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Abstract

Deep Distributional Learning model, or Deep Generalized Additive Regression

Models for Locations, Scale and Shape (DGAMLSS), is a flexible framework de-

signed by Rügamer et al[1], where both structured additive and deep neural net-

work parts are included into the additive predictor for distributional regression. In

this paper, we employ a series of datasets separately simulated by different dis-

tributions, examine performance of deep GAMLSS, and compare it with other

three state-of-the-art designs for GAMLSS, namely GAMLSS with maximum

likelihood[2], BAMLSS[3] and gamboostLSS[4]. Such comparison is demon-

strated from different aspects. Estimations on both linear and non-linear terms

are studied and compared through different models to address their strength and

weakness. DGAMLSS generally outperforms other models in respect of predic-

tion accuracy, convergence speed and robustness under noises especially for com-

plex distributional assumption, but fails to distinguish structure linear, non-linear

estimator, and unstructured estimator.

Keywords: GAMLSS; DFNN; Variational Inference; Deep learning; Tensorflow probability.
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1 Introduction

Generalized Additive Model (GAM), firstly introduced by Trevor Hastie and Robert Tibshiani(1984)

[9], is one of the most remarkable model in the scope of statistical regression model. It blends the proper-

ties of Generalized Linear Models [10] with additive functions. In GAM, statisticians take the assumption

that response variable y follows exponential family distribution with two parameters mean µ and disper-

sion φ, while skewness (or third moment) and kurtosis (or fourth moment) are implicitly modeled and

dependent on µ and φ.

Rigby and Stasinopoulos (2005) [11] have developed Generalized additive models for location, scale,

and shape (GAMLSS) as a modern distribution-based approach in semi-parametric statistics, extending

the scope of GAM to more flexible distributional cases. In contrast to GAM, a more general distribution

family is used in GAMLSS as the alternative to the exponential family assumption. In this model all

parameters (usually up to four parameters) of the assumed conditional distribution, involving not only

high order moments but other parameters such as zero inflation probability for zero-inflated model [12]

or degree of freedom of the Chi-square distribution, could be modeled as linear or additive nonlinear

functions of explanatory variables and/or random effect terms with associated link functions. Thereby, a

tremendous amount of distributional assumptions, including truncated, censored or mixture distributions,

is available to be deployed as conditional probability of data where exponential family such as binomial,

normal and Poisson distributional assumptions may fail.

Several algorithmic procedures have been proposed to fit a GAMLSS model in last decades. Based

on the Newton-Raphson or Fisher scoring algorithm, Rigby and Stasinopoulos (2007)[2] have invented

the RS and CG algorithms, respectively rooted from Newton-Raphson and Fisher Scoring algorithms,

for the (penalized) Maximum Likelihood Estimation. These two methods are implemented in R-package

"gamlss" and explicitly explained in their original paper.

GAMLSS has developed into a powerful statistical model for regression after being published, been

exploited by researches around the world, and expanded to various applications. According to the de-

scription on the website1, the model has been employed by several international organizations, namely

the World Health Organization (WHO), the International Monetary Fund (IMF), the European Bank and

the Bank of England, and individuals for researches in various fields including marine research, medicine,

meteorology, rainfalls, vaccines, food consumption, biology, biosciences, energy economic, genomics,

finance, fisheries, growth curves estimation, actuarial science.

However, such algorithm is approved to be less efficient in high-dimensional case, and inadequate

for the aim of variable selection to avoid overfitting as well. Regarding to this issue, Mayr Andreas

et al(2012)[4] proposed a boosting-based method named "gamboostLSS" in form of the compound of

1https://www.gamlss.com

1

https://www.gamlss.com


GAMLSS and gradient boosting algorithm[13], where the component-wise gradient descent algorithm[14]

is used for regression and estimation with intrinsic variable selection mechanism. Hence, this algorithm

is a powerful tool to tackle high-dimensional datasets in which effects to be estimated outnumber obser-

vations, and to provide a sparse estimation in regards to all GAMLSS parameters. By designed early

stopping strategy, gamboostLSS contains a built-in technic for regularization on the model. Another es-

sential characteristic of this model is the flexibility in selection of the base learners such as linear effects,

non-linear effects, spatial effects and random effects. Lastly, gamboostLSS can be utilized for more com-

plex distributions, as the number of distribution parameters is allowed to be more than four.

BayesX[15] is the independent software written in C++ with a R-interface R2BayesX[16] support-

ing analyze on majority of Structured Additive Regression (STAR) model including Generalized Additive

Model (GAM). Subsequently, Nadja, Klein et al[17] developed the Bayesian Generalized Additive Model

for Location, Scale and Shape (BAMLSS) and R-package "BAMLSS"[16] constructed upon standalone

statistical software packages including BayesX and JAGS. The "BAMLSS" package allows for estimation

of not only classical regression type including GAM but flexible regression model as GAMLSS. A pro-

posal method called iteratively weighted least square (IWLS)[18] approximation could be implemented in

MCMC sampler for Bayesian inference in case of complex structure of the likelihoods. Literally studies

reveal that the BAMLSS model could outperform the GAMLSS in many respect (unbiasedness, smaller

MSE and fast coverage rate), and yield reliable credible intervals when the asymptotic likelihood theory

fails.

From the beginning of the 21st century, the rise of Artificial Neural Network (ANN)[19] is a bomb-

shell to the field of Artificial Intelligence and statistical analysis. Since then, the analysis of large-scale

dataset is inclined to be remarkably approachable and efficient. The flexible architecture of Deep Neural

Network (multiple-layer ANN)[7], or so-called Deep Learning, allows more sophisticated designs in neu-

rons and connections aimed on special tasks. Deep learning provides more general models for analysis

on unstructured dataset, high-dimensional cases or sequential datasets. However, the estimation process

with deep neural network is regarded as a Black-Box[20] for researchers and less interpretable than other

statistical models. Academicians and developers around the world have been dedicated to facilitate the

interpretability and robustness of the Deep Neural Network.

Therefore, the last model presented in this paper is called "Deep Generalized Additive Regression

Models for Location, Scale and Shape" (DGAMLSS), or Deep Distributional Learning model and "deep-

regression" in this paper (Rügamer et al[1]). The basic idea is to combine generalized additive model with

deep neural network. DGAMLSS incorporates smoothness penalties for separation of structured and deep

neural network predictor, and offers different options such as mean-filed variational inference to assess

estimation uncertainty.

2



With all of these techniques developed for estimation of GAMLSS, researchers are able to choose

from various options when tackling complex situations for regression and estimation. However, there is a

lack of comparison within those models regarding to different aspects, videlicet, the estimation accuracy

under different assumption, the efficiency in computation, and likewise trade-off between variance and

bias. Analysis in DGAMLSS is needed for further development in respect to its weakness.

The rest of this article is organized as followed: In Chapter 2.1 we briefly describe GAM and STAR.

Then we present first three models deployed in our simulation work with necessary mathematical details,

namely GAMLSS with (penalized) maximum likelihood, gamboostLSS, and BAMLSS. Thereupon we

elaborate a comprehensive introduction of DGAMLSS in Chapter 3, and description on non-parametric

estimators deployed in our model in Chapter 4, including P-splines and Deep Neural Network. Chapter 5

develops our simulation work constructed on various datasets under different distributions and comparison

of estimations. The Final Chapter will summarize findings and comments on future development.

3



2 GAMLSS and State-of-the-art Methods

2.1 Generalized Additive Model and Structured Additive Regression Model

Initially, an introduction to Generalized Linear Model (GLM) or Generalized Additive Model (GAM)

would be demonstrated in brief. In GLM or GAM, the distribution of response variable y given covariates

x and unknown parameters ν = (θ, φ) is in form of exponential family:

p(y|x, ν) = exp(yθ−b(θ)
φ

)c(y, θ).

The mean µ = E(y|x, ν) is linked to a linear predictor η via link function g by µ = g−1(η), and η

is modeled by either a linear predictor η = xTγ or a semi-parametric additive predictor η = f1(x1) +

...+ fp(xp) + x
′
β, where x

′
β represents the strictly parametric part of the predictor and fi(xi) is smooth

function of continuous variables such as splines.

A group of statisticians have extended this model into a more generalized form, Structured Addi-

tive Regression Model (STAR)[18][21]. It is a group of model classes consisting of "generalized ad-

ditive model, generalized mixed model, varying coefficient models and geographically weighted regres-

sion"(Nikolaus Umlauf et al 2012, p.6)[16]. The non-parametric smoothing function fi could be in form

of various effects depending on the model design, including nonlinear functions depending on continuous

covariates, two-dimensional functions, spatially correlated effects, and (spatial) varying coefficients.

There are numbers of techniques used to dispose of overfitting caused by large number for non-

parametric smoothers, including squared r-th order differences in frequentist approach and r-th order ran-

dom walks with Gaussian errors in Bayesian approach.

2.2 GAMLSS based on Penalized Maximum Likelihood

The limit of GAM or STAR results from the inflexible distributional assumption, and an alternative

to them is the Generalized Additive Model for Location, Scale and Shape. Generalized Additive Model

for Location, Scale and Shape is the extension of Generalized Linear/Additive Model, which holds the

assumption on exponential family distribution, to more flexible model under general distribution assump-

tion. All distribution parameters of the conditional distribution of data, including degree of freedom or

zero-inflation probability, are able to be modeled as parametric or additive smooth function of regressors

with a link function for each parameter. More generally, the model allows various random effect terms to

be contained in the function including "cubic splines or smoothness priors, random-walk terms and many

random-effects terms (including terms for simple overdispersion, longitudinal random effects, random-

coefficient models, multilevel hierarchical models and crossed and spatial random effects"(R. A. Rigby

and D. M. Stasinopoulos 2005, p.2)[11].
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Assuming that we have totally p parameters θT = (θ1, θ2, ..., θp) for the conditional distribution

function of y: f(y|θ). All of those parameters are hypothetically modeled by additive functions through

monotonic link functions gk() where k ∈ {1, ..., p}:

gk(θk) = ηk = Xk βk +
∑Jk

j=1Zjk γjk

where X and Z are designed matrices respectively for fixed effects and random effects, β is parameter

vector, and γjk is random variable under Gaussian distribution N (0,G−1
jk (λjk)). λjk is a hyper-parameter

in model. In some cases, jk could be modeled in form of fjk(xj) as non-parametric function of explanatory

variables xj .

Usually, the first parameter θ1 is characterized as mean µ and the second one θ2 is called scale noted

as σ, where others are named shape parameters. Generally, the number of parameters to be estimated for

an arbitrary distribution function could no more than four and that would cover a large majority of issues

encountered in statistical analysis.

There are basically two major parts in the model: one is parametric term and the other is additive

term. The parametric part contains linear and interaction terms for explanatory variables and factors,

polynomials, fractional polynomials, and piecewise polynomials with fixed knots. The additive terms

are non-parametric smoothing functions involving cubic smoothing splines, parameter-driven time series

terms and smoothness priors, penalized splines, varying-coefficient terms, and spatial (covariate) random-

effect terms.

Two algorithms are implemented in combination in R-package "gamlss", namely the RS algorithm

and the CG algorithm. The RS algorithm is a generalization of the algorithm used by Rigby and Stasinopou-

los (1996)[22][23] for fitting Mean and Dispersion Additive Models, and the CG algorithm is a general-

ization of the Cole and Green (1992)[24] algorithm. The later employs the first, the second and cross

derivatives of the likelihood function with respect to the distribution parameters θ. When the parameters

are information orthogonal and therefore the expectations of the cross derivatives of the likelihood func-

tion are zero, the simpler RS algorithm is the optimal option to speed up convergence of the model. A

combination of these two algorithms is adopted in the R-package "GAMLSS" and they are proved to be

stable and efficient with simple starting values of parameters.

Lastly, they proposed to use a more generalized version of the AIC, defined as:

GAIC(a) = −2
∑n

i=1 log{fdens(yi|θ̂i)}+ a df

to penalize on overfitting, where df denotes the total effective degrees of freedom used in the model. A

standard choice of a is between two and four. When a = 2, the criterion minimizes the Kullback-Leibler

discrepancy to access to the optimal model (Andreas Mayr, 2012, chapter 2.2)[4] .
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2.3 gamboostLSS

The gamboostLSS model is developed by Mayr Andreas et al[4] to address the issue on variable se-

lection by GAMLLS. Statisticians have found out that, the generalized Akaike Information Criterion used

by GAMLSS for variable selection would lead to inherited problems associated to classical AIC especially

in case of a large number of covariates. Such method suffers from instability in estimation[25]. Besides,

a number of non-informative variables may be added into the final result[22]. Lastly, such GAMLSS

fitting produces inacurate result in distinguishing linear and non-linear effects[26]. In contrast, the new

algorithm based on the boosting technique for estimation and variable selection would mitigate those

problems. Component-wise gradient boosting approach could likewise be integrated into gamboostLSS

for sparsity. Hence, gamboostLSS model is more efficient than GAMLSS with penalized maximum like-

lihood in high-dimensional cases.

Boosting could be used as a technique for fitting generalized additive model since it can be interpreted

as a gradient descent algorithm in functional space and therefore relates to forward stage-wise additive

modeling. In practice, the aim is to minimize the experimental risk:

argmin η
∑n

i=1
ρ(yi,η(xi))

n

with a specified loss function ρ(.) by a stepwise descent of the loss function’s gradient. The boosting

algorithm iteratively fits the negative partial derivatives of the empirical loss function with base learner

function f(.), which is typically in form of trees, linear models or penalized regression splines. In every

step, the current version of η is updated additively by a step length sl to approach to a global minimum.

Furthermore, to model the distribution parameters of the conditional density fdens(y|µ, σ, ν, τ ) where

(µ, σ, ν, τ ) is (θ1, θ2, θ3, θ4), we attempt to minimize the empirical risk with arbitrary loss function ρ:

argmin η
∑n

i=1
ρ(yi,ηµ(xi),ησ(xi),ην(xi),ητ (xi))

n

Then we iteratively fit the negative partial derivatives of the empirical loss function

u[m−1]
k = (− ∂

∂ηθk
ρ(yi, ηi))i=1,...,n,

where ηi = (η
[m−1]
µ (xi), η

[m−1]
σ (xi), η

[m−1]
ν (xi), η

[m−1]
τ (xi)), with base-learner f [m−1]

j,k∗ (xi) for one pa-

rameter ηθk at a time in scale of step length sl until m > mstop,k.

2.4 BAMLSS

BAMLSS is a Bayesian approach developed by Nadja Klein et al[27][17] to fit GAMLSS, where

Bayesian inference is obtained through MCMC based on iteratively weight least squares proposal (IWLS).

Assuming that, for each predictor we have a structured additive semi-parametric estimation:
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ηk = βk0 + xβk + f1(x) + f2(x) + ...+ fJk(x),

where η = g(θ) is the estimator for parameter θ via link function g(.) and x is the observation. Fun-

damentally, fj(x)) is approximated through the structured additive regression function in terms of basis

as:

fj(xi) =
∑Dj

d=1 γj,d · fj,d(x).

The BAMLSS assumes the prior probability to each coefficient vector γj = (γj,1, γj,2, ..., γj,Dj )
′

be in

form of multivariate Gaussian prior distribution

p(γj |τ2
j ) ∝ ( 1

τ2
j

)
rk(Kj)

2 exp(− 1
2τ2
j
γ
′

jKjγj),

and the smoothing variance τ 2
j under inverse gamma distribution IG(aj , bj) with small values for the

hyper-parameters aj and bj .

For the iteratively weight least squares proposal approach, let l(η) be the log-likelihood which leads

to

log(p(γj |.) ∝ l(η)− 1
2τ2
j
γ
′

jKjγj .

From Taylor expansion we have

∂l(t)

∂ηi
− ∂2l(t)

∂η2i
· (η(t+1)

i − η(t)
i ) = 0

with iteration index t. This implies to the working model:

z(t) ∼ N(η(t), (W (t))−1).

in which z = η +W−1v is the working observations with expectation η.

Note that, v = ∂l/∂η is the score vector and W is the diagonal working weight matrix based on

a Fisher-scoring approximation with wi = E(−∂2l/∂η2
i ). By the multivariate Gaussian priors for γj ,

we obtain the Gaussian proposal densities γj ∼ N(µj , P
−1
j ) with µj = P−1

j Z
′

jW (z − η−j) and Pj =

Z
′

jWZj + 1
τ2
j
Kj where η−j = η − Zjγj . The smoothing parameter τ2

j could be updated through a Gibbs

sampler with a
′

j = rk(K)
2

+ aj and b
′

j = 1
2
γ
′

jKγj + bj .

3 DGAMLSS

In the field of machine learning, methods such as bagging and boosting where uniform base leaners

are combined into an aggregated estimator are called homogeneous ensemble. In contrast, another widely

used ensemble method called heterogenous ensemble is model stacking. In this case, as demonstrated

by Deep Distributional Learning model, outputs of various trained base leaners are taken as input and
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artfully commixed to obtain an enhanced prediction. Usually a rather sophisticated approach named k-

fold cross validation is preferred by training the stacking model. Analogously, Cheng Heng-Tze et al

proposed a model called "Wide & Deep Learning"[28] where wide linear model and deep neural network

are combined through weight matrices for each part, jointly trained and simultaneously optimized.

Deep Distributional Learning model is the project on "statistical deep learning" combining general-

ized linear and/or additive model for location, scale and shape (GAMLSS) with multi-layer neural network

via the architecture of an orthogonalization machanism. Assuming that we are interested in both struc-

tured and unstructured effects by covariates, ideally statistical model GAMLSS is efficient for analysis on

structured effects, and deep neural network is helpful to capture unstructured effects or noises. For the

statistical part, various smoothers in R-package "mgcv"[29] could be adopted by model including cubic

splines, B-splines, P-splines. On top of that, the deep neural network is based on powerful open source

platform tensorflow[30] and built-on library tensorflow-probability[31]. Tensorflow-probability allows

users to combine deep learning with probabilistic models, build so-called "deep probabilistic models"[32]

with probabilistic layers and assess uncertainty through Mento Carlo, MCMC, variational inference and

stochastic optimization methods.

Literally, the structured additive predictor and deep neural network are independently trained. Af-

terwards, both structured linear and non-linear input types are modeled as a single unit hidden layer with

linear activation functions under different regularization. The structured model part and the unstructured

deep neural network (DNN) predictor are combined as the direct sum before transmitted to distribution

layers.

ηk = f0(.) + f1(.) + ...+ fJk(.) + d1(.) + ...+ dgk(.),

Where f0(x) is the linear function, f1, ..., fJk(.) are non-linear functions, and d1(.), ..., dgk(.) are neural

network estimators. In respect to the issue of identification when inputs overlap in both structured and

unstructured part, a linear orthogonalization operation yielding centered non-linear functions is deployed.

In case of overlap between linear effects and deep learning effects:

Z̃ = (In −PX)Ẑ,

where Ẑ is the output of unstructured part,X is features of structured linear part andPX = X(XTX)−1XT .

When structured linear and structured non-linear parts are both present in the issue of identifiability, this

orthogonalization operation is firstly used to ensure identifiability between the linear and non-linear struc-

tured parts before combination, and thereafter the same operation for separation of the whole structured

from the unstructured deep learning predictor. Lastly, both adjusted predictors are summed up as param-

eters of distributional layer. To access the uncertainty of estimation, one choice is to build a variational

inference layer at the end and account for the epistemic uncertainty by staying close to a prior.
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Besides its flexibility and efficiency, DGAMLSS provided several advantages by data analysis:

• In high-dimensional setting, both lasso and ridge regression could be applied into the model. In

addition with P-splines regularized on the number of knots used in the structured additive part,

GAMLSS provides multiple choices on trade-off between bias and variance by estimation.

• With an inbuilt model selection mechanism, simple linear and non-linear effects of features are

technically separated from the part of the neural network, where the later is usually lack of inter-

pretability and redeemed as the "black-box"[20]. Therefore, Deep Distributional Learning model

may shed light onto the approach to the interpretable machine learning[33].

• In Tensorflow-probability, large number of distributions are available as distribution layer including

classical univariate, multivariate and mixture distributions. Distribution layers such as mixtures of

same distribution families and General Mixture Distributions release assumptions on single distri-

bution function and enable analysis on flexible model definition such as zero-inflated data.

• Tensorflow provides instant solutions on large-scale dataset by hardware acceleration, massive par-

allelization and distributed computation by GPU (supported by CUDA of NV IDIATM ).

Lastly, variational inference[34] (or variational Bayes) is one of most powerful characteristics intro-

duced by tensorflow-probability into the model. Compared with Monte Carlo and MCMC, variational

Bayes could be more efficient in high-dimensional casse or the number of observations is not reasonable

large. For notation, θ is the unobserved (or so-called latent) variables related to observations y. Through

approximating the posterior

p(θ|y) ∝ p(θ, y) · p(θ) ≡ h(θ)

with a tractable qλ(θ), one can find the most proper calibrate or hyper-parameters λ that minimizing the

Kullback-Leibler divergence:

KLD(q||p) =
∫
qλ(θ) · log( qλ(θ)

p(θ|y)
)dθ

or equivalently maximizing the variational lower bound:

L (λ) = Eq[log(h(θ))− log(qλ(θ))].

One possible option for the variational density is the mean filed variational Bayes. For a number of

m unknown variables θ = (θ1, ..., θm), the variational family is assumed to factorize:

p(θ|y) ≈ q(θ) = q(θ1, ..., θm) =
∏m
j=1 qj(θj).

From mathematical deduction we have:

9



qj(θj) = e
Em|m6=j [log

p(θ,X)]

Zj
,

where Zj is a normalization constant. In most cases the form of equation above matches a familiar

distribution (e.g. Normal, Gamma etc.) after plug-in and Zj turns out to be unimportant.
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4 Non-parametric Estimator

Firstly we need to introduce two non-linear estimators used in our simulation work, namely, P-splines

and Deep Forward Neural Network (DFNN)[5] .

To start with, a brief description on splines will be demonstrated as the corner-stone to structured

additive terms. Based on that, we forward to the demonstration on smoothing splines and B-splines.

Lastly, we come to the description on P-splines which combines ideas of B-splines and smoothing splines.

The other estimator used in our model is the deep neural network, where multiple layers of nodes are

connected and outputs of one layer are transmitted as inputs of next layer. Here we call it Deep feedforward

neural networks (DFNN), which is the first and simplest design for ANN since the information moves

one-way from input layer through hidden layers to output layer. Other types of network could be as well

deployed in Deep Generalized Additive Model for Location, Scale and Shape. Numerical variants for

DFNN have been designed for various kinds of tasks and achieved remarkable performance in contests.

For example, Convolutional Neural Network achieved excellent results in image classification up to human

benchmark[35].

4.1 Splines & Smoothing Splines

A k-th order spline in statistics is defined as a continuous piecewise polynomial function of degree

k with at least k-1 orders continuous derivatives at its knot points. Formally, function f : R ⇒ R is a

kth-order spline with t1 < t2 < ... < tm knot points with following properties:

• f is a polynomial of degree k at each single interval separated by knots {ti}mi=1;

• the j-th derivative of f is continuous at each knot.

A commonly used case is cubic splines – continuous piecewise cubic functions with continuous

first, and second derivatives. The continues of derivatives results into the smoothness of the function that

makes the knots undiscovered. To parametrize the set of splines with knots {ti}mi=1, a natural way is called

truncated power basis with g1, g2, ..., gm+k+1,:

g1(x) = 1, g2(x) = x, g3(x) = x2, ... , gk+1(x) = xk, gk+1+j(x) = (fk+1+j(x))k,

where fk+1+j(x) = max{0, x− tj}, j = 1, ...,m

For estimation, regression on splines could be performed by minimizing squared errors:∑n
i=1(yi −

∑m
j=1 βjgj(xi))

2

And then the regression splines is obtained through r̂(x) =
∑m+k+1

j=1 β̂jgj(x)
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An alternative way to define splines is to add constrain on degree to the left of the leftmost knot, and

to the right of the rightmost knots, which are intervals (−∞, t1] and [tm,∞). Therefore we have natural

spines only defined by odd orders k, normally three, with additional properties:

f is a polynomial of degree (k − 1)/2 on intervals (−∞, t1] and [tm,∞).

To circumvent the issue of knot selection and overfitting as well, scientists invented the smoothing splines

by adding regularization or shrinkage on coefficients to the natural splines. Instead, the criterion is to

minimize the squared errors under second order difference penalty:∑n
i=1(yi −

∑m
j=1 βjgj(xi))

2 + λ
∑n

i=1

∑m
j=1 βiβj

∫
g
′′

i (t)g
′′

j (t) dt

The exact form of the penalty depends on situations and could be any order derivatives. The λ is the

hyper-parameter for trade-off between bias and variance.

4.2 B-splines & P-splines

B-splines are constructed from polynomial pieces and joined at the knots. A B-spine of degree q is

constructed through q+1 q-order polynomial pieces joined at q inner knots. For example, one B-spline of

degree 1 consists of two linear pieces joined at 1 inner knot. The B-spline is positive on a domain spanned

by q + 2 knots and zero elsewhere and overlaps with 2q polynomial pieces of its neighbors except at the

boundaries. Consequently, q+1 B-splines are nonzero at each given x. When we design k− 1 intervals by

points {ti}mi=1 for B-splines of degree q, totally we have k + 2q knots for construction of B-splines and

k + q B-splines

Figure 4.1: B-spline of degree one Figure 4.2: B-spline of degree three

A recursive definition of the B-splines is followed: firstly we have zero-degree B-splines defined on

interval [tj , tj+1], j = 1, ..., k − 1:

B0
j (x)=

1 x∈ [tj , tj+1],

0 otherwise.
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For an increase in degree to I + 1 with extra nodes t−I+m and tm+I :

BI+1
j (x) = x−tj−I−1

xj−tj−I−1
BI
j−1(x) + tj+1−x

tj+1−tj−IB
I
j−1(x), j = 1, 2, ..., k + I − 1

All B-splines of same degree are summed up to 1 at any value of x on its domain.

Then the idea of smoothing splines is introduced into B-splines and this resulted into penalized

splines, P-splines[36]. O’Sullivan(1986[37], 1988[38]) formed an objective function by introducing a

penalty on the second derivative of the fitted curve:

S =
∑m

i=1{yi −
∑n

j=1 ajBj(xj)}2 + λ
∫ xmax
xmin

{
∑n

j=1 ajB
′′

j (xj)}2 dx

With equidistant knots we have the following for the second derivative :

h2
∑

j aj B
′′

j (xj ; q) =
∑

j ∆2aj Bj(x; q − 2)

where ∆2aj = aj − 2aj−1 + aj−2 and h is the distance between two adjacent knots. Therefore, we

can approximate the second derivative penalty by
∑d

j=3(∆2aj)
2, which is called second order difference

penalty. Theoretically there is nothing special about the second derivative. Lower or higher orders might

be used as well and the form could be changed accordingly.

4.3 Deep Neural Network

4.3.1 Deep Forward Neural Network

A deep forward neural network is a collection of multiple layers constructed by numerous neurons.

The typical architecture of DFNN consists an input layer, several hidden layers and an output layer, as

shown in figure 4.3 by Tran, M-N et al[5]. In each neuron, outputs from last layer (if exist) are received

as input signals and aggregated. After activation layer in form of a linear transformation (such as logistic

or sigmoid) or nonlinear transformation (such as Relu), processed signals are sent out as the input of

next layer or the final output. According to universal approximation theorem, a DFNN can learn highly

nonlinear relationships in data and is able to approximate any continuous function to arbitrary degrees of

accuracy. If a DFNN is used for transforming the covariates, then the final output has the following form:

fL(WL, fL−1(WL−1, ..., f1(W1, X)...)),

where fi is the aggregation and activation function of layer i, and Wi is the weight matrix.
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Figure 4.3: An example for multiple-layer Deep Forward Neural Network with four hidden layer[5]

A popular training strategy used in the neural network is call back-propagation[39][40]. Firstly,

connection weights are randomly set and the error of the network using the current weights are measured

by a specific loss function. Then the model passes this error back through the network and iteratively

updates each weight by their contribution to the network error via the chain rule in calculus. One key to

successfully train the model is a proper learning rate as the training meta-parameter. The figure 4.5 quoted

from the paper by Yann LeCun et al[7] gives a vivid description on the back-propagation algorithm used

in the neural network.

Various tools to improve performance and accelerate training speed have been designed. Among

them, drop-out[41] and "Relu" activation function[6] shown in figure 4.4 are common choices for training

large-scale network.

Figure 4.4: Rectifier (Relu) in comparison with Softplus activation function<f(x) = ln(1 + ex) >:[6]
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Figure 4.5: Multi-layer neural networks and back-propagation[7]: Part a shows how a three-layer neural

network with two neurons in both input and hidden layer simulate non-linear boundary for two-fold clas-

sification issue; Part b is the chain rule in calculus used of composite of two functions; Part c depicts the

information pipeline within a neural network; Part d gives details in back-propagation algorithm based on

chain rule

4.3.2 Other Types of ANN in Practice

Other types of Artificial Neural Network could be similarly integrated into the Deep Generalized Ad-

ditive Model for Location, Scale and Shape as the unstructured predictor. Here we mainly introduce three

influential variants of neural network specified for uncontroversial inputs that could be potentially adopted

in DGAMLSS, namely Convolutional Neural Network (CNN), Recurrent Neural networks (RNN), and

Graph Convolutional Network (GCN).

Convolutional Neural Network (CNN)

Convolutional neural network is specially designed for 2-dimensional input such as images. In the

last two decades, CNN has achieved impressive success in the field of image processing including detec-

tion, segmentation and recognition. Local connections, shared weights, pooling and multiple layers are

four key ideas behind. The basic element to construct a multilayer convolutional neural network is con-
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sisted of convolutional layer and pooling layer. Input of neurons in one layer is summed up through the

filter bank, which is a set of weights or a discrete convolution for local patch normally in shape of 5 × 5

or 3 × 3. Pooling or subsampling layers transfer a number of local patch inputs into one single output

value. Since a neighbor of input values is virtually highly correlated, images are compressed through such

architecture to reduce computation and to gradually build up further spatial and configure invariance with

minimum loss of information.

Figure 4.6: An Example on CNN: LeNet-5[8] (from left to right: the input image, first convolutional layer,

first pooling layer, second convolutional layer, second pooling layer, two full-connection layers and output

layer)

Recurrent Neural networks (RNN)

For tasks with sequential inputs, such as speech and text, Recurrent Neural Network (RNN) is one

of ideal options. RNN is a powerful tool to predict the next word in a sentence or the next character for

a word. It processes one element of the input at a time, providing not only element of sequential outputs

but status vector containing information on all the past elements of the sequence as the accessorial inputs

to the next iteration.
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Figure 4.7: The Stretch of A Recurrent Neural Network[7](left: elements of inputs x are sequentially

processed by neuron s with status vector W from last run; right: such procedure could be viewed as

a sequence of neurons lined up, and each neuron xt process both input xt and status vector from the

previous neuron

Graph Convolutional Network (GCN)

The last model introduced in this Chapter is called Graph Convolutional Network[42], which is a

variant based on Graph Neural Network extending previous neural network methods to process datasets

in graph domains. A graph G is a pair (N,E) representing the relationships and connections among

nodesE in data and therefore is an essential factor to analyze. Graph Convolutional Network is the model

using spectral convolutional method on undirected graph to tackle classification issue. A multi-layer GCN

employ the following layer-wise propagation rule:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)),

where Ã = A + IN is the adjacency matrix with added self-connections by IN , D̃ = ΣjÃij , W (l)

is the trainable weight matrix specified for layer l, and σ(.) is the activation function. Technically, this

propagation rule is motivated via a first-order approximation of localized spectral filters on graphs[43][44].

For example, a two-layer GCN design demonstrated in the their paper for semi-supervised node

classification has following structure:

Z = f(X,A) = softmax(ÃReLU(ÃXW (0))W (1))

with cross entropy error L = −
∑

l∈L

∑F
f=1 Ylf ln(Zlf ).
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5 Experimental Result

5.1 Classical Distributions

A simulation work with several independent experiments has be completed for comparison of estima-

tion by all four models mentioned above, namely GAMLSS, BAMLSS, gamboostLSS and DGAMLSS.

All following issues are analyzed based on serial measurements:

• separability of structured and deep predictor;

• size and coverage of confidence intervals using variational Bayes;

• empirical uncertainty in comparison to state-of-the-art GAM(LSS) estimation;

• influence of different distribution assumptions.

We mainly focuse on two scenarios:

• one is for classical distribution functions including Poisson distribution, Gamma distribution, Neg-

ative Binomial distribution, Normal distribution, Lognormal distribution and Logistic distribution;

• the other aims on more complicated distributional function – Zero-inflated Poisson Distribution.

All models are estimated based on same dataset expect for Gamma and Negative Binomial distribution.

We start with Poisson distribution as discrete case with only one parameter to be estimated. Af-

terwards we move onto more challenging (discrete) distributions with two parameters, namely Gamma

and Negative Binomial distribution. In both cases, datasets are separately generated for each model since

different parameters are targeted. A brief mathematical demonstration will be presented in place. Then

experiments on two-parametric distributions in continues cases are studied: namely normal distribution,

lognormal distribution and logistic distribution. We carry out experiments on these distributions as they

are most representative and widely-used in statistical analysis. Lastly, a two-parametric distribution –

Zero-inflated Poisson distribution – is chosen as the case for complex mixture distribution assumption. In

practice, the zero-inflated Poisson distribution is commonly used in various situations including applica-

tions of patent citation and claim of insurance. The number of zeros tremendously exceeds the expectation

by Poisson distribution, which means a large amount of publications and patents is never cited, or insur-

ances are not claimed during the policy period[17].

All calculations and simulations are conducted on the R software for statistical computing, and model

implementation are proceed by add-on packages "bamlss", "gamlss", "gamboostLSS" and "DGAMLSS".
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5.1.1 Data Generating

Considering of the wide range of distribution types we model in this paper, a brief description of data

generation and model construction is necessary.

There are totally 3 explanatory variables in our simulation work. Among these three variables, x

is assumed to follow a standard normal distribution, z is under uniform distribution between -3 and 3,

and v is the uniform distributional variable on the interval [1, 6]. For parameter ν in distribution function

f(y|ν), we assumed a monotonic link function g(.) relating all explanatory variables to the parameter

through structured additive regression:

g(ν) = ην = β0 + fν1 (.) + fν2 (.) + ...+ fνk (.)

In addition to two-order linear regression, various non-linear functions are applied onto explanatory vari-

able as shown in the following list. All non-linear function are reconstructed through orthogonalization as

sum-to-zero functions, shown in figure 5.1 to 5.6.

f1,x(x) = sin(3x) f1,z(z) = 0.1 · z3 f1,v(v) = log(v)

f2,x(x) = cos(0.5x) f2,z(z) = 2z−1 f2,v(v) = exp(0.5 · v)

Table 5.1: List of non-linear functions in data-generating process

Take Poisson distribution as an example, only one parameter λ would be estimated with two explana-

tory variables x& z under log link function:

log(λ) = 2− x+ f1,x(x) + f1,z(z)

And details of data generating process for two-dimensional normal, lognormal and logistic distribution

are demonstrated by following list:

Name Distributional Function Link 1 Link 2

Normal f(y|µ, σ) = 1√
2πσ
· e−

(y−µ)2

2σ2 η1 = µ η2 = log(σ)

Lognormal f(y|µ, σ) = 1√
2πσ
· e−

(log(y)−µ)2

2σ2 η1 = log(µ) η2 = log(σ)

Logistic f(y|µ, σ) =
exp(− y−uσ )

(1+exp(− y−uσ ))2
η1 = µ η2 = log(σ)

Table 5.2: Distribution functions and links for normal, lognormal, and logistic distributions

Both linear predictors η1 and η2 are explained by the additive regression functions of x and z:

η1 = 2− x+ f1,x(x) + f1,z(z), η2 = 1 + 0.5 · z + f2,x(x) + f2,z(z)
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Figure 5.1: Orthogonalization on f1,x(x) (from left to right: the original function, subtraction of linear

trend, subtraction of linear trend of the intercept)

Figure 5.2: Orthogonalization on f1,z(z)(from left to right: the original function, subtraction of linear

trend, subtraction of linear trend of the intercept)
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Figure 5.3: Orthogonalization on f1,v(v)(from left to right: the original function, subtraction of linear

trend, subtraction of linear trend of the intercept)

Figure 5.4: Orthogonalization on f2,x(x)(from left to right: the original function, subtraction of linear

trend, subtraction of linear trend of the intercept)
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Figure 5.5: Orthogonalization on f2,z(z)(from left to right: the original function, subtraction of linear

trend, subtraction of linear trend of the intercept)

Figure 5.6: Orthogonalization on f2,v(v)(from left to right: the original function, subtraction of linear

trend, subtraction of linear trend of the intercept)
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In contrast, the parameterization process for both Gamma and Negative Normal distributions is

mildly more complicated since different parameters are estimated through each model. For the Gamma

distribution, we imply two individual data generating processes, the first is implemented for the BAMLSS

model with two parameters, µ1 as the mean and σ1 as the shape parameter. Both parameters are assigned

with log link functions:

η1 = log(µ1) = 2− x+ f1,x(x) + f1,z(z)

η2 = log(σ1) = 1 + 0.5 · z + f2,x(x) + f2,z(z)

And the density distribution function conditioned on µ1 and σ1 is:

f(y|µ1, σ1) = yσ1−1∗e
(−σ1∗y

µ1
)

(
µ1
σ1

)σ1∗Γ(σ1)

The other is for GAMLSS, gamboostLSS and DGAMLSS (with family="gammar"), where µ2 stands

for the mean but the σ2 is instead the square root of the usual dispersion parameter for a GLM gamma[2].

This resulted to a new density distribution function:

f(y|µ2, σ2) = y
( 1
σ22

−1)

∗e
(− y

µ2σ
2
2

)

(µ2σ2
2)

1
σ22 ∗Γ( 1

σ22
)

And the relation between these two sets of parameters is: variance = (µ1 ∗ σ1)2 = (µ2)2

σ2

Moreover, three datasets are generated by each iteration regarding to Negative Binomial distribution.

The first two datasets are produced under type II negative binomial distribution for the BAMLSS and

GAMLSS/ gamboostLSS respectively with the probability to a given number of failures until r-th suc-

cesses with p as probability of each success. The BAMLSS targets on two parameters: the mean and the r

as µ1 and θ. The density function is

f(y|µ1, σ) =
Γ(y+

µ1
σ )

Γ(
µ1
σ )∗Γ(y+1)

∗ σy

(1+σ)(y+
µ1
σ

)
,

and GAMLSS/ gamboostLSS model parameters µ2 and σ under probability distribution function:

f(y|µ2, σ) =
Γ(y+

µ2
σ )

Γ(
µ2
σ )∗Γ(y+1)

∗ σy

(1+σ)(y+
µ2
σ

)

Howbeit, the DGAMLSS follows the distributional function "tfd_negative_binomial" in R-package

tensorflow-probability with two parameters total_count k and probability p.

η1 = log(k) = 1− 0.5 · x+ f1,x(x) + f1,z(z)

η2 = logit(p) = 1 + 0.5 · z + f2,x(x) + f2,z(z)

This function models the probability to a specific number of successes until kth failure with p as

probability of each success with conditional probability density function:

f(y|k, p) = Γ(y+k)
Γ(k)∗Γ(y+1)

∗ py ∗ (1− p)k
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All datasets are generated with 1500 samples by each iteration and totally 100 replications. For

Poisson and Normal distributions, analysis on additional datasets with noises is implemented in two-

dimensional cases in order to verify robustness of models.

1 link1=function(b0_mu,bx_mu,x,z)

2 { return(b0_mu + bx_mu*x + f_x_1(x) + f_z_1(z))}

3

4 mu_gs <- link1(b0_mu,bx_mu,x,z)

5

6 link2=function(b0_sigma,bz_sigma,x,z)

7 { return(exp(b0_sigma + bz_sigma*z + f_x_2(x)+f_z_2(z)))}

8

9 sigma_gs <- link2(b0_sigma,bz_sigma,x,z)

10

11 y_gs<-rnorm(n,mean = mu_gs,sd = sigma_gs)

12 data_gs <- data.frame(y = y_gs,x = x, z = z)

5.1.2 Model Specification

BAMLSS

We implement the BAMLSS model containing linear regressors and P-splines with 20 equidistant

knots by each variables under second order difference penalty. The default backfitting algorithm is used

in optimization phrase, and for the sampling phrase we use the default proposal function based on it-

eratively weighted least squares with the default proposal function "GMCMC_iwlsC_gp" assuming an

inverse gamma prior. In addition, we use a boosting algorithm optimizer for logistic distribution by select-

ing the model term with the largest contribution to the log-likelihood, since result by back-fitting algorithm

is slightly unstable. 12000 iterative samples are generated through MCMC by every iteration and the first

2000 are set as the burn-in phrase. Every tenth sample is stored for estimation.

In addition, we add the constrain on main effect to p-splines terms, since estimation of linear co-

efficients could be unstable when combined with non-linear effects. Theoretically, the linear effect and

non-linear effect based on the same variable could be misidentified or even integrated by estimation if

there is no constrain on the non-linear estimator. By introducing orthogonal reconstruction on true non-

linear functions and constrain on non-linear estimation, the structured linear and structure non-linear are

technically distinguishable.

1 bf_f<-list(y ~ x + tx(x,bs="ps",m=c(2),ctr="main")

2 + tx(z,bs="ps",m=c(2),ctr="main"),

3 sigma ~ z + tx(x,bs="ps",m=c(2),ctr="main")

4 + tx(z,bs="ps",m=c(2),ctr="main"))

5 bf_gs <- bamlss(bf_f,data=data_gs,knots = list(x_knots,z_knots),

6 family = "gaussian_bamlss",n.iter = 12000, burnin = 2000, thin = 10)
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GAMLSS

We used the GAMLSS with both linear and structured nonlinear regressors in form of cubic P-splines

with second order difference penalization. The degree of freedom of P-spline term is set to 1, which is the

trace of the smoother matrix minus two (for constant and linear fit), so that the linear regressor wouldn’t be

automatically canceled out during estimation. Instead of using penalized likelihood function, a minimum

of decrease of global dividend of 0.001 for each iteration and a maximum step of 20000 are used to avoid

overfitting.

1 gf_logis=gamlss(formula = y~x

2 + pb(x,nknots=20,control = pb.control( df=1,degree = 3, order = 2))

3 + pb(z,nknots=20,control = pb.control( df=1, degree = 3, order = 2)),

4 sigma.formula = ~ z

5 + pb(x,nknots=20,control = pb.control( df=1,degree = 3, order = 2))

6 + pb(z,nknots=20,control = pb.control( df=1, degree = 3, order = 2)),

7 data=data_logis, family = LO(),

8 control = gamlss.control(c.crit = 0.001,n.cyc = 1000))

gamboostLSS

The setting up for gamboostLSS is mostly identical to GAMLSS but additionally with the constrain

on non-linear functions to be centered. Such constrain worked analogously to main effect constrain on

BAMLSS model to remove linear trend, and to assure a zero-integration structured non-linear estimator.

Such constrain could theoretically improve estimation accuracy on linear estimator as well. The cyclic

fitting method is adopted and we used 5-fold cross-validation to choose an early stop for estimation.

1 gm_logis=gamboostLSS(formula = list(mu = y ~ bols(x, df = 1)

2 + bbs(x, knots = 20, df = 1, center = TRUE)

3 + bbs(z, knots = 20, df = 1, center = TRUE),

4 sigma = y ~ bols(z, df = 1)

5 + bbs(x, knots = 20, df = 1, center = TRUE)

6 + bbs(z, knots = 20, df = 1, center = TRUE)),

7 data = data_logis,families = as.families("LO"),method = "cyclic",

8 control = boost_control(mstop = 20000))

9 cvr <- cvrisk.mboostLSS(gm_logis, folds = mboost::cv(model.weights(gm_logis), B = 5, type = "

kfold"))

10 gm_logis=gamboostLSS(formula = list(mu = y ~ bols(x, df = 1)

11 + bbs(x, knots = 20, df = 1, center = TRUE)

12 + bbs(z, knots = 20, df = 1, center = TRUE),

13 sigma = y ~ bols(z, df = 1)

14 + bbs(x, knots = 20, df = 1, center = TRUE)

15 + bbs(z, knots = 20, df = 1, center = TRUE)),

16 data = data_logis,families = as.families("LO"),method = "cyclic",

17 control = boost_control(mstop =mstop(cvr)))

25



DGAMLSS

Firstly, two 5-layer deep neural networks with activation "Relu" and drop-out rate at 0.2 is defined

as the unstructured predictor, including a linear activation for the final layer. Ideally, each network is

specified for one parameter of the distributional function. For additive estimators of parameters, all of

linear regressor, P-splines under second order difference penalty and network outputs are combined to

access to a more precise estimation.

1 gr_gs <- deepregression(

2 y = as.numeric(y_gs),

3 data = data,

4 list_of_formulae = list(loc = ~ 1 + x + s(x, bs="ps",m=c(2))

5 + s(z, bs="ps",m=c(2))

6 + networka(x,z),

7 scale=~ 1 + z + s(x, bs="ps",m=c(2))

8 + s(z, bs="ps",m=c(2))

9 + networkb(x,z)),

10 list_of_deep_models = list(networka = deep_model, networkb =deep_model),

11 family ="normal",

12 variational = TRUE,

13 #validation_split = NULL,

14 df=10)

15 cvres <- gr_gs %>% cv(cv_folds = 5, epochs=300)

16 bestiter <- stop_iter_cv_result(cvres)

17 gr_gs <- deepregression(

18 y = as.numeric(y_gs),

19 data = data,

20 list_of_formulae = list(loc = ~ 1 + x + s(x, bs="ps",m=c(2)) + s(z, bs="ps",m=c(2)) +

networka(x,z),

21 scale= ~ 1 + z + s(x, bs="ps",m=c(2)) + s(z, bs="ps",m=c(2)) +

networkb(x,z)),

22 list_of_deep_models = list(networka = deep_model, networkb =deep_model),

23 family ="normal",

24 validation_split = NULL,

25 variational = TRUE,

26 df=10)

27 gr_gs %>% fit(epochs=bestiter, verbose = TRUE, view_metrics = TRUE,

28 save_weights = TRUE)

Instead of splitting all samples into training and testing datasets, the 5-fold cross-validation method

with 300 epochs in each phrase determines the number of epoch in training phrase, in which case the

global minimum total loss of estimations is insured as well.

In addition, the estimated function with default number of degree of freedom appeared to be seriously

fluctuated and therefore overfitted. We manually find a proper value for degree of freedom of the structured

non-linear estimation for trade-off between bias and variance.
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5.1.3 Estimation Results

In this simulation work, we mainly focus on the issue of variance decomposition, in which case some

covariates are shared in linear, non-linear and unstructured functions, and we manage to provide precise

estimation on each part. Therefore, the true non-linear functions are assumed to be sum-to-zero without

visual linear trend. Application for such assumption is common in time series analysis or sequential data,

where long-term trend and short-term fluctuation are combined in analysis. As stated previously, we add

constrains onto models in place to achieve such decomposition and use the neural network part as an

accessorial estimator accounting for noises or unexpected effects. Therefore the neural network included

in our work is relatively plain while complicated neural networks are computation-consuming along with

problem in overfitting.

One-parametric distribution: Poisson Distribution

The estimation result of Poisson distributional dataset provides a direct insight into our simulation

work. In two-dimensional case with explanatory variables x and z, we firstly simulate the true value of

parameter λ at each pair of parameter values, in comparison to estimated values by all of four models.

Figure 5.7 shows the true λ in three-dimensional shape. Variable x dominates the scale of true values

since both linear and non-linear parts are dependent on x.

Figure 5.7: True values of parameters depending on x and z

The following figure presents estimated value by four models for a first-impression. Estimation of

DGAMLSS is fluctuating in the red part since extreme values are removed in the plotting. At low level of

true values, both GAMLSS and DGAMLSS provide consistent estimations.
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BAMLSS GAMLSS

gamboostLSS Deep Distributional Learning model

Figure 5.8: Estimation of parameters based on x an z by different models

From each model, we extract the estimation of linear and non-linear functions, and analyze the result

from different respects. For the linear function we draw box-plots both for estimated constant and linear

coefficient by 100 iterations[5.9].
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Figure 5.9: Linear Estimation (Poisson distribution, two-dimensional case) by each model in 100 iteration

(figure on the left: intercept in parameter 1; figure on the right: linear coefficient in parameter 1; from left

to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-regression)

Recall that true values are respectively two and minus one. Both GAMLSS and Deep Distributional

Learning model provide acceptable results in linear estimation. Howbeit, the estimation by Deep Distri-

butional Learning model is relatively unstable as introducing the deep neural network into the model.

Then we calculate the mean squared error (MSE) of all estimations by following form:

MSE(λ) = Eλ[(λ̂− λ)2] = 1
n

∑n
i=1(λi − λ̂i)2

Notice that the mean squared error could be interpreted as

MSE(λ) = V arλ(λ̂) +Biasλ(λ̂, λ)2,

a subtle balance on the bias and variance is desired and the estimator is expected to be consistent (both

accurate and stable).

coefficients par1_inter par1_lin

bamlss -1.889149 -3.850300

gamlss -4.523495 -8.535910

gamboostLSS -1.392018 -5.340982

deep-regression -2.534780 -6.901801

Table 5.3: MSE(log) of estimated linear coefficients by each model (Poisson distribution, two-dimensional

case)
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Generally, the GAMlSS provides most reliable estimation of linear model, and Deep Distributional

Learning model works relatively better than other two models.

For the structured non-linear function we employ two criterion. Firstly, we plot the averaged non-

linear estimator in accompany with the true function as shown in figure 5.10. No linear shift appears in

estimation by all models. Estimated non-linear function by gamboostLSS on the left fails on the boundary,

since the model uses linear extension for variables out of boundary.

Figure 5.10: Averaged non-linear estimation by each model (Poisson distribution, two-dimensional case)

Figure 5.11: Variational inference on estimation of non-linear function by Deep Distributional Learning

model (Poisson distribution, two-dimensional case)
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Figure 5.11 shows results on variational inference on non-linear estimation given by Deep Distribu-

tional Learning model and evidence to the convergence of DGAMLSS estimation.

The the Mean Integrated Squared Error (MISE) is calculated as:

E||fn − f ||22 = E
∫

(fn(x)− f(x))2dx

Here we instead use the L-2 norm distance of each single estimation to the true function

log( 1
n

∑n
i=1[f̂n(xi)− f(xi)]

2)

as the adjusted Mean Squared Error. Finally we draw boxplots in figure 5.12 for the adjusted squared error

for comparison among models. It’s obvious that the Deep Distributional Learning model outperforms

other models in respect to non-linear estimation based on both two covariates.

Figure 5.12: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi) − f(xi)]

2)> of non-linear estimation by each model

(Poisson distribution, two-dimensional case)

Nonetheless, the mean squared error of the estimated parameter is calculated based on a test dataset

containing 200× 200 pairs of new-generated x and z. The DGAMLSS model is proven to have the min-

imal value among all of four models, which means DGAMLSS achieves the best accuracy in estimating

parameters but fails to distinguish the effect in respect to covariates and terms.
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Figure 5.13: MSE of estimated parameters on test dataset (Poisson distribution, two-dimensional case,

from left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)

Furthermore, we look into the case where noises are included into the true data. In practice, the

measured values could be slightly inaccurate due to both endogenic factors in data generating process

or exogenous factors in data collecting process. Thereafter, statistical models are supposed to be robust

against those noises. For Poisson distributional data, we add noise variables under Binomial(2, 0.5)

distribution into the generated samples y and work through the analysis iteratively on the new dataset.

coefficients par1_inter par1_lin

bamlss -2.097615 -3.413322

gamlss -5.046586 -7.000056

gamboostLSS -2.161485 -4.599167

deepregression -3.223227 -5.989382

Table 5.4: MSE(log) of estimated linear coefficients by each model (with noises, Poisson distribution,

two-dimensional case)

For the linear estimation, results by the Deep Distributional Learning model is relatively worse that

those by GAMLSS as being biased with large variance.
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Figure 5.14: Linear Estimation (with noise, Poisson distribution, two-dimensional case) by each model in

100 iteration (figure on the left: intercept in parameter 1; figure on the right: linear coefficient in parameter

1; from left to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-regression)

Then we present results in non-linear estimation. In figure 5.15, estimation by all models are inclined

to be unstable on the right boundary. However, the Deep Distributional Learning model is still the best

predictor especially for the non-linear function of x.

Figure 5.15: Averaged non-linear estimation by each model (with noises, Poisson distribution, two-

dimensional case)
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The MSE of non-linear estimation by Deep Distributional Learning model is at the lowest level

among all four models and apparently outperforms the GAMLSS model under this situation. And variance

of estimation by BAMLSS is larger than in two-dimensional case while others remain unchanged.

Figure 5.16: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi) − f(xi)]

2)> of non-linear estimation by each model

(with noise, Poisson distribution, two-dimensional case)

Deep-regression model converges regardless of effects of noises and provides reliable credible inter-

vals through variance inference as shown below 5.17:

Figure 5.17: Variational inference on estimation of non-linear function by Deep Distributional Learning

model (with noises, Poisson distribution, two-dimensional case)
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And results in figure 5.18 leads to the conclusion that, DGAMLSS may outperform in estimation

based on data with noises and therefore have stronger robustness than other models.

Figure 5.18: MSE of estimated parameters on test dataset (with noises, Poisson distribution, two-

dimensional case, from left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)

Lastly, we move onto 3-dimensional case in which non-linear function of variable v is included into

parameterization function and follow the same procedure as in 2-dimensional case.

log(λ) = 2− x+ f1,x(x) + f1,z(z) + f1,v(v)

Figure 5.19: Variational inference on estimation of non-linear function by Deep Distributional Learning

model (Poisson distribution, three-dimensional case)
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As shown in figure 5.20, the GAMLSS and DGAMLSS provide best estimation of parameter on test data

, where results by the other tow models are at the same level.

Figure 5.20: MSE of estimated parameters on test dataset (Poisson distribution, three-dimensional case,

from left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)

The GAMLSS model remains to work well for linear estimation while the estimation of Deep Dis-

tributional Learning model is acceptable. And the pattern of non-linear estimation is similar to two-

dimensional case. Apparently estimation of nonlinear function of v by Deep Distributional Learning

model is not ideally smooth while the other two estimations are more satisfying.

coefficients par1_inter par1_lin

bamlss -1.3210794 -2.664920

gamlss -4.4362885 -11.945086

gamboostLSS -0.9237846 -5.321727

deepregression -1.7090666 -6.444573

Table 5.5: MSE(log) of estimated linear coefficients by each model (Poisson distribution, three-

dimensional case)
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Figure 5.21: Linear Estimation (Poisson distribution, three-dimensional case) by each model in 100 itera-

tion (figure on the left: intercept in parameter 1; figure on the right: linear coefficient in parameter 1; from

left to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-regression)

Figure 5.22 shows insignificant difference between results of estimated non-linear functions in aver-

age in three-dimensional case and one in two-dimensional case.

Figure 5.22: Averaged non-linear estimation by each model (Poisson distribution, three-dimensional case)
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However, in figure 5.23, the MSE of estimation on function of variable v from Deep Distributional

Learning model is inferior to that from gamlss, which means Deep Distributional Learning model may

underperform in three dimensional case.

Figure 5.23: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi) − f(xi)]

2)> of non-linear estimation by each model

(Poisson distribution, three-dimensional case)

Two-parametric distribution: Normal Distribution

For two-parametric distributions, we mainly focus on the estimation for normal distributional dataset

in this chapter, and this article does not have room to address other results, including lognormal, logistic,

Gamma and negative binomial distributions, where patterns of estimation results are nearly similar to

those presented here.

From figure 5.6, MSE of estimated parameters by all models are at the same level, where DGAMLSS

comparatively shows advantage here. Additionally, the variance estimation of the parameter scale by Deep

Distributional Learning is larger.
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Figure 5.24: MSE of estimated parameters on test dataset (Normal distribution, two-dimensional case,

from left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)

As observed in figure 5.25 and table 5.6, the estimation of linear coefficients differs significantly

among models, and the true values are 2(top-left), -1(top-right), -1(bottom-left) and 1(bottom-right).

GAMLSS provided nearly perfect estimation on all of four coefficients. Estimation by Deep distribu-

tion Learning model is significantly biased for some parameters.

coefficients par1_inter par1_lin par2_inter par2_lin

bamlss -1.321966 -2.716530 -4.480418 -4.105345

gamlss -6.360862 -9.880125 -3.224452 -5.611579

gamboostLSS -1.304477 -5.881143 -4.468784 -7.678759

deepregression -1.489669 -3.266698 -5.463922 -3.559429

Table 5.6: MSE(log) of estimated linear coefficients by each model (Normal distribution, two-dimensional

case)
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Figure 5.25: Linear Estimation (Normal distribution, two-dimensional case) by each model in 100 itera-

tion (figure on the top-left: intercept in parameter 1; figure on the top-right: linear coefficient in parameter

1; figure on the bottom-left: intercept in parameter 2; figure on the bottom-right: linear coefficient in

parameter 2; from left to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-regression)

And the pattern of MSE of estimated non-linear function shown in figure 5.26 and 5.27 is slightly

different from one in Poisson distribution. All of four model perform almost similar in non-linear esti-

mation regarding to accuracy. Estimation of the scale parameter by GAMLSS doesn’t appear to be stable

as previous. DGAMLSS doesn’t show any advantage here. Results of estimation on two-dimensional

dataset with noises and three-dimensional dataset are presented in Appendix, from figure 7.1 to 7.4 and

from figure 7.5 to 7.8 respectively.
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Figure 5.26: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi) − f(xi)]

2)> of non-linear estimation by each model

(Normal distribution, two-dimensional case)
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Figure 5.27: Averaged non-linear estimation by each model (Normal distribution, two-dimensional case)
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5.2 Mixture Distribution: Zero-inflated Poisson

Zero-inflated Poisson Distribution

Data Generating

Zero modified counting distribution is a family of non-negative counting distributions where the

probability of occurrence of zero is altered. There are two cases for such modification, one is zero-inflated

model by increasing the probability of value zero and the other is called zero-truncated model by removing

the occurrence of the model. In the paper, we focus on the first case and present an example by the zero-

inflated Poisson distribution.

There are two parts of the zero-inflated model, the binary selection process κ under a Bernoulli

distributionBernoulli(1−π) and the counting data ỹ under non-negative discrete distribution p. Then the

zero-inflated variable could be interpreted as the product of these two independent variables as y = ỹ · κ.

The distribution function of the zero-inflated variable conditioned on covariates vis then:

p(y|v) = π 1{0}(y) + (1− π) p̃(y|v)

For the zero-inflated Poisson model, we assume that the counting data ỹ is under Poisson distribution

Pois(λ) with density p̃(ỹ) = λỹe−λ

ỹ!
. Thereafter, there are two parameters of our interest in zero-inflated

Poisson distribution λ and π. For those two parameters we have respectively logit and log link functions:

ηλ = log(λ) = −0.5 + 0.5x+ f1,x(x) + f1,z(z)

ηπ = logit(π) = −2− 0.5z + f2,x(x) + f2,z(z)

As for BAMLSS model, we have the elements of score vectors for both the zero-inflation and the Poisson

parts:

vλ = πλ
π+(1−π)exp(−λ)

1{0}(y) + (y − λ)

vπ = π
π+(1−π)exp(−λ)

1{0}(y)− π

and the working weights:

wλ = λ(1−π)(π+(1−π)exp(−λ)−exp(−λ)λπ)
π+(1−π)exp(−λ)

wπ = π2(1−π)(1−exp(−λ))
π+(1−π)exp(−λ)

Estimation result would be found in Appendix from figure 7.9 to 7.16.
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6 Conclusion & Discussion

By introducing unstructured estimator – neural network – into GAMLSS, DGAMLSS performs gen-

erally better than other models in respect of accuracy in estimation on parameters of distributional func-

tion. Such better performance doesn’t vanish by different distributional assumption. For more complicated

distributional functions such as mixture distribution – Zero-inflated Poisson distribution, DGAMLSS pro-

vides more accurate and less time-consuming results. Convergence of model fitting process is guaranteed

in most distributional cases.

Another advantage of DGAMLSS is that, model could stably converge where the scale of true values

is large (lognormal distribution) or extreme values are included (unexpected large number of zeros in

Zero-inflated Poisson distribution).

However, such advantage of DAMLSS is on the cost of dissatisfactory results in stability. In our

hypothesis, such instability is partially due to the simple structure of neural network utilized in our model.

A more complicated neural network may contribute to improvement in consistence of estimation, but could

cause the issue of overfitting or time-consuming convergence as well. Therefore, new orthogonalization

mechanism might be required to tackle such dilemma if sophisticated neural network structure is deployed

into DGAMLSS.

On top of that, there is no strong evidence showing that, DGAMLSS works better in distinguishing

structure linear and non-linear terms. Simulation work on classical distributional datasets gives evidence

that all of four models are able to accurately estimate non-linear functions in most cases, but GAMLSS

gives better estimation on linear coefficients. In contrast, estimation on linear coefficients by DGAMLSS

is less reliable especially in most two-parametric distributional cases. The introduction of neural network

may undermine DGAMLSS’s performance on estimation of both linear and non-linear terms. This might

result from the L2 orthogonalization mechanism. Similar issue occurs when we try to simulate a high-

dimensional space with basic vectors. Ideally we have basic vectors (1, 0, 0), (0, 1, 0) and (1, 0, 0) for a

three-dimensional space, but any three of noncoplanar vectors are sufficient. Therefore, a sophisticated

mechanism should be designed for choice of basics in addition to orthogonalization constrain. Hypothet-

ically, idea of Instrumental Variable Regression[45] or Two-Stage Least Squares[46][47] is probably a

solution for this issue.

However, GAMLSS couldn’t provided accurate estimation after adding noises into date, while es-

timation by Deep Distributional Learning Model is thereby relatively reliable. Therefore, we may head

to the conclusion that Deep distributional Learning Model provides clear separation between structured

and unstructured predictors, and the deep neural network part is able to remove noise from the data for

better estimation. In this case, we may assume that DGAMLSS might be more powerful in practical data

analysis where noises are inevitable in data collecting process.
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7 Appendix

Figure 7.1: MSE of estimated parameters on test dataset (with noises, Normal distribution, two-

dimensional case, from left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)
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Figure 7.2: Linear Estimation (with noises, Normal distribution, two-dimensional case) by each model

in 100 iteration (figure on the top-left: intercept in parameter 1; figure on the top-right: linear coefficient

in parameter 1; figure on the bottom-left: intercept in parameter 2; figure on the bottom-right: linear

coefficient in parameter 2; from left to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-

regression)

46



Figure 7.3: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi)−f(xi)]

2)> of non-linear estimation by each model (with

noises, Normal distribution, two-dimensional case)
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Figure 7.4: Averaged non-linear estimation by each model (with noises, Normal distribution, two-

dimensional case)
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Figure 7.5: MSE of estimated parameters on test dataset (Normal distribution, three-dimensional case,

from left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)

49



Figure 7.6: Linear Estimation (Normal distribution, three-dimensional case) by each model in 100 itera-

tion (figure on the top-left: intercept in parameter 1; figure on the top-right: linear coefficient in parameter

1; figure on the bottom-left: intercept in parameter 2; figure on the bottom-right: linear coefficient in

parameter 2; from left to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-regression)
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Figure 7.7: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi) − f(xi)]

2)> of non-linear estimation by each model

(Normal distribution, three-dimensional case)
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Figure 7.8: Averaged non-linear estimation by each model (Normal distribution, three-dimensional case)
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Figure 7.9: MSE of estimated parameters on test dataset (ZIP distribution, two-dimensional case, from

left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)
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Figure 7.10: Linear Estimation (ZIP distribution, two-dimensional case) by each model in 100 iteration

(figure on the top-left: intercept in parameter 1; figure on the top-right: linear coefficient in parameter

1; figure on the bottom-left: intercept in parameter 2; figure on the bottom-right: linear coefficient in

parameter 2; from left to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-regression)
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Figure 7.11: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi) − f(xi)]

2)> of non-linear estimation by each model

(ZIP distribution, two-dimensional case)
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Figure 7.12: Averaged non-linear estimation by each model (ZIP distribution, two-dimensional case)
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Figure 7.13: MSE of estimated parameters on test dataset (ZIP distribution, three-dimensional case, from

left to right: BAMLSS, deep-regression, gamboostLSS, GAMLSS)
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Figure 7.14: Linear Estimation (ZIP distribution, three-dimensional case) by each model in 100 iteration

(figure on the top-left: intercept in parameter 1; figure on the top-right: linear coefficient in parameter

1; figure on the bottom-left: intercept in parameter 2; figure on the bottom-right: linear coefficient in

parameter 2; from left to right in each figure: BAMLSS, GAMLSS, gamboostLSS, deep-regression)
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Figure 7.15: Adjusted MSE <log( 1
n

∑n
i=1[f̂n(xi) − f(xi)]

2)> of non-linear estimation by each model

(ZIP distribution, three-dimensional case)
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Figure 7.16: Averaged non-linear estimation by each model (ZIP distribution, three-dimensional case)
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