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Abstract

With increasing wind power penetration more and more volatile and weather dependent energy

is fed into the German electricity system. To manage the risk of windless days and transfer

revenue risk from wind turbine owners to investors wind power derivatives were introduced.

These insurance-like securities (ILS) allow to hedge the risk of unstable wind power production

on exchanges like Nasdaq and European Energy Exchange. These products have been priced

before using risk neutral pricing techniques. We present a modern and powerful methodology to

model weather derivatives with very skewed underlyings incorporating techniques from extreme

event modelling to tune seasonal volatility and compare transformed Gaussian and non-Gaussian

CARMA(p, q) models. Our results indicate that the transformed Gaussian CARMA(p, q) model

is preferred over the non-Gaussian alternative with Lévy increments. Out-of-sample backtesting

results show good performance wrt burn analysis employing smooth Market Price of Risk (MPR)

estimates based on NASDAQ weekly and monthly German wind power futures prices and German

wind power utilisation as underlying. A seasonal MPR of a smile-shape is observed, with positive

values in times of high volatility, e.g. winter months, and negative values, in times of low volatility

and production, e.g. in summer months. We conclude that producers pay premiums to insure

stable revenue steams, while investors pay premiums when weather risk is high.

Keywords: market price of risk, risk premium, renewable energy, wind power futures, stochastic

process, expectile, CARMA, jump, Lévy, transform, logit-normal, extreme.
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1 Introduction

With the increase of renewable power penetration into energy systems, unsteady weather, e.g. clouds

and lack of wind, became challenges for a stable electricity supply. Hence, owners of renewable power

plants, such as wind or solar farms, face the risk of unstable revenue streams due to volatile weather

conditions. These uncertainties may be harmful elements of their business, but with fair risk premium

they can trigger investment decisions into new green energy projects. Green financial products allow to

transfer risk to investors and create more stable revenues. Indeed, such an insurance-like security (ILS)

standardised to volume and delivery period, with a pay-off function dependent on the performance of

the underlying will as in stock markets reduce volatility (Pérez-González & Yun 2013) and is widely

known as weather derivative.

Weather derivatives (WD) are contracts to hedge risk exposures of weather volatility. The payment

is contingent on weather related measurements and is applicable to any renewable energy project, such

as wave, solar or wind power projects. Wind speed indices tracking the variations in wind speed, that

is required to infer on the wind power production of wind farms, were introduced in Summer 2007

by the U.S. Futures Exchange (USFE) in combination with related futures products for Texas and

New York. A first methodology on modelling wind futures based on the Nordix index as underlying

has been introduced by Benth & Šaltytė Benth (2009) using risk neutral pricing. The products were

not traded well and soon the USFE unlisted them. In 2015, the National Association of Securities

Dealers Automated Quotations (NASDAQ) and the European Energy Exchange (EEX) announced

to list wind power futures (WPFs) as standardised products responding to the increased interest into

renewables in Germany as well as to the growing need of volume risk hedging. NASDAQ introduced

WPFs for the German market in December 2015. The EEX followed in October 2016. The market

for WPFs is still small but growing and of increasing interest not only to wind power owners, but to

banks, investors and owners of conventional power plants (Gersema & Wozabal 2017).

In this article we focus on WPFs traded at the NASDAQ, since the given trading period is larger

than we could have collected for the WPFs traded at the EEX. By definition, WPFs are contracts

settling against the expected average power production of a future delivery period. The underlying

of these contracts at the NASDAQ is the NAREX-WIDE index, a daily average utilisation factor,

that translates percent of utilisation directly into euro per wind production hour. Hence, WPFs are

linked to WDs not directly via meteorological measurements but rather by measurements affected by

meteorological variables.

The field of WD pricing comprises several streams of literature, ranging from econometric pricing
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(Campbell & Diebold 2005), equilibrium pricing models (Gersema & Wozabal 2017), burn analysis

(Jewson & Brix 2005), indifference pricing (Benth, Ebbeler & Kiesel 2014) to risk neutral pricing

(Benth et al. (2007), Benth & Šaltytė Benth (2009), Härdle & López-Cabrera (2012), Härdle et al.

(2016), Groll et al. (2016)). Our article contributes to the latter area of research.

Benth et al. (2007) introduced a four step algorithm calculating WD prices for temperature. The

methodology accounts for seasonality, a seasonal variance component and employs normalised risk

factors by an autoregressive model in continuous time. Benth et al. (2011), Härdle & López-Cabrera

(2012) and Groll et al. (2016) show applications in weather markets. Härdle et al. (2016) develop a

methodology for spatially and temporally local pricing of temperature dynamics that refines the Benth

technology. Methods of modelling rain products were introduced in Härdle & Osipenko (2017) and

López-Cabrera et al. (2013). Benth & Šaltytė Benth (2009) make use of a Box-Cox transformation

to get CAR models with Gaussian increments or using wavelets (Alexandridis & Zapranis 2013) for

the (theoretical) pricing of wind futures and empirical modelling of the underlying.

The underlying wind power utilisation is a complex process. Wind turbines require a certain wind

speed to start production and are shut down and disconnected for high wind. These cut-in and

cut-off areas can vary across turbine types, but lie usually in the ranges of 3 − 5 m/s and 25 − 30

m/s, respectively. Due to cut-in and cut-off periods depending on the wind speed, the wind power

utilisation exhibits a bi-modal heavily right-skewed density either due to jumps in production and/or

strong autocorrelation. The density reduces to a right-skewed distribution when focussing on daily

averages.

Recent literature focusses on models with jump diffusion, comprising the heavy tailed risk fac-

tors (Barndorff-Nielsen et al. (2013), Weron (2008), Benth & Ortiz-Latorre (2014), Veraart (2016),

Schlemm & Stelzer (2012), Benth, Klüppelberg, Müller & Vos (2014)). Jumps in power generation

might point into the direction of Lévy-models. If, however, autocorrelation is the main driver of the

right-skewed distribution the jump diffusion model will not be a good choice. To tackle this issue, we

propose a rather simple framework that allows for generalisation to intraday-modelling and deliver a

comparison of our Gaussian candidate model with non-Gaussian alternatives employing information

criteria.

Moreover, our candidate model is applicable to other areas of WDs and is able to mimic the

inherent stochastic process of the increments in a simple manner. The distribution of wind power is

heavily right skewed or shows bi-modality, and hence, a challenge for off the shelf pricing algorithms.

Power type transformations, e.g. Box-Cox, help to get closer to normally distributed risk factors

(Benth & Šaltytė Benth 2009). Instead of a Box-Cox transformaiton we apply a logit-transformation
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to the power utilisation for its better numerical properties. We use periodic B-splines to have a

flexible seasonal component, allowing to capture within-year seasonality, that is easily extendible to

intra-day estimates (Ziel et al. 2016). In addition, we propose a smooth inter expectile range (sIER)

and smooth inter quartile range (sIQR) estimator of the seasonal variance to achieve Gaussian risk

factors.

We perform our empirical analysis on a data set consisting of a collection and aggregation of

transmission system operator (TSO) data on wind power production and capacity in Germany for each

bidding area. We procure quasi maximum likelihood (QML) for the estimation of the CARMA(p, q)-

Lévy model coefficients, and an approximation for the Gaussian CAR(p). The Lévy increments show

a good fit to the right skewed empirical density of the wind power index indicating increments driven

by an asymmetric variance gamma process, leaving however some unexplained autocorrelation in the

residuals. Moreover, tails of the distribution are not precisely explained by the variance gamma fit,

while the transformed Gaussian model is able to mimic the tails more solid.

In-sample-fit comparison of the models with Akaike information criterion (AIC) for transformed

data (Akaike 1978) indicates a preference of the transformed Gaussian over the Lévy type model.

The out-of-sample performance of our model for market price prediction deploying root mean sqaured

error (RMSE) and mean absolute percentage error (MAPE). The comparison consists of different

market price of risk estimates vs. the burn-in analysis by Jewson & Brix (2005), as well as actual

average power utilisation as naive benchmark vs different MPRs. Employing time-variant smooth

MPR estimates outperforms the benchmarks: burn analysis and naive actual average utilisation. The

data on WPF prices has been colleced via Bloomberg Professional for monthly and weekly contracts

for 2016.

The rest of the article is structured as follows. First, we briefly discuss wind power indices and

summarize the data in Section 2. An introduction to wind power derivatives follows in Section 3. We

discuss our empirical findings in Section 4 and conclude with some future research ideas in Section 5.

All computations have been done in R and accessible via GitHub and www.quantlet.de. PGFP

2 Wind Power Index

Wind power indices are the underlyings of WDs and have been in the focus of recent energy research.

Ritter et al. (2015b) and Ritter et al. (2015a) calculate a wind power index based on the logarithmic

law and a five point non-linear conversion function for hourly NASAMERRA wind speed data. On the

application side, Deutsche Börse and EuroWind estimate a wind power index based on MERRA data
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and a grid oriented average model for wind power conversion. NASDAQ has introduced the NAREX-

WIDE index and Wind Power Futures for Germany in September and December 2015, respectively.

Their underlying is calculated in cooperation with the Meteogroup based on ECMWF ERA and

NASA MERRA data. The European Energy Exchange AG (EEX) in cooperation with EuroWind

has introduced a wind power index based on Deutscher Wetter Dienst (DWD) and Zentralanstalt für

Meteorologie und Geodynamik (ZAMG) measurements at a daily resolution. All these indices, accept

for Ritter et al. (2015b) and Ritter et al. (2015a), are national aggregates.

Most importantly, no reliable index data source for location specific wind power loads is available

at a good resolution that provides reasonable estimates. That might be one reason, why the market

around WPF is still small, as proximity of the wind turbine to the measurement location of the

underlying is essential for reliable hedging.

We calculate the wind power utilisation based on realised production values and installed capacity

at a 15min resolution for Germany and a time horizon from 2010 to 2016 published by the transmission

system operators (TSO). Wind power production has been monitored in Germany since 2006, however,

except for Tennet and 50Hertz, the data has inconsistencies, due to legal untangling of network

operation and production in 2010. That restricts our focus to the period starting in 2010 and ending

in 2016. We aggregate the production over all four network operator areas and scale by the time-

variant capacity factor to get the realised utilisation.

Ut
def
=
WPLt
Ct

· 100, t = 1, . . . , T,

where Ut is utilisation in percent and is the ratio of WPLt the generated wind power load and

Ct the capacity of the turbines at time t. Wind power futures are priced on a daily basis, thus

we will consider only daily averages of the index. The realised utilisation will be averaged over 96

quarter-hours. Moreover, for simplicity, we remove additional days from leap years, such that we have

T = 2190 observations. The empirical unconditional probability density function is given in Figure 1.
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Figure 1: Density of wind power utilisation. Left: Daily TSO data (2010-2015)
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3 Wind power derivatives

By definition from the NASDAQ, a wind power future is a contract on settling the expected average

wind power production of future delivery periods with the underlying long term utilisation (wind load

factor) per contract period. This contract offers the payoff of the value of the underlying asset at the

end of the agreement. Similar to temperature derivatives, the contract can be traded at any time until

maturity, also within the delivery period [τ1, τ2] and in comparison to forwards an exchange traded

standardised product with daily settlement.

The underlying asset for wind power futures can be calculated as the average wind utilisation from

time point τ1 to τ2, the NAREX-WIDE index,

NAREX(τ1, τ2)
def
=

100%

τ2 − τ1

∫ τ2

τ1

WPL(s)

C(s)
ds =

100%

τ2 − τ1

∫ τ2

τ1

U(s)ds, (1)

whereWPL(s) is the long term wind power load and C(s) is the capacity of the installed power plants

and U(s) is the utilisation at time s for a period τ1 to τ2. The percentage of utilisation is directly

translated into euro per wind production hour. The WPF is then defined as

FNAREX(t, τ1, τ2)
def
= EQθ

[
100%

τ2 − τ1

∫ τ2

τ1

Usds
∣∣Ft] , (2)

where t is the current date, τ1 and τ2 are the bounds of the delivery period, and EQθ [·|Ft] the risk

neutral expectation given an information set Ft comprising all information up to time t.

Let us give a simple example for a WPF. Suppose one is interested in a futures contract for January

2018. The short side of the contract (seller) agrees to deliver electrical wind power generated between

January 1st and 31st, theoretically 24 hours × 31 days = 744 MWh for FNAREX(t, τ1, τ2) = 20 euro

per MWh and, basically, swaps an uncertain future spot price (direct equivalent average utilisation

% within the delivery period) against a certain price (direct equivalent of on average 20 % utilisation

within that period). Since the underlying is weather dependent and volatile, the price at time t

is calculated using the expected scaled production within that period and is based on historical

data and meteorological models that result in the NAREX-WIDE index. In addition to the expected

production within the delivery period, the price incorporates all inherent volume risk: if the production

is below the expected January-production the long side (buyer) of the contract will make a loss, if

the production is above expected January-production the buyer will profit.
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3.1 Modelling wind power futures with Gaussian risk factor

A “ready to use” procedure for WDs under risk neutral probability was introduced by Benth et al.

(2007) and is presented in Table 1. After decomposing the utilisation Ut into a seasonal component

and a stochastic short term variation component, the latter is modeled using an ARMA time series

framework as mean-reversion to a market equilibrium. This is followed by the normalisation of the

variance component, usually done by a truncated Fourier series as an approximation for the seasonal

variance function. Representing the time series as a continuous ARMA model allows for stochastic

pricing according to the theory of semi-martingales and gives the market price of risk, the inherent

interest rate on the risk exposure.

Econometrics Fin. Mathematics

Ut CARMA(p, q)

↓ ↓

Xt = Ut − Λt FNAREX(t,τ1,τ2)

↓ ↓

ARMA(p, q) with εt = σtet MPR

↓

et = ε̂t
σ̂t
∼ N(0, 1)

Table 1: Procedure for modelling weather derivatives: deseasonalisation, discrete time series mod-
elling, normalisation of variance component, representation as CARMA model, future pricing and
estimation of marginal price of risk.

Modelling WPFs requires more steps than proposed by Benth et al. (2007). To achieve standard

Gaussian risk factors, we not only have to deseasonalise and normalise using a seasonal variance

estimate, but we need to transform the utilisation process first, since its unconditional density is

significantly right skewed. Transformations to normality are logarithmic or power transforms. Log-

arithmic transformation may however increase the effect from autocorrelated error terms (Benth &

Šaltytė Benth 2009). Power and log transformations compress the data around its centre. The power

utilisation Ut has a support on (0, 1). By imposing a logit-normal transformation on Ut the new sup-

port will be on the interval (−∞,∞) (Pinson 2012). The logit-normal transformation and its inverse

are given by

Ũt = γ(U)
def
= log

(
Ut

1− Ut

)
= Λt +Xt, Ut ∈ (0, 1),

Ut = γ−1(Ũt)
def
= {1 + exp(−Ũt)}−1 = [1 + exp{−(Λt +Xt)}]−1, Ũt ∈ R,
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where Ũt is the transformed power utilisation with its seasonal mean component Λt and short term

variation around that mean Xt. Before we discuss how to deal with the transformation of multivari-

ate stochastic processes, we will briefly go through some methods to determine seasonality Λt. In

literature, truncated Fourier expansions (Alexandridis & Zapranis 2013) and local linear smoothing

techniques are common practice, adaptive techniques have been introduced by Härdle et al. (2016).

The deterministic seasonal component can be modelled in several ways. Benth & Šaltytė Benth

(2009) and Härdle & López-Cabrera (2012) suggest to use a sinusoidal truncated Fourier series (TFS).

Härdle et al. (2016) employ local linear smoothing (LLS) to estimate seasonality and seasonal volatility.

Ziel et al. (2016) use periodic B-Splines regression. We model the seasonality and stochastic variance

deploying all three methods and compare them wrt their ability to generate Gaussian risk drivers.

Generalised Autoregressive Conditional Heteroscedasticity (GARCH(p, q)) is used if required within

the TFS set-up. The TFS is defined as

Λt = c0 + c1 · t+
L∑
l=1

dl cos

{
2π(t− el)
l · 365

}
, (3)

σ2
t,TFS = c0 + c1 · t+

L∑
l=1

{
d2l cos

(
2lπt

365

)
+ d2l+1 sin

(
2lπt

365

)}
+ β0(σ2

t−1εt−1)2 + β1σ
2
t−1, (4)

where Λt is the seasonality in dependence of time t, c0 the intercept, c1 the linear trend and dl and

el seasonality parameters for l = 1, . . . , L, β0 and β1 are coefficients of the GARCH(p, q) model and

εt being the residuals from modelling the deseasonalised γ-transformed utilisation factor with an

ARMA(p, q) process.

Approximations of the seasonality Λt and seasonal variance σ2
t with the nonparametric local linear

regression are given by

argmin
e,f

365∑
t=1

{
Ūt − f1s − f2s(t− s)

}2
K

(
t− s
h

)
, (5)

and

argmin
g,h

365∑
t=1

{
ε̂2
t − g1s − g2s(t− s)

}2
K

(
t− s
h

)
, (6)

respectively. Ūt is the daily utilisation average over years, f and g are parameters for the local linear

regressions, while the kernel K
(
t−s
h

)
evaluates the squared deviation from the local linear regression

locally, and ε̂t are the residuals from ARMA(p, q)
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Moreover, we employ periodic B-splines in capturing seasonality as in Ziel et al. (2016)

Λt = arg min
αj

365∑
t=1

{
Ūt −

J∑
j=1

δjΨj(st)

}2

, (7)

where Ψj(st) is a vector of known basis functions, δj are coefficients, J is the number of knots.

In addition to these methods, we propose a smooth inter expectile range (sIER) as well as a

smooth inter quartile range (sIQR) as approximations to the seasonal volatility. Their advantage over

standard techniques, is to be flexible in the degree of smoothness, and being able to comprise more

variation than the variance does. While the IQR is known to be a robust measure of volatility that

comprises 50% of data between the upper and lower quartiles of the distribution irrespective of most

outliers (Bowman & Azzalini (1997)), the IER is a measure of the tail variations and coincides with

the volatility for α = {0, 25, 0.75}. Quantile and expectile loss functions go back to Aigner et al.

(1976), Newey & Powell (1987) and Breckling & Chambers (1988) who replaced the L1 norm in the

loss function with an L2 norm. It is defined as

ρα,r = |α− I{u < 0}||u|r, r = 1, 2 (8)

where for r = 1 we have the well known α-quantiles, which are a probability measure at α-level that

corresponds to the median for α = 0.5, while for r = 2 we find the expectile, an α-level moment

measure that falls into the mean for α = 0.5.

Values beyond α = 0.5, however, are somewhat more difficult to interpret for expectiles, whereas any

α-quantile can be translated directly into the inverse of the distribution function. To formulate the IER

we specify the expectile for an arbitrary location model Yt = θ+εt as e(α, ε) = argminθ Eρα,2 [Yt−θ|Ft].

The normalised seasonal IER and IQR are defined as

σIER
def
=
e(τ = 0.75|X)− e(τ = 0.25|X)

2e−1(τ = 0.75|Φ)
, σIQR

def
=

med(|Y −med(Y )|)
2Φ−1(α = 0.75)

.

To receive a rather smooth seasonal variance that has the features of creating Gaussian risk factors,

we employ smoothing splines with truncated power basis functions, knots at every observation and the

roughness penalty approach to tackle on one hand the goodness-of-fit to the data and the smoothness

of the fit

argmin
{m,ζ}∈R

1

365

365∑
t=1

{σt,k −m(t)}2 + ζ

∫
dt

{
∂2m(t)

∂t2

}2

, (9)

with k = {IER, IQR}. The first term of (9) addresses the goodness-of-fit while the second term
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reduces roughness using the tuning parameter ζ.

Following Wahba (1990) ζ is chosen by cross-validation to minimize the bias

argmin
{m,ζ}∈R

1

365

365∑
t=1
t6=s

{σt,k −m(t)}2 + ζ

∫
dt

{
∂2m(t)

∂t2

}2

. (10)

The IER gives us a measure of the conditional volatility at specific α-levels, taking into account

the distances of the data above and below the α-level. Since we are not interested in the optimal

approximation of the seasonal variance, but rather in an approximation of the variance that generates

Gaussian risk drivers, we allow over- or underfitting. To achieve et = ε̂t
σ̂t,sIER

∼ N(0, 1) the objective

has to change to minimising the constrained Jarque-Bera test statistic

argmin
m,ζ

T

6



 T−1
∑T

t=1

(
ε̂t

σ̂t,sIER

)3

{
T−1

∑T
t=1

(
ε̂t

σ̂t,sIER

)2
} 3

2


2

+
1

4


 T−1

∑T
t=1

(
ε̂t

σ̂t,sIER

)4

{
T−1

∑T
t=1

(
ε̂t

σ̂t,sIER

)2
}2


2

− 3


2
 (11)

s.t. smooth seasonal IER or IQR from equation (9).

In a second step we minimize the distance of the standard deviation of the normalised residuals

et = ε̂t
σ̂t,sIER

∼ N(0, 1) to the standard deviation of the normal distribution. If normalised residuals

were standard normally distributed κ should equal 1

argmin
κ

∣∣∣∣ 1

κ ·
√
T

(
e>e
) 1

2 − 1

∣∣∣∣.
After removing the seasonal component Λt from the γ-transformed stochastic process Ũt, the short

term variation is modelled with an Ornstein-Uhlenbeck (CARMA(p, q)) process. Then the multivari-

ate CARMA(p, q) process with p > q ≥ 0 solves

a(D)Yt = b(D)DB(t), D
def
=

d

dt
,

where the auto-regressive polynomial is given by

P (z) = zp + a1z
p−1 + . . .+ ap

and the moving-average polynomial by

Q(z) = b0 + b1z
q + . . .+ bp−1z

p−1.
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Then we have

Ũt = Λt + Yt (12)

dΛt = Λtdt (13)

Yt = b>Xt (14)

dXt = (AXt + epσtθt)dt+ epσtdB
θ
t , (15)

where

A =



0 1 0 . . . 0

0 0 1
. . . ...

... . . . . . . 0

0 . . . . . . 0 1

−ap −ap−1 . . . −a1


ep =



0

0
...

0

1


, b =



1

b1

...

bp−2

bp−1


Xt =



Xt

X
(1)
t

...

X
(p−2)
t

X
(p−1)
t


,

Xt being the state vector with the derivatives of the continuous-time AR(p) process and Bθ
t = Bt −∫ T

0
θsds is the Esscher transform to model the risk premium θ using the parametric class of probabilities

Qθ that is equivalent to P (for detail see Karatzas & Shreve (1991), pp 191-201). If bj = 0 for j ≤ 1

the model reduces to a continuous-time AR(p) model. A generalisation of CARMA processes to q > p

are discussed in Brockwell & Hannig (2010).

We get the wind power dynamics as

Xt = exp{A(t− s)}Xs +

∫ t

s

exp{A(t− u)}epσuθudu+

∫ t

s

exp{A(t− u)}epσudBθ
u

The mean of the stochastic process is then given by

µθ(s, t,Xt)
∆
= e>1 exp{A(t− s)}Xs +

∫ t

s

e>1 exp{A(t− u)}epσuθudu

and the the variance by

Σ2(s, t)
∆
=

∫ t

s

σu
[
e>1 exp{A(t− u)}ep

]2
du.

To determine the futures prices of transformed stochastic processes we follow Benth & Šaltytė Benth

(2009). Since the futures prices are determined by the average of utilisation percent within the

contract period we can write

F̂t,τ1,τ2 = Eθ [Ut|Ft]

=
1

τ2 − τ1

∫ τ2

τ1

(
1 + exp

[
−
{

Λt + µθ(s, t,Xt) +
1

2
Σ2(s, t)

}])−1

.
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Then the back-transformed power utilisation is given by the inverse transformation of the sum of

seasonality, the drift and the diffusion component

Ut = (1 + exp [−{Λt + µθ(s, t,Xt) + Σ(s, t)Z}])−1 ,

where Z ∼ N(0, 1) is white noise.

3.2 Modelling wind power futures with jump-risk

To incorporate jump risk we model a Rm-valued Lévy process L that satisfies squared integrability

E||L||2 < ∞. The advantage of the Lévy-type model is to model the inherent jump structure of Ut

directly without imposing a transformation as

Ut = Λt + Yt

for which the Ornstein-Uhlenbeck (CARMA(p, q)-Lévy) process can be represented as

dΛt = Λtdt (16)

Yt = b>Xt state equation (17)

dXt = (AXt)dt+ edLt, observation equation (18)

where

A =



0 1 0 . . . 0

0 0 1
. . . ...

... . . . . . . 0

0 . . . . . . 0 1

−ap −ap−1 . . . −a1


ep =



0

0
...

0

1


, b =



b0

b1

...

bp−2

bp−1


Xt =



Xt

X
(1)
t

...

X
(p−2)
t

X
(p−1)
t


,

Xt being the state vector with the derivatives of the continuous-time AR(p) process. If bj = 0 for

j ≤ 1 the model reduces to a continuous-time AR(p) model. A generalisation of CARMA processes

to q > p are discussed in Brockwell & Hannig (2010). L is the pure jump Lévy process with the

Lévy-Itô representation Lt =
∫ t

0

∫∞
0
zNL(ds, dz), t ∈ [0, T ], where NL is a Poisson random measure

with Lévy measure l that satisfies
∫∞

0
zl(dz) <∞ (Benth & Ortiz-Latorre 2014). If all eigenvalues of

the coefficient matrix A have negative real parts, then (Xt)t∈R given by

Xt =

∫ t

−∞
exp{A(t− s)}epdLs

12



is the strictly stationary solution to the SDE (18) and

Yt = b>Xt =

∫ t

−∞
b> exp{A(t− s)}epdLs (19)

represents the CARMA(p, q) process without stochastic volatility (Barndorff-Nielsen et al. 2013). In

general Lévy processes are semi-stationary processes. From economic rational, however, we rather

want to model prices that vary around an equilibrium, hence the mean-reverting part of the CARMA

model. For a discussion of L2-integrability conditions of Lévy semi-stationary (LSS) processes see

Barndorff-Nielsen et al. (2013), for this research we assume integrability conditions to hold true for

the presented CARMA(p, q) model.

To model the risk premium, we need to consider the Esscher transform for semi-martingales (Shiryaev

(2001), pp. 701-703, Barndorff-Nielsen et al. (2013)), that is defined via a local Q-martingale Qθ
L for

L and the real valued parameter function θ(t) through the Radon-Nikodym density process

dQθ
L

dP

∣∣∣∣
Ft

= exp

(∫ t

0

θ(s)dLs −
∫ t

0

φL{θ(s)}ds
)
,

with

φL(x) = exp[E{xL1}] = ψ(−ix) = dx+
1

2
x2b+

∫
R
{exp(xz)− 1− xz1{|z|≤1}}lL(dz).

Following Shiryaev (2001) and Barndorff-Nielsen et al. (2013), the Lévy properties are preserved in

the Lévy-Khinchine respresentation for

dθ = d+ bθ +

∫
|z|≤1

z{exp(xz)− 1}lL(dz),

and having the mean adjusted moment generating function

ψθL(x) = ψL(x+ θ)− ψL(x).

For an arithmetic price model with

Ut = Λt + Yt

and the Esscher transform measure Qθ we find the future price given by

Ft(T ) = ΛT +

[ ∫ t

−∞
b> exp{A(T − s)}dLs + EQ[L1]

∫ T

t

b> exp{A(T − s)}θ(s)ds
]
.
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4 Empirical results

4.1 The Gaussian case

The coefficient estimates of the seasonal component modelled with truncated Fourier series are pre-

sented in Table 2. The coefficient estimate ĉ1 in Table 2 is almost 0 indicating stationarity of the

underlying wind power utilisation process Ut. Augmented Dickey–Fuller (ADF) and the Kwait-

kowski–Phillips–Schmidt–Shin (KPSS) tests provide the same conclusion with p-values below 0.01

and above 0.1, respectively. For the local linear regression we use rule-of-thumb (RoT) bandwidth

ĥRoT = 2.946 as suggested by Bowman & Azzalini (1997) on page 31, as well as allowing some

oversmoothing (RoTos) and bias minimising cross-validation (CV). To extract the seasonality using

periodic B-splines we estimate six coefficients, all of which are negative as Table 3 shows.

ĉ0 ĉ1 d̂1 d̂2 ê1 ê2 ĥRoT ĥRoTos ĥCV

−1.749 0.000 0.474 9.275 0.083 −17.970 2.946 8.140 0.823

Table 2: Coeffiecient estimates for the seasonality approximation with truncated Fourier series (TFS)
and bandwidth: rule-of-thumb (RoT), oversmooth RoT (RoTos) and cross-validated (CV).

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

−1.685 −2.402 −1.992 −1.760 −0.766 −1.800

Table 3: Coefficient estimates for the seasonality approximation with periodic B-Splines method.

The estimated seasonality curves are presented in the left panel of Figure 2. While the truncated

Fourier series and B-splines method seem to give good fit of the seasonal component, local linear

smoothing performs well for larger bandwidths than proposed by cross-validation.
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Figure 2: Seasonality and seasonal variance: Local Linear Estimator with CV-bandwidth, LLE-
oversmooth, Truncated Fourier Series, periodic B-Splines

The seasonal variance is captured by (4) representing the TFS, (6) giving the LLE and 9 for the

smooth IER. Estimated curves are presented in the right panel of Figure 2. Coefficient estimates

of the TFS are given in Table 4. An ARCH-test indicates no requirement of volatility GARCH-

modelling, with p-value of 0.844. The bandwidth for the estimate σ̂t,LLE has been chosen via the rule

of thumb by Bowman & Azzalini (1997), page 31. Bandwidth selection using cross-validation in the

cases of seasonality as well as seasonal variance leads to very coarse and very smooth approximations,

respectively. We estimated the IER seasonal variance using cross-validation and maximisation the

normality as tuning parameter choices. Maximisation of normality is done in two steps. First, we

estimate the tuning parameter ζ that maximises normality with respect to third and fourth moments,

then we rescale the seasonal variance such that the normalised increments follow standard normal

distribution. We select a scaling parameter κ that minimises the absolute deviation of the standard

error of et = ε̂t
σ̂t,sIER

from 1

argmin
κ

∣∣∣∣ 1

κ ·
√
T

(
e>e
) 1

2 − 1

∣∣∣∣.
ĉ0 ĉ1 d̂1 d̂2 d̂3 d̂4

0.591 0.000 0.131 0.013 0.032 −0.033

ĥCV ĥRoT ĥRoTos ζ̂CV ζ̂Φ κ̂

33.541 2.143 6.428 0.844 0.1775 1.639

Table 4: Top: Coeffiecient estimates for the approximation of the seasonal variance with truncated
Fourier series (TFS). Bottom: tuning parameters for LLE, smooth IQR seasonal variance estimates.

The tuning parameters were ζ̂CV = 0.844 and ζ̂Φ = 0.178 were used to estimate seasonal variance for
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IER and IQR. After rescaling of the residuals with κ̂ = 1.639 we get standard normal increments. The

results of the normalisation using different approximations of the seasonal variance are presented in

Figure 3. We use Jarque-Bera-test (JBT), Andersen-Darling-test (ADT), Shapiro-Wilk normality test

(SWT), Cramer von Mises test (CvM), Kolmogorov-Smirnov test (KST) to measure the performance

in achieving Gaussian risk factors. The labels in Figure 3 are to be read as, for instance, in "TFS-

IQR.CV": the first term stating the seasonality extraction method, the second part the seasonal

variance estimation technique. Seasonality extraction using TFS and seasonal variance normalisation

employing IQR with CV tuning parameter. The choice of seasonal variance approximation has large

influence on the outcome. The robust smooth IQR outperforms any other method if the tuning

parameter is chosen to minimise the Jarque-Bera-test statistic given in (11).

LL
.R
oT
−L
L.
R
oT

LL
.R
oT
−L
L.
R
oT
os

LL
.R
oT
os
−L
L.
R
oT

LL
.R
oT
os
−L
L.
R
oT
os

LL
.C
V−
LL
.R
oT

LL
.C
V−
LL
.C
V

TF
S−
TF
S

LL
.R
oT

LL
.R
oT
−I
ER

LL
.R
oT
−I
ER

.C
V

LL
.R
oT
os
−I
ER

LL
.R
oT
os
−I
ER

.C
V

LL
.C
V−
IE
R

LL
.C
V−
IE
R
.C
V

TF
S−
IE
R

TF
S−
IE
R
.C
V

LL
.R
oT
−I
Q
R

LL
.R
oT
−I
Q
R
.C
V

LL
.R
oT
os
−I
Q
R

LL
.R
oT
os
−I
Q
R
.C
V

BS
−I
Q
R

BS
−I
Q
R
.C
V

LL
.C
V−
IQ
R

LL
.C
V−
IQ
R
.C
V

TF
S−
IQ
R

TF
S−
IQ
R
.C
V

AD
T

JB
T

SW
T

C
vM

KS
T

0.
0

0.
2

0.
4

0.
6

0.
8

ADT

JBT

SWT

CvM

KST

rot−rotrot−rotosrot−rotusrotos−rotrotos−rotosrotos−rotusCV−rotCV−rotusCV−CVTFS−TFSrot rot−IERrot−IER−CVrotos−IERrotos−IER−CVCV−IERCV−IER−CVTFS−IERTFS−IER−CVrot−IQRrot−IQR−CVrotos−IQRrotos−IQR−CVBS−IQRBS−IQR−CVCV−IQRCV−IQR−CVTFS−IQRTFS−IQR−CV

0.0

0.2

0.4

0.6

0.8

Figure 3: p-values corresponding to Anderson-Darling, Jarque-Bera, Shapiro-Wilk, Cramer-von-Mises
and Kolmogorov-Smirnov normality tests for several methods of seasonal variance normalisation.

We model the short-term variation using an ARMA(p, q) model in the discrete world from which we

infer to the continuous time ARMA parameters. While we estimate the coefficients of CAR(p) models

with an approximation, we estimate the CARMA(p, q) coefficients employing the Quasi Maximum

Likelihood Estimation (QMLE). A nice overview on QMLE for CARMA-Lévy processes is provided

in Schlemm & Stelzer (2012). The autocorrelation function (ACF) and partial ACF indicates an

ARMA(4, 2) representation (see Figure 4). Following the Bayesian Information Criterion (BIC) that

penalises large models suggests an AR(3) model. The original series in the Lévy-jump representation

is modelled then by an ARMA(3, 1) as the jump process requires q ≥ 1.
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Figure 4: ACF and PACF of the deseasonalised time series

Coefficient estimates for ARMA(3, 0) are given by â1 = 0.724, â2 = −0.216 and â3 = 0.060. The

MA parameter from CARMA-Lévy modelling is b1 = −0.551. Fitting the sIQR-normalised increments

to the standard normal distribution gives an Akaike Information Criterion of 6218.001 (This value will

be used later in the comparison with the CARMA-Lévy model). Normalising the residuals with the

seasonal variance results a very good fit, as the density, log-density and quantile-to-quantile matching

in Figure 5 suggests.
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Figure 5: From left to right: pdf of the standardised residuals (with IQR) of the logit transformed
utilisation factor vs normal pdf, log-pdf vs. log-normal pdf, quantile-quantile plot.

4.2 The stationary Lévy case

Modelling the untransformed deseasonalised utilisation factors, we consider the generalised hyperbolic

(GH) distribution, introduced by Barndorff-Nielsen (1978), to capture the features of the Lévy-process.

We follow Barndorff-Nielsen et al. (2013) in their representation. SupposeX is a k-dimensional random

vector, then

X
law
= µ+Wγ +

√
WAZ,
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where Z ∼ Nk(0, Ik), A ∈ Rd×k, µ, γ ∈ Rd. W is a non-negative random variable, following Gener-

alised Inverse Gaussian (GIG) distribution and independent of Z

fGIG(x) =

(
ψ

χ

)λ
2 xλ−1

2Kλ(
√
χψ)

exp

{
− 1

2

(
χ

x
+ ψx

)}
,

where Kλ is the modified Bessel function of third kind and index λ

Kλ(x) =
1

2

∫ ∞
0

yλ−1 exp

{
− x

2
(y + y−1)

}
dy,

while the parametrisation of ψ and χ are given by

ψ = ᾱ
Kλ+1(ᾱ)

Kλ(ᾱ)
, χ =

ᾱ2

ψ
= ᾱ

Kλ(ᾱ)

Kλ+1(ᾱ)
.

For the one dimensional data (d = k = 1), we restrict the estimation of parameters to the distributions

in Table 5

Distribution λ ᾱ χ ψ

GHYP λ ∈ R ᾱ > 0 χ > 0 ψ > 0

NIG λ = −1
2

ᾱ > 0 χ > 0 ψ > 0

t (ν df) λ = −ν
2
< 1 ᾱ = 0 χ > 0 ψ = 0

HYP λ = −d+1
2

ᾱ > 0 χ > 0 ψ > 0

VG λ > 0 ᾱ = 0 χ = 0 ψ > 0

Table 5: Bounds of parameters for the generalised hyperbolic (GHYP), normal inverse Gaussian
(NIG), Student-t with ν degrees of freedom, hyperbolic (HYP) and variance gamma (VG) distribu-
tions.

The fitting to the distributions in Table 5 for the symmetric and asymmetric cases as well as for

the Gaussian distribution have been done using quasi-maximum likelihood estimation (QMLE).

First we estimate of the CARMA(3, 1)-Lévy process using the QMLE, then we fit the increments

to potentially interesting distributions. Results of fitting the CARMA-Lévy increments based on the

deseasonalised utilisation factor to the 5 distributions, including symmetric and asymmetric cases,

are given in Table 6. Comparing the fits to the selected distributions by the Akaike Information

Criterion indicates consideration of the Variance-Gamma distribution to be best-suited to represent

the inherent distribution of the Lévy-increments.
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To make it possible to compare models of transformed and non-transformed data, Akaike (1978)

suggests adjusting the AIC of the transformed model with the Jacobian of the transformed data. In

our case it is simply adding

AICγ + 2
T∑
t=1

log

∂ log
(

Ut
1−Ut

)
∂Ut

 = AICγ + 2
T∑
t=1

log

(
1

Ut − U2
t

)
,

resulting in AICγ + Adjustment = 6218.001 + 2 · (4847.232) = 15912.47. Following Akaike (1978), we

can directly conclude that the transformed model is preferred over any of the generalised hyperbolic

CARMA-Lévy models.
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Figure 6: From left to right: pdf and histogram of the standardised residuals vs pdf of a VG distri-
bution, log-pdf vs. log-VG pdf, quantile-quantile plot.

Moreover, the log-density fit in Figure 7 indicates that extreme values of our wind power utilisation

are not well described by the Variance-Gamma fit. Further, the the ACF of squared residuals indicates

existence of some autocorrelation and thus misspecification in the Lévy case (see Figure 7). Thus, for

the estimation of WPF prices, the calibration of the MPR we will use the Gaussian logit-transformed

CARMA(p, q)-model.
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Figure 7: ACF of squared residuals: Gaussian (left), Lévy (right).
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Model Sym λ ᾱ µ σ γ AIC LLH Conv Iter

VG F 1.426 0.000 -5.386 10.410 5.390 16530.366 -8261.183 T 319

GHYP F 1.418 0.052 -5.365 10.416 5.367 16532.365 -8261.182 T 404

HYP F 1.000 0.008 -4.580 10.886 4.587 16547.773 -8269.886 T 167

NIG F -0.500 1.229 -5.663 10.308 5.664 16551.142 -8271.571 T 177

t F -2.908 0.000 -6.367 10.251 6.468 16580.033 -8286.016 T 205

HYP T 1.000 0.691 -1.329 11.302 0.000 16667.974 -8330.987 T 92

GHYP T 0.600 0.859 -1.319 11.331 0.000 16669.597 -8330.799 T 155

NIG T -0.500 1.048 -1.239 11.368 0.000 16669.612 -8331.806 T 82

VG T 1.541 0.000 -1.380 11.268 0.000 16670.515 -8332.257 T 78

t T -2.252 0.000 -1.084 11.577 0.000 16680.239 -8337.120 T 88

Table 6: Estimation results: Fit of CARMA-Lévy increments to a selection of generalised hyperbolic
distributions.

4.3 Market price of risk

In this section we discuss the market price of risk θ, a parameter that essentially captures the additional

return for taking more risk. θ can be inferred from the difference of the historical (under P ) and risk-

neutral (under Q) behaviour of the underlying (Härdle & López-Cabrera 2012) given liquidity of

the derivative market. The wind power futures market is rather young, hence, liquidity cannot be

guaranteed. Nevertheless, we assume the same mechanisms to be working at least approximately.

We investigate the MPR structure within contracts over all trading days to understand the effect of

time to maturity on the risk premium. From electricity futures it is well known that the risk premium

is positive close to delivery, decaying and even becoming negative the further the delivery is in the

future (Benth, Klüppelberg, Müller & Vos 2014). Positive risk premiums are associated with the need

for locking in prices (here equivalent to volume) as a hedge against weather or spike risk. Similar

results can be expected for WPF as their underlying directly translates into price per MWh and is

not storable at low cost. Moreover, we are interested in the seasonal structure of WPF, especially,

their seasonal behaviour. It is expected that in times of high volatility investors tend to pay a risk

premium to hedge against weather or spike risk (Härdle & López-Cabrera 2012). This coincides with

the definition of the risk premium

RP i
τ i1,τ

i
2

∆
=

∫ τ i2

τ i1

θuσue
>
1 A

−1[exp{A(τ i2 − u)} − Ip]epdu, (20)
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where θ is directly connected to seasonal volatility σt.

To value wind power futures we consider a constant and a time-variant smooth MPR. Since wind

power production is strongly affected by current wind conditions, it is intuitive to investigate short

term contracts, such as weekly and monthly WPF. The weekly contracts are set over 10 days, while

the monthly contracts have a 4 weeks delivery period. We observe the underlying wind power every

day. Prices are set only on trading days. This leads to a mismatch resulting in less than 10 or 30 days

per contract type. Thus, on average 7 to 8 days of weekly futures capture the information of the 10

days contracts and 20 days of monthly futures capture information of 30 days contracts. Since only

little trading happens until the delivery period begins, we focus on the delivery period.

We estimated the empirical market price of risk θ as the volatility-scaled difference between the

futures prices at the NASDAQ for monthly and weekly contracts and our expected value over the

contract period. The constant MPR is estimated for different futures contracts with different mea-

surement periods [τ i1, τ
i
2], t < τ i1 < τ i2, for i = 1, . . . , I contracts

θ̂it = argmin
θit

(
FNAREX(t,τ i1,τ

i
2) − F̂NAREX(t,τ i1,τ

i
2)

)2

.

A smooth MPR estimates can be achieved by minimising (21) for given empirical implied MPR

estimates θ̂t.

argmin
{f,ζ}∈R

n∑
t=1

{
θ̂t − f(ut)

}2

+ ζ

∫
dt

{
∂2f(ut)

∂t2

}2

(21)

The empirical MPR estimates are presented in Figure 8 for all contracts and trading days. The

smoothed median is illustrated in red and the inter quartile range (IQR) as the grey shaded area. The

left panel shows θ̂t for weekly WPF. The MPR is mostly positive for weekly and monthly contracts.

It shows a curve shape, converging to zero at the beginning of the delivery period, which leaves

approximately 7-8 trading days for weekly and at 20 trading days montly contracts. Hence we observe

a jump in the θ at these bounds.
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Figure 8: Left: empirical Market Price of Risk (MPR) θ̂ for weekly contracts. Right: θ̂ for monthly
contracts. Median θ̂ in red, IQR shaded in grey.

To observe the seasonal structure of WPFs we estimate θ̂ contract-wise, resulting in a smile-shape

for weekly contracts. Moreover, we find a change of sign in the summer months, as Figure 9 reveals.

This points towards investors paying a premium in the winter months, when seasonal volatility is

high, and producers paying a premium in summer months, when volatility but similarly production

is low, to insure their production. As for monthly contracts, we have only limited data, we observe

an increasing structure, beginning negative and ending in the positive over a period slightly more

than half a year. Nevertheless we can assume that the structure will be similar for the winter months

January to March, leading to a smile shape. This indicates that the MPR is strongly affected by

seasonal variance and is the fair price for taking on additional weather or climate risk.
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Figure 9: Seasonal structure of MPR. Left: θ for weekly contracts. Right: θ for monthly contracts.
Samples consists of 17 weekly and 9 monthly contracts.

In Table 7 we present out-of-sample backtesting results of θ = {0,OLS, smooth} employing the

performance measures RMSE and MAPE, given in (22) and (23), respectively, for weekly WPF
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contracts.

RMSE(y, ŷ) =
1

n

n∑
i=1

√
(yi − ŷi)2 (22)

MAPE(y, ŷ) =
1

n

n∑
i=1

∣∣∣∣(yi − ŷi)yi

∣∣∣∣ (23)

When comparing the different estimates of MPR among our models, the smooth MPR performs best,

since it captures the temporal dynamic that exists even after normalisation of the risk premium with

seasonal variance. Also comparing the futures price estimates with the actual average production

within the delivery period, we find slightly better performance of the smooth MPR estimate. We

conclude that a smooth seasonal risk premium is able to explain the price movement to better extend

than constant or zero risk premiums in the short end.

RMSE θ θ̂OLS θ̂smootht

mean(θ) 0 0.042 0.039

∆(Ut, Ft) 6.906 6.906 6.906

∆(Ut, F̂t) 13.979 12.495 7.388

∆(F, F̂t) 9.975 9.293 3.745

MAPE θ θ̂OLS θ̂smootht

mean(θ) 0 0.042 0.039

∆(Ut, Ft) 20.011 20.011 20.011

∆(Ut, F̂t) 43.341 43.850 22.607

∆(F, F̂t) 36.874 39.663 19.992

Table 7: Out-of-sample backtesting results for weekly WPF prices. Left: RMSE. Right: MAPE

RMSE θ θ̂OLS θ̂smootht

mean(θ) 0 0.014 0.013

∆(Ut, Ft) 2.447 2.447 2.447

∆(Ut, F̂t) 4.145 4.145 4.066

∆(F, F̂t) 3.100 2.870 2.372

MAPE θ θ̂OLS θ̂smootht

mean(θ) 0 0.014 0.013

∆(Ut, Ft) 12.479 12.479 12.479

∆(Ut, F̂t) 20.091 17.323 17.245

∆(F, F̂t) 13.805 12.645 8.460

Table 8: Out-of-sample backtesting results for monthly WPF prices. Left: RMSE. Right: MAPE

For out-of-sample backtesting results of monthly WPF contracts, presented in Table 8, the smooth

MPR outperforms burn analysis and the OLS estimate using both criteria. Comparing with the actual

average production as price estimate, smooth MPR delivers better results.

To test the sensitivity towards outliers we estimate cross-validated OLS and smooth MPR. The

results can be taken from Table 9. The smooth MPR performs best for weekly contracts and RMSE,

while the smooth MPR performs best for monthly contracts and MAPE, but on average similar or

slightly worse than the average utilisation as price indicator.
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RMSE weekly WPF monthly WPF

θ̂OLSCV θ̂smootht,CV θ̂OLSCV θ̂smootht,CV

mean(θ) 0.042 0.040 0.014 0.013

∆(Ut, Ft) 6.906 6.906 2.447 2.447

∆(Ut, F̂t) 12.495 7.759 4.145 4.074

∆(F, F̂t) 9.293 4.085 2.870 2.496

MAPE weekly WPF monthly WPF

θ̂OLSCV θ̂smootht,CV θ̂OLSCV θ̂smootht,CV

mean(θ) 0.042 0.040 0.014 0.013

∆(Ut, Ft) 20.011 20.011 12.479 12.479

∆(Ut, F̂t) 43.850 23.592 17.323 17.407

∆(F, F̂t) 39.663 20.556 12.645 9.760

Table 9: Out-of-sample cross-validated backtesting results for weekly and monthly WPF prices. Left:
RMSE. Right: MAPE

5 Conclusion and further research

This applied research project presents a modern method to model weather derivatives with highly

skewed underlying assets. We transform the underlying using logit-normal transformation and de-

compose the process into seasonality and a stationary mean-reverting process. To achieve overall best

performance regarding normality, we propose a robust and smooth estimate of seasonal volatility, the

smooth IQR. Further we compare our method to a stationary CARMA-Lévy model that incorporates

the skewness of the underlying within jump-increments following a Variance Gamma distribution. We

show that our method is preferred applying the Akaike information criterion for transformed models.

Further we calibrate the market price of risk (MPR) and find a MPR-smile, having positive MPR

in im times of high seasonal volatility and negative MPR in times of low seasonal volatility. Em-

ploying a time varying smooth MPR estimate, our model outperforms burn analysis and OLS MPR

estimates in out-of-sample analysis using mean absolute percentage error and root mean squared error

as performance criteria. Results change only slightly after cross-validation.

Overall we show that our simple framework, employing data transformation and seasonal variance,

allows for Gaussian risk drivers and captures the essential behaviour of WPFs to mimic the seasonal

structure of MPR in a continuous time autoregressive model.

For further understanding of the price distribution, an analysis of tail behaviour could be done in

future research. Adding another the meteorological variable wind speed as additional component into

the model, might increase the forecasting performance. Another aspect for further research is location

specific pricing. To enhance more precise hedging, location specific prices and measurements relative

to the national WPF price and index are required. That would increase the trust in the product and

its value for hedging purposes and hence, increase the trading volume and market liquidity.
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