Impaired decision making and feedback evaluation in borderline personality disorder

B. Schuermann*, N. Kathmann¹, C. Stiglmayr², B. Renneberg² and T. Endrass¹

¹ Humboldt-Universität zu Berlin, Berlin, Germany
² Freie Universität Berlin, Berlin, Germany

Background. Increased impulsivity is considered to be a core characteristic of borderline personality disorder (BPD) and has been shown to play a significant role in decision making and planning. Neuropsychological studies in BPD revealed impairments of executive functions, and it is assumed that these deficits are related to altered feedback processing. However, research on executive functions in BPD is still limited and the underlying deficits remain an open question. The present study, therefore, explored whether decision-making deficits are related to altered feedback evaluation in BPD.

Method. A total of 18 BPD patients and 18 matched healthy controls underwent a modified version of the Iowa Gambling Task while an electroencephalogram was recorded. Feedback processing was examined by measuring the feedback-related negativity (FRN) and the P300 as electrophysiological correlates of feedback evaluation.

Results. Behavioural results revealed that BPD patients, relative to controls, made more risky choices and did not improve their performance. With regard to the FRN, amplitudes in BPD patients did not discriminate between positive and negative feedback information. Further, BPD patients showed reduced FRN amplitudes, which were associated with enhanced impulsivity and enhanced risk taking. In contrast, the P300 amplitudes following negative feedback were increased in BPD patients, relative to controls.

Conclusions. This study indicates that BPD patients are impaired in decision making, which might be related to a dysfunctional use of feedback information. Specifically, BPD patients did not learn to avoid disadvantageous selections, even though they attended to negative consequences.

Received 13 July 2010; Revised 10 December 2010; Accepted 15 December 2010; First published online 24 January 2011

Key words: Borderline personality disorder, decision making, event-related brain potentials, feedback evaluation.

Introduction

Borderline personality disorder (BPD) is a mental disorder characterized by increased impulsivity and, as a consequence, by increased risk-taking behaviour (Links et al. 1999; APA, 2000). Executive dysfunctions are assumed to underlie the phenotypic features of BPD, especially increased impulsivity (Bazanis et al. 2002; Lenzenweger et al. 2004). Neuropsychological studies in BPD suggest impairments in multiple cognitive domains, with decision making or planning most frequently affected (Ruocco, 2005; LeGris & van Reekum, 2006). Neuroimaging studies also support the notion that brain regions involved in impulse control and decision making are altered in BPD. Impairments include volume loss and hypometabolism of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC; De La Fuente et al. 1997; Tebartz van Elst et al. 2003). OFC lesions have been associated with reduced performance in reinforcement learning because of a potential inability to modify behaviour in response to feedback (Rolls et al. 1994; Berlin et al. 2005). The ACC plays a pivotal role in the detection and evaluation of unfavourable outcomes (Ridderinkhof et al. 2004). It is highly associated with risk prediction, including signalling the extent of risk and the severity of consequences (Brown & Braver, 2007).

Decision making and impulsivity have been repeatedly examined with the Iowa Gambling Task (IGT; Bechara et al. 1994). The IGT is a complex paradigm that is supposed to reflect real-life decision making in the way it considers uncertainty, rewards and punishment. It allows the investigation of persistent learning difficulties, and it has been suggested that deficits reflect a reduced ability to avoid negative feedback information (Bechara et al. 2000). Recent
studies using the IGT showed that BPD patients, relative to healthy controls, made fewer advantageous and goal-directed decisions and exhibited reduced learning (Haaland & Landro, 2007; Maurex et al. 2009). Specifically, decision-making deficits have been interpreted as a deficit to use feedback information from previous trials to make current decisions (Bechara et al. 2000). To our knowledge, alterations in feedback evaluation have not been examined yet in BPD. Therefore, the main objective of the present study was to investigate feedback processing in BPD to further understand decision-making dysfunctions in these patients. Event-related brain potentials (ERPs) are used to elucidate the relationship between neural responses to feedback and decision making. Previous research on performance monitoring has identified negative-going ERP components that occur shortly after incorrect responses or after negative performance feedback. The error-related negativity (ERN; Falkenstein et al. 1990; Gehring et al. 1990) arises following the execution of erroneous responses and the feedback-related negativity (FRN; Miltner et al. 1997) is elicited by negative performance feedback when outcomes are worse than expected (Holroyd et al. 2002). Frank et al. (2005) showed that the FRN magnitude predicts the degree to which participants learn about the negative consequences of their decisions. ERN and FRN are both assumed to originate in the ACC (Gehring & Willoughby, 2002; Debener et al. 2005) and to reflect neural processes in reinforcement learning and behavioural adjustment (Holroyd & Coles, 2002).

Decision making and feedback evaluation have also been linked to the feedback-related P300. This ERP component is suggested to reflect the activity of a noradrenergic system associated with motivational processes (Nieuwenhuis et al. 2005). In gambling tasks, such as the IGT, the P300 varied with outcome magnitude, regardless of whether the outcome is a gain or a loss (Sato et al. 2005; Polezzi et al. 2009). Further, its amplitude is modulated by expectations, with enhanced amplitudes to unexpected feedback than to expected feedback (Hajcak et al. 2005, 2007). In sum, the P300 amplitude might index feedback salience (De Brujin et al. 2004; Yeung & Sanfey, 2004) and thus is associated with the motivational significance of feedback. In contrast, the FRN reflects whether the feedback is consistent with expectations and is associated with the efficacy of learning.

Individual differences in impulsivity and risk-taking behaviour have been linked to modulations in ERN amplitudes. Highly impulsive individuals and BPD patients exhibit smaller ERN amplitudes (De Brujin et al. 2006a; Ruchstow et al. 2006). The ERN attenuation is explained by reduced action monitoring, which might suggest altered ACC functioning in these patients. As a result, BPD patients might not learn from errors and thus maintain their impulsive response style. In healthy individuals, smaller ERN amplitudes were associated with increased risk-taking behaviour during a card gambling task (Hewig et al. 2007) and increased risk-taking traits in adolescents (Santesso & Segalowitz, 2009).

In the current study, we examined whether impairments of decision making are related to alterations in feedback processing in BPD. Individuals with BPD and matched healthy controls underwent a modified version of the IGT while ERPs were recorded. The FRN and feedback-related P300 were examined to elucidate the neural mechanisms of feedback processing in patients. At the behavioural level, we expected that BPD patients would show more risky decisions in the IGT and reduced learning throughout the task. Further, we assumed that higher levels of impulsivity are associated with increased risk-taking behaviour in the IGT. At the neurobiological level, we aimed at comparing ERPs following positive and negative feedback within groups. We expected diminished FRN amplitudes in BPD reflecting reduced performance monitoring. With regard to previous ERP findings, we predicted that the FRN would be related to impulsivity and risk-taking behaviour. In addition, we investigated the P300 as an indicator for the motivational significance of feedback information in BPD.

Method

Participants

Eighteen BPD patients (16 women) and 18 healthy controls (16 women) participated in this experiment. Table 1 presents the demographic and clinical measures of the study sample. All participants had normal or corrected-to-normal vision and reported no history of head trauma or neurological disease. The groups were matched with regard to age, sex and verbal intelligence, as measured with a vocabulary test (Wortschatztest; Schmidt & Metzler, 1992). Patients were recruited from an outpatient therapy project (Berliner Borderline Versorgungsstudie, Borderline Netzwerk Berlin, Germany). Clinical diagnoses were confirmed using the Structured Clinical Interview for DSM-IV (SCID-I and SCID-II; Wittchen et al. 1997). Patients with a current or lifetime diagnosis of psychotic disorder or substance dependence were excluded. Although BPD was the primary diagnoses in all cases, 16 patients met DSM-IV criteria for one or more current co-morbid diagnoses, including anxiety disorder (n=15), somatoform disorder (n=5), substance abuse (n=5) and eating disorder (n=4). The
severity of depression was assessed using the Beck Depression Inventory (BDI) within patients (Beck et al. 1961). Even though patients with current co-morbid affective disorders were excluded, 12 patients reported BDI total scores that exceeded the cut-off for clinical significance (BDI total scores >18). Further, eight patients were taking antidepressant medication at the time of testing (amitriptyline n = 1, citalopram n = 4, fluoxetine n = 1, mirtazapine n = 1, paroxetine n = 1).

Healthy controls were recruited using advertisements in local newspapers. SCID-I and SCID-II interviews revealed no past or current psychiatric diagnoses. In the entire group, impulsivity was measured using the Barratt Impulsivity Scale version 10 (BIS-10; Barratt, 1985). Relative to healthy controls and in line with previous research (Rentrop et al. 2008), BPD patients described themselves as significantly more impulsive [t(34) = 5.39, p < 0.001]. Following a detailed description of the study, all participants received verbal and written explanations of the purpose and procedures of the study, and gave written informed consent. The study was approved by the local ethics committee of the Charité University Hospital, Berlin and was conducted in accordance with the Declaration of Helsinki. All participants received financial compensation (€8 per h) for their participation.

Task and procedure

Participants underwent a computerized version of the IGT (Bechara et al. 1994) that was modified for ERP recordings (Fig. 1). Participants were presented with four decks of cards (A, B, C and D) in a horizontal line.
Participants completed 12 blocks with 60 trials each (720 total trials). Blocks consisted of 12 different levels of gains and losses and were presented in pseudo-randomized order. At the beginning of each block, deck positions were pseudo-randomized. Decks A and B were associated with large magnitude outcomes, while decks C and D were associated with low magnitude outcomes. Decks A and C yielded losses on 50% of the trials, while decks B and D yielded infrequent losses on 20% of the trials. In the long run, decks A and B were disadvantageous (referred to as being ‘risky’) as they led to a net loss over time. Decks C and D were advantageous (referred to as being ‘safe’) as they led to net gains throughout the task.

The EEG was recorded from 64 electrodes sites including Cz as recording reference by using an equidistant electrode system (EASYCAP GmbH, Germany). Additional electrodes were placed below the right and left eye (IO1, IO2) to record vertical eye movements and the activity from distant muscles (neck electrode). The ground electrode was located below the left mastoid (T1). Electrode impedances were kept below 5 kΩ. During recording, all activity was sampled digitally at a rate of 500 Hz, using a time constant of 10 s and a low-pass filter of 250 Hz. Individual electrode positions were digitized based on

Table 2. Reinforcement schedule in the modified Iowa Gambling Task

<table>
<thead>
<tr>
<th>Block sequence</th>
<th>Disadvantageous decks</th>
<th>Advantageous decks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>+136/−170</td>
<td>+136/−629</td>
</tr>
<tr>
<td>2</td>
<td>+152/−190</td>
<td>+152/−703</td>
</tr>
<tr>
<td>3</td>
<td>+160/−200</td>
<td>+160/−740</td>
</tr>
<tr>
<td>4</td>
<td>+176/−220</td>
<td>+176/−814</td>
</tr>
<tr>
<td>5</td>
<td>+192/−240</td>
<td>+192/−888</td>
</tr>
<tr>
<td>6</td>
<td>+200/−250</td>
<td>+200/−925</td>
</tr>
<tr>
<td>7</td>
<td>+216/−270</td>
<td>+216/−999</td>
</tr>
<tr>
<td>8</td>
<td>+232/−290</td>
<td>+232/−1073</td>
</tr>
<tr>
<td>9</td>
<td>+240/−300</td>
<td>+240/−1100</td>
</tr>
<tr>
<td>10</td>
<td>+256/−320</td>
<td>+256/−1184</td>
</tr>
<tr>
<td>12</td>
<td>+280/−350</td>
<td>+280/−1295</td>
</tr>
<tr>
<td>Gain–loss</td>
<td>50% Gains/50%</td>
<td>80% Gains/20%</td>
</tr>
<tr>
<td>frequency</td>
<td>losses</td>
<td>losses</td>
</tr>
</tbody>
</table>

*Participants completed 12 blocks with 60 trials each (720 total trials). Blocks consisted of 12 different levels of gains and losses and were presented in pseudo-randomized order. At the beginning of each block, deck positions were pseudo-randomized. Decks A and B were associated with large magnitude outcomes, while decks C and D were associated with low magnitude outcomes. Decks A and C yielded losses on 50% of the trials, while decks B and D yielded infrequent losses on 20% of the trials. In the long run, decks A and B were disadvantageous (referred to as being ‘risky’) as they led to a net loss over time. Decks C and D were advantageous (referred to as being ‘safe’) as they led to net gains throughout the task.
Decision making and feedback evaluation in borderline personality disorder

In BPD, deck choices resulted in a negative mean IGT net score of -33.4 (S.D. = 144.6), whereas healthy controls showed a positive mean IGT net score of 78.2 (S.D. = 193.3). BPD patients performed significantly worse compared with healthy controls, as reflected in lower mean IGT net scores ($t(34) = 2.23, p < 0.05$). Fig. 2 presents the mean IGT net scores within terciles for healthy controls and BPD patients. Across the blocks, BPD patients showed lower mean IGT net scores compared with healthy controls ($p < 0.05$). Furthermore, there was no improvement within patients ($p = 0.36$), but learning was observed in healthy controls ($p = 0.05$). To control for motivational effects, IGT performance was additionally analysed within the first 60 trials (i.e. block 1). BPD patients tended to show lower mean IGT net scores compared with controls ($t(34) = 1.78, p = 0.08$). Again, there was no learning in BPD ($p = 0.37$), whereas the controls tended to enhance performance throughout the first 60 trials ($p = 0.09$).

Results

Behavioural findings

In BPD, deck choices resulted in a negative mean IGT net score of -53.4 (S.D. = 144.6), whereas healthy controls showed a positive mean IGT net score of 78.2 (S.D. = 193.3). BPD patients performed significantly worse compared with healthy controls, as reflected in lower mean IGT net scores ($t(34) = 2.23, p < 0.05$). Fig. 2 presents the mean IGT net scores within terciles for healthy controls and BPD patients. Across the blocks, BPD patients showed lower mean IGT net scores compared with healthy controls ($p < 0.05$). Furthermore, there was no improvement within patients ($p = 0.36$), but learning was observed in healthy controls ($p = 0.05$). To control for motivational effects, IGT performance was additionally analysed within the first 60 trials (i.e. block 1). BPD patients tended to show lower mean IGT net scores compared with controls ($t(34) = 1.78, p = 0.08$). Again, there was no learning in BPD ($p = 0.37$), whereas the controls tended to enhance performance throughout the first 60 trials ($p = 0.09$).
ERP findings

Feedback-locked ERP waveforms following positive and negative feedback presentation are displayed in Fig. 3. With regard to the FRN, no main effect for ‘feedback valence’ was found \(F < 1\), but a significant interaction between ‘feedback valence’ and ‘group’ was obtained \(F(1, 34) = 4.16, p = 0.05\). In line with previous studies, healthy controls showed significant amplitude differences between positive and negative feedback \(p < 0.02\). In contrast, this amplitude difference was not found in patients \(p = 0.60\). Relative to healthy controls, patients had reduced (i.e. more positive) FRN amplitudes following negative feedback \(p < 0.03\) and tended to have reduced mean amplitudes following positive feedback \(p = 0.08, \text{Fig. 4 a}\). Additionally, a significant main effect of electrode emerged \(F(1, 34) = 60.26, p < 0.001\), due to larger amplitudes at Fz compared with FCz.

The P300 is also depicted in Fig. 3. A main effect for ‘feedback valence’ was found \(F(1, 34) = 31.09, p < 0.001\), indicating that the P300 was larger following negative feedback compared with positive feedback. Importantly, there was a significant interaction between ‘feedback valence’ and ‘group’ \(F(1, 34) = 13.65, p < 0.01\). Fig. 4 b demonstrates that this interaction was caused by larger P300 amplitudes following negative feedback compared with positive feedback in the patient group \(p < 0.001\). Healthy controls, however, did not show significant P300 amplitude differences between positive and negative feedback \(p = 0.18\). For the P300, no main effect for electrode was found \(F < 1\).

Correlational findings

Across groups \((n = 36)\), bivariate correlations were computed between the FRN amplitude (at Fz electrode) and impulsivity (BIS-10 total score) or mean IGT net scores. To control for the direction of correlation coefficients, mean FRN amplitudes following negative feedback were multiplied with minus 1, so that a positive correlation indicates an increase in FRN amplitude (i.e. a more negative potential). First, a significant negative correlation between FRN amplitude and impulsivity was found \(r = -0.34, p < 0.05\), indicating that higher levels of impulsivity were associated with reduced (i.e. more positive) FRN amplitudes. Second, a significant positive correlation between FRN amplitude and IGT net score was observed \(r = 0.36, p < 0.05\), reflecting that larger FRN amplitudes were associated with higher IGT net scores (i.e. fewer risky choices). Last, a significant negative correlation between impulsivity and IGT net score was found \(r = -0.46, p < 0.02\), indicating that higher levels of impulsivity were associated with lower IGT net scores. Additionally, no significant correlation between FRN amplitude and depressive symptoms (BDI total score) was found in the patient group \(r = 0.32, p = 0.20\)\(^{\dagger}\).

Discussion

This study focused on decision making in individuals with BPD using a modified IGT. Simultaneously, EEG recordings were assessed to clarify how feedback

\(^{\dagger}\) The note appears after the main text.
evaluation was related to decision making in these patients. In agreement with previous research on IGT performance, BPD patients were less likely to develop a preference for advantageous decks and preferred the risky decks (Haaland & Landro, 2007; Maurex et al., 2009). Further, the number of risky decisions correlated with enhanced impulsivity in the entire sample. Decision-making deficits in the IGT have been found in patients with several neurological or psychiatric disorders. For instance, IGT impairment was shown in patients with OFC/ventromedial cortex lesions or with amygdala damage (Bechara et al. 1994, 1999). In addition, individuals with substance dependence (Bechara et al. 2001) as well as patients with impulse spectrum disorders (e.g. pathological gambling; Cavedini et al. 2002) exhibit abnormal decision making in the IGT. Consequently, decision-making disturbances seem to be a neurobiological hallmark of diminished impulse control and may be a trademark of impulse spectrum disorders (Hollander & Rosen, 2000). In the present study, correlation analysis provided further evidence for an association between decision-making deficits and enhanced impulsivity. Thus, findings are in line with previous neuropsychological studies showing that diminished impulse control in BPD plays a pivotal role in decision making and planning (Bazanis et al. 2002; Lenzenweger et al. 2004).

With regard to the FRN and in agreement with previous findings (Miltner et al. 1997), healthy controls exhibited enhanced FRN amplitudes following negative feedback as opposed to positive feedback. In BPD patients, however, these FRN modulations by feedback valence were not observed. BPD patients exhibited diminished FRN amplitudes and at trend level reduced amplitudes following positive feedback, suggesting general alterations of feedback processing in BPD. The FRN is assumed to reflect ACC activity (Holroyd & Coles, 2002), a brain region that plays a key role in feedback evaluation and learning about the consequences of actions to select more appropriate future behaviours (Ridderinkhof et al. 2004). When outcomes are worse than expected, the FRN is elicited by a phasic decrease in activity of mesencephalic dopaminergic neurons (Holroyd & Coles, 2002; Schultz, 2002). Research on the biological basis of BPD has revealed a deficit in serotonergic activity (Silk, 2000; Skodol et al. 2002), although there is evidence that dopamine dysfunction may also be associated with BPD (Friedel, 2004). ERP results are consistent with structural as well as functional ACC alterations in BPD. Previous research has shown decreased baseline metabolism in subregions of the ACC (De La Fuente et al. 1997; Tebartz van Elst et al. 2003) as well as smaller grey matter volume in BPD (Hazlett et al. 2005). Further, studies using emotional, stressful and sensory stimuli have consistently shown deactivation of ACC in BPD (Donegan et al. 2003; Schmahl et al. 2004).

Recent ERP investigations reported an association between the magnitude of the FRN and performance adjustment and demonstrated that the FRN was more negative when participants had learned from feedback information (Frank et al. 2005). In the current study, diminished FRN amplitudes were related to deficient IGT performance and heightened impulsivity. These associations suggest that BPD patients may not learn from feedback, as reflected by the absence of developing a preference for the advantageous decks. The results of our study are in line with previous findings

Fig. 4. Amplitudes of feedback-locked event-related brain potentials plotted as a function of group [healthy controls, n = 18; borderline personality disorder (BPD) patients, n = 18] and feedback (■, positive; ■, negative). (a) Mean feedback-related negativity (FRN) amplitudes across electrodes Fz and FCz relative to a pre-stimulus baseline. It should be noted that the FRN is a negative-going deflection but positive (µV). The larger the FRN, the less positive the deflection. (b) Mean P300 amplitudes across electrodes CPz and Pz relative to a pre-stimulus baseline. * Mean value was significantly different from that for positive feedback (p < 0.05).
linking diminished inhibition as a possible mediating process to reinvestment learning deficiencies in BPD (Bornova et al. 2005). Incarcerated females with BPD (Hochhausen et al. 2002) and healthy individuals high in BPD symptoms (Chapman et al. 2008) demonstrated reduced avoidance of punishment (e.g. financial penalties).

Although there is evidence for decision-making deficits in BPD, neural correlates of these processes have not yet been investigated. ERP research has focused on error processing and has demonstrated diminished ERN amplitudes in impulsive individuals (Potts et al. 2006, but Santesso & Segalowitz, 2009) as well as individuals with BPD (De Bruijn et al. 2006a; Ruchshow et al. 2006). Further, smaller ERNs were associated with increased risk-taking in a card gambling task (Hewig et al. 2007) and risk-taking traits in adults (Santesso & Segalowitz, 2009). The current study expands on previous ERP findings regarding action-monitoring alterations in BPD in that it also demonstrates deficits in feedback evaluation in these patients.

To elucidate the salience of feedback information in BPD, the P300 was investigated. The results reveal that the P300 was insensitive to feedback valence in controls, while in patients the P300 was increased following negative feedback compared with positive feedback. Previous studies also found that the P300 was insensitive to feedback valence in healthy individuals (Yeung & Sanfey, 2004). Possibly, healthy controls already had processed feedback valence earlier, as reflected in the FRN modulation. In BPD, however, the processing of feedback valence might be delayed, and thus be reflected by the P300. Since the P300 is modulated by expectations (Hajcak et al. 2005, 2007), the increased P300 in BPD may also indicate that negative outcomes were relatively unexpected to the patients. Altered processing of negative reinforcement information in BPD is also provided by a study using a binary-outcome gamble (Kirkpatrick et al. 2007). Individuals with BPD demonstrated dysfunctional processing of loss information when the probability of gains was high. In that study, risky decision making in BPD is explained by problems using feedback information, suggesting an imbalance between the appetitive and aversive motivational states excited by available reinforcement signals. Further, ERP studies demonstrated that the P300 responded more strongly to negative feedback than to positive feedback (Frank et al. 2005) and that the amplitude increased in individuals who attributed more meaning to feedback information (De Bruijn et al. 2004). In this regard, controls may evaluate positive and negative feedback information as being equally meaningful. Perhaps, enhanced P300 amplitudes following negative feedback in BPD suggest that these patients attributed more meaning to negative feedback information. This is supported by the hypothesis that the P300 may reflect motivational processes linked to noradrenergic transmission (Nieuwenhuis et al. 2005), which play an important role in modulating the reactivity and sensitivity to environmental feedback and is considered to be associated with affective instability in BPD (Steinberg et al. 1994).

This study has some limitations. Eight patients were taking psychotropic medication at the time of testing. However, patients were only taking antidepressant medication which does not alter action-monitoring processes (De Bruijn et al. 2006b). Although patients with co-morbid affective disorders were excluded, 12 patients reported elevated symptom scores for depression as measured with the BDI (Beck et al. 1961). However, no significant correlation between FRN amplitude and depressive symptoms was found in patients. Although, decision-making deficits in BPD patients are in line with earlier studies, depressive symptoms might also have influenced IGT performance. However, previous studies employing the IGT with depressed patients have found inconclusive results, showing impaired, unaltered or superior performance (Dalgleish et al. 2004; Must et al. 2006; Smoski et al. 2008). It might be interesting to compare our findings with those based on BPD samples without any co-morbidity or depressive symptoms. But it remains questionable whether a ‘pure’ BPD sample would be representative considering the high co-morbidity rate for BPD in general (Zanarini et al. 2004).

Finally, there are possible behavioural confounds which might account for group differences. It remains unclear whether altered decision making in patients is a consequence of altered feedback processing or whether it leads to these FRN alterations. Recent empirical findings suggest that the IGT is a complex paradigm, and task complexity may also interfere with the ability to distinguish the different component processes that are implicated in task performance. IGT impairments are not simply related to reinforcement learning deficits, but may also reflect the disability to attend to, synthesize and remember complex reinforcement histories and to resolve the approach–avoidance conflict that arises when a deck is associated with both reward and punishment (Fellows & Farah, 2005; Dunn et al. 2006). Another mechanism that could explain IGT deficits is lack of motivation. Rather than being unable to make adequate decisions, impaired patient groups may simply not care enough about the negative outcomes to actively avoid them. But, in the present study enhanced P300 following negative feedback in BPD argues against motivation deficits in patients. Nonetheless, behavioural results should be interpreted cautiously since controls also
showed some difficulties within the first block. It is possible that task modifications complicated learning also within controls and that learning occurred more implicitly compared with the original IGT.

Reduced performance monitoring is not specific to BPD, and FRN reductions have also been reported in other groups, such as schizophrenia patients (Morris et al. 2008) and older adults (Pietschmann et al. 2008). Additional research should include adequate psychiatric control groups to determine the specific impairment of reinforcement learning in BPD. Last, it should be mentioned that the current study relies on a relatively small sample size and replication in a larger sample is needed. Notwithstanding these limitations, the present study confirms previous findings regarding altered decision making in BPD and sheds new light on cognitive impairments by combining behavioural and ERP measures.

Learning from feedback is highly important for successfully making future decisions. This study indicates that BPD patients are impaired in decision making, which might be related to a dysfunctional use of feedback information. Specifically, BPD patients did not learn to avoid disadvantageous selections, albeit they attended to negative consequences. Altered neural correlates of reinforcement learning are consistent with problems faced by individuals with BPD; namely, continued engagement in certain behaviours despite negative consequences (e.g. risky sexual behaviour, alcohol/drug use, self-harm). Impulsive decision making is a core feature of BPD, so understanding the underlying mechanisms involved in feedback evaluation could greatly have an impact on the treatment of individuals with BPD.

Acknowledgements

We thank the following people for their contributions to this work: S. Röpke, M.D. (Charité-Universitätsmedizin Berlin, Germany); T. Pinkpank, Dipl.-Psych, R. Knesche, Dipl.-Ing, R. Blasiak, M.A., H. Groth and S. Kessler-Scheil. We also thank J. Beyer, Dipl.-Psych., C. Steffens, Dipl.-Psych., D. Spretz, Dipl.-Psych. and T. Wagner, Dipl.-Psych. of the Borderline Netzwerk Charité, Campus Benjamin Franklin, Berlin, for their assistance in patient recruitment.

Declaration of Interest

None.

Notes

1 Correlations between P300 amplitude and impulsivity (BIS total score) or mean IGT net score were not significant (all p > 0.26).

References

