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Abstract

Compared to other asset classes, information on transactions of residen-
tial real estate is scarce and available only with delay. Listing informa-
tion from web-platforms is abundant and timely. Is listings data useful
for research? We examine this question and find that distributions of
ask and sale prices differ significantly, both because of characteristics
composition and implicit pricing. Estimates of the average willingness
to pay from ask data can be widely off when compared with estimates
from sale data. Ask data is also not useful to predict prices of individual
houses and suffer from large error variances. Quality-controlled ask and
sale price indices show similar trends and we find that an ask price index
can be used for nowcasting. Overall, our analysis shows that ask data
has limited potential for research, and is no substitute for sale data.

Keywords: hedonic modelling, nowcasting, price prediction, stochastic
dominance

JEL Classification: C14, C81, R31



1 Introduction

Online listings platforms allow home owners, real estate agents, and developers
to offer properties to a wide audience with little effort and for only a small
fee.! This appeals to those who have already decided to sell a property and to
those who just want to test the market. Consequently, ask data is abundant

and timely and researchers have started to use it as a substitute for sale data.

Ask data has also shortcomings, however. First, it is not clear whether a
particular listing will result in a sale or not. Only successful listings are linked
to market outcomes. Second, ask prices tend to overstate sale prices, as home
owners are prone to overestimate the market value of their home and have an
incentive to set the ask price above the market value estimate to leave leverage
for haggling (Goodman and Ittner (1992), Kiel and Zabel (1999), and Horowitz
(1992)).% Third, information on listed properties might be inaccurate. Users
might not report information that makes a property unattractive and misreport
other information in error. If these shortcomings affect the inference that is

drawn, then ask data will be of little use to researchers.

In this paper, we examine the value of ask data for three regression ap-
plications: (1) quantification of the relationship between house prices and
characteristics (hedonic pricing), (2) estimation of market values (automated
valuation), and (3) measurement of house price dynamics (price index con-

struction). For each application, we compare the results we obtain from ask

'Examples of such platforms are Zillow (US), Rightmove (UK), Immoscout (Austria,

Germany, and Switzerland).
2In the data of Shimizu et al. (2016), the average ask price is about 25% to 36% higher

than the average registered sale price, depending on whether a listing was successful or not.
In the matched data of Haurin et al. (2010) and Carrillo (2012), the average ask price is 4%

and 2% higher than the average sale price, respectively.



data with those we obtain from sale data. The three applications are used
widely in practice and research. Environmental studies use hedonic prices to
estimate the willingness to pay (WTP) for non-marketed amenities. Once es-
timated, benefits of a policy can be assessed, such as a ban of night flights to
limit noise pollution (Taylor 2017). Practitioners use automated valuations to
assess the tax base for property taxes or the collateral value of non-performing
loans (RICS 2017). Central banks and financial regulators use house price
indices to guide policy, for instance with respect to the timing of macropru-
dential measures, financial institutions use such indices for loan portfolio risk

management, and individuals use them for buy and sell decisions.?

A paper related to ours is Shimizu et al. (2016), which examines ask and
sale data distributions for condominiums in Tokyo.* The paper finds that
price distributions differ and that this is driven mostly by the composition
of characteristics in the two data sets. We conduct a similar, but method-
ologically improved, examination of our single-family house data from Berlin,
Germany. In particular, we test explicitly whether variables in the ask data
are stochastically larger than their sale data counterparts and we conduct im-
proved inference on the estimated counterfactual price distributions (Barrett
and Donald 2003, Chernozhukov et al. 2013). We also assess by how much
differences in characteristics and implicit prices contribute to the dominance
relationships. We find that both such differences have an statistically and

economically significant impact on the counterfactual price distributions.

In our main contribution, we go beyond the analysis of distributions and

3Bauer et al. (2017) and Winke (2017) use ask data to estimate the WTP for nuclear
power plant closures and, respectively, aircraft noise. Bauer et al. (2013) propose to substi-
tute sale with ask price indices, as abundant ask data allows estimation at higher frequencies.

Bauer et al. do not examine, however, the accuracy of such indices.
4We refer to the parts where initial ask (P;) and final sale (P) data are analysed.
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examine in detail what the distributional differences imply for the three re-
gression applications. Throughout the examination of these applications, we
use semiparametric additive models to impose as little structure on the data

as possible.

Our main findings are as follows. Hedonic regressions fitted to ask data
can lead to implicit price functions for house characteristics that are counter-
intuitive. Estimates of average WTP can also be widely off when compared
with the estimates from sale data. Ask prices are not very useful to predict
prices of individual houses and suffer from upward bias and large error vari-
ance. Quality-controlled ask and sale price indices show similar trends and
we find statistical evidence that the ask price index can be used for nowcast-
ing. Overall, our analysis shows that ask data can be useful for research when
no transaction data is available or if time is essential. However, researchers

working with such data must also be aware of their shortcomings.

The rest of the paper is organised as follows. Section 2 describes the sale
and the ask data sets and examines their differences. Section 3 explains the
empirical methodology that we use to examine the three regression applica-
tions. Section 4 presents the results. Section 5 concludes. The web-based

appendix provides further details.



2 Transaction and listings data

2.1 Preparation of the data sets
2.1.1 Data sources

The data cover the period 2007-2015. The transaction data is provided by
Berlin’s surveyor commission (GAA, Gutachterausschuss fiir Grundstiickswerte
in Berlin). By law, surveyor commissions are obliged to keep a detailed record
of each and every real estate transaction that takes place in Berlin. To facili-
tate this, commissions have access to sale contracts, administrative data, and
can request further clarification from parties involved in a transaction. Each
observation has information on the sale price, physical and legal characteristics
of the building and the plot, such as rights of way, and on legal specifics of the
transaction, such as personal or business relations between the contracting par-
ties, such a divorce and inheritance or a sale that stipulates deferred payment.

We use only arm’s length transactions, which leads to 17,650 observations in

the GAA data.

The listings data is provided by Immoscout24 (IS24), the self-professed
largest real estate platform in Germany.® As a multi-sided platform, 1S24 puts
potential sellers and buyers in contact and allows third parties, such as agents,
mortgage banks, and appraisers, to advertise their services. 1524 listings are
similar to classified ads, but modern technology gives much more flexibility. For
instance, the content of an ad can be modified during listing’s term; it is also

possible to extend the term while the listing is still active.® Those searching

5In 2017, 1S24 listed 470,000 properties and had about 13m visitors per month, 1.9 and

1.6 times as many as the next largest competitor (Scout24 2017).
6Possible terms are: two weeks, one month, three months. Listings can also be premium



for properties can register with IS24 and will receive afterwards personalised
newsletters with updates on visited listings and links to similar properties on
offer. As marketing platform, IS24 takes no responsibility that the information
on listed properties is complete, correct, and that the properties are still avail-
able, i.e., have not been sold in the meantime (IS24 Terms and Conditions,

Immobilien Scout 24 (2018, 5.1, 6.1, 9.1)).

For each IS24 listing, we keep only the information from the last day for
which it is observed. This is the date closest to a transaction if the listing
could attract a buyer. Obviously, a listing could have also ended because the
seller decided to take an unsold property from the market. Such a property
might then be listed again under a different identification code, perhaps with
slightly varied information on the property. It is also possible that the very
same property is marketed independently by several different agents at the
same time. If the property is sold eventually, it will have produced several
observations in the listing data, but only one in the transaction data. This
helps to motivate why the original [S24 data has 144,274 observations, about
8.2 times as many as the GAA data.

2.1.2 Data cleaning

The 1S24 data suffers from many patchy observations, the result of relying
solely upon user provided information. We concentrate on observations with
sale (GAA) and ask (IS24) price that have complete entries for the following

core variables: plot area, (exterior) floor area, building age, house type, and

or basic. Premium listings permit a detailed presentation of the property and the ad will be

placed more prominently on the web page.



administrative district in which the house is located.” In some parts of our

examination, we use coordinates to model location values.

Despite the fairly small set of core variables, Table 1 shows that 26% of
observations in the 1S24 data must be removed. No observation in the GAA

data must be removed, a sign of data quality.

[Table 1 about here.]

The remaining rows in Table 1 show the effects of deleting unusual obser-
vations. First, we remove observations of houses that are either still under
construction or older than 100 years. Both are different from standard houses
in the sense that the former do not exist yet and that the latter have existed
for longer than usual. This reduces the number of observations by 14% (GAA)
and 21% (IS24). Second, we apply bounds to the plot area, the floor area, and
the price to floor area ratio. A researcher equipped only with listings data
would use such publicly available information for data preparation.® We treat
the GAA data equally and apply the same bounds to it. This reduces the
numbers of observations by 18% (GAA) and 19% (IS24). The final data sets
have 12,524 (GAA) and 68,070 (IS24) observations; we refer to the former as

sale (index s) and the latter as ask data (index a).

"The GAA (IS24) data reports for most (all) observations ezclusively the exterior (inte-
rior) floor area. The GAA suggests a factor of 1.25 to convert interior to exterior floor area
(Gutachterausschuss fiir Grundstiickswerte 2011, p. 44). We apply this factor to the 1S24

observations, but examine alternatives in the robustness analysis.

8The bounds are differentiated further by location, house type, and vintage of the build-
ing. We collate the bounds from annual reports published by the GAA, see the web-based
Appendix A.



2.2 The two data sets

Table 2 presents descriptive statistics. The markup of ask to sale price is 28%
for the arithmetic averages (P,/P, — 1) and 26% for the geometric averages
(exp{P, — Ds} — 1). The markups are sizable and similar to those reported in

Shimizu et al. (2016).
[Table 2 about here.]

Figure 1 gives further evidence on the price distributions, where we concen-
trate on log prices, as it is common in the literature. The left panel shows
the markups for the percentiles of the price distributions.” The markups are
particularly high in the tails. All markups are strictly positive and statistically
significant. Given the density estimates in the right panel, it seems that ask
prices dominate sale prices stochastically, which would imply F,(p)— Fs(p) < 0
for all p € [0, max(pq, ps)].!° The dominance is strong if the inequality is strict

for some p.
[Figure 1 about here.]

We follow Barrett and Donald (2003, p.75) to test for strong dominance. Their

procedure is based on the Kolmogorov-Smirnov (KS) test with statistic (j # k)

T = (%) sup {F,(0) - Fu(w)} 1)

9The mark-up at quantile 7 is exp{p,(7) — ps(7)} — 1 = po(7) — ps(7); We estimate the
right-hand side with quantile regressions of prices on a constant and an indicator that is one

(zero) for the ask (sale) price.
10Stochastic dominance means Prob,{p, > p} > Probs{ps > p}. This is equivalent to

1— F,(p) 21— Fs(p), which gives the inequality in the text.



Hats denote estimators and N; the number of observations. The null hypothesis
is Fj(p) — Fi(p) < 0 over the full support and the test statistic focusses on the
most unfavourable outcome for the null. If the null is true, we expect c/l\]k < 0.
If the alternative Fj;(p) > Fj(p) is true for at least one p, we expect c@k > 0.
The procedure works as follows. First, we test whether c?a’s < 0. If we cannot
reject, we continue and test whether we can reject c/i;a < 0. If we can reject,
we have established strong dominance. Table 3 presents the statistics for the
price distribution in the Panel A. We conclude that ask prices dominate sale
prices strictly at all of the usual significance levels (0.001, 0.01, 0.05). This
implies also that E[p,] > E[ps], whereas the reverse does not necessarily apply.
It has been observed before that p, > p,, but our evidence on the whole price

distributions is thus much stronger.
[Table 3 about here.]

The strong dominance of the ask price distribution could be caused either
because the house characteristics differ between the data or because the char-
acteristics are valued differently or because both effects play a role. Table 2
shows that houses in the ask data are on average younger and have larger floor
and plot areas than those in the sale data. The estimates in Figure 2 indicate
that the continuous ask variables are not only larger on average, but each along

their respective whole distributions.
[Figure 2 about here.|

The dominance tests in Panel A of Table 3 confirm this at the usual significance

levels.!! Note that there are relatively many (few) detached (terraced) houses

The age variable is discrete and the KS results could be too conservative. We con-
duct also Wilcoxon-Mann-Whitney tests, which lead to the same individual and joint test

outcomes as those from Table 3.
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in the ask date, which could explain the dominance of the floor and plot area
variables.!? We find it difficult to explain why the houses in the ask data are
dominantly younger. There is no indication of different spatial clustering in the
data, as Figure 3 shows. The distributions across Berlin’s 12 administrative
districts look identical and their correlation is high (p = 0.97). There seems

also no differential clustering in the locations of observations with coordinates.

[Figure 3 about here.]

2.3 Decomposition of price distributions

The examination of the core variables age, floor and plot area reveals strong
dominance of observations in the ask over their counterparts in the sale data.
This on its own could be the cause of the strong dominance of ask over sale

prices. To examine this, we use that the price distribution is

Fyu(p) = /X Fpx, (plx)dFy, (%) (2)

where Fp, x,(p|x) is the price distribution conditional on the vector x of char-
acteristics and Fl,(x) is the distribution of these vectors. We note that
Fj;(p) = Fj(p) is the unconditional price distribution and that the coun-
terfactual price distribution Fj(p) for j (j # k) results when characteristics
follow the distribution Fy,(x). We can use Eq. 2 to decompose the difference

between the ask and sale price distributions as

Fa(p) = Fs(p) = {Faja(p) — Fas(p)} + {Fajs(p) — Fys(p)} (3)

This is similar in spirit to the decomposition at the means of Blinder (1973)

and Oaxaca (1973). The first term on the right-hand side of Eq. 3 reflects

12¢_tests (not reported) show that the proportions of the three house types are different

between the data at the usual significance levels.
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differences due to the composition of characteristics in the data and the second
term reflects differences in the implicit pricing of these characteristics. To test
whether each of the two terms on the right-hand side of Eq.3 obeys a stochastic
dominance relationship, we follow the procedure proposed by Chernozhukov

et al. (2013).'3 First, we estimate the distribution functions with

Fulp) = e+ 1_‘12ij22 (B, (7)< ) ()

The argument of the indicator function 1(-) is the characteristics bundle of
observation n from data set k evaluated at implicit prices B (74) estimated with
a quantile regression with all observations from data set j. In particular, we
regress the price on third degree polynomials of the continuous core variables,
and on house type, district, and yearly time dummies.!* Second, we use KS

statistics and bootstrapped p-values to test for dominance in the terms of Eq.3.

Panel B of Table 3 shows that ask dominate sale prices as before at the
usual significance levels. The slightly different KS test statistics and p-values
result from the price distributions now being estimated with Eq. 4 instead of
with the raw data. As to be expected from the stochastic dominance results for
the continuous house characteristics, Fy,jo(p) — Fojs(p) < 0 at all the usual sig-
nificance level; when evaluated at the same implicit prices, the characteristics
in the ask data strongly dominate those in the sale data. We also find that—
once the characteristics are accounted for—the pricing of characteristics in the

ask data strongly dominates those in the sale data, i.e. Fys(p) — Fys(p) <0,

13Shimizu et al. (2016) plot point estimates for Eq.3 and test whether differences between
price and valuation distributions of ask and sale data are zero (the latter test ignores that
hedonic coefficients are estimated). They do not test for stochastic dominance, although

their Fig. 6 indicates that it might exist for ask over sale prices.
14The quantiles in Eq. 4 follow 7, = ¢+ (g — 1)(1 — 2¢)/(G — 1). We set ¢ = 0.01 and

G = 200. Trimming at ¢ avoids estimation of tail quantiles (Koenker 2005, p. 148).

12



at all the usual significance levels. Prices in the ask data dominate those in

the sale data both with respect to characteristics and implict prices.

To gain insight into the importance of the two components, we decompose
the markups in Figure 1, see web-based Appendix B for details. Overall, pric-
ing differences are fairly small compared with characteristics differences. At
the means, pricing difference contribute a tenth to the markup. This corre-
sponds to 2.4 percentage points, which is in the range of markups reported
in papers that worked with matched ask and sale data (see Fn.2). At the
medians, the contribution is of similar magnitude. At lower quantiles, the
contribution can be statistically zero, whereas it can be up to a fifth at higher

quantiles.

Both the significant characteristic and pricing differences have the potential
to bias research results when ask instead of sale data are used. We discuss
next how we implement the regression applications for which we assess the

magnitude of the bias.

3 Methodology and implementation

3.1 The semiparametric hedonic model

Fully parametric linear models can impose restrictions that do not accommo-
date the unknown data generating process. Such models impose also restric-
tive assumptions on preferences (Ekeland et al. 2004). Nonparametric models
provide full flexibility, but can suffer from the curse of dimensionality. Semi-

parametric models place some structure on the functional form and are a good

13



compromise (Bontemps et al. 2008).'® Our full geo-additive regression model

1S
p =127+ fL(AGE) + fo(FA) + f3(PA) + f4(LAT,LON) + fs(NOI)+¢ (5)

see Kammann and Wand (2003). For a given data set and observation, p is the
price reported, the row vector z contains dummy variables for the constant,
quarters, discrete house characteristics, and—depending on the specification—
for the districts. The column vector ~ contains the coefficients for these dis-
crete variables. The continuous variables are building age (AGE), floor (FA)
and plot (PA) area, longitude and latitude coordinates (LAT, LON), and the
local noise level (NOI). Below, we will collect subsets of these variables in
the vector x, a deviation from the notation used above. The impact of the
continuous variables on the price are considered by smooth, but unspecified,
functions f;. The error term e represents the part of the price left unexplained

by the model.

We model the nonparametric functions in Eq. 5 with regression splines

fila) =Y bin(@)Bje = bi()8; (6)
k=1

where b;(z) is the row vector of Kj basis functions evaluated at x and B,
is the column vector of coefficients. The vector of coefficients determines the
shape of f; and has to be estimated. We use cubic splines as basis for the
univariate functions in Eq.5 and a thin plate spline for the function of the geo-

coordinates (in which case z is a vector). Given the basis dimensions K, the

5Haupt et al. (2010) find that a log-log specification performs better out-of-sample than
semi- and nonparametric specifications (Anglin and Gencay 1996, Parmeter et al. 2007).
The house transcations used in these studies contain only one continuous variable. As we
work with up to six continuous variables, we expect that parametric restrictions will have a

detrimental effect on performance. Our robustness analysis points in this direction.

14



vector of all basis functions b(x) with x the vector of continuous characteristics
of an observation, the stacked coefficient vectors B and -~ are then estimated

separately for each of the two data sets as
N J
(ﬁ, ﬁ) = arg min [Z {pn =20y = b(x)BY + Y _ANBD;B;|  (7)
’ n=1 j=1

The term ﬁ;Djﬁj evaluates [ [ f;' (a:)] ? dz and becomes large if f; is very wiggly
and small if the function is fairly straight.'® The smoothing parameter \;
determines the degree at which wiggliness of the estimate of f; is penalised.
To prevent excess smoothing, we select the parameters with double cross-

validation criterion (DCV), see Wood (2017, pp. 260).

3.2 Willingness to pay

Once the hedonic regression is estimated, we compute for each characteris-
tic the average marginal willingness to pay (WTP) in monetary terms and
compare by how much the estimates differ between the two data sets. For a

continuous characteristic, we use
N
1 < fi(@jn) .
WTP; = ~ ; o, exp {p(Zn, Xn)} (8)

where we compute the derivative numerically with finite differences and p(-) is

the prediction from Eq.5. For a discrete characteristic, we use

N

WP, = 3 (exp (4} — 1 exp (sl x0)} (9)

n=1

16The elements of D; are discussed in Wood (2017, Sec. 5.3 and 5.5). The basis dimension
K; sets an upper limit on the flexibility of f;. We choose K; with the informal diagnostic
tests described in Wood (2017, p. 343). Since z contains the constant, we impose the
identification restriction b;(x)3, = 0 for each j during estimation. The web-based Appendix

C provides details.
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0

where z,, ;

is the discrete variable vector for observation n with the entry for
variable j set to zero. To compute heteroscedasticity-robust standard errors

for the WTP estimates, we use the pairs bootstrap (Freedman 1981).

3.3 Automated valuation

We use a rolling window design to split the data into estimation and valida-
tion samples. The first validation sample contains all sale observations from
2009Q1. To predict prices with the ask data, we use the observations from
2007Q2 to 2009Q1, estimate the pricing function p,(-) from Eq. 5, and as-
sess this function at the characteristics (z,x) of the observations in the first
validation sample. The choice of estimation sample considers that ask data
are available instantly. For the sale data, we proceed similarly, but use ob-
servations from 2007Q1 to 2008Q4 to estimate p4(-). The lag of one quarter
considers that sale data is not instantly available. The validation and estima-
tion windows are then rolled out quarterly and predictions are computed until
the last validation sample in 2015Q4 is reached. The price predictions for the
final sample are computed for the ask (sale) data set based on the estimated
price function 2014Q1 to 2015Q4 (2013Q4 to 2015Q3). We compute the pre-
diction errors e;, = psn — Pj(Zn,X,) from ask (j = a) and sale (j = s) data

for further analysis.!”

3.4 Price index construction and nowcasts

We fit Eq.5 separately for the ask and sale data and use the estimated quarterly

time dummy coefficients to compute quality-controlled price indices (Diewert

"Due to the estimation lag, ps(-) ignores the time dummy for the current quarter in z.
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et al. 2007). As the sale price index become available only with the delay,
whereas the ask price index becomes available in real time, we examine the

potential for nowcasting with the regression
ALY = ¢o + (AL + AL + & (10)

where [ (I7) is the ask (sale) price index for period ¢ and the operator A
produces either the quarter-on-quarter or the year-on-year growth rate. We
estimate Eq. 10 with OLS and use robust standard errors to control for fur-
ther structure in the short series. As the resulting index series have only 36

observations each, the examination will be limited.

4 Results

4.1 Willingness to pay

We examine whether WTP estimates from the ask and the sale data differ
statistically and economically. It is known that estimates from hedonic regres-
sions can suffer from omitted variable bias, but Kuminoff et al. (2010) have
shown in a simulation study that spatial modelling can reduce such bias.'® We
consider two spatial models in our regressions. First, as listings may provide
only coarse location information, we run regressions that model the spatial
structure with district dummies as spatial fixed effects. Second, we run regres-

sions that model location finely with the geospatial function f;(LAT, LON).*

8While omitted variable bias might pose problems for ask and sale data, it is not the

source of the comparative differences in the application results.
19Hill and Scholz (2018) find that finely graded postcode spatial fixed effects can work as

well as a nonparametric function of coordinates, at least in a price index application.
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As some observations report no coordinates, these regressions are fitted with

smaller samples.?’

Figure 4 shows the estimates of the functions f; in Eq. 5 for the three
continuous house characteristics age, floor and plot area. The upper (lower)
panel shows the estimates that result when location is modelled with spatial
fixed effects (geospatial function). The noise variable is not included in these

regressions.

[Figure 4 about here.|

Evidently, as the ask data has more observations, the functions are estimated
more precisely. It also seems that all functions become smoother once the
geospatial function is used. The functions for the areas, while not identical,
seem similar whether estimated with ask or sale data. However, we expect
these functions to increase monotonically, but the function for plot area esti-
mated with ask data shows several ups and downs that counter intuition. The
functions for age differ substantially. When estimated with sale data, the func-
tion falls monotonically up to an age of 60 years, where it increases and falls
again. This non-monotonic shift can be explained by a premium for houses
that survived WWII. When estimated with ask data, the function increases
over the first ten years, which is counterintuitive, and exhibits for higher ages
several ups and downs. This erratic behaviour is hard to explain other than
being artefact of the ask data. Figure 5 shows contour plots of the estimated
geospatial functions. Both look similar and pick up the high quality of ameni-
ties in the south-westerly neighborhoods of Berlin. Assessed at the locations
of the sold houses, the correlation between the two estimated functions is high

(p=10.94).

2013% (2%) of the ask (sale) observations have no coordinates, see bottom row of Table 4.
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[Figure 5 about here.]

Table 4 presents in columns (1)-(4) the estimated WTPs for the core house

characteristics.

[Table 4 about here.]

We note that the standard errors for the WTPs are smaller when the ask data
is used (result of the larger sample sizes) and that the errors become smaller
when geospatial functions are used in all instances but one (age in (3) and
(4)). In case of the ask data, only the use of the geospatial function leads
to an intuitive negative WTP for age, although it remains insignificant at the
usual levels (2). The counterintutive age function from Figure 4 shows up here.
When estimated with the sale data, the estimated WTP for age is both times
negative at the usual significance levels, irrespective of the spatial modelling
approach. Regarding the house types, terraced is the reference type and the
WTPs for the other two types aligns with intuition only when the geospatial
function is included in the regressions. As to be expected from Kuminoff et al.
(2010), it seems that the geospatial function deals with omitted variable bias,

as it leads to more intuitive WTP estimates.

In the examination so far, we have used only those variables that are in
the ask as well as in the sale data. The sale data, however, is of higher quality
and contains additional variables that have not been used yet, see the second
part of Panel A in Table 2. Table 4 (5) gives the WTP estimates when we
no longer omit these variables. The WTP estimates for the formerly omitted
variables seem sensible. The regression continues to use the geospatial function
to control for other omitted variables. As (5) is our most complete model, we

use its estimates as a benchmark. Comparison of (4) with the benchmark
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shows that the formally omitted variables have only a fairly small effect on
the estimated W'TPs for the core variables. In all but one case, the point
estimates are about 1.1 times the benchmark. The exception is the WTP for a
detached house, which is 0.7 times the benchmark. Things look different when
we compare (2) with the benchmark. In all but one case, the estimates from
the ask data are about 1.6 times the benchmark. Inflated WTP estimates can
be expected given the ask data’s dominant characteristic and implicit price
distributions. The only exception is the WTP for age, which is only 0.1 times
the benchmark. This reflects the counterintuitive age function that results for

the ask data.

Finally, we examine what such deviations imply for benefit assessment.
Figure 6 plots nightly noise levels in Berlin for 2012, the darker the shading,
the higher the noise. For example, the dark strip from left to right in the upper
part corresponds to the noise emitted by Otto Lilienthal airport in Tegel; the

noise emitted by inner-city motorways is also visible.

[Figure 6 about here.]

Estimated with sale data, the function f5 in Figure 6 stays reasonably flat at
zero up to a level of 50db—the level of noise in a quiet suburban neighbour-
hood—and becomes increasingly negative at higher noise levels. Estimated
with ask data, however, the function puts a doubtful premium on silence—
30db corresponds to rustling leaves—and exhibits non-monotonic behaviour.

The estimated WTPs that result from these two functions are reported in

Table 5.

[Table 5 about here.]
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The estimates are negative—noise is a disamenity—and significantly different
at the 0.05 level (p-value is 0.03).?! The difference between the point esti-
mates seems economically small, which ignores that noise usually affects many
households. The difference becomes EUR533,800 per km? after we factor in
that in Berlin the average density is 1,700 households per km?. Obviously, a
policy maker who uses the cost-benefit criterion to decide on a night flight ban

may come to the wrong decision when the benefit is estimated with ask data.

4.2 Automated valuation

Table 6 presents performance measures for the out-of-sample predictions for
regressions fitted separately to ask and sale data. The specification for the ask

data is (2) and the sale data is (5) from Table 4.
[Table 6 about here.]

The prediction errors e,, do not perform as well as the errors e;,. The
threshold proportions are less than 0.9 times of those for the latter and the
MSE is 1.5 times as large. The negative bias of the errors e, is not surprising
given that the distribution of implicit prices in the ask dominates those in
the sale data.?> However, the errors e, show also bias, which reflects the
quarterly lag of the data used for estimation. The absolute magnitude of the
bias is close to the quarter-on-quarter growth rate of quality-controlled sale

prices, see Figure 7. One could suspect that the differential performance of

21The point estimates correspond to a reduction of the average ask (sale) price by 0.4%
(0.3%). Winke (2017, p. 1284) finds a reduction of 1.7% and reports that previous studies

found reductions between 0.1% to 3.6%.
225, (z,x) are effectively imputed ask prices and the bias of 3.5% falls well within the

range of markups observed in studies that use matched data, see Fn. 2.
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the errors comes mainly from the tendency of ask prices to be larger than sale
prices. However, the bias is fairly unimportant for the MSE of the two sets
of errors. The inferior performance of the e, , errors comes mainly from their
high variance, the result of fewer variables that can be used and their tilted

pricing differences.

4.3 Price indices and nowcasts

Figure 7 shows the quality-controlled ask and sale price indices, the former
(latter) based on specification (2) ((5)) from Table 4. The two indices have
overall the same upward trend, but the trend masks some differences that
are visible in the quarter-on-quarter growth rates. As both indices control
for observed characteristics, these difference are due to differential valuations,

wider coverage of characteristics and a random element.
[Figure 7 about here.]

Table 7 assesses the strength of the relation between the two indices and gives
results for the price index growth rate regression from Eq. 10. As (1) and (4)
show, the contemporaneous rates of the two indices are positively correlated,
but the relation is stronger for the year-on-year than the quarter-on-quarter
growth rates (p = 0.77 versus p = 0.41). The former are usually less volatile,
which makes it more likely to detect a relationship—if it exists—in small sam-
ples like ours. As (2) and (3) show for quarter-on-quarter growth rates, AI7
provides no information for the current growth rate. For a nowcast, it is best
to use Afts = 0.006 + 0.532AI?. For the year-on-year growth rates, the lag
has on its own already high predictive power, see (5). But even in this in-

stance, the inclusion of the current growth rate of the ask price index improves
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explanatory power, see R? in (6).2

[Table 7 about here.]

Taken together, the examination provides some evidence that an ask price in-
dex can lead to better nowcasts. Longer time series are needed to obtain clearer

in-sample results and to extend the examination to out-of-sample nowcasts.

4.4 Robustness checks

We conducted several robustness checks to assess the sensitivity of our results
to methodological choices, see the web-based Appendix D for details. First, we
examined the sensitivity of the decomposition of the markups with respect to
the specification of the conditional price distributions. The examination led to
similar results to the ones reported here. Second, we used a function instead
of a simple ratio to convert interior into exterior floor area. The function is
flexible, considers also building age, and is estimated from sale data that have
information on both area variables. The resulting exterior floor area is highly
correlated with the conversion used here. Third, we implemented the regression
applications with parametric models. The estimates in Figure 4 might suggest
that commonly applied parametric specifications such as polynomials could
produce similar results as those reported here. This is indeed the case, but the
predictive accuracy of the parametric models is throughout lower than those
for the semiparametric models used here. We see this as justification to present

here the results from the semiparametric models.

23The estimated coefficient ¢, however, has a p-value of 0.08 and is not significant at our

usual significance levels.
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5 Conclusion

Unlike transaction data, information from listings web-platforms is timely and
abundant. It could thus become a novel data source for research in real estate
and urban economics. In this paper, we have examined the value of listings
information for three common research applications: (1) quantification of the
relationship between house prices and characteristics, (2) prediction of market

values, and (3) measurement of house price dynamics.

The results of our study are as follows. First, we find that the substan-
tial differences in unconditional ask and sale price distributions are driven by
differential characteristics compositions. We also establish that valuation dif-
ference play a significant role as well. While the valuation differences are not
relevant for lower quantiles of the distributions, they become relevant from at
least for the median onwards. While the composition result points to the pos-
sibility that ask data can used as substitute for transaction data as long as one
controls appropriately for observed characteristics, the pricing result points in
the direction that the substitutional potential of ask data is doubtful. This
motivated the further steps of our examination. Second, we find that the esti-
mated WTPs for house characteristics can, at times, differ quite substantially
when estimated using ask instead of sale data. Third, we find that these dif-
ferences lead also to inferior sale price predictions when the regression model
is fitted to ask prices. The lower accuracy of these predictions is not only the
result of the bias, that asking prices exhibit even after controlling for house
characteristics, but also a larger variance of the predictions. Fourth, we find
that constant quality ask and sale price indices paint a roughly similar picture
of the general price trend. Moreover, time series regressions indicate that an

ask price index might be useful for nowcasting a sale price index. Though, the

24



short time-series dimension of our data restricts our ability to draw conclusive
inferences. In sum, our results show that listings information must be used

with caution in empirical research.
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Table 1: Effects of data cleaning. Gives the number of observations in the
original data and after each step of the data cleaning procedure. Missing values
refers to observations that lack entries for some of the core variables. Old refers to
a house that has a building which is older than 100 years at the date of transaction
or the last listing day. Bounds for plot area, floor area, and transaction price per
floor area come from annual reports of the GAA.

GAA 1524

Original data 17,650 144,274
After removing

missing values 17,650 106,193

old or under construction 15,242 83,952

outwith bounds 12,524 68,070
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Table 2: Summary statistics for sale and ask data sets. Panel A gives also
information for variables other than the core variables. Prices are in 000’ Euros.
Age of building at the date of sale or end of listing, respectively. Floor and plot area
are in sqm.

Mean Std. Dev. Min Max
Panel A. Sale data (N = 12,524)

Price (Ps) 250.50 129.07  40.00 1450.00
In Price (ps) 12.33 0.45 10.60 14.19
Age 44.94 30.37 0.00 100.00
Floor area 144.78 52.79 41.00 642.00
Plot area 544.96 267.04 112.00 1500.00
Detached 0.56
Semi-detached 0.28
Terraced house 0.17
Listed building 0.05
Prefabricated 0.10
Converted attic 0.53
Swimming pool 0.01
Flat roof 0.15
No basement 0.18
Backland development 0.17
Lake/River access 0.01
Condition of building

poor 0.04

average 0.62

good 0.34
Neighborhood amenity rating

poor 0.30

average 0.51

good 0.18

excellent 0.01

Panel B. Ask data (N = 68,070)

Price (P,) 320.96 189.96  45.00 2020.00
In Price (p,) 12.56 0.46  10.71  14.52
Age 32.02 27.92 0.00 100.00
Floor area 187.21 74.93 50.00 650.00
Plot area 583.49 267.37 100.00 1500.00
Detached 0.68
Semi-detached 0.23
Terraced house 0.09
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Table 3: Stochastic dominance tests. The statistic J]k (j # k) tests the null
hypothesis that distribution j dominates distribution k weakly. In Panel A, the
variable tested for is —AGE, c@k is the signed two sample KS test statistic, defined
in Eq. 1. The p-values for the null are calculated as eXp{—Q(Jj,k)Q}, see Barrett
and Donald (2003, p.78). In Panel B, c/i;k is the KS maximal ¢-statistic as defined
in Chernozhukov et al. (2013, p. 2222). The standard error of c?]k is calculated
using the bootstrap interquartile range of the KS test statistic. The p-values for the
null are calculated as R™1>" 1(3,1:,7» > c/l},k), where J;,” is the r'th bootstrap test
statistic, see Barrett and Donald (2003, p. 82). The number of bootstrap replications
is 200.

C/l\a,s P-value c@a P-value

Panel A. Marginal distributions

Price 0.000 1.000 20.577 0.000
Age 0.286 0.849 24.689 0.000
Floor area 0.000 1.000 34.102 0.000
Plot area 0.027 0.999  9.007 0.000

Panel B. Price decomposition
Price 0.000 0.915 48.777 0.000
Characteristics  0.000 0.860 53.132 0.000
Implicit prices 1.076 0.705 10.978 0.000
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Table 5: Willingness to pay for noise levels. Reports WTP estimates and
regression diagnostics for penalized least squares estimates of Eq. 5. Specification
for ask (sale) data identical to (2) ((5)) from Table 4 plus noise function f5(NOI).
WTPs are computed with Eq. 8. Standard errors are computed using the pairs
bootstrap. Number of bootstrap replications is 200. R? is the adjusted coefficient
of determination. DCYV is the double cross-validation score. Significant at ***0.001
level, **0.01 level, *0.05 level.

Ask data Sale data
WTP Std. Err. WTP Std. Err.
Noise level -1141.27*** 79.73  -827.79*** 122.18
DCV 0.039 0.050
R? 0.819 0.762
N 59,502 12,218
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Table 6: Assessment of prediction errors. Shows performance statistics for
9,152 out-of-sample prediction errors. £10% (£25%) reports the proportion of errors
which are in absolute terms no larger than 10% (25%).

Data MSE Bias Var. Med. MAE +10% +25%
Ask  0.077 -0.035 0.076 -0.021 0.214 0.304 0.671
Sale 0.051 0.014 0.051 0.027 0.176 0.364 0.751
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Figure 1: Distributions of ask and sale prices. Left panel shows markups of ask
over sales prices at different quantiles. Horizontal lines give markups at the medians
(20.1%) and means (23.4%). Whiskers give pointwise confidence intervals at the
0.95 level. Right panel shows kernel density estimates of the distributions of prices
from ask data set (solid black) and from sale data set (dashed gray). Bandwidths
are chosen with Silverman’s (1986) rule-of-thumb. Vertical lines are the respective
means of the ask and sale prices.
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Figure 2: Distributions of house characteristics. Top panel shows histograms
of building age for the observations in the ask and the sale data, respectively. Lower
panel shows kernel density estimates of floor area (left) and plot area (right) for the
observations in the data. Bandwidths are chosen with Silverman’s (1986) rule-of-
thumb.
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Figure 3: Spatial distribution of ask and sale observations. Shows the rela-
tive frequency of observations in the ask and sales data across Berlin’s 12 administra-
tive districts. Crosses give locations of the 59,502 (12,218) individual observations
in the ask (sale) data for which we have coordinates.

39



Age Floor area Plot area

T T T T T
0 20 40 60 80 100 0 200 400 600 0 500 1000 1500

Askdata ———-—- Sale data

Askdata ————- Sale data

Askdata ———-—- Sale data

/\ ER
° - ) °

T T T T T T T T T T T T T
0 20 40 60 80 100 0 200 400 600 [ 500 1000 1500

Askdata ————- Sale data

Askdata ——-—- Sale data

Askdata ————- Sale data

Figure 4: Estimates of components of semiparametric regression model.
Upper panel shows estimates of fi(AGE), fa2(FA), and f3(PA) for regression in Eq.5
that uses spatial fixed effects. Lower panel shows estimates for the same functions,
but controls with the geospatial function fy(LAT, LON). The corresponding esti-
mated functions are shown in Figure 5. Noise variable NOI is not included in the
regressions. Functions are normalized to have a mean of zero. Shaded areas are
pointwise confidence intervals at the 0.95 level, computed using heteroscedasticity
robust standard errors.
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Figure 5: Location value surface. Shows contour plot of estimated geospatial
functions f4(LAT, LON) from ask (right panel) and sale data (right panel). Location
value surface is evaluated at median values of continuous house characteristics and
modal values of discrete house characteristics.
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Figure 6: Noise levels and WTP. Left panel shows noise levels in decibel (dB(A))
in Berlin at night for 2012. The data comes from Berlin’s Senate Department for
Urban Development and Housing. Right panel shows estimates of the function f5
from specifications (2) and (5) in Table 4, when including f5. Shaded areas are 0.95
pointwise confidence intervals, computed using heteroscedasticity robust standard
€rTors.
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Figure 7: Quarterly quality-adjusted house price indices. Upper panel shows
ask and sale price indices for Berlin 2007Q1-2015Q4, lower panel shows quarter-on-

quarter growth rates. The growth rate of the ask (sale) price index is 1.0% (1.2%)
with volatility of 1.7% (2.0%).
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A Preparation of data sets

A.1 Variable bounds

The GAA annual market reports provide tables for houses transacted in a given
year with minimum, average, and maximum of: lot area, floor area, ratio of
price to floor area (Gutachterausschuss fiir Grundstiickswerte 2011, 2012, 2013,
2014, 2015). The tables are provided separately for detached, semi-detached,
and terraced houses. Within the tables, the information detailed further by the
part of the city the house is located in (East, West) and the period during which
the house was constructed (before 1949, since 1949). We use the information
for the years 2010-2014 and select for each house type, location, and vintage,
the minimum of the minima and the maximum of the maxima for each of the

three variables. Table A1 summarizes the variable bounds.

[Table A1 about here.]

B Decomposition of markups

B.1 Decomposition at quantiles

To examine the contribution of house characteristics and implicit prices to the

ask price markups (see Fig. 1), we assess the quantile decomposition

Qa(T) - QS(T) = {Qa\a(T) - Qa|s(7-)} + {Qa\s(T) - Qs|s(7_)} (Bl)

where @Q;x(7) is the 7th quantile of the distribution of the price in data set j,

given the characteristics in data set k. We obtain the quantiles by inverting the



A

estimated distribution functions Fj;(p) (see Eq. 4). In order to conduct infer-
ence, we compute pointwise and uniform confidence bands using the bootstrap
procedure described in Chernozhukov et al. (2013, Algorithms 2 & 3). The
intervals are constructed at the 0.95 level and take the estimation uncertainty

about Fj‘k(p) into account.

B.2 Decomposition at means

The Blinder-Oaxaca decomposition is

Elpa] — Elps] = {Xa — X:} B, +{B. — B} X, (B2)

where the vector 3, collects the implicit prices in data set j and the vector x;
collects the mean values of house characteristics in data set k. We estimate the
implicit prices by running a linear regression of the log price on the continuous
core variables, and house type, district and yearly time dummies. We include
the continuous variables as third-degree polynomials, which is analogous to
the quantile regressions used to estimate Eq. 4. In order to conduct inference,
we compute standard errors according to the suggestions in Jann (2008). To
allow for heteroscedastic error terms, we estimate the covariance matrix of the

implicit prices using the Huber/White estimator.

B.3 Results
Table B1 presents the decomposition of the ask price markups.
[Table B1 about here.]

In Panel A, the estimated markup at the median is slightly lower than the

markup reported in Fig. 1. This is because the markups are estimated from



Eq. 4, rather than not the empirical distribution functions (EDFs) of ask and
sale prices. The upper-left (right) panel of Figure B1 shows a Q-Q plot for the
ask (sale) price distribution estimated from Eq. 4 and the EDF. For, both, ask
and sale prices the distribution F] (p) resembles closely the corresponding EDF.
This is reflected in the estimated markups, which exhibit a similar U-shaped

pattern as the markups in Fig. 1.
[Figure B1 about here.]

Panel B (C) of Table B1 shows the estimated contributions of characteristics
(implict prices). As indicated by the Q-Q plots in the lower panel of Figure B1,
the contribution of characteristics differences in the two data sets accounts for
the greater part of the markups. Nonetheless, according to the pointwise and
uniform confidence bands, implicit price contribute also to the markups for

7 > 0.3, at least, at the 0.05 level.

C Semiparametric regression model

C.1 Choice of smoothing parameters

We select A = {\1,..., A5} as by minimizing the DCV score

. NYY (i — pi(N)? (C3)

A = arg min

A {N — 1.5tr (H\))}?

where p;(X) is the predicted price for a given set of A values and H =
(XTX + SA)_1 XT is the hat matrix of the penalized least squares estima-
tor of Eq. 7. Here, X is the design matrix collecting the basis functions for

the continuous and all dummy variables. The matrix Sy collects the penalty



terms, see Wood (2017, pp. 249-50). DCV is a consistent estimator of the
mean squared error of the regression model and DCV prevents excess smooth-

ing (Wood 2017, pp. 260-61).

C.2 Basis dimensions for splines

The exact size of the basis dimensions K = {K7,..., K5} is not as critical as
the smoothing parameters A, as they only set an upper bound on the flex-
ibility of the functions f;(-). We use the informal diagnostic tests of Wood
(2017, pp. 343), as well as visual inspection of the estimated functions, and
set k1 = ky = k3 = ks = 14 for the univariate functions and ks = 150 for the
geospatial function. Residual diagnostics provide evidence that these values

are sufficiently large to provide adequate flexibility, see Section C.2.1 below.

C.2.1 Residual diagnostics

The upper left panel of Figure C1 (C2) shows a scatter plot of the fitted values
against the residuals from the ask price regression (1) ((2)) in Tab. 4. The

residuals are well behaved; no obvious pattern remains after fitting the data.

[Figure C1 about here.]
[Figure C2 about here.]

The three remaining panels of Figure C1 (C2) show nonparametric functions of
the building age, floor area, and, respectively, plot area fitted to the regression
residuals. We model each function using a cubic spline with basis dimension
K ; = 2+ Kj to check if a higher basis dimensions reveals additional structure

in the data. We fit the regressions using penalized least squares.
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[Figure C3 about here.]
[Figure C4 about here.]

For specification (1) ((2)), each of fitted functions shows an erratic behavior.
This could indicate that the basis dimensions K are not sufficiently large.
However, even after quadrupling K; the erratic behavior persist, see Figures
C3 (C4). Moreover, the fitted functions have very similar shapes (not reported)
to those shown in Fig. 4. We attribute the erratic behavior of the smoothed
residuals to an artefact of the ask data, rather than a misspecification of the

splines.

Figure C5 (C6 , C7) show the same diagnostic plots for the sale price
regressions from Tab. 4. There is no structure left in the fitted sale data
that could be captured by more flexible functions. In fact, the smoothed
residuals are completely flat as one would expect in the absence of model

misspecifications.

[Figure C5 about here.]
[Figure C6 about here.]

[Figure C7 about here.]

D Robustness checks

D.1 Decomposition of price distributions

To examine how sensitive the markup decomposition is with respect to the

model specification of Eq. 4, we re-estimated the price distributions using log-

6



linear hedonic (quantile) regressions. Log-linear functional forms are frequently
employed in empirical research,! since they are often less prone to omitted
variables bias than more flexible specifications. This is particularly true when
one can only control for unobserved location effects crudely, as we do by using

district dummies, see Cropper et al. (1988) and Kuminoff et al. (2010).

Figure D1 shows a Q-Q plot for the estimated and empirical ask (sale)
price distribution in its upper-left (right) panel. The estimated distribution
Fj(p) resemble closely the corresponding EDF. Moreover, the Q-Q plots are
comparable to those in Figure B1. Both, the log-linear and polynomial quantile
regressions produce distribution estimates, Fj(p), that well approximate the

corresponding EDF's.
[Figure D1 about here.]

Table D1 reports the decomposition based on the log-linear quantile regres-

sions.
[Table D1 about here.]

The estimated markups and contributions of characteristics and implicit are
qualitatively similar to those reported in Table B1; the markups are sizable
and, both, characteristics and implicit prices contribute to them at all quan-
tiles. Relative to Table B1, the log-linear quantile regressions produce larger
implicit price estimates for the ask than the sale data, particularly at lower
quantiles; see also the lower-right panel of Figure D1. Given the nonlinearities

in the hedonic price function at the mean (see Fig. 4), we prefer to allow for

IShimizu et al. (2016), for example, use a log-linear specification in their analysis of ask

and sale data distributions.



some flexibility in the quantile regressions, as well, and prefer to present the

results from Table B1 in the main paper.

D.2 Nonparametric imputation of exterior floor area

The relationship between the interior and the exterior floor area will be af-
fected by design of the building. Applying a fixed conversion factor, regardless
of building type and design, may therefore introduce additional measurement
error to the ask data. The ask data, however, does not provide (reliable) in-
formation about many characteristics, such as an attic converted into living
space, that would presumably produce a more refined conversion of the in-
terior to exterior floor area. To examine how a feasible method might affect
our analysis, we thus proxy the building design by the age of the building.?
Specifically, we fit the varying coefficient model

FA=a+p5(CY)-IFA+¢ (D4)

where F'A is the exterior and [FA is the interior floor area. « is a constant and
B(AGE) is a smooth coefficient that is allowed to vary with the year that the
house was constructed (CY'). We model 5(+) using cubic regression splines and
fit the model via penalised least squares. We choose the smoothing parameter

by double cross-validation.

Table D2 provides summary statistics for 1,513 observations in the sale data
that report the exterior and interior floor area. Relative to the full sample (see

Tab. 2), houses are of significantly lower age but otherwise comparable.

[Table D2 about here.|

2While we observe the building type itself, splitting the data accordingly, would result in
too small sample sizes to fit Eq. D4.



Figure D2 shows the estimated conversion factor in its upper left panel.
The point estimates varies between about 1.00 and 1.26 and is thus of similar
magnitude as our fixed conversion factor. The pointwise confidence bands

indicate that the estimation uncertainty can be sizable.
[Figure D2 about here.]

The upper right panel correlates the exterior floor area computed from the
fitted model and the fixed conversion factor of 1.25. Both measures are highly
correlated (p = 0.956). Still, the fitted values explain more of the variation in
the actual exterior floor area (the R? of the fitted model is 0.561 vs 0.354 for
the fixed conversions factor); see also the lower panels of Figure D2. Taken
together, we do not expect that the exterior floor area estimated from Eq. D4
would significantly change the results presented in the main paper. Moreover,
given the high estimation uncertainty, we prefer the fixed conversion for our

analysis.

D.3 Automated valuation

To assess the predictive accuracy of a parametric hedonic model, we re-ran the

prediction experiment and fitted
p = 2y +91(AGE; B1) + g2 (FA; By) + g3(PA; B3) +94(LAT, LON; By)+¢ (D5)

where g;(-) is a p;'th degree polynomial in continuous variable j (p; € {1,2...,7}).
All variables are defined as in Section 3.3. For each estimation window, we

select p = {p1,p2,p3,Pa} as

p = arg max [1 — sz\il (p: ﬁ_i)] (D6)

P Zf\il (pi —p)



where p_; is the leave-one-out estimator for observation i. We calculate the
predictive residuals, ¢; = p; — p_;, from the ordinary residuals and diagonal

elements of the hat matrix (Myers 1990, pp. 172-73).

Table D3 presents performance measures for the out-of-sample predictions

from the parametric regressions fitted separately to ask and sale data.
[Table D3 about here.]

Comparing the performance of the prediction errors e, , and e, leads to quali-
tatively similar conclusions as in Section 4.3. Using ask data leads to prediction
errors that are severely biased and significantly more dispersed than predic-
tion errors from sale data. Furthermore, comparing the results in Table D3 to
those in Tab. 6 reveals that the parametric model produces prediction errors
with inferior performance. This is true for, both, quadratic and absolute loss

functions.

E Software

E.1 Decomposition of price distributions

To implement the stochastic dominance tests and markup decomposition we
employ the user-written Stata commands cdeco and oaxaca. The former
can be installed from https://sites.google.com/site/blaisemelly/home/
computer-programs/inference-on-counterfactual-distributions. The
latter can be installed from the Boston College Statistical Software Compo-

nents (SSC) archive using the command ssc install oaxaca.
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E.2 Non- and semiprametric regression models

To estimate the various non- and semiparamteric regression models we employ
the gam() function from the R package mgcv, see https://cran.r-project.
org/web/packages/mgcv/index.html. Wood (2017) provides an excellent in-

troduction to generalized additive models and the mgcv package.
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Table A1l: Bounds for data cleaning. Reports lower and upper bounds used for
data cleaning procedure. Floor and plot area are in sqm. Source: Gutachterauss-
chuss (2011, 2012, 2013, 2014,2015)

Detached Plot area  Floor area Price per sqm

West, vintage
< 1949 400 1500 50 650 650 3530
> 1949 400 1500 50 625 780 2990
East, vintage
< 1949 400 1500 50 510 410 2630
> 1949 400 1495 50 440 910 3185

Semi-detached

West, vintage
< 1949 215 700 80 455 665 3655
> 1949 175 700 65 360 1005 3055
East, vintage
< 1949 230 700 40 330 430 2790
> 1949 190 700 60 210 1005 3350

Terraced houses

West, vintage
< 1949 130 695 65 470 720 3512
> 1949 115 700 75 335 895 3160
East, vintage
< 1949 115 695 60 285 495 2085
> 1949 100 665 65 285 1095 2695
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Table B1: Decomposition of markups. Shows decomposition of the ask and
sale price distributions. Standard errors for mean decomposition are computed using
heteroscedasticity robust covariance estimator. 0.95 pointwise (uniform) confidence
intervals for quantile decomposition are computed using bootstrap standard errors
(the inverse of the bootstrapped KS ¢-statistic). Number of bootstrap replications
is 200.

Estimated  Pointwise Pointwise Uniform
Effect Std. Err. Conf. Interv. Conf. Bands

Panel A. Markup

Mean 0.234 0.004 0.225 0.242

Quantile
0.1 0.241 0.006 0.230 0.253 0.223  0.260
0.2 0.210 0.005 0.201  0.219 0.196 0.224
0.3 0.197 0.004 0.189  0.205 0.184 0.210
0.4 0.193 0.004 0.185 0.201 0.180  0.205
0.5 0.194 0.004 0.186  0.203 0.181  0.207
0.6 0.202 0.005 0.193 0.211 0.188 0.216
0.7 0.218 0.005 0.208  0.228 0.202 0.234
0.8 0.241 0.006 0.229  0.252 0.222  0.259
0.9 0.285 0.008 0.270  0.300 0.261  0.309

Panel B. Characteristics

Mean 0.210 0.005 0.201 0.219

Quantile
0.1 0.246 0.005 0.236  0.256 0.234  0.258
0.2 0.212 0.004 0.204 0.221 0.201 0.223
0.3 0.192 0.004 0.184 0.201 0.182  0.203
0.4 0.181 0.004 0.173  0.189 0.171  0.191
0.5 0.177 0.004 0.169 0.185 0.166  0.187
0.6 0.177 0.004 0.169 0.185 0.166  0.188
0.7 0.185 0.004 0.176  0.193 0.173  0.196
0.8 0.199 0.005 0.190  0.209 0.187 0.211
0.9 0.237 0.006 0.225  0.250 0.221  0.253

Panel C. Implicit prices

Mean 0.024 0.004 0.017  0.032

Quantile
0.1 -0.005 0.006 -0.017 0.007 -0.025 0.015
0.2 -0.003 0.004 -0.011 0.005 -0.016 0.011
0.3 0.004 0.003 -0.002 0.011 -0.007 0.016
0.4 0.011 0.003 0.005 0.017 0.001  0.022
0.5 0.018 0.003 0.012  0.023 0.008  0.027
0.6 0.025 0.003 0.019 0.031 0.015  0.035
0.7 0.033 0.003 0.027  0.040 0.023  0.044
0.8 0.041 0.004 0.034  0.049 0.029 0.054
0.9 0.048 0.005 0.039  0.057 0.032  0.064

15



Table D1: Decomposition of markups, log-linear model. Shows decomposi-
tion of the ask and sale price distributions. Standard errors for mean decomposition
are computed using heteroscedasticity robust covariance estimator. 0.95 pointwise
(uniform) confidence intervals for quantile decomposition are computed using boot-
strap standard errors (the inverse of the bootstrapped KS ¢-statistic). Number of
bootstrap replications is 200.

Estimated  Pointwise Pointwise Uniform
Effect Std. Err. Conf. Interv. Conf. Bands

Panel A. Markup

Mean 0.234 0.004 0.225 0.242

Quantile
0.1 0.262 0.005 0.252 0.273  0.248 0.277
0.2 0.219 0.004 0.210 0.227 0.208 0.230
0.3 0.196 0.004 0.189 0.204 0.186 0.207
0.4 0.184 0.004 0.176 0.192 0.174 0.194
0.5 0.178 0.004 0.170 0.185 0.167 0.188
0.6 0.178 0.004 0.169 0.186 0.167 0.189
0.7 0.187 0.005 0.177 0.196 0.174 0.199
0.8 0.211 0.006  0.200 0.222  0.196 0.226
0.9 0.276 0.008  0.260 0.291 0.255 0.296

Panel B. Characteristics

Mean 0.219 0.005 0.210 0.228

Quantile
0.1 0.169 0.003 0.162 0.176  0.160 0.177
0.2 0.150 0.003 0.144 0.156  0.142  0.157
0.3 0.139 0.003 0.134 0.145 0.132 0.147
0.4 0.135 0.003 0.129 0.140 0.128 0.142
0.5 0.133 0.003  0.127 0.139 0.126  0.140
0.6 0.138 0.003 0.132 0.144 0.130 0.146
0.7 0.152 0.004 0.145 0.159 0.143 0.161
0.8 0.180 0.004 0.172 0.189 0.169 0.191
0.9 0.250 0.006  0.238 0.261 0.235 0.265

Panel C. Implicit prices

Mean 0.015 0.004 0.007 0.0228

Quantile
0.1 0.093 0.005 0.083 0.104 0.079 0.108
0.2 0.069 0.004 0.061 0.077  0.059 0.080
0.3 0.057 0.003  0.050 0.063 0.048 0.066
0.4 0.049 0.003  0.043 0.055 0.041 0.057
0.5 0.044 0.003  0.039 0.050 0.037 0.052
0.6 0.040 0.003 0.034 0.046  0.032 0.048
0.7 0.035 0.003  0.029 0.041 0.026 0.044
0.8 0.031 0.004 0.023 0.038 0.020 0.041
0.9 0.026 0.005 0.016 0.036  0.012 0.039
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Table D2: Summary statistics for observations in sale data that report
the interior and exterior floor area. Number of observations is 1,513. Age of
building at the date of sale. Exterior and interior floor area are in sqm.

Mean Std. Dev. Min Max

Age 22.53 29.43  0.00 100.00
Construction year 1988 29.24 1908 2015
Floor area
exterior 141.76 46.29 45.00 451.00
interior 125.15 35.13 42.00 552.00
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Table D3: Assessment of prediction errors from parametric hedonic
model. Shows performance statistics for 9,152 out-of-sample prediction errors.
+10% (£25%) reports the proportion of errors which are in absolute terms no larger

than 10% (25%).

Data MSE Bias Var. Med. MAE +10% +25%
Ask 0.089 -0.024 0.088 -0.012 0.231 0.282 0.610
Sale 0.059 0.013 0.059 0.027 0.189 0.334 0.696
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Figure C1: Residual diagnostics (1). Model specification fits ask price to core
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Figure C3: Residual diagnostics (1b). Model specification fits ask price to core
variables and spatial fixed effects (column (1) in Table 4).
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Figure C4: Residual diagnostics (2b). Model specification fits ask price to core
variables and geospatial smooth (column (2) in Table 4).
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variables and spatial fixed effects (column (5) in Table 4).
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Figure D1: Q-Q plots for price distributions, log-linear specification.
Upper-left (right) panel compares Iy, (Fy,) estimated from Eq. 4 with their EDFs.

Lower-left panel compares Fa|a and Fa| s- Lower-right panel compares Fa‘ s and E sl
Solid black lines are the 45 degree line.
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Figure D2: Varying coefficient model and floor area conversion. Shows
estimates from Eq. D4. Number of observations is 1,513.
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