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In this article, we extend the Bayesian nonparametric regression method Gaussian

Process Regression to the analysis of longitudinal panel data. We call this new approach

Gaussian Process Panel Modeling (GPPM). GPPM provides great flexibility because

of the large number of models it can represent. It allows classical statistical inference

as well as machine learning inspired predictive modeling. GPPM offers frequentist and

Bayesian inference without the need to resort to Markov chain Monte Carlo-based

approximations, which makes the approach exact and fast. GPPMs are defined using

the kernel-language, which can express many traditional modeling approaches for

longitudinal data, such as linear structural equation models, multilevel models, or

state-space models but also various commonly used machine learning approaches. As a

result, GPPM is uniquely able to represent hybridmodels combining traditional parametric

longitudinal models and nonparametric machine learning models. In the present paper,

we introduce GPPM and illustrate its utility through theoretical arguments as well as

simulated and empirical data.

Keywords: longitudinal analysis, machine learning, statistical learning, Bayesian, continuous-time, prediction

1. INTRODUCTION

Longitudinal data are crucial for addressing various psychological research questions, including
questions related to child development, aging, and intervention research. In this paper, we focus on
the analysis of (longitudinal) panel data, which we define as data that contain measurements of one
or more variables from multiple individuals, each measured at multiple time points. Based on this
rather broad definition, panel data encompass intensive longitudinal data, which are characterized
by a relatively large number of measurements from few individuals (e.g., Walls and Schafer, 2006),
as well as traditional panel data sets, which are characterized by fewmeasurements from a relatively
large number of individuals (e.g., Hsiao, 2014).

In psychological research, panel data are commonly analyzed using the general linear model
(Cohen, 1968), multilevel modeling (Raudenbush and Bryk, 2001), or structural equation
modeling (Bollen, 1989). Such approaches have the advantage that specification, inference, and
interpretation are straightforward and well understood. However, these benefits come at the price
that only relatively simple models can be expressed. Often, for example, the assumption of linear
relationships between all variables is central. In addition, traditional modeling approaches are
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almost focused on explanatory data analysis (Shmueli, 2010;
Yarkoni and Westfall, 2017). The main goal of explanatory data
analysis is to estimate (parameters of) the probability distribution
that generated the data, and thus, to recover relationships that
hold in the population, although these relationships do not
necessarily have to be causal. To this end, a model is formulated
and assumed to be correctly specified, that is, to contain the
population distribution. Consequently, the statistical conclusions
drawn from an explanatory analysis (e.g., standard errors, p-
values, confidence intervals) are only guaranteed to be valid if
the chosen model is correct, which arguably is often not the case
when analyzing panel data (e.g., Ghisletta et al., 2019).

In contrast, machine learning, with its underlying inference
framework of statistical learning, changes the goal of the analysis
to quantify how well a certain model predicts. Prediction
may be a valuable goal in itself (e.g., prediction of treatment
success or risk of developing a disease) but, also, prediction
may help to generate or improve explanatory models, e.g., by
providing a reference model that a purely theory-driven model
has to compete with (in terms of predictive accuracy) or by
providing information as to where in the input space a theory-
driven model is making unsatisfying predictions (Brandmaier
et al., 2016). This shift toward predictive modeling enables
relatively complex models, and inferences based on the statistical
learning (SL) framework do not require correctness of the
model (Breiman, 2001). For example, the standard method for
classification in psychology is linear logistic regression whereas
in statistical learning support vector machines with a Gaussian
radial basis function kernel (Vapnik, 1998) are often used, which,
in contrast to linear logistic regression, allows for nonparametric
models including interactions and higher-order relationships of
outcomes and predictors. Inferences about the generalization
performance based on statistical learning from these relatively
complex models are also valid when the model is not correctly
specified. As a matter of fact, in machine learning, models are
often misspecified on purpose to obtain better predictions. This
idea becomes particularly evident in regularization, in which
parameter estimates are biased (shrunken toward zero away
from their unbiased estimates) to decrease the variance of the
estimates, which ultimately can lead to improved predictive
accuracy (cf. the bias-variance tradeoff, see (Yarkoni andWestfall,
2017) for a detailed description).

One statistical learning method that recently has been
promoted as a useful analysis tool in psychological research
is Gaussian process regression (GPR) (Schulz et al., 2018).
Additionally, many publications (e.g., Brahim-Belhouari and
Bermak, 2004; Saatçi et al., 2010; Turner, 2012; Roberts et al.,
2013) demonstrate the utility of GPR for analyzing time-series
data. However, GPR cannot be easily used for the analysis of
panel data. The reason is that there are currently no means to
accommodate the nested nature of the data (typically, time points
within persons). In this article, we extend GPR to allow for the
analysis of panel data and call the resulting method Gaussian
process panel modeling (GPPM). To this end, we extend GPR
such that both a within-person model and a between-person
model can be specified.We adapt the statistical learning inference
methods used in GPR for the resulting class of GPPM models,

which provides us with methods for model selection, methods
to obtain person-specific predictive distributions, and methods
for model validation. We provide an implementation of GPPM
in form of the R (R Core Team, 2018) package “gppm”
(Karch, 2018).

Although we strongly believe psychological research can
profit from incorporating ideas from statistical learning (see
also Brandmaier et al., 2016; Yarkoni and Westfall, 2017), the
GPPM approach proposed in the present paper can also be
used for explanatory data analysis. By expanding the class of
possible models, GPPMmay be equally beneficial for explanatory
data analysis, because the ability of GPPM to specify a broad
set of models might increase chances to specify a correct
model. However, given its roots in statistical learning, frequentist
inference procedures for GPPM—most notably hypothesis
testing and confidence interval estimators for model parameters
but also methods for model selection—have not yet been
developed. To close this gap, we develop the standard frequentist
inference procedures for GPPM in the present paper. As a result,
GPPM may be conceived as a hybrid of a statistical learning
and an explanatory approach that allows inference using both
frameworks. Importantly, in contrast to the statistical learning
conclusions, explanatory conclusions drawn from GPPM are not
robust to misspecification.

GPPM is based on the so-called kernel-language for model
specification. Kernels are functions that generate model-based
covariances of pairs of measurements in continuous time and
will be explained in more detail later on. The kernel-language
builds on the concepts of the Mercer kernel (Rasmussen and
Williams, 2006), which is used by many statistical learning
methods such as GPR or support vector machines (Vapnik,
1998). From the perspective of longitudinal modeling, the kernel-
language represents a new approach for specifying a within-
person model, and thus complements the two existing approach
(see, Ram and Grimm, 2015, for an overview): mathematical
functions, as used in multilevel models and structural equation
models, and differential equations, as used in state-space models.
Importantly, the kernel-language can represent models that are
not representable by either of the two existing approaches,
most notably flexible nonparametric models, as typically used
in machine learning. However, the kernel-language is also
able to represent traditional model classes such as (linear
Gaussian) structural equation models or (linear) multilevel
models. Additionally, a specific strength of the kernel-language
is the ability to combine models by standard combination
operators easily. Consequently, GPPM enables the researcher
to employ models typically used in statistical learning, models
that are commonly used in psychological research, as well as
a combination of the former two. We will place a particular
emphasis on the utility of these combined, hybrid models, which
GPPM is uniquely able to represent.

There have been previous efforts to extend GPR for N >

1 data. Cox et al. (2012) have adapted GPR for the analysis
of computer mouse trajectories, which are nested within
participants, which again are nested within conditions. Thus,
these data can be considered an example of nested longitudinal
data and consequently, their work as an example of using GPR for
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analyzing longitudinal data. However, Cox et al. (2012) tailored
GPR to their specific analysis problem, whereas we aim at giving
a broader perspective on GPR as a general method for panel data
analysis. In addition, GPPM and the approach proposed by Cox
differ with regard to model specification, estimation, and model
selection. While Hall et al. (2008) did not discuss how to extend
GPR for N > 1, they used Gaussian processes as a mathematical
tool to implement a functional analysis method for panel data.
Given this entirely different focus, their method is very different
from GPPM, as introduced in this paper. Chen and Zhang
(2019) introduced an alternative model that utilizes GPR for the
analysis of (intensive) longitudinal data. Like in the dissertation
monograph (Karch, 2016) and the preprint on GPPM (Karch
et al., 2017), their method describes the within-person model
using GPR. However, GPPM differs from their approach in terms
of recommendations for model specification, implementation,
and scope of possible models. Additionally, Chen and Zhang
(2019) focus only on explanatory modeling and do not discuss
which kind of between-person models can be implemented.

In particular, the unique contributions of this work are as
follows. First, we extend GPR by a between-person model and
discuss various types of between-person models that can be
chosen from. Second, we elaborate on frequentist as well as
statistical learning inference procedures for GPPM. Third, we
relate existing approaches to model panel data in psychological
research to GPPM. We show that many traditional methods,
such as linear structural equation models or linear state-space
models can be considered as special cases of GPPM. Fourth,
an important consequence of the latter point are novel models
for the analysis of panel data; in particular, the hierarchical
version of models typically used in machine learning, as well
as hybrid models that consist of a combination of a parametric
(theory-based) model and a nonparametric statistical learning
(data-driven) model. We demonstrate that these models provide
advantages from a predictive (they can outperform existing
models in terms of predictive accuracy) as well as explanatory
(they can have a higher Bayesian posteriormodel probability than
existing models) perspective.

The remainder of this paper is structured as follows. In the
next section, section 2, we recapitulate the statistical learning
method GPR as Bayesian nonparametric regression approach.
In section 3, we introduce GPPM, our extension of GPR
models for the analysis of panel data. In this section, we
also discuss the relationship of the GPPM model class with
other modeling classes; specifically, we show that both linear
Gaussian structural equation modeling and linear state-space
models are subsets of the GPPM model class. In section 4,
we develop frequentist inference procedures, such as hypothesis
testing and confidence interval estimators, for the GPPM model
class. In section 5 we adapt the statistical learning inference
procedures from GPR to GPPMs. In section 6, we illustrate the
use of GPPM based on both simulated and a real panel data
set in which participants’ stance toward authoritarianism was
modeled. In our demonstration, we focus on the utility of hybrid
models of parametric and nonparametric kernels that GPPM
is uniquely able to represent. We close with a discussion and
conclusion section.

2. GAUSSIAN PROCESS REGRESSION

2.1. Introduction
In this section, we briefly review GPR, which is an established
statistical learning method. For an in-depth treatment, see
Rasmussen and Williams (2006) and for a tutorial introduction
aimed at psychologists, see Schulz et al. (2018). GPR is based on
multiple linear regression. In multiple regression, the goal is to
find a regression function of the form

f :X → R, f (x) = x⊤b, Y(x) = f (x)+ ǫ, ǫ ∼ N (0, σ 2
ǫ ).

The input vector x ∈ X ⊆ R
p contains p predictors and

the parameter vector b ∈ R
p p corresponding parameters.

We assume that the input vector always contains a constant
predictor such that an explicit intercept is not needed. The
outcome variable Y(x) represents the to-be-predicted quantity,
which is assumed to vary across the predictions f (x) according
to a Gaussian random variable ǫ with error variance σ 2

ǫ . The
distribution for the outcome variable Y(x) implied by its input
vector x is thusY(x) ∼ N (f (x), σ 2

ǫ ); and for any two input vectors
x, x′ with x 6= x′, Cov

(

Y(x),Y(x′)
)

= 0.
The first step toward GPR is to extend the linear regression

model such that it allows for nonlinear relationships between the
input vector x and the outcome variable (OV). This is achieved
by the introduction of a function φ(x) that maps the input vector
x into a new space, which changes the regression function to

f (x) = φ(x)⊤b.

The second step toward GPR is to employ Bayesian inference.
A prior distribution is introduced for the parameters. A prior is
only imposed on the coefficient vector b and is assumed to be
Gaussian: b ∼ N (µb,6b). The error variance σ 2

ǫ is assumed to
be a fixed quantity, which is considered to be part of the model
and thus estimated as part of the model selection procedure (see
section 2.3).

The third step toward GPR is to describe the prior directly
at the level of the regression function. Since every value v of
the coefficient vector b translates to one particular regression
function via the equation f (x|b = v) = φ(x)⊤v, imposing a
prior on the coefficient vector b implies a prior over regression
functions. Specifically, for a matrix X = [x1, . . . , xN], containing
input vectors as columns, the prior implied for the corresponding
values of the regression functions f (X) = [f (x1), . . . , f (xn)]

⊤ can
be compactly described using the matrix of transformed input
vectors φ(X) = [φ(x1), . . . ,φ(xN)] as follows

f (X) = φ(X)⊤b ∼ N

(

φ(X)⊤µb,φ(X)
⊤6bφ(X)

)

.

Thus, the prior implied for the predictions of the regression
function f (x) at a finite set of input vectors X can be described
directly using a Gaussian distribution.

However, typically, the set of possible input vectors X ∋ x
is of infinite size (e.g., time is generally considered infinite).
To fully describe the prior on the level of the regression
functions, the distribution of the infinite set {f (x) : x ∈ X }
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has to be appropriately represented. This set is not a random
vector because it is of infinite size and, consequently, its prior
distribution cannot be described using a Gaussian distribution.
Thus, we need to operate with an infinite-sized generalization of
a random vector, which is called a stochastic process.

DEFINITION 1 (Gaussian Process). Let (�,F ,P) be a
probability space and (S,6) a measurable space, a stochastic
process is a set of S-valued random variables on the probability
space (�,F ,P). It can be written as {f (x) : x ∈ X } using an index
set X .

A Gaussian process is a stochastic process for which any finite
subset of {f (x) : x ∈ X } (which is a random vector) is distributed
according to a Gaussian distribution.

Thus, to completely describe the prior over regression function,
the distribution for the Gaussian process {f (x) : x ∈ X } needs
to be specified. Just like for Gaussian random vectors, the
distribution of a Gaussian process can be completely described
by its first and second-order statistics. While for Gaussian
random vectors, a mean vector and a covariance matrix are
used, for Gaussian processes, their infinitely sized equivalents are
employed; the mean function and the (Mercer) kernel.

DEFINITION 2 (Mean Function and Kernel). Let {f (x) : x ∈ X }
be a stochastic process, and x, x′ ∈ X , then m(x) : = E(f (x))
is called the mean function and k(x, x′) : = Cov(f (x), f (x′)) the
kernel of the stochastic process.

The implied mean function and kernel for the Gaussian process
representing the prior over regression functions are m(x) =
φ(x)µb and k(x, x′) = φ(x)⊤6bφ(x

′). Thus, the choice of the
transformation function φ(x) and the prior for the coefficient
vector b determine the mean function and the kernel. For
example, using the identity as transformation function and the
regularizing prior b ∼ N (0, Iσ 2

b
), where I is the appropriately

sized identity matrix, results in mean function m(x) = 0 and
kernel k(x, x′) = x⊤σ 2

b
x′. This is the Bayesian equivalent of ridge

regression (Hastie et al., 2009, Chapter 3.4.1).
The Gaussian process prior on the regression function f (x)

also implies a prior on the outcome variable Y(x). Since the
regression function f (x) is related to the outcome variable Y
by the measurement equation Y(x) = f (x) + ǫ, the prior
implied for the outcome variable Y(x) is a Gaussian process
with mean function m(x) = φ(x)⊤µb and kernel ky(x, x

′) =
φ(x)⊤6bφ(x

′)+δ(x−x′)σ 2
ǫ , where δ(·) is the Dirac delta function,

that is, it is 0 everywhere, except at 0. We will abbreviate this as

Y(x) ∼ GP

(

φ(x)⊤µb,φ(x)
⊤6bφ(x)+ δ(x− x′)σ 2

ǫ

)

. (1)

Thus, the GPR model for the outcome variable Y(x) can be
fully described by a mean function and a kernel. We will refer
to kernels including the measurement error as ky and kernels
without the measurement error as k in the remainder of the
manuscript.Model specification inGPR thus consists of choosing
a mean function and a kernel. For example, the mean function
and the kernel representing Bayesian linear regression with a
regularizing prior and Gaussian measurement error are m(x) =
0, ky(x, x

′) = x⊤σ 2
b
x′ + δ(x− x′)σ 2

ǫ .

2.2. Inference
Inference in GPR is traditionally focused on optimal predictions.
To obtain unbiased estimates of the predictive accuracy, data
is split into a training and a test set. The training set D =
{(xi, yi) : i ∈ 1, . . . ,N1} = (X, y) is used to fit the model,
and the goal is to obtain optimal predictions when using input
vectors x∗ that have not been in the training set. We denote such
inputs vectors in a test set as the matrix X∗ = [x∗1 , . . . , x

∗
N2
].

Bayesian statistical learning procedures typically first obtain
parameter estimates in the form of the posterior distribution
and then link the posterior distribution with the likelihood to
obtain predictions in the form of the predictive distribution (e.g.,
Bishop, 2006, section 3.3). In contrast, in GPR, the predictive
distribution is directly obtained in a single step.

The predictive distribution is the distribution given the model
and the training set for the test set predictions, that is, f (X∗)|D.
For notational convenience, we introduce the following:

M(X) =








m(x1)
m(x2)

...
m(xN1 )







,

K(X,X∗) =









k(x1, x
∗
1) k(x1, x

∗
2) . . . k(x1x

∗
N2
)

k(x2, x
∗
1) k(x2, x

∗
2)

...
...

. . .

k(xN1 , x
∗
1) . . . k(xN1 , x

∗
N2
).









This allows expressing the joint distribution of observations Y(X)
and predictions f (X∗) as follows:

[

Y(X)
f (X∗)

]

∼ N

(

M

([

X
X∗

]) [

K(X,X)+ Iσ 2
ǫ K(X,X∗)

K(X∗,X) K(X∗,X∗)

])

.

The predictive distribution is obtained by conditioning on the
observations y. It has an analytical solution, which is:

f (X∗)|D ∼ N (E(f (X∗)|D), Cov(f (X∗)|D)), with (2)

E(f (X∗)|D) = M(X∗)+ K(X∗,X)[K(X,X)+ σ 2
ǫ I]

−1(y−M(X))

(3)

Cov(f (X∗)|D) = K(X∗,X∗)− K(X∗,X)[K(X,X)+ σ 2
ǫ I]

−1K(X,X∗).
(4)

2.3. Model Selection
Before obtaining predictions based on a model, the model is
chosen from a set of candidate models. The model in GPR is
represented by a prior over regression functions, specified by a
mean function and a kernel. Thus, model selection in GPR is
formally equivalent to choosing a prior.

In GPR, the prior is typically obtained using the empirical
Bayes approach (Rasmussen and Williams, 2006, Chapter 5).
This means the prior is chosen based on the training data D.
For GPR, this is typically done in two ways. One approach is
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to choose the prior that optimizes the model evidence. This
approach is well in line with GPR being a Bayesian method. The
other approach is to choose the prior that optimizes the predictive
accuracy as measured by cross-validation. This is well in line
with GPR being a statistical learning method. However, exactly
when which approach should be preferred is still discussed in the
literature (Bishop, 2006; Piironen and Vehtari, 2017; Gronau and
Wagenmakers, 2019, section 3.4).

Both approaches start with a set of models as represented by a
parameterizedmean functionm(x; θ) and a parameterized kernel
ky(x, x

′; θ). The parameters θ are so-called hyper-parameters,
because every parameter value corresponds to a model. In both
approaches, the hyper-parameters θ̂ are chosen that optimize an
objective function given the training data D = {(xi, yi) : i ∈
1, . . . ,N1} = (X, y) with respect to the hyper-parameters θ .

When using the model evidence approach, the objective
function is the model evidence, that is, the likelihood of the
training data given the model, which we denote as p(y|X, θ).
While the model evidence can only by approximated for many
models (Bishop, 2006; Kruschke, 2014), it can be computed
analytically for GPR models. It corresponds to a simple
evaluation of the Gaussian likelihood:

p(y|X, θ) = N
(

y;M(X; θ),Ky(X,X; θ)
)

.

When using the cross-validation approach for choosing a model,
the objective function is the k-fold cross-validated prediction
performance estimate (Kohavi, 1995). For a cross-validation
procedure, a loss function has to be chosen, which quantifies the
loss of predicting a value ŷi when the true value is yi. For GPR
models, which return a predictive distribution, the negative log
predictive probability loss is a natural loss function (Rasmussen
and Williams, 2006, p. 112) as it also takes the uncertainty of the
predictions into account. The negative log predictive probability
of a vector of true values y∗ = [y1, . . . , yN2 ] under the predictive
distribution is

− log
(

N (y∗;E[f (X∗)|D], Cov[f (X∗)|D])
)

,

with the predictive mean E[f (X∗)|D] and the predictive
covariance matrix Cov[f (X∗)|D]) being as defined in Equations
(3) and (4) respectively. Consequently, the higher the likelihood
of the true values y∗ under the model, the lower its negative log
predictive probability.

Usually, model selection approaches in both statistical
learning, and inferential analyses are used to select between a
finite set of candidate models. In contrast, in GPR, they are used
to select between a typically infinite number of candidate models
as represented by hyper-parameters from an uncountable hyper-
parameter space 2 ∋ θ . To this end, iterative optimization
algorithms based on the gradient of the objective function are
employed. They find the best model by optimizing the chosen
objective function. This model is then used to obtain predictions,
as described in the previous section.

3. GAUSSIAN PROCESS PANEL MODELS

In this section we generalize GPR to GPPM by introducing
a between-person model, before introducing frequentist and
statistical learning inference procedures in sections 4 and 5.
To facilitate the discussion in these sections, we offer a short
reinterpretation of a GPR model in the following.

3.1. Reinterpreting a Set of Priors as a
Statistical Model
Understanding how a GPR model can be extended by a between-
person model as well as complementing GPR with frequentist
inference procedures is facilitated by reinterpreting the set of
priors represented by a parameterizedmean functionm(x; θ) and
kernel ky(x, x

′; θ) pair as a statistical model.
Each hyper-parameter value θ describes the distribution of the

Gaussian process Y(x). In GPR, this distribution is interpreted
to represent a prior and thus one model. Consequently, the
set of distributions implied by the hyperparameter space 2 is
interpreted as a set of models. An alternative interpretation is
that each of these distributions is a candidate distribution for the
Gaussian process Y(x). It follows that now the set of distributions
implied by the parameter space 2 is one model, which in the
previous interpretation was a set of models. In notation, we write

Y(x) ∼ {GP
(

m(x; θ), ky(x, x′; θ)
)

: θ ∈ 2},

which reads: It is assumed that there exists one parameter value
θ∗ ∈ 2 such that the true mean function and kernel for the
Gaussian process Y(x) arem(x; θ∗) and k(x, x′; θ∗).

3.2. Introducing Between-Person Models
Let us assume that in a longitudinal data set, N ∈ N time series
are observed. Each time series yi ∈ R

Ji originates from one
person i and contains Ji observations. With yij ∈ R, we describe
the j-th observation of person i. In analogy to GPR, we assume
that each observation is accompanied by a corresponding input
vector xij ∈ X ⊆ R

p, which is also observed. As for GPR, x, x′ ∈
X describe two arbitrary input vectors. In the simplest case, the
input vector can just contain the time point of the observation
(e.g., days elapsed since inception of the study), but in principle,
any variable is allowed to be a member of the input vector.

For modeling, we assume that for each person their time
series yi is a realization1 of a stochastic process. Note that
this assumption is reasonably general and encompasses virtually
all available probabilistic methods for analyzing longitudinal
data, including advanced methods such as nonlinear state-space
models (Chow and Zhang, 2013).

The reinterpretation of GPR models is in line with this
formalism. Essentially, with GPR, a model for the stochastic
process of a single person can be defined assuming the stochastic
process is a Gaussian process. Then, each person’s time series yi

1Technically, a realization of a stochastic process is of infinite size as the stochastic

process contains infinitely many random variables. So, technically yi is a realization

of a finite subset of the random variables contained in the stochastic process.
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is considered a realization of a Gaussian process Yi(x) with true
distribution as follows

Yi(x) ∼ GP(m∗
i (x

′), k∗i (x, x
′)).

The mean function m∗
i (x) and the kernel k∗i (x, x

′) represent the
true distribution of the person-specific Gaussian process. Thus,
for each person, a model can be formalized using a parameterized
mean function and kernel.

However, so far, it is not possible to specify relationships
between persons, that is, a between-person model. The most
straightforward approach to specify a between-personmodel is to
assume that each person’s time series is a realization of the same
Gaussian process and that the person-specific Gaussian processes
are mutually independent. The statistical model implied by this
approach is

Yi(x) ∼ {GP(m(x; θ), ky(x, x′; θ)) : θ ∈ 2} (5)

for every person. We call such a model a Gaussian process
panel model (GPPM). Equivalently to GPR models, GPPMs are
specified by choosing the predictors, the mean function, and
the kernel.

Although the mean function and the kernel are assumed to
be identical for each person, this does not imply that there
are no between-person differences. Many forms of between-
person differences can be specified using this formalism. More
specifically, the model displayed in Equation (5) does not
necessarily assume that the true distribution of the person-
specific Gaussian processes is the same for each person. We will
discuss this in more detail in the following section.

3.3. Supported Between-Person Models
Let θip be the person-specific variant of parameter θp. If the
person-specific parameter θip is considered a realization of a
between-person probability distribution P(θ), then we speak of
probabilistic between-person model. If, in contrast, the person-
specific parameter θip is determined by a function f (τi, θτ ) = θip
with a vector of time-invariant covariates ti and a parameter
vector θτ as input then we speak of a deterministic between-
person model. Note that this formalism also covers conditional
distributions P(θ |τi), as this can be achieved by combining
deterministic and probabilistic models.

In GPPM, a Gaussian between-person distributions for linear
mean parameters can be implemented by simply modifying the
mean function and kernel. Let the mean function be of the form

m(x; θ) = f (x; θ1)⊤θ2 + h(x; θ3), (6)

where the parameter vector θ = [θ1, θ2, θ3] is partitioned
into parameter vectors θ1, θ2, θ3. f (θ1) is a vector-valued, and
h(θ3) a scalar-valued function. The parameters in the vector θ2
are what refer to as linear mean parameters. A probabilistic
between-personmodel is introduced by individualizing the linear
parameters in the vector θ2 and assuming that the corresponding
individualized parameter has the between-person distribution

θi2 ∼ N (µθ2 ,6θ2 ). As a result, the mean function itself becomes
a Gaussian process with mean function and kernel

E[m(x; θ)] = E[f (x; θ1)⊤θi2 + h(x; θ3)]
= f (x; θ1)⊤µθ2 + h(x; θ3)

Cov(m(x; θ),m(x′; θ)) = f (x; θ1)⊤6θ2 f (x
′; θ1)

Consequently, the resulting GPPM is

m̃(x; θ) = f (x; θ1)µθ2 + h(x; θ3)
k̃(x, x′; θ) = k(x, x′; θ)+ f (x; θ1)⊤6θ2 f (x

′; θ1)
(7)

To investigate whether other types of between-person models
besides a Gaussian between-person model on mean parameters
can be defined, we use the mathematical equivalence of
between-person models and priors. Introducing a between-
person distribution for a given parameter is equivalent to
introducing a prior distribution over that parameter, even
though either approach may have quite different implications
in practice. With this equivalence in mind, we may then regard
the original mean function and kernel as the likelihood. To
express the new statistical model, the marginal likelihood has
to be obtained, that is, a weighted average of the likelihood
using the prior as weighing function. We showed that for a
Gaussian likelihood and a Gaussian prior on linear parameters
of the mean, the marginal likelihood is again Gaussian (also
see Bishop, 2006, Chapter 2.3.3). Between-person distributions
other than the Gaussian will typically not lead to the marginal
likelihood being Gaussian. The Gaussian prior is the only
commonly used prior that has this property. The same is true
for between-person distributions on the kernel parameters, as
for most commonly used priors on variance parameters, the
resulting marginal likelihood is not a Gaussian. To implement
non-Gaussian between-person distributions and between-person
distributions of variance parameters in the GPPM framework, an
extension of the basic GPPM formalism is needed, which remains
subject to future research.

Deterministic between-person models, that is, parameter
heterogeneity that is governed by a deterministic function
f (τi, θτ ) = θip, can be implemented by changing the mean
function, the kernel, and the predictors in the input vector
x. For this, we use a method that is able to implement
parameter heterogeneity for every single observation: Let θp be
a parameter of the mean function for which a person- and
potentially observation-specific variant θijp, determined by a
function f (τij, θτ ) = θijp, is desired. We now assume that the
vector τ also contain time-varying and time-invariant covariates.
To implement this, one simply needs to replace the parameter θp
by f (tij, θτ ) in the mean function, add the time-variant and time-
invariant covariates in the vector τij to the input vector x, and add
the parameter vector θτ to the parameter vector θ .

The same concept can be used to implement person-
and observation specific heterogeneity for parameters in the
kernel. When implementing observation-specific heterogeneity,
it is important to note that a kernel describes the model
for the pairwise covariance between all observations. Thus,
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observation-specific heterogeneity needs to take the state values
of two observations into account. This however, can be easily
accommodated for by letting the function governing the
parameter heterogeneity depend on a pair of covariate vectors
τij, τik, that is, it changes to f (τij, τik, θτ ). Besides that small
change, everything works analogously for mean functions.

3.4. Model Specification and Relation to
Other Model Families
Given a panel data set, a GPPM for an outcome variable
Y is defined by identifying predictor variables in the input
vector, which at least includes the time of measurement, and
by specifying a mean function and a kernel. Model specification
is facilitated by the fact that models can be specified by simple
combination rules. For example, a valid mean function can be
created by summation of, multiplication of, and scaling of base
mean functions. The same operators can be used to create a new
kernel based on combinations of basemean functions and kernels
(see Duvenaud et al., 2013, for details). Some of these operators
have straightforward interpretations. For example, the sum of
two Gaussian processes with mean functions m1,m2 and kernels
k1, k2 has mean functionm = m1 +m2 and kernel k = k1 + k2.

With GPPM being a hybrid of a statistical learning and
an explanatory method, a model can be specified using
different strategies.

One approach to model specification is to translate a
substantive theory into its GPPM representation. For example,
a very simple theory could posit that there is no change over
time and no between-person differences; that is, all observed
differences across persons and measurement occasions are solely
attributed to measurement error. This would translate into the
following GPPM

m(x; θ) = µI , ky(x, x
′; θ) = δ(x− x′)σ 2

ǫ ,

with µI ∈ R.
Another approach for specifying a model is to translate a

traditional model into a GPPM. For example, we now translate
the linear latent growth curve model (Preacher et al., 2008),
which assumes that each person’s trajectory over time follows a
linear trend while allowing individual differences in intercept and
linear slope. The only predictor needed is time. We, thus, denote
the input vector with t instead of x. The GPPM representation of
the univariate linear latent growth curve model is

m(t; θ) = µI
︸︷︷︸

constant

+ µSt
︸︷︷︸

linear

,

ky(t, t
′; θ) = σ 2

I
︸︷︷︸

constant

+ tσ 2
S t

′
︸︷︷︸

linear

+ σIS(t + t′)
︸ ︷︷ ︸

covariance

+ δ(t − t′)σ 2
ǫ

︸ ︷︷ ︸

noise

, (8)

with µI being the mean of the intercept, µS the mean of the
slope, σ 2

I the variance of the intercept, σ 2
S the variance of the

slope, σIS the covariance between intercept and slope, and σ 2
ǫ

the variance of the measurement error, which is assumed to be
constant across time. The latent growth curve model illustrates
the combination rules that are foundational to the construction
of GPPM. We annotated Equation 8 with the commonly used

names of the base mean functions and kernels that form
the LGCM in our representation. An important advantage of
translating a traditional model into a GPPM is that it can be
used with a statistical learning inference approach, as discussed
in more detail further below. Another advantage is that the
GPPM representation is inherently a continuous-timemodel that
allows to consider person-specific time points of measurement,
irregular intervals between measurements, and naturally allows
us to interpolate and extrapolate unobserved time points.

Another approach for model specification is to adapt a
model typically used for GPR. Many GPR practitioners rely
on a default model, which is flexible enough to approximate
most (smooth) functions, known as the universal approximating
property (Micchelli et al., 2006). This model is known as the
squared exponential model and is defined as follows:

m(x; θ) = 0, k(x, x′; θ) = σ 2
se exp

(

−||x− x′||2
l

)

.

The parameter σ 2
se governs the variance of the process and the

strictly positive parameter l governs how fast the correlation
drops between two variables Y(x), Y(x′) as a function of the
squared euclidean distance of their input vectors x and x′. We will
adapt and explore the utility of the squared exponential model for
longitudinal data in the illustrations section.

Another valuable property for model specification is that the
family of GPPMs subsumes many other model families such as
longitudinal (linear Gaussian) structural equation models, and
(linear Gaussian continuous-time) state-space models (Karch,
2016). Essentially, a linear Gaussian continuous-time state-space
model describes a model for a Gaussian process via stochastic
differential equations, whereas in GPPM a model for a Gaussian
process is described using the mean function and the kernel.
By definition, any distribution of a Gaussian process can be
specified via a mean function and a kernel, whereas only a subset
of distributions can be represented by stochastic differential
equations. For example, the squared exponential model cannot
be represented as a state-space model (Särkkä and Hartikainen,
2012). Similarly, in structural equation modeling, a model for
a Gaussian random vector is specified by restricting its mean
vector and covariances matrix whereas in GPPM a model
is described on a Gaussian process (the generalization of a
Gaussian random vector) by restricting its mean function (the
generalization of a mean vector) and kernel (the generalization
of a covariance matrix).

The rules for combining models, along with the fact that
GPPM can represent a wide range of different models, can also be
used to mix models from different traditions. In the illustration
section, we will explore this idea by combining the squared
exponential model typically used in statistical learning with a
growth curve model.

4. FREQUENTIST INFERENCE FOR
GAUSSIAN PROCESS PANEL MODELS

4.1. Implied Statistical Model
Frequentist inference theory requires a statistical model, which is
a set of candidate distributions for a random vector. A GPPM,
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as defined in Equation (5), is a set of candidate distributions
for a stochastic process and thus not a proper statistical model.
However, while a stochastic process is of infinite size, the
observations drawn from it, in our case a panel data, set are
necessarily finite. Thus, the data set can be seen as a realization
of a finite-dimensional subset of the stochastic process, which is
a random vector.

The statistical model implied by a GPPM is as follows. Let
Xi ∈ R

p×Ji be a matrix where each column xij ∈ X ⊆ R
p

contains the input vector for the j-th observation of person i,
that is, for the observation yij ∈ R. The statistical model for all
observations yi = [y1, . . . , yJi ] of person i implied by a GPPM
with mean functionm and kernel ky is

p(yi|Xi) ∈ {N (yi;M(Xi; θ),Ky(Xi,Xi; θ)) : θ ∈ 2}.

The statistical model implied for a longitudinal data set D =
(X, y), with X = (X1, . . . ,XN) and y = (y1, . . . , yN), follows from
the mutual independence assumption and is

p(y|X) ∈
{

N
∏

i=1

N (yi;M(Xi; θ),Ky(Xi,Xi; θ)) : θ ∈ 2

}

.

This is a regular statistical model for which regular inference
procedures can be derived as we will show in the following.

4.2. Point Estimation
Here, we show how to obtain maximum likelihood estimates for
a GPPM and investigate their frequentist properties. To this end,
the parameters θ̂ need to be found that maximize the likelihood
of the data, that is,

θ̂ = argmax
θ∈2

pθ (y|X)

with likelihood function

pθ (y|X) =
N

∏

i=1

N (yi;M(Xi; θ),Ky(Xi,Xi; θ)) (9)

Equivalently, the log likelihood

log(pθ (y|X)) =
N

∑

i=1

log
(

N (yi;M(Xi; θ),Ky(Xi,Xi; θ))
)

can be maximized.
The maximum likelihood estimates for a GPPM can typically

not be derived analytically. For this reason, we employ gradient
descent algorithms as they are commonly used in, for example,
structural equation modeling. The required gradient of the log
likelihood function log(p(y|X, θ)) can be calculated analytically:

∂ log(pθ (y|D))
∂θp

=
N

∑

i=1

1

2
ỹi
⊤6−1

i

∂6i

∂θp
6−1

i ỹi

−1

2
tr

(

6−1
i

∂6i

∂θp

)

+ ∂µi

∂θp
6−1

i ỹi

where µi(θ) = M(Xi; θ) is the model-implied mean vector for
person i, 6i(θ) = Ky(Xi,Xi; θ) the model implied covariance
matrix, and ỹi(θ) = yi − M(Xi; θ) is the derivation of the
observations from the model implied mean. For notational
simplicity, we have decided to not explicitly state the dependence
on θ for these terms.

Under certain regularity conditions (Taboga, 2012b)
maximum likelihood estimates are consistent, efficient, and
have asymptotically a Gaussian sampling distribution with
the Fisher information matrix as covariance matrix (Taboga,
2012b). A comprehensive discussion of all regularity conditions
is beyond the scope of this text. However, it is important to
note that some conditions, such as the integratability of the
log-likelihood function, are always met if a Gaussian statistical
model is assumed. Others depend on the specific choice of mean
and kernel function and may be violated.

One particular crucial model-dependent condition, which
needs to be met, is identification. The mean and the kernel
function must be such that each unique combination of
parameter values implies one unique likelihood function (see
Equation 9). Note that for GPPMs identification thus does not
only depend on the mean function and kernel but also the
data (empirical identification). For example, the mean function
m(t; [a, b]) = a+ bt, representing an average linear change over
time, is identified if there are at least two measurement occasions
but not otherwise.

Beyond identification, the possible violations are largely
shared among modeling approaches. We refer the reader to the
discussion in the context of structural equation modeling (e.g.,
Stoel et al., 2006).

We thus expect the maximum likelihood estimates for GPPMs
to be consistent, efficient, and to have an asymptotically Gaussian
sampling distribution for all well-behaved models.

4.3. Hypothesis Tests, Confidence
Intervals, Model Selection, and Validation
For hypothesis tests, the likelihood ratio test with an asymptotic
Chi-squared sampling distribution of the test statistic can be
used (Taboga, 2012a). This follows directly from the maximum
likelihood estimators being asymptotically normal.

As for structural equation modeling (Pek and Wu, 2015),
two main approaches for computing confidence intervals can
be used: Wald-type and likelihood-based methods. Essentially,
Wald-type confidence intervals invert the Wald-test, whereas
likelihood-based methods invert the likelihood-ratio test. Thus,
the validity of these methods relies on the validity of
their corresponding tests, which in turn follows from the
maximum likelihood estimator to have an approximate Gaussian
sampling distribution.

For model selection, the prototypical frequentist approach to
test between two competing nested models using a hypothesis
like the likelihood-ratio test can be used. Alternatively, when two
models are not nested, many different approaches for selecting
between two models exist. As a start, we adapt two popular,
general, and simple approaches, namely, the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC).
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Both measures only depend on the log-likelihood of a model
at the maximum likelihood estimate θ̂ and the number of
parameters and thus can also be used to select between
two GPPMs.

For model validation, the prototypical frequentist approach
is to test the model itself using a hypothesis test. In structural
equation modeling, for example, this is done by testing the
model against the saturated model, that is, the model “any
Gaussian distribution.” This essentially results in a comparison
of the covariance matrix estimate under the model with the
sample covariance matrix. When using a GPPM, the equivalent
would be to test the obtained kernel under a GPPM, with
a kernel estimate under the model “any kernel function.”
Intuitively, estimating this kernel seems impossible without
making additional assumptions, since with every new data point,
also a new parameter is introduced. Whether and how this kernel
can be estimated remains to be investigated.

5. STATISTICAL LEARNING INFERENCE
FOR GAUSSIAN PROCESS PANEL
MODELS

5.1. Prerequisites
To develop statistical learning inference methods for GPPMs, we
interpret a GPPM as a prior over all potential observations. That
is, we interpret a GPPM as represented by a mean function and
a kernel to describe a prior for the set of potentially infinitely
many Gaussian processs (GPs) {Yi(x) : i ∈ I, x ∈ X } with I
containing the indices for all, potentially infinitely many, persons
andX denoting the set of possible input vectors. Since in a GPPM
independence and identical distribution is assumed between
the person-specific GPs, it is sufficient to specify one shared
mean function and kernel. The interpretation of a GPPM as
representing a set of priors is in line with the interpretations used
in GPR. Consequently, the statistical learning procedures used
for GPR can be applied to GPPMs with only slight adaptations.

Statistical learning is primarily concerned with estimating
generalization error to make decisions about which model is
the best-fitting model. To obtain unbiased estimates of this
generalization error, one way is to use independent training and
test sets. The training set is used for model fitting and the test set
for model evaluation. The standard approach to obtain training
and a test set is to split the data set. A common approach is
random splitting, assuming independence of all observed cases.
In the context of digit classification, for example, xi is a matrix of
brightness values for an image and yi the corresponding digit for
that image. Neither the brightness values xi nor the digit label yi
of one particular image typically contains information about any
other image.

For longitudinal data, the situation is more complex. First,
the data set is inherently nested. There are different persons,
and each person has been observed at multiple measurement
occasions. Mathematically, we denote the j-th observation of
person i as (xij, yij). Thus, when splitting a longitudinal data set,
the first crucial question is whether to split based on persons,
measurement occasions, or both. As we will show in the next

section, GPPM can obtain predictions for all these scenarios.
When splitting based on persons, all observations (xij, yij) for
which the person index i is greater than some threshold could be
put in the test set and all others in the training set. Importantly,
the data of each person is either entirely in the training or in
the test set. In a similar fashion, when splitting a longitudinal
data set based on measurement occasions, one could distribute
all observations earlier than a given time point to the training set
and all remaining measurements to the test set.

How to split the data is guided by which generalization
performance of the model is of core interest. When the ability
of the model to predict observations for persons who are not in
the training set is of interest, the appropriate split is by persons.
In contrast, if the ability of the model to predict observations
in the data set for future measurement occasions that are not
in the training set is of interest, the appropriate split is by
measurement occasions.

When splitting by measurement occasions, special care has to
be taken, because the common assumption that observations in
the training and test set are independent, can be easily violated.
This problem is extensively discussed in the time series literature,
andwe refer the interested reader to Bergmeir and Benítez (2012).

5.2. Prediction
The procedure of how to obtain predictions for data not in
the training set follows closely the idea underlying GPR. The
joint distribution of the training data and the test data is
implied by the model and then conditioned on the training
observations y. This process can be simplified by the following
observation: As a result of the independence between persons
assumption, the predictions for a particular person are only
influenced by observations from the same person, and the
predictive distributions for different persons are independent of
each other. Thus, the predictive distribution can be calculated
independently for each person i in the test set.

Two scenarios to obtain a predictive-distribution for a person
i must be distinguished. First, if there are no observations
from person i in the training data. In this case, the
predictive distribution is independent of the training data. The
predictive distribution for predictions of interest Yi(X

∗
i ) =

[Yi(x
∗
i1), . . . ,Yi(x

∗
iJ∗i
)] is simply:

Yi(X
∗
i )|D ∼ N (M(X∗

i ; θ̂),Ky(X
∗
i ,X

∗
i ; θ̂)).

Second, if there are observations from person i in the
training data, the joint distribution of observations Yi(Xi) =
[Yi(xi1), . . . ,Yi(xiJi )] and predictions of interest Yi(X

∗
i ) has to be

formulated:

[

Yi(Xi)
Yi(X

∗
i )

]

∼ N

(

M

([

Xi

X∗
i

]

; θ̂
)

,

[

K(Xi,Xi; θ̂) K(Xi,X
∗
i ; θ̂)

K(X∗
i ,Xi; θ̂) K(X∗

i ,X
∗
i ; θ̂)

])

(10)
In complete equivalence to the predictive distribution in GPR,
the predictive distribution for Yi(X

∗
i ) is obtained by conditioning

on the training dataD. As discussed before, only the observations
yi from person i are needed because Yi(X

∗
i )|D = Yi(X

∗
i )|Xi, yi:
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Yi(X
∗
i )|Xi, yi ∼ N (E(Yi(X

∗
i )|Xi,X

∗
i , yi), Cov(Yi(X

∗
i )|Xi,X

∗
i , yi))]

, with (11)

E(Yi(X
∗
i )|Xi, yi) = M(X∗

i )+ K(X∗
i ,Xi)[K(Xi,Xi)]

−1(yi −M(Xi))

(12)

Cov(Yi(X
∗
i )|Xi, yi) = K(X∗

i ,X
∗
i )− K(X∗

i ,Xi)[K(Xi,Xi)]
−1K(Xi,X

∗
i ).

(13)

where we dropped the dependence on θ̂ for
notational convenience.

The predictive distribution can be reduced to both an interval
or a point estimate.

For point estimation, in principle, any Bayesian technique
to reduce a posterior distribution to a parameter estimate
can be used. However, since the predictive distribution of a
GPPM is Gaussian, the two most common techniques, using
the mode (maximum a posterior estimation) or expectation
(minimum mean square error estimation) of the posterior, both
correspond to the mean of the predictive distribution. That is,
the recommended point estimate for the prediction implied by
a input vector x∗i is E(Yi(x

∗
i )|Xi, yi), which a special case of

Equation (12).
To obtain an interval estimate for the predictions, credible

intervals can be constructed from the Gaussian predictive
distribution. Since the predictive distribution is Gaussian, a
credible interval can be obtained by using E(Yi(x

∗
i )|Xi, yi) ±

cα
√

Var(Yi(x
∗
i )|Xi, yi). Because the variance of a variable is

equivalent to the covariance with itself, Var(Yi(x
∗
i )|Xi, yi) is a

special case of Equation (13). The critical value cα has to be
chosen based on the cumulative density function of the Gaussian
distribution to obtain the desired credibility 1− α.

Predictions can also be obtained for latent variables using
the same framework. All that is needed is a model for the
joint distribution of latent variables and observations. In the
illustration section, we will demonstrate this idea.

5.3. Model Selection and Validation
The statistical learning approaches used in GPR for model
selection and validation can be readily adapted to GPPM.
Remember that for the statistical learning perspective on GPPM
each hyper-parameter vector value θ of the mean function and
kernel represents one prior and consequently one model.

For the model evidence maximization approach to select
a model and thus a hyperparameter vector value θ , the
hyperparameter vector value θ that maximizes

p(y|X, θ) =
N

∏

i=1

N (yi;M(Xi; θ),Ky(Xi,Xi; θ)).

is selected. Note that this expression is identical to the likelihood
function used for maximum likelihood estimation. Thus, the
best model θ̂ from the statistical learning perspective and
the maximum likelihood parameter θ̂ from the explanatory
perspective are the same, only their interpretation differs.
Also, the gradient-descent algorithm developed for maximum
likelihood estimation can be re-used for model selection.

Since GPPM comes with mechanisms to obtain predictions,
model selection procedures that estimate the predictive
performance, most notably cross-validation, can also be
employed. Because cross-validation is essentially a repeated
splitting in training and validations sets, the same complications
discussed earlier apply. Another issue of using cross-validation
for model selection is that cross-validation estimates tend to
have a high variance when using small data sets (Piironen and
Vehtari, 2017). This issue can be partly resolved by repeated
cross-validation, which decreases the variance but increases
the computational demands. Another approach is to use the
model evidence maximization approach instead, which we will
consequently focus on in this paper.

To validate a selected GPPM also its predictive performance
is estimated. However, the data set for performance estimation
must be independent of the data set used for model selection
to avoid overly optimistic estimates. If cross-validation is used
for model selection and performance estimation, this leads to a
process called nested cross-validation, which is described in detail
in Karch et al. (2015).

6. ILLUSTRATIONS

6.1. Simulated Data: Utility of the Statistical
Learning Perspective
Based on simulated data, we will first demonstrate how the
statistical learning inference methods for GPPMs enable valid
estimation of the predictive accuracy from standard restrictive
longitudinal models such as the latent growth curve model
(LGCM) even if the assumptions are violated. Second, we will
demonstrate the utility of the more flexible models representable
in GPPM. Third, and most importantly, we will showcase the
ability of GPPM to express hybrid models that consist of a
combination of standard restrictive models as well as flexible
statistical learning models and the utility of these combinations.
GPPM is uniquely equipped to express such models as it can
represent the majority of restrictive longitudinal models typically
used in psychology as well as a large class of statistical learning
models and contains a set of easy rules to combine models.

To begin with, we start with the linear LGCM, which is one
of the most frequently used model for analyzing longitudinal
panel data in psychological research. It is a prototypical example
of a restrictive model as it assumes that within-person change
is linear. Additionally, inference is typically performed using
classical frequentist inference methods, which crucially assume
the correctness of the model. It is well known that this can lead
to dramatically wrong conclusions if the assumptions are not met
(e.g., Ghisletta et al., 2019).

To demonstrate this, we assume that an “exponential rise to
the limit” is the true data generating model. This model can be
interpreted to represent the typical skill development observed in
training studies. The within-person model is

Yi(t) = bi + di exp(−ts)+ ǫi(t), with ǫi(t) ∼ GP(0, σ 2
ǫ )

At time t = 0, the model implies E(Yi(0)) = bi + di. Thus,
the parameter combination bi + di serves as intercept in this
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FIGURE 1 | Five model-implied trajectories simulated from the “exponential

rise to limit model.” Each line represents the skill trajectory of one person.

model. For, t → ∞, the model implies limt→∞ E(Yi(t)) =
bi. Consequently, the model implies that each persons skill
level saturates at some point. The strictly positive parameter
si represents how fast person i reaches their natural limit. For
the between-person model, we assume bi ∼ N (µb, σ

2
b
), di ∼

N (µd, σ
2
d
), si ∼ N (µs, σ

2
s ), and bi, di, si being mutually

independent. For si, we use a truncated normal to avoid
negative values.

For generating data from this model, we used the following
parameter values µb = 200, σ 2

b
= 50, µd = −100, σ 2

d
= 50,

µs = .25, σ 2
s = 0.01, σ 2

ǫ = 1. We generated data for 200
persons with 91 measurements each; all taken at the same time
points {1, 1.1, 1.2, . . . , 10}. Example trajectories of this model are
displayed in Figure 1.

The linear LGCM or any of the typical extensions to
polynomials of a higher order, such as quadratic or cubic, do not
contain the data generating model and are thus misspecified.

In contrast, representing the LGCM as a GPPM allows
performing valid inference using the LGCM on data simulated
from the “exponential rise to the limit” model. The statistical
learning framework applied to the LGCM first results in
parameter estimates, which are equivalent to the maximum
likelihood estimates. However, importantly, they are virtually
ignored and only used to obtain the inferential object of interest,
the predictive distribution. Using the maximum likelihood
parameters θ̂ , the predictive distribution for each person can
be obtained according to Equations (10–12). We display the
predictive distribution for one selected person in Figure 2A.

Whereas the predictive distributions crucially depend on the
model, their performance is evaluated in a model-free fashion,
which leads to their evaluation being independent of the validity

of the model assumptions. For choosing the appropriate test set,
it is crucial to distinguish which kind of predictive performance
we want to assess. Here, we focus on assessing how well the
model can make predictions for unobserved time points for
persons within the sample. A second decision has to be made
regarding the assessment of inter- or extrapolation capabilities.
For assessing how well the model interpolates, we created a
test set that contains the measurements for all persons in
the original sample at time points {1.05, 1.15, . . . , 9.95}. For
assessing how well the model extrapolates, we used time points
{11, 11.1, . . . , 20}.

As loss function, we use the negative log predictive probability
(NLPP). We report the average NLPP across persons. To make
the average NLPP loss more interpretable, we normalized it using
the best possible model, the Bayes-optimal model, as reference.
Because we have generated data with an error variance of 1 (also
referred to as “irreducible error”), the Bayes-optimal model has
an expected NLPP on the test set of the size of the interpolation
set of 90 · log(

√
2πe) = 127.70, where 90 the number of

measurements per person and log(
√
2πe) the entropy of the

standard normal distribution. We subtracted this number from
the estimated average NLPPs to obtain normed NLPPs.

Not surprisingly, the results shown in Table 1 reveal that
the LGCM interpolates and extrapolates rather poorly. The
interpolation normed NLPP was 152.1. The extrapolation NLPP
was even higher at 317.77. The reason for this difference can
be understood by looking at Figure 2A. In the interpolation
range, the LGCM still provides a decent approximation of the
nonlinear trend. However, in the extrapolation range, the LGCM
confidently makes wrong predictions, which is caused by the
predictions being based on incorrect, strict assumptions.

The flexible statistical learning models representable in
GPPM address this issue of the LGCM since they have
specifically been designed to be able to interpolate a large set
of functions well. Consequently, given enough data, they will
reach an almost perfect interpolation performance for a large
set of developmental trajectories. Thus, while those models are
misspecified, given enough data, they predict essentially equally
well as the true model. One such model is represented by the
squared exponential (SE) kernel, which we have introduced
earlier and repeat here:

m(t; θ) = 0, kse(t,
′ t; θ) = σ 2

se exp

(

− t − t′

l

)

.

The SE model represents the family of smooth predictive
functions. Importantly, in regions where no data has been
observed, the SE model falls back to predicting 0. Thus, it can
be interpreted as regularizing toward zero mean predictions.

Before applying the SE model to longitudinal panel data it
needs to be adapted slightly. Instead of regularizing toward zero,
we regularize toward the person-specific mean. This is easily
achieved using the established combination rules for GPPMs.
One simply adds the GPPM representation of the random
intercept model to the SE model. This results in the following
random intercept SE model

Yi(t) ∼ GP
(

µI , σ
2
I + kse(t, t

′)+ δ(t − t′)σ 2
ǫ

)

.
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A B

C

FIGURE 2 | Visualization of the predictive distributions on the “exponential rise to the limit” data for the three considered models. CI = credibility interval. (A) LGCM.

(B) squared exponential (SE) Model. (C) LGCM+SE.

The random intercept SE model, which we will abbreviate
to SE model in the remainder, achieves, as expected, a
substantively better interpolation performance (NLPP= 2.33).
This almost perfect interpolation performance is also apparent
in the visualization of the predictive distribution for one person
in Figure 2B.

The SE model also extrapolates better than the LGCM
(NLPP= 11.89). This seems to be caused by the SE model
increasing the variance of the predictive distribution for data
points far away from the training data whereas the variance of
predictive distribution from the LGCM remains almost constant
(compare Figures 2A,B). As a consequence, the LGCM makes
wrong predictions with high confidence for the data points
far away from the training data. However, in contrast to the
extrapolation performance of the SE model, the interpolation
performance can still be considerably improved, as is visible in
Figure 2B. Essentially, the SE model falls back to a constant
predictive distribution centered around the person-specific mean
with a large variance.

This observation motivates the development of a class of
hybrid models that consist of a combination of a parametric
model, such as the LGCM, and a flexible nonparametric

TABLE 1 | Negative log predictive probabilities on the “exponential rise to the limit

data” for the compared models as estimated by the different test sets.

Model Interpolation Extrapolation Combined

LGCM 152.1 317.77 600.2

SE Model 2.33 11.89 13.862

LGCM+SE Model 2.21 16.86 18.853

statistical learning models, such as the SE. Such models can
also be motivated using more theoretical arguments. Within-
person trajectories are often conceptualized as consisting of
a combination of intraindividual change and intraindividual
variability (Nesselroade, 1991; Ram and Grimm, 2015). Intra-
individual change is believed to reflect the true change and
is characterized by a relatively slow, well-behaved trajectories;
whereas intraindividual variability is believed to occur at a
much smaller time scale and is believed to reflect more chaotic,
short-lived fluctuations around the intraindividual change. The
hybrid of a parametric model and a flexible statistical learning
model seems perfectly suited for this situation. The parametric
part captures the long-term intraindividual changes, whereas
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the flexible nonparametric part captures the intraindividual
variability. The random intercept SE is also a hybrid model
as it combines the parametric random intercept with the
nonparametric SE model.

We demonstrate the utility of such models using the
LGCM+SE model as an example. Importantly, GPPMwould also
allow the parametric model to be a more complex model such
as the “exponential rise to the limit model.” Mixing those two
models, leads to the following model

Yi(t) ∼ GP
(

µI + µSt, σ
2
I + tσ 2

S t
′ + σIS(t + t′)

+δ(t − t′)σ 2
ǫ kse(t, t

′)+ δ(t − t′)σ 2
ǫ

)

.

Effectively, this model regularizes the SE model using the LGCM.
Thus, it falls back to a LGCM in regions with few data and
to a SE model in regions with much data. As a result, it
essentially behaves like the flexible SE in regions with many
training samples and is thus able to fit a large class of functions,
in these regions. In regions with no training samples, it behaves
like the LGCM (with larger predictive variance to reflect for the
presence of intraindividual variability), and thus might be better
at extrapolation.

The example data are generated as a combination of a LGCM
and an unknown deviation from the LGCM.

Yi(t) = Ii + Sit + ǫi(t)
︸ ︷︷ ︸

LGCM

+ f (t; θi2)
︸ ︷︷ ︸

deviation
[

Ii
Si

]

∼ N

([

µI

µS

]

,

[

σ 2
I σIS

σIS σ 2
S

])

,

σi2 ∼ N (µθ2 ,6θ2 ), ǫi(t) ∼ GP(0, δ(t − t′)σ 2
ǫ )

This can be interpreted as the intraindividual long-term change
being appropriately represented by a LGCM but no or little
knowledge is present about the short-term intraindividual
variability. As parameter value for the LGCM, we used µI =
0,µS = 3, σ 2

I = 20, σS = 5, σIS = 2, σ 2
ǫ = 1. For the

deviation term, we used f (t;ϕi) = 1
2 t cos(2π

1
10 t − ϕi) with

ϕi ∼ N (0, 4π2), which corresponds to an oscillation with
person-varying phase and time-varying (increasing) amplitude.
For creating the training, the test, and the interpolation sets, we
used the same time points and numbers of persons as before.

We compared the performance of the LGCM, the SE
and the LGCM+SE model (see Table 2 for the full results).
Overall, the LGCM+SE model performs best. With regard
to the interpolation performance (NLPP= 2.87) it performs
relatively close to the expected optimal performance, whereas
the extrapolation performance is far from optimal (NLPP =
30.275). The SE is, as expected, less accurate than the LGCM+SE
model in extrapolation (NLPP difference is 1.36) and has only
a slight advantage over the LGCM+SE model in terms of
the interpolation performance (NLPP difference is 0.02). The
difference for the improved interpolation performance is caused
by the LGCM+SE model regularizing toward the LGCM, so a
person-specific linear trajectory instead of a person-specificmean
(compare Figures 3B, C). The LGCM, as expected, performs
much worse than the former two. The interpolation performance

TABLE 2 | Negative log predictive probabilities on the data generated from the

LGCM + unknown deviation distribution for the compared models as estimated by

the different test sets.

Model Interpolation Extrapolation Combined

LGCM 74.97 299.14 375.37

SE Model 2.85 31.641 34.278

LGCM+SE Model 2.87 30.275 33.038

is reduced by the lacking flexibility of the LGCM (NLPP=
74.968), whereas the extrapolation performance (NLPP= 299.14)
is diminished by the LGCM adapting its uncertainty, as expressed
by the predictive variance, too slow (see Figure 3A).

While we expect hybrid models such as LGCM+SE to
perform best in situations where intraindividual change and
intraindividual variability are present, and the parametric model
for the intraindividual change is correctly specified, we also
expect the hybrid models to perform almost as well as the
flexible statistical learning models even if the parametric model
is completely misspecified. The reason for this is that they
essentially inherit the ability of the flexible statistical learning
model to fit most functional forms and thus to achieve near-
optimal interpolation performance. We demonstrate this by
applying the LGCM+SE model to the data from the “exponential
rise to the limit model.” The LGCM+SE model achieves near-
optimal interpolation performance (see, also Figure 2C). The
interpolation performance of the LGCM+SE model was even
slightly better than that of the SE model (NLPP difference 0.12).
Note that this near-optimal performance is only achieved in
the time span where many training data points are available
(interpolation). The extrapolation performance, in contrast, is
far from optimal. This reveals that the predictive accuracy of
the flexible machine learning models does not primarily depend
on the number of measurements per person or the number of
persons. Instead, the person-specific predictions obtained for
person i and time point t∗, aremost accurate when an observation
yit is available where the time point t is close to the time point
t∗. Thus, the flexible machine learning models work best for
interpolation. However, as we showed, they still may extrapolate
better than classical psychometric models.

6.2. Real Data: Smooth Models
We demonstrate that the hybrid random intercept SE model,
which is one of the models uniquely representable by GPPM, is
a suitable alternative to models routinely used in psychological
research. This is the case considering the statistical learning
as well as the explanatory perspective. We demonstrate this
by showing that the random intercept model leads to more
accurate predictions (statistical learning perspective) as well
as a higher model probability (explanatory perspective) of
the model compared to the continuous-time random intercept
autoregressive model of order 1, which was previously used to
analyze the example data set.

We start with the observation that the random intercept
SE is very similar to a popular model used in psychological
research, the continuous-time random intercept autoregressive
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A B

C

FIGURE 3 | Visualization of the predictive distributions on the data generated from the LGCM + unknown deviation distribution for the three considered models. CI =
credibility interval. (A) LGCM. (B) SE Model. (C) LGCM+SE.

model of order 1. The n = 1 continuous-time autoregressive
model of order 1 is the Ornstein-Uhlenbeck process, which is one
particular Gaussian process. The stationary Ornstein-Uhlenbeck
process has mean function and kernel as follows

m(t; θ) = µI , k(t, t′; θ) = σ 2
se exp

(

−|t − t′|
l

)

.

To use this model for n > 1 data, it is typically extended with a
random intercept, which leads to the continuous-time version of
the random intercept autoregressive model of order 1, which has
the following GPPM representation

m(t; θ) = µI , k(t, t′; θ) = σ 2
I + σ 2

se exp

(

−|t − t′|
l

)

.

Comparing the kernel functions of the random intercept
SE model and the random intercept continuous-time
autoregressivemodel reveals that in the former the within-person
autocorrelation is assumed to decline according to a squared
exponential and for the latter according to an exponential.

Despite their mathematical similarity, there is a substantial
difference between the exponential and the squared exponential

kernel. Both kernels are special cases of the so-called Matérn
kernel (Schulz et al., 2018). From a Matérn kernel perspective,
they represent two endpoints on a continuum (Schulz et al.,
2018): The squared exponential kernel implies very smooth (that
is infinitely differentiable) trajectories, whereas the exponential
kernel implies rather unsmooth, rough, trajectories. In Figure 4,
we visualize this difference by contrasting a trajectory generated
from a squared exponential kernel with a trajectory generated
from an exponential kernel.

On a more conceptual level, smoothness can be regarded
as the mathematical implementation of the “nature does not
jump” assumption, which implies that changes in nature typically
do not occur abruptly, and this has already been proposed
as a fundamental principle in nature by, for example, Darwin
(1859) and Leibniz (1704). The rough trajectories implied by the
exponential model, on the other hand, are not in line with this
assumption. Thus, if the “nature does not jump” assumption is
fulfilled using a model that implements it should lead to better
predictions (statistical learning perspective) and better parameter
estimates (explanatory perspective).

To investigate the usefulness of the random intercept squared
exponential (SE) model (from now on simply called SE model)
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FIGURE 4 | Graphical illustration of the differences between the squared exponential and the exponential kernel. Example trajectories implied by each kernel are

shown. To generate the data, the variance parameter was set to σ 2
se = 2 and the length scale parameter to l = 1 for the exponential and to l = 0.25 for the squared

exponential kernel. (A) Squared exponential. (B) Exponential.

TABLE 3 | Bayesian information criterion (BIC), and negative log predictive

probability (NLPP) for the exponential and the SE model.

Measure Exponential model Squared exponential model

BIC 10876.14 10850.39

NLPP 10846.54 10821.99

Bold face marks the model selected on the basis of the corresponding measure. The

smaller value of a measure indicates which model to select.

for psychological data analysis, we reanalyzed data that have
previously been analyzed using a continuous-time autoregressive
model (Voelkle et al., 2012). The data originate from a German
panel study (Heitmeyer, 2004), measuring people aged 16 years
and older who do not have an immigration background using
computer-assisted interviews. Measurements were performed in
2002, 2003, 2004, 2006, and 2008, but not in 2005 and 2007.

Among other variables, authoritarianism was measured,
which reflects a person’s preference to submit under authorities,
to orient along with the perceived conventions of the in-group,
and to aggressive stances toward outgroups. For illustrative
purposes, we will focus on this measure in the following. A total
of n = 2, 722 people took part in the first wave of the study,
with considerable drop out over time (see Voelkle et al., 2012,
for details).

To investigate whether the SE model should be preferred
over the exponential model, we used an explanatory as well
as a statistical learning model selection procedure. For the
explanatory procedure, we compared the models based on the
Bayesian information criterion. We did not use the likelihood-
ratio test because the two models are not nested. As the statistical
learning procedure, we assessed the predictive performance of
the models using cross-validation. As the splitting strategy, we
split by persons. More specifically, we used leave-one-person
out cross-validation. This estimates the ability of the models to
predict trajectories of previously unseen persons. As before, we
used the negative log predictive probability as loss functions.

As can be seen in Table 3, the prediction inaccuracy as
measured by the negative log predictive probability as well

TABLE 4 | 95% confidence intervals as well as maximum likelihood estimates for

the parameters from exponential and the squared exponential model.

Parameter Lower bound Estimate Upper bound

Exponential model (auto-regressive model)

µI 2.82 2.85 2.87

σ 2
I 0.00 0.00 0.11

σ 2
se 0.37 0.47 0.50

l 13.24 13.42 15.26

σ 2
ǫ 0.04 0.05 0.06

Squared exponential model

µI 2.82 2.85 2.87

σ 2
I 0.21 0.26 0.30

σ 2
se 0.16 0.19 0.23

l 20.95 21.39 30.54

σ 2
ǫ 0.07 0.08 0.08

as the BIC were both lower for the SE model. The Bayesian
information criterion values can be translated into model
posterior probabilities (Wagenmakers and Farrell, 2004). The
obtained values translate into a probability of > 0.99 that the
SE model is the better model for this dataset. Note, however,
that this is merely a measure of relative model fit and cannot be
interpreted as measure of absolute fit.

After having established that the SE model should be
preferred, we investigate the impact of using the traditional
exponential model instead on both explanatory and statistical
learning results.

We start with the explanatory perspective. The parameter
estimates and their corresponding 95%-confidence intervals
are displayed in Table 4. We focus an all parameter but the
length scale parameter l and the variance parameter σ 2

se as
they implement different concepts across the two models.
The estimated mean function, as represented by the intercept
parameter µI , is identical across both models. In contrast,
all remaining parameters are different. For example, in the
exponential model, the confidence interval for the intercept

Frontiers in Psychology | www.frontiersin.org 15 March 2020 | Volume 11 | Article 351

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Karch et al. Gaussian Process Panel Modeling

FIGURE 5 | Person-specific predictions of the squared exponential and the exponential model for one randomly selected person. The bold line indicates the mean of

the predictive distribution for every time point. The gray area displays the 95% credible region. Crosses depict observed training data.

variance contains 0, whereas it does not for the SE model. Thus,
using a classical hypothesis testing approach, one could only
conclude that there are no significant differences with regard
to the starting level of authoritarianism across persons, that is,
the null hypothesis of no differences in starting level cannot be
rejected. However, the preferred SE model indicates significant
differences in the starting levels across persons.

For the statistical learning perspective, we investigate the
impact of the model choice on the predictive distribution. We
have already seen that the predictive distribution of the SE
model is more accurate, as quantified by the lower cross-validated
negative log predictive probability. We now also compare the
two predictive distributions visually. In Figure 5, we show the
predictive distribution obtained for one exemplary person. We
plot the predictive distribution only for latent authoritarianism,
that is, the authoritarianism score without being contaminated
by measurement error. The most notable difference between the
two predictive distributions is that the predictive mean, as well as
the predictive variance, is smooth for the SE model, whereas it is
not for the exponential model. This again implements the “nature
does not jump” assumption.

7. SUMMARY AND DISCUSSION

In the present paper, we have introduced Gaussian process
panel modeling (GPPM), an extension of Gaussian process
regression (GPR) for the analysis of panel data. GPPM provides
great flexibility in specifying parametric models, nonparametric
models, or combinations of both. It offers a choice of
two inference frameworks focusing on either explanation or
prediction. It subsumes many standard modeling approaches for
longitudinal data such as linear structural equation models and
state-space models as special cases but also extends the space of
expressible models beyond those common approaches. To make
GPPM available, we provide the R package “gppm” (Karch, 2018).

GPPMs are specified by a kernel language consisting of amean
function and a kernel. Throughout this manuscript, we have
demonstrated how the flexibility of the kernel-language and its
combination rules can be used to specify novel panel data models
(in Appendix 1, we provide an overview of the models used).

Specifically, we used GPPM to express hybrid models such as
the random intercept squared exponential (SE) model and the
LGCM+ SE model. In a simulation study, we showed that the
LGCM+SE model combines the advantages of the parametric
LGCM and the nonparametric statistical learning SE model. The
random intercept SE model was also featured in the empirical
illustration, in which it was shown to be a viable alternative to the
popular random intercept autoregressive model (Hamaker et al.,
2015) when smoothness of the process is a reasonable prior belief.

Regarding inference procedures, the frequentist inference
procedures for GPPM enable explanatory data analysis, which
aims to recover the population distribution. The Bayesian
statistical learning inference procedures provide a predictive
modeling perspective that is relatively uncommon in the analysis
of panel data. As demonstrated in this article, one advantage of
the statistical learning inference framework is that its conclusions
about the predictive accuracy of a model are also valid when
the model is not correct. It is often unrealistic to assume that
a chosen model is correctly specified, and adopting a predictive
modeling perspective that does not rely on this assumption may
be beneficial. Additionally, GPPM allows operating with hybrid
models that are partly informed by theory and partly informed
by data with a specific focus on maintaining generalization
performance and avoiding overfitting (see also, Brandmaier et al.,
2016). Thus, we believe that the statistical learning inference
perspective provides a viable addition to the methodological
toolbox for analyzing panel data. Because all Bayesian quantities
can be obtained analytically, statistical learning inference in
GPPM is exact and faster than in commonly used Markov chain
Monte Carlo-based approaches.

With the breadth of models that GPPM can represent, where
does GPPM land on the confirmatory-exploratory spectrum?
With confirmatory analysis, we refer to any analysis where
hypotheses are deducted from theory and are tested with all
parameters of the GPPM defined before data were seen. An

exploratory analysis is performed without any clear theory-
driven hypothesis in mind and, thus, no a priori fixed kernel or
mean function. Clearly, GPPM can be used for both approaches.
Confirmatory testing requires one to specify one kernel and
mean function and, then, infer their parameters from empirical
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data. Exploratory approaches may entail those where a flexible
kernel (such as the SE kernel) is employed to maximize predictive
accuracy (but it may have a low potential for explanation) or
where kernels are successively expanded to improve predictive
accuracy (for example, by augmenting a LGCM kernel with
inadequate fit with a SE kernel). For exploratory approaches,
model selection between all candidate models needs to be done
with caution, such that, ideally, the same data should not be
used for either model fitting, model selection, or performance
evaluation2, or as an alternative approach, appropriate cross-
validation strategies (such as nested CV, see, Karch et al., 2015)
can be employed.

Within the psychometric modeling community, there have
been many previous efforts to provide robust inference on
covariancemodels both within the frequentist (e.g., Satorra, 1990;
Bollen et al., 2007) and the Bayesian inference framework (e.g.,
Lee and Xia, 2008). In contrast to our work, these approaches
retain the focus on explanatory modeling. Most approaches (e.g.,
Satorra, 1990; Lee and Xia, 2008) focus on robustness concerning
outliers or distributional assumptions. Other approaches go
beyond this and consider more serious misspecification, which
is known as structural misspecification (Satorra, 1990). However,
the structural misspecification considered is often relatively
mild. For example, Bollen et al. (2007) investigate structural
misspecification in the sense of a few paths missing from a factor
model, while the majority of the model is correctly specified. In
contrast to this, the statistical learning inference approach, which
estimates how well a certain model predicts, is valid under all
forms of misspecification (Breiman, 2001).

7.1. Extensions, Limitations and Future
Research Directions
For lack of space, we only briefly hint at some further
opportunities for modeling with GPPM that may be useful in
practice. Correlated error structures can be implemented by
using the appropriate kernel instead of the white noise kernel
δ(t − t′)σ 2

ǫ . The autoregressive error structure, for example, is
represented by the autoregressive kernel displayed in Equation
(14). Time-varying errors can be implemented using the same
approach. For example, a linear increase in measurement error is
implemented by δ(t− t′)(σ 2

1 +σ 2
2 t). Representing more complex

hierarchies beyond the simple two-level model with observations
nested in persons is also possible in GPPM. We demonstrate this
in Appendix 2.

One current limitation of GPPM is that random effects can
only be specified for linear parameters of the mean function.
Consequently, multiplicative random effects (Ram and Grimm,
2015) or random effects on kernel parameters, needed to
implement probabilistic person-varying measurement error, can
currently not be implemented. Deterministic person-varying
measurement error can already be implemented. GPPM can be
extended to allow for random effects for all parameters. However,
we expect that with this extension exact inference is not possible
anymore, and one has to fall back to approximate inference,

2These subsets of data are then often referred to as training set, validation set, and

test set.

similar to other approaches allowing for random effects on all
parameters (c.f. Asparouhov et al., 2017; Driver and Voelkle,
2018).

Specifying a multivariate GPPM is possible given our
current framework, but it may appear more intricate than in
standard state-space modeling and structural equation modeling
specification. Beyond the kernel for the auto-covariance of each
variable, we also need cross-covariance kernels for each pair of
variables (Alvarez et al., 2010).

GPPM, as introduced in the present paper, is limited to
continuous data. To extend GPPM to nominal or ordinal
data, one can build on a rich library of methods developed
for extending GPR. Just like in generalized linear models, so-
called link functions (Rasmussen and Williams, 2006, Chapters
3 and 9.3) are used to model non-Gaussian observations.
Using the same approach, non-normal measurement error for
continuous data, for example, Laplace errors as commonly
used in robust methods, can also be implemented. As in other
extensions of linear models to accommodate non-Gaussian
observations, these generalizations complicate inference.
However, the appropriate algorithms have already been
developed (Rasmussen and Williams, 2006) and await to be
adapted to GPPM.

GPPM generalizes all methods that are restricted to Gaussian
processes and use either frequentist or statistical learning
inference. While this subsumes many methods, this excludes
methods that imply non-Gaussian stochastic processes at the
latent level, such as nonlinear structural equation modeling
(Jöreskog and Yang, 1996) or nonlinear state-space modeling
(Chow and Zhang, 2013).

With regard to frequentist model selection, many different
approaches beyond AIC, and BIC can be adapted for GPPM
(Burnham, 2013). One promising approach is the minimum
description length principle (Grünwald, 2007); in particular,
normalized maximum likelihood (Myung et al., 2006).

A main contribution of this work is explicitly drawing
the connection of the field of kernel methods to the analysis
of longitudinal data in psychological research. This opens
multiple opportunities for future research: Besides the squared
exponential model we have emphasized here, many other GPR
models can be readily applied to panel data (Roberts et al., 2013;
Duvenaud, 2014). Among the most promising candidates are
periodic models (Rasmussen andWilliams, 2006, Chapter 4), and
change-point detection models (Turner, 2012), which could be
viable alternatives to their existing state-space equivalents (Chow
et al., 2005, 2018).

When appropriately safeguarding against overfitting,
exploratory analysis has many opportunities for the analysis of
panel data and can profit from research in kernel methods. One
generic approach is to define a model that is flexible enough
to fit most functions given enough training data. The squared
exponential kernel we introduced is a prototypical example.
However, exploratory analysis has been taken one step further
by an algorithm that automatically learns the kernel from data
and then describes the model in natural language (Lloyd et al.,
2014). This algorithm also exploits the fact that complex models
can be specified by combining a small set of base models, as we
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also discussed in this paper. Extending this algorithm for use in
GPPM would result in a method that learns the between- and
the within-person model from empirical data. This approach has
the potential to find better models than the current practice of
searching for a model by heuristics or merely relying on default
models. Future research will have to address the right trade-offs
between bias (over/underfitting) and variance (model selection
uncertainty) in applying such automated model searches and
how and to what extent prior knowledge can be incorporated in
this model search.

Speeding up model-fitting algorithms for panel data models
is becoming increasingly important as technological progress
enables obtaining unprecedented amounts of data at little
cost. Especially, fitting structural equation models on intensive
longitudinal data will become a problem as the time required
for parameter estimation grows cubically with the number
of time points due to the necessary inversion of the model-
implied covariance matrix. The same is true for GPPM.
However, for GPPM one can adapt faster approximative
inference algorithms, which have been developed for GPR (for
example, Lawrence et al., 2003; Leithead and Zhang, 2007;
Hartikainen and Särkkä, 2010). These promise to speed up
inference in GPPM, and consequently, longitudinal structural
equation models substantially. Future work needs to investigate
the speed-accuracy trade-off for inference when resorting to
these approximations.

GPPM promises to deepen our understanding of the close
connections between different families of models and modeling
approaches. Specifically, while we have demonstrated that GPPM
generalizes linear structural equation modeling, and linear state-
space modeling, it has also been shown that GPR subsumes
smoothing splines, (kernel) ridge regression, Bayesian (kernel)
regression, and it is closely related to other Machine Learning
methods such as support vector machines and (deep) neural

networks (Rasmussen and Williams, 2006; Lee et al., 2017).
One interesting result that follows from the identification of
structural equation modeling as a special case of GPPM, and
GPPM’s close relation to Bayesian kernel regression, is that
every conventional structural equation model is equivalent to
Bayesian linear regression in some high-dimensional space. We
believe that making these connections explicit has the potential
to foster innovations from seemingly distant research areas,
such as kernel learning or deep learning, for the analysis
of psychological data. In this regard, we share the hope of
Yarkoni and Westfall (2017) that the predictive modeling
approach is regarded as an opportunity, not a threat, and
psychological researchers equipped with a mix of classical
and new methods will have a higher likelihood of finding
the appropriate modeling and inference framework for their
research question.
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