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Challenging human locomotion: 
stability and modular organisation 
in unsteady conditions
Alessandro Santuz  1,3, Antonis Ekizos1,3, Nils Eckardt2, Armin Kibele2 & Adamantios 
Arampatzis1,3

The need to move over uneven terrain is a daily challenge. In order to face unexpected perturbations 
due to changes in the morphology of the terrain, the central nervous system must flexibly modify its 
control strategies. We analysed the local dynamic stability and the modular organisation of muscle 
activation (muscle synergies) during walking and running on an even- and an uneven-surface treadmill. 
We hypothesized a reduced stability during uneven-surface locomotion and a reorganisation of 
the modular control. We found a decreased stability when switching from even- to uneven-surface 
locomotion (p < 0.001 in walking, p = 0.001 in running). Moreover, we observed a substantial 
modification of the time-dependent muscle activation patterns (motor primitives) despite a general 
conservation of the time-independent coefficients (motor modules). The motor primitives were 
considerably wider in the uneven-surface condition. Specifically, the widening was significant in both 
the early (+40.5%, p < 0.001) and late swing (+7.7%, p = 0.040) phase in walking and in the weight 
acceptance (+13.6%, p = 0.006) and propulsion (+6.0%, p = 0.041) phase in running. This widening 
highlighted an increased motor output’s robustness (i.e. ability to cope with errors) when dealing with 
the unexpected perturbations. Our results confirmed the hypothesis that humans adjust their motor 
control strategies’ timing to deal with unsteady locomotion.

Although the mechanisms underlying human movement are not yet understood in their entirety, there is great 
amount of information on how we walk and run over even, solid surfaces1–4. Yet, daily-life locomotion is regularly 
taking place in more complex environments and conditions which imply facing an extraordinary amount of 
variables and interactions between them. Being able to effectively move over diverse terrain conditions has been 
integral part of the evolution of the genus Homo, not only to hunt and gather, but to escape predators and find 
mates as well5,6. It is well known that, for animals, one fundamental way to optimise locomotion is minimising 
the energy cost of motion7–9. However, optimisation of economy does not fully explain the movement strate-
gies employed by humans and other animals10. Increased energy expenditure has been often found for walking 
and running on irregular natural or artificial terrain such as swamp, loam, stubble, grass, sand, snow, rubber, 
mountain trail and uneven-surface treadmill11–20. Studies showed that destabilising environments can decrease 
dynamic stability during walking21–23. Further, in presence of perturbations in the mediolateral direction, par-
ticipants do not modify their velocity as a coping mechanism for stability, but rather alter spatiotemporal gait 
parameters21,24. It therefore seems that to overcome the non-predictability of uneven terrains, humans have to face 
constant changes in their locomotor patterns, which may affect the priorities of system.

The ability to move involves a flexible integration of peripheral sensory information into the central nervous 
system (CNS)25. Attempts to describe the biomechanics and energetics of balance control following single- and 
multiple-step perturbations have been made in both humans and animal models9,18,19,26–35. Though, very little is 
known about the neuromuscular strategies employed by the CNS to cope with external perturbations induced 
by continuous variations in terrain morphology. Lowering the energy cost of unsteady locomotor movements 
might not constitute the highest priority during locomotion and compromises to achieve, for instance, safety or 
perceived comfort could be of higher importance10,33,36,37. In the natural environment, animals must maintain 
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dynamic stability when facing unexpected perturbations33,38. Locomotion over uneven terrain could challenge 
dynamic stability and, thus, the existing neuromuscular strategies. Alterations in the dynamic stability, contin-
uously elaborated via sensory feedback information, provide a feed-forward drive to the CNS to implement the 
needed adjustments. To use a term derived from systems and software engineering, “robustness” defines “the 
degree to which a system or component can function correctly in the presence of invalid inputs or stressful envi-
ronmental conditions”39. Likewise, a biological system is evolutionally robust when its characteristics can with-
stand perturbations or uncertainty40. In a similar fashion, we define “robustness” as the ability of the CNS to cope 
with unexpected perturbations or errors of execution. To better understand unsteady movement, the contribution 
of the neuromuscular circuit to the production and control of robust movement must be taken into account.

One of the most common hypothesis is that the CNS might simplify the production of movement by acti-
vating muscles in common patterns called synergies41–43. This strategy would avoid the separate activation of 
each muscle by linearly combining a small set of time-dependent commands42,43. Synergies can be seen as low 
dimensional units that, via descending or afferent pathways, produce a complex electromyographic (EMG) pat-
tern in muscles44,45, creating a locomotor drive mediated by a certain amount of supraspinal control46. During 
walking, the same amount of basic activation patterns could be found in patients with spinal cord injury and in 
healthy participants at different speeds and gravitational loads47. Synergies similar to those found in humans at a 
spinal47 or muscular level can be observed also in the motor cortex of the primate and cat48,49. This suggests a high 
degree of cooperation within the central nervous system’s structure at all levels. We used an unsupervised learning 
method called non-negative matrix factorisation (NMF)50 for reducing the high dimensional EMG input into a 
small number of synergies.

A few studies already used the muscle synergies concept for investigating the modular control of balance 
following single-step27 and multiple-step35 perturbations during overground walking. Oliveira and colleagues27 
showed that the modular organisation is preserved following a single-step perturbation during walking, while 
temporal activation patterns might differ. In another study35, Martino and colleagues found a preservation of the 
modular organisation after multiple-step walking on slippery ground and narrow beam. Contextually, they found 
an increase in the width (duration) of the muscle activity patterns during perturbed walking35, indicating a less 
accurate control. With “less accurate” we mean less precise in relation to the optimum or, in other words, includ-
ing a higher degree of random errors that might move the system’s state more distant from the centre of the sta-
bility attractor40. The limitations of these studies, however, mainly lie in the small number of steps recorded, since 
the muscle synergies results might be influenced by the number of steps involved in the analysed data. Previous 
studies showed that a high number of steps (≥40) is important to increase the accuracy and precision of the 
muscle synergies analysis51. In order to increase the number of recorded steps and to accurately control the loco-
motion speed, the use of an uneven-surface treadmill is the most intuitive solution. Moreover, the continuously 
variable and unexpected perturbations would exclude any short-term predictive behaviour of the system and 
would help in the generalisation of the results. Exposure to continuously induced perturbations would challenge 
the system and might require alternative motor control strategies to be employed at the neuromuscular level. To 
support our analysis of the modular organisation of EMG activity, we investigated the spatiotemporal organisa-
tion of the alpha-motoneurons pools in the spinal cord47. While this method cannot help in characterising the 
central pattern generator circuitry, it is a useful tool to better understand the organisation of the motor output at 
a segmental level, rather than in terms of individual muscle activations.

We have limited knowledge on how humans choose from the available control strategies while moving 
through complex terrain. The purpose of the current study was to improve our understanding of the mechanisms 
underlying the neuromuscular control of human unsteady locomotion by investigating walking and running on 
an even- and an uneven-surface treadmill (Supplementary video 1). We hypothesised an increased instability in 
both walking and running on the uneven-surface treadmill compared to the even one. We expected that humans 
would respond to the increased instability by employing a different modular organisation of the neuromuscular 
output when walking and running on the uneven-surface treadmill. In particular, we expected a transfer from an 
accurate to a more robust neural control in unsteady locomotion.

Methods
Experimental protocol. Eighteen healthy and young adults were recruited (11 male, 7 female, height 
176 ± 7 cm, body mass 71 ± 13 kg, age 24 ± 3 years, means ± s.d.). All the participants were regularly active and 
did not use orthotic insoles. None had any history of neuromuscular or musculoskeletal impairments, or any 
head or spine injury at the time of the measurements or in the previous six months. This study was reviewed and 
approved by the Ethics Committee of the University of Kassel (approval code E05201602). All the participants 
gave written informed consent for the experimental procedure, in accordance with the Declaration of Helsinki.

The recordings were conducted on two treadmills: a standard one, equipped with an even-surface (ES) belt 
(Laufergotest, Erich Jäger, Würzburg, Germany) and one equipped with a custom-made uneven-surface (US) 
belt (Woodway®, Weil am Rhein, Germany, Fig. 1, Supplementary video 1). The US treadmill’s belt consisted 
of terrasensa® classic modules (Sensa® by Huebner, Kassel, Germany) aiming to simulate uneven ground con-
ditions. The kinematics data were recorded through a six-camera motion capture system (Oqus 3+, Qualisys 
AB, Gothenburg, Sweden) operating at 300 Hz. The muscle activity of 13 ipsilateral muscles was recorded using 
a 16-channel wireless EMG system (myon m320, myon AG, Schwarzenberg, Switzerland), with a frequency of 
1000 Hz.

The participants completed two different tasks on the ES and US treadmill, in random order: walking (shod, 
fixed velocity; 1.1 m/s female, 1.2 m/s male) and running (shod, fixed velocity; 2.0 m/s female, 2.2 m/s male). The 
difference in velocity between male and female have been chosen after a pilot study in which we estimated the 
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average gender-specific comfortable running and walking velocity on the US treadmill. The participants were 
instructed to keep looking at a fixed spot in front of them and avoid looking at the treadmill’s belt.

Gait cycle assessment. Ten reflective markers were placed bilaterally on the leg, foot and spine. Namely, 
the greater trochanter, the Achilles tendon insertion on the calcaneus, the dorsal margin of the fifth metatar-
sal head, the second, seventh and tenth thoracic and the second lumbar vertebræ were marked. The gait cycle 
breakdown was obtained from kinematic data. We used the information coming from the calcaneus and fifth 
metatarsal markers. These data were low-pass filtered using a 4th order IIR Butterworth zero-phase filter with 
cut-off frequency of 50 Hz52. For estimating touchdown, we used the modified foot contact algorithm devel-
oped by Maiwald et al.52. For estimating lift-off, we developed the foot acceleration and jerk algorithm. The jerk 
algorithm searches for the global maximum of the fifth metatarsal vertical acceleration between two consecutive 
touchdown events to estimate the lift-off (LOe, where the “e” stays for “estimated”). This estimation, however, does 
not provide an accurate identification of the lift-off and needs some refinement. To get closer to the “real” lift-off 
timing, a characteristic minimum in the vertical acceleration (i.e. when the jerk equals zero) of the fifth metatar-
sal marker is identified in a reasonably small neighbourhood of the LOe. We found [LOe – 90 ms, LOe + 25 ms] 
for walking and [LOe – 50 ms, LOe + 100 ms] for running to be the sufficiently narrow intervals needed to 
make the initial lift-off estimation. Both approaches have been validated using force plate data (AMTI BP600, 
Advanced Mechanical Technology, Inc., Watertown, MA, USA) from 15 participants walking and running over-
ground at six different velocities. True errors were of −8 ± 8 ms (−1.1% ± 1.0% of the stance phase) for touch-
down and 12 ± 18 ms (1.6% ± 2.4%) for lift-off for walking and −1 ± 15 ms (−0.5% ± 5.4%) and −16 ± 23 ms 
(−5.7% ± 8.3%) respectively for running (means ± s.d.).

Local dynamic stability assessment. Participants were allowed for an accommodation period of max-
imum 60 s53. During walking, two trials of 180 s were recorded for all participants, while two trials of 120 s were 
recorded during the running task. A 4th order IIR Butterworth zero-phase filter with low-pass cut-off frequency 
of 20 Hz was applied to the computed coordinates of the four spine markers (i.e. the second, seventh and tenth 
thoracic and the second lumbar vertebræ). We adopted the maximum finite-time Lyapunov exponent (MLE) 
to assess the local dynamic stability of the human system during walking and running. The coordinates of the 
walking trials were downsampled to 100 Hz to improve computational performance. The vertical coordinates of 
these markers were then clustered to be used for further analysis and the calculation of the MLE. We calculated 
the MLE using the vertical coordinate data of the clustered spine markers, which we tested for stationarity54,55. 
Running on a treadmill restricts the movement at the anteroposterior direction due to the participants seeking 
to match the velocity of the treadmill and similarly, the treadmill width restricts the movement on the medio-
lateral direction. To avoid dependencies on step frequency, we identified the maximum number of shared steps 
(i.e. 0.5 of gait cycle) for all trials and participants56; 291 and 287 steps for walking and running, respectively. 
The coordinates of the data segments corresponding to the exact number of steps were then isolated for each 
trial. Following, the data segments were normalised to a uniform length based on the average number of data for 
each step, amounting ~16000 in walking and ~33000 data points in running. The high number of steps analysed 
ensured the reliability of our measurements57.

State space reconstruction was achieved through delay coordinate embedding58,59, for each point of the time 
series and its time-delayed copies as follows:

τ τ= + … + −S t z t z t z t d( ) [ ( ), ( ), , ( ( 1) )] (1)

Figure 1. Sketch of the uneven-surface treadmill employed in this study.
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with S(t) being the d-dimensional reconstructed state vector, z(t) the input 1D coordinate series, τ the time delay 
and d the embedding dimension. Time delays were calculated for each time series from the first minimum of 
the mutual-information curve, based on the Average Mutual Information function60. The number of embedding 
dimensions was extracted through a Global False Nearest Neighbours analysis for each time series, with a thresh-
old of one per thousand data points61.

Different values of τ and d can yield very different state-space reconstructions54,62,63. It is therefore suggested 
that optimised values of τ and d are necessary to best represent a dynamical system64. In the current study time 
delays were individually chosen for each participant64, by first calculating the optimal delay of the four time-series 
(two trials on the even and two on the uneven surface) and using the averaged value. Time delays were in the 
range of 17–20 data points (~0.34 of the average step) in the walking task and 36–40 data points (~0.33 of the 
average step) in the running task.

Following the reconstruction of the times series, the Rosenstein algorithm was used to compute the average 
exponential rate of divergence by calculating the linear distance of each point’s trajectory divergence to its closest 
trajectory65,66. The MLE were then calculated from the slope of the linear fit in the resulting divergence curves 
from 0 to 1 step. Analysis of the data was performed on MATLAB 2014b (Mathworks Inc., Natick, United States).

Spinal motor output assessment. For each condition, the muscle activity of the following 13 ipsilateral 
(right side) muscles was recorded: gluteus medius (ME), gluteus maximus (MA), tensor fasciæ latæ (FL), rec-
tus femoris (RF), vastus medialis (VM), vastus lateralis (VL), semitendinosus (ST), biceps femoris (long head, 
BF), tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) 
and soleus (SO). We recorded two trials of 60 s for each condition and analysed the first 50 gait cycles of each 
acquisition. The EMG signals were high-pass filtered and then full-wave rectified and low-pass filtered using a 
4th order IIR Butterworth zero-phase filter with cut-off frequencies 50 Hz (high-pass) and 20 Hz (low-pass for 
the linear envelope) using R v3.4.1 (R Found. for Stat. Comp.). The amplitude was normalised to the maximum 
activation recorded for each participant across all conditions43,67,68. Each gait cycle was then time-normalised to 
200 points69, assigning 100 points to the stance and 100 points to the swing phase.

For the spinal motor output characterisation, we mapped the EMG activity onto the estimated rostrocaudal 
location of alpha-motoneurons (MNs) pools in the segments from the second lumbar vertebra (L2) to the sec-
ond sacral vertebra (S2) of the spinal cord47,70,71. The contribution of each muscle to the total estimated activity 
of the spinal segments was implemented using the myotomal charts developed by Kendall et al.72. This method 
shows the organisation of the efferent MNs network directed to the muscles, assuming a common spinal topog-
raphy among the investigated participants. The motor output of each spinal segment Sj was estimated using the 
Equation (2) introduced by La Scaleia et al.70:
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where mj are the muscles innervated by each segment, ni is the number of spinal levels that innervate the ith mus-
cle, kij is a weighting coefficient specific to each muscle and spinal segment (e.g. kij = 1 or kij = 0.5 if Sj is a major 
or minor MN source, respectively) and EMGi is the normalised recorded EMG, specific for each participant and 
trial70,72. This approach accounts for size differences at each spinal level in every MNj pool.

Modular organisation assessment. Muscle synergies data were extracted through a custom script73  
(R v3.4.1, R Found. for Stat. Comp.) using the classical Gaussian NMF algorithm50,73,74 from the first 50 gait cycles 
of each acquisition51. EMG data were pre-processed using the same filtering conditions reported in the previ-
ous paragraph and each gait cycle was time-normalised to 200 points69, assigning 100 points to the stance and 
100 points to the swing phase74. The m = 13 time-dependent muscle activity vectors were grouped in an m × n 
matrix V (n equal to 10000), factorised such that V≈VR = WH. VR represents the new reconstructed matrix, 
which approximates the original matrix V. The motor primitives73,75 matrix H contained the time-dependent 
coefficients of the factorisation with dimensions r × n, where r represents the minimum number of synergies nec-
essary to reconstruct the original signals (V). The motor modules73,76 matrix W with dimensions m × r, contained 
the time-invariant muscle weightings. H and W described the synergies necessary to accomplish a movement. 
The update rules for H and W are presented in Equations (3) and (4).
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The limit of convergence was reached when a change in the calculated R2 between V and VR was smaller than 
the 0.01% in the last 20 iterations73,77. This was done for a number of synergies successively increased from 1 to 
10. The computation was repeated 10 times for each synergy, each time creating new randomised initial matrices 
H and W, in order to avoid local minima73,78. The solution with the highest R2 was then selected for each of the 
10 synergies.
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To choose the minimum number of synergies required to represent the original signals, the curve of R2 values 
versus synergies was fitted using a simple linear regression model, using all ten synergies. The mean squared 
error73 was then repeatedly calculated, each time removing the lower synergy point, until only two points were 
left or until the mean squared error fell below 10−5. The aforementioned procedure allowed us to extract funda-
mental and combined synergies from the raw EMG data. A fundamental synergy can be defined as an activation 
pattern whose motor primitive shows a single peak of activation73,74. When two or more fundamental synergies 
are blended into one, a combined synergy appears. Combined synergies were excluded from the analysis. An 
example of combined synergies is reported in Fig. 2.

Metrics for comparison of curves. We evaluated the centre of activity (CoA) and full width at half max-
imum (FWHM) for the resulting curves of the extracted spinal maps and motor primitives (matrix H) in both 
conditions and types of locomotion. The CoA was defined as the angle of the vector (in polar coordinates) that 
points to the centre of mass of that circular distribution69,74. The polar direction represented the gait cycle’s phase, 
with angle 0 ≤ θt ≤ 2π. The following equations define the CoA:

∑ θ= ×
=

A P(cos )
(5)t
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t t
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where p is the number of points of each gait cycle (p = 200) and P is the activation vector. The FWHM was 
calculated as the number of points exceeding each gait cycle’s half maximum, after subtracting the gait cycle’s 
minimum69,74. The first 50 gait cycles of each acquisition were selected for analysis. The CoA and FWHM were 
analysed step-by-step and then averaged for stance and swing distinctively for spinal maps and over the whole 
gait cycle for the motor primitives.

Statistics. To evaluate the differences in MLE and gait parameters between ES and US locomotion, we used a 
one-way ANOVA with repeated measures or non-parametric Friedman test in case the normality assumptions on 
the residuals were not satisfied. To investigate CoA and FWHM of the spinal motor output, we employed a 
two-way ANOVA with repeated measures, followed by a Tukey post-hoc analysis with false discovery rate p-value 
adjustment (the independent variables being the condition, i.e. ES or US, and the spinal segment). The same sta-
tistics was used to assess differences between the motor modules, using the muscles and the conditions (ES or US) 
as independent variables. To evaluate the similarities between the fundamental motor primitives of the ES and US 
conditions, we used the coefficient of determination R2. The analysis was conducted as follows: first, we calculated 

Figure 2. Example of two fundamental synergies combined into one. The histograms (a and b) represent 
the two fundamental sets of motor modules for seven muscles. The curves (d and e) show the two respective 
primitives, with arbitrary x- and y-axis units. The combined motor modules and primitives are presented in 
panels (c and f), respectively.
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the similarity between the pairs of trials recorded during ES and US locomotion (i.e. the repeatability level when 
comparing two trials of the same condition)73,74. Then, we statistically compared the similarity between trials of 
different conditions (ES and US locomotion) with the repeatability values. To do so, we used a one-way ANOVA 
with repeated measures or non-parametric Friedman test in case the normality assumptions on the residuals were 
not satisfied. Type A uncertainty was expressed as = √u s n/A . All the significance levels were set to α = 0.05 and 
the statistical analyses were conducted using R v3.4.1 (R Found. for Stat. Comp.).

Data availability. The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.

Results
Gait parameters. The contact times in walking did not differ significantly (p = 0.539) between ES 
(674 ± 37 ms) and US (668 ± 49 ms). In running, there was a significant decrease (p < 0.001) in contact time when 
switching from ES (353 ± 50 ms) to US (324 ± 41 ms). Similarly, cadence did not change in walking (p = 0.589, 
109 ± 5 and 110 ± 7 steps/min for ES and US, respectively), while in running it increased significantly (p < 0.001) 
when transitioning from ES (155 ± 7 steps/min) to US (160 ± 10 steps/min, means ± s.d.).

Local dynamic stability. The MLE were significantly higher in the US condition in both walking (ES: 
1.557 ± 0.087, US: 1.655 ± 0.119, p < 0.001) and running (ES: 1.936 ± 0.072, US: 2.031 ± 0.085, p = 0.001, 
means ± s.d.), evidencing an increased instability in the US (Fig. 3).

Spinal motor output. Figure 4 depicts the average spinal motor output for ES and US walking and run-
ning. The two-way ANOVA identified statistically significant differences (p < 0.001, Table 1) in the CoA of the 
mapped EMG activities when comparing ES and US locomotion only for the stance phase of the walking cycle. 
The post-hoc analysis showed a significant contribution (p < 0.001) of the S3 spinal segment. The FWHM of the 
mapped EMG activities was significantly different between ES and US conditions for the stance as well as the 
swing phase of walking (p = 0.002 and p = 0.001 respectively, Table 2). For running, the FWHM was significantly 

Figure 3. Boxplots depicting the maximum Lyapunov exponent values for even and uneven surface in both 
walking and running with the black lines indicating individual changes between conditions (a). Averaged over 
all participants mean logarithmic divergences of the trajectories between even and uneven surface in walking 
and running. A faster divergence indicates worse dynamic stability (b).
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Figure 4. The average spatiotemporal spinal motor outputs are presented for even and uneven surface walking 
and running, normalised in amplitude to the maximum of each segment. These curves have been obtained by 
mapping each of the 13 muscle activations onto the relevant spinal segment (lumbar from L2 to L5 and sacral 
from S1 and S3). Asterisks denote significant differences in the full width at half maximum of the mapped 
EMGs between even and uneven surface locomotion. The two level plots show the average alpha-motoneurons 
activity for each condition, giving additional information about the absolute activation level (normalisation to 
the maximum of each condition). The stance and swing phases have been temporally normalised to the same 
amount of data points (100 each). Values are the means across all subjects and all trials.

Segment

Walking Running

Stance p < 0.001*
Swing 
p = 0.110

Stance 
p = 0.526

Swing 
p = 0.648

ΔE,U p-value ΔE,U ΔE,U ΔE,U

L2 +1.4% 0.783 −6.8% +0.7% −7.1%

L3 +1.4% 0.783 −6.8% +0.7% −7.1%

L4 +2.9% 0.416 −0.8% +0.0% +4.8%

L5 +2.9% 0.416 −0.8% +0.0% +4.8%

S1 +2.9% 0.416 −0.8% +0.0% +4.8%

S2 +4.0% 0.285 −0.5% −0.7% +3.9%

S3 +13.7% <0.001* −3.6% −3.6% +0.8%

Table 1. Differences between even and uneven surface in the centre of activity (CoA) of the EMG activities 
mapped onto the estimated rostrocaudal location of the spinal cord (segments L2 to S3). Positive differences 
(ΔE,U > 0) denote bigger values in the uneven surface condition, whereas negative differences imply lower 
values.
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different (p < 0.001) only in the swing phase (Table 2). The post-hoc analysis evidenced significantly greater 
FWHM values (p < 0.001) in the US condition in the S3 spinal segment for walking (stance phase). For running, 
the segments L4, L5, S1, S2 in the swing phase were involved instead (Table 2).

Modular organisation. The minimum number of synergies necessary to sufficiently describe the measured 
EMG-activity during walking and running was not significantly different between ES and US in either walking 
(3.8 ± 0.6 for ES and 3.9 ± 0.5 for US, p = 0.665) or running (3.5 ± 0.5 for ES and 3.5 ± 0.7 for US, p = 0.743, 
means ± s.d.). In both locomotor activities, four fundamental activation patterns could be identified (Fig. 5). The 
four fundamental synergies extracted during ES and US walking and running were associated with temporally 
different phases of the gait cycle. The first synergy (peak at ~12% and ~21% of the stance phase for walking and 
running, respectively) functionally referred to the body weight acceptance, with a major involvement of knee 
extensors and glutei. The second synergy (peak at ~70% and ~46% of the stance phase for walking and running, 
respectively) described the propulsion phase, to which the plantarflexors mainly contributed. The third synergy 
(peak at ~8% and ~30% of the swing phase for walking and running, respectively) identified the early swing, 

Segment

Walking Running

Stance p = 0.002* Swing p = 0.011*
Stance 
p = 0.119 Swing p < 0.001*

ΔE,U p-value ΔE,U p-value ΔE,U ΔE,U p-value

L2 −0.6% 0.610 +2.0% 0.279 +1.2% +0.1% 0.070

L3 −0.6% 0.610 +2.0% 0.279 +1.2% +2.7% 0.070

L4 +1.2% 0.252 +1.8% 0.315 +0.8% +2.7% <0.001*

L5 +1.2% 0.252 +1.8% 0.315 +0.8% +7.3% <0.001*

S1 +1.2% 0.252 +1.8% 0.315 +0.8% +7.3% <0.001*

S2 +0.1% 0.942 −1.0% 0.552 −1.0% +4.4% 0.003*

S3 +5.9% <0.001* +2.5% 0.133 +3.4% +2.0% 0.172

Table 2. Differences between even and uneven surface in the relative full width at half maximum (FWHM) 
of the EMG activities mapped onto the estimated rostrocaudal location of the spinal cord (segments L2 to 
S3). Positive differences (ΔE,U > 0) denote bigger values in the uneven surface condition, whereas negative 
differences imply lower values.

Figure 5. Average motor modules and motor primitives of the four fundamental synergies for walking and 
running on even and uneven surface. The motor modules are presented on a normalised y-axis base. For the 
motor primitives, the x-axis full scale represents one gait cycle (stance and swing normalised to the same amount 
of points and divided by a vertical line) and the y-axis the normalised amplitude. Asterisks denote significant 
differences between even and uneven surface locomotion. Daggers denote results of the post-hoc analysis.
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showing the involvement of foot dorsiflexors. The fourth and last synergy (peak at ~75% and ~80% of the swing 
phase for walking and running, respectively) reflected the late swing and the landing preparation, highlighting 
the relevant influence of knee flexors and foot dorsiflexors.

In walking, the similarities between the ES and US motor primitives of the propulsion and early swing syn-
ergies were significantly lower than the intraday repeatability threshold (Fig. 5, Table 3). In running, the motor 
primitives of all synergies were found to be significantly different between ES and US locomotion (Fig. 5, Table 3). 
The motor modules of ES and US locomotion exhibited significant differences in the weight acceptance synergy 
for walking (p = 0.001) and in the late swing synergy for running (p = 0.046, Fig. 5).

The CoA of the motor primitives for the propulsion, early swing and late swing synergies moved significantly 
earlier in time (p < 0.05) in US compared to ES locomotion (Table 4, the only exception being the late swing phase 
in running). Further, we found an increase of the FWHM in the US compared to ES condition of the primitives 
related to early and late swing in walking and to the weight acceptance and propulsion in running (Table 4).

Discussion
The current study examined the neuromuscular control of normal and perturbed movement during walking 
and running. We hypothesized a decrease in the dynamic stability and a transfer from an accurate (i.e. mature, 
functionally fine-tuned) to a more robust (i.e. able to cope with unexpected errors) motor control during US loco-
motion. We found higher values in the MLE (i.e. higher instability) and a widening in the motor primitives (i.e. 
alterations in the temporal structure of motor control) and spinal motor output, which evidenced an increased 
robustness35,69 of the system during US locomotion. The findings confirmed our hypotheses and demonstrated 
the use of a consistent set of neural control elements during perturbed steady state locomotion, but with modifi-
cations of the basic activation patterns. This indicated a transition from an accurate to a more robust movement 
control in the presence of continuously variable perturbations.

The MLE quantifies how the system responds to small internal perturbations56, revealing the ability of the sys-
tem to maintain stability and detects neuromuscular control errors in achieving it66,79. Increased MLE correspond 
to a more chaotic and unstable dynamical system54,62. In our study the MLE increased ~6% in walking and ~5% 
in running on the US providing evidence for a clear reduction of stability during perturbed locomotion. Previous 
studies in walking found an increase of 9% in the MLE in patients with focal cerebellar lesion80 and 21% increase 
in patients with moderate neurological gait disorders81, while in running an increase of 2% in the MLE was found 
during the transition from shod to barefoot64. The introduced perturbations, unpredictable and continuously var-
iable in amplitude, interfered with the normal locomotor patterns affecting the neuromuscular control. Based on 

Motor primitives

R2 E,U R2 E,U intraday p-value

Weight acceptance
Walking 0.78 ± 0.20 0.89 ± 0.09 0.055

Running 0.73 ± 0.27 0.94 ± 0.09 0.001*

Propulsion
Walking 0.73 ± 0.20 0.89 ± 0.10 0.004*

Running 0.70 ± 0.21 0.95 ± 0.03 <0.001*

Early swing
Walking 0.05 ± 0.83 0.79 ± 0.13 <0.001*

Running −0.34 ± 0.76 0.74 ± 0.65 <0.001*

Late swing
Walking 0.72 ± 0.18 0.85 ± 0.17 0.059

Running 0.73 ± 0.16 0.95 ± 0.08 <0.001*

Table 3. Motor primitives’ similarities, indicated as R2
E,U, between even and uneven surface walking and 

running as mean of intraday repetitions. The intraday repeatability values are reported as mean of four trials 
(two on the even and two on the uneven surface). Means ± Type A uncertainty. The p-values were calculated by 
comparing the R2 between even and uneven and the R2 for intraday trials.

Motor primitives

CoA FWHM

ΔE,U p-value ΔE,U p-value

Weight acceptance
Walking −0.6% 0.478 +4.0% 0.398

Running −1.1% 0.112 +13.6% 0.006*

Propulsion
Walking −2.5% 0.002* +8.2% 0.180

Running −3.8% <0.001* +6.0% 0.041*

Early swing
Walking −6.7% 0.002* +40.5% <0.001*

Running −14.1% <0.001* +10.0% 0.202

Late swing
Walking −2.7% 0.001* +7.7% 0.040*

Running +1.6% 0.008* +3.0% 0.212

Table 4. Differences between even and uneven surface walking and running in the centre of activity (CoA) as 
well as in the relative full width at half maximum (FWHM) of motor primitives. Positive differences (ΔE,U > 0) 
denote bigger values in the uneven surface condition, whereas negative differences imply lower values.
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our findings, the US locomotion resulted in a decreased dynamic stability and likely drove the system to adjust the 
motor output for robustness. The wider shape of the motor primitives during US locomotion was coupled with 
a temporal shift in the CoA. A similar tendency could be observed as well in the estimated spinal motor output, 
supporting the idea of a temporal widening also in terms of segmental organisation. Specifically, the spinal motor 
output in walking was significantly wider especially in the stance phase (but in the swing phase as well), mainly 
due to the innervations of the muscle biceps femoris (spinal segment S3). During running, the width of the spinal 
motor output was significantly different only in the swing phase, but for almost all segments and, most impor-
tantly, due to the contributions of all muscles’ innervations. This result fits with the post-hoc analysis conducted 
on the motor modules of this locomotion type. However, both locomotion conditions showed a similar modular 
organisation, since four synergies were sufficient to describe the motor task in both ES and US locomotion. These 
findings provide evidence that the central nervous system uses a consistent set of neural control elements with 
a flexible temporal recruitment to create safe locomotion in the presence of continuous perturbations during 
walking and running. The kind of perturbation induced by the US treadmill used in this study was uninterrupted 
over the acquisition time, thus creating a new perturbation at each step. Since the participants were asked not to 
look at their feet, we can exclude any proper predictive behaviour (i.e. experience-based prediction of expected 
perturbations34) in all conditions. Nevertheless, we can expect a certain level of anticipation utilised to cope 
with the potential perturbations. However, the participants expected continuously variable perturbations and 
therefore might have been able to create anticipatory muscle activation patterns driven by knowledge and prior 
experience with the potential perturbation. The main alterations in the modular organisation of the less stable 
(US) locomotion occurred in the basic activation patterns (motor primitives) rather than in the number of muscle 
synergies or the structure of the motor modules. Muscle synergies are coordinated patterns of muscle activity 
that aim to create functional motor output from the interplay of spinal and supraspinal interactions with the 
environment43,45. Synergies might be expressed via motor circuits in the cortex, brainstem and spinal cord46,49,82. 
There is indirect evidence that intrinsic networks of spinal interneurons might be involved in rhythm generation, 
left-right alternation and flexor-extensor interaction28,83–89. Proofs that a finer, time-dependent tuning of novel 
or learned elementary spinal commands might be of a supraspinal nature, have been found in the cat48,90 and 
monkey49,91,92. This suggests that the descending commands (i.e. motor primitives) from the brainstem and motor 
cortex modulate spinal motor modules28,45. Therefore, the widening of the motor primitives indicates a relevant 
contribution of supraspinal structures in the control of perturbed locomotion.

Previous studies found shorter, faster and wider steps in response to destabilising environments during walk-
ing21,93. Shorter times to plan and execute movements decrease their accuracy24,94. In our study, similar findings in 
contact times and cadence (i.e. shorter contact times and higher cadence) were present only during running, pos-
sibly due to the fact that the perturbations were continuously induced and affected all planes of motion. This par-
tial inconsistency could be further explained by the magnitude of the induced perturbations, which in our study 
was not quantifiable and possibly too low to cause modifications in the spatiotemporal parameters of walking. 
However, when analysing the step-to-step variability, we could find a tenfold increase in the contact times vari-
ance in walking (p < 0.001). To a minor extent, but still significantly (p = 0.001), this variability was also present 
in running, where variances increased 2.8 times. However, only in running we could demonstrate a decrease in 
the average contact times. This displays that the choice of a proper timing of execution is of crucial importance for 
managing external perturbations. When the phasing of events is less predictable (i.e. stereotyped to an extent that 
can be managed by a standard set of anticipatory spatiotemporal commands), a loss in accuracy can be expected. 
Broader basic activation patterns and EMG profiles have already been associated with inaccuracy and variability 
in motor control as well as with higher metabolic cost in different gait conditions18,19,35,69. Therefore, the system 
maintains successful locomotion by making up for a decrease in accuracy with an increase in robustness, which 
is reflected in the widening of the motor output.

During development, the locomotor activity undergoes adaptations which are linked to a functional reor-
ganisation of the motor output69. As recently reported from Cappellini et al., typically developing children show, 
during walking, a gradual reduction in the FWHM of motor primitives associated with maturation (i.e. an 
improvement in accuracy)69. Conversely, cerebral palsy children show broader motor primitives compared to 
typically developing children at the same age69. Moreover, in children affected by cerebral palsy, the narrowing 
of the motor primitives with age is lacking, despite a comparable structure of motor modules69. Analogously, a 
widening of the motor primitives can be found in adult patients with cerebellar ataxia and in healthy adults walk-
ing on a narrow beam and on slippery ground35. The prolongation of the basic activation patterns might reflect 
the system’s need of adding robustness to maintain functionality and overcome continuous perturbations. If we 
think of motor primitives’ widening as a modification of the states of the system, we can assume that functionality 
is maintained, but the strategy to achieve it has slightly changed. In fact, it is commonly accepted that a system 
can achieve robustness by either returning to its current attractor or by moving to a new attractor which is good 
enough to maintain the system’s functions40. When a modification in the system’s state happens and the system is 
able to return to its original attractor, there is a so-called “robust adaptation”40. Furthermore, it is also true that, in 
case of a transition to a new attractor, the switch must preserve enough robustness in order to allow the system for 
consistent and adequate responses to perturbations40. This is a crucial feature of robust adaptation, since it allows 
the system to maintain specific functionalities with different, flexibly selected modes of operations40. Under a 
control systems’ perspective, it is known that fuzzy control systems decrease robustness in order to increase 
optimality and performance95. Looking at the widening of the motor primitives in the US condition, it is in fact 
possible to note that two chronologically adjacent primitives (e.g. weight acceptance and propulsion synergies 
during running or early swing and late swing during walking) are overlapping more than in ES locomotion. 
This increases the fuzziness of the temporal boundaries, thus creating a “buffer” of motor control that allows for 
shifting more easily from one synergy (or gait phase) to the other, increasing the robustness and contextually 
decreasing optimality and performance95.
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In our study, the widening found in the spinal maps and motor primitives was associated to the less practiced 
and more unstable of the two tasks (i.e. US walking and running), indicating a less refined timing and duration 
of the motor output. The requirement to cope with continuously variable perturbations in order to maintain 
dynamic stability challenges the neural system’s control of locomotion. As such, it may reduce the need for accu-
rate neural control, prioritising the search for robustness. The widening of the motor primitives in US walking 
and running was common among all participants. Concerning motor modules, we could confirm a significant 
alteration only for those related to the weight acceptance synergy in walking and to late swing in running. This 
provides an indication of a certain degree of conservation in the basic modular structure. Furthermore, our data 
confirmed that it is possible to describe with the same number of synergies not only both walking and running1, 
but ES and US locomotion as well. This observation provides additional support to the idea that the CNS may be 
able to modulate existing synergies in order to face different locomotion conditions.

During locomotion, the muscle activation patterns are characterised by a flexible modulation dependent on 
several external and internal factors. It has been shown by Akay et al. that the absence of proprioceptive sensory 
feedback from muscle spindles and Golgi tendon organs deteriorates the coordination of walking and swim-
ming in mice89. A flexible modulation of the motor output has been found in humans undergoing changes in 
the mechanical demands of walking in both in vivo47 and in silico models96. Biewener and Daley proposed that 
mechanical effects are likely to be the predominant motor controllers at high locomotion velocities (e.g. run-
ning), since feedback delays might be destabilising9. Yet, at lower gait velocities like in walking, proprioceptive 
sensory feedback might provide superior contribution to stability control9, a concept that has been confirmed 
by scale studies on the sensorimotor responsiveness in the giraffe97. As mentioned above, we could not exclude 
some anticipatory behaviour in our participants to cope with the ground changes when walking or running on 
the US treadmill. The widening of the weight acceptance and propulsion primitives (i.e. alterations directly after 
touch down) in US running indicates an amplified anticipatory adjustment compared to walking (widening in 
the early and late swing primitives). On the one hand, appropriate anticipatory adjustments during perturbed 
locomotion at high velocity could have forced the system to rely more on the intrinsic mechanical response than 
on the sensory feedback during the stance phase. On the other hand, the widening in walking was present only 
in the two swing phases (i.e. when the system stands on one leg). This suggests an increase in the robustness of 
the swinging leg’s neuromuscular control when the contralateral limb is reinforcing the proprioceptive sensory 
feedback by exchanging forces with the ground. Thus, our findings would support the speed-dependent strategies 
for controlling locomotion hypothesized by Biewener and Daley.

In conclusion, the findings of the current study provide evidence that humans adjust their motor control strat-
egies when walking or running over uneven terrain. We found that the changes in terrain morphology decreased 
the dynamic stability of the system, resulting in a temporal rearrangement (widening) of the motor primitives’ 
shape, despite a general preservation of the motor modules’ structure. The widening indicates an increase in the 
system’s robustness to deal with the induced perturbations. These observations suggest that supraspinal processes 
might be largely involved in the control of unsteady locomotion, with possible differences in the utilisation of 
proprioceptive sensory feedback between walking and running.
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