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Abstract 

Sustainable intensification measures promise ecological improvements of farming while 

maintaining profitability. That is, farms should be able to produce at a higher ecological efficiency 

without losses in economic efficiency. Based on a theoretical framework, we investigate this 

promise empirically by analysing the environmental improvement potential of sustainable 

intensification. We thereby focus on quantifying biodiversity gains using a directional meta-frontier 

approach and farm survey data from the northern German Plain. We compare eco-efficiency scores 

in an ecological direction between adopters and matched non-adopters to identify the causal 

relationship between these gains and sustainable intensification. We find that adopters determine 

the system frontier. Despite higher mean eco-efficiency scores, most adopters do not yet fully 

exploit the potential of ecological improvements through sustainable intensification. 
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1 Introduction 

Increasing population raising food demand, triggered by changing diets (Tilman et al. 2011), to 
be satisfied by limited land and natural resources (Cordell et al. 2009, Popp et al. 2014) 
engender a main future challenge. Food production systems, however, suffer increasingly from 
environmental problems, such as a loss of biodiversity or groundwater contamination. Intense 
farming systems have been argued to be a major driver (Foley et al. 2011). Coincidently 
increasing societal awareness has raised the demand for environmentally sustainable and 
climate-friendly food production (Feldmann and Hamm 2015). Ecological improvements in 
farming, typically associated with extensive or organic production, often cannot maintain 
productivity levels. Not surprisingly, rather smart combinations of organic and more intense 
systems have been pursued as potential solutions (Meemken and Qaim 2018). The concept 
of sustainable intensification (SI), originally proposed to foster sustainable growth in 
developing countries (e.g., Pretty 1997), has been postulated as part of this solution (Godfray 
and Garnett 2014), and has already been noticed by policymakers (Foresight 2011, Buckwell 
et al. 2014). This concept aims to balance the trade-off between production economics and 
environmental sustainability. From a farm perspective, this could be achieved by production 
measures to improve either economic or environmental outcomes without one reducing the 
other (Pretty and Bharucha 2014). Resource-saving crop production by utilising a wider crop 
rotation, reduced tillage, integrated pest management with buffer strips and technological 
solutions for improved input management, such as precision agriculture denote important 
examples (Weltin et al. 2018). Overall, these production systems target reducing 
environmental harm without additional land (Pretty 2018), offering the potential to contribute to 
closing yield gaps (Mueller et al. 2012), offsetting negative effects of agricultural land use 
(Baulcombe et al. 2009) and ensuring stable farm incomes to sustain vital rural economies 
(Godfray and Garnett 2014).  

Given these promises, surprisingly, empirical evaluations of SI practices have been based 
mainly on field trial data (e.g., Paul et al. 2015, Townsend et al. 2016) or simulation-based 
approaches (e.g., Mao et al. 2015, Devkota et al. 2016) with focus on yield effects. Holistic 
farm-level approaches particularly for the global North, however, seem underrepresented. 
Some studies for developing countries find improvements in farms’ performance by sustainable 
intensification (e.g., Kassie et al. 2015) and a recent study by Barnes and Thomson (2014) 
presents indicators to monitor the progress of SI for Scottish beef farms, though without farm 
performance assessment.  

Farms in the global North aim more at improving a beneficial ecological output without 
sacrificing the economic performance when opting for sustainably intense practices (Godfray 
and Garnett 2014) and thus, focusing on single yield effects would not be sufficient. Agricultural 
production produces in addition to economic goods, either a beneficial ecological production 
output (Areal et al. 2012) or an undesirable environmental harm (Dakpo et al. 2016) within a 
complex relationship. Sidhoum et al. (2019) underline the importance of considering this 
multidimensionality of outcomes and even distinguish the technical, social and environmental 
performance of farms. 
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Against this backdrop, we rely on the concept of eco-efficiency when evaluating SI measures 
to acknowledge this complexity. Reaching eco-efficiency means producing more output using 
fewer resources with reduced environmental harm (Schmidheiny 1993). Applying this concept 
at the firm level, eco-efficiency captures the improvement of environmental outcome while 
maintaining economic output in a cost-effective manner (cf. Kuosmanen and Kortelainen 
2005). Using static and dynamic production frontier models, for instance, Callens and Tyteca 
(1999), Tyteca (1999), Kuosmanen and Kortelainen (2005) and Kortelainen (2008) propose a 
radial eco-efficiency measure based on non-parametric Data Envelopment Analysis (DEA). 
These approaches have been applied to agricultural production, for instance, by Gadanakis et 
al. (2015) and Pérez Urdiales et al. (2016). As one of the few exceptions relating eco-efficiency 
to SI, Gadanakis et al. (2015) find that arable farms in the United Kingdom can reduce eco-
inefficiencies by sustainable farming practices; however, their approach lacks explicit causal 
interpretation.  

Our study aims at evaluating how sustainable intensification measures can improve eco-
efficiency in lowland farming systems in north-western Europe. We rely on rich survey data 
from the northern German Plain as a representative region collected in 2017 (Weltin et al. 
2019). Following the idea of Asmild and Hougaard (2006), farm managers might be first 
interested in achieving technical efficiency and improving in the economic output dimension. 
After meeting a certain threshold, depending on their environmental preferences, improving 
the environmental output as a secondary goal becomes relevant. We model this improvement 
potential in the ecological direction within sequential preferences guiding decisions by using 
directional DEA eco-efficiency measures. Eco-inefficiency then reflects the distance of actual 
to potential production in either direction, economic or ecological, while maintaining the other 
and thus an improvement potential (Picazo-Tadeo et al. 2012). We are specifically interested 
in quantifying how SI measures reduce the ecological improvement potential that is, to provide 
more ecological output at no economic cost. Treating SI as a different technology with highest 
possible ecological output compared to other farming practises, we hypothesize both 
technologies enveloped by a system frontier. For defining the system production frontier, we 
apply a meta-frontier approach (cf. O’Donnell et al. 2008). The system frontier offers highest 
possible outcomes in either direction, where farms adopting SI are hypothesized to largely 
determine the system frontier in ecological direction. The ecological output on the system 
frontier will serve as a reference to identify improvement potentials, where SI farms exploiting 
the potential of sustainable farming practises will have considerably lower improvement 
potentials. 

Observed differences in the ecological improvement potential between groups might not only 
be associated with sustainable practices; these could also be related to structural differences 
of adopters and non-adopters, such as natural and socio-economic conditions (e.g., Kassie et 
al. 2015) or environmental preferences and awareness (e.g., Omer et al. 2010). In line with 
Mayen et al. (2010), linking the technology adoption decision and eco-efficiency analysis is a 
pre-condition to identify causal relationships. By enhancing the theoretical framework of 
Chabé-Ferret and Subervie (2013), we acknowledge the role of farmers’ preferences and 
presume a representative farmer will decide first on whether to opt for the SI technology. 
Subsequently, the farm household maximizes its utility, where adopters voluntarily constrain 
production to reduce the improvement potential compared to a non-SI reference situation. We 
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account for such selectivity issues by comparing eco-efficiency scores of SI farms with farms 
of a matched control sample (cf. Bogetoft and Kromann 2018).  

The contribution of our paper is threefold. Firstly, to the best of our knowledge, we are the first 
authors providing a meta-frontier approach to measure improvement potentials in the direction 
of the ecological output. Secondly, based on a theoretical framework, we use a matching 
algorithm to generate a control sample that reduces potential biases and, thus, offer a causal 
interpretation of differences in eco-efficiency measures through SI. Thirdly, by means of this 
approach, we are able to disentangle differences in improvement potentials between SI 
adopters and non-adopters into a technology and a performance effect: Differences between 
the group-specific frontiers of adopters and non-adopters allows us to investigate whether SI 
is promising at all by offering a frontier, which is closer to the meta-frontier (technology effect). 
How efficiently a farm operates within its chosen technology in either direction reflects the 
performance effect, which is important to understand for policy implications regarding to what 
extent adopters exploit the production possibilities offered by the SI technology. An enhanced 
understanding of improvement potentials through such rather easy to take up agronomic 
practices offers a key to develop policy measures beyond agri-environmental payment 
schemes and shows the relevance. 

The remainder is structured as follows: we continue elaborating the theoretical background 
and derive hypotheses (section 2). We next describe the data, sampling and the empirical 
model (section 3), followed by a detailed presentation and discussion of the results (section 4). 
We draw conclusions in section 5.  

2 Theoretical framework 

The behavioural model of Chabé-Ferret and Subervie (2013) serves as a basis which we 
enhance to frame the decision to adopt sustainable intensification (SI) measures to identify the 
causal impact of SI on farms’ eco-efficiency and to derive the hypotheses.  

Presuming representative farm 𝑖𝑖 to produce output 𝒀𝒀 with an economic 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and ecological 
dimension 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, the use of agronomic SI measures implies a different technology compared to 
non-adopters. The respective production technology sets are denoted by 𝛹𝛹𝑗𝑗 with 𝑗𝑗 = [0;  1], 
where 𝑗𝑗 = 0 indicates production without SI and 𝑗𝑗 = 1 the SI-adjusted production system. In 
both cases, farm 𝑖𝑖  chooses variable input 𝑋𝑋  and on-farm labour 𝐻𝐻 . Fixed inputs 𝑰𝑰 , such as 
human and physical capital, as well as unobserved factors 𝜺𝜺, such as land quality, weather 
conditions and managerial ability, enter the production possibility sets1:  

𝛹𝛹𝑗𝑗 = [(𝑋𝑋,𝐻𝐻, 𝑰𝑰, 𝜺𝜺,𝒀𝒀 )|𝑋𝑋,𝐻𝐻, 𝑰𝑰, 𝜺𝜺 𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝒀𝒀] (1) 

Following O’Donnell et al. (2008), the group-specific technologies determine a common 
production system frontier, 𝛹𝛹𝑚𝑚, enveloping the SI and non-SI production frontiers; see Figure 
1, where the solid black line exemplarily represents the system frontier in a two-output setting 
enveloping two technologies shown by the dashed lines. Farms producing on the system 
frontier will be eco-efficient. The distance between a farm’s actual production and the system 

                                                
1  The farm index 𝑖𝑖 is suppressed where possible for notational simplicity.  
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frontier will capture this farm’s improvement potential, that is, eco-inefficiency. Since we are 
particularly interested in how SI adoption can improve production in the ecological direction, 
we measure the eco-efficiency as the distance of actual production in the direction of the 
potential ecological output, while maintaining the economic outcome within a directional 
distance function (e.g., Picazo-Tadeo et al. 2012). Following Figure 1, the distance between A 
and A’’ denotes the improvement potential for an exemplary non-SI farm and a respective 
improvement potential when applying SI is given by A’ to A’’.  

Figure 1. System frontier and the two group-specific frontiers, non-SI (𝜳𝜳𝟎𝟎) and SI (𝜳𝜳𝟏𝟏) 

 

Ecological improvement potential is 𝐴𝐴𝐴𝐴′′������  under 
non-SI and 𝐴𝐴′𝐴𝐴′′������  under SI. Eco-efficient 
production implies an improvement potential of 
𝐴𝐴′′′𝐴𝐴′′�������� under non-SI and 𝐴𝐴′′𝐴𝐴′′������� under SI. 

 

 

 

 

 

 

Eco-efficient production under 𝛹𝛹1 should provide higher or, at least, the same ecological output 
for the same economic output level compared to 𝛹𝛹0. We denote the resulting difference in 
improvement potentials as the technology effect of SI. That is, eco-efficiently producing farms 
under 𝛹𝛹0 (cf. Figure 1, point A’’’) can still improve in the ecological direction by 𝐴𝐴′′′𝐴𝐴′′�������� . Under 
𝛹𝛹1, eco-efficient production at A’’ means producing on the system frontier and fully exploiting 
the improvement potential in the ecological direction. We frame the technology effect in the 
first hypothesis: 

Hypothesis 1:  The SI frontier locates in the direction of the ecological output closer 

to the system frontier. Hence, the system frontier is largely determined 

by SI adopters in this direction. 

Switching technology by adopting SI measures, thus, offers to reduce the ecological 
improvement potential compared to farms’ respective counterfactual situation without SI. As 
such, the observed and measurable respective improvement potential of a farm, denoted 𝑌𝑌�𝑗𝑗, 
results from two sequential decisions: firstly, the farm household decides whether to adopt SI, 
determining the possible improvement in the ecological direction. Secondly, the farm makes a 
choice regarding inputs allocation and intensity, on how eco-efficiently to operate within their 
respective technology.  
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Following Chabé-Ferret and Subervie (2013) and solving backwards, based on maximising a 
utility function 𝑈𝑈, the farm household evaluates optimized production input levels 𝑋𝑋𝑗𝑗∗ and on-
farm labour time allocation 𝐻𝐻𝑗𝑗∗  for both the SI and non-SI technology. These optimized 
production levels determine optimal outputs and, thus, improvement potentials 𝑌𝑌�𝑗𝑗∗  for both 
cases. Both are functions of the exogenous variables, such as prices, consumption shifters, 
preferences and fixed inputs, 𝑔𝑔𝑗𝑗  and ℎ𝑗𝑗 , respectively. Deciding upon the adoption of SI 
measures, we presume the farm household aims at a reduction of the improvement potential 
in the ecological direction compared to the respective non-SI reference situation. Farms use 
results from previous years and their experience to estimate the reference improvement 
potential: 𝑌𝑌�0∗ = 𝑌𝑌�0(𝑋𝑋0∗,𝐻𝐻0∗). 

This farm household’s utility maximisation problem is given by: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐶𝐶,𝐿𝐿,𝐻𝐻,𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,𝑋𝑋

𝑈𝑈(𝐶𝐶, 𝐿𝐿,𝐻𝐻,𝑋𝑋,𝑺𝑺,𝜼𝜼)  (2) 

subject to: 

𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑗𝑗(𝑋𝑋,𝐻𝐻, 𝑰𝑰, 𝜺𝜺,𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) (3) 

𝐶𝐶 = 𝑝𝑝𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑝𝑝𝑥𝑥𝑋𝑋 + 𝑤𝑤𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 (4) 

𝑇𝑇 = 𝐿𝐿 + 𝐻𝐻 +𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 (5) 

Utility 𝑈𝑈 depends on levels of consumption 𝐶𝐶, leisure 𝐿𝐿, variable input 𝑋𝑋 and on-farm labour 
hours 𝐻𝐻 , reflecting the dependence of utility on the farmers’ (dis)taste for certain input 
compositions due to preferences. Consumption shifters 𝑺𝑺 , such as age or education, and 
unobservable taste shifters 𝜼𝜼, such as ecological preferences or idiosyncratic non-farm profit 
opportunities, also enter 𝑈𝑈. Utility maximization is subject to the production possibilities, where 
equation (3) gives the transformation function in an explicit form regarding 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 according to 
the implicit function theorem (e.g., Sauer and Wossink 2013). The consumption constraint in 
equation (4) states that the farm household sells 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 for price 𝑝𝑝 with input costs at price 𝑝𝑝𝑥𝑥 
and quantities 𝑋𝑋 . The farm generates additional income from 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜  hours of off-farm work 
remunerated by wage rate 𝑤𝑤. Finally, equation (5) constrains the total available time 𝑇𝑇 of hours 
for on- and off-farm labour and leisure time.  

Optimal input levels under non-SI are, thus, given by: 

𝑋𝑋0∗ =  𝑔𝑔0(𝑝𝑝,𝑝𝑝𝑥𝑥 ,𝑤𝑤,𝑇𝑇, 𝑰𝑰,𝑺𝑺,𝛈𝛈,𝜺𝜺) (6) 

and 𝐻𝐻0∗ =  ℎ0(𝑝𝑝,𝑝𝑝𝑥𝑥 ,𝑤𝑤,𝑇𝑇, 𝑰𝑰,𝑺𝑺,𝛈𝛈,𝜺𝜺) (7) 

When applying SI, the farm’s input allocation will be guided such that the improvement potential 
in the ecological direction, 𝑌𝑌�1 , will not exceed the optimized improvement potential of the 
reference situation, 𝑌𝑌�0∗. This gives an additional voluntary constraint to the utility maximization 
problem, where the reference improvement potential enters as a constant: 

𝐷𝐷(𝑌𝑌�1(𝑋𝑋,𝐻𝐻, 𝑰𝑰, 𝜺𝜺,𝒀𝒀) −  𝑌𝑌�0∗) ≤  0 (8) 
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This voluntary constraint of equation (8) enters the first-order conditions:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑝𝑝 𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕

− 𝑝𝑝𝑥𝑥) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜆𝜆 �𝜕𝜕𝑌𝑌

�1(𝑋𝑋,𝐻𝐻,𝑰𝑰,𝜺𝜺,𝒀𝒀)
𝜕𝜕𝜕𝜕

�𝐷𝐷 = 0 (9) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑝𝑝 𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜕𝜕

− 𝑤𝑤) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜆𝜆 �𝜕𝜕𝑌𝑌

�1(𝑋𝑋,𝐻𝐻,𝑰𝑰,𝜺𝜺,𝒀𝒀)
𝜕𝜕𝜕𝜕

�𝐷𝐷 = 0 (10) 

where 𝜆𝜆 denotes the respective Lagrangean multiplier.  

The optimized input choices under SI (𝐷𝐷 = 1) will, thus, depend on the reference situation’s 
improvement potential, 𝑌𝑌�0∗. This counterfactual improvement potential works as a lower bound 
against which farms compare the respective ecological outcome expected upon which the 
improvement potential under SI is calculated. If the constraint is binding (𝜆𝜆 ≠ 0 ), the farm 
household will adjust 𝑋𝑋 and 𝐻𝐻 but may be compensated by increases in utility. If the constraint 
is not binding (𝜆𝜆 = 0), the farmer has no costs in terms of constrained use of 𝑋𝑋 and 𝐻𝐻 when 
applying SI. Optimized input and labour allocation under SI are given by:  

𝑋𝑋1∗ =  𝑔𝑔1�𝑝𝑝,𝑝𝑝𝑥𝑥 ,𝑤𝑤,𝑇𝑇, 𝑰𝑰,𝑺𝑺,𝛈𝛈,𝜺𝜺,𝑌𝑌�0∗�  (11) 

and labour 𝐻𝐻1∗ =  ℎ1�𝑝𝑝,𝑝𝑝𝑥𝑥 ,𝑤𝑤,𝑇𝑇, 𝑰𝑰,𝑺𝑺,𝛈𝛈, 𝜺𝜺,𝑌𝑌�0∗�  (12) 

Note, if a farm’s expected improvement potential under SI, 𝑌𝑌�1∗, remains insufficiently large to 
increase utility compared to 𝑌𝑌�0∗ according to the environmental preferences, the farm will not 
adopt (𝐷𝐷 = 0) and equation (8) will not be relevant.  

We only observe the outcome of the decision process and measure the improvement potential 
observed, 𝑌𝑌�𝑗𝑗, which depends on whether the farm chooses to apply SI measures. The farm 
household decides on SI based on the indirect utilities, 𝑉𝑉1  and 𝑉𝑉0 , depending on the same 
variables as 𝑌𝑌�1∗  and 𝑌𝑌�0∗ . The implementation of SI may, however, induce a disutility 𝑉𝑉  from 
search, implementation or information cost, potentially varying with education and experience. 
The household will adopt SI (𝐷𝐷 = 1) when the expected increase in indirect utility outweighs 
the cost of adoption: 

D=1[𝐸𝐸[𝑉𝑉1 − 𝑉𝑉0|𝑍𝑍] − 𝑉𝑉 ≥ 0]] (13) 

where 𝒁𝒁 denotes determinants of the household’s adoption decision. These may coincide with 
determinants of input choices, such as environmental preferences, consumption shifters or 
fixed inputs. As such, likely adopters and non-adopters might systematically differ, particularly 
regarding the environmental preferences. This shows the necessity of ensuring comparability 
when comparing outcomes observed.  

Thus far, we have assumed efficient production under the respective technology. In the short-
run, however, inefficiencies within the technology may occur and even be tolerated in terms of 
adjustment costs in the process of technology adoption (Ang and Oude Lansink 2017). Ignoring 
the inefficiencies of SI-adopters within technology particularly would bias the eco-inefficiencies 
retrieved. A fully efficient non-SI farm, for instance, could have a lower improvement potential 
compared to weakly efficient SI-farm.  
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We illustrate this performance effect in Figure 2, where farm A reduces the improvement 
potential when choosing SI; at best, the farm achieves A’’, that is, is fully eco-efficient to the 
system frontier. In this case, the improvement potential turns to zero. However, farm A might 
only be able to reduce the improvement potential up to a point A’ due to eco-inefficiencies 
within the SI technology. This corresponds to a level that farm A might also achieve when 
improving performance in the non-SI case. The distance to the SI group-specific frontier for A’ 
is larger than the distance in the non-SI reference situation A to the non-SI group-specific 
frontier. The improvement potential for farm A still reduces when choosing SI, but that does not 
necessarily have to be the case. Farm B is eco-efficient within the non-SI technology but might 
exhibit eco-inefficiencies in the SI technology in such a way that B is not able to move to a 
point B’ that reduces the improvement potential. A possible performance B’’’ under SI 
corresponding to the ecological output level of A’ would even increase the improvement 
potential.  

Figure 2. Improvement potentials for different reference situations A and B 

 

SI adoption may shift farm production to A’ and B’ 
with reductions in improvement potential. B’’’ 
represents a situation when eco-inefficiencies in 
the SI technology increase the improvement 
potential compared to B. 

 

 

 

 

 

Taken together, we single out two hypotheses on the impact of SI adoption on farmers’ 
ecological improvement potential acknowledging a performance effect:  

Hypothesis 2a:  At the mean, for the same economic outcome, SI farms produce at a 

lower improvement potential (higher eco-efficiency score) to the 

ecological dimension compared to comparable non-SI adopters.  

Hypothesis 2b:  If adopters cannot fully exploit their reduction in the improvement 

potential of the SI-technology (low within technology eco-efficiency 

score), a high within-technology performance of comparable non-

adopters can lead to lower improvement potentials under non-SI.  
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3 Data and empirical approach 

3.1 Survey data and sampling  

We use farm survey data that covers the northern German Plain in areas with an abundance 
of peatlands for the empirical approach. These areas demand adaptions in farming practice to 
fulfil climate protection and biodiversity goals (TEEB 2015). In this study, we focus primarily on 
farmland and crop diversity as the core biodiversity harm of agricultural intensification (Benton 
et al. 2003, Herbst et al. 2017). Another advantage is that these can be measured at the local 
level (Matson et al. 1997).  

The survey questions embrace sustainable intensification measures and policy instruments for 
climate-friendly peatland management (Häfner et al. 2017, Weltin et al. 2019). The data was 
collected in the federal states of Brandenburg, Mecklenburg Western Pomerania, Saxony-
Anhalt, Lower Saxony and Schleswig Holstein from February to June 2017. In the first three 
states, we addressed 3,000 farmers by mail through the Ministries of Agriculture. We targeted 
postal code areas with at least 20 % peatland area and 1,000 ha of peatlands in total, and 
those with more than 5,000 ha of peatlands in total. The response rate was 13.5 %. Additional 
respondents were recruited via newsletters of farmers associations. The full sample contains 
464 observations in the spatial expansion presented in the appendix (cf. Figure 5).  

We investigate the following SI measures aimed at enhancing diversity:  

(i) reduced tillage,  
(ii) intercropping,  
(iii) growing legumes,  
(iv) integrated pest management,  
(v) grazing, and  
(vi) extensive use of grassland.  

We base our selection of these agronomic measures on an extensive literature review of SI 
measures and discussions in a workshop with farmers and stakeholders in the Rhinluch region, 
situated in the area surveyed (Weltin et al. 2016). The SI measures develop their beneficial 
effects through combination (Kassie et al. 2015), as agricultural practices interact and influence 
diversity collectively (Benton et al. 2003). We, thus, define a farm as an adopter of SI when 
applying at least two measures. We observe the adoption decision for 410 farms in the sample. 
We exclude 26 farms that operate an agricultural area below 5 ha in order to focus on 
professional farming.  

Regarding the extent of their business operation, SI farms are more likely to be full-time farms, 
operate a larger area and use professional extension services more frequently (Table 1). Farm 
managers adopting SI are better educated while their farming experience is similar to non-
adopters. We further characterise farmers by self-assessment statements on their values and 
attitudes. These comprise farmers’ propensities to act economically and socially sustainably in 
the long-run represented by the personal attachment to the region and by a regional 
entrepreneurship variable. The latter is composed of three aspects: the endeavours to adopt 
innovations, bear business risks and contribute to regional economic development. Farmers’ 
awareness of contributing to environmental conservation objectives constitutes the third 
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attitude. Factor analysis supports the separation of the five self-assessments into three distinct 
constructs. The SI farms show a stronger affinity than non-SI farms for the regional 
entrepreneurship variable. Differences in environmental awareness, however, are small. The 
full questionnaire can be found in Weltin et al. (2019). 

Table 1. Descriptive statistics for SI and non-SI farms  

 SI farms Non SI farms 
Variables N Mean Std. Dev N Mean Std. Dev 
Used agricultural area [ha]* 304 513.00 698.60 79 79.21 163.80 
Profit character [1=full-time; 0=part-time]* 303 0.71 0.46 78 0.36 0.48 
Organic farming [1=yes; 0=no] 303 0.20 0.40 77 0.19 0.40 
Specialisation in arable farming [1=yes; 0=no] 304 0.34 0.47 77 0.25 0.43 
Labour intensity [workforce/ha UAA]a* 288 0.04 0.06 70 0.11 0.14 
Use of extension services [1; 5]b* 298 2.91 1.23 76 2.34 1.25 
Formal agricultural education [1=yes; 0=no]* 295 0.77 0.42 74 0.57 0.50 
Highest educational degree [1; 3]c * 296 2.39 0.86 76 1.99 0.93 
Farming experience [years] 295 27.62 13.03 72 26.50 14.77 
Regional attachment [1; 10]d 294 8.95 1.83 76 8.87 1.93 
Environmental awareness [1; 10]d 291 7.12 2.58 75 6.75 2.80 
Entrepreneurial attitude [1; 10]d * 288 6.34 2.13 71 4.82 2.21 
Economic output: profit indicator [1; 12] 271 4.63 3.80 69 2.84 2.81 
Ecological output indicator [0; 1] 295 0.44 0.13 76 0.30 0.19 
* Wilcoxon rank sum test for differences between groups has a p-value < 0.05. 
a Workforce below or equal to 1 person is summarized as 1.  
b 1=never; 2=sometimes; 3=occasionally; 4=often; 5=very often 
c 1=lower secondary or intermediate education or no degree; 2=high school degree; 3=university 
degree 
d Self-assessment questions for which respondents indicated the degree of agreement on a scale from 
1=fully disagree to 10=fully agree 

We use the agricultural area as farm input in the eco-efficiency analysis to assess farms of 
comparable size. A farm profit indicator provided on an ordinal scale with twelve categories2 
measures the economic output dimension, 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . We conceptually follow approaches from 
ecology and address diversity on two scales, measuring heterogeneity on the farm between 
different landscape elements (on-farm diversity) as well as the diversity within each land use 
type (on-land diversity) for the environmental output dimension, 𝑌𝑌𝑒𝑒𝑐𝑐𝑜𝑜𝑜𝑜. We assign equal weight 
to both components in the indicator for ecological output. We ignore the heterogeneity on the 
landscape scale as a third layer of diversity because our dataset does not allow the spatial 
location of farms. Still, habitat heterogeneity on a smaller scale is associated with biodiversity 
in the farmed landscape (Benton et al. 2003) and ecological assessments also take place 
exclusively within the borders of the farm (Gibson et al. 2007). Other than ecological studies 
measuring richness and abundance of plants, insects or birds directly and mostly considering 
a limited number of farms, we have to rely on proxy measures that proved relevant in the 

                                                
2  Categories: 1 loss/smaller than 0 €; 2 up to 10,000 € ; 3 up to 20,000 € ; 4 up to 40,000 € ; 5 up to 

60,000 € ; 6 up to 80,000 €; 7 up to 100,000 €; 8 up to 120,000 €; 9 up to 140,000 €; 10 up to 
200,000 €; 11 up to 250,000 €; 12 more than 250,000 €. 
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literature. The final indicator is defined in the interval [0; 1]. We present details on the 
calculation of all components in Table 2. 

Table 2. Components of the environmental output considered for the assessment of 
eco-efficiency  

Indicator component Calculation 
On-farm diversity   
Normalised Simpson diversity 
index ai,norm 

ai = 1 −  ∑ pik2k ;  
pik share of land use type k on farm i;  
k includes arable land, permanent grassland and other 
grassland.  
ai,norm. = ai

1−1k
 normalises ai to the interval [0;1]. 

Presence of fallow bi Indicator turns to 1 if fallow is present on farm i. 
Presence of flower and buffer 
strips ci 

Indicator turns to 1 if flower or buffer strips are present 
on farm i. 

Aggregated indicator on-farm 
diversity 

1
2� ai,norm. +  1 4�  bi + 1

4� ci 

On-land diversity   
Crop diversity in arable land di Number of crops grown on farm i per year divided by the 

sample maximum. 
Permanent grassland ei Share of permanent to total grassland on farm i. 
Biodiversity surplus of 
permanent grassland fi 

fi =
qi−qreg.size

1− qreg.size
 ;  

𝑞𝑞𝑖𝑖 share of permanent pasture to UAA of farm i;  
𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 average share of permanent pasture to UAA by 
federal state and farm size class retrieved from Destatis 

(2018). fi is set to 0 if 
qi−qreg.size

1− qreg.size
< 0. 

Extensively managed 
peatlands gi 

Share of near-natural or extensively managed peatland 
area to total peatland area on farm i. 

Aggregated indicator on-land 
diversity 

arable landi
UAAi

di +
total grasslandi

UAAi

1
3

(ei + fi + gi) 

Farm level heterogeneity includes all types of cropped and non-cropped areas on the farm. 
We capture the shares of arable land, extensive grassland and other grassland by the Simpson 
diversity index (Van Eck and Koomen 2008). For non-cropped land, we only observe the 
presence, but not the amount of fallow land and flower or buffer strips. Acknowledging the high 
value of these semi-natural areas for biodiversity (Weibull et al. 2003, Herbst et al. 2017), we 
assign them 50 % of the weight in the overall indicator for on-farm diversity. 

For on-land diversity, biodiversity in arable land is accounted for by the number of different 
crops grown on the farm within a year, describing the diversity planned by the farmer (Matson 
et al. 1997). For grassland, we follow Areal et al. (2012) and rely on the share of permanent 
pasture on the farm as a measure of biodiversity, but differentiate their approach further. We 
include the share of permanent grassland to total grassland. In addition to biodiversity, this 
indicator captures the carbon sink function of grassland (Barnes and Poole 2012). Additionally, 
we measure the biodiversity surplus in terms of how far shares of permanent pasture exceed 
regional averages. The third component is the abundance of peatlands extensively managed 
or in conditions close to nature, having both a high impact on carbon capture and biodiversity 
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(TEEB 2015). All three components are weighted equally. Sub-indicators for arable and 
grassland are weighted by the respective share of each land-use type on the farm in the 
indicator for on-land diversity. 

3.2 Empirical model specification 

The improvement potential observed, 𝑌𝑌�𝑗𝑗, corresponds to eco-inefficiency to the system frontier, 
thus, higher eco-efficiency scores imply a reduced improvement potential. We measure eco-
efficiency scores to the system frontier and within-technology performance regarding the 
group-specific frontiers using a meta-frontier approach (e.g., Gómez-Limón et al. 2012). We 
are interested in the proportional increase of the ecological output dimension, while keeping 
economic output constant and staying in the respective production set 𝛹𝛹𝑚𝑚 or 𝛹𝛹𝑗𝑗. Hence, we 
rely on directional distance functions (DDF) following Picazo-Tadeo et al. (2012).  

We specify the DDF with outputs 𝒀𝒀 = (𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) , agricultural area input 𝑄𝑄  and define the 
direction vector 𝑔𝑔𝑦𝑦(𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 0): 

𝐷𝐷��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗�𝑄𝑄,𝒀𝒀;  𝑔𝑔𝑦𝑦� = 𝑆𝑆𝑆𝑆𝑆𝑆[𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗: �𝒀𝒀 + 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 𝑔𝑔𝑦𝑦� ∈ 𝛹𝛹𝑚𝑚]  (14) 

For within-technology performance, 𝛹𝛹𝑚𝑚 is replaced by 𝛹𝛹𝑗𝑗 in equation (14). Symbol 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 is the 
proportion by which 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  could be increased to reach the respective frontier. The ratio 
1 (1 + 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗⁄ ) determines the fraction of the feasible output realized by the farm, that is, eco-
efficiency in the interval [0; 1]. The following relationship holds: eco-efficiency to the system 
frontier equals the meta-technology ratio (MTR) multiplied by group-specific eco-efficiency. The 
MTR is the distance of a farm to the system frontier after it has been augmented on its group-
specific frontier (Gómez-Limón et al. 2012). A MTR of 1 implies that the group-specific frontier 
coincides with the meta-frontier and offers to assess the technology effect of SI. Eco-efficiency 
in the economic direction could be similarly calculated by setting the direction vector to 
𝑔𝑔𝑦𝑦(0,𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). 

We refer to directional Data Envelopment Analysis (DEA) following Asmild and Hougaard 
(2006). The DEA approach is flexible, requires no functional form assumptions and allows the 
inclusion of both monetary and non-monetary inputs and outputs (Charnes et al. 1978). We 
opt for a full disposable hull technology to get the most cautious estimates of eco-inefficiency 
scores, that is, the respective improvement potentials. Since DEA results are known to be 
sensitive to outliers (Bogetoft and Kromann 2018), we refer to the minimum covariance 
determinant estimator by Rousseeuw and Driessen (1999) for outlier control in 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 
land. We eliminate 17 outliers from 325 observations (for brevity, we present the full descriptive 
statistics in Table 4 in the appendix). We refer to the R packages Benchmarking and 
Robustbase for all steps. 

While the eco-efficiency approach presented offers an estimate of the improvement potential 
of adopters and non-adopters, unobservable determinants of the voluntary SI adoption 
decision, such as preferences, may yet confound differences in the outcomes observed and, 
thus, give biased eco-inefficiency estimates. Likely adopters will differ in their farm(er) 
characteristics from non-adopters and contrasting the improvement potentials observed will 
not suffice to identify causal differences. Sub-sample homogeneity is a precondition for causal 
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interpretation of outcomes when selectivity issues prevail (Bogetoft and Kromann 2018). 
Hence, we use a matching approach with farm(er) characteristics 𝒁𝒁 as covariates. This allows 
the generation of a control group that resembles the group of SI adopters in these core 
characteristics. Based on that, we compare the eco-efficiency of adopters with their respective 
counterfactual under non-SI. 

Matching methods have been widely applied in efficiency studies to reduce differences 
between groups with stochastic frontier approaches (Mayen et al. 2010, Bravo-Ureta et al. 
2012) and DEA (Bogetoft and Kromann 2018). We use kernel density matching based on 
Mahalanobis distances and the Epanachnikov kernel function. Mahalanobis distances deliver 
robust results in small samples (Zhao 2004). Kernel matching allows the assignment of several 
control observations to each SI adopter and reduces the variance of the estimation. The 
bandwidth of the estimator is determined by cross-validation to minimize the mean squared 
error regarding the averages of the covariates. We use the command kmatch in Stata14 and 
generate a sample of control observations from the weighted averages of matched controls.  

The matching variables 𝒁𝒁  consist of farm characteristics, where we consider full-time 
operation, specialisation in arable and organic farming, and labour intensity to reflect the 
intensity of the farming operation and input use. The use of advisory services represents 
external knowledge input in the farm business. We focus on farming experience and education, 
both general and agricultural, among the farmers’ characteristics. Both groups of variables 
have proven relevant in selection equations for farm management decisions or in two-stage 
eco-efficiency approaches (e.g., Gómez-Limón et al. 2012, Chabé-Ferret and Subervie 2013, 
Gadanakis et al. 2015, Pérez Urdiales et al. 2016). Farmers’ preferences and sustainability 
attitudes represent the third indispensable component of decision-making (e.g., Jongeneel et 
al. 2008, Hansson et al. 2018). However, these we do not observe directly, and we use the 
self-assessments of respondents as proxies. Due to missing values, a further 43 observations 
have to be excluded (cf. Table 5 in the appendix for descriptive statistics of the final sample).  

4 Results and discussion 

The covariate balance indicates the comparability of SI farms and matched control farms. 
Standardized differences are mostly small and all below the rule-of-thumb value of 0.25 (Stuart 
2010). On average, a SI adopter has 3.78 control observations as matches. Twenty-eight SI 
farms are out of common support and are dropped to increase the precision of estimates 
following Lechner and Strittmatter (2017). Three control observations are not used. For brevity, 
we summarize standardized differences and group means before and after matching in the 
appendix (Table 6). The final sample for DEA consists of 193 SI farms and just as many 
generated matched control farms. Table 3 summarizes the core results.  
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Table 3. Eco-efficiency scores in the direction of the ecological output for SI adopters 
and their matched controls 

 SI farms Non-SI farms 
 Mean Std. dev. Mean Std. dev. 
Meta-technology ratio (MTR) 1.00 0.00 0.77 0.13 
Eco-efficiency to system frontier/  
improvement potential 0.75 0.18 0.61 0.15 

Eco-efficiency to group-specific frontier/  
within-technology performance 0.75 0.18 0.80 0.14 

N 193 193 
Note: Wilcoxon rank-sum test for differences between SI and non-SI farms has a p-value < 0.01 for all 
three measures.  

The results, firstly, reveal SI measures to be promising to reduce the environmental 
improvement potential measured as eco-inefficiencies in the ecological direction to the system 
frontier, where SI farms are, on average, more eco-efficient (0.75 versus 0.61 for matched 
control non-SI farms). Most importantly, the results indicate that SI farms determine mainly the 
system frontier (cf. Hypothesis 1): the MTR is equal to 1 for 64 % of SI farms and nearly 1 for 
the other 36 % (std. dev. 5.73e-08). That is, if all SI farms were fully efficient to their group-
specific frontier, they would also be eco-efficient regarding the system frontier. By contrast, the 
average MTR of non-SI farms is 0.77, where only 20 of those have a MTR of 1. This, however, 
also means that some ways exist to be eco-efficient regarding the system frontier without 
adopting SI.  

In this regard, we test the differences in the location of the frontiers based on the distributions 
of eco-efficiency scores. Based on a Kolmogoroff-Smirnov test, we reject the null hypotheses 
that the distributions of eco-efficiency scores to the group-specific frontier and system frontier 
are identical for the non-SI farms (D=0.65; p=0.00). We cannot not reject this hypothesis for 
the SI farms (D=0.01; p=1.00), that means the system and SI frontiers coincide. We, thus, find 
evidence for not rejecting Hypothesis 1, reinforcing the technology effect of SI. 

On average, SI is associated with a reduction of the ecological improvement potential 
corresponding to an increase in eco-efficiency to the system frontier (cf. Hypothesis 2a). The 
average difference in eco-efficiency compared to the non-SI reference situation is 0.13 score 
points, where SI farms produce 75 % and non-SI farms 61 % at the mean of the potentially 
possible ecological output, keeping land and the economic output constant.  
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Figure 3. Distribution of eco-efficiency scores 
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Due to the matching approach, in addition to average differences, we are able to compare the 
full distributions of eco-efficiency scores (cf. Bogetoft and Kromann 2018). As illustrated in 
Figure 3a, 31 SI adopters and 10 non-adopters produce on the system frontier. Respective 
eco-efficiency scores, however, are heterogeneously distributed, although SI measures offer 
a higher potential to produce on the system frontier. Deviations from the system frontier for SI 
farms stem exclusively from eco-inefficiencies within the group-specific technology. Regarding 
SI farms, 84 % could improve their within-technology performance. Eco-efficiency scores in 
the ecological direction of SI farms regarding their group-specific frontier are almost identical 
to their scores to the system frontier (cf. Figure 3b). Improvement potentials for non-SI farms 
result from a mixture of inefficiencies to the group-specific frontier and the fact that the non-SI 
technology mostly does not allow the system frontier to be reached. Their average eco-
efficiency score regarding the group-specific frontier is 0.80 (cf. Figure 3c).  

Within-technology performance sheds light on the distribution of changes in improvement 
potentials through SI. We compare the magnitude of differences in eco-efficiency observed to 
the system frontier for each adopter to the respective matched control farm (Figure 4). We find 
a gain in eco-efficiency compared to the matched control observation for 74 % of adopters. 
These farms move closer to the system frontier and reduce their improvement potential by 
adopting SI. Their gain is an average of 0.24 and can be as high as 0.54 score points. However, 
we observe that 25 % of farms for which eco-efficiency deteriorates up to a change of -0.45 
and by -0.17 score points on average, that is, the improvement potential increases. Eco-
inefficiencies within the SI technology for these farms impede possible reductions in 
improvement potentials offered by the outwards shift of the SI frontier, at least in the short-run 
(cf. Hypothesis 2b). Hence, we find evidence for the performance effect in improvement 
potentials.  

Figure 4. Difference in eco-efficiency to the system frontier for SI farms compared to 
their matched controls.  

 

Farms are sorted by the size of the effect. The black horizontal line indicates the average difference of 
0.13 score points. 
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The heterogeneous distribution of eco-efficiency scores is consistent with previous research 
on multidimensional performance assessments (e.g., Sidhoum et al. 2019). Reasons for this 
heterogeneity and increasing improvement potentials for some SI adopters may lie in 
insufficient knowledge and experience on how to effectively apply and combine measures in 
the more complex SI production system (Kassam et al. 2011) or that biodiversity effects may 
only be realised in the long-run (Gabriel et al. 2013). Our results also provide some evidence 
for the existence of sequential preferences found by Asmild and Hougaard (2006). Farm 
managers may first need a certain degree of eco-efficiency in an economic direction before 
they consider switching to the SI technology that offers higher ecological output. The SI farms 
have a higher mean eco-efficiency score (0.54) than without SI (0.39) to the system frontier in 
the direction of the economic output (cf. Table 7 in the appendix). Rational inefficiencies 
(Hansson et al. 2018) offer a part of the explanation for a larger distance to the frontier in an 
economic direction than in an ecological direction. Farmers may rationally decide to prioritise 
the ecological outcome above economic efficiency gains at a certain level when non-financial 
values are included in their utility function (cf. section 2). We do not discuss eco-efficiency 
results in the economic direction in detail, as we cannot determine the sources of eco-
inefficiencies based on the profit indicator.  

Eco-inefficiencies in the economic direction may also represent adjustment cost for the farmer, 
when reducing the ecological improvement potential (Ang and Oude Lansink 2017). A detailed 
analysis of adjustment costs is beyond the scope of this paper and would require longitudinal 
data. As the investigated SI measures overlap with voluntary agri-environmental schemes of 
the European Union’s Common Agricultural Policy, some compensation is available. However, 
financial support does not seem to be generally associated with SI adoption. Thirty-six per cent 
of SI adopters do not take support payments for their SI measures. Only 31 % of adopters 
receive payments for two or more SI measures, defined as the minimum for being considered 
a SI farm (cf. section 3.1). Resentments to accept monetary compensation through agri-
environmental schemes may be related to the framing of the policy, perceived restrictions and 
control by the government (Burton and Schwarz 2013). Our findings are in line with behavioural 
economic results showing that farmers are willing to contribute to environmental protection 
even if this contribution is costly and not remunerated (cf. Thomas et al. 2019). 

5 Concluding remarks 

Proponents of sustainable intensification postulate the possible compromise as a solution for 
sufficient food production at high environmental standards. We investigate this promise of SI 
measures to contribute ceteris paribus to ecological sustainability in agricultural land-use. 
Based on the theoretical frame of Chabé-Ferret and Subervie (2013), farmers compare utility 
for choosing SI or not, and we model this choice altering the production possibility set. The 
distance of the farm’s actual production to a potential output on the system frontier in the 
direction of the ecological output represents the farm’s improvement potential. We disclose an 
intended reduction of this improvement potential by adopting SI although constrained by within-
technology performance and sources of selectivity. The latter are met by a matching approach. 
Eco-efficiency scores to a meta-frontier estimated by directional DEA capture the improvement 
potential empirically. We use farm survey data from northern Germany and determine an 
indicator for biodiversity as an ecological outcome. 
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On average, SI farms exhibit higher eco-efficiency scores to the system frontier and, thus, a 
reduced improvement potential. The mean difference in eco-efficiency scores between SI 
farms and non-SI farms is 0.13 score points. However, a low within-technology performance 
of SI farms in some cases increases the improvement potential. Eighty-four per cent of SI 
farms are eco-inefficient to the overall system frontier. However, if adopters were eco-efficient 
within the SI technology, they would produce on the system frontier. Thus, the SI measures 
offer a way to reduce the improvement potential, but this is frequently not used to its full extent. 
The probability for being able to reach the system frontier without adopting SI is small. 

Advancing from previous studies of eco-efficiency and SI, we show that farmers’ characteristics 
and preferences need to be acknowledged to adequately compare differences in improvement 
potentials. Fostering pro-environmental behaviour or feelings of responsibility could reinforce 
adoption decisions and environmental performance as has also been advocated from a 
behavioural economics perspective. Longitudinal studies could be helpful to account for long-
run economic planning, sequential preferences or longer time horizons to realize 
environmental effects. This could lead, in turn, to a robust basis for the design of incentives to 
ensure that environmentally promising measures lead to more environmentally beneficial 
behaviour. 

As limitation to our study, SI measures are indicated in the data as being either present or not. 
The extent of their application is ignored and may contribute to the heterogeneity in 
improvement potentials observed. Additionally, the ecological output is assessed by proxy 
indicators derived from farm survey data. A trade-off exists in the number of observations and 
degree of detail of output measures. Exact outputs can only be measured directly on the farm 
(e.g., Picazo-Tadeo et al. 2011, Schulte et al. 2018). However, even in this case, the attempt 
to find a comprehensive indicator set and appropriate weights is challenging (Franks 2014). A 
large-scale consistent set of data and sustainability indicators would be needed for analysis 
beyond the regional or country scale. Kelly et al. (2018) suggest enhancing the Farm 
Accountancy Data Network in that regard for Europe. 

As financial support neither necessarily implies adoption of SI measures nor a full reduction of 
the improvement potential, the current policy schemes for the uptake of measures might need 
expansion or rearrangement. Result-based support measures that reward farmers for 
achieving ecological improvements represent a currently discussed option, notably for 
promoting biodiversity (e.g., Burton and Schwarz 2013). A necessity would be to find reliable 
output indicators. In this regard, possibilities of digitisation for self-monitoring, for instance, via 
apps, to directly measure outcomes on farm are a promising angle of future research to reduce 
effort and transaction costs. 
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7 Appendix 

7.1 Details on sampling and additional descriptive statistics 

Figure 5. Map of the spatial expansion of the sample and response rates based on 
Weltin and Zasada (2018) 

 

Note: 22 farms are excluded from the map as they did not provide their postal code.  
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Table 4. Outputs and input for eco-efficiency analysis (before and after outlier control) 

 Before outlier control  After outlier controla 
Variables Mean Std. Dev.  Mean Std. Dev. 
Economic output: profit indicator [1; 12] 4.21 3.65  4.33 3.66 
Ecological output indicator [0;1] 0.41 0.13  0.40 0.12 
Input: Used agricultural area [ha] 447.52 682.17  383.17 575.61 
Sustainable intensification [1=yes; 0=no] 0.81 0.40  0.80 0.40 
N 325  308 
a An outlier is identified by a robust Mahalanobis distance larger than the cut-off value 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜒𝜒99%;3

2 ). 

 
 

Table 5. Descriptive statistics of matching variables for the observations used in Data 
Envelopment Analysis 

 SI farms Non-SI farms 
Variables Mean Std. Dev Mean Std. Dev 
Used agricultural area [ha]* 489.99 631.19 108.27 174.94 
Profit character [1=full-time; 0=part-time] 0.73 0.45 0.43 0.50 
Organic farming [1=yes; 0=no] 0.21 0.41 0.25 0.44 
Specialisation arable farming [1=yes; 0=no] 0.37 0.48 0.27 0.45 
Labour intensity [workforce/ha UAA] 0.04 0.07 0.05 0.07 
Use of extension services [1;5]a 3.00 1.23 2.36 1.24 
Formal agricultural education [1=yes; 0=no] 0.78 0.41 0.66 0.48 
Highest educational degree [1; 3]b 2.42 0.85 2.02 0.98 
Farming experience [years] 26.82 12.62 28.00 14.35 
Regional attachment [1; 10]c 8.88 1.89 8.68 1.90 
Environmental awareness [1; 10]c 7.20 2.51 6.66 2.79 
Entrepreneurial attitude [1; 10]c 6.39 2.10 4.93 2.07 
Economic output: profit indicator [1; 12] 5.05 3.79 2.70 2.37 
Ecological output indicator [0; 1] 0.43 0.12 0.34 0.09 
N 221 44 
a 1=never; 2=sometimes; 3=occasionally; 4=often; 5=very often 
b 1=lower secondary or intermediate education; 2=high school; 3=university degree 
c Self-assessment questions for which respondents indicated the degree of agreement on a scale from 
1=fully disagree to 10=fully agree 
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7.2 Additional results 

Table 6. Means and standardised differences (std. diff.) of SI farms and non-SI farms 
before and after matching 

 before matching after matching 
    matched unmatched 
 Mean 

SI=1 
Mean 
SI=0 

Std. 
diff. 

Mean 
SI=1 

Mean 
SI=0 

Std. 
diff. 

Mean 
SI=1 

Mean 
SI=0 

Profit character  
[1=full-time; 0=part-time] 0.73 0.43 0.63 0.76 0.70 0.13 0.50 0.33 
Organic farming  
[1=yes; 0=no] 0.21 0.25 -0.09 0.19 0.17 0.05 0.39 0.00 
Specialisation arable farming  
[1=yes; 0=no] 0.37 0.27 0.20 0.36 0.35 0.04 0.39 0.33 
Labour intensity  
[workforce/ha UAA] 0.04 0.07 -0.39 0.03 0.03 -0.07 0.11 0.17 
Use of extension services  
[1;5]a 3.00 2.36 0.52 2.95 2.94 0.01 3.39 1.00 
Formal agricultural education  
[1=yes; 0=no] 0.78 0.66 0.28 0.81 0.82 -0.01 0.57 0.33 
Highest educational degree  
[1;3]b 2.42 2.02 0.44 2.40 2.47 -0.08 2.57 1.67 
Farming experience  
[years] 26.82 28.00 -0.09 26.78 26.93 -0.01 27.07 25.00 
Regional attachment  
[1;10]c 8.88 8.68 0.10 9.09 8.99 0.05 7.43 7.33 
Environmental awareness  
[1;10]c 7.20 6.66 0.20 7.21 7.21 0.00 7.14 4.67 
Entrepreneurial attitude  
[1;10]c 6.39 4.93 0.70 6.48 5.99 0.23 5.80 3.33 
N 221 44  193 193  28 3 
a 1=never; 2=sometimes; 3=occasionally; 4=often; 5=very often 
b 1=lower secondary or intermediate education; 2=high school; 3=university degree 
c Self-assessment questions for which respondents indicated the degree of agreement on a scale from 
1=fully disagree to 10=fully agree 

 
 

Table 7. Eco-efficiency scores in the direction of the economic output for SI adopters 
and their matched controls 

 SI farms Non-SI farms 
 Mean Std. dev. Mean Std. dev. 

Meta-technology ratio 0.98 0.11 0.59 0.17 
Eco-efficiency to system frontier / 
improvement potential 0.54 0.34 0.39 0.20 

Eco-efficiency to group-specific frontier / 
within-technology performance  0.56 0.34 0.65 0.24 

N 193 193 
Note: Wilcoxon rank-sum test for differences between SI and non-SI farms has a p-value < 0.01 for all 
three measures.  


	1 Introduction
	2 Theoretical framework
	3 Data and empirical approach
	3.1 Survey data and sampling 
	3.2 Empirical model specification

	4 Results and discussion
	5 Concluding remarks
	6 References
	7 Appendix
	7.1 Details on sampling and additional descriptive statistics
	7.2 Additional results


