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Abstract

The objective of this thesis is to provide a toolbox for characterization of
anomalous diffusion of tracer particle in crowded systems using fluorescence
correlation spectroscopy (FCS). We discuss that the robust information about
the probability density function (PDF) of the particle’s displacement is con-
tained in the asymptotic behaviour of the FCS curves at long and short times.
Thus, analysis of the short-time behaviour provides reliable values of exponent
of anomalous, diffusion coefficient and lower moments of the PDF. This allows
one to to confirm or reject its Gaussian nature. The Gaussianity test could be
then used to guess the correct form of the PDF from a set of competing mod-
els. We show the applicability of the proposed analysis protocol in artificially
crowded systems and in living cell experiments.
Furthermore, we investigate the consequence of non-scaling PDF on the pos-

sible results of the FCS data. As an example of such processes, we calculate the
FCS curve for a continues time random walk model with waiting times delivered
from Lévy-stable distribution with an exponential cut-off in equilibrium. The
results indicate that, although the deviations from Gaussian behaviour may be
detected when analyzing the short- and long-time asymptotic of the correspond-
ing curves, their bodies are still perfectly fitted by the fit form used for normal
diffusion.
Finally, we propose an alternative approach for performing spot variation

FCS using an ordinary FCS set-up. We introduce a non-linear transformation
which applies on the smoothed intensity profile of the detected fluorescence
photons with binning or smoothing kernel method. Autocorrelation of the gen-
erated intensity profiles mimic the FCS curves for the sizes of laser spots which
are effectively smaller than the initial one in the experiment. The obtained
FCS curves are used to investigate the presence of nano-domains or barriers in
artificially crowded systems and in living cells.

Keywords: Fluorescence correlation spectroscopy, Spot variation fluorescence
correlation spectroscopy, Anomalous diffusion, Living cell
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Zusammenfassung

Ziel dieser Arbeit ist es eine Toolbox zur Charakterisierung der anomalen
Diffusion von Tracerpartikeln in dicht gepackten Systemen mit
Ziel dieser Arbeit ist es eine Toolbox zur Charakterisierung der anomalen

Diffusion von Tracerpartikeln in dicht gepackten Systemen mit Fluoreszenz-
Korrelationsspektroskopie (FCS) zur Verfügung zu stellen. Es wird gezeigt, dass
die robusten Informationen über die Wahrscheinlichkeitsdichtefunktion (PDF)
der Verschiebung des Tracers im asymptotischen Verhalten der FCS-Kurven auf
langen, sowie auf kurzen Zeitskalen enthalten sind. So liefert die Analyse des
Kurzzeitverhaltens zuverlässige Aussagen über die Werte des Exponenten der
anomalen Diffusion, des Diffusionskoeffizienten und der niedrigeren Momente
der PDF. Dies erlaubt es eine Gaußverteilung zu bestätigen oder zu widerlegen.
Der Test auf Gaußverteilung könnte als Index verwendet werden, um die richtige
Form der PDF aus einer Reihe von konkurrierenden Ergebnissen zu erraten.
Darüber hinaus untersuchen wir die Konsequenz der nicht-skalierenden PDF

auf Ergebnis der FCS-Kurven. Wir berechnen die FCS für ein Continuous Ti-
me RandomWalk Modell mit Wartezeiten gemäß einer Lévy-stabilen Verteilung
mit exponentiellem cut-off . Die Ergebnisse zeigen, dass obwohl die Abweichun-
gen vom Gauß’schen Verhalten bei der asymptotischen Analyse erkannt werden
können, ihre Körper immer an Formen für die normale Diffusion perfekt ange-
passt werden können.
Schließlich schlagen wir einen alternativen Ansatz für die Durchführung von

Spot Variation FCS mit dem gewöhnlichen FCS-Setup vor. Wir führen eine
nicht-lineare Transformation ein, die auf das mit Binning oder Kernel smoo-
thing method geglättete Intensitätsprofil der detektierten Fluoreszenzphotonen
angewendet wird. Ihre Autokorrelation imitiert die FCS-Kurven für die Größen
des Laserspots, die im Experiment effektiv kleiner als die anfängliche Größe
sind. Die erhaltenen FCS-Kurven werden verwendet, um künstliche dicht ge-
packte Systeme sowie lebende Zellen auf Nano-Domänen oder Barrieren hin zu
untersuchen.

Schlagwörter: Fluoreszenz-Korrelationsspektroskopie, Spot-Variation Fluoreszenz-
Korrelationsspektroskopie, Anomale Diffusion, Lebende Zelle
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1 Introduction

1.1 Motivation

Deep understanding of probe particle transport within cells and their interactions
with cells is an essential step in investigating physics of life. This is also required for
further developments in medicine and biology, especially for targeted drug delivery.
In a living cell, efficient transport of the drugs and proteins to their specific desti-
nations is of great importance to its basic biological functionality and development.
Such transportation processes may be categorized in two classes: active transport
and passive transport. In active transport, the substance moves against its concen-
tration gradient and therefore, its movement consumes energy. Passive transport,
however, refers to the processes in which movement of a substance does not require
energy.
One of the main forms of the passive transport processes is (passive) diffusion

which refers to the erratic motion of particles in a system. This thermally driven
motion which consists of short-scale random displacements, generally ranging in the
scale of nano- to millimetre, plays a crucial role in different systems observed in
nature and in the laboratory. Transportation of gasses, hydrophobic molecules and
small uncharged molecules from the surrounding environments into the cell through
the membrane and vice versa are examples of diffusion processes. Therefore, investi-
gation of diffusion in biological systems is important in many innovative strategies.
In such systems, molecular crowding and complexity in and around living cells influ-
ence the diffusion process. To understand such complexities, one considers artificial
crowded fluids as toy models for mimicking the situation at hand. Such artificially
crowded system could be studied in details and results could be to some extent
generalized to explain the observations in living cell experiments.
While diffusion of a passive particle in many environments is "normal" (see Sec.1.2),

in crowded heterogeneous systems such as living cells, anomalous diffusion (see
Sec.1.3) is frequently observed. This anomaly is reported as non-linear growth
of mean squared displacement (MSD) of the tracer particle with time and/or the
non-Gaussian probability density function (PDF) of particle’s displacement in dis-
agreement with prediction of Fick’s theory of diffusion. Deep understanding of the
nature of such an ubiquitous process is has brought theoretical and experimental sci-
entists together from from biological, physical ,chemical and mathematical sciences.
Experimentalists have provided detailed information regarding the single molecule
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1 Introduction

activities in different systems. In the theoretical part, different models based on
different physical assumptions have been introduced to explain the experimental
observations and also to predict other properties of the systems. Different statis-
tical tools were also developed by mathematicians in order to distinguish between
different competing models for explanation of the experimental observations.
The advent of single molecule techniques providing the information on single

molecule activity, on the other hand, has led to a revolutionary improvement of
our understanding of transport processes in biological context. During the last four
decades, different methods have been developed to characterize diffusion processes
and have been properly modified in order to be used in biological experiments. Fluo-
rescence recovery after photo-bleaching (FRAP), single particle tracking (SPT) and
fluorescence correlation spectroscopy(FCS) are the most conventional tools that are
widely used by experimentalists in different fields of science. Although the theory
behind these techniques are so far trivial for the case of normal diffusion, interpre-
tation of results obtained using these techniques for the case of anomalous diffusion
has so far remained elusive. Fulfilling such a gap requires not only the theoretical
understanding but also an experimental background of these techniques which is
necessary for further developments. The main focus of this work is, essentially, to
provide a theoretical framework for the use of the FCS technique for observation of
anomalous diffusion which is often the case in biological experiments.
In this thesis we aim at addressing the following questions: What information is

essentially contained in the results obtained from the FCS measurement and where?
and How can one extract this information? Most information regarding the diffusing
process and the substrate is encoded in the PDF of particle’s displacement which is
a function of two variables, coordinate and time. However, FCS measurements pro-
vide us results which are function of only one variable, temporal intensity-intensity
correlation function. Therefore, to win information one considers some assumptions
about the diffusion process in analysis of FCS data which are not necessary correct in
all systems. The standard approach to obtain information from the FCS technique
is to fit the results to some simple functions which are derived assuming a Gaus-
sian form of the PDF of particle’s displacement. In case the fits are not optimum,
one adds an additional parameter to the fit functions and describes the anomalous
diffusion with this parameter.
As we proceed to show in this chapter, many models for describing the anomalous

diffusion possess non-Gaussian form of the PDF. Thus, this fitting approach may
lead to unreliable results. Therefore, we attempt at going beyond the simple fitting
method. With some mathematical analysis of the theory of FCS results, we show
that some information about lower moments of the PDF of particle’s displacement
and about the fractal dimension of the substrate can be reliably won from FCS data.
The interesting result was that such information is contained not where people are
normally looking for it, but in the short time asymptotic of the FCS curves. With
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1.1 Motivation

using this information about the lower moments, one can develop a Gaussianity test
which can be used in guessing the correct form of the PDF from competing models.
We also show that, in case of scaling form of the PDf of particle’s displacement one
can obtain robust values of diffusion coefficient and exponent of anomalous diffusion
form the asymptotic of data. With these considerations, we can introduce a general
toolbox for analysis of FCS data.
To generalize our proposed toolbox, we study the characterization of the non-

scaling PDF of particle’s displacement in the FCS data. This was motivated by some
observations in our experimental works and other reported researches in literatures in
which the PDF of particle’s displacement has a considerable deviation from Gaussian
form in short times which ceases to exit in log times. Such processes are termed as
"anomalous yet Brownian". Our studies show that, characterization of such process
with use of FCS technique is possible, only if one considers the short and long time
asymptotic in the analysis of data.
To solve the fundamental problem of finding the PDF of particle’s displacement

from the FCS data, some spatial information has to be known. This can be delivered
by a variation of ordinary FCS technique named as spot-variation FCS which is
an experimentally demanding technique. We show that the whole information is
essentially contained in the single photon count time series for any given spot radius.
Thus, with an appropriate analysis of this time series from a single experiment, one
can mimic the FCS data for the spot sizes which are effectively smaller than the
initial one. Such an approach to perform the spot-variation FCS with the possibility
of avoiding the experimental difficulties, could be used in different analysis to obtain
valuable information from an ordinary FCS technique.
This thesis is structured as follows: in following sections we define normal and

anomalous diffusion and provide a review of the models describing such scenarios.
Then we introduce the FCS technique including the experimental set-up and some
general applications.
In chapter 2, we discuss what information is contained in the FCS data. We first

re-derive the existing formula for the FCS data and provide formula for the three
dimensional case. Then we introduce the apparatus function. We then show that
the FCS curves is consist of the moments of the displacement’s. From this fact we
establish a protocol which enables one to distinguish different models of anomalous
diffusion. The theoretical results are then examined and supported by the FCS
experiments in in-vitro systems. Finally, we apply the proposed method to study
diffusion in living cells.
Chapter 3 discusses the observation of the non scaling PDF of particle’s dis-

placement using the FCS technique. We first formulate a theory explaining the
observations of anomalous yet Brownian diffusion. As a model for this, we use a
continuous time random walk model with an exponentially cut-off Lev́y distribution
waiting time distribution in equilibrium. This in principal takes into account the
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1 Introduction

time that systems ages before the start of the measurement. The analytic form of
FCS curve in short and long time asymptotic are then derived and the full FCS
curves are calculated numerically for different ageing times. We then discuss how to
observe the existence of such processes using FCS technique.
In chapter 4, we introduce a new method to improve the spatial resolution of

ordinary FCS. By exploiting the Gaussian form of the laser spot in FCS set-up,
we propose a method to obtain the FCS curves of different spot sizes by post-
processing of the recorded data from the original spot during the measurement.
This theoretical development provides valuable information about the sub-diffraction
limit scale which is generally not available using an ordinary FCS technique. The
proposed method is confirmed using some in-vitro experiments and then applied to
the in-vivo measurements.

1.2 Normal Diffusion
It was 1828, when Scottish biologist Brown, reported the observation of intriguing
random motion of certain pollen in water using a light microscope. This observation,
which is now called Brownian motion, motivated plethora of systematic experimen-
tal and theoretical studies in the Nineteenth century. First microscopic approach
explaining the nature of such observations was introduced by ? and one year later by
?, considering the diffusion as a random walk problem, giving a probabilistic picture
of Brownian motion of the tracer particle. Some time later in 1908, ?, proposed an-
other theory to the problem, assuming that the diffusing particle in a fluid medium
obeys Newtonian mechanics which experiences the external force and friction. This
approach seems to be quite different from the former ones in mathematical sense but
in principal, is closely related to the others in physical aspects. The experimental
measurement of the trajectories of colloidal particles by J.Perrin and his students
in 1908 (?), which gave a direct support to this probabilistic picture of Brownian
motion, was awarded with the Nobel prize in 1926 for providing the direct proof for
existence of molecules.

In what follows, we give a brief description of Einstein’s approach and define the
MSD and PDF of the random walker’s displacement. Then we smoothly shift to the
models for anomalous diffusion, discussing the violations of assumptions made by
Einstein for explanation of normal one. In this section, we closely follow the review
literature by (?), (?) and (?). Einstein gave the following picture of the Brownian
motion of the tracer particle: He assumed that the displacement, si, of a tracer
particle in the time intervals, τ0, to be identically distributed independent random
variables. The total displacement is then defined as x(t) =

∑N
i=1 si with N = t/τ0

being the total number of steps during the time t and due to symmetry, the mean
of displacement at any time is zero.
The most conventional parameter which is used to describe the diffusion process

4



1.3 Anomalous Diffusion

is MSD of the random walker. Despite the mean displacement, MSD is non-zero
quantity and is defined in the sense of statistical average as: 〈x2(t)〉 = 〈(

∑N
i=1 si)2〉.

Rewriting the sum one gets

〈x2(t)〉 = 〈(
N∑
i=1

si)2〉 =
N∑
i=1
〈s2
i 〉+

∑
i6=j
〈sisj〉.

The second sum term in the expression above is zero due to independence of the
jumps, namely absence of any correlation. Calling the assumptions that the second
moment of jumps is finite, and in average is < si

2 >= a2, and the step time intervals
are equal, he reached the MSD to be

< x2(t) >= 2Dt (1.1)

where D is the diffusion coefficient being D = a2

2τ0
. Based on these assumptions,

Einstein could derive the differential equation for PDF of tracer’s displacement

∂

∂t
P (x, t) = D

∂2

∂2x
P (x, t) (1.2)

which its solutions is a Gaussian function, P (x, t) = 1√
4πDt exp(−x2

4Dt ), satisfying the
initial condition of P (x, 0) = δ(x). The same diffusion equation was first introduced
by Fick (?), in 1985 following a phenomenological approach. Combining the linear
response theory for concentration of diffusing particles and conservation of number
of particles, Fick derived the same formula as of Einstein with simple replacement
of number of particles with PDF of tracer.
Therefore, normal diffusion is characterized with the linear growth of MSD with

time lag and Gaussian form of the PDF ofthe particle’s displacement. Additionally,
the PDF has a scaling form such that, higher moments of displacement can be
written as a function of second moment. Therefore, knowing the MSD for a normal
diffusion is sufficient to calculate the PDF and higher moments of the particle’s
displacement. Any deviation from these properties in diffusion process belongs to
another class of diffusion, termed anomalous diffusion, which we will discuss in the
following section.

1.3 Anomalous Diffusion
In Einstein’s approach to the problem of diffusion, he made assumptions which are
necessary not the case for diffusion of the particle in complex and heterogeneous sys-
tems such as biological ones. Plethora of observations unveiled different behaviours
of the MSD and PDF of the particle’s displacement compared to the predictions
of Einstein’s theory. The MSD of the particle in such observations did not follow
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1 Introduction

the linear dependence on time and showed a rather complicated non-linear depen-
dence as: 〈x(t)2〉 = 2Dtα with α 6= 1 being exponent of anomalous diffusion. The
PDF of the particle’s displacement, however, happened to be Gaussian or deviate
from Gaussian form for different observations with the non-linear time dependency
of the MSD. These deviations persist for time scales much larger than characteris-
tics diffusion time and cease to exist in times which could be longer than a specific
measurement time.
Those processes with exponent of anomalous diffusion greater than unity, α > 1,

are assigned to the class of super-diffusion. Such situations occur when the second
moment of step length PDF does not remain finite. The other corresponding situa-
tion is when the steps in random walk are positively correlated such that the walk
is persistent. As examples to such situations, one could refer to the random walk on
the chemical space of polymer chains and transport of particle (protein) made by
molecular motors(???).
The other class of anomalous diffusion which is the main subject of this work, is

called sub-diffusion. Sub-diffusion refers to the case that the exponent of anomalous
diffusion is smaller than unity, α < 1. Diffusion process in this situation is much
slower than normal one.
First physical scenario leading to sub-diffusion is when the mean waiting time

to perform a walk is much longer than the observation time and in this sense di-
verges. This situation was first assumed to describe the transport process of charge
carriers in amorphous material(?). In biological sense, one can imagine a trapping-
untrapping effect in binding sites, for example in living cell. The mathematical
model for such physical assumption is called continuous time Random Walk model
(CTRW). In CTRW model, not only the MSD may shows a non-linear dependency
on time lag but also the PDF of the particle’s displacement sharply deviates from
Gaussian.
The other scenario for sub-diffusion is when the displacements are anti-correlated.

This means in the sense that in jump action, there is higher probability that a particle
moves in the direction opposite to the last one. This anti-correlation of displacement
may be imposed by a structural disorder in the media in which diffusion takes place.
The model for such a situation generally referred as random walk on fractal. The
PDF in this model is also non-Gaussian, however, the non-Gaussianity is much
smaller then what is observed in CTRW model.
Another possibility for the anti-correlation of steps is diffusion in visco-elastic

environments. In such cases, different parts of the system create an interacting
complex and the particle has to move through a concreted way. The corresponding
theoretical model is generalized Langevin equation (GLE) and the fractional Brow-
nian motion (fBm) which is closely related to (GLE). Contrary to the other models
of sub-diffusion, these models show a Gaussian PDF of the particle’s displacement.
In what follows, we shortly discuss the mentioned mathematical models for the

6



1.3 Anomalous Diffusion

sub-diffusion. Understanding the fundamental properties and differences between
such models will be utilized to recognize them using fluorescence spectroscopy tech-
nique.

1.3.1 Continuous Time Random Walk

Continuous time random walk (CTRW) is one of the most popular methods to de-
scribe the sub-diffusion and is widely discussed in the recent book (?). In CTRW,
the medium in which diffusion takes place is considered as a homogeneous space
containing randomly distributed traps. Despite to the Einstein’s picture of nor-
mal diffusion, sojourn time of the particle in these traps is not identical and varies
depending on the depth of energetic traps encoded in waiting time probability dis-
tribution function, ψ(t), from which the waiting time for next jump is drawn. If this
probability density functions have the first moment, the mean sojourn time is finite
, τ0 =

∫∞
0 tψ(t)dt . Then the average number of steps in time t is 〈n(t)〉 = t

τ0
and

this results in normal diffusion.
For those waiting time probability density functions that lack the first moment,

for example heavy tailed power law distribution function ψ(τ) ∝ τ−1−α with 0 <
α < 1, the number of steps goes as 〈n(t)〉 = ( ttc )α with tc being some characteristic
time. The jump length of the particle is, however, given from the PDF of the jump
length, p(x). Assuming that the PDF of the jump length has the second moment
in accordance to Einstein’s assumption, a2 =

∫+∞
−∞ x2p(x)dx, the MSD of walker for

sub-diffusion is then given as

〈x(t)2〉 ∝ a2

tαc
tα. (1.3)

To obtain the average number of steps at time t, 〈n(t)〉 =
∑∞

0 nχn(t), one may
note the , χn, being the probability of performing exactly n steps by the time
t. Probability of making no step is given by, χ0 =

∫∞
0 ψ(t′)dt′, and other χn are

calculated iteratively as χn =
∫∞

0 ψ(t′)χn−1(t−t′)dt′. Passing to the Laplace domain,
one can obtain the correspondence of the internal clock n of CTRW and the physical
time t given by χn(t) in the Laplace domain as

χn(s) = ψn(s)1− ψ(s)
s

. (1.4)

The general form of the PDF of displacement for CTRW model may be derived
from subordination approach as

p(x, t) =
∞∑
0
pn(x)χn(t).

Passing to the Laplace domain and Fourier space, we note that the Fourier trans-
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1 Introduction

form of Pn(x) is n-th power of its characteristic function λn(k), substituting Eq.1.4
and calculating the sum one gets in Laplace-Fourier

P (k, s) = 1− ψ(s)
s

1
1− ψ(s)λ(k) . (1.5)

Substituting λ(k) and ψ(s) as given functions in equation above and performing
inverse Fourier and Laplace, one could in principle obtain the corresponding PDF of
displacement in CTRW model. It should also be mentioned that substituting λ(k)
and ψ(s) possessing second and first moment, respectively, results in normal diffusion
with Gaussian probability distribution function and substituting ψ(s) lacking the
first moment results in anomalous diffusion with the strong deviation from Gaussian.
One important feature of the CTRW model which makes it easy to distinguish

from other models is aging. Aging in fact, means at dependency of system’s evolution
on the time when the observation starts. Suppose the observation starts at time ta
after the preparation of system. The MSD, for instance, is then given as

〈x2(t)〉 = 〈l2〉(〈n(ta + ∆t)〉 − 〈(ta)〉).

For those waiting time PDFs which the mean waiting time exist, we have n(t) = t/τ
and the MSD has no dependency on ta, 〈x2(t)〉 ∝ ∆t/τ . For heavy-tailed waiting
time PDF, however, we have n(t) ∝ tα so that 〈x2(t)〉 = 〈l2〉((ta + ∆t)α − tαa ). It
is now clear that the MDS in time ∆t explicitly depends on the time ta, in other
words the systems ages. Other features of the system in the same way are dependent
on the age of the process. In chapter 3, we will discuss the CTRW model in more
details.

1.3.2 Random Walk in Disordered Systems

In the previous sections, it was assumed that diffusion takes place in homogeneous
media. This means that whole space for the particle was allowed to be explored and
from probabilistic point of view, particles have equal chances to move in all direc-
tions, namely, an isotropic situation. In heterogeneous system, this is not the case
and presence of large obstacles, such as macromolecules in living cells, prevents the
diffusing element to access whole space and this imposes an anti-correlation of steps.
Studying such situation from mathematical point of view is not easy and in general,
in these type of problems, proposing a closed formalism is not possible, except for
some idealised situations. One approach for better understanding of diffusion in
obstructed systems is to map the situation at hand to the problem of transport in a
fractal systems. The self-similarity of the fractal systems allows mathematicians to
use the re-normalization approach to obtain some analytical results for the transport
process in the system. Note that this self-similarity in real cases is not perfect but
still provides a good estimation of the situation.
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1.3 Anomalous Diffusion

Let us now define some features of the fractal systems which will be used in the
next chapter for our analysis of FCS data. Analogous to the space dimension in
Euclidean geometry, one defines the fractal dimension, df , for the fractal system
which determines the growth of mass with size of structure, M(x) ∼ xdf (?). The
trajectory of random walker in the fractal substrate results also in another self-
similar structure which its dimension can be attributed to a fractal dimension called
walk dimension, dw. If the mass of newly created trajectory grow with the number
steps, n, then one obtains the MSD of random walker to be (?)

〈x2(n)〉 ∼ n2/dw (1.6)

Assigning each step of random walker to an instant of time, one can simply replace,
n and t in Eq.1.6. Note that exponent of anomalous diffusion is now given as, 2/dw,
with dw = 2 leading to normal diffusion.
Derivation of PDF of particle’s displacement in fractal system is rather compli-

cated and a general form is not available for arbitrary fractal structure. In principal,
a long time simulation is required in order to estimate the form of PDF, see (?). Nev-
ertheless, the probability of finding a random walker at the initial position at time t0,
after time t is given as P (0, t) ∼ t−

ds
2 , which ds is the spectral dimension of fractal.

Spectral dimension can be considered as parameter determining the available sites
for a random worker and may be interpreted as density of states in a fractal space
(?). The connection between df , dw and ds was proposed by Alexander-Orbach (?)
as

ds
2 = df

dw
(1.7)

meaning that finding the walk and spectral dimension from a specific measure-
ment, would lead to an estimation of fractal dimension of the substrate.

Percolation cluster

Percolation model has been continuously used to characterize many disordered sys-
tems and extensively studied by mathematicians and physicists in simulation and
theory (????). Often use of percolation cluster in order to mimic the situation of
complex systems such as living cells does not mean that this is the only one but
it is the well understood one which is often invoked for explanation of anomalous
diffusion in crowded systems. Consider a cubic (square) lattice in three (two) di-
mension, consisting of sites which are connected to nearest neighbours with bonds.
Assuming that the p fraction of these bonds are being removed, percolation cluster
is thought as a limiting situation in which pc = 0.592(0.401) fraction of these bonds
are removed, where the lattice belongs to an incipient infinite cluster. Below this
critical concentration, the system consists of a large cluster and above which there
exist many finite clusters which the random walker can not percolate through the

9
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system (?).
Plethora of researches have shown that the percolation cluster is well described

by a fractal (??). Thus diffusion on the percolation lattice may be described by
the language of the fractals as follows: Above the critical point, pc, where there
exist large clusters, the mean squared displacement starts to be anomalous and
after some time, normal diffusion emerges. This is explained by the correlation or
self-similarity length, ζ(p). For smaller length of the network compared to ζ(p),
the self-similarity leads to anomalous diffusion, however, for larger sizes, the cluster
turned to be homogeneous and diffusion is regular with dw = 2 in Eq.1.6. Therefore,
one observes a crossover from anomalous to normal diffusion. Below pc, small clusters
are created. Therefor, random walker is trapped on one of these clusters and after
experiencing anomalous diffusion in short times, MSD goes to a constant being
square of correlation length at long times. Exactly at percolation threshold, the
incipient infinite cluster is self-similar in all length scales and anomalous diffusion
takes place with dw > 2, with no crossover to normal diffusion.
This anti-correlation of displacement in percolation threshold is closely related to

the anomalous diffusion modelled with GLE with coloured noise which will be the
topic of following section.

1.3.3 Visco-elastic Systems

Diffusion of a particle in a visco-elastic system is another physical picture where the
anomalous diffusion appears to be the case. In such picture, the diffusing particle is
a part of complex system and its movement is a function of dynamic of the whole
system. This in principal imposes a long term memory in the particle’s displace-
ment which determines a concreted way for its movement (??). To mathematically
approach this interpretation of anomalous diffusion, first we shortly mention the
Langevin equation for normal diffusion and pass to the anomalous one.
Celebrated Lengevin equation (?) describes the Brownian motion of a spherical

particle immersed in a solution with use of Newton laws for forces. It is assumed
that the particle with mass m, experiences a random force f(t) (Gaussian white
noise) and consequently the deterministic friction force −γẋ(t). Thus the trajectory
is given by the following stochastic differential equation

mẍ(t) = −γẋ(t) + f(t) (1.8)

where γ denotes the friction constant, directly connected to the viscosity of so-
lution η and radius of particle a as γ = 6πηa. If the the system does not show a
visco-elastic behaviour, ensemble average of the randomly fluctuating force (noise)
is zero, 〈f(t)〉 = 0, and the noise is delta correlated, namely the random force is a
white Gaussian noise.

10



1.3 Anomalous Diffusion

From the fluctuation-dissipation theorem, one gets the noise correlation function
as:

〈f(t).f ′(t′)〉 = 2γKβTδ(t− t′)

withKβ and T being the Boltzmann constant and the temperature of the medium.
Calculating the velocity-velocity correlation function from the noise correlation func-
tion and then using Green-Kubo relation (?), one obtains the linear MSD as Eq.1.3
for Brownian particle with diffusion coefficient being KβT/γ.

Genrealized Langevin equation is essentially the modification of Eq.1.8, for
the situation where the friction term contains an intrinsic memory of the environment
Γ(t), say visco-elastic system, realized as an integral expression in Langevin equation
as

mẍ(t) = −γ
∫ t

0
Γ(t− t′)ẋ(t′)dt′ + f(t). (1.9)

Depending on whether the system is in equilibrium or not, the fluctuation-dissipation
theorem applies or violates. In case of equilibration, the memory kernel and noise
correlation function are connected as 〈f(t).f ′(t′)〉 = KβTγΓ(t − t′) but, in essence,
the connection between the noise, the friction term and the exponent of anoma-
lous diffusion is connected to the setting of the system. The PDF of particle’s
displacement remains Gaussian as long as the noise , say the fluctuation, is assumed
to remain Gaussian and therefore the dynamic is totally defined by the MSD of
particle. Note that, assuming the memory to be described by power-law kernel
Γ(t) ∝ t−β, Eq.1.9 could be reformulated with the Caputo fractional derivative (?)
and the equation is then referred as fractional Langevin equation (FLE). A good
example of application of GLE for explanation of observed anomalous diffusion in
single protein molecule may be the work by Kou, et al (?).

Fractional Brownian motion (fBm), rigorously introduced by Mandelbrot
and Van Ness (?), is also a process that is closely related to the limiting case of GLE
for long times. Rather than being a physical model, fBm is a mathematical model
for conveniently describing the anomalous diffusion. Suppose that the position of
particle obeys fBm, x(t) = BH(t) with H ∈ (0, 1) being the Hurst parameter, BH(t)
is Gaussian distributed trajectory with zero mean and a persistent position-position
correlation as

〈BH(t)BH(t′)〉 =
(
|t|2H + |t′|2H − |t− t′|2H

)
/2. (1.10)

fBm, in another words, takes the Brownian motion and incorporates a persistent
correlation, which results in MSD of particle to be < x2(t) >∝ t2H , whichH = 1/2, 1
leads to normal and ballistic motion. In connection to the GLE in over-damped
situation, fBm may be written as integration over Gaussian noise (FGN), f(t) in
Eq.1.9, BH(t) =

∫ t
0 f(t′)dt′. Again, the PDF of fBm process is Gaussian but in
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contrast to the Brownian motion it is not a Markov process and the whole statistic
of process is not fully driven from the propagator.

1.4 Fluorescence Correlation Spectroscopy
Fluorescent correlation spectroscopy (FCS) is one the most prominent single molecule
techniques which has been widely used in many fields of studies. It was first intro-
duced by ? as a method to measure the thermodynamic fluctuations in a reacting
system. They measured the chemical rate constant, diffusion coefficients and the
coupling for the binding of ethidium bromide to DNA. Although determining these
parameters is the main domain of application of this method, there is much more
other information one can obtain from a FCS measurement. The number of articles
reporting the results obtained from this techniques is more than ten thousands and
the systems investigated range from cells and single biological molecules to artificial
materials of technical use. This explicitly indicates its influence in the nowadays
science.

FCS has experienced a long journey in order to become an ideal well-established
analytical method and people from different fields of science have contributed to
achieve this accomplishment. The main development of FCS was the advent of
the ground breaking confocal microscopy (?). Coupling the confocal microscopy
technique, which provides a tiny detection spot, to the ordinary FCS, allows one
to observe the significant fluctuation of the concentration in the spot. This is due
to the fact that, as much as the number of particles inside the detection volume
decreases, the fluctuation of the number of particles with respect to average number
of detected particles signifies. This consequently, results in data with high signal to
noise ratio. Using the low concentration of tracer particles together with the tiny
confocal volume, essentially makes the FCS a single particle technique. The laser
spot created with the confocal microscopy is still limited to the diffraction limit but
can reach to the order of hundreds of nanometers (∼ 200 nm), depending on the
numerical aperture, NA, and the laser light wavelength, λ, as: d = λ

2NA (?).
The other crucial progress in the FCS technique which has led to the higher

time resolution of data obtained, is the improvement of detecting systems. The
conventional detectors such as photomultipliers used in FCS measurement to deal
with a bunch of photons emitted form the fluorescent particles. Therefore, the
resolution of the detection was determined by the time width which the detectors
could recover from the previous detection to bin the photons. The same situation,
namely the dead time of the detector, is naturally still remained in the developed
detectors such as single-photon avalanche diode. However, this time width has
decreased considerably thanks to the technical improvements. Decreasing the dead
time of the detectors, then, led to the arrival of generation of detectors which are able
to detect the single photons. The single photon counting provided the tendency of
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1.4 Fluorescence Correlation Spectroscopy

observation and separation of the successive coming fluorescence photons with the
time lag of nano-seconds (?). Practically, the time resolution of nowadays FCS
measurements are in the order of micro- seconds, noting that below 10 − 100 µs,
usually, one observes the photo-physical properties of the fluorescent particle rather
than the motion properties.
In the software level as well, the advancement of empowered computational meth-

ods for the fast calculation of the autocorrelation curves for large number of lag
times together with the large data management methods have made the use of FCS
very convenient(?). The possibility of pre-processing the data in software level, for
instance the filtering the unwanted background photon counts using time gating has
led to obtain more reliable results from a FCS measurements. Beside these techni-
cal progresses, sophisticated methods for data analysis, such as many components
fit functions (?) and asymptotic analysis (?) resulted in deeper understanding of
diffusion process in complex systems using the FCS method.

Furthermore, limited tracer particles only to those having fluorescent properties,
fluorophores, was indeed a drawback for FCS technique in studying the chemical and
transport processes of proteins and molecules under study which lack the fluorescence
property. Novel methods for labeling the tracer particle with fluorescent molecules
with a weak influence on their properties had then a great impact on promotion of
FCS applicability, especially in biological systems (?). In addition to these progresses
in advancement of different elements of FCS technique, different variations of FCS for
specified purposes were also introduced. Fluorescence cross-correlation spectroscopy
(FCCS) for studying the interactions by cross-correlating two or more fluorescent
channels and Scanning FCS for obtaining the special information about the medium
under study, are examples of these variations which were continuously made for
different purposes broadening the application of this technique in different fields
of researches (??). Nevertheless, what we mean by the term of FCS technique in
this work is, essentially, a set-up which consists of all these basic developments.
In this section, an introduction to the FCS set up with some general remarks on
experimental details will be provided.
Fig.1.1 shows the essential components of a FCS set-up. The first element is the

laser source which is typically a pulsed laser. The laser light can be automatically
controlled with a shutter placed in front of the laser source for preventing the ad-
ditional illumination right after the measurements. The wavelength is chosen based
on having the most overlap with the excitation wavelength of the fluorescent tracer.
Then, the laser light is guided with the mirrors into a microscope objective passing
through the dichroic mirror. The objective with high numerical aperture (to reduce
aberration and decrease the spot size) creates a confocal volume in the sample. The
excited fluorescent particles inside the the confocal volume re-emit the fluorescence
photons. These photons are again collected by the same objective and reflected to
the dichroic mirror. Since the fluorescent photon are red shifted with respect to the
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Figure 1.1. Schematic description of a ordinary FCS set-up. The pathway of incident laser
light to the sample and that of re-emitted fluorescent photons by the tracer particles are shown.
The red shifted fluorescence photons pass through the dichoric mirror and are collected by the
detectors. The recorded intensity profile is the transformed to the PC for further analysis.

laser light, they can pass through the dichroic mirror. To eliminate the out of focus
light in confocal microscopy, the photons pass from a pinhole and then are guided
to the detector (s) which is (are) automatically controlled by PC to be open only
during the measurement. The detected intensity is then recorded by the PC may
be transformed for further analysis.
Fig.1.2 indicates a closer look at some details in the FCS measurement. The first

remark is the form of the confocal volume which is created in the sample, shown in
panel a. This intensity profile can be well approximated by an elongated Gaussian
form. r0 here is the lateral and sr0 the axial 1/e2-radius of the confocal volume with
s being the eccentricity of the confocal volume. s normally ranges from 4 to 6 in
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Figure 1.2. Schematic description of a) confocal volume created in the sample, containing
tracer particles b) Jablonski energy diagram for explanation of emission fluorescence photos c)
the recorded fluorescence intensity profile by detectors d) calculated autocorrelation function of
the fluorescence intensity profile resulting in FCS curves.

typical FCS measurements. The average number of tracer particles in such confocal
volume may be controlled by the concentration of particles in the sample. A trivial
calculation indicates that, keeping the concentration of tracer particles in the sample
below few nM , results in having less than one particle in average inside a confocal
volume generated with confocal microscopy.
The panel b in Fig.1.2 shows the sketched Jablonski energy diagram for the flu-

orescent molecule (?). The first transition is the absorption of a photon with a
particular energy by the fluorescent molecule. This is indicated by a straight arrow
pointing up. In the absorption process, the energy of the incident photon excites
one electron from the lower energy level to a higher one. This transition depends on
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the energy of the photons which must correspond to the energy difference between
two eigenstates of fluorescent molecule. This process is very fast and takes place in
the time range of 10−15 s.
Upon the absorption of the energy by an electron, it attempts to dissipate the

received energy. In fluorescent molecules, the most probable pathway to lose energy
is to emit a photon. Since at higher energy levels there is higher probability that
the energy is dissipated through the internal conversion and vibrational relaxation,
the fluorescence occurs through relaxation of the electron from the first excited
energy level. "In fact, at the first excited state, fluorescence can compete in regard
to time-scales with other non-radiative processes which has lower energy compared
to the incident photon". This is shown as a straight line going down. Therefore,
the emitted fluorescent photon has lower energy compared to the incident one. The
energy difference between the incident and emitted photona by the molecule is lost in
the internal conversion and vibrational relaxation, where it is transferred away from
the electron. This relaxation through vibration modes is, however, non-radiative and
the electronic level of the electron does not change in this process. Compared to non-
radiative processes which take place in the order of 10−14 s to 10−11 s, fluorescence
is a slow process and takes place in the time range of 10−9 s to 10−7 s.
Another possibility for the energy dissipation by the excited electron is inter-

system crossing. In this situation, electron changes the spin multiplicity from an
excited singlet state to a triplet state. The spin-orbit coupling in molecules which
show this behaviour is substantial. The probability that such a process occurrs is
higher when the vibrational levels of the two excited states overlap. This process
has a very low probability and is much slower than the fluorescence with many
order of magnitude. Since in this process, no energy is gained or lost, the electron
must undergo another transition to dissipate the energy. This can be done with a
radiative decay from excited triplet state to the singlet ground state, which is called
phosphorescence (?). There are other ways of non-radiative relaxations which are
termed as dark-states. These types of transitions are essentially disturbing in a FCS
measurement. In FCS curves, these photo-physical phenomena normally take place
in time-scales less than 100 µs and may be excluded in the analysis by truncating the
very short time autocorrelations. In slow process, specially, these problems are of
minor importance since the dynamic of interest is much larger than these relaxation
times.
Re-emitted photons from the excited fluorescent molecules which are red-shifted

then are collected by the detectors. The schematic sketch of the fluorescence in-
tensity is shown in panel c in Fig.1.2. The original intensity profile is, essentially,
a trace of zero or one data (binary data) indicating the detection or lack of a flu-
orescence photon at a give time, t. The statistic of the detected photons may be
recognized as a inhomogeneous Poisson distribution where the detection rate of the
photons is locally dependent on the process by which the fluorescence particles pass
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through the confocal volume. In principle, all the information about the diffusion
process is contained in this intensity profile. Thus accuracy of collecting photons
and excluding the unwanted backgrounds determines the quality of the final data in
a FCS measurement.
The essence of the FCS technique is to take this intensity profile and calculate

its autocorrelation function for different time lags. The schematic of calculated
autocorrelation is depicted in panel d. All FCS curves are very similar to each
other. Extraction of information from these curves is done with fitting procedure.
For the case of normal diffusion, which is dominant form of diffusion in homogeneous
systems, the hight of the non-normalized FCS curve determines the inverse number
of the particles inside the confocal volume. Furthermore, the time corresponding
to the autocorrelation function being at half of its maximum (autocorrelation at
time zero) determines the average time which particles spend inside the confocal
volume, termed as diffusion time τd. The diffusion coefficient of the particles can be,
consequently, calculated as D = r02

2τD . Further information such as viscosity of the
medium, η, and hydrodynamic radius of the diffusing particles, r may be obtained
using Stokes Einstein-equation (?) as D = kBT

6πηr where KB and T correspond to the
Boltzmann constant and the absolute temperature of the medium, respectively.
Generally the extraction of information from the FCS measurements corresponds

to fitting a function to the FCS curves. For normal diffusion, one uses the assumption
of Gaussian form of the PDF and derives a closed form for the FCS curve, as we
will discuss in next chapter. For the anomalous diffusion, however, no general closed
formula exists and a general procedure to obtain reliable information is missing.
The main aim of this work is , essentially, to provide such a toolbox which exploits
the minimum assumptions on the motion of particles and simultaneously provides
more information. This will be the main topic of next chapter and a comprehensive
mathematical analysis of the FCS technique will be discussed.
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2 What information is contained in
Fluorecence correlation spectroscopy
curve

In this chapter, we concentrate on the application of the standard FCS to processes
which can be safely defined as normal or anomalous translational diffusion. While for
the case of normal diffusion, the data processing in the FCS experiment corresponds
to a fitting of the intensity autocorrelation curves to a relatively simple function
with unknown parameters, the situations for anomalous diffusion are much more
involved. In many cases one uses the same class of functions with the additional
free parameter α defining the MSD, R2(t) = 〈r2(t)〉, of diffusing particles as a
function of time, R2(t) = 6Dαt

α, with Dα being the coefficient of the anomalous
diffusion, (???). The fit assumes the Gaussian nature of the distribution of the
particles’ displacements, a fact which is discussed e.g. in (??), which in many cases
(but not always) can be motivated by the physical (or biological) nature of the
diffusion anomaly. The question arises, what kind of errors may one encounter using
this procedure in the case of non-Gaussian displacement distributions, what is the
reasonable way to proceed in such cases, and how to tell Gaussian and non-Gaussian
cases appart having only the standard FSC autocorrelation functions (ACFs) as
input.
To do answer these questions, one has to discuss in depth the mathematical theory

behind the FCS formula, and to explicitly formulate the additional assumptions. Af-
ter this, it will get clear what information can be extracted from the corresponding
data and how this can be done. In what follows we only concentrate on the case of
translational diffusion, and on the corresponding time range in the FCS autocorre-
lation functions. The results of this part of work are published in Physical Review
E (?).

2.1 Preliminary Considerations

As we proceed to show, the intensity autocorrelation function G(t), which we will call
in what follows the “FCS curve” for the sake of brevity, can be mathematically seen
as an integral transform of the diffusion’s Green’s function (particles’ displacement
distribution) P (r, t). We will assume that the transport process is homogeneous
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2 What information is contained in Fluorecence correlation spectroscopy curve

in time (i.e. does not show aging effects), and that the diffusion takes place in a
homogeneous and isotropic medium. In this case one can view the displacements’
probability density P (r, t) = P (r, t) as a function of two independent variables, the
time lag t and the spacial distance r, and, as we discuss in Sec.2.2, the normalized
FCS curve is given by the equation

G(t) =
∫ ∞

0
F (r)P (r, t)dr (2.1)

where F (r) will be called the apparatus function since it depends only on the prop-
erties of the setup characterizing the geometry of the light beam. This one typically
has the Gaussian intensity profile

I(r) = I0 exp −2(x2 + y2)
r2

0
− 2z2

s2r2
0

)
(2.2)

with r0 being the diameter of the beam’s waist in the direction perpendicular to
the light propagation direction, and sr0 being the corresponding axial dimension of
the light propagation. In a typical FCS experiment the parameters of the beam are
fixed and known in beforehand. The explicit form of F (r) will be derived in Sec.
2.2 and is given by Eq. (2.11). Eq. (2.1) allows to explicitly calculate G(t) provided
R(r, t) is known.
For normal diffusion the form of P (r, t) is known

P (r, t) = 1
(4πDt)3/2 exp − r2

4Dt

)
, (2.3)

and corresponds to a family of Gaussian functions parametrized by a single free
parameter D, the diffusion coefficient. In this case the integral transform, Eq. (2.1),
maps the family of P (r, t) onto the family of FCS curves G(t;D), again parametrized
by D,

G(t;D) =
(4D
r2

0
t+ 1

)−1 ( 4D
s2r2

0
t+ 1

)− 1
2
, (2.4)

and the parameter D can be found by fitting this expression to experimental data
representing the ACF. If the corresponding fit is poor, there are reasons to assume
the diffusion anomalies, which indeed are often observed in the crowded interiours
of biological cells and in many artificial complex fluid systems (???).
In many cases, when the fit to the standard form, Eq. (2.4), is poor one considers

a modified, two-parametric, family of fit functions

G(t;α,Dα) =
(4Dα

r2
0
tα + 1

)−1 (4Dα

s2r2
0
tα + 1

)− 1
2
, (2.5)
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which may give (and indeed gives) a reasonable fit. This form corresponds to as-
suming the Gaussian anomalous diffusion characterized by the displacements’ PDF
as

P (r, t) = 1
(4πDαtα)3/2 exp

(
− r2

4Dαtα

)
. (2.6)

As we proceed to show in Sec. 2.3 by considering simple numerical examples, even
if such fit is reasonably or indeed very good, it does not guarantee that the value of
the exponent α of anomalous diffusion is reproduced correctly since the true form
of the FCS curve in its main part, close to the inflection point, mostly depends on
the higher moments of P (r, t) and not only on the MSD. This, however, does not
mean that G(t) contains no information on P (r, t): on the contrary, the FCS curves
contain a lot of important information, but simple parametric fitting is not the best
way of extracting it.
The integral transformation Eq. (2.1) cannot be viewed as an integral equation of

the Fredholm’s type since the unknown function is the kernel of the transformation
(i.e. the one with two variables, not with the single one). The corresponding math-
ematical problem is undetermined: it is impossible to uniquely restore a function of
two variables P (r, t) having only a function of a single variable t as an input. We
note that using the spot variation FCS in which the parameters of the beam, say
r0, change during the experiment as we will discuss in chapter 4 (see also (?) for
an example of such an experiment in a membrane) provides two-dimensional data
G(t, r0) and may allow for full restoration of P (r, t), although this is still quite a
hard task. Moreover, such experiments are rare, and will not be considered in the
present work devoted to the standard techniques.
As we proceed to show, all crucial information is contained in the short- and

long-time asymptotic of the FCS curve. Thus, the initial (short time) part of the
curve contains information about the particle’s MSD (at short times), which can be
obtained by asymptotic fitting, while the long time asymptotics contains information
on return probabilities (at long times), the fact discussed in (?). As long as no
additional assumptions are done, these two may provide valuable information but
can hardly be connected with each other.
In many cases, however, it is reasonable to assume that the function P (r, t) scales,

i.e. retains its form in the course of the time. Physically, such an assumption means
that one deals with the process which does not possess any internal time or length
scale (like the typical size of the trapping domain or a typical trapping time), i.e.
the self-similarity of the medium in which the diffusion takes place. This is the
case for all Gaussian models like fractional Brownian motion (fBm), adequate for
description of diffusion in viscoelastic media, for percolation models and other fractal
geometries, and in many other cases. In this case, only the width of P (r, t) changes
in course of the time, while the relation between its higher moments, defining the
form, remains constant. The assumption of scaling immediately allows for making
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far reaching conclusions. Since the relation between the lower moments does not
depend on the time, the short time asymptotic fitting may allow to obtain several
lower moments to safely define α and to check whether the diffusion process is at
least approximately Gaussian or not. Comparing short- and long-time asymptotics
allows for decision whether the particles’ motion is bounded to the fractal substrate.
In what follows, we will first discuss the general theoretical approach, numerical

examples, the peculiarities of short- and long-time asymptitic fitting, and then show
how the methods discussed work in application to real experimental data.

2.2 The Apparatus Function

The theory underlying the FCS measurement is well-described e.g.(?). We consider
here the simple, one-component situation, and look for the normalized autocorrela-
tion function

G(t) ∝
∫ ∫

drdr′I(r)I(r′)C(r, r, t), (2.7)

with I(r) being the beam intensity profile and C(r, r′, t) = 〈δc(r, 0)δc(r′, t)〉 being
the correlation function of the molecular density fluctuations which are described as a
time-homogeneous random process. The result is normalized over the value ofG(t) at
zero time lag t. In the specially homogeneous and isotropic system C(r, r′, t) depends
only on the distance between the corresponding points: C(r, r′, t) = C(|r − r′|, t).
Our further discussion follows Höfling and co-workers, however, in a more complex
tree-dimensional setting. The integral for G(t) has the form of the double convo-
lution, and therefore simplifies in the Fourier-domain. The normalized intensity
autocorrelation function reads

G(t) =
∫
dk|I(k)|2S(k, t)∫
dk|I(k)|2S(k, 0) (2.8)

with S(k, t), the intermediate scattering function, being the Fourier transform of
C(r, t), and I(k) being the Fourier transform of I(r). In the simple case considered
here, C(r, t) is proportional to the Green’s function (propagator) of the correspond-
ing diffusion operator, C(r, t) ∝ P (r, t), which gives the possibility to probe the
diffusion in the corresponding medium. Therefore one can substitute S(k, 0) in the
previous expression by the characteristic function of the corresponding propagator.
Changing from S(k, t) to the propagator’s characteristic function,

P (k, t) =
∫
dr exp(ikr)P (r, t)
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we obtain from Eq. (2.8)

G(t) =
∫
dk|I(k)|2

∫
dr exp(ikr)P (r, t)∫

dk|I(k)|2
∫
dr exp(ikr)P (r, 0) .

Interchanging the sequence of integration in k and in r we obtain

G(t) =
∫
drW (r)P (r, t)∫
drW (r)P (r, 0) .

with W (r) =
∫

exp(ikr)|I(k)|2dr. Noting that P (r, 0) = δ(r) we obtain

G(t) =
∫
W (r)
W (0)P (r, t)dr. (2.9)

For the Gaussian intensity profile, Eq. (2.2),

I(r) = I0 exp
(
−2(x2 + y2)

r2
0

− 2z2

s2r2
0

)
,

the ratio W (r)/W (0) is readily calculated:

W (r)
W (0) = exp

(
−x

2 + y2

r2
0
− z2

s2r2
0

)
.

The level surfaces of the Gaussian intensity profile are the spheroids characterized
by the parameter e with e2 = 1− 1/s2. For prolate spheroids (s > 1) the parameter
e is real and fulfills the relation 0 ≤ e < 1: it corresponds to the eccentricity of
the spheroid. For the oblate spheroid (s < 1) the parameter e is imaginary. In any
case, e2 fulfills the inequality −∞ < e2 < 1. For the sake of brevity we will refer to
e as to eccentricity, although in the oblate case it is not exactly the one. We note
that throughout the text the letter e is used only for the eccentricity, and does not
denote the base of the natural logarithm.

Substituting this in Eq. (2.9) we get

G(t) =
∫

exp
(
−x

2 + y2

r2
0
− z2

s2r2
0

)
P (r, t)dr.

Assuming the diffusion to be isotropic P (r, t) = P (r, t), we now pass to spherical
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2 What information is contained in Fluorecence correlation spectroscopy curve

coordinates:

G(t) = 2π
∫ ∫

exp
(
−r

2 cos2 θ

r2
0

− r2 sin2 θ

s2r2
0

)
P (r, t)r2drd cos θ

= 2π
∫

exp
(
−r

2

r2
0

){∫ 1

−1
exp

[
r2

r2
0

cos2 θ

(
1− 1

s2

)]
d cos θ

}
P (r, t)r2dr

Thus G(t) can be expressed via a single integral, as in Eq. (2.1)

G(t) =
∫ ∞

0
F (r)P (r, t)dr

containing P (r, t) and the apparatus function F (r) which depends only on the beam’s
properties r0 and e. The function F (r) has the following integral representation:

F (r) = 4πr2
∫ 1

0
exp

[
−r

2(1− e2x2)
r2

0

]
dx. (2.10)

The integral can be easily expressed through the imaginary error function erfi(z) =
2√
π

∫ z
0 exp(x2)dx. The final result reads:

F (r) = 2π3/2r0
e

r exp
[
−
(
r

r0

)2
]

erfi
(
er

r0

)
. (2.11)

F (r) decays at infinity as exp(−r2/r2
0) for s > 1 or as exp(−r2/s2r2) for s < 1 in

the leading order, and has the integral of

B =
∫ ∞

0
F (r)dr = (2π)3/2r3

0√
1− e2

, (2.12)

as can be seen by substituting the integral representation, Eq. (2.10), into Eq. (2.12)
and exchanging the sequence of integration in r and in x.

Thus, the full expression for G(t) is

G(t) = 2π3/2r0
e

∫ ∞
0

r exp
[
−
(
r

r0

)2
]

erfi
(
r

r0
e

)
P (r, t)dr. (2.13)

This equation is the main result of the present section and the starting point of our
further considerations. It is the most convenient for the numerical calculations (as
done in Sec. 2.3).
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2.3 Numerical Examples and First Caveats

For the standard case of normal diffusion the FCS curve

G(t) = 2π3/2r0
e

∫ ∞
0

r exp
[
−
(
r

r0

)2
]

erfi
(
r

r0
e

) 1
(4πDt)3/2 exp

(
− r2

4Dt

)
dr (2.14)

can be obtained in quadratures. The integral is of the form

I =
∫ ∞

0
x exp(−p2x2)erfi(qx)dx

with p =
[
r−2

0 + (4Dt)−1
]1/2

and q = r−1
0 e = r−1

0
√

1− s−2, and

p2 − q2 = 1
s2r2

0
+ 1

4Dt > 0.

The last inequality guarantees that the integrand vanishes at the upper limit of
integration. Performing partial integration and noting that erfi(0) = 0 and that
d
dxerfi(x) = 2√

π
exp(x2) we get

I = 1
2p2

∫ ∞
0

exp(−p2x2) d
dx

erfi(qx)dx = 1√
π

q

p2

∫ ∞
0

exp[(q2 − p2)x2]dx,

a Gaussian integral which is equal to

I = 1
2p2

q√
p2 − q2 .

Substituting the values of p and q and inserting the corresponding expression into
Eq. (3.17) we get, after trivial transformations, the standard result, Eq. (2.4), for a
single-species FCS under normal diffusion

G(t) =
(4D
r2

0
t+ 1

)−1 ( 4D
s2r2

0
t+ 1

)− 1
2
.

For anomalous Gaussian diffusions, like fractional Brownian motion (fBm), one only
has to change Dt in this expression for Dαt

α where, Dα is the appropriately defined
coefficient of the anomalous diffusion, to get the corresponding equation for the
Gaussian anomalous diffusion, Eq. (2.5).

2.3 Numerical Examples and First Caveats

Eq. (2.5) is often used for fitting the data for anomalous diffusion of unknown gen-
esis. As we show in Sec. 2.4, the form of the intensity ACF is, however, sensitive
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2 What information is contained in Fluorecence correlation spectroscopy curve

to the higher moments of the diffusion propagator, and therefore to the departures
from Gaussianity. This question was partially addressed in Ref. (?). Before go-
ing into the deeper analysis, we discuss here numerical examples and express some
caveats with respect to this procedure.

The Gaussian propagator, as pertinent to normal diffusion, Eq. (2.3) and the
propagator for the Gaussian anomalous case Eq. (2.6) scale as a function of the
arguments r2/Dt and r2/Dαt

α, respectively, so that their form remains constant in
the course of the time evolution. It is better to represent the functions as a function
of the MSD R2(t) = 6Dαt

α, in which case their form is universal:

p(r,R(t)) = 33/2

(2π)3/2R
−3(t) exp

(
−3

2
r2

R2(t)

)
.

Thus, P (r, t) in the Gaussian case has the scaling form

P (r, t) = R−3(t)f
(

r2

R2(t)

)

with the scaling function f(ξ) given by

f(ξ) =
( 3

2π

)3/2
exp

(
−3

2ξ
2
)
. (2.15)

This function is normalized in 3D and has the second moment of unity.

Let us now consider the family of related scaling functions, characterized by the
stretched or squeezed Gaussian form,

fβ(ξ) = A exp[−a(ξ2)β], (2.16)

with the parameters A and a guaranteeing normalization in three dimensions

4π
∫ ∞

0
fβ(ξ)ξ2dξ = 4πAa−

3
2β Γ

( 3
2β

)
= 1

and the unit second moment

4π
∫ ∞

0
fβ(ξ)ξ4dξ = 4πAa−

5
2β Γ

( 5
2β

)
= 1.

Solving these equations we get

a = Γβ
( 5

2β

)
Γ−β

( 3
2β

)
(2.17)
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Figure 2.1. Numerically calculated FCS curves for β = 0.5, 1, 1.875 and 2.375 from right to
left fitted to the standard formula for anomalous diffusion Eq.2.4.

and
A = 1

4πΓ
3
2

( 5
2β

)
Γ−

5
2

( 3
2β

)
. (2.18)

For the Gaussian case (β = 1), we obtain exactly the coefficients in Eq. (2.15).
Let us now take the functions fβ(ξ), Eq. (2.16), with the coefficients given by

Eqs. (2.17) and (2.18), build the corresponding propagators

Pβ(r, t) = R−3(t)fβ

(
− r2

R2(t)

)
,

all corresponding to the same MSD R2(t) = 〈r2(t)〉 = 6Dαt
α, insert them into

the general equation Eq. (2.13), and obtain the hypothetical FCS curves Gβ(t) by
the numerical integration. The curves for α = 0.53 (mimicking the exponent of
anomalous diffusion in percolation cluster), Dα = 1, e = 0.96, r0 = 0.5µm and
β = 0.5, 1, 1.875, 2.375 are shown in Fig 2.1.
All the curves look very much the same at short times, until the ACF falls approx-

imately to G(t) = 0.8, and diverge afterwards. Since all these curves correspond to
processes with exactly the same MSD and all other parameters except for β charac-
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2 What information is contained in Fluorecence correlation spectroscopy curve

Table 2.1. Effective values of α for the examples in Fig.2.1

β αeff
0.5 0.4826± 0.0014
1 0.5308± 0.0002
1.875 0.5723± 0.0005
2.375 0.5845± 0.0005

terizing the form of the distribution, it is evident that the MSD cannot be estimated
from the curve in a simple way. Now. we fit these curves by Eq. (2.5). The quality
of fits is excellent, and the differences between the exact curves and the fits would
be unobservable on the background of a whatever experimental noise. However, the
values of the effective exponent α as given by the fit differ from the one used in the
generation procedure (which is α = 0.53) as can be seen from the 2.1.

This fact is evident when noting that if one plots G(t), Eq. (2.5), on the logarith-
mic scale of Fig.2.1 the changes of Dα only shift the curve horizontally, while the
changes in α alter the slopes. The slopes of the most prominent parts of the curves
(the ones in vicinity of the inflection points) are evidently different, so indicating
the extraction of only apparent values for α’s.

Therefore we express the following caveat: Although the fact of anomaly can be
definitely detected by the standard fitting procedure, the value of the exponent of
anomalous diffusion,α, given by the fit may differ considerably from the true one.
The value of α is underestimated for leptokurtic distributions (having sharper peak
and heavier tails than the Gaussian one, β < 1) and overestimated for platykurtic
ones (flatter peak and lighter tails, β > 1).

Further analysis will show that the part of the curve close to the inflection point is
essentially a broad and non-universal crossover, hardly containing any information
of immediate use. The short- and long-time asymptotic behaviours on the other
hand may be analysed and lead to important conclusions about the form of the
propagator. The discussion of the long-time asymptotics for the two-dimensional
case is contained in (?) whereas, the discussion of the short-time behaviour is
completely new to our best knowledge.
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2.4 Short-time Asymptotics: Moments Expansion

2.4 Short-time Asymptotics: Moments Expansion

Let us return to the integral representation Eq. (2.10), expand the exponential and
perform the term-by-term integration. We get

F (r) = 4πr2
∞∑
k=0

(−1)k r2k

k!r2k
0

[∫ 1

0
(1− e2x2)kdx

]
, (2.19)

i.e. a Taylor series which contains only contributions with even powers of r. We
adopt here the following notation:

F (r) = 4π
(
a0r

2 + a2
r2

0
r4 + a4

r4
0
r6 + a6

r6
0
r8 + ...

)
. (2.20)

Since −∞ < e2 < 1, the integrands of all integrals in Eq. (2.19) are positive, and the
signs of the coefficients a2k alternate. The integrals of the binomials can be easily
computed:

∫ 1

0
(1− e2x2)kdx =

k∑
m=0

(
m

k

)
(−1)me2m

∫ 1

0
x2mdx =

k∑
m=0

(
m

k

)
(−1)m e2m

2m+ 1 .

Therefore the expansion coefficients read:

a2k =
k∑

m=0

(−1)k+m

m!(k −m)!(2m+ 1)e
2m,

and the first four coefficients are:

a0 = 1

a2 = −1 + e2

3

a4 = 1
2 −

e2

3 + e4

10

a6 = −1
6 + e2

6 −
e4

10 + e6

42 .

Substituting the expression Eq. (2.20) into Eq. (2.1) and performing integration
term by term we obtain

G(t) = 1 + a2r
−2
0 M2(t) + a2r

−2
0 M4(t) + a6r

−6
0 M6(t) + ... (2.21)

with
M2n(t) = 4π

∫ ∞
0

r2nP (r, t)r2dr ≡ 〈r2n(t)〉
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2 What information is contained in Fluorecence correlation spectroscopy curve

being even moments of the particles’ displacements at time t. This is the main
formula of this section which we will exploit continuously in what follows.
Eq. (2.21) shows that performing the asymptotic fitting of 1−G(t) at short times

could provide the MSD R2(t) = M2(t) (for these short times), but this knowledge is
of limited value, if we do not assume that the form of P (r, t) does not change with
time. If, however, P (r, t) scales (as it is the case for Gaussian processes, and in the
case of percolation and other fractal models, as well as in random barrier setups)
its higher even moments can be expressed through the MSD R2(t), and M2n =
κ2nR

2n(t) with coefficients κ2n depending on the exact form of the distributions
(with κ2 = 1). In this case G(t) as given by Eq. (2.21) can at short times be
approximated by the polynomial in R2(t) = 6Dαt

α:

G(t) = 1 + a2r
−2
0 6Dαt

α + a4r
−4
0 κ4(6Dαt

α)2 + a6r
−6
0 κ6(6Dαt

α)3 + ... . (2.22)

Fitting this expression to experimental data one can (in principle) obtain α and
several lower moments of particles’ displacements, which can be used in subsequent
analysis. Using them one can:
(i) Test whether the propagator is Gaussian or not,
(ii) try to guess the correct form of the propagator from a set of competing models,
(iii) Try to restore the function from the moments by solving the Stieltjes moment

problem if large enough number of moments is available with a considerable accuracy.
We will show, however, that fulfilling these tasks is not trivial, and will not go

beyond (i) in the present work (Sec.2.6).

2.5 Long-Time Asymptotic: Spectral Dimension and
Beyond

Let us again assume that P (r, t) scales:

P (r, t) = R−3(t)f
(
− r2

R2(t)

)

in full three-dimensional space, or

P (r, t) = R−df (t)f
(
− r2

R2(t)

)

in the case of the diffusion on a fractal substrate with fractal dimension df (in
the three-dimensional Euclidean space df = 3). For long t , R(t) gets very large,
R(t)� r0, and one can use the asymptotic expansion of Eq. (2.13). Let us assume
that close to ξ = 0 one has f(ξ) = C1 − C2ξ

2β + ... with β > 0 for any monomodal
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2.5 Long-Time Asymptotic: Spectral Dimension and Beyond

distribution (e.g. as in our numerical examples). Inserting this form into Eq. (2.13)
and noting that the value of

∫∞
0 F (r)dr is given by Eq. (2.12) one gets:

G(t) = C1BR
−df (t)− C2R

−df−2β(t)
∫ ∞

0
F (r)r2βdr + ... .

The integral
∫∞

0 F (r)r2βdr converges under the restrictions assumed in the present
work and has a representation via a hypergeometric function (following from Eq.
(2.8.5.6) of (?)). The prefactors of the powers of R in this equation will be denoted
by C̃1 and C̃2 in what follows.
Note that since R(t) ∝ tα/2, the time-dependence of the first term (the slowest

time dependence defining the asymptotic decay of the ACF) is G(t) ∝ t−αdf/2 =
t−ds/2 where ds is the spectral dimension of the corresponding system. For normal
diffusion this dimension is ds = 3 as evident from the decay form of Eq.(2.4). Thus,
the long-time behaviour is

G(t) = C̃1t
− ds2 − C̃2t

− ds2 −2β, (2.23)

and the leading asymptotic in 3d is of the same type is in 2d case discussed by ?.
Analysing the long time asymptotic of the FCS curve allows one to check whether

the diffusion takes place on a fractal substrate or not. To do so, it is enough to fit
the tail of the FCS curve by a power law and check whether the power is −3α/2,
as discussed in (?). In the case it is, the substrate is non-fractal, which excludes all
kinds of percolation models. In the case it is not, one obtains df . Looking at the
difference in the exponents of the main scaling term and of the correction to scaling
(i.e. the sub-leading term) one obtains β, and has another test for Gaussianity, now
in the vicinity of the peak of the distribution.
Note that the leading asymptotics of the short-time behaviour is

1−G(t) ' tα

and the long time asymptotics in the non-fractal case is

G(t) ' t−3α/2.

As an exemplary study of Eq.2.23, we calculated the FCS curves for two different
systems, one being a fractal system and the other being a diffusion in homogeneous
system. For the non-fractal system, the example with β = 1 from Sec. 2.3 is used.
For the fractal system, the propagator proposed by O’Shaughnessy and Procaccia
(?),

P (r, t) = rdf−d

t
ds
2

exp
(
−r

dw

t

)
(2.24)

31



2 What information is contained in Fluorecence correlation spectroscopy curve

mimicking the behaviour of diffusion on percolation clusters, is used.
Fig. 2.2 shows the calculated FCS curves for the fBm together with the percolation

model. Both models were adjusted to have the same MSD and the exponent of
anomalous diffusion being unity and 0.53, respectively. For adjusting the exponent
of anomalous diffusion in percolation model, we used the discussion in sec.1.3.2
and set the walk dimension dw, to be 3.77 and the spectral dimension ds, to 1.33
and the fractal dimension is then calculated using Eq.1.7. As observed, the curves
are very similar to each other and the standard fit hardly gives us information
about the underlying processes. Note that the exponent of anomalous reproduced
from the standard fit procedure is not the only parameter which may be incorrectly
estimated. The diffusion coefficient also deviate strongly from the assumed one for
the non-Gaussian PDF, however, we focus here only on the exponent of anomalous
diffusion as the parameter of choice for our analysis.
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Figure 2.2. Numerically calculated FCS curves for fBm (black) and percolation (red) fitted to
formula for anomalous diffusion (left). Linear fits to the end of curves for fBm and percolation
in log-log scale (right).

Analysing the long time asymptotic of the same FCS curves, unravels the observ-
able difference between two curves. Contrary to the FCS curve for the fBm model,
the fitted curve to the data for the case of percolation model shows an extreme de-
viation in long asymptotic which in natural scale is not observed (not shown). Then
long time asymptotic of the data (< 0.1) were fitted to a linear equation. The slope
of long time asymptotic in FCS curves corresponds to −3α/2 and ds/2 for fBm
and percolation models. This difference between slopes obtained from the fitting
the body of the curve and from the long time asymptotic is a robust indication of
non-Gaussianity of PDF. Results of the standard and long time asymptotic fits are
given in Tab.2.2.
Another easy graphical way to grasp the fractality is to make a plot as shown in

Fig.2.3. For this, one identifies the crossover time tc from the FCS curves as the
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2.5 Long-Time Asymptotic: Spectral Dimension and Beyond

Table 2.2. Results of fitting the FCS Curves shown in Fig.2.2 to anomalous diffusion formula
leading to apparent α values and linear fits to the ends of FCS curves leading to different slopes.
Data are shown as fit values and errors of fit)

PDF apparent αeff value of slope

fBm 0.5334± 0.0001 −0.792± 0.001
percolation 0.5447± 0.0002 −0.665± 0.0002

time at which G(t) = 1/2 and plots f1(t) = log[1−G(t)] vs. log(t/tc) for t < tc and
f2(t) = (2/3) logG(t) vs. log(tc/t) for t > tc on the same plot. If the two curves get
parallel at large negative values of abscissa, the substrate is non-fractal. If they are
not parallel, one has to assume the fractality of the substrate. In real experimental
data, however, this method is not perfectly applied due to the systematic errors in
long time asymptotic.
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Figure 2.3. The comparison of the short-time asymptotic (red) and long time asymptotic (black)
for the case of a non-fractal fBm model (left panel) and percolation model (right panel). In the
non-fractal model the two curves run parallel in the asymptotic domain, while for the fractal one
they show different slopes.

Generally, to obtain a robust data concerning the autocorrelation functions for
long time lags, one needs to perform the measurement very long to obtain enough
statistics. This is normally not the case in typical FCS measurements and especially
in biological systems, the measurement is strictly limited due to destructive aspect of
laser light on the sample. Beside this statistical error concerning the measurement
time, there exists another type of noise which happens to appear in the long lag
times, termed as "particle noise". The behaviour of this noise is dependent on
the number of particles which cross through the confocal volume during large dwell
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2 What information is contained in Fluorecence correlation spectroscopy curve

times. The advantage of the short time analysis to the long time is essentially arising
from this point. Contrary to the long time noise, The noise at the beginning of the
curves are simpler. Although the fact that shot noise in short times is disturbing and
the noise is heteroscedastic, from time dependency view of the noise amplitude on
the time, it is symmetric. Thus, such symmetric noise may influence the accuracy
of fit and impose larger errors, but it does not change the nature of the results.
Furthermore, for short lag times in typical FCS measurement time, there would be
always enough statistic to obtain reliable results. Some comprehensive statistical
analysis of the FCS technique may be found in literature by ?? and ?.

2.6 Experimental Applications
Based on our theoretical findings in the previous sections, we proceed to develop a
protocol for analysing the FCS curves in order to stablish a method for experimen-
tal applications. Before applying the method to experimental data, we introduce a
simple form of equations and approaches for the short time and Gaussianity analy-
sis. Starting from Eq.2.21, and assuming the scaling form of PDF, which has been
discussed in sec.2.4, we suppose that M2(t) = b2t

α and M4 = b4t
2α. In this case,

the FCS curve, G(t), at short times can be approximated by a polynomial in tα, i.e

G(τ) = 1 + c2t
α + c4t

2α + .... (2.25)

where the prefactors read as c2 = a2r0
−2b2 and c4 = a4r0

−4b4. Fitting this expres-
sion to the experimental data at short times, one can essentially obtain the robust
exponent and diffusion coefficient of anomalous diffusion. A simple estimation using
numerical calculation of FCS curve and Eq.2.25 indicates that these three terms in
the asymptotic form are enough to fit the FCS data to the point that it drops to 0.8
of its value in time zero(i.e. unity in n normalized form).
This allows to obtain the reduced kurtosis (non-Gaussianity parameter) of the

displacement’s PDF, i.e. the ratio of its fourth and its squared second moment:

β2 = 3M4
5M2

2
− 1 = 3b4

5b22
− 1 = 3c4a

2
2

5c2
2a4
− 1 (2.26)

which for the three-dimensional Gaussian distribution has to be zero. The consid-
erable deviation of K from this value (outside of the error bars) is a strong witness
against the Gaussian diffusion model. If Gaussianity can not be rejected, there is a
stronger reason to use the standard fit, Eq.(2.5), which may then refine the value of
α. The coincidence of the two estimates, the asymptotic one and the one from the
parametric fit, may indeed be considered as the proof of the Gaussian nature of the
diffusion process.
Fitting the Eq.2.25 to the data may be done in two different ways which we tested
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2.6 Experimental Applications

both methods on our own data described below and on the data courteously made
available by Prof. Matthias Weiss at the University of Bayreuth (not shown).
The first approach to analyse the short time asymptotic, which is more convenient,

is to cut the initial part of the curve 1−G(t) down to 0.2 and fit it to the equation
below at once

1−G(t) = −c2t
α − c4t

2α . (2.27)

This three parameter fit leads to the results with respectively large errors for the
moments but the values for the exponent of anomalous diffusion and moments are
equal to the one obtained from the first approach. In case that FCS curves are not
smooth enough to get a reliable result for the anomalous exponent from the range
of 0 to 0.1, one can perform the three parameter fit and then, by fixing it in the
equation and perform a new two parameters fit for moments to get more accurate
results.
The second approach which suits the data with high data to noise ration and

provides robust results is as follows: one first performs the fit of 1−G(t) vs. −c2t
α

to obtain α from the asymptotic slope of the curve (0 to 0.1), then one substitutes
τ = tα into Eq. (2.27), and performs statistically linear fit to a polynomial G(τ) =
1 + c2τ + c4τ

2. Using this approach, one could also, in principle, investigate the
scaling of the moments. In what follows, we show how does our proposed protocol
perform for the analysis of real data. Then we compare the results from two different
approaches and show that the difference only appears to be in the size of errors and
not in the values themselves.

To obtain the experimental data, we performed a set of experiments on diffusion of
the organic fluorescent dye, Atto655, in artificial crowded solutions and in living cells
and estimated α and Gaussianity for these different systems, see the experimental
details for the in Appendix A.1. The reason for using Atto655 in the experimental
verification of our findings is that, this dye exhibits negligible isomerization or triplet
kinetics at short time lags, see Fig.5 of (?), so that the photophysics of the tracer
(not taken into account in our theoretical analysis) can be neglected.
For in-vitro systems, We performed six sets of experiments and obtained FCS

curves of for Att0655 in water, water crowded by 44% and 66% Polyethylene glycol
(PEG1500), in water with 30% dextran and in water with 75% sucrose. The ex-
periment for PEG 66% repeated after 2 months and termed as 66%PEG-old. The
acquisition time for each FCS curve was 10 minutes. In order to obtain parameters
r0 and s entering the apparatus function, we performed a calibration experiment
with Atto655 diffusion in water at 293.15 K where the diffusion is normal and the
diffusion coefficient is known: D = 392µm2/s (?). Calibration leads to the values
of parameters r0 = (0.260 ± 0.006)µm and s = 6.3 ± 0.1, which corresponds to the
values of a2 = 0.675 and a4 = 0.271.
Fig.2.4 shows the FCS results for the corresponding experiments. The curves were
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Figure 2.4. FCS curves for six in vitro systems: Atto655 in water(pink), 75% sucrose (black),
30% dextran (red), 44% PEG (dark blue), 66% PEG (dark blue) and 66% PEG-old (green) (from
left to right) with data acquisition time of 10 min, fitted by Eq.(2.4).

first normalized and then transformed to the following analysis. The obtained FCS
curves were fitted first to Eq.2.4. This led to the exponent of anomalous diffusion
being α = 0.997 ± 0.001, α = 0.937 ± 0.001, α = 0.973 ± 0.003, α = 0.921 ± 0.001,
α = 0.843 ± 0.003 and α = 1.000 ± 0.001 for water, 75% sucrose, 30% dextran,
44% PEG, 66% PEG and 66%PEG-old, respectively. These results indicate that all
experiments except pure water and 66%PEG-old are slightly sub-diffusive. The fit
was performed using the built-in Levenberg-Marquardt algorithm by the OriginPro
9.2 software. The errors reported for α above, as well as all the errors in this chapter
are the uncertainties of the fit parameters returned by the algorithm and calculated
using using standard error propagation method. these errors correspond to the data
from a single experiments and do not represent the scattering of the values from
different preparations.
Let us now return to the short time analysis. We initially use the first approach

(three parameter fit) to investigate the exponent of anomalous diffusion. Table 2.3
represents the summary of the results for the short-time fits (denoted by α) for the
data shown in Fig.2.5 together with the results of fitting the full FCS curves to
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Figure 2.5. 1 − G(t) for Atto655 in water (right) crowded by 66% PEG-old , 44% PEG, and
75% sucrose from right to left and (left) for 66% PEG and 30% dextran, from right to left, fitted
fitted to 1−G(τ) = −c2t

α − c4t
α.

Eq.(2.4) (denoted by αEq.(2)).

Table 2.3. The results of fits for systems shown in Fig. 2.5

Medium αEq.(2) α K

75% sucrose 0.937 0.94± 0.01 −0.011± 0.004
30% dextran 0.973 0.97± 0.06 −0.01± 0.02

44% PEG 0.921 0.92± 0.03 −0.03± 0.02
66% PEG 0.843 0.80± 0.07 −0.24± 0.36

66% PEG-old 1.000 0.89± 0.02 −0.33± 0.12

The uncertainties of the values of αEq.(2) are smaller than the last reported digit.
The results of standard fitting procedure and of the short-time fitting coincide within
the error bars for 75% sucrose, 30% dextran, and 44% PEG and for 66% PEG. At
the same time the deviations of the reduced kurtosis values from zero are either
small or statistically insignificant. On the other hand, the results for 66% PEG-
old differ considerably. The corresponding value of K indicates at the same time a
strong deviation of the propagator’s form from a Gaussian. The standard fit for this
case has to be considered as unreliable. The analysis of the long-time of the curves
for 66% PEG and 66% PEG-old, see Fig.2.6, indicates that none of the systems
considered is fractal: all are fitted sufficiently well by a power-law G(t) ∝ t−3α/2.

Cutting the beginning of the curves, Fig.2.7 shows that, we have two different
qualities of data. These different qualities may arise from different count rate of
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Figure 2.6. Long time asymptotic of FCS curves corresponding to 66% PEG (dark blue) and
66% PEG-old (green) together with their fit to Eq.2.4. Considerable deviations between fits and
curves are not seen. This indicate no fractal property of the substrates.

photons recorded by detectors stemming from different transparency of media which
leads to have less data in the measuring time. we note that measurement time
can not be extended unlimited due to evaporation of solution for in-vitro solution
samples which may cause the change of concentration of dye. However, the second
strategy of the data fitting was applied to the short times of the FCS curves. Fitting
the beginning of the curves gives us the characteristic values of α which differ only
slightly from the ones obtained by fitting the full curve for the cases of 75% sucrose
, 30% dextran and 44% PEG. This remarkably differs for the case of 66% PEG-old
and 66% PEG. Comparing the results from both ways of fitting shown in table.2.4
is direct proof for effectiveness of the first method which is convenient to perform.
This practically indicates the robustness of the estimation of α by a our proposed
method in competition to the general fit model.

The observed relatively non-Gaussian PDF for diffusion in 66% PEG and 66%
old PEG can be due to high concentration of PEG1500 crowding molecules which is
close to it’s solubility in water. Although the non-Gaussianity parameters observed
in these systems are relatively small compared to what has been reported by ? for
simulation results of diffusion on percolating clusters, it is still interesting. Con-
sidering the fact that the long time fitting of these systems showed no fractality,
percolation is no longer a proper model to explain this observed behaviour. this
chapter was In next chapter, we will come back to this phenomenon and investigate
the proper model that can potentially exhibit such behaviour.
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Figure 2.7. 1 − NG(t) for Att0655 in water (left) crowded by PEG 66% old, PEG 44% and
sucrose 75% from right to left and (right)PEG 66% , dextran 30% from right to left both fitted
to c2t

α.

Table 2.4. Fit results for FCS curves obtained from Atto655 diffusion in artificial crowed systems
with two different fitting approaches. For details see the text.

Medium α c2 c4 K

75% sucrose 0.94± 0.01 −4.62± 0.40 21.11± 5.2 −0.011± 0.004
0.94± 0.02 −4.61± 0.04 21.01± 1.03 −0.011± 0.002

30% dextran 0.97± 0.06 −4.42± 1.30 19.32± 16.34 −0.012± 0.017
0.97± 0.07 −4.41± 0.15 19.24± 3.71 −0.012± 0.005

44% PEG 0.92± 0.03 −2.72± 0.38 7.61± 3.03 −0.03± 0.02
0.92± 0.04 −2.75± 0.05 7.8± 0.73 −0.03± 0.01

66% PEG 0.80± 0.07 −0.68± 0.17 0.36± 0.4 −0.24± 0.39
0.80± 0.08 −0.68± 0.03 0.35± 0.1 −0.24± 0.13

66% PEG-old 0.89± 0.02 −0.79± 0.05 0.42± 0.1 −0.32± 0.12
0.89± 0.02 −0.80± 0.01 0.43± 0.04 −0.33± 0.09

2.7 In Living Cell Experiment

After successful evaluation of our introduced method for FCS data analysis in ar-
tificial crowding materials, we attempted to apply this method to exemplary FCS
data from living cells. The aim here was to investigate the Gaussianity of diffusing
particle’s PDF in such media. The experimental details concerning the preparation
of cells and the injection process of dye is given in Appendix A.1. An exemplary
bright-field image corresponding to this injection procedure is given in Fig.2.8.
Before injection, selected salivary gland ducts were excited at 635 nm and the

fluorescence lifetime histogram as well as the overall fluorescence decay curve of the
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2 What information is contained in Fluorecence correlation spectroscopy curve

Figure 2.8. Bright field picture of salivary duct with duct cell. (C) and (L) indicate the duct
cell and duct Lumen, respectively, as well as the microscopic tip (asterisk).
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Figure 2.9. Normalized fluorescence decay curves (left) and fluorescence lifetime histograms
(right) calculated from all pixels of an acquired time-resolved fluorescence images (80µm*80µm;
150 pixel*150 pixel; pixel dwell time 0.7 ms/pixel) of a selected salivary gland duct before (black)
and after Atto655-injection (red).

cellular autofluorescence were recorded. To check the impact of autofluorescence
in live cell FCS, FCS curves were measured for short (100 s) and long (800 s)
recording times. After injection of Atto655 into one cell of the selected duct region,
the measurements were repeated in order to compare it to the autofluorescence data
Analysis of fluorescence lifetime histograms and fluorescence decay curves before
and after injection confirmed the successful dye-injection. A retarded fluorescence
decay behaviour and a shift in the fluorescence lifetime histogram could be observed
after Atto655-injection. Fig.2.9 represent the data corresponding to these analysis.
Fig.2.10 shows the recorded FCS curves from the selected salivary gland duct cell

40



2.7 In Living Cell Experiment

before and after dye-injection. FCS curves of cellular autofluorescence have been
recorded for 100 s and 800 s (two lower red and blue data). At short recording time,
autofluorescence could not be correlated and therefore FCS measurements after dye-
injection was not significantly disturbed by the cellular background when applying
100 s recording time. An increased FCS data acquisition time of 800 s (in another
similar cell) resulted in a slowly diffusing increment, which could be correlated and
lead to autocorrelation. The amplitude of this autocorrelation, however, could be
neglected in comparison to that obtained after dye-injection. When using only the
beginning part of the autocorrelation curve for analysis, autofluorescence could be
still neglected because of its low amplitude and large diffusion time. Therefore, in
worst scenario, the autofluorescence contribution would only be a upper shift in the
dye-related correlation curve. This essentially leads to an underestimated number
of particles contributing to the correlation function but still does not disturb our
analysis. In other words, since in our proposed model of FCS data analysis, we
do not include the whole correlation curve, influences of any background and other
errors can be further minimized.
To measure the intracellular diffusion behaviour after Atto655-injection, we kept

the intensity of excitation laser low such that slight changes in the intensity of laser
did not influence the behaviour of FCS curves due to photo-bleaching of Atto655.
Fitting the whole FCS curve obtained after injection of dye to the standard formula
for anomalous diffusion 2.4 , an anomalous diffusion exponent α = 0.58 was deter-
mined. This extreme anomaly was also observed in other biological measurements
with FCS and other single molecule techniques, (???) and (??). This slowness
of diffusion in biological is essentially one of the secrets of the life. This not only
leads to increasing the probability of eventually finding the target molecule by the
diffusing element, but also provides a long search time (?).

To do answer the reliability of the α obtained from the standard fit method and
concequently investigating the Gaussianiy of the PDF , we performed again the short
time analysis. Analysis of the beginning part of the FCS curve by applying our
proposed model resulted in the same anomalous diffusion exponent value, 0.58. In
addition, two and three parameter fits resulted in c2 = 2.23±0.16 and c4 = 4.81±1.6.
Using c2 and c4 the corresponding non-Gaussianity parameter could be calculated
to −0.03 ± 0.01. This expresses that the behaviour of particle’s displacement has
a behaviour close to the Gaussian on. The reasoning behind this observation could
be somewhat connected to the size of diffusing molecule. In fact, the small size
of Atto655 in comparison to intracellular distances between sub-cellular structures
may allows for performing diffusion in a visco-elastic like medium. Thus the extreme
sub-diffusion behaviour, may appear without experiencing many hits from crowding
increments inside cell during the data acquisition time. The results however, may
differ from one to another cell type or when for instance a fluorescent marker of
larger size is applied in the FCS measurements.
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Figure 2.10. (left) Normalized FCS autocorrelation curves obtained from selected salivary gland
duct cells before (red: 100 s recording time; blue: 800 s recording time) and after Atto655-
injection (black: 100 s recording time). Black FCS curve was fitted to the equation of anomalous
diffusion (Eq.2.5). (right) The beginning part of the FCS curve after Atto655-injection fitted to
1−NG(τ) = −c2t

α − c4t
α.

2.8 Summary

We discussed the nature of data obtained in FCS in application to the situations
showing anomalous translational diffusion. The FCS data are very similar to each
other and extraction of data from these curves is a hard task. The standard approach
assumes a Gaussian PDF of particle displacement and takes a closed formula to fit
to the the FCS curves to obtain information such exponent and diffusion coefficient
of anomalous diffusion. In our theoretical and numerical study of FCS technique, we
showed that this simple fitting is not the best way to acquire information from FCS
technique. We first demonstrated that the standard fitting procedure may lead to
unreliable estimates for the exponent of the anomalous diffusion. This is because the
precise form of the FCS curves strongly depends on the higher moments of the par-
ticle’s displacement PDF. Therefore it is extremely sensitive to the departures from
Gaussianity. Thus one had to develop a new strategy to obtain a better estimation
of parameters from FCS data.
Then, we discussed that FCS curves contain a lot of valuable information about the

diffusion process and its substrate. We showed that the exponent α of anomalous
diffusion may be reliably estimated from the asymptotic fit at short times. The
short time analysis also provides the possibility to obtain several lower moments.
Using the second and fourth moment of the PDF at short times, one can develop a
test for the Gaussian nature of the diffusive process. Another possibility to check
the Gaussianity of the PDF is comparing the results for α obtained from short
time and standard fit. If these two coincide one can assume the Gaussianity of
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2.8 Summary

the PDF and also rely on the data from the standard method. Another piece of
information concerning the fractality of the substrate is also hidden in the long time
asymptotic of the data. Comparison of short- and long time behaviour allows for
decision whether the diffusion takes place on a fractal substrate or not. All these
developments in the theory of ordinary FCS technique was studied in the numerical
level and furthermore, we showed how the methods discussed work in application to
experimental data as well as living cells.
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3 Fluorescence correlation spectroscopy
in equilibrium

In the previous chapter, we introduced a general method to analysis the FCS curves
using the short and long time asymptotics. Analysing the anomalous diffusion in in-
vitro systems, we observed a very interesting phenomenon for the diffusion of Atto
dyes in a fairly simple solution of water crowded by high concentration of crowding
material, PEG1500 molecules. While the fit of the body and long time asymptotic
of corresponding FCS curve showed a normal diffusion behaviour, a considerable
sub-diffusion was observed in the short time asymptotic. With this we concluded
that the form of the PDF in this experiment changes in course of time, it does
not scale. This was in contrary to the expected normal diffusion where the PDF
of particles displacement follows a Gaussian distribution which obeys the standard
diffusion equation (second Fick’s law). Such type of interesting phenomena which
are termed as "anomalous yet Brownian" processes, have garbed our attention to
investigate using the FCS technique.
Aside from our experimental observation of such phenomenon using novel analysis

of FCS technique, recently, in some simulations and in experiments - using single
particle tracking (SPT) (?), such a normal diffusion behaviour δr2 ∝ t has also been
observed together with non-Gaussian PDFs. Diffusion of colloidal beads along linear
phospholipid bilayer tubes and in biofilament network (?), enhanced tracer diffusion
in suspensions of micro-organisms (?), diffusion in lipid membranes (?), liposomes
in nematic solutions of aligned F-actin filaments (?), nanoparticles in hard-sphere
colloidal suspensions (?) and colloidal hard discs in solid and hexatic phases (?)
are of examples showing such property. In some of these situations the deviation
from Gaussian form is significant only at short times, while at longer times the PDF
tends to the Gaussian form typical for the normal diffusion.
A theoretical model termed as "Diffusing Diffusivity" was introduced by ?, can

phenomenologically capture this observed behaviour. This model considers a "dif-
fusivity memory" but no "directional memory " in the trajectory of the particles.
By taking the distribution of diffusivities as an exponential form, they showed that
PDF also decays as exponential with respect to the displacement in short times.
Furthermore, they argued that other forms of the distribution of diffusivities may
lead PDFS which are still well fitted to the exponential form. Another related model
introduced by ?, shows a very similar behaviour. This model exploits the diffusing
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diffusivity idea of the previous one and considers a distribution of diffusivities which
fluctuates in terms of time at times shorter than then diffusivity correlation time.
Demonstration of such phenomena in FCS technique is, essentially, the main task

in this chapter. As we discussed in chapter 2, FCS is eligible to unravel the devi-
ation of PDF from the Gaussian form (?). However, we discussed the analysis of
FCS data assuming that PDF of displacement scales. This is the case in standard
implementations of the methods as a whole, as it is for the normal diffusion, fBm
model, and diffusion on percolation cluster. Therefore it is necessary to understand,
what could be seen experimentally in the cases when the scaling is absent. The best
way to proceed here is to consider, first, a simple model which to a large extent can
be treated analytically. As such a model, we chose the CTRW scheme (?) with
waiting time distribution given by a truncated power law.
Normally, in studying the CTRW the beginning of observation coincides with the

first step of the walk process. However, in many experiments, especially in biological
systems, the experiment is performed on a pre-existing system, or the techniques
involve long data acquisition times. In this case the process at the beginning of
observation is already strongly aged or even fully equilibrated. In this case the
CTRW with a power-law waiting time distribution shows extremely slow diffusion,
if any diffusion at all, while a CTRW with any waiting time PDF possessing the
first moment (e.g. with a truncated power-law waiting time distribution) generically
leads to normal diffusion in the entire time domain (?). However in this situation,
the PDF of the particle’s displacement may still be strongly non-Gaussian for time
lags shorter than the truncation time, as is known for a long in mathematically
similar econometric models (?). Such models can be proper candidates to explain
the observed experimental results and may be useful to gain more information on
systems showing such behaviour.
In what follows we discuss the corresponding model using an example of trun-

cated one-sided Lévy stable PDF of waiting times, and concentrate mostly on the
application of our results to fluorescence correlation spectroscopy. The FCS under
ordinary CTRW process (as described by a fractional diffusion equation) was dis-
cussed in detail in Ref. (?). This process leads to anomalous diffusion in the whole
time range and shows such exotic properties as aging and ergodicity breaking. In
what follows, we discuss the same problem for a fully equilibrated CTRW model
with a waiting time distribution following one-sided Lévy PDF with an exponential
cut-off at long times. The model shows normal diffusion in the whole time domain,
but the PDF of particles displacements shows a crossover from a non-Gaussian form
at shorter times to a Gaussian asymptotic long-time behaviour, which is clearly seen
in the behaviour of the fourth moment of the corresponding distribution. Then we
calculate the FCS curves for such situation, and discuss how the information on this
"anomalous yet Brownian" diffusion can be extracted from these curves, if at all.

In our examples we mostly consider the two-dimensional situation (diffusion in
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3.1 Equilibrated CTRW

a membrane), and use the dimensional units corresponding approximately to the
parameter of the FCS apparatus used chapter 2. The results of this part of work
are published in Physical Review E (?)

3.1 Equilibrated CTRW

The introduction to the CTRW model in the ordinary processes is given in the
sec.1.3.1. Here we focus on the equilibrated CTRW where the starting point in
not anymore the first step of the walker. We briefly review the ordinary CTRW
method and pass to the equilibrated one which is a nice exactly solvable model of
a stationary random process whose displacement’s PDF is not scaling as a function
of elapsed time. We first derive the lower moments of the model demonstrating the
the normal diffusion in MSD and violation of scaling observed in fourth moment.
We then define the reduced kurtosis using theses two moment. Next we obtain
the PDF of displacement using subordination approach and exploit it to obtain the
corresponding FCS curves. The analysis of the FCS curve are then done based on
investigation of short and long time asymptotic compared to our results from chapter
2.

3.2 Moments of Displacements

In a CTRW a random walker performs instantaneous jumps choosing its displace-
ment according to a probability density function p(r) and waiting time between two
jumps according to a PDF of waiting times ψ(t). For the ordinary process, the
PDF of particles displacement in Fourier-Laplace representation (i.e. the Laplace
transform of the characteristic function of the displacements’ distribution, P (k, s) =∫∞
0 〈e−ikr〉e−stdt) obeys the Montroll-Weiss equation defined in Eq.1.5 as

P (k, s) = 1− ψ(s)
s

1
1− λ(k)ψ(s) . (3.1)

Here λ(k) is the characteristic function of displacements in a single step being the
Fourier transform of p(r), and ψ(s) is the Laplace transform of waiting time PDF.
For the equilibrated CTRW, PDF has a slightly different form as:

P1(k, s) = 1− ψ1(s)
s

+ 1− ψ(s)
s

ψ1
λ(k)

1− λ(k)ψ(s) , (3.2)

where ψ1(s) is the Laplace transform of the forward waiting time for the first step
after the beginning of the observation. The detailed derivation of the this formula
is given in literature and in recently published book by (?). here we skipped the
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3 Fluorescence correlation spectroscopy in equilibrium

derivation and only use the results for the further considerations. In our following
discussions and simulations, we will concentrate on a two dimensional case and on
the Gaussian distribution of step length, first, however, we will discuss the situation
in some generality.
For the waiting time distribution, however, we will stick to a particular model

waiting time PDF, namely to a one sided Lévy function with exponential cut off
(tempered stable law (?))

ψ(t) = A exp
(
− t

tc

)
Lα

(
t

t0

)
. (3.3)

Here t0 is a characteristic time scale of a jump, tc is the cutoff time, and A(t0, tc) is
a normalization constant. In what follows we will put t0 to unity (i.e. all times are
now measured in units of t0). In this case A = exp(t−αc ). The Laplace transform of
ψ(t) then reads:

ψ(s) = exp
{[
−
(
s+ 1

tc

)α
+ 1
tαc

]}
. (3.4)

Exponential cut-off enforces the waiting time PDF to possess a mean which leads
to establishing equilibrium at long times after process has started. In the case
the waiting time PDF possesses a mean, the forward waiting time PDF in Laplace
domain has a form (?)

ψ1(s) = 1− ψ(s)
sτ

. (3.5)

with τ being the mean waiting time and can be calculated from first derivative of
waiting time PDF in Laplace domain

τ = − ∂ψ(s)
∂s

∣∣∣∣
s=0

= αtc
α−1 (3.6)

Now Eq.(3.2) reads:

P1(k, s) = sτ − 1 + ψ(s)
s2τ

+ [1− ψ(s)]2

s2τ

λ(k)
1− λ(k)ψ(s) . (3.7)

Let us now return to the spatial part of the distribution. The characteristic
function p(k) of a probability distribution is the generating function of its moments.
For an isotropic d-dimensional situation the Taylor expansion of p(k) starts as (?):

p(k) = 1− k2

2dm2 + k4

8d(d+ 2)m4 +O(k6) (3.8)

where m2 and m4 are the second and the fourth moments of the distribution (the
odd moments vanish due to symmetry). Applying this general expression to λ(k)
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we get

λ(k) = 1− k2

2d〈l
2〉+ k4

8d(d+ 2)〈l
4〉+O(k6)

with 〈l2〉 and 〈l4〉 being the second and the fourth moment of the step length,
respectively. Substituting this into Eq.(3.7) and expanding it in Taylor series in k
we get:

P1(k, s) = 1
s
− k2

2d
〈l2〉
s2τ

+
[ 1

4d2
ψ(s)

1− ψ(s)
1
s2τ
〈l2〉2 + 1

8d(d+ 2)
1
s2τ
〈l4〉

]
k4 +O(k6).

Comparing this with the moment expansion, Eq.(3.8), which now reads

P1(k, s) = 1− k2

2dδr
2(s) + k4

8d(d+ 2)δr
4(s) +O(k6) (3.9)

we get the expressions for the second and the fourth moments of the displacement
in the Laplace domain, δr2(s) and δr4(s), which then can be transformed back to
the time domain. In particular, we get that

δr2(t) = 〈l
2〉

s2τ
. (3.10)

The second moment of PDF of distribution has a generic form and is independent
of the particular form of the waiting time PDF (?). Its inverse Laplace transform
grows linearly with time:

δr2(t) = 〈l
2〉
τ
t. (3.11)

The fourth moments is

δr4(s) = 〈l
4〉

s2τ
+ 2(d+ 2)

d

1
s2τ

ψ(s)
1− ψ(s)〈l

2〉2 (3.12)

in the Laplace domain. Translating this back to the time domain gives different
results for long times t � tc and for short times 1 � t � tc, corresponding to
s � 1/tc and to 1/tc � s � 1 respectively (note that the non-universal domain
s� 1 is of no interest here). In the long time domain ψ ≈ 1− sτ and therefore

δr4(s) = 〈l
4〉

s2τ
+ 2(d+ 2)

d

1
s3τ2 〈l

2〉2
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3 Fluorescence correlation spectroscopy in equilibrium

which translates into

δr4(t) = 〈l4〉 t
τ

+ (d+ 2)
d
〈l2〉2 t

2

τ2 (3.13)

and is dominated by the second term. For 1� t� tc we have ψ(s) ≈ 1− sα,

δr4(s) = 〈l
4〉

s2τ
+ 2(d+ 2)

d

1
s2+ατ

〈l2〉2

which in the time domain translates into

δr4(t) = 〈l4〉 t
τ

+ 2(d+ 2)
dΓ(2 + α)〈l

2〉2 t
1+α

τ
(3.14)

indicating strong non-Gaussianity of PFD of displacement in short times, and the
absence of scaling of the distribution as a whole.

3.2.1 The Form of PDF

The Montroll-Weiss approach is a straightforward method to calculate the moments
of the distribution, but is less convenient for obtaining the form of the PDF in
the space-time domain, since it involves both the inverse Laplace and the inverse
Fourier transforms which have to be performed numerically. One can exclude the
Fourier transform when applying the subordination approach. The same approach
will be used for direct calculation of the FCS autocorrelation curves, and therefore
is discussed here in some detail. The PDF of displacement can be written as

P1(r, t) =
∞∑
n=0

χn(t)P (r, n) (3.15)

where P (r, n) is the PDF of particles displacements in a simple random walk after
n steps, and χn(t) being the probability of taking exactly n steps up to the time t.
The number of steps is the internal temporal variable of the subordination scheme
(operational time).
For an aged or equilibrated CTRW the probability χ0(t) of making no step from

the starting point of measurement t = 0 till time t is given in the Laplace domain
by

χ0(s) = 1− ψ1(s)
s

,

and all other χn(s) are

χn(s) = ψ1(s)[ψ(s)]n−1 1− ψ(s)
s

.
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3.2 Moments of Displacements

In Laplace domain Eq.(3.15) transforms to

P1(r, s) = 1− ψ1(s)
s

δ(r)

+ψ1(s)1− ψ(s)
s

∞∑
n=1

[ψ(s)]n−1P (r, n). (3.16)

For n large the function P (r, n) can be well approximated by a Gaussian

P (r, n) = 1
π〈l2〉n

exp
(
− r2

〈l2〉n

)
. (3.17)

Eq.(3.16) is then rewritten as follows: Each term in the sum is multiplied by ψ(s),
and the whole sum is then divided by the same function, and ψ1(s) is written in the
explicit form given by Eq.(3.5). Now we obtain:

P1(r, s) =
[1
s
− 1− ψ(s)

s2τ

]
δ(r) (3.18)

+[1− ψ(s)]2

s2τψ(s)

∞∑
n=1

[ψ(s)]nP (r, n).

For t � t0 the typical number of steps taken is large and n can be considered as a
continuous variable, and the sum changed to the integral:

P1(r, s) =
[1
s
− 1− ψ(s)

s2τ

]
δ(r) (3.19)

+[1− ψ(s)]2

s2τψ(s)

∫ ∞
0

P (r, n)en lnψ(s)dn

The integration corresponds to the Laplace transform of P (r, n) in its temporal
variable n: ∫ ∞

0
P (r, n)en lnψ(s)dn = P̃ [r,− lnψ(s)].

Here and below the tilde denotes the Laplace transformed, when it is not evident
from the variable used as the Laplace frequency, i.e. when it is not simply s. We
note that typically one expands − lnψ(s), but for the PDF given by Eq.(3.3) this
logarithm is simpler than its expansion! Thus,

P1(r, s) =
[1
s
− 1− ψ(s)

s2τ

]
δ(r)

+[1− ψ(s)]2

s2τψ(s) P̃ [r,− lnψ(s)]. (3.20)
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3 Fluorescence correlation spectroscopy in equilibrium

Taking the Laplace transform of P (r, n), Eq.(3.17), explicitly, we get

P1(r, s) =
[1
s
− 1− ψ(s)

s2τ

]
δ(r) (3.21)

+[1− ψ(s)]2

s2ψ(s)τ
2

π〈l2〉
K0

[
2r
√
− lnψ(s)
〈l2〉

]

with K0(z) being the modified Bessel function of the second kind. The numerical
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Figure 3.1. The probability density function of displacements as obtained by numerical inversion
of Eq.3.22 for times t being 500, 1000, 3000 and 10000 µs with tc = 1000 µs and α = 0.6. See
text for details.

inversion of this expression can be easily performed using the Gaver-Stehfest algo-
rithm (?). The results for different times are shown in Fig.3.1. To compare the
forms of the PDF for different times, we plot them as a function of a dimensionless
variable ζ = r√

δr2(t)
, which is the displacement normalized with respect to r.m.s.

displacement. Fig. 3.1 shows the PDFs for times t being 500, 1000, 3000 and 10000
µs with tc = 1000 µs and α = 0.6 (the rapidly decaying δ-peak at zero is not shown).
The form of the distribution for t < tc (here t = 500 µs) is shown in Fig. 3.2. Ana-

lyzing the distribution at short times indicates that they possess an exponential tail
(resembling the prediction of the diffusing diffusivity model) by higher peak. Similar
behaviour has been found in many experimental works, mentioned in introduction,
using sampling the PDF from SPT measurements.
As it could be concluded from Fig. 3.1, this distribution for short times is strongly
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Figure 3.2. Probability density function of displacement for t = 500 µs, t = 100 µs and t = 50
µs (symbols). Red lines show the exponential fit to the tail of the distributions (ζ > 0.5) plotted
in the whole ζ-domain.

peaked, and tends to a Gaussian at t� tc.
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Figure 3.3. Non-Gaussianity parameter, Eq.3.22, as calculated using the previous result and
Eq.3.11 for tc = 1000 µs and α = 0.6. Deviations from zero indicate strong non-Gaussianity;
these vanish for vanishes for t� tc.
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3 Fluorescence correlation spectroscopy in equilibrium

The deviations from the Gaussian form of the distribution can be easily charac-
terized when considering the reduced kurtosis (non-Gaussianity parameter)

K = d

d+ 2
δr4(t)
δr2(t) − 1, (3.22)

as following from Eqs. (3.10) and Eq.3.13 or Eq.3.14. At times 1 < t < tc the
second term in Eq.3.14 dominates unless the fourth moment in a single step dis-
placement is exceedingly large. The distribution then is highly leptocurtic, and the
non-Gaussianity decays essentially as tα−1. At long times, when Eq.3.13 is applica-
ble and the result is dominated by its second term. The reduced kurtosis vanishes,
indicating the transition to a Gaussian. This behaviour is clearly seen in Fig.3.3
which shows the non-Gaussianity parameter as a function of time as obtained by
numerical Laplace inversion of Eq.3.12: Extreme strong deviations from Gaussianity
at short times decay at times larger than the characteristic cut-off time tc. Com-
pare the value of the reduced kurtosis obtained in Fig.3.3 with the non-Gaussianity
parameter, for example, for the 3-D Lorentz model reaching the maximum of K = 3
close to the percolation threshold (?).
We note that situations with slow convergence to Gaussian are known e.g. in

truncated Lévy flight models (??) where the speed of convergence is governed by
the Berry-Esseen theorem (?). In our case the situation is slightly different, since
our process ist not the one with independent increments, but a more complicated
subordinated construct. Eq.3.22 gives the possibility to assess numerically the speed
of convergence.

3.3 Realization in Fluorescence Correlation Spectroscopy

Let us now discuss the consequences of the absence of scaling in PDF for the fluo-
rescence correlation spectroscopy.
Generally FCS curve can be expressed via a single integral of the PDF of the

absolute displacement, P (r, t), and an apparatus function, F (r), defining the laser
intensity distribution in the detection volume, see sec.2.1:

G(t) =
∫ ∞

0
P (r, t)F (r)dr. (3.23)

Assuming a Gaussian intensity distribution in the detection volume, the apparatus
function in two dimensions reads

F (r) = 2πr exp
(
−r

2

r2
0

)
. (3.24)
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3.3 Realization in Fluorescence Correlation Spectroscopy

with r0 being the beam’s waist. We note that G(t), given by Eq.3.23, is a linear
functional of P (r, t) involving only the manipulation of spatial variables (weighted
integration). Therefore, one can again use the subordination approach. Thus first
pass to the Laplace domain, G(s) via P (r, s), and then perform the the numerical
inversion to the time domain.

Let us calculate
G1(s) =

∫ ∞
0

P1(r, s)F (r)dr.

Substituting the series for P1(r, s) given by Eq.3.20 and performing term-by-term
integration over spatial variables leads to the expression

G1(s) = 1
s
− 1− ψ(s)

s2τ
(3.25)

+[1− ψ(s)]2

s2τψ(s)

∞∑
n=0

[ψ(s)]nG(n)

with G(n) coinciding with the FCS curve for normal diffusion in the operational
time:

G(n) =
(
〈l2〉
r2

0
n+ 1

)−1

.

Similar to the previous discussion, the summation corresponds to the Laplace trans-
form of G(n) in the changed Laplace variable:

∞∑
n=0

[ψ(s)]nG(n) ≈
∫ ∞

0
G(n)en lnψ(s)dn = G̃[− lnψ(s)].

Replacing the explicit form of the Laplace transform of G(n) we get

G1(s) = 1
s
− 1− ψ(s)

s2τ
+ [1− ψ(s)]2

s2ψ(s)τ
r2

0
〈l2〉
× (3.26)

exp
[
−r

2
0 lnψ(s)
〈l2〉

]
Γ
[
0,−r

2
0 lnψ(s)
〈l2〉

]

with Γ(a, z) being an incomplete Gamma function. The results of numerical inver-
sion of this expression are shown in Fig. 3.4. Here we plot the results of numerical
inversion of Eq.3.26 with the same Gaver-Stehfest algorithm (symbols) for tc being
10, 100, 1000, 10000 and 100000 µs. The numerical FCS data points were fitted to
a standard two-parametric expression

G(t) =
(4Dβ

r2
0
tβ + 1

)−1
(3.27)
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Figure 3.4. The FCS curves obtained by numerical Laplace inversion of Eq.3.26 (symbols)
together with the FCS curves for normal diffusion with the corresponding diffusion coefficient
(dashed lines) and their best fits to Eq.3.27 (full lines). The curves correspond to tc being 10,
100, 1000,10000 and 100000 µs from left to right.

with free parameters β and Dβ; the results of these fits are shown as full lines. In
addition we plot the FCS curves which would be obtained for the case of normal
diffusion

G(t) =
(4D
r2

0
t+ 1

)−1
(3.28)

with the terminal diffusion coefficient D = 〈l2〉/4τ . While for small tc the differences
between the inversion results and their fits from the normal diffusion curves is minor,
they gets larger as tc increases. At larger tcs Fitting numerical FCS data to Eq.3.27
still indicates normal diffusion with β = 1±0.03, but with the diffusion coefficientD1
which is considerably smaller than the terminal diffusion coefficient D. For example,
for the largest tc = 105 µs the terminal diffusion coefficient is D = 0.0041 while the
one obtained by the fit is almost two times smaller: Dfit = 0.0023.

3.3.1 Exemplary Simulation

To check our theoretical predictions we also performed an exemplary lattice simu-
lation of CTRW for the values of parameters used in our calculations. Simulations
are done using the standard random walk on a square lattice with equal proba-
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3.3 Realization in Fluorescence Correlation Spectroscopy

bility to jump to four nearest neighbours. Having arrived to a site particles were
set to wait for a time chosen from waiting time according to Eq.3.3 with t0 = 1µs
and tc = 1000µs. The waiting times were generated using the acceptance-rejection
method (?). The essence of this method is explained in Appendix A.5. First a
random variable y distributed according to a Lévy law is generated. Then a random
variable u uniformly distributed between 0 and 1 was generated. Waiting times
meeting the condition, exp(−y/tc) < u, were accepted as actual waiting times, oth-
erwise the trial was repeated. The size of the simulation box was taken to be L = 300
in each direction, with periodic boundary conditions. The lattice constant repre-
senting the step length was taken to be 1µm. The confocal volume with r0 = 15µm
was positioned in the center of box and intensities according to the distance of par-
ticles from the center of confocal volume were calculated at each step of simulation,
Ii = exp(−r2/r2

0). The total number of particles was chosen such that their mean
number within the confocal volume did not exceed unity. Simulation is run for 108

time steps. The results for these values of parameters are plotted in Fig. 3.5. This
parameters chosen correspond to the middle curve (third from the left) from the pre-
vious Fig.3.4. This exemplary result shows the applicability of our semi-analytical
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Figure 3.5. Simulated FCS curve (open circles) together with its fit to Eq.3.27 (full line, color
online: black), and with the result of the numerical inversion of Eq.3.26 (dashed line, color
online: red).

approach. The deviations at very short times are mainly caused by the lattice nature
of the model used in simulations.
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3 Fluorescence correlation spectroscopy in equilibrium

3.4 Asymptotic Behaviour

Let us now investigate the short and long time asymptotic of Eq.3.26 with respect
to the characteristic time tc. For t � tc (s � 1/tc), ψ(s) can be approximated by
ψ(s) ≈ 1− τs and − lnψ(s) ≈ τs. Substituting this approximation into Eq.3.26 we
see that the first two terms vanish, and the third term coincides with the Laplace
transform of G(n) with n = t/τ . Therefore in this asymptotic domain

G1(t) ∼
(
〈l2〉
τr2

0
t+ 1

)−1

(3.29)

which is the normal diffusion with terminal diffusion coefficient D = 〈l2〉/4τ .
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Figure 3.6. The FCS results from Eq.3.26 (stars) together with the FCS curves for normal
diffusion with the terminal diffusion coefficient (dashed lines) and the fitted curves from Fig. 3.4
(full lines) at long times. The transition between the intermediate domain and the terminal
asymptotic behavior is clearly see for larger tc. The curves correspond to tc being 10, 100,
1000,10000 and 100000 µs from left to right. Note the double logarithmic scales.

For short times, t0 � t � tc (1 � s � 1/tc), one has ψ(s) ≈ 1 − sα and
lnψ(s) ≈ −sα, and therefore Eq.3.26 reads as

G1(s) ≈ 1
s
− sα−2

τ
+ s2α−2

τ

∫ ∞
0

G(n)e−nsαdn.
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Expanding G(n) as

G(n) ≈ 1 + 〈l
2〉
r02 n+ 〈l

2〉2

2r04 n
2

and performing term-by-term integration one gets

G1(s) ≈ 1
s
− 〈l

2〉
τr02 s

−2 + 〈l
2〉2

τr04 s
−α−2.

The inverse Laplace transform of the expression above reads:

G1(t) ≈ 1− 〈l
2〉

τr02 t+ 〈l
2〉2

τr04
t1+α

Γ(1 + α) . (3.30)

The same results for the short time asymptotic of FCS curve can be derived imme-
diately from Eq.3.23 using the approach of (?). Expanding the apparatus function
one gets

G(t) = 1− δr2(t)
r2

0
+ δr4(t)

2r4
0

+ ... .

Using the explicit expressions for the moments and noting the the terms containing
〈l2〉2 are negligible in the time window considered, namely for t� t0, we again arrive
at Eq.3.30. The corresponding behaviours are analyzed in Figs. 3.6 and 3.7.

Fig. 3.6 indicates the asymptotic transition of FCS data to Eq.3.29. This asymp-
totic behaviour is clearly seen in the last two set of data corresponding to tc =
10000µs and 100000µs.

Expected behaviour for the short time asymptotic from Eq.3.30 is also observed in
Fig. 3.7. The approximations we used to derive this equation are actually applicable
for the large tc in this figure, for the time window t� tc and t� τ .

The conclusion is that the strongly non-Gaussian behaviour at short times, and
the absence of scaling of the displacements’ PDF as a whole may stay unnoticed in
the FCS experiments, when these are analysed using the standard fit of the whole
curve to the FCS data. Such a fit will hint onto normal diffusion, but deliver a wrong
estimate for the diffusion coefficient. The deviation of data from the normal diffusion
curves in the short and long time domain (i.e. asymptotic fitting) give us the way
to spot normal, yet non-Gaussian behaviour and the lack of scaling. In experiment
these deviations might be obscured by noise being strong exactly in these domains,
and the short-time behaviour might be influenced by the photophysical properties of
the dye. Therefore large statistics and careful data analysis are necessary for getting
reliable conclusions.
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Figure 3.7. The FCS results from Eq.3.26 (stars) together with the FCS curves for normal
diffusion with the terminal diffusion coefficient (dashed lines) and the fitted curves from Fig. 3.4
(full lines) at short times. The curves correspond to tc being 10, 100, 1000, 10000 and 100000 µs
from left to right. Curves corresponding to the theoretical approximation for the short times from
Eq.3.30 are plotted as dotted lines for the time domain where the approximation is applicable.

3.5 Summary
In this chapter, we demonstrated the realization of "normal yet anomalous" pro-
cesses in FCS technique, which normally was reported using SPT technique. This
process is defined by its PDF which varies at time and therefore, does not scale.
As an example of such non-scaling situation, we considered the CTRW of tracers
with waiting time probability density function following a Lévy-stable law with ex-
ponential cut off (tempered stable law) in equilibrium in two dimensions. This is
the case corresponding to the essentially normal diffusion, with the second moment
of displacement growing linearly in time. The PDF of particles displacements is,
however, strongly non-Gaussian at shorter times, and does not scale.
First, the first two even moments of the corresponding process were obtained

analytically using the Montroll-Weiss equation. Then, using the sub-ordination ap-
proach, we obtained the exact form of PDF with such waiting time PDF. We derived
the PDF of displacement in Laplace domain and used the numerical inversion to cap-
ture it in real time domain for different characteristic times. The characteristic time
in waiting time PDF determines the time when the PDF tends to become Gaussian.
Having the PDF at hand, we could proceed to obtain the corresponding FCS curves
again for different characteristic times. An exemplary simulation of equilibrated
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3.5 Summary

CRTW also corroborated the theoretical results. Then, to investigate the FCS
curves, we studied their asymptotic behaviours as its importance was demonstrated
in Chapter 2. The results showed that the deviations from Gaussian behaviour may
be detected when analyzing the short- and long-time asymptotic behaviour of the
corresponding curves. The bodies of the curves are still perfectly fitted by the fit
forms obtained for normal diffusion. The diffusion coefficients obtained from these
global fits may however differ considerably from the true tracer diffusion coefficient
as describing the time-dependence of the mean squared displacement of the tracer.
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4 Spot variation fluorescence correlation
(SV-FCS) spectroscopy without spot
variation

In this section, we focus on the spacial information which one can obtain about the
diffusion propagator from an ordinary FCS measurement. As we have extensively
discussed in chapter 2, one of the main difficulties of solving the inverse problem of
finding the diffusion propagator is that, while the propagator is a function of two
variables, coordinate and time, the measurement provides us a curve as a function
of only one variable, time. The mathematical efforts of transferring the Eq.2.1 to
a Laplace transform assuming a scaling form of the propagator, namely coupling
between time and coordinate, also fail to work due to the ill-pose feature of the
problem. This means that the presence of small noise in the data leads to extreme
fluctuation in inverted form. Therefore, these considerations impose the necessity of
inventing some tools to acquire some spacial information from FCS measurements
not only to make a possibility to fully solve the inverse problem, but also to ob-
tain indirect information about the structural organization of the medium in which
diffusion takes place.
Different variations of the ordinary FCS method have been introduced to improve

this deficiency of standard FCS method. Scanning FCS was developed to measure
the point FCS in different points of the sample (???). In this method, the laser spot
is driven along different lines or circles to calculate the autocorrelation functions,
providing information on the concentration of tracers in the sample as well as their
motion. This method is suitable for immobile (slowly diffusing) particles such that
their lateral displacements may be ignored compared to the speed of laser spot. This
method is easy to implement and the impact of moving laser spot may be included
in the theoretical analysis. Multiple confocal spot is also another variation which
simultaneously measures autocorrelation functions at different positions (?). This
provides the possibility to investigate the mobility of different types of molecules
with different colour labelling. A good description of these methods with their
applicability in investigation of dynamics of the intracellular process may be found
in literature (?)
Among many variations of the ordinary FCS technique, Spot variation fluores-

cence correlation spectroscopy (SV-FCS), is one the main variants which provides
information about the local structure of the medium in the illumination spot. In



4 Spot variation fluorescence correlation (SV-FCS) spectroscopy without spot
variation

the SV-FCS, the size of confocal volume is tuned, and the autocorrelation functions
for different sizes are then calculated. Although performing SV-FCS requires repe-
tition of experiments for many times and is more involved, the set of obtained data
from this technique includes spacial change as a parameter to the results of FCS
measurements. This is, in theory, enough to obtain a complete information about
the diffusion process in a medium and to fully obtain the full form of PDF in some
situations. However, the noisy nature of the data is still disturbing and handling the
special term as a well-controlled semi-continuous parameter is not realistically feasi-
ble. Therefore, the main idea behind SV-FCS is to use few changes in the size of the
confocal volume in order to extrapolate the dependence of the particle’s residence
time on the illuminated spot size.

The framework of extracting information from SV-FCS was first introduced by
Wawrezinieck (?), termed as diffusion law analysis. A schematic depiction of the
diffusion law is given in Fig.4.1. Diffusion law in principle, exploits the relation
between the residence time of the particle in the confocal volume and the spot size
to predict the presence of nano-domains or nano-barriers in the medium in which
diffusion takes place. Diffusion law studies a phenomenological relation as

τd = t0 + r2
0

4Deff
(4.1)

where τd and Deff are diffusion time and effective diffusion coefficient. t0 here is
the off-set time which its sign determines the type of diffusion process as follows:
The analysis of Wawrezinieck et al.(?) states that the existence of barriers in the
confocal volume would lead to non-vanishing negative t0, this is depicted in panel c
in Fig.4.1. On the other hand, if there is a nano-domain in the confocal volume, in
which the tracer molecule is trapped for longer times, one would expect positive t0,
panel b in Fig.4.1. Thus, the zero intercept, namely t0 = 0, in this analysis is the
proof for homogeneity of the system,panel a in Fig.4.1. Therefore, performing this
analysis one could, in principle, obtain valuable information about the structural
conformation of the system at the nano scale.

Experimentally, different methods were applied to continuously vary the size of
confocal volume, each having specific advantages and disadvantages. In our novel
proposed method for SV-FCS, we show that the same results can be obtained by
post-processing the photon count data from ordinary FCS measurements. By using
this method, one obtains the fluorescence autocorrelation functions for sizes of con-
focal volume, which are effectively smaller than that of the initial FCS measurement.
The photon counts of the initial experiment are first transformed into a smooth in-
tensity trace using kernel smoothing method or to a piecewise-continuous intensity
trace using binning. Then a non-linear transformation is applied to this trace. The
result of this transformation mimics the photon count rate in an experiment which
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Figure 4.1. Schematic description of diffusion law analysis including different sizes of the
confocal volume together with the calculated FCS curves for each spot size and the dependency
of the diffusion time on the spot size for a created spot a) in a homogeneous medium b) in a
medium containing traps for slowing down the diffusion c) in a medium containing barriers for
hindering the diffusion.

is performed with a smaller confocal volume. The applicability of the method is
established in extensive numerical simulations and directly supported in in-vitro ex-
periments. The procedure is then applied to the diffusion of AlexaFluor647-labeled
streptavidin in living cells. The results of this of work are published in Scientific
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Reports (?).

4.0.1 Methods of Spot Variation

In general, there are three methods to vary the spot size. Here, we briefly explain
these methods categorizing them in two classes. The first class corresponds to those
methods which, essentially, start the FCS measurement with relatively large size
of confocal volume and using some mechanical adjustment to decrease the size of
the spot. These methods are limited to the diffraction limit size and measurements
can not be performed beyond this size limit. The diffraction limit is defined with
the minimum spot size, d, which is possible to create with a lens with numerical
aperture, NA, and the laser light wavelength,λ as: d = λ

2NA (?). Thus, they use
the diffusion law to extrapolate the data from diffraction limited measurements in
order to obtain the information about nano-scale infrastructures. The second class,
however, is denoted to a method which physically goes beyond the diffraction limit
and will be explained in the following section.
The first diffraction limited method is introduced by Steinberger et al. (?). They

measured the fluorescence autocorrelation function of a planar system at different
positions with respect to the confocal volume in z-direction with step size of typically
100-200 nm (z-scan). Changing the position of the planar system with respect to
the beam’s waist led to change in the illuminated spot size. Assuming the quadratic
dependence of residence time and number of particles inside the confocal volume
on the diameter of the spot, one could measure the diffusion coefficient, the beam’s
waist, and the particles’ concentration. Although this method needs no additional
calibration steps, it is limited to 2D-systems. The main error sources in this method
are inaccurate positioning of the sample, thermal instability during subsequent mea-
surements and deviation from the assumed Gaussian form of the spot (?).

Another method, spot-variation FCS (SV-FCS), was developed independently by
Masuda et al. (?) and Wawrezinieck et al. (?). It is based on the under-filling of the
back aperture of the objective by the laser beam. Wawrezinieck et al. introduced a
diaphragm between laser beam expander and the dichroic mirror in order to select
the extension of the beam on the back aperture of the microscope objective. Using
the direct dependence of the point spread function on the diaphragm aperture, they
could tune the size of the confocal volume. Masuda et al. also motorized the
variable beam expander to adjust the size of incoming laser beam before objective.
With these techniques one can continuously adjust the spot size in the range of 0.2
µm up to 0.5 µm.
Eggeling et al. (?) coupled FCS with stimulated emission depletion (STED)

microscopy in order to lift diffraction limitations for confocal volumes (STED-FCS).
An interesting feature of STED is its ability to tune the size of confocal volume
by increasing the power of the depletion laser. Performing the calibration of the
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laser intensity with respect to the resulting size of the confocal volume, one can in
principle attain the desired size of confocal volume in three dimensions. Nevertheless,
this calibration may not be accurate and therefore introduces errors in results of
analysis. Moreover, higher intensities of the depletion laser for smaller spots may
lead to deviations from the Gaussian intensity profile in the confocal volume which
is assumed in further data processing procedures (?). This technique is in a wider
use but demands for a sophisticated setup and high-power lasers, which could be
considered as disadvantage.
In all methods mentioned above one has to perform many repetitions of the ex-

periments. In each repetition the confocal volume has to be adjusted mechanically
or electronically, which may lead to errors and artifacts in measured FCS curves.
Thus, the size of the confocal volume is controlled only indirectly by considering its
theoretically assumed dependence on the parameters changed, which can be altered
due to minor deviations in the setup. Repeating the experiment many times can
be a source of artifacts due to thermal instability of the system’s environment or to
unanticipated changes in the sample itself. This can be a crucial issue when consid-
ering experiments in living cells which have to be exposed to laser illumination for
a long time.
In what follows we propose a new method providing the possibility of mimicking

the spot sizes with any desired step size on the level of data post-processing. This is
done by utilizing the data from a single run of the standard FCS measurement with
diffraction-limited confocal volume. We apply a non-linear transformation to the
smoothed fluorescence intensities, and with this, mimic the exclusion of intensities
arising from the outer parts of confocal volume. Here we assume a linear relationship
between the intensity of the excitation beam and the resulting florescence intensity,
which is valid in standard FCS measurements with moderate intensities. Since only
a single FCS measurement is required to perform our proposed method, all chal-
lenges arising from repeating the measurements are excluded. There is no need for
extra calibration and no more assumptions than have been made for the FCS mea-
surement. Since this method uses a common FCS setup, there is also no demand for
extra equipments. We consider the method in a three-dimensional setup, although
it can also be applied in planar, two-dimensional, systems.

4.1 Theory of Post-processing
In essence, the basic idea of spot variation without spot variation is to utilize the
correspondence between the position of the tracer particle in the confocal volume
and the intensity profile, measured by the detectors. As it is schematically illustrated
in Fig.4.2, particles crossing the outer parts of confocal volume emit less fluorescence
photons compared to those crossing the central part. This is direct consequence of
the form of the confocal volume, intensity profileW (r), which is commonly assumed
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to be Gaussian, as discussed in chapter 2. Thus, if one excludes the lower intensities
in the detected fluorescence intensity profile, it results in fact, in decreasing the
size of the confocal volume. Although this linear filtering of the lower intensities,
as depicted Fig.4.2, is convenient to perform, it includes a discontinuity in the FCS
curve. Theoretically, the new intensity would have the form as I ′(t) = I(t)θ(I(t)−Ic)
, where θ is the stpe function and Ic is the filtering threshold. Presence of this step
function in the calculation of the autocorrelation, leads to non-analytic solution for
the integration in Eq.2.7. Nevertheless, one could find some analytical form for the
asymptotic limits of the FCS curves. Another difficulty with the linear filtration
arises from attributing an arbitrary intensity threshold to a specific size of confocal
volume. This, essentially, requires an extra calibration to find a correlation between
the intensity and the position of the particle.
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Figure 4.2. Schematic description of the idea of SV-FCS without spot variation. The outer
parts of the confocal volume having lower laser intensities result in less fluorescence photons
emitted by the tracer particle. Truncating the lower intensities in the intensity profile means at
decreasing the size of the confocal volume.

Mentioning the problems with the linear filtration approach, we have attempted
to invent a method which not only holds the continuity in the mathematical sense,
but also provides a possibility of calibration free variation of the confocal volume.
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Recalling the basic equation for the intensity of detected photons at time t, we have

I(t) = ε

∫
drW (r)c(r, t) (4.2)

where ε denotes the total quantum efficiency of fluorescence. This indicates that
the intensity of emitted light depends on the laser intensity profile W (r) and on the
local fluorophore concentration c(r, t),
The standard FCS method can be considered as a single particle technique: the

measurements are preformed at very low fluorophore concentrations so that one can
safely assume, there is no more than one fluorophore particle in the confocal volume
at each instant of time. Therefore the instantaneous concentration c(r, t) in Eq.4.2
is essentially δ(r − r(t)) where r(t) is the instantaneous particle’s position. The
instantaneous fluorescence intensity at time t is thus

I(t) = εW (r(t)). (4.3)

The laser beam excitation profile W (r) is commonly approximated by a Gaussian
form

W (r) = I0 exp
[
−2x

2 + y2

r2
0
− 2 z2

s2r2
0

]
with I0 being the characteristic intensity, r0 being the diameter of the beam’s waist
in the direction perpendicular to the light propagation direction, and sr0 being the
corresponding dimension in the light propagation direction, so that

I(r(t)) = εI0 exp
[
−2x

2(t) + y2(t)
r2

0
− 2z

2(t)
s2r2

0

]
. (4.4)

Here the origin of coordinates is put to the center of the confocal volume. In a typical
FCS experiment the parameters of the beam are fixed and known in beforehand from
calibration.
Here we note that the logarithm of I(r(t)) as given by Eq.4.4 is immediately related

to the particle’s position . Therefore, we introduce a non-linear transformation which
defines a modified intensity profile as

I ′(t) = I(t) exp
( ln I(t)

rc

)
, (4.5)

with rc being the free parameter of the transformation. substituting the Eq.4.5 in
Eq.4.4, one gets

I ′(t) = εI0 exp[ln(εI0)/rc]× exp
[
−2x

2(t) + y2(t)
r2

0

(
rc + 1
rc

)
− 2z

2(t)
s2r2

0

(
rc + 1
rc

)]
.(4.6)
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Comparing Eq.4.4 with Eq.4.6, indicates that this non-linear transformation holds
the form of the initial intensity profile, namely the Gaussian form, and simultane-
ously mimics a recorded intensity from a smaller confocal volume with the waist size

r′0 =
√

rc
rc + 1r0 (4.7)

and with the same elongation parameter s. In Eq.4.7, when rc is taken to be large,
r′0 tends to r0 and when rc is small, r′0 is reduced by the factor √rc. The pre-factor
in Eq.4.6 is not disturbing, since the autocorrelation of modified intensities could be
renormalized as

G(τ) = 〈I(t+ τ)I(t)〉
〈I(t)〉2 − 1. (4.8)

thus, all the pre-factors in the modified intensity cancel out in calculated FCS curves.
Finally as in chapter 2, calculating the intensity autocorrelation function, Eq.4.8,

for the modified intensity profile Eq.4.6 leads, under the assumption the Gaussian
form of PDF, tothe standard formula for the FCS autocorrelation function for normal
and for Gaussian anomalous diffusion:

G(t;α,Dα) =
(4Dα

r2
0
tα + 1

)−1 (4Dα

s2r2
0
tα + 1

)− 1
2

(4.9)

where α is the exponent of anomalous diffusion; the case of normal diffusion corre-
sponds to α = 1 (?).

4.1.1 Shot Noise, Binning and Smoothing Kernel

As discussed in the last section, having the intensity profile of detected photons from
a single run ordinary FCS measurement is sufficient to calculate the FCS curves for
the mimicked sizes of confocal volumes which are effectively smaller than the initial
one. This size reduction according to the Eq.4.6, can be done for any size of the
confocal volume, ranging from r0 down to zero (corresponding to the tracer’s size)
with any desired step size. In other words, the whole information is essentially
contained in the single photon count time series, such that the spot variation is
essentially superfluous. However, the realistic situation is somewhat more involved.
Having look at the non-linear transformation, one notices that the transformation
works by tuning the intensity at arbitrary time by a factor of the intensity at the
same time. This means that the higher intensities in the initial intensity profiles are
magnified exponentially with the factor of the intensity itself in the modified one.
Thus, applying this non-linear transformation demands an intensity profile which
varies considerably for different times according to the position of the particle in the
confocal volume (distance from the center). This is, however, not the case for the
typical measurements in ordinary FCS experiment where the outcomes are single
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photon counts.
In typical FCS measurements the FCS curves are calculated from the photon

arrival times (?). Thus, the intensity profile is a binary file containing zero or one
photon count per detection bin. For our approach, however, this shot noise is very
disturbing. In this case, the proposed method would not work and applying the non-
linear transformation would lead to the same FCS curve as the initial one. Here, we
discuss two ways to circumvent the problem.

I) Binning the photon counts: The immediate idea to have a varying intensity
profile is to use the binning method. In this approach, the photon counts in each
instant of detection time, normally nanosecond, are collected in time intervals which
are larger than the detection accuracy. Choosing the binning time interval, two
important points should be taken in account. First, the time interval must be chosen
such that the summation of photon counts inside bins differ considerably from each
other. This, naturally, demands the binning time to be large enough. The second
parameter in defining the time interval is the accuracy, which one loses by increasing
the bin size. In another word, the bin size determines the minimum time resolution
of the analysis. Thus, it should not be larger than the dynamical time range of
the interest in investigation of the process. Therefore, one has to optimize the
binning time such that it finally satisfies these to conditions in order to work with
this piecewise-continuous intensity profile. Our investigations on the experimental
data, as will be discussed in the following chapter, indicate that having the intensity
profile varying from zero to roughly 20 photon counts per bin is sufficient to perform
our analysis. Note, that this method works perfectly in the situations when the
diffusion process is slow, and the diffusion time through the spot is much longer
than the binning time necessary to achieve the required accuracy. However, there
are diffusion processes which are not slow enough to optimize the conditions in
order to find a proper binning time. In this case, the second developed method is
recommended to be performed.

II) Smoothing kernel: The alternative way to circumvent the problem of shot noise
in fast diffusion processes is to transform the initial binary intensity profile into a
continuous fluorescence intensity trace (photon counting rate) which considerably
varies in time according to the position of the tracer. In the smoothing method,
instead of summation of photon counts with the same importance factor in a bin,
the photons are attributed to a magnifying factor based on their time distance from
the next and previous detected photons. The reason for this discrimination between
photon counts with respect to their neighbours is as follows: when the fluorescent
particle is closer to the center of the confocal volume, it is exposed to higher number
of exciting photons and consequently it emits the fluorescence photons with a higher
rate. Thus, the time distances between the detected photons are smaller as they are
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closer to the center.
Finding a proper function for this approach was, indeed, a hard task. Several

approaches based on kernel smoothing and on the statistics of the inter-event times
weretested. Finally, a smoothing function with the double-sided exponential kernel
was found to provide the best results among all tested variants. Thus, our estimate
for the intensity is

I(t) = 1/2σ
N∑
i=0

exp (−|t− ti|/σ) (4.10)

where ti are the photon arrival times, N is the total number of records during the
measurement time T , and σ is the effective smoothing time which also defines the
temporal resolution. The optimal value of σ depends on the total number of photons
collected from the particle diffusing inside the confocal volume. This has to be
taken such that the autocorrelation function G′(t) calculated from the reconstructed
intensity trace I ′(t) for rc � 1 (i.e. when I ′(t)→ I(t)) show the minimal deviation
from original FCS curve G(t).

4.1.2 Proof of Principles, Simulation and Test Experiments

Before applying the method to the experimental data, we discuss the proposed
method at the simulation level in this section. Since the binning method is somewhat
trivial, the kernel smoothing approach is investigated in an extensive simulation
study of normal and anomalous diffusion. Introducing the simulation details from
the well-established methods and the results, the suitability of the proposed method
is then investigated experimentally for two cases of normal and anomalous diffusion
of AlexaFluor647-labeled streptavidin in pure phosphate-buffered saline (PBS) and
in PBS crowded with 30% PEG1500 which are known to be homogeneous. In this
test experiments, we used both approaches, namely binning and kernel smoothing.

Simulation

To support our theoretical finding by means of simulation with emphasis on the
kernel smoothing method, simulations for the cases of normal and anomalous diffu-
sion were performed. Simulation details for the medium and the particles were as
follows: A box in three dimensions with the size of L = 4 µm in each direction, with
periodic boundary conditions was considered as a homogeneous medium in which
the tracer particles performing the diffusion process. Then a confocal volume, for
the purpose of recording the fluorescent intensity, was placed in the center of box
with parameters in Eq.4.4 being r0 = 0.3 µm, as the radius in x-y plane and s = 4
as the elongation in z direction. we set the characteristic intensity I0 and the total
quantum efficiency ,ε, to be unity. Then, the tracer particles were distributed ran-
domly in the box with a total number to be such that their mean number within
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the confocal volume did not exceed 0.5. We note that the particles here assumed
not to have any interaction with each other, with the particle size of zero ( i.e.
point particles). When the diffusing particle reaches the centred confocal volume,
depending on the distance from the center of the spot in x-y plane and the position
in z direction, the fluorescence intensity is calculated according to the Eq.4.4.
In our numerical simulations for normal and anomalous diffusion, the trajectories

of each tracer were obtained from their coordinates simulated as three independent
one-dimensional Brownian and fractional Brownian motions along each axis. The
trajectories for normal diffusion were generated using the Box-Muller method (?).
For the case of anomalous diffusion, we first generated the fractional Gaussian noise
using Lowen’s method (?). Then the trajectories were calculated as integrating the
fractional Gaussian noise in discreet time steps.The trajectories of each tracer were
recorded up to 108 time steps.The time step of simulation corresponds to 1 µs in a
real experiment. The value of the Hurst parameter for anomalous diffusion was H =
0.37, corresponding to sub-diffusion with the exponent of anomalous diffusion α =
0.75 . Diffusion coefficients were set to be 11.8 µm2/s for normal and 80.1 µm2/s0.75

for anomalous diffusion.
Having the simulated particles’ trajectories and the known form of the confocal

volume, the intensity traces I0(t) for the initial continuous form, according to the
Eq.4.4, were generated. The upper purple color coded plots in Fig.4.3 and Fig.4.4
indicate the calculated intensities for the normal and for anomalous diffusion pro-
cesses, respectively. Note that the intensities are shifted by two units for sake of
clarity. These intensity profiles are the starting point in the simulation which are not
available in the real experiments. In principle, the main aim here is to reproduce such
continuous intensity profiles in the last stage using the kernel smoothing method on
the photon counts. Then the non-linear transformation can be conveniently applied
to such intensity profiles.
To mimic the detected photon counts, Ip as in real experiment, we attributed

the intensity at each time to the probability of the detection or absence of a pho-
ton. Thus, one has for the probability of detection a photon at each time step ∆t,
1− εI0(t)∆t and the probability of having no detection, εI0(t)∆t respectively, with
ε = 1. Therefore, the binary intensity of photon counts profile, Ip is generated being
zero or one. The middle purple color coded plots in Fig.4.3 and Fig.4.4 show the
binary intensity profile for normal and anomalous diffusion. This situation can be
generalized for the experimental cases with larger binning times. In such case, one
can attribute the maximum probability (maximum intensity is unity) to the max-
imum number of photons, which the tracer particle can emit in the corresponding
time interval. Consequently, one obtains a piecewise-continuous intensity profile,
similar to the result of binning method. One of the main assumptions made here,
was that the fluorophor tracer responses linearly to the intensity. In other words,
the number of emitted photons changes is a linear function of the intensity. This is
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Figure 4.3. Simulation results for fluorescence intensities for the case of normal diffusion:
(upper, purple) the original intensity trace I0 shifted up by 2 units; (middle, red) photon counts
(Ip) shifted up by 1 unit, and (lower, blue) restored intensity trace I(t) with σ = 23 µs.

however, the assumption which is considered when deriving the basic equations in
the ordinary FCS theory and can be surely used for moderate intensities.
In the next step, the binary intensity profile, Ip, may be transformed to the

continuous intensity trace, I(t), using the kernel smoothing method. This can be
done by tuning the parameter σ such that the deviation between the original and
the restored intensity profiles are minimized. The bottom blue plots in Fig.4.3 and
Fig.4.4 show the restored intensity profiles by using the Eq.4.10 with σ = 23 µs for
the normal and σ = 12 µs for anomalous diffusion. Finding these σ values, one may
start from two lower and higher limits for the σ value, depending one the number of
photon counts and try to perceivethe an optimum value. this value should result in
minimum difference between the initial and final intensity profiles. It is a tautology
that in real experiments, we do not have access to the original intensity trace I0(t),
but only to the photon counts. In such situation, finding the optimal value of σ can
be done by comparing the FCS curves G(t) and G′(t) as calculated from the photon
counts and from the smoothed intensity trace in the relevant time domains. Here, we
compare both the intensity traces and corresponding autocorrelation functions. The
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Figure 4.4. Simulation results for fluorescence intensities for the case of anomalous diffusion:
(upper, purple) the original intensity I0 shifted up by 2 units; (middle, red) photon counts (Ip)
shifted up by 1 unit, and (lower, blue) restored intensity trace I(t) with σ = 12 µs.

aim is to show that if the autocorrelation functions from binary data and from the
reconstructed intensity coincide, the initial and the reconstructed intensity traces
are indeed the same to a good extent.
Fig. 4.5 shows the autocorrelation functions calculated from the photon counts

and from the restored intensities for normal and for anomalous diffusion. Fig.3 in-
dicates that both in the normal and in the anomalous diffusion cases the autocorre-
lation functions of reconstructed intensities reproduce the autocorrelation functions
of original data at longer time lags. We note that for the lag times of the order
and below σ values the deviations may increase considerably. Given typical times
between photon counts in real experiments this limitation is not an important issue,
however, care must be taken when fitting the corresponding curves: time lags below
σ must be excluded from the fit.

In order to apply the proposed method to mimic the size change of the confocal
volume, we used Eq.4.5 with changing parameter rc such that the size of the resulting
confocal volume decreases from initial size r0 to 0.2r0 with steps of 0.1r0, both for
normal diffusion, Fig.4.6, and for anomalous diffusion, Fig.4.7.
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Figure 4.5. Simulation results for FCS curves calculated from photon counts ( bluecircles) and
from restored intensity traces (erd asterisks ) fitted to Eq.4.9 (lines) for normal (upper line) and
anomalous (lower line) diffusion.Note the almost complete coincidence of data.

Plotted in Fig.4.7 are the initial FCS data for the beam waist r0, the results for
the beam waists r < r0 as obtained by the procedure discussed, and the theoretical
curves, according to Eq.4.9, as calculated for the corresponding beam waists and
for the known values of the coefficient of the normal or anomalous diffusion. Note
that the curves in Figs. 4.6 and 4.7 are not fits, but the theoretical curves show-
ing the behaviour given by Eq.4.9 for the values of parameters used in simulations.
Additionally, the simulated data were fitted to Eq.4.9 to obtain the exponents of
anomalous diffusion and diffusion coefficients. Results of fittings in all data for dif-
fusion coefficients and exponents of anomalous diffusion being D = 12.2±1.2 µm2/s
and α = 0.99 ± 0.01 for normal diffusion and D = 78.5 ± 4.8 µm2/s0.75 and α =
0.75 ± 0.03 for anomalous diffusion, i.e. practically do not deviate from the values
which were used for the trajectories’ simulation. As it is seen in the FCS curves from
the spot variation, the results of mimicked FCS for smaller sizes of confocal volume
tends to deviate slightly from the theoretical line. These errors in smaller sizes are
, in principle, expected as in this measurement time (i.e. simulation running time)
the particles cross the central part of the spot less often compared to the outer layers
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Figure 4.6. Simulation results for mimicked spot variation FCS for the values of the effective
beam waist ranging from r0 to 0.2r0 (from right to left) for normal diffusion (symbols), together
with theoretical FCS curves for the same beam waists according to Eq.5.

of the spot. Therefore, the lack of statistics is simply acceptable. This deficiency
in the data for small sizes can be fixed by increasing the measurement time which
provides more reliable statistic for arbitrary small sizes.

Test Experiments: Normal and Anomalous Diffusion in Homogeneous Media

The findings in the simulation level give a direct support of the method. In the
next step of corroborating the method, we will apply the proposed approach to the
experimental data. This will give additional support for the applicability of the
method and show its potential usefulness for investigations of biological systems.
From the experimental results in the chapter 2, it was known that the normal diffu-
sion of a particular tracer in a homogeneous medium such as water, may change to
the anomalous diffusion with adding some crowding materials in the system. The
size of the crowding material as well as its concentration determines the deviation
of diffusion process from normal diffusion in favour of sub-diffusion. To create such
systems of normal and sub-diffusion processes, for investigation of our new method,
we chose the AlexaFluor647-labeled streptavidin as the tracer particle. Since this
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Figure 4.7. Simulation results for mimicked spot variation FCS for the values of the effective
beam waist ranging from r0 to 0.2r0 (from right to left) for anomalous diffusion (symbols),
together with theoretical FCS curves for the same beam waists according to Eq.5.

tracer must be kept in the buffer environment, we replaced the water solution in
chapter 2 with PBS buffer solution for normal diffusion. To obtain the sub-diffusion
in a homogeneous system, we then added PEG1500 molecules as crowding mate-
rial, noting that the concentration should not reach the solubility level. In low
concentration of this type of crowding molecules, the PBS system becomes strongly
viscose and Gaussian anomalous processes are observed. This has been checked by
the asymptotic analysis as introduced in chapter 2. This assures that, there exist
no trapping site in the medium. In other words, the motion of the particle does
not differ in different points in the system. Thus, we performed FCS measurements
for the cases of diffusion of 0.5nM AlexaFluor647-labeled streptavidin in PBS buffer
solution and in PBS buffer solution crowded by 30% PEG1500.
Choosing a low concentration of fluorescence tracer, provides the possibility that,

at any time there would be, in average, not more than one tracer particle in the con-
focal volume. Generally, a good test for performing a single molecule FCS measure-
ment is to observe the fluorescence intensity profile for a single molecule experiment.
One should in this case observe strong fluctuations of the count rates arising from

78



4.1 Theory of Post-processing

entering and exiting of the tracers in and out of the confocal volume. In our experi-
ments, the photon count rate in background was roughly 1, 000 cps with maximum
change to roughly 10, 000 cps, depending on the trajectories intersecting different
parts of the confocal volume. To filter out the unwanted background photons com-
ing from reflection, one may use the time gating technique. The disturbing photon
counts as a result of the reflection of incident laser light from the glass surface and
other parts of the set-up such as filters, generally have different arriving times in
the detectors compared to the fluorescent photons. Therefore, choosing a proper
window of arriving time for the detection of fluorescent photons compared to the
incident photons, leads to the elimination of unwanted background. Nevertheless,
there will be always some photon count background from other light sources in the
room which their impact to the final FCS curves could be neglected.
Autocorrelation functions for the corresponding cases, calculated from recorded

photon counts, are shown as blue symbols in Fig.4.8. The upper curve belongs to
the diffusion in PBS and the lower one corresponds to the diffusion in PBS crowded
with PEG1500 molecules. The data were then fitted to the standard formula of FCS.
The results of the fits accord to our expectation in generating normal and anomalous
diffusion process. The fit for the case of crowded buffer with 30% PEG1500 led
to the exponent of anomalous diffusion and diffusion time being 0.89 ± 0.03 and
1, 084.3 ± 38.6 µs. The case of diffusion in pure buffer solution were fitted to the
normal diffusion and resulted in diffusion time being 243 ± 20 µs. The standard
deviations were calculated from N = 6 repeated experiments for both.
Then, we formed the restored intensity profiles for both processes according to

Eq.4.10 with σ = 3 µs and calculated the FCS curves, respectively. The equal σ
values for both processes stems from the similar experimental situations, namely
the same sizes of the confocal volumes, same incident laser intensities and the same
fluorescent molecules. Although one can go beyond this accuracy and find the cor-
responding results with next digits for σ value, this satisfies our considerations in
establishing the method. The differences between fits to the original FCS data and
reconstructed ones using kernel smoothing method for both normal and anomalous
diffusion were very small and here we reported the fit for smoothed curves. Similar
to our simulations in the previous section, the FCS curves as calculated from the
photon counts and from the restored intensity traces coincide (compare blue and
red solid lines in Fig.4.8). We also mention that, only lag times longer than 20
µs entered our calculations in the analysis of the FCS curves for sake of avoiding
the photophysics of AlexaFluor647 dyes. However, since the diffusion processes are
slow, this does not impact our analysis significantly. Note that this lag time is of
the order of the time limitation of our method as defined by the used value for σ .

Parallel to the kernel smoothing method, we investigated the binning method for
generating the piecewise-continuous intensity profile from the original experimental
data. In this manner, the original binary photon counts were binned with a bin
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Figure 4.8. Experimental results for FCS calculated from photon counts (blue circles) and
from the restored intensity trace according to Eq.4.10 (red asterisks) for streptavidin diffusion in
pure PBS (lower line/symbols) and in PBS crowded with 30% PEG1500 (upper line/symbols)
fitted to the standard formula (solid lines). Each curve is representative for N = 6 independent
experiments.

width of 10 µs, which resulted in intensity profiles varying from zero to maximum of
20 and 31 counts for normal and anomalous diffusion, respectively. This number of
detected photons per bin may be, trivially, increased with intensifying the incident
laser light. However, to check the method’s applicability for standard situation of
FCS experiment, we let the intensity to be low. Having both intensity profiles at
hand, we could apply the non-linear transformation according to Eq.4.5 to these
restored intensity traces and mimic the spot variation FCS. Results of applying
Eq.4.5 to these intensity traces for the cases of pure buffer and crowded one are
shown in Fig. 4.9 and 4.10. In each figure, the left plot corresponds to the spot
variation FCS without spot variation using the kernel smoothing method and the
right one, belong to the same results with the binning method.
As it can be seen in Fig. 4.9 and 4.10, two different approaches of kernel smoothing

and binning in both experiments revealed qualitatively similar results. In both
methods, the FCS curves decayed faster as the spot size became smaller, However,
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Figure 4.9. Experimental results for spot variation FCS (with the effective beam waist varying
from r0 to 0.4r0 from right to left) for diffusion of AlexaFluor647-labeled streptavidin in buffer
fitted to the standard formula. The intensity time traces were generated using kernel smoothing
method for the left panel and binning for the right panel.
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Figure 4.10. Experimental results for spot variation FCS (with the effective beam waist vary-
ing from r0 to 0.4r0 from right to left) for diffusion of AlexaFluor647-labeled streptavidin in
buffer crowded by 30% PEG1500 fitted to the standard formula. The intensity time traces were
generated using kernel smoothing method for the left panel and binning for the right panel.

there exist some apparent differences between them. The first main difference is the
fact that, the FCS curves generated by binning approach have less data points in
the first decade (10 µs - 100 µs) compared to that of generated by kernel smoothing
method. This could, essentially, lead to more uncertainties in fitting process and
data analysis. On the other hand, binning approach has the advantage of fast
analysis and less complexity and does not demand a thorough choice of smoothing
parameter required by the kernel smoothing method. The key advantage of kernel
smoothing method is its applicability in case of low photon counts (arising from e.g.
low laser power or low fluorescence quantum yield of dye). In such cases, to obtain a
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sufficient varying intensity trace from binning method, one would have to make the
bin larger, leading to a reduced time resolution. Therefore, choosing one of these
approaches as the efficient method for the analysis, one should consider different
parameters and the experimental situations.
Similar to the results in the simulation part, the data for smaller mimicked sizes of

confocal volume contain more noise due to fairly short measurement duration, being
100 s. For in-vitro measurements, one could simply increase the measurement time
and obtain quite smooth curves, see the FCS curves for the in-vitro measurements
in chapter 2, also for smaller spots. We set the data acquisition time to be 100 s in
all reported experiments to comply with limitations of in-vivo experiments, where
longer illumination times harm the cell.
To obtain a quantitative result from the spot variation method without spot vari-

ation, to see how correct it could reproduce the FCS curves for the smaller sizes of
the confocal volume, we performed the diffusion law analysis. FCS curves, shown in
Figs. 4.9 and 4.10, for different sizes of confocal volume were fitted to Eq.4.9 with
the exponent of anomalous diffusion acquired from the initial fit to the autocorrela-
tion function of the data (i.e. for the original size of confocal volume equal to 1.0 r0).
Then the relation between the diffusion time and size of the confocal volume was
investigated, see Fig. 4.11. To obtain the intercept, the diffusion time for zero size
of the confocal volume, we interpolated the data with a linear fit. These fits resulted
in the intercepts t0 being −11± 13 µs and −23± 54 µs for pure PBS buffer solution
and the PBS solution crowded by PEG1500. Larger error bars in results for diffusion
in buffer solution crowded by 30% PEG solution were due to including the exponent
of anomalous diffusion as a free fit parameter. The parameter α has a standard
deviation of 0.03. Such a small variation in exponent of anomalous diffusion has a
larg impact in the diffusion time calculation. In summary, these results show that
in fact no barrier or domain is present in these homogeneous solutions. This is a
strong witness in favour of the applicability of our approach to experimental data
to prove the homogeneity of a structure concerning nano-domains.

4.1.3 Heterogeneity in in-Vitro Experiments

In previous sections, we have introduced an alternative approach to the experimen-
tal spot variation in FCS measurements based on post-processing of the obtained
data from a single ordinary FCS measurement. The application of the method for
situation of normal and anomalous diffusion in homogeneous media, in simulation
level and in-vitro experiments, has been so far demonstrated. This could be a di-
rect test for investigation of the homogeneity in nano-scale, such that any deviation
from the expected trend in the diffusion law analysis means at inhomogeneity of
the system. Beside this possibility, we attempted to provide a robust experimental
corroboration for the proposed method, in order to directly observe the presence of
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Figure 4.11. Diffusion time of AlexaFluor647-labeled streptavidin in buffer (blue) and in buffer
crowded with 30%PEG1500 (red) versus spot size, together with corresponding linear fits being
τd = 222r0

2 − 11 with Pearson r2 = 0.995 and τd = 1111r0
2 − 23 with Pearson r2 = 0.997.

Data are presented as means ± standard deviation from N = 6 independent experiments.

nano-scale domains or barriers. Seeking for such a test system, we found the binary
mixture of Dimethyl sulfoxide (DMSO) and glycerol as a generally accepted in-vitro
systems which exhibits the desired properties.
As a protocol to the method, the ideal way to proceed the proposed analysis is

to start with a system which shows a normal diffusion behaviour in a homogeneous
system. Aside from calibration purposes, which is needed in 3−D measurements for
determination of the elongation parameter s, demonstration of applicability of the
method in simple systems before the main experiment makes the final results more
reliable and comparable. Due to this reasoning, we started first with investigation
of diffusion process in Pure DMSO solution. DMSO is, in fact, a homogeneous sys-
tem with uni-modal diffusion time distribution of tracer particles. However, binary
mixture of DMSO and glycerol has been reported to be extremely heterogeneous.
Broad range of nano- and micro-domains are created by glycerol with considerably
higher viscosity. Therefore, diffusion in such system takes place with a broad range
of diffusion time distribution in FCS measurements (?). Such a system provides an
ideal test for the capability of our method to unravel local inhomogeneities.
Compatible with other experiments in this work, we chose AlexaFluor647-labeled

streptavidin tracers and performed the FCS measurements with tracer concentra-
tion being 0.5 nM . We started with the homogeneous system (pure DMSO) and
performed FCS measurements for four independent experiments. Results of the
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consequent FCS measurement are given in the left panel in Fig.4.12. In accordance
with the assumption about the homogeneity of the system similar FCS curves were
obtained in all experiments. All FCS curves fell on each other resulting in a nor-
mal diffusion with uni-modal diffusion time distribution with a mean value being
2, 969 ± 25 µs. In analysis of the corresponding FCS curves, we have included the
triplet dynamics (?) into Eq.4.9 as:

G(t;α,Dα) = (1− F + Fe−τ/τF )
(1− F )

(4Dα

r2
0
tα + 1

)−1 (4Dα

s2r2
0
tα + 1

)− 1
2

(4.11)

with F and τF being the fraction of the tracer particles at triplet state and the
relaxation time of corresponding triplet state, respectively. We note that, one may
introduce a summation to thee pre-factors of standard FCS formula including other
possible triplet states. This, however, corresponds to the second order of correction
in fitting procedure and for simplicity could be neglected.

In preparation of suitable intensity profile from the originally single photon counts,
for performing the spot variation without spot variation, we used the binning method.
Since the medium is quite viscose, the tracer particles diffuse quite slowly. Therefore,
the fluorescent particles are exposed longer to laser light and consequently re-emit
more fluorescent photons, resulting in a fairly good piecewise-continuous intensity
profile with binning method. With same reasoning, losing the information in the
short times due to less data points in binning method is not disturbing, while the
dynamic of interest containing the main information is much larger than binning
time, 10 µs.
The results of performing the spot variation for size range of r0 - 0.4r0, with

corresponding fitted curves are shown in the right panel of the Fig.4.12. The diffusion
law analysis of the FCS curves is given in Fig.4.13. The intercept of linear fit to
the diffusion time was obtained 35 ± 133 µs, which means that one can assume
the intercept to be zero within the errors. This in principle confirms our previous
knowledge on the homogeneity of the system not only in the macro but also in
nano-scale. The
The same procedure was then repeated for the binary mixture of DMSO:glycerol

(77% : 23% , v/v). As it is known from literature, presence of the glycerol droplets
with different micro and nano-sizes in the DMSO solution, creates some highly vis-
cose spots in which the diffusing particles are trapped. This leads to a heterogeneous
system which exhibits different behaviours in different repetition of the FCS mea-
surements. To illustrate the point, four independent samples with the same ratio of
DMSO and glycerol and 0.5 nM AlexaFluor647-labeled streptavidin were prepared.
For each sample, we performed two FCS measurements at two different positions.
Fig.4.14 shows the FCS curves of four measurements (one of the two measurements
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Figure 4.12. Experimental results of FCS measurements (left) for diffusion of AlexaFluor647-
labeled streptavidin in pure DMSO fitted to the standard formula including triplet dynamics.
Spot variation FCS with post-processing (r0 - 0.4r0 from right to left) . The intensity time
traces were generated using binning method (right).
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Figure 4.13. Diffusion time of AlexaFluor647-labeled streptavidin in pure DMSO versus size,
together with the linear fit of τd = 2912r0

2 + 35 with Pearson r2 = 0.999. Data are presented
as means +/- standard deviation from N = 4 independent experiments.

for each sample). A strong variation of diffusion time and exponent of anomalous
diffusion was observed, indicating the heterogeneity of the system at larger scales.
For curves shown in this figure, the exponents of anomalous diffusion were 0.79,
0.91, 0.87 and 0.52 and the corresponding diffusion times being 26, 704 µs, 1, 072
µs, 1, 505 µs and 6, 241 µs.

85



4 Spot variation fluorescence correlation (SV-FCS) spectroscopy without spot
variation

After analysing this heterogeneity at the diffraction-limited scale using FCS, we
also performed the spot variation with post-processing to investigate the existence
of nano-scale domains in the diffraction-unlimited detection volume.
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Figure 4.14. Experimental results of FCS measurements for diffusion of AlexaFluor647 labeled
streptavidin in DMSO:glycerol solution fitted to the standard formula.

The post-processed data for smaller spot sizes were shown in Fig.4.15. Only one
of the measurements (shown in the right panel) shows the linear decrease of the
diffusion time with decreasing the spot size. Three other set of data show extreme
deviations from the expected behaviour for homogeneous systems: Even the obtained
exponents of anomalous diffusion for smaller r0 deviate considerably from the those
obtained from the experimental confocal FCS data. Most of them tend to unity
(normal diffusion) for smaller spot sizes. In some cases the fit indicates α > 1,
which is probably an artefact due to an inappropriate fit function (?).

In order to apply the diffusion law analysis, one can not simply average the dif-
fusion times resulting from the different exponents of anomalous diffusion; different
exponents for different measurements and spot variation data. An alternative way
to analyse data, in a form which is applicable to the diffusion law analysis, is to fit
the data to the normal diffusion with different diffusion times. Taking into account
the binary nature of the system, we performed two-component fits for all original

86



4.1 Theory of Post-processing

10
1

10
2

10
3

10
4

10
5

10
6

time (µs)

0

0.2

0.4

0.6

0.8

1

1.2
G

(t
)

10
1

10
2

10
3

10
4

10
5

10
6

time (µs)

0

0.2

0.4

0.6

0.8

1

1.2

G
(t

)

10
1

10
2

10
3

10
4

10
5

10
6

time (µs)

0

0.2

0.4

0.6

0.8

1

1.2

G
(t

)

10
1

10
2

10
3

10
4

10
5

10
6

time (µs)

0

0.2

0.4

0.6

0.8

1

1.2

G
(t

)

Figure 4.15. Spot variation FCS with post-processing for four independent measurements in
four different samples (r0 - 0.4r0 from right to left). The curves were fitted to the standard
formula with free fit parameter of exponent of diffusion. The intensity time traces were generated
using binning method.

and spot variation FCS curves as:

G(t;α,Dα) = A1

(4D1
r2

0
t+ 1

)−1 (4D1
s2r2

0
t+ 1

)− 1
2

+A2

(4D2
r2

0
t+ 1

)−1 (4D2
s2r2

0
t+ 1

)− 1
2

(4.12)
where A1 and A2 are attributed to the contribution of two components of diffusion
processes, respectively with their diffusion coefficients, D1 and D2.
Although the two component fit was suboptimal, requiring higher number of com-

ponents, our analysis indicates the existence of the slow component with the diffusion
time of 31, 907 ± 2, 726 µs. This is roughly ten fold larger than the diffusion time
in pure DMSO, which is in agreement with previous results (?). The spot size de-
pendence of slow (blue) and fast (red) diffusion times are shown in Fig.4.16. The
diffusion time for the slow diffusion did not follow the expectation for a homoge-
neous system, and the intercept of a linear fit was 28, 133± 2, 726 µs indicating the
existence of nano-domains within the confocal volume, in which tracer molecules
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Figure 4.16. Diffusion time of AlexaFluor647-labeled streptavidin in DMSO:glycerol solution for
slow component (blue) and fast component (red) versus spot size, together with corresponding
linear fits τd = 3555r0

2 + 28133 with Pearson r2 = 0.45 and τd = 12941r0
2 − 474 with

Pearson r2 = 0.91 . Standard deviations were calculated from eight measurements in four
sample preparations.

spends much longer time compared to the free diffusion in the DMSO phase, indi-
cated by the fast time component of 1, 019±3, 360 µs. This result could in principle
be considered as an experimental proof of the capability of the method to detect
nano-domains.
The analysis of the fast component for larger spot sizes is very inaccurate due to

the overall very slow decay of the curves. Nevertheles, when the size of the spot is
reduced using spot variation, the influence of slow diffusion due to nano-domains is
diminished in most of the FCS curves. For < 0.5r0 the behaviour of the diffusion
time is similar to those for pure DMSO. Excluding the data for larger effective spot
sizes from the linear fit results in intercept being: −474± 3, 323 µs.

4.1.4 In-vivo Exemplary Experiments

As an application of our method to living cell studies, we performed intracellular
FCS measurements. The microscopic picture corresponding to successful injection
of AlexaFluor647-labeled streptavidin is given in Fig. 4.17.

To check the successful injection process, fluorescence lifetime histograms before
and after the injection process were recorded. Results shown in Fig.4.18 indicate
the broad lifetime distribution of autofluorescence (blue) before injection. After
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Figure 4.17. a) Bright field image of chosen cell region to be injected, b) fluorescence image
of cell region before injection, (inset) fluorescence image before injection boosted 40 times
for visibility of autofluorescence, c) fluorescence image of cell region after injection showing
AlexaFluor647 fluorescence in two different injection points.

injection of AlexaFluor647-labeled streptavidin, the lifetime histogram is enhanced
and centred around 1.5 ns. The biexponential fluorescence decay analysis (not
shown) resulted in average decay time 1.6 ns. This is in agreement with reported
lifetime for AlexaFluor647-labelled streptavidin in buffer solution indicating a bi-
exponential fluorescence decay with an average lifetime of 1.5 ns (?).
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Figure 4.18. Fluorescence lifetime histograms extracted from both images, before (blue) and
after (red) injection. Additional photon counts after injection and their lifetime distribution
indicate successful injection process of AlexaFluor647-labeled streptavidin.

After injection, we performed intracellular FCS measurements. The calculated
autocorrelation functions are shown in Fig.4.19. Similar to the case of binary mix-
ture of DMSO:glycerol, we have observed different results for four different cell
preparations. Plotted in Fig.4.19 are the FCS curves corresponding to four different
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Figure 4.19. Experimental results for FCS calculated from smoothed FCS curves with σ = 3
µs (circles) together with results for mimicked spot variation FCS (with spot size varying from
r0 to 0.4r0 from right to left) for the diffusion of AlexaFluor647-labelled streptavidin in a living
cell in different preparations fitted to the standard formula.

measurements together with post-processed spot variation data, respectively. The
exponents of anomalous diffusion changed considerably from one to another mea-
surement and were 0.49, 0.68, 0.50 and 0.62 with corresponding diffusion time being
1, 199 µs, 1, 496 µs, 1, 770 µs and 903 µs. The spot variation FCS results apparently
differ from one to another sample and except for one measurement, the results un-
ravel presence of either transient interaction with other macromolecules or trapping
due to geometrical confinement bellow the diffraction limit.
The dependence of the effective diffusion time on the spot size is shown in Fig.4.20.

These data and the corresponding linear fits indicate different behaviour of diffusion
time with change of the spot size. Observed positive and negative intercepts in dif-
fusion law analysis for different independent experiments underlie the existence of
a complex intracellular-environment. Here, streptavidin seems to transiently inter-
act with other macromolecules or its diffusion is hindered due to existing of nano-
barriers. Similar experimental results were observed recently using STED-FCS (?).
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Figure 4.20. The diffusion law analysis for four living cell FCS measurements (shown in Fig.4.19)
together with the linear fits.

Generally, intracellular organellesin living cells and membrane systems as well as
cytoskeleton elements form a dynamic three-dimensional maze through which tracer
molecules have to find their way, leading to hopped diffusion. This kind of trapped
diffusion can be the result of transient protein-specific interactions with intracellular
components. Such transient complexes would then diffuse slower or could be locally
immobilized or geometrically repulsed (????).

4.2 Summary

In this chapter, we introduced a method for mimicking the spot variation fluorescence
correlation spectroscopy (SV-FCS) using post-processing of recorded photon counts
from an ordinary diffraction-limited confocal FCS measurement. Recorded photons
counts from FCS measurements are transformed to a smoothed intensity trace using
kernel smoothing method with a double-sided exponential kernel or to a piecewise-
continuous intensity trace using binning. The resulting intensity trace is then non-
linearly transformed. The transformed trace corresponds to the one which would be
obtained for the same particle’s trajectories in a smaller confocal volume, whose waist
is controlled by a free parameter rc of the transformation. The method is checked
in extensive numerical simulations, and is applied to experimental situations.
Applying the method to diffusion of AlexaFluor647-labelled streptavidin in PBS

buffer solution and in buffer crowded by 30% PEG1500, we have shown that for
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these homogeneous systems the effective diffusion coefficient does not depend on the
mimicked spot size and equals to the one obtained in normal FCS. This gives an
additional (although indirect) support for the validity of our approach. Applying
the method to the diffusion of the same tracer in DMSO and the binary mixture
of DMSO:glycerol we tested the method’s ability to detect nano-domains at sub-
diffraction level. Finally, the same procedure was applied for the case of diffusion
of streptavidin in living cells. As expected, the results of such application indicate
strong inhomogeneity of the intracellular medium.
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Fluorescence correlation spectroscopy is a strong single molecule technique which
provides important information about the diffusion process and the medium in which
the diffusion takes place. Methods for performing FCS experiments in artificial and
biological systems are well-established and obtaining the FCS curves in laboratory
is nowadays a routine task . The analysis of data obtained from this technique is,
however, a hard task. The protocol for the analysis of normal diffusion in the FCS
results is so far trivial and generally accepted. However, data processing for the
case of anomalous diffusion, typical for strongly inhomogeneous and crowded bio-
logical systems was missing. Such a toolbox was strongly needed not only to obtain
some specific parameters of the undergoing processes, but also for understanding
the physics behind them. In this thesis, we looked deeper at different temporal and
special aspects of the FCS data and developed methods not only to robustly analyse
the FCS data for anomalous diffusion, but also obtain much more information which
was not known using standard methods.
In chapter 2, we performed a deep mathematical investigation of the theory be-

hind FCS data. With minimal assumptions made on the PDF of the particle’s dis-
placement, we derived a general formula which represents the FCS curve for more
complicated three dimensional case. Using this formula, we investigated the robust-
ness of data one obtains from the standard method of data analysis which is often
used in most of literatures. We used some toy models as functions for PDF and
calculated the corresponding FCS curves. The results of the standard fits happened
to be considerably different from the initial input values for all the cases, but the
Gaussian form of PDF. We then proceeded to show that a FCS curve is, essentially,
constructed of the moments of its displacement PDF which allows one to confirm or
reject the Gaussian nature of PDF. In case of scaling form of PDF, we demonstrated
that the robust information can be obtained from the short time asymptotic. Using
this facts, we established a protocol which enables one to choose a proper model for
explanation of observed anomalous diffusion. The obtained theoretical results were
then supported by extensive FCS experiments in in-vitro and in-vitro systems.
Besides these progresses we made in the theory of ordinary FCS, still there are

some questions left regarding to the possibility of extraction of the full form of
the PDF. As we discussed, in the Eq.2.1, the unknown P (r, t) is function of two
parameters and obtaining its full form requires that the known part G(t), to be
also a function of position. This possibility was discussed in chapter 4 and here we

93



5 Conclusion and Outlook

propose other possible approaches. One method to reach this aim, which deserves
further investigations, could be to transform Eq.2.1 to a Fredholm’s type equation
with some changes of variables. For this, one needs to assume that the PDF scales.
In such case, the relation between position and time (as in MSD) could be exploited
to reduce the unknown two parameters to only one parameter and then try to solve
the inverse problem. For instance, in the two dimensional case which is realistic for
diffusion in the plasma membrane, the apparatus function contains no dependency
on the elongation parameter and has a Gaussian form. With the change of variables
one could show that Eq.2.1 may be re-written as a Laplace transform of P (r, t).
Although this step is possible, the inversion part still demands further investigation.
The main problem is that the Inverse problem is formally solvable, but highly ill-
posed. In other words, the noise in the data creates extreme fluctuations in the
inverse problem. Therefore, one needs to somewhat smooth the noisy FCS data
such that the nature of data remains still untouched.
The other possibility to gain the full form of the PDF from Eq.2.1 is fitting. For

this, one may consider a general form of the PDF, similar to the Eq.2.24. This
general form contains four unknown parameters which have to determined from
fitting to the FCS data. Although taking this type of functions for the form of the
PDF imposes some assumptions on it, still is more general than assuming a Gaussian
nature of the process. In the situation where the system is simple (e.g in water) one
would expect the results to generate a Gaussian form from fitting. This can be
considered as a test for fitting approach. The initial values for the fitting may be
determined by performing the standard fit model for the first run. The first and
main issue in this approach is that the integral in Eq.2.13 does not have an analytical
solution with these types of functions, or at least the answers are very complicated.
Thus, one has to perform the fitting with the numerical results of the integral.
Therefore, one has to develop a fitting toolbox which provides reliable results from
fitting to the noisy data in a numerical way. Our investigation indicated that the
numerically calculated noiseless FCS data as in toy models, could be accurately
fitted and this approach provides the exact form of the PDFs.
In chapter 3, we formulated the theory of FCS technique for the situation where

the PDF of displacement lacks the scaling property. A good example of such phe-
nomena is "anomalous yet Brownian" process. In such a process, the MSD grows
linearly in time but the PDF deviates from Gaussian form at short times. An an-
alytically solvable model which shows such behaviour is the CTRW model with a
waiting time PDF being the Lévy-stable distribution with an exponential cut-off.
We considered the system to be in equilibrium, to comply the real situation in ex-
periments where the samples are prepared long time before the measurements start.
Using the general formula derived in chapter 2, we showed that the body of the FCS
curves for such a model may be nicely fitted to the normal diffusion and without
short time analysis, such phenomena may not yet be seen in the FCS data.
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Here we investigated the equilibrated CTRW in the FCS thechnique and the ordi-
nary CTRW was generically studied by ?. Nevertheles, there are still some questions
which could be addressed in this area. Observation of aging which is a characteristic
property of the ordinary CTRW process in a single FCS measurement is an example.
For this, one could obtain the fluorescence intensity of single measurement and cal-
culate the autocorrelation functions with truncating the initial parts of the intensity
traces. This in fact leads to the change of the starting point of the measurements.
Therefore, one may observe a shift of diffusing time to longer times. This would
indicate the decreasing of the jump rates due to the aging of the processes. For
instance, we have observed such phenomena in analysing the FCS data obtained
in living cell measurements. The main issue in this type of analysis would be as
follows: for the experiments where the preparation has been done long ago, the
system is already aged and equilibrated. Therefore, changing the starting point of
the analysis would not result in a considerable difference between the corresponding
FCS curves. Thus, one has to perform the experiment right after injection process
of tracer particles into the sample. Here also care must be taken, not to misinterpret
the changes in the FCS curves due to the injection process as aging. The ideal case,
would be to prepare the system and freeze the process with some external conditions
(e.g temperature) and then to perform the experiment as the process starts (?).
Another interesting question to be answered, could be to develop a theoretical

strategy to capture more information concerning the energetic landscape of the
medium (e.g waiting time distribution function PDF) form FCS data analysis. As-
suming that the waiting time and jump length PDFS are decoupled in PDF of
displacement and additionally, considering a Gaussian form for the jump length dis-
tribution, one may seek for a way to extract information about the waiting time
distribution with fitting the FCS data in Laplace domain. Using the connection be-
tween the mean waiting time and the energy of the traps, one can in principle, study
the chemical reactions between the trapping and diffusing elements. Another issue
in this section is to demonstrate the artefacts from many component fit method.
Normally in analysing FCS curves, one observes the quality of fits from the error
bar windows. when the standard formula does not well fit the curves, the curves are
fitted to the many component normal diffusion model. The connection between the
diffusion times obtained from this type of fit and our analysis may also be studied
to compare the accuracy of different methods for exact analysis of FCS data.
In chapter 4, we developed a new strategy to perform SV-FCS by data analysis.

The main idea behind our work here, was to exploit the form of the confocal volume
which nicely connects the position of the tracer (distance from the center) and the
recorded fluorescence intensity profile. The initial binary intensity profiles were
first transformed to continuous or piecewise-continuous profiles using smoothing
kernel or binning methods. We then introduced a non-linear transformation in
order to continuously manipulate the intensity profile to eliminate the photon counts
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resulting from outer parts of the confocal volume. The autocorrelation functions of
newly generated intensity profiles represented the FCS curves for the sizes of the
confocal volume which were effectively smaller than the initial one. We tested our
proposed method in an extensive simulation study and then successfully, applied it
to investigate in-vitro and in-vivo systems.
Contrary to the existing experimental methods for SV-FCS, our proposed method

requires no additional experimental complexity in set-up and no need for repetition
of experiments. This prevents the errors due to recalibration, drifts and thermal
instabilities. The limitation of the method is, however, its restricted applicability to
experiments with a low concentration of tracer, below 1 nM for a typical size of the
confocal volume. Therefore to obtain enough statistics, one may need longer data
acquisition times. In our analysis, we showed that 100 s data acquisition time is
sufficient to obtain reliable results for effective spot sizes down to 1/3 of the initial
one. Further increasing of the measurement time would lead to a high quality data
and allows to extract the effective FCS curves for the spot sizes up to an order
of magnitude smaller than initial spot size. Then we concluded that SV-FCS using
data post-processing is an experimentally simple and straightforward single-molecule
technique which is feasible for studying the sub-cellular organisation of living cells.
The possibility of performing the spot variation in software level, in fact, opens a

broad window for further developments in the FCS technique, especially in exper-
imental part. Since our proposed method is a calibration free method in studying
two dimensional cases, one can use it for a high precision study of lipid bi-layers
and plasma membrane. Performing a long time measurement in two dimensional
case and treating the FCS data as function of position and time, one can think
of applying maximum like-hood method to find the best matching model for the
corresponding experiment. Also, with independent analysis of all curves obtained
from the SV-FCS in a single measurement, one can indirectly observe the trapping
un-trapping phenomenon in a higher spacial resolution.
Another very interesting idea to pursue is to develop the spot variation fluores-

cence cross correlation spectroscopy (SV-FCCS) technique. In the FCCS technique,
lasers sources with different colours create two overlapping spots in the sample.
This set-up is normally used to study the interaction of two types of tracer molecules
which are labelled according to the colours of lasers. Although performing SV-FCCS
experimentally (i.e. using methods listed in this work) is possible, but practically
is an extremely difficult task. Using our proposed method, one can first perform
FCCS measurements and then, independently, apply the non-linear transformation
on the intensity profiles obtained from each spot. With this, one can study not only
the activity of two species, but also their interactions with their substrates. For
instance, the spatio-temporal heterogeneity of lipid interaction in the plasma mem-
brane of living cells has been revealed using STED (?). Applying the SV-FCCS to
living cell systems, one may investigate this heterogeneity in language of FCS data.
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The advantage would be the possibility of monitoring the interactions of different
proteins with a single raft which is captured in the confocal volume. This also allows
one to study the functionality of different proteins with respect to a specific part of
the cell. On the other hand, having the same molecule as a diffusing particle and
labelling it with different fluorescence molecules, one can investigate the influence
of labelling in the activity of a specific protein.
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A.1 Details of experimental procedures

A.1.1 In-Vitro Measurements

The measurements have been performed on a Micro-Time 200 time-resolved confo-
cal microscope (PicoQuant, Berlin, Germany) at the Physical Chemistry group of
University of Potsdam. Samples were excited by a laser diode (LDH-P, PicoQuant)
with wavelength of 635 nm, repetition rate of 20 MHz and pulse width of 70 ps.
The excitation beam was focused by a 100x/NA1.4 oil immersion objective (Olym-
pus, Hamburg, Germany). Fluorescence light emitted from dye passes through the
dichroic mirror (z467/635rpc, AHF Analysentechnik, Tübingen, Germany) and is
guided through a 50 µm pinhole, is splited by a 50% mirror to be recorded by two
single photon avalanche diodes detectors (SPAD)(SPCM-AQR-13 SPCM-CD-2801,
Perkin-Elmer, USA). To calculate the autocorrelation functions, we used SymPho-
Time 64 software (PicoQuant) and analysis of data was performed by software Orig-
inPro 9.2. In order to obtain parameters r0 and s entering the apparatus function,
we performed a calibration experiment with Atto655 diffusion in water at 293.15 K
where the diffusion is normal and the diffusion coefficient is known: D = 392µm2/s
(?). Calibration leads to the values of parameters r0 = (0.260 ± 0.006)µm and
s = 6.3± 0.13, which corresponds to the values of a2 = 0.675 and a4 = 0.271.

A.1.2 In-Vivo Measurements

In order to perform intracellular FCS measurements, salivary gland tissue of the
American cockroach Periplaneta americana was dissected in physiological saline.
Subsequently, the tissue was attached to a glass cover slip using the tissue adhe-
sive Vectabond (Axxora, Lörrach, Germany) and the recording chamber was then
mounted on the microscope stage. For dye-injection, micropipettes with tip sizes of
approximately 2 µm were prepared from glass tubes with filaments (GB150F-10, Sci-
ence Products, Hofheim, Germany) using a micropipette puller (P-97, Sutter Instru-
ments, Novato, USA). Micropipettes were loaded with 100 nM of tracer molecules.
The injection process into the salivary gland duct cells was performed with an in-
jection system (FemtoJet, PatchMan NP2, Eppendorf, Hamburg, Germany) under
microscopic view (IX71, Olympus, Hamburg, Germany).
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A.2 Numerical Laplace Inversion
There are several numerical approaches for inversion of Laplace transform, no single
method is optimal and each method is suitable for a particular function. One of the
most popular inversion algorithms is the Gaver-Stehfest algorithm. This algorithm
is very accurate for functions of type e(−αt) but fails for functions with oscillatory
behaviour. In the Gaver-Stehfest algorithm we should sample the Laplace sample
function in real line, therefore the inverse integral is defined as:

f(t) = 1
2πit

∫
c
f̃(z/t)ezdz.

Approximation of ez with rational function one has

ez '
n∑
k=0

wk
α(k−z)

wk and αk are weights and nodes respectively. Applying the Cauchy integral formula
and considering weight and nodes are real numbers, we obtain:

f(t) ' (ln(2))
t

N∑
k=1

wkf̃(kln(2)/t)

with

wk = (−1)N/2+k
min(k,N/2))∑
j=(k+1)/2

k(M+1)

(N/2)!

(
N/2
j

)(
2j
j

)(
j

k − j

)

The precision of f(t) depends on the value of Stehfest number N . Theoretically,
increasing N leads to preciser f(t). On the other hand, when the Stehfest number
becomes too large, the numerical errors extremely increases. Thus, there is an
optimum value of N . For our calculation we set N = 18. The main limitation of
this method is that, f(t) should be smooth on the scale of the sampling function.
Despite these limitations, this method has some desirable aspects. For instance,
the coefficient wk can be easily computed and the approximation does not need the
value of function for complex number and it is simple to implement.
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A.3 Details for Generation of Random Numbers

A.4 Box-Muller Method
The Box-Muller transform, is a pseudo-random number sampling method for gen-
erating pairs of Gaussian-distributed random numbers, given a source of uniformly
distributed random numbers. Suppose x1 and x1 are independent random variables
that are uniformly distributed in interval (0, 1), then y1 and y2 are pseudo-random
numbers with a standard normal distribution. The basic form of transformations
are as follows

y1 =
√
−2 ln (x1) cos(2πx2)

y2 =
√
−2 ln (x1) sin(2πx2).

We used a prepared function in C++ programming language which uses the above
mentioned method for generating the Gaussian-distributed random numbers.

A.5 Metropolis-Hastings Algorithm
To generate a set of random variable with a desired distribution, one normally
uses the inverse form of the function for the cumulative density function (cdf) of a
random variable. But in most situation, one needs to obtain a sequence of random
samples from a probability distribution for which direct sampling is difficult. The
Metropolis-Hastings algorithm can draw samples from any probability distribution
P(x), provided you can compute the value of function f(x) that is proportional to
the density of P (x), rather than exactly equal to it. This makes the Metropolis-
Hastings algorithm particularly useful. Metropolis-Hastings algorithm works in such
a way that, as more and more sample values are produced, the distribution of values
more closely approximates the desired distribution, P(x). To generate a collection
of states according to a desired distribution, the algorithm uses a Markov process
which asymptotically reaches a unique stationary π(x), such that π(x) = P (x).
To generate yi according to g(y, xi), the approach is to separate the transition

in two sub-steps; the proposal distribution g(x, y) and the acceptance distribution
A(x, y) (the conditional probability to accept the proposed state):

x(i+1) =
{
yi, with probability A(xi, yi)
xi, with probability 1−A(xi, yi)

(A.1)

with
A(x, y) = min[1, (P (y))/(P (x))(g(x, y))/(g(y, x))]

Note that in general, it is not clear problem which distribution g(x, y) should be
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used. It is a free parameter of the method which has to be adjusted to the particular
problem in hand.
In our case the desired distribution contains two parts. The first Lévy part is the

distribution from which we can draw yi and the exponential part is used to form the
condition.
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