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Abstract

In recent years, complex networks have become an increasingly popular tool to
analyse relationships and structures in high-dimensional data sets in a variety of research
fields. They have, however, rarely been applied to paleoclimate data sets, even though the
growing number of published records demands efficient tools of multivariate analysis. The
few published results that combine network methods and paleoclimate proxies are often
not robust or have high uncertainty levels, linked tothe low dimensionality, resolution and
the large uncertainties of most particulate time series.

In this thesis, I propose several ways to overcome these issues in order to obtain
reliable and quantitative results from network based tools by taking the particularities of
paleoclimate data into account. For this purpose, I present four case studies, focusing on
two time periods, the late Holocene (last two millennia) and the transition from the last
ice age to the recent warm period—the last deglaciation. These studies are all related to
the North Atlantic, a key region in multi-decadal to millennial scale climate variability.
I primarily use two methods, one of network based time series analysis named visibility
graphs and one of spatial analysis, so called climate networks.

The first case study analyses the degree of complexity in a set of terrestrial records
from Northern Europe, using the method of visibility graphs. Here, I propose an approach
of both single record and ensemble based significance testing to overcome the high rate of
false positives that is typical for the method. In this way, I show that during the last two
millennia there were multiple time periods at which the regional climate system exhibited
anomalous dynamics, possibly related to perturbations by solar and volcanic forcing.

In a second study, I propose a novel method to reconstruct integrative climate
indices, in particular the North Atlantic Oscillation (NAO) for the last two millennia. In
contrast to classical methods, this approach is not adversely affected by the non-stationary
relationship between atmospheric patterns and paleoclimate archives, but actually utilizes
it, by using network linkages between distant regions to reconstruct past multi-decadal
variability.

For times beyond the Holocene, the uncertainties in paleoclimate records increase
drastically, in particular due to the limitations of physical dating procedures. To be able
to construct climate networks for these records, I systematically study the influences of
different interpolation methods and different levels of time uncertainty in a Bayesian
framework of correlation estimation. This approach is then used to construct spatial
networks out of marine sediment records. In contrast to previous studies, the links in this
network are probabilistic estimates, incorporating many sources of uncertainty. In this
way, I am able to construct more robust and reliable networks, which still show the ocean
circulation changes that accompanied the last deglaciation.

In the last case study, I turn away from proxy data to study high-dimensional
climate networks obtained from a transient model simulation of the last 21,000 years.
Here, abrupt transitions are cleary visible in the topology of associated climate networks,
demonstrating their ability to identify patterns of changes in a complex system.

I therefore both further develop existing methods, but also propose new ways
to yield reliable results when dealing with highly uncertain paleoclimate data. The case
studies demonstrate the usefulness of network based data analysis to study patterns of
regional climate variability. Hence, this work is another step in bringing network based
approaches to a larger audience and towards a wider application of these methods.






Zusammenfassung

In den letzten Jahren erfreuen sich komplexe Netzwerke einer zunehmenden Be-
liebtheit, um Zusammenhénge und Strukturen in hoch-dimensionalen Datensitzen zu
analysieren. Im Unterschied zu vielen anderen Forschungsgebieten wurden sie jedoch
selten auf Paldoklima-Daten angewandt, obwohl die steigende Anzahl an veréffentlichen
Zeitreihen die Nutzung effizienter Methoden multivariater Analyse erméglicht. Die Resul-
tate der wenigen Studien, in denen Netzwerkmethoden und Paldoklima-Daten kombiniert
wurden, sind auflerdem gepragt von niedriger Robustheit und hohen Unsicherheiten. Dies
steht im Zusammenhang zu der niedrigen Anzahl und Auflésung der Zeitreihen als auch
den Unsicherheiten, die den meisten Paldoklima-Rekonstruktionen zu eigen sind.

In dieser Doktorarbeit schlage ich verschiedene Wege vor, um diese Probleme zu
iberwinden, indem verlésslichere, quantitative Resultate erméoglicht werden, unter ande-
rem indem die Datenunsicherheiten explizit in die Analyse mit einbezogen werden. Zu
diesem Zweck prasentiere ich vier Fallstudien mit einem Fokus auf zwei Zeitraume, das
spate Holozan (die letzten zweitausend Jahre) und den Ubergang von der letzten Kaltzeit
zur aktuellen Warmzeit, die letzte glaziale Termination. Alle diese Studien legen einen
raumlichen Fokus auf den Nordatlantik, eine Schliisselregion globaler Klimavariabilitat. Ich
beschrianke mich hierbei auf zwei Methoden, eine der netzwerkbasierten Zeitreihenanalyse,
Sichtbarkeitsgraphen genannt, und eine der raumlichen Analyse, sogenannte Klimanetz-
werke.

Die erste Studie beschaftigt sich mit dem Grad von Komplexitét in Zeitreihen aus
Nordeuropa mithilfe der Methode der Sichtbarkeitsgraphen. Um die geringe Verlasslichkeit
der Methode zu iiberwinden, schlage ich verschiedene Signifikanztests vor, sowohl fiir
einzelne Zeitreihen, als auch fir Ensembles mehrerer Proxies. Somit kann ich zeigen,
dass es in den letzten zwei Jahrtausenden verschieden Perioden gab, in denen das regio-
nale Klimasystem ungewo6hnliche Dynamiken durchlief, wahrscheinlich ausgeldst durch
Verdnderungen in der Sonnenaktivitat and Vulkaneruptionen.

In einer zweiten Studie entwickele ich eine neuartige Methode, um integrierte
Klimaindizes zu rekonstruieren, in diesem Fall die Nordatlantische Oszillation fiir die letzten
zweitausend Jahre. Wahrend der nichttstationdre Zusammenhang zwischen grofskaligen
atmosphérischen Bedingungen und den einzelnen Proxies ein grofies Problem fiir klassische
Rekonstruktionen darstellt, basiert diese neue Methode genau auf dieser Eigenschaft,
indem die Phase der NAO in Bezug zu den statistischen Abhangigkeitsstrukturen zwischen
verschiedenen Regionen gesetzt wird.

Die Unsicherheiten in Palaoklima-Daten nehmen dramatisch zu, wenn Zeiten vor
dem Holozén untersucht werden, insbesondere durch die ungenaue Datierung vieler Zeit-
reihen. Um Klimanetzwerke fiir diese Zeiten definieren zu konnen untersuche ich zunéchst
systematisch den Einfluss verschiedener Interpolationsmethoden und Unsicherheiten auf
die Bayesianische Schiatzung von Korrelationen. Dieser Zugang wird im folgenden ange-
wendet, um Zeitreihen aus marinen Sedimenten der letzten 30.000 Jahre zu studieren. Die
Verbindungen in diesen Netzwerken sind gegeben als Verteilungen, und somit kénnen
robuste und verlassliche Analysen an ihnen durchgefiithrt werden. Die so entstehnden
Netzwerke spiegeln die Verdnderungen in der Atlantikzirkulation wahrend der letzten
glazialen Termination wieder.

In einer letzten Fallstudie widme ich mich den Ergebnissen einer transienten Kli-
mamodellsimulation der letzten 21.000 Jahre und wie diese in Klimanetzwerken dargestellt
wird. Die abrupten Ubergénge in der Variabilitit sind klar sichtbar in der sich verindern-
den Topologie des Netzwerkes, was das Potential dieser Methode demonstriert, solche
Verédnderungen zu detektieren.

Zusammenfassend erweitere ich also sowohl existierende Methoden, schlage aber
auch neue Wege vor, um verlissliche Resultate auch fiir Zeitreihen mit hohen Unsicherhei-
ten zu erhalten. Diese Fallstudien demonstrieren, dass Netzwerkmethoden auch fir die
Analyse von Paldoklima-Daten niitzlich sein konnen. Sie sind daher ein weiterer Schritt
hin zu einer kiinftigen Anwendung durch eine gréfiere Anzahl an Forschenden.
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Comments on notation and
frequently used mathematical
Symbols

All the analysis presented in this thesis have been developed and conducted by me. Still,
I did not do this alone, but with help and input of co-authors and under the supervision
of Dr. Reik V. Donner. In general, I use first person singular (I), when talking about
the thesis itself, but use first person plural (we) during the chapters in which I present
results. In this way, I intend to stress the important roles that my co-authors played in
each study, but also to include the reader in the presented line of thought. The latter
applies in particular, when pointing towards specific results.

I follow two naming conventions for time in this thesis, in line with the established
ways in the respective communities. Part II deals with the late Holocene, in particular
the last two millennia. Here, we use the notation of Common Era (CE) and Before
Common Era (BCE), which correspond to AD/BC, but lack the religious connotation. As
we deal with much longer time periods in Part III, we use the notation of years before
present (a BP) or thousand years before present (ka BP).

Note that plots also differ for the two time periods, in accordance with the corre-
sponding conventions. For the Common Era, the most recent times are on the right
end of a graph, while they are on the left for all previous times.
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In addition, I want to some summarize mathematical symbols that are used frequently
in this thesis. The detailed definitions are mainly given in Ch. 2, 3 and in the Appendices
Ch. A and B. Less often used symbols are defined at the place of usage.

XVi

symbol meaning

G a graph, in this thesis used synonymously with the term
network

N set of nodes of a graph

& set of edges of a graph

N the number of nodes in a graph, N = |/

n; a specific node of a graph

A adjacency matrix of a network

k; degree of node n;

C; local clustering coefficients of node n;

T Transitivity of a network

kl-f and k?  forward and backward degree of node n;

le and CP  forward and backward clustering coefficients of node n;

X a time series {x;} = (x;,, %, ... x;,,)

p(X,Y) linear Pearson correlation between two time series X and Y

pPX,Y)yone et of MCMC posterior samples of the linear correlation coef-
ficient

{Xi} Ensembles of time series, with i = 1,..., M, M is the size of
the ensemble

v/4 fixed time window length

7 a specific time window of length w, ending at time ¢, compris-
ing the times {{”} = {¥'|0 < t - t’ < W}.

X7 the observations corresponding to a specific time window 7



1 | Introduction

“Study the past if you would define the future.”

— Confucius, unsourced

This saying, attributed to the Chinese philosopher Confucius, is invoked in countless
articles and quotation collections to emphasise the importance of knowing the past
in order to understand the present and predict future developments!. In the same
spirit, it can be applied to the field of paleoclimatology, the study of past climates, as
well. The need to understand and contextualise recent global climate changes, due to
anthropogenic influences like greenhouse gas emissions or land cover change is one
of the key motivations behind this field of research (IPCC, 2013), as is the role of past
climate changes in the flourishment and collapse of past civilizations (Diamond, 2005;
deMenocal, 2001).

These are very important aspects that will be stressed again and again in more depth
throughout this thesis. However, in my view, this quote does not only tell us something
about the motivation to study the past, but also about the nature of such an endeavour
itself. While it is used frequently, I could not find a source of origin and, hence, it is
not even clear if it originates from Confucius himself. Instead, it seems to me like a
post-humorous simplification of his much more complex philosophy of learning and
the central role the past plays in his views on the good life (for a discussion of these
aspects, see, e.g., Pocock, 1962).

The approach to condense a complex phenomenon into a much simpler structure
is mirrored in paleoclimatology as well. Here, researchers study a multitude of data,
coming from many different archives, locations and times, to find those large-scale
dynamics and physical mechanisms that actually drive climate evolution. They break

"Examples of such use can be found in Vanschoren et al. (2008), Wang (2008), and Yeats and Prentice
(1996) among many others.



1. Introduction

down complex and often conflicting lines of evidence to distil the dynamics that matter
to understand the behaviour of the Earth system, for example, by developing simple,
conceptual models of atmospheric and oceanic circulation.

This undertaking of reconstructing the essential features of past climate dynamics
therefore demands tools which are capable to structure the information from variable
sources and to detect patterns not accessible by simple visual inspection. One specific
tool that has gained great popularity in the last decades is the theory of complex
networks, with applications in ecology (e.g., Pimm, 1982), sociology (e.g., Kadushin,
2012), economics (e.g., Maluck and Donner, 2015), and many other disciplines. In
general, a network is the combination of a set of nodes and connections between these
nodes, the so called links or edges. The aim of network theory is to analyse the structure
of connections in a graph, its topology, to understand the functioning of the system that
the network represents.

Naturally, there have also been attempts to utilize network theory to understand
the vast amount of climatological data that has become available to the public in recent
years. These include in particular instrumental measurements, satellite observations
and, increasingly so, data from complex climate models. The ways in which network
theory is applied typically falls into one of two categories:

1. Networks used as a tool for time series analysis. Time-ordered observations are
transformed to a network structure to characterize the underlying dynamics or
to detect points of change in the data. Examples for these methods are recurrence
networks (Donner et al., 2010b) or visibility graphs (Lacasa et al., 2008).

2. Climate networks, in which nodes represent different geographical locations and
links are drawn based on a functional relationship between the observational
time series at these locations. In this way, the structure of climate dynamics is
thought to be revealed (Tsonis et al., 2006).

While the time series approach has been repeatedly applied to paleoclimate data
(e.g., in Donges et al., 2011a; Schleussner et al., 2015; Donges et al., 2015a), the method
of climate networks is mainly being used to analyse data from the 20" century, both on
a global (Donges et al., 2015b) as well as on regional scales (Boers et al., 2013). Therefore,
the use of climate networks has focused on climate phenomena on inter-seasonal to
inter-decadal time scales, for example the El Nifio Southern Oscillation (Tsonis and
Swanson, 2008; Yamasaki et al., 2008; Wiedermann et al., 2016b) or monsoon systems
(Boers et al., 2013; Stolbova et al., 2016). Monsoon systems are the only type of regional
climate phenomena for which climate networks have been used in connection with
paleoclimate proxy data, focusing on speleothem records covering the late Holocene
(Rehfeld et al., 2013; McRobie et al., 2015; Oster and Kelley, 2016).

Still, both methods are so far lacking wide ranging application in the field of paleo-
climate research. One reason for this could be that most researchers are not familiar
with these methods, but their high uncertainties and method specific drawbacks might
have hindered a wider use as well. Both network based approaches often have a rather
high demand on the nature of time series, in particular they often need a high number
of observations and these have to be sampled equally in time (Donner et al., 2010a).
In addition, climate networks demand a high number of observations to yield mean-
ingful results. In first applications, paleoclimate networks were hence mainly used



as visualization techniques to show similarities between single time series, due to the
low number of paleoclimate records. However, these single links are highly uncertain
and non-robust, mainly due to the low sample sizes, unequal sampling of records and
time uncertainties. These topics have been discussed before by Kira Rehfeld in her
dissertation and the publications it is based on (Rehfeld, 2013). While the method of
visibility graphs that I use in this thesis does not suffer from these problems, it shows a
high error rate, which make the results rather unreliable.

The main objective of this thesis is to develop these methods further with the
specifics of paleoclimate data in mind. My goal is to obtain methods which are more
reliable than previous ones and allow a quantitative analysis of past climate dynamics.
For this reason, I do not only focus on the method development itself, but also on
applications that bring network based methods of data analysis to the attention of a
wider audience of paleoclimate scientists.

The geographical area from which the underlying data originate gets larger through-
out the thesis, but always focuses on the Atlantic sector. This region is chosen for a
number of reasons. First, it is a key region of regional and global climate dynamics, in
particular through internal modes of variability like the oceanic Atlantic Meridional
Overturning Circulation (AMOC) or the North Atlantic Oscillation (NAO). Second, it is
one of the best studied regions with an abundance of paleoclimate time series available
and, hence, is a prime candidate for a quantitative analysis using novel methods. De-
spite these features, it has so far not received the attention one would expect for the
application of non-classical data analysis methods, something I aim to change with this
thesis.

On a temporal scale, I focus on two key time periods of the Quaternary, the late
Holocene and the transition from glacial climate into the warmer Holocene, the last
deglaciation. The choice of these time periods derives from different motivations.

The Holocene? is commonly discussed as a period of stable conditions and low
variability, even though there is much evidence on changing behaviours of key parts
of the climate system (Cronin, 2010). The motivation to study these time series with
methods derived from the study of complex systems is to test whether the assumptions
about stability are justified. Furthermore, I want to study how network structures encode
past climate variability in proxies and how climate dynamics can be reconstructed.

In contrast, the last deglaciation marks a period of massive, global climate changes,
including a warming of 5-10°C, melting ice sheets and a sea level rise of ~ 130m®. Clearly,
large scale dynamics play a role here. The main objective for analysing this time period
is to investigate how climate networks behave at times of massive changes, as the
method has only been applied to Holocene data before.

In this way, the thesis consists of three parts. The first part introduces the general
methodology, followed by two parts, each of which is dedicated to one of the two time
periods.

“The Holocene describes the recent geological epoch that started about 11,000 years ago. It is intro-
duced in more depth in Ch. 4.
*Glacial-interglacial cycles and the dynamics associated with them are introduced shortly in Ch. 7



1. Introduction

Part I: Methods Ch. 2 is restricted to reviewing methods that have previously been
developed. Additional methods, that are not as central to this thesis, are discussed
shortly in the Appendix Ch. A. These two chapters only discuss those aspects of the
methods that were introduced in previous research. Any additional methodological
development from my side is discussed in the respective chapters of applications.

As the estimation of correlations is an essential ingredient in the construction of
climate networks, it deserves detailed attention. In Ch. 3, I discuss a Bayesian framework
to estimate linear correlations and systematically test the influences of different proxy
characteristics and levels of time uncertainty on the estimation, using synthetic proxy
time series.

Part II: The late Holocene A short introduction into climate variability during the
late Holocene is presented in Ch. 4.

In Ch. 5, the method of visibility graphs is applied to an ensemble of terrestrial
paleoclimate records. Visibility graphs are capable to detect periods at which a time
series cannot be described by a simple, stationary, and linear stochastic model. In this
chapter, I try to answer the question if periods of complex dynamics exist during the
Holocene, even if no obvious transitions are visible by eye.

In Ch. 6, I introduce a new method to reconstruct index values of climate variability
for the past, which is based upon climate networks. The goal is to obtain an extended
reconstruction of the leading mode of atmospheric circulation in the North Atlantic
region, the NAO. In contrast to most classical reconstruction methods, this method
does not rely on a stationary relationship between proxies and the target variable and
is thus well suited for integrated climate variables like the NAO index.

Part III: The last deglaciation In the last part, only climate networks are used, but
in two very different settings. Following a short introduction into the last deglaciation
in Ch. 7, the probabilistic approach, introduced in Ch. 3, is used in Ch. 8 to analyse
spatial patterns of marine records of benthic foraminifera during the last deglaciation.
This is a sparse dataset with large uncertainties on many levels. It is contrasted in Ch. 9
with an analysis of monthly data from transient simulation of the last 21 thousand
years.
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2 Network approaches to
climate data analysis

A network consists of a set of nodes and a set of links (or edges) that connect pairs of
nodes. What makes networks so useful is that they enable us to investigate structures
in the relationships between single entities in a simple, efficient and mostly intuitive
way. Thus, one can identify key components of the system, study the efficiency of
a graph (e.g., traffic flow in road networks) or detect changes in the dynamics of a
complex system. In this chapter, we will just cover the basics of network theory used
in this thesis. Excellent and comprehensive introductions into the topic can be found
by Boccaletti et al. (2006) and Newman (2018).

As already mentioned in the introduction (Ch. 1), two network based approaches to
study climate variability will be used in this thesis. Before we can discuss them in detail,
we need to make some initial statements about the notation of time series analysis used
in this thesis, as is done in the following Sec. 2.1. In addition, we define what a network
is and introduce basic analysis methods in Sec. 2.2. An introduction into the method of
visibility graphs follows in Sec. 2.3 and climate networks are discussed in Sec. 2.4.

2.1 Time series and moving windows

In this thesis, a time series of length L is denoted as X = {x;} = (xtl, X, - xtL), with
observations at times (1, t3 ... t7) without prior assumptions about the nature and
temporal sampling of the series. The set of indices is denoted as T. Ensembles consisting
of M time series are denoted as {X'},i € {1,..., M}.

All applications in this thesis use moving window techniques. Here, any analysis is
conducted for different time periods separately, using only observations from the these
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(a) Regular graph (lattice) (b) Random graph (c) Complex network

Figure 2.1: Three examples for different networks: (a) a regular graph (lattice), (b) a
random graph and (c) a complex, small-world network.

time windows. We denote a time window as % and all results are assigned to the most
recent point of each time window. In this way, we ensure that all points lay in the past
of the assigned time and, thereby, no future observations influence the corresponding
results. We denote all windowed measures by a subscript t”, as it is based on the subset
of observations for which {7} = {t’'|t' € T,0 < t -t < W} For example, X,» denotes
the truncated time series X, = {xt/|t’ € tW}.

2.2 Complex networks

A network is a graph G that is defined through two sets, that of nodes ./"and that of
links or edges &, combined as G = (//, &). The number of nodes is written as N = |/]
and single nodes as n;, i € {1, ..., N}. Each edge consists of a tuple of nodes (n;, n).

Such a network can be fully described by an N x N matrix, the adjacency matrix A.
In the simplest case, it is a symmetric, binary matrix that is defined through:

1 if there is a link between nodes n; and node n;

v 0 else.

(2.1)

In most networks, self loops are not allowed, and, thus, A;; = 0 Vi € {1,..., N}. The
matrix representation allows the application of all the tools from linear algebra, which
are computationally cheap and efficient.

There are some extensions of this notion of simple networks, in particular the edges
can be weighted or directed. A weighted network is one at which each edge is assigned
a real number, for example derived from geographical distance (Newman, 2004; Barrat
et al.,, 2004). In other cases, the direction of links is important such that a link is present
from node n; to node n; but not necessarily in the opposite direction. Such graphs are
called directed networks and lead to a non-symmetric adjacency matrix. All networks
considered in this thesis are undirected, but weighted graphs are used in Ch. 8.

The structure of a network is called topology and there are some general classes of
networks to distinguish here. The most ordered case is that of a regular lattice, at which
all nodes (except boundary nodes) have the same number of connections and all links
are parts of closed loops (see Fig. 2.1a). On the other end of the spectrum are random
networks, in which links between pairs of nodes are solely determined by some value
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of probability. An example of this is shown in Fig. 2.1b. In general, complex networks
are those graphs that lay somewhere in between these two extremes in that they do
show a certain degree of stochasticity or complexity, but also exhibit structures that
cannot be explained by chance alone. A very prominent example for this are so called
small world networks (Watts and Strogatz, 1998), in which most nodes are connected by
a low number of edges, as can be seen in Fig. 2.1c.

Most real world networks fall into the category of complex networks! and one of
the goals of network theory is to find the deterministic structures in a network full of
(apparent) randomness. One way to do so is to quantify characteristics of the network
with so called network measures.

Network measures

In this thesis, we distinguish two types of network measures. If the whole network is
assigned one scalar number, this is called a global network measure. In contrast, if a
number is calculated for each node separately it is a local network measure. There are
also measures that represent both local and global characteristics, for example different
measures of centrality, but these are not considered in this thesis.

There are a multitude of methods to quantify structures in a network, but we will
only cover some of them here. For a more comprehensive overview see Boccaletti et al.
(2006).

Local measures try to quantify the importance of a specific node in the whole
network or try to quantify degrees of regional organization. The simplest, and most
used, measure is that of the network degree k, which gives the number of connections
each node has as

ki= Y Ay (2.2)
JEN
Many measures rely on higher orders of the adjacency matrix, for example the local
clustering coefficient C;, defined as

1
C = o DY AijA Ak (2.3)
LA JEN keN
The local clustering coefficient quantifies to what degree neighbours of n; are also
connected and, hence, if n; is part of a highly connected cluster of nodes, in which there
are many closed triangles.
Some global measures are simple arithmetic means over local network measures,
for example the mean degree
(k)= (UN) D" k; (2.4)
ieN
Another measure that will be used extensively in this thesis is the global transitivity,
that is similar to the clustering coefficient in that it gives the fraction of closed triangles,
but averaged over the whole network:
3 x # of triangles in graph Tr (A3)

= = 2.5
# of connected triplets in graph Z#j (Az)ij @5)

'Note that they are not necessarly small-world networks.



2. Network approaches to climate data analysis

10

A

Variable
Variable

| I

Time Time

(a) Visibility graph (b) Horizontal visibility graph

Figure 2.2: Visualization of the construction rules for (a) visibility graphs and (b)
horizontal visibility graphs, shown for one node (dark red). All neighbours of this node
are shown in light red.

with Tr denoting the trace of a matrix. A low transitivity means that links are spread
out throughout the network, which is typical for random graphs, while a high value
indicates the presence of regions with high connectivity.

There are also other measures that are not direct functions of A, like the average
shortest path length, defined in the Appendix Ch. B. In the aforementioned section all
network measures used in this thesis are summarized.

2.3 Visibility graphs

Several methods have been proposed to represent a time series as a network. Some
are motivated by dynamical systems theory and aim to quantify the topology of the
reconstructed phase space of a time series (Donner et al., 2010b). Others follow a
geometric approach, like the method of visibility graphs that is discussed here. In most
methods, the individual observations of the time series make up the set of network
nodes. The main difference lays in the dimensionality of the data and in the criteria
used to draw links between observations.

Visibility graphs (VG) have been introduced as a tool for time series analysis by
Lacasa et al. (2008) and have gained popularity in the geosciences in the last years
(Elsner et al., 2009; Lacasa et al., 2009; Telesca and Lovallo, 2012) due to their conceptual
simplicity and low requirements on data. In-depth discussions of visibility graphs and
their applications are given by Nurfiez et al. (2012) or Zou et al. (2018).

The general idea of visibility graphs is to see a time series as a landscape of values,
plotted as a bar plot. Points in this landscape are connected to each other if one can
draw a straight line between them without interference of other points, i.e. if they are
visible to each other. Mathematically, the rule of network construction is thus given as:

1 if xk<x,~+(xj—xi)ﬂ, Vk, l<k<_]
Ajj= L=t (2.6)
0 else

An example is presented in Fig. 2.2a where all neighbours of one observation are
shown.

A visibility graph is hence thought to represent the distribution of peaks and troughs
in a time series as nodes of high and low degrees. If the time series is drawn from a
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(a) The full HVG representation of the time (b) Forward (blue) and backward (green)
series. connections of one node (red).

Figure 2.3: (a) A full HVG of the same time series as used in Fig 2.2 and (b) the forward
(blue) and backwards (green) links for one node (red).

random process, these peaks and troughs would be equally distributed along the time
series, as would the intermediate values. Each deviation from such a behaviour would
hence point towards a longer-scale components in the signal. The visibility graph has a
number of properties, that make it particularly suitable for time series analysis: For
example, it is always connected, as each node can at least see its neighbours. In addition,
itis invariant under affine transformations, in particular rescaling or translations on both
axes. The latter is particularly useful when analysing time series with time uncertainties.

A computationally and analytically more accessible version of this construction
algorithm is that of horizontal visibility graphs (HVGs). Here, only those nodes are
considered connected, which are visible to each other along a horizontal line, meaning
that no value in between them is larger than any of the two. The adjacency matrix is
thus given as

1 if x,xj>x Vk:i<k<]j

else.

The HVGs are subgraphs of the corresponding VGs with a lower number of edges. An
example for a single node is shown in Fig. 2.2b. The full HVG of the depicted time series
can be seen in Fig. 2.3a.

It has been claimed that the degree distribution (and in particular its slope) of a
HVG is characteristically different for time series originating from stochastic or chaotic
processes (Lacasa et al., 2009; Luque et al., 2009) even though this has been put into
question recently (Ravetti et al., 2014; Zhang et al., 2017b). The discrimination of
stochastic time series from those that stem from non-linear, but deterministic processes
has since been one of the prime applications of this method (e.g., Liu et al., 2010; Telesca
and Lovallo, 2012; Yang et al., 2009). Others plot measures of the degree of randomness,
complexity or information content in a graph against each other and compare different
graphs on the respective planes (Ravetti et al., 2014).

An alternative approach is to focus on time-reversibility, a characteristic of station-
ary, linear, and stochastic time series, and test for this feature using visibility graphs, as
discussed in the next section.
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Testing time-reversibility using visibility graphs

A time series is called time-reversible if any multi-point statistical characteristic has
one value (in the limits of estimation uncertainty), independent of the direction of
time (Weiss, 1975). This is a necessary feature of any stationary, linear, stochastic
process (Lawrance, 1991; Weiss, 1975). Hence, a violation of time-reversibility implies
that the time series in question is either non-stationary, non-linear or non-stochastic.
Such a time series is called time-irreversible. Besides simple explanations like trends,
which can be eliminated beforehand, there are different mechanisms which can cause
time-irreversibility, for example, non-linear dynamics or linear responses to complex
forcings.

Lacasa et al. (2012) proposed that visibility graphs can be used to detect such
violations of time-reversibility by introducing a time directionality to links in the
network. For each mode, outgoing links are distinguished into forward and backward
connections, depending on if the link corresponds to an observation before or after the
node. Note that this does not mean that the network becomes a directed graph, it is
still a symmetric network, but an edge that is a forward link for one node is a backward
link for the other. Based on this classification, directional local network measures can
be defined and each node has assigned not one, but two values, one forward and one
backward in time. Example for these are the directed degrees or the directed local
clustering coefficients (Donges et al., 2013). For a single node these are defined as:

k=) A and kP =) Ay (2.8)
j>i j<i
and
1
Cf e ——— Y AjApAn and 0= ——— Y AjApAn (29
l klf(klf—l) jik>i R l kzb(kzb‘l) Jjeik<i s

Considering the whole graph, one can then compare the sampling distribution of
these forward and backward measures with each other. If these two distributions are
the same, the time series is said to be (H)VG time-reversible, otherwise it is (H)VG time-
irreversible. While Lacasa et al. (2012) have initially proposed to use the directed degree
for this test, Donges et al. (2013) argue that the time directed local clustering coefficient
shows a higher sensitivity and should thus be used. In this thesis, the forward and
backward distributions are compared using a Kolmogorov-Smirnov (KS) test (Hollander
et al., 2014) as has been recommended by the aforementioned publication. The KS-test
is a non-parametric test that compares two distributions with each other. It results
in a p-value that describes the probability, that the estimated value occurs if the two
sample distributions are the same. It should be stressed that a violation of Gaussianity
of the underlying process does not lead to HVG time-irreversibility, since the test is
independent of the probability distribution from which observations are drawn.

It should be noted that one of the main disadvantages of the HVG based test for
time-reversibility, in particular when using the local clustering coefficient, is the high
rate of false positives of the method (Donges et al., 2013). This has to be accounted for
when applying the test to multiple time series and when interpreting the results.
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Often, we are not interested if the full time series is time-irreversible, but are looking
for specific time periods which show dynamics that differ markedly from the rest of
the data. To detect these phases of dynamical anomalies, we use moving windows
and apply the HVG based test for time-reversibility to each window separately. To
ensure robustness of the results, it is advisable to follow this procedure for a larger
array of window sizes. Hence, for a single time series we obtain a plane of p-values
of the KS-test with time on the x-axis and window sizes on the y-axis. An example of
these results can be seen in Fig. 5.2.

We emphasize that there is no strict correspondence between HVG time-reversibili-
ty and general time-reversibility (see, e.g., Lacasa and Flanagan, 2015). While there are
processes that are time-irreversible that might show no signs of HVG time-irreversibility,
those that do are time-irreversible by definition.

HVG based testing for time-irreversibility has multiple advantages compared to
other methods of non-linear time series analysis. First, it is computationally cheap
and algorithmically simple and it does not require complicated ways of testing, like
surrogate tests. In addition, it has very low requirements on data, it works well with
short time series and those that are irregularly sampled. This is very important when
dealing with paleoclimate time series, which suffer from these problems in most cases.
The only condition for HVG construction is that the values are ordered in time, which
in the case of paleoclimatology is ensured by the law of superposition?. Still, indirect
effects of irregular sampling and boundary effects of short samples are still not fully
understood and require further study (Donner and Donges, 2012).

2.4 Climate networks

In 2004, Tsonis and Roebber introduced a novel method to analyse large datasets of
spatially distributed climate time series, the method of climate networks (Tsonis et al.,
2006). The general idea of this method is to give a representation of the spatial co-
variability among observations that can be analysed in an efficient and intuitive way.
When used together with moving windows it is furthermore possible to trace changes
in the co-variability structure which might point towards shifts in climate dynamics,
an extension that is called evolving climate networks. As we are always dealing with
evolving climate networks, we are mostly dropping the term evolving. If we want to
relate to a network corresponding to a specific time window, we denote the adjacency
matrix as A;; .

For an introduction to climate networks and their applications, see Donner et al.
(2017). Climate networks are a special case of functional networks, in which links are
drawn by any statistical similarity measure possibly reflecting some kind of functional
relationship between nodes. Climate networks are spatial networks (Barthélemy, 2011),
as nodes are always embedded in a geographical space, often the two dimensional
surface of the Earth, but three dimensional embeddings are also possible as discussed
in Ch. 8 for networks in the Atlantic Ocean.

“This is one of the basic assumptions of Geology and states that for any two layers in one sequence,
the deeper one is older (Tarbuck and Lutgens, 2014).

13
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In detail, a climate network is a graph-theoretical representation of the similarity
structure among a set of time series {X3 with i = 1,...,M 3. Each time series is
represented as one node and links are drawn between the nodes if the corresponding
time series are sufficiently similar to each other. Hence, the network is constructed as

A e 1 if X! and X/ are similar (2.10)
Y 0 else. '

This definition does not depend on any specific way to assess similarity, other than many
other methods of spatial analysis that are limited to linear correlation, e.g. EOF analysis
(Storch and Zwiers, 2003). Besides Pearson correlation coeflicients, there are more
complex measures of similarity, for example mutual information (Paninski, 2003), rank
based correlation (Kendall’s 7 or Spearman’s p Kendall, 1970) or event synchronization
(Quian Quiroga et al., 2002; Malik et al., 2012). For a discussion of these measures and
their differences, see Rehfeld and Kurths (2014).

It is also possible to assign a weight each link proportional to the strength of the

similarity estimate in order to obtain weighted climate networks. This is for example
done in Ch. 8.

An evolving climate network framework is a sequence of time ordered climate
networks, where each is based on the similarity matrix calculated over a specific time
window. These can be analysed either visually (Nocke et al., 2015) or by applying
network measures as discussed in Sec. 2.2.

Applications are, for example, changes in the number of triangles (Eq. 2.5), which for
recent decades are often related to the El Nifio Southern Oscillation (Wiedermann et al.,
2016b) or changes in single links that indicate changing monsoon patterns (Rehfeld
et al., 2013).

Climate networks are often contrasted with other methods of spatial analysis, in
particular Empirical Orthogonal Functions/Principal Component analysis (EOF/PCA, for
paleoclimate applications, see, e.g., Gouirand et al., 2008; Mann et al., 1998). Even though
they are all based on the similarity matrix, there are some notable differences. First,
climate networks are less restrictive in the measure of similarity, whereas conventional
EOFs are only well defined for linear correlations. The assumptions of linearity and/or
orthogonality of modes in EOF analysis might yield spurious dipole patterns that do
not have a physical correspondence (Hurrell et al., 2003; Monahan et al.,, 2009). In
contrast to most classical measures, climate networks also enable a look at higher-order
structures of co-variability, as for example via the triangle structures or betweenness
measures. A general comparison of climate networks with EOF analysis is given by
(Donges et al., 2015b).

In most cases, the method of climate networks has been restricted to data of recent
observations or reanalysis data, rarely going beyond the 20th century. Consequentally,
applications have focused on phenomena of inter-seasonal to inter-decadal climate
variability, for example the El Nifio Southern Oscillation (Tsonis and Swanson, 2008;

3Note that in a paleoclimate context, the number of nodes often varies in time, as different record
cover different times.
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Yamasaki et al., 2008; Wiedermann et al., 2016b) or the monsoon systems (Boers et al.,
2013; Stolbova et al., 2016).

When it comes to paleoclimate, applications have been rare and focused on a low
number of records related to the Asian and Australian monsoon system (Rehfeld et al.,
2013; McRobie et al.,, 2015; Oster and Kelley, 2016). This is related to some specific
problems one has to deal with when analysing paleoclimate records. First, paleoclimate
data is sparse and geographically biased to locations at which suitable archives for
a particular time and climate variable can be found (see, e.g., the map of proxies in
Rehfeld et al., 2018). Second, all methods of similarity assessment rely on concurrent
observations for all time series. This is almost never the case in a paleoclimate context
due to age-model uncertainty (Goswami et al., 2014; Trachsel and Telford, 2017) and
irregular sampling (Rehfeld et al., 2011). How this issue can be treated has been discussed
previously by (Rehfeld and Kurths, 2014). A Bayesian approach is furthermore discussed
in Ch. 3.
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3 Probabilistic similarity
estimation of age-uncertain
paleoclimate data

As discussed in the last chapter, the method of climate networks relies heavily on the
assessment of similarity among time series. If two time series are similar determines if
a link is drawn and, hence, the overall topology of any climate network. This is not a
problem for most contemporary time series, which are available at high and regular
resolution, so that any appropriate measure of similarity can be applied to them. With
reservations, this is also true for many datasets for the late Holocene, which derive
from well dated, often annually resolved archives like tree rings, varved lake sediments
or ice core records. It is for this reason that we use mainly classical Pearson correlation
in Ch. 6, which uses such data.

For earlier time periods, the picture looks more difficult. Here, sampling intervals
are often large and irregularly distributed. In addition, there is a considerable amount
of time uncertainty, coming from instrumental errors, dating uncertainty and additional
effects like the variable reservoir effect for radiocarbon dated archives (Bradley, 2015).
Therefore, a comparison is often done by eye alone (see, e.g. Zhang et al., 2008; Cheng
et al., 2012; Waelbroeck et al., 2011). For a quantitative treatment of similarity, as is
needed for climate networks, these uncertainties have to be taken into account, as they
can lead to spurious correlations either by sampling size effects or by interpolation
methods used to bring two records to the same time axis.

While different methods of approximation and similarity estimation have been
compared in previous studies (Rehfeld and Kurths, 2014; Rehfeld et al., 2011), they
were all based on classical point estimators. In contrast, we propose to use a Bayesian

17
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framework to estimate correlations, as this is most suitable to deal with the different
levels of uncertainty of not well dated paleoclimate records. From a Bayesian viewpoint,
two time series are considered to be realizations of a bivariate stochastic process and
the correlation is determined by the off-diagonal elements of the joint probability
distribution (a more formal definition is given in Sec. 3.1). Estimating this model
parameter, using methods like Markov Chain Monte Carlo sampling (MCMC), yields
posterior distributions!, that account for uncertainties that stem from sample sizes,
model error etc. that have to be estimated in more complex manners, e.g., by the Fisher
z-transform (Fisher, 1915) in classical statistics. Knowledge about data and model can
be incorporated into the prior distributions. A major advantage of this approach is, that
this also includes the structure of the covariance matrix, which needs to be positive semi-
definite to be well defined. This is not always the case when using classical estimates
together with interpolation (Babu and Stoica, 2010; Rehfeld et al., 2011), but can be
ensured by using appropriate priors in a Bayesian approach. Another advantage of this
approach is, that the assumptions of the underlying model are made explicit, which
can prevent inappropriate applications to data that do not match these assumptions.
Furthermore, (Behseta et al., 2009; Matzke et al.,, 2017) demonstrated that the Bayesian
estimation is superior to classical approaches when measurement errors are present.
As this topic has been covered extensively in these publications, we do not incorporate
these sources of uncertainty here.

Still, even Bayesian methods rely on concurrent observations for the estimation
of the model parameters from sample data and, hence, this joint distribution has to
be approximated, either by some kind of interpolation or by other methods. A fully
Bayesian framework for this problem might—and hopefully will—be developed, but is
not available up to date. In this chapter, we aim to investigate, how different methods
of approximation influence the probabilistic treatment of correlation and what role dif-
ferent levels of time uncertainty play. This is meant to set the stage for an application of
climate networks to notoriously badly dated paleoclimate records in a more quantitative
and reliable way by eliminating spurious correlations and gaining a proper estimation
of uncertainty of derived knowledge, enabling a more meaningful interpretation of
results.

Key Questions

« What uncertainty do different approximation methods to bring records to
the same time scale add to correlation estimation?

« How do different levels of time uncertainty contribute to overall estimation
uncertainty?

+ Are meaningful correlations possible, given all these uncertainties?

!Most methods Bayesian data analysis do not yield single point estimates, but rather distributions for
parameters. As these are the result of the analysis, they are called the posterior distributions. Different
from classical statistics, one can also include prior knowledge into the analysis. This happens by suggesting
distributions for all model parameters. These are called prior distributions.For an in depth discussion of
Bayesian data analysis, see, e.g., von Toussaint (2011) or Gelman (2014).
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This chapter largely follows the publication JF3. The remainder of the chapter is
structured as follows. In Sec. 3.1, the Bayesian approach to correlation estimation is
introduced. In the following Sec. 3.2 the problem of irregular sampling and common
solutions are discussed. We use synthetic data, modeled after marine sediment records.
The model by which these time series are generated is introduced in Sec. 3.3. The results
are then discussed in Sec. 3.4, followed by an application to two benthic §'80 records
from the Atlantic ocean in Sec. 3.5. All these results are then put into a broader context
in Sec. 3.6.

3.1 Bayesian correlation estimation

The aim of correlation analysis is to compare two time series X and Y. A time series X is
aset {x;, ty ;}, with observations ¥ = {x;} and observation times fy = {tx,i}, i=1,2,...,N,,
with N, being the number of observations. The observations of a time series are drawn
from a distribution P(x).

If both sets of observation times are equal ({tX,i} = {ty)i}) a joint probability dis-
tribution P(x, y) exists. The two sets of observations are statistically independent if
and only if P(x, y) = P(x)P(y), otherwise they are said to be dependent. The degree
of dependence is often quantified by different statistical measures. In general, such
measures are zero if X and Y are independent and non-zero otherwise, obtaining the
maximum value, if both time series are identical.

Some methods, like mutual information (Paninski, 2003), try to quantify similarity
from the joint and marginal probability distribution directly. These methods have the
drawback that estimation of these distribution from limited sample sizes is difficult and
can introduce considerable biases (Paninski, 2003; Papana and Kugiumtzis, 2009). If
sample sizes are very small, it is thus more suitable to employ a simple statistical model,
whose parameters can be estimated with higher confidence.

The most common model to describe P(x, y) is the bivariate normal model (BNM)

P(x,y) ~ ¥ (11, 2) (3.1)
with ,
A={0. (0} and z=( X POXIY) (3.2)
pO'Xo'y O'Y

Here, 0% and o are the variances of the corresponding time series X and Y, while
p describes the shared variability (or coupling strength). As the relationship between
the two time series is fully described by a linear term in the off-diagonal elements,
this is called a linear model of correlation. The often used Pearson correlation p? is an
asymptotically unbiased and efficient point estimator for this coefficient (Lehmann and
Casella, 1998). As we are dealing with low resolution paleoclimate data in this thesis,
we will restrict our analysis to the problem of estimating the parameters of this BNM,
considering the estimated parameter value of p as the measure of correlation.

For the estimation of statistical methods, Markov Chain Monte Carlo (MCMC)
methods have been proven to be of great value (for an overview of Bayesian and in
particular MCMC methods, see, e.g., von Toussaint, 2011; Gelman, 2014). As with all
Bayesian methods, prior probability distributions that represent previous knowledge
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about the data need to be defined before estimation. If 6 denote the parameters of a
statistical model, priors are denoted as P,,(0). They are defined for each parameter
individually.

As we would like the results of this chapter to be as widely applicable as possible, we
use very weakly informed priors, which are distributions with very broad variances. In
the following it is assumed that each time series has been normalized to zero mean and
unit variance before estimation. The mean y; and variances o; are assigned the priors
Py (i) ~ #(0,10) and Py, (0;) = HalfCauchy(2.5) (for a discussion of this distribution
see, Polson and Scott, 2012).

The only thing that we know in general about the covariance matrix ois that it needs
to be positive semidefinite. Lewandowski et al. (2009) describe a prior to efficiently
sample from the set of such positive semidefinite matrices, the so called LK]J prior,
named after the initials of its inventors. This prior introduces an additional parameter 7,
for which we set a uniform prior of P,,,() = Uniform(0, 5), again as a rather uninformed
choice.

Using a Metropolis sampler, we draw 30,000 samples and discard the first third, as the
sampler has not converged for these samples. We did not detect any non-convergence
for this sample sizes when using the synthetic data introduced in this chapter. When
applying the method to other data, convergence always needs to be checked. To save
memory and storage, we keep only 1,000 values for each pair of time series.

The MCMC sampler yields posterior probability distributions for all model param-
eters, but the only one we are interested in here is the posterior distribution of the
coupling parameter pyepc(X,Y) ~ p({p;, i = 1,...,1000}). The corresponding point
estimate p (X, Y) is given by the value of highest probability in pyrcpc (X, Y).

3.2 Ways to deal with irregular sampling and age model
uncertainties

As discussed before, two related problems make the estimation of correlation difficult
in the case of paleoclimate records: irregular sampling and age model uncertainty.

A time series is irregularly sampled if Aty j,1); = tx is1 — £x,; is different for different
i. Many paleoclimate archives have varying recording conditions (e.g., sedimentation
rate) and, thus, even regular physical sampling intervals (e.g., equally spaced depths
along a sediment core) will usually lead to irregular sampling times.

Two irregularly sampled time series X and Y are commonly unequally sampled,
meaning that the observation times are unequal, {tX’i} # {ty’i}. If this is the case, P(x, y)
cannot be estimated directly and has to be approximated.

Only a few paleoclimate archives, like tree rings or varved lake sediments, show
a reliable relative or absolute time scale. In most cases, the attribution of times to
observations is done in indirect ways, e.g., by making use of the radioactive decay
of isotopes like 4o (see, e.g., Bradley, 2015). The absolute observation times have to
be estimated using so called age models which are models that relate these physical
properties to calendar ages and extend these single age measurements to the full paleo-
climate record. There is a broad range of age models, some using simple interpolation
between aged points (Blaauw, 2010), while others build upon simulated sedimentation
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histories combined with a probabilistic approach (Haslett and Parnell, 2008; Blaauw
and Christen, 2011).

In this way, there are two ways in which age models introduce errors. First, they
all make assumptions about the archive evolution (even linear interpolation assumes
constant sedimentation rates between measurements) and, hence, all times between
age measurements come with a large degree of uncertainty. Second, most age calibra-
tion techniques come with errors, which means that any time observation cannot be
attributed to one specific point in time, but rather to a set of possible times. If one uses
a probabilistic age model, the latter source of uncertainty can be taken into account by
using different realizations of the age model.

All these issues add to the problem of unequal sampling and the need to bring two
time series onto the same time scale by some way of approximation. In this study, we
focus on three possible approaches: (i) interpolation of both variables to a shared time
axis (ii) comparing averages over time intervals, and (iii) combining observations which
are presumed to be close to each other. Specifically, the following four methods will be
used:

Linear Interpolation (LI). Missing observations are assumed to lie on a straight line
between the two neighbouring observations and, hence, the point on this imagi-
nary line corresponding to the specific time is set as a new observation.

Gaussian Kernel Interpolation (G). Here, the unobserved value is set to a weighted
mean of nearby observations in time, with close points having larger weights
than those that are farther away in time. How many observations are taken
into account depends on the bandwidth (k) of the weight function and has to be
specified in advance. As we use different bandwiths, we denote the corresponding
approximation as G(bandwidth), with the bandwidth values being scaled by the
mean sampling time of a given pair of time series.

Nearest Value (NV). In this approach, values that are close to each other in time
are considered to be concurrent. Values that don’t have any close value in the
other time series are discarded. Hence the effective number of observations is
reduced while this method does not introduce additional data points like is done
for interpolation.

Slotting (S). For this method, values are averaged over time slots for both time series
and these mean values are then compared. This is efficiently a very basic low
pass filter. This method will be denoted as S(slot width), where the slot width W
is again scaled by the mean sampling time, similar to the Gaussian kernel based
interpolation.

Mathematical details on each interpolation method are presented in the Appendix Sec. C.1.

3.3 Synthetic pseudoproxy data

For a systematic test of how different uncertainties influence the estimation of corre-
lation, we construct pseudoproxies resembling marine sediment records. Here, I only
want to discuss the general ideas that determine the different steps to generate these
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Figure 3.1: The procedure by which pseudoproxies are generated in this chapter. (a) At
first, a regularly sampled time series is generated. (b) Each value corresponds to one
layer of sediment, the thickness of each layer is independently drawn from a gamma
distribution. (c) This sequence of layers of different thickness is then sampled at regular
intervals, to mimick the physical sampling process. This yields an irregularly sampled
time series. (d) A smaller number of calendar ages are converted to radiocarbon ages
and these are then used to construct a depth-age model. (e) The result is a record with
a different temporal sampling due to the age model related error and age uncertainty.

artificial time series. A more detailed description can be found in the Appendix Sec. C.2.
The overall procedure is sketched in Fig. 3.1 and in the following paragraphs, we will
walk through all steps shown here.

A first step is to generate a pair of coupled, regularly sampled time series for which
the true correlation value is known (Fig. 3.1a). This true value is referred to as coupling
strength and abbreviated as c¢. In parallel, a sedimentation history is simulated for
each proxy individually and observations are assigned to layers of different width
(Fig. 3.1b). Sampling at regular intervals of the sedimentation record then leads to an
irregularly sampled time series of much lower resolution (Fig. 3.1c). We also simulate
the effect of radiocarbon dating (Fig. 3.1d), which leads to shifted times and additional
age uncertainty (Fig. 3.1e) as discussed in the previous section.

In our case, the pair of time series are generated using an Ornstein-Uhlenbeck
process and a linearly dependent variable with a prescribed coupling strength c. The
key parameter of this stochastic process is the drag parameter 6 that determines the
persistence structure of the generated time series. Example realizations of time series
generated by this process are shown in the Appendix Fig. C.1.

In addition to the coupling strength, there are four more model parameters for each
pair of pseudoproxy records: the length of the records, the drag parameter 6 and the
mean and skewness of the sedimentation rate yg and ys.
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Figure 3.2: Example for the estimation of p using MCMC in combination with different
approximation methods. The time series in this example is a realization of the pseudo-
proxy described in Sec. 3.3 and Appendix Sec. C.2 (drag parameter 6 = 0.85). The true
correlation value is p; = 0.3.

3.4 Results of pseudoproxy experiments

Before discussing anything else, a first look at the different posterior estimates for one
pair of pseudoproxy records in Fig. 3.2 is already instructive as it shows some general
features.

At first, we see that due to the unequal sampling, the estimated coupling is much
smaller than for the evenly sampled pair. In cases like this, with estimates close to zero,
different approximation methods can even yield different signs of the estimate. This
demonstrates the usefulness of the full posterior distribution as it puts such an estimate
into a wider range of uncertainty. Another feature of the posterior distribution is that
it becomes wider for those methods that reduce the number of observations (nearest
values and slotting). A reduction of sample size is directly translated into an increase
in estimation uncertainty.

For a more systematic investigation, we repeat this estimation of py;cp ¢ for 5,000
pairs of pseudoproxy records, with parameters randomly drawn from the intervals
shown in the Appendix Tab. C.1. Each pair of realizations is tested in four different
scenarios to represent different degrees of time uncertainty:

Equal sampling. At first, the true observation times are used which corresponds to
the assumption that Y has the same sedimentation rates as X. As samples are
concurrent, the dominant source of uncertainty is the finite sample size.

Unequal sampling/reference times. If the true ages are combined with separate
sedimentation processes, uncertainties originate not only from finite sample size,
but also from unequal sampling.

Age model median. The time axis of the age model is used, in particular the median
age model {t™}. In additional to sample size and unequal sampling, uncertainties
also come from radiocarbon calibration.
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method abbreviation = parameter settings
Linear Interpolation LI

Gaussian Kernel Interpolation (0.5) G (0.5) h = 0.5At
Gaussian Kernel Interpolation (2) G (2) h = 2At

Nearest Value NV limit 0.5A¢
Slotting (1) S(1) W = At

Slotting (2) S(2) W = 2At

Table 3.1: The different methods of approximation that are compared in this chapter,
together with the parameters used, if any. The details of these methods are discussed in
Sec. 3.2 and in the Appendix Sec. C.1.

Age model ensemble. Instead of using only the median time axis, we integrate over
the range of realizations of both age models. This is approximated by drawing
N,ps realizations from the age model and combining the resulting posterior
distributions for each ensemble member as pj;cpc * U pmcmc,- This

1=0,....Nep

adds explicit time uncertainties. Usually, a small ensemble size of Neps ~ 0(10)
suffices to yield stable results.

Given an interpolation method I a time model T and a realization i the resulting
estimate of the correlation is written as PAII\/ITC Mc,i- The point estimator for a realization i
is the value at which the posterior distribution of p indicates the highest probability. The
true value is considered to be ¢. The approximation methods and their corresponding
parameters are summarized in Tab. 3.1 and detailed in the Appendix Sec. C.1.

We analyze the performance of correlation estimates for different parameters of the
pseudoproxy generation. To do so, we differentiate between local and global measures.
The former are defined on single realizations (e.g., bias), the latter on the whole ensemble
of realizations (e.g., the root mean square error).

3.4.1 Local measures

We focus on two local measures, the bias (bias; = p; - ¢) as a measure of accuracy and
the interdecile range (IDR = Qg5 — Qs, with Q; denoting the ith quantile) as a measure
of precision. The distributions of values over all realizations are shown in Fig. 3.3, each
scaled by the true coupling strength ¢ for better comparability. In this way, a scaled
bias of -1 means, that the two time series are erroneously considered independent.
For the IDR, to scale the obtained results as well, we relate the width of the posterior
distribution to the magnitude of the real coupling. A large IDR still yields reasonable
results for large coupling strengths, but makes interpretation difficult for low coupling
strengths. As the point of maximum probability is often close to the median of the
posterior distribution, a scaled IDR of 0.5 and larger indicates, that a correlation of zero
is likely within the interval [Qs, Qos].

For equally sampled time series, the median bias is very close to zero and most
of the spread is due to finite sample sizes. The largest fraction of the bias is confined
between -0.5 and 0.5, indicating that while finite sample sizes introduce a bias, the
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Figure 3.3: Distribution (box plots) of scaled bias and interdecile range (IDR) of all
realizations for different approximation methods (left to right) and levels of time and
sampling uncertainty (different colours). The values are scaled to the coupling strength
in order to make them more comparable.

point-estimator still shows the sign of the correlation correctly. However, both unequal
sampling and age models introduce considerable additional bias. These are mostly
negative, with a tendency towards low or no correlations. Every approximation method
deviates from the true variability, which can be interpreted as additional noise on the
joint distribution weakening the effective coupling. The introduction of time uncertainty
of the age model adds yet another bias, which is however rather small as compared to
the other contributions. In general, the LI, G and NV methods show comparable results
while the slotting methods exhibit larger variability but also slightly lower bias.

For the IDR we note, that the variability decreases with the introduction of additional
sources of uncertainty for most approximation methods. This can be explained by the
fact that interpolation methods effectively introduce new “observations” and thus
the overall set of compared values gets larger, decreasing the estimation uncertainty.
Furthermore, the posterior can peak around zero if no correlation is detected, narrowing
the IDR. On the contrary, the NV and slotting methods show considerably higher IDR,
which is due to the reduction of observations and, thus, higher estimation uncertainty.

To study the effects of varying parameters we focus on the realizations related to
the lowest, middle and highest decile of each parameter. The corresponding results are
shown in the Appendix Figs. C.3 and C.4. As changes in ug and ys do not result in much
variation (not shown) we discuss here only the results for the effects of the time series
length, coupling strength and drag parameter 6.

While the median bias does not change much with increasing time series length,
its variability does reduce drastically. For short time series there are more realizations
(especially when using an age model) for which the scaled bias falls below -1, thus
indicating the wrong sign of correlation. This error is markedly reduced for longer time
series. A similar effect is seen for the coupling strength. While the mean scaled bias
does not change much, its variability increases for weak coupling. Finally, the model
parameter 6 is found to have a very strong impact on the correlation estimates. For low
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values of 6 all methods provide good estimates while for large values the introduction
of unequal sampling alone leads to a scaled bias of around -1, so that no correlation is
detected.

To understand the latter result, we recall that the parameter 6 is responsible for
the persistence of the considered Ornstein-Uhlenbeck process used for generating our
pseudoproxies. The strength of persistence can also be estimated directly from the data,
for example, via the lag-At autocorrelation of X. We estimate the latter property with
the help of the Gaussian Kernel estimator (denoted as gACF, Rehfeld and Kurths, 2014).
The results using the estimated persistence are almost identical to those using 8 alone,
with almost unbiased estimates for strong persistence and very large scaled bias for
weak persistence. This is not unexpected, as persistence is known to increase the values
of correlation among time series in general (Mudelsee, 2010). Also, a certain degree of
persistence is necessary to be able to approximate unobserved data from close data. If
there is no persistence, these close observations do not carry enough information and,
hence, approximations effectively add a random signal to the time series which reduces
correlation estimates.

By contrast, the IDR does not depend much on persistence. This results mainly
the posterior is often peaked at zero, if no correlation is detected, resulting in a low
IDR. Besides that, we see a strong decrease in IDR for increasing time series lengths
and coupling strengths. Again, the IDR is considerably larger for the nearest value and
slotting methods, while linear and Gaussian kernel interpolation yield similar results.

3.4.2 Global measures

For most of the following results the parameter ranges are discretized to a small number
of subsets and measures are then applied to these subsets. We will concentrate on two
global features, the root mean square error (RMSE) and the correct sign ratio.

The RMSE is shown in Fig. 3.4 in dependence on the persistence of the time series.
Similar figures for the effects of time series length and coupling strength can be found
in the Appendix Figs. C.5 and C.6.

Not surprisingly, we observe a decreasing RMSE for increasing persistence. The
corresponding dependence on 6 1is very similar (not shown). Furthermore, there is a
strong increase in RMSE with increasing coupling strength for all time models, mainly
related to the increasing underestimation for large coupling strengths. However, the
RMSE does not decrease much if increasing the sample size. Thus, globally, the accuracy
does not depend too much on the length of the sample, which mainly influences the
uncertainty of the estimate.

Again, the largest uncertainties are associated with unequal sampling and age model
timescales. Additional time uncertainty does not render the observed estimates much
worse.

In many cases, the matter of interest is not so much the exact strength of a correla-
tion, but its presence and sign alone. From the posterior distribution py;cpc one can
determine the sign by introducing a threshold level @ and assign a positive (negative)
sign if at least a fraction 1 - « of the posterior sample values are above (below) zero. If
none of the two is the case, we say that the estimator is indifferent. At first, we study
how well the different methods can detect the presence or absence of correlation in
general. For this, we examine the receiver operating characteristic (ROC), in which the
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Figure 3.4: The influence of persistence on the root mean square error (RMSE), shown
for different approximation methods (different panels) and different levels of time and
sample uncertainty (different colours).

true and false positive rates are plotted against each other for different threshold values.
The resulting ROC curves are shown in Fig. 3.5. While all approximation methods
perform similarly well in the case of unequal sampling alone (left panel), the curves
spread out when adding age model uncertainties (middle and right panel). Here, the
Gaussian interpolation outperforms the other methods, in particular when using age
model medians and ensembles.

Given a subset of realizations, we can study the fraction of realizations that show a
particular sign as shown in Fig. 3.6 and the Appendix Figs. C.7 and C.8. In the case of
weak coupling (below 0.2) about 50% of the estimates are indifferent, but the correlation
is mostly detected successfully for stronger coupling (Appendix Fig. C.7). This is even
true in ~ 85% of the cases when including age model uncertainties.

In Fig. 3.6 and the Appendix Fig. C.7 and C.8 we see that the rate of correctly
identified signs in the presence of age model errors and uncertainty is lower for the
slotting and nearest values methods than for the interpolation methods. In the Appendix
Fig. C.8, a similar pattern is seen for the dependency on the time series length (and
thus effectively the sample size). Not surprisingly, the sign is determined correctly
more often for large sample sizes, but there seems to be a saturation after about 200
observations (more than present in many paleoclimate records).

Again, the persistence seems to be a good indicator of the performance of the estima-
tor as seen in Fig. 3.6. For persistent time series, the sign is determined correctly in most
cases, independent of sampling or time uncertainties. Low or negative autocorrelation
is associated with a much lower fraction of correct signs.

When it comes to the determination of the sign, most methods agree reasonably
well with each other, as can be seen in the Appendix Fig. C.9. Here, we show the fraction
of realizations and time models for which pairs of approximation methods indicate the
same sign. The highest agreement is between the LI and G (0.5) with 91%. These are
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Figure 3.5: The receiver operation characteristic (ROC) curves for different levels of time
uncertainty (from only unequal sampling on the left, to age model error in the middle
and additional age model uncertainty in the right panel) and different approximation
methods (shown as different colours). The dotted line is the corresponding ROC curve
for equally sampled time series, for which limited sample size is the main source of

uncertainty.
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Figure 3.6: Fractions of correctly, wrong and indifferently estimated signs of correlation
in relation to the persistence of the time series, shown for different approximation
methods (subplots) and different levels of uncertainty (marked by colours).



3.5. Real-world application

also the two methods which are in highest agreement for the equally sampled time
series. In general, most of the disagreement is due to one method showing a significant
correlation while another one is indifferent. Disagreement on the sign of correlations
is extremely rare. The linear and Gaussian kernel interpolation seem to perform better,
as the percentage of indifferent estimates is lower than for all other methods.

3.5 Real-world application
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Figure 3.7: Application of the probabilistic correlation estimation discussed in the text to
a pair of marine benthic §'80 records from the South (MD07-3076Q) and North Atlantic
(MD95-2037). (a) Different realizations of the age model for both proxies, adjusted
by that time lag at which mutual correlation is maximal. (b) Filtered values used to
estimate the correlation for each window. Here, the low frequency parts are removed
using CEEMDAN decomposition (see main text and Appendix Sec. A.2). (c) Moving
window correlation when only using the median of the age model ensemble. Shown
are the median value and the interdecile range. The length of each line represents the
duration of the time window. Those windows for which more than 95% of the pycrc
samples are larger or smaller than zero are shown in blue, the rest in gray. (d) Same as
for (c), but for correlations integrated over a number of realizations of the age model.
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To demonstrate the usefulness of a Bayesian estimation of correlation, we take a
look at two marine records of benthic §'80 values from the Atlantic region. The cores
are MD07-3076Q from the South Atlantic (Waelbroeck et al., 2011) and MD95-2037
from the North Atlantic (Labeyrie et al., 2005), both covering the last 30,000 years. In
general, 5180 is considered to be a proxy for both water temperature and salinity, but
as the bottom water temperature is close to zero benthic §'80 is mainly interpreted as
predominantly representing salinity, which, on longer timescales, is mainly a function
of the global sea ice volume (Maslin and Swann, 2006; Bradley, 2015).

Hence, these two records are generally thought to be correlated up to a possible
lag due to reservoir effects and slow mixing of the ocean water. Both are radiocarbon
dated and we construct the depth-age model as used for the pseudoproxies (detailed in
the Appendix Sec. C.1) to have comparable age uncertainties. We use our own depth-
age model, because both records were published using different, and now outdated,
calibration curves, which show a large deviation of ~ 400a at the time of the deglaciation
(~ 15 ka BP) from the more recent calibration curve Marine13 (Reimer et al., 2013).

MD95-2037 has a reported reservoir age effect of ~ 400a, while MD07-3076Q has
been reported with variable reservoir effects between 1 ka and 3 ka. In this study,
we use a relative time axis, by aligning the two records such, that the correlation is
maximized, a procedure common in lead-lag estimation (see e.g. Chang et al., 1997,
Klein et al., 1999; Boker et al., 2002). In this way, we do not include any reservoir effect
into the age model. Any detected lag of the order of 1 to 3 ka could thus result from
such reservoir effects.

For simplicity, we use linear interpolation in this application. We find a lag of 2100
years to yield a maximum correlation value. Nevertheless, the correlation posteriors are
very similar for all lag values between 1.5 ka and 3.1 ka and, thus, the lag relationship
shows a considerable degree of uncertainty.

In Fig. 3.7a one can see different realizations of the age models of the two records,
adjusted for the mutual lag showing the maximum correlation. Even though both
records exhibit a marked drop in §'80 during the deglaciation, the shape of the transition
is considerably different. Also, it is difficult to assess the similarity at shorter timescales.
Waelbroeck et al. (2011) discussed, that benthic §30 records might not be correlated at
sub-millennial timescales.

To concentrate on different time-scales of interest we apply Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN Torres et al., 2011, dis-
cussed shortly in the Appendix Sec. A.2)) to each time series and discard those intrinsic
mode functions (IMFs) for which more than 10% of the instantaneous wavelengths are
larger than 5 ka. This ensures, that no overlying trends and low-frequency variability
alter the results obtained in the following.

For the time series reconstructed by superposition of the higher-frequency IMFs,
the maximum correlation for the age model median and the age model ensemble are
reached at lags of 2.1 ka and 2.05 ka, respectively, comparable with the results for the
original unfiltered records.

Having adjusted the two decomposed time series on a shared timescale, we now
use sliding windows of 5 ka length and mutual overlap of 2.5 ka to study changes in
co-variability over time. The results are shown in Figs. 3.7c, d.

For the age model median, we see significant correlation over most of the last 22
millennia. Only at the beginning of the Holocene and towards the end of the records
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(probably related to a lower number of samples) there are no significant correlations.
If we take age uncertainty into account we generally find a similar pattern, but the
estimator is now indifferent for one more time window. The uncertainty in observation
times is rather small in our age model as compared to those produced by other age
model algorithms like Bacon (Blaauw and Christen, 2011). Hence, when using such
models it is possible that less time intervals will show significant correlations. We thus
decided against using these more elaborate age model algorithms, as this would make
comparison with the previous results difficult. Furthermore, we consider our age model
to sit in between very simplistic and rather complex age models and, hence, the results
can be more directly related to other models.

3.6 Conclusions

The aim of this chapter was to provide some guidelines for the estimation of correlations
between (marine) paleoclimate records, in particular when dealing with unequal sam-
pling and age model uncertainties. The main tool has been the probabilistic (Bayesian)
estimation based on a bivariate normal model. While most results might not be surpris-
ing, they have rarely been addressed explicitly in previous works.

In cases of weak coupling, different approximation methods can show even different
signs of the estimated correlation, but these are rarely significant. Thus, when different
approximation methods with different parameters yield different signs for the point
estimator it is crucial to take estimation uncertainty into account. This will probably
lead to a non-significant correlation. Still, in most cases, the correct sign of a correlation
can be detected even in the presence of a large bias of its absolute value.

Those methods which reduce the number of observations like slotting tend to
highlight low-frequency variability and trends. In comparison, interpolation seems to
be a better strategy to approximate the joint probability distribution. The best results
were obtained using linear interpolation or a Gaussian kernel with small bandwidth. For
small bandwidths, the directly neighboring observations dominate the approximation
of missing values and thus these two methods are expected to be very similar. Our
findings agree with other studies, that have reported the Gaussian kernel estimator to
be superior (Rehfeld et al., 2011; Rehfeld and Kurths, 2014), even though the difference
to linear interpolation is small. Hence, it seems reasonable to prefer the Gaussian kernel
estimator with small bandwidth over other methods.

The characteristics of the time series under study are in many cases more important
than the choice of the particular interpolation method. The most important features
are the coupling strength, number of observations, and persistence of the signal.

The first factor is generally not accessible for real-world data, but the other two
can be estimated. As mentioned in Sec. 3.4 persistence has been seen as a problem to
correlation estimation due to its tendency to induce spuriously high correlations. Still,
it is of advantage in the case of irregularly sampled time series, as it allows inference
from neighbouring points on unobserved data.

Thus, in real-world applications, one should check, if a time series shows enough
persistence to perform meaningful interpolation. While the sample length does not
affect the error much, it increases the estimation uncertainty. Most time uncertainties
mainly lead to indifferent estimates, but rarely produce false signs of correlation. If one
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finds a significant correlation between unequally and age-uncertain time series one can
hence accept them to reflect features of the time series. Large persistence nevertheless
yields the same problems as in the case of regularly and evenly sampled time series.
Thus, if a significant correlation is found, it should be investigated if it might be due to
low-frequency variability (if the latter is not the time-scale of interest).

In most of the pseudoproxy experiments in this study, the additional error from
time uncertainty has been much smaller than those originating from unequal sampling
and age model calibration. From our real-world example we can see that many features
are similar in both cases, even though sometimes significance is lost. In the past, only
few authors have published explicit age uncertainties for each observation. In these
situations, it might still be preferable to use the published age model, as a bad age model
with quantified time uncertainties might introduce a larger error than ignoring time
uncertainties.

We have finally discussed an example of two benthic §'30 records, which are
generally thought to be correlated on at least millennial timescales. Using the Bayesian
estimation of correlation together with Gaussian kernel based interpolation we have
seen that when adjusting to one time-scale we find similarities even at the sub-millennial
scales. These correlations are not stationary and change over time, being significant
only during some periods. Taking uncertainties into account can be helpful in assessing
if two time series are similar to each other. In summary, we therefore conclude that it
would be useful if data publishers would also report the age uncertainty given by their
age model to each observation to make more accurate estimations possible.
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4 Overview: Holocene
climate variability

The term Holocene describes the current geological epoch that has started about 11.5ka
BP!, following the retreat of ice sheets, sea ice and mountain glaciers all over the world.
The Holocene marks the latest in a series of warm periods, the so called interglacials. It
differs from most of these other periods in being remarkably long lasting, similar only
to a low number of previous episodes, like Marine Isotope Stage 11.2

Understanding Holocene climate variability is a highly crucial undertaking, as it
provides the context for recent anthropogenic warming, induced by greenhouse gas
emissions, land cover change, etc. In order to quantify the effects of anthropogenic in-
fluences, we need to understand the different roles of forcing and feedback mechanisms
in the past. Besides external forcings, there are also internal modes of variability, in
particular in the atmospheric and ocean circulation. Understanding their variability
and modes of operation under more or less constant Holocene background conditions
is crucial to make statements about future climate change. These tasks demands proxy-
based paleoclimate reconstructions, as the instrumental measurements do not cover
multi-decadal and longer time-scales well.

The transition into the Holocene was accompanied by a drastic reduction in climate
variability, with the largest changes in the mid- and high-latitudes, in particular in
Greenland (Rehfeld et al., 2018). These features have led to the long lasting belief that
the Holocene is a period of exceptional stability, linked to the rise of civilizations, in

'Remember that we use the ka BP convention for all times that are much before the year 0 CE.
“There are various detailed introductions to Holocene climate variability, for example by Cronin
(2010), IPCC (2013), and Wanner et al. (2008), on which this chapter is largely based.
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particular in the Fertile Crescent and Europe (deMenocal, 2001; Diamond, 1997). In
contrast, episodes of unstable climate conditions have frequently been accompanied by
cultural decline (Coombes and Barber, 2005; Marcott and Shakun, 2015).

This view has been challenged in recent years and there is now compelling evidence
that many key components of the climate system evolve—in terms of both gradual
changes as well as abrupt shifts—during the Holocene. Examples for such changes
are a southward shift of the intertropical convergence zone (ITCZ), a weakening of
the monsoon systems and increasing intensity of the El Nifio Southern Oscillation
(ENSO, see, e.g. Cronin, 2010). Still, the amplitude and rate of changes are much lower
than those of millennial-scale variability during glacial times and, therefore, Holocene
climate variability is considerably harder to assess.

4.1 Sources of climate variability during the Holocene

In general, climate variability is attributed to either external forcings or to internal
variability. External forcings are boundary conditions to which the climate system
responds, while internal variability can develop without any external interference. A
prominent example for external forcing are the variations in incoming solar insolation
due to orbital changes that shape the glacial-interglacial cycle (see, e.g. Paillard, 2015,
and Ch. 7). Internal variability is often connected to patterns of ocean or atmospheric
circulation like the Atlantic Meridional Overturning Circulation (AMOC), the North
Atlantic Circulation (NAO) or ENSO.

Still, the two mechanisms cannot be distinguished as internal variability and external
forcings are connected via feedback mechanisms. This is illustrated by the complex
patterns of forcings and feedback loops that explain the glacial terminations (see Ch. 7)
or the tendency of the NAO towards a positive phase in the years following a volcanic
eruption (the NAO is discussed in more detail in Sec. 6.1).

The dominant external forcings during the Holocene are variations in solar activity
and explosive volcanic eruptions, which are commonly made responsible for much of
the Holocene climate variability (up to 64%, according to Crowley, 2000).

In contrast to glacial time-scales, solar insolation varies only slightly (in the order
of permills) during the Holocene, mostly related to cyclic variations in solar activity.
Still, this variability is visible in many paleoclimate proxies and minima of solar activity
are related to extended cold periods, for example during the 16" century CE, which is
related to the solar Maunder minimum. A physical understanding of how such minor
solar variations can lead to changes in surface temperatures of this magnitude is largely
missing, but it is clearly visible in climate models as well (Haigh, 1996; Ammann et al.,
2007).

The second source of external forcing are explosive volcanic eruptions that inject
large amounts of aerosols into the atmosphere (Robock, 2000). These aerosols block
sunlight and, in this way, lead to a substantial stratospheric heating and surface cooling.
If such an eruption occurs in the tropical region, it reduces the meridional temperature
gradient and consequently changes the atmospheric circulation, in particular over
the Northern Hemisphere. Volcanoes have long been known to influence the climate
system, but normally their impact is of smaller magnitude and only lasts for a couple of
years following the eruption. Still, very large eruptions or periods of clustered eruptions
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Figure 4.1: Northern Hemisphere temperature anomaly reconstructions for the late
Holocene. This plot uses the reconstructions by Christiansen and Ljungqvist (2012),
D’Arrigo et al. (2006), Hegerl et al. (2007), Ljungqvist (2010), Mann et al. (2008), Moberg
et al. (2005), Shi et al. (2013), and Wilson et al. (2016).

might trigger climate changes on much longer time scales (Crowley, 2000; Biintgen
et al.,, 2016).

Both solar activity and volcanism are connected to internal dynamics in various
ways, mostly through changes in the radiation balance, for example through heat flux
reorganization, land-cover and vegetation changes or albedo related feedbacks. One
particular example of such an influence is the impact of volcanic eruptions on the NAO.
The increased meridional temperature gradient in the years following an eruptions
strengthens the mid-latitude westerlies and, therefore, causes a preference for a positive
NAO phase (Robock, 2000).

4.2 The last two millennia or the Common Era

The period of interest in this part of the thesis are the last two millennia of the Holocene,
also called the Common Era (CE). This is a key period in many recent discussions, as it
provides the context in which anthropogenic climate changes are commonly discussed.
This is due to the fact that external boundary conditions are close to today’s and,
hence, the range of natural decadal to centennial-scale climate variability is accessible.
In addition, this is a time period for which a high number of well-dated and high-
resolution paleoclimate proxies are available, mainly in the form of tree rings, varved
lake sediments, ice cores and corals (Bradley et al., 2003). Even for this period, however,
there is no consensus about the extent and causes of climate variability. This can be
seen very clearly by the selection of Northern Hemisphere temperature reconstructions
shown in Fig. 4.13.

*Due to its inconsistency, this type of plot has been coined a spaghetti plate (Frank et al., 2010).
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There are nevertheless some key periods for which most reconstructions agree,
marked by either anomalously warm or cold temperatures. These episodes are often
connected to changes in other climate variables as well and constitute the subdivision
of the Common Era. They are introduced in the next paragraphs.

Roman Warm Period (RWP) The centuries around the year 0 CE were characterized
by a warm and humid climate in Central and Western Europe (Luterbacher et al., 2016).
This period coincides with the height of the Roman Empire and thus has been called
the Roman Warm Period (Bianchi and McCave, 1999; Biintgen et al., 2011). Due to the
lack of high-resolution records, the spatial extent of this period is not well known, but
there is evidence for similar conditions at other regions, for example Florida (Wang
et al., 2013) and China (Liu et al., 2006).

Late Antique Little Ice Age (LALIA) This period has recently gained attention,
mostly due to an increased number of high-quality proxies of volcanic forcing. While
an extreme volcanic eruption around 536 CE has long been suspected (see e.g. Stothers,
1984), there has not been much knowledge about this time. This changed when a cluster
of strong volcanic eruptions between 536 and 547 CE was found (Sigl et al., 2015) which,
together with decreasing solar activity might have led to a cold period that lasted for
about a century until 660 CE (Buintgen et al., 2016). These climate changes have been
connected to societal changes and migration in Europe (Biintgen et al., 2011).

Medieval Climate Anomaly (MCA) The Medieval Climate Anomaly (previously
called Medieval Warm Period), is most pronounced as a period of relatively warm
temperatures in Central and Northern Europe lasting from about 950 CE to 1250 CE
(Hughes and Diaz, 1994; Bradley et al., 2003; Mann et al., 2009; Luterbacher et al., 2016).
Temperatures in the Northern Hemisphere are thought to be comparable to those of
the late 20t century. Still, this temperature signature is not the same globally, with
colder than modern temperatures in other regions, for example over Central Asia or
large parts of the Southern Hemisphere (Mann et al., 2009).

The MCA has been related to an extended period of stable atmospheric conditions,
possibly caused by a tendency of the North Atlantic Oscillation towards its positive
phase (Trouet et al., 2009; Ortega et al., 2015; Bradley et al., 2016), but also to the low
number of large volcanic eruptions (Sigl et al., 2015) and the lack of strong solar minima
(Steinhilber et al., 2009).

Little Ice Age (LIA) The Little ice age comprises the centuries of colder temperatures
that followed the MCA. Due to its complex spatial patterns there is no consensus about
the exact timing of the LIA. While some authors propose a start already in the 13
(Miller et al.,, 2012) the peak period was likely between the early 16" and the 19t
century. In many areas of the Northern Hemisphere, it was characterized by cold
winters and strong precipitation, which is thought to have had an extensive influence
on European societies (Fagan, 2000).

The LIA is now often considered not as a single period, but rather a sequence of
cold periods. These correspond to different minima in solar activity, for example the
Sporer minimum in the 15t century, the Maunder minimum in the 17t century and
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the Dalton minimum around 1800 CE. Clusters of explosive volcanic eruptions have
likely contributed to the cold temperatures in many regions (Briffa et al., 1998; Crowley,
2000; Ammann et al., 2007; Miller et al., 2012). Examples for such clusters of eruptions
are the eruptions of Mt. Samalas and others in the 1250s, that of Kuwae in the 1450s
and the large eruption of Tambora in 1815. The latter caused the year 1816 to be called
the year without summer in Europe, due to the large reduction of incoming sunlight
caused by ash and aerosols in the atmosphere (Luterbacher and Pfister, 2015).

It should be noted that while these intervals are found in most reconstructions
of Northern Hemisphere temperatures, there is no agreement on the temporal extent
of each period. Their names demonstrate a Eurocentric viewpoint, as they are rarely
global signals, but most pronounced in reconstructions of European temperatures. As
this region is the region of interest in this part of the thesis, we stick to these terms,
while keeping in mind that they are not representative for other regions of the world.
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5 Dynamical anomalies in
terrestrial paleoclimate
records

Before looking into co-variability between records, it is useful to better understand the
characteristics of paleoclimate records. In particular, we are interested in the question
if and to what degree paleoclimate records from the late Holocene can be described
by a simple linear, stochastic model, and, if this is not the case, what kind of dynamics
might lead to anomalous signals in the archives.

Even though the climate system is a high-dimensional and deeply non-linear system,
many climate variables can be described as stationary, linear, stochastic processes (e.g.
autoregressive processes), when looking at annual and longer time-scales. While short
time scales are dominated by the intrinsic chaotic dynamics of the atmosphere, these
are aggregated to a more stochastic behaviour on longer scales, modulated by slower
processes of the climate system, in particular the ocean (Bigg et al., 2003). This is not
the case anymore if large-scale reorganizations of the (regional) climate system occur,
possibly related to non-linear transitions caused by changes in external parameters
(Strogatz, 2014). These types of transitions will be accompanied by transient dynamics,
represented in the mean state or variability of a time series (Donges et al., 2011a;
Schleussner et al., 2015; Donges et al., 2015a). Hence, any deviation from stochasticity
might point towards dynamical changes in the climatic conditions.

The method of (horizontal) visibility graphs, introduced in Sec. 2.3, has recently
been demonstrated to be a particularly useful tool for such an analysis of real-world
data (Donges et al., 2013). In particular, it has been successfully applied to study the
transition behavior of the North Atlantic subpolar gyre between the MCA and LIA
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(Schleussner et al., 2015).

In the present chapter, we use this method to systematically test for time-reversibility
in an ensemble of terrestrial paleoclimate records spanning the last millennia. Time-
reversibility is a necessary feature of linear stochastic processes and, hence, a lack
thereof points towards more complex dynamics. In this way, we test if the reported
anomalies in Atlantic ocean circulation were accompanied by similar changes in at-
mospheric dynamics. One particular ambition is to overcome the large rate of false-
positives, that has prevented a widespread use of this method so far. We propose
that only those times should be regarded as anomalous that show consistent time-
irreversibility over an ensemble of records. In this way, we differ from previous studies,
which have focused on single records. One way to obtain such a consistent and reliable
detection is introduced in this chapter, which largely follows the publication JF1.

Key Questions

« How can we obtain reliable signatures of anomalous climate dynamics using
horizontal visibility graphs?

+ Are there any periods of anomalous dynamics in Fennoscandia during the
last two millennia?

The remainder of this chapter is organized as follows. In Sec. 5.1, we present the
data used in our analysis and in Sec. 5.3, the results of our analysis are presented, further
discussed in Sec. 5.4. We end the chapter with some concluding remarks in Sec. 5.5.
Additional results supporting our main findings are provided in the Appendix Ch. D.

5.1 Data selection for this study

While the North Atlantic region is sensitive to external forcings, such as solar activity
and volcanism, it also exhibits large-scale phenomena of internal variability, like the
North Atlantic Oscillation (NAO) or the Atlantic Multi-decadal Variability (AMV). These
phenomena play a key role for understanding climate dynamics in large parts of the
Northern Hemisphere (as discussed in detail in the next chapter). As such, the area has
been extensively studied and there are few other regions in the world with such a dense
data coverage. These include long, high-resolution and well-studied tree ring (Helama et
al., 2009; Gunnarson et al., 2011; Esper et al., 2012; Melvin et al., 2013) and lake sediment
records (Tiljander et al., 2003). Many of these time series have been used in recent
high-resolution, regional (PAGES 2k Consortium, 2013; McKay and Kaufman, 2014),
hemispheric (Ljungqvist, 2010) and global (Mann et al., 2009) paleoclimate temperature
reconstructions.

Site-specific processes and archive-specific restrictions to the recording of climate
variations lead to different signals, even in high-resolution proxy records from the
same region. This makes it difficult to obtain a coherent picture of the regional climate
dynamics based on individual records alone. Rather, a paleoclimate record is a projection
of the regional climate state on a variable of the recording archive (e.g. tree ring
width). This variable is then assumed to be (linearly) related to one specific climate
variable (e.g. summer temperature). Thus, records that are affected by similar regional
conditions should in general share most of the climate dynamics, even though their
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Figure 5.1: Geographical locations of the paleoclimate records used in this chapter. Tree
ring records are shown in red, lake sediments in blue. The details of these records are
presented in the Appendix Tab. D.1.

specific variability might differ. Although some of these assumptions might be up for
discussion, we accept them as necessary approximations to the possibly more complex
real-world processes. Hence, we consider paleoclimate records from close locations to
be interrelated, especially on decadal to centennial time scales.

From this considerations, we select an ensemble of terrestrial paleoclimate records
from Fennoscandia and Iceland, which is shown in Fig. 5.1. The (detrended) individual
time series are shown in the Appendix Fig. D.3 and further details on the records
are provided in the Appendix Tab. D.1. Notably, we only consider annually resolved
paleoclimate records with at least 300 data points during the last two millennia. Hence,
any problems related to uneven sampling can be avoided.

5.2 Ensemble based testing for HVG time-reversibility

The general concept of visibility graphs and how they can be used to study time-
irreversibility has been introduced in Ch. 2. Here, we want to introduce, how the
method can modified to achieve more robust results.

Donges et al. (2013) found that the KS-test is very sensitive, but leads to a relatively
high false positive rates (i.e. finite sample tests showing HVG time-irreversibility in
cases, which are analytically HVG time-reversible). To take this into account, we insist
on coherence of a signal in multiple ways. First, for a single record, the p-value has to be
below the threshold for time windows of different size and for many consecutive time
windows. Second, only those signals are considered that are present in a significant
portion of the proxies. In this way, we aim to minimize the effect of spurious signals
and local dynamics.
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5.2.1 Single record test

Large-scale trends, coming from multi-centennial dynamics, can also lead to time-
irrversibility. Therefore, we subtract an exponentially smoothed moving average from
each time series with a window length of 1 ka. The resulting detrended time series are
displayed in the Appendix Fig. D.3.

For single records, we follow the procedure outlined in Sec. 2.3. Hence, we obtain a
two-dimensional field of p-values of the KS-test indexed by time and window size. One
example of such a plane is shown in Fig. 5.2.

In the following, we refer to a contiguous region with significant p-values as a patch,
shown as contoured areas in Fig. 5.2. A patch has to fulfill at least one of the following
criteria to be considered consistent:

(i) The average fraction of windows with significant p-values is at least equal to 1/3
of the temporal extent of the patch (in our case, this means that on average more
than 33 window sizes simultaneously show HVG time-irreversibility).

(ii) The patch’s size is larger than the minimum size of a patch which fulfills criterion
(i) over a time span of at least 50 years (in our case, this means that the patch
consists of at least 33 x 50 = 1650 significant p-values of the individual KS tests).

The first criterion allows for fragmented areas, while the second one aims at patches
with a diagonal structure in the time-window size plane.

Time-irreversibility is a feature that does not depend on the sign of a time series.
In contrast, Eq. (2.7) does not share this invariance. Hence, a time series X could be
significantly HVG time-irreversible but -X is not. Furthermore, some archives (in
particular lake sediment records) are negatively correlated to the associated climate
variable (e.g. temperature). If this is the case, one might prefer using the negative time
series -X even though these negative proxy values do not have a physical meaning
(as is the case for example for negative varve thickness). To take this ambiguity into
account, we perform the analysis for both signs and consider a time period to be HVG
time-irreversible if there is a consistent patch for either one of the two, adjusting the
assumed threshold value accordingly.

5.2.2 Group-wise significance testing

As discussed before, a paleoclimate record is a composite of both a regional or global
climate signal and local effects. To filter out those signals that are purely local, we
concentrate on intervals at which a consistent pattern of HVG time-irreversibility over a
larger region is visible. The implicit assumption beyond this integration of information
from different records is that all of them are subject to similar conditions, both in
regional inter-annual climate variability as well as external forcings like explosive
volcanic eruptions or changes in solar activity.

For this purpose, we introduce a group wise test for which we need to estimate the
probability of a false positive, meaning that the forward and backward distributions
are significantly different, even though the underlying process is time-reversible. This
probability is in the following denoted as P. As a conservative estimate of this value,
we use the significance threshold for the KS-test o (= 0.1 in this study), even though the
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Figure 5.2: The results of the test for HVG time-reversibility, applied to one of the
records used in this chapter (Finish Lapland). The upper left two panels show the results
for the time directed degree and local clustering coefficients for the time series X and
the upper right panels for the sign flipped time series —X. Areas contoured in blue are
those for which the p-value of the KS-test is below 0.1. The lower two panels show
the time series together with the detected intervals of HVG time-irreversibility for the
degree (top) and local clustering coefficient (bottom). The much higher sensitivity of
the clustering based test is clearly visible.

actual probability might be much below this value. If the probability is assumed to be the
same for both X and -X, the joint probability of a false positive is P; = 1-(1- P)?. Here,
we consider Pto be independent for both signs, even though they are generally strongly
correlated. This is again a conservative assumption, as the joint value for correlated
probabilities would be considerably lower. Recall, that HVG time-irreversibility is a
sufficient, but not necessary criterion for general time-irreversibility. A less conservative
approach is not guaranteed to achieve less false negatives but provides higher confidence
in the obtained signals.

We want to calculate the number of records S, for which the probability of a signal
by chance alone is less than a predefined threshold value «,,. This can be achieved
using a one-sided binomial test to determine a multi-record significance level. As the
number of records N(t) varies with time, the resulting significance threshold

N(t)
. N\ N()-k
S,(t) = Pk(1-p; < 5.1
0 %{}{Z( e 2

is time dependent. Only those times are considered, at which the number of records
that show simultaneous patches with individually significant HVG time-irreversibility
is higher than the corresponding S,(t). In turn, if nyps(t) out of N(¢) do show a signal
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at a given time t, we can calculate the probability that this number occurred by chance
as

NGO N .
=Y ( I(:)>P]’F(1—PJ-)N(0 . (5.2)
k=n,ps(t)

This constitutes the group-wise p-value and we are interested at times at which p(t) <
Q-

5.3 Episodes of HVG time-irreversibility in Northern
Europe

The single and multi-record analysis presented in the previous section is applied to the
ensemble of 16 terrestrial paleoclimate records discussed in Sec. 5.1. The individual
results for each time series are shown in the Appendix Fig. D.1 and those for the sign
flipped time series are depicted in the Appendix Fig. D.2. We observe that HVG time-
irreversibility normally occurs over a sufficiently large, consistent area, though the
temporal extent of these intervals varies. By attributing significance to the full patch,
we take this time uncertainty explicitly into account. The (detrended) raw data is shown
in the Appendix Fig. D.3 together with the intervals that are considered significantly
HVG time-irreversible for each record. In general, there is a large variety of patterns.
While some records show many periods of HVG time-irreversibility, others seem to be
sufficiently described by a linear, stochastic model and show almost no signals. These
figures highlight the need for the group wise testing, as some of these many intervals
are certainly the result of an overly sensitive test.

The results of the multi-record significance test are shown in Fig. 5.3 together with
two significance levels of 5% and 10%. For comparison, we have added two reconstruc-
tions of temperature for the Arctic and European region provided by Luterbacher et al.
(2016) and PAGES 2k Consortium (2013) respectively. Many of the records used in this
chapter have also been included in the Arctic reanalysis, but as our study region lays at
the border of the two regions, a similarity to the European climate variability is also
expected.

At most times, at least one or two of the records show significant HVG time-
irreversibility. In contrast, peaks that are significant under the group-wise test are
limited to six time intervals. These intervals are summarized in Tab. 5.1 together with
their respective group-wise p-values.

All of these periods coincide with known changes in regional climate:

Interval I1 precedes a decline of European temperatures starting at about 280 CE and
accumulating in a cold period that lasted for several centuries. This decline is
commonly interpreted as the end of the Roman Warm Period (RWP).

Interval 12 in the 7th century CE follows the Late Antique Little Ice Age (LALIA) from
about 530 CE to 660 CE.

Interval I3 coincides with the beginning of the MCA, which is mostly considered to
start between 900 CE and 950 CE.
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Figure 5.3: Combined results for the HVG time-irreversibility test: (a) The number of
proxies that show HVG time-irreversibility per point in time together with the expected
number corresponding to significance levels of 5% and 10%. (b) The group-wise p-
value that this number of records show HVG time-irreversibility if all time series were
realizations of normal, linear and stationary processes. (c) Two regional temperature
reconstructions from Europe and the Arctic sector. For comparison, the periods of
significant HVG time-irreversibility as determined by the multi-records test are shown
as gray bars. (d) Same as in (c), but with a reconstruction of solar activity (Steinhilber
et al., 2009). (e) Volcanic activity throughout the Common Era, based on Sigl et al. (2015).
(f) Number of records available at each point in time.
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Interval Year [CE] n(N)  p-value Episode

Il 219-257  4-5(8) 0.016-0.073 End of RWP

12 610-649 4 (8) 0.016 LALIA/1.4k event

13 878-908  5(11)  0.041 Onset of MCA

I4 1064-1101 6 (11)  0.009 Cold episode during MCA/Oort min-
imum

I5 1473-1489 5 (13) 0.082 Onset of LIA

I6 1729-1742 6 (15)  0.049 Late Maunder mininum

Table 5.1: Intervals with group-wise significant HVG time-irreversibility and coinciding
climate related phenomena.

Interval I4 corresponds to an episode of colder temperatures during the MCA in the

11th century.

Interval I5 precedes the onset of the LIA (IPCC, 2013).

Interval 16 follows the late Maunder minimum (1675-1715)

5.3.1 Robustness

Our analysis comprises of several steps and multiple levels of testing for a comparably
low number of records. Hence, it is crucial to ensure that results are robust under
changes of test parameters or the set of records included. For this purpose, we studied
three different kinds of modifications to our analysis:

1. We consider a stricter significance level of & = 0.05 for the KS-test, leaving the

rest of the analysis unchanged. The corresponding results are shown in the
Appendix Fig. D.4. The intervals I1-14 remain significant, but I5 and 16 do not.

. We repeat the analysis after removing individual records, as well as pairs of

records from the set of time series. These leads to the results shown in the
Appendix Figs. D.5, D.6 and D.7. In the leave-one-out case, only the intervals
I1, 12 and 14 remain significant in all cases, while the others lose significance for
some records removed. In the Appendix Fig. D.6 we show the fraction of cases
at which the multi-group test shows significant results for different threshold
values. The aforementioned intervals stay significant in all, I3 and 16 at most,
but I5 only in few cases, even for the «,, = 0.1 threshold value. The same is
true—with overall lower fractions—when leaving two records out, as depicted
in the Appendix Fig: D.7. In addition, some time intervals, between 300 and 450
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CE and between 750 and 850 CE, that are not regarded significant in the full test,
become significant for some reduced sets of records.

3. Finally, we study the effect of adding a single, artificial record with no significant
intervals of HVG time-irreversibility, by increasing N(t) by one. As can be seen
in Fig: D.8 the intervals I5 and 16 fall below the significant threshold, while the
rest stays robust.

In summary, the intervals I1, I2 and 14 show robust HVG time-irreversibility. The
interval I3 loses significance at the removal of some records. The intervals I5 and 16 are
not robust under all three tests and are thus to be considered only marginally significant.

5.4 How are these intervals related to large scale climate
changes?

As already mentioned in Sec. 5.3, all of the six intervals that show HVG time-irreversibility
can all be linked to distinct periods of climate variability. Still, direct attribution for
causes of time-irreversibility is difficult, as all records result from an interplay of local
and archive effects with climate dynamics. Even when neglecting the former, one is still
confronted with both highly non-linear internal dynamics and possibly non-stationary
external forcings. The latter factor can be discussed when considering the Appendix
Fig. D.9, where we see that a reconstruction of solar activity itself shows episodes of
time-irrversibility. These periods coincide with the intervals 12, I5 and 16 and, hence,
these periods might not stem from internal dynamics, but also be linear responses to
complex forcing conditions. The second major forcing contribution on the time scale of
interest is that of volcanic activity. A HVG analysis of this data is much more difficult,
due to the highly intermittent character of eruptive volcanism. In general, reliable and
high-resolution reconstructions of external forcing are largely missing at this time and,
hence, a connection to driving mechanisms can only be highly speculative.

In the following we discuss the different climate periods and how previous knowl-
edge of the causes of said periods might explain the presence of HVG time-irreversibility
at some transitions. For an introduction of these periods, see Sec. 4.2.

5.4.1 Roman warm period

Our results indicate that the shift towards a pronounced cold period in the third century
CE is visible not only in the regional reconstructions (Bianchi and McCave, 1999; PAGES
2k Consortium, 2013), but also identified as a dynamical anomaly in the paleoclimate
records. These results indicate that the RWP was a distinct warm state of the regional
climate system, which ended in a period of anomalous dynamics, followed by colder
conditions.

5.4.2 Late antique little ice age

In our analysis, we connect both I1 and 12 with the LALIA. The first marks the beginning
of cooling at the end of the RWP, while 12 coincides with the recovery of regional
temperatures at the end of the LALIA. At both times, we see HVG time-irreversibility
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when low solar activity coincides with strong volcanic eruptions. For the interval 12,
we further see anomalous solar activity in the Appendix Fig. D.9, which might have
contributed to the complex dynamics at this time.

5.4.3 Medieval Climate Anomaly

Using the HVG test, two intervals are related to the MCA, one around the initiation
phase at about 900 CE (I3) and another one between 1050 and 1100 CE (I4). We interpret
I3 as indicating a transition period between the colder conditions of the LALIA towards
warmer temperatures and hydrological anomalies in the North Atlantic region. Notably,
I4 does not correspond to the onset of another transition, but rather to a recovery
phase from temporarily reduced temperatures during the 11th century. This cold
period corresponds to a minimum in solar activity and is a consistent feature in many
reconstructions (Moberg et al., 2005; Mann et al., 2009; IPCC, 2013; Luterbacher et al.,
2016) and model simulations (Ammann et al., 2007). It is even more pronounced in
some proxy records from Fennoscandia (Gouirand et al., 2008), possibly indicating a
particularly strong local response to solar variability changes (Bradley et al., 2003; Mann
et al., 2009). The recovery from this cool decades is followed by a persistent state of
stable atmospheric conditions, probably supported by an absence of relevant dynamical
anomalies in the solar forcing.

5.4.4 Little Ice Age

In our analysis, the less robust intervals I5 and I6 correspond to two of the cold episodes
of the LIA, coinciding with the Spoérer (I5) and the Maunder minimum (I6) of solar
activity.

During the Spérer minimum, cooling due to reduced solar activity was amplified
by two large volcanic eruptions in 1452 and 1458 CE (Sigl et al., 2015). Camenisch et al.
(2016) describe an increased seasonality during this time, which they argue cannot be
explained by external forcing alone and is thus the result of internal variability.

The late Maunder minimum can be considered to be the climax and key period of
the LIA. Luterbacher et al. (2016) also attribute it to a combination of solar and volcanic
forcings and internal dynamics of the North Atlantic.

The confidence of the intervals I5 and 16 is lower than for the other times. Still, our
results are in agreement with a similar analysis by Schleussner et al. (2015), who applied
the HVG based test to two marine records. In addition, they coincide with periods of
anomalous solar activity as seen in the Appendix Fig. D.9. Hence, they might be the
result of a local response to external forcing, leading to a less consistent signal.

While strong volcanic eruptions have occurred frequently during the LIA, they are
accompanied by HVG time-irreversibility only at those times at which solar activity is
low and possibly anomalous itself.

5.5 Conclusions

In this chapter, we have extended and applied a recently proposed test of time-reversibility,
based on horizontal visibility graphs (HVG), to a set of terrestrial paleoclimate records
from across Northern Europe, spanning the last two millennia. A time series that is
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HVG time-irrreversible cannot be described by a stationary, linear stochastic process.
Therefore, these signals point to times at which non-stationary, possibly non-linear
dynamics were recorded in the archives.

The onsets of both the MCA and the LIA are associated with dynamical anoma-
lies, most likely triggered by possibly nonlinear atmospheric dynamics. The LIA has
previously been studied by Schleussner et al. (2015) for two marine records. They find
indications of HVG time-irreversibility and connect it with changing circulation follow-
ing strong volcanic eruptions. In this regard, our results show a terrestrial manifestation
of the previously discussed dynamical changes.

To understand the causes of such dynamical anomalies can, at this stage, only
be the subject of speculations. Paleoclimate proxies are a complex filter of climate
dynamics and, thus, an unambiguous attribution of specific causes to a given signal is
difficult and requires further research. Model based experiments together with proxy
forward models might lead to further insights into which mechanisms can lead to
such signals, but they have been beyond the scope of this study. It is noticeable that
the events 12, 14, I5 and 16 coincide with periods of combined low solar activity with
strong explosive volcanism. Hence, we argue that the time-irreversibility does not
result solely from internal dynamics but rather reflect complex recovery processes
following strong external perturbations of the regional climate system. Regarding time
interval I3, this interpretation is less applicable, as the MCA has been considered a
period of exceptionally low perturbations (Bradley et al., 2016) and more robust internal
variability (see Ch. 6). Furthermore, the onsets of both the LALIA and the LIA have
been influenced by complex variations in solar variability, as the results in the Appendix
Fig. D.9 show.

A common problem when analysing paleoclimate data is the low number of high-
resolution records available for a region. Here, the method of (horizontal) visibility
graphs can fill a gap, as it provides an assumption poor analysis tool. It can be applied
to a broad range of time series, even those that cannot be approached with most other
methods from nonlinear time series analysis, for example due to to irregularly sampled
data or low numbers of observations.

Other than previous studies, we have applied the HVG based test to an ensemble of
records, to overcome the high error rate of the method. In this way, we obtain results
that are more consistent and reliable than when using single time series alone. This is
demonstrated in Fig. 5.3, as there are one or two records with significant HVG time-
irreversibility at most times. Some of these will clearly be false positives, either due to
the high sensitivity or due to multiple testing effects. In this chapter we have shown,
how a group-wise significance test can help to get consistent results for a larger region.
As more high-quality records become available, the method of ensemble based HVG
time-irreversibility testing can be expected to become a useful tool to study anomalous
dynamics in a broader range of regions and proxies.

In summary, we have obtained reliable results using a multi-record test, which
indicate that the regional climate system in Northern Europe can be regarded as a
dynamical system that has been repeatedly driven out of equilibrium by a combination
of reduced solar activity, explosive volcanism and internal feedbacks, followed by
complex recovery dynamics which are visible as HVG time-irreversible periods.
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® Using climate networks to
reconstruct the multi-decadal
North Atlantic Oscillation

Winter conditions in the North Atlantic region are largely determined by the regional
leading mode of atmospheric circulation, the North Atlantic Oscillation (NAO), charac-
terized by a pressure dipole between the Azores and Iceland. Through it’s influence
on heat and moisture transport, the NAO affects temperatures, precipitation and many
other weather phenomena at surrounding land masses. As already suggested by the
name, the dipole is not static, but changes in time between a strong gradient, called
a positive phase (NAO+) and a weak gradient, the negative phase (NAO-). The state
of the North Atlantic Oscillation can be quantified by a scalar, the NAO index, a value
proportional to the strength of the gradient between the two centers of action.

The NAO varies on all time scales, and there is no clear preference for any frequency.
While inter-seasonal to inter-decadal variations are often considered to be purely
stochastic, variability on decadal and longer time scales need some kind of memory
mechanism that the atmosphere itself cannot provide. This indicates an influence
of external forcings or feedback mechanisms that could allow for some degree of
predictability. In addition, understanding multi-decadal NAO variability is particularly
important, as it is a major source of uncertainty in projections of climate change. As
climate models indicate a tendency towards positive NAO phases with increasing
concentrations of greenhouse gases in the atmosphere, it is imperative to understand
the impacts and feedback mechanisms of multi-decadal NAO variability better than is
done today.

As instrumental observations only go back for approximately 150 years (Vinther
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et al., 2003), a meaningful discussion of multi-decadal variability is only possible with re-
liable reconstructions from paleoclimate data. While there have been multiple attempts
to reconstruct the NAO index (Trouet et al., 2009; Olsen et al., 2012; Ortega et al., 2015),
there is a considerable degree of disagreement between these reconstructions, as can
be seen in Fig. 6.2. The common approach in these publications is to find a reasonable
set of paleoclimate records and then apply linear regression to an instrumental NAO
index. This approach can be problematic as it assumes a stationary, linear relationship
between the proxy variations and the NAO, which is likely not the case for most proxies
(Schmutz et al., 2000; Zorita and Gonzalez-Rouco, 2002; Lehner et al., 2012). For example,
growth of tree rings is affected by very strong winter precipitation, related to a positive
NAO phase in Fennoscandia, but largely unaffected by winters with less snow fall
(Linderholm and Chen, 2005). Similar effects appear across many other regions and
archives.

These issues serve as a motivation to develop a method to reconstruct the NAO
index that does not suffer from this lack of non-stationarity, but instead uses it. The
framework of evolving climate networks is a prime candidate for such a purpose, as
they are explicitly designed to trace non-stationary changes in the covariance structure
of multivariate data. Our main assumption is, that different types of archives in different
geographic locations are affected by the NAO by different mechanisms for each phase.
If regions that are normally unrelated show high similarity, this might hence point
towards a shared influence of atmospheric conditions and thereby a specific NAO phase.
The results discussed in this chapter have been published in the paper JF2.

Key Questions

« How can we use evolving climate networks to reconstruct climatological
indices without relying on a stationary relationship between the index and
the paleoclimate proxies?

« How did the NAO vary during the last two millennia and what were possible
impacts of those variations?

The remainder of this chapter is structured as follows: At first, the NAO and its
effects are discussed in detail in Sec. 6.1. The data used in this study is then introduced
in Sec. 6.2. The way from multivariate proxy data to a scalar climate index is discussed
step-by-step in Sec. 6.3. The corresponding results are then shown in Sec. 6.4 and
discussed further in Sec. 6.5.

6.1 North Atlantic Oscillation

As mentioned in the introduction, the NAO is characterized by a dipole between a
high-pressure region around the Azores and a low-pressure system around Iceland and
can be quantified by a scalar NAO index.

! A comprehensive discussion of the NAO can by found in Hurrell et al. (2003). If not stated otherwise,
information in this section stem from this publication.
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Figure 6.1: A schematic sketch of the two phases of the North Atlantic Oscillation. In
the positive phase, there is a strong pressure gradient over the North Atlantic, leading
the Westerlies towards Fennoscandia. When the pressure gradient is low, the Westerlies
are blocked over the Atlantic, leading to heavy meandering and reverse effects.

The gradient determines the strength and the path of the strong prevailing westerly
winds—the Westerlies—which leads to changes in heat and moisture transport to the
surrounding land masses. This influence is largest in winter and, thus, the NAO is
normally considered a winter phenomenon, even though it is also visible at other times
of the year (Folland et al., 2009). The general pattern of climate variability associated with
the NAO phases is shown in Fig. 6.1. During a positive NAO phase, the Westerlies are
generally stronger and follow a straight, zonal path over the Atlantic with a northward
tilt. In this way they bring warm, moist air into Fennoscandia while allowing cold,
Arctic air to flow into the areas around the Labrador sea. The Mediterranean region does
not receive much moisture and, therefore, winters there are cold and dry. A different
pattern is characteristic for a negative NAO phase, with warm and wet winters around
the Labrador Sea and the Mediterranean. Fennoscandia is blocked from these air masses
and, thus, Arctic air flows southward, leading to cold conditions and low precipitation.

Multi-decadal variability of the NAO is seen as a large factor in determining North-
ern Hemisphere temperatures (NHT), in particular over the continents (Li et al., 2013;
Delworth et al.,, 2016; Iles and Hegerl, 2017). The effect of the NAO on large scale
temperatures is thought to be mediated via induced changes in the Atlantic circulation,
via the Atlantic multi-decadal variability (AMV, Delworth et al., 2016) and the Atlantic
Meridional Overturning Circulation (AMOC Delworth and Zeng, 2016). In addition,
is also related to ocean-atmosphere-sea-ice feedbacks and the slow time scale of the
ocean leads to a 15-20 year lag of temperatures to the NAO. The NAO has been made
responsible for up to 45% of the winter warming of the second half of the 20" century
in the continental Northern Hemisphere (Wallace et al., 2012; Iles and Hegerl, 2017).
This impact is expected to continue with a projected tendency towards positive NAO
phases in the future.

Besides direct impacts of the NAO on weather and climate, it is also a determining
factor for other environmental processes, like heat waves (Wang et al., 2011), droughts
(Loépez-Moreno and Vicente-Serrano, 2008; Cook et al., 2016), tracks and strength of
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storms (Rogers, 1997), lightning (Piper and Kunz, 2017) or growth of glaciers (Bjork
et al., 2018). In addition, it has profound impacts on ecology by determining the
growth and development of both single animals (Yom-Tov et al., 2017) as well as whole
populations (Hurrell et al., 2003). Furthermore, it leads to a large scale synchronization
of populations of plants and animals alike via the Moran effect (Post and Forchhammer,
2002; Ascoli et al., 2017).

Even besides extreme events, human lives are also directly affected by the NAO via
climate impacts on agriculture, for example, wheat production (Kettlewell et al., 1999)
or viticulture (Esteves and Manso Orgaz, 2001; Grifoni et al., 2006), energy markets
(Hurrell et al., 2003) or direct impacts on human heath (McGregor, 2005; Almendra
et al, 2017).

The NAO shows variability on all time scales, without any preferred scale (with a
slight tendency towards a red spectrum). On short time scales, it is commonly regarded
as resulting mainly from internal dynamics of the atmosphere?. There is a very low rate
of persistence at time scales from weeks to seasons, where it behaves largely stochastic
and, hence, unpredictable.

In contrast, the pronounced variability on decadal time scales might point towards
external forcings or slow feedback mechanisms that might be pathways to at least
some predictability. Candidates of driving mechanisms are ocean circulation (Rodwell
et al.,, 1999), volcanic eruptions, solar activity, or greenhouse gas concentrations (Gillett
et al., 2003), Woollings et al. (2015) argue that multi-decadal NAO is physically different
from short time scale NAO in that it is not only related to a shift in the jet and storm
track, but also in strength of the Westerlies, hence, the dynamical mechanisms differ at
both scales. Still, the exact nature of multi-decadal NAO variability is debated and no
consensus has been reached.

As mentioned in the introduction, there have been several attempts to reconstruct
the NAO from proxy data. Some of them are based on single records (Olsen et al.,
2012; Faust et al., 2016), others on ensembles (Trouet et al., 2009; Ortega et al., 2015;
Deininger et al., 2016), but all are rely on linear regression of the proxy variable on
some time series of NAO variability. There is a considerable disagreement among these
reconstructions, in particular for the first millennium CE, as can be seen in Fig. 6.2.
Reasons for this mismatch could be the aforementioned non-stationary relationship
between proxy variables and the NAO, but also different instrumental time series as
target variables. This missing consensus about variability of the NAO has, so far, limited
a conclusion about mechanisms and impacts of multi-decadal NAO.

6.2 Data used in this study

The North Atlantic region is one of the most extensively studied regions in the world
and thus offers a broad variety of high-resolution paleoclimate records, in particular
for the late Holocene. These include long-ranging tree ring chronologies from the
Scandinavian mountains, the Alps and other mountain ranges, varved lake sediments,

’In models, it can be reproduced without changes in ocean circulation, sea surface temperature, sea
ice, land cover or other external forcings.
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Figure 6.2: Previous paleoclimate reconstructions of the NAO by Baker et al. (2015),
Faust et al. (2016), Olsen et al. (2012), Ortega et al. (2015), and Trouet et al. (2009).

and ice core records from the Greenland ice shelf and Svalbard. In addition to natural
archives, there are also long historical temperature records from early instrumental
measurements.

We limit ourselves to one climate variable, atmospheric temperature, as most
archives in the region are considered to be temperature dependent. The number of
records that cover a certain time period decreases as one goes back further in time, but
there are a few high-quality records that span the whole Common Era. We furthermore
only consider records that span more than 300 years with close to annual resolution so
that they retain all time scales of interest.

Based on these requirements, we end up with an ensemble of 37 records from
different archives, which are shown in Fig. 6.3. Detailed information about the individual
records are given in the Appendix Tab. E.1. Out of these 37 records, 12 cover the full
Common Era. Most of the time series are strongly correlated to seasonal or annual
temperature variability and some have been used in regional (PAGES 2k Consortium,
2013; Luterbacher et al., 2016; Werner et al., 2018) and hemispheric (Mann et al., 2008;
Ljungqvist et al., 2012) temperature reconstructions.

There are different ways the NAO can influence these archives. Ice core records
from Greenland for example are dominated by winter conditions (Appenzeller et al.,
1998; Vinther et al., 2010) and are thus directly related to the NAO. In contrast, tree ring
records are mainly related to summer temperatures, but extreme winter precipitation
can also affect the tree growth (Vaganov et al., 1999; Lindholm et al., 2001; Linderholm
and Chen, 2005). Varves in lake sediments are directly related to winter precipitation
and duration as well as runoff strength, all of which are partly controlled by the NAO.

It should be noted, that we did not include several records that have been used in
previous reconstructions of the NAO, as they did not meet our selection criteria (e.g.
Deininger et al., 2016). In particular, they were neither temperature sensitive nor did
they have a sampling resolution high enough. All records included in this study are
from well dated archives (tree rings, varved lakes, ice cores and historical documents)
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Figure 6.3: Geographical locations and types of the paleoclimate records used in this
study. Different markers indicate different paleoclimate archives, as indicated by the
legend. Detailed information on the individual data sets can be found in the Appendix
Tab. E.1.

and, thus, age uncertainty can be largely neglected. Unfortunately, there is no detailed
information about proxy and measurement uncertainty available for most records.
Hence, we cannot address these sources of uncertainty explicitly in our analysis.

6.3 How to reconstruct the NAO from networks

The method of evolving climate networks has been introduced in Sec. 2.4. In this chapter,
we want to relate inter-regional co-variability to the phases of the NAO. To achieve this,
we expand the original idea of climate networks in a number of steps, also illustrated
in Fig. 6.4:

1. We collect data, that we consider to be related to the NAO, at least temporarily. For
consistency reasons, we limit ourselves to one variable, atmospheric temperature.
The data selection and the time series considered have been discussed in Sec. 6.2.

2. Using this set of time series, we construct evolving climate networks.

3. As a way to deal with proxy uncertainty and a varying number of records, we
introduce groupings of records and calculate connectivities between groups. This
reduces the complexity of the obtained information and makes the analysis more
robust.

4. The connections between different groups of records are linearly related to the
climate index via regression analysis.
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Figure 6.4: Schematic overview of the method introduced in this chapter. First, evolving
climate network are constructed from paleoclimate proxy records, in order to encode the
co-variability among the different time series. By grouping records together in clusters
we simplify these network structures and obtain quantitative measures of inter-cluster
linkages as key characteristics of the networks. These values are then related to an
established long-term reconstruction of the NAO index via linear regression.

6.3.1 Climate network construction

In general, we follow the procedure discussed in Sec. 2.4, using the notation introduced
in Sec. 2.1. We will hence, only shortly recapitulate the construction of evolving climate
networks. The aim is to obtain a time ordered sequence of climate networks, each being
assigned to a specific time window 7. Each time coordinate corresponds to the end
point of the corresponding time window. It should be noted, that the window width
determines the temporal resolution of our analysis. Short time windows would increase
resolution but would in turn also raise uncertainty. Here, we decide for a window size
of 50 years (=50 data points per time window), which is short enough for a meaningful
analysis, but long enough to enable robust correlation estimation.

In principle, a climate network can be based upon any similarity measurement.
Here, we decide for the simplest, the linear Pearson correlation measure. As some of
the records have data gaps, we use a Gaussian kernel based variant, as discussed in
Ch. 3 and the Appendix C.1.

Each archive is recording its environmental conditions in a specific way and, hence,
time series originating from the same archive are expected to share certain characteris-
tics. An example of this would be the large spikes in lake sediment records, coming
from exceptional flooding events, or the absence of long-term variability in tree ring
records due to calibration procedures. These archive specific variations have to be taken
into account when comparing records from different archives in a shared framework.
This is in particular related to the issue of (shared) persistence in records, leading to
inflated correlation estimates (Guez et al., 2014). There are different ways to tackle this
problem, be it high-pass filtering, pre-whitening or surrogate testing. Here, we pick the
latter method, using amplitude adjusted Fourier transform (AAFT) surrogates (Schreiber
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and Schmitz, 2000). The AAFT method provides permuted copies of the original time
series that keep the spectrum (and, thereby, the auto-correlation structure) intact. For
each pair of records, we draw 1000 of these alternative versions of the records and
calculate the same correlation measure®. In this way, we calculate the probability that
the correlation value was obtained by chance alone, given the specific autocorrelation
structure of each record. This probability is the pair wise p-value and a correlation is
considered significant if this p-value is lower than a threshold value a,,.

The network is then constructed by nodes corresponding to the different paleocli-
mate proxies and links are drawn between each pair, if the p-value of the corresponding
correlation is below ;.

6.3.2 Network analysis

Networks made out of paleoclimate proxy time series involve some specific problems,
that make a straight-forward analysis difficult. First, the number of records varies
between different time windows, as not all archives cover the same time period. This
makes comparing networks from different times difficult. Second, while a set of archives
might be related to the same climate variable, they are also subject to local and proxy
specific effects. This means that the pair-wise similarity assessment can fluctuate,
independently from the real shared signal.

Furthermore, the number of nodes in a paleoclimate network is often considerable
lower than in most other applications of networks. In a way, paleoclimate networks
sit between very simple and sufficiently complex networks. While there are too many
possible connections to allow for a intuitive climatic interpretation by eye, there are
often not enough nodes to apply more sophisticated methods from complex network
theory, in particular higher-order measures (network transitivity, betweenness cen-
trality, community detection) that are very useful in large, complex networks (Donner
et al., 2017).

As we cannot increase the number of nodes, and with it the complexity of the
network, at will, we move towards the other extreme in reducing the number of nodes
even further. We do so by combining records into clusters and consider the overall
connectivity between clusters. In this way, we obtain smaller networks, which are more
robust in time.

A cluster is a subset of records CK ¢ {Xi}ie{l,...,M} with M < {1,2,... N"}. The number

of members of each clusters, its cardinality, is denoted as | CX| and we discard all clusters
with only one member. As the different records cover different times the number of
members can vary and we denote the cluster of a specific time window as Cfgf.

How we assign a record to a specific cluster is discussed in the next section. Note
that the assignment of a record to a cluster is kept fixed. Hence, the existence and size
of a given cluster depends only on the (non-)availability of data from the pre-defined
proxies during the time window in question.

*Note that among the considered set of archives, all but four records are annually resolved. As
the AAFT method demands regular sampling, we apply linear interpolation to these few records before
drawing surrogates.



6.3. How to reconstruct the NAO from networks

Given a grouping of records into clusters, we define the cross-link density (CLD)
between any two clusters Cfgf and CtLW as

# links between c{;» and Ct%,»

cwgﬁ

T # possible links between c{; and CtLyp
ZaZady o1
el lcin

As we consider evolving networks, the CLDs varies in time. Still, they are expected
to be more robust measures of the covariance structure than single links between
records, since they combine information from various links and are normalized by the
(time-dependent) number of records. If paleoclimate archives were perfect recorders
of climate variability, these inter-regional links would be representations of larger
teleconnection patterns. For real world proxy data however, the attribution of a specific
physical process to a network structure is far less clear, but a link between regions
should still indicate some shared variability.

If S¢ denotes the number of clusters with at least two members, we can define a
S= (SZC) dimensional vector of cross-link densities

xpr = {CLDSH K, L€ {1,...5¢}, K # L}.

This vector describes a network with fewer nodes and weighted links (the CLD values).
Any information of intra-cluster connectivity is discarded, as we consider each cluster
to be homogeneous and all differences resulting largely from local and archive effects.
If one was to combine the cross cluster connections with intra-cluster links, one could
follow a “network of networks” approach, which has been employed in a few studies
on recent climate variability (Donges et al., 2011b; Wiedermann et al., 2016a). In the
present study it would make the analysis much more difficult and be dominated by
statistical noise.

6.3.3 Spacial clustering of records

When grouping the records into clusters, we aim to (i) combine spatially close data and
(ii) obtain clusters that are large enough to reduce the impact of individual records to
ensure a robust representation of large-scale spatial co-variability.

As the different archives and records have very distinctive, partly non-stationary
characteristics, it is difficult to perform any cluster analysis directly to the set of
observations, as this leads to highly fragmented clusters, violating both criteria. Instead,
we define clusters by regions that share inter-annual temperature variability over the
modern (instrumental) period. For this purpose, we use the gridded ERA-20C reanalysis
summer temperature data that covers the whole 20th century (Poli et al., 2016). This data
set is used to generate a single climate network, based on absolute Pearson correlations
of boreal summer (JJA) temperatures for each grid point over land in the study region.
Links are drawn only for the strongest correlations, which are those above a threshold
value ac*. From this network representation of the ERA-20C data set, we identify

*Due to the high number of nodes, we do not use the surrogate testing here, but apply the threshold
to the correlations directly, as is commonly done for high-dimensional data.
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regions of high coherence by applying the Louvain community detection algorithm®.
The paleoclimate records are then assigned to different clusters, depending on their
locations.

It should be pointed out, that this procedure introduces an additional parameter
ac. In general, small values of ¢ result in a high number of small clusters, while
larger values lead to a few larger ones (not shown). The main differences between the
groupings based on different values of ¢ from a reasonable range of values (those that
result in ©(10) clusters) are the division of Greenland and the location of the border
between Central and Eastern Europe. This is also the main difference in using different
climate variables for the clustering, e.g. different seasonal averages. This can be seen in
the Appendix Fig. E.4.

6.3.4 Statistical modeling by linear regression

While the networks with a reduced number of nodes can generally be analysed by eye,
we want to obtain a more quantitative link to the NAO index NAOqyeg, » in particular

to the moving average, using the same window length 7/ denoted as NAOgyega 97 The
simplest model to describe such a relationship between a vector of values y,s and some
variable Yis the linear model

Yo =Dy + € (6.2)

with a coefficient vector D and a zero-mean noise process €,%. The model implies that
the degree of similarity among regions is linearly proportional to the amplitude and sign
of the NAO. This formulation is mainly motivated by its simplicity and computational
reasons, even though a more physical model would treat the CLDs as variables of
the NAO and not vice versa. Furthermore, it might make sense to include additional
variables into the model. For a detailed discussion of regular vs. inverse linear regression
models and their implications for paleoclimate reconstructions, we refer to Christiansen
(2014) and Christiansen and Ljunggqvist (2017) and references therein.

Our analysis has two free parameters, the threshold values a,, of the paleoclimate
networks and a¢ of the reanalysis network used for spatial clustering. We aim to
find those values that maximize the information about the NAO into the cross-cluster
links. Hence, we vary the values of both @, and ac over a broad range, resulting
in different paleoclimate networks and spatial clusterings. We perform a multiple
linear ordinary least-square (OLS) regression of model Eq. 6.2 between the CLDs and
NiAOOrtega’Wfor each pair of values individually. Performance of the model with a given
pair of parameters is tested by calculating the percentage of variability in NiAOOrtega,W
described by the regression model, the r? value. The parameter combination that
describes most variability is used for all further analysis. The full range of values is
shown in Fig. E.3. In general, the results are robust for different window sizes.

For the final regression, we switch from simple OLS regression to a Bayesian ap-
proach, based on Markov Chain Monte Carlo (MCMC) regression (see the Appendix
Sec. A.4). Unlike OLS regression, this approach does not only provide single point esti-
mates, but joint probability distributions for the full set of model parameters. Thereby,

3See a short discussion in the Appendix Sec. A.3.
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question decision comment reference

Which records 37 records high resolution records, see the Ap-

to use? related to (summer) tem- pendix Tab. E.1
perature

How to assess  gXRF linear correlation Rehfeld and

similarity? Kurths, 2014

How to group?  ERA-20c (JJA) high resolution reanalysis  Poli et al., 2016
of 20" century

How to find linear model regression by MCMC  Eq.(6.2)

relationship to method

NAO?

Table 6.1: Overview of the methodological decisions taken for this study.

one can study the intrinsic uncertainty resulting from the model and the limited number
of observations. Since not all clusters cover the full two millennia, we can use the full
set of clusters over the calibration period as a prior distribution for reduced sets of CLD
values to be used for previous times. In this way we utilize the knowledge of the full
data set for times of lower data availability. For the MCMC regression, we rely on a
NUTS sampler (Hoffman and Gelman, 2014) with 10* samples, one quarter of which
are discarded as burn-in.

6.4 Spatial networks and the corresponding
reconstruction of the NAO phase

The procedure discussed in the last section has been applied to the data introduced in
Sec. 6.2, using time windows of 50 years length and a mutual overlap of 1 year between
successive windows.The threshold values have been determined as described in the
Sec. 6.3.3, yielding a,, = 0.46 and ac = 0.0104. The resulting spatial clusters and the
assignment of records to clusters are shown in Fig. 6.5. All methodological choices used
in this chapter are summarized in Tab. 6.1.

Fig. 6.6 shows the simplified networks and the dominating cross-cluster links for
some exemplary time windows. For illustrative purposes, we have used a lower thresh-
old value of a,, = 0.1 to focus on the strongest correlations. During the first millennium
CE, two different states can be distinguished, one at which Fennoscandia (FS) is con-
nected to the other two clusters (Fig. 6.6a,c) and another one with strong links between
Southern Greenland (SG) and Central Europe (CEu) (Fig. 6.6b,d). The second millennium
CE offers considerably more records, which allow us to clearly see periods of dominant
West-East connections (between Greenland, Svalbard and Fennoscandia, Fig. 6.6f, 1)
change with times at which North-South connections involving Central Europe are more
prominent (Fig. 6.6e,g,h). The latter is commonly the case when NAOgyiega 9 indicates
a negative mean NAO index, while the North Atlantic sector is more interconnected
during positive NAO phases.

As this way to analyse networks is highly subjectivity and ambiguous, we apply the
linear model (Eq. 6.2) discussed in Sec. 6.3.4. The most relevant regression coefficients
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Figure 6.5: Division of the study area as obtained by cluster analysis of the ERA-20C
summer mean temperatures, together with the paleoclimate archives used in this study
(ac = 0.01). Non-adjacent regions of the same colour represent different clusters, as are
indicated by different symbols (squares vs. circles) showing the spatial locations of the
considered archives. All coloured areas are used for the clustering analysis.

are summarized in the Appendix Tab. E.2 and their strengths and signs are illustrated in
Fig. 6.7. Here, thick, red lines indicate that positive (negative) NAO phase is associated
with relatively many (few) inter-regional links. Blue lines indicate the opposite. The
most informative clusters are those with the highest regression coefficients and are
located in Southern Greenland (SG), Fennoscandia (FS) and Central Europe (CEU), all
of which cover the full Common Era. The time-evolution of the six CLDs associated
with the largest regression coefficients are shown in the Appendix Fig. E.5. The result-
ing mean regression coeflicients of the model support the general patterns discussed
before. West-East connections are linked to positive NAO phases, while North-South
connections involving Central Europe dominate during negative NAO phases.

To see how well the estimated linear model can explain NAO variability, we split
the N—AOOrtega,W time series into two parts of equal size. We use one part as a training
period and the other half for validation. The resulting r? values are very low (0.15
when using the first half and 0.28 when using the second half as training period)
meaning that much of the shorter time-scale variability cannot be described by our
model. Nevertheless, the sign of the NAO phase is identified correctly in 68% and 71%
of the considered time windows respectively. In the following, we refer to this quantity
as the true sign ratio (TSR). Notably, using the second, more recent half as a training
period results in higher values of both r? and TSR. This suggests that using additional
records, even if they do not cover times outside of the calibration period, can still lead
to better predictions as they make existing links more meaningful.



6.4. Spatial networks and the corresponding reconstruction of the NAO phase

(¢) 650 to 700 CE

(g) 1400 to 1450 CE (h) 1620 to 1670 CE (i) 1896 to 1946 CE

Figure 6.6: Simplified functional paleoclimate networks for different exemplary time
windows illustrating the great variety of spatial connectivity patterns during the covered
time interval. The red circles indicate the center of each group of records (only shown
any record in a cluster covers the specific time window). The thickness of each link is
proportional to the CLD of that connection. The time intervals have been chosen such
that they demonstrate the general patterns of zonal and meridional connectivity.
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Figure 6.7: The 15 cross-link densities (CLD) between different regions, weighted by
their corresponding regression coefficients. Black circles mark the centers of each group
of records. Red (blue) colours indicates a positive (negative) coefficient and, therefore,
that a correlation is associated with a positive (negative) phase of the NAO. The width
of the drawn links is proportional to the mean coefficient value as given in Appendix
Tab. E.2. Note that these linkages represent statistical relations and do not necessarily
relate to (temperature) teleconnections between different regions, as they may also
reflect other shared influences on the archives.

While the observed TSR is significantly better than a random guess (TSR~ 50%),
it is still relatively low, compared to what would commonly be required for a predic-
tive model. To better understand the 30% of time windows at which the sign is not
determined correctly, we take shorter, 50 year long, time slots as validation periods
and the remainder for calibration. The results of this piece-wise validation is shown
in the Appendix Fig. E.8. There, we can see that at time windows where the TSR is
below the mean value of 0.7 the original time series mOrtega,‘W is either close to zero
or exhibits an abrupt transition between the two phases. At some times, in particular
the 17t century, our model description differs considerably from Wonega,% For the
values close to zero there is no clear preference in sign and our model predicts both
negative and positive phases. At most of these times, our reconstruction is also close to
zero with large parts of the posterior distribution of the NAO being at both signs. In
case of rapid transitions it should be noted that the same transitions are still seen in
our reconstruction, but with a time lag, leading to a disagreement in sign. Hence, the
exact timing of transitions comes with a large degree of uncertainty, which should be
kept in mind when interpreting the results.

As four of the geographical clusters of paleoclimate records cover the full Common
Era, the model allows us to expand the 50 year-averaged reconstruction NAQoytega 97 to
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Figure 6.8: Degree of belief (probability) that the NAO is in a specific (positive vs.
negative) phase during each 50-year time window. The figure has been smoothed by a
10-year moving-average filter to enhance its readability. Times for which more than 66%
of the MCMC sample members agree upon the sign of the NAO are indicated by dark
colouring, all values below are shaded. Gray bars correspond to known major drought
episodes in the Western Mediterranean as discussed in Sec. 6.5.2. For comparison, the
NAO reconstruction by Ortega et al. (2015) is shown as a black line, indicating a general
agreement with our probabilistic reconstruction over the common period, as expected.
In addition, the long lasting reconstruction by Olsen et al. (2012) is shown as a dashed
line.

the first millennium CE. To do so, we draw 10,000 realizations of the regression model
posterior distributions based on the available CLDs and calculate the corresponding
NAO indices. The probability of each NAO phase is then determined by the percentage
of members in the posterior distribution that are above and below zero. This value
is subject to several proxy and model uncertainties and is called the degree of belief
that a specific NAO phase was present. To prevent a misrepresentation of times with
low NAO variability as positive or negative phases, we only consider those times at
which more than 66% of the posterior are of one sign. In this way, we account for the
ambiguity of low NAO amplitudes, while correctly identifying strong NAO phases. The
results of this probabilistic reconstruction are shown in Fig. 6.8.

During the Common Era, there have been both periods of persistent positive (e.g.
during the migration period and the late medieval times) and negative (e.g. during the
Little Ice Age) NAO phases. In addition, there are times of high variability (e.g. the
late Roman period or the centuries around 1000 CE) which might point towards more
unstable conditions.

As there have been multiple choices of parameters in this analysis, we need to
test the results for robustness. Fig. E.7 shows the reconstructed NAO phases based on
different values of ac (similar variations of @, did not alter the results much and are
not shown here). Besides a few exceptions, most of these alternative reconstructions
are very close to the one using the predetermined optimal parameter value. A particular
remarkable difference is seen in the second half of the 5 century, where an abrupt
transition from a negative to a positive NAO phase is exhibited. In some cases, the
exact timing of this transition differs. This observation underlines the uncertainty of
our model in the timing of transitions, which has to be accounted for by varying the
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model parameters.

6.5 Critical assessment of the results, further evidence
and implications on human societies

The discussion of the results presented in the previous section focuses on two aspects,
first the spatial patterns of co-variability associated with specific NAO phases and second
the probabilistic reconstruction of the NAO based on the linear model (Eq. 6.2).

The preferred presence or absence of CLDs during certain NAO phases agrees
well with the known impact the NAO has on European climate variability during
the instrumental period. A positive NAO phase is related to a northward shift of the
westerlies, causing mild, but wet winters in Northern Europe. During a negative NAO
phase, a similar pattern is seen in Central Europe and the Western Mediterranean
region. As tree ring records have been shown to be strongly influenced by intensive
winter precipitation, we expect records in Fennoscandia to be particularly affected by
positive NAO phases and those in Central Europe by negative ones. The non-stationary
relationship between records and the NAO is illustrated in Fig. E.2. While some ice core
records (which were instrumental in the reconstruction by Ortega et al., 2015) show a
persistent negative correlation to NAOgqyteg, , there is much more variability for the
other records. The most important feature here is the absence of a linear relationship at
most times. The records are co-varying with the NAO only at certain times, but are
unaffected for others. This exemplifies the need for a reconstruction method that does
not rely on a stationary, linear link between proxy variables and the NAO.

A reference time series with a stationary relationship with the “true” NAO, as the
aforementioned Greenland ice cores, can then act as a filter for the remaining time
series. If the variability of any other record shows a strong similarity to these reference
time series, we can expect the record to carry significant information about the NAO.
As the influence of the NAO is differs between regions, this is the case at different times,
therefore, leading to variable patterns of co-variability. Besides these reference records,
other regions play an important role as well. If two regions have been shown to be
influenced similarly by the NAO, a co-variability among them does provide valuable
information about the NAO phase.

The median value of the regression model based NAO index correlates well with
mOrtega,W(rz = 0.58). However, this value could simply result from overfitting, as
indicated by the low r? values in the cross-validation. Thus, we do not rely on these
quantitative values of the NAO index, but solely on the qualitative description of the
most likely dominant NAO phase of the specific time periods.

Besides the NAO, there are a number of other factors that determine multi-decadal
temperature variability on a regional level. These include other modes of internal
variability, like the Atlantic multi-decadal variability, changes in solar activity or ex-
plosive volcanism (Crowley, 2000; Schurer et al.,, 2014; Bothe et al.,, 2015). Hence, the
observation of high temperatures during the Roman and Medieval times and lower ones
during the Late Antique (PAGES 2k Consortium, 2013; Luterbacher et al., 2016) do not
contradict the reconstruction of NAO phases, which would be related to different effects
on temperatures. Instead, there might actually be common causes for such apparently
contradictory observations. Volcanic eruptions, for example, have been discussed to
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cause cold periods like the Late Antique Little Ice Age (Biintgen et al., 2016), but at
the same time, they are known to trigger positive phase NAO conditions for the years
following strong eruptions (Robock, 2000). Even though this is a very short-lasting
effect, a higher number of strong eruptions clustered together, as present during the
Late Antique (Sigl et al., 2015), might lead to a more persistent impact.

We have to emphasize a number of limitations of the framework presented in this
chapter. First, as a consequence of the decreasing number of records back in time, most
of the CLDs show a downward trend and decreasing variance over the Common Era, as
seen in the Appendix Fig. E.5. This non-stationarity of the CLDs might be a considerable
bias to any application going beyond the Common Era or to regions which are less well
covered with data. In our study, it might favour positive NAO phases, since the largest
regression coefficient (between South-Eastern Greenland and Fennoscandia) is related
to such a CLD. Furthermore, our results are an extension of a previous reconstruction,
based on paleoclimate proxies itself and is thus object to all related uncertainties. A
reconstruction can only be as reliable as the “reference truth” that it is calibrated to,
which is of questionable quality in our case. In addition, the cross-validation showed
that the linear model disagrees considerably with NiAOOrtega,% mainly at times of
low variability or abrupt transitions. We have tried to address this model uncertainty
by using a MCMC regression, leading to a more probabilistic result. Hence, when
NAOortega 1s close to zero, no particular phase is preferred in general, as can be seen
in Fig. 6.8.

As there are considerable uncertainties in our probabilistic reconstruction we need
to put our results into a broader context with previously published reconstructions of
the NAO as well as with additional lines of evidence.

6.5.1 Comparison with other NAO reconstructions

The linear model is able to reproduce most larger features of the reconstruction by
Ortega et al. (2015), in particular a dominant positive phase during the MCA, a tendency
towards negative values but higher variability during the LIA and more positive values
during the 20" century, also in accordance with instrumental records (Vinther et al.,
2003).

Trouet et al. (2009) have argued, that the whole MCA was characterized by a positive
NAO phase, leading to mild and stable conditions in Central Europe. While we do find
stronger trans-Atlantic connectivity during the late medieval times, this is not the case
for the early MCA, which is more variable.

Olsen et al. (2012) have related a more than 5000 years long lake sediment record
from Southern Greenland to the NAO. For the overlapping time, our reconstruction
does not correlate with this record (r? = 0.04), even though it seems that some long term
variability is shared (see Fig. 6.8). This disagreement is probably a result of the large
time uncertainty in both reconstructions, as Olsen et al. (2012) report dating uncertainty
of multiple decades during the first millennium CE. In addition, their record has been
calibrated to the reconstruction published by Trouet et al. (2009), which disagrees with
the one by Ortega et al. (2015) at many times.

A recent study by Deininger et al. (2016) uses 11 European speleothem records and
relate their mutually coherent dynamics to long-term North Atlantic circulation regimes.
Similar to Trouet et al. (2009), they report a persistent positive NAO during the entire
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MCA and a tendency towards negative NAO phases during the LIA, the first being in
partial disagreement, the second in accordance with NAOq;eg, and our reconstruction.
They also show a dominant negative NAO between 250 and 500 CE and a neutral-to-
positive NAO thereafter. This agrees well with our probabilistic reconstruction.

6.5.2 Historical Droughts and the NAO

As mentioned in Sec. 6.1, drought conditions are one of the many climate phenomena
that are linked to the NAO through the corresponding precipitation anomalies and its
effects on soil moisture and river discharge (Lopez-Moreno and Vicente-Serrano, 2008;
Cook et al., 2016).

Due to their severe impact on agricultural productivity and, hence, societies as a
whole, droughts belong to the best documented weather extremes in historical times.
Hence, existing reports of historical droughts can be used as an independent test of
any NAO reconstruction. While the relationship between the NAO and droughts is
rather ambiguous at many regions, it is well pronounced in the western Mediterranean.
Fortunately, this region was home to several book-keeping societies and, therefore,
we can rely on multiple sources. McCormick et al. (2012b) collected climatic evidence
from the period of the Roman Empire up to 800 CE. He reports 8 large droughts for the
Western Empire (accessible through McCormick et al., 2012a). Dominguez-Castro et al.
(2014) summarized historical records from Muslim Al-Andalus in present day southern
Spain, a region exceptionally vulnerable to NAO related droughts (Cook et al., 1998).
These reports cover the time between 711 and 1010 CE and three major drought events
are discussed therein. The last millennium is discussed in detail by Cook et al. (2016),
based on the Old World Drought Atlas (OWDA Cook et al., 2015). The drought index
reconstructed for the Western Mediterranean correlates well with mOrtega’% Hence,
we only include the five strongest drought events, shown in Fig. 5 of their publication.

The major drought periods discussed in the aforementioned publications are shown
as gray bars in Fig. 6.8. There is a clear tendency towards a positive NAO phase at times
of drought. 17 out of the 20 events coincide with times at which P(NAO+) > 0.5 and for
12 of them P(NAO+) > 0.66 holds. Thus, most of the severe drought events found in
historical documents support the qualitative results of our analysis.

It should be emphasized that even though droughts are strongly related to the
precipitation extremes associated with the dominant NAO phase, they are complex
phenomena with multiple causing factors. Furthermore, societies can react differently
on climate extremes of similar magnitude. A stable and rich society might be resilient
to a drought which is catastrophic for others. Thus, a rise in reported droughts might
also be an indicator of a more vulnerable society that found them more worth reporting.
Hence, we cannot expect all droughts to be reported equally and no particular NAO
reconstruction can explain the timing of all droughts.

6.5.3 Possible impacts on European societies

Droughts are just one of many climatological effects of persistent NAO phases, and
not the only one with impacts on human societies. In general, the NAO influences
temperature and precipitation patterns throughout Europe and has consequences for
many natural and agricultural ecosystems (see Sec. 6.1). Here, we want to discuss
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further implications of our qualitative reconstruction of the NAO phase in the context
of European history of the last two millennia. Since the patterns of changes vary
geographically, we restrict our considerations to two key regions, the Western Roman
Empire and to Norse colonies in the North Atlantic.

It has to be kept in mind that climatic conditions are never the sole reason for
societal changes and most often not even a dominant one. Geographical factors, human
decisions, man-made conflicts and pure chance are usually much more important
factors that shape the path of societies. However, climatic conditions can be either
beneficial or disadvantageous for a society, also depending on how vulnerable it is to
environmental disruptions (Diaz and Trouet, 2014; Diamond, 2005; Weiss and Bradley,
2001). Because of the complex relationship of human societies with environmental and
climatic changes (Engler, 2012; Engler and Werner, 2015) any approach onto causal
links is highly speculative, so that we explicitly refrain from making any conclusive
claims.

The first centuries until about 450 CE see a predominant negative NAO phase with
shorter NAO periods in between, which corresponds to milder and wetter winters in the
western Mediterranean. This is in line with previous descriptions of the corresponding
period as warm (Luterbacher et al., 2016) and humid (Desprat et al., 2003; Garcia et al.,
2007; Martin-Chivelet et al., 2011). Still, there is considerable disagreement about when
this period ended in different paleoclimate archives. These conditions would have been
generally beneficial for the Western Roman Empire. In turn, decreasing temperatures
and more frequent droughts following the RWP added stress to societies that were
already weakened by internal conflicts, plagues, invasions and other factors at this
time (McCormick et al., 2012b; Diaz and Trouet, 2014; Drake, 2017). As an example,
Lépez-Moreno and Vicente-Serrano (2008) argue that the Balkan region is subject to
NAO related hydrological anomalies in a similar fashion as the Western Mediterranean.
During prolonged negative NAO phases, these regions receive higher precipitation.
During the 4™ and 5t century CE, this might have made them a target for invading
Huns, who might have been escaping drought conditions in Central Asia (McCormick
et al., 2012b). This in turn has been related with the mass migrations of the Late Antique
(Halsall, 2007). A similar argument has been made by Drake (2017), who links negative
NAO phases to droughts at the areas of origin of populations migrating to the Roman
Empire.

While precipitation is the dominant feature in the Mediterranean region, societies
in the Northern parts of Europe are more dependent on changes in temperature and
wind patterns. Patterson et al. (2010) discuss the impact of seasonality on Norse colonies
based on §'80 values of mollusk off the coast of Iceland. This proxy is associated with
ocean circulation, which is also related to NAO changes. They report cold periods
around 410 CE and between 1380 and 1420 CE and warm periods from 230 BCE to 140
CE and 600 to 1000 CE. The last finding is in line with Werner et al. (2018) who assign
the maximum of the MCA to 960 until 1060 CE in the Arctic. All of these findings match
well with the effects that would be expected from the NAO phases as determined by
our reconstruction.

A positive phase of the NAO leads to generally warmer temperatures and less sea
ice and is thus more favourable to marine ecosystems around Iceland. While a positive
NAO would be beneficial for settlement and sustained population on the island, it is also
related to enhanced storm activity and increased wave heights in the North Atlantic
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(Serreze et al., 1997; Bader et al., 2011). This makes sailing conditions and, hence, a
colonisation more difficult. The first evidence of settlements on Iceland dates back
to around 870 CE (Zori, 2016), a time at which our reconstruction indicates a short
period of negative NAO phase. This implies, that while the overall positive NAO phase
caused conditions that made settlement successful, short negative NAO phases helped
to establish these settlements by allowing longer expeditions across the North Atlantic.
Settlement on Greenland follows a similar pattern, as it also coincides with a negative
NAO phase in the late gth century. Different from Iceland such a negative NAO is
associated with warmer conditions and, hence, the early MCA would be advantageous
for settlement in Southern Greenland. This changes in the 14th century, when a period
of prolonged positive NAO and, hence, lower temperatures set in. This coincides with
the abandonment of most Greenland colonies, which has been related to environmental
changes (Diamond, 2005).

In summary, some key periods and processes in the history of those parts of Europe
that are influenced by North Atlantic climate seem to be closely related to environmental
changes in agreement with our NAO reconstruction. This provides additional evidence
for the general validity of the obtained long-term patterns.

6.6 Conclusions

In this chapter, we have demonstrated that evolving climate networks based on paleocli-
mate proxy records offer great potential to reconstruct spatial patterns of atmospheric
circulation and their long-term variability. Specifically, we have reached a new, 2000
year-long probabilistic multi-decadal reconstruction of the leading mode of atmospheric
circulation in the North Atlantic, the North Atlantic Oscillation (NAO). We achieved
this by combining visual inspection of changing patterns in the simplified networks
with regression of a linear model to the inter-regional connectivity. We have presented
a climatologically consistent interpretation of the relationship between single cross
cluster links and the NAO and how they change with time. In general, we relate strong
East-West links with a positive NAO phase and North-South connections with a nega-
tive one. While the linear model does not trace the high-frequency variability of the
reconstructed NAO index by Ortega et al. (2015) very well, it is in good agreement
when it comes to the sign of the phase.

Our expansion of NiAOOrtega’W shows that there is a great deal of multi-decadal
variability of the NAO during the Common Era. Some periods are dominated by a
specific NAO phase, be it a positive NAO during most of the migration period, the late
medieval times or the 20" century, or a negative phase, which was prevailing during
the late Roman times and the Little Ice Age. Other times show considerably more
variability, for example during the Roman and early medieval times. These long-term
changes of the NAO might have had substantial impacts on European societies, as
the NAO influences both regional temperature and precipitation and can increase the
likelihood of droughts, all of which directly affect agricultural productivity. Therefore,
specific phases have supported some European societies, while negatively affecting
others.

The relatively low skill of the probabilistic reconstruction (sign in agreement with
NAOoytega in ~ 70% of the cases), points to the limitations of the model. Rather than
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a conclusive framework for the reconstruction of climate indices, we have presented
a first step towards a novel tool, based on an innovative set of assumptions. Previous
reconstructions of climate variables mostly assume a stationary, linear relationship
between a proxy and the target variable. For the NAO, this has been shown to be violated
for many archives and our method explicitly targets this non-stationary relationship.
What we assume to be stationary instead is the influence of the NAO on different
regions. If a positive NAO phase is bringing warm and wet winters to Fennoscandia
today, we assume that it also did so two thousand years ago. If this was not the case,
the very idea of reconstructing a climate index itself would be pointless, as it would
render any interpretation or application of such an index useless.

There are many uncertainties in the obtained NAO reconstructions. They arise
mainly from possible biases induced by a varying number of records (in particular as
one goes back in time), pre-existing uncertainties in the target variable W)oﬂega,%
which is a proxy based reconstruction itself, but also from the inability of a simple
linear model to describe the complex interactions among records sufficiently.

The first source of error can be expected to become less important in the future,
as more long, high-resolution records are published. For a better performance of this
model, high-quality records from Greenland, Svalbard and Eastern Europe would be
desirable, as they are yet only sparsely covered.

Standard methods of similarity estimation like Pearson correlation are not feasible
to be used with short time windows. Because of this, we were not able to calibrate
the model against instrumental data, as the longest instrumental record of the NAO
goes back to 1821 only (Vinther et al., 2003). Hence, there would not be enough
independent data points available for a proper calibration and cross-validation when
using multi-decadal time windows. This issue could be attacked, by either using less
demanding measures of similarity, like rank based correlations, or by building upon the
Bayesian approach discussed in Ch. 3, which would then explicitly trade off resolution
against precision. Still, lowering the resolution itself would add considerable levels
of uncertainty. These approaches could also be part of a larger effort to develop the
framework presented in this chapter into a full Bayesian Hierarchical Model, modeling
uncertainties directly at every level and thus leading to a more reliable estimate. This
has not been achieved so far, as one would need to deal explicitly with a changing
number of records and missing data, something that was beyond the scope of this study.

It would be desirable to test the presented framework in a controlled environment,
consisting of gridded model or reanalysis climate data and proxy system models. This
requires advanced forward models that are capable to model non-stationary influences
of a multitude of climate variables to all the archives used in this study. Sadly, these are
not available yet for most proxies.

The framework presented in this chapter could be applied to other large-scale
patterns of climate variability, for example the Atlantic Meridional Variability (AMV
Knight et al., 2006). We have performed the same analysis, using the same set of proxies
and a reconstruction of the AMV published by Mann et al. (2009) as a reference time
series. Unlike the results presented in this chapter, we did not yield a reconstruction
that was substantially better than guessing the phase. This highlights the importance
of proxy selection for this procedure, as most of the records are arguably not related to
the AMV directly, or not in such a spatially diverse manner that is necessary for our
reconstruction method to work. Hence, a consistent procedure of proxy selection and
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clustering is one of the main challenges for the future application of the reconstruction
framework presented here.
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/ Overview: Glacial
terminations

The last 2.5 million years have been characterized by a succession of cold and warm
periods, marked by a growth and decline of vast continental ice shelves, sea ice and
mountain glaciers on both hemispheres. These shifts between the cold glacials and the
warm interglacials are related to changes in solar insolation caused by varying orbital
parameters of the planet. This theory has been conceptualized in the 19th century and
made popular in the beginning of the 20" century (Milankovié, 1930, therefore called
Milankovi¢ theory). For a historical discussion of the study of glacial cycles and the
most common physical theories, see Paillard (2015).

Even though this theory has been proven very successful, there remain some open
questions that could not be answered yet, for example, why most glacials in the late
Pleistocene (starting from ~ 800ka ago) re-occur approximately every 100 thousand
years, although this corresponds to only a minor peak in the spectrum of solar insolation
changes.

What causes glacial terminations and which mechanisms are involved in the process
is another open question. Many variables co-vary and have complex interrelationships
and possible leads and lags, the estimation of which are made difficult by the dating
uncertainties of most quaternary paleoclimate proxies. While Milankovi¢ theory can
explain the pacing of glacial-interglacial cycles, it does not inform about the dynamics
that unfold during these cycles. The terminations are often accompanied by insolation
maxima, but not all of these maxima lead to terminations. There are opposing theories
of deglacial mechanisms (see, e.g., Cronin, 2010, and references therein; Denton et al.,
2010; Paillard, 2015), however all agree that terminations are related to the maximum
extent of ice sheets, rising atmospheric CO, levels and changes in ocean circulation, in
particular in the Atlantic.
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Much of our knowledge about glacial terminations stems from the transition from
the last glacial maximum (LGM) to the recent Holocene epoch, the last deglaciation.

7.1 'The last deglaciation
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Figure 7.1: Different climate variables during the last deglaciation, in particular solar
insolation at 65° N (red, Laskar et al., 2004), relative sea level as measured in Barbados
(blue, Peltier and Fairbanks, 2006), atmospheric CO, as measured in a composite of
Antarctic ice cores (green, Bereiter et al., 2015), air temperature in Antarctica from
the Antarctic temperature stack (ATS, purple, Parrenin et al., 2013) and Greenland, as
measured in the NGRIP ice core (orange, NGRIP members et al., 2004).

The last deglaciation is one of the most studied periods of Earth’s climate history.
It is represented in many paleoclimate archives and has been studied using climate
models of various levels of complexities. Therefore, it is a prime candidate to study
network based methods, but it also poses severe challenges in terms of data availability
and quality.

A first overview of key variables is shown in Fig. 7.1 with reconstructions of solar
insolation, atmospheric CO, concentrations, sea level (related to global ice volume) and
atmospheric temperatures at both poles in Greenland and Antarctica.

Temperatures in Antarctica seem to follow the increasing insolation during the
early deglaciation closely, together with the CO, concentrations and sea level (Parrenin
et al., 2013). In contrast, after a small initial increase, Greenland temperatures stay at a
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Figure 7.2: The three states model of the Atlantic Meridional Overturning Circulation
(AMOQ). (a) During cold glacial times, North Atlantic Deep Water (NADW) formation
occurs south of the Scotland-Iceland ridge and the warmer water (red) flows southward
at intermediate depths. (b) During warm interglacials, NADW forms further north
and fills the bottom of the North Atlantic, rising to intermediate waters in the tropical
latitudes. (c) At some times, e.g. during Heinrich events, NADW formation is reduced
drastically so that the colder and denser Antarctic Bottom Water (AABW, blue) fills
most of the Atlantic.

low level until a rapid warming occurs around 14.6ka BP, the so called Bolling-Allered
warming. This connection to solar insolation does not uphold during the Holocene, as
all the shown variables stay at an about constant level with very low variability until
the most recent decades.

The picture is even more complex, when focusing on the North Atlantic region,
represented by the Greenland temperature record. Besides the delayed, but abrupt
warming, there are other features of millennial scale variability, most pronounced the
cooler Younger Dryas about 12ka BP. The cooling, which is in contrast to warming in
Antarctica, is related to a period of enhanced iceberg discharge in the North Atlantic,
characterized by large debris found in sediment cores throughout the Atlantic. These
phases are called Heinrich Events. Those cold periods during which iceberg discharge
events occur are called Heinrich Stadials (HS).

7.2 The role of the ocean

One key element of glacial-interglacial dynamics (corresponding to a multi-millennial

time-scale) is the global ocean circulation, in particular, the one in the Atlantic ocean.

Marine sediment records reveal large changes in the Atlantic Meridional Overturning
Circulation (AMOC) that are believed to have influenced the distribution of heat on
a global scale. The AMOC refers to a part of the global thermohaline circulation, in
which ocean currents are driven by changes in temperature and density, related to the
salinity of the water.

A model with three states has been established (Rahmstorf, 2002) to describe the
different modes of circulation during warm and cold periods as well as during Heinrich
Events. In modern times (Fig. 7.2b), warm water from the tropics is transported along
the surface to the North Atlantic. As it cools through evaporation, the water becomes
denser and at some point sinks below other, less dense water masses to form the North
Atlantic Deep Water (NADW). This water flows back southward, only to return to
intermediate depths when it meets the even denser and colder Antarctic Bottom Water
(AABW), which flows northward from the Southern Ocean. It gradually rises until
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it reaches the surface again in the South Atlantic. This formation of NADW occurs
further south during the cold glacials (Fig. 7.2a) and the NADW flows southward at
intermediate depths. The deep water basin of the Atlantic is thus entirely filled by
AABW.

During Heinrich events, NADW formation is suggested to have been slowed down
drastically or even stopped temporarily due to massive influx of freshwater into the
North Atlantic. Hence, the entire Atlantic ocean is largely dominated by the cold
AABW.

In both the glacial and the interglacial mode, the AMOC transports heat from the
tropics into the northern hemisphere and, thus, results in an interhemispheric heat
balance. In case that the AMOC slows down, heat accumulates in the Southern ocean
basins, while the North Atlantic cools down. This mechanism is called the bipolar
seesaw and is made responsible for the often asymmetric changes between Greenland
and Antarctic climate records.

Furthermore, the AMOC is thought to be an efficient transport mechanism by which
changes in one hemisphere can be transported to have impacts globally, which is crucial
for most explanations of glacial terminations.



8 Functional networks of past
ocean circulation

While the Atlantic ocean plays a key role in deglacial dynamics as discussed in Ch. 7, it
is also one of the most challenging component of the climate system to study in terms
of co-variability in general and for applying climate networks in particular. The main
reasons for this are the large degree of time uncertainties related to radiocarbon dating
and to complex patterns in lead and lag relationships.

When comparing atmospheric data, it is rational to assume correlations on a fast
time scale, as atmospheric processes are often faster than the sample resolution of
paleoclimate records. In contrast, when dealing with marine sediment records, the
relative time scales are almost arbitrary, as there is not only the age model uncertainty
discussed in Ch. 3, but also the state dependent reservoir effects (see Sec. 8.1.2). In
addition, the slow mixing of the ocean leads to multi-centennial to millennial scale lags
between records, so that they have to be aligned in some way. Out of these issues, the
reservoir effect poses the biggest problems for comparing radiocarbon dated marine
records, as it introduces an age offset between the radiocarbon dates and the age of
the dated material, which is directly related to the state of the ocean circulation itself
(discussed in detail in Sec. 8.1.2). Therefore, any assumption about this variable offset
already incorporates assumptions about the underlying circulation.

In this chapter, I want to investigate if climate networks, despite these challenges,
can still yield meaningful statements about the past circulation of the oceans. Even
though many structures among records are visible by eye, climate networks are expected
to provide a more quantitative and reliable representation of past circulation.

For this purpose, we focus on stable isotope measurements from bottom dwelling
benthic foraminifera from the Atlantic basin that cover the transition from the last
glacial maximum (LGM) to the Holocene. In particular, we use oxygen (5'80) and

81



8. Functional networks of past ocean circulation

82

carbon (8'3C) isotope ratios, which are commonly related to global ice volume and
ocean ventilation.

As a precondition for climate networks, we need to find a shared time axis. Our
approach is to assume synchrony between the oxygen records for major events, to be
specific for the onset of deglaciation, seen in almost all records.

As a first step, we construct our own age models for all selected records, treating
the reservoir effect as an additional source of uncertainty, with estimates coming from
an independent isotope enabled ocean circulation model. Then, we align all records
in such a way, that the onset of deglaciation occurs synchronously. Note that in this
way, we do not assign these lags to the reservoir effect, but expect them to tell us
something about the proxies, the circulation and the signal transport itself. The relative
timing of events is an interesting question in itself. Zhang et al. (2017a) argue that
there is a temperature signal in the oxygen data in addition to that of salinity and the
asynchronous onset of deglaciation is caused by variable heat diffusion in different
parts of the ocean basin. This is one of the hypotheses that we can test when analysing
the leads and lags between different records.

After the time scales are fixed, the relative correlations can be estimated, using
the procedure discussed in Ch. 3 and climate networks in which different sources of
uncertainty are accounted for can be constructed. In this way, we expect to see more
robust links and thus a reliable network structure. This chapter corresponds to the
manuscript JF4.

Key Questions

« Given the independent age models of the records, what can we learn about
the timing of the onset of the deglaciation?

« Are quantitative statements about correlations still possible in this combina-
tion of time uncertainties besides major transitions? If so, what do they tell
us about changes in the Atlantic ocean’s circulation?

This chapter is structured as follows: In Sec. 8.1 the data used in this chapter are
introduced and the construction of age models is discussed in depth. In Sec. 8.2 the
relative timings between these records are considered and related to ocean circulation.
This is followed by the results of evolving climate network analysis, which are discussed
in Sec. 8.3. The chapter closes with some concluding remarks in Sec. 8.4.

8.1 Benthic stable isotope records of the last deglaciation

8.1.1 Selection of records

Oxygen and carbon isotopes were among the first marine paleoclimate proxies studied
and thus, a large number of high quality records have been published. It is often
assumed that benthic oxygen isotope ratios mainly represent global ice volume and
show the same signal globally (Bradley, 2015). This synchronicity has been utilized for
the development of both global (Lisiecki and Raymo, 2005) as well as regional (Lisiecki
and Stern, 2016) benthic 5180 stacks. However, these records cannot be assumed to be
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Figure 8.1: The locations of the sediment records used, both in a transect of the Atlantic
ocean (upper left) and geographically (right). The details of the records are given in the
Appendix Tab. F.1.

synchronized at all time scales, as they are probably dominated by local dynamics at
shorter scales (Waelbroeck et al., 2011).

In addition to oxygen isotopes carbon isotope ratios (§'3C) are also of interest as
proxies for nutrients and ocean ventilation. This ventilation can yield information about
the sources of water and thus indicates changes in the ocean’s circulation.

We use these two proxies together as we expect the oxygen isotopes to inform us
about relative timings between different records which helps us to compare the carbon
isotopes in a meaningful way.

We selected marine sediment records of benthic foraminifera that fulfil the following
criteria:

1. They have measurements of both oxygen and carbon isotope ratios.

2. They cover the transition from the LGM to the Holocene as a transition from low
to high 680 values.

3. They provide independent radiocarbon dates and are not aligned to other records.
This is necessary to account for comparability and further discussed in Sec. 8.1.2.

4. The onset of the transition is abrupt enough to be detected by the change point
detection algorithm discussed in the Appendix Sec. A.1.

The records that fulfil these criteria are summarized in Tab. F.1 and their locations
and depths are shown in Fig. 8.1. The time series of 5130 values are shown in Fig. F.1
and those for §'3C in Fig. F.2.
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8.1.2 Age models

As many paleoclimate proxies, marine sediment records do only encompass relative and
indirect information about the times of observations. For the period of the deglaciation
the prevailing method to determine ages is radiocarbon dating. Stable isotopes have
been analysed for several decades and the published records are therefore based on
a multiplicity of age-depth models. In particular many different calibration curves
have been used, which is problematic as even the two consecutive marine calibration
curves IntCal09 and IntCal13 differ for multiple centuries, especially during the Heinrich
Stadial 1 and the deglaciation.

Reservoir ages pose a major problem when dealing with radiocarbon dated marine
records. The reservoir effect describes the fact that the radiocarbon in shell building
organisms used for dating often appears to be older than the actual animal. Most age
models rely on radiocarbon measurements from surface dwelling planktic foraminifera,
which absorb carbon from the surrounding surface water. However, this carbon is of
variable age!. “Young” carbon gets absorbed by surface waters from the atmosphere
and is mixed with “old” carbon that is upwelled by advection or diffusion from deeper
layers of the ocean. Hence, the age of the carbon at the time of absorption is associated
with the balance between ocean-atmosphere interactions and the strength of upwelling,
which depends on the state of ocean circulation itself. Thus, it varies both spatially and
temporally, ranging from centuries in low latitudes during the Holocene to multiple
millennia in higher latitudes during Heinrich Stadials (Balmer et al., 2016). The time
difference between the true age of the organism and the age of the carbon is called
the reservoir age. This effect means, that any argument about co-variability between
radiocarbon dated marine sediment records is in some sense circular, as assumptions
about the dynamical process are already inhibited in the construction of the age models
themselves?.

Oxygen isotopes in foraminifera are controlled by the temperature and the salinity
of the surrounding water. As the water temperatures at the bottom of the ocean are
very cold and show low variability, benthic oxygen isotopes are commonly related
to global ice volume, in particular on long time scales (Lisiecki and Raymo, 2005).
They are thus thought to be synchronous to a certain degree. In general, the dating
of benthic records is mostly considered somewhere between two extremes. One can
regard radiocarbon dates as correct and interpret all differences in timings of events
as information about circulation, mostly assuming constant reservoir ages. The other
extreme is to assume co-occurrence of events to synchronize (“wiggle-match”) benthic
data, efficiently explaining all mismatch by the reservoir effect. Most studies lay

'The method of radiocarbon dating is related to processes in the upper atmosphere, where carbon
interacts with cosmic radiation and the different isotopes have a fixed ratio to each other. When the
carbon is incorporated into an organism, this interaction stops and the ratio between stable and unstable
isotopes gives information about the time of absorption. Atmospheric carbon is well mixed and, hence, the
ratio between the isotopes is almost constant there. This carbon is referred to as “young” carbon, whereas
carbon that was isolated from the atmosphere for a longer time is called “old” carbon. For an in depth
discussion of radiocarbon dating, see Bradley (2015).

“Note, that even the common assumption of constant radiocarbon dates is a very strong assumption
about a static ocean circulation, that is not supported by the data (see, e.g. Skinner et al., 2010).



8.2. Construction of a shared time axis

somewhere in between, such that at least regional coherence is assumed. In some cases,
the oxygen records are synchronized to terrestrial proxies, most prominently Greenland
ice cores or speleothems. While being problematic in itself (see e.g. Blaauw, 2012, for a
deeper discussion) this inhibits the danger of circular logic as well, as different records
might be aligned to the same record.

In addition almost no available record provides information about the age uncer-
tainty of single observations. Hence, the effect of age-model uncertainty cannot be
tested appropriately, even though this can have a crucial impact on the estimation of
correlations or other measures.

For these reasons we decide to construct new age models for all records used in
this study. Doing this, we want to ensure comparability and employ a more elaborate
treatment of reservoir ages than commonly done. The aim is to have more faith in the
individual chronologies. We estimate the age-depth relationship using the Bayesian
software Bacon (Blaauw and Christen, 2011) and the latest calibration curve IntCal13
(Reimer et al., 2013).

We use different reservoir ages for each record, all of which vary in time, based
on carbon cycle modelling by Butzin et al. (2017). This method has been shown to be
in accordance with the few measurements of reservoir ages based on carbon plateaus
(Balmer et al., 2016). We use the data for 50-200m depth and for each record we consider
the grid-cell closest to the record’s location. For each calender year we thus have an
estimate about how old the radiocarbon at the corresponding location has been when
it was incorporated into the shells of foraminifera. We add these reservoir ages onto
the IntCal13 calibration curve and use the combined curve for calibration. To account
for the uncertainties related to the reservoir ages we impose an additional uncertainty
of 400 years onto the calibration curve which is the typical order of the maximum
difference between the model and published reservoir age data in Butzin et al. (2017).

Thus, we have an independent estimate of the ages of observation for the different
records, which also takes changes in reservoir ages into account. This enables us to
interpret differences in the timing of events in a more physical way, as coming from
regional dynamics and delayed transport of a signal through ocean currents.

In most cases, the proposed settings, in particular priors for accumulation rates,
are used. In some cases, we decided to use normal distributions instead of student-t
to include radiocarbon measurements which would have otherwise been treated as
outliers. These records are marked in Tab. F.1.

8.2 Construction of a shared time axis

Studying co-variability between two records depends on two factors: a common time
scale and an measure to quantify similarity. In this section, we will deal with the first
of the two.

Due to slow transport times in the ocean and interference with local processes we
do not expect major events to occur simultaneously in all records, even if the absolute
time scale was perfect. Hence, a—possibly variable—time delay between records has to
be considered. In this study, we use single anchors to fix the time scales to each other,
while keeping the rest of the records to be determined by the age-depth models.
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Figure 8.2: The posterior distribution for
the onset of deglaciation for all records,
sorted in descending order of the point
of highest probability. The gray bars
are, from right to left, meltwater pulse
(MWP) 19 ka and 1A.

The onset is determined by a change
point detection algorithm, discussed in de-
tail in the Appendix Sec. A.1. In this context,
a change point is a point in time at which
a simple linear model is not sufficient to de-
scribe data on both sides of that point at once
and, hence, a piecewise linear model is ap-
plied. The algorithm gives an estimate of the
probability that a change occurred at each in-
dividual observation point. For most records,
there is more than one change point, but we
only consider that part of the change point
posterior distribution which can be assigned
to the onset of deglaciation by eye, mean-
ing the transition from an elevated plateau
of 5180 values towards lower values. We ar-
gue that a transition is not necessarily occur-
ring exactly at the observation, but at some
time between it and the following observa-
tion. Hence, we consider all values in be-
tween these two observations to be equally
probable change points. An example of the
(not truncated) change point posterior distri-
bution can be seen in Fig. A.1.

This builds upon the idea that major
events like meltwater pulses will lead to
global signals while centennial and millen-
nial variability is mainly determined by re-
gional dynamics. As an anchor we chose the
onset of deglaciation that is present in all ben-
thic §'80 records, commonly interpreted as
a signal of increased freshwater input from
melting ice shields in the North Atlantic. In
a second step, the time axes are shifted such
that the anchor event occurs simultaneously.
Correlations are then estimated for time win-
dows, chosen relative to this anchor.

The posterior distributions for the timing
of the onset of deglaciation in the oxygen
records are shown in Fig. 8.2 and the regional
pattern of timings is shown in Fig. 8.3. We
see that the onset occurs around 19 ka BP in
some cores while others stay at glacial values
until almost 13 ka BP. Some distributions are
very broad, often spanning more than one
millennium. This shows the high uncertainty
in time of these estimates, which is mainly
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Figure 8.3: The timing of the onset of deglaciation for the different proxy locations,
when considering the point of highest probability for each change point distribution.
The darker the color of the circle the later the onset occurs. The numbers are the same
as in Fig. 8.1, while the numbers in brackets indicate the nominal ordering of the onsets
with the lowest number indicating the record that shows the earliest onset.

coming from the uncertainties of the age-depth model. Furthermore the imposed 400yr
reservoir age uncertainty and the low sampling resolution play a role.

In general, a transition provides the first evidence of increased meltwater flux and
rising sea level, also called meltwater pulse (MWP) 19 ka. This onset is also clearly
present much before the more drastic meltwater pulse 1A. Still, some records are
showing a transition very close to MWP 1A, hence, it is possible that they do not
encounter MWP 19 ka at all and the deglaciation is really just setting in along with
MWP 1A.

In Fig. 8.3 we see that the first records to undergo a transition are those at inter-
mediate depths, while some very shallow and very deep cores are delayed by several
millennia. The intermediate depths are those of the mixed zone between newly formed
North Atlantic Deep Water (NADW) and the colder and more saline Antarctic Bottom
Water (AABW). This mixed zone is thought to have deepened during the deglaciation
as the NADW is able to sink deeper and is upwelling at lower latitudes.

We argue that this deepening of the mixed zone is the first sign of deglaciation
recorded in the benthic oxygen record. While the amplitude of delay is likely too large
(caused by the large time uncertainties), this pattern fits well the view, that the signal of
onset is mainly driven by insertion of fresh meltwater in the high latitudes, deepening
the NADW flow. The signal of lowered salinity is then transported and recognized first
by the newly formed NADW. It then propagates to deeper and shallower cores by up-
or downwelling and diffusion.

This interpretation is limited by the heterogeneous pattern, which makes strong
statements somewhat more difficult. Still, it is not in accordance with the view, that the
onset is dominated by temperature sensitivity as proposed by Zhang et al. (2017a), as
this kind of signal would in general propagate from shallow to deeper cores.
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8.3 Climate networks based on anchored correlations

As discussed in the previous section we can construct a shared time axis by shifting all
the time series such that the signatures related to the onset of deglaciation coincide.
Correlations are then estimated for these shifted time series.

As discussed in more depth in Ch. 3, the main obstacle for a quantitative analysis
of co-variability between paleoclimate time series is the irregular and age uncertain
sampling of the proxies. We follow the procedure discussed in said chapter, using
Markov Chain Monte Carlo (MCMC) methods to estimate the coupling factor in a
bivariate normal model as a probabilistic estimate of the common Pearson correlations.
For the approximation of the joint distribution, we use the Gaussian kernel based
interpolation, as it showed to be slightly superior to the other methods.

To take all uncertainties into account we do not only integrate over all possible age
models, but also over the change point distribution. We approximate this by drawing
one realization from the age model at a time. The distribution for the onset of the
deglaciation is estimated for each time series and one realization is drawn of it. We
then shift both time scales such that these two anchor points are concurrent. Lastly, we
estimate the correlation using the MCMC estimator. We repeat this procedure 100 times
and stack the distributions of p together, which estimates the integrated correlation
values. For computational reasons we draw 20.000 independent samples from this
stacked distribution.

We estimate correlations both for the full 30,000 year time period centred around
the onset of deglaciation as well as for moving windows of 5000 year length each.
The number of possible links is shown in Fig. F.4. We see that around the onset of
deglaciation the proxies provide most data, not surprisingly given our selection criteria.
During the LGM and the Holocene, the number of possible links reduces due to a lower
number of records and lower temporal resolutions.

8.3.1 Oxygen Isotopes

For the full 30,000 year long time period, the oxygen isotopes show generally high
correlations, dominated by the shared step-like transition. This is illustrated by the
network shown in the Appendix Fig. F.3a, which shows only strongly positive links
with small uncertainties. Therefore, the assumption of shared signals in oxygen isotope
records is generally justified on long time scales, if time differences are taken into
account.

The functional networks for shorter time windows are shown in Fig. 8.4 and the
Appendix Fig. F.5. The only time period that exhibits marked, consistent correlations
throughout the Atlantic are the 10 ka that follow the onset of the deglaciation, as the
shared trend to lower values dominates the correlation estimates.

For other times, there are mainly meridional connections, but few between deep and
shallow cores. These few meridional connections might indicate a stronger stratification
during the LGM before the onset, while the ocean appears to be more mixed during the
Holocene. Still, the number of connections is by far too low to draw reliable conclusions
from them. Hence, besides major transitions like the deglaciation, most benthic 5180
records used in this study are not synchronized significantly. At times farther away
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Figure 8.4: Evolving networks of 6130 data. A link is drawn orange or purple if 95% of
the samples of the posterior distribution of p lay above or below zero, respectively. It is
shown in gray, if neither is the case. The width of each link is proportional to the width
of the central 90% range of the posterior. This means, that precise estimates are shown
as thin lines. The red dots mark the locations of the records.

from transitions, local and regional variability, varying patterns of temperature, and
proxy related processes like bioturbation dominate the oxygen isotope signal.

Since each link between two locations is not represented by a single number, but a
probability distribution, one can apply all methods of network theory in a probabilistic
way. One way to do this is using the correlation between records as weights and
combining weighted network measures with samples from the distributions. This yields
network measures with uncertainty estimates, as shown in Fig. 8.5a. Here, we show
the absolute weighted network density, which is the sum of all link weights divided by
the number of possible links®. Given all the uncertainties that enter this analysis, these

*Note that in this case, the number of possible links is smaller than the classical N(N - 1) as we
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(a) Absolute weighted network density. (b) Binary network density.

Figure 8.5: Two ways to quantify a network with probabilistic link weights, in this case,
the absolute link density of the network. (a) The probabilistic absolute link density,
calculated by repeatedly drawing realizations from the posterior distributions and,
hence, obtaining a range of possible values. (b) The link density after binarizing the
adjacency matrix, setting those links to 1 that show correlations significant at different
levels of a and all others to 0. The length of each bar represents the duration of the
time window. Different from classical measures, we have removed links that are not
possible due to low data coverage from the normalization of the density.

measures are remarkably precise, as uncertainties in different links balance each other
out in most cases.

An alternative approach is to construct an unweighted graph by only considering
those links for which the correlation distribution is significantly of one sign, determined
via a significance level a. An example for this type of measures is shown in Fig. 8.5b.

In this way we see that both the values as well as the number of significant cor-
relations are increasing during the deglaciation and that this is a robust feature for
different significance levels. We do also see an increasing trend in the millennia before
the transition, which might indicate an early influx of freshwater leading to higher
synchronicity. This signal is mainly determined by the shared trend of values during
the deglaciation. The results for detrended time series are shortly discussed in Sec. 8.3.3.

8.3.2 Carbon Isotopes

The carbon isotope time series show a somewhat more complex pattern, already visible
for the network of the full 30,000 year time period, shown in the Appendix Fig. F.3b.
There are both positive and negative correlations, in particular between the North and
the South Atlantic. For a more quantitative analysis, we apply a community detection
based on modularity maximization, as discussed in the Appendix Sec. A.3. In this way,
we can find groups of records that are strongly connected to each other, but weakly to
the rest of the graph. We use a binarized graph by only considering those links that
are significant at a 5% confidence level. The resulting groups of records are shown in
Fig. 8.6a.

discard links if the number of observations is too small after interpolation.. Hence, the number of links
does not only depend on the number of records, but also the relative timings between them.
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Figure 8.6: Grouping records of §'3C data together based on similar dynamics. This
grouping is based on the Louvain algorithm for community detection in networks
(discussed in the Appendix Sec. A.3). (a) The allocation of each record to a cluster, each
colour corresponds to one cluster. Clusters with less than 3 members are shown in gray.
(b) Averaged values for the different communities, the colours correspond to the ones
of communities in (a). Vertical lines show the extent of each time slot over which the
values were averaged. The shaded areas show the spread in each community, marking
the lowest and highest values during the corresponding time period.

As we can see, there are two groups of records, one in the upper Northern Atlantic
shown in blue and the rest in the South Atlantic and in intermediate and deep waters
shown in green. To understand the differences between these groups, we calculate
separate stacks by averaging over 1ka time windows. These stacks are shown in Fig. 8.6b.
The green cluster is depleted during the LGM and shows an enrichment in '3 C following
the deglaciation, the onset of which is marked by the dashed line in the plot. In contrast,
the blue cluster shows high values of §'3C during the LGM, a sign of strong ventilation.
These values drop after the onset of deglaciation, marking the Heinrich event 1, as a
large volume of freshwater is flushed into the ocean. The values are still higher than
those of the green cluster, which shows that the AMOC did not stop completely, but
rather slowed down. The following short recovery period is again interrupted by a
period of lower values, probably corresponding to a similar freshwater pulse during
the Younger Dryas.
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Figure 8.7: As in Fig. 8.4, but for the §!3C time series

During the Holocene, both communities reach similar, high values that indicate a
generally high ventilation rate of the whole Atlantic Ocean, consistent with the warm
mode of the three state model (Fig. 7.2b).

Similar to those for oxygen isotope ratios, the evolving networks of carbon isotopes,
shown in Fig. 8.7, do not show many significant links before the deglaciation, which
itself is dominated by the pattern discussed in the previous paragraphs. While the
shallow, northern cores get depleted in carbon most of the others become enriched
resulting in strong connectivity among deep and Southern cores and strong negative
correlations between the two large clusters. We see that the events of freshwater influx
mainly impact the Northern surface water, while the rest of the ocean is well connected.
This is in accordance with most observations about the bipolar seesaw mechanism,
which is a dipole between the surface layers of the North Atlantic and the rest of the
ocean (Pedro et al., 2018). This pattern prevails for about 10,000 years. Following the
deglaciation, we see mainly positive links, as all records get enriched in *C, but the
number of significant links is decreasing gradually.
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8.3.3 Decomposed signals

The time series used for the previous analysis show remarkable slow variability, which
is likely to be responsible for most of the correlations. To test this hypothesis, we
filter out long time scale variability and apply the same analysis using only the fast
components of each signal. To do so, we use the complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN Torres et al., 2011, see the Appendix
Sec. A.2), an algorithmic variant of empirical mode decomposition (Huang et al., 1998).
This method decomposes a time series into a set of empirical modes, for which the
instantaneous frequency can be determined using the Hilbert transform. We decide to
only consider those modes whose instantaneous frequency has a median below 2500
years.

For both isotopes, there are only occasional significant correlations, which can result
from chance alone. This is not unexpected, as the filtered signal is likely dominated
by local dynamics besides major transitions. Furthermore, by removing the slow
components, we also removed serial correlation in the data. It has been discussed in
Ch. 3 that missing serial correlation makes it difficult to infer correlations when the
data is irregularly sampled and demands interpolation.

8.4 Conclusions

In this chapter, we have studied co-variability between marine sediment proxies, while
taking into account the obstacles presented by age-model uncertainty, reservoir effects
and the time delays stemming from slow transport through ocean circulation. In
contrast to previous studies, we have not simply assumed the records to be synchronous
bona fide, but only during major transitions as the deglaciation. From this assumption
we have learned that the onset of deglaciation is recorded at significantly different
times throughout the Atlantic Ocean. This transition is first recorded at intermediate
depths, which is expected if the signal is coming from a decline in salinity, induced
by freshwater input in the region of NADW formation. From here on, the anomaly
in salinity is transported to deep and shallow core sites by either direct circulation or
diffusion. The large time difference and the fact that low latitude records experience
the onset earlier than some high-latitude southern records which lay in the general
flow direction is an argument for a prominent role of diffusion in this process.

We have seen, that synchronicity on glacial-interglacial time scales is a justified
assumption for oxygen isotopes, as they are all highly correlated when anchored
to the same transition point. Still, when considering moving windows on the same
anchored time series, we see that besides the transition itself, there are few significant
correlations. Thus, we argue that wiggle-matching benthic oxygen isotope ratios on
these millennial time scales introduces artificial correlations where there are none (an
illustrative example for this is provided by Blaauw, 2012).

As we have demonstrated for the carbon isotopes, major transitions can be used to
anchor time series to provide a meaningful analysis. Here, the anchored time series show
different clusters of similar dynamics that demonstrate the changes in ocean circulation
during the deglaciation. During the LGM, there has been a with strong ventilation
visible in the northern, shallow cores and low ventilation elsewhere. This changes
during Heinrich Event 1, with low ventilation throughout the whole Atlantic, pointing
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towards a massive slowing down of the AMOC. All records show increasing ventilation
during the late deglaciation and high rates during the Holocene, demonstrating the
enhanced strength of the AMOC. The evolving networks derived from carbon isotopes
show negative correlations between shallow northern cores and the rest of the graph.
This corresponds to the general pattern of the bipolar seesaw (Pedro et al., 2018). In
general, links between these two regions seem to be indicative of the different states of
the AMOC. During the LGM state, there are few significant links between the different
communities of sites, while the off mode is marked by a negative correlation. The warm
mode is accompanied by positive links between both communities. This hypothesis
could be tested with longer time series, for example to investigate how the Atlantic
circulation changed during Dansgaard-Oeschger events.

In conclusion, we have demonstrated that the climate networks constructed for
the Atlantic ocean do represent previous knowledge about circulation changes in a
robust way, despite all levels of uncertainty that is present in these date sets. Hence,
the method can be expected to yield new insights into spatial patterns of past ocean
circulation in other oceans in the future.



9 Climate networks of a
transient simulation of the
last deglaciation

As we have seen in the last chapter, climate networks built from paleoclimate proxy data
for the last deglaciation suffer from a variety of problems, in particular sparse spatial
coverage, low data resolution and all types of uncertainties related to radiocarbon dating.
Complementary to proxy data, there are efforts to understand the dynamics of the
deglaciation using coupled global circulation models (GCMs). The most comprehensive
attempt so far is the TraCE-21ka project, using the NCAR Community Climate System
Model 3 (Liu et al., 2009; He, 2011). In contrast to other model experiments this is not
a simulation of short snapshots in an equilibrium state, but a transient simulation of
the full last 21 thousand years, covering the complex transition from the last glacial
maximum (LGM) to the warm Holocene.

This simulation gives us the opportunity to apply climate networks to a time period
that is characterized by abrupt and probably highly non-linear transitions in many
parts of the climate system. These are features of complex, non-linear systems that
are largely missing from previous applications of large-dimensional climate networks,
all of which focused on the dynamics of the late Holocene, a period with much less
variability and certainly no transitions as extreme as the glacial terminations.

While the results of the TraCE-21ka simulation have been discussed extensively
(see, e.g., Liu et al,, 2012; He et al.,, 2013; McGee et al,, 2018), the global statistical
characteristics of the simulation have not been studied so far. Hence, using climate
networks to analyse spatial co-variability of the model output can not only help us
understand the potentials of the method, but can also point towards features and
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characteristics of the climate model itself. This chapter is based on the manuscript JF5.

Key Questions

« How do climate networks change at global and abrupt transitions of large
magnitude?

« What do they tell us about the structure of atmospheric dynamics in the
TraCE-21ka simulation?

The TraCE-21ka simulation is introduced in Sec. 9.1, followed by a discussion about
the way climate networks are constructed and analysed in this chapter in Sec. 9.2.
Different ways to look at the evolving structures of the climate networks are discussed
in Sec. 9.3. These dynamics are put into a larger context and interpreted in Sec. 9.4. We
close with some concluding remarks in Sec. 9.5.

9.1 The TraCE-21ka simulation

The TraCE-21ka simulation is a transient simulation of the last 21,000 years using
the Community Climate System Model 3 (CCSM3), a coupled atmosphere-ocean-sea
ice-vegetation model. It covers the last parts of the Last Glacial Maximum (LGM), most
of the Holocene and the complex transition period between these two periods. The
simulation uses the T31_gx3v5 resolution, which corresponds to ~ 3.7° at both latitude
and longitude. The atmosphere and ocean components consist of 26 and 25 vertical
levels, respectively.

The model has been forced with a set of boundary conditions, in particular changing
solar insolation, greenhouse gas concentrations, and land ice cover, to trigger a transition
between a cold and a warm state. The millennial-scale variability seen in proxies during
the deglaciation is commonly attributed to a complex pattern of freshwater input,
altering the AMOC and leading to abrupt shifts in regional and global climate. To
account for this, freshwater input has been prescribed explicitly at different regions
with variable flow rates. The regions of meltwater forcing are shown in Fig. 9.1 and the
specific meltwater forcings together with the AMOC strength in Fig. G.1.

While the model provides many different climate variables, we focus on the atmo-
spheric temperature at a reference height of 2m on a monthly resolution.

9.2 Climate network construction and analysis

In this chapter, we use the method of climate networks as introduced in Ch. 2. To track
changes in co-variability, we use sliding, non-overlapping windows of 10 years, leaving
120 values for the estimation of correlations in each window. The seasonal cycle has
been removed to ensure an unbiased estimate by calculating the mean value for each
month over the whole time window and subtract it from all data for that month. In order
to prevent spurious correlations coming from shared trends, we removed linear trends
from the anomalies by fitting a straight line to each time series in each time window
and remove it from the anomaly values. In this way, we end up with monthly residuals,
possibly modulated by more complex decadal variability. The correlation matrix is
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Figure 9.1: The regions to which the freshwater forcing is applied in the TraCE-21ka
study.

based on Pearson’s correlation coefficient. To take the possibility of long ranging
teleconnections into account, we use the absolute correlation value. As discussed in
Sec. 2.4, the network is constructed by setting links between those nodes which show
the strongest correlations. In this study, we impose a threshold value of 0.6, for which
about 1% of the possible links are realized at most times (see Fig. 9.2).

The model is calculated on a close-to-regular grid, which means, that the spatial
distance between nodes is much larger on the equator than in the polar regions. Hence,
the tropical nodes represent larger areas. Heitzig et al. (2012) proposed node splitting
invariant (n.s.i.) measures that are designed to correct for this possible bias by intro-
ducing weights to each node, proportional to the area that it represents. Based on this,
modified versions of most network measures can be defined. In the following we only
consider n.s.i. versions of network measures.

To quantify the changes in any scalar network measure, we apply Bayesian change
point detection and if no change is detected, linear trend estimation. The change point
detection is described in the Appendix Sec. A.1. If no change point is found, we consider
the simplest alternative, the linear model. We consider the data Y as being drawn from
the distribution Y ~ #(ft, 0), with time ¢, variance o and the trend . The parameters of
this model are estimated using a Markov Chain Monte Carlo (MCMC, see the Appendix
Sec. A.4) estimator and the corresponding fits are shown as horizontal lines in Fig. 9.2.
We only show those fits that have a significant trend (more than 95% of the posterior of
S is below or above 0). Furthermore, we ignore those trends, where changes between
the beginning and the end of the time series are less than half of the standard deviation
of the time series.
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Figure 9.2: Global network measures for the whole time period. Vertical lines show
change points, with darkness being proportional to the probability of change. Vertical
lines show significant trends, that extend to more than 50% of the variables’ standard
deviations (only if no change point is detected).

9.3 Results

In this study, we distinguish between three different kinds of measures applied to the
networks:

Global measures, for which one scalar value is calculated from the whole network,
for example, the proportion of closed triangles, the transitivity . These are
discussed in Sec. 9.3.1.

Local measures, which are assigned to each node individually. An example for this
is the number of links originating from a node, the degree k. These are shown in
Sec. 9.3.2.

Zonal measures are averages over all longitudes of a local measure and shown in
Sec. 9.3.3.

9.3.1 Global network features

We start with the scalar network measures that are defined on the whole network, as
shown in Fig. 9.2. The change points and estimated trends for each measure are shown
in the Appendix Tab. G.1. The definitions of network measures are summarized in the
Appendix Ch. B.

As we keep the threshold value constant, the number of links can change with time,
depending on the covariance structure. The proportion of pairs that are linked to the
number of all possible pairs is referred to as the link density. Remarkably, it is rather
constant throughout the whole time period, except for a small excursion following the
Bolling-Allered warming. If one applies n.s.i. weights to each node, the corresponding
n.s.i. link density informs us about the global distribution of links. This measure shows
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Figure 9.3: The n.s.i. degree for the example time window from 17.31 to 17.30 ka BP.

a significant upward trend throughout the whole time period. As the unweighted link
density is constant, this means that links are shifted to nodes with higher node weights,
i.e. away from the poles towards the equators.

The Hamming distance is the percentage of nodes that change between consecutive
networks. It too shows an upward trend, meaning that consecutive networks are getting
less similar with time. Remarkably, this is unrelated to any of the major transitions as
it also continues during more stable periods, like the Holocene.

The simple arithmetic mean over the n.s.i. degree of all nodes shows the same
upward trend until 12.86ka BP and then settles at a stable level. A detailed discussion
of the n.s.i. degree fields is given in the next sections.

The transitivity gives the ratio of closed triangles in relation to possible triangles.
High values are typical for clusters of highly interconnected clusters, while low values
indicate that the links are spread out through the network. Here, we see a break at the
onset of the Belling-Allered at which variability decreases drastically. While most links
seem to be present in highly connected clusters for some parts of the LGM, the network
links are more distributed after the disruption of meltwater input.

A path is a set of links which connect two nodes with each other. The average path
length is the mean length of the shortest paths among all nodes. This measure shows a
decrease until ~ 9ka BP, when the values become stable. These lower values indicate a
network in which nodes are connected more efficiently, probably due to the dispersion
of nodes and the shift towards equatorial nodes, which connect to both hemispheres.

9.3.2 Local network measures

While there is a lot of variability in space and time for most local network measures,
there are few consistent, large-scale changes that are directly visible. The main patterns,
shown in Fig: 9.3 and in the Appendix Fig. G.2, seem to stay stable at most times. Often,
the differences between successive time windows are to be of a similar magnitude as
those between the LGM and the Holocene.

One reason for this is that most measures are dominated by the tropical Pacific
region, with most other variability of much smaller magnitude. Example can be seen for
the n.s.i. degree and the maximum link density in Figs. 9.3 and G.2b. This is a common
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Figure 9.4: The zonal average over the n.s.i. degree for the whole study period. Shown
are the z-scores, normalized to zero mean and unit variance, calculated for each time
window. The blue line indicates the latitude of the mean northern boundary of the
Antarctic ice sheet.

pattern in climate networks, as this region constitutes a large and strongly correlated
area.

Outside of this region, we see a few further spots of higher degrees in the tropical
Atlantic, the Indian Ocean and south of Greenland, but these patterns are much less
robust in time. In general, degrees are higher over the ocean. This is expected, as the
spatial correlation length is often considered to be larger over water (Briffa and Jones,
1993; North et al., 2011) and thus, the chance of a distant link is higher.

The local clustering coefficient describes the degree to which neighbours of a node
are connected to each other. This is an indicator of highly connected regions, similar
to the global transitivity. In the Appendix Fig. G.2a we see, that for most nodes more
than 50% of their neighbours are also connected. These values tend to be higher in the
equatorial region.

If each link is weighted by the geographical distance between the two nodes one
can find regions that show particularly long connections. One way to look at this is
the maximum link distance, that represents the longest link of each node. Figure G.2b
shows an example of this measure. Again, the tropical Pacific shows the largest values
and in general, the same areas as for the degree are more pronounced, in particular
over the oceans.

9.3.3 Zonal measures

As most processes during the deglaciation are related to a redistribution of heat between
different latitudes we investigate the distribution of links evolving in time. For this, we
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Figure 9.5: The maximum link distance, averaged over all longitudes and all time-
windows for each millennium.

plot the zonally averaged n.s.i. degree for all latitudes for each time window, as shown
in Fig. 9.4.

In general, we see a trimodal structure with maxima at the tropics and at the mid-
latitudes. The highest degrees of the network are clearly found in the tropics, most of
them in the tropical Pacific. Outside of the tropics, a clear shift in the degree distribution
is happening during the deglaciation. At glacial times, the southern mid-latitudes are
much stronger connected than the northern ones. This changes with an increasing
influx of meltwater into the North Atlantic starting at 19ka BP, when extra-tropical
connections are shifted from south to north. This is shortly interrupted by the strong
pulses of meltwater forcing around 14ka BP, the Antarctic Cold Reversal, which leads
to a short return to the glacial state and is followed by a dominance of the Northern
hemisphere for the remainder of the simulation.

Given this distribution of links, it is of interest if these are local or long ranging
teleconnections. This can be investigated using the maximum link distance, which is
shown as an average over all longitudes and sets of time windows in Fig. 9.5. Three
features are immediately visible. The by far longest connections arise in the tropical
regions, with link distances up to 4500km. This is not surprising, as the region of
high connectivity in the tropical Pacific itself measures about 5000km zonally. Indeed,
when looking at the neighbourhood of the nodes inside the tropical Pacific, almost
all neighbours lay within the box, as can be seen in Fig. G.4. A second feature is the
trimodal structure with two small local maxima around 50° in both hemispheres. While
the southern peak stays more or less constant throughout the whole time period, the
northern nodes become connected to more distant nodes towards the Holocene, but
rarely exceeding distances of 2500km. Thus, instant teleconnections are an exception
and not visible in any of the averaged measures.

9.3.4 Regional degree fields

As the local measures are difficult to interpret due to the size of the dataset and the
high rate of fluctuations, we need to simplify their complex structures to gain some
insights about regional dynamics. For this purpose, we define boxes of 10° width in
latitude and longitude, each of which contains around 10 grid cells. We average the
n.s.i. degree over these boxes for each time window. We thus retain 647 time series
of n.s.i. degrees at which local fluctuations are averaged out. We are interested in

101



9. Climate networks of a transient simulation of the last deglaciation

102

cluster no. 1 cluster no. 3 cluster no. 5 cluster no. 7

cluster no. 2 cluster no. 4 cluster no. 6

R -4 | | | S

g ,’f' / JIIJ

Figure 9.6: Clusters of coherent n.s.i. degree changes. Only those clusters with at least
18 boxes are shown. The corresponding mean n.s.i. degrees are shown in Fig. 9.7.

regions that show coherent linkage structures as these might indicate shared dynamical
changes. This coherence can be investigated by applying a clustering algorithm. Here,
we use classical hierarchical clustering, based on average inter-cluster distances (see
the Appendix Sec. A.3). If Cis the correlation between the n.s.i. degree time series of
two boxes, their distance is defined as 1 - C. We focus on clusters that are large enough
to allow meaningful interpretation, but do not show too large internal variability. As a
trade-off, we set a threshold of 0.74 that leaves the key clusters intact (the corresponding
dendrogram is shown in the Appendix Fig. A.2), but limits the number of large clusters.
The general structures of clusters are very robust for different clustering algorithms,
with only small changes in the extent of clusters. To focus on large-scale structures, we
only consider clusters with at least 18 boxes in them, which leaves us with 7 clusters.
These are shown in Fig. 9.6 and the corresponding n.s.i. mean degrees are shown in
Fig. 9.7. Most of the other (smaller) clusters do not show much variability, except for a
group in the Southern Ocean, which will be discussed in the next section. This is also
true for cluster no. 4 in Fig. 9.7, which is hence ignored in the following discussion.
It should be noted, that these clusters do not mean, that nodes in these regions are
necessarily connected to each other, but that the number of links of the nodes varies in
a similar fashion. As can been seen in the Appendix Fig. G.4, most connections are to
neighbouring grid-cells.

The two polar regions (clusters no. 1 & 2) show a decrease until the Northern
Hemisphere Belling-Allered warming leads to a drop in the Arctic and a small rise
in Antarctica. This resembles the opposing signs in temperature changes. After this
short period, the mean degrees stay stable until the end of the Holocene. Similar degree
changes can be found for a number of small clusters over the southern mid-latitudes
(see the Appendix Fig. G.3), but these do show much stronger local signals and are
poorly correlated among each other.

The North Atlantic region (cluster no. 3) shows by far the most variability, with an
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Figure 9.7: The n.s.i. degrees of the boxes for each cluster with their median values
(bold). The colors and numbers correspond to those clusters shown in Fig. 9.6.

initial rise of n.s.i. degrees at 18ka BP, a plateau of high values until the Belling-Allered
followed by a short drop to very low degrees. After the Belling-Allerad warm period,
the region exhibits high values, with more variability and a stepwise decrease towards
the late Holocene.

Another large cluster lays over most of the land masses of the northern mid-to-high
latitudes and some marginal seas around the North Atlantic (cluster no. 5). There is
an abrupt transition towards higher mean n.s.i. degrees following the Belling-Alleraed
warming. The n.s.i. degree stays stable at this higher level until the end of the simulation
period.

The Pacific region is marked by two clusters (no. 6 & 7). Both show a small shift in
variability and magnitude at ~ 14.5 ka BP, with the links in the eastern equatorial Pacific
decreasing while those in the surrounding regions increase. As this dipole behaviour is
of very low magnitude, we will not discuss it further in this chapter.

9.4 Climatological interpretation of network structures
and dynamics

The last deglaciation, as modelled by the CCSM3 model, shows a marked reorganization
of the covariance structure of the atmosphere that can be seen in most network measures.
Some features, like most global network measures, change gradually, while others show
abrupt changes of large magnitude. The latter is particularly the case when we look at
a regional level as some features are averaged out when only taking the global network
into account.
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9.4.1 Global features

It is remarkable that the link density remains almost constant throughout the whole
simulation period. This means, that even though large parts of the Earth system are
reorganized, the strengths of correlation remains largely the same. It is not immedi-
ately clear if this is a physical feature of the climate system or an artifact of model
parametrizations.

The gradual changes of most global network measures, in particular the Hamming
distance and the n.s.i. average path length, show that throughout the model run,
the links become less localized and more smeared out. This indicates that the initial
conditions of the simulation are far from equilibrium.

In general, the network degrees exhibit a trimodal structure, with the largest number
of links in the tropics and two side peaks at the Southern and Northern mid-latitudes.
This can be explained by the fact that the tropics are the area with the largest correlation
length (Christiansen and Ljungqvist, 2017). The network degrees in the mid-latitudes
are influenced by the strong westerlies jet streams, an effect visible in other applications
of climate networks as well (Wolf et al., 2018).

9.4.2 Regional dynamics

We see a meridional redistribution of links from the Southern mid-latitudes and the
poles towards the Northern mid-latitudes. While this transition happens gradually
throughout the early deglaciation, there is a marked shift during the Belling-Allerad
that leads to a dominance of the Northern Hemisphere throughout the rest of the model
run.

At first, the pattern of anti-phase hemispheric changes resembles that of the bipolar
seesaw, but in contrast to this hypothesis, the system stays at a stable state following the
Bolling-Allered warming. Liu et al. (2009) already mentioned that the bipolar seesaw
hypothesis seems to hold only until the Belling-Allergd, but not afterwards. Hence, the
redistribution of heat alone does not explain the shifts in connectivity. Rather, we see
most changes in the network topology persist even after the Belling-Allered warming.

As the popular mechanism of interhemispheric coupling via the bipolar seesaw
does not seem to explain this transition sufficiently, we need to investigate the key
regions of the network in detail, mainly the regional clusters that were defined via the
n.s.i. degree.

For some regions, changes in the regional mean n.s.i. degree are accompanied
by a change in variability in temperatures. For these regions, a strong one-to-one
correspondence between a high standard deviation of the anomaly time series and the
mean degree can be found. This is for example the case for the Antarctic and Northern
continental regions, but not for the Antarctic region (see the Appendix Fig. G.5). This
relationship might indicate a shift in the signal-to-noise ratio, meaning that a larger
variability corresponds to a larger influence of regional climate dynamics, leading
to higher coherence among grid cells. While this seems to be a viable pathway of
different climate variables to alter the network structure, the specific dynamics can
differ significantly between regions, as is discussed in the following sections.
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Polar regions

The similar behaviour at both poles points at the issue of polar amplification, a term
describing the fact that changes in radiation produce larger changes in temperature
around the poles than at lower latitudes.

Overall, the changes over Antarctica are much more pronounced than those over the
Arctic ocean. This is not surprising, as there is an Antarctic lead in the early deglaciation
with stronger warming, accompanied by an initial rise in CO, concentrations and sea
level. The period from 20ka BP until the Belling-Allered is marked by large changes
in most climate variables and, hence, it is difficult to pin down a single cause for the
changes in n.s.i. degree. It is more likely the result of many interacting changes and
feedback mechanisms.

Still, the dynamics in n.s.i. mean degree closely resemble the amount of sea ice and
regional temperature, which are closely related to each other by melting, CO, emissions
and ice-albedo feedbacks (Curry et al., 1995). In the case of Antarctica, the extent of sea
ice also leads to changes in atmospheric circulation.

In general, Antarctica is rather isolated from many atmospheric phenomena by the
strong Southern Westerly Winds (SWW), the Antarctic Circumpolar Current (ACC) and
the katabatic winds transporting cold air from the massive ice shield seaward (Parish
and Bromwich, 1987; Fyke et al., 2018). This isolation strengthens when the northern
edge of the sea ice migrates towards the pole, as the SWW follow and strengthen
over the Southern Ocean (Toggweiler, 2009), leading of a larger isolation of a smaller
region. In combination with large changes of radiative forcing, these changes lead to a
decreasing coherence of temperatures over the early deglaciation until an equilibrium
is reached at the beginning of the Holocene. The relationship between the regional n.s.i.
degree and the extend of the sea ice shelf is shown in Fig. 9.8a.

We suggest that this process also plays a role for the decrease in n.s.i. degree at
the Southern mid-latitudes. In Fig. 9.4 we compare the zonal n.s.i. degree with the
mean position of the northern edge of the Antarctic ice shelf. We see that the band of
high connectivity is located at the edge of the ice shelf and the degrees get lower as
the ice shield decreases. As the surface cover changes from sea ice to open ocean, the
connectivity decreases as well.

Still, the extent of sea ice cannot explain all dynamics, as the n.s.i. degrees rise again
even before the sea ice extents during the Antarctic Cold Reversal. This might point to a
lagged response of the sea ice to a change in ocean dynamics, most likely the overshoot
of the AMOC during the Belling-Allerad warming or freshwater input into the Weddell
and Ross seas.

North Atlantic

The influence of the AMOC on the network structure is best seen in cluster no. 3
(Fig. 9.6). When plotting the mean degree of this region together with the AMOC
strength (defined as the maximum water flux below 500m over all grid cells in the
Atlantic northern of the equator), we see a strong correspondence on long time scales,
as shown in Fig. 9.8b. At most times, major changes of the AMOC are mirrored by the
mean degree, resulting in strong negative correlations between both variables. This
link seems to be limited to a specific regime, as the connectivity does not increase any
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Figure 9.8: The mean degree (k); (with i = 1, 3,5 for the three clusters no. 1, 3 and 5)
with the largest changes in variability, together with explanatory variables as discussed
in the text. Cluster no. 1 is related to the extent of sea ice in the Southern Ocean,
whereas cluster no. 3 is driven by AMOC variability. Cluster no. 5 is related to the state
of the jet stream, with low degrees during a zonally directed flow and higher degrees in
the presence of large meanders, corresponding to either low or large tilt, as defined by
Lofverstrom and Lora (2017).

further after a certain AMOC strength is surpassed. Furthermore, correlations are low
at times of an almost constant AMOC (in particular during Heinrich Event 1), which
shows that other dynamics dominate at stable AMOC conditions.

Continental Northern Hemisphere

The continental Northern mid-latitudes, even though surrounding the North Atlantic
to a large degree, do not resemble the AMOC pattern in their covariance structure, as
indicated by cluster no. 5 (Fig. 9.6). There are rather two stable regimes of low and
high mean n.s.i. degree, with a transition happening between them around 14.8 ka BP,
during the Belling-Allerad. Even though it happens during the time of a large AMOC
overshoot, it does not seem to be related to the AMOC at other times. Hence, we argue
that this transition has less to do with changes in oceanic, but more with atmospheric
circulation.

At the time of the transition, the Laurentide Ice Sheet broke up into two ice sheets,
the Laurentide and the Cordilleran ice sheets. This event has been termed the (Laurentide
Ice Sheet) saddle collapse. This collapse of the ice masses connecting the two large
ice shelves of the North American continent led to a massive surge of meltwater into
the Atlantic (Gregoire et al., 2012; Gomez et al., 2015) and to changes in both ocean
and atmospheric circulation (Ivanovic et al., 2017). The saddle collapse has also been
discussed in the context of the TraCE-21ka simulation by Lofverstrom and Lora (2017),
who attribute a large-scale, abrupt transition in the atmospheric dynamics to the collapse.
In particular, they find a shift in the Northern Hemisphere westerly jet stream, from
a strong, zonal regime to a weaker, but strongly meandering circulation. Before the
saddle collapse the extensive ice sheet forced the Westerlies to a straight path at the
southern edge of the ice sheets, whereas the collapse lead to a new stationary wave
source, resulting in a strongly tilted flow. This new circulation regime incorporates
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influences of a larger range of latitudes, leading to larger variability in the underlying
regions. This shift in variability is visible in our network as an increased regional
coherence, shown by the linear regression between the tilt of the jet stream! and the
mean degree in cluster no. 5 in Fig.9.8c.

Pacific ocean

Even though changes in the Pacific ocean are small, they occur in the region of highest
connectivity and, hence, they can have a noticeable impact on the rest of the network.
This is best seen in the transitivity, that shows a similar drop in both magnitude and
variability at ~ 15 ka BP. The transitivity has been connected with ENSO (Radebach
et al., 2013; Wiedermann et al., 2016b), using daily data. Some authors have described
an abrupt intensification of ENSO in the TraCE-21ka model, occurring around 14ka BP,
a lag of multiple centuries to the regional mean degrees and transitivity. Due to the
large time difference, we argue that the shift in regional n.s.i. degree and transitivity is
not related to a change in ENSO, but rather to the Belling-Allered warming happening
at the same time. The exact mechanism is not clear to this point.

9.5 Conclusions

In this chapter, we have analysed how the network representation of the TraCE-21ka
simulation changes during the last deglaciation. The spatial co-variability structure
changes significantly throughout the simulation period. In general, we see a redis-
tribution of links from the Southern to the Northern Hemisphere, a transition that
happens gradually in some regions, but abruptly in others, in particular in the Northern
Hemisphere.

We have demonstrated, that the regional n.s.i. degree is strongly affected by transi-
tions in the regional climate system (e.g. the tilt of Westerlies in the Northern Hemi-
sphere or changes in the AMOC), but these changes differ from place to place. While
freshwater forcing, through induced changes in the AMOC, is often seen as the dom-
inant driver of deglacial dynamics, it can only explain a small part of the changes
that we see in the functional network representation. Different mechanism seem to
dominate in different regions and during different times. It is not clear which variables
are driving these changes in the network structure or are merely co-varying due to
shared controls. To study the exact influences of different state variables and forcings,
one would need a larger array of sensitivity runs with single variables held constant.
The global network measures might overrate a global or interhemispheric explanation
like the bipolar seesaw during periods at which a regional one is more appropriate. This
highlights the need for a mechanistic understanding to interpret climate networks.

Another crucial feature of our analysis is the lack of long-range teleconnections.
The maximum link distance varies both in space and time, but always stays at a low
level. This has multiple implications. First, it points to a lack of long-range connections

!Following Léfverstrém and Lora (2017), we define the tilt of the jet stream as the difference in wind
strength between two boxes, one extending from 25°N to 45°N and 80°W to 90°W, the other from 20°N to
70°N and 20'W to 10°'W
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in the climate model used at monthly scales, as the method of climate network has been
shown to detect these connections for recent data (Tsonis et al., 2011). Second, it has
implications for the interpretation of paleoclimate proxy data. Not only are different
locations representative for areas of different size, but these areas also change over time.
A Northern Hemisphere record from the Holocene is similar to a significantly larger
area than one from the LGM. This non-stationarity of the spatial correlation length is a
crucial feature that might be included in future reconstructions of spatial paleoclimate
conditions.
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I have considered a number of different approaches to use network theory to analyse
paleoclimate data. The goal has been to further develop existing methods to allow for
more quantitative and reliable results in light of particularities of paleoclimate proxy
data. The different case studies presented in this thesis are intended to stimulate a wider
application of these methods and to promote their further usage by a larger audience.

In this chapter, I want to look back and recapitulate the work that I have presented
in this thesis. When looking back, there are mainly three questions: What have I done
in the thesis? What are the key achievements of this work? And, where do we go from
here? I will try to answer these questions in the following sections.

10.1 What have I presented in this thesis?

All chapters of this thesis are related to a key area of global climate dynamics, the
Atlantic ocean and the surrounding continents. Despite the long history of research
on this region, it has rarely been studied using network techniques, in particular for
pre-instrumental times.

I have focused on two periods of the late Quaternary, the last two millennia of the
recent Holocene and the transition from the last cold to the recent warm period, the
last deglaciation. I selected these two time periods as they are very distinct, so that the
characteristics of network based techniques in very different environments can be seen.
The Holocene is commonly considered to be exceptionally stable and, thus, networks
can be used to detect structures that are not visible to the eye immediately. In contrast,
the last deglaciation is marked by massive changes in almost every part of the Earth
system. In this setting, I am interested in the related changes in the topology of the
network representations during these transitions.
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For each of these time periods I conducted two case studies, either with different
methods or with different data types. The two methods that I have used in this thesis
were visibility graphs in Ch. 5 and evolving climate networks in Ch. 6, 8 and 9.

In the following I want to shortly summarize the key results that were presented in
the corresponding chapters.

Methods The methods on which this thesis are based were discussed in Ch. 2. These
are the theory of complex networks and two applications, that of visibility graphs and
of correlation based climate networks.

As the estimation of correlations lays at the core of climate networks, I have dedi-
cated Ch. 3 to the issue of estimating correlations in the presence of time uncertainty,
which is typical for paleoclimate records. The aim of this chapter was to study how
different interpolation algorithms react to different levels of time uncertainty in a sys-
tematic way. For this purpose, I have implemented a model of synthetic pseudoproxy
data, resembling marine sediment records with radiocarbon dating. I studied 5 different
methods of interpolation in combination with four stages of increasing time uncer-
tainty in the time series, starting with evenly sampled time series and then successively
adding unequal sampling, age model error and age model uncertainty. Different from
similar previous studies, I have focused on a Bayesian approach, which provides reliable
estimates of the estimation uncertainty, incorporating different levels of both time
and measurement uncertainty. In contrast to classical estimates, a covariance matrix
estimated with the Bayesian framework is always well defined, as it can be ensured to
be positive-semidefinite, even in combination with interpolation.

I have found that in most cases most estimation errors originate from uneven
sampling and from age model errors while the single observation time uncertainties do
only play a minor role. In addition, the statistical features of a time series, in particular
its persistence, are crucial for a meaningful estimation. Which method is used to
bring both time series to a shared time axis only plays a minor role. This probabilistic
treatment of correlations is later used in Ch. 8.

Holocene 1: Dynamical anomalies in terrestrial paleoclimate records In Ch.5,
I have focused on a visibility graph based test of time-reversibility, a characteristic
indicative for complex, possibly non-linear dynamics in the underlying process.

Due to the notoriously high rate of false positives of the method, I have extended
this originally univariate method to an ensemble based approach, using area- and
group-wise significance testing.

I have shown that this ensemble test yields reliable results that are in accordance
with previous results for marine records and with known, large-scale changes in climate
dynamics in Northern Europe, in particular transitions between warm and colder
periods. It is remarkable, that one can detect anomalous dynamics in the inter-annual
time series, even though, these large-scale changes operate on a multi-decadal to
centennial time-scale. Most of these periods are related to times of both low solar
activity and strong volcanic eruptions. Therefore, these results might point towards
a destabilization of the regional climate system in response to external forcings and
related changing atmospheric patterns, recorded in the paleoclimate proxies.



10.1. What have I presented in this thesis?

Holocene 2: Using networks to reconstruct the NAO In Ch. 6, I have proposed
a novel method to reconstruct multi-decadal variability of the leading mode of atmo-
spheric circulation in the North Atlantic region, the North Atlantic Oscillation (NAO).
Contrary to previous methods, the new approach does not rely on a stationary relation-
ship between the target variable and the proxy time series. Instead, it is based on the
idea that paleoclimate archives do only record variability in the NAO during specific
phases, while being unaffected by others. If distant regions show more coherence at
one time, but less at others, this might point towards large scale influences and the
state of atmospheric circulation, in particular the NAO.

The presented method can be used to reconstruct the phases of the NAO for the full
Common Era by extending a previous reconstruction by a thousand years. This extended
reconstruction is supported by further evidence from historical records of drought
events. It shows a large degree of multi-decadal variability of the NAO throughout the
last two thousand years, with long periods of predominantly positive NAO phases in
late medieval times and the late Antique and negative phases prevailing during Roman
times and the Little Ice Age. Recent anthropogenic warming is expected to shift the
NAO towards a positive phase and, therefore, studying this multi-decadal to centennial
variability of the NAO is crucial for the understanding future climate variability.

Last deglaciation 1: Climate networks for marine sediment records and their
uncertainties I have furthermore explored the use of climate networks for ocean
sediment records for the last deglaciation in Ch. 8. These are some of the most chal-
lenging records to study co-variability, due to the low sampling rates and the high
uncertainty in observation times that come with radiocarbon dating of marine cores.

Due to this high degree of uncertainties in the records, I proposed to use the Bayesian
framework introduced in Ch. 3 to construct networks in this setting. In this way, the
quality of the results can be estimated, which makes them more reliable than those of
classical approaches.

To test this method, I have chosen a well studied system, the circulation of the
Atlantic ocean during the last deglaciation. As proxies, I use stable isotope ratios of
benthic foraminifera, as these are long studied and well understood proxies, so that one
can focus on the characteristics of probabilistic climate networks in such a setting.

As a prerequisite, I needed to bring all the records to a shared time axis, which was
achieved by shifting all time series in such a way that the onset of deglaciation occurred
simultaneously. From the relative timing of the onset of deglaciation one can see the
transport of information in the Atlantic, as the earliest records lay in the path of newly
formed deep water.

The climate networks of oxygen isotope ratios have shown a general synchronicity
of the aligned time series, but the evolving networks have shown that this is limited to
the transition period of the deglaciation. Only few features are significant further away
from this transition, for example the isolation of the North Atlantic records from the
rest of the ensemble during the last glacial maximum.

Carbon isotopes were shown to form two communities in a climate network, one
comprising shallow cores in the North Atlantic and another one filling the deep Atlantic
and the South Atlantic. This is well in accordance with the known circulation changes
during the deglaciation, which mainly influence deep water formation and, hence, the
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origin of water masses in the North Atlantic. The anti-phasing of climate variability in
these two regions is known as the bipolar seesaw and is also visible as strong negative
connections between both regions during Heinrich Event 1 in the evolving networks.

Last deglaciation 2: Combining climate networks and long, transient model
simulations The last chapter, Ch. 9, differs from all the others, as it does not use
paleoclimate proxy data, but relies on model output from a transient simulation of the
last 21,000 years. In this way, I could study the behaviour of climate networks in the
case of large-scale transitions on a global scale, without artifacts deriving from proxy
sampling, resolution and local proxy effects.

While most global network features stayed rather constant, there were heteroge-
neous dynamics when comparing different regions. In general, there is a shift of links
from the southern to the northern mid-latitudes. This shift is not connected to the
bipolar seesaw mechanism of interhemispheric coupling, but rather to two different
transitions that are not directly related. In particular, changes in the north are related
to a reorganization of the westerly jet stream towards a more tilted path in response to
the melting of continental ice sheets, while the southern connectivity decreases with
decreasing sea ice cover, probably related to changes in surface-atmosphere interactions.
The influence of a changing AMOC is directly visible only in the North Atlantic itself,
even though it changes the temperatures globally.

This chapter shows that climate networks, applied to global model output, can be
used to detect and characterize shifts in climate dynamics not only on a global, but also
on a regional scale.

10.2 What has been achieved by this?

The three main novelties presented in this thesis are the reconstruction method for
climate indices presented in Ch. 6, the ensemble based approach to visibility graphs in
Ch. 5 and the probabilistic construction of climate networks studied in Ch. 8.

The reconstruction method for climate indices, presented in Ch. 6 is an innovative
approach to meet the challenge that most records are not related stationary to the NAO.
While this feature increases uncertainty in classical reconstruction methods, it is a key
feature on which this method is built upon. If all the records were related to the NAO at
all times, the network would likely be more stationary and, hence, could not be used to
reconstruct the NAO index. This method opens a broad range of possibilities to study
not only singular climate variables like temperature and precipitation, but integrative
measures of climate variability, which are much more informative about large scale
atmosphere or ocean dynamics.

Still, this method has many limitations, for example, a comparatively low predictive
skill, in particular when it comes to transitions between different phases. In addition,
the time resolution of the reconstruction is comparatively low. The latter has prevented
a use of instrumental data as a calibration target so far, which would be needed to
provide a fully independent reconstruction. Therefore, the method presented here
should be seen as a complementary method to classical linear regression and not as a
replacement.



10.3. Where do we go from here?

In other parts of the thesis, I aimed to overcome some of the drawbacks that have
hindered a widespread use of visibility graphs and climate networks by the paleoclimate
community.

Most methods of non-linear time series analysis have a rather high demand on
the length and resolution of the time series, in contrast to paleoclimate records that
are typically short and unevenly sampled. The method of visibility graphs is well
suited to fill this gap, but suffers from over-sensitivity. In this thesis, I have proposed a
combination of an area-wise and an ensemble significance test to overcome the problem
of high false positive rates. Using this ensemble approach one can find coherent signals,
that allow a wider application of the method.

When applying climate networks to paleoclimate records beyond the Holocene, I
suggest that the probabilistic estimation of similarity is the appropriate way to go. The
main reason for this is that a Bayesian framework can naturally integrate the many
levels of uncertainties present in paleoclimate data, either directly via explicit modeling
or by integrating over different realizations of uncertain variables. A network structure
obtained in this way is more reliable, as the uncertainties that go into each link have
been considered in its construction. While this renders many links insignificant, some
structures are still visible in the network topology and, thus, climate networks can be
used for a wider field of analysis in a meaningful way.

This is demonstrated by the results of Ch. 8, as these climate networks resemble
known changes in past ocean circulation, despite all uncertainties associated with
radiocarbon dated sediment records. This motivates a wider application of the method
to other regions that are less well studied.

Using these methodological developments, I have provided case studies that demon-
strate that large scale changes in the climate system can be analysed efficiently and
reliably in a network representation. As more and more paleoclimate records are pub-
lished, the need for reliable multivariate and spatial analysis methods increases. With
this thesis, I have provided different ways in which networks can be a part of this trend.

10.3 Where do we go from here?

The methods and case studies presented in this thesis are not final frameworks for
network based paleoclimate analysis, but rather starting points for further developments
and applications. I hope that they motivate other researches to consider network based
techniques when trying to make sense out of larger sets of paleoclimate records.

For each of these studies, there are multiple pathways of further study, some of
which I want to discuss in this section.

In the case of visibility graphs, a more analytical treatment of the area-wise signif-
icance test, as has been conducted for other methods, is desirable. Furthermore, the
effects of uneven sampling should be studied more systematically.

Together with the study of probabilistic correlations in Ch. 3, the method of network
based climate index reconstruction could be developed into a fully Bayesian Hierarchical
Modeling approach. In this way all physical relationships between different variables
would be represented in a more appropriate way. In addition, uncertainties on different
levels could be included more easily. This would also allow the inclusion of more records,
in particular those that did not pass our selection criteria. Therefore, the method could
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be applied to any integrated climate index that show a spatially heterogeneous response,
in particular, other modes of atmospheric circulation, like the Southern Annual Mode
or the El Nifio Southern Oscillation.

The treatment of uncertainty, that was introduced in Ch. 3 could be developed
further to explicitly model unequal sampling between records in a Bayesian way and,
hence, take distortions due to interpolation better into account.

All methods need further testing with the help of climate model output and proxy
model systems to systematically study their characteristics and drawbacks. While such
forward models exist for some archives, they have not been developed for others, for
example lake sediment records. The goal of such an analysis would be, to include proxy

specific processes to see, how they can change the network structures and thus the
results.
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A Additional methods used In
this thesis

A.1 Change point detection

The main idea behind change point detection is to find times at which a simple lin-
ear model is not sufficient to describe the time series at both sides of that specific
point together. In this case the next simplest option, a piecewise linear model, is
more appropriate. For a survey of classical change point detection methods see, e.g.
Aminikhanghahi and Cook (2017).

In this thesis, I use the Bayesian change point detection algorithm introduced by
Ruggieri (2013). This algorithm provides a probability for each observation time that a
change is occurring at this time. The number of change points is one of the estimated
variables and does not need to be prescribed like in other methods.

An example result is shown in Fig. A.1, for which the change point detection is
applied to one of the records discussed in Ch. 8, namely oxygen isotopes in core M35033-
4. We see that there are two change points and each has a wide distribution, related to
the high uncertainties in observation times for this record (see the detailed discussion
in Sec. 8.2).

It should be noted that this definition of change points does not only relate to
changes in trend, but also in variability. The exact timing of the change point should
be treated with caution, as it merely indicates the point at which a linear model is not
sufficient any more, even if a change has already set in before.
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Figure A.1: Example of a time series exhibiting multiple change points (record M35033-4,
see Ch. 8) and the estimated change point probability posterior distribution shown in

red.

A.2 Empirical mode decomposition

Spectral decomposition tries to separate different components of a time series that vary
on different time scales and might thus be related to different processes. Most appli-
cations focus on techniques of spectral analysis, in particular Fourier transformation
or wavelet analysis (Castagna and Sun, 2006). Most of these methods rely on long and
regularly sampled data, even though some progress has recently been made to apply
them to unevenly sampled time series (Lenoir and Crucifix, 2018a,b).

Empirical Mode Decomposition (EMD), closely related to the Hilbert-Huang trans-
form, is a more heuristic method, in which time series are decomposed into different
modes, the so called Intrinsic Mode Functions (IMFs). For an overview of this method,
see the discussion by Huang and Wu (2008). All modes added together restore the
original time series. As the spectrum of each mode can be analysed, one can hence
combine only those modes that correspond to a specific spectral range, to filter out those
components that one is interested in. In this thesis, this is mostly done, by using the
Hilbert transform to estimate the instantaneous frequencies and filter via the median
instantaneous frequency of each mode.

Several extensions of EMD analysis have been proposed, most prominently ensemble
EMD (EEMD Wu and Huang, 2009) or complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN Torres et al., 2011). In these variants, noise is added
to the time series repeatedly and the decomposition is repeated for many realizations
of these perturbed time series. In this way, the different modes can be distinguished
better. The main differences between EEMD and CEEMDAN is the time at which modes
are averaged over the ensemble and in the type of noise added at each stage of the
algorithm. In this thesis, CEEMDAN is used.

A.3 Clustering algorithms

Cluster analysis describes a set of algorithms to form subgroups out of a large set of
objects, based on mutual distance to each other. There is a multitude of algorithms,
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Figure A.2: An example of a dendrogram for average-linkage clustering. This dendro-
gram corresponds to the cluster analysis applied to the n.s.i. degrees in Ch. 9. The
distance matrix is constructed as 1-correlation and the horizontal line marks the thresh-
old used in Ch. 9. Different colours indicate grid cells, that form a cluster up to the
threshold value (a so called leaf). As one can see, there is a small number of large leaves
and many smaller ones.

depending on the kind of structures that one is interested in and the definition of
distance that one considers to be important (Kaufman and Rousseeuw, 1990).

In this thesis, I rely mainly on classical hierarchical cluster analysis. Here, one
starts with each object forming its own cluster. Then, a threshold value is successively
increased and all clusters that are closer to each other according to some kind of cluster
based distance measure are merged. This continues until another prescribed threshold
value is reached. This procedure is commonly visualized in a dendrogram, as the one in
Fig. A.2.

This method requires three choices: (i) a measure of distances between the different
objects, (ii) a measure of distance between different clusters and (iii) a threshold value
at which to stop merging clusters.

While decisions (i) and (iii) can be chosen more or less freely by the researcher,
there are a few standard options for decision (ii), which then give the name to the
particular method used. Common choices are to use the average, the minimum or the
maximum distance between objects in each cluster. These are then called average, single
and complete-linkage clustering.

In this thesis, I use hierarchical clustering in combination with correlation matrices
C (with a derived distance matrix D = 1 - C), together with either average or complete
clustering. The threshold is chosen for each application.

Another method to detect clusters used in this thesis is network based community
detection. In a network, a community is a group of nodes that are stronger connected
among each other than they are to the rest of the network (Newman, 2018). There is no
unique and generally agreed upon definition and, hence, detecting communities in a
network is a complex issue. The method I use in this thesis is the Louvain algorithm
(Blondel et al., 2008), in which the network is split into communities in such a way
that its modularity is maximized. The modularity is a global network measure, which

measures the degree to which a network is separated into subgroups (Newman, 2006).

The higher the modularity is, the more links are inside communities and few connecting
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different groups. This method is used in Ch. 6 and Ch. 8. Network based community
detection tends towards including most records in some cluster, even though this might
not be justified in some cases. An example for this is the clustering in Ch. 9 where most
grid cells do not show any similarity to other cells. In these cases, a threshold based
hierarchical clustering is advantageous.

A.4 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods describe a class of algorithms to sample
high-dimensional integrals in an efficient way and have become some of the main tools
for Bayesian inference. Here, I will only present the main idea of these algorithms,
for the technical details I refer to Gelman (2014), Gilks et al. (1995), and von Toussaint
(2011).

Monte Carlo methods are those methods in which a (possibly high-dimensional)
parameter space is randomly sampled to obtain approximate results for integrative
measures over this space. MCMC methods combine this approach with Markov Chains,
in which each sample is related to the previous one. Starting from any position in the
parameter space, the next sample point is selected in such a way that it contributes
most to the integral to be solved, allowing for a more informed and efficient sampling.

There are different sets of rules to decide which sample points are selected at each
step and these rules are the main difference between different MCMC algorithms. In
this thesis, we use the classical Metropolis-Hasting sampling and a newer algorithm,
called NUTS sampling (Hoffman and Gelman, 2014).

As the first sample points are often highly correlated and might sample regions
of the parameter space that are not important for the overall integral, they are often
discarded as so called burn-in. The main challenge when applying MCMC methods is
to decide at which point the distribution of samples has converged sufficiently against
the true integral. In general, convergence cannot be proven, but lack of convergence is
often clearly visible, both by numerical tests, but also by visual inspection. An example
for the latter is start the same estimation from different starting points and compare
the resulting chains. If the distributions differ, convergence has not been reached.



B Network measures used in
this thesis

In this chapter, we summarize the measures to quantify network structures used in this
thesis. We distinguish two types of network measures. Those that assign values to each
node separately are called local measures and those that yield one scalar for the whole
network are global measures.

B.1 Local network measures

Degree The node degree k; is the number of all edges that originate from a node n;,
determined as

ki = Z AU (Bl)

jew

Local clustering coefficient This is the degree to which neighbours of a node n; are
themselves connected to each other. It is given by

1

Ci=—— Ai A Api (B.2)

Link distance If a network is embedded in a physical space, each link can be assigned
a distance and a N x N distance matrix D can be introduced. These distances can be
analysed in different ways, for example by looking at the maximum value for each node
as
d= max Dj; B.3
jEL A0 (B:3)
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B.2 Global network measures

Mean degree All local measures can be averaged over the whole network. In this
thesis, we use for example the mean degree, defined as

(k)= (WUN) > k;. (B.4)

€N

Link density The link density is the number of links in a network in proportion to
the number of possible links. For an undirected graph it is

—2| | B.5
p= N(N - 1)' (B:5)
Transitivity
3 x # of triangles in graph Tr (A3
g grap ( ) (B.6)

~ ¥ of connected triplets in graph B zi#j ( Az)ij

Hamming distance The Hamming distance measures the overall difference between
two networks. Let A% and A? describe the adjacency matrices of two different networks.
The Hamming distance is then given by

1
TNN-D 2

Lj,i#]

H(A% AF) A - AL (B.7)

Shortest path length If a path is any set of edges that connects two nodes with each
other one can define a matrix L whose elements L;; are given by the lowest number of
edges that connect n; and n;, the shortest path lengths. The average path length is then
the average over these distances as

I=1/(N(N-1) > L (B.8)

i jEN i%]



C | Appendix to chapter 3

C.1 Methods to approximate the joint probability
distribution

Without loss of generality we discuss most of the following for the time series X,
implying that the same steps are applied to any other series Y as well.

For all methods, we define a shared time axis {t;} and approximate values for
times ty ¢ ¢ {tx} from the given observations. We then obtain a new time series
X = {fcs, tx slxi, tX,i}. As most approximation methods are functions on pairs of time
series, we denote them as I(X,Y) = (X, Y) = ({X,, s}, {Ps, tsD)-

We furthermore define the reference sampling time At as the larger of the mean
sampling times of the two records: At = max{({tx ;.1 — tx i), ({ty ir1 - ty})} and a
neighborhood as Ty = {tx j||tx; - & < 7}, with a threshold 7.

C.1.1 Linear Interpolation

The most common way to infer values between observations is that of linear inter-
polation. Here, the missing observation is assumed to lie on a line between the two
neighboring observations. Thus, the shared time axis is given by {t;} = {tx} u {ty}.
For a given time t; the neighboring observations are t; = max{tl- € {ti,X} t; < ts} and
t, = min{ti € {ti,X} t; > ts}. If there is no t; or t,, we remove t, from the shared time
axis. The corresponding value X; is then given as

% =a+ bt (C.1)

withb =2 and a = x; - bty

ty=t
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C.1.2 Gaussian kernel interpolation

While being conceptually similar to linear interpolation, kernel based methods use a
larger range of observations around t;. The new value is assumed to be a weighted
average of these neighboring observations, the weights K being determined by their
distance to t:

ZieTs K(ts - ti)xi

X = . (C.2)
ZiETS K(ts - ti)
Here, the kernel function K(-) is given by
V_x U @iy
K(tg - ti) L= \/ﬁe Sh (C3)

with the bandwidth h, as discussed by Babu and Stoica (2010) and Rehfeld et al.
(2011). Here, this bandwidth is denoted as a fraction of At, so A = 0.5 means h = 0.5A¢.
To reduce the effect of observations too far away from t, the kernel is set to zero outside
of a neighborhood T with 7 = 3A. If there are less then 3 observations in T; we remove
t, from {t;}.

Nearest values

Without lack of generality we assume that N), < N,.. This method considers observations
which occur close to each other in time to be concurrent (Mudelsee, 2010). Thus, if for
any t; € {ty ;} the corresponding value of X is given as

X =x, i=min{|t;-t]|t; € T} (C.4)
J

To omit combining observations which are far from being simultaneous, we set 7 = 0.5At.
If there are no observations in T; we discard .

Slotting

One way to deal with both unequal sampling and to a certain degree time uncertainty
is to average over time slots and compare the averages of both time series (Mudelsee,
2010). This procedure is very similar to low-pass filtering, but has a wider applicability,
due to a lack of assumptions. For {t} = {tx} u {ty}, N = [{t;}| and a slot width W define
a new timescale consisting of sets of times as

{twit ={tsiltsp 2 tsi=t0+ Whitsi| tso+ W 2 tg; = 5o + 2WH,
collsi| o+ nW 2 g 2 tS’Ns}}. (C.5)

New observations are then given as the averages over time windows Xy, ; = ({xj|t; €
Ty s})- The number of pairs of averaged observations can be significantly lower than
the ones in each time series, leading to higher uncertainty of estimates. Here, we
prescribe W as a multiple of At, so that W = 2 means W = 2A¢t.



C.2. Pseudoproxy construction

C.2 Pseudoproxy construction

As a first step, we generate a regularly sampled time series X, = {x, ;, t, ;}, interpreted as
annual values, the intuition being that most archives are representative of a particular
season of the year (including seasonality would be straight-forward, e.g., by superim-
posing a sine to the signal). Then, we define a dependent variable Y which is generated
as

4 (0,1) ifi<t

(C.6)
N (exi_g, 0,) else

Yi

with the coupling ¢ and o, = \/1 - ¢? so that y; has unit variance. We chose this
separation into one dynamic (x) and one dependent variable (y) because it makes the
analysis easy. For once, the number of parameters of the model is low. Furthermore the
Pearson correlation converges to the true value ¢ and thus, it is very straight-forward
to determine biases in the estimates, which might not be the case in other models (see,
e.g., the discussion by Runge et al., 2014). In this way, one can use any kind of data for
X,, for example, any stochastic process, but also real-world data.
For constructing our pseudoproxies, we use an evenly sampled Ornstein-Uhlenbeck
process, defined as
dx;=0(-x) +odW (C.7)

with 6,y and o > 0 and W being a Wiener process. 0 is a drag parameter, indicating
the speed at which the process returns to the mean after a deviation and the main
free parameter we consider here. In general, the process is more persistent for very
low values and resembles a stochastic process with no persistence for high values of 6.
Example realizations are shown in Fig. C.1. Without loss of generality we set y = 0 and

o = V20 so that the long term variance var(x;) = Z—; is 1.
In a marine environment sedimentation happens at variable rates. Hence, we
consider the thickness of an annual sedimentation layer S to be drawn from a gamma
. . . _ e
distribution p(d) = dk-1 SR
The two moments of the gamma distribution that we vary in this study are its mean
S, and skewness S,. The parameters k and J are then determined as

(examples of this distribution are shown in Fig. C.2).

k=457 and 9 =Sy/k. (C.8)

For our pseudoproxy construction, a sequence of sedimentation layers S; is drawn
from this distribution, implying a monotonically rising sequence of depths d; = Y, S,
t'=0,...,t

as illustrated in Fig. 3.1. Each layer S; at depth d; is assigned one value of the time
series x;. As an additional parameter, we introduce the length of the sediment record L,
discarding all layers above the cumulative length of L. Thus, the record is now limited
to dy,; = {dj|d; <= L}.

The sequence ‘_1)L,t is regularly sampled at a unit length interval with sampling
depths at SD; = i. All other lengths are interpreted in the units of the sampling
interval, for example S, = 0.2 means that on average there are 5 layers between
two sampling points. What follows is a shorter time series with samples at times
{t{} = {t{max d; ; < SD;}. This leaves us with a set of observations O, including depth,
time and values: O; = {dr y, t], xy}
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So far, we have only introduced irregular sampling originating from varying sed-
imentation rates. For most sediment records one also encounters time uncertainty
due to age model uncertainty. To take this into account as well, we add a number of
radiocarbon measurements, shown as triangles in Fig. 3.1b. The number of radiocarbon
samples be Npc. While t; corresponds to the (true) calendar ages we will denote radio-
carbon ages as tpc ;. We chose Ngc such that we have ~ 10% of the sampling points as
radiocarbon sampling points (but a minimum of 3) and set a measurement uncertainty
of ope = 10a (varying this does not alter the results much, so we reduce the number of
free parameters). We have thus obtained radiocarbon samples RC; = {dRC, p tj}.

We decided to impose the time uncertainty to the calendar ages, as the same value
can have different implications at different times in radiocarbon ages, depending on the
location on the calibration curve.

The true calendar ages at dpc ; are then transformed to radiocarbon ages by using
the marine IntCal13 calibration curve (Reimer et al., 2013). For each sample point i we
draw samples from /' (t;, 0;) and transform them to radiocarbon ages to get the sample
radiocarbon time tgc ; and ogc ;. This completes the generation of a pseudoproxy series,
consisting of depths, observations and radiocarbon samples as RC; = {drc ;, trc.i» OrC,i}-

For our analysis, an age model is constructed from these samples to yield radiocarbon
ages for each sampling point of O; with associated calibrated ages and age uncertainties.
We use the MoTaBaR algorithm (Heitzig, 2013) to fit a quadratic depth-radiocarbon
age curve through the radiocarbon samples RC;, incorporating the uncertainties (see
Fig. 3.1d). The radiocarbon age for each observation O; is denoted as tgc; and the
uncertainty in age as ogc ;.

As there are uncertainties in the calibration curve and due to its non-monotonicity
there is a set of calendar ages that correspond to a single radiocarbon age tgc, denoted
as S(tgc).To yield calendar ages, we hence first draw a sample tp~ from the possible
radiocarbon ages /' (trc,0, 9rC,0,), and then use S(tzc) to detain possible values of
the calendar age. We denote this procedure in short as C(tgc, ogc) We repeat this
1000 times for each observation i, hence we have an [{O;}| x 1000 calendar age matrix

A,; ;= C(tgc,i» OrC,i)

Any realization of this age model has to fulfill monotonicity to prevent age reversals
along the modelled sequence. To effectively draw such realizations, we start with
the median time-scale as ¢} Lo, = median j(A; ;) and perturb it by sampling for each
observation a value from A while imposing as an upper limit the median time of the
following observation. A sampled time for observation iis ¢, Lo, € {Ai 1AL <t l,OH}'

The same procedure is then repeated for the dependent time series Y. In Fig. 3.1e, a
median age model and a set of realizations from the age model for one pseudoproxy
are illustrated.

To study the effect of the systematic uncertainty due to calibration we use the
median age model {t”; 5 }. To additionally incorporate calibration uncertainties we
use the full ensembles of realizations {t!al’o}. These synthetic records are created at a
multi-centennial time scale. Due to the man}lf non-monotonic features of the calibration
curve at this time scale we expect it to lead to more ambiguous distributions than similar
curves for longer time scales. Hence, we expect our results to be valid for different time
scales as well.



C.3. Additional figures

parameter abbreviation  sample interval
time series length [25,300]
coupling strength c [0.1,0.9]

drag parameter 0 [0.01,0.9]
sedimentation rate mean Us [0.2,0.5]
sedimentation rate skewness  yg [1,2]

Table C.1: Intervals out of which the parameters are drawn for the pseudoproxy experi-
ments. Their meaning is discussed in Sec. 3.3 and Appendix Sec. C.2. All lengths are
considered to be given in a dimensionless unit. The length of a time series corresponds
to the number of observations.

C.3 Additional figures

values

time

Figure C.1: Two example realizations of the Ornstein-Uhlenbeck process with different
drag parameters. The different autocorrelations are clearly visible, with a low drag
parameter leading to a highly persistent time series.

mean=0.5, skewness=2

. mean=0.5, skewness=1
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Figure C.2: The gamma distribution for two different values of skewness.
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Figure C.3: Distribution (box plot) of scaled bias in dependence of different experimental
parameters, grouped into different approximation methods and levels of time and
sampling uncertainty. The values are scaled to the coupling strength to make them
comparable. For the experiment parameters, we only show three parameter ranges, the
lowest and highest decile and one from the middle of the tested values
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131



C. Appendix to chapter 3

B equal sampling EE uneq. sampling/ref. times Ml age model median [ age model ensemble

Linear Interpolation Gaussian Kernel (h=0.5) Gaussian Kernel (h=2)

0.50 0.50 0.50
=
2]
5 0.25 0.25 0.25
= _
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
coupling coupling couplmg
Nearest Values Slotting (W=1) Slotting (W=2)
0.50 0.50 0.50
m
2]
E 0.25 / 0.25 // 0.25
’V\—\ N\
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

coupling coupling coupling
Figure C.5: Root mean square error (RMSE) in relation to the true coupling strength,
shown for different approximation methods and different levels of time and sample

uncertainty.

I age model median
Gaussian Kernel (h=2)

W equal sampling WM uneq. sampling/ref. times I age model ensemble

Linear Interpolation Gaussian Kernel (h=0.5)

M —
\-"’\—/\/
¥

RMSE

0.4

0.2

M 04
\/\/\/
¥

0.2

1l

100 200
length

Nearest Values

0.4 M

0.2 \—\’\/
¥

RMSE

0.4

0.2

R—’\——-\/ 0.2
g

100 200
length

Slotting (W=1)

100 200
length

Slotting (W=2)

1

100 200
length

100 200
length

100 200
length

Figure C.6: Same as in Fig. C.5, but for the dependence on the time series length.



C.3. Additional figures
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name latitude longitude archive proxy  variable reference

Amarnaes 66°3’N 16°1'E tree ring BI RSF; Bjorklund et al. (2015)
Arjeplog 66°3’N 18°2’E tree ring BI RSF; Bjorklund et al. (2015)
Finish Lapland 69°N 25°E tree ring TRW  Temp. Helama et al. (2009)
Forfjorddalen 69°8'N 17°22'E tree ring TRW  TRSGI Kirchhefer (2001)
Hvitarvatn 64°6’N 19°9’E lake sediment = TOT TOT Larsen et al. (2011)
Jamtland 63°5'N 15°5’E tree ring BI RSF; Gunnarson et al. (2011)
Kittelfjaell 65°2’N 15°5’E tree ring BI RSF; Bjorklund et al. (2013)
Korttajarvi 62°33’N 25°68' W lake sediment Dens. Dens. Tiljander et al. (2003)
Kallio-Kourujarvi  62°33’N 27°E lake sediment = TOT TOT Saarni et al. (2015)
Kalliojarvi 63°13'N 25°22'E lake sediment  TOT TOT Saarni et al. (2016)
Laanila 68°31'N 27°2'E tree ring BI Hlindex Larsen et al. (2011)
Lehmilampi 63°62’N 291" W lake sediment = TOT TOT Haltia-Hovi et al. (2007)
Nautajarvi 61°81'N 24°68' W lake sediment  OI Ol Ojala and Alenius (2005)
N-Scan 65°5" - 69°5'N  19°8” - 32°E  tree ring MXD  Temp. Esper et al. (2012)
Tjeggelvas 66°6'N 17°6’E tree ring BI RSF; Bjorklund et al. (2013)
Tornetréask 68°26’'N 19°6’E tree ring MXD  Temp. Melvin et al. (2013)

Table D.1: The records considered in this study. There are three types of tree ring records, namely those based on tree ring width (TRW), maximum
latewood density (MXD) and blue intensity (BI). The tree ring variables are (summer) temperature (Temp.) as well as indices based on tree ring
with (TRSGI), tree growth (Hlindex) and a individual signal-free RCS approach (RSF;). The lake sediments’ observables are total varve thickness
(TOT), relative density (Dens.) and an organic index (OI).
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Figure D.1: The results of the single record HVG based tests for time-reversibility on
the time-window-size plane. The color indicates the p-value of the KS-test. Those areas
with p-value below 0.1 are considered significant and contoured in blue.
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Figure D.9: An example of a test for HVG time-reversibility, applied to the reconstruction
of solar activity by Steinhilber et al. (2009). The upper left two pannels show the results
for the time directed degree and local clustering coefficients. Areas contoured in blue
are those at which the p-value of the KS-test is below 0.1. On the upper right panels the
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(c) annual temperature, - = 0.008 (d) all seasonal temperatures, a- = 0.0115

Figure E.4: Geographical clusters based on different temperature-related variables from
the ERA-20C reanalysis. The threshold values were selected as described for Fig. E.3.
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cients in the linear model (see Tab. E.2).
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reconstruction by Ortega et al. (2015). The purple line indicates the values predicted
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connection mean value  standard deviation
SE Greenland to Fennoscandia 1.9 0.09
Fennoscandia to Central Europe -0.73 0.1
SE Greenland to Central Europe -0.59 0.09
N Greenland to Central Europe -0.26 0.05
Svalbard to SE Greenland 0.23 0.05
SE Greenland to SW Greenland 0.21 0.05
Svalbard to Central Europe 0.14 0.04
SE Greenland to Central Europe -0.13 0.08
N Greenland to SW Greeland 0.11 0.03
N Greenland to SE Greenland -0.11 0.03
SW Greenland to Fennoscandia -0.11 0.09
N Greenland to Svalbard -0.04 0.02
N Greenland to Fennoscandia 0.04 0.08
Svalbard to SW Greenland -0.03 0.03
Svalbard to Fennoscandia - 0.003 0.05

Table E.2: Mean values and standard deviations of the regression coefficients corre-
sponding to the individual cross-link densities used in this study.
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Table F.1: The proxy records used in this chapter. Those marked by an asterisk are
records for which we use a normal distribution for the radiocarbon dates.

core lat. lon. depth reference
['N] [E] [m]
ENAMO93-21 66.68 -4 1020 Rasmussen et al., 1996;
Rasmussen et al., 1998
EW9209-1JPC 5.91 -44.2 4056 Curry and Oppo (1997)
EW9302-24GGC 61.76 -21.67 1629 Oppo et al. (2015)
EW9302-26GGC* 62.32 -21.46 1450 Oppo et al. (2015)
EW9302-25GGC* 62.06 -21.47 1523 Oppo et al. (2015)
GeoB-1711-2* -23.32 12.38 1967 Little et al. (1997),
Vidal et al. (1999), and
Waelbroeck et al.
(2006)
GeoB1720-2 -28.99 13.84 1997 Dickson et al. (2009)
GeoB9508-5 15.5 -17.95 2384 Mulitza et al. (2008)
GeoB9526-4 12.44 -18.06 3223 Zarriess and
Mackensen (2011)
GIK13289-2 18.07 -18.01 2485 Sarnthein (2004) and
Sarnthein et al. (1994)
KNR159-5-17JPC -27.7 -46.49 1627 Tessin and Lund (2013)
KNR159-5-20JPC -28.64 -45.54 2941 Tessin and Lund (2013)
KNR159-5-30GGC -28.13 -46.07 2500 Tessin and Lund
(2013);
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KNR159-5-33GGC -27.57 -46.18 2082 Lund et al. (2015) and
Tessin and Lund (2013)

KNR159-5-36GGC -27.27 -46.47 1268 Sortor and Lund (2011)

KNR159-5-63GGC -28.36 -45.84 2732 Lund et al. (2015)

KNR159-5-78GGC* -27.48 -46.33 1829 Tessin and Lund (2013)

KNR159-5-90GGC -27.35 -46.63 1105 Curry and Oppo (2005)
and Lund et al. (2015)

KNR159-5-125GGC* -29.53 -45.08 3589 Hoffman and Lund
(2012) and Lund et al.
(2015)

KNR166-2-26]PC* 24.1951 -83.15 546 Came et al. (2008)

KNR166-2-29]JPC 24.17 -83.16 648 Came et al. (2008)

KNR166-2-31JPC 24.13 -83.18 751 Came et al. (2008)

KNR166-2-GGC73 23.45 -79.26 542 Lynch-Stieglitz et al.
(2009)

M35003-4 12.09 -61.24 1299 Rithlemann et al.
(1999)

MD03-2707 2.502 9.395 1295 Weldeab et al. (2016)

MD07-3076Q -44.09 -14.13 3770 Waelbroeck et al.
(2011)

MD95-2037 37.05 -32.02 2159 Gherardi et al. (2009)
and Labeyrie et al.
(2005)

MD99-2339 35.89 -7.53 1177 Voelker et al. (2006)

NA87-22 55.3 -14.41 2161 Vidal et al. (1997) and
Waelbroeck et al.
(2006)

ODP984 61.0 -24.0 1648 Lund et al. (2015) and
Praetorius et al. (2008)

RAPiD-15 63.29 -17.13 2133 Oppo et al. (2015) and
Thornalley et al. (2010)

RAPiD-17 "~ 61.48 -19.54 2303 Oppo et al. (2015) and

Thornalley et al. (2010)
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Figure F.1: The raw data of §'30 values shifted to the transition onset. The timing of
the onset of deglaciation is determined as the median over all records used in this study,
considering the point of highest probability in the change point distribution for each
record. The gray time series are the unshifted age models. The most likely transition
onset is marked by the dashed line.
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Figure F.2: Same as in Fig. F.1, but for the §!3C time series.
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latitude

(a) Full 30ka period climate network for 50 data.

latitude

(b) Full 30ka period climate network for §'3C data.

Figure F.3: Climate network for (a) §'80 data and (b) §!3C data for the full 30ka period.

A link is drawn orange or blue if 95% of the samples of the posterior of p lays above or
below zero respectively. It is shown in gray, if neither is the case. The colour strength
is proportional to the peak of the correlation distribution and the width of each link is
proportional to the width of the central 90% range of the posterior.
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Figure F.4: The number of possible links for each time window. Note that this number is
identcal for both isotope ratios, as they are measured at the same intervals. If there are
too few data points for comparison after (<10 data points), a link is considered to be not
possible and the weight is set to NaN. Therefore, the number of possible links changes
with time, as different records cover different time periods with different resolution.
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Figure F.5: Same as in Fig. 8.4, but showing the geographical locations of the records.
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(a) 15ka to 10ka be-  (b) 12.5ka to 7.5kabe-  (c) 10ka to 5ka before  (d) 7.5ka to 2.5ka be-
fore onset fore onset onset fore onset

(f) 2.5ka before to (h) 2.5ka to 7.5ka af-
set 2.5ka after onset onset ter onset

(i) 5ka to 10ka after  (j) 7.5ka to 12.5ka af- (k) 10ka to 15ka after (1) 12.5ka to 17.5ka af-
onset ter onset onset ter onset

Figure F.6: Same as in Fig. 8.7, but showing the geographical locations of the records.
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measure

change points [ka BP]  trends [per ka]

link density

n.s.i. link density
hamming distance

n.s.i. mean degree

n.s.i. transitivity

n.s.i. average path length

- -0.036
- -0.013
12.86 -
14.72 -
8.94 -

Table G.1: The detected change points and linear trends detected for the global network

measures.
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Figure G.1: The AMOC strength shown together with the freshwater forcing applied to
the model.
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Figure G.2: Local network measures for the example time window from 17.31 to 17.30
ka BP. In particular the (a) local n.s.i. degree, (b) the n.s.i. local clustering and (c) the
maximum link distance.

Figure G.3: Clusters that show a gradually decreasing n.s.i. mean degree during the
deglaciation, but are too small to be considered along the large ones in the main text.
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Figure G.4: In this plot, the degrees are plotted for a network in which only links that
originate from the black box are considered and all others are removed. Most remaining

links are either inside the box or with the surrounding areas.
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1, 3, and 5 and temperature variability. The latter is measured as the spatial mean over
the standard deviations of all time series inside the cluster for each time window.
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