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Abstract
For the numerical solution of partial differential equations (PDEs) in computational

fluid dynamics, solid mechanics, and various other areas of application, the least-

squares finite element methods (LSFEMs) enjoy an unabated popularity. These methods

base on the minimisation of the least-squares functional consisting of the squared

norms of the residuals of first-order systems of PDEs. The local evaluation of the

least-squares functional provides a reliable and efficient built-in a posteriori error

estimator and allows for adaptive mesh-refinement.

While numerical experiments exhibit optimal convergence rates, even the proof of

the plain convergence of these adaptive algorithms is not immediate. The established

convergence analysis, as summarised in the axiomatic framework by Carstensen,

Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6):1195–1253, 2014), fails for two
reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size,

what seemingly prevents a reduction under adaptive mesh-refinement. Second, the

first-order divergence LSFEMs measure the flux or stress errors in the 𝐻 (div) norm
and, thus, involve a data resolution error of the right-hand side 𝑓 without a mesh-size

factor. These difficulties led to a two-fold paradigm shift in the convergence analysis

with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1):43–
62, 2015) for the lowest-order discretisation of the 2D Poisson model problem with

homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-

based a posteriori error estimator accomplishes the reduction property. Furthermore,

a separate marking strategy in the adaptive algorithm ensures the sufficient data

resolution.

This thesis presents the generalisation of these techniques to three linear model

problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity

problem. It verifies the axioms of adaptivity with separate marking by Carstensen and

Rabus (SIAM J. Numer. Anal., 55(6):2644–2665, 2017) in three spatial dimensions. The

analysis covers discretisations with arbitrary polynomial degree and inhomogeneous

Dirichlet and Neumann boundary conditions. Numerical experiments confirm the

theoretically proven optimal convergence rates of the ℎ-adaptive algorithm.
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Zusammenfassung
Die Popularität der Least-Squares-Finiten-Elemente-Methoden (LSFEMn) zur numeri-

schen Lösung von partiellen Differentialgleichungen in der Strömungs- und Festkör-

permechanik und anderen Anwendungsgebieten ist ungebrochen. Diese Methoden

basieren auf der Minimierung des Least-Squares-Funktionals, das aus den quadrierten

Normen der Residuen eines Systems von partiellen Differentialgleichungen erster

Ordnung besteht. Die lokale Auswertung des Least-Squares-Funktionals liefert einen

zuverlässigen und effizienten Fehlerschätzer und ermöglicht die adaptive Verfeinerung

des der Diskretisierung zugrundeliegenden Netzes.

Obwohl numerische Experimente für solche adaptiven Algorithmen optimale Kon-

vergenzraten zeigen, ist bereits der theoretische Nachweis der einfachen Konvergenz

nicht offensichtlich. Aus zwei Gründen versagen zudem die gängigen Methoden zum

Beweis optimaler Konvergenzraten, wie sie von Carstensen, Feischl, Page und Prae-

torius (Comp. Math. Appl., 67(6):1195–1253, 2014) axiomatisch beschrieben wurden.

Zum einen fehlen den Termen des eingebauten Least-Squares-Schätzers Vorfaktoren

proportional zur Netzweite. Das scheint den Beweis einer schrittweisen Reduktion der

Schätzerterme zu verhindern. Zum zweiten kontrolliert das Least-Squares-Funktional

den Fehler der Fluss- beziehungsweise Spannungsvariablen in der 𝐻 (div)-Norm, wo-

durch ein Datenapproximationsfehler der rechten Seite 𝑓 auftritt. Diese Schwierigkei-

ten führten zu einem zweifachen Paradigmenwechsel in der Analysis von Konvergenz-

raten adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1):43–62,
2015) für das zweidimensionale Poisson-Modellproblem mit Diskretisierung niedrigs-

ter Ordnung und homogenen Dirichlet-Randdaten. Demnach erlaubt ein expliziter

residuenbasierter a posteriori Fehlerschätzer den Beweis der Reduktionseigenschaft.

Außerdem wird der Datenapproximationsfehler durch separiertes Markieren im adap-

tiven Algorithmus reduziert.

Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modell-

probleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitäts-

problem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und

Rabus (SIAM J. Numer. Anal., 55(6):2644–2665, 2017) werden in drei Raumdimensionen

nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad

sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestä-

tigen numerische Experimente mit dem ℎ-adaptiven Algorithmus die theoretisch

bewiesenen optimalen Konvergenzraten.
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1 Introduction
Motivation. In the previous decades, the finite element method (FEM) has become a

standard tool for the solution of problems in fluid and structural mechanics. Numerical

simulations often form the basis for design processes in various engineering disciplines.

A reliable and efficient a posteriori error estimation allows not only for a justification

of the computed approximation, but also for an adaptive refinement of the underlying

meshes. Adaptive mesh-refinement algorithms have been investigated since the late

1970s and some pioneering contributions include [6, 5, 105, 107]. It took about twenty

years to present the first convergence proofs of adaptive FEMs [59, 84]. Eventually,

the theory of nonlinear approximation paved the way to the verification of optimal

convergence rates for adaptive algorithms [14, 100]. Suitable explicit residual-based

a posteriori error estimators drive the local refinement and generate quasi-optimal

meshes. This means, the error on the corresponding adaptive meshes differs from the

error on the theoretically optimal meshes solely by a generic multiplicative constant.

Figure 1.1 illustrates the relation between the optimal meshes and the adaptively

computed meshes with respect to a given amount of computational effort (in terms of

the number of degrees of freedom ndof).

Due to its built-in a posteriori error estimator, the least-squares finite element

method (LSFEM) is a convenient choice for adaptive algorithms [12, 97, 1]. This

versatile discretisation method dates back to the early 70’s [21, 20] and, since then,

has been established for a multitude of partial differential equations (PDEs) [17]. A

naive least-squares approach minimises the squared residual of a second-order elliptic

PDE. For the discretisation, this requires 𝐻 2
conforming finite elements. Therefore,

the equation is usually reformulated as a first-order system of PDEs enabling the

application of standard lowest-order finite elements [80, 71, 89]. The built-in estimator

turned out to provide guaranteed upper error bounds and is even asymptotically exact

in that the quotient of the estimator and the error converges to one [47, 103].

This thesis presents a unified convergence analysis with rates for the least-squares

formulation of a generalised model problem including the author’s preceding collabor-

ative publications [26, 25, 27]. All of these publications are based on the breakthrough

in [44]. The analysis at hand employs the axiomatic framework from [37, 40]. It

covers conforming discretisations with arbitrary polynomial degree in an ℎ-adaptive

algorithm and includes inhomogeneous Dirichlet and Neumann boundary conditions

in three spatial dimensions. While the two-dimensional case is not explicitly presen-

ted in this thesis, the publication [25] establishes optimal convergence rates for the

adaptive LSFEM for the 2D Stokes equations. The author conjectures that the results

in this thesis transfer to the remaining two model problems in 2D as well.
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Figure 1.1: Visualisation of the errors of an adaptive algorithm and the optimal meshes. The

optimal meshes provide the minimal error that can be achieved on a mesh with

the given number of degrees of freedom (ndof). Both errors attain the optimal

convergence rate indicated by the straight line.

Problem formulation. This thesis considers a generalised model problem on a

polyhedral Lipschitz domain Ω ⊂ R3 in three spatial dimensions, the boundary 𝜕Ω is

locally the graph of a Lipschitz function. Some additional regularity assumptions on

the boundary will be discussed below in Section 2.3. The boundary 𝜕Ω is subdivided

into the compact Dirichlet boundary ΓD ⊆ 𝜕Ω with positive surface measure |ΓD | > 0

and the relatively open (possibly empty) Neumann boundary ΓN ≔ 𝜕Ω \ ΓD. Let 𝜈 :

𝜕Ω → R3 denote the outward unit normal vector. Given a right-hand side 𝑓 : Ω → R3
and the boundary data 𝑢D : ΓD → R3 and 𝑡N : ΓN → R3, the generalised model problem

seeks 𝜎 : Ω → R3×3 and 𝑢 : Ω → R3 such that

𝑓 + div𝜎 = 0 and A𝜎 − S D𝑢 = 0 in Ω,

𝑢 = 𝑢D on ΓD and 𝜎𝜈 = 𝑡N on ΓN.
(1.1)

Some appropriate choices of bounded linear operators A,S : R3×3 → R3×3 are dis-
played in Table 1 and enable the simultaneous analysis of some first-order formulations

of the Poisson model problem, the Stokes equations, and the linear elasticity prob-

lem. The operators A,S may depend on 𝑥 ∈ Ω as well and Section 3.1 introduces

specific assumptions sufficient for the well-posedness of the resulting least-squares

formulation. To obtain a discrete problem, consider a fixed polynomial degree 𝑘 ∈ N
and a regular triangulation T of Ω into closed simplices. The LSFEM minimises the

least-squares functional

𝐿𝑆 (𝑓 ;𝜎,𝑢) ≔ ∥ 𝑓 + div𝜎 ∥2
𝐿2 (Ω) + ∥A𝜎 − S D𝑢∥2

𝐿2 (Ω)
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A S Problem

id id Poisson model problem

dev id Pseudostress-velocity formulation of the Stokes equations

C−1 sym Stress-displacement formulation in linear elasticity

Table 1.1: Various choices for the bounded linear operators in the model problem (1.1). The

deviatoric part dev of a matrix, the inverted linear material law C−1, and the sym-

metric part sym of a matrix are defined in Section 3.2 below in (3.6)–(3.7).

in 𝜎 and 𝑢 over Σ𝑘 (T ) and 𝑈 𝑘+1(T ), some 𝐻 (div,Ω) and 𝐻 1(Ω) conforming finite

element function spaces (up to boundary conditions).

Adaptive algorithm. The least-squares functional is a reliable and efficient a pos-

teriori error estimator (up to boundary data oscillations). For the discrete solutions

𝜎LS and 𝑢LS, the contributions on every simplex 𝑇 ∈ T of the triangulation read

𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS;𝑇 ) ≔ ∥ 𝑓 + div𝜎LS∥2𝐿2 (𝑇 ) + ∥A𝜎 − S D𝑢LS∥2𝐿2 (𝑇 ) .

These local values can be computed using the local stiffness matrices and the coeffi-

cients of the discrete functions 𝜎LS and 𝑢LS. Given some bulk parameter 0 < 𝜃 ≤ 1, the

Dörfler marking strategy [59] leads to a subsetM ⊆ T of (almost) minimal cardinality

|M| with
𝜃 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) ≤

∑︁
𝑇∈M

𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS;𝑇 ).

Sorting the local values 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS;𝑇 ) allows for the computation of the subset

M∗ ⊆ T of minimal cardinality, but requires suboptimal O(𝑁 log𝑁 ) computational

complexity for the number 𝑁 = |T | of simplices in the triangulation. An procedure

of linear O(𝑁 ) complexity from [100, Section 5] provides a subsetM ⊆ T of almost

minimal cardinality with the bound

|M| ≤ 2 |M∗ |.

The adaptive algorithm for the LSFEM for the Poisson model problem in 2D employ-

ing the Dörfler marking for the least-squares functional converges𝑄-linearly if the bulk

parameter 𝜃 is sufficiently large [45, Theorem 4.1]. This contrasts the established ana-

lysis [37, 40] for optimal convergence rates of adaptive algorithms, where a sufficiently
small bulk parameter is demanded. Indeed, severe difficulties occur in the attempt of

applying this analysis to the built-in least-squares estimator, which lacks prefactors

in terms of the mesh-size. The alternative a posteriori error estimators proposed in

[76, 30] solely control the 𝐿2 norm of 𝜎 , but also include a contribution without such

a prefactor. Up to the author’s best knowledge, there is no way to circumvent the

reduction of the mesh-size in the proof of the reduction of the estimator. Therefore,
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this thesis introduces a novel reliable and efficient residual-based a posteriori error

estimator 𝜂 (T , • ) : T → [0,∞) in Section 3.6. This alternative error estimator suffers

the disadvantage that it requires an exact solution of the resulting linear system of the

LSFEM.

The Dörfler marking provides a subsetM ⊆ T of almost minimal cardinality with,

for 𝜂2(T ,M) ≔ ∑︁
𝑇∈M 𝜂2(T ,𝑇 ) and 𝜂2(T ) ≔ 𝜂2(T ,T),

𝜃𝜂2(T ) ≤ 𝜂2(T ,M).

The newest-vertex bisection (NVB) from [81, 104, 101] prevails in rate-optimal adaptive

algorithms [14, 100, 37, 40]. It generates the smallest regular refinement ˆ︁T of T such

that the simplices in M ⊆ T \ ˆ︁T are refined. For a detailed presentation of this

refinement strategy, the reader is referred to Section 2.4 below.

For any discrete solution 𝜎LS and 𝑢LS, the least-squares functional 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS)
explicitly includes the squared data approximation error

𝜇2(T ) ≔ ∥(1 − Π𝑘) 𝑓 ∥2𝐿2 (Ω) ≤ 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) . (1.2)

For the data approximation of the right-hand side 𝑓 , several strategies are available.

In [100, Section 6], a separate routine RHS provides an additional refinement loop

ensuring the sufficient resolution of the data 𝑓 . When the error of the approximation

of the variable 𝜎 is measured in the 𝐿2 norm (instead of the full 𝐻 (div) norm), a

separate Dörfler marking for oscillations of 𝑓 leads to optimal convergence rates for

the adaptive mixed finite element method [11]. With respect to this weaker norm, an

adaptive LSFEM employing collective marking for an alternative residual-based error

estimator even converges with the optimal rate [41].

This thesis employs the separate marking strategy from [46, 90, 40] to reduce the data

approximation error 𝜇 (T ). The resulting adaptive algorithm with separate marking

for the least-squares finite element method (ALSFEM) reads as follows.

Input: Initial regular triangulation T0 of the polyhedral domain Ω into closed tetra-

hedra with some initial condition (cf. Section 2.4) and parameters 0 < 𝜃 ≤ 1, 0 < 𝜌 < 1,

and 0 < 𝜅 < ∞.

for any level ℓ = 0, 1, 2, . . . do
Solve LSFEM with respect to regular triangulation Tℓ for the solution (𝜎ℓ , 𝑢ℓ).
Compute 𝜂 (Tℓ ,𝑇 ) for all 𝑇 ∈ Tℓ .
if CASE A 𝜇2(Tℓ) ≤ 𝜅𝜂2(Tℓ) then

Select a subsetMℓ ⊆ Tℓ of (almost) minimal cardinality with

𝜃𝜂2(Tℓ) ≤ 𝜂2(Tℓ ,Mℓ).

Compute smallest regular refinement Tℓ+1 of Tℓ withMℓ ⊆ Tℓ \ Tℓ+1 by NVB.

4



else (CASE B 𝜅𝜂2(Tℓ) < 𝜇2(Tℓ))
Compute an admissible refinement Tℓ+1 of Tℓ with (almost) minimal cardin-

ality and 𝜇 (Tℓ+1) ≤ 𝜌𝜇 (Tℓ). fi od

Output: Sequence of discrete solutions ((𝜎ℓ , 𝑢ℓ) : ℓ ∈ N0) and meshes (Tℓ : ℓ ∈ N0).

Quasi-optimality. Any admissible refinement of the initial triangulation T0 by NVB
generates the set T of admissible triangulations. The restriction to all triangulations

with at most 𝑁 ∈ N additional simplices leads to the finite set

T(𝑁 ) ≔
{︁
T ∈ T : |T | − |T0 | ≤ 𝑁

}︁
.

The best possible error in terms of the alternative estimator 𝜂 and the data approxima-

tion error 𝜇 depends on the right-hand side 𝑓 ∈ 𝐿2(Ω;R3) and implicitly on the exact

solution 𝜎 ∈ 𝐻 (div,Ω;R3×3) and 𝑢 ∈ 𝐻 1(Ω;R3) to (1.1). It is defined by

𝐸 (𝜎,𝑢, 𝑓 , 𝑁 ) ≔ min

T∈T(𝑁 )

(︁
𝜂2(T ) + 𝜇2(T )

)︁
1/2
.

The main result of this thesis involves the notion of a nonlinear approximation class

A𝑠 . For any given 0 < 𝑠 < ∞, A𝑠 consists of all triples (𝜎,𝑢, 𝑓 ) ∈ 𝐻 (div,Ω;R3×3) ×
𝐻 1(Ω;R3) × 𝐿2(Ω;R3) such that 𝑢 = 𝑢D on ΓD, 𝜎𝜈 = 𝑡N on ΓN, and

| (𝜎,𝑢, 𝑓 ) |A𝑠
≔ sup

𝑁∈N
(𝑁 + 1)𝑠𝐸 (𝜎,𝑢, 𝑓 , 𝑁 ) < ∞.

Theorem 1.1 (optimal convergence rate of ALSFEM). There exist a maximal bulk
parameter 0 < 𝜃0 < 1 and a maximal separation parameter 0 < 𝜅0 ≤ ∞ such that for
all 0 < 𝜃 < 𝜃0, for all 0 < 𝜅 < 𝜅0, for all 0 < 𝜌 < 1, and for all 0 < 𝑠 < ∞, the output
((𝜎ℓ , 𝑢ℓ) : ℓ ∈ N) of ALSFEM and (𝜎,𝑢, 𝑓 ) ∈ A𝑠 satisfy

𝐶−1
opt

| (𝜎,𝑢, 𝑓 ) |A𝑠
≤ sup

ℓ∈N

(︁
|Tℓ | − |T0 | + 1

)︁𝑠 (︁
𝜂2(Tℓ) + 𝜇2(Tℓ)

)︁
1/2 ≤ 𝐶opt | (𝜎,𝑢, 𝑓 ) |A𝑠

.

The maximal parameters 𝜃0 and 𝜅0 depend exclusively on the initial triangulation T0 and
the polynomial degree 𝑘 , whereas the positive generic constant 𝐶opt depends on T0, 𝑘 , and
the parameters 𝑠, 𝜌, 𝜃, and 𝜅.

The axioms of adaptivity in [37] and [40] provide a framework for the convergence

analysis with rates for adaptive FEMs. For algorithms with a separate marking strategy,

as the ALSFEM, this framework involves the seven axioms (A1)–(A4), (B1)–(B2), and

(QM) for the proof of optimal convergence rates. The ten included positive generic

constants Λ 𝑗 for 𝑗 = 1, . . . , 7, ˆ︁Λ3, Λref, and 𝜌2 < 1 depend on the initial triangulation

T0 and the polynomial degree 𝑘 ∈ N0 in the discretisation.
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The axioms (A1)–(A3), (QM), and (B2) concern an admissible refinement ˆ︁T ∈ T(T )
of an arbitrary triangulation T ∈ T. The distance between these triangulations is

defined as some value 𝛿 (ˆ︁T ,T) ≥ 0. The stability axiom asserts

|𝜂 (ˆ︁T ,T ∩ ˆ︁T) − 𝜂 (T ,T ∩ ˆ︁T)| ≤ Λ1 𝛿 (ˆ︁T ,T) (A1)

and the reduction axiom

𝜂 (ˆ︁T , ˆ︁T \ T ) ≤ 𝜌2 𝜂 (T ,T \ ˆ︁T) + Λ2 𝛿 (ˆ︁T ,T). (A2)

The discrete reliability axiom postulates the existence of some set T \ ˆ︁T ⊆ R ⊆ T of

coarse simplices with |R | ≤ Λref |T \ ˆ︁T | and

𝛿2(ˆ︁T ,T) ≤ Λ3

(︁
𝜂2(T ,R) + 𝜇2(T )

)︁
+ ˆ︁Λ3 𝜂

2(ˆ︁T). (A3)

The quasi-monotonicity axiom on 𝜂 + 𝜇 requires

𝜂 (ˆ︁T) + 𝜇 (ˆ︁T) ≤ Λ7

(︁
𝜂 (T ) + 𝜇 (T )

)︁
. (QM)

The subsequent axioms (B1)–(B2) refer to the data approximation algorithm in

Case B of the ALSFEM algorithm. The data approximation of rate 𝑠 > 0 requires that,

for all given tolerances Tol > 0, there exists an admissible triangulation TTol ∈ T
satisfying

|TTol | − |T0 | ≤ Λ5 Tol
−1/(2𝑠)

and 𝜇2(TTol) ≤ Tol. (B1)

The thresholding second algorithm from [15, 14] plus a completion step allows for quasi-

optimal data approximation (B1) [40, Theorem 3.3] and is one possible realisation of

Case B of the ALSFEM. The data approximation error 𝜇 from (1.2) satisfies the required

quasi-monotonicity
𝜇 (ˆ︁T) ≤ Λ6 𝜇 (T ) . (B2)

The quasi-orthogonality axiom solely concerns the outcome (Tℓ : ℓ ∈ N0) of the
ALSFEM algorithm and reads

∞∑︁
𝑗=ℓ

𝛿2(T𝑗+1,T𝑗 ) ≤ Λ4

(︁
𝜂2(Tℓ) + 𝜇2(Tℓ)

)︁
. (A4)

Outline. This thesis consists of six chapters. Chapter 2 deploys the theoretical

background, introduces the employed notation, and provides essential tools used

throughout the thesis. The subsequent Chapter 3 postulates some general assumptions

on the operators A and S in the model problem (1.1) and verifies them for the three

applications from Table 1. Two sections therein concern the analysis of the approx-

imation of inhomogeneous Dirichlet and Neumann boundary data. Eventually, the

chapter introduces the LSFEM as well as the alternative a posteriori error estimator for

the ALSFEM algorithm. Chapter 4 is devoted to the proofs of the axioms of adaptivity.

Numerical experiments for the three model problems are displayed in Chapter 5. A con-

clusion and outlook follows in Chapter 6. The Chapter A in the appendix documents

the software octAFEM3D implemented for the numerical experiments.
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2 Preliminaries
The theory of Lebesgue and Sobolev spaces found the overall basis for the analysis

of PDEs and their numerical solution. It is the point of departure in the first two

Sections 2.1–2.2 of this chapter. The analysis of Sobolev functions with partial boundary

conditions requires specific geometric assumptions on the domain which are presented

in detail in Section 2.3. The notion of regular triangulations into tagged simplices is

introduced in Section 2.4 and enables the definition of finite element function spaces

in the subsequent Section 2.5. This chapter concludes with the two Sections 2.6–2.7 on

quasi-interpolation operators preserving partial inhomogeneous boundary conditions.

These operators are key tools for the analysis of discrete reliability in Section 4.3 below.

2.1 Lebesgue and Sobolev spaces
This thesis employs the standard notation for Lebesgue and Sobolev function spaces

and appropriate subscripts indicate their usual norms and semi-norms. The brief

description of the involved spaces given in this section will not replace a thorough

study of these objects. For an overview of results on Lebesgue spaces, the reader

is referred to the monograph by H. Brezis [24, Chapter 4] and, for a self-contained

introduction of Lebesgue and Sobolev spaces, to the monograph by L. C. Evans and

R. A. Gariepy [61, Chapter 1].

Let (𝑋,A, 𝜇) denote a measure space and𝑌 ⊆ R𝑚×𝑛
a subspace for𝑚,𝑛 ∈ N equipped

with the Euclidian scalar products

𝑎 · 𝑏 ≔ 𝑎⊤𝑏 for 𝑎, 𝑏 ∈ R𝑚 if 𝑛 = 1 and 𝐴 : 𝐵 ≔ tr(𝐴⊤𝐵) for 𝐴, 𝐵 ∈ R𝑚×𝑛 .

The linear space L2(𝑋 ;𝑌 ) consists of 𝜇-measurable and square-integrable functions

𝑓 : 𝑋 → 𝑌 with bounded seminorm

∥ 𝑓 ∥𝐿2 (𝑋 ) ≔
(︂ ∫

𝑋

𝑓 : 𝑓 d𝜇

)︂
1/2

< ∞.

Since there is no ambiguity concerning the scalar product in the space 𝑌 , this space

is omitted in the index of the norm for brevity. The equivalence classes of functions

𝑓 ∈ L2(𝑋 ;𝑌 ) with respect to almost everywhere equality form the Hilbert space

𝐿2(𝑋 ;𝑌 ) with the scalar product, for 𝑓 , 𝑔 ∈ 𝐿2(𝑋 ;𝑌 ),

(𝑓 , 𝑔)𝐿2 (𝑋 ) ≔
∫
𝑋

𝑓 : 𝑔 d𝜇.
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Abbreviate the Lebesgue space of scalar-valued functions 𝐿2(𝑋 ) ≔ 𝐿2(𝑋 ;R). Given
some measurable set 𝐴 ∈ A with 0 < 𝜇 (𝐴) < ∞, the componentwise integral mean

over 𝐴 is well-defined by, for 𝑓 ∈ 𝐿2(𝑋 ;𝑌 ),

−
∫
𝐴

𝑓 d𝜇 ≔ 𝜇 (𝐴)−1
∫
𝐴

𝑓 d𝜇 ∈ 𝑌 .

The definition of Sobolev spaces usually restricts to bounded open sets 𝑋 = Ω ⊆ R3
with the three-dimensional Lebesgue measure d𝜇 ≔ d𝑥 . In order to establish a

meaningful notion of the restriction of Sobolev functions on the boundary 𝜕Ω, suitable
Lipschitz regularity assumptions are required. The resulting trace functions belong to

Lebesgue spaces 𝐿2(𝑋 ) on two-dimensional hypersurfaces 𝑋 = Γ ⊆ 𝜕Ω equipped with

the two-dimensional Hausdorff measure d𝜇 ≔ d𝑎. For the detailed presentation of the

geometric assumptions made in this thesis, the reader is referred to Section 2.3.

Notation 1 (measures). To keep the notation terse, the enclosing single bars | • |
apply context-sensitively. They denote not only the modulus of real numbers, the

Euclidian norm of vectors in R3, and the Frobenius norm of matrices in R3×3, but also
the cardinality of finite sets, the Lebesgue measure of three-dimensional Lebesgue sets,

and the two-dimensional Hausdorff measure of two-dimensional surfaces.

Given any multi-index 𝛼 = (𝛼1, 𝛼2, 𝛼3) ∈ N3

0
of length |𝛼 | ≔ ∑︁

3

𝑗=1 𝛼 𝑗 , let

D
𝛼 ≔

𝜕 |𝛼 |

𝜕𝑥𝛼1 . . . 𝜕𝑥𝛼3

denote the partial derivative with respect to 𝛼 . Define the space of smooth functions

𝐶∞(Ω) ≔
{︁
𝜑 : R3 → R : ∀𝛼 ∈ N3

0
, D𝛼 𝑓 is continuous

}︁
and its subspace of test functions with compact support supp( • )

𝐶∞
c
(Ω) ≔

{︁
𝜑 ∈ 𝐶∞(Ω) : ∃𝐾 ⊂ Ω compact, supp(𝜑) ⊂ 𝐾

}︁
.

Analogous definitions apply for vector-valued functions in 𝐶∞(Ω;R3) and 𝐶∞
c
(Ω;R3)

and functions being smooth up to the boundary in 𝐶∞(Ω) and 𝐶∞
c
(Ω). For 𝑘 ∈ N, the

Sobolev space 𝐻𝑘 (Ω) consists of all square-integrable Lebesgue functions 𝑣 ∈ 𝐿2(Ω)
such that for every multi-index 𝛼 ∈ N3

0
with |𝛼 | ≤ 𝑘 there exists some𝑤 ∈ 𝐿2(Ω) with

(𝑣,D𝛼 𝜑)𝐿2 (Ω) = (−1) |𝛼 | (𝑤,𝜑)𝐿2 (Ω) for all 𝜑 ∈ 𝐶∞
c
(Ω). (2.1)

These functions are called 𝑘-times weakly differentiable and D
𝛼 𝑣 ≔ 𝑤 denotes their

weak derivative. Equip 𝐻𝑘 (Ω) with the Sobolev norm, for 𝑣 ∈ 𝐻𝑘 (Ω),

∥𝑣 ∥𝐻𝑘 (Ω) ≔
(︂ ∑︁
|𝛼 |≤𝑘

∥ D𝛼 𝑣 ∥2
𝐿2 (Ω)

)︂
1/2

< ∞.
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Given a normed linear subspace 𝑋 ⊂ 𝑌 of a Banach space (𝑌, ∥ • ∥𝑌 ), let
cl(𝑋,𝑌 ) =

{︁
𝑦 ∈ 𝑌 : ∃(𝑥𝑘 : 𝑘 ∈ N) ⊂ 𝑋, ∥𝑥𝑘 − 𝑦∥𝑌 → 0 as 𝑘 → ∞

}︁
denote the closure of 𝑋 with respect to the norm of 𝑌 . The definition of the weak

derivatives immediately allows for the local approximation of Sobolev functions by

smooth functions on arbitrary open domains Ω ⊆ R3 [61, Theorem 4.2]

𝐻 1(Ω) = cl

(︁
𝐶∞(Ω) ∩ 𝐻 1(Ω), 𝐻 1(Ω)

)︁
.

Under the additional assumption that Ω is bounded and Lipschitz, it even holds that

[61, Theorem 4.3]

𝐻 1(Ω) = cl

(︁
𝐶∞(Ω) ∩ 𝐻 1(Ω), 𝐻 1(Ω)

)︁
.

The definition (2.1) of weak derivatives induces weak counterparts of the differential

operators from vector calculus. For 𝑣 ∈ 𝐻 1(Ω), let ∇ 𝑣 ∈ 𝐿2(Ω;R3) denote the weak
gradient defined by

(𝑣, div𝜑)𝐿2 (Ω) = −(∇ 𝑣, 𝜑)𝐿2 (Ω) for all 𝜑 ∈ 𝐶∞
c
(Ω;R3).

Furthermore, let the space𝐻 (curl,Ω) consist of the functions 𝛽 ∈ 𝐿2(Ω;R3) with weak

curl operator curl 𝛽 ∈ 𝐿2(Ω;R3) defined by

(𝛽, curl𝜑)𝐿2 (Ω) = (curl 𝛽, 𝜑)𝐿2 (Ω) for all 𝜑 ∈ 𝐶∞
c
(Ω;R3)

and 𝐻 (div,Ω) of 𝑞 ∈ 𝐿2(Ω;R3) with weak divergence div𝑞 ∈ 𝐿2(Ω) defined by

(𝑞,∇𝜑)𝐿2 (Ω) = −(div𝑞, 𝜑)𝐿2 (Ω) for all 𝜑 ∈ 𝐶∞
c
(Ω).

Equip these spaces with the graph norms

∥𝛽 ∥𝐻 (curl,Ω) ≔
(︁
∥𝛽 ∥2

𝐿2 (Ω) + ∥ curl 𝛽 ∥2
𝐿2 (Ω)

)︁
1/2
,

∥𝑞∥𝐻 (div,Ω) ≔
(︁
∥𝑞∥2

𝐿2 (Ω) + ∥ div𝑞∥2
𝐿2 (Ω)

)︁
1/2
.

The subspaces of non-rotational and solenoidal vector fields read

𝐻 (curl = 0,Ω) ≔
{︁
𝑣 ∈ 𝐻 (curl,Ω) : curl 𝑣 = 0 in Ω

}︁
,

𝐻 (div = 0,Ω) ≔
{︁
𝑞 ∈ 𝐻 (div,Ω) : div𝑞 = 0 in Ω

}︁
.

Given some regular triangulation T of the domain Ω into closed simplices in the sense

of Section 2.4 below, define the piecewise 𝐻 (curl) and 𝐻 (div) spaces by
𝐻 (curl,T) ≔

{︁
𝑣 ∈ 𝐿2(Ω;R3) : ∀𝑇 ∈ T , 𝑣 |𝑇 ∈ 𝐻 (curl, int(𝑇 ))

}︁
,

𝐻 (div,T) ≔
{︁
𝑞 ∈ 𝐿2(Ω;R3) : ∀𝑇 ∈ T , 𝑞 |𝑇 ∈ 𝐻 (div, int(𝑇 ))

}︁
.

Analogous definitions apply to vector-valued functions 𝑣 ∈ 𝐻 1(Ω;R3) with weak

Jacobian D 𝑣 ∈ 𝐿2(Ω;R3×3) and matrix-valued functions 𝛽 ∈ 𝐻 (curl,Ω;R3×3) and
𝜏 ∈ 𝐻 (div,Ω;R3×3). The row-wise curl and divergence operators lead to curl 𝛽 ∈
𝐿2(Ω;R3×3) and div𝜏 ∈ 𝐿2(Ω;R3×3) with, for 𝑗 = 1, 2, 3,(︁

(curl 𝛽) 𝑗1, (curl 𝛽) 𝑗2, (curl 𝛽) 𝑗3
)︁
≔ curl(𝛽 𝑗1, 𝛽 𝑗2, 𝛽 𝑗3),(︁

(div𝜏) 𝑗1, (div𝜏) 𝑗2, (div𝜏) 𝑗3
)︁
≔ div(𝜏 𝑗1, 𝜏 𝑗2, 𝜏 𝑗3).
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2.2 Boundary traces of Sobolev functions
Assume that the boundary 𝜕Ω of the Lipschitz domain Ω is partitioned into the compact

Dirichlet boundary ΓD ⊆ 𝜕Ω with positive surface measure |ΓD | > 0 and the relatively

open (possibly empty) Neumann boundary ΓN ≔ 𝜕Ω \ ΓD. For the presentation of the

complete geometric assumptions on the domain and its boundary parts, the reader is

referred to the subsequent Section 2.3. Given ΓX ∈ {ΓD, ΓN}, the definition of Sobolev

functions satisfying homogeneous boundary conditions requires the space of test

functions with compact support

𝐶∞
c
(Ω \ ΓX) ≔

{︁
𝜑 ∈ 𝐶∞(Ω) : ∃𝐾 ⊂ Ω compact, dist(𝐾, ΓX) > 0 and supp(𝜑) ⊆ 𝐾

}︁
.

The closure of this space under the various Sobolev norms reads

𝐻 1

X
(Ω) ≔ cl

(︁
𝐶∞
c
(Ω \ ΓX), 𝐻 1(Ω)

)︁
,

𝐻X(curl,Ω) ≔ cl

(︁
𝐶∞
c
(Ω \ ΓX;R3), 𝐻 (curl,Ω)

)︁
,

𝐻X(div,Ω) ≔ cl

(︁
𝐶∞
c
(Ω \ ΓX;R3), 𝐻 (div,Ω)

)︁
.

(2.2)

The subspaces of non-rotational and solenoidal vector fields are denoted by

𝐻X(curl = 0,Ω) ≔ 𝐻X(curl,Ω) ∩ 𝐻 (curl = 0,Ω),
𝐻X(div = 0,Ω) ≔ 𝐻X(div,Ω) ∩ 𝐻 (div = 0,Ω).

The study of non-vanishing traces of Sobolev functions on (parts of) the boundary

of Ω leads to the notion of Sobolev spaces 𝐻 𝑠 (ΓX) of fractional order 𝑠 ∈ R. The
definition of 𝐻 𝑠 (ΓX) for non-integer order 𝑠 ∉ Z may be realised by the interpolation

of Sobolev spaces of integer order and is comprehensively presented in the monograph

by J. L. Lions and E. Magenes [79].

Let 𝛾 : 𝐶 (Ω) → 𝐶 (𝜕Ω) denote the linear trace operator with 𝛾 (𝜑) ≔ 𝜑 |𝜕Ω in the

classical sense for 𝜑 ∈ 𝐶 (Ω). There exists a surjective extension to 𝛾 : 𝐻 1(Ω) →
𝐻 1/2(𝜕Ω) [61, Theorem 4.6] that is bounded in the 𝐿2 norm, for every 𝑣 ∈ 𝐻 1(Ω),

∥𝛾 (𝑣)∥𝐿2 (𝜕Ω) ≤ 𝐶𝛾 ∥𝑣 ∥𝐻 1 (Ω) . (2.3)

The operator 𝛾 is also naturally bounded in the minimal extension norm defined by,

for 𝑔 ∈ 𝐻 1/2(𝜕Ω),

∥𝑔∥𝐻 1/2 (𝜕Ω) ≔ inf

{︁
∥𝑣 ∥𝐻 1 (Ω) : 𝑣 ∈ 𝐻 1(Ω), 𝛾 (𝑣) = 𝑔

}︁
.

For 𝑣 ∈ 𝐻 1(Ω), it holds that ∥𝛾 (𝑣)∥𝐻 1/2 (𝜕Ω) ≤ ∥𝑣 ∥𝐻 1 (Ω) . Any other characterisation of

𝐻 1/2(𝜕Ω) from [79] coincides. This has been established, for instance, in [85, Chapter 2,

Theorem 5.1] for the half-space {𝑥 ∈ R3 : 𝑥3 > 0}.
For the dual space 𝐻−1/2(𝜕Ω) ≔ (𝐻 1/2(𝜕Ω)), the corresponding duality pairing

⟨ • , • ⟩𝜕Ω extends the 𝐿2(𝜕Ω) scalar product. Equip 𝐻−1/2(𝜕Ω) with the operator norm,

for 𝑡 ∈ 𝐻−1/2(𝜕Ω),

∥𝑡 ∥𝐻−1/2 (𝜕Ω) ≔ sup

{︁
⟨𝑡, 𝛾 (𝑣)⟩𝜕Ω : 𝑣 ∈ 𝐻 1(Ω), ∥𝑣 ∥𝐻 1 (Ω) = 1

}︁
.
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The restriction of 𝛾 to some part of the boundary ΓX leads to the bounded and

surjective trace operator 𝛾X : 𝐻 1(Ω) → 𝐻 1/2(ΓX) with 𝛾X(𝜑) ≔ 𝜑 |ΓX in the classical

sense for 𝜑 ∈ 𝐶 (Ω). The restriction is also bounded, for 𝑣 ∈ 𝐻 1(Ω),

∥𝛾X(𝑣)∥𝐿2 (ΓX) ≤ 𝐶𝛾X ∥𝑣 ∥𝐻 1 (Ω),

and ∥𝛾X(𝑣)∥𝐻 1/2 (ΓX) ≤ ∥𝑣 ∥𝐻 1 (Ω) with the minimal extension norm, for 𝑔X ∈ 𝐻 1/2(ΓX),

∥𝑔X∥𝐻 1/2 (ΓX) ≔ inf

{︁
∥𝑣 ∥𝐻 1 (Ω) : 𝑣 ∈ 𝐻 1(Ω), 𝛾X(𝑣) = 𝑔X

}︁
.

The well-known Friedrichs inequality asserts the equivalence of the norms ∥ • ∥𝐻 1 (Ω)
and ∥∇ • ∥𝐿2 (Ω) on 𝐻 1

X
(Ω) in the case |ΓX | > 0.

Lemma 2.1 (Friedrichs inequality). If ΓX has positive surface measure |ΓX | > 0, there
exists a positive generic constant 𝐶F such that every 𝑣 ∈ 𝐻 1

X
(Ω) satisfies

∥𝑣 ∥𝐿2 (Ω) ≤ 𝐶F ∥ D 𝑣 ∥𝐿2 (Ω) .

Proof. For the proof in this general case ΓX ⊂ 𝜕Ω, utilise [60, Lemma B.63] with the

trace operator 𝑓 ≔ 𝛾X therein. □

Let 𝜈 : 𝜕Ω → 𝐵1(0) ≔ {𝑥 ∈ R3 : |𝑥 | = 1} denote the outward unit normal vector

field on 𝜕Ω. For𝑤 ∈ 𝐻 1(Ω), the surface (or tangential) gradient ∇X for weakly differen-

tiable functions on ΓX can be implicitly defined [49, Equation (A.13) in Appendix A.3]

by

∇𝑤 = ∇X𝑤 + (𝜈 · ∇𝑤) 𝜈 on ΓX. (2.4)

This allows for the definition of the trace space

𝐻 1(ΓX) ≔
{︁
𝑣 ∈ 𝐿2(ΓX) : ∇X𝑣 ∈ 𝐿2(ΓX;R3)

}︁
employed with the norm, for 𝑣 ∈ 𝐻 1(ΓX),

∥𝑣 ∥𝐻 1 (ΓX) ≔
(︁
∥𝑣 ∥2

𝐿2 (ΓX) + ∥∇X𝑣 ∥2𝐿2 (ΓX)
)︁
1/2
.

It holds that 𝐻 1(ΓX) ⊂ 𝐻 1/2(ΓX) [49, page 276]. Throughout the thesis, the index for
the boundary party ΓX is omitted for ∇X and its analog DX for vector fields.

Moreover, define the trace space including partial boundary conditions and its dual

space by ˜︁𝐻 1/2(ΓN) ≔ 𝛾N(𝐻 1

D
(Ω)) and 𝐻−1/2(ΓN) ≔ (˜︁𝐻 1/2(ΓN))∗.

Let ⟨ • , • ⟩ΓN denote the associated duality pairing extending the 𝐿2(ΓN) scalar product.
Equip 𝐻−1/2(ΓN) with the norm, for 𝑠N ∈ 𝐻−1/2(ΓN),

∥𝑠N∥𝐻−1/2 (ΓN) ≔ sup

{︁
⟨𝑠N, 𝛾N(𝑣)⟩ΓN : 𝑣 ∈ 𝐻 1

D
(Ω), ∥𝑣 ∥𝐻 1 (Ω) = 1

}︁
.
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The tangential trace operator 𝛾 tan
N

: 𝐶 (Ω;R3) → 𝐶 (ΓN) is defined by 𝛾 tan
N

(𝜑) =

𝜈 × 𝜑 |ΓN in the classical sense for 𝜑 ∈ 𝐶 (Ω;R3). The integration by parts formula

allows for a bounded extension to an operator 𝛾 tan
N

: 𝐻 (curl,Ω) → 𝐻−1/2(ΓN;R3), for
𝛽 ∈ 𝐻D(curl,Ω) and 𝑣 ∈ 𝐻 1

D
(Ω;R3),

⟨𝛾 tan
N

(𝛽), 𝛾N(𝑣)⟩ΓN ≔ (curl 𝛽, 𝑣)𝐿2 (Ω) − (𝛽, curl 𝑣)𝐿2 (Ω)
= (𝜈 × 𝛽, 𝑣)𝐿2 (𝜕Ω) = (𝜈 × 𝛽, 𝑣)𝐿2 (ΓN) .

This extension is bounded, for 𝛽 ∈ 𝐻D(curl,Ω) and 𝑣 ∈ 𝐻 1

D
(Ω) with ∥𝑣 ∥𝐻 1 (Ω) = 1,

⟨𝛾 tan
N

(𝛽), 𝛾N(𝑣)⟩ ≤ ∥ curl 𝛽 ∥𝐿2 (Ω) ∥𝑣 ∥𝐿2 (Ω) + ∥𝛽 ∥𝐿2 (Ω) ∥ curl 𝑣 ∥𝐿2 (Ω) ≤
√
2∥𝛽 ∥𝐻 (curl,Ω) .

However, the operator 𝛾 tan
N

is not surjective onto 𝐻−1/2(ΓN;R3). For a precise charac-
terisation of its range, the reader is referred to [28] as well as [83, Section 3.5.3] and

[18, Section 2.1.1].

The normal trace operator 𝛾nor
N

: 𝐶 (Ω;R3) → 𝐶 (ΓN) is defined by 𝛾nor
N

(𝜑) = 𝜑 · 𝜈 |ΓN
for 𝜑 ∈ 𝐶 (Ω;R3) in the classical sense. The definition of 𝐻−1/2(ΓN) allows for the
natural extension of 𝛾nor

N
to the space 𝐻D(div,Ω) by the integration by parts formula,

for 𝜏 ∈ 𝐻D(div,Ω) and 𝑣 ∈ 𝐻 1

D
(Ω),

⟨𝛾nor
N

(𝜏), 𝛾N(𝑣)⟩ΓN ≔ (div𝜏, 𝑣)𝐿2 (Ω) + (𝜏,∇ 𝑣)𝐿2 (Ω)
= (𝜏 · 𝜈, 𝑣)𝐿2 (𝜕Ω) = (𝜏 · 𝜈, 𝑣)𝐿2 (ΓN) .

Hence, the extension is bounded, for 𝜏 ∈ 𝐻D(div,Ω) and 𝑣 ∈ 𝐻 1

D
(Ω) with ∥𝑣 ∥𝐻 1 (Ω) = 1,

⟨𝛾nor
N

(𝜏), 𝛾N(𝑣)⟩ΓN ≤ ∥ div𝜏 ∥𝐿2 (Ω) ∥𝑣 ∥𝐿2 (Ω) + ∥𝜏 ∥𝐿2 (Ω) ∥ ∇ 𝑣 ∥𝐿2 (Ω) ≤ ∥𝜏 ∥𝐻 (div,Ω) .

These trace operators provide equivalent representations of the function spaces

with partial homogeneous boundary conditions from (2.2)

𝐻 1

X
(Ω) = {𝑣 ∈ 𝐻 1(Ω) : 𝛾X(𝑣) = 0},

𝐻X(curl,Ω) = {𝑣 ∈ 𝐻 (curl,Ω) : 𝛾 tan
X

(𝑣) = 0},
𝐻X(div,Ω) = {𝑣 ∈ 𝐻 (div,Ω) : 𝛾nor

X
(𝑣) = 0}.

For homogeneous boundary conditions on the whole boundary 𝜕Ω, this is a well-

known result [65, Theorems 1.5, 2.6, and 2.12]. For partial boundary conditions under

weakly Lipschitz regularity assumptions, this equality has been established in [9,

Lemma 3.1 and Theorem 4.5].

In the context of differential forms with coefficients in terms of Sobolev functions,

spaces with homogeneous boundary conditions are defined by continuous extensibility

by zero outside of the domain [66, Definition 3.3]. For weakly Lipschitz domains, this

notion coincides with the definition in (2.2) (cf. [77, Remark 2.2]) and allows for the

application of the results in [77].

14



Notation 2 (traces of Sobolev functions). Throughout the thesis, equalities on the

boundary 𝑣 = 𝑔 on ΓX for 𝑣 ∈ 𝐻 1(Ω) and 𝑔 ∈ 𝐻 1/2(ΓX) are always understood in the

sense of traces 𝛾X(𝑣) = 𝑔. Correspondingly, given 𝛽 ∈ 𝐻 (curl,Ω), 𝜏 ∈ 𝐻 (div,Ω), and
𝑔 ∈ 𝐻−1/2(ΓN;R3) (resp. 𝑔 ∈ 𝐻−1/2(ΓN)), the expression 𝜈 × 𝛽 = 𝑔 (resp. 𝜏 · 𝜈 = 𝑔) on ΓN
stands for 𝛾 tan

N
(𝛽) = 𝑔 (resp. 𝛾nor

N
(𝜏) = 𝑔).

The trace spaces and operators of 𝐻 1(Ω;R3), 𝐻 (curl,Ω;R3×3), and 𝐻 (div,Ω;R3×3)
are defined analogously for every component.

2.3 Geometric assumptions
Let the subset Ω ⊂ R3 be non-empty, bounded, open, and connected. In order to enable

proper triangulations, Ω is supposed to be polyhedral. This means, its boundary 𝜕Ω is

a𝐶0
manifold and the finite union of convex polygons such that the intersection of any

two polygons is either empty or exactly a common vertex or edge. The boundary is

subdivided into the compact Dirichlet boundary ΓD ⊆ 𝜕Ωwith positive surface measure

|ΓD | > 0 and the relatively open (possibly empty) Neumann boundary ΓN ≔ 𝜕Ω \ ΓD.
The interface ΓI ≔ ΓD ∩ ΓN leads to the relative interior of the Dirichlet boundary

relint(ΓD) = ΓD \ ΓI.

For an arbitrary 2-dimensional Lipschitz submanifold 𝑀 ⊂ R3 with boundary 𝜕𝑀 , the

relative interior of𝑀 is defined as

relint(𝑀) ≔ 𝑀 \ 𝜕𝑀. (2.5)

The definition and analysis of partial boundary data of Sobolev functions on Ω
require the following assumption on the regularity of the boundary.

Assumption 1. Assume throughout the thesis that Ω is a Lipschitz domain in that the
domain lies on exactly one side of the boundary 𝜕Ω that is locally the graph of a Lipschitz
function. Furthermore, let the interface ΓI between the Dirichlet and Neumann boundary
be piecewise affine.

This ensures that there exist regular triangulations in Section 2.4 reflecting the

partition of the boundary into a Dirichlet and a Neumann part.

Precisely, this condition can be expressed in the following way [67, Section 2].

Suppose that for every 𝑥 ∈ 𝜕Ω, there exists an open neighbourhood 𝑈𝑥 ⊂ R3 of 𝑥 as

well as Euclidian transformations Φ𝑥 : R
3 → R3 with an orthogonal matrix 𝑄 ∈ R3×3

such that Φ𝑥 (𝑦) = 𝑄 (𝑦 − 𝑥) for all 𝑦 ∈ R3. The transformed neighbourhood can be

parametrised by a Lipschitz continuous function 𝜙𝑥 : (−𝑟𝑥 , 𝑟𝑥 )2 → (−𝑅𝑥 , 𝑅𝑥 ) for some

real numbers 𝑟𝑥 > 0 and 𝑅𝑥 > 0 in such a way that

Φ𝑥 (𝑈𝑥 ∩ Ω) =
{︁
𝜉 ∈ R3 : 𝜉1, 𝜉2 ∈ (−𝑟𝑥 , 𝑟𝑥 ), −𝑅𝑥 < 𝜉3 < 𝜙𝑥 (𝜉1, 𝜉2)

}︁
,

Φ𝑥 (𝑈𝑥 ∩ 𝜕Ω) =
{︁
𝜉 ∈ R3 : 𝜉1, 𝜉2 ∈ (−𝑟𝑥 , 𝑟𝑥 ), 𝜉3 = 𝜙𝑥 (𝜉1, 𝜉2)

}︁
,

Φ𝑥 (𝑈𝑥 \ Ω) =
{︁
𝜉 ∈ R3 : 𝜉1, 𝜉2 ∈ (−𝑟𝑥 , 𝑟𝑥 ), 𝜙𝑥 (𝜉1, 𝜉2) < 𝜉3 < 𝑅𝑥

}︁
.
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Additionally, assume that there exists a function𝜓𝑥 ∈ 𝐶 ((−𝑟𝑥 , 𝑟𝑥 ); (−𝑟𝑥 , 𝑟𝑥 )) and a finite
set of points −𝑟𝑥 = 𝑠0 < · · · < 𝑠𝐿 = 𝑟𝑥 with𝜓𝑥 | (𝑠ℓ−1,𝑠ℓ ) ∈ 𝑃1((𝑠ℓ−1, 𝑠ℓ); (−𝑟𝑥 , 𝑟𝑥 )). Suppose
that the continuous and piecewise affine function𝜓𝑥 provides the parametrisation of

the interface ΓI

Φ𝑥 (𝑈𝑥∩ relint(ΓD))
=
{︁
𝜉 ∈ R3 : 𝜉1 ∈ (−𝑟𝑥 , 𝑟𝑥 ), −𝑟𝑥 < 𝜉2 < 𝜓𝑥 (𝜉1), 𝜉3 = 𝜙𝑥 (𝜉1,𝜓𝑥 (𝜉2))

}︁
,

Φ𝑥 (𝑈𝑥 ∩ ΓI) =
{︁
𝜉 ∈ R3 : 𝜉1 ∈ (−𝑟𝑥 , 𝑟𝑥 ), 𝜉2 = 𝜓𝑥 (𝜉1), 𝜉3 = 𝜙𝑥 (𝜉1,𝜓𝑥 (𝜉2))

}︁
,

Φ𝑥 (𝑈𝑥 ∩ ΓN) =
{︁
𝜉 ∈ R3 : 𝜉1 ∈ (−𝑟𝑥 , 𝑟𝑥 ), 𝜓𝑥 (𝜉1) < 𝜉2 < 𝑟𝑥 , 𝜉3 = 𝜙𝑥 (𝜉1,𝜓𝑥 (𝜉2))

}︁
.

The domain Ω is allowed to be multiply connected and the boundary may not be

connected. Let Γ0, . . . , Γ𝐽 ⊆ 𝜕Ω for 𝐽 ∈ N0 denote the 𝐽 + 1 connectivity components

of 𝜕Ω satisfying

𝜕Ω =

𝐽⋃︂
𝑗=0

Γ𝑗 and dist(Γ𝑗 , Γ𝑘) > 0 for 𝑗, 𝑘 = 1, . . . , 𝐽 with 𝑗 ≠ 𝑘.

In particular, let Γ0 denote the boundary of the unbounded component of R3 \ Ω.
The analysis of discrete reliability employs the construction of vector potentials

for solenoidal vector fields satisfying partial homogeneous boundary conditions. The

following Assumption 2 supposes the existence of those potentials and is established

by [65, Theorem 3.4] in the case without boundary conditions.

Assumption 2. The domain Ω and the Neumann boundary ΓN are supposed to allow
for the following equivalence. A vector field 𝜌 ∈ 𝐻 (div,Ω) satisfies

div 𝜌 = 0 in Ω, 𝜌 · 𝜈 = 0 on ΓN, and∫
Γ𝑗

𝜌 · 𝜈 d𝑎 = 0 for every 𝑗 = 0, . . . , 𝐽
(2.6)

if and only if there exists a vector potential 𝑣 ∈ 𝐻 1(Ω;R3) such that

𝜌 = curl 𝑣 in Ω and 𝑣 = 0 on ΓN. (2.7)

In addition, there exists a positive generic constant 𝐶curl such that the following stability
estimate holds

∥𝑣 ∥𝐻 1 (Ω) ≤ 𝐶curl ∥𝜌 ∥𝐿2 (Ω) . (2.8)

Before the Theorems 2.3–2.4 discuss sufficient geometric properties, a Helmholtz

decomposition is directly derived from Assumption 2.

Theorem 2.2 (Helmholtz decomposition). Suppose Ω and ΓN satisfy Assumption 2.
Given any 𝜏 ∈ 𝐻N(div,Ω), there exist 𝛼 ∈ 𝐻 1

D
(Ω) and 𝛽 ∈ 𝐻 1

N
(Ω;R3) with

𝜏 = ∇𝛼 + curl 𝛽, (2.9)

∥∇𝛼 ∥𝐿2 (Ω) ≤ 𝐶F ∥ div𝜏 ∥𝐿2 (Ω), and ∥𝛽 ∥𝐻 1 (Ω) ≤ 𝐶curlmax{1,𝐶F} ∥𝜏 ∥𝐻 (div,Ω) (2.10)

for the Friedrichs constant 𝐶F from Lemma 2.1 and 𝐶curl from (2.8).
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Proof. Given 𝜏 ∈ 𝐻N(div,Ω), let 𝛼 ∈ 𝐻 1

D
(Ω) solve the Poisson model problem

(∇𝛼,∇ 𝑣)𝐿2 (Ω) = −(div𝜏, 𝑣)𝐿2 (Ω) for all 𝑣 ∈ 𝐻 1

D
(Ω).

This and the Friedrichs inequality from Lemma 2.1 imply the stability estimate

∥ ∇𝛼 ∥2
𝐿2 (Ω) = −(div𝜏, 𝛼)𝐿2 (Ω) ≤ ∥ div𝜏 ∥𝐿2 (Ω) ∥𝛼 ∥𝐿2 (Ω) ≤ 𝐶F∥ div𝜏 ∥𝐿2 (Ω) ∥ ∇𝛼 ∥𝐿2 (Ω) .

Thus, ∥ ∇𝛼 ∥𝐿2 (Ω) ≤ 𝐶F∥ div𝜏 ∥𝐿2 (Ω) . The integration by parts formula proves, for every

test function 𝑣 ∈ 𝐻 1

D
(Ω),

0 = −(div𝜏, 𝑣)𝐿2 (Ω) − (∇𝛼,∇ 𝑣)𝐿2 (Ω) = (𝜏 − ∇𝛼,∇ 𝑣)𝐿2 (Ω)
= −(div(𝜏 − ∇𝛼), 𝑣)𝐿2 (Ω) + ((𝜏 − ∇𝛼) · 𝜈, 𝑣)𝐿2 (ΓN) .

(2.11)

Since this holds also for 𝑣 ∈ 𝐻 1

D
(Ω) with 𝑣 = 0 on ΓN, it follows that the function

𝜌 ≔ 𝜏−∇𝛼 ∈ 𝐻 (div = 0,Ω) is divergence-free. In particular, the equality (2.11) shows,

for every 𝑣 ∈ 𝐻 1

D
(Ω),

0 = (𝜌 · 𝜈, 𝑣)𝐿2 (ΓN) .

Therefore, 𝜌 ·𝜈 = 0 on ΓN and Assumption 2 provides existence of some 𝛽 ∈ 𝐻 1

N
(Ω;R3)

such that 𝜌 = curl 𝛽 . The stability estimate (2.8) in

∥𝛽 ∥𝐻 1 (Ω) ≤ 𝐶curl ∥𝜌 ∥𝐿2 (Ω) ≤ 𝐶curl

(︁
∥𝜏 ∥𝐿2 (Ω) + ∥ ∇𝛼 ∥𝐿2 (Ω)

)︁
concludes the proof of (2.10). □

The necessity of the condition (2.6) is always fulfilled.

Theorem 2.3. On every Lipschitz domain Ω, the existence of 𝑣 ∈ 𝐻 1(Ω;R3) with (2.7)

implies that 𝜌 ≔ curl 𝑣 satisfies (2.6).

Proof. For any 𝑣 ∈ 𝐻 1

N
(Ω;R3) ⊂ 𝐻N(curl,Ω) and 𝜑 ∈ 𝐶∞

c
(Ω \ ΓD), it holds that

curl 𝑣 ∈ 𝐻 (div = 0,Ω). The Green’s formulas for the gradient and the curl imply

(𝜑, curl 𝑣 · 𝜈)𝐿2 (ΓN) = (∇𝜑, curl 𝑣)𝐿2 (Ω) = (∇𝜑, 𝜈 × 𝑣)𝐿2 (ΓN) = 0.

This is the weak form of (curl 𝑣) · 𝜈 = 0 on ΓN. Hence, for every 𝑣 ∈ 𝐻N(curl,Ω),

curl 𝑣 ∈ 𝐻N(div = 0,Ω).

In order to guarantee the third condition in (2.6), let 𝜗 𝑗 ∈ 𝐶∞
c
(R3) for 𝑗 = 0, . . . , 𝐽

denote smooth cut-off functions [65, proof of Theorem 3.4] with

0 ≤ 𝜗 𝑗 ≤ 1 in R3 and 𝜗 𝑗 (𝑥) =
{︄
1 if dist(𝑥, Γ𝑗 ) < 𝜀,
0 else.
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The functions 𝜌 𝑗 ≔ curl(𝜗 𝑗𝑣) ∈ 𝐻 (div = 0,Ω) satisfy

𝜌 𝑗 · 𝜈 =

{︄
𝜌 · 𝜈 on Γ𝑗 ,

0 on Γ𝑘 for 𝑘 = 1, . . . , 𝐽 with 𝑗 ≠ 𝑘.

The Gauss divergence theorem concludes the proof of (2.6) in, for every 𝑗 = 0, . . . , 𝐽 ,∫
Γ𝑗

𝜌 · 𝜈 d𝑎 =

∫
Γ𝑗

𝜌 𝑗 · 𝜈 d𝑎 =

∫
Ω
div 𝜌 𝑗 d𝑥 = 0. □

If ΓN = ∅, the existence of a right-inverse of the curl operator, follows from [65,

Theorem 3.4]. In the case of |ΓN | > 0 this is more involved. For instance, as in the

following theorem, it requires an additional assumption on the connectivity of the

Neumann boundary patches ΓN,ℓ .

Theorem 2.4. Let the Neumann boundary

ΓN =

𝐿⋃︂
ℓ=1

ΓN,ℓ

consist of 𝐿 ∈ N relatively open connectivity components ΓN,1, . . . , ΓN,𝐿 ⊆ ΓN. If the
components ΓN,1, . . . , ΓN,𝐿 are simply connected and, for all ℓ,𝑚 = 1, . . . , 𝐿 with ℓ ≠𝑚,

dist(ΓN,ℓ , ΓN,𝑚) > 0, (2.12)

then Assumption 2 holds. (The distance property (2.12) is implicitly fulfilled due to
Assumption 1 and the assumptions on the parametrisation 𝜓𝑥 of the interface ΓI on
page 16.)

Remark 2.5. This result generalises [65, Theorem 3.4] to functions with partial homo-

geneous boundary conditions. The proof utilises techniques from [9, Remark 3.9] and

[67, Theorem 2.3] to recover the correct boundary conditions. Both references present

results similar to Theorem 2.4 including partial boundary conditions. However, [9,

Theorem 3.8 with Remark 3.9] restricts to domains with connected boundary and [67,

Theorem 3.2] even supposes that Ω is contractible.

Further results similar to Theorem 2.4 are presented in [3, Section 3.5] and include

additional assumptions on cuts of the domain into simply connected subdomains.

Proof of Theorem 2.4. Due to Theorem 2.3, it suffices to show that, given some vector

field 𝜌 ∈ 𝐻N(div,Ω) satisfying (2.6), there exists a vector potential 𝑣 ∈ 𝐻 1

N
(Ω;R3)

with (2.7).

Step 1. By [67, Theorem 2.3], there exists an open bounded Lipschitz domain𝜔N ⊂ R3
such that ˜︁Ω ≔ Ω ∪ ΓN ∪ 𝜔N
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is an open bounded Lipschitz domain with ΓD ⊂ 𝜕˜︁Ω. If required, consider suitable
open subsets of 𝜔N in order to guarantee that 𝜔N can be decomposed into 𝐿 open

connectivity components𝜔N,1, . . . , 𝜔N,𝐿 each attached to the corresponding component

ΓN,1, . . . , ΓN,𝐿 of the Neumann boundary. Thus, the 𝜔N,ℓ satisfy

𝜔N =

𝐿⋃︂
ℓ=1

𝜔N,ℓ , dist(𝜔N,ℓ , 𝜔N,𝑚) > 0 for ℓ ≠𝑚, and

ΓN,ℓ = 𝜕Ω ∩ 𝜔N,ℓ for ℓ = 1, . . . , 𝐿.

The connectivity assumption on ΓN,ℓ ensures that the extended patch𝜔N,ℓ is also simply

connected for every ℓ = 1, . . . , 𝐿.

Moreover, this construction results in 𝐽 + 1 connectivity components ˜︁Γ0, . . . ,˜︁Γ𝐽 of
the boundary of the extended domain ˜︁Ω satisfying

𝜕˜︁Ω =

𝐽⋃︂
𝑗=0

˜︁Γ𝑗 and ΓD ∩ Γ𝑗 = ΓD ∩˜︁Γ𝑗 for 𝑗 = 0, . . . , 𝐽 .

For every 𝑗 = 0, . . . , 𝐽 , the ˜︁Γ𝑗 consists of the boundary of the extended domain at Γ𝑗 if
|Γ𝑗 ∩ ΓN | > 0 and coincides with Γ𝑗 else.
Step 2. The normal boundary condition 𝜌 · 𝜈 = 0 on ΓN allows for an extension˜︁𝜌 ∈ 𝐻 (div, ˜︁Ω) with ˜︁𝜌 (𝑥) = {︄

𝜌 (𝑥) for 𝑥 ∈ Ω,

0 for 𝑥 ∈ 𝜔N.

Since ˜︁𝜌 · 𝜈 = 0 holds on 𝜕𝜔N,ℓ \ ΓN,ℓ for ℓ = 1, . . . , 𝐿, the extension ˜︁𝜌 satisfies, for every

𝑗 = 0, . . . , 𝐽 , ∫
˜︁Γ𝑗 ˜︁𝜌 · 𝜈 d𝑎 = 0.

The application of [65, Theorem 3.4] provides a vector potential ˜︁𝑤 ∈ 𝐻 1(˜︁Ω;R3) with
˜︁𝜌 = curl ˜︁𝑤 and div ˜︁𝑤 = 0 in ˜︁Ω.

Step 3. By definition of ˜︁𝜌 , the restriction𝑤ℓ ≔ ˜︁𝑤 |𝜔N,ℓ
satisfies, for every ℓ = 1, . . . , 𝐿,

curl𝑤ℓ = 0 in 𝜔N,ℓ .

Since 𝜔N,ℓ is simply connected, [65, Theorem 2.9] provides 𝜑ℓ ∈ 𝐻 1(𝜔N,ℓ)/R such that

𝑤ℓ = ∇𝜑ℓ in 𝜔N,ℓ .

The regularity of𝑤ℓ ∈ 𝐻 1(𝜔N,ℓ ;R
3) implies that 𝜑ℓ ∈ 𝐻 2(𝜔N,ℓ)/R. Due to the distance

dist(𝜔N,ℓ , 𝜔N,𝑚) > 0 for ℓ ≠𝑚, the Stein extension theorem [99, Chapter VI, Theorem 5]
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and suitable cut-off functions guarantee the existence of extensions ˜︁𝜑ℓ ∈ 𝐻 2(˜︁Ω) such
that, for every ℓ,𝑚 = 1, . . . , 𝐿 with ℓ ≠𝑚,˜︁𝜑ℓ = 𝜑ℓ in 𝜔N,ℓ and dist(supp(˜︁𝜑ℓ), supp(˜︁𝜑𝑚)) > 0.

The vector field ˜︁𝑣 ≔ ˜︁𝑤 −
𝐿∑︁
ℓ=1

∇˜︁𝜑ℓ ∈ 𝐻 1(˜︁Ω;R3)
vanishes˜︁𝑣 = 0 in every 𝜔N,ℓ for ℓ = 1, . . . , 𝐿. In particular,˜︁𝑣 = 0 vanishes on every ΓN,ℓ
in the sense of traces. Thus, the restriction 𝑣 ≔ ˜︁𝑣 |Ω ∈ 𝐻 1(Ω;R3) satisfies

𝜌 = curl 𝑣 in Ω and 𝑣 = 0 on ΓN.

Step 4. The linear operator curl : 𝐻1 → 𝐻2 on the spaces

𝐻1 =
{︁
𝑤 ∈ 𝐻 1

N
(Ω;R3) : div𝑤 = 0

}︁
,

𝐻2 =
{︁
𝜏 ∈ 𝐻N(div = 0,Ω) :

∫
Γ𝑗

𝜏 · 𝜈 d𝑎 = 0 for 𝑗 = 0, . . . , 𝐽
}︁

is bounded, for every𝑤 ∈ 𝐻1,

∥ curl𝑤 ∥𝐿2 (Ω) ≤
√
2∥ D𝑤 ∥𝐿2 (Ω) ≤

√
2∥𝑤 ∥𝐻 1 (Ω) .

Step 3 shows that the operator curl : 𝐻1 → 𝐻2 is surjective. Thus there exists a

bounded, but not necessarily linear, right-inverse of the curl operator by the Bartle-

Graves theorem with some positive continuity constant𝐶curl. This concludes the proof

of the stability estimate. □

2.4 Triangulations and newest-vertex bisection
Any decomposition of the polyhedral domain Ω ⊂ R3 in this thesis is a finite set of

tagged simplices 𝑇 . A tagged simplex 𝑇 = (𝑧0, . . . , 𝑧3;𝛾) consists of a tuple of vertices
𝑧0, . . . , 𝑧3 ∈ R3 not lying in a two-dimensional hyperplane and a type 𝛾 ∈ {0, 1, 2}.
Define the domain of the tagged simplex as the convex hull dom(𝑇 ) ≔ conv{𝑧0, . . . , 𝑧3}.
Outside of this chapter, the tag 𝛾 of a simplex is not written and the tagged simplex is

simply identified with its domain,

𝜕𝑇 ≔ 𝜕 dom(𝑇 ), int(𝑇 ) ≔ int(dom(𝑇 )), 𝑇 ∩𝑇 ′ ≔ dom(𝑇 ) ∩ dom(𝑇 ′),
dist(𝑇,𝑇 ′) ≔ dist(dom(𝑇 ), dom(𝑇 ′)), 𝑣 |𝑇 ≔ 𝑣 |dom(𝑇 )

as well as the abbreviations 𝑧 ∈ 𝑇 for 𝑧 ∈ dom(𝑇 ) and 𝐹 ⊂ 𝑇 for 𝐹 ⊂ dom(𝑇 ).
A set T of (tagged) simplices is called regular triangulation of Ω if it covers the

domain

Ω =
⋃︂
𝑇∈T

dom(𝑇 )

and if any two distinct tagged simplices 𝑇,𝑇 ′ ∈ T with 𝑇 = (𝑧0, . . . , 𝑧3;𝛾) and 𝑇 ′ =
(𝑧′

0
, . . . , 𝑧′

3
;𝛾 ′) are either disjoint or share exactly
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(a) Unrefined simplex 𝑇 (b) Bisection for type 0 (c) Bisection for types 1, 2

Figure 2.1: Bisection rule for one simplex 𝑇 with local node numbers. The thick red line

indicates the refinement edge such as ref (𝑇 ) = conv{𝑧0, 𝑧3} in (a).

• one node 𝑇 ∩𝑇 ′ = 𝑧ℓ = 𝑧′𝑚 for some 0 ≤ ℓ,𝑚 ≤ 3, or

• one edge 𝑇 ∩𝑇 ′ = conv{𝑧ℓ1, 𝑧ℓ2} = conv{𝑧′𝑚1

, 𝑧′𝑚2

} for some 0 ≤ ℓ1 < ℓ2 ≤ 3 and

0 ≤ 𝑚1 < 𝑚2 ≤ 3, or

• one face 𝑇 ∩𝑇 ′ = conv{𝑧ℓ1, 𝑧ℓ2, 𝑧ℓ3} = conv{𝑧′𝑚1

, 𝑧′𝑚2

, 𝑧′𝑚3

} for some 0 ≤ ℓ1 < ℓ2 <

ℓ3 ≤ 3 and 0 ≤ 𝑚1 < 𝑚2 < 𝑚3 ≤ 3.

In the latter case, 𝑇 and 𝑇 ′
are called neighbouring (tagged) simplices.

The NVB of any tagged simplex 𝑇 = (𝑧0, . . . , 𝑧3;𝛾) ∈ T generates a new node˜︁𝑧 = (𝑧0 + 𝑧3)/2 on the refinement edge ref (𝑇 ) ≔ conv{𝑧0, 𝑧3}. The two child tagged

simplices

(𝑧0,˜︁𝑧, 𝑧1, 𝑧2; (𝛾 + 1) mod 3) and

{︄
(𝑧3,˜︁𝑧, 𝑧1, 𝑧2; (𝛾 + 1) mod 3) if 𝛾 = 1, 2,

(𝑧3,˜︁𝑧, 𝑧2, 𝑧1; (𝛾 + 1) mod 3) if 𝛾 = 0,

are depicted in Figure 2.1 with their local node numbers. These new child simplices

coincide when the bisection rule is applied to the following permutation of the tagged

simplex 𝑇

perm(𝑇 ) ≔
{︄
(𝑧3,˜︁𝑧, 𝑧1, 𝑧2; 1) if 𝛾 = 0,

(𝑧3,˜︁𝑧, 𝑧2, 𝑧1;𝛾) if 𝛾 = 1, 2.

This bisection strategy stems from [81, 104] and has been analysed in [101, 64].

In combination with a closure step, it is called refine in [101, Section 5] and leads

to the notion of one-level refinements of the triangulation T . In order to guarantee

the regularity of arbitrary refinements [101, Theorem 4.3], this refinement strategy

requires the following two conditions on the initial triangulation T0.

(IC1) All tagged simplices 𝑇 ∈ T0 share the same type 𝛾 .
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(IC2) Any two neighbouring tagged simplices𝑇,𝑇 ′ ∈ T0 sharing at least one refinement

edge ref (𝑇 ) ⊂ 𝑇 ∩ 𝑇 ′
or ref (𝑇 ′) ⊂ 𝑇 ∩ 𝑇 ′

are reflected in the sense that the

ordered sequence of vertices of 𝑇 or perm(𝑇 ) coincides with that of 𝑇 ′
on all

but one position. Otherwise, any two neighbouring children of 𝑇 and 𝑇 ′
are

reflected.

Additionally, assume that T0 resolves the decomposition of the boundary into ΓD and

ΓN.
Such an initial regular triangulation T0 of tagged simplices with initial condition

(IC) induces the set of all admissible triangulations

T ≔ T(T0) ≔
{︁
Tℓ regular triangulation of Ω into tagged simplices :

∃ℓ ∈ N0 ∃T1, . . . ,Tℓ successive one-level refinements in the sense

that T𝑚+1 is a one-level refinement of T𝑚 for𝑚 = 0, . . . , ℓ − 1

}︁
.

For any natural number 𝑁 ∈ N, set

T(𝑁 ) ≔
{︁
T ∈ T : |T | − |T0 | ≤ 𝑁

}︁
.

All triangulations in this thesis are admissible, when generated with NVB. In partic-

ular, this guarantees shape-regularity of all T ∈ T in the sense of [51, Section 3.2].

Furthermore, for a one-level refinement ˆ︁T of T , an upper bound for the number of

newly created simplices during the closure step

|ˆ︁T \ T | ≤ 𝐶NVB |M|

is essential for the convergence analysis with rates [14, Theorem 2.4]. For arbitrary

spatial dimensions, this has been established in [101, Theorem 6.1].

For any triangulation T ∈ T, N denotes the set of nodes, F the set of faces, and E
the set of edges. The corresponding sets on the boundary 𝜕Ω readN(𝜕Ω), F (𝜕Ω), and
E(𝜕Ω). The elements of the complementary subsets N(Ω), F (Ω), and E(Ω) belong
to the interior Ω. For any tagged simplex 𝑇 ∈ T , let N(𝑇 ) denote the set of its four
nodes, F (𝑇 ) the set of its four faces, and E(𝑇 ) the set of its six edges. Let the set

F of faces be subordinated to ΓD and ΓN in that F (ΓD) ≔ {𝐹 ∈ F : 𝐹 ⊆ ΓD} and
F (ΓN) ≔ {𝐹 ∈ F : 𝐹 ⊆ ΓN} partition the set F (𝜕Ω).
Given any subset 𝜔 ⊆ Ω such that there exists a set of simplices M ⊆ T satisfying

𝜔 =
⋃︂
𝑇∈M

𝑇,

let T (𝜔) ≔M denote the regular triangulation of 𝜔 into tagged simplices from T .

Notation 3 (admissible refinement). Throughout the thesis, let T ∈ T denote an
arbitrary regular triangulation with admissible refinement ˆ︁T ∈ T(T ). Let (𝜎LS, 𝑢LS)
and (ˆ︁𝜎LS,ˆ︁𝑢LS) denote the respective discrete least-squares finite element solutions. In
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Figure 2.2: Patch 𝜔𝐹 of the interior face 𝐹 ∈ F (Ω) consisting of two adjacent simplices 𝑇+
and𝑇− with corresponding unit normal vector 𝜈𝐹 and outward unit normal vectors

𝜈𝑇+ , 𝜈𝑇− .

order to indicate the relation to the refinement ˆ︁T , the superscript ˆ︁ is applied to any

set such as
ˆ︁F , ˆ︁E, ˆ︁N , or discrete function such asˆ︁𝑢LS,ˆ︁𝜏RT, ˆ︁𝛽Ned, or operator into discrete

spaces such as ˆ︁Π𝑘−1, ˆ︁J𝑘+1
D

.

Notation 4 (generic constants). Any positive generic constant 0 < 𝐶 < ∞ in the

following analysis is uniformly bounded due to the shape-regularity of all T ∈ T.
Upper case constants are identical throughout the thesis such as the constants Λ 𝑗 from

the axioms of adaptivity. Lower case constants 𝑐𝑚 for𝑚 ∈ N are solely utilised in

proofs and do not vary within this scope.

Given a node 𝑧 ∈ N , an edge 𝐸 ∈ E, and a face 𝐹 ∈ F , define the nodal patch

𝜔𝑧 ⊆ Ω, the edge patch 𝜔𝐸 ⊆ Ω, and the face patch 𝜔𝐹 ⊆ Ω by

𝜔𝑧 ≔ int

⋃︁ {︁
𝑇 ∈ T : 𝑧 ∈ 𝑇

}︁
, 𝜔𝐸 ≔ int

⋃︁ {︁
𝑇 ∈ T : 𝐸 ⊂ 𝑇

}︁
,

𝜔𝐹 ≔ int

⋃︁ {︁
𝑇 ∈ T : 𝐹 ⊂ 𝑇

}︁
.

For every interior face 𝐹 ∈ F (Ω), the face patch {𝑇 ∈ T : 𝐹 ⊂ 𝑇 } = {𝑇+,𝑇−} consists
of exactly two adjacent simplices 𝑇+,𝑇− ∈ T . The index is determined by the fixed

orientation of the unit normal vector 𝜈𝐹 of 𝐹 such that 𝜈𝐹 · 𝜈𝑇± = ±1 as illustrated in

Figure 2.2. For every boundary face 𝐹 ∈ F (𝜕Ω), the face patch {𝑇 ∈ T : 𝐹 ⊂ 𝑇 } =
{𝑇+} consists of a unique adjacent simplex 𝑇+.
These face patches induce the definition of tangential and normal jumps of piecewise

Sobolev functions. For any piecewise function 𝛽pw ∈ 𝐻 (curl,T), let

[𝜈𝐹 × 𝛽pw]𝐹 ≔
{︄
𝜈𝐹 × (𝛽pw |𝑇+) − 𝜈𝐹 × (𝛽pw |𝑇−) on 𝐹 ∈ F (Ω) with 𝐹 = 𝜕𝑇+ ∩ 𝜕𝑇−,
𝜈𝐹 × (𝛽pw |𝑇+) on 𝐹 ∈ F (𝜕Ω) ∩ F (𝑇+) .

(2.13)
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For any piecewise function 𝜏pw ∈ 𝐻 (div,T), let

[𝜏pw · 𝜈𝐹 ]𝐹 ≔
{︄
(𝜏pw |𝑇+) · 𝜈𝐹 − (𝜏pw |𝑇−) · 𝜈𝐹 on 𝐹 ∈ F (Ω) with 𝐹 = 𝜕𝑇+ ∩ 𝜕𝑇−,
(𝜏pw |𝑇+) · 𝜈𝐹 on 𝐹 ∈ F (𝜕Ω) ∩ F (𝑇+) .

(2.14)

The analogous notation applies for matrix-valued functions in 𝐻 (curl,T ;R3×3) and
𝐻 (div,T ;R3×3).

Given any 𝑇 ∈ T , let Ω𝑇 ⊆ Ω denote the tetrahedron patch

Ω𝑇 ≔ int

⋃︁ {︁˜︁𝑇 ∈ T : dist(˜︁𝑇,𝑇 ) = 0

}︁
. (2.15)

The shape-regularity of all T ∈ T ensures the uniform boundedness of the positive

generic overlap constant

𝐶2

OL
≔ max

T∈T
max

𝑇∈T
|T (Ω𝑇 ) | < ∞. (2.16)

For any natural number 𝑛 ∈ N, define the 𝑛-layer around a subset of simplices

M ⊆ T successively by

L𝑛 (M) ≔
{︁
𝑇 ∈ T : ∃𝑇0, . . . ,𝑇𝑛 ∈ T with 𝑇0 ∈ M,𝑇𝑛 = 𝑇,

and dist(𝑇𝑚,𝑇𝑚+1) = 0 for every𝑚 = 0, . . . , 𝑛 − 1

}︁
.

If the argument M ⊆ F is any subset of faces, the same notation applies to 𝑛-layers

of faces subordinated to the part ΓX of the boundary

L𝑛 (M, ΓX) ≔
{︁
𝐹 ∈ F (ΓX) : ∃𝐹0, . . . , 𝐹𝑛 ∈ F (ΓX) with 𝐹0 ∈ M, 𝐹𝑛 = 𝐹, and

dist(𝐹𝑚, 𝐹𝑚+1) = 0 for every𝑚 = 0, . . . , 𝑛 − 1

}︁
.

(2.17)

Figure 2.3 displays examples of 𝑛-layers L𝑛 (M, ΓX) around refined faces M = F \ ˆ︁F
on the boundary ΓX. The union of faces of such 𝑛-layers⋃︁L𝑛 (M, ΓX) ≔

⋃︁{𝐹 : 𝐹 ∈ L𝑛 (M, ΓX)}

forms a 2-dimensional Lipschitz submanifold in R3 with boundary.

Given a regular triangulation T ∈ T and its refinement ˆ︁T ∈ T(T ), abbreviate the
𝑛-layers around the refined simplices with R𝑛 ≔ L𝑛 (T \ ˆ︁T). The piecewise constant
mesh-size function ℎT ∈ 𝑃0(T ) is defined as the cubic root of the volume of the

simplices

ℎT |𝑇 ≔ ℎ𝑇 ≔ |𝑇 |1/3 for 𝑇 ∈ T . (2.18)

This leads to the maximal mesh-size ℎmax ≔ ∥ℎT ∥𝐿∞ (Ω) > 0.

Recall the well-known trace inequality.
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Figure 2.3: Face layers L𝑛 (F \ ˆ︁F , ΓX) from (2.17) for 𝑛 ∈ N on the boundary part ΓX. The
square ΓX is a subset of the boundary 𝜕Ω of the three-dimensional domain Ω. The
dotted line indicates the bisection of boundary faces made in the refinement step

from F (ΓX) to ˆ︁F (ΓX).

Lemma 2.6 (trace inequality). There exists a positive generic constant 𝐶tr such that
for every regular triangulation T ∈ T and every simplex 𝑇 ∈ T with face 𝐹 ∈ F (𝑇 ),
every 𝑣 ∈ 𝐻 1(T ) satisfies

∥𝑣 |𝑇 ∥2𝐿2 (𝐹 ) ≤ 𝐶tr

(︁
|𝑇 |1/3∥∇𝑣 ∥2

𝐿2 (𝑇 ) + |𝑇 |−1/3∥𝑣 ∥2
𝐿2 (𝑇 )

)︁
. (2.19)

The generic constant 𝐶tr solely depends on the shape regularity of the triangulations in T.

Proof. The shape-regularity of the triangulationsT ∈ T provides existence of a positive
generic constant 𝑐1 such that diam(𝑇 ) ≤ 𝑐1 |𝑇 |1/3. This and the continuous trace

inequality from [58, Lemma 1.49] establish

∥𝑣 |𝑇 ∥2𝐿2 (𝐹 ) ≤ 𝑐2
(︁
2 ∥∇𝑣 ∥𝐿2 (𝑇 ) ∥𝑣 ∥𝐿2 (𝑇 ) + 3𝑐1 |𝑇 |1/3∥𝑣 ∥2𝐿2 (𝑇 )

)︁
.

Young’s inequality with parameter 𝛼 > 0 shows

∥𝑣 |𝑇 ∥2𝐿2 (𝐹 ) ≤ 𝑐2
(︂
𝛼 |𝑇 |1/3∥∇𝑣 ∥2

𝐿2 (𝑇 ) + (3𝑐1 + 1/𝛼) |𝑇 |−1/3∥𝑣 ∥2
𝐿2 (𝑇 )

)︂
.

This concludes the proof of (2.19) with the positive generic constant

𝐶tr ≔ 𝑐2𝛼
∗

with 𝛼∗ ≔
3𝑐1 +

√︃
9𝑐2

1
+ 4

2

= 3𝑐1 +
1

𝛼∗
. □
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2.5 Finite element discretisation
In order to define discrete subspaces of the Sobolev and Lebesgue spaces from the

Sections 2.1 and 2.2, let 𝑃𝑘 (T ) denote the space of piecewise polynomials of total degree

at most 𝑘 ∈ N0. The orthogonal projection of an 𝐿2(Ω) function 𝑓 onto 𝑃𝑘 (T ) reads
Π𝑘 𝑓 ∈ 𝑃𝑘 (T ). The componentwise projection applies for vector- or matrix-valued

functions and maps onto 𝑃𝑘 (T ;R3) or 𝑃𝑘 (T ;R3×3). Recall for any face 𝐹 ∈ F (𝜕Ω),
that 𝜔𝐹 ∈ T denotes the unique tetrahedron with 𝐹 ⊂ 𝜔𝐹 . The approximation of

the boundary data 𝑔 ∈ 𝐿2(ΓX) is naturally measured in terms of the oscillations, for

M ⊆ F (ΓX),
osc

2(𝑔,M) ≔
∑︁
𝐹∈M

|𝜔𝐹 |1/3 ∥(1 − Π𝑘)𝑔∥2𝐿2 (𝐹 ) . (2.20)

Throughout the thesis, fix a polynomial degree 𝑘 ∈ N0. Let 𝑆
𝑘+1(T ) ≔ 𝑃𝑘+1(T ) ∩

𝐻 1(Ω) and 𝑆𝑘+1(T ;R3) ≔ 𝑃𝑘+1(T ;R3)∩𝐻 1(Ω;R3) approximate the scalar- and vector-

valued 𝐻 1
functions.

The discrete approximation of 𝐻 (div) functions employs the space of Raviart-

Thomas functions [91, 86] with the identity mapping id : Ω → R3

𝑅𝑇𝑘 (T ) ≔
{︁
𝜏RT ∈ 𝐻 (div,Ω) : ∀𝑇 ∈ T ∃𝑎𝑇 ∈ 𝑃𝑘 (𝑇 ;R3) ∃𝑏𝑇 ∈ 𝑃𝑘 (𝑇 ),

𝜏RT |𝑇 = 𝑎𝑇 + 𝑏𝑇 id
}︁
,

𝑅𝑇𝑘 (T ;R3×3) ≔
{︁
𝜏RT = (𝜏ℓ𝑚)ℓ,𝑚=1,...,3 ∈ 𝐻 (div,Ω;R3×3) :

∀ℓ = 1, 2, 3, (𝜏ℓ1, 𝜏ℓ2, 𝜏ℓ3)⊤ ∈ 𝑅𝑇𝑘 (T )
}︁
.

The 𝐻 (curl)-conforming Nédélec functions of the first kind [86, 87, 65] read

𝑁𝑘 (T ) ≔
{︁
𝛽Ned ∈ 𝐻 (curl,Ω) : ∀𝑇 ∈ T ∃𝑎𝑇 , 𝑏𝑇 ∈ 𝑃𝑘 (T ;R3),

𝛽Ned |𝑇 = 𝑎𝑇 + 𝑏𝑇 × id

}︁
,

𝑁𝑘 (T ;R3×3) ≔
{︁
𝛽Ned = (𝛽ℓ𝑚)ℓ,𝑚=1,...,3 ∈ 𝐻 (curl,Ω;R3×3) :

∀ℓ = 1, 2, 3, (𝛽ℓ1, 𝛽ℓ2, 𝛽ℓ3)⊤ ∈ 𝑁𝑘 (T )
}︁
.

For an analysis of the presented finite element function spaces, the reader is referred

to the monographs [23, 19, 18]. Figure 2.4 depicts the lowest-order finite elements for

the discretisation employed in this thesis.

The normal trace operator 𝛾nor from Section 2.2 is surjective from the Raviart-

Thomas space 𝑅𝑇𝑘 (T ) onto the piecewise polynomial functions 𝑃𝑘 (F (𝜕Ω)) on the

boundary. The following lemma asserts the existence of a discrete extension of these

boundary data.

Lemma 2.7 (discrete extension in 𝑹𝑻𝒌). Given some piecewise polynomial function
𝑡pw ∈ 𝑃𝑘 (F (𝜕Ω)) with

−
∫
𝜕Ω
𝑡pw d𝑎 = 0, (2.21)
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(a) 𝑅𝑇0 (b) 𝑆1

Figure 2.4: Pictograms of lowest-order Raviart-Thomas finite elements𝑅𝑇0 in (a) with 4 degrees

of freedom and Courant finite elements 𝑆1 in (b) with 4 degrees of freedom. The

arrows represent the integral mean of the normal component on the corresponding

face and balls symbolise the point evaluations in the vertices.

there exists a discrete extension 𝜌RT ∈ 𝑅𝑇𝑘 (T ) with div 𝜌RT = 0 in Ω and 𝜌RT · 𝜈 = 𝑡pw.
Moreover, there exists a positive generic constant 𝐶ext such that

∥𝜌RT∥𝐿2 (Ω) ≤ 𝐶ext ∥𝑡pw∥𝐻−1/2 (𝜕Ω) . (2.22)

Proof. Since the result is proven in [2, Theorem 2.1], the proof at hand solely presents

the construction of 𝜌RT and an overview of the arguments. Let 𝑤 ∈ 𝐻 1(Ω)/R solve

the Neumann problem

(∇𝑤,∇ 𝑣)𝐿2 (Ω) = (𝑡pw, 𝑣)𝐿2 (𝜕Ω) for all 𝑣 ∈ 𝐻 1(Ω)/R.

This is well-posed due to the compatibility condition (2.21). The integration by parts

shows that the weak derivative 𝜌 ≔ ∇𝑤 ≔ D𝑤 ∈ 𝐻 (div,Ω;R3×3) satisfies div 𝜌 = 0

in Ω and 𝜌𝜈 = 𝑡pw on 𝜕Ω. The reduced elliptic regularity [54] of the Neumann problem

ensures that 𝜌 ∈ 𝐻 1/2+𝑠 (Ω;R3) ∩𝐻 (div,Ω) for some regularity parameter 0 < 𝑠 < 1/2.
This allows for the application of the Fortin interpolation 𝐼F : 𝐿

𝑝 (Ω;R3) ∩𝐻 (div,Ω) →
𝑅𝑇𝑘 (T ) for 𝑝 > 2 from [18, Example 2.5.3] to define 𝜌RT ≔ 𝐼F𝜌 . The commuting

diagram property of 𝐼F shows

div 𝜌RT = div 𝐼F𝜌 = Π𝑘 div 𝜌 = 0.

The definition of 𝐼F [18, Equation (2.5.10)] leads to

𝜌RT · 𝜈 = (𝐼F𝜌) · 𝜈 = Π𝑘 (𝜌 · 𝜈) = 𝑡pw.

The proof of the stability (2.22) is more complex and involves a localised elliptic

regularity estimate and an inverse inequality for the boundary data. □

The remaining part of this section is devoted to the existence of 𝐿2-stable vector po-

tentials in the space of Nédélec finite element functions with homogeneous tangential

boundary conditions

𝐵𝑘
N
(T ) ≔ 𝑁𝑘 (T ) ∩ 𝐻N(curl,Ω).
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Theorem2.8. Suppose thatΩ and ΓN satisfy Assumption 2 from Section 2.3. LetT0 denote
some initial triangulation with admissible refinement T ∈ T. Given a discrete vector
field 𝜌RT ∈ 𝑅𝑇𝑘 (T ) with div 𝜌RT = 0 and 𝜌RT · 𝜈 = 0 on ΓN, there exists a discrete vector
potential 𝛽Ned ∈ 𝐵𝑘

N
(T ) and some vector field 𝜌∗

RT
∈ 𝑅𝑇𝑘 (T0) on the initial triangulation

T0 with div 𝜌∗
RT

= 0 in Ω and 𝜌∗
RT

· 𝜈 = 0 on ΓN such that

𝜌RT = curl 𝛽Ned + 𝜌∗RT.

Additionally, there exists a positive generic constant 𝐶Ned such that

∥𝛽Ned∥𝐻 (curl,Ω) + ∥𝜌∗
RT
∥𝐿2 (Ω) ≤ 𝐶Ned ∥𝜌RT∥𝐿2 (Ω) . (2.23)

Proof. Step 1. For 𝑗 = 0, . . . , 𝐽 , set the constants

𝛼 𝑗 ≔

⎧⎪⎪⎨⎪⎪⎩
1

|Γ𝑗 ∩ ΓD |

∫
Γ𝑗∩ΓD

𝜌RT · 𝜈 d𝑎 if |Γ𝑗 ∩ ΓD | > 0,

0 else.

Since the initial triangulation T0 resolves the partition of the boundary 𝜕Ω = ΓD ∪ ΓN,
these constants define a piecewise constant function 𝛼∗

pw
∈ 𝑃0(F0(𝜕Ω)) ⊂ 𝐻−1/2(𝜕Ω)

with respect to T0 by

𝛼∗
pw

≡ 𝛼 𝑗 on Γ𝑗 ∩ ΓD for 𝑗 = 0, . . . , 𝐽 and 𝛼∗
pw

≡ 0 on ΓN.

Since dist(Γ𝑗 , Γ𝑚) > 0 for 𝑗 ≠𝑚, there exist smooth cut-off functions 𝜗 𝑗 ∈ 𝐶∞(Ω) for
𝑗 = 0, . . . , 𝐽 with

𝜗 𝑗 ≡ 1 on Γ𝑗 and dist(supp(𝜗 𝑗 ), supp(𝜗𝑚)) > 0 for 𝑗 ≠𝑚.

Furthermore, define the positive generic constant

𝑐1 ≔ max

𝑗=0,...,𝐽
∥𝜗 𝑗 ∥𝐻 1 (Ω),

that solely depends on the geometry of Ω. An integration by parts establishes∫
Γ𝑗∩ΓD

𝜌RT · 𝜈 d𝑎 = (𝜗 𝑗 , 𝜌RT · 𝜈)𝐿2 (𝜕Ω) = (∇𝜗 𝑗 , 𝜌RT)𝐿2 (Ω) + (𝜗 𝑗 , div 𝜌RT)𝐿2 (Ω) .

The sum of this over 𝑗 = 0, . . . , 𝐽 and the Cauchy-Schwarz inequality result in

𝐽∑︁
𝑗=0

|Γ𝑗 ∩ ΓD |𝛼 𝑗 =
𝐽∑︁
𝑗=0

∫
Γ𝑗∩ΓD

𝜌RT · 𝜈 d𝑎 ≤ 𝑐1 ∥𝜌RT∥𝐻 (div,Ω) .
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Another Cauchy-Schwarz inequality and the boundedness of the trace operator 𝛾

from (2.3) lead to

∥𝛼∗
pw

∥𝐻−1/2 (𝜕Ω) = sup

{︁
⟨𝛼∗

pw
, 𝛾 (𝑤)⟩𝜕Ω : 𝑤 ∈ 𝐻 1(Ω), ∥𝑤 ∥𝐻 1 (Ω) = 1

}︁
≤ sup

{︁
∥𝛾 (𝑤)∥𝐿2 (𝜕Ω) : 𝑤 ∈ 𝐻 1(Ω), ∥𝑤 ∥𝐻 1 (Ω) = 1

}︁ 𝐽∑︁
𝑗=0

∥𝛼 𝑗 ∥𝐿2 (ΓD∩Γ𝑗 )

≤ 𝐶𝛾
𝐽∑︁
𝑗=0

|ΓD ∩ Γ𝑗 |𝛼 𝑗 ≤ 𝑐1𝐶𝛾 ∥𝜌RT∥𝐻 (div,Ω) .

Step 2. Since div 𝜌RT = 0 in Ω, the Gauss divergence theorem proves∫
𝜕Ω
𝛼∗
pw

d𝑎 =

𝐽∑︁
𝑗=0

∫
Γ𝑗∩ΓD

𝛼 𝑗 d𝑎 =

∫
𝜕Ω
𝜌RT · 𝜈 d𝑎 =

∫
Ω
div 𝜌RT d𝑥 = 0.

Hence, Lemma 2.7 provides the existence of a discrete extension 𝜌∗
RT

∈ 𝑅𝑇𝑘 (T0) of
𝛼∗
pw

on the initial triangulation such that div 𝜌∗
RT

= 0 in Ω and 𝜌∗
RT

· 𝜈 = 𝛼∗
pw
. The

stability (2.22) shows

∥𝜌∗
RT
∥𝐻 (div,Ω) ≤ 𝐶ext ∥𝛼∗pw∥𝐻−1/2 (𝜕Ω) ≤ 𝑐1𝐶𝛾𝐶ext ∥𝜌RT∥𝐻 (div,Ω) . (2.24)

The definition of 𝛼∗
pw

ensures, for 𝑗 = 0, . . . , 𝐽 ,∫
Γ𝑗

(𝜌RT − 𝜌∗RT) · 𝜈 d𝑎 =

∫
Γ𝑗∩ΓD

(𝜌RT − 𝜌∗RT) · 𝜈 d𝑎 = 0.

The application of Assumption 2 leads to the existence of a vector potential 𝛽 ∈
𝐻 1(Ω;R3) with

𝜌RT − 𝜌∗RT = curl 𝛽 in Ω and 𝜈 × 𝛽 = 0 on ΓN.

Moreover,

∥𝛽 ∥𝐻 (curl,Ω) ≤
√
2∥𝛽 ∥𝐻 1 (Ω) ≤

√
2𝐶curl ∥𝜌RT∥𝐿2 (Ω) . (2.25)

Step 3. Let PNed : 𝐿
2(Ω;R3) → 𝐵𝑘

N
(T ) and PRT : 𝐿2(Ω;R3) → 𝑅𝑇𝑘 (T )∩𝐻N(div,Ω)

denote the projections from [77, Theorem 1.1] with the commuting diagram property

𝐻 (curl,Ω) 𝐻 (div,Ω)

𝑁𝑘 (T ) 𝑅𝑇𝑘 (T )

curl

PNed PRT

curl

.

These operators preserve partial homogeneous boundary conditions in that the equa-

tion 𝜈 × 𝛽 = 0 on ΓN implies that 𝛽Ned ≔ PNed𝛽 satisfies 𝜈 × 𝛽Ned = 0 on ΓN. Their
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pointwise invariance property PRT𝑞RT = 𝑞RT for all 𝑞RT ∈ 𝑅𝑇𝑘 (T ) ∩ 𝐻N(div,Ω) and
the commuting diagram property lead to

curl 𝛽Ned = curlPNed𝛽 = PRT(𝜌RT − 𝜌∗RT) = 𝜌RT − 𝜌∗RT.

Further, the operators satisfy the 𝐿2 stability estimates [77, Theorem 6.3] with some

positive generic constant 𝑐2, for all 𝑞 ∈ 𝐿2(Ω;R3),

∥PNed𝑞∥𝐿2 (Ω) ≤ 𝑐2 ∥𝑞∥𝐿2 (Ω) and ∥PRT𝑞∥𝐿2 (Ω) ≤ 𝑐2 ∥𝑞∥𝐿2 (Ω) .

The positive generic constant 𝑐2 solely depends on the polynomial degree 𝑘 ∈ N0, the

geometric properties of Ω and ΓN, and the initial triangulation T0. The commuting dia-

gram property immediately implies the𝐻 (curl) stability of PNed, for all 𝑞 ∈ 𝐻 (curl,Ω),

∥ curlPNed𝑞∥𝐿2 (Ω) = ∥PRT curl𝑞∥𝐿2 (Ω) ≤ 𝑐2 ∥ curl𝑞∥𝐿2 (Ω) .

In particular, (2.25) shows

∥𝛽Ned∥𝐻 (curl,Ω) ≤ 𝑐2 ∥𝛽 ∥𝐻 (curl,Ω) . ≤
√
2𝐶curl𝑐3 ∥𝜌RT∥𝐿2 (Ω)

This and (2.24) conclude the proof of the stability (2.23) with the positive generic

constant 𝐶Ned ≔ 𝑐1𝐶𝛾𝐶ext +
√
2𝐶curl𝑐2. □

2.6 Scott-Zhang quasi-interpolation operator
This section introduces two modifications of the Scott-Zhang quasi-interpolation

operator from [96] and presents their entire construction. The first operator J𝑘+1
X

:

𝐻 1(Ω) → 𝑆𝑘+1(T ) preserves polynomial boundary conditions up to degree 𝑘 + 1 on

one part ΓX ∈ {ΓD, ΓN} of the boundary and enables the interpolation of the given

Dirichlet boundary data as described in Section 3.3. For any admissible refinementˆ︁T ∈ T(T ) of T ∈ T, the second operator K𝑘+1
X

: 𝑆𝑘+1(ˆ︁T) → 𝑆𝑘+1(T ) allows for the
preservation of the values on the unrefined simplices ˆ︁T ∩ T and is solely employed

in the analysis of the discrete reliability in Section 4.2 below. Throughout the thesis,

J𝑘+1
X

or K𝑘+1
X

act componentwise when applied to vector fields𝑤 ∈ 𝐻 1(Ω;R3).
The definition the Scott-Zhang quasi-interpolation of some 𝑣 ∈ 𝐻 1(Ω) proceeds

as follows. Let (𝜙𝑚 : 𝑚 = 1, . . . , 𝑀) for 𝑀 ≔ dim(𝑆𝑘+1(T )) denote the nodal basis
functions of 𝑆𝑘+1(T ) with associated nodes I𝑘+1 ≔ (𝑎𝑚 ∈ Ω : 𝑚 = 1, . . . , 𝑀) such
that

𝜙𝑚 (𝑎𝑛) = 𝛿𝑚𝑛 ≔
{︄
1 if𝑚 = 𝑛,

0 else.

In particular, I1 = N or I2 = N ∪ {mid(𝐸) : 𝐸 ∈ E}. The local definition of the

coefficients of the nodal basis functions in [96, Section 2] are determined by a weighted

integral of 𝑣 over some two- or three-dimensional closed simplex 𝑆𝑚. The choice of
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𝑆𝑚 depends on the location of the node 𝑎𝑚 and allows to impose some additional

properties on the quasi-interpolation.

If 𝑎𝑚 ∈ int(𝑇 ) belongs to some simplex𝑇 ∈ T , set 𝑆𝑚 ≔ 𝑇 . If 𝑎𝑚 ∈ relint(𝐹 ) belongs
to the relative interior of some face 𝐹 ∈ F , set 𝑆𝑚 ≔ 𝐹 . Any other 𝑎𝑚 belongs to some

edge or is the vertex of a simplex and the choice of 𝑆𝑚 is subject to one of the following

conditions.

Condition 1. Fix one part ΓX ∈ {ΓD, ΓN} of the boundary. For any node 𝑎𝑚 ∈ N
or 𝑎𝑚 ∈ 𝐸 on some edge 𝐸 ∈ E, if 𝑎𝑚 ∈ ΓX belongs to this part ΓX, choose some

subordinated face 𝑆𝑚 ∈ F (ΓX) with 𝑎𝑚 ∈ 𝑆𝑚. Any remaining 𝑆𝑚 can be chosen

arbitrarily.

This condition constitutes the operator J𝑘+1
X

in Definition 2.9 below [4, Section 3.1].

Condition 2. Fix one part ΓX ∈ {ΓD, ΓN} of the boundary and one admissible refine-

ment ˆ︁T ∈ T(T ) of T . For any node 𝑎𝑚 ∈ N or 𝑎𝑚 ∈ 𝐸 on some edge 𝐸 ∈ E, if 𝑎𝑚 ∈ 𝑇
belongs to some unrefined 𝑇 ∈ ˆ︁T ∩ T , choose some unrefined face 𝑆𝑚 ∈ ˆ︁F ∩ F with

𝑎𝑚 ∈ 𝑆𝑚. If this is not possible (in the case that any 𝐹 ∈ F with 𝑎𝑚 ∈ 𝐹 has been

refined) and 𝑎𝑚 ∈ ΓX, choose 𝑆𝑚 ∈ F (ΓX) with 𝑎𝑚 ∈ 𝑆𝑚. Any remaining 𝑆𝑚 can be

chosen arbitrarily.

This condition leads to the operator K𝑘+1
X

in Definition 2.10 below [48, Section 3.2].

For every𝑚 = 1, . . . , 𝑀 , let the functions (𝜙𝑚,𝑛 ∈ 𝑃𝑘+1(𝑆𝑚) : 𝑛 = 1, . . . , 𝑁𝑚) for
𝑁𝑚 ≔ dim(𝑃𝑘+1(𝑆𝑚)) denote the canonical nodal basis of 𝑃𝑘+1(𝑆𝑚). Without loss of

generality, 𝜙𝑚,1 = 𝜙𝑚 |𝑆𝑚 . Define (𝜓𝑚,𝑛 ∈ 𝑃𝑘+1(𝑆𝑚) : 𝑛 = 1, . . . , 𝑁 𝑗 ) as the Riesz

representatives in the Hilbert space 𝑃𝑘+1(𝑆𝑚) ⊂ 𝐿2(𝑆𝑚) of the point evaluations in the

nodes I𝑘+1 ∩ 𝑆𝑚 , for 𝑛, 𝜈 = 1, . . . , 𝑁𝑚 ,

(𝜓𝑚,𝑛, 𝜙𝑚,𝜈 )𝐿2 (𝑆𝑚) = 𝛿𝑛𝜈 .

For𝜓𝑚 ≔ 𝜓𝑚,1 and𝑚,𝑛 = 1, . . . , 𝑀 , it holds that

(𝜓𝑚, 𝜙𝑛)𝐿2 (𝑆𝑚) = 𝛿𝑚𝑛 . (2.26)

Definition 2.9. Given any part ΓX ∈ {ΓD, ΓN} of the boundary and some 𝑣 ∈ 𝐻 1(Ω),
let the choice of the domains 𝑆𝑚 meet the Condition 1 and define J𝑘+1

X
𝑣 by nodal

interpolation of the values at 𝑎𝑚 ∈ I𝑘+1 with

(J𝑘+1
X

𝑣) (𝑎𝑚) = (𝜓𝑚, 𝑣)𝐿2 (𝑆𝑚) .

Definition 2.10. Given any admissible refinement ˆ︁T ∈ T(T ) of T , any part ΓX ∈
{ΓD, ΓN} of the boundary, and someˆ︁𝑣C ∈ 𝑆𝑘+1(ˆ︁T), let the choice of the domains 𝑆𝑚 meet

the Condition 2 and define K𝑘+1
X

ˆ︁𝑣C by nodal interpolation of the values in 𝑎𝑚 ∈ I𝑘+1
with

(K𝑘+1
X

ˆ︁𝑣C) (𝑎𝑚) = (𝜓𝑚,ˆ︁𝑣C)𝐿2 (𝑆𝑚)
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Remark 2.11. The Definition 2.10 applies to discrete functionsˆ︁𝑣C with respect to some

refinement ˆ︁T ∈ T(T ). This defines a class of operators K𝑘+1
X

(ˆ︁T ,T) : 𝑆𝑘+1(ˆ︁T) →
𝑆𝑘+1(T ) whereas J𝑘+1

X
(T ) solely depends on T . To emphasize this difference, the

two operators are distinguished in this thesis, although K𝑘+1
X

has similar properties to

J𝑘+1
X

due to the following lemma. However, all dependencies on the triangulations

are omitted.

Recall the positive generic constant 𝐶OL from (2.16).

Lemma 2.12. The two modifications, J = J𝑘+1
X

and J = K𝑘+1
X

, of the Scott-Zhang
quasi-interpolation operator satisfy

(a) the pointwise invariance property, for all 𝑣C ∈ 𝑆𝑘+1(T ), J𝑣C = 𝑣C,

(b) the local stability and the first-order approximation property with a positive generic
constant 𝐶SZ such that, for all 𝑣 ∈ 𝐻 1(Ω) and 𝑇 ∈ T ,

∥ ∇(1 − J)𝑣 ∥𝐿2 (𝑇 ) + ∥ℎ−1𝑇 (1 − J)𝑣 ∥𝐿2 (𝑇 ) ≤ 𝐶SZ ∥ ∇ 𝑣 ∥𝐿2 (Ω𝑇 )

with the tetrahedron patch Ω𝑇 from (2.15),

(c) the global stability and the first-order approximation property, for all 𝑣 ∈ 𝐻 1(Ω),

∥ ∇(1 − J)𝑣 ∥𝐿2 (Ω) + ∥ℎ−1T (1 − J)𝑣 ∥𝐿2 (Ω) ≤ 𝐶OL𝐶SZ ∥ ∇ 𝑣 ∥𝐿2 (Ω),

(d) the 𝐻 1 stability, for all 𝑣 ∈ 𝐻 1(Ω),

∥J𝑣 ∥𝐻 1 (Ω) ≤ (1 +max{1, ℎmax}𝐶OL𝐶SZ) ∥𝑣 ∥𝐻 1 (Ω),

(e) the preservation of polynomial boundary data on ΓX, i.e., if there exists some
𝑣C ∈ 𝑆𝑘+1(F (ΓX)) with 𝑣 = 𝑣C on ΓX, then J𝑣 = 𝑣C on ΓX; in particular, J
preserves homogeneous boundary conditions.

Moreover, for any admissible refinement ˆ︁T ∈ T(T ) of T , everyˆ︁𝑣C ∈ 𝑆𝑘+1(ˆ︁T) satisfies
that

(f) the approximation error (1 − J𝑘+1
X

)ˆ︁𝑣C |𝑇 = 0 vanishes on every 𝑇 ∈ T \ R1,

(g) in particular, the approximation error (1 − J𝑘+1
X

)ˆ︁𝑣C |𝐹 = 0 vanishes on every
𝐹 ∈ F (ΓX) \ L1(F \ ˆ︁F , ΓX),

(h) the approximation error (1 − K𝑘+1
X

)ˆ︁𝑣C |𝑇 = 0 even vanishes on every 𝑇 ∈ ˆ︁T ∩ T .

Proof. The pointwise invariance property (a) has been shown in [96, Equation (2.18)]

and the local stability and first order approximation estimate (b) in [96, Theorem 3.1]
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(a) Case 1 (b) Case 2

Figure 2.5: In two spatial dimensions, one has to choose an edge 𝑆𝑚 = 𝐸 for the interpolation

node 𝑎𝑚 = 𝑧1 ∈ N . To define the value of K𝑘+1
X

ˆ︁𝑣C(𝑧1) in Case 1, any of the

two edges 𝐸 ∈ E(𝑇 ) of triangle 𝑇 with 𝑧1 ∈ 𝐸 can be chosen and polynomial

boundary conditions are preserved. In Case 2, Condition 2 requires 𝐸 ∈ E(ΓX) and
polynomial boundary conditions are preserved as well.

and [96, Equation (4.3)]. This and the finite overlap of the patches Ω𝑇 immediately

imply (c). The 𝐻 1
stability (d) follows from (c) in

min{1, ℎ−1
max

}∥(1 − J𝑘+1)𝑣 ∥𝐻 1 (Ω) ≤ ∥ ∇(1 − J𝑘+1)𝑣 ∥𝐿2 (Ω) + ∥ℎ−1T (1 − J𝑘+1)𝑣 ∥𝐿2 (Ω)
≤ 𝐶OL𝐶SZ ∥ ∇ 𝑣 ∥𝐿2 (Ω)

in combination with the equality min{1, ℎ−1
max

}−1 = max{1, ℎmax} and the triangle

inequality.

For the operator J𝑘+1
X

, property (e) is ensured by Condition 1 and (2.26) in

(J𝑘+1
X

𝑣) (𝑎𝑚) = (𝜓𝑚, 𝑣C)𝐿2 (𝑆𝑚) = 𝑣C(𝑎𝑚).

However, for the operator K𝑘+1
X

, if 𝑎𝑚 ∈ ΓX and 𝑎𝑚 ∈ 𝑇 belongs to some 𝑇 ∈ ˆ︁T ∩ T ,

Condition 2 and the property (2.26) lead to

(K𝑘+1
X

ˆ︁𝑣C) (𝑎𝑚) = (𝜓𝑚,ˆ︁𝑣C)𝐿2 (𝑆𝑚) = ˆ︁𝑣C(𝑎𝑚).
If 𝑎𝑚 ∈ ΓX and if there exists no𝑇 ∈ ˆ︁T ∩T with 𝑎𝑚 ∈ 𝑇 , then Condition 2 andˆ︁𝑣C = 𝑣C
on ΓX ensure that

(K𝑘+1
X

ˆ︁𝑣C) (𝑎𝑚) = (𝜓𝑚,ˆ︁𝑣C)𝐿2 (Ω) = 0.

Thus,K𝑘+1
X

satisfies (e) as well. Figure 2.5 illustrates the critical cases for the definition

of the value of K𝑘+1
X

ˆ︁𝑣C on the boundary ΓX in 2D.

The locality (f) follows from the fact that, for any 𝑎𝑚 ∈ 𝑇 with 𝑇 ∈ T \ R1, the

simplex 𝑆𝑚 ∈ T or the face 𝑆𝑚 ∈ F belong to the coarse triangulation T . Thus, (2.26)

shows

(J𝑘+1
X

ˆ︁𝑣C) (𝑎𝑚) = (𝜓𝑚,ˆ︁𝑣C)𝐿2 (𝑆𝑚) = ˆ︁𝑣C(𝑎𝑚). (2.27)

Since the value (J𝑘+1
X

ˆ︁𝑣C) (𝑎𝑚) solely depends on the values of ˆ︁𝑣C on ΓD, this also

establishes (g). For K𝑘+1
X

, Condition 2 ensures that (2.27) even holds for 𝑎𝑚 ∈ 𝑇 with

𝑇 ∈ ˆ︁T ∩ T . □
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2.7 Boundary preserving quasi-interpolation
operators

This section presents two quasi-interpolation operators for Nédélec finite element

functions with homogeneous tangential boundary conditions on ΓN in the space 𝐵𝑘
N
(T ).

Every operator acts componentwise when applied to matrix-valued functions.

The quasi-interpolation operator SNed : 𝐻N(curl,Ω) → 𝐵0
N
(T ) from [93, The-

orem 1] preserves homogeneous boundary conditions, but has been established solely

for the lowest-order case. The following theorem summarises its main properties.

Theorem 2.13. Given 𝛽 ∈ 𝐻N(curl,Ω), there exists 𝜙 ∈ 𝐻 1

N
(Ω) and 𝑧 ∈ 𝐻 1

N
(Ω;R3)

such that the following regular split of the quasi-interpolation error holds

(1 − SNed)𝛽 = 𝑧 + ∇𝜙 (2.28)

The local approximation error estimate involves the positive generic constant 𝐶Sch, for
every 𝑇 ∈ T ,

∥ℎ−1T 𝑧∥𝐿2 (𝑇 ) + ∥ D 𝑧∥𝐿2 (𝑇 ) ≤ 𝐶Sch ∥ curl 𝛽 ∥𝐿2 (Ω𝑇 ),

∥ℎ−1T 𝜙 ∥𝐿2 (𝑇 ) + ∥ ∇𝜙 ∥𝐿2 (𝑇 ) ≤ 𝐶Sch ∥𝛽 ∥𝐿2 (Ω𝑇 ) .
(2.29)

In particular,

𝛽 |Ω𝑇
= 0 implies SNed𝛽 |𝑇 = (1 − SNed)𝛽 |𝑇 = 0. (2.30)

Proof. The regular split (2.28) with partial homogeneous boundary conditions and

the estimates (2.29) have been proven in [93, Theorem 1]. The operator is defined

locally in that values of SNed𝛽 on a simplex 𝑇 ∈ T solely depend on the values of

𝛽 ∈ 𝐻N(curl,Ω) on the tetrahedron patch Ω𝑇 from (2.15). The implication (2.30)

follows from the combination of the two local estimates in (2.29). □

Let ˆ︁T ∈ T(T ) denote an admissible refinement of T ∈ T and apply Notation 3 from

page 22. Recall the definition of Rℓ from Section 2.4. The following theorem asserts the

existence of a stable local projection as introduced by [106, Theorem 4.1] for Nédélec

functions with homogeneous tangential boundary conditions on ΓN.

Theorem 2.14. There exists a quasi-interpolation operator QNed : 𝐵𝑘
N
(ˆ︁T) → 𝐵𝑘

N
(T )

such that, for all ˆ︁𝛽Ned ∈ 𝐵𝑘
N
(ˆ︁T),

(i) (1 − QNed)ˆ︁𝛽Ned ≡ 0 in every 𝑇 ∈ T \ R2,

(ii) ∥(1 − QNed)ˆ︁𝛽Ned∥𝐻 (curl,Ω) ≤ 𝐶qi ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) .

The proof of Theorem 2.14 follows the strategy from [106] to construct QNed, while it

employs a boundary-aware discrete regular decomposition from [70] and the boundary

data preserving quasi-interpolation operator SNed from Theorem 2.13. It requires

several operators introduced in the following lemmas.
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Lemma 2.15. There exists a cut-off operator 𝜒𝑅 : 𝐵𝑘
N
(ˆ︁T) → 𝐵𝑘

N
(ˆ︁T) with

𝜒𝑅ˆ︁𝛽Ned |𝐾 = 0 for all 𝐾 ∈ T \ R1 and 𝜒𝑅ˆ︁𝛽Ned |𝑇 = ˆ︁𝛽Ned |𝑇 for all 𝑇 ∈ T \ ˆ︁T . (2.31)

If ˆ︁𝛽Ned ∈ 𝐵𝑘
N
(ˆ︁T) satisfies ∥ℎ−1T ˆ︁𝛽Ned∥𝐿2 (Ω) ≤ 𝐶freq ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) , then the stability

estimate
∥𝜒𝑅ˆ︁𝛽Ned∥𝐻 (curl,Ω) ≤ 𝐶cut ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) (2.32)

holds with a positive generic constant 𝐶cut.

Proof. Let ˆ︁𝑏1, . . . ,ˆ︁𝑏𝑀 ∈ 𝐵𝑘
N
(ˆ︁T) denote the canonical basis functions of 𝐵𝑘

N
(ˆ︁T) with

𝑀 = dim(𝐵𝑘
N
(ˆ︁T)). Define the index set

𝑅 ≔
{︁
𝑚 = 1, . . . , 𝑀 :

ˆ︁𝑏𝑚 ∉ 𝐵𝑘
N
(T )

}︁
.

Following [106, Section 4.1.1], define

𝜒𝑅ˆ︁𝛽Ned ≔∑︁
𝑚∈𝑅

𝛼𝑚ˆ︁𝑏𝑚 for all
ˆ︁𝛽Ned = 𝑀∑︁

𝑚=1

𝛼𝑚ˆ︁𝑏𝑚 .
This ensures the locality (2.31). The operator 𝜒𝑅 preserves boundary conditions in

that 𝜈 × ˆ︁𝛽Ned = 0 on ΓN implies 𝜈 × (𝜒𝑅ˆ︁𝛽Ned) = 0 on ΓN. The 𝐿
2
stability of 𝜒𝑅 [69,

Section 3.6, Equation (3.37)] reads

∥𝜒𝑅ˆ︁𝛽Ned∥𝐿2 (Ω) ≤ 𝑐1 ∥ˆ︁𝛽Ned∥𝐿2 (Ω) for all
ˆ︁𝛽Ned ∈ 𝐵𝑘N(ˆ︁T).

An inverse estimate [60, Section 1.7] leads to a positive generic constant 𝑐2 with

∥𝜒𝑅ˆ︁𝛽Ned∥𝐻 (curl,Ω) ≤ 𝑐2 ∥ℎ−1T 𝜒𝑅ˆ︁𝛽Ned∥2𝐿2 (Ω) .
The combination of the two previously displayed formulas proves the stability estim-

ate (2.32) with positive generic constant 𝐶cut ≔ 𝑐1𝑐2𝐶freq [106, Section 4.1.1], for everyˆ︁𝛽Ned ∈ 𝐵𝑘
N
(T ) with ∥ℎ−1T ˆ︁𝛽Ned∥𝐿2 (Ω) ≤ 𝐶freq ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) ,

∥𝜒𝑅ˆ︁𝛽Ned∥𝐻 (curl,Ω) ≤ 𝑐1𝑐2 ∥ℎ−1T ˆ︁𝛽Ned∥𝐿2 (Ω) ≤ 𝑐1𝑐2𝐶freq ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) . □

The piecewise polynomial and globally 𝐻 1
functions in 𝑆𝑘+1(T ) do not possess any

jumps and, thus, are globally continuous. They satisfy the following slightly stronger

regularity property.

Lemma 2.16. For any 0 < 𝑠 < 1/2, 𝑆𝑘+1(T ) ⊂ 𝐻 1+𝑠 (Ω).

Proof. This result is an immediate consequence of [73, Lemma 1] stating that piecewise

smooth functions are 𝐻 𝑠
multipliers for 𝑠 < 1/2. It is based on the characterisation of

𝐻 𝑠
regularity from [79, Theorem 10.2 in Chapter 1.10.2].
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For arbitrary 𝑣C ∈ 𝑆𝑘+1(T ), any component𝑔 𝑗 ∈ 𝑃𝑘 (T ) of its gradient (𝑔1, 𝑔2, 𝑔3)⊤ ≔
∇ 𝑣C can be represented in the form

𝑔 𝑗 =
∑︁
𝑇∈T

𝜒𝑇𝑝𝑇

with bounded Lipschitz continuous functions 𝑝𝑇 ∈ 𝐶0,1(Ω) satisfying 𝑝𝑇 |𝑇 ∈ 𝑃𝑘 (𝑇 ).
Since the constant function 1 ∈ 𝐻 𝑠 (Ω), [73, Lemma 1] implies 𝑔 𝑗 1 = 𝑔 𝑗 ∈ 𝐻 𝑠 (Ω). □

The required discrete regular decomposition in the proof of Theorem 2.14 involves

the following strictly local and continuous interpolation operator HNed from [70,

Section 4.1.4].

Lemma 2.17. There exists a linear and bounded operatorHNed : 𝐻
1+𝑠 (Ω;R3) → 𝑁𝑘 (T )

such that HNed is well-defined for any 𝑠 > 0 and it holds that, for all 𝑣C ∈ 𝑆𝑘+1(T ;R3),

∥HNed𝑣C∥𝐻 (curl,Ω) ≤ 𝐶HP ∥𝑣C∥𝐻 (curl,Ω) (2.33)

with a positive generic constant 𝐶HP depending on 𝑠 > 0. The operator HNed preserves
boundary conditions in that the image of 𝐻 1+𝑠 (Ω;R3) ∩ 𝐻N(curl,Ω) is 𝐵𝑘

N
(T ),

HNed

(︁
𝐻 1+𝑠 (Ω;R3) ∩ 𝐻N(curl,Ω)

)︁
= 𝐵𝑘

N
(T ).

Every 𝑣,𝑤 ∈ 𝐻 1+𝑠 (Ω,R3) and 𝑇 ∈ T satisfy that

(𝑣 −𝑤) |𝑇 = 0 implies (HNed𝑣 −HNed𝑤) |𝑇 = 0. (2.34)

Proof. There exists some linear and bounded operatorHRT : 𝐻 1/2+𝑠 (Ω;R3) → 𝑅𝑇𝑘 (T )
such thatHNed satisfies the commuting diagram property [70, Lemma 4.7]

𝐶∞(Ω) 𝐶∞(Ω)

𝑁𝑘 (T ) 𝑅𝑇𝑘 (T )

curl

HNed HRT

curl

.

The space 𝑅𝑇𝑘 (T ) is pointwise invariant underHRT in the sense thatHRT𝜌RT = 𝜌RT
for all 𝜌RT ∈ 𝑅𝑇𝑘 (T ) [70, this result is the projection property from Lemma 4.7].

Due to Lemma 2.16, the operator HNed is well-defined on 𝑆𝑘+1(T ;R3) [70, Equa-
tion (4.92)]. For 𝑣C ∈ 𝑆𝑘+1(T ;R3), curl 𝑣C ∈ 𝑃𝑘 (T ;R3) and div curl 𝑣C = 0 imply

curl 𝑣C ∈ 𝑅𝑇𝑘 (T ). This shows, for any 𝑇 ∈ T ,

∥ curl(1 −HNed)𝑣C∥𝐿2 (𝑇 ) = ∥(1 −HRT) curl 𝑣C∥𝐿2 (𝑇 ) = 0. (2.35)

Since curl 𝑣C ∈ 𝑃𝑘 (T ;R3), the estimate from [70, Lemma 4.16] leads to the existence

of a positive generic constant 𝑐1 depending on the polynomial degree 𝑘 and satisfying,

for all 𝑇 ∈ T and 𝑣C ∈ 𝑆𝑘+1(Ω;R3),

∥(1 −HNed)𝑣C∥𝐿2 (𝑇 ) ≤ 𝑐1ℎ𝑇 ∥ D 𝑣C∥𝐿2 (𝑇 ) .
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An inverse estimate [60, Section 1.7] with some positive generic constant 𝑐2 leads to

∥(1 −HNed)𝑣C∥𝐿2 (𝑇 ) ≤ 𝑐1𝑐2 ∥𝑣C∥𝐿2 (𝑇 ) .

The combination of this with (2.35) and a triangle inequality prove the stability (2.33)

with the positive generic constant 𝐶HP ≔ 1 + 𝑐1𝑐2. The preservation of homogeneous

tangential boundary conditions has been established in [70, Equation (4.94)]. Finally,

the strict locality from [70, Lemma 4.8] shows the implication (2.34). □

Proof of Theorem 2.14. Step 1. Given any
ˆ︁𝛽Ned ∈ 𝐵𝑘

N
(ˆ︁T), the discrete regular decom-

position from [70, Theorem 1.3] with respect to the triangulation ˆ︁T leads to someˆ︁𝑣C ∈ 𝑆𝑘+1(ˆ︁T ;R3) with ˆ︁𝑣C = 0 on ΓN, ˆ︁𝜙C ∈ 𝑆𝑘+1(ˆ︁T) with ˆ︁𝜙C = 0 on ΓN, and the

remainder
˜︁𝛽Ned ∈ 𝐵𝑘

N
(ˆ︁T) for the decomposition

ˆ︁𝛽Ned = ˆ︁HNedˆ︁𝑣C + ∇ ˆ︁𝜙C + ˜︁𝛽Ned
The functionsˆ︁𝑣C, ˆ︁𝜙C, and ˜︁𝛽Ned satisfy the stability estimates

∥ˆ︁𝑣C∥𝐿2 (Ω) + ∥ ∇ ˆ︁𝜙C∥𝐿2 (Ω) ≤ 𝑐1 ∥ˆ︁𝛽Ned∥𝐿2 (Ω),
∥ Dˆ︁𝑣C∥𝐿2 (Ω) + ∥ℎ−1T ˜︁𝛽Ned∥𝐿2 (Ω) ≤ 𝑐2 ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) .

(2.36)

Recall the Scott-Zhang quasi-interpolation operator K𝑘+1
N

from Definition 2.10 with

respect to the part ΓN of the boundary. Following [106, Section 4.4], define

QNed
ˆ︁𝛽Ned ≔ HNedK𝑘+1

N
ˆ︁𝑣C + ∇K𝑘+1

N

ˆ︁𝜙C + SNed𝜒𝑅˜︁𝛽Ned + (1 − 𝜒𝑅)˜︁𝛽Ned ∈ 𝑁𝑘 (T ) .

Step 2. Since K𝑘+1
N

ˆ︁𝑣C and K𝑘+1
N

ˆ︁𝜙C satisfy homogeneous tangential boundary condi-

tions on ΓN,
𝜈 ×

(︁
HNedK𝑘+1

N
ˆ︁𝑣C + ∇K𝑘+1

N

ˆ︁𝜙C)︁ = 0 on ΓN.

The operators 𝜒𝑅 , 1 − 𝜒𝑅 , and SN preserve homogeneous boundary conditions and,

therefore,

𝜈 ×
(︁
SN𝜒𝑅˜︁𝛽N + (1 − 𝜒𝑅)˜︁𝛽N)︁ = 0 on ΓN.

Consequently, 𝜈 × QNed
ˆ︁𝛽Ned = 0 on ΓN.

Step 3. The quasi-interpolation error reads

(1 − QNed)ˆ︁𝛽Ned = ( ˆ︁HNed −HNedK𝑘+1
N

)ˆ︁𝑣C + ∇(1 − K𝑘+1
N

)ˆ︁𝜙C + (1 − SNed)𝜒𝑅˜︁𝛽Ned.
The careful definition of the Scott-Zhang quasi-interpolation K𝑘+1

N
in Section 2.6

ensures that (1 − K𝑘+1
N

)ˆ︁𝑣C |𝐾 = 0 and (1 − K𝑘+1
N

)ˆ︁𝜙C |𝐾 = 0 vanish on any unrefined

simplex𝐾 ∈ T ∩ˆ︁T . Hence, the implication (2.34) shows that ( ˆ︁HNed−HNedK𝑘+1
N

)𝑣C |𝐾 =

0 vanishes on any unrefined simplex 𝐾 ∈ T ∩ ˆ︁T as well.
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By definition of the cut-off operator 𝜒𝑅 from Lemma 2.15, (𝜒𝑅˜︁𝛽Ned) |𝑇 = 0 vanishes

on any 𝑇 ∈ T \ R1. This and (2.30) show that ((1 − SNed)𝜒𝑅˜︁𝛽Ned) |𝑇 = 0 vanishes on

any𝑇 ∈ T \R2. Since T \R2 ⊆ T \R1 ⊆ T ∩ˆ︁T , it follows that ((1−QNed)ˆ︁𝛽Ned) |𝑇 = 0

on any 𝑇 ∈ T \ R2.

Step 4. The triangle inequality and the stability estimate (2.33) show

∥( ˆ︁HNed −HNedK𝑘+1
N

)ˆ︁𝑣C∥𝐻 (curl,Ω) ≤ 𝐶HP

(︁
∥ˆ︁𝑣C∥𝐻 (curl,Ω) + ∥K𝑘+1

N
ˆ︁𝑣C∥𝐻 (curl,Ω)

)︁
.

The estimate ∥ curlˆ︁𝑣C∥𝐿2 (Ω) ≤ √
2∥ Dˆ︁𝑣C∥𝐿2 (Ω) and Lemma 2.12 (d) lead to

∥( ˆ︁HNed −HNedK𝑘+1
N

)ˆ︁𝑣C∥𝐻 (curl,Ω) ≤ 𝐶HP

√
2(2 +max{1, ℎmax}𝐶OL𝐶SZ) ∥ˆ︁𝑣C∥𝐻 1 (Ω) .

Hence, the stability estimates from (2.36) result in

∥( ˆ︁HNed −HNedK𝑘+1
N

)ˆ︁𝑣C∥𝐻 (curl,Ω)

≤ 𝐶HP

√
2(2 +max{1, ℎmax}𝐶OL𝐶SZ) (𝑐1 + 𝑐2) ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) .

Moreover, the stability from Lemma 2.12 (c) and the estimate (2.36) prove

∥ ∇(1 − K𝑘+1
N

)ˆ︁𝜙C∥𝐻 (curl,Ω) ≤ 𝐶OL𝐶SZ ∥ ∇ ˆ︁𝜙C∥𝐿2 (Ω) ≤ 𝐶OL𝐶SZ𝑐1 ∥ˆ︁𝛽Ned∥𝐿2 (Ω) .
The sum of the local stability (2.29) over all 𝑇 ∈ T leads to, for all 𝛽 ∈ 𝐻N(curl,Ω),

∥(1 − SNed)𝛽 ∥𝐻 (curl,Ω) ≤ max{1, ℎmax}𝐶OL𝐶Sch ∥𝛽 ∥𝐻 (curl,Ω) .

Since ∥ℎ−1T ˜︁𝛽Ned∥𝐿2 (Ω) ≤ 𝑐2 ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) , this for 𝛽 = ˜︁𝛽Ned and (2.32) verify

∥(1 − SNed)𝜒𝑅˜︁𝛽Ned∥𝐻 (curl,Ω) ≤ max{1, ℎmax}𝐶OL𝐶Sch𝐶cut ∥˜︁𝛽Ned∥𝐻 (curl,Ω) .

The combination of the three previously displayed formulas proves assertion (ii) with

the positive stability constant

𝐶qi ≔ 𝐶HP

√
2(2 +max{1, ℎmax}𝐶OL𝐶SZ) (𝑐1 + 𝑐2)

+𝐶OL𝐶SZ𝑐1 +max{1, ℎmax}𝐶OL𝐶Sch𝐶cut. □
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3 Adaptive least-squares finite
element method

This chapter introduces the LSFEM and the alternative a posteriori error estimation. To

this end, the first Section 3.1 presents the generalised first-order system and formulates

assumptions on the involved operators. Those assumptions guarantee well-posedness

of the resulting LSFEM as well as the convergence analysis of the adaptive scheme.

Subsequently, they are verified for the three model problems in Section 3.2.

The discrete solutions to the LSFEM have to explicitly satisfy some discrete boundary

conditions. The Sections 3.3–3.4 present the approximation of the given boundary

conditions in the appropriate spaces. Some extensions of the approximation errors

on the boundary are required to remedy the lack of the Galerkin orthogonality in the

case of inhomogeneous boundary data. The reader may skip both sections when the

main interest is on homogeneous boundary conditions.

The Section 3.5 states the LSFEM and analyses its well-posedness based on the

assumptions from Section 3.1. Furthermore, it verifies a posteriori estimates for the

built-in error estimator. Eventually, the Section 3.6 introduces the a posteriori error

estimator and the data approximation error for the ALSFEM algorithm from page 4.

3.1 Generalised model problem
This thesis investigates the LSFEM for the solution of a generalised model prob-

lem. It includes two bounded linear, not necessarily self-adjoint, operators A,S :

𝐿2(Ω;R3×3) → 𝐿2(Ω;R3×3). They serve as the generalisation of the operators from

the three model problems listed in Table 1 on page 3.

The assumptions on the linear operatorsA and S involve the seven positive generic

constants 𝐶A , 𝐶tdd, 𝐶En, 𝐶S , 𝐶K, 𝐶inv, and 𝐶dti. Throughout the thesis, suppose that

(W1) ∥A𝜏 ∥𝐿2 (Ω) ≤ 𝐶A ∥𝜏 ∥𝐿2 (Ω) for all 𝜏 ∈ 𝐿2(Ω;R3×3),

(W2) ∥𝜏 ∥2
𝐿2 (Ω) ≤ 𝐶tdd

(︁
(A𝜏, 𝜏)𝐿2 (Ω) + ∥ div𝜏 ∥2

𝐿2 (Ω)
)︁
for all 𝜏 ∈ ΣN,

(W3) (S D 𝑣, 𝜏)𝐿2 (Ω) ≤ 𝐶En

(︁
∥A𝜏 − S D 𝑣 ∥𝐿2 (Ω) + ∥ div𝜏 ∥𝐿2 (Ω)

)︁
∥S D 𝑣 ∥𝐿2 (Ω) for all

𝜏 ∈ ΣN and 𝑣 ∈ 𝑈D.

The second assumption (W2) generalises the well-known tr-dev-div inequality estab-

lished in a general setting in [8, Theorem 3.1].
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Since S D might be the gradient or its symmetric part, ∥S D • ∥𝐿2 (Ω) is the natural
energy norm on 𝐻 1

D
(Ω;R3). In particular, it measures the strain tensor in the case of

linear elasticity. Thus, the following boundedness of the operator S

(W4) ∥S𝜏 ∥𝐿2 (Ω) ≤ 𝐶S ∥𝜏 ∥𝐿2 (Ω) for all 𝜏 ∈ 𝐿2(Ω;R3×3)

and the abstract Korn inequality

(W5) ∥ D 𝑣 ∥𝐿2 (Ω) ≤ 𝐶K ∥S D 𝑣 ∥𝐿2 (Ω) for all 𝑣 ∈ 𝐻 1

D
(Ω;R3)

are assumed as well.

Let A∗,S∗
: 𝐿2(Ω;R3×3) → 𝐿2(Ω;R3×3) denote the adjoint operators to A,S. For

every admissible triangulation T ∈ T and piecewise polynomial functions 𝜏pw ∈
𝑃𝑘+1(T ;R3×3) and 𝑣pw ∈ 𝑃𝑘+1(T ;R3×3), suppose that

S∗(A𝜏pw − S D 𝑣pw) ∈ 𝐻 (div,T ;R3×3),
A∗(A𝜏pw − S D 𝑣pw) ∈ 𝐻 (curl,T ;R3×3).

(3.1)

Additionally, assume the following abstract inverse estimates, for 𝑇 ∈ T ,

(W6) |𝑇 |1/3∥ divS∗(A𝜏pw − S D 𝑣pw)∥𝐿2 (𝑇 ) ≤ 𝐶inv ∥S∗(A𝜏pw − S D 𝑣pw)∥𝐿2 (𝑇 ) ,

(W7) |𝑇 |1/3∥ curlA∗(A𝜏pw − S D 𝑣pw)∥𝐿2 (𝑇 ) ≤ 𝐶inv ∥A∗(A𝜏pw − S D 𝑣pw)∥𝐿2 (𝑇 ) .

Due to the regularity (3.1), the normal trace (S∗(A𝜏pw − S D 𝑣pw)) |𝑇𝜈𝐹 and the tan-

gential trace 𝜈𝐹 × (A∗(A𝜏pw − S D 𝑣pw)) |𝑇 exist on every face 𝐹 ∈ F (𝑇 ) of 𝑇 ∈ T
in the sense of Section 2.2. Further, let every 𝜏pw ∈ 𝑃𝑘+1(T ;R3×3), 𝑣pw ∈ 𝑃𝑘+1(T ;R3),
and 𝑇 ∈ T with 𝐹 ∈ F (𝑇 ) satisfy the abstract discrete trace inequalities

(W8) |𝑇 |1/6∥(S∗(A𝜏pw − S D 𝑣pw)) |𝑇 𝜈𝐹 ∥𝐿2 (𝐹 ) ≤ 𝐶dti ∥A𝜏pw − S D 𝑣pw∥𝐿2 (𝑇 ) ,

(W9) |𝑇 |1/6∥𝜈𝐹 × (A∗(A𝜏pw − S D 𝑣pw)) |𝑇 ∥𝐿2 (𝐹 ) ≤ 𝐶dti ∥A𝜏pw − S D 𝑣pw∥𝐿2 (𝑇 ) .

Remark 3.1. The assumptions (W1) and (W4) imply that the adjoint operators A∗,S∗

toA,S are as well bounded with the same generic constant, for every 𝜏 ∈ 𝐿2(Ω;R3×3),

∥A∗𝜏 ∥𝐿2 (Ω) ≤ 𝐶A ∥𝜏 ∥𝐿2 (Ω) and ∥S∗𝜏 ∥𝐿2 (Ω) ≤ 𝐶S ∥𝜏 ∥𝐿2 (Ω) . (3.2)

Given |ΓN | > 0 and the Neumann boundary conditions 𝑡N ∈ 𝐿2(ΓN;R3), define the
space

Σ ≔
{︁
𝜏 ∈ 𝐻 (div,Ω;R3×3) : 𝜏 · 𝜈 = 𝑡N on ΓN

}︁
.

For |ΓN | = 0, let

Σ ≔
{︁
𝜏 ∈ 𝐻 (div,Ω;R3×3) : −

∫
Ω
tr𝜏 d𝑥 = 0

}︁
.
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The test functions belong to the corresponding space with homogeneous normal

boundary conditions

ΣN ≔

{︄
𝐻N(div,Ω;R3×3) if |ΓN | > 0,

Σ else.

For the Dirichlet boundary conditions 𝑢D ∈ 𝐻 1(ΓD;R3), define the space

𝑈 ≔
{︁
𝑣 ∈ 𝐻 1(Ω;R3) : 𝑣 = 𝑢D on ΓD

}︁
and for the test functions

𝑈D ≔ 𝐻 1

D
(Ω;R3).

Given a right-hand side 𝑓 ∈ 𝐿2(Ω;R3), the linear model problem seeks 𝜎 ∈ Σ and

𝑢 ∈ 𝑈 such that

𝑓 + div𝜎 = 0 and A𝜎 − S D𝑢 = 0 in Ω. (3.3)

This formulation and the definition of the spaces Σ and𝑈 remain meaningful for

less regular boundary data 𝑡N ∈ 𝐻−1/2(ΓN;R3) and 𝑢D ∈ 𝐻 1/2(ΓD;R3). However, the
a posteriori analysis of FEMswith approximated inhomogeneous boundary data usually

incorporates additional regularity assumptions [7, 4]. The assumptions 𝑡N ∈ 𝐿2(ΓN;R3)
and 𝑢D ∈ 𝐻 1(ΓD;R3) in this thesis allow for suitable approximation error estimates in

the Sections 3.3–3.4 below.

3.2 Application to the three model problems
This section verifies the assumptions (W1)–(W9) for the three model problems from

Table 1 on page 3.

The Laplace operator Δ acts on each of the three components in the vector-valued

Poisson model problem

−Δ𝑢 = 𝑓 in Ω, 𝑢 = 𝑢D on ΓD, and D𝑢 𝜈 = 𝑡N on ΓN.

The introduction of the flux variable 𝜎 ≔ D𝑢 leads to an equivalent first-order

system of PDEs with the identity id on 𝐿2(Ω;R3×3) for A ≔ id and S ≔ id in the

equations (3.3). The corresponding least-squares formulation from [80, 71] minimises

𝐿𝑆 (𝑓 ;𝜎,𝑢) ≔ ∥ 𝑓 + div𝜎 ∥2
𝐿2 (Ω) + ∥𝜎 − D𝑢∥2

𝐿2 (Ω) .

Lemma 3.2. In the case of the Poisson model problem, the operators A = S = id satisfy
the assumptions (W1)–(W9).
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Proof. For A = S = id, the assumptions (W1)–(W2) and (W4)–(W5) are trivial with

the positive generic constants 𝐶A = 𝐶tdd = 𝐶S = 𝐶K = 1.

For 𝜏 ∈ ΣN, the Helmholtz decomposition (2.9) from Theorem 2.2 applied to the

three components guarantees the existence of 𝛼 ∈ 𝐻 1

D
(Ω;R3) and 𝛽 ∈ 𝐻 1

N
(Ω;R3×3)

with 𝜏 = D𝛼 + curl 𝛽 . The stability estimate ∥ D𝛼 ∥𝐿2 (Ω) ≤ 𝐶F ∥ div𝜏 ∥𝐿2 (Ω) from (2.10)

shows

(D 𝑣, 𝜏)𝐿2 (Ω) = (D 𝑣,D𝛼)𝐿2 (Ω) ≤ ∥ D 𝑣 ∥𝐿2 (Ω) ∥ D𝛼 ∥𝐿2 (Ω) ≤ 𝐶F ∥ D 𝑣 ∥𝐿2 (Ω) ∥ div𝜏 ∥𝐿2 (Ω)

and concludes the proof of (W3) with 𝐶En = 𝐶F in the case of the Poisson model

problem

For the self-adjoint operators A = A∗ = S = S∗ = id and the abbreviation

𝜌pw ≔ 𝜏pw − D 𝑣pw ∈ 𝑃𝑘+1(T ;R3×3), it holds that S∗𝜌pw = A∗𝜌pw = 𝜌pw. A standard

inverse estimate [60, Section 1.7] shows, for a positive generic constant 𝑐inv,

∥ D 𝜌pw∥2𝐿2 (𝑇 ) ≤ 𝑐
2

inv
|𝑇 |−2/3∥𝜌pw∥2𝐿2 (𝑇 ) . (3.4)

This immediately implies the assumptions (W6)–(W7) with the positive generic con-

stant 𝐶inv ≔
√
2𝑐inv.

Recall fromNotation 1 on page 10 that |𝑀 | denotes the Frobenius normwhen applied

to matrices 𝑀 ∈ R3×3. Given any 𝑇 ∈ T and 𝐹 ∈ F (𝑇 ) with unit normal vector 𝜈𝐹
satisfying |𝜈𝐹 | = 1, an elementary relation between the row-wise scalar product and

cross product reads, for all𝑀 ∈ R3×3,

|𝑀𝜈𝐹 |2 + |𝜈𝐹 ×𝑀 |2 = |𝑀 |2.

Hence,

∥𝜌LS |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × 𝜌LS |𝑇 ∥2𝐿2 (𝐹 ) = ∥𝜌LS |𝑇 ∥2𝐿2 (𝐹 ) . (3.5)

This and the trace inequality from Lemma 2.6 applied to each of the nine components

prove

∥𝜌pw |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × 𝜌pw |𝑇 ∥2𝐿2 (𝐹 ) ≤ 𝐶tr

(︁
|𝑇 |1/3∥ D 𝜌pw∥2𝐿2 (𝑇 ) + |𝑇 |−1/3∥𝜌pw∥2𝐿2 (𝑇 )

)︁
.

The inverse estimate (3.4) leads to

∥𝜌pw |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × 𝜌pw |𝑇 ∥2𝐿2 (𝐹 ) ≤ 𝐶tr(1 + 𝑐2inv) |𝑇 |
−1/3∥𝜌pw∥2𝐿2 (𝑇 ) .

The square root of this estimate concludes the proof of (W8)–(W9) with the positive

generic constant 𝐶dti ≔ (𝐶tr(1 + 𝑐2
inv

))1/2. □

Define the deviatoric (or trace-free) part dev : 𝐿2(Ω;R3×3) → 𝐿2(Ω;R3×3), for
𝜏 ∈ 𝐿2(Ω;R3×3),

dev𝜏 ≔ 𝜏 − 1

3

tr𝜏 𝐼3×3. (3.6)
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Let ΓN = ∅. Given the Stokes equations

−Δ𝑢 + ∇𝑝 = 𝑓 and div𝑢 = 0 in Ω,

the pseudostress variable 𝜎 ≔ D𝑢 − 𝑝𝐼3×3 leads to the equivalent first-order system of

PDEs from [32]

𝑓 + div𝜎 = 0 and dev𝜎 − D𝑢 = 0 in Ω.

For the choice of A ≔ dev and S ≔ id, this is (3.3).

Alternative least-squares formulations beyond the scope of this thesis include

other additional variables such as the velocity-vorticity-pressure formulation [72], the

velocity-stress-pressure formulation [16], and the velocity-velocity gradient-pressure

formulation [29]. For a comprehensive presentation of the corresponding least-squares

discretisations, the reader is referred to [17].

Lemma 3.3. In the case of the Stokes equations, A = dev and S = id satisfy the
assumptions (W1)–(W9).

Proof. For the projections A = dev and S = id, the assumptions (W1) and (W4)–(W5)

are trivial with the positive generic constants 𝐶A = 𝐶S = 𝐶K = 1.

Since |ΓN | = 0, every 𝜏 ∈ ΣN satisfies

−
∫
Ω
tr(𝜏) d𝑥 = 0.

Hence, the tr-dev-div inequality [18, Proposition 9.1.1] implies the assumption (W2) in

the case of the Stokes equation

∥ tr𝜏 ∥2
𝐿2 (Ω) ≤ 𝐶tdd

(︁
∥ dev𝜏 ∥2

𝐿2 (Ω) + ∥ div𝜏 ∥2
𝐿2 (Ω)

)︁
.

The proof of (W3) again employs the Helmholtz decomposition (2.9) from The-

orem 2.2 and follows verbatim the proof of Lemma 3.2 with the positive generic

constant 𝐶En ≔ 𝐶F.

The self-adjoint operators A = A∗ = dev and S = S∗ = id do not depend on

𝑥 ∈ Ω and, thus, map arguments from 𝑃𝑘+1(T ;R3×3) to 𝑃𝑘+1(T ;R3×3). Consequently,
the assumptions (W6)–(W7) follow from the inverse estimate (3.4) with the positive

generic constant 𝐶inv ≔
√
2𝑐inv.

For 𝜌pw ≔ dev𝜏pw − D 𝑣pw ∈ 𝑃𝑘+1(T ;R3×3), a direct calculation with the row-wise

cross product as in the proof of Lemma 3.2 leads to

∥𝜌pw |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × 𝜌pw |𝑇 ∥2𝐿2 (𝐹 ) = ∥𝜌pw |𝑇 ∥2𝐿2 (𝐹 ),
∥(dev 𝜌pw) |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × (dev 𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ) = ∥(dev 𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ) .

43



This and the trace inequality (2.19) from Lemma 2.6 lead to

∥𝜌pw |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) ≤ 𝐶tr

(︁
|𝑇 |1/3∥ D 𝜌pw∥2𝐿2 (𝑇 ) + |𝑇 |−1/3∥𝜌pw∥2𝐿2 (𝑇 )

)︁
,

∥𝜈𝐹 × (dev 𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ) ≤ 𝐶tr

(︁
|𝑇 |1/3∥ D(dev 𝜌pw)∥2𝐿2 (𝑇 ) + |𝑇 |−1/3∥ dev 𝜌pw∥2𝐿2 (𝑇 )

)︁
.

The inverse estimate (3.4) and the boundedness of the deviatoric part conclude the

proof of the assumptions (W8)–(W9) with the constant 𝐶dti ≔ (𝐶tr(1 + 𝑐2
inv

))1/2. □

Let S : 𝐿2(Ω;R3×3) → 𝐿2(Ω;R3×3) denote the symmetric part of a matrix-valued

function, for 𝜏 ∈ 𝐿2(Ω;R3×3),

S𝜏 ≔ sym𝜏 =
1

2

(𝜏 + 𝜏⊤). (3.7)

and 𝜀 (𝑢) ≔ symD𝑢 the strain tensor of the displacement 𝑢 ∈ 𝐻 1(Ω;R3). For the
two Lamé parameters 𝜆, 𝜇 > 0, the fourth-order tensor C : R3×3 → R3×3 with C𝑀 ≔
2𝜇𝑀 + 𝜆(tr𝑀)𝐼3×3 for all 𝑀 ∈ R3×3 defines the isotropic material law in the equations

of linear elasticity

− div(C𝜀 (𝑢)) = 𝑓 in Ω, 𝑢 = 𝑢D on ΓD, and (C𝜀 (𝑢)) 𝜈 = 𝑡N on ΓN.

The inverse of C defines the operator A : 𝐿2(Ω;R3×3) → 𝐿2(Ω;R3×3), for 𝜏 ∈
𝐿2(Ω;R3×3),

A𝜏 ≔ C−1𝜏 = 1

2𝜇

(︂
𝜏 − 𝜆

3𝜆 + 2𝜇
(tr𝜏)𝐼3×3

)︂
. (3.8)

The introduction of the stress variable 𝜎 ≔ C𝜀 (𝑢) leads to an equivalent first-order

system of PDEs. The resulting least-squares formulation of the linear elasticity problem

from [34] reads

𝐿𝑆 (𝑓 ;𝜎,𝑢) ≔ ∥ 𝑓 + div𝜎 ∥2
𝐿2 (Ω) + ∥C−1𝜎 − 𝜀 (𝑢)∥2

𝐿2 (Ω)

and provides a locking-free discretisation. Alternative formulations beyond the scope

of this thesis employ a different scaling with the material tensor C [33, 31] or are based

on other equivalent first-order systems such as the displacement-displacement gradient

formulation [75], the displacement-displacement gradient-pressure formulation [29],

and the stress-displacement-rotation(-pressure) formulation [13]. Further methods

include an additional residual to weakly impose the symmetry of the stresses for an

improved momentum balance [94, 98].

Lemma 3.4. In the case of the linear elasticity problem, A = C−1 and S = sym satisfy
the assumptions (W1)–(W9) with 𝜆-independent generic constants.

Proof. A direct calculation from [34, proof of Theorem 3.1] proves the assumption (W1),

for 𝜏 ∈ 𝐿2(Ω;R3×3),
∥C−1𝜏 ∥𝐿2 (Ω) ≤

1

2𝜇
∥𝜏 ∥𝐿2 (Ω) .
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The boundedness (W4) of the projection sym is trivial with generic constant 𝐶S = 1.

Since |ΓD | > 0, the assumption (W5) follows from the standard Korn inequality [52,

Theorem 6.3-4].

For both cases, |ΓN | = 0 and |ΓN | > 0, the subspace ΣN ⊂ 𝐻 (div,Ω;R3×3) does not
contain the constant identity tensor 𝜏 ≡ 𝐼3×3 and, thus, there exists a positive generic
constant 𝑐1 such that 𝜏 ∈ ΣN satisfies [38, Lemma 4.2]

∥ tr𝜏 ∥2
𝐿2 (Ω) ≤ 𝑐1

(︁
∥ dev𝜏 ∥2

𝐿2 (Ω) + ∥ div𝜏 ∥2
𝐿2 (Ω)

)︁
.

For A = C−1, this implies the assumption (W2) using

∥ dev𝜏 ∥2
𝐿2 (Ω) = (dev𝜏, 𝜏)𝐿2 (Ω) = 2𝜇 (C−1𝜏, dev𝜏)𝐿2 (Ω)

≤ 2𝜇 (C−1𝜏, dev𝜏)𝐿2 (Ω) +
(︂
1 − 3𝜆

3𝜆 + 2𝜇

)︂
∥ tr𝜏 ∥2

𝐿2 (Ω)

= 2𝜇 (C−1𝜏, dev𝜏)𝐿2 (Ω) + 2𝜇 (trC−1𝜏, tr𝜏)𝐿2 (Ω)

= 2𝜇 (C−1𝜏, dev𝜏)𝐿2 (Ω) +
2𝜇

3

(C−1𝜏, (tr𝜏)𝐼3×3)𝐿2 (Ω)
= 2𝜇 (C−1𝜏, 𝜏)𝐿2 (Ω) .

The resulting positive generic constant 𝐶tdd ≔ 2𝜇𝑐1 is independent of the Lamé

parameter 𝜆.

For S = sym, an integration by parts and the orthogonality of the projection sym

show

(𝜀 (𝑣), 𝜏)𝐿2 (Ω) = (D 𝑣, sym𝜏)𝐿2 (Ω) = (D 𝑣, 𝜏)𝐿2 (Ω) + (D 𝑣, (1 − sym)𝜏)𝐿2 (Ω)
= −(𝑣, div𝜏)𝐿2 (Ω) + 2𝜇 (D 𝑣, (1 − sym) C−1𝜏)𝐿2 (Ω)
= −(𝑣, div𝜏)𝐿2 (Ω) + 2𝜇 (D 𝑣, (1 − sym) (C−1𝜏 − 𝜀 (𝑣)))𝐿2 (Ω) .

The Cauchy-Schwarz inequality and the Friedrichs inequality from Lemma 2.1 yield

(𝜀 (𝑣), 𝜏)𝐿2 (Ω) ≤
(︁
𝐶F ∥ div𝜏 ∥𝐿2 (Ω) + 2𝜇 ∥C−1𝜏 − 𝜀 (𝑣)∥𝐿2 (Ω)

)︁
∥ D 𝑣 ∥𝐿2 (Ω) .

This and the already proven assumption (W5) with the positive generic constant 𝐶K

conclude the proof of the estimate (W3) with the constant 𝐶En = 𝐶Kmax{𝐶F, 2𝜇}
independent of the Lamé parameter 𝜆.

The self-adjoint operators A = A∗ = C−1 and S = S∗ = sym do not depend on

𝑥 ∈ Ω and, thus, map arguments from 𝑃𝑘+1(T ;R3×3) to 𝑃𝑘+1(T ;R3×3). Consequently,
the assumptions (W6)–(W7) follow from the inverse estimate (3.4) with the positive

generic constant 𝐶inv ≔
√
2𝑐inv.

For 𝜌pw ≔ C
−1𝜏pw − 𝜀 (𝑣pw) ∈ 𝑃𝑘+1(T ;R3×3), proceed as in the proof of Lemma 3.2

to establish

∥(sym 𝜌pw) |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × (sym 𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ) = ∥(sym 𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ),
∥(C−1𝜌pw) |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × (C−1𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ) = ∥(C−1𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ) .
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This and the trace inequality (2.19) from Lemma 2.6 show

∥(sym 𝜌pw) |𝑇 𝜈𝐹 ∥2𝐿2 (𝐹 ) ≤ 𝐶tr

(︁
|𝑇 |1/3∥ D(sym 𝜌pw)∥2𝐿2 (𝑇 ) + |𝑇 |−1/3∥(sym 𝜌pw)∥2𝐿2 (𝑇 )

)︁
,

∥𝜈𝐹 × (C−1𝜌pw) |𝑇 ∥2𝐿2 (𝐹 ) ≤ 𝐶tr

(︁
|𝑇 |1/3∥ D(C−1𝜌pw)∥2𝐿2 (𝑇 ) + |𝑇 |−1/3∥C−1𝜌pw∥2𝐿2 (𝑇 )

)︁
.

The inverse estimate (3.4) and the boundedness of the symmetric part and the material

tensor C−1 in

∥ sym 𝜌pw∥2𝐿2 (𝑇 ) ≤ ∥𝜌pw∥2𝐿2 (𝑇 ) and ∥C−1𝜌pw∥2𝐿2 (𝑇 ) ≤
1

4𝜇2
∥𝜌pw∥2𝐿2 (𝑇 )

conclude the proof the assumptions (W8)–(W9) with the 𝜆-independent constant

𝐶dti ≔ max{1, 1/(2𝜇)}(𝐶tr(1 + 𝑐2
inv

))1/2. □

Remark 3.5. All arguments in the proof of Lemma 3.4 can be employed element-wise

for𝑇 ∈ T . Therefore, they apply to problems with composite materials if the piecewise

constant Lamé parameters are resolved by the initial triangulation T0.

3.3 Approximation of Dirichlet boundary data
For the approximation of inhomogeneous Dirichlet boundary data 𝑢D ∈ 𝐻 1(ΓD;R3),
the Scott-Zhang quasi-interpolation operator J𝑘+1

D
from Section 2.6 is employed [92, 4].

The Condition 1 with respect to ΓD ensures that the values of the quasi-interpolation

at the interpolation nodes 𝑎 𝑗 ∈ I𝑘+1 ∩ ΓD on the Dirichlet boundary solely depend

on integrals of 𝑢D over boundary faces 𝐹 ∈ F (ΓD). Since 𝑢D ∈ 𝐻 1(ΓD;R3), this is
well-defined. Formally, the construction follows [4, Section 3.2]. Given a regular trian-

gulation T ∈ T in the sense of Section 2.4, let 𝑢D ∈ 𝐻 1(Ω;R3) denote any extension of

𝑢D on Ω with 𝑢D = 𝑢D on ΓD and regard ˜︁J𝑘+1
D

: 𝐻 1/2(ΓD;R3) → 𝑆𝑘+1(F (ΓD);R3) with˜︁J𝑘+1
D

𝑢D ≔ 𝛾D(J𝑘+1
D

𝑢D) as an approximation of the Dirichlet boundary data. For the

ease of the notation, the operator ˜︁J𝑘+1
D

is again denoted by J𝑘+1
D

. Let D𝑢D abbreviate

the surface gradient DX𝑢D from from (2.4).

The following lemma asserts the well-known surjectivity of the trace operator 𝛾D.

It is proved here for the sake of explicit stability constants. Recall Notation 3 from

page 22 for a triangulation T ∈ T and its admissible refinement ˆ︁T ∈ T(T ).

Lemma 3.6 (Dirichlet boundary data extension). There exists some extension𝑤 ∈
𝐻 1(Ω;R3) with

𝑤 = (1 − J𝑘+1
D

)𝑢D on ΓD and ∥ D𝑤 ∥𝐿2 (Ω) ≤ ∥(1 − J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) . (3.9)

For the overlap constant𝐶OL and the stability constant𝐶SZ of the Scott-Zhang operator
from Lemma 2.12 (c), there exists some discrete extension ˆ︁𝑤C ∈ 𝑆𝑘+1(ˆ︁T ;R3) satisfyingˆ︁𝑤C = ( ˆ︁J𝑘+1

D
− J𝑘+1

D
)𝑢D on ΓD and

∥ D ˆ︁𝑤C∥𝐿2 (Ω) ≤ 𝐶OL𝐶SZ ∥( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) .
(3.10)
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Proof. Step 1. Abbreviate 𝑦 ≔ (1−J𝑘+1
D

)𝑢D ∈ 𝐻 1(ΓD;R3) and let𝑤 ∈ 𝐻 1(Ω;R3) solve
the Dirichlet problem

(D𝑤,D 𝑣)𝐿2 (Ω) + (𝑤, 𝑣)𝐿2 (Ω) = 0 for all 𝑣 ∈ 𝐻 1

D
(Ω;R3) and 𝑤 = 𝑦 on ΓD.

The weak solution𝑤 solves the minimisation problem

∥𝑤 ∥𝐻 1 (Ω) = min

{︁
∥𝑧∥𝐻 1 (Ω) : 𝑧 ∈ 𝐻 1(Ω;R3) with 𝑧 = 𝑦 on ΓD

}︁
= ∥𝑦∥𝐻 1/2 (ΓD) = ∥(1 − J𝑘+1

D
)𝑢D∥𝐻 1/2 (ΓD)

and satisfies (3.9).

Step 2. The application of Step 1 leads to ˜︁𝑤 ∈ 𝐻 1(Ω;R3) with˜︁𝑤 = ( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D on ΓD and ∥ D ˜︁𝑤 ∥𝐿2 (Ω) ≤ ∥( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) .

The Scott-Zhang quasi-interpolation ˆ︁𝑤C ≔ ˆ︁J𝑘+1
D

˜︁𝑤 preserves polynomial boundary

data on ΓD with respect to the triangulation ˆ︁T by Lemma 2.12 (e). Thus, ˆ︁𝑤C = ( ˆ︁J𝑘+1
D

−
J𝑘+1
D

)𝑢D on ΓD and the global stability from Lemma 2.12 (c) holds

∥ D ˆ︁𝑤C∥𝐿2 (Ω) ≤ 𝐶OL𝐶SZ ∥ D ˜︁𝑤 ∥𝐿2 (Ω) .

The combination of the two previously displayed formulas proves (3.10). □

The approximation of the Dirichlet data is naturally measured in terms of the

boundary oscillations from (2.20) evaluated for the surface gradient of 𝑢D

osc
2(D𝑢D, F (ΓD)) ≔

∑︁
𝐹∈F (ΓD)

|𝜔𝐹 |1/3∥(1 − Π𝑘) D𝑢D∥2𝐿2 (𝐹 ) .

The following results require the additional regularity 𝑢D ∈ 𝐻 1(ΓD;R3) to control the

boundary data approximation errors from (3.9)–(3.10) in Lemma 3.6 in terms of the

oscillations.

Lemma 3.7. There exists a positive generic constant𝐶D1 such that every𝑢D ∈ 𝐻 1(ΓD;R3)
satisfies

∥(1 − J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) ≤ 𝐶D1 osc(D𝑢D, F (ΓD)).

Proof. Since the Scott-Zhang quasi-interpolation operator J𝑘+1
D

is an 𝐻 1/2
-stable op-

erator and 𝑢D ∈ 𝐻 1(ΓD;R3), [74, Theorem 4] applies and proves the existence of a

positive generic constant 𝑐1 with

∥(1 − J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) ≤ 𝑐1∥ℎ
1/2
T D((1 − J𝑘+1

D
)𝑢D)∥𝐿2 (ΓD) .

The localisation of the estimate

∥ D((1 − J𝑘+1
D

)𝑢D)∥𝐿2 (ΓD) ≤ 𝑐2∥(1 − Π𝑘) D𝑢D∥𝐿2 (ΓD)

from [4, Proposition 3.1] with some factor ℎT inside concludes the proof. □
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Recall the notation for 𝑛-layers L𝑛 around faces from page 24.

Lemma 3.8. There exists a positive generic constant𝐶D2 such that every𝑢D ∈ 𝐻 1(ΓD;R3)
satisfies

∥( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D∥2𝐻 1/2 (ΓD)
≤ 𝐶D2 osc

2(D𝑢D,L5(F \ ˆ︁F , ΓD)) . (3.11)

Proof. Since the estimate has been shown in [4, proof of Proposition 6.1, from line 7

on page 1227 to line 19 on page 1228], the proof at hand solely gives an overview

of the arguments. The locality of the Scott-Zhang quasi-interpolation operator from

Lemma 2.12 (g) ensures that

( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D |𝐹 = 0 on every 𝐹 ∈ F (ΓD) \ L1(F \ ˆ︁F , ΓD).
The remaining surface 𝑆D,1 ≔ relint

⋃︁L1(F \ˆ︁F , ΓD) is the relative interior from (2.5) of

the union of all the faces inL1(F \ ˆ︁F , ΓD) on the Dirichlet boundary. The estimation of

∥( ˆ︁J𝑘+1
D

−J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) on 𝑆D,1 employs a localisation technique from [39, Section 3].

For all 𝐹 ∈ F (ΓD) with patch 𝑆𝐹 ≔ relint

⋃︁L1({𝐹 }, ΓD), [4, Proposition 3.1] shows

∥(1 − Π𝑘) D𝑢D∥𝐿2 (𝐹 ) ≤ ∥ D((1 − J𝑘+1
X

)𝑢D)∥𝐿2 (𝐹 ) ≤ 𝑐1 ∥(1 − Π𝑘) D𝑢D∥𝐿2 (𝑆𝐹 ) .

This plus the stability and approximation property of the Scott-Zhang operator on the

boundary [4, Equations (3.7)–(3.9)] lead to the estimate (3.11) in the third displayed

formula on [4, page 1228]. □

3.4 Approximation of Neumann boundary data
Given a regular triangulation T ∈ T with the set of Neumann boundary faces F (ΓN),
approximate inhomogeneous boundary values 𝑡N ∈ 𝐿2(ΓN;R3) ⊂ 𝐻−1/2(ΓN;R3) by
the 𝐿2(ΓN) orthogonal projection Π𝑘𝑡N onto the piecewise polynomials 𝑃𝑘 (F (ΓN);R3)
with

∥𝑡N − Π𝑘𝑡N∥𝐿2 (ΓN) = inf

{︁
∥𝑡N − 𝑠pw∥𝐿2 (ΓN) : 𝑠pw ∈ 𝑃𝑘 (F (ΓN);R3)

}︁
.

The analysis of the approximation error

(1 − Π𝑘)𝑡N ⊥ 𝑃𝑘 (F (ΓN);R3)

involves the extension˜︁𝑡N ∈ 𝐿2(𝜕Ω;R3) by zero

˜︁𝑡N(𝑥) ≔ {︄
𝑡N(𝑥) if 𝑥 ∈ ΓN,

0 else.

This leads to an approximation error (1 − Π𝑘)˜︁𝑡N ∈ 𝐿2(𝜕Ω) on the whole boundary

with (1 − Π𝑘)˜︁𝑡N = 0 on ΓD.

48



The following lemma asserts the well-known surjectivity of the normal trace oper-

ator 𝛾nor
N

from Section 2.2 and allows for an 𝐻 (div)-stable extension of the Neumann

boundary data approximation error inside the domain. It is proved here for the sake

of explicit stability constants. Let ˆ︁T ∈ T(T ) denote an admissible refinement of

the regular triangulation T ∈ T with Notation 3 from page 22. Recall the Friedrichs

constant 𝐶F from Lemma 2.1 and the stability constant 𝐶ext from Lemma 2.7.

Lemma 3.9 (Neumann boundary data extension). Given 𝑡N ∈ 𝐿2(ΓN;R3), there
exists some divergence-free extension 𝜉 ∈ 𝐻 (div = 0,Ω;R3×3) with

𝜉𝜈 = (1 − Π𝑘)˜︁𝑡N on 𝜕Ω and ∥𝜉 ∥𝐿2 (Ω) ≤ (1 +𝐶2

F
) ∥(1 − Π𝑘)˜︁𝑡N∥𝐻−1/2 (𝜕Ω) . (3.12)

There exists some discrete divergence-free extension ˆ︁𝜉RT ∈ 𝑅𝑇𝑘 (ˆ︁T ;R3×3) ∩ 𝐻 (div =

0,Ω;R3×3) withˆ︁𝜉RT𝜈 = (ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N on 𝜕Ω and ∥ˆ︁𝜉RT∥𝐿2 (Ω) ≤ 𝐶ext ∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥𝐻−1/2 (𝜕Ω) . (3.13)

Proof. Step 1. Let𝑤 ∈ 𝐻 1(Ω;R3)/R3 solve the Neumann problem

(D𝑤,D 𝑣)𝐿2 (Ω) =
(︁
𝑣, (1 − Π𝑘)𝑡N

)︁
𝐿2 (𝜕Ω) for all 𝑣 ∈ 𝐻 1(Ω;R3)/R3. (3.14)

The integration by parts shows that its weak derivative 𝜉 ≔ D𝑤 ∈ 𝐻 (div,Ω;R3×3)
satisfies div 𝜉 = 0 and 𝜉𝜈 = (1 − Π𝑘)𝑡N on 𝜕Ω. The stability of this boundary value

problem follows from the Friedrichs inequality from Lemma 2.1 and (3.14) in

1

(1 +𝐶2

F
)
∥𝑤 ∥2

𝐻 1 (Ω) ≤ ∥ D𝑤 ∥2
𝐿2 (Ω) = (D𝑤,D𝑤)𝐿2 (Ω) =

(︁
𝑤, (1 − Π𝑘)𝑡N

)︁
𝐿2 (ΓN) .

The division by ∥𝑤 ∥𝐻 1 (Ω) and the estimate by the supremum over 𝐻 1(Ω;R3) \ {0} lead
to

∥𝜉 ∥𝐻 (div,Ω) = ∥ D𝑤 ∥𝐿2 (Ω) ≤ ∥𝑤 ∥𝐻 1 (Ω) ≤ (1 +𝐶2

F
) ∥(1 − Π𝑘)𝑡N∥𝐻−1/2 (ΓN) .

Step 2. By definition of the 𝐿2(𝜕Ω)-orthogonal projection ˆ︁Π𝑘 , the functionˆ︁𝑡pw ≔
(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N ∈ 𝑃𝑘 (ˆ︁F (𝜕Ω);R3) satisfies

−
∫
𝜕Ω

ˆ︁𝑡pw d𝑎 = −
∫
ΓN

(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N d𝑎 = 0.

Hence, Lemma 2.7 applied to every component with respect to the fine triangulationˆ︁T guarantees the existence of some discrete extension ˆ︁𝜌RT ∈ 𝑅𝑇𝑘 (ˆ︁T ;R3×3) such that

divˆ︁𝜌RT = 0 in Ω and ˆ︁𝜌RT𝜈 =ˆ︁𝑡pw = (ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N on 𝜕Ω. The stability (2.22) reads

∥ˆ︁𝜉RT∥𝐿2 (Ω) ≤ 𝐶ext ∥(ˆ︁Π𝑘 − Π𝑘)𝑡N∥𝐻−1/2 (𝜕Ω)

and concludes the proof of (3.13). □
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The approximation of the boundary data is naturally measured in terms of the

oscillations

osc
2(𝑡N, F (ΓN)) ≔

∑︁
𝐹∈F (ΓN)

|𝜔𝐹 |1/3∥(1 − Π𝑘)𝑡N∥2𝐿2 (𝐹 ) .

The following two results require the additional regularity 𝑡N ∈ 𝐿2(Ω;R3) to control

the boundary data approximation error from Lemma 3.9 in terms of the oscillations.

Lemma 3.10. There exists a positive generic constant 𝐶N such that the extension˜︁𝑡N ∈
𝐿2(𝜕Ω;R3) by zero of any 𝑡N ∈ 𝐿2(ΓN;R3) satisfies

∥(1 − Π𝑘)˜︁𝑡N∥𝐻−1/2 (𝜕Ω) ≤ 𝐶N osc(𝑡N, F (ΓN)) .

Proof. Recall for any face 𝐹 ∈ F (ΓN) of surface measure |𝐹 |, that 𝜔𝐹 ∈ T denotes

the unique tetrahedron with 𝐹 ∈ F (𝜔𝐹 ) of volume |𝜔𝐹 | and diameter diam(𝜔𝐹 ).
Since (1 − Π𝑘)˜︁𝑡N ∈ 𝐿2(𝜕Ω;R3) and the duality bracket ⟨ • , • ⟩𝜕Ω for the dual space

𝐻−1/2(𝜕Ω;R3) of 𝐻 1/2(𝜕Ω;R3) extends the 𝐿2(𝜕Ω) scalar product,⟨︁
(1 − Π𝑘)˜︁𝑡N, 𝑣⟩︁𝜕Ω =

(︁
(1 − Π𝑘)˜︁𝑡N, 𝑣 )︁𝐿2 (𝜕Ω) = (︁

(1 − Π𝑘)𝑡N, 𝑣
)︁
𝐿2 (ΓN) .

The supremum of this over 𝑣 ∈ 𝐻 1(Ω;R3) with norm ∥𝑣 ∥𝐻 1 (Ω) = 1 results in the

operator norm ∥ • ∥𝐻−1/2 (𝜕Ω) on the space 𝐻−1/2(𝜕Ω;R3). Hence, it suffices for any

𝑣 ∈ 𝐻 1

D
(Ω;R3) with ∥𝑣 ∥𝐻 1 (Ω) = 1 to prove the estimate(︁

(1 − Π𝑘)𝑡N, 𝑣
)︁
𝐿2 (ΓN) ≤ 𝐶N osc(𝑡N, F (ΓN)) . (3.15)

Given any such 𝑣 , let 𝑣𝐹 ≔ −
∫
𝜔𝐹
𝑣 d𝑥 be the integral mean of 𝑣 on the face-patch 𝜔𝐹

of 𝐹 ∈ F (ΓN). The Poincaré inequality including the Payne-Weinberger constant

from [88, Section 4] with a corrected proof in [10, Theorem 3.2] verifies

∥𝑣 − 𝑣𝐹 ∥𝐿2 (𝜔𝐹 ) ≤
diam(𝜔𝐹 )

𝜋
∥ D 𝑣 ∥𝐿2 (𝜔𝐹 ) . (3.16)

Since −
∫
𝐹
(1 − Π𝑘)𝑡N d𝑎 = 0 for every 𝐹 ∈ F (ΓN), Cauchy-Schwarz inequalities in 𝐿2(𝐹 )

and in R|F (ΓN) |
show for the left-hand side in (3.15) that(︁

(1 − Π𝑘)𝑡N, 𝑣
)︁
𝐿2 (ΓN) =

∑︁
𝐹∈F (ΓN)

(︁
(1 − Π𝑘)𝑡N, 𝑣 − 𝑣𝐹

)︁
𝐿2 (𝐹 )

≤
∑︁

𝐹∈F (ΓN)
|𝜔𝐹 |1/6∥(1 − Π𝑘)𝑡N∥𝐿2 (𝐹 ) |𝜔𝐹 |−1/6∥𝑣 − 𝑣𝐹 ∥𝐿2 (𝐹 )

≤ osc(𝑡N, F (ΓN))
√︄ ∑︁
𝐹∈F (ΓN)

|𝜔𝐹 |−1/3∥𝑣 − 𝑣𝐹 ∥2𝐿2 (𝐹 ) .
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The trace identity for 𝑔 ≔ |𝑣 − 𝑣𝐹 |2 ∈𝑊 1,1(𝜔𝐹 ) on the tetrahedron 𝜔𝐹 ≕ conv{𝐹, 𝑃𝐹 }
reads [42, Lemma 2.6]

|𝐹 |−1∥𝑣 − 𝑣𝐹 ∥2𝐿2 (𝐹 ) = −
∫
𝐹

𝑔(𝑥) d𝑎 = −
∫
𝜔𝐹

𝑔(𝑥) d𝑥 + 1

3

−
∫
𝜔𝐹

(𝑥 − 𝑃𝐹 ) · ∇𝑔(𝑥) d𝑥

≤ |𝜔𝐹 |−1∥𝑣 − 𝑣𝐹 ∥2𝐿2 (𝜔𝐹 ) + 2

diam(𝜔𝐹 )
3|𝜔𝐹 |

∥𝑣 − 𝑣𝐹 ∥𝐿2 (𝜔𝐹 ) ∥ D 𝑣 ∥𝐿2 (𝜔𝐹 ) .

This and (3.16) prove

∥𝑣 − 𝑣𝐹 ∥2𝐿2 (𝐹 ) ≤
|𝐹 | diam(𝜔𝐹 )2

𝜋 |𝜔𝐹 |

(︂
2

3

+ 1

𝜋

)︂
∥ D 𝑣 ∥2

𝐿2 (𝜔𝐹 ) .

With the positive generic constant

𝐶2

N
≔

4

𝜋

(︂
2

3

+ 1

𝜋

)︂
max

𝐹∈F (ΓN)
|𝐹 | diam(𝜔𝐹 )2 |𝜔𝐹 |−4/3,

the weighted sum of all those contributions reads∑︁
𝐹∈F (ΓN)

|𝜔𝐹 |−1/3∥𝑣 − 𝑣𝐹 ∥2𝐿2 (𝐹 ) ≤
𝐶2

N

4

∑︁
𝐹∈F (ΓN)

∥ D 𝑣 ∥2
𝐿2 (𝜔𝐹 ) .

The finite overlap of the family (𝜔𝐹 : 𝐹 ∈ F (ΓN)) shows that the last term in the

previously displayed equation is controlled by 𝐶2

N
∥ D 𝑣 ∥𝐿2 (Ω) ≤ 𝐶2

N
. The combination

with (3.15) concludes the proof. □

Corollary 3.11. It holds that

∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥𝐻−1/2 (𝜕Ω) ≤ 𝐶N osc(𝑡N, F (ΓN) \ ˆ︁F (ΓN)) . (3.17)

Proof. The estimate is a direct consequence of Lemma 3.10 applied to ˆ︁Π𝑘𝑡N and the

Pythagoras theorem exploiting the orthogonality of the projection Π𝑘 . This leads to

∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥2𝐻−1/2 (𝜕Ω) = ∥(1 − Π𝑘)ˆ︁Π𝑘˜︁𝑡N∥2𝐻−1/2 (𝜕Ω)

≤ 𝐶2

N

∑︁
𝐹∈F (ΓN)

|𝜔𝐹 |1/3∥(ˆ︁Π𝑘 − Π𝑘)𝑡N∥2𝐿2 (𝐹 )

= 𝐶2

N

∑︁
𝐹∈F (ΓN)

|𝜔𝐹 |1/3
(︁
∥(1 − Π𝑘)𝑡N∥2𝐿2 (𝐹 ) − ∥(1 − ˆ︁Π𝑘)𝑡N∥2𝐿2 (𝐹 ) )︁ .

Since (ˆ︁Π𝑘−Π𝑘)𝑡N |𝐹 = 0 vanishes on every 𝐹 ∈ ˆ︁F (ΓN)∩F (ΓN) and−∥(1−ˆ︁Π𝑘)𝑡N∥2𝐿2 (𝐹 ) ≤
0 for 𝐹 ∈ F (ΓN) \ ˆ︁F (ΓN) on the right-hand side, this proves (3.17). □
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3.5 Least-squares formulation
Let T ∈ T denote an admissible triangulation in the sense of Section 2.4. Approximate

the Neumann boundary data 𝑡N with the 𝐿2-orthogonal projection Π𝑘𝑡N onto the

piecewise polynomials 𝑃𝑘 (T ;R3) from Section 3.4. Choose the Raviart-Thomas finite

element functions

Σ𝑘 (T ) ≔
{︁
𝜏RT ∈ 𝑅𝑇𝑘 (T ;R3×3) : 𝜏RT · 𝜈 = Π𝑘𝑡N on ΓN

}︁
for the discretisation of Σ. If ΓN = ∅, then Σ𝑘 (T ) ≔ 𝑅𝑇𝑘 (T ;R3×3) ∩ Σ is a discrete

conforming subspace. Approximate the Dirichlet boundary data 𝑢D with the Scott-

Zhang quasi-interpolation J𝑘+1
D

𝑢D as described in Section 3.3. For the discretisation

of𝑈 , choose

𝑈 𝑘+1(T ) ≔
{︁
𝑣C ∈ 𝑆𝑘+1(T ;R3) : 𝑣C = J𝑘+1

D
𝑢D on ΓD

}︁
.

The corresponding discrete spaces with homogeneous boundary conditions for the

test functions read

Σ𝑘
N
(T ) ≔

{︁
𝜏RT ∈ 𝑅𝑇𝑘 (T ;R3×3) : 𝜏RT · 𝜈 ≡ 0 on ΓN

}︁
⊂ ΣN,

𝑈 𝑘+1
D

(T ) ≔
{︁
𝑣C ∈ 𝑆𝑘+1(T ;R3) : 𝑣C ≡ 0 on ΓD

}︁
⊂ 𝑈D.

The least-squares formulation involves the symmetric and bilinear form

B : (𝐻 (div,Ω;R3×3) × 𝐻 1(Ω;R3)) × (𝐻 (div,Ω;R3×3) × 𝐻 1(Ω;R3)) → R,
B(𝜎,𝑢;𝜏, 𝑣) ≔ (div𝜎, div𝜏)𝐿2 (Ω) + (A𝜎 − S D𝑢,A𝜏 − S D 𝑣)𝐿2 (Ω) .

The LSFEM seeks (𝜎LS, 𝑢LS) ∈ Σ𝑘 (T ) × 𝑈 𝑘+1(T ) such that, for all 𝜏LS ∈ Σ𝑘
N
(T ) (or

𝜏LS ∈ Σ𝑘 (T ) in the case of ΓN = ∅) and 𝑣LS ∈ 𝑈 𝑘+1
D

(T ),

B(𝜎LS, 𝑢LS;𝜏LS, 𝑣LS) = −(𝑓 , div𝜏LS)𝐿2 (Ω) . (3.18)

The solution (𝜎LS, 𝑢LS) is the unique discrete minimiser of the least-squares functional

𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) ≔ ∥ 𝑓 + div𝜎LS∥2𝐿2 (Ω) + ∥A𝜎LS − S D𝑢LS∥2𝐿2 (Ω) .

The existence and uniqueness of the minimiser follows from well-known fundamental

equivalences asserting the ellipticity of the bilinear formB. Due to the Lemmas 3.2–3.4,

the following theorem applies for all three model problems at hand. It solely requires

the first three assumptions (W1)–(W3) from Section 3.1.

Theorem 3.12 (fundamental equivalence). The assumptions (W1)–(W3) imply the
existence of the positive generic constants 𝐶bdd ≔ 1 +𝐶2

A and

𝐶ell ≔ max

{︁
4 + 2𝐶2

tdd

(︁
8 +𝐶tdd + 2𝐶2

A (𝐶tdd + 8𝐶2

A𝐶
2

En
) (1 + 4𝐶2

tdd
)
)︁
,

1 + 4𝐶tdd

(︁
1 + 2𝐶2

A (1 + 4𝐶2

A𝐶tdd𝐶
2

En
) (1 + 4𝐶2

tdd
)
)︁}︁ (3.19)
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such that, for all 𝜏 ∈ ΣN and 𝑣 ∈ 𝑈D,

𝐿𝑆 (0;𝜏, 𝑣) ≤ 𝐶bdd

(︁
∥𝜏 ∥2

𝐻 (div,Ω) + ∥S D 𝑣 ∥2
𝐿2 (Ω)

)︁
, (3.20)

∥𝜏 ∥2
𝐻 (div,Ω) + ∥S D 𝑣 ∥2

𝐿2 (Ω) ≤ 𝐶ell 𝐿𝑆 (0;𝜏, 𝑣). (3.21)

This equivalence is well-known for the three model problems at hand. In particular,

it generalises the results for the Poisson model problem [71, Lemma 4.3], the Stokes

problem [32, Theorem 4.2], and the linear elasticity problem [34, Theorem 3.1]. The

purpose of Theorem 3.12 is to underline its generality.

Proof of Theorem 3.12. Step 1. The triangle inequality and Young’s inequality for any

parameter 𝛼 > 0 yield

𝐿𝑆 (0;𝜏, 𝑣) = ∥ div𝜏 ∥2
𝐿2 (Ω) + ∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω)

≤ ∥ div𝜏 ∥2
𝐿2 (Ω) + (1 + 𝛼) ∥A𝜏 ∥2

𝐿2 (Ω) + (1 + 1/𝛼) ∥S D 𝑣 ∥2
𝐿2 (Ω) .

The boundedness of A from the assumption (W1) concludes the proof of the bounded-

ness

𝐿𝑆 (0;𝜏, 𝑣) ≤ 𝐶bdd(𝛼)
(︁
∥𝜏 ∥2

𝐻 (div,Ω) + ∥S D 𝑣 ∥2
𝐿2 (Ω)

)︁
with 𝐶bdd(𝛼) ≔ max{(1 + 𝛼)𝐶2

A, (1 + 1/𝛼)}. This parameter attains its minimum

𝐶bdd ≔ 𝐶bdd(𝛼∗) = 1 +𝐶2

A for 𝛼∗ =
1

𝐶2

A
.

Step 2. The proof of the ellipticity departs with the triangle inequality and the

boundedness (W1) to show

∥S D 𝑣 ∥2
𝐿2 (Ω) ≤ 2 ∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) + 2𝐶2

A ∥𝜏 ∥2
𝐿2 (Ω) .

The abstract tr-dev-div inequality from (W2) establishes

∥S D 𝑣 ∥2
𝐿2 (Ω) ≤ 2 ∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) + 2𝐶2

A𝐶tdd

(︁
∥ div𝜏 ∥2

𝐿2 (Ω) + (A𝜏, 𝜏)𝐿2 (Ω)
)︁
. (3.22)

In order to estimate the last term on the right-hand side, utilise the Cauchy-Schwarz

inequality and, again, the abstract tr-dev-div inequality (W2) to prove

(A𝜏, 𝜏)𝐿2 (Ω) = (A𝜏 − S D 𝑣, 𝜏)𝐿2 (Ω) + (S D 𝑣, 𝜏)𝐿2 (Ω)
≤ 𝐶tdd ∥A𝜏 − S D 𝑣 ∥𝐿2 (Ω)

(︁
(A𝜏, 𝜏)𝐿2 (Ω) + ∥ div𝜏 ∥2

𝐿2 (Ω)
)︁
1/2

+ (S D 𝑣, 𝜏)𝐿2 (Ω)

≤
𝐶2

tdd

2

∥A𝜏 − S D 𝑣 ∥2
𝐿2 (Ω) +

1

2

(A𝜏, 𝜏)𝐿2 (Ω) +
1

2

∥ div𝜏 ∥2
𝐿2 (Ω)

+ (S D 𝑣, 𝜏)𝐿2 (Ω)
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with Young’s inequality in the last step. The absorption of the term (A𝜏, 𝜏)𝐿2 (Ω) on
the left-hand side results in

(A𝜏, 𝜏)𝐿2 (Ω) ≤ 𝐶2

tdd
∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) + ∥ div𝜏 ∥2
𝐿2 (Ω) + 2 (S D 𝑣, 𝜏)𝐿2 (Ω) . (3.23)

The estimate (W3) and Young’s inequality with parameter 𝛼 > 0 provide

(S D 𝑣, 𝜏)𝐿2 (Ω) ≤
𝐶2

En

𝛼
∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) +
𝐶2

En

𝛼
∥ div𝜏 ∥2

𝐿2 (Ω) +
𝛼

2

∥S D 𝑣 ∥2
𝐿2 (Ω) .

The combination of this with (3.23) in (3.22) yields

∥S D 𝑣 ∥2
𝐿2 (Ω) ≤ 2(1 +𝐶2

A𝐶
3

tdd
) ∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) + 4𝐶2

A𝐶tdd ∥ div𝜏 ∥2𝐿2 (Ω)
+ 4𝐶2

A𝐶tdd (S D 𝑣, 𝜏)𝐿2 (Ω)
≤ 2

(︁
1 +𝐶2

A𝐶tdd(𝐶2

tdd
+ 2𝐶2

En
/𝛼)

)︁
∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω)

+ 4𝐶2

A𝐶tdd(1 +𝐶2

En
/𝛼) ∥ div𝜏 ∥2

𝐿2 (Ω) + 2𝐶2

A𝐶tdd𝛼 ∥S D 𝑣 ∥2
𝐿2 (Ω) .

Eventually, for 𝛼 = 1/(4𝐶2

A𝐶tdd), another absorption of the term ∥S D 𝑣 ∥2
𝐿2 (Ω) on the

left-hand side leads to

∥S D 𝑣 ∥2
𝐿2 (Ω) ≤ 𝑐1 ∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) + 𝑐2 ∥ div𝜏 ∥
2

𝐿2 (Ω) . (3.24)

with the positive generic constants

𝑐1 ≔ 4

(︁
1 +𝐶2

A𝐶
2

tdd
(𝐶tdd + 8𝐶2

A𝐶
2

En
)
)︁

and 𝑐2 ≔ 8𝐶2

A𝐶tdd(1 + 4𝐶2

A𝐶tdd𝐶
2

En
).

Step 3. The estimate of the remaining term ∥𝜏 ∥2
𝐻 (div,Ω) employs the assumption (W2),

the estimate (3.23), and the Cauchy-Schwarz inequality to verify

∥𝜏 ∥2
𝐿2 (Ω) ≤ 𝐶tdd ∥ div𝜏 ∥2𝐿2 (Ω) +𝐶tdd (A𝜏, 𝜏)𝐿2 (Ω)

≤ 𝐶3

tdd
∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) + 2𝐶tdd ∥ div𝜏 ∥2𝐿2 (Ω) + 2𝐶tdd ∥S D 𝑣 ∥𝐿2 (Ω) ∥𝜏 ∥𝐿2 (Ω) .

Young’s inequality with parameter 𝛼 = 1/2 allows for an absorption of the last term.

The resulting estimate reads

∥𝜏 ∥2
𝐿2 (Ω) ≤ 2𝐶3

tdd
∥A𝜏 − S D 𝑣 ∥2

𝐿2 (Ω) + 4𝐶tdd ∥ div𝜏 ∥2𝐿2 (Ω) + 4𝐶2

tdd
∥S D 𝑣 ∥2

𝐿2 (Ω) .

This and (3.24) show

∥𝜏 ∥2
𝐻 (div,Ω) ≤ 2𝐶2

tdd
(𝐶tdd +2𝑐1) ∥A𝜏 −S D 𝑣 ∥2

𝐿2 (Ω) +
(︁
1+ 4𝐶tdd(1+𝐶tdd𝑐2)

)︁
∥ div𝜏 ∥2

𝐿2 (Ω) .

Step 4. The combination of the Steps 2 and 3 concludes the proof of the ellipticity

with the positive generic constant

𝐶ell ≔ max

{︁
𝑐1 + 2𝐶2

tdd
(𝐶tdd + 2𝑐1), 𝑐2 +

(︁
1 + 4𝐶tdd(1 +𝐶tdd𝑐2)

)︁}︁
.

The insertion of 𝑐1 and 𝑐2 and the simplification of the terms result in the constant

from (3.19). □
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Remark 3.13. The proof of well-posedness in Theorem 3.12 is very general and does

not employ the linearity of the operators A and S. It applies to nonlinear problems as

well.

Remark 3.14. The analysis in Section 3.2 reveals that the positive constant 𝐶En in the

assumption (W3) and, thus, also the ellipticity constant 𝐶ell depend on the Friedrichs

constant 𝐶F. In particular, they scale with the diameter of the domain Ω. This is a
common criticism on least-squares methods. However, the reader is referred to [25,

Section 3] for a remedy and a scaling of the residuals with an ellipticity constant

independent of diam(Ω) in the case of the Stokes problem in 2D.

Remark 3.15. Another scaling issue is addressed in [95] in the context of a time-

dependent linear elasticity problem. For the corresponding static formulation at hand,

this results in the weighted least-squares functional˜︂𝐿𝑆 (𝑓 ;𝜎,𝑢) ≔ ∥︁∥︁ 1

√
𝐸
(𝑓 + div𝜎)

∥︁∥︁2
𝐿2 (Ω) + ∥C−1𝜎 − 𝜀 (𝑢)∥2

𝐿2 (Ω),

where 𝐸 denotes the Young’s modulus. The weights are chosen in a way such that the

𝐿2 norms measure dimensionless residuals.

The remaining part of this section is devoted to the proof of the standard a posteriori

error estimates involving the boundary oscillations from (2.20). For the surface gradient

D𝑢D of the Dirichlet boundary data from (2.4), abbreviate the oscillation terms with

𝜂2
osc

(T ) ≔ osc
2(D𝑢D, F (ΓD)) + osc

2(𝑡N, F (ΓN)). (3.25)

Theorem 3.16 (a posteriori estimates). Given the assumptions (W1)–(W4), there
exist positive generic constants 𝐶LS1 and 𝐶LS2 such that the exact solution 𝜎 ∈ Σ and
𝑢 ∈ 𝑈 to (3.3) and any 𝜏RT ∈ Σ𝑘 (T ) and 𝑣C ∈ 𝑈 𝑘+1(T ) satisfy

∥𝜎 − 𝜏RT∥2𝐻 (div,Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω) ≤ 𝐶LS1

(︁
𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C) + 𝜂2osc(T )

)︁
, (3.26)

𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C) ≤ 𝐶LS2

(︁
∥𝜎 − 𝜏RT∥2𝐻 (div,Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω) + 𝜂

2

osc
(T )

)︁
. (3.27)

Remark 3.17. Since Theorem 3.16 applies to arbitrary 𝜏RT ∈ Σ𝑘 (T ) and 𝑣C ∈ 𝑈 𝑘+1(T ),
the least-squares functional 𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C) allows for a posteriori error estimation even

in the case of an inexact solution of the linear system, for instance, by an iterative

solver.

Proof of Theorem 3.16. Step 1. Let 𝜎 and 𝑢 solve the first-order system (3.3) and 𝜏RT ∈
Σ𝑘 (T ) and 𝑣C ∈ 𝑈 𝑘+1(T ) be arbitrary. The boundary data of the respective differences
read

𝑢 − 𝑣C = (1 − J𝑘+1
D

)𝑢D on ΓD and (𝜎 − 𝜏RT)𝜈 = (1 − Π𝑘)𝑡N on ΓN

and do not vanish in general. Since Theorem 3.12 solely applies to functions with

homogeneous boundary conditions, its application requires suitable extensions of the

boundary data approximation errors from the Sections 3.3–3.4.
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The extension 𝑤 ∈ 𝐻 1(Ω;R3) from Lemma 3.6 satisfies 𝑤 = (1 − J𝑘+1
D

)𝑢D on ΓD
and

∥ D𝑤 ∥2
𝐿2 (Ω) ≤ ∥(1 − J𝑘+1

D
)𝑢D∥2𝐻 1/2 (ΓD)

.

Consequently, Lemma 3.7 implies

∥ D𝑤 ∥2
𝐿2 (Ω) ≤ 𝐶

2

D1
osc

2(D𝑢D, F (ΓD)) .

This and the boundedness of the operator S from (W4) prove

∥S D𝑤 ∥2
𝐿2 (Ω) ≤ 𝐶

2

S𝐶
2

D1
osc

2(D𝑢D, F (ΓD)) . (3.28)

The extension 𝜉 ∈ 𝐻 (div = 0,Ω;R3×3) from Lemma 3.9 satisfies 𝜉𝜈 = (1 − ΠN)𝑡N on

ΓN and

∥𝜉 ∥2
𝐿2 (Ω) ≤ (1 +𝐶2

F
)2 ∥(1 − Π𝑘)˜︁𝑡N∥2𝐻−1/2 (𝜕Ω) .

Thus, Lemma 3.10 shows

∥𝜉 ∥2
𝐿2 (Ω) ≤ (1 +𝐶2

F
)2𝐶2

N
osc

2(𝑡N, F (ΓN)) . (3.29)

The triangle inequality, the boundedness of the operator A from (W1), and the estim-

ates (3.28)–(3.29) lead to

∥A𝜉 − S D𝑤 ∥2
𝐿2 (Ω) ≤ 2𝐶2

A (1 +𝐶2

F
)2𝐶2

N
osc

2(𝑡N, F (ΓN))
+ 2𝐶2

S𝐶
2

D1
osc

2(D𝑢D, F (ΓN)) .
(3.30)

The abbreviations 𝜏N ≔ 𝜎 − 𝜏RT − 𝜉 ∈ ΣN and 𝑣D ≔ 𝑢 − 𝑣C − 𝑤 ∈ 𝑈D satisfy

homogeneous boundary conditions.

Step 2. Since 𝜎 and 𝑢 are exact solutions to the first-order system (3.3), it holds that

𝐿𝑆 (0;𝜏N, 𝑣D) = ∥ div𝜏N∥2𝐿2 (Ω) + ∥A𝜏N − S D 𝑣D∥2𝐿2 (Ω)
= ∥ 𝑓 + div(𝜏RT − 𝜉)∥2𝐿2 (Ω) + ∥A(𝜏RT − 𝜉) − S D(𝑣C +𝑤)∥2

𝐿2 (Ω) .

This and div 𝜉 = 0 imply

𝐿𝑆 (0;𝜏N, 𝑣D) = 𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C) + 2 (A𝜏RT − S D 𝑣C,A𝜉 − S D𝑤)𝐿2 (Ω)
+ ∥A𝜉 − S D𝑤 ∥2

𝐿2 (Ω) .
(3.31)

Step 3. The proof of the reliability of the least-squares functional departs with the

triangle inequality and Young’s inequality to show

∥𝜎 − 𝜏RT∥2𝐻 (div,Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω)
≤ 2

(︁
∥𝜏N∥2𝐻 (div,Ω) + ∥S D 𝑣D∥2𝐿2 (Ω) + ∥𝜉 ∥2

𝐿2 (Ω) + ∥S D𝑤 ∥2
𝐿2 (Ω)

)︁
.
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The ellipticity (3.21) of the least-squares functional from Theorem 3.12 proves

∥𝜏N∥2𝐻 (div,Ω) + ∥S D 𝑣D∥2𝐿2 (Ω) ≤ 𝐶ell 𝐿𝑆 (0;𝜏N, 𝑣D).

The combination of the two previously displayed formulas leads to

∥𝜎 − 𝜏RT∥2𝐿2 (Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω) ≤ 2

(︁
𝐶ell 𝐿𝑆 (0;𝜏N, 𝑣D) + ∥𝜉 ∥2

𝐿2 (Ω) + ∥S D𝑤 ∥2
𝐿2 (Ω)

)︁
.

This and the equality (3.31) in combination with the Cauchy-Schwarz and Young’s

inequality prove

∥𝜎 − 𝜏RT∥2𝐿2 (Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω)
≤ 2

(︁
(1 +𝐶ell) 𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C) + 2 ∥A𝜉 − S D𝑤 ∥2

𝐿2 (Ω) + ∥𝜉 ∥2
𝐿2 (Ω) + ∥S D𝑤 ∥2

𝐿2 (Ω)
)︁
.

The triangle inequality and the estimates (3.28)–(3.30) conclude the proof of (3.26)

with the positive generic constant

𝐶LS1 ≔ 2max

{︁
(1 +𝐶ell), (4𝐶2

A + 1) (1 +𝐶2

F
)2𝐶2

N
, 5𝐶2

S𝐶
2

D1

}︁
.

Step 4. For the proof of the efficiency of the least-squares functional, the equal-

ity (3.31) provides

𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C) ≤ 𝐿𝑆 (0;𝜏N, 𝑣D) − 2 (A𝜏RT − S D 𝑣C,A𝜉 − S D𝑤)𝐿2 (Ω) .

The boundedness (3.20) of the least-squares functional from Theorem 3.12 and the

Cauchy-Schwarz inequality imply

𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C) ≤ 𝐶bdd

(︁
∥𝜏N∥2𝐿2 (Ω) + ∥S D 𝑣D∥2𝐿2 (Ω)

)︁
+ ∥A𝜏RT − S D 𝑣C∥𝐿2 (Ω) ∥A𝜉 − S D𝑤 ∥𝐿2 (Ω) .

The triangle inequality and Young’s inequality show

𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C)
≤ 2𝐶bdd

(︁
∥𝜎 − 𝜏RT∥2𝐿2 (Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω) + ∥𝜉 ∥2

𝐿2 (Ω) + ∥S D𝑤 ∥2
𝐿2 (Ω)

)︁
+ 1

2

∥A𝜉 − S D𝑤 ∥2
𝐿2 (Ω) +

1

2

∥A𝜏RT − S D 𝑣C∥2𝐿2 (Ω) .

The absorption of the last term, ∥A𝜏RT−S D 𝑣C∥2𝐿2 (Ω) ≤ 𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C), on the left-hand
side yields

𝐿𝑆 (𝑓 ;𝜏RT, 𝑣C)
≤ 4𝐶bdd

(︁
∥𝜎 − 𝜏RT∥2𝐿2 (Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω) + ∥𝜉 ∥2

𝐿2 (Ω) + ∥S D𝑤 ∥2
𝐿2 (Ω)

)︁
+ ∥A𝜉 − S D𝑤 ∥2

𝐿2 (Ω) .

The estimates (3.28)–(3.30) conclude the proof of the efficiency (3.27) with the positive

generic constant

𝐶LS2 ≔ max

{︁
4𝐶bdd, (4𝐶bdd + 2𝐶2

A) (1 +𝐶2

F
)2𝐶2

N
, (2 + 4𝐶bdd)𝐶2

S𝐶
2

D1

}︁
. □
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3.6 Alternative a posteriori error estimator
Given the solution (𝜎LS, 𝑢LS) to the discrete equation (3.18) with respect to the trian-

gulation T , the residual contributions to the alternative error estimator on 𝑇 ∈ T
read

𝜂2
res
(T ,𝑇 ) ≔ |𝑇 |2/3∥ div(S∗(A𝜎LS − S D𝑢LS))∥2𝐿2 (𝑇 )

+ |𝑇 |2/3∥ curl(A∗(A𝜎LS − S D𝑢LS))∥2𝐿2 (𝑇 )
+ |𝑇 |1/3

∑︁
𝐹∈F (𝑇 )\F (ΓD)

∥ [S∗(A𝜎LS − S D𝑢LS)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 )

+ |𝑇 |1/3
∑︁

𝐹∈F (𝑇 )\F (ΓN)
∥𝜈𝐹 × [A∗(A𝜎LS − S D𝑢LS)]𝐹 ∥2𝐿2 (𝐹 )

with tangential and normal jumps [𝜈 × • ]𝐹 and [ •𝜈𝐹 ]𝐹 along the faces 𝐹 ∈ F
from (2.13)–(2.14). Due to the assumptions (W6)–(W9), all these contributions are

well-defined and bounded. The Dirichlet boundary data oscillations involve the surface

gradient D𝑢D from (2.4) applied to the boundary data 𝑢D. Inhomogeneous boundary

conditions lead to the oscillation contributions already defined in (3.25)

𝜂2
osc

(T ,𝑇 ) ≔ |𝑇 |1/3
∑︁

𝐹∈F (𝑇 )∩F (ΓD)
∥(1 − Π𝑘) D𝑢D∥2𝐿2 (𝐹 )

+ |𝑇 |1/3
∑︁

𝐹∈F (𝑇 )∩F (ΓN)
∥(1 − Π𝑘) 𝑡N∥2𝐿2 (𝐹 ) .

(3.32)

For any subset M ⊆ T of simplices, abbreviate 𝜂2
res
(T ,M) ≔ ∑︁

𝑇∈M 𝜂2
res
(T ,𝑇 )

and 𝜂2
osc

(T ,M) ≔ ∑︁
𝑇∈M 𝜂2

osc
(T ,𝑇 ). Their sum provides the alternative explicit

a posteriori estimator for the ALSFEM algorithm from page 4

𝜂2(T ,M) ≔ 𝜂2
res
(T ,M) + 𝜂2

osc
(T ,M). (3.33)

Moreover, for the full contribution on the triangulation T , abbreviate 𝜂2(T ) ≔
𝜂2(T ,T) and do so analogously for 𝜂res and 𝜂osc. The discrete reliability analysis

in the Sections 4.2–4.3 below requires (𝜎LS, 𝑢LS) to solve the discrete equation (3.18)

exactly. Hence, in contrast to the built-in estimator, adaptive algorithms driven by the

alternative estimator 𝜂 are obliged to employ an exact solution of the linear system.

Before the remaining part of this section is devoted to the proof of the efficiency

of the estimator 𝜂, two additional quantities for the convergence analysis of the

separate marking algorithm are introduced. The data approximation error 𝜇2(T ) ≔∑︁
𝑇∈T 𝜇

2(𝑇 ) consists of, for 𝑇 ∈ T ,

𝜇2(𝑇 ) ≔ ∥(1 − Π𝑘) 𝑓 ∥2𝐿2 (𝑇 ) . (3.34)

The data approximation solely concerns the volume data 𝑓 . The boundary data ap-

proximation is controlled by the Dörfler marking and NVB in 𝜂2
osc

.
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For any admissible triangulation T ∈ T and its refinement ˆ︁T ∈ T(T ), the associated
solutions (𝜎LS, 𝑢LS) and (ˆ︁𝜎LS,ˆ︁𝑢LS) to (3.18) define the distance of the triangulations by
𝛿2(ˆ︁T ,T) ≔ ∥ div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) + ∥A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS)∥2𝐿2 (Ω) . (3.35)

In accordance with the analysis presented in [37, Section 11], the distance function

does not involve any boundary data oscillations. This relies on the following two facts.

The strict locality of Π𝑘 in the definitions of the oscillations osc(D𝑢D, F (ΓD)) and
osc(𝑡N, F (ΓN)) in (2.20) ensures that the corresponding terms vanish in the proof of

the stability axiom in Theorem 4.1 below. Additionally, due to the orthogonality of the

operator Π𝑘 no terms like ∥(ˆ︁Π𝑘 − Π𝑘) D𝑢D∥𝐿2 (Ω) occur in the right-hand side of the

reduction estimate in Theorem 4.2 below.

The following efficiency estimate for the error estimator 𝜂 is not required in the

axiomatic framework from [37, 40]. Nonetheless, it is a central result in the a posteriori

analysis of FEMs and it is presented here to indicate the optimal rate approximation of

the errors as well.

Theorem 3.18 (efficiency). There exists a positive generic constant 𝐶eff such that the
residual contributions 𝜂res to the a posteriori error estimator 𝜂 satisfy

𝜂2
res
(T ) ≤ 𝐶eff 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS). (3.36)

The proof of Theorem 3.18 employs a modification of a result from [40, Lemma 5.2]

involving the discrete trace inequalities (W8)–(W9) from Section 3.1.

Lemma 3.19 (discrete jump control). Given the assumptions (W8) and (W9), there
exists a positive generic constant 𝐶jc such that any 𝜏pw ∈ 𝑃𝑘 (T ;R3×3) and 𝑣pw ∈
𝑃𝑘+1(T ;R3) satisfy∑︁

𝑇∈T
|𝑇 |1/3

∑︁
𝐹∈F (𝑇 )

(︁
∥ [S∗(A𝜏pw − S D 𝑣pw)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 )

+ ∥𝜈𝐹 × [A∗(A𝜏pw − S D 𝑣pw)]𝐹 ∥2𝐿2 (𝐹 )
)︁
≤ 𝐶2

jc
∥A𝜏pw − S D 𝑣pw∥2𝐿2 (Ω) .

The constant𝐶jc solely depends on the shape regularity of the triangulations in T and the
generic constant 𝐶dti from (W8)–(W9).

Proof. The discrete trace inequalities from (W8)–(W9) read

|𝑇 |1/6∥(S∗(A𝜏pw − S D 𝑣pw)) |𝑇 𝜈𝐹 ∥𝐿2 (𝐹 ) ≤ 𝐶dti ∥A𝜏pw − S D 𝑣pw∥𝐿2 (𝑇 ),
|𝑇 |1/6∥𝜈𝐹 × (A∗(A𝜏pw − S D 𝑣pw)) |𝑇 ∥𝐿2 (𝐹 ) ≤ 𝐶dti ∥A𝜏pw − S D 𝑣pw∥𝐿2 (𝑇 ) .

These two estimate replace the first displayed equation in the proof of [40, Lemma 5.2].

The verbatim application of the proof therein establishes, for some positive generic
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constant 𝑐1,∑︁
𝑇∈T

|𝑇 |1/3
∑︁

𝐹∈F (𝑇 )
∥ [S∗(A𝜏pw − S D 𝑣pw)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 ) ≤ 𝑐

2

1
∥A𝜏pw − S D 𝑣pw∥2𝐿2 (Ω),∑︁

𝑇∈T
|𝑇 |1/3

∑︁
𝐹∈F (𝑇 )

∥𝜈𝐹 × [A∗(A𝜏pw − S D 𝑣pw)]𝐹 ∥2𝐿2 (𝐹 ) ≤ 𝑐
2

1
∥A𝜏pw − S D 𝑣pw∥2𝐿2 (Ω) .

The sum of the two estimates concludes the proof with the constant 𝐶2

jc
≔ 2𝑐2

1
. □

Proof of Theorem 3.18. Step 1. Abbreviate the discrete constitutive residual 𝜌LS ≔
A𝜎LS − S D𝑢LS ∈ 𝐿2(Ω;R3×3). Given any 𝑇 ∈ T , inverse estimates from the assump-

tions (W6)–(W7) and the boundedness of the adjoint operators A∗
and S∗

from (3.2)

prove

|𝑇 |2/3∥ divS∗𝜌LS∥2𝐿2 (𝑇 ) + |𝑇 |2/3∥ curlA∗𝜌LS∥2𝐿2 (𝑇 ) ≤ 𝐶
2

inv
(𝐶2

S +𝐶2

A) ∥𝜌LS∥2𝐿2 (𝑇 ) .

The sum over all 𝑇 ∈ T concludes the estimate of the volume contributions in 𝜂res.

Step 2. The estimate of the jump terms employs the discrete jump control from

Lemma 3.19 to show∑︁
𝑇∈T

|𝑇 |1/3
∑︁

𝐹∈F (𝑇 )

(︁
∥ [S∗𝜌LS]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × [A∗𝜌LS]𝐹 ∥2𝐿2 (𝐹 )

)︁
≤ 𝐶2

jc
∥𝜌LS∥2𝐿2 (Ω) .

This and the estimate ∥𝜌LS∥2𝐿2 (Ω) ≤ 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) complete the proof of the effi-

ciency (3.36) with the positive generic constant 𝐶eff ≔ 𝐶2

inv
(𝐶2

S +𝐶2

A) +𝐶2

jc
. □
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4 Axioms of adaptivity

This chapter is devoted to the proofs of the axioms of adaptivity (A1)–(A4) and (QM)

from the introductory Chapter 1. Section 4.1 is devoted to the stability (A1) and the

reduction (A2). Section 4.2 presents the reliability of the alternative estimator 𝜂 and

its discrete reliability (A3). The comprehensive proof of the discrete reliability is given

in Section 4.3. Some quasi-Pythagoras lemma establishes the quasi-orthogonality in

Section 4.4. This chapter concludes with the proof of the quasi-monotonicity of 𝜂 + 𝜇
in Section 4.5. Using [40, Theorem 2.1], these axioms establish the main result of this

thesis, Theorem 1.1.

4.1 Stability and reduction
The proofs of the first two axioms employ techniques from the efficiency analysis in

Section 3.6. Recall Notation 3 from page 22 for a regular triangulation T ∈ T with

admissible refinement ˆ︁T ∈ T(T ).

Theorem 4.1 (stability). The a posteriori error estimator 𝜂 and the distance 𝛿 satisfy
the axiom (A1): There exists a positive generic constant Λ1 such that

|𝜂 (ˆ︁T , ˆ︁T ∩ T) − 𝜂 (T , ˆ︁T ∩ T)| ≤ Λ1 𝛿 (ˆ︁T ,T).

Proof. The proof follows the one of [40, Theorem 5.1]. Abbreviate the discrete con-

stitutive residuals ˆ︁𝜌LS ≔ Aˆ︁𝜎LS − S Dˆ︁𝑢LS and 𝜌LS ≔ A𝜎LS − S D𝑢LS.

Step 1. Each of the terms 𝜂 (ˆ︁T , ˆ︁T ∩ T) and 𝜂 (T , ˆ︁T ∩ T) is the Euclidian norm |ˆ︁𝑎 |
and |𝑎 | of some vector ˆ︁𝑎, 𝑎 ∈ R𝑚 with𝑚 ≔ 10 |ˆ︁T ∩ T |. The entries of ˆ︁𝑎 consist of the
square roots of the volume contributions, the edge contributions, and the boundary

data oscillation terms from (3.33), for each 𝑇 ∈ ˆ︁T ∩ T ,

|𝑇 |1/3∥ div(S∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ), |𝑇 |1/3∥ curl(A∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ),
|𝑇 |1/6∥ [S∗ˆ︁𝜌LS]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 ) for 𝐹 ∈ F (𝑇 ) \ F (ΓD),
|𝑇 |1/6∥𝜈𝐹 × [A∗ˆ︁𝜌LS]𝐹 ∥𝐿2 (𝐹 ) for 𝐹 ∈ F (𝑇 ) \ F (ΓN),
|𝑇 |1/6∥(1 − ˆ︁Π𝑘) D𝑢D∥𝐿2 (𝐹 ) for 𝐹 ∈ F (𝑇 ) ∩ F (ΓD),
|𝑇 |1/6∥(1 − ˆ︁Π𝑘) 𝑡N∥𝐿2 (𝐹 ) for 𝐹 ∈ F (𝑇 ) ∩ F (ΓN).

(4.1)

Analogously, the entries of 𝑎 consist of the corresponding terms for 𝜌LS and Π𝑘 with
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respect to T . The reverse triangle inequality in R𝑚 proves that

(𝜂 (ˆ︁T , ˆ︁T ∩ T) − 𝜂 (T , ˆ︁T ∩ T))2 = ( |ˆ︁𝑎 | − |𝑎 |)2 ≤ |ˆ︁𝑎 − 𝑎 |2
=

∑︁
𝑇∈ˆ︁T∩T

[︄
|𝑇 |2/3

(︁
∥ div(S∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ div(S∗𝜌LS)∥𝐿2 (𝑇 )

)︁
2

+ |𝑇 |2/3
(︁
∥ curl(A∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ curl(A∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) )︁2

+ |𝑇 |1/3
∑︁

𝐹∈F (𝑇 )\F (ΓD)

(︁
∥ [S∗ˆ︁𝜌LS]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 ) − ∥[S∗𝜌LS]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 )

)︁
2

+ |𝑇 |1/3
∑︁

𝐹∈F (𝑇 )\F (ΓN)

(︁
∥𝜈𝐹 × [A∗ˆ︁𝜌LS]𝐹 ∥𝐿2 (𝐹 ) − ∥𝜈𝐹 × [A∗𝜌LS]𝐹 ∥𝐿2 (𝐹 )

)︁
2

+ |𝑇 |1/3
∑︁

𝐹∈F (𝑇 )∩F (ΓD)

(︁
∥(1 − ˆ︁Π𝑘) D𝑢D∥𝐿2 (𝐹 ) − ∥(1 − Π𝑘) D𝑢D∥𝐿2 (𝐹 )

)︁
2

+ |𝑇 |1/3
∑︁

𝐹∈F (𝑇 )∩F (ΓN)

(︁
∥(1 − ˆ︁Π𝑘)𝑡N∥𝐿2 (𝐹 ) − ∥(1 − Π𝑘)𝑡N∥𝐿2 (𝐹 )

)︁
2

]︄
.

Step 2. For every 𝑇 ∈ ˆ︁T ∩ T , the reverse triangle inequality in 𝐿2(𝑇 ) followed by

the abstract inverse estimates (W6)–(W7) prove

|𝑇 |2/3
(︁
∥ div(S∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ div(S∗𝜌LS)∥𝐿2 (𝑇 )

)︁
2

≤ |𝑇 |2/3∥ div(S∗(ˆ︁𝜌LS − 𝜌LS))∥2𝐿2 (𝑇 ) ≤ 𝐶2

inv
∥S∗(ˆ︁𝜌LS − 𝜌LS)∥2𝐿2 (𝑇 )

and

|𝑇 |2/3
(︁
∥ curl(A∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ curl(A∗𝜌LS)∥𝐿2 (𝑇 )

)︁
2

≤ |𝑇 |2/3∥ curl(A∗(ˆ︁𝜌LS − 𝜌LS))∥2𝐿2 (𝑇 ) ≤ 𝐶2

inv
∥A∗(ˆ︁𝜌LS − 𝜌LS)∥2𝐿2 (𝑇 ) .

The sum of these two estimates and the boundedness of the adjoint operators A∗
and

S∗
from (3.2) yield

|𝑇 |2/3
(︁
∥ div(S∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ div(S∗𝜌LS)∥𝐿2 (𝑇 )

)︁
2

+ |𝑇 |2/3
(︁
∥ curl(A∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ curl(A∗𝜌LS)∥𝐿2 (𝑇 )

)︁
2

≤ 𝐶2

inv
(𝐶2

S +𝐶2

A) ∥ˆ︁𝜌LS − 𝜌LS∥2𝐿2 (𝑇 ) .
Step 3. The reverse triangle inequality in 𝐿2(𝐹 ) for every 𝐹 ∈ F (𝑇 ) and 𝑇 ∈ ˆ︁T ∩ T
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plus the discrete jump control from Lemma 3.19 prove∑︁
𝑇∈ˆ︁T∩T

|𝑇 |1/3
[︄ ∑︁
𝐹∈F (𝑇 )\F (ΓD)

(︁
∥ [S∗ˆ︁𝜌LS]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 ) − ∥[S∗𝜌LS]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 )

)︁
2

+
∑︁

𝐹∈F (𝑇 )\F (ΓN)

(︁
∥𝜈𝐹 × [A∗ˆ︁𝜌LS]𝐹 ∥𝐿2 (𝐹 ) − ∥𝜈𝐹 × [A∗𝜌LS]𝐹 ∥𝐿2 (𝐹 )

)︁
2

]︄
≤

∑︁
𝑇∈ˆ︁T∩T

|𝑇 |1/3
∑︁

𝐹∈F (𝑇 )

(︁
∥ [S∗(ˆ︁𝜌LS − 𝜌LS)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × [A∗(ˆ︁𝜌LS − 𝜌LS)]𝐹 ∥2𝐿2 (𝐹 ) )︁

≤ 𝐶2

jc
∥ˆ︁𝜌LS − 𝜌LS∥2𝐿2 (Ω) .

Step 4. For𝑇 ∈ T ∩ ˆ︁T , the remaining contributions of the boundary data oscillations

coincide

∥(1 − ˆ︁Π𝑘) D𝑢D∥𝐿2 (𝜕𝑇∩ΓD) = ∥(1 − Π𝑘) D𝑢D∥𝐿2 (𝜕𝑇∩ΓD),
∥(1 − ˆ︁Π𝑘)𝑡N∥𝐿2 (𝜕𝑇∩ΓN) = ∥(1 − Π𝑘)𝑡N∥𝐿2 (𝜕𝑇∩ΓN) .

Step 5. The combination of all previous steps proves (A1) with

Λ1 ≔
√︃
𝐶2

inv
(𝐶2

S +𝐶2

A) +𝐶2

jc
. □

Theorem 4.2 (reduction). The a posteriori error estimator 𝜂 and the distance 𝛿 satisfy
the axiom (A2): There exist positive generic constants Λ2 and 𝜌2 < 1 such that

𝜂 (ˆ︁T , ˆ︁T \ T ) ≤ 𝜌2 𝜂 (T ,T \ ˆ︁T) + Λ2 𝛿 (ˆ︁T ,T).

Proof. The proof follows the one of [40, Theorem 5.1]. Abbreviate the discrete con-

stitutive residuals ˆ︁𝜌LS ≔ Aˆ︁𝜎LS − S Dˆ︁𝑢LS and 𝜌LS ≔ A𝜎LS − S D𝑢LS.

Step 1. Following the proof of Theorem 4.1, the term 𝜂 (ˆ︁T , ˆ︁T \ T ) is represented as

the Euclidian norm |ˆ︁𝑎 | of some vector ˆ︁𝑎 ∈ R𝑚 the𝑚 ≔ 10 |ˆ︁T \ T | entries according
to (4.1) for each 𝑇 ∈ ˆ︁T \ T . Additionally, let 𝑎 ∈ R𝑚 denote the vector with the

identical entries but 𝜌LS replacing ˆ︁𝜌LS. The triangle inequality in R𝑚 proves that

𝜂 (ˆ︁T , ˆ︁T \ T ) = |ˆ︁𝑎 | ≤ |𝑎 | + |ˆ︁𝑎 − 𝑎 |.
Step 2. The reduction relies on the fact that each term is weighted with a correspond-

ing power of the mesh-size |𝑇 | being reduced at least by a factor 2, i.e., |𝑇 | ≤ |𝐾 |/2 for
𝐾 ∈ T and 𝑇 ∈ ˆ︁T (𝐾). For every 𝐾 ∈ T \ ˆ︁T , the sums of the associated volume terms

satisfy ∑︁
𝑇∈ˆ︁T (𝐾)

|𝑇 |2/3∥ div(S∗𝜌LS)∥2𝐿2 (𝑇 ) ≤ |𝐾 |2/32−2/3∥ div(S∗𝜌LS)∥2𝐿2 (𝐾),∑︁
𝑇∈ˆ︁T (𝐾)

|𝑇 |2/3∥ curl(A∗𝜌LS)∥2𝐿2 (𝑇 ) ≤ |𝐾 |2/32−2/3∥ curl(A∗𝜌LS)∥2𝐿2 (𝐾) .

63



Since 𝜌LS = A𝜎LS − S D𝑢LS, the regularity assumption (3.1) guarantees that

S∗𝜌LS ∈ 𝐻 (div,T ;R3×3) and A∗𝜌LS ∈ 𝐻 (curl,T ;R3×3).

Hence, the normal jumps [S∗𝜌LS]𝐹 𝜈𝐹 = 0 and the tangential jumps 𝜈𝐹 × [A∗𝜌LS]𝐹 = 0

vanish on any interior face 𝐹 ∈ ˆ︁F (𝐾) \ F (𝜕𝐾) inside of the coarse simplex 𝐾 ∈ T .

Therefore, the sums of the face jumps fulfil∑︁
𝑇∈ˆ︁T (𝐾)

∑︁
𝐹∈F (𝑇 )\F (ΓD)

|𝑇 |1/3∥ [S∗𝜌LS]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 )

≤
∑︁

𝐹∈F (𝐾)\F (ΓD)
|𝐾 |1/32−1/3∥ [S∗𝜌LS]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 ),∑︁

𝑇∈ˆ︁T (𝐾)

∑︁
𝐹∈F (𝑇 )\F (ΓN)

|𝑇 |1/3∥𝜈𝐹 × [A∗𝜌LS]𝐹 ∥2𝐿2 (𝐹 )

≤
∑︁

𝐹∈F (𝐾)\F (ΓN)
|𝐾 |1/32−1/3∥𝜈𝐹 × [A∗𝜌LS]𝐹 ∥2𝐿2 (𝐹 ) .

Eventually, the sums of the boundary oscillations read∑︁
𝑇∈ˆ︁T (𝐾)

∑︁
𝐹∈F (𝑇 )∩F (ΓD)

|𝑇 |1/3∥(1 − Π𝑘) D𝑢D∥2𝐿2 (𝐹 )

≤
∑︁

𝐹∈F (𝐾)∩F (ΓD)
|𝐾 |1/32−1/3∥(1 − Π𝑘) D𝑢D∥2𝐿2 (𝐹 ),∑︁

𝑇∈ˆ︁T (𝐾)

∑︁
𝐹∈F (𝑇 )∩F (ΓN)

|𝑇 |1/3∥(1 − Π𝑘) 𝑡N∥2𝐿2 (𝐹 )

≤
∑︁

𝐹∈F (𝐾)∩F (ΓN)
|𝐾 |1/32−1/3∥(1 − Π𝑘) 𝑡N∥2𝐿2 (𝐹 ) .

The summation over all𝐾 ∈ T \ˆ︁T and the square root in the three previously displayed

formulas yield

|𝑎 | ≤ 2
−1/6 𝜂 (T ,T \ ˆ︁T).

Step 3. In order to estimate the term |ˆ︁𝑎 − 𝑎 | proceed analogously to the proof of

Theorem 4.1. The reverse triangle inequality in 𝐿2(𝑇 ), the abstract inverse estim-

ates (W6)–(W7), and the boundedness of the adjoint operators S∗
and A∗

from (3.2)

prove ∑︁
𝑇∈ˆ︁T\T

|𝑇 |2/3
(︂ (︁
∥ div(S∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ div(S∗𝜌LS)∥𝐿2 (𝑇 )

)︁
2

+
(︁
∥ curl(A∗ˆ︁𝜌LS)∥𝐿2 (𝑇 ) − ∥ curl(A∗𝜌LS)∥𝐿2 (𝑇 )

)︁
2

)︂
≤ 𝐶2

inv
(𝐶2

S +𝐶2

A) ∥ˆ︁𝜌LS − 𝜌LS∥2𝐿2 (Ω) .
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The reverse triangle inequality in 𝐿2(𝐹 ) for 𝐹 ∈ F (𝑇 ) and 𝑇 ∈ ˆ︁T \ T and the discrete

jump control from Lemma 3.19 show∑︁
𝑇∈ˆ︁T\T

|𝑇 |1/3
[︄ ∑︁
𝐹∈F (𝑇 )\F (ΓD)

(︁
∥ [S∗ˆ︁𝜌LS]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 ) − ∥[S∗𝜌LS]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 )

)︁
2

+
∑︁

𝐹∈F (𝑇 )\F (ΓN)

(︁
∥𝜈𝐹 × [A∗ˆ︁𝜌LS]𝐹 ∥𝐿2 (𝐹 ) − ∥𝜈𝐹 × [A∗𝜌LS]𝐹 ∥𝐿2 (𝐹 )

)︁
2

]︄
≤

∑︁
𝑇∈ˆ︁T\T

|𝑇 |1/3
∑︁

𝐹∈F (𝑇 )

(︁
∥ [S∗(ˆ︁𝜌LS − 𝜌LS)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 ) + ∥𝜈𝐹 × [A∗(ˆ︁𝜌LS − 𝜌LS)]𝐹 ∥2𝐿2 (𝐹 ) )︁

≤ 𝐶2

jc
∥ˆ︁𝜌LS − 𝜌LS∥2𝐿2 (Ω) .

The remaining contributions of the boundary data oscillations are bounded by the

best-approximation property of the 𝐿2 orthogonal projection Π𝑘 , for 𝑇 ∈ ˆ︁T \ T and

𝐹 ∈ F (𝑇 ),

∥(1 − ˆ︁Π𝑘) D𝑢D∥𝐿2 (𝐹∩ΓD) ≤ ∥(1 − Π𝑘) D𝑢D∥𝐿2 (𝐹∩ΓD),
∥(1 − ˆ︁Π𝑘) 𝑡N∥𝐿2 (𝐹∩ΓN) ≤ ∥(1 − Π𝑘) 𝑡N∥𝐿2 (𝐹∩ΓN) .

The three previously displayed formulas yield

|ˆ︁𝑎 − 𝑎 | ≤ √︃
𝐶2

inv
(𝐶2

S +𝐶2

A) +𝐶2

jc
𝛿 (ˆ︁T ,T).

Step 5. The combination of all previous steps concludes the proof of (A2) with the

constants 𝜌2 ≔ 2
−1/6

and Λ2 ≔ Λ1. □

4.2 Discrete reliability
The proof of the discrete reliability axiom (A3) is essentially based on the following

Theorem 4.3. Since the proof is more extensive, it is postponed to its own Section 4.3

below. Before that, the reliability of the a posteriori error estimator and the axiom (A3)

are deduced. Recall Notation 3 from page 22 for the refinement ˆ︁T of T and the notion

of 𝑛-layers R𝑛 around the refined simplices from Section 2.4.

Theorem 4.3 (discrete reliability). Given the set

R ≔ R3 ∪
{︁
𝑇 ∈ T : ∃𝐹 ∈ L5(F \ ˆ︁F , ΓD), 𝐹 ⊂ 𝑇

}︁
⊆ R5, (4.2)

there exist positive generic constants 𝐶drel and ˆ︁𝐶drel such that the a posteriori error
estimator 𝜂 and the distance 𝛿 satisfy

𝛿2(ˆ︁T ,T) ≤ 𝐶drel

(︁
𝜂2(T ,R) + 𝜇2(T )

)︁
+ ˆ︁𝐶drel 𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS). (4.3)
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The discrete reliability and the plain convergence of the LSFEM under uniform

refinement imply reliability of the error estimator 𝜂 in the following sense.

Corollary 4.4 (reliability). For any admissible triangulation T ∈ T with discrete
solutions (𝜎LS, 𝑢LS) ∈ Σ𝑘 (T ) ×𝑈 𝑘+1(T ) to (3.18) and the positive generic constant 𝐶drel

from Theorem 4.3, it holds that

𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) ≤ 𝐶drel

(︁
𝜂2(T ) + 𝜇2(T )

)︁
. (4.4)

Proof. Define the sequence (T𝑚 : 𝑚 ∈ N) of successive uniform one-level refinements

T𝑚 ≔ refine
(𝑚) (T ) with discrete solutions (𝜎𝑚, 𝑢𝑚) ∈ Σ𝑘 (T𝑚) × 𝑈 𝑘+1(T𝑚) to (3.18).

This design ensures uniform convergence of the mesh-size ℎ𝑚 ≔ ℎT𝑚 as𝑚 → ∞,

lim

𝑚→∞
∥ℎ𝑚∥𝐿∞ (Ω) = 0.

The convergence of the LSFEM leads to

lim

𝑚→∞
𝛿2(T𝑚,T) = lim

𝑚→∞

(︂
∥ div(𝜎𝑚 − 𝜎LS)∥2𝐿2 (Ω)

+ ∥A(𝜎𝑚 − 𝜎LS) − S D(𝑢𝑚 − 𝑢LS)∥2𝐿2 (Ω)
)︂

= 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS)

and

lim

𝑚→∞
𝐿𝑆 (𝑓 ;𝜎𝑚, 𝑢𝑚) = 0.

Theorem 4.3 implies, for every𝑚 ∈ N,

𝛿2(T𝑚,T) ≤ 𝐶drel

(︁
𝜂2(T ) + 𝜇2(T )

)︁
+ ˆ︁𝐶drel 𝐿𝑆 (𝑓 ;𝜎𝑚, 𝑢𝑚).

The combination of the three previously displayed formulas concludes the proof for

𝑚 → ∞. □

A combination of the discrete reliability from Theorem 4.3 and the reliability of the

estimator results in the axiom (A3).

Corollary 4.5. The a posteriori error estimator 𝜂 and the distance 𝛿 satisfy the ax-
iom (A3): There exists a set R ⊆ T with |R | ≤ Λref |T \ ˆ︁T | and

𝛿2(ˆ︁T ,T) ≤ Λ3

(︁
𝜂2(T ,R) + 𝜇2(T )

)︁
+ ˆ︁Λ3 𝜂

2(ˆ︁T) .

Proof. Since the set R from (4.2) satisfies R ⊆ R5, the shape regularity of the trian-

gulations T ∈ T guarantees existence of a positive generic constant Λref such that

|R | ≤ Λref |T \ ˆ︁T |. The claim (A3) follows from the combination of (4.3) and (4.4) with

respect to ˆ︁T reads

𝛿 (ˆ︁T ,T) ≤ 𝐶drel

(︁
𝜂2(T ,R) + 𝜇2(T )

)︁
+ ˆ︁𝐶drel𝐶drel

(︁
𝜂2(ˆ︁T) + 𝜇2(ˆ︁T)

)︁
.

The monotonicity 𝜇 (ˆ︁T) ≤ 𝜇 (T ) concludes the proof with the constants

Λ3 ≔ 𝐶drel(1 + ˆ︁𝐶drel) and ˆ︁Λ3 ≔ ˆ︁𝐶drel𝐶drel. □
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4.3 Proof of discrete reliability
This section is devoted to the proof of Theorem 4.3. It is based on five lemmas and

follows the ideas of [44, Section 5]. The proof departs with the construction of two

intermediate functions ˆ︁𝜏RT and 𝜏RT in the following lemma.

Lemma 4.6. There exists ˆ︁𝜏RT ∈ 𝑅𝑇𝑘 (ˆ︁T ;R3×3) and 𝜏RT ∈ 𝑅𝑇𝑘 (T ;R3×3) with the Neu-
mann boundary dataˆ︁𝜏RT𝜈 = (ˆ︁Π𝑘 − Π𝑘)𝑡N and 𝜏RT𝜈 = 0 on ΓN (4.5)

and the divergences

divˆ︁𝜏RT = (1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS) and div𝜏RT = Π𝑘 div(ˆ︁𝜎LS − 𝜎LS) in Ω. (4.6)

Furthermore, there exists a positive generic constant 𝐶stab such that

∥ˆ︁𝜏RT∥𝐿2 (Ω) ≤ 𝐶stab

(︁
∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥𝐿2 (Ω) + ∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥𝐻−1/2 (𝜕Ω)

)︁
, (4.7)

∥𝜏RT∥𝐿2 (Ω) ≤ 𝐶stab ∥Π𝑘 div(ˆ︁𝜎LS − 𝜎LS)∥𝐿2 (Ω) . (4.8)

Proof. Step 1. Let𝑤 ∈ 𝐻 1(Ω;R3)/R3 solve the Neumann problem

(D𝑤,D 𝑣)𝐿2 (Ω) = −
(︁
(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS), 𝑣 )︁𝐿2 (Ω) for all 𝑣 ∈ 𝐻 1(Ω;R3)/R3.

This problem is well-posed due to the compatibility condition∫
Ω
(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS) d𝑥 = 0.

The integration by parts shows that the weak derivative 𝜏 ≔ D𝑤 ∈ 𝐻 (div,Ω;R3×3)
satisfies div𝜏 = (1−Π𝑘) div(ˆ︁𝜎LS−𝜎LS) in Ω and 𝜏𝜈 = 0 on 𝜕Ω. The reduced elliptic regu-
larity [54] of the Neumann problem ensures that 𝜏 ∈ 𝐻 1/2+𝑠 (Ω;R3×3) ∩𝐻 (div,Ω;R3×3)
for some regularity parameter 0 < 𝑠 < 1/2. Additionally, there exists some positive

generic constant 𝑐1(𝑠) such that

∥𝜏 ∥𝐻 1/2+𝑠 (Ω) ≤ 𝑐1(𝑠) ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥𝐿2 (Ω) . (4.9)

Step 2. Let the componentwise integral

𝛼 ≔
⎛⎜⎝
𝛼1
𝛼2
𝛼3

⎞⎟⎠ ≔ 1

|ΓD |

∫
Ω
div(ˆ︁𝜎LS − 𝜎LS) d𝑥 =

1

|ΓD |

∫
Ω
Π𝑘 div(ˆ︁𝜎LS − 𝜎LS) d𝑥 ∈ R3

define the piecewise constant boundary data 𝛼∗
pw

∈ 𝑃0(F0(𝜕Ω);R3) with respect to

the initial triangulation T0 by

𝛼∗
pw
≔

{︄
0 on ΓN,

𝛼 on ΓD.
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The Cauchy-Schwarz inequality shows, for the constant 𝑐2 ≔ |Ω |1/2/|ΓD |,

|𝛼1 | + |𝛼2 | + |𝛼3 | ≤
1

|ΓD |
∥Π𝑘 div(ˆ︁𝜎LS−𝜎LS)∥𝐿1 (Ω) ≤ 𝑐2 ∥Π𝑘 div(ˆ︁𝜎LS−𝜎LS)∥𝐿2 (Ω) . (4.10)

Let 𝑒𝑚 ∈ R3 for 𝑚 = 1, 2, 3 denote the unit basis vectors and (𝜓𝐹 : 𝐹 ∈ F0) of
𝑅𝑇0(T0) the canonical lowest-order Raviart-Thomas basis functions with

−
∫
𝐹 ′
𝜓𝐹 · 𝜈𝐹 ′ d𝑎 =

{︄
1 if 𝐹 ′ = 𝐹,

0 else.

The tensor products 𝑒𝑚 ⊗𝜓𝐹 for𝑚 = 1, 2, 3 and 𝐹 ∈ F0 form a basis of the matrix-valued

Raviart-Thomas functions in 𝑅𝑇0(T0;R3×3). Define the discrete extension 𝜁 ∗
RT

of the

boundary data 𝑔∗
pw

by

𝜁 ∗
RT
≔

3∑︁
𝑚=1

∑︁
𝐹∈F0

𝑎𝑚,𝐹 𝑒𝑚 ⊗𝜓𝐹 ∈ 𝑅𝑇0(T0;R3×3)

with the coefficients, for𝑚 = 1, 2, 3 and 𝐹 ∈ F0,

𝑎𝑚,𝐹 ≔

{︄
𝛼𝑚 if 𝐹 ∈ F0(ΓD),
0 else.

This extension satisfies 𝜁 ∗
RT
𝜈 = 𝛼∗

pw
on 𝜕Ω and, in particular, 𝜁 ∗

RT
𝜈 = 0 on ΓN. Further-

more, the triangle inequality proves

∥𝜁 ∗
RT
∥𝐻 (div,Ω) ≤

(︁
|𝛼1 | + |𝛼2 | + |𝛼3 |

)︁ ∑︁
𝐹∈F0 (ΓD)

∥𝜓𝐹 ∥𝐻 (div,𝜔𝐹 ) .

This and the estimate (4.10) establish

∥𝜁 ∗
RT
∥𝐻 (div,Ω) ≤ 𝑐2𝑐3 ∥Π𝑘 div(ˆ︁𝜎LS − 𝜎LS)∥𝐿2 (Ω) (4.11)

with the constant 𝑐3 ≔
∑︁
𝐹∈F0 (ΓD) ∥𝜓𝐹 ∥𝐻 (div,𝜔𝐹 ) solely depending on the initial triangu-

lation T0.
Step 3. For 𝑓pw ≔ Π𝑘 div(ˆ︁𝜎LS − 𝜎LS) − div 𝜁 ∗

RT
∈ 𝑃𝑘 (T ;R3), the Gauss divergence

theorem implies ∫
Ω
𝑓pw d𝑥 =

∫
Ω
div(ˆ︁𝜎LS − 𝜎LS) d𝑥 −

∫
Ω
div 𝜁 ∗

RT
d𝑥

=

∫
Ω
div(ˆ︁𝜎LS − 𝜎LS) d𝑥 −

∫
𝜕Ω
𝛼∗
pw

d𝑎

=

∫
Ω
div(ˆ︁𝜎LS − 𝜎LS) d𝑥 −

∫
ΓD

𝛼 d𝑎 = 0.
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Hence, the following Neumann problem is well-posed. Let𝑤∗ ∈ 𝐻 1(Ω;R3)/R3 solve

(D𝑤∗,D 𝑣)𝐿2 (Ω) = −(𝑓pw, 𝑣)𝐿2 (Ω) for all 𝑣 ∈ 𝐻 1(Ω;R3)/R3.

The integration by parts shows that the weak derivative 𝜏∗ ≔ D𝑤∗ ∈ 𝐻 (div,Ω;R3×3)
satisfies div𝜏∗ = 𝑓pw in Ω and 𝜏∗𝜈 = 0 on 𝜕Ω. An analog argument to Step 1 establishes

the reduced elliptic regularity estimate

∥𝜏∗∥𝐻 1/2+𝑠 (Ω) ≤ 𝑐1(𝑠) ∥ 𝑓pw∥𝐿2 (Ω) .

By the definition of 𝑓pw, this and (4.11) lead to

∥𝜏∗∥𝐻 1/2+𝑠 (Ω) ≤ 𝑐1(𝑠) (1 + 𝑐2𝑐3) ∥Π𝑘 div(ˆ︁𝜎LS − 𝜎LS)∥𝐿2 (Ω) . (4.12)

Step 4. The regularity 𝜏, 𝜏∗ ∈ 𝐻 1/2+𝑠 (Ω;R3×3) ∩ 𝐻 (div,Ω;R3×3) allows for the ap-
plication of the Fortin interpolation operator 𝐼F : 𝐿𝑝 (Ω;R3×3) ∩ 𝐻 (div,Ω;R3×3) →
𝑅𝑇𝑘 (T ;R3×3) from [18, Example 2.5.3] for 𝑝 > 2 in the three components. The ap-

proximation property of the Fortin interpolation operator from [83, Theorem 2.25] with

some positive generic constant 𝑐4 reads, for every 𝜉 ∈ 𝐻 1/2+𝑠 (Ω;R3×3)∩𝐻 (div,Ω;R3×3),

∥𝜉 − 𝐼F𝜉 ∥𝐿2 (Ω) ≤ 𝑐4ℎ1/2+𝑠max
∥𝜉 ∥𝐻 1/2+𝑠 (Ω) .

The triangle inequality and the uniform bound ℎ
1/2+𝑠
max

≤ 𝑐5 prove the stability

∥𝐼F𝜉 ∥𝐿2 (Ω) ≤ (1 + 𝑐4𝑐5) ∥𝜉 ∥𝐻 1/2+𝑠 (Ω) . (4.13)

The identical estimate holds for the corresponding operator ˆ︁𝐼F with respect to the

refinement ˆ︁T .

Step 5. Lemma 3.9 provides a discrete divergence-free extension
ˆ︁𝜉RT ∈ 𝑅𝑇𝑘 (ˆ︁T ;R3×3)∩

𝐻 (div = 0,Ω;R3×3) with ˆ︁𝜉RT = (ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N on 𝜕Ω and

∥ˆ︁𝜉RT∥𝐿2 (Ω) ≤ 𝐶ext ∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥𝐻−1/2 (𝜕Ω) . (4.14)

Step 6. Define the functionsˆ︁𝜏RT ≔ ˆ︁𝐼F𝜏 + ˆ︁𝜉RT ∈ 𝑅𝑇𝑘 (ˆ︁T ;R3×3) and 𝜏RT ≔ 𝐼F𝜏
∗ + 𝜁 ∗

RT
∈ 𝑅𝑇𝑘 (T ;R3×3).

Since the Fortin interpolationsˆ︁𝐼F and 𝐼F preserve polynomial boundary conditions, it

holds that ˆ︁𝜏RT𝜈 = (ˆ︁𝐼F𝜏 + ˆ︁𝜉RT)𝜈 = ˆ︁Π𝑘 (𝜏𝜈) + ˆ︁𝜉RT𝜈 = (ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N on ΓN,

𝜏RT𝜈 = (𝐼F𝜏∗ + 𝜁 ∗RT)𝜈 = ˆ︁Π𝑘 (𝜏∗𝜈) = 0 on ΓN.

The commuting diagram property ofˆ︁𝐼F and 𝐼F [18, Proposition 2.5.2] leads to

divˆ︁𝜏RT = div(ˆ︁𝐼F𝜏 + ˆ︁𝜉RT) = ˆ︁Π𝑘 div𝜏 = (1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS),
div𝜏RT = div(𝐼F𝜏∗ + 𝜁 ∗RT) = Π𝑘 div𝜏 + div 𝜁 ∗

RT
= 𝑓pw + div 𝜁 ∗

RT
= Π𝑘 div(ˆ︁𝜎LS − 𝜎LS).
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The stability estimates (4.9), (4.12)–(4.14) establish

∥ˆ︁𝜏RT∥𝐿2 (Ω) ≤ ∥ˆ︁𝐼F𝜏 ∥𝐿2 (Ω) + ∥ˆ︁𝜉RT∥𝐿2 (Ω)
≤ 𝑐1(𝑠) (1 + 𝑐4𝑐5) ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥𝐿2 (Ω)

+𝐶ext ∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥𝐻−1/2 (𝜕Ω),

∥𝜏RT∥𝐿2 (Ω) ≤ ∥𝐼F𝜏∗∥𝐿2 (Ω) + ∥𝜁 ∗
RT
∥𝐿2 (Ω)

≤ 𝑐1(𝑠) (2 + 𝑐2𝑐3 + 𝑐4𝑐5) ∥Π𝑘 div(ˆ︁𝜎LS − 𝜎LS)∥𝐿2 (Ω) .
This concludes the proof with the constant𝐶stab ≔ max{𝑐1(𝑠) (2+𝑐2𝑐3+𝑐4𝑐5), 𝐶ext}. □

These intermediate functions allow for the split of the left-hand side 𝛿2(ˆ︁T ,T) from
Theorem 4.3 in the following lemma.

Lemma 4.7. There exist some ˆ︁𝑤C ∈ 𝑆𝑘+1(ˆ︁T ;R3) and ˆ︁𝛽Ned ∈ 𝑁𝑘 (ˆ︁T ;R3×3) with the
boundary data ˆ︁𝑤C = ( ˆ︁J𝑘+1

D
− J𝑘+1

D
)𝑢D on ΓD and 𝜈 × ˆ︁𝛽Ned = 0 on ΓN and the stability

estimates

∥ D ˆ︁𝑤C∥𝐿2 (Ω) ≤ 𝐶OL𝐶SZ ∥( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD), (4.15)

∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) ≤ 𝐶Ned ∥ˆ︁𝜎LS − 𝜎LS −ˆ︁𝜏RT − 𝜏RT∥𝐻 (div,Ω) (4.16)

such that

𝛿2(ˆ︁T ,T) = ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω)
+
(︁
A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS), Aˆ︁𝜏RT − S D ˆ︁𝑤C

)︁
𝐿2 (Ω)

+
(︁
A𝜎LS − S D𝑢LS, S D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C) − A curl

ˆ︁𝛽Ned)︁𝐿2 (Ω) . (4.17)

Proof. Step 1. Lemma 3.6 guarantees the existence of some discrete extension ˆ︁𝑤C ∈
𝑆𝑘+1(ˆ︁T ;R3) of the boundary approximation error with

ˆ︁𝑤C = ( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D and ∥ D ˆ︁𝑤C∥𝐿2 (Ω) ≤ 𝐶OL𝐶SZ ∥( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) .

Since ˆ︁𝜌RT ≔ ˆ︁𝜎LS − 𝜎LS −ˆ︁𝜏RT − 𝜏RT ∈ Σ𝑘
N
(ˆ︁T) is divergence-free, Theorem 2.8 provides

the existence of some
ˆ︁𝛽Ned ∈ 𝑁𝑘 (ˆ︁T ;R3×3) and 𝜌∗

RT
∈ Σ𝑘

N
(T0) satisfying ˆ︁𝜌RT − 𝜌∗

RT
=

curl
ˆ︁𝛽Ned and

∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) ≤ 𝐶Ned ∥ˆ︁𝜌RT∥𝐿2 (Ω) .
Additionally, it holds that 𝜈 × ˆ︁𝛽Ned = 0 on ΓN and div 𝜌∗

RT
= 0 in Ω. This concludes the

proof of (4.15)–(4.16).

Step 3. Since div𝜏RT = Π𝑘 div(ˆ︁𝜎LS − 𝜎LS), the discrete equation (3.18) with respect

to the triangulation T for the test functions 𝜏LS = 𝜏RT ∈ Σ𝑘
N
(T ) and 𝑣LS ≡ 0 shows

−
(︁
Π𝑘 𝑓 + div𝜎LS, div(ˆ︁𝜎LS − 𝜎LS))︁𝐿2 (Ω) = (A𝜎LS − S D𝑢LS, A𝜏RT)𝐿2 (Ω) . (4.18)
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The boundary conditions (4.5) imply that 𝜏LS = ˆ︁𝜎LS−𝜎LS−ˆ︁𝜏RT ∈ Σ𝑘
N
(ˆ︁T) is an admissible

test function. Moreover, the equalities (4.6) lead to

div(ˆ︁𝜎LS − 𝜎LS −ˆ︁𝜏RT) = Π𝑘 div(ˆ︁𝜎LS − 𝜎LS).
This and the discrete equation (3.18) with respect to the triangulation ˆ︁T with test

functions 𝜏LS and 𝑣LS = ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C ∈ 𝑈 𝑘+1
D

(ˆ︁T) prove that(︁
Aˆ︁𝜎LS − S Dˆ︁𝑢LS, A(ˆ︁𝜎LS − 𝜎LS −ˆ︁𝜏RT) − D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C)

)︁
𝐿2 (Ω)

= −
(︁ˆ︁Π𝑘 𝑓 + divˆ︁𝜎LS, Π𝑘 div(ˆ︁𝜎LS − 𝜎LS))︁𝐿2 (Ω) . (4.19)

The homogeneous boundary conditions 𝜌∗
RT
𝜈 = 0 on ΓN and the nestedness of the spaces

𝑅𝑇𝑘 (T0;R3×3) ⊂ 𝑅𝑇𝑘 (T ;R3×3) make 𝜌∗
RT

∈ 𝑅𝑇𝑘 (T0;R3×3) an admissible test function

with respect to T . Since div 𝜌∗
RT

= 0, the discrete equation (3.18) with 𝜏LS = 𝜌
∗
RT

and

𝑣LS ≡ 0 establishes

(A𝜎LS − S D𝑢LS, A𝜌∗
RT
)𝐿2 (Ω) = 0. (4.20)

Step 4. The orthogonality of the 𝐿2 projection Π𝑘 allows for the Pythagoras theorem

∥ div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) = ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) + ∥Π𝑘 div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) .
The addition and subtraction of the term (ˆ︁Π𝑘 𝑓 − Π𝑘 𝑓 , Π𝑘 div(ˆ︁𝜎LS − 𝜎LS))𝐿2 (Ω) = 0 and

the projection property Π𝑘 = Π𝑘ˆ︁Π𝑘 lead to

∥ div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) = ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω)
+
(︁ˆ︁Π𝑘 𝑓 + divˆ︁𝜎LS, Π𝑘 div(ˆ︁𝜎LS − 𝜎LS))︁𝐿2 (Ω)

−
(︁
Π𝑘 𝑓 + div𝜎LS, div(ˆ︁𝜎LS − 𝜎LS))︁𝐿2 (Ω) . (4.21)

The addition and subtraction of the terms(︁
A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS), Aˆ︁𝜏RT − S D ˆ︁𝑤C

)︁
𝐿2 (Ω),

(A𝜎LS − S D𝑢LS, A𝜏RT)𝐿2 (Ω)

to and from the contribution ∥A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS)∥2𝐿2 (Ω) establishes the
algebraic equality

∥A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS)∥2𝐿2 (Ω)
=
(︁
Aˆ︁𝜎LS − S Dˆ︁𝑢LS, A(ˆ︁𝜎LS − 𝜎LS −ˆ︁𝜏RT) − S D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C)

)︁
𝐿2 (Ω)

−
(︁
A𝜎LS − S D𝑢LS, Aˆ︁𝜌RT − S D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C)

)︁
𝐿2 (Ω)

− (A𝜎LS − S D𝑢LS, A𝜏RT)𝐿2 (Ω)
+
(︁
A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS), Aˆ︁𝜏RT − S D ˆ︁𝑤C

)︁
𝐿2 (Ω) .
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Using (4.18)–(4.20), the sum of the previously displayed formula and (4.21) reduces to

𝛿2(ˆ︁T ,T) = ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω)
−
(︁
A𝜎LS − S D𝑢LS, A(ˆ︁𝜌RT − 𝜌∗RT) − S D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C)

)︁
𝐿2 (Ω)

+
(︁
A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS), Aˆ︁𝜏RT − S D ˆ︁𝑤C

)︁
𝐿2 (Ω) .

The replacement ˆ︁𝜌RT − 𝜌∗
RT

= curl
ˆ︁𝛽Ned concludes the proof of (4.17). □

The following two lemmas employ the quasi-interpolation operators from Sec-

tions 2.6–2.7 to bound the terms on the right-hand side in (4.17).

Lemma 4.8. There exists a positive generic constant 𝐶dr1 such that(︁
A𝜎LS − S D𝑢LS, S D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C)

)︁
𝐿2 (Ω)

≤ 𝐶dr1 ∥ D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C)∥𝐿2 (Ω)
(︃ ∑︁
𝑇∈T\ˆ︁T

(︂
|𝑇 |2/3 ∥ div(S∗(A𝜎LS − S D𝑢LS))∥2𝐿2 (𝑇 )

+
∑︁

𝐹∈F (𝑇 )\F (ΓD)
|𝑇 |1/3 ∥ [S∗(A𝜎LS − S D𝑢LS)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 )

)︂)︃1/2
.

Proof. Step 1. For ˆ︁𝑣C ≔ ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C ∈ 𝑈 𝑘+1
D

(ˆ︁T), let 𝑣C ≔ K𝑘+1
D

ˆ︁𝑣C ∈ 𝑈 𝑘+1
D

(T )
denote the Scott-Zhang quasi-interpolation of ˆ︁𝑣C ∈ 𝑈 𝑘+1

D
(ˆ︁T) from Section 2.6 and

set ˆ︁𝑧C ≔ ˆ︁𝑣C − 𝑣C ∈ 𝑈 𝑘+1
D

(ˆ︁T). Lemma 2.12 (h) asserts that ˆ︁𝑧C |𝑇 = 0 vanishes on

every unrefined simplex 𝑇 ∈ ˆ︁T ∩ T . The local stability and first-order approximation

property of the operator K𝑘+1
D

from Lemma 2.12 (b) read

∥ Dˆ︁𝑧C∥𝐿2 (𝑇 ) + |𝑇 |−1/3∥ˆ︁𝑧C∥𝐿2 (𝑇 ) ≤ 𝐶SZ ∥ Dˆ︁𝑣C∥𝐿2 (Ω𝑇 ) . (4.22)

A combination of this with the square root of the trace inequality (2.19) from Lemma 2.6

leads to

|𝑇 |−1/6∥ˆ︁𝑧C∥𝐿2 (𝐹 ) ≤ √︁
𝐶tr

(︁
∥ Dˆ︁𝑧C∥𝐿2 (𝑇 ) + |𝑇 |−1/3∥ˆ︁𝑧C∥𝐿2 (𝑇 ) )︁

≤
√︁
𝐶tr𝐶SZ ∥ Dˆ︁𝑣C∥𝐿2 (Ω𝑇 ) .

(4.23)

Step 2. Since K𝑘+1
D

preserves polynomial boundary conditions, 𝑣C ∈ 𝑈 𝑘+1
D

(T ) is an
admissible test function and the discrete equation (3.18) implies

(A𝜎LS − S D𝑢LS,S D 𝑣C)𝐿2 (Ω) = 0.

This and a piecewise integration by parts prove

(A𝜎LS − S D𝑢LS,S Dˆ︁𝑣C)𝐿2 (Ω) = (A𝜎LS − S D𝑢LS,S Dˆ︁𝑧C)𝐿2 (Ω)
= −

∑︁
𝑇∈T\ˆ︁T

(︃ (︁ˆ︁𝑧C, div(S∗(A𝜎LS − S D𝑢LS))
)︁
𝐿2 (𝑇 )

+
∑︁

𝐹∈F (𝑇 )\F (ΓD)

(︁ˆ︁𝑧C, [S∗(A𝜎LS − S D𝑢LS)]𝐹 𝜈𝐹
)︁
𝐿2 (𝐹 )

)︃
.

(4.24)
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Due to the regularity assumption (3.1), all terms in the previously displayed formula

are well-defined.

Step 3. Given any 𝑇 ∈ T \ ˆ︁T , a Cauchy-Schwarz inequality and the estimate (4.22)

prove (︁ˆ︁𝑧C, div(S∗(A𝜎LS − S D𝑢LS))
)︁
𝐿2 (𝑇 )

≤ |𝑇 |−1/3∥ˆ︁𝑧C∥𝐿2 (𝑇 ) |𝑇 |1/3∥ div(S∗(A𝜎LS − S D𝑢LS))∥𝐿2 (𝑇 )
≤ 𝐶SZ ∥ Dˆ︁𝑣C∥𝐿2 (Ω𝑇 ) |𝑇 |

1/3∥ div(S∗(A𝜎LS − S D𝑢LS))∥𝐿2 (𝑇 ) .

Given any𝑇 ∈ T \ ˆ︁T with 𝐹 ∈ F (𝑇 ) \F (ΓD), the combination of the Cauchy-Schwarz

inequality and the estimate (4.23) shows(︁ˆ︁𝑧C, [S∗(A𝜎LS − S D𝑢LS)]𝐹 𝜈𝐹
)︁
𝐿2 (𝐹 )

≤ |𝑇 |−1/6∥ˆ︁𝑧C∥𝐿2 (𝐹 ) |𝑇 |1/6∥ [S∗(A𝜎LS − S D𝑢LS)]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 )
≤
√︁
𝐶tr𝐶SZ ∥ Dˆ︁𝑣C∥𝐿2 (Ω𝑇 ) |𝑇 |

1/6∥ [S∗(A𝜎LS − S D𝑢LS)]𝐹 𝜈𝐹 ∥𝐿2 (𝐹 ) .

Step 4. The combination of the equality (4.24), the two displayed formulas from

Step 3, the Cauchy-Schwarz inequality in R𝑚 with

𝑚 = 5|T \ ˆ︁T | −
|︁|︁{𝐹 ∈ F (ΓD) : ∃𝑇 ∈ T \ ˆ︁T , 𝐹 ∈ F (𝑇 )}

|︁|︁,
and a finite overlap of the patches Ω𝑇 with the constant 𝐶OL from (2.16) prove(︁
A𝜎LS − S D𝑢LS, S D(ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C)

)︁
𝐿2 (Ω)

≤ max{1,
√︁
𝐶tr}𝐶SZ𝐶OL ∥ Dˆ︁𝑣C∥𝐿2 (Ω) (︃ ∑︁

𝑇∈T\ˆ︁T
(︂
|𝑇 |2/3 ∥ div(S∗(A𝜎LS − S D𝑢LS))∥2𝐿2 (𝑇 )

+
∑︁

𝐹∈F (𝑇 )\F (ΓD)
|𝑇 |1/3 ∥ [S∗(A𝜎LS − S D𝑢LS)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 )

)︂)︃1/2
.

This concludes the proof with the constant 𝐶dr1 ≔ max{1,
√
𝐶tr}𝐶SZ𝐶OL. □

Lemma 4.9. There exists a positive generic constant 𝐶dr2 such that

(A𝜎LS − S D𝑢LS, A curl
ˆ︁𝛽Ned)𝐿2 (Ω)

≤ 𝐶dr2 ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω)

(︃ ∑︁
𝑇∈R3

(︂
|𝑇 |2/3 ∥ curl(A∗(A𝜎LS − S D𝑢LS))∥2𝐿2 (𝑇 )

+
∑︁

𝐹∈F (𝑇 )\F (ΓN)
|𝑇 |1/3 ∥𝜈𝐹 × [A∗(A𝜎LS − S D𝑢LS)]𝐹 ∥2𝐿2 (𝐹 )

)︂)︃1/2
.
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Remark 4.10. The following proof is a correction of [27, Lemma 5.4]. Therein, it is not

guaranteed that the construction ofINˆ︁𝛽N satisfies the required homogeneous tangential

boundary conditions on ΓN. Hence, the function curl(INˆ︁𝛽N) may not be an admissible

test function and the fourth displayed formula in the proof of [27, Lemma 5.4] fails. In

this thesis, quasi-interpolation operators preserving partial homogeneous boundary

conditions are employed as a remedy.

Proof of Lemma 4.9. Step 1. The local operator QNed : 𝐵𝑘
N
(ˆ︁T ;R3×3) → 𝐵𝑘

N
(T ;R3×3)

from Theorem 2.14 applied to the three components satisfies

(1 − QNed)ˆ︁𝛽Ned = 0 in every 𝑇 ∈ T \ R2 and

∥(1 − QNed)ˆ︁𝛽Ned∥𝐻 (curl,Ω) ≤ 𝐶qi ∥ˆ︁𝛽Ned∥𝐻 (curl,Ω) .
(4.25)

Let SNed : 𝐻N(curl,Ω;R3×3) → 𝐵0
N
(Ω;R3×3) denote the componentwise application

of the quasi-interpolation operator from Theorem 2.13. It allows for a regular split of

the interpolation error into a function 𝑧 ∈ 𝐻 1

N
(Ω;R3×3) and a potential 𝜙 ∈ 𝐻 1

N
(Ω;R3)

such that

(1 − SNed) (1 − QNed)ˆ︁𝛽Ned = 𝑧 + D𝜙. (4.26)

Moreover, the function 𝑧 satisfies the local approximation error estimate, for every

𝑇 ∈ T with mesh-size ℎ𝑇 ≡ |𝑇 |1/3,

|𝑇 |−1/3∥𝑧∥𝐿2 (𝑇 ) + ∥ D 𝑧∥𝐿2 (𝑇 ) ≤ 𝐶Sch ∥ curl(1 − QNed)ˆ︁𝛽Ned∥𝐿2 (Ω𝑇 ) . (4.27)

This and the square root of the trace inequality (2.19) from Lemma 2.6 lead to

|𝑇 |−1/6∥𝑧∥𝐿2 (𝐹 ) ≤
√︁
𝐶tr

(︁
|𝑇 |−1/3∥𝑧∥𝐿2 (𝑇 ) + ∥ D 𝑧∥𝐿2 (𝑇 )

)︁
≤
√︁
𝐶tr𝐶Sch ∥ curl(1 − QNed)ˆ︁𝛽Ned∥𝐿2 (Ω𝑇 ) .

(4.28)

Step 2. Since 𝜈 × ˆ︁𝛽Ned = 0 on ΓN and QNed and SNed preserve homogeneous bound-

ary conditions, it holds 𝜈 × QNed
ˆ︁𝛽Ned = 0 and 𝜈 × SNed(1 − QNed)ˆ︁𝛽Ned = 0 on ΓN.

Hence, curlQNed
ˆ︁𝛽Ned ∈ Σ𝑘

N
(T ) and curlSNed(1 − QNed)ˆ︁𝛽Ned ∈ Σ𝑘

N
(T ) are admissible

divergence-free test functions. The discrete equation (3.18) shows(︁
A𝜎LS − S D𝑢LS, A curl

ˆ︁𝛽Ned)︁𝐿2 (Ω)
=
(︁
A𝜎LS − S D𝑢LS, A curl(1 − SNed) (1 − QNed)ˆ︁𝛽Ned)︁𝐿2 (Ω) .

A combination of the locality in (4.25) and the local estimate (4.27) prove that 𝑧 |𝑇 = 0

vanishes in every 𝑇 ∈ T \ R3 and, thus, 𝑧 |𝐹 = 0 on every 𝐹 ∈ F (𝑇 ). This and the

split (4.26) lead to(︁
A𝜎LS − S D𝑢LS, A curl

ˆ︁𝛽Ned)︁𝐿2 (Ω) = ∑︁
𝑇∈R3

(︁
A𝜎LS − S D𝑢LS, A curl 𝑧

)︁
𝐿2 (𝑇 ) .
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Since 𝑧 = 0 on ΓN, a piecewise integration by parts shows that∑︁
𝑇∈R3

(︁
A𝜎LS − S D𝑢LS, A curl 𝑧

)︁
𝐿2 (𝑇 )

=
∑︁
𝑇∈R3

(︃ (︁
𝑧, curl(A∗(A𝜎LS − S D𝑢LS))

)︁
𝐿2 (𝑇 )

+
∑︁

𝐹∈F (𝑇 )\F (ΓN)

(︁
𝑧, 𝜈𝐹 × [A∗(A𝜎LS − S D𝑢LS)]𝐹

)︁
𝐿2 (𝐹 )

)︃
.

(4.29)

Step 3. A Cauchy-Schwarz inequality and the estimate (4.27) prove, for every𝑇 ∈ R3,(︁
𝑧, curl(A∗(A𝜎LS − S D𝑢LS))

)︁
𝐿2 (𝑇 )

≤ |𝑇 |−1/3∥𝑧∥𝐿2 (𝑇 ) |𝑇 |1/3∥ curl(A∗(A𝜎LS − S D𝑢LS))∥𝐿2 (𝑇 )
≤ 𝐶Sch ∥ curl(1 − QNed)ˆ︁𝛽Ned∥𝐿2 (Ω𝑇 ) |𝑇 |

1/3∥ curl(A∗(A𝜎LS − S D𝑢LS))∥𝐿2 (𝑇 ) .

Given any 𝑇 ∈ R3 with 𝐹 ∈ F (𝑇 ) \ F (ΓN), a Cauchy-Schwarz inequality and the

estimate (4.28) show(︁
𝑧, 𝜈𝐹 × [A∗(A𝜎LS − S D𝑢LS)]𝐹

)︁
𝐿2 (𝐹 )

≤ |𝑇 |−1/6∥𝑧∥𝐿2 (𝐹 ) |𝑇 |1/6∥𝜈F × [A∗(A𝜎LS − S D𝑢LS)∥𝐿2 (𝐹 )
≤
√︁
𝐶tr𝐶Sch ∥ curl(1 − QNed)ˆ︁𝛽Ned∥𝐿2 (Ω𝑇 ) |𝑇 |

1/6∥𝜈𝐹 × [A∗(A𝜎LS − S D𝑢LS)∥𝐿2 (𝐹 ) .

Step 4. The two displayed formulas from Step 3 applied to the equality (4.29), the

bounded overlap of the patches Ω𝑇 with the positive generic constant 𝐶OL from (2.16),

and the stability estimate in (4.25) conclude the proof with the positive generic constant

𝐶dr2 ≔ max

{︁
1,
√︁
𝐶tr

}︁
𝐶Sch𝐶qi𝐶OL. □

Lemma 4.11. It holds that(︁
A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS), Aˆ︁𝜏RT − S D ˆ︁𝑤C

)︁
𝐿2 (Ω)

≤ max{𝐶A,𝐶S} 𝛿 (ˆ︁T ,T)
(︁
∥ˆ︁𝜏RT∥𝐿2 (Ω) + ∥ D ˆ︁𝑤C∥𝐿2 (Ω)

)︁
.

Proof. The claim follows immediately from the Cauchy-Schwarz inequality, the triangle

inequality, the boundedness of A in assumption (W1), and the boundedness of S in

assumption (W4). □

The combination of the four previous lemmas proves the discrete reliability.

Proof of Theorem 4.3. Step 1. Since ˆ︁𝜌RT ≔ ˆ︁𝜎LS − 𝜎LS − ˆ︁𝜏RT − 𝜏RT ∈ Σ𝑘
N
(ˆ︁T) and ˆ︁𝑣C ≔ˆ︁𝑢LS − 𝑢LS − ˆ︁𝑤C ∈ 𝑈 𝑘+1

D
(ˆ︁T) satisfy homogeneous boundary conditions, the abstract
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Korn inequality (W5) and the ellipticity (3.21) of the least-squares functional from

Theorem 3.12 establish

∥ˆ︁𝜌RT∥2𝐿2 (Ω) + ∥ Dˆ︁𝑣C∥2𝐿2 (Ω) ≤ max{1,𝐶2

K
}𝐶ell 𝐿𝑆 (0;ˆ︁𝜌RT,ˆ︁𝑣C). (4.30)

Since divˆ︁𝜌RT = 0, the triangle inequality and Young’s inequality show

𝐿𝑆 (0;ˆ︁𝜌RT,ˆ︁𝑣C) = ∥Aˆ︁𝜌RT − S Dˆ︁𝑣C∥2𝐿2 (Ω)
≤ 2 ∥A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS)∥2𝐿2 (Ω)

+ 2 ∥Aˆ︁𝜏RT∥2𝐿2 (Ω) + 2 ∥A𝜏RT∥2𝐿2 (Ω) + 2 ∥S D ˆ︁𝑤C∥2𝐿2 (Ω) .

The boundedness of the operators A and S from the assumptions (W1) and (W4) and

the stability estimates (4.7)–(4.8), (4.15) lead to

𝐿𝑆 (0;ˆ︁𝜌RT,ˆ︁𝑣C) ≤ 2 ∥A(ˆ︁𝜎LS − 𝜎LS) − S D(ˆ︁𝑢LS − 𝑢LS)∥2𝐿2 (Ω)
+ 4𝐶2

A𝐶
2

stab

(︁
∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) + ∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥2𝐻−1/2 (𝜕Ω)

)︁
+ 2𝐶2

A𝐶
2

stab
∥Π𝑘 div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω)

+ 2𝐶2

S𝐶
2

OL
𝐶2

SZ
∥( ˆ︁J𝑘+1

D
− J𝑘+1

D
)∥2
𝐻 1/2 (ΓD)

.

This and (4.30) prove

∥ˆ︁𝜌RT∥2𝐿2 (Ω) + ∥ Dˆ︁𝑣C∥2𝐿2 (Ω) ≤ 𝑐1 (︁𝛿2(ˆ︁T ,T) + ∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥2𝐻−1/2 (𝜕Ω)

+ ∥( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D∥2𝐻 1/2 (ΓD)
)︁ (4.31)

with the positive generic constant

𝑐1 ≔ 2max{1,𝐶2

K
}𝐶ellmax{1, 2𝐶2

A𝐶
2

stab
, 𝐶2

S𝐶
2

OL
𝐶2

SZ
}.

Step 2. The split from the Lemma 4.7 and the estimates from the Lemmas 4.8–4.9

and 4.11 lead to

𝛿2(ˆ︁T ,T) ≤ ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω)
+ 𝑐2 𝛿 (ˆ︁T ,T)

(︁
∥ˆ︁𝜏RT∥𝐿2 (Ω) + ∥ D ˆ︁𝑤C∥𝐿2 (Ω)

)︁
+ 𝑐3

(︁
∥ Dˆ︁𝑣C∥𝐿2 (Ω) + ∥ˆ︁𝜌RT∥𝐿2 (Ω) )︁ 𝜂res(T ,R3).

with the positive generic constants

𝑐2 ≔ max{𝐶A,𝐶S} and 𝑐3 ≔ max{𝐶dr1,𝐶dr2𝐶Ned}.

Multiple applications of Young’s inequality with parameter 𝛼 > 0 show

𝛿2(ˆ︁T ,T) ≤ ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) + 𝑐2

2𝛼
∥ˆ︁𝜏RT∥2𝐿2 (Ω) + 𝑐2

2𝛼
∥ D ˆ︁𝑤C∥2𝐿2 (Ω)

+ 𝛼𝑐2 𝛿2(ˆ︁T ,T) + 𝛼 𝑐3
2

(︁
∥ Dˆ︁𝑣C∥2𝐿2 (Ω) + ∥ˆ︁𝜌RT∥2𝐿2 (Ω) )︁ + 𝑐3𝛼 𝜂2

res
(T ,R3) .
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The estimates (4.7)–(4.8), (4.15), and (4.31) prove

𝛿2(ˆ︁T ,T) ≤
(︂
1 +

𝑐2𝐶
2

stab

𝛼

)︂
∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω)

+
(︂𝑐2𝐶2

stab

𝛼
+ 𝛼 𝑐1𝑐3

2

)︂
∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥2𝐻−1/2 (𝜕Ω)

+
(︂𝑐2𝐶2

OL
𝐶2

SZ

2𝛼
+ 𝛼 𝑐1𝑐3

2

)︂
∥( ˆ︁J𝑘+1

D
− J𝑘+1

D
)𝑢D∥2𝐻 1/2 (ΓD)

+ 𝑐3
𝛼
𝜂2
res
(T ,R3) +

𝛼

2

(2𝑐2 + 𝑐1𝑐3) 𝛿2(ˆ︁T ,T).

The choice 𝛼 ≔ (2𝑐2 + 𝑐1𝑐3)−1 allows for an absorption of the term 𝛿2(ˆ︁T ,T) on the

left-hand side and results in

𝛿2(ˆ︁T ,T) ≤
(︂
2 +

2𝑐2𝐶
2

stab

𝛼

)︂
∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω)

+
(︂
2𝑐2𝐶

2

stab

𝛼
+ 𝛼𝑐1𝑐3

)︂
∥(ˆ︁Π𝑘 − Π𝑘)˜︁𝑡N∥2𝐻−1/2 (𝜕Ω)

+
(︂𝑐2𝐶2

OL
𝐶2

SZ

𝛼
+ 𝛼𝑐1𝑐3

)︂
∥( ˆ︁J𝑘+1

D
− J𝑘+1

D
)𝑢D∥2𝐻 1/2 (ΓD)

+ 2𝑐3

𝛼
𝜂2
res
(T ,R3).

Lemma 3.8 and Corollary 3.11 imply

𝛿2(ˆ︁T ,T) ≤ 𝑐4 ∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) + 𝑐5 osc
2(𝑡N, F (ΓN) \ ˆ︁F (ΓN))

+ 𝑐6 osc
2(D𝑢D,L5(F \ ˆ︁F , ΓD)) + 𝑐7 𝜂2res(T ,R3)

with the positive generic constants

𝑐4 ≔ 2 + 2𝑐2𝐶
2

stab
(2𝑐2 + 𝑐1𝑐3), 𝑐5 ≔ 𝐶2

N

(︂
2𝑐2𝐶

2

stab
(2𝑐2 + 𝑐1𝑐3) +

𝑐1𝑐3

2𝑐2 + 𝑐1𝑐3

)︂
,

𝑐6 ≔ 𝐶D2

(︂
𝑐2𝐶

2

OL
𝐶2

SZ
(2𝑐2 + 𝑐1𝑐3) +

𝑐1𝑐3

2𝑐2 + 𝑐1𝑐3

)︂
, 𝑐7 ≔ 2𝑐3(2𝑐2 + 𝑐1𝑐3).

The triangle inequality and Young’s inequality in the estimate

∥(1 − Π𝑘) div(ˆ︁𝜎LS − 𝜎LS)∥2𝐿2 (Ω) = ∥(1 − Π𝑘) divˆ︁𝜎LS∥2𝐿2 (Ω)
≤ 2 ∥(1 − Π𝑘) 𝑓 ∥2𝐿2 (Ω) + 2 𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS)

conclude the proof of Theorem 4.3 with the positive generic constants

˜︁Λ3 ≔ max{2𝑐4, 𝑐5, 𝑐6, 𝑐7} and ˆ︁Λ3 ≔ 2𝑐4. □
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4.4 Quasi-orthogonality
In the case of homogeneous boundary conditions, the variational formulation (3.18)

provides a conforming discretisation. The Galerkin orthogonality immediately implies

the quasi-orthogonality axiom (A4) [44, Theorem 4.1]. However, for triangulations T𝑗
and T𝑗+1, the (possibly) different boundary data approximations on the refined bound-

ary faces F𝑗 (ΓX) \ F𝑗+1(ΓX) prevent the Galerkin orthogonality. The stable extensions

of the approximation errors from the Sections 3.3–3.4 allow for a remedy in the proof

of a quasi-Pythagoras Lemma 4.15 below. This result leads to the proof of a weakened

version of the quasi-orthogonality axiom (A4) using a procedure from [37, the follow-

ing Lemma 4.15 matches axiom (B3a) therein]. A standard result [40, Theorem 3.1]

deduces (A4) and completes this chapter.

The Dirichlet data approximation error in the 𝐻 1/2
norm allows for an upper bound

in terms of the boundary data oscillations on not less than five additional layers around

the refined boundary faces in Lemma 3.8. This requires the notion of a modified

mesh-size function ℎ(𝑛) for 𝑛 ∈ N0 being reduced by a factor 0 < 𝜌mms(𝑛) < 1 on the

simplex 𝑇 ∈ T if any simplex in the 𝑛-layer L𝑛 ({𝑇 }) is refined, cf. [62, Section 4.2]

and [37, Section 8.7]. For 𝑛 = 0, this coincides with the usual mesh-size function

ℎ(0) |𝑇 ≡ ℎT |𝑇 ≡ |𝑇 |1/3 from (2.18).

Lemma 4.12 (modified mesh-size function). For every 𝑛 ∈ N0, there exist a piece-
wise constant modified mesh-size function ℎ(𝑛) ∈ 𝑃0(T ), generic constants𝐶mms(𝑛) ≥ 1,
and 0 < 𝜌mms(𝑛) < 1 such that

(i) 𝐶mms(𝑛)−1 ℎT ≤ ℎ(𝑛) ≤ ℎT in Ω,

(ii) ˆ︁ℎ(𝑛) |𝑇 ≤ 𝜌mms(𝑛) ℎ(𝑛) |𝑇 on every 𝑇 ∈ R𝑛 = L𝑛 (T \ ˆ︁T),

(iii) ˆ︁ℎ(𝑛) ≤ ℎ(𝑛) in Ω.

For 𝑛 = 0, ℎ(0) ≡ ℎT satisfies (i)–(iii) with 𝐶mms = 1 and 𝜌mms = 2
−1/3.

Proof. The proof is given in [37, Proposition 8.6]. It relies on the shape regularity of

triangulations in T ensuring that there exists a uniform upper bound 𝑐1 with, for every

T ∈ T,
max

{︁
|𝑇 |

/︁
|˜︁𝑇 | : 𝑇,˜︁𝑇 ∈ T with dist(𝑇,˜︁𝑇 ) = 0

}︁
≤ 𝑐1.

In particular, for every 𝑇 ∈ T and ˜︁𝑇 ∈ L𝑛 ({𝑇 }),

𝑐−1
2

≤ |𝑇 |
|˜︁𝑇 | ≤ 𝑐2 and |L𝑛 ({𝑇 }) | ≤ 𝑐3.

A successive definition over the one-level refinements from the initial triangulation T0
until T in T with a rescaling for the refined simplices leads to the mesh-size function

ℎ(𝑛). □
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Using this notion of a mesh-size, define the modified boundary data oscillations, for

𝑛 ∈ N0, 𝑔 ∈ 𝐿2(𝜕Ω), andM ⊆ F (𝜕Ω),

osc
2

𝑛 (𝑔,M) ≔
∑︁
𝐹∈M

∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2𝐿2 (𝐹 ) (4.32)

Thus, the oscillations osc0 coincide with those defined in (2.20). The modified oscilla-

tions provide the following estimate for oscillations on 𝑛-layers.

Lemma 4.13. Given any part ΓX ∈ {ΓD, ΓN} of the boundary 𝜕Ω and 𝑛 ∈ N0, every
𝑔 ∈ 𝐿2(ΓD) satisfies

osc
2(𝑔,L𝑛 (F \ ˆ︁F , ΓX)) ≤ 𝐶osc(𝑛)

(︁
osc

2

𝑛 (𝑔, F (ΓX)) − osc
2

𝑛 (𝑔, ˆ︁F (ΓX))
)︁
.

The constant𝐶osc(𝑛) depends solely on the modified mesh-size functionℎ(𝑛). In particular,
it does not depend on the part ΓX. For 𝑛 = 0, 𝐶osc(0) = 1.

Remark 4.14. This result is included in the proof of [37, Proposition 11.1]. The estimate

in the third displayed formula in [37, on page 1251] is false, because the equivalence

of the modified mesh-size function from Lemma 4.12 (i) just allows for an upper

bound −𝐶−1
13
𝜇 (ˆ︁T)2 therein. To provide a remedy in this thesis, the quasi-Pythagoras

Lemma 4.15 is established for the modified oscillations osc𝑛 . The equivalence from

Lemma 4.12 (i) will be applied at the very end of the proof of Theorem 4.16.

Proof of Lemma 4.13. Recall the notion of the relative interior of boundary patches

from (2.5). The estimates from Lemma 4.12 (ii)–(iii) approve, for the modified mesh-size

function ℎ(𝑛),

(1 − 𝜌mms(𝑛)) ℎ(𝑛) ≤ ℎ(𝑛) − ˆ︁ℎ(𝑛) in 𝑆𝑛 ≔ relint

⋃︁L𝑛 (T \ ˆ︁T). (4.33)

On the boundary patch ˜︁𝑆X,𝑛 ≔ relint(𝑆𝑛 ∩ ΓX), the estimate (4.33) justifies

(1 − 𝜌mms(𝑛)) ∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2
𝐿2 (˜︁𝑆X,𝑛)

≤ ∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2
𝐿2 (˜︁𝑆X,𝑛) − ∥ˆ︁ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2

𝐿2 (˜︁𝑆X,𝑛) .
The monotonicity (iii) shows for the remaining contributions

∥ˆ︁ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2
𝐿2 (ΓX\˜︁𝑆X,𝑛) ≤ ∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2

𝐿2 (ΓX\˜︁𝑆X,𝑛) .
The combination of the two previously displayed formulas reads

(1 − 𝜌mms(𝑛)) ∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2𝐿2 (ΓX)
≤ ∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2𝐿2 (ΓX) − ∥ˆ︁ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2𝐿2 (ΓX) .

(4.34)
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The piecewise polynomial 𝐿2 orthogonal projection Π𝑘 with respect to the faces F
and the refined faces

ˆ︁F satisfies

∥ˆ︁ℎ(𝑛)1/2(1 − ˆ︁Π𝑘)𝑔∥2𝐿2 (ΓX) ≤ ∥ˆ︁ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2𝐿2 (ΓX) .

This and (4.34) prove

(1 − 𝜌mms(𝑛)) ∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2
𝐿2 (˜︁𝑆X,𝑛)

≤ ∥ℎ(𝑛)1/2(1 − Π𝑘)𝑔∥2𝐿2 (ΓX) − ∥ˆ︁ℎ(𝑛)1/2(1 − ˆ︁Π𝑘)𝑔∥2𝐿2 (ΓX) .
The equivalence (i) concludes the proof with the positive generic constant

𝐶osc(𝑛) ≔
𝐶mms(𝑛)

1 − 𝜌mms(𝑛)
.

For 𝑛 = 0, the orthogonality of Π𝑘 immediately shows the result with 𝐶osc(0) = 1. □

Given a regular triangulation T ∈ T with admissible refinement ˆ︁T ∈ T(T ), recall
Notation 3 from page 22. The following lemma involves the modified boundary data

oscillations of the surface gradient D𝑢D from (2.4).

Lemma 4.15 (quasi-Pythagoras). Abbreviate˜︁𝜂2
osc

(T ) ≔ osc
2

5
(D𝑢D, F (ΓD)) + osc

2(𝑡N, F (ΓN)) (4.35)

and do so analogously for ˆ︁T . There exists a positive generic constant 𝐶QP such that every
𝛼 > 0 satisfies

𝛿2(ˆ︁T ,T) ≤ (1 + 𝛼) 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) − (1 − 𝛼) 𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS)
+
𝐶QP

𝛼

(︁˜︁𝜂2
osc

(T ) −˜︁𝜂2
osc

(ˆ︁T)
)︁
.

(4.36)

The constant 𝐶QP does not depend on 𝛼 .

Proof. Step 1. Lemma 3.6 guarantees the existence of a discrete extension ˆ︁𝑤C ∈
𝑆𝑘+1(ˆ︁T ; 𝑅3) with ˆ︁𝑤C = ( ˆ︁J𝑘+1

D
− J𝑘+1

D
)𝑢D on ΓD and

∥ D ˆ︁𝑤C∥𝐿2 (Ω) ≤ 𝐶OL𝐶SZ ∥( ˆ︁J𝑘+1
D

− J𝑘+1
D

)𝑢D∥𝐻 1/2 (ΓD) .

Lemma 3.8 justifies the estimate

∥ D ˆ︁𝑤C∥2𝐿2 (Ω) ≤ 𝐶
2

OL
𝐶2

SZ
𝐶D2 osc

2(D𝑢D,L5(F \ ˆ︁F , ΓD)) .
Eventually, Lemma 4.13 for 𝑛 = 5 and ΓX = ΓD accomplishes

∥ D ˆ︁𝑤C∥2𝐿2 (Ω) ≤ 𝐶
2

OL
𝐶2

SZ
𝐶D2𝐶osc(5)

(︁
osc

2

5
(D𝑢D, F (ΓD)) − osc

2

5
(D𝑢D, ˆ︁F (ΓD))

)︁
. (4.37)
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Moreover, Lemma 3.9 provides some discrete extension
ˆ︁𝜉RT ∈ 𝑅𝑇𝑘 (ˆ︁T ;R3×3) with

div
ˆ︁𝜉RT = 0 in Ω and

ˆ︁𝜉RT = (ˆ︁Π𝑘 − Π𝑘)𝑡N on ΓN. It satisfies the stability estimate

∥ˆ︁𝜉RT∥𝐿2 (Ω) ≤ 𝐶ext ∥(ˆ︁Π𝑘 − Π𝑘)𝑡N∥𝐻−1/2 (𝜕Ω) .

This and Corollary 3.11 establish

∥ˆ︁𝜉RT∥2𝐿2 (Ω) ≤ 𝐶2

ext
𝐶2

N
osc

2(𝑡N, F (ΓN) \ ˆ︁F (ΓN)) .

Since the oscillation term in this formula coincides with the modified oscillation

osc
2

0
(𝑡N, F (ΓN) \ ˆ︁F (ΓN)), Lemma 4.13 for 𝑛 = 0 and ΓX = ΓN applies with 𝐶osc(0) = 1.

Consequently,

∥ˆ︁𝜉RT∥2𝐿2 (Ω) ≤ 𝐶2

ext
𝐶2

N

(︁
osc

2(𝑡N, F (ΓN)) − osc
2(𝑡N, ˆ︁F (ΓN))

)︁
. (4.38)

Step 2. Abbreviate the exact minimiser𝑋 ≔ (𝜎,𝑢) and the solutions𝑋LS ≔ (𝜎LS, 𝑢LS)
and ˆ︁𝑋LS ≔ (ˆ︁𝜎LS,ˆ︁𝑢LS) to the discrete equations (3.18) with respect to the triangulations

T and ˆ︁T . The weak solution satisfies the two equations − div𝜎 = 𝑓 and A𝜎 = S D𝑢

exactly and, thus, div
ˆ︁𝜉RT = 0 shows

B(𝑋 − ˆ︁𝑋LS; (ˆ︁𝜉RT, ˆ︁𝑤C)) = −
(︁
Aˆ︁𝜎LS − S Dˆ︁𝑢LS, Aˆ︁𝜉RT − S D ˆ︁𝑤C

)︁
𝐿2 (Ω) .

The Cauchy-Schwarz and the triangle inequality combined with the boundedness of

A and S from the assumptions (W1) and (W4) verify

B(𝑋 − ˆ︁𝑋LS; (ˆ︁𝜉RT, ˆ︁𝑤C)) ≤ ∥Aˆ︁𝜎LS − S Dˆ︁𝑢LS∥𝐿2 (Ω) (︂𝐶A ∥ˆ︁𝜉RT∥𝐿2 (Ω) +𝐶S ∥ D ˆ︁𝑤C∥𝐿2 (Ω)
)︂
.

Young’s inequality with parameter 𝛼/2 > 0 shows

B(𝑋 − ˆ︁𝑋LS; (ˆ︁𝜉RT, ˆ︁𝑤C)) ≤
𝛼

2

𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS) + 𝐶2

S
𝛼

∥ D ˆ︁𝑤C∥2𝐿2 (Ω) +
𝐶2

A
𝛼

∥ˆ︁𝜉RT∥2𝐿2 (Ω) .
This and the estimates (4.37)–(4.38) from Step 1 prove

B(𝑋 − ˆ︁𝑋LS; (ˆ︁𝜉RT, ˆ︁𝑤C)) ≤
𝛼

2

𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS) + 𝐶QP

2𝛼

(︁˜︁𝜂2
osc

(T ) −˜︁𝜂2
osc

(ˆ︁T)
)︁

(4.39)

with the positive generic constant

𝐶QP ≔ 2max

{︁
𝐶2

S𝐶
2

OL
𝐶2

SZ
𝐶D2𝐶osc(5), 𝐶2

A𝐶
2

ext
𝐶2

N

}︁
.

Step 3. The boundary data extensions ˆ︁𝑤C and
ˆ︁𝜉RT from Step 1 allow for the con-

struction of an admissible test function ˆ︁𝑋LS − 𝑋LS − (ˆ︁𝜉RT, ˆ︁𝑤C) ∈ Σ𝑘
N
(ˆ︁T) × 𝑈 𝑘+1

D
(ˆ︁T).

Therefore, the Galerkin orthogonality of the variational formulation (3.18) reads

B(𝑋 − ˆ︁𝑋LS;
ˆ︁𝑋LS − 𝑋LS − (ˆ︁𝜉RT, ˆ︁𝑤C)) = 0. (4.40)
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This and the binomial formula for the symmetric bilinear form B show

B(𝑋 − 𝑋LS;𝑋 − 𝑋LS) = B((𝑋 − ˆ︁𝑋LS) + (ˆ︁𝑋LS − 𝑋LS); (𝑋 − ˆ︁𝑋LS) + (ˆ︁𝑋LS − 𝑋LS))
= B(𝑋 − ˆ︁𝑋LS;𝑋 − ˆ︁𝑋LS) + B(ˆ︁𝑋LS − 𝑋LS;

ˆ︁𝑋LS − 𝑋LS)
+ 2B(𝑋 − ˆ︁𝑋LS; (ˆ︁𝜉RT, ˆ︁𝑤C)) .

A rearrangement of this formula in terms of the least-squares functional and the

application of the estimate (4.39) conclude the proof. □

Theorem 4.16 (quasi-orthogonality with 𝜺 > 0). The output triangulations (Tℓ :

ℓ ∈ N0) of the adaptive algorithm ALSFEM from page 4 satisfy axiom (A4𝜀): For every
𝜀 > 0 there exists a positive generic constant ˜︁Λ4(𝜀) such that, for every𝑚,𝑛 ∈ N0,

𝑚+𝑛∑︁
ℓ=𝑚

𝛿2(Tℓ+1,Tℓ) ≤ ˜︁Λ4(𝜀)
(︁
𝜂2(T𝑚) + 𝜇2(T𝑚)

)︁
+ 𝜀

𝑚+𝑛∑︁
ℓ=𝑚

(︁
𝜂2(Tℓ) + 𝜇2(Tℓ)

)︁
. (A4𝜀)

This weakened version of the quasi-orthogonality axiom (A4) allows for the imme-

diate conclusion of (A4) in presence of the axioms (A1)–(A2) by [40, Theorem 3.1].

Corollary 4.17. Given the positive generic constants Λ12 and 𝜌12 < 1 from [40, The-
orem 4.1], the axioms (A1)–(A2) and (A4𝜀) with 0 < 𝜀 < (1 − 𝜌12)/Λ12 imply quasi-
orthogonality (A4) with the positive generic constant

Λ4 ≔ ˜︁Λ4(𝜀) + 𝜀 (1 + Λ12
˜︁Λ4(𝜀))/(1 − 𝜌12 − 𝜀Λ12).

Proof of Theorem 4.16. The proof of (A4𝜀) proceeds as the one for [37, Lemma 3.7]. It

is displayed here in detail because of the presence of oscillations with the modified

mesh-size in Lemma 4.15 and the slightly different distance 𝛿 in this thesis (cf. [37,

Section 2.2]). The point of departure is the quasi-Pythagoras Lemma 4.15 being applied

to the output triangulations (Tℓ : ℓ ∈ N0) of the adaptive algorithm ALSFEM. This

reads, for every ℓ ∈ N0 and 𝛼 > 0,

𝛿2(Tℓ+1,Tℓ) ≤ (1 + 𝛼) 𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ) − (1 − 𝛼) 𝐿𝑆 (𝑓 ;𝜎ℓ+1, 𝑢ℓ+1)

+
𝐶QP

𝛼

(︁˜︁𝜂2
osc

(Tℓ) −˜︁𝜂2
osc

(Tℓ+1)
)︁
.

This is equivalent to

𝛿2(Tℓ+1,Tℓ) − 2𝛼 𝐿𝑆 (𝑓 ;𝜎ℓ+1, 𝑢ℓ+1)

≤ (1 − 𝛼)
(︁
𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ) − 𝐿𝑆 (𝑓 ;𝜎ℓ+1, 𝑢ℓ+1)

)︁
+
𝐶QP

𝛼

(︁˜︁𝜂2
osc

(Tℓ) −˜︁𝜂2
osc

(Tℓ+1)
)︁
.

The telescoping sum over ℓ =𝑚, . . . ,𝑚 + 𝑛 leads to

𝑚+𝑛∑︁
ℓ=𝑚

(︁
𝛿2(Tℓ+1,Tℓ) − 2𝛼 𝐿𝑆 (𝑓 ;𝜎ℓ+1, 𝑢ℓ+1)

)︁
≤ (1 − 𝛼) 𝐿𝑆 (𝑓 ;𝜎𝑚, 𝑢𝑚) +

𝐶QP

𝛼
˜︁𝜂2
osc

(T𝑚).
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The equivalence of the modified mesh-size function from Lemma 4.12 (i) ensures that˜︁𝜂2
osc

(T𝑚) ≤ 𝜂2osc(T𝑚). Consequently, the reliability (4.4) from Corollary 4.4 shows

𝑚+𝑛∑︁
ℓ=𝑚

𝛿2(Tℓ+1,Tℓ) ≤
(︂
(1 − 𝛼)˜︁Λ3 +

𝐶QP

𝛼

)︂ (︁
𝜂2(T𝑚) + 𝜇2(T𝑚)

)︁
+ 2𝛼˜︁Λ3

𝑚+𝑛∑︁
ℓ=𝑚

(︁
𝜂2(Tℓ) + 𝜇2(Tℓ)

)︁
.

Given any 𝜀 > 0 and ˜︁Λ4(𝜀) ≔ (1 − 𝛼)˜︁Λ3 + 𝐶QP/𝛼 with 𝛼 ≔ 𝜀/(2˜︁Λ3), this is the
assertion (A4𝜀). □

4.5 Quasi-monotonicity
The analysis in [40, Section 3.2] shows that the quasi-monotonicity (QM) can be

deduced from the axioms (A1)–(A3) if (Λ2

1
+ Λ2

2
)ˆ︁Λ3 < 1 is sufficiently small [40, The-

orem 3.2]. For the ALSFEM algorithm at hand, this is not guaranteed in general. Thus,

axiom (QM) has to be established explicitly as follows. The least-squares functional

𝐿𝑆 is minimised over nested discrete space in the case of homogeneous boundary

conditions. This provides its strict monotonicity. In the presence of inhomogeneous

boundary conditions, the quasi-Pythagoras Lemma 4.15 allows for quasi-monotonicity

of the least-squares functional plus the modified oscillations. In combination with the

efficiency and the reliability of the alternative a posteriori error estimator, it imple-

ments (QM). Recall Notation 3 from page 22 for regular triangulation T ∈ T and its
admissible refinement ˆ︁T ∈ T(T ).

Theorem 4.18 (quasi-monotonicity of 𝜼 + 𝝁). The a posteriori error estimator 𝜂 and
the data approximation error 𝜇 satisfy the axiom (QM): There exists a positive generic
constant Λ7 such that, for any T ∈ T with admissible refinement ˆ︁T ∈ T(T ),

𝜂 (ˆ︁T) + 𝜇 (ˆ︁T) ≤ Λ7

(︁
𝜂 (T ) + 𝜇 (T )

)︁
Proof. Step 1. The modified mesh-size functionℎ(5) ∈ 𝑃0(T ) from Lemma 4.12 satisfies

the equivalence, for 𝐶mms(5) ≥ 1,

𝐶−1
mms

(5) ℎT ≤ ℎ(5) ≤ ℎT a.e. in Ω.

For the oscillations from (2.20) and the modified oscillations from (4.32), this shows

𝐶mms(5)−1 osc
2(D𝑢D, F (ΓD)) ≤ osc

2

5
(D𝑢D, F (ΓD)) ≤ osc

2(D𝑢D, F (ΓD)) .

In particular, for 𝜂osc from (3.32) and ˜︁𝜂osc from (4.35),

𝐶−1
mms

(5) 𝜂2
osc

(T ) ≤ ˜︁𝜂2
osc

(T ) ≤ 𝜂2
osc

(T ) . (4.41)

An analogous estimate holds with respect to the refinement ˆ︁T .
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Step 2. A rearrangement of the quasi-Pythagoras estimate (4.36) from Lemma 4.15

reads, for every 𝛼 > 0,

(1 − 𝛼) 𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS) + 𝐶QP

𝛼
˜︁𝜂2
osc

(ˆ︁T) + 𝛿2(ˆ︁T ,T)

≤ (1 + 𝛼) 𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) +
𝐶QP

𝛼
˜︁𝜂2
osc

(T ) .

Under the assumption 0 < 𝛼 < 1, this shows

𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS) +˜︁𝜂2
osc

(ˆ︁T) ≤ 𝑐1(𝛼)
(︁
𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) +˜︁𝜂2

osc
(T )

)︁
(4.42)

with the positive generic constant

𝑐1(𝛼) ≔
max{1 + 𝛼,𝐶QP/𝛼}
min{1 − 𝛼,𝐶QP/𝛼}

.

Step 3. Since 𝜇2(ˆ︁T) ≤ 𝐿𝑆 (𝑓 ,ˆ︁𝜎LS,ˆ︁𝑢LS), the efficiency from Theorem 3.18 with respect

to ˆ︁T implies

𝜂2(ˆ︁T) + 𝜇2(ˆ︁T) ≤ (1 +𝐶eff)
(︁
𝐿𝑆 (𝑓 ;ˆ︁𝜎LS,ˆ︁𝑢LS) + 𝜂2osc(ˆ︁T)

)︁
.

The estimates (4.41)–(4.42) verify

𝜂2(ˆ︁T) + 𝜇2(ˆ︁T) ≤ (1 +𝐶eff)𝐶mms(5)𝑐1(𝛼)
(︁
𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS) +˜︁𝜂2

osc
(T )

)︁
.

The estimate (4.41) and the reliability from Corollary 4.4 establish

𝜂2(ˆ︁T) + 𝜇2(ˆ︁T) ≤ (1 +𝐶eff)𝐶mms(5)𝑐1(𝛼) (1 + ˜︁Λ3)
(︁
𝜂2(T ) + 𝜇2(T )

)︁
.

The square root of this estimate plus standard estimates conclude the proof with the

generic constant

Λ7 ≔

√︃
2(1 +𝐶eff)𝐶mms(5)𝑐1(𝛼) (1 + ˜︁Λ3). □
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5 Numerical experiments

The following three sections present numerical experiments with a Matlab/Octave

implementation of the lowest-order LSFEM from (3.18). Since the typical benchmark

problems in fluid and solid mechanics solely involve constant volume forces 𝑓 ∈
𝑃0(Ω;R3), the data approximation error ∥ 𝑓 − Π0𝑓 ∥𝐿2 (Ω) does not appear. Accordingly,
the code is restricted to a collective marking strategy (Case A in ALSFEM). The

implementation is based on the in-house software package AFEM [43]. However, it is

completely rewritten to improve the performance and to facilitate the generalisation

to various choices of the operators A and S in the model problem (3.3). The usage

and implementation is presented in detail in the Appendix A. If not stated otherwise,

the adaptive computations are driven by the alternative a posteriori error estimator 𝜂

with a bulk parameter of 𝜃 = 0.3.

Due to the large number of simplices in the adaptively refined meshes, their plots

solely present the triangulation of the surface F (𝜕Ω). In every convergence history

plot, the results for uniform refinement are displayed with dashed lines and grey

markers and for adaptive refinement with solid lines and colourful markers. Every

error or estimator term has a unique colour and marker as depicted in Figure 5.1.

The regularity of the exact solution 𝜎 and 𝑢 to (3.3) in the notion of Besov spaces as

well as the polynomial degree of the approximation determine the optimal convergence

rate 𝑠 in Theorem 1.1. For a detailed discussion of this rate, the reader is referred to

[14, Section 9] and [48, Section 5.1] and the references therein. For the lowest-order

discretisation in 3D, the expected optimal convergence rate is 1/3.

Figure 5.1: Overview of the involved error and estimator terms.
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5.1 Poisson model problem
This section presents numerical experiments for two benchmark problems of the

scalar-valued version of the model problem (3.3) with A = S = id.

5.1.1 Fichera cube

The Fichera cube [63] is given by Ω = (−1, 1)3 \ [0, 1]3. Let 𝑓 ≡ 1 be constant

and suppose homogeneous Dirichlet boundary conditions 𝑢D ≡ 0 ∈ 𝐻 1(ΓD) on the

full boundary ΓD ≔ 𝜕Ω. Consequently, no data approximation terms appear in this

example.

The adaptive algorithm creates meshes with the expected increased refinement

along the reentrant edges as depicted in Figure 5.2a. The convergence history plot in

Figure 5.3a reveals the optimal convergence rate of 1/3 for the alternative estimator

𝜂ℓ as well as for the built-in estimator 𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ)1/2. Due to the reduced Sobolev

regularity of the exact solution on this non-convex domain, the computation with

uniform refinement attains a slightly suboptimal rate of about 0.28. The comparison of

the estimator contributions in Figure 5.3a confirms the higher order of convergence of

the equilibrium residual ∥Π0𝑓 + div𝜎ℓ ∥𝐿2 (Ω) from [45, Theorem 3.1], for the mesh-size

ℎℓ ≔ ℎTℓ ,

∥Π0𝑓 + div𝜎ℓ ∥𝐿2 (Ω) ≤ 𝐶hoc ∥ℎℓ ∥𝑠𝐿∞ (Ω) ∥𝜎ℓ − ∇𝑢ℓ ∥𝐿2 (Ω) . (5.1)

Even in the case of adaptive mesh-refinement, where the maximal mesh-size does not

necessarily converge ∥ℎℓ ∥𝑠𝐿∞ (Ω) → 0 as ℓ → ∞, the residual ∥Π0𝑓 + div𝜎ℓ ∥𝐿2 (Ω) is of
higher order.

5.1.2 Two bricks domain

This section considers a domain consisting of two bricks laying on top of each other

Ω ≔
(︁
(−1, 0) × (−1, 1) × (−1, 0)

)︁
∪
(︁
(−1, 0) × (0, 1) × 0

)︁
∪
(︁
(−1, 1) × (0, 1) × (0, 1)

)︁
with Dirichlet boundary ΓD ≔ 𝜕Ω. Let 𝑓 ≡ 1 and 𝑢D ≡ 0 be constant. The domain

Ω is no Lipschitz domain in the sense of Assumption 1 in Section 2.3 because the

boundary around the origin (0, 0, 0)⊤ does not allow for a representation as a graph

[82, Figure 2 (iii) on page 91]. However, it belongs to the class of weakly Lipschitz

domains [78, Section 2 and Theorem 4.1]. Thus, the analysis in this thesis does not

apply to Ω.
Nonetheless, the convergence plot in Figure 5.5 indicates the optimal convergence

rate of 1/3 from about 3 000 degrees of freedom. Similar to the benchmark from the

previous Section 5.1.1, uniform refinement results in a slightly suboptimal convergence

rate. Also, the adaptive refinement focuses on the two reentrant edges as depicted in

Figure 5.4.
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(a) Triangulation Tℓ

(b) Solution 𝑢ℓ

Figure 5.2: Adaptively refinedmeshTℓ in (a) for ℓ = 33 of the Fichera cube from Subsection 5.1.1

composed of 479 940 simplices and the corresponding solution 𝑢ℓ in (b). The colour

represents the value of the solution 𝑢ℓ along the given slices.
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(a) Comparison of uniform and adaptive refinement

(b) Comparison of contributions to the least-squares functional

Figure 5.3: Convergence history plots for the Fichera cube benchmark of the Poisson model

problem from Subsection 5.1.1.
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Figure 5.4: Adaptively refined mesh Tℓ for ℓ = 35 of the two bricks domain from Subsec-

tion 5.1.2 composed of 569 736 simplices.

Figure 5.5: Convergence history plot for the two bricks benchmark of the Poisson model

problem from Subsection 5.1.2.
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5.2 Stokes problem
This section investigates the laminar flow of a Newtonian fluid modelled by the Stokes

equations.

5.2.1 Hagen-Poiseuille flow
This subsection considers the flow in the unit cube Ω ≔ (0, 1)3. For vanishing right-
hand side 𝑓 ≡ 0, the exact solution 𝑢 ∈ 𝑃2(Ω;R3) and 𝑝 ∈ 𝑃1(Ω) reads

𝑢 (𝑥) = (4𝑥2(𝑥2 − 1), 0, 0)⊤ and 𝑝 (𝑥) = 8𝑥1 − 4

and prescribes the inhomogeneous Dirichlet boundary conditions.

Figure 5.6a displays the convergence history plot for the adaptive and uniform mesh-

refinement. Due to the smooth solution𝑢, both refinement schemes lead to the optimal

rate of 1/3 from the very beginning of the computation at about 200 degrees of freedom.

The first four levels do not sufficiently resolve the boundary data and the residual terms

in the alternative estimator𝜂 as well as the least-squares functional 𝐿𝑆 exhibit some pre-

asymptotic behaviour. Due to the inhomogeneous boundary conditions, the discrete

spaces 𝑈 𝑘+1(T ) are not nested and the least-squares functional is not necessarily

monotonically decreasing. The Dirichlet data approximation term osc(D𝑢D, F (ΓD)) is
of higher order. The known exact solution allows for a comparison of the estimators

and the errors. Figure 5.6b confirms their theoretically proven equivalence from the

Theorems 3.16, 3.18, and Corollary 4.4.

5.2.2 Backward facing step
This standard example describes the flow in a pipe with bottleneck. The right-hand

side 𝑓 ≡ 0 vanishes on the domain

Ω ≔
(︁
(−1, 1) × (−2, 8) × (−1, 1)

)︁
\
(︁
[−1, 1] × [−2, 0] × [−1, 0]

)︁
.

The inhomogeneous Dirichlet boundary data are prescribed by

𝑢D(𝑥) ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 1/10 (𝑥1 + 1) (𝑥1 − 1)𝑥3(𝑥3 − 1), 0)⊤ if 𝑥2 = −2,
(0, 1/80 (𝑥1 + 1) (𝑥1 − 1) (𝑥3 + 1) (𝑥3 − 1), 0)⊤ if 𝑥2 = 8,

0 otherwise.

The polynomial in- and outflow are scaled such that the compatibility condition∫
𝜕Ω
𝑢D · 𝜈 d𝑎 = 0

following from the side condition div𝑢 = 0 is satisfied. In order to sufficiently resolve

the boundary data on the initial triangulation, three uniform refinements are carried

out before the start of the adaptive algorithm.

90



(a) Comparison of uniform and adaptive refinement

(b) Comparison of exact errors and error estimators

Figure 5.6: Convergence history plot for the Hagen-Poiseuille benchmark of the Stokes equa-

tions from Subsection 5.2.1.
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Contrasting the expected behaviour, the convergence plot in Figure 5.7a does not

confirm optimal convergence rates. Since the alternative and the built-in error estim-

ators exhibit a slightly different rate of convergence, it is reasonable to suspect this to

be some pre-asymptotic behaviour. Indeed, the triangulation plot in Figure 5.8a shows

that the refinement solely focuses on the boundary parts with inhomogeneous data at

𝑥2 = 2 and 𝑥2 = 8 and almost no refinement happens for 𝑥 ∈ Ω with 1 < 𝑥2 < 4. This

part of the triangulation is to coarse to sufficiently resolve the solution. In particular,

the singularity along the reentrant edge has not been detected even on the finest level

of the computation. This prevents the observation of an asymptotic behaviour even

for relatively small bulk parameters 𝜃 ≪ 1 in Figure 5.7b.

5.3 Linear elasticity problem
This section presents two benchmark problems for the linear elasticity problem. If not

stated otherwise, the implementation employs the Young’s modulus 𝐸 = 200 and the

Poisson ratio 𝜈 = 0.25 to provide the Lamé parameters according to

𝜇 ≔
𝐸

2(1 + 𝜈) and 𝜆 ≔
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) for 0 < 𝐸, 0 < 𝜈 < 0.5.

The following sections include plots of the deformed domain (id+𝛼𝑢ℓ) (Ω) for some

scaling factor 𝛼 > 0. Due to the small values of the displacement 𝑢ℓ , a scaling factor

10 < 𝛼 < 100 is employed.

5.3.1 Uniaxial tension test
This benchmark is modelled on a standard experiment from material science for the

determination of isotropic material parameters. Therefore, a rod or flat block is clamped

into a universal testing machine and a tension force in one direction applies to it. By

symmetry, it suffices to consider the lower half of the specimen.

For the numerical simulation, let Ω ≔ (0, 1)3 denote the unit cube with the Dirichlet

boundary ΓD = [0, 1]2 × 0 at the bottom and the remaining Neumann boundary

ΓN ≔ 𝜕Ω \ ΓD. At the Dirichlet boundary, the specimen is clamped such that 𝑢D ≡ 0.

A constant force 𝑡N applies to the top

𝑡N(𝑥) ≔
{︄
(0, 0, 1) if 𝑥3 = 1,

0 else.

Along the interface ΓI between the Dirichlet boundary ΓD and the Neumann bound-

ary ΓN, the unknown exact solution𝑢 is less regular. This causes the adaptive algorithm

to generate meshes with increased refinement along ΓI as depicted in Figure 5.9. Fig-

ure 5.10 approves that the resulting convergence rate of the adaptive scheme is optimal.

However, uniform refinement leads to a suboptimal rate of about 0.2.
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(a) Comparison of uniform and adaptive refinement

(b) Comparison of small bulk parameters 𝜃 ≪ 0

Figure 5.7: Convergence history plots for the backward facing step benchmark of the Stokes

equations from Subsection 5.2.2.
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(a) Triangulation Tℓ

(b) Solution 𝑢ℓ

Figure 5.8: Adaptively refined mesh Tℓ (a) for ℓ = 25 of the backward facing step domain from

Subsection 5.2.2 composed of 173 036 simplices and the corresponding solution 𝑢ℓ
(b). The color indicates the length of the velocity vector field |𝑢ℓ |.
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Figure 5.9: Deformation of the adaptively refined mesh Tℓ for ℓ = 25 from the uniaxial tension

test from Subsection 5.3.1 composed of 20 976 simplices. The deformation is scaled

by the factor 𝛼 = 80. The colour indicates the piecewise constant approximation

of the von Mises stress | dev𝜎ℓ |.

Figure 5.10: Convergence history plot for the uniaxial tension benchmark of the linear elasti-

city problem from Subsection 5.3.1.
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Figure 5.11: Comparison of the values of the alternative a posteriori error estimator 𝜂ℓ for

various choices of the bulk parameter 𝜃 in the uniaxial tension benchmark for

the linear elasticity problem from Subsection 5.3.1.

A theoretical analysis of the upper bound 𝜃0 of the bulk parameter in Theorem 1.1

in [42, Section 6] establishes 𝜃0 ≥ 2.6× 10
−6

in the case of the Courant FEM for the 2D

Poisson model problem with an underlying triangulation into right isosceles triangles.

In practice, moderate choices of 0.3 ≤ 𝜃 ≤ 0.5 usually lead to optimal rates while

avoiding too many solution steps. Indeed, a closer investigation of the influence of

the bulk parameter 𝜃 for the ALSFEM algorithm shows that the optimal rate of 1/3 is
already attained for about 𝜃 ≤ 0.8 in Figure 5.11.

For the modelling of (nearly) incompressible material, the Poisson ratio 𝜈 tends to

0.5 and, correspondingly, the Lamé parameter 𝜆 tends to∞. Due to the 𝜆 independence

of the generic constants in Lemma 3.4, the LSFEM is robust with respect to large 𝜆

[34]. Figure 5.12 confirms this robustness.

Given some right-hand side 𝑓 ∈ 𝐿2(Ω), let ˜︁𝜎𝑓 and ˜︁𝑢 𝑓 solve the model problem with

Neumann boundary data Π0𝑡N replacing 𝑡N and vanishing Dirichlet boundary data

𝑢D ≡ 0. Define the quantities

𝑒1(T , 𝑓 ) ≔ inf

{︁
∥C−1(˜︁𝜎𝑓 − 𝜏RT)∥𝐿2 (Ω) : 𝜏RT ∈ Σ0(T ) with Π0𝑓 + div𝜏RT = 0

}︁
,

𝑒2(T , 𝑓 ) ≔ inf

{︁
|𝜀 (˜︁𝑢 𝑓 − 𝑣C)∥𝐿2 (Ω) : 𝑣C ∈ 𝑈 1(T )

}︁
,

𝑒𝑚 ≔ sup

{︁
𝑒𝑚 (T , 𝑓 ) : 𝑓 ∈ 𝐿2(Ω;R3) with ∥ 𝑓 ∥𝐿2 (Ω) = 1

}︁
for𝑚 = 1, 2.

Employing the analysis from [22], the higher-order convergence of the equilibrium

residual similar to (5.1) can be established in the context of linear elasticity [27, The-
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Figure 5.12: Comparison of the values of the alternative a posteriori error estimator 𝜂ℓ for

various choices of the Poisson ratio 𝜈 in the uniaxial tension benchmark for the

linear elasticity problem from Subsection 5.3.1.

orem 3.3]

∥Π0𝑓 + div𝜎LS∥𝐿2 (Ω) ≤ ˜︁𝐶hoc

(︁
𝑒1(T ) + 𝑒2(T )

)︁
𝐿𝑆 (𝑓 ;𝜎LS, 𝑢LS)1/2.

Undisplayed numerical experiments confirm this higher-order convergence in the case

of uniform and adaptive mesh-refinement.

5.3.2 Cook membrane
Let 𝑓 ≡ 0 ∈ 𝐿2(Ω;R3) on the Cook’s membrane [53]

Ω ≔
{︁
𝑥 ∈ R3 : (𝑥1, 𝑥2) ∈ conv{(0, 0), (48, 44), (48, 60), (0, 44)} and 𝑥3 ∈ [0, 10]

}︁
.

Its boundary 𝜕Ω is split into the Dirichlet part ΓD ≔ {0} × [0, 44] × [0, 10] with
homogeneous boundary data 𝑢D ≡ 0 and the remaining Neumann part ΓN ≔ 𝜕Ω \ ΓD
with constant vertical shear load on the right-hand side 𝑥1 = 48

𝑡N(𝑥) ≔
{︄
(0, 0, 1)⊤ if 𝑥 ∈ {48} × [44, 60] × [0, 10],
0 else.

Six uniform refinements of the initial mesh are carried out before the adaptive al-

gorithm.

The convergence history plot in Figure 5.14 exhibits suboptimal behaviour of the

estimators for the whole computation from 300 to 10
6
degrees of freedom. The value of
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Figure 5.13: Deformation plot of the Cook membrane from Subsection 5.3.2 composed of

74 474 simplices (ℓ = 21). The deformation is scaled by the factor 𝛼 = 10. The

colour indicates the piecewise constant approximation of the von Mises stress

| dev𝜎ℓ |.

the alternative estimator 𝜂ℓ increases until 10
5
degrees of freedom and, subsequently,

improves up to a rate of convergence of about 0.2 on the finest level of the computa-

tion. Due to the exact approximation of the piecewise constant boundary conditions,

the discrete spaces Σ𝑘 (T ) and 𝑈 𝑘+1(T ) are nested. Accordingly, the least-squares
functional decreases monotonically. The convergence rate of about 0.25 from about

2 × 10
5
degrees of freedom remains suboptimal. Undisplayed numerical experiments

with the bulk parameters 𝜃 = 0.1, 0.05, 0.01 lead to the same rate for the alternative

and the built-in estimator.

This pre-asymptotic behaviour indicates an insufficient resolution of the boundary

singularity. Figure 5.13 presents the triangulation and the deformation at the beginning

of the reduction of the estimator at about 4 × 10
5
degrees of freedom (marked by a red

circle in Figure 5.14). It reveals a slightly increased refinement along the interface ΓI
between ΓD and ΓN. However, most of the (boundary) simplices are of equal size. On

the finest level of the computation, the triangulation remains to coarse to optimally

resolve the singularity.
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Figure 5.14: Convergence history plot for the Cook membrane benchmark of the linear elasti-

city problem from Subsection 5.3.2. The red circle marks the computation on the

triangulation from Figure 5.13.
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6 Conclusion and outlook
This thesis established the convergence of an adaptive LSFEM for three model problems

with optimal rates. Therefore, an alternative a posteriori error estimator has been

presented and employed in an adaptive refinement algorithm with a separate marking

strategy. The proof adheres to the axiomatic framework from [37, 40] and employs

techniques for the analysis of inhomogeneous Dirichlet boundary conditions in 3D

from [4]. Recent results on quasi-interpolation operators preserving partial homogen-

eous boundary conditions [93, 77] and a discrete regular decomposition for arbitrary

polynomial degree [70] laid the foundations for a local and stable quasi-interpolation

operator QNed for Nédélec functions in Theorem 2.14. Following [106], this operator

may enable the proof of optimal convergence rates of adaptive algorithms for Nédélec

finite element discretisations with mixed boundary conditions.

The reliability and the efficiency of the alternative estimator 𝜂 from Corollary 4.4

and Theorem 3.18 provide optimal rate approximation in terms of the least-squares

functional reading

sup

ℓ∈N

(︁
|Tℓ | − |T0 | + 1

)︁𝑠 (︁
𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ) + osc

2(D𝑢D, Fℓ (ΓD)) + osc
2(𝑡N, Fℓ (ΓN))

)︁
1/2

≤ 𝐶opt2 sup

𝑁∈N
(𝑁 + 1)𝑠 min

T∈T(𝑁 )
min

(𝜏LS,𝑣LS)∈Σ𝑘 (T )×𝑈 𝑘+1 (T )(︁
𝐿𝑆 (𝑓 ;𝜏LS, 𝑣LS) + osc

2(D𝑢D, F (ΓD)) + osc
2(𝑡N, F (ΓN))

)︁
1/2
.

Additionally, the a posteriori estimates for the least-squares functional from The-

orem 3.16 lead to the analogous result in terms of the errors in

sup

ℓ∈N

(︁
|Tℓ | − |T0 | + 1

)︁𝑠 (︁∥𝜎 − 𝜎ℓ ∥2𝐿2 (Ω) + ∥S D(𝑢 − 𝑢ℓ)∥2𝐿2 (Ω) + osc
2(D𝑢D, Fℓ (ΓD))

+ osc
2(𝑡N, Fℓ (ΓN))

)︁
1/2

≤ 𝐶opt3 sup

𝑁∈N
(𝑁 + 1)𝑠 min

T∈T(𝑁 )
min

(𝜏RT,𝑣C)∈Σ𝑘 (T )×𝑈 𝑘+1 (T )(︁
∥𝜎 − 𝜏RT∥2𝐿2 (Ω) + ∥S D(𝑢 − 𝑣C)∥2𝐿2 (Ω) + osc

2(D𝑢D, F (ΓD)) + osc
2(𝑡N, F (ΓN))

)︁
1/2
.

Several numerical experiments confirm the optimal convergence rates in terms of the

alternative a posteriori error estimator, of the least-squares functional, and the errors.

A benchmark with known exact solution validates the implementation and underlines

the equivalence of the error estimators and the exact errors. For the benchmarks where

the uniform refinement converges suboptimally, the adaptive algorithm leads to the

101



optimal rate of convergence. Two benchmarks suffered from a large pre-asymptotic

regime.

Further research on the convergence analysis with rates may consider adaptive

algorithms based on any of the numerous least-squares formulations including, but

not restricted to, the examples given in Section 3.2. Beyond that, some least-squares

approaches impose the boundary conditions in a weak sense [21] or minimise the

least-squares functional under side conditions, for instance, to enforce local mass con-

servation [50]. Likewise, the convergence of adaptive LSFEMs for nonlinear problems

such as in [97] is an open question. Fairly general assumptions on the operators A
and S in the model problem (3.3) in Section 3.1 allow for a well-posed least-squares

formulation even in the nonlinear case. Although, the convergence analysis in the

remaining parts of the thesis essentially relied on the linearity of A and S, this may

provide a starting point for further research on nonlinear LSFEMs.

The novel discontinuous Petrov-Galerkin (dPG) method [55, 56, 108, 57, 36] has

been described as a weighted least-squares method [35, 68, 103, 102]. This connection

has been exploited to establish optimal convergence rates for the lowest-order dPG

method applied to the 2D Poisson model problem [68]. The techniques presented in

this thesis may provide additional tools to treat higher polynomial degrees in three

spatial dimensions as well.

In spite of the presence of a built-in error estimator, the least-squares methods as

well as the dPG methods require an adaptive mesh-refinement by some alternative

estimator in the proof of optimal convergence rates. A further development of the

axiomatic framework to apply for estimators without any prefactors in terms of the

mesh-size may be a challenging but rewarding goal for future research.
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A The octAFEM3D software
package

The Matlab/Octave software package octAFEM3D is based on the unpublished in-

house software package AFEM [43]. However, it is completely rewritten to improve

the performance of the code and to enable a straightforward generalisation to model

problems of the form (3.3). In particular, the adaptive mesh-refinement in three dimen-

sions suffered from an inefficient implementation and is replaced by object-oriented

approach.

Except for the two classes Node.m and Simplex.m based on the code from [104], the

software is provided under the terms of the GNU General Public License as published

by the Free Software Foundation, either version 3 or (at your option) any later version.

Figure A.2 at the end of this chapter lists all included files of the software package.

A.1 Purpose
The software package allows for the solution of the three partial differential equations

given by the model problems in three spatial dimensions

• Poisson model problem,

• Stokes equations,

• linear elasticity problem.

The problems are solved using the lowest-order least-squares finite element method

(LSFEM) with adaptive mesh-refinement employing a collective marking strategy

(Case A in ALSFEM algorithm on page 4).

The adaptive mesh-refinement is realised by an object-oriented implementation

of the triangulation of tagged simplices and the three-dimensional NVB following

[104]. The approximation of Dirichlet boundary data employs the Scott-Zhang quasi-

interpolation operator from Section 3.3 and the 𝐿2 orthogonal projection from Sec-

tion 3.4 for the Neumann data. The solution of the symmetric and positive definite

system matrix utilises Matlab’s highly optimised mldivide function (backslash oper-

ator).

The software package is developed and tested for Matlab version 9.6.0.1072779

(R2019a). The included functions generating plots of discrete solutions utilise Mat-

lab’s PDE toolbox. Every other component, most notably the LSFEM solver and the
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alternative a posteriori error estimation, are compatible to Octave version 5.1.0 as well.

The usage of Matlab’s parallelisation toolbox may provide significant improvements

of the performance. The parfor loop is utilised for costly integrations on each of the

large number of tetrahedrons or faces of the triangulation or for the transformation of

the basis functions from the reference domain to all simplices of the triangulation.

A.2 Usage
First of all, initialise the software package with the command

poolobj = initAFEM3D(nWorkers)

The script adds the current folder to the path recursively and enables logging to a new

file in the folder ./logs. The argument nWorkers is optional and starts the parallel

computing toolbox with the specified number of workers if called in Matlab. The

parallel pool object is returned for later usage. Octave does not support automatic par-

allel computing yet. After the initialisation, numerical experiments can be conducted

in three steps.

Step 1. Load one of the benchmark problems from the folder ./benchmarks.

B = Poisson_Brick ()

The benchmark problem can be adjusted by directly modifying the fields of B.

B.theta = 0.7

B.minNdof = 1e5

Section A.3 below presents all available fields.

Step 2. The adaptive algorithm is started by

S = AFEMRunLS(B, 'my_experiment ')

Several information is printed during runtime. The structure array S contains the

initial information from the benchmark B and the output for each level of the adaptive

computation such as the coefficients of the discrete solutions and error and estimator

values. Section A.4 below presents a complete overview of the included data. The

structure array S is automatically saved as a .mat-file in a subfolder in ./results. The

name of the subfolder consists of the model problem and the name of the benchmark

problem. The file name depends on the choice of adaptive or uniform refinement, the

break condition by B.minNdof, and the identifier ’my_experiment’ specified above.

Step 3. The results of the experiment can be displayed using the command

AFEMPlot(S, './ results ')

This generates a figure containing a convergence history plot and an additional plot

for runtime in seconds and conditional number of the system matrix. The plot allows

for a quick check of the adaptive computation. If called from Matlab, a triangulation
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and a solution plot is created as well. This makes use of Matlab’s PDE toolbox. The

generated plot is saved automatically to the folder specified by the second argument.

Additionally, the command

AFEMData(S, './ results ')

produces a text file containing a tabulator-separated list of the computed estimator

and error values as well as other information such as the runtime and an estimated

conditional number of the linear system.

For more information of the usage of each function, use the help function for the

main routine

help AFEMRunLS

or other included functions.

A.3 Benchmark problems
The benchmark problems can be created using the command

B = BENCHMARK ()

where BENCHMARK is one of the following functions

• LinearElasticity_CookMembrane

• LinearElasticity_UniaxialTension

• Poisson_Brick

• Poisson_FicheraCube

• Stokes_BackwardFacingStep

• Stokes_HagenPouisseuille

The structure array B contains the following fields

• problem (string) – name of the model problem

• name (string) – name of the benchmark

• minNdof (int) – minimal number of degrees of freedom as break condition

• theta (float) – bulk parameter for the Dörfler marking

• refinementIndicator (string) – one of the strings ’eta’, ’etaRes’, ’LS’ spe-

cifying the refinement indicator
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• computeCondition (boolean) – determines whether to estimate the conditional

number of the linear system of equations

• c4n (array) – coordinates of the nodes of the initial triangulation

• n4e (array) – numbers of the nodes of each simplex of the initial triangulation

• tag4e (array) – refinement tag of each simplex of the initial triangulation

• onDirichlet, onNeumann (function handles) – provide boolean values for a list

of nodes whether the node belongs to the Dirichlet or Neumann boundary

• normal (function handle) – provides the normal vector for arguments x on the

boundary of the domain

• lambda, mu (float) – Lamé parameter determining the material in the case of

the linear elasticity problem

• f (function handle) – right-hand side 𝑓

• degreeF (integer) – degree specifying the accuracy for the quadrature of the

right-hand side 𝑓

• u4Db (function handle) – Dirichlet boundary data 𝑢D

• degreeU (integer) – degree specifying the accuracy for the quadrature of the

Dirichlet boundary data 𝑢D

• t4Nb (function handle) – Neumann boundary data 𝑡N

• degreeT (integer) – degree specifying the accuracy for the quadrature of the

Neumann boundary data 𝑡N

• exactKnown (boolean) – specifies whether an exact solution to this problem is

known

• sigmaExact, uExact, gradUExact (function handles) – exact solution and its

derivatives (optional)

The benchmarks include the initial triangulation for the following six domains. The

information can be created using the command

[c4n , n4e , tag4e , onDirichlet , onNeumann , normal] = DOMAIN ()

where DOMAIN is one of the following functions

• Brick

• BackwardFacingStep
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(a) Triangulation with global node numbers (b) Triangulation with local node numbers

Figure A.1: Initial triangulation of the unit cube into six simplices of equal volume.

• CookMembrane

• Cube

• CubeNb

• FicheraCube

The data structure c4n contains an array where each line represents a node of the

triangulation. Each row of n4e contains a list of four node numbers forming a simplex

of the triangulation. The argument tag4e is used for the initialisation of the tags

of a tagged simplex in the sense of Section 2.4. For the initial triangulation, this

usually contains a list of zeros. The function handles onDirichlet and onNeumann

return boolean values determining whether a given node belongs to the respective

part of the boundary, for instance,

isOnDirichletBoundary = onDirichlet ([0 0 0])

Figure A.1 and Table A.3 present the initial triangulation of the unit cube with the

data structures c4n and n4e. Any other initial triangulation in this software package is

composed of triangulations of cubes with the same triangulation (up to rotations).

A.4 Main routine AFEMRunLS

The structure array S contains the initial information from B and the following addi-

tional fields.

• method (string) – contains the string LS specifying the employed solver
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c4n

0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1

n4e

1 2 4 8

1 3 4 8

1 2 6 8

1 5 6 8

1 3 7 8

1 5 7 8

Table A.1: Data structure for initial triangulation of the unit cube.

• identifier (string) – the identifier from the second argument to the function

• level (cell array) – list of structure arrays containing the following informa-

tion for each level of the computation

– c4n (array) – coordinates of the nodes

– n4e (array) – numbers of the nodes of each simplex

– tag4e (array) – refinement tag of each simplex

– ndof (integer) – number of degrees of freedom

– condition (float) – estimated conditional number of the linear system

of equations

– refinementTime (float) – elapsed time for the refinement routine (in

seconds)

– setupTime (float) – elapsed time for the computation and assembling of

the stiffness matrix (in seconds)

– solutionTime (float) – elapsed time for the solution of the linear system

of equations (in seconds)

– estimatorTime (float) – elapsed time for the computation of the altern-

ative error estimator 𝜂ℓ (in seconds)

– u (array) – coefficients of the solution 𝑢ℓ

– sigma (array) – coefficients of the solution 𝜎ℓ

– eta (float) – value of the alternative error estimator 𝜂ℓ
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– etaVol (float) – volume contribution

𝜂vol,ℓ ≔

(︃ ∑︁
𝑇∈Tℓ

|𝑇 |2/3
(︁
∥ div(S∗(A𝜎ℓ − S D𝑢ℓ))∥2𝐿2 (𝑇 )

+ ∥ curl(A∗(A𝜎ℓ − S D𝑢ℓ))∥2𝐿2 (𝑇 )
)︁ )︃1/2

to the alternative error estimator 𝜂ℓ

– etaJump (float) – jump contribution

𝜂jump,ℓ ≔

(︃ ∑︁
𝑇∈Tℓ

|𝑇 |1/3
(︂ ∑︁
𝐹∈Fℓ (𝑇 )\Fℓ (ΓD)

∥ [S∗(A𝜎ℓ − S D𝑢ℓ)]𝐹 𝜈𝐹 ∥2𝐿2 (𝐹 )

+
∑︁

𝐹∈Fℓ (𝑇 )\Fℓ (ΓN)
∥𝜈𝐹 × [A∗(A𝜎ℓ − S D𝑢ℓ)]𝐹 ∥2𝐿2 (𝐹 )

)︂)︃1/2
to the alternative error estimator 𝜂ℓ

– oscDb (float) – value of the Dirichlet data oscillations osc(D𝑢D, F (ΓD))
– oscNb (float) – value of the Neumann data oscillations osc(𝑡N, F (ΓN))
– res (float) – square root of the value of the least-squares functional

𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ)1/2

– resDiv (float) – contribution ∥ 𝑓 + div𝜎ℓ ∥𝐿2 (Ω) to the least-squares func-

tional 𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ)1/2

– resL2, resDev, resMat (float) – contribution ∥A𝜎ℓ − S D𝑢ℓ ∥𝐿2 (Ω) to the

least-squares functional 𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ)1/2 for one of the three model problems

– errSigma (float) – exact error contribution ∥𝜎 − 𝜎ℓ ∥𝐻 (div,Ω) (if available)

– errU (float) – exact error contribution ∥𝑢 − 𝑢ℓ ∥𝐻 1 (Ω) (if available)

A.5 Triangulation and MeshData classes
The object-oriented representation of triangulations is realised by two main classes.

The Triangulation class implements the set of Simplex and Node objects from [104].

Given a list of coordinates c4n and a list of node numbers n4e specifying the simplices

of a triangulation, a new object can be created using

T = Triangulation(c4n , n4e , tag4e)

The argument tag4e is used for the initialisation of the tags of a tagged simplex in the

sense of Section 2.4 and usually contains a list of zeros. Any initial triangulation must

be reflected in the sense of [104] meaning that, if a node 𝑧 has the local node number
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𝑘 ∈ {1, . . . , 4} in some simplex, 𝑧 has the same local number 𝑘 in every other simplex

containing 𝑧. The domains from Section A.3 take care of this requirement.

For a refinement step with closure execute

T.refine(marked)

The optional argument marked contains a list of numbers of simplices to refine as given

by the Dörfler marking with the function call

marked = markBulk(eta4e , theta)

If the argument marked is omitted in T.refine(), one step of uniform refinement is

carried out. In order to obtain the geometric information, execute

c4n = T.c4n

n4e = T.n4e

tag4e = T.tag4e

Due to the complicated graph structure of the simplices, the Triangulation objects

include an explicit destructor function

T.delete ()

These data structures and the function handles from the domain functions in Sec-

tion A.3 allow for the generation of a MeshData object

M = MeshData(c4n , n4e , onDirichlet , onNeumann)

This object provides any kind of geometric information required in this software

package such as M.n4f or M.NbFaces. For a complete overview of all available data

structures, use Matlab’s doc function

doc MeshData

or refer to the documented list of properties within the MeshData class.

A.6 Quadrature
The function Quadrature provides Gauss points and weights for the numerical quad-

rature on the 1D, 2D, or 3D reference simplex

[GaussPoints , weights] = Quadrature(dim , degree)

The argument dim specifies the dimension of the reference simplex and degree determ-

ines that the computed quadrature rule is exact up this partial polynomial degree.

The function includes the local function computeGaussLegendre from the AFEM

package [43] for the computation of Gauss points on the unit interval. The main

function computes the tensor product and transforms the resulting Gauss points from

the unit cube to the reference simplex.
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The function integrate allows for an easy-to-use wrapper for the integration of

norms. It computes the sum over every component for vector- or matrix-valued

functions and the output is always a vector of the length of the number |T | of simplices

or the number |F | of faces. The following example shows an example usage to compute

the 𝐿2 norm of the scalar-valued discrete 𝑢C ∈ 𝑆1(T ) given by the coefficients u on a

triangulation T given by the MeshData object M.

[GP, W] = Quadrature (3, 2)

valU4e = S1Element.evaluate(M, u, GP)

int4e = integrate(valU4e .^2, W, M.vol4e)

normU = sqrt(sum(int4e))

In order to compute an approximation of the 𝐿2 norm of 𝑢 ∈ 𝐿2(Ω) given by a function

handle uExact, proceed as follows.

degreeU = 5

[GP, W] = Quadrature (3, degreeU)

valUExact4e = M.evaluateFunction(uExact , GP)

int4e = integrate(valUExact4e .^2, W, M.vol4e)

normU = sqrt(sum(int4e))

A.7 Finite element classes
The following three static classes P0FaceElement, RT0Element, and S1Element form the

core of this implementation. They provide the following functions for the evaluation

of the corresponding finite element basis functions or discrete functions given by the

associated coefficients.

val4e = RT0Element.evaluateBasis(M, xref , nComp)

div4e = RT0Element.evaluateBasisDivergences(M, xref , nComp)

grads4e = RT0Element.evaluateBasisGradients(M, xref)

valSigma4e = RT0Element.evaluate(M, sigma , xref)

divSigma4e = RT0Element.evaluateDivergence(M, sigma , xref)

gradSigma4e = RT0Element.evaluateGradient(M, sigma , xref)

jumpSigma4f = ...

RT0Element.evaluateJump(M, sigma , GP4ePlus , GP4eMinus)

val4e = S1Element.evaluateBasis(xref , nComp , nElem)

grads4e = S1Element.evaluateBasisGradients(M, xref , nComp)

valU4e = S1Element.evaluate(M, u, xref)

gradU4e = S1Element.evaluateGradient(M, u, xref)

jumpGradU4f = ...

S1Element.evaluateGradientJump(M, u, GP4ePlus , GP4eMinus)
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Dimension Size Meaning

1 nComp components of the function (3 for 𝑅𝑇0(T ;R3×3))
2 1 or 3 components of the basis function (3 for 𝑅𝑇0)

3 nBasis basis functions of the element (4 for 𝑅𝑇0)

4 nElem/nFaces number of simplex or face

5 nXref given points on the reference simplex

for evaluation

Table A.2: Meaning of the dimensions of five-dimensional arrays returned by the point evalu-

ations of the finite element classes in Section A.7.

The arguments read

• M (MeshData) – object providing geometric information

• xref (array) – list of points on the reference simplex, where the corresponding

discrete function should be evaluated

• nComp (integer) – number of components of the discrete functions

• GP4ePlus, GP4eMinus (arrays) – Gauss points on the each face transformed to

the corresponding point on the reference simplex for evaluation of the jumps;

provided by the function [GP4ePlus, GP4eMinus] = M.GaussPoints4jumps(GP2D)

Given some point on the reference simplex, these functions provide a data structure

that contains the evaluation of this point transformed to each of the simplices or faces

of the triangulation. The returned values are five-dimensional arrays where each

dimension has a specific meaning as displayed in Table A.2.

The class P0FaceElement provides the Π0 projection from Section 3.4 on a given set

of faces.

f0 = P0FaceElement.projection(M, fun , degree , faces)

This returns an array f0 of the piecewise integral means of each component of the

function. The arguments read

• M (MeshData) – object providing the geometric information

• fun (function handle) – function to project

• degree (integer) – determining the exactness of the employed quadrature rule

• faces (array) – numbers of the faces on which the function should be approx-

imated, e.g., M.NbFaces

The same arguments allow for the computation of face oscillations from 2.20.
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[osc , osc4f] = ...

P0FaceElement.oscillation(M, fun , degree , faces)

The output variable osc4f contains the corresponding squared contribution on each

of the faces.

The class S1Element also realises the computation of the Scott-Zhang quasi-interpo-

lation operator for the approximation of the Dirichlet boundary data from Section 3.3.

u = S1Element.ScottZhang(M, fun , degree , interpNodes)

This provides an array u containing the coefficients of the 𝑆1 function for each com-

ponent. The arguments read

• M (MeshData) – object providing the geometric information

• fun (function handle) – function to interpolate

• degree (integer) – determining the exactness of the employed quadrature rule

• interpNodes (array) – numbers of the nodes in which the function should be

interpolated, e.g., M.DbNodes

In order to compute the 𝐻 1
error of a Courant function 𝑢C ∈ 𝑆1(T ;R𝑚) given by

its coefficients u and a function 𝑢 ∈ 𝐻 1(Ω;R𝑚) given by the function handle uExact,

utilise

[errL2 , errL24e , errGrad , errGrad4e , errtime] = ...

S1Element.error(M, u, uExact , gradUExact , degreeU)

The integer𝑚 refers to the number of components nComp in Table A.2. The variable

errtime contains the elapsed time in seconds.

An analog function allows for the computation of the 𝐻 (div) error of a Raviart-
Thomas function 𝜎RT ∈ 𝑅𝑇0(T ;R𝑚×3) given by its coefficients sigma and a function

𝜎 ∈ 𝐻 (div,Ω;R𝑚×3) given by the function handle sigmaExact.

[errL2 , errL24e , errDiv , errDiv4e , errtime] = ...

RT0Element.error(M, sigma , sigmaExact , divSigmaExact , ...

degreeSigma)

A.8 ALSFEM functions
The solution of the LSFEM for the respective model problem is computed by the

functions
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[sigma , u, res4e , ndof , resDiv , resMat , condition , ...

setupTime , solutionTime] = solveLinearElasticityLS(B, M)

[sigma , u, res4e , ndof , resDiv , resL2 , condition , ...

setupTime , solutionTime] = solvePoissonLS(B, M)

[sigma , u, res4e , ndof , resDiv , resDev , condition , ...

setupTime , solutionTime] = solveStokesLS(B, M)

The arguments read

• B (structure array) – contains the benchmark information from Section A.3

• M (MeshData) – object providing the geometric information from Section A.5

The output consists of

• sigma (array) – coefficients of the solution 𝜎ℓ

• u (array) – coefficients of the solution 𝑢ℓ

• res4e (array) – contribution ∥ 𝑓 + div𝜎ℓ ∥2𝐿2 (𝑇 ) + ∥A𝜎ℓ − S D𝑢ℓ ∥2𝐿2 (𝑇 ) to the

least-squares functional 𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ) on each simplex 𝑇

• ndof (integer) – number of degrees of freedom

• resDiv (float) – contribution ∥ 𝑓 + div𝜎ℓ ∥𝐿2 (Ω) to the least-squares functional

𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ)1/2

• resMat / resL2 / resDev (float) – contribution ∥A𝜎ℓ − S D𝑢ℓ ∥𝐿2 (Ω) to the

least-squares functional 𝐿𝑆 (𝑓 ;𝜎ℓ , 𝑢ℓ)1/2 for one of the three model problems

• condition (float) – estimated conditional number of the linear system of

equations

• setupTime (float) – elapsed time for the computation and assembling of the

stiffness matrix (in seconds)

• solutionTime (float) – elapsed time for the solution of the linear system of

equations (in seconds)

For the evaluation of the element-wise contributions to the alternative a posteriori

error estimator utilise the functions
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[eta , eta4e , estimatorTime , etaVol , etaJump , oscDb , oscNb , ...

etaVol4e , etaJump4e , oscDb4e , oscNb4e] = ...

estimateLinearElasticityLS(B, M, sigma , u)

[eta , eta4e , estimatorTime , etaVol , etaJump , oscDb , oscNb , ...

etaVol4e , etaJump4e , oscDb4e , oscNb4e] = ...

estimatePoissonLS(B, M, sigma , u)

[eta , eta4e , estimatorTime , etaVol , etaJump , oscDb , ...

etaVol4e , etaJump4e , oscDb4e] = ...

estimateStokesLS(B, M, sigma , u)

The additional arguments are the coefficients sigma and u from the solve functions

above. The output variables read

• eta (float) – value of the alternative error estimator 𝜂ℓ

• eta4e (array) – contribution 𝜂2ℓ (𝑇 ) to the alternative error estimator 𝜂ℓ on each

simplex 𝑇

• estimatorTime (float) – elapsed time for the computation of the alternative

error estimator 𝜂ℓ (in seconds)

• etaVol (float) – volume contribution 𝜂vol,ℓ to the alternative error estimator 𝜂ℓ

• etaJump (float) – jump contribution 𝜂jump,ℓ to the alternative error estimator

𝜂ℓ

• oscDb (float) – value of the Dirichlet data oscillations osc(D𝑢D, F (ΓD))

• oscNb (float) – value of the Neumann data oscillations osc(𝑡N, F (ΓN))

• etaVol4e (array) – contribution 𝜂2
vol,ℓ

(𝑇 ) to the volume terms 𝜂vol,ℓ on each

simplex 𝑇

• etaJump4e (array) – contribution 𝜂2
jump,ℓ

(𝑇 ) to the jump terms 𝜂jump,ℓ on each

simplex 𝑇

• oscDb4e (array) – contribution |𝑇 |1/3∥(1 − Π0) D𝑢D∥𝐿2 (𝜕𝑇∩ΓD) to the Dirichlet

data oscillations osc(D𝑢D, F (ΓD))

• oscNb4e (array) – contribution |𝑇 |1/3∥(1−Π0)𝑡N∥𝐿2 (𝜕𝑇∩ΓN) to the Neumann data

oscillations osc(𝑡N, F (ΓN))
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A.9 Plot functions
Several functions are included to display the computed results

• plotConvergence(ndof4lvl, error4lvl, name) – plots the errors of successive

computations with respect to the numbers of degrees of freedom (ndof) in a

double logarithmic scale; the optional name will be displayed in a legend

• plotSurface(c4n, n4fBdr) – draws a triangulation of the surface of a three-

dimensional domain

• plotDeformedDomain(c4n, n4fBdr, u4n, scaling) – plots a deformed domain

for the displacement u4n in the nodes; the displacement is scaledwith the optional

multiplicative factor scaling

The following functions are solely available in Matlab

• coneP1(c4n, u) – draws an 𝑆1 vector field using cones

• plotTriangulation(c4n, n4e) – plots the simplices of a triangulation

• quiverP1(c4n, u) – draws an 𝑆1 vector field using arrows in the nodes of the

triangulation

• scatterP1(c4n, u) – draws the values of an 𝑆1 function in the nodes of the

triangulation

• sliceP1(c4n, u) – draws the values of an 𝑆1 function along slices through the

domain

• streamsliceP1(c4n, u) – draws streamlines of an 𝑆1 vector field along slices

through the domain

The corresponding arguments read

• ndof4lvl (array) – number of degrees of freedom for each level of the adaptive

computation

• error4lvl (array) – error value for each level of the adaptive computation

• name (string) – legend entry

• c4n (array) – coordinates of the nodes

• n4fBdr (array) – numbers of the nodes forming the boundary faces

• u4n (array) – displacement in each node

• scaling (float) – scaling factor for the displacement

• n4e (array) – numbers of the nodes of each simplex

• u (array) – coefficients of the solution 𝑢ℓ
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octafem3D

benchmarks

LinearElasticity_CookMembrane.m

LinearElasticity_UniaxialTension.m

Poisson_Brick.m

Poisson_FicheraCube.m

Stokes_BackwardFacingStep.m

Stokes_HagenPoisseuille.m

common

crossproduct.m

deviatoric.m

isOctave.m

linearMaterialInverse.m

linearMaterial.m

markBulk.m

near.m

nearorgreater.m

nearorless.m

scalarprod.m

strictlygreater.m

strictlyless.m

symmetric.m

vmvprod.m

domains

BackwardFacingStep.m

Brick.m

CookMembrane.m

Cube.m

CubeNb.m

FicheraCube.m

elements

P0FaceElement.m

RT0Element.m

S1Element.m

estimate

estimateLinearElasticityLS.m

estimatePoissonLS.m

estimateStokesLS.m

integrate

integrate.m

Quadrature.m

plot

coneP1.m

plotConvergence.m

plotDeformedDomain.m

plotSurface.m

plotTriangulation.m

quiverP1.m

scatterP1.m

sliceP1.m

streamsliceP1.m

solve

solveLinearElasticityLS.m

solvePoissonLS.m

solveStokesLS.m

triangulation

MeshData.m

Node.m

Simplex.m

Triangulation.m

AFEMData.m

AFEMPlot.m

AFEMRunLS.m

initAFEM3D.m

LICENSE.md

README.md

Figure A.2: List of files included in the octAFEM3D software package. The functions written in

blue are taken from the software package AFEM [43]. The functions written in

red are taken from [104].
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