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Background: The REACT DX registry evaluates standard therapies to episodes of long-
lasting atrial tachyarrhythmias and assesses the quality of sensing and stability of the
lead and the implantable cardioverter-defibrillator (ICD) (BIOTRONIK Lumax VR-T DX
and successors) over at least a 1-year follow-up period.

Objective: To study the association between the risk of de novo device-detected atrial
fibrillation (AF), the autonomic perturbations before the onset of paroxysmal AF and a
7-days heart rate variability (7dHRV) 1 month after ICD implantation.

Methods: The registry consists of 234 patients implanted with an ICD, including 10
with de novo long-lasting atrial tachyarrhythmias with no prior history of AF. The patients
were matched via the propensity-score methodology as well as for properties directly
influencing the ECGs recorded using GE CardioMem CM 3000. Heart rate variability
(HRV) analysis was performed using standard parameters from time- and frequency-
domains, and from non-linear dynamics.

Results: No linear HRV was associated with an increased risk of AF (p = n.s.). The
only significant approach was derived from symbolic dynamics with the parameter
“forbidden words” which distinguished both groups on all 7 days of measurements
(p < 0.05), thereby quantifying the heart rate complexity (HRC) as drastically lower in
the de novo AF group.

Conclusion: Cardiac autonomic dysfunction denoted by low HRC may be associated
with higher AF incidence. For patients with mild to moderate heart failure, standard HRV
parameters are not appropriate to quantify cardiac autonomic perturbations before the
onset of AF. Further studies are needed to determine the individual risk for AF that would
enable interventions to restore autonomic balance in the general population.

Keywords: heart rate variability, heart rate complexity, cardiac autonomic dysfunction, atrial fibrillation,
implantable cardioverter defibrillator
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INTRODUCTION

Atrial fibrillation (AF), the most common clinical arrhythmia, is
associated with increased risk of stroke, heart failure (HF) and
possibly dementia (Mozaffarian et al., 2016). There is growing
evidence that cardiovascular disease (CVD) risk factors and
CVD itself explains only 50% of AF occurrences (Agarwal
et al., 2017), as the understanding of AF pathophysiology
is still incompletely understood (Benjamin et al., 2009).
Cardiac autonomic dysfunction has long been suspected
in the development of AF (Coumel, 1994), therefore the
direct observation of heart rate variability (HRV) immediately
preceding the onset of arrhythmia will likely permit the
documentation of the underlying mechanism(s). However, the
role of the autonomic nervous system should be taken into
consideration for optimal individual antiarrhythmic treatment.

Twenty years ago, the Task Force of the European Society
of Cardiology (ESC) and the North American Society of
Pacing and Electrophysiology published the HRV standards of
measurement (Malik et al., 1996). The contemporary literature
has a plethora of studies applying HRV methodologies and their
successes in clinical applications. However, the identification
of high-risk patients has been rather limited. Recently, the
e-Cardiology ESC Working Group and the European Heart
Rhythm Association co-endorsed by the Asia Pacific Heart
Rhythm Society wrote a joint position statement about advances
in HRV signal analysis (Sassi et al., 2015). They presented a
critical review of newly developed HRV methodologies developed
after publication of the initial Task Force HRV overview (Wessel
et al., 2016) and their applications in different physiological and
clinical studies.

In a letter (Wessel et al., 2016) in response to this review,
we provided several potential explanations for the limited
success that merits additional attention: (1) the importance of
monitoring respiration for the interpretation of standard HRV
analysis, (2) the need to address its complexities using improved
signal processing method (Benjamin et al., 2009; Wessel et al.,
2009, 2016; Sidorenko et al., 2016) for patients with mild to
moderate HF, standard HRV parameters may not be suited due to
the alternating sinus rhythm phenomena (Voss et al., 2006; Costa
et al., 2017). Therefore, non-linear methods for the description
of heart rate complexity may be more appropriate (Kurths et al.,
1995; Voss et al., 1996; Wessel et al., 2000; Brindle et al., 2016).

To capture the parameters from these domains, it is necessary
to focus on their physiological interpretation. Spontaneous
fluctuations of cardiovascular signals were already described
more than a 100 years ago (Ludwig, 1847; Koepchen and Thurau,
1959; Wolf et al., 1978) with fluctuations in both heart rate
and blood pressure representing oscillations around fixed values
and expressing several influences, e.g., respiration and different
self-regulating rhythms.

Short-term heart rate regulation is mainly accomplished
by neural sympathetic- and parasympathetic-mediated cardiac
baroreflexes and peripheral vessel resistance whereas long-term
regulation is achieved by hormonal pathways as well as other
systems like the renin-angiotensin-system (Berntson et al., 1997).
HRV measurements have proven to be independent predictors of

sudden cardiac death after acute myocardial infarction, chronic
HF or dilated cardiomyopathy (Kleiger et al., 1987; Malik et al.,
1996; Tsuji et al., 1996; Szabó et al., 1997). Moreover, it has been
shown that short-term HRV analysis yields a prognostic value in
risk stratification independent of clinical and functional variables
(La Rovere et al., 2003). However, the underlying regulatory
mechanisms are still poorly understood. Further work includes
the relevance of premature ventricular ectopic beats, which are
associated with an increased risk of sudden cardiac death, as
well as their sophisticated neuro-cardio-respiratory interactions
(Schmidt et al., 1999; Schulte-Frohlinde et al., 2001, 2002), and
different means to analyze HRV as stationary epochs (Bernaola-
Galván et al., 2001; Camargo et al., 2014).

The main objective of the REACT DX registry was to evaluate
different standard therapies to episodes of long-lasting device-
detected atrial tachyarrhythmias (duration >6 min at a frequency
>190 beats per minute) and assess the quality of sensing and
stability of the lead and implantable cardioverter-defibrillator
(ICD) (BIOTRONIK Lumax VR-T DX and successor) over
the pre-defined 1-year follow-up period. In addition, cardiac
autonomic perturbations before the occurrence of de novo
AF were investigated. Therefore, the 7-day continuous ECGs
recordings 1 month after ICD implantation were analyzed in
all patients. Based on standard time- and frequency-domain
parameters as well as from non-linear dynamics (Wessel et al.,
2007), the study also analyzed the association between the risk of
de novo AF and 7-day HRV (7dHRV).

MATERIALS AND METHODS

Cohort
Between November 2012 and June 2016, the multicentre REACT
DX registry enrolled 234 patients before or ≤1 month after ICD
implantation from 14 sites in Germany. Follow-up duration was
at least 12 months and up to 24 months (18.8± 4.9 months).

Of these, 199 (85%) were male and 180 (77%) received the
ICD for the primary prevention of sudden cardiac death. The
mean (±standard deviation) left ventricular ejection fraction
was 33.6 ± 12.8%, 154 (65.8%) had conorary artery disease,
78 (33.3%) had dilated cardiomyopathy and 172 (73.5%) had
hypertension. Pharmacological HF therapy was optimized prior
to study inclusion in all patients resulting in 218 (93.2%) patients
receiving β-blockers, 196 (83.8%) angiotensin ± neprilysin
inhibitors, 112 (47.9%) spironolactone, 172 (73.5%) diuretics
and 151 (64.5%) statins. During follow-up, a total of 14
(6.0%) patients developed long-lasting atrial tachyarrhythmias
(≥6 min). For 10 of these 14 patients, all clinical data as well as the
7-day long-term ECG were available, and they were defined as our
de novo AF group (first AF occurrence 211± 120 day). From the
166 out of the 234 patients with primary prevention and without
detected long-lasting atrial tachyarrhythmias, a control group of
equal size was created.

The main inclusion criteria were (i) indications and
contraindications for ICD implantation according to national
and international guidelines, (ii) be available for follow-up
visits on a regular basis at an approved investigational centre,
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(iii) have a first implantation of an ICD-system, (iv) sign
the informed consent form, (v) implantation of a Lumax 740
VR-T DX or successor and (vi) have sufficient coverage of
mobile phone network.

The main exclusion criteria were (i) presence of
permanent atrial tachyarrhythmia, (ii) indication for cardiac
resynchronization therapy, (iii) life expectancy of less than
6 months, (iv) expected cardiac surgery within 6 months after
enrolment, (v) age less than 18 years and (vi) enrolment in
another cardiac clinical investigation.

Device-detected episodes of atrial tachyarrhythmia were
evaluated by the investigators and by a clinical event committee
consisting of two experienced physicians.

The REACT DX registry was approved by the ethic committee.
All patients signed informed consent. The registry was conducted

according to GCP and the Declaration of Helsinki, and was
registered in Deutschen Register Klinischer Studien (registration
number DRKS00010898).

Pre-processing
The analysis of HRV is often difficult due to many artifacts
of the arrhythmias signals. While occasional ectopic beats are
treated successfully by most pre-processing methods, more
complex arrhythmias or arrhythmias which are similar to normal
fluctuations, may remain undetected. We therefore developed
a method for data pre-processing which is described in detail
elsewhere (Wessel et al., 2007).

A detailed motivation, physiological introduction and the
purpose of the analysis of HRV analysis can be reviewed in
the Task Force HRV (Malik et al., 1996). It is important

TABLE 1 | Parameters available for use in matching via the propensity score methodology: Parameters indicated as: “Fixed matching category” are identical for each
matched pair, “Allowed for propensity score” were included into the regression to calculate the propensity score which was used to create the match, “Completeness”
indicates the availability of this parameter for the cohort (Checkmarks/crosses highlight accepted/rejected parameters).

Parameter Fixed matching
category

Allowed for
propensity score

Propensity score model
coefficients

Completeness Missing value
process

Age × X × 100% ×

Gender × X Female: 0.27 100% ×

BMI × X −0.009 95% Imputation

History of atrial fibrillation × × × 100% ×

History of aflut/atrial tachycardias × × × 100% ×

History of SVTs × × × 100% ×

NYHA × X C: −0.33 75% Imputation

CHA2DS2-VASc × X C: 1.22, ˆ5: 0.91, ˆ6: −0.20 100% ×

Effective anticoagulation × × × 100% ×

Diagnosed coronary artery disease X X × 100% ×

Diagnosed myocardial infarction X X × 100% ×

Coronary artery bypass graft × X TRUE: 0.06 100% ×

Percutaneous coronary intervention × X × 100% ×

Dilative cardiomyopathy X X × 100% ×

Hypertrophic obstructive cardiomyopathy X X TRUE: 0.29 100% ×

Hypertension X X × 100% ×

(Inherited) arrhythmogenic diseases X X × 100% ×

Short QT-syndrome × × × 6% Removal

Long QT-syndrome X X × 100% ×

Arrhythmogenic right ventricular Cardiomyopathy X X TRUE: 1.27 100% ×

Other arrhythmogenic diseases X × × 100% ×

Diabetes mellitus × X × 100% ×

Diabetes mellitus with insulin therapy × X × 100% ×

Valvular disease × X TRUE: 0.27 100% ×

Renal insufficiency × X TRUE: −0.31 100% ×

Drugs: Amiodarone × X × 100% ×

Drugs: Sotalol × X × 100% ×

Drugs: Flecainide × × × 100% ×

Drugs: Other anti-arrhythmic drug(s) × × × 100% ×

Drugs: Beta blocker × X × 100% ×

Drugs: ACE-I/AT1-B × X TRUE: 0.10 100% ×

Drugs: Spironolactone × X × 100% ×

Drugs: Diuretics × X × 100% ×

Drugs: Statins × X TRUE: 0.16 100% ×

Drugs: Other cardiac drugs × X × 100% ×
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to address each artifact with the appropriate tools without
influencing the results and the simple exclusion of ventricular
premature beats may lead to erroneous HRV parameters
(Lippman et al., 1994).

An appropriate method to handle most of these problems is
through adaptive filtering, which has been described in detail
elsewhere (Wessel et al., 2007). The main advantage of this
method is the spontaneous adaptation to variability changes,
which enables a more reliable removal of artifacts, ventricular
premature beats and VPCs. This filtering algorithm consists of
three sub-procedures:

(i) the removal of obvious recognition errors
(ii) the adaptive percent-filter

(iii) the adaptive controlling filter

It must be mentioned our group has analyzed several thousand
human and animal time series (Wessel et al., 2007). In those
analyses, small variations of the controlling parameters did
not significantly influence the filtering results. A MATLAB
implementation of the pre-processing algorithm is available from
tocsy.agnld.uni-potsdam.de.

Time- and Frequency-Domain
Parameters
Standard methods of HRV analysis include time- and frequency-
domain parameters that are linear methods. Time-domain
parameters are based on simple statistical methods derived
from the RR-intervals as well as the differences between
them. Mean heart rate is the simplest parameter, but the
standard deviation over the entire time series (sdNN) is
the most prominent HRV measure for estimating overall
HRV. A list of selected parameters with a short explanation
is given in Table A1 and has been described before
(Wessel et al., 2007).

Non-linear Analysis of Heart Rate
Variability
Heart rate and blood pressure variability reflects the complex
interactions of many different controlled loops of the
cardiovascular system. In relation to the complexity of the
sinus node activity modulation system, a predominantly non-
linear behavior has to be assumed. Thus, the detailed description
and classification of dynamic changes using time and frequency
measures is often not sufficient. We have previously shown
that symbolic dynamic is an efficient approach to analyze
the dynamic aspects of HRV (Kurths et al., 1995; Voss et al.,
1996). The first step in this analysis is the transformation of
the time series into symbol sequences, with symbols given an
alphabet letter. Although some detailed information is lost
in this process, the broad dynamic behavior can be analyzed
(Engbert et al., 1997). Wackerbauer et al. (1994) used the
methodology of symbolic dynamics for the analysis of the
logistic map where a generic partition is known. However, for
physiological time series analysis, a more pragmatic approach
is necessary. The transformations into symbols should be
chosen in a context-dependent manner. For this reason, we

have developed a series of complexity measures based on
such context-dependent transformations which have a close
connection to physiological phenomena and are relatively easy
to interpret (cf. appendix A).

All statistical analyses were performed using the R System. In
the case of missing data values, a decision was made on a case to
case basis as to if imputation of the missing data was possible or
if the variable should be removed. A thorough verification of all
patient data was conducted.

Matching
To investigate autonomic perturbations visible through HRV
measures, we matched a control group from those that did
not register an AF episode during the follow-up period
on two levels. To reduce the possible number of subjects,
the first matching was based on criteria directly impacting
the morphology and interpretation of the ECGs (Table 1).
This specific matching was based on the propensity-score
methodology (Imbens and Rubin, 2015) with the score used
to represent the propensity of the patient to suffer an AF
episode before the end of the follow-up period given the
demographic and medical data known at enrolment. This
matching was meant to account for any previously available
information regarding outcomes. Any differences found during

TABLE 2 | Clinical patient characteristics of the control, as well as the
de novo AF group.

Parameter Quantity Controls
(n = 10)

De Novo AF
(n = 10)

p

Age Mean (SD) 65.0 (10.4) 61.3 (10.2) n.s.

Gender Male 10 9 n.s.

BMI Mean (SD) 27.9 (6.0) 25.4 (3.6) n.s.

No history of atrial
fibrillation

10 10 n.s.

No history of
aflut/atrial
tachycardias

10 10 n.s.

No history of SVTs 10 9 n.s.

LVEF at enrollment Mean (SD) 35.0 (10.8) 28.5 (13.7) n.s.

NYHA I 0 1 n.s.

II 4 4

III 3 2

IV 0 0

CHA2DS2-VASc Mean (SD) 2.6 (1.6) 2.4 (1.5) n.s.

Diagnosed
coronary artery
disease

5 5 n.s.

Dilative
cardiomyopathy

3 (42.9) 4 (57.1) n.s.

Hypertension 8 8 n.s.

Diabetes mellitus 4 4 n.s.

Amiodarone 2 0 n.s.

Beta blocker 9 10 n.s.

ACE-I/AT1-B 9 9 n.s.

Diuretics 5 7 n.s.

Statins 4 5 n.s.

Frontiers in Physiology | www.frontiersin.org 4 December 2020 | Volume 11 | Article 596844

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-596844 December 2, 2020 Time: 19:45 # 5

Wessel et al. Heart Rate Variability vs. Complexity

the subsequent analysis presented additional and previously
unavailable information.

Propensity Score
A linear logistic regression model was selected to separate those
who suffered from AF episodes before implantation and those
who did not until at least after the follow-up period. This model
only used demographic data and variables from the medical
history captured during enrolment (variables implying previous
AFs were excluded, Table 1). The remaining variables were
verified for completeness and, in the case of missing values, they
were included using a k-nearest neighbor approach (Templ et al.,
2011). The variables that contained more than 25% missing values
were excluded. All ordinal factors were translated to orthogonal
polynomial contrasts (Chambers and Hastie, 1991) to allow the
incorporation of the order relationship into the model. We
performed repeated runs of glmnet cross-validation (Friedman
et al., 2010) [α = 0.5, each using a rose resampled (Menardi
and Torelli, 2014) variant of the data to account for imbalances]
to select the appropriate λ. Finally, we fitted the model to
the original, but weighted according to the outcome variable
imbalance, dataset at the calculated λ. The selected variables, as
used in the model and their coefficients, are presented in Table 1.
The response value of this model is the propensity score used
for the secondary matching process, the matching results are
presented in Table 2.

All long-term ECGs were recorded for 7 days, 1 month after
ICD implantation using GE Healthcare CardioMem CM 3000

devices. HRV analyses were performed separately for each of the
7 days. All HRV parameters described above were calculated on a
24-h basis as well as from windowed analyses. For the latter, the
time- and frequency-domain parameters were calculated from
successive 5-min windows and then averaged over 24 h. The
window length for the non-linear HRV parameter was 30 min
(Wessel et al., 2007).

RESULTS

The results presented in Table 3 were derived from the windowed
analysis. No HRV parameter from time- and frequency-domain
showed a consistent statistically significant differences between
the de novo AF and the control group for all 7 days (p = n.s.).
The only successful approach was based on symbolic dynamics.
“Polvar10” showed significant differences on day 1 and 2 whereas
the Shannon entropy Hk was significant on 5 days. The parameter
“forbidden words,” however, significantly distinguished both
groups on all 7 days of measurement as performed independently
(p < 0.05; the probability for false statistical results is less than
1 to a billion: <0.05ˆ7). This measure quantifies the heart rate
complexity which is drastically lower in the de novo AF group.
The averaged effects size over all 7 days of “forbidden words”
is almost one, values greater than 0.8 are interpreted as strong
effects. I.e., the mean values “forbidden words” for the de novo
AF and the control group differ about one standard deviation. To
emphasize the strong effect between de novo AF and the control

TABLE 3 | Standard time- and frequency-domain parameters as well as non-linear dynamics for all 7 days (means ± standard deviations are given only for day 1).

Parameter AF day 1 CON day 1 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

meanNN 801.3 ± 113.1 891.2 ± 80 0.060 0.063 0.143 0.346 0.312 0.242 0.189

sdNN 33.6 ± 20.3 46.7 ± 14.2 0.119 0.217 0.162 0.288 0.303 0.663 0.177

Rmssd 18.2 ± 12.2 24.3 ± 9.8 0.246 0.530 0.366 0.735 0.670 0.824 0.471

pNN50 0.04 ± 0.05 0.07 ± 0.06 0.326 0.773 0.479 0.994 0.949 0.829 0.713

Shannon 1.58 ± 0.6 1.96 ± 0.34 0.101 0.123 0.089 0.214 0.202 0.295 0.212

Renyi025 1.88 ± 0.58 2.26 ± 0.32 0.087 0.117 0.083 0.224 0.218 0.300 0.178

Renyi4 1.28 ± 0.56 1.62 ± 0.33 0.119 0.140 0.107 0.212 0.210 0.290 0.245

Renyi2 1.41 ± 0.59 1.77 ± 0.34 0.112 0.132 0.098 0.211 0.204 0.294 0.232

pNNl10 0.65 ± 0.25 0.49 ± 0.16 0.118 0.130 0.184 0.346 0.239 0.440 0.296

pNNl20 0.79 ± 0.18 0.69 ± 0.15 0.232 0.295 0.368 0.665 0.426 0.674 0.401

pNNl30 0.9 ± 0.11 0.84 ± 0.11 0.274 0.521 0.488 0.880 0.676 0.918 0.553

P 731.6 ± 706.2 1236.4 ± 694.3 0.135 0.310 0.316 0.340 0.400 0.918 0.212

ULF 75.5 ± 59.3 165.8 ± 82.5 0.015 0.177 0.127 0.076 0.187 0.591 0.104

VLF 415 ± 432 801.7 ± 498.6 0.090 0.235 0.281 0.255 0.343 0.623 0.233

LF 190 ± 210 202.8 ± 133.6 0.875 0.721 0.690 0.980 0.791 0.515 0.448

HF 51 ± 59 66.1 ± 36.9 0.508 0.858 0.551 0.906 0.993 0.467 0.302

LF/HF 4.9 ± 2.7 4.5 ± 2.3 0.756 0.508 0.456 0.593 0.943 0.995 0.177

LFn 0.7 ± 0.2 0.7 ± 0.1 0.915 0.508 0.360 0.582 0.676 0.666 0.356

FORBWORD 8.6 ± 9.4 2.2 ± 3.1 0.049 0.039 0.046 0.031 0.049 0.033 0.036

Hk 3.4 ± 0.5 3.7 ± 0.2 0.042 0.045 0.092 0.048 0.049 0.034 0.078

Polvar10 0.4 ± 0.3 0.1 ± 0.1 0.042 0.046 0.077 0.122 0.102 0.217 0.110

The results of the Mann–Whitney-U-test are presented in the columns Day 1 to 7. No time- and frequency-domain parameters demonstrated consistent significant
differences between the de novo AF and the control group. In contrast, the symbolic dynamics parameter Forbword and Hk demonstrated significant differences
for several days (Bold font: p < 0.05).
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FIGURE 1 | Heart rate variability (HRV) in long-term ECG recordings. (A) Time series is from a de novo AF patient with a high sympathetic tone. Heart rate is strongly
increased (86 bpm) and HRV is clearly decreased (day time sdNN = 12 ms), (B) time series is also from a de novo AF patient but with normal heart rate and HRV
(65 bpm, day time sdNN = 98 ms) and (C) time series is from a control patient with normal heart rate and HRV (64 bpm, day time sdNN = 105 ms).

groups, we performed the following Monte-Carlo experiment.
From each subject we randomly chose one measurement (1 day
out of 7) and compared the “forbidden words” values between
both groups. Altogether we have seven one day measurements
from 20 subjects (10 de novo AF + 10 controls), which offer
720 possibilities for such a random selection. To quantify
the effect size, we performed a leave one out classification,
i.e., a logistic regression model was trained on 19 subjects
and the tested while one of the subjects was left out. This
leave one out classification was performed 10000 times. In
this way we got an overall accuracy of 0.72 (95% CI: 0.71–
0.73, p < 0.001), a sensitivity of 0.64, a specificity of 0.8,
a positive predictive value of 0.76 and a negative predictive
value of 0.70. All values differ significantly high from a mere
random effect.

Figure 1 demonstrates the differences between HRV in
long-term ECG recordings. It is well known that cardiac
autonomic dysfunction, characterized by a high sympathetic tone
as observed in Figure 1A and documented via an increased heart
rate, is associated with a strongly decreased HRV and a strongly
increased risk of AF occurrence (Jons et al., 2010; Nortamo et al.,
2018). In this case, not only the HRV but also the heart rate
complexity is low (FORBWORD = 12). Figures 1B, 2 show
one example of a de novo AF patient with “normal” heart rate
and HRV. A decrease in complexity is not readily visible at first
glance, however, heart rate complexity is decreased due to the

occurrences of alternating sinus rhythm patterns (Costa et al.,
2017). The time series in Figures 1C, 3 are from a control patient
with normal heart rate, HRV and heart rate complexity. The
patterns of the two other patients are undistinguishable using
only standard HRV parameters. Only non-linear parameters are
able to show a strong decrease in HRC and an increase in
FORBWORD due to alternating sinus rhythm patterns present
in the times series of Figure 2, which are unremarkable for the
time series in Figure 3.

DISCUSSION

The objective of this investigation was to study the association
between the risk of de novo AF and 7dHRV based of standard
time- and frequency-domain parameters as well as from non-
linear dynamics. Therefore, the long-term ECGs of 20 of the 234
patients with mild to moderate HF included in the REACT DX
registry were analyzed. For all patients, the implantation of an
ICD device was indicated suggesting all were high-risk patients.
The main aim of the present study was to detect the patients
with a high risk for de novo AF based on HRV parameters. This
was a complex process for several reasons: (i) we did not have
the simple task of separating patients from a healthy group as
done previously (Costa et al., 2017), (ii) a high amount of ectopy
was expected, (iii) patients often had high heart rates and low
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FIGURE 2 | Heart rate complexity of the de novo AF patient with normal heart rate and HRV from Figure 1B. Panel (A) shows the original time series from Figure 1
demonstrating a high HRV over the day. Panel (B) presents a time breakdown of the gray area from panel (A) and reveals the occurrence of alternating sinus rhythm
patterns. The HRC is strongly decreased, therefore FORBWORD is increased to 8 which is comparable to the HRC value presented in Figure 1A. Panel (C) shows
the ECG from the gray area from panel (B) showing sinus rhythm was maintained, (cf. Costa et al., 2017).

HRV, (iv) our patient match included different disease states, (v)
we did not exclude inflammation and fibrosis, (vi) patient were
prescribed different medication regimens and (vii) patients may
have had different circadian HRV profiles. Therefore, standard
HRV parameters failed to predict cardiac autonomic dysfunction
and no parameter from time- and frequency-domain showed
significant differences between the de novo AF and the control
groups. In contrast, the only significant approach was derived
from symbolic dynamics with the parameter “forbidden words”
which distinguished both groups on all 7 days of measurements
independently (p < 0.05), thereby quantifying the HRC as
drastically lower in the de novo AF group.

It is known that cardiac autonomic dysfunction, as evidenced
by severely diminished HRV, increases the risk of AF occurrence
(Jons et al., 2010). However, these perturbations may not be
detected by standard HRV analysis, but appear to be a marker of
higher AF incidence (Table 2 and Figure 1). A decreased in heart
rate complexity may be accompanied with a decreased in HRV.
Researchers (Costa et al., 2017) recently referred to the alternating
sinus rhythm pattern phenomenon as “heart rate fragmentation.”
Applying standard HRV methods to such time series with
alternating rhythms may have lead to false or incomplete
interpretations as reported by (Bettoni and Zimmermann, 2002)
who found a vagal predominance before the onset of AF, and
(Vikman et al., 1999) who detected an altered complexity. Others

(Costa et al., 2017) also reported abnormal patterns in Poincaré
plots and other maps (Woo et al., 1992; Brouwer et al., 1996;
Huikuri et al., 1996; Domitrovich and Stein, 2003; Stein et al.,
2005, 2008; Gladuli et al., 2011; Makowiec et al., 2015). The
pathophysiology of alternating sinus rhythm patterns remains to
be determined. Different mechanisms may be involved such as
the sinus node exit block, a very subtle atrial bigeminy and the
sinus node parasystole and perturbations of internal pacemaker
“clocks” in the SA node (Costa et al., 2017). Costa et al. (2017)
speculated that heart rate fragmentation would be of high interest
if it was an initial event leading to arrhythmias such as AF
or other tachyarrhythmias. The results of our study confirmed
this hypothesis.

Costa et al. (2017) raised the additional question whether
abnormalities in breathing dynamics could be responsible for
the fragmentation. An indirect indication of cardiorespiratory
coupling involvement is that deep breathing may lead to
alternating patterns in heart rate (Löwit, 1879). Following earlier
work on cardio-respiratory synchronization changes with sleep
and aging (Bartsch et al., 2012), we (Riedl et al., 2014) introduced
the analysis of cardiorespiratory coordination (CRC) during
sleep. They found, by using the advanced analysis technique of
the coordigram, not only the occurrence of CRC was significantly
more frequent during respiratory sleep disturbances than during
normal respiration but also more frequent after these events.
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FIGURE 3 | Heart rate complexity of the control patient with normal heart rate and HRV from Figure 1C. Panel (A) shows the original time series from Figure 1
demonstrating a high HRV over the day. Panel (B) present a time breakdown from the gray area from panel (A). No alternating sinus rhythm patterns can be
detected. The HRC is not decreased, therefore FORBWORD is equal to 1. Panel (C) shows the ECG from the gray area from panel (B) demonstrating sinus rhythm.

A further investigation of CRC (Krause et al., 2017) showed the
new phenomenon of heartbeat-initiated inspiration at the end of
an apnea, which provides new impulses to current approaches
to obstructive sleep apnea characterization (Ivanov et al., 1996;
Mietus et al., 2000).

The major limitation of our study is the low number of de novo
AF events as only 10 patients were included. AF is a powerful risk
factor for stroke, independently increasing risk about five-fold
throughout all age groups (Mozaffarian et al., 2016). Because AF
is often asymptomatic and likely frequently undetected, the risk
of stroke attributed to AF may be substantially underestimated.
In the setting of AF, important risk factors for stroke include
advancing age, hypertension, HF, diabetes mellitus, previous
stroke or TIA, vascular disease and female sex (Schmitt et al.,
2009; Mozaffarian et al., 2016). Additional biomarkers such
as high levels of troponin and BNP also increase the risk of
stroke independent of the well-established clinical characteristics
(Mozaffarian et al., 2016). Thus, further studies are needed to
determine the individual risk for AF based on HRV, heart rate
complexity, clinical characteristics and additional biomarkers.

CONCLUSION

Cardiac autonomic dysfunction denoted by low heart rate
complexity may be associated with a higher AF incidence.

For patients with mild to moderate HF, standard HRV
parameters are not appropriate to quantify cardiac autonomic
perturbations before the first occurrence of AF. Further studies
are needed to determine the individual risk for AF that
would enable interventions to restore autonomic balance in the
general population.
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APPENDIX A

Symbolic Dynamics
While comparing different types of symbol transformations, we found that the use of four symbols, as explained in Eq. (1), was
appropriate for our analysis. The time series x1, x2, x3..., xN is transformed into the symbol sequence s1, s2, s3..., sN , si ∈ A on the basis
of the alphabet A= {0,1,2,3}.

si(xi) =


0 : µ< xi ≤ (1+a)µ

1 : (1+a)µ < xi ≤ ∞

2 : (1−a)µ < xi ≤ µ

3 : 0< xi ≤ (1−a)µ

where i = 1, 2, 3, . . . (1)

The transformation into symbols refers to three given levels where µ denotes the mean beat-to-beat interval and a is a special
parameter that we have chosen 0.05. We tested several values of a from 0.02 to 0.08, however the resulting symbol sequences differed
not significantly (Wessel et al., 2007). Because there are several quantities that characterize such symbol strings, we analyzed the
frequency distribution of words of length 3 (i.e., substrings which consist of three adjacent symbols leading to a maximum of 64
different words), which is a compromise between retaining important dynamical information and having a robust statistical estimate
of the probability distribution.

We considered 3 measures of complexity:

(i) The Shannon entropy Hk calculated from the distribution p of words is the classic measure for the complexity in time series:

Hk = −
∑

ωeWk·p(ω)>0

p(ω) log p(ω) (2)

where Wk is the set of all words of length k. Larger values of Shannon entropy refer to higher complexity in the corresponding
tachograms and lower values to lower ones.

(ii) The “forbidden words” in the distribution of words of length 3 which are the number of words that (almost) never occur (with
probability of less than 0.1%). A high number of forbidden words reflects a rather regular behavior in the time series and, if the
time series is highly complex in the Shannonian sense, only a few forbidden words are to be found.

(iii) The parameter “plvar10” characterizing short phases of low variability from successive symbols of another simplified alphabet B
and consisting only of symbols “0” and “1.” In our study, “0” stands for a small difference between two successive RR-intervals
(the resolution of the defibrillators) whereas “1” represents cases when the difference between two successive RR-intervals
exceeds a certain specific limit.

sn =

{
1 : |xn − xn−1| ≥ 10 msec
0 : |xn − xn−1|<10 msec.

Words consisting of a unique type of symbols (either all “0” or all “1”) were counted. To obtain a statistically robust estimate
of the word distribution, we chose words of length six, defining a maximum of 64 different words. “Plvar10” represents the
probability of the word “000000” occurrence and thus detects even intermittently decreased HRV.

TABLE A1 | Description of the selected time- and frequency-domain parameters, standard and additional measures (Wessel et al., 2007).

Variable Units Definition

meanNN [ms] Mean BBI

sdNN [ms] Standard deviation of all BBI values

Rmssd [ms] Root mean square of successive BBI differences

pNN50 % Percentage of NN-interval differences greater than 50 ms

pNNlX % Percentage of beat-to-beat differences lower than X ms (e.g., X = 10/20/30 ms)

Shannon None Shannon entropy of the histogram (density distribution of the BBIs)

RenyiX None Renyi entropy of order X of the histogram (e.g., X = 2/4/0.25)

P ms2 Total power from 0 to 0.4 Hz

ULF ms2 Ultra-low frequency band 0–0.0033 Hz

VLF ms2 Very low frequency band 0.0033–0.04 Hz

LF ms2 Low frequency band 0.04–0.15 Hz

HF ms2 High frequency band 0.15–0.40 Hz

LF/HF None Quotient of LF and HF

LFn None Normalized low 0 frequency band (LF/(LF + HF))

BBI stands for the filtered beat-to-beat intervals (NN-intervals).
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