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Figure 4. The reconstruction of the one dimensional time series into the state space and a magnified part 

of the reconstruction. The arrows denote the development of the initial separation between two 

neighboring trajectories. 

 

There are three constructs according to the temporal change in d(t); ordinary stability, 

asymptotic stability, and exponential stability.  Exponential stability is the most used stability 

construct and is used to provide a measure (i.e. Lyapunov exponent) to parameterize d(t). 

The mean growth rate of the distance between neighboring trajectories (Figure 4) in state 

space can be seen as: 



11 

 

 

 ∥ 𝛿𝛿𝑥𝑥(𝑡𝑡) ∥ / ∥ 𝛿𝛿𝑥𝑥0 ∥        (4) 

The solution to the above formula can be given by the maximum Lyapunov exponent, which 

can be estimated for a time t as: 

𝜆𝜆 = lim
n→∞

lim
𝛿𝛿𝑥𝑥(0)→0

1
𝑡𝑡
𝑙𝑙𝑙𝑙 ∥𝛿𝛿𝑥𝑥(𝑡𝑡)∥

∥𝛿𝛿𝑥𝑥(0)∥
       (5) 

Computationally, the exponent λ is estimated after the average divergence of each point’s 

trajectory to its closest neighbor has been calculated. Specifically, the λ is estimated by the 

slope of the linear fit in the resulting average divergence curve. The number of data points 

chosen as the fitting region in gait studies is usually equal to one step (Figure 5).  

 

 

Figure 5. Resulting divergence curve of the mean logarithmic expansion of all neighboring trajectories 

and linear fit on the first part of the curve. The slope of the fit corresponds to the maximum Lyapunov 

exponent. 
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1.1.2.3 Properties 

The most striking feature of chaos is the unpredictability of the future despite a deterministic 

time evolution22. The calculation of Lyapunov exponents has been one of the most popular 

methods used to detect the presence of chaos, which constitutes a nonlinear property of 

dynamical systems.  

The most common properties of the maximum Lyapunov exponent are as follows6,22,8: 

1. The resulting maximum Lyapunov exponents are independent of both the 

metric used to determine the distance between perturbations and the choice of 

variables. This property implies they are dynamical invariants and thereby 

provide an objective characterization of the corresponding dynamics. 

2. A strictly positive maximum Lyapunov exponent is often considered as a 

definition of deterministic chaos (when the corresponding unstable manifold 

folds back remaining confined within a bounded domain). Moreover, it is 

synonymous to exponential instability (with a few exceptions such as the so-

called Perron effect).  

3. An inability of the system in examination to diminish the perturbations results 

in a higher divergence of the trajectories in the state space and thus greater 

value of the maximum Lyapunov exponent. Hence, the higher value of the 

maximum Lyapunov exponent, the lower the stability of the system. 

4. Larger exponents are indicative of a greater sensitivity to local perturbations. 
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1.2 Dynamic stability during locomotion 

“I would urge that people be introduced to chaos early in their 

mathematical education. Chaos can be studied phenomenologically by 

iterating it on a calculator, or even by hand […] Not only in research, but 

also in the everyday world of politics and economics, we would all be 

better off if more people realised that simple nonlinear systems do not 

necessarily possess simple dynamical properties.” 

Robert May, 1976 23 

Stability of human upright weight-bearing posture is achieved, provided the vertical 

projection of the center of mass falls within the base of support. However, locomotion is 

challenging this notion, since the base of support and the center of mass are in constant 

motion and the base of support is constantly changing its size, providing the grounds for a 

dynamic equilibrium state24. Indeed is has been often proposed that cortical areas processing 

the spatial, temporal and other cognitions needed to achieve vertical balance, was an 

important reason for brain size expansion of Homo erectus24,25. In human locomotion, the 

muscles and joints across the upper and lower body must coordinate to successfully perform 

a cyclic task. To maintain functional locomotion, the nervous system must confront the 

classic “degrees of freedom” problem in motor control as this was posed by Bernstein26. The 

problem arises from the vast redundancy (i.e. that multiple ways exist to execute a specific 

task) in the musculoskeletal system. The immense amount of degrees of freedom at the 

actuation or execution level of the human system is generally accepted to pose a problem to 

the nervous system, since the task requirements are not sufficient to uniquely specify how 

each muscle and joint must be controlled27,28. This redundancy requires a large number of 

elements to be coordinated in achieving the required task, while on the same time to select 

one possible solution amongst many27. However, it may be necessary to allow flexibility in 

motor tasks such as posture, balance and stability control, due to the adaptability of the neural 

systems and the requirements to perform parallel tasks27–29. 

In this section different measures of dynamic stability during human locomotion will be 

shortly presented and categorized. How dynamic stability changes under specific conditions, 
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after pathology or between age groups will be discussed next. Following, methodological 

considerations that influence the calculations and resulting exponents will be presented. 

1.2.1 Measures of dynamic stability during locomotion 

Stability in dynamic conditions such as locomotion, is crucial to uninterrupted task execution 

and requires effective regulation by the CNS4,30,24,27,31. Most commonly stability is defined 

as the ability to maintain the system’s original state despite the influence of perturbations7. 

During functional locomotion stability is defined as the ability to maintain a locomotion 

pattern despite the presence of small kinematic disturbances or control errors32,33. Firstly, it 

is important to distinguish between active and passive control following perturbations in a 

system. For instance, active control is not always needed, since it has been demonstrated that 

passive dynamic walkers can recover from small perturbations, and keep walking after such 

perturbations without any imposed control34,35. Their ability to maintain locomotion has to 

be appropriated to the intrinsic properties of the system, such as inertia, and to the type of 

locomotion, which evidences that absence of any active control can still lead -to a very small 

extend- in effectively stable locomotion32. Some part of stability is, thus, attributed to the 

mechanical properties and the movement pattern of the system. However, the accumulation 

of several smaller perturbations or existence of larger perturbations require active, corrective 

actions from the system to maintain the movement pattern. In order to handle and overcome 

larger perturbation paradigms, previous studies focused on some sort of controllers36,37, 

which represent an active control of the system.  

 Based on this knowledge, three requirements can be identified so that stable 

locomotion is achieved32: 

a) The system has to be able to recover from small perturbations 

b) The system has to be able to recover from larger perturbations 

c) Any single perturbation encountered must be within the limits of the system (i.e. the 

system’s ability to recover must be greater than the perturbation) 

While, several measures address the above conditions independently, measuring the dynamic 

stability in the human system is not a trivial task. It can be that one can -in an excellent 
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are the fifth leading cause of death in older adults (after cardiovascular disease, cancer, stroke 

and pulmonary disorders), while falls alone are responsible for two-thirds of these deaths63. 

Measures that estimate the stability of locomotion and predict falls are, hence, of crucial 

importance. Indeed, the maximum Lyapunov exponents have been found in a number of 

studies to be important predictor of falls, meaning that an increased value of the parameter 

could be associated with a higher probability of falls65,38,32,48. 

1.2.3 Methodological considerations 

In the previous section it was presented how by using the Lyapunov analysis one is able to 

infer internal variables of locomotion and neuromuscular control in human locomotion. 

These results can be helpful in understanding, characterizing, and predicting the behavior of 

the human dynamical system12,22. All studies have reported a positive maximum Lyapunov 

exponent in gait dynamics, irrespective of the measurement device, participant group or 

computational methodology approach.  

However, while nonlinear time-series analysis is a valuable tool in examining such  

invariants of a dynamical system, it is sensitive to different methodological approaches12,22. 

The absolute maximum Lyapunov exponent can be influenced by a number of decisions 

pertaining the calculation. For instance, the transformation –e.g. position, velocity, PCA- of 

the original time-series can affect the estimation66. Different algorithmic approaches have, 

also, been proposed for the estimation of the maximum Lyapunov exponent22,67,68 and the 

chosen algorithm can yield different values69–71. Moreover, time-series acquired from signals 

in different positions of the human body exhibited different values for the exponent59,72,73. 

Most importantly though, it seems that the analysis can be influenced by the chosen 

reconstruction parameters74,22,66,12. In theory a valid state-space is one that uniquely defines 

the state of the system at all points in time22. Different values for delay and embedding 

dimension can yield very different state-space reconstructions 12,22,74. A reconstruction of the 

same time series is shown in Figure 7 depicting how different numbers of delay can affect 

the actual reconstruction. What is more, the resulting values for the maximum Lyapunov 

exponents can significantly vary based on different choices of delay as depicted in Figure 8. 

Each of the time series used for analysis, however, represents a different dynamical system 
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interesting idea for the field could be the concatenation of multiple short-bouts of steps in 

a single time-series and consequent analysis. A similar approximation may possibly be 

applied in experimental settings, in which the absence of multiple cycles in a given task is 

common. In such cases it is possible that concatenation of data deriving from different 

participants, could provide information on the dynamic stability which would be task 

specific. 

Regarding performance optimization, the current thesis provided insights on how dynamic 

stability could have an important role when transitioning to a new running technique. 

Therefore, an important consideration should arise during trainings that attempt alterations 

in the habitual way of running. Further, while, several studies attempted alterations in the 

mechanics of running to enhance running performance, there is no consensus regarding an 

optimal running strategy. Locomotion constitutes an emergent functional property188, and 

following a transition to a new running strategy it is almost impossible to alter only one 

biomechanical parameter, but rather several parameters are affected. Different 

neuromuscular and mechanical factors could contribute differently in the energy cost of 

running, often with counterbalancing effects. Future interventions could aim to improve 

running economy with multimodal approaches. For instance, based on the findings of the 

current thesis such an approach would be to target in maintaining the mechanical 

advantageous changes of the forward point of force application, while on the same time, 

maintaining similar contact times.  

The maximum Lyapunov exponent has been recently used in clinical settings48,60,139, and a 

new review included the measure to the ones suggested in standard gait analysis for 

neurological diseases assessment233. Based on two other reviews the maximum Lyapunov 

exponent has important potential in evaluating the fall risk in elderly38,32. However, as 

discussed in chapter 1.2.3 an important consideration when calculating the maximum 

Lyapunov exponent has been the different methodological approaches. Consensus on the 

methodological issues pertaining the calculation would be one step towards the widespread 

usage of the local dynamic stability in rehabilitation and training settings. Another step in 

the same direction would be the creation or open access to big data banks that could help 
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in the convergence towards some sort of normative values making the usage and 

interpretation of local dynamic stability easier. 

5.1.3 Target priorities in movement 

We know that motor control strategies are chosen in a context dependent manner, based on 

different criteria131,132. As seen in chapter 1.2, dynamic stability constitutes a crucial control 

priority for the central nervous system during locomotion and is a criterion for successful 

task execution. Moreover, we know that minimization of energy consumption (chapter 1.3) 

is a target priority for the system and constitutes a main criterion in locomotion. However, 

how the human central nervous system prioritizes between the different goals is 

unknown234,235.  For instance, the introduction of a new running technique in the third study 

(chapter 4) of the current thesis, increased the rate of energy consumption, despite a 

mechanically advantageous technique and a decrease in the stability was found. As such a 

possible connection between these priorities has been established and can be examined 

further. The exact link between these two priorities is, however, obscure. Moreover, how 

other priorities (e.g. maneuverability) may come into play is unknown at the moment.  

Recent achievements in experimental and computational tools could allow future studies 

to attack such long-standing complex problems in this field. Interdisciplinary approaches 

that would target all the levels of the human system and understand how muscles, sense 

organs, motor pattern generators, and brain interact to produce coordinated movement can 

be extremely useful in this task236. Recent studies attempted such combinations of 

methodologies to converge in improving our understanding of locomotion. For instance, 

an increased robustness is observed in face of perturbed locomotion and increased 

instability during walking and running40. Higher microstructural organization in a wide 

range of white matter tracts associates with increased stability58 and adjusted gait 

parameters such as longer single support, less variability and larger strides237,238. On the 

other hand, reductions in executive functions may result in inaccurate control of limb 

movements and diminished feed-back that cause gait irregularity and instability239. In a 

promising new study novel relationships were established between gait metrics and the 

strength of within- or between- network functional connectivity240. Specifically, faster gait 

speed associated to stronger functional connectivity within the frontoparietal control 
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network, while those with less gait variability exhibited stronger negative functional 

connectivity between the dorsal attention network and the default network240. Be that as it 

may, the different target priorities and how the central nervous system interchangeably 

chooses between them and executes context depended locomotion, remains elusive. Such 

thought provoking concepts in the research frontiers could be the study of several more 

theses in the future. 
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