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Abstract 

Groundwater (GW) and surface water (SW) are nowadays considered closely coupled entities 

of a hydrological continuum. GW exfiltration into lakes (lacustrine groundwater discharge, 

LGD) can have significant impacts on lake water quantity and quality. This entails the need to 

understand the mechanisms relevant in the context of LGD and to develop and improve 

measurement methods for LGD. Multiple approaches to identify and quantify LGD are based 

on significant temperature differences between GW and lake water and the measurement of 

related heat transport. The main aim of the present PhD thesis is to study signal propagation 

from the point scale of LGD at the sediment-water interface across the overlying water body 

to the water surface-atmosphere interface. The PhD thesis tests the hypothesis that the 

positive buoyancy of warm GW causes upwelling across the cold water column and allows 

the detection of LGD at the water surface by thermal infrared imaging (TIR). For that 

purpose, a general conceptual framework is developed based on hierarchical patch dynamics 

(HPD). It aims to guide the researchers in this field, on adequately combining multiple heat 

tracing techniques to identify and quantify heat and water exchange over several spatial scales 

and across ecohydrological interfaces in freshwater environments (Chapter 2). The conceptual 

framework was used for the design of a mesocosm experiment (Chapters 3 and 4). Different 

LGD rates were simulated by injecting relatively warm water at the bottom of an outdoor 

mesocosm. A fiber optic distributed temperature sensing (FO-DTS) cable was installed in a 

3D setup at multiple depths in the water column to trace the heat signal of the simulated LGD 

under different weather conditions and over entire diurnal cycles. Additionally, a TIR camera 

was mounted 4 meters above the mesocosm to monitor water surface temperatures. TIR 

images were validated using FO-DTS temperature data 2 cm below the water surface (Chapter 

4). The positive buoyancy of relatively warm LGD allows the detection of GW across the 

water column and at the water surface-atmosphere interface by FO-DTS and TIR. 

Hydrometeorological factors such as cloud cover and diurnal cycle of net radiation strongly 

control: 1) the upwelling of simulated LGD across the water column (Chapter 3) and 2) the 

reliability of TIR for detection of LGD at the water surface-atmosphere interface (Chapter 4). 

In both cases, optimal results are obtained under overcast conditions and during night. Thus, 

detection of upwelling of LGD across the water column and at the water surface-atmosphere 

interface is only possible if heat fluxes related to LGD are not overshadowed by heat fluxes of 

other sources across the water surface-atmosphere interface. Even though the present study 

proves that the LGD signal can be identified by TIR at the water surface, it can also be 

concluded that TIR will be only restrictedly applicable in real world case studies. 

 

Keywords: Lacustrine groundwater discharge, Thermal infrared, Fiber optic distributed 

temperature sensing, Heat tracing. 
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Zusammenfassung 

Grund- und Oberflächenwasser werden heutzutage als hydraulisch eng verbundene 

Kompartimente eines hydrologischen Kontinuums angesehen. Der Zustrom von Grundwasser 

zu Seen (engl. lacustrine groundwater discharge, LGD) kann signifikante Auswirkungen auf 

Qualität und Quantität des Seewasser haben. Dementsprechend besteht die Notwendigkeit die 

zugrunde liegenden Prozesse zu verstehen und geeignete Methoden zur Erfassung von LGD 

zu entwickeln. Viele Ansätze zur Identifikation und Quantifizierung von LGD basieren auf 

signifikanten Temperaturunterschieden zwischen Grund- und Seewasser und der Messung des 

damit einhergehenden Wärmetransports. Hauptziel der vorliegenden Doktorarbeit ist es, 

Signalfortpflanzung und -ausbreitung des Grundwasserzustroms zu untersuchen – von der 

Punktskala des LGD an der Sediment-Wasser Grenzfläche durch den Wasserkörper zur 

Grenzfläche Wasseroberfläche-Atmosphäre. Die Doktorarbeit testet die Hypothese, dass das 

im Verhältnis zum Umgebungswasser leichtere warme Grundwasser in der kalten 

Wassersäule aufsteigt (engl. upwelling) und eine Detektion von LGD an der 

Wasseroberfläche mit thermalen Infrarot (TIR) Aufnahmen erlaubt. Zu diesem Zweck wird 

zunächst mit der „hierarchical patch dynamics (HPD)“ ein konzeptioneller Rahmen 

entwickelt, der dazu dienen soll, eine angemessene Kombination multipler Techniken zur 

Erfassung von Wärme- und Wasserflüssen anzubieten (Kapitel 2). Dabei sollen verschiedene 

räumliche Skalen und ökohydrologische Grenzflächen in Süßwassersystemen abgedeckt 

werden. Die HPD wurde als Grundlage für das Design eines Mesokosmos-Experimentes 

genutzt (Kapitel 3 und 4). Dabei wurden unterschiedliche LGD-Raten durch den Zustrom von 

relativ warmem Wasser am Grund eines Outdoor-Pools simuliert. Ein Glasfaserkabel (engl. 

fibre-optic distributed temperature sensing, FO-DTS) wurde in einem 3D Aufbau in 

verschiedenen Tiefen der Wassersäule installiert, um das Wärmesignal des simulierten 

Grundwasserzustroms zu verfolgen – unter verschiedenen Witterungsbedingungen und im 

Laufe eines kompletten Tagesgangs. Zusätzlich wurde 4 m über dem Mesokosmos eine TIR-

Kamera installiert, um die Temperatur des Oberflächenwassers aufzuzeichnen. Die TIR-

Aufnahmen wurden mit Temperaturen, die mit FO-DTS 2 cm unter der Wasseroberfläche 

gemessen worden waren, validiert (Kapitel 4). Die Anwendung von FO-DTS und TIR 

ermöglicht die Detektion von LGD in der Wassersäule und an der Grenzfläche 

Wasseroberfläche-Atmosphäre. Hydrometeorologische Faktoren wie Wolkenbedeckung und 

der Tagesgang der Netto-Strahlung kontrollieren: 1) den Auftrieb des simulierten LGD in der 

Wassersäule (Kapitel 3) und 2) die Zuverlässigkeit von TIR bei der Erfassung von LGD an 

der Grenzfläche zwischen Wasseroberfläche und Atmosphäre (Kapitel 4). In beide Fällen 

werden die besten Ergebnisse bei Wolkenbedeckung und nachts erzielt. Das heißt, dass der 

Auftrieb von LGD in der Wassersäule und an der Grenzfläche zwischen Wasseroberfläche 

und Atmosphäre nur erfasst werden kann, wenn die LGD-bedingten Wärmeflüsse nicht durch 

andere Wärmeflüsse über die Grenzfläche zwischen Wasseroberfläche und Atmosphäre 

überdeckt werden. Obwohl die vorliegende Studie zeigt, dass das LGD-Signal mit TIR an der 

Wasseroberfläche erfasst werden kann, muss einschränkend auch der Schluss gezogen 

werden, dass TIR unter realen in-situ Verhältnissen nur bedingt anwendbar sein wird.  

 

Schlagwörter: Lacustrine groundwater discharge, Thermalen Infrarot, Fiber optic distributed 

temperature sensing, Wärme als Tracer 
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1 Introduction 

1.1 Motivation to study groundwater-surface water interactions 

Freshwater is essential for human life and societies. Lakes, rivers and aquifers, among others, 

are important sources of freshwater. Therefore preserving quality and quantity of freshwater 

in these systems is crucial. In addition, it is important to maintain the integrity of these 

freshwater systems because they provide multiple services such as flood control, habitats for 

numerous plant, animal and other species, production of fish or purification of human and 

industrial wastes. The failure to keep the integrity of theses freshwater systems will lead to 

loss of species and other of the above mentioned ecosystems services (Baron et al., 2002). In 

2015, the European Environmental Agency (EEA) reported that more than half of the rivers 

and lakes in Europe did not hold a good ecological status as requested by the European Water 

Framework Directive (EC, 2000) (European Environmetal Agency, 2015). Furthermore, about 

25% of groundwater across Europe had a poor chemical status in 2015 according to the EEA. 

At European level, groundwater is the most important drinking water source in many 

European regions (Bartel et al., 2016). Nowadays´ widespread intense agriculture is often 

claimed to be responsible for the situation described above. Agricultural activities often 

include intensive use of pesticides and fertilizers that end up in surface waters (SW) and 

groundwater (GW). In addition, discharge of waste water from industry, transport, mining and 

households are also a source of pollution for freshwaters (European Environmetal Agency, 

2015). GW and SW are often hydrologically closely connected and by that might influence 

each other in quality and quantity (Winter et al., 1998). Therefore, knowledge on how GW is 

connected to SW can be of major relevance to design successful management strategies 

(Winter et al., 1998) to maintain or improve the quality and quantity of GW and SW. 

For a long time, GW and SW have been studied as individual entities. In fact, GW and SW 

differ to some extent in their chemical, biological and physical features (Kalbus et al., 2006). 

However, over the last decades, an important paradigm shift has taken place: from a static 

image of rivers, lakes and aquifers as discrete bodies, respectively, to a more complex and 

dynamic interpretation of GW and SW as undivided constituents of a stream/lake-catchment 

continuum (Krause et al., 2011). Thus, GW and SW are now considered as connected entities 

(Winter et al., 1998) which interact across and within different interfaces. The interfaces 

where GW and SW interact are generally distinguished by permeable sediments with 

saturated conditions and low flow velocities (e.g. the hyporheic zone (HZ) in streams or 
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lacustrine sediments in lakes) (Kalbus et al., 2006). Dynamic and non-stationary 

biogeochemical and physical processes take place at these interfaces (Krause et al., 2017), 

which include transport, degradation, transformation, precipitation or sorption of compounds 

(Kalbus et al., 2006). These interfaces can contribute significantly to SW metabolism and 

biota as well (Brunke and Gonser, 1997). Thus, GW-SW interactions have a relevant 

influence on the water quality of SW bodies such as streams and lakes as well as on aquifers 

(Kalbus et al., 2006).  

In the last decades, there has been an increased interest in GW-SW interactions (Fleckenstein 

et al., 2010). With the adoption of The European Water Framework Directive (EC, 2000) in 

2000 the motivation to investigate GW-SW interactions increased even more. The relevance 

of GW-SW interfaces has been acknowledged by several authors who described GW-SW 

interfaces as “hotspots” (areas of intensified activity: Frei et al., 2012; Krause et al., 2013) or 

areas, where interaction between GW and SW takes place (Winter, 1999; Krause et al., 2011; 

Lewandowski et al., 2014). Nevertheless, complete understanding on the functioning of these 

“hotspots” is still a knowledge gap necessary to describe GW-SW interactions in aquatic 

environments. 

In lakes, all flow of GW from the lake bed (i.e. the interface) to the lake is referred to as 

lacustrine groundwater discharge (LGD) (Lewandowski et al., 2014). GW-SW interactions in 

lake systems might be different to the ones observed at stream-aquifer interfaces (i.e. in the 

HZ). Therefore, different definitions and influencing factors come into consideration. 

Research on GW-lake interactions is not as common as research on GW-streams interactions 

and the function of the HZ (Lewandowski et al., 2014). Especially when it comes to water and 

nutrient budgets LGD has long been ignored due to several reasons, (Meinikmann et al., 

2013; Lewandowski et al., 2014): 

 Difficulty of access the interface due to the depth of lakes 

 Low local discharge rates due to large extent of the interface 

 Lack of appropriate methodology 

 Large spatial and temporal variability of discharge rates and GW composition which 

requires high numbers of measurements in order to get reliable estimates of the LGD 

component in budgets 

 GW can be relevant in nutrient budgets even if it is not relevant in water budgets 

because concentrations in groundwater might be much higher than in lake water.  
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For example, Meinikmann et al. (2015) demonstrated that more than 50% of external 

phosphorus loads to an eutrophied lake, were discharged by GW. By that LGD was identified 

to be a main driver of lake eutrophication. In this example LGD accounted for only about 

25% of the lake´s water balance. In contrast to that, LGD is often the dominant component in 

the water balance of lakes (Table 1, Lewandowski et al., 2014). By that they have the natural 

potential to also contribute significantly to the quality of these lakes.  

 

Table 1.1 LGD examples reported as percentage of the lake water balance and as absolute rates. 

LGD as percentage of the lake water 

balance (%) 

LGD rates 

LGD represents 74% of all inflows to 

Williams Lake, Minnesota (Labaugh et al., 

1997). 

477 L m
-2

d
-1

 for Ashumet Pond, 

Massachusetts (McCobb et al., 2009) 

LGD represents 94% to Mary Lake, 

Minnesota (Stets et al., 2010). 

155 L m
-2

d
-1

 for Dickson Lake, Ontario 

(Ridgway and Blanchfield, 1998) 

LGD represents 90% to Cliff Lake, 

Montanna (Gurrieri and Furniss, 2004).  

138 L m
-2

d
-1

 Shingobee Lake, Minnesota 

(Rosenberry et al., 2000) 

LGD represents 85% to Lake Annie, Florida 

(Sacks et al., 1998)  

 

 

Although the main focus of the present PhD thesis is on LGD, GW discharge to streams is 

also considered in some chapters to compare it with LGD and to transfer knowledge from 

GW-SW interfaces in streams to GW-SW interfaces in lakes.  

1.2 State of the Art: GW-SW interactions 

1.2.1 Mechanisms of GW-SW interactions 

In the unsaturated zone the soil pores are filled with air and water and in the saturated zone 

the soil pores are only filled with water. Water in the unsaturated zone usually percolates 

downwards to the saturated zone. Subsurface water in the saturated zone moves generally in 

the direction of the steepest hydraulic gradient. The upper part of the unsaturated zone is 

called soil-water zone. Water in that zone might be used by plants or evaporate to the 

atmosphere. The water in the saturated zone is called GW and the upper boundary of this zone 

is called water table. When the GW is connected to SW bodies the water table touches SW 

bodies at the shore or near the shore line (see Figure 1.1) (Winter et al., 1998).  
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Figure 1.1 Unsaturated zone, saturated zone, GW and SW in freshwater systems (Taken and modified 

from Winter, 1998). 

 

Flow across the GW-SW interface occurs in two directions. On the one hand, water can flow 

from the aquifer through the stream or lake bed into the stream or lake, respectively. This 

process is called exfiltration – a term which we define from the perspective of the aquifer 

(please note that other authors use a different definition and call the process which we call 

exfiltration, infiltration). Such streams are called gaining streams and in lakes the process is 

termed LGD. GW inflow into the stream or lake can occur at diffuse or at discrete localized 

inflow points (Winter, 1998; Lewandowski et al., 2014). On the other hand, water can flow 

through the streambed or lake bed into the aquifer, this process is called infiltration and the 

system is called loosing stream or loosing lake, respectively (Winter et al., 1998; Constantz 

and Stonestrom, 2003). 

When GW discharges into SW (e.g. in streams or lakes) the chemical composition of the SW 

will be impacted by the differing chemical composition of the GW. In addition, when GW 

flows across the stream or lake bed various chemical reactions can take place that result in a 

change of the composition of the exfiltrating GW. When water infiltrates into the stream or 

lake bed the chemical composition of the SW will also impact the subsurface water in the HZ 

or lacustrine sediments (Constantz and Stonestrom, 2003). 

1.2.2 Factors controlling GW-SW interactions 

GW-SW interactions are mainly controlled by:  

 Hydraulic head gradients between aquifer and stream/lake (Constantz and Stonestrom, 

2003). 

 Spatial distribution and variability of hydraulic conductivity of sediments in the HZ or 

lacustrine sediments and the underlying aquifer (Brunke and Gonser, 1997; Genereux 

et al., 2008; Leek et al., 2009; Angermann et al., 2012a; Blume et al., 2013).  
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In an unconfined aquifer the hydraulic head equals the water level. In a confined aquifer the 

hydraulic head equals the pressure. Subsurface water flows from higher to lower heads. At the 

stream or lake surface, the water pressure is zero as well as at all points on the water table (in 

unconfined aquifer conditions). In this manner, the elevation of the water table regarding the 

stream or lake surface will indicate the direction of the subsurface water flow between the 

stream/lake and the near-shore aquifer. For instance, if the stream or lake is gaining, that 

means that the elevation of the GW table is higher than the SW level. On the contrary, in 

losing stream reaches or sections of the lake, the elevation of the GW table will be lower than 

the stream or lake water level (Kalbus et al., 2006). Both kinds of interaction might occur 

simultaneously in different parts of the stream or lake (Winter et al., 1998). 

Some other variables impacting on exchange flows are: 

 Pressure changes due to the presence of geomorphological characteristics in the river 

bed: pool riffle series, changes in slope, ripples or woody debris (Elliott and Brooks, 

1997; Tonina and Buffington, 2007; Cardenas, 2009) or pressure changes due to wave 

action and currents in lakes (Rosenberry et al., 2013). 

 The redistribution of sediments on the stream bed or lake bed also might play an 

important role regarding seepage rates. Sometimes, the sediments can clog the stream 

or lake bed leading to lower infiltration rates through the HZ or lacustrine sediments. 

They can also trap stream or lake water between their interstices and enhance 

interstitial water release into the stream or lake (Elliott and Brooks, 1997; Rosenberry 

et al., 2010). Finally, due to wave action (e.g. during storm events), fine sediments in 

the shore of the lakes can be resuspended and settle again in deeper regions of the lake 

affecting seepage rates at the shore of the lake (Rosenberry et al., 2015).  

 Turbulence in the flowing stream water might induce upwelling and downwelling. 

 Geological heterogeneities within the alluvial aquifer and GW discharge area. 

(Cardenas and Wilson, 2006; Fleckenstein et al., 2006; Frei et al., 2009; Engdahl et 

al., 2010) or local geological conditions (Winter, 1999). 

 Stream or lake position relative to GW flow systems (Winter, 1999; Woessner, 2000). 

1.2.3 GW discharge in lakes 

In lakes GW discharge rates are often small, there is lower turbulent mixing in the lake water 

than in the stream water and volume ratio between the water body in regards to the 

discharging GW, is higher than in streams. Under homogeneous conditions with 

homogeneous geology exchange flows are focused to near shore areas (Lewandowski et al., 
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2014). The major reason is that flow lines approaching a lake bend upwards. An additional 

reason for higher GW release in near shore areas is the spatial distribution of fine grained and 

low permeability muddy material. The accumulation of muddy material is lower in areas close 

to shore since wave action influences the distribution of sediments within the lake. Sediments 

close to the shore will be easily resuspended and redistributed within the lake bed, while 

sediments in deeper parts of the lake won’t be affected so intensively by wave action and 

therefore less resuspended and redistributed (Rosenberry et al., 2015). This fact will lead to 

higher hydraulic conductivities near shore than offshore (McBride and Pfannkuch, 1975; 

Krabbenhoft et al., 1990; Kishel and Gerla, 2002). Some other times, if the aquifer has 

hydraulically highly conductive areas, the GW will mainly flow through those areas following 

preferential flow paths into the lake. Sometimes, if the lake is set on fractured rocks it will 

show much localized LGD on the fractures of the rocks. Finally, lakes that are in contact with 

more than one aquifer might show high GW discharge rates below the aquitard layer (low 

permeability layer) separating both aquifers (Lewandowski et al., 2014). 

1.2.4 GW discharge in streams 

The HZ is defined conceptually as the saturated interstitial zones under the streambed and in 

the stream bank that contains at least some parts of channel water (White et al., 1993). 

Sometimes, low hydraulic conductivity streambed sediments inhibit GW upwelling and 

enhance horizontal pore water movement in the HZ since GW upwelling is inhibited by 

horizontal low-conductivity layers. Some other times, GW upwelling might be enhanced by 

high hydraulic conductivity of streambed sediments near confining riverbed structures, 

supplying a preferential flow path for rapid upwelling of semi-trapped GW (Angermann et al., 

2012a). The HZ in streams has been highlighted as an important ecohydrological interface 

with intense biogeochemical processes. It is characterized by high spatial and temporal 

heterogeneity in terms of sediment and discharge variability (Krause et al., 2011; 

Lewandowski et al., 2011).  

1.3 Measurement methods for GW-SW interactions 

Many methods exist to measure GW-SW interactions. The methods can be applied in the 

aquifer, in the SW, or in the HZ or lacustrine sediments. The methods vary in resolution, 

sampled volume and time scale. Usually, the choice of a method requires balancing between 

resolution, heterogeneities and sampled volumes. What is more, the scale of the method 

chosen might have a relevant impact on the results. The impact of the scale on measurements 

in heterogeneous media means that even if measurements are conducted with a dense grid of 
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points, the results obtained might be different from those obtained at larger scales due to the 

possibly large role of small-scale heterogeneities. For example, the role of small and high 

conductivity areas might be underestimated with point measurements (Kalbus et al., 2006). 

As another example, GW discharge in streams and hyporheic exchange flow (HEF) might not 

be clearly distinguished when using the wrong scale. This is related to the high spatial 

variability of flow patterns on small spatial scales in the HZ or in lacustrine sediments 

(Schmidt et al., 2006; Lewandowski et al., 2011; Angermann et al., 2012). Additional 

measurements are always advised to clearly determine the type of GW-SW interaction 

occurring in the HZ or lacustrine sediments (Kalbus et al., 2006).  

The research goal also has an important role when selecting the most appropriate methods to 

describe GW-SW interactions (Kalbus et al., 2006) because it will determine the scale at 

which techniques for measurements of GW-SW interactions are applied. For instance, for 

regional studies large scale techniques are more appropriate. On the contrary, for process 

studies high resolution measurements might be needed. Of course all methods have their own 

limitations and uncertainties. For instance, at stream reach scales a high density measuring 

network is needed which takes into account small scale patterns of flow (Schmidt et al., 

2006). Unfortunately that requires high device and measurement efforts. As a result, these 

measurements are usually constrained to small spatial scales. For these reasons, there is a 

requirement for inexpensive and quantitative methods which allow describing the spatial 

heterogeneity of GW-SW interactions more adequately. Under ideal conditions, GW-SW 

interactions should be characterized by a high amount of measurements (high temporal 

resolution) with high spatial accuracy (Schmidt et al. 2006). 

Several authors (Palmer et al., 1993; White et al., 1993; Kalbus et al., 2006; Schmidt et al., 

2006; Krause et al., 2011) have stated the need of multi-dimensional research methods which 

could cope with several spatial and temporal scales in order to adequately describe GW-SW 

interactions in aquatic ecosystems. A multi scale approach bringing together different 

techniques can substantially decrease uncertainties and improve estimates of water fluxes 

between GW-SW interfaces (Kalbus et al., 2006). For instance, Blume et al. (2013) combined 

LGD rates derived from temperature lances or vertical hydraulic gradients (VHG) with 2-D 

patterns of lake bed temperatures monitored by fiber optic distributed temperature sensing 

(FO-DTS) for successful upscaling of LGD. 

Therefore, the right selection of methods is of major importance for getting useful data 

(Kalbus et al., 2006) to describe GW-SW interactions. For instance, GW-SW interactions can 

be followed by monitoring the chemical composition of the water that is exchanged. The flow 
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path can be followed at different scales, from small to catchment scale (Constantz and 

Stonestrom, 2003). Another method for tracing water flow is heat tracing. Natural variations 

of temperature in areas close to the stream or lake environment are easy to track since 

temperature can be easily measured during specific seasons and when exchange is fast 

(Anderson, 2005).  

In addition to the scale, the research goal and the selection of the most adequate method are 

three key steps to characterize GW-SW interactions in freshwater bodies. Conant Jr (2004) 

and Keery et al. (2007) advise the development of a conceptual model that considers the 

main mechanisms that influence water flow across GW-SW interfaces. 

Regarding the main focus of interest of the present PhD thesis, which is LGD, Lewandowski 

et al. (2014) listed methods for LGD detection in three different groups: 

 Spatially specific methods which measure LGD rates in one point or over a small area, 

for instance seepage meters (Lee, 1977), sediment temperature depth profiles (Schmidt 

et al., 2006). 

 Integrating methods that quantify the entire GW inflow into a lake e. g. radon balances 

(Kluge et al., 2007), stable isotope methods (Hofmann et al., 2008), annual GW 

recharge in the subsurface catchment by modelling or computation of the water 

budget. 

 Identification of discharge patterns without quantification of LGD such as fiber optic 

distributed temperature sensing (FO-DTS) (Selker et al., 2006b), geophysical 

approaches around the lake perimeter (Ong et al., 2010), airborne measurements of 

thermal infrared radiation (TIR) (Lewandowski et al., 2013). 

 

In the present PhD thesis, methods based on heat as a tracer to study GW-SW interaction in 

stagnant waters (or LGD) will be the main focus of interest.  

1.4 Heat as a natural tracer of GW-SW interactions 

Natural heat tracing techniques allow monitoring the heat transported by groundwater or 

surface water (Constantz and Stonestrom, 2003). The use of heat as a tracer for GW-SW 

interactions, is based on the fact that GW temperatures are more or less stable throughout the 

year whereas stream or lake temperatures change daily and seasonally (Kalbus et al., 2006). 

Relevant differences between GW and SW temperatures can be observed during summer and 

winter periods (Meinikmann et al., 2013) at the sediment profile of stream and lake beds and 

at the water body. 



Introduction 

9 

 

1.4.1 Heat tracing in stream and lake beds 

Measurements of stream or lake bed temperatures can be used if there are large GW-SW 

temperature differences. The results can be used to observe the propagation of the heat signal 

through the sediment bed and to determine flow directions within the sediment (Anderson, 

2005; Keery et al., 2007; Schmidt et al., 2007; Anibas et al., 2009; Hatch et al., 2010) to 

determine GW discharge or recharge areas (Kalbus et al., 2006) or to compute exchange 

fluxes (Westhoff et al., 2007; Hatch et al., 2010). 

Stream/lake bed heat transfer is governed by three processes (Hannah et al., 2004; Constantz, 

2008; Webb et al., 2008): 

1. Advective or convective (free or forced) heat transfer 

2. Conductive heat transfer 

3. Radiative heat transfer  

The horizontal and vertical distribution of heat in stream/lake beds is due to heat transport by 

moving water (advective heat flow) and by heat or thermal conduction across the solid and 

fluid phase of the sediments (conductive heat flow) (Constantz and Stonestrom, 2003; 

Schmidt et al., 2007). The terms “advective heat transfer” and “convective heat transfer” are 

used interchangeably in hydrology (Anderson, 2005). Sometimes convective heat transfer is 

defined as heat transfer by moving water when water flows above the stream/lake bed in order 

to differentiate advective and convective heat transfer processes (Constantz, 2008). In the 

present PhD thesis, advective and convective heat transfer processes are considered 

synonyms. To avoid confusion only one term is used. Free convection is understood as the 

heat transfer by flow driven due to density differences in response to temperature differences 

(e.g. in freshwater systems). Forced convection is heat transfer due to flow driven by other 

mechanisms. For instance, forced convection is a common phenomenon in GW systems 

where heat is transported by the movement of GW by recharge or discharge processes 

(Anderson, 2005). Radiative heat transfer takes place when sun radiation is absorbed by the 

water body or the sediment bed of the water body (Constantz, 2008). 

The three dimensional heat transport equation 

The three dimensional heat transport equation (eq.1) defines the heat transport by conduction 

and by GW movement (advection or convection) (Anderson, 2005). The first term of the 

equation refers to transport of heat by conduction and thermal dispersion. The second term of 

the equation refers to heat transport by moving water (advection/convection) (Anderson, 

2005).  
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𝜅𝑒

𝜌𝑐
∇2𝑇 −

𝜌𝑤𝑐𝑤

𝜌𝑐
∇ ∙ (𝑇𝑞) =

𝜕𝑇

𝜕𝑡
  (eq.1) 

Where: 

T = temperature. 

t = time. 

ρw = density of water. 

cw = specific heat of water. 

ρ = density of the rock fluid matrix. 

c = specific heat of the rock fluid matrix. 

q = seepage velocity. 

κe = effective thermal conductivity of the rock fluid matrix. 

The temperature profile within the stream and lake bed 

Surface water is heated or cooled at the water surface. Therefore, downward water flow 

through the sediment (loosing reaches and lakes) provokes a deeper spread of cyclic 

temperature variations (Winter et al., 1998). Inversely, if the water flow is upward (gaining 

reaches and lakes), cyclic temperature changes do not spread as deep into the aquifer as in the 

case of the downwelling flow due to the more constant temperature of upwelling GW (Kalbus 

et al., 2006) (see Figure 1.2).  

Vertical temperature profiles within the stream or lake bed sediments depend on advective 

and conductive heat exchange across GW-SW interfaces. Among the infiltration gradient the 

thermal amplitude decreases with depth, with increasing temperatures in winter and 

decreasing temperatures in summer (Stonestrom and Constantz, 2003) (see Figure 1.2, red 

lines). Moreover, there is no quick variation in temperature and the changes become delayed 

and softened with increasing depth and distance from the infiltration area (Brunke and 

Gonser, 1997). Finally, the curvature of temperature gradients in the sediment close to the 

interface shows the direction and intensity of vertical GW exchange (Meinikmann et al., 

2013) (see Figure 1.2).  

Monitoring temperature time series in the stream/lake bed and nearby sediments allows 

delineating the main flow regime (Constantz and Stonestrom, 2003; Kalbus et al., 2006; 

Constantz, 2008) in the stream and lake bed. In addition, the three dimensional heat transport 

equation (eq. 1) can be applied to monitored temperature profiles to calculate LGD rates in 

lakes or exfiltration rates in streams, respectively (Schmidt et al., 2006). 
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Figure 1.2 Sediment temperatures against depth (z): for gaining and losing conditions (green and red 

lines respectively) and for daily (in italic) or annual cycles. For annual cycles the depth at which the 

temperature reaches a constant value can be 10 m or more at downward flow. On the contrary, the 

depth at which the temperatures reach constant values at upward flows can be less than 1 meter. Taken 

from Constantz and Stonestrom (2003). 

1.4.2 Heat tracing in the water column 

Heat transport through the water column is caused by different factors compared to heat 

transport through the HZ or lacustrine sediments, where the presence of sediment affects how 

transport of heat occurs. For instance, in Ouellet et al. (2014) the heat budget of a water 

column in a pool under controlled environment conditions was conducted. In that study, 

advection and bottom fluxes were excluded (for instance heat fluxes that would occur in 

natural conditions related to discharge of GW from the stream or lake bed to the SW) in order 

to observe other heat fluxes related to weather conditions. In Ouellet et al. (2014), the 

atmospheric long wave radiation and surface long wave radiation are the largest components 

during day and night compared to shortwave radiation, convection, evaporation, precipitation 

and heat from the pool bottom (Ouellet et al., 2014). Therefore, the radiative components of 

the heat budget equation appeared to control the main sources and sinks of heat in the water 

column. In addition, the wind component is relevant for the computation of the latent heat 

flux (Ouellet et al., 2014). Another research by Benyahya et al. (2012), monitored various 

radiation components at stream scale considering the microclimate conditions at that same 

stream site. On the one hand, it was found that energy gains in the stream where driven 

mainly by solar radiation flux and to a less extent by net longwave radiation. On the other 
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hand, it was found that energy losses in the stream were mainly attributed to net longwave 

radiation and evaporation (Benyahya et al., 2012).  

The results showed in Ouellet et al. (2014) and Benyahya et al. (2012) indicate that the net 

radiation balance (net short- and net long-wave radiation on the water surface) is an important 

factor controlling water column temperatures. Therefore, when monitoring small scale GW-

SW interactions (for instance discrete discharge of GW from the stream or lake bed) at 

broader scales (for instance from the more accessible water surface of streams or lakes) with 

heat tracing techniques, different radiation components could have an impact on the heat 

tracing of GW-SW interactions in streams and lakes.  

 

Upwards directed groundwater flow is often called upwelling, especially when considering 

the HZ, where generally, upwelling and downwelling occur along river reaches. In the present 

PhD thesis the term upwelling is only used for upward transport processes in the water 

column; this definition is borrowed from limnophysics. The above-mentioned processes in the 

HZ are called gaining and loosing in the present thesis. 

In marine systems, GW upwelling can be more intense than in freshwater systems. The main 

reason is the large density differences between discharging fresh GW and the saline SW. 

Thus, the buoyancy of GW in marine systems is not dependent on temperatures alone but 

mainly on salinity differences between GW and the saline SW (Lewandowski et al., 2013). In 

contrast, buoyancy of GW in freshwater systems (non-saline) is mainly dependent on 

temperature differences between GW and SW. In this manner, small temperature differences 

between GW and SW in non-saline systems may result in small density differences between 

GW and SW leading to GW upwelling intensities much smaller than in saline systems 

(Lewandowski et al., 2013). Nevertheless, temperature-induced buoyancy of GW might allow 

the detection of GW upwelling at the surface of freshwater systems. Still, the ability of TIR 

imaging to detect GW upwelling at the water surface in freshwater systems can differs 

fundamentally from marine systems, because GW-SW temperature differences change 

considerably both seasonally and diurnally. For those reasons, detection of submarine 

groundwater discharge (SGD) using remote sensing, for instance thermal infrared (TIR) 

imaging, is generally much easier than detection of GW discharge in freshwater systems, for 

instance in lakes (Lewandowski et al., 2014). 

While research on detection of SGD by TIR imaging is broad and well documented, there is 

little research on detection of GW discharge in freshwater systems. Moreover, within 

freshwater systems most of the publications (Tcherepanov et al., 2005; Danielescu et al., 
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2009; Briggs et al., 2013, 2016b; Dugdale et al., 2015; Wawrzyniak et al., 2016) that have 

used TIR imaging for detection of GW, focused on the detection of cool temperature 

anomalies during summer and in streams. The detection of GW-SW interactions by TIR 

imaging, in lakes and during winter, has received very little attention. For instance, in 

Lewandowski et al. (2013), high GW discharge rates calculated from temperature data 

monitored by temperature lances at the shore of Lake Arendsee were related to warm water 

areas at the water surface of Lake Arendsee detected with airborne TIR imaging. However, 

further research demonstrated that observed warm temperature patterns by TIR imaging at the 

water surface of Lake Arendsee were related to wind-driven upwelling of cold water (Pöschke 

et al., 2015). This example highlights the need for understanding how the heat signal of the 

upwelling GW travels across the water column and how it spreads at the water surface in 

freshwater systems, especially in lakes.  

Natural heat transport processes occurring within the sediment of stream or lake beds, differ 

from natural heat transport processes that occur in the water column and at the water surface 

(see sections 1.4.2. to 1.4.5). Therefore, GW-SW interactions traced with heat tracing 

techniques across the sediment (stream or lake bed) might not always correspond to thermal 

anomalies detected by heat tracing techniques at the water surface of streams or lakes. In this 

respect, there is a need for more research on heat tracing of GW-SW interactions across the 

water column and at the water surface. 

1.5 Scaling in hydrology 

Hydrological processes occur at different scales, for instance, from unsaturated flow in a 1 m 

soil profile to big floods in river systems of a million square km, same for the temporal scale, 

from flashfloods (minutes of duration) to flow in aquifers (hundreds of years) (Blöschl and 

Silvapalan, 1995). Models and theories developed at small scales are pretended to be suitable 

for larger scales and inversely, large scale models or data are used to get predictions for 

smaller scales. This procedure requires extrapolation or transfer of information through scales. 

This process is called scaling and problems related to it are called scaling issues. Under ideal 

conditions, processes should be observed at the scale they occur. But this is not always 

possible (Blöschl and Silvapalan, 1995). Therefore, the choice of the right spatial and 

temporal scale is critical since the site and time of the year (or even time of the day) where 

and when the measurements are done can strongly influence the results. In addition, it is very 

important to carefully consider possible scaling issues when designing experiments, 
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especially if extrapolating the results to broader scales such as streams, lakes or catchments 

(Palmer 1993).  

 

Within hydrology scaling has been long discussed during the last decades (Jelinski and Wu, 

1996; Gardner, 1998; Burnett and Blaschke, 2003). Various strategies and methods have been 

proposed and used as an attempt to solve the scaling issue and develop a new paradigm (Wu 

and Loucks, 1995; Marceau and Hay, 1999; Wu, 1999). However, it is still one of the main 

challenges in hydrology as well as in other natural and social science fields.  

Multiple authors have suggested scale definitions for hydrological systems aiming to describe 

and understand hydrological processes across scales. For instance, Tóth (1963) grouped GW 

in GW flow systems (for unconfined aquifers until few hundred square km with low slope and 

a low rate outlet stream): Tóth (1963) defined three different flow system scales: local, 

intermediate and regional. These ideas are now broadly accepted and used in general terms 

(Winter et al., 1998; Winter, 1999; Brinson et al., 2002; Devito et al., 2005). Larkin and 

Sharp (1992), Brunke and Gonser (1997) and Woessner (2000) differentiated two scales of 

water exchange in riparian areas: large scale processes affecting entire riparian aquifers where 

flow paths linking the systems are defined mainly by geological features of the catchment, 

and local scale exchange processes in the hyporheic zone (part of the fluvial system and 

aquifer system is functionally ruled by river stage, hydraulic features and topography of the 

stream bed) (Dahl et al., 2007). In addition, Dahl et al. (2007) mentioned the need to monitor 

and characterize GW-SW interactions at different scales: sediment scale (< 1 m); reach scale 

(1 – 1000 m); and catchment scale (> 1000 m). Since the scale boundaries or thresholds are 

arbitrary, the key issue is that the hierarchic organization of GW-SW interactions should be 

symmetric or equal to the hierarchic organization of GW flow systems. In this manner, a local 

flow system refers to the reach scale and a regional flow system refers to the catchment scale. 

HZ processes refer to the sediment scale (Dahl et al., 2007). 

However, despite the various suggestions for scale definitions and monitoring at those scales, 

there is no broadly accepted generic scaling method or generic conceptual model for scaling 

of GW-SW interactions in freshwater environments. This is mainly because GW-SW 

interactions are characterized by large heterogeneities and scaling issues (Woessner, 2000; 

Becker et al., 2004; Kalbus et al., 2008; Krause et al., 2011; Lewandowski et al., 2011). The 

spatio-temporal distribution of GW-SW interactions is complex (Lewandowski et al., 2011) 

due to the different scales relevant for GW-SW interactions, layering of stream or lake beds 

(Marion et al., 2008), heterogeneities in alluvial geology (Fleckenstein et al., 2006) and the 
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temporal variability of the driving factors. This is one of the main reasons for the knowledge 

gap on interpreting the hydrology of GW-SW interactions at different scales (Krause et al., 

2011; Anibas et al., 2012; Lewandowski et al., 2014).  

For instance, point measurements are only representative for the specific local conditions and 

processes. Therefore, to cover a large area, a huge amount of labor intensive measurements is 

needed followed by an extrapolation of these measurements in order to get an overall image 

of the entire system, since GW-SW interaction occurs at multiple scales (Kidmose et al., 

2011). In addition, measurements on GW-SW interactions show large uncertainties (Blume et 

al., 2013). For instance, some studies about lake water balances and nutrient budgets usually 

don’t have proper information about the spatial patterns of seepage fluxes through the aquifer-

lake interface, constraining the reliability of the results of those studies (Blume et al., 2013). 

Indeed, uncertainty regarding determination of exchange flow patterns rises with larger spatial 

scales (White et al., 1993; Kasahara and Wondzell, 2003; Krause et al., 2009, 2011). Even in 

latest research, such as by Lautz and Ribaudo (2012) it is still remarked that methods used to 

describe hyporheic exchange at reach scale are not yet spatially precise enough to locate and 

describe hyphoreic exchange flow (HEF).  

Since spatial scaling refers to a widening or narrowing of the area under consideration where 

GW-SW interactions occurring at one scale can be observed in a wider or narrower 

environmental context, heterogeneities of factors controlling GW-SW interactions might 

increase or decrease, respectively. Thus, the understanding of GW-SW interactions may 

improve by being aware and by consideration of the heterogeneities of factors controlling 

GW-SW interactions when applying multiple approaches over a range of scales Therefore, 

there is a need for: 1) methods and approaches that would allow the identification of 

controlling factors of GW-SW interactions and 2) scaling techniques to better understand the 

functioning of GW-SW interactions over a range of scales (Krause et al., 2011). For instance, 

distributed sensor technology or adaptive modeling approaches suggested by Krause et al. 

(2011) or remote sensing data, are promising technology that can offer rapid and interesting 

gains and insights on GW-SW interactions (Stewart et al., 1998). 

Finally, most of the research on scaling of GW-SW interactions is focused on the HZ or on 

stream-aquifer interfaces (Fleckenstein et al., 2006; Anibas et al., 2012; Kikuchi et al., 2012; 

Lautz and Ribaudo, 2012; Mouhri et al., 2013; Boano et al., 2014) whereas there is less 

research on scaling of GW-SW interactions in lakes (Kidmose et al., 2011; Blume et al., 

2013). Signal propagation and scaling of GW-SW interactions across various interfaces such 

as: sediment-water interface -> water column -> water surface-atmosphere interface, has not 
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been broadly considered. GW-SW interactions are most of the time studied in the sediment or 

at the sediment surface. Nevertheless, remote sensing technology provides now the 

opportunity for observation of GW-SW interactions at different spatial scales and at different 

interfaces (e.g. water surface-atmosphere).  

1.5.1 Can we learn from other disciplines? 

In landscape science, when creating a method for landscape monitoring and analysis, a 

conceptual understanding of the architecture and functioning of the ecological systems is 

necessary (Müller, 1997). More specifically, a conceptual model can characterize the 

fundamental functions and behaviors of SW and GW systems in a catchment. It can describe 

the actual understanding of the processes, linkages and effects on the water source (Brodie et 

al., 2007). It seems that, a conceptual framework should be the basis for field researches and 

development of predictive models (Brodie et al., 2007). Palmer et al. (1993) and White et al. 

(1993) also suggested the development of interdisciplinary multi-scale conceptual frameworks 

combined with more communication between different scientific fields in order to solve the 

scaling issue in hydrology. In addition, Blöschl and Silvapalan (1995) suggested that 

combining theoretical concepts with engineering solutions would be suitable for filling the 

gap between theory (e.g. conceptual understanding) and practice (measurement campaigns). 

For example, Hierarchy Theory (Simon, 1962; Koestler, 1967; O’Neill et al., 1989; Wu, 

1999) provides a conceptual framework for connecting processes at different scales. However, 

the creation of operational hierarchies and upscaling of GW-SW interactions is still not a 

common approach in the field of hydrology. The combination of Hierarchy Theory and Patch 

Dynamics (from landscape science (Forman, 1995; Johnson and Gage, 1997; Wu, 1999; 

Poole and Berman, 2001)) results in Hierarchical Patch Dynamics (HPD) (Wu and Loucks, 

1995). These concepts will be broadly introduced in Chapter 2: Scaling on temperature 

tracers for water and heat exchange processes in ecohydrological interfaces. By HPD theory, 

the architecture of an ecological system can be defined and adapted to each environment, in 

order to use it as a leader for scaling processes.  

By using the main idea of the HPD theory a conceptual model or conceptual guideline can be 

designed in order to use it as a scaling tool and as a conceptual framework for the data (or 

observations) obtained with heat tracing techniques in order to describe patterns and processes 

related to GW-SW interaction over several spatial scales and across GW-SW interfaces 

(sediment-water interface, water column, water surface-atmosphere interface). 
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1.6 Hypothesis and aims of this PhD thesis 

There is a need for an integrated multi-scale approach that can upscale GW-SW interactions 

over several spatial scales and across different ecohydrological interfaces. The main goal of 

the present PhD thesis is to upscale heat and water exchange processes related to LGD, from 

the sediment-water interface through the water column to the water surface-atmosphere 

interface.  

Based on the central hypothesis of this PhD thesis: 

‘The positive buoyancy of warm GW causes upwelling across the cold water column during 

winter and allows the detection of LGD at the water surface by TIR.’ 

an integrated approach (GW-SW-atmosphere interactions) that considers the use of fiber optic 

distributed temperature sensing (FO-DTS) and thermal infrared (TIR) imaging at different 

spatial scales (multi-scale approach) is developed. This approach aims: 

1. to provide a conceptual framework based on HPD that identifies and quantifies heat and 

water exchange fluxes over several spatial and temporal scales and across ecohydrological 

interfaces in freshwater environments (Chapter 2: Scaling of temperature tracers for 

water and heat exchange processes at ecohydrological interfaces.).  

2. to describe how interactions between discharging GW, upwelling warm water and cold 

SW occur in lakes, in terms of spatial and temporal distribution of temperature through 

the water column by FO-DTS and TIR (Chapter 3: Mesocosm experiments identifying 

hotspots of groundwater upwelling in a water column by fiber optic distributed 

temperature sensing and Chapter 4: Thermal infrared imaging for detection of 

groundwater at the surface of stagnant water bodies). 

3. to identify the main parameters controlling whether it is possible to detect  GW-SW 

interactions at the water surface of stagnant water bodies such as lakes by heat tracing 

techniques, in this case FO-DTS and TIR (Chapter 3 and Chapter 4). 
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Abstract 

Water and heat fluxes across ecohydrological interfaces can be traced at different space and 

time scales by a range of different heat tracing techniques. These comprise single point 

temperature sensors, temperature lances, passive and active fiber optic distributed temperature 

sensing (FO-DTS), and Thermal InfraRed (TIR) imaging. Previous research has validated and 

benchmarked the applicability of individual temperature techniques for different 

environments and on specific scales. However, there are still gaps in the scale continuum 

when characterizing water and heat fluxes in freshwater environments’ ecohydrological 

interfaces which still remain unresolved. There is an imbalance between measurements and 

process understanding. The present paper proposes a conceptual guideline for experimental 

approaches design, based on hierarchical patch dynamics (HPD) theory. The goal of the 

conceptual guideline is to adequately identify and quantify water and heat exchange processes 

and its spatio-temporal variability over several scales and across ecohydrological interfaces in 

freshwater environments by combination of different heat tracing techniques.  

 

Keywords: Groundwater-surface water interactions, hierarchical patch dynamics, conceptual 

framework, heat tracing. 
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2.1 Introduction 

Water and heat exchange processes occur across ecohydrological interfaces. Ecohydrological 

interfaces are changing transition areas (non-stationary) that can appear at ecosystem’s or 

subsystem’s limits and regulate the flow of water and energy (e.g. heat) between neighboring 

systems, among others (Krause et al., 2017). Exchange of water and heat in freshwater 

ecosystem’s ecohydrological interfaces can be facilitated by groundwater (GW) discharge to 

lakes (Lacustrine Groundwater Discharge, LGD), GW-SW exchange or SW flow into the 

stream bed (Hyporheic Exchange Flow, HEF) in rivers and infiltration of precipitation in soil, 

amongst others (see Figure 2.1). Ecohydrological interfaces can become hot-spots for water 

and heat exchange processes that play a key role in freshwater environments (Krause et al., 

2017). For instance, GW discharge into rivers or LGD provides areas of warmer or colder 

water temperature that can function as thermal refugia for some species of fish (Brabrand et 

al., 2002; Hayashi and Rosenberry, 2002; Warren et al., 2005; Baker et al., 2014), may 

represent potential vectors for pollution in streams and lakes (Nakayama and Watanabe, 

2008), can influence nutrient budgets of lentic ecosystems (Shaw et al., 1990; Meinikmann et 

al., 2013) and supply stream organisms with nutrients (Boulton et al., 1998). SW down-

welling into the stream bed provides dissolved oxygen and organic matter to microbes and 

invertebrates in the hyporheic zone (Boulton et al., 1998).  

A combination of different approaches in order to picture the complete scale continuum of 

water and heat exchange processes across ecohydrological interfaces is recommended by 

different authors, e.g. Krause et al. (2014). Several studies have previously combined various 

heat and water flux tracing methods aiming to describe water and heat exchange processes 

across several scales (Binley et al., 2013; Blume et al., 2013; Hare et al., 2015; Krause et al., 

2012). All these investigations have described, tested and benchmarked the mentioned 

techniques in different environments and scales. However, there are gaps in the scale 

continuum when characterizing water and heat fluxes in freshwater environments’ 

ecohydrological interfaces which still remain unresolved (McDonnell et al., 2007; Boano et 

al., 2014; Krause et al., 2014).  

HEF in streams, LGD in lakes, SW flow across the stream or lake bed and water (e.g. rain) 

infiltration into soils involves water and heat exchange processes across ecohydrological 

interfaces that range several scales in space and time (Figure 2.1). 
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Figure 2.1 Conceptualization of heat and water exchange processes at freshwater ecosystem across 

several ecohydrological interfaces. 

 

Water and heat fluxes in freshwater environments across different ecohydrological interfaces 

can be traced at different spatial and temporal scales by heat tracing techniques (Anderson, 

2005). Hydrological and heat fluxes can be monitored by anomalies in temperatures or how 

fast a specific point in space is cooling. The observed temperature patterns are useful for 

information to understand heat transport processes and water fluxes related to them 

(Constantz and Stonestrom, 2003). 

The tracing of temperature in freshwater environments is based on a wide range of different 

technological and methodological applications: 

For instance, in Wawrzyniak et al., (2016), GW discharge into a stream was traced by remote 

sensing of water surface temperatures, in Angermann et al., (2012) hyporheic flow was traced 

in the upper part of the hyporheic zone (HZ) by Heat Pulse Sensor (HPS) and in Ciocca et al., 

(2012) soil moisture was traced in the soil/sediment column by Active- Fiber Optic 

Distributed Temperature Sensor (A-FODTS).  

The scale at which the measurements are performed strongly affects the interpretation of 

respective measurements: Processes and parameters relevant at one scale might not have the 

same relevance or predictive capacity at another scale (Turner, 1989). For this reason, 

limitation of monitoring campaigns to one single device and its specific scale optimum, lead 
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to incomplete observations and biases in the analysis of processes and patterns described. In 

fact, there is a strong trend in recent studies to combine multiple technologies/approaches in 

order to overcome data gaps in the scale continuum (Krause et al., 2012; Lautz and Ribaudo, 

2012; Blume et al., 2013; Hare et al., 2015). However, there is an imbalance between 

measurements and process understanding. Available methods and procedures for transferring 

information from one scale to another are not complete. It is not clear yet how well the 

available scaling theories could be applied to multiscale water/heat exchange processes across 

ecohydrological interfaces in freshwater environments.  

Furthermore, there is a lack of a general conceptual framework for freshwater ecosystems 

which integrates water and heat exchange processes (LGD, HEF, and water  

flow from saturated to unsaturated zones) across ecohydrological interfaces with available 

heat tracing techniques.  

This is relevant because heat tracing techniques used for monitoring dynamic processes in 

space and time are also affected by the environment where the measurements are done (e.g. 

scale and meteorological conditions) (chapters 3 and 4). 

For these reasons, the present paper proposes a conceptual guideline for experimental 

approaches design, based on hierarchical patch dynamics (HPD) theory (Wu and Loucks, 

1995). The goal of the conceptual guideline is to adequately identify and quantify water and 

heat exchange processes and its spatio-temporal variability over several scales and across 

ecohydrological interfaces in freshwater environments by combination of different heat 

tracing techniques.  

Ultimately, this conceptual guideline will guide or assist the researcher on how to combine 

and best apply different heat tracing techniques adequately across the spatial and temporal 

scale continuum to get the best picture of the processes under study. In the following sections 

an overview of HPD, how HPD could be applied in heat tracing of water and heat fluxes in 

freshwater environments, heat tracing techniques available for monitoring water and heat 

fluxes across ecohydrological interfaces and proof of concept of the suggested HPD scheme 

for a generic freshwater environment will be presented. 

2.2 Theory and methodology of hierarchical patch dynamics 

The hierarchical patch dynamics theory (HPD) (Wu and Loucks, 1995) integrates hierarchy 

theory with patch dynamics theory. This theory describes the dynamic relationship between 

patterns, processes and scales in a landscape context. On the one hand, hierarchy theory gives 

guidelines to resolve a complex system and has a vertical perspective (top down/ bottom up 
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approach). On the other hand, patch dynamics addresses spatial heterogeneity and its variation 

and has a horizontal perspective (sideways/lateral approach) (Wu, 1999). The output of 

combining both theories into HPD represents the integration of structural and functional 

components of a spatially spread system (e.g. landscape) into a comprehensible hierarchical 

framework (Wu and David, 2002).  

The HPD can be applied by using a hierarchy of patches in freshwater environments linking 

physical processes that go across scales (Poole and Berman, 2001) and ecohydrological 

interfaces. In the present case, the considered processes are water and heat exchange 

processes. 

2.2.1 Hierarchy theory 

A hierarchic system is formed by interrelated subsystems. At the same time, each of the 

subsystems is also hierarchic in structure until the lowest level of the system is reached, an 

elementary system (Simon, 1997). The subsystems that comprise a level are called “holons” 

(Koestler, 1967). Koestler, (1967) defined the concept of “holon” as a dual faced entity. 

“Holons” act as “wholes” when facing downwards and as “parts” when facing upwards (Wu, 

1999). Levels in the traditional hierarchy usually apply to scalar hierarchies (O’Neill et al., 

1989). However, in ecological hierarchy theory this is not always the case; there are also more 

definitional hierarchies (Wu, 1999). A hierarchical system has a vertical and a horizontal 

structure. The vertical structure is composed by the levels and the horizontal structure is 

composed by the “holons”. In hierarchical systems, the highest levels are characterized by 

slower and larger entities, and the lower levels are characterized by faster and smaller entities. 

The upper levels apply constrains to the lower levels, while the lower levels give initiating 

conditions to the upper levels (Simon, 1977; Urban et al., 1987). Each of the constrains will 

provide a context for the processes of the lower levels of the hierarchy (Urban et al., 1987). 

Hierarchy theory proposes that when studying a process at a specific hierarchical level (called 

the focal level, or Level 0), the mechanistic understanding of the process comes from the next 

lower level (Level -1), while the relevance of that process can only be unveiled at the next 

higher level (Level +1). This is sometimes referred to as the Triadic structure of hierarchy 

(Salthe, 1985). 

For instance, Figure 2.2 presents a hierarchical structure for the water and heat exchange 

processes shown in Figure 2.1. The smallest hierarchical units considered here are defined as 

aggregates in the colmation/biofilm layer of streambeds or lakebeds and the unconsolidated 

and consolidated sediment aggregates in soils. Grouping the smallest units, in this case 
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aggregates, leads to the next hierarchical level. Aggregates can be composed of: 1) biofilm, 

mineral particles, organic matter and water if the aggregate belongs to the colmation/biofilm 

layer, 2) mineral particles, organic matter, humus, water and air if the aggregate belongs to the 

unconsolidated sediment layer and 3) mineral particles and water if the aggregate belongs to 

the consolidated sediment layer (Figure 2.2). 

 

Figure 2.2 Hierarchical conceptualización of heat and water exchange processes at freshwater 

ecosystems at different spatial and temporal scales and across different ecohydrological interfaces. 

 

Water and heat fluxes occur across many ecohydrological interfaces such as: atmospheric 

boundary layer-atmosphere or water column-atmosphere (Figure 2.2). However, water and 

heat fluxes that occur across ecohydrological interfaces can be considered at different scales 

in the hierarchical organization of the freshwater environment in Figure 2.2. Thus, water and 

heat fluxes can be observed at small scales (e.g. aggregate level in the hierarchical structure of 

the freshwater environment), local scales (e.g. reach, lake shore or plot), at a stream, lake or 

terrestrial unit scale or even at the catchment scale. 

2.2.2 Patch dynamics in landscape ecology 

The concept of patch dynamics developed in landscape ecology is used in ecology since 1970 

(Wu, 1999) and it is nowadays widely applied to freshwater systems, too (Johnson and Gage, 

1997; Poole and Berman, 2001). Patch dynamics resolve landscapes into elements or patches 

(Forman, 1995). Thus, freshwater ecosystems can be understood as landscapes composed by 
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dynamic interacting terrestrial and aquatic elements (Frissell et al., 1986; Fisher et al., 1998; 

Dent et al., 2001; Soranno et al., 2010). These elements are defined as the basic homogeneous 

units (patches) observable in the landscape at a specific spatial scale (Poole and Berman, 

2001). The patch dynamics theory studies the structure, function and dynamics of a patchy 

systems focusing on its emergent properties, which originate from interactions at the patch 

level (Wu and Levin, 1997; Wu and David, 2002). 

2.2.3 Hierarchical patch dynamics 

In HPD the system is understood to be hierarchical and each of the levels of the hierarchy is 

composed of patches. These patches coincide with the concepts of “holons” in hierarchy 

theory. In this manner, concepts explained for hierarchy theory can be translated to HPD. The 

only difference is that HPD considers that patches are dynamic in space and time, which 

allows studying processes and patterns in space and time within a landscape. A catchment can 

hence be divided into a hierarchy of patches in three dimensions in space (e.g. in plane view 

and lateral cross-section view). At any scale, these patches are affected by the interaction 

between their context with the patch itself (context is defined by the next larger patch it 

belongs in), the internal structure of the patch in question and the processes across scales that 

link the patches in the hierarchy (Poole and Berman, 2001). There have been a number of 

applications of hierarchy theory and HPD in environmental sciences and ecohydrology. 

Frissell et al., (1986) introduced a hierarchical framework for habitat classification of stream 

systems. A hierarchical approach allowed Dent et al., (2001) decomposing the influences of 

subsurface groundwater up-welling at different scales. For instance, Dent et al., (2001) found 

that subsurface patches affect surface water nutrient patterns from a few meters scales to 

several kilometers scales. Finally, Poole and Berman, (2001) used the HPD approach for 

fluvial landscape ecology in order to resolve interactions between patches of a single scale 

and across different spatial scales. Thus, the present study is not the first one that approaches 

freshwater environments (such as streams and lakes) by hierarchy theory and hierarchical 

patch dynamics from a landscape perspective. However, monitoring of ecohydrological 

interfaces in freshwater environments have not yet been broadly approached from a landscape 

perspective (Soranno et al., 2009). Furthermore, the mentioned examples introduce and 

suggest conceptual frameworks for stream ecosystems and some of them use these 

frameworks for interpretation of nutrient processes or for simulation of models. Nevertheless, 

none of them uses the conceptual framework for designing experimental approaches that 

combine different heat tracing techniques adequately over the scale continuum to get the best 
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picture of the water and heat exchange processes across ecohydrological interfaces in 

freshwater environments. 

2.3 Application of HPD to water and heat fluxes in freshwater environments 

In this section a generic freshwater environment is conceptualised in different hierarchical 

levels and patches following HPD (Figure 2.3). The processes explained and shown in Figure 

2.1 and 2.2 and the scale-dependent suitability of the range of different heat tracing 

techniques across different types of ecohydrological interfaces are gathered in Figure 2.3. By 

following Figure 2.3, it is possible to design a monitoring approach, which could allow 

vertical spatial scaling across ecohydrological interfaces (hierarchy theory perspective) and 

horizontal spatial scaling across scales (patch dynamics perspective). In section 4 (Heat 

tracing techniques in ecohydrological interfaces), heat tracing techniques included in Figure 

2.3 will be introduced in more detail. In section 5 (Proof of concept: vertical upscaling of 

discrete GW upwelling, by FO-DTS and TIR) an example experiment approach designed 

following Figure 2.3 will be introduced as a proof of concept for the suggested HPD based 

scheme and to illustrate how to follow Figure 2.3 in a real case study. 

2.3.1 Structure of the HPD scheme for generic freshwater environments 

Levels in a hierarchical structure can usually be applied to scalar hierarchies (O’Neill et al., 

1989). Scales defined in Table 1 (see in section 4: Heat tracing techniques in ecohydrological 

interfaces) are considered as the levels for the hierarchical structure of a generic freshwater 

environment according to Figure 2.3. Thus, the upper level of the hierarchical system 

describing a generic freshwater environment is defined as the catchment scale. Within this 

level, three structural elements are found: streams, lakes and terrestrial areas around them. 

Each of them is considered a patch because it represents a landscape unit within the catchment 

with assumed homogeneous properties and functioning. This level is related to stream/lake or 

terrestrial scale. The next lower hierarchical level of a stream will be a reach. For lakes only 

the lake shore will be regarded as the next lower level because this is where usually most 

LGD occurs (McBride and Pfannkuch, 1975; Lewandowski et al., 2013). Finally, the 

terrestrial level can be resolved into plots. Stream reach, lake shore and plot levels will be 

related to reach, lake shore and plot scales respectively. In a very general way and with a 

vertical perspective a stream reach and a portion of the lake’s shore can be represented as a 

combination of water column, colmation/biofilm layer, unconsolidated sediments and 

consolidated sediments. Each of this compartments are patches that are part of the upper level 

that we call reach or lake shore. These compartments form the local level or scale. Within this 
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scale, water and heat exchange occur across the above-mentioned compartments in both time 

and space. Each of the compartments represents one phase and the boundaries between them 

are called interfaces. Thus, we can find at the defined local level or scale the following 

interfaces: 

 Consolidated sediment-Unconsolidated sediment  

 Unconsolidated sediment-Colmation/biofilm layer 

 Colmation/biofilm layer-Water column  

 Water column-Atmosphere 

Similarly, the plot-scale can be presented by units or patches that are characterised by the 

following properties: atmospheric boundary layer, unconsolidated sediments and consolidated 

sediments. Each of the compartments is a phase and the boundaries between them are 

interfaces across which water and heat exchange processes will occur: 

 Consolidated sediments-Unconsolidated sediments 

 Unconsolidated sediments-Atmospheric boundary layer 

 Atmospheric boundary layer-Atmosphere 

The unity of all these compartments together forms the local scale. Finally, the lowest 

hierarchical level considered in this paper will be related to water drops and 

colmation/biofilm, unconsolidated and consolidated aggregates. Figure 2.3 summarises all the 

hierarchical levels, scales and patches considered in the generic freshwater environment.  

Heat exchange processes can be observed from lowest levels of organization (aggregate level) 

to the highest level of organization in our system (catchment level) and vice versa (Figure 2.3, 

red arrows). Water exchange processes occur across all the levels of organization in our 

system. However, LGD, HEF and water infiltration into subsurface soil are generally 

considered at a plot scale where water flows across different interfaces (Figure 2.3, blue 

arrows). 

Finally, the atmosphere (where different weather conditions occur) is not considered as a level 

in our system because is not a scalar hierarchy level. But, it is an important element in the 

system since heat exchange across the defined HPD structure is affected by it. Therefore, it is 

included in Figure 2.4 as an influencing element in the described system. 

This simplification of a generic freshwater environment (our system) eases integration of a 

HPD representation of: 1) a freshwater system and 2) water and heat exchange processes 

across and within the represented generic freshwater system and its ecohydrological 

interfaces. 
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Figure 2.3 An HPD based conceptual guideline on how to adequately observe water/heat exchange processes across spatial scales and ecohydrogological interfaces by 

combination of different heat tracing techniques. 
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2.4 Heat tracing techniques in ecohydrological interfaces 

In the first part of this section, a general description of each of the considered heat tracing 

techniques for heat and water fluxes across different ecohydrological interfaces is introduced. 

Table 1 summarises the main characteristics of each of the heat tracing technologies based on 

scale, limitations and recommendations for best use of the technology. In the second part of 

this section the application of each of the described heat tracing techniques at the different 

ecohydrological interfaces defined in Figures 2.1, 2.2 and 2.3 is introduced. 

Self-contained temperature loggers (e.g. Onset Hobo data loggers from Onset Computer 

Corp., Pocasset, MA, USA; http://www.onsetcomp.com) can be easily setup in stream or lake 

beds, surface waters or inside a piezometer in the soil profile. They can record long time 

series of temperature measurements. However, they only provide point scale temperature 

data. For example, Lowry et al., (2007) used Hobo loggers to verify FO-DTS measurements.  

Temperature lances are multilevel stainless steel temperature probes with attached data 

logger that are used to simultaneously record temperatures in different sediment depth 

(usually in the upper meter of the sediment or shallower depths). They provide time series of 

vertical temperature depth profiles. Based on the curvature of the profile, the dampening of 

temperature fluctuations with depth or the phase shift of temperature fluctuations fluxes can 

be calculated (Constantz and Stonestrom, 2003). The common tool to calculate vertical water 

flux rates at multiple depths from the data obtained from the temperature lances is the 

program VFLUX(Gordon et al., 2012). The principle VFLUX is based upon is offset in time 

and depth dependent dampening of diurnal oscillation. However, in streams or lakes with 

strong non vertical water fluxes across the stream/lake bed, the simplification of assuming 

purely vertical flow that is underlying this concept might not be valid (Schmidt et al., 2006).  

The 3D heat pulse sensor (HPS) (Lewandowski et al., 2011) is a point-scale heat tracing 

device which provides 3D heat and water flux information over a diameter of 7 cm in the 

hyporheic zone. It is an optimized heat pulse sensor device which has been adapted by 

Lewandowski et al., (2011) from previous 1D and 2D heat pulse sensors used in boreholes 

for horizontal groundwater flow characterization and in soil sciences for characterization of 

vertical soil water movement (Byrne et al., 1967; Kawanishi, 1983; Ren et al., 2000; 

Greswell et al., 2009; Cuthbert et al., 2010). The HPS performs best in sandy stream beds 

with high flow velocities in the HZ (Lewandowski et al., 2011; Angermann et al., 2012a, 

2012b).  

The fiber optic distributed temperature sensor (FO-DTS) (Selker et al., 2006a, 2006b) has 

been used in various different setups: at groundwater-surface water interfaces of streams and 

http://www.onsetcomp.com/
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lakes as a loose horizontal loop (Krause et al., 2012; Blume et al., 2013), across stream beds 

and sediment columns curled around a cylinder (Briggs et al., 2012), in soil profiles for soil 

moisture characterization (Ciocca et al., 2012), across the forest canopy as a single loose 

cable (Krause et al., 2013a) or in the water column in a 3D looped cable setup (e.g. chapter 

3). At the moment the highest sampling resolution of the FO-DTS is 12.5 cm (i.e. Ultima-S, 

Silixa Ltd.). The sampling resolution is determined by the duration of each of the laser pulses 

send by the DTS. The ULTIMA-S sends pulses of 12.5 ns. This results in a sampling 

resolution of 12.5cm. The FO-DTS cable allows 1D to 3D setups providing the opportunity to 

describe 1D, 2D and 3D heat and water flow patterns at local to medium scales.  

When naturally occurring temperature variations are not strong enough to be traced by FO-

DTS, the metal coating of the optical fiber (Read et al., 2014) or an independent metal wire at 

the core of the cable (Ciocca et al., 2012), can be actively heated in order to monitor how fast 

the heat dissipates from the heated cable to the surrounding medium. This data provides 

information on the spatial distribution of physical properties of the surrounding medium or 

fluid fluxes (Read et al., 2014). This so called Active DTS (A-DTS) method has been used in 

boreholes to track groundwater movement (Read et al., 2014), to measure soil moisture in 

soils (Ciocca et al., 2012) or in streambeds to quantify streambed flow dynamics in zones of 

strong groundwater discharge (Briggs et al., 2016a). 

Finally, thermal infrared (TIR) imaging allows to measure temperatures of water surfaces or 

top soil in a wide range of environments with low to coarse spatial resolutions (mm to 

decameters) at local, catchment or regional scales (e.g: from m
2
 to km

2
) depending on the 

system used (ground based, unmanned aerial vehicle, plane or satellite) (Davies et al., 2008; 

Hare et al., 2015; Pöschke et al., 2015; Briggs et al., 2016; Lee et al., 2016). Haghighi and 

Or, (2015) measured soil surface temperatures with a handheld TIR camera at small scale. In 

Hare et al., (2015) GW discharge to SW is monitored by using a ground-based TIR camera at 

the reach/local scale. In Pöschke et al. (2015) LGD into a lake is monitored at the lake scale 

with a TIR setup in an airplane. As another example, Davies et al. (2008) combined ground 

based TIR and satellite TIR imagery to monitor volcanic lake temperatures.  

Table 2.1 summarises considered heat tracing techniques in this paper, for water and heat 

fluxes across ecohydrological interfaces. The scale at which each of the heat tracing 

techniques are applied, limitations of the heat tracing technology and recommendations on 

how to best use each of heat tracing techniques are included.  
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Table 2.1 Summary of the heat tracing techniques that are considered in this paper for scaling of 

water and heat fluxes in freshwater environments: scales, limitations and recommendations. Scales 

used in this paper are: Point/Small (few cm), local (cm to few m), reach, plot or lake shore (from few 

m), stream, land or lake (from m to km) and finally catchment (from km). “Temp.” goes for 

temperature. 

Heat 

Tracing 

Technique 

Scale Limitation Recommendation 

Single point 

temp. sensor 

Point  Point temperature 

measurements 

 For verification of other 

devices, e.g. FO-DTS. 

Temp. lance Point and local 

vertical patterns 
 Max. depth: 0.5.m. Point 

temperature 

measurements. 

 Not for horizontal fluxes. 

 For vertical flux 

calculation. 

 For preliminary study of 

stream/lake bed for 

choosing locations for 

additional devices (Schmidt 

et al. 2006). 

HPS Point and small  Sandy sediment texture.  

 Sufficient subsurface flow 

velocity. 

 3D fluxes in HZs.  

 Best sandy HZs and fast 

flowing streams. 

FO-DTS Small, local, plot, 

lake shore and 

stream. 

 Extensive logistics.  

 Challenging calibration. 

 1D to 3D heat flux patterns. 

A-DTS Small, local, plot, 

lake shore and 

stream. 

 Extensive logistics.  

 Challenging calibration. 

 When GW-SW 

temperatures differences are 

not sufficient for classic 

DTS. 

TIR Local  Water and soil surface 

temperatures. 

 Ground trothing required. 

 

Figure 2.4 shows how heat tracing techniques considered in this study (summarised in Table 

2.1) can be setup across the ecohydrological interfaces shown in, Figure 2.1,2.2 and 2.3.  

The HPS can monitor 3D heat fluxes in the colmation/biofilm layer and the upper part of the 

unconsolidated sediment layer. Temperature lances are installed in the colmation/biofilm 

layer and partly in the unconsolidated sediment layer too. It provides vertical temperature 

variations in the colmation/biofilm layer and in part of the unconsolidated sediment layer.  

The application of FO-DTS surveys in 1D to 3D experimental setups offers the opportunity to 

monitor temperature variations across several interfaces in the reach, plot and lake shore 

levels, the colmation/biofilm layer and in the unconsolidated sediment layer in streams, lakes 

and soils to obtain a temperature depth profile with an even higher resolution. FO-DTS tube 

can also monitor temperature variations in the water column or air.  
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Figure 2.4 Application of different experimental temperature tracing techniques to identify heat and 

water fluxes at different ecohydrological interfaces in freshwater environments defined in Figures 2.1, 

2.2 and 2.3. 

 

Single temperature sensors can be attached to a string or a rope. The string of single 

temperature sensors can be setup in the water column, on the water surface, on the 

colmation/biofilm layer in streams and lakes and on the atmospheric boundary layer on soils. 

The string of single temperature sensors can also be setup inside a piezometer across the 

unconsolidated sediment layer and the colmation/biofilm layer. Single temperature sensor 

strings can be installed as well in boreholes across the consolidated sediment layer.  

The diameters of some of the A-DTS cables are higher than that of comparable standard FO-

DTS cables (e.g. when an independent metal wire at the core of the cable is heated). In this 

case, A-DTS are usually setup in 1D or 2D designs as a loose cable in a borehole across the 

consolidated sediment layer, on the colmation/biofilm layer forming several loops or buried 

in a coil in the unconsolidated sediment layer in the terrestrial unit. When the outer jacket of 

the A-DTS is heated (e.g. the outer jacket of a thin tube fibre), then, the setup options for the 

A-DTS are the same or similar as with the FO-DTS. 

Finally, TIR cameras provide surface water and soil temperatures. Although TIR imaging 

cannot monitor temperature inside of water and soil bodies, it provides temperature data over 

continuous spatial areas in one shot.  
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Each of the heat tracing techniques included in this paper is generally best used in one 

specific scale and phase. However, none of them is able to monitor water and heat fluxes 

across the scale continuum and all the ecohydrological interfaces described in Figures 2.1, 2.2 

and 2.3.  

2.5 Proof of concept: vertical upscaling of discrete GW upwelling by FO-DTS and 

TIR 

The experimental design and investigation in chapters 3 and 4 are used in the following 

section to demonstrate the suitability of the suggested approach for scaling water and heat 

exchange processes (Figure 2.3). The triadic structure of hierarchy (Salthe, 1985) was the 

basis when designing the experiment approach for tracing warm water up-welling in the 

water column caused by discharge of warm GW (LGD). In the present manuscript the term 

upwelling describes upward transport processes in the water column. LGD was simulated in 

an outdoor mesocosm with injection of warm water at its bottom. In this case, the goal was to 

test vertical scaling mechanisms and monitoring technologies across the interfaces of discrete 

discharge of warm water, from the colmation/biofilm layer (mesocosm bed) across the water 

column to the atmosphere. Thus, our focal level or level 0 was defined as the water column. 

The mechanistic understanding of water and heat exchange processes related to LGD comes 

from the next lower level or level -1. This belonged to the colmation/biofilm layer (or 

mesosom bed) while the relevance of the process is unveiled at the next higher level or level 

+1. In the present example, level +1 belongs to the water surface or the water surface-

atmosphere interface.  

The processes’ mechanistic understanding (or the main property controlling the processes at 

level 0) coming from level -1 can be related to the hydraulic conductivity (K) of the sediment 

of the colmation/biofilm layer (or mesocosm bed). Pore-water flow in streambed and lake 

bottom sediments is regulated by the hydraulic gradient and the hydraulic conductivity of 

sediments while the colmation/biofilm layer adds another filter creating respective spatial 

patterns. In the mesocosm experiment of Maruedo et al., 2017, LGD was simulated by a pipe 

injecting warm water at the bottom of the mesocosm through a bag filled with coarse 

sediments to support dispersion of the point inflow in a more natural way.  

The relevance (or impact) of the process can be unveiled on the surface water (or at level +1). 

This is understood in terms of how much artificial warm water should be injected in order to 

detect a robust heat signal at the water surface. The aim of the experiment was to follow the 

heat signal across the water column using different heat tracing techniques at different spatial 
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scales. Going back to Figure 2.4 and having in mind our triadic hierarchical structure we 

should follow the figure from right to left within the lake shore level. First we should identify 

which are the boundaries and interfaces of our triadic structure in Figure 2.3: Figure 2.5 is a 

zoom out of Figure 2.3.  

 

 

Figure 2.5 Example for vertical scaling of water and heat exchanges related to simulated LGD. 

 

Since there was no colmation/biofilm layer in our case study, the lowest boundary is the 

unconsolidated sediment (or the artificial mesocosm bed which is the coarse sediment in the 

bag). Which devices could we have deployed on this boundary or interface? If there would 

have been a colmation/ biofilm layer, following Figures 2.3 and 2.5, we could have chosen 

between a HPS at the small scale and FO-DTS at the local scale. As there was no such layer, 

we can substitute the layer by the mesocosm bed compartment (Figure 2.5). Still, the heat 

tracing techniques recommended for this interface would be the same. Following Figure 2.5 

on the left we find the water column compartment (patch within the lake shore scale level). 

Within this compartment measurements can be conducted by using FO-DTS at local scales or 
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single point temperature sensors at point scales. Finally, in Figure 2.5 it is possible to see how 

the compartment (patch) called water column overlaps with the element atmosphere. This is 

the water column-atmosphere interface. FO-DTS allows measuring at this interface at a local 

scale, or – if wanted – at a larger scale (reaching scale). This can be combined with TIR 

measurements (see Figure 2.5) at the lake shore scale.  

Summarizing, in order to get measurements to trace warm water upwelling across the water 

column we could combine the following devices: HPS, single temperature sensors, FO-DTS 

and TIR camera. In this way we can get information on small and local scales and at different 

interfaces (defined here as vertical scaling).  

Since, in this example water discharge is artificial, the injection rate is controlled and the 

location of the discrete discharge is known, it was not necessary to monitor the sediment-

water interface. Thus, a 3D setup of FO-DTS cable was used in the water column inside the 

mesocosm and a TIR camera was setup at an altitude of 4 m above the mesocosm to monitor 

temperature changes caused by upwelling of warm water in the water column (see chapters 3 

and 4).  

Monitored and analised temperature data showed that at level +1 (water column-atmosphere 

interface) the relevance of the process is unveiled (or the effect/impact of the process is 

observable), but this was strongly linked to weather conditions. Thus, detectability of warm 

water upwelling on the surface water is strongly influenced by weather conditions (see 

chapters 3 and 4). Heat fluxes occur across interfaces in both directions: from atmosphere to 

the water column and from the water column to the sediment and vice versa. Under clear sky 

conditions, downward heat flux from the atmosphere is strong enough to affect and change 

the temperature in the water column. In consequence, heat signals from the artificial warm 

water upwelling cannot be traced in the top layers of the water column. On the contrary, 

under overcast conditions, downward heat flux is not strong enough to affect and change the 

temperature in the water column and the heat signal from the artificial warm water upwelling 

is possible to be traced in the top layers of the water column (see chapters 3 and 4).  

This can be understood in terms of HPD by following definitions of top-down and bottom-up 

processes in Poole (2002): Heat fluxes from the atmosphere are strong enough to affect the 

condition or the ecological functions (e.g. temperature and consequent change on locations of 

thermal refugia for fishes) of the water column compartment (patch) (the water column 

conditions change at local and also at small scales) but heat fluxes from the atmosphere can 

be affected by changes in patch conditions at much broader scales such as changes in weather 

conditions over the catchment (the upper level or scale). This could be defined as a top-down 
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process. Warm water upwelling can be affected by small scale patch structure/functions (e.g. 

sediment aggregates, texture, that influence the hydraulic conductivity of the lake bed) but 

still can affect patch structure/functions at broader scales (e.g. change in water column 

temperature or even reach temperature). This is defined as a bottom-up process (Poole, 2002).  

2.6 Synthesis, conclusions and recommendations 

In the present paper a conceptual guideline for adequately identify and quantify water and 

heat exchange processes and its spatio-temporal variability over several scales and across 

ecohydrological interfaces by combination of different heat tracing techniques has been 

introduced. The conceptual guideline proposed is based in HPD theory. HPD allows 

integrating spatial and temporal variability over several scales and across ecohydrological 

interfaces of heat and water exchange processes such us GW-SW exchange processes in lakes 

and streams. Figure 2.3 shows the suggestion of applying HPD in freshwater environments 

by resolving a generic freshwater environment (or landscape) into different levels or spatial 

scales and defining the structural patches that comprise each of the levels. Different heat 

tracing techniques are located in the recommended scales (Table 2.1) and ecohydrological 

interfaces (Figure 2.4) in order to get the best picture of heat and water exchange processes 

over several scales and across ecohydrological interfaces. Finally, as a proof of concept, the 

experiment which is described in more detail in chapters 3 and 4, is introduced. This is an 

example on how an experimental approach can be designed by following Figure 2.3.  

To conclude, the following three main conclusions can be summarized from the work 

introduced in the previous sections: 

 

1) Heat exchange processes overlap across spatial and temporal scales and the detection of 

heat as a tracer depends on whether the impact or footprint of the investigated process is 

dominant or overshadowed: 

For instance, in the field of landscape fire ecology, energy fluxes represent processes and 

regulations associated with the spatial distribution of energy in relation to patterns in the 

landscape (McKenzie et al., 2011). Since the present paper focuses on heat fluxes, process 

and pattern definitions used in the field of landscape fire ecology could be followed in the 

present case, too. In this manner, heat flux related to water flux is the process that is in our 

focal level (Level 0), or focus of interest. But, within ecosystems there are lots of heat fluxes. 

Sun radiation is a top down energy input or energy flux. This energetic input is then subjected 

to further top-down regulation (e.g. by locally homogeneous spatial fields of humidity, 



Scaling on temperature tracers for water and heat exchange processes in ecohydrological interfaces 

 

47 

 

atmospheric pressure, temperatures, and precipitation) (McKenzie et al., 2011). Thus, heat 

flux from the atmosphere is a top-down constrain. Whereas, heat flux related to water flux is 

a bottom-up process/mechanism. These two heat fluxes will overlap across spatial and 

temporal scales. 

 

2) HPD based approach is helpful to distinguish the overlapping impacts of heat transport 

processes across spatial and temporal scales: 

As found in the example for proof of concept of warm water upwelling tracing experiment, 

there is an interaction between top-down and bottom-up heat fluxes across spatial scales. 

When top-down heat flux processes dominate over bottom-up mechanistic processes, 

homogenizes and coarsens the patterns observed on the surface water (McKenzie et al., 

2011), (e.g. from proof of concept: clear sky conditions allow dominant atmospheric heat 

fluxes leading to homogenous warmer surface water in the mesocosm). On the contrary, 

when bottom-up processes dominate, more heterogeneous spatial patterns will emerge 

(McKenzie et al., 2011) (e.g. from proof of concept: overcast conditions limit heat flux from 

the atmosphere and heat fluxes related to warm water upwelling in the mesocosm become 

dominant leading to heterogeneous warm water patterns on the water of the mesocosm). Top- 

down heat fluxes related to atmospheric conditions can be understood as top-down controls, 

or environmental constrains (Urban et al., 1987) over lower levels in the HPD system of a 

generic freshwater environment. 

 

3) Introducing HPD into heat tracing across interfaces – this paper used an example 

experimental approach from chapters 3 and 4, to successfully demonstrate the 

applicability of the HPD concept in experimental approach and method design for 

tracing discrete GW upwelling by FO-DTS and TIR across ecohydrological interfaces 

(vertical upscaling): 

The design and successful application of the experiment based in HPD allowed identification 

of top-down (from the atmosphere to the water column) and bottom up (from the source of 

the injected warm water in the sediment to the water column) heat fluxes and quantification 

of heat fluxes across the water column-atmosphere ecohydrological interface. Identified top-

down processes affected detectability of bottom-up processes such as warm water upwelling 

in the water column. 

Finally, we would like to remark that it is important to keep in mind that heat fluxes have an 

influence over the complete scale continuum and across ecohydrological interfaces and that 
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the used heat tracing techniques will monitor this influence. If we want to identify or isolate 

water exchange processes related to LGD, HEF or SW exfiltration by tracing heat fluxes we 

first need to know when the heat flux related to those specific processes are dominant over 

the spatial and temporal scales and across the interfaces that are being monitored.  
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Annex S1: Definitions  

System: Any interacting, interdependent or associated group of entities. 

Context: set of circumstances and facts that surround particular event or situation. 

Systems’ context: encompassing element structure (Poole, 2002). 

Hierarchy: Any system of things ranked one above another. 

Hierarchic system: system formed by interrelated subsystems (Simon, 1997). 

Entity: component (O’Neill et al. 1989) or subsystem. 

Levels: A section of a hierarchy which is defined by a scale (Allen and Starr 1982, 1996). 

Within a level there are entities whose features characterize the level they are part of. An 

entity can belong to any amount of levels depending on the criteria used to unite levels above 

and below (Timothy F. Allen). 

Scalar hierarchy: Empirically based levels of observations (Ahl and Timothy F. Allen, 

1996). 

Definitional hierarchy: Observer defined level of organization (Ahl and Timothy F. Allen, 

1996). 

Scalar levels: in a scalar hierarchy. 

Definitional levels: in a definitional hierarchy. 

Patch: Basic homogeneous unit observable in the landscape at a certain spatial scale. A patch 

can change its dynamic, structure, arrangement, union or function (Poole, 2002). Patch might 

be analog to entity, subsystem, Holon, component or part. These terms are commonly used in 

Hierarchy Theory. 

Processes: Water and heat exchange processes. 

Trans-scale: across scales. 
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Trans-interface: across interfaces. 

Elements: Patches, parts of the system. 

System elements: system patches. 

Structural elements: Structural patches. 

Element’s ecological function: Patch’s ecological function (Poole, 2002). 

A landscape: A dynamic interaction of terrestrial and aquatic elements/patches (Forman, 

1995). 

Top-down process: They influence the internal structure of the system. Processes influence 

by patch function/condition at coarse scales but influences patch function/condition at finer 

scales (Poole, 2002). 

Top-down constrains/influences: e.g. Environmental constrains. Each of the constrains 

provides a context for the behaviors of the lower levels of the hierarchy (Urban et al., 1987; 

Wu, 2013). 

Bottom up process: Processes are influenced by fine scale patch’s function/condition but 

influence patch function/conditions at coarser scales (Poole, 2002). 

Bottom up mechanism: initiating forces at lower levels of the hierarchy (Wu 2013). 

Emergent properties: properties that emerge via collective actions of many individual 

entities. Arise of a novel and coherent structures, patterns and properties during the process of 

self-organization in complex systems (Goldstein, 1999). 

Holon: Subsystem that comprise a level (Koestler, 1967). 

Interface: Surface regarded as common boundary of two spaces, phases. 

Compartment: Phase= bodies, spaces. 

Sister Holon: two communicating Holon which occur at the same level in a hierarchy and do 

not exert constrain over each other (Allen and Starr 1982). 

Interactions among Holons of same level are symmetric, among components within a 

Holon are stronger and more frequent than those among Holons (Koestler, 1967; Allen and 

Starr, 1982). 

In HPD and patch dynamics, patch refers to the term Holon which is used in hierarchy 

theory. 
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Abstract 

Lacustrine groundwater discharge (LGD) can substantially impact ecosystem characteristics 

and functions. Fibre optic distributed temperature sensing (FO‐DTS) has been successfully 

used to locate groundwater discharge into lakes and rivers at the sediment–water interface, 

but locating groundwater discharge would be easier if it could be detected from the more 

accessible water surface. So far, it is not clear if how and under which conditions the LGD 

signal propagates through the water column to the water surface–atmosphere interface, and 

what perturbations and signal losses occur along this pathway. In the present study, LGD was 

simulated in a mesocosm experiment. Under winter conditions, water with temperatures of 14 

to 16 °C was discharged at the bottom of a 10 × 2.8‐m mesocosm. Water within this 

mesocosm ranged from 4.0 to 7.4 °C. Four layers (20, 40, 60, and 80 cm above the sediment) 

of the 82 cm deep mesocosm were equipped with FO‐DTS for tracing thermal patterns in 

the mesocosm. Aims are (a) to test whether the positive buoyancy of relatively warm 

groundwater imported by LGD into shallow water bodies allows detection of LGD at the 

lake's water surface–atmosphere interface by FO‐DTS, (b) to analyse the propagation of the 

temperature signal from the sediment‐water interface through the water column, and (c) to 

learn more about detectability of the signal under different discharge rates and weather 

conditions. The experiments supported the benchmarking of scale dependencies and 

robustness of FO‐DTS applications for measuring upwelling into aquatic environments and 

revealed that weather conditions can have important impacts on the detection of upwelling at 

water surface–atmosphere interfaces at larger scales. 

Keywords 

lake, FO‐DTS, heat tracer, jet, interface, driver  
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3.1  Introduction 

Lacustrine groundwater discharge (LGD), that is, the discharge of groundwater (GW) into 

lakes, can substantially impact ecosystem characteristics and functions (Baker et al., 2014; 

Ridgway & Blanchfield, 1998; Warren, Sebestyen, Josephson, Lepak, & Kraft, 2005). 

Upwards directed GW flow is sometimes called upwelling, especially in the context of 

hyporheic zones, where commonly both upwelling and downwelling occur along river 

reaches. In the present manuscript, we use the term upwelling solely for upward transport 

processes in the water column; this definition is adopted from limnophysics. On the one hand, 

upwelling of warm water in cold lakes can be caused by natural processes such as GW flow 

across the lake bed into the cold lake water body during winter conditions (LGD; 

Lewandowski, Meinikmann, Ruhtz, Pöschke, & Kirillin, 2013) or thermal springs in volcanic 

lakes (Cardenas et al., 2012). On the other hand, it can be related to thermal pollution caused 

by industries such as electric power plants, which use water and discharge heated water into 

lakes and streams (Hung, Eldridge, Taricska, & Li, 2005; Shuster, 1986). In both cases, 

quantitative interpretations of warm water upwelling patterns are hampered by the lack of 

understanding of how the signal propagates from the sediment–water interface through the 

water column to the water surface–atmosphere interface and which perturbations and signal 

losses occur along this pathway. The present study will focus on LGD as an example of 

upwelling of warm water in lacustrine ecosystems during winter conditions due to its 

substantial impact on the ecosystem characteristics and functioning. LGD creates favourable 

habitats by affecting water chemical composition and temperature, supporting for instance the 

spawning of fish (Brunke & Gonser, 1997; Hayashi & Rosenberry, 2002). As climate warms, 

aquatic environments with strong GW influence are expected to support habitat stability and 

provide refuge for thermally stressed‐aquatic species (Brabrand, Koestler, & Borgstrøm, 

2002; Curry & Noakes, 1995; Hayashi & Rosenberry, 2002). Furthermore, detection of LGD 

is essential with respect to identifying it as a potential vector for pollution in aquatic 

ecosystems when GW quality is degraded (Nakayama & Watanabe, 2008). Despite the 

reported relevance of LGD on ecosystems, very little has been written about discharge of 

warm GW to lakes. Nearly all of the literature discusses discharge of cold GW to warm lakes, 

primarily because most of the research has been conducted during warm‐water periods. 

Relatively cold GW has a higher density than warm lake water and, thus, would not reach the 

water surface. 

There are no detailed field observations of how warm water propagates through the water 

column and to the surface of the lake during winter conditions. We address this research gap 
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by looking at trigger conditions that allow upwelling of LGD from the sediment–water 

interface to the water surface atmosphere interface. We consider the temperature difference 

required between GW and surface water (SW) as well as the influence of meteorological 

conditions and diurnal cycles. The different temperatures of GW and SW might allow the 

detection of potential discrete areas of GW discharge to SW (Hare, Briggs, Rosenberry, 

Boutt, & Lane, 2015). Under the prerequisite of similar ion composition (which impacts 

water density), warm GW is less dense and more buoyant than cold SW, which allows 

upwelling of GW to the water surface. Thus, heat convection is augmented by density driven 

buoyant forces where warm GW discharges to cold SW. This process occurs during winter 

and early spring when SW is substantially colder than discharging GW and when the mixing 

is at a minimum at the lake surface (Hare et al., 2015; Lewandowski et al., 2013). 

The basic concept of fibre optic distributed temperature (FO‐DTS) technology is to analyse 

the temperatures monitored along specific distance intervals of a fibre optic cable based on 

(a) the travelling time of light in the optic fibre and (b) the temperature‐dependent 

backscattering of light in the fibre (Selker, van de Giesen, Westhoff, Luxemburg, & Parlange, 

2006). In this way, temperature can be monitored through the fibre optic cable up to a 

distance of several km, with spatial resolutions ranging from 0.3 to 4 m and measurement 

precision of 0.05 to 0.1 °C when sampling over 30‐s intervals (Hausner et al., 2011; Selker, 

Thévenaz, et al., 2006; van de Giesen et al., 2012). FO‐DTS has been used to detect GW 

discharge at the sediment–water interface of lakes (Blume, Krause, Meinikmann, & 

Lewandowski, 2013; Liu, Liu, Wang, & Zheng, 2015; Sebok et al., 2013) and streams 

(Krause, Blume, & Cassidy, 2012; Lowry, Walker, Hunt, & Anderson, 2007). Here, FO‐DTS 

is placed in layers of a specific depth above the sediment–water interface, to provide high‐

resolution temperature data to quantify the incidence, frequency, persistence, and attenuation 

of warmer discharging GW that reaches the water surface. 

The aim of this study is to show that during winter, the positive buoyancy of relatively warm 

LGD to cold SW will allow or enhance detection of GW at the water surface–atmosphere 

interface (the lake surface). To address this aim, a mesocosm was used as a model system. 

Different layers of FO‐DTS cable were deployed at different water depths to measure the 

temperature distribution. In addition, the following questions are addressed: 

1. Which lake‐internal upwelling patterns from the sediment–water interface through the 

water column to the water surface–atmosphere interface are caused by (simulated) 

LGD? 
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2. What are the intensities of (simulated) LGD at which GW signals can be identified at 

the water surface with FO‐DTS? 

3. What is the impact of weather conditions on detection of LGD at the water surface–

atmosphere interface? 

This paper addresses the research questions by (a) qualitative analysis of FO‐DTS data, (b) 

statistical analysis of the FO‐DTS data in order to describe temperature hotspots and 

significant spatial patterns across the water column, and (c) quantification of the effect of 

different weather conditions, injection rates, and the diurnal cycle on the net heat fluxes 

across the water surface (G, W m
−2

) as well as the energy change due to advective transport 

by the water inlet from the lake and the water outlet from the mesocosm (Eadv in MJ) and the 

change of internal energy in the mesocosm (ΔE in MJ). Section 4 presents a conceptual 

model based on analyses and limitations of FO‐DTS data. The conclusions of the paper will 

summarize briefly the findings on the different data analyses carried out, answering the three 

research questions. 

3.2 Material and methods 

3.2.1 Experimental setup 

The mesocosm is composed of two inlets and one outlet (see Figure 3.1). Through one inlet 

water from Lake Müggelsee with a mean temperature of 4.7 °C was discharged with a rate of 

33 L min
−1

. The inlet was open throughout the experiment in order to keep homogeneous and 

relatively constant water temperatures and water levels. The second inlet comprised a 

hosepipe that was deployed on the bottom of the mesocosm to provide the warm water (14–

16 °C measured at halfway between tap and mesocosm) injection. The hosepipe was 

insulated with insulation foam in order to reduce cooling of the injected water along the flow 

path from the tap (located in a building close to the mesocosm, 65‐m distance). A nozzle was 

connected to the end of the hose and covered with a bag (35 × 35 cm) filled with sediment in 

order to most realistically simulate discrete LGD at the sediment–water interface. Finally, an 

outlet on the opposite side to the cold water inlet assured a constant water level in the 

mesocosm of 0.82 m height. The outlet discharge rates varied from 34 to 48 L min
−1

 

depending on the applied warm water injection rate. An aluminium frame with dimensions: 4 

m × 2 m and 1.5 m height was used to deploy the FO-DTS cable at different water depths 

(Figure 3.1). The FO cable was installed in four layers at different heights: 20, 40, 60, and 80 

cm (Layers 1, 2, 3, and 4, respectively) above the bottom of the mesocosm (Figure 3.1). The 
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FO-DTS cable was routed back and forth across the aluminium frame in a rectangular grid 

formation so that 15 parallel reaches of the cable extended across each layer within the 

mesocosm. Temperatures were averaged over 12.5 cm intervals (sampling resolution) along 

the FO-DTS cable. We acknowledge that the presence of the FO cable may alter the flow of 

water and heat within the mesocosm; however, considering the cable volume (0.009%) 

compared to the water volume and the spacing between cables (at least 12.5 cm), the effect is 

probably minor. 

From March 11, 2015, to March 27, 2015, seven 24 hr temperature datasets were obtained: 

one control dataset without warm water injection under overcast conditions; three datasets 

with 1 L min−1 injection rate, under clear, partly cloudy, and overcast conditions, 

respectively; two datasets with 5 to 5.5 L min−1 injection rate, under clear and overcast 

conditions, respectively; and finally, one dataset with 15 L min−1 injection rate under overcast 

conditions. 

 

Figure 3.1 Sketch of the experimental set up showing a cross section through the mesocosm 

including the fibre optic distributed temperature sensing set up.  

 

Measurements were carried out using an ULTIMA-S DTS (SILIXA Ltd.) with a sampling 

resolution of 12.5 cm and spatial resolution of approximately 30 cm. DTS sampling 

resolution depends on the duration of each of the laser pulses sent by the DTS. For example, a 

DTS sending laser pulses of 10 ns has a sampling resolution of 1 m, the ULTIMA-S, with a 
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sampling resolution of 12.5 cm, sends pulses of 1.25 ns. The spatial resolution refers to the 

distance between points along the FO cable located next to an abrupt change on temperature 

in a way that the point on the low side is not placed higher than 10% of the abrupt jump and 

the point on the high side is placed higher than 90% of the abrupt jump (Selker, Tyler, & Van 

de Giesen, 2014). Five hundred metres of multimode FO cable from Silixa Ltd., were 

deployed for the experiments of this study. Using a multimode fibre allowed flexible bending 

and thus supported an adequate set up of the cable in the aluminium frame. 

Simulated upwelling flux rates versus rates reported in literature 

The LGD rates used in the present study are based on measured flow rates in the tube (1 to 15 

L min
−1

) used for injecting warm water into the mesocosm. The tube outlet is covered by a 

sand bag to simulate discrete LGD from sediments. An uncovered tube outlet might have 

caused a jet stream that would be quite unrealistic for LGD and therefore was avoided. The 

LGD rate can be referred to different areas: (a) the sand bag covering the tube outlet (35 × 35 

cm) resulting in 8.2 to 122.4 L m
−2

 min
−1

, (b) a square metre, that is, 1 to 15 L m
−2 

min
-1

, and 

(c) the entire mesocosm (10 × 2.8 × 0.82 m) resulting in 0.036 to 0.536 L m
−2

 min
−1

. The 

latter approach is often used in lake studies in which the total exfiltration is related to the 

entire lakebed.  

The LGD rates applied in the present mesocosm experiment are at the upper end of LGD 

rates occurring in situ. Rosenberry, Lewandowski, Meinikmann, and Nützmann (2015) 

reviewed the international literature and report a median exfiltration rate of 0.74 cm day
−1

 

(=0.005 L m
−2

 min
−1

) and a maximum of 745 cm day
−1

 (=5.2 L m
−2

 min
−1

). The maximum of 

745 cm day
−1

 is a point estimate based on seepage metre measurements (Kidmose, 

Engesgaard, Nilsson, Laier, & Looms, 2011). A high rate referred to the entire lake bed is 

reported by Piña-Ochoa and Lvarez-Cobelas (2009), which is 0.05 to 0.1 L m
−2

 day
−1

. For 

punctual focused LGD much higher rates are possible: For example, in Norrström and Jacks 

(1996) macropore GW discharge rates of 18 and 42 L min
−1

 are reported for areas of 0.0078 

and 0.031 m
2
. More extreme examples can be found in natural thermal ponds or pools with 

hot springs with up to 800 L min
−1

 discharge rates (Haselwimmer, Prakash, & Holdmann, 

2013). Intense warm water discharge might also be of anthropogenic origin such as sewage 

leakage from under water pipes (Apperl, Pressl, & Schulz, 2017). 

Measurement protocol and calibration 

Once the FO cable was properly deployed onto the aluminium frame, the exact start and end 

positions of each cable line were identified. 
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This was done by locally warming the cable at each bend, identifying the temperature peak on 

the data output graph, and noting the distance along the cable at this peak. This allowed 

locating of each of the four fibre optic layers, including their start and end points, as well as 

the beginning and end of each FO cable sequence. 

Calibration of the FO‐DTS by temperature offset correction was carried out using an external 

probe of the DTS device and FO cable reference sections within an isolated ice bath with a 

mix of ice and water that assured constantly 0 °C. For the differential loss correction, the 

fixed value setting was chosen along the relatively short cable (500 m) without any splices. A 

default value of 0.255 dB/km was used as this value is the expected value for Corning 

ClearCurve™ OM3 fibre. 

An alternate single‐ended measurement set up was used with alternating monitoring direction 

of the light pulse sent from the DTS device. Measurements were averaged at 10‐s intervals 

(integration time) in each direction. This means that the time interval between measurements 

from the same channel was 20 s. 

3.2.2 Data analyses and spatial statistics 

All data analysis, including summarizing statistics for quantification of spatial patterns and 

statistical relationships of observed data within layers and between layers, was conducted in 

R and ArcGIS. The following spatial statistical metrics were quantified: 

Moran’s I and Moran Scatter Plot of testing spatial autocorrelation 

The Moran's I values were calculated as indicators of the degree of linear association between 

a value in a specific location (x-axis) and surrounding locations (y-axis). Moran's I scatter 

plots were used to visualize the type and strength of spatial autocorrelation of observed 

temperatures. The four quadrants of the Moran's I scatter plot indicate, from x-axis to y-axis: 

high-high and low-low quadrants contain values with positive spatial autocorrelation and 

high-low and low-high quadrants contain values with negative spatial autocorrelations. The 

Moran's I scatter plot displays a “spatially lagged” transformation of a variable (in y-axis) on 

the original spatial variable (in x-axis). In addition, the Moran's I scatter plot reports the 

summary of potential influential observations (highlighted in red diamond shape in Moran's I 

scatter plot) for the linear relationship between the data and the lag. Finally, the slope of the 

scatter plot indicates Moran's I values obtained and the overall spatial autocorrelation of the 

dataset (Anselin, 1996; Bivand, Pebesma, & Gómez-Rubio, 2013). 

 



 

66 

 

Local Indicators of Spatial Association maps 

Local indicators of spatial association (LISA) have been calculated to identify significant 

spatial clusters or outliers that have been used in this study to highlight local hotspots of 

simulated warm water upwelling. The clusters and spatial outliers of LISA maps correspond 

to the four quadrants of the Moran's I scatter plots, providing a measure of clusters or outliers 

that are of statistical significance (Anselin, 1995). 

Spatial correlation between layers: Band collection statistics 

Band collection statistics conducted in AcrGIS allowed the analysis of sets of raster bands, in 

the present study a set of 4 FO-DTS temperature layers. Covariance and correlation matrices 

and basic statistical parameters (minimum, maximum, mean, and standard deviation) for each 

layer have been calculated. The covariance matrix indicates for each layer how much 

variance is from the mean value of each layer. The correlation matrix shows how correlated 

the cell values of one layer are to the cell values of another layer (Environmental Systems 

Research Institute, 2014). 

3.2.3 Preprocessing and sources of error 

Figure 3.2a shows temperature data of a single measurement point on the FO cable over 24 hr 

of measurement (black line) with a clear diurnal trend. However, noise is predominant on the 

plotted curve. Noise can be related to the sensor, turbulence, and short time fluctuations of 

weather conditions (sunlight/no sunlight). In order to clear the temperature signal, local 

polynomial regression fitting (LOESS) was applied in R. The red line in Figure 3.2a 

represents the fitted curve. Applying LOESS to the raw temperature resulted in removal of 

noise from the data ranging from 0.0 to 0.6 °C (Figure 3.2b). 
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Figure 3.2 (a) Raw temperature data (black line) and smoothed temperature data with local 

polynomial regression fitting (LOESS; red line) and (b) temperature difference between raw 

temperature data and smoothed temperature data. 

3.2.4 Quantification of net heat fluxes across the water surface, advective heat 

fluxes and internal energy change  

In order to identify the main drivers affecting the spatial patterns observed within the water 

column (Figure 3.3), heat losses and gains at the mesocosm surface have been quantified. 

Steady state water flow of the mesocosm has been assumed. G, ΔE, and net-advective heat 

flux (Eadv in MJ) have been calculated following equations in Appendix S1. Eadv consists of 

cold and warm water inputs to the mesocosm and the water flow out of the mesocosm. 

3.3 Results 

3.3.1 FO-DTS observed temperature patterns 

Spatial linear interpolations of time averaged values (day and night separately) from 24-hr 

measurements are shown in Figure 3.3. The slice3D plots integrate the four layers of FO-DTS 

temperature measurements. The plots show the temperature differences from the minimum 

temperatures (ΔTmin in degrees [°C]) of each dataset with the same colour scale for both day 

and night. Because the present figure is focusing on spatial patterns of warm water upwelling, 

and not on quantifying upwelling per se, we did not use absolute temperature values. In 

addition, ΔTmin values show the intensity of the warm water hotspots in the water column 

and in the water surface for all three injection rates in each dataset. The plots allow tracing of 

the warm water injected at the bottom of the mesocosm with rates of 1, 5–5.5, or 15 L min−1, 

respectively, and its propagation through the water column. These plots represent averaged 

values of measurements taken during day and night separately. Figure 3.3a–c represents the 
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ΔTmin observed in experiments under clear or partly cloudy conditions. Although the source 

of warm water can clearly be detected at the bottom of the mesocosm, its impact on observed 

ΔTmin spatial patterns is vanishing with increasing distance from the source in the upper 

layers. In contrast, Figure 3.3d–f represents ΔTmin observed in each experiment under 

overcast conditions. Injected warm water can be traced in all four layers at all applied 

injection rates: 1, 5, and 15 L min
−1

. In addition, night measurements show clearer spatial 

patterns than day measurements. Finally, depending on the applied injection rate, the 

upwelling of warm water from the bottom shows different flow paths (see Figure 3.3d–f). 

The different flow paths observed in Figure 3.3d–f are related to the cold water inlet on the 

right side of the mesocosm. The cold water inlet created a vortex from the right side of the 

mesocosm to left, and the injected warm water moved along with this vortex. In Figure 3f, 

this effect is also visible on the top layer. Due to the high injection rate (15 L min
−1

), the 

warm water flows straight up to the SW in Figure 3.3f. 
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Figure 3.3 Slice3D plots visualizing for the four layers of DTS measurements the difference from the minimum temperature of each dataset. Values averaged for 

approximately 12 hr day (always left of colour scale) or night (always right), respectively. Different injection rates and weather conditions as follows: (a) 1 L min−1 clear 

19.03.2015, (b) 1 L min−1 partly cloudy 25.03.2015, (c) 5.5 L min−1 clear 18.03.2015, (d) 1 L min−1 overcast 26.03.2015, (e) 5 L min−1 overcast 27.03.2015, and (f) 15 L min−1 

overcast 12.03.2015.  inlet of cold lake water,  inlet of warm water, outlet of mixed water from mesocosm.  clear day,  clear night,  partly cloudy day, 

partly cloudy night, overcast day, and overcast night. 
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3.3.2 Quantitative analysis of spatial temperature patterns 

Horizontal spatial temperature patterns: Spatial autocorrelation within layers: Moran’s I 

scatter plots and LISA maps 

All datasets show significant spatial autocorrelation between data points within each layer 

with p values less than 2.2 e
−16

, except the dataset of Layer 3 at an injection rate of 1 L min
−1

 

at night under clear sky conditions where the p value is 1.18 e
−06

. As an example, Figure 3.4 

compares the Moran's I scatter plots and LISA maps during daytime for 1 L min
−1

 clear sky 

and 15 L min
−1

 overcast sky conditions. When injecting 1 L min
−1

 with clear sky conditions, 

despite the significant spatial autocorrelation, the temperature data values are more dispersed 

over the four quadrants. Figure 3.4a indicates potential influential observations in Layers 1 

and 2, mainly located in the quadrant “high-high,” identifying a positive spatial 

autocorrelation between observation points surrounding those data values. However, in 

Layers 3 and 4 (Figure 3.4a), the distribution of potential influential observations over the 

four quadrants is more dispersed, not showing a clear clustering of points on “high-high” and 

“low-low” quadrants (in red and yellow in LISA maps, Figure 3.4c). 

On the contrary, temperatures observed for the 15 L min
−1

 injection rate show stronger spatial 

autocorrelation with most of the data points in high-high and low-low quadrants indicating a 

positive spatial autocorrelation (Figure 3.4b and 3.4d). Thus, the spatial autocorrelation over 

the four layers is stronger than in the dataset of 1 L min
−1

 and clear sky condition. 

Furthermore, LISA maps (Figure 3.4d) show a clear clustering of the highly spatially 

autocorrelated values. 
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Figure 3.4 (a) and (b) Moran's I scatterplots, (c) and (d) LISA maps, (a) and (c) for 1 L min−1 clear sky, day, (b) and (d) for 15 L min−1 overcast sky, day. In (a) and (b), 

potential influencing measures for the linear relationship between the data and the lag are highlighted as red diamond shape. In (c) and (d), red coloured points belong to the 

high-high quadrant in Moran's I scatterplot, yellow coloured points belong to the low-low quadrant in Moran's I scatterplot, and blue coloured points are spatially 

nonsignificant points. From top row to bottom row: Layers 4, 3, 2, and 1. 
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Calculated Moran's I values in Figure 3.5 compare the intensity of spatial autocorrelation 

between the temperature data points for different weather conditions and day or night 

observations within each layer. In all cases, Moran's I values increase from the lowest to the 

highest injection rates (Figure 3.5). The injection of warm water has a larger impact on the 

temperature patterns observed in the upper layers at higher injection rates. In general, all 

layers show highest Moran's I values when the measurements were obtained under overcast 

weather conditions. Layers 3 and 4 (uppermost layers in the water column) show the highest 

increase in Moran's I values under overcast weather conditions at injection rates of 1 and 5 L 

min
−1

 injection rates. 

 

Figure 3.5 Moran's I values. (a) Day, clear and partly cloudy sky; (b) night, clear and partly cloudy 

sky; (c) day, overcast sky; and (d) night, overcast sky. All plots are plotted from lowest to highest 

injection rates. 

 

Moran's I values for Layers 1 and 2 (closest to the warm water injection) were high under all 

weather conditions. This indicates a higher influence of warm water inflow on temperature 

patterns observed in Layers 1 and 2 than in Layers 3 and 4. 
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Under clear sky weather conditions, Moran's I values for Layers 1 and 2 are similar or 

decrease slightly during night measurements. For Layers 3 and 4, Moran's I values during 

night are lower than Moran's I values during day measurements. 

Under overcast weather conditions, Moran's I values within Layers 1, 2, 3, and 4 for 1 L 

min
−1

 injection rate increase during night measurements. For an injection rate of 5 L min
−1

, 

Moran's I values for Layers 1 and 4 are lower during night than during day measurements. 

Finally, Moran's I values for 15 L min
−1

 injection rate are very similar during day and night 

measurements. 

 

In summary, significant spatial autocorrelations within each layer have been identified in all 

datasets. However, calculated Moran's I values vary depending on the injection rate of warm 

water, weather conditions, and the diurnal cycle (see Figure 3.5). This indicates that the 

strength of the spatial pattern within each layer also varies depending on the injection rates 

applied, the weather conditions, and the diurnal cycle. 

Vertical spatial temperature patterns: Spatial correlation between layers 

Spatial correlation between neighboring layers 

At high injection rates, the largest correlations between neighbouring layers occurred (Table 

S1). At lower injection rates, the correlation was usually much smaller and the largest 

correlation generally occurred between neighbouring layers. There are three exceptions where 

the largest correlations occurred between nonneighbouring layers: dataset 1 L min
−1

, clear, 

daytime and 1 L min
−1

, partly cloudy, day and night-time. The reason might be that the extent 

of the spatial warm water pattern in Layers 1 and 3 is more similar than the observed pattern 

in Layer 2 (See Figures 3.4c and S1). 

Measurements under clear sky conditions with an injection rate of 1 L min
−1

 showed a 

downward trend (from Layer 1 to 4) on spatial correlation coefficients calculated between 

neighbouring layers (1&2, 2&3, 3&4). When weather conditions were “partly cloudy” for 1 L 

min
−1

, spatial correlation coefficients calculated between neighbouring layers showed an 

upward trend from Layer 1 to 3 (1&2 and 2&3) and the lowest value between the two 

uppermost layers (3&4). Finally, when weather conditions were overcast and injecting 1 L 

min
−1

, it is possible to see that there was an upward trend (from Layer 1 to 4) on spatial 

correlation coefficients calculated between neighbouring layers (1&2, 2&3, 3&4), for 

example, from 0.415 to 0.815 during day. 
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The same upward trend was observed for an injection rate of 5.5 L min
−1

 with clear sky 

conditions for spatial correlation coefficients calculated between neighbouring layers: from 

0.516 to 0.685. At injection rate of 5 L min
−1

 with overcast conditions, spatial correlation 

coefficients between neighbouring layers keep increasing, for example, from 0.795 to 0.933 

day. 

On the contrary, when injecting 15 L min
−1

, calculated spatial correlation coefficients 

between neighbouring layers only increase for layers 1&2 and 2&3 from 0.846 to 0.888. 

Spatial correlation coefficients for 3&4 layers decrease to 0.450. 

Spatial correlation between nonneighbouring layers 

Highest spatial correlations calculated between nonneighbouring layers (1&3, 1&4, and 2&4) 

were found for 1 L min
−1

 under overcast conditions during night (0.681, 0.572, and 0.663, 

respectively) and for 5 L min
−1

 under overcast conditions during day (0.608, 0.546, and 

0.791, respectively). 

Spatial correlation coefficients between Layers 1&3 generally increase from 1 to 15 L min
−1

 

under overcast conditions. Spatial correlation coefficients between layers 1&4 and 2&4 

generally increase from 1 to 5 L min
−1

 and considerably decrease at 15 L min
−1

. These 

observations agree with the change on the spatial pattern observed in Figure 3.3f, compared 

with the spatial patterns observed in Figures 3.3d and 3.3e. In Figure 3.3f, injected warm 

water flows straight up across Layers 1, 2, and 3. In Layer 4, injected warm water spreads all 

over the water surface. Low spatial correlation coefficients for 15 L min
−1

 between Layers 

2&4 and 1&4 indicate differences of spatial patterns observed between Layers 1&4 and 2&4 

in Figure 3.3f. 

Figure 3.6 presents calculated spatial correlation coefficients for different (clear sky, partly 

cloudy, and overcast) conditions for both day and night measurements independently. 

Spatial correlation coefficients calculated between 1&2, 1&3, and 2&3 are higher during 

night than during day. However, spatial correlation coefficients calculated for 1&4, 2&4, and 

3&4 showed different results. For clear sky conditions, calculated spatial correlation 

coefficients during night time are lower than calculated spatial correlation coefficients for the 

same injection rates during day. In contrast, calculated spatial correlation coefficients for 

overcast weather conditions are slightly higher during night than during day within the same 

injection rates, for both 1 and 15 L min
−1

. In contrast, for 5 L min
−1

 under overcast 

conditions, spatial correlation coefficients are slightly lower during night than during day. 
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Figure 3.6 Spatial correlation coefficients for (a) day, clear sky and partly cloudy conditions; (b) 

night and clear sky, partly cloudy conditions; (c) day and overcast conditions; (d) night and overcast 

conditions. 

 

Three main findings can be listed from the calculation of spatial correlation coefficients 

between layers: 

 In general, overcast weather conditions result in higher spatial correlation coefficients 

between neighbouring layers and nonneighbouring layers. 

 At 15 L min
−1

, the uppermost layer (Layer 4) is spatially less correlated with the 

underlying layers than at 1 and 5 L min
−1

 under overcast conditions. These 

observations agree with the change on the spatial pattern observed in Figure 3.3f in 

comparison with the spatial patterns observed in Figure 3.3d,e. 

 The diurnal cycle has an effect on spatial correlation coefficients calculated between 

layers. Layers within the water column show higher spatial correlation coefficients 

between them during night than during day for the same injection rates no matter of 

the weather conditions. However, for the uppermost layer (Layer 4) at the water 
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surface–atmosphere interface, spatial correlation coefficients are lower for clear nights 

and generally similar or slightly higher for overcast nights. 

3.3.3 Net heat fluxes across the water surface, advective heat fluxes and 

internal energy change  

The effects of different weather conditions, different injection rates, and the diurnal cycle on 

the energy balance of the water column were quantified. This was done by quantifying the net 

heat fluxes across the water surface (G in W m
−2

) as well as the energy change due to 

advective transport by the water inlet from the lake, the warm water inlet at the bottom of the 

mesocosm and the water outlet from the mesocosm (Eadv in MJ). Their sum results in the 

change of internal energy in the mesocosm (ΔE in MJ). 

Net heat fluxes across the water surface (G) 

Net heat fluxes across the water surface (G) during day and night are composed of net 

radiation (Rn), latent heat fluxes (phase transformation, λE), and sensible heat fluxes (H) with 

Rn being the most important of the three (see Figure 3.7a,c,e,g,i,k,m). This indicates that the 

system gains and loses energy mainly by Rn. 

Net radiation (Rn) is composed of net shortwave radiation (Rns) and net longwave radiation 

(Rnl). The net shortwave radiation (Rns) is considered a heating term (during daytime) and the 

net longwave radiation (Rnl) is considered a cooling term (during day and night; Betts, 2015). 

Therefore, during daytime, calculated Rn values are higher than during night for both clear 

and overcast weather conditions (Figure 3.7a, c,e,g,i,k,m). This is because during daytime, 

the surface cooling due to Rnl is partly compensated by Rns (Betts, 2003, 2015; Betts, 

Desjardins, & Worth, 2013). In addition, during night, there is no shortwave radiation coming 

from the sun and the cooling term, Rnl, will be the main component of the Rn. 

In general, Rn values during daytime are lower under overcast weather conditions than under 

clear sky conditions (Figure 3.7a,c,e,g,i, k,m). During night, Rn values are less negative under 

overcast conditions than under clear sky conditions (Figure 3.7a,c,e,g,i,k,m). These results 

are related to the important effect that clouds have on the net radiation balance (Rn; Betts, 

2015). On the one hand, during daytime, incident downward shortwave radiation at the water 

surface is lower under overcast weather conditions than under clear sky conditions. On the 

other hand, during day and night, surface cooling to space due to Rnl is lower under overcast 

weather conditions than under clear sky conditions (Betts, 2003, 2015; Betts et al., 2013). 

The smallest net heat fluxes across the water surface (G) occur under overcast conditions (see 

Figure 3.7a,g,k,m). 
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Energy transferred across the interface (EG) and advected energy by inflows and outflows 

(Eadv) 

For all datasets, during daytime measurements, the system gains energy mainly by EG and 

during night time measurements by Eadv (Figure 3.7b,d,f, h,j,l). Only, for 15 L min
−1

 overcast 

weather conditions dataset, the system mainly gains energy by Eadv during day and night due 

to the high amounts of injected warm water (Figure 3.7n). This means that the energy gains in 

the mesocosm during day are dominated by the net heat fluxes across the water surface (G) 

and the energy losses in the mesocosm are dominated by the energy transported by advection 

into and out of the mesocosm. On the contrary, the energy gains in the mesososm during 

night are dominated by the imported energy of the injected warm water (Eadv) and the energy 

losses in the mesocosm are dominated by the net heat fluxes across the water surface (G). 

Internal energy changes in the mesocosm (∆E) 

ΔE changes over time are clearly affected by the diurnal cycle (see Figure 3.8). ΔE decreases 

during the day; it reaches a minimum during night and increases again in the early morning. 

However, the intensity of changes of ΔE over time varies depending on weather conditions 

and injection rate. 

ΔE changes over time are lowest under overcast weather conditions for all different injection 

rates. The dataset with an injection rate of 1 L min
−1

 shows the lowest ΔE changes over time, 

and 15 L min
−1

 shows the highest ΔE changes over time. 

High changes on ΔE over time are observed when injecting 1 L min
−1

 under clear sky 

conditions. For partly cloudy conditions, keeping the same injection rate, the maximum loss 

of energy over time is smaller than under clear sky weather conditions. However, the slope of 

ΔE in Figure 3.8 for 1 L min
−1

 partly cloudy is higher than that of the 1 L min
−1

 clear sky 

during day; this indicates that the rate of energy loss is greater. On increasing the injection 

rate to 5.5 L min
−1

 under clear sky, maximum energy loss in the system is almost similar to 

the maximum energy loss when injecting 1 L min
−1

 under clear sky. However, change of ΔE 

over time is greater when injecting 5.5 L min
−1

 under clear sky than when injecting 1 L min
−1

 

under clear sky. 

 



 

 

 

7
8

 

 

Figure 3.7 Calculated heat fluxes 

across the water surface (G), net 

radiation (Rn) evaporative heat flux 

(λE), and sensible heat flux (H) for (a) 

control dataset with 0 L min
−1

 

injection rate, overcast, (c) 1 L min
−1

 

clear, (e) 1 L min
−1

 partly cloudy, (g) 

1 L min
−1

 overcast, (i) 5.5 L min
−1

 

clear, (k) 5 L min
−1

 overcast, and (m) 

15 L min
−1

 overcast and calculated 

ΔE, EG and Eadv for (b) control 

experiment overcast (d) 1 L min
−1

 

clear, (f) 1 L min
−1

 partly cloudy, (h) 1 

L min
−1

 overcast, (j) 5.5 L min
−1

 clear, 

(l) 5 L min
−1

 overcast, and (n) 15 L 

min
−1

 overcast. 
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Figure 3.8 Change of energy (ΔE) over time for seven datasets: 1 L min
−1

 clear, 1 L min
−1

 partly 

cloudy, 1 L min
−1

 overcast, 5.5 L min
−1

 clear, 5 L min
−1

 overcast, 15 L min
−1

 overcast, and control 

dataset with 0 L min
−1

 injection rate, overcast conditions. 

 

Coupling internal energy changes over time (∆E), net heat fluxes across the water surface 

(G) and energy in the mesocosm (EG and Eadv) 

Under overcast conditions, energy changes (ΔE) in the mesocosm are lower and slower than 

energy changes (ΔE) in the mesocosm under clear sky conditions. This can be related to the 

calculated small net heat fluxes across the water surface (G) under overcast conditions. Or in 

other words, energy at the water surface is lost at smaller quantities and at slower rates under 

overcast conditions than under clear sky. As the amount of injected warm water increases, the 

amount of advected energy (Eadv) in the mesocosm increases. Under clear sky, net heat fluxes 

across the water surface (G) are bigger than under overcast weather conditions. Higher 

injection rates of warm water under clear sky will result in higher and faster energy changes 

(ΔE) over time in the mesocosm due to bigger net heat fluxes across the water surface (G). 

On the contrary, under overcast conditions, higher injection rates of warm water will 

contribute to decrease and to slow down the energy changes (ΔE) over time in the mesocosm, 

due to small net heat fluxes across the water surface (G). 

Finally, during daytime, because Rn is the main component of the net heat fluxes across the 

water surface (G), the mesocosm energy gains are due to Rn (Rns and Rnl). This agrees with 
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EG being the main driver of gains of energy in the mesocosm during daytime. If the 

mesocosm is subject to strong gains of energy due to Rn during day (for instance under clear 

sky), it means that energy gains by Rns will prevail over energy losses by Rnl. During night, 

the main losses of energy in the mesocosm are driven by Rn (only Rnl). This agrees with EG 

being the main driver of losses of energy in the mesocosm during night. 

Observed spatial patterns of injected warm water in the mesocosm, net heat fluxes across the 

water surface (G) and energy changes over time (∆E) 

Spatial patterns of injected warm water across the water column and at the water surface 

observed in Figure 3.3d–f can be related to small and slow energy changes (ΔE) over time, 

due to small net heat fluxes across the water surface (G) under overcast weather conditions 

during day and night. During daytime, the heat signal of the injected warm water will prevail 

across the water column and at the water surface due to: 1) less absorbed shortwave radiation 

at the water surface of the mesocosm (Rns) and 2) less water surface cooling in the mesocosm 

due to Rnl. During night-time, the heat signal of the injected warm water will prevail across 

the water column and at the water surface due to: 1) less water surface cooling in the 

mesocosm due to Rnl and 2) energy gains in the mesocosm due to injected warm water. 

Finally, spatial patterns of injected warm water, across the water column and at the water 

surface, observed in Figure 3.3a–c can be related to high and fast energy changes (ΔE) over 

time in the mesocosm, due to stronger net heat fluxes across the water surface (G) under clear 

sky during day and night, than under overcast conditions. In general, during daytime, the heat 

signal of the injected warm water is not detectable at the water surface, mainly due to high 

amount of absorbed shortwave radiation at the water surface (Rns) during clear sky and to a 

less extent, due to water surface cooling in the mesocosm by Rnl. During night, the heat signal 

of the injected warm water is not detectable at the water surface due to strong cooling of the 

water surface in the mesocosm by Rnl. 

3.4 Discussion 

Detectability of upwelling signals 

One basic question of the present study is if and under which circumstances the lake-internal 

upwelling pattern due to simulated GW discharge can be detected in the water column and at 

the water surface. For that purpose, temperature signals due to the positive buoyancy of 

relatively warm water need to be separated from other temperature fluctuations. In the context 

of the present study, strong spatial autocorrelations within layers and strong spatial 



Mesocosm experiments identifying hotspots of groundwater upwelling in a water column by fiber 

optic distributed temperature sensing 

81 

 

correlations between layers are interpreted as “real” temperature signal related to the positive 

buoyancy of relatively warm water, instead of to other temperature fluctuations. Moran's I 

and LISA maps (indicators for horizontal spatial patterns within layers) confirmed the spatial 

patterns visually observed in Figure 3.3. The strength of spatial autocorrelation within layers 

(horizontal spatial patterns) increased under overcast conditions, at higher injection rates and 

during night-time. Calculated spatial correlation coefficients between layers (vertical spatial 

patterns) also increased under overcast weather conditions, higher injection rates, and during 

night-time measurements. At 15 L min
−1

 injection rate, spatial correlation coefficients 

between Layer 4 (the uppermost layer) and the other layers decreased due to a change of the 

general shape of the upwelling flume (Figure 3.3f and Figure 3.9, a.6 and b.6). Due to the 

intense injection rate, the warm water signal travels straight upwards, and once it reaches the 

water surface, it spreads horizontally at the water surface. 

Relevance of diurnal cycle and cloud cover on signal detectability 

Under overcast conditions, calculated slow energy changes (ΔE) over time and low net heat 

fluxes across the water surface (G) seem to be related to the spatial patterns in Figure 3.3d–f 

and the results obtained with the Moran's I coefficient, LISA maps, and the spatial correlation 

coefficients. Slow changes of energy (ΔE) over time and low net heat fluxes across the water 

surface (G) indicate that the mesocosm is able to sustain internal energy for longer time 

periods than under clear sky conditions. This means that the heat signal related to warm water 

injection is not lost. On the contrary, in datasets under clear and partly cloudy conditions, 

higher energy changes (ΔE) over time and higher net heat fluxes across the water surface (G) 

were calculated. In other words, the mesocosm loses internal energy faster over time, and 

consequently, the heat signal related to warm water injection is lost faster over time under 

clear sky conditions. 

The amount of energy in a water body (for instance, a lake) is controlled by the inflows and 

outflows of water into and out of the water body and by heat fluxes across the water surface, 

among others (Henderson-Sellers, 1986). The net heat fluxes across the water surface (G) are 

composed of net shortwave radiation (Rns), net longwave radiation (Rnl) and nonradiative 

fluxes (sensible heat [H] and latent heat [λE]; Henderson-Sellers, 1986; McAlister & 

McLeish, 1969). The main component for calculated net heat fluxes across the water surface 

(G) is the net radiation (Rn), which is the sum of net shortwave radiation (Rns) and net 

longwave radiation (Rnl). The net radiation balance is driven by the diurnal cycle of the 

incident shortwave radiation (Betts, 2015). This means that the solar warming during daytime 
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and the longwave cooling during night-time drive the diurnal cycles of air temperature and 

water surface temperature (Betts, 2015; Vercauteren et al., 2011) and, thus, impact on the 

detectability of the injected warm water temperature signal in the mesocosm. Furthermore, 

cloud cover is also a relevant regulator of the diurnal cycle of the net radiation balance (Rn; 

Betts, 2003, 2015; Betts et al., 2013; Dai & Trenberth, 1999). Clouds decrease the incident 

shortwave radiation at the water surface and decrease the net surface cooling at the water 

surface because there is less Rnl. Therefore, the detectability of the injected warm water 

temperature signal in the mesocosm is decisively controlled by the diurnal cycle of the net 

radiation balance (Rn) and the cloud cover. In order to illustrate the relevance of the diurnal 

cycle (day vs. night) of the net radiation balance (Rn = Rns + Rnl) and cloud cover on the 

observed spatial patterns of the heat signal related to warm water injection and based on the 

results presented in this paper, a conceptual model for the spatial patterns observed under 

different weather conditions (clear, partly cloudy, and overcast), injection rates, and diurnal 

cycles (day vs. night) is suggested in Figure 3.9. It illustrates the relevance of the net heat 

fluxes across the water surface (G) by the strength of net short wave (Rns) and net long wave 

(Rnl) radiation (conceptualized by size of arrow: big: high values, small: low values) for 

different injection rates, different weather conditions (clear, partly cloudy, and overcast), and 

diurnal cycles (day vs. night). During day, the main gains or losses of heat at the mesocosm's 

water surface are due to the Rn (=Rns + Rnl). During clear sky conditions during daytime, due 

to the higher solar warming (Rns) at the water surface than during overcast weather 

conditions, the water surface is heated up. In consequence, the heat signal of the injected 

warm water at the water surface is mixed with the heated water surface due to solar warming. 

On the contrary, during overcast weather conditions during daytime, calculated Rn (see Figure 

3.7) and solar warming due to Rns are lower. In consequence, the heat signal of the injected 

warm water can be detected at the water surface (see Figure 3.9a). During night, because 

there is no Rns, the main gains or losses of heat at the mesocosm's water surface are due to 

Rnl. Both, during night and day, the degree of heat losses from the water surface depends on 

the presence of clouds at the sky (see Figure 3.9b). During clear sky conditions, the strength 

of Rnl is higher than under overcast weather conditions. In consequence, during clear sky 

conditions at night, the mesocosm loses higher amounts of energy across the water surface–

atmosphere interface than during overcast conditions. The heat signal of the injected warm 

water at the water surface is lost faster during clear sky conditions than during overcast 

conditions at night (Figure 3.9b). 
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Figure 3.9 Conceptual model of spatial distribution of injected water in the water column under different weather conditions, for different injection rates during (a) day and 

(b) night. (a.1) and (b.1) 1 L min−1, clear sky; (a.2) and (b.2) 1 L min−1, partly cloudy sky; (a.3) and (b.3) 1 L min−1, overcast sky; (a.4) and (b.4) clear sky, 5.5 L min−1; (a.5) 

and (b.5) 5 L min−1, overcast sky; (a.6) and (b.6) 15 L min−1, overcast sky. The degree of the signal strength is indicated by the intensity of the red colour: Light red: weak 

signal, dark red: strong signal. The size of the arrows indicates the strength of the Rnl and Rns. The blue colour indicates the losses of energy from the mesocosm. The red 

colour indicates the gains of energy in the mesocosm. 
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Application of FO-DTS for detection of LGD upwelling 

FO-DTS has been used to detect GW discharge at the sediment–water interface in lakes 

(Blume et al., 2013; Liu et al., 2015; Tristram et al., 2015) and streams (Hare et al., 2015; 

Krause et al., 2012; Lowry et al., 2007). However, it had not yet been determined how the 

temperature signal propagates from the sediment–water interface through the water column up 

to the water surface–atmosphere interface and how the signal is affected by environmental 

parameters such as weather conditions (clear vs. overcast) and the diurnal cycle of net 

radiation. In Hare et al. (2015), FO-DTS measurements were compared with thermal infrared 

(TIR) measurements, which allowed the comparison of heat signals detected at the stream bed 

and at the water surface. Winter conditions were proven to be the best season to conduct these 

kinds of measurements. However, the characterization of weather and diurnal conditions that 

might have affected the upwelling patterns of the GW heat signal across the water column was 

not addressed until the present study. For instance, Liu et al. (2015) conducted an experiment 

on the lake bed that took into account environmental factors to determine the best time to 

detect GW discharge areas with FO-DTS. Liu et al. (2015) worked in a lake that was 

relatively shallow, which reduced the effect of vertical stratification on the lakebed 

temperatures during the FO-DTS measurements. Nevertheless, the FO-DTS experiment 

conducted did not include multilevel temperature measurements or a detailed characterization 

of the influence of weather conditions and the diurnal cycle of net radiation on the detection 

of GW discharge across the water column. 

The knowledge gap on upwelling GW heat signals monitored with FO-DTS across the water 

column may have led to misinterpretations. This is because the temperature within the water 

column may be affected by several external parameters. Therefore, timing and conditions 

when measuring warm upwelling fluxes with FO-DTS are of great relevance for the 

interpretation of the results. For instance, it is crucial to be aware of the vertical positioning of 

the cable because variations of the vertical positioning of the cable on the sediment or within 

the water column may lead to misinterpretations of the patterns observed. Variable external 

conditions have to be taken into account for correct interpretation that might present a real 

difficulty for any quantitative assessment. Therefore, it is essential to determine those 

parameters that may influence the temperature such as solar radiation and to make sure that 

the temperature variations of the lake as detected by the FO-DTS are mainly caused by GW 

discharge (Liu et al., 2015) as presented in this paper. 
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Possible system interferences and uncertainties of the study  

Effect of wind and possible consequences 

Wind is an important factor affecting lake SW temperatures and lake internal mixing (Pöschke 

et al., 2015). Wind promotes movement and mixing of SW bodies. The SW can be dragged by 

the wind from one shore of a lake to the other shore inducing downwelling of water in the 

water body on one side of the lake and at the same time water movement from the bottom of 

the lake upwards to the lake surface (mixing). This process, relevant in lake settings, is 

probably irrelevant in the small experimental mesocosm used in the present study. From the 

slice3D plots in Figure 3.3, there is no indication for a wind-induced circulation or mixing. 

Wind speeds during the experiments were generally low (ranging from 0.0045 to 2.1789 m 

s
−1

). Steep bank slopes reaching a height of 1 m above the water surface prohibited wind 

impacts on the water surface. Furthermore, due to the small size of the mesocosm, the wind 

fetch is short and a potential wind impact on the water surface is irrelevant. However, when 

transferring the results of the mesocosm experiment to a real lake setting, possible wind 

impacts should be taken into account. 

Thickness of water column in the present study 

In the present study, the thickness of the water column is 0.82 m. The obtained conclusions 

could be directly transferred to shallow lakes not deeper than 1 m, shore areas of lakes not 

deeper than 1 m, and probably to shallow lakes with slightly larger depth. Because there is no 

thermal stratification within the water column of the mesocosm, the obtained results of the 

present study can only be transferred to cases where there is no thermal stratification. 

Possible effects of electrical conductivity of groundwater 

The upwelling of the water injected at the mesocosm's bottom is driven by density differences 

of the injected water and the water in the mesocosm. The density differences are caused by 

different temperatures and different ion compositions of the two waters. The water in the 

mesocosm is a mixture of lake water and water previously injected at the mesocosm's bottom. 

Due to differing injection rates during the different experiments, there is no constant 

relationship between the relatively large inflow from the lake (33 L min
−1

) and the relatively 

small inflow from the injection at the mesocosm's bottom (0 to 15 L min
−1

). For simplicity, 

we assume that the mesocosm water composition is basically identical to the lake water 

composition. On the basis of measurements of the ion composition of both water bodies, we 
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ended up with total dissolved solid concentrations of 489 mg L
−1

 for the lake and 429 mg L
−1

 

for the injected water, that is, there is a density difference of 60 mg L
−1

 between the two 

waters. Based on a mean mesocosm temperature of 4.7 °C, the density of the water in the 

mesocosm is 0.999946 kg L
−1

, and based on a mean temperature of 15 °C of the injected 

water, the density is 0.999114 kg L
−1

, that is, there is a density difference of 832 mg L
−1

 

between the two waters. Basically, the density difference due to the different ion composition 

of the two different waters, strengthen the temperature induced density difference. The 

combined effect of ion composition and temperature on the density difference between the 

two waters is 880 mg L
−1

 (calculation according to Dietz, Lessmann, & Boehrer, 2012) or 921 

mg L
−1

 (calculation according to Boehrer & Herzsprung, 2010). 

Therefore, the injected warm water should immediately rise upwards through the surrounding 

denser lake water via buoyancy. During the short ascent, some mixing might have occurred 

and the contact with surrounding water resulted in some cooling of the injected warm water. 

Nevertheless, only in experiments during overcast conditions (Figure 3.3d–f), the injected 

warm water was still warmer than the rest of the water in the mesocosm when it reached the 

water surface and thus, floated on the top of the water body. From there, the warmer less 

dense water gradually spread as a plume on the water surface. 

Low wind speeds, shallow water conditions, and density differences between simulated GW 

and SW might favour the upwelling of simulated GW discharge on the SW. However, in the 

present study, the main parameters controlling the detection of simulated GW on the water 

surface seem to be the net radiation balance (Rn) and the cloud cover during day and night-

time measurements. Because the experiments have been carried out under specific conditions, 

the previous statements are only true in lake areas where the same conditions apply as in the 

mesocosm experiment during winter conditions. 

This study is a first attempt to simulate thermal patterns of discrete LGD in shallow lakes or 

close to lake shores. The mesocosm experiment and simulation of GW discharge is the first 

step in order to identify the main controlling parameters that favour detection of hotspots of 

LGD on the lake surface (mesocosm surface in this case). We have decreased the amount of 

variables that impact LGD by simulating discrete GW discharge in a mesocosm. The 

mesocosm where the simulation has been performed intends to represent a small shallow area 

of a lake where GW exfiltration by LGD occurs. Thus, not all the influencing factors such as 

wind, waves, and vegetation that could be present under natural conditions have been 

considered. However, GW discharge that is warmer than SW has been little studied relative to 
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discharge of cold GW to warmer SW. Thus, by conducting studies during colder times of the 

year, scientist can make use of the conclusions presented here. 

3.5 Conclusion 

The present study demonstrates that during winter conditions, the positive buoyancy of 

relatively warm water imported by simulated LGD into shallow water bodies (mesocosm used 

as model system) allows detection of LGD at the lake's water surface–atmosphere interface by 

FO-DTS. FO-DTS technology offers fine scale measurements with high temporal resolution 

and allows the observation of induced lake-internal upwelling caused by simulated LGD in a 

three-dimensional perspective. In this manner, different lake internal upwelling patterns have 

been described from the sediment–water interface through the water column to the water 

surface–atmosphere interface caused by the injection of warm water at different rates, 

different weather conditions, and during the diurnal cycle. Simulated GW signals at the water 

surface were identified at all applied injection rates, from lowest 1 L min
−1

 to highest 15 L 

min
−1

. However, detection of simulated LGD at the water surface–atmosphere interface was 

mainly determined by the diurnal cycle of the net radiation balance (Rn) and the cloud cover. 

Based on the results presented in this paper, overcast weather conditions and night-time 

measurements are recommended for tracing discrete warm water upwelling fluxes across the 

water column and at the water surface. 
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cloudy conditions, daytime and c) 1 L min
-1

 partly cloudy conditions, night-time. From top 

row to bottom row: layer 4, layer 3, layer 2 and layer 1. 

Table S1. Spatial correlation coefficients between layers.   
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Appendix S1: Quantification of interfacial heat transfer and net-advective heat flux 

Net heat fluxes across the water surface (G in W m
-2

) following equations 1 to 13 have been 

calculated as (Henderson-Sellers, 1986): 

𝐺 = 𝑅𝑛 − 𝜆𝐸 − 𝐻          (eq. 1) 

where 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙         (eq. 2) 

𝑅𝑛𝑙 = 𝐿𝑢 − 𝐿𝑑         (eq. 3) 

With Ld, downward long-wave radiation, Lu, upward long-wave radiation, Rnl, net long-wave 

radiation, Rns, net short-wave radiation, Rn, net radiation, H, sensible heat, λE, latent heat and 

G, net heat fluxes across the water surface. 

The calculation of net heat fluxes across the water surface (G in W m
-2

) considered the 

following processes:  

1. Net short wave solar radiation penetrating the water surface (Rns in W m
-2

) (Fritz et al., 

1980a): 

𝑅𝑛𝑠 = 𝑅𝑠 × (1 − 𝐴𝑠)         (eq. 4) 

with short wave reflectivity As = 0.06 and Rs (solar or shortwave radiation). 

2. Downward long wave radiation (Ld in kJ m 
-2

 d
-1

) (Henderson-Sellers, 1986): 

𝐿𝑑 = (1 − 𝐴𝑠) × 𝜀𝑎 × 𝜎 × 𝑇𝑎𝑘
4        (eq. 5) 

with Boltzmann constant, σ= 4.896 10
-6

 kJ m
-2

 d
-1

 K
4
, atmospheric emissivity (dimensionless) 

𝜀𝑎 and water surface reflectance to long wave radiation As = 0.03 and absolute air 

temperature in Kelvin, 𝑇𝑎𝑘. 𝜀𝑎 is calculated as follows [Wunderlich, 1972]. 

𝜀𝑎 = 0.937 × 10−5 × 𝑇𝑎𝑘
2 × (1 + 0.17 × 𝐶𝑐

2)     (eq. 6) 

with cloud cover coefficient (Cc), Cc=1(overcast), Cc=0.5 (partly cloudy), Cc=0 (clear) with 

absolute air temperature in Kelvin, 𝑇𝑎𝑘. 

3. Upward long wave radiation (Lu in kJ m 
-2

 d
-1

) (Henderson-Sellers, 1986) : 

𝐿𝑢 = 𝜀𝑤 × 𝜎 × 𝑇𝑤𝑘
4          (eq. 7) 

with emissivity from water 𝜀𝑤=0.97, Boltzmann constant, σ= 4.896 10
-6

 kJ m
-2

 d
-1

 K
4
 and 

absolute water temperature in Kelvin, 𝑇𝑤𝑘. 

4. Latent heat transfer (λE; in kJ m 
-2

 d
-1

) (Ryan et al., 1974): 

𝜆𝐸 = (𝑒𝑠 − 𝑒𝑎) × [𝜆 × (𝑇𝑤𝑣 − 𝑇𝑎𝑣)
1

3⁄ + 𝑏0 × 𝑢2]     (eq. 8) 

with λ and b0 as constants with values of 311.02 kJ m
-2

 d
-1 

mm Hg
-1

K
-1/3

 and 368.61 kJ m
-2

 d
-1 

 

mm Hg
-1

 (m s
-1

) respectively, wind velocity, u2 (m s
-1

) at a reference height of 2 m, saturated 

vapor pressure at the current water temperature, 𝑒𝑠 (mm Hg) (Troxler et al., 1977), water 
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vapor pressure immediately above the mesocosm surface, 𝑒𝑎 (mm Hg) (Troxler et al., 1977), 

Twv and Tav are the virtual water and air temperatures respectively (°K) (Ryan et al., 1974): 

𝑒𝑠 = 25.37 × 𝑒𝑥𝑝 [17.62 −
5271

𝑇𝑤𝑘
]       (eq. 9) 

with absolute water temperature in Kelvin, 𝑇𝑤𝑘. 

𝑒𝑎 = 𝑅ℎ × 25.37𝑒𝑥𝑝 [17.62 −
5271

𝑇𝑎𝑘
]      (eq. 10) 

with Rh, relative humidity in decimal fraction and absolute air temperature in Kelvin, 𝑇𝑎𝑘. 

 𝑇𝑤𝑣 = (
𝑇𝑤𝑘

[1.0−(0.378×𝑒𝑠/𝑃)]
)        (eq. 11) 

with P= barometric pressure (mm Hg) which was assumed to be equivalent to one atmosphere 

(760 mm Hg) for the current study. 

𝑇𝑎𝑣 = (
𝑇𝑎𝑘

[1.0−(0.378×𝑒𝑎/𝑃)]
)        (eq. 12) 

5. Sensible heat transfer (H in kJ m 
-2

 d
-1

) (Ryan et al., 1974): 

𝐻 = 𝜆𝐸 × 0.61 × 10−3𝑃 ×
(𝑇𝑤𝑘−𝑇𝑎𝑘)

(𝑒𝑠−𝑒𝑎)
      (eq. 13) 

Change in internal energy (E, in J) over a time interval ∆𝑡 related to components of the net 

heat fluxes across the water surface (G) is calculated as: 

𝐸𝑅𝑛𝑠 = 𝑅𝑛𝑠 × 𝐴0 × ∆𝑡        (eq. 14) 

𝐸𝐿𝑑 = 𝐿𝑑 × 𝐴0 × ∆𝑡         (eq. 15) 

𝐸𝐿𝑢 = 𝐿𝑢 × 𝐴0 × ∆𝑡         (eq. 16) 

𝐸𝜆𝐸 = 𝜆𝐸 × 𝐴0 × ∆𝑡         (eq. 17) 

𝐸𝐻 = 𝐻 × 𝐴0 × ∆𝑡         (eq. 18) 

𝐴0 = 2∆z∆x + 2∆z∆y + ∆x∆y       (eq. 19) 

With 𝐴0= area (m
2
), ∆𝑥=length (m), ∆𝑦=width (m) and ∆𝑧=height (m). 

At t=0 the internal energy within the control volume is: 

𝐸𝑡=0 = 𝜌 × (∆𝑥∆𝑦∆𝑧) × 𝑈𝑡=0       (eq. 20) 

At t=∆t the internal energy within the control volume is: 

𝐸𝑡=∆𝑡 = 𝜌 × (∆𝑥∆𝑦∆𝑧) × 𝑈𝑡=∆𝑡       (eq. 21) 

With U, Internal energy per unit mass of fluid (J kg
-1

). 

Therefore, change on internal energy within the control volume is: 

∆𝐸 = 𝜌 × (∆𝑥∆𝑦∆𝑧) × ∆𝑈         (eq. 22) 

Where 

∆𝑈 = 𝑈𝑡=∆𝑡 − 𝑈𝑡=0         (eq. 23) 
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By conservation of energy: 

∆𝐸 = 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 + 𝐸𝑔𝑤 − 𝐸ℎ𝑏 − 𝐸𝐻 − 𝐸𝜆𝐸 + 𝐸𝑅𝑛𝑠 + 𝐸𝐿𝑑 − 𝐸𝐿𝑢   (eq. 24) 

where, Ein, advected anergy in the control volume by inflow water, Eout, advected energy out 

of the control volume by outflow water, Egw, advected energy in the control volume by 

simulated groundwater injection and Ehb, energy by sediment conduction. 

For a system that performs a small amount of work on its surroundings, the change in internal 

energy manifests as a change in temperature: 

𝑑𝑈 = 𝐶𝑝 × 𝑑𝑇         (eq. 25) 

∆𝑈 ≈ 𝐶𝑝 × ∆𝑇         (eq. 26) 

With heat capacity, Cp= 4180 J kg
-1

 °C
-1

, ∆𝑇 and 𝑑𝑇, change of temperature. 

Therefore, change in internal energy can be expressed as: 

∆𝐸 ≅ 𝜌 × ∑  (∆𝑥∆𝑦∆𝑧) × 𝐶𝑝 × ∆𝑇𝑖
𝑁𝑚
𝑖=1       (eq. 27) 

Where Nm=1944, total number of FO-DTS measurement locations, i, each measurement 

location, ∆𝑥∆𝑦∆𝑧 (m
3
), control volume of each FO-DTS measurement, density of water, ρw = 

10
3
 kg m

-3 
 and ∆𝑇𝑖, change of temperature over the interval ∆𝑡 in location i. 

Going back to equation 24 and grouping together the atmospheric components of energy into 

a single term; EG, energy transferred across the interface: 

𝐸𝐺 = −𝐸𝐻 − 𝐸𝜆𝐸 + 𝐸𝑅𝑛𝑠 + 𝐸𝐿𝑑 − 𝐸𝐿𝑢      (eq. 28) 

Now change of internal energy can be expressed as, 

∆𝐸 = 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 + 𝐸𝑔𝑤 − 𝐸ℎ𝑏 + 𝐸𝐺        (eq. 29) 

And the sum of the total advected energy can be calculated as, 

∆𝐸 − 𝐸𝐺 = 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 + 𝐸𝑔𝑤       (eq. 30) 
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Appendix S2 Nomenclature 

G (W m
-2

): net heat fluxes across the water surface.  

Ld (kJ m 
-2

 d
-1

): downward long-wave radiation 

Lu (kJ m 
-2

 d
-1

): upward long-wave radiation 

Rnl (kJ m 
-2

 d
-1

): net long-wave radiation 

Rns (W m
-2

): net short-wave radiation 

Rn (W m
-2

): net radiation 

H (kJ m 
-2

 d
-1

): sensible heat 

λE (kJ m 
-2

 d
-1

): latent heat. 

As (dimensionless): short wave reflectivity  

Rs (W m
-2

): solar or shortwave radiation. 

σ (kJ m 
-2

 d
-1 

k
-4

): Boltzmann constant. 

εa (dimensionless): atmospheric emissivity. 

As (dimensionless): water surface reflectance to long wave radiation. 

Tak (Kelvin): absolute air temperature in Kelvin. 

Cc (dimensionless): cloud cover coefficient. 

εw (dimensionless): emissivity from water. 

Twk (Kelvin): absolute water temperature. 

λ (kJ m
-2

 d
-1 

mm Hg
-1

K
-1/3

 ): constant 

b0 (kJ m
-2

 d
-1 

 mm Hg
-1

 (m s
-1

) ): constant. 

u2 (m s
-1

): wind velocity, at a reference height of 2 m. 

es (mm Hg): saturated vapor pressure at the current water temperature. 

ea (mm Hg): water vapor pressure immediately above the pond surface. 

Twv (Kelvin): virtual water temperatures. 

Tav (Kelvin): virtual air temperatures. 

Rh (dimensionless): relative humidity in decimal fraction. 

P (mm Hg): barometric pressure. 
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E (J): Internal energy of the system.  

∆E (J): Change in internal energy of the system. 

∆t (seconds): time interval. 

A0 (m
2
): area of the control volume. 

∆x (m): length of the control volume. 

∆y (m): width of the control volume. 

∆z (m): height of the control volume. 

U (J kg
-1

): internal energy per unit mass of fluid. 

∆U (J kg
-1

): change in internal energy per unit mass of fluid. 

Ein (J): advected anergy in the control volume by inflow water 

Eout (J): advected energy out of the control volume by outflow water 

Egw, (J): advected energy in the control volume by simulated groundwater injection. 

Ehb (J): energy by sediment conduction. 

Cp (J kg
-1

 °C
-1

): heat capacity. 

∆𝑇 and 𝑑𝑇 (°C): change of temperature. 

Nm: total number of FO-DTS measurement locations. 

ρw (kg m
-3

): density of water 

∆Ti (°C): change of temperature over the interval ∆𝑡 in location i. 

EG (J): energy transferred across the interface.  
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Figure S1 Comparison of LISA maps and spatial correlation coefficients between layer 1 and 2 and 

layer 1 and 3 for datasets: a) 1 L min-1 clear conditions, daytime, b) 1 L min-1 partly cloudy conditions, 

daytime and c) 1 L min-1 partly cloudy conditions, night-time. From top row to bottom row: layer 4, 

layer 3, layer 2 and layer 1. 



 

100 

 

Table S1 Spatial correlation coefficients between layers. 

  

Day Night 

 

Layer 

n° 
1 2 3 4 1 2 3 4 

1 L min-1 

Clear 

1 1 0.39808 0.51153 0.14203 1 0.73808 0.51705 -0.8551 

2 0.39808 1 0.24951 0.05932 0.73808 1 0.50801 -0.18037 

3 0.51153 0.24951 1 0.04728 0.51705 0.50801 1 -0.11156 

4 0.14203 0.05932 0.04728 1 -0.8551 -0.18037 -0.11156 1 

1 L min-1 

Partly 

cloudy 

1 1 0.24911 0.45869 -0.1161 1 0.37761 0.51711 0.28616 

2 0.24911 1 0.58511 0.61316 0.37761 1 0.54338 0.41679 

3 0.45869 0.58511 1 0.28031 0.51711 0.54338 1 0.50589 

4 -0.1161 0.61316 0.28031 1 0.28616 0.41679 0.50589 1 

1 L min-1 

Overcast 

1 1 0.41457 0.48095 0.42329 1 0.74711 0.6806 0.5718 

2 0.41457 1 0.60944 0.66255 0.74711 1 0.72155 0.60979 

3 0.48095 0.60944 1 0.81466 0.6806 0.72155 1 0.83116 

4 0.42329 0.66255 0.81466 1 0.5718 0.60979 0.83116 1 

5.5 L min-1 

Clear 

1 1 0.51591 0.32147 0.17959 1 0.64121 0.47728 0.13437 

2 0.51591 1 0.59571 0.56061 0.64121 1 0.75321 0.11554 

3 0.32147 0.59571 1 0.68505 0.47728 0.75321 1 0.23392 

4 0.17959 0.56061 0.68505 1 0.13437 0.11554 0.23392 1 

5 L min-1 

Overcast 

1 1 0.79544 0.63641 0.54602 1 0.75846 0.60806 0.42685 

2 0.79544 1 0.88935 0.79137 0.75846 1 0.87773 0.68253 

3 0.63641 0.88935 1 0.93334 0.60806 0.87773 1 0.8936 

4 0.54602 0.79137 0.93334 1 0.42685 0.68253 0.8936 1 

15 L min-1 

Overcast 

1 1 0.84675 0.65938 0.26386 1 0.85239 0.68532 0.28563 

2 0.84675 1 0.88841 0.40424 0.85239 1 0.89219 0.44944 

3 0.65938 0.88841 1 0.45033 0.68532 0.89219 1 0.50333 

4 0.26386 0.40424 0.45033 1 0.28563 0.44944 0.50333 1 
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Abstract 

Thermal infrared (TIR) imaging has been previously applied to survey relatively large thermal 

footprints in coastal zones, lakes, reservoirs and rivers. In freshwater systems, the buoyancy 

of relatively warm groundwater during the winter months allows for the surface identification 

of groundwater discharge or thermal pollution using TIR imaging. However, information 

regarding the performance of TIR for resolving this warm groundwater upwelling is limited, 

particularly at fine spatial scales and variable discharge rates. In order to evaluate the 

suitability of TIR to trace warm groundwater upwelling at the water surface of lakes, ponds 

and reservoirs (e.g. lacustrine groundwater discharge (LGD) in shallow near-shore zones) we 

conducted a mesocosm experiment with a TIR camera situated 4 m above the water surface to 

capture thermal patterns in response to different groundwater discharge rates, weather 

conditions and the diurnal cycle. A fiber optic distributed temperature sensing system (FO-

DTS) installed at 2 cm below the water surface was used to ground-truth spatial patterns 

observed in TIR images. Results show the impacts of both the diurnal cycle of net radiation 

and prevailing weather conditions on the accuracy of TIR imaging for resolving warm 

groundwater discharge. Most reliable results were obtained under overcast weather conditions 

and during the night. The results of our study provide guidance for those looking to use TIR 

for conducting thermal tracing of LGD at the surface of freshwater bodies during winter. 

 

Keywords: TIR, FO-DTS, groundwater, lake, heat tracing, leakage 
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4.1 Introduction 

The use of thermal infrared (TIR) remote sensing is increasingly popular in the earth and 

environmental sciences for mapping of temperature patterns and thermal anomalies in water 

bodies (Dugdale, 2016). As such, TIR imaging has been applied in a wide range of contexts 

for monitoring of naturally occurring natural processes such as submarine groundwater 

discharge (SGD) in coastal areas (Johnson et al., 2008; Lee et al., 2016; Tamborski et al., 

2015), groundwater discharge in streams and lakes (Hare et al., 2015; Wawrzyniak et al., 

2016), volcanic activity (Davies et al., 2008) or hydrothermal systems (Neale et al., 2016). It 

is also used for the identification of anthropogenic impacts on hydrological systems including 

thermal effluent from power plants (Wang et al., 2016) and surface water contamination by 

illegal sewers or storm drainage (Lega and Napoli, 2010). 

TIR imaging allows for the measurement of water surface temperature at high spatial 

resolution across a wide range of scales (Dugdale, 2016). While TIR has been relatively 

under-used until recently (in comparison to other remote sensing techniques), the increasing 

affordability of TIR has led to a recent uptake of this technology. This increased use of TIR 

has driven a range of literature reviewing the technological applications and limitations of 

satellite, airborne and ground-based TIR remote sensing (e.g. Dugdale, 2016; Handcock et al., 

2012; Mundy et al., 2017; Sobrino et al., 2016) for the monitoring and mapping of water 

temperature anomalies in both marine and freshwater environments. 

In marine systems, Submarine Groundwater Discharge (SGD) is a major source of nutrients 

and other chemical components (Burnett et al., 2006, 2003; Danielescu and MacQuarrie, 

2011; Johnson et al., 2008; Taniguchi et al., 2002). SGD is known to affect water quality and 

phytoplankton dynamics, potentially leading to environmental phenomena such as 

eutrophication and algal blooms (Anderson et al., 2002; Hu et al., 2006; Lee and Kim, 2007). 

 

In freshwater systems, groundwater discharge can create discrete temperature anomalies that 

serve as thermal refugia for fish and other ectothermic species (Baker et al., 2014; Brabrand et 

al., 2002; Hayashi and Rosenberry, 2002; Warren et al., 2005). Groundwater discharge can 

also impact nutrient budgets of lentic ecosystems (Boulton et al., 1998; Meinikmann et al., 

2013; Shaw et al., 1990) and may play a role as a potential vector for pollution in streams and 

lakes (Nakayama and Watanabe, 2008). 

Due to the importance of groundwater discharge in marine and freshwater systems, the 

literature abounds with TIR remote sensing-based methods for the detection of diffuse and 

discrete groundwater discharge. In marine systems, Johnson et al. (2008) demonstrated that 
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TIR imagery is an appropriate tool for mapping SGD. More recently, Tamborski et al. (2015) 

combined airborne TIR with radium (
223,224

Ra) and radon (
222

Rn) surface water sample 

collection to quantify diffuse SGD. Similarly, Lee et al. (2016) demonstrated how combining 

aerial TIR imagery with field observations can be used to identify large groundwater inputs 

from coastal aquifers to the ocean. In freshwater environments, Schuetz and Weiler (2011) 

used ground based TIR thermography to detect discrete groundwater discharge into streams. 

A similar experiment by Briggs et al. (2016) demonstrated how ground-based TIR can reveal 

fine scale groundwater discharge patterns which would have not been resolved by other 

(coarser) methodologies. At larger scales, Wawrzyniak et al. (2016) used airborne TIR to 

resolve cold water patches in a riverine system as a function of the temperature difference 

between the river (in low flow conditions) and groundwater inputs. 

Groundwater detection using TIR is more straightforward in marine than freshwater 

environments due to the large density difference between groundwater inflow and the saline 

water column. Unlike in marine environments, where these salinity differences drive SGD 

upwelling, groundwater upwelling in freshwater systems is largely driven by temperature. 

Even small temperature differences may provoke groundwater-surface water density gradients 

that approach levels of buoyancy similar to that of groundwater discharge in saline systems 

(Lewandowski et al., 2013). This buoyancy, amongst other factors, enables the detection of 

groundwater upwelling at the surface of freshwater bodies. However, because the 

groundwater-surface water temperature difference can vary substantially, the ability of TIR to 

resolve groundwater upwelling is less consistent than in marine systems. While many 

publications (e.g. Briggs et al., 2016, 2013; Danielescu et al., 2009; Dugdale et al., 2015; 

Tcherepanov et al., 2005; Wawrzyniak et al., 2016) document the use of TIR to detect 

groundwater upwelling in freshwater bodies, the vast majority of these studies focus on the 

detection of cool thermal anomalies in summer, with relatively little attention paid to the 

quantification of warm groundwater-surface water exchanges in winter. Furthermore, the 

examples that do exist which describe TIR imaging to detect winter groundwater upwelling in 

freshwater environments focus on groundwater discharge: (i) in streams (e.g. Hare et al., 

2015; Wirth et al., 2012); (ii) at marine beaches (Röper et al., 2014) and; (iii) in vernal and 

peatland pools (Frisbee et al., 2016), rather than in lentic waterbodies where mixing patterns 

are substantially different. 

In addition, while previous studies (e.g. Briggs et al., 2016; Dugdale et al., 2015; Hare et al., 

2015; Schuetz et al., 2012; Schuetz and Weiler, 2011) highlight the reasonable ability of TIR 
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remote sensing to detect thermal anomalies related to groundwater discharge in real world 

freshwater environments, there remains a lack of formal ‘laboratory-style’ data evaluating the 

precise hydrological (e.g. discharge rates) and meteorological (e.g. weather conditions) 

conditions under which TIR remote sensing best detects groundwater upwelling, especially 

during the winter season. 

In light of this these knowledge gaps, we present the results of a mesocosm experiment 

designed to test the suitability of TIR for tracing the upwelling of discrete lacustrine 

groundwater discharge (LGD) in lentic waterbodies (e.g. in shallow near-shore zones of lakes, 

ponds and small reservoirs). Our specific objectives were: (i) to compare (both visually and 

quantitatively) TIR observations of surface water temperature with simultaneously-collected 

FO-DTS temperature data measured 2 cm below the water surface and (ii) to evaluate the 

suitability of ground-based TIR for the detection of spatial patterns in relatively warm 

groundwater upwelling as a function of different discharge rates, weather conditions and the 

diurnal cycle. 

4.2 Methods 

4.2.1 Experimental design 

The mesocosm used in this study contained two inlets and one outlet (Fig. 4.1). Water from 

Lake Müggelsee located in Berlin, Germany (mean of 4.7 °C over the course of the 

experiment) was injected into the corner of the mesocosm via one of the inlets (rate ≈33 L 

min
−1

). The inlet remained open at all times to keep water temperatures well-mixed and 

relatively constant. The other inlet was installed at the base of the mesocosm and used for 

controlled warm water injections. A hosepipe was connected to this inlet to provide warm 

water. The pipe was insulated with foam to reduce cooling along the flow path from the tap to 

the mesocosm (approximately 65 m). Temperature of the injected flow (measured at halfway 

between the tap and mesocosm) ranged from 14 to 16 °C. A nozzle was connected to the end 

of the inlet and covered with sediment to realistically simulate dispersal of the injected water 

through a layer of sediment. Finally, an outlet at the other side of the mesocosm was used to 

maintain a constant water level of 0.82 m. Discharge at this outlet varied from 34 to 48 L 

min
−1 

depending on the warm water injection rate (Marruedo Arricibita et al., 2018). 

For the FO-DTS surveys, an aluminium frame of dimensions 4 m ×2 m × 1.5 m (Fig. 4.1) was 

installed within the mesocosm. The aluminium frame was used to support the FO cable in a 

grid-like pattern 2 cm below the water surface (Fig. 4.1). The FO cable grid consisted of 15 

lines (rows) of cable spaced 12.5 cm apart. An ULTIMA-S DTS (SILIXA Ltd.) instrument 
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with a sampling resolution of 12.5 cm was used for the FO-DTS surveys. This experimental 

setup essentially resulted in gridded temperature measurements with a resolution of 12.5 cm. 

Temperatures were acquired with a temporal frequency of 10 s (mean of the preceding 10 s 

period; essentially the integration time of the FO-DTS). 500 m of 2.8 mm diameter Corning 

ClearCurve simplex fibre (loose tube, 1 multimode fibre, both ends terminated with 

E2000/APC connectors) were deployed for the experiments. This selected FO cable 

specification allowed bending and was thus appropriate for installation in the aluminium 

frame (Marruedo Arricibita et al., 2018). 

Thermal images were acquired from a TIR camera installed 4 m above the mesocosm on a 

steel frame (Fig. 4.1) and oriented perpendicular to the water surface. The FO-DTS 

measurements were used for ground truthing of the TIR results which only capture direct 

surface temperatures (ie. the upper 10 μm of the water surface; Torgersen et al., 2001). We 

used a VarioCAM® hr head camera (InfraTec GmbH) with 640 ×480 pixels (7.5–14 μm). The 

camera was equipped with a wide angle lens with focal length of 12.5 mm and field of view 

(FOV) 65° × 51°. The temperature measurement range is −40 to 1200 °C and reported 

measurement accuracy is ±2 °C or ± 2%. 

 

Figure 4.1 Schematic of the mescocosm experimental design including TIR setup and the upper layer 

of the FO-DTS. 
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4.2.2 Measurement protocol and calibration 

FO-DTS 

Calibration of the FO-DTS was carried out using reference sections of fibre optic cable 

immersed within ice baths containing a mix of ice and water (maintained at ∼0.2 °C). The 

first and last 20 m of fibre optic cable were submerged in this well mixed ice bath, and an 

external temperature probe connected to the DTS device used to monitor calibration bath 

temperatures independently. For differential loss corrections, fixed value settings were chosen 

along the relatively short cable (500 m) without any splices (Marruedo Arricibita et al., 2018). 

A default value of 0.255 dB/km was used. This is the expected value for Corning ClearCurve 

OM3 fibre. A two-way single-ended measurement setup was deployed with alternating 

bidirectional monitoring of the light pulse sent from the DTS device (Krause and Blume, 

2013). 

 

TIR  

The TIR camera used in this study has an uncooled microbolometer FPA detector (uncooled 

Focal Plane Array) with an internal shutter. Small alterations in the microbolometer 

manufacturing process lead to non-homogeneous pixel specific sensor parameters which can 

induce temperature non-uniformities in the image (Tempelhahn et al., 2016, 2015). The 

camera’s non-uniformity correction system (NUC) compensates for these minor sources of 

error by using an internal optical shutter that periodically covers the whole camera field of 

view to provide a reference temperature. In this manner, the TIR camera performed a NUC 

(also known as a Flat Field Correction) every 90 s to correct for temperature or thermal drift 

effects on the measurements (eg. Dugdale, 2016; Handcock et al., 2012; Tempelhahn et al., 

2015, 2016; Zuo et al., 2011). 

A simple MATLAB function was developed to compensate for the effects of vignetting which 

created a minor systematic radial temperature gradient in the raw TIR images. This was 

achieved by applying a convolution filter with a smoothing window of 25 pixels to the raw 

imagery and subsequently creating a new image whereby each pixel is assigned a value equal 

to the difference between its smoothed value and the mean of all pixels within the image. The 

resulting raster essentially contained an inverse image of the vignetting effect which was then 

subtracted from the raw TIR image resulting in a final corrected TIR image. 

Since the aim of the present study is to evaluate the suitability of TIR to determine spatial 

patterns of warm water upwelling, rather than quantifying rates of upwelling per se, absolute 

temperatures were not of specific interest and were not calculated for the data obtained by the 



Thermal infrared imaging for detection of groundwater at the surface of stagnant freshwater bodies 

 

109 

 
 

TIR camera. Instead, we compared the TIR-derived data to the FO-DTS observations by 

computing the difference in minimum temperature (ΔTmin) observed by the (corrected) TIR 

image and the FO-DTS device. 

4.2.3 Study period and influence of discharge rates, weather conditions and 

diurnal cycle 

Six 24-h temperature datasets of simultaneously-acquired FO-DTS and TIR data were used in 

the present study (Table 4.1). The temperature datasets were obtained during 11–27 March 

2015. In order to assess the performance of the TIR methodology at different discharge rates 

and weather conditions, injection rates were varied between 1, 5 and 15 L min
−1 

under a range 

of different (ie overcast and clear) sky conditions. Overcast vs. clear weather conditions were 

inferred from data acquired from a weather station installed alongside the mesocosm, 

whereby relative solar radiation was defined as the ratio of observed shortwave radiation 

(measured by the weather station pyranometer) to the computed maximum solar radiation that 

would be expected using clear sky conditions (after Allan et al., 1998). For example, average 

relative shortwave radiation measured on 26 March 2015 of 0.17 was considered ‘overcast’ 

whereas the value on 19 March 2015 of 0.97 was classified as clear. Performance of the TIR 

methodology was examined at different points throughout the diurnal cycle to evaluate 

differences between day and night conditions. 

 

Table 4.1 24-hour measurements with FO-DTS and TIR camera. The control dataset is only used as a 

reference for the initial conditions of the mesocosm measurements and is not included in the results. 

Injection rate (L min
-1

) Weather conditions Date (in March 2015) 

0 (control) overcast 11 

1 clear 19 

1 overcast 26 

5 clear 18 

5 overcast 27 

15 overcast 12 
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4.2.4 Comparison of TIR temperature data with FO-DTS temperature data 

We assessed the performance of the TIR data for locating and measuring the spatial extent of 

warm groundwater upwelling by comparing the TIR data with FO-DTS. Because the TIR 

images essentially contain multiple ‘layers’ of radiation resulting from solar radiation and/ or 

longwave reflections (from trees, clouds, etc), it is necessary to determine the extent to which 

the temperature signal from the warm water discharge matches that recorded by the FO-DTS 

data, in light of these other sources of noise. This was accomplished both visually and 

quantitatively. 

 

Visual comparison  

A direct comparison of the FO-DTS and TIR thermal image data was difficult, given the 

different spatial resolutions of both methods and the fact that FO-DTS provided a spatially 

integrated temperature along a 2dimensional cable section while TIR produced gridded 

temperature data. To enable comparison between the TIR and FO-DTS data, the portion of the 

TIR image corresponding to the extent of the FO-DTS measurements was extracted from the 

TIR images of the mesocosm. The TIR images were then down sampled to the same 

resolution of the FODTS temperature data matrix, allowing the resulting 30 × 15 pixel TIR 

matrices to be compared to the FO-DTS grid. 

We visually compared the average temperature grids generated by the FO-DTS and TIR 

approaches for the first 3.5 min of each hour. Although the FO-DTS temperature data showed 

clearer spatial temperature patterns when averaged over longer periods of time, this was not 

the case for the temperature data monitored by the TIR camera, presumably due to increased 

surface movement in comparison to the FO-DTS (submerged at 2 cm below the surface). 

Indeed, averaging the TIR temperature data over long periods of time resulted in overly 

blurred or smoothed patterns. Therefore, the decision to focus on the 3.5 min period 

represented a compromise between the two methods. 

Temperature anomalies caused by external factors such as leaves, branches or ducks on the 

water surface were identified and masked out before plotting the resulting temperature grids 

for the FO-DTS and TIR data. Temperature values found to be outside of 3 standard 

deviations above or below the mean were considered outliers due to external factors and were 

also removed. 
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Quantitative comparison 

In addition to visually comparing the TIR and FO-DTS temperature grids, we quantified 

spatial correlation between the TIR and FO-DTS grids generated in Section 2.4.1 using 

Bivariate Global Moran’s I. Bivariate Global Moran’s I is essentially a global measure of 

spatial association between two different variables in corresponding neighbourhoods. In this 

case Bivariate Global Moran’s I can thus be understood as an average value representing the 

correlation between the entire TIR and FO-DTS grids (e.g. Anselin, 1995; Anselin et al., 

2002). 

4.3 Results 

4.3.1 Comparison of TIR temperature data with FO-DTS temperature data 

 

Visual comparison 

To highlight differences resulting from variations in injection rate, time of day and technique 

employed (FO-DTS and TIR), we visually compared pairs of FO-DTS and TIR temperature 

images with the lowest (ie. worst) and highest (ie. best) spatial correlation (based on Bivariate 

Global Moran’s I coefficients; see Figs. 4.2 and 4.3) under overcast (Fig. 4.2) and clear sky 

(Fig. 4.3) weather conditions for injection rates of 1 L min
−1

, 5 L min
−1 

(Figs. 4.2 and 4.3) and 

15 L min
−1 

(Fig. 4.2). The figures show the averages of ΔTmin for the first 3.5 min of each 

hour. 

Overcast conditions: Under overcast conditions with a 1 L min
−1 

warm water injection rate, 

the lowest spatial correlation occurred at 20:00 in the evening (Fig. 4.2a). The FO-DTS data 

showed warmest temperatures on the right side of the image resulting from the injected warm 

water at the bottom of the mesocosm. Conversely, the TIR data showed warmest temperatures 

on the left side of the image. This is likely due to the fact that images recorded at this low 

discharge rate were dominated by thermal reflections of a tree overhanging the left side of the 

mesocosm, which obscured the temperature signal corresponding to the warm water injection 

(indicated with a black arrow in Fig. 4.2a, TIR image). In contrast, the best spatial correlation 

between the FO-DTS and TIR temperature at a 1 L min
−1 

injection rate occurred at 02:00 in 

the morning (Fig. 4.2a), whereby there was a strong visual overlap between warmest areas in 

the FO-DTS and TIR data. Under a 5 L min
−1 

injection rate, the worst spatial correlation 

occurred at 07:00 in the morning (Fig. 4.2b). Similar to the 1 L min
−1 

data, the FO-DTS 

recorded warmest temperature areas on the right side of the mesocosm, while the TIR 
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temperature data again indicated warmest temperatures on the left due to reflections from tree 

cover. The best calculated spatial correlation between FO-DTS and TIR temperature data 

occurred at 02:00 in the morning (Fig. 4.2b), whereby the FO-DTS and TIR data show a 

similar extent of warm water. Under an injection rate of 15 L min
−1

, the worst spatial 

correlation between FO-DTS and TIR temperature data occurred at 13:00 in the afternoon 

(Fig. 4.2c), while the best correlation occurred at 20:00 (Fig. 4.2c). Unlike the lower injection 

rates, both cases showed a good degree of visual similarity between the FO-DTS and TIR 

temperature grids. Taken together, these results indicate a reasonable degree of similarity 

between the FO-DTS and TIR data, particularly for the higher injection rates. The TIR signal 

corresponding to the warm water injection was also clearer at night-time than during the day. 

 

Clear sky conditions: Under clear sky conditions (Fig. 4.3), simulated groundwater 

upwelling produced by the warm water injection was generally not detected by TIR. Fig. 4.3 

shows the FO-DTS and TIR temperature grids corresponding to the lowest and highest spatial 

correlations. The overall correlation between FO-DTS and TIR was systematically lower than 

under overcast skies, and no meaningful differences were observed between the computed 

worst and best spatial correlation values. Thus, there was little visual agreement between the 

TIR and FO-DTS data for any injection rate, throughout the entire diurnal cycle (see Fig. 4.3a 

and b). 
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Figure 4.2 Visual comparison of TIR temperature data with FO-DTS temperature data. Worst (left) and best 

(right) spatially correlated datasets for overcast conditions at three injection rates: a) 1 L min
−1

, b) 5 L min
−1 

and 

c) 15 L min
−1

. Temperature signal corresponding to the warm water injection is indicated with a black arrow in 

Fig. 4.2a and b.  
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Figure 4.3 Visual comparison of TIR temperature data with FO-DTS temperature data. Worst (left) 

and best (right) correlated datasets for clear conditions at three injection rates: a) 1 L min
−1 

and b) 5 L 

min
−1

. 

 

Quantitative comparison 

We calculated Global Moran’s I coefficients between FO-DTS and TIR temperature data 

under overcast (Fig. 4.4) and clear conditions (Fig. 4.5) across the entire 24-h long 

measurement cycle and for all simulated warm water injection rates (Figs. 4.4 and 4.5: a) 1 L 

min
−1 

and b) 5 L min
−1 

and Fig. 4c: 15 L min
−1

) with a view to ascertaining the time and 

conditions associated with the best and worst performance of the TIR methodology. 

Generally, we observed that Global Moran’s I coefficient values under overcast conditions 
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were higher than under clear conditions (see Figs. 4.4 and 4.5), with the absolute highest 

values obtained for the 15 L min−1 injection rate (see Fig. 4.4c). Furthermore, for 1 L min−1 

and 5 L min−1 injection rates under overcast conditions, the highest Global Moran’s I 

coefficient values were obtained during night (see Fig. 4.4a and 4.4b). Under clear conditions, 

Global Moran’s I coefficient values (both 1 L min−1 and 5 L min−1) were generally lower than 

those observed under overcast weather conditions, and were often close to 0 or negative (see 

Fig. 4.5a and b). 

 

Figure 4.4 Bivariate Global Moran’s I values for spatial correlation between FO-DTS and TIR 

temperature data under overcast weather conditions, for three injection rates: a) 1 L min−1, b) 5 L 

min−1 and c) 15 L min−1. 

 

Figure 4.5 Bivariate Global Moran’s I values for spatial correlation between FO-DTS and TIR 

temperature data under clear sky conditions, for two injection rates: a) 1 L min−1 and b) 5 L min−1. 
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4.4 Discussion 

4.4.1 Comparison of TIR temperature data with FO-DTS temperature data  

Visual and quantitative comparison of the TIR temperatures with FO-DTS data demonstrated 

that best matches occurred during overcast weather conditions than during clear sky 

conditions, during night than during day and at higher injection rates than at lower injection 

rates (Figs. 4.2–4.5). FO-DTS observations provided a spatially-explicit validation for the 

patterns observed in the TIR images for a range of different discharge rates, weather 

conditions and points along the diurnal cycle. The FO-DTS setup allowed for the 

differentiation of thermal anomalies related to groundwater upwelling from thermal anomalies 

present within the TIR images which were related to other factors (e.g. reflections from 

vegetation). The use of near-surface mounted FO-DTS to validate TIR in this manner is 

novel, as the majority of other studies incorporating FO-DTS measurements and TIR use FO-

DTS installed at the sediment-water interface (e.g. Lewandowski et al., 2013). In such studies, 

comparison of TIR images with FO-DTS temperature data is problematic because: a) depth-

dependent mixing may fundamentally alter the thermal patterns received by the FO-DTS in 

comparison with TIR and b) the warming effect of incident radiation at the air water interface 

(e.g. Benyahya et al., 2012; Marruedo Arricibita et al., 2018; Ouellet et al., 2014) may not be 

recorded by the bed-mounted FO-DTS. Our experimental setup provides a partial resolution 

of this problem, allowing for more direct comparison of the two techniques. 

4.4.2 Influence of discharge rates, weather conditions and the diurnal cycle  

 

Simulated discharge rates 

Higher simulated discharge rates increased the ability of TIR to detect warm upwelling at the 

surface. The simulated discharge rates in the present study (1–15 L min
−1

) are at the higher 

end of LGD rates reported worldwide (e.g. 745 cm day
−1 

=5.2 L m
−2 

min
−1 

reported in 

Rosenberry et al., 2015). Examples of similarly high discrete LGD are found in Karst aquifers 

or in humic lakes with macropore groundwater discharge, occasionally exceeding 15 L min
−1 

(e.g. Norrström and Jacks, 1996). Nevertheless, we appreciate that the simulated discharge 

rates are much higher than those typically observed in nature. Our values were chosen with a 

view to understanding the upper and lower limits of detectability using TIR in high discrete 

LGD environments under a best-case scenario. Thus, we do not recommend the extrapolation 

of our results or the use of TIR for studying LGD at the lower end of rates reported in the 

literature (e.g. 0.005–124.1 cm day
−

; 
1 

Rosenberry et al., 2015). 
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Influence of weather conditions 

The present study builds on the mechanistic findings of Marruedo Arricibita et al. (2018) 

whereby the propagation of relatively warm water from the sediment to the air-water interface 

was tracked by several layers of FO-DTS cable in the water column. Marruedo Arricibita et 

al. (2018) showed that the propagation of relatively warm water heat signal from the sediment 

to the air-water interface was mainly influenced by the diurnal cycle of net radiation (Rn) and 

cloud cover, due to the role of Rn in controlling heat gains and losses at the water surface. 

These findings also have implications for the TIR results. During daytime, Rn values were 

higher under clear skies than under overcast weather conditions, due to increased incident 

shortwave radiation. This means that the water surface heated up more than under overcast 

weather conditions, rendering the signal from the warm water injection (at the base of the 

mesocosm) difficult to observe with TIR (because of the very small resultant temperature 

difference between the simulated upwelling and the ambient mesocosm surface temperature).  

On the contrary, during night-time, a greater amount of net radiation (Rn) was lost during 

clear sky conditions than under overcast conditions (Marruedo Arricibita et al., 2018). While 

this increased heat loss explains why the FO-DTS data was not able to properly characterise 

upwelling (due to rapid dissipation of heat energy at the surface), it does not explain why the 

TIR images were not readily able to detect the upwelling, as it is this very loss of radiation 

which is measured by the thermal camera. Instead, we hypothesise that the formation of a 

(shallow) inverted thermocline resulting from the high surface energy loss may have 

prevented warm water from reaching the surface prior to mixing, possibly explaining the lack 

of an observable plume extent in the TIR images. 

The TIR sensor measures longwave radiation that is emitted and reflected from the water 

surface. This means that thermal images obtained from TIR cameras contain information on 

both water surface temperature and reflections from surrounding vegetation (in this case, tree 

cover next to the mesocosm) or cloud cover (Anderson and Wilson, 1984; Handcock et al., 

2012; Schott, 1994; Torgersen et al., 2001). In addition, the sensor in the TIR camera detects 

radiation emitted from the upper 0.1 mm of the water surface (Torgersen et al., 2001), 

whereas the FO-DTS measured true kinetic temperature at 2 cm below the water surface. As a 

consequence, FO-DTS temperature measurements, unlike the TIR data, were not affected by 

radiation emitted by surrounding vegetation or clouds. 

Under clear sky conditions, the TIR imagery incorporated artefacts generated from longwave 

reflections of tree cover. These artefacts caused temperature variations at the water surface 
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and made it extremely difficult to discriminate the extent of the thermal plume associated with 

the warm water injection. The match with the FO-DTS data (which were not influenced by 

vegetation reflections) was therefore poor. Conversely, under overcast weather conditions, it 

was possible to discriminate the extent of the thermal plume associated with the warm water 

injection in the TIR image. We provide two possible explanations for this phenomenon. First, 

during overcast conditions, the TIR imagery incorporated longwave reflections not only from 

vegetation, but also from cloud cover. As a consequence, most reflections from vegetation 

were masked by bulk reflections of clouds, which provided a relatively uniform background 

in the TIR image. The thermal plume from the warm water injection into the mesocosm was 

thus visible against the uniform background, providing an improved degree of similarity 

between the FO-DTS and TIR data. Second, the decrease in solar radiation under overcast 

conditions meant that resulting longwave emissions from trees were also diminished, reducing 

the magnitude of reflections from tree cover. 

 

Influence of the diurnal cycle 

Although overcast conditions aided detection of the warm water injection during both day and 

night, it was generally easier to detect the thermal plume during the night, when longwave 

reflections from trees beside the mesocosm were minimized. Longwave emissions from 

vegetation are lower at night because vegetation temperature is generally reduced in 

comparison to daylight conditions (owing to a lack of incident shortwave radiation at night). 

This resulted in substantially weaker longwave emissions from vegetation to the water 

surface, eliminating vegetation reflections in the TIR images and further aiding discrimination 

of the thermal plume. 

4.4.3 Experimental shortcomings and future improvements 

The present experiment was conducted in a semi-controlled environment (a mesocosm with 

simulated groundwater discharge) in order to decrease the number of external influences (e.g. 

turbulence from waves, vegetation in the water column) on the ability of TIR to detect the 

warm water injection. This experimental setup allowed us to better isolate and investigate the 

influence of weather conditions (clear vs overcast) and the diurnal cycle (day vs night), which 

might otherwise be obscured by other external phenomena. Our results could be applied or 

extrapolated to shallow lakes up to 1 m deep, or shallow littoral environments, provided wind 

velocities and mixing were sufficiently similar. However, we acknowledge: (i) that in natural 

environments, the ability of TIR to detect warm groundwater upwelling in winter is also 

influenced by a range of other factors and; (ii) the limited number of parameters (discharge 
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rates, weather conditions and diurnal cycle) included in this study. This experiment is a first 

attempt to understand under which conditions ground-based TIR remote sensing is a suitable 

method to detect discrete LGD at the water surface of slow flowing freshwater bodies such as 

lakes, ponds or reservoirs, in winter. Therefore, we advocate further research that will build 

upon the lessons learned from the results and conclusions presented in this paper, through the 

use of more detailed experimental designs capable of examining a larger variation of 

parameters (e.g. surface water depth, angle of the TIR camera or the range of ΔT between 

surface water and groundwater) or future measurements in natural conditions (conducted from 

the shores of lakes). 

4.4.4 Implications of results for TIR based monitoring of groundwater upwelling 

Our study emphasizes the importance of considering the influences of weather conditions 

(clear vs overcast) and the diurnal cycle (day vs night) on TIR-based detection of LGD in 

slow flowing freshwater. The emphasis on the relevance of weather conditions and the diurnal 

cycle is in agreement with other recent investigations which also highlighted similar findings 

(e.g. bedrock groundwater seepage detection; Mundy et al., 2017; TIR imaging of high 

altitude alpine environments; Aubry-Wake et al., 2015). Indeed, in a study designed to assess 

the influence of air temperature and solar radiation on ground-based TIR measurements of 

groundwater seepage from bedrock, Mundy et al. (2017) specifically recommended that TIR 

temperature measurements should be carried out when solar radiation is not present (during 

night) and in stable weather conditions. This finding supports our results and highlights the 

importance of conducting monitoring: i) at night and; ii) under overcast weather conditions. 

Thus, while close-range TIR techniques can constitute an effective tool for monitoring 

groundwater upwelling, their efficacy depends upon a wide range of environmental factors. 

Care must therefore be taken when performing similar work to control for the factors detailed 

in this paper to ensure optimal monitoring results. 

We also note that our TIR imagery required post-processing to account for the effects of 

vignetting. Vignetting results in a circular gradient of decreasing image brightness from the 

centre of the image to its edges (Gupta, 2018; Lelong et al., 2008). Although commonly 

associated with optical remote sensing (e.g. Kordecki et al., 2016; Meng et al., 2015), 

vignetting is also known to impact TIR images in a similar fashion (e.g. Hook et al., 2005; 

Meier et al., 2011) resulting in generally ‘cooler’ temperatures towards the edges of TIR 

images. This effect is particularly pronounced with wide angle lenses (Goldman, 2010; 
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Kelcey and Lucieer, 2012), such as the 12.5 mm (65° × 51° field-of-view) model used in our 

study. While such vignetting is therefore unlikely to present challenges for airborne TIR 

which benefit from the ability to use narrower field-of-view (FOV) lenses due to increased 

sensor to object distances, the use of wide FOV lenses is often a necessity in ground-based 

TIR studies in order to acquire imagery of a given study area in its entirety. Future ground-

based studies of discrete LGD should therefore be aware of the potential for temperature bias 

resulting from the use of wide-angle lenses; such studies may therefore require the application 

of similar post-processing methodologies to account for this. 

4.5 Conclusions 

The manifestation of warm water upwelling at the surface of a mesocosm was monitored 

using TIR and compared to FO-DTS temperature observations for a range of different 

injection rates. Results show that the diurnal cycle of incoming net radiation as well as 

weather conditions (clear versus overcast skies) had a substantial effect on the ability of TIR 

to accurately detect simulated warm water upwelling (in comparison to FO-DTS records). 

While simulated warm water discharges were generally well detected during overcast 

conditions and at night, TIR was less able to replicate FO-DTS observations during day and 

under clear sky conditions. These findings have important implications for the use of TIR 

imaging to detect discrete LGD at the water surface of slow flowing freshwater bodies in 

winter. 
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5 Synopsis 

5.1 Summary of results 

 The positive buoyancy of relatively warm water imported by (simulated) LGD into 

shallow water bodies (e.g. the mesocosm) allows detection of LGD at the water 

surface-atmosphere interface by FO-DTS. Injection of warm water was conducted 

with different rates under different weather conditions (clear vs. overcast) over the 

entire diurnal cycle. This resulted in different upwelling patterns across the water 

column were described from the sediment-water interface through the water column to 

the water surface-atmosphere interface. Upwelling signals at the water surface were 

identified at all applied injection rates: 1 L min
-1

, 5 L min
-1

 and 15 L min
-1

. However, 

detectability of simulated LGD at the water surface-atmosphere interface was mainly 

determined by the diurnal cycle of the net radiation balance (Rn) and the cloud cover. 

Detection of simulated LGD at the water surface-atmosphere interfaces was best under 

overcast conditions and during the night (Chapter 3 and Figure 3.3). 

 TIR can detect upwelling at the water surface. The diurnal cycle of incoming 

shortwave radiation as well as weather conditions (clear vs. overcast) have a 

substantial effect on the ability of TIR to accurately detect simulated warm water 

upwelling (in comparison to FO-DTS measurements). While simulated LGD was 

generally well-detected during overcast conditions and at night, TIR was less able to 

replicate FO-DTS observations during day and under clear sky conditions (Chapter 4, 

Figures 4.2 and 4.3). 

 The HPD based approach is helpful to distinguish the overlapping impacts of heat 

transport processes across spatial and temporal scales. Heat fluxes related to simulated 

LGD and heat fluxes from the atmosphere (e.g. incident shortwave radiation) overlap 

across spatial and temporal scales. The detection of heat as a tracer for LGD depends 

on whether the heat signal related to LGD is dominant or overshadowed by heat fluxes 

coming from the atmosphere (Chapter 2). 

5.2 Discussion  

5.2.1 Impacts of diurnal cycle of net radiation and cloud cover on tracing of 

LGD 

In the present PhD thesis, hydrometeorological parameters are identified as main controlling 

factors for detection of GW-SW interactions (in this case, LGD) at the water surface of 

stagnant water bodies such as lakes (research goal n°3, chapter 1.3). The strength of the heat 
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or temperature signal that solely belongs to the simulated warm LGD in the water column and 

at the water surface-atmosphere interface was strongly controlled by weather conditions (clear 

sky and overcast sky) and the diurnal cycle of the net radiation (Figures 3.3, 3.7 and 3.9). For 

instance, when simulating warm LGD at a rate of 1 L min
-1

, the heat signal of the simulated 

warm LGD could be distinguished across the entire extent of the water column and the water 

surface but only under overcast weather conditions (Chapter 3, Figure 3.3 d). On the contrary, 

the heat signal of the simulated warm LGD could not be distinguished (during day) or did not 

reach the water surface (during night) under clear sky conditions (Chapter 3, Figure 3.3 a). In 

addition, calculated net heat fluxes across the water surface were stronger during clear sky 

day and more negative during clear sky night than during overcast day and night respectively 

(Chapter 3, Figure 3.8 a). This means that more heat was gained during the day or lost during 

the night across the water surface-atmosphere interface under clear sky conditions.  

A more in-depth analysis revealed that the main component of the net heat fluxes across the 

water surface was the net radiation which is the sum of the net shortwave and the net 

longwave radiation (Chapter 3, Figure 3.8). Therefore, the diurnal cycle of the net radiation 

balance controlled the strength of the heat fluxes across the water surface and in consequence, 

the gains and losses of heat across the water surface. For this reason, during day under clear 

sky conditions, the warming effect of incident shortwave radiation at the water surface and 

some cm below the water surface prevented a differentiation of the heat signals of the 

simulated warm LGD and the radiation. During night under clear sky conditions, the heat 

signal of the simulated warm LGD was lost due to the strong cooling effect of the net 

longwave radiation across the water surface.  

Finally, the cloud cover (clear sky vs. overcast sky) played an important role for the strength 

of the heat signal caused by simulated warm LGD. Cloud cover is an important controller of 

the diurnal cycle of the net radiation balance (Dai and Trenberth, 1999; Betts, 2003, 2015; 

Betts et al., 2013) 1) by diminishing the incident shortwave radiation at the water surface and 

2) by diminishing the cooling due to net longwave radiation from the water surface. This 

means that the heat gains and losses across the water surface under overcast conditions are 

smaller than under clear sky conditions. Therefore, during day under overcast conditions the 

heat signal related to the simulated warm LGD was discernible across the water column and 

at the water surface. During night under overcast conditions, the cooling effect of net 

longwave radiation at the water surface was weaker than under clear sky conditions, 
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preventing the loss of the heat signal related to the simulated warm LGD at the water surface 

as occurred under clear sky conditions. 

5.2.2 FO-DTS for monitoring LGD in lakes  

Most research on GW-SW interactions with FO-DTS is done in streams (Lowry et al., 2007; 

Slater et al., 2010; Krause et al., 2012; Briggs et al., 2013, 2016a; Mamer and Lowry, 2013; 

Birkham et al., 2014; González-pinzón et al., 2015; Rosenberry et al., 2016) while research 

on lakes is not as common (Blume et al., 2013; Sebok et al., 2013; Liu et al., 2015; Tristram 

et al., 2015). Typically, the FO-DTS cable is deployed directly on the sediment bed or buried 

few cm in the sediment (Blume et al., 2013; Tristram et al., 2015). There are also few studies 

where the DTS cable was wrapped around tubes and inserted in the sediment to get a high 

resolution depth profile (Vogt et al., 2010). To the best of my knowledge there is only one 

other study in which DTS was used to trace the heat signal of LGD across the water column. 

Sebok et al. (2013) deployed the FO-DTS at three different depths in the water column of 

Lake Væng close to the shore of the lake and at three different distances from the shore of the 

lake. Influence of solar radiation on monitored water temperatures by FO-DTS was 

mentioned as a relevant factor affecting the detection of LGD across the water column and the 

water surface-atmosphere interface during the spring and summer months. Only night 

measurements reliably detected LGD for periods with strong solar radiation. However, in 

Sebok et al. (2013) the influence of solar radiation during winter conditions was neglected. 

Finally Sebok et al. (2013) concluded that the positive buoyancy of the LGD was responsible 

for the lack of ice cover at those specific water surface areas recommending more elaborate 

multilevel FO-DTS setups in order to further understand the development of the thermal 

plumes related to LGD in three dimensions. The three dimensional and more elaborated FO-

DTS setup of the present PhD thesis allowed describing interactions between simulated GW 

discharge, upwelling warm water and cold SW in terms of spatial and temporal distribution of 

temperature through the water column (research goal n°2, chapter 1.3) at different weather 

conditions and over the entire diurnal cycle (Chapter 3 and Figure 3.3). The different warm 

water upwelling patterns monitored by the FO-DTS setup, allowed considering possible 

connections between the monitored spatial patterns of the heat signal and the different 

weather conditions and the diurnal cycle (addressed in chapter 5.2.1). Thus, FO-DTS is a 

useful method for spatial pattern characterization of warm water upwelling in the water 

column and for supporting other methods (e.g. TIR) to identify hotspots of GW discharge at 

different interfaces such as at the water surface-atmosphere interface. Some other researches 

(e.g. Blume et al., 2013) successfully used as well FO-DTS in combination with other 
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methods for 2 dimensional spatial pattern identification of LGD at the sediment-water 

interface. In addition, in most of the studies (Krause et al., 2012; Sebok et al., 2015) the main 

focus is on the horizontal spatial pattern characterization at the sediment surface or at the 

water surface in order to get more insights about LGD and to detected hotspots of GW 

discharge. Thus, generally the FO-DTS is not setup across the water column. However, 

vertical pattern characterization across the water column of simulated LGD allowed 

understanding the mechanism of the upwelling process of warm GW and how the heat signal 

propagated across the water column. Thus, 2 and 3 dimensional FO-DTS setups seem to 

improve the mechanistic understanding of LGD in terms of temperature spatial patterns at 

different interfaces (sediment-water or water surface-atmosphere) and across the water 

column.  

Finally, since TIR imaging is the most appropriate method for monitoring water temperature 

at the water surface, FO-DTS is a reliable method for ground truthing TIR data monitored at 

the water surface (see Chapter 4). 

5.2.3 TIR imaging for detection of LGD at the lake surface  

TIR imaging is broadly used in marine science (Johnson et al., 2008; Tamborski et al., 2015; 

Lee et al., 2016) and sometimes also in freshwater systems, especially streams, (Hare et al., 

2015; Wawrzyniak et al., 2016) to detect groundwater discharge at medium to large scales 

(e.g. km
2
). TIR imaging was seldom used to detect LGD (Rundquist and Murray, 1985; Cook 

et al., 1991; Anderson et al., 1995; Lewandowski et al., 2013) and research on the adequacy 

and reliability of TIR imaging for detection of LGD at the water surface-atmosphere interface 

is still insufficient. Only few other recent researches (e.g. Aubry-Wake et al., 2015; Mundy et 

al., 2017) have paid attention to the importance of weather conditions and diurnal cycle of air 

temperatures and solar radiation on TIR measurements. Still, these examples are not related to 

LGD in freshwater bodies but to bed rock to air GW seepage detection (Mundy et al., 2017) 

or TIR imaging in high altitude alpine environments (Aubry-Wake et al., 2015). 

As discussed in Chapters 3 and 5.2.1, the strength of the heat or temperature signal that 

exclusively corresponds to the simulated warm LGD across the water column and at the water 

surface-atmosphere interface is strongly controlled by weather conditions (clear sky vs. 

overcast sky) and the diurnal cycle of the net radiation. This is of relevance for TIR imaging 

of LGD at the water surface-atmosphere interface because the TIR sensor monitors longwave 

radiation that is emitted and reflected from the water surface. This implies that thermal 
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images acquired by TIR imaging include information on: 1) water surface temperature and 2) 

on reflections from clouds or the vegetation around the water body (Anderson and Wilson, 

1984; Schott, 1994; Torgersen et al., 2001; Handcock et al., 2012). Thus, the heat or 

temperature signal of the simulated warm LGD should be predominant over the longwave 

radiation reflected from the water surface. 

In chapter 4, interactions between simulated GW discharge, upwelling warm water and cold 

SW were described in terms of spatial and temporal distribution of temperature at the water 

surface by TIR (research goal n°2, chapter 1.3). FO-DTS measurements were used for spatial 

validation of monitored temperatures by TIR imaging (Chapter 4, Figures 4.2 and 4.3). TIR 

measurements were affected by the weather conditions (clear sky vs. overcast sky) and the 

diurnal cycle of the net longwave radiation (Figures 4.2 and 4.3). Most reliable TIR images 

were obtained under overcast weather conditions and during night (no solar radiation). During 

day under overcast conditions, TIR images contained longwave reflections from vegetation 

and from the homogeneous cloud cover. The majority of the reflections from vegetation were 

masked by reflections due to the cloud cover in the sky resulting in a uniform background of 

reflections in the TIR image. Consequently, the heat or temperature signal from the simulated 

warm LGD was clearly distinguishable from the homogeneous background related to 

longwave reflections. During night under overcast weather conditions, longwave radiation 

from vegetation was smaller than during day due to reduced vegetation temperature in 

comparison to day temperatures. The lack of incident shortwave radiation at night was the 

main reason for reduced vegetation temperature. In consequence, longwave reflections of 

vegetation on the water surface were weaker during night. This allowed easier detection of 

heat or temperature signal related to the simulated warm LGD at the water surface with TIR 

imaging. 

The results presented and discussed in chapter 4 demonstrate that close-range TIR imaging is 

a method with potential for detecting LGD at the water surface. Nevertheless, the reliability of 

the data obtained with TIR imaging depends on several hydrometeorological factors such as 

cloud cover and diurnal cycle of net radiation.  

5.2.4 Combination of multiple heat tracing techniques for scaling of GW-SW 

interactions across ecohydrological interfaces 

Several recent researches combined multiple techniques to describe GW-SW interactions 

across the scale continuum (Blume et al., 2013; Hare et al., 2015; Rosenberry et al., 2016; 

Wilson and Rocha, 2016). Nevertheless there is still a knowledge gap on the process 

understanding of GW-SW interactions and its controlling factors over several spatial and 
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temporal scales. Controlling factors of GW-SW interactions can be hydrogeological and 

hydrometeorological. This is determined by the interface at which the GW-SW interactions 

are studied or monitored. When monitoring GW-SW interactions at the aquifer-stream/lake 

interface, hydrogeological controlling factors play a key role on regulating GW-SW 

interactions. For instance, the spatial distribution and heterogeneity of hydraulic conductivity 

of the HZ or the lacustrine sediments and the underlying aquifer is a well reported controlling 

factor for GW-SW interactions (Leek et al., 2009; Angermann et al., 2012a; Blume et al., 

2013). On the contrary, when monitoring GW-SW interactions at the water surface-

atmosphere interface, hydrometeorological controlling factors are key parameters on 

regulating GW-SW interactions (Chapter 3 and 4). In the latter case, there are really few 

researches that mention how hydrometeorological factors control the 

identification/measurement of GW-SW interactions across the water column and the water 

surface-atmosphere interface of freshwater bodies, especially lakes (e.g. Sebok et al., 2013). 

Therefore, there is still a lack of balance between measurements and process understanding of 

GW-SW interactions over several spatial and temporal scales and across ecohydrological 

interfaces (e.g. sediment-water, water surface-atmosphere). For instance, in Lewandowski et 

al. (2013) airborne TIR imaging of the entire Lake Arendsee showed warm water areas at the 

lake surface and close to the lake’s shore. Temperature data collected by temperature lances at 

different depths in the lacustrine sediment at the shore of the lake as well was used to 

calculate LGD fluxes at the shore of the lake. Both techniques seemed to indicate potential 

LGD hotspots in nearby areas located at the lake surface and at the sediment of the lake, 

respectively. However, further research showed that the warm water areas detected by TIR 

imaging at the lake surface were linked to wind-driven upwelling of cold water (Pöschke et 

al., 2015). Thus, hydrometeorological factors (e.g. wind over the lake surface) had an 

important effect on the reliability of heat tracing techniques for monitoring GW-SW 

interactions at the lake surface. In addition, heat transport processes in the sediment differ 

from heat transport processes in the water column and across the water surface-atmosphere 

interface (see Chapters 1.4.2 to 1.4.6). Therefore, potential hotspots of GW-SW interactions 

monitored in the sediment or lake bed might not always agree with thermal anomalies 

detected with other heat tracing techniques at the lake surface.  

 

The new technology available at the moment, allows collecting data at different interfaces 

(e.g. TIR at the water surface or FO-DTS at the lake bed). However, there is not an agreement 
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on a unique method for transferring and combining data collected with different heat tracing 

techniques, between different ecohydrological interfaces and over several scales (in the 

present PhD thesis, spatial scales). More specifically speaking, a general conceptual 

framework for freshwater systems that unites water and heat exchange processes (LGD, HEF 

and water flow from saturated to unsaturated areas) monitored by various heat tracing 

techniques across several ecohydrological interfaces and spatial scales, is missing. This 

knowledge gap motivated the development of a general conceptual framework based on HPD 

that could work as guidance for identifying and quantifying water and heat exchange related 

to GW-SW interactions, in freshwater systems across ecohydrological interfaces and over 

several spatial scales, by combining various heat tracing techniques (Chapter 2) (research goal 

n°1, chapter 1.3). The application of hierarchy theory and HPD can be found in a number of 

environmental sciences and in ecohydrological publications (e.g. Frissell et al., 1986; Dent et 

al., 2001; Poole and Berman, 2001). Nevertheless, ecohydrological interfaces in freshwater 

systems are not usually approached from a landscape perspective (Soranno et al., 2009). Part 

of the uniqueness of the present PhD thesis resides on the fact that this is the first time that 

HPD was employed to design a conceptual framework for appropriately combining several 

heat tracing techniques across ecohydrological interfaces and over several spatial scales for 

process understanding of GW-SW interactions. 

The experimental design based on HPD (Chapter 2, 3 and 4) demonstrated to be successful 

on: 1) hypothesis testing of this PhD thesis: the positive buoyancy of warm GW upwelling 

across the water column during winter, allows the detection of LGD at the water surface by 

TIR and 2) identifying controlling hydrometeorological factors of LGD across the water 

column and at the water surface-atmosphere interface (research goal n°3, chapter 1.3). 

The example presented in the present PhD thesis could be extrapolated to other heat tracing 

devices. We believe that this integrated approach could aid researchers on scaling GW-SW 

interactions by using multiple heat tracing techniques at various ecohydrological interfaces. In 

addition, if the same scaling approach is used by all researchers, findings on GW-SW 

interactions across different ecohydrological interfaces and spatial scales could be combined 

resulting in a successful increase on process understanding of GW-SW interactions across 

ecohydrological interfaces and over several spatial scales, in freshwater environments. 

5.3 Conclusions 

The present PhD revealed that under specific conditions it is possible to up and down scale 

LGD from the sediment-water interface through the water column to the water surface-

atmosphere interface by heat tracing techniques (main research goal of this PhD thesis). In 
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Chapters 3 and 4 it is demonstrated that the positive buoyancy of warm GW causes upwelling 

across the cold water column during winter and allows the detection of LGD at the water 

surface by TIR. However, the heat signal related to warm GW at the water surface is best 

detected under overcast conditions and during night. Therefore, the upscaling of LGD from 

the sediment-water interface to the water surface-atmosphere interface (e.g. lakes surface) is 

strongly controlled by hydrometeorological factors such as cloud cover and diurnal cycle of 

the net radiation balance. Nevertheless, in real lake settings (instead of our model mesocosm) 

it should be considered that the chances to detect LGD at the water surface of the lake might 

decrease due to several factors that have not been considered in the present PhD thesis 

research (e.g. wind, vegetation in the water column). Thus, there are several limitations that 

make the detection of LGD at the water surface of a lake difficult: 

 The positive buoyancy of GW occurs only during a short period of time 

(Lewandowski et al., 2013). 

 In real lake settings, currents or mixing due to wind might reduce the GW signal. 

 In most cases LGD rates will be much smaller than in the present study (for 

instance median exfiltration rates of 0.74 cm d
-1

 (= 0.005 L m
-2

 min
-1

) and a 

maximum of 745 cm d
-1

 (= 5.2 L m
-2

 min
-1

) are reported in Rosenberry et al. 

(2015)). 

 In most parts of a lake the water column is thicker and thus the travel distance 

between sediment surface and water surface larger (the signal might be lost). 

On the contrary, the circumstances that increase the chance to see a strong signal of GW at the 

water surface of lakes can be: 

 Focused and high discharge rates in Karst aquifers or in lakes with macropore 

groundwater discharge (see chapter 3.2.1: Simulated upwelling flux rates vs. rates 

reported in literature.) 

 Salinity gradient with the groundwater fresher than the lake water. 

 Suitable weather conditions as demonstrated in the present PhD thesis. 

 Discrete or focused LGD in shallow lakes or at the shore of the lake. 

5.4 Future direction 

The present PhD thesis has shown the relevance of hydrometeorological factors for detection 

of LGD at the water surface by FO-DTS and TIR imaging. The results and conclusions 

presented in the thesis support research on the mechanistic understanding of LGD across 
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various interfaces and over several scales. To deepen and supplement the knowledge gained 

in the thesis, I would recommend experiments/measurement campaigns in natural shallow 

lakes or near the shore of lakes where LGD occurs. The measurements should take place 

during winter and preferably following the recommendations presented in this PhD thesis 

(under overcast conditions and if possible at night). LGD rates need to be determined with 

independent methods such as seepage meters and temperature lances between others. The 

impacts of wave mixing near the shore or wind forces at the water surface, could be studied 

and would increase the mechanistic understanding of LGD and upwelling under natural 

conditions. Next, the data collected in this type of experiments, could be used to parametrize 

new models that could predict the location of thermal plumes related to LGD, at the surface of 

the lake. Finally, TIR cameras setup in drones could be used for validation of the model 

predictions. 
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