
Hedging strategies under jump-induced market
incompleteness

Master’s Thesis submitted to

Prof. Dr. Wolfgang Härdle
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Abstract

The market for cryptocurrencies is a very dynamic market with highly volatile movements and

discontinuities from large jumps. We investigate the risk-management perspective when selling

securities written on cryptocurrencies. To this day, options written on cryptocurrencies are not

officially exchange-traded. This study mimics the dynamics of cryptocurrency markets in a simulation

study. We assume that the asset follows the stochastic volatility with correlated jumps model as

presented in Duffie et al. (2000) and price options with parameters calibrated on the CRIX,

a cryptocurrency index that serves as a representative of market movements. We investigate on

risk-management opportunities of hedging options written on cryptocurrencies and evaluate the hedge

performance under model misspecification. The hedge models are misspecified in the manner that they

include fewer sources of randomness than the data-generating process. We hedge with the

industry-standard Black-Scholes option pricing model, the Heston Stochastic volatility model, and the

Merton jump-diffusion model. We present different hedging strategies and perform an empirical study

on delta-hedging. We report poor hedging results when calibration is poor. The results show good

performances of the Black-Scholes and the Heston model and outline the poor hedging performance of

the Merton model. Lastly, we observe large unhedgeable losses in the left tail. These losses potentially

result from large jumps.
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1 Introduction

In 2017, an emerging market caught the eye of the general public and the financial world. The rise

of cryptocurrencies attracted high media attention. Everyday citizen as well as financial institutions

entered the market with the prospect of benefiting from the large upward movements in prices. The

boom ended in the first quarter of 2018 and the media presence has vanished. Bitcoin, by far the most

famous and largest cryptocurrency was initially introduced in the White Paper by the pseudonym

Nakamoto (2008) and is circulated since 2009. A cryptocurrency is a decentralized digital circulating

medium with the property that transactions are regulated through cryptography (Härdle and Trim-

born, 2019). This paper considers the financial aspects of trading assets like cryptocurrencies and does

not focus on their macroeconomic or technological aspects. For further details on the listed topics,

the reader is referred to an overview in Härdle and Reule (2019).

The purpose of this paper is to analyze financial risk in a market that aims to mimic the movements

of cryptocurrencies such as Bitcoin, Etherum, Ripple and some other cryptocurrencies. This paper

considers the information about the movement on cryptocurrency markets based on a representative

benchmark. Trimborn and Härdle (2018) define and introduce the CRyptocurrency IndeX (CRIX).

The CRIX is a weighted cryptocurrency index with a floating number of constituents that are rede-

fined in cycles of 3 months. The market capitalization of each cryptocurrency involved determines the

weight. The CRIX is reallocated monthly. For more information on the methodology, the reader is

referred to Trimborn and Härdle (2018) and is invited to visit the website www.thecrix.de. A few

studies have investigated the movements of the CRIX. As an example, Chen et al. (2018) investigate

the dynamics of the CRIX with traditional econometric methods such as time series analysis.

Figure 1: CRIX historical time series

CrixToDate

At this point, cryptocurrency contingent claims are not officially exchange-traded. Hou et al. (2019)

contribute to the pricing of European-style options. They attempt to price cryptocurrency options
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written on CRIX and Bitcoin with the Stochastic Volatility with correlated jumps (SVCJ) option

pricing model introduced in Duffie et al. (2000) and the co-jump model by Bandi and Reno (2016).

This paper is an extension to the work of Hou et al. (2019). It investigates hedging strategies for

plain vanilla European-style option prices that are priced under the SVCJ. The pricing and hedging

are based on an option writer’s perspective. For example, it could be some bank or any financial

institution willing to offer cryptocurrency options. Green and Figlewski (1999) address the asymmetric

risk exposure between option writers and buyers. From a buyer’s perspective, the loss is limited to

the premium paid for the option. On the contrary, the seller is exposed to various risk factors

including losses that can vastly exceed the initial premium collected (Green et al., 1999). This is

just one illustration among many that outlines why financial market risk management is equally as

important as pricing. Furthermore, risk management, in our case hedging, contributes to a deeper

understanding of price and market dynamics. It helps to identify risk factors and their contribution

to the P&L (Bergomi, 2015). The following quote from Bergomi (2015) puts this accurately on point:

”...again, the issue, from a practitioners perspective, is not to be able to predict anything,

but rather to be able to differentiate risks generated by these different contributions to

his/her P&L and to ensure that the model offers the capability of pricing these different

types of risk consistently across the book at levels that can be individually controlled. It

is then a trading decision to either hedge away some of these risks, by taking offsetting

positions in more liquid say vanilla options or by taking offsetting positions in other

exotic derivatives, or to keep these risks on the book.”

Quote on hedging in (Bergomi, 2015, p.2).

The hedging procedure in this paper is related to the work of Branger et al. (2012) and

Sun et al. (2015). This paper assumes that the dynamics of the asset price process follow the SVCJ

model under the parameters calibrated by Hou et al. (2019). We hedge under model misspecification.

In the context of our study, a hedge model is defined as the model that determines the portfolio

strategy of the hedge portfolio. The hedge models under consideration are misspecified in the manner

that they include fewer sources of randomness than the data-generating process SVCJ.

Branger et al. (2012) name this procedure the omittance of risk factors. The hedge models under

consideration are the same as selected by Branger et al. (2012) and Sun et al. (2015). Precisely,

the hedge models in this study are: the Merton (1976) Jump-diffusion model (Merton model), the

Heston (1993) Stochastic Volatility model (Heston model) and the Black-Scholes (’classic’ Black-

Scholes) asset pricing model introduced by Black and Scholes (1973). Throughout this paper, the

Black-Scholes model will be referred to as the ’classic’ Black-Scholes (El Karoui et al., 1998). The

properties of these hedge models under consideration are reviewed in section 3. We believe that the

selected hedging procedure relates to what a trader or practitioner would do. A trader would observe

the unspecified dynamics of the underlying asset and initially proceed with the simplest model at

hand. This is generally the industry-standard ’classic’ Black-Scholes asset pricing
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model (Green et al., 1999). He would then extend the model assumptions to modifications of Black-

Scholes and include additional sources of randomness such as jumps and/or stochastic volatility to

both his pricing or hedging strategy (Green et al., 1999). We try to evaluate the performance of this

hedging strategy for a market that imitates the behavior of cryptocurrency assets.

This paper is structured as follows: section 1.1 reviews existent literature, section 2 defines the market

setup and reviews the pricing model, section 3 reviews the hedging models and defines the hedging

strategies, section 4 presents the results from the delta-hedging simulation study, section 5 evaluates

the performance from hedging and section 6 concludes.

1.1 Literature review

Several studies investigate the hedge performance of misspecified hedge models. Branger et al. (2012)

investigate the hedge performance under model simplification. The asset price follows the Stochastic

Volatility with jumps (SVJ) model by Bakshi et al. (1997). They perform a delta, delta-vega and

minimum variance hedge with the ’classic’ Black and Scholes (1973), the Merton (1976) model and

the Heston (1993) model and compare the performance of the hedge with the actual model. Their

findings suggest that in terms of delta-hedging, the classic Black-Scholes outperforms other models.

However, the model performs poorly during extreme periods (Branger et al., 2012). In this paper,

the listed observation is evaluated in detail in section 3. Branger et al. (2012) report that the Heston

model is the best performing model among all models. In a nutshell, Branger et al. (2012) interpret

the hedge results as follows: The hedge performance of the Heston model is sophisticated during

regular periods (”normal times”), but poor during large market movements (”extreme events”). On

the contrary, the Merton (1976) model provides a sophisticated hedge during ”extreme events”, but

behaves poorly in regular periods. The data-generating process in this framework distinguishes itself

from the SVJ because it incorporates jumps in volatility that are correlated to jumps in returns. This

is an additional source of randomness. The dynamics of the underlying are described in detail in

section 2.4. Sun et al. (2015) apply the same misspecification in terms of fewer sources of randomness

in the hedge models. In their simulation study, the data-generating process follows the double Heston

jump-diffusion model. They investigate between ”having a lucky guess of the market model, or having

a good fit hedging model” (Sun et al., 2015) . In terms of hedging accuracy, the study shows that a

misspecification of the hedge model has an insignificant impact on the hedging performance, whereas

the accurate calibration of hedge models drastically increases the hedge performance under model

misspecification. This is in line with the findings of Green et. al (1999). They investigate the risk

exposure from model risk in cases of mispricing and incorrect volatility estimation or forecasting.

Under the assumption that an option is priced according to the industry standard ’classic’

Black-Scholes, Green et al. (1999) find that the risk exposure resulting from model risk is material

or severe. They recommend a ”volatility markup” for pricing put options. However, this markup

is not recommended for hedging (Green et. al., 1999). El Karoui et al. (1998) investigate hedging

under misspecification in volatility. They investigate the hedging stochastic volatility models with the
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’classic’ Black-Scholes option pricing model. They show that under certain circumstances, the popular

Black-Scholes option pricing model provides a robust hedge. The hedge performance is robust under

convexity of the claim and an accurate volatility fit.

2 Pricing

2.1 Market setup

This paper considers a frictionless and continuous-time financial market denoted by

M = {(Ω,F ,Ft, P ), T, (S,B)}. The mathematical notation is related to Franke et al. (2015), El Karoui

et al. (1998), Hilpisch (2015) and Detering and Packham (2015). The time horizon T ∈ [0,∞)

is fixed and the interest rate r ≥ 0 is assumed to be constant. On a filtered probability space(
Ω,F , (Ft)t∈[0,T ] ,P

)
are defined a strictly positive deterministic risk-free asset (B(t))t≥0 with

B(0) = 1 and B(t) = ert, t ∈ [0, T ] and a semi-martingale S̃ = S̃(t)0≤t≤T adapted to a filtration

{Ft, t ≥ 0} satisfying the ’usual conditions’. We express the asset prices in units of S̃0(t) = S̃(0)B(t).

The value of the asset at time t is S(t) =
(
S̃(t)

S̃0(t)
· 100

)
, 0 ≤ t ≤ T , where S(0) = 100. The dynamic

portfolio strategy φ = (φ0, φ1) = (φ0(t), φ1(t)))0≤t≤T is an F-predictable process. φ0(t) represents

the number of assets held in the risk-free asset and φ1(t) denotes the number of assets held in S(t).

The value of the portfolio at time t is

Vφ(t) = φ0(t)B(t) + φ1(t)S(t) (1)

Vφ(0) denotes the initial value of the portfolio. In this financial market, we allow borrowing and

short-selling. However, we impose the requirement that the investor must be able to repay debt at

any time (Jeanblanc et al., 2009). We require our portfolio to be admissible. Formally, there exists

constant α such that Vφ(t) ≥ −α almost surely for every t ≤ T . A portfolio is self-financing if

dVφ(t) = φ0(t)dB(t) + φ1(t)dS(t) (2)

The interpretation of equation (2) is that gains result from changes in the underlying S(t) and not

from realignments of the portfolio (Jeanblanc et al., 2009). At time t, the self-financed value of the

portfolio Vφ(t) solves

dVφ(t) = r [Vφ(t)− φ1(t)S(t)] dt+ φ1(t)dS(t) (3)

2.2 Arbitrage theory

This financial market is assumed to be free of arbitrage. We briefly summarize selected fundamental

concepts of arbitrage theory and risk-neutral pricing. The theoretical review is based on Shreve

(2004), Franke et al. (2015), Jeanblanc (2009), Hilpisch (2014) and Cont and Tankov (2003). We open

the stage with the definition of a risk-neutral measure PQ. Let P denote the historical probability

measure.
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A probability measure PQ is risk-neutral if

1. PQ is equivalent to P . Formally, ∀A ∈ F , P (A) = 0⇐⇒ PQ (A) = 0

2. the discounted asset price S(t) is a martingale under PQ

Theorem 1 (Martingale representation theorem). Let {W (t), 0 ≤ t ≤ T} be a Wiener process on

(Ω,F , P ) and let F be the filtration generated by this Wiener process. M(t), 0 ≤ t ≤ T denotes a

martingale with respect to this filtration. Then there exists an adapted process Γ(u) such that

M(t) = M(0) +

∫ t

0

Γ(u)dW (u), 0 ≤ t ≤ T (4)

Any F-martingale can be written in the above form. M(0) is an initial condition value and
∫ t

0
Γ(u)dW (u)

is an Ito integral (Shreve, 2004). There is only one source of randomness, which is the Wiener process

{W (t), t ≥ 0}. We introduce the notion of arbitrage and provide its mathematical characterization.

Arbitrage is defined as a strategy with risk-less profit. Formally, arbitrage is defined as portfolio

strategy φ such that the value process Vφ(t) satisfies

P (Vφ(T ) ≥ 0) = 1, P (Vφ(T ) > 0) > 0 (5)

In other words, we make no losses with probability 1 and make profit with positive probability. Based

on this definition, we state the fundamental theorems of asset pricing. They form the foundation of

modern mathematical finance.

Theorem 2 (Fundamental theorem of asset pricing). If a market model has a risk-neutral probability

measure, then it does not admit arbitrage.

We call the payoff H ∈ L2(P ) attainable if there is a self-financing strategy (φ0(t), φ1(t)) such that

H = V0 +

∫ T

0

φ1(t)dS(t) +

∫ T

0

φ0(t)dB(t) P−a.s. (6)

Equation (6) is also referred to as ’the perfect hedge’ (Shreve, 2004). A market model is complete if

equation (6) holds for any H ∈ L2(P ). We reference the following theorem from Shreve (2004).

Theorem 3 (Second fundamental theorem of asset pricing). In an arbitrage-free market, the model

is complete if and only if the equivalent martingale measure PQ is unique.

As an example of the market completeness we consider asset S(t) in the Black–Scholes model,

which is a martingale under the risk-neutral measure PQ and satisfies the SDE

dS(t) = σS(t)dW (t). (7)

Since any contingent claim H ∈ L2(P ) is supposed to be a Brownian martingale, we can invoke the

martingale representation theorem and write

H = V (0) +

∫ T

0

Γ(t)dW (t) = V (0) +

∫ T

0

Γ(t)

σS(t)
dS(t) = V (0) +

∫ T

0

φ(t)dS(t) (8)

where φ(t) = Γ(t)
σS(t) is our hedge that makes the claim attainable. The Black–Scholes model is reviewed

in detail in section 3.2.1.
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2.3 Simplifications compared to real-world case

In this section, we evaluate how much the above assumptions apply to cryptocurrency markets. This

passage serves to briefly illustrate how cryptocurrency markets work. In our simplied financial market

M, we rule out any possibility of arbitrage. Furthermore, borrowing and short-selling are permitted.

The short-selling assumption is not realistic for cryptocurrency markets. Coinmarketcap ranks 100

largest Cryptocurrency exchanges according to trading volumes (coinmarketcap.com). Among the

50 largest, only Bitfinex, Kraken and Bitmex allow for short-selling. Borrowing is allowed and many

exchanges permit margin trading (Makarov et al., 2019) . The assumption that M is arbitrage-free

is generally very realistic on financial markets (Cont and Tankov, 2003). Makarov and Schoar (2019)

(MK) investigate arbitrage on cryptocurrency markets and observe extensive arbitrage opportunities.

Arbitrage spreads hold for short and long time frames ranging from a few hours to a few weeks and

are even present when volumes of trades are large (Makarov and Schoar, 2019). Makarov and Schoar

(2019) find that especially regional differences between Asian countries and the US offer vast arbitrage

opportunities. For a better understanding of cryptocurrency markets, this paper briefly reviews the

findings of Makarov and Schoar (2019). They report that transaction costs are not a burden because

compared to the arbitrage gains, fixed transaction costs in the Blockchain are neglectable for large

trading volumes. In addition, exchanges offer special deals with small costs for ”VIP traders” (Makarov

et al., 2019) . As most exchanges forbid short-selling, it is not possible to benefit from risk-free

instantaneous profits by simply short-selling an asset on one exchange and buying it on the other

where the asset is traded at lower costs. The trader has to bear some risk to profit from arbitrage

(Makarov et al., 2019). One possibility is to hold a positive account of two exchanges and exploit

price differences. One would instantaneously sell the higher traded coins and buy additional coins

on the cheaper traded exchange. The problem here is that the arbitrageur is exposed to price risk.

According to MK, a way to reduce price risk exposure is to borrow coins from hodlers, a Bitcoin

jargon term for investors who possess coins without the intention to participate in trading (Makarov

et al., 2019) . The other possibility Makarov and Schoar (2019) identify is through ”margin trading”.

The problem here is ”coverage risk” when borrowing coins. Lastly, another risk Makarov and Schoar

(2019) identify is ”governance risk”. When trading on cryptocurrency exchanges, a trader gives his

coins to an exchange. The coin is then in the hands of the exchanges. In recent years, large losses

resulted from exchange hacks (Makarov et al., 2019) .

2.4 Pricing model

This paper assumes that the contingent claim of a cryptocurrency is priced according to the

methodology of Hou et al. (2019). The paper suggests the ’Stochastic Volatility with correlated jumps’

(SVCJ) option pricing model in the attempt to price CRIX and Bitcoin options. We apply and relate

to the conventions and notation in Broadie et al. (2007), Branger et al. (2010), Pan (2002),

Eraker et al. (2003) and Belaygorod and Olin (2005) to describe the model. First reviews of the SVCJ
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model are conducted by Duffie et al. (2000), Eraker et al. (2003) and Pan (2002). The model allows

for stochastic volatility and simultaneous arrivals of jumps in returns and jumps in volatility. Under

the physical measure P, the dynamics of asset price S(t) and the latent variance V (t) evolve through

dS(t) = (r + γ(t))S(t)dt+
√
V (t)S(t)dW s(t) +

(
eξ − 1

)
S(t)dN(t)− µsλS(t)dt

dV (t) = κ (θ − V (t)) dt+
√
V (t)σV

(
ρdW s(t) +

√
1− ρ2dW v(t)

)
+ Zv(t)dN(t)

(9)

where {W s(t), t ≥ 0} and {W v(t), t ≥ 0} denote two independent standard Wiener processes and

W (t) = ρW s(t) +
√

1− ρ2W v(t) represents a Wiener process {W (t), t ≥ 0} correlated to

{W s(t), t ≥ 0} with the correlation coefficient ρ, that is, E [dW s(t)dW v(t)] = ρdt. θ is the mean-

reversion level, κ the mean-reversion rate, r is the deterministic constant interest rate and σV is the

volatility of the variance process V (t), commonly referred to as the volatility of the volatility. In

the context of hedging options of decentralized cryptocurrencies, we exclude the existence of dividend

payments in equation (9). {N(t), t ≥ 0} is a Poisson process with constant intensity λ. In equation (9),

jumps sizes are nonrandom and jumps in volatility and jumps in the asset price are governed by one

Poisson process N(t) = Ns(t) = Nv(t). Concurrent jump arrivals permit correlation in jumps sizes

(Eraker, 2004). Jump sizes in volatility are assumed to be exponentially distributed Zv(t) ∼ ε (µv)

and conditional on these jumps in latent volatility, jumps in asset prices are conditionally normally

distributed with ξ
def
= Zs(t)|Zv(t) ∼ N

(
µs + ρjZ

v(t), σ2
s

)
. The mean jump size in the asset price is

µs =
exp

{
µs + (σs)

2

2

}
1− ρjµv

− 1

ρj is the correlation coefficient between jumps. In theory, it is reasonable to assume that ρj is negative,

as large market moves in asset prices coincide with big jump amplitudes in volatility (Broadie et al.,

2007). The term −µsλS(t)dt is the jump compensator term. The remainder γ(t) is the ’total equity

premium’ (Broadie et al., 2007; Branger et al., 2012). It can be decomposed into

γ(t) = ηsV (t) + λµs − λQµQ
s (10)

where ηsV (t) represents the ’volatility diffusion risk premium’, ηs is the risk premium from volatility

and λµs − λQµQ
s the jump risk premium (Branger et al. , 2012). λQµQ

s is described below.

2.4.1 Market incompleteness

In section 2.2, we demonstrate the completeness of the Black-Scholes model (7). The dynamics of the

underlying asset price process S(t) described by equation (9) includes jump and stochastic volatility

components. Conceding the possibility of the jumps in the asset price S(t) or the introduction of a

stochastic component in the variance process V (t) may both individually disrupt the completeness of

a given model. For example, in case of the stochastic volatility, a simple argument can show that we

can perform a change of measure that would affect the law of V (t) without affecting the martingality

of S(t). This is in contradiction with the second fundamental theorem of asset pricing. In conclusion,

the model under consideration (9) is not a complete market model.

7



2.4.2 Option pricing

In section 2.2, we introduce the concept of risk-neutral pricing. The payoff of plain vanilla European

option with strike K and maturity T is (S(T )−K)+ = max{0, S(T )−K}. Options are priced under

PQ. Accordingly, Ct = EQ

[
e−r(T−t) (S(T )−K)

+ |Ft
]
. A change of measure is required to express

(9) under risk-neutral measure PQ. The change of measure in the model under consideration is shown

in Duffie et al. (2000) and Pan (2002) is reviewed in detail in Belaygorod and Olin (2005). We review

the stochastic differential equation under PQ. All proofs and calculations are very clearly expressed in

Belaygorod and Olin (2005). We choose to review according to the notation in Eraker (2004). Under

the risk-neutral measure PQ, the dynamics of S(t) and V (t) are

dS(t) = rS(t)dt+
√
V (t)S(t)dW (Q)St +

(
eξ − 1

)
S(t)dN(t)− µQλSS(t)dt

dV (t) = (κ (θ − Vt) + ηvVt) dt+
√
V (t)σV

(
ρdW (t)S,Q +

√
1− ρ2dW (Q)Vt

)
+ Zv(t)dN(t)

(11)

ηv is the volatility risk premium and ηs is the asset risk premium (Branger et al., 2012) such that

κQ = κP + ηv is the mean reversion speed under the risk-neutral measure and κQθQ = κθ is the

mean-reversion level under PQ. Based on the findings of Pan (2002), Eraker (2004) and Broadie et al.

(2007), we assume that λQ = λ and σs = σQ
s . In other words, the jump-related components are the

same under P and PQ. The drift component is expressed as dW (Q)it = ηidt+ dW (t)i, i = {s, v} and

results from a change of measure by applying the Girsanov (1960) theorem (Belaygorod and Olin,

2005). Follow the conventions of Branger et al. (2010) and Broadie et al. (2007), we assume that

ρQj = 0. Since a market where options are traded is non-existent, Hou et al. (2019) choose to set

ηv = ηs = 0. Hence, (11) is equivalent to (9) in our setup. In other words, Hou et al. (2019) price

options under P.

The greeks are sensitivities of an option to changes in underlying parameters on which the value of

the option depends (Franke et al. (2015), 2016). This study considers market risk related greeks as

investigated in Kurpiel and Roncalli (1999). The following are ∆, Γ, and V (vega). We will briefly

review these greeks. For a more detailed perspective and other greeks such as greeks of higher order,

the reader is encouraged to seek for further detailed information in Franke et al. (2015), Hull (2006)

and Marroni and Perdomo (2013). In equation (12), ∆ is the sensitivity of the option to changes in

the underlying, Γ is the sensitivity of the option to changes in ∆ and V is the sensitivity of the option

to changes in volatility.

∆ =
∂C

∂S

Γ =
∂2C

∂2S

V =
∂C

∂σ

(12)

∆-hedging eliminates risk from changes in the underlying and requires only one instrument, namely

the underlying itself. Γ-neutrality and V-neutrality require additionally traded options as hedging

instruments.

Based on the concepts and principles introduced in section 2.2, the value of the call option at time t
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is

Ct = EQ

[
e−r(T−t)(S(T )−K)+

]
(13)

In this study, option prices are estimated according to the methodology applied in Hou et al. (2019).

The option is priced with Monte Carlo Option pricing by Boyle (1977). This method provides an

unbiased estimator of the option price. The review of the theoretical concept is mainly based on

Glasserman (2004). Let C denote the unknown option price. We generate n paths of S(t) under the risk

neutral measure PQ. The discounted terminal payoff at each path is Ci = e−rT (S(T )−K)+, i = 1 . . . n.

We consider the point estimator of the unknown option price C

Ĉn = e−rT
1

n

n∑
i=1

(Si(T )−K)+ (14)

This point estimator Ĉn is an unbiased estimator of C

E
[
Ĉn

]
= E

[
e−rT

1

n

n∑
i=1

(Si(T )−K)+

]
= E

[
e−rT (S(T )−K)+

]
= C (15)

The unbiased estimated standard deviation of the sample C1, . . . Cn is

σ̂c =

√√√√ 1

n− 1

n∑
i=1

(
Ci − Ĉn

)2

(16)

According to the strong law of large numbers, this estimator is strongly consistent Ĉn
a.s.→ C. It

converges with probability 1 to the true option price C. Finally, the interval estimator of our option

price for a confidence level of 1− α[
Ĉn − Z1−α2

σ̂c√
n
, Ĉn + Z1−α2

σ̂c√
n

]
(17)

where Z1−α2 denotes the 1− α quantile of the standard normal distribution. For further details, the

reader is referred to Glasserman (2004).

2.5 Discretization

The computational implementation for simulation purposes requires a discretization of the continuous-

time processes with the dynamics described in equation (9). The finite time horizon is partitioned

into n time steps of equal distance dt such that T = {0, dt, 2dt, . . . , ndt = T} . Belaygorod and Olin

(2005) state that it is difficult to distinguish whether many small jumps or one larger jump occurred

in a short time interval. The discrete partition of the finite time horizon T into n time steps of size

dt is not sufficiently granular to enable a clear distinction between the frequency of jump arrivals and

the amplitude of jump sizes. For simulation, Belaygorod and Olin (2005) propose to model arrivals of

jumps by Bernoulli random variables Jsdt = Jvdt ∼ Ber(λ). The Euler-Maruyama method is applied to

discretize equation (9). The Euler discretization applied in this paper is

S(t+ dt)− S(t)

S(t)
= (µ− µsλ) dt+

√
V (t)dtX1 + Zs(t+ dt)J(t+ dt)

V (t+ dt) = V (t) + κv (θ − V (t)) dt+ σV
√
V (t)dtX2 + Zv(t+ dt)J(t+ dt)

(18)
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where X1 and X2 are two standard normal variables correlated with coefficient ρ. µ is the drift.

In equation (9), µ = r + γ(t). Equation 18 presents only one possibility to discretize the solution of

equation (9). The procedure with the solution (18) is a less precise method to discretize the solution of

equation (9). Another more precise method is to solve equation (9) with Ito calculus for jump processes

(Belaygorod and Olin, 2005). For further details, the reader is referred to section 4 in Belaygorod and

Olin (2005). Broadie and Kaya (2006) describe an even more exact method for simulating affine jump

diffusion processes. Since the scope of this paper is hedging, it is sufficient to apply the representation

in equation (18). For different discretization methods, the reader is recommended to look into the

book of Kienitz and Wetterau (2013). Hou et al. (2019) also apply the Euler-Maruyama discretization

described in Johannes and Polson (2009). They calibrate the drift component with one parameter µ.

The calibrated parameters are reviewed in section 2.5.1.

2.5.1 Calibration

According to the concepts in section 2.2, options are priced under the risk-neutral measure PQ.

Therefore, proper calibration requires the estimation of parameters under PQ. This is not feasible

in the case cryptocurrencies, because options are not officially exchange-traded (Hou et al., 2019).

Therefore, Hou et al. (2019) calibrate the parameters Θ = {µ, µs, σs, λ, α, β, σv, ρ, ρj , µv}, where

α = κθ and µs is the average jump size in returns, from returns under the physical measure P.

They apply Monte Carlo Markov Chain (MCMC), a Bayesian calibration method initially applied by

Eraker et al. (2003), to estimate the parameters of the SVCJ for BTC and CRIX in a time horizon

from 31.03.2014 to 29.09.2017. Perez (2018) extends the estimation to more cryptocurrencies until

30.09.2018. The purpose of this paper is to evaluate the hedge performance of options priced by Hou

et al. (2019). Therefore, the parameters calibrated by Hou et al. (2019) presented in table 1 are

assumed as given.

µ µy σy λ α β ρ σv ρj µv

mean 0.042 -0.049 2.061 0.051 0.010 -0.190 0.275 0.007 -0.210 0.709

p-value 0.006 0.371 0.432 0.007 0.001 0.009 0.069 0.001 0.364 0.089

Table 1: SVCJ calibrated parameters of the CRIX from Hou et al. (2019). Red means strong positive

significance (below 0.001 %) and blue strong means negative significance (below 0.001 %)

SVCJ_CRIX

In table 1, λ is small. The interpretation is that jumps are rare. As excepted, ρj is negative but

statistically insignificant. This is in line with the conventions in Broadie et al. (2007) and the findings

of Eraker et al. (2003), Eraker (2004) and Chernov et al. (2003). Broadie et al. (2007) outline the

difficulties in estimating ρj by reason of the fact that jumps occur seldomly. Broadie et al. (2007) and
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Branger et al. (2012) recommend to set ρj = 0. We accept this suggestion and set ρj = 0. Under this

assumption, equation (9) distinguishes itself from the ’Stochastic Volatility with Jumps’ (SVJ) model

by Bates (1996) by jumps in volatility. In other words, the model includes the additional parameter

µv. Hou et al. (2019) outline that ρ is positive and significant. This is contrary to what is expected.

It is expected that when prices increase, volatility decreases (Broadie et al., 2007). The interpretation

of Hou et al. (2019) is an inverse leverage effect. They refer to the finding of Schwartz and Trolled

(2009) on commodity markets.

In summary, this paper tries to mimic the behavior of the CRIX in a simulation study where the

dynamics of the underlying are described by the SDE in equation (9). Equation (9) is discretized

by equation (18) with the above-formulated parameter conventions, where ρj = 0. We assume that

the values of the parameters are the ones listed in table 1. Figure 2 illustrates 25 trajectories of our

data-generating process S(t).

Figure 2: 25 Euler discretized trajectories of S(t) for a time horizon of 1 year

SVCJ_MC

The trajectories of figure 2 illustrate different scenarios. In equation (9), jumps sizes in returns

are

Zs(t)|Zv(t) ∼ N
(
µs + ρjZ

v(t), σ2
s

)
distributed. Accordingly, jumps sizes can be very large. This is illustrated by the blue and pink

trajectory in figure 2. Since λ is fairly small, jumps are rare. For the hedging procedure it is important

to evaluate the relevance of these jumps. Figure 3a and 3b illustrate 4000 asset paths of the SVCJ.

The purpose of these illustrations is to evaluate the main drivers of our underlying S(t). In figure 3a,

jumps are present and λ 6= 0. For comparison, in figure 3b the parameter λ is set to λ = 0. In other

words, the presence of jumps is excluded. In figure 3a large jumps amplitudes lead to prices rises up

to 600 % within 1 year. However, in the majority of the cases paths range roughly up to S(t) = 250.

This price range corresponds to what is observed in figure 3b. This indicated that the main driver
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of the price dynamics are not jumps but stochastic volatility. The discussion about adding jumps is

summarized in Broadie et al. (2007). For example, Eraker (2004) finds that adding jumps may lead

to a better model fit, yet has a small impact on option pricing. For further information, the reader

is referred to Broadie et al. (2007). Hou et al. (2019) report that most studies on cryptocurrencies

do not account for jumps. They choose to add jumps to pricing in reference to Scaillet et al. (2018).

Scaillet et al. (2018) report that in comparison to ”traditional markets”, jumps on Cryptocurrency

markets tend to occur more frequently. Judging on the movements of the CRIX illustrated in

figure 1, this paper believes that jumps should be included to pricing and that the presence of jumps

should not be disregarded. Single cases can have extreme amplitudes in jump sizes. The question we

ask ourselves is how this impacts the P&L.

(a) SVCJ trajectories (b) SVCJ trajectories without jumps

Figure 3: 4000 simulated trajectories of S(t) with jumps in returns and volatility in 3a and without

jumps in 3b

SVCJ_MC

3 Hedging

We have outlined the importance of hedging in terms of mitigation of risk and a deeper understanding

of the market. In section 2.4.1 we address market incompleteness. There is no perfect replication

(6). Thus, we face the trade-off between selecting a simpler and preferably complete market model

or choosing alternative hedging strategies (Packham and Detering, 2016). A ”conservative approach”

(Cont and Tankov, 2003) is to almost surely hedge all risk associated with the contingent claim

P

(
Vφ(t) = V (0) +

∫ t

0

φdS ≥ H
)

= 1 (19)

We review the explanation of superhedging in Cont and Tankov (2003). If the strategy is self-financing,

the costs of superhedging correspond to Vφ(0). Superhedging is neither desirable nor a very efficient

strategy that hedges against large price movements resulting from, for example, jump amplitudes. To
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demonstrate the inadequacy of this strategy in our investigation, it is sufficient to state that investors

and financial institutions enter markets willing to bear some risk because the risk is rewarded. It

is hardly the case that someone would participate in a market like a cryptocurrency market and to

hedge all risk associated with this market.

A third way to go is utility-based hedging. We choose a hybrid method. We hedge under model

misspecification, yet two of our models are incomplete market models such that we also apply quadratic

hedging.

3.1 Hedging in discrete time

For the empirical implementation in discrete time, the finite time horizon T is partitioned into T =

{0, dt, 2dt, . . . , ndt = T}. The hedging instruments are the underlying S(t) and the money market

account M(t), precisely, a risk-free asset B(t), t ≥ 0 with B(0) = 1. Our strategy φ is a self-financed

strategy as defined in equation (2).

At time t0 = 0 and B(0) = 1, the value of the portfolio is

Vφ(0) = CSV CJ (0, S(0)) = φ(0)S(0) + (CSV CJ (0, S(0))− φ(0)S(0))B(0)

M(0) = CSV CJ (0, S(0))− φ(0)S(0)
(20)

At time t ≥ 0, the value of the portfolio is

M(t) = M(t− dt) + (φ(t− dt)− φ(t))
S(t)

B(t)

V (t) = φ(t− dt)S(t) +M(t− dt)B(t− dt)erdt = φ(t)S(t) +
V (t)− φ(t)S(t)

B(t)︸ ︷︷ ︸
=M(t)

B(t)
(21)

At maturity T , the final position is

V (T ) = φ(T − dt)S(t) +M(T − dt)B(t) (22)

At maturity, the profit is VT − max{(S(t)−K)
+
, 0}. We will implement this strategy in the delta

hedge.

3.2 Hedge models

In this section, we briefly review the main properties of our hedge models.

3.2.1 Black-Scholes asset pricing model

We start with the ’classic Black-Scholes’ option pricing model by Black and Scholes (1973). The Black-

Scholes model is particularly popular because of the Black-Scholes formula, a closed-form solution of

the option price. This makes it popular among practitioners, as it provides a quick initial evaluation

of option prices (Green, 1999). The dynamics of the asset price S(t) under the physical measure P

are described by the SDE

dS(t) = µS(t)dt+ σS(t)dW (t) (23)
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{W (t), t > 0} denotes a standard Wiener process, µ is the drift and σ referred to as the volatility, the

standard deviation around the drift. As already stated in section 2.2, options are priced and calibrated

under the risk-neutral measure PQ. Under this measure, the dynamics of the S(t) are described by

the stochastic differential equation

dS(t) = rS(t)dt+ σS(t)dW (t) (24)

In reference to the Girsanov (1960) theorem for a change of measure from P to PQ, the reader is

referred to Shreve (2004) or Jeanblanc (2009) for a detailed review. The price of a European call at

time t written on the underlying S(t), with strike K and time-to-maturity τ is

C(S(t), τ) = S(t)Φ
(
y + σ

√
τ
)
− e−rτKΦ(y)

y =
log S(t)

K +
(
r − σ2

2

)
τ

σ
√
τ

(25)

where Φ(x) is the cumulative distribution function (CDF) of a standard normal random variable and

r is the risk-neutral rate. The ∆ of equation (25) is

∆BS (S(t), t) =
∂C

∂S
= Φ(y + σ

√
τ) (26)

According too the properties of the CDF, ∆BS (S(t), t) is bounded between 0 and 1. Γ of the option

is given by

ΓBS(S(t), t) =
1

σS
√
τ
ϕ(y + σ

√
τ) (27)

In equation (23) and equation (25), σ is assumed to be constant. Returns are log-normally distributed.

These assumptions are limitations of the BS model. Constant volatility is empirically not supported

(Heston, 1993). The notion implied volatility refers to the volatility implied by the Black-Scholes

formula presented in equation (25) on market prices Cmarket of options. The implied volatility σiv

solves

SΦ
(
y + σiv

√
τ
)
− e−rτKΦ(y) = Cmarket (28)

The sensitivity of the option prices computed with equation (25) to changes in volatility is denoted

by V and is referred to as the vega of an option. The V is presented in equation (29).

VBS(S(t), t) = S
√
τϕ(y + σ

√
τ) (29)

Hedging ∆ eliminates the risk from changes in the underlying S(t), hedging Γ eliminates the risk from

changes in ∆ and hedging V eliminates the risk from changes in volatility (Franke et. al, 2015).

The Black-Scholes model is the simplest misspecified model under consideration. It is a special case

of the dynamics described in equation (9). Jumps are excluded Ns(t) = Nv(t) = 0,∀t ∈ [0, T ] and

volatility is assumed to be constant V (t) = σv = 0. We list a few reasons to justify the choice of

this clearly misspecified hedge model. In section 2.2, we briefly demonstrate the completeness of this

market model. The motivation behind the choice of a misspecified complete market hedge models is

the existence of a replicating strategy (Packham and Detlefsen, 2016). Regardless of its limitations,
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this ’classic’ Black-Scholes model remains highly popular among practitioners (El Karoui et al., 1998,

Bergomi, 2015). El Karoui et al. (1998) show the conditions under which the Black-Scholes option

pricing model is robust for hedging. The following briefly derives the hedge error in the Black-Scholes

model. It is mainly based on Bergomi (2015). In alliance with section 3.1, we take an option writer’s

perspective. The option writer shorts the call C, longs the asset S and the remainder goes to the

money market account for which holds dBt = rBtdt. The value of this portfolio in t is

Vφ(t) = −C(t) + ∆(t)S(t) +
(C(t)−∆(t)S(t))

Bt
Bt (30)

We have already demonstrated that this position is self-financing. Accordingly,

dVφ(t) = −dC(t) + ∆(t)dS(t) + (C(t)−∆(t)S(t))rdt (31)

We now apply Ito’s lemma to equation (25)

dC(t) =
∂C

∂t
dt+

∂C

∂S
dS(t) +

1

2

∂2C

∂S2
〈dS(t)〉 (32)

According to the definitions of the greeks in equation (12), we express equation (32) in terms of the

sensitivities

dC(t) =
∂C

∂t
dt+ ∆(t)dS(t) +

1

2
Γ(t)〈dS(t)〉 (33)

Accordingly,

dVφ(t) =

(
−∂C
∂t
dt− rS(t)∆(t) + rC(t)

)
dt− 1

2
Γ(t)〈dS(t)〉 (34)

We want to add and subtract 1
2σ

2S2 ∂2C
∂S2 in equation (34) and use Black-Scholes partial differential

equation

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (35)

to obtain the resulting hedge error

dVφ(t) =
1

2
ΓS(t)2σ2dt− 1

2
Γ〈dS(t)〉

=
1

2
ΓS(t)2

(
σ2 − σ̂2(t)

)
dt

(36)

where σ̂2(t) denotes the realized volatility at time t. σ̂ that depends on the market and σ is model-

dependent. The P&L from this position is

P&L(t) =

∫ T

0

e−r(T−t)
1

2
ΓS(t)2

(
σ2 − σ̂2(t)

)
dt (37)

Γ depends on the claim and determines the convexity of the option. If Γ(t) > 0 and σ̂2(t) ≥ σ2, the

strategy is a superhedge.
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3.2.2 Heston stochastic volatility model

Non-deterministic fluctuations in historic volatility set the ground to assume that volatility could be

potentially stochastic (Kienitz et al., 2013). Heston (1993) proposes an extension to the Black-Scholes

option-pricing model presented in section 3.2.1. In the Heston (1993) Stochastic Volatility model the

dynamics of the asset price process S(t) and the latent volatility process V (t) are

dS(t)

S(t)
= µdt+

√
V (t)dW s(t)

dV (t) = κ (θ − V (t)) dt+ σ
√
V (t)

(
ρdW s(t) +

√
1− ρ2dW v(t)

)
S(0) = S0

V (0) = V0

(38)

where W v(t) and W s(t) are two independent standard Wiener processes as in equation (9) and

W (t) = ρW s(t) +
√

1− ρ2W v(t) represents a Wiener process {W (t), t ≥ 0} correlated to

{W s(t), t ≥ 0} with correlation ρ. θ is the long-term variance or mean reversion level, κ is the mean

reversion speed and σv is the volatility of the volatility of the variance process V (t). In current

literature such as Bergomi (2015) or Shreve (2004) σv is predominantly referred to the volatility of

volatility. The drift term κ (θ − V (t)) of the latent volatility process is mean-reverting around its long

term mean θ. This means that the drift term is negative for θ > V (t) and otherwise positive. If the

Feller condition 2κθ > λ holds, this process is positive with probability 1. The Heston (1993) model

is an affine process and the special case of the dynamics of the underlying described by equation (9),

where we rule out the existence of jumps, precisely λ = 0 and Ns(t) = Nv(t) = 0,∀t ∈ [0, T ]. Due

to this affine specification Heston (1993) model has a closed-form solution that resembles the ’classic’

Black-Scholes formula equation (25). Bergomi (2015) argues that this is potentially one of the reasons

why this particular model more popular than other stochastic volatility models among practitioners.

Heston (1993) derives the closed-form solution of a European call option

C (S0,K, V0, t, T ) = SP1 −Ke−(r)(T−t)P2

Pj =
1

2
+

1

π

∫ ∞
0

Re

[
e−iu lnKϕj (S0, V0, t, T, u)

iu

]
du, j = 1, 2

ϕj (S0, V0, τ ;φ) = exp {Cj(τ ;φ) +Dj(τ ;φ)V0 + iφS0}

C(τ, φ) = (r − q)φiτ +
κθ

σ2

{
(bj − ρσφi+ d) τ − 2 ln

[
1− gedτ

1− g

]}
D(τ ;φ) =

bj − ρσφi+ d

σ2

[
1− edτ

1− gedτ

]
g =

bj − ρσφi+ d

bj − ρσφi− d

d =

√
(ρσφi− bj)2 − σ2 (2ujφi− φ2)

(39)

where ϕ1, ϕ2 are the characteristic functions of interest with u1 = 0.5, u2 = −0.5, a = κθ, b1 =

κ+ λ− ρσ and b2 = κ+ λ. The closed-form solution of the option price as presented in equation (39)

enables to analytically express the Greeks of the option. In the case of the Heston model, we consider
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∆SV and the VSV as relevant sensitivities for hedging purposes. The delta ∆SV of the Heston model

is

∆SV =
∂C

∂S
= P1 + S

∂P1

∂S
−K∂P2

∂S

= P1 +
S

π

∫ ∞
0

Re

{
e−iϕ lnKf1(x, v, τ ;ϕ)

S

}
dϕ− K

π

∫ ∞
0

Re

{
e−iϕ lnKf2(x, v, τ ;ϕ)

S

}
dϕ

(40)

VSV is the sensitivity of Cheston(S(t), t) expressed by equation (39) to changes in the volatility of the

volatility σv

VSV =
∂C (S, t)

∂σ
= S

∂P1

∂σ
−K∂P2

∂σ
∂Pi
∂σ

=
1

π

∫ ∞
0

Re

{
e−iϕ lnKfi(x, v, τ ;ϕ)

iϕ
·Dj(τ ;ϕ)

}
dϕ, i = {1, 2}

(41)

Stochastic volatility is an additional source of randomness. In section 2.4.1, we mention the market

incompleteness and wish to investigate the impact on hedging. Kurpiel and Roncalli (1999) study the

hedge performance of first- and second order greeks. This study will consider the delta-, delta-vega,

and the minimum variance hedge for the Heston (1993) model. We will review the strategies and

perform an empirical simulation study on delta-hedging. The following overview is mainly based on

Albrecher et al. (2013). We hedge the sensitivity to changes in the underlying S(t) with the underlying

itself and the money market account M(t). At time t0 = 0 the value of the portfolio is

Vφ(0) = C0(0, t0) = ∆SV S(0) + (C(S, V, t)−∆SV S(0)) (42)

At time t, the changes in the portfolio are

dVφ(t) = ∆SV dS + (C(S, V, t)−∆SV S(t)) rdt− dC(S, V, t) (43)

In analogous manner to the previous case, we apply Ito’s lemma to obtain under a risk-neutral measure

dC(S, V, t) =

(
∂C

∂S
rS +

∂C

∂V
κ(θ − V ) +

∂C

∂t
+

1

2

∂2C

∂S2
V S2 +

1

2

∂2C

∂V 2
σ2V +

∂2C

∂V ∂S
ρV σS

)
dt

+
∂C

∂S

√
V SdW (t) +

∂C

∂V
σ
√
V dW̃t

(44)

The changes in the portfolio are

dVφ(t) =

(
−∂C
∂S

)
dS + ∆SV dS −

∂C

∂V
dV + (C(S, V, t)−∆SV S(t)) rdt

−
(
∂C

∂t
+

1

2

∂2C

∂S2
V S2 +

1

2

∂2C

∂V 2
σ2V +

∂2C

∂V ∂S
ρV σS

)
dt

(45)

Delta hedging, that is, ∆SV = ∂C
∂S eliminates the sensitivity to changes in the asset price. In equation

(45), delta hedging does not eliminate the risk from stochastic volatility. The solution to this problem

is to complete the market with one additionally liquid option written on the same underlying S(t)

and to perform a delta-vega hedging. Albrecher et al. (2013) recommend to take the same option type

with a longer maturity or a different strike. The option writer shorts the call option C and takes the

position ∆ in the asset and Λ in the second contingent claim. The following illustrations are from

Albrecher et al. (2013). The value of the portfolio at time t is

Vφ(t) = −C(t) + ΛC2(t) + ∆S(t) (46)
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and the corresponding change is

dVφ(t) = ∆dS + (C(S, V, t)−∆S(t)− ΛC2(S, V, t)) rdt− dC(S, V, t) + ΛdC2(S, V, t) (47)

That is

dVφ(t) = (C(S, V, t)−∆S(t)− ΛC2(S, V, t)) rdt

−

(
∂C

∂t
+

1

2

∂2C

∂S2
V S2 +

1

2

∂2C

∂V 2

2

V +
∂2C

∂V ∂S
ρV S

)
dt

+ Λ

(
∂C2

∂t
+

1

2

∂2C2

∂S2
V S2 +

1

2

∂2C2

∂V 2

2

V +
∂2C2

∂V ∂S
ρV S

)
dt

+

(
Λ
∂C2

∂S
− ∂C

∂S
+ ∆

)
dS +

(
Λ
∂C2

∂V
− ∂C

∂V

)
dV

(48)

Setting Λ = ∂C/∂v
∂C2/∂v

and ∆ = ∂C
∂S − Λ∂C2

∂S removes all sources of randomness. In other words, the

portfolio is risk-free.

3.2.3 Merton Jump diffusion model

According to the findings of Scaillet et al. (2018), there is evidence for jumps in cryptocurrency

markets. The third and final hedge model under consideration is the jump diffusion model by Merton

(1976). Merton (1976) extends equation (23) to

dS(t)

St−
= (µ− κλ)dt+ σdW (t) + (J(t)− 1) dNt (49)

where µ denotes drift, {W (t), t > 0} denotes a standard Wiener process and σ is the volatility during

ordinary times. J(t) =

N(t)∑
j=1

(Yj − 1) represents a compound Poisson process, where {N(t), t > 0} is a

homogeneous Poisson process with intensity λ > 0 and Yi denotes the i.i.d. jump sizes independent

of N(t) and W (t). The Merton (1976) model assumes that that jump sizes are log Yi ∼ N
(
m, δ2

)
distributed. Lastly, κ = E [Yi − 1] = exp

[
m+ δ2

2

]
− 1 is chosen such that the compensator term

makes M(t)
def
= J(t)− κλt a martingale (Shreve, 2004). In section 2.4.1, we have already stated that

models with jumps are incomplete market models. The martingale measure PQ is not unique.

Merton assumes that jumps are diversifiable. Therefore, a change of measure is only applied to

the drift component in equation (49). The key idea is to choose find an expression of µP∗ such that

Ŝ(t) = S(t)e−rt is a martingale. This is the case for

µP∗ = r − σ2

2
− λE [Yi − 1] = r − σ2

2
− λ

[
exp

(
m+

δ2

2

)
− 1

]
such that the asset price under the risk neutral measure is

S(t) = S(0) exp

[
µP∗t+ σWP∗(t) +

Nt∑
i=1

Yi

]
(50)

This is not a very realistic assumption. With this logic, a diversified representative such as the S&P

500 index would than not include any jumps (Cont and Tankov, 2003). Figure 1 indicates that this is
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certainly not the case for the CRIX, because jump amplitudes are very large.

Merton derives the closed-form solution of the option price CMerton

CMerton (S(t), t) =

∞∑
i=0

exp(−λτ)(λτ)i

i!
CBS (S(t), τ, σi, ri) (51)

where CBS (S(t), τ, σi, ri) is price of a call option under Black-Scholes as presented in equation (25).

Furthermore, λ = λ(1+κ), σi = σ2 + iσ2

τ and ri = r−κλ+ i i log(1+k)
τ . Given this closed-form solution

in equation (51), the delta in the Merton jump diffusion option pricing model is

∆Merton (S(t), t) =
∂CMerton (S(t) , t)

∂S(t)
=

∞∑
i=0

exp(−λτ)(λτ)i

i!
∆BS (S(t), τ, σi, ri) (52)

The Merton (1976) jump diffusion model is also a special case of the SVCJ . For a constant volatility

component Vt = θ and no jumps in volatility Zv(t) = 0 and σV = 0 the dynamics of the general model

in equation (9) correspond to equation (49). This model is misspecified in terms of volatility, jumps

in volatility and jump size distribution. The idea behind the choice of this model is related to the

terminology of what we believe a trader would do. In the evidence of discontinuities from jumps, a

trader would switch from the Black-Scholes model to a more sophisticated model that includes jumps.

3.3 Quadratic hedging

Lastly, we observe quadratic hedging. The quadratic hedging provides variance-related hedging mea-

sures. For a contingent claim H ∈ L2(P ) we consider the cost process

Cφ(t) = H −
∫ t

0

φ(u)dS(u). (53)

Föllmer and Sondermann (1986) define a remaining risk as a measure of uncertainty at time t as

Rφ(t) = E
[
(Cφ(T )− Cφ(t))

2 |Ft
]

(54)

The portfolio strategy φ is a risk-minimizing strategy at time t if for all φ̃ such that φ(s) = φ̃(s)

for all 0 < s < t holds

Rφ(t) ≤ Rφ̃(t) P− a.s. for every t ∈ [0, T ). (55)

Under the assumption of symmetric losses and gains, the aim is to find the strategy φ(t) that

minimizes the hedging error in terms of the mean-squared error. Under the risk neutral measure, we

aim to minimize the following expectation

(V (0), φ∗(t)) = argmin
V (0),φ(t)

EQ

(CT − V (0)−
∫ T

0

φ(u)dS(u)

)2
 (56)

A procedure for the derivation of these strategies is provided in Cont and Tankov (2003) and Kienitz

and Wetterau (2013). The basic idea is to apply a decomposition such that we get a hedgeable and
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an unhedgeable component. The risk-minimizing strategy for the Heston model is

φ∗min =
∂C(S, v, t, T )

∂S
+ ρσ

∂C(S, v, t, T )

∂v

1

S(t)

For further details, the reader is referred to Poulsen et al. (2009).

The derivation in the case of Merton in provided in Cont and Tankov (2003)

φ∗min =
σ2 ∂C(t)

∂S(t) + 1
S(t)

∫∞
−∞ (ez − 1) (Ct (S(t)ez)− C(S(t))) ν(dz)

σ2 +
∫∞
−∞ (ez − 1) ν(dz)

(57)

where ν comes from the Levy-Khintchine triplet of the process St.

The hedge error under consideration is the one reported in Poulsen et al. (2009)

hedge error = 100×

√
VarP(Cost(T ))

e−rTEmin ([S(T )−K]+)
(58)

This paper’s interpretation of the hedge error is the following: the standard deviation can interpreted

as a measure of uncertainty. The scope of risk is to mitigate uncertainties.

3.4 Hedge model calibration

According to the findings of Green and Figlewski (1999), Sun et al. (2015) and El Karoui et al. (1998),

the hedge model calibration vastly impacts the performance of the hedge models. In this particular

setup, we lack historic option prices, as there is no market for cryptocurrency options. In reference to

section 2.4.2, we assume the parameters from table 1 as given and price contingent claims with Monte

Carlo simulation. On the basis of the simulated option prices presented in table 2, table 12 and table

13, we calibrate the parameters of the hedge models. Carr and Madan (1999) introduce option pricing

based on Fast Fourier transform (FFT). Borak et al. (2005) illustrate ”FFT based option pricing” for

the Heston (1993) model, Merton (1976) jump diffusion model and the SVJ model by Bates (1996).

The theoretical review of the methodology and computational implementation is based on Cizek et al.

(2011), Poklewski-Koziell (2012) Hilpisch (2015) and Kienitz and Wetterau (2013). According to the

concepts of arbitrage theory in section 2.2, the present value of the European call option at t = 0 is

C0 = EPQ

[
e−rTCT

]
= e−rT

∫ ∞
k

(
es − ek

)
qT (s)ds (59)

where qT (s) denotes the density of the log-price of the underlying s = logS(T ) under the risk neutral

measure PQ and k = logK denotes the log-strike.

In order to ensure the existence of the Fourier transform, Carr and Madan (1999) modify the

equation (59) by introducing the damping constant α > 0 and consider the damped option price

cT (k) = eαkCT (k) and its Fourier transform ϕcT (t), i.e.

ϕcT (t) =

∫ ∞
−∞

eitkcT (k)dk

cT (k) =
1

2π

∫ ∞
−∞

e−itkϕcT (t)dt.

(60)
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Accordingly

CT (k) = e−αkcT (k)

= e−αk
1

2π

∫ ∞
−∞

e−itkϕcT (t)dt

= e−αk
1

π

∫ ∞
0

Re
[
e−itkϕcT (t)

]
dt

(61)

ϕcT (t) from the equation (61) is calculated in the appendix and can be written as

ϕcT (t) =
e−rTψT (t− (α+ 1)i)

α2 + α− t2 + i(2α+ 1)t
(62)

where ψT (t) is characteristic function of the log-price process S(T ). This means that we can

compute CT (k) by using the explicit Fourier transform of the damped option price in (62) (Hilpisch

(2015)). We apply the right-hand rule to compute numerically the integral in the second equation in

(61), more precisely, the integral

cT (k) =
e−αk

π

∫ m

0

Re
[
e−itkϕcT (t)

]
dt (63)

where m = Ndt, dt is the discretization step, and N denotes the number of log-strikes used for

calibration. The discretization reads

ĉT (k) ≈ Re

e−αk
π

N∑
j=1

e−iujkϕcT (uj) dt

 (64)

where uj = (j − 1)dt. Cooley et al. (1969) introduce the numerical fast Fourier transform algorithm

(FFT) which enables approximation of the integral of the above type by the discrete Fourier transform

w(u) =

N∑
j=1

e−i
2π
N (j−1)(u−1)x(j), u = 1, . . . , N (65)

for some vector x(j) with j = 1, . . . , N .

Carr and Madan (1999) present the discretized integral in the trapezoid form from (64) as the

discrete Fourier transform from (65). For every log-strike kv = −b + η(v − 1) with v = 1, . . . , N we

write

ĉT (kv) ≈ Re

e−αkv
π

N∑
j=1

e−iηdt(j−1)(v−1)eibujϕcT (uj) dt


= Re

e−αkv
π

N∑
j=1

e−i
2π
N (j−1)(v−1)eibujϕcT (uj) dt

 (66)

where the relations b = Nη
2 and ηdt = 2π

N hold.

Instead of the top-right-rule, the Simpson rule can be applied to achieve higher accuracy for larger

values of dt, which leads to

ĉT (kv) = Re

e−αkv
π

N∑
j=1

e−i
2π
N (j−1)(t−1)eibujϕcT (uj)

dt

3

(
3 + (−1)j − I{j = 1}

) . (67)

21



The method is particularly useful in our case since all models under consideration constitute affine

processes. Given the closed-form solution of the call price, we apply the Levenberg-Marquardt method

with the objective

inf
Θh

N∑
i=1

wi

(
CΘh
i (Ti,Ki)− CSV CJi (Ti,Ki)

)2

(68)

where wi = 1
n and calibrate the parameters Θh of our hedge models against the simulated option

prices for strikes Ki and maturities Ti. In our case we will have two sums since the number of strikes

and maturities is not equal in (68) with the accuracy measure root mean square error

RMSE(θ) =
1√
N

√√√√inf
Θh

N∑
i=1

wi
(
CΘ
i (Ti,Ki)− CSV CJi (Ti,Ki)

)2
(69)

.
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4 Simulation study

On behalf of the assumed calibrated parameters in table 1 and under the assumption that the

dynamics of the asset price are described by the SDE in equation (9), n = 1000000 trajectories of the

Euler discretized process denoted in equation (18) are simulated. We estimate unbiased estimators of

European call options CSV CJ(T,K) with Monte Carlo Option Pricing described in section 2.4.2. On

the basis of option prices generated for 11 strikes and 7 maturities, we calibrate the parameters of the

hedge models introduced in section 3.2 according to the FFT-based procedure described in section 3.4.

We then compute the sensitivities and the portfolio strategy φ for each hedge model and empirically

perform Monte Carlo delta hedging. The self-financed hedging strategy explained in section 3.1 and

is performed on every path and every time step. The resulting vector is the P & L distribution.

We simulate 77 option prices with 7 strikes K = {70, 80, 90, 100, 110, 120, 130} and 11 maturities

T = {1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 9 m, 10 m, 1 y}. Table 2 illustrates all simulated ATM

option prices with KATM = 100. The call prices for other strikes and maturities are presented in table

12 and table 13.

Call price 95 % Confidence Interval Strike Issuing Date Maturity

9.35 [9.32, 9.39] 100 2019-07-04 2019-08-03

9.32 [9.29, 9.36] 100 2019-07-04 2019-09-02

9.29 [9.25, 9.32] 100 2019-07-04 2019-10-03

9.26 [9.22, 9.29] 100 2019-07-04 2019-11-02

9.23 [9.20, 9.26] 100 2019-07-04 2019-12-03

9.19 [9.16, 9.23] 100 2019-07-04 2020-01-02

9.16 [9.13, 9.19] 100 2019-07-04 2020-02-01

9.19 [9.10, 9.16] 100 2019-07-04 2020-03-03

9.10 [9.06, 9.13] 100 2019-07-04 2020-04-02

9.07 [9.03, 9.10] 100 2019-07-04 2020-05-03

9.03 [9.00, 9.06] 100 2019-07-04 2020-06-02

Table 2: Simulated ATM option prices for 11 maturities

SVCJ_MC

4.1 Calibration of hedge models

Figure 4 illustrates the implied volatility surface for all 77 option prices CSV CJ(K,T ) presented in

table 2, table 12 and table 13. Moneyness is defined as S(t)
K .
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Figure 4: SVCJ implied volatility surface for 77 options

SVCJ_MC

We calibrate the parameters of the hedge models with the FFT approach described in section 3.4.

In the case of Black-Scholes, Θ = {σ} is the only parameter required for the calibration procedure in

equation (68). We estimate σ across 77 option prices. The results of the calibration are presented in

table 3. We report a σBS = 0.287 with a hedge error of 3.272.

Model σ MSE

Black-Scholes 0.287 3.272

Table 3: Calibrated parameter of the Black-Scholes model

SVCJ_MC

The Heston (1993) model with the dynamics of the underlying described by equation (38) and

the closed-form solution of the option price presented in equation (39) requires the estimation of 5

parameters Θ = {V0, κheston, θheston, σvheston , ρheston}. Table 4 presents the calibrated parameters of

the Heston model.
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Model V0 κheston θheston σvheston ρheston MSE

Heston 3.406 67.521 0.006 0.920 -0.994 2.755

Table 4: Calibrated parameters of the Heston model

SVCJ_MC

The calibration error in this model is fairly large. This indicates a bad fit. In section 3.2 we state

that the Heston (1993) model is a special case of the generalized model with the dynamics under

equation (9). We compare the calibrated parameters in table 4 to the parameters in table 1. In table

4, the calibrated parameter ρheston is negative. This is not in line with findings of

Hou et al. (2019) summarized in section 2.5.1, where an inverse leverage effect is reported. The

calibrated mean-reversion speed κheston, initial variance V0 and σv are fairly high. On the contrary,

in comparison to the mean-reversion level of the SVCJ in table 1, the calibrated mean-reversion level

θheston is very small. Figure 5 presents the implied volatility surface of the Heston model.

Figure 5: Implied volatility surface of the Heston model

CRIXHEDGING

It is worth investigating in the shape of the implied volatility surface, because it is nearly flat

across strikes. Therefore, we briefly summarize impact of certain parameters the shape of the implied
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volatility surface. Bergomi (2015) states that κheston impacts the term-structure. As κheston = 67.521,

we observe a very steep slope across maturities. Furthermore, σv impacts the convexity of the smile

and V (0) the ATM implied volatility. Lastly, ρ impacts the skew of the surface (Bergomi, 2015).

Table 5 illustrates the calibrated parameters of the Merton Jump Diffusion Model.

Model σ λmerton µjheston σjmerton MSE

Merton 0.0000 5.191 -0.081 0.110 2.937

Table 5: Calibrated parameters of the Merton model

In table 5, λ is fairly high but σ is at 0. With respect to the asset dynamics described by equation

(49), the asset price process under the risk-neutral measure P∗ in equation (50) and the call price of an

option given in equation (51), the calibrated parameters in table 5 indicate that this process is purely

jump driven. There is no diffusion and the drift component is nearly zero. The volatility surface is

illustrated in figure 6. The implied volatility surface has no particular shape. However, one can argue

that the term-structure of the implied volatility surface is nearly flat and that there is evidence for a

skew.

Figure 6: Implied volatility surface of the Merton model

CRIXHEDGING
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5 Hedge performance of dynamic delta hedging

The purpose of this analysis is to show how the ∆ of a hedge model reacts to various scenarios. This

analysis relates to the interpretation in Marroni and Perdomo (2013). We observe how sensitivities

react to moneyness and time to expiry. Further distinctions in special cases exceed the scope of this

paper. For further information on this topic, the reader is recommended to look into Marroni and

Perdomo (2013).

5.1 Black-Scholes

Figure 7a and figure 7b illustrate two simulated trajectories of the underlying asset S(t). We assume

the parameters from table 1 and consider an option with an ATM strike and a maturity of τ = 1 year.

The premium of this option can be read from table 2. The blue trajectory presents the ∆BS of an

option with an ATM strike, a maturity of τ = 1 year and the calibrated parameter σ from table 3.

(a) Trajectory of the ITM ∆BS (b) Trajectory of the OTM ∆BS

Figure 7: Trajectories of the misspecified delta ∆BS in blue compared to the trajectory of the under-

lying S(t) in red

CRIXHEDGING

The purpose of this illustration by cases is to show how ∆BS reacts to discontinuities from jumps

and stochastic volatility. The behavior of ∆BS depends on various parameters. These include

volatility, time-to-maturity and moneyness. At maturity, an option expires ITM or worthless. If the

option expires ITM, ∆BS = 1. On the contrary, the option expires worthless and ∆BS = 0. Figure 7a

illustrates a trajectory of the asset price process that incorporates large jump amplitudes and patterns

of stochastic volatility. Throughout the entire period, the option written on the underlying S(t) with

the trajectory presented in figure 7a is ITM and this particular option expires deep ITM. In figure 7a,
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we see that ∆BS has the highest amplitudes ATM. This is not surprising, because ATM

∆BS (S(t) , t) =
∂C

∂S
= Φ


(
r − σ2

2

)
τ

σ
√
τ

+ σ
√
τ

 (70)

In the 4th quarter, the option is already deep ITM and ∆BS is close to 1. We wish to focus on the

period around day 350, where ∆BS is already very close to 1. In this time frame we suddenly observe

patterns of jumps and stochastic volatility in the trajectory of the asset price process S(t). However,

∆BS cannot react to those changes and expires at ∆BS = 1. Within this small time interval close

to expiry, ∆BS both over- and underestimates the market move. In the event of a large downward

movement in the asset price, the option could expired worthless. We conclude that ∆BS is unable to

capture extreme events. In figure 7b, the trajectory of the underlying S(t) has patterns of only few

discontinuities. In this scenario, the option written on the underlying S(t) is mostly OTM and expires

worthless. In figure 7b, ∆BS strongly reacts to market moves but does not readjust quickly enough to

existent discontinuities in the price. ∆BS cannot react quickly enough to jumps or stochastic volatility

when the option is already deep OTM. In section 2.5.1, figure 3a illustrates various trajectories of

the underlying S(t) and we point on selected cases with large jumps or periods of extreme volatility.

The misspecified hedge models is unable to capture these movements. We use figure 7a and figure

7b to illustrate how ∆BS behaves when the option is ITM, ATM or OTM given some time-to-expiry.

Overall, the examples in figure 7a and figure 7b illustrate that ∆BS mostly captures the dynamics

fairly well. In the scenario illustrated in 7b, due to a jump, the option nearly expires ATM. However,

∆BS is unable to react to this change. Similarly, when the option is deep ITM such as in the scenario

illustrated in figure 7a and close to maturity, ∆BS remains very close to ∆BS = 1 and cannot react

to large price drops. The conclusion is that ∆BS fails to react to extreme cases. This is especially

the case when the option is close-to-expiry. This is to some extent consistent with the results of

Branger et al. (2012). The simple ’classic’ BS slightly underperforms during regular periods and

vastly underperforms during extreme movements (Branger et al., 2012).

In this hedge analysis we consider options with maturities of 3 months (3M), 6 months (6M), 9

months (9M) and 1 year (1Y). We choose 3 different strikes, namely K at-the-money (ATM) denoted

by K = KATM as well as K0.95 = KATM · 0.95 and K1.05 = KATM · 1.05. We observe the P & L

relative to the option premium CSV CJ and evaluate the overall hedge performance based on the P

& L distribution, the momentum quantiles and the hedge error. Table 6 illustrates the quantiles of

the relative P & L from ∆BS hedging an ATM option with different maturities. Selected moments

of all relative P & Ls and the hedge error are presented in table 7. The hedging performance for

K0.95 = KATM · 0.95 and K1.05 = KATM · 1.05 are in the appendix.
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Quantile 3M 6M 9M 1Y

0.001 -5.753 -5.693 -5.335 -5.398

0.01 -2.203 -2.186 -2.147 -2.148

0.05 -0.467 -0.470 -0.406 -0.403

0.1 -0.283 -0.300 -0.259 -0.263

0.25 -0.101 -0.111 -0.100 -0.105

0.50 0.079 0.074 0.072 0.071

0.75 0.248 0.251 0.242 0.246

0.90 0.380 0.396 0.377 0.388

0.95 0.449 0.474 0.445 0.459

0.99 0.567 0.607 0.548 0.565

0.999 0.600 0.771 0.656 0.6569

Table 6: Quantiles of the Profit and Loss distribution where the hedge model is Black-Scholes for

KATM

CRIXHEDGING

In table 6, the values of the relative P & L do not vary much across maturities. For illustration

purposes, a representative relative P & L with τ = 9M and KATM is chosen to graphically illustrate

the results from table 6. Figure 8 presents this graphical illustration. The quantiles of this P & L

distribution can be read from column 3 of table 6. In figure 8, the losses are truncated to −300 %.

Some further P & L histograms for different strikes and maturities are presented in the appendix.
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Figure 8: Relative PnL for 9M under misspecification with Black-Scholes for KATM

CRIXHEDGING

3M 6M 9M 1Y

standdev 0.520 0.521 0.488 0.500

skewness -6.489 -6.558 -6.149 -7.917

kurtosis 79.021 106.098 92.449 149.697

hedge error 0.098 0.088 0.0825 0.0855

Table 7: Selected moments and the hedge error where the Hedge model is Black-Scholes for KATM

CRIXHEDGING

In table 6, the median is close to zero across different maturities. Within the 5% to 99.9% quantile,

relative gains and losses are of manageable size. It appears that the hedge performs well. The graphical

illustration of the P & L distribution shows that the hedge fails in the left tail. In table 6, losses in the

1% quantile and especially in the 0.1% quantile are of severe magnitude. A comparison of table 6 to

table 14 and table 16 shows that this observation is consistent across different strikes and maturities.

The interpretation is that these losses result from extreme movements. Nevertheless, taking under

consideration that the Black-Scholes model is the simplest model under consideration, the ∆BS hedge

performance is satisfactory.
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5.2 Heston model

(a) Trajectory of the ITM ∆Heston (b) Trajectory of the OTM ∆Heston

Figure 9: Trajectories of the misspecified delta ∆SV in blue compared to the trajectory of the under-

lying S(t) in red

CRIXHEDGING

Figure 9a and figure 9b illustrate two trajectories of the asset price process S(t) and two trajectories

of ∆SV . The purpose is again to look at the behavior of the misspecified ∆SV under consideration of

moneyness (OTM, ATM and ITM) and time to maturity. As in section 5.1, a European call option

with an ATM strike and a maturity of τ = 1 year is written on the underlying S(t). In figure 9a,

the option is mainly ITM and expires ITM. According to this representative illustration, ∆SV mainly

accurately follows the movement of price. Shortly after S(0) and in the forth quarter, the option is

roughly ATM. Around this period, the trajectory of ∆SV reveals that ∆SV is very sensitive to the

large jump and high volatility. ITM, changes in ∆SV are small. ITM changes in ∆SV to changes

in the underlying are small. In other words, ΓSV is small. In the second and fourth quarter, it

appears that ∆SV overestimated the movement. Close to expiry and deep ITM, changes in ∆SV are

larger than changes ∆BS . We interpret from figure 3a in in section 2.5.1 that the main driver is

stochastic volatility. In figure 9b, the option written on the underlying is deep OTM. In this case,

volatility and jumps are favored (Marroni and Perdomo, 2013). The trajectory of the underlying

has some discontinuities from jumps and patterns of stochastic volatility. It appears that ∆SV again

captures the movements in accurate manner. In total, the ∆SV from the Heston (1993) appears to

fit the market move well, yet tends to overestimate moments of high volatility. Table 8 illustrates the

quantiles of the relative Profit and Loss distribution from delta hedging a call option written on the

underlying S(t) for various maturities and the KATM strike and table 9 presents selected moments

of all relative P & Ls and the hedge error. Again, the hedge performance appears not very different

across different maturities. The 50%-quantile is again close to zero. In comparison to table 6, the

interquantile in table 8 is wider across all maturities.
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Quantile 3M 6M 9M 1Y

0.001 -8.547 -6.845 -7.369 -7.83

0.01 -2.699 -2.266 -2.398 -2.647

0.05 -0.641 -0.610 -0.557 -0.589

0.10 -0.424 -0.412 -0.343 -0.372

0.25 -0.164 -0.172 -0.109 -0.131

0.50 0.097 0.080 0.137 0.0803

0.75 0.332 0.325 0.377 0.356

0.90 0.493 0.486 0.531 0.518

0.95 0.573 0.563 0.598 0.589

0.99 0.724 0.692 0.72 0.708

0.999 3.946 5.982 7.737 5.138

Table 8: Quantiles of the Profit and Loss distribution where the Hedge model is Heston ATM

3M 6M 9M 1Y

standdev 1.016 0.779 0.78 0.998

skewness -10.9 -2.806 6.095 -13.911

kurtosis 414.028 119.162 307.944 63.98

hedge error 0.168 0.131 0.132 0.164

Table 9: Selected moments and the hedge error where the Hedge model is Heston for KATM

CRIXHEDGING
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Figure 10 illustrates the representative P & L from ∆heston-hedging for KATM and τ = 9 M.

Losses were truncated in the same manner as in section 5.1.

Figure 10: Relative PnL for 9M under misspecification with Heston for KATM

CRIXHEDGING

The hedge performance in the 5% quantile up to the 95 % quantile is satisfactory. The 1% and

0.1% quantile illustrate that the hedge performs poorly in the left tail. The hedge portfolio clearly

underestimates risk more severely than than the simple Black-Scholes model. These losses could result

from large jumps. In the right tail, risk is overestimated. In figure 9a, we have seen that ∆SV captures

the movement of the asset price process fairly well. On the downside, it may overreact to movements.

In conclusion, the hedge performance of the Heston (1993) model is satisfactory. We believe that large

losses result from extreme movements. This is also in line with the results from Branger et al. (2012).
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5.3 Merton jump diffusion

Figure 11: Trajectories of the misspecified delta ∆Merton in blue compared to the trajectory of the

underlying S(t) in red

CRIXHEDGING

Lastly, we observe the hedge performance of the Merton (1976) jump diffusion model. Figure 11

illustrates one trajectory of the ∆Merton compared to the trajectory of the asset price process S(t).

According to the calibration results in table 5 the volatility parameter σ = 0. From equation (52),

∆Merton depends on , σ, κ and ri and is expressed by an infinite series. This means that ∆Merton

only depends on the deterministic drift component and a jump component. The movement of the

∆Merton is entirely deterministic and unable to capture any discontinuities from jumps or stochastic

volatility. Table 10 presents the quantiles of the relative P & L from ∆Merton -hedging. As the hedge

performance of this model is also invariant across tenors, we select a graphical representative of the

relative P % L for τ = 9 M that is illustrated in figure 12. In the interquantile range, gains and

losses appear of tolerable size. In the left tail, losses are of large magnitude. In the 1 % quantile, the

losses are as severe as in the Heston model. In comparison to table 8 and table 6, this hedge already

fails in the 5 % quantile and severe losses are already observed in the 10 % quantile. There is clear

evidence for tail risk. On the gain side, the observed relative profit is much larger than from ∆BS-

and ∆Heston- hedging. In the right tail gains are already very large at the 90 % quantile. This hedge

misspecification provides the worst performing hedge performances among the 3 models. For a higher

strike, losses are even larger. Table 21 illustrates the quantiles from hedging the short position in the

option with a strike of K = KATM · 1.05. The median is already at the loss side. In the 0.1% and

1% quantile, losses are extreme. In the right tail, gains are very large. This hedge model clearly

underperforms. Branger et al. (2012) report that the Merton (1976) model performs well in extreme

cases but fails to hedge under regular circumstances. We illustrated that the main driver of this

process is stochastic volatility, but jumps can lead large amplitudes and therefore large losses. The
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jump component of the Merton model with the dynamics described in equation (49) is a simple

compound Poisson process with lognormally distributed jumps. This model is misspecified in terms

of volatility and jump sizes. This is compensated in the calibration in the following manner. The

jump intensity of λ is very large. However, this process includes no volatility at all. Therefore, the fit

is very poor.

Quantile 3M 6M 9M 1Y

0.001 -6.699 -6.539 -6.519 -6.761

0.01 -3.085 -2.999 -3.034 -3.001

0.05 -1.305 -1.314 -1.310 -1.328

0.10 -0.883 -0.888 -0.873 -0.885

0.25 -0.347 -0.351 -0.326 -0.323

0.50 0.130 0.132 0.153 0.156

0.75 0.529 0.531 0.535 0.539

0.90 0.843 0.837 0.832 0.832

0.95 1.022 1.014 1.007 1.002

0.990 1.361 1.357 1.351 1.347

0.999 2.203 2.066 1.961 1.990

Table 10: Quantiles of the Profit and Loss distribution where the Hedge model is Merton ATM

3M 6M 9M 1Y

standdev 0.66 0.657 0.652 0.662

skewness -3.796 -3.943 -4.014 -5.905

kurtosis 51.288 51.205 69.592 235.123

hedge error 0.0840 0.0843 0.083 0.0843 0.0847

Table 11: Selected moments and the hedge error where the Hedge model is Merton for KATM

CRIXHEDGING
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Figure 12: Relative PnL for τ = 9M under misspecification with Merton for KATM

CRIXHEDGING

5.4 Comparison of ∆−hedges

We compare the hedge performance of our models. All 3 models fail in the left tail. In the

0.1%-quantile, losses are extreme. We have illustrated in figure 2 and figure 3a how large amplitudes

of jumps in returns can become. Therefore, the interpretation is that losses in 0.1 % and the

1 % quantile result from extreme jumps. In the 5 % quantile, there is a drastic difference in terms of

hedge performance. The losses in the Merton model are of extreme magnitude. Losses up to the 10 %

quantile are much large than in the other models. In total, the Merton (1976) model fails to hedge risk

in the first quantile. The Heston and the Black-Scholes model perform significantly better. Among the

two, the Black-Scholes model outperforms the Heston model. In the lower 50 % of the observations,

the Black-Scholes model performs slightly better. Around the median, the performance is roughly

comparable. On the gain side, the Heston model and the Merton model outperform the Black-Scholes

model. The Merton model already reports very high gains in the 90 % and 95 % quantile. Extreme

gains are the largest in the case of the Heston model. We believe that this is due to the movement of

∆. When ∆BS is for example deep ITM and close to maturity, changes in ∆BS are fairly small and

it cannot react to large discontinuities in short time intervals. The ∆SV is more flexible. Due to bad

calibration, ∆Merton does not react any changes and therefore either outperforms or underperforms.
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6 Conclusion

We investigate hedging a model with a data-generating process S(t) that tries to mimic the behavior

of assets on cryptocurrency markets. Simulated option prices are extremely high. We observe the

dynamics of the asset price process S(t) and suspect that the main driver of the movements is stochastic

volatility. According to our simulation study, hedging under misspecification can lead to a decent

hedge performance during regular market moves. However, we find that a strategy cannot correspond

quickly enough to abrupt changes from large jumps or volatile periods when approaching maturity.

Our hedge simulation illustrates extreme losses in the left tail of the relative P & L in all hedging

models. Our interpretation is that those losses result from single extreme events where jumps are of

very high amplitude. The hedge performance of the Heston (1993) model is sophisticating, yet it can

lead to extremes in both directions. The strategy can adjust to changes even close to maturity, but

it could overestimates the effect of minor jumps and cannot react to extreme movements. The Black-

Scholes model has a decent hedge performance. However, losses in the left tail are again extreme

and close to maturity and deep ITM or OTM, ∆BS is unable to react to discontinuities or larger

movements. The worst-performing model is the Merton model. As a result from poor calibration, the

Merton cannot react to the movement of the underlying and therefore over- and underestimates risk.

The recommendation is that this simple model should be avoided.

In conclusion, from a market maker’s perspective, pricing and hedging in a market with such dynamics

is costly and often very risky. This study aims to motivate further investigations on risk management

aspects in cryptocurrency markets.
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A Appendix

A.1 Derivation of the Fourier transform of the damped call price

The call price can be rewritten as

CT (k) = e−αkcT (k)

= e−αk
1

2π

∫ ∞
−∞

e−itkϕcT (t)dt

= e−αk
1

π

∫ ∞
0

e−itkϕcT (t)dt

(71)

The last equality holds because ϕcT is odd in the imaginary part and even in the real part. For

the Fourier transform of the damped call price we write

ϕcT (t) =

∫ ∞
−∞

eitkcT (k)dk

= e−rT
∫ ∞
−∞

eitk
(∫ ∞

k

eαk
(
es − ek

)
qT (s)ds

)
dk

= e−rT
∫ ∞
−∞

qT (s)

(∫ s

−∞
eitkeαk

(
es − ek

)
dk

)
ds

(72)

The integral inside can be written

∫ s

−∞
eitkeαk

(
es − ek

)
dk = es

∫ s

−∞
e(it+α)kdk −

∫ s

−∞
e(it+1+α)kdk

=
es

it+ α

[
e(it+α)k

]s
−∞
− 1

it+ 1 + α

[
e(it+1+α)k

]S
−∞

=
e(it+1+α)s

it+ α
− e(it+1+α)s

it+ 1 + α

=
e(it+1+α)s

(it+ α)(it+ 1 + α)

(73)

Finally we get for the Fourier transform of the damped call price

ϕcT (t) =
e−rTϕcT (t− (α+ 1)i)

α2 + α− t2 + i(2α+ 1)t
(74)
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A.2 Tables

Call price 95 % Confidence Interval Strike Issuing Date Maturity

4.91 [4.88], 4.95] 110.0 2019-07-04 2019-11-02

4.90 [4.87, 4.93] 110.0 2019-07-04 2019-12-03

4.88 [4.85, 4.91] 110.0 2019-07-04 2020-01-02

4.86 [4.84, 4.89] 110.0 2019-07-04 2020-02-01

4.85 [4.82, 4.87] 110.0 2019-07-04 2020-03-03

4.83 [4.80, 4.86] 110.0 2019-07-04 2020-04-02

4.81 [4.78], 4.84] 110.0 2019-07-04 2020-05-03

4.80 [4.78, 4.82] 110.0 2019-07-04 2020-06-02

2.60 [2.56, 2.62] 120.0 2019-07-04 2019-08-03

2.58 [2.55, 2.60] 120.0 2019-07-04 2019-09-02

2.57 [2.54, 2.69] 120.0 2019-07-04 2019-10-03

2.56 [2.54, 2.59] 120.0 2019-07-04 2019-11-02

2.55 [2.53, 2.58] 120.0 2019-07-04 2019-12-03

2.54 [2.52, 2.57] 120.0 2019-07-04 2020-01-02

2.54 [2.51, 2.56] 120.0 2019-07-04 2020-02-01

2.53 [2.50, 2.55] 120.0 2019-07-04 2020-03-03

2.52 [2.49, 2.543] 120.0 2019-07-04 2020-04-02

2.51 [2.48, 2.53] 120.0 2019-07-04 2020-05-03

2.50 [2.47, 2.52] 120.0 2019-07-04 2020-06-02

1.41 [1.39, 1.43] 130.0 2019-07-04 2019-08-03

1.41 [1.39, 1.43] 130.0 2019-07-04 2019-09-02

1.40 [1.38, 1.42] 130.0 2019-07-04 2019-10-03

1.40 [1.38, 1.42] 130.0 2019-07-04 2019-11-02

1.40 [1.37, 1.42] 130.0 2019-07-04 2019-12-03

1.39 [1.37, 1.41] 130.0 2019-07-04 2020-01-02

1.39 [1.36, 1.41] 130.0 2019-07-04 2020-02-01

1.38 [1.36, 1.40] 130.0 2019-07-04 2020-03-03

1.38 [1.35, 1.40] 130.0 2019-07-04 2020-04-02

1.37 [1.35, 1.34] 130.0 2019-07-04 2020-05-03

1.37 [1.34, 1.38] 130.0 2019-07-04 2020-06-02

Table 12: Option pricing with Monte Carlo option pricing for 7 strikes and 11 maturities
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Call price 95 % Confidence Interval Strike Issuing Date Maturity

34.68 [34.64, 34.72] 70.0 2019-07-04 2019-08-03

34.560 [34.51, 34.60] 70.0 2019-07-04 2019-09-02

34.44 [34.39, 34.48] 70.0 2019-07-04 2019-10-03

34.32 [34.27, 34.36] 70.0 2019-07-04 2019-11-02

34.20 [34.16, 34.24] 70.0 2019-07-04 2019-12-03

34.08 [34.04, 34.12] 70.0 2019-07-04 2020-01-02

33.96 [33.92, 34.00] 70.0 2019-07-04 2020-02-01

33.84 [33.80, 33.88] 70.0 2019-07-04 2020-03-03

33.72 [33.68, 33.76 70.0 2019-07-04 2020-04-02

33.61 [33.57, 33.64] 70.0 2019-07-04 2020-05-03

33.49 [33.45, 33.53] 70.0 2019-07-04 2020-06-02

25.03 [24.99, 25.07] 80.0 2019-07-04 2019-08-03

24.94 [24.91, 24.98] 80.0 2019-07-04 2019-09-02

24.86 [24.82, 24.90] 80.0 2019-07-04 2019-10-03

24.78 [24.74, 24.82] 80.0 2019-07-04 2019-11-02

24.69 [24.65, 24.73] 80.0 2019-07-04 2019-12-03

24.60 [24.56, 24.64] 80.0 2019-07-04 2020-01-02

24.52 [24.48, 24.56] 80.0 2019-07-04 2020-02-01

24.43 [24.39, 24.47] 80.0 2019-07-04 2020-03-03

24.35 [24.30, 24.39] 80.0 2019-07-04 2020-04-02

24.26 [24.22, 24.30] 80.0 2019-07-04 2020-05-03

24.18 [24.13, 24.21] 80.0 2019-07-04 2020-06-02

16.27 [16.19, 16.26] 90.0 2019-07-04 2019-08-03

16.17 [16.13, 16.20] 90.0 2019-07-04 2019-09-02

16.11 [16.08, 16.15] 90.0 2019-07-04 2019-10-03

16.06 [16.02, 16.10] 90.0 2019-07-04 2019-11-02

16.00 [15.96, 16.04] 90.0 2019-07-04 2019-12-03

15.94 [15.91, 15.98] 90.0 2019-07-04 2020-01-02

15.88 [15.85, 15.93] 90.0 2019-07-04 2020-02-01

15.83 [15.80, 15.87] 90.0 2019-07-04 2020-03-03

Table 13: Option pricing with Monte Carlo option pricing for 7 strikes and 11 maturities
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Quantile 3m 6m 9m 1y

0.001 -4.069 -3.856 -3.728 -3.553

0.01 -1.430 -1.394 -1.306 -1.349

0.05 -0.099 -0.096 -0.090 -0.107

0.10 0.001 0.006 0.016 0.001

0.25 0.151 0.161 0.176 0.171

0.50 0.320 0.321 0.332 0.328

0.75 0.467 0.459 0.465 0.463

0.90 0.574 0.561 0.566 0.565

0.95 0.632 0.612 0.617 0.618

0.99 0.737 0.696 0.697 0.695

0.999 1.216 0.914 0.833 0.781

Table 14: Quantiles of the relative P &L distribution where the Hedge model is

Black-Scholes for K0.95

3m 6m 9m 1y

standdev 0.403 0.397 0.376 0.382

skewness -5.595 -5.278 -5.238 -6.901

kurtosis 64.799 89.284 75.351 119.393

hedge error 0.0512 0.0509 0.0477 0.049

Table 15: Selected moments and the hedge error where the Hedge model is Black-Scholes for K0.95
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Quantile 3m 6m 9m 1y

0.001 -8.392 -8.334 -8.008 -8.101

0.01 -3.429 -3.335 -3.285 -3.347

0.05 -1.263 -1.224 -1.173 -1.214

0.10 -0.994 -0.985 -0.953 -0.986

0.25 -0.594 -0.624 -0.599 -0.625

0.50 -0.222 -0.241 -0.220 -0.240

0.75 0.040 0.029 0.049 0.040

0.90 0.226 0.221 0.246 0.244

0.95 0.312 0.312 0.339 0.345

0.99 0.447 0.450 0.477 0.488

0.999 12.549 21.728 21.600 0.600

Table 16: Quantiles of the relative P &L distribution where the Hedge model is

Black-Scholes for K1.05

3m 6m 9m 1y

std 0.769 0.764 0.735 0.757

skew -5.667 -5.291 -5.226 -6.535

kurtosis 64.569 79.03 70.292 113.664

hedge error 0.1778 0.178 0.170 0.176

Table 17: Selected moments and the hedge error where the Hedge model is Black-Scholes for K1.05
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Quantile 3m 6m 9m 1y

0.001 -4.771 -4.801 -4.636 -4.801

0.010 -2.057 -1.986 -2.019 -1.986

0.050 -0.720 -0.733 -0.724 -0.733

0.100 -0.403 -0.401 -0.396 -0.401

0.250 -0.001 0.020 0.015 0.020

0.500 0.358 0.379 0.374 0.379

0.750 0.657 0.665 0.662 0.665

0.900 0.893 0.885 0.885 0.885

0.950 1.027 1.013 1.016 1.013

0.990 1.281 1.271 1.275 1.271

0.999 1.914 1.752 1.732 1.752

Table 18: Quantiles of the relative Profit and Loss distribution where the Hedge model is

Merton for K0.95

3m 6m 9m 1y

standdev 0.660 0.662 0.652 0.657

skewness -3.796 -5.905 -4.014 -3.943

kurtosis 51.288 235.123 69.592 51.205

hedge error 0.084 0.085 0.083 0.0843

Table 19: Selected moments and the hedge error where the Hedge model is Merton for K0.95
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Quantile 3m 6m 9m 1y

0.001 -9.511 -9.313 -9.247 -9.605

0.010 -4.584 -4.477 -4.504 -4.476

0.050 -2.158 -2.176 -2.159 -2.192

0.100 -1.582 -1.594 -1.564 -1.588

0.250 -0.852 -0.860 -0.820 -0.821

0.500 -0.201 -0.202 -0.168 -0.167

0.750 0.343 0.344 0.352 0.355

0.900 0.771 0.762 0.756 0.756

0.950 1.014 1.003 0.994 0.988

0.990 1.476 1.472 1.463 1.458

0.999 2.624 2.440 2.292 2.335

Table 20: Quantiles of the relative Profit and Loss distribution where the Hedge model is

Merton for K1.05

3m 6m 9m 1y

standdev 1.198 1.206 1.181 1.197

skewness -3.796 -5.905 -4.014 -3.943

kurtosis 51.288 235.123 69.592 51.205

hedge error 0.277 0.276 0.272 0.290

Table 21: Selected moments and the hedge error where the Hedge model is Merton for K1.05
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Quantile 3m 6m 9m 1y

0.001 -4.069 -3.856 -3.728 -3.553

0.01 -1.430 -1.394 -1.306 -1.349

0.05 -0.099 -0.096 -0.090 -0.107

0.10 0.001 0.006 0.016 0.001

0.25 0.151 0.161 0.176 0.171

0.50 0.320 0.321 0.332 0.328

0.75 0.467 0.459 0.465 0.463

0.90 0.574 0.561 0.566 0.565

0.95 0.632 0.612 0.617 0.618

0.99 0.737 0.696 0.697 0.695

0.999 1.216 0.914 0.833 0.781

Table 22: Quantiles of the relative Profit and Loss distribution where the Hedge model is

Heston for K0.95

Quantile 3m 6m 9m 1y

0.001 -6.072 -4.887 -5.350 -10.823

0.01 -1.679 -1.472 -1.577 -4.042

0.05 -0.184 -0.151 -0.120 -1.441

0.1 -0.064 -0.04 -0.004 -1.107

0.25 0.121 0.134 0.171 -0.554

0.50 0.32 0.323 0.355 -0.554

0.75 0.508 0.500 0.527 0.160

0.90 0.644 0.623 0.650 0.374

0.95 0.614 0.714 0.701 0.473

0.99 0.875 0.819 0.834 0.646

0.999 3.540 4.819 5.275 6.527

Table 23: Quantiles of the relative Profit and Loss distribution where the Hedge model is

Heston for K1.05
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