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Abstract

The regularization of derivative expectation operator (RODEO) approach developed by Lafferty and
Wasserman (2008) is a regularization technique designed for a wide range of nonparametric kernel
smoothers. The approach applies regularization by penalizing the bias reduction associated with
a bandwidth reduction along a smooth path of decreasing bandwidth parameter values in order to
avoid overfitting. Dimensions with small local variation are effectively smoothed out, thus implicitly
carrying out variable selection. Under certain conditions, faster rates of converges of convergence
for the mean integrated square error can be achieved, which makes the approach attractive for
applications in high dimensions. In this paper we apply the RODEO approach to local polynomial
density estimation. We implemented the approach in the R package lpderodeo. We apply our
implementation to a few examples, and evaluate its performance in a comparative study using a
sample of eight other approaches for nonparametric density estimation. Our findings suggest that the
approach does not work well in comparison to the other considered approaches with regard to the
applied performance metrics. Furthermore, our implementation suffers from long computation time
due to a naive query. Our main finding, however, concerns the fact that the theoretical framework
proposed by Liu, Lafferty, and Wasserman (2007) has severe shortcomings. In fact, we demonstrate
that a simple rotation of the data makes the algorithm fail in practice.
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1 Introduction

Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛 is an independent and identically distributed (iid) sample drawn from
some 𝑑-dimensional probability distribution with unknown density 𝑓. Using a nonparametric model
has the advantage that no assumption about the functional form has to be made. However, if 𝑑
is large, nonparametric models become very ineffective in practice due to large estimation errors.
For instance, the optimal rate of convergence of the mean integrated square error (MISE) of the
popular kernel density estimator (KDE) fromRosenblatt (1956) and Parzen (1962) isO(𝑛− 4

4+𝑑 ) under
standard smoothness assumptions (Stone, 1980). That is, the rate of convergence is considerably
slow even for moderate levels of 𝑑. Thus, the sample sizes necessary to bind the estimation error
below an acceptable margin are usually neither available nor computationally processable. With the
problem being inherent to nonparametric models, it is impossible to solve the problem in general.
Since no functional form assumption is made, any information about the shape of the target density
is extracted from the distribution of the given sample. However, the number of observations needed
to adequately populate a 𝑑-dimensional domain grows exponentially with 𝑑 (this phenomen is known
as the “curse of dimensionality”; Bellman, 1957).

The regularization of derivative expectation operator (RODEO) approach attempts to circumvent
this problem by regularization. The RODEO approach developed by Lafferty and Wasserman (2008)
is a technique designed for a wide range of nonparametric kernel smoothers. The approach applies
regularization by penalizing the bias reduction associated with a bandwidth reduction along a smooth
path of decreasing bandwidth parameter values in order to avoid overfitting. Dimensions with small
local variation are effectively smoothed out, thus implicitly carrying out variable selection.1 If the
local variation is small for all but 𝑟 < 𝑑 dimensions, the approach is able to very likely achieve
the faster rate of convergence of O(𝑛− 4

4+𝑟 ) up to a logarithmic factor, which makes the approach
attractive for applications in high dimensions

Although promising, the RODEO approach for nonparametric density estimation has gained only
little attention in the literature – we are only aware of Liu, Lafferty, and Wasserman (2007), Ram
and Gray (2011), as well as Mahapatruni and Gray (2011) who have actually implemented the
approach for nonparametric density estimation. The lack of attention given to a promising method
thus provides a strong incentetive to further analyze the approach. We propose the R package
lpderodeo which applies the RODEO approach to local polynomial density estimation. We apply
our implementation to few examples, and evaluate its performance in a comparative study using
a sample of eight other approaches for nonparametric density estimation. The examples include

1 The RODEO approach could thus be seen as a nonparametric sister of the least squares shrinkage operator (LASSO)
approach in parametric regression. The LASSO approach biases the regression coefficients towards zero, while the
effect of sufficiently small coefficients is fully removed, thus carrying out variable selection.
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data in 𝑑 = 1, 2, 10, and 256 dimensions to analyze the efficacy at various levels of dimensionality.
Our findings suggest that the approach does not work well in comparison to the other considered
approaches with regard to the applied performance metrics. Our main finding, however, concerns
the fact that the theoretical framework proposed by Liu, Lafferty, and Wasserman (2007) has severe
shortcomings. In fact, we demonstrate that a simple rotation of the data make the algorithm fail in
practice.

We proceed as follows. Section 2 gives an overview of the methodology; we review the theory of
local polynomial density estimation, and we explain how the RODEO approach can be used for
regularization of the estimate. Subsequently, Section 3 tests our implementation in practice using a
few examples. Section 4 revisits our examples with different parametrizations. Section 5 discusses
problems and limitations of the approach. Finally, Section 6 summarizes our findings and concludes.
The appendix contains additional material; including the source code of our R package lperodeo.
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2 Methodology

Suppose that 𝑓 belongs to the Sobolev space W𝑝+1,∞, and let 𝑥 be a point at which we want to
estimate 𝑓(𝑥) based on the observed iid sample 𝑋1, 𝑋2, … , 𝑋𝑛. To avoid technical issues, we
assume that 𝑥 lies in the interior of 𝑓’s support. Furthermore, we assume, without loss of generality,
that the given sample has zero mean, and a spherical unit variance-covariance matrix. This section
briefly reviews the theory of local polynomial density estimation, derives the local polynomial
density estimator (LPDE) for 𝑓(𝑥), and explains how the RODEO approach can be applied for
regularization of the LPDE.

2.1 Local Polynomial Density Estimation

Since 𝑓 is, by assumption, inW𝑝+1,∞, it is 𝑝-times continuously differentiable, and there exists a
multivariate 𝑞-degree polynomial

𝛱(x) = 𝛼0 ∙ x⊗0 + 𝛼1 ∙ x⊗1 + ⋯ + 𝛼𝑞 ∙ x⊗𝑞 (2.1)

with 𝑞 < 𝑝 that approximates the log density log(𝑓(𝑥)) well in a neighborhood around 𝑥. Here
the ∙ denotes an Euclidean inner product, and x⊗ � defines a tensor power (i.e. we put x⊗0 ≔ 1,
x⊗1 ≔ x, x⊗2 ≔ x ⊗ x and so on, where ⊗ denotes the Kronecker product). Tensor powers are used
here because – unlike component-wise powers – tensor powers include the cross products. The
existence of such a polynomial is an immediate consequence of the Taylor theorem. The Taylor
theorem states that any smooth function can be approximated locally around each query point by a
polynomial whose coefficients are given by the function’s (vectorized) partial derivatives evaluated at
the query point. In other words, the Taylor theorem suggests that a polynomial is locally a reasonable
parametric model for any smooth function, with the coefficients 𝛼0, 𝛼1, … , 𝛼𝑞 of the polynomial
being the unknown model parameters.

The model parameters are estimated based on the observed sample using standard maximum
likelihood techniques (Hjort and Jones, 1996; Loader, 1996; Loader, 2006). The corresponding
objective function is given by

L𝑥 = −𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)𝛱(𝑋𝑖 − 𝑥) + ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥) exp(𝛱(𝑢 − 𝑥)) d𝑢, (2.2)

where 𝐾𝐻 is a kernel. The kernel weighs the observations, which is necessary as the approximation
of log(𝑓(𝑥)) by a polynomial is, by construction, only valid within a neighborhood around 𝑥.
Observations within the neighborhood should receive more weight, while observations further away
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should receive only very little or no weight at all. The neighborhood’s size, called its bandwidth,
is controlled by the symmetric and positive definite 𝑑 × 𝑑 matrix 𝐻. The choice of the bandwidth
parameter is crucial with regard to the variance-bias consideration of the estimate. We use the
RODEO approach for bandwidth selection as described in the subsequent sections, and treat the
bandwidth parameter for the remainder of this section as given. Approximating the log density –
instead of the actual density – ensures nonnegativity of the estimate, and the additional term in (2.2)
incorporates a constraint which ensures that the estimate integrates to unity (see Silverman, 1982).

Since (2.2) is smooth in the parameters 𝛼0, 𝛼1, … , 𝛼𝑞, the first order condition of the optimization
problem is – given some regularity conditions on the kernel – equivalent to solving the following
system

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥)⊗0 = ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥)⊗0 exp(𝛱(𝑢 − 𝑥)) d𝑢

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥)⊗1 = ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥)⊗1 exp(𝛱(𝑢 − 𝑥)) d𝑢

⋮ = ⋮

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥)⊗𝑞 = ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥)⊗𝑞 exp(𝛱(𝑢 − 𝑥)) d𝑢

of 1 + 𝑑 + ⋯ + 𝑑𝑞 nonlinear equations for 𝛼0, 𝛼1, … , 𝛼𝑞. A solution 𝛼̂0, 𝛼̂1, … , 𝛼̂𝑞 may not always
exist, but if it does, the solution is unique, and it is guaranteed to be a maximizer of (2.2) (Loader,
2006). In case of an existing solution, the LPDE for 𝑓(𝑥) is defined by ̂𝑓𝐻(𝑥) ≔ exp(𝛼̂0). This
definition follows immediately from the Taylor theorem, as the constant monomial in the Taylor
expansion of a function around a query point equals the function itself evaluated at the query point.
For notational covencience, we suppress the dependence of ̂𝑓𝐻(𝑥) on the given sample. The LPDE
has several appealing large sample properties such as consistency and asymptotic normality; see
Loader (1996) and Loader (2006) for a rigorous formal treatment.

To ensure the existence of a closed-form solution for ̂𝑓𝐻(𝑥), we assume in the following that 𝑞 ≤ 2
and use the normal kernel

𝐾𝐻(𝑢) = (2𝜋)− 𝑑
2 det(𝐻−1) exp(−1

2
𝐻−1𝑢 ∙ 𝐻−1𝑢) . (2.3)

This kernel allows the integrals on the right hand side of the first order condition to be evaluated
analytically. Consequently, a closed-form solution for ̂𝑓𝐻(𝑥) exists. The derivations for the LPDE
with constant fitting (𝑞 = 0), linear fitting (𝑞 = 1), and quadratic fitting (𝑞 = 2) can be found in
Appendix A.
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The LPDE with constant fitting. When a constant polynomial (𝑞 = 0) is used to approximate
the log density, the LPDE for 𝑓(𝑥) is given by

̂𝑓𝐻(𝑥) = 𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥). (2.4)

The LPDE with constant fitting is equivalent to the KDE from Rosenblatt (1956) and Parzen (1962),
and has been widely studied; see, for example, Wand and Jones (1994) and Scott (2015). Since this
estimator is based on a local constant approximation, it suffers from trimming of peaks or values
near the boundary (Loader, 1996).

The LPDE with linear fitting. When a linear polynomial (𝑞 = 1) is used to approximate the log
density, the LPDE for 𝑓(𝑥) is given by

̂𝑓𝐻(𝑥) = 𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥) exp(−1
2

1′
𝑛𝑊 𝑄𝐻−2𝑄′𝑊 1𝑛) , (2.5)

where 1𝑛 is a vector of 𝑛 ones, and 𝑄 and 𝑊 are defined by

𝑄 ≔

⎡
⎢
⎢
⎢
⎢
⎣

(𝑋1 − 𝑥)′

(𝑋2 − 𝑥)′

⋮
(𝑋𝑛 − 𝑥)′

⎤
⎥
⎥
⎥
⎥
⎦

and 𝑊 ≔

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐾𝐻(𝑋1−𝑥)
∑𝑛

𝑖=1 𝐾𝐻(𝑋𝑖−𝑥) 0 ⋯ 0

0 𝐾𝐻(𝑋2−𝑥)
∑𝑛

𝑖=1 𝐾𝐻(𝑋𝑖−𝑥) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯

𝐾𝐻(𝑋𝑛−𝑥)
∑𝑛

𝑖=1 𝐾𝐻(𝑋𝑖−𝑥)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

respectively. Note that the LPDE with linear fitting equals the LPDE with constant fitting multiplied
by an exponential bias correction term. This estimator thus has better properties compared to the
LPDE with constant fitting around peaks and close to the boundary. We refer again to Loader (1996)
for a thorough analysis.

The LPDE with quadratic fitting. When a quadratic polynomial (𝑞 = 2) is used to approximate
the log density, the LPDE for 𝑓(𝑥) is given by

̂𝑓𝐻(𝑥) = 𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)√det(𝐴) exp(−1
2

1′
𝑛𝑊 𝑄𝐻−1𝐴𝐻−1𝑄′𝑊 1𝑛) (2.6)

with 𝐴 ≔ 𝐻(𝑄′𝑊 𝑄 − 𝑄′𝑊 1𝑛1′
𝑛𝑊 𝑄)−1𝐻. Additional restrictions are necessary to ensure the

existence of 𝐴 (see Appendix A). This estimator has been shown to have similar good properties as
the LPDE with linear fitting with regard to peaks and values near the boundary (Loader, 1996).
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2.2 Applying the RODEO2

The choice of the bandwidth parameter 𝐻 is crucial with regard to the variance and bias of ̂𝑓𝐻(𝑥).
If the bandwidth parameter is chosen to be large (in the sense of the Loewner order), the weight
assigned by the kernel is distributed among many observations. This causes essential characteristics
of 𝑓(𝑥) to be smoothed out effectively, resulting in a biased estimate ̂𝑓𝐻(𝑥). Conversely, if the
bandwidth parameter is chosen to be small, individual observations receive more weight which
makes the kernel treat random fluctuations as genuine characteristics of 𝑓(𝑥). That is, ̂𝑓𝐻(𝑥) overfits
the given sample, resulting in a large variance. A formal version of this argument is given in Loader
(1996) and Loader (2006). The goal is to select a bandwidth parameter which yields a good tradeoff
between both variance and bias.

Let 𝐻init be some large bandwidth parameter. Any real symmetric matrix is diagonalizable, so there
exists an orthonormal 𝑑 × 𝑑 matrix 𝑃 and a diagonal 𝑑 × 𝑑 matrix 𝛯init such that 𝐻init = 𝑃 𝛯init𝑃

′.
We have that 𝛯init is positive definite as 𝐻init is, by definition, positive definite. Since the set of all
positive definite diagonal 𝑑 × 𝑑 matrices together with the 𝑑 × 𝑑 zero matrix 𝑂𝑑 is convex, there
exists a smooth path 𝜑 defined on the positive real line including zero and infinity from 𝛯init to
𝑂𝑑 such that 𝜑(𝑡) ≠ 𝑂𝑑 for all finite 𝑡. It can further be shown that, as 𝑓 is in W𝑝+1,∞, 𝔼[ ̂𝑓𝐻(𝑥)]
converges to 𝑓(𝑥) as the sample size increases and 𝐻 converges to 𝑂𝑑 (c.f. Loader, 1996; Loader,
2006). Since a real symmetric matrix converges to the zero matrix if and only if all of its eigenvalues
converge to zero, we can likewise move along 𝜑 and 𝔼[ ̂𝑓𝑃 𝜑(�)𝑃 ′(𝑥)] converges to 𝑓(𝑥), i.e.

𝑓(𝑥) = lim
𝑡→∞

𝔼[ ̂𝑓𝑃 𝜑(𝑡)𝑃 ′(𝑥)].

Adding the zero 𝔼[ ̂𝑓𝑃 𝜑(0)𝑃 ′(𝑥)] − 𝔼[ ̂𝑓𝑃 𝜑(0)𝑃 ′(𝑥)] on the right hand side and rearranging the terms
yields

𝑓(𝑥) = lim
𝑡→∞

𝔼[ ̂𝑓𝑃 𝜑(𝑡)𝑃 ′(𝑥)] + 𝔼[ ̂𝑓𝑃 𝜑(0)𝑃 ′(𝑥)] − 𝔼[ ̂𝑓𝑃 𝜑(0)𝑃 ′(𝑥)]

= 𝔼[ ̂𝑓𝑃 𝜑(0)𝑃 ′(𝑥)] + lim
𝑡→∞ (𝔼[ ̂𝑓𝑃 𝜑(𝑡)𝑃 ′(𝑥)] − 𝔼[ ̂𝑓𝑃 𝜑(0)𝑃 ′(𝑥)]).

By definition of the path, we have that 𝜑(0) = 𝛯init, so the first term equals 𝔼[ ̂𝑓𝐻init
(𝑥)]. For the

second term, note that the function ̂𝑓𝑃 �𝑃 ′(𝑥), defined in terms of a diagonal 𝑑 × 𝑑 matrix 𝛯, is
differentiable. Since derivative and expectation operators can be interchanged under mild conditions
using the dominated convergence theorem, we have that the function 𝔼[ ̂𝑓𝑃 �𝑃 ′(𝑥)] is differentiable

2 The derivations presented in this section follow Lafferty and Wasserman (2008). Note that we use a different
notation than Lafferty andWasserman (2008) in this paper. Lafferty andWasserman (2008), in our opinion, unnecessarily
overload the meaning of symbols which we want to avoid. Furthermore, we extend the theory to unconstrained bandwidth
selection using the eigendecomposition of real symmetric matrices.
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as well. By convention, the derivative of a scalar-valued function with respect to a diagonal matrix
is a diagonal matrix, so we put

𝜇 ≔ diag(𝔼 [
d
d𝛯

̂𝑓𝑃 �𝑃 ′(𝑥)]) and ̂𝜇 ≔ diag(
d
d𝛯

̂𝑓𝑃 �𝑃 ′(𝑥))

to gather the effective components in a vector; here diag denotes the operator that transforms
the main diagonal of a matrix into a vector. Since 𝜑 is smooth, it is differentiable, and we put
𝜑̇ ≔ diag(

d
d𝑠𝜑). The aforementioned second term can therefore be rewritten in terms of an integral

using the fundamental theorem of calculus and standard matrix differentiation rules, i.e.

𝑓(𝑥) = 𝔼[ ̂𝑓𝐻init
(𝑥)] + lim

𝑡→∞ (∫
𝑡

0

d
d𝑠

𝔼[ ̂𝑓𝑃 𝜑(𝑠)𝑃 ′(𝑥)] d𝑠
)

= 𝔼[ ̂𝑓𝐻inti
(𝑥)] + lim

𝑡→∞ ∫
𝑡

0
(

d
d𝛯

𝔼[ ̂𝑓𝑃 𝜑(𝑠)𝑃 ′(𝑥)) ∶∶∶ (
d
d𝑠

𝜑(𝑠)) d𝑠

= 𝔼[ ̂𝑓𝐻init
(𝑥)] + lim

𝑡→∞ ∫
𝑡

0
𝜇(𝜑(𝑠)) ∙ 𝜑̇(𝑠) d𝑠,

where ∶∶∶ denotes the Frobenius inner product and ∙ the Euclidean inner product.3 Note that derivative
and expectation operators were interchanged in the last step. To get an intuitive understanding of
the the above expression, recall that ̂𝑓𝐻init

(𝑥) is an inherently biased estimate for 𝑓(𝑥); the larger
𝐻init, the larger the bias (Loader, 1996; Loader, 2006). Since ̂𝑓𝐻init

(𝑥) is biased, the term

lim
𝑡→∞ ∫

𝑡

0
𝜇(𝜑(𝑠)) ∙ 𝜑̇(𝑠) d𝑠

has to close the gap between 𝔼[ ̂𝑓𝐻init
(𝑥)] and 𝑓(𝑥) for equality to hold. In other words, this term

has to account for the total bias of ̂𝑓𝐻init
(𝑥). So, for a given point 𝜑(𝑠) along the path, we have, by

definition of the derivative, that the amount of bias reduction is determined by 𝜇(𝜑(𝑠)). Furthermore,
we have that 𝜑̇(𝑠) weighs the relative importance of the bias reduction according to the current
position. Finally, the integral accumulates the total bias reduction along the whole path. The crucial
observation made by Lafferty and Wasserman (2008) is that the bias reduction along 𝜑 can be
manipulated by regularization of the derivative expectation operator 𝜇, which motivates the name
of the approach. The idea is to replace 𝜇 in the above expression of the bias by some integrable
function 𝜓 that penalizes the bias reduction along 𝜑. The goal is to decrease the bias of ̂𝑓𝐻init

(𝑥)
without substantially increasing its variance.

3 The formula derived here slightly differs from the one in Lafferty and Wasserman (2008) since they i) use a rather
heuristic argument that ignores the limit, and ii) absorb a minus sign into their analogue of 𝜑̇.
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Using ̂𝑓𝐻init
(𝑥) as an estimator for 𝔼[ ̂𝑓𝐻init

(𝑥)] and an appropriate estimator 𝜓̂ for 𝜓 defines the
RODEO LPDE for 𝑓(𝑥):

̂𝑓rodeo(𝑥) ≔ ̂𝑓𝐻init
(𝑥) + lim

𝑡→∞ ∫
𝑡

0
𝜓̂(𝜑(𝑠)) ∙ 𝜑̇(𝑠) d𝑠. (2.7)

In principle, there are many possible choices for 𝜓̂ and 𝜑. A particular specification for (2.7) is
considered in the subsequent section.

2.3 Specifying the RODEO

In this paper, we follow Lafferty and Wasserman (2008) in that we consider a specification of (2.7)
that applies regularization by thresholding the bias reduction along a path of exponentially decaying
bandwidth parameter values.

Regularization by thresholding the bias reduction along 𝜑 is based on the idea that ̂𝜇 can be used as
a proxy to quantify the local variation of 𝑓(𝑥) in each dimension. Heuristically, the larger the local
variation, the smaller the selected bandwidth should be in order to control the bias and to improve the
goodness of fit. Conversely, the smaller the local variation, the larger the selected bandwidth should
be in order to avoid overfitting. Thus, given a smooth path of decreasing bandwidths, we discard the
bias reduction associated with a bandwidth decrease whenever the local variation quantified by ̂𝜇 is
below some threshold 𝜆. That is, we use

𝜓̂ = 𝜃 ⊙ 1(| ̂𝜇| > 𝜆), (2.8)

where 1 denotes the component-wise indicator function, | � | the component-wise absolute value
function, and ⊙ the component-wise multiplication. The parameter 𝜃 tunes the amount of bias
reduction in each dimension. Based on theoretical considerations (see Theorem 1 below), Lafferty
and Wasserman (2008) relate the threshold 𝜆 to the scale of ̂𝜇 and suggest 𝜆 = 𝜁 ⊙ diag( ̂𝛴), where
the 𝑑 × 𝑑 matrix ̂𝛴 is an estimator for the scale of ̂𝜇. The parameter 𝜁 tunes the threshold in each
dimension.

The choice of the smooth path 𝜑 is not too important as the starting point 𝐻init and the end point 𝑂𝑑
are, by assumption, fixed. The paths can therefore only differ in their directions and length. Consider
the path

𝜑(𝑠) = 𝛯initDiag(𝛽)𝑠 (2.9)
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with exponential decay. Here Diag denotes the inverse operator of diag, i.e. Diag is the operator
that transforms a vector into a diagonal matrix. The parameter 𝛽 tunes the rate of decay in each
dimension. The closer a component of 𝛽 is to one, the slower the decay in that dimension; the closer
a component is to zero, the faster the decay in that dimension.

Evaluation based on a greedy algorithm

Lafferty and Wasserman (2008) suggest evaluating (2.7) with the given choice of 𝜓̂ and 𝜑 based on
a greedy algorithm for reasons of computional efficiency. The algorithm moves iteratively along 𝜑
and deactivates a dimension by freezing its bandwidth at the current value as soon as the the corre-
sponding component of 𝜓̂ is equal to zero. The procedure is detailed in the pseudo-code Algorithm 1.

Algorithm 1: Greedy algorithm for evaluating (2.7) with 𝜓̂ and 𝜑 given by (2.8) and (2.9), respectively.

Input parameters :𝐻init, 𝛽, 𝜃, 𝜁, ̂𝛴, 𝑞;

1 Set 𝜑(s) ← 𝛯init;
2 Set ̂frodeo(x) ← ̂𝑓𝐻init

(𝑥);

3 Set 𝜑̇(s) ← 𝛽 − 1𝑑;

4 while 𝜑̇(s) ≠ 0𝑑 do
5 Compute 𝜓̂(𝜑(s));

6 Set 𝜑̇(s) ← 𝜑(s)(𝛽 − 1𝑑) ⊙ 1(𝜓̂(𝜑(s)) ≠ 0𝑑) ⊙ 1(𝜑̇(s) ≠ 0𝑑);
7 Set ̂frodeo(x) ← ̂frodeo(x) + 𝜓̂(𝜑(s)) ∙ 𝜑̇(s);
8 Set 𝜑(s) ← 𝜑(s) + Diag(𝜑̇(s));
9 end

10 return ̂frodeo(x) ∨ 0;

The algorithm takes the initial bandwidth parameter 𝐻init, the tuning parameters 𝛽, 𝜃, and 𝜁, an
estimator ̂𝛴 for the scale of ̂𝜇, and the functional form of the LPDE in terms of 𝑞 as input parameters.
Since the algorithm proceeds in a greedy fashion, the symbolic variables 𝜑(s), ̂frodeo(x), and 𝜑̇(s)
are introduced to emulate the movement along the path (lines 1, 2, 3). Note that 𝜑(s), ̂frodeo(x), and
𝜑̇(s) are symbolic variables and should not be confused with their mathematical function analogues.
The variables are initialized as follows:

• 𝜑(s) is initialized by 𝛯init obtained from the eigendecomposition 𝐻init = 𝑃 𝛯init𝑃
′.

• ̂frodeo(x) is initialized by the LPDE with 𝐻init as bandwidth parameter.

• 𝜑̇(s) is initialized by 𝛽 − 1𝑑.
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After initializing the variables, the algorithm starts to move iteratively along the path. In each
iteration, the algorithm computes 𝜓̂(𝜑(s)) (line 5). To find the value of 𝜓̂(𝜑(s)), those of ̂𝜇(𝜑(s))
and 𝜆(𝜑(s)) have to be computed:

• In general, ̂𝜇(𝜑(s)) is very difficult to compute analytically. Thus, we employ a numerical
differentiation approach. The component-wise finite difference approximation of ̂𝜇(𝜑(s)) is
given by

̂𝜇(𝜑(s)) ≈ 𝛿−1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̂𝑓𝑃(𝜑(s)+𝛿𝐸11)𝑃 ′(𝑥) − ̂𝑓𝑃𝜑(s)𝑃 ′(𝑥)
̂𝑓𝑃(𝜑(s)+𝛿𝐸22)𝑃 ′(𝑥) − ̂𝑓𝑃𝜑(s)𝑃 ′(𝑥)

⋮
̂𝑓𝑃(𝜑(s)+𝛿𝐸𝑑𝑑)𝑃 ′(𝑥) − ̂𝑓𝑃𝜑(s)𝑃 ′(𝑥)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.10)

where 𝐸𝑗𝑗 is a 𝑑 × 𝑑 matrix with zeros everywhere and a one at the (𝑗, 𝑗)th position. Choosing
a too large value for 𝛿 yields a poor approximation of the partial derivatives, while choosing 𝛿
too small results in arithmetic overflow due to large rounding errors. By default, 𝛿 = 0.0001
is used, which yields a good tradeoff between approximation and rounding errors.

• To compute 𝜆(𝜑(s)) given by 𝜁 ⊙ ̂𝛴(𝜑(s)), the scale of ̂𝜇(𝜑(s)) has to be estimated. Since
we have computed ̂𝜇(𝜑(s)) based on a finite difference approximation, we use a bootstrap
procedure to estimate the scale of ̂𝜇. That is, we simulate 𝑛 draws with replacement from the
given sample, and compute (2.10) for each draw. This step is replicated 𝑏 times. By default,
𝑏 = 100 replications are used; see the point on variation of ̂𝛴 in Section 4. Finally, ̂𝛴(𝜑(s))
is computed based on the constructed sample.

After computing 𝜓̂(𝜑(s)), the algorithm updates the variables 𝜑̇(s), ̂frodeo(x), and 𝜑(s) (lines 6, 7,
8). To simplify the procedure, Lafferty and Wasserman (2008) suggest replacing the continuum
of bandwidths, i.e. the image set of 𝜑 under the nonnegative real line including zero and infinity,
with a discrete set. The natural numbers including zero and infinity are – trivially – a subset of
the positive real line including zero and infinity. Thus, the continuum of bandwidth parameters is
straightforwardly discretized by restricting to the image set of 𝜑 under the natural numbers including
zero and infinity. This simplification is of course at the expense of accuracy. Since integrals and
derivatives on discrete domains behave like ordinary summations and finite differences, the variables
are updated as follows:

• According to (2.9), it follows that 𝜑̇(𝑠) d𝑠 = 𝜑(𝑠)(𝛽d𝑠 − 1) using infinitesimal notation. Due to
the discretization of the domain, d𝑠 = 1, so 𝜑̇(s) is set to 𝜑(s)(𝛽 − 1𝑑). The additional terms
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1(𝜓̂(𝜑(s)) ≠ 0𝑑) and 1(𝜑̇(s) ≠ 0𝑑) make the algorithm proceed in a greedy fashion.4 Here
0𝑑 denotes a vector of 𝑑 zeros. Multiplying 𝜑(s)(𝛽 − 1𝑑) with the first term sets the bandwidth
changes for those dimensions to zero for which the corresponding components of 𝜓̂(𝜑(s))
are equal to zero, and the other term ensures that the bandwidths for those dimensions remain
unchanged in all future iterations of the algorithm.

• According to (2.7), the bias at a given point 𝜑(𝑠) along the path is reduced by adding the bias
correction 𝜓̂(𝜑(𝑠)) ∙ 𝜑̇(𝑠) d𝑠 to the current value. Due to the discretization of the domain,
d𝑠 = 1, so ̂frodeo(x) is updated recursively by adding 𝜓̂(𝜑(s)) ∙ 𝜑̇(s).

• By definition of a finite difference, 𝜑(s) is updated recursively by adding the change 𝜑̇(s).

Since bandwidth reductions increase the variance of ̂𝜇, the algorithm will eventually reach a point
where all components of 𝜑̇(s) are equal to zero. In that case the algorithm stops and returns
the maximum of zero and the current value of ̂frodeo(x) (line 10). Taking the maximum ensures
nonnegativity of the estimate.

Theoretical properties

Liu, Lafferty, and Wasserman (2007), based on an earlier version of Lafferty and Wasserman (2008),
propose a theoretical framework for the RODEO approach applied to local polynomial density
estimation. It is based on the following:

Assumption 1: Local sparsity condition. In a neighborhood around 𝑥, it holds that 𝑝 ≥ 2,
and there exists a binary 𝑟 × 𝑑 matrix 𝑅 of rank 𝑟 < 𝑑 such that

𝑓(𝑥) = 𝑔(𝑅𝑥)ℎ(𝑥)

for some twice continuously differentiable function 𝑔 with nonzero second derivatives, and
some function ℎ = 𝑐 with 𝑐 > 0.

The assumption states that 𝑓(𝑥) is sparse in the sense that its functional form is locally constant,
and only varies (hence nonzero second derivatives) in some 𝑟-dimensional subspace spanned by the
matrix 𝑅. We will refer to the 𝑟 dimensions that span the subspace as the (local) relevant dimensions,
while refering to the remaining 𝑑 − 𝑟 as the (local) irrelevant dimensions.

If ̂𝜇 is a reasonsable proxy for the local variation of 𝑓(𝑥) in each dimension, Algorithm 1 is expected
to deactivate the irrelevant dimensions very early in the procedure. This is because the variation of

4 Lafferty and Wasserman (2008) modify the index set to make the algorithm proceed in a greedy fashion. Our
implementation is equivalent, but much simpler to implement, and in our opinion more intuitive.
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a constant function is zero. The bandwidths for those dimensions remain large, causing essential
characteristics of 𝑓(𝑥) in that dimension to be smoothed out. Heuristically, a large bandwidth is like
ignoring a dimension, i.e. Algorithm 1 implicitly carries out variable selection in a nonparametric
setting. Liu, Lafferty, and Wasserman (2007) formalize this argument by the following:

Theorem 1: Near-optimal convergence rate of the MISE. Suppose that Assumption 1

holds. Furthermore, suppose that 𝐻init = √ℎ0 log(log(𝑛))
−1𝐼𝑑 for some ℎ0 > 0, 𝛽 = 𝛽01𝑑

for some 0 < 𝛽0 < 1, 𝜃 = ̂𝜇, 𝜁 = √2 log(𝜁0)1𝑑 for 𝜁0 = O(log(𝑛)), ̂𝛴 is chosen as the square
root of ̂𝜇’s variance-covariance matrix, and 𝑞 = 0.5 Then ̂𝑓rodeo(𝑥) output by Algorithm 1
satisfies

𝔼
[∫

ℝ𝑑
| ̂𝑓rodeo(𝑥) − 𝑓(𝑥)|

2 d𝑥
]

= Oℙ(𝑛− 4
4+𝑟 𝐿𝑛),

where 𝐿𝑛 is a logarithmic sequence.

If the 𝑟 relevant dimensions were isolated in advance, the optimal rate of convergence of the MISE
would be O(𝑛− 4

4+𝑟 ). That is, Theorem 1 states that the MISE of the estimator output by Algorithm
1 is very likely to achieve the oracle convergence rate up to a logarithmic factor. The additional
factor could be interpreted as the inevitable effort to identify the irrelevant dimensions. Theorem 1
justifies Algorithm 1 and motivate its application in high dimensions. If 𝑟 is sufficiently small, good
estimates can be obtained even if 𝑑 is large.

However, as we will show in Section 5, there are a series of mistakes in the proof of Theorem 1
as shown in Liu, Lafferty, and Wasserman (2007). In particular, the proof is based on a wrong
expressions for the mean and the variance of ̂𝜇, which results in a fallacy. The validity of the
theoretical framework proposed by Liu, Lafferty, and Wasserman (2007) is therefore brought into
question.

5 From the results of Liu, Lafferty, and Wasserman (2007) it becomes clear that the bandwidth parameter has to
be the (matrix) square root of what they have used in their derivations. Consider, for instance, Example 1 in Liu,
Lafferty, and Wasserman (2007). They claim that log(log(200))

−1 ≈ 0.59 was chosen as initial bandwidth parameter.
However, the lower right panel of Figure 3 in Liu, Lafferty, and Wasserman (2007) shows that the actual value is around

0.77 ≈ √log(log(200))
−1.
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3 Examples

Despite the theoretical problems we want to evaluate how the RODEO approach applied to local
polynomial density estimation ( ̂𝑓rodeo) performs in practice. We implemented the approach in the
R package lpderodeo (see Appendix C). In the following, we apply our implementation to a
few examples and evaluate its performance. The examples include data in 𝑑 = 1, 2, 10, and 256
dimensions. To answer the question whether our implementation is a reasonable alternative to other
approaches for nonparametric density estimation, we compare our implementation with a sample of
other approaches. The other approaches we consider are:

( ̂𝑓nr) a KDE with a normal kernel, where the bandwidth parameter is selected according to
the normal reference rule from Silverman (1986);

( ̂𝑓pi) a KDE with a normal kernel, where the bandwidth parameter is selected according to
the plug-in rule from Chacón and Duong (2010);

( ̂𝑓hist) a histogram with equally spaced bins, where the number of bins in each dimension is
selected according to the normal reference rule from Freedman and Diaconis (1981);

( ̂𝑓nmm) a normal mixture model;

( ̂𝑓knn) the nearest neighbor density estimator, where the number of neighbors is chosen as the
square root of the sample size;

( ̂𝑓det) the decision tree density estimator from Ram and Gray (2011);

( ̂𝑓vine) the vine copula density estimator from Nagler and Czado (2016); and

( ̂𝑓spline) the smoothing spline density estimator from Gu (2013).

A short description for each approach is given on the next page. In the following, we choose the
input parameters for each approach according to the default parameterization of the respective R
implementation. By default, our implementation chooses the input parameters as suggested by
Theorem 1, where the free parameters are chosen as ℎ0 = 1, 𝛽0 = 0.9, and 𝜁0 = 𝑑 log(𝑛).

The raw data for each example in this section can be reproduced using the codes attached to Appendix
D. We used R version 4.0.3 on a compute server with 80 cores at 2.0 GHz each, and 1024 GiB
memory. The server access was provided by the Humboldt Lab for Empirical and Quantitative
Research at Humboldt University of Berlin.

13



Approach Description R Package

̂𝑓nr, ̂𝑓pi Both rules select the bandwidth parameter such that the asymptotic MISE of the KDE is minimized. The only
difference is in how the second derivative of the target density is estimated. The normal reference rule from
Silverman (1986) assumes a Ricker wavelet, while the plug-in rule from Chacón and Duong (2010) estimates
it from the data using a KDE with a pilot bandwidth.

base, ks

̂𝑓hist A histogram is a piece-wise constant estimator. The rule from Freedman and Diaconis (1981) selects the
number of equally spaced bins so that the asymptotic MISE of the histogram is minimized.

mvmesh+ grDevices

̂𝑓nmm A normal mixture model estimates the target density by a finite convex combination of normal densities. The
model parameters (i.e. the means, variance-covariance matrices and mixture weights) are estimated using
an expectation-maximization algorithm. The number of mixture components is determind by hierarchical
model-based agglomerative clustering (Fraley and Raftery, 2002).

mclust

̂𝑓knn The nearest neighbor density estimator is a KDE with uniform kernel and varying bandwidth parameter.
The bandwidth parameter is selected adaptively so that the number of observations in each neighborhood
corresponds to the specified number of neighbors. Theoretical considerations motivate choosing the number
of neighbors as the square root of sample size (Loftsgaarden and Quesenberry, 1965).

TDA

̂𝑓det The decision tree density estimator from Ram and Gray (2011) is essentially a histogram. However, the
number of bins and the sizes of each bin are chosen adaptively according to a decision tree. The decision tree
is trained so that the MISE of the estimator is minimized.

detpack

̂𝑓vine Any multivariate joint density can be expressed in terms of its univariate marginal densities and bivariate pair
copula densities (Bedford and Cooke, 2002). The vine copula density estimator from Nagler and Czado (2016)
makes use of this fact by estimating the marginal and the copula densities separately using KDE variants.

kdevine

̂𝑓spline A smoothing spline is a piece-wise polynomial function. The smoothing spline density estimator from Gu
(2013) is the function which maximizes the negative likelihood functional with an added roughness penalty in
a reproducing kernel Hilbert space.

gss
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3.1 Univariate Normal Mixture Densities From Marron and Wand (1992)

In our first example we consider the 15 univariate normal mixture densities from Marron and Wand
(1992). Normal mixture densities have the appealing property of being able to approximate any
probability density arbitrarily well (Scott, 2015). Marron and Wand (1992) use this property to
construct a sample of 15 densities that resemble many different challenges of density estimation,
such as strong skewness, or multimodality. We do not give the full parameterization for each density,
but instead offer a visual representation in Figure 3.1.

Figure 3.1: The 15 univariate normal mixture densities from Marron and Wand (1992).

#11 #12 #13 #14 #15

#6 #7 #8 #9 #10

#1 #2 #3 #4 #5

-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

-2 0 2 -2 0 2 -4 -2 0 2 4 -2 0 2 -2 0 2

-4 -2 0 2 4 -4 -2 0 2 4 -2 0 2 -2 0 2 -2 0 2
0

1

2

3

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

We simulate 𝑛 = 200 iid draws from each distribution. In each case, we center the data and scale it
by the inverse sample standard deviation such that the sample has a mean of zero and a unit variance.
Furthermore, we cut off a total of 0.1 percent of the probability mass in the tail regions to make the
support of each density compact.

The estimated densities are visualized in Appendix B.6 To quantify the goodness of fit beyond a
mere sense of proportion we employ the MISE as a standard accuracy measure. Table 3.1 shows the

6 Density #3 was also considered by Liu, Lafferty, and Wasserman (2007), as well as Ram and Gray (2011). Our
estimates are nearly identical; see Figure B.1 and Figure B.2 in Appendix B. Unfortunately, exact replication of their
results is not possible as neither Liu, Lafferty, and Wasserman (2007) nor Ram and Gray (2011) published their codes.
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computed MISE for each approach. We use Monte Carlo integration to approximate the expected
value. That is, we replicate the experiment 𝑚 times, and compute in each replication the integrated
square error

∫
ℝ

| ̂𝑓 (𝑥) − 𝑓(𝑥)|
2 d𝑥

of the estimate ̂𝑓 for the normal mixture density 𝑓. Finally, the MISE is obtained as the sample
average over all 𝑚 replications. The reported values in Table 3.1 are based on 𝑚 = 500 replications.

Table 3.1: The MISE of each estimate for the 15 univariate normal mixture densities from Marron
and Wand (1992). The reported values are scaled by 104. The approaches with the smallest MISE are
highlighted.

Density ̂𝑓rodeo
̂𝑓nr

̂𝑓pi
̂𝑓hist

̂𝑓nmm
̂𝑓knn

̂𝑓det
̂𝑓vine

̂𝑓spline

#1 49 33 36 118 13 282 237 36 23

#2 77 55 57 168 63 407 320 57 40

#3 543 1360 544 756 441 679 733 557 282

#4 536 1168 238 615 133 577 729 238 202

#5 1265 3646 425 1028 170 2372 2651 425 262

#6 72 55 48 119 40 240 254 48 47

#7 192 333 72 587 37 309 431 72 63

#8 81 82 67 142 95 272 245 67 67

#9 80 77 61 140 80 248 270 61 58

#10 542 527 518 589 577 454 588 518 456

#11 75 60 60 133 66 265 252 60 59

#12 205 191 182 235 257 320 363 182 165

#13 117 91 80 156 72 278 273 80 79

#14 798 754 396 792 382 478 662 396 305

#15 918 1058 501 998 279 568 679 502 322

̂𝑓nmm and ̂𝑓spline have the best performance over all 15 densities. The two approaches took on average
500 and 300 milliseconds to fit a density on a 𝑘 = 75 point grid. ̂𝑓pi and ̂𝑓vine, which coincide
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(up to numerical imprecisions) in the univariate case, yield also quite strong results. It took both
approaches approximately 10 milliseconds to fit a density. With regard to its MISE, ̂𝑓rodeo ranks
consistently in the middle of the considered approaches, and it took 400 milliseconds to fit a density.

̂𝑓hist and ̂𝑓det are, by construction, piece-wise constant functions and thus fail to account for the
smoothness of the normal mixture densities, which results in bad fits. The approaches took about
5 and 45 milliseconds to fit a density. ̂𝑓nr tends to oversmooth the true density in nearly all cases,
while ̂𝑓knn tends to undersmooth it – with this resulting in large estimation errors for both approaches.
It took the two approaches about 1 and 5 milliseconds, respectively, to fit a density.

3.2 Bivariate Density Satisfying Assumption 1

Assumption 1 is not meaningful for the univariate case. In this example we therefore consider a
simple bivariate density that meets the requirements of Assumption 1. Our goal is to study how well
the considered approaches fit the irrelevant dimension. For this purpose, consider the beta mixture
density from Loader (1996) given by

𝑓1(𝑥1) = (
2
3

𝛤(3)
𝛤(1) 𝛤(2)

(1 − 𝑥1) + 1
3

𝛤(20)
𝛤(10) 𝛤(10)

𝑥9
1(1 − 𝑥1)9

)1(0 ≤ 𝑥1 ≤ 1). (3.1)

Here 𝛤 denotes the usual gamma function. Furthermore, consider the uniform density given by

𝑓2(𝑥2) = 1(0 ≤ 𝑥2 ≤ 1). (3.2)

The product of (3.1) and (3.2) defines a density (product density), which satisfies Assumption 1.
To see why, let 𝑅 be the transposed first canonical basis vector of ℝ2. Furthermore, let 𝑔 = 𝑓1,
and ℎ(𝑥) = 1(0 ≤ 𝑥1 ≤ 1)1(0 ≤ 𝑥2 ≤ 1). Then it holds that 𝑔(𝑅𝑥)ℎ(𝑥) is equal to the product
density for each 𝑥 in ℝ2; the first dimension is the relevant dimension and the second dimension the
irrelevant dimension. Figure 3.2 visualizes the product density.
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Figure 3.2: The product density of (3.1) and (3.2).

x
1

x 2

Density

To simulate random draws from the distribution associated with the product density, we use the fact
that the dimensions are, by construction, independent. Sample draws for the relevant dimension are
generated from the distribution associated with (3.1), and sample draws for the irrelevant dimension
are generated from the distribution associated with (3.2). We simulate 𝑛 = 500 iid draws. To remove
location, scale, and correlation effects from the sample, we center the data and rotate it using the
PCA transformation. The PCA transformation is given by 𝑈𝛬− 1

2 , where 𝑈 denotes the matrix of
eigenvectors of the sample variance-covariance matrix and 𝛬 the diagonal matrix of eigenvalues.

The estimates for the product density are visualized in Appendix B.7 Since we are interested in how
well the irrelevant dimension is fitted, we estimate the marginal density. To obtain an estimate ̂𝑓1
for the marginal density (3.2), we integrate the corresponding estimate ̂𝑓 for the product density
numerically with respect to the first dimension, i.e.

̂𝑓2(𝑥2) = ∫
ℝ

̂𝑓 ((𝑥1, 𝑥2)) d𝑥1.

Figure 3.3 shows the numerically integrated estimates for (3.2). To quantify the goodness of fit
of the numerically integrated estimates for (3.2), we employ again the MISE as accuracy measure.

7 Ram and Gray (2011) also considered the product density. Our results are very similar; see Figure B.1 and Figure
B.11 in Appendix B. Liu, Lafferty, and Wasserman (2007) also considered the density. However, they used a modified
version of the RODEO approach, which is not covered in this paper. The results are thus not comparable.
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We compute the MISE as described in Section 3.1. The reported values in Table 3.2 are based on
𝑚 = 500 replications.

Table 3.2: The MISE of each numerically integrated estimate for (3.2). The reported values are scaled
by 104. The respective approaches with the smallest MISE are highlighted.

Density ̂𝑓rodeo
̂𝑓nr

̂𝑓pi
̂𝑓hist

̂𝑓nmm
̂𝑓knn

̂𝑓det
̂𝑓vine

̂𝑓spline

(3.2) 363 589 298 209 632 258 137 247 140

Figure 3.3: Numerically integrated estimates for (3.2). The dotted line indicates the true density. The
shaded region corresponds to the 95 percent confidence region based on 𝑚 = 500 replications.
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̂𝑓det fits the irrelevant dimension best, closely followed by ̂𝑓spline. The two approaches took about 1
and 17 seconds to fit the product density on a 𝑘 = 25 × 25 point grid. ̂𝑓nmm fits the marginal density
the worst. It took, however, only 5 seconds to fit the density, while ̂𝑓nr, ̂𝑓pi, ̂𝑓hist, and ̂𝑓vine each took
about 20 seconds. ̂𝑓knn took about 250 milliseconds to fit the density. ̂𝑓rodeo took 10 minutes to fit
the density, and yields the second worst fit. According to the way Theorem 1 works, we would
have expected that the bandwidth of the irrelevant dimension remains close to the initial bandwidth
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resulting in a good fit of the irrelevant dimension. However, this did not happen at all. We will
discuss this issue further in Section 5.

3.3 Classification of Chernekov Radiation

An important application of density estimation is classification. In this example we consider a
classification example from astrophysics. Our goal is to distinguish the Chernekov radiation, i.e. the
faint light emitted by charged particles when they enter the atmosphere, that is caused by gamma
rays from Chernekov radiation that is caused by common hadron showers. Identification of gamma
rays is important in astrophysics, e.g., for observing annihilation of dark matter, the accretion of
black holes, or the analysis of supernova remnants.

The data from Bock et al. (2004) imitates measurements taken on the Major Atmospheric Gamma
Imaging Chernekov radiation telescopes located on the Canary Islands. The data contains 𝑑 = 10
variables (telescope width, angle etc.) for 𝑛 = 19 020 observations, where 12 332 observations are
gamma rays and the remaining 6688 observations are common hadron showers. Let 𝑓( � ∣ gamma ray)
denote the density of gamma rays, and let 𝑓( � ∣ hadron shower) denote the density of hadron showers.
Furthermore, assume that a gamma ray and a hadron shower have equal prior probabilities. Using
Bayes theorem, the posterior probability for a gamma ray given the telescope data 𝑥 is equal to

𝑓(𝑥 ∣ gamma ray)
𝑓 (𝑥 ∣ gamma ray) + 𝑓(𝑥 ∣ hadron shower)

.

We use the following classification strategy. Whenever the posterior probability is larger than some
threshold 𝛥, an observation is classified as caused by a gamma ray; otherwise, the observation
is classified as caused by hadron showers. The threshold 𝛥 controls the tradeoff between both
Chernekov radiation falsely classified as caused by gamma rays (false positives), and Chernekov
radiation correctly classified as caused by gamma rays (true positives). Larger values for 𝛥 reduce
the number of false positives, but larger values also reduce the number true positives. The tradeoff
between both false positive and true positive rate is illustrated by the Receiver operating characteristic
(ROC) curve. The larger the area under the curve (AUC), the higher the classification power. We
use the AUC as performance metric to evaluate the approaches.

To implement the proposed classification strategy, we have to estimate the posterior probability by
estimating 𝑓( � ∣ gamma ray) and 𝑓( � ∣ hadron shower). 12 680 observations, two thirds of the data,
are used to estimate the densities. We center the training data for gamma rays and hadron showers
and rotate it using the PCA transformation. The remaining 6340 observations are then used for
evaluation. Figure 3.4 shows the ROC curves together with the corresponding AUC for the classifier
trained by the respective approach.
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Figure 3.4: ROC curve and AUC for the classifiers trained by the respective approach.
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The panel for ̂𝑓hist is left empty on purpose to indicate that the implementation does not work for
𝑑 ≥ 6 dimensions. The classifier trained by ̂𝑓det has by far the lowest AUC. Classifying all 6340
observations took about 1 minute. The classifier trained by ̂𝑓rodeo has the second lowest AUC.
Classifying the observations took almost four weeks. We will discuss this issue further in Section 5.
The AUC for the classifier trained by ̂𝑓spline is slightly higher. It took about 3.5 minutes to classify
the observations. The classifiers trained by ̂𝑓pi and ̂𝑓vine achieve the same AUC. However, the
computation time differs significantly – it took the former several hours to classify all observations,
while the latter needed about 20 minutes. The classifiers trained by ̂𝑓nr, ̂𝑓knn, and ̂𝑓nmm achieve the
highest AUC. Classifying the observations took about 1, 7, and 90 minutes for these approaches
respectively.

3.4 Pattern Recognition Using Handwritten Zip Code Digits

In our last example we consider 16×16 pixel images of handwritten zip codes that were automatically
scanned from the envelopes by the US Postal Service. The data from Le Cun et al. (1990) contains
7291 scanned digits, which have been deslanted, had their size normalized, and finally are transformed
to 16×16 pixel grayscale images. Figure 3.5 shows the per-pixel average for each digit in the data
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set.

Figure 3.5: Per-pixel average for each digit in the data set from Le Cun et al. (1990).

We center and rotate the sample for each digit using a regularized ZCA transformation to remove
location, scale, and correlation effects of the pixels. The regularized ZCA transformation is given by
𝑈(𝛬 + 𝜘𝐼𝑑)− 1

2 𝑈 ′, where 𝑈 denotes the matrix of eigenvectors of the sample variance-covariance
matrix of the respective digit, and 𝛬 the diagonal matrix of eigenvalues. Since the sample variance-
covariance is numerically singular, we apply regularization to the eigenvalues by adding 𝜘 = 0.1 to
each eigenvalue as suggested by Pal and Sudeep (2016).

Each image in the data set can be seen as random draw from a 256-dimensional distribution. Suppose
our goal is the generation of artificial handwritten digits by simulating sample draws from the the
corresponding distributions. For that purpose, we estimate the associated densities and employ
importance sampling to simulate random draws. That is, we simulate 𝑚 iid draws 𝑋1, 𝑋2, … , 𝑋𝑚
from a 256-dimensional normal distribution with zero mean and identity variance-covariance matrix
(proposal distribution), and compute the ratios

̂𝑓 (𝑋1)
𝑓 (𝑋1) ,

̂𝑓 (𝑋2)
𝑓 (𝑋2) , … ,

̂𝑓 (𝑋𝑚)
𝑓 (𝑋𝑚) , where

̂𝑓 is an estimated
density, and 𝑓 is the density of the proposal distribution. The computed ratios certainly do not sum
to one, so we normalize them to obtain probabilities. A sample draw is then simulated by sampling
from 𝑋1, 𝑋2, … , 𝑋𝑚 with the computed probabilities. Each draw is based on 𝑚 = 500 iid draws
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from the proposal distribution.

The per-pixel sample average of 𝑙 = 100 iid draws from the distribution of the digit “6” estimated by
̂𝑓nr, ̂𝑓nmm, ̂𝑓knn, and ̂𝑓det, respectively, is visualized in Figure 3.6. All the other approaches did not

work for this extremely high dimensional data. ̂𝑓rodeo fails because of infeasibly long computation
times and because of arithmetic underflow.8 We will discuss this issue further in Section 5. Plots of
per-pixel sample averages for the other digits can be found in Appendix B.

Figure 3.6: Per-pixel sample average based on 𝑙 = 100 random draws from the distribution of the
digit “6” estimated by the respective approaches.
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The results are not very strong even for the approaches that do work for this high dimensional
example. The respective digits are not always recognizable. This is likely due to the fact that only
about 700 observation were available on average to estimate the density for each digit. Another
potential source of poor results is that the normal distribution is possibly not a good choice for the
proposal distribution. We leave it to the reader to decide which of the four working approaches
yields the best results. About 10 days in total were needed to simulate the data for all digits.

8 Liu, Lafferty, and Wasserman (2007) considered a similar example using their implementation. They were able to
obtain estimates. However, given the limited documentation in Liu, Lafferty, and Wasserman (2007), it is not possible
to reproduce their results using our implementation.
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4 Variation of Input Parameters

Until now we have used the same values for the input parameters 𝐻init, 𝛽, 𝜃, 𝜁, ̂𝛴, and 𝑞 in all
examples. This section revisits the 15 univariate normal mixture densities from Marron and Wand
(1992) considered in Section 3.1 with different parameterizations. One parameter is varied at a time,
and for each parameter how the results change is briefly discussed.

Variation of 𝐻init. Until now we set this parameter to 𝐻init = √ℎ0 log(log(𝑛))
−1 with ℎ0 = 1.

Since we have transformed the data such that the sample has unit variance, choosing ℎ0 = 1
corresponds to choosing an initial bandwidth parameter slightly below the standard deviation of the
sample. Larger values, unsurprisingly, caused significantly longer computation times, but eventually
resulted in the same estimates (see Table B.1 in Appendix B). Smaller values were not considered
as the virtue of the RODEO approach relies on large initial bandwidths.

Variation of 𝛽. 𝛽 = 𝛽0 with 𝛽0 = 0.9 has been used to this point. We also considered the very
small value 𝛽0 = 0.01, the very large value 𝛽0 = 0.99, and the intermediate value 𝛽0 = 0.5 to
analyze the behavior at various rates of decay. The small 𝛽0 made the estimates very volatile, while
the large 𝛽0 resulted in slightly smoother estimates, but also significantly longer computation times.
Results are slightly improved using the intermediate 𝛽0 (see Table B.2 in Appendix B). An open
question is how to set this parameter optimally.

Variation of 𝜃. Our implementation features the following thresholds to tune the bias reduction:

• Hard: 𝜃 = ̂𝜇. The hard threshold is discontinuous at the threshold value 𝜆 and is thus very
sensitive to small changes in the data.

• Soft: 𝜃 = | ̂𝜇| − | ̂𝜇| ⊙ 𝜆 ⊙ ̂𝜇−1. The soft threshold is continuous, but unnecessarily biases the
estimate for large inputs.

• Garrote: 𝜃 = ̂𝜇 − 𝜆2 ⊙ ̂𝜇−1. The garrote threshold seeks to remedy the drawbacks of both
hard and soft thresholds.

• Hyperbole: 𝜃 = (| ̂𝜇| − | ̂𝜇|2 ⊙ 𝜆2 ⊙ ̂𝜇−2)
1
2 . Similar to the garrote threshold, the hyperbole

threshold is a compromise between the hard and soft thresholds.

In all of the above expressions the powers are understood component-wise. For some of the densities,
the garrote threshold yields slightly better results than the hard threshold; the soft and hyperbole
thresholds almost always perform worse (see Table B.3 in Appendix B). Contrary to our expectation,
however, this parameter is apparently only of minor importance.
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Variation of 𝜁. This parameter is important from a theoretical perspective, but is a simple scaling
factor in practice. Small values resulted in small thresholds, which caused a cascade of decreasing
bandwidths. Large values, on the other hand, made the algorithm stop after the first iteration.
In general, Algorithm 1 is very sensitive to changes in this parameter. Until now we used 𝜁 =
√2𝑑 log(log(𝑛)). We also considered the slightly larger value 𝜁 = √2𝑑 log(𝑛), and 𝜁 = 1. However,
the results did not improve at all (see Table B.4 in Appendix B).

Variation of ̂𝛴. We have implemented the following estimators for the scale of ̂𝜇:

• The standard deviation.

• The median absolute deviation divided by 1.483. The median absolute deviation is less
sensitive to outliers as compared to the standard deviation. Assuming the components of ̂𝜇 are
normally distributed, dividing the median absolute deviation by 1.483 makes it a consistent
estimator for the standard deviation (Scott, 2015).

• The interquartile range divided by 1.349. As the median absolute deviation, the interquartile
range is less sensitive to outliers. Assuming the components of ̂𝜇 are normally distributed,
dividing the interquartile range by 1.349 makes it a consistent estimator for the standard
deviation (Scott, 2015).

• The minimum of standard deviation and interquartile range divided by 1.349.

• The standard deviation (variant 2). In case of constant fitting, an explicit expression for ̂𝜇 can
be obtained using standard matrix differentiation rules and the linearity of the diag operator:

̂𝜇(𝛯) = diag(
d
d𝛯

̂𝑓𝑃 𝛯𝑃 ′(𝑥))

= diag
(

𝑛−1
𝑛

∑
𝑖=1

d
d𝛯

𝐾𝑃 𝛯𝑃 ′(𝑥 − 𝑋𝑖))

= diag
(

𝑛−1
𝑛

∑
𝑖=1

(𝛯−1𝑃 ′(𝑥 − 𝑋𝑖)(𝑥 − 𝑋𝑖)
′𝑃 𝛯−2 − 𝛯−1)𝐾𝑃 𝛯𝑃 ′(𝑥 − 𝑋𝑖))

= 𝑛−1
𝑛

∑
𝑖=1

diag(𝛯−1𝑃 ′(𝑥 − 𝑋𝑖)(𝑥 − 𝑋𝑖)
′𝑃 𝛯−2 − 𝛯−1) 𝐾𝑃 𝛯𝑃 ′(𝑥 − 𝑋𝑖)

= 𝑛−1
𝑛

∑
𝑖=1

𝑋̃𝑖,

where 𝑋̃𝑖 ≔ diag(𝛯−1𝑃 ′(𝑥 − 𝑋𝑖)(𝑥 − 𝑋𝑖)
′𝑃 𝛯−2 − 𝛯−1)𝐾𝑃 𝛯𝑃 ′(𝑥 − 𝑋𝑖). Given that 𝑃 = 𝐼𝑑,

we have that the 𝑋̃1, 𝑋̃2, … , 𝑋̃𝑛 are iid. Thus, a natural estimator for the variance-covariance
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matrix of ̂𝜇 is

̂𝛴(𝛯) = 𝑛−1(𝑛 − 1)−1
𝑛

∑
𝑖=1

(𝑋̃𝑖 − ̂𝜇)(𝑋̃𝑖 − ̂𝜇)′,

because the variance of a sample mean in case of iid random variables is equal to the variance
divided by the sample size.

• The standard deviation (variant 3). The disadvantage of variant 2 is that it is only valid in case
of constant fitting and if 𝑃 = 𝐼𝑑. Liu, Lafferty, and Wasserman (2007, full version) derive
an expression for the variance-covariance matrix of ̂𝜇 (ibid., equation 101 on page 25). This
expression can be used to obtain the following estimator for the variance-covariance matrix
of ̂𝜇:

̂𝛴(𝛯) = 𝑛−1(4𝜋)− 𝑑
2 det(𝛯−1) ̂𝑓𝑃 𝛯𝑃 ′(𝑥)𝑃 𝛯−2𝑃 ′.

However, as we will show in Section 5.2, the initial expression for the variance-covariance
matrix of ̂𝜇 derived by Liu, Lafferty, and Wasserman (2007, full version) is wrong. We
discuss this issue further in Section 5. The estimator based on this expression is thus invalid.
Nevertheless, we implemented this variant.

Using the median absolute deviation as an estimator for the scale of ̂𝜇 yields slightly better results
compared to the standard deviation. The interquartile range, on the other hand, performs worse (see
Table B.5 in Appendix B). Estimating the standard deviation of ̂𝜇 based on the bootstrap procedure
and based on variant 2 yields almost identical results, which suggests that 𝑏 = 100 replications are
sufficient to obtain a reasonable estimate for the standard deviation of ̂𝜇, at least when using constant
fitting. Estimating the standard deviation based on variant 3, on the other hand, lead to very different
results. This is very likely due to the fact that the initial expression for the variance-covariance
matrix of ̂𝜇 derived by Liu, Lafferty, and Wasserman (2007, full version) is wrong. Variant 2 and
variant 3 are not based on the bootstrap procedure and are thus substantially faster with regard to
computation time.

Variation of 𝑞. Our implementation allows the following functional forms for the LPDE:

• Constant fitting (𝑞 = 0). The LPDE is given by (2.4).

• Linear fitting (𝑞 = 1). The LPDE is given by (2.5).

• Quadratic fitting (𝑞 = 2). The LPDE is given by (2.6).
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The goodness of fit increases substantially when using linear or quadratic fitting. The goodness
of fit is particularly good for the latter (see Figure B.24, Figure B.25, Table B.6 in Appendix B).
However, we have encountered a situation in which the matrix 𝐴 as defined in (2.6) does not exist
because of numerical issues.9 This shortcoming aside, changing 𝑞 had the potential of producing
the most positive effects on the results of all parameter changes considered in this section.

9 A possible solution to this problem could be to apply Tikhonov regularization, i.e. blow up the main diagonal
elements of 𝑄′𝑊 𝑄 − 𝑄′𝑊 1𝑛1′

𝑛𝑊 𝑄 additively by a positive constant to ensure it is invertible. We will consider
implementing this in a future version of our package.
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5 Problems

We have seen in Section 3 that our implementation is not consistent with the theoretical framework
proposed by Liu, Lafferty, and Wasserman (2007) – in Section 3.2 we have considered a density
that satisfies Assumption 1, but the bandwidth of the irrelevant dimension were reduced as opposed
to how Theorem 1 works. Furthermore, in Section 3.3 we have encountered the problem that our
implementation is practically infeasible in higher dimensions due to dramatically long computaton
times, and in Section 3.4 because of arithmetic underflow. This section examines the problems and
shows that the RODEO approach for nonparametric density estimation has severe theoretical and
practical problems.

5.1 Computational Limitations

Despite being hard coded in C/C++, our implementation is relatively slow. The main reason for
this is that our implementation is based on a naive query. Consider the parameter configuration from
Section 3. Since Algorithm 1 is an iterative procedure, it is difficult to derive its time complexity.
However, we know that there are 𝛺(𝑛𝑘𝑑𝑏) operations necessary to evaluate (2.7) using Algorithm
1, which is already very slow. Thus, as the sample size 𝑛, the number of query points 𝑘, the
dimensions 𝑑, or the number of bootstrap replications 𝑏 increases, our implementation quickly
becomes practically infeasible due to dramatically long computation times.

Another problem with our implementation is arithmetic underflow. Arithmetic underflow occurs
if the result of a computation is a magnitude smaller than the smallest number representable by
the computer and thus automatically rounded to zero. In the example considered in Section 3.4,
the values of ̂𝜇 were of magnitude 10−156 and the variance was of magnitude 10−312. The latter
is, however, no longer representable. Consequently, the algorithm fails since the resulting scale
estimates are rounded to zero.

5.2 Theoretical Shortcomings

Suppose we are in the setting of Theorem 1. The theorem is based on a concentration inequality
to show that the probability that ̂𝜇 exceeds 𝜆 in magnitude converges to zero for the irrelevant
dimensions. The concentration inequality invokes the mean 𝜇 and the variance-covariance matrix 𝛴
of ̂𝜇. Liu, Lafferty, and Wasserman (2007, full version) therefore derive an explicit expression for 𝜇
based on the mean of (2.4). The mean of (2.4) is given by

𝔼[ ̂𝑓𝐻(𝑥)] = 𝑓(𝑥) + 1
2

𝐻 ∶∶∶ H𝑓(𝑥)𝐻 + o(𝐻 ∶∶∶ 𝐻), (5.1)
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where ∶∶∶ denotes the Frobenius inner product and H𝑓(𝑥) the Hessian of 𝑓(𝑥) (see e.g., Wand and
Jones, 1994; Scott, 2015). Taking the derivative with respect to 𝐻, and interchanging derivative
and expectation operators on the right hand side yields

𝔼 [
d
d𝐻

̂𝑓𝐻(𝑥)] = H𝑓(𝑥)𝐻 + d
d𝐻

o(𝐻 ∶∶∶ 𝐻) (5.2)

which equals 𝜇 up to vectorization using the diag operator. Liu, Lafferty, and Wasserman (2007, full
version) make the mistake of also interchanging the derivative operator and the Landau symbol o
(ibid., equation 24 on page 24). Interchanging the derivative operator and o is, in general, not valid
and can have severe consequences – the derivative operator is not continuous which implies that the
derivative of a convergent function may not necessarily be convergent. For instance, consider the
function 𝑇 (𝑧) = 𝑧2 sin(𝑧−1) which is clearly o(𝑧) as 𝑧 approaches zero. But

d
d𝑧

𝑇 (𝑧) = 2𝑧 sin(𝑧−1) − cos(𝑧−1)

= − cos(𝑧−1) + o(𝑧)

diverges as 𝑧 approaches zero, i.e. d
d𝑧𝑇 is not o(1) as one would expect if the derivative operator

and o were interchangeable. By definition of Landau symbols, we ultimately cannot rule out that
the o term in (5.1) behaves similar to the term in this example.

The theoretical properties of Algorithm 1 are thus unlikely to hold. In fact, we can demonstrate
how the above error leads to a fallacy in the proof of Theorem 1 as presented in Liu, Lafferty, and
Wasserman (2007, full version). They deduce that “for sufficiently large 𝑛 it’s obvious that 𝜆𝑗 ≥ 2𝜇𝑗”
and “for sufficiently large 𝑛 [and without loss of generality], 𝜇𝑗 ≥ 𝑐ℎ𝑗𝑓𝑗𝑗(𝑥) [> 0]” (ibid., page 26).
The notation comes from the original paper; the meaning of each symbol is not too important as
these are all real numbers. They further derive the inequality “𝑐ℎ𝑗𝑓𝑗𝑗(𝑥) ≥ 2𝜆𝑗” (ibid., page 27).
However, taking all three inequalities together – that is, 𝜆𝑗 ≥ 2𝜇𝑗 ≥ 2𝑐ℎ𝑗𝑓𝑗𝑗(𝑥) ≥ 4𝜆𝑗 – we arrive at
1 ≥ 4 which is clearly a contradiction. Thus, the proof of Theorem 1 as shown in Liu, Lafferty, and
Wasserman (2007, full version) is invalid.

5.3 Rotating the Data Makes Algorithm 1 Fail

There are considerable doubts about the validity of the approach for nonparametric density estimation
not only from a theoretical point of view, but also considering practical applications. If Algorithm 1
indeed works as described in Section 2.3, a rotation of the data should not have any consequences on
the algorithm as rotating the data does not affect the local variation of the target density.10 However,

10 The only effect rotating the data has on the target density is that it scales it by a constant, which is given by the
determinant of the rotation.
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we now demonstrate that a simple rotation of the data will make Algorithm 1 fail. For that, we
replicate Example 4 from Liu, Lafferty, and Wasserman (2007). The density considered in that
example is given by:

𝑓(𝑥) =
5

∏
𝑗=1

1
√2𝜋𝜔2

exp
(

−1
2

𝑥2
𝑗

2𝜔2 )

30

∏
𝑗=6

1(0 ≤ 𝑥𝑗 ≤ 1), (5.3)

where 𝜔𝑗 = 0.02𝑗. Like Liu, Lafferty, and Wasserman (2007), we simulate 𝑛 = 100 iid draws from
the corresponding distribution, and replicate the experiment 𝑚 = 30 times. Since (5.3) is the product
of univariate normal densities and univariate standard uniform densities, we can simulate samples
from the corresponding marginal distribution of each dimension.

We estimate (5.3) at the query point 𝑥 = 030. Figure 5.1 shows boxplots of bandwidth parameter
value in the last iteration of Algorithm 1 when using constant, linear, and quadratic fitting. The
other input parameters are chosen as in Section 3.

Figure 5.1: Boxplots of the bandwidth parameter value in the last iteration of Algorithm 1. The
boxplots are based on 𝑚 = 30 replications.
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Since (5.3) satisfies Assumption 1 at the query point 030, we would expect the algorithm to shrink
the bandwidths of the first five dimensions, while the bandwidths of the other 25 dimension remain
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close to the initial bandwidth parameter 𝐻init = √log( log(100))
−1𝐼30 ≈ 0.81𝐼30. Consider the

upper panels first. The algorithm does in fact shrink the bandwidths for the relevant dimensions in
the constant and linear fitting case – the linear fitting case is consistent with the result reported by Liu,
Lafferty, and Wasserman (2007). In the quadratic fitting case, no pattern can be recognized since
all dimensions are affected equally. Now consider the lower panels. In the quadratic fitting case,
no results are reported due to numerical issues regarding the existence of the LPDE (see Section
4). Once the domain of (5.3) is rotated using, for instance, the PCA transformation, the algorithm
no longer works as expected in either the constant or the linear fitting case – the bandwidths are
reduced for all dimensions. Changing the evaluation point and increasing the sample size does not
change this finding.

We suspect that the previously witnessed bandwidth reductions were solely driven by different
scales. Note that an irrelevant dimension has a variance of about 0.02, while the relevant dimensions
have a much smaller variance of (0.02𝑗)2. The smaller the variance, the smaller the variance of
the corresponding component of ̂𝜇. This in turn results in small thresholds which encourages a
bandwidth reduction. This effect disappears once scale effects are removed. This argument is,
however, only of heuristic nature. A formal proof for our claim stands out.
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6 Conclusion

In this paper we considerd the RODEO approach applied to local polynomial density estimation.
We developed the R package lpderodeo, which implements the approach. The package can be
built from source using the files attached to Appendix C. We applied our implementation to a few
examples at various levels of dimensionality, and evaluated its performance in a comparative study.
Our findings suggest that our implementation does not work well in comparison to most of the
other considered approaches with regard to the applied performance metrics. Furthermore, our
implementation suffers from long computation times due to a naive query.

Our main finding is, however, that there are severe shortcomings with the theoretical framework
proposed by Liu, Lafferty, and Wasserman (2007) for the RODEO approach applied to local
polynomial density estimation. Specifically, we can show that their proof of Theorem 1, which
justifes the application of the approach in high dimensions, is flawed – interchanging the derivative
operator and the Landau symbol o resulted in a fallacy. There is thus no reason to assume that the
estimator output by Algorithm 1 achieves the faster rate of convergence of O(𝑛− 4

4+𝑟 ) as claimed. In
fact, we demonstrated that a simple rotation of the data made the algorithm fail in practice.

Nevertheless, by varying some of the input parameters, very good results were obtained, which
motivates us to not yet give up on our implementation. To further improve it, the following points
should be considered in future versions:

• Implement multi-core processing. To improve computational efficiency, multi-core pro-
cessing should be implemented. Algorithm 1 could then process multiple dimension at the
same time rather than iteratively, thus speeding up computation time.

• Implement a k-d query. Instead of using a naive query, a query based on a k-d tree could
be implemented as described in Gray and Moore (2003). This hopefully leads to major
improvements in compuation time.

• Derive the first and second moments of ̂𝜇. If an expression for the variance of ̂𝜇 was known,
we could use the formula instead and avoid the expensive bootstrap procedure.

• Combat arithmetic underflow. To solve the arithmetic underflow problem it may already
suffice to take logs on both sides of (2.7), noting that the constant term (2𝜋)− 𝑑

2 can be factored
out.

Considering the suggestions, we are convinced that our implementation could develop into a strong
approach for nonparametric density estimation once it is fully mature.
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A Derivation of the LPDE

This appendix derives the LPDE with constant fitting (2.4), the LPDE with linear fitting (2.5), and
the LPDE with quadratic fitting (2.6) in case a normal kernel is used.

Derivation of the LPDE with constant

When a constant polynomial 𝛱(x) = 𝛼0 is used to approximate the log density locally, maximizing
(2.2) is equivalent to solving the equation

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥) = ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥) exp(𝛼̂0) d𝑢 (A.1)

for exp(𝛼0). We immediately obtain (2.4) as the right hand side of (A.1) evaluates to exp(𝛼̂0), which
is, by definition, the LPDE for 𝑓(𝑥).

Derivation of the LPDE with linear fitting

When a linear polynomial 𝛱(x) = 𝛼0 + 𝛼1 ∙ x is used to approximate the log density locally,
maximizing (2.2) is equivalent to solving the following system

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥) = ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥)) d𝑢 (A.2)

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥) = ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥)) d𝑢 (A.3)

of 1 + 𝑑 equations for exp(𝛼̂0). We evaluate the right hand side of (A.2) first:

∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥)) d𝑢

= ∫
ℝ𝑑

(2𝜋)− 𝑑
2 det(𝐻−1) exp(−1

2
𝐻−1(𝑢 − 𝑥) ∙ 𝐻−1(𝑢 − 𝑥)) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥)) d𝑢

= ∫
ℝ𝑑

(2𝜋)− 𝑑
2 exp(−1

2
𝑣 ∙ 𝑣 + 1

2
𝐻𝛼̂1 ∙ 𝐻𝛼̂1 + 𝛼̂0) d𝑣

= exp(𝛼̂0 + 1
2

𝐻𝛼̂1 ∙ 𝐻𝛼̂1) ∫
ℝ𝑑

(2𝜋)− 𝑑
2 exp(−1

2
𝑣 ∙ 𝑣) d𝑣

= exp(𝛼̂0 + 1
2

𝐻𝛼̂1 ∙ 𝐻𝛼̂1) .
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Note that a change of variables (𝑢 = 𝑥 + 𝐻𝑣 + 𝐻2𝛼̂1) was used in the second step. To evaluate
(A.3) we differentiate the just derived expression with respect to 𝛼̂1, and interchange derivative and
integral operators using the dominated convergence theorem:

∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1(𝑢 − 𝑥))

= ∫
ℝ𝑑

d
d𝛼̂1

𝐾𝐻(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1(𝑢 − 𝑥)) d𝑢

= d
d𝛼̂1 ∫

ℝ𝑑
𝐾𝐻(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1(𝑢 − 𝑥)) d𝑢

= d
d𝛼̂1

exp(𝛼̂0 + 1
2

𝐻𝛼̂1 ∙ 𝐻𝛼̂1)

= 𝐻2𝛼̂1 exp(𝛼̂0 + 1
2

𝐻𝛼̂1 ∙ 𝐻𝛼̂1) .

Thus, dividing (A.3) by (A.2) yields 𝐻2𝛼̂1 on the right hand side, and

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)
𝑛−1 ∑𝑛

𝑖=1 𝐾𝐻(𝑋𝑖 − 𝑥)
(𝑋𝑖 − 𝑥) = 𝑄′𝑊 1𝑛

on the left hand side. Premultiplying 𝐻−1 on both sides yields 𝐻𝛼̂1 = 𝐻−1𝑄′𝑊 1𝑛, which can be
plugged into the right hand side of (A.2) to obtain:

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥) = exp(𝛼̂0 + 1
2

𝐻𝛼̂1 ∙ 𝐻𝛼̂1) .

Multiplying both sides by exp(−1
2𝐻𝛼̂1 ∙ 𝐻𝛼̂1) isolates exp(𝛼̂0) on the right hand side, thus obtaining

(2.5). Recall that a ∙ a = a′a for any vector a.

Derivation of the LPDE with quadratic fitting

When a quadratic polynomial 𝛱(x) = 𝛼0 + 𝛼1 ∙ x + 𝛼2 ∙ x⊗2 is used to approximate the log density
locally, maximizing (2.2) is equivalent to solving the following system

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)

= ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥) + 𝛼̂2(𝑢 − 𝑥)⊗2) d𝑢
(A.4)

36



𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥)

= ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥) + 𝛼̂2(𝑢 − 𝑥)⊗2) d𝑢
(A.5)

𝑛−1
𝑛

∑
𝑖=1

𝐾𝐻(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥)⊗2

= ∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥)⊗2 exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥) + 𝛼̂2(𝑢 − 𝑥)⊗2) d𝑢
(A.6)

of 1 + 𝑑 + 𝑑2 equations for exp(𝛼̂0). Let 𝐴 ≔ 𝐼 − 2𝐻Mat(𝛼̂2)𝐻, where Mat(𝛼̂2) denotes the 𝑑 × 𝑑
matrix that arises when unstacking the 𝑑2 components of 𝛼̂2 into a 𝑑 × 𝑑 matrix. We have to make
the additional assumption that 𝐴 is a symmetric and positive definite 𝑑 × 𝑑 matrix to ensure the
existence of the integrals on the right hand sides. That is, we (implicitly) add the restrictions i)
Mat(𝛼2) is symmetric and nonsingular and ii) (Mat(𝛼2))−1 − 𝐻2 is nonsingular when estimating 𝛼2.
It turns out that, under these restrictions, 𝐴 coincides with the definition of 𝐴 given in Section 2.
Evaluating the right hand side of (A.4) yields

∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥) + 𝛼̂2 ∙ (𝑢 − 𝑥)⊗2) d𝑢

= ∫
ℝ𝑑

(2𝜋)− 𝑑
2 det(𝐻−1) exp(−1

2
𝐻−1(𝑢 − 𝑥) ∙ 𝐻−1(𝑢 − 𝑥)) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥) + 𝛼̂2 ∙ (𝑢 − 𝑥)⊗2) d𝑢

= ∫
ℝ𝑑

(2𝜋)− 𝑑
2 √det(𝐴)−1 exp(−1

2
𝑣 ∙ 𝑣 + 1

2
𝐻𝐴− 1

2 𝛼̂1 ∙ 𝐻𝐴− 1
2 𝛼̂1 + 𝛼̂0) d𝑣

= √det(𝐴)−1 exp(
1
2

𝐻𝐴− 1
2 𝛼̂1 ∙ 𝐻𝐴− 1

2 𝛼̂1 + 𝛼̂0) ∫
ℝ𝑑

(2𝜋)− 𝑑
2 exp(−1

2
𝑣 ∙ 𝑣) d𝑣

= √det(𝐴)−1 exp(
1
2

𝐴− 1
2 𝐻𝛼̂1 ∙ 𝐴− 1

2 𝐻𝛼̂1 + 𝛼̂0) .

Note that a change of variables (𝑣 = 𝑥 + 𝐻𝐴− 1
2 𝑢 + 𝐴−1𝐻𝛼̂1) was used in the second step. To

evaluate the left hand side of (A.4) the differentiation under the integral sign method is used again
to obtain

∫
ℝ𝑑

𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥) exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥) + 𝛼̂2(𝑢 − 𝑥)⊗2) d𝑢

= 𝐻𝐴−1𝐻𝛼̂1√det(𝐴)−1 exp(
1
2

𝐴− 1
2 𝐻𝛼̂1 ∙ 𝐴− 1

2 𝐻𝛼̂1 + 𝛼̂0) .
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Thus, dividing (A.5) by (A.4) yields 𝐻𝐴−1𝐻𝛼̂1 = 𝑄′𝑊 1𝑛. Premultiplying 𝐻−1 from the left
yields 𝐴−1𝐻𝛼̂1 = 𝐻−1𝑄′𝑊 1𝑛. Next, the differentiation under the integral sign method is used
again to obtain

∫ 𝐾𝐻(𝑢 − 𝑥)(𝑢 − 𝑥)⊗2 exp(𝛼̂0 + 𝛼̂1 ∙ (𝑢 − 𝑥) + 𝛼̂2(𝑢 − 𝑥)⊗2) d𝑢

= (𝐻𝐴−1𝐻𝛼̂1𝛼̂′
1𝐻𝐴−1𝐻 + 𝐻𝐴−1)√det(𝐴)−1 exp(

1
2

𝐴− 1
2 𝐻𝛼̂1 ∙ 𝐴− 1

2 𝐻𝛼̂1 + 𝛼̂0)

for (A.6). Dividing (A.6) by (A.4) yields 𝐻𝐴−1𝛼̂1𝛼̂1𝐴−1𝐻 + 𝐻𝐴−1𝐻 = 𝑄′𝑊 𝑄. Premultiplying
𝐻−1 from both sides yields 𝐴−1𝐻𝛼̂1𝛼̂1𝐻𝐴−1 + 𝐴−1 = 𝐻−1𝑄′𝑊 𝑄𝐻−1. Computing the outer
product for (A.5) and subtracting it from (A.6) yields 𝐴−1 = 𝐻−1(𝑄′𝑊 𝑄 − 𝑄′𝑊 1𝑛1′

𝑛𝑊 𝑄)𝐻−1.
The restrictions on 𝛼2 ensure invertibility for 𝐴, i.e.

𝐴 = 𝐻(𝑄′𝑊 𝑄 − 𝑄′𝑊 1𝑛1′
𝑛𝑊 𝑄)

−1𝐻

as claimed. This expression is then plugged into the right hand side of (A.4). Multiplying both
sides of (A.4) by √det(𝐴) exp(−1

2𝐴− 1
2 𝐻𝛼̂1 ∙ 𝐴− 1

2 𝐻𝛼̂1) isolates exp(𝛼̂0) on the right hand side,
thus obtaining (2.6). Recall that a ∙ a = a′a for any vector a.
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B Additional Figures and Tables

Figure B.1: Screenshots of the estimates for the densities also considered by Liu, Lafferty, and
Wasserman (2007), as well as Ram and Gray (2011).

Liu, Lafferty, and Wasserman (2007):

• Density #3 from Marron and Wand (1992):

Ram and Gray (2011):

• Density #3 from Marron and Wand (1992):

• Product density of (3.1) and (3.2):
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Figure B.2: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓rodeo. The dotted line indicates the true density. The
distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based on
𝑚 = 500 replications.
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Figure B.3: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓nr. The dotted line indicates the true density. The
distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based on
𝑚 = 500 replications.
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Figure B.4: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓pi. The dotted line indicates the true density. The
distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based on
𝑚 = 500 replications.
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Figure B.5: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓hist. The dotted line indicates the true density. The
distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based on
𝑚 = 500 replications.
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Figure B.6: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓nmm as scale estimator. The dotted line indicates the
true density. The distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence
region based on 𝑚 = 500 replications.
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Figure B.7: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓knn. The dotted line indicates the true density. The
distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based on
𝑚 = 500 replications.
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Figure B.8: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓det. The dotted line indicates the true density. The
distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based on
𝑚 = 500 replications.
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Figure B.9: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓vine. The dotted line indicates the true density. The
distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based on
𝑚 = 500 replications.
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Figure B.10: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓spline. The dotted line indicates the true density.
The distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence region based
on 𝑚 = 500 replications.
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Figure B.11: The product density of (3.1) and (3.2) estimated by ̂𝑓rodeo (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.12: The product density of (3.1) and (3.2) estimated by ̂𝑓nr (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.13: The product density of (3.1) and (3.2) estimated by ̂𝑓pi (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.14: The product density of (3.1) and (3.2) estimated by ̂𝑓hist (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.15: The product density of (3.1) and (3.2) estimated by ̂𝑓nmm (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.16: The product density of (3.1) and (3.2) estimated by ̂𝑓knn (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.17: The product density of (3.1) and (3.2) estimated by ̂𝑓det (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.18: The product density of (3.1) and (3.2) estimated by ̂𝑓vine (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.19: The product density of (3.1) and (3.2) estimated by ̂𝑓spline (middle). The dotted line indicates the true density. The distribution of
the sample is indicated by the rugs at the bottom. The plots on the left and right indicate the 95 percent confidence region based on 𝑚 = 500
replications.
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Figure B.20: Per-pixel average for 𝑙 = 100 random draws from the distribution of the respective digit estimated by ̂𝑓nr.
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Figure B.21: Per-pixel average for 𝑙 = 100 random draws from the distribution of the respective digit estimated by ̂𝑓nmm.
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Figure B.22: Per-pixel average for 𝑙 = 100 random draws from the distribution of the respective digit estimated by ̂𝑓knn.
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Figure B.23: Per-pixel average for 𝑙 = 100 random draws from the distribution of the respective digit estimated by ̂𝑓det.
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Table B.1: The MISE of ̂𝑓rodeo (variation of 𝐻init) for the 15 univariate normal mixture densities from
Marron and Wand (1992). The reported values are scaled by 104. The approach with the smallest
MISE is highlighted.

Density ℎ0 = 1 ℎ0 = 2 ℎ0 = 5

#1 49 49 49

#2 77 77 77

#3 543 543 543

#4 536 536 536

#5 1265 1265 1265

#6 72 72 72

#7 192 192 192

#8 81 81 81

#9 80 80 80

#10 542 542 542

#11 75 75 75

#12 205 205 205

#13 117 117 117

#14 798 798 798

#15 918 918 918
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Table B.2: The MISE of ̂𝑓rodeo (variation of 𝛽) for the 15 univariate normal mixture densities from
Marron and Wand (1992). The reported values are scaled by 104. The approach with the smallest
MISE is highlighted.

Density 𝛽0 = 0.9 𝛽0 = 0.01 𝛽0 = 0.5 𝛽0 = 0.99

#1 49 211 42 43

#2 77 301 70 65

#3 543 1860 460 1173

#4 536 1916 417 960

#5 1265 5907 1445 2492

#6 72 223 73 72

#7 192 768 220 260

#8 81 297 84 78

#9 80 247 85 72

#10 542 850 512 559

#11 75 213 77 65

#12 205 370 194 202

#13 117 286 116 110

#14 798 835 798 832

#15 918 973 925 1062
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Table B.3: The MISE of ̂𝑓rodeo (variation of 𝜃) for the 15 univariate normal mixture densities from
Marron and Wand (1992). The reported values are scaled by 104. The approach with the smallest
MISE is highlighted.

Density Hard Soft Garrote Hyperbole

#1 49 50 47 60

#2 77 80 75 104

#3 543 555 535 699

#4 536 556 535 694

#5 1265 1350 1289 1799

#6 72 82 74 99

#7 192 215 197 304

#8 81 90 82 111

#9 80 91 82 114

#10 542 535 531 552

#11 75 80 74 95

#12 205 207 202 219

#13 117 122 116 141

#14 798 798 793 835

#15 918 925 914 973
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Table B.4: The MISE of ̂𝑓rodeo (variation of 𝜁) for the 15 univariate normal mixture densities from
Marron and Wand (1992). The reported values are scaled by 104. The approach with the smallest
MISE is highlighted.

Density √2 log(log(𝑛)) √2 log(𝑛) 1

#1 49 147 55

#2 77 171 87

#3 543 870 563

#4 536 662 560

#5 1265 1676 1411

#6 72 151 102

#7 192 299 266

#8 81 165 112

#9 80 177 114

#10 542 679 591

#11 75 166 98

#12 205 265 229

#13 117 221 141

#14 798 856 823

#15 918 1146 1118
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Table B.5: The MISE of ̂𝑓rodeo (variation of ̂𝛴) for the 15 univariate normal mixture densities from
Marron and Wand (1992). The reported values are scaled by 104. The approach with the smallest
MISE is highlighted.

Density Standard
deviation

Median
absolute
deviation

Interquartile
range

Minimum Standard
deviation
variant 2

Standard
deviation
variant 3

#1 49 48 188 49 50 157

#2 77 75 224 79 78 173

#3 543 547 1108 547 545 856

#4 536 532 820 535 540 671

#5 1265 1266 1735 1264 1267 2289

#6 72 73 201 73 73 166

#7 192 188 346 190 195 315

#8 81 79 336 81 81 285

#9 80 79 275 80 81 214

#10 542 549 750 539 540 674

#11 75 74 239 75 76 206

#12 205 205 320 205 205 291

#13 117 116 1709 119 119 838

#14 798 799 994 797 798 980

#15 918 923 1175 918 917 1095
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Table B.6: The MISE of ̂𝑓rodeo (variation of 𝑞) for the 15 univariate normal mixture densities from
Marron and Wand (1992). The reported values are scaled by 104. The approach with the smallest
MISE is highlighted.

constant fitting linear fitting quadratic fitting

#1 49 52 31

#2 77 74 48

#3 543 325 332

#4 536 406 518

#5 1265 474 — a

#6 72 70 59

#7 192 137 60

#8 81 74 69

#9 80 75 74

#10 542 456 532

#11 75 71 76

#12 205 196 204

#13 117 109 90

#14 798 784 617

#15 918 898 891

aestimator did not exist in this case
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Figure B.24: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓rodeo (𝑞 = 1). The dotted line indicates the true
density. The distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence
region based on 𝑚 = 500 replications.
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Figure B.25: The 15 normal mixture densities from Marron and Wand (1992) estimated by ̂𝑓rodeo (𝑞 = 2). The dotted line indicates the true
density. The distribution of the sample is indicated by the rugs at the bottom. The shaded region corresponds to the 95 percent confidence
region based on 𝑚 = 500 replications.
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C R Package lpderodeo

This appendix contains the source code of our R package lpderodeo version 1.0.0. The package
was originally built under R version 4.0.3. Our package is not yet available in the official repositories,
and thus has to be installed manually. The guide below explains the procedure.

To build the package skeleton, the R package RcppArmadillo version 0.10.1 is required, because
our code depends on C/C++ code. The package skeleton is built by running the command

#require("RcppArmadillo")
RcppArmadillo::RcppArmadillo.package.skeleton("lpderodeo")
\smallskip

in R. The command creates a folder called lpderodeo in the current working directory. Next, some
files in the newly created folder have to be modified using the files attached to this appendix:

• replace <current working directory>/lpderodeo/src/rcpp_hello_world.cpp with main.cpp

• replace <current working directory>/lpderodeo/DESCRIPTION with DESCRIPTION

• replace <current working directory>/lpderodeo/man/rcpp_hello_world.Rd with lpderodeo.Rd

• delete <current working directory>/lpderodeo/man/lpderodeo-package.Rd

Note that unintended line breaks have to be removed. The package attributes are then set by running
the command

#require("RcppArmadillo")
Rcpp::compileAttributes("lpderodeo/", TRUE)

in R. Then another file in the folder has to be modified:

• replace <current working directory>/lpderodeo/RcppExports.R with RcppExports.R

Finally, the package can be built and installed by executing

R CMD build lpderodeo
R CM INSTALL lpderodeo_1.0.tar.gz

in the console. After successfully installing the package, it is ready to use. Run the command

#require(lpderodeo)
?lpderodeo

in R to open the help page. The help page contains some examples and further information on how
to use our package.
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main.cpp

// [[Rcpp::plugins(cpp11)]]

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

typedef double (*funcPtr)(arma::mat Q, arma::mat H);

/* Gaussian weighting function */
arma::vec gaussianweight(arma::mat X, arma::mat H) {

return(std::pow(arma::datum::sqrt2pi, -(int)X.n_cols) / arma::det(H) * arma::exp(-0.5 * arma::diagvec(X * arma::powmat(H.i(), 2) *
X.t())));

}

/* Constant fitting */
double constantfitting(arma::mat Q, arma::mat H) {

int n = Q.n_rows;
arma::mat W = arma::diagmat(gaussianweight(Q, H));
arma::vec ones = arma::ones(n);

return(std::pow(n, -1) * arma::dot(ones, W * ones));
}

/* Linear fitting */
double linearfitting(arma::mat Q, arma::mat H) {

int n = Q.n_rows;
double cf = constantfitting(Q, H);
arma::mat W = std::pow(n * cf, -1) * arma::diagmat(gaussianweight(Q, H));
arma::vec ones = arma::ones(n);
arma::mat Hinv = H.i();

return(cf * std::exp(-0.5 * std::pow(arma::norm(Hinv * Q.t() * W * ones, 2), 2)));
}

/* Quadratic fitting */
double quadraticfitting(arma::mat Q, arma::mat H) {

int n = Q.n_rows;
double cf = constantfitting(Q, H);
arma::mat W = std::pow(n * cf, -1) * arma::diagmat(gaussianweight(Q, H));
arma::vec ones = arma::ones(n);
arma::mat Asqrt = arma::sqrtmat_sympd(Q.t() * W * Q - Q.t() * W * ones * ones.t() * W * Q).i();

return(cf * det(H * Asqrt) * std::exp(-0.5 * std::pow(arma::norm(Asqrt * Q.t() * W * ones, 2), 2)));
}

/* Local polynomial density estimation coupled with the RODEO approach for bandwidth selection */

// [[Rcpp::export]]
Rcpp::List lpderodeo(arma::vec x, arma::mat sample, arma::mat hinit, arma::vec beta, std::string theta, arma::vec zeta, std::string
scale, int q, int tmax, int b, double delta, double seed, bool verbose) {
/* Initialize variables */
int s = 1;
int d = x.n_rows;
int n = sample.n_rows;

/* set a seed */
Rcpp::Environment base_env("package:base");
Rcpp::Function set_seed_r = base_env["set.seed"];
set_seed_r(std::floor(std::fabs(seed)));

/* A function pointer that points (by default) to constatfitting */
funcPtr lpde = *Rcpp::XPtr<funcPtr>(new funcPtr(&constantfitting));

/* If q = 1 linear fitting is used and quadratic fitting is used if q = 2 */
if(q == 1) {

lpde = *Rcpp::XPtr<funcPtr>(new funcPtr(&linearfitting));
}

if(q == 2) {
lpde = *Rcpp::XPtr<funcPtr>(new funcPtr(&quadraticfitting));
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}

/* a variable storing the path of bandwidth parameters (the path is stored in a matrix: each row is a step of the algorithm and each
column an element of the vectorised matrix of bandwidths) */
arma::mat path = arma::mat(arma::trans(arma::vectorise(hinit)));

arma::mat Xi = hinit; // the Xi matrix (eigenvalues)
arma::mat P = arma::eye(d, d); // the P matrix (orthonormal transformation)

/* if Xi is not a diagonal already compute its eigen decomposition */
if(!Xi.is_diagmat()) {

arma::vec xi;
arma::eig_sym(xi, P, Xi);

Xi = arma::diagmat(xi);
}

/* create the Q matrix by subtracting x from all rows */
arma::mat Q = sample; Q.each_row() -= x.t();

/* compute the initial estimate */
double fhat = lpde(Q, P * Xi * P.t());

/* start the algorithm; in every iteration the diagonal components of Xi are reduced as long as the corresponding mu hat is above the
threshold */
while(1) {

/* initialize mu hat and threshold */
arma::vec muhat = arma::zeros(d);
arma::vec threshold = arma::zeros(d);

/* initialize container for scale estimation */
arma::mat container;

if(scale == "stdv2") {
/* alternative scale computations (only valid for LPDE w const fitting and diagonal initial bandwidth parameter) */
container = arma::repmat(arma::pow(arma::diagvec(Xi), -3), 1, n).t() % (arma::pow(Q, 2) - arma::repmat(arma::pow(arma::diagvec(Xi),
2), 1, n).t()) % arma::repmat(gaussianweight(Q, Xi), 1, d);

}
else if(scale == "stdv3") {
/* scale estimator based on the expression for the variance of mu derived by Liu, Lafferty, and Wasserman (2007) */
container = std::pow(4 * arma::datum::pi, -0.5 * d) * lpde(Q, P * Xi * P.t()) / (4 * n * arma::det(Xi)) * (P * arma::pow(Xi.i(),
2) * P.t());

}
else {
/* initialize bootstrap sample */
container = arma::randi<arma::mat>(b, n, arma::distr_param(0, n - 1));

}

/* loop over each dimension and compute mu hat and thresholds */
for(int j = 0; j != d; ++j) {
/* computations for a dimension can be skipped if already beta = 1 */
if(beta.at(j) == 1) {

continue;
}

/* Compute the derivative with respect to eigenvalue j numerically */
arma::mat Ejj = arma::zeros(d, d);
Ejj.at(j,j) = delta; // this is the naive numerical epsilon difference

/* computation of the mu hat */
muhat[j] = (lpde(Q, P * (Xi + Ejj) * P.t()) - lpde(Q, P * Xi * P)) / Ejj.at(j, j);

/* computation of the threshold */
double disp;

if(scale == "stdv2") {
disp = std::sqrt(arma::var(container.col(j)) / n);

}
else if(scale == "stdv3") {
disp = std::sqrt(container.at(j, j));

}
else {
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/* scale computation based on bootstrap */
arma::vec bootstraps = arma::zeros(b);

/* compute bootstrap */ /* TODO there may be more efficient ways to do this */
for(int l = 0; l != b; ++l) {
arma::mat Qb = Q.rows(arma::conv_to<arma::uvec>::from(container.row(l)));
bootstraps.at(l) = (lpde(Qb, P * (Xi + Ejj) * P.t()) - lpde(Qb, P * Xi * P.t())) / Ejj.at(j, j);

}

if(scale == "std") {
/* standard deviation */
disp = std::sqrt(arma::var(bootstraps));

}
else if(scale == "mad") {
/* median absolute deviation */
disp = arma::median(arma::abs(bootstraps - arma::median(bootstraps) * arma::ones(b))) / 1.483;

}
else if(scale == "iqr") {
/* interquartile range */
disp = arma::as_scalar(arma::quantile(bootstraps, (arma::vec){0.75}) - arma::quantile(bootstraps, (arma::vec){0.25})) / 1.349;

}
else if(scale == "min") {
/* minimum of interquartile range and standard deviation */
disp = std::min(std::sqrt(arma::var(bootstraps)), arma::as_scalar(arma::quantile(bootstraps, (arma::vec){0.75}) -
arma::quantile(bootstraps, (arma::vec){0.25})) / 1.349);

}
else {
Rcpp::warning("scale = " + scale + " is not supported. Defaulting to scale = 'std'.");

/* default to std as scale estimator */
disp = std::sqrt(arma::var(bootstraps));

}
}

threshold[j] = zeta[j] * disp;

// verbose
if(verbose) {
Rcpp::Rcout << "[ Debug ] Step " << s << " in dimension " << j + 1 << ": muhat = " << muhat[j] << " (scale estimator = " << disp
<< "), threshold = " << threshold[j] << ", h = " << Xi.at(j, j) << std::endl;

}

/* test if the mu hat is above the threshold */
if(std::abs(muhat[j]) < threshold[j]) {
/* set beta in dimension j to 1 so that the bandwidths in that dimension remain unchanged in all future steps */
beta[j] = 1;

// verbose
if(verbose) {
Rcpp::Rcout << "[ Debug ] Step " << s << " dimension " << j + 1 << ": |muhat| < threshold (done)" << std::endl;

}
}

/* is the mu hat a number at all? If not freeze the current bandwidth for that dimension */
if(!std::isnormal(muhat[j])) {
Rcpp::warning("In step " + std::to_string(s) + " in dimension " + std::to_string(j + 1) + ": the value of muhat = " +
std::to_string(threshold[j]) + " is either zero, approx zero or nan/infinite. Bandwidths for this dimension are frozen.");

/* the bandwidth parameter is frozen by setting beta for that dimension to 1 */
beta[j] = 1;

}
}

/* compute the derivative along the path */
arma::vec dotphi = (beta - arma::ones(d)) % arma::diagvec(Xi);

/* compute the derivative with resepect to the eigenvalue j numerically */
arma::vec dfhatdxi = muhat;

/* Update the rodeo estimator */
if(theta == "hard") {
fhat = fhat + arma::dot(dfhatdxi, dotphi);
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}
else if(theta == "soft") {
fhat = fhat + arma::dot(arma::sign(dfhatdxi) % (arma::abs(dfhatdxi) - threshold), dotphi);

}
else if(theta == "garrote") {
fhat = fhat + arma::dot(dfhatdxi - arma::pow(threshold, 2) / dfhatdxi, dotphi);

}
else if(theta == "hyperbole") {
/* TODO using abs here is a dirty fix to avoid nans in the last iteration */
fhat = fhat + arma::dot(arma::sign(dfhatdxi) % arma::sqrt(arma::abs(arma::pow(dfhatdxi, 2) - arma::pow(threshold, 2))), dotphi);

}
else {
Rcpp::warning("theta = " + theta + " is not supported. Defaulting to theta = 'hard'.");

/* default to hard threshold */
fhat = fhat + arma::dot(dfhatdxi, dotphi);

}

// verbose
if(verbose) {
Rcpp::Rcout << "[ Debug ] Step " << s << " rodeo lpde = " << fhat << std::endl;

}

/* if beta = 1 in every dimension exit the loop */
if(arma::sum(beta) == d) {
// verbose
if(verbose) {
Rcpp::Rcout << "[ Debug ] Exit loop after " << s << " steps." << std::endl << std::endl;

}

break;
}

/* exit the loop if maximum number of iterations is reached */
if(s > tmax) {
Rcpp::warning("Maximum number of iterations reached.");

break;
}

/* otherwise update the bandwidths and path */
Xi = Xi % arma::diagmat(beta);
path = arma::join_vert(path, arma::trans(arma::vectorise(P * Xi * P.t())));

/* and update running index */
++s;

}

/* return the rodeo lpde and the path of bandwidths as list element */
return(Rcpp::List::create(std::max(fhat, 0.0), path));

}

lpderodeo.Rd

\name{lpderodeo}\alias{lpderodeo}\title{Using the RODEO Approach for Local Polynomial Density Estimation}\author{Lukas
Moedl}\description{This function estimates an unknown probability density function based on an observed sample. The unknown density is
approximated locally at some evaluation point by a q-order polynomial. The bandwidth parameter for the local polynomial approximation is
selected using the RODEO approach of Lafferty and Wasserman (2008) and Lafferty, Liu and Wasserman (2007).}\usage{
lpderodeo(x, sample,

hinit = 1 / sqrt(log(log(nrow(sample)))) * diag(ncol(sample)),
beta = rep(0.9, length(x)),
theta = "hard",
zeta = rep(sqrt(2 * log(ncol(sample) * log(nrow(sample)))), length(x)),
scale = "std",
q = 0,
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tmax = 100,
b = 100,
delta = 0.0001,
seed = runif(1, 1, 161),
verbose = FALSE

)
}
\arguments{\item{x}{An evaluation point in a d-dimensional domain.}\item{sample}{A n × d matrix containing the observed
sample.}\item{hinit}{The initial bandwidth parameter.}\item{beta}{The tuning parameter controls the bandwidth reduction
rate.}\item{theta}{The tuning parameter controls the amount of bias reduction. Allowed values are: "hard", "soft", "garrote", and
"hyperbole".}\item{zeta}{The tuning parameter controls the threshold values.}\item{scale}{Specifies the scale estimator. Possible values
are "std" for standard deviation (default), "mad" for median absolute deviation, "iqr" for interquartile range based on bootstrap,
"stdv2" for the alternative variance estimator based on the functional form of the LPDE with constant fitting, and "stdv3" for the
variance estimator based on the (wrong) expression derived by Liu, Lafferty, and Wasserman (2007).}\item{q}{Order of the polynomial used
for the approximation: q = 0 (constant), q = 1 (linear) and q = 2 (quadratic) are supported.}\item{tmax}{The maximum number of
iterations for the bandwidth selection algorithm.}\item{b}{Number of replications used to bootstrap the scale estimator of mu
hat.}\item{seed}{Seed to reproduce the results.}\item{delta}{}\item{verbose}{Verbose for debugging.}}\value{A list containing the value
of the local polynomial density estimator at x and a matrix representing the path of selected bandwidth parameters. The rows correspond
to the iterations of the algorithm and the columns contain (vectorized) bandwidth parameter.}\details{Starting from the initial
bandwidth parameter, the algorithm carries out a check in each iteration on whether the bandwidths of a dimension must be shrunk or
not.}\references{Lafferty and Wasserman (2008), Lafferty, Liu and Wasserman (2007).}
\examples{
# A univariate example
x = 0
sample = matrix(rnorm(200))

lpderodeo(x, sample) # estimate (with constant fitting)
dnorm(0) # true value

# A 10-variate example
x = rep(0, 10)
sample = matrix(rnorm(10 * 200), ncol = 10)

lpderodeo(x, sample, q = 1) # estimate (with linear fitting)
prod(dnorm(x)) # true value

}

DESCRIPTION

Package: lpderodeo
Type: Package
Title: The RODEO Approach for Nonparametric Density Estimation
Version: 1.0.0
Date: 2020-08-05
Author: Lukas Moedl
Maintainer: Lukas Moedl <lukas.moedl@hu-berlin.de>
Description: Local polynomial density estimation combined with the RODEO approach for regularization.
License: GPL
Imports: Rcpp (>= 1.0.5)
LinkingTo: Rcpp, RcppArmadillo

RcppExports.R

lpderodeo <- function(x, sample, hinit = 1 / sqrt(log(log(nrow(sample)))) * diag(ncol(sample)), beta = rep(0.9, length(x)), theta =
"hard", zeta = rep(sqrt(2 * log(ncol(sample) * log(nrow(sample)))), length(x)), scale = "std", q = 0, tmax = 100, b = 100, delta =
0.0001, seed = runif(1, 1, 161), verbose = FALSE) {
# TODO process input and throw exceptions if necessary for better use experience
.Call(`_lpderodeo_lpderodeo`, x, sample, hinit, beta, theta, zeta, scale, q, tmax, b, delta, seed, verbose)

}
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D Used R Codes

The following R codes allow replication of the raw data used for the figures and tables in Section 3.
Note that the codes only replicate the raw data – the code for generating the figures and tables itself
is not included.

The codes require R version 4.0.3. In addition, the following have to be installed: mvQuad version
1.0.6, lpderodeo version 1.0.0 (see Appendix C), ks version 1.11.7, mvmesh version 1.6.0, mclust
version 5.4.6, TDA version 1.6.9, detpack version 1.1.3, kdevine version 0.4.2, and gss version
2.2.2. Furthermore, the R packages tidyverse version 1.3.0, and doParallel version 1.0.16 are
required.

example1.R

# Libraries
library("lpderodeo")
library("ks")
library("mclust")
library("kdevine")
library("detpack")
library("gss")
library("TDA")
#library("mvmesh")

library("mvQuad")

library("tidyverse")

library("doParallel")
cores = 80 # adjust

# Little helper functions
inrange = function(x, rng) all(apply(rbind(x, rng), 2, function(x) return(x[1] >= x[2] & x[1] <= x[3])))
dmixnorm = function(x, p, mus, sds) sum(p * mapply(function(m, s) dnorm(x, m, s), mus, sds))
rmixnorm = function(n, p, mus, sds) {s = sample(1:length(p), n, 1, p); rnorm(n, mus[s], sds[s])}

# Accuracy metrics
ise = function(f, g, grid) quadrature(function(x) (f(x) - g(x))^2, grid)

# =========
# Example 1
# =========

# parameter for the 15 test densities
params = list(
no01 = list(1, 0, 1, c(-3.75, 3.75)),
no02 = list(c(1/5, 1/5, 3/5), c(0, 1/2, 13/12), c(1, 2/3, 5/9), c(-3.7, 3.7)),
no03 = list(rep(1/8, 8), 3 * (2/3)^(0:7) - 3, (2/3)^(0:7), c(-3.3, 3.4)),
no04 = list(c(2/3, 1/3), c(0, 0), c(1, 1/10), c(-3.4, 3.2)),
no05 = list(c(1/10, 9/10), c(0, 0), c(1, 1/10), c(-3.1, 3.1)),
no06 = list(c(1/2, 1/2), c(-1, 1), c(2/3, 2/3), c(-3.4, 3.4)),
no07 = list(c(1/2, 1/2), c(-3/2, 3/2), c(1/2, 1/2), c(-3.3, 3.3)),
no08 = list(c(3/4, 1/4), c(0, 3/2), c(1, 1/3), c(-3.7, 3.7)),
no09 = list(c(9/20, 9/20, 1/10), c(-6/5, 6/5, 0), c(3/5, 3/5, 1/4), c(-3.4, 3.4)),
no10 = list(c(1/2, rep(1/10, 5)), c(0, (0:4)/2 - 1), c(1, rep(1/10, 5)), c(-3.6, 3.6)),
no11 = list(c(49/100, 49/100, rep(1/350, 7)), c(-1, 1, (0:6)/2 - 3/2), c(2/3, 2/3, rep(1/100, 7)), c(-3.4, 3.4)),
no12 = list(c(1/2, 2^(1 - (-2:2))/31), c(0, (-2:2) + 1/2), c(1, 2^(-1 * (-2:2))/10), c(-3.6, 3.6)),
no13 = list(c(46/100, 46/100, rep(1/300, 3), rep(7/300, 3)), c(-1, 1, -1 * (1:3)/2, (1:3)/2), c(2/3, 2/3, rep(1/100, 3), rep(7/100,
3)), c(-3.4, 3.4)),
no14 = list(2^(5 - (0:5))/63, (65 - 96 * 1/2^(0:5))/21, 32/63 * 1/2^(0:5), c(-3.3, 3)),
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no15 = list(c(2/7, 2/7, 2/7, 1/21, 1/21, 1/21), c((12 * (0:2) - 15)/7, 2/7 * (8:10)), c(2/7, 2/7, 2/7, 1/21, 1/21, 1/21), c(-3.2, 3))
)

# replications and sample size
m = 500
n = 200
d = 1

# data
df = tibble()

# running index of densities no
no = 1

while(no <= 15) {
# set seed
set.seed(161)

# replicate m times n random draws from corresponding normal mixture distributions
S = map(1:m, ~as.matrix(rmixnorm(n, params[[no]][[1]], params[[no]][[2]], params[[no]][[3]])))

# create a grid for plotting and integration
grid1 = as.matrix(seq(params[[no]][[4]][1], params[[no]][[4]][2], l = 75))
grid2 = createNIGrid(d, "nLe", 25, "sparse")
rescale.NIGrid(grid2, domain = c(params[[no]][[4]][1], params[[no]][[4]][2]))
X = grid1

# the true function
f = function(x) map_dbl(array_branch(x, 1), ~dmixnorm(.x, params[[no]][[1]], params[[no]][[2]], params[[no]][[3]]))

# parallel computation of runs
runs = mclapply(1:m, function(run) {

# whiten sample
scl = 1 / sd(S[[run]])
cnt = mean(S[[run]])
s = scl * (S[[run]] - cnt)

# estimation objects
hns = (4 / (n * (d + 2)))^(1 / (d + 4)) * diag(d)
hpi = ks::hpi(s)
hhist = graphics::hist(s, breaks = seq(min(s), max(s), l = nclass.FD(s)), plot = F)
hgmm = mclust::Mclust(s, verbose = F)
hknn = floor(sqrt(n))
hdet = detpack::det.construct(t(s), mode = 1, progress = F, cores = cores)
hvine = kdevine::kde1d(s)
hss = gss::ssden(~ ., data = as.data.frame(s), domain = as.data.frame(as.matrix(apply(rbind(s, sweep(X, 2, cnt) * scl), 2,
range))))

# Vectorized stimatates
fhats = list(

function(x) map_dbl(array_branch(x, 1),
~scl * lpderodeo::lpderodeo((.x - cnt) * scl, s)[[1]]),

function(x) map_dbl(array_branch(x, 1),
~scl * dmixnorm((.x - cnt) * scl, rep(1 / n, n), s, rep(hns, n))),

function(x) map_dbl(array_branch(x, 1),
~scl * dmixnorm((.x - cnt) * scl, rep(1 / n, n), s, rep(hpi, n))),

function(x) map_dbl(array_branch(x, 1),
~scl * ifelse(inrange((.x - cnt) * scl, as.matrix(range(hhist$breaks))), hhist$density[graphics::hist((.x - cnt) * scl, breaks =
hhist$breaks, plot = F)$density > 0], 0)),

function(x) map_dbl(array_branch(x, 1),
~scl * dmixnorm((.x - cnt) * scl, hgmm$parameters$pro, hgmm$parameters$mean, sqrt(hgmm$parameters$variance$sigmasq))),

function(x) map_dbl(array_branch(x, 1),
~scl * TDA::knnDE(s, (.x - cnt) * scl, hknn)),

function(x) map_dbl(array_branch(x, 1),
~scl * detpack::det.query(hdet, (.x - cnt) * scl)),

function(x) map_dbl(array_branch(x, 1),
~scl * kdevine::dkdevine((.x - cnt) * scl, hvine)),

function(x) map_dbl(array_branch(x, 1),
~scl * ifelse(inrange((.x - cnt) * scl, hss$domain), gss::dssden(hss, as.data.frame(t(c((.x - cnt) * scl)))), 0))

)

# create data
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tibble(no, run, grid1 = grid1) %>%
mutate(
fhat1 = fhats[[1]](X),
fhat2 = fhats[[2]](X),
fhat3 = fhats[[3]](X),
fhat4 = fhats[[4]](X),
fhat5 = fhats[[5]](X),
fhat6 = fhats[[6]](X),
fhat7 = fhats[[7]](X),
fhat8 = fhats[[8]](X),
fhat9 = fhats[[9]](X),
ftrue = f(X)

) %>%
mutate(across(grid1, map(fhats, ~function(x) ise(.x, f, grid2)), .names = "ise_{fn}")) %>%
do.call(data.frame, .) %>% as_tibble() %>%
return();

message("no: ", no, " run: ", run)

}, mc.cores = cores)

# update data
df = runs %>% bind_rows() %>% bind_rows(df)

# update running index
no = no + 1

}

# write raw data to file
df %>%
write_csv("data/example1_raw.csv")

example2.R

# Libraries
library("lpderodeo")
library("ks")
library("mclust")
library("kdevine")
library("detpack")
library("gss")
library("mvmesh")
library("TDA")

library("mvQuad")

library("tidyverse")

library("doParallel")
cores = 80 # adjust

# Little helper functions
inrange = function(x, rng) all(apply(rbind(x, rng), 2, function(x) return(x[1] >= x[2] & x[1] <= x[3])))
dmixmvnorm = function(x, p, mus, sds) sum(p * mapply(function(m, s) mclust::dmvnorm(x, m, s), mus, sds))
margf = function(f, y, grid) quadrature(function(x) f(cbind(x, y)), grid)
mvhist = function(x, h) {
a = mvmesh::TallyHrep(x, mvmesh::V2Hrep(h$mesh$S), report = "none")
# return relative frequence divided by area of simplex to obtain an estimate for the density
return(h$rel.freq[a$rel.freq > 0] / det(matrix(c(-1,0,1,-1,0,0,0,1), ncol = 4) %*% h$mesh$S[,,a$which.simplex]))

}

# Accuracy metrics
ise = function(f, g, grid) return(quadrature(function(x) (f(x) - g(x))^2, grid))

# =========
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# Example 2
# =========

# Beta mixture routines
dmixbeta = function(x, p, shape1, shape2) sapply(x, function(x) sum(p * dbeta(x, shape1, shape2)))
rmixbeta = function(n, p, shape1, shape2) {cmpnts = sample(1:length(p), n, 1, p); rbeta(n, shape1[cmpnts], shape2[cmpnts])}

# replications and sample size
m = 500
n = 500
d = 2

# data
df = tibble()

# set seed
set.seed(161)

# replicate m times n random draws from corresponding Beta mixture distributions
S = map(1:m, ~cbind(rmixbeta(n, c(2/3, 1/3), c(1, 10), c(2, 10)), matrix(runif(n, 0, 1))))

# create a grid for plotting and integration
grid1 = as.matrix(seq(0, 1, l = 25))
grid21 = createNIGrid(1, "nLe", 15, "sparse")
grid22 = createNIGrid(2, "nLe", 25, "sparse")
X = as.matrix(expand.grid(grid1, grid1))

# the true functions
f = function(x) map_dbl(array_branch(x, 1), ~dmixbeta(.x[1], c(2/3, 1/3), c(1, 10), c(2, 10)) * dunif(.x[2], 0, 1))
m1f = function(y) map_dbl(array_branch(y, 1), ~dunif(.x, 0, 1))

# parallel computation of runs
runs = mclapply(1:m, function(run) {
# whiten sample
eig = eigen(cov(sweep(S[[run]], 2, apply(S[[run]], 2, mean))), T)
cnt = apply(S[[run]], 2, mean)
scl = eig$vectors %*% diag(1 / sqrt(eig$values)) #%*% t(eig$vectors)
s = sweep(S[[run]], 2, cnt) %*% scl

# estimation objects
hns = (4 / (n * (d + 2)))^(1 / (d + 4)) * diag(d)
hpi = ks::Hpi(s)
hhist = mvmesh::histRectangular(s, apply(s, 2, nclass.FD), plot = "none")
hgmm = mclust::Mclust(s, verbose = F)
hknn = floor(sqrt(n))
hdet = detpack::det.construct(t(s), mode = 1, progress = F, cores = cores)
hvine = kdevine::kdevine(s)
hss = gss::ssden1(~ ., data = as.data.frame(s), domain = as.data.frame(as.matrix(apply(rbind(s, sweep(X, 2, cnt) %*% scl), 2,
range))))

# Vectorized estimatates
fhats = list(

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * lpderodeo::lpderodeo((.x - cnt) %*% scl, s)[[1]]),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * dmixmvnorm((.x - cnt) %*% scl, rep(1 / n, n), asplit(s, 1), replicate(n, hns, FALSE))),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * dmixmvnorm((.x - cnt) %*% scl, rep(1 / n, n), asplit(s, 1), replicate(n, hpi, FALSE))),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * ifelse(inrange((.x - cnt) %*% scl, rbind(hhist$mesh$a, hhist$mesh$b)), mvhist((.x - cnt) %*% scl, hhist), 0)),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * dmixmvnorm((.x - cnt) %*% scl, hgmm$parameters$pro, asplit(hgmm$parameters$mean, 2),
asplit(hgmm$parameters$variance$sigma, 3))),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * TDA::knnDE(s, (.x - cnt) %*% scl, hknn)),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * detpack::det.query(hdet, t((.x - cnt) %*% scl))),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * kdevine::dkdevine((.x - cnt) %*% scl, hvine)),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * ifelse(inrange((.x - cnt) %*% scl, hss$domain), gss::dssden(hss, as.data.frame(t(c((.x - cnt) %*% scl)))), 0))

)
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# Vectorized marginal estimatates
m1fhats = list(

function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[1]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[2]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[3]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[4]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[5]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[6]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[7]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[8]], .x, grid21)),
function(y) map_dbl(array_branch(y, 1), ~margf(fhats[[9]], .x, grid21))

)

# create data
df1 = tibble(run, plt = 1, grid1 = X) %>%

mutate(
fhat1 = fhats[[1]](X),
fhat2 = fhats[[2]](X),
fhat3 = fhats[[3]](X),
fhat4 = fhats[[4]](X),
fhat5 = fhats[[5]](X),
fhat6 = fhats[[6]](X),
fhat7 = fhats[[7]](X),
fhat8 = fhats[[8]](X),
fhat9 = fhats[[9]](X),
ftrue = f(X)

) %>%
mutate(across(grid1, map(fhats, ~function(x) ise(.x, f, grid22)), .names = "ise_{fn}"))

df2 = tibble(run, plt = 2, grid1 = grid1) %>%
mutate(
fhat1 = m1fhats[[1]](grid1),
fhat2 = m1fhats[[2]](grid1),
fhat3 = m1fhats[[3]](grid1),
fhat4 = m1fhats[[4]](grid1),
fhat5 = m1fhats[[5]](grid1),
fhat6 = m1fhats[[6]](grid1),
fhat7 = m1fhats[[7]](grid1),
fhat8 = m1fhats[[8]](grid1),
fhat9 = m1fhats[[9]](grid1),
ftrue = m1f(grid1)

) %>%
mutate(across(grid1, map(m1fhats, ~function(x) ise(.x, m1f, grid21)), .names = "ise_{fn}"))

bind_rows(df1, df2) %>% return()

message("run: ", run)

}, mc.cores = cores)

# write raw data to file
runs %>%
bind_rows() %>%
write_csv("data/example2_raw.csv")

example3.R

# Libraries
library("lpderodeo")
library("ks")
library("mclust")
library("kdevine")
library("detpack")
library("gss")
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library("TDA")
#library("mvmesh")

library("tidyverse")

library("doParallel")
cores = 80 # adjust

# Little helper functions
inrange = function(x, rng) all(apply(rbind(x, rng), 2, function(x) return(x[1] >= x[2] & x[1] <= x[3])))
dmixmvnorm = function(x, p, mus, sds) sum(p * mapply(function(m, s) mclust::dmvnorm(x, m, s), mus, sds))

# =========
# Example 3
# =========

# Load data
raw = "https://archive.ics.uci.edu/ml/machine-learning-databases/magic/magic04.data" %>%

read_csv(col_names = FALSE) %>%
mutate(id = row_number(), class = case_when(X11 == "g" ~ 1, X11 == "h" ~ 0)) %>%
select(id, class, X1:X10)

# set seed
set.seed(161)

# train test split
train = raw %>% group_by(class) %>% sample_frac(0.66) %>% ungroup()
test = raw %>% anti_join(train, "id")

# select relevant variables
S = train %>% split(train$class) %>% map(~.x %>% select(-id, -class) %>% as.matrix())
X = test %>% select(-id, -class) %>% as.matrix()

# parallel computation for each class
df = mclapply(1:2, function(class) {
# dimension and sample size
n = nrow(S[[class]])
d = ncol(S[[class]])

# white the sample
eig = eigen(cov(sweep(S[[class]], 2, apply(S[[class]], 2, mean))), T)
cnt = apply(S[[class]], 2, mean)
scl = eig$vectors %*% diag(1 / sqrt(eig$values)) %*% t(eig$vectors)
s = sweep(S[[class]], 2, cnt) %*% scl

# estimation objects
hns = (4 / (n * (d + 2)))^(1 / (d + 4)) * diag(d)
hpi = round(ks::Hpi(s), 12)
hhist = NA # doesnt work for 10-variate data
hgmm = mclust::Mclust(s, verbose = T)
hknn = sqrt(n)
hdet = detpack::det.construct(t(s), mode = 1, progress = T, cores = cores)
hvine = kdevine::kdevine(s)
hss = gss::ssden1(~ ., data = as.data.frame(s), domain = as.data.frame(as.matrix(apply(rbind(s, sweep(X, 2, cnt) %*% scl), 2,
range))))

# Vectorized stimatates
fhats = list(

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * lpderodeo::lpderodeo((.x - cnt) %*% scl, s, scale = "stdv2", verbose = T)[[1]]),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * dmixmvnorm((.x - cnt) %*% scl, rep(1 / n, n), asplit(s, 1), replicate(n, hns, FALSE))),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * dmixmvnorm((.x - cnt) %*% scl, rep(1 / n, n), asplit(s, 1), replicate(n, hpi, FALSE))),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * 0),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * dmixmvnorm((.x - cnt) %*% scl, hgmm$parameters$pro, asplit(hgmm$parameters$mean, 2),
asplit(hgmm$parameters$variance$sigma, 3))),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * TDA::knnDE(s, (.x - cnt) %*% scl, hknn)),

function(x) map_dbl(array_branch(x, 1),
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~abs(det(scl)) * detpack::det.query(hdet, (.x - cnt) %*% scl)),
function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * kdevine::dkdevine((.x - cnt) %*% scl, hvine)),

function(x) map_dbl(array_branch(x, 1),
~abs(det(scl)) * ifelse(inrange((.x - cnt) %*% scl, hss$domain), gss::dssden(hss, as.data.frame(t(c((.x - cnt) %*% scl)))), 0))

)

# create data
test %>%

select(id, class) %>%
mutate(
fhat1 = fhats[[1]](X),
fhat2 = fhats[[2]](X),
fhat3 = fhats[[3]](X),
fhat4 = fhats[[4]](X),
fhat5 = fhats[[5]](X),
fhat6 = fhats[[6]](X),
fhat7 = fhats[[7]](X),
fhat8 = fhats[[8]](X),
fhat9 = fhats[[9]](X)

) %>%
gather(key, val, fhat1:fhat9) %>%
return()

}, mc.cores = cores)

# write raw data to file
df %>% reduce(inner_join, by = c("id", "class", "key")) %>%
mutate(bayes = ifelse(val.x + val.y == 0, 0, val.x / val.x + val.y)) %>%
write_csv("example3_raw.csv")

example4.R

# Libraries
#library("lpderodeo")
library("mclust")
#library("kdevine")
library("detpack")
#library("gss")
library("TDA")
#library("mvmesh")

library("tidyverse")

library("doParallel")
cores = 8 # adjust

# Little helper functions
dmixmvnorm = function(x, p, mus, sds) sum(p * mapply(function(m, s) mclust::dmvnorm(x, m, s), mus, sds))
logknnde = function(x, k, data) log(k / nrow(data)) - (ncol(data) / 2) * log(pi) + lgamma(ncol(data) / 2 + 1) - ncol(data) *
log(apply(FNN::knnx.dist(data, t(x), k, "kd_tree"), 1, max))

# importance sampler
fhat.rnd = function(prop, estimate) {
# importance sampling probabilities
P = map_dbl(asplit(prop, 2), ~ estimate(.x) - mclust::dmvnorm(t(.x), rep(0, nrow(prop)), diag(nrow(prop)), TRUE))

return(prop[, sample(1:ncol(prop), 1, 1, exp(P) / sum(exp(P)))])
}

# =========
# Example 4
# =========

# load data and transform it into handy format
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raw = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.train.gz" %>%
read_delim(col_names = FALSE, delim = " ") %>%
mutate(id = row_number(), digit = X1) %>%
select(id, digit, X2:X257) %>%
mutate(across(c(-id, -digit), ~ (1 - .x) / 2)) %>%
nest(data = c(-id, -digit)) %>%
transmute(id, digit, data = unname(as.matrix(bind_rows(data))))

# random draws
l = 100

# parallel computation for each digit
df = mclapply(0:9, function(no) {
# set seed
set.seed(161)

# train data set
S = raw %>% filter(digit == no)

# ZCA transform
eig = eigen(cov(sweep(S$data, 2, apply(S$data, 2, mean))), T)
cnt = apply(S$data, 2, mean)
scl = eig$vectors %*% diag(1 / sqrt(0.1 + eig$values)) %*% t(eig$vectors)

S = S %>% mutate(datazca = sweep(S$data, 2, cnt) %*% scl)

# replications, dimension and sample size
m = 500
n = nrow(S$datazca)
d = ncol(S$datazca)

# proposal
X = map(1:l, ~ t(MASS::mvrnorm(m, rep(0, d), diag(d))))

# estimation objects
hns = (4 / (n * (d + 2)))^(1 / (d + 4)) * diag(d)
hhist = NA
hgmm = mclust::Mclust(S$datazca, verbose = T)
hknn = sqrt(n)
hdet = detpack::det.construct(t(S$datazca), mode = 1, progress = T, cores = cores)
hvine = NA
hss = NA

# sample from the estimated densities and update data
tibble(digit = no, pix = 1:d) %>%

mutate(
fhat1 = matrix(0, ncol = d),
fhat2 = t(matrix(unlist(map(1:l, ~fhat.rnd(X[.x], function(x) log(dmixmvnorm(x, rep(1 / n, n), asplit(S$datazca, 1), replicate(n,
hns, FALSE)))))), ncol = d, byrow = T)),
fhat3 = matrix(0, ncol = d),
fhat4 = matrix(0, ncol = d),
fhat5 = t(matrix(unlist(map(1:l, ~fhat.rnd(X[.x], function(x) log(dmixmvnorm(x, hgmm$parameter$pro, asplit(hgmm$parameter$mean, 2),
asplit(hgmm$parameter$variance$sigma, 3)))))), ncol = d, byrow = T)),
fhat6 = t(matrix(unlist(map(1:l, ~fhat.rnd(X[.x], function(x) logknnde(x, hknn, S$datazca)))), ncol = d, byrow = T)),
fhat7 = t(matrix(tryCatch(unlist(map(1:m, ~det.rnd(1, hdet))), error = function(x) 0), ncol = d, byrow = T)),
fhat8 = matrix(0, ncol = d),
fhat9 = matrix(0, ncol = d),
ftrue = S$data

) %>%
mutate(across(starts_with("fhat"), ~c(solve(scl) %*% rowMeans(.x)))) %>%
return()

message("digit: ", no)

}, mc.cores = cores)

# write raw data to file
df %>% bind_rows() %>%
write_csv("data/example4_raw.csv")
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llw2007example4.R

# Libraries
library("lpderodeo")

library("tidyverse")

library("doParallel")
cores = 75 # adjust

# replications and sample size
m = 30
n = 100

# data
df = tibble()

# set a seed
set.seed(161)

# replicate m times n random draws from the synthetic normal distribution with irrelevant components
S = map(1:m, ~cbind(rnorm(n, 0, 0.02), rnorm(n, 0, 0.04), rnorm(n, 0, 0.06), rnorm(n, 0, 0.08), rnorm(n, 0, 0.1), matrix(runif(25 * n, 0,
1), ncol = 25)))

# evaluation point
x = rep(0, 30)

# bandwidth selection
runs = mclapply(1:m, function(run) {
s = S[[run]]

# whiten sample
cnt = apply(s, 2, mean)
scl = eigen(cov(sweep(s, 2, cnt)))$vectors %*% diag(1 / sqrt(eigen(cov(sweep(s, 2, cnt)))$values))

# create data
tibble(run = rep(run, ncol(s)), dim = 1:30) %>%

mutate(Hrodeo0 = tryCatch(diag(matrix(tail(pluck(lpderodeo(x, s, q = 0), 2), 1), ncol = 30)), error = function(x) NA)) %>%
mutate(Hrodeo1 = tryCatch(diag(matrix(tail(pluck(lpderodeo(x, s, q = 1), 2), 1), ncol = 30)), error = function(x) NA)) %>%
mutate(Hrodeo2 = tryCatch(diag(matrix(tail(pluck(lpderodeo(x, s, q = 2), 2), 1), ncol = 30)), error = function(x) NA)) %>%
mutate(Hrodeo0v = tryCatch(diag(matrix(tail(pluck(lpderodeo(scl %*% (x - cnt), sweep(s, 2, cnt) %*% scl , q = 0), 2), 1), ncol =
30)), error = function(x) NA)) %>%
mutate(Hrodeo1v = tryCatch(diag(matrix(tail(pluck(lpderodeo(scl %*% (x - cnt), sweep(s, 2, cnt) %*% scl, q = 1), 2), 1), ncol = 30)),
error = function(x) NA)) %>%
mutate(Hrodeo2v = tryCatch(diag(matrix(tail(pluck(lpderodeo(scl %*% (x - cnt), sweep(s, 2, cnt) %*% scl, q = 2), 2), 1), ncol = 30)),
error = function(x) NA)) %>%
do.call(data.frame, .) %>% as_tibble() %>%
return()

}, mc.cores = cores)

# update data
df = runs %>% bind_rows() %>% bind_rows(df)

# save raw data to file
df %>% write_csv("data/example4llw2007_raw.csv")
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