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Abstract

At BESSY II a linear accelerator delivers electrons with 50MeV to a synchrotron where they are
boosted to 1.7GeV in 33ms and then injected into the storage ring. The injection into the ring is a
critical step of the acceleration cycle and of great importance for implementing the top up mode.
Lost electrons from a mismatched injection produce Bremsstrahlung and radionuclides. The former
lead to short-term and the latter to long-term increased radiation doses which must be avoided.
Therefore, it is important to optimize the beam parameters for a close to lossless injection.
For top up injection into the storage ring BESSY II, an average injection efficiency of 90% is
required. Future BESSY II features will include shorter bunches in the storage ring (VSR) and a user
transparent injection with a non linear kicker. These will raise the demands on the quality of the
injected beam even further.
The beam is injected into the storage ring in the radial plane and off-axis. Thus larger radial beam
emittance requires a bigger radial acceptance of the ring. The injected beam is provided by a
synchrotron, from which the beam is extracted just before reaching equilibrium emittance. Adiabatic
and radiation damping due to steady increase of longitudinal momentum in the cavity and random
loss of momenta by synchrotron radiation decrease the emittance during particle acceleration. The
quantum excitation increases the emittance by synchrotron radiation in dispersive sections and
hence, usually takes place in the radial plane. Without transverse coupling this leads to a beam with
relatively large radial and small axial emittance from the synchrotron. In case of sufficient axial
acceptance in the ring, one can take advantage of the small axial emittance by transverse emittance
exchange before injection.
Subject of this thesis is to study the development of the transverse electron beam emittance from the
linear accelerator over the acceleration in the booster-synchrotron up to the injection into the storage
ring. Furthermore, different possibilities of altering this development are evaluated. Especially
emittance exchange processes between the small axial and large radial emittance are studied. This is
possible with a set of static skew quadrupole magnets in the transfer line or with dynamic skew
magnets in the booster that induce an emittance exchange just before extraction. Results of
emittance measurements and an estimation of a possible exchange section in the transfer line are
given.
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Zusammenfassung

Am BESSY II liefert ein Linearbeschleuniger Elektronen mit 50MeV an ein Synchrotron, wo diese in
33ms auf 1.7GeV beschleunigt und dann in den Speicherring injiziert werden. Die Injektion in den
Speicherring ist ein kritischer Schritt des Beschleunigungszyklus und wichtig für den Top Up Modus.
Verlorene Elektronen einer nicht angepassten Injektion erzeugen Bremsstrahlung und Radionuklide.
Erstere führen kurzzeitig und letztere langfristig zu erhöhten Strahlungsdosen, welche vermieden
werden sollen. Daher ist es wichtig, die Strahlparameter für eine verlustfreie Injektion zu optimieren.
Für Top Up Injektion in den Speicherring BESSY II wird eine durchschnittliche Injektionseffizienz
von mindestens 90% benötigt. Zukünftige BESSY II Merkmale sollen kurze Bunche im Speicherring
(VSR) und eine für Nutzer transparente Injektion mit einem nichtlinearen Kicker beinhalten. Diese
werden der Anforderung möglichst geringer radialer Emittanz des injizierten Strahls zusätzliches
Gewicht verleihen.
Der Strahl wird horizontal versetzt in der radialen Ebene in den Speichering injiziert. Daher bedingt
eine größere radiale Strahlemittanz eine größere Akzeptanz des Ringes. Der injizierte Strahl wird von
einem Synchrotron geliefert. Er wird kurz vor erreichen der Gleichgewichtsemittanz aus diesem
extrahiert. Adiabatische und Strahlungsdämpfung bedingt durch Zufällige Impulsverluste durch
Synchrotronstrahlung und stetige Erhöhung des longitudinalen Impulses in der Kavität verringern
die Emittanz über den Beschleunigungszyklus. Die Quantenanregung erhöht die Emittanz durch
Synchrotronstrahlung in dispersiven Sektionen und findet dementsprechend hauptsächlich in der
radialen Ebene statt. Ohne transversale Kopplung erhält man so einen Strahl mit relativ großer
radialer und relativ kleiner axialer Emittanz vom Synchrotron. Im Falle ausreichender axialer
Akzeptanz des Rings kann man die kleine axiale Emittanz durch transversalen Emittanzaustausch
vor der Injektion ausnutzen.
Thema dieser Arbeit ist die Entwicklung der transversalen Strahlemittanz vom Linearbeschleuniger
über die Beschleunigungsrampe im Boostersynchrotron bis zur Injektion in den Speicherring.
Weiterhin werden verschiedene Möglichkeiten untersucht, diese Entwicklung zu beeinflussen.
Insbesondere Emittanzaustauschprozesse zwischen der kleinen axialen und großen radialen Emittanz
werden untersucht. Dies ist möglich mit einem Satz gedrehter Quadrupole in der Transferline oder
mit dynamischen, gedrehten Quadrupolen im Booster, welche einen Austausch kurz vor Extraktion
induzieren. Ergebnisse von Emittanzmessungen und eine Abschätzung einer möglichen
Emittanzaustauschsektion für die Transferline werden vorgestellt.
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1. Introduction

Particle accelerators have become sophisticated research tools of our time for exploring the micro
cosmos that determines the physics of the macro cosmos mankind lives in and thrives to understand.
They represent good opportunities of finding answers to still open questions despite the efforts of
many generations of great scientists who have brought to light many physical laws that still only
determine the macro cosmos to a certain extent. Whether considering colliders - which enlighten the
understanding of the subatomic world or light sources like BESSY II, that can be used to examine
the atomic structure of crystals or the dynamics of functional materials - potentially identifying the
cornerstone of next generation solar cells, energy storage devices, information technology or proteins
capable of healing an up to today incurable disease.

In Berlin-Adlershof, the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB)
operates the synchrotron light source BESSY II, Germany’s top third generation synchrotron
radiation source today. Since the commissioning in 1998, many upgrades have been successfully
installed and many are still to come. The introduction of top up mode in fall 2012 has made the
efficiency of the injection process into the storage ring a critical parameter due to radiation
protection reglementations. It has to stay over 90% in average of the last 4 hours and may not fall
below 60% in a single shot. The target is to limit the number of lost electrons in sum and in one shot
to avoid high long- and short-term dose rates. Up to now, this has been a challenging problem that
has been kept under control by optimizing parameters of injection and extraction devices, the
synchrotron ramp, the transfer line optics and the storage ring. The optics of the synchrotron itself
was optimized in April 2007 to minimize the emittance. This was achieved by increasing the
quadrupole strengths - a path that is quickly limited by the dynamic aperture: Raising the
quadrupole strengths increases the natural chromaticity making higher sextupole strengths necessary
in order to compensate the chromaticity to small values. The small dynamic aperture as a result of
the higher sextupole strengths strongly limits this strategy that has already been maxed out for the
momentary quadrupole configuration in April 2007.

The storage ring has a rms bunch length in standard mode of 15 ps and 3 ps in low alpha mode. It
has proved to be especially difficult to achieve the desired injection efficiencies with short bunches in
the storage ring. Hence, the low alpha mode does not yet meet the requirements for top up mode.
BESSY-VSR is the next major BESSY II upgrade enabling simultaneous variable bunch lengths in
the storage ring by using two superconducting cavities with different frequencies and using the
resulting beat wave for acceleration. This means, there will be simultaneous availability of short
(1.7 ps) and long (15 ps) bunches in the storage ring and the BESSY-VSR low alpha mode will
provide even shorter short (0.3 ps) and shorter long (3 ps) bunches.

In this work, the development of the transverse emittance during the acceleration process in the
synchrotron before injection into the storage ring and possible ways of altering this development to
achieve a smaller radial emittance at injection time are studied. Quadrupole scans are utilized to
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measure the transverse emittance and beam parameters before (injection line) and after (transfer
line) the synchrotron and the parasitic method of dipole synchrotron radiation imaging in the
synchrotron is used to measure the transverse emittance over the ramp. Python code with a
user-friendly graphical user interface (GUI) is developed under the name ACCelerator PYthon
(ACCPY) [1,2,3,4,5,6]. It is used to simulate the linear beam optics, the synchrotron ramp and the
quadrupole scans and to measure and analyse data. The code is available for testing and contributing
under the GNU GENERAL PUBLIC LICENSE Version 3 at https://github.com/kramerfelix/accpy.
Results from measurements and simulations are evaluated and critically discussed. Occurring
problems with the used methods and possible improvements are presented.
The aim of optimizing the beam parameters for a higher injection efficiency into the storage ring is
followed by taking a look at different possibilities to reduce the radial emittance for the injection.
The possibility of transverse emittance exchange in the transfer line with a set of skew quadrupoles is
theoretically derived and simulation results of the proposed setup are presented.
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This chapter introduces the fundamental physics and methods - required for understanding and
describing particle accelerators. Formulae behind simulations available in ACCPY as well as methods
and formulae behind measurements are derived and presented.

2.1. Movement of charged particles in magnetic fields

In this section the coordinate system mostly used in accelerator physics is introduced and the
equations of motion (EOM) for charged particles in magnetic fields are derived and solved for the
linear case - introducing the matrix method.

2.1.1. Frenet-Serret Formulas

~N

~T

~B

space curve

Figure 2.1.: The Vectors ~T , ~N and ~B of the
Frenet–Serret frame of reference
on a space curve [7]

Every point of an arbitrary space curve s with
curvature κ(s) and torsion τ(s) is well described
by the Frenet-Serret formulas. The same accounts for
the arbitrary trajectory of a particle moving along a
continuous, differentiable curve in three-dimensional
Euclidean space. The Frenet-Serret formulas describe
the derivatives of the so called tangent (Equation
2.1), normal (Equation 2.2) and binormal (Equation
2.3) unit vectors [8].

~T (s) =
d~r(s)

d~s
= ~r′(s) (2.1)

~N(s) =
~T ′(s)

| ~T ′(s)|
=

1

| ~r′′(s)|
~r′′(s) = R(s) · ~r′′(s) (2.2)

~B(s) = ~T (s)× ~N(s) (2.3)

Together these form an orthogonal basis - the so called TNB frame or moving trihedron
that accompanies the particle along its trajectory. The curvature κ(s) = 1

R(s) and torsion

τ(s) = − ~B′(s) ~N(s)

| ~N(s)|2 or direction change of the binormal vector together completely describe the

change of the moving trihedron [8]:

~T ′(s) = |r′′(s)| ~N(s) = κ(s) ~N(s) (2.4)
~N ′(s) = −κ(s)~T (s) + τ(s) ~B(s) (2.5)
~B′(s) = −τ(s) ~N(s) (2.6)



~T ′

~N ′

~B′


 =




0 κ 0

−κ 0 τ

0 −τ 0






~T
~N
~B


 (2.7)
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2.1.2. Coordinates

X

Z

Y

S

orbit

Figure 2.2.: Cartesian frame of reference mov-
ing along the orbit [7]

In accelerator physics the usual coordinate system
corresponds to the torsion free Frenet-Serret
formulae. The normalized, covariant unit vectors
in orthogonal coordinates are given by

µ̂i =
1∣∣∣ ∂~r∂qi
∣∣∣
∂~r

∂qi
=

1

hi

∂~r

∂qi
(2.8)

with the scale factors hi =
∣∣∣ ∂~r∂qi

∣∣∣. They determine

the metric tensor gij = ∂~r
∂qi

∂~r
∂qj

= δi,jh
2
i and give

the total differential change or general line element

d~r =
∑

i

∂~r

∂qi
dqi =

∑

i

hiµ̂idqi. (2.9)

When describing particles in accelerators it is useful switching to the moving along, Cartesian
coordinate system K(x, y, z) (Figure 2.2) with gij = δi,j and the line element

d~r = µ̂xdx+ µ̂ydy + µ̂zdz. (2.10)

Its center propagates along the ideal particle trajectory ~r0(s) known as the orbit - a usually planar
(τ(s) = 0 , ~B(s) = const. = µ̂y) space curve. Its speed corresponds to that of the ideal particle. The
momentary position of any particle can be given as an offset from the ideal particle in the x-y-plane -
the normal plane to the orbit.

~r(s) = ~r0(s) + x(s)µ̂x(s) + y(s)µ̂y(s) (2.11)

The covariant tangent unit vectors µ̂i(s) of the moving along, Cartesian coordinate system K depend
on the position of K on the orbit. Therefore it is preferable to find a general formalism in analogy to
the Frenet–Serret apparatus. In accelerators the torsion is usually zero and the bending radius at
least piecewise constant. With these assumptions the metric of a curvilinear coordinate system
K ′(x, y, s) corresponding to (Equation 2.11) with the line element

d~r = hxµ̂xdx+ hyµ̂ydy + hsµ̂sds (2.12)

can be derived [9].

µ̂x′

µ̂s′

µ̂x

µ̂s

φ

φ

µ̂x′ cos(φ)

µ̂s′ sin(φ)

µ̂x′ sin(φ)

µ̂
s
′
co

s(
φ

)

Figure 2.3.: Propagation along the orbit as rotation
around µ̂y [7,10]

For deriving the special metric of the curvilinear
coordinate system the propagation along the
torsion free orbit is described as rotation around
µ̂y so ds = Rdφ with the orbit radius R so

µ̂x = µ̂x′ cos(φ) + µ̂s′ sin(φ) (2.13)

µ̂y = const (2.14)

µ̂s = µ̂s′ cos(φ)− µ̂x′ sin(φ). (2.15)
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Revealing the dependence between the normal and tangent unit vectors:

µ̂x = −∂µ̂s
∂φ

(2.16)

µ̂s =
∂µ̂x
∂φ

(2.17)

With these relations and some calculus:

dφ

dt
=

ṡ

R
(2.18)

⇒ d

dt
=
dφ

dt

d

dφ
=

ṡ

R

d

dφ
(2.19)

⇒ d

dt
=
ds

dt

d

ds
= ṡ

d

ds
(2.20)

⇒ d

dφ
=
ds

dφ

d

ds
= R

d

ds
(2.21)

the derivatives of the unit vectors can be expressed as

˙̂µx =
ṡ

R

dµ̂x
dφ

=
ṡ

R
µ̂s (2.22)

˙̂µy = 0 (2.23)

˙̂µs =
ṡ

R

dµ̂s
dφ

= − ṡ
R
µ̂x (2.24)

With the particle position vector (Equation 2.12) (the dependence on s will be left away further on)
and some more calculus:

d

du
=
ds

du

d

ds
=

1

u′ṡ
d

dt
=

1

u′
d

ds
with u = x, y (2.25)

the scale factors hµ̂i
can now be derived:

µ̂i · µ̂j = δij (2.26)

hµ̂x
=
∂~r

∂x
µ̂x =

(
1

x′
∂~r0

∂s
+

1

x′
x′µ̂x + x

1

x′ṡ
˙̂µx +

1

x′
y′µ̂y + y

1

x′ṡ
˙̂µy

)
µ̂x (2.27)

=

(
1

x′
µ̂s + µ̂x +

x

x′ṡ
ṡ

R
µ̂s +

y′

x′
µ̂y +

y

x′ṡ
0

)
µ̂x = 1 (2.28)

hµ̂y
=
∂~r

∂y
µ̂y =

(
1

y′
µ̂s +

x′

y′
µ̂x +

x

y′R
µ̂s + µ̂y + y

1

y′ṡ
˙̂µy

)
µ̂y = 1 (2.29)

hµ̂s =
∂~r

∂s
µ̂s =

(
µ̂s + x′µ̂x + x

1

ṡ

ṡ

R
µ̂s + y′µ̂y + y

1

ṡ
˙̂µy

)
µ̂s = 1 +

x

R
(2.30)

Giving the line element of the particles curvilinear coordinate system [9]:

d~r = µ̂xdx+ µ̂ydy +
(

1 +
x

R

)
µ̂sds (2.31)

When changing from a curved orbit in a dipole to a straight orbit in a drift section the coordinates
continuously transform to a Cartesian coordinate system.
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The position and its derivatives (velocity and acceleration) can be expressed in K ′(x, y, s) using the
derived metric:

Position

~r = ~r0 + xµ̂x + yµ̂y (2.32)

Velocity

~̇r = ~̇r0 + ẋµ̂x + x ˙̂µx + ẏµ̂y + y ˙̂µy = ṡµ̂s + ẋµ̂x +
xṡ

R
µ̂s + ẏµ̂y + 0 (2.33)

~̇r =
(

1 +
x

R

)
ṡµ̂s + ṡx′µ̂x + ṡy′µ̂y (2.34)

Acceleration

~̈r =
ẋ

R
ṡµ̂s +

(
1 +

x

R

)(
s̈µ̂s + ṡ ˙̂µs

)
+ ẍµ̂x + ẋ ˙̂µx + ÿµ̂y + ẏ ˙̂µy (2.35)

=
ẋ

R
ṡµ̂s +

(
1 +

x

R

)(
s̈µ̂s − ṡ

ṡ

R
µ̂x

)
+ ẍµ̂x + ẋ

ṡ

R
µ̂s + ÿµ̂y + ẏ0 (2.36)

=

(
2ẋṡ

R
+
(

1 +
x

R

)
s̈

)
µ̂s +

(
ẍ−

(
1 +

x

R

) ṡ2

R

)
µ̂x + ÿµ̂y (2.37)

~̈r =

(
2x′ṡ2

R
+
(

1 +
x

R

)
s̈

)
µ̂s +

(
x′′ṡ2 + x′s̈−

(
1 +

x

R

) ṡ2

R

)
µ̂x +

(
y′′ṡ2 + y′s̈

)
µ̂y (2.38)

2.1.3. Movement of charged particles in electromagnetic fields

Electric and magnetic fields can be used to deflect and focus charged particles on the orbit. They
induce the general Lorentz force [10]

~F ∗Lorentz = q · ( ~E + ~v × ~B) = q · ( ~E + ~̇r × ~B) (2.39)

At relativistic speeds the comparison of ~Fel and ~Fmag shows:

E = c ·B. (2.40)

Meaning that the force of a B = 1T magnet field on a relativistic particle corresponds to that of
an electric field of E = 3 · 108 V

m making electric fields technically uninteresting for focussing and
deflecting relativistic, charged particles.
Therefore the Lorentz force (Equation 2.39) can be reduced to the magnetic Lorentz force

~FLorentz = q · ~̇r × ~B (2.41)

For stable movement on the orbit the Lorentz force must be in equilibrium with the centrifugal force
corresponding to the curvature of the orbit.

~FLorentz = q
(
~̇r × ~B

)
!
= γm0~̈r (2.42)
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Giving the acceleration of the particle:

~̈r =
q

γm0

(
~̇r × ~B

)
with ~B =



Bx

By

0


 , ~̇r = ṡ




x′

y′(
1 + x

R

)


 . (2.43)

By equating to the general acceleration of the particle (Equation 2.38) we obtain the general (with
respect to the assumptions already made) equations of motion for charged particles in magnetic fields:

qṡ

γm0



−
(
1 + x

R

)
By(

1 + x
R

)
Bx

x′By − y′Bx


 =



x′′ṡ2 + x′s̈−

(
1 + x

R

)
ṡ2

R

y′′ṡ2 + y′s̈
2x′ṡ2

R +
(
1 + x

R

)
s̈


 (2.44)

With ~E = 0 the Lorentz force ~FLorentz is alway perpendicular to µ̂s meaning that s̈ = 0 and
simplifying the equations of motion.

→ q

γm0ṡ



−
(
1 + x

R

)
By(

1 + x
R

)
Bx

x′By − y′Bx


 =



x′′ −

(
1 + x

R

)
1
R

y′′

2x
′

R


 (2.45)

R

x

ṡ

v

Orbit

Trajectory

Figure 2.4.: Relation of particles speed on the
orbit ṡ and an arbitrary trajectory
v [7]

The relation of the speed v of an actual particle
on its individual trajectory to ṡ of the ideal particle
on the orbit (Figure 2.4) yields:

ṡ

R
=

v

x+R
(2.46)

→ v = ṡ
(

1 +
x

R

)
(2.47)

So the equations of motion can be expressed as

q

p




−
(
1 + x

R

)2
By(

1 + x
R

)2
Bx(

1 + x
R

)
(x′By − y′Bx)


 =



x′′ −

(
1 + x

R

)
1
R

y′′

2x
′

R




(2.48)

The solution of these is discussed in section 2.1.5.
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2.1.4. The magnetic field near the orbit

The magnetic field on the orbit be only composed of transverse fields so ~B = (Bx, By, 0). As only the
magnetic field in direct proximity of the orbit is relevant for the particle movement of interest it is
obvious to simplify the magnetic fields by using a series expansion at the orbit x0 = y0 = 0 [10].

By(x) = By,0 +
dBy
dx

x+
1

2!

d2By
dx2

x2 +
1

3!

d3By
dx3

x3 + ... (2.49)

Multiplication with q
p yields

q

p
By(x) =

q

p
By,0 +

q

p

dBy
dx

x +
q

p

1

2!

d2By
dx2

x2 +
q

p

1

3!

d3By
dx3

x3 +... (2.50)

=
1

R
+kx +

1

2!
mx2 +

1

3!
ox3 +... (2.51)

Each term of the series expansion resembles one magnet type. An overview of the individual types
and their purpose can be found below (Table 2.1). For particles inside the vacuum chamber
the current density can be neglected and outside of cavities the electric field is zero so the
Maxwell-Ampère equation tells us:

~∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
!
= 0 with ~E = ~J = 0 (2.52)

yielding the correlation between the transverse magnetic fields:

∂Bx
∂y

=
∂By
∂x

(2.53)

and telling us that the magnetic field approximation (Equation 2.50) also holds when x and y are
exchanged and in direct consequence it must be impossible to have radial and axial focussing
magnetic field. This work only considers plane accelerators so R→∞ in the axial plane.

Bx(y) =
dBy
dx

y +
1

2!

d2By
dx2

y2 +
1

3!

d3By
dx3

y3 + ... (2.54)

Magnet Purpose Definition

Dipole Deflection of the particles B = p
e

1
R

Quadrupol Linear transverse focussing dB
dx = p

ek

Sextupol
Nonlinear transverse focussing

d2B
dx2 = p

em

Octupole d3B
dx3 = p

eo

N-pole dNB
dxN = p

e ...

Table 2.1.: Types of magnets for accelerators

Linear beam optics refers to the first two types of magnets with magnetic fields either constant
or as a linear function of the perpendicular distance from the orbit. Higher order multipoles are
intrinsically included as field errors in real magnets (-edges) and are also specifically used to
compensate chromatic aberration from the quadrupoles whos focussing strength also linearly depends
on the momentum. and other errors induced by the linear optics.
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2.1.5. Linear, transverse EOM

When considering highly relativistic particles the influence of the magnetic fields on the longitudinal
speed is negligible [10]. Therefore only the transverse EOM (Equation 2.48) for charged particles in
accelerator coordinates are considered. For off-momentum particles (p = p0 + ∆p) with ∆p� p0 (at
BESSY II < 4‰) the linear approximation of the Taylor series 1

1+x = 1− x+ ... gives [9]

1

p
=

1

p0 + ∆p
=

1

p0

(
1

1 + ∆p
p0

)
≈ 1

p0

(
1− ∆p

p0

)
=

1− δ
p0

(2.55)

with the relative momentum offset δ. Taking note of the convention to give focussing quadrupole
strengths k a negative sign the linear parts of the magnetic field series (Equations 2.50, 2.54) are:

q

p0
By(x) =

1

R
− kx (2.56)

q

p0
Bx(y) = −ky (2.57)

and can be inserted into the transverse, linear EOM (Equation 2.48) with notation p0 = p giving

(1− δ)
(
−
(
1 + x

R

)2( 1
R − kx

)

−
(
1 + x

R

)2
ky

)
=

(
x′′ −

(
1 + x

R

)
1
R

y′′

)
. (2.58)

Multiplying these out and neglecting higher powers and products of x, y and δ (all � 1) the linear
EOM for charged particles in magnetic fields are obtained:

(
x′′(s) +

(
1

R2(s) − k(s)
)
x(s)

y′′(s) + k(s)y(s)

)
=

(
δ

R(s)

0

)
. (2.59)

2.1.6. Solutions to the linear, transverse EOM

The solutions to the transverse, linear EOM (Equation 2.59) for ideal particles (δ = 0) are best found
with a hard edge model. Assuming constant fields in the magnets and discrete transition between
different accelerator elements the EOM can be separately solved for each linear element with respect
to the initial conditions [9]

~x(0) =




x(0)

x′(0)

y(0)

y′(0)

l(0)

δ(0)




=




x0

x′0
y0

y′0
l0

δ0




=




radial spacial offset
radial directional offset

axial spacial offset
axial directional offset

longitudinal spacial offset
longitudinal energy offset




. (2.60)

Drift
With R→∞ and k(s) = 0 the EOM simplify to

x′′(s) = 0 (2.61)

y′′(s) = 0. (2.62)
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Which can be easily solved to

u(s) = As+B (2.63)

u′(s) = A (2.64)

with u = x, y. The constants of integration can be retrieved from the initial conditions (Equation
2.60) revealing

u(s) = u′0s+ u0

u′(s) = u′0
(2.65)

Quadrupole
With R→∞ and k(s) = const for each quadrupole and k < 0 in the focussing plane the EOM for a
radial focussing quadrupole give:

x′′(s) + kx(s) = 0 (2.66)

y′′(s)− ky(s) = 0. (2.67)

These EOM resemble second-order ordinary linear homogeneous differential equations with constant
coefficients. With ω = ±

√
k the simple harmonic oscillator (u′′ = ∓ω2u) can be recognized. The

linear independent characteristic solutions can be analytically derived and are well known. With
Ω =

√
ks they can be written as

x(s) = A cos(Ω) +B sin(Ω) (2.68)

x′(s) = −A
√
k sin(Ω) +B

√
k cos(Ω) (2.69)

y(s) = C cosh(Ω) +D sinh(Ω) (2.70)

y′(s) = C
√
k sinh(Ω) +D

√
k cosh(Ω). (2.71)

With the initial conditions (Equation 2.60) the constants of integration can be retrieved revealing

x(s) = x0 cos(Ω) +
x′0√
k

sin(Ω)

x′(s) = −x0

√
k sin(Ω) + x′0 cos(Ω)

y(s) = y0 cosh(Ω) +
y′0√
k

sinh(Ω)

y′(s) = y0

√
k sinh(Ω) + y′0 cosh(Ω)

(2.72)

For an axial focussing quadrupole the solutions for x(s) and y(s) must be exchanged.

Dipole
With R = const. and k(s) = 0 the EOM are

x′′(s) +
x(s)

R2
x(s) =

δ

R
(2.73)

y′′(s) = 0. (2.74)

In the axial plane a dipole corresponds to a drift (Equation 2.65) with s = Rα (arc length) where α is

10



2.1. Movement of charged particles in magnetic fields

the bending angle of the dipole. The solution to the homogeneous part of the radial EOM for ideal
particles with δ = 0

x′′h(s) +
u(s)

R2
xh(s) = 0 (2.75)

again corresponds to the well known harmonic oscillator and is easily found.

xh(s) = A cos(α) +B sin(α) (2.76)

x′h(s) = −A
R

sin(α) +
B

R
cos(α) (2.77)

The general solution to the inhomogeneous EOM for off-momentum particles can be written as
the sum of the complementary solution xh and the particular solution xp - later refered to as the
dispersion. Since the inhomogeneity is constant xp = const is a suitable approach. When inserted
into the EOM (Equation 2.73) it yields:

xp = δR (2.78)

giving a general solution to equation 2.73:

x(s) = A cos(α) +B sin(α) + δR (2.79)

x′(s) = −A
R

sin(α) +
B

R
cos(α). (2.80)

With the initial conditions (Equation 2.60) the constants of integration can be retrieved revealing

x(s) = x0 cos(α) + x′0R sin(α) + δ[R(1− cos(α))]

x′(s) = −x0
sin(α)

R
+ x′0 cos(α) + δ sin(α).

(2.81)

2.1.7. Longitudinal motion

The longitudinal offset of an arbitrary particle from the ideal particle (~x = ~0) be l(0). With constant
relative momentum offset [9]

δ(s) = δ(0) = δ0 = const (2.82)

a formula for the longitudinal spacial offset l(s) for this particle when the reference particle covers
the distance s on the orbit can be derived. Two effects must be considered: the path length difference
∆s1 due to particle momentum dependant bending radii in the dipoles and the path length difference
∆s2 due to different speeds (only relevant for v < c).

l(s) = l(0)−∆s1 + ∆s2 (2.83)

∆s1 = L− S (2.84)

∆s2 = t0∆v (2.85)

With the acutally travelled distance L, the distance on the orbit s, the time of flight for the reference
particle from 0 to s being t0 and the speed difference ∆v = v − v0. So in total l(s) becomes

l(s) = l(0)− (L− s) + t0∆v. (2.86)

11



2. Theory

With some relations from relativistic kinematics (Appendix A.2) we get:

∆s2 = t0∆v =
s

v0
∆v = s

∆v

v0
≈ s δ

γ2
. (2.87)

The actually travelled distance L can be calculated from the line element (Equation 2.31):

L =

∫ s

0

∥∥∥∥
d~r

ds

∥∥∥∥ds =

∫ s

0

∥∥∥∥∥∥∥




x′(s)

y′(s)

1 + x(s)
R




∥∥∥∥∥∥∥
ds =

∫ s

0

√
x′2(s) + y′2(s) +

(
1 +

x(s)

R

)2

ds. (2.88)

In linear approximation L reduces to:

L =

∫ s

0

(
1 +

x(s)

R

)
ds = s+

1

R

∫ s

0

x(s)ds (2.89)

→ ∆s1 = L− s =
1

R

∫ s

0

x(s)ds. (2.90)

Drift and quadrupole
For curvature free elements with R→∞ we obtain ∆s1 = 0 and thus with equation 2.87 follows:

l(s) = l(0) + s
δ

γ2
(2.91)

Dipole
To get ∆s1 for Dipoles Equation 2.81 must be inserted in 2.90 revealing

∆s1 =
x0

R

∫ s

0

cos
( s
R

)
ds+ x′0

∫ s

0

sin
( s
R

)
ds+ δ

∫ s

0

[
1− cos

( s
R

)]
ds (2.92)

= x0 sin
( s
R

)
− x′0R

[
cos
( s
R

)
− 1
]

+ δ
[
s−R sin

( s
R

)]
. (2.93)

By inserting equations 2.87 and 2.93 in 2.83 we obtain

l(s) = l(0)− x0 sin
( s
R

)
− x′0R

[
1− cos

( s
R

)]
+ δ

[
s
δ

γ2
− s+R sin

( s
R

)]
(2.94)

2.1.8. Transfer matrix

The linear optics of charged particles can be calculated with matrices just as in geometrical optics.
For fully describing a moving particle the six dimensional phase space is required. In accelerator
physics the particle vector (Equation 2.60) is usually defined. It differs from the often used standard
coordinates in the six dimensional phase space [11]:




x

x′

y

y′

z

z′




=




1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1







x

y

z

x′

y′

z′




with TStd.CSAcc.CS = TSA =




1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1




. (2.95)
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2.1. Movement of charged particles in magnetic fields

But can easily be transformed back and forth with the transformation TSA . The particle vector
(Equation 2.60) can be transformed along its trajectory with the transfer matrix R (amongst others
also known as the R-matrix or transport matrix).

R =




R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66




=




(x|x0) (x|x′0) (x|y0) (x|y′0) (x|l0) (x|δ0)

(x′|x0) (x′|x′0) (x′|y0) (x′|y′0) (x′|l0) (x′|δ0)

(y|x0) (y|x′0) (y|y0) (y|y′0) (y|l0) (y|δ0)

(y′|x0) (y′|x′0) (y′|y0) (y′|y′0) (y′|l0) (y′|δ0)

(l|x0) (l|x′0) (l|y0) (l|y′0) (l|l0) (l|δ0)

(δ|x0) (δ|x′0) (δ|y0) (δ|y′0) (δ|l0) (δ|δ0)




(2.96)

It maps the particle vector along its trajectory.

~r(sn) = R(s1 → sn) · ~r(0) = R(sn−1 → sn)R(sn−2 → sn−1)...R(s1 → s2) · ~r(0) (2.97)

The transfer matrix can be simplified with assumptions that hold for most accelerators. Taking into
account that ∆p

p0
= δ = const in a conservative system and that all effects of the magnets on the

particles are independent of l leads to:




R11 R12 R13 R14 0 R16

R21 R22 R23 R24 0 R26

R31 R32 R33 R34 0 R36

R41 R42 R43 R44 0 R46

R51 R52 R53 R54 1 R56

0 0 0 0 0 1




(2.98)

Furthermore the mid plane symmetry

Bx(x, y, s) = −Bx(x,−y, s) (2.99)

By(x, y, s) = +By(x,−y, s) (2.100)

Bs(x, y, s) = −Bs(x,−y, s) (2.101)

holds for most accelerators resulting in decoupled radial and axial components of the transfer matrix.




R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0

0 0 R43 R44 0 0

R51 R52 0 0 1 R56

0 0 0 0 0 1




(2.102)

Dispersion in dipoles couples longitudinal and radial motion, hence R51, R52, R56, R16 and R26 are
not zero. Neglecting radiation loss and interaction with the residual gas amongst other minor effects
Liouville’s theorem holds for accelerators in first approximation. So phase space must be conserved

det(R) = 1 (2.103)
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2. Theory

For uncoupled machines this also holds for each plane separately det(Rx) = det(Ry) = 1.
Furthermore the Hamiltonian formalism shows us that R must be simplectic since it performs a
canonical transformation meaning

RTΩR
!
= Ω with Ω =

(
0 13

−13 0

)
(2.104)

must hold. Ω must be transformed to accelerator coordinates

Ω = TSAΩTSA
T

=




0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0




(2.105)

The equations from symplecticity and Liouvilles theorem can be used to eliminate further variables
in the R-matrix (Equation 2.102) giving:

R =




r11 r12 0 0 0 r16

r21
r12r21+1
r11

0 0 0 r26

0 0 r33 r34 0 0

0 0 r43
r34r43+1
r33

0 0

r16r21 − r11r26
r12r21r16+r16−r11r12r26

r11
0 0 1 r56

0 0 0 0 0 1




(2.106)

From the derived equations for x(s), x′(s), y(s), y′(s), l(s) and δ(s) in the sections 2.1.6, 2.1.7 the
R-matrix for each element can be directly written down.

Drift

RDRIFT =




1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 L/γ2

0 0 0 0 0 1




(2.107)

Uninform dipole as sector bending magnet

RSBEND =




cos(α) R sin(α) 0 0 0 R(1− cos(α))

− sin(α)/R cos(α) 0 0 0 sin(α)

0 0 1 L 0 0

0 0 0 1 0 0

− sin(α) −R(1− cos(α)) 0 0 1 R
(
α/γ2 − α+ sin(α)

)
L

0 0 0 0 0 1




(2.108)

14



2.1. Movement of charged particles in magnetic fields

Radial focussing and radial defocussing quadrupole

RQF =




cos(Ω) sin(Ω)/
√
k 0 0 0 0

−
√
k sin(Ω) cos(Ω) 0 0 0 0

0 0 cosh(Ω) sinh(Ω)/
√
k 0 0

0 0
√
k sinh(Ω) cosh(Ω) 0 0

0 0 0 0 1 L/γ2

0 0 0 0 0 1




(2.109)

RQD =




cosh(Ω) sinh(Ω)/
√
k 0 0 0 0√

k sinh(Ω) cosh(Ω) 0 0 0 0

0 0 cos(Ω) sin(Ω)/
√
k 0 0

0 0 −
√
k sin(Ω) cos(Ω) 0 0

0 0 0 0 1 L/γ2

0 0 0 0 0 1




(2.110)

2.1.9. Focussing dipole edge

•orbit
trajectory

x0

Pole face plane

orbit normal plane

β

orbit

trajectory

∆s

x0

Figure 2.5.: (Above) Sector dipole magnet
with pole face planes perpendic-
ular to the orbit
(Below) Rectangular dipole mag-
net with angle β between pole face
plane and orbit normal plane [7]

Often the dipole yoke is composed of parallel flat
metal sheets so that there is an angle β between
the orbit normal plane and the pole face plane
at the entrance to the dipole. The effect of this
edge angle in the radial plane is easily derived from
geometry (Figure 2.5). Particles with x0 > 0 enter
the magnetic field later when the pole face angle
β is greater than zero. They travel ∆s = x0 tan(β)

less distance in the field. This is equivalent to an
angle kick of [9]

∆x′ =
∆s

R
= x0

tan(β)

R
(2.111)

that changes its sign if x0 < 0. The offset x = x0

is preserved. The fringe field of the dipole has
components normal to the pole shoe face with
opposite signs over and below the orbit. When the
pole shoe face is perpendicular to the orbit these are
parallel to vs and can be neglected. But when the
pole face plane is rotated by β particles with an axial
offset y0 see a Bx field component corresponding
to an axial angle kick. This can be approximated
by integrating Bx along the pole face plane normal
vector µ̂z [10]

∆y′ ≈ 1

B0R

∫
Bxdz = −y0

tan(β)

R
(2.112)
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2. Theory

or to include the decreasing axial offset y due to the focussing effect and the actual edge angle due to
curvature of the trajectory [9]

∆y′ =
1

B0R

∫
Bxds ≈ −y0

(
− tan(β)

R
+

g

R2

1 + sin2(β)

cos3(β)
K

)
(2.113)

with the pole shoe gap g and the fringe field integral K. With ~z ⊥ pole shoe plane the fringe field
integral is [9]

K =

∫ outsideField

innerField

By(B0 −By)

gB2
0

dz ≈





0.45, for rectangular pole shoe.

0.7, for Rogowski formed pole shoe
(2.114)

So in total the effect of a rotated pole face plane on the particles is given by the R-matrix

REDGE =




1 0 0 0 0 0
tan(β)
R 1 0 0 0 0

0 0 1 0 0 0

0 0 − tan(β)
R + g

R2

1+sin2(β)
cos3(β) K 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(2.115)

The total transport matrix of a dipole can now be de written as

RRBEND = REDGERSBENDREDGE (2.116)

with β = α
2 for a rectangular dipole with parallel pole face planes on each side and error free

positioning.

2.1.10. Twiss parameters and phase ellipse

The solutions to the transverse, linear EOM (Equation 2.59) for individual particles (δ = const) were
found with a rectangular field model as shown in section 2.1.6 and give the transformation of each
element of the six dimensional particle vector. This transformation can be written as a matrix - the
transport matrix. In this section we want to derive special lattice functions that allow us to describe
the beam as an ensemble of many particles oscillating around the reference trajectory (orbit). The
Hill differential equations follow from the linear EOM with s dependant quadrupole strengths and
mono energetic particles [10]:

x′′(s) = kx(s)x(s) with kx(s) = − 1

R2(s)
+
q

p

∂dBy
∂x

(2.117)

y′′(s) = ky(s)y(s) with ky(s) = −q
p

∂dBy
∂x

(2.118)

The Hill differential equations correspond to a harmonic oscillator with s dependant restoring
force. They were originally used in astronomy to investigate the stability of lunar orbits. In
accelerators the transverse offsets u(s) oscillate with s dependent phase and amplitude around the
orbit. The first application to accelerators was to describe orbit stability in betatrons therefore
the oscillation amplitude functions are known as the betatron functions βu(s). With a change of
variables introducing the first two Twiss parameters β(s) = u2(s) and α(s) := −β

′(s)
2 the solution to
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2.1. Movement of charged particles in magnetic fields

these EOM can be written as (for detailed derivation see [10]):

u(s) =
√
εβ(s) cos(Ψ(s) + φ) (2.119)

u′(s) = −
√

ε

β(s)
[α(s) cos(Ψ(s) + φ) + sin(Ψ(s) + φ)] (2.120)

The amplitude factor
√
ε (section 2.3) corresponds to the 1σ occupied phase space surface by the

ensemble. ε and the phase offset φ are constants of integration. The betatron function β(s) is
periodic in s for closed orbits so β(s + L) = β(s) where L could be the circumference C of the
machine. The phase Ψ advances from 0 to 2π over one period length L and is given by

Ψ(s) =

∫ s

0

ds

β(s)
). (2.121)

In closed orbit machines the amount of oscillations per revolution is the tune.

Qu =
Ψ(s+ C)−Ψ(s)

2π
=

1

2π

∫ s+C

s

ds

βu(s)
(2.122)

The ensemble of particles perform betatron oscillations determined by the focussing magnet structure.
The envelope function Eu(s) =

√
εuβu(s) reflects the beam width (Figure 2.6) that is determined by

the betatron oscillation amplitude and the emittance of the ensemble neglecting dispersion.
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Figure 2.6.: Axial beam extent over the BESSY II booster lattice calculated and plotted with AC-
CPY [1,2]

The Ψ-dependence can be eliminated by inserting equation 2.119 solved for cos(Ψ(s) + φ) into
equation 2.120 and solving for sin((Ψ(s) + φ):

cos(Ψ(s) + φ) =
u(s)√
εβ(s)

(2.123)

sin((Ψ(s) + φ) =

√
β(s)u′(s)√

ε
+
α(s)u(s)√
εβ(s)

(2.124)
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2. Theory

Then the square of the gained results can be inserted into sin2(Ψ) + cos2(Ψ) = 1 and solved for ε:

ε =
u2(s)

β(s)
+

(
(
√
β(s)u′(s) +

α(s)u(s)√
β(s)

)2

(2.125)

=
1 + α2(s)

β(s)
u2(s) + 2α(s)u′(s)u(s) +

α2(s)

β(s)
u′2(s) (2.126)

By introducing the third Twiss parameter γ := 1+α2(s)
β(s) we can write:

ε = γ(s)u2(s) + 2α(s)u(s)u′(s) + β(s)u′2(s) (2.127)
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Figure 2.7.: Tracked particles and phase ellipses
calculated from twiss parameters [1]

This equation describes an ellipse in the
u-u′-plane (Figure 2.7) on which the particles
advance with every revolution. The emittance
ε times π gives the area of the ellipse [9]

∫

ellipse

dudu′ = πεu (2.128)

which according to Liouville’s theorem must
stay constant in a conservative system where
the particle movement is described by canonical
EOM. The shape and angle of the ellipse change
with the Twiss parameters β(s), α(s) and γ(s)

while its area and the emittance ε as constant
of integration are conserved.
If the ensemble of particles is normally
distributed the transverse charge density
distribution is given by:

ρ(x, y) =
Nq

2πσxσy
exp

(−x2

2σ2
x

+
−y2

2σ2
y

)
. (2.129)

All particles with less than one standard deviation transverse offset move inside the ellipse that is
determined by the 1σ emittance and neglecting dispersion lead to a beam width of

σu(s) =
√
ε1σu βu(s) (2.130)

The superscript 1σ can be left away as this is the standard convention in electron accelerator physics
meaning that the emittance ε usually refers to 60.7% of the particles of one plane. The transverse
acceptance of an accelerator is defined by the maximum emittance value for the beam to fit the
vacuum chamber. It refers to the optically tightest spot where the proportion of the vacuum chamber
aperture d to the beam width σu is minimal:

Au =

(
d2

βu

)

min

(2.131)

For storage rings as a rule of thumb the acceptance should be 50 times greater then the emittance [10].
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2.1. Movement of charged particles in magnetic fields

2.1.11. Transformation of Twiss parameters

The Twiss parameters are useful for describing the movement of an ensemble of particles. The
transformation of these using the transfer matrices in analogy to the transformation of the particle
vector (Equation 2.97) can be derived as shown in [10]. The betamatrix (subscript u left away)

B(s) :=

(
β(s) −α(s)

−α(s) γ(s)

)
(2.132)

with det(B) = 1 transforms according to:

B(s) = R0→sB(0)RT0→s (2.133)

so that the transformation of Twiss parameters can be written as:

βf = R2
11β

i − 2R11R12α
i +R2

12γ
i (2.134)

αf = −R11R21β
i + (R12R21 +R11R22)αi −R12R22γ

i (2.135)

γf = R2
21β

i − 2R22R21α
i +R2

22γ
i (2.136)

The transfermatrix R can also be written as a function of the Twiss parameters and the phase Ψ up-
and downstream to give their transformation by inserting the Twiss solutions of the EOM (Equations
2.119, 2.120) into equation 2.97 giving:

R =



√

β
β0

(cos(Ψ) + α0 sin(Ψ))
√
ββ0 sin(Ψ)

(α0−α) cos(Ψ)−(1+αα0) sin(Ψ)√
ββ0

√
β0

β (cos(Ψ)− α sin(Ψ))


 (2.137)

In periodic structures the Twiss parameters of a closed orbit must match when transformed by the
one turn transport matrix R1T so we can write:

Ru,1T =

(
cos(2πQu) + α0 sin(2πQu) β0 sin(2πQu)

γ0 sin(2πQu) cos(2πQu)− α0 sin(2πQu)

)
. (2.138)

Initial values for the Twiss parameters can also be gained from the one turn matrix:

B0
!
= R1TB0R

T
1T (2.139)

→ β0 =
−2R12

sgn(R12)
√

4− (Tr(R))2
(2.140)

→ α0 =
R11 −R22

sgn(R12)
√

4− (Tr(R))2
(2.141)

→ γ0 =
1 + α2

0

β0
(2.142)

2.1.12. Transformation of the radial dispersion

The dispersion D corresponds to the additional transverse offset from the orbit due to the relative
momentum offset δ = 1. It only occurs in the radial plane for most accelerators. Its transformation
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can be written as [10]:


D

D′

1




f

=



R11 R12 R16

R21 R22 R26

0 0 1






D0

D′0
1




i

(2.143)

In analogy to the solution of the EOM for particles with δ = 1 in Dipoles (Equation 2.81) it is
usually introduced by dipoles with non zero R16 and R26. The total offset for a particle with δ 6= 0 is

x(s) = x(s) +D(s)σδ (2.144)

and the actual beam width with dispersion is

σx(s) =
√
εxβx(s) + (D(s)σδ)2 (2.145)

The periodic solution for the dispersion can be found in analogy to that of the Twiss parameters
discussed in the previous section:



D0

D′0
1


 !

= R1T



D0

D′0
1


 (2.146)

→ D′0 =
R21R13 +R23(1−R11)

2−R11 −R22
(2.147)

→ D0 =
R12D

′
0 +R13

1−R11
(2.148)

2.1.13. Momentum compaction factor

The dispersive trajectories are in general of different length than the orbit. The momentum
compaction factor αp gives the ratio of the change in path length to the corresponding relative
momentum offset δ of a charged particle [10]:

∆L

L
= αp

∆p

p
= αpσδ (2.149)

→ αp =
∆L

Lσδ
(2.150)

In first order only dipoles contribute to this change in path length. The path length difference
between the inner and outer trajectory in dipoles corresponds to that in any curve of a race track:

∆L =

∮ (
R(s) + xD(s)

R(s)
− 1

)
ds = σδ

∮
D(s)

R(s)
ds (2.151)

so the momentum compaction factor can be written as

αp =
1

L

∮
D(s)

R(s)
ds. (2.152)

or for an isomagnetic ring with constant R:

αp =
1

LR

∮
D(s)ds. (2.153)
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2.1. Movement of charged particles in magnetic fields

For closed orbits with circumference L the momentum compaction factor can be calculated from the
transformation of the particle vector by the one turn matrix [11];

αp =
∆L

Lδ
=
l(s)− l0
Lδ

=
R51xi +R52x

′
i +R56δ

Lδ
=
R56

L
(2.154)

The smaller αp gets the closer the dispersive trajectories are to one another. Additionally to the
momentum compaction factor αp gamma transition

γtr =
1
√
αp

(2.155)

is often introduced. The transition energy Etr = γtrmc
2 corresponds to the energy when the effects

of increased round time due to increased path length due to δ > 0 and reduced round time due to
increased speed due to δ > 0 compensate one another.

2.1.14. Chromaticity

The chromaticity is defined as the change of tune due to non zero relative momentum offset δ [10]

ξ : =
∆Q

δ
. (2.156)

As derived in [10] the known similarity and thus equality of the traces of the transformation matrices
(Equation 2.138) for a small tune offset Q = Q0 + dQ and for a small quadrupole strength offset ∆k

can be used to derive:

4πdQ = ∆kβ(s)ds (2.157)

→ ∆Q =
1

4π

∫ s0+l

s0

∆kβ(s)ds (2.158)

Particles with δ 6= 0 undergo a different focussing strength in the quadrupoles. The change of the
experienced quadrupole strength k for particles with wrong energy (δ � 1) is

k(p+ ∆p) = −e
p

(
1

1 + δ

)
g ≈ −e

p
(1− δ)g = k(p)−∆k(∆p) (2.159)

→ ∆k = −δ e
p
g = δk0 (2.160)

The impact of the energy dependant change in focussing strength of the quadrupoles on the number
of betatron oscillations per revolution is expressed by the natural chromaticity and can be found by
inserting equation 2.160 into 2.158 and the result into 2.156:

ξnat = − 1

4π

∮
k(s)β(s)ds (2.161)

The total or corrected chromaticity is the sum of natural chromaticity and additional chromaticity
introduced by sextupoles of strength m in dispersive sections which give an additional focussing of
ksext = mDδ

ξtot =
1

4π

∮
[m(s)D(s) + k(s)]β(s)ds (2.162)
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2. Theory

2.2. Synchrotron radiation

Dedicated light sources have only one main raison d’être - to provide synchrotron radiation to their
user experiments. This section will give an introduction to the fundamental physics behind the
emitted synchrotron radiation by charged particles as well as an overview of the user demands on
synchrotron radiation.

2.2.1. Radiated power

Synchrotron radiation is emitted when charged particles are accelerated. This complies to the
fundamental rules of classical electrodynamics that give radiated power for non relativistic particles
in Larmor’s formulae [10,12]:

P cgsγ =
2

3

q2

m2
0c

3

(
d~p

dt

)2

(2.163)

PSIγ =
q2

6πε0m2
0c

3

(
d~p

dt

)2

. (2.164)

Since the power in the particles rest frame and laboratory frame must be equal, the Lorentz invariant
generalisation can be found with the proper time dτ = dt/γ and the four-momentum pµ of the
charged particle (notation: always SI):

Pγ =
q2

6πε0m2
0c

3

[(
d~p

dτ

)2

− 1

c2

(
dE

dτ

)2
]
. (2.165)

The effect can usually be neglected for non relativistic particles. Longitudinal radiation can generally
be neglected for accelerating fields smaller than 2 · 1014 MV/m [12]. In circular accelerators the energy
change in the cavity is small compared to the momentum change in dipoles thus the radiated power
(Equation 2.165) simplifies to [10]:

Pγ =
q2

6πε0m2
0c

3

(
d~p

dτ

)2

=
q2cγ2

6πε0E2
0

(
d~p

dt

)2

with E0 = m0c
2. (2.166)

The momentum ~p changes per circumnavigation of the angle dφ by dp = pdφ thus with the angular
velocity ω = dφ

dt we can write:

(
d~p

dt

)2

= p2ω2 =
p2v2

R2

∣∣∣∣
v≈c

=
E2

R2
. (2.167)

The radiated power goes with the particle Energy to the power of 4:

Pγ =
q2c

6πε0

γ4

R2
=
cCγ
2π

E4

R2
. (2.168)

with Cγ =
4πre
3E3

0

≈ 8.85 · 10−5 m

GeV 3
, re =

1

4πε0

e2

E0
(2.169)

It limits the feasible particle energy due to the technical limitations of power regain in the cavities.
The total radiated power per revolution can be calculated by integrating the radiated power over one
turn. For isomagnetic rings this corresponds to multiplying the radiated power (Equation 2.168) with
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2.2. Synchrotron radiation

the revolution time spent in dipoles (R 6=∞):

U = PγTrev ≈ Pγ
2πR

c
= Cγ

E4

R
(2.170)

2.2.2. Angular distribution

The azimuthal distribution of the emitted radiation of non relativistic particles (Equation 2.164)
complies with that of a dipole antenna [12]

dP

dΩ
=

q2

16π2ε0m2
0c

3

(
d~p

dt

)2

sin2 Ψ (2.171)

and can be neglected. The angular distribution of relativistic radiating particles can be derived
by Lorentz transformation of the particle’s dipole radiation around the acceleration axis in the
center-of-momentum frame to the laboratory frame of reference [10]. In good approximation the
emitted radiation is reduced to one eighth of the peak intensity in forward direction for an opening
angle of:

Θ ≤ ± 1

γ
. (2.172)

Due to the small opening angle the emission of synchrotron radiation does not significantly change
the position or direction of the emitting particle - only the energy is decreased.

2.2.3. Spectrum and time structure

The time structure of a radiation pulse follows from the time difference ∆t between the first and last
observed photon. The first and last photons are observed when the inner and outer edge of the
particles radiation cone with an opening angle of Θ = 2/γ (Equation 2.172) are in line with the
observer. The time difference ∆t can be calculated from the time of flight difference between the
radiating particle and the first photon to the point B on the particles trajectory where the last
photon is emitted [10]:

∆t = te − tγ =
2R

cβγ
− 2R sin(1/γ)

c
=

2R

c

(
1

βγ
− sin(1/γ)

)
(2.173)

The spectral distribution of the radiated power is given by [9]:

Pγ(ω) =
Pγ
ωc
S

(
ω

ωc

)
with ωc =

3cγ3

2R
. (2.174)

For a bending magnet the spectral function is given by integration over the modified Besselfunction:

S

(
ω

ωc

)
=

9
√

3

8π

ω

ωc

∫ ∞

ω/ωC

K5/3

(
ω

ωc

)
d

(
ω

ωc

)
(2.175)

The critical angular frequency divides the radiated power spectrum equally according to the total
radiated energy.
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2. Theory

2.2.4. User demands

Many experiments require high flux (Equation 2.176) which gives the synchrotron radiation intensity
in bandwidth of 0.1% around the required photon energy normalised to 1 Ampere of beam current.
For high space-resolution measurements the transverse extent and divergence of the beam are also of
importance - hence these experiments require high brightness (Equation 2.177) (flux normalised to
transverse angle divergence) and brilliance (Equation 2.178) (brightness normalised to transverse
beam extent): [10]

F =
photons

1second · 0.1%bandwidth · ampere (2.176)

S =
F

2πσx′σy′
(2.177)

B =
S

2πσxσy
=

F

4π2εxεy
(2.178)

For time resolved experiments the pulse duration that is directly determined by the bunch length
becomes of great importance.

2.3. Emittance

The emittance of a single particle is defined by the ratio of π and the surface of the phase ellipse this
particle moves on [9].

εu = σuσu′ =
Su,u′

π
(2.179)

In a canonical system the phase space volume must be constant according to Liouville’s theorem and
hence the emittance in accelerators is constant when the energy change of the beam amongst others
due to cavities, radiation, induced currents and interaction with the residual gas can be neglected. In
this section emittance damping and excitation effects are described and formulae for the dynamic
and equilibrium emittance are derived.

2.3.1. Radiation integrals and constants

For the electron alone the emission of radiation energy dpγ is not conservative. For one particle on a
dispersive section (dipoles) the emittance is increased in the process. Namely the surface of the
ellipse around the new dispersion trajectory the particle should be on after emission of energy dpγ [10]:

∆x(s) = D(s)
dpγ
p

(2.180)

∆x′(s) = D′(s)
dpγ
p

(2.181)

Resulting in the new total emittance(Equation 2.127):

εtot = γ(s)[x(s) + ∆x(s)]
2 (2.182)

+ 2α(s)[x(s) + ∆x(s)][x′(s) + ∆x′(s)] (2.183)

+ β(s)[x′(s) + ∆x′(s)]
2
. (2.184)

24



2.3. Emittance

With the contribution from the radiation of a photon:

εrad =

(
dpγ
p

)2[
γ(s)D2(s) + 2α(s)D(s)D′(s) + β(s)D′2(s)

]
. (2.185)

For describing the effect on the beam emittance the H function is introduced:

Hu(s) = γu(s)D2
u(s) + 2αu(s)Du(s)D′u(s) + βu(s)′2u (s) . (2.186)

The effects of synchrotron radiation on the beam properties and especially the beam emittances are
discussed next. Therefore the synchrotron radiation integrals [11] that can be used to describe these
effects are introduced here: [11,13]

I1 =

∮
D(s)

R(s)
ds (2.187)

I2 =

∮
1

R2(s)
ds (2.188)

I3 =

∮
1

|R3(s)|ds (2.189)

I4u,sbend =

∮
Du(s)

R3(s)

[
1± 2R2(s)ku(s)

]
ds (2.190)

I4u,rbend = ±
∮
Du(s)

R3(s)
ds (2.191)

I5u =

∮ Hu(s)

R3(s)
. (2.192)

2.3.2. Adiabatic Damping and the normalized emittance

s

y

p1
dpHF

p2

Figure 2.8.: Adiabatic Damping [7]

Adiabatic damping is not a real beam cooling
effect. It occurs when particles are accelerated
(in the cavities) and can be explained with
Liouville’s Theorem which states that the occupied
six dimensional phase space volume must remain
constant. For the uncoupled case Liouville’s theorem
also holds for each two dimensional phase surface
separately [9]:

∆u∆pu = const. (2.193)

In consequence the emittance, defined by the two dimensional phase space surface:

εu = ∆u
∆pu
pu

=
const

pu
(2.194)

is inversely proportional to the momentum or energy that is increased in the cavities. This can be
described by the differential equation:

ε̇x(t)

εx(t)
= − Ė(t)

E(t)
. (2.195)
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2. Theory

Since adiabatic damping does not actually reduce the occupied phase space - it is often desirable to
introduce the normalized emittance:

ε∗ = εβγ = ε
√
γ2 − 1 = ε

p

m0
. (2.196)

2.3.3. Radiation damping

s

y

p1

dpγ dpHF
p2

Figure 2.9.: Radiation damping [7]

Due to the betatron oscillations synchrotron
radiation is emitted transversally to the orbit. But in
the cavities only longitudinal momentum is regained.
Hence the amplitude of the transverse betatron
oscillations and longitudinal synchrotron oscillations
are damped over time as well as the corresponding
emittances. This beam cooling is described by [9]:

εu(t) = εu,0 exp

(
− t

τu

)
(2.197)

ε̇u(t)

εu(t)
= − 1

τu
= −αu . (2.198)

Generally the damping times τu can be given either
for the emittance or for the oscillation amplitudes.
In analogy to the adiabatic damping (Equation
2.194) for relativistic particles (∆p/p = ∆E/E) the

averaged damping per turn is found with the energy loss per turn (Equation 2.170) [9]:

∆εu
εu

= −U
E

(2.199)

by multiplying with 1/Trev we find

1

τu
=

1

Trev

U

E
. (2.200)

In case of non zero dispersion where the photon is emitted the change of the equilibrium orbit has to
be considered. This effect is given by the damping partition numbers Ju [11]:

Jx = 1− I4x

I2
(2.201)

Jy = 1− I4y

I2
(2.202)

Js = 2 +
I4x + I4y

I2
(2.203)

→
∑

u

Ju = 4 (Robinson’s sum rule). (2.204)
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2.3. Emittance

The damping decrements αu = τ−1
u (with u = x, y, s) are then given by:

αu =
1

τu
=

1

Trev

U

E
Ju =

cCγE
3

2πR2
Ju =

2CαE
3

R2
Ju (2.205)

with Cα =
cCγ
4π

=
cre
3E3

0

(2.206)

The damping decrements for the betatron and synchrotron oscillations as presented in [11] are
retrieved by multiplying the emittance damping decrements by 1

2 .

2.3.4. Radiation excitation

Orbit

Dispersive trajectory

dpγ

Figure 2.10.: Radiation excitation by quan-
tized emittance of synchrotron
radiation [7]

The discrete energy loss by quantized emission of
synchrotron radiation increases the emittance of
the longitudinal and transverse planes when the
dispersion is not zero. The sudden emission of
photons (dpγ = ~ω) leads to an instantaneous change
of the equilibrium orbit for the emitting electron.
It then starts to oscillate around this dispersive
orbit - thus increasing the emittance. The differential
increase of the emittance is given by the quantum
excitation qu [14]:

ε̇u(t) = qu(t) . (2.207)

It can be derived from the average emitted photon energies that are found by integrating the spectral
distribution (Equation 2.175) of the emitted radiation [9].

〈dpγ〉 = 〈~ω〉 =
8

15
√

3
~ωc (2.208)

〈dp2
γ〉 = 〈(~ω)2〉 =

11

27
(~ωc)2 (2.209)

The number of emitted photons per time (total photon flux) follows from the mean radiated power
Pγ (Equation 2.168) divided by the mean energy of the emitted photons (Equation 2.208):

Ṅγ =
Pγ
〈dpγ〉

=
15
√

3

8

Pγ
~ωc

(2.210)

and can be used to calculate the root mean square energy radiated per time [9,11,15,16] by multiplying
with (Equation 2.208) and inserting ωc and Cγ (Equations 2.174, 2.206):

Ṅγ 〈dp2
γ〉 =

55~ωc
24
√

3
Pγ =

55~ωc
24
√

3

cCγ
2π

E4

R2
(2.211)

=
55~2c3

24
√

3
α
γ7

R3
with α =

e2

4πε0~
(2.212)

=
4CqCα
R3

γ2E5 with Cq =
55~c

32
√

3E0

(2.213)
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2. Theory

with the fine structure constant α ≈ 1/137. The additional root mean square energy deviation of the
beam due to quantum excitation qu corresponds to this radiated energy and can be calculated by
integrating over one turn.

qs(t) =
〈Ṅγ 〈dp2

γ〉〉
E2

=
1

2CE2

∮
Ṅγ 〈dp2

γ〉 ds (2.214)

In the dispersive plane(s) the increase of emittance due to the increased energy spread is described by
Hu (Equation 2.186):

qu(t) =
〈Ṅγ 〈dp2

γ〉Hu〉
E2

=
1

2CE2

∮
Ṅγ 〈dp2

γ〉Huds (2.215)

Often the radius is piecewise constant greatly simplifying the integrals. The quantum excitation is
then given by:

qu(t) =
2CqCα
R2

γ(t)2E(t)3 I5u

I2
with u = x, y (2.216)

qs(t) =
2CqCα
R2

γ(t)2E(t)3 I3

I2
(2.217)

2.3.5. Dynamic emittance

The differential equation describing the evolution of the emittances in an accelerator can be found by
summing up the differential contributions of the adiabatic damping (Equation 2.195), the radiation
damping (Equation 2.198) and the quantum excitation (Equation 2.207) [14,16].

ε̇u(t) = qu(t)−
(
Ė(t)

E(t)
+ αu(t)

)
εu(t) (2.218)

2.3.6. Equilibrium emittance

The natural or equilibrium emittance is the result of an equilibrium between the damping and
stimulation of the beam oscillations due to synchrotron radiation. It is determined by the lattice and
reached when particles are kept in a circular accelerator for a time long against the damping time.
The formula can be gained by setting the dynamic emittance to zero [16]:

εeq,u =
Cqγ

2(t)

Ju

I5u

I2
(2.219)

εeq,s = σ2
δ =

Cqγ
2(t)

Js

I3

I2
(2.220)

2.3.7. Fundamental lower emittance limit

The quantum excitation of the emittance due to the recoil of the synchrotron radiation that is
emitted in an angle smaller than 1/γ (Equation 2.172) is an effect that can usually be neglected. It
gives the fundamental lower emittance limit [11]:

εlimit =
Cq
C

∮
βy(s)

2JyR(s)
ds (2.221)

28



2.4. Transverse emittance measurement

and becomes relevant in case of an ideal uncoupled storage ring where the axial emittance does not
damp down to zero.

2.4. Transverse emittance measurement

For normally distributed particles with no static offset of the core of the beam (〈u〉 = 0) the
Σbeam-matrix in each plane corresponds to [17]:

Σubeam =

(
〈u2〉 − 〈u〉2 〈uu′〉 − 〈u〉 〈u′〉
〈u′u〉 − 〈u′〉 〈u〉 〈u′2〉 − 〈u′〉2

)
=

(
〈u2〉 〈uu′〉
〈u′u〉 〈u′2〉

)
(2.222)

and the beta matrix times the emittance:

Σubeam = εu

(
βu −αu
−αu γu

)
. (2.223)

The beam-Σ-matrix is transformed along the machine by Σ = RΣ0R
T in analogy to the

transformation of the beta matrix (Equation 2.133) and determines the emittance:

det(Σu) = εu
√
βuγu − α2

u = εu with
√
βuγu − α2

u = 1. (2.224)

Thus the emittance can be measured by measuring the beam profile or to be more precise the
two-dimensional transverse subspace of the six-dimenional phase space occupied by the ensemble of
particles (the beam). Two methods are presented:

1. the measurement of the beam cross section by imaging the synchrotron radiation onto a screen
from a spot where the Twiss parameters are known

2. the determination of the upstream beam matrix by measuring the downstream beam profile as
a function of the quadrupole strength of a quadrupole in between whose strength is varied.

2.4.1. Synchrotron radiation imaging

Emitted synchrotron radiation from charged particles is used to measure the beam profile. The
measured beam widths σu (Equation 2.145) are used to calculate the emittance in each plane. The
dispersion and beta functions at the radiation source (spot in bend) must be known:

εu =
σ2
u − (Duσδ)

2

βu
. (2.225)

2.4.2. Quadrupole scan technique

The initial beam matrix Σiu (with u = x, y) represented by Twiss parameters or moments of the beam
distribution is transformed by the quadrupole strength dependant transport matrix Ru(k) from
upstream (before quadrupole) to downstream (on screen).

Σfu(k) = Ru(k)ΣiuR
T
u (k). (2.226)

29



2. Theory

A fit of the (usually) Gaussian beam distribution function to the horizontal and vertical projection of
the measured image gives the downstream beam profiles (Equation 2.145)

σfu(k) =

√
εuβ

f
u(k) + (σδD

f
u(k))2 (2.227)

as the standard values of the Gaussian distribution. They are measured as a function of the varied
upstream quadrupole strength k and are determined by the energy spread σδ, the emittance ε and
the k-dependant downstream beta function βfu(k) and dispersion Df

u(k). Taking the negligible axial
dispersion (εβy � (σδDy)2) in planar accelerators into account the transformation of the upstream
beta functions and the radial dispersion is (Equations 2.134, 2.143):

βfu(k) = R2
u11
βiu − 2Ru11

Ru12
αiu +R2

u12
γiu (2.228)

Df
x(k) = Rx11

Di
x +Rx12

D
′i
x +Rx16

(2.229)

Thus the squared downstream beam widths σfu (Equation 2.227) can be written as a function of the
initial upstream Twiss parameters and dispersion:

σfx(k)2 = εx
(
R2
x11
βix − 2Rx11

Rx12
αix +R2

x12
γix
)

+ σ2
δ

(
Rx11

Di
x +Rx12

D
′i
x +Rx16

)2

(2.230)

σfy (k)2 = εy
(
R2
y11β

i
y − 2Ry11Ry12α

i
y +R2

y12γ
i
y

)
. (2.231)

With knowledge of the k-dependant beam transport matrix Ru(k) the measured beam profiles σfu(k)

could theoretically be used to determine the upstream Twiss parameters and dispersion as well as the
emittance and energy spread by fitting an adequate model function to the data.
Due to the technically limited range of quadrupole strength the measurable part of the beam profile
function is usually a quadratic curve. Therefore only 3 parameters can be extracted without
overfitting the data. Thus in the radial plane the energy spread σδ and upstream dispersion functions
Di
x, D

′i
x must be fixed so the k-dependant dispersive broadening σ2

δD
f
x(k)2 can be subtracted from

the measured beam profile σfx(k)2 before fitting.
To find an appropriate model function the k-dependance of the transport matrix is simplified: In the
thin lens approximation it is assumed, that the quadrupole magnet length L is small in comparison
to the focal length fu = ± 1

kL .

si

sf

Figure 2.11.: k-dependant dispersion. [7,9,11]

With the thin-lens approximation for the
quadrupole matrix:

Qu =

(
1 0

− 1
fu

1

)
=

(
1 0

K 1

)
(2.232)

with K = ±kL (negative in focussing plane)
the transfer matrix resolves to:

Ru =

(
T11 +KT12 T12

T21 +KT22 T22

)
. (2.233)

So the transformation of the beta function according to (Equation 2.228) can be written as:

βfu(K) = (T11 +KT12)2βiu − 2(T11T12 +KT 2
12)αiu + T 2

12γ
i
u (2.234)
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2.5. Transverse emittance exchange with skew quadrupoles

and hence giving the dispersion corrected beam width on the screen

σ∗2u (k) = σfu(k)2 −
(
σδD

f
u(k)

)2
= σfu(k)2 − σ2

δ

(
Rx11

(k)Di
x +Rx12

(k)D
′i
x +Rx16

(k)
)2

(2.235)

as a function of K with three unknown coefficients A, B and C:

σ∗2u (K) = εuβ
f
u(K) (2.236)

= K2
[
T 2

12εuβ
i
u

]
− 2K

[
T 2

12εuα
i
u − T11T12εuβ

i
u

]
+
[
T 2

11εuβ
i
u − 2T11T12εuα

i
u + T 2

12εuγ
i
u

]
(2.237)

= K2
[
Σi11T

2
12

]
+ 2K

[
Σi11T11T12 + Σi12T

2
12

]
+
[
Σi11T

2
11 + 2Σi12T11T12 + Σi22T

2
12

]
(2.238)

= K2[A] + 2K[B] + [C] (2.239)

By fitting the model function (Equation 2.239) to the dispersion corrected measured data the
coefficients A, B and C are determined. The beam matrix elements follow directly from these and the
known matrix elements of Ru. The emittance and then the Twiss parameters follow:

Σiu,11 =
A

T 2
12

→ βiu =
Σiu,11

εu
(2.240)

Σiu,12 =
B − T11T12Σiu,11

T 2
12

→ αiu = −Σiu,12

εu
(2.241)

Σiu,22 =
1

T 2
12

[
C − T 2

11Σiu,11 − 2T11T12Σiu,12

]
→ γiu =

Σiu,22

εu
(2.242)

εu =
√
det(Σiu) =

√
Σiu,11Σiu,22 − (Σiu,12)2 (2.243)

2.5. Transverse emittance exchange with skew quadrupoles

The matrix Rθ rotates the beam by an angle θ around the tangent to the orbit clockwise in flight
direction for θ > 0. It can be derived by transforming the well known rotation matrix Rzz′(θ) to
accelerator coordinates (Equation 2.95)

Rθ = TSA




cos θ sin θ 0 0 0 0

− sin θ cos θ 0 0 0 0

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

0 0 0 0 0 1




TSA
T

=




cos θ 0 sin θ 0 0 0

0 cos θ 0 sin θ 0 0

− sin θ 0 cos θ 0 0 0

0 − sin θ 0 cos θ 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(2.244)

When transforming the six dimensional Σbeam-matrix of an uncoupled beam

Σ =




βxεx −αxεx 0 0 σ15 σ16

−αxεx γxεx 0 0 σ25 σ26

0 0 βyεy −αxεy 0 0

0 0 −αyεy γxεy 0 0

σ15 σ25 0 0 σ55 σ56

σ16 σ26 0 0 σ56 σ66




(2.245)
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with |Rθ| for θ = π/2

Rπ/2 =




0 0 1 0 0 0

0 0 0 1 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(2.246)

the transverse emittances and Twiss parameters are completely exchanged:

|Rπ/2|Σ|Rπ/2|T =




βyεy −αyεy 0 0 0 0

−αyεy γyεy 0 0 0 0

0 0 βxεx −αxεx σ15 σ16

0 0 −αxεx γxεx σ25 σ26

0 0 σ15 σ25 σ55 σ56

0 0 σ16 σ26 σ56 σ66




(2.247)

Therefore any optics with |Rπ/2| as the total transfer matrix will exchange the transverse emittances
and Twiss parameters. Obviously this cannot be achieved with any of the elements introduced so far.
Skew quadrupoles are rotated quadrupoles. Their transport matrix is

Rskew = RTΘRQRΘ (2.248)

Since the rotation of a drift section has no effect and

RΘR
T
Θ = 16x6 (2.249)

holds the rotation of each element of a sequence of drifts and quadrupoles is equal to the rotation
of the complete sequence. Thus an emittance exchange section can be found by searching for a
combination of drifts and quadrupoles that when rotated by an angle θ gives the desired transport
matrix (Equation 2.246). Often the quadrupoles are rotated by 45◦ - halfway to a simple change of
the focussing plane at 90◦. Under the condition that all quadrupole will be rotated by 45◦ a section
of drifts and quadrupoles will exchange the transverse emittances if the unrotated section has the
total transport matrix:

Rsec
!
= RT±π/4|Rπ/2|R±π/4 =




∓1 0 0 0 0 0

0 ∓1 0 0 0 0

0 0 ±1 0 0 0

0 0 0 ±1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(2.250)

With the weaker requirement for Rsec that only Rx = −Ry the emittances are also exchanged but not
the Twiss functions. Such a section (Equation 2.250) can be numerically found as will be shown in
section 6.2. A classical textbook example for emittance exchange sections with skew quadrupoles is
the Brown Rotator with 6 equidistant quadrupoles all of which are operated at the same strength [9].
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3. BESSY II

The history of BESSY II - now Germanys top third generation light source began 1978 in
Berlin-Wilmersdorf. There BESSY I the predecessor of BESSY II was commissioned on the 19th
December 1981. It was Germanys first dedicated Synchrotron radiation source and used for radiation
metrology, X-ray lithography and fundamental research. BESSY I had 800 MeV beam energy
with 50 nmrad emittance. 1985 COSY - a compact synchrotron for industrial use based on two
superconducting 180◦ bending magnets was built at the same facility and mainly intended for chip
production with X-ray lithography. Plans for the main successor BESSY II were short handedly
changed after the reunion of Germany and the fall of the Wall in Berlin. Berlin-Adlershof was soon
recognized as a better site for such a big research facility. After breaking ground in Berlin-Adlershof
on the 4th of July 1994 BESSY II was finally comissioned 1998 and has been a success up to today.
1999 BESSY I was shut down to lay all focus on its successor BESSY II. 2000 the remaining parts
were disassembled and sent to Jordan for SESAME - Synchrotron-light for Experimental Science and
Applications in the Middle East. This chapter provides an overview of the momentary status of
BESSY II as well as a brief introduction to the next upgrade project.

3.1. Overview

linac

microtron

injection
line

booster
synchrotron

transfer
line

storage ring

beam lines

Figure 3.1.: Overview of BESSY II [7,18]

The electrons at BESSY II are extracted
from a DC cathode at 90 keV and accelerated
to 50MeV in the linac structure operating
at 3GHz. The injection line transports the
bunches to the booster synchrotron where they
are accelerated to 1.7GeV in 33ms. They reach
the storage ring via the transfer line that crosses
the radiation protection wall of the booster.
The maximum beam current of 300mA in the
storage ring is reached by successive injection
of electrons from the injector system. The
booster operates at a repetition rate of 10Hz.
Usually over 3mA beam current are reached
in the booster. However the injection rate
is administratively reduced to 1Hz making the
filling up of the storage ring possible in 100 s.
Since fall 2012 BESSY II is operated in top-up
mode where the storage ring is kept at 300mA
by continuously injecting current with open
beam shutters. This has many advantages including constant thermal load on the optical devices
(gratings etc.) of the beam lines and constant brightness for the user experiments. But there are also
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3. BESSY II

disadvantages like user visible beam movement due to the injection process and higher radiation
safety requirements. Due to these the injection efficiency has become a critical parameter. It is
permanently and redundantly monitored and must stay over 90% in 4 h average and over 60% in
every shot otherwise the injector system is automatically deactivated. Before top-up the storage ring
was operated in decay mode. On the user side there are 43 available beam lines delivering the light
from the bending magnets, undulators and wigglers to some 50 user experiments [19]. The available
photon energy ranges from THz to the hard x-ray domain.

3.2. Linac

Quantity Unit SPM LPM

Energy MeV 50.9 50.6
Charge nC 0.34 2.15
Energy spread % 0.24 0.2
Radial emittance nm rad 376 119
Axial emittance nm rad 318 104

Table 3.1.: Measured parameters delivered by
the BESSY II linac [20]

The linac (Figure 3.2) is the preinjector for BESSY
II. It was manufactured by Thales∗ and installed
in 2011 as successor of the 50MeV microtron which
is now in standby and ready to take over in case of
linac failures. Advantages of the linac (Table 3.1) are
the online configurable operation modes providing
flexible bunch population patterns to synchronously
fill the storage ring and the 30 times higher [21] single
bunch currents/filling rates making time consuming
knock out procedures obsolete. The short pulse mode

(SPM) delivers 1 to 5 bunches of 1 ns each at 0.34 nC. In long pulse mode (LPM) 40 to 200 ns long
bunch trains with a total charge of 2 nC are delivered.
A 90 kV triode gun with an EIMAC Y-845 cathode with 0.5 cm2 emissive area delivers the electrons.
These non-relativistic electrons are guided by short shielded focussing solenoids through two
prebunching cavities running at 499.625 (PB1) and 2997.75MHz (PB2) to the standing wave buncher
driven by 5MW of RF power. Here the electrons are accelerated to 15MeV with an average field of
18MV/m. The standing wave buncher is surrounded by two shielded solenoids providing a 0.2Tesla
magnetic field for beam focusing. A solenoid between the buncher and the accelerating structure
focusses the beam sufficiently for the travelling wave accelerating structure to operate without
external focussing. Here the beam energy reaches the required 50MeV and the bunch length is
compressed to some 20 ps.
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Figure 3.2.: Layout scheme of the linac [22]

∗A multinational defense, security, aerospace and transportation company better known for the Queen Elizabeth-class
aircraft carriers it builds for the British royal navy.
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3.3. Injection line

3.3. Injection line

The Bessy II injection line was originally designed for the microtron injector. The linac was set up
inside the booster bunker between microtron and transferline (Figure 3.1). Therefore a linac injection
line consisting of a two dipole chicane and 7 quadrupoles (Figure 3.3) that ends in the second bending
magnet B1P2I of the original microtron injection line was installed. The original injection line is
made up of a 2 dipole chicane at the beginning and end and 16 quadrupoles. By switching B1P2I on
and off it is possible to toggle between the microtron and linac. Due to the historic development of
the injection line it is now rather long and complex. It was optimized by hand for high tolerance
against energy fluctuations from the linac. Setting the first two dipole chicane achromatic is essential.
Switching off 9 of the 23 quadrupoles proved to not only simplify the injection line and eliminate
potential sources of error but also results in high injected beam currents into the booster.
Below the results of a first simulation approach of the linear beam optics of the BESSY II injection
line are presented. The drift and magnet lengths were taken from technical drawings and the
magnetic fields from the BESSY II database. The polarity of the quadrupoles was checked with a
mobile hall sensor.
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Figure 3.3.: Betatron and dispersion functions and beam extents over the BESSY II injection line [1,2]
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3. BESSY II

The simulations were made with ACCPY [1] as all further simulations unless stated otherwise. The
credibility of results from ACCPY was cross-checked with other well known simulation programs
and results from measurements (Appendix B). The simulation results for the injection line show
maximum beta functions of 404m in the radial and 1047m in the axial plane. This would correspond
to some 9mm and 12mm 1-σ beam extents in a vacuum chamber of 25mm. The beam parameters
coming from the linac are based on quadrupole scan measurements that seem to give reliable values
for the emittance

εx = 202 nmrad (3.1)

εy = 144 nmrad (3.2)

but not so for the twiss parameters. A small change in the initial Twiss parameters can change
the maximum oscillation amplitudes by a factor of 10 giving beam extents greater than the given
aperture. This may be part of the cause for problems with the injection efficiency into the booster.
These problems often arise after manual optimization of the linac for maximum current output.

3.4. Booster Synchrotron

Circumference 96m
RF-frequency 500MHz
Revolutiontime 320ns
Extraction energy 1.72GeV
Injection energy 50MeV
Tunes Qx/Qy 5.9/3.4
Nat. chromaticities -9.6/-4.5
Damping times τx/τy/τs 5.1/4.7/2.3ms
Energyspread @Eext 5.6·10−4

Table 3.2.: Main parameters of the BESSY
II booster [1,23,24]

The fast ramping BESSY II booster accelerates
the electrons from roughly 50MeV to 1.7GeV. An
overview of the main booster parameters can be found
in (Table 3.6)). The booster magnets are powered
by three independant 10Hz white circuits [25] for
the dipoles, radial focusing quadrupoles and axial
focusing quadrupoles. They keep the load on the main
power supply below 500 kW instead of ±5MW with
direct powering and are designed to keep the tune
shift δQx,y

below 5%. With the momentary cabling of
the individual white circuits to the quadrupole families
these are synchronously ramped up and down at
identical current in each family. Thus there exist only 2

knobs for changing the quadrupole strengths - one for the focussing and one for the defocussing
quadrupole family.
The booster is in total made up of 8 equal cells (16 when only speaking of the linear optics). The
arrangement of the magnets in each half cell is in accordance with a standard FODO (focus - drift -
defocus - drift) lattice:

813.7

1160.7

1690.7 4540

60000
s / (mm)

Figure 3.4.: Positions of magnets in BESSY II booster unit cell [7]
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3.4. Booster Synchrotron

The geometry of the magnets (Table B.3) is taken from the BESSY II database. The orbit length of
the dipoles is calculated from the constraint that they must in total sum up to a complete circle:

2π ·R !
= Nsections · LDipol ⇒ LDipol =

2π ·R
16

≈ 2619.3mm (3.3)

The following simulations of the linear optics of the BESSY II booster are based on these numbers
(Table B.3) and lattice files from P. Kuske and G. Wüstefeld. The results are in good agreement with
tune measurements from 2013 [26]. Further simulations on the dynamics of the booster ramp are
presented in section 5.
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————————————
Radial parameters
————————————
βx,max = 12.799 m
βx,min = 0.830743 m
αx,max = 4.10121
αx,min = −3.7153
γx,max = 1.4679
γx,min = 0.0781313
Dx,max = 0.913824 m
Dx,min = 0.372254 m
D′x,max = 0.363766

D′x,min = −0.208604
Qx = 5.9045
ξx,nat = −9.64699
Jx = 0.924302
εx = 7.31856e− 08 πm · rad
τx = 5.133533e− 03 s

————————————
Axial parameters
————————————
βy,max = 11.3283 m
βy,min = 2.09474 m
αy,max = 2.23783
αy,min = −2.78909
γx,max = 0.81019
γx,min = 0.0882747
Qy = 3.37727
ξy,nat = −4.54111
Jy = 1
εy = 1.78495e− 13 πm · rad
τy = 4.744933e− 03s

————————————
Longitudinal parameters
————————————
E = 1.72e+ 09 eV
γlorentz = 3366.96
αp = 0.0330461
ηslip = 0.033046
γtr = 5.50098
Qs = 0.0187657
Js = 2.0757
σδ = 5.601469e− 02 %
στ = 5.02721e− 11 s
σs = 0.0150712 m
τs = 2.285946e− 03 s
Eloss = 116078 eV
Prad = 580.389 W
Ecrit = 1693.81 eV
λcrit = 7.31984e− 10 m

Figure 3.5.: Betatron and dispersion functions over half a unit cell of the BESSY II booster and some
parameters from the linear optics simulation [1,2]
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3. BESSY II

3.5. Transfer line

The transfer line transports the electron beam from the booster through the radiation protection wall
to the storage ring. Since the planning of top-up mode the focus on the transfer line and especially
on its influence on the injection efficiency into the storage ring has risen. Viewing screens were
exchanged for novel beam size monitors and collimators [27] opening the possibility to trim the beam
in the transfer line before injection into the storage ring. Hence raising the efficiency of the injection
process itself. These modifications turned out not to be required and will probably be exchanged for
diagnostic devices again as the optics of the transfer line are not yet fully understood.

3.5.1. Designed and desired transfer line optics
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Figure 3.6.: Betatron and dispersion functions and beam extents over the BESSY II transfer line [1,2]

The beam matrices in the booster and storage ring are well known and validated amongst others
by measurements of the tunes, chromaticities and LOCO (Linear optics from closed orbits [28])
measurements. The desired optics of the transfer line (Figure 3.6) was designed to match the beam
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3.5. Transfer line

matrices of the booster and storage ring while realising preferably zero dispersion for the injection
into the storage ring. Furthermore betatron oscillations of amplitude smaller than 20m were
achieved. The parameters for the simulation of the linear optics are taken from the lattice files from
P. Kuske and G. Wüstefeld.

3.5.2. Possibly actual transfer line optics

It was called into question if the momentary quadrupole setting actually matches the design
gradients. An inquiry at DANFYSIK brought the original magnet field measurement report of the
transfer line magnets from after manufacturing up to light. The report includes tables with measured
currents and corresponding field gradients for every quadrupole magnet of the transfer line. The data
showed no significant differences between individual quadrupoles. Therefore the mean values for the
short and long quadrupoles are analysed:
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Figure 3.7.: Quadrupole gradients over current according to measurements from manufacturer DAN-
FYSIK [2,5,29]

The results show that hysteresis effects are in the order of 1% and are hence neglected further on.
The obtained gradient to quadrupole strength conversion factors from the linear fit assuming a beam
rigidity of R(1.72GeV ) = 5.7373 show significant deviations from the ones used for the design optics
(Figure 3.6):

Quadrupole length BESSY II Database DANFYSIK

0.25 m 0.06834325 0.043769
0.2 m 0.055562 0.043794

Table 3.3.: Current to gradient conversion factors. [24,29]

The obtained results (Figure 3.8) do not coincide with the stored values from the BESSY II
database. The optics simulation using the set quadrupole currents and the new current to field
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3. BESSY II

gradient conversion functions shows a highly undesirable optics with over 2m dispersion at injection
and up to 80m of betatron amplitude. The 1−σ beam extents stay below 3mm - hence this optic
cannot be ruled out per se.
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Figure 3.8.: Betatron and dispersion functions and beam extents over the BESSY II transfer line [1,2]

3.5.3. Measurement of dispersive trajectories

To further evaluate the actual optics of the transfer line reliable measurements of the beam
parameters at as many spots as possible are required. As the quadrupole scan results only seem
reliable concerning the measured emittances (chapter 4) the energy dependant radial displacement
of the beam at all available transfer line screens was measured. The beam energy was varied by
changing the extraction timing of the booster. Simultaneously the radial beam position was
measured on a FOM. A Labview software designed to read out and analyse the FOM camera data
was used to extract the radial beam position from a gaussian fit to the horizontal projection of the
image data. The observed linear dependence of the radial displacement from the relative energy
deviation corresponds to the linear dependence (Equation 2.144) of the radial particle offset from the
dispersion.
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Figure 3.9.: Measurements of radial displacement as a function of extraction energy [2,5]

y = ax+ b a/(nm) b/(nm)

FOMZ1T −78.269± 0.632 59.449± 0.623

FOMZ2T −241.473± 0.447 229.314± 0.447

FOMZ6T 1174.523± 3.126 −1196.090± 3.123

FOMZ7T 998.679± 1.896 −1018.895± 1.898

FOMZ8T 769.875± 2.018 −787.049± 2.022

Table 3.4.: Retrieved parameters from the linear
fits [2,5]

The linearity of the measured data gives
confidence in the reliability of the obtained
fit parameters. The visible terracing of
the measured values is due to inconvenient
variation of the extraction timing in not exact
multiples of the revolution time Trev = 320 ns.
Nevertheless the fit errors indicate good
accordance with the linear model function.
The dispersion at each FOM depends on the
dispersion functions at the beginning of the
transfer line and the R16-element of the transport matrix (Equation 2.143) to that screen:

D(s) = R11D(0) +R12D
′(0) +R16 (3.4)

→ R16 = D(s)−R11D(0)−R12D
′(0). (3.5)

Hence the measured radial beam displacement can be written as:

x(s) = R11x(0) +R12x
′(0) +R16δ (3.6)

= R11x(0) +R12x
′(0) + [D(s)−R11D(0)−R12D

′(0)]δ (3.7)

The fit functions provide the possibility to compare simulated dispersive trajectories from both optics
with measured ones. The following illustrations show points at the screen positions obtained from the
measured functions for the energy dependant radial displacement of the beam for a set of given
relative Energy offsets δ. These are compared to the corresponding dispersive particle trajectories
from linear optics particle tracking simulations based on both optics taking the energy dependant
beam rigidity into account. The condition of zero positional and angular displacement at the
beginning of the transfer line is used.
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Figure 3.10.: Comparison of measurement and simulation of the radial displacement at different ex-

traction energies for the design optics (upper) and suspected optics (lower) [1,2]

It catches the eye that the design optics trajectories cross before "FOMZ7T" while the measured
points do not show this characteristic. The simulation based on the suspected optics that calculates
the field gradients from the actual set currents and the new current to field gradient conversion
factors is in acceptable accordance with the measured points. The offsets of some 3mm seem
plausible when taking neglected effects like gradients in the septum magnets and the energy
dependant extraction bump in the booster into account. Even more so due to the unclear correlation
between the set booster extraction timing and the timings of all elements involved in the extraction
process (bumper-, kicker- and septa magnets). It is clear that a small deviation of the beam positions
and angles at the beginning of the transfer line (x(0) and x′(0)) also has great impact on the
measured and simulated radial displacements (Equation 3.7).
In summary the measured data definitely further questions the old conversion factors but does not
give enough confidence to validate the new ones due to the mentioned error sources.
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3.6. Storage ring

3.6. Storage ring

Circumference 240m
RF-frequency 500MHz
Revolutiontime 800ns
Beam current IDC 300mA
Tunes Qx/Qy 17.8/6.6
Nat. chromaticities -52.8/-21.4
Damping times τx/τy/τs 7.8/7.7/3.9ms
Energyspread @Eext 7·10−4

Table 3.5.: Storage ring parameters [1,24]

The BESSY II storage ring linear optics consists of
16 double bend achromat sections each composed
of 2 dipoles surrounded by quadrupole doublets
and with a triplet in between. It represents a typical
3rd generation synchrotron light source. 14 of the
16 straight sections are equipped with insertion devices
(undulators, wigglers). These are special magnet
structures providing synchrotron radiation brightness
several orders of magnitude higher than that of
bending magnets. The synchrotron radiation emitted
in these has impact on the radiation integrals but are

neglected in my simulations. Thus the obtained radiation integral dependant results are questionable.
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————————————
Radial parameters
————————————
βx,max = 17.5852 m
βx,min = 0.304174 m
αx,max = 11.2282
αx,min = −11.2282
γx,max = 9.15969
γx,min = 0.056866
Dx,max = 0.449659 m
Dx,min = −0.000325011 m
D′x,max = 0.268651

D′x,min = −0.268651
Qx = 17.825
ξx,nat = −52.7822
Jx = 0.993582
εx = 5.30752e− 09 πm · rad
τx = 7.794306e− 03 s

————————————
Axial parameters
————————————
βy,max = 20.7603 m
βy,min = 1.26085 m
αy,max = 11.1978
αy,min = −11.1978
γx,max = 7.58567
γx,min = 0.0486314
Qy = 6.60556
ξy,nat = −21.161
Jy = 1
εy = 5.28603e− 13 πm · rad
τy = 7.744279e− 03s

————————————
Longitudinal parameters
————————————
E = 1.72e+ 09 eV
γlorentz = 3366.96
αp = 0.000731697
ηslip = 0.000731609
γtr = 36.9687
Qs = 0.00637276
Js = 2.00642
σδ = 7.051279e− 02 %
στ = 1.03141e− 11 s
σs = 0.00309208 m
τs = 3.859753e− 03 s
Eloss = 177803 eV
Prad = 53340.8 W
Ecrit = 2594.5 eV
λcrit = 4.77873e− 10 m

Figure 3.11.: Betatron and dispersion functions over half a unit cell of the BESSY II storage ring and
some parameters from the linear optics simulation [1,2]
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3. BESSY II

3.6.1. Operation modes
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Figure 3.12.: Betatron and dispersion functions over half a unit cell of the BESSY II storage ring low-α
optics [1,2]

The BESSY II storage ring has 400 available buckets with 15 ps bunch length using the standard
optics and 3 ps in low-α (Figure 3.12) mode where the optics is tuned to minimize the momentum
compaction factor. The injection efficiency in low-α mode does not meet the radiation safety
requirements. Hence it is operated in decay mode.
Independently of the optics the filling pattern can be chosen to provide:

• high average brightness by equally filling many bunches

• the possibility of bunch separation with a rotating wheel (MHz-chopper [30]) by leaving dark
gaps of 200 ns

• bunches for energy modulation with ultrashort laser pulses in the undulator retrieving
synchrotron light with the lasers time stucture [31]

• special bunches for Pulse Picking by Resonant Excitation (PPRE) [32]

The filling pattern is usually composed of many of the required special bunches mentioned above
providing light for many different user demands. In single bunch mode only one of the 400 buckets is
filled with a purity (ratio of electrons in desired bucket to those in others) in the order of 104. In
accordance with the revolution time of 800 ns the single bunch mode represents a special tool for
some time-resolved experiments.
In the standard user mode a hybrid filling mode is implemented to simultaneously provide multi- and
single bunches for standard and time resolved experiments. In the hybrid filling mode 300 of the 400
15 ns buckets are filled with 0.88mA each and additionally special single bunches are located in and
around the filling gap. Since July 2015 a new hybrid filling mode including a 3mA PPRE bunch
84 ns after the chopper bunch in the dark gap and 4 4mA slicing bunches for ultra fast experiments
at the femtoslicing facility is established.
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3.7. BESSY VSR
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Figure 3.13.: Interaction of the individual cavity voltages (green 500MHz, blue 1.5GHz and red
1.75GHz) to create long and short pulses in accordance with the sum voltage (black
line) [33]

σs/ps standard low-alpha

BESSY II 15 3
BESSY VSR 1.7 0.3

Table 3.6.: Bunch lengths σs in the BESSY
II storage ring at standard and
low-alpha optics settings [33]

The next major upgrade planned for BESSY II
is the installation of 2 additional superconducting
semi-passive RF cavities operating at 1.5 and 1.75GHz
in the storage ring enabling Variable bunch lengths
in the Storage Ring (VSR). The equilibrium bunch
length σs,0 in storage rings in the zero current limit is
determined by the equilibrium energy spread (Equation
2.220) and given by [11,34]:

σs,0 =
|η|

2πfs
σδ = σδ

√
Eαp

freveU̇
with η = αp −

1

γ2
(3.8)

where η is the phase slip factor. Therefore the beat wave of the different cavity voltages (Figure 3.13)
with areas of high (blue ellipse) and low (red ellipse) gradients ˙(U) will facilitate simultaneous long
(15 ps) and short (3 ps) bunches in the storage ring. Thus clearing the path for state of the art
time and space resolved user experiments in standard operation mode. This upgrade will raise the
requirements for the injector system as top-up injection into the short bunches will not meet the
radiation safety requirements with the present injector system as now in low-α mode. Thus the great
challenge of BESSY VSR concerning the injector system is to reach the required injection efficiency
into short bunches. Therefore the transverse and longitudinal (bunch length) emittance must be
optimized for the injection process. Further details on the challenges and prospects of BESSY VSR
are presented in the technical design report [33].
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4. Measurement of the transverse
emittance in the injection chain

4.1. Methods

Two methods and the corresponding formulae for measuring the beam emittance where derived in
section 2.4. Here experimental details on these methods and results from measurements will be
presented.

4.1.1. Synchrotron radiation

Basically it is possible to either directly measure the angular spread of the emitted synchrotron
radiation or to image it and measure the cross section. This technique can be used to measure the
transverse beam emittance in a booster over the ramp without disturbing the beam. It requires
enough photons in the energy domain of the band gap of silicon which most sensors are made of and
good knowledge of the beam parameters at the observed position. The wavelength of the light visible
for the used CCD ranges from 300 to 1100 nm [35,36]. Saturation effects and dependencies between
the incident photon flux on the CCD and the measured beam widths falsify results and have to be
prevented by going to short exposure times and low currents from the linac - preferably single bunch
mode. The BESSY II booster synchrotron radiation becomes visible for the installed imaging system
starting from about 200 MeV beam energy. As the axial plane is dispersion free its results can
be considered superior since there is no energy spread dependant broadening of the beam. The
energy dependant energy spread itself varies over the ramp and is taken from the simulation results
presented in chapter 5 to obtain the radial emittance from the measurements.

4.1.2. Quadrupole Scan

In contrast to the parasitic measurement of synchrotron radiation the quadrupole scan technique
uses a beam destroying fluorescent screen (FOM). The intercepting screen is usually made of or
coated with a fluorescent material (light emitted in the range of ns after excitation) and possibly also
phosphorescent material (light emitted in the range of µs after excitation) material [37]. Coating the
screen with a thin conductive layer is required to avoid charging the screen. It is inserted into the
beam path at 45◦ making a direct observation of the beam distribution possible with a camera. The
camera captures the luminescence on the screen and digitizes the image. At BESSY II the image
data can be analysed in real time with a Labview software providing amongst others horizontal and
vertical beam widths from Gaussian fits to the corresponding projections of the image. The results
are made available over the Experimental Physics and Industrial Control System (EPICS). Fitting
the measured data to the mathematically derived exact function did not converge for all tested
optimisation algorithms from Matlab and Scipy. Therefore the equations derived from the thin
lens approximation for the quadrupole (Equation 2.239) are fitted to the squared measured beam
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4. Measurement of the transverse emittance in the injection chain

widths in order to determine the emittance and upstream Twiss functions. As said (Equation 2.230)
the k-dependant dispersive broadening

(
σδD

f
x(k)

)2 must be calculated with fixed upstream values
for the dispersion functions (from the linear optics simulation) and subtracted from the measured
beam widths. The following quadrupole scan simulations compare the results of the full linear beam
transformation, the linear beam transformation using the thin lens approximation for the quadrupole
transfer matrix with and without the upstream dispersion of 0.5m.
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Figure 4.1.: Simulations of quadrupole scan (Lq = 0.119 m and Ldrift = 1.8 m) using thin lens approx-
imation and full linear model showing the parabolic behaviour in the measurable region
allowing only for fit of three parameters. (εu = 200πnmrad, βiu = 6 m, αiu = −0.1,
E = 52 MeV, σδ,u = 1 , Di

u = 1 m and D′iu = −0.1 rad) [1,2]

The results show (also tested for other common upstream beam parameters) that the thin lens
approximation is a valid replacement for the actual quadrupole transfer matrix at usual quadrupole
strengths for these measurements. The dispersion however can not be neglected as the measurements
in the transfer line (4.4) will confirm.
As with the imaging of synchrotron radiation also the direct measurement of the beam widths on
FOMS proved to be technically falsified from saturation effects and non linearity between the
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4.2. Injection line

measured beam extents and the intensity on the FOM. Therefore all measurements are made in single
bunch mode and at low current output from the linac. When taking data the summed intensity in
the region of interest (ROI) on the image and the beam current are monitored and data accompanied
by fluctuations is trimmed.

4.2. Injection line

The emittance in the injection line can be measured with a beam destructive method like a
quadrupole scan. The advantage of this technique in dispersion free sections is that due to direct
beam width measurement no knowledge of the beam parameters is required. A measurement with
synchrotron light is technically out of question in the injection line due to the low electron energy of
about 50MeV. As only straight ahead of the linac certainty of measuring a dispersion free beam is
given all trustworthy measurements are made before the first double bend on FOMZ3LI directly in
front of the linacs beam dump. The results of measurements between the third quadrupole Q3PLI in
the axial plane and the first quadrupole Q1PLI in the radial plane on FOMZ3LI straight ahead of the
linac showed the best results. The gained emittances are in fair agreement with those measured 2013
by Stepan Wesch: ε∗x = 20.73± 0.29πµm · rad, ε∗y = 14.79± 0.13πµm · rad [38].

Figure 4.2.: Dispersion free (σδ = 2.4) quadrupole scan straight ahead of linac. With Q1PLI (left side,
Ldrift = 2.29775 m) and Q3PLI (right side, Ldrift = 2.29775 m) on FOMZ3LI [1,2]

The high uncertainties of the determined Twiss parameters come from error propagation of the
obtained errors of the fit parameters for y = ax2 + bx + c according to their formulae (Equations
2.240, 2.240, 2.240):

σΣ11
=

1

T 2
12

σa (4.1)

σΣ12
=

1

T 2
12

√
σ2
b + (−T11T12σΣ11

)
2 (4.2)

σΣ22 =
1

T 2
12

√
σ2
c + (−T 2

11σΣ11)
2

+ (−2T11T12σΣ12)
2 (4.3)

σε =
1

2ε

√
(Σ22σΣ11

)
2

+ (Σ11σΣ22
)
2

+ (−2Σ12σΣ12
)
2 (4.4)
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4. Measurement of the transverse emittance in the injection chain

σβ =
1

ε

√
σ2

Σ11
+

(
−Σ11

ε
σε

)2

(4.5)

σα =
1

ε

√
σ2

Σ12
+

(
Σ12

ε
σε

)2

(4.6)

σγ =
1

ε

√
σ2

Σ22
+

(
−Σ22

ε
σε

)2

. (4.7)

The obtained Twiss parameters strongly depend on the set fit region and should be treated with
care. Further on the image of the beam on the FOM clearly showed several overlapping Gaussian
distributions (bunches) at certain quadrupole strength settings increasing the skeptism over the
obtained values.

4.3. Booster
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Figure 4.3.: Intensitymaps of the booster synchrotron radiation from a dipole 11, 44 and 78ms after
injection. [2]

Figure 4.4.: Engineering draw-
ing showing setup of
booster camera

The emittance over the booster ramp must be measured
with a non-invasive method - in this case the synchrotron
radiation of a dipole is imaged onto a camera chip (Figure 4.4).
First qualitative measurements show the expected increase
of the horizontal and decrease of the axial beam width at
high energies (Figure 4.3). The expected graph for the radial
beam width corresponding to the radial emittance should be
dominated by damping processes at low energies after injection.
Later the radiation excitation should kick in and the emittance
up which should then before extraction be on the order of
the equilibrium emittance. The axial emittance is expected
to only show damping but not to the fundamental lower limit
as the booster is not coupling free. The same Labview program
used to analyse the image data for the quadrupole scans is
also used with the synchrotron radiation.
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Figure 4.5.: Simple estimation of the imaging factor. [7]

To calculate the actual beam width from
the measured widths of the synchrotron
light spot on the camera sensor the
imaging properties of the optical path
from the vacuum chamber to the camera
are required. Due to the undocumented
camera setup and the use of a zoom
camera lens only a very rough estimation
of the imaging factor could be made from
the available information (Figure 4.5).
To calculate the emittance from the beam widths the Twiss parameters and dispersion at the
observation point on the orbit are required. The linear booster optics (Figure 3.5) is trusted as it
show good consistence with measured tunes and chromaticities [26]. The deviation of the transverse
tunes over the ramp is in the order of some % (Figure 4.6).
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Figure 4.6.: The measured transverse tunes and synchrotron frequency over time on the booster ramp
show a small transverse tune variation of ∼3% in Qx and ∼1% in Qy. [1,26]
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4. Measurement of the transverse emittance in the injection chain
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Figure 4.7.: Length x of arc into dipole
before camera. [7]
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Figure 4.8.: Determination of angle of
beam spot camera line. [7]

Thus the assumption of an energy independent booster
optics can be made. In order to find the imaged orbit
position the unknown and not accessible arc length
x (Figure 4.7) along the orbit into the dipole must be
determined:

α =
x

R
⇒ x = Rα. (4.8)

The bending radius R is well known and the angle α
can be determined from the distance between the orbit
and the optical path at two points (Figure 4.8):

α =
h2 − h1

a
. (4.9)

Where a is the distance between the two points. The
distances h1 and h2 were measured with a Vernier scale:

h1 = (99.55± 0.05) mm (4.10)

h2 = (114.1± 0.05) mm (4.11)

a = (383± 3) mm (4.12)

⇒ α ≈ 0.0379± 0.0196 (4.13)

⇒ x ≈ (0.253± 0.131) m . (4.14)

The simulation gives the following Twiss parameters
and dispersion at 0.253m before the end of a dipole:

βx(s0) = 9.1± 0.8 (4.15)

βy(s0) = 2.9± 0.2 (4.16)

Dx(s0) = 0.71± 0.05. (4.17)

The axial emittance of the beam can now be calculated (Equation 2.130) from the measured spot
sizes and the simulated Twiss parameters using the simple estimation of the imaging factor. The
results are far off. The problem is that there are no existing scales for the beam position monitors
(BPM) and also no reliable tables for the fields in the steerer magnets oft the booster. Thus there
was no available reference measurement for the beam size in the booster. The solution was to
calibrate the measured dispersion free axial emittance to match the one measured in the transfer line
(Figure 4.15). This gave a new and far more trustworthy imaging factor of A ≈ 0.59.
For the radial emittance (Equation 2.145) the energy spread dependant dispersion has to be
considered. Also the energy dependence of the energy spread itself has to be taken into account. The
energy spread σδ(E) is taken from the booster ramp simulations (Section 5.4) derived from the
differential equation for the dynamic emittance and using the known starting values from the linac
(Table 3.1).
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Figure 4.9.: Observed error function at extrac-
tion reveals the exposure time of
the synchrotron radiation imaging
camera [2,3]

For this measurement a Pulnix TM-9701 [35]

camera with a silicon CCD "KODAK KAI-0373
IMAGE SENSOR" [36] was used. The photon energy
dependant quantum efficiency of the used CCD
combined with the energy dependant transmittance
of the optical path allows measurements starting
at some 200MeV with Ec ≈ 2.7 eV. Taking the
optical transmittance of fused quartz from 200 up to
3000 nm with fused quartz being the protective layer
on the CCD and hopefully also the window for the
synchrotron radiation and the band gap of silicon at
1116.97 nm=1.11 eV (near infra red) the measurable
wavelength should lie between some 300 and 1100 nm.
Presumably the glass of the standard consumer
grade zoom camera lens is the limiting factor here.
The first camera showed a strong non linearity
between the measured spot sizes and the intensity
that was found to be due to some mismatch in the
analogue signal processing between the camera and
the frame grabber card. The camera was therefore exchanged for another camera of the same type.
The second camera was an improvement but also gave intensity dependant spot sizes (measured
beam widths at one time setting of the booster are current dependant). The integration time of the
camera is in the order of 0.3ms (Figure 4.9). To minimize the effect of the non linearity on the
measured spot sizes the summed ROI intensity and the booster current were used to filter the data
(Figure 4.10) from measurements at fluctuating booster currents and ROI intensities.
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Figure 4.10.: Intensity in ROI and current are used as filters for sorting the data. First the dataset
is trimmed to the low booster currents. Then a locally weighted linear regression curve
through the ROI summed intensity data is used to trim far off data points. [39]
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4. Measurement of the transverse emittance in the injection chain

The measured transverse emittance ramps (Figures 4.11,4.12,4.13,4.14) after calibrating the imaging
factor to match the measured axial emittance in the transfer line show some agreement with the
simulated ones (Figures 5.5,5.6). After injection into the booster the quality of the measured data is
dominated by the low synchrotron radiation power. At first the adiabatic damping of the emittance
should be observed as decrease of the emittance curve and flat region for the normalized emittance.
Then the quantum excitation should start to dominate the damping effects and the emittance should
rise to reach its maximum at maximum booster energy.
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Figure 4.11.: Radial emittance over the booster ramp shows damping and quantum excitation. [1,2]
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Figure 4.12.: Axial emittance over the booster ramp only shows damping but not to the fundamental
limit indicating coupling in the booster. [1,2]

The plots show that the original camera measurements were dominated by the non linearity of the
camera at low intensities and not conform to the measured injected emittance of some 200πnm·rad.
They even showed a non existent excitation of the curve directly after injection. In contrast the
measured curve of the new camera seems to be conform with the measured injected emittances
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4.3. Booster

(Figure 5.5). In the lower plots the normalized emittance is plotted where the adiabatic damping is
multiplied out. Here the curve should stay flat until quantum excitation kicks in.
The locations of the minima can be controlled to a certain extent by the cavity timing.

Figure 4.13.: Radial emittance over the booster ramp for different cavity peak voltages and phase
offsets. [1,2]

0
10
20
30
40
50
60

ε y
/

(π
nm

ra
d)

0 10 20 30 40 50 60 70 80 90

Time / (ms)

0

20

40

60

80

100

ε y
∗
/

(π
µ

m
ra

d)

0.0 0.5 1.0 1.5 2.0

Energy / (GeV)

Figure 4.14.: Axial emittance over the booster ramp for different cavity peak voltages and phase off-
sets. [1,2]
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4. Measurement of the transverse emittance in the injection chain

4.4. Transfer line

As the transfer line runs right past the linac measurements must be carefully planned taking the
radiation sensitive cathode of the linac into account. Only when the linac is running at low currents
and single bunches should a FOM be inserted into the beam path.
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Figure 4.15.: Quadrupole scan with σδ = 0.56 and the upstream dispersion functions:
a) from the linear optics simulation of the design optics: D =0.313m, D′ =-0.05 rad
b) D =0.313m, D′ =-0.15 rad [1,2]

Since the transfer line is not dispersion free the measurements are accompanied by high uncertainties
not reflected by the given uncertainties that are based on the fit errors. The shown results are from
the end of the transfer line where the dispersion is smallest according to the design optics. The last
transfer line quadrupole Q12PT is varied and the beam is measured on FOMZ8T. The obtained
radial emittance can be doubled by only slightly changing the fixed upstream derived dispersion.
This shows the biggest difficulty with quadrupole scans in dispersive sections. The required derived
dispersion to reach the suspected radial emittance of εx ≈ 70πnm · rad is close to the design optics.
But the Twiss parameters do not agree well(Table 4.1). The dispersion of the DANFYSIK optics is
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4.4. Transfer line

not compatible to the measurements which strongly questions this optics and the quadrupole current
to strength conversion functions taken from the DANFYSIK measurements.

βx αx βy αy D D′

Quadrupole scan 6.66 -3.21 1.29 1.27 0.313 -0.18
Design optics 14.3 -7.4 7.65 4.71 0.313 -0.05
Alternative optics 18.3 -12.8 2.32 1.55 1.78 0.86

Table 4.1.: Comparison of Twiss parameters and dispersion from different optics and a quadrupole scan
measurement.

This result is disappointing: on the one hand there are the measured R16 (Table 3.4) showing a
reasonable agreement of the energy dependant orbit with the new transfer line optics based on the
DANYFYSIK magnet scaling and on the other hand these optics fail to predict Twiss parameters in
order of those measured with the quadrupole scan. Thus it remains an unsorted issue and a challenge
to understand the linear optics of the transfer line.
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5. Simulation of the booster ramp

The magnetic fields and thus the Energy over the BESSY II booster ramp are defined by the white
circuits [25] powering the magnets. These run with 10Hz and are designed to provide the fields
required to reach the injection Energy of 52MeV at the beginning and the extraction energy of
1.7GeV matching the storage ring energy at extraction.

5.1. Timing
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Figure 5.1.: Injection efficiency into the storage Ring gives the times at which the booster has the
storage ring design energy of 1.72GeV [2,5]

Before simulating the booster ramp timing information is required. The booster time with the same
energy as in the storage ring, which is well known to be 1.72GeV [24,40], was determined by varying
the extraction time and measuring the injection efficiency into the storage ring. It is maximized when
the energies match. A Gaussian fit to the measured data gives:

text1 = 38.39± 0.08ms (5.1)

text2 = 56.96± 0.07ms (5.2)

The injection time

tinj = 5.52 ms (5.3)

is taken from the set timings in the BESSY II control system.

59



5. Simulation of the booster ramp

5.2. Energy

Taking the three points of known time and energy and assuming a sinusoidal energy ramp the energy
and corresponding magnetic flux density in the dipoles can easily be calculated over the ramp (Figure
5.2).

E(t) = A sin(ω(t+ t0)) + Eoff (5.4)

⇒ t0 =
1

4f
− t̂ (5.5)

⇒ A =
Eext − Einj

sin(ω(text + t0))− sin(ω(tinj + t0))
(5.6)

⇒ Eoff = Einj −A sin(ω ∗ (tinj + t0)) (5.7)

The white circuits powering the booster magnets determine the magnetic flux density B in the
magnets. The fixed bending radius R of the dipoles in combination with this flux density defines the
energy of the electrons (Equation 2.50) in the booster at any given time (Figure 5.2). The booster
cavity provides the necessary acceleration to keep the injected electrons at this energy over the entire
ramp.
With its circumference of 96m the booster has a revolution time of about 320 ns. Together with the
cavity RF-frequency of 500MHz this results in 160 buckets with an acceptance of 0.5 ns or 15 cm that
are each 2 ns apart.

0 20 40 60 80 100

Time / (ms)

0.0

0.4

0.8

1.2

1.6

2.0

E
ne

rg
y

/(
G

eV
)

Injection
(5.6056 ms, 54.8171 MeV)

Extraction
(38.4384 ms, 1.7216 GeV)

Maximum energy
(47.7477 ms, 1.8808 GeV)

Alternative extraction
(56.957 ms, 1.7201 GeV)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ne
ti

c
flu

x
de

ns
it

y
/(

T
)

Energy
known points
Magnetic flux density

Figure 5.2.: Particle energy and magnetic flux density in dipoles in the booster [1,2]
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5.3. Radiation loss and cavity

5.3. Radiation loss and cavity

The cavity does not only have to provide the acceleration to the energy defined by the white circuits,
but also has to compensate for the synchrotron radiation loss (Figure 5.3). The energy loss per turn
and electron (Equation 2.170) is calculated from the revolution time spent in the bending magnets
Trev = 2πR

βc and the mean radiated power (Equation 2.166) at the momentary energy.
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Figure 5.3.: Energy loss per turn due to synchrotron radiation in the booster

This lost energy and the required acceleration to comply with the energy defined by the dipole fields
(Figure 5.2) must be gained in the booster cavity. The energy gain in the electric field of the cavity
can be calculated by integrating over the accelerating force (Equation 2.39). Since the magnetic fields
are always perpendicular to the velocity (⇒ ~v × ~B = 0), the acceleration is given by the "seen"
voltage [9]:

∆E = e

∫ ~r2

~r1

~Ed~r = eU

making it simple to calculate the voltage the electrons need in the cavity (Figure 5.4). The peak
voltage in the cavity is usually significantly higher to shorten the bunches by phase focussing [26] due
to the higher voltage gradient at the correct phase. This so called over voltage factor is on the order
of 4.3 with approximately 720 kV cavity voltage in the BESSY II booster cavity.
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5. Simulation of the booster ramp
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Figure 5.4.: Required voltage in the booster cavity for each electron to compensate radiation loss of
last turn and accelerate to the required energy of the next turn

5.4. Emittance

The dynamic emittance derived in section 2.2

ε̇u(t) = qu(t)−
(
Ė(t)

E(t)
+ αu(t)

)
εu(t) (5.8)

can be solved from a fixed initial emittance with an appropriate numerical integrator. The time
dependant energy (Figure 5.2) and its derivative are already known. The synchrotron integrals
(Equations 2.188, 2.189, 2.190, 2.192) required for the calculation of the time dependant damping
decrement (Equation 2.205) and quantum excitation (Equation 2.217) are calculated from the well
understood linear optics of the booster.
First simulations were run using an own Euler and later Runge-Kutta integrator still available in
the source code of ACCPY. But the built in numerical integrator "Real-valued Variable-coefficient
Ordinary Differential Equation solver (VODE)" from SCIPY [3] turned out to be faster and is now
implemented. A simulation of the BESSY II booster ramp emittance in all planes with 1000 slicing
points takes less than 10 seconds on a laptop with an Intel© Core™ i7-4710MQ processor.

Radial emittance

qx(t) =
2CqCα
R2

γ(t)2E(t)3 I5x

I2
(5.9)

αx(t) =
2CαE

3

R2
Jx with: Jx = 1− I4x

I2
(5.10)
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5.4. Emittance

The time dependant radial emittance is the result of adiabatic and radiation damping working
against the quantum excitation(Figure 5.5). At low energies the radiated synchrotron power is
small and the adiabatic damping dominates giving a curve, falling exponentially with the damping
time. At higher energies the excitation kicks in and increases the radial emittance. The time or
energy of the minima in between is determined by the injected emittance. The bigger the injected
emittance is the later the minima is reached. Shortly after and before extraction the emittance
becomes independent from the injected value.
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Figure 5.5.: Development of the dynamic (for different initial εx), equilibrium and measured radial
emittance over time (left side) and energy (right side) and the corresponding normalized
emittances (below).

The measured data’s absolute values near the maxima are in good agreement with simulation for
both cameras. They give an emittance at extraction of some 60πnm·rad so about 18% smaller than
the equilibrium emittance of some 73πnm·rad at extraction. These 18% emittance are won by the
fast ramp. The qualitative curve propagation further away from the maxima shows the strong non
linearity of the old camera measuring smaller spot sizes due to the low intensity at lower energies.
The new cameras qualitative curve propagation is in fair agreement with the simulation. The position
of its minima seems to correspond to an injected emittance of some 2000πnm·rad - 10 times bigger
than the measured radial emittance in the injection line. This could be due to an off orbit injection
into the booster, resulting in a beam with non-zero first order moments of the beam distribution
function. These are neglected in the derived formulae (Equations 2.225, 2.222) used to calculate the
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5. Simulation of the booster ramp

emittance from the measured beam widths.

Axial emittance

qy(t) =
2CqCα
R2

γ(t)2E(t)3 I5y

I2
≈ 0 (5.11)

αy(t) =
2CαE

3

R2
Jy with: Jy = 1− I4y

I2
(5.12)

With zero axial dispersion follows I5y = 0 and thus there is usually no quantum excitation in the
axial plane. In an ideal lattice the time dependant axial emittance is the result of adiabatic and
radiation damping working against excitation due to the recoil of emitted photons (Figure 5.6). The
emittance is then damped to the fundamental lower limit of some 0.2πpm·rad. The measured lower
limit is in the order of 20πnm·rad so 105 times bigger than the actual value due to coupling effects
that enable sharing of transverse emittance. The time at which the measured axial emittance reaches
its equilibrium is in good accordance with the simulated one.
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emittance over time (left side) and energy (right side) and the corresponding normalized
emittances (below).
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5.4. Emittance

Energy spread

qs(t) =
2CqCα
R2

γ(t)2E(t)3 I3

I2
(5.13)

αs(t) =
2CαE

3

R2
Js with: Js = 2 +

I4x + I4y

I2
(5.14)

The time dependant behaviour of the energy spread is determined in analogy to the radial emittance
by the struggle between the damping processes and the quantum excitation(Figure 5.7). It also
becomes independent of the injected value before extraction. Giving an extracted energy spread
of some 0.54‰ so about 3.5% smaller than the equilibrium energy spread of about 0.56‰
at extraction. This smaller difference between equilibrium and dynamic emittance at extraction
corresponds to the shorter longitudinal damping time in the booster (Figure 3.5).
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5. Simulation of the booster ramp

Synchrotron frequency

fs =
1

Trev

√
hη(t)VHF (t) cos(φs(t))

2πp(t)c
(5.15)

The synchrotron frequency [41] of the bunches is determined by the cavity phase and voltage. The
simulations (Figure 5.8) are based on an ideal cavity and thus a constant synchrotron phase.
Therefore, the simulated synchrotron frequency is determined by the ration of the cavity voltage to
the particle energy over the ramp.
The synchrotron frequency was measured with an oscilloscope taking the summed signal of the 4
pick-up electrodes of a beam position monitor (BPM) and using the trigger signal of the injection
kicker as starting point for the oscilloscopes time-base sweep. A Python program also included in
ACCPY [1] controlled the timing, fast Fourier transformation (FFT) settings (center and span of
frequency) and data acquisition of the oscilloscope over the VXI11 interface using the Python module
vxi11 [42]. The center frequency was chosen as a whole multiple of the revolution harmonic frequency
and found to give the best signal when looking at the 13th revolution harmonic. The frequency span
must be chosen in the order of more than twice the suspected synchrotron frequency.
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Figure 5.8.: The measured and simulated synchrotron frequency over the booster ramp with markers
at the injection, extraction and peak energy of the booster ramp. [1,2]
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5.4. Emittance

Bunch length

στ (t) =
σδ(t)|η(t)|

ωs
(5.16)

The bunch length is determined by the energy spread σδ, the slip factor η(t) and the synchrotron
frequency ωs [11]. At extraction the bunch length also is independent of the injected value. The
dynamic bunch length at extraction is in the order of 56 ps and the bunch length calculated from the
measured synchrotron frequency and the simulated energy spread and slip factor of 54 ps (Figure
5.9). With a superconducting cavity a voltage of 20MV could be achieved with the corresponding
bunch length at extraction reduced to approximately 11 ps as it is proportional to

√
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Figure 5.9.: The bunch lengths calculated from the simulated dynamic (for different initial σδ,0) and
equilibrium energy spreads for the simulated and measured ("Data") synchrotron fre-
quency over the booster ramp. [1,2]
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6. Optimization of the transverse emittance

The injection efficiency into the storage ring is equivalent to the ratio of the number of electrons
extracted from the booster to the increase of the number of electrons in the storage ring. For high
injection efficiencies into the storage ring the injected beam must fit the acceptance of the storage
ring. Furthermore, the beam parameters of the injected beam should be well matched against those
of the storage ring beam at the injection point. Due to the smaller circumference of the booster in
relation to the storage ring the transverse and longitudinal equilibrium emittances of the booster at
extraction energy are greater than those of the storage ring.
One focus of this work lies on the possibilities of optimizing the transverse emittance for improving
injection into the storage ring. The radial off-axis injection into the storage ring requires a large
radial acceptance of the storage ring. As the quantum excitation of the beam only increases the
radial emittance the beam in the booster has a ratio of radial to axial emittance of about 4 to 1
((Figure 4.11)). The comparatively large radial emittance of the injected beam increases the required
radial acceptance of the storage ring even more.
In the momentary situation the axial acceptance of the storage ring is larger than the required while
the radial acceptance is at its limit. With a partial or total exchange of the transverse emittance
before injection into the storage ring one could minimize the radial emittance and take advantage
of this circumstance. Some of the possible methods to achieve such an emittance exchange are
presented here.

6.1. Overview of some possible methods to optimize transverse

emittance

The possibility of minimizing the transverse emittance by optimizing the booster synchrotron optics
is already at its limit. Further improvements are not possible without hitting the limit of dynamic
aperture or an exchange of hardware. Limits of further booster optics optimization by rewiring
and then optimizing the quadrupoles with a bigger parameter space can be found in [43], showing a
maximum gain in the transverse emittance on the order of 10%. Hereby, confirming the found
optimized booster optics from April 2007.
Liouville’s theorem states that the total emittance is a conserved quantity. This is valid for
conservative systems which the booster synchrotron is not. The radial emittance εx after ramping to
1.72 GeV is about 4 times bigger than the axial emittance εy due to quantum excitation. The total
emittance cannot be reduced but an exchange of the radial and axial emittance promises a gain of
factor 4 in the radial plane which is critical for the injection into the storage ring. Here an overview
of some possibilities to achieve such an exchange of transverse emittances before injection into the
storage ring is presented.

1. Emittance exchange in the transfer line with skew quadrupoles

⇒ With a set of 5 or more skew quadrupoles a beam rotating transfer matrix can be achieved
(Section 6.2). The transverse emittances are perfectly exchanged. But the dispersion is
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6. Optimization of the transverse emittance

also exchanged giving axial dispersion after the emittance exchange section in case of
non-zero radial dispersion at the beginning. In the BESSY II transfer line the axial
dispersion can only be controlled by the quadrupoles and the radial dispersion cannot
easily be tuned to zero before an emittance exchange section making it impossible to inject
into the storage ring at the desired Twiss parameters without axial dispersion [44].

2. Emittance sharing in the booster by operating it on a tune difference resonance at non-zero
coupling

⇒ As result of construction and alignment errors of the magnets the transverse oscillations
are usually coupled to a certain extent. This extent is described by the coupling coefficient
κ. Quadrupole errors represent the linear contribution to the coupling [11]:

κ = ±
∣∣∣∣∣

1

2π

∫ s+L

s

kskew
√
βxβy exp(iΨ)ds

∣∣∣∣∣ (6.1)

with Ψ(s) = ψx(s)± ψy(s)− (Qx ±Qy + q)
2πs

L
(6.2)

with the betatron phases ψu(s) and integer q. If the booster is operated at a transverse
tune sum resonance |Qx +Qy − q| ≤ κ both transverse emittances grow unlimited. At the
transverse tunes difference resonance: Qx −Qy − q = ∆ ≈ 0 the emittance is constantly
exchanged between both planes with the frequency [11]:

Ω =

√
κ2 +

∆2

2
. (6.3)

Therefore, both planes experience equal emittance excitation and damping over the ramp
resulting in a shared emittance between the transverse planes at extraction as they still
obey Liouvilles theorem so that εx + εy = εx,0 with εx,0 being the uncoupled radial
emittance.

3. Crossing of the boosters tune difference resonance

⇒ If the tune difference resonance is crossed in times short against the damping times and
directly before extraction the emittances are exchanged without relevant sharing, as that
takes place on the time scale of the damping times. For this method the initial tune
difference must already be near the difference resonance in order to open the possibility of
fast tune difference resonance crossing. For an efficient exchange in the order of 90% the
resonance must be crossed in about 2ms [45].

4. Operating the booster on the tune difference resonance

⇒ Instead of crossing the tune difference resonance it is also possible to operate the booster
directly at this resonance while actively ensuring zero coupling and then introduce
coupling with a pulsed skew quadrupole directly before extraction. The skew quadrupole
must be strong and pulse within 2µs the strong coupling while still directly at the
difference resonance almost perfectly exchanges the transverse emittances [45]. The closer
the booster is operated to the coupling resonance the weaker the pulsed quadrupole
magnet to introduce the coupling may be. But this very fast pulsed quadrupole pulse
corresponding to some 6 turns requires a very special magnet with a strong field. Further
difficulties include the exact tuning of the optics which must be tuned very close to the
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6.1. Overview of some possible methods to optimize transverse emittance

tune difference resonance. But the greatest difficulty lies in ensuring zero coupling over the
ramp [45].

5. Booster with storage ring circumference

⇒ A straight forward method but very expensive way of achieving lower emittance from a
booster is to rebuild it with a much larger circumference. A big booster with 240m
circumference can easily be designed by extending the present lattice by a factor of 2.5
and tuning the quadrupole strengths to reach 2.5 times the original tunes so as to ensure
the same combination of Twiss parameters at extraction. Hereby, compensating the
changed edge focussing due to the larger bending radii. Such a optics and the results of
the ramp simulation in analogy to that of the present booster presented in the previous
chapter can be found in Appendix B.5. Advantages are the substantially reduced
emittances in all planes, the lower required flux density in the bending magnets and the
smaller radiation losses. Also the dynamic emittances at extraction would then depend on
the injected values introducing the possibility of even smaller emittance at extraction.

Method Costs Work time εx Score

Transfer line ε exchange 3 4 6 42
Booster ε sharing 5 5 3 30
Booster ε exchange

by fast crossing of the coupling resonance
4 4 5.4 43.2

Booster ε exchange
by fast excitation of the difference coupling resonance

2 2 5.9 23.6

Big booster 1 1 20 40

Table 6.1.: An approximate score for the costs and work time from 1 (very high) to 5 (none), decrease
factors of the radial emittances assuming originally εx ∼ 60πnm · rad,εy ∼ 10πnm · rad) in
each plane and the corresponding score calculated by: (Costs+Work time)·∏ εu reflecting
the bang for buck in transverse planes are illustrated
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6. Optimization of the transverse emittance

6.2. Emittance exchange in the transfer line
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Figure 6.1.: Highlight of a possible transfer line section for a transverse emittance exchange with a
sequence of skew quadrupoles as illustrated below. [7]

In the transfer line a transverse emittance exchange can be realised with a set of skew quadrupoles.
There is sufficient space available between the bending magnets. The fixed radiation wall has to be
taken into account restricting the positioning possibilities of the quadrupoles. For a full emittance
exchange it seems that at least 5 quadrupoles are required. The greater the distance between the
quadrupoles is chosen the smaller the required gradients become. The long straight section of the
transfer line (marked red in Figure 6.1) provides enough space to evenly distribute 6 quadrupoles
without colliding with the wall. The proposed emittance exchange sequence of six skew quadrupoles
(Figure 6.1) requires only 9 of the 9.43m available space giving some flexibility for the positioning
around the wall.
Using the derived transport matrix (Equation 2.250) that when rotated by π/2 give the beam
rotation matrix (Equation 2.246) the proposed emittance exchange section can be found by
numerically optimizing a system of non-skew quadrupoles and drifts to have the proposed transport
matrix. In case of six quadrupoles and symmetric spacing the so called "Brown rotator" [9] with the
additional condition of only two quadrupole strengths can be used to reduce the parameter space.
In total an overdetermined set of non linear equations is retrieved by multiplying out the general
transfer matrices of the proposed sequence. The aim is to find the optimum where this matrix
converges to the desired transport matrix (Equation 2.250). This is a global optimum in a large
parameters space over a very large set of nonlinear equations. Finding this optimum proved to be a
problem, as most optimization tools require just as many variables as equations. This problem could
be bypassed at cost of numerical precision by summing up equations. However, the least squares
method implemented in SciPy does not have this restriction and proved to be extremely fast at
converging to plausible solutions and even faster when given the Jacobian of the equations. To find
the best solution a randomized set of many possible start vectors (drift lengths and quadrupole
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6.2. Emittance exchange in the transfer line

strengths) in a given range is passed to a multi-threaded brute force method that gives each start
vector to the least squares optimization algorithm and checks if the returned minimum meets the set
conditions and if so stops all threads and returns the solution.
For six quadrupoles a perfect exchange section is easily found. The resulting development of some
beam parameters over the exchange section is presented below and shows the exchange of the
transverse emittances (Figures 6.2, 6.3),
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Figure 6.2.: Plot of the beam widths over the proposed emittance exchange section calculated with
elegant (left) and ACCPY (right) show the exchange. [1,2,46]
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Figure 6.3.: Plot of the transverse emittances over the proposed emittance exchange section calculated
with tracking in elegant (left) and from the beam matrix neglecting the coupling and thus
non-zero coupling elements in ACCPY (right). These plots only show that the trans-
verse emittances at the beginning and end of the exchange section are exchanged. The
development in between is meaningless. [1,2,46]

One problem of making such an emittance exchange for the BESSY II transfer line is the rotation of
the non-zero radial dispersion from the beginning of the emittance exchange section into the axial
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6. Optimization of the transverse emittance

plane at the end(Figure 6.4). The resulting axial dispersion cannot be sufficiently controlled with the
available quadrupoles and makes an efficient injection into the storage ring impossible. The other
problem with this long exchange region is the fact that there are too few quadrupole magnets left in
order to match the transverse Twiss parameters to their values at the injection point in the storage
ring [44]. Below the beta and dispersion functions over the BESSY II transfer line for the proposed
emittance exchange section are illustrated. As said the shown curves over the emittance exchange
section itself can be ignored as these neglect the coupling elements of the beam matrix.

Figure 6.4.: Radial and axial dispersion over the transfer line with the rotator quadrupole arrange-
ment [46]

Figure 6.5.: Twiss functions over the transfer line optics with the presented skew quadrupole arrange-
ment [46]
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7. Conclusion

This work presents measurements and simulations on the emittance delivered to the BESSY
II storage ring by the injector system. The results give evidence for and against the proposed
linear optics of the injection and transfer lines. Furthermore, possibilities of transverse emittance
optimization by exchange or sharing processes between the large radial and small axial emittance
of the booster due to zero quantum excitation in the axial plane are presented. An example
configuration of skew quadrupoles providing the possibility of a perfect emittance exchange in the
transfer line is derived and corresponding simulation results are given.
The measurement of the beam emittance with quadrupole scans in the dispersion free first section
of the injection line and the low dispersion region of the transfer line is described and results are
given. The large uncertainties of the measured beam parameters when using this technique are
very disappointing. With non-zero dispersion at the upstream quadrupole the errors are bigger
than the fits already suggest. Still, the measured emittances in the dispersion free regions are in
good agreement with previous results from others and give enough confidence to use these for the
calibration of the dynamically measured emittance over the booster ramp. Also, the measured radial
emittance with dispersion can be brought in agreement with the suspected values by small correction
of the upstream derived dispersion taken from the linear optics simulation of the transfer line. The
dynamic emittance during the energy ramp in the synchrotron is measured with a synchrotron
radiation imaging system. The exact parameters of the optical system are unknown and derived by
calibrating the measured axial emittance at extraction time to match that measured in the transfer
line. The then measured emittance over the booster ramp is qualitatively in fair agreement with the
simulated dynamic emittance using the measured emittance after the linac as initial condition.
The results of quadrupole scan measurements of this work indicate that the so far assumed transfer
line optics is wrong. This is confirmed by the measurement of the dispersive trajectory. At this point
the relation between quadrupole currents and gradients in the transfer line were reexamined based on
old DANFYSIK magnet Field measurement reports. The results are new conversion factors which
lead to a quite different optics. While the results of the measurement of the dispersive trajectories
spoke for this optics, the quadrupole scan measurements exclude this optics as the betatron functions
are too far off and the predicted dispersion function is incompatible to the measured beam widths.
In conclusion a fully understood transfer line optics is required in order to match parameters of the
injected beam to those in the storage ring at the injection point. Then a moderate reduction of the
transverse emittance can be achieved by emittance sharing in the booster. Alternatively, a fast
(∼ 2 ms) crossing of the difference coupling resonance or an even faster (∼ 2µs) excitation of the
difference coupling resonance in the booster just before extraction of the beam can be used to realize
a more complete transverse emittance exchange. A perfect emittance exchange could also be achieved
in the transfer line with a set of 6 skew quadrupoles but only at the cost of introducing uncontrollable
axial dispersion making this option uninteresting for the actual BESSY II transfer line.

75





A. Derivation of some formulas

A.1. Twisted ellipse and Twiss-Parameters

Ellipse with center in origin of Θ-twisted coordinate System x̃− x̃’:
(
x̃

x̃′

)
=

(
a cosϕ

b sinϕ

)
(A.1)

Matrix for rotating x̃− x̃’ by Θ:

RΘ =

(
cos Θ sin Θ

− sin Θ cos Θ

)
(A.2)

Gives twisted Ellipse in normal coordinate system :

(
x

x′

)
= RΘ

(
x̃

x̃′

)
=

(
a cosϕ cos Θ + b sinϕ sin Θ

−a cosϕ sin Θ + b sinϕ cos Θ

)
(A.3)

The twiss-parameters α, β, γ can be identified from an equation

ε = ab = f(x, x′, a, b,Θ) (A.4)

which can be found by using a set of equivalent transformations:

cosϕ =
x− b sinϕ sin Θ

a cos Θ
(A.5)

sinϕ =
x− a cosϕ cos Θ

b sin Θ
(A.6)

cosϕ = −x
′ − b sinϕ cos Θ

a sin Θ
(A.7)

sinϕ =
x′ + a cosϕ sin Θ

b cos Θ
(A.8)

(A.5)-(A.7) leads to:

0 =
x− b sinϕ sin Θ

a cos Θ
+
x′ − b sinϕ cos Θ

a sin Θ

0 = x sin Θ− b sinϕ sin2 Θ + x′ cos Θ− b sinϕ cos2 Θ

0 = x sin Θ + x′ cos Θ− b sinϕ(sin2 Θ + cos2 Θ)

0 = x sin Θ + x′ cos Θ− b sinϕ

and so:
ab sinϕ = a(x sin Θ + x′ cos Θ) (A.9)
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A. Derivation of some formulas

(A.6)-(A.8) leads to:

0 =
x− a cosϕ cos Θ

b sin Θ
− x′ + a cosϕ sin Θ

b cos Θ

0 = x cos Θ− a cosϕ cos2 Θ− (x′ sin Θ + a cosϕ sin2 Θ)

0 = x cos Θ− x′ sin Θ− a cosϕ(cos2 Θ + sin2 Θ)

0 = x cos Θ− x′ sin Θ− a cosϕ

and so:
ab cosϕ = b(x cos Θ− x′ sin Θ) (A.10)

(A.92)+(A.102) leads to:

a2b2 = a2(x sin Θ + x′ cos Θ)2 + b2(x cos Θ− x′ sin Θ)2

a2b2 = a2(x2 sin2 Θ + 2xx′ sin Θ cos Θx′2 cos2 Θ) +

+ b2(x2 cos2 Θ− 2xx′ cos Θ sin Θx′2 sin2 Θ)

ab =
a

b
(x2 sin2 Θ + 2xx′ sin Θ cos Θx′2 cos2 Θ) +

+
b

a
(x2 cos2 Θ− 2xx′ cos Θ sin Θx′2 sin2 Θ)

ε = x2

[
a

b
sin2 Θ +

b

a
cos2 Θ

]

+ 2xx′
[(

a

b
− b

a

)
sin Θ cos Θ

]
+

+ x′2
[
a

b
cos2 Θ +

b

a
sin2 Θ

]
(A.11)

ε = x2[γ] + 2xx′[α] + x′2[β] (A.12)

Resulting in:

β =

(
a

b
− b

a

)
(1− sin2 Θ) +

b

a
(A.13)

γ =

(
a

b
− b

a

)
sin2 Θ +

b

a
(A.14)

α =

(
a

b
− b

a

)
sin Θ

√
1− sin2 Θ (A.15)

Test if γ = 1+α2

β is fulfilled:

1 + α2 = γβ (A.16)

1 +
�������������(
a

b
− b

a

)2

sin2 Θ(1− sin2 Θ) =
�������������(
a

b
− b

a

)2

sin2 Θ(1− sin2 Θ) +

+
b

a

(
a

b
− b

a

)
sin2 Θ +

+
b

a

(
a

b
− b

a

)
(1− sin2 Θ) +

b2

a2

1 =

(
1− b2

a2

)
+
b2

a2
= 1 (A.17)
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A.2. Relativistic kinematics

Retrieving ellipse-parameters a, b > 0 from given twiss-parameters:

β + γ =
a

b
+
b

a
≥ 2 = const. (A.18)

ε · (β + γ) = a2 + b2

0 = a4 − ε · (β + γ)a2 + ε2

a, b =

√
ε

2
(β + γ ±

√
(β + γ)2 − 4)) (A.19)

Finally one gets the angle of rotation Θ from (A.13):

for α > 0 : Θ = arccos


+

√
β −

(
β − b

a

)
ε

a2 − b2


 (A.20)

for α < 0 : Θ = arccos


−

√
β −

(
β − b

a

)
ε

a2 − b2


 (A.21)

A.2. Relativistic kinematics

The well known mass–energy equivalence formulated by Albert Einstein gives:

E = mc2 = m0γc
2 = E0γ (A.22)

with the Lorentz factor

γ =
E

E0
=
Ekin
E0

+ 1 =
1√

1− v2

c2

=
1√

1− β2
. (A.23)

Now the relativistic momentum can be derived to:

p = mv = m0γv (A.24)

→ p2

c2
=

m2
0v

2

c2
(
1− v2

c2

) . (A.25)

With some rearrangement we can find

v2

c2
=

p2

m2
0c

2 + p2
. (A.26)

By inserting equation A.26 into A.23 and that into (A.22)2 we get a velocity independant expression
for the relativistic energy:

E2 = m2
0c

4 + p2c2. (A.27)

We can also rearrange the lorentz factor equation A.23 for the velocity:

γ2 =
1

1− v2

c2

(A.28)

→ v2 = c2
(

1− 1

γ2

)
= c2

(
1− E2

0

E2

)
(A.29)
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A. Derivation of some formulas

and from equation A.26 we can derive lorentzbeta as

β =
v

c
=

p√
m2

0c
2 + p2

=
pc√

m2
0c

4 + p2c2
=
pc

E
. (A.30)

Finally we can show that for relativistic speeds the following holds:

∆v

v
≈ 1

γ2

∆p

p
=

1

γ2
δ. (A.31)

With equation A.29 and γ = (δ + 1)γ0 we can write:

∆v

v
=
v − v0

v0
=

v

v0
− 1 =

√√√√1− 1
γ2

1− 1
γ2
0

− 1 (A.32)

=

√√√√1− 1
γ2
0(δ+1)2

1− 1
γ2
0

− 1 (A.33)

=

√
γ2

0 − 1
(δ+1)2

γ2
0 − 1

− 1 (A.34)

The series expansion of the square root in equation A.34 around δ ≈ 0 gives:

√
γ2

0 − 1
(δ+1)2

γ2
0 − 1

≈ 1 +
δ

γ2 − 1
+ ... (A.35)

Inserting the linear (in δ) series approximation in equation A.34 we get:

∆v

v
=

δ

γ2 − 1
(A.36)

For relativistic particles we can further neglect subtracting 1 from γ2 in the denominator and get our
wanted equation:

∆v

v
≈ 1

γ2
δ. (A.37)

A.3. Quantum excitation

Pγ =
q2c

6πε0

γ4

R2
=
cCγ
2π

E4

R2
(A.38)

〈dpγ〉 = 〈~ω〉 =
8

15
√

3
~ωc (A.39)

〈dp2
γ〉 = 〈(~ω)2〉 =

11

27
(~ωc)2 (A.40)

Ṅγ =
Pγ
〈dpγ〉

=
15
√

3

8~ωc
Pγ (A.41)
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A.3. Quantum excitation

Ṅγ 〈dp2
γ〉 =

55~ωc
24
√

3
Pγ =

55~ωc
24
√

3

cCγ
2π

E4

R2
(A.42)

(1) = (A.43)

=
55~2c3

24
√

3
α
γ7

R3
with α =

e2

4πε0~
(A.44)

(2) =
55~ωc
24
√

3
2Cα

E4

R2
(A.45)

=
55~c

32
√

3E0

2CαE
4

R2
(A.46)

=
55~c

32
√

3E0

2CαE
4

R2
(A.47)

=
4CqCα
R3

γ2E5 with Cq =
55~c

32
√

3E0

(A.48)

〈∆E2〉 =
1

2C

∮
Ṅγ 〈dp2

γ〉 ds (A.49)

=
1

2C

∮
Pγ
〈dpγ〉

〈dp2
γ〉 ds (A.50)

qx(t)εx(t) =
2CqCa
R2

γ(t)2E(t)3 I5x

I2
(A.51)

qy(t)εs(t) =
(σe
E

)2

=
2CqCa
R2

γ(t)2E(t)3 I3

I2
(A.52)
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B. Additional simulations

Simulating the linear beam optics of an accelerator is often required. Before using one of the many
available simulation programs an own approach should be made. Matlab - being an easy to use and
powerful numerical computing environment was initially used. Especially as all computational physics
lessons at the Humboldt University where on Matlab. Due to licence and compatibility problems as
well as missing toolboxes for Matlab on the BESSY II control system it soon became clear that
Python is the better way to go. Python gives greater flexibility and comparable performance at the
cost of a little more syntax complexity. Therefore written code for simulations and measurements was
soon transferred from Matlab to Python as ACCPY. For comparison and credibility the results of two
common simulation programs: MAD-X (Methodical Accelerator Design) from CERN and Elegant
(ELEctron Generation ANd Tracking) from the Argonne National Laboratory are presented here.

B.1. MAD-X
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Figure B.1.: Calculated beta- and dispersion functions over the booster unit cell [47]
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B. Additional simulations

1 !!==========================================================
2 TITLE, s='MAD-X vs BESSY II booster';
3 !! Author Felix Kramer
4 !!==========================================================
5 !! options
6 option, -echo,-warn,-info;
7 assign, ECHO=echo.dat;
8

9 !! ring parameters
10 circumference = 96;
11 ncell = 8;
12

13 !! cavity
14 CAV: RFCAVITY, L = 0.3,
15 VOLT = 0.75,
16 HARMON = 160,
17 LAG = pi+0.08;
18

19 !! drifts
20 D1:drift, L = 1.160;
21 D2:drift, L = 0.23;
22 D3:drift, L = 1.1607;
23 D4:drift, L = 2.0214;
24

25 !! dipoles
26 lbend = 2.6193;
27 bendangle = pi/ncell;
28 bendradius = ncell*lbend/pi;
29 edgeangle = lbend/(2*bendradius);
30 BSB:sbend, L = lbend,
31 ANGLE = bendangle;
32 EDGE:dipedge, h = 1/bendradius,
33 E1 = edgeangle,
34 hgap=0.015,
35 fint=1/2;
36 B:line = (EDGE,BSB,EDGE);
37

38 !! quadrupoles
39 lquad = .3;
40 kqf = +2.1082;
41 kqd = -1.4658;
42 QF:quadrupole, L = lquad, K1 = kqf;
43 QD:quadrupole, L = lquad, K1 = kqd;
44

45 !! unit cell and ring
46 UC :LINE = (D3,D3,QD,D2,B,D2,QF,D1,D1,QD,D2,B,D2,QF);
47 CC :LINE = (CAV,D4,QD,D2,B,D2,QF,D1,D1,QD,D2,B,D2,QF);
48 RING :LINE = (CC,UC,UC,UC,UC,UC,UC,UC);
49

50 !! beam properties
51 beam, particle = electron,
52 energy = 1.72,
53 sige = 5.7e-4, // energy spread
54 sigt = 6.5e-11, // bunch length
55 radiate = true;
56

57 !! activate the sequence with defined beam
58 use, sequence = ring;
59

60 !! output specifications
61 twiss, chrom,centre,rmatrix ,file=twiss.out;
62 PLOT, HAXIS = S, HMIN = 1.1607, HMAX = 13.1607,
63 VAXIS1 = BETX, BETY,
64 VAXIS2 = DX,
65 COLOUR = 100;
66 EMIT, DELTAP=0; //.7e-4;

Listing B.1: MAD-X input file
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B.2. Elegant

B.2. Elegant

Figure B.2.: Calculated beta- and dispersion functions over the booster unit cell [46]

The plot was created with sddsplot:
sddsplot -graphic=line,vary booster.twi -col=s,beta? -yScalesGroup=id=beta -legend
-limit=xmin=0,xmax=12 -col=s,etax -yScalesGroup=id=eta -legend -limit=xmin=0,xmax=12
-col=s,Profile -limit=xmin=0,xmax=12 booster.mag -overlay=xmode=norm,yoffset=-.1,yfactor=0.1
The parameters are taken with sddsprintout:
sddsprintout -par=betaxMax,betayMax,etaxMax,nux,nuy,dnux/dp,dnuy/dp,ex0,taux,tauy,taudelta,
Sdelta0,alphac,U0,endsline booster.twi

1 !!======================================================================
2 !! ELEGANT BESSY II Booster --lattice--
3 !! Author Felix Kramer
4 !!======================================================================
5 D1:drif, L=1.160
6 D2:drif, L=0.23
7 D3:drif, L=1.1607
8

9 QF:quad, L=0.3, K1=+2.1082
10 QD:quad, L=0.3, K1=-1.4658
11

12 B: csbend, L=2.6193, ANGLE=0.39269908169872414, E1=0.196349540849, E2
=0.196349540849, HGAP=0.018, Fint=0.7

13

14 UC :LINE = (D3,QD,D2,B,D2,QF,D1,D1,QD,D2,B,D2,QF,D3)
15 RING :LINE = (UC,UC,UC,UC,UC,UC,UC,UC)

Listing B.2: elegant lattice file
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1 !!======================================================================
2 !! ELEGANT BESSY II Booster --run options--
3 !! Author Felix Kramer
4 !!======================================================================
5 &run_setup
6 lattice = "b2booster.lte"
7 use_beamline = "ring",
8 p_central_mev = 1720,
9 output = %s.out,

10 magnets = "%s.mag",
11 element_divisions = 1000,
12 sigma = "%s.sig"
13 &end
14

15 ! request output of Twiss parameters
16 &twiss_output
17 filename = "%s.twi",
18 radiation_integrals = 1
19 &end

Listing B.3: elegant run file

B.3. Comparison

Physical quantity Unit ACCPY MAD-X Elegant Measurement
@Energy 1.72 GeV 1.72 GeV 1.72 GeV 1.72 GeV

βx,max m 12.799 12.8015 12.7859 /
βy,max m 11.3283 11.3157 11.3277 /
Dx,max m 0.9138 0.9272 0.9137 /
Qx 5.9045 5.9044 5.9045 5.89
Qy 3.3772 3.3801 3.3772 3.39
ξx,nat -9.6469 -9.6067 -8.8847 -9
ξy,nat -4.5411 -4.7539 -4.8511 -5
ξx / / / -0.8
ξy / / / -4
εx nm rad 73.186 67.779 66.734 /
τx ms 5.1335 5.1999 4.6838 /
τy ms 4.7449 4.7449 4.7449 /
τs ms 2.2859 2.2730 2.3881 /
δE ‰ 0.56 0.57 0.57 /
στ ps 58.9 65 / /
αp 0.0330 0.0330 0.0330 /
γtr 5.5009 5.5009 / /

Eradiation keV 116.078 116.078 116.078 /
λc nm 0.73198 / / /

Table B.1.: Comparison of ACCPY, MAD-X and Elegant results for the BESSY II booster with main
parameters at extraction (t=38192µs , E=1.72 GeV). [1,46,47]

The results are in good agreement with one another. The damping times are given in correspondence
to the betatron and synchrotron oscillations and have to be multiplied by 2 in order to get the
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emittance damping times.

B.4. BESSY II Booster parameters

Quantity Symbol Value Unit

Circumference C 96 m
Number of cells N 16
Repetition rate frep 10 Hz
RF-frequency fRF 499.65 MHz
Harmonic number h 160
Revolutiontime Trev 320.22 ns
Momentum compaction factor αγ 0.033
Maximum energy Emax 1.9 GeV
Extraction energy Eext 1.72 GeV
Injection energy Einj 50 MeV
Maximum field Bmax 0.95 T
Extraction field Bext 0.86 T
Injection field Binj 0.025 T
Maximum time tmax 47 634 µs
Extraction time text 38 192 µs
Injection time tinj 5 229 µs
Radial tune Qx 5.90
Axial tune Qy 3.38
Nat. chromaticities ξx, ξy -9.6/-4.5
Damping times τx, τy, τs 5.1/4.7/2.3 ms
Energyspread @Eext δ 0.56 ‰

Table B.2.: General parameters for the BESSY II booster. [1]

Magnets Amount Length Field@Emax Gap Radius

Dipoles 16 2619.3 mm .95 T 36 6670 mm
Quadrupoles 32 300 mm 14 T/m 35 ∞
Sextupoles 16 162 mm 70 T/m2 35 ∞

Table B.3.: Parameters of the BESSY II booster magnets. [24]
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B.5. BESSY II 240m circumference booster ramp
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————————————
Radial parameters
————————————
βx,max = 13.2833 m
βx,min = 0.821252 m
αx,max = 4.25682
αx,min = −3.81353
γx,max = 1.51809
γx,min = 0.0752827
Dx,max = 0.371294 m
Dx,min = 0.148708 m
D′x,max = 0.14545

D′x,min = −0.0858882
Qx = 14.7612
ξx,nat = −24.8687
Jx = 0.987843
εx = 4.41236e− 09 πm · rad
τx = 3.002079e− 02 s

————————————
Axial parameters
————————————
βy,max = 11.6333 m
βy,min = 2.07224 m
αy,max = 2.37846
αy,min = −2.89416
γx,max = 0.841084
γx,min = 0.0859601
Qy = 8.44451
ξy,nat = −12.8135
Jy = 1
εy = 7.24583e− 14 πm · rad
τy = 2.965583e− 02s

————————————
Longitudinal parameters
————————————
E = 1.72e+ 09 eV
γlorentz = 3366.96
αp = 0.00530701
ηslip = 0.00530692
γtr = 13.727
Qs = 0.0171651
Js = 2.01216
σδ = 3.598182e− 02 %
στ = 1.41739e− 11 s
σs = 0.00424924 m
τs = 1.473833e− 02 s
Eloss = 46431.1 eV
Prad = 232.155 W
Ecrit = 677.524 eV
λcrit = 1.82996e− 09 m

Figure B.3.: Overview of Twiss functions of over 2.5 times bigger booster (Cbigbooster = Csr = 240 m)
with optics adjusted to have 2.5 times bigger tune so that in theory it should be able to
replace existing booster without difficulty. [1,26]
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Figure B.4.: Particle energy and magnetic flux density in dipoles in the big booster [1,2]
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Figure B.5.: Energy loss per turn due to synchrotron radiation in the big booster [1,2]
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B. Additional simulations
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Figure B.6.: Development of the dynamic (for different initial εx) and equilibrium radial emittance
over time (left side) and energy (right side) and the corresponding normalized emittances
(below) for the big booster. [1,2]
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Figure B.7.: Development of the dynamic (for different initial σδ,0) and equilibrium energy spread over
time (left side) and energy (right side) for the big booster. [1,2]
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B.5. BESSY II 240m circumference booster ramp
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Figure B.8.: The simulated synchrotron frequency over the big booster ramp with markers at the
injection, extraction and peak energy of the booster ramp. [1,2]
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ramp. [1,2]
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C. Code

The code written for the simulations and measurements of this work is mostly part of ACCPY and
available at https://github.com/kramerfelix/accpy. As the code in total exceeds 11 thousand lines it
is not printed here. All code is available by contactig the author (felix.kramer@physik.hu-berlin.de).
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