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Abstract

Water is essential for human wellbeing—for drinking, washing, sanitation, food pro-
duction, industrial processes, and many other activities. The hydrological cycle provides
humanity with water resources by replenishing the water in lakes, rivers, aquifers and soils.

Humanity’s impact on the Earth System has reached the scale of Earth’s natural ge-
ological forces. Anthropogenic alterations of biogeochemical cycles, the land surface, and
Earth’s energy balance are so profound that a new human-dominated geological epoch has
been proposed: the Anthropocene. These alterations also affect the functioning of the
hydrological cycle and may impair its capacity to provide humanity with water resources.

One major pathway of human interference with the global hydrological cycle is through
anthropogenic climate change. The aim of this thesis is to advance the understanding of
climate-related changes in the hydrological cycle, how they will affect the availability of
water resources in the future, and what opportunities exist to reduce anthropogenic water
use to lower the pressure on water resources. Specifically, the thesis assesses the impact of
climate change on river discharge and the consequences for freshwater supply. All climate-
related impacts are analysed as a function of global mean temperature increase, which is
tailored to inform the public debate and negotiations about climate change mitigation that
are centred around temperature goals. On the demand side, the focus is on water use in
livestock production and the opportunities and constraints for improving livestock water
productivity.

The results corroborate earlier findings that climate change will likely lead to an in-
creases in average river discharge in the high northern latitudes and eastern Africa, and to
a decreases in the Mediterranean, the Middle East, and parts of North and South America.
In most other regions, however, projected hydrological change is subject to large uncer-
tainties. Despite the large uncertainties in climate projections, their translation into hy-
drological change, and the implications of hydrological change for human water resources,
this thesis demonstrates that climate change is a large threat to freshwater supply of future
populations. Severe climate-related impacts on river discharge and human water resources
can be largely mitigated by constraining global mean temperature increase to 2K above
pre-industrial levels. However, some regions such as the Mediterranean will ‘more likely
than not’ be affected by severe hydrological change at 2K or even 1.5K warming above
pre-industrial levels. Because of the large uncertainties in the results, severe change in
hydrological conditions in many other parts of world cannot be excluded even for such low
levels of global mean temperature increase.

The assessment of water use in global livestock production shows that about 4666 km3/yr

of water—about 44% of total water use for human-appropriated agricultural biomass—can
be attributed to feed production. Large improvements in livestock water productivity can



be achieved for pigs and poultry by improving management in feed production and live-
stock management alike. For ruminants, the largest potential lies in improving livestock
management. However, improvements in feed use efficiency of ruminants achieved or ac-
companied by increased supplementation with feed crops come at the cost of higher water
requirements to produce the feed, which reduces the overall improvement in livestock water
productivity. This inverse effect of feed composition on feed water productivity and feed
use efficiency is an important constraint for the achievable livestock water productivity in
ruminant production.



Zusammenfassung

Wasser ist für das menschliche Wohlergehen unerlässlich—zum Trinken und Waschen,
zur sanitären Grundversorgung, zur Nahrungsmittelproduktion, für industrielle Prozesse
und viele andere Aktivitäten. Der hydrologische Kreislauf stellt die Versorgung der Mensch-
heit mit Wasserressourcen sicher, indem er das Wasser in Seen, Flüssen, Grundwasserleitern
und Böden stetig auffüllt.

Der Einfluss der Menschheit auf das Erdsystem hat das Ausmaß der natürlichen geolo-
gischen Kräfte der Erde erreicht. Die anthropogenen Veränderungen der biogeochemischen
Kreisläufe, der Landoberfläche und der Energiebilanz der Erde sind so tiefgreifend, dass
eine neue geologische Epoche vorgeschlagen wurde: das Anthropozän. Diese Veränderun-
gen wirken sich auch auf das Funktionieren des Wasserkreislaufs aus und können seine
Fähigkeit beeinträchtigen, die Menschheit mit Wasserressourcen zu versorgen.

Ein wesentlicher Faktor menschlicher Eingriffe in den globalen Wasserkreislauf ist der
anthropogene Klimawandel. Ziel dieser Arbeit ist es, das Verständnis über klimabedingte
Veränderungen des hydrologischen Kreislaufs zu verbessern, wie diese die Verfügbarkeit
von Wasserressourcen in der Zukunft beeinflussen werden und welche Möglichkeiten beste-
hen, den anthropogenen Wasserverbrauch zu reduzieren, um den Druck auf die verfügbaren
Wasserressourcen zu verringern. Konkret werden die Auswirkungen des Klimawandels auf
den Abfluss von Flüssen und die Folgen für die Wasserversorgung untersucht. Alle klima-
bedingten Auswirkungen werden in Relation zum globalen mittleren Temperaturanstieg
analysiert, um eine Beitrag zur öffentliche Debatte und den Verhandlungen über die Ein-
dämmung des Klimawandels zu leisten, bei denen Temperaturziele im Mittelpunkt stehen.
Beider Untersuchung der Nachfrageseite liegt der Schwerpunkt auf der Wassernutzung
in der Tierproduktion und den Möglichkeiten und Beschränkungen zur Verbesserung der
Wasserproduktivität in der Viehwirtschaft.

Die Ergebnisse untermauern frühere Erkenntnisse, dass der Klimawandel in den hohen
nördlichen Breitengraden und in Ostafrika wahrscheinlich zu einem Anstieg des durch-
schnittlichen Abflussvolumens der Flüsse und im Mittelmeerraum, im Nahen Osten und
in Teilen Nord- und Südamerikas zu einem Rückgang führen wird. In den meisten anderen
Regionen sind die prognostizierten hydrologischen Veränderungen jedoch mit großen Un-
sicherheiten behaftet. Trotz der großen Unsicherheiten bei den Klimaprojektionen, ihrer
Übersetzung in hydrologische Veränderungen und der Auswirkungen des hydrologischen
Wandels auf die menschlichen Wasserressourcen zeigt diese Dissertation, dass der Kli-
mawandel eine große Bedrohung für die Wasserversorgung der zukünftigen Bevölkerung
darstellt. Die schwerwiegenden klimabedingten Auswirkungen auf den Abfluss von Flüs-
sen und die menschlichen Wasserressourcen können jedoch weitgehend vermieden werden,
indem der Anstieg der globalen Mitteltemperatur über das vorindustrielle Niveau auf 2K



begrenzt wird. Allerdings werden auch bei einer Begrenzung des globalen Temperaturan-
stiegs auf 2K oder sogar 1.5K über dem vorindustriellen Niveau einige Regionen wie der
Mittelmeerraum „eher wahrscheinlich“ von schwerwiegenden hydrologischen Veränderun-
gen betroffen sein. Aufgrund der großen Unsicherheiten bei den Ergebnissen können aber
selbst bei einem geringen Anstieg der globalen Mitteltemperatur gravierende Veränderun-
gen der hydrologischen Bedingungen in vielen anderen Teilen der Welt nicht ausgeschlossen
werden.

Die Abschätzung des Wasserverbrauchs in der globalen Viehwirtschaft zeigt, dass jähr-
lich etwa 4666 km3 Wasser für die Produktion von Tierfutter verbraucht werden. Dies
entspricht etwa 44% des gesamten Wasserverbrauchs für die vom Menschen genutzte land-
wirtschaftliche Biomasse. Durch ein verbessertes Management sowohl in der Futtermit-
telproduktion als auch in der Tierhaltung können bei Schweinen und Geflügel große Ver-
besserungen der Wasserproduktivität erzielt werden. Bei Wiederkäuern liegt das größte
Potenzial in der Verbesserung der Tierhaltung. Verbesserungen in der Effizienz der Fut-
terverwertung bei Wiederkäuern, die durch eine erhöhte Beigabe von Kraftfutter erreicht
werden, gehen jedoch auf Kosten eines höheren Wasserbedarfs für die Futtermittelproduk-
tion, was die Steigerung der Wasserproduktivität verringert. Dieser umgekehrte Effekt der
Futterzusammensetzung auf die Wasserproduktivität der Futterproduktion einerseits und
die Effizienz der Futterverwertung andererseits beschränkt die erreichbare Wasserproduk-
tivität bei Wiederkäuern erheblich.
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Chapter 1

Introduction

1.1 Setting the scene

1.1.1 Humanity in the Anthropocene

Throughout the Holocene, the current geological epoch that began after the last glacial
period about 12 000 years ago, Earth’s climate has been remarkably stable (Dansgaard
et al. 1993). Under these favourable conditions, humanity has evolved to become a global
geophysical force that now surpasses Earth’s natural geological forces. Human alterations
of biogeochemical cycles, land surface, and the Earth’s energy balance are so profound that
it warrants the definition of a new human-dominated geological epoch: the Anthropocene
(Steffen et al. 2007). Although the exact beginning of the Anthropocene is still debated
(Lewis and Maslin 2015), the ‘Great Acceleration’ in a range of socio-economic and Earth
System indicators over the last 50 years provides convincing evidence that humanity has
altered the state and functioning of the Earth System beyond the range of variability in the
Holocene (Steffen et al. 2015a). Such departure from the Holocene state poses a significant
risk to humanity, with detrimental consequences for human wellbeing and development
prospects in many parts of the world (Rockström et al. 2009). Humanity has started to
take action against its impact on the Earth System, with the Paris climate agreement
(UNFCCC 2015) being the most prominent example.

Water plays a pivotal role in the functioning of the Earth System from cellular processes
to atmospheric circulation. The global hydrological cycle sustains all terrestrial life and
provides humanity with freshwater to fulfil basic human needs (drinking, hygiene, sanita-
tion, food preparation), to produce energy and industrial goods, and to produce various
forms of biomass (food, feed, fibre, fuel, wood) (Rockström et al. 2014). Insufficient ac-
cess to water resources can have adverse effects on human wellbeing, food security, and
economic prosperity.

Humanity directly alters the dynamics of the global hydrological cycle through reservoir
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operation and withdrawals for industrial, domestic, and agricultural purposes. However,
the dominant driver of change in global river discharge over the 20th century has been
climate change (Gerten et al. 2008). With global mean temperature continuing to rise,
climate change will remain a major force of change in the hydrological cycle in the 21st

century. How strong these impacts will be and where they occur, crucially depends on the
effectiveness of climate mitigation efforts and the response of the climate system and the
hydrological cycle to the residual warming.

1.1.2 The global hydrological cycle

An estimated 1386 million km3 of water on, above and underneath the Earth’s surface in
solid, liquid, and gaseous form and constitute the hydrosphere (Shiklomanov and Rodda
2003). About 1338 million km3 of water (96.5% of the total water in the hydrosphere)
is salt water in the world’s oceans, which cover 71% of the Earth’s surface. Most of the
remaining 48 million km3 are stored in about equal parts in aquifers (23.4 million km3)
and glaciers (24.1 million km3). Another 300 000 km3 are ground ice in permafrost soils,
16 500 km3 are soil moisture, 12.900 km3 are water in the atmosphere, and 1120 km3 are
water in living organisms. Last but not least, 190 000 km3 (0.014% of all the water in
the hydrosphere) are stored in rivers, lakes and wetlands and constitute the water that we
commonly perceive as an element of landscapes.

The water in the different compartments of the hydrosphere is connected through the
hydrological cycle—the process of constant movement of water within and between these
compartments. The hydrological cycle is driven by an imbalance between the radiative
budgets of the Earth’s surface and the atmosphere. While the Earth’s surface has a positive
annual mean radiation balance of 106W/m2, the atmosphere has a negative radiation
balance of the same size (L’Ecuyer et al. 2015). This imbalance drives and is balanced by
turbulent fluxes of sensible and latent heat from the surface to the atmosphere. About
one quarter (25W/m2) is exchanged by the sensible heat flux—the warming and uprise
of warm air from the surface. The remaining three quarters of the energy at the Earth’s
surface (81W/m2) are used up in the evaporation of water, which rises to the atmosphere
where it condensates and releases the energy. The excess water forms clouds and falls back
to the Earth’s surface as precipitation.

The amount of water that is transported from the Earth’s surface to the atmosphere
via the latent heat flux is 2.79mm/d, which amounts to an annual total water flux into
the atmosphere of 520 000 km3/yr (Rodell et al. 2015)—40 times more than the amount of
water stored in the atmosphere. About 449 400 km3/yr (86.4%) of this water evaporates
from the world’s oceans and 70 600 km3/yr evaporates from the global land surface. The
flux of water into the atmosphere is balanced by precipitation, of which 403 500 km3/yr

(77.6%) fall over oceans and 116 500 km3/yr over land, implying a net transport of water
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from the oceans to the land surface of 45 800 km3/yr. Ignoring storage change in the
terrestrial compartments of the hydrosphere, the same amount of water flows back from
the land surface into the oceans. Most of it returns as river discharge, but about 1%

(∼490 km3/yr; Zhou et al. 2019) enters the oceans as submarine groundwater discharge
and about 6% as ice discharge from Greenland and Antarctica (∼2730 km3/yr; Mankoff
et al. 2019, Rignot et al. 2019).

Before returning to the ocean or the atmosphere, the precipitation over the land sur-
face passes through and sustains the various compartments of the terrestrial hydrosphere.
About 10% of precipitation is intercepted by vegetation and evaporates quickly (typically
within the same day), making up about 16% of the total terrestrial vapour flux to the
atmosphere (Dirmeyer et al. 2006). About half of total precipitation is stored in the soil
as soil moisture from where it is either taken up by plants and transpires through the
stomata of leaves or evaporates directly from the soil surface. Plant transpiration and soil
evaporation constitute about 48% and 36% of the total terrestrial vapour flux to the atmo-
sphere, respectively. The remaining 42% of total precipitation run off and enter the river
system—either directly from the soil surface or after passing through soils and aquifers.

Additional water—between one quarter and four times of the quantity stored in the
hydrosphere—is stored in Earth’s mantle (Hirschmann 2006). Exchange between this water
and the hydrosphere is only relevant on geological time scales but is has been hypothesised
that the hydrosphere has been formed from it by degasification (Sorokhtin et al. 2011).

1.1.3 The role of water in the Earth System

The already mentioned energy exchange between the surface and the atmosphere through
latent heat transfer is one of the main linkages between the hydrological cycle and the
climate system. Without this process, the Earth’s surface would have to have a much higher
temperature to emit this energy through increased longwave irradiation and enhanced
sensible heat exchange with the atmosphere. This compensating effect of the water cycle
does not only act vertically between surface and atmosphere but also horizontally because
water vapour can travel large distances in the atmosphere before it releases its heat through
condensation and precipitates as liquid water back to the surface.

In addition, clouds and water vapour in the atmosphere also have a direct impact on
the radiative balance of the atmosphere, the surface, and the Earth as a whole. Clouds
enhance the reflectance of incoming shortwave radiation and are responsible for about
48% of total reflected solar radiation (Stephens et al. 2012). Clouds also absorb about
7% of the longwave radiation emitted by the Earth’s surface (net effect accounting for
irradiation from cloud tops). Together, this amounts to a net cooling effect of 21W/m2

(6% of incoming solar radiation) through clouds. Water vapour in the atmosphere shows
very weak interaction with shortwave radiation (Pope and Fry 1997) but is a powerful
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greenhouse gas and absorbs about 20% of the longwave radiation emitted by the Earth’s
surface (net effect accounting for remittance to the space; Schmidt et al. 2010). As a result,
clouds and water vapour in the atmosphere lead to a net gain of 58W/m2, which is about
twice as much as the gain of 30W/m2 from absorption by CO2 in the atmosphere. However,
because the saturation vapour pressure of water increases with temperature (Clausius-
Clapeyron relation), the current level of water vapour contained in the atmosphere and
the corresponding gain in the radiative balance is sustained by the greenhouse effect of
CO2 and other temperature independent factors.

The water cycle is also tightly linked to the biosphere. Although the water contained in
living organisms is one of the smallest compartments of the hydrosphere, life as we know
it would not be possible without this water due to the importance of water as a transport
medium in cells and organisms and as a solvent in which chemical processes at cellular level
take place. Living organisms—by definition—exchange energy and substances with their
environment and the uptake and release of water by plants is one of the major fluxes in
the hydrological cycle. Terrestrial plants take up CO2 from the atmosphere through their
stomata but at the same time loose water from their leaves’ interior to the atmosphere.
The loss of water is replenished by water uptake from the soil and generates a water flow
to the atmosphere that makes up almost half of total terrestrial evapotranspiration.

The hydrological cycle is also intertwined with geological processes within the Earth
system. Precipitation, surface runoff, and river discharge are the main drivers of the with-
ering of rocks and the transport of sediments across landscapes and to the ocean. Annually,
about 19Pg of sediment are transported through rivers to the ocean and with it 197Tg

of organic carbon, 30Tg of nitrogen, and 9Tg of phosphorus (Beusen et al. 2005). This
continuous transport of material driven by the hydrological cycle is a major force shaping
the surface of the Earth and providing nutrient input to coastal ecosystems. Even more
important, the hydrological cycle is a key driver in the geochemical carbon cycle. CO2 dis-
solved in rain water reacts with silicate rocks and forms calcium and hydrogencarbonate
ions, which are transported with runoff and river discharge to the ocean. Marine calcifying
organisms use these ions to build carbonate structures (shells and outer skeletons), which
sink to the ocean floor and are eventually incorporated into the Earth’s mantel by subduc-
tion of oceanic crust. Only about 0.12Gt of CO2 per year (∼1% of anthropogenic CO2

emissions, 0.004% of atmospheric CO2) are removed from the atmosphere by this process
but it operates persistently over very long time scales and is the main process to balance
the release of CO2 from the Earth’s mantle to the atmosphere by volcanism (Ruddiman
2007). Because the chemical weathering of silicate rock is enhanced in warmer climate
(due to higher temperature and increased rainfall), the enhanced removal of CO2 results
in lower atmospheric CO2 content and a reduction of the greenhouse effect. Conversely,
CO2 removal is reduced in colder climate leading to higher atmospheric CO2 content and
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enhanced greenhouse effect. This negative feedback between global mean temperature and
geochemical CO2 removal stabilises Earth’s climate on time scales of millions of years.

1.1.4 Human dependence on water resources

Importance of water for the human body

The survival of the human body—like all living organisms—crucially depends on water.
About 60% of the human body weight is water, making it the main constituent of the body
(Institute of Medicine 2006). Besides being an important building material, water fulfils
many roles in maintaining the proper function of the human body. It is a universal solvent
that acts as a reaction medium and a reactant in cellular processes as well as transport
medium that supplies nutrients and removes waste (Jéquier and Constant 2010). Also,
water plays an important role for regulating body temperature, acts as lubricant in joints
and intestines, and provides protection against mechanical shocks for the brain and the
foetus.

Water is lost from the body through the respiratory tract, skin, kidneys, and the di-
gestive system. Water evaporates within the lungs and is exhaled at an average rate of
200ml/d to 600ml/d, depending on activity and environmental conditions (Institute of
Medicine 2006). Water is lost through the skin at a relatively constant rate of 450ml/d,
whereas the rate of sweating varies greatly depending on the need for cooling and can
reach as much as 2 l/h (Sawka et al. 2005). Average urine production of a healthy adult is
about 1 l/d to 2 l/d but can be much higher or lower depending on body hydration status
(Institute of Medicine 2006). Water loss with faeces is about 100ml/d to 200ml/d. In
total, average daily water loss of an adult amounts to about 2 l to 3 l, which need to be
replenished to maintain a healthy hydration status. About 600ml/d to 750ml/d are taken
up as dietary water with foods and another 300ml/d are generated by metabolic processes.
The remaining 1 l/d to 2 l/d must be met by beverages. This amount increases sharply
with increased activity and in warmer environments and can reach up to 12 l/d (Sawka
et al. 2005).

Water for human wellbeing, food, and economic prosperity

Drinking water is essential for human survival but many other aspects of human wellbeing
are dependent on water as well. Sanitation, bathing, and food preparation are among basic
human needs and important to sustain health. Gleick (1996) estimated that every person
should have at least 50 l/d available to fulfil the water requirements for drinking and these
basic needs.

Large quantities of water are required to produce the food for human consumption. A
daily diet of 3000 kcal with 20% of energy from animal products requires in average 3600 l/d
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(Rockström et al. 2007). The vast majority of this water is transpiration by crops and
evaporation from agricultural soils and not actually contained in the final foods. Depending
on diet composition, climatic conditions, management intensity in the agricultural sector,
agricultural water management, and the amount of food losses, the amount of water needed
to supply a given amount of calories can vary tremendously (Molden 2007). However, the
given average shows the scale of food water requirements compared to water requirements
for other human uses.

Water is also an important resource for electricity generation and economic activity.
Thermoelectric power plants require water for cooling and many industrial process re-
quire water for cooling, cleaning, or as a raw material. Global water withdrawals in 2010
for the manufacturing sector and electricity generation are estimated to 335 km3/yr and
619 km3/yr, respectively (Flörke et al. 2013), which amounts to a combined average per
capita water use of 376 l/d. However, these are actual uses and it is inherently difficult
to estimate normative water needs for electricity and economic prosperity because the re-
quired water quantities strongly depend on the type of power generation, the industrial
sector, and the technologies in place to use water in the most efficient way.

Green and blue water resources

The water resources used to fulfil water requirements for the various human needs can
be distinguished by two fundamental types: blue water and green water (Falkenmark and
Rockström 2006).

Blue water is the liquid water in lakes, rivers, and aquifer. It is appropriated by with-
drawal directly from these compartments of the hydrosphere with impacts for downstream
users and aquatic ecosystems. Blue water can be used to fulfil all types of human water
requirements and can be stored and transported to overcome temporal and spatial mis-
matches between resource availability and water requirements. During use, some of the
blue water is incorporated into a product or evaporates and is lost to the atmosphere as
vapour (consumptive water use; CWU). With most uses, however, the larger part of the
water returns to rivers and aquifers and becomes available again to downstream users.
Thus, blue water resources are only depleted by the amount of CWU although water qual-
ity might be impaired by pollutants in return flows. The average fraction of CWU in total
water withdrawals varies widely among uses from less than 3% of cooling of thermoelectric
power plants (Flörke et al. 2013) to more than half for irrigation of crops (Jägermeyr et al.
2016).

Green water, on the other hand, is soil moisture that originates from rainfall. It is
appropriated from natural vegetation by land use change at the cost of reducing the extent
of natural ecosystems. Replacing forests with agricultural crops also tends to decrease
evapotranspiration and reduces infiltration into the soil, thereby reducing vapour flow to
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the atmosphere and increasing runoff (Rockström et al. 2014). Green water can only be
used to grow crops, grasses, or other biomass (biofuels, fibre) and the potential to do
so is determined by the biophysical factors at a given site. Transport of green water
to use at sites that are more favourable is not possible and storage to bridge temporal
mismatches only to a limited degree (Jägermeyr et al. 2016). Green water is depleted
by plant transpiration and evaporation from the soil surface and therefore is always a
consumptive use of water.

Traditionally, water management has focused on freshwater resources in lakes, rivers,
and aquifers. But despite its importance for fulfilling many human water needs, the CWU
from these sources makes up only 16% of total CWU when evapotranspiration of rainfed
soil moisture on global croplands is taken into account (Rockström et al. 2014). To highlight
the importance of rainfed soil moisture in the context of agriculture, the concept of ‘green
water’ was introduced by Prof. Malin Falkenmark in 1995 (Sood et al. 2014).

1.1.5 Human alteration of the hydrological cycle

Humanity—the major force of Earth system change in the Anthropocene—alters the hy-
drological cycle in many ways. By construction dams and canals, withdrawing water from
surface and groundwater bodies, and transporting it over sometimes great distances, hu-
manity intentionally shapes the water cycle to fulfil its freshwater requirements. Global
freshwater withdrawals around the year 2010 amount to about 3850 km3/yr of which
about 1430 km3/yr (37%) evaporate to the atmosphere and do not return to rivers, lakes,
or aquifers (Flörke et al. 2013, Jägermeyr et al. 2016). These quantities appear small
compared to 45 800 km3/yr total global runoff from continents and 70 600 km3/yr evap-
oration from the land surface to the atmosphere, but water withdrawals are unevenly
distributed over the globe and can have severe local impacts. Many rivers around the
world—particularly in China, South Asia, southern Europe, and the Middle East—are at
high risk of overuse at least in some parts of the year (Steffen et al. 2015b), and enhanced
evaporation from large-scale irrigation projects have been shown to alter local weather
systems (Alter et al. 2015). Beyond these changes in total fluxes, the regulation of rivers
for freshwater supply, hydropower, and flood protection alters the timing and variability of
river flow with severe impacts on riparian ecosystems and sediment transport (Nilsson and
Berggren 2006). Construction of dams also leads to enhanced evaporation from enlarged
open water surfaces (Destouni et al. 2012) and to fragmentation of many of the world’s
rivers (Grill et al. 2019).

Not only the management and appropriation of blue water resources but also the appro-
priation of green water has an impact on the hydrological cycle. Unlike blue water, green
water is not appropriated by redirecting water flows but by utilising an existing green wa-
ter flow (evapotranspiration from natural vegetation) for growing crops, pastures or other
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plants. Because cropland and grazing lands tend to have less leaf area, less available energy
(higher albedo), and a lower surface roughness than the replaced natural vegetation, evap-
otranspiration is substantially reduced (Sterling et al. 2013). For example, conversion of
forest to (non-irrigated) cropland or grazing land reduces ET in average by 36% and 32%,
respectively. In total, historic land cover change through cropland and pasture extension
has led to a decrease of global terrestrial evapotranspiration by 6.3% or about 4400 km3/yr

(Sterling et al. 2013), excluding ET enhancement through irrigation. A reduction of mois-
ture input to the atmosphere can lead to a decrease in rainfall in downwind areas with a
large contribution of terrestrial evaporation to precipitation (Zemp et al. 2014). On the
other hand, the corresponding increase in runoff in principal increases blue water avail-
ability but not necessarily in regions with high water demand and may lead to potential
unwanted side effects such as increased flood hazard (Rogger et al. 2017).

Apart from the effects of water resource appropriation, a third major pathway for al-
terations of the hydrological cycle by human activity is the emission of CO2 (and other
greenhouse gases) to the atmosphere. CO2 and other greenhouse gases (e.g., CH4 and
N2O) increase the absorption of upwelling longwave radiation by the atmosphere, which
leads to a temperature increase in the Earth system.

Driven by anthropogenic emission of greenhouse gases, global mean temperature has
increased by 0.72K to 0.85K since the beginning of the industrialisation (2003–2012 com-
pared to 1850–1900; Hartmann et al. (2013). This warming was accompanied by changes
in many aspects of the climate system connected to the hydrological cycle, which are, how-
ever, often difficult to detect in observations due to high temporal variability and lack of
data from the early part of the 20th century and before. Changes that can be established
with high or very high confidence from available data records include: general increases in
near surface air temperature and temperature extremes, increases in near surface air spe-
cific humidity and tropospheric water vapour, increases in average and heavy precipitation
in parts of the northern hemisphere, increasing droughts in the Mediterranean and West
Africa, and decreasing droughts in North America and north-western Australia (Hartmann
et al. 2013). General increases in land precipitation, land evaporation, and a decrease in
snowfall can be inferred from observations with low or medium confidence, only. In addi-
tion, due to feedbacks in the climate system, some trends are not constant over time. For
example, the increase in evapotranspiration over land has slowed down after 1998 due to
lack of soil moisture availability in the southern hemisphere (Jung et al. 2010).

Apart from the effect on climate, the increase in atmospheric CO2 concentrations has a
direct effect on the biosphere by increasing plant water use efficiency—i.e., the ratio of CO2

uptake to water lost by transpiration through the stomata (Ciais et al. 2013). Depending on
whether the rate of photosynthesis is constrained by water or other environmental factors
(e.g., radiation, temperature, or nutrients), the increased water use efficiency is caused

8



by an increase in the rate of photosynthesis and/or a decrease in plant transpiration,
respectively.

Detecting the effect of climate change and increased atmospheric CO2 concentration on
river discharge in observations is not only hampered by temporal variability and availability
of long historic records, but also by the presence of other important drivers of hydrological
change such as water withdrawals and land cover changes. Modelling studies attempting to
attribute changes in river discharge over the 20th century to the different drivers of change
indicate that climate change has led to a moderate increase in total continental runoff
but is the dominating factor explaining the spatial pattern of runoff change (Piao et al.
2007, Gerten et al. 2008, Alkama et al. 2010). However, the results are subject to large
uncertainties in the climate datasets used (Gerten et al. 2008). The effect of increased
ambient CO2 concentrations on 20th century runoff changes is small compared to other
effects but further increasing levels of atmospheric CO2 concentrations throughout the
21st century may lead to a stronger control of transpiration with a corresponding increase
in runoff (Piao et al. 2007, Gerten et al. 2008, Alkama et al. 2010).

1.1.6 The challenge ahead

Already to today, appropriation of blue water resources for human needs infers with water
requirements for the environment in many river basins (Steffen et al. 2015b) and in some
cases available resource are insufficient to meet water requirements during all parts of
the year (Falkenmark and Molden 2008). Likewise, green water use already exceeds the
sustainably available green water flow in many regions of the world with adverse effects on
terrestrial ecosystems (Schyns et al. 2019).

Without the adoption of water saving technologies, blue water withdrawals are projected
to increase by 30% to 72% until 2100 depending on assumptions about total population,
urbanisation, per-capita GDP, and other socio-economic drivers (Graham et al. 2018).
Green water consumption is projected to increase by around 50% until 2050 in the middle-
of-the-road scenario SSP2 (Weindl et al. 2017). Adoption of water saving technologies
and changes in dietary patterns can drastically reduce the projected increases in blue
and green water requirements but strong increases remain in most scenarios (Graham
et al. 2018, Weindl et al. 2017). Estimates of future water requirements are subject to
large uncertainties in projected socio-economic drivers and other scenario and modelling
assumptions (Wada et al. 2016). However, most studies of future water requirements
indicate a general increase in global water demand and even in scenarios where global
water demand is projected to decline, increases still occur in many locations (Wada et al.
2016, Bijl et al. 2016, Graham et al. 2018). To meet growing demands, investments in water
management infrastructure (e.g., reservoirs, canals, purification) are needed. However, in
situations where a lack of water resources restricts a further increase in supply, demand side
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measures become unavoidable. Such measures range from technical solutions to improve
water use efficiency to prioritisation of water allocation between competing uses and may
carry high economic and social costs (Ohlsson and Turton 1999).

In addition to increasing water demand, human alterations of the hydrological cycle
pose great challenges for future water management. In particular, climate change has the
potential to aggravate the challenge of fulfilling future water demands by reducing avail-
able water resources, increasing hydrological variability, and increasing agricultural water
demand through enhanced evapotranspiration, (Jiménez Cisneros et al. 2014). Renewable
freshwater resources are projected to decline under climate change in many already dry
mid-latitude and subtropical regions such as the Mediterranean, parts of southern Africa,
and parts of South and East Asia. Increases are projected for high-latitude regions such
as the temperate and boreal zone and the humid tropics but even there, changes in sea-
sonality and higher variability of streamflow can lead to more frequent and pronounced
temporary shortages. Basic physical principles dictate that potential evapotranspiration
increases with higher temperatures, but changes in actual evapotranspiration also depend
on other uncertain factors such as changes in soil moisture and the response of plants to
elevated atmospheric CO2 concentrations and different climate conditions.

Hydrological change is particularly challenging for the design of freshwater supply infras-
tructure such as reservoirs and canals (Milly et al. 2008, Hallegatte 2009). Because of their
long lifetimes, such infrastructure has to be designed to operate equally well under both
present and future hydrological condition. This is aggravated by the large uncertainties
in projections of climate-related hydrological change, which makes planning more difficult
and increases construction costs. Hydrological change affecting green water availability
can be addressed by a broad range of strategies like rainwater harvesting (Jägermeyr et al.
2016), change in on-field residue management and tillage practices (Lutz et al. 2019), or
by managing risks through insurance schemes (Vermeulen et al. 2012). Such changes in
agricultural management practices and risk management can be implemented incremen-
tally in response to changing conditions (Vermeulen et al. 2013) and are easily reversible,
which makes them well suited to deal with projection uncertainties. However, such measure
are insufficient to adapt to higher levels of climate change and large-scale transformative
changes like a shift from rainfed to irrigated agriculture or from crop production to live-
stock rearing may be needed, entailing large social and economic costs (Vermeulen et al.
2013).
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1.2 Research questions

Increasing water demand driven by socio-economic change and climate change impacts on
human water resources pose the biggest challenges for the water sector in the Anthropocene.
Understanding and quantifying the hydrological change caused by climate change, its un-
certainties, and its consequences for water resource availability are important for informing
negations about climate mitigation efforts and the development of adaptation strategies in
the water sector alike. Exploiting opportunities to reduce anthropogenic water demand can
make an important contribution to adaptation to reduced water availability but also lower
the environment impacts of water resource use. Thus, the overarching research question
of this thesis is:

How will climate-related changes in the hydrological cycle affect the availability
of water resources, and what opportunities exist to reduce anthropogenic water
use to lower the pressure on water resources?

Chapters 2 to 6 constitute the main part of this thesis and address the following three
different aspects of the overarching research question.

What is the impact of different levels of global warming on river discharge?

A large body of literature is concerned with this topic, but most studies assess climate-
related hydrological change by comparing scenarios of greenhouse-gas emissions or radiative
forcing. This is inapt to inform the ongoing political debate and negotiations about climate
change mitigation, which have become centred around temperature targets. Chapters 2,
3 and 5 of this thesis aim to fill this gap by assessing climate change impacts on river
discharge for different levels of global mean temperature increase. Chapter 4 provides the
description of a new climate dataset specifically designed for such temperature-stratified
analyses of climate change impacts, which is used in chapter 5. To quantify the uncertainty
in projection of river discharge, chapters 2 and 3 analyse results from an ensemble of hy-
drological models forced with climate projections from several different general circulation
models (GCMs). Chapter 5 is based on a single hydrological model but uses the full ensem-
ble of 23 different GCM patterns provided by the forcing data set described in chapter 4
to account for climate projection uncertainty. All three studies analyse climate-related
changes in mean annual discharge but chapter 3 also analyses the effects of anthropogenic
water withdrawals and chapter 5 also analyses changes in other properties of streamflow,
namely hydrological droughts and flood hazards.
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How do climate-related changes in river discharge affect human water re-
sources?

Building on the analysis of changes in river discharge, chapters 2, 3 and 5 assess how these
changes affect human water resources. Chapter 2 focusses on number of people affected
by severe decreases in mean annual discharge and changes in number of people affected by
water scarcity. Looking beyond changes in mean water availability, chapter 5 assesses the
number of people affected by a severe decrease in mean annual discharge, a severe increase
in the number of drought month, or a severe increase in the magnitude of flood hazards.
The population pressure on water resources without climate change is used to determine
where adaptation to these changes will be particularly challenging. Chapter 3 analyses
changes in anthropogenic water withdrawals driven by climate change impacts on river
discharge and changes in irrigation water demand.

How much water is used by the global livestock sector, and what are the
opportunities and constraints for improving water productivity?

The agricultural sector is by far the biggest anthropogenic water user (Hoekstra and Mekon-
nen 2012) with large a contribution originating from feed production for livestock. Driven
by increasing demand for animal sourced foods, water use for livestock feed is projected
to increase further in the coming decades (Weindl et al. 2017). While assessments of
the potential to reduce livestock water use focus on dietary choices, the possibilities to
increase livestock water productivity by appropriate management interventions have re-
ceived little attention. Based on a new and highly detailed global dataset of feed use and
livestock production (Herrero et al. 2013), chapter 6 provides a comprehensive assessment
of livestock water use and livestock water productivity in the global livestock sector. By
analysing the variations in water productivity of feed production and feed use efficiencies
of livestock systems, potential opportunities but also the constraints to improving livestock
water productivity are assessed.

1.3 Methodology

1.3.1 Temperature-stratified analysis of climate change impacts

The majority of scientific literature concerned with the analysis of climate change impacts
relies on climate projections generated by GCMs within the Coupled Model Intercompar-
ison Project (CMIP). Within the different iterations of the project, GCMs from various
working groups were forced with four scenarios of greenhouse-gas emissions (CMIP3; Meehl
et al. 2007b) or four scenarios of radiative forcing (CMIP5; Taylor et al. 2012). This re-
sulted in model ensembles of climate projections driven by a very small selection of possible
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forcing scenarios. In the past, impact studies have mostly followed the design of the CMIP
experiments and have focussed on comparing the outcomes of the different forcing scenar-
ios. While this approach generates useful information to assess the sensitivity of different
regions and different domains (water cycle, biosphere, agriculture, etc.) to climate change
(IPCC 2007b, 2014)), it falls short on providing the detail required to evaluate the effi-
cacy of mitigation measures. In addition, the political debate on climate mitigation has
become increasingly centred around temperature targets (levels of global mean tempera-
ture increase), which requires climate change impact assessments that analyse impacts at
different levels of global mean temperature increase in a systematic manner.

All assessments of climate change impacts on the water cycle and human water resources
within this thesis (chapters 2, 3 and 5) employ a temperature-stratification approach to
analyse the consequences of global warming as a function of global mean temperature
increase. The analyses in chapters 2 and 3 are based on model simulations using CMIP3
and CMIP5 climate projections. The temperature stratification is achieved by determining
the time periods in theses projections (31 and 30 years long, respectively) during which
the levels of global mean temperature increase of interest are reached. Climate impacts are
evaluated by calculating changes in these time periods relative to a reference period that
represents present-day conditions. While relying on available climate projections and being
easy to implement, this method comes with the major caveat that the same level of global
mean temperature increase is reached in different years in different GCM projections and
lower levels are generally reached earlier than higher levels. When climate-driven changes
from these time periods are combined with corresponding atmospheric CO2 concentrations
and socio-economic data from these time periods (e.g., population data to assess exposure
to changes in water availability as in chapter 2), the result is affected by the differences in
these variables at different points in time and the effect of climate change alone is difficult to
isolate. Another major disadvantage is that the range of global mean temperature increase
that can be analysed is constrained by the maximum level reached by the ‘coldest’ GCM
in the ensemble, as otherwise the GCM sample would differ at different temperature levels.
A third problem that is not unique to this specific approach, however, is the existence of
inter-annual variability in climate projections, which hampers the estimation of differential
impacts for small increments of global mean temperature increase (James et al. 2017).

To address these shortcomings, a new dataset of climate scenarios was developed, which
is described in detail in chapter 4 and applied in the analysis in chapter 5. The dataset
is based on a pattern-scaling approach (Mitchell 2003, Osborn et al. 2016) using monthly
normalised climate change patterns (regional changes for each month of the year per 1 K
of global mean temperature increase) of 19 different GCMs from the CMIP3 multi-model
dataset for near-surface air temperature, cloud cover, monthly precipitation sum, and
rain-month frequency. The patterns were used to compute monthly time series of regional
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climate anomalies for the global land area at 0.5 degree resolution for 8 different pathways
of global mean temperature increase, reaching 1.5K to 5K above the pre-industrial level in
steps of 0.5K around the year 2100 (2086–2115 average; see Figure 4.2). To obtain actual
time series of regional climate projections that can be used as input to impact models, the
anomalies were applied to monthly time series of reference climate representing present-
day climatic average and variability. Reference time series for temperature and cloud cover
were derived from the CRU TS3.1 dataset (Harris et al. 2014) and for precipitation from
the GPCC full reanalysis dataset version 5 (Rudolf et al. 2010). Because identical reference
time series were used for all 8 scenarios, differences between scenarios are only caused by
climate anomalies allowing robust detection of impacts even for small changes in global
mean temperature increase. The central assumption of pattern scaling is that of a linear
relationship between local climate change and global mean temperature increase, which is
shown to hold very well for near-surface air temperature and cloud cover, and reasonably
well for precipitation (Table 4.2). This is in line with other studies, demonstrating that
pattern scaling can be used to emulate regional climate change in both high and low
warming scenarios without introducing large errors (Tebaldi and Knutti 2018, Osborn
et al. 2018), However, pattern scaling performs less reliable in scenarios in which global
mean temperature stabilises or declines after a peak (Tebaldi and Arblaster 2014). The
dataset described in chapter 4 proved valuable for the scientific community and has been
used, apart from the analysis in chapter 5, in more than ten other studies (e.g., Schaphoff
et al. 2013, Boysen et al. 2017, Heck et al. 2018, Stenzel et al. 2019).

1.3.2 Addressing uncertainty by using multi-model ensembles

The assessments of future hydrological conditions relies on the use of numerical mod-
els. General Circulation Models (GCMs) are required to obtain climate projections under
assumed future developments of radiative forcing caused by the increase in atmospheric
greenhouse-gas concentrations. Along with projections of various climatic variables (e.g.,
temperature, precipitation, radiation), GCMs also provide projections of hydrological vari-
ables (e.g., runoff, soil moisture, evapotranspiration), which can be used to assess future
hydrological conditions (Milly et al. 2005). However, most studies on climate-driven hy-
drologic change and corresponding impacts on water resources are based on simulations
with standalone (global) hydrological models forced with climate projections from GCMs.
This is because GCMs lack many of the processes that are important from a hydrological
or water resource perspective (e.g., flow in river channels, water withdrawal for human
use, reservoir operation), but are not needed to account for the role of the hydrological
cycle in the climate system (e.g., controlling heat and mass change between surface and
atmosphere). Despite their greater detail in hydrological processes, global hydrological
models are computationally relatively inexpensive, which allows for the incorporation of
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additional and more detailed information, and facilitates experiments requiring multiple
simulations.

However, both GCMs and hydrological models are only approximate descriptions of
real-world systems, and their estimates of past, present, and future conditions are associ-
ated with large uncertainties. A large body of literature is concerned with the uncertainty
of GCMs (e.g., Gleckler et al. 2008, Knutti and Sedláček 2013, Eyring et al. 2016b) and
the different phases of the Coupled Model Intercomparison Project (CMIP) have been
designed to synthesise the knowledge from different GCMs, systematically analyse their
uncertainties, and to provide the scientific community with multi-model ensembles of cli-
mate projections (Meehl 1995, Meehl et al. 2000, 2007b, Taylor et al. 2012). In many cases,
the use of a multi-model ensemble has been shown to provide better predictions than using
a single model (Palmer et al. 2005, Gleckler et al. 2008, Weigel et al. 2008) and can pro-
vide valuable information on the robustness and uncertainties of model projections (Knutti
and Sedláček 2013). However, the usefulness of the inter-model spread as a measure for
projection uncertainty has been challenged (Stainforth et al. 2007), and interpreting and
synthesising the range of different outcomes in a multi-model ensemble remains challeng-
ing (Knutti et al. 2010, Flato et al. 2013). A systematic assessment of the uncertainties
in global hydrological models was not conducted until the Water Model Intercomparison
Project (WaterMIP) was initiated in 2009 as part of the European Union Water and Global
Change (EU WATCH) project (Haddeland et al. 2011, Harding et al. 2011). After the end
of the project in 2011, this work was continued under the framework of the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP; Warszawski et al. 2014). I have actively
been involved in both the WaterMIP and ISIMIP projects, contributing to the development
of modelling protocols, performing simulations, and analysing results.

Chapter 2 in this thesis is a direct outcome of the ISIMIP project, analysing climate
change impacts on mean annual discharge and human water resources from 11 global
hydrological models and 5 GCMs. Chapter 3 synthesises results from both the WaterMIP
and ISIMIP projects to obtain a larger ensemble (7 hydrological models and 8 GCMs),
analysing impacts of direct human intervention (water withdrawals and reservoir operation)
and climate change. Both studies follow IPCC guidelines on treatment of uncertainties
(Mastrandrea et al. 2011) in that they do not only provide a best-guess from the ensemble
(median or mean) but also analyse the spread of different outcomes. Chapter 5 is based
on a single hydrological model but uses the climate dataset described in chapter 4, which
provides climate projections consistent with 19 different GCMs from the CMIP3 multi-
model dataset. The analysis focusses on determining the level of global mean temperature
increase at which severe hydrological change is projected by the majority of the 19 GCMs—
a threshold that corresponds to the ’more likely than not’ likelihood category defined in
the IPCC guidelines (Mastrandrea et al. 2011).
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Although chapter 6 is concerned with assessing a present-day situation and projec-
tion uncertainty is irrelevant, an ensemble approach using alternative models and datasets
would also be useful to assess the uncertainties associated with the obtained estimates.
However, many of the datasets used in the analysis are unique and the model simulations
are very specific so that large efforts would be needed to run other models in a similar way.

1.3.3 Livestock water use and livestock water productivity

Identifying opportunities to reduce water demand requires information about the water
quantities appropriated for different societal and economic activities (water use) and the
respective benefits derived per unit of water (water productivity; Batchelor et al. 2017). For
the quantification of water use, it is critical to distinguish between consumptive water use,
which is evaporated or incorporated in a product, and non-consumptive water use, which
is returned to rivers and aquifers (Batchelor et al. 2017). Non-consumptive use of water
can impair the quality and timing of river flow for downstream users but does not reduce
the amount of available water resources, whereas consumptive water use depletes local
water resources. All uses of water (except some in-stream uses) entail at least a fraction
of consumptive water use—either because evaporation of water is a direct consequence of
its use, water gets incorporated into a product, or because evaporative losses occur during
use, storage, or transport. From a water supply perspective, the combined amount of
consumptive and non-consumptive use is relevant because it is the quantity, which has to
be provided. However, the sum of consumptive and non-consumptive water use over a large
domains such as a river basin is difficult to interpret (e.g., it can exceed the total amount of
available water resources) because water that is not consumed can be used multiple times.
Only the sum of consumptive water use provides an unambiguous measure of water resource
depletion. Therefore, water productivity should always be measured against consumptive
water use to avoid misinterpretation (van Halsema and Vincent 2012, Batchelor et al. 2017).
Unlike blue water use, which can be consumptive and non-consumptive, green water use
is always entirely consumptive (Falkenmark and Rockström 2006).

Chapter 6 provides a comprehensive and detailed quantification of consumptive water
use and water productivity in global livestock production. Livestock consumptive water
use is determined by estimating the part of agricultural ET associated with the production
of feed. Agricultural ET thereby does not only comprise soil evaporation, evaporation
from interception, and plant transpiration during the growing period (crop ET), but also
includes soil evaporation during fallow periods. Previous assessment of livestock water
use have only accounted for crop ET (de Fraiture et al. 2007, Mekonnen and Hoekstra
2012, Weindl et al. 2017), but for a meaningful comparison of water use for different
feed components (e.g., seasonal crops versus perennial grasses), it is important to relate
production to the total agricultural ET associated with it. For blue water, this also includes
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evaporative conveyance losses from open canals and leakage from pipelines (Rost et al.
2008). Livestock production also requires blue water for drinking, servicing, and processing
but the quantities are very small compared to water use for feed production (<2% of total
livestock water use; Mekonnen and Hoekstra 2012) and are not accounted for in the analysis
in chapter 6.

Livestock water productivity in chapter 6 is expressed in kg protein per m3 of con-
sumptive water use for the production of animal feed. The use of protein as a metric for
measuring the output of livestock production is motivated by the role of animal sourced
foods as a source of protein rather than energy in the human diet (Smith et al. 2013), and
allows to aggregate different products (e.g., milk and meat from dairy system) and to com-
pare different livestock types (e.g., meat producing pigs versus egg producing layer hens).
However, the focus on animal sourced foods as the only output from livestock systems ig-
nores important non-food benefits such as traction power, hide production, and insurance
against crop failure, which are important for smallholder farmers in developing countries
(van Breugel et al. 2010). Accounting for non-food benefits in livestock water productivity
can be achieved by expressing output in terms of total economic value (Haileslassie et al.
2009), but the economic value of some benefits like insurance is difficult to define and for
those for which it is possible, the required information about prices is often difficult to
obtain. In addition, prices can exhibit high variation in space and time, which hampers
the comparability of estimates of economic water productivity across different regions and
point in time.
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Chapter 2

Multimodel assessment of water
scarcity under climate change
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Q. Tang, Y. Wada, D. Wisser, T. Albrecht, K. Frieler, F. Piontek, L. Warszawski, and
P. Kabat. Multimodel assessment of water scarcity under climate change. Proceedings of
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Abstract

Water scarcity severely impairs food security and economic prosperity in many countries
today. Expected future population changes will, in many countries as well as globally,
increase the pressure on available water resources. On the supply side, renewable wa-
ter resources will be affected by projected changes in precipitation patterns, temperature,
and other climate variables. Here we use a large ensemble of global hydrological models
(GHMs) forced by five global climate models and the latest greenhouse-gas concentration
scenarios (Representative Concentration Pathways) to synthesize the current knowledge
about climate change impacts on water resources. We show that climate change is likely
to exacerbate regional and global water scarcity considerably. In particular, the ensem-
ble average projects that a global warming of 2 ◦C above present (approximately 2.7 ◦C

above preindustrial) will confront an additional approximate 15% of the global population
with a severe decrease in water resources and will increase the number of people living
under absolute water scarcity (<500m3 per capita per year) by another 40% (according
to some models, more than 100%) compared with the effect of population growth alone.
For some indicators of moderate impacts, the steepest increase is seen between the present
day and 2 ◦C, whereas indicators of very severe impacts increase unabated beyond 2 ◦C.
At the same time, the study highlights large uncertainties associated with these estimates,
with both global climate models and GHMs contributing to the spread. GHM uncertainty
is particularly dominant in many regions affected by declining water resources, suggest-
ing a high potential for improved water resource projections through hydrological model
development.
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2.1 Introduction

Freshwater is one of the most vital natural resources of the planet. The quantities that
humans need for drinking and sanitation are relatively small, and the fact that these basic
needs are not satisfied for many people today is primarily a matter of access to, and
quality of, available water resources (Ohlsson and Turton 1999). Much larger quantities
of water are required for many other purposes, most importantly irrigated agriculture,
but also for industrial use, in particular for hydropower and the cooling of thermoelectric
power plants (Wallace 2000, Kummu et al. 2010). These activities critically depend on a
sufficient amount of freshwater that can be withdrawn from rivers, lakes, and groundwater
aquifers. Whereas scarcity of freshwater resources already constrains development and
societal well-being in many countries (Oki et al. 2001, Rijsberman 2006), the expected
growth of global population over the coming decades, together with growing economic
prosperity, will increase water demand and thus aggravate these problems (Vörösmarty
2000, Arnell 2004, Alcamo et al. 2007).

Climate change poses an additional threat to water security because changes in precipi-
tation and other climatic variables may lead to significant changes in water supply in many
regions (Vörösmarty 2000, Arnell 2004, Alcamo et al. 2007, Milly et al. 2005, Fung et al.
2011, Hagemann et al. 2012). The effect of climate change on water resources is, however,
uncertain for a number of reasons. Climate model projections, although rather consistent
in terms of global average changes, disagree on the magnitude, and in many cases even the
sign, of change at a regional scale, in particular when it comes to precipitation patterns
(Meehl et al. 2007a). In addition, the way in which precipitation changes translate into
changes in hydrological variables such as surface or subsurface runoff and river discharge
(i.e., runoff accumulated along the river network), and thus in renewable water resources,
depends on many biophysical characteristics of the affected region (e.g., orography, veg-
etation, and soil properties) and is the subject of hydrological models, which represent a
second level of uncertainty (Hagemann et al. 2012, Haddeland et al. 2011).

In the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP;
Warszawski et al. (2013) in this issue of PNAS) a set of nine global hydrological models,
one global land-surface model, and one dynamic global vegetation model (here summarized
as global hydrological models (GHMs); Materials and Methods) has been applied using
bias-corrected forcing from five different global climate models (GCMs) under the newly
developed Representative Concentration Pathways (RCPs). The purpose is to explore
the associated uncertainties and to synthesize the current state of knowledge about the
impact of climate change on renewable water resources at the global scale. In this paper
we investigate the multimodel ensemble projections and the associated spread for changes
in annual discharge—taken here as a first-order measure of the water resources available
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to humans. We then reconcile these hydrological changes with global population patterns
to estimate how many people will be living in areas affected by a given change in water
resources. Finally, we apply a commonly used measure of water scarcity to estimate the
percentage of the world’s population living in water-scarce countries and to quantify the
contributions of both climate change and population change to the change in water scarcity.
Results are presented as a function of global mean warming above the present day to
account for the relative independence of regional temperature, precipitation, and runoff
changes of the rate of warming (Frieler et al. 2012, Tang and Lettenmaier 2012) and to
allow for systematic comparison of climate change impacts across scenarios and sectors.

2.2 Results

2.2.1 Discharge Trends and Uncertainties

We first consider the spatial pattern of relative change in annual mean discharge at 2 ◦C

global warming compared with present day (the term “present day” in this study refers
to the 1980—2010 average, which is ∼0.7 ◦C warmer globally than preindustrial), under
RCP8.5 (Figure 2.1). The multimodel mean across all GHMs and GCMs (Figure 2.1, Up-
per) exhibits a number of robust large-scale features. In particular, discharge is projected
to increase at high northern latitudes, in eastern Africa and on the Indian peninsula, and to
decrease in a number of regions including the Mediterranean and large parts of North and
South America. In these regions, a relatively high level of agreement across the multimodel
ensemble on the sign of change indicates high confidence. Most of these patterns are con-
sistent with previous studies (Alcamo et al. 2007, Hagemann et al. 2012, Arnell et al. 2011,
Gosling et al. 2010), but there are also some differences. For example, ensemble projections
using the previous generation of GCMs and climate scenarios found a robust runoff increase
in southeastern South America (Bates et al. 2008, Füssel et al. 2012), where we find no
clear trend, or partly even a drying trend. Whereas those latter studies used larger GCM
ensembles, we apply an unprecedented number of GHMs as well as the new RCP climate
forcing. At 3 ◦C of global mean warming, the pattern of change is similar to that at 2 ◦C,
although the changes are enhanced in many regions, and new robust trends emerge in some
regions (most notably a strong negative trend in Mesoamerica; Appendix A, Figure A.1).

In other parts of the globe, however, the projections are subject to a large spread across
the ensemble. In many regions, forcing by different GCMs yields discharge changes (av-
eraged across GHMs) that are large but of opposite sign (Appendix A, Figure A.2 shows
individual maps of precipitation and discharge changes). Accordingly, the spread owing
to differences between GCMs dominates the total ensemble spread in these regions (Fig-
ure 2.1, Lower). By contrast, GHM spread is dominant in many regions that are subject to
discharge reductions (e.g., northern and southern Africa). In most other regions showing a
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Figure 2.1: Relative change in annual discharge at 2 ◦C compared with present day, under
RCP8.5. (Upper) Color hues show the multimodel mean change, and saturation shows
the agreement on the sign of change across all GHM–GCM combinations (percentage of
model runs agreeing on the sign; color scheme following Kaye et al. (2012)). (Lower)
Ratio of GCM variance to total variance; in red (blue) areas, GHM (GCM) variance
predominates. GHM variance was computed across all GHMs for each GCM individually,
and then averaged over all GCMs; vice versa for GCM variance. Greenland has been
masked.
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large total spread, GHMs and GCMs contribute about equally. Note that the bias correc-
tion applied to the GCM data (Materials and Methods) substantially reduces the spread
among the GCMs’ present-day climatologies, but not among their future temperature and
precipitation trends (Hempel et al. 2013).

2.2.2 Population Affected by Severe Changes in Water Resources

To put these discharge changes into a societal perspective, we reconcile them with the
spatial distribution of population, using population projections from the newly developed
Shared Socioeconomic Pathways (SSPs) (O’Neill et al. 2012). In the following, we will
focus on the middle-of-the-road population scenario according to SSP2, which projects
global population to increase up to a peak at around 10 billion by the year 2090 and
includes substantial changes in relative population densities among countries; constant
present-day population will be considered additionally as a reference case.

We first consider two criteria for a severe decrease in average annual discharge, as an
indicator of renewable water resources: a reduction by more than 20% and a reduction by
more than 1 SD (σ) of 1980—2010 annual discharge. Both criteria can be seen as first-
order indicators of when available water resources consistently fall short of what a given
population has adapted to and thus serious adaptation challenges are likely to arise. In
many cases, a given discharge decrease may be detected using either criterion. In regions
where interannual variability is high but baseline discharge is low, the first criterion is par-
ticularly important because even discharge reductions smaller than 1σ can aggravate water
stress significantly in these regions. Conversely, in regions with low interannual variability,
the second criterion detects low-amplitude changes that may nonetheless require substan-
tial adaptation action as they transgress the range of past variability (e.g., in central and
western Africa; Piontek et al. (2014) in this issue of PNAS). Based on grid-cell discharge
averaged over 31-y periods that correspond to a given level of global warming, and on
gridded population projections (Materials and Methods and Appendix A, Table A.1), we
compute the percentage of global population living in countries with a discharge reduction
according to either or both of the criteria (Figure 2.2). With global mean warming on
the horizontal axis, the differences between the different RCPs in this population-weighted
metric, as well as in globally averaged runoff, are small and in the range of interdecadal
variability (Appendix A, Figure A.3), meaning that these global, long-term indicators do
not depend strongly on the rate of global warming. We therefore concentrate on RCP8.5
(the only RCP compatible with >3 ◦C warming by 2100) to span a large range of temper-
ature levels, while noting that on smaller spatial and temporal scales larger dependencies
on the warming rate as well as on climate model internal variability might be observed
(Heinke et al. 2012).

The multimodel median (MMM) suggests that even a relatively modest global warming
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Figure 2.2: Adverse impact of climate change on renewable water resources at different
levels of global warming. Markers show the percentage of the world population living in
0.5° × 0.5° grid cells where the 31-y average of annual discharge falls short of the 1980—
2010 average by more than 1σ (SD of annual discharge during 1980—2010), or by more
than 20%, under the RCP8.5 climate scenario and SSP2 population scenario. The five
GCMs are displayed in separate vertical columns (in the order in which they are listed
in Materials and Methods; note that only four GCMs have sufficient coverage of the 3 ◦C
warming level), and the 11 GHMs are displayed in unique colors. The black boxes give
the interquartile range, and the horizontal black lines the median, across all GCMs and
GHMs.
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of 1 ◦C above present day will lead to a severe reduction in water resources, by at least
one of the two criteria, for about 8% of the global population. This figure rises to about
14% for 2 ◦C and 17% for 3 ◦C. When only one criterion is applied, the numbers are
somewhat smaller (Figure 2.2, Lower): At 2 ◦C, about 13% (6%) of the global population
is projected to experience a discharge reduction >20% (>1σ). When a stricter criterion of
a discharge reduction >40% or >2σ is used, about 5% of the global population is affected
at 2 ◦C, according to the MMM (Appendix A, Figure A.4).

Importantly, however, the spread across the multimodel ensemble is large. For a few
GHM–GCM combinations, the figure for the 20% or 1σ criterion never exceeds 10%,
whereas others project that more than 30% of the global population will already be af-
fected at 2 ◦C. Note that in many of the regions that experience the strongest relative
reduction in discharge, GHM variance is larger than GCM variance (Figure 2.1, Lower).
Accordingly, the spread across GHMs in Figure 2.2 is comparable to or even larger than
the spread across GCMs. Moreover, the two models included in the study that simulate
vegetation distribution and dynamics (green markers in Figure 2.2) yield generally smaller
reductions in water resources than most stand-alone hydrological models, suggesting sys-
tematic differences between the two types of models (Davie et al. 2013). Sensitivity experi-
ments confirm that the effect of additional CO2 fertilization of vegetation on the hydrology
is comparatively small (Piao et al. 2007) (Appendix A, Figure A.5). Dynamic vegetation
changes or details of the parameterizations of evapotranspiration may contribute to the
divergence as well, but this requires a more systematic investigation.

The metric discussed here (percentage of population experiencing a given discharge
change) depends on the population scenario only through the geographical distribution
of population, not through the global totals. Holding the total and the geographical dis-
tribution of population constant at the year-2000 level suggests slightly lower impacts,
indicating that under SSP2 the population increase is, on average, somewhat stronger in
regions affected by discharge reductions than in other regions (Appendix A, Figure A.4).
This, however, has only a relatively small effect at the global scale.

As seen in the previous section, the projected changes in discharge are regionally very
heterogeneous, with water resources decreasing in many regions but increasing in others.
Grouping the world population into categories of percentage discharge change (e.g., 10%
to 30% increase/decrease, measured by the multimodel mean; Appendix A, Figure A.6),
the number of people falling into a given increase category is often very similar to the
number of people falling into the corresponding decrease category. Combined with up to
∼15% of the global population who are projected to experience increases exceeding 10%

of today’s discharge, overall more people will be affected by discharge increases than will
be by decreases. Whereas such increases may enhance actual water availability in many
cases, they can also entail adverse impacts such as increasing flood risk, deteriorating water
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quality, and malfunctioning of water-related infrastructure (Kundzewicz et al. 2008).

2.2.3 Water Scarcity

The impact metric considered in the previous section measures, at the grid-cell level,
significant departures from present levels of resource availability, irrespective of what those
levels are. It is thus an indicator of adaptation challenges that may arise, but not necessarily
of resource scarcity in an absolute sense. Moreover, because most water is used for irrigated
agriculture, which does not necessarily take place in the same location where people live,
water scarcity can be assessed more appropriately on a larger spatial scale than on the
grid-cell level. A widely used, simple indicator of water scarcity, the water crowding index
(Falkenmark et al. 1989, 2007), relates water resources to population at the country scale.
Defined originally as the number of people depending on a given resource unit, we use
the inverse (i.e., annual mean water resources per capita). Considering only supply-side
changes, this indicator is suitable for assessing the impact of climate change on physical
water scarcity, whereas the actual water stress experienced by people will also depend on
changes in per-capita water requirements and uses (Ashton 2002). We base our water
scarcity assessment on the “blue” water (BW) resource (Gerten et al. 2011), defined here
as runoff redistributed across the river basin according to the distribution of discharge
(Materials and Methods). Compared with using discharge itself, this avoids counting a
given water unit more than once, while retaining the spatial distribution of discharge
across the basin. The latter is important, for example, in countries like Egypt, where most
of the available water resource is generated by runoff outside the country (in this case, in
the Nile River headwaters).

We consider the percentage of global population in either of two water scarcity classes:
annual BW availability below 500m3 per capita (also termed absolute water scarcity) and
below 1000m3 per capita (chronic water scarcity). The MMM suggests that at present
∼1.5% and ∼3% of the global population fall into these two scarcity classes, respectively
(the first class being a subset of the second; Figure 2.3 A and B). This is similar to previous
estimates at the country level (Arnell 2004) but much lower than estimates done at the
grid-cell level (Oki et al. 2001, Arnell et al. 2011) or river basin level (Arnell 2004) because
larger countries may not be classified as water-scarce even though significant parts of their
population live in water-scarce grid cells. Whereas the country level might in some cases
be too coarse for a realistic assessment of water scarcity and generally underestimate the
global figure, the grid-cell level likely overestimates it because water transfers between grid
cells (and also virtual water imports related to trade of water-intensive goods (Hanasaki
et al. 2010)) are large in reality.

Our present-day estimate is already subject to a significant spread across the multimodel
ensemble (ranging from 0% to 4% for the <500m3 class and 1% to 8% for the <1000m3
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Figure 2.3: Percentage of world population living in countries with annual mean BW
availability (Materials and Methods) below 500m3 per capita (Left) and below 1000m3 per
capita (Right). Symbols as in Figure 2.2. (A and B) RCP8.5 climate scenario, population
change according to SSP2. (C and D) Amplification by climate change of the level of
water scarcity that is expected from population change alone; computed as the difference
between a constant-climate scenario (Appendix A, Figure A.7) and the full scenario shown
above, divided by the constant-climate scenario, and expressed as percentage (so that the
population-only case equals 100%). For example, in C, the MMM indicates that at 2 ◦C
global warming, climate change amplifies the level of absolute water scarcity (number of
people below 500m3 per capita) expected from population change alone by about 36%.
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class), owing mainly to differences in present-day discharge simulated by the different
GHMs ((Haddeland et al. 2011)). The present-day discharge estimates also depend to
a certain extent on the observation-based dataset that was used for bias-correcting the
climate input data (Materials and Methods). Under the SSP2 population scenario (and
again using 31-y averages associated with the different warming levels), the percentage
of people living in countries below 500m3 per capita (1000m3 per capita) is projected to
rise to 6% (13%) at 1 ◦C, 9% (6%) at 2 ◦C, and 12% (24%) at 3 ◦C of global warming,
according to the MMM (Figure 2.3 A and B). The high rates of rise between present-day
and 1 ◦C could be partly related to the fact that the present-day estimate is very low, and
different spatial scales of analysis may lead to different relative changes.

Population growth plays a major role in this increase in water scarcity because it re-
duces per-capita availability even with unchanged resources. To separate the population
signal from the climate signal, we use each model combination’s average 1980-–2010 dis-
charge pattern to compute the percentage of people that would fall into a scarcity class if
climate were to remain constant and population changed according to SSP2 (Appendix A,
Figure A.7).

As found in previous studies (Vörösmarty 2000, Gerten et al. 2011, Hanasaki et al. 2010),
population change explains the larger part of the overall change in water scarcity. Sub-
tracting the constant-climate scenario from the full scenario and dividing by the constant-
climate scenario indicates by how much the level of water scarcity expected owing to
population change alone is amplified by climate change (Figure 2.3 C and D). According
to the MMM, this amplification is nearly 40% for the <500m3 class at 1 ◦C and 2 ◦C global
warming. The factor is somewhat lower (approximately 25%) at 3 ◦C, indicating that at
this level of warming the effect of additional climate change on this global metric becomes
smaller compared with the effect of population changes. Note that this is partly related to
the relative timing of warming and population change: In an even faster-warming scenario
than RCP8.5, a warming from 2 ◦C to 3 ◦C might still have a relatively larger impact be-
cause it would be associated with generally lower population numbers. This observation
illustrates how climate change and population change combine to aggravate global water
scarcity: A country can move toward the water scarcity threshold both through popula-
tion growth and through declining water resources, and depending on the relative rates
of change, it may be one or the other factor that eventually causes the threshold to be
crossed.

Along similar lines, for the ≤1000m3 class, the MMM amplification due to climate
change is nearly 30% at 1 ◦C, drops to about 20% at 2 ◦C, and is close to zero at 3 ◦C.
A number of model combinations yield negative values in Figure 2.3 C and D ; in these
cases, climate change is projected to alleviate the global increase in water-scarce population
that is expected owing to population change. The GHMs projecting a positive effect of
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climate change on chronic water scarcity (i.e., yielding negative values in Figure 2.3 D)
are primarily models that show a large number of people in this scarcity class in the first
place (yellow and red markers in Figure 2.3 B). This suggests that in these models many
countries in regions that get drier are already in this class at present, such that the potential
for additional countries to move into the class is smaller compared with the potential for
countries to move out of the class in regions that get wetter.

2.3 Discussion

Our multimodel assessment adds to extensive previous work, in particular in the frame-
work of the European Union Integrated Project Water and Global Change (EU-WATCH)
and Water Model Intercomparison Project (WaterMIP) (Haddeland et al. 2011), which
demonstrated that hydrological models are a significant source of uncertainty in projec-
tions of runoff and evapotranspiration (Hagemann et al. 2012). The present study, using a
larger ensemble ensemble of GHMs and GCMs and the state-of-the-art RCP climate forc-
ing available from Coupled Model Intercomparison Project Phase 5 (CMIP-5), explores
the range of uncertainty not only in hydrological change but also in its effect on people.
Results are mapped against global mean temperature increase to allow direct comparison
of the impacts at different levels of global warming.

It is important to note that our globally aggregated water scarcity estimates can obscure
potentially much more severe changes at the scale of individual countries or locations. For
example, if a number of countries were to move into a given water scarcity class, but at the
same time other countries with a similar share of global population were to move out of
this class, the resulting change on the global scale would be close to zero. Likewise, if the
amplification of the global water scarcity signal by climate change becomes small at higher
levels of warming, as seen in Figure 2.3 C and D, this could mean that climate change
continues to force additional countries into the scarcity class, but at the same time other
countries move out of the class (e.g., because of more pronounced regional precipitation
increases at this temperature level). The results in Figure 2.3 must thus be interpreted
with care, and the numbers in Figure 2.3 C and D in particular are more likely to represent
a lower bound to the climate change contribution in regions that are affected by a discharge
decrease. Moreover, changes within a given water scarcity class are not detected here but
can be very important. Countries that are already extremely water-scarce will be all the
more vulnerable to even small decreases in resource availability.

Although the water crowding index is an appropriate measure for supply-side effects
on global water scarcity, it is not a measure of the actual problems that countries and
people face in satisfying their water needs because it does not take the demand side into
account. Future water stress (as measured, for instance, by the ratio of water use to
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availability) will depend on changes in demand, for example, related to economic growth,
lifestyle changes, or technological developments, as well as on water management practices
and infrastructure. Alternative sources of water for agriculture, such as “green” water
contained in the soil (Gerten et al. 2011, Rockström et al. 2009, Rost et al. 2008), and
nonrenewable water resources (Taylor et al. 2013, Wada et al. 2010), also affect actual BW
requirements.

We have only considered long-term averages, neglecting potential changes in the inter-
annual and seasonal availability of water resources and their variability (Fung et al. 2011,
Gosling et al. 2011). Changes in seasonality can have severe impacts even if the annual
average is stable e.g., if irrigation water availability in the growing season changes, or if
flood hazard is affected by changes in snow-melt runoff (Dankers et al. (2014) in this is-
sue of PNAS). Again, infrastructure such as dams and reservoirs can substantially alter
the timing of water resource availability (Biemans et al. 2011). Moreover, hydrological
changes can have consequences going far beyond the availability of water resources for hu-
man uses, for instance, by altering the occurrence of damaging extreme events like floods
and droughts (Prudhomme et al. (2013) in this issue of PNAS), affecting aquatic and ter-
restrial ecosystems (Gerten et al. 2007), and potentially interacting with, and amplifying,
climate change impacts in other sectors (Parry et al. 2001).

2.4 Conclusions

We have synthesized results from 11 GHMs with forcing from five GCMs to provide an
overview of the state of the art of modeling the impact of climate change on global water
resources. In all metrics considered, we find a considerable spread across the simulation
ensemble. GHMs and GCMs contribute to similar extents to the spread in relative dis-
charge changes globally. When changes in water scarcity are considered, GHM spread is in
fact larger than GCM spread. This finding suggests that, although climate model uncer-
tainty remains an important concern, further impact model development promises major
improvements in water scarcity projections.

The multimodel mean projected changes in annual discharge are spatially heterogenous.
As the planet gets warmer, a rising share of the world population will be affected by severe
reductions in water resources, measured as deviation from present-day discharge in terms
of either SD or percentage. However, a similar fraction of the population will experience
increases in average discharge, which could potentially improve water availability, but also
entail adverse effects.

Our estimate of water scarcity at the country scale indicates that climate change may
substantially aggravate the water scarcity problem. Depending on the rates of both popu-
lation change and global warming, the level of water scarcity expected owing to population
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change alone is amplified by up to 40% owing to climate change, according to the mul-
timodel mean; some models suggest an amplification by more than 100%. This adds up
to between 5% and 20% of global population likely exposed to absolute water scarcity at
2 ◦C of global warming. For chronic water scarcity, most adverse climate change impacts
already occur between present day and 2 ◦C, whereas beyond this temperature positive and
negative additional impacts of climate change are of a similar magnitude (although they af-
fect different groups of people and therefore cannot be offset against each other). However,
absolute water scarcity continues to be substantially amplified by climate change on the
global scale even beyond 2 ◦C. We conclude that the combination of unmitigated climate
change and further population growth will expose a significant fraction of the world pop-
ulation to chronic or absolute water scarcity. This dwindling per-capita water availability
is likely to pose major challenges for societies to adapt their water use and management.

2.5 Materials and Methods

2.5.1 Models and Data

The GHMs used in this study are the DBH (Tang et al. 2007), H08 (Hanasaki et al. 2008a),
Mac-PDM.09 (Gosling and Arnell 2011), MATSIRO (Takata et al. 2003), MPI-HM (Stacke
and Hagemann 2012a), PCR-GLOBWB (Wada et al. 2010), VIC (Liang et al. 1994), Water-
GAP (Döll et al. 2003), and WBMplus (Wisser et al. 2010) hydrological models, the JULES
(Best et al. 2011) land-surface model, and the LPJmL (Bondeau et al. 2007) dynamic
global vegetation model; the latter two also represent vegetation dynamics in addition to
hydrological processes. Appendix A, Table A.2 gives further model details. Forcing data
were derived from climate projections with the HadGEM2-ES, IPSL-CM5A-LR, MIROC-
ESM-CHEM, GFDL-ESM2M, and NorESM1-M GCMs under the RCPs (Moss et al. 2010),
which were prepared for the CMIP-5 (Taylor et al. 2012). All required climate variables
have been bias-corrected (Ehret et al. 2012) toward an observation-based dataset (Weedon
et al. 2011) using a newly developed method (Hempel et al. 2013) that builds on earlier
approaches (Hagemann et al. 2011) but was specifically designed to preserve the long-term
trends in temperature and precipitation projections to facilitate climate change studies.
GHMs were run without direct coupling to GCMs, so that potential feedbacks (e.g., from
GHM-simulated evapotranspiration on precipitation) were not represented. Further details
about the GHM simulations can be found in the ISI-MIP simulation protocol available at
http://www.isi-mip.org/. Country-level United Nations World Population Prospects
(historical) and SSP (projections) population data at a 5-y time step were obtained from
the SSP Database at https://secure.iiasa.ac.at/web-apps/ene/SspDb and linearly
interpolated to obtain annual values. A gridded population dataset was also used in which
the National Aeronautics and Space Administration GPWv3 y-2010 gridded population
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dataset (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3) was scaled up
to match the SSP country totals (neglecting changes in population distribution within
countries).

2.5.2 Temperature Axis

Global mean temperature is calculated from the GCM data (including ocean cells) and
presented as the difference from the 1980-–2010 average. For each GCM and RCP, 31-
y periods are selected whose average temperature corresponds to the different levels of
global warming (Appendix A, Table A.1; note that GFDL-ESM2M does not reach the
3 ◦C warming level). Population affected by discharge changes (Figure 2.2) was calculated
using the population distribution corresponding to the middle year of each individual 31-y
period (except for the baseline period 1980—2010, which was assumed to correspond to
year-2000 population). Water scarcity (Figure 2.3) was calculated annually, using annual
population values, and then averaged over the 31-y periods; results for the 0 ◦C baseline
were obtained from the “constant-climate” run, that is, using 1980—2010 average BW
resources and annual population values (discussed in the following section).

2.5.3 Water Scarcity

For assessing country-scale water scarcity, we calculate the annual mean BW resource
availability following Gerten et al. (2011): The sum of annual mean runoff R in each river
basin b is redistributed across the basin according to the relative distribution of discharge
Q, yielding the BW resource in each grid cell i:

BWi = RbQi/
∑︂

Qi (2.1)

where Σ is the sum over all grid cells in basin b. BW is then summed up over all
grid cells within a country and divided by the country’s population to yield the water
crowding index. Finally, for each year, the total number of people living in countries that
are below a given threshold of this index (500m3 or 1000m3 per capita) is calculated and
divided by global population to yield the corresponding percentage of world population.
Results are again averaged over the 31-y periods that correspond to the different levels of
global warming shown in Figure 2.3 A and B. For the climate change contribution shown
in Figure 2.3 C and D, the subtraction of, and division by, the results from the constant-
climate run is done year by year, and the resulting percentage is averaged over the 31-y
periods.
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2.5.4 Ensemble Statistics

Statistics across the multimodel ensemble were computed after the calculation of the re-
spective metric. For instance, in Figure 2.1 the relative change in discharge was calculated
for each model combination individually before computing the multimodel mean, agree-
ment, and variances.

Supplementary material related to this chapter is available in Appendix A.

Acknowledgments

The authors acknowledge the World Climate Research Programme’s Working Group on
Coupled Modelling, which is responsible for the Coupled Model Intercomparison Project,
and thank the climate modeling groups for producing and making available their model
output. J.S. wishes to thank A. Levermann for helpful discussions. This work has
been conducted under the framework of the Inter-Sectoral Impact Model Intercompari-
son Project (ISI-MIP). The ISI-MIP Fast Track project underlying this paper was funded
by the German Federal Ministry of Education and Research with project funding refer-
ence number 01LS1201A. R.D. was supported by the joint Department of Energy and
Climate Change/Defra Met Office Hadley Centre Climate Programme (GA01101). F.J.C.-
G. was jointly funded by the European Union Seventh Framework Programme Quantifying
Weather and Climate Impacts on health in developing countries and HEALTHY FUTURES
projects. S.N.G. was supported by a Science, Technology and Society Priority Group grant
from University of Nottingham. Y.M. was supported by the Environment Research and
Technology Development Fund (S-10) of the Ministry of the Environment, Japan. F.T.P.
received funding from the European Union’s Seventh Framework Programme (FP7/2007-
2013) under Grant 266992. K.F. was supported by the Federal Ministry for the Environ-
ment, Nature Conservation and Nuclear Safety, Germany (11_II_093_Global_A_SIDS
and LDCs). H.K. and Y.S. were jointly supported by Japan Society for the Promotion of
Science KAKENHI (23226012) and Ministry of Education, Culture, Sports, Science and
Technology SOUSEI Program.

34



Chapter 3

Global water resources affected by
human interventions and climate
change
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Significance

Humans alter the water cycle by constructing dams and through water withdrawals. Cli-
mate change is expected to additionally affect water supply and demand. Here, model
analyses of climate change and direct human impacts on the terrestrial water cycle are
presented. The results indicate that the impact of man-made reservoirs and water with-
drawals on the long-term global terrestrial water balance is small. However, in some river
basins, impacts of human interventions are significant. In parts of Asia and the United
States, the effects of human interventions exceed the impacts expected for moderate lev-
els of global warming. This study also identifies areas where irrigation water is currently
scarce, and where increases in irrigation water scarcity are projected.

Abstract

Humans directly change the dynamics of the water cycle through dams constructed for
water storage, and through water withdrawals for industrial, agricultural, or domestic pur-
poses. Climate change is expected to additionally affect water supply and demand. Here,
analyses of climate change and direct human impacts on the terrestrial water cycle are
presented and compared using a multimodel approach. Seven global hydrological mod-
els have been forced with multiple climate projections, and with and without taking into
account impacts of human interventions such as dams and water withdrawals on the hy-
drological cycle. Model results are analyzed for different levels of global warming, allowing
for analyses in line with temperature targets for climate change mitigation. The results
indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia
and in the western United States, are of the same order of magnitude, or even exceed im-
pacts to be expected for moderate levels of global warming (+2K). Despite some spread
in model projections, irrigation water consumption is generally projected to increase with
higher global mean temperatures. Irrigation water scarcity is particularly large in parts of
southern and eastern Asia, and is expected to become even larger in the future.
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3.1 Introduction

Terrestrial water fluxes are affected by both climate and direct human interventions, e.g.,
dam operations and water withdrawals. Climate change is expected to alter the water cycle
and will subsequently impact water availability and demand. Several hydrologic modeling
studies have focused on climate change impacts on discharge in large river basins or global
terrestrial areas under naturalized conditions using a single hydrologic model forced with
multiple climate projections (Nijssen et al. 2001, Arnell 2003). Recently, hydrological
projections from eight global hydrological models (GHMs) were compared (Hagemann
et al. 2013). In many areas, there was a large spread in projected runoff changes within
the climate–hydrology modeling chain. However, at high latitudes there was a clear increase
in runoff, whereas some midlatitude regions showed a robust signal of reduced runoff. The
study also concluded that the choice of GHM adds to the uncertainty for hydrological
change caused by the choice of atmosphere–ocean general circulation models (hereafter
called GCMs) (Hagemann et al. 2013). Expected runoff increases in the north and decreases
in parts of the middle latitudes have been found also when analyzing runoff from 23 GCMs
(Tang and Lettenmaier 2012).

These studies focused on the naturalized hydrological cycle, i.e., the effects of direct
human interventions were not taken into account. However, in many river basins hu-
mans substantially alter the hydrological cycle by constructing dams and through water
withdrawals. Reservoir operations alter the timing of discharge, although mean annual dis-
charge does not necessarily change much. A study with the water balance model (WBM)
showed that the impact of human disturbances, i.e., dams and water consumption, in some
river basins is equal to or greater than the impact of expected climate changes on annual
runoff over the next 40 y (Fekete et al. 2010). Also, rising water demands are found to
outweigh global warming in defining the state of global water systems in the near future
(Vörösmarty 2000). Water for irrigation is the largest water use sector, currently account-
ing for about 70% of global water withdrawals and nearly 90% of consumptive water
use (Shiklomanov and Rodda 2003). A recent synthesis of simulations from seven GHMs
found that irrigation water consumption currently amounts to 1250 km3·y−1 (±25%) and
that considerable differences among models appear in the spatiotemporal patterns of water
consumption (Hoff et al. 2010).

Direct comparisons of the climate impact and human intervention modeling studies can
be difficult given that the setups are not identical, i.e., the input forcing data and climate
models vary. Also, because of the uncertainty of model-specific results, a multimodel
approach is preferable in impact modeling studies (Hagemann et al. 2013, Haddeland et al.
2011). This approach is similar to assessments performed within the climate community.
Here, multimodel results on current and future water availability and consumption at
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the global scale from the Water Model Intercomparison Project (WaterMIP) within the
European Union Water and Global Change (EU WATCH) project (Haddeland et al. 2011,
Harding et al. 2011), and Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP)
(Warszawski et al. 2014) are presented. (Information on how to get access to WaterMIP
and ISI-MIP simulation results can be found at www.eu-watch.org and www.isi-mip.org,
respectively.) Results from these two projects are synthesized to obtain a large ensemble of
impact model results. The integration of results from the different projects is achieved by
extracting impacts for time periods of global mean temperature (GMT) increases of 2 and
3K from the simulations, largely following the method of Tang and Lettenmaier (2012).
The advantage of this approach is that it allows presenting results in a way that is in line
with temperature targets used in climate mitigation discussions.

Other studies have focused on future water scarcity using results from WaterMIP and
ISI-MIP, but have analyzed changes of naturalized runoff only (Hagemann et al. 2013,
Schewe et al. 2014). We here aim to fill this knowledge gap by comparing the different
impacts from climate change and direct human impacts and analyzing their interplay. The
models included take into account water withdrawals and consumption in different sectors;
for more information, see Models and Data and Appendix B, SI Models and Data. The
objectives of this study are to (i) assess the relative contribution of anthropogenic impacts
and climate change to river basin scale water fluxes, and (ii) identify areas where climate
change can be expected to cause substantial changes in water consumption and water
scarcity, focusing on water for irrigation. The effects of future changes in irrigated areas
or irrigation practices are not taken into account, and only dams that currently exist are
included in the analyses. In this paper, simulations considering man-made reservoirs, water
withdrawals, and water consumption are referred to as human impact simulations, whereas
the simulations without these disturbances are referred to as naturalized simulations. The
results are mainly presented in a way intended to give an overview of impacts at larger
spatial scales (river basin and country levels). However, some finer-scale results are included
to reveal effects that can be concealed at coarse spatial scales.

3.2 Results

3.2.1 Human Impacts Versus Climate Change

Anthropogenic water consumption results in mean annual runoff decreases of 5% or more
in many river basins during the control period (1971—2000) (Figure 3.1A and Appendix B,
River Basin Information and Results). The effect is especially noticeable in heavily irrigated
regions at middle latitudes across Asia, and in the western part of the United States. In
some river basins in the Middle East, central Asia, and the Indian subcontinent, the
median ensemble runoff decrease is more than 15% as a result of water consumption
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Figure 3.1: Comparison of human impact and climate change effects on runoff at the river
basin level. Basin averaged runoff values are calculated based on simulated discharge at
the outlet of the river basins, and the median ensemble results are shown. (A) Control
period (1971—2000) human impact simulations compared with control period naturalized
simulations. (B) Basin averaged naturalized runoff for 2K GMT increase, compared with
control period naturalized simulations. (C ) Basin averaged human impact runoff for 2K
GMT, compared with control period naturalized simulations.

within the river basin. In several other Asian river basins, and in the Colorado, Nile,
Orange, Murray–Darling River basins, the ensemble median decrease in runoff resulting
from anthropogenic water consumption is between 5% and 15%.

Water consumption always results in runoff decreases, whereas the climate change sig-
nal can be in both directions. Climate change affects naturalized runoff in river basins in
all parts of the world. Projected runoff decreases are especially noticeable in the Mediter-
ranean area and in the Middle East, but also in Central and South America and parts of
Australia (Figure 3.1B). Runoff is projected to increase at northern latitudes, correspond-
ing to areas with large projected increases in precipitation (Meehl et al. 2007a). Runoff
increases are also projected in parts of the Arabian Peninsula, the Horn of Africa, and the
Indian subcontinent (Figure 3.1B).

The pattern of the total impacts, i.e., runoff changes caused by both 2K GMT in-
crease and human impacts (Figure 3.1C ), is dominated by the impacts of climate change
alone (Figure 3.1B). However, noticeable differences exist in southwestern United States
and central Asia. To highlight the relationship between the human impacts and climate
change effects, differences between the absolute values of the individual impacts are pre-
sented (Figure 3.2). This comparison shows that, in several river basins, current water
consumption affects annual averaged runoff more than climate change (2K) is expected to
impact naturalized runoff. Figure 3.2A shows the river basins in which the climate signal
mitigates the human impact signal to some extent or even exceeds it, e.g., in the Nile River
basin. Figure 3.2B shows the river basins in which the impact of climate change adds to
the human impact signal. The combined effect is hence enhancement, e.g., in the Colorado
and the Indus River basin.

Despite the locally significant decreases in runoff, anthropogenic water consumption
amounts to only 1.3% of median global terrestrial runoff (Figure 3.3A). Among the world’s
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Figure 3.2: (A) The difference between the absolute values in Figure 3.1 A and B in basins
where the human impact and climate signals are opposite, i.e., naturalized runoff increases.
(B) The differences between the absolute values in Figure 3.1 A and B in basins where
both the climate signal and human impact signal are negative, i.e., runoff decreases. The
red and yellow colors indicate that the control period human impacts are larger than future
climate effects on naturalized runoff.

large river basins, and according to the model ensemble included in this study, the Indus
River basin is the most affected by human impacts at the annual level. According to the
median ensemble result, as much as 47% of current runoff is consumed within the Indus
River basin (Figure 3.3F ). Figure 3.3 also shows that the results across the model ensemble
for the human impact simulations are significantly different at the river basin level. The
interquartile range for the Indus River basin is from 29% to 62%, and the individual
model results vary between 18% and 79%. Large intermodel variations are also found
in the Huang He River basin (Figure 3.3G), where the simulated anthropogenic water
consumption varies between 7% and 51% of current naturalized runoff. Moreover, for
most of the river basins presented, the impact of a 3K GMT increase is more pronounced
than a 2K GMT increase, both when looking at the total effect of climate change and
human impacts and when looking at the decomposed effects separately (Figure 3.3). In
the Colorado and Mississippi River basins, and in several river basins in Asia, the human
impact effect is larger than the climate effect (Figures 3.2 and 3.3). In the Mediterranean
area, both the climate and human impact signals are negative, but the climate signal
dominates (Figure 3.2B).

3.2.2 Irrigation Water Consumption and Scarcity

The number of water use sectors included in the results presented so far varies between the
different GHMs (Models and Data). However, all GHMs include the agriculture sector, i.e.,
water used for irrigation, which is the largest water consumer globally (Shiklomanov and
Rodda 2003). Here, an index called the cumulative abstraction-to-demand (CAD) ratio
(Hanasaki et al. 2008b) is used as a measure of irrigation water scarcity. The higher this
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Figure 3.3: Box plots of relative changes in runoff for (A) the world, (B) Colorado, (C )
Mississippi, (D) Nile, (E ) Euphrates-Tigris, (F ) Indus, and (G) Huang He for the control
period (C) (1971–2000), 2 and 3K GMT increases. The boxes illustrate the 25th, 50th, and
75th percentiles of the ensemble (47 members). The whiskers represent the total sample
spread, and in addition the 5th and 95th percentiles are marked. The human impact results
(orange bars) are compared with the naturalized simulations during the same time period,
e.g., 2K human impacts are compared with 2K naturalized simulations. All climate and
combined effects (blue and green bars) are compared with the control period naturalized
simulations.
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Figure 3.4: Irrigation water consumption and cumulative abstraction-to-demand (CAD)
ratio at the grid cell level. (A) Ensemble median potential irrigation water consumption,
control period (1971–2000). Light gray color represents areas where there is no, or very
little, irrigation. (B) Ensemble median CAD, control period. (C ) Differences in CAD
between the control period and the 2K GMT increase period. Negative numbers mean the
CAD ratio decreases.

number is, the closer the crops are to having their water requirements fulfilled. Thus, a
decrease in CAD represents an increase in water scarcity. The highest potential irrigation
water consumption numbers (water consumed given water is freely available) during the
control period (1971—2000) are found in the Indian subcontinent (Figure 3.4A). Although
the CAD ratio is low in the Indian subcontinent (Figure 3.4B), actual water consumption
(water consumed taking water availability into account) in the area is still considerable,
which is reflected in the human impact results for the Indus River basin (Figures 3.1A and
3.3).

The CAD ratio is projected to decrease with increasing GMT in most areas where ir-
rigation exists today (Figure 3.4C ), meaning an increase in irrigation water scarcity. The
CAD ratio is projected to increase in only a few scattered areas, e.g., western India. This
increase in the CAD ratio can be linked to increased water availability in this area (Fig-
ure 3.1C ). Figure 3.4 reveals some areas impacted by direct human interventions that are
not revealed in Figure 3.1, because subbasin variations can be concealed when present-
ing basin averaged results. For example, in parts of the Mississippi River basin, water
consumption is considerable, whereas the effect at the basin total level is small (Figures
3.1–3.3). A decrease in the CAD ratio is projected in the United States, southwestern
Europe, Pakistan, India, and China (Figure 3.4C ). Some statistics on the impact of 2
and 3K of global warming on irrigation water in these areas, in addition to the global
total numbers, are presented in Figure 3.5. The global median potential irrigation water
consumption for the entire ensemble (47 members) is 1171 km3·y−1 in the control period
(Figure 3.5A). The interquartile range for the same time period ranges from 940 km3·y−1

to 1284 km3·y−1. The corresponding number for the subensemble, i.e., for those models
simulating both potential and actual water consumption (29 of the 47 members; Models
and Data), is 1174 km3·y−1 (942 km3·y−1 to 1292 km3·y−1). These numbers are close to
the 1250 km3·y−1 (±25%) reported previously (Hoff et al. 2010), and represent about 1%
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Figure 3.5: Ensemble statistics on irrigation water consumption for the control period (C)
(1971–2000), 2 and 3K GMT increases for (A) the world, (B) United States, (C ) southwest
Europe (here comprising Portugal, Spain, and France, (D) Pakistan, (E ) India, and (F )
China. The upper panels show annual potential and actual irrigation water consumption.
The lower panels show CAD, i.e., the relationship between the actual and potential irriga-
tion water consumption. The boxes illustrate the 25th, 50th, and 75th percentiles of the
ensemble. The whiskers represent the total sample spread, and in addition the 5th and
95th percentiles are marked.

of mean annual terrestrial precipitation in the forcing datasets used here, and between 1%

and 2% of simulated annual terrestrial runoff.

Substantial differences exist in the ensemble estimates of the amount of potential irri-
gation water consumed, i.e., when water demands are always met (Figure 3.5). However,
potential irrigation water consumption will increase with increasing GMT, both globally
and regionally (Figure 3.5). Irrigation water consumed when water availability is taken
into account is more similar across the ensemble, despite the differences in human im-
pact parameterizations (Models and Data). Global actual irrigation water consumption
increases slightly with increasing GMT (Figure 3.5A). The projected changes in actual
irrigation water consumption are less apparent than the projected changes in potential
irrigation water consumption (Figure 3.5). The spread in irrigation water consumption
numbers for a given time period reflects the spread in human impacts seen for the river
basins presented in Figure 3.3. More importantly, there is a general agreement that the
CAD ratio will decrease in the areas in question, and more so the more GMT increases.
The global CAD ratio varies from 0.4 to 0.7 across the simulations, decreasing to 0.35–0.68
at 3K GMT increase. The corresponding median number decreases from 0.58 to 0.52.
The smallest change in the CAD ratio is found in India. Here, increased water availability
(Figure 3.1) results in almost constant water scarcity, despite a slight increase in potential
irrigation water consumption (Figure 3.4). Among the areas presented in Figure 3.5, the
relative decrease in the CAD ratio is most pronounced in southwestern Europe. Here, the
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control period median CAD ratio is simulated at 0.69, whereas the median result at 3K

GMT is 0.5. Actual irrigation water consumption does not change much with increasing
GMT, indicating that the decrease in the CAD ratio for the areas considered is mainly
caused by an increase in water demands.

3.3 Discussion

The climate effects on naturalized runoff presented here are broadly consistent with results
presented elsewhere (Hagemann et al. 2013, Tang and Lettenmaier 2012, Schewe et al.
2014). In large parts of the world, the additional impact on runoff caused by anthro-
pogenic water consumption does not contribute much to the total changes. However, this
study emphasizes the importance of taking anthropogenic water consumption into account
in areas where direct human interventions are large, and highlights areas where water
consumption leads to substantial changes in land surface water fluxes. It has previously
been indicated that it is unlikely that irrigation has a significant global-scale impact on
the Earth’s climate (Pitman et al. 2012), but regional predictions within global climate
models can be improved by taking into account local-scale processes (Pitman et al. 2012).

Surface water evaporation from man-made reservoirs and reservoir operations causing
seasonal regime shifts across multiyears can cause slight changes in annual runoff numbers.
However, reservoirs influence the shape of the hydrograph profoundly in many areas of
the world and seasonally impact discharge much more than the reduction caused by water
consumption (Hanasaki et al. 2006, Biemans et al. 2011).Seasonal changes in discharge
caused by storing and releasing of water in reservoirs are not presented in this study,
which focuses on annual runoff numbers. Also, because only annual results are presented,
it is not revealed whether water scarcity is constant over the time period considered, or
whether interannual or intraannual variations exist. The reservoir storage capacity within
a river basin indirectly impacts annual runoff numbers through its ability to accommodate
seasonal variations in flow volume and hence to satisfy irrigation water requirements. This
effect has not been specifically studied here, but it has previously been indicated that
nearly one-half of the irrigation water extracted globally originates from reservoirs built
for irrigation purposes (Hanasaki et al. 2006).

The model ensemble indicates that irrigation water scarcity is expected to increase
with increasing GMT. About 40% of total agricultural production relies on irrigation
(Molden 2007). In light of this, the increase in water scarcity and potential decline in
food production could affect people worldwide through food price changes on the global
market (Timmer 2012). In areas with a projected increase in irrigation water scarcity, and
hence possible decreases in food productivity, adaptation measures need to be addressed.
To increase food production, better water management and improved irrigation practices
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(reduced losses) have been suggested (Hoff et al. 2010). Irrigation area expansion in regions
with sufficient freshwater is also projected to increase food production (Elliott et al. 2014).
These issues must all be discussed in light of other water demands, including environmental
flow requirements (Hoff et al. 2010).

The areas for which irrigation water consumption and water scarcity are presented in
Figures 3.4 and 3.5 do not overlap directly with the river basins presented in Figures
3.1–3.3. However, Figures 3.4 and 3.5 still indicate that, if more water was available for
use, the anthropogenic impacts on river basin runoff seen in Figures 3.1–3.3 would have
been even larger. The range in estimates in Figure 3.3 is a result of both differences in the
baseline runoff (naturalized simulations) and amount of water consumed. Parameterization
differences among GHMs that influence naturalized simulation results (Haddeland et al.
2011) will subsequently influence the human impact simulations. Reservoir operations and
water withdrawal parameterizations further influence the results and contribute to the
rather large differences (Figures 3.3 and 3.5). The largest relative runoff decreases for the
human impact simulations in the Colorado River basin, for example, originate from the
hydrologic model simulating the lowest naturalized runoff and among the highest water
consumption numbers within the river basin. In other areas, e.g., in the Indus and Huang
He River basins, the differences are also influenced by whether or not multicropping is
taken into account in the hydrologic model.

It should be noted that none of the models considers water transportation between river
basins, e.g., water transported from the Colorado River basin to California, and groundwa-
ter extractions are poorly represented in most models. Hence, the actual irrigation water
consumption numbers might be somewhat underestimated. However, three of the GHMs
assume that anthropogenic water demands are always met (Models and Data). Further-
more, not all models take into account water consumption in sectors other than agriculture,
although the impact may be small because those sectors currently account for only a small
fraction of the total. In addition, irrigation water withdrawals and consumption depend
on the irrigation map used (Wisser et al. 2008). These differences in human impact pa-
rameterization clearly contribute to the spread in runoff changes and water consumption
numbers, in addition to naturalized simulation differences. In addition, both GCMs and
GHMs contribute substantially to the spread in future projections (Hagemann et al. 2013,
Schewe et al. 2014).

Only climate change effects on water demands and consumption are accounted for in
this study, whereas other variables, such as irrigated area and irrigation efficiencies are kept
constant at the year 2000 level. Also, the indirect effect of rising CO2 concentrations on
runoff and irrigation water consumption through its direct effect on evaporative demand
is not considered. Increasing CO2 can lead to lower irrigation water demands (Elliott
et al. 2014, Konzmann et al. 2013). However, nutrient limitations may influence crop
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growth. The combined effect on crop growth, irrigation water demands, and resulting
food production is still somewhat uncertain (Konzmann et al. 2013). The positive trend in
potential irrigation water consumption presented here is more profound than for specialized
crop models (Elliott et al. 2014). Possible reasons for this lie in the different representation
of agricultural land and agrohydrological processes in the models (Elliott et al. 2014). These
and other impacts on the hydrological cycle should be addressed in future hydrological
model developments and multimodel studies. Note also that bias correction has been
applied to the GCM data (Hagemann et al. 2011, Hempel et al. 2013). The assumptions
and implications of bias correction on forcing data used in hydrological simulations are
thoroughly discussed in the study by Ehret et al. (2012). Bias correction can impact
present-day simulated runoff numbers strongly, but the impact on projected relative water
flux changes, which is the focus in this paper, are much smaller (Hagemann et al. 2011,
Haddeland et al. 2012).

3.4 Conclusions

Based on a large ensemble of simulations using eight GCMs and seven GHMs, this study
provides a comprehensive assessment of the effects of climate change and direct anthro-
pogenic disturbances on the terrestrial water cycle. Despite considerable spread in the
individual results, a number of robust conclusions can be drawn at the regional and global
scale. The results indicate that the impacts of man-made reservoirs, water withdrawals,
and water consumption on the long-term global terrestrial water balance are small. How-
ever, impacts of anthropogenic interventions are significant in several large river basins. In
particular, in irrigation-rich areas in Asia and in the western United States, the effect of
current anthropogenic interventions on mean annual runoff is stronger than the projected
changes for a 2 or 3K increase in GMT. Climate change tends to increase potential irri-
gation water consumption on currently irrigated lands with further detrimental effects in
regions with significant irrigation. The climate change signal on runoff can be positive or
negative, and hence has the potential to alleviate or aggravate irrigation water scarcity.
Globally, the relationship between actual and potential irrigation water consumption is
expected to decrease, indicating an increase in irrigation water scarcity.

3.5 Models and Data

Seven GHMs are included in this study. The nature and magnitude of human disturbances
at which direct anthropogenic impacts like dams, water withdrawals, and water consump-
tion are included in the models vary (Table 3.1 and Appendix B, SI Models and Data). All
models were forced with climate data from a total of eight GCMs included in the Coupled
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Table 3.1: Hydrologic models

Model name Human impact parameterizations

H08
(Hanasaki et al.
2008a)

Two-purpose reservoir scheme (irrigation and nonirrigation). Potential and
actual irrigation water withdrawals and consumption. Irrigation water extracted
from nearby river. Actual industrial and domestic water withdrawals and use.
Water withdrawals and consumption for industrial and domestic sectors
(Hanasaki et al. 2006, 2008a).

LPJmL
(Bondeau et al.
2007)

Multipurpose reservoir scheme. Potential and actual irrigation water withdrawals
and consumption. Irrigation water extracted locally and from reservoirs. Actual
water withdrawals and consumption in other sectors taken from WaterGAP
estimates (Rost et al. 2008, Biemans et al. 2011).

MPI-HM
(Stacke and
Hagemann
2012b)

Potential irrigation water consumption. Irrigation water extracted from nearby
river and from a hypothetical aquifer if needed. No reservoirs. No published
references.

PCR-GLOBWB
(Wada et al.
2011)

Two-purpose reservoir scheme (water supply and nonwater supply). Potential
and actual irrigation water withdrawals and consumption. Irrigation water
extracted locally from surface water and groundwater, and from reservoirs.
Potential water withdrawals and consumption for domestic and industrial sectors
(Wada et al. 2011, 2012).

VIC
(Liang et al.
1994)

Multipurpose reservoir scheme. Potential and actual irrigation water withdrawals
and consumption. Irrigation water extracted from nearby river and from
reservoirs (Haddeland et al. 2006).

WaterGAP
(Döll et al. 2003)

Two-purpose reservoir scheme (irrigation and nonirrigation) (Hanasaki et al.
2006). Potential irrigation water withdrawals and consumption (Döll and Siebert
2002). Potential water withdrawals and consumption for domestic and industrial
sectors (Flörke et al. 2013).

WBMplus
(Wisser et al.
2008)

Reservoir operation is a function of current inflow compared with long-term
inflow. Potential irrigation water withdrawals and consumption. Irrigation water
extracted locally (small local reservoirs, groundwater and nearby river) (Wisser
et al. 2008).

LPJmL, Lund-Potsdam-Jena managed land dynamic global vegetation and water balance model; MPI-
HM, Max Planck Institute – hydrology model; PCR-GLOBWB, PCRaster global water balance model;
VIC, variable infiltration capacity macroscale hydrologic model; WaterGAP, water – a global assessment
and prognosis model; WBMplus, water balance/transport model.

Model Intercomparison Project 3 (CMIP3) and CMIP5 archives (Table 3.2). CMIP3 data
were prepared for the hydrological model simulations within the WATCH project (Hage-
mann et al. 2013, 2011), and the CMIP5 data were prepared for ISI-MIP (Hempel et al.
2013). Included in the analyses presented here are results when using forcing data from the
A2 emission scenario (CMIP3 models) and RCP8.5 (CMIP5 models). Thirty-year periods
of GMTs at 2 and 3K above preindustrial level are extracted from the GCMs (Table 3.2).
The control period (1971—2000) is assumed to be 0.4K above preindustrial level for all
GCMs.

All hydrological models are run at a daily time step at a spatial resolution of 0.5° latitude
by longitude, and runoff is routed through the DDM30 river network (Döll and Lehner
2002). Simulation results are submitted for the period 1971–2099. Not all GHMs are run
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using input data from all GCMs (Table 3.2). Simulated discharge at the basin outlets
are used when calculating basin averaged, or world total, runoff numbers. In this paper,
potential water consumption represents water consumed given water is freely available. All
models included in the study simulate this quantity. Four of the models—H08, the Lund-
Potsdam-Jena managed land dynamic global vegetation (LPJmL), the PCRaster global
water balance model (PCR-GLOBWB), and the variable infiltration capacity macroscale
hydrologic model (VIC)—also simulate actual water consumption, which is defined as
water consumed when water availability is taken into account. The CAD ratio (Hanasaki
et al. 2008b) is used as a measure of irrigation water scarcity (Appendix B, Glossary).
Both actual and potential irrigation water consumption are calculated at a daily temporal
resolution, and hence subannual variations are imbedded in the final CAD numbers.

Annual runoff and water consumption numbers are calculated for each GCM–GHM
combination independently, creating an ensemble of up to 47 annual time series for the
period 1971—2099. Differences between simulations are thereafter calculated for each
time period of interest (Table 3.2) for each ensemble member. Finally, median numbers
and other statistic measures are calculated. All results are treated equally, and no attempt
to give weights to GCMs or GHMs based on performance has been made.

Supplementary material related to this chapter is available in Appendix B.
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Chapter 4

A new climate dataset for systematic
assessments of climate change
impacts as a function of global
warming
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Abstract

In the ongoing political debate on climate change, global mean temperature change (∆Tglob)
has become the yardstick by which mitigation costs, impacts from unavoided climate
change, and adaptation requirements are discussed. For a scientifically informed discourse
along these lines, systematic assessments of climate change impacts as a function of ∆Tglob

are required. The current availability of climate change scenarios constrains this type of
assessment to a narrow range of temperature change and/or a reduced ensemble of climate
models. Here, a newly composed dataset of climate change scenarios is presented that
addresses the specific requirements for global assessments of climate change impacts as a
function of ∆Tglob. A pattern-scaling approach is applied to extract generalised patterns of
spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-
Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios
of global mean temperature increase obtained from the reduced-complexity climate model
MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above
pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain
the original AOGCMs’ climate change properties, even though they, necessarily, utilise
a simplified relationships between ∆Tglob and changes in local climate properties. The
dataset (made available online upon final publication of this paper) facilitates systematic
analyses of climate change impacts as it covers a wider and finer-spaced range of climate
change scenarios than the original AOGCM simulations.
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4.1 Introduction

Impacts of anticipated future climate change on ecosystems and human societies are reason
for major concern. Projections of such impacts are, however, characterised by uncertain-
ties in greenhouse gas (GHG) emissions scenarios, their implementation in climate models
(involving inter alia structural uncertainties of climate models) and their subsequent use
in impact models. Despite intense research summarised, for example, by the Intergovern-
mental Panel on Climate Change’s Working Group II report (IPCC 2007b), assessments
commonly lack systematic quantification of impacts as a function of global warming, as
only a small and often opportunistic selection of available climate change scenarios is em-
ployed. This hampers direct comparisons between studies (e.g. Müller et al. 2011) and also
our understanding of how impacts and their likelihood change over time or as a function
of global mean temperature (Tglob). The magnitude of impacts to be expected given spe-
cific degrees of Tglob rise has gained increasing attention in recent years due to the United
Nations Framework Convention on Climate Change’s stipulation to prevent “dangerous
climate change” and the ensuing discussion on whether this would be met by a 2-degree
mitigation target (rather than, for example, a 1.5 or 3 degree target). Besides requiring
an understanding of how impacts individually and collectively accumulate with increasing
Tglob, an understanding of the consequences of missing a given target is important for this
discussion (e.g. Mann 2009). Compilations of individual impact studies have helped to
illustrate the underlying “reasons for concern” (Smith et al. 2009) but do not provide the
consistent quantitative information needed.

In view of the importance of mitigation targets for the debate on climate change miti-
gation and the substantial investments required to meet them, the number of studies that
scrutinise systematically and consistently the worldwide impacts to be expected as a func-
tion of ∆Tglob, let alone their uncertainties, is surprisingly small. Examples for global
assessments of impacts ordered along ∆Tglob and derived with single impact modelling
frameworks are those by Arnell et al. (2011); Gosling et al. (2010), and Murray et al.
(2012) for freshwater availability, and those by Gerber et al. (2004); Scholze et al. (2006);
Sitch et al. (2008), and Heyder et al. (2011) for ecosystems and the carbon cycle. Other
assessments have focused on diverse impacts given a ∆Tglob of 4 degrees (see New et al.
2011).

While much of the uncertainty in Tglob is attributable to the fact that the exact develop-
ment of future GHG emissions cannot be known—requiring a scenario approach (Hawkins
and Sutton 2009)—the parameterisation of Atmosphere-Ocean General Circulation Mod-
els (AOGCMs) additionally contributes to uncertainty in regional temperature and pre-
cipitation changes associated with a given ∆Tglob (Hawkins and Sutton 2011). Most of
above-mentioned studies could account only partly for the latter, as they either relied on a
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small selection of AOGCMs or grouped larger ensembles according to the ∆Tglob reached
by the individual AOGCMs by the end of their simulation period (e.g. Scholze et al. 2006).
More rigorous assessments of impacts as a function of global warming are generally limited
by the availability of AOGCM simulations in the CMIP3 archive. The range of warming
levels covered by the different AOGCMs differs widely and the increase in Tglob over the
twenty-first century for the highest emission scenario A2 is only 3.4 in the multi-model
mean (Meehl et al. 2007b).

Overall, systematic assessments of climate change impacts as a function of global warm-
ing require that a large ∆Tglob range be covered (from, for example, 1.5 to 5 degrees), and
that the respective ∆Tglob levels are reached at around the same time. Furthermore, for
every ∆Tglob level, information on local changes in key climate variables (such as temper-
ature, precipitation, radiation or cloudiness) should consider an AOGCM multi-model en-
semble as large as possible, in order to account for the substantial climate model-structural
uncertainty. Such consistent information is not directly available in the existing CMIP3
and CMIP5 climate databases—it requires fusion of comprehensive datasets on climate
change patterns from different AOGCMs with different ∆Tglob trajectories (and under-
lying emissions trajectories), information on observed climate (without AOGCM biases),
and reduced-complexity models able to overcome the high computation requirements of
AOGCMs.

To address some of these features, a number of studies (e.g. Gosling et al. 2010, Murray
et al. 2012) have used emulated rather than original AOGCM output, calculated with
the so-called “pattern-scaling” technique (Mitchell 2003) that makes use of the correlation
between local long-term mean changes of climate variables and ∆Tglob. Scaling coefficients
were found to differ spatially and seasonally, but particularly for temperature they are
nearly independent of the GHG emission scenarios considered and sufficiently accurate
over a wide range of ∆Tglob (Solomon et al. 2009, Mitchell 2003, Huntingford and Cox
2000). Hence, pattern-scaling is an efficient method to generate climate scenarios for
systematic analyses of climate impacts as a function of ∆Tglob.

Using a comprehensive pattern-scaling approach covering monthly mean surface tem-
perature, cloudiness and precipitation, we here present a newly collated global dataset
of climate change scenarios that overcomes most of the above problems and is suited for
systematic, macro-scale impact assessments with empirical or process-based impact mod-
els. It is based on GCM-specific scaling patterns that are combined with time series of
∆Tglob generated by a reduced-complexity climate model, MAGICC6 (Meinshausen et al.
2011a). The emissions scenarios are designed such that each of eight ∆Tglob levels (1.5
to 5 degrees above pre-industrial levels in 0.5 degree steps) is reached by 2100. Monthly
climate anomaly patterns are derived for each of 19 AOGCMs available from the World
Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase
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Figure 4.1: Flow chart of data processing for the generation of climate scenarios.

3 (CMIP3) multi-model dataset. Scaling the derived generic change patterns per degree of
global mean warming with the ∆Tglob trajectories generates transient time series of climate
anomalies up to 2100. This dataset enables consistent analyses of impacts as a function
of ∆Tglob at the end of the century, and improved comparability of climate patterns and
resulting impacts for given Tglob levels. The dataset is referred to as “PanClim” (PAtterN
scaling CLIMate dataset) to indicate its methodological background and its wide-spanning
coverage of the scenario space (pan, Greek for “all”, “involving all members”). The complete
PanClim dataset is available for download from http://www.panclim.org.

4.2 Methods

Figure 4.1 sketches the steps of data processing and combination involved in the creation of
the climate scenarios, described in detail in the following sections. Section 4.2.1 describes
the extraction of scaling patterns—i.e. the spatial fields of local (monthly) climate change
per one degree of ∆Tglob — from AOGCM simulations. Section 4.2.2 covers the generation
of Tglob trajectories by the MAGICC6 model, and their combination with the derived
scaling patterns to generate time series of mean local climate anomalies for the given
warming scenarios. Section 4.2.3 focuses on the combination of these local anomalies
with data on observed variability and climatological means to generate climate scenarios
harmonised with historical observations, covering the entire global land area.

4.2.1 Derivation of scaling patterns from AOGCM simulations

The basic concept behind the methodology described in this paper is that any simulated
or observed monthly time series V (x,m, y) of a climate variable V (e.g. air temperature)
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in location x, month m, and year y can be decomposed as follows:

V (x,m, y) = V (x,m) + ∆V (x,m, y) + e(x,m, y) (4.1)

where V (x,m) denotes the long-term mean and ∆V (x,m, y) the long-term mean change
of variable V ; the term e(x,m, y) describes the natural interannual variability around the
long-term mean.

The general idea of the pattern scaling approach is to relate the local anomalies in
the long-term mean ∆V (x,m, y) in Equation 4.1 to a global scaler for which scenario
trajectories can be easily obtained (Mitchell 2003). In agreement with previous studies
(e.g. Huntingford and Cox 2000, Mitchell 2003), we here use global mean temperature
∆Tglob as scaler and assume a linear relationship between local monthly climate anomalies
∆V (x,m, y) and ∆Tglob(y):

∆V (x,m, y) = V ∗(x,m) ·∆Tglob(y) (4.2)

where V ∗(x,m) is the scaling coefficient, i.e. the change in V (x,m) per degree of ∆Tglob for
each location and month but independent of time (y). The entirety of all scaling coefficients
V ∗(x,m) for a particular variable and AOGCM is referred to as scaling pattern.

Substitution of Equation 4.2 in Equation 4.1 and subtraction of V (x,m) from both sides
of the equation gives:

V (x,m, y)− V (x,m) = V ∗(x,m) ·∆Tglob(y) + e(x,m, y) (4.3)

Equation 4.3 describes all deviations of V from the long-term mean V (x,m) as sum of
changes in the long-term mean (expressed by the linear relationship to ∆Tglob(y)) and
interannual variation around the long term mean. This equation has the form of a sim-
ple linear regression model that provides the basis for estimating scaling coefficients from
AOGCM simulations. For the estimation of V ∗(x,m) from AOGCM simulations, the
monthly data were linearly interpolated from their original spatial resolution to the tar-
get resolution used here, a regular 0.5 × 0.5 arc-degree grid. Estimates of V (x,m) are
obtained from the pre-industrial control run (equilibrium simulation without any anthro-
pogenic forcing) available for all AOGCMs with lengths between 100 and 990 simulation
years. Subtraction of V (x,m) from simulations with climate forcing yields deviations from
the long-term climatological mean that are taken as a dependent variable in the estima-
tion of V ∗(x,m) by linear regression. The corresponding independent variable ∆Tglob(y)

is obtained from estimates of Tglob(y) that are calculated as annual area-weighted global
averages (including oceans) of T (x,m, y). Since the extraction of patterns of V ∗(x,m) is
based on linear regression, the residual errors e(x,m, y) in Equation 4.3 are in fact a mix-
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ture of interannual variability and the imperfection of the regression model. The quality
of the fit obtained can thus be evaluated by comparison of residual errors and respective
interannual variability estimated from the control simulation (see section 4.4). We ap-
plied the above methodology to estimate scaling patterns for near-surface air temperature,
cloudiness and precipitation. Additionally, we studied logarithmic precipitation to reflect
an alternate assumption of exponential rather than linear precipitation change. In the log-
arithmic precipitation regression model, exclusion of dry months alters the estimated trend
of precipitation amounts under climate change. This problem is not purely of numerical
nature but highlights that the change in frequency of rain months and the change in the
rainfall amounts for rain months represent qualitatively different information that should
be addressed separately. Hence, we removed dry months (<1mm per month) from the
linear fit (Equation 4.3) of both precipitation and logarithmic precipitation so that both
regression models capture the change in rainfall amounts for rain months only.

Building on the basic principle of the pattern-scaling approach, the change in frequency
of rain months (p) was considered separately by applying a logistic regression model, in
which probabilities are logit-transformed and related to a linear predictor term, which gives
a generalised linear regression model:

logit (p(x,m, y)) = ln

(︃
p(x,m, y)

1− p(x,m, y)

)︃
= β0(x,m) + β∗(x,m) ·∆Tglob(y) (4.4)

where β0(x,m) and β∗(x,m) denote the pre-industrial value and the scaling coefficient,
respectively, for logit-transformed probability of rain month occurrence in location x and
month m. For the estimation of both model coefficients from time series of dry/rain month
occurrence we used the glm () function (Generalised Linear Model) from the core package
“stats” of the statistical software R (R Development Core Team 2011).

4.2.2 Construction of climate scenarios from derived patterns

Construction of scenarios of global mean temperature increase

The derived scaling patterns V ∗(x,m) for the different climate variables are the basis for
constructing time series of local anomalies of climate variables consistent with prescribed
Tglob trajectories. We ran the MAGICC6 model to obtain physically and systemically
plausible ∆Tglob trajectories and corresponding trajectories of atmospheric CO2 concen-
tration ([CO2]) (required for some impact models). MAGICC6 is a highly efficient reduced-
complexity carbon cycle climate model (Meinshausen et al. 2011a) that has been shown
to closely emulate mean results of complex AOGCMs from the CMIP3 data base (Mein-
shausen et al. 2011b). Here, MAGICC6 was used to calculate ∆Tglob and [CO2] for a large
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Figure 4.2: Trajectories of global mean temperature increase used in this study and cor-
responding atmospheric CO2 concentrations from the MAGICC6 model. The shaded area
indicates the time period for which the temperature targets are calculated.

number of artificial emissions pathways, constructed as described by Meinshausen et al.
(2009). For that purpose MAGICC’s carbon cycle parameters were adjusted to reproduce
the Bern carbon cycle model and the climate model parameters were chosen to reproduce
the median responses of the CMIP3 AOGCM ensemble. Climate sensitivity, for example,
was set to 3.0K.

From the generated large ensemble of pathways we selected those pairs of ∆Tglob and
[CO2] trajectories where average ∆Tglob in the period 2086–2115 reached 1.5, 2.0, 2.5, 3.0,
3.5, 4.0, 4.5, and 5.0 degrees above the pre-industrial level (see Figure 4.2). The definition
of the temperature target for a period rather than for a single year (e.g. 2100) was chosen
because the analysis of time periods is common practice in impact assessments to avoid
spurious effects from interannual variability. 30 yr is a typical length used in impact studies
in hydrology, agriculture, and ecosystems, for which our new data set is designed.

An outstanding feature in Figure 4.2 that illustrates the above-mentioned physical and
systemic plausibility is the initially stronger increase in Tglob in the lower than in the
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high temperature scenarios. Stronger mitigation scenarios tend to show a much faster
decrease in aerosol emissions than in CO2 emissions, as a rapid decrease of CO2 emissions is
accompanied by a switch to “cleaner” sources of energy. This correlation between CO2 and
aerosol emissions results from our use of the Equal Quantile Walk method (Meinshausen
et al. 2006) to create the different emission profiles that led to the various warming levels.
The drop in aerosol emissions in combination with the much shorter residence time of
aerosols in the atmosphere results in a rapid reduction of the aerosol cooling effect (see
Ramanathan and Feng 2008). As a consequence, the committed warming from current
[CO2] can unfold before a further reduction of CO2 emissions eventually results in an
overall decrease in radiative forcing and temperature. Conversely, the CO2 emissions in the
high temperature scenarios are accompanied by high aerosol emissions that maintain the
cooling effect. Besides the possibility to produce Tglob scenarios together with consistent
[CO2] trajectories, the consideration of such effects is the major advantage of applying
MAGICC6 in this study.

Construction of local time series of climate anomalies

Local time series of climate anomalies ∆V scen(x,m, y) for the four climate variables were
obtained by multiplying the scaling coefficients V ∗(x,m) with the ∆Tglob(y) trajectories for
each scenario (Equation 4.2). Because the obtained time series of anomalies are combined
with climate observations in the next step (see section 4.2.3), it is necessary to account for
the climate change signal already present in these observations. Anomalies are therefore
calculated relative to the last year of observations, 2009. This is achieved by subtracting
the Tglob increase above pre-industrial level for the year 2009 (∼0.9K) from the Tglob

trajectories of the MAGICC6 scenarios before multiplying them with the anomaly patterns.
In all cases, anomalies were only calculated if the significance level of the slope of the
regression model is >0.9; otherwise they were set to zero.

For temperature, the obtained local anomalies can be used without any restriction. In
the case of cloudiness and precipitation, however, the obtained anomalies may result in
an exceedance of the lower and, in the case of cloudiness, also the upper limit of possible
values for these variables. For cloudiness this problem is less critical as it is not used
directly in impact models but serves, among other parameters, as a proxy for atmospheric
transmissivity and emissivity in the estimation of radiation budgets. We therefore consider
a simple capping of anomalies to prevent the exceedance of upper and lower limits, a suf-
ficiently accurate solution. In contrast to cloudiness, precipitation is an essential variable
and calculation of anomalies that would result in physically implausible negative precipi-
tation rates should be avoided from the beginning. Anomalies for decreasing precipitation
are therefore estimated from the regression models for logarithmic precipitation, which is
equivalent to the assumption of exponential precipitation decrease. As there is no indi-
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cation that precipitation would increase exponentially with Tglob, precipitation increases
are estimated from the linear regression models for untransformed precipitation. For small
change rates, the linear and the exponential approach yield very similar anomalies, while
for large change rates the linear approach avoids unrealistically augmented increases and
the exponential approach avoids negative precipitation rates (see also Watterson 2008).
For estimating rain month frequency anomalies, changes in the linear predictor term of
Equation 4.4, i.e. anomalies of logit probabilities, were calculated. These obtained anoma-
lies can be used without restrictions, as the range of logit probabilities is unconstrained.
For the transformation into actual frequency anomalies see section 4.2.3.

4.2.3 Creation of climate scenarios from observed climate and derived
climate anomalies

In order to obtain complete scenario time series of climate variables Vscen(x,m, y) that can
be used for transient impact model simulations, the local scenario time series of climate
anomalies ∆V scen(x,m, y) are combined with time series—here referred to as “reference
time series” Vref(x,m, y)—that provide the long-term climatological mean V (x,m) and
interannual variability e(x,m, y) (Equation 4.1). Reference time series for temperature
and cloudiness are constructed from and are consistent with the CRU TS3.1 global climate
dataset (Harris et al. 2014); reference time series for precipitation are based the GPCC full
reanalysis dataset version 5 (Rudolf et al. 2010).

Because GPCC and CRU datasets have a slightly different land mask, the GPCC dataset
was adjusted to the CRU land mask (67 420 grid cells) by filling up missing cells by in-
terpolation. For this, the five neighbouring cells with the highest weight—calculated from
distance and angular separation (New et al. 2000)—within a 450 km radius were used. If
<5 values were available, the interpolation was performed on this reduced data basis; if
<2, the precipitation from the CRU TS3.1 dataset was used. Grid cells only present in
the GPCC land mask but not in the CRU land mask were excluded. Altogether, 767 grid
cells were introduced by interpolation, 298 grid cells were directly taken from CRU TS3.1,
and 1013 grid cells were omitted from the GPCC dataset.

106-yr reference time series covering the scenario period (2010–2115) were composed as a
random sequence of years from historical observations of the period 1961–2009. To preserve
interannual autocorrelation, spatial coherence, and correlation among climate variables,
all months and grid cells for all climate variables were taken from the same year. Prior
to resampling, the trend in temperature was removed in a way that the detrended time
series of temperature are representative for the climatologic mean of year 2009 obtained
from the trend analysis. In the process of data preparation, observations of precipitation
and cloudiness were found to exhibit strong interannual/interdecadal variability, which
negatively affects the robustness of estimated trends. In order to avoid spurious effects from
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removing these trends, the original data were used directly for generating the reference time
series for cloudiness and precipitation. The time series of resampled observations obtained
are assumed to represent variability and climatology for the reference year 2009, to be
consistent with the reference year for the derived anomalies. This consistency between the
constructed reference time series, derived anomaly time series, and observations allows for
seamless combination of historic observations with future climate projections and thus for
transient impact model runs.

The combination of the anomalies with the reference time series is a crucial step and
related to the general problem of whether to apply climate anomalies as an absolute change:

Vscen(x,m, y) = Vref(x,m, y) + ∆V scen(x,m, y) (4.5)

or a relative change:

Vscen(x,m, y) = Vref(x,m, y) · V base(x,m) + ∆V scen(x,m, y)

V base(x,m)
(4.6)

where V base(x,m) is the basis for the anomalies in the AOGCM, i.e. the long-term clima-
tological mean of the AOGCM’s representation of present-day climate. Where biases in the
AOGCM’s representation of present-day climate are small, the application of anomalies as
relative change imposes a similar mean change to the scenario time series than the appli-
cation as absolute change. That is, the difference between the mean of the scenario time
series and the reference time series is similar to the original anomaly. As biases increase,
climate anomalies are progressively altered with the relative approach. This alteration is
an expression of the adjustment of the absolute anomaly derived from a biased base level
in the AOGCM to the observed level, which is the actual motivation for using the rela-
tive approach. The relevance of this adjustment is particularly apparent where decreases
from overestimated levels in the AOGCM are applied to lower observed levels. Without
the attenuation of the anomaly by the relative approach the application of a negative
change might well lead to negative values. However, for the reverse case—increases from
underestimated levels—this approach is less favourable as it may lead to an unrealistic
augmentation of the absolute anomaly.

Another difference between the two approaches is that with the absolute application
of anomalies interannual variability remains unchanged, while with the relative applica-
tion interannual variability is altered in a way that the coefficient of variation remains
constant. The relevance of this variability adjustment is most apparent for cases where
negative anomalies bring the mean of the scenario time series close to zero. In these cases
a corresponding decrease of variability is required to prevent the occurrence of negative
values.
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The procedures used to apply the anomaly time series to the reference time series for
different climate variables are described in the remaining part of this section. In order to
improve readability, the parameters x and m are omitted; only the parameter y is used to
differentiate terms that vary over time from time-invariant terms. Thus, Equations 4.7–
4.14 can be seen to describe the processes for a particular location x and month m but
apply to all locations and months.

Temperature

Since temperature biases in AOGCMs are very small compared to absolute temperature
levels, the application as absolute or relative change would give very similar results. How-
ever, temperature anomalies are commonly treated as absolute changes in the literature
and are thus applied as absolute change here:

Tscen(y) = Tref(y) + ∆T scen(y) (4.7)

where Tscen(y), Tref(y), and ∆T scen(y) are the temperature time series of the scenario, the
reference time series, and the time series of anomalies, respectively.

Cloudiness

For cloudiness, anomalies were applied as relative changes. Due to the problem of augmen-
tation of anomalies when applied as relative change to higher observed levels, there is a
risk of exceeding the upper 100% limit in these cases. Increases in cloudiness are therefore
applied as relative decreases of cloudlessness, i.e. 100% – cloudiness:

Cldscen(y) =

⎧⎨⎩Cldref(y) · Cldbase+∆Cldscen(y)

Cldbase
for ∆Cldscen(y) < 0

100− (100− Cldref(y)) ·
100−(Cldbase+∆Cldscen(y))

100−Cldbase
for ∆Cldscen(y) > 0

(4.8)

with Cldscen(y), Cldref(y), ∆Cldscen(y), and Cldbase denoting the cloudiness time series of
the scenario, the reference time series, the time series of anomalies, and the present-day
climatological mean cloudiness in the AOGCM, respectively. For consistency with the
anomalies and the reference time series, Cldbase needs to represent the simulated clima-
tological mean for the year 2009. It is estimated by adding the cloudiness anomaly for
a 0.9K warming to the climatological mean of the control run (see section 4.2.2).
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Precipitation

The application of precipitation anomalies is particularly challenging because of the im-
portance of precipitation as key variable in impact assessments and the partially very large
biases in simulated present-day precipitation. In cases where simulated precipitation in the
control run is very low, small absolute increases correspond to very large relative changes.
When applied to significantly higher observed precipitation rates, the absolute changes can
become unrealistically large. Other studies have therefore proposed to use absolute changes
or limit the relative changes in such cases (Carter et al. 1994, Hulme et al. 1995). Füssel
(2003) notes that the problem depends on the degree of underestimation of present-day
precipitation rates by AOGCMs and proposes a seamless transition from a relative towards
an absolute application of anomalies, depending on the degree of underestimation. Here we
adopt the approach by Füssel (2003) with some modifications required for the application
to time series (see also Gerten et al. 2011, where a similar approach was used). Anomalies
are applied as relative change, but as the underestimation of present-day precipitation in
the AOGCM increases, the applied relative change is reduced so that the resulting mean
change in the scenario time series becomes increasingly similar to the absolute change:

Pscen(y) = Pref(y) ·

[︄
1 +

(︃
∆P scen(y)

P ref

)︃(︃
P ref

P base

)︃λ
]︄

(4.9)

with

λ =

⎧⎨⎩
√︂

Pbase

P ref
for P base < P ref

1 for P base ≥ P ref

(4.10)

with Pscen(y), Pref(y), and ∆P scen(y) denoting the precipitation time series of the sce-
nario, the reference time series, and the time series of anomalies, respectively; and P ref

and P base denoting the climatological means of the reference time series and the year 2009
in the AOGCM, respectively. Estimation of P base is analogous to estimation of Cldbase

(see section 4.2.3). The exponent λ determines the degree to which an anomaly is ap-
plied as absolute or relative change. If λ = 1, Equation 4.9 is equivalent to the relative
interpretation of precipitation anomalies. If present precipitation is underestimated by the
AOGCM, lower values of λ diminish the applied relative anomaly. If λ approaches zero,
the factor applied to the values of the reference time series results in a shift of its mean
equal to the absolute anomaly ∆P scen(y). Because all anomalies are applied as a factor,
the coefficient of variation is preserved in the scenario time series, which implies changes
in interannual variability.

63



Rain month frequency

Based on the logistic regression model estimated from the AOGCM simulations, the prob-
ability of rain month occurrence was estimated for each month of the scaled scenario time
series as follows:

pscen(y) =
ez

1 + ez
with z = logit (pref) + β∗ ·∆Tglob(y) (4.11)

where pscen(y) is the probability of year y in the scenario to be a rain month and pref the
probability of rain month occurrence in the reference time series—i.e. the fraction of rain
months in that series. In cases where pref is either 0 or 1, logit (pref) cannot be calculated
and was set to a value of −7 and 7, respectively. This is equivalent to values for pref of
about 1/1100 and 1− 1/1100, respectively. The term β∗ ·∆Tglob(y) denotes the anomaly
of the logit rain month probability estimated from the logistic regression model and Tglob

anomalies (see section 4.2.2). Because the intercept and the slope of the logistic regression
model are both estimated by fitting the model to the scenario data, extreme values are
sometimes obtained for β∗ where rain month probability is 0 or 1 and some singular dry
or rain months occur towards the higher end of the temperature range. When used with
the estimated intercept β0, these slopes correspond to very small changes in rain month
probability but produce unrealistically augmented probability changes when applied to pref

in Equation 4.11. In order to avoid this effect, only slopes with a corresponding estimate
for the intercept between −7 and 7 were applied; otherwise no change was applied. This
rule applied to about 5.5% of all significant estimates for β∗.

The application of pscen to the reference time series entails the removal of excess and
the introduction of additional rain months by means of a stochastic process. For this
procedure, a random sequence w(y) of uniformly distributed numbers between 0 and 1 is
generated, which serves as a decision criterion on whether a rain month is introduced or
removed in year y. If pscen(y) is smaller than pref a rain month is removed if

w(y) ≥ pscen(y)

pref
(4.12)

Conversely, if pscen(y) is larger than pref , a rain month is introduced if

1− w(y) ≥ 1− pscen(y)

1− pref
(4.13)

The precipitation event to be introduced is randomly chosen from the precipitation distri-
bution of the respective reference time series. In cases where the reference time series has
no rain month at all, a synthetic rainfall distribution is generated by interpolation from
up to five neighbour cells with at least one precipitation event in their distribution. The

64



selection criterion for these cells was taken to be the highest interpolation weight from
all cells within a radius of 450 km. Interpolation weights were calculated as in New et al.
(2000) with account for distance and angular separation.

In order to preserve the spatial and temporal coherence of the precipitation field, the
same random number sequence w(y) was used for all grid cells and months of the year.
The rationale behind this procedure is that for neighbouring cells with similar pscen(y) and
pref , rain months get removed or inserted in the same year. In order to avoid an overlap
with the removal of rain months, however, the reflected sequence 1 − w(y) was used as
decision criterion for the introduction of rain months. The procedure was applied prior to
the scaling of precipitation amounts described in the preceding sections. Average reference
precipitation used in Equations 4.9 and 4.10 was calculated from this modified reference
time series.

Wet-day frequency

An additional information required by many impact models is the number of wet days per
month. Due to the sparse availability of daily rainfall data from AOGCMs and strong
biases in frequency distribution of rainfall intensities in many AOGCMs, this information
is hard to extract from these models. The number of wet days per month is therefore
estimated based on New et al. (2000) using the relationship between monthly precipitation
sum and number of wet days:

WD(y) = WDobs

(︃
P (y)

P obs

)︃γ

(4.14)

where P (y) and WD(y) represent the time series for precipitation sum and the estimated
number of wet days of a month and grid cell, respectively. The exponent γ is assumed to
be 0.45, which was found by New et al. (2000) to yield best results. The values WDobs and
P obs represent the observed 1961–1990 mean monthly wet-day frequency and precipitation
sum, respectively. The former was derived from CRU TS3.1 (Harris et al. 2014) and the
latter from GPCC version 5 (Rudolf et al. 2010). The means were calculated over the
entire 30-yr period, including totally dry months. Because the datasets for wet days and
precipitation are based on different station networks they are not fully consistent, i.e. there
are cases where rain months have zero wet days (and vice versa). The absolute minimum
for WDobs is the fraction of rain months in the 30-yr period, which means that at least one
wet day has to exist for each rain month. If the estimate of WDobs is smaller than that,
it was set to that minimum. This estimation procedure delivers conservative estimates of
wet-day frequency for the scenario period, since the relationship between wet-day frequency
and monthly precipitation sum is assumed to be constant over time.
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4.3 Results and discussion

4.3.1 Properties of scaling patterns extracted from AOGCM simulations

The scaling patterns extracted from AOGCM simulations are the core component of the
scenario-building described in this paper. They provide information on spatial and tem-
poral heterogeneity of climate change signals for primary climate variables as projected by
different AOGCMs. In this section, an overview is given of the spatial coverage of fits that
are significant and of basic properties of the derived patterns (mean and standard devia-
tion). The focus is primarily on a comparison of the different climate variables with some
indication of the inter-model spread. A comprehensive overview with values for individual
AOGCMs is presented in Table 4.1.

An apparent difference between the climate variables is the spatial and temporal cov-
erage of significant slope parameters of the regression models obtained from the AOGCM
simulation. As described in section 4.2.2, only slope estimates with a statistical significance
>0.9 were accepted and used for the scaling. Each slope estimate is representative for a
specific area (size of grid cell) and a specific time period of the year (length of month). In
order to assess the spatial and temporal coverage of significant slope estimates, the product
of area and duration for each significant slope is calculated and summed up. The sum is
related to the product of total land area and length of the year to arrive at a percentage
of spatial and temporal coverage.

Averaged over all AOGCMs, spatial and temporal coverage of significant slopes is 99.9%,
82.0%, and 78.2% for temperature, cloudiness and precipitation, respectively (value for
precipitation composed of 46.9% significant increases in the linear case and 31.3% sig-
nificant decreases in the logarithmic case; Table 4.1). The average coverage of significant
slopes for the logistic regression models for rain month probability is 10.9% and 10.3% if
regression models with extreme intercepts are excluded (see section 4.2.3). Although there
is considerable variation in spatial coverage of significant fits among individual AOGCMs
(see Table 4.1), the relative magnitude of coverage for the different variables is consistent
over all models. Near full coverage is found for temperature, followed by moderate to high
coverage for cloudiness and precipitation (including both increases and decreases). Cover-
age of significant precipitation increases is in all cases higher than for decreases although
values are similar in some cases. In all cases, coverage of significant changes of rain month
frequency is smallest.

Although the coverage of significant changes for cloudiness, precipitation, and rain
month frequency is significantly lower than for temperature, this must not be interpreted
as an indication of limited applicability of the pattern-scaling approach for these variables.
A major difference between temperature and the other variables is that for the former only
positive trends occur, while the other variables display a mixture of positive and negative
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trends (see Figures 4.3–4.6). This implies the existence of transition zones between areas
with positive and negative trends in the monthly fields where trends are de facto zero
and therefore no significant slopes can be found. In addition, cloudiness and precipitation
both exhibit strong interannual variability that tends to mask weak trends that primarily
occur around such transition zones. Similarly, the estimation of parameters of the logistic
regression model for change of rain month frequency is hampered by the stochastic nature
of this variable. Moreover, vast areas with a rain month frequency of 100% (e.g. in the
high latitudes and the wet tropics) remain unaffected by the occurrence of dry months
under climate change (Figure 4.6).

For each derived anomaly pattern two statistics—mean and standard deviation—are
calculated in order to characterise the patterns. We took into account the spatial and
temporal coverage of the individual slopes—i.e. by weighting them with the respective
cell area and length of month. Because the aim is to illustrate the properties of the entire
pattern as it is applied, grid cells and months without a significant slope are included as
zero values.

Averaged over all AOGCMs the mean anomaly of temperature increase over land is
estimated to be 1.32K per 1K increase of Tglob (from 14.0 ◦C in the reference time series).
Because Tglob anomalies and local temperature anomalies used in the regression are esti-
mated from the same data, the value demonstrates that the land surface heats up much
more than the whole of the global surface. This phenomenon is well known and is caused
by the higher heat storage capacity of the oceans, which cause them to heat up less (Lam-
bert and Chiang 2007). Although temperature trends are found to be always positive over
land (Figure 4.3), there is considerable heterogeneity in the degree of warming in different
regions and times of the year. This heterogeneity is captured by the pattern’s standard
deviation, which on average over all AOGCMs is 0.5K. The mean and standard deviation
for individual models are in the range of 1.18–1.43 and 0.40–0.63, respectively (Table 4.1).

The prevalence of a clear mean signal in the pattern is unique to temperature among the
variables considered here. For cloudiness the average pattern mean is −0.49%—less than
1% of the mean cloudiness over land in the reference time series (55.3%). The relatively
small mean change is contrasted by a higher standard deviation of 1.55%, which reveals the
distinct spatial and temporal pattern of changes in cloudiness. This is consistent over all
individual AOGCMs, which are characterised by mean changes between −1.19 and 0.37%,
and pattern standard deviations between 0.97 and 2.09%, respectively.

For the calculation of pattern mean and standard deviation for precipitation, the de-
creases of logarithmic precipitation that make up the decreasing part of the pattern need
to be converted to absolute changes in precipitation. Although the nonlinearity of expo-
nential decrease may lead to an augmentation of precipitation decreases, the effect remains
small due to the small magnitude of slopes of logarithmic precipitation decrease (−0.10,
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Figure 4.3: Multi-model mean of the actual applied annual mean change in near surface
air temperature in K per 1 K of ∆Tglob (Equation 4.16).

average over all AOGCMs). Averaged over all AOGCMs a mean precipitation change
of 0.026mmd−1 (millimetre per day) is found, which is equivalent to ∼1% of the mean
precipitation rate over land in the reference time series (2.27mmd−1). Similar than for
cloudiness, this small mean change is contrasted by a much larger standard deviation of
0.22mmd−1 (averaged over all AOGCMs). Corresponding values for individual AOGCMs
range between −0.016 and 0.069mmd−1, and between 0.15 and 0.32mmd−1 for mean and
standard deviation, respectively (Table 4.1).

The slopes of the logistic regression for changes in rain month frequency are difficult to
interpret in their original form and were therefore converted to changes in the fraction of
rain months for the calculation of statistics. Averaged over all AOGCMs the mean change is
−0.0025 rain months per month, which corresponds to an average loss of one rain month in
about 33 yr on the entire land surface (including areas with no change). Average standard
deviation of rain month changes is 0.028 rain months per month. For individual AOGCMs
mean rain month frequency changes are between −0.0074 and 0.0034 rain months per
month with standard deviations between 0.015 and 0.034.

4.4 Significance of scaling patterns extracted from AOGCM

simulations

The assumption of a linear relationship between change in Tglob and mean local change of a
climate variable V considered is central to pattern scaling. Although it is generally accepted
that this assumption holds well for temperature (Mitchell 2003), it may not be fully valid
for other climate variables. The focus of this section is therefore on a comparison between
the different variables rather than between the different AOGCMs. However, values for
individual AOGCMs are presented in Table 4.2.
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For ordinary linear square models, such as those fitted to the AOGCM data for pattern
extraction, the total sum of squares (TSS) equals the sum of explained sum of squares
(ESS) and residual sum of squares (RSS). For the pattern extraction, this is described in
Equation 4.15.

N∑︂
y=1

[∆V (x,m, y)]2 =
N∑︂
y=1

[V ∗(x,m) ·∆Tglob(y)]
2

+
N∑︂
y=1

[∆V (x,m, y)− V ∗(x,m) ·∆Tglob(y)]
2 (4.15)

Based on this relationship, it is possible to evaluate the significance of the extracted

patterns by comparing the explained sum of squares
N∑︁
y=1

[V ∗(x,m) ·∆Tglob(y)]
2 to the total

sum of squares
N∑︁
y=1

[∆V (x,m, y)]2 to provide a measure of explained variance. However,

this measure is incomplete without an analysis of how much of the residual sum of squares
N∑︁
y=1

[∆V (x,m, y) − V ∗(x,m) · ∆Tglob(y)]
2 can be attributed to interannual variability in-

herent to the climate system. This variability cannot be captured by the linear regression,
and the separation of the climate signal from the background variability is in fact the basic
principle of the pattern-scaling approach. For the analysis of the residual sum of squares
the variance of the control run Varcntrl(x,m) was multiplied with the number of values N

in the residual sum of squares to obtain an estimate of the total sum of squared interannual
variability to be expected in the scenario data.

Because Equation 4.15 is valid for every single regression model, the evaluation metrics
derived from its terms can be calculated for every model, grid cell, and month. In order
to facilitate a comparison of the performance for different variables, area-weighted means
over all land cells for the different square sums are calculated for each model and month
and then again averaged.

For the ratio of explained sum of squares to total sum of squares (ESS/TSS), ensem-
ble means of 0.78, 0.20, 0.16, and 0.15 are found for temperature, cloudiness, precipita-
tion (increases only), and logarithmic precipitation (decreases only), respectively. Corre-
sponding ensemble means for ratios of residual mean of squares to control run variance
(RSS/(N · Varcntrl)) are 0.93, 1.01, 1.29, and 1.13, respectively. Although ratios of ex-
plained variation for cloudiness, precipitation, and logarithmic precipitation appear to be
very small, the comparison of residual variance to the control run variance reveals that
most of the unexplained variation can be attributed to the high interannual variability of
these variables. This is a clear indication that the derived patterns have a strong signif-
icance and can be used in a scenario-building framework such as the one applied here.
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Even the relatively high value of (RSS/(N ·Varcntrl)) for increasing precipitation (1.29) is
not critical if one considers that increases of mean precipitation are usually accompanied
by increases in variability. Because a transformation to logarithmic values diminishes this
effect, the ratio of residual variance to control run variance is very close to unity (0.98) if
it is calculated for increasing logarithmic precipitation. It should be mentioned, however,
that precipitation change in the AOGCM simulations is also influenced by factors such as
atmospheric aerosol loading, as these effects are not captured by the extracted patterns and
therefore contribute to higher (RSS/(N ·Varcntrl)) ratios. The ratio of residual variance to
control run variance smaller than unity for temperature means that the residual variation
is generally slightly smaller than expected from the interannual variability estimated from
the control run. This is an indicator for the strong relationship between local temperature
anomalies and Tglob anomalies captured by the derived patterns. When using these pat-
terns to predict local temperature anomalies in conjunction with actual ∆Tglob(y), the part
of interannual variability that can be explained by interannual variability of ∆Tglob(y) is
included which reduces the residual error. In contrast, the estimation of control run vari-
ance is based on a constant mean climatology and therefore includes the part of variability
that is correlated to the variability in ∆Tglob(y).

4.5 Applied local anomalies for 1 degree of global warming

The dataset for systematic climate impact assessment presented here is a combination of
extracted patterns and the reference time series of temperature, precipitation, and cloudi-
ness. While properties of the scaling patterns were discussed in the preceding section, this
section explores the actual anomalies by which the scenario time series are shifted. For
each variable the scaling patterns that represent the anomalies for a 1-degree increase in
Tglob are applied to the reference time series according to the methodology described in
section 4.2.3. Thereby, the absolute change V ∗(x,m)·1K is altered, depending on the appli-
cation method and the degree of disagreement between observed and simulated present-day
climate. From the obtained time series multi-model means of the actual applied annual
mean change are calculated:

∆V appl,1K(x) =
1

19 · 12

19∑︂
i=1

12∑︂
m=1

[︁
V scen,1K(x,m, i)− V ref(x,m)

]︁
(4.16)

where V scen,1K(x,m, i) is the long-term climatological mean of the scenario time series for
a Tglob increase by 1K in location x, month m, and AOGCM i.

The alteration of anomalies by the application procedure is an important aspect of the
methodology described in this paper. It is, however, a very general problem how to interpret
and apply AOGCM-derived changes in climatological means when these means are biased.
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If the observed climatology is underestimated the simulated change may underestimate the
actual change and vice versa, providing that changes derived from a biased representation
of reality are a meaningful source of actual change at all. All assessments that are based on
anomalies obtained from AOGCM simulations are confronted with this problem and have
to deal with the question whether to use the unchanged absolute anomalies or adjust them
according to the biases in the AOGCM’s presentation of actual conditions. In cases where
anomalies are combined with observations, an adjustment is often inevitable, as a direct use
of anomalies can cause an exceedance of valid ranges for some variables (e.g. most variables
have a positivity constraint). In these cases a relative application of anomalies provides a
convenient and plausible way of accounting for the different base levels in simulations and
observations. There are, however, no objective criteria on whether and how to perform
this adjustment. Hence, any solution represents a choice that cannot be validated in a
meaningful way. Our methodology is no exception from that. It is grounded on common
practice found in the impact literature, aiming to fulfil the particular requirements of the
pattern-scaling approach, while minimising alterations of the original signal. In place of a
validation, we here complement the presentation of applied anomalies in the end product
by a presentation of the alteration of the original anomalies. Multi-model means of the
alteration of the original anomalies V ∗(x,m) · 1K in V scen,1K(x,m, i) are calculated as

∆V alt,1K(x) =
1

19 · 12

19∑︂
i=1

12∑︂
m=1

[︂⃓⃓
V scen,1K(x,m, i)− V ref(x,m)

⃓⃓
−
⃓⃓
V ∗(x,m, i) · 1K

⃓⃓]︂
(4.17)

The omission of the sign of change by the modulo function in Equation 4.17 ensures that
augmentations always have a positive sign and attenuations always have an negative sign,
regardless of the sign of change.

For temperature, the actual applied anomalies for a 1-degree increase in Tglob (Fig-
ure 4.3) are identical to the scaling pattern, as temperature anomalies are applied as
absolute changes (Equation 4.7). The spatial distribution of mean annual temperature
changes across all AOGCMs exhibits the same overall behaviour as presented and dis-
cussed for the CMIP3 ensemble in IPCC (2007a). For the considered land area there are
no incidents of decreasing local temperature with increasing Tglob. Below average warming
(green colours) is only found in the vicinity of oceans, which is the result of the thermal
inertia of the oceans. Overall, warming on the land surface is above average with a dis-
tinct pattern of polar amplification (stronger warming towards higher latitudes). Behind
the multi-model annual mean change there is substantial variation in regional temperature
change both among different AOGCMs and during the course of the year (see Appendix C).
Disparity among AOGCMs is lower than the projected mean change—i.e. there is some
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Figure 4.4: Upper panel: multi-model mean of the actual applied annual mean change
in cloudiness in % cloud cover per 1K of ∆Tglob (Equation 4.16). Lower panel: multi-
model mean of the alteration of the original anomaly in % cloud cover for 1K of ∆Tglob

(Equation 4.17); positive values indicate an augmentation and negative values indicate an
attenuation, regardless of the direction of change.

disagreement in the magnitude but not in the direction of change. Seasonality of change is
particularly strong in the high northern latitudes and broadly follows the pattern of polar
amplification. Hence, the strong average increase projected for these areas does not occur
uniformly over the year.

Actual applied anomalies for cloudiness are a mix of cloud cover increases and decreases
(Figure 4.4). Strong decreases are found in the Mediterranean, the Middle East, southern
Africa, southern Australia, Central America, and the Amazon region. Increases are con-
strained to the higher northern latitudes and the Horn of Africa. In some areas, such as
the northernmost latitudes, the Amazon, and some parts of Africa, variation of projected
annual cloud cover change among AOGCMs is high with inter-model standard deviation
exceeding the mean change (see Appendix C). Significant seasonality in the multi-model
mean is limited to a few regions such as the Amazon, Central Asia and northeastern Canada
only (see Appendix C). Regions with pronounced seasonality do not always coincide with
regions of strong mean change, which indicates a mix of increases and decreases throughout
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the year that cancel out each other in the annual mean.

Alteration of the absolute signal, averaged over all months and AOGCMs, by the ap-
plication method described in section 4.2.3 is depicted in the lower panel of Figure 4.4.
In most cases the application method augments the original signal, which means that
decreases of cloudiness tend to be associated by underestimation and increases by over-
estimation of present-day cloud cover. However, in most cases the average alteration of
the original signal is less than ±0.5%. Significant alteration of the signal only occurs in
northern Canada, the Amazon, the Middle East, and some parts of Africa—all of these
regions being characterised by strong mean changes (Figure 4.4, upper panel).

The multi-model mean of annual precipitation change is shown in Figure 4.5 (upper
panel). As for temperature and cloudiness, precipitation changes are consistent with re-
sults presented in IPCC (2007a). Significant decreases prevail in the Mediterranean, the
Middle East, South Africa, southern Australia, Central America and Patagonia; increases
are projected for the Boreal zone, South and Southeast Asia, East Africa, and parts of
South America. For some regions such as the Amazon, Sub-Saharan Africa, and South-
east Asia inter-model standard deviation is high (see Appendix C), indicating considerable
disagreement in the magnitude and in some cases even sign of mean annual precipitation
change for the different AOGCMs. Seasonality of change is less pronounced but seems
to occur in regions where the inter-model spread is high—i.e. the wet tropics but also in
temperate North America and Europe (see Appendix C).

Although large biases in the AOGCMs impair the applicability of derived anomalies
the alteration of the scaled anomalies by the application method is well controlled and
rarely exceeds ±0.05mmd−1. Significant alterations primarily occur in mountainous re-
gions (Andes, Rocky Mountains, Himalayas) where the AOGCMs’ coarse spatial resolution
impedes the correct representation of sub-grid orographic effects. In average, our applica-
tion method attenuates rather than augments the original anomaly, which indicates that
AOGCMs tend to overestimate observed precipitation rates. It is not the progressive re-
duction of the relative anomaly by the λ exponent with increasing underestimation in the
AOGCM (Equation 4.9) that causes the overall attenuation. The reduction of the relative
anomaly applies to both increases and decreases and merely compensates for the asym-
metry in the relative application of anomalies derived from differently biased AOGCM
baselines. While the attenuation in case of overestimation can never exceed the original
anomaly when applied as relative change, the augmentation in case of underestimation
in the AOGCM can become many times bigger than the original anomaly. With our
approach, in contrast, the original anomaly is also augmented with increasing underesti-
mation in the AOGCM, but reaches a maximum augmentation by a factor of about two
for a five-fold underestimation and then declines towards unity for a completely rain-free
AOGCM baseline.
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Figure 4.5: Upper panel: multi-model mean of the actual applied annual mean change in
precipitation rate in mmd−1 per 1K of ∆Tglob (Equation 4.16). Lower panel: multi-model
mean of the alteration of the original anomaly in mmd−1 for 1K of ∆Tglob (Equation 4.17);
positive values indicate an augmentation and negative values indicate an attenuation, re-
gardless of the direction of change.

Changes in rain month frequency are rarely analysed and here their explicit considera-
tion in a pattern-scaling framework is unique. The rain month frequency changes, averaged
over all AOGCMs and months, shown in the upper panel of Figure 4.6, exhibit both in-
creases and decreases although decreases prevail. As already discussed in section 4.3.1,
changes occur predominately in areas that are already today characterised by intermittent
rainfall occurrence while regions such as North America, northern Europe, and Siberia
remain unaffected. Regions of strong rain month frequency decrease broadly agree with
key regions of decreases in average rainfall, but some noteworthy differences exist. Almost
entire South America and Australia are, on average, affected by rain month frequency
decrease while the picture for change in rainfall amount is much more mixed. In the
Mediterranean, southern Europe is much less affected by rainfall amounts, while the oppo-
site can be stated for North Africa. In southern Africa decreases in rain month frequency
stretch much further up north along the east coast.

Variation of rain month frequency change among AOGCMs is pronounced but generally
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Figure 4.6: Upper panel: multi-model mean of the actual applied annual mean change
in rain month frequency in month/month for a ∆Tglob of 1K (Equation 4.16). Lower
panel: multi-model mean of the alteration of the original anomaly in month/month for 1K
of ∆Tglob (Equation 4.17); positive values indicate an augmentation and negative values
indicate an attenuation, regardless of the direction of change.

follows the pattern of strong decreases (see Appendix C). Thus, different models disagree
primarily in the magnitude rather than in the direction of change. Seasonality of change
is in the same magnitude as the inter-model variation and also exhibits a similar pattern
(see Appendix C). Hence, decreases in rain month frequency in some months can be very
high, while little change occurs in others.

Anomalies of rain month frequency are significantly altered by the application method
(see Figure 4.6, lower panel). Although logit-transformed frequency anomalies are applied
as absolute changes (see section 4.2.3), the different reference levels in the AOGCM and the
observations result in very different actual frequency anomalies when transformed back.
Equation 4.11 implies a sigmoid shape for the relationship between rain month frequency
and ∆Tglob, which means that a given β∗ ·∆Tglob(y) produces the strongest change in rain
month frequency when applied to a rain month frequency of 0.5; with reference values
closer to 0 and 1 the effect progressively decreases. Consequently, augmentations of the
signal occur when frequencies in the AOGCM are close to 0 or 1 and projected changes are
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applied to observed rain month frequencies closer to 0.5. Attenuations occur in cases where
changes are estimated from intermediate rain month frequency levels in the AOGCM and
applied to reference frequencies closer to 0 or 1.

In summary, the multi-model mean of applied annual change for the different vari-
ables presented here are—where applicable—consistent with the results presented in IPCC
(2007a). Although the application method can significantly alter the absolute anomaly
for some variables, these alterations are not arbitrary but a consequence of the biases
in AOGCMs. We believe that the application methods chosen for the different climate
variables are well justified and fulfil the aim of providing the necessary adjustment while
minimizing unnecessary alterations.

4.6 Conclusions

Here we present a newly composed dataset of climate change scenarios for systematic
assessments of climate change impacts as a function of Tglob increase. The dataset com-
bines observations, information extracted from AOGCM simulations, and results from a
reduced complexity climate model into physically plausible climate change scenarios for
a wide range of global mean temperature increases. The scenarios are designed to reach
global mean temperature increases above pre-industrial levels between 1.5 and 5 degrees
(in 0.5 degree steps) around the year 2100. The scaling patterns extracted for 19 AOGCMs
from the CMIP3 data base for temperature, cloudiness, and precipitation represent the key
component for linking local climate change to changes in Tglob. We discuss the properties
of these patterns and demonstrate that they preserve the original AOGCM climate change
properties with sufficient accuracy. The methodology for combining the local climate
anomalies (derived from the scaling patterns and ∆Tglob trajectories) with observations is
extensively discussed as it has the potential to alter the derived raw anomalies. We show
that alterations of climate anomalies by the application method are a necessary adjust-
ment of anomalies obtained from biased AOGCM baselines. The additional material used
for creating the dataset—global datasets on observed historical climate and the reduced
complexity climate model MAGICC6—are not further discussed in this paper. They are
well documented in other literature.

Supplementary material related to this chapter is available in Appendix C.
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Chapter 5

Freshwater resources under success
and failure of the Paris climate
agreement

An edited version of this chapter has been published as: J. Heinke, C. Müller, M. Lan-
nerstad, D. Gerten, and W. Lucht. Freshwater resources under success and failure of the
Paris climate agreement. Earth System Dynamics, 10(2):205–217, 2019a. doi: 10.5194/
esd-10-205-2019
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Abstract

Population growth will in many regions increase the pressure on water resources and likely
increase the number of people affected by water scarcity. In parallel, global warming causes
hydrological changes which will affect freshwater supply for human use in many regions.
This study estimates the exposure of future population to severe hydrological changes rel-
evant from a freshwater resource perspective at different levels of global mean temperature
rise above pre-industrial level (∆Tglob). The analysis is complemented by an assessment
of water scarcity that would occur without additional climate change due to population
change alone; this is done to identify the population groups that are faced with particularly
high adaptation challenges. The results are analysed in the context of success and failure
of implementing the Paris Agreement to evaluate how climate mitigation can reduce the
future number of people exposed to severe hydrological change. The results show that
without climate mitigation efforts, in the year 2100 about 4.9 billion people in the SSP2
population scenario would more likely than not be exposed to severe hydrological change,
and about 2.1 billion of them would be faced with particularly high adaptation challenges
due to already prevailing water scarcity. Limiting warming to 2 ◦C by a successful imple-
mentation of the Paris Agreement would strongly reduce these numbers to 615 million and
290 million, respectively. At the regional scale, substantial water-related risks remain at
2 ◦C, with more than 12% of the population exposed to severe hydrological change and
high adaptation challenges in Latin America and the Middle East and north Africa region.
Constraining ∆Tglob to 1.5 ◦C would limit this share to about 5% in these regions.
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5.1 Introduction

Within the 2030 Agenda for Sustainable Development of the United Nations (United Na-
tions 2015), “access to clean water and sanitation” is one of the 17 sustainable development
goals (SDGs). For other SDGs, such as “zero hunger” and “affordable and clean energy”,
access to sufficient water resources is a precondition (ICSU 2017). Already today, more
than 2 billion people live in countries where total freshwater withdrawals exceed 25% of
the total renewable freshwater resource (United Nations 2017). Population increase and
economic development are expected to further increase pressure on water resources lead-
ing to enormous challenges for water resource management to maintain or increase water
supply. Climate change potentially aggravates this challenge in some regions by altering
precipitation patterns in time and space, increasing atmospheric demand, or accelerating
glacial melt, to name just a few. Such changes can lead to a reduction in total physical
water availability, but also a change in the flow regime, which may lead to more frequent
or more severe drought events or an increased risk of flooding (Döll and Schmied 2012).
All these changes affect water supply management and will make meeting the demand and
achieving SDGs more costly or impossible.

As of April 2017, 194 countries responsible for >99% of global greenhouse gas emissions
have signed the Paris climate agreement that aims at “holding the increase in the global
average temperature to well below 2 ◦C above pre-industrial levels and pursuing efforts
to limit the temperature increase to 1.5 ◦C above pre-industrial levels” (UNFCCC 2015).
However, the Intended Nationally Determined Contributions submitted by countries so far
are insufficient to achieve this goal, probably leading to a median warming of 2.2 ◦C to
3.5 ◦C by 2100 if no further efforts are taken (Rogelj et al. 2016). With the announced
withdrawal of the US from the agreement and all major industrialized countries currently
failing to meet their pledges (Victor et al. 2017), even a more extreme warming cannot
be ruled out. It is therefore timely to assess the climate change impacts associated with
a success (limit warming to 1.5 or 2 ◦C) and a failure of the Paris Agreement (exceeding
2 ◦C). The purpose of this study is to provide such an assessment for the water sector
by systematically quantifying hydrological changes relevant from a freshwater resource
perspective at different levels of global warming between 1.5 and 5 ◦C above pre-industrial
levels in steps of 0.5 ◦C. The most extreme level of 5 ◦C thereby marks an upper boundary
consistent with the median warming for a scenario without climate policy (3.1 ◦C to 4.8 ◦C;
Rogelj et al. (2016)).

Unlike most global assessments of climate change impacts on water resources, which
have employed a measure of water stress like the water crowding index (WCI; Falkenmark
(1989)) or the withdrawal-to-availability ratio (WTA; Raskin et al. (1996)), here we analyse
hydrological changes relevant from a water resource perspective directly. This allows us to
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focus on climate-induced hydrological change alone (unobscured by the effects of population
change) and to include aspects of hydrological change important from a water resource
perspective other than mean annual discharge (MAD), on which both WCI and WTA
are based. In order to gain a detailed and comprehensive understanding of changes in
the water sector, this study analyses climate impacts with respect to a decrease in mean
water availability, growing prevalence of hydrological droughts, and an increase of flooding
hazards. To estimate these hydrological changes, three key metrics are used to assess
flow regime changes: (i) MAD, (ii) the average number of drought months per year (ND),
and (iii) the 10-year flood peak (Q10). Severe hydrological change is defined as crossing
a critical threshold (defined below) for at least one of these key metrics. By combining
these changes with spatially explicit population projections consistent with shared socio-
economic pathways (SSPs; Jones and O’Neill (2016)), the number of people exposed to
severe hydrologic changes is estimated for each level of ∆Tglob.

However, looking at the total number of people affected by severe hydrological change
provides only limited insights into the consequences of severe hydrological change and
the challenges for adaptation. These are greatly determined by the underlying population-
driven water-scarcity level; that is, when options for supply-side management are exhausted
or become too costly under water-scarcity conditions, the focus of water management has
to shift towards demand management (Falkenmark 1989, Ohlsson and Turton 1999). Thus,
adaptation to severe hydrological change under already water-scarce conditions will also
have to involve demandside management strategies to prevent negative social and eco-
nomic consequences. Because demand-side options are complex and their implementation
is faced with behavioural, economic, political, and institutional obstacles (Kampragou et al.
2011, Russell and Fielding 2010), adaptation to severe hydrological change is more chal-
lenging under already water-scarce conditions. To account for this aspect, we apply the
WCI to estimate the future population pressure on water resources under the assumption
of no climate change and jointly analyse climate-induced severe hydrological change and
population-driven water scarcity.

5.2 Methods

5.2.1 Population scenarios

For the estimation of future population affected by severe hydrological change and to
calculate WCI, we use spatially explicit population projections from Jones and O’Neill
(2016, 2017). These are based on the SSP national population projections (KC and Lutz
2017) and have been downscaled making additional assumptions on urbanization consistent
with the respective SSP storyline. The five SSP storylines are designed to cover a broad
range of future socio-economic development pathways with plausible future changes in
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demographics, human development, economy, institutions, technology, and environment
(O’Neill et al. 2017). However, they do not account for the impact of climate change on
development pathways. For this study we only use the population projections of the SSPs.
The analysis focuses on the middle-of-the-road scenario SSP2 (with a total population of
9.0 billion in 2100), but we use the other scenarios (with a total population between 6.9 and
12.6 billion in 2100) to test the sensitivity of our findings to different population scenarios.

5.2.2 Climate scenarios

In order to systematically assess climate change impacts on freshwater resources, we use
the PanClim climate scenarios described in Heinke et al. (2013a). The dataset consists
of 8 different scenarios of ∆Tglob obtained with the MAGICC6 model (Meinshausen et al.
2011a) based on greenhouse gas emissions that result in a range of warming levels above
pre-industrial (∼1850) conditions from 1.5 ◦C to 5.0 ◦C in steps of 0.5 ◦C in 2100 (2086–
2115 average). For each ∆Tglob pathway, the local response in climate variables is emulated
for 19 different general circulation models (GCMs) from the Coupled Model Intercompar-
ison Project Phase 3 (CMIP3) ensemble using a pattern-scaling approach. In so doing,
normalized climate anomalies (changes per 1.0 ◦C of ∆Tglob increase) of temperature, pre-
cipitation, and cloud cover for each month of the year in each 0.5° × 0.5° grid cell are
obtained by linear regression between time series of climate variables and the correspond-
ing time series of ∆Tglob. The unexplained variance of these linear models is in the same
order of magnitude (temperature and cloud cover) or only slightly larger (precipitation)
than inter-annual variability in the pre-industrial control run without anthropogenic forc-
ing, indicating that most of the climate change information is captured by the obtained
patterns. The normalized climate anomalies are used to calculate local climate anomalies
for any given ∆Tglob relative to the year 2009 (when ∆Tglob was 0.9 ◦C above the pre-
industrial level). These local climate anomalies were then applied to monthly reference
time series of local climate that represent average conditions and variability in 2009.

A total of 152 climate scenarios (8 ∆Tglob pathways × 19 GCM patterns) for the period
1901–2115 are obtained. Up to the year 2009, time series are based on mean air temperature
and cloud cover from CRU TS3.1 (Harris et al. 2014) and precipitation from the Global
Precipitation Climatology Centre’s (GPCC) full reanalysis dataset version 5 (Schneider
et al. 2014). The reference time series for the period 2010–2115, to which climate anomalies
are applied, is created from the historic datasets by random resampling with replacement.
Further details on the climate scenarios have been described by Heinke et al. (2013a).
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5.2.3 Impact model

For assessing the impacts of climate change on the hydrological cycle, we employ the
LPJmL Dynamic Global Vegetation Model version 4 (LPJmL4) that simulates the growth
of natural vegetation and managed land coupled with the global carbon and hydrological
cycles (Schaphoff et al. 2018b,c). The model has been extensively evaluated showing good
performance in representing the global hydrological cycle (Rost et al. 2008, Schaphoff et al.
2018a). LPJmL has been widely applied in water resource assessments (Gerten et al. 2011,
Jägermeyr et al. 2016, Rockström et al. 2014, Steffen et al. 2015b).

For the simulations conducted here, the model is first run without land use for a spin-up
period of ∼5000 years using pre-industrial atmospheric CO2 concentrations and climate
data from 1901 to 1930. This is followed by a second spin-up of 390 years up to 2009,
during which atmospheric CO2 concentrations and climate vary according to historical
observations, and constant land use of the year 2000 is prescribed (Fader et al. 2010).
All 152 scenario simulations are initialized from this state, assuming constant land use
over the whole simulation period and atmospheric CO2 concentrations consistent with the
respective ∆Tglob scenario (Heinke et al. 2013a). All simulations are performed without
direct anthropogenic intervention on freshwater resources (water withdrawals and dam
operation) as their effects are assumed to be captured by the WCI.

In addition to the 152 ∆Tglob scenarios one additional simulation for the period 2010–
2115 is carried out using the reference climate data without any anomalies applied and with
constant atmospheric CO2 concentrations of the year 2009. This simulation represents a
no climate change setting for which transient time series with inter-annual variability (but
without a general trend) are produced. This scenario is used as the reference simulation for
the comparison with the other climate scenarios. Because the sequence of dry and wet years
is identical in all scenarios and the reference case, any differences between the scenarios and
the no-climate-change reference simulation can be attributed to global warming. Within
this paper we analyse the 30-year time period from 2086 to 2115 in which the average
temperature increase equals ∆Tglob.

5.2.4 Hydrological change metrics

The focus of this study is on hydrological changes due to climate change that are relevant
from a water resource perspective. “Water resources” refers to “blue” water—the water
that can be withdrawn from rivers, lakes, and aquifers, and which can be directly managed
by humans—as opposed to “green” water, i.e. the soil moisture in the root zone from local
precipitation that can only be used by locally growing plants (Rockström et al. 2014).

Here we use river discharge as an approximation of the blue water resource. River
discharge is simulated in LPJmL by means of a linear storage cascade (Schaphoff et al.
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2018b) along a river network defined by the Simulated Topological Network (STN-30p)
flow direction map (Vörösmarty et al. 2000, 2011). The simulated discharge of a grid
cell includes all the water that enters the cell from upstream areas and all surface and
subsurface runoff generated within the cell. Although water is often withdrawn from lakes
and aquifers, no more than the possible recharge to these storages can be withdrawn over
a prolonged period. Therefore, river discharge as computed with LPJmL represents a good
approximation of the total renewable blue water resource (excluding non-renewable fossil
groundwater from aquifers with very long recharge times).

Three metrics relevant from a water resource perspective, i.e. mean annual discharge
(MAD), the number of drought months per year (ND), and the 10-year flood peak (Q10),
are calculated for each grid cell for the 8 levels of ∆Tglob and 19 GCM patterns. Severe
hydrological change is defined as crossing a critical threshold for at least one of these
three metrics: a greater than 20% decrease in MAD, an increase of 50% in ND, and an
increase in Q10 by 30% (further described below). Based on these results we determine
the lowest level of ∆Tglob in each grid cell at which the thresholds for each of the metrics
are transgressed in more than 50% of GCM runs (at least 10 out of 19). This transgression
in more than 50% of GCMs corresponds to the more likely than not likelihood category
used in IPCC AR5 (Mastrandrea et al. 2011).

Mean water availability

Changes in MAD are used as a measure for changes in mean water availability, assuming
that a substantial decline in MAD will make it difficult to satisfy existing and future societal
water demands with the existing water supply infrastructure. We define a decrease in MAD
by 20% or more as a severe hydrological change that requires some form of management
intervention (either on the supply or the demand side). The same threshold was also used
by Schewe et al. (2014) to define severe decrease in annual discharge.

Hydrological drought

The occurrence of prolonged periods of below-average discharge, mostly initiated by inter-
annual climate variability, is referred to as hydrological drought. To provide stable water
supply to society, water supply systems are adjusted to seasonal variability and drought
regimes. A substantial increase in drought periods thus impairs the capability of existing
water management infrastructure.

We apply a drought identification method proposed by van Huijgevoort et al. (2012) to
determine which months of a monthly time series of river discharge are in drought condition.
The method is based on a combination of the threshold level method (TLM) and the
consecutive dry month method (CDM). The TLM method classifies a month as drought-
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stricken if discharge falls below a given threshold (here the month-specific discharge that is
exceeded 80% of the time). However, in ephemeral rivers a method that accounts for the
duration of dry periods is more appropriate since the TLM would classify all months with
zero flow as drought. We adopt this combination of TLM and CDM from van Huijgevoort
et al. (2012) but make some modifications to obtain a more robust and plausible algorithm.
First, a month-specific discharge threshold is applied to identify drought months according
to the TLM method. Then, if the TLM threshold is zero and the number of drought months
in a given calendar month (e.g. January) exceeds 20%, the CDM is used to determine which
of the months with zero discharge can be classified as drought months. To this end, the
number of preceding consecutive TLM droughts is determined for each month with zero
discharge in the given calendar month. Finally, a threshold is selected that retains only the
months with the longest preceding dry period so that the total number of drought months
in that calendar month is 20%. The TLM and CDM thresholds are determined from
the reference simulation representing present-day climate conditions. These thresholds are
then used to estimate the number of drought months for all climate scenarios. Note that
the thresholds are derived from and applied to the continuous 30-year time series, which
allows for the detection of multi-year droughts.

We define an increase in the average number of drought months per year (ND) by 50%

(i.e. from 20% to 30%) as a severe hydrological change that will require an upgrade of
existing water management systems to maintain a reliable water supply.

Flood hazard

All water supply infrastructure should be designed to withstand typical flooding events.
A flood with a return time of 50–100 years (Q100) is typically used as a reference case
(Coles 2001). However, spillways of critical infrastructure such as dams and reservoirs are
designed for even more severe flood events, with a return time of 1000 years or more (Dyck
and Peschke 1995). An increase in the magnitude of floods poses a serious threat to water
management systems with potentially disastrous consequences.

The magnitude of extreme events with long return periods is usually derived from much
shorter observed time series of annual maximum floods by fitting a suitable extreme value
distribution (e.g. a Gumbel or generalized extreme value, GEV, distribution; Coles (2001)).
The obtained extreme value distribution is then used to extrapolate the magnitude of flood
events with long return periods. This procedure can also be used to detect changes in the
magnitude or the return time of such events from two fitted extreme value distributions
(Dankers et al. 2014). However, fitting a GEV distribution to 5-day average peak flow
estimates form LPJmL using L moments (Hosking and Wallis 1995) gave good fits (p value
of Kolmogorov-Smirnov test >0.9) in only about half of all cases. In order to estimate the
change in flood hazard for all grid cells, we analyse changes in the magnitude of floods with
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a 10-year return time (Q10), which are directly derived by determining the 5-day average
peak flow that is exceeded in 3 out of 30 years (technically a return time of 10.33 years).

We use the cases where a good fit of the GEV to data was achieved to assess how well
the estimated changes in directly derived Q10 can be used as a proxy for changes in events
with a higher return time (Q100 or Q1000) derived from GEVs. Because the overall goal
is to detect a severe increase in Q100 or Q1000, we estimate how many false positives and
false negatives occur when a threshold of 20% or 30% increase, respectively, in Q10 is
used. False positives are defined as increases in Q10 by more than 20% or 30%, which
does not coincide with an increase in Q100 or Q1000 by at least 10%; false negatives are
defined as an increase in Q100 or Q1000 by more than 50%, which do not coincide with
an increase in Q10 by at least 20% or 30%. For Q100, we find that a threshold of 20% for
Q10 produces 6.3% and 4.7% of false positives and negatives, respectively; a threshold of
30% produces 2.6% and 11.0% of false positives and negatives, respectively. For Q1000
the figures are much higher with 15.9% (10.7%) of false positives and 33.8% (47.0%) of
false negatives for a threshold of 20% (30%) for Q10. This demonstrates that Q10 can be
used as proxy to detect severe changes in Q100 with reasonable accuracy but not to detect
severe changes in Q1000.

We give the avoidance of false positives a higher priority to obtain conservative estimates
of flood hazard increase. Therefore, we choose an increase in Q10 by 30% as a threshold
to detect a severe increase in flooding hazard that needs to be addressed by investment in
enhancing flood resistance of water supply infrastructure or by changing reservoir operation
schemes to increase the safety buffer for flood protection (at the cost of storage capacity
for water supply). However, it needs to be kept in mind that this indicator only detects
about half of the increases in Q1000 by more than 50%, which can be particularly harmful
to water management infrastructure.

5.2.5 Grid-based water crowding indicator

In order to determine where transgressions of severe hydrological change thresholds in the
three metrics matter most, we estimate which part of the global population is experiencing
water stress in the absence of additional climate change. We use the WCI originally
proposed by Falkenmark (1989) to assess different levels of population pressure on water
resources. Originally, the water crowding index was applied at the country scale, which may
hide important within-country variations (Arnell 2004). With improved spatial resolution
of population data and a desire to use natural hydrological units, instead of administrative
boundaries, it has become more common to calculate WCI at the basin scale (Arnell and
Lloyd-Hughes 2014, Falkenmark and Lannerstad 2004, Gerten et al. 2013, Gosling and
Arnell 2016). In this paper, we develop a new calculation procedure to obtain a measure
of water crowding that can be calculated and interpreted at the grid-cell scale. This can
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then be combined with the simulated hydrological changes at the grid-cell scale to estimate
hydrological change for different levels of water crowding.

To calculate the effective population pressure on the total available water within each
grid cell, we treat local (within grid cell) runoff and the inflow from each upstream cell
i separately. The upstream cells of any given grid cell can be derived from the STN-30p
flow direction map (Vörösmarty et al. 2000), which is also used to simulate discharge in
LPJmL. While local runoff w0 is assumed to be fully available to the local population p0,
the inflow from each upstream cell wi is equally shared between local population p0 and
effective upstream population p′i corresponding to that inflow (Equation 5.1).

w′ = w0 +
N∑︂
i=1

wi ·
p0

p′i + p0
(5.1)

The obtained effective water quantity w′ is the effective available water in that grid
cell. Relating local population p0 to w′ yields the effective water crowding index WCI′

(Equation 5.2) for the respective cell.

WCI′ =
p0
w′ (5.2)

Multiplying WCI′ with the total water w (sum of local runoff and all inflows) gives the
effective population p′ (Equation 5.3) that is required for the calculation of WCI′ in the
downstream cell.

p′ = WCI′ · w = p0
w

w′ (5.3)

Because p′ of all upstream cells must be known to determine WCI′, the calculation for
a whole basin starts at the fringes (in cells with no inflow, i.e. where wi = p′i = 0) and
continues consecutively to the basin outlet.

Five different WCI levels can be distinguished, each characterized by a different degree
of water scarcity (Falkenmark 1989). WCI below 100 people per flow unit (p/fu; 1 fu =
106m3 year−1) are considered uncritical, quality and dry-season problems occur between
100 and 600 p/fu, and water stress occurs between 600 and 1000 p/fu. Beyond 1000 p/fu a
population experiences absolute water scarcity, and the level of 2000 p/fu is interpreted as
the water barrier beyond which all available water resources are utilized. With increasing
degrees of water scarcity it becomes progressively harder to fulfil societal water demand by
supply-side management and coping with absolute water scarcity has to involve demand-
side management options (Falkenmark 1989). It is reasonable to assume that adaptation to
severe hydrological change under absolute water scarcity will not be possible by adjusting
water supply infrastructure alone but will also require demand management strategies.
Because of the big behavioural, economic, political, and institutional challenges associated
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Figure 5.1: Spatial pattern of water crowding in 2010 (a) and in 2100 for SSP2 population
(b). Absolute (c) and percentage share of total population (d) in different water crowding
classes from 1950 to 2010 and from 2011 to 2100 in five different SSP population scenarios
under current water availability, i.e. assuming no climate change.

with demand management (Kampragou et al. 2011, Russell and Fielding 2010), we assess
exposure to severe hydrological change within the population group experiencing absolute
water scarcity and within the population group that does not.

5.3 Results

5.3.1 Change in water crowding driven by population change

Between 1950 and 2010 the number of people that live with absolute water scarcity (WCI
> 1000 p/fu) has increased more than 6 fold from 295 million (11.7% of global population)
to 1.83 billion (26.8% of global population) due to population growth alone. In the same
time period, the number of people beyond the water barrier (WCI > 500 p/fu) within that
group has increased more than 8 fold from 118 million (4.7% of global population) to 988
million people (14.5% of global population), so that its share within the group of people
living under absolute water scarcity has increased from 40.2% to 53.9% (Figure 5.1c and
d).

This trend is projected to continue in the future under all five SSP population scenarios
(Figure 5.1c and d). The total number of people living under absolute water scarcity in
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2100 due to population change alone (without any additional climate change) is projected
to be higher than today (2010) in all scenarios reaching 2.16–5.65 billion (31.5%–44.9%
of global population), with higher global population being associated with higher absolute
and relative numbers of affected people. The number of people who live beyond the water
barrier is projected to increase to 1.26–3.77 billion (18.4%–29.9% of global population,
58.4%–66.7% of population under absolute water scarcity).

5.3.2 Severe changes in hydrologic conditions under different levels of
∆Tglob

Under the majority of climate change patterns within the range of ∆Tglob considered in this
study, severe decreases in mean water availability, severe increases in droughts, and severe
increases in flood hazard occur in many abundantly populated regions. We estimate that
4.93 billion people (54.9% of global population) would more likely than not be exposed to
severe hydrological change in the SSP2 population scenario if ∆Tglob reaches 5 ◦C by 2100
(Figure 5.2a; for other SSP scenarios see Supplement Figure D.2). Out of these, 1.09 billion,
1.26 billion, and 1.31 billion would more likely than not be exposed to a severe decrease
in mean water availability, a severe increase in droughts, and a severe increase in flood
hazard, respectively (Figure 5.2b–d). Note that severe decreases in mean water availability
and severe increases in droughts often coincide, which leads to relatively large number of
people (889 million) being more likely than not exposed to both of these aspects of severe
hydrological change. For 2.15 billion people a transgression of the critical threshold for a
mix of the three different aspects of severe hydrological change is projected in more than
half of the GCMs. The pace at which these levels are reached with increasing ∆Tglob is
not linear and differs for the three aspects of severe hydrological change. The additional
number of people that become exposed to a severe decrease in mean water availability at
each step of ∆Tglob first increases and then declines again, with the by far largest increment
occurring between 2 and 2.5 ◦C. A similar pattern is found for exposure to severe increase
in droughts with the difference that the largest increase occurs between 1.5 and 2 ◦C. The
increment of people becoming exposed to severe increase in flood hazard is very small until
2 ◦C warming and then steadily increases with ∆Tglob. This overall pattern of varying
increase in exposure to severe hydrological change with increasing ∆Tglob is very similar
across all five SSP population scenarios considered here (Figure D.2).

If global warming was limited to 2 ◦C by a successful implementation of the Paris Agree-
ment, the number of people more likely than not exposed to severe hydrological change
under SSP2 could be limited to only 615 million people (6.9% of global population; Fig-
ure 5.2a), protecting almost 9 out of 10 people (87.5%) from exposure to severe hydrological
change compared to a warming by 5 ◦C. Because exposure to increased flooding hazard
remains very low until 2 ◦C warming, the majority of the remaining population would be
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Figure 5.2: ∆Tglob at which severe hydrological changes occur in more than half of the
GCMs (10 out of 19). Bars underneath the maps indicate population exposed to the
respective severe changes for the SSP2 population scenario.

exposed to severe decreases in mean water availability and severe increases in droughts
(Figure 5.2b–d). If warming could be limited to 1.5 ◦C the number of people more likely
than not exposed to severe hydrological change could be reduced even more to 195 million
people (Figure 5.2a), a further reduction by more than two-thirds (68.4%) compared to
2 ◦C warming. However, even a partial failure of the Paris Agreement with an exceedance
of the 2 ◦C target by only 0.5 ◦C would lead to an increase in the number of people exposed
to severe hydrological change to 1.14 billion (Figure 5.2a)—almost a doubling (84.6% in-
crease) compared to a warming by 2 ◦C. The main contribution to this strong increase
comes from increased exposure to severe decreases in mean water availability and severe
increases in droughts, with exposure to severe increases in flood hazard only playing a
minor role at these temperature levels (Figure 5.2b–d). Although the total number differs
across different population scenarios, the percentage of global population that can be pro-
tected from exposure to severe hydrological change by ambitious climate mitigation efforts
is very similar across all population scenarios (Figure D.2).

5.3.3 Severe hydrological changes and water scarcity

To get an indication of the adaptation challenges associated with the exposure to severe hy-
drological change, we use the assessment of future water scarcity due to population change
to distinguish two principal adaptation domains. Coping with water scarcity conditions
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(WCI > 1000 p/fu) even without further aggravation by climate change requires a combi-
nation of supply-side and demand-side management measures (Falkenmark 1989, Ohlsson
and Turton 1999). Therefore, water demand management interventions will also have to
play a role in the adaptation to severe hydrological change under already water-scarce
conditions. In contrast, adaptation to severe hydrological change under comparatively
abundant water availability conditions (WCI ≤ 1000 p/fu) may be achieved by adjusting
water supply infrastructure alone. Although water demand management is generally de-
sirable and may have economic co-benefits (Brooks 2006), it faces many political, legal,
and behavioural obstacles for its implementation and may not be practical in all contexts
(Kampragou et al. 2011, Russell and Fielding 2010).

Under the assumption of no climate change, as much as 3.30 billion people (36.8%
of global population) are estimated to live under absolute water scarcity by 2100 in the
SSP2 scenario. For all aspects of severe hydrological change and across the whole range
of ∆Tglob, the proportion of people more likely than not exposed to severe hydrological
change is much larger in this category than in the rest of the population (Figure 5.1). This
asymmetric distribution of impacts is most pronounced for severe decreases in mean water
availability, severe increases in flood hazard, and for severe hydrological change in general
(Figure 5.1a, c, and d). This finding is largely independent of the population scenario
(Figure D.3 in Appendix D).

Because of the challenges associated with the implementation of demand-side man-
agement interventions, the population already experiencing water scarcity in the absence
of climate change is of primary concern when analysing exposure to severe hydrological
change. We estimate that 2.14 billion people (23.9% of global population) in the SSP2
population scenario would be affected by water scarcity due to population change and more
likely than not exposed to climate-related severe hydrological change if ∆Tglob would rise to
5 ◦C by 2100 (Figure 5.1a). Out of these, 538 million (6.0% of global population), 500 mil-
lion (5.7% of global population), and 640 million (7.1% of global population) would more
more likely than not be exposed to a severe decrease in mean water availability, a severe
increase in droughts, and a severe increase in flood hazard, respectively (Figure 5.1b–d).
For 875 million people, a transgression of thresholds for a mix of different aspects of severe
hydrological change is found in more than half of the GCMs. A successful implemention
of the Paris Agreement that would limit warming to 2 ◦C would dramatically reduce the
number of people under absolute water scarcity and more likely than not exposed to severe
hydrological change to 290 million (3.2% of global population). With even more ambitious
mitigation efforts sufficient to limit warming to 1.5 ◦C warming could further reduce this
number to as little as 116 million people (1.3% of global population). For a failure of
the Paris Agreement with temperature rising to 2.5 ◦C (3 ◦C) this number would rise to
543 (824) million people.
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Figure 5.3: Fraction of SSP2 population in 2100 exposed to severe hydrological change at
different levels of ∆Tglob (as shown in Figure 5.2) divided over two water scarcity categories:
population already experiencing absolute water scarcity (>1000 p/fu) in the absence of
climate change and rest of population (≤1000 p/fu). The total number of people in each
class is given on the y axis, and the fraction of people exposed to severe hydrological change
in each class is given on the x axis. Colour scale for ∆Tglob same as in Figure 5.2.
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Table 5.1: Number of people in 2100 for the SSP2 population scenario that would experi-
ence absolute water scarcity (>1000 p/fu) under present-day climate conditions and be more
likely than not exposed to severe hydrological change at different levels of ∆Tglob in differ-
ent world regions (population in million, percentage of population in region in brackets).
Regions are MEA (Middle East and north Africa), ANZ (Australia and New Zealand), SAS
(South Asia), SSA (sub-Saharan Africa), LAM (Latin America), NAM (USA and Canada),
EUR (Europe, excluding Russia), EAS (East Asia), RCA (Russia and Central Asia), and
SEA (Southeast Asia).

Population with >1000 p/fu and exposed to severe hydrologic changeTotal
population

Population
>1000 p/fu 1.5 ◦C 2.0 ◦C 2.5 ◦C 3.0 ◦C 4.0 ◦C 5.0 ◦C

MEA 740 416
(56.2%)

48.0
(6.5%)

101.9
(13.8%)

193.2
(26.1%)

222.4
(30.0%)

270.9
(36.6%)

320.4
(43.3%)

ANZ 51 27
(52.2%)

0.0
(0.0%)

0.6
(1.2%)

1.5
(2.9%)

3.7
(7.3%)

9.6
(18.8%)

17.8
(35.0%)

SAS 2282 1005
(44.1%)

17.1
(0.7%)

38.7
(1.7%)

80.7
(3.5%)

200.8
(8.8%)

461.8
(20.2%)

651.2
(28.5%)

SSA 2395 890
(37.2%)

16.8
(0.7%)

42.8
(1.8%)

113.2
(4.7%)

191.0
(8.0%)

371.5
(15.5%)

575.9
(24.0%)

LAM 662 230
(34.7%)

27.7
(4.2%)

79.8
(12.0%)

87.5
(13.2%)

101.0
(15.3%)

131.3
(19.8%)

175.2
(26.5%)

NAM 510 166
(32.6%)

4.2
(0.8%)

6.4
(1.2%)

26.9
(5.3%)

39.3
(7.7%)

58.7
(11.5%)

86.8
(17.0%)

EUR 579 161
(27.9%)

0.4
(0.1%)

14.6
(2.5%)

31.0
(5.4%)

42.8
(7.4%)

70.0
(12.1%)

90.6
(15.7%)

EAS 913 253
(27.7%)

0.1
(0.0%)

2.4
(0.3%)

4.4
(0.5%)

16.5
(1.8%)

61.7
(6.8%)

163.3
(17.9%)

RCA 198 44
(22.1%)

1.9
(1.0%)

3.1
(1.6%)

5.0
(2.5%)

6.9
(3.5%)

9.7
(4.9%)

11.1
(5.6%)

SEA 642 106
(16.5%)

0.0
(0.0%)

0.0
(0.0%)

0.0
(0.0%)

0.0
(0.0%)

12.2
(1.9%)

48.7
(7.6%)

World 8971 3298
(36.8%)

116
(1.3%)

290
(3.2%)

543
(6.1%)

824
(9.2%)

1457
(16.2%)

2141
(23.9%)

The remaining number of people exposed to severe hydrological change at 2 ◦C warming,
as well as the implications of more ambitious mitigation efforts or a failure of the Paris
Agreement, differs greatly among world regions (Table 5.1, for countries assigned to each
region see Figure D.4). About 63% of the 290 million people who live under absolute
water scarcity and are more likely than not exposed to severe hydrologic change at 2 ◦C

warming live in Latin America (LAM) and the Middle East and north Africa region (MEA),
where they make up more than 12% of the population in those regions. Another 28% of
the 290 million live in South Asia (SAS) and sub-Saharan Africa (SSA), but due to high
population numbers in these regions their share remains below 2%. The high share of
population affected by absolute water scarcity and severe hydrological change in LAM and
MEA is particularly worrying since a failure to overcome the obstacles associated with
the implementation of appropriate demand management can have negative societal and
economic consequences not only for these people but for the whole region. More ambitious
mitigation efforts that keep warming below 1.5 ◦C would reduce the number of affected
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people by more than half, to 6.5% in MEA and 4.2% in LAM. In all other regions, the
share of affected population would drop below 1%.

Failure of the Paris Agreement would substantially increase exposure to severe hydro-
logical change in many regions. In 5 out of 10 regions, the number of people affected by
absolute water scarcity and severe hydrological change at least doubles if the 2 ◦C target
is exceeded by only 0.5 ◦C and reaches a share of (almost) 5% of affected population in
the region in SSA, North America (NAM), and Europe (EUR). The strongest absolute
increase (though not a doubling) in the number of affected people occurs in the MEA
region, where more than one-quarter of the population in that region would be affected at
2.5 ◦C warming. Between 2.5 and 3 ◦C warming, the increases in number of affected people
is strongest in South Asia (SAS), SSA, NAM, and EUR. At 4 ◦C warming, the share of
affected population exceeds 10% in 7 out of 10 regions, with MEA, Australia and New
Zealand (ANZ), SAS, SSA, and LAM being most strongly impacted. At 5 ◦C warming, the
share of affected population reaches 43.3% in MEA and 35.0% in ANZ; exceeds 20% in
SAS, SSA, and LAM; and exceeds 15% in NAM, EUR, and East Asia (EAS). In Russia
and Central Asia (RCA) and Southeast Asia (SEA) the share of affected people remains
below 5%, partly due to a low share of population under high water crowding and less
severe hydrologic change.

Although numbers differ among population scenarios, the overall pattern of where and
how much change occurs in the different regions is consistent across all SSP population
scenarios. A comprehensive overview of population under high water crowding and affected
by severe hydrologic change in different world regions for all population scenarios is given
in Figure D.5.

5.4 Discussion

Our estimate that 26.8% of global population today live under absolute water scarcity
(>1000 p/fu) is within the range of 21.0%–27.5% (average 24.7%) reported by previous
studies applying the WCI on river basin level (Gerten et al. 2013, Arnell and Lloyd-Hughes
2014, Kummu et al. 2016). Estimates of future SSP populations living in river basins with
>1000 p/fu under present-day climate conditions are given by Arnell and Lloyd-Hughes
(2014) who estimate a range of 39.5%–54.2% for the affected global population across
different SSP scenarios. This is considerably higher than the range of our estimates of
31.5%–44.9%; but due to the lack of other comparable studies, it is not clear whether these
discrepancies are caused by the choice of the hydrological model or by the difference in scale
(basin or grid cell) at which the WCI is calculated. However, using the same hydrological
model as in our study, Gerten et al. (2013) estimate that 38.5% of global population in the
revised A2r scenario (Grübler et al. 2007) from the Special Report on Emissions Scenarios
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would live in river basins with >1000 p/fu under current climate conditions, which is close
to our estimate of 41.0% for the SSP3 scenario, to which the A2r scenario is comparable
in terms of total population (12.3 billion compared to 12.6 billion in 2100). In contrast,
the corresponding estimate by Arnell and Lloyd-Hughes (2014) is as high as 54.2% for the
SSP3 scenario, which indicates that using LPJmL to assess water scarcity generally tends
to result in lower estimates of future population affected by water scarcity.

A direct comparison of hydrological changes estimated here to previous studies is not
straightforward due to the unique design of this study. Only few global studies have
assessed climate change impacts on water resources as a function of ∆Tglob (Gerten et al.
2013, Schewe et al. 2014, Gosling and Arnell 2016), but they typically focus on changes in
MAD and report changes in the number of people affected by water scarcity. A relevant
study for comparison is Schewe et al. (2014), which analyses changes in MAD obtained
from an ensemble of 10 global hydrological models (GHMs) forced by climate scenarios
from five different GCMs. The overall pattern of changes in MAD simulated by LPJmL
across 19 GCMs agrees well with results from Schewe et al. (2014), but exhibits a generally
lower magnitude of changes (see Figure D.6 and Figure 1 in Schewe et al. (2014)). Thus,
MAD changes simulated by LPJmL (both increases and decreases) tend to be smaller than
simulated by most other GHMs. This becomes even more apparent when comparing the
percentage of people affected by a q20% decrease in MAD. For a ∆Tglob of 2.5 ◦C (equivalent
to an additional warming of 1.9 ◦C relative to the control simulation) we estimate a median
share of 8.6% of affected global population across all GCMs. This is substantially lower
than the median value of 13% of affected population estimated for 2 ◦C additional warming
by Schewe et al. (2014) and approximately represents their lower end of the interquartile
range. This can be attributed to the response of dynamic vegetation in LPJmL that is not
included in most other GHMs (Schewe et al. 2014).

In summary, the global and regional estimates of population living under absolute water
scarcity and being exposed to severe hydrological change obtained from LPJmL are lower
than from most other GHMs. Thus, the estimates of population affected by water scarcity
and severe hydrological change presented in this paper should be regarded as conservative
estimates.

Apart from these uncertainties in model projections, the results of a global study like
ours are necessarily determined by simplifications and generalization in the data analysis.
The most important generalization in this study are the choice of aspects of severe hy-
drological change and the corresponding critical thresholds. While not all selected aspects
may be relevant in all cases (e.g. where supply is primarily fulfilled from groundwater),
we believe that in the vast majority of cases they reflect important hydrological properties
that are relevant from a freshwater resource perspective. The respective thresholds may
also differ depending on hydrological and other local conditions, and using unique global
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values will always produce a number of false positives and false negatives. However, the
selected thresholds are rather conservative, and thus are expected to produce more false
negatives than false positives. Another aspect is the choice of the WCI to differentiate
population groups in terms of adaptation challenges. This indicator is widely applied be-
cause it only requires data on mean water availability and population numbers, but it can
neither account for hydrological aspects that limit the utilization of water resources nor for
actual per capita water requirements. Despite these shortcomings of the WCI, it gives a
rough impression of the overall population pressure on water resources, which is linked to
the challenges to adapt to severe hydrological change. Last but not least, it is important
to note that this study only addresses quantity aspects of freshwater resources and does
not consider water quality.

5.5 Conclusions

Future freshwater supply will be affected by population growth and climate change, which
are both subject to uncertainty and heterogeneous distribution patterns. Under all five SSP
population projections considered here, a strong increase in the number of people living
under absolute water scarcity in 2100 to 2.16–5.65 billion (31.5%–44.9% of global popula-
tion) is projected, with higher global population resulting in higher absolute numbers but
also larger proportions of global population being affected. Because of the importance of
water demand management for coping with absolute water scarcity, which is more diffi-
cult to implement than supply management, these parts of the global population will face
higher challenges for adaption to severe hydrological change that affects water supply.

If global warming would continue unabated to reach 5 ◦C above pre-industrial levels
in 2100, 4.93 billion people (54.9% of global population) in the SSP2 population scenario
would more likely than not be exposed to severe hydrological change. Out of those, 2.14 bil-
lion people (23.9% of global population) would already experience absolute water scarcity
due to high population pressure on water resources, making adaptation to such changes
more challenging. With a successful implementation of the Paris Agreement limiting global
warming to 2 ◦C, the number of people affected by severe hydrological change could be re-
duced to 615 million people (6.9% of global population), of which 290 million (3.2% of
global population) would already experience absolute water scarcity. If temperature in-
crease could be limited to 1.5 ◦C, the number of people exposed to severe hydrological
change could be further reduced to 195 million (2.2%) and 116 million (1.3%), respec-
tively. However, only a partial failure of the Paris Agreement with temperature rising to
2.5 ◦C would almost double the number of people more likely than not exposed to severe
hydrological change, in total and among those already experiencing absolute water scarcity,
compared to a 2 ◦C warming.
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Due to the heterogeneous spatial distribution of absolute water scarcity and severe
hydrological change, the proportion of population exposed to severe hydrological change
with increased adaption challenges reaches 12.0% in Latin America and 13.8% in the
Middle East and north Africa region even if global warming could be limited 2 ◦C by
a successful implementation of the Paris Agreement. A failure to overcome the obstacles
associated with the implementation of appropriate demand management can have negative
societal and economic consequences not only for these people but for the whole region.
Thus, 2 ◦C mean global warming cannot be considered a safe limit of warming in these
regions. More ambitious mitigation efforts that would keep warming at, or below, 1.5 ◦C

could substantially reduce that risk by reducing the share of population exposed to severe
hydrological change and with increased adaption challenges by more than half in these two
regions and globally.

Code and data availability

The CRU TS3.1 historical climate data are available from http://catalogue.ceda.ac.

uk/uuid/ac3e6be017970639a9278e64d3fd5508 (University of East Anglia Climatic Re-
search Unit et al. 2013). The temperature-stratified climate scenarios of the PanClim
dataset along with the matched GPCC historical precipitation data are available from
http://www.panclim.org (Heinke et al. 2013b). Historic gridded population estimates up
to the year 2010 are based on the Gridded Population of the World, Version 3 (GPWv3)
Data Collection (CIESIN and CIAT 2005), which have been edited and provided by the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP 2012, Warszawski et al.
2014). The gridded historical population data are available from https://www.isimip.

org/gettingstarted/details/13/ (CIESIN and CIAT 2005) and the future scenario pop-
ulation data are available from https://doi.org/10.7927/H4RF5S0P (Jones and O’Neill
2017). The STN-30p flow direction map can be downloaded from https://doi.org/10.

3334/ORNLDAAC/1005 (Vörösmarty et al. 2011). The model code of LPJmL4 is publicly
available from https://doi.org/10.5880/pik.2018.002 (Schaphoff et al. 2018c) or via
the GitHub project page https://github.com/PIK-LPJmL/LPJmL (last access: 5 February
2019). The core output of the analysis in this paper—consisting of historic and future
scenario water crowding estimates as well as hydrological indicators for 19 GCMs an 8
levels of global mean temperature increase at 0.5° resolution—has been made available
under a Creative Commons Attribution 4.0 License and is available for download from
https://doi.org/10.5281/zenodo.2562056 (Heinke et al. 2019b). All results presented
in this paper are based on this core output. All primary data, model code, model outputs
and scripts that have been used to produce the core output and the results presented in
this paper are archived at the Potsdam Institute for Climate Impact Research and are
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available upon request.

Supplementary material related to this chapter is available in Appendix D.
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Chapter 6

Water use in global livestock
production—opportunities and
constraints for increasing water
productivity

An edited version of this chapter has been submitted for publication as: J. Heinke, M. Lan-
nerstad, D. Gerten, P. Havlík, M. Herrero, A. Notenbaert, H. Hoff, and C. Müller. Water
use in global livestock production—opportunities and constraints for increasing water pro-
ductivity. Water Resources Research, submitted
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Abstract

Increasing population, change in consumption habits, and climate change will likely in-
crease the competition for freshwater resources in the future. Exploring ways to improve
water productivity especially in food and livestock systems is important for tackling the
future water challenge. Here we combine detailed data on feed use and livestock production
with FAO statistics and process-based crop-water model simulations to comprehensively
assess water use and water productivity in the global livestock sector. We estimate that
annually 4666 km3 of blue and green water is used for the production of livestock feed,
equaling about 44% of total agricultural water use. Livestock water productivity (LWP;
protein produced per m3 of water) differs by several orders of magnitude between livestock
types, regions, and production systems, indicating a large potential for improvements. For
pigs and broilers, we identify large opportunities to increase LWP by increasing both feed
water productivity (FWP; feed produced per m3 of water) and feed use efficiency (FUE;
protein produced per kg of feed) through better crop and livestock management. Even
larger opportunities to increase FUE exist for ruminants, while the overall potential to
increase their FWP is low. Substantial improvements of FUE can be achieved for rumi-
nants by supplementation with feed crops, but corresponding improvements in LWP are
offset by lower FWP caused by higher water requirements of feed crops. Therefore, LWP
of ruminants, unlike for pigs and poultry, does not always benefit from a trend towards
intensification, as this is often accompanied by increasing crop supplementation.
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6.1 Introduction

Driven by increasing global population and rising per capita food demand, global produc-
tion of animal source foods (ASF) has more than tripled over the last 50 years, accompanied
by a threefold increase of crops used for animal feed (FAO 2018). One third of all cropland
is now being used to produce feed crops (Steinfeld et al. 2006) and one quarter of the
ice-free land area of the world is occupied by pastures (FAO 2018). Continued population
growth and an unbroken trend towards more meat-based diets will put enormous pressure
on the food system in the coming decades (Alexandratos and Bruinsma 2012, Bodirsky
et al. 2015). In total, global agricultural output will have to increase by 70% to 110%

by 2050. The major part of both the production and consumption of animal products is
expected to take place in developing countries (Alexandratos and Bruinsma 2012, Godfray
et al. 2010).

Already today, more than 2 billion people live in countries where total freshwater with-
drawals exceed 25% of the total renewable freshwater resource (United Nations 2017).
Population growth and climate change are both projected to substantially increase water
scarcity for large portions of humanity (Heinke et al. 2019a). Water is one of the most
basic resources needed in agricultural production and agriculture is the single largest water
user accounting for 69% of global freshwater withdrawals (FAO 2016) and an even higher
share of consumptive freshwater use. In addition to this ‘blue water’, agriculture consumes
many times more ‘green water’, i.e. soil moisture from naturally infiltrated rainfall on both
irrigated and rainfed agriculture land (Rost et al. 2008). In view of rising food demand,
it is imperative to limit further increase in agricultural water demand by seeking ways to
produce more per unit of water.

Previous studies have estimated consumptive water use (CWU) by the livestock sector
as a whole (de Fraiture et al. 2007, Mekonnen and Hoekstra 2012, Weindl et al. 2017) and
for different ASF in different countries (Mekonnen and Hoekstra 2012). The vast majority
of the CWU by the livestock sector is related to the production of feed, whereas only about
2% of it is water for drinking and servicing (Mekonnen and Hoekstra 2012). Thus, the
estimation of the feed amounts from different sources required to produce ASF and the
water use associated with the production of this feed are central to the estimation of CWU
for livestock production. We here use a comprehensive dataset from Herrero et al. (2013),
which provides estimates of production of ASF and corresponding use of feed from different
sources for four types of ruminants in eight different production systems and four different
monogastric animal types in two different production systems in 29 world regions. In total,
919 different combinations (‘livestock production units’) are distinguished. The dataset is
based on a mechanistic digestion and metabolism model (Herrero et al. 2008) to provide
biologically plausible estimates and is harmonized to FAOSTAT to match reported use of
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crops for feed (concentrate feed) and production of ASF around the year 2000. The state-
of-the-art dynamic global vegetation, hydrology and crop model LPJmL4 (Schaphoff et al.
2018b) is used to estimate the water required to produce feed crops, cultivated forages,
and grazed grass. Unlike previous studies that have only accounted for the direct water
use—i.e., the evapotranspiration occurring during the growing period—we also include the
evapotranspiration that occurs from fallow cropland outside the growing period as an indi-
rect water use in our estimates of CWU of feed and ASF. Accounting for the indirect fallow
water use is particularly important when comparing annual and perennial crops, in which
the former would be unjustifiably favored when only growing period evapotranspiration
(ET) were used.

The goal of this study is twofold. First, we aim to provide revised estimates of CWU
in global agriculture, i.e. how much of it is attributable to the livestock sector and to
the different ASF in different regions and production systems. Second, we analyze how
variations in livestock water productivity (LWP; defined as g protein produced per m3

of CWU) are caused by variations in feed water productivity (FWP; defined as kg feed
produced per m3 of CWU) and variations feed use efficiency (FUE; defined as g protein
produced per kg of feed) and assess the possible implications for the potential to improve
LWP.

6.2 Materials and Methods

Estimation of livestock water use and water productivity requires information about feed
use by livestock, the amount of protein produced from the feed, and the water used for
producing the feed. Feed use and production in the global livestock sector are based on
data from Herrero et al. (2013), which provides detailed information for 919 different com-
binations of livestock production type, production system, and world regions, hereafter
referred to as livestock production units. Livestock production types differ by animal
species, use of feed types, and produced ASF types (Table 6.1). For each of the two rumi-
nant types ‘bovines’ and ‘sheep & goats’, a ‘meat’ and a ‘diary’ sub-type is distinguished,
which produce only meat or both milk and meat, respectively. Each of the four can occur
in up to eight ruminant production systems (Robinson et al. 2011) in each of 28 world
regions. All ruminants rely on roughage (grazed biomass, crop residues, and cultivated
forages) as primary feed source with up to 50% supplementation of feed crops. The effect
of feed composition and nutritional quality on FUE is explicitly accounted for by applying
a mechanistic digestion and metabolism model. For poultry, meat producing broilers and
egg producing layer hens are distinguished for industrial production, whereas smallholder
production is assumed to produce both eggs and meat simultaneously (dual-purpose poul-
try). All poultry are fed with feed crops but depending on the region, a significant part
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of the feed in smallholder production may come from alternative but unaccounted feed
sources, such as scavenging and uneaten food (Herrero et al. 2013). Pigs in both industrial
and smallholder production only produce meat and are fed with feed crops. However, like
smallholder poultry, pigs in smallholder production also partially rely on unaccounted feed
sources, which is why we treat them as a separate livestock production type here.

Table 6.1: Overview over livestock types, the products they produce, in which livestock
production system they can occur, the feed types they receive, and on which water resources
they rely.

Livestock types Products Livestock production systems Feed types Water resources

meat bovines meat LGA, LGH, LGT,
MXA, MXH, MXT,
Urban, Other

grazed biomass,
crop residues,
forages, grains

blue,
green suitable,
green marginal

dairy bovines milk,
meat

LGA, LGH, LGT,
MXA, MXH, MXT,
Urban, Other

grazed biomass,
crop residues,
forages, grains

blue,
green suitable,
green marginal

meat sheep &
goats

meat LGA, LGH, LGT,
MXA, MXH, MXT,
Urban, Other

grazed biomass,
crop residues,
forages, grains

blue,
green suitable,
green marginal

dairy sheep &
goats

milk,
meat

LGA, LGH, LGT,
MXA, MXH, MXT,
Urban, Other

grazed biomass,
crop residues,
forages, grains

blue,
green suitable,
green marginal

industrial pigs meat industrial grains blue, green suitable

smallholder pigs meat smallholder grains,
unaccounted sources

blue, green suitable

broilers meat industrial grains blue, green suitable

layer hens meat industrial grains blue, green suitable

dual-purpose
poultry

eggs,
meat

smallholder grains,
unaccounted sources

blue, green suitable

Livestock production systems: LGA - livestock grazing arid; LGH - livestock grazing humid; LGT -
livestock grazing temperate; MXA - mixed arid; MXH - mixed humid; MXT - mixed temperate; Urban -
urban systems; Other - other systems

Green and blue water use for the production of the different feed components (feed
crops, cultivated forages, grazed biomass, and crop residues) fed to animals in the 919
livestock production units is estimated from simulations with the dynamic global vegeta-
tion and hydrology model LPJmL4, which includes process-based representations of crop
and grazing land dynamics (Schaphoff et al. 2018b, see section E.1 for details). Global
production and related water use for 62 crops and crop groups are estimated using maps
of harvested area and total cultivated area from MIRCA2000 (Portmann et al. 2010) and
national yield statistics from FAOSTAT (FAO 2018). Total production for all crops was es-
timated by multiplying harvested area with national yield from FAOSTAT. ET during the
growing seasons of 18 major crops was estimated from LPJmL4 simulations by determining
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the management intensity for which simulated yield best matches yield from FAOSTAT
at country level. For all other crops, ET of a generic annual and a generic perennial crop
type was used. ET from off-season and full-year fallow land was estimated assuming bare
soil (black fallow) and assigned to crops based on harvested area and cropping intensity
(see section E.2 for details).

From the thus obtained estimates of CWU for harvested crops we determine CWU
related to crops and crop products utilized for food, feed, and other uses at national level
by using the information about trade and utilization given in the FAOSTAT Food Balance
Sheets and Commodity Balances Sheets (FAO 2018). Only net imports and exports are
accounted for and a global trade pool is assumed for each commodity. Water for commodity
quantities reported as waste is proportionally distributed to food, feed, and other uses,
resulting in a decrease in water productivity for actually utilized commodities (for further
details see section E.3).

Production of cultivated forage and related CWU was estimated using maps of har-
vested area from MIRCA2000, gridded yield estimates from (Monfreda et al. 2008), and
simulated ET from LPJmL4 (section E.2). The utilization of cultivated forage in each
livestock production unit was estimated by adjusting the amounts of occasional feed use
from (Herrero et al. 2013) until they matched the estimated forage production in the
corresponding ruminant productions systems (see section E.4 for details). The difference
between occasional feed demand and estimated use of fodder grasses was added to the
demand for grazed biomass.

For the estimation of CWU for grazed biomass we performed a series of LPJmL4 simu-
lations with a wide range of grazing intensities to determine the maximum biomass yield
and corresponding ET (section E.1). To estimate potentially available biomass for grazing,
yields were multiplied with the sum of grassland and woodland and barren and sparsely
vegetated land from the GAEZ land cover dataset (IIASA/FAO 2012). For India, 10%
of built-up land were added to account for roadside grazing and grazing on small pasture
patches within human settlements (Spate and Learmonth 2017). Total grass demand on
production unit level was downscaled to grid cell level using the spatial distribution of
ruminants and ruminant production systems given by the Gridded Livestock of the World
version 2 dataset (Robinson et al. 2014). Inconsistencies in the downscaling of grass demand
were resolved by redistributing excess demand within the respective ruminant production
system and, if insufficient, within the respective region (see section E.5 for details). The
CWU for the estimated grazing demand in each grid cell was estimated by multiplying with
annual ET per kg of grazed grass determined for the maximum yield scenario. Finally,
the area potentially available for grazing according to the GAEZ land cover dataset and
the definition above is reduced to match “land under permanent meadows and pastures”
reported by FAOSTAT (FAO 2018) in each country (see section E.5 for details).
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No water use was allocated to crop residues (straws and stovers), thus assuming that
their use for feed has no environmental or economic consequences. We acknowledge that
this assumption is debatable, especially for agricultural productions systems where biomass
is scarce. But assessing the implications of residue use (and the water use allocated to it)
would require comprehensive knowledge of many economic, environmental, and manage-
ment aspects of agricultural production that are not available globally.

6.3 Results and Discussions

6.3.1 Livestock water use from global agricultural lands

In total, an annual water quantity of 20 236 km3 is evaporated from global agricultural
lands, with 7677 km3 green water and 1324 km3 blue water from cropland and 11 235 km3

green water from pastures, averaged over the period 1998–2002 (Figure 6.1). In contrast to
pastures, which are more or less permanently covered by grasses, a wide range of seasonal
crops with short and long growing seasons are predominantly cultivated on cropland. Thus,
most cropland is only temporarily covered by crops, so that only 4572 km3 of the total green
ET from cropland occurs during growing periods and 3104 km3 during seasonal and annual
fallow periods. Because fallow is part of the rotational use of cultivated lands, its ET is
included in our analysis as an integral part of the CWU of crops. Annual blue water ET
from fields during the growing period is 910 km3 and no blue ET is assumed to occur from
fallow assuming there is no irrigation in these periods. As the conveyance efficiency of
irrigation infrastructure is low in many parts of the world (Rost et al. 2008), an additional
414 km3 of blue water evaporates from open canals and temporary storages for the provision
of irrigation water to the field.

In Figure 6.1 the annual ET from global agricultural lands is divided into CWU for six
principal biomass utilization categories. About 5048 km3/yr of total cropland ET (56%)
are attributed to the production of ‘food crops’, 2980 km3/yr (33%) to the production of
‘feed crops’ and ‘forages’, and 888 km3/yr (10%) to the production of biomass for ‘other
uses’, mainly fibers and biofuels. A small amount of 85 km3/yr cropland ET (<1%) could
not be allocated to any use due to inconsistencies in trade statistics. From pastures,
1686 km3/yr of annual ET (15%) are allocated to the production of ‘grazed biomass’. The
remaining ET from pastures is associated with biomass which supports other functions
of pastoral ecosystems, such as wildlife and carbon sequestration (Schyns et al. 2019).
Overall, 10 602 km3/yr of green and blue ET from global agricultural lands are allocated
to the production of biomass for human use as food, animal feed, fiber and biofuels.

In total, the global livestock sector annually appropriates 4666 km3/yr of green and
blue water for the production of feed crops, forages, and grazed biomass (Figure 6.1),
equaling about 23% of the total ET from global agricultural land and 44% of total CWU
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Figure 6.1: Total ET from global agricultural lands, year 2000, divided over cultivated
lands and pastures, and differentiated into blue ET, green ET from cultivated lands, and
green ET from pastures, differentiated as suitable for crop cultivation or marginal, i.e. not
suitable. The bar is divided over six utilization categories. Total CWU for global livestock
production include CWU from feed crops, forages, and grazed biomass. The grey section
denotes cropland ET that could not be allocated to any utilization.

for agricultural biomass for human use. Out of the annual total CWU in global livestock
production, 4369 km3/yr (94%) are from green water, which is slightly more than the
4159 km3/yr of green water used for food crops. However, more than one third of the
green water used in livestock production is from pastures, which are often located on
marginal lands where livestock rearing is the only viable agricultural land use. Hence, the
green water from large parts of pastures is not directly comparable to the green water
from cropland as it could not be used alternatively for crop production. Applying a ‘crop
suitability index’ (IIASA/FAO 2012) reveals how much pasture land could be fruitfully
converted to cropland, and in turn, how much of the green water on these convertible
pastures could support growth of crops. We find that 576 km3/yr (34%) out of the annual
green CWU related to grazed biomass are from marginal pastures (crop suitability index
<0.1) and 1111 km3/yr from pastures suitable for crop production. The proportion of ET
from marginal pastures in total pasture ET it is very similar (33%).

Even though the contribution of green water is substantial and may be the primary
source of water in some production systems, the global amount of 3794 km3/yr crop-suitable
green CWU used for feed production is only 9% smaller than the green CWU for food
crops. In contrast, only 297 km3/yr of blue water is used for feed production, which is
still about one third of the 889 km3/yr blue water used for food crops. In addition to the
blue CWU in feed production, the livestock sector also requires blue water for drinking
and servicing. Globally, the evaporation from these blue water withdrawals amounts to
27 km3/yr (Alcamo et al. 2003). This equals 9.1% of the blue CWU and 0.6% of total
CWU for feed production.
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6.3.2 Water use for livestock types and livestock products

In total, the global livestock sector generates an annual human edible protein supply of
53.7MtP (year 2000; Figure 6.2), with a global average LWP of 11.5 gP/m3. About half
of annual production (29.2MtP) but almost two thirds of total annual livestock CWU
(2975 km3) can be attributed to ruminants, and the remaining production (24.5MtP) and
CWU (1691 km3) are associated with monogastric animals. Thus, monogastric animals
produce almost 50% more protein per unit of total CWU than ruminants (14.5 gP/m3

compared to 9.8 gP/m3). The composition of CWU of ruminants and monogastric animals
differs due to the fundamentally different composition of feed. Because the digestion system
of ruminants is well-suited to digest cellulose feeds, the largest part of their global average
feed mix (92%) consists of roughage, with grass from pastures making up the largest part
(74% of roughage). As a result, most of the CWU of ruminants (57%) is green water
from pastures, of which about one third is from marginal land. Monogastric animals, on
the other hand, are only fed with concentrate feed (feed crops and animal by-products) so
that CWU for this group only consists of green and blue water from cropland (Table 6.1).
Although the share of blue water in CWU from cropland is larger for ruminants (11.3%)
than for monogastric animals (9.0%), the share of blue in total CWU of ruminants is only
4.9% due to the large contribution of green water from pastures.

The division into nine livestock production types allows for a more in-depth analy-
sis of water use and production. When assessing the relative importance for supplying
human edible proteins, the single largest contributor is the bovine dairy production pro-
viding 37.3%, followed by almost equally large protein supply from industrial pigs, 13.7%,
industrial broiler, 13.4%, and meat bovines, 13.0%. The smallest protein contributions
come from the sheep & goat production, with 1.9% from the dairy category and 2.2%

from the meat type. The appropriation of CWU by livestock production types is different
from their contribution to production, with meat bovines being the single largest water
user with 30.9% of total livestock CWU, followed by dairy bovines, 18.3%, and industrial
pigs, 14.9%; smallest quantities are appropriated by layer hens, 4.4%, smallholder dual
purpose poultry, 3.9%, and smallholder pigs, 2.3%. Composition of CWU for the different
production types largely follows the overall patterns found for ruminant and monogastric
animals. However, among monogastric animals, comparatively high shares of 12% blue
water are found for both smallholder types (smallholder pigs and dual-purpose poultry),
which is a result of the geographical distribution of production, i.e., a large part of produc-
tion happens in regions with a high share of irrigation on cropland. Among ruminants, a
comparatively high share of blue water is found for dairy bovines, which is mainly caused
by the high share of cultivated feed crops and forages in the feed mix (21.5% compared to
14.6% average for remaining ruminants). The share of green CWU from marginal pastures
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differs by a factor three among ruminant production types, which is mainly the result of
differences in the share of green marginal water in grazing CWU (27.5% for meat bovines
to 58.4% for dairy sheep & goats) but also of the contribution of grazing to the overall
feed mix (60.4% for dairy bovines to 76.0% for dairy sheep & goats).

The different patterns of CWU attribution and contribution to production by the nine
livestock production types translate into different livestock water productivities. High-
est average LWP are found for dairy bovines with 23.4 gP/m3, followed by layer hens,
23.1 gP/m3, and smallholder pigs, 21.5 gP/m3. Lowest LWP is 2.6 gP/m3 for meat sheep
& goats—almost ten times lower than for dairy bovines—, followed by 4.5 gP/m3 for dairy
sheep & goats and 4.8 gP/m3 meat bovines. However, even larger LWP differences are
found within livestock production types. In Figure 6.2, the total CWU appropriated by
each of the nine production types is sorted from high to low LWP and divided into ten equal
CWU portions; for each tenth, the composition of CWU and the amount and composition
of protein produced from it are shown. Average LWP of the most and least efficiently used
CWU tenth varies at least fivefold for layer hens and up to nearly 40-fold for meat bovines.
As a result, the LWP ranges of the different livestock production types overlap, with low
LWP found in each of the nine types. Thus, the average value is only an indicative value
for each production type, as large parts of the production can be produced both with a
much lower and a much higher water use per unit product. Also, due to the differences in
the geographical distribution of production it is difficult to draw conclusions about general
differences between livestock production types.

6.3.3 Drivers for variations in livestock water productivity

The huge differences in LWP (Figure 6.2) are the result of the wide range of conditions
under which livestock rearing and feed production takes place. Many of these conditions are
subject to crop and livestock management (fertilizer, pesticides, crop and livestock species,
breeds, animal health) and can be improved to increase LWP. Other conditions, mainly
environmental factors such as climate and soils, cannot be changed but may be addressed
by management (e.g., by providing housing or shelter for animals). Due to incomplete
knowledge about all different management factors that determine LWP in our analysis, it
is not possible to fully quantify the ‘management gap’—i.e., the difference between current
and best management—and the corresponding productivity gap. In the following we will
instead analyze the contribution from variations in feed water productivity (FWP; an
aggregated measure of how efficiently water is used to produce the feed mix) and feed use
efficiency (FUE; a measure of how efficiently the feed is used to produce meat, milk, and
eggs) to variations in LWP and provide a qualitative assessment of the opportunities to
improve LWP and the possible constraints and trade-offs.

In contrast to the previous section, where LWP was analyzed for the total volume of
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Figure 6.3: LWP and its components FWP and FUE, all sorted by LWP. Mean and the
range of ±1 standard deviation calculated from the log-transformed variables are indicated
(black open dot with whiskers for standard deviation). The table shows a partitioning
of variance in log(LWP) into variance in log(FWP), variance in log(FUE), and double
covariance of llog(FWP) with log(FUE) (see section E.6 for details).

CWU, this section focusses on the differences in production conditions across regions and
production systems. To facilitate an undistorted comparison of LWP, FWP, and FUE
estimates, each production unit (one region for monogastric animals or one production
system in a region for ruminants) is weighted equally, regardless of its contribution to total
CWU and production. Smallholder pigs and poultry are omitted, because FWP and FUE
cannot be calculated for these due to the contribution of feed from unaccounted sources.
Also, all values for the Pacific Islands region have been excluded as most estimates in this
region appear extreme or even implausible, probably due to unreliable FAO statistics of
feed use, animal numbers, and production.

Contribution of variations in FWP and FUE to variations in LWP

In Figure 6.3, the LWP in different regions and production systems is shown sorted from
high to low, along with the corresponding distribution of FWP and FUE (all values in the
same order as LWP) for each livestock production type. The logarithmic representation is
required to overcome the difference in scale and magnitude, so that it is possible to visually
and statistically analyse the variations in LWP, FWP and FUE.

By comparing the patterns of log(FWP) (green), log(FUE) (brown), and log(LWP) (or-
ange) in Figure 6.3, it is possible to draw conclusions about how differences in FWP and
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FUE determine the variations of LWP. For industrial pigs and broilers, the histograms of
log(FUE) and log(FWP) (ordered from high to low LWP) both exhibit a similar gradient
from high to low, indicating that they contribute about equally to variations in LWP but
also that they are to some degree correlated. For layer hens, FUE is more or less constant
across regions and the gradient of log(FWP) closely resembles the gradient of log(LWP),
indicating that variations in LWP are almost entirely caused by differences in FWP. For
ruminants, variations in log(FUE) are generally larger than variations in log(FWP) (indi-
cated by the range of ±1 standard deviation in Figure 6.3), and the histogram of log(FUE)

therefore shows a similar gradient from high to low than log(LWP), whereas the distribu-
tion of log(FWP) appears to be more or less random in relation to LWP.

Decomposition of total variance of log(LWP) into variance of log(FWP), variance of
log(FUE), and double covariance between covariance of log(FWP) with log(FUE) (Table
in Figure 6.3, see section E.6 for details), confirms the visual interpretation of Figure 6.3
and reveals further details that support the assessment of potentials to improve LWP. The
covariance component therein can be interpreted as the contribution of correlation between
FWP and FUE to total variance. For industrial pigs and broilers, the contribution from
variance in log(FWP) (column 1) is larger than the contribution from variance in log(FUE)

(column 2), which means that reducing variations in FWP would have a greater effect on
reducing variations in LWP than reducing variations in FUE. However, for improving
LWP it is also important how much of the variation in FWP and LWP can be addressed
through management. Because animal housing allows for complete control of environmental
conditions, FUE in industrial pig and broiler production can in principal be increased
to the observed maximum in any part of the world with optimal management, whereas
differences in environmental conditions will always result in variations of FWP even under
optimal management. Mueller et al. (2012) have estimated that for most major crops
the differences in management explain 60% to 80% of yield variability and that global
crop production of these crops could be increased by 47% to 70% by improving nutrient
and water management. Given that the response of FWP to increasing yield is not linear
(Rockström et al. 2007) and that improvements in FWP can also be achieved through
agricultural water management (Jägermeyr et al. 2016), these numbers should be directly
interpreted as the potential to improve FWP, but they clearly highlight the importance of
crop management for increasing LWP through improvements of FWP. For industrial layer
hens, the contribution of log(FUE) to log(LWP) is very small, which means that variations
in LWP are almost entirely determined by variations in FWP, so that LWP can only be
improved by increasing FWP.

The dominant influence of variations in FUE for causing the variations in LWP of ru-
minants is the result of both a lower variance of FWP and a higher variance of FUE for
ruminant types compared to industrial pigs and poultry. The lower variance in FWP for
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ruminants is caused by the low variance of water productivity of grazed biomass (44%
lower than for feed crops), which in average make up about 68% of ruminant feed. This
also means that the potential to increase FWP of ruminant feed is much smaller than
for industrial pigs and poultry. Not only because variance in FWP is lower but because
water productivity of grazed biomass as defined here (section E.5) is entirely the result of
environmental conditions and not subject to management. The high variance in FUE of
ruminants is primarily the result of the diversity in ruminant management across regions
and production systems, from smallholder ruminant rearing in developing countries to com-
mercial production in high-income countries (Herrero et al. 2013). Variance of log(FUE)
is especially large for meat and also dairy bovines. This implies a large potential to in-
crease LWP for ruminants and particularly for meat and dairy bovines by increasing FUE.
Although ruminants often spend at least part of their lifetime grazing on pastures where
they are exposed to environmental conditions, it is in principal possible to minimize the
exposure to detrimental climatic conditions by providing suitable shelter or rear ruminants
entirely indoors. Thus, FUE can in principal be increased to its theoretical maximum in
any part of the world but doing so may not always be practical.

Causes and implications of correlation between FWP and FUE

If FWP and FUE were unrelated, the variance of log(LWP) would be the sum of only
variances of log(FWP) and log(FUE). However, for all livestock production types in our
analysis we find correlations between FUE and LWP of varying sign and strength, which
amplify or diminish the variance of log(LWP) by the double covariance between log(FWP)

and log(FUE) (Figure 6.3, column 3). For industrial pig and broilers, about one third of
total variance of log(LWP) can be attributed to a positive correlation between FWP and
FUE. For all other livestock production types, a negative correlation between FWP and
FUE results in a reduction of variance of log(LWP).

Understanding the underlying reasons for these correlations is crucial for assessing their
implications for LWP improvements. Given the design of the study and the data and mod-
els used, three major drivers can be expected to cause a correlation between FWP and FUE
in the results presented here: environmental conditions, socio-economic context, and feed
composition. All livestock species are sensitive to climatic stress, in particular heat stress
under high temperature and humidity (Nardone et al. 2006), leading to decreased overall
productivity. Temperature extremes also affect plant growth and development (Hatfield
and Prueger 2015), but many other abiotic factors such as soil type, insolation, and pre-
cipitation are only relevant for crops and grasses and have no direct impact on livestock.
Thus, variations in temperature can cause FUE and FWP to become positively correlated
but the effect is possibly small. A much stronger influence on the correlation between FUE
and FWP can be expected from the socio-economic context in which feed cultivation and
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livestock rearing take place. Although crop-based feed is also traded internationally, the
vast majority of feed is grown domestically (FAO 2018). Thus, access to capital, knowl-
edge, and technology within a country determine how well both feed crops and livestock
are managed, causing FUE and FWP to become positively correlated. Finally, variations
in the composition of feed can cause FUE and FWP to be negatively correlated, when feed
components with a high nutritional value (e.g., maize and soya) lead to a higher FUE and
lower FWP, because they provide more energy to livestock but require more water to be
grown.

Correlation between FWP and FUE for industrial pigs and poultry. The effect
of climatic conditions on the correlation between FUE and FWP found for industrial
pigs and poultry is most likely negligible because these livestock types are usually reared
indoors (Herrero et al. 2013). Also, FUE for monogastric animals was estimated from
literature and does not account for differences in composition or quality of feed (Herrero
et al. 2013). Thus, the positive relationship between FWP and FUE for industrial pigs
and broilers is most likely attributable to the influence of the socio-economic context on
crop and livestock management. This is supported by a strong correlation of FWP and
FUE with regional per-capita gross domestic product (GDP), which can be taken as proxy
for the socio-economic development level (Spearman’s rho all between 0.59 and 0.61; see
Table E.3). There is no obvious explanation for the inverse relationship between FWP and
FUE found for industrial layer hens. They receive the same feed mix as industrial broilers,
so their FWP shows the same strong correlation with GDP, but correlation of FUE with
GDP is negative (Spearman’s rho −0.35).

Because the positive relationship between FWP and FUE of industrial pigs and broil-
ers in Figure 6.3 is the result of a common socio-economic context, an improvement of
FWP and FUE by appropriate management interventions will not lead to a parallel im-
provement in FUE and FWP, respectively, and the management gaps causing variations in
FWP, FUE, and eventually LWP have to be addressed individually. However, both FWP
and FUE would benefit from improved conditions socio-economic that support a develop-
ment towards intensification in the agricultural sector. Even if a causal relationship for
the negative correlation between FWP and FUE cannot be ruled out, the contribution of
covariance between log(FWP) and log(FUE) to total variance of log(LWP) is very small,
making it unlikely that to improvements in FWP through targeted management interven-
tions or a trend towards intensification would be substantially offset by a corresponding
decreases in FUE.

Correlation between FWP and FUE for ruminants. The influence of socio-economic
context on the correlation between FUE and FWP can be expected to also apply for rumi-
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nants, but because most of ruminant feed is grazed biomass, whose water productivity is
not influenced by management in our analysis, the overall effect is probably weaker. Envi-
ronmental conditions, on the other hand, are likely to also play a role as most ruminants
spend at least part of their lifetime grazing on pasture, where they can become exposed to
climatic stress. However, both are drivers that lead to positive correlation between FUE
and FWP, while the correlation found in Figure 6.3 for ruminants is negative. Because
ruminants are fed a wide variety of feed mixes—composed of components with very differ-
ent nutritional quality and water requirements—and because influence of feed quality on
FUE is explicitly accounted for in the data from Herrero et al. (2013), inverse effects of
feed composition on FWP and FUE are a possible explanation for a negative correlation
between FWP and FUE.

Figure 6.4: Relationship between the percentage of crop-based feed (grain, concentrates)
in the feed mix of ruminants and FUE and FWP, and the resulting effect on LWP. Solid
lines in FUE and FWP are smoothing splines fitted to the data. Solid lines in LWP are the
product of the splines fitted to FWP and FUE (orange), the product of the spline fitted
to FWP and constant FUE for 0% grain use (brown), and the product of the spline fitted
to FUE and constant FWP for 0% grain use (green). The dashed orange line in LWP is
the smoothing spline directly fitted to LWP values.
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In Figure 6.4, the effect of supplementation with feed crops on FWP, FUE, and resulting
LWP is shown for all ruminant types. Adding crop-based feed with a high energy and
protein content to the primarily grass-based diet of ruminants improves the nutritional
value of the whole feed mix and leads to an increase in FUE (brown, middle row). But
because the WP of crops is much lower than the WP of grass (0.56 kgDM/m3 in average
for crops compared to 1.45 kgDM/m3 for grazed biomass) this comes at the cost of a lower
overall FWP (green, top row). Since the increase in FUE is stronger than the decrease
in FWP, supplementation with feed crops always result in a higher LWP compared to an
entirely roughage-based diet (orange, bottom row). However, at least for bovines, FUE
gains from supplementation with feed crops appear to diminish at high crop shares, so that
LWP reaches a maximum at about 20% feed crops in the feed mix and declines thereafter.

Akin to supplementation with feed crops, the incorporation of crop residues (straws and
stovers) in ruminant feed also has an effect on FWP and FUE with opposite sign. Due to
no water cost and low nutritional value, feeding crop residue to ruminants has a positive
effect on FWP and a negative effect on FUE (Figure 6.5). Although the strength of both
effects is similar over the considered range of residue shares, it appears that moderate
inclusion of crop residues (up to about 30%) into feed of bovines tends to have a negative
effect on LWP, whereas higher shares lead to an increase in LWP. The latter is caused by
a strong increase in FWP for high shares of crop residues, which is the consequence of the
assumption of no water cost for residues (for a diet consisting entirely of crop residues,
FWP would approach infinity). For sheep & goats, the smaller range of residue shares in
the dataset and the limited number of data points hamper the identification of a pattern
in LWP to feeding crop residues to, but it is likely that it follows a similar general pattern
than for bovines.

Although the responses of FUE and FWP to crop supplementation and incorporation of
crop residues in Figures 6.4 and 6.5 can be fully explained by the consequences of varying
feed composition, they are also influenced by other aspects of crop and livestock manage-
ment. We find that the share of feed crops is positively and the share of crop residues in
the feed mix is negatively correlated with GDP for all ruminant types (Spearman’s rho
0.38 to 0.64 for fraction of feed crops and 0.28 to 0.43 for fraction of crop residues; see Ta-
ble E.3), so that high rates of supplementation with feed crops tend to be associated with
a high overall level of intensification in both crop and livestock production, whereas high
rates of residue use tend to be associated with a low level of agricultural intensification.
These correlations are likely to contribute to the observed responses to crop supplementa-
tion by diminishing the decline of FWP and enhancing the increase of FUE. Likewise, the
observed decline of FUE in response to incorporation of crop residues in feed is to some
degree attributable to poorer overall livestock management.

Because of the unknown contribution of general crop and livestock management to the
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Figure 6.5: Relationship between the percentage of crop residues used in the feed mix
and FUE and FWP, and the resulting effect on LWP. Solid lines in FUE and FWP are
smoothing splines fitted to the data. Solid lines in LWP are the product of the splines
fitted to FWP and FUE (orange), the product of the spline fitted to FWP and constant
FUE for 0% stover use (brown), and the product of the spline fitted to FUE and constant
FWP for 0% stover use (green). The dashed orange line in LWP is the smoothing spline
directly fitted to LWP values.

responses of FUE and FWP, specific features of the pattern in Figures 6.4 and 6.5 such as
the apparent maximum of LWP at 20% crop supplementation fractions and the apparent
minimum of LWP at 30% residue incorporation for bovines must not be interpreted as
having general validity. However, direct effects of feed composition on FUE and FWP
are fundamental mechanisms that lead to a trade-off between improving or FUE or FWP
through feed composition at the cost of lower FWP or FUE, respectively. Optimizing
the feed mix of ruminants in a specific setting bears a great potential for improving LWP
but requires details knowledge about the response of FUE to changes in feed composition
and about water requirements for producing the different feed components. For reaping
maximum benefits, the interactions between interactions between feed mix and other crop
and livestock management aspects need to be considered, as these can drastically change
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the responses of FWP and FUE (e.g., better crop management can compensate a drop in
FWP and better livestock management can enhance the FUE increases thorough feeding
interventions). And technological innovations, such as pre-treatment of residues to improve
their nutritional quality (Blümmel et al. 2018), can potentially weaken or resolve the trade-
off between FWP and FUE. In specific applications, it is also critical to reassess the validity
of the water allocation rules applied in our global study. For example, assigning no water
to residues could lead to misleading conclusions when using crop residues for feed causes
nutrient mining from agricultural soils (Lutz et al. 2019).

Last but not least, our results suggest that LWP of ruminants, unlike for industrial
pigs and poultry, does not always benefit from a trend towards intensification in the whole
agricultural sector. Because better overall livestock management tends to be associated
with high rates of supplementation with feed crops, the corresponding decline in FWP can
lead to a lower in LWP in intensively managed systems.

6.3.4 Comparison with ET and CWU estimates from literature

Our estimate of total cropland ET (8587 km3/yr) is lower than the estimates reported by
Hanasaki et al. (2010) and Siebert and Döll (2010) but larger than the estimate by Liu
and Yang (2010) (Table 6.2). Since all these estimates are based on the same cropland
dataset (Ramankutty et al. 2008), the difference should be attributable to other input data
and model formulations used here. However, the estimate of fallow ET from Liu and Yang
(2010) appears very low and probably only includes ET from cropland outside the growing
period, whereas our and the other estimate also include ET from land not cultivated every
year. The share of fallow ET in total cropland ET in our analysis is 36%, which agrees
well with the corresponding estimates of 36% and 32% from Hanasaki et al. (2010) and
Siebert and Döll (2010), respectively.

Our estimate of 5482 km3/yr for ET during the growing period is somewhat below the
range of estimates reported by all other studies (5938 km3/yr to 7130 km3/yr). This is
consistent with the general underestimation of ET by LPJmL4 (Schaphoff et al. 2018a),
although at least two of the studies (de Fraiture et al. 2007, Weindl et al. 2017) also make
different assumptions about cropland extent and area harvested. The share of 17% crop ET
from blue water sources in our analysis is close to the estimates from four other studies and
equivalent to the average across all studies (17%). Our estimate of 414 km3/yr consumptive
blue water losses from irrigation water supply infrastructure, which is not included in the
figures shown in Table 6.2, is close to the corresponding estimate of 440 km3/yr from de
Fraiture et al. (2007).

When looking at total growing period CWU for barley, maize, wheat, and soybeans, we
find that the sum of ET estimated for these four important feed crops in our analysis is
about 20% lower than the sum of the corresponding estimates from Mekonnen and Hoek-
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Table 6.2: Estimates of ET components from cropland and pastures and CWU components
allocated to livestock. To facilitate comparison of estimates from different studies, the
values reported in this table do not account for the consumptive losses of irrigation. All
ET and CWU totals are in km3/yr.

de Fraiture
et al.

(2007)

Mekonnen
and

Hoekstra
(2011, 2012)

Hanasaki
et al.

(2010)

Liu and
Yang

(2010)

Siebert
and Döll

(2010)

Weindl
et al.

(2017)

Our study

Year 2000 1996–2005 2000 1998–2002 1998–2002 2000 1998–2002

ET cropland 11070 7323 9823 8587

ET fallow 3990 1385 3137 3105

ET growing period 6690 6670 7080 5938 6685 6100 5482

Crop ET from blue
sources

16.9% 13.5% 21.6% 15.6% 17.7% 16.6% 16.6%

Total CWU barley 200 161 139

Total CWU maize 648 693 691

Total CWU wheat 964 858 665

Total CWU soybeans 427 363 399 229

Total CWU crops for
livestock

1312 1304 2170 1846

ET Pastures 12960 16520 11235

Green CWU grazing 840 913 2590 1686

stra (2011) and Siebert and Döll (2010). For barley, wheat, and soybeans, the difference
between our estimates and the two other studies is quite large but there are also large
differences between Mekonnen and Hoekstra (2011) and Siebert and Döll (2010). Our es-
timate for total growing period CWU for maize is nearly identical to the estimate from
Siebert and Döll (2010) and slightly larger than the estimate from Mekonnen and Hoekstra
(2011). The differences between estimates from different studies can in part be attributed
to different assumptions about the harvested area of crops as well as differences in terms
of start and length of growing periods. However, one fundamental difference between the
two other studies and ours is that LPJmL4 can account for changes in ET due differences
in crop leaf area index under different crop management intensities, which is an important
determinant of crop water productivity (Rockström et al. 2007).

The share of crop ET allocated to CWU of livestock production in our analysis is 33%,
which is much larger than the corresponding estimates of 18% and 20% from de Fraiture
et al. (2007) and Mekonnen and Hoekstra (2012), respectively, and slightly lower than the
36% estimated by Weindl et al. (2017). Neither de Fraiture et al. (2007) nor Mekonnen
and Hoekstra (2012) provide sufficient information that could help to explain their low
shares of crop ET allocated to livestock production. However, according to FAOSTAT,
70% of barley, 67% of maize, and 18% of global wheat production are used for feed and
account together for 44% of total concentrate feed used for livestock production. Applying
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these shares to CWU estimates for these crops from Mekonnen and Hoekstra (2011) would
allocate about 750 km3/yr of ET to livestock production. Together with their 600 km3/yr

of ET for ‘fodder crops’ (Mekonnen and Hoekstra 2011), this amounts to more than the
total crop ET allocated to livestock production by Mekonnen and Hoekstra (2012). Only
a small part of this discrepancy can be explained by their higher than average feed used in
countries with a lower than average CWU per kg feed, which results in less ET attributed to
feed when country-specific values are used (about 20% in our analysis). More important
is the assumed use of concentrate feed in livestock production (1GtDM/yr in total) in
Mekonnen and Hoekstra (2012), which is very low compared to the about 1.3GtDM/yr of
concentrate feed used in livestock production according to FAOSTAT and in our analysis.
Thus, our higher share of crop ET attributed to livestock production appears more realistic
in light of FAO statistics.

Estimates of ET from pastures varies greatly among studies, which can be primarily
attributed to differences in the assumed distribution and extent of pasture lands, which is
highly uncertain (Fetzel et al. 2017). However, the assumed extent of pasture extent has
little importance for the estimation of livestock CWU as only the ET related to biomass
actually grazed by ruminants is accounted for. Estimates of CWU for grazed biomass
are basically determined by the estimated grazing requirement and the water produc-
tivity of pastures. The grazing demand from Herrero et al. (2013) used in our analysis
is 2.4GtDM/yr and the average grass water productivity is 1.45 kgDM/m3. The esti-
mate from de Fraiture et al. (2007) assumes a global constant grass water productivity of
1.3 kgDM/m3 so that grazing demand must be about 1.1GtDM/yr—less than half than in
our study. Mekonnen and Hoekstra (2012) provide no direct information of their assumed
grazing demand or how grass water productivity was estimated at all. Based on the in-
formation that they use data from Bouwman et al. (2005) to disaggregate their estimated
amount of required roughage into demand for grass and other components, it appears that
their grazing demand is similar to ours, about 2.4GtDM/yr. This would imply a global
average grass water productivity of 2.6 kgDM/m3, a value exceeded for only 2.5% of global
grazing CWU in our analysis. Weindl et al. (2017) estimate a grazing CWU of 2930 km3/yr

in 2010 for a grazing demand of 4.0GtDM/yr, which corresponds to an average grass water
productivity of 1.35 kgDM/m3. While average grass water productivity agrees well with
our estimate, grazing demand is much higher than in any other study.

6.4 Conclusions

We combine estimates of animal feed consumption and production from Herrero et al.
(2013), estimates of CWU for the various feed types simulated with LPJmL4 (Schaphoff
et al. 2018b), and FAO statistics (FAO 2018), to obtain compute livestock CWU and LWP
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for 919 different production units representing the global livestock sector. An important
novelty is that our estimates of CWU for crops and livestock include the ET that occurs
outside the growing season of crops from fallow land. This allows for a straightforward
comparison between CWU estimates for seasonal and perennial crops and across production
systems with different cropping intensity.

Our results show that annually 4666 km3 of water are required to produce the feed
consumed by the global livestock sector, equaling about 23% of the total ET from global
agricultural lands and 44% of total CWU for biomass for human use. About 76% of this
water is ET during the growing season of crops and grass and the remainder is ET from
fallow land and transportation losses of irrigation water. With blue water contributing only
about 7% to total livestock CWU, the livestock sector is primarily green water dependent.
About half of the green water is ET from pastures, of which one third occurs from pastures
on marginal land with no alternative use in crop production.

Our analysis reveals huge differences in LWP both among and within different livestock
types. By analyzing the interaction of variations in FWP and FUE to produce the varia-
tions in LWP we find that variations in LWP of industrial pigs and broilers are to a similar
extent caused by variations in both FWP and FUE, that variations in LWP of industrial
layer hens are almost exclusively determined by variations in FWP, and that variations in
LWP of ruminants are dominated by variations in FUE though with substantial contri-
butions from variations in FWP. About one third of variability in LWP of industrial pigs
and broilers is caused by a correlation between FWP and FUE, and variations in LWP
of bovines and, to a lesser degree, sheep & goats are dampened by a negative correlation
between FWP and FUE.

The variability in FUE of industrial pigs and broilers in our analysis can be entirely
attributed to different management and efficiency gaps could be addressed by appropriate
livestock management interventions. Variability in FWP is the result of differences in
both management and environmental conditions, which means that variations in FWP can
only partially be reduced by improved crop and land management. Because the positive
relationship between FUE and FWP is the result of the influence of the overall level of
intensification in the agricultural sector on crop and livestock management, improvements
in either factor will not lead to an improvement in the other factor. Variability of LWP
for industrial layer hens is much smaller than for other monogastric livestock types and
are almost entirely the result of variations in FWP. Since only the part of the variations
in FWP that are not related to different environmental conditions can be reduced through
management, the overall potential to increase LWP for layer hens is comparatively small.

Variability of LWP for ruminants is dominated by variations in FUE, which are mainly
caused by differences in livestock management and may thus be greatly reduced by closing
efficiency gaps through appropriate management improvements in the livestock sector.

124



Variability in FWP is much smaller than for pigs and poultry and more strongly determined
by environmental conditions, which implies a comparatively small potential to improve
LWP of ruminants through interventions aiming at improving FWP. However, because
we did not account for the effect of pasture management on WP of grazed biomass, the
potential to improve FWP of ruminants through improved pasture management could not
be assessed. The negative correlation between FUE and FWP found for all ruminant
types can be mainly attributed to opposite effects of feed composition on FUE and FWP:
Improvements in FUE through supplementation with feed crops are accompanied by a
reduction in FWP due to the lower WP of feed crops compared to grass. And improvements
in FWP through incorporation of crop residues are offset by lower FUE caused by their
lower nutritional value. How these trade-offs play out in a specific production system
essentially depends on the nutritional value of the different feed components, the water
requirements to produce them, and how animals respond to changes in the feed mix.
Detailed knowledge about these factors is needed to determine the feed composition that
results in the best LWP under the given production conditions, but to unlock the full LWP
potential, also the interaction of these factors with other management interventions aiming
at increasing FWP and FUE has to be taken into account.

Supplementary material related to this chapter is available in Appendix E.
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Chapter 7

Synthesis and outlook

7.1 Summary and key findings

The overarching goal of this thesis is to improve the understanding of climate change im-
pacts on water resources, how this will affect water availability for future populations, and
what scope for adaptation exists. Within this very broad topic, this thesis focusses specif-
ically on climate change impacts on blue water resources and the scope for reducing water
demand by improving water productivity in livestock production. In section 1.2, three
main research question have been formulated to which the studies presented in chapters 2
to 6 provide answers. In the following sections, the key findings of the individual studies
are summarised, organised by their contributions to the main research questions.

7.1.1 What is the impact of different levels of global warming on river
discharge?

The studies presented in chapter 2 (Schewe et al. 2014), chapter 3 (Haddeland et al. 2014)
and chapter 5 (Heinke et al. 2019a) all analyse climate change impacts on river discharge
as a measure of renewable blue water resources. A common feature of all three studies
is that climate change impacts are presented as a function of global mean temperature
increase rather than by comparing different emission scenarios. In fact, the studies in
chapters 2 and 3 are among the first examples that systematically assess the impact of
different levels of global warming on river discharge. However, both studies are based
on GCM simulations forced with RCP emission scenarios (Meinshausen et al. 2011b) and
report impacts for selected time periods in these scenarios where given changes in global
mean temperature are reached (Tang and Lettenmaier 2012). The main disadvantage of
this approach is that different temperature levels are reached in different years in the same
emission scenario and GCM (and the same temperature level in different years in different
scenarios or GCM) and that differences in the magnitude of temperature increase among
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GCMs limits the range of temperature levels that can be analysed. To overcome these
problems, the ‘PanClim’ dataset of climate scenarios was developed, which covers a broad
range of global mean temperature increases (1.5K to 5K increase above pre-industrial
level in steps of 0.5K) that are reached around the year 2100 in all scenarios (Figure 4.2).
The development and validation of the dataset is described in chapter 4. The dataset is
based on a pattern-scaling approach using monthly climate change patterns obtained for
19 different GCMs and trajectories of GMT increase obtained with the MAGICC6 model
(Meinshausen et al. 2011a). The study presented in chapter 5 is based on this dataset,
which allows to cover a broader range of global mean temperature increase from 1.5K to
5K all reached in 2100.

A unique feature of the analyses in chapters 2 and 3 is that they not only use multiple
GCMs to account for the uncertainties in spatial patterns of climate change for given levels
of global mean temperature change but also multiple global hydrological models (GHMs) to
account for the uncertainties how changes in climate conditions are translated into changes
of river discharge. Chapter 2 is based on results of the Inter-Sectoral Impact Model In-
tercomparison Project (ISIMIP; Warszawski et al. 2014) and focusses on changes in ‘natu-
ralised’ discharge (without anthropogenic impacts other than climate change). Chapter 3
synthesises results from ISIMIP and from the Water Model Intercomparison Project (Wa-
terMIP; Haddeland et al. 2011, Harding et al. 2011) and focusses on both climate impacts
and direct human impacts (dams and water withdrawals) on river discharge. The analysis
in chapter 5 is based on a single hydrological model but considers a larger ensemble of
GCMs. It also goes beyond analysing changes in mean annual discharge but also considers
other aspects of changes in streamflow important from a water resources perspective—that
is, increased number of drought months and increased magnitude of floods.

All three studies (chapters 2, 3 and 5) show similar spatial patterns of changes in mean
annual discharge due to climate change that are also broadly consistent across different
levels of global mean temperature increase. Common large-scale features in the multi-model
means are increases in the high northern latitudes and eastern Africa, and decreases in the
Mediterranean, the Middle East, and parts of North and South America (Figures 2.1, 3.1
and 5.2). In these regions, most members in the multi-model ensembles of the respective
studies agree on the sign of change, which together with the agreement among studies
indicates a high level of confidence at least in the direction of projected annual discharge
changes. For other regions such as central Europe, western Africa, China, and eastern
part of the US, the multi-model means of the tree studies show only weak change, which
is a result of disagreement on the direction of change among ensemble members rather
than an agreement on weak change. Thus, projections of mean annual discharge are
highly uncertain in these regions and large increases and decreases cannot be excluded.
The attribution of the ensemble variance in projected mean annual discharge change to
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GCM and GHM variance in chapter 2 shows that projection uncertainty is dominated
by GCM uncertainty for example in East Africa, Southeast Asia, and central America,
and dominated by GHM uncertainty for example in parts of North and South Africa,
central Europe, and central Asia (Figure 2.1). However, only 5 different GCMs are used
in this study and the fact that many regions that have a rather low contribution of GCM
uncertainty show diverging trends in Figure D.6—which is based on 19 GCMs and a single
GHM—indicates that the importance of GCM uncertainty may be underestimated. On the
other hand, the high level of agreement on declining annual discharge found in chapter 5
for some regions (e.g., western US and northern Africa) are not apparent in the results in
chapters 2 and 3, which highlights the potential underestimation of projection uncertainty
when only using a single GHM.

In chapter 3, climate change impacts on mean annual discharge are compared to de-
creases in annual discharge due to anthropogenic water consumption. Many river basins in
the Middle East, Central Asia, and China—prominent examples include Euphrates-Tigris,
Amu Darya, and Huang He—are severely affected by human interventions causing annual
discharge reductions of more than 15% (multi-model median of seven GHMs; Figure 3.1).
In several other basins around the world, including Colorado, Nile, Orange, and Murray-
Darling, the multi-model median of mean annual discharge decrease is between 5% and
15%. The most severely impacted among world’s large river basins is the Indus basin in
which, according to the multi-model median, as much as 47% of the available blue water
is consumed. However, the estimates among individual ensemble members vary between
18% and 79%, with an interquartile range from 29% to 62%. Such large differences among
ensemble members prevail in all basins for which a strong human impact is estimated and
are the result of differences in modelled reference (naturalised) discharge and water con-
sumption; different reservoir operation schemes and withdrawal routines further add to the
large uncertainties.

Discharge changes due to global mean temperature increase will interact with the reduc-
tions of annual discharge from human water consumption, leading to a further decrease,
diminish the human impact signal, or completely override it—turning a decrease into an
increase. Even for a moderate increase of global mean temperature to 2K above pre-
industrial levels, the magnitude of change in annual discharge from climate change alone
are stronger and more widespread than the changes from human water consumption, so
that the global pattern of the combined effect of the two will be dominated by the im-
pact of climate change (Figure 3.1). However, in basins most severely impacted by direct
human interventions, such as Colorado, Euphrates-Tigris, Indus, and Huang He, changes
will remain dominated by reductions due to human water withdrawals, even for increases
in global mean temperature to 3K above pre-industrial levels (Figure 3.3).

Climate change will not only lead to changes in mean annual discharge but also alter
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characteristics of streamflow related to variability—i.e., the temporal distribution of stream
flow. Such changes are assessed in chapter 5 by analysing changes in the number of
hydrological drought months and in the magnitude of floods under different levels of global
mean temperature increase. Drought months are defined as abnormal deviation from the
long-term average monthly flow; in ephemeral rivers the duration of low-flow periods is
used as an additional criterion (section 5.2.4). Changes in the magnitude of floods are
defined as changes in the annual 5-day average peak flood with a 10-year return period,
which is shown do be a reasonable proxy for changes in foods with a return period up
to 100 years (section 5.2.4). For moderate increases of global mean temperature up to
2K, severe increases in drought months by 50% are projected by the majority of ensemble
members for parts of the Mediterranean region, the Middle East, and Central America
(Figure 5.2). Between 2K and 3.5K of global mean temperature increase almost the
entire Mediterranean region and Central America but also parts of sub-Saharan Africa
and Australia become affected. Beyond 3.5K warming, the expansion of areas where a
severe increase in drought months is projected by the majority of ensemble members slows
down, with most of the change happening in Australia, North America, and southern
Africa. Severe increases in the magnitude of floods by more than 30% are almost non-
existent in the majority of ensemble members for global mean temperature increases of
less than 2K, except for few scattered locations in the subarctic region. With global mean
temperature increases beyond 2K, severe increases of floods become increasingly prevalent
in many parts of the world with particularly widespread occurrences in eastern Africa,
northwestern and southeastern South America, and the subarctic region. The expansion
of areas affected by severe increases in flooding continues and even accelerates up to 5K

warming, the highest level of global mean temperature increase assessed in chapter 5.
Overall, the spatial distribution of increases in number of drought months and increases

in floods coincide with decreases and increases, respectively, in mean annual discharge.
However, whether and at which increase in global mean temperature crosses the thresh-
olds marking severe increases in droughts or floods often does not coincide with crossing
corresponding thresholds for severe changes in mean annual discharge. In some parts in
Central Asia and North America, for example, severe decreases in mean annual discharge
are not accompanied by severe increases in drought events, and in some parts of Europe
and Central America, severe increases in drought events are not accompanied by severe
decreases in mean annual discharge.

7.1.2 How do climate related changes in river discharge affect human
water resources?

The climate related changes in river discharge analysed in chapters 2, 3 and 5 provide the
basis for assessments of climate change impacts on human water resources. Different indi-
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cators are used to relate the different aspects of change in streamflow analysed in the three
studies to impacts on water resource. Chapter 2, which analyses mean annual discharge,
estimates the number of people exposed to severe decreases in annual discharge as well
as the number of people living under water scarcity. Chapter 3 evaluates changes in the
cumulative abstraction-to-demand ratio of irrigation water use, which are calculated from
model estimates of irrigation water requirements and actual withdrawals, and do not only
account for changes in annual discharge but also for changes in its temporal distribution.
Chapter 5, like chapter 3, analyses the number of people exposed to severe decreases in
mean annual discharge but complements this information with an assessment of exposure
to severe increases in drought months and severe increases in the magnitude of floods.
Water scarcity of future population is calculated assuming present-day climate conditions
to identify those parts of global population that will likely be faced with particularly high
challenges for adoption to severe hydrological changes.

In chapter 2, a decrease of mean annual discharge by more than 20% or more than
one standard deviation of 1980–2010 annual discharge is used as an indicator for a severe
reduction of renewable water resources for which serious adaptation challenges are likely
to arise. For a warming of 1K above present-day conditions (1.7K above pre-industrial
levels), the multi-model median of people exposed to such a severe reduction in renew-
able freshwater resources is estimated to be 8% of global population the SSP2 scenario
(Figure 2.2). For a warming of 2K and 3K the number rises to 14% and 17% of global
population, respectively. However, the spread across the multi-model ensemble is large
with an overall range from 3% to 36% and interquartile range from 9% to 22% of global
population affected at 2K warming. Most of this uncertainty is due to differences among
hydrological models, which are responsible for about three quarters of the ensemble vari-
ance; only one quarter is due to differences among GCMs. The two models in the ensemble
that simulated vegetation dynamics—one of them being the model used in the analysis in
chapter 5—yield generally smaller reductions in water resources than the other models in
the GHM ensemble. The effect of elevated atmospheric CO2 concentrations on discharge
changes, however, is found to be small.

While the analysis of changes in freshwater resource availability provides insights on
adaptation challenges, it does not allow to draw conclusions about the impact of climate
induced hydrological change on water resource scarcity in an absolute sense. To assess this
aspect, a simple measure of water scarcity is used in chapter 2, which relates total water
resources to total population at the country scale. The indicator provides a measure of
average per-capita blue water availability without taking into account actual per-capita
water requirements. For present-day hydrological conditions and population numbers, the
median estimate across the multi-model ensemble for people living in countries with an
annual blue water availability of less than 500m3 per capita (characterised as absolute
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water scarcity) and 1000m3 per capita (chronic water scarcity) is 1.5% and 3% of global
population, respectively, with estimates among individual ensemble members ranging from
0% to 4% for the <500m3 class and 1% to 8% for the <1000m3 class (Figure 2.3). With
increasing levels of global mean temperature and increasing population numbers according
to the SSP2 scenario, the multi-model median of global population living in countries below
500m3 per capita (1000m3 per capita) increases to 6% (13%) at 1K, 8% (21%) at 2K,
and 12% (24%) at 3K warming above present-day level. The spread of estimates from
individual models increases with increasing temperature levels, reaching an overall range
from 4% to 29% (12% to 45%) and an interquartile range from 9% to 14% (18% to 29%)
for a warming by 3K. As for severe reductions in annual discharge, the contribution of
differences among GHMs to total ensemble variance is much larger than from differences
among GCMs, with a ratio of about 3:1.

Increases in the estimates of population living in water-scarce countries reported in
chapter 2 are to a large extent driven by population increase, which leads to a decrease in
per-capita water availability even with no change in total water resources. To determine
the contribution of climate change to the overall increase, the number of people living in
water scarce countries caused by population change alone is estimated by relating future
population to present-day (1980–2010) water availability. The results show that the number
of people experiencing absolute water scarcity (<500m3 per capita) is increased by nearly
40% (multi-model median) for a warming by 1K and 2K compared to the number of people
experiencing absolute water scarcity due to population change alone; for a warming by 3K,
the amplification is somewhat lower at 25% (Figure 2.3). Likewise, the multi-model median
of amplification in the <1000m3 class is highest at 1K warming with nearly 30%, drops to
about 20% at 2K, and is close to zero at 3K. This apparent decline of the climate effect
with increasing strength of climate change can be attributed to the fact that the underlying
changes in water availability are obtained from GCM simulations in which higher warming
levels occur later in the 21st century, and that the population numbers at the respective
points in time are used to estimate water scarcity. Thus, higher levels of global warming
are associated with higher population numbers, resulting in higher estimates of water-
scarce population due to population change alone against which the pure climate effect
is compared. This means that the estimated amplification of water-scarce population
depends on the relative timing of climate and population change in the underlying climate
simulations and population scenario and cannot be generalised to evaluate, for example,
the consequences of different levels of global mean temperature increase in 2100. It is also
important to recognise that reported changes of global population in water-scarce countries
represent net changes which may obscure strong but diverging changes in water scarcity
in different parts of the world.

Although per-capita water availability is a suitable measure to quantify supply-side
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effects of water scarcity, the problems that countries and people are faced with to sat-
isfy their water needs also depend on the amount of water needed to fulfil all societal
needs (see section Human dependence on water resources). Per-capita water demand for
domestic and industrial purposes strongly depend on the economic conditions and water
saving technologies in place, while irrigation water demand is essentially determined by
the need to compensate insufficient or unstable moisture supply of crops from rainfall (i.e.,
a lack of green water). With irrigation being responsible for more than 90% of global
consumptive water use, differences in societal water requirements are largely determined
by the conditions under which food is grown and most water use does not occur where
people live but where irrigation takes place. The analysis of climate change impacts on
irrigation water scarcity in chapter 4 provides insights on this important aspect of water
resource use, taking into account climate-related changes in both irrigation water demand
and water availability. Irrigation water scarcity is quantified by means of the cumula-
tive abstraction-to-demand (CAD) ratio, the ratio of actual irrigation water consumption
to potential irrigation water requirements (i.e., irrigation water consumption when water
supply is not limited). Global average estimates of CAD under present-day conditions
(1971–2000) ranges from 0.38 to 0.71 across the multi-model ensemble with a median of
0.58 and an interquartile range of 0.42 to 0.65 (Figure 3.5). The large uncertainties are
largely caused by differences in irrigation water requirements and river discharge estimated
by the models, but also reflect differences in the way models account (or do not account)
for groundwater withdrawals and reservoir operation. However, for most agricultural land
under irrigation today a CAD ratio of >0.8 is estimated by the majority of ensemble mem-
bers and only for some heavily irrigated areas in southern North America, North Africa,
South Asia and northern China the multi-model median of CAD is below 0.5 (Figure 3.4).
Keeping all non-climate-related drivers such as irrigated cropland extent, crop distribution,
irrigation efficiencies, and reservoir operation constant throughout the simulation period,
the multi-model median of CAD decreases with increasing global mean temperature in
most areas with irrigation today, indicating an increase in irrigation water scarcity. Glob-
ally, the multi-model median of CAD decreases to 0.55 and 0.52 for an increase in global
mean temperature to 2K and 3K above pre-industrial levels (increase by 1.6K and 2.6K

from 1971–2000), respectively. Particularly strong decreases in CAD occur in Mexico, the
southern USA, Brazil, southern Europe, the Mediterranean, and northern China where
decreases in CAD in some places exceed 0.1 in the majority of ensemble members already
for an increase in global mean temperature of 2K above pre-industrial levels. For most of
these areas, a decrease in annual discharge is found in chapters 2 and 3, indicating that
decreases in CAD can to a large extent be attributed to a decrease in water availability.
However, potential irrigation water demand is projected to rise in almost all regions by the
majority of ensemble members, but actual irrigation water consumption rarely increases by
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the same amount to completely match this, resulting in a decline in CAD even when dis-
charge is not projected to decreases (Figure 3.5). A more detailed attribution of increases
in irrigation water scarcity to increases in irrigation water demand and decreases in wa-
ter availability was not possible based on available model simulations and would require
specifically designed experiments.

The analysis of climate change impacts on water resources in chapter 5 focusses on severe
hydrological change that is likely to exceed the conditions for which existing water supply
infrastructure has been designed, so that investments in adaptation will be needed. This
is similar to the analysis of severe decreases in annual discharge in chapter 2 but improves
on it in two major aspects. First, using the climate scenarios described in chapter 4,
the analysed levels of global mean temperature increase are all reached at the same time
(around year 2100) and can therefore be combined with population estimates for that year,
allowing a straightforward attribution of population exposure to severe hydrological change
to climate change. In addition, the use of these climate scenarios also provides estimates for
a much wider range of global mean temperature increase. Second, by not only analysing
changes in mean annual discharge but also taking into account severe increases in the
number of drought months and severe increases in the magnitude of extreme flooding
events, chapter 5 provides a much more comprehensive assessment of climate-related risks
to water resources and supply infrastructure.

For an increase in global mean temperature increase in line with the 2-degree target
(1.1K additional warming over year 2009) and an assumed population as in the SSP2
population scenarios, about 615 million people (7% of global population) are projected
to become exposed to severe hydrological change by the majority of ensemble members
(Figure 5.2). With increasing levels of global mean temperature increase, the number of
people projected to become exposed to severe hydrological change grows at an increasingly
faster rate: While about 500 million more people become exposed to severe hydrological
change between 2K and 2.5K, it is almost 1 billion more people between 4K and 4.5K.
For a warming to 5K above pre-industrial levels (the highest temperature level analysed
in chapter 5), nearly 5 billion people (55% of global population) are projected to become
exposed to severe hydrological change by the majority of ensemble members. Other pop-
ulation scenarios with different global population numbers in 2100 give different estimates
of number of people exposed to severe hydrological change, but the percentage of total
population exposed is similar across population scenarios (Figure D.2).

At lower levels of global warming (to about 2.5K), severe hydrological change mainly
consists of severe decreases in annual discharge and severe increases in droughts. At higher
levels of global warming, severe increases in flooding are projected to occur more often and
become an important driver for the increase in population exposed to severe hydrological
change. In fact, for most people for which exposure to severe hydrological change is pro-
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jected by the majority of ensemble members at higher temperatures, a mixture of all three
different aspects of severe hydrological change occurs. Based on such a large disparities
in the type of hydrological change among ensemble members, solid recommendations for
planned adaptation to hydrological change are almost impossible.

The analysis of severe hydrological change alone only allows to draw conclusions about
the need for adaptation of water supply infrastructure. In situations of water-scarcity,
however, supply-side management may be insufficient or too costly and needs to be com-
plemented by appropriate demand-side management measures to prevent negative social
and economic impacts. Implementation of demand-side management measures, on the
other hand, is often complicated by behavioural, economic, political, and institutional ob-
stacles, making adaptation under water-scarce condition more challenging. To account for
this, the future population pressure on blue water resources in the absence of additional
climate change is estimated in chapter 5 to determine where severe hydrological change
will act on top of already prevailing water scarcity. For the SSP2 population scenario,
about 3.3 billion people (37% of global population) are found to experience water scarcity,
defined to occur when >1000 people share 1 million m3 of annual discharge (equivalent to
an annual blue water availability of 1000m3 per person), under present-day hydrological
conditions (Figure 5.1). Up to a warming of 5K above pre-industrial levels, almost two
thirds of water-scarce population (2.1 billion people) are projected to become affected by
severe hydrological change by the majority of ensemble members, while for only about half
of the remaining population (2.8 billion people) such changes are projected (Figure 5.3).
This asymmetry of exposure to severe hydrological change between population shares with
high versus those with low pressure on water resources is apparent at all levels of warming
and in all population scenarios analysed in chapter 5 (Figure D.3).

By constraining global mean temperature increase to 2K above pre-industrial levels
by appropriate mitigation efforts, the number of people projected to become exposed to
severe hydrological change (mainly a decrease in mean availability and/or an increase in
drought months) under already prevailing water scarcity could be dramatically reduced
to 290 million in the SSP2 population scenario. While this represents a mere 3.2% of
global population, almost two thirds of these people (182 million) are located in Latin
America and the Middle East and north Africa, where they constitute about 12% and
14%, respectively, of the total population in these regions (Table 5.1). Such a high share
of population affected by severe hydrological change and high pressure in water resources
can have negative societal and economic consequences not only for these people but for the
whole region if the obstacles associated with the implementation of appropriate demand
management cannot be overcome.
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7.1.3 How much water is used by the global livestock sector, and what
are the opportunities and constraints for improving water produc-
tivity?

By using a newly developed dataset of feed use and productivity in the global livestock
sector and combining it with ET estimates from a crop model, FAO statistics, and ad-
ditional spatial datasets, chapter 6 provides estimates of CWU for feed production and
LWP for 919 different livestock production units around the world. Because feed crops
are cultivated on cropland, traded around the world, and partly derived from co-products
of food production, an assessment of livestock water use must be built on a comprehen-
sive account of agricultural water use. Thus, chapter 6 also provides estimates of ET from
global agricultural land and how much of it contributes to the production of food, feed, and
biomass for other uses. All estimates are averages for around the year 2000 (1998–2002),
because more recent data on feed use and livestock productivity are not available.

Annual ET from global agricultural land amounts to 20 236 km3/yr, of which 11 235 km3/yr

are from pastures and 9001 km3/yr are from cropland (Figure 6.1). About 15% of the ET
from cropland (1324 km3/yr) is blue water supplied through irrigation (including evap-
orative losses). About one third of the total ET from cropland (2980 km3/yr) can be
attributed to feed production (feed crops and cultivated forages). The remainder is related
to food production (56% of cropland ET) and production of biomass for fibres and biofuels
(10%). There is a notable difference in the composition of CWU for these three categories,
with blue water making up about 18% and 16% of total CWU for feed crops and other
uses, respectively, but only 10% for CWU related to feed production. In consequence,
only about 22% of total blue water consumption for irrigation (297 km3/yr) is related
to feed production. Of the annual total ET from pastures, only 15% (1686 km3/yr) are
CWU for grazed biomass, while the remainder is associated with biomass that supports
other functions of grassland ecosystems like wildlife and carbon sequestration. CWU for
grazed biomass is entirely green water and about one third (576 km3/yr) is from pastures
on marginal lands, where livestock rearing is often the only agricultural use of this water.
Overall, the annual water use for feed production amounts to 4666 km3/yr, which is about
44% of total CWU for agricultural biomass for human use.

Total annual supply of human edible protein by the global livestock sector is 53.7MtP/yr,
which gives a global average LWP of 11.5 gP/m3. Ruminants (bovines, sheep, and goats)
contribute about half of annual production (29.2MtP/yr) but are responsible for almost
two thirds of CWU (2975 km3/yr). The remaining production (24.5MtP/yr) and CWU
(1691 km3/yr) are associated with monogastric animals (pigs and poultry). Thus, mono-
gastric animals produce about 50% more protein per m3 of total CWU than ruminants.
However, because about two thirds of ruminant feed is grazed biomass, blue water con-
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tributes only 5% (146 km3/yr) to total CWU of ruminants, while CWU of pigs and poultry
contains 9% (151 km3/yr) of blue water. Thus, protein from ruminants requires on average
less blue water for production than protein from pigs and poultry.

Large differences also exists between livestock types within these ruminants and mono-
gastric animals categories. For example, meat bovines are responsible for about half of
ruminants’ CWU (1440 km3/yr) but supply only 7MtP/yr of protein, while dairy bovines
produce 20MtP/yr of protein from 855 km3/yr of CWU. Although the CWU of dairy
bovines contains a higher share of blue water than the CWU of meat bovines (7.1%
compared to 3.8%), the much higher LWP of dairy bovines makes them more blue wa-
ter efficient. In fact, average LWP of dairy bovines is the highest of all livestock types
(23.4 gP/m3), and protein from dairy bovines also has the lowest blue water requirement
among all livestock types (3 l/gP).

Livestock production takes place under a wide range of conditions, which results in huge
variations in LWP even within the same livestock type. The average LWP of the most and
least efficiently used 10% of CWU differs between a factor five for layer hens and more
than 40 for meat bovines (Figure 6.2). Differences in LWP of industrial pigs and broilers
in different regions of the world are to a similar extent caused by variations in feed water
productivity (FWP in kg dry matter per m3) and feed uses efficiency of livestock (FUE in g
protein per kg dry matter). LWP is further amplified by positive correlations between FWP
and FUE, which contributes about one third of total variance in LWP of industrial pigs
and poultry (Figure 6.3). Differences in LWP of industrial layer hens are almost entirely
caused by variations in FWP—i.e., FUE is approximately constant across different world
regions. Differences in LWP of ruminants across world regions and production systems are
generally much larger than for industrial pigs and poultry and are dominated by variations
in FUE. A negative correlation across production units between FWP and FUE dampens
the variance of LWP for ruminant types.

These variations in FWP and FUE and the extent by which they can be attributed to
inefficient management determine the opportunities to improve LWP by improvements in
FWP and FUE through appropriate management interventions. Industrial pigs and poul-
try are usually reared indoors under controlled environmental conditions, which means that
variations in FUE can be entirely attributed to differences in livestock management and
maximum FUE can be achieved by optimal livestock management. Variability of FWP for
industrial pigs and poultry is determined by environmental conditions and crop manage-
ment, which constrains the potential for improvements in FWP through better crop and
land management. The positive correlations between FWP and FUE for industrial pigs and
broilers can be explained by the influence of the overall level of agricultural intensification
on both crop and livestock management. This means that management interventions aim-
ing to improve either FWP or FUE do not automatically lead to corresponding increases
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in the respective other factor, but that LWP of industrial pigs and poultry will benefit
from improvements in both FWP and FUE driven by an overall trend towards agricultural
intensification.

The huge differences in FUE of ruminants indicate a large potential to increase LWP
through better livestock management. However, most ruminants spend at least part of
their lifetime grazing on pastures, where they are exposed to environmental conditions.
The extent to which variations in FUE of ruminants are caused by different environmental
condition is difficult to quantify but it is most likely not the dominating factor. In addition,
adverse effects of environmental conditions (e.g., heat stress) can be mitigated by providing
shelter or by rearing ruminants entirely indoors. Ruminants consume large amounts of
grazed biomass, for which management effects on water productivity were not accounted
for in chapter 6. As a result, variations of FWP for ruminants are not only much smaller
compared to variations in FWP for industrial pigs and poultry but are also to a much larger
degree determined by environmental conditions, which implies an overall much smaller
potential to increase LWP by increasing FWP of ruminants. In reality, however, variations
in WP of grazed biomass may in fact be sensible to management so that the variability of
FWP is probably more important than implied by the results in chapter 6.

The negative correlation between FWP and FUE for ruminants can be explained by
the effect of supplementation with feed crops, which increases overall FUE at the cost of
lower FWP because WP for crops is much lower than for grass (Figure 6.4). Likewise,
incorporating crops residues into ruminant feed increases FWP but will lead to lower FUE
(Figure 6.5). Thus, increases of FUE that are either a direct result of or accompanied
by improved nutritional composition of the feed mix (more feed crops, less crop residues)
are generally accompanied by lower FWP, which offsets the improvement in LWP. This
fundamental relationship means that LWP of ruminants, unlike for pigs and poultry, does
not always increase with increasing levels of agricultural intensification.

7.2 Conclusions

7.2.1 Outcome

The overarching goal of this thesis was to improve the understanding of climate change
impacts on water resources, how this will affect water availability for future population,
and what scope for adaptation exists. Within this very broad topic this thesis has focused
specifically on climate change impacts on river discharge and blue water resources, and the
scope for reducing water demand by improving water productivity in livestock production.

The results presented in chapters 2, 3 and 5 corroborate the findings of earlier studies
that have quantified climate change impacts on river discharge but extend existing litera-
ture in several important aspects. Chapters 2 and 3 are among the first studies that employ

138



an ensemble of hydrological models to account for the uncertainty in translating changes
in climatic conditions into changes in river discharge and water resource availability. The
results demonstrate that hydrological models are a major source of uncertainty, exceeding
the uncertainty originating from GCM in many regions and in aggregate global metrics of
climate change impacts on human blue water resources.

Chapters 3 and 5 go beyond analysing changes in mean annual discharge and assess
changes in simulated irrigation water withdrawals and changes in discharge variability
(floods and droughts), respectively. In particular, the results in chapter 5 show that
climate-related risk for human water resources are severely underestimated when only
changes in mean annual discharge are considered.

A common feature of all three studies that set them apart from previous studies is that
climate change impacts are analysed as a function of global mean temperature increase
rather than by comparing the outcomes for different scenarios of atmospheric greenhouse-
gas concentrations. Such a design is tailored to inform climate change mitigation nego-
tiations and the current political debate about climate change that are centred around
temperature goals. While the temperature stratification in chapters 2 and 3 is derived
from simulations following RCP scenarios, chapter 5 is based on a novel dataset of cli-
mate scenarios described in chapter 4 that was specifically designed for such analyses and
overcomes many of the disadvantages of simpler approaches. The overarching conclusion
that can be drawn from the three studies is that severe climate-related impacts on river
discharge and human water resources can be largely mitigated by constraining global mean
temperature increase to 2K above pre-industrial levels. But due to the pronounced spa-
tial heterogeneity of hydrological changes, some regions such as the Mediterranean will be
severely affected at 2K or even 1.5K warming above pre-industrial levels. Because of the
large uncertainties in the results, however, more widespread impacts at these temperature
levels a cannot be excluded.

Chapter 6 presents a new comprehensive assessment of consumptive water use in global
livestock production and estimates of livestock water productivity for more than 900 differ-
ent livestock production units. Livestock water use has been estimated by previous studies
but the use of a novel dataset of feed use and productivity in the livestock sector provides a
level of detail and consistency that allows for an in-depth analysis of the origin of the large
variations in LWP across regions and production systems. The results show that large
improvements in LWP can be achieved for pigs and poultry by improving management
in feed production and livestock management alike. For ruminants, the largest potential
lies in improving livestock management but improvements in feed use efficiency achieved
or accompanied by increased supplementation with feed crops come at the cost of higher
water requirements to produce the feed, which reduces the overall improvement in LWP.
This inverse effect of feed composition on feed water productivity and feed use efficiency
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is an important constraint for the achievable LWP in ruminant production.

7.2.2 Limitations and perspectives for further research

All estimates of contemporary as well as projections of future hydrological conditions, water
use, and water productivity are subject to large uncertainties because of the unknown de-
velopment of socio-economic drivers of global change, imperfections in the applied models,
and errors in the underlying data.

Uncertainty in future socio-economic development has two dimensions that are relevant
for the assessment of future water resources: the unknown development of anthropogenic
greenhouse-gas emissions that drive climate change, and the unknown development in im-
portant societal aspects such as demographics, human development, economic growth, and
technology that determine how societies are affected by and respond to climate change
impacts. These two dimensions are typically covered by the different RCP and SSP sce-
narios, respectively, and are considered conceptually independent (van Vuuren et al. 2014),
although not all RCP/SSP combinations are plausible (Riahi et al. 2017). The problem
that future greenhouse-gas emissions are unknown is not resolved by analysing climate
impacts as a function of global mean temperature increase, but doing so emphasises that
the level of climate change is not just another source of uncertainty but a policy goal.
In contrast, the overall socio-economic development described by the SSP narratives is
not considered an explicit part of climate policy. However, the socio-economic setting in
which climate impacts occur has enormous influence on how these changes affect future
population. For example, the difference between the socio-economic consequences of a
2K warming in a SSP1 and a SSP3 world is most likely much larger than the differences
between a 2K and a 3K warming in an SSP1 world. In chapter 5, this uncertainty was
addressed by testing the robustness of key conclusions under different SSP population sce-
narios. But other important aspects such as the technological and institutional capacity
to adapt to water scarcity were not considered because they are so far only qualitatively
and globally characterised by the SSP narratives. To improve assessments of the conse-
quences of hydrological change for human water resources and the scope for adaptation,
a thorough quantification of these aspects will be essential. A recent study by Graham
et al. (2018) has assessed the potential to reduce future water demand by the adoption
of water-saving technologies across all SSPs but the results are only provided for world
regions and do not account for the impact of climate change on water resources. However,
the study demonstrates how SSP narratives can be translated into quantitative scenarios
of the water sector.

The quantification of climate change on future hydrological conditions relies on at least
two types of models: GCMs that translate scenarios of changes in atmospheric concentra-
tions of greenhouse gases into spatially explicit projections of future climate conditions,
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and hydrological models that translate changes in climate conditions into changes in hydro-
logical conditions. A third source of uncertainty is how GCM outputs are translated into
inputs for hydrological models. Usually, only certain aspects of climate change (e.g., mean
changes) are used or some form of bias correction is applied, which has a strong impact on
the hydrological changes simulated by hydrological models (Hagemann et al. 2011). Chap-
ters 2 and 3 employ an ensemble approach to account for the uncertainty in projections
of future hydrological conditions that originate from model errors in both model types.
Chapter 5 is based on a single hydrological model but accounts for uncertainty in climate
projections by using a large ensemble of GCMs. Although the use of model ensembles is an
established approach to assess uncertainties in model results, it is limited by how well the
ensemble represent the diversity of possible models. However, thorough analysis of indi-
vidual model behaviour can provide an understanding of wrongly implemented or missing
processes that then can inform model improvements or at least provide a basis for ranking
model performance. For the climate modelling community, CMIP provides a framework to
coordinate more than 20 different model intercomparison projects and to jointly evaluate
the outcomes (Eyring et al. 2016a). A similar framework for impact models, including
global and regional hydrological models, is provided by ISIMIP (Warszawski et al. 2014).

The lack of biophysical and socio-economic data that characterise the current state
of the world or errors in existing data are a major obstacle for assessment of present-
day human water resources. For example, the analysis presented in chapter 6 crucially
depends on a newly developed dataset on feed use and productivity in the global livestock
sector. But because the dataset is essentially a breakdown of FAO statistics based on
a mechanistic livestock model and additional data sources, it is subject to uncertainties
originating from the model, the supplementary data, and the FAO statistics themselves.
This is also true for the subsequent estimation of CWU and LWP, which further involves
a crop model, a number of different spatial datasets, as well as several harmonisation
procedures to overcome the inconsistencies among the different datasets. Thus, although
the conclusion about LWP improvements and constraints are likely to be robust because
they are in line with established knowledge about livestock, the individual estimates of
CWU and LWP are subject to potentially large uncertainties. However, since for most of
the used datasets neither explicit accounts for uncertainties nor alternative sources exist,
it is almost impossible to quantify these uncertainties. A greater diversity in such datasets
would be a first step to at least get an understanding of the magnitude of uncertainty and
provide the basis for improvements. A notable example in this regard is the study by Fritz
et al. (2015), which compares different global and regional land cover datasets, quantifies
the uncertainties, and produces an improved hybrid global cropland map. However, for
many crucial data sources such as FAO statistics, alternative data sources are unlikely to
become available. A second important track is the development of new datasets that
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cover previously unquantified aspects of our world. Such datasets can originate from
new satellite missions such as the planned L-band radar system Tandem-L but also from
new methods that make better use of existing remote sensing information. A particular
promising example for the latter is the use of deep learning approaches to exploit the wealth
of information in hyperspectral satellite imagery (Paoletti et al. 2019).

Both, improvement of existing and development of new datasets do not only support
more complex analyses of present-day water use and water resource but also the improve-
ment of hydrological models by providing information required to improve existing param-
eterisations, introduce new processes, and evaluate model performance.
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Appendix A

Supporting information for
“Multimodel assessment of water
scarcity under climate change”

An edited version of this appendix has been published as Supplement to: J. Schewe,
J. Heinke, D. Gerten, I. Haddeland, N. W. Arnell, D. B. Clark, R. Dankers, S. Eisner,
B. M. Fekete, F. J. Colón-González, S. N. Gosling, H. Kim, X. Liu, Y. Masaki, F. T.
Portmann, Y. Satoh, T. Stacke, Q. Tang, Y. Wada, D. Wisser, T. Albrecht, K. Frieler,
F. Piontek, L. Warszawski, and P. Kabat. Multimodel assessment of water scarcity under
climate change. Proceedings of the National Academy of Sciences of the United States of
America, 111(9):3245–50, 2014. doi: 10.1073/pnas.1222460110
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Figure A.1: As Figure 2.1 (upper panel) in the main text, but for a warming of 3 ◦C.

Table A.1: Middle years of 31–year periods corresponding to the different levels of global
warming (compared to present–day, i.e. the 1980—2010 average) in the individual GCMs
under RCP8.5. Population projections for these same years were used, except at the 0 ◦C
level which was assumed to correspond to year–2000 population.

warming level HadGEM2-ES IPSL-CM5A-LR MIROC-ESM-CHEM GFDL-ESM2M NorESM1-M
0 ◦C 1995 1995 1995 1995 1995
1 ◦C 2021 2027 2023 2040 2035
2 ◦C 2044 2047 2043 2071 2062
3 ◦C 2062 2065 2061 - 2086*

* A 27–year period from 2073-–2099 was used.
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Figure A.2: Relative change in precipitation (left) and discharge (right; average over all
GHMs) at 2 ◦C compared to present–day, under RCP8.5, for (top to bottom) HadGEM2-
ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M.
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Figure A.3: Effect of different rates of global warming on global impact metrics. Shown
are results for one GCM (HadGEM2-ES), two GHMs (solid and dotted lines) and all four
RCPs (RCP2.6, dark blue; RCP4.5, turquoise; RCP6.0, orange; RCP8.5, red) at different
levels of global warming. Upper panel: Globally averaged runoff. Middle and lower panel:
Same metric as shown in Figure 2.2 (upper panel) in the main paper. Middle panel:
Assuming constant present–day (2010) population. Lower panel: Assuming population
change according to SSP2.
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Figure A.4: As upper panel of Figure 2.2 in the main paper, but (upper panel) for a
reduction by more than 2σ or by more than 40%; and (lower panel) assuming constant
year–2000 population.

Figure A.5: As upper panel of Figure 2.2 in the main paper, but with the quartiles and
median (shown by the black boxes) computed without the models that include vegetation
dynamics (JULES and LPJmL). The individual results of those models are highlighted in
green colors, where + denotes runs with varying atmospheric CO2 concentration, and ∼
denotes runs where CO2 concentration has been varied according to historical values up
until the year 2000, and held constant at the year–2000 level thereafter.
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Figure A.6: Population affected by different levels of discharge increase or decrease. Shown
is the multi–model mean of the percentage of the world population living in grid cells where
31–year average discharge is a certain percentage of present–day (1980—2010) discharge,
at 1 ◦C, 2 ◦C, and 3 ◦C of global warming, under RCP8.5 and SSP2.

Figure A.7: As Figure 2.3 A and B in the main paper, but using a “Constant climate”
scenario (1980—2010 average discharge). SSP2 population data from the same years as in
Figure 2.3 A and B are used, relating the population time series to the temperature axis
via the RCP8.5.
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Appendix B

Supporting information for
“Global water resources affected by
human interventions and climate
change”

An edited version of this appendix has been published as Supplement to: I. Haddeland,
J. Heinke, H. Biemans, S. Eisner, M. Flörke, N. Hanasaki, M. Konzmann, F. Ludwig,
Y. Masaki, J. Schewe, T. Stacke, Z. D. Tessler, Y. Wada, and D. Wisser. Global water
resources affected by human interventions and climate change. Proceedings of the National
Academy of Sciences of the United States of America, 111(9):3251–6, 2014. doi: 10.1073/
pnas.1222475110
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B.1 SI Models and Data

The global hydrological models (GHMs) included in this study are H08 (Hanasaki et al.
2006, 2008a), the Lund-Potsdam-Jena managed land dynamic global vegetation and water
balance model (LPJmL) (Biemans et al. 2011, Bondeau et al. 2007, Rost et al. 2008), the
Max Planck Institute – hydrology model (MPI-HM) (Hagemann and Gates 2003, Stacke
and Hagemann 2012b), the PCRaster global water balance model (PCR-GLOBWB) (Wada
et al. 2011, van Beek et al. 2011), the variable infiltration capacity macroscale hydrologic
model (VIC) (Liang et al. 1994, Lohmann et al. 1998, Haddeland et al. 2006), water –
a global assessment and prognosis model (WaterGAP) (Döll et al. 2003, Döll and Siebert
2002, Flörke et al. 2013), and the water balance/transport model (WBMplus) (Wisser et al.
2008). Six of the seven models have implemented general reservoir operating rules based on
the purpose(s) of the dam, the hydrological conditions of the basin, and model-simulated
water demands downstream of the dam. In H08, PCR-GLOBWB, VIC, WaterGAP, and
WBMplus, the dams built in the year 2000 or before are included throughout the simulation
period. In LPJmL, the dams are included in the simulations corresponding to the year
they were built. The total storage capacity included in the modeling schemes varies from
4038 km3 to 6197 km3 (Table B.1). This volume is between 3.5% and 5% of mean annual
precipitation (here, ∼128 000 km3 · y−1 in the period 1971–2000) and equals ∼10% of mean
annual runoff.

Information on irrigated areas are taken from various sources (Table B.1). In LPJmL,
fraction irrigated areas increases in the period 1971–2000 and is constant thereafter. In
the other models, irrigated areas stay constant during the entire simulation period. H08
includes a crop growth module that estimates the cropping period necessary to obtain
mature total plant biomass and crop yield and estimates crop growth using heat unit theory.
When the accumulated heat units reach the potential heat units required for the maturity
of the crop, the crop is harvested (Hanasaki et al. 2008a). LPJmL calculates a growing
season for each crop. Sowing dates are determined as a function of climate- and crop-
specific thresholds regarding temperature and/or precipitation. Phenological development
toward maturity is modeled using heat unit theory, and harvest occurs as soon as maturity
is reached. Rice is assumed to grow twice a year in tropical Asia. For more information
on the LPJmL crop model, see Bondeau et al. (2007). MPI-HM, PCR-GLOBWB, VIC,
and WaterGAP do not include any crop growth module, and hence vegetation parameters
are prescribed. MPI-HM defines the irrigated fraction of grid cell based on from the
MIRCA2000 dataset (Portmann et al. 2010), and plants in this fraction are allowed to
transpire freely. PCR-GLOBWB uses crop-specific calendar and growing season length
obtained from the MIRCA2000 dataset (Portmann et al. 2010), which accounts various
growing seasons of 26 crop types and regional cropping practices, and distinguishes up to
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Table B.1: Data sources

Model name Dams Irrigated areas, ref(s).

H08 507 dams with a storage capacity of 4411 km3.
World Register of Dams (ICOLD 2007).

Siebert et al. (2005),
Siebert et al. (2007)

LPJmL 7000 dams, storage capacity of 6148 km3.
GranD database (Lehner et al. 2011).

Fader et al. (2010)

MPI-HM Dams not included. Portmann et al. (2010)

PCR-GLOBWB 6862 dams, total storage capacity of 6197 km3.
GranD database (Lehner et al. 2011).

Portmann et al. (2010)

VIC 514 dams, total storage capacity of 4542 km3.
World Register of Dams (ICOLD 2007,
Vörösmarty et al. 1997).

Siebert et al. (2005)

WaterGAP 487 dams with a storage capacity of 4038 km3.
World Register of Dams (ICOLD 2007)

Portmann et al. (2010)

WBMplus 668 large dams, total storage capacity of
4726 km3 (Vörösmarty et al. 1997), in addition
to thousands of small dams.

Thenkabail et al. (2009)

nine subcrops that represent multicropping systems per grid cell. In PCR-GLOBWB, the
crop types were aggregated to paddy and nonpaddy crop type considering distinct flooding
irrigation for most of paddy fields. VIC makes use of country-specific cropping calendars
obtained from AQUASTAT (FAO 2013), US Geological Survey, and various sources of
information for Europe directly for each region in question (Haddeland et al. 2006). In
WaterGAP, each 150-d period within a year for a specific grid cell is ranked according to
specific temperature and precipitation criteria for rice and nonrice (Döll and Siebert 2002).
The optimal 150-y period is thereafter chosen as the growing season for each particular cell.
WBMplus includes dual planting seasons in regions where this is appropriate, and cropping
calendar is based on Climatic Research Unit/Food and Agriculture Organization datasets
(Wisser et al. 2008). In this paper, potential irrigation water consumption represents
irrigation water consumed given water is freely available. All models included in the study
simulate this quantity. Four of the models, H08, LPJmL, PCR-GLOBWB, and VIC, also
simulate actual irrigation water consumption, which is defined as irrigation water consumed
when water availability is taken into account.

H08, LPJmL, PCR-GLOBWB, and WaterGAP take into account water withdrawals
and consumptive water use for domestic and industrial purposes. MPI-HM, VIC, and
WBMplus do not take into account water use in other sectors than agriculture. H08
has obtained national information on water withdrawals from the AQUASTAT database
(FAO 2013). H08 thereafter converts this information to gridded data by weighting the
population distribution and national boundary information provided by the Center for
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International Earth Science Information Network of Columbia University and Centro In-
ternacional de Agricultura Tropical (CIESIN and CIAT 2005). The values are converted to
the consumptive amount using the factors 0.10 for domestic water and 0.15 for industrial
water (Shiklomanov 2000). WaterGAP calculates current and future numbers on water
withdrawals and use in the domestic and industrial sectors based on population data, per
capita income, thermal electricity production, and future projections on industrial and
technological changes (Wisser et al. 2008). LPJmL makes direct use of the WaterGAP
numbers on water requirements in sectors other than agriculture. Similar to WaterGAP,
PCR-GLOBWB uses socioeconomic (e.g., population numbers, gross domestic product or
GDP) and technological (e.g., electricity production, energy consumption) data to estimate
and project water withdrawals in the domestic and industrial sectors (Wada et al. 2011).
In PCR-GLOBWB, water recycling or recycling ratio (0.4–0.8) was calculated per country
on the basis of GDP and was used to estimate return flow and subsequently consumptive
water use for the domestic and industrial sectors.

B.2 River Basin Information and Results

Table B.2 includes information on basin area, area equipped for irrigation, reservoir storage,
and simulated discharge for river basins mentioned in the main article.

B.3 Glossary

Potential Water Withdrawals. Water withdrawn given unlimited water supply, i.e.,
water is assumed available.

Potential Water Consumption. Potential water use (water consumed) given unlimited
water supply, in addition to water from precipitation.

Actual Water Withdrawals. Actual water withdrawn from lakes/reservoirs/rivers/ground-
water, taking water availability into account.

Actual Water Consumption. Actual water use (water consumed) when taking water
availability into account. Water consumed given actual water withdrawals, in addition to
water from precipitation.

Cumulative Abstraction to Demand. The cumulative abstraction-to-demand (CAD)
index (Hanasaki et al. 2008b) was designed for global hydrological models that can explic-
itly simulate the daily river discharge and water withdrawals and consumption. The index
directly indicates whether water is available when it is needed. CAD is a dimensionless
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fraction, and the equation can be written as follows:

CAD =

Y ear=y2∑︂
Y ear=y1

DOY=365∑︂
DOY=1

AIrrConY ear,DOY

Y ear=y2∑︂
Y ear=y1

DOY=365∑︂
DOY=1

PIrrConY ear,DOY

, (B.1)

where AIrrCon represents “actual irrigation water consumed” and PIrrCon represents
“potential irrigation water consumed” (see above).
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Appendix C

Supporting information for
“A new climate dataset for
systematic assessments of climate
change impacts as a function of
global warming”

An edited version of this appendix has been published as Supplement to: J. Heinke, S. Os-
tberg, S. Schaphoff, K. Frieler, C. Müller, D. Gerten, M. Meinshausen, and W. Lucht.
A new climate dataset for systematic assessments of climate change impacts as a func-
tion of global warming. Geoscientific Model Development, 6(5):1689–1703, 2013a. doi:
10.5194/gmd-6-1689-2013
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Figure C.1: Inter-model standard deviation of mean annual change for a 1-degree increase
in global mean temperature over all AOGCMs.
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Figure C.2: Seasonality of change for a 1-degree increase in global mean tempera-
ture expressed by the standard deviation of monthly mean anomalies (averaged over all
AOGCMs).
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Appendix D

Supporting information for
“Freshwater resources under success
and failure of the Paris climate
agreement”

An edited version of this appendix has been published as Supplement to: J. Heinke,
C. Müller, M. Lannerstad, D. Gerten, and W. Lucht. Freshwater resources under suc-
cess and failure of the Paris climate agreement. Earth System Dynamics, 10(2):205–217,
2019a. doi: 10.5194/esd-10-205-2019
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Figure D.1: Spatial patterns of water crowding in 2010 and for five different population
scenarios in 2100 under current water availability, i.e. assuming no climate change.

Figure D.2: Proportion of total population more likely than not exposed to severe hydro-
logical change at different levels of ∆Tglob.
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Figure D.3: Fraction of population in 2100 exposed to severe hydrological change at differ-
ent levels of ∆Tglob divided over two water scarcity categories: population already experi-
encing absolute water scarcity (>1000 p/fu) in the absence of climate change and rest of
population (≤1000 p/fu). The total number of people in each class is given on the y-axis,
and the fraction of people exposed to severe hydrological change in each class is given on
the x-axis.

Figure D.4: Map of world regions.
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Figure D.5: Proportion of population in 2100 in different world regions that would ex-
perience absolute water scarcity (>1000 p/fu) under present-day climate conditions (total
length of bar) and be more likely than not exposed to severe hydrological change at different
levels of ∆Tglob.
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Figure D.6: Relative change in MAD compared to control simulation for a ∆Tglob (above
pre-industrial level) of 2.5 ◦C. Color hues show the multimodel mean change, and satu-
ration shows the agreement on the sign of change across all GCMs (percentage of GCMs
agreeing on the sign). Because ∆Tglob for the control simulation is 0.6 ◦C, the changes
are representative for 1.9 ◦C additional warming relative to the control simulation and can
thus be compared to the changes for 2 ◦C additional warming shown in Fig. 1 in Schewe
et al. (2014).
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Appendix E

Supporting information for “Water
use in global livestock
production—opportunities and
constraints for increasing water
productivity”

An edited version of this appendix has been submitted for publication as a Supplement
to: J. Heinke, M. Lannerstad, D. Gerten, P. Havlík, M. Herrero, A. Notenbaert, H. Hoff,
and C. Müller. Water use in global livestock production—opportunities and constraints
for increasing water productivity. Water Resources Research, submitted
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E.1 LPJmL simulations

For the estimation of CWU associated with the production of different feed types, we
employ the LPJmL Dynamic Global Vegetation Model version 4 (LPJmL4) that simulates
the growth of natural vegetation and managed land in coupling with the global carbon and
hydrological cycle (Schaphoff et al. 2018b). Two types of managed land are considered in
LPJmL4: (i) managed grasslands with a mix of three different herbaceous plant functional
types, which are managed by grazing or mowing (Rolinski et al. 2018); and (ii) agricultural
land with crops represented by 12 irrigated or rainfed crop functional types (CFTs) for
which the maximum achievable leaf area index (LAImax) can be prescribed to account for
agricultural management intensity (Bondeau et al. 2007, Fader et al. 2010). The model is
able to distinguish ET from rainfall water (green) and water added through irrigation (blue)
and has been used to estimate green and blue CWU over the growing period in previous
studies (Gerten et al. 2011, Rockström et al. 2009, Rost et al. 2008). The model has been
extensively evaluated showing good performance in representing the global hydrological
cycle (Rost et al. 2008, Schaphoff et al. 2018a) and grassland dynamics (Rolinski et al.
2018).

For the estimation of crop CWU in our study the model was first run for the period
1901–1980 to bring soil moisture to equilibrium and obtain a robust estimation of sowing
dates. After that, a series of model simulations for seven different levels of agricultural
management intensity (LAImax) was performed. No land use information was used in
these simulations but each of the 12 CFTs was cultivated on a small fraction of each grid
cell as rainfed and irrigated crop; the remainder of the grid cell was simulated as bare
soil. From each of the seven simulations we obtain crop yield and ET during the growing
season (separate for green and blue) for each CFT in each grid cell under rainfed and
irrigated conditions. In addition, we also obtain estimates of consumptive irrigation water
losses related to conveyance for each CFT in each grid cell, total annual bare soil ET in
each grid cell, and off-season bare soil ET for each rainfed and irrigated CFT in each grid
cell (calculated as the difference between total annual bare soil ET and ET that occurred
from the bare soil part of the grid cell during the growing season of the respective CFT).
For crops not represented by one of the CFTs (Table E.1), ET was estimated based on a
generic perennial and annual crop type. The generic perennial crop is represented by a
perennial managed grassland (Rolinski et al. 2018, Schaphoff et al. 2018b), whereas the
generic annual crop is represented by the CFT that gives the median of total growing
period ET of all CFTs with non-zero ET per grid cell.

For the estimation of CWU related to grazing a series of simulations with grazing
intensities between 0.2 and 4 (in steps of 0.2) gC/(m2 d) is performed from which the highest
total grass yield in the period 1998–2001 and the corresponding annual ET is determined.
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This is necessary because LPJmL4 calculates daily gross primary productivity (GPP) on
managed grasslands based on abiotic factors and actual leaf area (Rolinski et al. 2018).
A larger leaf area generally results in higher GPP but the increase in GPP diminishes
with higher leaf area and is limited by the available photosynthetically active radiation.
Maintenance respiration of standing biomass reduces the amount of GPP available for plant
growth (net primary productivity), which limits the amount of standing biomass under
given environmental conditions. Removal of grass biomass through grazing influences both
GPP and respiration and results in a non-linear and site dependent response of carbon
dynamics to grazing (Rolinski et al. 2018).

All simulations were performed using temperature from CRU TS2.23, precipitation from
GPCC version 7, monthly number of rain days estimated following the procedure described
by Heinke et al. (2013a), short and longwave radiation from ERA-Interim, soil information
from Harmonized World Soil Database, and historic atmospheric CO2 concentrations. The
model was run a spatial resolution of 0.5 x 0.5 arc-degrees.

E.2 Estimation of ET from global cropland and CWU of

global crop production

To estimate total ET from the global cultivated land and allocate it to CWU of global
crop production the following datasets are used:

• Landcover data from Global Agro-ecological Zones (GAEZ) database (IIASA/FAO
2012), 5 arc-minutes spatial resolution, reference year 2000

• Cropland extent from Global Agricultural Lands (Ramankutty et al. 2008), 5 arc-
minutes spatial resolution, reference year 2000

• Harvested area of 26x2 (rainfed and irrigated) crop (groups) and the sum of the culti-
vated area from MIRCA2000 (Portmann et al. 2010), 5 arc-minutes spatial resolution,
reference year 2000

• FAOSTAT yield statistics for 163 food and non-food crops aggregated to 62 pri-
mary crops and crop groups distinguished in Commodity Balances (CB; FAO 2018),
national data, reference year 2000 (1998–2002 average)

• Yield of cultivated forages from (Monfreda et al. 2008), 5 arc-minutes spatial resolu-
tion, reference year 2000

• LPJmL estimates of yield, green ET, and blue ET during the growing period for 7
management intensity levels for 12 annual crops, representing important crop groups
and one generic annual and one generic perennial crop type to represent all other
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crops, each rainfed and irrigated, 0.5 arc-degree spatial resolution, reference year
2000 (1998–2002 average)

• LPJmL estimates of off-season fallow ET for each CFT and full year fallow ET, 0.5
arc-degree spatial resolution, reference year 2000 (1998–2002 average)

One important novelty of this study is the inclusion of ET from fallow land in estimates
of CWU related to crop production. This requires information about the area of fallow
land–i.e., the difference between physical cropland extent and cultivated area within a
year–in each grid cell. Although MIRCA2000 is based on cropland extent from Global
Agricultural Lands, the latter was modified by Portmann et al. (2010) by introducing
cropland in grid cells with harvested area but zero cropland extent. To estimate the
cropland extent in those cells, the cell-specific sum of harvested area was divided by the
average cropping intensity (ratio of harvested area to cropland extent) in the MIRCA2000
mapping unit (country or state) in which the cell is located. Because the modified cropland
extent is not provided with the MIRCA2000 dataset, we modify cropland extent from
Global Agricultural Lands following the procedure described by Portmann et al. (2010).
In addition, we also reduce cropland extent in all grid cells where it is larger than five
times the annual cultivated area to comply with the FAO definition of cropland as land
that is cultivated at least once in five years (FAO 2018). Finally, both cropland extent and
harvested area are reduced (maintaining cropping intensity) in grid cells where cropland
extent exceeds the total land area given by GAEZ. Overall, global cropland extent is
increased by about 3.2% by these adjustments, while the global sum of harvested area is
reduced by 0.9%.

Evapotranspiration (ET) during the growing season of crops varies with management,
with better management leading to higher ET due to larger leaf area (Rockström et al.
2007). To account for this aspect and its impact on CWU, we determine simulated national
yield estimates for each management level for each FAO crop represented by a CFT by
multiplying the rainfed and irrigated crop yield of the corresponding CFT in each grid cell
with the rainfed and irrigated harvested area of the corresponding crop in MIRCA2000
(see Table E.1 for the CFT and MIRCA crop type assumed to represent each FAO crop).
Yield estimates from LPJmL4 were converted from carbon to fresh matter (as reported
by FAO) using crop specific carbon content given in Table E.1. The management level
for which the simulated national average yield best matches the yield reported in FAO is
then assumed to be representative for the whole country and estimates of growing season
ET for the specific crop are obtained from the corresponding LPJmL simulation. For 18
major crops, representing about three quarters (72.2%) of global harvested area, ET was
determined following this procedure. For all remaining crops, the management level could
not be determined due to a lack of appropriate representation in the model, and growing
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season ET was estimated from the generic perennial and annual crop types. All estimates
of growing season ET are obtained separate for green (from rainfall water) and blue water
(water added through irrigation. In addition, evaporation related to the transport of
irrigation water to the field (conveyance losses) was estimated based on country specific
irrigation efficiencies (Jägermeyr et al. 2016). Losses from reservoirs were not accounted
for.

As a novelty, our estimates of CWU include bare soil ET from cultivated land outside
the growing period (seasonal fallow) and from cropland not cultivated (fallow land). ET
from fallow land in each grid cell is estimated by multiplying the difference between crop-
land extent and annual cultivated area with the full year ET from bare soil, assuming no
vegetation cover on fallows. The result is then allocated to individual crops proportional to
their harvested area in each grid cell. The ET of seasonal fallow is estimated for each crop
by multiplying off season bare soil ET of the corresponding CFT with the harvested area
of the crop in each grid cell. However, in cases of multi-cropping (harvested area larger
than cultivated land) this would lead to an overestimation of ET from seasonal fallow as
the estimation of off-season bare soil ET for CFTs assumes a single growing season per
year (see section E.1). In such cases, we calculate the difference between full year bare
soil ET from the cultivated area and the sum of bare soil ET that would occur during
the growing season of all harvested crops in each grid cell and divide by the sum of ET
from seasonal fallow for all individual crops. The obtained ratio is be smaller than 1 if
multi-cropping occurs in a grid cell. In such cases, multiplying ET from seasonal fallow
for all individual crops with this factor properly mitigates an overestimation of total ET
from seasonal fallow.

As the result we obtain for each gird cell an estimate of total ET from cropland and CWU
for each crop with its ET components growing period green, growing period blue, seasonal
fallow green, and fallow land green. From this, national sums of CWU for each crop are
determined for each crop. Corresponding estimates of national production for each crop are
calculated from the yield reported by FAO and the harvested area given by MIRCA2000.
For MIRCA crop types representing more than one FAO crop, the harvested area in each
grid cell was attributed to the FAO crops according to their relative proportions in national
harvested area reported by FAO. For the crop type “fodder grasses” in MIRCA2000, yield
estimates were not available from FAO and gridded yield estimates from (Monfreda et al.
2008) were used instead. To account for the amount of seed required to grow crops,
the ratio of seed to total production was estimated for each crop in each country from
FAO production statistics and then applied to our production estimates. The result can
be interpreted as net production and implicitly assumes that seeds are derived from last
year’s production.
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E.3 CWU of utilization of crops and crop products for food,

feed, and other uses

To estimate CWU related to utilization of crops the following datasets are used:

• FAOSTAT Food Balance Sheets (FAO 2018), national data, reference year 2000
(1998–2002 average)

• FAOSTAT Commodity Balances (FAO 2018), national data, reference year 2000
(1998–2002 average)

Food Balance Sheets (FBS) and Commodity Balances (CB) report domestic production
quantity, import quantity, export quantity, stock changes and domestic supply for each
commodity in each country. Further, partition of total domestic supply over the following
utilization categories is reported: food, feed, other uses, processing, waste, and seed. FBS
and CB overlap to a large extent, but FBS contain additional information about nutritional
value of food supply, while CB provide information about the utilization of non-edible
crops and commodities such oilseed meals, a by-product of vegetal oil production and an
important livestock feed. We combine both datasets to obtain a complete picture of the
food system.

As the quantity used as seed has already been accounted for on the production side
(section E.2), domestic supply is recalculated as the sum of the amounts in the remaining
utilization categories food, feed, other uses, processing and waste. The difference between
domestic supply and net production was taken as net import or export, respectively, ne-
glecting stock changes and reexport.

The combined and harmonized dataset provides a comprehensive accounting of biomass
flows in the food system and provides the basis to allocate the CWU associated with
the production of primary crops to the utilization of these crops and derived products.
In the first step, the CWU associated with exports is calculated by multiplying export
quantities with the specific CWU (CWU per kgDM, referred to as cwu in the following) of
the respective production. Because FBS and CB do not provide information on bilateral
trade, export quantities and corresponding CWU contribute to a global trade pool for
each commodity with a combined cwu. The CWU associated with imports is obtained
by multiplying the import quantities with the cwu of the trade pool, and the result is
added to the total CWU of domestic production. Thus, the cwu of domestic supply for a
given commodity in net exporting countries equals the cwu of production, while the cwu

of domestic supply in net importing countries is the weighted average of cwu of domestic
production and cwu in the trade pool. The estimated cwu of domestic supply is then
multiplied with the amounts in the different utilisation categories to allocate CWU to each
utilisation category. Because we do not consider waste explicitly in this study but as an
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inefficiency in the food system, we distribute the amount of CWU allocated to waste among
the other utilization categories proportional to their relative size.

About 81% of global CWU associated with domestic supply of primary food crops is
allocated to either food, feed, or other uses by the procedure described in the previous
paragraph. The remainder is allocated to the utilization category ‘processed’, from which
the production of secondary commodities is derived. The relationship between primary
and secondary products is documented in the form of commodity trees (FAO 2000) and in
the definitions and standard of FBS and CB (FAO 2018). About 64% of the CWU allo-
cated to the ‘processed’ category of primary crops is related to oil crops such as soybeans,
rapeseed, and groundnuts. The processed amount of oil crops is unambiguously related to
the production of oil and oil cakes (extraction residues), which are reported for each oil
crop. Another 20% are related to sugar crops (sugar cane and sugar beets), from which
sugar and molasses are derived as secondary products. The remainder and all processing
quantities of secondary oil crop products, sugars, and molasses (less than 5% of CWU of
primary crop supply) are assumed to contribute to the production of reported beverages.

For the allocation of CWU associated with the processed amounts of commodities to
the derived commodities, a value weight (often referred to as functional unit in life cycle
assessments) must be defined for each co-product. Previous studies have defined value
weights based on market prices (Hanasaki et al. 2010, Mekonnen and Hoekstra 2011), but
monetary value is not an intrinsic property of a commodity and can vary considerably in
space and time. For example, the average price ratio of soybean oil to soybean cake is
about 2.3 over the period 1998–2002 but on a monthly basis price ratios varied between
1.4 and 4.2 in this period (World Bank 2019). A simple alternative is dry weight, but
this would treat different components such as sugars, dietary fibre, protein, and fat equally
despite their different calorie contents. Combined calorie content, however, ignores the role
of proteins as essential nutrients in the human diet and treats them equal to sugars (they
have the calorie content). To overcome this problem, we define a simple value index vi for
each commodity, which weighs nutritious carbohydrates (sugars and starch) lower than fat
to reflect their lower calorie content (4 kcal/g compared to 9 kcal/g) but weighs proteins
equal to fats despite their lower calorie content (4 kcal/g) to account for their importance
in human nutrition Equation E.1):

vi = ffat +
4

9
fcarb + fprotein (E.1)

where ffat, fcarb, and fprotein are the fractions of fat, nutritious carbohydrates, and
protein in the considered commodity. We note that the selection of the relative value of
proteins compared to primarily energy bearing components is completely arbitrary and that
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Equation E.1 could be extended to account for various other nutritional aspects. However,
the purpose if vi is to provide value weights for co-products that are based on the intrinsic
properties of these products while mitigating the shortcomings of using calorie content.
The composition of secondary commodities derived from processing of primary crops, as
well as the values of vi estimated from it are given in Table E.2. The CWU associated with
the processed amounts of commodities is allocated to the derived commodities proportional
their total value (product of vi and quantity of derived products). The trade of derived
commodities is calculated in the same way as for primary crops, i.e., assuming a global
trade pool and accounting for net exports and imports only.

Cultivated forages are not accounted for in the records of FAOSTAT. The domestic
production calculated from MIRCA2000 harvested area for fodder grasses and average yield
for forages from (Monfreda et al. 2008), is therefore assumed to equal domestic supply and
all domestic supply is assumed to be used as livestock feed.

As the result we obtain estimates of CWU required to produce the amounts used for
food, feed, or other uses of each commodity. The total sum of these CWU components
should be equal to the total ET from global cropland but is in fact slightly smaller because
for most commodities the trade balance is not fully closed.

E.4 CWU of feed crops and cultivated forages

FAOSTAT only provides information about the total amount of each commodity used as
livestock feed but not on how they are combined with each other and additional components
to supply the feed for the different types of livestock production (animal types, production
systems). Herrero et al. (2013) developed a global dataset of livestock production and
biomass use for 8 animal types (meat bovines, dairy bovines, meat sheep & goats, dairy
sheep & goats, pigs, broilers, layer hens, and dual-purpose poultry) in 28 world regions
(see Havlík et al. 2014) for grouping of countries to regions). For ruminants (bovines and
sheep & goats), 8 different production systems are distinguished: livestock grazing arid
(LGA), livestock grazing humid (LGH), livestock grazing temperate (LGT), mixed arid
(MXA), mixed humid (MXH), mixed temperate (MXT), other systems (Other), and urban
systems (Urban). For monogastric animals (pigs and poultry), production in industrial and
smallholder systems is distinguished. In total, the dataset provides detailed information
about the amount and composition of feed and the amount of produced livestock products
around the year 2000 in 919 production units (combinations of animal type, production
system, and world regions). Four different principal feed types are distinguished: grains
(crop-based feed), grass from direct grazing and as silage, occasional feeds (cut-and-carry
forages and roadside grazing), and stovers (fibrous crop residues). Grains comprise all feed
reported in FBS and CB and are grouped into ten different grain feed types (see Table E.1
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for grouping of FAO commodities into grain feed types). Animals in different production
units receive different amounts of each grain feed component depending on physiological
needs and management decisions. The total use of each grain feed type in a region is
harmonized to FAOSTAT. For further details see Herrero et al. (2013).

For the allocation of CWU associated with the amount of each FBS and CB commodity
used for feed, the detailed CWU estimates for each commodity and country are aggregated
to regional sums of CWU for each of the ten grain feed types. Then, the share of feed use
in each production unit is determined for each grain feed type and CWU is distributed
according to these shares.

In contrast to grain feeds, forages cannot be matched to a single feed type reported by
Herrero et al. (2013). Occasional feeds appear to be the closest match, but this feed type
also includes other feed components such as roadside grazing. On the other hand, the feed
type grass is not restricted to grazed biomass but also includes grass silage. Therefore, it is
no surprise that our estimate of regionally available forages does not match the estimated
use of occasional feeds by Herrero et al. (2013). To overcome these discrepancies, we merge
the grass and occasional feeds categories to obtain a total demand for grass-like biomass
that has to be fulfilled by available forages and grazing on grasslands. To estimate the
amount of forages used by each animal type in each production system, we intersect the
map of forage production with the map of ruminant production systems (Robinson et al.
2014) and determine the amount of forages in each production system. We then determine
for each production system the ratio of available forages to total grass demand and the
ratio of occasional feeds to total grass demand. The two ratios are averaged to obtain a
reference point for the utilization of forages across production systems, which reflects the
amount of available forages as well as the estimated use of occasional feeds in Herrero et al.
(2013). The thus obtained fractions of forages use in the production systems of a region
are then scaled to match the total amount of available forages in the region. To prevent
an exceedance of the 0 to 1 interval, the scaling is performed by increasing or decreasing
all logit-transformed fractions of forages uses within a region by the same increment. The
logit-transformation of each fraction x is defined as

logit(x) = log

(︃
x

1− x

)︃
(E.2)

and has the effect that the same increment in logit-transformed fractions corresponds
to a smaller change in actual fractions the closer these fractions are to 0 or 1. Between
0.25 and 0.75, the relationship is approximately linear. After scaling the logit fractions
these are transformed back to actual fractions following Equation E.3:
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logit−1(y) =
1

1 + exp(−y)
(E.3)

After the total use of forages was determined for each production system, the use of
forages by the different animal types within each production system needs to be inferred.
For this, the fraction of occasional feeds in total grass demand in the data from Herrero
et al. (2013) is taken as a starting point. The fractions of different animal types in each
production system are then scaled by increasing or decreasing the logit-transformed frac-
tions by the same increment until the sum of forages use matches the total use in the
production system.

The total grass demand that is not fulfilled by forages is assumed to be grazed biomass
from pastures.

E.5 CWU of grazed biomass

The estimation of CWU related to grazed biomass is based on the following datasets:

• Landcover data from Global Agro-ecological Zones (GAEZ) database (IIASA/FAO
2012), 5 arc-minutes spatial resolution, reference year 2000

• FAOSTAT statistics of pasture area (FAO 2018), national data, reference year 2000
(1998–2002 average)

• Spatial distribution of ruminants and map of ruminant production systems from
Gridded Livestock of the World database version 2 (GLW2; Robinson et al. 2014),
30 arc-seconds spatial resolution, reference year 2006

• Grazing demand for bovines and sheep & goats (Herrero et al. 2013), adjusted for
actual availability of forages (see section E.4), regional data by production system,
reference year 2000

• LPJmL estimates of maximum yield and corresponding green ET from managed
grasslands (see section E.1), 0.5 arc-degree spatial resolution, reference year 2000
(1998–2002 average)

Annual grass yields are converted to dry matter using a carbon content 0.4763 gC/kgDM

for leaves (Kattge et al. 2011). Grid cells with an annual grass yield of less than 1 gDM/(m2 yr)

are categorized as unproductive and will not be considered as grazing areas in the sub-
sequent analysis. In productive cells, the corresponding evapotranspiration is used to
determine cwu.
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For the determination of pasture areas, we start with a broad definition of areas poten-
tially suitable for grazing, which consist of the categories “grassland and woodland” and
“barren and sparsely vegetated land” in the GAEZ land cover dataset (IIASA/FAO 2012).
For India, we also added 10% of “built-up land” to account for roadside grazing and grazing
on small pasture patches within human settlements (Spate and Learmonth 2017). Multi-
plying the thus determined potential grazing area with the potential grass yield described
in the previous paragraph determines the total biomass available for grazing in each grid
cell.

The total grazing demand for bovine and sheep & goats by region and production system
is downscaled to grid cell level using the spatial distributions of ruminants and the map
of ruminant production systems from GLW2 (Robinson et al. 2014). The high-resolution
data from GLW2 is first aggregated to determine the number of bovines and sheep & goats
in each production system for each 5 arc-minute grid-cell. The grazing demand for bovines
and sheet & goats in each production system is then distributed proportional to the spatial
distribution of respective animal numbers. The demand in grid cells where annual grazing
demand is smaller than 1 gDM/(m2 yr) of rangeland is set to zero and fulfilled from the
other grid cells of that system and region.

A comparison of estimated grazing demand by grid cell to estimated potential grass
availability shows that demand exceeds availability in many cases. In total, 22.3% of
global grass demand cannot be fulfilled in the grid cells it has been allocated to. While
some of these inconsistences can be attributed to the use of different data and simplifying
assumptions (e.g., same feed composition and amount for all animals within a system
and regions), most of it can be attributed to the fact that the spatial disaggregation of
ruminants in GLW2 is not based on any measure of grassland extent or productivity. To
resolve the mismatch between grazing demand and availability we redistribute the excess
demand from grid cells where demand cannot be met to grid cells with surplus availability.
In most cases, the total amount of biomass available in the production systems within
regions is sufficiently large so that the excess demand can be fulfilled from grid cells with
the same production system. To minimize the distortion of the original distribution of
grazing demand, the redistribution is done by increasing the logit-transformed ratios of
grass demand to available grass in all grid cell of the respective production system by the
same value until the total grazing demand for that systems has been fulfilled. Only in a
few regions such as India and MENA region, the total demand in some production systems
exceeds the sum of biomass available for grazing in all grid cells of the respective system.
In those cases, the logit-transformed demand-to-availability ratio in all grid cells of the
respective region is increased until the remaining demand excess is fulfilled.

After all demand for grazed biomass is distributed to grid cells, the corresponding CWU
is calculated by multiplying this demand with the cwu in each grid cell. Total CWU for
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each animal type in each production system and region is then determined by summing
up the CWU for the spatially disaggregated demand. It is important to emphasize that
the obtained CWU estimates only comprise a fraction of the ET from grazing lands, which
corresponds to the fraction of potentially available biomass for grazing that is actually
used. The remaining biomass and associated CWU is assumed to support biodiversity
and other ecosystem services such as carbon sequestration in grassland ecosystems. The
assumption that the fraction of grassland ET allocated to CWU for grazing is proportional
to the fraction of utilized available biomass is equivalent to the assumption that only this
fraction of grazing land is fully grazed, while the rest remains untouched. We acknowledge
that such a linear scaling of the impact of partial grazing on grassland ecosystems may
be a simplification, but it provides a transparent and reproducible approach. A thorough
assessment of the impacts of grazing on grassland ecosystems is beyond the scope of this
analysis.

Our estimate of grazing lands, comprising all land potentially available for grazing
and excluding only unproductive and unused land (<1 gDM/(m2 yr) available or used,
respectively), is in total about 10.0 million km2 larger than the 34.1 million km2 of global
“land under permanent meadows and pastures” reported by FAOSTAT (FAO 2018). To
obtain a realistic estimate of total pasture ET, we reduce the fraction of grasslands not
utilized for grazing by a constant factor for each region. In the Australia and New Zealand
region, our estimate of grazing lands is about one third smaller than the estimate in
FAOSTAT so that also our final estimate of pasture in this region remains lower than the
FAOSTAT estimate. In India, Japan, South Korea, and the Rest of South Asia region, the
area of grazing land required to fulfil the grazing demand in these regions is larger than
the area reported by FAOSTAT so that our final estimate of pasture area in these regions
exceeds the FAOSTAT estimate. Overall, our adjusted estimate of global pasture extent
is with 33.5 million km2 very close to the FAOSTAT estimate.

E.6 Decomposition of variance in livestock water productiv-

ity

A central part of this paper is to assess the origin of variations in livestock water productiv-
ity (LWP; gP/m3). LWP is the product of two principal factors: feed water productivity
(FWP; kgDM/m3) and feed use efficiency (FUE; gP/kgDM):

LWP = FWP · FUE (E.4)

In order to facilitate the decomposition of variance in LWP into its components, we
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apply a logarithmic transformation and obtain:

log(LWP) = log(FWP) + log(FUE) (E.5)

The variance of the sum of two variables X + Y , is the sum of covariances between the
summed variable and its summands:

Var(X + Y ) = Cov(X + Y,X) + Cov(X + Y, Y ) (E.6)

Thus, the variance of log(LWP) can be decomposed into the two covariances of log(LWP)

with log(FWP) and log(FUE).
It is important to note that the logarithmic transformation of variables removes the

scale-dependency of variances, effectively producing estimates of standard deviation that
can be interpreted in relative terms. For example, an interval of ±0.5 around the mean
of a log-transformed variable is equivalent to the interval from −39% to +65% around
the mean of the untransformed variable. It is only through this transformation that the
variances of the two factors FWP and FCU become comparable and that their interaction
can be analysed in a meaningful way.
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Table E.1: List of FAO commodities and their assignment to feed items. For primary
crops, the corresponding crop type in MIRCA2000, the CFT by which it is represented in
LPJmL, and the carbon content is given.

FAO Item Type MIRCA2000 Crop LPJmL CFT Carbon gC/g Feed Item

Alcohol, Non-Food Vegetal Food CrpO

Apples and products Vegetal Food Others Perennial Generic perennial 0.063 CrpO

Bananas Vegetal Food Others Perennial Generic perennial 0.109 CrpO

Barley and products Vegetal Food Barley Temperate cereals 0.388 Barl

Beans Vegetal Food Pulses Pulses 0.399 Puls

Beer Vegetal Food CrpO

Beverages, Alcoholic Vegetal Food CrpO

Beverages, Fermented Vegetal Food CrpO

Brans Vegetal Food CerO

Cassava and products Vegetal Food Cassava Tropical roots 0.163 CrpO

Cereals, Other Vegetal Food Others Annual Generic annual 0.389 CerO

Citrus, Other Vegetal Food Citrus Generic perennial 0.068 CrpO

Cloves Vegetal Food Others Perennial Generic perennial 0.420 CrpO

Cocoa Beans and products Vegetal Food Cocoa Generic perennial 0.595 CrpO

Coconut Oil Vegetal Food OlsO

Coconuts - Incl Copra Vegetal Food Others Perennial Generic perennial 0.382 OlsO

Coffee and products Vegetal Food Coffee Generic perennial 0.460 CrpO

Cottonseed Vegetal Food Cotton Generic annual 0.466 OlsO

Cottonseed Oil Vegetal Food OlsO

Dates Vegetal Food Date Palm Generic perennial 0.341 CrpO

Fruits, Other Vegetal Food Others Perennial Generic perennial 0.070 CrpO

Grapefruit and products Vegetal Food Citrus Generic perennial 0.041 CrpO

Grapes and products (excl wine) Vegetal Food Grapes Generic perennial 0.069 CrpO

Groundnut Oil Vegetal Food OlsO

Groundnuts (in Shell Eq) Vegetal Food Groundnuts Groundnuts 0.507 OlsO

Honey Vegetal Food CrpO

Infant food Vegetal Food CrpO

Lemons, Limes and products Vegetal Food Citrus Generic perennial 0.052 CrpO

Maize and products Vegetal Food Maize Maize 0.392 Corn

Maize Germ Oil Vegetal Food OlsO

Millet and products Vegetal Food Millet Tropical cereals 0.408 SgMi

Miscellaneous Vegetal Food CrpO

Molasses Vegetal Food CrpO

Nuts and products Vegetal Food Others Perennial Generic perennial 0.567 CrpO

Oats Vegetal Food Others Annual Generic annual 0.400 CerO

Oilcrops Oil, Other Vegetal Food OlsO

Oilcrops, Other Vegetal Food Others Annual Generic annual 0.518 OlsO

Olive Oil Vegetal Food OlsO

Olives (including preserved) Vegetal Food Others Perennial Generic perennial 0.115 OlsO

Onions Vegetal Food Others Annual Generic annual 0.048 CrpO

Oranges, Mandarines Vegetal Food Citrus Generic perennial 0.077 CrpO

Palm kernels Vegetal Food Oil Palm Generic perennial 0.548 OlsO

Palm Oil Vegetal Food Oil Palm Generic perennial 0.770 OlsO

Palmkernel Oil Vegetal Food OlsO
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Peas Vegetal Food Pulses Pulses 0.389 Puls

Pepper Vegetal Food Others Perennial Generic perennial 0.362 CrpO

Pimento Vegetal Food Others Annual Generic annual 0.037 CrpO

Pineapples and products Vegetal Food Others Perennial Generic perennial 0.062 CrpO

Plantains Vegetal Food Others Perennial Generic perennial 0.168 CrpO

Potatoes and products Vegetal Food Potatoes Temperate roots 0.086 CrpO

Pulses, Other and products Vegetal Food Pulses Pulses 0.404 Puls

Rape and Mustard Oil Vegetal Food OlsO

Rape and Mustardseed Vegetal Food Rapeseed Rapeseed 0.546 OlsO

Rice (Paddy Equivalent) Vegetal Food Rice Rice 0.377 Rice

Ricebran Oil Vegetal Food OlsO

Roots, Other Vegetal Food Others Annual Generic annual 0.126 CrpO

Rye and products Vegetal Food Rye Temperate cereals 0.385 CerO

Sesame seed Vegetal Food Others Annual Generic annual 0.583 OlsO

Sesameseed Oil Vegetal Food OlsO

Sorghum and products Vegetal Food Sorghum Tropical cereals 0.395 SgMi

Soyabean Oil Vegetal Food Soya

Soyabeans Vegetal Food Soybeans Soybean 0.462 Soya

Spices, Other Vegetal Food Others Perennial Generic perennial 0.094 CrpO

Sugar (Raw Equivalent) Vegetal Food CrpO

Sugar beet Vegetal Food Sugar Beet Temperate roots 0.079 CrpO

Sugar cane Vegetal Food Sugar Cane Sugarcane 0.128 CrpO

Sugar non-centrifugal Vegetal Food CrpO

Sunflower seed Vegetal Food Sunflower Sunflower 0.555 OlsO

Sunflowerseed Oil Vegetal Food OlsO

Sweet potatoes Vegetal Food Others Annual Generic annual 0.130 CrpO

Sweeteners, Other Vegetal Food Others Annual Generic annual 0.402 CrpO

Tea (including mate) Vegetal Food Others Perennial Generic perennial 0.393 CrpO

Tomatoes and products Vegetal Food Others Annual Generic annual 0.023 CrpO

Vegetables, Other Vegetal Food Others Annual Generic annual 0.033 CrpO

Wheat and products Vegetal Food Wheat Temperate cereals 0.391 Whea

Wine Vegetal Food CrpO

Yams Vegetal Food Others Annual Generic annual 0.132 CrpO

Aquatic Animals, Others Animal Sourced Food ANIM

Aquatic Plants Animal Sourced Food ANIM

Bovine Meat Animal Sourced Food ANIM

Butter, Ghee Animal Sourced Food ANIM

Cephalopods Animal Sourced Food ANIM

Cream Animal Sourced Food ANIM

Crustaceans Animal Sourced Food ANIM

Demersal Fish Animal Sourced Food ANIM

Eggs Animal Sourced Food ANIM

Fats, Animals, Raw Animal Sourced Food ANIM

Fish, Body Oil Animal Sourced Food ANIM

Fish, Liver Oil Animal Sourced Food ANIM

Freshwater Fish Animal Sourced Food ANIM

Marine Fish, Other Animal Sourced Food ANIM

Meat, Aquatic Mammals Animal Sourced Food ANIM

Meat, Other Animal Sourced Food ANIM
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Milk - Excluding Butter Animal Sourced Food ANIM

Molluscs, Other Animal Sourced Food ANIM

Mutton and Goat Meat Animal Sourced Food ANIM

Offals, Edible Animal Sourced Food ANIM

Pelagic Fish Animal Sourced Food ANIM

Pigmeat Animal Sourced Food ANIM

Poultry Meat Animal Sourced Food ANIM

Copra Cake Livestock Feed OlsO

Cottonseed Cake Livestock Feed OlsO

Groundnut Cake Livestock Feed OlsO

Oilseed Cakes, Other Livestock Feed OlsO

Palmkernel Cake Livestock Feed OlsO

Rape and Mustard Cake Livestock Feed OlsO

Sesameseed Cake Livestock Feed OlsO

Soyabean Cake Livestock Feed Soya

Sunflowerseed Cake Livestock Feed OlsO

Fish Meal Livestock Feed ANIM

Meat Meal Livestock Feed ANIM

Abaca Non-food Others Annual Generic annual 0.418 CrpO

Cotton lint Non-food Cotton Generic annual 0.418 CrpO

Hard Fibres, Other Non-food Others Perennial Generic perennial 0.418 CrpO

Hides and skins Non-food ANIM

Jute Non-food Others Annual Generic annual 0.418 CrpO

Jute-Like Fibres Non-food Others Annual Generic annual 0.418 CrpO

Rubber Non-food Others Perennial Generic perennial 0.16 CrpO

Silk Non-food ANIM

Sisal Non-food Others Perennial Generic perennial 0.418 CrpO

Soft-Fibres, Other Non-food Others Annual Generic annual 0.418 CrpO

Tobacco Non-food Others Annual Generic annual 0.083 CrpO

Wool (Clean Eq.) Non-food ANIM
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Table E.2: Content of nutritiuos carbohydrates (starch and sugar), and derived value
indices vi using Equation E.1 for all FAO commodities derived from other commodities in
processes generating two or more co-products.

Name Starch and
sugar (%)

Fat
(%)

Protein
(%)

Value
index

Reference

Cotton lint 0 0 0 3.84 Ten times the value of Cottonseed

Cottonseed 1 18 20 0.38 https://www.feedipedia.org/node/742

Kapok fibre 0 0 0 4.7 Ten times the value of Kapokseed

Kapokseed in shell 0 21 26 0.47 https://www.feedipedia.org/node/12221

Coconuts 5 7 1 0.1 https://ndb.nal.usda.gov/ndb/foods/show/12104
and FAO, 2000

Coir 0 0 0 0.97 Ten times the value of Coconut

Oil, palm 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04055

Palm kernels 0 44 9 0.53 https://www.feedipedia.org/node/15405

Coconut Oil 0 99 0 0.99 https://ndb.nal.usda.gov/ndb/foods/show/04047

Copra Cake 10 9 20 0.33 https://www.feedipedia.org/node/11997

Cottonseed Oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04502

Cottonseed Cake 8 3 43 0.5 https://www.feedipedia.org/node/12021

Groundnut Oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04042

Groundnut Cake 16 9 45 0.61 https://www.feedipedia.org/node/12159

Palmkernel Oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04513

Palmkernel Cake 3 3 17 0.21 https://www.feedipedia.org/node/12421

Rape and Mustard Oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04582

Rape and Mustard Cake 15 8 32 0.47 https://www.feedipedia.org/node/12502

Sesameseed Oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04058

Sesameseed Cake 6 10 42 0.55 https://www.feedipedia.org/node/12577

Soyabean Oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04044

Soyabean Cake 13 2 46 0.54 https://www.feedipedia.org/node/11682

Sunflowerseed Oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04642

Sunflowerseed Cake 6 13 26 0.42 https://www.feedipedia.org/node/12664

Maize germ oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04518

Maize germ cake 21 2 25 0.36 https://www.feedipedia.org/node/20332

Rice bran oil 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/04037

Rice bran cake 31 4 14 0.32 https://www.feedipedia.org/node/11639

Oilcrops Oil, Other 0 100 0 1 https://ndb.nal.usda.gov/ndb/foods/show/45179959

Oilseed Cakes, Other 11 3 32 0.4 https://www.feedipedia.org/node/12263

Sugar, sugar cane 98 0 0 0.44 https://ndb.nal.usda.gov/ndb/foods/show/19334

Molasses, sugar cane 47 1 4 0.26 https://www.feedipedia.org/node/12341

Sugar, sugar beet 98 0 0 0.44 https://ndb.nal.usda.gov/ndb/foods/show/19334

Molasses, sugar beet 48 0 11 0.32 https://www.feedipedia.org/node/12340

Wheat flour 77 1 10 0.45 https://ndb.nal.usda.gov/ndb/foods/show/20481

Wheat bran 26 3 15 0.3 https://www.feedipedia.org/node/12751

Pot barley 75 1 10 0.44 FAO, 2001

Barley bran 10 13 2 0.19 https://de.wikipedia.org/wiki/Kleie

Milled Rice 80 1 7 0.44 https://ndb.nal.usda.gov/ndb/foods/show/20444

Rice bran 28 15 13 0.4 https://www.feedipedia.org/node/11636

Flour of maize 77 4 7 0.45 https://ndb.nal.usda.gov/ndb/foods/show/20016

Maize bran 34 4 11 0.3 https://www.feedipedia.org/node/12280

Maize germ 13 46 12 0.64 https://www.feedipedia.org/node/20336
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Oats rolled 67 6 16 0.52 FAO, 2001

Oat bran 45 7 17 0.44 https://www.feedipedia.org/node/12385

Flour of rye 75 2 11 0.46 https://ndb.nal.usda.gov/ndb/foods/show/20064

Bran of rye 14 9 5 0.2 https://de.wikipedia.org/wiki/Kleie

Flour of millet 75 4 11 0.48 https://ndb.nal.usda.gov/ndb/foods/show/20647

Bran of millet 39 8 13 0.38 https://www.feedipedia.org/node/11690

Flour of sorghum 77 3 8 0.45 https://ndb.nal.usda.gov/ndb/foods/show/20648

Bran of sorghum 31 6 11 0.31 https://www.feedipedia.org/node/12611

Flour cereals n.e.s. 77 1 10 0.45 Same as wheat flour

Bran of cereals n.e.s. 26 3 15 0.3 Same as wheat bran
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Table E.3: Spearman’s rank correlation coefficients for relationships of GDP with LWP,
FWP, FCE, fraction of feed crops in feed mix, fraction of crop residues in feed mix, and
water productivity of feed crops in the feed mix.

LWP FUE FWP Feed crops Crop residues WPfeed crops

Industrial pigs 0.68*** 0.59** 0.59** 0.59**

Broilers 0.75*** 0.59** 0.61*** 0.61***

Layer hens 0.57** −0.35 0.61*** 0.61***

Dairy bovines 0.52*** 0.71*** −0.41*** 0.59*** −0.43*** 0.61***

Meat bovines 0.44*** 0.62*** −0.34*** 0.39*** −0.40*** 0.56***

Dairy S&G 0.31*** 0.48*** −0.23** 0.64*** −0.28*** 0.53***

Meat S&G 0.15* 0.25*** −0.13 0.38*** −0.41*** 0.51***

Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05
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