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Abstract 

This article provides a generalization of the materials balance-based production model 

introduced by Coelli et al. (2007). Based on this, some new environmental efficiency (EE) 

measures are presented. The Coelli et al. (2007) EE measure and its extension by Rødseth 

(2016) produce biased efficiency estimates if the material flow coefficients (MFCs) are 

heterogeneous across decision-making units and non-discretionary. Furthermore, the Coelli et 

al. (2007) measure fails to reward emission reductions by emission control. To overcome these 

shortcomings, this paper proposes production models which allow for heterogeneous MFCs 

reflecting differences of external environmental factors or non-controllable heterogeneities in 

inputs and outputs, and which properly take into account emission abatement activities. Based 

on this, we provide new EE measures and decompose them into i) a part reflecting emission 

control efficiency (ECE), ii) a part measuring material input efficiency (MIE), and iii) a part 

reflecting the efficient allocation between material and non-material inputs (environmental 

allocative efficiency, EAE). The approach is illustrated by an empirical application to arable 

farming in Austria utilizing data from 90 farms for the year 2011. Soil erosion is considered an 

undesirable output and land a material input. The average EE, ECE, MIE, and EAE are 0.53, 

0.96, 0.69, and 0.79, respectively. The results indicate that actual output can be potentially 

achieved with 47% less soil loss. Most of the potential to improve EE is due to differences in 

MIE and EAE. Removing inefficiencies in the implementation of existing, subsidized erosion 

controls allows soil loss to be reduced by 4%. 

Keywords: Emission-generating technologies, Materials balance condition, Weak-G 

disposability, Data envelopment analysis, Non-discretionary factors, Soil erosion, Crop farms 

JEL Classification C61, D24, Q12, Q15 

1 Introduction 

Multiple approaches to incorporate environmental perspectives into productivity and 

efficiency analysis exist (see Dakpo et al. 2016 for a survey of the literature): i) Färe et al. (1986, 

1989) were the first to introduce undesirable outputs (bad outputs) into an empirical production 

model, allowing for inefficiencies. They treat bad outputs as weakly disposable outputs; ii) 

Hailu and Veeman (2001) model bad outputs as strongly disposable inputs; iii) Lovell et al. 

(1995) and Seiford and Zhu (2002) transform bad outputs and model the transformed values as 

strongly disposable outputs; iv) the eco-efficiency approach by Kuosmanen and Kortelainen 

(2005) ignores inputs and only considers good and bad outputs; v) recently, the by-production 

approach that models polluting technology as the intersection of multiple sub-technologies has 

been introduced (Murty et al. 2012) and extended (Serra et al. 2014; Dakpo 2016; Ray et al. 
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2018; Lei 2020), and its application has gained popularity (see e.g., Dakpo et al. 2017; Ait 

Sidhoum et al. 2020).2 

All these approaches have been criticized for various reasons (see, e.g., Färe and Grosskopf 

2004; Førsund 2009; Dakpo et al. 2016; Førsund 2018; Hampf, 2018). The most widely applied 

approaches, for example, i) and ii), are criticized for not complying with physical laws (i.e., the 

materials balance principle, law of mass conservation, or first law of thermodynamics) and for 

allowing for physically impossible production possibilities (Färe and Grosskopf 2003; Coelli et 

al. 2007; Førsund 2009; Hoang and Coelli 2011; Podinovski and Kuosmanen 2011; Rødseth 

2017). To overcome this problem, Coelli et al. (2007) and Rødseth (2017) introduced 

production models that insure consistency with the materials balance principle.3 These models 

rely on the materials balance equation (MBE), an accounting identity that describes the 

relationship between potentially polluting by-products (residuals) of a production process, the 

amount of inputs used, and the amount of good outputs produced. Residuals (i.e., pollutants or 

bad outputs), inputs and good outputs are linked by material flow coefficients (MFCs) such that 

the amount of materials tied up in the inputs must equal the amount of the flow of materials 

embedded in intended outputs plus residuals. 

Due to non-homogeneity in inputs and outputs and the role of some external factors, the 

MFCs may differ from one decision-making unit (DMU) to another (Dakpo et al. 2016). 

Although the MBE-based models have been applied in numerous efficiency analyses, especially 

in agriculture (see e.g., Hoang and Rao 2010; Hoang and Coelli 2011; Hoang and Alauddin 

2012; Nguyen et al. 2012; Hoang and Nguyen 2013) and energy generation (see e.g., Welch 

and Barnum 2009; Hampf and Rødseth 2015, 2017, 2019), heterogeneous MFCs have received 

little attention in the literature. An exception is Hampf and Rødseth (2019). Their model 

accommodates heterogeneous MFCs that reflect differences in input qualities across DMUs. 

They assume that the input quality can be freely chosen by DMUs and, as such, the MFCs are 

considered controllable. 

This article extends the Coelli et al. (2007) model and the weak G-disposability technology 

introduced by Rødseth (2017), allowing for heterogeneous MFCs which reflect differences of 

some non-discretionary, environmental/external factors. These models can also be applied to 

situations where input and output quality is heterogeneous across DMUs but non-controllable 

(i.e., input or output quality switching, such as fuel switching from coal to gas is not possible). 

Contrary to that of Rødseth (2019), the approach presented in this article accounts for emission 

abatement activities that require the use of additional inputs. While network technologies (see 

e.g., Färe et al. 2013; Hampf 2014; Lozano 2015; Bostian et al. 2016, 2019; Bi et al. 2018;) 

separately model the production and the abatement stages, our approach models the amount of 

abated emission as strongly disposable output together with all other inputs and outputs in a 

single stage. Inputs are jointly consumed by desirable output production and emission control. 

Hence, the procedure does not require information on the amount of inputs devoted to each of 

these processes. 

Based on these extended production models, environmental efficiency (EE) measures are 

proposed that reward emission reductions from emission control. The presented procedure is a 

generalization of the MBE-based approach introduced by Coelli et al. (2007). It is shown that 

the Coelli et al. (2007) measure is a special case of the EE measures proposed here. The EE 

                                                            
2 Multi-equation modelling of good and bad outputs was also established by Førsund (2009, 2018) building on the 

ideas of Frisch (1965). 

3 The materials balance principle was introduced by Ayres and Kneese (1969) and Kneese et al. (1970) in the 

economic literature but, according to Pethig (2003), has been stepmotherly treated therein. 
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measures are decomposed into three components that reveal the sources of inefficiencies with 

regard to emission generation. Taking the production of desirable outputs as given, the 

components reflect inefficiencies associated with i) too low of an amount of abated emission 

for the given amount of inputs used, ii) too much usage and misallocation of polluting inputs, 

and iii) an unfavorable allocation between polluting and non-pollution inputs. 

The approach is illustrated by an empirical application to arable farming using data from 90 

Austrian crop farms for the year 2011, and considering soil erosion as an unintended, potentially 

polluting by-product that should be minimized. Soil erosion results from energy transmitted 

from wind or rainfall and leads to the loss of topsoil and soil organic matter, which are essential 

for plant growth. Soil erosion is the most important cause of soil degradation, which is 

recognized as one of the most pressing problems facing humanity (Young et al. 2015) and a 

serious threat to sustainable development as envisaged in the European Union (EU) Sustainable 

Development Strategy (EC 2001) and the Sustainable Development Goals of the United Nations 

(Griggs et al. 2013; Keesstra et al. 2018). The private and social costs of soil erosion are 

considerable, including reduced soil productivity and off-site effects, such as sedimentation, 

flooding, landslides, and water eutrophication (Pimentel et al. 1995; Adhikari and Nadella 2011; 

Graves 2015; Panagos et al. 2018). Clearly, agriculture plays a key role, as agricultural land 

accounts for 68.3% of total soil loss in Europe (Panagos et al. 2015c). 

Besides farmers’ land use and management decisions, including crop choice and applied 

erosion control measures, the degree of soil loss mainly depends on exogenous environmental 

(non-discretionary) factors, such as rainfall quantity and intensity, soil texture and structure, 

and slope gradient and length. To the best of my knowledge, attempts to consider soil erosion 

as undesirable output in empirical production models are restricted to frontier eco-efficiency 

studies (see Picazo-Tadeo et al. 2012a, 2012b, 2014; Eder et al. 2021) in the mode of 

Kuosmanen and Kortelainen (2005), an approach that completely ignores inputs and fails to 

capture all the input substitution possibilities that could help to optimize environmental 

performance (Dakpo et al., 2016). Hence, this is the first study modeling soil erosion as an 

undesirable output within a production theoretical framework that simultaneously accounts for 

inputs, desirable outputs, and undesirable outputs. 

2 Background 

The MBE introduced in the economic literature by Ayers and Kneese (1969) is a simplified 

form of the first law of thermodynamics and states that during a production process material 

cannot disappear. A general discussion and justification for incorporating the MBE in 

production analysis can be found in Lauwers (2009). Using empirical data as well as results 

from Monte Carlo simulations, Hampf (2018) finds that ignoring the physical restrictions 

imposed by the MBE when estimating technology sets, leads to seriously biased efficiency 

results. Moreover, the same study also shows that, even in the case of misspecifications, models 

based on the MBE outperform models which ignore the physical restrictions. 

The MBE implies that the amount of materials bound in inputs equals the amount of materials 

bound in intended outputs and residuals (i.e., emissions or pollutants). Consider the situation in 

which we have a firm that produces a vector 1, 2,...,m M desirable outputs, 
My  , using a 

vector of 1, 2,...,k K  inputs, 
Kx  . The input vector is partitioned into a sub-vector of S  

material inputs, 
P Sx  , and a sub-vector of K S non-material inputs, 

NP K Sx 

 . The 
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production activity causes the emission of potentially polluting substances as a by-product. The 

amount of emissions is defined by the MBE: 

ucb ux vy  . (1) 

Eq. (1) represents uncontrolled emissions, where 
Ku   and 

Mv   are vectors of known 

non-negative constants representing the MFCs of inputs and desirable outputs. Material inputs 

(i.e., polluting inputs) have MFCs that are positive and non-material inputs (i.e., non-polluting 

inputs) are associated with MFCs that are zero. If desirable outputs are taken as given, emissions 

can be reduced by using fewer material inputs or by substituting polluting with non- or less-

polluting inputs. Another strategy to reduce uncontrolled emissions is the use of emission 

abatement activities that require the use of additional inputs. This is formalized by Eq. (2) as 

follows: 

 (2) 

Eq. (2) represents controlled emissions, that is, the amount of uncontrolled emissions reduced 

by emission control. The abatement output a   is the amount of emission avoided by 

emission control. Eq. (2) is linear in inputs and outputs, but one can also formulate a non-linear 

relationship (Pethig, 2006). 

Coelli et al. (2007) consider the output vector y as fixed and minimize the uncontrolled 

emission in Eq. (1) by choosing the optimal input vector x  subject to a traditional production 

technology. The model insures that the MBE is satisfied by considering Eq. (1) explicitly as the 

target function of the optimization problem. However, the model by Coelli et al. (2007) ignores 

emission abatement activities that usually require the use of additional inputs. Hence, the EE 

measure proposed by Coelli et al. (2007) provides biased efficiency rankings if emission control 

is a common compliance strategy (cf. Rødseth, 2016). 

To overcome this problem, Rødseth (2016) proposes a new EE measure that rewards 

emission reductions by emission control and shows that the new efficiency measure coincides 

with Coelli et al.’s (2007) efficiency measure if none of the considered DMUs control emissions 

and the MFCs of the desirable outputs are zero. Contrary to the initial approach of Coelli et al. 

(2007), which considers the MBE as the objective function of a minimization problem, Rødseth 

(2016) imposes a set of axioms on the production technology to insure that the MBE shown in 

Eq. (2) holds for all production points within the production possibility set (PPS). This weak G-

disposability technology is described and compared with other modeling approaches of 

production technologies in Rødseth (2017). The weak G-disposability technology allows the 

specification of a production model that includes controlled emissions as undesirable outputs. 

If emission control is a common compliance strategy, an alternative to Rødseth’s (2016) 

approach is to modify the traditional production technology by introducing an extra “abatement 

output” variable and to minimize Eq. (2) by choosing the optimal abatement output a  and the 

optimal input vector x , subject to the modified technology. As emphasized by Coelli et al. 

(2007), the abatement output would be a good output variable, not a bad output variable.4 

Although this procedure is proposed by Coelli et al. (2007), this article is the first that formalizes 

and applies this approach and derives a corresponding, new measure of EE. In addition, the new 

                                                            
4 Note that this extension of the model by Coelli et al. (2007) requires exactly the same data as the model by 

Rødseth (2016). If the controlled emissions, inputs, outputs, and the MFCs are known, the abatement output can 

be calculated by using Eq. (2). 

.cb ux vy a  
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measure of EE is compared with the measure developed by Rødseth (2016), and it is shown that 

the two measures coincide under quite general conditions. 

 

Table 1  Review of MBE-based models 

Model 
With emission 

control 

MFCs heterogeneous 

across DMUs 

MFCs 

controllable 

Coelli et al. (2007) no no no 

Rødseth (2016) yes no no 

Hampf and Rødseth (2019) no yes yes 

The new models in this article yes yes no 

MBE: materials balance equation; MFCs: material flow coefficients. 

 

Table 1 provides an overview of MBE-based production models and their features. Until 

recently, heterogeneous MFCs have received little attention in the literature. The approach of 

Coelli et al. (2007) and Rødseth (2016) were originally applied to situations where MFCs are 

homogeneous across all DMUs. Welch and Barnum (2009) apply the model of Coelli et al. 

(2007) to electricity generation and maintain the assumption of homogeneous MFCs. Nguyen 

et al. (2012) uses the approach of Coelli et al. (2007) to measure the nutrient use efficiency of 

South Korean rice farms and apply heterogeneous MFCs reflecting differences in the eutrofying 

power of fertilizers across DMUs. However, the consequences for EE measurement when 

comparing farms which use fertilizers with different nutrient content are not discussed.5 

Hampf and Rødseth (2019) are the first to explore the consequences of heterogeneous MFCs 

for EE measurement. Differences in MFCs across DMUs are interpreted as differences in input 

qualities. They find that failing to control for this heterogeneity leads to performance 

measurement errors, that is, input quality differences are confused with technical inefficiency. 

Also, they develop a production model that accounts for heterogeneous MFCs. Based on this 

model, a measure of EE is proposed that is decomposed into a part reflecting input quality and 

a part reflecting technical efficiency. This approach is applied to evaluate the EE of coal-fired 

power plants in the United States using a panel dataset covering the years 1997 to 2015. Carbon 

dioxide (CO2) and sulfur dioxide (SO2) are considered undesirable outputs. The power plants 

use different qualities of coal with varying sulfur and carbon contents, which are captured by 

heterogeneous MFCs. It is assumed that DMUs can switch among inputs of different quality 

(coal types), and choosing a suboptimal input (coal) quality is reflected by a lower EE. 

However, fuel switching is not always possible. For instance, the decision on which type of coal 

is used depends on the location of the power plant, transportation costs, and the sulfur content 

of coal. These factors are likely to be uncontrollable by the power plant operators. When 

evaluating the EE of power plants that use even more heterogeneous types of fuel, for example, 

coal and gas (cf. Welch and Barnum 2009), the assumption that fuel switching is feasible is 

even more questionable. A coal boiler is usually designed to burn coal, not natural gas. Even if 

a coal plant were modified to accept natural gas, the resultant fuel efficiency would be low and 

production costs would remain elevated. 

                                                            
5 If switching from urea fertilizers to complex fertilizers is constrained by manure management, the estimated 

potentials to reduce the eutrofying power of the farms are seriously overestimated. Furthermore, technical 

efficiency variations are mixed up with differences in fertilizer quality. 
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In addition, there are situations where heterogeneous MFCs do not result from differences in 

input quality, but rather reflect heterogeneous environmental factors, also known as non-

discretionary variables or Z-variables (cf. Ruggiero 1998), which govern the transformation of 

inputs into good and bad outputs. For instance, consider the use of arable land to produce 

agricultural commodities. The usage of arable land in the production process inevitably causes 

soil erosion by water and wind. Soil erosion is an unintended by-product of agricultural 

production that causes private and social costs, including reduced soil productivity and off-site 

effects such as sedimentation, flooding, landslides, and water eutrophication (cf. Pimentel et al., 

1995; Adhikari and Nadella, 2011; Graves, 2015; Panagos et al., 2018). However, the degree 

of soil loss depends on exogenous environmental factors, such as rainfall quantity and intensity, 

soil texture and structure, and slope gradient and length.6 

The examples given above describe production processes where the MFCs are heterogeneous 

across DMUs but uncontrollable by the operators, at least to a certain extent.7 Assuming that 

MFCs are controllable in such situations leads to biased efficiency estimates, and inefficiencies 

are confused with non-discretionary factors. To account for this, the production models 

presented in this study extend the approach of Coelli et al. (2007) and Rødseth (2016) to account 

for heterogeneous and non-discretionary MFCs. In contrast to Hampf and Rødseth (2019), 

focusing on uncontrolled emissions, the new models allow for emission control and the 

substitution of polluting inputs with non-polluting inputs. Based on these models, conditional 

data envelopment analysis (DEA) estimators of EE are proposed that control for environmental 

factors influencing the production of the bad output. This is achieved by introducing conditional 

technology sets that depend on non-discretionary factors and restrict the reference set of the 

DMUs under evaluation to DMUs that face comparable environments (cf. Ruggiero 1996, 

1998). The procedure guarantees that differences in EE are not confused with differences in 

non-discretionary factors. 

To put it differently, the proposed EE measures evaluate a DMU’s potential to reduce its 

controlled emission given its production of desirable outputs. The measures are decomposed 

into three parts, which assess the contribution of different emission abatement strategies to the 

overall emission reduction potential: i) emission reductions for given inputs and desirable 

outputs, which reflect the emission control performance of a DMU (emission control 

efficiency); ii) emission reductions by reducing and reallocating material inputs (material input 

efficiency); and iii) emission reductions by substituting material inputs with non-material inputs 

(environmental allocative efficiency). 

3 Methodology 

This section presents two approaches for theoretical modeling and estimating the production 

technology as well as measuring the EE of DMUs that control emissions and have homogeneous 

MFCs. The first approach extends the Coelli et al. (2007) production model by an abatement 

output, and the second approach was introduced by Hampf and Rodseth (2015) and Rødseth 

(2016, 2017). These two approaches deliver identical solutions under quite general conditions. 

We can exploit this useful property for EE measurement of DMUs with heterogeneous and non-

                                                            
6 In addition, the extent of soil loss is also determined by farmers’ land use and management decisions. In particular, 

appropriate crop choice and erosion control measures can reduce soil erosion rates (Pimentel et al., 1995; Panagos 

et al., 2015a; Panagos et al., 2015b). 

7 In the case of soil erosion, arable land can be considered as the single material input, and the MFC of arable land 

represents the farm-specific uncontrolled soil loss in t/ha per year. The material content and the MFCs of other 

inputs and outputs are zero (see section 3.2). 
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discretionary MFCs. In addition, I discuss the consequences of uncontrollable differences in 

MFCs across DMUs for the production possibilities and demonstrate how EE can be evaluated 

and decomposed in such situations. 

Throughout this section, it is assumed that we observe 1, 2,...,i N DMUs that produce a 

vector of 1, 2,...,m M desirable outputs, 
M

iy   using a vector of 1, 2,...,k K  inputs, 

K

ix  . The input vector is partitioned into a sub-vector of S  material inputs, 
i

P Sx  , and a 

sub-vector of K S non-material inputs, 
i

NP K Sx 

 . The DMUs control emissions, where 

ia   is the amount of prevented emission by emission control (i.e., a desirable output) and 

c

ib   is the controlled emission (i.e., an undesirable output).8 

3.1 Production with homogeneous MFCs 

3.1.1 Modeling and estimating the production technology 

Consider a traditional production technology which is extended by an abatement output 

(desirable output) a  , ignoring the controlled emission (undesirable output) 
cb  : 

 1

1 , , | ( , )K MT x y a x can produce y a 

  . (3) 

For estimating 1T  from empirical data, it is assumed that the input vector x  can be employed 

both to desirable output production and emission control activities. Furthermore, the standard 

axioms of a neo-classical production model are assumed to hold.9 In particular, outputs are 

assumed to be freely disposable, which means that an increase, for example, in the abatement 

output takes place at the expense of at least one other output when the production is efficient. 

Next, consider a traditional production technology that is extended by a controlled emission 

(undesirable output) 
cb  , ignoring the abatement output (desirable output) a  : 

 1

2 ( , , | ( , )c K M cT x y b x can produce y b 

  . (4) 

To estimate 2T  from empirical data, Rødseth (2017) introduces the weak-G disposability 

technology assuming that 2T  is a non-empty, closed, convex set that is bounded from above 

and that there is no free lunch. In addition to these standard axioms of neoclassical production 

technologies, three further axioms are assumed to hold: i) input essentiality, ii) output 

essentiality, and iii) weak-G disposability. The essentiality axioms state that polluting inputs 

cannot completely be transformed into good outputs, and thus, the use of polluting inputs 

inevitably results in the production of polluting by-products. In addition, these pollutants can 

only result from the production process if polluting inputs are used. The weak-G disposability 

axiom guarantees that the disposal of inputs and outputs takes place according to the MBE. 

                                                            
8 Note that the model presented in this article considers only one undesirable output. However, the approach can 

be generalized to multiple bad outputs following the procedure outlined in Coelli et al. (2007). 

9 1T  is a non-empty, closed, and convex set that is bounded from above (output boundedness). There is no free 

lunch, and inputs and outputs are freely disposable. For details see, for example, Färe and Primont (1995). 
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To estimate 1T  and 2T , the nonparametric DEA estimator by Banker et al. (1984) and Hampf 

and Rødseth (2015) is applied, respectively. In contrast to parametric methods, DEA does not 

impose a specific functional form on the technology set, but estimates a piecewise-linear 

approximation of the technology frontier based on the above defined axioms. The DEA 

estimator for 1T  is defined as: 

1

1

1

1 1

1

, , | , 1,..., ;

, 1,..., ; ;

1; , , , 0, , ,

k

m

k m

N
K M k k

i i x
i

N N
m m

i i i i ay
i i
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i i ax y
i

x y a x x k K

T y y m M a a
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. (5) 

The DEA estimator for 2T  is given by: 

1

1

1 1
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1 1

1
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k

m c

k m c

k m c

N
c K M k k

i i x
i

N N
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i i i iy b
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k m
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i

x y b x x k K

y y m M b b

T

u v
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. (6) 

In Eqs. (5) and (6), i ( 1,..., )i N denotes the weight factors which are used to construct 

convex combinations of observations. Restricting them to sum up to unity implies that the 

technology satisfies variable returns to scale (VRS) (cf. Banker et al. 1984). A constant returns 

to scale (CRS) technology can be imposed by removing this restriction. All epsilons are slack 

variables. The slack variables , ,k m cx y b
    in 

2T


are restricted according to the MBE. This 

summing up constraint on the slack variables guarantees that slacks in feasible input–output 

combinations are only part of 
2T


 if they satisfy the MBE. 

3.1.2 Measuring EE 

In this section, we benchmark the DMUs in terms of their ability to produce desirable outputs 

with a minimum of environmental damage. We minimize controlled emissions subject to i) the 

production technology 1T  and ii) the production technology 2T . Given the DEA estimator for 

1T  in Eq. (5), the minimal emission for DMU o can be estimated by solving the following linear 

programming problem [extension of Coelli et al.’s (2007) model]: 
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Given the DEA estimator for 2T  in Eq. (6), the minimal emission for DMU o can be estimated 

by solving the following linear programming problem (Rødseth, 2016): 
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. (8) 

The linear programs are solved by choosing a feasible, emission minimizing combination of 

the polluting inputs, 
Px , the non-polluting inputs, 

NPx , and the abatement output, a , for 

producing the observed desirable outputs, oy . Hence, the models allow for three emission 

reduction strategies: i) emission reduction by increasing the abatement output, ii) emission 

reduction by reducing and reallocating material inputs, and iii) emission reduction by 

substituting material with non-material inputs. The EE measure for DMU o based on Eqs. (7) 

and (8) is defined by the ratio of the minimal emission to the observed emission: 

***c

I
I c

o

b
EE

b
  (9) 

***c

II
II c

o

b
EE

b
 . (10) 
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The EE measures take values less than or equal to 1, where 1 indicates that the DMU under 

consideration is efficient. The measure evaluates the DMU’s possibility to reduce its controlled 

emission given its production of desirable outputs, oy . This leads to the following propositions: 

Proposition 1: The minimal emissions obtained from Eq. (7), 
***c

Ib , and from Eq. (8), 
***c

IIb are 

identical if the slack of the abatement output in Eq. (7), a , is zero. Hence, if a  is zero, the 

environmental efficiency measure of Rødseth (2016), IIEE , and the new measure, IEE , 

coincide. The formal proof is available in the Appendix. 

Proposition 2: Rødseth (2016) shows that his efficiency measure, IIEE , is a generalization of 

the efficiency measure of Coelli et al. (2007) and coincides with the Coelli et al. (2007) measure, 

if none of the producers control emissions, and the MFCs of the desirable outputs are zero. It 

follows from this result and Proposition 1, that IEE  coincides with the Coelli et al. (2007) 

measure if none of the producers control emissions, which implies that a  and a  are zero for 

all DMUs, and the MFCs of the desirable outputs are zero.10 

3.2 Production with heterogeneous MFCs 

So far, we have assumed that the vector of MFCs for inputs, u , and outputs, v , consists of 

constants. Let us assume that the MFCs are non-discretionary and differ across DMUs. The 

vector of MFCs are represented by iu  and iv . The problem with ignoring heterogeneous, non-

discretionary MFCs in EE measurement is illustrated by the following numerical example on 

soil erosion in arable farming. 

Consider a farm that produces maize using the inputs land and labor. The usage of arable 

land in the production process causes soil erosion (an unintended output) by water and wind. 

The degree of soil loss by water depends on exogenous environmental factors, such as slope, 

slope length, and soil type of the fields as well as rainfall quantity and intensity. These 

differences in operating environments are captured by the heterogeneous MFCs of the single 

polluting input land. The MFC of land is the uncontrolled soil erosion in tons per hectare. Since 

labor is a non-polluting input, and maize does not contain any soil, the MFCs of labor and maize 

are zero. Farms implement erosion control measures to reduce erosion. These abatement 

activities (e.g., planting winter cover crops and using mulch tillage) require additional inputs 

and often result in higher production costs. 

All farms in Table 2 employ the same amount of inputs, 10 ha land and 1000 h labor, to 

produce the same amount of maize, 100 t. Farms A and B operate under more favorable 

conditions, for example, flatter fields than farms C and D resulting in lower MFCs, that is, 0.5 

t/ha soil loss vs. 1 t/ha. The farms also differ with respect to their share of abated erosion. 

Erosion control measures allow farms A and C to reduce uncontrolled erosion by 40%, and 

farms B and D by 60%. 

 

                                                            
10 Note that Coelli et al. (2007) and Rødseth (2016) assume that the production technology exhibits constant returns 

to scale, while this article assumes a VRS technology. Proposition 1 and all further assertions that rely on 

comparisons of the production models of Coelli et al. (2007), Rødseth (2016), and the new models in this article 

are only valid if we assume that the returns to scale assumption is identical across these models. 
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Table 2  Data matrix of the soil erosion example with heterogeneous MFCs   

Farm ID 
Abatement 

erosion (t) 

Controlled 

erosion (t) 

Uncontrolled 

erosion (t) 

Material flow 

coefficient 

(t/ha) 

Share of abated 

erosion (%) 

A 2 3 5 0.5 40 

B 3 2 5 0.5 60 

C 4 6 10 1 40 

D 6 4 10 1 60 

MFCs: material flow coefficients. All farms use 10 ha land, 1000 h labor, and produce 100 t of maize. 

The MFCs of maize are zero. The only erosion generating input with strictly positive MFCs is land. 

 

The left-hand graph of Fig. 1 illustrates the measurement of EE following Eqs. (7) and (9), 

that is, assuming that MFCs are homogeneous across farms.11 Since farm D produces the highest 

abatement output, it is classified as environmentally efficient and spans the production frontier 

represented by the line 0D  and its extension. All other farms are benchmarked against farm D, 

resulting in an optimal abatement output of 6 t. However, this is not feasible for farms A and B 

operating under a more favorable environment than farm D and having an uncontrolled erosion 

of 5 t, compared with 10 t for farm D. The optimal abatement output of 6 t would result in a 

negative value of the optimal controlled erosion and in negative EE scores. Hence, Eq. (7) 

overestimates the potential of farms A and B to increase the abatement output.12 

 

 
Fig. 1 EE measurement with heterogeneous MFCs. The left-hand (right-hand) graph shows the 

technology set(s) under constant returns to scale in line with Eq. (5) (Eq. [14]) ignoring (taking into 

account) the non-discretionary nature of the MFCs. 

 

                                                            
11 Note that Fig. 1 shows CRS technology sets, while Eqs. (7) and Eq. (9) assume a VRS technology. However, 

the reasoning associated with the numerical example and Fig. 1 is identical under a CRS and VRS technology. 

12 Note, that the abatement output is a fraction between zero and one of the uncontrolled emission, that is, 

( ), [0,1]uca sb s ux vy s    . Hence, everything else being equal, farms operating under less favorable 

conditions, those with a more unfavorable MFCs, can produce a higher abatement output in absolute terms. 
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The right-hand graph of Fig. 1 shows how to measure EE correctly. The idea is formalized 

by Eqs. (14), (18) and (25.1) in the next section. The heterogeneity and non-discretionary nature 

of the MFCs is taken into account by estimating production frontiers and technology sets 

conditional on the MFCs. The line passing the origin to D represents the production frontier for 

1u  , and the line 0B  and its extension represent the production frontier for 0.5u  . Farms D 

and B, abating 60% of their uncontrolled erosion, are classified as environmentally efficient. 

Only farms having the same MFCs are compared with each other. Farm C is benchmarked 

against farm D, and farm A is benchmarked against farm B, resulting in an optimal abatement 

output of 3 t for farm A and 6 t for farm C. In accordance with Eq. (25.1), the EE of farms A 

and farm C, abating 40% of their uncontrolled erosion, is 0.66. Since there are no inefficiencies 

in the level and allocation of inputs, the EE scores reflect the erosion control performance of 

the farms. The scores are equal to the share of abated erosion (40%) divided by the maximum 

observed value of this share (60%). 

The left-hand graph of Fig. 2 illustrates the EE measurement based on the weak G-

disposability technology according to Eqs. (8) and (10). Contrary to technology, set 
1T


, shown 

in the left-hand graph of Fig. 1, the DEA estimator of the weak G-disposability technology, 
2T


, depends on the MFCs, which are part of the summing-up restriction on the slacks in Eq. (8). 

Hence, the PPS of the evaluated DMUs depends on their MFCs. This is shown in the left-hand 

graph of Fig. 2, depicting the PPS for 0.5u   and 1u   when holding the abatement output 

constant. Both sets are bounded by the solid line connecting B and C. In the case of 0.5u  , the 

PPS is additionally bounded by the dashed extensions with slope 0.5. The technology set pivots 

upward if 1u  , leading to different production possibilities. However, since the PPSs for 

0.5u  and 1u  overlap, it is possible that DMUs with different MFCs are benchmarked 

against each other. 

 

Fig. 2  EE measurement with heterogeneous MFCs. The left-hand (right-hand) graph shows the 

technology sets according to Eq. (6) (Eq. [15]) ignoring (taking into account) the non-discretionary 

nature of the MFCs. 
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The left-hand graph of Fig. 2 shows that Farm B has the least amount of controlled emission 

and is, therefore, classified as environmentally efficient by Eq. (10). All other farms are 

benchmarked against farm B, resulting in a target for controlled erosion of 2 t. The EE of farm 

C is evaluated by / 2 / 6 0.33IIEE PB PC   . The same procedure applies to farms A and D, 

having EE scores of 0.66 and 0.5, respectively. The question is whether this is a fair ranking of 

environmental performance. 

For instance, farm D reduces its uncontrolled erosion by the same share as farm B (i.e., by 

60%) using the same amount of inputs and producing the same amount of desirable outputs. 

The only difference between B and D is that D operates under less favorable environmental 

conditions (e.g., steeper slope of fields) leading to an uncontrolled (and controlled) soil loss that 

is twice that of farm B. Hence, farm D is punished for operating under harsher environmental 

conditions, and Eq. (8) overestimates the potential of farm D to decrease the controlled erosion. 

To overcome this problem, I suggest that farms are only allowed to be benchmarked against 

DMUs operating in the same or a less favorable environment (i.e., having a u  higher or equal). 

This avoids that reduction potentials for controlled soil erosion are overestimated due to a 

comparison with DMUs operating in a more favorable environment (i.e., having a lower u ). 

Accordingly, the right-hand graph of Fig. 2 shows the PPS for 0.5u   and 1u  . The PPS 

for 0.5u  remains unchanged, but the PPS for 1u   is now bounded by the solid line 

connecting D and C and the dotted extensions with slope 1. Farm A is again benchmarked 

against farm B because they have the same MFCs. The EE of farm A is 0.66. Contrary to farm 

A, the EE scores of farms C and D change compared with the situation depicted on the left-

hand graph of Fig. 2. Farm D is classified as environmentally efficient, while farm C is 

benchmarked against farm D and has an EE of 0.66. Note that in this simple example, the EE 

scores obtained by the two new procedures presented in this section coincide (cf. right-hand 

graph of Figs. 1 and 2). The next two subsections clarify that, in general, the two approaches do 

not result in identical EE scores. 

3.2.1 Modeling and estimating the conditional production technology 

As shown in the last section, the non-discretionary MFCs affect the production of the 

abatement output and the uncontrolled emission. Everything else being equal, farms operating 

under less favorable conditions have a higher uncontrolled emission and can produce a higher 

abatement output, that is, the abatement output and the uncontrolled emission is increasing in 

u  and decreasing in v .13 The following index of environmental harshness is proposed to 

measure the unfavorability of the MFCs: 

1 1

1 1 1 1

, ,
k k m mK M

k k m m k mi i i i
i i i i i i iK M K M

k k m m k k m mk m
i i i i i i i i

k m k m

u x v y
z w u w v where w and w

u x v y u x v y 

   

   

 
 

   
. (11) 

The index iz  is a weighted sum of the MFCs. The proposed weights measure how much 

each input and output contributes to the material flow (i.e., inflow plus outflow). The sum of 

the weights is one. A lower value of z represents a more favorable environment, in the sense 

that less uncontrolled emissions are generated. 

                                                            

13 This can easily be inferred from the fact that ( ), [0,1]uca sb s ux vy s    . 
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Consider a traditional production technology extended by an abatement output. The 

production technology depends on z , and the conditional PPS can be written as: 

 1

1( ) , , | ( , ) ( , )K MT z x y a x can produce y a given z u v 

  . (12) 

Next, consider a traditional production technology that is extended by a controlled emission. 

The production technology depends on z , and the conditional PPS is given by: 

 1

2 ( ) , , | ( , ) ( , )c K M cT z x y b x can produce y b given z u v 

  . (13) 

The production axioms described in section 3.1.1 hold for 1( )T z and 2 ( )T z . In addition, it 

holds that 1 1 1 2( ) ( )T z T z for all 1 2z z . This implies that a DMU with a less favorable 

environment, 2z , should be able to produce at least as much abatement output as any DMU with 

a more favorable environment, 1z . For 2 ( )T z , it is clear that a DMU with a more favorable 

environment, 1z , should be able to have a lower controlled emission for a given abatement 

output than a DMU with a less favorable environment, 2z .14 

Having these modifications in mind, it becomes clear that, if the production possibilities are 

defined in terms of 1( )T z , a given DMU should be compared only with DMUs with the same 

or a more favorable environment (i.e., DMUs having the same or a lower z ). If the production 

possibilities are defined in terms of 2 ( )T z , a given DMU should be compared only with DMUs 

with same or a less favorable/harsher environment (i.e., DMUs having the same or a higher z
). While, in the case of 1( )T z , this procedure avoids an overestimation of the potential to 

increase the abatement output, in the case of 2 ( )T z , this avoids an overestimation of the potential 

to decrease the controlled emission. 

For the empirical estimation of 1( )T z and 2 ( )T z , we follow the procedure suggested by 

Ruggiero (1996, 1998) and restrict the set of possible reference units of a given DMU by 

introducing weight restrictions. The DEA estimator of 1( )T z  for DMU o is given by: 

1

1

1 1

1

1
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( )
1; , , , 0, , ,
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. (14) 

                                                            
14 Note that, for both the PPS in Eq. (12) and Eq. (13), it is assumed that the production of y is independent of z

. 
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The DEA estimator of 2 ( )T z  for DMU o is given by: 

1

1

1 1
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1 1

1
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. (15) 

3.2.2 Measuring and decomposing environmental efficiency 

The optimization problems in the left and right column of Table 3 minimize the controlled 

emission of DMU o subject to 1( )oT z


 and 2 ( )oT z


, respectively. The only abatement strategy 

allowed in Eqs. (16) and (19) is the increase of the abatement output for given desirable outputs 

and for fixed inputs. In addition, Eqs. (17) and (20) also allow reducing the emission by reducing 

and reallocating the material inputs, Px , for given desirable outputs and fixed non-material 

inputs, NPx . Finally, Eqs. (18) and (21) additionally allow for emission reduction by substituting 

material inputs with non-material. 

 

Table 3  Linear programming problems 16–21 

 Models based on 
1( )oT z


 Models based on 
2 ( )oT z


 

*

1
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1 1
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Note that, while the reference set for DMU o in Eqs. (16)–(18) is restricted to include only 

DMUs 1,...,i N with i oz z , Eqs. (19)–(21) restrict the comparison set of DMU o to include 

only DMUs 1,...,i N having i oz z . Since the models in the left and right column of Table 3 

deal with almost disjoint sets of possible reference units for DMU o, it should be clear that, in 

general, the solutions for each of the corresponding models do not coincide. Furthermore, there 

is no rule which of the corresponding models give the optimal solution with the lowest 

controlled emission. For some evaluated DMUs, Eq. (18) detects improvement potentials, 

which are not detected by Eq. (21), and for other DMUs under evaluation exactly the opposite 

can be the case. Therefore, we consider the minimal value of the controlled emission of both 

Eqs. (18) and (21) as the final solution:15 

*** *** ***

3 1 2min( , )c c cb b b . (22) 

To get an exact decomposition of the EE measure shown below, the final solution for the 

other two pairs of the minimization problems in Table 3, that is, Eq. (16) and Eq. (19) as well 

Eq. (17) and Eq. (20), should be based on the same technology set as the final solution in Eq. 

(22): 

** *** ***

1 1 2**

3 ** *** ***

2 1 2

c c c

c

c c c

b if b b
b

b if b b

 
 



 (23) 

* *** ***

1 1 2*

3 * *** ***

2 1 2

c c c

c

c c c

b if b b
b

b if b b

 
 



. (24) 

Contrary to using only models based on either 1( )oT z


 or 2 ( )oT z


, the proposed procedure 

does not throw away valuable information. The estimated improvement potentials are based on 

a richer set of information and are therefore more accurate. The presented approach allows 

comparing the DMU under evaluation with all other DMUs in the sample, that is, the set of 

possible reference units of DMU o is not restricted to a subset of DMUs as would be the case if 

only the models based on either 1( )oT z


 or 2 ( )oT z


 are applied.16 

Based on the linear programming problems presented in Table 3 and the minimum model 

shown in Eqs. (22)–(24), the following measures of EE and its decompositions are introduced: 

 

*** * ** ***

* **
, 1,2,3

c c c c

j j j j

j c c c c

o o j j

b b b b
EE j

b b b b
     .  (25.j) 

 

                                                            
15 Clearly, the final solution also includes the optimal input mix and abatement output corresponding to either Eq. 

(18) or Eq. (21). 

16 My approach allows the reference point of DMU o to be either a linear combination of DMUs with i oz z  or 

i oz z . Linear combinations of DMUs having i oz z and i oz z are ruled out as reference points. 

Emission control 

efficiency 

Material input 

efficiency 

Environmental 

allocative efficiency 
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The index 1, 2,3j  indicates the EE measure and its decomposition based on 1( )oT z


, 2 ( )oT z


, and the minimum model according to Eqs. (22)–(24), respectively. The overall efficiency 

measures and their components take values smaller or equal to 1, where 1 indicates that the 

DMU under evaluation is efficient. The overall measures evaluate the DMU’s potential to 

reduce its controlled emission, given its production of desirable outputs, while the components 

assess the contribution of different abatement strategies to the overall emission reduction 

potential. More specifically, the overall efficiency measures are decomposed into a part 

reflecting i) emission reductions for given inputs and desirable outputs, which corresponds to 

the efficiency of the emission control activities (emission control efficiency, ECE), ii) additional 

emission reductions by reducing and reallocating material inputs (material input efficiency, 

MIE), and iii) further emission reductions by substituting material inputs with non-material 

inputs (environmental allocative efficiency, EAE). 

As shown by Eq. (26.j), the procedure also allows decomposing the actual emission, 
c

ob , into 

the optimal emission, 
***c

ob , and emissions by source of inefficiency, that is, 
*

jL , 
**

jL , and 
***

jL . 

Where 
*

jL represents emissions due to inefficient implementation of erosion control measures, 

**

jL represents emissions resulting from inefficient use of material inputs, and 
***

jL reflects 

emissions due to inefficient allocation between material and non-material inputs: 

* ** *** ***

* *

** * **

*** ** ***

, 1, 2,3

, , 1,2,3

, 1,2,3

, 1,2,3

c c

o j j j o

c c

j o j

c c

j j j

c c

j j j

b L L L b j

where L b b j

L b b j

L b b j

    

  

  

  

. (26.j) 

Last but not least, the relationship between the new EE measures in Eqs. (25.1)–(25.3) with 

the EE measures of Coelli et al. (2007) and Rødseth (2016) are explored in proposition 3 as 

follows: 

Proposition 3: If the MFCs are homogeneous across all DMUs, Eq. (18) and Eq. (21) 

collapse into Eq. (7) and Eq. (8), respectively. It follows from this result and Proposition 1 and 

2 that the new EE measures, 1EE , 2EE , and 3EE  are generalizations of the Coelli et al. (2007) 

measure and coincide with the Coelli et al. (2007) measure if the MFCs are homogeneous 

across all DMUs, none of the producers control emissions and the MFCs of the desirable 

outputs are zero. 

Furthermore, the Rødseth (2016) EE measure is a special case of the new measures 1EE , 

2EE , and 3EE . The Rødseth (2016) measure coincides with the new measures if the MFCs are 

homogeneous across all DMUs and a  in Eq. (18) is zero. 

4  Empirical Illustration 

This section applies the proposed methodology to the EE measurement of crop farms 

considering soil erosion as an undesirable output that has to be minimized. The approach is 

illustrated using a sample of 90 Austrian crop farms observed in 2011. 
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4.1 Data 

Soil erosion estimates are based on a revised universal soil loss equation (RUSLE; Renard 

et al. 1997) using plot-level data from the Austrian Integrated Accounting and Control System 

(IACS). The calculation of all other inputs and outputs is based on farm bookkeeping data from 

the Austrian section of the EU’s Farm Accountancy Data Network (FADN). 

The RUSLE is expressed as A RKLSCP , where A is the annual average soil loss from 

water in t/ha per year for the area under investigation. As shown in the equation, A is determined 

by a multiplication of the rainfall erosivity factor (R-factor), soil erodibility factor (K-factor), 

slope length factor (L-factor), slope steepness factor (S-factor), cover-management factor (C-

factor), and support practices factor (P-factor). While R-, K-, L-, and S-factors represent 

environmental conditions, such as precipitation, soil type, and topography, the C- and P-factors 

represent management practices of farmers. Since the desirable outputs are taken as given, we 

also consider the C-factor, that is, crop choice, as fixed. The P-factor is considered as the single 

factor adjustable by the farmer. 

The P-factor is a ratio which describes how implemented erosion control measures cause soil 

loss to deviate from losses that occur without the implementation of these measures (Panagos 

et al. 2015b).17 The erosion control measures considered in this study include i) mulch-till and 

no-till associated with a P-factor of 0.5, meaning that soil erosion is reduced by 50% relative to 

conventional tillage, and ii) eight variants of winter cover crops differentiated by type of cover 

crop and duration of coverage associated with P-factors of 0.5–0.9.18 

The farm-specific MFC for land, that is, the uncontrolled erosion in t/ha per year, is estimated 

by u RKLSC . The controlled erosion in tons is given by cb RKLSCPLand , where Land is 

the utilized agricultural area (UAA) in hectares. The abatement output in tons is estimated by 

subtracting the controlled erosion from the uncontrolled erosion: (1 )a RKLSCLand P  . 

Information on implemented erosion control measures is derived from the IACS. The IACS 

provides parcel-level information for almost all agricultural parcels in Austria in terms of the 

main crops planted and implemented agri-environmental schemes, including specific erosion 

control measures, such as tillage type (mulch-till and no-till) and different modes of soil 

coverage (type of cover crop and duration of coverage). This information allows us to assign a 

C- and a P-factor to each parcel (see Eder et al. 2021 for a complete list of C- and P-factors used 

in this study). For estimating R-, K-, L- and S-factors, we follow Wpa GmbH and BWA (2009). 

Due to data availability and for the ease of exposition, we use cross-sectional data for the year 

2011. 

All other information is taken from the Austrian section of the EU’s FADN. The farms 

included in the FADN dataset are a stratified sample, representing the Austrian agricultural 

sector in terms of standard output, production orientation, and altitude. 

The dataset for the year 2011 consists of 2,265 farms. However, this illustration focuses on 

specialized crop farms whose share of revenues from crops in total revenues is larger or equal 

to 65%. In addition, to increase the homogeneity of the sample, farms whose share of revenues 

                                                            
17 This study covers all erosion control measures subsidized by agri-environmental schemes in Austria (cf. 

BMLFUW, 2009). Additional non-subsidized measures applied by farmers cannot be taken into account due to 

data unavailability. 

18 Values for P-factors are taken from Wpa GmbH and BWA (2009). Six wine- and fruit-specific erosion control 

measures are also considered. Since the sample only includes crop farms, those measures are of minor importance. 
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from potatoes and sugar beets in crop revenues is larger than 20% are excluded. When merging 

FADN with IACS data, some observations are removed due to missing information on erosion 

control measures or differences in farms’ UAA being larger than 20% between the FADN and 

IACS. Finally, after applying the outlier detection method described in Bogetoft and Otto 

(2011), we are left with a sample of 90 farms for the year 2011. 

 

Table 4  Descriptive statistics of data used for analysis (N = 90)   

Variables Mean SD Min Max 

Inputs 

Land, UAA (ha) 63.68 38.13 9.84 165.99 

Labor (AWU) 0.94 0.60 0.11 4.00 

Capital (Euro, real) 122,843.86 86,321.91 6,766.88 449,625.45 

Intermediate Inputs (Euro, 

real) 22,954.78 16,853.78 2,188.81 81,749.53 

Desirable Outputs 

Total Revenue (Euro, real) 54,960.45 37,384.50 937.55 159,368.36 

Abatement Erosion (t) 18.72 33.41 0.00 180.37 

Undesirable Output 

Controlled Erosion (t) 162.97 187.53 4.33 1,038.87 

Material Flow Coefficient (Land) 

Uncontrolled Erosion (t/ha) 3.18 3.34 0.10 19.88 

Authors’ calculations from Austrian FADN and IACS data. Data obtained from the Federal Ministry 

of Sustainability and Tourism. Note: The sample is a cross-section of 90 farms observed in 2011. 

UAA: utilized agricultural area; AWU: agricultural working unit. One AWU is 2,160 working hours. 

 

Table 4 provides descriptive statistics on input and output variables used in the DEA models 

as well as on the MFCs. The production factor land is measured by UAA in hectares and 

includes owned and rented land. UAA ranges from 10 to 166 ha, and 96% is arable land on 

average. Labor is measured in agricultural working units (AWUs), where one AWU is equal to 

2,160 working hours. Capital includes farm buildings, machinery, equipment, standing timber, 

livestock, and assets from activities related to farming (e.g., agri-tourism, renting out 

machinery, and services for other farms). Intermediate inputs cover expenditures for land use 

(e.g., seeds, fertilizer, and pesticides), livestock (e.g., fodder and veterinary), energy, insurance, 

and expenditures for other activities related to farming. Total revenues (desirable output) 

include earnings net of subsidies from plant production, livestock, forestry, services, direct 

marketing, financial income (e.g., insurance), and other activities related to farming. Capital, 

intermediate inputs, and total revenue are implicit quantity values, that is, the nominal values 

of the components of each variable are divided by proper price indices. 

On average, the abatement output of a farm is 19 t, that is, erosion control measures reduce 

the soil loss by 19 t on average which corresponds to a reduction of 10%. However, there is a 

substantial variation in the abatement output. About 11% of the farms do not implement erosion 

control measures having a zero abatement output (or a P-factor of one). On the other end of the 

spectrum are farms reducing the uncontrolled soil loss by 50% through erosion control. The 
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average MFC of land, that is, the average uncontrolled soil loss in t/ha per year, is 3.2 and ranges 

from 0.1 t/ha to almost 20 t/ha. 

4.2 Results 

Table 5 shows the descriptive statistics of the estimated EE scores and their components. 

Models 1, 2, and 3 refer to the estimates based on 1( )oT z


 (i.e., Eqs. [16]–[18]), 2 ( )oT z


(i.e., Eqs. 

[19]–[21]), and the minimum model (i.e., Eqs. [22]–[24]), respectively. 

 

Table 5  Descriptive statistics of efficiency scores for Models 1–3 (N = 90) 

Efficiency Index 
Model 1  

Eq. (25.1)  

Model 2 

Eq. (25.2)  

Model 3 

Eq. (25.3) 

Environmental Efficiency (EE)     

Geom. Mean 0.54 0.71 0.53 

SD 0.27 0.26 0.26 

Min 0.15 0.24 0.15 

Max 1 1 1 

Number of efficient farms 20 40 15 

Erosion Control Efficiency (ECE)    

Geom. Mean 0.97 0.99 0.96 

SD 0.05 0.04 0.06 

Min 0.75 0.68 0.68 

Max 1 1 1 

Number of efficient farms 58 82 56 

Material Input (Land Use) Efficiency (MIE)    

Geom. Mean 0.69 0.86 0.69 

SD 0.27 0.20 0.27 

Min 0.17 0.27 0.17 

Max 1 1 1 

Number of efficient farms 42 65 39 

Environmental Allocative Efficiency (EAE)    

Geom. Mean 0.80 0.83 0.79 

SD 0.21 0.21 0.21 

Min 0.21 0.29 0.21 

Max 1 1 1 

Number of efficient farms 34 50 32 

Descriptive statistics of efficiency indices according to Eqs. (25.1)–(25.3) are shown. Reported values 

are based on a sample of 90 Austrian crop farms observed in 2011. 

 

The average EE is 0.54 in Model 1, and 0.71 in Model 2. While Model 1 classifies 22% of 

the farms as environmentally efficient, Model 2 classifies 44% as efficient. Hence, in this 
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specific empirical example, Model 1 detects larger average inefficiencies than Model 2. 

Remember, the sets of possible reference units that are used for performance comparisons of a 

particular DMU in Model 1 and Model 2 are almost disjoint, which explains most of the 

differences in EE scores between the two models. Since the final EE (Model 3) represents the 

minimum value of the efficiency scores of Models 1 and 2, it is on average very close to that of 

Model 1. The final average EE is 0.53, meaning that the same amount of output can be 

potentially achieved with 47% less soil loss. Finally, about 17% of the farms are classified as 

environmentally efficient. 

Table 6 shows that optimal average soil loss according to Model 3 is 73 t per farm in 2011 

compared with an actual average soil loss of 163 t per farm. The main source of this inefficiency 

is the inefficient use of land (contributes 55 t), followed by an inefficient allocation of inputs 

(contributes 28 t). The inefficient implementation of erosion controls contributes only little (7 

t) to the overall inefficiency. This is also indicated by the efficiency indices in Table 5, where 

the average MIE, EAE, and ECE is 0.69, 0.79, and 0.96, respectively. Fig. 3 complements Table 

6 by showing the decomposition of soil loss by source for all farms. 

 

Table 6  Decomposition of soil erosion by source under Model 3 (N = 90) 

 Mean SD Min Max 

Soil loss (t) due to      

Erosion control inefficiency 7.16 16.49 0.00 104.22 

Land use inefficiency 54.89 107.53 0.00 752.17 

Environmental allocative inefficiency 27.87 69.26 0.00 368.18 

Optimal soil loss (t) 73.05 79.94 4.33 513.47 

Actual soil loss (t) 162.97 187.53 4.33 1038.87 

The decomposition of actual soil erosion according to Eq. (26.3) is shown. Reported values are based 

on a sample of 90 Austrian crop farms observed in 2011. 

 

 

 

Fig. 3  Decomposition of actual soil erosion by source for all farms under Model 3 (Eq. [26.3]). 
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Table 7 compares the actual, average abatement output and input ratios with the optimal 

average values according to the solutions associated with Eqs. (22)–(24), that is, Model 3, 

whereas Optimal 1 considers erosion control, that is, increasing the abatement output, as the 

single abatement strategy. In addition, Optimal 2 allows for the reduction of land, and Optimal 

3 further allows for the substitution of land with labor, intermediate inputs, and capital. 

 

Table 7  Optimal vs. observed abatement output and input ratios (N = 90) 

Variable Actual Optimal 1 Optimal 2 
Optimal 

3 

Abatement Erosion (t)  18.72 25.88 8.46 3.41 

Input ratios     

Labor–Land (hours/ha) 38.28 38.28 61.40 76.10 

Intermediate inputs–Land (€/ha) 371.41 371.41 627.50 639.60 

Capital–Land (€/ha) 2,369.61 2,369.61 3,843.92 3,584.77 

Mean values for a sample of 90 Austrian crop farms observed in 2011 are reported. The optimal 

solution of Model 3 is shown. Optimal 1 considers erosion control as a single abatement strategy. In 

addition, Optimal 2 allows for the reduction of land, and Optimal 3 considers the substitution of land 

with labor, intermediate inputs, and capital as further abatement strategy. Mean optimal land use under 

Optimal 3 is 31.9 ha. 

 

Table 7 indicates that, under Optimal 1, with the actually employed amount of inputs, the 

average abatement output can be increased from 19 t to 26 t per farm, while keeping real total 

revenues constant. Hence, if farmers consider erosion control as the single available abatement 

strategy, the efficient implementation of those measures allows reducing the average soil loss 

by 7 t per farm (cf. Table 6) or by 4% (cf. Table 5). In Optimal 2, the optimal average land use 

is 42 ha per farm compared with 64 ha actual land use. Since the usage of other inputs remains 

constant the optimal labor–land, intermediate inputs–land and capital–land ratios increase 

substantially. Allowing for the substitution of land with other inputs reduces the optimal land 

use under Optimal 3 to 32 ha per farm and leads to a further increase of the labor–land and 

intermediate inputs–land ratios. 

The results indicate that the same amount of output can be potentially achieved by using 

substantially less arable land, that is, the optimal average land use is 32 ha per farm compared 

with 61 ha actual land use. Land use inefficiencies caused, on average, a soil loss of 55 t per 

farm in 2011, and the substitution of land with labor, capital, and intermediate inputs would 

have allowed an additional reduction of average soil loss by 28 t per farm. Overall, the results 

suggest that a considerable reduction of arable land and its conversion into wood- or grassland 

is potentially achievable without reducing real total revenues. The higher optimal input ratios 

under Optimal 2 and Optimal 3 suggest an intensification of agriculture on the reduced arable 

area. 

5 Conclusion 

The productive efficiency models and EE measures introduced by Coelli et al. (2007) and 

Rødseth (2016, 2017), which are based on the materials balance condition, have been applied 

in numerous efficiency analyses (see e.g., Hoang and Rao 2010; Hoang and Coelli 2011; Hoang 

and Alauddin 2012; Nguyen et al. 2012; Hoang and Nguyen 2013; Hampf and Rødseth 2015, 
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2017). However, these EE measures produce biased efficiency estimates if the MFCs are 

heterogeneous across DMUs and not under managerial control, that is, non-discretionary. In 

addition, the Coelli et al. (2007) measure fails to reward emission reductions by emission 

control. 

To overcome these shortcomings, this article provides a generalization of Coelli et al.’s 

(2007) materials balance-based production model by allowing for heterogeneous MFCs and 

considering emission control as an additional abatement strategy. MFCs are considered to be 

uncontrollable by the DMUs and may reflect i) differences of some external environmental 

factors that govern the transformation of inputs into good and bad outputs or ii) non-controllable 

heterogeneities in inputs and outputs (e.g., input or output quality). Based on this generalized 

production model, a new EE measure and its decomposition are proposed. The new EE measure 

coincides with the Coelli et al. (2007) measure if the MFCs are homogeneous across all DMUs, 

none of the producers control emissions, and the MFCs of the desirable outputs are zero. In this 

context, it is shown that the proposed EE measure can be decomposed into three parts: a part 

reflecting the efficiency of the emission control activities, a part associated with the efficient 

use of material inputs and a part reflecting the efficient allocation between material and non-

material inputs These separate effects provide useful insights on the potential sources of 

environmental inefficiency. 

The methodology is illustrated by an empirical application to arable farming using data from 

90 Austrian crop farms for the year 2011. The usage of arable land for crop production naturally 

and inevitably causes soil erosion by water, an undesirable by-product of agriculture production 

that we want to minimize. The extent of soil erosion by water depends on external factors, such 

as rainfall erosivity, soil texture and structure, slope length and gradient, but also on crop choice 

and farmer’s decisions to implement erosion controls. Soil erosion causes considerable private 

and social costs, including reduced soil productivity and off-site effects, such as sedimentation, 

flooding, landslides, and water eutrophication Considering that actual soil erosion rates for 

tilled, arable land in Europe are, on average, 3 to 40 times greater than the upper limit of 

tolerable soil erosion (Verheijen et al. 2009), the application is of particular importance. The 

proposed method might also be applied to EE assessment of livestock farms with respect to 

nutrient pollution if fertilizer quality is not under managerial control, or the EE analysis of 

power plants regarding greenhouse gas emissions if switching between fuels is restricted by 

technical constraints. 

We find evidence of a high potential to reduce soil loss from arable farming without 

sacrificing output, that is, relatively low levels of EE. On average, farms can potentially achieve 

the same real revenues with 47% less soil loss, which reflected a reduction of soil loss from 163 

t to 73 t per farm in 2011. The results are driven by the inefficient usage of agricultural land and 

the inefficient allocation of inputs towards an overutilization of agricultural area vis-à-vis labor, 

capital, and other inputs (e.g., fertilizer, pesticide, energy, seeds, etc.). Inefficiencies in the 

implementation of subsidized erosion control measures, such as planting cover crops, mulch-

tillage and direct seeding, are of minor importance. The findings indicate that soil loss can be 

reduced at reasonable costs, in terms of forgone output, by using less arable land more 

intensively and setting aside a considerable amount of arable land for conservation uses. 

The results have important policy implications. Policies aiming to reduce soil erosion should 

go beyond subsidizing erosion control measures and incentives farmers to take erosion-prone 

areas with low yield potential out of production, that is, a land-use change from agricultural 

land to permanent grassland or woodland. Policies that increase the price of especially erosion-

prone, agricultural land relative to other inputs could incentivize farmers to adjust their factor 

mix, decrease the overexploitation of land and reduce soil loss. This might be achieved, for 
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example, by a land tax that increases with increasing risk of erosion. Another policy option is 

to oblige or subsidize farmers to set aside a proportion of their arable land, especially arable 

land vulnerable to erosion, and devote it to erosion-friendly uses (e.g., green manure). 

Finally, it is important that actions taken against one particular environmental problem do 

not increase other problems. Agricultural production not only affects soil erosion, but also 

nutrient and pesticide residue and run-offs, greenhouse gases emissions, water usage, and 

biodiversity. For instance, a reduction of soil loss through reduced agricultural land use might 

be achieved by increased fertilizer and pesticide usage. This would allow for a land-use change 

from agriculture to woodland which not only reduces soil loss, but also improves a farm’s 

carbon balance and increases biodiversity. On the other hand, increased fertilizer and pesticide 

usage potentially increases environmental and health problems and reduces biodiversity. A 

limitation of this study is that only one undesirable output is considered. Future research should 

extend this analysis to multiple bad outputs and analyze the trade-offs among them. 

 

Acknowledgments and Declarations 

The author gratefully acknowledges the valuable comments received on earlier versions of this paper 

from Klaus Salhofer, Martin Odening, Mikuláš Luptáčik, Andreas Niedermayr, Bernhard Mahlberg, 

Alexander Schnabl, and the participants of the Webinar organized by the research unit FORLand on July 

16, 2020. I am grateful to the Austrian Federal Ministry for Sustainability and Tourism for providing 

the confidential data used in this study. The author would like to thank the Austrian Science Fund (FWF) 

for funding the project under project number I 3505-G27. The research was conducted as part of the 

Research Group FORLand supported by the Deutsche Forschungsgemeinschaft (DFG, German 

Research Foundation) - 317374551 (https://www.forland.hu-berlin.de). The author has no relevant 

financial or non-financial interests to disclose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.forland.hu-berlin.de/


25 

 

References 

Adhikari B, Nadella K (2011) Ecological economics of soil erosion: a review of the current state of the 

knowledge. Ann NY Acad Sci 1219: 134–152. https://doi.org/10.1111/j.1749-6632.2010.05910.x 

Ait Sidhoum A, Serra T, Latruffe L (2020) Measuring sustainability efficiency at farm level: a data 

envelopment analysis approach. Eur Rev Agric Econ 47:200–225. 

https://doi.org/10.1093/erae/jbz015 

Ayres RU, Kneese AV (1969) Production, consumption and externalities. Am Econ Rev 59:282–297 

Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale 

inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092. 

https://doi.org/10.1287/mnsc.30.9.1078 

Bi GB, Shao Y, Song W, Yang F, Luo Y (2018) A performance evaluation of China’s coal-fired power 

generation with pollutant mitigation options. J Clean Prod 171:867–876. 

https://doi.org/10.1016/j.jclepro.2017.09.271 

BMLFUW [Bundesministerium für Land- und Forstwirtschaft, Umwelt, und Wasserwirtschaft] (2009) 

ÖPUL 2007, Sonderrichtlinie des BMLFUW für das österreichische Programm zur Förderung einer 

umweltgerechten extensiven und den natürlichen Lebensraum schützenden Landwirtschaft. 

Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW). 

Vienna: BMLFUW 

Bogetoft P, Otto L (2011) Benchmarking with DEA, SFA and R. Springer Science+Business Media, 

New York. https://doi.org/10.1007/978-1-4419-7961-2 

Bostian M, Färe R, Grosskopf S, Lundgren T (2016) Environmental investment and firm performance: 

a network approach. Energy Econ 57:243–255. https://doi.org/10.1016/j.eneco.2016.05.013 

Bostian M, Färe R, Grosskopf S, Lundgren T (2019) Prevention or cure? Abatement efficiency in a 

network technology. CERE Working Paper 2019:11. Available at SSRN: 

https://ssrn.com/abstract=3440289 or http://dx.doi.org/10.2139/ssrn.3440289 

Coelli T, Lauwers L, Huylenbroeck GV (2007) Environmental efficiency measurement and the materials 

balance condition. J Prod Anal 28:3–12. https://doi.org/10.1007/s11123-007-0052-8 

Dakpo KH (2016) On modelling pollution-generating technologies: a new formulation of the by-

production approach. Working Paper SMART – LERECO No 16-06. 

https://doi.org//10.22004/ag.econ.245191 

Dakpo KH, Jeanneaux P, Latruffe L (2016) Modelling pollution-generating technologies in 

performance benchmarking: recent developments, limits and future prospects in the nonparametric 

framework. Eur J Oper Res 250:347–359. https://doi.org/10.1016/j.ejor.2015.07.024 

Dakpo KH, Jeanneaux P, Latruffe L (2017) Greenhouse gas emissions and efficiency in French sheep 

meat farming: a non-parametric framework of pollution-adjusted technologies. Eur Rev Agric Econ 

44:33–65. https://doi.org/10.1093/erae/jbw013 

EC [European Commission] (2001) A sustainable Europe for a better world: a European Union strategy 

for sustainable development. Commission’s proposal to the Gothenburg European Council. COM 

(2001)264 final, 15 May 2001. 

Eder A, Salhofer K, Scheichel E (2021) Land tenure, soil conservation, and farm performance: an eco-

efficiency analysis of Austrian crop farms. Ecol Econ 180. 

https://doi.org/10.1016/j.ecolecon.2020.106861 

https://doi.org/10.1093/erae/jbz015
https://doi.org/10.1287/mnsc.30.9.1078
https://doi.org/10.1016/j.jclepro.2017.09.271
https://doi.org/10.1016/j.eneco.2016.05.013
https://ssrn.com/abstract=3440289
https://doi.org/10.1007/s11123-007-0052-8
http://dx.doi.org/10.22004/ag.econ.245191
https://doi.org/10.1016/j.ejor.2015.07.024
https://doi.org/10.1093/erae/jbw013


26 

 

Färe R, Grosskopf S (2003) Nonparametric productivity analysis with undesirable outputs: comment. 

Am J Agr Econ 85:1070–1074. https://doi.org/10.1111/1467-8276.00510 

Färe R, Grosskopf S (2004) Modeling undesirable factors in efficiency evaluation: comment. Eur J Oper 

Res 157:242–245. https://doi.org/10.1016/S0377-2217(03)00191-7 

Färe R, Grosskopf S, Lovell CAK, Pasurka C (1989) Multilateral productivity comparisons when some 

outputs are undesirable: a nonparametric approach. Rev Econ Stat 71:90–98. 

https://doi.org/10.2307/1928055 

Färe R, Grosskopf S, Pasurka C (1986) Effects on relative efficiency in electric power generation due to 

environmental controls. Resour Energy 8:167–184. https://doi.org/10.1016/0165-0572(86)90016-2 

Färe R, Grosskopf S, Pasurka C (2013) Joint production of good and bad outputs with a network 

application. In: Shogren J (ed) Encyclopedia of energy, natural resources and environmental 

economics, vol 2. Elsevier, Amsterdam, pp 109–118. https://doi.org/10.1016/B978-0-12-375067-

9.00134-0 

Färe R, Primont D (1995) Multi-output production and duality: Theory and applications. Kluwer 

Academic Publishers, Boston/London/Dordrecht. https://doi.org/10.1007/978-94-011-0651-1 

Førsund FR (2009) Good modelling of bad outputs: pollution and multiple-output production. Int Rev 

Environ Resour Econ 3:1–38. http://dx.doi.org/10.1561/101.00000021 

Førsund FR (2018) Multi-equation modelling of desirable and undesirable outputs satisfying the 

materials balance. Empir Econ 54:67–99. https://doi.org/10.1007/s00181-016-1219-9 

Frisch R (1965) Theory of production. Dordrecht, Reidel Publishing Company 

Graves AR, Morris J, Deeks LK, Rickson RJ, Kibblewhite MG, Harris JA, Farewell TS, Truckle I (2015) 

The total costs of soil degradation in England and Wales. Ecol Econ 119: 399–413. 

https://doi.org/10.1016/j.ecolecon.2015.07.026 

Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Steffen W, Glaser 

G, Kanie N, Noble I (2013) Policy: sustainable development goals for people and planet. Nature 

495:305–307. https://doi.org/10.1038/495305a 

Hailu A, Veeman TS (2001) Non-parametric productivity analysis with undesirable outputs: an 

application to the Canadian pulp and paper industry. Am J Agr Econ 83:605–616. 

https://doi.org/10.1111/0002-9092.00181 

Hampf B (2014) Separating environmental efficiency into production and abatement efficiency: a 

nonparametric model with application to US power plants. J Prod Anal 41:457–473. 

https://doi.org/10.1007/s11123-013-0357-8 

Hampf B (2018) Measuring inefficiency in the presence of bad outputs: does the disposability 

assumption matter? Empir Econ 54:101–127. https://doi.org/10.1007/s00181-016-1204-3 

Hampf B, Rødseth KL (2015) Carbon dioxide emission standards for U.S. power plants: an efficiency 

analysis perspective. Energy Econ 50:140–153. https://doi.org/10.1016/j.eneco.2015.04.001 

Hampf B, Rødseth KL (2017) Optimal profits under environmental regulation: the benefits from 

emission intensity averaging. Ann Oper Res 255:367–390. https://doi.org/10.1007/s10479-015-

2020-4 

Hampf B, Rødseth KL (2019) Environmental efficiency measurement with heterogeneous input quality: 

a nonparametric analysis of U.S. power plants. Energy Econ 81:610–625. 

https://doi.org/10.1016/j.eneco.2019.04.031 

https://doi.org/10.1111/1467-8276.00510
https://doi.org/10.1016/S0377-2217(03)00191-7
https://doi.org/10.1016/0165-0572(86)90016-2
https://doi.org/10.1016/B978-0-12-375067-9.00134-0
https://doi.org/10.1016/B978-0-12-375067-9.00134-0
https://www.researchgate.net/deref/https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%252Fs00181-016-1219-9
https://doi.org/10.1016/j.ecolecon.2015.07.026
https://doi.org/10.1038/495305a
https://doi.org/10.1111/0002-9092.00181
https://doi.org/10.1016/j.eneco.2015.04.001
https://doi.org/10.1007/s10479-015-2020-4
https://doi.org/10.1007/s10479-015-2020-4


27 

 

Hoang VH, Alauddin M (2012) Input-orientated data envelopment analysis framework for measuring 

and decomposing economic, environmental and ecological efficiency: an application to OECD 

agriculture. Environ Resour Econ 51:431–452. https://doi.org/10.1007/s10640-011-9506-6 

Hoang VH, Coelli T (2011) Measurement of agricultural total factor productivity growth incorporating 

environmental factors: a nutrients balance approach. J Environ Econ Manag 62:462–474. 

https://doi.org/10.1016/j.jeem.2011.05.009 

Hoang VH, Nguyen TT (2013) Analysis of environmental efficiency variation: a nutrient balance 

approach. Ecol Econ 86:37–46. https://doi.org/10.1016/j.ecolecon.2012.10.014 

Hoang VH, Rao DSP (2010) Measuring and decomposing sustainable efficiency in agricultural 

production: a cumulative exergy balance approach. Ecol Econ 69:1765–1776. 

https://doi.org/10.1016/j.ecolecon.2010.04.014 

Keesstra SD, Mol G, de Leeuw J, Okx J, de Cleen M, Visser S (2018) Soil-related sustainable 

development goals: four concepts to make land degradation neutrality and restoration work. Land 7, 

133. https://doi.org/10.3390/land7040133 

Kneese AV, Ayres RU, d’Arge RC (1970) Economics and the environment: a materials balance 

approach. Baltimore, John Hopkins Press. https://doi.org/10.4324/9781315682136  

Kuosmanen T, Kortelainen M (2005) Measuring eco-efficiency of production with data envelopment 

analysis. J Ind Ecol 9:59–72. https://doi.org/10.1162/108819805775247846 

Lauwers L (2009) Justifying the incorporation of the materials balance principle into frontier-based eco-

efficiency models. Ecol Econ 68:1605–1614. https://doi.org/10.1016/j.ecolecon.2008.08.022 

Lei F (2020) Opening the “black box” of environmental production technology in a nonparametric 

analysis. Eur J Oper Res 286:769–780. https://doi.org/10.1016/j.ejor.2020.03.043 

Lovell CAK, Pastor JT, Turner JA (1995) Measuring macroeconomic performance in the OECD: a 

comparison of European and non-European countries. Eur J Oper Res 87:507–518. 

https://doi.org/10.1016/0377-2217(95)00226-X 

Lozano S (2015) A joint-inputs network DEA approach to production and pollution-generating 

technologies. Expert Syst Appl 42:7960–7968. https://doi.org/10.1016/j.eswa.2015.06.023 

Murty S, Russell RR, Levkoff SB (2012) On modelling pollution-generating technologies. J Environ 

Econ Manage 64:117–135. https://doi.org/10.1016/j.jeem.2012.02.005 

Nguyen TT, Hoang VN, Seo B (2012) Cost and environmental efficiency of rice farms in South Korea. 

Agric Econ 43:369–378. https://doi.org/10.1111/j.1574-0862.2012.00589.x 

Panagos P, Borrelli P, Meusburger K et al (2015a) Estimating the soil erosion cover-management factor 

at European scale. Land Use Policy 48:38–50. https://doi.org/10.1016/j.landusepol.2015.05.021 

Panagos P, Borreli P, Meusburger K et al (2015b) Modelling the effect of support practices (P-factor) 

on the reduction of soil erosion by water at European scale. Environ Sci Policy 51:23–34. 

https://doi.org/10.1016/j.envsci.2015.03.012 

Panagos P, Borreli P, Posen J et al (2015c) The new assessment of soil loss by water erosion in Europe. 

Environ Sci Policy 54:438–447. https://doi.org/10.1016/j.envsci.2015.08.0122015n 

Panagos P, Borrelli P, Standardi G et al (2018) Cost of agricultural productivity loss due to soil erosion 

in the European Union: from direct cost evaluation approaches to the use of macroeconomic models. 

Land Degrad Dev 29:471–484. https://doi.org/10.1002/ldr.2879 

https://doi.org/10.1016/j.jeem.2011.05.009
https://doi.org/10.1016/j.ecolecon.2012.10.014
https://doi.org/10.1016/j.ecolecon.2010.04.014
https://doi.org/10.4324/9781315682136
https://doi.org/10.1162/108819805775247846
https://doi.org/10.1016/j.ecolecon.2008.08.022
https://doi.org/10.1016/j.ejor.2020.03.043
https://doi.org/10.1016/0377-2217(95)00226-X
https://doi.org/10.1016/j.eswa.2015.06.023
https://doi.org/10.1016/j.jeem.2012.02.005
https://doi.org/10.1111/j.1574-0862.2012.00589.x
https://doi.org/10.1016/j.landusepol.2015.05.021
https://doi.org/10.1016/j.envsci.2015.03.012
https://doi.org/10.1016/j.envsci.2015.08.012
https://doi.org/10.1002/ldr.2879


28 

 

Pe’er G, et al. (2020) Action needed for the EU Common Agricultural Policy to address sustainability 

challenges. People and Nature 2020, 112. 

Pethig R (2003) The ‘materials balance’ approach to pollution: its origin, implications and acceptance. 

University of Siegen, Economic Discussion Paper No. 105-03 

Pethig R (2006) Non-linear production, abatement, pollution and materials balance reconsidered. J 

Environ Econ Manage 51:185–204. https://doi.org/10.1016/j.jeem.2005.01.006 

Picazo-Tadeo AJ, Gómez-Limón JA, Reig-Martínez E (2012a) Eco-efficiency assessment of olive farms 

in Andalusia. Land use Policy 29:395–406. https://doi.org/10.1016/j.landusepol.2011.08.004 

Picazo-Tadeo AJ, Gómez-Limón JA, Beltrán-Esteve M (2012b) Assessing eco-efficiency with 

directional distance functions. Eur J Oper Res 220:798–809. 

https://doi.org/10.1016/j.ejor.2012.02.025 

Picazo-Tadeo AJ, Gómez-Limón JA, Beltrán-Esteve M, Reig-Martínez E (2014) A meta frontier 

directional distance function approach to assessing eco-efficiency. J Prod Anal 41:69–83. 

https://doi.org/10.1007/s11123-012-0334-7 

Pimentel DC, Harvey P, Resosudarmo K et al. (1995) Environmental and economic costs of soil erosion 

and conservation benefits. Science 267:1117–1122. https://doi.org/10.1126/science.267.5201.1117 

Podinovski VV, Kuosmanen T (2011) Modelling weak disposability in data envelopment analysis under 

relaxed convexity assumptions. Eur J Oper Res 211:577–585. 

https://doi.org/10.1016/j.ejor.2010.12.003 

Ray SC, Mukherjee K, Venkatesh A (2018) Nonparametric measures of efficiency in the presence of 

undesirable outputs: a by-production approach. Empir Econ 54:31–65. 

https://doi.org/10.1007/s00181-017-1234-5 

Renard K, Foster G, Weesies G, McCool D, Yoder D (1997) Predicting soil erosion by water: a guide 

to conservation planning with the revised universal soil loss equation (RUSLE). US Department of 

Agriculture (USDA). Washington, DC, USDA 

Rødseth KL (2016) Environmental efficiency measurement and the materials balance condition 

reconsidered. Eur J Oper Res 250:342–346. https://doi.org/10.1016/j.ejor.2015.10.061 

Rødseth KL (2017) Axioms of a polluting technology: a materials balance approach. Environ Resour 

Econ 67:1–22. https://doi.org/10.1007/s10640-015-9974-1 

Ruggiero J (1996) On the measurement of technical efficiency in the public sector. Eur J Oper Res 

90:553–565. https://doi.org/10.1016/0377-2217(94)00346-7 

Ruggiero J (1998) Non-discretionary inputs in data envelopment analysis. Eur J Oper Res 111:461–469. 

https://doi.org/10.1016/S0377-2217(97)00306-8 

Seiford LM, Zhu J (2002) Modeling undesirable factors in efficiency evaluation. Eur J Oper Res 142:16–

20. https://doi.org/10.1016/S0377-2217(01)00293-4 

Serra T, Chambers RG, Lansink AO (2014) Measuring technical and environmental efficiency in a state-

contingent technology. Eur J Oper Res 236:706–717. https://doi.org/10.1016/j.ejor.2013.12.037 

Verheijen FGA, Jones RJA, Rickson RJ, Smith CJ (2009). Tolerable versus actual soil erosion rates in 

Europe. Earth-Sci Rev 94:23–38. https://doi.org/10.1016/j.earscirev.2009.02.003  

Welch E, Barnum D (2009) Joint environmental and cost efficiency analysis of electricity generation. 

Ecol Econ 68:2336–2343. https://doi.org/10.1016/j.ecolecon.2009.03.004 

https://doi.org/10.1016/j.jeem.2005.01.006
https://doi.org/10.1016/j.landusepol.2011.08.004
https://doi.org/10.1016/j.ejor.2012.02.025
https://doi.org/10.1016/j.ejor.2010.12.003
https://doi.org/10.1016/j.ejor.2015.10.061
https://doi.org/10.1007/s10640-015-9974-1
https://doi.org/10.1016/0377-2217(94)00346-7
https://doi.org/10.1016/S0377-2217(97)00306-8
https://doi.org/10.1016/S0377-2217(01)00293-4
https://doi.org/10.1016/j.ejor.2013.12.037
https://doi.org/10.1016/j.earscirev.2009.02.003
https://doi.org/10.1016/j.ecolecon.2009.03.004


29 

 

Wpa GmbH and BAW (2009) Abschätzung des Bodenabtrags in Österreich und Integration der Daten 

in die INVEKOS Datenbank. Wpa Beratende Ingenieure (Wpa GmbH) and Bundesamt für 

Wasserwirtschaft (BAW), Vienna: Wpa GmbH and BAW. Available online: 

https://gruenerbericht.at/cm4/jdownload/download/28-studien/589-23-abschaetzung-bodenabtrag-

endbericht. Accessed 21 July 2020 

Young R, Orsini S, Fitzpatrick I (2015) Soil degradation: a major threat to humanity. Bristol, UK, 

Sustainable Food Trust 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://gruenerbericht.at/cm4/jdownload/download/28-studien/589-23-abschaetzung-bodenabtrag-endbericht
https://gruenerbericht.at/cm4/jdownload/download/28-studien/589-23-abschaetzung-bodenabtrag-endbericht


30 

 

Appendix 

 

Proof of proposition 1 

Step 1: Rewrite Rødseth’s (2016) emission minimizing problem in Eq. (8) by inserting the equality 

constraint for 
cb  in the objective function: 
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Step 2: Exploit the summing up restriction for the slack variables 
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Step 3: Rewrite the objective function in (A2) by substituting 
c

ib  with the expression of controlled 

emission given by Eq. (2): 
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Step 4: Insert (A3) into (A2): 
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. (A4) 

The emission minimization problem accounting for abatement activities that is developed in this article, 

that is,  Eq. (7), can be rewritten by inserting the equality constraint for a  into the objective function: 
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. (A5) 

Hence, (A4), the model developed by Rødseth (2016), and (A5), my model, deliver exactly the same 

solution if the slack of the abatement output in Eq. (7), a , is zero. 
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