-SIM NP1-SEQ

First 10 .3971 .2127 .4741 .2810 .3077 .5128 .1596
(.060) (.074) (.052) (.046) (.065) (.070) (.044)

Last 10 .34 .1639 .4144 .1714 .2593 .3857 .1954
(.079) (.058) (.068) (.038) (.057) (.073) (.044)

Diff. .0571 .0488 .0597 .1096∗∗ .0484 .1271 -.0358

N 118 108 227 261 106 148 181
Note:∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01. CRSE in parentheses.

A.4 Trading volume

We calculate the number of trades that would occur within one treatment if
traders 2 were allowed to trade with each other (as price-takers). To this end,
we compare the actual buys and sells that took place at each price values,
rounding the latter to the nearest ten. The minimum of buys or sells at a given
price value defines the number of transactions that would have been possible
between the set of traders 2 at this price. Table A9 shows the share of potential
trades per price value, which corresponds to the ratio of potential trades to
the maximum possible trading volume. Since every trade requires two trading
parties, the maximum number of possible trades at a specific price equals the
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frequency of this price value divided by two. The simultaneous mechanisms
entail significantly more potential trades, except for the treatment variation with
“Low Signal Quality” that displays similar shares of trades in each mechanism.

Table A9: Average simulated trading volume with random
matching of trader 2 participants

SIM SEQ

Main treatments .8611 .7806∗∗∗

(.004) (.004)
Low Signal Quality .7629 .7735

(.006) (.007)
No Player 1 .87 .6977∗∗∗

(.005) (.003)

∗∗∗: Share is significantly smaller than in
the alternative treatment in a one-sided
t-test with p < .01.
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B.1 Screen layout

Figures B1a and B1b depict examples of the composition in urn A when the
prior is unambiguous and ambiguous, respectively. In the ambiguous urn, the
true color of grey balls, which is either red or blue, is unknown.

(a) Risky prospect (b) Ambiguous prospect

Figure B1: Examples for visualization of probability distribution with urn A.

In treatment L, a second decision screen is shown to the subjects before they
choose their quotes. In the upper left corner, the composition in urn A reminds
the subjects of the prior distribution. If the asset takes the value 0 (i.e. the value
ball is red), a second ball is drawn from the “urn N”. In 75% of all drawings,
the subject will then observe a pink ball. The subject will see a green ball with
75% probability if the value ball is blue and the signal ball is drawn from “urn
H”. The right side of the screen conveys the additional information by showing
the color of the signal ball.
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Figure B2: Example for an additional signal at the second
stage.

B.2 Bid-ask spread generated by risk aversion

The following derivation shows that risk-aversion introduces a spread between
the bid and the ask.

Let bRN = E(V ) be the optimal bid under risk neutrality. Let risk-averse pref-
erences be represented by a strictly concave utility function U(·) with U ′(·) > 0
and U ′′(·) < 0 .
The optimal bid corresponds to the certainty equivalent that makes a risk-averse
agent indifferent between the initial position W0 and the long position. The
optimal bid bRA must therefore satisfy:

EπU(W0 + V − b) = U(W0)

The short-selling ask satisfies accordingly :

EπU(W0 − V + a) = U(W0)

By Jensen’s inequality:

EU(bRN ) = EπU(W0 + V − bRN ) < U(Eπ(W0 + V − E(V )) = U(W0) = EU(bRA)
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From U ′(·) > 0 and EU(bRN ) < EU(bRA), it follows that bRA < bRN = E(V ).
Analogously, aRA > aRN = E(V ).

B.3 Results

B.3.1 Reactions to ambiguity

Descriptive statistics

Table B1 shows mean profits for risky and ambiguous prospects, across different
ranges of probabilities.

Table B1: Mean profits across different ranges of proba-
bilities

Range of π [5% − 65%] [15% − 85%] [35% − 95%] Total obs.

Risk 26.82 23.36 23.9 27.97
(1.82) (1.88) (1.85) (1.52)

Amb. 24.92 18.57 15.63 19.70
(3.95) (3.89) (4.15) (2.31)

Diff. 1.90 4.79 8.27∗∗ 8.27∗∗∗

(4.35) (4.32) (4.54) (2.78)

N 840 840 840 1340

Note: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01. The variable “Amb.” repre-
sents the indicator variable for the ambiguous rounds.

Table B2 shows median values of bid and ask quotes as a fraction of the expected
value. The premia in ambiguous rounds are computed with respect to the
midpoint of the probability interval.
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Table B2: Median values of quotes as a fraction of the
expected value

b
E(π)

a
E(π)

Risk .8 1.0667
Amb. .6 1.2308
Diff. -0.20∗∗∗ -0.1641∗∗∗

Note: The variable “Amb.” rep-
resents the dummy variable for
the ambiguous rounds. ∗∗∗: p-
value in median test <.01.

Regression estimates

Table B3 presents the results of the median polynomial regression. The esti-
mates for risky prospects are plotted in the Figures 2.3a and 2.3b in Section
2.4.1.

Table B3: Median polynomial regression

Dep. var. Bid Ask Spread

Prior 0.3392∗∗∗ 1.1296∗∗∗ 0.5∗∗∗

(.104) (.104) (.089)
Prior2 0.0060∗∗∗ -0.0018∗∗ -0.005∗∗∗

(.001) (.001) (.001)
Amb. -5∗∗∗ 8∗∗∗ 10∗∗∗

(1.899) (2.398) (3.014)
cons 3.1548∗∗ 4.3981∗∗ -1.375

(1.284) (2.062) (.924)

N 1340 1340 1340
R2 .3717 .3146 .0443

Note: Testing of coeffcients with robust standard er-
rors in parentheses: ∗: p-value<.1, ∗∗: p-value<.05,
∗∗∗: p-value<.01. The variable “Amb.” represents the
indicator variable for the ambiguous rounds.
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Heterogeneity in ambiguity attitudes

This section examines differences in ambiguity preferences. The behavior in
risky rounds is used to identify ambiguity-averse preferences. To control for
learning effects, subjects are classified according to their behavior in the last 10
rounds, of which 3 are ambiguous.
In a first step, ambiguous rounds with a set of probabilities [πl, πh] are compared
to risky rounds whose probability equals the midpoint π = πl+πh

2 (henceforth
mid-probability). A trading decision is defined as ambiguity-averse (in a toler-
ant sense) if, for ambiguous prospects, the subject chooses wider spreads than
the spread SPMP

R chosen when the unambiguous probability equals the mid-
probability. In line with this definition, the variable Y classifies decisions for
ambiguous prospects in 3 categories, depending on whether the spread is smaller,
equal, or wider than the chosen spread at mid-probabilities:

Yij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if SP{A,ij} > SPMP

{R,i}

0 if SP{A,ij} = SPMP
{R,i}

−1 if SP{A,ij} < SPMP
{R,i}

i = 1, ..., 67 subjects, j = 1, 2, 3 ambiguous decisions
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Figure B3: Classification of ambiguous decisions (a) and subjects (b) in the last 10
rounds.

Subjects exhibit a larger spread in 43% of the ambiguous rounds (see Figure
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B3a). Out of the 67 subjects, 12 chose a wider spread for all 3 ambiguous
rounds versus 5 subjects who always chose a smaller spread (see Figure B3b).
The majority of subjects is, on average, ambiguity-averse with

∑3
j=1 Yi > 0.

A second step differentiates more thoroughly between ambiguity aversion and
subjective expected utility (SEU). For instance, when π ∈ [.05, .65], a risk-averse
agent with subjective belief Π∗ = .45 chooses a wider spread than for a risky
prospect with π = .35, without being ambiguity-averse. For this purpose, deci-
sions with Y = 1 are further distinguished into decisions that can and cannot
be explained by SEU as well. A trading strategy is defined to be inconsistent
with SEU when the spread for an ambiguous prospect with π ∈ [πl, πh] is wider
than any chosen spread for all risky prospects with π ∈ [πl, πh]. For instance,
the subject’s decision in an ambiguous round with π ∈ [.05, .65] is compared to
all his decisions in risky rounds with π ∈ {.05, .15, .35, .50, .65}.1 In treatment
NL, 52.33% of the rounds that are consistent with ambiguity-averse preferences
reject SEU as a possible explanation.

In treatment L, significantly less ambiguous rounds can be classified as con-
sistent with ambiguity-averse preferences (33% in L vs. 43% in NL, compare
Figures B3a & B4). This is mainly due to some large spreads in risky rounds.
In these rounds, contradicting signals endogenously create uncertainty: subjects
choose wider spreads for risky prospects when the signal contradicts prior be-
liefs. Still, out of these ambiguous decisions with wider spreads, 52.31% display
a spread wider than any chosen spread for unambiguous priors within [.15, .85],
and exclude therefore SEU.

B.3.2 Learning

Figure B5a depicts the distribution of chosen spreads in the ambiguous rounds
of treatment NL with π ∈ [.05, .65] or [.35; .95]. Figure B5b refers to the dis-

1Theoretically, subjects should choose a maximum spread at a prior at 50%, where the lottery
exhibits the highest risk. Nevertheless, in treatment NL 27 subjects choose a maximum
spread at a different probability. Therefore, spreads are compared to the maximum spread
that each subject has chosen for the risky prospects, regardless of whether it has been
chosen at a probability of 50% or not.
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Figure B4: Percentage of ambiguous rounds with smaller,
equal and larger spreads in AI .

tribution of spreads in the ambiguous rounds of treatment L with ρ ∈ [.05, .65]
or [.35; .95]. In both figures, the vertical solid and dashed lines represent the
median and mean spread, respectively. The distributions of spreads do not dif-
fer for the same range of marginal and posterior probabilities (p-value=.92 in
Kolmogorov-Smirnov test).
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Figure B5: Spreads for ambiguous prospects for the same theoretical dispersion in
marginal (a) and Bayesian posterior (b) probabilities.
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Results of NNLS-SUR

Table B4 shows the coefficient estimates of the NNLS-SUR model. Because,
by design, there is less variation in the ambiguous probabilities, the estimation
is more robust when assuming symmetric premia in the bid and the ask. The
model estimates assuming Bayesian update of recursive preferences (BRP) do
not differ from the estimates in treatment NL (p-value of 1 for the ask equation
and .2211 for the bid equation in the Lagrange-Multiplier test).

Table B4: Coefficient estimates for probability weighting
function and risk premia

NL L

mid-prior FBU∗∗∗ MLU∗∗∗ BRP

β 0.9646 1.1532 0.9206 0.9824
(.0370) (.0301) (.0440) (.0493)

α 0.6563 1.1754 0.2574 0.6658
(.0754) (.0686) (.0288) (.0744)

RP 0.2982 0.2491 0.2491 0.2491
(.0258) (.0301) (.0301) (.0301)

Note: Nonlinear least squares estimation with CRSE in a
seemingly unrelated regression. ∗∗∗: p-value<.01, refers to a
significance difference between the model estimates in treat-
ment NL and the ones with updated beliefs in Lagrange-
Multiplier tests.

Heterogeneity in updating

Figure B6 depicts mid-quotes for risky prospects and the mean regression es-
timates as a function of unambiguous priors. The dashed and solid lines cor-
respond to mean estimates after subjects receive a high and a low signal, re-
spectively. The average mid-quote increases in the prior, showing no evidence
of base-rate-neglect.
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Figure B6: Mid-quotes for unambiguous assets and their
mean-estimates for the two signals and the group
of Bayesian updaters ( clusters 3 and 5 ).

B.3.3 Cluster analysis

To discern the different ranges of updated beliefs and their prevalence, bid-ask
pairs for ambiguous prospects are clustered. The cluster analysis is performed
in k-medians with 8 clusters, yielding the 8 different ranges for updated beliefs
listed in Table B5.2

In total, 21.72% of the ambiguous decisions belong to the clusters 1 and 6 and
are consistent with MLU. Quotes in these clusters are close to one extremum
and exhibit, on average, the smallest spread of 1 ECU. The opposite behav-
ior is described in clusters 7 and 8, that represent 25.75% of the bid-ask pairs.
These observations exhibit a substantial spread of more than 30 ECU. In ap-
proximately one third of these decisions, the spread is chosen wide enough to
implement almost surely a no-trade outcome (cluster 8). In cluster 4, 10.35% of

2The value of 8 clusters finds its justification in the theory, allowing the identification of 8 clus-
ters in the upper triangular grid of bid-ask pairs: extreme beliefs upon both a low and a high
signal (centered around the bid-ask points: (0,0); (100,100)), ambiguity-neutral Bayesian
beliefs upon both a low and a high signal (the 45 line (5,5) to (95,95) ), ambiguity-averse
Bayesian beliefs upon both a low and a high signal ((5,65), (35,95)), maximum ambiguity-
aversion (0,100), ambiguity-neutral likelihood-insensitive beliefs (50,50). Robustness checks
with more and less clusters do not yield a better comprehension of the data.
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Table B5: Median bids, asks and spreads and corresponding
statistics for 8 clusters in ambiguous rounds of
treatment L

Cluster bid ask spread % trade % obs consistent with

1 1 2 1 100 12.12 MLU
2 10 16 5 100 5.30 AN & Bayesian
3 15 33.5 20 86.36 16.67 Bayesian
4 40 50 5 95.12 10.35 AN-LI/conservatism
5 60 80 20 82.5 20.20 Bayesian
6 98.5 99 1 100 9.60 MLU
7 20 70 50 53.62 17.42 AA
8 1 99 98 15.15 8.33 AA - non-participants

Note: Cluster analysis in k-medians.

the quotes disclose a small spread with bids and asks around 50%, the midpoint
of the set of priors. These quotes match the behavior of an ambiguity-neutral
but likelihood-insensitive (AN-LI) investor who is rather unresponsive to incom-
ing information. Under the assumption that subjects have second-order beliefs,
whose mean equals the midpoint of the set of priors, over-emphasizing the mid-
prior 50% concurs with conservatism. Conservatism predicts an over-weighting
of the prior belief, but no increase in the spread. The remainder of the decisions
amounts to 42.17% of bid-ask pairs in the clusters 2, 3 and 5. These quotes are
consistent with Bayesian updating. The decisions in cluster 2 result in small
spreads and, compared to decisions under risk, do not show any evidence of
ambiguity aversion. The majority of the bid-ask pairs, though, falls in clus-
ters 3 or 5 that disclose a median spread of 20 ECU. Figure B7 summarizes
the results of the cluster analysis. It depicts bid-ask pairs that are consis-
tent with MLU, ambiguity-averse Bayesian, ambiguity-averse non-Bayesian and
ambiguity-neutral beliefs in diamonds, squares, triangles and dots or crosses,
respectively.

Table B6 lists the results of the same cluster analysis in treatment NL. The
analysis yields less extreme clusters of beliefs. Furthermore, the observations are
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Figure B7: Clusters of bid-ask pairs in ambiguous rounds of treatment L

distributed more evenly across the eight clusters, yielding the more symmetric
distributions of quotes reflected in Figures 2.6a and 2.6b.

Table B6: Median bids, asks and spreads and corresponding
statistics for 8 clusters in ambiguous rounds of
treatment NL

Cluster bid ask spread % trade % obs

1 5 10.5 1 100 8.96
2 20 25 2 95 7.46
3 30 37 1 97.06 12.69
4 20 50 35 69.70 12.31
5 49 60 12.5 82.61 17.46
6 70 80 5 90.70 16.04
7 35 90 52.5 34.38 11.94
8 4.5 85 72.5 19.44 13.43

Note: Cluster analysis in k-medians.

103



C Appendix to Chapter 3

C.1 Descriptive statistics and design
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Figure C1: Distribution of chosen spreads in treatments (a) NL and (b)
L.
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Figure C2: Example of computer interface in Part 2
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Figure C3: Distribution of relative risk premia
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C.2 Approximation to optimal bid and ask under CRRA

Define the lottery in the asset’s value as θ̃ ≡ (1, π; 0). The optimal bid b and
(short-selling) ask a satisfy respectively:

EU(W0 + θ̃ − b) = U(W0) (C.1)

EU(W0 − θ̃ + a) = U(W0) (C.2)

Re-writing the lottery with a zero-mean risk yields: θ̃ = E[θ̃]+ x̃ = µ+ x̃, where
µ = π and x̃ ≡ ((1 − π), π; −π, (1 − π)) with Ex̃ = 0.

Let k be a risk inflating factor. Define Γ(k) as the risk premium in the bid and
the ask. Following Gollier (2001), we can rewrite Equations C.1 and C.2 as:

EU(W0 + k(µ+ x̃) − (kµ− Γ(k))) = U(W0) (C.3)

EU(W0 − k(µ+ x̃) + (kµ+ Γ(k))) = U(W0)

For illustration, we derive the Arrow-Pratt approximation for the bid.

The first derivative of Equation C.3 with respect to k yields:

EU ′(W0 + x̃+ Γ(k))[x̃+ Γ′(k)] = 0 (C.4)

Thus,

Γ′(k) = −Ex̃U ′(·
EU ′(·) (C.5)

Assuming that without risk, i.e. with k = 0, Γ(k) = 0 and because Ex̃ = 0:

Γ′(0) = 0

The second derivative of Equation C.3 with respect to k yields:
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EU ′′(W0 + x̃+ Γ(k))[x̃+ Γ′(k)]2 + Γ′′(k)EU ′(W0 + x̃+ Γ(k)) = 0 (C.6)

Thus,

Γ′′(k) = −EU ′′(·)[x̃+ Γ′(k)]2

EU ′(·) (C.7)

and

Γ′′(0) = −U ′′(W0)
U ′(W0)Ex̃

2 = A(W0)V ar[x̃] (C.8)

The term A(W0) corresponds to the absolute coefficient of risk aversion.

The Taylor approximation around k = 0 corresponds to:

Γ(k) ≈ Γ(0) + kΓ′(0) + 1
2k

2Γ′′(0) (C.9)

For k = 1, we obtain:

Γ(1) ≈ 1
2A(W0)V ar[x̃] (C.10)

The Arrow-Pratt approximations to the optimal bid and ask are accordingly:

b = µ− 1
2A(W0)V ar[x̃] (C.11)

a = µ+ 1
2A(W0)V ar[x̃] (C.12)

For a utility function from the class of CRRA, A(W0) = γW−1
0 :

b = π − 1
2γW

−1
0 V ar[x̃] (C.13)

a = π + 1
2γW

−1
0 V ar[x̃] (C.14)
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where V ar[x̃] = π(1 − π). Inserting W0 = 1 yields a∗ and b∗:

b∗ = π − 1
2γV ar[x̃] (C.15)

a∗ = π + 1
2γV ar[x̃] (C.16)

The spread corresponds then to:

a∗ − b∗ = γV ar[x̃] (C.17)
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C.3 Estimates of the Tobit model

C.3 Estimates of the Tobit model

Table C1: Maximum likelihood estimates of two limit non-linear Tobit
model under risk

No Learning Learning Diff:(L-NL)
Risk RiskSIMEX Risk RiskSIMEX RiskSIMEX

β0 -2.0698∗∗∗ -2.0762∗∗∗ -2.0521∗∗∗ -2.0495∗∗∗ 0.0567
(0.152) (0.168) (0.116) (0.118) (0.205)

β1 0.6491 0.8145 1.9706 1.9301 1.1156
(0.621) (0.785) (0.730) (0.829) (1.141)

β2 0.4185∗∗∗ 0.3917∗∗∗ 0.0890∗∗∗ 0.0936∗∗∗ -0.2981∗∗∗

(0.219) (0.260) (0.082) (0.088) (0.274)
σ 1.0517∗∗∗ 1.0517∗∗∗ 0.8864∗∗∗ 0.8888∗∗∗ -0.1629∗∗

(0.041) (0.041) (0.047) (0.047) (0.062)

LL -169.41 -207.76
N 938 938×103 882 882×103

Note: ∗ : p < 0.1,∗∗ : p < 0.05,∗∗∗ : p < 0.01 The SIMEX-coefficients were obtained with 1000
re-measurements of predictors. Standard errors in parentheses are clustered at subject level.
Tests for coefficients (β0, β1, β1) refer to deviation from (β0, β1, β2)′ = (0, 1, 1)′.

The SIMEX procedure with heteroscedastic errors and replicate measures con-
sists of the following steps (cf. Devanarayan and Stefanski 2002; Carroll et al.
2006):

1. A normalized contrast vector is created:

cb,i,j = zb,i,j − z̄b,i,.√∑
(zb,i,j − z̄b,i,.)2

with zb,i,j ∼ N(0, 1).

2. Error-contaminated risk measures are generated with inflation factor ζ ∈
[0, 1.6]:

γ̃b,i(ζ) = γi + (ζ/2)1/2 ∑
j=1,2

cb,i,jγi,j
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3. The Tobit model is estimated yielding β(ζ).

4. The procedure is repeated for B=1000 variance-inflated data sets.

5. A link function is estimated using a quadratic extrapolant function: E[βb|ζ] =
δ0 + δ1ζ + δ2ζ

2, b = 1, ..., 1000.

6. SIMEX estimates are given by extrapolation to ζ = −1,
i.e. βSIMEX = E[βb|ζ = −1].

Because the regressor γ is transformed, the size of the coefficients is not informa-
tive. I interpret instead changes in the mean and median. The Equations C.18
and C.19 show the computation of the expected mean (cf. Amemiya 1985;
Greene 2008; Carson and Sun 2007).
For simplification, define m(0, Vθ) =: m and m(γ, VL) =: m. The function Φ(·)
denotes the standard normal cumulative distribution function.

E[y∗|(y∗ < y∗ < 1), γ, Vθ] = E[exp
(
m(γ, VL) + ϵ

)
|m < m+ ϵ < 0] (C.18)

= exp(m)E[exp(ϵ)|m−m < ϵ < −m]

=
[
Φ

(−m
σ

)
− Φ

(m−m

σ

)]−1 exp(m)∫ −m

m−m

1√
2πσ2

exp
(

− (ϵ− σ2)2

2σ2 + σ4

2σ2
)
dϵ

=
[
Φ

(−m
σ

)
− Φ

(m−m

σ

)]−1 exp
(
m+ σ2

2
)

[
Φ

(−m− σ2

σ

)
− Φ

(m−m− σ2

σ

)]

E[y|γ, Vθ] = 0 · Pr[y∗ ≤ y∗|γ, Vθ] + 1 · Pr[y∗ ≥ 1|γ, Vθ] (C.19)

+ E[y∗|(y∗ < y∗ < 1), γ, Vθ]Pr[y∗ < y∗ < 1|γ, Vθ]

= 1 · Φ
(

− m

σ

)
+ exp

(
m+ σ2

2
)

[
Φ

(−m− σ2

σ

)
− Φ

(m−m− σ2

σ

)]
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Accordingly, given (y∗ < y∗ < 1) and assuming the conditional median of ϵ
given (γ, Vθ) to be zero, the median spread equals exp

(
m

)
1{m<m<0}.
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Figure C4: Estimated median spread for γ > 0 and Vθ =
0.2275

111



C Appendix to Chapter 3

Table C2: Moment estimates and change in moments

Vθ = .0475 Vθ = .1275 Vθ = .2275

Risk - No Learning

E[y|(y∗ < y∗ < 1), γ̄, Vθ] 0.7914 0.7953 0.7986
%∆(E[y|(y∗ < y∗ < 1), γ̄, Vθ], γ̄ + ¯̂σ) 0.04 0.07 0.10

Median(y|γ̄, Vθ) 0.1648 0.1875 0.2077
%∆(median(y|γ̄, Vθ), γ̄ + ¯̂σ) 0.89 1.31 1.65

Risk- Learning

E[y|(y∗ < y∗ < 1), γ̄, Vθ] 0.8334 0.8360 0.8376
%∆(E[y|(y∗ < y∗ < 1), γ̄, Vθ], γ̄ + ¯̂σ) 3.16 3.64 3.97

Median(y|γ̄, Vθ) 0.2436 0.2591 0.2694
%∆(median(y|γ̄, Vθ), γ̄ + ¯̂σ) 4.66 5.11 5.41

Note: Consistent with values in Table 3.1: γ̄ = 0.32, ¯̂σ = 0.21.
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Table C3: Regression model of differences in predictions

Diff.

γ -0.2323∗∗∗

(0.004)
γ2 0.3268∗∗∗

(0.004)
Vθ -0.1250∗∗∗

(0.001)

N 1820
R2 0.9943
AMEγ 0.2972
MEMγ 0.3212

Note: ∗ : p < 0.1,∗∗ :
p < 0.05,∗∗∗ : p <
0.01. Robust standard er-
rors clustered at subject
level (CRSE) in parenthe-
ses. AME and MEM de-
note average marginal ef-
fect and marginal effect at
the median coefficient γ =
0.05, respectively.)
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C.4 Bayesian inference

Table C4: Regression estimates for Bayesian inference

Learning No Learning

cons -0.1871∗∗ -0.1896∗∗ -0.0285 -0.0285
(0.077) (0.078) (0.077) (0.078)

ℓ(s) 0.8585 1.0463
(0.118) (0.226)

ℓ(µ) 0.8836 0.9501
(0.080) (0.132)

ℓ(π) 0.7995∗∗∗ 0.9262∗∗∗

(0.058) (0.076)
IRA × ℓ(s) -0.5111∗∗

(0.257)
IRS × ℓ(s) -0.0936

(0.308)
IRA × ℓ(µ) -0.2336

(0.190)
IRS × ℓ(µ) -0.0274

(0.188)
IRA × ℓ(π) -0.1468

(0.114)
IRS × ℓ(π) -0.2822

(0.172)

R2 0.53 0.55 0.51 0.52
N 882 882 938 938

Note: ∗ : p < 0.1,∗∗ : p < 0.05,∗∗∗ : p < 0.01. Robust standard errors
clustered at subject level (CRSE) in parentheses.
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