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Abstract

For the numerical solution of partial differential equations (PDEs) in computational
fluid dynamics, solid mechanics, and various other areas of application, the least-
squares finite element methods (LSFEMs) enjoy an unabated popularity. These methods
base on the minimisation of the least-squares functional consisting of the squared
norms of the residuals of first-order systems of PDEs. The local evaluation of the
least-squares functional provides a reliable and efficient built-in a posteriori error
estimator and allows for adaptive mesh-refinement.

While numerical experiments exhibit optimal convergence rates, even the proof of
the plain convergence of these adaptive algorithms is not immediate. The established
convergence analysis, as summarised in the axiomatic framework by Carstensen,
Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6):1195-1253, 2014), fails for two
reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size,
what seemingly prevents a reduction under adaptive mesh-refinement. Second, the
first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm
and, thus, involve a data resolution error of the right-hand side f without a mesh-size
factor. These difficulties led to a two-fold paradigm shift in the convergence analysis
with rates for adaptive LSFEMs in Carstensen and Park (SIAM 7. Numer. Anal., 53(1):43-
62, 2015) for the lowest-order discretisation of the 2D Poisson model problem with
homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-
based a posteriori error estimator accomplishes the reduction property. Furthermore,
a separate marking strategy in the adaptive algorithm ensures the sufficient data
resolution.

This thesis presents the generalisation of these techniques to three linear model
problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity
problem. It verifies the axioms of adaptivity with separate marking by Carstensen and
Rabus (SIAM J. Numer. Anal., 55(6):2644-2665, 2017) in three spatial dimensions. The
analysis covers discretisations with arbitrary polynomial degree and inhomogeneous
Dirichlet and Neumann boundary conditions. Numerical experiments confirm the
theoretically proven optimal convergence rates of the h-adaptive algorithm.
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Zusammenfassung

Die Popularitat der Least-Squares-Finiten-Elemente-Methoden (LSFEMn) zur numeri-
schen Losung von partiellen Differentialgleichungen in der Stromungs- und Festkor-
permechanik und anderen Anwendungsgebieten ist ungebrochen. Diese Methoden
basieren auf der Minimierung des Least-Squares-Funktionals, das aus den quadrierten
Normen der Residuen eines Systems von partiellen Differentialgleichungen erster
Ordnung besteht. Die lokale Auswertung des Least-Squares-Funktionals liefert einen
zuverlassigen und effizienten Fehlerschatzer und ermoglicht die adaptive Verfeinerung
des der Diskretisierung zugrundeliegenden Netzes.

Obwohl numerische Experimente fiir solche adaptiven Algorithmen optimale Kon-
vergenzraten zeigen, ist bereits der theoretische Nachweis der einfachen Konvergenz
nicht offensichtlich. Aus zwei Griinden versagen zudem die géngigen Methoden zum
Beweis optimaler Konvergenzraten, wie sie von Carstensen, Feischl, Page und Prae-
torius (Comp. Math. Appl., 67(6):1195-1253, 2014) axiomatisch beschrieben wurden.
Zum einen fehlen den Termen des eingebauten Least-Squares-Schétzers Vorfaktoren
proportional zur Netzweite. Das scheint den Beweis einer schrittweisen Reduktion der
Schitzerterme zu verhindern. Zum zweiten kontrolliert das Least-Squares-Funktional
den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wo-
durch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkei-
ten fithrten zu einem zweifachen Paradigmenwechsel in der Analysis von Konvergenz-
raten adaptiver LSFEMn in Carstensen und Park (SIAM 7. Numer. Anal., 53(1):43-62,
2015) fur das zweidimensionale Poisson-Modellproblem mit Diskretisierung niedrigs-
ter Ordnung und homogenen Dirichlet-Randdaten. Demnach erlaubt ein expliziter
residuenbasierter a posteriori Fehlerschiatzer den Beweis der Reduktionseigenschaft.
Auflerdem wird der Datenapproximationsfehler durch separiertes Markieren im adap-
tiven Algorithmus reduziert.

Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modell-
probleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitéts-
problem. Die Axiome der Adaptivitdt mit separiertem Markieren nach Carstensen und
Rabus (SIAM J. Numer. Anal., 55(6):2644-2665, 2017) werden in drei Raumdimensionen
nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad
sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschlieffend besta-
tigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch
bewiesenen optimalen Konvergenzraten.
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1 Introduction

Motivation. In the previous decades, the finite element method (FEM) has become a
standard tool for the solution of problems in fluid and structural mechanics. Numerical
simulations often form the basis for design processes in various engineering disciplines.
A reliable and efficient a posteriori error estimation allows not only for a justification
of the computed approximation, but also for an adaptive refinement of the underlying
meshes. Adaptive mesh-refinement algorithms have been investigated since the late
1970s and some pioneering contributions include [6, 5, 105, 107]. It took about twenty
years to present the first convergence proofs of adaptive FEMs [59, 84]. Eventually,
the theory of nonlinear approximation paved the way to the verification of optimal
convergence rates for adaptive algorithms [14, 100]. Suitable explicit residual-based
a posteriori error estimators drive the local refinement and generate quasi-optimal
meshes. This means, the error on the corresponding adaptive meshes differs from the
error on the theoretically optimal meshes solely by a generic multiplicative constant.
Figure 1.1 illustrates the relation between the optimal meshes and the adaptively
computed meshes with respect to a given amount of computational effort (in terms of
the number of degrees of freedom ndof).

Due to its built-in a posteriori error estimator, the least-squares finite element
method (LSFEM) is a convenient choice for adaptive algorithms [12, 97, 1]. This
versatile discretisation method dates back to the early 70’s [21, 20] and, since then,
has been established for a multitude of partial differential equations (PDEs) [17]. A
naive least-squares approach minimises the squared residual of a second-order elliptic
PDE. For the discretisation, this requires H* conforming finite elements. Therefore,
the equation is usually reformulated as a first-order system of PDEs enabling the
application of standard lowest-order finite elements [80, 71, 89]. The built-in estimator
turned out to provide guaranteed upper error bounds and is even asymptotically exact
in that the quotient of the estimator and the error converges to one [47, 103].

This thesis presents a unified convergence analysis with rates for the least-squares
formulation of a generalised model problem including the author’s preceding collabor-
ative publications [26, 25, 27]. All of these publications are based on the breakthrough
in [44]. The analysis at hand employs the axiomatic framework from [37, 40]. It
covers conforming discretisations with arbitrary polynomial degree in an h-adaptive
algorithm and includes inhomogeneous Dirichlet and Neumann boundary conditions
in three spatial dimensions. While the two-dimensional case is not explicitly presen-
ted in this thesis, the publication [25] establishes optimal convergence rates for the
adaptive LSFEM for the 2D Stokes equations. The author conjectures that the results
in this thesis transfer to the remaining two model problems in 2D as well.
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Figure 1.1: Visualisation of the errors of an adaptive algorithm and the optimal meshes. The
optimal meshes provide the minimal error that can be achieved on a mesh with
the given number of degrees of freedom (ndof). Both errors attain the optimal
convergence rate indicated by the straight line.

Problem formulation. This thesis considers a generalised model problem on a
polyhedral Lipschitz domain Q c R? in three spatial dimensions, the boundary 9 is
locally the graph of a Lipschitz function. Some additional regularity assumptions on
the boundary will be discussed below in Section 2.3. The boundary 9 is subdivided
into the compact Dirichlet boundary I, € 9Q with positive surface measure |Ip| > 0
and the relatively open (possibly empty) Neumann boundary Iy := 9Q \ Ip. Let v :
9Q — R? denote the outward unit normal vector. Given a right-hand side f : Q — R?
and the boundary data up : Ip — R® and ty : [y — R?, the generalised model problem
seeks 0 : Q — R¥3 and u : Q — R3 such that

f+dive=0 and Ac-SDu=0 inQ,

u=up onlp and ov=1iy only.

(1.1)

Some appropriate choices of bounded linear operators A, S : R¥3 — R are dis-
played in Table 1 and enable the simultaneous analysis of some first-order formulations
of the Poisson model problem, the Stokes equations, and the linear elasticity prob-
lem. The operators A, S may depend on x € Q as well and Section 3.1 introduces
specific assumptions sufficient for the well-posedness of the resulting least-squares
formulation. To obtain a discrete problem, consider a fixed polynomial degree k € N
and a regular triangulation 7 of Q into closed simplices. The LSFEM minimises the
least-squares functional

LS(f;oou) = |If +divollf, g + IA0 = SDullj,



A S  Problem

id id Poisson model problem
dev id  Pseudostress-velocity formulation of the Stokes equations
C! sym Stress-displacement formulation in linear elasticity

Table 1.1: Various choices for the bounded linear operators in the model problem (1.1). The
deviatoric part dev of a matrix, the inverted linear material law C™!, and the sym-
metric part sym of a matrix are defined in Section 3.2 below in (3.6)—(3.7).

in o and u over 2%(77) and U**!(7"), some H(div, Q) and H'(Q) conforming finite
element function spaces (up to boundary conditions).

Adaptive algorithm. The least-squares functional is a reliable and efficient a pos-
teriori error estimator (up to boundary data oscillations). For the discrete solutions
ors and ugs, the contributions on every simplex T € 7~ of the triangulation read

LS(f;ois,us; T) = || f +div ULSlliz(T) +|[Ac -8 DuLSlliz(T)-
These local values can be computed using the local stiffness matrices and the coeffi-
cients of the discrete functions o1g and urs. Given some bulk parameter 0 < 6 < 1, the
Dorfler marking strategy [59] leads to a subset M C 7 of (almost) minimal cardinality
|IM| with
0 LS(f; oLs, urs) < Z LS(f;ous,us; T).
TeM

Sorting the local values LS(f;o1s, urs; T) allows for the computation of the subset
M* € T of minimal cardinality, but requires suboptimal O (N log N) computational
complexity for the number N = |7| of simplices in the triangulation. An procedure
of linear O(N) complexity from [100, Section 5] provides a subset M C 7 of almost
minimal cardinality with the bound

IM| <2 M.

The adaptive algorithm for the LSFEM for the Poisson model problem in 2D employ-
ing the Dorfler marking for the least-squares functional converges Q-linearly if the bulk
parameter 0 is sufficiently large [45, Theorem 4.1]. This contrasts the established ana-
lysis [37, 40] for optimal convergence rates of adaptive algorithms, where a sufficiently
small bulk parameter is demanded. Indeed, severe difficulties occur in the attempt of
applying this analysis to the built-in least-squares estimator, which lacks prefactors
in terms of the mesh-size. The alternative a posteriori error estimators proposed in
[76, 30] solely control the L? norm of o, but also include a contribution without such
a prefactor. Up to the author’s best knowledge, there is no way to circumvent the
reduction of the mesh-size in the proof of the reduction of the estimator. Therefore,



this thesis introduces a novel reliable and efficient residual-based a posteriori error
estimator (7, ») : 7 — [0, ) in Section 3.6. This alternative error estimator suffers
the disadvantage that it requires an exact solution of the resulting linear system of the
LSFEM.

The Dorfler marking provides a subset M C 7 of almost minimal cardinality with,

for n2 (T, M) = Srem n? (T, T) and n*(T) = n*(T, T,
On*(T) < n* (T, M).

The newest-vertex bisection (NVB) from [81, 104, 101] prevails in rate-optimal adaptive
algorithms [14, 100, 37, 40]. It generates the smallest regular refinement T of T such
that the simplices in M C 7\ 7 are refined. For a detailed presentation of this
refinement strategy, the reader is referred to Section 2.4 below.

For any discrete solution oys and urg, the least-squares functional LS(f; ors, urs)
explicitly includes the squared data approximation error

JA(T) = (1 =TI f I ) < LS(f: 015, 1015)- (1.2)

For the data approximation of the right-hand side f, several strategies are available.
In [100, Section 6], a separate routine RHS provides an additional refinement loop
ensuring the sufficient resolution of the data f. When the error of the approximation
of the variable o is measured in the L? norm (instead of the full H(div) norm), a
separate Dorfler marking for oscillations of f leads to optimal convergence rates for
the adaptive mixed finite element method [11]. With respect to this weaker norm, an
adaptive LSFEM employing collective marking for an alternative residual-based error
estimator even converges with the optimal rate [41].

This thesis employs the separate marking strategy from [46, 90, 40] to reduce the data
approximation error y(7°). The resulting adaptive algorithm with separate marking
for the least-squares finite element method (ALSFEM) reads as follows.

Input: Initial regular triangulation 7; of the polyhedral domain Q into closed tetra-
hedra with some initial condition (cf. Section 2.4) and parameters 0 < 0 < 1,0 < p < 1,
and 0 < k < oo.

for anylevel=0,1,2,... do
Solve LSFEM with respect to regular triangulation 7; for the solution (ay, u,).
Compute n(7;,T) forall T € 7,.

if CASE A 12(7;) < kn?(7;) then
Select a subset M, C 7; of (almost) minimal cardinality with

On*(7e) < n*(Te, My).

Compute smallest regular refinement 7, of 7, with M, € 7; \ 741 by NVB.



else (CASE B xn?(7;) < 11*(77))
Compute an admissible refinement 7;;; of 7; with (almost) minimal cardin-

ality and p(7p41) < pp(7;). fi od

Output: Sequence of discrete solutions ((op, up) : £ € Ny) and meshes (7; : £ € Ny).

Quasi-optimality. Any admissible refinement of the initial triangulation 7; by NVB
generates the set T of admissible triangulations. The restriction to all triangulations
with at most N € N additional simplices leads to the finite set

T(N) ={7 €T : |T|-1%| < N}.

The best possible error in terms of the alternative estimator 1 and the data approxima-
tion error y depends on the right-hand side f € L?(Q;R?) and implicitly on the exact
solution o € H(div, Q;R*?) and u € H'(Q;R?) to (1.1). It is defined by

E(o,u,f,N) = min (n*(T) + ()"

The main result of this thesis involves the notion of a nonlinear approximation class
As. For any given 0 < s < oo, A; consists of all triples (o, u, f) € H(div, Q; R¥?) x
H'(Q;R3) x L2(Q;R®) such that u = up on Iy, ov = ty on Iy, and

|(o,u, f)|a, = sup(N +1)°E(o,u, f,N) < .
NeN

Theorem 1.1 (optimal convergence rate of ALSFEM). There exist a maximal bulk
parameter 0 < 6y < 1 and a maximal separation parameter 0 < ko < co such that for
all0 < 6 < Oy, forall0 < k < kg, forall0 < p < 1, and for all0 < s < oo, the output
((op,up) : £ € N) of ALSFEM and (o, u, f) € A satisfy
—1 S 2 2 1/2
Copt I(021. f) 12, < sup (1721 = 1761 + 1)" (n*(Te) + p* (T2))

te

< Copt (o, u’f)lﬂs-

The maximal parameters 6y and k, depend exclusively on the initial triangulation 7y and
the polynomial degree k, whereas the positive generic constant Copt depends on Ty, k, and
the parameters s, p, 0, and k.

The axioms of adaptivity in [37] and [40] provide a framework for the convergence
analysis with rates for adaptive FEMs. For algorithms with a separate marking strategy,
as the ALSFEM, this framework involves the seven axioms (A1)-(A4), (B1)-(B2), and
(QM) for the proof of optimal convergence rates. The ten included positive generic
constants A for j =1,...,7, Kg, Arer, and p; < 1 depend on the initial triangulation
7o and the polynomial degree k € N in the discretisation.



The axioms (A1)-(A3), (QM), and (B2) concern an admissible refinement T e T(7T)
of an arbitrary triangulation 7~ € T. The distance between these triangulations is
defined as some value §(7,7) > 0. The stability axiom asserts

(T, T0NT) =T, TNT)| <AL 8(T,T) (A1)
and the reduction axiom
T T\T) < pa (T, T\T) + Ay 8(T,T). (A2)

The discrete reliability axiom postulates the existence of some set 7~ \ T CRCT of
coarse simplices with |R| < Af|7 \ 7| and

ST, T) < As (0 (T.R) + (7)) + As (7). (A3)
The quasi-monotonicity axiom on n + y requires

n(T) +u(T) < Ay (n(T) + p(7)). (QM)

The subsequent axioms (B1)-(B2) refer to the data approximation algorithm in
Case B of the ALSFEM algorithm. The data approximation of rate s > 0 requires that,
for all given tolerances Tol > 0, there exists an admissible triangulation 71, € T
satisfying

|0l = | To] < As Tol™®) and i (F1q1) < Tol. (B1)

The thresholding second algorithm from [15, 14] plus a completion step allows for quasi-
optimal data approximation (B1) [40, Theorem 3.3] and is one possible realisation of
Case B of the ALSFEM. The data approximation error y from (1.2) satisfies the required
quasi-monotonicity

p(T) < Ng u(T). (B2)

The quasi-orthogonality axiom solely concerns the outcome (7; : ¢ € Ny) of the
ALSFEM algorithm and reads

D8 (T, ) < Ma(n*(T0) + 1A(T0)). (A4)
j=t

Outline. This thesis consists of six chapters. Chapter 2 deploys the theoretical
background, introduces the employed notation, and provides essential tools used
throughout the thesis. The subsequent Chapter 3 postulates some general assumptions
on the operators A and S in the model problem (1.1) and verifies them for the three
applications from Table 1. Two sections therein concern the analysis of the approx-
imation of inhomogeneous Dirichlet and Neumann boundary data. Eventually, the
chapter introduces the LSFEM as well as the alternative a posteriori error estimator for
the ALSFEM algorithm. Chapter 4 is devoted to the proofs of the axioms of adaptivity.
Numerical experiments for the three model problems are displayed in Chapter 5. A con-
clusion and outlook follows in Chapter 6. The Chapter A in the appendix documents
the software octAFEM3D implemented for the numerical experiments.
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2 Preliminaries

The theory of Lebesgue and Sobolev spaces found the overall basis for the analysis
of PDEs and their numerical solution. It is the point of departure in the first two
Sections 2.1-2.2 of this chapter. The analysis of Sobolev functions with partial boundary
conditions requires specific geometric assumptions on the domain which are presented
in detail in Section 2.3. The notion of regular triangulations into tagged simplices is
introduced in Section 2.4 and enables the definition of finite element function spaces
in the subsequent Section 2.5. This chapter concludes with the two Sections 2.6-2.7 on
quasi-interpolation operators preserving partial inhomogeneous boundary conditions.
These operators are key tools for the analysis of discrete reliability in Section 4.3 below.

2.1 Lebesgue and Sobolev spaces

This thesis employs the standard notation for Lebesgue and Sobolev function spaces
and appropriate subscripts indicate their usual norms and semi-norms. The brief
description of the involved spaces given in this section will not replace a thorough
study of these objects. For an overview of results on Lebesgue spaces, the reader
is referred to the monograph by H. Brezis [24, Chapter 4] and, for a self-contained
introduction of Lebesgue and Sobolev spaces, to the monograph by L. C. Evans and
R. A. Gariepy [61, Chapter 1].

Let (X, A, p1) denote a measure space and Y C R™" a subspace for m, n € N equipped
with the Euclidian scalar products

a-b:=a'bfora,beR"ifn=1 and A:B:=tr(A"B) for A, B € R™".
The linear space £2(X;Y) consists of y-measurable and square-integrable functions
f : X — Y with bounded seminorm
1/2

Wfllzzco) = (/Xf:fdy) < .

Since there is no ambiguity concerning the scalar product in the space Y, this space
is omitted in the index of the norm for brevity. The equivalence classes of functions
f € L%(X;Y) with respect to almost everywhere equality form the Hilbert space
L?(X;Y) with the scalar product, for f,g € L2(X;Y),

(fs Pz = /xf g dp.



Abbreviate the Lebesgue space of scalar-valued functions L?(X) = L?(X;R). Given
some measurable set A € A with 0 < p(A) < oo, the componentwise integral mean
over A is well-defined by, for f € L?(X;Y),

frav=par [faer

The definition of Sobolev spaces usually restricts to bounded open sets X = Q C R?
with the three-dimensional Lebesgue measure dy := dx. In order to establish a
meaningful notion of the restriction of Sobolev functions on the boundary 9, suitable
Lipschitz regularity assumptions are required. The resulting trace functions belong to
Lebesgue spaces L?(X) on two-dimensional hypersurfaces X = T’ C 9Q equipped with
the two-dimensional Hausdorff measure dy := da. For the detailed presentation of the
geometric assumptions made in this thesis, the reader is referred to Section 2.3.

Notation 1 (measures). To keep the notation terse, the enclosing single bars | |
apply context-sensitively. They denote not only the modulus of real numbers, the
Euclidian norm of vectors in R3, and the Frobenius norm of matrices in R>%, but also
the cardinality of finite sets, the Lebesgue measure of three-dimensional Lebesgue sets,
and the two-dimensional Hausdorff measure of two-dimensional surfaces.

Given any multi-index a = (a1, a2, a3) € N} of length |a| = >3

ol
ox* ... ox*

D% =
denote the partial derivative with respect to a. Define the space of smooth functions
C®(Q) = {p:R> >R : Va € N;, D* f is continuous}

and its subspace of test functions with compact support supp( ¢ )

CX(Q) = {p € C*(Q) : IK C Q compact, supp(¢) C K}.

Analogous definitions apply for vector-valued functions in C*(Q;R?) and C(Q; R?)
and functions being smooth up to the boundary in C*(Q) and C®(Q). For k € N, the
Sobolev space H*(Q) consists of all square-integrable Lebesgue functions v € L?(Q)
such that for every multi-index € N} with |a| < k there exists some w € L?(Q) with

(9,D% 9)12(q) = (1)1 (w, @) 12()  forall p € CX(Q). (2.1)

These functions are called k-times weakly differentiable and D% v := w denotes their
weak derivative. Equip H*(Q) with the Sobolev norm, for v € H*(Q),

1/2
ol = ( ) 1D 0lg) <.

la|<k

10



Given a normed linear subspace X C Y of a Banach space (Y, || «||y), let
AX,Y)={yeY : I(xx : keN) X, [lxk —ylly — 0ask — oo}

denote the closure of X with respect to the norm of Y. The definition of the weak
derivatives immediately allows for the local approximation of Sobolev functions by
smooth functions on arbitrary open domains Q € R3? [61, Theorem 4.2]

HY(Q) =cl (C*(Q) N H'(Q), H'(Q)).

Under the additional assumption that Q is bounded and Lipschitz, it even holds that
[61, Theorem 4.3] _
HY(Q) =cl (C*(Q) N H'(Q), H(Q)).
The definition (2.1) of weak derivatives induces weak counterparts of the differential

operators from vector calculus. For v € H(Q), let Vo € L?(Q;R?) denote the weak
gradient defined by

(0,divQ)r2q) = =(V0,9)12(q) foralle e CX(Q;RY).

Furthermore, let the space H(curl, Q) consist of the functions f € L?(Q;R®) with weak
curl operator curl B € L?(Q;R?) defined by

(B, curl @)2(q) = (curl B, ¢)12(q) forall g € CX(Q;R?)
and H(div, Q) of g € L?(Q;R?) with weak divergence div q € L?(Q) defined by

(¢ V @)12q) = —(divg, @)r2(q) forall g € C°(Q).
Equip these spaces with the graph norms

5

1/2
1Bllceurten = (181220, + Il curl Bl )

lgllzraivey = (gl g, + Il dival, o).
The subspaces of non-rotational and solenoidal vector fields read
H(curl =0,Q) = {U € H(curl,Q) : curlo =0in Q},
H(div=10,Q) := {g € H(div, Q) : divg=0in Q}.
Given some regular triangulation 7~ of the domain Q into closed simplices in the sense
of Section 2.4 below, define the piecewise H(curl) and H(div) spaces by

H(curl, 7) = {v e L*(;R? : VT € T, v|r € H(curl, int(T))},
H(div,T) = {q € L*(%R%) : VT € T, qlr € H(div, int(T))}.

Analogous definitions apply to vector-valued functions v € H'(Q; R*) with weak
Jacobian Do € L%(Q;R*>%®) and matrix-valued functions f € H(curl, Q;R*>*®) and
t € H(div, Q;R¥?). The row-wise curl and divergence operators lead to curl § €
L2(Q;R¥3) and divt € L?(Q; R¥®) with, for j = 1,2, 3,

((curlﬁ)ﬂ, (curlﬂ)jz, (curlﬂ)jg) = curl(ﬂjl,ﬂjg, :Bj3)’

((dIV T)jla (le T)jg, (le T)j3) = diV(le, Tj2s Tj?,).
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2.2 Boundary traces of Sobolev functions

Assume that the boundary o0Q of the Lipschitz domain Q is partitioned into the compact
Dirichlet boundary Iy € 9Q with positive surface measure |Ip| > 0 and the relatively
open (possibly empty) Neumann boundary Iy := 9Q \ Ip. For the presentation of the
complete geometric assumptions on the domain and its boundary parts, the reader is
referred to the subsequent Section 2.3. Given Iy € {Ip, Iy}, the definition of Sobolev
functions satisfying homogeneous boundary conditions requires the space of test
functions with compact support

CX(Q\Tx) = {go € C¥(Q) : 3IK c Q compact, dist(K,Tx) > 0 and supp(¢) C K}
The closure of this space under the various Sobolev norms reads
Hy(Q) = cl (CX(Q\ Tx), H(Q)),
Hyx (curl, Q) :=cl (Cﬁo(ﬁ \ I'x; R%), H(curl, Q)), (2.2)
Hx(div, Q) =l (CZ(Q \ Tx; R?), H(div, Q)).

The subspaces of non-rotational and solenoidal vector fields are denoted by

Hx(curl = 0, Q) := Hx(curl, Q) N H(curl = 0, Q),

Hx(div = 0, Q) = Hx(div, Q) N H(div = 0, Q).

The study of non-vanishing traces of Sobolev functions on (parts of) the boundary
of Q leads to the notion of Sobolev spaces H*(Ix) of fractional order s € R. The
definition of H*(Ix) for non-integer order s ¢ Z may be realised by the interpolation
of Sobolev spaces of integer order and is comprehensively presented in the monograph
by J. L. Lions and E. Magenes [79].

Let y : C(Q) — C(9Q) denote the linear trace operator with y(¢) = ¢|sq in the
classical sense for ¢ € C(Q). There exists a surjective extension to y : H(Q) —
H'?(0Q) [61, Theorem 4.6] that is bounded in the L? norm, for every v € H'(Q),

Iy (@)lz200) < Cy llollm (o) (2.3)
The operator y is also naturally bounded in the minimal extension norm defined by,
for g € H/?(0Q),
I9lli2a0) = inf {llollq) = v € HY(Q), y(v) = g}.

For v € H'(Q), it holds that ||y (v) l2(00) < llollf(q)- Any other characterisation of
H'2(0Q) from [79] coincides. This has been established, for instance, in [85, Chapter 2,
Theorem 5.1] for the half-space {x € R® : x3 > 0}.

For the dual space H™1/2(9Q) := (H'/?(9Q)), the corresponding duality pairing
(=, *)oq extends the L?(9Q) scalar product. Equip H~'/2(9Q) with the operator norm,
for t € H12(2Q),

£l 172 (90) = sup {(t,y(0))oa : v € H(Q), llvllm(q) = 1}
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The restriction of y to some part of the boundary Ik leads to the bounded and
surjective trace operator yx : HY(Q) — HY?(Ix) with yx(¢) = ¢l in the classical
sense for ¢ € C(Q). The restriction is also bounded, for v € H!(Q),

||}’X(U)||L2(rx) < Gy ”U”Hl(Q)’

and |lyx (o) | g/2(ryy < |0l (@) with the minimal extension norm, for gx € H'2(Iy),

gx g2 (r) = inf {||ollznq) : v € H(Q), yx(v) = gx}-

The well-known Friedrichs inequality asserts the equivalence of the norms ||  [|1(q)
and |V ¢ || 2(q) on H)1<(Q) in the case |Ix| > 0.

Lemma 2.1 (Friedrichs inequality). If Ik has positive surface measure |Ix| > 0, there
exists a positive generic constant Cg such that every v € Hy (Q) satisfies

lollz2() < Cr [ Dollr2(q)-

Proof. For the proof in this general case Ix C 9Q, utilise [60, Lemma B.63] with the
trace operator f := yx therein. ]

Let v:9Q — B1(0) := {x € R? : |x| = 1} denote the outward unit normal vector
field on 9Q. For w € H'(Q), the surface (or tangential) gradient Vy for weakly differen-
tiable functions on Ix can be implicitly defined [49, Equation (A.13) in Appendix A.3]

by
Vw=Vxw+ (v-Vw)v onlx. (2.4)

This allows for the definition of the trace space
H'(Ix) = {v € L*(Tx) : Vxv € L*(I;RY)}
employed with the norm, for v € H!(Ix),

1/2
oll () = (”U”iZ(rX) + ||VXU||§2(FX)) "

It holds that H' (Ix) ¢ H'/?(Ix) [49, page 276]. Throughout the thesis, the index for
the boundary party Ix is omitted for Vx and its analog Dx for vector fields.

Moreover, define the trace space including partial boundary conditions and its dual
space by

H'"*(Ty) = yw(Hp(Q)) and HV(Ty) = (H/*(Tn))".

Let (, * )1, denote the associated duality pairing extending the L?(Ty) scalar product.
Equip H™/?(Iy) with the norm, for sy € H™/?(Iy),

||SN||H—1/2(rN) ‘= sup {(SN, YN(U)>FN RS HIIJ(Q)3 ||U||H1(Q) = 1}-
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The tangential trace operator y" : C (Q;R3) — C(Iy) is defined by nte) =
v X ¢|r, in the classical sense for ¢ € C(Q;R?). The integration by parts formula

allows for a bounded extension to an operator y!2" : H(curl, Q) — H™Y/2(Iy; R?), for
B € Hp(curl, Q) and v € Hll)(Q;R3),

tan

(B, yn()ry = (curl B,0)12(q) — (B, curlo)2(q)
= (VX B,0)r2(50) = (VX B,0)12(1)-

This extension is bounded, for f € Hp(curl, Q) and v € Hé(Q) with |[o]|g1 ) = 1,

" (B). (o)) < [l curl Bllzzcay lolluzqoy + 1Bllz(oll curlolleay < V2IIBlleun .

However, the operator y" is not surjective onto H ~1/2(Iy; R®). For a precise charac-
terisation of its range, the reader is referred to [28] as well as [83, Section 3.5.3] and
[18, Section 2.1.1].

The normal trace operator yy* : C(Q;R?) — C(Iy) is defined by (@) = vy
for ¢ € C(Q;R?) in the classical sense. The definition of H™/?(Iy) allows for the
natural extension of y" to the space Hp(div, Q) by the integration by parts formula,
for 7 € Hp(div, Q) and v € HIID(Q),

nor

v (D), () = (divr,0)12(q) + (7, VO)12()

= (T : V,U)LZ(aQ) = (T A Z))LZ(FN).
Hence, the extension is bounded, for 7 € Hp(div, Q) and 0 € H{(Q) with [[o]|z1(q) = 1,

<Y§0r(f),YN(U)>rN < GliVT||L2(Q)||U||L2(Q) + ||T||L2(Q)|| V0||L2(Q) < ||T||H(div,Q)-
These trace operators provide equivalent representations of the function spaces
with partial homogeneous boundary conditions from (2.2)

Hy(Q) = {v € H(Q) : yx(0) =0},
Hx(curl, Q) = {v € H(curl, Q) : 12" (v) = 0},
Hyx(div, Q) = {v € H(div, Q) : y3*"(v) = 0}.

For homogeneous boundary conditions on the whole boundary 9Q, this is a well-
known result [65, Theorems 1.5, 2.6, and 2.12]. For partial boundary conditions under
weakly Lipschitz regularity assumptions, this equality has been established in [9,
Lemma 3.1 and Theorem 4.5].

In the context of differential forms with coefficients in terms of Sobolev functions,
spaces with homogeneous boundary conditions are defined by continuous extensibility
by zero outside of the domain [66, Definition 3.3]. For weakly Lipschitz domains, this
notion coincides with the definition in (2.2) (cf. [77, Remark 2.2]) and allows for the
application of the results in [77].
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Notation 2 (traces of Sobolev functions). Throughout the thesis, equalities on the
boundary v = g on Ik for v € H'(Q) and g € H/?(Ix) are always understood in the
sense of traces yx(v) = g. Correspondingly, given f € H(curl, Q), 7 € H(div, Q), and
g € HV2(Ii; R?) (resp. g € H™Y/?(Iy)), the expression v X f = g (resp. 7- v = g) on Iy
stands for y2"(f) = g (resp. yy*'(7) = 9).

The trace spaces and operators of H(Q;R?), H(curl, Q; R¥?), and H(div, Q; R¥*?)
are defined analogously for every component.

2.3 Geometric assumptions

Let the subset Q c R3 be non-empty, bounded, open, and connected. In order to enable
proper triangulations, Q is supposed to be polyhedral. This means, its boundary o< is
a C® manifold and the finite union of convex polygons such that the intersection of any
two polygons is either empty or exactly a common vertex or edge. The boundary is
subdivided into the compact Dirichlet boundary Iy € 9Q with positive surface measure
|Ip| > 0 and the relatively open (possibly empty) Neumann boundary Iy := 0Q \ Ip.
The interface I} := Ip N Ty leads to the relative interior of the Dirichlet boundary

relint(Ip) = Ip \ [T

For an arbitrary 2-dimensional Lipschitz submanifold M c R* with boundary M, the
relative interior of M is defined as

relint(M) := M \ oM. (2.5)

The definition and analysis of partial boundary data of Sobolev functions on Q
require the following assumption on the regularity of the boundary.

Assumption 1. Assume throughout the thesis that Q is a Lipschitz domain in that the
domain lies on exactly one side of the boundary 0Q that is locally the graph of a Lipschitz
function. Furthermore, let the interface I1 between the Dirichlet and Neumann boundary
be piecewise affine.

This ensures that there exist regular triangulations in Section 2.4 reflecting the
partition of the boundary into a Dirichlet and a Neumann part.

Precisely, this condition can be expressed in the following way [67, Section 2].
Suppose that for every x € dQ, there exists an open neighbourhood U, C R? of x as
well as Euclidian transformations @, : R> — R3 with an orthogonal matrix Q € R¥3
such that @, (y) = Q(y — x) for all y € R3. The transformed neighbourhood can be
parametrised by a Lipschitz continuous function ¢ : (=7, 7x)> — (—=Ry, Ry) for some
real numbers r, > 0 and R, > 0 in such a way that

D (UxNQ) ={£€R? 1 &,6 € (—rary), =R < & < ¢e(&1, 6},
DUy NaQ) = {E€R’ ¢ &,65 € (—rory), & =¢:(81,6)},
O (U \ Q) = {E€R® : &, € (—rer), ¢u(E1, &) < & < Ry}
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Additionally, assume that there exists a function ¥/, € C((—ry, ry); (=ry, ry)) and a finite
set of points —ry = so < - -+ < sy = ry With ¢|(5,,.5,) € P1((S¢=1,S¢); (=7x, rx)). Suppose
that the continuous and piecewise affine function i, provides the parametrisation of
the interface I3

®, (UeNrelint(Ip))
={EeR’ 1 & € (=ruro), —rx < & < Yu(&), & = de(&1, Y (&)},
O (Ux NT) = {E€R® : & € (—rur), &= Y(&1), & = (1 Yx ()},
O (U NTN) = {E€R’ 1 & € (=), Ynl(&) < & <1y, & = do (&1 Yn(82)) ]

The domain Q is allowed to be multiply connected and the boundary may not be
connected. Let Iy, ..., I7 € 9Q for | € Ny denote the J + 1 connectivity components
of 9Q2 satisfying

J
0Q = Urj and dist([},Tx) >0 for jk=1,...,] with j # k.
Jj=0

In particular, let Iy denote the boundary of the unbounded component of R® \ Q.

The analysis of discrete reliability employs the construction of vector potentials
for solenoidal vector fields satisfying partial homogeneous boundary conditions. The
following Assumption 2 supposes the existence of those potentials and is established
by [65, Theorem 3.4] in the case without boundary conditions.

Assumption 2. The domain Q and the Neumann boundary Iy are supposed to allow
for the following equivalence. A vector field p € H(div, Q) satisfies

divp=0inQ, p-v=0only, and

2.6
/p-vda:Oforeveryj:O,...,] (2:6)
Y
if and only if there exists a vector potential v € H'(Q;R>) such that
p=curloinQ and v=0only. (2.7)

In addition, there exists a positive generic constant Ceyy) such that the following stability
estimate holds

ol o) < Ceurt llpllzz(q)- (2.8)

Before the Theorems 2.3-2.4 discuss sufficient geometric properties, a Helmholtz
decomposition is directly derived from Assumption 2.

Theorem 2.2 (Helmholtz decomposition). Suppose Q and Iy satisfy Assumption 2.
Given any t € Hy(div, Q), there exist a € H}\(Q) and f € H{(Q;R?) with

7= Va+curl (2.9)
IVallizo) < Crlldivellieg),  and  Iflla (@) S Cout max{1, Cr} |I7llaaive) (2.10)
for the Friedrichs constant Cy from Lemma 2.1 and Ceyy) from (2.8).
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Proof. Given r € Hy(div, Q), let @ € H](Q) solve the Poisson model problem
(Va,Vo)eq) = —(divr,v)2q) forallo e HIID(Q).
This and the Friedrichs inequality from Lemma 2.1 imply the stability estimate
IV allfziq) = —(dive, a)rziq) < ldivelleollallieq) < Clldivellizoll Valo).

Thus, ||V al12(q) < Crll div 7||12(q). The integration by parts formula proves, for every
test function v € Hll)(Q),

0=—(divr,0)12(q) = (Va, Vo)2(q) = (1 =V, Vo) () (2.11)
= —(div(r = Va),0)r2q) + (( = Va) - v,0)12()-

Since this holds also for v € HIID(Q) with v = 0 on Iy, it follows that the function
p =1—-Vae H(div =0, Q) is divergence-free. In particular, the equality (2.11) shows,
for every v € HIID(Q),

0="(p v,0)r2(ry)-

Therefore, p - v = 0 on Iy and Assumption 2 provides existence of some f§ € HﬁI(Q; R3)
such that p = curl B. The stability estimate (2.8) in

181z () < Ceurl llpllzzc) € Ceurt (II7llz2q) + 1V @llrz(a))
concludes the proof of (2.10). O
The necessity of the condition (2.6) is always fulfilled.

Theorem 2.3. On every Lipschitz domain Q, the existence of v € H'(Q;R>) with (2.7)
implies that p := curlo satisfies (2.6).

Proof. For any v € Hﬁr(Q;RC)’) C Hy(curl, Q) and ¢ € C¥(Q \ Ip), it holds that
curlo € H(div = 0, Q). The Green’s formulas for the gradient and the curl imply

(¢, curlo - v)rary) = (V o, curlo)zq) = (V o, v X 0)125) = 0.
This is the weak form of (curlwv) - v = 0 on Iy. Hence, for every v € Hy(curl, Q),
curlv € Hy(div = 0, Q).

In order to guarantee the third condition in (2.6), let 9; € CJ(R?) for j = 0,...,]
denote smooth cut-off functions [65, proof of Theorem 3.4] with

1 if dist(x,T) <,

0<9<1inR’ and §(x)=
0 else.
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The functions p; := curl(d;0) € H(div = 0, Q) satisfy

p-v onlj
pj-v= o
0 onIy fork=1,..., ] with j # k.

The Gauss divergence theorem concludes the proof of (2.6) in, for every j =0,..., ],
/p~vda:/pj-vda:/divpjdx:O. O
) I; Q

If Iy = 0, the existence of a right-inverse of the curl operator, follows from [65,
Theorem 3.4]. In the case of |Iy| > 0 this is more involved. For instance, as in the
following theorem, it requires an additional assumption on the connectivity of the
Neumann boundary patches Iy .

Theorem 2.4. Let the Neumann boundary

L
In = U Ine
=1

consist of L € N relatively open connectivity components Iy, ...,Inr € IN. If the
componentsIN 1, . .., Ing are simply connected and, forallt,m =1,...,L with € # m,
diSt(rN)[, I‘N)m) > 0, (2.12)

then Assumption 2 holds. (The distance property (2.12) is implicitly fulfilled due to
Assumption 1 and the assumptions on the parametrisation . of the interface I on

page 16.)

Remark 2.5. This result generalises [65, Theorem 3.4] to functions with partial homo-
geneous boundary conditions. The proof utilises techniques from [9, Remark 3.9] and
[67, Theorem 2.3] to recover the correct boundary conditions. Both references present
results similar to Theorem 2.4 including partial boundary conditions. However, [9,
Theorem 3.8 with Remark 3.9] restricts to domains with connected boundary and [67,
Theorem 3.2] even supposes that Q is contractible.

Further results similar to Theorem 2.4 are presented in [3, Section 3.5] and include
additional assumptions on cuts of the domain into simply connected subdomains.

Proof of Theorem 2.4. Due to Theorem 2.3, it suffices to show that, given some vector
field p € Hy(div, Q) satisfying (2.6), there exists a vector potential v € H{(Q;R?)
with (2.7).
Step 1. By [67, Theorem 2.3], there exists an open bounded Lipschitz domain wy C R?
such that
ﬁ =QUINUown
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is an open bounded Lipschitz domain with Iy C oQ. If required, consider suitable
open subsets of wy in order to guarantee that wy can be decomposed into L open

connectivity components wn 1, - - . , N each attached to the corresponding component
IN1, - - -» Ing of the Neumann boundary. Thus, the wy, satisfy
L
WN = U wNg  dist(ong, wnm) > 0for £ #m, and
=1

fN’[:aQﬂc_ON,[fOI'[: 1,...,L.

The connectivity assumption on Iy, ensures that the extended patch wn ¢ is also simply
connected for every £ =1,..., L.

Moreover, this construction results in J + 1 connectivity components To, .. .,E of
the boundary of the extended domain Q satisfying

J
90=|JT; and ThNT;=TpNTjforj=0,...,J.
j=0

For every j =0,...,J, the fj consists of the boundary of the extended domain at I'; if
IT; N Ix| > 0 and coincides with I else.

Step 2. The normal boundary condition p - v = 0 on Iy allows for an extension
p € H(div, Q) with

— p(x) forx e Q,
p(x) =
0 for x € wy.

Since p - v = 0 holds on dwn, \ Iny for £ = 1,.. ., L, the extension p satisfies, for every

j=0,....],
/ﬁ~vda:0.
T

J

The application of [65, Theorem 3.4] provides a vector potential w € H'(Q;R?) with
p=curlw and divw=0 inQ.
Step 3. By definition of p, the restriction w, = w|,,, satisfies, for every £ =1,...,L,
curlw, =0 in wNy.
Since wy ¢ is simply connected, [65, Theorem 2.9] provides ¢, € H!(wn ) /R such that

Wy = \Y (0, in WN,¢-

The regularity of w, € H! (wn; R?) implies that ¢, € H?(wn,)/R. Due to the distance
dist(wne, WNm) > 0for £ # m, the Stein extension theorem [99, Chapter VI, Theorem 5]
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and suitable cut-off functions guarantee the existence of extensions ¢, € H 2(£~2) such
that, for every £,m =1,...,L with £ # m,

¢0r=¢rinwn, and  dist(supp(¢y), supp(¢m)) > 0.
The vector field

L
7= w— ZV@ e H'(Q;R?)
=1

vanishes v = 0 in every wn for £ = 1,. .., L. In particular, v = 0 vanishes on every Iy,
in the sense of traces. Thus, the restriction v := 7]q € H'(Q;R?) satisfies

p=curloinQ and o=0onIy.
Step 4. The linear operator curl : H; — H, on the spaces
H; = {w € Hy(%R?) @ divw =0},
H, = {TGHN(diVZO,Q) : /rr-vda:Oforj:O,...,]}
j
is bounded, for every w € Hy,
lcurl wilzz(ay < VZIDwlliza) < Valiwllinoy.

Step 3 shows that the operator curl : H; — Hj; is surjective. Thus there exists a
bounded, but not necessarily linear, right-inverse of the curl operator by the Bartle-
Graves theorem with some positive continuity constant C.y,1. This concludes the proof
of the stability estimate. |

2.4 Triangulations and newest-vertex bisection

Any decomposition of the polyhedral domain Q C R? in this thesis is a finite set of
tagged simplices T. A tagged simplex T = (zy, ..., z3;y) consists of a tuple of vertices
2o, ...,23 € R3 not lying in a two-dimensional hyperplane and a type y € {0,1,2}.
Define the domain of the tagged simplex as the convex hull dom(T) = conv{zy, ..., z3}.
Outside of this chapter, the tag y of a simplex is not written and the tagged simplex is
simply identified with its domain,

oT = ddom(T), int(T) := int(dom(T)), TNT := dom(T) N dom(T’),
dist(T, T') := dist(dom(T), dom(T")), 0|t = 0|dom(r)
as well as the abbreviations z € T for z € dom(T) and F c T for F C dom(T).

A set 7 of (tagged) simplices is called regular triangulation of Q if it covers the
domain

Q= U dom(T)
TeT
and if any two distinct tagged simplices T,T" € 7 with T = (zg,...,z3;y) and T’ =
(zg, - - ->25;Y") are either disjoint or share exactly
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(a) Unrefined simplex T (b) Bisection for type 0 (c) Bisection for types 1, 2

Figure 2.1: Bisection rule for one simplex T with local node numbers. The thick red line
indicates the refinement edge such as ref(T) = conv{zo, z3} in (a).

« onenode T NT' =z, =z, forsome 0 < ¢,m < 3, or

[ — ’ /
- one edge T N T’ = conv{zy, z,} = conv{z,, ,z,, } for some 0 < £ < £, <3 and
0<m <my <3 o0r

- one face T N T’ = conv{zy, z¢,, z¢,} = conv{zy, , 2y, .2, } for some 0 < £ < £, <
;3 <3and 0 < m; < my < m3 < 3.
In the latter case, T and T” are called neighbouring (tagged) simplices.
The NVB of any tagged simplex T = (zo,...,23;¥) € 7 generates a new node
z = (29 + z3) /2 on the refinement edge ref(T) := conv{z, z3}. The two child tagged
simplices

(20,2, 21, 22; (y + 1) mod 3) and (25,221, 25 (y + 1) mod 3) ify = 1,2,
T (23,222,215 (y + 1) mod 3) ify =0,

are depicted in Figure 2.1 with their local node numbers. These new child simplices
coincide when the bisection rule is applied to the following permutation of the tagged
simplex T

(23,2,21,22;1) ify =0,

erm(T) =
perm(l) {(23,222,21;)/) ify =1,2.

This bisection strategy stems from [81, 104] and has been analysed in [101, 64].
In combination with a closure step, it is called refine in [101, Section 5] and leads
to the notion of one-level refinements of the triangulation 7. In order to guarantee
the regularity of arbitrary refinements [101, Theorem 4.3], this refinement strategy
requires the following two conditions on the initial triangulation 7.

(IC1) All tagged simplices T € 7 share the same type y.
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(IC2) Any two neighbouring tagged simplices T, T” € 7 sharing at least one refinement
edge ref(T) ¢ TN T orref(T’) € T NT are reflected in the sense that the
ordered sequence of vertices of T or perm(T) coincides with that of T’ on all
but one position. Otherwise, any two neighbouring children of T and T’ are
reflected.

Additionally, assume that 7 resolves the decomposition of the boundary into Iy and
IN.

Such an initial regular triangulation 7 of tagged simplices with initial condition
(IC) induces the set of all admissible triangulations

T := T(7) := {7; regular triangulation of Q into tagged simplices :
3¢ € Ny 374, . .., 7¢ successive one-level refinements in the sense

that 7,41 is a one-level refinement of 7, form=0,..., ¢ — l}.
For any natural number N € N, set
T(N) ={7 €T : |[T|-|%| <N}

All triangulations in this thesis are admissible, when generated with NVB. In partic-
ular, this guarantees shape-regularity of all 7~ € T in the sense of [51, Section 3.2].
Furthermore, for a one-level refinement 7 of 7, an upper bound for the number of
newly created simplices during the closure step

17\ 7| < Cxvs IM|

is essential for the convergence analysis with rates [14, Theorem 2.4]. For arbitrary
spatial dimensions, this has been established in [101, Theorem 6.1].

For any triangulation 7~ € T, N denotes the set of nodes, ¥ the set of faces, and &
the set of edges. The corresponding sets on the boundary 9Q read N (9Q), F (9Q2), and
&E(9Q). The elements of the complementary subsets N (Q), ¥(Q2), and E(Q) belong
to the interior Q. For any tagged simplex T € 7, let N(T) denote the set of its four
nodes, ¥ (T) the set of its four faces, and &(T) the set of its six edges. Let the set
¥ of faces be subordinated to Ip and Iy in that F(Ip) = {F € ¥ : F C Ip} and
F(In) := {F € F : F C 'y} partition the set 7 (Q).

Given any subset w C Q such that there exists a set of simplices M C 7 satisfying

&= U T,
TeM

let 7 (w) := M denote the regular triangulation of w into tagged simplices from 7.

Notation 3 (admissible refinement). Throughout the thesis, let 7 € T denote an

arbitrary regular triangulation with admissible refinement T € T(7). Let (ors, urs)
and (ois, urs) denote the respective discrete least-squares finite element solutions. In
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VF

Figure 2.2: Patch wr of the interior face F € ¥ (Q) consisting of two adjacent simplices T,
and T_ with corresponding unit normal vector vy and outward unit normal vectors
VT, VT_.

order to indicate the relation to the refinement 7, the superscrlpt is applied to any
set such as 7’ 8 N or discrete function such as uys, 7T, ﬁNed, or operator into discrete
spaces such as My, jk”.

Notation 4 (generic constants). Any positive generic constant 0 < C < oo in the
following analysis is uniformly bounded due to the shape-regularity of all 7 € T.
Upper case constants are identical throughout the thesis such as the constants A from
the axioms of adaptivity. Lower case constants c,, for m € N are solely utilised in
proofs and do not vary within this scope.

Given a node z € N, an edge E € &, and a face F € ¥, define the nodal patch
w, C Q, the edge patch wp C Q, and the face patch wr € Q by

w, =intU{TeT : zeT}, wp:=intU{TeT : ECT},
=intJ{T €7 : FCT}.

For every interior face F € F(Q), the face patch{T € 7 : F c T} = {T}, T_} consists
of exactly two adjacent simplices Ty, T- € 7. The index is determined by the fixed
orientation of the unit normal vector vr of F such that vp - vy, = +1 as illustrated in
Figure 2.2. For every boundary face F € ¥ (9Q), the face patch {T € 7 : Fc T} =
{T.} consists of a unique adjacent simplex 7.

These face patches induce the definition of tangential and normal jumps of piecewise
Sobolev functions. For any piecewise function f,y, € H(curl, 7), let

VE X (Powlr,) = vE X (Bpwlr.) onF € F(Q) with F = 9T, N dT_,

[ve X BpwlF = {VF X (Bowlz,) onFe F(oQ)NF(Ty).

(2.13)
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For any piecewise function 7,y € H(div, 7"), let

(pr|T+) - VF — (prlT_) -vp onF € F(Q) with F = 9T, N aT_,
[pr *VF ]F =
(TpW|T+) " VF on F € F(aQ) N F(T4).
(2.14)
The analogous notation applies for matrix-valued functions in H(curl, 7;R*%) and
H(div, T;R>3).
Given any T € 7, let Qr € Q denote the tetrahedron patch

Qr=intJ{T e T : dist(T,T) = 0}. (2.15)

The shape-regularity of all 7~ € T ensures the uniform boundedness of the positive
generic overlap constant

CoL = T(Qr)| < 0. 2.16
oL = PR IT (D) < o @10

For any natural number n € N, define the n-layer around a subset of simplices
M C T successively by

Li(M)={TeT :3L,....,T, € T withTy e M, T, =T,
and dist(T,, Typ+1) = 0 for every m=0,...,n — 1}.

If the argument M C ¥ is any subset of faces, the same notation applies to n-layers
of faces subordinated to the part Iy of the boundary

Ly(MIx) = {F € F(Ix) :3F,...,F, € F(Ix) with F, € M,F, = F,and 217
dist(Fy,, Fyp41) = 0 for every m =0,...,n — 1}. .

Figure 2.3 displays examples of n-layers £, (M, Ix) around refined faces M = F \ F
on the boundary I'x. The union of faces of such n-layers

ULM.Ix) = U{F : Fe Li(MIx)}

forms a 2-dimensional Lipschitz submanifold in R? with boundary.

Given a regular triangulation 7 € T and its refinement T e T(7"), abbreviate the
n-layers around the refined simplices with R, := L,(7 \ ’7") The piecewise constant
mesh-size function hy € Py(7) is defined as the cubic root of the volume of the
simplices

hylr = hy = |T|"? forTeT. (2.18)

This leads to the maximal mesh-size hmay = [|h7||1~(q) > 0.
Recall the well-known trace inequality.
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Lo(F\ F, Ix)

L1(F\F.Tx)

¥F (Ix)

Figure 2.3: Face layers L, (7 \ %, Ix) from (2.17) for n € N on the boundary part I'x. The
square I is a subset of the boundary 9Q2 of the three-dimensional domain Q. The
dotted line indicates the bisection of boundary faces made in the refinement step

from 7 (Ix) to %(FX).

Lemma 2.6 (trace inequality). There exists a positive generic constant Cy such that
for every regular triangulation 7 € T and every simplex T € T with face F € F(T),
everyv € HY(T") satisfies

lolr 2 ey < Cor (P2 IVl ) + 1T ol ) (2.19)

(T)
The generic constant Cy, solely depends on the shape regularity of the triangulations in T.

Proof. The shape-regularity of the triangulations 7 € T provides existence of a positive
generic constant ¢; such that diam(T) < ¢;|T|"/3. This and the continuous trace

inequality from [58, Lemma 1.49] establish
lolrlZ. < ez (2 19ellizcnllollizr + 3er 1T ol ).
Young’s inequality with parameter a > 0 shows
lolrli g, < c2 (o ITI 902 ) + Bes 4 1/@) [T1 P ol ).

This concludes the proof of (2.19) with the positive generic constant

3c1 +4/9¢2 +4
—:301+—*. O

Cy = ca™ with o =
2 a
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2.5 Finite element discretisation

In order to define discrete subspaces of the Sobolev and Lebesgue spaces from the
Sections 2.1 and 2.2, let Px(7") denote the space of piecewise polynomials of total degree
at most k € Ny. The orthogonal projection of an L?(Q) function f onto Py (7") reads
[I;f € Pr(7). The componentwise projection applies for vector- or matrix-valued
functions and maps onto Pr(7;R?) or Pr(7;R>). Recall for any face F € F(9Q),
that wr € 7 denotes the unique tetrahedron with F C wr. The approximation of
the boundary data g € L?(Tx) is naturally measured in terms of the oscillations, for
M C F(Ix),
osc? (g, M) = " |@p|"? ||(1 = ) g2 - (2.20)
FeM

Throughout the thesis, fix a polynomial degree k € Ny. Let S¥*1(7) := Pror (7)) N
HY(Q) and S (T, R?) := Pr1 (7R3 NH(Q; R?) approximate the scalar- and vector-
valued H' functions.

The discrete approximation of H(div) functions employs the space of Raviart-
Thomas functions [91, 86] with the identity mapping id : Q — R?

RT(T) = {wrr € H(div, Q) : VT € 7 Jar € P(T;R?) Fbr € P(T),
wrrlr = ar + brid },
Ve =1,2,3, (101, T2, 73) | € RTk(T)}-
The H(curl)-conforming Nédélec functions of the first kind [86, 87, 65] read

Ni(T) = {Bnea € H(curL Q) : VT € 7 Far, br € P (T3 R?),
BredlT = ar +br xid },
Ni(T3R7) = {Prea = (Bem)em=1,...3 € H(curl, Q;R¥®)
Ve =1,2,3, (Be1, P2, Pes) T € Nk(T)}-

For an analysis of the presented finite element function spaces, the reader is referred
to the monographs [23, 19, 18]. Figure 2.4 depicts the lowest-order finite elements for
the discretisation employed in this thesis.

The normal trace operator y"°" from Section 2.2 is surjective from the Raviart-
Thomas space RT;(7) onto the piecewise polynomial functions Py (7 (9Q2)) on the
boundary. The following lemma asserts the existence of a discrete extension of these
boundary data.

Lemma 2.7 (discrete extension in RTj). Given some piecewise polynomial function

tow € Pr(F(9Q)) with
][ tpw da =0, (2.21)
Q
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(@) RTy (b) S

Figure 2.4: Pictograms of lowest-order Raviart-Thomas finite elements RTj in (a) with 4 degrees
of freedom and Courant finite elements S! in (b) with 4 degrees of freedom. The
arrows represent the integral mean of the normal component on the corresponding
face and balls symbolise the point evaluations in the vertices.

there exists a discrete extension prr € RTi(7") with div prr = 0 in Q and pry - v = thy.
Moreover, there exists a positive generic constant Cey; such that

llerTllzz(0) < Cext lItpwllg-1/2(a0)- (2.22)

Proof. Since the result is proven in [2, Theorem 2.1], the proof at hand solely presents
the construction of prr and an overview of the arguments. Let w € H'(Q)/R solve
the Neumann problem

(Vw,Vo)2q) = (tpw: 0)12(aq) forallo € HY(Q)/R.

This is well-posed due to the compatibility condition (2.21). The integration by parts
shows that the weak derivative p := Vw := Dw € H(div, Q; R*>%®) satisfies divp =0
in Q and pv = t,, on Q. The reduced elliptic regularity [54] of the Neumann problem
ensures that p € H'/?*(Q; R?) N H(div, Q) for some regularity parameter 0 < s < 1/2.
This allows for the application of the Fortin interpolation Ir : L? (Q;R®) N H(div, Q) —
RT.(T) for p > 2 from [18, Example 2.5.3] to define prr := Irp. The commuting
diagram property of Ir shows

div prr = divIpp = [ divp = 0.
The definition of Ir [18, Equation (2.5.10)] leads to
PRT "V = (IFP) V= Hk(P : V) = tpw-

The proof of the stability (2.22) is more complex and involves a localised elliptic
regularity estimate and an inverse inequality for the boundary data. m]

The remaining part of this section is devoted to the existence of L?-stable vector po-
tentials in the space of Nédélec finite element functions with homogeneous tangential
boundary conditions

BN(T) := Ni.(7) N Hx(curl, Q).
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Theorem 2.8. Suppose that Q and Iy satisfy Assumption 2 from Section 2.3. Let 7y denote
some initial triangulation with admissible refinement 7 € T. Given a discrete vector
field prt € RTi(7") with div prt = 0 and prt - v = 0 on I\, there exists a discrete vector
potential fNed € BI’ﬁI(‘T) and some vector field py. € RTi(7) on the initial triangulation
To with div ppr = 0 in Q and pp - v = 0 on Iy such that

prT = curl fxed + ppr-

Additionally, there exists a positive generic constant Cneq Such that

| BNedllH(curto) + lPrTllI2(0) < CNed llpRTIIL2(0)- (2.23)
Proof. Step 1. For j =0,..., ], set the constants

! da if |l ATp|> 0
—_— prr - vda if |I;NIp| > 0,
aj =3 15 NIbl Jrar, !

0 else.

Since the initial triangulation 7; resolves the partition of the boundary 0Q = I, U I,
these constants define a piecewise constant function ay,, € Po(%0(9Q)) € H “12(5Q)
with respect to 7y by

agwEajonfjﬂFDfoerO,...,] and a;wEOOIer.

Since dist(I;, I},) > 0 for j # m, there exist smooth cut-off functions &; € C*(Q) for
j=0,...,J] with

dj=1onl; and dist(supp(J;), supp(dn)) > 0 for j # m.
Furthermore, define the positive generic constant

= J; )
cr = max 19l
that solely depends on the geometry of Q. An integration by parts establishes

/ prt - vda = (9), prr - V)12(00) = (V 3}, prT)12(0) + (9}, div prT)12(0)-
Fjﬂl“D

The sum of this over j = 0,..., J and the Cauchy-Schwarz inequality result in

]ﬁrD

J J
Z IT; NTpla; = Z/ prr - vda < c1 || prrlH(div.0)-
J=0 =070
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Another Cauchy-Schwarz inequality and the boundedness of the trace operator y
from (2.3) lead to

o 172 (a0) = SUP {0, ¥ (W))aa : W € HY(Q), [|Wllg(oy = 1}

J
< sup {lly(w)ll200) = w € H'(Q), [Iwllinay = 1} Y lejllzzmor,
Jj=0

J
<G Z T NTjle; < Gy llprTll H(div.0)-
=0

Step 2. Since div prr = 0 in Q, the Gauss divergence theorem proves
J
/ a;;wda=2/ ajda:/ pRT-vda:/divade:O.
a0 —) /TN o0 Q

Jj=0

Hence, Lemma 2.7 provides the existence of a discrete extension pp; € RTx(7) of
apy on the initial triangulation such that div pp = 0in Q and ppy - v = a5, The
stability (2.22) shows

PR llE(div.0) < Cext lapw ll-12(00) < €1CyCext [l prT | H(div.0)- (2.29)

The definition of Off;w ensures, for j =0,..., ],

/(PRT—PET)-vda=/ (prT — pr7) - vda = 0.
I; ;NI

The application of Assumption 2 leads to the existence of a vector potential f €
H'(Q;R?) with

prT — pgp =curl fin Q@ and vXxf=0only.

Moreover,
IBllr(curtoy < V2Bl (@) < V2Ceur llprtll2(0)- (2.25)

Step 3. Let Preq : L*(Q;R®) — BIEI(T) and Prr : L2(Q;R3) — RT.(7) N Hy(div, Q)
denote the projections from [77, Theorem 1.1] with the commuting diagram property

H(curl, Q) 2 H(div, Q)

\LPNed \LpRT

Ne(7) —2L s RT(T)

These operators preserve partial homogeneous boundary conditions in that the equa-
tion v X f = 0 on Iy implies that fned = PNedf satisfies v X fned = 0 on Iy. Their
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pointwise invariance property Prrqrr = grr for all grt € RT;(7) N Hx(div, Q) and
the commuting diagram property lead to

curl fned = curl Preaff = PrT(PRT — PRT) = PRT — PRT-

Further, the operators satisfy the L? stability estimates [77, Theorem 6.3] with some
positive generic constant ¢y, for all ¢ € L?(Q;R?),

1PNeaqllzz() < c2 llqllre) and  ||Prrqllrzq) < ez llqlliziq).-

The positive generic constant c, solely depends on the polynomial degree k € Ny, the
geometric properties of Q and Iy, and the initial triangulation 7;. The commuting dia-
gram property immediately implies the H(curl) stability of Pneg, for all g € H(curl, Q),

|| curl Preaqllrz(q) = [[PrT curl gll12(q) < c2 || curlqllzz(q)-

In particular, (2.25) shows

”ﬁNed”H(curl,Q) < C ||ﬂ||H(Curl,Q)- < \/Eccurlc3 ”pRT”LZ(Q)

This and (2.24) conclude the proof of the stability (2.23) with the positive generic
constant Cned ‘= ¢1CyCext + V2C u1Co. O

2.6 Scott-Zhang quasi-interpolation operator

This section introduces two modifications of the Scott-Zhang quasi-interpolation
operator from [96] and presents their entire construction. The first operator j)'f” :
H'(Q) — S*1(7) preserves polynomial boundary conditions up to degree k + 1 on
one part Ix € {Ip, In} of the boundary and enables the interpolation of the given

Dirichlet boundary data as described in Section 3.3. For any admissible refinement
7 € T(T) of T € T, the second operator ‘K)’z” : SK(T) — SK1(T7) allows for the

preservation of the values on the unrefined simplices 7 N T and is solely employed
in the analysis of the discrete reliability in Section 4.2 below. Throughout the thesis,
Foi*! or KE! act componentwise when applied to vector fields w € H'(Q;R?).

The definition the Scott-Zhang quasi-interpolation of some v € H!(Q) proceeds
as follows. Let (¢, : m=1,...,M) for M := dim(S**'(77)) denote the nodal basis
functions of S¥*1(7") with associated nodes Jj; == (am € Q : m=1,...,M) such
that
1 ifm=n,

0 else.

¢m(an) = 5mn = {
In particular, 71 = N or I, = N U {mid(E) : E € &}. The local definition of the

coefficients of the nodal basis functions in [96, Section 2] are determined by a weighted
integral of v over some two- or three-dimensional closed simplex S,,. The choice of

30



Sm depends on the location of the node a,, and allows to impose some additional
properties on the quasi-interpolation.

If a,, € int(T) belongs to some simplex T € 7, set S,,, := T. If a, € relint(F) belongs
to the relative interior of some face F € ¥, set S,, := F. Any other a,, belongs to some
edge or is the vertex of a simplex and the choice of S,, is subject to one of the following
conditions.

Condition 1. Fix one part Iy € {Ip,In} of the boundary. For any node a, € N
or a, € E on some edge E € &, if a,, € Tx belongs to this part T, choose some
subordinated face S,, € ¥ (Ix) with a,, € S,. Any remaining S,, can be chosen
arbitrarily.

This condition constitutes the operator j;f“ in Definition 2.9 below [4, Section 3.1].

Condition 2. Fix one part Ix € {Ip, In} of the boundary and one admissible refine-
ment 7 € T(7) of 7. For any node a,, € N or a,, € E onsome edge E € &,ifa,, € T
belongs to some unrefined T € TN T, choose some unrefined face S,, € % N F with
am € Sp. If this is not possible (in the case that any F € ¥ with a,, € F has been
refined) and a,, € T'x, choose S,, € F(Ix) with a,, € Sp. Any remaining S,, can be
chosen arbitrarily.

This condition leads to the operator 7()’2” in Definition 2.10 below [48, Section 3.2].

For every m = 1,..., M, let the functions (¢, € Prs1(Sm) @ n=1,...,Ny) for
Ny, := dim(Pr41(S;)) denote the canonical nodal basis of Pr,;(S,,). Without loss of
generality, ¢p1 = Pmls,,. Define (Ymn € Prs1(Sm) : n = 1,...,N;) as the Riesz
representatives in the Hilbert space Py,1(Sn) C L?(Sy,) of the point evaluations in the
nodes J. NSy, forn,v=1,..., Ny,

(l//m,n» ¢m,v)L2(Sm) = Sy

For Y, := Ym1 and m,n = 1,..., M, it holds that

(Ebm, ¢n)L2(Sm) = Smn. (2.26)

Definition 2.9. Given any part Iy € {Ip, Ix} of the boundary and some v € H'(Q),
let the choice of the domains S,, meet the Condition 1 and define J;f“v by nodal
interpolation of the values at a,, € ;4 with

(ﬂcﬂv)(am) = (Yms Z))Lz(Sm)-

Definition 2.10. Given any admissible refinement T e T(T) of T, any part I'x €
{Ip, In} of the boundary, and some v¢ € Sh+1 (‘7’), let the choice of the domains S, meet
the Condition 2 and define 7(>’§+15c by nodal interpolation of the values in a,, € Zj44
with

(KH00) (am) = (Yma 00)12(5,0)
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Remark 2.11. The Definition 2.10 applies to discrete functions vc with respect to some
refinement 7 € T(7). This defines a class of operators 7()12“(‘7', T) : Sk“('?) —
S*1(77) whereas j)f” (7") solely depends on 7. To emphasize this difference, the
two operators are distinguished in this thesis, although 7(;2“ has similar properties to

j;é‘“ due to the following lemma. However, all dependencies on the triangulations
are omitted.

Recall the positive generic constant Cpy, from (2.16).

Lemma 2.12. The two modifications, J = J¥*' and J = K™, of the Scott-Zhang
quasi-interpolation operator satisfy

(a) the pointwise invariance property, for allvc € S**1(T), Jvc = v,

(b) the local stability and the first-order approximation property with a positive generic
constant Csz such that, for allv € H'(Q) andT € T,

V(1= T)ollzery + Ilhr' (1= Toller) < Csz | Vollizar)
with the tetrahedron patch Qr from (2.15),
(c) the global stability and the first-order approximation property, for allv € H'(Q),
V(1= T)ollrzq) + 17 (1 = T)ollizq) < CorCsz | Vollrzq),
(d) the H' stability, for allv € H'(Q),

| Tolla (@) < (1 +max{1, hmax }CoLCsz) [[0]lf1(q),

(e) the preservation of polynomial boundary data on Ix, i.e., if there exists some
ve € SMU(F(Ix)) witho = ve on Ik, then Jov = vc on Ix; in particular, J
preserves homogeneous boundary conditions.

Moreover, for any admissible reﬁnement‘? € T(T) of T, everyuc € Sk(T) satisfies
that

(f) the approximation error (1 — j;f“)b\clr = 0 vanisheson every T € T \ Ry,

in particular, the approximation error (1 — JX*)oc|r = 0 vanishes on ever
8 p pp X y

FeF(Ix)\ Li(F\ F.Ix),
(h) the approximation error (1 — 7(§+1)5C|T = 0 even vanishes on every T € TNT.

Proof. The pointwise invariance property (a) has been shown in [96, Equation (2.18)]
and the local stability and first order approximation estimate (b) in [96, Theorem 3.1]
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(a) Case 1 (b) Case 2

Figure 2.5: In two spatial dimensions, one has to choose an edge S, = E for the interpolation
node a,, = z; € N. To define the value of ‘]()'2“5(;(21) in Case 1, any of the
two edges E € &(T) of triangle T with z; € E can be chosen and polynomial
boundary conditions are preserved. In Case 2, Condition 2 requires E € &(Ix) and
polynomial boundary conditions are preserved as well.

and [96, Equation (4.3)]. This and the finite overlap of the patches Qr immediately
imply (c). The H' stability (d) follows from (c) in

min{1, App (1 = T Dol ) < 11V = T Noll 20y + 1A (1 = Toll 2o
< CorCsz || Vollr2(q)

in combination with the equality min{1, A }™' = max{1, hyax} and the triangle
inequality.

For the operator j;é‘“, property (e) is ensured by Condition 1 and (2.26) in

(Fe0) (am) = (Yms 00)12(s,,) = O (@m)-

However, for the operator 7(;2“, ifa, eTxanda, € T belongs to some T € 7N T,
Condition 2 and the property (2.26) lead to

(KE00) (am) = (Yms 00)12(s,,) = O (am)-

If a,, € Tx and if there existsno T € 7 NT with an, € T, then Condition 2 and ¢ = vc
on I'x ensure that

(KE00) (am) = (Yms 90)12(0) = 0.
Thus, 7(;2“ satisfies (e) as well. Figure 2.5 illustrates the critical cases for the definition
of the value of 7(§+15c on the boundary Iy in 2D.
The locality (f) follows from the fact that, for any a,, € T with T € 7 \ Ry, the

simplex S, € 7 or the face S;, € ¥ belong to the coarse triangulation 7. Thus, (2.26)
shows

(T (am) = (Ym, 00)12(5,,) = Oc(a@m). (2.27)
Since the value (J;(k”?fc)(am) solely depends on the values of vc on Ip, this also
establishes (g). For 7()’2“, Condition 2 ensures that (2.27) even holds for a,, € T with
TeT NT. O
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2.7 Boundary preserving quasi-interpolation
operators

This section presents two quasi-interpolation operators for Nédélec finite element
functions with homogeneous tangential boundary conditions on I'y in the space BI]ﬁI(T ).
Every operator acts componentwise when applied to matrix-valued functions.

The quasi-interpolation operator Syeq : Hn(curl, Q) — BRI(T) from [93, The-
orem 1] preserves homogeneous boundary conditions, but has been established solely
for the lowest-order case. The following theorem summarises its main properties.

Theorem 2.13. Given € Hy(curl, Q), there exists ¢ € H{(Q) and z € H{(Q;R?)
such that the following regular split of the quasi-interpolation error holds

(1-8Nea)f=2+V¢ (2.28)

The local approximation error estimate involves the positive generic constant Csep,, for
everyT € T,

Ih7 zll 2y + 11 D zll 2y < Csen |l curl Bllzz(ap)s

K (2.29)
I1h7 pllzzr) + 11 V dllzz(ry < Csen IBllzzan)-

In particular,

Blo, =0 implies  Snedflr = (1 — Sned)flr = 0. (2.30)

Proof. The regular split (2.28) with partial homogeneous boundary conditions and
the estimates (2.29) have been proven in [93, Theorem 1]. The operator is defined
locally in that values of Snegqf on a simplex T € 7 solely depend on the values of
B € Hy(curl, Q) on the tetrahedron patch Qr from (2.15). The implication (2.30)
follows from the combination of the two local estimates in (2.29). O

Let 7 € T(7") denote an admissible refinement of 7~ € T and apply Notation 3 from
page 22. Recall the definition of R, from Section 2.4. The following theorem asserts the
existence of a stable local projection as introduced by [106, Theorem 4.1] for Nédélec
functions with homogeneous tangential boundary conditions on Iy.

Theorem 2.14. There exists a quasi-interpolation operator Qned : Bﬁ(’?’) — BI’iI(‘T)
such that, for all Pxeq € Bﬁ(‘?’),

(i) (1 - Quea)Prea =0 ineveryT € T\ Ry,

(ii) ”(1 - QNed)ﬁNed”H(curl,Q) < qu ”ﬁNed”H(curl,Q)-

The proof of Theorem 2.14 follows the strategy from [106] to construct Qyeq, while it
employs a boundary-aware discrete regular decomposition from [70] and the boundary
data preserving quasi-interpolation operator Sneq from Theorem 2.13. It requires
several operators introduced in the following lemmas.
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Lemma 2.15. There exists a cut-off operator yg : BI’;(‘?) — BI’ﬁI(‘?) with

¥rPredlk =0 forallK € T\ Ry and  yrPBredlr = Predlr forall T € T\ T. (2.31)

If,BNed € BIE](T) satisﬁes ”h;‘lﬁNed”Lz(Q) < Cfreq ”,BNed”H(curl,Q); then the Stability
estimate

”XRﬂNed”H(curl,Q) < Ceut ”:BNed”H(curl,Q) (2-32)

holds with a positive generic constant Ceyt.

Proof. Let 31, .. .,?;M € Bﬁ(‘}: ) denote the canonical basis functions of BI’ﬁI(‘?) with
M = dim(BI’iI("i:)). Define the index set

Ri={m=1,...,M : by ¢BS(T)}.
Following [106, Section 4.1.1], define

M
XePrea = ) tmbp for all fyea = ) dmbm.
m=1

meR

This ensures the locality (2.31). The operator yg preserves boundary conditions in
that v X Pned = 0 on Iy implies v X (yrPned) = 0 on Iy. The L? stability of yr [69,
Section 3.6, Equation (3.37)] reads

lxrBredllzc) < c1 llBredllizcq)  for all Bued € BG(T).

An inverse estimate [60, Section 1.7] leads to a positive generic constant ¢, with

”XR,BNed“H(curl,Q) o) ”h';'lXR,BNedHiZ(Q)'

The combination of the two previously displayed formulas proves the stability estim-
ate (2.32) with positive generic constant Ceyt = ¢1¢2Cfreq [106, Section 4.1.1], for every

,BNed € BIE](T) with ”hr}l,BNed”Lz(Q) = Cfreq ”ﬂNed”H(curl,Q),
||XRﬁNed||H(curl,Q) < 162 ”h‘;}ﬁNed”Lz(Q) < CchCfreq ”ﬁNed”H(curl,Q)- o

The piecewise polynomial and globally H! functions in $¥*(77) do not possess any
jumps and, thus, are globally continuous. They satisfy the following slightly stronger
regularity property.

Lemma 2.16. For any0 < s < 1/2, S*1(77) ¢ H™*(Q).

Proof. This result is an immediate consequence of [73, Lemma 1] stating that piecewise
smooth functions are H* multipliers for s < 1/2. It is based on the characterisation of
H?® regularity from [79, Theorem 10.2 in Chapter 1.10.2].
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For arbitrary oc € S¥*1(77), any component g; € Py(7") of its gradient (g, g2, g3) T =
V uc can be represented in the form

9gj = Z XTPT

TeT

with bounded Lipschitz continuous functions pr € C*'(Q) satisfying pr|r € Px(T).
Since the constant function 1 € H*(Q), [73, Lemma 1] implies g; 1 = g; € H*(Q). O

The required discrete regular decomposition in the proof of Theorem 2.14 involves
the following strictly local and continuous interpolation operator Hyeq from [70,
Section 4.1.4].

Lemma 2.17. There exists a linear and bounded operator Hyed : H'**(Q;R?) — Ni(7°)
such that Hyeq is well-defined for any s > 0 and it holds that, for all vc € ST RY),

||7_{NedUC||H(CurLQ) < Cpp ”UC”H(curl,Q) (2-33)

with a positive generic constant Cyp depending on s > 0. The operator Hyeq preserves
boundary conditions in that the image of H'**(Q; R*) N Hy(curl, Q) is BI’iI(‘T),

FHyea (H™** (Q; R?) N Hy(curl, Q)) = BR (7).
Everyv,w € H™(Q,R?) and T € T satisfy that
(v—w)|r =0 implies (Hneqv — HNeaw)|r = 0. (2.34)

Proof. There exists some linear and bounded operator Hgy : HY/%(Q;R?) — RTi(7)
such that Hyeq satisfies the commuting diagram property [70, Lemma 4.7]

C(Q) =5 C(Q)

J/HNed \LﬂRT :

Ne(7) -2y RT(7)

The space RT;(7") is pointwise invariant under Hgr in the sense that Hrrprr = prT
for all prr € RT;.(7") [70, this result is the projection property from Lemma 4.7].

Due to Lemma 2.16, the operator Hyeq is well-defined on Sk”((]'; R3) [70, Equa-
tion (4.92)]. For vc € SM1(T;R3), curloc € Pr(7;R?) and divcurloc = 0 imply
curloc € RTi (7). This shows, forany T € 7,

Il curl(1 = Hied)vcllzz(ry = II(1 = Hrr) curlocl|zz(r) = 0. (2.35)

Since curloc € Pp(77;R?), the estimate from [70, Lemma 4.16] leads to the existence

of a positive generic constant ¢; depending on the polynomial degree k and satistying,
forall T € 7 and vc € S**1(Q;R3),

1(1 = Hyxea)vcllzz(ry < cihr | Docllzcr).
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An inverse estimate [60, Section 1.7] with some positive generic constant c; leads to

I(1 = Hned)vcllzry < cica llocllzer).

The combination of this with (2.35) and a triangle inequality prove the stability (2.33)
with the positive generic constant Cyp := 1 + c1¢2. The preservation of homogeneous
tangential boundary conditions has been established in [70, Equation (4.94)]. Finally,
the strict locality from [70, Lemma 4.8] shows the implication (2.34). ]

Proof of Theorem 2.14. Step 1. Given any B\Ned € BN(‘?\') the discrete regular decom-

position from [70, Theorem 1.3] with respect to the trlangulatlon 7 leads to some
oc € Sk+1(T R®) with o¢c = 0 on Iy, ¢c € Sk”(T) with ngC = 0 on Iy, and the
remainder ﬁNed € BN(T) for the decomposition

Pred = Hedvc + V ¢c + Ped
The functions vc, (}S\C, and ENed satisfy the stability estimates

”b\C”Lz(Q) +| V¢C”L2(Q) <0 ||ﬁNed||L2(Q), (2.36)

I Docllz2cq) + 117 Bredllrzca) < c2 Il PnedllH(curo)-

Recall the Scott-Zhang quasi-interpolation operator 7({\‘1“ from Definition 2.10 with
respect to the part Iy of the boundary. Following [106, Section 4.4], define

QuedPred = Hyea K500 + VKE! Pc + Sed xrPNed + (1= xR)Pred € Ni(T).

Step 2. Since 7({\“1”5(; and ‘K{f{’lac satisfy homogeneous tangential boundary condi-
tions on Iy,
v X (WNe(ﬂ(k“UC +V 7(§+1¢c) =0 only.

The operators yg, 1 — yr, and Sy preserve homogeneous boundary conditions and,
therefore,

Vv X (SN)(R,EN +(1- XR),EN) =0 only.

Consequently, v X QNedﬁNed =0 on Iy.
Step 3. The quasi-interpolation error reads

(1 = Qued) Pred = (Hied — Fined K5 )oc + V(1 - Wﬁ“)ac + (1 — Swed) YrBNed-

The careful definition of the Scott-Zhang quasi-interpolation 7({\‘]“ in Section 2.6
ensures that (1 — K5")oc|x = 0 and (1 — K5)dclx = 0 vanish on any unrefined
simplexK € T N7 Hence, the implication (2.34) shows that (?{Ned—WNedWI’fI”)Ucl K=

0 vanishes on any unrefined simplex K € 7 N T as well.
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By definition of the cut-off operator yg from Lemma 2.15, ( XRﬁNed)lT = 0 vanishes
onany T € 7 \ R;. This and (2.30) show that ((1 — SNed))(RENedHT = 0 vanishes on
any T € T \R,. Since 7\ R, C T \R; C 7 NT, it follows that ((1 —QNed)ENed)lr =0
onany T € 7 \ R..

Step 4. The triangle inequality and the stability estimate (2.33) show

| (Hned — Hea Kol reurt) < Cap (I[0c]l o) + 1KE 0 curo) ) -
The estimate || curl oc || 2(q) < V2| Doc|l;2(q) and Lemma 2.12 (d) lead to

| (Fined — Fned K50l (i) < CapV2(2 + max{1, Amax}CorCsz) oclm (-

Hence, the stability estimates from (2.36) result in

_ e
| (Hned — Hea KN 0C | (curl0)

< CHP\/E(Z + max{l, hmax}COLCSZ)(CI + CZ) ”ﬁNed”H(curl,Q)-

Moreover, the stability from Lemma 2.12 (c) and the estimate (2.36) prove
IV (1 = KED ellieao) < CorCsz Il V delliziay < CorCszer |l Bredlliz (-
The sum of the local stability (2.29) over all T € 7~ leads to, for all f € Hy(curl, Q),
(1 — Sned) BllE(cur,0) < max{1, Amax} CorCseh || BllH(curt,0)-
Since [|h7 fxedlliz(q) < 2 |Bnedllpr(curle)s this for f = fed and (2.32) verify

”(1 - SNed)XRENed”H(curl,Q) < max{l, hmax}COLCScthut ||ENed”H(Curl,Q)-

The combination of the three previously displayed formulas proves assertion (ii) with
the positive stability constant

Cqi = CapV2(2 + max{1, hymax }Cor.Csz) (c1 + ¢2)
+ Cor.Cszer + max{ 1, hmax}COLCScthut- |
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3 Adaptive least-squares finite
element method

This chapter introduces the LSFEM and the alternative a posteriori error estimation. To
this end, the first Section 3.1 presents the generalised first-order system and formulates
assumptions on the involved operators. Those assumptions guarantee well-posedness
of the resulting LSFEM as well as the convergence analysis of the adaptive scheme.
Subsequently, they are verified for the three model problems in Section 3.2.

The discrete solutions to the LSFEM have to explicitly satisfy some discrete boundary
conditions. The Sections 3.3-3.4 present the approximation of the given boundary
conditions in the appropriate spaces. Some extensions of the approximation errors
on the boundary are required to remedy the lack of the Galerkin orthogonality in the
case of inhomogeneous boundary data. The reader may skip both sections when the
main interest is on homogeneous boundary conditions.

The Section 3.5 states the LSFEM and analyses its well-posedness based on the
assumptions from Section 3.1. Furthermore, it verifies a posteriori estimates for the
built-in error estimator. Eventually, the Section 3.6 introduces the a posteriori error
estimator and the data approximation error for the ALSFEM algorithm from page 4.

3.1 Generalised model problem

This thesis investigates the LSFEM for the solution of a generalised model prob-
lem. It includes two bounded linear, not necessarily self-adjoint, operators A, S :
L2(Q;R¥3) — L2(Q;R¥3). They serve as the generalisation of the operators from
the three model problems listed in Table 1 on page 3.

The assumptions on the linear operators A and S involve the seven positive generic
constants C#, Cidd, Cen, Cs, Ck, Ciny, and Cqi. Throughout the thesis, suppose that

(W1) [|Arll12(q) < Ca llll12(q) forall 7 € L2(;R¥3),

(W2) ||| < Cud (AT, T)12(q) + || div || ) forall r € =,

2 2
L2(Q) L2(Q)

(W3) (8Duv,7)12(q) < Cen (AT - SDollr2q) + I diVT||Lz(Q))||SDv||Lz(Q) for all
r€Xyando € Up.

The second assumption (W2) generalises the well-known tr-dev-div inequality estab-
lished in a general setting in 8, Theorem 3.1].
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Since S D might be the gradient or its symmetric part, [|SD ¢ ||;2(q) is the natural
energy norm on HIID(Q; R3). In particular, it measures the strain tensor in the case of
linear elasticity. Thus, the following boundedness of the operator S

(W4) [|S7ll12(0) < Cs lITll2(q) forall 7 € L2(Q;R33)
and the abstract Korn inequality
(W5) [[Dollrz(q) < Ck ISDol|12(q) forallv € Hllj(Q;R3)

are assumed as well.

Let A*, S* : L2(Q;R¥3) — L2(Q; R¥3) denote the adjoint operators to A, S. For
every admissible triangulation 7~ € T and piecewise polynomial functions 7, €
Pies1 (T3 R%) and vy, € Pryq (73 R¥S), suppose that

S*(Atyw — SDupy) € H(div, T;R>),

3.1
A (Atyw — SDopy) € H(curl, T5;R¥P). (3.)

Additionally, assume the following abstract inverse estimates, for T € 7,
(We) |T|1/3” diVS*(ﬂpr -S8D Upw)”LZ(T) < Ciny ”S*(ﬂfpw -8 DUpW)”LZ(T),
(W7) |T|1/3” curl ﬂ*(ﬂfpw -8D Upw) ||L2(T) < Cinv ”ﬂ*(ﬂfpw -8D z)pw) ||L2(T)~

Due to the regularity (3.1), the normal trace (S*(Ayw — S Dopy))|7vr and the tan-
gential trace vp X (A" (Atpw — SDupy))|r exist on every face F € F(T) of T € T
in the sense of Section 2.2. Further, let every zpw € Pyt (73 R*?), vpw € Pt (T5R?),
and T € 7 with F € 7 (T) satisfy the abstract discrete trace inequalities

(W8) |TIV8|[(S*(Atpw — SDopw))lr Vellizr) < Casi IATpw — SDopwllrz(r),
(W9) |T|1/6||VF X (ﬂ*(ﬂfpw - SDUpW))lT”LZ(F) < Cati “ﬂfpw - SDUpw”LZ(T)-

Remark 3.1. The assumptions (W1) and (W4) imply that the adjoint operators A*, S*
to A, S are as well bounded with the same generic constant, for every 7 € L?(Q; R¥®),
A 7l 2q) < Calltlle@) and  [|S*7l12(q) < Cs lI7lli2(q)- (3.2)

Given |Iy| > 0 and the Neumann boundary conditions ty € L?(Iy;R?), define the
space
> = {1’ € H(div, ;R*®) : r-v=1tyon FN}.

For |[In| = 0, let
2 = {r € H(div, ;R>®) : ][trrdx =0}.
Q
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The test functions belong to the corresponding space with homogeneous normal
boundary conditions

Hy(div, Q; R¥3) if |Ty| > 0,
2N =
> else.

For the Dirichlet boundary conditions up € H'(Ip; R3), define the space
U= {0 e H(%R?) : v =upon I‘D}

and for the test functions
Up = HL (Q;R?).

Given a right-hand side f € L*(Q;R?), the linear model problem seeks ¢ € 3 and
u € U such that

f+dive=0 and Ac-SDu=0 inQ. (3.3)

This formulation and the definition of the spaces ¥ and U remain meaningful for
less regular boundary data ty € H™'/?(Iy; R®) and up € H'/?(Ip; R?). However, the
a posteriori analysis of FEMs with approximated inhomogeneous boundary data usually
incorporates additional regularity assumptions [7, 4]. The assumptions ty € L?(Iy;R®)
and up € H'(Ip;R®) in this thesis allow for suitable approximation error estimates in
the Sections 3.3-3.4 below.

3.2 Application to the three model problems

This section verifies the assumptions (W1)—-(W9) for the three model problems from
Table 1 on page 3.

The Laplace operator A acts on each of the three components in the vector-valued
Poisson model problem

-Au=finQ, wu=uponlp, and Duv=tyonly.

The introduction of the flux variable ¢ = Du leads to an equivalent first-order
system of PDEs with the identity id on L?(Q;R*%®) for A := id and S := id in the
equations (3.3). The corresponding least-squares formulation from [80, 71] minimises

LS(f;o.u) = ||f +divollfy g + llo = Dullf,

(Q) (Q)

Lemma 3.2. In the case of the Poisson model problem, the operators A = S = id satisfy
the assumptions (W1)-(W9).
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Proof. For A = 8 = id, the assumptions (W1)-(W2) and (W4)—-(W5) are trivial with
the positive generic constants Cg = Cigqg = Cs = Cx = 1.

For t € Xy, the Helmholtz decomposition (2.9) from Theorem 2.2 applied to the
three components guarantees the existence of a € HIID(Q ;R¥ and B € HIEI(Q; R33)
with 7 = D & + curl . The stability estimate || D a||;2(q) < Cg || div 7]|12(q) from (2.10)
shows

(Do, 7)12(0) = (Do,Da)rz(q) < [[Dollzzo)ll D allizq) < Cr [IDollz(q)ll div ]|z (q)

and concludes the proof of (W3) with Cg, = Cr in the case of the Poisson model
problem

For the self-adjoint operators A = A* = § = §* = id and the abbreviation
Ppw = Tpw — D 0pw € Py1 (T3 R¥?), it holds that S*ppw = A*ppw = ppw- A standard
inverse estimate [60, Section 1.7] shows, for a positive generic constant cjyy,

1D ppwllZz ) < g ITI7 1l ppwll? - (34)

This immediately implies the assumptions (W6)—-(W7) with the positive generic con-
stant Cipy = V2¢iny-

Recall from Notation 1 on page 10 that |M| denotes the Frobenius norm when applied
to matrices M € R¥®, Given any T € 7 and F € ¥ (T) with unit normal vector vr
satisfying |vp| = 1, an elementary relation between the row-wise scalar product and
cross product reads, for all M € R3%3,

IMv|? + [ve X M|? = [M[*.
Hence,

llpLsiT VF”iz(F) + [[vr X PLSlT”iZ(F) = ||pLS|T||i2(F)~ (3.5)

This and the trace inequality from Lemma 2.6 applied to each of the nine components
prove

”ppw|T VF”}%Z(}:) + ”VF X ppw|T||]%2(F) < Cu (|T|1/3|| Dppw”izq) + |T|_1/3”ppw”izg))-

The inverse estimate (3.4) leads to

|—1/3

”ppwlT VF”EZ(F) + “VF X pleTHiZ(F) < Ctr(1 + ciznv) |T ”ppw”]zJZ(Ty

The square root of this estimate concludes the proof of (W8)—-(W?9) with the positive
generic constant Cyy; = (Cyr (1 + cfnv))l/ 2, O

Define the deviatoric (or trace-free) part dev : L?(Q;R>?®) — L%(Q;R¥3), for
T € L2(Q;R¥3),

1
devt:=7-— 3 tr 7 Isxs. (3.6)
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Let Iy = 0. Given the Stokes equations
—Au+Vp=f and divu=0 inQ,

the pseudostress variable o := D u — pl3x3 leads to the equivalent first-order system of
PDEs from [32]

f+dive=0 and deve—-Du=0 inQ.

For the choice of A := dev and S := id, this is (3.3).

Alternative least-squares formulations beyond the scope of this thesis include
other additional variables such as the velocity-vorticity-pressure formulation [72], the
velocity-stress-pressure formulation [16], and the velocity-velocity gradient-pressure
formulation [29]. For a comprehensive presentation of the corresponding least-squares
discretisations, the reader is referred to [17].

Lemma 3.3. In the case of the Stokes equations, A = dev and S = id satisfy the
assumptions (W1)-(W9).

Proof. For the projections A = dev and S = id, the assumptions (W1) and (W4)-(W5)
are trivial with the positive generic constants C# = Cg = Cx = 1.
Since |In| = 0, every 7 € Xy satisfies

][ tr(r)dx = 0.
Q

Hence, the tr-dev-div inequality [18, Proposition 9.1.1] implies the assumption (W2) in
the case of the Stokes equation

” tr TlliZ(Q) < Cidd (” deVT”iZ(Q) + ” diVTl|iZ(Q))~

The proof of (W3) again employs the Helmholtz decomposition (2.9) from The-
orem 2.2 and follows verbatim the proof of Lemma 3.2 with the positive generic
constant Cg, := Cr.

The self-adjoint operators A = A" = devand S = §* = id do not depend on
x € Q and, thus, map arguments from P, (7; R¥?) to Pry1 (7;R¥®). Consequently,
the assumptions (W6)-(W?7) follow from the inverse estimate (3.4) with the positive
generic constant Ci,y = \/Ecinv.

For ppw = dev 7py — Dopy € Py (77 R3*3), a direct calculation with the row-wise
cross product as in the proof of Lemma 3.2 leads to

”PpwlT VF”iZ(F) + [|ve X ppwlT"iZ(F) = ”pleT”iZ(F);

1(dev ppw) 7 VIl gy + llve X (dev pyu) 712y = 11(dev pp) 11 .
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This and the trace inequality (2.19) from Lemma 2.6 lead to

lppwlr velZ: ) < Cor (ITIVID ppwllZ iy + 1717 ppw 172 ),
lve x (dev ppu) 7113 5y < Cr (ITI?IID(ev ppu) 2, 7, + ITI7 1 dev ppwllZ, 7))

The inverse estimate (3.4) and the boundedness of the deviatoric part conclude the
proof of the assumptions (W8)—-(W?9) with the constant Cqyj = (Cie(1+¢2 ))V2. O

mv

Let S : L2(Q;R¥®) — L%(Q;R>3) denote the symmetric part of a matrix-valued
function, for r € L2(Q; R3*3),

1
St :=symr = §(T+ ). (3.7)

and £(u) := symDu the strain tensor of the displacement u € H'(Q;R?). For the
two Lamé parameters A, u > 0, the fourth-order tensor C : R¥3 — R with CM :=
2uM + A(tr M) 353 for all M € R¥*® defines the isotropic material law in the equations
of linear elasticity

—div(Ce(u)) = finQ, u=uponlp, and (Ce(u))v=tyonly.

The inverse of C defines the operator A : L2(Q;R¥*3) — L2(Q;R¥®), for r €
LZ(Q;R3X3)’
1
Ar=Clr= —(T—
2u\ 30 +2u

(tI‘ T)ngg). (38)

The introduction of the stress variable o := Ce(u) leads to an equivalent first-order
system of PDEs. The resulting least-squares formulation of the linear elasticity problem
from [34] reads

LS(fi0,u) = |f +divol o) + 1C70 = (@)l g,

and provides a locking-free discretisation. Alternative formulations beyond the scope
of this thesis employ a different scaling with the material tensor C [33, 31] or are based
on other equivalent first-order systems such as the displacement-displacement gradient
formulation [75], the displacement-displacement gradient-pressure formulation [29],
and the stress-displacement-rotation(-pressure) formulation [13]. Further methods
include an additional residual to weakly impose the symmetry of the stresses for an
improved momentum balance [94, 98].

Lemma 3.4. In the case of the linear elasticity problem, A = C™! and S = sym satisfy
the assumptions (W1)-(W9) with A-independent generic constants.

Proof. A direct calculation from [34, proof of Theorem 3.1] proves the assumption (W1),
for T € L?2(Q;R¥3),

1
IC 7]l 2 (q) < o llz2(q)-
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The boundedness (W4) of the projection sym is trivial with generic constant Cg = 1.
Since |Ip| > 0, the assumption (W5) follows from the standard Korn inequality [52,
Theorem 6.3-4].

For both cases, |Ix| = 0 and |Iy| > 0, the subspace %y C H(div, Q; R*?) does not
contain the constant identity tensor 7 = L343 and, thus, there exists a positive generic
constant c¢; such that r € Yy satisfies [38, Lemma 4.2]

ltrelleg < e (I develiZ g, + Il divelZs )
For A = C™, this implies the assumption (W2) using

|| dev THEZ(Q) = (devr,7)12() = 2p(C 17, dev T)12(Q)

31
-1 2
< 2u(Cr,dev ) () + (1 ey 2/1)” tr T||L2(Q)
= 2u(C 7'z, dev T)2(q) + 2u(tr C iz, tr T)12(Q)
2
=2u(C7'r, dev r)p2(q) + ?'U(C_IT, (tr 1) I3x3)12(@)
= 2u(C ™'z, T)12(Q)-

The resulting positive generic constant Cyqq = 2pc; is independent of the Lamé
parameter A.

For § = sym, an integration by parts and the orthogonality of the projection sym
show

(e(v), 7)r2(q) = (Do, sym1)r2(q) = (Do, 7)12(q) + (Do, (1 — sym)7)12(q)
= —(0,div 1)12(q) + 2p(D o, (1 — sym) C_IT)LZ(Q)
= —(v,div 1)12(q) +2p(Do, (1 — sym) (C'r - £(0)))12(q)-
The Cauchy-Schwarz inequality and the Friedrichs inequality from Lemma 2.1 yield

(e(v), Drz(e) < (Crlldivellzi) + 20 IC7'7 = (o) ll2()) 1 Dolli2(q)-

This and the already proven assumption (W5) with the positive generic constant Cx
conclude the proof of the estimate (W3) with the constant Cg, = Cx max{C, 2u}
independent of the Lamé parameter A.

The self-adjoint operators A = A* = C™! and S = S* = sym do not depend on
x € Q and, thus, map arguments from P, (7; R¥?) to Pry1(7;R¥®). Consequently,
the assumptions (W6)-(W?7) follow from the inverse estimate (3.4) with the positive
generic constant Ci,y = \/Ecinv.

For ppw = C 'y — €(0pw) € Prst (T R3*3), proceed as in the proof of Lemma 3.2
to establish

1(sym ppw) 7 VEIlL2 ) + 1ve X (sym ppw) 71172y = I1(sym ppu) 7l 72 )

1CC o) Vel gy + 1vE X (€7 ) 122y = 1 pp) s
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This and the trace inequality (2.19) from Lemma 2.6 show

1(sym ppwo) 7 VellZa ey < Car (IT12 1 D(sym ppu) 22y + T2 (5ym o) 127,
Ive X (C7 o) ll122 gy < Cer (ITIY3IDIC ) 22y + T C el ).

The inverse estimate (3.4) and the boundedness of the symmetric part and the material
tensor C™! in

_ 1
” Symppw”izg) < ”ppw”izg) and ”C 1ppw||]%2(T) < 4_’[12 ||ppw||i2(T)

conclude the proof the assumptions (W8)—-(W9) with the A-independent constant
Caii = max{1,1/(2p) }(Cie (1 + ¢2, )2, O

mv

Remark 3.5. All arguments in the proof of Lemma 3.4 can be employed element-wise
for T € 7. Therefore, they apply to problems with composite materials if the piecewise
constant Lamé parameters are resolved by the initial triangulation 7;.

3.3 Approximation of Dirichlet boundary data

For the approximation of inhomogeneous Dirichlet boundary data up € H'(Ip; R?),
the Scott-Zhang quasi-interpolation operator jDk“ from Section 2.6 is employed [92, 4].
The Condition 1 with respect to Iy ensures that the values of the quasi-interpolation
at the interpolation nodes a; € Ix4; N Ip on the Dirichlet boundary solely depend
on integrals of up over boundary faces F € F(Ip). Since up € H'(Ip;R?), this is
well-defined. Formally, the construction follows [4, Section 3.2]. Given a regular trian-
gulation 7~ € T in the sense of Section 2.4, let up € H 1(Q;R?) denote any extension of
up on Q with #p = up on I}, and regard JF*! : HY/?(Ip; R®) — S¥1(F(Ip); R®) with

jbk“uD = yD(ﬁ+lﬂD) as an approximation of the Dirichlet boundary data. For the

ease of the notation, the operator ~Dk+1 is again denoted by j]')k“
the surface gradient Dy up from from (2.4).

The following lemma asserts the well-known surjectivity of the trace operator yp.
It is proved here for the sake of explicit stability constants. Recall Notation 3 from

page 22 for a triangulation 7 € T and its admissible refinement T e T(T).

. Let D up abbreviate

Lemma 3.6 (Dirichlet boundary data extension). There exists some extension w €
HY(Q;R3?) with

w= (1= 5 up on Ty and [Dwlia) < 10 - T Duplmeey.  (3.9)

For the overlap constant Coy, and the stability constant Csz of the Scott-Zhang operator
from Lemma 2.12 (c), there exists some discrete extension we € S<*'(T;R3) satisfying

we = (j]')k” - jbkﬂ)uD onlp and

-~ Tk+1 k+1 (3.10)
IDwecllzzq) < CorCsz 1(Jp " = Ip ™ upllgem,)-
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Proof. Step 1. Abbreviate y := (1— :75"”)141) € H'(Ip; R®) and let w € H'(Q;R?) solve
the Dirichlet problem

(Dw,Do)2(q) + (w,0)12(q) =0 forallov € H]ID(Q;Rg) and w=yonlp.
The weak solution w solves the minimisation problem
lwllg1(q) = min {||z||H1(Q) : z€ H(Q;R?) with z = y on FD}
= Nyl = 110 = T upllpe )

and satisfies (3.9).
Step 2. The application of Step 1 leads to w € H!(Q;R?) with

w= (I - F5uponTp and  [|DWllrz) < 1T = T3 upll ey

The Scott-Zhang quasi-interpolation w¢ = ADk“W preserves polynomial boundary

data on Iy with respect to the triangulation T by Lemma 2.12 (e). Thus, wc = (jbk“ -
j]')k“)uD on I and the global stability from Lemma 2.12 (c) holds

IDwellzz(q) < CorCsz D Wlz2(q)-
The combination of the two previously displayed formulas proves (3.10). ]

The approximation of the Dirichlet data is naturally measured in terms of the
boundary oscillations from (2.20) evaluated for the surface gradient of up

osc*(Dup, F(Ib)) = D lep"*II(1 = ) Dup|l2, .
FE?'_(FD)

The following results require the additional regularity up € H!(Ip; R?) to control the
boundary data approximation errors from (3.9)-(3.10) in Lemma 3.6 in terms of the
oscillations.

Lemma 3.7. There exists a positive generic constant Cp; such that everyup € H!(Ip; R®)
satisfies
(1 - 51'3k+1)uD||H1/2(rD) < Cp; osc(Dup, F (Ip)).

Proof. Since the Scott-Zhang quasi-interpolation operator J¥*! is an H'/?-stable op-
erator and up € H!(Ip;R®), [74, Theorem 4] applies and proves the existence of a
positive generic constant ¢; with

(1 = FF* D upligrey, < el DO = FEDup) 2 m)-

The localisation of the estimate

ID((1 = J5 ™ up) I 2y < c2ll(1 = k) Dup iz,

from [4, Proposition 3.1] with some factor hs inside concludes the proof. O
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Recall the notation for n-layers £, around faces from page 24.

Lemma 3.8. There exists a positive generic constant Cp, such that everyup € H'(Ip; R®)
satisfies

1T = T3+ YuplZe ) < Cz 0sc*(Dup, Ls(F\F b)), (3.11)

Proof. Since the estimate has been shown in [4, proof of Proposition 6.1, from line 7
on page 1227 to line 19 on page 1228], the proof at hand solely gives an overview
of the arguments. The locality of the Scott-Zhang quasi-interpolation operator from
Lemma 2.12 (g) ensures that

(jDkH - jDkH)uDlp =0 onevery Fe F(Ip)\ Li(F\ 5’}, D).

The remaining surface Sp ; = relint |J £;(F\ 7, Ip) is the relative interior from (2.5) of
the union of all the faces in £; (7 \ F , Ip) on the Dirichlet boundary. The estimation of
1(ITF = FE D up | H1/2(1y) ON Sp,1 employs a localisation technique from [39, Section 3].
For all F € ¥ (Ip) with patch Sg = relint | £L;({F},Ip), [4, Proposition 3.1] shows

(1 = ) Dupllzzcry < 1D = FEup)llz(ry < 1 11(1 = i) D upllzzsy).-

This plus the stability and approximation property of the Scott-Zhang operator on the
boundary [4, Equations (3.7)—(3.9)] lead to the estimate (3.11) in the third displayed
formula on [4, page 1228]. O

3.4 Approximation of Neumann boundary data

Given a regular triangulation 7~ € T with the set of Neumann boundary faces ¥ (Iy),
approximate inhomogeneous boundary values ty € L*(Ix;R®) ¢ H™V?(Iy; R%) by
the L?(Ty) orthogonal projection Ity onto the piecewise polynomials Py (F (Iy); R?)
with

lltn = Tietnllz2 ey = inf {lltn = spwllzzme @ Spw € Pe(F (In); R}

The analysis of the approximation error
(1 =TIty L Pk(T(FN);R3)

involves the extension fy € L?(3Q;R?) by zero

This leads to an approximation error (1 — ITy)ty € L?(9Q) on the whole boundary
with (1 = II;) &y = 0 on Ip.
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The following lemma asserts the well-known surjectivity of the normal trace oper-

ator yy*" from Section 2.2 and allows for an H(div)-stable extension of the Neumann

boundary data approximation error inside the domain. It is proved here for the sake
of explicit stability constants. Let T e T(7") denote an admissible refinement of
the regular triangulation 7~ € T with Notation 3 from page 22. Recall the Friedrichs
constant Cr from Lemma 2.1 and the stability constant Cey from Lemma 2.7.

Lemma 3.9 (Neumann boundary data extension). Given ty € L?(Iy;R?), there
exists some divergence-free extension & € H(div = 0, Q; R¥3) with

&v=(1-MinondQ and ||Ellz) < (1+CE) (1 -Tllgeoe).  (3.12)

There exists some discrete divergence-free extension &T € RTk(‘%; R¥>3) N H(div =
0, Q; R¥3) with

Erv = (T — )i 0on 9Q  and ||gRT||L2(Q) < Cexe || (Tg — ) Nl g-1/2(a0). (3.13)
Proof. Step 1. Let w € H!(Q;R®)/R? solve the Neumann problem
(Dw,Do)p2q) = (0, (1- Hk)tN)LZ(aQ) for all v € H'(Q;R?®)/R>. (3.14)

The integration by parts shows that its weak derivative ¢ :== Dw € H(div, Q; R3>*3)
satisfies div{ = 0 and év = (1 — IIi)tnx on Q. The stability of this boundary value
problem follows from the Friedrichs inequality from Lemma 2.1 and (3.14) in

1

) ||W||j2ql(9) < IDwl|7,
F

@ = (D W,DW)LZ(Q) = (W, (1- Hk)tN)LZ(FN)‘

The division by ||w||z1(q) and the estimate by the supremum over H' (Q; R*) \ {0} lead
to

1l m(aiv.e) = 1D wllzzo) < Iwllmo) < (1+CE) I1(1 = ) inll -2y -

Step 2. By definition of the L?(9Q)-orthogonal projection I, the function /t;w =
(ﬁk — Tty € Pe(F (0Q); R?) satisfies

f ’t\pw da = (ﬁk - Hk)?N da =0.

o0 Iy

Hence, Lemma 2.7 applied to every component with respect to the fine triangulation
7 guarantees the existence of some discrete extension prr € RT;(7; R¥*) such that

div prr = 0 in Q and prrv = ’t\pw = (ﬁk — 1)ty on 9Q. The stability (2.22) reads

ez () < Cext II(Tk — )Nl 1200

and concludes the proof of (3.13). O

49



The approximation of the boundary data is naturally measured in terms of the
oscillations

o5ty F(T) = > Jaop 111 = Tl
FeF (In)

The following two results require the additional regularity ty € L?(Q;R®) to control
the boundary data approximation error from Lemma 3.9 in terms of the oscillations.

Lemma 3.10. There exists a positive generic constant Cy such that the extension ty €
L2(3Q;R?) by zero of any ty € L*(Ix; R?) satisfies

(1 = M) il -12(90) < O ose(in, F(IN))-

Proof. Recall for any face F € ¥ (Iy) of surface measure |F|, that or € 7 denotes
the unique tetrahedron with F € ¥ (wp) of volume |wr| and diameter diam(wr).
Since (1 — )ty € L%(9Q;R?) and the duality bracket (s, *)sq for the dual space
H™2(0Q; R%) of H'/2(0Q; R®) extends the L?(9Q) scalar product,

((1 =Tt 0) 40 = (1= TN 0) 1250 = ((1 =TT 0) 2y

The supremum of this over v € H!(Q;R?) with norm lollg1(q) = 1 results in the
operator norm ||« || -112(5q) on the space H™2(aQ; R?). Hence, it suffices for any
v e Hll)(Q;R3) with ||o]|f1(q) = 1 to prove the estimate

((1 = IIp)tn, U)LZ(FN) < Cy osc(tn, F (In)). (3.15)

Given any such v, let v = ]i) 0 dx be the integral mean of v on the face-patch wr
of F € ¥ (In). The Poincaré inequality including the Payne-Weinberger constant
from [88, Section 4] with a corrected proof in [10, Theorem 3.2] verifies

diam(wr)

| Dol (3.16)

lo = vFllL2(ep) < (0F)

Since ﬁ_(l — i)ty da = 0 for every F € ¥ (Iy), Cauchy-Schwarz inequalities in L (F)
and in R!7 W show for the left-hand side in (3.15) that

((1 —Hk)tN, U)LZ(FN) = Z ((1 _Hk)tN;U_UF)LZ(F)

FE?_(FN)
< lor eI (1 = T tll 2 gry lwr ™6 llo — ol 2p)
FeF (In)
< ose(tw, F(N) [ D lorl™llo = opll%, .
FeF (In)
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The trace identity for g := |0 — vr|? € Wb!(wF) on the tetrahedron @r =: conv{F, Pr}
reads [42, Lemma 2.6]

_ 1
P o =orly = fo(da=f gtodxeg f (e=r)- Vgt ds
WF WF

diam(wpr)

< |60F|_1||U - UF||iz(wF) + W llo - UF||L2(wF)|| DU”LZ(wF)-

This and (3.16) prove

|F| diam(wF)? (E
3

1
lo = o[l ) < +=) Dol

m|wr|

With the positive generic constant

4/2 1
C2 = —(— + —) max |F| diam(wp)?|op|™/3,
N m\3 7/ FeF(IN) IF] ( F) lorl”

the weighted sum of all those contributions reads

C2
_ N
2 lorl ™o —orlfey < 5 3 Dol

FeF (In) FeF (In)

The finite overlap of the family (wr : F € ¥ (Ix)) shows that the last term in the
previously displayed equation is controlled by C%; || D o]l 2(q) < C%. The combination
with (3.15) concludes the proof. ]

Corollary 3.11. It holds that
1Tk = ) el g-172a0) < O 05e(ty, F () \ F (). (3.17)

Proof. The estimate is a direct consequence of Lemma 3.10 applied to Ity and the
Pythagoras theorem exploiting the orthogonality of the projection IIi. This leads to

(T = TN -1 ) = 111 = LTI 2

<G D oI = T2,
FeF (In)

= > Lorl (101~ )ty 1= Tl ).
FGT(I‘N)

Since (Hk II;)tn|F = 0 vanishes on every F € T(FN)HT(FN) and —||(1- Hk)tN”LZ(F)
0for Fe ¥(In) \ 7:(I‘N) on the right-hand side, this proves (3.17). O
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3.5 Least-squares formulation

Let 7 € T denote an admissible triangulation in the sense of Section 2.4. Approximate
the Neumann boundary data ty with the L?-orthogonal projection Il;ty onto the
piecewise polynomials Py (7;R?) from Section 3.4. Choose the Raviart-Thomas finite
element functions

Z"(T) = {TRT € RTi (T R3X3) : trr -V =Ilgty on FN}

for the discretisation of >. If Iy = 0, then Zk(‘T) = RT(7T;R¥3) N 2 is a discrete
conforming subspace. Approximate the Dirichlet boundary data up with the Scott-

Zhang quasi-interpolation jDk“uD as described in Section 3.3. For the discretisation
of U, choose

USH(T) = {vc € ST R®) e = J¥up on Ip}.

The corresponding discrete spaces with homogeneous boundary conditions for the
test functions read

Z]Iil(‘T) = {TRT € RT(T:R*®) : gr-v=0o0n FN} C 2N
US™(T) = {oc € S*Y(T5R?) : vc =0onlp} C Up.
The least-squares formulation involves the symmetric and bilinear form

B : (H(div, ; R¥™3) x HY(Q;R?)) x (H(div, Q;R*®) x H'(Q;R?)) - R,
B(o,u;7,0) = (divo,divr)2q) + (Ao — SDu, A1 — SDv)12(q).

The LSFEM seeks (o1s,urs) € ZF(77) x U*'(7) such that, for all 75 € =X (7") (or
715 € 25(7") in the case of Iy = 0) and vrs € USH(T),

B(ors, uLs; 1.8, 1) = —(f, div 715)12(0)- (3.18)

The solution (oys, urs) is the unique discrete minimiser of the least-squares functional

LS(f; o1, us) = |If +div ouslfz ) + | A0Ls = SD sl -

The existence and uniqueness of the minimiser follows from well-known fundamental
equivalences asserting the ellipticity of the bilinear form 8. Due to the Lemmas 3.2-3.4,
the following theorem applies for all three model problems at hand. It solely requires
the first three assumptions (W1)-(W3) from Section 3.1.

Theorem 3.12 (fundamental equivalence). The assumptions (W1)-(W3) imply the
existence of the positive generic constants Cpqq = 1+ Ciq and

Cent == max {4+ 2C% (8 + Ciaa + 2C% (Ciad + 8CHCr ) (1 +4C2y)),

(3.19)
1+ 4Cuaa (1 +2C% (1 + 4C%CraaCh,) (1 +4C4 ) }
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such that, for all 7 € 3y and v € Up,

LS(O; T, U) < Chad (”T”?‘I(diV,Q) + ||SDU||22(Q)), (3'20)

||T||?—[(div,Q) + ”S DUH%Z(Q) < Cell LS((); T, U)- (3.21)

This equivalence is well-known for the three model problems at hand. In particular,

it generalises the results for the Poisson model problem [71, Lemma 4.3], the Stokes

problem [32, Theorem 4.2], and the linear elasticity problem [34, Theorem 3.1]. The
purpose of Theorem 3.12 is to underline its generality.

Proof of Theorem 3.12. Step 1. The triangle inequality and Young’s inequality for any
parameter o > 0 yield

LS(0;7,0) = || div |7,

< || div T||i2

+ | Ar - SDo|,
+(1+ ) || A7

(Q)
(Q)

(@)

@+ (1+1/a) ISDo]l%

Q)

The boundedness of A from the assumption (W1) concludes the proof of the bounded-
ness
LS((); T, U) < ded(a) (”T”?{(div’g) + ”S D U”iZ(Q))

with Cpaq(a) := max{(1+ a)C%, (1 +1/a)}. This parameter attains its minimum

* k 1
Chad = Cpaq(a™) = 1+C2ﬂ for o = o
A
Step 2. The proof of the ellipticity departs with the triangle inequality and the
boundedness (W1) to show
|ISD v||i2(Q) <2||Ar-8SD Ulliz(Q) + ZC; ||T||i2(Q).
The abstract tr-dev-div inequality from (W2) establishes

ISDo|l%, (, <2[IAr-SDolf?, +2c;ctdd(||divr||§2(m+(ﬂr,r)L2(Q)). (3.22)

(Q) (Q)

In order to estimate the last term on the right-hand side, utilise the Cauchy-Schwarz
inequality and, again, the abstract tr-dev-div inequality (W2) to prove
(ﬂ’l’, T)LZ(Q) = (ﬂf -S8Du, T)LZ(Q) + (S Do, T)LZ(Q)
< Cud AT = SDoll2(0) (AT, 1)1 + 1 div el ]z )
+ (S Do, T)LZ(Q)

1/2

C? 1 1
dd .
< —tz Az = SDo|2, o) + 5 (AT D) + 2 |l divrll?, o,
+ (S Do, T)LZ(Q)
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with Young’s inequality in the last step. The absorption of the term (At, 7);2(q) on
the left-hand side results in

(AT, 7)12(q) < Clyy | AT — SDU||§2(Q) +ldive|?, o +2 (SDo, 0)2q).  (3.23)

(®)
The estimate (W3) and Young’s inequality with parameter ¢ > 0 provide

2 2
. a
(SDo, 7)p2(q) < % |AT = SDoll}, o) + % 1 div zllZe gy + 5 1S Dol ).

The combination of this with (3.23) in (3.22) yields
ISDoll?, ., < 2(1+C5CLy) AT — SDoll?,
+4C%Ciad (SDo,7)12(q)
< 2(1+ C3Cua(Ciyg + 2Gg, /@) AT = SDollf g,
+4C5Cuaa(1 + Cgy /@) || div 7|7, ) +2C5Craae IS Doll7 -

@ (@) T 4C5Cua Il divellf, o

Eventually, for « = 1/ (4C§,(Ctdd), another absorption of the term [|S D 0||i2 (@) On the
left-hand side leads to
I|IS D U||i2(9) <c ||[Ar-8D vlliz(g) + ¢ || div THEZ(Q)' (3.24)

with the positive generic constants
o 2 A2 2 2 — o2 2 2
c1 = 4(1 + Cﬂctdd(ctdd + 8C§ICEn)) and ¢y = SCﬂCtdd(l + 4CﬂctddCEn).

Step 3. The estimate of the remaining term ||T||f{( div.Q) employs the assumption (W2),
the estimate (3.23), and the Cauchy-Schwarz inequality to verify

||T||i2(9) < Ciaq || div Tllizm) + Craa (AT, 7)12(0)
< Coga A7 = SDoll}, ) +2Cuaa 1 div 71|72 ) +2Ceaa IS Dol 2oy llll 2 (0)-

Young’s inequality with parameter @ = 1/2 allows for an absorption of the last term.
The resulting estimate reads

170172 < 2Coq AT = SDollZ, ) +4Cuaa 1 div 7lI7, ) +4Ci, IS DollZ -
This and (3.24) show
12l aiay < 2Cia(Cuaa+2¢1) AT =S Doll} ) + (1+4Cua(1+Cuaac2)) I div zllfa -

Step 4. The combination of the Steps 2 and 3 concludes the proof of the ellipticity
with the positive generic constant

Cell = max {cl + ZCEdd(Ctdd +2¢1),c2 + (1 +4Caa(1 + CtddCZ))}.

The insertion of ¢; and ¢; and the simplification of the terms result in the constant
from (3.19). O
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Remark 3.13. The proof of well-posedness in Theorem 3.12 is very general and does
not employ the linearity of the operators A and S. It applies to nonlinear problems as
well.

Remark 3.14. The analysis in Section 3.2 reveals that the positive constant Cg,, in the
assumption (W3) and, thus, also the ellipticity constant Cj; depend on the Friedrichs
constant Cr. In particular, they scale with the diameter of the domain Q. This is a
common criticism on least-squares methods. However, the reader is referred to [25,
Section 3] for a remedy and a scaling of the residuals with an ellipticity constant
independent of diam(Q) in the case of the Stokes problem in 2D.

Remark 3.15. Another scaling issue is addressed in [95] in the context of a time-
dependent linear elasticity problem. For the corresponding static formulation at hand,
this results in the weighted least-squares functional

—~ 1 ) 2 _
I5(f30.0 = | = (f +div )y #1070 ~ (@Il

where E denotes the Young’s modulus. The weights are chosen in a way such that the
L? norms measure dimensionless residuals.

The remaining part of this section is devoted to the proof of the standard a posteriori
error estimates involving the boundary oscillations from (2.20). For the surface gradient
D up of the Dirichlet boundary data from (2.4), abbreviate the oscillation terms with

N2 (T) = osc*(Dup, F (Ip)) + osc®(tn, F (In)). (3.25)

Theorem 3.16 (a posteriori estimates). Given the assumptions (W1)—-(W4), there
exist positive generic constants Crs; and Crs, such that the exact solution o € X and
u € U to(3.3) and any gy € ZX(T) and vc € U (T) satisfy

llo = el g,y + S D(u ~ Uc)lliz(g) < Cust (LS(f5 trr, 00) + M5ee (7)), (3.26)
LS(fsmr,vc) < Crsa(llo = mrrllgie.) + S D(u — Uc)||iz(g) +155e(T)). (3:27)
Remark 3.17. Since Theorem 3.16 applies to arbitrary gt € 3X(77) and vc € UK(T),
the least-squares functional LS(f; 7z, vc) allows for a posteriori error estimation even

in the case of an inexact solution of the linear system, for instance, by an iterative
solver.

Proof of Theorem 3.16. Step 1. Let o and u solve the first-order system (3.3) and rrt €
>k(7°) and oc € UK (7) be arbitrary. The boundary data of the respective differences
read

u—oc=(1- jDk“)uD onlp and (o - mr)v=(1-1Tl)tyon Iy

and do not vanish in general. Since Theorem 3.12 solely applies to functions with
homogeneous boundary conditions, its application requires suitable extensions of the
boundary data approximation errors from the Sections 3.3-3.4.
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The extension w € H!(Q;R3) from Lemma 3.6 satisfies w = (1 — ﬂ““)uD onIp
and

IDWIs o) < 1= T upl

Consequently, Lemma 3.7 implies

||Dw||i2 < Clz)1 osc?(D up, F(Ip)).

(@)

This and the boundedness of the operator S from (W4) prove
IS D w||i2(Q) < C\29C1231 osc?(Dup, F (Ip)). (3.28)

The extension & € H(div = 0, Q; R¥3) from Lemma 3.9 satisfies v = (1 — IIy)ty on
FN and
“‘f”iz(g) < (1 + CIZT)Z ”(1 - Hk)tN”lzq—l/Z(aQ)-

Thus, Lemma 3.10 shows
180172y < (1+CR)*CY osc®(tn, F (In)). (3.29)

The triangle inequality, the boundedness of the operator A from (W1), and the estim-

ates (3.28)—(3.29) lead to
| AE = SD w2, ) < 2CH(1+CE*CY osc? (tn, F (In))

+ ZC?SCIZD1 osc’ (D up, F(In)).

(©) (3.30)

The abbreviations 7y == 0 —pr — ¢ € Eny and op = u —oc — w € Up satisty
homogeneous boundary conditions.
Step 2. Since o and u are exact solutions to the first-order system (3.3), it holds that
LS(0; 7, 0p) = [l div awllfs g + AN — SDopllf g,
= || +div(rrr - 812 g + 1A (zrr = &) = S D(oc + w12 g

This and div & = 0 imply

LS(O; N, UD) = LS(f; TRT, Uc) +2 (ﬂTRT -SD e, ﬂrf -SD W)LZ(Q)

3.31
+||1AE - SDw?, (31

(Q)

Step 3. The proof of the reliability of the least-squares functional departs with the
triangle inequality and Young’s inequality to show

lo = Rl gy + 1S D@ — 00 1%

< 2(lnlly gy + 1S D op 2y + €122 gy + IS D Wl gy)-
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The ellipticity (3.21) of the least-squares functional from Theorem 3.12 proves
”TN”?-[(diV,Q) +[|SD UD”%Z(Q) < Cenn LS(0; v, 0p)-
The combination of the two previously displayed formulas leads to
o= Rl ) + 1S D(t = 00) 1 gy < 2 (Cett LS(0: 7, 00) + 1€l ) + IS D Wl ).
This and the equality (3.31) in combination with the Cauchy-Schwarz and Young’s
inequality prove
lo = treliZ g + K D = 0) I g
< 2 (14 Ca) LS(fs r,00) + 2 [|AAE = S DwlZs ) + €172 0 + S D Wil gy)-

The triangle inequality and the estimates (3.28)—(3.30) conclude the proof of (3.26)
with the positive generic constant

Crsi = 2max {(1+ Ca), (4C% +1)(1+C5)’CY, 5C5Ch, }-

Step 4. For the proof of the efficiency of the least-squares functional, the equal-
ity (3.31) provides

LS(f; et vc) < LS(0; 785, 0p) — 2 (Arr — SDoc, AE—SD W)LZ(Q).
The boundedness (3.20) of the least-squares functional from Theorem 3.12 and the
Cauchy-Schwarz inequality imply

LS(f; et 0c) < Cpad (Ilowllf(q) + 1S Dopllfz o))
+ [[Arrr = SDocllrz (o) IAE = SDwlli2(q)-
The triangle inequality and Young’s inequality show
LS(f;trT,0C)
< 2ded (HO- - TRTH%Z(Q) + ”SD(u - UC)”%Z(Q) + ||§||iz(Q) + ”SDW”?}(Q))

1 1
+ = IAE = SDWI g + 5 AT = SDocly g

The absorption of the last term, || Art—S D oc||
side yields
LS(f; T, vC)
< 4Chad (HO' - TRTH%Z(Q) + ”SD(u - UC)”%Z(Q) + ”glliZ(Q) + ”SDW”]%z(Q))
+ A - SD w7,

iZ(Q) < LS(f; T, vc), on the left-hand

Q)

The estimates (3.28)-(3.30) conclude the proof of the efficiency (3.27) with the positive
generic constant

Crsy '= max {4ded, (4Cpaq + ZC;)(I + CI%)ZCZ , (2+ 4ded)C§C%1}. O
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3.6 Alternative a posteriori error estimator

Given the solution (ois, urs) to the discrete equation (3.18) with respect to the trian-
gulation 7, the residual contributions to the alternative error estimatoron T € 7~
read

Meg(T.T) = [T div(S™ (Aors - SDuss))|2s
+ [T curl (A" (Aors = SDuss) I,

[T Y IS (Aows = SDuis)lr el
FeF (T)\F (Ib)

T Y lve x [AT(Aors - SDuss) I,
FeF (T\F (In)

(F)

with tangential and normal jumps [v X ¢]p and [+vp|Fr along the faces F € F
from (2.13)—(2.14). Due to the assumptions (W6)—(W9), all these contributions are
well-defined and bounded. The Dirichlet boundary data oscillations involve the surface
gradient D up from (2.4) applied to the boundary data up. Inhomogeneous boundary
conditions lead to the oscillation contributions already defined in (3.25)

Moo T.T) = |TI* 37 (1 =T) Dupls
FeF(T)NF (Ip)

[T Y 10 =T) il .
FeF (T)nF (In)

(3.32)

For any subset M C 7 of simplices, abbreviate n% (7, M) = Yrep no%s(7,T)
and n2 (T, M) = Yremni.(T,T). Their sum provides the alternative explicit
a posteriori estimator for the ALSFEM algorithm from page 4

N (T. M) = 02 (T M) + 02 (T, M). (3.33)

Moreover, for the full contribution on the triangulation 7, abbreviate n*(7") =
n?(7,7) and do so analogously for fes and 70s.. The discrete reliability analysis
in the Sections 4.2-4.3 below requires (ois, urs) to solve the discrete equation (3.18)
exactly. Hence, in contrast to the built-in estimator, adaptive algorithms driven by the
alternative estimator 7 are obliged to employ an exact solution of the linear system.

Before the remaining part of this section is devoted to the proof of the efficiency
of the estimator 7, two additional quantities for the convergence analysis of the
separate marking algorithm are introduced. The data approximation error (7)) :=
Yreq #2(T) consists of, for T € T,

H(T) = (=T f I - (3:34)

The data approximation solely concerns the volume data f. The boundary data ap-
proximation is controlled by the Dérfler marking and NVB in nZ,..

58



For any admissible triangulation 7~ € T and its refinement T e T(7), the associated
solutions (oys, urs) and (ois, urs) to (3.18) define the distance of the triangulations by

(T T) = || div(Fis - 015) 22 ) + |A(Fis = o15) = S D(Ts — wis) 2oy (3:35)

In accordance with the analysis presented in [37, Section 11], the distance function
does not involve any boundary data oscillations. This relies on the following two facts.
The strict locality of II; in the definitions of the oscillations osc(D up, ¥ (Ip)) and
osc(tn, ¥ (In)) in (2.20) ensures that the corresponding terms vanish in the proof of
the stability axiom in Theorem 4.1 below. Additionally, due to the orthogonality of the
operator IT; no terms like || (ﬁk — k) Dup||12(q) occur in the right-hand side of the
reduction estimate in Theorem 4.2 below.

The following efficiency estimate for the error estimator 7 is not required in the
axiomatic framework from [37, 40]. Nonetheless, it is a central result in the a posteriori
analysis of FEMs and it is presented here to indicate the optimal rate approximation of
the errors as well.

Theorem 3.18 (efficiency). There exists a positive generic constant Cegr such that the
residual contributions nyes to the a posteriori error estimator n satisfy

Nows(T) < Cest LS(f’; 015, urs)- (3.36)

The proof of Theorem 3.18 employs a modification of a result from [40, Lemma 5.2]
involving the discrete trace inequalities (W8)—-(W?9) from Section 3.1.

Lemma 3.19 (discrete jump control). Given the assumptions (W8) and (W9), there
exists a positive generic constant Cjc such that any Ty € Pr(T3;R*?) and vy €
Piy1 (T3 R3) satisfy

DT (IS (At = SDopw) 1 vl

TeT FeF (T)
+ [[ve X [ﬂ*(ﬂfpw - SDUpW)]FHiZ(F)) < Cjzc ”ﬂfpw - SDUpW”iz(Q)-

The constant Cj. solely depends on the shape regularity of the triangulations in T and the
generic constant Cgy from (W8)—(W9).

Proof. The discrete trace inequalities from (W8)—-(W9) read

ITI1(S" (Atpw = SDopw )z vllzzr) < Cati 1ATpw = S D Upulliery,
T llve X (A" (Atpw = SDop)lllzz(r) < Cas [ Azpw = SDpullzzqr).

These two estimate replace the first displayed equation in the proof of [40, Lemma 5.2].
The verbatim application of the proof therein establishes, for some positive generic
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constant cq,

DTS IS (At = SDopu) 1 vl ) < o 1A = SDopulily g
TeT FeF(T)

DT S v X [A (At = SDogu) Il gy < ¢ AT = SDogul -
TeT FeF (T)

The sum of the two estimates concludes the proof with the constant CjzC = 2¢%. O

Proof of Theorem 3.18. Step 1. Abbreviate the discrete constitutive residual prs :=
Aors — SDurs € L2(Q;R¥3). Given any T € 7, inverse estimates from the assump-
tions (W6)—-(W7) and the boundedness of the adjoint operators A* and S* from (3.2)
prove

< C?

T3 diVS*PLS”iz + T3] Curlﬂ*pLS”iZ(T) mv(C?g +C%) ||PLs||i2(T)-

(1)

The sum over all T € 7 concludes the estimate of the volume contributions in #yes.
Step 2. The estimate of the jump terms employs the discrete jump control from
Lemma 3.19 to show

DT (IS prslr Vel + Ve X LA pusl el ) < CE llpislleq)-
TeT FeF(T)

This and the estimate ||prg]| < LS(f;o1s, urs) complete the proof of the effi-

2
L2(Q)
ciency (3.36) with the positive generic constant Ceg = C? (C?S + C;() + Cji. O

mv
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4 Axioms of adaptivity

This chapter is devoted to the proofs of the axioms of adaptivity (A1)-(A4) and (QM)
from the introductory Chapter 1. Section 4.1 is devoted to the stability (A1) and the
reduction (A2). Section 4.2 presents the reliability of the alternative estimator n and
its discrete reliability (A3). The comprehensive proof of the discrete reliability is given
in Section 4.3. Some quasi-Pythagoras lemma establishes the quasi-orthogonality in
Section 4.4. This chapter concludes with the proof of the quasi-monotonicity of n + u
in Section 4.5. Using [40, Theorem 2.1], these axioms establish the main result of this
thesis, Theorem 1.1.

4.1 Stability and reduction

The proofs of the first two axioms employ techniques from the efficiency analysis in
Section 3.6. Recall Notation 3 from page 22 for a regular triangulation 7 € T with
admissible refinement 7 € T(7).

Theorem 4.1 (stability). The a posteriori error estimator n and the distance § satisfy
the axiom (A1): There exists a positive generic constant A, such that

(T, T NT) = (T, T NT)| < A 8(T, 7).

Proof. The proof follows the one of [40 Theorem 5.1]. Abbreviate the discrete con-
stitutive residuals prg = ﬂaLs - S Dus and prs = ﬂULS - SDus.

Step 1. Each of the terms 17(7' 7n 77) and 17(‘7' 7N 7") is the Euclidian norm |a]
and |a| of some vector a,a € R™ with m := 10 |T N 7 |. The entries of @ consist of the
square roots of the volume contributions, the edge contributions, and the boundary
data oscillation terms from (3.33), for each T € 7N T,

|T|1/3” le(S*PLS)”LZ(T)’ |T|1/3|| Curl(ﬂ*ﬁLS)”LZ(T),

1TV [S" pis]r vell2cp) for Fe £(T)\ ¥ (Ip),
IT1Yollve x [A*Buslrllizry  for F € F(T) \ F(In), (41)
ITIY*||(1 -~ T;) Dupliery  for F e F(T) N F(Ip),
IT)V9)|(1 - TIx) il 2 () for F € #(T) N F (In).

Analogously, the entries of a consist of the corresponding terms for prs and IT; with
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respect to 7. The reverse triangle inequality in R™ proves that

(T, T NT) = (T, T NT))?* = (|al - lal)? < |a - af?

= > IR (1 div(S"Bis)lrzry = | div(S"prs) ()
TeTNT

+|T123(] curl(A*prs) 2 (ry = | Cllfl(d(‘TS//?\Ls)||L2(T))2
k7 k 2
T (IS Busle vellee) = 1S pusle vellzr)

FeF (T)\F (Ip)
* o~ * 2
T T (e x LA Bs)Fllege) - llve x (A" pus]ellzae)
FeF (T)\F (In)
= 2
+|T|'/3 Z (II(1 = ) Duplzzcry — 1(1 = Tg) D upll )
FeF (T)NF (Ip)

= 2
+|T|'/3 Z (11 =Tl e ry = 1L = )l e ry) |-
FeF (DNF(Tn)

Step 2. For every T € 7 N T, the reverse triangle inequality in L(T) followed by
the abstract inverse estimates (W6)-(W?7) prove

T (1 div(S*Ais) lecry = | div(S™ps) lacr))”
< T div(S™ (Pis = prs) e gy < CalIS™ (s = pus) e,

and

o~ * 2
T2 (|| curl(A*prs) iz (ry — Il curl(A* prs) llzz(r)
< |T)*3|| curl(A* (prs — pLs))||iz(T) < C2NA*(prs — pLS)”iZ(T)-

The sum of these two estimates and the boundedness of the adjoint operators A* and
S* from (3.2) yield

ITI3 (|| div(S*pis) ey — Il div(S*prs)ller)”
+ T3 (|| curl(A* prs) |2 ¢ry — | curl(A* prs) Iz ¢ry)?

< o (CE+C2) 1p1s = pusllfe -

Step 3. The reverse triangle inequality in L?(F) for every F € F(T) and T € TNT
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plus the discrete jump control from Lemma 3.19 prove

K~ * 2
St > (IS Busle velle — IS pusle velliece))
TeTNT FeF (D\F (Ip)

> (e [A Bl = lve X LA puslrlliecr))’

FeF (D\F (In)
< DUATI D (IS (Bus = pus) e vellZp + 1V X [A" (Bis = pus) ] ll2 r)
TeTNT FefF (T)

< CJZC ”b\LS - PLS”iZ(Q)-

Step4. ForT € T N T, the remaining contributions of the boundary data oscillations
coincide

1 = ) D upllzeornmy) = (1 = The) Dup 2 arery).
I1(1 = TNl e ornny) = 11 = ) il 22 (o) -
Step 5. The combination of all previous steps proves (A1) with

mv

2 2 2 2
Aq Ci (CS+C%) +Cjc. O

Theorem 4.2 (reduction). The a posteriori error estimator  and the distance § satisfy
the axiom (A2): There exist positive generic constants A, and p; < 1 such that

U(T,T\T) < p2 U(T,T\‘]') + Ay 8(T.T).

Proof. The proof follows the one of [40, Theorem 5.1]. Abbreviate the discrete con-
stitutive residuals prs := Aors — SDurs and prs = Aors — SDugs.

Step 1. Following the proof of Theorem 4.1, the term 77(‘7' T\ T) is represented as
the Euclidian norm |a] of some vector a € R™ the m = 10 |"71 \ 77| entries according
to (4.1) for each T € T \ 7. Additionally, let a € R™ denote the vector with the
identical entries but prs replacing prs. The triangle inequality in R™ proves that

(T, T\T)=1al < |a| +|a-al.

Step 2. The reduction relies on the fact that each term is weighted with a correspond-
ing power of the mesh-size |T| being reduced at least by a factor 2, i.e, |T| < |K|/2 for

Ke7 andT € T(K ). Forevery K € 7\ 7", the sums of the associated volume terms
satisfy

ST TEA N div(S pus) I g, < K272 div(S” pis) 12 g
TeT (K)

ST curl (A pis) 12,y < K127 curl (A pes) 1 .
TeT (K)

63



Since prs = Aors — S D urg, the regularity assumption (3.1) guarantees that
S*prs € H(div, 7;R*?) and A*prs € H(curl, 7;R*>?).

Hence, the normal jumps [S*prs|r vF = 0 and the tangential jumps v X [A*prs|r = 0

vanish on any interior face F € %(K ) \ F (9K) inside of the coarse simplex K € 7 .
Therefore, the sums of the face jumps fulfil

S TS pusle vl

TeT (K) FEF (D\F (Ib)
< D0 KBNS puslr vl s,
FeF (K)\F (Ip)
TP lIve x [A* prs] el
TeT (K) FEF (D\F (In)

< DL KM lve x [ A prsl el .
FeF (K)\F (In)

Eventually, the sums of the boundary oscillations read

D D A R [CR s o P7

TeT (K) FeF (TNF (Ip)
< ). KM - T Dupll ),
FeF (K)NF (Ip)
D D S LA R [C T (SN[
TeT (K) FEF (T)NF (In)

< DKM - ) a2,
FeF (K)NF (In)

(F)’

The summation over all K € ‘7‘\72 and the square root in the three previously displayed
formulas yield

la| < 278 (T, T\ 7).

Step 3. In order to estimate the term |a — a| proceed analogously to the proof of
Theorem 4.1. The reverse triangle inequality in L?(T), the abstract inverse estim-
ates (W6)—-(W?7), and the boundedness of the adjoint operators S* and A* from (3.2)
prove

Z |T|2/3((|| div(S*prs) 2y — |l diV(S*pLS)”LZ(T))Z
Te‘?‘\'f

+ (I eurl( A us)llzcr) — Il url(A pus) l2cr))° )

< Clznv(C?S + Cél) ”ﬁLS - PLS”iz(Q)-
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The reverse triangle inequality in L?(F) for F € F(T) and T € T \ 7" and the discrete
jump control from Lemma 3.19 show

STl > (IS Busle velle) — 1S pusle vellzr)?
TeT\T FeF (T\F (Tp)

+ Z (Ilve X [A*prs]llzzcry — llve X [ﬂ*PLS]F”LZ(F))Z

FeF (T\F (In)
< T (IS (Bus = pus)le vellZ e + Ve X LA (Bis = pus) LIl )
TeT\T FeF(T)

< G MIpis = pisllzz -

The remaining contributions of the boundary data oscillations are bounded by the

best-approximation property of the L? orthogonal projection Iy, for T € T \7 and
F e F(T),

(1 = T) Dupllz2(prmy) < (1 = TIe) Dupll2(pary)»

(1 = TLk) tNllze(pany) < 11 = TIk) tNllz2(pany)-

The three previously displayed formulas yield

G—a < \/Cfnv(cé +C%) +CLS(T,T).

Step 5. The combination of all previous steps concludes the proof of (A2) with the
constants p; = 276 and A, = A;. m]

4.2 Discrete reliability

The proof of the discrete reliability axiom (A3) is essentially based on the following
Theorem 4.3. Since the proof is more extensive, it is postponed to its own Section 4.3
below. Before that, the reliability of the a posteriori error estimator and the axiom (A3)

are deduced. Recall Notation 3 from page 22 for the refinement 7 of 7~ and the notion
of n-layers R, around the refined simplices from Section 2.4.

Theorem 4.3 (discrete reliability). Given the set
R=RsU{T €T : AF € Ls(F \ F.Tp), F C T} C Rs, (4.2)

there exist positive generic constants Cqre] and 5drel such that the a posteriori error
estimator n and the distance § satisfy

ST, T) < Carel (0P(T,R) + p3(T)) + Caret LS(f; 51, iis).- (4.3)
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The discrete reliability and the plain convergence of the LSFEM under uniform
refinement imply reliability of the error estimator 7 in the following sense.

Corollary 4.4 (reliability). For any admissible triangulation 7 € T with discrete
solutions (o1s, us) € F(77) x U(T) to (3.18) and the positive generic constant Cyre]
from Theorem 4.3, it holds that

LS(f;01s,uLs) < Carel (n°(T) + p*(T)). (4.4)

Proof. Define the sequence (7, : m € N) of successive uniform one-level refinements
T = refine"™ (77) with discrete solutions (o, um) € =5(Tm) X U1 (Ty,) to (3.18).
This design ensures uniform convergence of the mesh-size h,, := hy, as m — oo,

lim ||hp||L=(q) = 0.
m-—0o0
The convergence of the LSFEM leads to
lim 6%(7;,7) = lim (|| div(om — 015) 1720
m—oo m—oo

+ Ao = 015) = S D(tm = ws) 22 g )
= LS(f;o1s, urs)

and
lim LS(f;om, um) = 0.
m—00

Theorem 4.3 implies, for every m € N,
52(7;1» T) < Carel (UZ(T) + .UZ(T)) + 6drel LS(f; Om, um)-

The combination of the three previously displayed formulas concludes the proof for
m — oo, O

A combination of the discrete reliability from Theorem 4.3 and the reliability of the
estimator results in the axiom (A3).

Corollary 4.5. The a posteriori error estimator  and the distance § satisfy the ax-
iom (A3): There exists a set R € T with |R| < Aes |7 \ 7| and

SUT,T) < As (NPT, R) + g (7)) + As n*(T).

Proof. Since the set R from (4.2) satisfies R C Rs, the shape regularity of the trian-
gulations 7 € T guarantees existence of a positive generic constant Aer such that
IR < Arer |7\ T |. The claim (A3) follows from the combination of (4.3) and (4.4) with
respect to 7 reads

8(T.T) < Carat (1(TR) + p*(T) + CasetCaset (1(T) + (7).
The monotonicity ,u(‘?) < p(7") concludes the proof with the constants

Az = Cyrel(1 + E'fdrel) and KS = é\drelcdrel- =
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4.3 Proof of discrete reliability

This section is devoted to the proof of Theorem 4.3. It is based on five lemmas and
follows the ideas of [44, Section 5]. The proof departs with the construction of two
intermediate functions 7xr and gt in the following lemma.

Lemma 4.6. There exists TpT € RTk(rT'; R>3) and mrr € RT(T;R*>®) with the Neu-
mann boundary data

TRTV = (ﬁk —I )ty and twrv=0 only (4.5)
and the divergences
divzgr = (1 = II}) div(ors — ors) and  div gy = [Ix div(ors — os)  in Q. (4.6)
Furthermore, there exists a positive generic constant Cg,p, such that
I7krllz2() < Cstab (I1(1 = Tg) div(Gis — o1s) [l 2 + 1 (T — ) iNllg-12(00)),  (47)
llzrrllz2(0) < Cstab [Tk div(oLs — o1s)ll12(q)- (4.8)
Proof. Step 1. Let w € H'(Q;R?®)/R3 solve the Neumann problem

(Dw,Do)p2q) = —((1 = ) div(o1s — ots), 0) for all v € H'(Q;R?)/R>.

L2(Q)

This problem is well-posed due to the compatibility condition

/(1 —II;) div(ors — ors) dx = 0.
Q

The integration by parts shows that the weak derivative 7 := Dw € H(div, Q; R3*3)
satisfies div 7 = (1-II) div(ops—ors) in Q and v = 0 on 9Q. The reduced elliptic regu-
larity [54] of the Neumann problem ensures that 7 € H'/?*(Q; R>3) N H(div, Q; R3*?)
for some regularity parameter 0 < s < 1/2. Additionally, there exists some positive
generic constant c;(s) such that

1zl garees (@) < e1(s) [1(1 = Tg) div(ors — ors)llzz(o)- (4.9)
Step 2. Let the componentwise integral

ap

1 - 1 —~
a=|a|=— / diV(O’LS — O'LS) dx = — / I1; diV(O’LS — O'LS) dx € R3
w) ol Jo bl Jo

define the piecewise constant boundary data a,, € Po(%0(9€); R3) with respect to
the initial triangulation 7y by

% 0 on FN,
o=
a onlp.
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The Cauchy-Schwarz inequality shows, for the constant ¢, := |Q|"/?/|Ip],

1 o~ o~
oy |+ [az| + o3| < — [[x div(oLs — o15) |11 () < €2 [Tl div(oLs — o1s) ||12(q)- (4.10)

15
Let e,, € R3 for m = 1,2,3 denote the unit basis vectors and (y : F € %) of
RTy(7,) the canonical lowest-order Raviart-Thomas basis functions with
1 if FF =F,

0 else.

llbp Vg da = {
F/

The tensor products e, ® r for m = 1,2,3 and F € F, form a basis of the matrix-valued
Raviart-Thomas functions in RTy(75; R**®). Define the discrete extension gy of the
boundary data g5, by

3
§}§T = Z Z amF em ® wF € RTO(T§ R3X3)

m=1FeF,

with the coefficients, for m = 1,2,3 and F € ¥,

0 else.

{am if F € F(Ip),
amF =

This extension satisfies gvngV = af;w on dQ and, in particular, {ETV = 0 on Iy. Further-
more, the triangle inequality proves

I llraey < (ol + leal + lasl) > e llaaivorn-

FeFy(Ip)
This and the estimate (4.10) establish
I¢rrllH(dv.0) < c2cs Tk div(oLs — o1s) 12 () (4.11)

with the constant ¢3 := Y pes ) VP H(div.wr) SOlely depending on the initial triangu-
lation 7.

Step 3. For fi = I div(oys — os) — div (i € Pe(73R?), the Gauss divergence
theorem implies

/ﬁ)w dx = / div(ors — ors) dx — / div {pr dx
Q Q Q
= / diV(ELs - O'LS) dx — / a;w da
Q Q
= / diV(ELS - O'LS) dx — / ada=0.
9) Ip
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Hence, the following Neumann problem is well-posed. Let w* € H'(Q; R3)/R3 solve
(Dw",Do)12(q) = —(fow- 0)12(q) forallo € H'(Q;R%)/R.

The integration by parts shows that the weak derivative r* := D w* € H(div, Q;R>®)
satisfies div 7" = f,v in Q and 7*v = 0 on 9Q. An analog argument to Step 1 establishes
the reduced elliptic regularity estimate

17" przss @) < €1(8) Nl fpwllzz(o)-
By the definition of f;, this and (4.11) lead to
7" /e ) < €1(s) (1 + eae3) [Tk div(ors — o1s)llzz(0)- (4.12)

Step 4. The regularity 7, 7* € H1/2+S(Q; R33) N H(div, Q; R¥?) allows for the ap-
plication of the Fortin interpolation operator Ir : L?(Q;R¥*®) N H(div, Q;R¥?®) —
RT(7;R*?) from [18, Example 2.5.3] for p > 2 in the three components. The ap-
proximation property of the Fortin interpolation operator from [83, Theorem 2.25] with
some positive generic constant c4 reads, for every £ € H 124s(Q; R¥>*)NH (div, Q; R¥3),

1€ = Iréllieay < cahmad (€l q)-

The triangle inequality and the uniform bound hrlr{az; * < c5 prove the stability

1 IpEllr2 @) < (1 + cacs) [[Ell gz q)- (4.13)

The identical estimate holds for the corresponding operator Ir with respect to the
refinement 7.

Step 5. Lemma 3.9 provides a discrete divergence-free extension ERT € RT; (‘7‘; R33N
H(div = 0, Q; R¥3) with &r = (IIx — IIx)fn on 9Q and

lI&rTll2(0) < Cext (i = i) inllg-1/2a02)- (4.14)
Step 6. Define the functions
?RT = E‘T + gRT S RTk((}:; R3X3) and TRT = IFT* + g;T S RTk(T; R3X3).

Since the Fortin interpolations Iy and Ir preserve polynomial boundary conditions, it
holds that

TRTV = (ﬁ:z’ + &T)V = ﬁk(rv) + &TV = (ﬁk — )ty only,

v = (T + (jp)v = Oi(r*v) =0 onIy.
The commuting diagram property of Ir and 5 [18, Proposition 2.5.2] leads to

div 7k = div(Tr + &r) = Hi div e = (1 - i) div(Gis — o1s),

div rgr = div(Ipr" + {yp) = i div 7 + div {3 = fow + div Gy = I div(ors — o1s).
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The stability estimates (4.9), (4.12)—(4.14) establish

Tl < el + Il
< ¢q(s) (1 + cqc5) |[(1 = Ig) div(ors — o1s) 12 ()
+ Cext | (M = )il 51-172 002
lltrTllz20) < 1T llr2(0) + I1¢RTll2(0)
< ¢1(s) (2 + cae3 + cq¢5) || div(ors — o1s) [l 12(q)-

This concludes the proof with the constant Cy,p, := max{c;(s) (2+cac3+c4cs), Cext}. O

These intermediate functions allow for the split of the left-hand side 52(‘7', 7) from
Theorem 4.3 in the following lemma.

Lemma 4.7. There exist some we € S¥1(7;R3) and ENed € Ni(T:R¥3) with the

boundary data wc = (jDk“ — JE*Yup on Ty and v X Prea = 0 on Iy and the stability
estimates

IDwellpz(q) < CoLCsz 1(F+t — ﬂm)uD”HUZ(rD), (4.15)
| BnedllE(curo) < CNed llots — o1s — Trr — Tl H(div,0) (4.16)

such that
ST, T) = (1 =) div(@is — o1) 12,
+ (A(GLs = o1s) = SD(urs — urs), Atrr = SDWc) 2 (4.17)
+ (ﬂO'Ls -SD urs, S D(HLS —Uurs — Wc) - A curl BNed)LQ(Q).

Proof. Step 1. Lemma 3.6 guarantees the existence of some discrete extension w¢ €
S**1(77;R3) of the boundary approximation error with

We = (" - Iy Mup  and | Dwclliz(o) < CoCsz I+ = T upll e ry)-

Since prr = 0OLs — OLs — TRT — TRT € Z’Iil(‘%) is divergence-free, Theorem 2.8 provides
the existence of some ENed € Nk(‘?; R*>3) and JS Zﬁ(‘]a) satisfying prr — pgr =
curl ENed and

Bneallrceure) < Cnea IPirllzz (-
Additionally, it holds that v x ﬁNed = 0 on Iy and div pp = 0 in Q. This concludes the
proof of (4.15)—(4.16).

Step 3. Since div trr = II; div(oLs — oLs), the discrete equation (3.18) with respect
to the triangulation 7 for the test functions 715 = T € ZI’;(T) and v s = 0 shows

—(ka + div ors, div(ors — O'LS))LZ(Q) = (Aors — SDuys, ﬂTRT)LZ(Q). (4.18)
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The boundary conditions (4.5) imply that 75 = o.5—01s—TrT € Zﬁ(’? ) is an admissible
test function. Moreover, the equalities (4.6) lead to

div(ors — o1s — ) = Ik div(ors — ors).

This and the discrete equation (3.18) with respect to the triangulation 7 with test
functions 715 and vrs = Urs — urs — We € US”(T) prove that

(AcLs — SDurs, A(Grs — o1s — Trr) — D(ULs — s = We)) 12(q

= .~ .~ (4.19)
= —(ka+ div ors, I div(ors — O'Ls))

L2(Q)*

The homogeneous boundary conditions ppv = 0 on I'y and the nestedness of the spaces
RT(T5;R¥®) C RT(T;R>?) make pg € RTi(75; R”?) an admissible test function
with respect to 7. Since div pp = 0, the discrete equation (3.18) with 715 = pp; and
urs = 0 establishes

(Aors — SDus, ﬂp;{T)LZ(Q) =0. (4.20)

Step 4. The orthogonality of the L? projection IT allows for the Pythagoras theorem
I div(Gus - 016) 122y = (1 = 1) div(Gis = o15) % ) + Ik div(Gas = 015) 2

The addition and subtraction of the term (ﬁk f =i f, i div(oLs — ors))12(q) = 0 and
the projection property I = I1. 11 lead to
I div(Gis = o1s) 172y = (1 = ) div(Gis = o1s) 172

+ (ka + divoys, I diV(ELS - O-LS))LZ(Q) (4.21)
— (ka + div ors, div(ors — O'LS))LZ(Q)-

The addition and subtraction of the terms

(A(oLs — o1s) = SD(urs — urs), Atrr — SDwe)
(Aors — SDurs, Atrr)12(0)

(Qp

to and from the contribution ||A(ors — ors) — S D(urs — uLs)||i2 @ establishes the
algebraic equality

1A (GLs = o1s) = SD(urs — wis) Iz g
= (Aors — SDis, A(01s — ors — Trr) — SD(Urs — us — We)) 2(q)
— (Aors — SDurs, Aprr — SD(Urs — urs — W) 12(q
— (Aors = SDurs, AtrT)12(0)

+ (A(GLs — o1s) = SD(urs — urs), Atrr — SDWe) 2 (-

71



Using (4.18)—(4.20), the sum of the previously displayed formula and (4.21) reduces to
(T, T) = (1 = ) div(Gis — 015) 122 g
— (Aors = SDurs, A(prr — pry) = S D(uLs — s = We)) 12
+ (A(ors — o1s) — SD(us — urs), Akt =~ SDWe) 2(q)-

The replacement prr — ppy = curl ENed concludes the proof of (4.17). O

The following two lemmas employ the quasi-interpolation operators from Sec-
tions 2.6-2.7 to bound the terms on the right-hand side in (4.17).

Lemma 4.8. There exists a positive generic constant Cqy1 such that

(Aors = SDurs, SD(urs — us = We)) 2o

< Cart | D(urs — urs — WC)HLZ(Q)( Z (|T|2/3 I div(S™(Aors — SDurs))lI7 7,
TeT\T

1/2
) |T|1/3||[S*<ﬂcns—SD“LS”FVF”;(F))) |
FeF (T)\F (Ip)

—

Proof. Step 1. For UCc = Urs — urs — we € USH(%), let vc = WIISHZ)C € USH(T)
denote the Scott-Zhang quasi-interpolation of v¢ € Ug”(‘f ) from Section 2.6 and
set zc == vc —uc € US”(‘T). Lemma 2.12 (h) asserts that zc|r = 0 vanishes on

every unrefined simplex T € 7 N 7. The local stability and first-order approximation
property of the operator K*! from Lemma 2.12 (b) read

IDZcllz(ry + 1T NZelle(ry < Csz I Docllzzay)- (4.22)

A combination of this with the square root of the trace inequality (2.19) from Lemma 2.6
leads to

Tzl ey < VG (IDZellizery + ITI™2 Nz lliecr))
< VCuCsz I DTClliz(a)-

Step 2. Since ‘K]’;“ preserves polynomial boundary conditions, vc € US“ (7) is an
admissible test function and the discrete equation (3.18) implies

(Aors —SDuis,SD UC)LZ(Q) =0.

(4.23)

This and a piecewise integration by parts prove

(AoLs — SDurs, SDoc) 2 (q) = (Aors — SDurs, SDzc)12(q)

= - Z ((EC, div(S*(Aoys — SD”LS)))LZ(T)

TeT\T (4.24)

+ Z (ze, [S*(Aors = SDwis) 1 ve) o(p |-
Fe (TN (Ip)
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Due to the regularity assumption (3.1), all terms in the previously displayed formula
are well-defined.

Step 3. Given any T € 7\ 7, a Cauchy-Schwarz inequality and the estimate (4.22)
prove

(zc, div(S*(Aors — SDurs))) 2(py
< |TI"B)zell 2y I TIM? | div(S* (Aors — S Dus)) llzz(r)
< Csz | DBcllzzapn I TIM? N div(S™ (Aors — S Durs))l2(r)-

Givenany T € 7\ T withF e F (T)\ ¥ (Ip), the combination of the Cauchy-Schwarz
inequality and the estimate (4.23) shows

(ze, [S™(Aors = SDurs) I ve) 2(p
<TI0 Zell 2 er) IV [S™ (Aors — S Durs) ]k velliz(r)
< VCuCsz | DOcllzap ITIVII[S* (Acrs — SDurs)]r velli2(r)-

Step 4. The combination of the equality (4.24), the two displayed formulas from
Step 3, the Cauchy-Schwarz inequality in R™ with

m=57\T|-|{FeF(p) : ITeT\T, Fe F(T)}},
and a finite overlap of the patches Qr with the constant Cop, from (2.16) prove
(Aors — SDurs, SD(urs — urs — We)) 2

< max{1, yCy}CszCoL || D5c||L2(Q)( Z (|T|2/3 | div(S™(Aors — SDULS))Hizm

Te'i'\7A'
1/2
P RIS @Aas - SDus)lr vl )
FeF (T)\F (Ip)
This concludes the proof with the constant Cg,; := max{1, VCy }CszCor.. |

Lemma 4.9. There exists a positive generic constant Cqyy such that

(Aors — SDugs, Acurl ENed)LZ(Q)

< Car ||,3Ned||H(cur1,Q)( Z (|T|2/3 || curl(A*(Aors — SDULS))”%Z(T)
T€ﬂ3

1/2
.\ Z T3 ||ve x [A*(Aors — SD”LS)]F”;(F))) '
FeF (T\F (In)
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Remark 4.10. The following proof is a correction of [27, Lemma 5.4]. Therein, it is not
guaranteed that the construction of Iy /?N satisfies the required homogeneous tangential
boundary conditions on Iy. Hence, the function curl(INEN) may not be an admissible
test function and the fourth displayed formula in the proof of [27, Lemma 5.4] fails. In
this thesis, quasi-interpolation operators preserving partial homogeneous boundary
conditions are employed as a remedy.

Proof of Lemma 4.9. Step 1. The local operator Qyeq : Bﬁ(‘?’; R¥>3) — BI’iI(‘T; R33)
from Theorem 2.14 applied to the three components satisfies

(1- Quea)Prea =OineveryT € T\ R, and (4.25)

”(1 - QNed)ﬁNed”H(curl,Q) < qu ”ﬂNed”H(curl,Q)-

Let Sned : Hn(curl, Q;R¥) — B) (Q;R¥?) denote the componentwise application
of the quasi-interpolation operator from Theorem 2.13. It allows for a regular split of
the interpolation error into a function z € HIEI(Q ;R¥3) and a potential ¢ € HIEI(Q :R3)
such that

(1- SNed)(l - QNed);BNed =z+D Qb (4.26)
Moreover, the function z satisfies the local approximation error estimate, for every

T € 7 with mesh-size hy = |T|'/3,

T N\2ll 2y + I D 2ll12¢ry < Csen |l curl(1 — Qued) Predllzz(ar)- (4.27)

This and the square root of the trace inequality (2.19) from Lemma 2.6 lead to

TNzl 2y < VG (IT7 22l 2y + 1D 2ll2(ry)

. (4.28)
< VCtrCSch ” Curl(l - QNed),BNed”LZ(QT)'

Step 2. Since v X ENed = 0 on Iy and Qneq and Syeq preserve homogeneous bound-
ary conditions, it holds v X ClNedﬁNed = 0 and v X SNed(1 — Qned) ENed = 0 on Ix.
Hence, curl QNed,ENed € Z]Ii]((i') and curl Syed(1 — Qned) B\Ned € ZIKI(‘T) are admissible
divergence-free test functions. The discrete equation (3.18) shows

(..ﬂO'Ls - S D urs, A curl ENEd)LZ(Q)
= (Aors — SDugs, A curl(1 — Syea) (1 - QNed)ENed)LZ(Q)-

A combination of the locality in (4.25) and the local estimate (4.27) prove that z|7 = 0
vanishes in every T € 7 \ R3 and, thus, z|r = 0 on every F € #(T). This and the
split (4.26) lead to

(?{ULS —SDus, Acurl ENed)LZ(Q) = Z (ﬂdLs —SDug, Acurl Z)LZ(T)'
TeRs
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Since z = 0 on Iy, a piecewise integration by parts shows that

Z (ﬂO'Ls - SDus, Acurl Z)LZ(T)
T€R3

= Z ((z, curl(A*(Aors —SD ULS)))LZ(T) (4.29)
TeRs

+ Z (2 v X [A"(Aors = SDurs)]r) 2(p |-
FeF (TN\F (Ix)

Step 3. A Cauchy-Schwarz inequality and the estimate (4.27) prove, for every T € Rs,
(z, curl(A*(Aors — SD uLS)))LZ(T)

< TPzl g2y ITIM? || curl (A (Aors — SDurs)) iz
< Csen |l curl(1 — Quea) Bredllzz oy 1Tl curl(A* (Aors — S Durs)) llzz(r)-

Given any T € R3 with F € F(T) \ ¥ (In), a Cauchy-Schwarz inequality and the
estimate (4.28) show

(z vp X [A"(Aors = SDurs)IF) 2(p
< T Nl2llery ITIC vy X [A*(Aors — SDurs) 2y
< VCuCseh || curl(1 — Qued) fredllzzapy IT1V llve X [A*(Aors — SDurs) ||z (r).-

Step 4. The two displayed formulas from Step 3 applied to the equality (4.29), the
bounded overlap of the patches Q7 with the positive generic constant Cor, from (2.16),
and the stability estimate in (4.25) conclude the proof with the positive generic constant

Cgr2 ‘= max {1, \/Ctr}CScthiCOL- O
Lemma 4.11. It holds that

(A(GLs = o1s) = SD(urs = urs), Atrr = SDWe) (g
< max{Ca, Cs} 8(T,T) (I7rlliz() + I Dwelliz(ay)-

Proof. The claim follows immediately from the Cauchy-Schwarz inequality, the triangle
inequality, the boundedness of A in assumption (W1), and the boundedness of S in
assumption (W4). O

The combination of the four previous lemmas proves the discrete reliability.

Proof of Theorem 4.3. Step 1. Since prr = OLs — OLs — TRT — TRT € 2'&(’?) and ¢ =

Urs — urs — we € US“(‘%) satisfy homogeneous boundary conditions, the abstract
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Korn inequality (W5) and the ellipticity (3.21) of the least-squares functional from
Theorem 3.12 establish

”ERT”%Z(Q) + | D5C||iZ(Q) < max{1, CIZ(}Cell LS(0; ERT, E)\C) (4.30)
Since div prr = 0, the triangle inequality and Young’s inequality show
LS(0; prr,oc) = | Aprr = S DaclliZ(Q)
2 [1A(G1s — o1s) — SD(urs — wis) Iz g

+2 ||ﬂ?RT||i2(Q) +2 ”ﬂTRTHEZ(Q) +2 ”SD wC||]%2(Q)'

IA

The boundedness of the operators A and S from the assumptions (W1) and (W4) and
the stability estimates (4.7)-(4.8), (4.15) lead to

LS(0; prr. oc) < 2 [|A(GLs = o1s) = S D (s — urs)|I72 g
+4C5Ch (11 = T div(@is = 019) 172 + Il (T = TG -1 )
+2C5HCliap, Ik div(Tis — o19) 172 g
+2C5CH.Ce 1T = T Mo 1y

This and (4.30) prove

1Bl gy + DTl gy < €1 (85T T) + 1Tk = ORI, 11

_ (4.31)
+ ”(uTDk-H - «71-)k+l)uD”?{1/2(rD))

with the positive generic constant

c1 = 2max{1, C12<}Ce11 max{1, ZC;[C2

2 2 2
stab? CS COLCSZ}‘

Step 2. The split from the Lemma 4.7 and the estimates from the Lemmas 4.8-4.9
and 4.11 lead to

(T, T) < II(1 - Thy) div(Gis — o1) %2 g

+¢28(T.T) (ITrllzz(oy + D Welliee)
+c3 (I Docllz(q) + 1PrTI2(02)) res (T, R3).
with the positive generic constants
¢y = max{C#,Cs} and c¢3 = max{Cgr1, Car2CNed}-
Multiple applications of Young’s inequality with parameter & > 0 show
61T, T) < I1(1 = L) div(Gis = 015) s ) + 5 el o + 5= D FclEaqg,

—~ C3 —~ —~ C3
+ acs 52(7; T)+ 0{3 (” DUC”%Z(Q) + ||pRT||iZ(Q)) + ; Urzes(T, R3).
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The estimates (4.7)—(4.8), (4.15), and (4.31) prove

¢, C? R
BT T) < (14 22 (1 - 1) div(Gis - o1s)

2
¢2Ca €163
+ T +ta ”(Hk Hk)tN”H l/Z(aQ)

Czc(z)LCS C1C3 k+1
" ( 2 ) 1o
a
c ~
+ = (T, Rs) + 5(202 +eies) (T, 7).

k+1 2
% )uD||H1/2(rD)

The choice a = (2c; + c1c3) 7! allows for an absorption of the term 52(‘7', 77) on the
left-hand side and results in

2¢,C2 R
ST T) < (2+ =22 ||(1 - ITo) div(Gis = o1s) 4 g

202C
d

X A _
Tsm + aclc3) (e = T il -1

c2C5,.Csz Gkl _ ety 2 23 5
(2 eres) T = T D0 iy + o 1T Ro).
Lemma 3.8 and Corollary 3.11 imply

8 (T2 T) < e (1~ 1) div(Gis - o15)[%2 0 + €5 0sc(ty, F(Tn) \ F(In)
+¢s osc2(Dup, Ls(F \ %, Ip)) +¢7 Ufes(T’ R3)

with the positive generic constants

cic
. 2 . 2 2 1¢3
cq = 24 2¢,C 1 (2¢0 + cqc3), c5 = CN(Zczcstab(ZCZ +cic3) + m),
2 +C1C3
) 2 2 €103 ._
¢s .= Cpa (CZCOLCSZ(ZCZ + C1C3) + —202 A 0103), Cc7 = 203(202 + 01C3).

The triangle inequality and Young’s inequality in the estimate

11 = ) div(@is — 015) 122 = 11~ TLe) div s 2,
2 [(1 = ) f 124 ) + 2 LS(f: s, is)

IA

conclude the proof of Theorem 4.3 with the positive generic constants

Kg = max{2cq, Cs5,Cs,c7} and Aj = 2cy. O
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4.4 Quasi-orthogonality

In the case of homogeneous boundary conditions, the variational formulation (3.18)
provides a conforming discretisation. The Galerkin orthogonality immediately implies
the quasi-orthogonality axiom (A4) [44, Theorem 4.1]. However, for triangulations 7;
and 7j41, the (possibly) different boundary data approximations on the refined bound-
ary faces ;(Ix) \ Fj+1(Ix) prevent the Galerkin orthogonality. The stable extensions
of the approximation errors from the Sections 3.3-3.4 allow for a remedy in the proof
of a quasi-Pythagoras Lemma 4.15 below. This result leads to the proof of a weakened
version of the quasi-orthogonality axiom (A4) using a procedure from [37, the follow-
ing Lemma 4.15 matches axiom (B3a) therein]. A standard result [40, Theorem 3.1]
deduces (A4) and completes this chapter.

The Dirichlet data approximation error in the H'/? norm allows for an upper bound
in terms of the boundary data oscillations on not less than five additional layers around
the refined boundary faces in Lemma 3.8. This requires the notion of a modified
mesh-size function h(n) for n € Ny being reduced by a factor 0 < pyms(n) < 1 on the
simplex T € 7 if any simplex in the n-layer £,({T}) is refined, cf. [62, Section 4.2]
and [37, Section 8.7]. For n = 0, this coincides with the usual mesh-size function
h(0)|r = hy|r = |T|Y/? from (2.18).

Lemma 4.12 (modified mesh-size function). For every n € Ny, there exist a piece-
wise constant modified mesh-size function h(n) € Py(7"), generic constants Cyyms(n) > 1,
and 0 < pyms(n) < 1 such that

(i) Conms(n) ™Y hy < h(n) < he in Q,
(ii) h(n)|T < pmms(n) h(n)|r on every T € Ry = Ln(T\ T,
(iii) h(n) < h(n) in Q.
Forn =0, h(0) = hy satisfies (i)—(iii) with Coyms = 1 and pmms = 2713,

Proof. The proof is given in [37, Proposition 8.6]. It relies on the shape regularity of
triangulations in T ensuring that there exists a uniform upper bound ¢; with, for every
T €T,

max {|T|/|T| : T,T € T with dist(T,T) = 0} < ¢;.

In particular, for every T € 7 and T € £,({T}),

T
G'<idsa ad L) <

A successive definition over the one-level refinements from the initial triangulation 7
until 7 in T with a rescaling for the refined simplices leads to the mesh-size function

h(n) O
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Using this notion of a mesh-size, define the modified boundary data oscillations, for
n € Ny, g € L*(89Q), and M C F(9Q),

oscZ(g, M) = Y IA(m)2(1 = Te)gl, (432)
FeM

Thus, the oscillations oscy coincide with those defined in (2.20). The modified oscilla-
tions provide the following estimate for oscillations on n-layers.

Lemma 4.13. Given any part Ix € {Ip,IN} of the boundary 0Q and n € Ny, every
g € L*(Ip) satisfies

05c%(g, Ln(F \ F,Tx)) < Cose(n) (0sc(g, F (Ix)) — osc2(g, F (Ix))).

The constant Cosc(n) depends solely on the modified mesh-size function h(n). In particular,
it does not depend on the part I'x. Forn = 0, Cosc(0) = 1.

Remark 4.14. This result is included in the proof of [37, Proposition 11.1]. The estimate
in the third displayed formula in [37, on page 1251] is false, because the equivalence
of the modified mesh-size function from Lemma 4.12 (i) just allows for an upper
bound —C[} 1(7)? therein. To provide a remedy in this thesis, the quasi-Pythagoras
Lemma 4.15 is established for the modified oscillations osc,. The equivalence from
Lemma 4.12 (i) will be applied at the very end of the proof of Theorem 4.16.

Proof of Lemma 4.13. Recall the notion of the relative interior of boundary patches
from (2.5). The estimates from Lemma 4.12 (ii)—(iii) approve, for the modified mesh-size
function h(n),

(1 = pmms(n)) h(n) < h(n) — E(n) inS, = relint U L,(7 \ ‘7‘) (4.33)
On the boundary patch §X,,, = relint(S, N Ix), the estimate (4.33) justifies

(1= prms(n)) [1h(n) /(1 = g2

L2(§X,n)
< [h(m)*(1 = Tgll?, & | = Ih(m)'2(1 =gl

(§X,n) (§X,n) ’

The monotonicity (iii) shows for the remaining contributions

IR (1~ g 5, S WA -T0g I, 1 5

The combination of the two previously displayed formulas reads

(1= Punmns (m)) [12(0) V21 = ) g2

~ (4.34)
< IR (1 = gl 2.y — 1R 2(1 = gl
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The piecewise polynomial L? orthogonal projection IT; with respect to the faces ¥
and the refined faces ¥ satisfies

1A(n) (1 = gl g, < IR 2(1 = TGl
This and (4.34) prove
— 1/204 _ 2
(1= pms () 1h(0) 21 = TT)g12, <
< 1A (1 = g1 g — 152 (1 = Tgli g, -
The equivalence (i) concludes the proof with the positive generic constant

Crmms (1)

Cosc(n) i= ———.
o 1~ pmms(1)
For n = 0, the orthogonality of II; immediately shows the result with Cosc(0) = 1. O

Given a regular triangulation 7~ € T with admissible refinement T e T(7), recall
Notation 3 from page 22. The following lemma involves the modified boundary data
oscillations of the surface gradient D up from (2.4).

Lemma 4.15 (quasi-Pythagoras). Abbreviate
72 (T) = oscg (Dup, F(Ip)) + osc?(ty, F (In)) (4.35)

and do so analogously for 7. There exists a positive generic constant Cqp such that every
a > 0 satisfies
ST, T) < (1+a) 