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Abstract

Aim of this work is to analyze two physical processes that take place whenever a solid
polymeric medium is put in contact with a gas atmosphere: gas molecules first penetrate
the solid through a sorption process and then wander within it giving rise to a diffusion
one.
The sorption process is studied within a model which is very close in spirit to the dual
mode model. Applying basic thermodynamics principles we obtain the dependence of the
penetrant concentration on the pressure of the gas phase and find that this is expressed
via the Lambert W -function, as proposed by the gas-polymer matrix model, being a
different functional form than the one proposed by dual sorption mode. The Lambert-
like isotherms appear universally at low and moderate pressures and originate from the
assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in
the lowest order) a bilinear form in the concentrations of the three components. Fitting
the existing data shows that the Lambert function fits the data equally well.
The diffusion problem is analyzed by using a lattice approach with random site energies
and random transition rates. A relation between the effective diffusion coefficient and
the macroscopic conductivity in a random resistor network allows for elucidating possi-
ble sources of anomalous diffusion in such an environment. We show that subdiffusion is
only possible either if the mean Boltzmann factor in the corresponding potential diverges
or if the percolation concentration in the system is equal to unity (or both), and that
superdiffusion is impossible in our system under any condition.
Properties of the effective diffusion constant are deeper discussed on a second stage tak-
ing into account a short range particle-polymer interaction. The system is modeled by
a particle diffusion on a ternary lattice where the sites occupied by polymer segments
are blocked, the ones forming the hull of the chains correspond to the places at which
the interaction takes place, and the rest are voids, in which the diffusion is free. In
the absence of interaction the diffusion coefficient shows only a weak dependence on the
polymer chain length and its behavior strongly resembles usual site percolation. In pres-
ence of interactions the diffusion coefficient (and especially its temperature dependence)
shows a non-trivial behavior depending on the sign of interaction and on whether the
voids and the hulls of the chains percolate or not. The temperature dependence may
be Arrhenius-like or strongly non-Arrhenius, depending on parameters. The analytical
results obtained within the effective medium approximation are in qualitative agreement
with those of Monte Carlo simulations.

iii



Zusammenfassung

Ziel dieser Arbeit ist die Analyse zweier physikalischer Prozesse, die stattfinden wenn
ein festes polymeres Medium in Kontakt mit einer Gas-Atmosphäre kommt:
1) ein Sorptionsprozess, d.h. die Gasmoleküle dringen in den Feststoff ein und
2) ein Diffusionsprozess, d.h. die Gasmoleküle bewegen sich danach innerhalb des Fest-
stoffes.

Der Sorptionsprozess wird als Model analysiert, das in engem Zusammenhang mit
dem Dual Mode Model steht. Durch die Anwendung grundlegender thermodynamis-
cher Prinzipien gewinnen wir die Abhängigkeit der Eindringmittel-Konzentration vom
Druck der Gasphase, die — wie im Gas-Polymer-Matrix model vorhergesagt — durch
eine Lambertsche W-Funktion ausgedrückt werden kann und dadurch von der Vorher-
sage des Dual Sorption Mode Models abweicht. Lambert-artige Isothermen treten nor-
malerweise bei niedrigen und moderaten Drücken auf und haben ihren Ursprung in der
Annahme, dass die innere Energie einer Polymer-Penetrant-Pore Dreifach-Mixtur (in
erster Näherung) eine Bilinearform der Konzentrationen der drei Komponenten ist. Ein
Fitting von realen Daten zeigt, dass die Lambert-Funktion die Daten gleichermaßen gut
modelliert.

Das Diffusionsproblem wird mittels eines Gitter-Modells mit zufälligen Knotenen-
ergien und Übergangsraten analysiert. Die Analogie zwischen dem effektiven Diffusion-
skoeffizienten und der makroskopischen Leitfähigkeit eines zufälligen Widerstandsnetzw-
erks ermöglicht es, mögliche Quellen für anomale Diffusion in einer solchen Umgebung
zu finden. Wir zeigen, dass Subdiffusion nur möglich ist, wenn der mittlere Boltzmann-
Faktor im entsprechenden Potenzial divergiert oder wenn die Perkolationskonzentration
im System gegen eins geht (oder beides) und dass Superdiffusion in diesem System un-
abhängig von den Bedingungen unmöglich ist.

Die Eigenschaften der effektiven Diffusionskonstanten werden genauer in einer zweiten
Stufe diskutiert, in der kurzreichweitige Wechselwirkungen zwischen Teilchen und Poly-
meren berücksichtigt werden. Das System wird durch Teilchendiffusion auf einem Ternär-
Gitter modelliert, wo die Gitterplätze blockiert werden, die von Polymerteilen besetzt
sind. Diejenigen, die die Hülle der Ketten bilden, entsprechen dabei den Gitterplätzen,
an denen die Wechselwirkungen stattfinden. Die übrigen sind Poren, an denen freie
Diffusion stattfindet. In Abwesenheit von Wechselwirkungen zeigt der Diffusionskoef-
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fizient nur eine schwache Abhängigkeit von der Polymerlänge und sein Verhalten ähnelt
stark dem der gewöhnlichen Knotenperkolation. In Anwesenheit von Wechselwirkun-
gen zeigt der Diffusionskoeffizient (im Besonderen seine Temperaturabhängigkeit) ein
nicht-triviales Verhalten, abhängig vom Vorzeichen der Wechselwirkung und davon, ob
die Poren und die Hüllen perkolieren oder nicht. Die Temperaturabhängigkeit kann
in Abhängigkeit der Parameter Arrhenius-artig oder stark nicht Arrhenius-artig sein.
Die analytischen Ergebnisse, die aus der Effective Medium Näherung gewonnen wurden,
zeigen eine qualitative Übereinstimmung mit Ergebnissen aus Monte-Carlo Simulatio-
nen.
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1. Introduction
It is a long standing problem the one related to the comprehension of the physical and
chemical behavior of polymeric materials. The interest around this kind of systems has
been continuously growing in the last decades, driven by their extensive usage. Appli-
cations range from the use as barrier materials or protective coatings to gas separation
membranes. Moreover, biological polymers are strongly present in nature like proteins,
DNA, nucleic acids (polynucleotides), polysaccharides or latex rubber.
As a consequence, a deep understanding of their properties became absolutely necessary,
presenting an hard challenge for physicists, chemists and engineers of all over the world.

Polymeric materials are really particular substances; they can be considered to be a
mix between solids and liquids and in many cases the transition between the solid and
liquid states is rather diffuse and quite difficult to localize.
Generally speaking a polymer is a macromolecule, namely a molecule with a high molec-
ular weight, composed of a large number of elementary subunits, which can be small
or big molecular groups on their turn and that constitute a repeated unit. These units
form a chain which is held together by the repetition of the same covalent bond.
In order to specify a polymer one has to determine the nature of its inner and terminal
subunits, the presence of eventual branches or defects in the structural sequence which
may alter its mechanical characteristics.

This work is focused on two specific processes that happen whenever a contact is es-
tablished between a gas atmosphere and a solid polymeric medium. In such a situation
we essentially observe two phenomena: a first sorption process by which gas molecules
get absorbed into the polymeric medium and a diffusion one originated by the random
motion of the sorbed molecules within the medium.
Such a situations is obviously constantly present in every day life and it represents a
serious issue that has to be faced in the most different industrial fields.
A typical example is given by the food industries and the need to pack their products in
the most efficient way possible in order to avoid moisture and contaminants of whatever
kind to penetrate. Packaging films, mostly made of polymeric materials, have to be
therefore properly designed to reduce any kind of sorption and to guarantee the longest
conservation.
Another example we want to give, since it represents the scenario that has originated
this work, is given by the solar energy industry. The efficiency of solar panels is affected
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1. Introduction

by many factors, but one of the most problematic is the ingress of water molecules from
the outside environment. Water molecules, once in the panel, are responsible of alter-
ing the working voltages and create corrosions at the electrical junctions. This in turn
drastically reduces module performances.
The structure of a solar panel is therefore designed to satisfy several production needs,
and among these to prevent moisture sorption. Of course there’s a large variety of solar
panel models in commerce nowadays, each having their own particular structure and
design, but figure 1.1 may give an idea of what a general structure may be: silicon
cells are placed between two polymeric layers (usually Ethylene Vinyl Acetate or EVA)
that besides providing mechanical support and electrical isolation, work as encapsulant
and protect them from water molecules uptake as well as from external contaminations
or deterioration factors as UV radiation or temperature stress. A further protective
polymeric back sheet is applied and this is usually made of Polyvinyl fluoride or PVF.

Figure 1.1.: Section of a typical solar panel structure.

The interest around solubility and transport of molecules in polymeric materials is
therefore always alive and continuously increasing. This makes the growing of the col-
lection of experimental data and theoretical models an extremely important step for
the development of new materials and the increasing of the quality of a huge variety of
products.

Aim of this work is to propose two models for the analysis of sorption and transport pf
small molecules in a polymeric medium.
We consider a simple ideal experimental set up where we obtain a relation linking the
external gas pressure to the equilibrium concentration of gas molecules within the poly-
meric medium. Later we give an expression for the diffusion constant characterizing
their wandering in the same medium.

The results obtained through our models have produced the following publications
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1. Introduction

• F.Camboni, I.M.Sokolov: “Normal and anomalous diffusion in random potential
landscapes”, Phys. Rev. E 85, 050104(R) (2012); (arXiv:1205-2543)

• F.Camboni, A.Koher, I.M.Sokolov: “Diffusion of small particles in a solid poly-
meric medium”, Phys. Rev. E 88, 022120 (2013); (arXiv:1210.6816)

• F.Camboni, I.M.Sokolov: “Sorption of small molecules in polymeric media", Phys-
ica A 464 (2016) 54–63s

The thesis is structured as follows: a general overview on the history and main features
of sorption and diffusion is given in the next sections of this chapter.
Chapter 2 is devoted to the introduction of the analytical tools we mostly used to
develop our models: the Flory-Huggins theory, together with the Bawendi and Freed
corrections, and the Effective Medium Approximation as presented in the Kirkpatrick
model, together with the corrections given by Yuge. This ends the first part of the thesis
aimed to provide a comprehensive introduction.
The second part of the thesis is where our results are presented. In chapter 3 we analyze
the solubility of gas molecules into a polymeric membrane. By applying basic thermo-
dynamic principles and moving our steps in a scenario similar to the one defining the
Dual Mode Sorption model, we obtain a sorption law. This results to be different in
shape from the Dual Mode one, being expressed via a Lambert W function and above
all showing a fewer number of free parameters. The two isotherms are then compared
to several experimental data in the temperature and pressure regimes where the Dual
Mode is usually adopted and our fitting quality results to be not inferior to Dual Mode
one. More than the originality or prediction capability of the Lambert mode, we will
stress its universality, being originated almost exclusively by the (quasi) equilibrium
condition, the shape of the free energy in the gas phase and the bilinear dependence on
concentrations of the free energy in the solid phase, and being able to reproduce some
of the most used sorption laws in proper temperature and pressure limits.
In chapter 4 we face the diffusion problem. We start by proposing a general remark on
the possible modes diffusion can occur whenever a random potential landscape model,
with random site energies and random transition rates, is used as an approach. Through
a relation between the effective diffusion coefficient and the macroscopic conductivity in
a random resistor network we will discuss the sufficient and necessary conditions that let
the diffusion turn to anomalous. We will show that subdiffusion is only possible either
if the mean Boltzmann factor in the corresponding potential diverges or if the percola-
tion concentration in the system is equal to unity (or both), and that superdiffusion is
impossible in our system under any condition.
Later we present the calculations that led us to an expression for the diffusion constant of
a particle wandering in the random energy landscape. A ternary lattice representation is
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1. Introduction

used where the sites occupied by polymer segments are considered as blocking. A short
range particle-polymer interaction is considered to take place in the nearest neighboring
sites of cells occupied by a polymer segment. Sites not occupied by any polymer or
particle are considered as voids where diffusion is free.
In the absence of interaction the diffusion coefficient shows only a weak dependence on
the polymer chain length and its behavior strongly resembles usual site percolation. On
the contrary, in presence of interactions the diffusion coefficient (and especially its tem-
perature dependence) shows a nontrivial behavior depending on the sign of interaction
and on whether the voids and the hulls of the chains percolate or not. The temperature
dependence may be Arrhenius-like or strongly non-Arrhenius, depending on parame-
ters. The analytical results obtained within the effective medium approximation are in
qualitative agreement with those of Monte Carlo simulations.

1.1. Sorption
The term sorption indicates the physical process through which particles or molecules
penetrate matter and get absorbed by it until a stable equilibrium situation is reached
associated to a precise concentration limit value. This term may include several different
mechanisms representing different interactions between particles and the solid medium;
for example, the more specific concept of adsorption indicates the situation in which
particles adhere on the surface of the adsorbing material forming a thin film, or the term
absorption, for which penetrants get dissolved within the body of it.

In the following we will therefore generally speak about sorption without specifying if
it is an ad- or absorption process and will not make any difference between the concept
of molecules, particles or penetrants, these term will be indistinctly used to mean the
elements which get sorbed.
The sorption phenomenon has been extensively studied and observed for situations in
which molecules forming a gas phase are sorbed by a polymeric medium. In the last one
hundred years a wide literature has been provided on both theoretical and experimental
sides with the production of a large series of data referring to several gas-polymer couples.
The description and interpretation of experimental data have been built within empirical
models combining some simple functions, which the experimental data may be fitted to
with a physical explanation of the corresponding choice.

Many sorption laws have been therefore proposed and successfully used. The oldest
and simplest one was proposed by William Henry at the beginning of the nineteenth
century and was first formulated to analyze a gas-liquid system. Henry’s law, states
that the amount of sorbed molecules at constant temperature is linearly proportional to
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1. Introduction

the pressure exerted by the gas on the pressure:

C = kDP (1.1)

where C is the gas concentration in the medium, P the external gas pressure and kD is
the proportionality factor known as the solubility coefficient.
Henry’s behavior can be observed in rubbery polymers in the ideal gas case at low pres-
sures, or for higher pressures. More generally, Henry’s law holds when the interaction
between penetrant molecules and polymer ones is negligible respect to the polymer-
polymer one.

Deviations from the Henry’s law are usually observed in glassy polymers. The analy-
sis of sorption in such media is made far more complex by the intrinsic non equilibrium
nature of the glass state. Glassy polymers do not live in a canonical equilibrium condi-
tion but rather perform an extremely slow and time-dependent relaxation dynamic to
an equilibrium. Polymers in the glass phase are in a pseudo-frozen state in which the
mobility of chains is drastically reduced and the whole medium is interrupted by cavities
whose effect is to increase the free volume space. The transition from a rubbery phase
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Figure 1.2.: Glass Transition phase diagram. The specific volume of a polymeric material
is larger than the theoretical equilibrium one whenever the Glass Transition
Temperature is crossed in the low temperature direction.
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1. Introduction

to a glassy one is encountered whenever a polymer is cooled below a material specific
temperature denoted as glass transition temperature.
The transition can be easily observed in any plot showing the relation between the poly-
mer specific volume and the temperature. An example of that is given in figure 1.2,
showing a schematic representation of the detachment of the specific volume from the
expected usual value at the transition point T = Tg in the limit of low temperatures.

In 1958 Barrer et al. introduced the dual mode of sorption model for glassy polymers
(Barrer et al., 1958). This model considers the contemporary existence of two pene-
trants´populations, one obeying the Henry’s law and a second one captured in frozen
pores and following a different behavior, identified by a Langmuir term and denoted
therefore as Langmuir mode. This Langmuir mode is switched on as soon as the system
is cooled below its glass transition temperature and the total sorption law is given by
the sum of the two modes,

C = kDP + CHbP

1 + bP
, (1.2)

where CH is the Langmuir’s sorption capacity parameter and b is the affinity parameter.
The model is probably of the widest use among all models of sorption isotherms. For a
more extensive discussion see (Kanehashi and Nagai, 2005).

Later Sefcik and Raucher introduced the Gas-Polymer Matrix Model (Raucher and Se-
fcik, 1983) in which the relation between concentration and pressure is given by the
transcendental equation

C = S0e
−α∗CP (1.3)

where α∗ is a constant and S0 the solubility coefficient at zero concentration. This model
does not imply the existence of two different populations of solute molecules but the only
assumption it needs is an interaction between particles and medium. This interaction
modifies the structure of the polymer matrix leading to an enhancing of the motion of
molecules through it.

A non equilibrium thermodynamical approach has been recently successfully adopted
by Sarti and coworkers to predict sorption of small molecules in glassy polymeric media
(Doghieri and Sarti, 1996; Sarti and Doghieri, 1998; Doghieri et al., 2006; De Angelis
and Sarti, 2011).
In these models the Lattice Fluid theory of Sanchez and Lacombe, in combination with
the Perturbed Hard Sphere Chain theory of Prausnitz is applied and extended to the non
equilibrium glassy phase. These include the non equilibrium lattice fluid model (NELF)
and the non equilibrium statistical associating fluid theory (NE-SAFT). A crucial point
is made by assuming the polymer density to be an additional internal state variable and
by considering a proper bulk rheology equation which governs its relaxation to a non
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1. Introduction

equilibrium value.

Above the glass transition temperature, sorption isotherms also deviate from the Henry
straight line at large pressures. This behavior has been successfully reproduced by the
Flory-Huggins (Flory, 1953) mode of sorption given by

v · exp
[
(1− v) + χ(1− v)2

]
= a (1.4)

where v is the penetrant volume fraction, χ is the Flory-Huggins parameter and a is the
penetrant activity in the gas phase, connected with the gas pressure. This mode is valid
for binary mixtures when the interaction between sorbed molecules is the most relevant
one. The sign of χ is known to characterize the shape of the corresponding sorption
isotherm: when this is negative, the penetrant is a good solvent for the polymer and the
C(P ) dependence is convex. In the bad solubility case χ > 0 the corresponding sorption
isotherm is concave.

Many variations and combinations of these models have been also proposed, see refer-
ences (Stern and Kulkarni, 1982; Mauze and Stern, 1982; Chiou and Paul, 1986; Kamiya
et al., 1986; Mi et al., 1991; Laatikainen and Lindstrom, 1987) just to name a few.
In these models, sorption isotherms show corrections to the principal models discussed
above, or appear in form of superpositions of a Matrix Model and Langmuir dependen-
cies, or of two different Langmuir dependencies, etc.

1.2. Diffusion
Generally speaking, diffusion is transport of matter performed via random movements
of basic elements, may these be particles, molecules or larger grains, as a reaction to a
non equilibrium situation. Such a process can appear in several different ways and can
present several different characteristics, mostly depending on the phase of the medium
in which this happens, gaseous, liquid or solid, and on the nature of the non equilibrium
condition causing it, usually given by a concentration, pressure or temperature gradient.
Once an equilibrium state is established, the process is considered terminated even if the
random movements of the elements keep on being without altering the equilibrium con-
dition. Among the several classical examples reported in literature to briefly describe
what a diffusion process is, we cite the one given by Schrödinger in his famous book
“What is Life?" (Schrödinger, 1992), where the basic essence of the process is clearly
explained. Let us consider the situation shown in Fig.1.3, where a certain number of
molecules of permanganate are dissolved in a vessel filled of water. At the beginning
the concentration of the permanganate is made highly asymmetric and larger on the left
side of the vessel. What we know to happen in the end is that if we keep the system

7



1. Introduction

Figure 1.3.: Diffusion of permanganate molecules in a water solution.

isolated and let it evolve, the concentration reaches an homogeneous profile assuming
macroscopically the same value in the whole system. There’s no net force of course
pushing molecules from left to right. Molecules are kept in constant agitation by the
temperature and are continuously pushed in random and equally probable directions by
the collisions among themselves and with the medium molecules. But, if we consider a
vertical surface, or more precisely a surface perpendicular to the direction of the con-
centration gradient, the probability for the surface to be crossed by a diffusing particle
from left to right is proportional to the number of particles on its left, and therefore is
larger than the probability to be crossed in the other direction. The final equilibrium
is reached when the two probabilities are the same for all possible surfaces, and this
happens only if the concentration is constant throughout the vessel.

It is not the task of this book to give a detailed overview on the history of diffusion
as a scientific matter, but we would simply like to go through some of the names and
moments that have signed our knowledge on this argument.

One of the first considerations on irregular motions of small particles can be found in
the "De rerum natura" of Lucretius, a book written in the first century b.C., got lost for
more than one thousand years, and finally found again in a german monastery in the
14171. Here’s the way Lucretius describes the wandering of dust particles in air when
looked through a sun ray:

"For look closely,whenever rays are let in and pour the sun’s light through the dark places
in houses: for you will see many tiny bodies mingle in many ways all through the empty
space right in the light of the rays, [...] And for this reason it is the more right for you to
give heed to these bodies, which you see jostling in the sun’s rays, because such jostling
hints that there are movements of matter too beneath them, secret and unseen. For you

1The book, or better the three books composing the "De rerum natura", were rediscovered by the
humanist Poggio Bracciolini who can be considered as a real book hunter: he also found an essay
by Vetruvio and a book by Quintiliano, two mile stones for respectively architecture and law still
nowadays.
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1. Introduction

will see many particles there stirred by unseen blows change their course and turn back,
driven backwards on their path, now this way, now that, in every direction everywhere.
You may know that this shifting movement comes to them all from the first-beginnings.
For first the first-beginnings of things move of themselves; then those bodies which are
formed of a tiny union, and are, as it were, nearest to the powers of the first-beginnings,
are smitten and stirred by their unseen blows, and they in their turn, rouse up bodies a
little larger. And so the movement passes upwards from the first-beginnings, and little
by little comes forth to our senses, so that those bodies move too, which we can descry
in the sun’s light; yet it is not clearly seen by what blows they do it.".

Technically this is not the description of a diffusion process, there’s no gradient of any
physical quantity, but we can find in these lines some fundamental aspects of the phe-
nomenon. First of all we remark the atomistic vision of matter, that Lucretius derived
from Democritus and Leucippus, and that was still a strong matter of debate at the
end of the nineteenth century, when a scientific analysis around diffusion was finally
produced: "I don’t think that atoms do exist" is what Ernst Mach said at the conference
held at the Royal Academy of Science in Vienna in the 1897.
Then, no hidden or mysterious force is taken into account in Lucretius’ description, but
particles are moved by "movements of matter too beneath them", suggesting the idea of
the molecular collisions between diffusing and medium molecules which will be one of
the interpretations given by Brown to his observations. Finally, motions and collisions
are intrinsically generated by "the first beginnings", and this may be seen as an idea of
the thermic agitation of molecules.

One of the most important moments in the history of diffusion analysis arrived almost
two thousand years later when a Scottish biologist, Robert Brown, based on the previous
observations of coal dust particles on the surface of alcohol of Jan Ingenhousz, analyzed
the motion of pollen grains in water. The wondering feature of this phenomenon was the
complete randomness of the movements of the particles and the fact that these were not
due to any current in the fluid or from its evaporation, but that mobility was belonging
to the particles them selves. This work can be considered as a milestone in this discipline
and signed the history of research in diffusion. What later on would have been called as
Brownian Motion, represents the prototipe of any diffusion process and the basis of all
those works that, observing it, gave a great insight not only into molecular physics or
chemistry, but also to an incredibly large number of different disciplines as mathematics,
biology, sociology and economics, just too cite some of them.

The first attempt to perform a quantitative analysis of the diffusion mechanism, was
done by the German physicist Adolf Fick around the half of the nineteenth century.
Inspired by the experimental results obtained by Tomas Graham on diffusion of salt in
water and by the intuition that there may be an analogy between diffusion an heat trans-
mission, he arrived to propose the two basic equations of diffusion that lately became

9



1. Introduction

known as the first and second Fick’s laws. These equations still constitute the basis of
the formalism adopted nowadays and the starting point for all the new advancements
and variations on the diffusion process.

The first law expresses the hypothesis that the number of diffusing particles crossing a
unit surface in the unit time is linearly proportional to the gradient of the concentration
measured normally to that surface through a parameter denoted as diffusion coefficient

J = −D∂C
∂x

(1.5)

where J is the flux, C is the concentration, x is the direction perpendicular to the surface
and D is the diffusion coefficient. The minus sign reflects the fact that the flux goes
against the gradient. If J and C are expressed in terms of the same units, say gram, it
is easy to show that D has the dimensions of a surface divided by a time (usually these
are cm2/sec).

The second law stems from the first one when considering the change in time of the
concentration calculated in a certain portion of an isotropic medium. For the sake
of simplicity we consider the one dimensional case and take the value C of a linear
concentration of particles at point x along a line. The higher dimensional cases can be
easily obtained by generalization and do not add anything to this introduction. The
change in time of the amount of particles contained in an infinitesimal segment of length
2dx and centered at x, is given by the difference between the particle fluxes calculated
at its borders x− dx and x+ dx. Therefore, if Jx is the flux at the central point x, we

x+ dxx− dx

J− J+

x

Figure 1.4.: One dimensional example.

have
J− = Jx −

∂Jx
∂x

dx and J+ = Jx + ∂Jx
∂x

dx. (1.6)

The quantity
J− − J+ = −2dx∂Jx

∂x
(1.7)

is the change in time of the amount of substance in the segment equal to

2dx∂C
∂t

(1.8)

10



1. Introduction

where the minus sign takes into account the fact that the two fluxes have different
orientations, namely J− is an entering flux and J+ is an exiting one.
Collecting things all together and using the first Fick’s law, it is straightforward to obatin

∂C

∂t
= D

∂2C

∂x2 (1.9)

being the expression of the second Fick’s law.

1.2.1. Einstein Equation
A microscopical explanation of the Brownian motion remained unsatisfied for almost
one century, until the beginning of the 20th century. In the years between the 1905 and
the 1908 Einstein published five papers with the aim to give a solid mathematical form
to the Brownian motion phenomenon. Convinced that the motion of small particles
suspended in a liquid could represent an evident manifestation of the molecular kinetic
theory of heat, he based his analysis on the idea that the basic quantity of this process
was not the average velocity of particles, as it was mostly believed at those times, but
their mean squared displacement at time t 〈X2(t)〉, and that such an approach could
allow for a numerical estimation of the Avogadro number and the size of atoms.

We now briefly sketch the guidelines of the seminal paper published in 1905 on the
Annalen der Physik. paper that has represented an enormous breakthrough for the
physics of atoms and molecules.
Calculations start by considering a certain number of "bodies of microscopically visible
size suspended in a liquid" and subject to a force F (x) depending exclusively on space
and not on time.2

A first equilibrium condition is obtained by balancing the external force contribution to
the motion of molecules with the term deriving from the osmotic pressure

Fφ = RT

NA

∂φ

∂x
(1.10)

where φ is the number of particles per volume unit, R is the ideal gas constant, NA is
the Avogadro number. A further equilibrium condition is obtained by the superposition

2we will omit for brevity the first sections where the osmotic pressure of the solution is obtained and
will use a different notation from the original one
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1. Introduction

of two competitive movements of particles: the one caused by the external force and the
one given by the diffusion process.
Assuming a spherical shape of radius ρ for the solute particles and denoting as η the
viscosity coefficient of the liquid, each particle is impressed a velocity v = F/6πηρ by
the external force and therefore, a number

nF = φv = φF

6πηρ (1.11)

will be driven by the force F across each unit area perpendicular to the direction of
motion. In a static state situation, this number has to be equilibrated by the number of
particles traveling across the same area pushed by diffusion. This number is given

nD = −D∂φ
∂x

(1.12)

therefore it is obtained that

φF

6πηρ = −D∂φ
∂x

(1.13)

Using equation (1.10) it is easy to obtain an explicit expression for the diffusion constant
as

D = RT

NA

1
6πηρ (1.14)

Last equation can be rewritten in a different form if we introduce the Boltzmann constant
KB = R/NA and identify the product 6πηρ as the friction constant ζ. Hence,

D = KBT

ζ
(1.15)

Last result shows that the diffusion constant is strongly related to the response to an
external force here represented by the friction constant. We shall later give a proof that
the Einstein relation can be enclosed in the domain of the more general Fluctuation
Dissipation Theorem which demonstrates that the main characteristics of the thermal
motion of a particle are strictly related to its reaction to an external field.

12
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On a second stage Einstein considered the successive positions of a Brownian particle at
time intervals τ and based his analysis on two fundamental assumptions: first, τ is taken
to be small but sufficiently large to remove any correlation between the movements of
particles on two consecutive time intervals; second, movements of particles are mutually
independent.
Being N the total number of solute particles, in the time interval τ the number of

particles experiencing a displacement in the x direction between ∆ and ∆ + d∆ is given
by

dN = NΦ(∆)d∆ (1.16)

where Φ(∆) is the probability distribution function followed by the displacements. A
third assumption is made by considering Φ symmetrical respect to the origin and different
from zero only for small ∆ values.
If the particle number density φ is taken as a function of time and space, the following

equation is satisfied

φ(x, t+ τ)dx = dx

∫
φ(x+ ∆, t)Φ(∆)d∆ (1.17)

Being both τ and ∆ small quantities, an expansion is possible in these variables

φ(x, t) + ∂φ

∂t
τ =

∫ (
φ(x, t) + ∂φ

∂x
∆ + 1

2
∂2φ

∂x2 ∆2
)
Φ(∆)d∆

= φ(x, t)
∫

Φ(∆)d∆ + ∂φ

∂x

∫
∆Φ(∆)d∆

+ ∂2φ

∂x2

∫ ∆2

2 Φ(∆)d∆ (1.18)

The first term on the right hand side gives φ(x, t) being the distribution Φ normalized;
the second one vanishes being Φ symmetric. The second Fick´s law is therefore recovered

∂φ

∂t
= D

∂2φ

∂x2 (1.19)

having identified the diffusion constant as the average of the squared displacement ∆

13



1. Introduction

divided by twice the time interval τ

D = 〈∆
2〉

2τ (1.20)

Reverting last equation and considering equation (1.14), it is possible to link an ob-
servable quantity like the displacement in time t to the microscopic quantities

Lt =
√

2Dt (1.21)

1.2.2. Anomalous Diffusion
The basic laws of the usual Brownian Motion are in deep relationship with the statement
of the Central Limit Theorem. Whenever the CLT is not respected for any reason, it
is possible to observe deviations from the usual properties of the fundamental physical
quantities that lead to anomalous behaviors.
In particular, such situations are encountered whenever the system is affected by broad
probability distributions of some relevant quantities with divergent first or second mo-
ment, or by long-range correlations (Bouchaud and Georges, 1990a).

Let us consider the simple one dimensional random walk: a walker performs at fixed
times τ a step of length l in the positive or negative direction according to a distribution
p(l) of the steps.
After N steps, or equivalently a time t = Nτ , the position of the walker is given by the
sum of the steps

xN =
N∑
n=1

ln. (1.22)

If the first two moments of p(l) do exist, the mean and the variance of the position are
given by

〈xN 〉 = vt and 〈x2
N 〉 − 〈xN 〉2 = 2Dt (1.23)

where v is a velocity term defined as

v = 〈l〉
τ

(1.24)

and D the diffusion constant defined as

D = 〈l
2〉 − 〈l〉2

2τ (1.25)
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1. Introduction

This summarizes the general features of the (biased if we assume that left and right steps
are not equally probable making 〈l〉 6= 0) Brownian Motion. As we can see the variance
of the position increases linearly with time. Whenever the dependence of the variance on
time has a different scaling we are in the presence of an anomalous diffusion process and
will speak about subdiffusion if the dependence is lower than linear, or superdiffusion if
it is larger
These two cases occur whenever one or both of the two conditions we previously men-
tioned are given: the divergence of at least one of the first two moments of p(l), the
presence of long-range correlations among the steps.

As a representative case of anomalous diffusion let us consider a Continuous Time Ran-
dom Walk problem. This is given by a random walk on a regular d-dimensional lattice
where the time between successive steps τ is no more a fixed quantity, but a random
variable following a given probability distribution ψ(τ). The system is taken in its “an-
nealed" version, meaning that each site is associated to a waiting time variable whose
value can vary on time according to ψ. The alternative “quenched" version of the system
is obtained by “freezing" the environment and associating to each site a fixed τ value,
alway according to the ψ distribution.
After N steps or a time t, the mean squared displacement of the walker along the α
direction is

〈x2
α〉 = 〈l2α〉N for N −→∞ (1.26)

with
〈l2α〉 =

∫
p(l)l2αddl (1.27)

while the total time elapsed t is equal to the sum of the several waiting times

t =
N∑
n=1

τn. (1.28)

In the case of finite average of the waiting time 〈τ〉, t grows like N〈τ〉 and diffusion is
normal

〈x2
α〉 = 2Dααt with Dαα = 〈l

2
α〉

2〈τ〉 . (1.29)

If on the other hand ψ is a broad distribution as for example

ψ(τ) ∝ τµ0 τ−(1+µ) (τ −→∞) (1.30)

with 0 < µ ≤ 1, then 〈τ〉 = +∞ and t behaves like

t ∼ τ0N
1/µ (1.31)
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leading to a subdhiffusive regime with

〈x2
α〉 ∼ 〈l2α〉

( t
τ0

)µ
for µ ∈ (0, 1) (1.32)

or
〈x2
α〉 ∼ 〈l2α〉

( t

τ0 ln(t/µ)
)

for µ = 1 (1.33)

As an example for a superdiffusive case we consider the Lorentz gas model where the
anomaly of the diffusion is induced by the geometry of the system (Bouchaud and
Georges, 1990a): a particle is free to wander in a regular cubic or hypercubic lattice

Figure 1.5.: Slnai’s billard on a square lattice.

and gets reflected whenever it collides with some spherical obstacles placed at the centre
of specific cells (see figure 1.5). This environment is more commonly known as Sinai’s
Billard (Sinai, 1970).
The length of each path between successive collisions is not a priori limited and distances
travelled with one single path can be arbitrarily long. It is possible to estimate the shape
of distribution of the length l of the paths in the limit of infinite lengths as

p(l) ' 1− r
l3

(1.34)
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where r is the radius of the spheres and the lattice spacing has been set to 2. (with
this assumption for r = 1 the spheres come into contact and no free diffusion is possible
anymore).
Diffusion in this environment can then be modeled as a Levy flight showing the following
dependence of the mean square displacement on time

〈x2
α〉 ∼ t ln t (1.35)

This is of course only a rough approximation, since the dynamics is highly caothic and
complicated correlations between successive paths do exist, but still it is enough to give
an example of what a super diffusive motion may appear.
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2. Analytical tools

After the brief historical overview of the preceding chapter, we are going to open this sec-
ond section with a more detailed presentation of the analytical tools we used to derivate
our results.
Our models are basically fed by two ingredients: the Flory-Huggins model establish-
ing the thermodynamics of molecule-polymer solutions, later reviewed by Bawendi and
Freed, and the Effective Medium Approximation used in the scenario of the analogy
between conduction and diffusion problems, developed among the others by Kirkpatrick
and adapted by Yuge.

2.1. Flory-Huggins Theory
In the early forties of the last century the American physicists Paul J. Flory and Maurice
L. Huggins developed independently from each other a statistical mechanical analysis
of high polymer solutions moving from a previous qualitative treatment advanced by
Meyer (Flory, 1942), (Huggins, 1942). Aim of the works of all of them was to explain
the large deviations shown by the entropy of mixing of polymeric solutions from the
result predicted by the Raoult’s law

∆S = −R
(
n1 lnX1 + n2 lnX2

)
(2.1)

where ni is the number of moles of species i, Xi is the related mole fraction and R is the
universal gas constant. Meyer argued that the Raoult’s law could hold only in the case of
mixing of molecules of the same size. He advanced an idealized model for such solutions
based on a quasi-solid lattice different from the one usually adopted for the derivation
of eq.(2.1). In Meyer’s lattice every site can be occupied by a solvent molecule or by a
segment of a polymer chain. A segment does not correspond necessarily to a particular
polymer unit identified by a specific sequence of atoms, but it is more easily a polymer
section having the same size of the lattice cell. Polymers are therefore represented by
a sequence of consecutive cells occupied by segments and arranged in a large variety of
ways.

Ideal solutions are mixtures for which two conditions simultaneously hold: the entropy
of mixing is given by equation (2.1); the heat of mixing is equal to zero. Whenever one
of these conditions is not fulfilled the solution is not ideal. In any case, it has been ob-
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served that the heat of mixing plays a secondary role and deviations from ideal behavior
are mostly due to the entropy. In particular Flory advanced the idea that for polymeric
solutions this should not be expressed via mole fractions as in the Raoult law, but via
volume fractions. The difference is crucial: using mole fractions as leading parameter the
contribution of each molecule to the entropy does not take into account its dimension;
namely, long polymeric chains or small molecules give the same entropic contribution.
We will give now a brief overview on the Flory-Huggins model, sketching its main fea-
tures, approximations and results. We will follow the steps shown in Flory (1942).
Let us start this argument by considering an ideal mixing of two molecular species hav-
ing the same size. This situation can be easily visualized in a lattice where each site is
occupied by one molecule as shown in figure (2.1).

Figure 2.1.: Ideal binary solution lattice scheme.

The entropy of mixing ∆S may be derived by considering the number of ways the
molecules can be organized in the lattice. Therefore, taking N1 molecules of species 1
and N2 = N −N1 molecules of species 2, with N the total number of sites, the number
of all possible configurations simply corresponds to the total number of combinations of
N1 objects in N available places

Ω = N !
N1!N2! (2.2)
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Using the Boltzmann formula
∆S = KB ln Ω (2.3)

and the Stirling approximation lnn! = n lnn− n, the entropy of mixing is given by

∆S = KB

(
N lnN −N1 lnN1 −N2 lnN2

)
= (2.4)

= −KB

(
N1 ln N1

N
−N2 ln N2

N

)
. (2.5)

Introducing the volume fractions (or number concentrations in this case) φi = Ni/N , we
have

∆S = −KB

(
N1 lnφ1 −N2 lnφ2

)
(2.6)

The Raoult law is recovered by converting the Boltzmann constant to the gas constant
R = KBNA where NA id the Avogadro number and using the equality in this simple
model between volume and mole fractions

∆S = −R
(N1
NA

lnX1 −
N2
NA

lnX2
)

= (2.7)

= −R
(
n1 lnX1 − n2 lnX2

)
(2.8)

Let us now jump into the polymeric variant of the system. The ideal solution model,
strongly based on the assumption of similar size of solvent and solute molecules, can
hardly hold for polymer solutions where one component is several order of magnitudes
larger than the other one(s). In order to keep the same lattice approach in this new case,
specific corrections have to be considered.

The Flory-Huggins model is based on four assumptions which define the nature of the
lattice where the solution is placed and the approximations relating to the site occupancy
probabilities:
(1) the solution is studied in a Meyer’s lattice: each lattice site can host either a solvent
molecule or a polymer segment. As previously said a segment is a polymer unit not
necessarily corresponding to a given molecular section of the polymer, but simply a
chain section of the same size of the solvent molecule. Polymers are therefore modeled as
chains of segments arranged in adjacent sites. Segments are identical, indistinguishable
and therefore interchangeable. The lattice constant does not depend on composition;
(2) all polymer chains are assumed to have the same length and consist of L segments.
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The index L is therefore equal to the molecular volume ratio between polymer and
solvent molecules;
(3) the average concentration of segments in cells close to other segments is considered
to be equal to the over-all average concentration. This point becomes crucial for the
estimation of the total number of possible different configurations of the system.
Let us consider the placement of a polymer chain in a lattice where N2 polymer molecules
have been already placed. We denote with N the total number of sites of the lattice
and z its coordination number.1 After one among the N − LN2 empty sites has been
selected as a terminal segment of the chain, according to the third assumption, the
expected number of available sites for the second segment to be put is z(1 − LN2/N).
The expected number of available sites for the third segment gives the fourth assumption:
(4) The expected number of available positions for each successive segment is denoted
as α and is taken equal to

α =
(
1− LN2

N

)(
z − 1

)
(2.9)

This results to be an overestimate because it includes impossible configurations such
those in which two segments of the same chain overlap.
The average number of configurations νN2+1 for a single chain in the lattice is given by

νN2+1 = 1
2
(
N − LN2

)( z

z − 1
)
αL−1 (2.10)

where the factor 1/2 has been introduced not to count twice equivalent configurations ob-
tained by reverting upside down the chain. The number of all the possible configurations
for N2 chains is therefore

W = 1
N2!

N2∏
k=1

νk =
( LLN2

2N2N2!
)
·
[ (N/L)!

(N/L−N2)!

]L (z − 1
N

)(L−1)N2

'
(1

2
)N2
·
[
NN1+N2

NN1
1 NN2

2

]
·
(z − 1

e

)(L−1)N2
(2.11)

where the Stirling formula N ! ' (N/e)N has been used again and the number of solvent
molecules N1 = N − LN2 has been introduced.

1We are using a different notation from the Flory´s original one in order to be coherent with the rest
of the paper.
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The configurational entropy of mixing ∆Sm is related to W

∆Sm = KB lnW =

' −KB

[
N1 ln

( N1
N1 + LN2

)
+N2 ln

( N2
N1 + LN2

)]
+

+KBN2(z − 1)
(

ln(z − 1)− 1
)
−KBN2 ln 2 (2.12)

Having considered as reference states the pure solvent and pure, perfectly ordered poly-
mer, last expression (2.12) gives the entropy change when mixing N1 pure solvent
molecules with N2 perfectly arranged and oriented polymer chains. In order to ob-
tain the entropy of mixing for randomly entangled polymers, we have to subtract to
eq.(2.12) its N1 = 0 value ∆S∗m given by

∆S∗m = KBN2 ln
(L

2
)

+KBN2(z − 1)
(

ln(z − 1)− 1
)

(2.13)

Hence, we have for the final entropy of mixing ∆S

∆S = ∆Sm −∆S∗m = −KB

[
N1 ln

( N1
N1 + LN2

)
+N2 ln

( N2L

N1 + LN2

)]
(2.14)

which can be rewritten as

∆S = −KB

(
N1 lnφ1 +N2 lnφ2

)
(2.15)

if we introduce the volume fractions φ1 and φ2 of respectively the solvent and polymer
molecules as

φ1 = N1
N

and φ2 = N2L

N
. (2.16)

Eq.(2.15) is analogous to the Raoult’s law of eq.(2.1) with the only difference given by
the presence of volume fractions in the place of the molar fractions but the predictions
it produces result to be closer to the experimental data.

Let us now move further our presentation and focus on the expression of the free energy.
The heat of mixing is calculated as the difference between the energy of the solution and
the energy of a reference state that in our case is given by the pure separated components.
The only energetic contributions considered are those exchanged by molecules at strict
contact. Non nearest neighbor contributions are therefore neglected.
With this assumption the heat of mixing is easily estimated by first considering the
energy spent in forming two bonds between molecules of different species starting from
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two bonds among molecules of the same kind. It is clear that taken ε11, ε22 and ε12
as respectively the energy of the solvent-solvent, segment-segment and solvent-segment
bond, this difference is given by

∆ε = ε12 −
1
2(ε11 + ε22) (2.17)

The second step is to estimate the number of such bonds. Each polymer chain has an
approximate number of free adjacent cells equal to (z − 2)L + 2. The fraction of those
occupied by solvent molecules can be in first approximation taken as the whole volume
fraction in the lattice. This gives an approximate total number of solvent - segment
contacts equal to zLN2φ1 = zN1φ2 and a total heat of mixing given by

∆H = zN1φ2∆ε (2.18)

Expressing last equation (2.18) in KBT units we have

∆H = N1φ2χKBT (2.19)

where
χ = z∆ε

KBT
= z(2ε12 − ε11 − ε22)

2KBT
(2.20)

is the well known Flory-Huggins parameter, the physical interpretation of which is the
energy difference between a solvent molecule completely surrounded by segments and
another one surrounded only by molecules of its own kind.

The free energy of mixing is finally obtained by coupling equations (2.19) and (2.15)

∆F = ∆H − T∆S = KBT
(
N1 lnφ1 +N2 lnφ2 + χN1φ2

)
= NKBT

(
φ1 lnφ1 + φ2

L
lnφ2 + χφ1φ2

)
(2.21)

2.1.1. Limitations of the Flory-Huggins theory and Bawendi-Freed
corrections

The Flory-Huggins theory has represented a guide for several decades for every research
on polymer solutions and still nowadays preserves this role of guideline. The model is
nonetheless affected by some limitations. These mainly origin from assumptions (3) and
(4). The latter, as already said, takes into account impossible arrangements of the chains
and overestimates the number of the possible configurations.
Assumption (3) states the mean field approximation character of the model. It affirms
that the probability for a site to be occupied by a molecule of kind i is equal to its
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number concentration φi. Therefore, once we have placed a segment in a certain cell,
the probability for any nearest neighboring site to be occupied by a solvent molecule is
φ1 and by another segment is φ2. This of course neglects to consider that a segment
has to be surrounded by at least another segment and, in the case it is not the terminal
part of it, at least two. This approximation becomes evident when we give a look at the
shape of eq.(2.21) where the energy is seen to be proportional to the product between
concentrations φ1 ·φ2. This product represents the probability to find a solvent-segment
couple in two adjacent sites, regardless of the surroundings and the constraints this
produces. Such a model cannot therefore exactly solve the Flory-Huggins lattice itself.

Another limitation is represented by the interaction term containing the well-known
Flory-Huggins parameter χ

g12 = z

2
(ε11 + ε22 − ε12

KBT

)
. (2.22)

In the Flory-Huggins theory this results to be a pure energetic term, concentration inde-
pendent and proportional to T−1. More careful examinations revealed that g12 is not a
purely energetic coefficient, but is also concentration dependent via additional entropic
contributions.

These issues, that were of course clear and known to Flory and Huggins themselves,
have been the topic of several theoretical researches in the last years and gave birth to
several models moved by the aim to overcome those limitations.
The first attempts could be generally divided in two categories. The first one contains
those models in which assumptions (3) and (4) are reformulated by giving a more accu-
rate definition of the site occupancy probabilities. While managing to obtain a correct
energy plus entropy shape of the g12 parameter, these theories are still unable to produce
a rigorous and systematic correction to the original FH mean field nature of the lattice
model.
Models belonging to the second category are usually based on equation of state ar-
guments, and lack the rigor of being derived by statistical mechanical methods which
permit the systematic computation of either the parameters of the theory or the correc-
tions to the analytical procedure.
Hence, both types of theories do not provide a real solution of the Flory-Huggins lattice.

Such a solution has been later advanced by M.G.Bawendi, K.F.Freed and coworkers.
In their works they presented an exact mathematical solution based on a systematic
series expansion in the interaction energy parameters and inverse coordination number
which leads to the expression of an effective interaction parameter. This results to have
both an entropic and energetic nature, to be a function of the concentrations and to

24



2. Analytical tools

contain terms proportional to T−2.

It will be sufficient for our scopes to show the expression of the Free Energy of the
ternary system void-solvent-segment obtained by Bawendi and Freed (Bawendi and
Freed, 1988), since this will be the starting point of our analytical treatments in the
next sections.

The model is based on the same Flory-Huggins lattice with the addition of empty
sites. Each site can therefore be occupied by one solvent molecule, a polymer segment
or simply be empty. The volume fraction, or number concentration of the voids is
denoted by φ0 = 1− φ1 − φ2. The Helmholtz free energy of mixing of such a system is
given in the Bawendi-Freed model by the following expression

F = NKBT
(
φ0 lnφ0 + φ1 lnφ1 + φ2

L
lnφ2 +

0,2∑
i<j

gijφiφj
)

(2.23)

where the interaction functions gij are made of a mean field energetic factor f0
ij , con-

taining the classical Flory-Huggins term, plus energetic and entropic corrections arising
from the series expansion and denoted respectively by f1

ij and sij

gij = f0
ij + f1

ij + sij (2.24)

Defining ε = ε11 + ε22 − ε12 and φ = φ1 + φ2, the first mean field factors are expressed
as follows

f0
01 = z

[ε11
2 −

ε211
4 φ(1− φ) +O(ε311)

]
(2.25)

f0
02 = z

[ε22
2 −

ε222
4 φ(1− φ) +O(ε322)

]
(2.26)

f0
12 = z

[ ε
2 + ε211

4 + ε222
4 + ε212

2 +

+
(
− ε211 −

ε222
2 + ε11ε12 + ε212

2
)
φ1 +

(
− ε222 −

ε211
2 + ε22ε12 + ε212

2
)
φ2 +

+
(3

4ε
2
11 −

1
4ε

2
22 − ε11ε12

)
φ2

1 +
(3

4ε
2
22 −

1
4ε

2
11 − ε22ε12

)
φ2

2 +

+
(3

4ε
2
11 −

3
4ε

2
22 −

1
2ε11ε22 − ε212

)
φ1φ2 +O(ε3ij)

]
(2.27)

where each linear term in εij represents the Flory-Huggins term while quadratic ones
brings a mean field correction. The polynomes are stopped at the order zε2ij having
implicitly and arbitrarily assumed that the interaction parameters εij scale as z−2/3.
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The mean field nature of these corrections stems in the fact that these are originated by
the first order of the series expansion performed by Bawendi and Freed where spacial
correlations between segments belonging to the same chain are neglected and these are
therefore considered as uncorrelated. This is the reason why the polymerization index
L does not appear in these expressions.

The corrections to this aspect are produced by the successive terms in the series where
the space correlation between consecutive segments are taken into account. This gives
rise to the functions f1

ij and sij

f1
01 = 0

f1
02 = − ε22

(L− 1
L

)
(1− φ) +O(ε222, ε22/z) (2.28)

f1
12 =

(L− 1
L

)[
ε22(φ1 + φ2 − 2)− ε11φ1 + 2ε12(1− φ2)

]
+ O(ε2ij , εij/z) (2.29)

and

s01 = 0

s02 = − 1
z

(L− 1
L

)2
− 1

3z2
5(L− 1)4 + 2(L− 1)3 − 12(L− 1)2 − 12(L− 1) + 3

L4 +

+ φ

3z2
4(L− 1)4 − 2(L− 1)3 − 12(L− 1)2

L4 − 2φ2

z2

(L− 1
L

)4
+O(z−3) (2.30)

s12 = − 1
z

(L− 1
L

)2
− 1

z2
3(L− 1)2 − 6(L− 1) + 1

L2 +

+ φ1
3z2

(L− 1)2[10(L− 1)− 12]
L3 + 2φ2

3z2
(L− 1)2[10(L− 1)− 12]

L3

− 6φ1φ2
z2

(L− 1
L

)4
− 2φ2

1
z2

(L− 1
L

)4
− 6φ2

1
z2

(L− 1
L

)4
+O(z−3) (2.31)

We can consider the presentation of the Bawendi-Freed model concluded at this point
for what our needs are. The essence of the Flory-Huggins theory, together with the cor-
rections produced by the Bawendi-Freed model, represents the base of our calculations.
We will start from the environment they form to proceed in our analysis of sorption
and diffusion phenomena of small molecules in polymeric media. In particular we will
consider the same lattice representation used by Bawendi and Freed and will move our
steps from their expression of the free energy of mixing. We will also retain the second
assumption of the Flory-Huggins theory relating to the polymerization index L which
will be considered to be the same for all polymer molecules.
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2.2. Effective Medium Theory
The analogy between electric conduction and diffusion phenomena is well known and
formally established. Both are forms of transport of matter trying to relax a non equi-
librium situation: in one case the non equilibrium is given by a potential difference and
the particles moving to eliminate it are electrically charged, in the other one, the imbal-
ance is given by a concentration difference and electrical charge of the particles is not
considered.
Moreover, equations describing the two processes have the same form and related

quantities can easily be mapped among each other.
As a consequence, results and procedures adopted in one context can be directly trans-

lated and used in the other one. The results shown in this book are a clear example of
such a possibility and in chapter 4 we are going to use an effective medium approach,
first outlined by Bruggeman (Bruggeman, 1935) and Landauer (Landauer, 1952) to an-
alyze conduction in mixtures, to obtain an effective medium diffusion constant of our
lattice sample.
We introduce now the main features of the Effective Medium Approximation as given

in the works by Kirkpatrick (Kirkpatrick, 1971, 1973), where this technique is used to
solve a random resistor network and will show later a correction proposed by Yuge in
(Yuge, 1977) to take in to account some particular kind of correlations affecting the
system.

2.2.1. Kirkpatrick model
The work by Kirkpatrick analyzes a two phase mixture made of conducting and insulat-
ing (or less conducting) elements in order to observe the connection between percolation
and the main conductivity of the system.
Both bond and site percolation approaches are used in two and there dimensions and an
effective medium conductivity is obtained and compared to Monte Carlo simulations.
Let us start our introduction with the bond case where each vertex of a cubic regular
lattice may be connected with fixed probability p to each of its nearest neighbors by a
conducting link. The probability factor p is therefore directly translated into the volume
fraction of conducting bonds while the size of the lattice can be denoted as N and be
considered to grow to infinite during the calculations.
Let us focus for a moment only at the percolation problem. Exploring the domain of
p it is easy to understand that in the p ' 0 region, bonds are very sparse and form at
most small groups of few bonds. Increasing a little bit the value of p, these small clusters
start to grow and may merge together forming bigger clusters but still they are not able
to cross the whole lattice. This happens as soon as p reaches the percolation thresh-
old pc. An infinite cluster appears and particles that may travel along the bonds have
now the possibility to walk from an extreme of the system to the opposite one. In the
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p→ 1 limit the lattice gets fully connected and every point is linked to all of its neighbors.

Introducing the percolation probability P (p) as the probability for a bond to belong
to the infinite cluster, it is possible to estimate a general behavior for P (p), remaining
zero below the percolation threshold, rising from zero at pc and approaching the bisector
P (p) = p in the limit of p going to 1. A simple qualitative representation of such a
shape is given in figure 2.2, while real experimental and simulated data are reported in
Kirkpatrick (1971, 1973).

P(p)

pp
c

1

Figure 2.2.: Qualitative example of the functional behavior of the probabilty P (p).

The conductance of the system is calculated by considering a finite cubic lattice and
assigning a difference of potential to two opposite faces of the system. Ciclic boundary
conditions are then imposed at the remaining opposite faces. In this way the lattice
becomes essentially infinite in the directions perpendicular to the applied voltage. The
current flowing through the bonds is then calculated by solving through a finite differ-
ences method the Kirchhoff´s equations∑

i

gij(Vi − Vj) = 0 (2.32)

where Vi is the potential at vertex i, gij is the conductance of the bond between points
i and j.
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Plotting both P (p) and the global conductance G(p), the functions show the same
threshold at pc = 0.5 in the bi-dimensional case and pc = 0.25 in the three-dimensional
one, but present severely different rising slops at p = pc. The percolation probability
rises abruptly from zero with infinite slope while the conductance has a slow growth
with zero derivative at pc. Therefore, even if the two quantities are obviously related to
each other by topological arguments, they are not directly proportional to each other.
Again, we show a pure qualitative comparison of the ways the two functions behave in
figure 2.3, while corresponding data cane found in Kirkpatrick (1971, 1973).

P(p)

pp
c

1

G(p)

Figure 2.3.: Qualitative example of the functional behavior of the probabilty P (p) and
the main conductance G(p).

An analytical result is obtained in the effective medium approximation context. The
distribution of voltages in the random resistor network is considered to be given by the
superposition of two contributions: an external field due to the voltage difference applied
which increases the node potentials by a constant amount Vm along the applied voltage
direction, and a local fluctuating field.
The philosophy at the base of the Effective Medium Approximation may be roughly
summarized as follows: a representative element of the system is considered to be sur-
rounded by an effective medium that has to be self-consistently determined. This is done
solving for the exact field around this element and requiring that the fluctuations of the
local one average to zero.
As a representative element we take a link between points A and B of conductance
gAB = g, oriented along the external field and embedded in the homogeneous effective
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medium where all conductances are set to gm (see figure (2.4)). As already said, the
constant voltage Vm between the two extremes of the bond A and B due to the external
field, is added to the fluctuating potential considered to be due to a fictitious current
I0, inserted in A and extracted in B and whose intensity is chosen to satisfy the current
conservation at A and B

I0 = Vm(gm − g) (2.33)

Figure 2.4.: Scheme adopted by the Effective Medium Approximation.

If we consider G′AB to be the conductance of the whole network measured between points
A and B once the link gAB is removed, the extra voltage V0 induced between the two
points is given by

V0 = I0
GAB

= I0
G′AB + g

(2.34)

The value of G′AB can be calculated and is given by G′AB = (z/2− 1)gm where z is the
number of links departing from each point equal to 2d for regular networks like the one
under examination. Therefore, collecting all things together we have

V0 = Vm
gm − g

g + (d− 1)gm
(2.35)

Assuming that g is distributed according to a probability distribution F (g), the condition
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of the vanishing average of V0 returns the effective medium value of gm

∫
dgF (g) gm − g

g + (d− 1)gm
= 0 (2.36)

Let us consider the simplest binary conducting-insulating case where all bonds have the
same value g = g1 but a fraction (1− p) of them is removed. The distribution F (g) will
be therefore given by

F (g) = pδ(g − g1) + (1− p)δ(g) (2.37)

and equation (2.36) gives

∫
dg
(
pδ(g − g1) + (1− p)δ(g)

) gm − g
g + (d− 1)gm

= p(gm − g1)
g1 + (d− 1)gm

+ 1− p
d− 1 (2.38)

solving for gm we obtain a second degree equation whose positive root is

gm = pd− 1
d− 1 g1 (2.39)

which diverges for d = 1, revealing the fact that the theory as developed so far does not
work for unidimensional systems, and goes to zero at the critical value

pc = 1/d (2.40)

showing an excellent agreement with the values found from the simulations. The same
excellent agreement is found with the bond percolation simulations (we won’t report
here the plots shown in the original paper).

2.2.2. Yuge adaptation
In his paper Kirkpatrick has considered three different situations. The bond percolation
model, which is the one we have just shown, a correlated bond percolation model and a
site percolation model.

In the correlated bond percolation model each site is randomly assigned a value Ei
belonging to the real interval [−1, 1] and a value

Eij = 1
2
(
|Ei|+ |Ej |+ |Ei − Ej |

)
(2.41)
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is calculated for the bond between points i and j. Finally, all bonds having a value Eij
larger than a selected threshold E0 are cut off the system.
In the easiest version of the site percolation model, a fraction (1−p) of the total number

of sites is removed creating an insulating vacancy.

The effective medium approximation works surprisingly well for the bond percolation
case, but is not able to reproduce the profile of the simulated conductance in the region
close to the threshold for the latter two cases. The reason of this misalignment stems
from the correlations which inevitably arise among neighbor links in the correlated bond
and site model but do not appear in the first simple bond situation. The contribution
of these correlations is relevant in the critical region p ' pc while it decreases with
increasing p. This makes the effective medium prediction overlap in any case to the
simulations in the high concentration region.
The way correlations appear is pretty easy to understand. Let us consider first the

correlated bond model. In this situation a bond is present only of its Eij value is lower
than the selected bound E0. This means that taken a point i with a certain value Ei,
the link with neighbor j will exist only if Ej is sufficiently small to obtain Eij < E0.
Therefore, if the link Eij exist, it is likely that also neighboring links will while whenever
there is a vacant link, probably this is due to the fact that a certain Ei is too large and
bonds starting from it are expected to be cut off.
In the site percolation case something similar happens. Once we remove a site, all its
links are automatically removed, therefore every missing bond is never alone but belongs
to a group of at least z missing links.
It is interesting to see the way correlations arise in the site approach, considering a
slightly different model where sites can belong to two different species with different
conductivities but both different from zero.
Let us assume therefore that our infinite regular cubic lattice is filled with cubes of
species A and B and that the conductance of a link between two sites is dependent on
the nature of the cubes it connects. We will have therefore three different categories of
bonds, AA, BB and AB. Correlations come from the fact that if a certain cube is of
type A, there’s no possibility to have a BB link from it, and the same of course if we
choose a B site. In other words, in a chain of consecutive bonds, the presence of an AA
bond, excludes the possibility to have a BB one right after or before it; if we want to
find a BB bond it is necessary to walk over an AB one before.

Many theories have been advanced to introduce correlation effects in the Effective
Medium Approximation. We will focus our attention to the paper written by Yuge
(Yuge, 1977) where the site approach is used to model a random resistor network and
the contribution of the correlations is easily accounted for.

32



2. Analytical tools

Let us therefore consider again a two phase mixture and the usual regular cubic lattice
to model it. As before, cubes belong to either the A or B family. A resistor is assigned
to each of the bonds between neighboring cells and a unit voltage is applied in a certain
direction. If p is the volume fraction of A cubes, bond conductances will have the three
values g1 for AA bonds with probability

q1 = p2 (2.42)

g2 for BB bonds with probability

q2 = (1− p)2 (2.43)

and
g3 = 2 g1g2

g1 + g2
(2.44)

for AB bonds with probability
q3 = 2p(1− p) (2.45)

The average conductance value gA for a bound starting from an A site is therefore given
by

gA = pg1 + (1− p)g3 (2.46)

and similarly for a B site
gB = (1− p)g2 + pg3 (2.47)

In the spirit of the Effective Medium Approximation, the average effect of the gA and
gB values can be considered equal to that of a single value gm opportunely choosen in
order to cancel out on the average the effects of restoring a conductance from gm back
to its true value.
If we take a conductance of value gm, parallel to the potential gradient and surrounded
by an homogeneous network of conductances gm, and if we change its value to its original
value g, we produce an additional voltage V0 between the extremities of the bond. As
we have seen in the previous section, V0 is given by equation (2.35)

V0 = Vm
gm − g

g + (d− 1)gm
(2.48)

As already said, following the guidelines of the Effective Medium Theory, the average
value of V0 has to vanish bringing to equation (2.36)∫

dgF (g) gm − g
g + (d− 1)gm

= 0 (2.49)
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Hence, in the Yuge procedure still a binary mixture is given, but it is an effective one,
originated from the original lattice through rescaling equations (2.46) and (2.47), where
conductances have a value equal to gA with probability p and to gB with probability
(1− p). being subjected to the binary distribution

F (g) = pδ(g − gA) + (1− p)δ(g − gB). (2.50)

If we now turn to the percolation problem and let gb go to zero, then set the average of
V0 to zero and solve for gm, we recover the case examined in the previous section and
obtain the effective medium conductance value as

gm = pd− 1
d− 1 gA (2.51)

having the same form of the expression found by Kirkpatrick and showing the same
percolation threshold, but g1 is substituted by the rescaled conductance gA.

The new expression of gm shows a perfect comparison with experimental data for glass
particle-silicon rubber and glass fiber-plastic systems when plotted against the volume
fraction parameter p. We refer to the original paper for plots and figures.
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3. Sorption of small molecules in polymeric
media

In this chapter we show that a consequent implementation of the “dual-mode” sorption
model, including parallel mechanisms of filling of the preexisting holes in the polymeric
matrix by the penetrant molecules and the dissolution of the matrix in the penetrant,
leads at small pressures to a universal form of the sorption isotherm, similar to the one
proposed by Sefcik and Raucher. The corresponding part of the isotherm is represented
by a Lambert W -function, where W (x) is the solution of the transcendental equation
WeW = x. No additional assumptions done in formulation of the phenomenological
Gas-Polymer Matrix Model are necessary to obtain the result.
Let us remind for the moment the expressions of the sorption laws we mentioned in

the first introduction section, hence, the dual mode, given by

C = kDP + CHbP

1 + bP
, (3.1)

with KD being the Henry’s solubility coefficient, CH the Langmuir’s sorption capacity
parameter and b the affinity parameter, the Gas-Polymer Matrix Model of Sefcik and
Raucher expressed by

C = S0e
−α∗CP (3.2)

where α∗ is a constant and S0 the solubility coefficient at zero concentration and the
solution of which is provided via a Lambert function by

C = 1
α∗
W (α∗S0P ) . (3.3)

and the Flory-Huggins mode

v · exp
[
(1− v) + χ(1− v)2

]
= a (3.4)

with v representing the penetrant volume fraction, χ the Flory-Huggins parameter and
a is the penetrant activity in the gas phase.
We note that common for most of the models of the absorption in glassy polymers

is the assumption of the preexisting free volume, i.e. “holes” frozen due to quenching
into the glassy state. This is also an explicit assumption done in the dual sorption
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mode model. The model however does not take into account that populations of sorbent
molecules dissolving the polymer and absorbed in holes do essentially coexist in the same
piece of a polymeric medium.

The universality of the Lambert-like isotherm originates from the particular shape
of the free energy in the gas phase, and from the fact that the internal energy in a
polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the
concentrations of the three components of the system. The Lambert form appears then
as a universal approximation for the sorption isotherm at low gas pressures and follows
immediately from the conditions of chemical and mechanical (quasi)equilibria in the
system.
Although in general the transcendental W -function representing the result of the gas-

polymer matrix model and of our discussion, and a rational function as following from
the dual sorption mode model differ considerably and cannot be fitted to each other over
a large domain of argument values for arbitrary values of parameters, we show that the
two-parametric fits to experimental data via the Lambert function are not inferior to the
three-parametric dual-mode fits in almost all situations where the dual mode sorption
model applies, so that the two-parametric fit by a Lambert function represents a quite
universal behavior and has to be preferred to the three-parametric dual-mode one.
We do not intend to go far beyond this statement and to provide a quantitative

theory of gas sorption in glassy polymers. Important steps on this way have been done
by the extensive work of Sarti and his collaborators (Doghieri and Sarti, 1996; Sarti
and Doghieri, 1998; Doghieri et al., 2006; De Angelis and Sarti, 2011). In their works
the thermodynamics of the Lattice Fluid theory of Sanchez and Lacombe and of the
Perturbed Hard Sphere Chain theory of Prausnitz are applied and extended to the
non equilibrium glassy phase. Parallel to our simple quasi-equilibrium approach they
assume the polymer density to be an additional internal state variable and a specific
bulk rheology equation, describing its relaxation to a non equilibrium value, is invoked
since the process is essentially a non-equilibrium one.

3.1. The model
Now we turn to the lattice model of the situation, corresponding to using a simple
lattice gas model for a gas phase and a ternary variant of a Flory-Huggins model for
the polymeric medium. At the beginning we will assume the chains to be flexible, so
that the standard variant of the model appears, and no properties of the glass state are
essentially respected. After the discussion of the results for this simplified case we will
show that they essentially do not strongly depend on this assumption, rising a hope that
the behavior is generic. To show that this is indeed the case we reanalyze some available
experimental data.
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Let us therefore consider a polymeric slab of volume V placed in a box of fixed volume
Ω and surrounded by a gas of a pure substance. The whole systems is closed and kept
at temperature T. A regular three dimensional cubic lattice is used to model the box.
The elementary units of this lattice are cubes of volume ω and their total number is
K = Ω/ω. According to the usual prescriptions of the Flory-Huggins model, the size of
ω is chosen to be equal to the size of a gas molecule.

Figure 3.1.: Closed box containing the solid and the gas phase.

For the sake of clarity let us start our discussion by reminding the standard binary
mixture (Bragg-Williams) model for small molecules of types A and B at number con-
centrations x and y = 1− x in a box with M sites. The interaction energies within the
pairs of molecules will be taken −εAA, −εBB and −εAB, respectively (with εij being the
energy necessary to break the corresponding bond, measured in units of kBT ). The free
energy is given by

∆F = U + kBT (x ln x+ y ln y) (3.5)

with the entropic part given by the sum of translational entropies of the particles. The
internal energy U is given by

U

kBT
= z

2(−εAANA − εBBNB) +

+ 1
2(εAA + εBB − 2εAB)NAB (3.6)
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where z is the coordination number of the lattice, NA is the total number of A molecules,
NB is the total number of B molecules, and NAB is the number of neighboring AB-pairs.
Note that the first term in this expression is the energy of the reference state of separated
A and B. Assuming well-mixedness, we get NAB = M(z/2)xy, and obtain the standard
form

∆F = kBT
[
x ln x+ y ln y + z

2(εAA + εBB − 2εAB)xy
]

(3.7)

of the free energy change with respect to this reference state. The same structure of
expression holds for the mixture of more then two components. Note that no “diagonal”
contributions do appear in the model, and the free energy change with respect to the
reference state always has the form

∆F = kBT
[∑

i

xi ln xi +
∑
i<j

gijxixj
]

(3.8)

with xi being the corresponding concentrations. The Flory-Huggins model for polymer
mixture differs from the model above only by the fact that the expressions for the
translational entropies of polymers take the form xi ln xi/Li where Li is the length of
the corresponding molecule (see e.g.Witte et al. (1996)). The model neglects the rest
entropies corresponding to internal motion of the chains and the higher-order (e.g. triple)
interactions.
The simple model considered below is essentially the one of polymer-solvent-non-

solvent (i.e. poor solvent) mixture. In the absence of penetrant the gas (i.e. vacuum)
phase is modeled by empty sites (voids), and the solid phase is a mixture of voids and
polymer chains. The interaction energy between voids themselves and of voids with any
other species is clearly zero, which sets the origin of the energy scale. Note that this to
no extent means that voids are athermal solvent for the polymer, since the disruption of
a monomer-monomer contact raises the total energy of the system: vacuum is essentially
a poor solvent for the polymer, and voids would not be present at high concentration in
an equilibrium configuration of a solid phase. For the case of polymer glass this system
is quenched from the equilibrium state at higher temperature, so that the concentration
of voids φ0 is quenched at the equilibrium level corresponding to the higher temperature
and the translational entropy of the chains is suppressed.

Parallel to the standard description of a ternary Flory-Huggins model, the sum of inter-
nal energies of separated penetrant molecules, polymer, and voids (zero) is considered as
a reference state, and therefore only the changes in the corresponding interaction energies
(e.g. under detaching a monomer-monomer contact and changing it for a monomer-void
one) appear in the theoretical description. At the beginning we will assume that the
voids and the polymer segments are well-mixed (i.e. that the system was quenched from
a state with higher volume but without any perceivable local structure), but this assump-
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tion is secondary. The whole system is essentially a void-penetrant phase in contact with
the void-penetrant-polymer one. The existence of the (meta)stable population of voids
inside the solid phase, and absence of polymers in the gas one (as fixed at formulating
the model) are the only assumptions which make the model different from a fluid ternary
mixture one.

The penetrant’s sorption in the solid phase is assumed to be reversible, as it is the
case in most of experiments. The penetrant molecules may mix with voids and with
the polymer molecules: in the case they were not able to penetrate the polymer’s bulk,
no considerable deviations from the Langmuir’s law, evident in experiment, could be
observed. We consider the situation when the amount of the penetrant molecules both
in the gas phase and in the solid is small, i.e. the gas can to a good approximation still be
considered as ideal, and the total amount of penetrant in the solid is much smaller than
the total amount of monomers. In all our examples these assumptions can be considered
as fulfilled. Penetration of these small molecules could change the volume of the solid
phase. The system consisting of the gas and of solid phase is in mechanical equilibrium,
and in chemical equilibrium with respect to exchange of the penetrant molecules and
the voids between the two phases. Moreover, when minimizing the total free energy of
the system we look only for its local minimum closest to the frozen state of the system
without penetrant.

Figure 3.2.: Regular Lattice representation for the gas phase.

In the gas phase of our model we have to deal with this binary model in its pure
form, with molecule-molecule interaction energy denoted by ε11, and with void-void and
void-molecule interaction energies ε00 = ε01 = 0. The number of sites available in the
gas phase is M , and M1 of these are occupied by a single gas molecule each, so that
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x = M1/M , while M0 = M −M1 is the number of voids (see figure 3.2 for a schematic
view of the gas phase lattice). Thus, the free energy of the gas phase is

∆Fg = MKBT

[
x ln x+ (1− x) ln (1− x) + z

2ε11x(1− x)
]
. (3.9)

where again z indicates the lattice coordination number.
The gas number concentration x is considered equivalent to the ratio P/Psat between
the pressure P and the saturated vapor pressure Psat of the gas at temperature T .

The polymeric medium occupies a total of N = K − M sites and every site can be
occupied by one sorbed gas molecule, by a polymer segment or be empty.
Polymers are organized in chains of L segments. The total number of lattice sites in
the medium corresponds then to N = N0 +N1 +N2 where N0 is the number of empty
sites, N1 is the number of sites occupied by penetrant molecules, and N2 is the number
of polymer segments (see figure 3.3). The number N2 is therefore fixed. A change in
the volume of the polymeric slab due to swelling involves the change of the number of
penetrant molecules and empty sites.

The volume fractions φi of the corresponding sites are given by

φ0 = N0
N

empty sites volume fraction

φ1 = N1
N

penetrant molecules volume fraction

φ2 = N2
N

polymer segments volume fraction

and satisfy the relation φ0 + φ1 + φ2 = 1.

The free energy of the polymeric compound is (Bawendi and Freed, 1988)

∆Fs = NKBT
[
φ0 lnφ0 + φ1 lnφ1 + Spol +

+ g01φ0φ1 + g02φ0φ2 + g12φ1φ2
]

(3.10)

where the terms containing the logarithms account for the entropic contributions, Spol =
φ2
L lnφ2 for the case of a polymer solution. The entropic contribution of the chains is
small for L � 1 and essentially does not play the major role in the system’s behavior
at the relevant values of parameters, but will be retained for the time being. The
corresponding discussion will be given at the end of the next section.
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Figure 3.3.: Regular Lattice representation for the solid phase.

The energetic contributions are entirely enclosed in the last term coupling the volume
fractions through the interaction functions gij . In a simple Flory-Huggins approach the
entries gij are given by (Bawendi et al., 1986)

gFH01 = z

2ε11 (3.11)

gFH02 = z

2ε22 (3.12)

gFH12 = z

2(ε11 + ε22 − 2ε12) (3.13)

Here ε11 is therefore the energy necessary to remove the penetrant-penetrant molecular
bond, as above, ε22 is the same for the “non-chemical” monomer-monomer bond, and ε12
is the monomer-penetrant interaction energy. The diagonal entries gii do not appear in
the theory, like in the binary case above. Note that the energies of the reference states
for the gas and for the solid phase do depend on M and N but sum up to a constant on
the total, since the total amounts of all three components is fixed.
In the binary case (φ0 = 0) the model reduces to the classical Flory-Huggins one, with
gFH12 giving the Flory-Huggins parameter χ in equation (3.4).

For what already explained, we are using the lowest order corrections given by Bawendi
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and Freed that lead to the following expressions for the gij coefficients:

g01 = z
[ε11

2 −
ε211
4 φ(1− φ) +O(ε311)

]
(3.14)

g02 = z
[ε22

2 −
ε222
4 φ(1− φ) +O(ε322)

]
(3.15)

g12 = z
[ ε
2 + ε211

4 + ε222
4 + ε212

2 + (3.16)

+
(
− ε211 −

ε222
2 + ε11ε12 + ε212

2
)
φ1 +

+
(
− ε222 −

ε211
2 + ε22ε12 + ε212

2
)
φ2 +

+
(3

4ε
2
11 −

1
4ε

2
22 − ε11ε12

)
φ2

1 +

+
(3

4ε
2
22 −

1
4ε

2
11 − ε22ε12

)
φ2

2 +

+
(3

4ε
2
11 −

3
4ε

2
22 −

1
2ε11ε22 − ε212

)
φ1φ2 +O(ε3ij)

]

where φ = φ1 + φ2 and ε = ε11 + ε22 − 2ε12.

It is important to consider these corrections since they impact the free energy expansion
already at the zero order in φ1. In what follows we do not perform quantitative evaluation
of equations, and we will not need the exact forms of gij , but we will only concentrate
on the overall polynomial structure of the expansions.

3.2. The free energy
Assuming the model described above we can put down the total free energy of the system
∆F = ∆Fg + ∆Fs:

∆F = KBT
[
M
(
x ln x+ (1− x) ln (1− x) + z

2ε11x(1− x)
)
+

+N
(
φ0 lnφ0 + φ1 lnφ1 + φ2

L
lnφ2 +

∑
i<j

gijφiφj
)]

(3.17)

which depends, besides on temperature, on variablesM,M0,M1, N,N0, N1, and N2. Not
all of them are independent. Thus, the volume of the box is fixed, this means that the
total number of sites K = N +M is constant; the total number of gas molecules in both
phases is conserved, hence, the sum M1 +N1 is constant; finally, the number of polymer
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segments N2 is fixed:

N +M = K = const. (3.18)
N1 +M1 = K1 = const. (3.19)

N2 = K2 = const. (3.20)

This, together with the relations M = M0 +M1 and N = N0 +N1 +N2, gives a set of
five conditions for seven quantities, leaving two independent variables.
We choose them to be M and M1, and express the remaining quantities as follows

M0 = M −M1 (3.21)
N = K −M (3.22)
N0 = K −K1 −K2 −M +M1 = K0 −M +M1 (3.23)
N1 = K1 −M1 (3.24)
N2 = K2 (3.25)

so that
∆F (M,M1, T ) = ∆Fg(M,M1, T ) + ∆Fs(M,M1, T ). (3.26)

The final state is given by minimization of the free energy with respect to M and M1:(∂∆F
∂M

)
M1,T

=
(∂∆Fg
∂M

)
M1,T

+
(∂∆Fs
∂M

)
M1,T

= 0 (3.27)(∂∆F
∂M1

)
M,T

=
(∂∆Fg
∂M1

)
M,T

+
(∂∆Fs
∂M1

)
M,T

= 0 (3.28)

corresponding respectively to the balance between the pressure P in the gas phase and
the force per unit area exerted by the solid during its volume relaxation, and to the
equality of chemical potentials of penetrant in the gas and in the solid phase.

According to Eqs. (3.21)-(3.25), the volume fractions are given by

x = M1
M

(3.29)

φ0 = K0 −M +M1
K −M

(3.30)

φ1 = K1 −M1
K −M

(3.31)

φ2 = K2
K −M

(3.32)
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and the derivatives with respect to M and M1 can be expressed as:(∂∆Fg
∂M

)
M1,T

= KBT
[

ln
(
1− x

)
+ z

2ε11x
2
]

(3.33)(∂∆Fg
∂M1

)
M,T

= KBT
[

ln
( x

1− x
)

+ z

2ε11(1− 2x)
]

(3.34)

(∂∆Fs
∂M

)
M1,T

= KBT
[
− ln

(
1− φ1 − φ2

)
+

−
(
1− 1

L

)
φ2 +G0(φ1, φ2, εij)

]
(3.35)

(∂∆Fs
∂M1

)
M,T

= KBT
[

ln
(1− φ1 − φ2

φ1

)
+G1(φ1, φ2, εij)

]
(3.36)

where G0(φ1, φ2, εij) and G1(φ1, φ2, εij) are two polynomial functions of their arguments
originating from the derivatives of the internal energy term:

G0(φ1, φ2, εij) =
0,2∑
i<j

[
φiφjgij −N

∂

∂M

(
φiφjgij

)]
=

= z
[ε11

2 φ2
1 + ε22

2 φ2
2 + ε12φ1φ2

]
+

+ z
ε222
4
[
φ2

2 − 4φ3
2 + 3φ4

2

]
+

+ z
[ε212

2 φ2 −
(
2ε22ε12 + ε212

)
φ2

2 + 3ε22ε12φ
3
2

]
φ1 +

+ z
[ε211

4 −
(
2ε11ε12 + ε212

)
φ2 +

(3
2ε11ε12 + 3ε212

)
φ2

2

]
φ2

1 +

+ z
[
− ε211 + 3ε11ε12φ2

]
φ3

1 + z
3
4ε

2
11φ

4
1 +O(zε3ij) (3.37)
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and

G1(φ1, φ2, εij) =
0,2∑
i<j

N
∂

∂M1

(
φiφjgij

)
=

= z
[
− ε11

2 + ε11φ1 + ε12φ2
]

+ z
[ε212

2 φ2 −
(
ε22ε12 + ε212

2
)
φ2

2 + ε22ε12φ
3
2

]
+

+ z
[ε211

2 +
(
ε212 −

3
2ε

2
11 −

3
2ε

2
22 − 2ε11ε12 + ε11ε22

)
φ2 + 3

2
(
ε211 + ε222

)
φ2

2

]
φ1 +

+ z
[
− 3

2ε
2
11 + 3ε11ε12φ2

]
φ2

1 + zε211φ
3
1 +O(zε3ij) (3.38)

Applying now equations (3.27) and (3.28) we obtain the following system of equations


(1− φ1 − φ2)e(1− 1

L
)φ2−G0(φ1,φ2,εij) = (1− x) e−zε11x2/2

φ1
(1− φ1 − φ2)e

−G1(φ1,φ2,εij) = x

1− x e
zε11(1−2x)/2 (3.39)

the solution of which gives

φ1 · e(1− 1
L

)φ2−G(φ1,φ2,εij) = x · eH(x,ε11) (3.40)

where
G(φ1, φ2, εij) = G0(φ1, φ2, εij) +G1(φ1, φ2, εij) (3.41)

and
H(x, ε11) = z

2 ε11
(
1− 2x+ x2

)
. (3.42)

The function G can be separated into two parts, one independent on φ1 and one de-
pending on it:

G(φ1, φ2, εij) = Q(φ2, εij) +R(φ1, φ2, εij) =
= Q(φ2, εij) +

∑
k

rk(φ2, εij) · φk1 (3.43)

where the entire dependence on penetrant concentration φ1 is enclosed in the function
R, which is a polynomial

R(φ1, φ2, εij) =
∑
k

rk(φ2, εij) · φk1 (3.44)

starting with the linear term in φ1, while the Q part depends exclusively on segment con-
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centration φ2. We refrain from writing down explicit results for both models discussed,
since only this polynomial form is of importance for what follows. To proceed, we note
that at relatively low pressures (x � 1) φ1, the number concentration of the penetrant
is low, and φ2 is close to its value φ0

2 in the absence of the penetrant. Expansions around
these values provide the results desired.
We rewrite equation (3.40) separating the Q and R contributions and leaving only the

contributions of the lowest order in φ1 in the corresponding exponentials:

φ1e
−r1(φ2,εij)φ1 = xeH(x,ε11)−(1− 1

L
)φ2+Q(φ2,εij) (3.45)

In the moderate pressure regime the solution of (3.45) is given by

φ1 = − 1
r1
W
(
− r1 e

H(x)−(1− 1
L

)φ0
2+Q x

)
(3.46)

where W is the Lambert W -function.

If the empty sites concentration φ0 was low from the very beginning or when it goes to
zero as it happens in the high pressure limit x → 1 (as can be easily shown by solving
equation (3.27)), φ0

2 ≈ 1, the solid compound turns to a binary solution, and our model
reduces to the Flory-Huggins theory of sorption, once the variable x is identified as the
activity of the gas a and the quantity zε/2 is recognized as the Flory-Huggins parameter.
Setting φ0 = 0 and φ1 = 1− φ2 we have

G(φ1, εij) = −z2ε (1− φ1)2 +O(zε2ij) (3.47)

and equation (3.40) goes to

φ1 · exp
[(

1− 1
L

)
(1− φ1) + χ(1− φ1)2

]
= x (3.48)

corresponding to equation (3.4) when L goes to infinity and when the ideal gas case with
H(x, ε11) = 0 is considered. Note that if in this regime φ1 is still small compared to
unity, the previous equation turns to

φ1e
1+χe−(1+2χ)φ1 = x,

and its solution is again given by the Lambert function.
In the very low pressure limit we can assume x � 1, and φ1 small. In this case φ2

equals its value φ0
2 without the penetrant, and H(x) can be neglected if compared to

the constant terms in the argument of the exponential. Thereby, Eq.(3.45) gives a linear
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relation between penetrant concentration and pressure (Henry’s law)

φ1 ' e−(1− 1
L

)φ0
2+Q(φ0

2, εij) x (3.49)

with the term exp [−(1− 1
L)φ0

2 +Q(φ0
2, εij)] proportional to the Henry’s solubility con-

stant. Note that setting H = 0 corresponds essentially to taking the activity of penetrant
in gas phase to be equal to the particle’s concentration, i.e. to the ideal gas assumption.
This approximation is quite accurate for all gases and in the whole domain of pressures
for which our fits in the next section are performed.

The model as discussed above is essentially a model of a ternary polymer-penetrant-void
mixture in a contact with the lattice gas (binary mixture of the penetrant molecules and
voids) in which the polymer chains are considered as flexible, which might seem to be
quite a deficient model for the glassy polymer matrix. The alternative interpretation
could correspond to considering the polymer entropic term as a “frozen entropy” perti-
nent to the ensemble of different realizations of chain’s conformations in the matrix, in
which case the model discussed can be considered as a kind of a mean field approxima-
tion (of uncontrolled quality) to the realistic situation. In both cases however, one has
to note that the chains’ entropic contribution is small, of the order of φ0

2L
−1, i.e. can be

neglected altogether for longer chains. Another variant of the model leading to the same
result corresponds to fully suppressing the chains’ entropic contribution and considering
the contribution of a matrix as an additional term in the internal energy due to elastic
deformation of the matrix, proportional to its volume change compared to its value in
the absence of penetrant, giving an additional linear contribution to the free energy of
the solid phase. Since the polynomial structure of G stays unperturbed, all these models
lead to the same qualitative predictions, and their applicability is mostly bounded by
the requirement that the gas phase is still close to the ideal gas. We moreover might
suppress the mobility of some populations of holes, change the details of interactions
etc. The overall functional form stays the same as long as the penetrant molecules are
assumed mobile within the whole volume of the polymeric phase and their interactions
with the surroundings can be reduced to bilinear forms. All these changes influence only
the parameters but not the form of the solution. This leads to a hope, that the main
effect of the glassiness lays in the supporting a quasi-equilibrium population of voids
which can be filled by penetrants, and is not connected with the particular properties of
the one of the chains. To see whether our hope is fulfilled, we proceed with reanalyzing
experimental data typically fitted using the dual mode model for the pressures under
which the gas phase can still be considered as ideal.
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3.3. Fits
We use the results reported in “IUPAC-NIST Solubility Data Series 70. Solubility of
gases in glassy polymers" (Paterson et al., 1999), where the data for several gas-polymer
systems at temperatures below the glass transition are provided as a function of pressure.
The dimensionless volume concentration φ1 is converted by a proportionality factor to

the measured concentration C which is usually given in cubic centimeters of penetrant at
standard temperature and pressure per cubic centimeter of polymer, [cm3(STP )/cm3(pol)]

φ1 = γC (3.50)

and equation (3.45) becomes

γCe−r1γC ' P

Psat
e−(1− 1

L
)φ0

2+Q. (3.51)

Setting σ = γe(1− 1
L

)φ0
2−QPsat and τ = −γr1 we get

σCeτC ' P. (3.52)

The parameter σ corresponds to the inverse of the infinite dilution solubility S0, as can
be seen by performing a limiting transition

S0 = lim
P→0

C

P
= lim

P→0

1
σ
e−τC = 1

σ
. (3.53)

or by direct comparison with equation (3.2). We first obtain the values of σ and τ by
fitting the inverted sorption data, i.e. pressure vs. concentration, given in Paterson et al.
(1999), and then plot equation (3.46) in its rescaled form

C = 1
τ
W

(
τ

σ
P

)
. (3.54)

The agreement of the corresponding fit to the experimental data is excellent and
our two-parametric fits are not inferior to the three-parametric ones of the dual mode
model, as it is possible to see in the following pictures where both modes are plotted. The
likelihood of each fit has also been considered and the dual mode gives a definitely larger
one only for argon in EC (fig.3.4(f)), carbon dioxide in unoriented PS at 298K (fig.3.4(d))
and carbon dioxide in PETP α = 0.57 (fig.3.4(e)). In all the other cases examined, the
Lambert mode results to have a considerably larger or comparable likelihood.
Moreover, Eq.(3.54) easily fits both concave isotherms (which can also be reproduced by
the the dual sorption mode model) and the convex ones (for which the interpretation of
the dual mode parameters is problematic).
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3.3.1. Concave isotherms
In figure 3.4 we show the plots resulted by fitting equation (3.54) to experimental data.
We used the Nonlinearmodelfit procedure of MATHEMATICA. This method returns
a nonlinear least squares fit with a default 95% confidence level assuming normally
distributed errors in the data. These plots are given for different systems in a low-
average pressure regime and are characterized by a downward concavity to the pressure
axis. Dual mode isotherms of equation (3.1) are also shown for a direct comparison.

Fit Dual mode Lambert mode
kd CH b σ τ

Fig.3.4(a) blue solid line* 3.972 28.533 0.662 0.043 0.027
Fig.3.4(a) red dashed line 1.036 2.170 0.485 0.507 0.074
Fig.3.4(b) blue solid line 9.040 12.590 2.329 0.026 0.045
Fig.3.4(b) red dashed line 5.241 7.090 2.556 0.045 0.075
Fig.3.4(c) blue solid line 4.3975 9.832 2.136 0.046 0.058
Fig.3.4(c) magenta dashed line 5.625 6.050 3.948 0.050 0.054
Fig.3.4(c) red dotted line* 3.913 18.747 0.136 0.157 0.006
Fig.3.4(c) green dash-dotted line* 4.135 0.025 0.001 0.264 -0.009
Fig.3.4(d) magenta dash-dotted line 1.806 2.870 0.668 0.301 0.039
Fig.3.4(d) blue solid line* 0.928 4.780 0.231 0.517 0.041
Fig.3.4(d) red dashed line 0.890 1.20 0.400 0.797 0.030
Fig.3.4(d) green dotted line* 0.903 2.480 0.241 0.702 0.033
Fig.3.4(e) blue dotted line 0.022† 1.150 0.018† 24.77† 0.116
Fig.3.4(e) green dashed line* 0.010† 0.640 0.026† 50.144† 0.201
Fig.3.4(e) red solid line* 0.009† 2.289 0.0085† 36.696† 0.169
Fig.3.4(f) blue solid line 0.171† 3.718 0.2345† 1.431† 0.117
Fig.3.4(f) red dashed line* 0.125† 1.456 0.193† 3.412† 0.124
Fig.3.4(f) green dotted line 0.089† 0.303 0.319† 7.862† 0.103

Table 3.1.: Lambert and dual mode parameters for the fits in figure 3.4. Dual mode
parameters are taken from (Paterson et al., 1999), except for fits signed with
a star (*) where parameters have been obtained by the authors through a
fitting procedure.
Units of kd values are cm3(STP )/(cm3(pol)MPa) except for values signed
with a cross (†) expressed in cm3(STP )/(cm3(pol)kPa). Units of CH val-
ues are cm3(STP )/cm3(pol). Units of b values are MPa−1 except for val-
ues signed with a cross (†) expressed in kPa−1. Units of σ values are
cm3(pol)MPa/cm3(STP ) except for values signed with a cross (†) expressed
in cm3(pol)kPa/cm3(STP ). Units of τ values are cm3(pol)/cm3(STP ).
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Figure 3.4.: Lambert and dual mode sorption isotherms for different gas-polymer sys-
tems;
Lambert lines are given by eq.(3.54) and are represented by colored lines in
different styles. Dual mode lines are given by eq.(3.1) and are represented
by a thinner black solid line. In some cases this is not distinguishable from
the Lambert line.
Respective Lambert and dual mode parameters are reported in table 3.1.
Black dots represent data from (Paterson et al., 1999).
(a): Carbon dioxide (blue solid line) and Methane (red dashed line) in PVC
at T = 298K;
(b): Carbon dioxide (blue solid line) and Ethylene (red dashed line) in
PMMA at T = 308K
(c): Carbon dioxide in: unoriented PS at T = 298K (blue solid line); ori-
ented PS at T = 298K (magenta dashed line);
unoriented PS at T = 353K (red dotted line); oriented PS at T = 353K
(green dashed-dotted line)
(d): Methane sorption isotherm in PEMA at T = 298K (magenta dashed-
dotted line) and Argon sorption isotherms in PEMA at T = 278.4K (blue
solid line), T = 358K (red dashed line) and T = 308K (green dotted line).
(e): Carbon dioxide in PETP with α = 1 (red solid line), α = 0.57 (green
dashed line) at T = 298K
(α is the amorphous volume fraction) and Carbon dioxide in PVCH at 278K
(blue dotted line).
(f): n-Butane in EC at T = 303K (blue solid line), T = 323K (red dashed
line) and T = 343K (green dotted line).
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3.3.2. Convex isotherms
At higher pressures, voids tend to be completely filled by penetrant molecules and the
solid compound turns to a binary mixture; as previously said, this corresponds to the
situation considered in the Flory-Huggins theory. In this case the interaction between
penetrants becomes prevalent and sorption is strongly accelerated by the already sorbed
molecules. When penetrants are bad solvents, the χ parameter is negative and isotherms
take the typical convex shape. This behavior is easily reproduced by the Lambert mode.
In figure 3.5 the Lambert isotherms are plotted together with the experimental data in
some of such cases.

3.4. List of abbreviations
• EC: Ethyl Cellulose

• PEMA: Poly(Ethyl Methacrylate)

• PETP: Poly(Ethylene Terephthalate)

• PMMA: Poly(Methyl Methacrylate)

• PS: Polystyrenes

• PVA: Poly(Vinyl Acetate)

• PVC: Poly(Vinyl Chloride)

• PVCH: Poly(Vinyl Cyclohexane Carboxylate)
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Figure 3.5.: Convex Lambert sorption isotherms; lines are given by eq.(3.54), black dots
represent data from (Paterson et al., 1999).
(a): Hydrogen H2 (blue dashed line) and nitrogen N2 (green solid line) in
PS at T = 443K.
Hydrogen: σ = 27.166 atm/cm3(STP )/cm3(pol);
τ = −0.006 (cm3(STP )/cm3(pol))−1.
Nitrogen: σ = 37.370 atm/cm3(STP )/cm3(pol);
τ = −0.004 (cm3(STP )/cm3(pol))−1.
(b): Carbon dioxide sorption in PVA at T = 313.2K (blue dashed line) and
T = 323.2K (green solid line).
The concentration is expressed as a weight fraction, grams of penetrant per
gram of polymer (g/g).
Blue dashed line: σ = 30.618 MPa/g/g; τ = −0.786 (g/g)−1.
Green solid line: σ = 38.466 MPa/g/g; τ = −0.977 (g/g)−1.
(c): Carbon dioxide sorption isotherms in PEMA at T = 288K (blue dashed
line),
T = 318K (green solid line), T = 348K (red dotted line).
Blue dashed line: σ = 0.042 MPa/cm3(STP )/cm3(pol);
τ = −0.002 (cm3(STP )/cm3(pol))−1.
Green solid line: σ = 0.088 MPa/cm3(STP )/cm3(pol);
τ = −0.003 (cm3(STP )/cm3(pol))−1.
Red dotted line: σ = 0.139 MPa/cm3(STP )/cm3(pol);
τ = −0.003 (cm3(STP )/cm3(pol))−1.

52



4. Diffusion of small molecules in polymeric
media

4.1. Normal and anomalous diffusion in random potential
landscapes

We open this section proposing a general remark about the nature of diffusion of inde-
pendent non interacting classical particles in a random energy landscape.
In usual conditions this results to be a normal diffusion process but can become subdif-
fusive in some particular cases that coincide with the vanishing of the diffusion constant.
On the other hand, a superdiffusive process has never been observed in such systems.
In what follows we will therefore describe the conditions that bring to subdiffusion and
explain why superdiffusion is not possible by showing that the diffusion constant can
never diverge.

Let us start by considering the probability pi to find a particle at a particular site i
of a d-dimensional lattice. The behavior of each pi is governed by the master equation

ṗi =
∑
j

(wijpj − wjipi) (4.1)

where wij are transition rates from site j to site i, different from zero only for near-
est neighbors and the indices i and j belong to the interval of naturals [1,M ] where
M � 1 is the total number of sites. Eq. (4.1) can either be considered as following from
some microscopic scheme or obtained by a discretization of the diffusion (Fokker-Planck)
equation for the overdamped motion in a continuous potential. The details of the latter
procedure are given in the Appendix.
The distribution of the transition rates is considered homogeneous and isotropic. This
requirement excludes underdamped cases for which the velocities and coordinates enter
differently, thus leading to anisotropy of the state (phase) space with respect to rotations
mixing coordinates and velocities. This can be formulated as a demand that the state
space of the system is its configuration space.
An energy value Ei is assigned to each site. These are independent identically distributed
random variables and some of them may be infinite corresponding to blocking sites and
giving rise to percolation questions.
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We assume that the system is isothermic and possesses true thermodynamical equi-
librium, i.e. that the transition rates fulfill the condition

wijp
0
j = wjip

0
i (4.2)

where p0
i ∝ exp(−βEi) is the probability to find a particle at site i at equilibrium, where

β = 1/KBT is the usual inverse temperature factor and T is the temperature. This
further requirement follows from the detailed balance condition, being the microscopic
consequence of the Second Law of Thermodynamics (Ebeling and Sokolov, 2005).
In what follows we only concentrate on the effective diffusion coefficient describing the
particles’ transport in the system at long times or large scales, where, as we proceed to
show, thermodynamics helps a lot in clarifying the relations between different properties
of the system neglecting the discussion of time-dependent problems.
Our discussion maps the initial problem onto the one for random resistor-capacitor net-
works. We then rely on the general theory of electric circuits and on percolation theory
and assume that we are (in principle) able to evaluate the mean conductivity of a corre-
sponding disordered resistor network in the static regime. From this we obtain a general
formal expression for the diffusion coefficient, evaluated within the effective medium
approximation. This allows us to investigate some peculiarities of the behavior of this
effective diffusion coefficient, as illustrated by approximate and exact results for binary
continua and for systems with site energies following a rectangular distribution.

We show that the diffusion coefficient is always finite, hence no superdiffusion can be
observed in such random potential models, and discuss the conditions under which the
diffusion coefficient may vanish, possibly giving rise to subdiffusion. Namely we demon-
strate that there are two and only two reasons why this can happen. Independently on
the particular distribution of nonzero transition rates and finite site energies, this is pos-
sible either if the percolation threshold in the corresponding network is one (e.g. in one
dimension, on finitely ramified fractals, or when we are already at percolation threshold)
or if the mean Boltzmann factor 〈exp(−βEi)〉 diverges. We therefore obtain necessary
conditions under which subdiffusion in a random potential model can be observed. We
note that, according to the Arrhenius law, the situation with diverging mean Boltzmann
factor corresponds to the divergence of the mean sojourn time at a site, and is pertinent
to trap models. The situation when both possibilities are realized simultaneously gives
rise to the subdiffusion of mixed origins (Meroz et al., 2010).

4.1.1. General considerations
Let us first generalize some known results about random potential models and random
resistor-capacitor networks as discussed in Bouchaud and Georges (1990b), using how-
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ever a different approach. Eq.(4.1) can be rewritten as a one for mean numbers or
concentrations of particles on the corresponding sites

ṅi =
∑
j

(wijnj − wjini) . (4.3)

by simply multiplying both members by the total number of particles N and defining
the concentration ni = Npi. The corresponding transition rates 0 ≤ wij < ∞ are not
necessarily bounded from above or below, and some of them may actually be put to zero
to mimic percolation situations or diffusion on a fractal structure. They are furthermore
connected by the detailed balance condition

wijn
0
j = wjin

0
i (4.4)

corresponding to a vanishing flux through each bond in the equilibrium stable state.
At equilibrium the concentrations n0

i are proportional to the Boltzmann factors bi =
exp(−βEi) as well, and we can therefore write

n0
i = Cbi (4.5)

with the constant prefactor C depending on the number of particles N , on the size of the
system M and on the particular distribution of the Boltzmann factors bi. The detailed
balance condition states that the quantity

gij = wijn
0
j (4.6)

is a symmetric function of the indices gij = gji and is a specific property of the bond.1
Using this notation we rewrite Eq.(4.3) as

ṅi =
∑
j

gij

[
nj
n0
j

− ni
n0
i

]
. (4.7)

Adding a weak external potential, for example an electric field giving rise to an additional
potential energy Vj at site j, changes the equilibrium concentrations and hence the
corresponding equation to

ṅi =
∑
j

gij

[
nj
n0
j

eβVj − ni
n0
i

eβVi

]
. (4.8)

1In the simplest case when the sites correspond to the minima of a continuous random potential
(energies Ei) and the bonds connecting them pass through the transition states (energies E‡ij), wij ∝
exp[−β(E‡ij − Ei)], gij ∝ exp[−(βE‡ij)] describes the property of the transition state (barrier) alone
(Bouchaud and Georges, 1990b). In more complex cases gij may depend on both energies Ei and Ej
in a nontrivial way.
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This equation can be interpreted as a combination of the local continuity
ṅi =

∑
j Jij and local response equation Jij = gij(ζj − ζi) with

ζj = nj
n0
j

eβVj (4.9)

which will be called the activity of the sites since the quantity

µi = KBT ln ζi = KBT ln ni
n0
i

+ Vi (4.10)

can be interpreted as chemical potentials on the sites. Close to the equilibrium and
for very small potentials V the values of ζ are close to unity, so that deviations of the
chemical potentials from their zero equilibrium values are small. Therefore, close to
equilibrium we have

ṅi =
∑
j

Jij and Jij = gij
KBT

(µj − µi). (4.11)

The master equation for concentrations Eq.(4.3) can be rewritten as the equation for the
temporal evolution of activities ζi proportional to them. Assuming the external potential
Vi to vanish we obtain the following equation

ζ̇i = 1
n0
i

∑
j

gij (ζj − ζi) (4.12)

which is formally equivalent to the evolution equation of voltages in a random resistor-
capacitor model (Bouchaud and Georges, 1990b), with conductivities given by gij and
capacitances given by n0

i . It is interesting to note that not the chemical potentials but
the activities at the sites play the role of the electric potentials. This leads to differences
in the behavior of the random resistor-capacitor model and the random potential model
far from equilibrium, i.e. for large concentration gradients.

4.1.2. Effective diffusion coefficient close to equilibrium
Let us now concentrate on the calculation of the effective diffusion coefficient provided it
exists, i.e. provided the system homogenizes at large scales, and each part of it, macro-
scopic but small compared to the overall dimension of the system, is characterized by
the same effective parameters. To do this we invest some time in the description of our
“experimental” procedure close to equilibrium and its theoretical implementation.

In our approach we mimic the stationary experiment on measuring the diffusion coeffi-
cient via the first Fick’s law. A membrane of thickness L and transversal dimension W
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separates two reservoirs, the left one with a well-stirred solution (or gas) of the corre-
sponding particles at concentration νl, and the right one with the concentration slightly
below νr, so that νl−νr � (νl+νr)/2. Both concentrations are kept constant during the
experiment. In the case of the solution the membrane is considered as impermeable for
the solvent. Then the particles flow I through the membrane is measured and connected
with the mean diffusion coefficient inside of it.
Since in general a jump of the (free) energy per particle can form on a contact between

the membrane and the solution (e.g. in the case when the fluid is a good solvent for
diffusing particles and the membrane is, on the average, a bad one, or the other way
around) this has either to be explicitly taken into account or the effective diffusion
coefficient inside the membrane can be defined through

D∗ = IL

W d−1(〈nl〉 − 〈nr〉)
(4.13)

where 〈nl〉 and 〈nr〉 are the mean particle concentrations in the layers of the membrane
in immediate contact with the solution, see figure 4.1.
We note that in the thermodynamical limit L→∞ the permeability of the membrane

tends to zero, and all local currents in it as well, and therefore the corresponding D∗ is
measured in a very large system under the condition of vanishing currents. For the rest
of this section, this situation will be denoted as “quasi-equilibrium”. We note that this
condition corresponds to a stationary state, ζ̇i = 0, so that∑

j

gijζj −
(∑

j

gij
)
ζi = 0, (4.14)

where the sum runs over the nearest neighbors of the site i, and

Jij = gij(ζj − ζi)→ 0. (4.15)

In the continuous limit (applicable in the case when all parameters are slowly chang-
ing functions of coordinates) we can identify this equation as a continuity equation in
combination with the linear response one:

ṅ(x) = −divJ(x); (4.16)

J(x) = − g(x)
KBT

gradµ(x), (4.17)

or
ṅ(x) = div g(x)

KBT
gradµ(x) (4.18)

and identify µ̃(x) = g(x)/KBT with the local particle’s mobility and therefore g(x) with
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Figure 4.1.: A schematic illustration of the system considered: the disordered medium
in contact with two reservoirs, the mean concentration at different positions
and the lattice model applied.

the local diffusion coefficient of the particle.

The contact with the solution can be modeled by additional arrays of sites to the left and
to the right from the membrane’s boundary, with constant concentrations of particles
and fixed energies E0 which can be chosen arbitrarily (this E0 defines the “quality of
the solvent” discussed above and governs the redistribution of the particles between the
solvent and the membrane at equilibrium). These additional sites are connected to the
ones on the corresponding membrane’s sides via extremely high transition rates fulfilling
the detailed-balance condition. In this case a local equilibrium between the surface sites
and the solutions immediately establishes and persists independently on the particles’
distribution inside the bulk.
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Due to this local equilibrium the concentrations at the surface sites are proportional
to the corresponding Boltzmann factors, and the activities of the corresponding surface
sites are all the same and proportional to νl or νr. Since all these sites are in equilibrium
with the ones at the additional layer, they are also in equilibrium between themselves,
and the currents between them vanish, which means that their activities are equal to
each other and to ζl = Aνl and ζr = Aνr respectively at the left and right boundary of
the membrane, where the prefactor A depends on the corresponding E0.
Thus, all ni in the leftmost layer are proportional to ζln0

i = Aνln
0
i and in the right layer

to ζrn0
i = Aνrn

0
i so that the mean concentrations in the layers are

〈nl〉 = Aνl〈b0i 〉 (4.19)
〈nr〉 = Aνr〈b0i 〉 (4.20)

where we assume that the distribution of the site energies in the surface layers is the
same as in the bulk, and therefore the mean Boltzmann factors 〈b0i 〉 are the same.

We then calculate the corresponding total current I in our system, which is a stan-
dard task since the equations for the currents and activities in a stationary states are
the same as the ones given by the Kirchhoff’s laws for an electric circuit, where gij stands
for the corresponding conductivity and ζi for the electric potential of the node. Making
such a reinterpretation we see that

I = g∗
W d−1

L
(ζl − ζr) (4.21)

where g∗ is the effective conductance of the bond in the electric system, i.e. the conduc-
tivity of the bond in the effective ordered medium with the same total conductivity as
our heterogeneous one. Comparing equation 4.21 with equation 4.13 it is easy to obtain

D∗ = g∗

〈b0i 〉
. (4.22)

and returning to the initial notation we see that

D∗ = a2 〈wji exp(−Ei/KBT )〉EM
〈exp(−Ei/KBT )〉 . (4.23)

The squared lattice constant a2 is introduced to restore the correct dimension as follow-
ing from equation 4.13, when passing from the distances L measured in number of sites
to the distances measured in centimeters, and the subscript EM denotes the effective
medium mean, the averaging procedure connecting g∗ with the distribution of gij for
gij = wijb

0
j i.e. the EM mean of the leaving rates from a site through the bond times

the equilibrium probability that the site is occupied by a particle.
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Equation 4.23 generalizes the corresponding equation 2.15 of reference Bouchaud and
Georges (1990b) for the symmetric barrier model to a general case of random potential.
We note that this result reproduces the exact one-dimensional result by Kutner and
collaborators, and differs from the one in Maass and Rinn (2001), due to a different
interpretation of the equilibrium dynamics in dispersive systems. Thus, if one is able to
calculate the effective conductivity of a random resistor network, one can also calculate
the effective diffusion coefficient in an energetically disordered network by simple renor-
malization, and vice versa. The physical content of equation 4.23 is rather transparent
and can be elucidated by assuming that we are able to measure the effective electric
conductivity of the system, and connect this conductivity with the effective mobility µ∗
and thus with the diffusion coefficient via Nernts-Einstein equation

σ∗ = n0qµ
∗ = n0qD

∗/kT (4.24)

with q being the particle’s charge. Reverting this expression we get D∗ ∝ σ∗/n0, which
is essentially the meaning of 4.23.

For random resistor networks the homogenization can be proved provided the local
conductances are bounded from above and from below. The boundness of the con-
ductances from above (boundness of the transition rates) is not a problem, while the
boundness from below excludes percolation cases (see Chayes and Chayes (1986) and
references therein). This condition can be relaxed (Mathieu, 2008) provided the system
percolates.

One may argue that the correct way of measuring D∗ were to keep the concentrations
(and not the activities) of the sites of the first layer the same, and one has to prove
that both procedures lead to the same result. Moreover, one may ask what happens
if we define the effective diffusion coefficient through the gradient of the coarse-grained
concentration, and not via the total concentration difference. The answer is quite simple
since the local concentrations and the local activities decouple under the condition of
quasi-equilibrium.
To show this let us assume that at large scales the corresponding electric system homoge-
nizes, which means that its effective conductance per bond really exists as a well-defined
quantity, and can be (in principle) measured or calculated. In this case the total voltage
profile obtained by the coarse graining of the voltages (activities) over macroscopic do-
mains of the system which are large enough compared to the lattice spacing but small
compared to L follows a linear behavior (similar to those of the effective concentration in
figure 4.1) with the total potential difference is fixed and the potential gradient vanishing
at quasi-equilibrium.

Now we show that in quasi-equilibrium the local concentrations and the local activities
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(“potentials”) tend to be independent from each other (although the local transition
rates are correlated with the Boltzmann factors and thus to local concentrations). To
see this we note that according to equation 4.14 the activity (potential) at a site i acts
like the weight in the arithmetic mean of the activities of the neighbors it is connected
to, and equation 4.15 states that the difference between the activities of the connected
sites under quasi-equilibrium tends arbitrarily small. To give a better view of this we
rewrite the equations as follows

ζi =
∑
j gijζj∑
j gij

(4.25)

Jij = gij(ζj − ζi)
L→0−→ 0 (4.26)

Therefore our system can be considered as composed of large, practically equipotential
regions whose potential hardly fluctuates around its mean ζ∗ depending on the region’s
position. In these regions the concentrations ni = ζin

0
i can be averaged over the physi-

cally small volume still containing a large number of sites, so that

〈n〉 = ζ∗〈n0
i 〉. (4.27)

We note that this last property does not rely on homogenization or on the isotropy and
will hold even if our system is built of independent parallel or interwoven wires! If then
the coarse-grained activity is a linear function of the coordinate (i.e. the corresponding
random resistor network shows homogenization), so is also the coarse grained concen-
tration, with the proportionality factor 〈n0

i 〉 between the both.

Equation 4.23 gives the possibility to obtain the universal bounds on the effective dif-
fusion coefficient based on those for the effective conductance, i.e. the universal Wiener
bounds (Wiener, 1912) and the tighter Hashin-Shtrikman bounds for isotropic systems
(Hashin and Shtrikman, 1962). The universal Wiener bounds for the conductance are
given by 〈g−1

ij 〉−1 ≤ 〈gij〉EM ≤ 〈gij〉, which in our case corresponds to

a2w0
〈exp(βEi)〉〈exp(−βEi)〉

≤ D∗ ≤ a2w0. (4.28)

Note that the lower bound reproduces the exact result for the one-dimensional system
with random potential and constant diffusion coefficient.
In next figures 4.2 and 4.3 we plot the comparison between an opportunely rescaled
expression of D∗ and corresponding Hashin-Shtrikman bounds in the two and three
dimensional cases for two specific situations: the case of binary disorder where the site
energy Ei can take only two values Ea and Eb with given probabilities, and the case of
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Ei possessing an exponential distribution with cutoffs

P (Ei) = β e−βEi

e−βEa − e−βEb
(4.29)

in the interval [Ea, Eb] and vanishing outside. The results are plotted against the contrast

x = exp [(Eb − Ea)/KBT ] (4.30)

being the ratio between the largest and smallest values of gij . Details of the calculations
leading to these plots are given in the Appendix.
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Figure 4.2.: Effective Diffusivity D∗ and Hashin-Shtrikman Bounds D∗1 and D∗2 in the
binary case vs x = g2/g1 ratio for: p = 1/2 and (a) d = 2; (b) d = 3.

4.1.3. Two and only two sources of anomalous diffusion
In the limit of a very strongly disordered system D∗ may vanish or diverge. In the first
case D = 0 the system either does not show any transport (does not percolate) or shows
anomalous transport slower than diffusion (i.e. shows subdiffusion). In the second case
it might show superdiffusion.
If D∗ vanishes, it can do so either because the enumerator 〈wji exp(−Ei/kT )〉EM van-
ishes or because the denominator 〈exp(−Ei/kT )〉 diverges, as well as in the cases when
both of these possibilities are realized simultaneously. If D∗ diverges, it can do so be-
cause the enumerator diverges, or because the denominator vanishes, or both.

For further discussion we first recapitulate the following properties of percolation sys-
tems:
(i) The mixture of resistors with given finite conductivity (at concentration p) with in-
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Figure 4.3.: Effective diffusivity D∗ and Hashin-Shtrikman Bounds D∗1 and D∗2 in the
uniform case vs x = g2/g1 ratio for: (a) d = 2; (b) d = 3.

sulating bonds (of zero conductivity) at concentration 1− p possesses zero conductance
below the percolation threshold pc and finite conductance above it. The correspond-
ing system homogenizes at scales above the correlation length (Bouchaud and Georges,
1990b). This homogenization also takes place for arbitrary distributions of the conduc-
tivities of the resistors (Mathieu, 2008).
(ii) The mixture of resistors with given finite conductivity (at concentration p) with
superconducting bonds (at concentration 1 − p) possesses finite conductance below the
percolation threshold psc for superconducting bonds, with 1− psc = pc, and infinite con-
ductance above it.
These properties do hold not only for the Bernoulli percolation model but also in

the case when the short-range correlations in the occupation probabilities of the bond
by the corresponding resistors / insulators / superconductors are present (e.g. in the
site model). This statement is a (silently assumed) basis of all renormalization group
approaches in percolation. In d = 1 the corresponding percolation concentrations are
pc = 0 and psc = 1.
Moreover, the total conductivity of any passive circuit is a non-decaying function of

the conductivity of each particular bond. To see this we use the results of the theory
of electric circuits (see e.g. Newstead (1959)). Let us consider our system as placed
between two “superconducting” bars and look at its conductivity (impedance). The
bars are considered as a terminal 1 of the system. Let us moreover consider the points
i and j, at which the conductivity gij is switched, as the two other poles of a system
constituting its terminal 2. We now use the theory of two-terminal circuits and calculate
the input impedance (conductivity) zin, as a function of load gij . This input impedance
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is given by
zin = z11 −

z12z21
z22 + gij

where zαβ are the elements of the impedance matrix characterizing the system. For
a system of reciprocal passive elements (i.e. no batteries, no diodes) this matrix is
non-negatively definite (as a consequence of non-negative heat production), so that

z11 ≥ 0
z22 ≥ 0
z11z22 − z12z21 ≥ 0

and symmetric, z12 = z21 (as a consequence of the reciprocity theorem). In the case of
pure resistor network the matrix is real. The last means that

z12z21 = (z12)2 ≥ 0

and thus that zin is a non-decaying function of gij . The only case when the function is
a non-growing one is when there is no dependence on gij at all, i.e. when z12 = z21 = 0
and the corresponding conductance is totally decoupled from the rest of the circuit, i.e.
belongs to a finite cluster.

Let us now first concentrate on the situation when the denominator in equation 4.23
diverges. Since bi = exp(−Ei/kT ) is proportional to the sojourn time at a site i in equi-
librium, this last situation corresponds to diverging mean sojourn time at a site, i.e. to a
trap model, which in high dimensions is equivalent to CTRW with a broad distribution
of waiting times.

Now we show that the enumerator never actually diverges, even if the denominator does.
To see this we fix some q < 1− psc = pc and declare the fraction q of all bonds (starting
from the ones with largest conductivities) to be superconductive. The lowest conductiv-
ity of such a changed bond is σmin. The superconducting bonds are non-percolating by
construction, and the conductivity of the remaining system is finite, being smaller than
a conductance of the resistor-superconductor mixture where all conductivities of single
resistors are put to σmin. Thus, the enumerator can only diverge if psc = 1, and pc = 0,
i.e. never in finite dimension.

Let us now turn to the case when the enumerator vanishes. It is easy to show, that the
total conductance zin does not vanish in a system with finite percolation concentration
pc > 0 unless the distribution of conductivities of remaining resistors possesses an atom
in zero (i.e. unless some other bonds are totally removed). To see this let us remove a
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finite portion p < pc of bonds with smallest conductances without destroying percolation
and let us denote the largest removed conductivity as gc. The rest of the system perco-
lates and has a conductance which is larger then the conductance of a two-phase system
constructed of resistors with gij > gc and gij = 0, which is nonzero since we are above
percolation concentration. It can only vanish if the percolation concentration is zero and
no finite portion of resistors can be removed without destroying this percolation.

There are no other situations in which subdiffusion in a system is possible except for
these two.

Although superdiffusion is never observed in standard simple models of random poten-
tials (random barrier and trap model) it is interesting to show that it is essentially ruled
out by our consideration. Since we already showed that the enumerator never diverges,
the only thing to do is to show that the denominator never vanishes. Let p(E) be the
probability density of the site energy distribution, and EM the median value of this
distribution defined by ∫ EM

−∞
p(E)dE = 1/2. (4.31)

Then

〈exp(−Ei/KBT )〉 =
∫ ∞
−∞

e−E/KBT p(E)dE (4.32)

=
∫ EM

−∞
e−E/KBT p(E)dE +

∫ ∞
EM

e−E/KBT p(E)dE. (4.33)

Now we can use the fact that e−E/KBT is a non-negative and monotonously decaying
function, and that p(E) is non-negative. Thus, the first integral in the second line is
larger or equal to

e−EM/KBT
∫ EM

−∞
p(E)dE = 1

2e
−EM/KBT (4.34)

(where we changed the Boltzmann factor for its lower bound on the interval of integra-
tion), and the second integral is definitely non-negative, so that

〈exp(−Ei/KBT )〉 ≥ 1
2 exp

(
− EM
KBT

)
and can vanish only if EM →∞ (i.e. only if infinite energies are considered).

To summarize our findings we state that we found a general correspondence between
the effective diffusion coefficient in a random potential landscape and the macroscopic
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conductance of a corresponding random resistor model. This simple relation allows us to
obtain exact bounds on the effective diffusion coefficient as well as the effective medium
approximations for it. The very same relation allows for elucidating possible sources
of anomalous diffusion in such model. Thus, we show that subdiffusion in the system
is possible either if the mean Boltzmann factor of the corresponding potential diverges
(energetic disorder, the situation leading to a trap model in some special case) or if the
percolation concentration in a system is equal to zero, i.e. if the system is already at
the percolation threshold, in one dimension or on finitely ramified fractals (structural
disorder) and that superdiffusion is impossible in our system under any condition.
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4.2. Diffusion in a random energy landscape.
We now proceed to analyze the diffusion of a set of independent small particles in an
amorphous solid polymeric medium, from the perspective of a model being a close rela-
tive of a classical Flory-Huggins model of polymer solutions. Together with an analytical
treatment, Monte Carlo simulations will be performed and the comparison between the
two will be shown.

The polymer matrix is modeled by a three-dimensional ternary lattice similar in spirit
but slightly different from those previously shown. In this new case the ternary nature
of the lattice will not be given by a solute-segment-void mixture but by a different triplet
of elements: each site can indeed be a polymer segment, be empty or be an interaction
site where the polymer-solute energy exchange takes place. We keep the requirement
that the size of each site has to be taken equal to the size of the diffusing particle. Such
a lattice is outlined in Figure 4.4.
Polymers are modeled as phantom random walks of length L. This chain conformation
corresponds to the Gaussian nature of chains in melts from which our solid matrix is
obtained by quenching. The whole matrix is considered as static: no chain motion is
taken into account. Once the system is created, the sites of the lattice occupied by
chains are considered impenetrable for small solute molecules. This hard-core repulsion
is represented by assigning them an infinite energy value. The number concentration of
these sites is denoted as φ2 = M2/M where M2 is their total number and M is the total
number of sites composing the lattice. These segments sites are represented as black
boxes in figure 4.4.
The particle-polymer interaction is considered to take place only if the particle occupies
a nearest neighboring site of a polymer segment. An energy value U = ε is therefore
assigned to all the nearest neighbors of the sites occupied by segments. The sign of
this energy parameter fixes the nature of the force experienced by the particles: if ε is
negative polymer tend to attract penetrant particles while in the case ε is positive, the
interaction is repulsive. These site are denoted as interaction sites. Their total number
is M1, their number concentration is φ1 = M1/M and they are represented as red boxes
in figure 4.4.
Sites not belonging to either of these two categories, represented by white boxes in figure
4.4, are considered as places where penetrants perform a free motion not being subjected
to any force. These sites are assigned an energy value U = 0 and their number concen-
tration is φ0 = M0/M = 1− φ1 − φ2, where again M0 is their total number.
Our system is thus represented by a random but correlated ternary energy landscape
with site assigned energies 0, ε, or ∞ for the white, red and black sites respectively.

Computer simulations are pertinent to this lattice. Penetrants can diffuse along empty
or interactions sites, their concentration is considered low, and their mutual interaction
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Figure 4.4.: The ternary lattice of the initial model and different kinds of cells with
corresponding number concentrations and energy values.

is neglected. We note that finite concentrations, giving rise to non linear effects, could be
easily included in the system, but here we want to concentrate on the simpler situation
in which particles interact only with the host medium.
In this environment the small molecule diffusion is numerically simulated as a nearest-
neighbor random walk with transition rates between the sites given by the corresponding
energy differences:

wij = w0e
−β2 (Ui−Uj). (4.35)

The constant rate w0 defining the time unit of the process is set to unity in all simula-
tions and β is the usual 1/KBT term.
Details about simulations are readily given: Simple random walks of L steps are let run
independently in a lattice of 4003 sites with periodic boundary conditions. This opera-
tion is stopped when the total concentration of segments (sites visited at least once) is
within 0.01 from the desired value of φ2. Proper energy values are then assigned to white
and red sites and their concentration is calculated. Once the environment is created,
106 random walks of 103 to 104 steps, depending on the speed of homogenization of the
system, are launched from a free site chosen at random in a cube of 503 sites placed in
the center of the medium. With this choice, the probability for a diffusing particle to
reach the borders of the lattice is extremely low and does not spoil the statistics. The
algorithm used is the Monte Carlo Blind Ant one. The whole procedure is then repeated
for 10 different lattice realizations and averages are taken. We have observed a normal
diffusion process 〈r2(t)〉 ∝ t from which the proportionality constant has been extracted.
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Analytical calculations refer to a simpler mean field version of the previous lattice built
by disassembling the chains and letting segments, interaction and empty sites fill the
space in a completely random fashion at given concentrations. This model strongly
resembles the classical Flory-Huggins model (Flory, 1942; Huggins, 1942; Bawendi and
Freed, 1988; Bawendi et al., 1986) used for the description of the thermodynamical prop-
erties of polymeric solutions, in which the number concentrations of the sites occupied
by polymer segments is kept, but the correlations between their positions (necessarily
introduced by the existence of chains) are fully neglected. Each lattice site is assigned
an energy value Ui which can take one of the three values 0, ε, or ∞ at random, with
probabilities φk. The existence of an infinite cluster of black sites, which we need to
preserve the solidness of the system, is guaranteed by maintaining the concentration φ2
above the percolation threshold which is known to be approximately 0.32 for the three-
dimensional simple cubic lattice. We denote this construction as mean field lattice and
represent it in Figure 4.5. Again, no chain motion is taken into account.
The diffusion on this mean field lattice is then treated using the effective medium ap-
proximation for a diffusion in a random potential landscape. The mean field medium
results are compared with the results of direct numerical simulations discussed above,
and show qualitatively similar behavior.

φ0

φ1

φ2

U = 0

U = ε

U = +∞

;

;

;

Figure 4.5.: Mean field ternary lattice and different kinds of cells with corresponding
probabilities and energy values.
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4.2.1. Effective medium approximation for diffusivity
The particles’ motion in such an energy landscape is described via the master equation
we have previously introduced

ṗi =
∑
j

(wijpj − wjipi) , (4.36)

where pi is the probability for a particle to be at a site i at time t. The transition rate
from site j to site i wij is given by equation (4.35) for j and i nearest neighbors and is
equal to zero otherwise. For the sake of generality calculations will be referring to the
d-dimensional case.

In order to have the possibility to use the parallelism between conduction and diffu-
sion models, we reconsider the procedure adopted in the previous chapter and multiply
both sides of equation (4.36) by the number of particles N . In this way we obtain the
master equation for the site mean number or “concentration" function ni = Npi.

ṅi =
∑
j

(wijnj − wjini) . (4.37)

As already shown, if we assume the existence of an equilibrium state, the transition rates
are naturally linked to each other through the detailed balance condition at equilibrium

wijn
0
j = wjin

0
i (4.38)

where n0
i = Np0

i and p0
i ∝ exp (−βUi) is the equilibrium probability to find the particle

at site i. Thus one can introduce the simmetrized rates gij being the properties of a
bond of the lattice,

gij = wijn
0
j = wjin

0
i = gji = g0e

−β2 (Ui+Uj) (4.39)

with
g0 = Nw0

Z(~φ, ε)
(4.40)

where Z(~φ, ε) is the normalization factor of p0
i , namely the partition function for the small

particles equilibrium distribution and ~φ is the triplet (φ0, φ1, φ2). Then, the analogy
between the diffusion and the electric conduction in a random medium can be used
(Bouchaud and Georges, 1990a; Doyle and Snell, 1984; Camboni and Sokolov, 2012):
the corresponding diffusion coefficient is connected with the macroscopic conductivity
〈g〉em of a disordered lattice with bond conductivities gij via (Camboni and Sokolov,
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2012; Dean et al., 2007; Maass et al., 1999; Rinn et al., 2000)

Dem = a2 〈g〉em〈
n0
i

〉 = a2 〈wji exp(−βUi)〉em
〈exp(−βUi)〉

. (4.41)

with a the lattice spacing set to unity in all simulations.

Our system exhibits four different bond conductivity values depending on the color of
the sites involved. These are

g1 = g0; g2 = g0e
−βε; g3 = g0e

−βε/2; g4 = 0. (4.42)

Figure 4.6 gives an overall view of this situation.

g1 = g0

g2 = g0e
−βε

g3 = g0e
−βε/2

} g4 = 0

Figure 4.6.: Bond conductivities for the corresponding site couples.

The effective conductivity 〈g〉em can then be calculated within the effective medium
approximation EMA. However, the application of the effective medium approximation
to site models like ours, requires the considerations on correlations we shown in the
previous sections and the Effective Medium Approximation technique adopted will be
therefore the Yuge one.
Calculations start by considering for any site of the lattice possessing a color index α =
0, 1, 2, corresponding to white, red and black, respectively, the mathematical expectation
of the conductivity ḡα of a bond originating from it:

ḡ0 = φ0g1 + φ1g3

ḡ1 = φ0g3 + φ1g2 (4.43)
ḡ2 = 0

These values appear in the system according to the the probabilities of their respective

71



4. Diffusion of small molecules in polymeric media

sites

P (ḡ) =
2∑

α=0
φαδ(ḡ − ḡα). (4.44)

The effective conductivity is then obtained through the usual self-consistency condition
(Kirkpatrick, 1973) 〈

gem − ḡ
(d− 1)gem + ḡ

〉
P

= 0. (4.45)

where d is the dimension and 〈·〉P is the average with respect to the distribution P above.
If we now define a rescaled effective conductivity

fem = (d− 1)gem
g0

(4.46)

and introduce the arithmetic mean and the φα-weighted average of the quantity Ei =
e−βUi/2

E = 1
3(1 + e−βε/2) and 〈E〉 = φ0 + φ1e

−βε/2 (4.47)

equation (4.45) reduces to a quadratic equation for fem,

f2
em + b(~φ, ε) fem + c(~φ, ε) = 0 (4.48)

with

b(~φ, ε) = 〈E〉
(
3E − d〈E〉

)
c(~φ, ε) = 〈E〉2

(
1− d(1− φ2)

)
e−βε/2.

The value of Dem follows from the solution of this equation via

Dem = a2gem
〈n0
i 〉

= a2w0 ·
fem

(d− 1)(φ0 + φ1e−βε)
=

= D0 · D̃d(~φ, ε) (4.49)

where D0 = a2w0 is the diffusivity of a completely white lattice where the energy land-
scape has been substituted by a flat surface (in few words D0 is the diffusivity associated
to a simple d-dimensional random walk with fixed jumping rates w0) and

D̃d(~φ, ε) = fem
(d− 1)(φ0 + φ1e−βε)

= Dem

D0
(4.50)

is a normalized effective diffusivity which originates from the presence of the energy
landscape and goes to 1 whenever this is removed.
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The critical threshold at which Dem vanishes can be easily obtained by setting c(~φ, ε) = 0

φc2 = 1− 1/d. (4.51)

At variance with a classical binary Flory-Huggins situation, where the connectedness of
the molecules could be disregarded to a large extent, the presence of the molecules does
matter here, since it leads to a redistribution of empty sites between the red and white
classes. The problem of distribution of the sites between these two classes (i.e. the one of
finding φ0 and φ1 as functions of a given parameter φ2, the polymer density) in systems
with chains is a complex problem of statistical geometry, which, up to our knowledge, was
never approached. We can however separate this geometrical problem (which we leave
for further investigation) from the problem of the diffusion. Thus we first simulate our
polymer model and extract the numerical values of φ0 and φ1 from these simulations.
These numerical values are then used in the corresponding EMA calculations, whose
predictions (for example, with respect to temperature dependence of the diffusion coeffi-
cient), in their turn, are (favorably) compared with the results of simulations of diffusion.

To get a flavor of the problem, let us first consider the situation in which the black
sites are not connected into chains, but randomly distributed in the system (simple
Bernoulli percolation, but now with interactions between the solute and the black ma-
trix) on a cubic lattice with connectivity λ = 6. This case leads to a relatively simple
behavior. Black sites are randomly distributed on the lattice, and the probability that a
given site is black is exactly φ2; this φ2 is the control parameter of the model. The site
is white if it itself and none of its nearest neighbors is black, so that the concentration
of the white sites is

φ0 = (1− φ2)λ+1. (4.52)

The sites which are not black or white are red, so that the concentration of red sites is

φ1 = (1− φ2)− (1− φ2)λ+1. (4.53)

Thus, φ0 is a monotonously decaying function of φ2, and φ1 shows a pronounced maxi-
mum at

φ1 = 1− (λ+ 1)−1/λ. (4.54)

The parameter γ = φ0/(1−φ2) which will be repeatedly used in what follows (see equa-
tions 4.58 and 4.59) is thus given by γ = (1 − φ2)λ and is a monotonously decaying
function of φ2.

The presence of the chains reduces the total number of available sites being neighbors of
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the black ones. If the molecules would follow parallel straight lines, the effective number
of potentially available neighbors of a black sites will be reduced to 4, so that λ = 4
would have to be taken in the previous equation.
The numerical simulations show that the existence of the chains does matter even more.
The fact that the molecules are wiggled, and the possibility of their intersection reduces
the effective values of λ almost down to 2. This is made evident in figure 4.7 where
the results from equations 4.52 and 4.53 are plotted versus the black concentration φ2
together with the values of φ0 and φ1 measured in simulations.

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

φ2

φ1

φ0

Figure 4.7.: Red and white sites’ concentrations in the system of chains and in the uncor-
related model. Results obtained in the simulations for φ0 (black dashed line)
and for φ1 (black solid line). Results for the uncorrelated site model: φ0 as
given by Eq.(4.52) (blue dotted line) and φ1 from Eq.(4.53) (red dash-dotted
line).

It is furthermore possible to estimate an approximate value for the effective exponent
λ as following from simulations. The theoretical value of the black concentration φ̄2
at which white and red sites are equally distributed can be easily found by equating
equations 4.52 and 4.53. This gives

φ̄2 = 1− 1
21/λ (' 0.11 for a cubic lattice). (4.55)

The simulation results in figure 4.7 lead to a larger value of φ̄2 ' 0.25. Therefore the
value of λ as obtained by inverting equation 4.55 is as low as

λ = − ln 2
ln(1− φ̄2)

' 2.41. (4.56)
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4.2.2. Pure percolation (binary) model
It would be nice to know, how large is the typical error arising from disregarding the
chain structure of black sites, and what is the role the chain length plays in the simplest
case, namely in a percolation model with correlated black sites given by the chains. In
this section we consider therefore a pure binary black and white lattice and neglect the
red sites. Our previous considerations reduce then to the original Yuge’s result for site
percolation.
Thus, we consider a pure percolation situation in which the only interactions are the
excluded volume ones. The results of simulations for the systems of chains of different
lengths are shown in Fig. 4.8(a). The figure representing the dependence of the diffusion
coefficient on the concentration of sites occupied by segments of the chain shows this
for the chain lengths from L = 1 (usual Bernoulli site percolation problem) to L = 10.
The simulations were performed also for longer chains, but for L larger than 10 the
corresponding graphs are indistinguishable from that for L = 10 within the statistical
accuracy. Thus, a result for L = 100, (not shown) is indistinguishable from the one for
L = 10 on the scales of Fig 4.8(a).

Simulations are performed along the same lines previously given. Again a normal diffu-
sion process 〈r2(t)〉 ∝ t is observed and the corresponding diffusion factor D̃3 is reported
in Fig. 4.8(a). We stress the fact that the homogenization of 〈r2(t)〉 slows down in the
proximity of the critical point. For this reason 104 time steps become insufficient and
the diffusivity is systematically overestimated. Our attention however is focused on a
range of values of φ2 which are above the percolation threshold.
The curves do not differ drastically, but definitely show different percolation thresholds
φc0(l) depending on L. For the Bernoulli case the total behavior of diffusivity is repro-
duced sufficiently well by EMA for φ2 close to unity but departures from the EMA line
for concentrations close to a critical one. For longer chains the critical concentration
gets lower, and the diffusion coefficient at given φ0 gets larger than for the Bernoulli
case. Although different, the curves however show a large amount of universality which
is unveiled when rescaling the concentration and diffusivity according to

φ
′
0 = φ0

φc0
− 1 and D̃

′
3 = D̃3

(1− φc0)
φc0

, (4.57)

so that the critical concentration is mapped onto the point φ′0 = 0, see 4.8(b). In
this case all the curves fall onto the same master curve, and the mean-field result,
accordingly rescaled, gives a straight line (of slope 1) which reproduces the results of
simulations astonishingly well up to the critical domain. This high degree of universality
shows that the correlations introduced by the existence of the chains are not of high
importance and can be fully accounted for by rescaling the results of EMA according
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Figure 4.8.: (a) Normalized diffusivities D̃3 in the purely percolation case vs. the con-
centration φ0 of white sites; (b) Rescaled normalized diffusivities D̃′3 vs.
rescaled white concentration φ′0. The dotted line represents in both figures
the effective medium approximation.

to the equations above. The corresponding critical concentration has however to be
obtained numerically. Alternatively, it can be extrapolated from the slope of diffusion
coefficient for concentrations close to unity.

4.2.3. Results for ternary model
In this section we discuss results for the normalized effective diffusivity D̃3(~φ, ε) and
concentrate on the role of interaction energy ε between the diffusing particles and the
polymer matrix. All the figures refer to the three-dimensional case. The reduced inter-
action energy βε = ε̄ is chosen to span in the interval [−5, 5] according to the following
reasoning: typical absolute values of εXX/KB, the coupling strength of a Lennard-Jones
potential describing the interaction between two atoms of the same kind X, can be
roughly enclosed in the interval corresponding to temperatures [0, 500K] (Putintsev and
Putintsev, 2004; Bernardes, 1958; Kittel, 2005). In order to consider the interaction be-
tween two different atoms X and Y, the Lorentz-Berthelot mixing rule is used to obtain
εXY = √εXXεY Y which, being an average, belongs to the same interval. Using ε in
place of εXY , considering both positive and negative values and taking the temperature
not too far from the ambient one, it is straightforward to see that the choice ε̄ ∈ [−5, 5]
is a reasonable one. For the discussion of the Arrhenius or non-Arrhenius temperature
dependencies in next section 4.2.3 broader bounds are anyway used, ε̄ ∈ [−10, 10]
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Effective diffusivity vs interaction energy

Let us first discuss general features of the dependence of the diffusion coefficient on num-
ber concentrations and on interaction energy ε. The EMA results for D̃3(~φ, ε) in the
three different cases corresponding to different relations between φ0 and φ1 at φ2 fixed
are shown in Fig. 4.9. These plots show the behavior for the attractive and repulsive in-
teraction and the way the diffusivity approaches zero when the black sites concentration
approaches its critical value φc2 = 2/3 (see Eq.(4.51)). At this value in fact, particles re-
main confined in finite subregions of the system, due to the overwhelming predominance
of polymer segments.

Plots are given for three different sets of the φk values in order to consider symmet-
rically the situations in which red sites are in minority, equally probable or predominant
with respect to the white ones, at given φ2. For this purpose we introduce the real
parameter γ ∈ [0, 1] we previously mentioned, and define the number concentrations of
white and red sites as

φ0 = γ(1− φ2) (4.58)
φ1 = (1− γ)(1− φ2). (4.59)

Graphs are then taken for three different values of γ: γ = 1/4 (red dashed lines, φ1 > φ0),
γ = 1/2 (green dotted lines, φ1 = φ0) and γ = 3/4 (blue dash-dotted lines, φ1 < φ0).
This imbalance will deeply influence the behavior of the effective diffusivity when ε
crosses the zero value. In the symmetric case φ1 = φ0, D̃3 is invariant under the change
of the sign of the interaction energy ε̄ → −ε̄. On the contrary, when the white-red
balance is broken, the effective diffusivity decreases or increases depending on the sign
of the energy parameter and on the value of γ.
To better explain, let us consider the situation in which φ1 > φ0 (e.g. γ = 1/4, Fig.
4.9(b), red dashed lines) and restrict our attention on the attractive ε̄ < 0 region; with
this choice of the parameters, we have increased the number of the red-red g2 bonds
(showing larger conductivity) with respect to the number of the white-white g0 ones
which have the lowest conductivity. This results in a global increasing of the effective
diffusion constant. If we now invert the sign of ε, i.e. consider the repulsive interaction,
the g2 bonds are still the most numerous, but now they bring the lowest conductivity
value, decreasing in this way the whole diffusivity of the system. The opposite happens
if we consider φ1 < φ0 and the corresponding graph in Fig.4.9(c) results in a mirror
image of the one in Fig.4.9(b).

The comparison between the mean field calculations and the Monte Carlo simulations
performed in the original ternary lattice with the chain length L = 100 is quite satisfac-
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Figure 4.9.: EMA normalized effective diffusivity D̃3 vs ε̄ in the cases φ2 = 0; 0.2; 0.4
and: (a) γ = 1/2; (b) γ = 1/4; (c) γ = 3/4.
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tory (Fig.4.10). Representative samples corresponding to the the cases φ1 > φ0, φ1 ' φ0
and φ1 < φ0, namely, the red, green and blue ones, were found according to the sug-
gestions of Fig.4.7 giving the concentration values reported in Fig.4.10. The numerical
result is plotted together with the mean field calculations in which the same values are
used. We note that the value of the polymer concentration is close to the critical domain
in Fig. 4.10(b) corresponding to ε = 0, so that the total accuracy of EMA is not too
high in this domain. However, the EMA-results reproduce the dependence qualitatively
well, and, moreover, the accuracy of EMA improves for higher interaction strengths.
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Arrhenius vs. non-Arrhenius behavior

A non-trivial aspect of the dependence of diffusivity on the interaction strength is re-
vealed by the Arrhenius plots shown in Fig.4.11 where the logarithm of D̃3 is plotted as
a function of ε̄ = ε/KBT in the wider interval [−10, 10] to investigate the role played
by activation in the diffusion process; the segment concentration is set here to φ2 = 0.4.
The three curves correspond to the values of γ = 1/4 (red dashed line), γ = 1/2 (green
dotted line) and γ = 3/4 (blue dash-dotted line). As in the previous figures, the curve
for γ = 1/2 represents an even function of ε̄, and the curves for γ = 1/4 and γ = 3/4 are
mirror images of each other. For ε̄ close to zero, the activation process is not relevant,
the curves fall together and reproduce the diffusion constant in the black-and-white
lattice of section 4.2.2. When one moves away from the ε̄ = 0 value, the activation
acquires importance. For γ = 1/2 this behavior becomes Arrhenius-like and the curve
shows a linear decay for both signs of ε̄ provided the interaction is strong enough. For
asymmetric cases γ 6= 1/2 the Arrhenius behavior is seen only for interaction energy of
the corresponding sign (attractive interaction for γ < 1/2 and repulsive interaction for
γ > 1/2). For the opposite sign of interaction, at low temperatures, or high absolute
values of ε, the lines become horizontal, quitting the Arrhenius regime.

This non-Arrhenius behavior can be explained as follows. Let us focus our attention
again on the red (dashed) line in the negative ε̄ half-plane. Under segment concen-
tration φ2 = 0.4 the black infinite cluster exists but is not dense enough to prevent
the existence of infinite white or red ones. The concentration of red sites is φ1 = 0.45
(γ = 1/4) and thus lays above the percolation threshold for a cubic lattice. This means
that red sites form an infinite cluster crossing the whole system, and once a particle finds
it, it becomes more probable to travel along it than escape from it by activation. As a
consequence diffusivity saturates and the system never freezes. In the repulsive region,
the same behavior is shown by the blue (dash-dotted) line, indicating the existence of a
white infinite cluster.
The green (dotted) line, the one for symmetric situation φ2 = 0.4, φ1 = φ0 = 0.3, doesn’t
show any saturation. This suggests that in such a case white and red concentrations are
below the percolation threshold, and the activation processes are necessary to traverse
the system.
Figure 4.12 shows the comparison between theory and simulation Arrhenius plots in the
original interval ε̄ ∈ [−5, 5] and for the same concentration values of Fig.4.10.

On the total the following regimes of behavior can be qualitatively distinguished:

(1) If the concentration of black sites is so high that percolation on red and white sites
is not possible, the diffusion coefficient vanishes. In the case when percolation over the
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(a)

(b) (c)

Figure 4.10.: Comparison between theory and simulations (black solid line) in the cases:
(a) φ0 = 0.39, φ1 = 0.37, φ2 = 0.24, (γ = 0.513, φ1 ' φ0);
(b) φ0 = 0.18, φ1 = 0.43, φ2 = 0.39, (γ = 0.295, φ1 > φ0);
(c) φ0 = 0.59, φ1 = 0.27, φ2 = 0.14, (γ = 0.686, φ1 < φ0).
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Figure 4.11.: Arrhenius plots of the different EMA normalized effective diffusivities vs.
ε̄ at φ2 = 0.4 and γ = 1/4 (red dashed line), γ = 1/2 (green dotted line),
γ = 3/4 (blue dash-dotted line).

red-and-white domains is possible, the diffusion coefficient is nonzero, and its behavior
as a function of temperature depends on the percolation properties of red and white
clusters, and on the sign of interaction energy.

If the interaction is repulsive, two regimes appear:
(2) If white sites percolate, the diffusion over the white cluster is always possible and
does not need activation. The temperature dependence saturates.
(3) If white clusters do not percolate, the diffusion is only possible over red sites, and
involves an activation process; its temperature dependence shows the Arrhenius behav-
ior.

In the case of attractive interaction the roles of white and red sites interchange, and
percolation over red sites is what determines the temperature dependence of the diffu-
sion coefficient:
(4) If red sites do percolate, the diffusion over the red cluster is possible and does not
need activation. The temperature dependence saturates.
(5) If red clusters do not percolate, the diffusion has to go via white sites, and therefore
involves an activation process; its temperature dependence shows the Arrhenius behav-
ior.

These features, predicted by EMA, have also been found in simulations of a genuine
ternary lattice in which red clusters run clung on the black chains by construction. Fig-
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ure 4.13 shows the behavior of Arrhenius plots for low polymer concentrations in the case
of attractive interaction. It shows the logarithm of the normalized effective diffusivity
for different values of φ2. For φ2 < 0.06, polymers remain sparse and isolated, their
red perimeter sites do not percolate, no infinite red cluster exists and the system is in
an Arrhenius regime (5). When the number of chains is increased, the transition from
the Arrhenius to the saturation behavior (4) is observed at the critical value φ2 = 0.06,
revealing the emergence of an infinite red cluster. This critical value is far below the
usual percolation threshold of a cubic lattice due to the fact that red sites are arranged
in connected groups on the perimeters of black chains. This number can not be predicted
by simple EMA and can be translated into an estimate of the percolation threshold of
perimeter sites of chains.
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Figure 4.12.: Comparison between theory and simulation (black solid lines) Arrhenius
plots at:
(a) φ0 = 0.39, φ1 = 0.37, φ2 = 0.24, (γ = 0.513, φ1 ' φ0);
(b) φ0 = 0.18, φ1 = 0.43, φ2 = 0.39, (γ = 0.295, φ1 > φ0);
(c) φ0 = 0.59, φ1 = 0.27, φ2 = 0.14, (γ = 0.686, φ1 < φ0).
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Figure 4.13.: Simulation graph: Arrhenius plots of the normalized diffusivity in the at-
tractive case vs. ε̄ for different segment concentrations.
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5. Summary and conclusion

A simple model has been considered to analyze the interaction between a polymeric
material and a gaseous substance. In our gedankenexperiment two main processes arise
once these two systems are put in contact: a first sorption of gas molecules in the poly-
meric slab, and a consequent diffusion of the same sorbed molecules within the polymeric
medium.

We adopted a model of penetrant molecules sorption in a polymeric medium based
essentially on the same ideas as the dual mode model of sorption: the sorption is partly
due to dissolution of the molecules in the polymer matrix and partly due to filling the
preexisting holes. Applying basic thermodynamic principles we obtained a relation link-
ing the penetrant concentration to the external pressure. The ensuing formula is however
not of the dual mode kind. The solution (in the domain of pressures where the gas can
be considered as ideal) is given by a transcendental equation similar in form to the
one obtained in the Gas-Polymer matrix model of Sefcik and Raucher, in spite of the
fact that none of the hypothesis specifying the matrix model has been assumed. The
corresponding sorption isotherms is represented by a Lambert W -function, and corre-
sponding two-parametric fits show an excellent agreement with the experimental data
typically fitted within the dual sorption mode model; our fits are not inferior to the
corresponding three-parametric fits. The Lambert-like isotherms appear universally at
low and moderate pressures and originate from the assumption that the internal energy
in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in
the concentrations of the three components. This analysis is shown in chapter 3.

We then started to analyze the diffusive properties of this population of gas particles
that entered the polymeric medium.
We started with a general remark considering the possible sources of anomalous dif-
fusion and which kind of anomalous diffusion may occur in such a system. We found
out that for dimensions larger than 1, no superdiffusion could be ever observed while
the process may go subdiffusive either due to the energetic disorder, making the mean
Boltzmann factor diverge, or to topological disorder as for example in finitely ramified
fractals. These statements have been derived in the scenario of the equivalence between
diffusive and conductive phenomena, where the Effective Medium Approximation has
been extensively used. These results are derived in the first section of chapter 4.
Finally, we considered a lattice model to obtain an expression for the diffusion con-
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5. Summary and conclusion

stant taking into account the interaction between polymers and diffusing particles which
can be both attractive or repulsive. The diffusivity has been analyzed from different
perspectives both analytically, using a modified effective medium approximation, and
numerically by performing direct Monte Carlo simulations. While the diffusivity is only
slightly affected by the chain’s length, its temperature dependence crucially depends on
the kind of interaction. This behavior depends on the sign of the interaction energy
and is related to the existence of a percolating cluster of interaction sites surrounding
polymer segments and/or a percolating cluster of voids on which particles are free to
travel without activation. This is shown in the second section of chapter 4.
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A. Appendix

Just to complete the overview presented in the introduction on the analysis of diffusion
problems and Brownian Motion, we reserve the following sections to illustrate some
of the most important moments that signed the history and the development of this
extraordinarily rich field.
Moreover, we will show the steps of a procedure that maps the Fokker-Planck equation
form a continuous space to a discrete one, being this strictly related to the master
equation used to obtain the results of section 4. We give at last the details of the Hashin-
Shtrikman expressions demonstrating that these effectively provide two bounding limits.

A.1. Smoluchowsky Equation
In the same period when Einstein was working on Brownian motion, the Polish physicist
Marian Smoluchowski was developing an alternative description of the same physical
phenomenon, arriving to a different but equivalent representation of the Brownian Mo-
tion.
Calculations start from adding an external potential contribution U(x) to the second
Fick´s law, contribution which is directly related to a force through a gradient term

F = −∂U
∂x

(A.1)

Being F applied to each diffusing particle, it causes a drift velocity v to appear, that in
the limit of a weak force can be taken to be linearly dependent on F

v = νF = −ν ∂U
∂x

(A.2)

The proportionality factor ν is defined as the mobility constant and its inverse

ζ = 1
ν

(A.3)
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is the friction constant already encountered during the exposure of the Einstein relation.
The drift velocity v has therefore to be added to the first Fick’s law giving rise to a
second flux term Cv where C is the concentration

J = −D∂C
∂x

+ Cv = −D∂C
∂x
− Cν ∂U

∂x
(A.4)

An equilibrium situation is reached when the flux is stopped and J vanishes

D
∂C

∂x
= −Cν ∂U

∂x
(A.5)

Assuming a Boltzmann distribution for the concentration at equilibrium

C(x) ' exp [−U(x)/KBT ] (A.6)

the Einstein relation for the diffusion coefficient is obtained by solving equation (A.5)

D = νKBT = KBT

ζ
(A.7)

Doing a step back and putting together equations (A.4) and (A.7) we can rewrite the
formula for the flux J

J = −ν
(
KBT

∂C

∂x
+ C

∂U

∂x

)
(A.8)

and the diffusion equation gets slightly changed in shape, giving raise to the relation
that has been denoted since then on as the Smoluchowski equation

∂C

∂t
= ∂

∂x
ν
(
KBT

∂C

∂x
+ C

∂U

∂x

)
. (A.9)

The Smoluchowski equation can be obtained in a different way where its thermodynamic
content is clearly revealed. Let us reformulate the flux J of equation (A.8) extracting
the two x-derivatives

J = −νC ∂

∂x

(
KBT lnC + U

)
(A.10)

The quantity in round brackets is the expression of the chemical potential of a set of
noninteracting particles having concentration C, and the last equation states a propor-
tionality between the flux and the spatial gradient of the chemical potential. It is possible
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therefore to define a flux velocity vf as

vf = J/C = −ν ∂
∂x

(
KBT lnC + U

)
(A.11)

which generalizes previous equation (A.2) by replacing the external potential with the
chemical potential. If we now apply the usual continuity equation

∂C

∂t
= −∂J

∂x
= −∂Cvf

∂x
(A.12)

equation (A.9) is easily obtained by direct substitution. Therefore, the Smoluchowski
equation results in a generalization of the Fick’s law, where the equilibrium state is de-
fined by the homogeneity of the chemical potential in place of the particle concentration.

The concentration C in the Smoluchowski approach can be easily replaced by a prob-
ability distribution P (x, t) defining the probability for a particle to stay at place x at
time t, being the two functions simply related by a constant normalization factor in the
case of non interacting particles. This replacement then, allows for an increase in the
application domain of the Smoluchowski equation that becomes a more general tool for
describing the fluctuations of thermodynamic quantities. Therefore let us consider

∂P

∂t
= ∂

∂x
ν
(
KBT

∂P

∂x
+ P

∂U

∂x

)
= D

∂2P

∂x2 + ν
∂

∂x

(∂U
∂x

P
)

(A.13)

and let us for a moment expand our dimensional space and consider x1, x2, ..., xn = X
as the set of the n degrees of freedom of the system. The Smoluchowski equation is
obtained by considering the relation between the average velocity vn and the external
force Fn = −∂U/∂xn generally taken as

vn =
∑
m

Lnm(X)Fm (A.14)

where the sum runs obviously along the number of degrees and the coefficients Lnm
are the n,m elements of the mobility matrix L. It is possible to demonstrate that L is
symmetric and positive definite

Lnm = Lmn
∑
n,m

Lnm(X)FmFn ≥ 0 (A.15)
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Defining the flux velocity as

vfn =
∑
m

Lnm(X) ∂

∂xm

(
KBT lnP + U

)
(A.16)

and considering the usual continuity equation

∂P

∂t
= −

∑
n

∂

∂xn

(
vfnP

)
(A.17)

the Smoluchowski equation reads

∂P

∂t
=
∑
n,m

∂

∂xn
Lnm

(
KBT

∂P

∂xm
+ P

∂U

∂xm

)
. (A.18)

The previous reasoning allows to demonstrate a crucial property of the Smoluchowski
equation. In the case of a potential not depending on time and when there is a zero
flux at the boundary of the system, a solution P of the equation always converges at
equilibrium to the function Peq

Peq(x) = e−U(x)/KBT∫
dxe−U(x)/KBT

(A.19)

Let us start from the functional

A[Ψ] =
∫
d{x}Ψ(KBT ln Ψ + U) (A.20)

whose argument is a general solution of the Smoluchowski equation, and consider its
time derivative

d

dt
A[Ψ] =

∫
d{x}

[∂Ψ
∂t

(KBT ln Ψ + U) +KBT
∂Ψ
∂t

]
(A.21)

Integrating by parts with the help of equation (A.18) and considering the boundary
assumptions, we have

d

dt
A[Ψ] = −

∫
d{x}Ψ

∑
n,m

Lnm
[
KBT

∂Ψ
∂xn

ln
( Ψ

Ψeq
)
][
KBT

∂Ψ
∂xm

ln
( Ψ

Ψeq
)
]

(A.22)
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Last expression is non positive definite being always negative except for the equilibrium
case when the Ψ = Ψeq condition makes it vanish and poses A to its minimum. There-
fore the functional always decreases until its minimum is reached where Ψ = Ψeq. At
equilibrium, A results to be the free energy of the system

A[Ψeq] = −KBT ln
[ ∫

d{x} exp
(
− U/KBT

)]
(A.23)

A.2. The Langevin equation
The perspective adopted to describe a Brownian motion is usually a collective one.
The system is taken as a whole and calculations are considered for global functions as
concentration, flux, potential and chemical potential.
Another approach is possible if the attention is focused on one single Brownian particle,
taken as representative of all the others, and its equation of motion is considered. The
randomness of the process is entirely represented by a time dependent stochastic term
f(t) added to the usual deterministic external force term −∂U/∂x,

ζ
dx

dt
= −∂U

∂x
+ f(t) (A.24)

f(t) represents therefore a random force, describing the continuous collisions of the
particle with the surrounding molecules giving raise to the unpredictable trajectories of
the Brownian motion. This kind of approach has been introduced in 1908 by the French
physicist Paul Langevin and previous equation (A.24) representing its mathematical
translation is known as the Langevin equation.
The model is strongly characterized by the nature of the distribution Ψ[f(t)] followed
by the random force and by the values of tis moments. The most usual and reasonable
step to take is to assume the distribution to be Gaussian

Ψ[f(t)] ∝ exp
(
− 1

4ζKBT

∫
dtf2(t)

)
(A.25)

and the first two moments of f(t) to be as follows

〈f(t)〉 = 0 〈f(t)f(t′)〉 = 2ζKBTδ(t− t′). (A.26)

The solution for the displacement ξ of the x-position in the limit of a small time interval
∆t, can be easily obtained by direct integration.

ξ(t) = V (x)∆t+ 1
ζ

∫ t+∆t

t
dt′f(t′) (A.27)
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where the velocity term
V (x) = 1

ζ

∂U

∂t
(A.28)

has been supposed to be constant on the scale of the small displacement ξ. With the
assumptions made on the f(t) term, the displacement results in a sum of Gaussian terms
and therefore a Gaussian variable it self with moments

〈ξ(t)〉 = V (x)∆t (A.29)

and

〈(ξ − 〈ξ(t)〉)2〉 =
〈(1
ζ

∫ t+∆t

t
dt′f(t′)

)
·
(1
ζ

∫ t+∆t

t
dt′′f(t′′)

)〉
=

= 1
ζ2

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′〈f(t′) · f(t′′)〉 =

= 2KBT

ζ

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′δ(t′ − t′′) =

= 2KBT

ζ
∆t

= 2D∆t (A.30)

The distribution of the displacement is

Φ(ξ,∆t;x) = 1√
4πD∆t

exp
(
− (ξ − V (x)∆t)2

4D∆t
)
. (A.31)

Therefore, the probability Ψ(x, t) for a particle to stay at position x at time t is given
by the probability to stay at position x′ at a certain previous moment t′ times the
probability to travel exactly the distance x− x′ in the time interval t− t′ and summed
up over all the possible positions and moments

Ψ(x, t+ ∆t) =
∫
dξ

∫
dx′δ(x− x′ − ξ)Φ(ξ,∆t;x′)Ψ(x− xi, t)

= 1√
4πD∆t

∫
dξ exp

(
− (ξ − V (x)∆t)2

4D∆t
)
Ψ(x− ξ, t) (A.32)

Being the function strongly centered around the null displacement, it is reasonable to
expand the integrand function around ξ = 0. At the first order in ∆t and relaxing the
notation this gives

Ψ(x, t+ ∆t) =
(
1− dV

dx
∆t
)
Ψ− V ∂Ψ

∂x
∆t+D

∂2Ψ
∂x2 ∆t. (A.33)
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If we collect together the terms coupled to the time interval ∆t, we obtain the Smolu-
chowski equation (A.13)

∂Ψ
∂t

= − ∂

∂x

(
V (x)Ψ(x, t)

)
+D

∂2Ψ
∂x2

= D
∂2Ψ
∂x2 + 1

ζ

∂

∂x

(∂U
∂x

Ψ
)

(A.34)

It may be interesting to consider a slightly different situation. So far the friction term
ζ has been assumed to be a constant, but the last analysis can be easily generalized to
the case when this is depending on the position. This is reflecting those systems where
the diffusion constant is space dependent.
Let us start for the moment from the non dependent case and rescale friction and random
force terms, and reformulate the original equation of motion (A.24) as follows

dx

dt
= V (x) + σg(t) (A.35)

where
σ =

(KBT

ζ

)1/2
= D1/2 (A.36)

and g(t) is another random variable properly introduced to correctly rescale the random
force and whose moments are

〈g(t)〉 = 0 〈g(t)g(t′)〉 = 2δ(t− t′). (A.37)

When one introduces the space dependency of the diffusion constant the equation of
motion has to be modified with the addition of a new term

dx

dt
= V (x) + σ(x)g(t) + σ(x)dσ

dx
(A.38)

Dividing both sides by σ we obtain the Langevin equation of motion of a new variable
coupling the x coordinate to the rescaled friction. Writing therefore

1
σ(x)

dx

dt
= V (x) + dσ

dx
+ g(t) (A.39)

we obtain
dX

dt
= V̂ (X) + g(t) (A.40)
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where we have defined

X(t) =
∫ x(t) dx′

σ(x′) and V̂ = V + dσ

dx
(A.41)

that can be solved in the same way we have solved the D-constant case and giving
therefore the following differential equation governing the probability distribution for
the variable X

∂Ψ̂(X)
∂t

= ∂

∂X

( ∂Ψ̂
∂X
− V̂ Ψ̂

)
(A.42)

According to the definition of X it follows that

Ψ̂(X, t) = σ(x)Ψ(x, t) (A.43)

and
∂

∂X
= σ(x) ∂

∂x
(A.44)

It is therefore possible to demonstrate that the probability of the x-coordinate satisfies

∂Ψ
∂t

= ∂

∂x

(
σ2∂Ψ
∂x
− VΨ

)
= ∂

∂x

1
ζ

(
KBT

∂Ψ
∂x

+ ∂U

∂x
Ψ
)

(A.45)

A.3. Einstein relation from the Fluctuation Dissipation theorem
As stated before, the Einstein relation can be obtained as a particular case of the Fluc-
tuation Dissipation Theorem. This theorem states a general relationship between the
response of a given system to an external disturbance and the internal fluctuation of
the system in the absence of the disturbance. Such a response is characterized by a re-
sponse function while the internal fluctuation is characterized by a correlation function
of relevant physical quantities of the system fluctuating in thermal equilibrium.

A.3.1. Time correlation function
Let us consider a Brownian particle and let us measure the value of a physical quantity
A(t) at time t. The time autocorrelation function is defined as the average value calcu-
lated over many equilibrium samples of the product between two values of A taken at
different times, even if usually one of them is taken at t = 0 and the function becomes
a simple function of t. Hence

CAA(t) = 〈A(t)A(0)〉 (A.46)
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Normally CAA displays an exponentially decaying behavior, with a typical decay time
denoted as correlation time, and converges to the product of the averages

〈A(t)〉〈A(0)〉 = 〈A〉2. (A.47)

Th physical content of the difference between CAA and its asymptote 〈A〉2, is the influ-
ence of the value of A at time zero on the value of A at time t, in other words it gives
an idea of the typical memory of the system relative to the A quantity
It is also possible to define a correlation function between different quantities, what
is called a crosscorrelation function, where the value of A at time t is coupled to the
beginning value of a second quantity B

CAB(t) = 〈A(t)B(0)〉 (A.48)

In what follows we won´t make any difference between auto or cross correlation functions
and simply talk about correlation functions.

Let us consider now a multidimensional system and let us denote for the moment as x
the whole set of coordinates x1, x2, ..., xn. The probability G(x, x′, t) for the system to
be in state x at time t being started at state x′ at time zero, evolves according to the
Smoluchowski equation

∂G

∂t
=
∑
n,m

∂

∂xn
Lnm

(
KBT

∂G

∂xm
+G

∂U

∂xm

)
. (A.49)

with the initial condition given by

G(x, x′, 0) = δ(x− x′) (A.50)

It is not that easy to find an explicit expression of the Green function G, but it is
nonetheless possible to obtain in this context some expressions revealing important as-
pects of the system. To keep the formalism coherent and correct, it is important to
distinguish now for any physical quantity A the dependence on the state coordinates
that we will denote as Ã(x) from the value the quantity takes at time t and that will be
simply written as A(t). That specification made, the correlation function reads

CAB(t) = 〈A(t)B(0)〉

=
∫
dx

∫
dx′Ã(x)B̃(x′)G(x, x′, t)Ψeq(x′) (A.51)

where the product G ·Ψeq gives the probability for the system to be evolved from state
x′ to state x in a time interval going form 0 to t, remaining at equilibrium.
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A useful quantity is given by the initial slope of the correlation function. The time
derivative is evaluated as

d

dt
CAB(t) = d

dt
〈A(t)B(0)〉

=
∫
dx

∫
dx′Ã(x)B̃(x′)∂G

∂t
Ψeq(x′)

=
∫
dx

∫
dx′Ã(x)B̃(x′)

∑
n,m

∂

∂xn
Lnm

(
KBT

∂G

∂xm
+G

∂U

∂xm

)
Ψeq(x′)

)
(A.52)

At time t = 0 the Green function reduces to the delta δ(x− x′) and this gives

d

dt
CAB(t)

∣∣∣
t=0

= d

dt
〈A(t)B(0)〉

∣∣∣
t=0

=
∫
dxÃ(x)

∑
n,m

∂

∂xn
Lnm

[
KBT

∂

∂xm

(
B̃(x)Ψeq(x)

)
+ B̃(x)Ψeq(x) ∂U

∂xm

]
Integrating by parts and using the Boltzmann expression of the equilibrium distribution
Ψeq, we have

d

dt
CAB(t)

∣∣∣
t=0

= d

dt
〈A(t)B(0)〉

∣∣∣
t=0

= −KBT

∫
dx
∑
n,m

Ψeq(x)∂Ã(x)
∂xn

Lnm
∂B̃(x)
∂xm

= −KBT
∑
n,m

〈∂Ã(x)
∂xn

Lnm
∂B̃(x)
∂xm

〉
(A.53)

Last expression is used to calculate te initial decay rate Γ0 as

Γ0 = −
d
dt〈A(t)B(0)〉|t=0

〈AB〉 − 〈A〉〈B〉

= KBT

〈AB〉 − 〈A〉〈B〉
∑
n,m

〈∂Ã(x)
∂xn

Lnm
∂B̃(x)
∂xm

〉
(A.54)

A.3.2. Fluctuation Dissipation Theorem
An external field h(t) is applied at time t = 0 to a system supposed to be at equilibrium
until that moment. The average value of a physical quantity A(t) responds to the
perturbation given by h(t) and if the field is weak enough, its change can be given by
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the following expression

〈A(t)〉h − 〈A〉0 =
∫ t

−∞
dt′µ(t− t′)h(t′) (A.55)

where 〈A(t)〉h denotes the average of the A quantity on presence of the field and 〈A〉0
the average before the filed was switched off. The function µ(t) is called the response
function and the Fluctuation Dissipation Theorem shows that it is equal to

µ(t) = − 1
KBT

d

dt
CAB(t) (A.56)

where the second physical quantity B(x) represents a conjugate variable to the field h
building the potential energy term

Uh(x, t) = −h(t)B(x) (A.57)

For the sake of simplicity we assume the external field to be a step function, being zero
until t = 0 and switched suddenly on to a constant value h for positive times.
In this case we have for a general physical quantity A

〈A(t)〉h − 〈A〉0 =
∫ t

−∞
dt′µ(t− t′)h(t′) = h

∫ t

0
dt′µ(t′) = hβ(t) (A.58)

where we have introduced the function

β(t) =
∫ t

0
dt′µ(t′) (A.59)

Considering the A = B case and A as the x-coordinate of a particle performing a
Brownian Motion, the Fluctuation Dissipation Theorem allows to solve last integral as

β(t) = − 1
KBT

(
Cxx(t)− Cx(0)

)
= 1

2KBT

(
〈x2(t)〉+ 〈x2(0)〉 − 2〈x(t)x(0)〉

)
= 1

2KBT
〈(x(t)− x(0))2〉 (A.60)

On the other hand, when the field is applied, the particle starts to move with the constant
velocity v = F/ζ and this makes the function β(t) to be equal to t/ζ.
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Hence, setting things together, we have

t

ζ
= 1

2KBT
〈(x(t)− x(0))2〉 (A.61)

The Einstein relation is recovered if we consider the diffusion constant to be defined as

2Dt = 〈(x(t)− x(0))2〉 (A.62)

and as a consequence
D = KBT

ζ
(A.63)

A.4. Discretization of a continuous Fokker-Planck equation
with random potential

We show in this section the discretization procedure linking the Fokker-Planck equation
to the master equation. The equation in a continuous d-dimensional space is discretized
using a regular hypercubic lattice with lattice constant a considered sufficiently small.
The sites are identified by the vectors i, the site energies Ei are given by corresponding
values of the random potential U(x) at the position of site i, x = i = (i1, ..., id) =
a(n1, ..., nd) where nk is an integer number and k runs from 1 to d . Correspondingly,
the derivatives ∂k along a certain direction k are linked to the forward differences ∆k in
the following way:

∂kp(x) → 1
a

∆kpi = 1
a

[pi+ak̂ − pi]

∂2
kp(x) → 1

a2 ∆2
kpi = 1

a2 [pi+ak̂ − 2pi + pi−ak̂] (A.64)

where k̂ is the unit vector in the k-th direction. Hence, from

ṗ(x) = D∇2p(x) +Dβ∇[∇U(x) · p(x)] =

= D
d∑

k=1

[
∂2
kp(x) + β∂k[∂kU(x) · p(x)]

]
follows

ṗi = D
d∑

k=1

[ 1
a2 [pi+ak̂ − 2pi + pi−ak̂] +

+β

a
∂k
(
(Ei+ak̂ − Ei)pi

)]
(A.65)
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We consider the potential to be a slowly varying function of the position; this allows to
substitute the remaining partial derivative with half of a double step forward difference,
the consequent error being of the smaller order of magnitude ∆2

kE.

ṗi = D

a2

d∑
k=1

[
[pi+ak̂ − 2pi + pi−ak̂] + (A.66)

+β

2
(
(Ei+2ak̂ − Ei+ak̂)pi+ak̂ − (Ei − Ei−ak̂)pi−ak̂

)]
Neglecting again second order terms, we replace the quantity (Ei+2ak̂ − Ei+ak̂) with
(Ei+ak̂ − Ei), and add and subtract the term (Ei+ak̂ − Ei)pi

ṗi = D

a2

d∑
k=1

[
[pi+ak̂ − 2pi + pi−ak̂] +

+β

2
(
(Ei+ak̂ − Ei)pi+ak̂ − (Ei − Ei−ak̂)pi−ak̂ +

+(Ei+ak̂ − Ei)pi − (Ei+ak̂ − Ei)pi
)]

= (A.67)

= D

a2

d∑
k=1

[
[pi+ak̂ − 2pi + pi−ak̂] +

+β

2
(
(Ei+ak̂ − Ei)pi+ak̂ − (Ei − Ei−ak̂)pi−ak̂ +

+(Ei+ak̂ − Ei)pi + (Ei−ak̂ − Ei)pi
)]

= (A.68)

= D

a2

d∑
k=1

[
[pi+ak̂

(
1− β

2 (Ei − Ei+ak̂)
)

+

+pi−ak̂

(
1− β

2 (Ei − Ei−ak̂)
)

+ (A.69)

−pi
(
2− β

2 (Ei+ak̂ − Ei)−
β

2 (Ei−ak̂ − Ei)
)]

Since the difference between the energies at neighbouring sites is small, in the lowest
nonvanishing order we can put

ṗi = D

a2

d∑
k=1

[
[pi+ak̂e

−β2 (Ei−Ei+ak̂) +

+ pi−ak̂e
−β2 (Ei−Ei−ak̂) +

− pi
(
e−

β
2 (Ei+ak̂−Ei) + e−

β
2 (Ei−ak̂−Ei)

)]
(A.70)
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At this point, the discretized Fokker-Planck equation is shown to be equivalent to the
master equation

ṗi =
d∑

k=1

[
wi,i+ak̂pi+ak̂ + wi,i−ak̂pi−ak̂ +

− pi(wi+ak̂,i + wi−ak̂,i)
]

(A.71)

by setting
wi,j = D

a2 e
−β2 (Ei−Ej) = w0e

−β2 (Ei−Ej)

implying that, up to constant factors

gi,j = wi,je
−βEj = w0e

−β2 (Ei+Ej).

In what follows β
2 (Ei +Ej) can be changed for βU(x). Thus, returning to the continuous

limit when calculating the macroscopic (effective medium) conductance of the continuous
disordered medium we can take its local conductivity to be g(x) = g0 exp(−U(x)/kT )
with g0 = D/a2.

A.5. Hashin - Shtrikman bounds on the effective diffusivity
In this section we show that it is possible to give stricter upper and lower bounds on the
effective conductance g∗ using the technique introduced by Z.Hashin and S.Shtrikman
in Hashin and Shtrikman (1962). Thanks to equation 4.22 this limitation is then easily
reflected on the effective diffusivity.
We will therefore focus our attention on the bond function gij considering two particular
cases: one in which it can take only two values according to fixed probabilities, and one
in which it is given by a random variable uniformly distributed in a finite interval.
Once calculated the effective conductance by the use of the Effective Medium Approxi-
mation, we proceed to formulate its Hashin-Shtrikman limits.

Binary case

We assume Ei to be a binary random variable

Ei =
{
Ea with probability p1 = p
Eb with probability p2 = 1− p (A.72)
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with Ea < Eb. As a consequence, the local conductance gij is a binary variable as well

gij =
{
g1 ∝ g0e

−βEa with probability p1 = p
g2 ∝ g0e

−βEb with probability p2 = 1− p (A.73)

or, equivalently, a random variable subject to the distribution

Q(gij) = p1δ(gij − g1) + p2δ(gij − g2) (A.74)

and giving the following medium, arithmetic and geometric averages

〈g〉Q = p1g1 + p2g2

〈g〉A = 1
2(g1 + g2)

〈g〉G = √
g1g2

(A.75)

Obeying the Effective Medium Approximation guidelines, we find the effective conduc-
tance g∗ through the use of the self-consistency condition〈 g∗ − g

(d− 1)g∗ + g

〉
Q

= 0 (A.76)

resulting in

g∗ = d〈g〉Q − 2〈g〉A
2(d− 1)

[
1 +

√
1 + 4(d− 1)〈g〉2G

[d〈g〉Q − 2〈g〉A]2

]
(A.77)

The percolating case is easily recovered in the limit Eb → +∞, g1 → 0, giving the
wellknown results

g∗ = dp2 − 1
d− 1 g2 (A.78)

pc2 = 1/d (A.79)

while simple calculations can show that in the bidimensional symmetric case, d = 2,
p = 1/2, g∗ equals the geometric mean √g1g2.

Equation (A.77) is finally used to calculate the effective medium diffusion constant

D∗ = a2g∗

〈exp−βEi〉
= a2g∗

〈g〉

= D
d〈g〉Q − 2〈g〉A
2(d− 1)〈g〉Q

[
1 +

√
1 + 4(d− 1)〈g〉2G

[d〈g〉Q − 2〈g〉A]2

]
(A.80)
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Following the strategy outlined in (Hashin and Shtrikman, 1962), we now introduce a
free parameter g0 and define the function

B(g0) =
〈

g − g0
(d− 1)g0 + g

〉
Q

(A.81)

which allows to state

g∗ > g0
(
1 + dB(g0)

1−B(g0)
)

if g0 < min(gij) = g1

g∗ < g0
(
1 + dB(g0)

1−B(g0)
)

if g0 > max(gij) = g2

Calling

g∗1 = g1
(
1 + dB(g1)

1−B(g1)
)

(A.82)

g∗2 = g2
(
1 + dB(g2)

1−B(g2)
)

(A.83)

it is then possible to write the following inequalities

g∗ > g∗1 = g1
[
1 + d(1− p)(g2 − g1)

dg1 + p(g2 − g1)
]

(A.84)

g∗ < g∗2 = g2
[
1− dp(g2 − g1)

dg2 − (1− p)(g2 − g1)
]

(A.85)

and define

D∗1 = a2g∗1
〈e−βEi〉

= D
g1
〈g〉

[
1 + d(1− p)(g2 − g1)

dg1 + p(g2 − g1)
]

(A.86)

D∗2 = a2g∗2
〈e−βEi〉

= D
g2
〈g〉

[
1− dp(g2 − g1)

dg2 − (1− p)(g2 − g1)
]

(A.87)

giving the bounds
D∗1 ≤ D∗ ≤ D∗2 (A.88)

Through a simple rescaling of the units fixing D = g1 = 1 and substituting g2 and
g∗ with their ratio with g1, g2 → x = g2/g1, g∗ → g̃∗ = g∗/g1, we reformulate last
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expressions in order to have a better graphical view on the bounds

D̃∗ = d[p+ (1− p)x]− (x+ 1)
2(d− 1)[p+ (1− p)x]

[
1 +

√
1 + 4(d− 1)x

[d(p+ (1− p)x)− (x+ 1)]2

]
(A.89)

D̃∗1 = 1
p+ (1− p)x

[
1 + d(1− p)(x− 1)

d+ p(x− 1)
]

(A.90)

D̃∗2 = x

p+ (1− p)x
[
1− dp(x− 1)

dx− (1− p)(x− 1)
]

(A.91)

with
D̃∗1 ≤ D̃∗ ≤ D̃∗2 (A.92)

Uniform case

Let us now consider the case in which the possible values of the energy barriers Eij are
exponentially distributed in the interval [Ea, Eb]

P (Ei) = β e−βEi

e−βEa − e−βEb
(A.93)

Performing the change of variables, it is easy to show that the bond conductance is a
random variable uniformly distributed in the interval

[ g1 = e−βEb , g2 = e−βEa ] (A.94)

Q(gij) = 1
g2 − g1

(A.95)

Eq.(A.76) then gives the following condition to be satisfied by the effective conductance[
(d− 1)g∗ + g2

]
e−g2/dg∗ =

[
(d− 1)g∗ + g1

]
e−g1/dg∗ (A.96)

or by the effective diffusivity D∗[
(d− 1)〈g〉D∗ + g2D

]
e−g2D/(d〈g〉D∗) =

[
(d− 1)〈g〉D∗ + g1D

]
e−g1D/(d〈g〉D∗) (A.97)

which can be rewritten through the previous rescaling as[
(d− 1)(x+ 1))D̃∗ + 2x

]
e−2x/(d(x+1)D̃∗ =

[
(d− 1)(x+ 1))D̃∗ + 2

]
e−2/(d(x+1)D̃∗ (A.98)
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We now consider again
B(g0) = 〈 g − g0

(d− 1)g0 + g
〉Q (A.99)

and the inequalities

g∗ > g0
(
1 + dB(g0)

1−B(g0)
)

if g0 < min(gij) = g1

g∗ < g0
(
1 + dB(g0)

1−B(g0)
)

if g0 > max(gij) = g2

In this case we have

B(g0) = 1− dg0
g2 − g1

ln
[(d− 1)g0 + g2
(d− 1)g0 + g1

]
(A.100)

and setting respectively g0 = g1 and g0 = g2, we can write

B(g1) = 1− dg1
g2 − g1

ln
[dg1 + g2 − g1

dg1

]
= 1− 1

y1
log

(
1 + y1

)
(A.101)

B(g2) = 1− dg2
g2 − g1

ln
[ dg2
dg2 − g2 + g1

]
= 1 + 1

y2
log

(
1− y2

)
(A.102)

where the couple of parameters

y1 = g2 − g1
dg1

(A.103)

y2 = g2 − g1
dg2

(A.104)

has been introduced. At the end, the two bounds are given by

g∗ > g∗1 = g1
[
1 + d

( y1
log(1 + y1) − 1

)]
(A.105)

g∗ < g∗2 = g2
[
1− d

( y2
log(1− y2) + 1

)]
(A.106)
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from which we obtain

D∗1 = D
g1
〈g〉

[
1 + d

( y1
log(1 + y1) − 1

)]
(A.107)

D∗2 = D
g2
〈g〉

[
1− d

( y2
log(1− y2) + 1

)]
(A.108)

and the corresponding bonds
D∗1 ≤ D∗ ≤ D∗2 (A.109)

Fixing again D = g1 = 1, g2 = x, g∗ = g̃∗ = g∗/g1, we can see that

D̃∗1 = 2
x+ 1

[
1− d+ x− 1

log(1 + x−1
d )

]
(A.110)

D̃∗2 = 2x
x+ 1

[
1− d− x− 1

x log(1− x−1
dx )

]
x (A.111)

with the usual
D̃∗1 ≤ D̃∗ ≤ D̃∗2 (A.112)
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