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Abstract

We propose a novel approach to estimate the conditional value at risk (CoVaR) of �nancial

institutions. Our approach is based on neural network quantile regression. Building on

the estimation results we model systemic risk spillover e�ects across banks by considering

the marginal e�ects of the quantile regression procedure. We obtain a time-varying risk

network represented by an adjacency matrix. We then propose three measures for systemic

risk. The Systemic Fragility Index and the Systemic Hazard Index are measures to identify

the most vulnerable and most critical �rms in the �nancial system, respectively. As a third

risk measure we propose the Systemic Network Risk Index which represents the overall

level of systemic risk. We apply our methodology to the global systemically relevant banks

from the United States in a time period from 2007 until 2018. Our results are similar to

previous studies about systemic risk. We �nd that systemic risk increased sharply during

the height of the �nancial crisis in 2008 and again after a short period of easing in 2011

and 2015.
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1 Introduction

The issue of systemic risk attracted a lot of attention from academics as well as from

regulators in the aftermath of the �nancial crisis of 2007-2009. Systemic risk refers to

banks and other economic agents with substantial importance to the �nancial system due

to their size (too big to fail) or their centrality (too interconnected to fail). Conventional

quantitative risk measures such as value at risk (VaR) are not suitable for capturing

systemic risk adequately.

To tackle these issues, Adrian et al. (2016) [1] came up with conditional value at risk

(CoVaR), a systemic extension of VaR. Their original approach is however restricted to

analyze systemic risk in a bivariate context. Thus, Hautsch et al. (2014) [14] and Härdle

et al. (2016) [10] extended the CoVaR framework further to analyze systemic risk in a

multivariate and nonlinear context.

This master thesis o�ers a novel approach for the estimation of CoVaR using neural

network quantile regression. Neural networks have become one of the most popular tools

for prediction in recent years. They have been employed extensively and successfully to

image classi�cation as well as speech recognition problems. Our neural network based

approach is highly suited for estimating CoVaR due to its �exibility and nonparametric

nature. Also it allows for a multivariate context.

In a �rst step we estimated the VaR for each global systemically important �nancial

institution (G-SIB) from the United States by regressing their stock returns on a set of

risk factors using linear quantile regression. Next we estimated the CoVaRs of the same

�rms using neural network quantile regression. Here we regressed the stock returns of

each bank on the stock returns of the remaining banks. By approximating the conditional

quantile with a neural network we ensure to capture possible nonlinear e�ects. In order to

estimate risk spillover e�ects across banks we calculated the marginal e�ects by taking the

derivative of the �tted quantile with respect to the other banks' stock returns, evaluated

at their VaR. By doing so we came up with a network of spillover e�ects represented by

an adjacency matrix. This adjacency matrix is time-varying, i.e. we estimated a network

for each trading day.

In a �nal step we proposed three systemic risk measures building on the previous results.

As a �rst measure we proposed the Systemic Fragility Index which identi�es the most

vulnerable banks in a given �nancial risk network. The second measure is the Systemic

Hazard Index which identi�es the �nancial institutions which impose the biggest threat to

the �nancial system. These two measures characterize the �rm-speci�c aspects of systemic

risk. Thus we proposed a third measure which estimates the total level of systemic risk,

the Systemic Network Risk Index.
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Our estimation results show that systemic risk increased sharply during the height of

the �nancial crisis after the bankruptcy of Lehman Brothers in 2008. Systemic risk

has stabilized over the last years with two minor spikes in 2011 and 2016. We have

also identi�ed the most systemically relevant �nancial institutions during the �nancial

crisis.

The remainder of this thesis is organized as follows. Section 2 provides a brief introduction

to neural networks in general and neural network quantile regression in particular. Section

3 describes in detail the methodology of this master thesis. After establishing the research

framework step by step, we present the results in section 4. Section 5 discusses the results

and concludes.
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2 Neural Networks

2.1 Architecture of Neural Networks

A neural network is a nonlinear input-output model inspired by the processing of biological

neurons in the human nervous system (Kuan et al., 1994 [22]). Mathematically, neural

networks can be represented by a function, f : Rp → Rq, mapping from the input to the

output space:

(y1, . . . , yq)
> = f(x1, . . . , xp). (2.1)

Neural networks have a multiple-layer structure of directed graphs with one input layer,

one or several hidden layer(s) and one output layer. While the input and output layers

contain the input and output variables, respectively, the hidden layers function as inter-

mediaries between those two. Neural networks are called feedforward since the directed

graphs are acyclical.

Figure 1: Neural network with a single hidden layer.

An individual neuron is displayed by one node within a neural network. It can be repre-

sented by a function, g : RI → R, mapping from the input space to the one-dimensional

output space. Such a function has three tasks: weighting, aggregation and transformation

of inputs. The optimal choice of weights will be explained in the next subsection. The

aggregation is usually done by summation of weighted inputs. To introduce nonlinear

e�ects, the aggregate is then transformed by an activation function, which often has a

sigmoid shape (e.g. tanh(z)). In the recent past the recti�er linear unit (ReLU) function,

max(0, z), became the most popular choice (Glorot et al., 2011) [9].

Neural networks are suitable for function approximation, as they have a high degree of
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Figure 2: Architecture of a single neuron in a neural network [5].

�exibility since no parametric structure has to be assumed on the functional relationship.

The universal approximation theorem states that a feedforward neural network with at

least one hidden layer and a �nite number of hidden nodes is able to approximate any

continuous function under some mild conditions on the activation function. Cybenko

(1989) [6] provides a proof for the case of sigmoid activation functions.

Universal Approximation Theorem. Let σ be any continuous sigmoidal function.

Then �nite sums of the form

G(x) =
n∑
j=1

αjσ(γ>j x+ θj)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0, there is a sum G(x)

in the above form, for which

|G(x)− f(x)| < ε for all x ∈ In.

While the universal approximation theorem makes a strong statement about the possi-

bility of function approximation, it is silent on how to �nd such an approximation. In

particular it is silent about the required number of hidden nodes. And in general, the

universal approximation theorem does not guarantee good results in practical applica-

tions with limited data. Therefore the next subsection will explain methods for obtaining

weights for a neural network.

Neural networks can be understood as a generalization of a standard regression problem

(in the case of a continuous output variable) or a standard classi�cation problem (in the

case of a discrete output variable). But instead of using a linear equation the dependence

of the output on the inputs is explained by a neural network. Nonlinearity is hereby

introduced by the nonlinear transformation within the individual neurons and by the

multiple-layer structure of the network. Linear regression is equivalent to neural network

regression if the activation function is the identity for all nodes.
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2.2 Learning in Neural Networks

The learning process of feedforward neural networks belongs to the paradigm of supervised

learning (Hastie et al., 2009 [12]), so the teaching inputs include observed values of the

independent variables as well as of the dependent variable.

For the training of neural networks linear optimization methods are no longer feasible. The

most widely used estimation method for neural networks is the backpropagation algorithm

(Werbos, 1974 [24] and Hinton et al., 1986 [15]). Backpropagation is an optimization

method based on gradient descent.

Consider a neural network with one hidden layer, one output node, an activation function

g(·) and a quadratic loss function L,

L(y, ŷ) =
n∑

1=1

1

2
(y − ŷ)2, (2.2)

where y is the observed and ŷ is the �tted value. The initial weights of the neural network

are chosen randomly but should be close to zero. The output is then obtained by passing

the inputs forward through the network using the initial weights. Now the error can be

calculated at the output node and also the gradient of the loss function with respect to

the weights.

For the output layer the weight from a hidden node h is adjusted proportionally to its

derivative:

∆woh = −η ∂L
∂woh

(2.3)

= −η(y − ŷ)g′

(
M∑
m=1

whmom

)
oh, (2.4)

with oh being the output of the hidden layer neuron h, M is the number of hidden nodes

and η is the learning rate.

Hidden layer weights are also adjusted according to the gradient. Since the error is brought

backward through the network the weight adjustment depends on the adjustments at

subsequent nodes. The weight between an input j and hidden node h is adjusted in the

following way:

∆whj,h = −η ∂L

∂whj,h
(2.5)

= −ηwohδog′
(

K∑
i=1

whi,hxi

)
xj, (2.6)
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where

δo = (y − ŷ)g′

(
M∑
m=1

whmom

)
(2.7)

and xj represents the j-th input and K is the number of input variables.

This procedure of propagation of the error and subsequent weight adjustment is repeated

until a stopping criterion is ful�lled. This can be a prede�ned number of maximal itera-

tions or a threshold for the loss function.

Algorithm 1 Backpropagation

1: Initialize network weights randomly
2: repeat

3: for all Training examples do
4: Propagation of the input to obtain the output of the neural network
5: Calculate the error
6: Pass the error back through the network
7: Update the weights according to the gradient of the error

8: until No. iterations > max no. of iterations OR other stopping criterion

In standard gradient descent the whole sample is used to calculate the gradient based on

the forward propagation of inputs. However, when the sample size becomes large, this is

no longer e�cient. Therefore it might be preferable to consider mini batches (randomly

selected cases) for each iteration of forward- and backpropagation (Hardt et al., 2016 [11]).

This method is called stochastic gradient descent.

The practical problem of gradient-based methods is that it might be di�cult to �nd a

global minimum. This problem can be induced by the existence of local minima and

saddle points. The algorithm might stop early if the gradient of the error is close to zero,

i.e. a marginal change in the weights does not have a signi�cant impact on the error.

Several optimization algorithms have come up with solutions to these practical problems.

A possible remedy is to consider an adaptive learning rate η for every parameter and at

each time step. Another method is to introduce momentum for the learning rate in order

to avoid being stuck in local minima. Current gradient-based optimization algorithms are

ADADELTA (Zeiler, 2012 [25]) and ADAM (Ba, 2015 [2]).

2.3 The Bias-Variance Trade-o�

A central issue of neural networks and machine learning in general is over�tting. One has

to be very careful with the choice of tuning parameters, such as the number of hidden

layers or the number of hidden nodes. If the architecture of the neural network is too
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complex, there is a tendency to not only �t the structure of the data but also the noise.

As a consequence, the training error can be reduced to zero but the model typically

generalizes poorly.

Predictive accuracy can be measured by the expected prediction error (Hastie et al., 2009

[12]):

Err = E [L {Y, f(X)}] , (2.8)

where L(·) is an arbitrary loss function. However, neural networks minimize only the

training error which is an overly optimistic approximation of the actual expected pre-

diction error. This optimism lies in the repeated use of the data for estimation and

evaluation.

err =
1

N

N∑
i=1

L
{
Yi, f̂(Xi)

}
(2.9)

Under the assumption of a quadratic loss function and by �xing the covariates (X = x0),

the expected prediction error can be decomposed in the following way:

Err(x0) = σ2
ε + Bias2

{
f̂(x0)

}
+ Var

{
f̂(x0)

}
. (2.10)

Predictive accuracy is thus determined by the bias as well as the variance of the model.

The �rst term, σ2
ε , is the irreducible error which is independent of any model.

Neural networks with a su�ciently complex structure are able to reduce the bias to zero

at the expense of a high variance. A simple way to mitigate this problem is to introduce

an additional penalty term for model complexity. Common choices are weight decay (L2)

and LASSO (L1) penalization on the weights.

Hastie et al. (2005) [13] propose elastic net, a L1/L2 hybrid penalization. When consid-

ering an arbitrary loss function L(·), the optimization problem becomes:

min
θ
L(θ) + λ

{
(1− α)‖θ‖1 + α‖θ‖22

}
, (2.11)

where θ is a vector of parameters. If α = 0, elastic net is identical to LASSO, if α = 1, it

is identical to weight decay penalization. The advantage of elastic net is that it achieves

the sparsity property of the LASSO and works well with highly correlated regressors.

However, feature selection is not really possible in the context of neural networks, due

to their multiple-layer structure. A particular input variable has multiple weights and

a shrinkage of one weight to zero does not eliminate the whole variable but only one

connection of the neural network.
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The currently most prevalent regularization method for neural networks is dropout (Hin-

ton et al., 2014 [16]). The idea is to randomly drop units with a probability p and adjust

the weights for a thinned-out network. The �nal trained model can then be seen as

an ensemble of less complex neural networks. Dropout tries to mitigate the risk of co-

adaptation of weight parameters, which can be the cause for over�tting (Hinton et al.,

2012 [17]).

2.4 Neural Network Quantile Regression

Neural networks have been applied extensively to mean regression and classi�cation prob-

lems. Neural networks can also be used for approximating quantiles. This was �rst

formalized by Taylor (2000) [23]. An application to time series data can be found in Xu

et al. (2016) [18], who extended the CaViaR framework of Engle et al. (2004) [8] by using

neural network quantile regression instead of standard quantile regression.

Conceptually, the approach is similar to linear quantile regression, as introduced by

Koenker et al. (1978 [19], 1982 [20]). The goal is to �nd the best approximation for

the conditional quantile of a random variable. Therefore the following loss function has

to be minimized:

min
θ

T∑
t=1

ρτ {yt − ŷτt (θ)} , (2.12)

where θ is a vector of coe�cients, yt are the observed values and ŷτt (θ) are the �tted

τ -quantiles and ρτ is the tilted absolute error function de�ned as:

ρτ (u) =

τu if u ≥ 0

(τ − 1)u if u < 0
, (2.13)

Since the backpropagation algorithm requires di�erentiability, Taylor (2000) proposes a

slight modi�cation of the loss function:

ρτ (u) =

τh(u) if u ≥ 0

(τ − 1)h(u) if u < 0
, (2.14)

with h(u) being the Huber norm, a hybrid L1/L2 norm, de�ned as:

h(u) =

u2

2ε
if 0 ≤ ‖u‖ ≤ ε

‖u‖ − ε
2

if ‖u‖ > ε
. (2.15)
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The functional form of a neural network quantile regression model with one hidden layer

is given by

f(Xt,w) =
M∑
m=1

wom g

(
K∑
k=1

whk,mXk,t + bhm

)
+ bo, (2.16)

where whk,m is the weight from input k to hidden node m, whm is the weight of hidden node

m and bhm and bo are the corresponding bias terms for the hidden nodes and the output

node. g(·) is a nonlinear hidden layer activation function. The activation function for the

output node is assumed to be linear.

The estimated conditional τ -quantile is then the �tted value of the neural network:

Ŷ τ
t = f(xt, ŵ), (2.17)

where ŵ is the solution of the backpropagation procedure and xt is the vector of all inputs

at time t.

Neural network quantile regression as de�ned above was implemented in R in the QRNN

package (Cannon, 2011) [3]. The package also allows for the inclusion of a L2 penalty

term. Recent software packages do not require di�erentiability of the loss function and

also enables the consideration of more complex neural networks.
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3 Methodology

In this section we explain the details of our systemic risk analysis. Our methodology

involves four steps. The �rst step is concerned with the estimation of VaR with linear

quantile regression using a set of risk factors as explaining variables. The results are used

in the next step to estimate the CoVaR for each �nancial institution using neural network

quantile regression. Next we calculate marginal e�ects to model systemic risk spillover

e�ects, resulting in a time-varying systemic risk network. In the �nal step we propose

three systemic risk measures based on this systemic risk network.

3.1 Step 1: Estimation of VaR

VaR is de�ned as the maximum loss over a �xed time horizon at a certain level of con�-

dence. Mathematically, it is the τ -quantile of the pro�t and loss distribution:

P(Xi,t ≤ VaRτ
i,t) = τ, (3.1)

where Xi,t is the return of �rm i at time t and τ ∈ (0, 1) is the quantile level.

The VaR of each �rm i is estimated as the �tted value of a linear quantile regression

procedure by regressing the returns on a set of macro state variables Mt−1.

Xi,t = αi + γiMt−1 + εi,t, (3.2)

where the conditional quantile of the error term ετi,t|Mt−1 = 0. The VaR is the �tted value

of the linear quantile regression problem:

VaRτ
i,t = α̂i + γ̂iMt−1. (3.3)

3.2 Step 2: Estimation of CoVaR with NNQR

CoVaR was introduced as a systemic extension for standard VaR (Adrian et al., 2016

[1]). Similar to VaR, it is a risk measure de�ned as a conditional quantile of the loss

distribution. But deviating, CoVaR is contingent on a speci�c �nancial distress scenario.

The motivation for using CoVaR is the identi�cation of systemically important banks.

For the distress scenario we assume that all other �rms are at their VaR. By doing this

we follow the reasoning of Hautsch et al. (2014) [14] and Härdle et al. (2016) [10].

P(Xj,t ≤ CoVaR |X−j,t = VaRτ
−j,t) = τ, (3.4)
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where X−j,t is a vector of returns of all �rms except j and VaRτ
−j,t is the corresponding

vector of VaRs.

CoVaR can be estimated as a �tted conditional quantile, building on the results for the

VaRs obtained in step 1. Chao et al. (2015) [4] and Härdle et al. (2016) [10] �nd evidence

for nonlinearity in the dependence between pairs of �nancial institutions. Hence, linear

quantile regression might not be an appropriate procedure to estimate the risk spillovers.

We therefore propose the use of neural network quantile regression. The �exibility of the

approach allows to detect possible nonlinear dependencies in the data.

The conditional quantile of bank j's returns is regressed on the returns of all other banks

and using a neural network as de�ned in section 2.4:

Xj,t = f(X−j,t,w) + εj,t, (3.5)

=
M∑
m=1

wom g

(
K∑
k 6=j

whk,mXk,t + bhm

)
+ bo + εj,t, (3.6)

with the conditional quantile of error term ετj,t|X−j,t = 0.

To calculate the CoVaR of �rm j, the �tted neural network has to be evaluated at the

distress scenario:

CoVaRτ
j,t = f(VaRτ

−j,t, ŵ), (3.7)

where ŵ is the estimated vector of weights and bias terms. Nonlinearity is introduced by

the use of the nonlinear activation function.

3.3 Step 3: Calculation of Risk Spillover E�ects

Based on the weights estimated by the NNQR procedure, it is now possible to obtain risk

spillover e�ects between each directed pair of banks. We propose to estimate the spillover

e�ects by taking the �rst derivative of the conditional quantile of �rm j's return with

respect to the return of �rm i.

∂Xτ
j|−j,t

∂Xi,t

=
∂

∂Xi,t

M∑
m=1

wom g

(
K∑
k 6=j

whk,mXk,t + bhm

)
+ bo + εj,t (3.8)

In the case of a sigmoid tangent activation function we have

∂Xτ
j|−j,t

∂Xi,t

=
M∑
m=1

womw
h
i,m g′

(
K∑
k 6=j

whk,mXk,t + bhm

)
(3.9)
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with

g′(z) =
∂ tanh(z/2)

∂z
(3.10)

=
2

(exp−z/2 + expz/2)2
. (3.11)

In the case of a ReLu activation function we have

∂Xτ
j|−j,t

∂Xi,t

=
M∑
m=1

womw
h
i,m1

(
K∑
k 6=j

whk,mXk,t + bhm > 0

)
. (3.12)

Since we are interested in the lower tail dependency, we consider the marginal e�ect

evaluated at the distress scenario as de�ned in the previous subsection:

∂ CoVaRτ
j,t

∂ VaRτ
i,t

=
M∑
m=1

womw
h
i,m g′

(
K∑
k 6=j

whk,m VaRk,t +bhm

)
. (3.13)

Calculating such a marginal e�ect for each directed pair of �rms yields an o�-diagonal

adjacency matrix of risk spillover e�ects at time t:

At =


0 a12,t . . . a1K,t

a21,t 0 . . . a2K,t
... . . .

. . .
...

aK1,t aK2,t . . . 0

 , (3.14)

with elements de�ned as absolute values of marginal e�ects:

aji,t =

|
∂ CoVaRτj,t
∂VaRτi,t

|, if j 6= i

0, if j = i
. (3.15)

Note that the risk spillover e�ects are not symmetric in general, thus aji,t 6= aij,t. This

adjacency matrix speci�es a weighted directed graph modeling the systemic risk in the

�nancial system.

3.4 Step 4: Network Analysis of Spillover E�ects

To further analyze the systemic relevance of the �nancial institutions we can calculate

several network measures proposed by Diebold et al. (2014) [7].

First, the total directional connectedness to �rm j at time t is de�ned as the sum of

12



absolute marginal e�ects of all other �rms on j.

Cj←·,t =
K∑
i=1

aji,t (3.16)

Analogously, one can de�ne the total directional connectedness from �rm i at time t as

the sum of absolute marginal e�ects from i to all other �rms.

C·←i,t =
K∑
j=1

aji,t (3.17)

Lastly, Diebold et al. de�ne the total connectedness at time t as the sum of all absolute

marginal e�ects.

Ct =
1

K

K∑
i=1

K∑
j=1

aji,t (3.18)

The total connectedness is a measure for the interconnectedness on the level of the entire

system, without di�erentiating between individual components of the network.

Building on the analysis of Diebold et al., we re�ne the approach by incorporating VaR

and CoVaR in the measurement of the systemic relevance. In particular, we propose the

Systemic Fragility Index (SFI) and the Systemic Hazard Index (SHI):

SFIj,t =
K∑
i=1

(
1 + |VaRτ

i,t |
)
· aji,t (3.19)

SHIi,t =
K∑
j=1

(
1 + |CoVaRτ

j,t |
)
· aji,t (3.20)

The SFI is a systemic risk measure for the vulnerability of a �nancial institution. It

increases if those adjacency weights pointing to j are large and also if the VaRs of �rms

i (i.e. the risk factors for j) increase.

The SHI is a risk measure for the exposure of the �nancial system to �rm i. It depends

on the out-going adjacency weights from i and also on the other �rm's CoVaR.

As a third index we propose the Systemic Network Risk Index (SNRI), a measure for

the total systemic risk in the �nancial system which depends on the marginal e�ects, the

outgoing VaRs and the incoming CoVaRs.
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SNRIt =
K∑
i=1

K∑
j=1

(1 + |VaRτ
i,t |) · (1 + |CoVaRτ

j,t |) · aji,t. (3.21)

Lastly, we de�ne the adjusted adjacency matrix,

Ãt =


0 ã12,t . . . ã1K,t

ã21,t 0 . . . ã2K,t
... . . .

. . .
...

ãK1,t ãK2,t . . . 0

 , (3.22)

with elements de�ned as:

ãji,t =

aji,t · VaRτ
i,t ·CoVaRτ

j,t, if j 6= i

0, if j = i
. (3.23)

The adjusted adjacency matrix accounts for the level of outgoing VaRs and incoming

CoVaRs and is an improved representation of risk spillover e�ects. Systemic spillover

e�ects are thus determined by the marginal e�ects of the NNQR procedure as well as by

the VaRs and CoVaRs.
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4 Results

4.1 Data

The data contains stock returns for the global systemically important banks (G-SIBs) from

the United States selected by the Financial Stability Board (FSB) in the time period

between January 4, 2007 and May 31, 2018. The daily stock returns are obtained from

Yahoo Finance.

Financial Institution NYSE symbol
Wells Fargo & Company WFC
JP Morgan Chase & co. JPM
Bank of America Corporation BAC
Citygroup C
The Bank of New York Mellon Corporation BK
State Street Corporation STT
Goldman Sachs Group, Inc. GS
Morgan Stanley MS

Table 1: List of G-SIBs in the USA.

Additionally to these return data, we consider daily observations of the following set of

macro state variables.

i) implied volatility index (VIX), from Yahoo Finance;

ii) the weekly S&P500 index returns, from Yahoo Finance;

iii) Moody's Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury

Constant Maturity from Federal Reserve Bank of St. Louis;

iv) 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity

from Federal Reserve Bank of St. Louis.

4.2 Model Selection

The tuning parameters for the neural network quantile regression procedure are selected in

the following way. For each �nancial institution we regress the returns on the other �rms'

returns to estimate the 5% quantile. The data is separated into a training and a validation

set repeatedly in a moving window approach. We consider an estimation window of 250

days and a subsequent validation window of 50 days. Start of each estimation window is

the begin of the new year. The resulting performance indicators are then aggregated over

all �rms and all windows to select the best model.
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As a �rst measure for model performance we propose the average tilted absolute error of

prediction (ATAE) which can be compared to the MSE in mean regression:

ATAE =
1

T

T∑
t=1

ρτ (Xj,t − X̂j|−j,t), (4.1)

where Xj,t is the observed and X̂τ
j|−j,t the �tted value. A small value for the ATAE is

preferred.

The second measure is the R1 criterion (Koenker et al., 1999 [21]), a coe�cient of deter-

mination de�ned analogously to the R2 measure in mean regression.

R1 = 1−
∑T

t=1 ρτ (Xj,t − X̂τ
j|−j,t)∑T

t=1 ρτ (Xj,t − X̂τ
j )

, (4.2)

where X̂τ
j is the estimated unconditional τ -quantile. It should be noted that for the in-

sample �t it has to hold that R1 ∈ [0, 1]. However, the out-of-sample �t for a particular

unsuitable model can be worse than a constant unconditional quantile �t. In this case

the R1 can even be negative.

Lastly, we introduce the ratio of quantile exceedances (RQEX) as a measure of calibra-

tion. A well-calibrated model should have a ratio close to τ :

RQEX =
1

T

T∑
t=1

1Xj,t<X̂τ
j
. (4.3)

5 10 15 20

0.
00

12
0.

00
20

AT
A

E

Figure 3: ATAE contingent on the number of hidden nodes. In-sample �t (blue line) and
out-of-sample �t (red line).
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Figure 4: ATAE contingent on the number of epochs. In-sample �t (blue line) and
out-of-sample �t (red line).

Figures 3 and 4 visualize the problems of over�tting. A large number of hidden nodes and

a large number of epochs can e�ectively reduce the training error (blue line). However,

the test error (red line) decreases only to a certain point. After this point the test error

starts to increase again.
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Figure 5: ATAE contingent on the dropout rate p. In-sample �t (blue line) and out-of-
sample �t (red line).
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Figure 6: ATAE contingent on elastic net parameter α. λ = 0.0001 (solid line), λ = 0.001
(dashed line) and λ = 0.01 (pointed line).
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We considered two di�erent regularization methods, dropout and elastic net. The results

are shown in Figures 5 and 6. A small dropout rate (10-20%) can reduce the test error

compared to the baseline setting of zero dropout. Elastic net penalization can also improve

the �t, given that λ is not chosen to be too large. Both methods have, however, a negative

impact on the in-sample �t, as they introduce a bias to the model.

For model selection we consider 10 di�erent model speci�cations. The results can be

found in Table 2 1.

Model ATAE R1 RQEX
ReLu, H = 5 0.002026 0.4668 0.0650
ReLu, H = 5, α = 0, λ = 0.001 0.002026 0.4675 0.0661
ReLu, H = 5, α = 0.25, λ = 0.001 0.002023 0.4682 0.0657
ReLu, H = 5, p = 0.1 0.001973 0.4728 0.0595
ReLu, H = 5, α = 0.25, λ = 0.001, p = 0.1 0.001973 0.4740 0.0584
ReLu, H = (5, 2), p = 0.1 0.002193 0.4554 0.0770
ReLu, H = (3, 3), p = 0.1 0.002227 0.4412 0.0677
ReLu, H = 10, p = 0.1 0.002033 0.4788 0.0752
tanh, H = 2 0.002845 0.3030 0.1018
tanh, H = 5 0.002643 0.3691 0.1036

Table 2: Out-of-sample performance for di�erent model speci�cations. We consider ReLu
and tanh activation functions, H refers to the number and structure of hidden nodes, α
and λ are the elastic net parameters and p is the input layer dropout rate.

The results in Table 2 suggest that complex models are dominated by less complex models.

As a second observation, the ReLu (recti�er linear unit) activation function is superior to

the tanh activation function. Both dropout and elastic net have a positive impact on the

model performance.

The best model of the candidates is a neural network with 5 hidden nodes in a single

hidden layer with a ReLu activation function. The model has also a dropout ratio of

p = 0.1 and elastic net parameters α = 0.25 and λ = 0.001. It ranks �rst in ATAE (one

of only two models that fall below 0.002) and second in R1. Also the model's RQEX

(0.0584) is the closest to the quantile level of 0.05. We will use this model in the following

estimation steps.

1We use the ADADELTA optimization algorithm with parameters ρ = 0.99 and ε = 1e − 08. The

number of epochs for all models is 50.
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4.3 Estimation Results

4.3.1 VaR and CoVaR

As explained in section 3, the analysis is carried out in four steps. In the �rst two steps

VaR and CoVaR are estimated for each �rm, using linear quantile regression and neural

network quantile regression, respectively. To account for potential non-stationarity, we

employ a sliding window estimation framework for both measures. The window size is

chosen to be 250 observations (implying one year of daily stock returns). We chose the

quantile level τ = 5%. The �tted values for all banks are visualized in Figure 7.
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Figure 7: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by NNQR
(red line).
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The VaRs and CoVaRs of all banks follow a similar pattern. In the course of the �nancial

crisis and the bankruptcy of Lehman Brothers and Bear Stearns, both measures explode,

indicating an increase in systemic risk during this period. After a short stabilization

period, the CoVaRs rise again in the second half of 2011. What follows is a relatively

stable period with a few non-persistent spikes.
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I5

I6

I7

WFC

JPM

BAC

C

BK

STT

GS

H1

H2

H3

H4

H5

O1 MS

Figure 8: Fitted quantile regression neural network for Morgan Stanley on March 13, 2008.
Red connections indicate negative weights, blue connections indicate positive weights.
The color of the input nodes visualizes the variable importance rank calculated as the
marginal e�ect of the respective �rm on Morgan Stanley (yellow implies low importance,
red implies high importance).

4.3.2 Risk Spillover Network

Based on the weights estimated in the NNQR procedure and the estimated VaRs and

CoVaRs, we calculated the spillover of each pair of banks for each point in time of the

estimation horizon. The result is a time-varying weighted adjusted adjacency matrix (as

de�ned in equation 3.22). Figure 9 visualizes a simple time average of these matrices.
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Figure 9: Level plot of the risk spillover e�ects, averaged over the whole estimation period.
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Figure 10: Level plot of the risk spillover e�ects, averaged over post-Lehman period
(September 15, 2008 - December 14, 2008).

When restricting the included observations to the period up to three months after the

Lehman bankruptcy, the time average looks di�erently. Figure 10 shows that the spillover

e�ects were signi�cantly larger during this period of �nancial distress. This result is in

line with economic theory, as �nancial institutions were in fact very interconnected due

to large derivative positions causing mutual counterparty risk.

Another important observation that can be made from these two plots is that the spillover

e�ects have a tendency to be symmetric. If one bank has a large impact on another

bank, the converse is also likely. This symmetry pattern becomes even more clear when

looking at the network representations of the spillover e�ects in Figures 11 and 12. The

largest edges (30%) of the network, as visualized in Figure 12, occur mostly in pairs. The

symmetry is not caused by the model setup, which is asymmetric in its nature, but is

rather implied by the data.
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Figure 11: Systemic Risk network of spillover e�ects, averaged over the whole estimation
period.
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Figure 12: Systemic Risk network of spillover e�ects, averaged over the whole estimation
period. Only the 30% largest edges are displayed.
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4.3.3 Network Risk Measures

Finally, we estimated the systemic network measures using the results of the previous

steps. The Systemic Network Risk Index is a measure for the overall systemic risk in the

�nancial system. The time series plot can be found in Figure 13. From 2008 until the

start of 2018 there have been one large and two smaller spikes. The �rst and largest spike

represents the height of the �nancial crises. Two smaller ones follow in 2011/2012 and

2015/2016, each.
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Figure 13: Systemic Network Risk Index (grey line) and cubic spline interpolation with
sparsity parameter equal to 0.8 (blue line).

Rank Bank SFI
1 STT 2.433
2 BK 2.362
3 BAC 2.225
4 MS 2.233
5 JPM 2.134
6 C 2.125
7 GS 2.069
8 WCF 2.019

Table 3: Firms ranked according to the
systemic fragility index (averaged over
post-Lehman period).

Rank Bank SHI
1 BAC 2.730
2 GS 2.431
3 MS 2.372
4 BK 2.342
5 C 2.289
6 JPM 2.221
7 WCF 2.211
8 STT 2.041

Table 4: Firms ranked according to the
systemic hazard index. (averaged over
post-Lehman period).

While the SNRI does not di�erentiate between di�erent banks, we then identi�ed the

most systemically relevant �rms during the �nancial crises. Hereby we considered the

most vulnerable banks identi�ed by the SFI in Table 3 as well as the most dangerous
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banks identi�ed by the SHI in Table 4. The results in the tables represent averages over

the three month period after the Lehman bankruptcy.

The most fragile banks according to our methodology are the State Street Corporation, the

The Bank of New York Mellon Corporation and the Bank of America Corporation. The

�rms which impose the largest systemic risk to the �nancial system are again the Bank

of America Corporation, Goldman Sachs and Morgan Stanley. While Goldman Sachs

ranks very high in the SHI, it is nearly at the bottom of the SFI, indicating that their

exposure to the �nancial system is weaker than the other way around. The opposite is

the case for the State Street Corporation which has the largest SFI and the lowest SHI

of all �nancial institutions that we have considered.
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5 Conclusion

Even if the global economy seems to have recovered from the �nancial crisis, systemic risk

is still a relevant topic. Whereas there are no immediate systemic threats to the �nancial

system today, latent risks are still present.

This master thesis proposes a novel approach to estimate the conditional Value at Risk

(CoVaR) of �nancial institutions based on neural network quantile regression. We esti-

mate a network of systemic risk spillover e�ects and propose three network-based risk

measures, the Systemic Fragility Index to rank the �rms with the largest exposure to

the �nancial system, the Systemic Hazard Index which ranks the �rms according to the

risks they impose to the �nancial system and the Systemic Network Risk Index which is

a measure for the overall systemic risk.

The methodology is applied to the global systemically important banks from the United

States in the period from 2007 until 2018. The results are in line with previous �ndings

in the literature. We observe the Systemic Network Risk Index increasing sharply during

the �nancial crisis after which it stabilizes.

This master thesis is an important contribution to the vast literature about systemic risk.

Neural networks have been utilized almost exclusively as a device for prediction. An

accomplishment of this thesis is to �nd a way to interpret the underlying neural network

by estimating risk spillover e�ects out of the �tted neural networks.

We leave it open for future research to investigate possible bene�ts of connecting the

estimation of CoVaR in the cross-sectional and the time series dimension. Our current

methodology treats the single estimation problems separately from each other. Recent

advances in transfer learning and multitask learning suggest that this is promising research

path to increase e�ciency.
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