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KURZFASSUNG 

Knochen ist ein lebendes Material, das seine Struktur an die mechanische Umgebung anpasst. Zur 
strukturellen Anpassung muss der Knochen die mechanische Belastung erfassen. Allerdings sind 
Knochen mechanisch so steif, dass die lokalen Verformungen zu klein sind um von den 
Knochenzellen direkt detektiert zu werden. Osteozyten sind Knochenzellen, die ein Zellnetzwerk 
in der mineralisierten Matrix bilden. Ihre Zellkörper sind in Lakunen untergebracht und ihre 
Zellprozesse in engen Kanälchen, den Canaliculi. Die Hypothese des Flüssigkeitsflusses besagt, 
dass der lastinduzierte Flüssigkeitsfluss durch dieses Lakunen-Canaliculi-Netzwerk (LCN) einen 
Verstärkungsmechanismus bereitstellt, der es den Osteozyten ermöglicht, die dynamische 
Belastung des Knochens zu erfassen. Wir stellen die Hypothese auf, dass die Architektur des LCN 
eine wesentliche Rolle in Bezug auf die Mechanosensitivität spielt, da sie den Flüssigkeitsfluss 
beeinflusst. Das zentrale Ziel dieser Arbeit ist es, diese Hypothese an realen LCN-Architekturen 
mit einem Modell des lastinduzierten Flüssigkeitsflusses zu testen und den resultierenden Fluss 
mit der Mechanoreaktion des Knochens zu vergleichen. Wir haben das LCN mithilfe konfokaler 
Laser-Scanning-Mikroskopie  untersucht. Wir haben dann die auf den Kirchhoffschen Gesetzen 
basierende Schaltungstheorie verwendet, um die Geschwindigkeiten der Flüssigkeit in allen 
abgebildeten Canaliculi zu modellieren und darzustellen wie sich die verdrängte Flüssigkeit über 
das LCN verteilen würde. Basierend auf diesen Geschwindigkeiten wurde die Mechanoreaktion 
des Knochens vorhergesagt. In meiner Studie wurden die Knochen von Mäusen verwendet, 
wodurch kontrollierte in vivo Belastungsexperimente und die Messung der Mechanoreaktion in 
Bezug auf gebildeten bzw. resorbierten Knochen unter Verwendung von in vivo µCT möglich 
waren. Die Flüssigkeitsströmungsmuster durch das LCN korrelierten mit der gemessenen 
Mechanoreaktion. Das heißt, Knochenbildung wurde in Bereichen nahe höherem Fluss 
beobachtet, während Knochenabbau in Bereichen nahe geringem Fluss beobachtet wurde. Die 
Vorhersage der Mechanoreaktion unter Berücksichtigung der Architektur des LCN war quantitativ 
besser als eine Vorhersage, die nur auf mechanischer Belastung basiert. Qualitativ haben wir 
festgestellt, dass Gefäßkanäle im Kortex als lokale Senken des Flüssigkeitsflusses fungieren und 
daher den Fluss an der nahegelegenen Knochenoberfläche reduzieren. Im Gegensatz dazu nahmen 
die Strömungsgeschwindigkeiten für konvergente Netzwerkstrukturen zu, bei denen die Zahl der 
Kanäle zur Knochenoberfläche hin abnimmt. In einem zweiten Projekt konzentrierten wir uns auf 
gesunden, menschlichen osteonalen Knochen. Osteone sind zylindrische Strukturen um 
Gefäßkanäle, die praktisch vom umgebenden Knochen abgeschottet sind. Wir analysierten acht 
gewöhnliche Osteone mit einem nahezu homogenen LCN und neun Osteon-in-Osteonen, die durch 
eine ringartige Zone mit geringer Netzwerkkonnektivität zwischen dem inneren und dem äußeren 
Teil dieser Osteone gekennzeichnet sind. In Canaliculi, die die beiden Teile des Osteons in 
Osteonen überbrücken, wurde ein wesentlich höherer lastinduzierter Flüssigkeitsfluss beobachtet 
als in anderen Canaliculi. Dies führte dazu, dass der durchschnittliche Fluss 2,3-mal höher war als 
bei normalen Osteonen. Es ist daher wahrscheinlich, dass Osteon-in-Osteon-Konstruktionen 
besonders zur Mechanosensitivität des kortikalen Knochens beitragen. Die Untersuchungen in 
dieser Doktorarbeit legen nahe, dass die LCN-Architektur neben der mechanischen Belastung als 
Schlüsselfaktor für die Knochenanpassung dient.   

Knochen, Mechanoreaktion, Flüssigkeitsfluss, Lakunen-Canaliculi-Netzwerk, Osteozyten 





 
 

ABSTRACT 

Bone is a living material, which adapts its structure in response to the mechanical environment. 
For structural adaptation bone need to sense the mechanical loading. However, bone is so stiff that 
the local strains are too small to be directly sensed by bone cells. Osteocytes are bone cells that 
form a cell network located within the mineralized matrix. Their cell bodies are housed in lacunae 
and their cell processes in narrow canals, the canaliculi. According to the fluid flow hypothesis, 
load induced fluid flow through this lacunocanalicular network (LCN) provides an amplification 
mechanism which allows osteocytes to sense dynamic loading of the bone. We hypothesize that 

ty, as it 
influences the fluid flow. We aimed to test these hypotheses by using real LCN architectures in a 
model of load induced fluid flow, and compare the resulting flow with the mechanoresponse of 
bone. We imaged the LCN using confocal laser scanning microscopy (CLSM). Image processing 
was then used to describe the LCN as a mathematical network consisting of edges and nodes, 
representing the canaliculi and their connections respectively. We then employed circuit theory, 

el the velocities of the fluid in all the imaged canaliculi. Based 
on these velocities, the mechanoresponse of bone was predicted. Mice were used in my study, as 
this allowed a controlled in vivo loading and a measurement of the mechanoresponse in terms of 
formed/resorbed bone using in vivo µCT. Fluid flow patterns through the LCN of mice correlated 
with the measured mechanoresponse, i.e., bone formation was observed near surfaces of higher 
flow, while resorption was observed near surfaces with low flow. The prediction of the 
mechanoresponse considering the architecture of the LCN was quantitatively better than a 
prediction based on strains only. Qualitatively, we identified that vascular canals in the cortex act 
as local sinks of fluid flow and, therefore, reduce the flow at the nearby bone surface. In contrast, 
flow velocities increased in convergent network structures, where the flow is channeled into fewer 
canaliculi nearby the surface. In a second project we focused on healthy human osteonal bone. 
Osteons are cylindrical structures around vascular canals, which are practically sealed off from the 
surrounding bone. We analyzed 8 ordinary osteons with a rather homogeneous LCN, and 9 osteon-
in-osteons, which are characterized by a ring-like zone of low network connectivity between the 
inner and the outer parts of these osteons. A substantially higher load-induced fluid flow was 
observed in canaliculi that bridge the two parts of the osteon-in-osteons. This resulted in an average 
flow, which was 2.3 times higher compared to ordinary osteons. It is therefore likely that osteon-
in-osteons particularly contribute to the mechanosensitivity of cortical bone. Based on both studies 
in this PhD thesis we conclude that LCN architecture should be considered as a key determinant 
of bone adaptation besides mechanical loading. 
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MOTIVATION 

Why do Physicists Study Mechanobiology?  
 
Bone is commonly known as a hard and dense skeletal connective tissue, which protects our vital 
organs, it provides us with posture and allows movement. The cortex of bones is rather dense, 
while the inside of most bones is porous or sponge-like. However, bone is not just a solid piece of 
a lifeless material, but it is a living organ that has a complex hierarchical structure, which can adapt 
and repair itself, and is a composite material at the nano-scale, where 50% of the volume of the 
cortex is actually organic material. This structure and composition give bones not only exceptional 
mechanical properties for its weight (i.e. hardness, elasticity, durability), but mechano-responsive 
cells in bone make it an active smart material that can self-repair and can adapt to changes in the 
mechanical environment (Fratzl and Weinkamer 2007). Linked porosity networks in cortical bone 
at multiple length scales, play a role in this adaptation process. A certain type of bone cells 
(osteocytes) live embedded in the bone matrix, in a vast complex network of lacunae and 
canaliculi, and are surrounded by a thin layer of fluid and organic matrix. This places bone 
mechanobiology right at the interface of biology and physics. It is intriguing how pure mechanical 
loads applied to our bones somehow travel through many length scales, to finally end up as a 
biochemical signal, which orchestrate the behavior of our cells (Fig. 1). 
 

 
Fig. 1. A) A controlled loading experiment is an example of a changing mechanical environment, which is 
routinely used to study the mechanoresponse of long bones (e.g., tibiae) in living mice to an applied known 
force. B) The changes in mechanical load are indirectly sensed by the osteocytes, which signal the 
osteoclasts (bone resorbing cells) and the osteoblasts (bone forming cells) as illustrated in this schematic 
from Dallas, Prideaux et al. (2013). Due to vast amount of molecular biology and biochemical research, we 
understand most of the signaling pathways involved in the mechanoresponse of bone in both healthy and 
pathological conditions. Note that the diagram in (B) only shows a small fraction of what is known. C) 
Finally the mechanical stimulation (as illustrated in A) leads to adaptations of the bone by resorbing bone 
which is not needed and forming extra bone where needed. However, there are two open questions: 1) How 
are changes in the loading of the bone translated to local signals, which can be sensed by the bone cells? 
The mechanical strain is likely an order of magnitude too small to be directly sensed by bone cells, and 
therefore we expect strain amplification mechanisms between whole bone strain and strain at the cell level. 
2) How are biochemical signals transported from the cells embedded in the bone, to the surface in order to 
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orchestrate bone formation and resorption? Note that small signaling molecules are very reactive, and that 
large molecules cannot easily travel through the narrow spaces in the bone matrix, which constrains the 
time and space where these molecules have an effect. We believe that the network architecture of the 
osteocyte network should be taken into account to answer both of these questions.  

According to the fluid flow hypothesis, cyclic loading of the bone leads to fluid flow within the 
canaliculi, which can be sensed by molecules in the cell processes of the osteocytes. After the 
biological sensors notice changes in the mechanical environment, the biochemical processes in 
these cells perform signal processing to decide how the bone should be adapted or repaired. Then, 
the biological signals need to be somehow transported to the surfaces of our bones, in order to 
recruit the cells that do the formation and resorption work (Sims and Vrahnas 2014, Klein-Nulend 
and Bonewald 2020)
bone. The biochemical signals from the osteocytes to the cells at the bone surface also need to be 
transported via the canalicular network. Therefore, in my PhD study I investigated the architecture 
of the osteocyte lacunocanalicular network and, based on the fluid flow hypothesis, how this 
network could act as a distributed mechanical sensor network with build in amplification and 
signal processing capabilities. 

The research strategy of this thesis work includes healthy adult mouse bones, which were pre-
characterized by our collaboration partners. Mouse models are a powerful tool to study the 
mechanobiology of bone, due to the small size of the animals, which allows in vivo imaging of the 
microstructural changes in their bones as a result of controlled loading. Additionally their genetic 
background has been thoroughly characterized, which is important for a healthy skeleton 
(Verbruggen 2018).  

Fully understanding the physics of the mechanical environment at the microarchitectural scale of 
healthy bone is equally important as understanding the molecular mechanisms (Teoh, Goh et al. 
2019). A better understanding could contribute to the unanswered questions in the basic bone field, 
for example, why different bones react differently to applied mechanical loads. It could also help 
to answer clinical questions, such as if mechanotransduction plays a role in poorly healing fractures 
(McKibbin 1978, Xie, Zhang et al. 2019). A specific example of a study that would benefit from 
this thesis is a mouse model of premature aging (gerodermia osteodysplastica), which our 
collaborators together with us are currently investigating. In contrast to healthy mice, these mice 
do not adapt their bones when high loads are applied. It was observed that these mice have an 
abnormal osteocyte lacunocanalicular network (LCN) architecture. This raises the question if the 
LCN architecture plays a key role in this disease.  

In this thesis, I combined experimental work, imaging of real lacunocanalicular networks, with 
computational work, modelling of the fluid flow through these networks. The mathematical model 
allows us to investigate the role of the LCN in the translation of the controlled loading to the 
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mechanoresponse in these mice. Several mathematical models of fluid flow and pressure have 
supported the fluid flow hypothesis (Cardoso, Fritton et al. 2013). However, currently in the 
literature investigations into the LCN architecture are limited (Hemmatian, Bakker et al. 2017). 
Consequently, the role of the network architecture in mechanosensing remains unclear, thus 
leaving a substantial gap in the line of argumentation in bone mechanobiology (Fig. 1). Due to 
missing information about the actual network architecture, several studies assumed a 
homogeneous and simplified LCN architecture. Only since very recently, the lacunocanalicular 
network of bone can be imaged in macroscopic bone volumes. This is essential when one wants to 
link the structural changes at the millimeter scale to the full network architecture with components 
at the sub micrometer scale. This is exactly in the range of full cross sections of human osteons. 
Osteons are fundamental structural units of bone, which are a few hundred micrometer in diameter. 
Also full cross sections of mouse tibiae, which have a diameter in the order of a millimeter, can 
now be imaged. With these recent developments, we aim to test the hypothesis that small strains 
in the rather stiff bone induce fluid displacements, which are physically amplified and processed 
while being forced through the architecture of this network (i.e. the fluid flow hypothesis). To test 
this we combine the following methods: 
 

1. Controlled in vivo loading of mouse tibiae to induce a mechanoresponse in these bones, 
2. Time-lapse in vivo microCT to follow the mechanoresponse (i.e. formation/resorption of 

bone) over time,  
3. Laser scanning confocal microscopy (CLSM) of human and mouse bones to image 

different lacunocanalicular network architectures,  
4. A model of load-induced fluid flow through the canaliculi of the measured networks, based 

on circuit theories and local strains in the bone. 
 
This thesis is structured as follows: Chapter 1 introduces the structure of bone, from the 
macrostructure of the whole bone down to the ultrastructure of the lacunocanalicular network. This 
chapter also introduces models of fluid flow from the tissue level down to flow profiles inside 
single canaliculi. Chapter 1 closes with a detailed explanation of the research strategy of the th
projects. Chapter 2 will cover the experimental methods (methods 1 to 3 form the list above) used 
for the research in this thesis. Chapter 3 describes the theoretical part of this study (method 4), 
including model development and predictions of mechanosensitivity. In chapter 4.1 I first present 
the study on the mouse tibiae, since the actual remodeling history was measured in these bones. 
Chapter 4.2 follows with the investigation on human bone, where due to technical limitations and 
ethical constraints we do not know the remodeling history. In the human osteons we found striking 
differences between fluid flow patterns in different types of osteons. Based on the mouse model 
we can predict how these fluid flow patterns contribute to strong differences in the 
mechanosensitivity of different human osteons. Chapter 5 presents conclusions, before the thesis 
ends with an outlook on future research. 
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1. INTRODUCTION  
 
In the 19th century Julius Wolff and Wilhelm Roux observed that bone has a hierarchical structure, 
which adapt its shape to meet its mechanical demands (i.e. mechanical protection, load bearing or 
locomotion) (Willie, Duda et al. 2013). From this observation, they concluded that mechanical 
forces are key factors in the morphogenic development of bones. The internal structures of bones 
are optimal to distribute the external stresses that bones are facing most commonly, in a similar 
way as the light weight truss constructions which are commonly used in, for example, bridges and 
ceilings (Fig. 1.1 A, B). In a cross section of a long bone like a femur (Fig. 1.1 C) two different 
types of bone can be distinguished: dense cortical bone and porous trabecular bone. Trabecular 
bone contains a network of bone beams and plates (trabeculae). The trabeculae are in the order of 
100 µm thick, while the pore size can vary from hundreds of micrometers to several millimeters 
(Fig. 1.1 D). Most trabecular bone is near surfaces where the bone is loaded, such as joints and 
muscle attachments. The mid shaft of long bones, such as the femur, have very little trabecular 
bone. Instead, the mid shaft of long bones has a thick cortex (up to several centimeters) (Fig. 1.1 
C, E), which offers resistance to bending and buckling. This lightweight truss design is comparable 
to that of the Glienicker Brücke (Fig. 1.1 A) and the Hall of Knights (Fig. 1.1 B), for example. The 
orientations of the beams in these constructions follow the direction of the most common stresses, 
and concentrate the stress to the heavy solid pillars and walls. The head of the hip bone is loaded 
from several directions. The trabecular bone reflects the direction of the stresses and transfer this 
load to the dense cortical bone of the femur (Fig. 1.1 C).  
 
When we zoom in to the next hierarchical level of bone, we see that at a nanoscopic length scale 
bone is a composite material, consisting of mineral particles embedded in a fibrous collagen-rich 
organic matrix. The mineral in both cortical and trabecular bone is carbonated hydroxyapatite, 
which can be observed by transmission electron microscopy due to its high electron density (Fig. 
1.1 E). It has been shown that the long axis of the hydroxyapatite crystals is strongly aligned with 
the preferred orientation of the collagen fibers (Fratzl, Gupta et al. 2004) to form a strong 
nanocomposite material which is somewhat comparable to concrete with rebar (Fig. 1.1. F, G) 
(Jager and Fratzl 2000, Fratzl, Gupta et al. 2004). Fig. 1.1. F shows that the mineralized collagen 
fibers are arranged in lamellae with spatial changes in the preferred orientation referred to as 

. However, bone is not always lamellar. During morphogenesis of 
bones and fracture healing, new bone is rapidly formed. This rapidly formed so-called woven bone 
is not as organized as lamellar bone, but shows randomly oriented collagen weaves (Shapiro and 
Wu 2019). In many vertebrates, this scaffold of woven bone is later removed or replaced with 
lamellar bone by the remodeling process. Additionally bone is deposited layer by layer on the 
surfaces of cortical bone, forming a lamellar-like bone on top of the woven bone with a dense, 
well-ordered canalicular network and regularly shaped osteocyte lacunae (Kerschnitzki, 
Wagermaier et al. 2011, Ip, Toth et al. 2016).  
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Fig. 1.1. The relationship between the hierarchical structure of bone and its function
follows principles which are similar to engineering. The Glienicker Brücke (A) and the Hall of Kings (B) 
have a lightweight truss structure to concentrate the forces in the solid pillars and walls. C) This section 
through the human hip bone (femur) shows an internal porous structure (trabecular bone) in the proximal 
part of the femur (Fratzl, Gupta et al. 2004), which has a similar load distributing task as the truss structure 
of bridges (A). The structure of the trabecular bone near the mid shaft resembles the roof structure of typical 
medieval buildings, such as the Hall of Kings (B). The mid shaft of the femur has no internal structure, but 
only thick walls of cortical bone. D) A magnification of the trabecular bone using quantitative backscattered 
electron imaging (qBEI) on one bone beam. Bone beams (trabeculae), which are in the order of 100 µm 
thick, form a lightweight bone network which distributes the loads within the bone (Fratzl, Gupta et al. 
2004). The heterogeneity in degree of mineralization is clearly visible in these images as differences in 
intensity (white is highly mineralized). E) A magnification of the thick cortical bone reveals that also  is 
porous. The osteons with a diameter of a few hundred micrometer, comprising a haversian canal and its 
concentrically arranged lamellae, are visible as zones with different degrees of mineralization. F) Further 
magnification shows that at the micron level mineral is well aligned, while orientation varies between 
different lamella (Fratzl and Weinkamer 2007). A fraction of the bone forming osteoblasts get trapped 
during formation of new bone, and these cells stay alive inside pores called lacunae (marked with OC). G) 
A detailed image of a single collagen fiber bundle (Fratzl and Weinkamer 2007). The minerals are co-
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aligned with collagen bundles, which are arranged in a plywood like structure in lamellar bone. H) A model 
of how mineral crystals in bone are aligned along the collagen molecules to form a strong composite 
material (Fratzl and Weinkamer 2007).  

The shape and internal structure of bone are not static, as bone is a living material that can repair 
itself and adapt its structure. Electron microscopy images using back-scattered mode in Fig. 1.1 
D, E reveal the heterogeneity in mineral content of both trabecular and cortical bone. This 
heterogeneity is a result of the constant remodeling of bone. Remodeling is the process which 
keeps our bones in good condition and resistant against fatigue by replacing old or damaged 
material. Osteoclasts are constantly removing older bone, which is higher mineralized, more brittle 
and often contains microdamage (Vaananen 1993). Osteoblasts then fill the cavities made by the 
osteoclasts with new unmineralized bone. This way osteoclasts and osteoblasts replace an 
equivalent of our full trabecular bone volume roughly every five years and our cortical bone 
volume roughly every ten years. During the remodeling process a fraction of the osteoblasts 
differentiate to osteocytes, which become embedded in the new bone (Fig. 1.2 A). Being initially 
unmineralized, bone is constantly incorporating mineral. As a consequence, bone with older tissue 
age appears brighter than newly formed bone in quantitative backscattered electron images (qBEI) 
(Ruffoni, Fratzl et al. 2007). Therefore, qBEI shows a history of the remodeling process, where 
remodeling of trabecular bone happens in patches (fig. 1.1 D), and remodeling of cortical bone 
creates osteons (Fig. 1.1 E, Fig. 1.2 B). Osteonal remodeling starts with the formation of a straight 
tube like structure, which is aligned parallel to the long axis of the bone (Fig. 1.2 B). After removal 
of the old bone, the lamella of the osteon are formed layer by layer (Fig 1.2. A, B).  

Fig. 1.2. Osteon formation. A) Schematic representation of new bone formation by osteoblasts from 
Bonewald (2011). The osteoblasts form unmineralized osteoid (yellow), which is an organic matrix 
consisting of mostly collagen. Osteoid then mineralizes to form bone. Some osteoblasts get embedded in 
the new bone after they differentiate to osteocytes. B) A microscopic image and an illustration of the 
formation of a new osteon (Robling, Castillo et al. 2006). Before osteons are formed, osteoclasts (drawn as 
larger purple cells) resorb the bone from left to right in the cutting cone (i.e. they resorb the leading surface 
of the new osteon). When resorption is completed the closing cone follows, where osteoblasts (green small 
cells) deposit lamellae of new bone (blue and black layers) to refill the tunnel excavated by the osteoclasts. 
Osteoid (visible as blue layers) eventually becomes mineralized bone (black).  
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Remodeling is not only responsible for replacing old bone, but it also allows to some extend to 
adapt bone structure and shape to changing mechanical demands (Huiskes 2000, Rayfield 2019). 
A healthy vertebral body shows trabeculae, which are mostly oriented in the vertical orientation, 
i.e. the orientation of the most common loading direction in our spine (Fig. 1.3 A). Fig. 1.3 B 
demonstrates how a shift in mechanical load, resulting from a bony connection between vertebral 
bodies, causes a reorientation of the trabecular structure, as well as a thickening of certain 
trabeculae (Mosekilde, Ebbesen et al. 2000, Fratzl and Weinkamer 2007). These adaptations 
redistribute the load over the lower surface of the vertebral body. Fig. 1.3 C demonstrates how 
trabeculae thicken to build a stress bridge to account for osteoporotic bone loss and shape changes, 
which occur with aging (Mosekilde, Ebbesen et al. 2000, Fratzl and Weinkamer 2007).  
 
The exact mechanism of how bone accomplishes this adaptation is studied in the field of 
mechanobiology. One of the proposed models in this field is referred to as mechanostat, an analogy 
with a thermostat (Rubin and Lanyon 1984, Frost 1987). The mechanostat regulates if bone should 
be formed or removed by comparing the locally measured mechanical load to pre-defined set 
points. During disuse the stress in large parts of the bone is below the resorption threshold, which 
initiates resorption of mineralized bone which is at the moment not needed. In contrast, extra bone 
is formed when the local stress is above the formation threshold, to compensate for increased load. 
This does not only explain how bone tissue is always experiencing a similar mechanical strain in 
animals of very different size (Rubin and Lanyon 1984, Frost 1987), but it can even explain how 
the bone potentially adapts its structure to changing loads (Fig. 1.3 D). In this simplified model I 
illustrate how stresses above the formation threshold (red) lead to formation at the nearby surfaces, 
while the stress below the resorption threshold (blue) is removed. The combination of formation 
and resorption cause the modeled trabeculum to align with the applied stress. Many studies 
working on bone adaptation problems at the macro-scale are based on the mechanostat hypothesis 
(Frost 2003). The specific set point(s) of the mechanostat are unknown until now, while the 
outcome of predictive models are very sensitive for this parameter (Skerry 2006, Iwaniec and 
Turner 2016, Weinkamer, Eberl et al. 2019, né Betts, Wehrle et al. 2020). Some bones are very 
sensitive for changes in load (for example, the bone loss in space or unloading due to a splint), 
while other bones seem to be immune for a lack of load, such as the skull. Moreover, Skerry (2006) 
suggests that there a different local set point at each location in the skeleton, which nowadays still 
causes difficulties in predicting adaptive bone responses (Carriero, Pereira et al. 2018).  
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Fig. 1.3. A-C) The internal structure of vertebral bodies adapt to changing loading conditions (Mosekilde, 
Ebbesen et al. 2000). A) Physiological loading of our back mostly causes stresses along the direction of our 
spine. The healthy vertebral body shows an internal structure which is mostly aligned with this 
physiological stresses. Horizontal trabeculae resist the lateral stress due to expansion transversal to axial 
strain. B) The formation of a bony bridge between two vertebral bodies (top, to the left of the vertebra) 
alters the loading conditions, and causes an adaptation of the internal structure of the bone. C) The 
thickening of trabeculae compensates for bone loss (i.e. decreased number of trabeculae with age)  D) Based 
on the stress distribution the mechanostat model predicts that this simulated trabecula rotates into the 
loading direction by placing extra bone where needed (red) and removing bone where not needed (blue).  
 
 
 

1.1 The Hierarchical Porosity in Cortical Bone 
 
To understand how the dense cortical bone senses mechanical loads, we approach bone not as a 
purely solid material, but as a porous fluid filled material. In this study, we consider three 
hierarchical levels of nested network-like porosity in bone, containing blood or interstitial fluid 
within cortical bone. The largest pores embedded in the cortex are the vascular canals (level 1). 
The first investigating these canals was Antoni van Leeuwenhoeck using one of his newly invented 
light microscopes. The length scale of the vascular pore network ranges from several decimeters 
down to tens of micrometers (table 1.1.). Van Leeuwenhoeck (1677) found that the apparently 
solid cortex of certain bones was made out of a large number of parallel tubular structures. Looking 
at cortical bone with a modern scanning electron microscopy, we can indeed see a large number 
of roundish structures (tube-like in three dimensions). These osteons, are visible due to a distinct 
mineral content of the bone compared to the environment, and a hole  the Haversian canal in its 
center (Fig. 1.4 B). The Haversian canals are aligned along the long axis of the long bones. The 
diameter of human osteons is in the order of 100 µm. The Haversian canals are tens of micrometers 
in diameter and are part of a large interconnected network throughout the whole cortex, in which 
we can find nerves and blood vessels (Herskovits, Singh et al. 1990, Cowin and Cardoso 2015). 
The Haversian canals are connected to each other via Volkmann canals, which are transverse 
vascular canals that are oriented perpendicular with respect to the Haversian canals (Fig. 1.4 B). 
The space in the Haversian canal, outside the blood vessels and nerves, is mostly filled with 
interstitial fluid. It is crucial that the blood pressure is higher than the pressure of the interstitial 
fluid outside of the blood vessels, as the very soft vessels and capillaries would otherwise easily 
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collapse. The transport of fluid over the blood vessel wall is balanced by the colloid osmotic 
pressure of the blood plasma, which allows controlled exchange of, for example, water, minerals, 
nutrients and waste products over the capillary vessel wall (Heyeraas and Berggreen 1999).  

Fig. 1.4. An overview of the three levels of bone porosity within human cortical bone. A-B) Level 1: The 
vascular porosity. A) In long bones there is a vast capillary network in the cortical bone, as illustrated here 
in the drawing from Cowin and Cardoso (2015). B) Our qBEI image of a cross section of the human cortical 
bone (midshaft femur) clearly show the vascular canals, which are tens of micrometers in diameter, contain 
the capillaries and nerves. The canals which are oriented along the long axis of the bone are called Haversian 
canals, and are part of osteons (marked green). Volkmann canals connect the Haversian canals with each 
other and with the surfaces of the cortex. C) Level 2: The lacunocanalicular network (imaged using confocal 
laser scanning microscopy (CLSM) after rhodamine staining, a red fluorescent die). This network extends 
over the scale of osteons, consisting of concentric rings of mineralized bone matrix (imaged with reflection, 
shown in green) around the Haversian canals. Level 3: A single canaliculus, housing the osteocyte cell 
process (tunneling electron microscopic photomicrograph, from Cabahug-Zuckerman, Stout et al. (2018)). 
The light zone around the cell process is the pericellular space. Arrows indicate narrowings in the 
canaliculus. The osteocyte cell body is marked by OCY.  

When we zoom in further, we find that each osteon contains a lacunocanalicular network (LCN) 
(Fig. 1.4 C, level 2), consisting of lacunae, which are connected by sub-micrometer wide canaliculi 
(Fig. 1.4 C, D, level 3). The cell bodies of the bone cells (osteocytes) live inside the lacunae and 
use the canaliculi to connect to other osteocytes with their cell processes (Fig. 1.4 D). Canaliculi 
are funnel shaped where they connect lo large pores, such as the lacunae (Fig. 1.4 D) and the 
Haversian canals (Fig. 1.4 C) (Lin and Xu 2011). At the outer boundary the osteons are mostly 
sealed off from the rest of the bone by a cement line (Milovanovic and Busse 2019), as only very 
few canaliculi are bridging the cement line. In contrast, the Haversian canals are well connected 
to the LCN through many canaliculi and most canaliculi in the osteon are radially oriented to the 
Haversian canal (Fig. 1.4. B) (Repp, Kollmannsberger et al. 2017). The remaining canaliculi are 
mostly perpendicular to the radial canaliculi and are associated with the osteocyte lacunae. The 
lamella (Fig. 1.4 C) of the osteon can be made visible due to the reflection of light by aligned 
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collagen fibers. The collagen orientation follows a distinct plywood structure, and lacunae and 
perpendicular canaliculi are co-aligned with the lamella (Kerschnitzki, Wagermaier et al. 2011, 
Lin and Xu 2011, Repp, Kollmannsberger et al. 2017). It should be noted that not all types of 
cortical bone have osteons. The cortex of the mouse tibia, for example, has a network of blood 
vessels and lacunocanalicular network, but is lacking secondary osteons. Roughly two types of 
bone, with each their own typical LCN architecture, can be found in the mouse tibia. 1) Woven 
bone, with very disordered network and irregularly shaped lacunae (Kerschnitzki, Wagermaier et 
al. 2011, Ip, Toth et al. 2016, Shapiro and Wu 2019). This bone is rapidly produced during the 
initial formation of the bone, and roughly defines the shape of the young bone (Kerschnitzki, 
Wagermaier et al. 2011, Ip, Toth et al. 2016, Shapiro and Wu 2019). 2) After that, bone is deposited 
layer by layer, forming  lamellar-like bone top of the woven bone with very dense and well-ordered 
network and regularly shaped osteocytes (Kerschnitzki, Wagermaier et al. 2011, Ip, Toth et al. 
2016).  

Table 1.1. The length scales in the hierarchical structure of bone 

1 m 
Whole bone Vascular network in bone 

10-1 m

10-2 m Trabecular network 

Blood 

vessels 

10-3 m Trabeculae Distance between osteons 

10-4 m LCN Osteons 

10-5 m Lacunae Osteocyte cell bodies 

10-6 m Distance between canaliculi 

10-7 m Canaliculi Osteocyte cell processes 
Pericellular space 

10-8 m

Proteoglycans Integrins Fiber spacing 10-9 m Signaling
molecules 

Weinbaum, Cowin et al. (1994) proposed that the pericellular space in the canaliculi, situated 
between the osteocyte cell processes and the mineralized canalicular wall, is filled by a pericellular 
matrix (PCM) of cross-linked proteoglycans and an interstitial fluid (Fig. 1.5). The pericellular 
space has an open connection to the interstitial space in the vascular canals via the LCN. Advances 
in sample preparation enabled Weinbaum and colleagues a decade later to image the PCM in the 
bone of mice with SEM (YOU, WEINBAUM ET AL. 2004). The average diameter of the 
canaliculi in these mice was found to be 259 ± 129 nm. The large variation in this diameter can be 
explained by the fact that canaliculi are wider close to the lacunae (Fig. 1.4 C) and at junctions in 
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the LCN (Wittig, Laugesen et al. 2019). The average width of the annular pericellular space was 
found to be 78 ± 38 nm and symmetric around the long axis of the canaliculi (YOU, WEINBAUM 
ET AL. 2004). They concluded that the PCM is a fiber network that fills the pericellular space, 
and that tethering elements bridge between the osteocyte cell processes and the mineralized 
canalicular wall (Fig. 1.5). Although it is commonly assumed that the diameters of different 
canaliculi are similar, a number of studies showed that canaliculi have a rough surface. At random 

c (Fig. 1.4 D, black arrows), which 
are the focal adhesion points for integrins. It is suggested that integrins are mechanosensory 
molecules, responsible for measuring the fluid flow velocity through the pericellular space of 
canaliculi. Unfortunately, sample preparation procedures nowadays are still not perfect. 
Dehydration is causing partial destruction and deformation of the samples. With the high 
likelihood of lost and collapsed fibers in mind, it can be concluded that the PCM definitely exists, 
but that the reported 40 nm spacing between the bridging fibers is overestimated (CARDOSO, 
FRITTON ET AL. 2013). Therefore, the exact composition and structure of the PCM are still 
very uncertain.  

Fig. 1.5. Idealized cross section of a 
canaliculus with its osteocyte cell process and 
pericellular matrix (Wang, McNamara et al. 
2007) (Copyright (2007) National Academy 
of Sciences). The grey triangle at the bottom 
illustrates how randomly situated projections 
of the canalicular wall probably form 
adhesion foci, where mechanosensitive 
integrins are situated between the cell 
membrane to the canalicular wall.  

1.2 Multifunctionality of the Osteocyte Network 

Although we focus on the role of the lacunocanalicular network (LCN) in mechanosensing, it is 
assumed that the LCN and the osteocyte network it houses are multifunctional. Very strictly 
regulated mineral homeostasis is essential for life, and bones store a large amount of mineral, in 
particular calcium and phosphate. If the calcium concentration is not kept in a very narrow 
window, then nerves and muscles (including the heart) would not function properly and a constant 
phosphate concentration is critical for energy metabolism and protein synthesis. The need of a vast 
transport network with direct access to a high density mineral storage is therefore critical. The 
LCN is a vast transport network with a 100 times larger surface area than the area that osteoclasts 
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and osteoblasts encounter at the surface of the bone (Marotti, Ferretti et al. 1995, Buenzli and Sims 
2015). Therefore, the LCN has much better access to the bone mineral compared to the vascular 
network alone, giving it the potential to quickly regulate the calcium and phosphate concentrations 
in blood. Based on the strong heterogeneities in LCN architecture it could be expected that storage 
sites with higher transport potential and storage potential exist (Roschger, Roschger et al. 2019). 
The area around bone resorption contains high levels of the enzymes associated with osteoclastic 
activity. Some of these enzymes can also be expressed by osteocytes (Kogawa, Wijenayaka et al. 
2013). Osteocyte perilacunar remodeling has been shown, and there is evidence of canalicular 
remodeling (Teti and Zallone 2009, Qing, Ardeshirpour et al. 2012, Ormsby, Cantley et al. 2016). 
Therefore it is not surprising that we found that the local bone mineral properties correlate with 
the osteocyte network topology (Kerschnitzki, Kollmannsberger et al. 2013, Roschger, Roschger 
et al. 2019).  
 

sense the mechanical loads the 
bone is placed under in order to orchestrate bone remodeling. Although there is no direct evidence 
for this due to substantial experimental challenges, the osteocyte is a promising candidate to be the 
mechanosensor of bone. If this is true, they form a distributed sensor network with roughly 70 km 
of canaliculi in each cubic centimeter of cortical bone (Repp, Kollmannsberger et al. 2017, 
Roschger, Roschger et al. 2019). However, there is a problem: Since the strains in bone (<0.2%) 
do not overcome the strain threshold (>10%) to which osteocytes respond in in vitro experiments. 
Two main hypotheses, which are not necessarily mutually exclusive, were therefore proposed to 
explain the mechanism of indirect biophysical stimulation of osteocytes. Microdamage can 
interrupt cell processes and lead to osteocyte apoptosis and subsequent triggering of bone 
remodeling (Burr et al. 1985; Verborgt et al. 2000). Alternatively, load-induced flow of interstitial 
bone fluid throughout the LCN and the resulting shear forces on the cell surface are regarded as 
mechanical stimulus that can be sensed by osteocytes (Weinbaum et al. 1994). The latter 
hypothesis is supported by in vitro studies which demonstrated that osteocytes are particularly 
sensitive to shear stresses in the range from 0.4 to 2 Pa (Jacobs et al. 2010; Klein-Nulend et al. 
1995) and that their cell processes are more sensitive than the cell bodies (Adachi et al. 2009). 
 
After detection of the mechanical loads via shear forces on the cell membrane, the osteocytes have 
to communicate with cells outside of the mineralized tissue to orchestrate the bone 
mechanoresponse. One of the possibilities is that osteocytes, based on the mechanical loads they 
experience, release a set of signaling molecules to control bone resorption by osteoclasts and bone 
formation by osteoblasts (Klein-Nulend and Bonewald 2020). The Wnt pathway, which is one of 
the most important biochemical signaling pathways for the mechanoresponse of bone, begins with 
transmembrane proteins that pass signals into the osteocyte. When there is no mechanical 
stimulation of the trans-membrane Wnt protein, osteocytes inhibit bone formation by releasing 
signaling molecules such as sclerostin and DKK1 (Winkler, Sutherland et al. 2003, Robling, 
Castillo et al. 2006). At the same time the Wnt pathway causes a release of RANKL, which recruits 



1. Introduction 
 
 

14 
 

bone resorbing osteoclasts. When osteocytes are mechanically stimulated they release nitric oxide 
(NO). NO inhibits resorption by osteoclasts and recruits osteoblasts for formation of new bone. 
NO is a reactive molecule, which converts into NO2 when exposed to oxygen, and therefore has 
only a limited lifetime. Based on the complexity of the architecture we could also speculate that 
the osteocyte network could process and transport the sensory information in a similar way as part 
of our nervous system processes and transports data. Evidence for the distributed sensor network 
is that calcium spikes (i.e. bioelectrical signals) encode the magnitude and frequency of mechanical 
loading and that osteocytes communicate via mechanisms similar to the nervous system (Guo and 
Bonewald 2009, Lewis, Frikha-Benayed et al. 2017). It is well known that the architecture of 
neural circuits is a key factor for distributed processing, for example in vision, and that we learn 
by modifying the architecture of our neural networks (Katz and Shatz 1996). It is therefore very 
interesting to investigate if the LCN architecture plays a role in both mechanosensing and 
processing of the sensory data, especially since both the LCN and mechanoresponsiveness 
deteriorate with age (Tiede-Lewis and Dallas 2019).  
 
The dense mineralized bone does not only form a barrier for the signaling molecules, but also for 
molecules that are essential for cell viability (i.e. nutrients, oxygen, waste products and minerals). 
Transport is therefore a function of the LCN which is essential for the viability of the osteocytes 
it houses. It has been experimentally shown that solutes diffuse through the pericellular space of 
the LCN in bone (Wang, Wang et al. 2005, Zhou, Novotny et al. 2008, Zhou, Novotny et al. 2009, 
Price, Zhou et al. 2011, Wang, Zhou et al. 2013, Wang 2018). However, due to the PCM, there is 
a size limit for molecules to be transported through the LCN. Molecules of 6 nm and smaller can 
be used to stain the entire LCN, while molecules of 10 nm do not enter the canaliculi of rat bone 
at all (Wang, Ciani et al. 2004). This indicates that the spacing between the fibers of the PCM is 
not much larger than 10 nm. It has been speculated that the one of the functions of the fine net-like 
structure PCM is filtering interstitial fluid by physically preventing large, biologically unnecessary 
molecules to enter the LCN (CARDOSO, FRITTON ET AL. 2013). 

 

1.3 Load-Induced Fluid Flow in Bone 
 
It has been suggested that load-induced fluid flow through the LCN is the amplification 
mechanism, which makes it possible for osteocytes to sense the small (<0.2%) strains, which do 
not overcome the strain threshold (>10%) where osteocytes respond to in in vitro experiments. 
Tracer experiments demonstrated that load-induced fluid flow of interstitial fluid enhances 
transport in bone. While the blood flow is driven by hydraulic pressure gradients, the interstitial 
fluid flow can be driven by three different forces, (i) the hydraulic pressure, (ii) osmotic pressure 
and (iii) electrostatic forces (Cowin and Cardoso 2015). This, in combination with the sensitivity 
of cells to fluid shear stresses at their surface, are evidence that fluid flow can act as the necessary 
strain amplification lever (Weinbaum, Cowin et al. 1994). To model interstitial fluid flow in  
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bone, the Darcy velocity (i.e. the average velocity through a porous medium),  
, considers three mechanisms. Namely the hydraulic flow due to 

pressure gradient , the osmosis due to the saline concentration gradient  and the electro-
osmosis due to streaming potential . The relevant macroscopic permeabilities ,  and  are 

typically obtained via a so called homogenization process (Smit, Huyghe et al. 2002), where 
cortical bone is modeled as a homogeneous, linear, isotropic, porous medium. Therefore, 
macroscopic permeability parameters integrate geometric effects of the pore network architectures 
at smaller length scales, such as pore geometry, pore network connectivity and the spatial 
arrangement of the pores. It is common practice in the field of mechanobiology to neglect the flow 
due to osmosis and electro-osmosis, since the fluid flow is dominated by the effect of pressure 
gradients (Cowin and Cardoso 2015). In this thesis the focus will also be exclusively on the 
hydraulic flow of interstitial fluid.  
 

1.3.1 Models of Fluid Flow in Bone  What Questions Can Be Asked? 
The strong local variation in the mechanosenoresponsiveness of bone stresses the need to consider 
the hierarchical structure of bone in multiscale computational models. Mechanical finite element 
models (FEM) are used to estimate strain patterns within the bone, while models at the smallest 
scale are used to gain an understanding in how the bone cells and proteins sense the mechanical 
environment. This section explores what questions we can answer with models at different 
hierarchical levels, starting at the whole bone level and ending with the ultrastructure of canaliculi. 
The aim of this section is not to provide a complete overview over the existing modeling literature, 
but rather to explain different model approaches and the corresponding research questions, which 
are asked with them. A restricted number of representative examples and their obtained results are 
presented in more detail. 
 

1.3.2 Strain and Fluid Flow Patterns at the Organ Level  
Loads applied to the bone pressurize the extracellular fluid in the LCN. The gradient in pore 
pressure developed over the canalicular length forces fluid to flow through the canaliculi. 
Poroelasticity (Biot theory) is the most common technique used to model the behavior of bone as 
a fluid saturated porous medium. The Biot theory could not only model elastic effects, but also 
predicts patterns of pore fluid pressure and fluid flow velocity (Kameo, Adachi et al. 2008). The 
Biot effective stress coefficient is just one of the possible parameters which relates stress and strain 
in the solid material to pore fluid pressure. The compressibility of the fluid filled pore (i.e. the 
relationship between volume change and pressure) is quantified using the Skempton pressure 
coefficient. The work of Cowin (1999) uses both these parameters to define the relationship 
between the pore fluid content, pore fluid pressure and applied the stress. Poroelasticity (Wang, 
2000) assumes that due to the small pore volume fraction 
the matrix material and that verns the fluid flow in poroelastic materials. Poroelastic 
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models assume isotropic behavior at the macroscale in stress strain relations and fluid flow in 
poroelastic materials (Smit, Huyghe et al. 2002). Loads within the bone are rarely uniformly 
distributed. Srinivasan and Gross (2000) used a poroelastic-like approach combined with a realistic 
strain pattern, i.e. the typical bending which is often seen in the cortex of a long bone. More 
specifically, they modeled the fluid flow through a 2D analytical poroelastic multiscale model of 
the avian ulnar mid-diaphysis. The strain surface waveform was measured experimentally and the 
spatiotemporal strain pattern throughout the whole model was estimated using beam theory. The 
resulting mechanical boundary conditions were applied to a previously developed model of a 
single osteon to compute the local pore pressure in their multi-scale model (Zeng, Cowin et al. 
1994). Although this model is very simplified, the study answered the question what effect non-
uniform loading could have on fluid flow through canaliculi. They concluded that not only time-
varying load causes a flow, but that the complete spatio-temporal load patterns have to be 
considered for an accurate prediction of fluid flow. When bone is strongly compressed the fluid 
flows in the direction of the bone surface, and the flow direction reverses during relaxation. The 
spatial gradient in loading also causes a gradient in pressure. Since per definition strain around the 
neutral axis in a beam is minimal, the load gradient is the main determinant of fluid flow here. 
Thus, the flow direction here is from low to high pressure (i.e. from the compression side to the 
tension side) rather than from and to the bone surface. Although this study does not consider a 
realistic LCN architecture, it shows the importance to consider the placement of canaliculi. 

Finite element modelling is an excellent and well-developed tool to study the fluid flow of more 
realistic geometries. Although the effect of geometry on mechanical behavior is relatively well 
known, it was not yet known what the effect of poroelastic parameters on the fluid flow and 
pressure patterns is. Finite difference modelling in combination with the Biot theory and beam 
theory was therefore used to model the load-induced fluid flow patterns in a mid-diaphyseal 
section of the rat tibia subjected to four-point-bending (Steck, Niederer et al. 2000). It was assumed 
that the surface of the bone was impermeable and that there are no vascular canals present, which 
constrained the fluid to flow only between lacunae. In this parametric study the absolute values of 
fluid flow velocity changed, while the fluid flow patterns did not significantly change for all 
parameters used (Steck, Niederer et al. 2000). The pattern showed that the highest velocities 
always occurred around the neutral axis, where strains are minimal. This is in contradiction to the 
fluid flow hypothesis, as the sites of low fluid flow velocity are the sites where most bone 
formation happens in vivo.  

Tiwari, Prasad and co-workers made several attempts to predict load-induced bone formation from 
load (i.e. stress, strain etc.) and load-induced fluid flow (Tiwari and Prasad 2017, Tiwari and 
Kumar 2018, Tiwari, Kumar et al. 2018, Tiwari and Prasad 2018, Prasad and Goyal 2019). For 
simplicity a non-poroelastic fluid flow model is used in these studies, where the local pressure is 
calculated directly from the local stress. Full poroelastic models predict nearly no fluid flow 
velocity near the neutral axis of a bending bone, where strain is zero, while Tiwari and Prasad 
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(2017) observed load-induced bone formation here. The tibia was modeled as a linearly elastic, 
homogeneous, isotropic cantilever beam to calculate the pore fluid pressure due to a sinusoidal 
bending moment (Kameo, Adachi et al. 2009). After this, 
fluid flow velocity from the earlier predicted pore pressure gradient. Drawbacks of this non-
poroelastic approach is that the preservation of mass is not considered and that permeability has 
no impact of the pressure pattern. Therefore, I suspect that the fluid flow near the neutral axis is 
strongly overestimated. Moreover, this study took the equation from a simplified cantilever 
(Kameo, Adachi et al. 2009) and it is not clear how this relates to the hollow and somewhat rounded 
shape of the cortical bone.  Nevertheless, all models by Tiwari et al. concluded that fluid shear 
fails to explain the site-specific bone formation at the inner endocortical surface (Fig. 1.3 B), even 
if more stimuli were considered to improve the computational prediction of new bone formation. 
The predicted amount of new bone formation was higher at the outer periosteal surface compared 
to the endocortical surface. Since this is not in line with what is experimentally observed, they 
assume the endocortical surface to be more mechano-responsive than the periosteal surface.   
 
In order to predict the remodeling response, Carriero, Pereira et al. (2018) used a full poroelastic 
FE model of a long bone undergoing bending, in which the surfaces of the bone were modeled as 
open boundaries (i.e. pressure at the surface is zero) and where preservation of mass was accounted 
for. The model was based on an in vivo experiment, where the mouse tibia was loaded. During the 
experiment newly formed bone was labelled twice using a fluorochrome, so that the remodeling 
response to the applied load could be measured as bone between the two labels (Fig. 1.3. B, left). 
The probability of finding bone formation was then compared to a purely mechanical parameter, 
strain energy density (SED), and fluid flow velocity (FLVEL in Fig. 1.3. B, right). This study 
showed that changing boundary conditions completely changes the fluid flow patterns. 
Furthermore,  considering fluid flow increased the predictive value of their model. However, when 
the actual amount of new bone was taken into account, the model predicts considerably more new 
bone formation at the periosteal surface compared to what was observed in their experiments.  
 
In conclusion, models of fluid flow in bone with homogeneous poroelastic properties show how 
important it is to carefully consider the boundary conditions. Fluid flow patterns qualitatively 
change when changing boundary conditions, such as non-uniformity of the strain field and sealing 
the surfaces of the bone. In contrast, there is no qualitative change visible in fluid flow and pressure 
patterns if the poroelastic properties of the material change. Models at this scale fail to provide an 
accurate prediction about the variation in mechanoresponse on different surfaces of the bone.  
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1.3.3. Two Pore Networks  The LCN and Vascular Porosity  
The models described before neglect the fact that bone contains two networks, the vascular 
network and the lacunocanalicular network, with very different hydrodynamic properties (Cowin 
1999). The different levels of porosity are commonly treated independently, based on the 
assumption that the pressure relaxation times of the vessel pores and the lacunae differ by roughly 
four orders of magnitude (Table 1.2). From the perspective of the LCN, the fluid pressure in the 
vascular porosity is quasi static, while from the perspective of the vascular canals the bone with 
its LCN is behaving like a solid. In models of fluid flow in bone the vascular canals are therefore 
commonly treated as low pressure reservoirs (i.e. P = 0 kPa).  
 
Table 1.2. Poroelastic properties for the two levels of bone porosity (Cowin 1999). 

Parameter LCN Vascular 
Porosity 2.4 5 % 1.5  4 % 
Permeability 10-25  10-19 m² 10-15  10-13 m² 
Pressure relaxation time 4.9 ms 0.0014 ms 

 0.151 0.120 
 0.344 0.367 

 
 
Simplified models of load-induced fluid flow in osteonal bone (i.e. bone with Haversian vascular 
canals) have been developed to simulate a more realistic physiological environment compared to 
the homogeneous solid bone models. Wang, Fritton et al. (1999) used an analytical approach to 
study load-induced fluid flow in case of dynamic bending and demonstrated that the regularly 
spaced Haversian canals provide a space for pressure relaxation (Fig. 1.7 A). The coupling between 
different osteons had only minimal effect on the local pressure amplitudes. The pressure profile 
around the canals were cusp-shaped and amplitudes were directly proportional to the local stress 
and strain and could explain experimentally observed load-induced electric potentials across 
osteonal bone. The recent FEM approach of Yu, Wu et al. (2019) modeled idealized cortical bone, 
consisting of regularly shaped and spaced Haversian canals in a cylindrical shell (Fig. 1.7 B). The 
largest qualitative differences between the results from this study and the study of Wang, Fritton 
et al. (1999) were the fluid flow and pressure profiles near the surfaces of the bone. The open 
surface of Yu, Wu et al. (2019) caused a band of low pressure at the surfaces (Fig. 1.7 B, left), and 
the resulting pressure gradient caused a fluid flow through these surfaces of the bone (Fig. 1.7 B, 
right).  
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Fig. 1.6. Models of fluid flow in bone geometries reconstructed from µCT scans, used to predict the 
response of bone to mechanical loading. A) Predictions of load-induced bone formation based on strain 
energy density (SED) (Tiwari, Kumar et al. 2018). B) Prediction of load-induced bone formation based on 
the fluid flow hypothesis. This modelling approach calculates flow based on the stress gradient and neglects 
the preservation of mass and the location of the neutral axis is estimated by hand (Tiwari and Prasad 2017, 
Tiwari, Kumar et al. 2018). C) Comparison of remodeling of a non-loaded mouse bone compared to a 
loaded mouse bone (Carriero, Pereira et al. 2018). Newly forming bone was stained in vivo with a 
commonly used green fluorescent die (calcein), which gets incorporated in mineralizing tissue after 
injection. D) Carriero, Pereira et al. (2018) compared the observed new bone formation to SED and a full 
poroelastic model, where preservation of mass and pore volume changes were taken into account. Note that 
this model leads to a completely different fluid flow pattern compared to the model in (A), where fluid flow 
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velocities (FLVEL) are higher near the surfaces of the bone, and does not predict new bone formation near 
the neutral axis.  
As becomes obvious from Fig. 1.4 B, the osteons are not regularly spaced and show a large variety 
in shape and size. Gatti, Azoulay et al. (2018) used µCT scans of bones of a rat model, with and 
without osteoporosis, to study the effect of vascular canal size on load-induced fluid flow and 
pressure. The size of the vascular porosity in the osteoporotic rat bone is severely increased 
compared to healthy rat bone (Fig. 1.7 C). In addition, they did a parametric study to investigate 
the effect of LCN permeability, since the permeability of canaliculi is still unknown. This study 
showed that the increase of vascular porosity had a major effect on the fluid flow patterns and 
magnitudes, while changes in permeability had only a minimal effect. For permeabilities larger 
than 10-21 m² the average fluid flow velocity was directly proportional to strain rate. The fluid flow 
velocity near the surface of vascular canals was inversely proportional to the diameter of these 
canals. This can partly be explained by Gauss's law, as the same amount of fluid flows through a 
larger surface area. Based on this Gatti, Azoulay et al. (2018) concluded that osteoporotic bone is 
less mechanosensitive, and that there possibly is a positive feedback loop, which plays a role in 
the progression of osteoporosis in cortical bone.  

Fig. 1.7.  Multiscale models of fluid flow in bone that include the vascular porosity. A) Idealized model 
osteons witout interstitial bone, developed by Wang, Fritton et al. (1999), showed that the permeability of 
cement lines has only a minimal effect on fluid flow and pressure induced by dynamic bending. This 
indicates that the stress gradient over the bent bone only causes a minimal amount of fluid flow, and that 
the distribution of vascular canals within is dominant in determining pressure profiles of cortical bone. B) 
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A multiscale model of an idealized human cortex with osteons developed by Yu, Wu et al. (2019) shows 
that in general fluid flow in the bone between osteons (interstitial bone) is near zero, except for the 
interstitial bone near the surfaces of the bone, where fluid can leak out. Therefore, even in this idealized 
symmetric model under uniform load, the fluid flow patterns in osteons near the surface of the bone are 
heterogeneous. Over the whole cortex the fluid flow velocity strongly correlated to the time derivative of 
the von Mises stress (a scalar stress value calculated from the local stress tensor). C) A detailed poroelastic 
FE model, using µCT scans of the rat cortex, compared healthy bone (left) with osteoporotic bone 
developed by Gatti, Azoulay et al. (2018). The fluid flow in the pathological case is lower, due to larger 
surface area of the pores over which the fluid is distributed, and therefore this study concluded that 
osteoporotic bone is probably less mechanosensitive. 
 
From these multiscale models, we can learn how large the impact of vascular porosity on the load-
induced fluid flow patterns in bone is. Additionally, these models indicate that flow in well 
vascularized bone is relatively local, as there is no bulk transport of fluid from the compressive 
side to the tensile side of the bending bone. This is in sharp contrast with the results of solid 
homogeneous cortical bone models (Srinivasan and Gross 2000, Tiwari and Prasad 2017). What 
is still missing from this modeling approach, though, is an explanation for local differences in the 
mechanoresponsiveness of bone.  
 
 

1.3.4. Fluid Flow in Human Osteons 
Several studies developed and extended mathematical analytical modeling of a single osteon to 
study the effect of different boundary conditions on the load-induced fluid flow (Pollack, Petrov 
et al. 1984, Weinbaum, Cowin et al. 1994, Zeng, Cowin et al. 1994, Wu and Chen 2013, Wu, 
Wang et al. 2016). Analytical models require a simple geometry and a homogeneous idealized 
LCN architecture (Fig. 1.8 A). Canaliculi were assumed to be straight and cover the whole distance 
from the Haversian canal to the cement line (roughly 100 µm in length). Based on the two-pore 
level assumption pore pressure at the Haversian canal was assumed to be zero. Fluid flow velocity, 
and therefore, also pore pressure gradient ( ), were assumed to be zero at the cement line. These 
models provide estimates of LCN permeability and fluid pressures, which could not be measured, 
and therefore have historically been very important for understanding of many aspects of LCN 
fluid flow. Although analytical models found that the exact time course of cyclic loading has an 
influence on fluid flow and the spatial-temporal pressure pattern (Kumar, Tiwari et al. 2019), the 
fluid flow velocities and resulting shear forces found in these studies were in the range where cells 
are responding to in vitro. Most studies concluded that both loading frequency and amplitude are 
directly proportional to osteonal fluid flow and pressure, and therefore the key loading parameter 
is strain rate (Zhang, Weinbaum et al. 1998, Zhang, Weinbaum et al. 1998, Wang, Cowin et al. 
2000, Qin, Lin et al. 2002, Gururaja, Kim et al. 2005, Wu and Chen 2013). While permeability 
had little influence on the fluid velocity, it strongly affected the pressure patterns. This is due to 
the fast relaxation of flow in the LCN (~10-3 s, see table 1.2), which is a quantity that could be 
measured in situ (Tate, Niederer et al. 1997, Tate, Niederer et al. 1998, Wang, Wang et al. 2005) 
or indirectly assessed via streaming potentials (i.e. electrical potentials which are generated by the 
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flow of ions) (Starkebaum, Pollack et al. 1979, Pollack, Petrov et al. 1984, Zeng, Cowin et al. 
1994, Wang, Fritton et al. 1999, Qin, Lin et al. 2002).  

Fig. 1.8. A) Illustration of the hierarchical 
model of an idealized LCN within a human 
osteon by Wu, Wang et al. (2016). The model 
assumes a uniaxial load on a cylindrical hollow 
osteon and is based on the Weinbaum, Cowin 
et al. (1994) approach. The cement line is 
assumed to seal off the osteon, while the border 
to the Haversian canal is modeled as fully 
permeable. Canaliculi were modeled as 
straight radial connections between regularly 
spaced lacunae, without any other 
interconnection. The fluid flow and pressure 
patterns can be solved analytically in these 
models due to the homogeneous network and 
simple geometry.  

The poroelastic properties of bone are not necessarily homogeneous and osteons are not regularly 
shaped. The flexibility of FE models can simulate geometrical irregularities more accurately. 
Consequently, FE approaches were used in a number of studies to investigate the effect of more 
complex scenarios, such as heterogeneous mechanical properties, heterogeneous permeability, 
presence of micro-cracks (Fig. 1.9) and lamellae (Tami, Nasser et al. 2002, Remond, Naili et al. 
2008, Nguyen, Lemaire et al. 2010, Wu, Wang et al. 2014, Yu, Wu et al. 2019). These studies 
show that changes in the mechanical environment within the osteon strongly influence the local 
fluid flow and pressures, and, therefore, support the hypothesis that the bone can sense these 
changes indirectly by measuring the canalicular fluid flow.  
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Fig. 1.9. An idealized poroelastic model of a human osteon (Wu, Wang et al. 2014). The pressure (a) and 
fluid flow velocity (c) in the ideal osteon show a smooth gradient, without any angular variation. The 
introduction of a crack in the model (black line in (b)) has a severe impact on the pressure (b) and fluid 
flow velocity (d) patterns.  

Smit, Burger et al. (2002) and Burger, Klein-Nulend et al. (2003) exploited finite element 
modelling to explain the direction in which new osteons are formed (Fig. 1.10). Osteons are the 
result of intracortical bone remodeling.Osteoclasts dig a cylindrical canal through the bone, which 
is later filled by osteoblasts to form a new osteon. Based on the fluid flow hypothesis, Smit et al. 
predicted that due to the low fluid flow velocity in the cutting cone osteoclasts are recruited by the 
low-stimulated osteocytes to resorb bone in the loading direction. Due to the resorption fluid flow 
velocity increases in the walls of the pore, which lead to recruitment of osteoblasts to form the 
closing cone of the newly formed osteon. The fluid flow velocity in the closing cone was found to 
be 5 times higher than in the cutting cone. What cannot be explained by this model is how 
Volkmann canals are formed, since these canals are oriented perpendicularly to the loading 
direction. 



1. Introduction 
 
 

24 
 

 

Fig. 1.10. An illustration of a model by Burger, Klein-Nulend 
et al. (2003) how fluid flow through the LCN could regulate 
osteoclast activity, and by doing so they could predict the 
orientation of new osteon formation. They proposed that 
osteocytes become apoptotic in the area of low fluid flow, 
which attracts osteoclasts in the cutting cone tip. Osteocytes 
behind the cutting cone experience higher fluid flow velocities 
than usual, and therefore release biochemical signals (like nitric 
oxide (NO)). NO signals the osteoclasts to withdraw from the 
bone surface in the closing cone, trapping the osteoclasts in the 
cutting cone. When the osteoclasts make space, a reversal zone 
is formed where osteoblasts form the lamella of the newly 
formed osteon.  

 
These models showed that predicted fluid flow velocities, induced by physiological dynamic 
loading of bone, are high enough to be comparable to those which stimulate osteocytes in vitro. In 
these models fluid flow is the signal, which is measured by the osteocytes. However, there must 
be a translation from flow at the tissue level to biological signals, in a process called 
mechanotransduction.  
 
1.3.5. Fluid Flow and the Ultrastructure of Lacunae and Canaliculi   
In order to answer the question what fluid drag or shear forces the cells experience another level 
of hierarchy should be studied. Experiments indicate that the cell processes are the most sensitive 
parts of the osteocytes (Klein-Nulend and Bonewald 2020). Several modeling studies have 
investigated the role of realistic geometries on mechanosensation by the osteocytes and their cell 
processes (Anderson, Kaliyamoorthy et al. 2005, Anderson and Tate 2008, Tate, Steck et al. 2010, 
Kamioka, Kameo et al. 2012, Verbruggen, Vaughan et al. 2012, Verbruggen, Vaughan et al. 2014, 
Vaughan, Mullen et al. 2015). These studies indicate that the canaliculi experience the highest 
fluid flow velocities (Fig. 1.11 A) and that narrower parts of canaliculi experience higher fluid 
shear stresses at the cell membrane (Anderson and Tate 2008, Kamioka, Kameo et al. 2012) (Fig. 
1.11 B). These rely on high resolution imaging, which limits the field of view to single lacunae 
and canaliculi. Therefore the architecture of the surrounding LCN is unknown. This makes the 
choice of boundary conditions at the end of the canaliculi challenging.  
 
The hypothesis that cells sense stresses on their surface, which are directly caused by the fluid 
shear at the cell surface, was further refined and specified (Weinbaum, Cowin et al. 1994, Klein-
Nulend, Vanderplas et al. 1995). Within this refinement it is assumed that the cells are stimulated 
via the drag force on the pericellular matrix (PCM) via integrin transmembrane receptors. It was 
found that the narrower gaps with tethering fibers in the canaliculi (marked with arrows in Fig. 1.4 
D) are associated with locations of integrins (Cabahug-Zuckerman, Stout et al. 2018, Geoghegan, 
Hoey et al. 2019). Fluid (and small molecules) are not bound to the PCM, as mentioned in section 
1.1, but it can freely flow through the PCM in the canaliculi. The PCM will cause drag though, 
which limits the flow through canaliculi in a similar way as electrical current is curbed by resistors. 
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Substantial pressure gradients are, therefore, needed to force flow through the canaliculi. The most 
commonly used model for fluid flow in canaliculi assumes that the drag by the PCM can be 
modeled as a homogeneous permeability, as illustrated in Fig. 1.12 (Weinbaum, Cowin et al. 
1994). This model assumes that the canaliculi and cell processes are straight and cylindrical, with 
constant diameter. Consequently, fluid flow is described in a cylindrical coordinate system with z 
denoting the direction of the fluid flow (i.e., parallel to the canaliculus) and r the radial direction 
(i.e., perpendicular to the canaliculus).  
 

 
Fig. 1.11. A) Stream lines of modeled fluid flow through the pericellular space of an osteocyte (Verbruggen, 
Vaughan et al. 2014). The shape of the osteocyte lacuna is based on 3D confocal microscopy images. This 
study gives an indication of the heterogeneity of fluid flow velocities around the osteocyte. B) Simulated 
fluid shear stress on the membrane of the osteocyte cell process, in a model of fluid flow through a rough 
pericellular space geometry (Anderson and Tate 2008). Shear forces are particularly high in the narrower 
gaps of the canaliculus. 
 
 
In the model the pressure gradient results from the drag of fluid flow through the PCM alone (i.e. 

 
 

 ,           (1.1) 

 
where  is the pressure gradient in the canaliculus, µ is the viscosity of the interstitial fluid, 

 is the maximum fluid flow velocity (Darcy velocity) and  is the permeability of the PCM. 

For a purely viscous flow in an open pericellular space (i.e. without PCM, as illustrated left in Fig. 
3) we can calculate the fluid shear stress as: 
 

            (1.2) 
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The Brinkman equation combines the effect of the drag caused by the PCM and fluid shear stress 
caused by the no slip boundary. Since we assume a quasi-static homogeneous pressure gradient 
(i.e. independent of time and position) in the direction of z, the Brinkman equation can be written 
as:  

(1.3) 

Fig. 1.12. A) An illustration of flow through an idealized homogeneous matrix of round fibers in the 
pericellular space of the canaliculus by Tsay and Weinbaum (1991). The fluid velocity field shows the 
viscous flow as it is forced around the fibers. This is causing drag, and therefore a lower effective 
permeability. B) An illustration of the strong effect that the drag from the pericellular matrix (PCM) has on 
the fluid flow profiles in canaliculi. The blue arrows in the left illustrate a fluid flow profile typical for an 
open pore (i.e., no matrix) and no-slip boundary conditions. The right velocity profile is flattened due to 
the drag from the PCM, which limits the maximum velocity. To increase the readability of this figure the 
relative diameter of the cell process is drawn out of scale, i.e. much smaller than in reality. 

Note that at the surface of the canaliculi and the cell processes, where u is zero, or when the 
permeability  is infinite, this equation simplifies to the commonly used Stokes equation (

). The solution of the Stokes equation follows a flow profile, which is close to a parabolic 
shape, while fluid flow velocity calculated by the Brinkman equation, shows a flattened flow 
profile when permeability  is low, as illustrated in Fig. 1.13 A. The flattening of the flow profile 

leads to an effective permeability, , which is lower than . 

 , (1.4) 
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where the average fluid flow velocity  is equal to volumetric flow rate Q (i.e. the volume which 
flow through the cross section of the canaliculus per unit of time) divided by cross sectional area 
of the pericellular annulus (see Fig. 1.2. B for the definition of a and b),  

(1.5) 

The continuity equation in fluid dynamics assumes that Q is constant within a canaliculus, even if 
its geometry (i.e. a and b) vary over its length. Due to non-slip boundary conditions, the flow 
velocity is zero for r=a and r=b. However. the flow profile in canaliculi levels out already close to 
the walls of the pericellular space, due to the very high drag from the PCM. Consequently, the 
ratio between effective permeability and PCM permeability is close to 1 for canaliculi (Weinbaum, 
Cowin et al. 1994, You, Weinbaum et al. 2004).  

Fig. 1.13. A) A flow profile solution of the Brinkman equation, normalized by the Darcy velocity .  
is the permeability of the PCM only (Weinbaum, Cowin et al. 1994). The no-slip boundary condition force 
the fluid flow velocity to zero at the walls. Away from the walls the normalized velocity approaches 1, as 
according to eq. 1.1, the low permeability  of the PCM limits the fluid flow velocity here to a maximum 
of . B) The ratio between the effective permeability and the permeability of the PCM , 
calculated using the Brinkman equation, varies with thickness of the pericellular annulus and PCM 
permeability (Weinbaum, Cowin et al. 1994). In our study the  ratio is roughly 0.9.   

The effective permeability is relatively insensitive to variations in the diameter of canaliculi and 
the cell process, as demonstrated by the ratio between the effective permeability and the 
permeability of the PCM. Fig. 1.13 B shows how this ratio changes with the width of the 

pericellular annulus normalized by the square root of the permeability, i.e. . 

The number of studies which focus on the interaction between the fibrous pericellular matrix and 
the interstitial fluid movement at the canaliculus scale is very limited (Beno, Yoon et al. 2006, 



1. Introduction

28 

Lemaire, Naili et al. 2008). Although all studies agree that the pericellular matrix reduces the 
permeability considerably, there is still an uncertainty in the actual value of the permeability of 
several orders of magnitude (Beno, Yoon et al. 2006). Estimating the permeability becomes even 
more challenging when the role of osmotic and electro-osmotic effects would be taken into account 
(Lemaire, Naili et al. 2008).  
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2. METHODS  MULTISCALE CHARACTERIZATION OF BONE  
 
Fundamental for a successful execution of the thesis project, was a combination of experimental 
and computational methods is important. My contribution to the methodological part of the project 
was the development of a mathematical model to predict the impact of the osteocyte LCN 
architecture the fluid flow through the canaliculi, and consequently, on the remodeling response 
of bone to changing mechanical loads. Before I developed this model, I experimentally imaged the 
LCN of human and mouse bones to feed my model with real LCN architectures. This was done 
with the help of previously developed software TINA (Tool for Image and Network Analysis) 
(Kollmannsberger, Kerschnitzki et al. 2017, Repp, Kollmannsberger et al. 2017, Weinkamer, 
Kollmannsberger et al. 2019). This chapter focuses on the experimental part of my study and the 
following chapter presents the developed model.  
 
 

2.1. In vivo Loading Combined with 3D Morphometry of the Mechanoresponse 
 
The provided mouse tibiae by the group of Bettina Willie (McGill University, Montreal, Canada) 
were very valuable, because these bones underwent a well-established loading protocol and were 
thoroughly characterized. Non-invasive loading of bones in living animals is an excellent strategy 
to study the mechanoresponse of bones. In our project the mouse bones were loaded following a 
well-defined loading waveform (Willie, Birkhold et al. 2013, Birkhold, Razi et al. 2014). 
Previously, the controlled dynamic loading experiment was calibrated experimentally in similar 
mice (26 weeks old female C57Bl/6), using strain gauges in vivo on the medial surface of the left 
tibial midshaft. Based on this calibration a cyclic load with a peak force of 11 N was applied to the 
left tibia to reach a peak strain of +1200 µ . 2.1 A) (Main, Lynch et al. 2010, Willie, Birkhold 
et al. 2013). Note that strain is positive at this site, as this is the stretching side of the bending bone. 
To control the strain rate in both loading and unloading a symmetric triangular waveform was 
applied, with a constant strain rate during the 0.075 second long loading and unloading ramps of 
the waveform. The left tibiae received 216 cycles at 4 Hz on each working day for two weeks, as 
shown in the schedule in Fig. 2.1. A. The developers of this method recently wrote a detailed 
review about different in vivo loading protocols, the key parameters and calibration (Main, 
Shefelbine et al. 2020).  
 
In vivo µCT scans of a little over 2 mm of the tibial midshaft (Fig. 2.1. B) were performed at an 
isotropic voxel size of 10.5 µm on day 0, 5, 10 and 15. These scans were then used to create a 
time-lapse of the bone (re)modelling process (Birkhold, Razi et al. 2014). Mice were anesthetized 
and fixed in a special holder to prevent motion artefacts and optimize the repeatability of the 
imaging location. The scans from different time points of the same mouse were then segmented 
and analyzed to quantify structural changes over the time between two images. In short, the 
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analysis protocol is done in three steps. Step 1) A time lapse of in vivo µCT datasets from one 
mouse was registered using rigid transformations (i.e. only translation and rotation, no scaling). 
Raw gray scale images were used for the registration in ZIBAmira software (Zuse Institute, Berlin, 

normalized similarity criterium (Birkhold, Razi et al. 
2014). Step 2) The coordinate systems of all scans were transformed to one single coordinate 
system using Lanczos interpolation, to give all datasets the same voxel size and coordinate system 
(Birkhold, Razi et al. 2014). I also transformed our own high resolution ex vivo µCT scans into 
this same common coordinate system as the in vivo µCT scans (Fig. 2.1 B). Step 3) The registered 
in vivo CT images were segmented, to define which voxels were part of the mineralized bone (0 = 
no bone, 1 = bone). Finally, the images were cut to 5% of the total tibial length to remove the parts 
where, due to variability in the placement of the animals in the µCT scanner, the in vivo µCT scans 
of the different time points did not overlap. Identification of voxels with newly formed, resorbed 
and quiescent bone was done by comparing the segmented images of the same tibia at the different 
time points: Newly formed bone = from 0 to 1 between the earlier and the later µCT scan, resorbed 
bone = from 1 to 0, and quiescent bone = 1 in both time points (Birkhold, Razi et al. 2014). See 
Fig. 2.1 E for a 3D render of such a dataset.  
 

 

2.2 Finite Element Modeling  
 
Previously Willie, Birkhold et al. (2013) used a high resolution µCT scan of one of the whole tibia 
from the calibration study for a finite element model (FEM) to estimate the stress and strain 
distributions. Boundary conditions of the model were set to mimic the experimental in vivo loading 
(Fig. 2.1 C). The load of 11 N was applied to the nodes of the proximal tibial plateau (i.e. the knee) 
while axial movement of reference nodes at the surface of the ankle were restrained. The elastic 
modulus of the elements was based on the tissue mineral density, since the mechanical properties 
of bone depend on the degree of mineralization (Taddei, Schileo et al. 2007, Willie, Birkhold et 
al. 2013). The simulated results were compared to the experimental strain measurements to 
calibrate the model. The mesh with the stress and strain tensors of each element from this study 
were then provided to us, from which we calculated the local dynamic mechanical load. Measured 
remodeling, in terms of formation and resorption, are correlated with the local surface strain in 
order to predict the mechanoresponse of the tibiae. In my study I also use the local strain to 
calculate the load induced fluid flow, which is then used to predict the remodeling (described later, 
in chapter 3).  
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Fig. 2.1. Experimental mouse model to measure the mechanoresponse of bone to increased loading 
conditions. A) The setup which was used to dynamically load the hind limbs of the mice (tibiae) five times 
per week for two weeks, as indicated in the schedule. In vivo µCT scans were taken on imaging days, 
indicated with k0 to k3. B) An indication of the region where in vivo µCT time-lapse scans were made. C) 
The strain distribution during the loading experiment, calculated with a previously developed and calibrated 
Finite Element (FE) model (Razi, Birkhold et al. 2015). E) The (re)modelling (i.e. bone formation and 
resorption history), which is calculated from the difference between the in vivo µCT scans of day 0 and day 
15. D) In a previous study this information was combined to quantify the mechanoresponse of a tibia (Razi, 
Birkhold et al. 2015). The probability to find formation (blue) at a given site on the bone surface increases 
with local strain at that site, while the probability to find resorption (red) decreases with strain.  
 

 

2.3. Sample Preparation and Rhodamine Staining  
 
In the mouse project, the joints of the mouse tibiae were removed to provide better access to the 
bone porosity for optimal rhodamine staining. For the human osteon study, a sample from a femur 
midshaft of a 57 year old woman without any known bone-related disease was provided by the 
Department of Forensic Medicine and the Department of Anatomy of the Medical University of 
Vienna. The human bone was stored at -20°C immediately after the necropsy. After unfreezing, 
the samples were cleaned from soft tissue and a 1 cm thick piece of the diaphysis was cut 
perpendicular to the long axis of the bone. The lateral part of the cortex was then provided for our 
study.  
 
Rhodamine was used for the staining of the LCN of all bone samples, based on a well-established 
protocol (Kerschnitzki, Wagermaier et al. 2011). The ethanol dehydration series was performed 
with small steps (80 %, 90%, 95%, 100% 24h per step), to minimize the formation of cracks due 
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to shrinkage of the bone. Although we limited the rate of shrinkage, we were not able to fully 
prevent it. This is probably one of the reasons that some of the bones were damaged, which showed 
up as plane like structures in the 3D confocal images of the rhodamine stained bone. After 
dehydration the bone was not exposed to water anymore to prevent modification of the bone 
mineral and, therefore, we used a rhodamine-6G solution in 100% ethanol (0.02% wt) to stain the 
LCN. The samples were submerged twice in fresh rhodamine solution under constant motion for 
24 hours. The staining solution was then replaced by methyl methacrylate (MMA) infiltration 
solution. The bone samples were placed in cylindrical acrylic sample holders filled with fluid 
MMA (Fig. 2.2 A), which was polymerized under high temperature.  
 
Since a smooth surface is needed for high quality imaging of the LCN, the embedded samples 
were cut in sections with parallel surfaces followed by grinding with a succession of different 
grades of abrasive paper. Finally, the samples were polished using diamond powder (Kerschnitzki, 
Wagermaier et al. 2011). For the mouse tibiae, exceptional care was taken to expose a surface in 
exactly the same region as where the in vivo µCT scans were taken (Fig. 2.1 B). A sub-millimeter 
precision is already needed to cut the 1.8 mm thick region of interest roughly in the middle. Not 
just the small size, but also the bending of the light due to the curvature of the cylindrical PMMA 
block, make it nearly impossible to eyeball the position of the cut. Therefore, we exploited 
augmented reality using a 3D model of the bone in the PMMA block.  A photograph of all 

augmented reality approach. In this photo the cylinders with the bone samples were placed upside-
down, with the flat side facing the camera, in order to have minimal distortion (Fig. 2.2 B). The 
photograph was then calibrated using the known camera distance and the dimensions of the 
cylinders. The high resolution µCT scans of the bones were placed in roughly the correct position 
in the same coordinate system as the photo, based on measurements with a ruler, for the augmented 
reality visualization in ZIBAmira (Zuse Institute, Berlin, Germany). Small adjustments (i.e. 
translations and rotations) were then done manually in Amira, until the µCT scan and 
photographed tibiae overlapped as good as possible (Fig. 2.2 A). The high resolution µCT scans 
were then replaced with the in vivo µCT scans, to visualize the position of the regions of interest 
on the PMMA blocks. A fine marker was then used to draw the cutting plane on the PMMA block. 
The blocks were then cut with a 50 µm thick diamond wire in a precision cutting machine equipped 
with a simple microscope (Fig. 2.2 C). Carpenters wax was used to stick the PMMA block to the 
flat surface of the sample holder (Fig. 2.2. C). The position of the block in the machine was 
precisely set up using one translational and three rotational micro-positioners. A second cut was 
made outside each side of the region of interest to create two blocks with parallel surfaces.  
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Fig. 2.2. Embedding and cutting of the bone samples. A) Augmented reality was used to combine µCT 
scans of the tibiae (computer rendered in green) with photos of the tibiae (stained red) embedded in 
cylindrical PMMA blocks. The joints of the real bone were removed to allow faster penetration of the 
rhodamine. B) The in vivo µCT time-lapse scans (yellow) rendered in 3D on the photographs of the samples 
within the blocks. These computer images were used to precisely plan the cuts in the middle of the regions 
of interest. C) A PMMA block in the precision cutting machine with a 50 µm thick diamond coated wire 
saw, photographed through the simple microscope of the machine. The micro positioners (one translation 
axis and three axis of rotation) allow to accurately position the block in the machine. Red wax, used to 
mount the sample, is visible between the sample holder and the PMMA block. 

 

2.4. Confocal Laser Scanning Microscopy  
 
A Leica TCS SP5 Confocal laser scanning microscope (CLSM) (Wetzlar, Germany), equipped 
with a 40x oil-immersion lens with a numerical aperture NA = 1.25 (Leica, HCX PL APO 40x NA 
1.25 OIL) was used to image the 3D LCN of the osteons, with an excitation wavelength of 543 nm 
(HeNe-laser). No glass cover slip was used, i.e. the lens was directly used on the PMMA block 
with Leica immersion oil. For the study on the LCN of the mouse tibiae, measurements were 
performed using a new microscope, the Leica TCS SP8 (Wetzlar, Germany), equipped with a 40x 
oil-immersion lens with a numerical aperture NA = 1.3 (Leica, HC PL APO CS2 40x/1.30 OIL) 
with an excitation wavelength of 514 nm (Argon laser). The fluorescence signal was measured 
between 553 and 700 nm with an Airy 1 pinhole size of 68 µm. Since I observed that the new 
Leica lens oil caused cracks to form in the PMMA block, diethylene glycol between the PMMA 
block and the glass cover slip was used instead. Simply leaving the oil out would not work, as the 
function of this oil is to limit the differences in refractive index in the optical pathway between the 
lens and the sample. To not contaminate the lens, we used Leica immersion oil between the lens 
and the glass cover slip. Visual inspection did not reveal any differences in imaging quality 
between immersion oil and diethylene glycol.  
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In human bone the imaged volume of a single CLSM image stack was approximately 300 × 300 × 
40 µm³ with an isotropic imaging resolution of 300 nm. This field of view can capture a whole 
cross section of an osteon. The lower value of the imaging depth is due to the limited transparency 
of mineralized bone. The optical properties of mouse bone are slightly better, which allowed for 
better imaging depth. For mouse bone a single CLSM image stack is roughly 390 × 390 × 50 µm³ 
with a resolution of 0.38 × 0.38 × 0.34 µm³. The image resolutions used for mouse and human 
bone do not allow resolving the actual diameter of the canaliculi. However, the detection of 
canaliculi was sufficient for an accurate representation of the network topology, since distances 
between canaliculi are larger than the resolution (Kerschnitzki, Wagermaier et al. 2011, 
Milovanovic, Zimmermann et al. 2013). An advantage of the lower resolution used for the mouse 
bone is that the field of view is larger. With this field of view the full cross section of all the mouse 
tibiae, which is roughly up to 1200 µm wide, could be covered with 16 images, in a 4 x 4 grid (Fig. 
2.3 A). Imaging of the whole cross section takes between 2 to 3 hours. A 10% overlap was not 
only introduced to allow stitching of the canaliculi (Fig. 2.3 B, C), but it also allows for some 
movement of the sample. One should note that the sample is not fixed rigidly, but is floating on 
immersion fluid. Additionally, drift within the positioning system is common during these long 
imaging times. For the same reason extra images were taken above and below the sample, to allow 
for positioning errors in the depth axis (z-axis). These extra images were removed after stitching. 
 
The images were not well-stitched by the LAS X software of the microscope (Leica Application 
Suite X, Leica Microsystems). Connecting corresponding canaliculi between overlapping image 
stacks is essential for the fluid flow calculations. Therefore the images were carefully stitched 
using BigStitcher in ImageJ (Hörl, Rusak et al. 2018). Bone surfaces, vascular canals and bone 
marrow dominate the stitching procedure due to the large volumes and bright intensity of these 
features. Stitching using these features helps to make a good initial alignment, but further 
refinement is needed as corresponding canaliculi do not match up yet (Fig. 2.3 B). Therefore, 
images only containing segmented canaliculi were produced by using the difference of gaussians 
method (see details in the image processing section). A first refinement step with only rigid 
transformations increased the alignment of canaliculi considerably. A final refinement step was 
made by allowing a 1% deformation in an affine transformation (Fig. 2.3 C). The affine 
transformation matrices resulting from the segmented canaliculi were then used to stitch the raw 
confocal microscopy stacks. The confocal microscopy measurements of mouse #2 and #3 were 
redone, since image deformations much larger than 1% had to be used in order to connect the 
canaliculi of different stacks. This shows that care should be taken to minimize the amount of 
movement around the microscope during long measurements.  
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Fig. 2.3. A) Several 3D image stacks are stitched to cover the full tibia cross section, since the field of view 
(~350 µm) is smaller than the cross sectional diameter of the mouse tibiae (> 1 mm). A random coloring of 
the images demonstrates the 4 by 4 grid with 10% overlapping area at the borders. B) An illustration of the 
first step of registration, where the raw intensities were used to line up the image stacks. The overall shape 
of the cortex seems well aligned. The small canaliculi, and even lacunae, are not easy to align, due to image 
artefacts caused by the common small movements that happen during the hours long measurements. In the 
middle of the image, from left to right, a band with misaligned LCN is visible. C) The same region as in 
(B) after several refining steps of the registration. Processed images with only canaliculi were used for the 
latest refinements and therefore connectivity of the canaliculi could mostly be reestablished. Note that the 
connectivity of the network is important in this study, as it strongly influences the calculated fluid flow 
patterns. 
 
Although the study started with six individual mice, we ended up only three usable samples. Three 
of the loaded tibiae were excluded as they showed plane like structures in the 3D CLSM images, 
which are probably due to cracks that formed during sample preparation. These cracks were also 
visible in some of the right tibiae (Fig. 2.4 A) and therefore, are not due to the in vivo loading. Two 
of the CLSM images were taken again due to later discovered sample motion during the first 
measurement. Large movement results in artefacts as illustrated in Fig. 2.4 B, while small 
movements lead to disconnected canaliculi in the stitched images. Due to the large volumes of 
interest, the CLSM imaging takes several hours per sample. Since the sample is not rigidly fixed 
during imaging, but floats on a thin layer of oil, the sample can easily move. An important part of 
the experimental methods is therefore to limit movement around the microscope.  
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Fig. 2.4. Sample preparation and imaging artefacts. A) One 2D slice from a CLSM image, showing plane 
like structures (marked with arrows) which are likely cracks which formed during sample preparation. B) 
A CLSM image (shown in red) overlayed on an electron microscope image (shown in grey) of the same 
surface. The difference in shape could be due to sample movement during microscopy. 
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3. MODEL DEVELOPMENT  MECHANOSENSING VIA LOAD-INDUCED FLUID FLOW  
 
As of now, the understanding of how mechanical signals are translated to biological signals is 
limited. No model can explain the experimental results, which show a wide local variation in how 
strongly bone responds to mechanical stimulation. I assumed that we require three pieces of 
information to predict how mechanical loads at the bone scale are translated via load-induced fluid 
flow to mechanical stimuli at the cellular scale: 

1) How easy is it for the fluid to flow through single canaliculi, i.e., what is the relationship 
between flow and pressure gradient within a canaliculus.  

2) How the canaliculi are connected to each other, the lacunae, the vascular canals and the 
bone surface. 

3) Where the fluid is coming from and where it is flowing to. This includes coupling between 
the mechanical environment and the LCN pore volume.  

The first three sections of this chapter will cover these three points. The last section of this chapter 
covers the actual biological response, i.e. the (re)modeling response of the bone.  
 
 

3.1 Fluid Flow in Single Canaliculi 
 

 
 

,   (3.1) 

 
Where  denotes the volumetric fluid flow through canaliculus j, i.e. the volume of fluid 

transported through the canaliculus per unit of time.  denotes the pressure gradient in the axial 

direction of the canaliculus and  the denotes viscosity of the interstitial bone fluid. The estimation 
of the cross-sectional area  has to consider that the bone fluid can flow only in the annulus 
between the cell processes of the osteocytes and the canalicular wall. The osteocytes probably 
sense shear forces on the surfaces of their cell processes, rather than volumetric fluid flow rates 
through their canaliculi or fluid pressures. The average velocity of the fluid in the canaliculus, , 

is therefore calculated: 
 

 (3.2) 
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Assuming a no-slip boundary condition, the shear stress, , on the cell process membrane can be 
obtained from the velocity gradient at the cell membrane as given by (Weinbaum, Cowin et al. 
1994, You, Cowin et al. 2001), 
 

 ,  (3.3) 

 
where  denotes the cylindrically symmetric velocity profile in the annulus region between cell 
process and canaliculus wall. This region is not an empty space, but a fiber matrix exists within 
the annular region between the osteocyte process and the canalicular wall consisting 
predominantly of proteoglycans which strongly influence the permeability of canaliculi (Tsay and 
Weinbaum 1991, Thompson, Modla et al. 2011, Sansalone, Kaiser et al. 2013, Cowin and Cardoso 
2015, Wijeratne, Martinez et al. 2016). To estimate the effective permeability, , we follow 

the approach by Weinbaum and co-workers (1994) in taking into account the pericellular matrix 
(see also section 1.3.5). Assuming a two-dimensional square array of fibers an expression can be 
obtained which includes only the fiber radius and the fiber spacing as geometric parameters (Tsay 
and Weinbaum 1991). Secondly, homogenization results in a Brinkman equation, which is solved 
with no-slip boundary conditions at the canaliculus wall and the surface of the osteocyte process. 
The resulting numerical value for  and all other model parameters are summarized in Table 

3.1.  
 
 
  Table 3.1. Numerical values of model parameters 

Parameter Value Description 

 -3  viscosity of the bone fluid (Cardoso, Fritton et al. 2013) 

 157.5 nm radius of the canaliculus (Varga, Hesse et al. 2015) 

 73 nm radius of the osteocyte process (Buenzli and Sims 2015) 

 0.061 µm2 
annular cross section between canaliculus and osteocyte process calculated as: 

  

 -17m2 permeability of a canaliculus (Weinbaum, Cowin et al. 1994) 

 465 µm-1 shear stress constant (Weinbaum, Cowin et al. 1994) 

 0.015 s-1 
volumetric strain rate value corresponds to peak strain rate during exercise 
(Lanyon, Hampson et al. 1975, Milgrom, Finestone et al. 2002, Al Nazer, 
Lanovaz et al. 2012) 

 350 µm3 lacunar volume (Carter, Thomas et al. 2013, Dong, Haupert et al. 2014) 
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3.2 Fluid Flow Through Networks  
 
In this section we cover point 2; the connectivity of the LCN, the vascular canals and the bone 
surface. The advantage of using a network description (often referred to as graphs by 
mathematicians) is that linear algebra can be applied to the matrices that describe the network 
(Grady and Polimeni 2010). We can for example show which node is connected to which other 
nodes in the commonly used adjacency matrix M, where the value of Mi,j is 1 if node i connects to 
node j and 0 otherwise. The big disadvantage of M is that it cannot describe parallel edges between 
the same node pair, which are common in the LCN. The incidence matrix A, is one of the methods 
to store the relations between all the edges and nodes in a network, including parallel edges. The 
value of Ai,j is 1 if edge j points to node i, -1 if edge j points away from node i, and is zero otherwise.  
 

 , (3.4) 

This matrix can be used to calculate the pressure difference over an edge and the volumetric flow 
through this edge: 
 

,           (3.5) 
 
The pressure gradient can then be combined with the pressure-flow relationship from the previous 
section by introducing a conductivity matrix . The elements in the diagonal conductivity matrix 

 are obtained by assessing the fluid flow within a single c
law (Eq. 3.1 ): 
 

 , (3.6) 

 
with  the effective permeability, A the cross sectional area of the annulus of the canaliculus, 

µ the viscosity of the interstitial fluid and  the length of the canaliculus. 

 
          (3.7) 
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The example network of Fig. 3.1 B consisting only of four nodes and five edges is used to illustrate 
how this incidence matrix can be used in combination with linear algebra, to calculate the fluid 
pressure and flow patterns in the LCN. The 4×5 incidence matrix of the example network (Fig. 3.1 
A) is given by: 
 

 

 

 
Fig. 3.1. Illustration of preservation of mass assumption in fluid filled networks. A) The preservation of 

an example of a simple network with edges indicated by letters and nodes indicated by numbers. B) In our 
model the amount of fluid per unit of time which is pushed out of the LCN during compression of the bone 
has to travel through the canaliculi and is therefore strongly affected by LCN architecture. (I) For 
demonstration only, we assume that compression of the first lacuna generates a flow of 3 in this simplified 

The flow of 3 is divided when the first single canaliculus splits into three canaliculi downstream, resulting 
in 3 times a flow of 1. This is in agreement with the preservation of mass, as inflow minus outflow is equal 
to zero. (III) The total inflow in this lacuna is 3, the contribution of the lacuna is +3, therefore, the outflow 
is 6, which is again in agreement with the preservation of mass (i.e. the sum is zero). (IV) Not all canaliculi 
have the same permeability though, and fluid flow mostly takes the path of least resistance (i.e. highest 
permeability). Most of the flow goes therefore via the shorter canaliculus, as shorter canaliculi have a higher 
permeability. In this example the longer canaliculus is double the length of the shorter one. Therefore 
permeability and fluid flow velocity in the long canaliculus are half compared to in the short canaliculus. 
Finally, the fluid is drained into the low pressure reservoir (P = 0). 
 
With the incidence matrix of our example Eq. 3.5 evaluates to:  
 

 
 
When we check for example edge a, then we see indeed that the pressure difference over this edge 
is the pressure in node 3 minus the pressure in node 1 (P3 - P1). Note that the sign of Pj depends 
on the direction of edge j. We can use another matrix multiplication to calculate the volumetric 
fluid flow (i.e. volume of fluid passing through the edge per unit of time) from the pressure 
differences and the conductivity of the edges:  
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We see indeed that the flow through edge b is the pressure difference over edge b times the 
conductivity of edge b. However, the values of  are unknown, and need to be solved using 

. Based on the preservation of mass, we define the sum of flows in one 
node should be zero. We can again use the definition of the incidence matrix A, to or from which 
nodes the edges are pointing, to calculate the sum of volumetric in and out flow per node:  
 

 ,         (3.8) 
 
where the vector  describes the load-induced volume change rates of all the nodes (point 3, see 
next section). To solve  we simplified the equation using the following definition of the weighted 
Laplacian matrix , which is a commonly used matrix in circuit theory (Grady and Polimeni 2010).  
 

           (3.9) 
 
Since we now know L and f, it seems that we can calculate the node pressures P by solving 
equation 3.8. In our example network we would have to solve the following set of linear equations:   
 

 

 
However, due to the symmetry of L a problem arises, resulting in a singular matrix. Singular 
matrices cannot be inverted. When having a closer look at the example we see that the absolute 
pressures cannot be solved, as only pressure differences are needed to calculate the fluid flow 
through each edge. This problem can be solved by assigning a reference node i. For electronical 

therefore define a new nonsymmetric reduced Laplacian matrix L0 as L with the i-th row and i-th 
edge removed. Equation 3.8 can be solved via the inverse of L0 (Grady and Polimeni 2010, 
Newman 2010), however, this is not recommended as this results in a full matrix with N x N 
elements, where N is the number of nodes. Instead, we can make use of sparse matrices, if we 
define a reduced load-induced flow vector f0 by removing the i-th element from f. The use of sparse 
matrices proves advantageous in equation solving, as it is fast and not as memory expensive. 
Pressures can then be calculated by solving the following reduced equation: 
 

            (3.10) 
 
Finally, the reference pressure (Pi = 0) and the reduced pressure vector P0 are combined to get the 
full pressure vector P.  
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In our study all circuit theory calculations were performed using Scipy 0.15.1 and Numpy 1.17.4 
in Python 3.7 (http://python.org). The matrices  and  were constructed from the TINA networks 
using NetworkX 1.11. Employing the SciPy 1.3.2 sparse matrix methods, in combination with 
rearranging the node indices with the reverse Cuthill-McKee algorithm (Cuthill and McKee 1969), 
allowed the calculation of the pressure patterns within a whole osteon with 40 µm thickness within 
a couple of seconds. The original version of TINA (https://bitbucket.org/refelix/tina/) was running 
in Python 2.7 and was using 32 bit software. Due to the limited 32 bit memory address space this 
version could not be used with the very large CLSM datasets of the mouse tibiae. Therefore, I 
updated TINA to work in Python 3.7, which could deal with the over 200 GB of memory which 
was needed to run the analysis. TINA was not speed optimized, hence the analysis took over 12 
hours per dataset. Python code runs slowly, as it is not compiled. This limitation of Python was 
overcome by strategically compiling parts of the code using a Just-In-Time compiler library 
(NUMBA 0.45, http://numba.pydata.org). I took special care to preserve the core functionality of 
TINA. Therefore, results do not depend on the used version of TINA. 

 
 

3.3. Boundary Conditions in the Network Model 
 
The information of point 3 is used to define the boundary conditions of our model: Where is the 
fluid coming from and where does it flow to? To calculate this, we use the Laplacian matrix , 
which combines the information of permeability (section 3.1) and the measured network 
architecture (section 3.2). Fig. 3.1 B illustrates how all three pieces of information (i.e. 
permeability of canaliculi, connectivity and boundary conditions) are combined in the developed 
network model. We assume that under compression a fraction of the fluid is forced out from each 
component of the LCN, due to the decrease in pore volume. This fluid is going to the low pressure 
reservoirs: the Haversian canal in osteons or the surfaces of the bone and vascular canals in the 
mouse tibiae. We defined a reference node which links all the places where fluid flows to. The role 
of the reference node (Eq. 3.10) was taken over by a special node of the network . During loading 
cycles, the pressure in the vascular porosity will remain constant. For simplicity we defined the 
reference pressure as 0 kPa. In the case of tension, the flow reverses, as fluid has to flow from the 
reference node into the LCN due to the increase in pore volume. 
 
Strain rate is likely the main contributor to fluid flow velocity in the LCN (Remond, Naili et al. 
2008, Goulet, Coombe et al. 2009, Wu, Wang et al. 2016). Under dynamic loading the bone  and 
with the bone the LCN  is deformed at a certain strain rate. The deformation is assumed to be 
homogeneous throughout the bone and its LCN porosity. The pericellular space between osteocyte 
and ECM is assumed to be filled with incompressible fluid. Therefore, the reduction of the porosity 
volume squeezes the fluid towards the openings of low pressure, i.e. towards node i0. Both lacunae 
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and canaliculi have fluid-filled pore volumes, which contribute to the load-induced fluid flow. In 
the language of the used model each node in the network acts as a source of fluid, where the value 
of  depends on the volumetric strain rate  and the volume of the node. A canaliculus is always 
shared between two nodes, thus the node volume is calculated as half the volume of the canaliculi 
connecting to the node. In case the node represents an osteocyte lacuna a constant lacunar volume 

 is added.  
 
For the simulations presented in the following, the osteon and its LCN are viewed as a sealed off 
building block of cortical bone due to the virtually impermeable cement line, while the mouse 
tibiae have open endocortical and periosteal surfaces. Canaliculi stop at the cement line and thus, 
constitute a dead end for the fluid flow in our model. 
 

   (3.11) 

 
where  is the weighted node degree, i.e. the sum over the length of all canaliculi connecting 
to node  (Schult and Swart 2008). The bone fluid volume that is squeezed into the reference node 

per unit of time, , is given by the condition that the sum over  has to be zero to comply with 
the preservation of fluid mass. 
 
For human osteons the value for the strain rate  was chosen following experiments with strain 
gauges on the surface of the human tibia (Al Nazer, Lanovaz et al. 2012). Peak strain rates that 
occur during intensive exercise were chosen, as intensive exercise most likely causes a 
mechanoresponse of the bone. For the mouse model Razi, Birkhold et al. (2015) developed a Finite 
Element Model (FEM), based on a high resolution ex vivo µCT scan and the experimental in vivo 
loading conditions, to calculate the strain distributions of the whole mouse tibiae. The full peak 
strain tensors from this model ( , combined with the dynamic loading waveform, were used to 
calculate the local volumetric strain rates in each element: 
  

 , 

 
where  is the volume change of the finite element, and  is the resting volume 
of the finite element. Since the waveform of the applied load was triangular, we can assume that 
the strain rate is constant during the time  the load is increasing. The sign is positive during 
compression and negative during relaxation, causing the fluid to flow back and forward in the 
canaliculi. Since the tibia undergoes bending, the anterior part is under tension (positive strain), 
while the posterior part gets compressed. Coordinate systems of the FEM mesh and the LCN were 
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matched by registering the FEM mesh with the in vivo µCT data of day 0. An initial guess of the 
correct position was made by hand, after which the rigid transformation used for this registration 
was fine-tuned by minimization of the sum of distances between the surface nodes of the FEM 
mesh and the segmented surface of the in vivo µCT (Fig. 2.1). Nearest neighbor interpolation was 
then used to assign the node strains ( . 
 
Finally, we investigated the impact of our idealized model by testing the robustness of our model 
using the networks of two different human osteons. The assumption that the cement line is an 
impermeable boundary neglects the small number of canaliculi which penetrate the cement line.  
To study the sensitivity of the model to a leaking cement line, a total leakage flow was added to 
the volumetric fluid flow sources  (i.e. adapting eq. 3.11) of only the cement line nodes:  

       (3.12) 

 
The second tested assumption is the combination of incompressibility of the fluid and the uniform 
local volumetric strain.  To consider compressibility, the volumetric fluid flow sources of the 

-ideal current source (Johnson 
2003). In the fluid flow equivalent of a Norton source the fluid flow is limited as the pressure 
reaches a defined saturation pressure . This simulates that fluid under high pressure the fluid 
is compressed, which limits the flow. Limiting conductors with conductivity  were introduced 
in the networks, parallel to the ideal fluid flow sources (  in eq. 3.11).  

 .           (3.13) 

When the fluid pressure  reaches  there is exclusively compression of the fluid, i.e. the 
limited volumetric fluid flow goes to zero. 

        (3.14) 

 

3.4. Prediction of the Bone Mechanoresponse 
 
It has been experimentally shown that osteocytes are very sensitive to the shear force on their cell 
membrane, which is linearly related to average fluid flow velocity through the canaliculi 
(Weinbaum, Cowin et al. 1994). Therefore, 
the fluid flow information to obtain a predictor for the mechanoresponse at the bone surfaces. 
Firstly, both the endocortical and periosteal surface were discretized in 180 arc-shaped elements 
each covering an angle of 2°. For each element a weighted mean of the fluid flow velocity, which 
is calculated using the canaliculi 
follows the idea introduced by Mullender and Huiskes (1995) that contributions closer to the 
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surface are more important than farther away from it. Using an exponential weighting, the quantity 
that should predict the mechanoresponse of loaded bone in an element of the endocortical or 
periosteal surface was defined as 
 

 ,       (3.15) 

 
with  the length of the canaliculus  and  the distance from the bone surface to canaliculus . 

Weighted averaging is executed over all canaliculi within the wedge of 2° opening angle. Since 
the value of  is unknown, a parameter study was performed. After this, a triangular moving 
average (TMA) with a window size of 30° was used to take the range of influence at the surface 
into account.  
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4. RESULTS AND DISCUSSION 
 

4.1. Results of the Mouse Tibia Study 
 
The aim of this PhD thesis is to test the fluid flow hypothesis by taking into account the architecture 
of the lacunocanalicular network (LCN) and to predict where bone is formed or resorbed after 
mechanical stimulation. For the first project of my Phd study our collaborators provided us with 
well characterized mouse bones. In these mice the response to controlled in vivo mechanical 
loading was imaged by Bettina Willie and Isabela Vitienes (McGill University, Montreal, Canada) 
following their well-established in vivo µCT time-lapse protocol (Birkhold, Razi et al. 2015). I 
then imaged the LCN in bone volumes covering the whole cross-sections of these tibiae. Next, I 
used circuit theory to calculate the load-induced fluid flow through the LCN. I used the 
displacement data from an existing finite element model of one tibia, in order to define the local 
volumetric strain. I then used this local strain in combination with the volume of the imaged LCN 
to calculate the amount of load-induced fluid displacement. This integration of mathematical 
modeling with experimental techniques allows us to perform a direct spatial correlation between 
the measured mechanoresponse and my predicted mechanorepsonse based on fluid flow patterns 
in the actual LCN architecture. Finally, I demonstrated how this approach allowed me to predict 
how common changes in LCN architecture can lead to strong increases in the mechanosensitivity 
of healthy human bone. 
 

4.1.1. The Measured Mechanoresponse of Mouse Tibiae 
In order to image the mechanoresponse of the mouse tibiae, the mid shaft was imaged using in 
vivo µCT on day 0 (before loading) and day 15 (after two weeks of controlled loading). 
Registration of the two in vivo µCT images provides information about where and how much bone 
was formed or resorbed on the endocortical and periosteal surfaces between day 1 to 5, day 1 to 
10 and day 1 to 15. After 15 days most bone formation is found at posterior sites (Fig. 4.1, blue 
voxels), and significantly less bone is formed in the anterior direction. The endocortical surface 
shows more new bone at day 10 and 15 compared to the periosteal surface, especially in the 
anterior direction. Hardly any new bone is formed along the medial and lateral axis, while these 
are the location were resorption can occur (Fig. 4.1, red voxels). A quantitative evaluation of the 
mechanoresponse of the individual mice are shown later in this section (Fig. 4.5). 
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Fig. 4.1. 3D renderings showing the time-lapse of remodeling based on of the in vivo µCT imaging of the 
diaphyseal region of the tibia of mouse 1. The anterior, lateral and posterior faces of the bone are indicated 
by the numbers 1 to 3, respectively. Blue denotes newly formed bone, red resorbed bone, and yellow 
quiescent bone. The amount of remodeling is calculated from the differences between the µCT scans of day 
1 to 5, day 1 to 10 and day 1 to 15, respectively. 
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4.1.2. Structural Heterogeneity of the Pore Networks in Mouse Tibiae 
High resolution ex vivo µCT scans showed vascular porosity within the cortical bone  
(Fig. 4.2 A-C). There is a strong heterogeneity in the distribution of the vascular canals. Most 
horizontally aligned vessels are clustered in the frontal side of the tibia mid shaft and are tens of 
µm in diameter (Fig. 4.2 A, B). All tibiae have one large vascular canal vertically on the posterior 
side of the bone, which is visible in the top of Fig. 4.2 C. The lower resolution of in vivo CT scans, 
which were made to image the remodeling history, were not able to resolve the small vascular 
canals (Fig. 4.2 D, E).  
 
 
The CLSM images of the whole rhodamine stained tibia cross sections show the LCN (Fig. 4.2 G, 
I, J), as well as the vascular porosity (Fig. 4.2 I). Newly formed bone as a response to mechanical 
stimulation (to the right) is highly stained and, therefore, appears bright white. The 3D structure 
revealed a heterogeneity of the LCN with regions of looser (Fig. 4.2 I) and denser network (Fig. 
4.2 J). A quantitative analysis of the network density in terms of canalicular density, Ca.Dn, (i.e., 
total length of canaliculi per unit volume) resulted in an average value of 0.27 µm/µm3. The 
frequency histogram (Fig. 4.3) shows a broad bell-shaped distribution with a standard deviation of 
0.12 µm/µm3. The maps of the spatial distributions of Ca.Dn (Fig. 4.4 A) reveals that bands of low 
network density can be found in a ring-line structure, which runs eccentrically in the cortex in all 
three mice. Regions with a roughly ten-fold difference in network density can be found adjacent 
to each other. Evaluation of the pore volume fraction (i.e., contribution of only lacunae and 
vascular canals to the porosity) demonstrate that regions of high porosity spatially correlate with 
low network density woven bone regions (Fig. 4.4 B). 
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Fig. 4.2. Two techniques, µCT and laser 
scanning confocal microscopy (CLSM) 
were used to image the levels of porosity 
in bone. High resolution ex vivo µCT 
scans of the tibia were made to image 
features such as pores, trabeculae and 
vascular canals (A-C). Vascular canals, 
which cross the cortex, are clearly visible 
in minimum intension projections (i.e. the 
lowest intensity) in 100 µm thick sections 
of the high resolution µCT scans (A). 
Single longitudinal sections from this 
µCT scan (B-C) show that the small 
vascular canals (the black pores of tens of 
µm in diameter) are clustered within 
bands over the longitudinal direction of 
the tibiae. These features cannot be 
clearly imaged with in vivo µCT (D-E). 
The shape of the bone was used to register 
the in vivo µCT scans (E), which cover 
only part of the bone, with the high 
resolution µCT scans (F), which cover 
the complete bone. Tibiae were cut in the 
middle of the volume in the same region 
as the the in vivo µCT scans to image the 
rhodamine stained LCN using CLSM 
(G). The exact location of the cut could 
be verified by matching features which 
are visible in both CLSM and high 
resolution µCT scans (F-G). For 
example, one large vascular canal crosses 
the cortex of all the tibiae diagonally. The 
periosteal entrance of this canal is visible 
in F and G (red arrow). A trabecula (blue 
arrow) is also visible in both images. The 
black rectangle in (H) shows where the 
volume imaged with CLSM was located 
in the left tibia of mouse 1. CLSM 
reveiled different network architectures 
within the same bone (I-J). Lacunae are 
marked with green arrows. The canaliculi 
are the white lines that form the network. 
The two vascular canals marked with red 
arrows (I) are too small to be seen in the 
high resolution µCT scans (A). New bone 
was strongly stained due to the partial 
mineralization of the new tissue.  
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Fig. 4.3. A) Frequency distribution of canalicular length density (Ca.Dn, µm of canaliculi per µm³ of bone 
volume). B) Frequency distribution of pore volume fraction (% of pore volume per unit of bone volume). 
The volumes of both lacunae and vascular pores are included. 
 
4.1.3. Fluid Flow Induced by Controlled Loading of the Tibiae 
We used a finite element mesh based on a high-resolution ex vivo µCT scan of a non-loaded mouse. 
This mesh was used in a Finite Element Model (FEM) by Hajar Razi before, to calculate the 
mechanical stress and strain distributions in the whole tibia (Razi, Birkhold et al. 2015). From the 
stress and strain patterns at the organ level we observed that the tibia undergoes bending, as the 
anterior region is under tension (i.e. positive strain), while the posterior region is compressed. This 
is due to the shape of the mouse tibiae, which are bend already in unloaded condition (Fig. 4.2 H). 
The highest strains are found close to the outer, periosteal surface with compressive strains larger 
than tensile strains (Fig. 4.5 B).  
 

 
Fig. 4.4. Structural heterogeneity of the porosity within the tibial cross sections averaged over the imaging 
depth of 50 µm. A) Maps of canalicular densities Ca.Dn. B) Maps of pore volume fractions (i.e., volume 
of both lacunae and vascular canals per unit volume).  
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Fig. 4.5. A) Outcome of the in vivo µCT experiment showing where in the diaphyseal region of the tibiae, 
bone was formed or resorbed in response to mechanical loading (blue denotes newly formed bone, red 
resorbed bone, and yellow quiescent bone; 2D cross-section of an imaged 3D volume). B) Spatial 
distributions of the strains induced by the maximum load during the in vivo loading experiment, calculated 
using finite element modeling. Red colors correspond to tensile, blue to compressive strains. The figure 
also introduces the angular coordinate system used to indicate locations at the endocortical and periosteal 
surfaces. The anterior direction is at 15° and angles increase counterclockwise. C) Patterns of fluid flow 
velocities through the LCN. Based on the loading conditions from B) and the 3D network architecture of 
Fig. 1A, the fluid flow velocity is calculated in each canaliculus using circuit theory. The fluid flow velocity 
information of all the canaliculi was rendered in a 3D image stack. For reasons of presentation this 3D 
image is averaged over the imaging depth to obtain the shown flow pattern.  
 

 



4.1. Results of the Mouse Tibia Study 
 
 

53 
 

We combined the local strain rates from the FEM model with the imaged 3D network architecture, 
to calculate the fluid flow velocity through each individual canaliculus employing circuit theory 
(see section 3.2 
character and show a striking spatial heterogeneity (Fig. 4.5 C), especially when compared to the 
smooth strain patterns (Fig. 4.5 B). The strain patterns reflect features of the typical strain 
distribution due to bending. A region of low fluid flow is located around the mechanically neutral 
medial-lateral direction in all three mice. However, some important features cannot be explained 
by strains and, therefore, have to be attributed to the LCN architecture: examples are the high fluid 
flow velocities close to the endocortical surface at the posterior side or regions of low fluid flow 
at the anterior side of the tibiae. The region of low network density is also spatially associated with 
on average low flow velocities. The fluid flow patterns show a wide variation between the three 
tibiae (Fig. 4.5 C), compared to strain patterns, which are very similar for all mice (Fig.  4.5 B). 
The posterior surfaces of mice 1 and 3 show a higher fluid flow velocity compared to mouse 2.  
 

4.1.4. Prediction Local Bone Mechanoresponses 
The result of the in vivo µCT experiments measuring the amount of bone formed or resorbed 
averaged over the three investigated mice is shown in Fig. 4.6 (black line). The chart represents a 
transverse section through the mid-shaft of the mouse tibia. The amount of formed bone and 
resorbed bone (Fig. 4.6, black line entering the yellow ring) is not depicted to scale for reasons of 
clarity. The measured mechanoresponse is compared with the predictions from strain alone (pink 
line) and from load-induced fluid flow (green line). At the periosteal surface the prediction from 
strain is overestimating the mechanoresponse at the posterior side. Quantification of the difference 
between prediction and measurement as a root mean square error (RMSE) gives a value of 19 µm 
for using strain as predictor and at the endocortical surface the error is 13 µm. 
 

 

 

Fig. 4.6. Result of in vivo µCT measurements in 
terms of bone formation and resorption after 
two weeks of controlled loading of the tibia. 
The tibial cross-section is represented 
schematically as a circular annulus (yellow). 
The black line denotes the amount of resorbed 
bone (line entering yellow cortex) and formed 
bone (depiction not to scale). The pink line 
denotes the prediction of the mechanoresponse 
based on strain only, the green line is the 
prediction based on load-induced fluid flow, 
which considers not only the loading condition 
but also the architecture of the LCN. Strain rate 
and fluid flow velocity were integrated over 
regions close to the surface (see section 3.4) to 
obtain a single value. 
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Since the LCN exhibits architectural differences for the individual animals, the prediction quality 
has to be assessed on the basis of the specific animals. Fig. 4.7 summarizes the outcome of the in 
vivo µCT experiment (Fig. 4.7 B) and the predictions of the mechanoresponse for strain (Fig. 4.7 
A) and fluid flow (Fig. 4.7 C) for all three investigated mice. The angle on the x-axis specifies the 
position at the surface (see Fig. 4.5). The two lines in all plots refer to the endocortical and the 
periosteal surface, respectively. In Fig.  4.7 B the value on the y-axis denotes the thickness of the 
formed/resorbed bone, where a binning angle of 2° was used followed by 30° triangular moving 
average. This thickness is defined as the total formed/resorbed volume divided by the surface area 
and is positive/negative for predominant formation/resorption. The sine wave-like curves show 
that formation is strongest around 190° (posterior direction) with a second smaller maximum at 
about 10° (anterior direction) and small minima (corresponding to resorption) in between (i.e., at 

surfaces with a trend to higher values at the endocortical surface; (ii) the mechanoresponse in the 
three mice is substantially different with mouse 1 showing the strongest response, followed by 
mouse 3 and mouse 2. Fig. 4.7 C shows the evaluation of the fluid flow velocity through the LCN 
close to the surface (see section 3.4 for details), plotted similarly as the (re)modeling response. 
Also, the average flow velocities show the rough sine wave curves with maxima and minima at 
positions similar to the (re)modeling response with the strongest maximum again at roughly 190°. 
The flow velocities are similar for both surfaces, but different for different animals: mouse 1 
displays the largest values for the fluid flow velocities, while mouse 2 has markedly the slowest 
fluid flow. It is important to contrast these results for the fluid flow with results for the local 
absolute strain rate close to the surface (Fig. 4.7 A, see section 3.4 for details). Since the shape of 
the tibia and the region of evaluation was very similar, the resulting curves for the strains at the 
endocortical and periosteal surfaces are almost identical for the three animals. In all mice the 
maximum strain rate was higher at the periosteal surface by about 35% compared to the 
endocortical surface.  
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Fig. 4.7. Evaluation of absolute surface strain rate (A), (re)modeling thickness (B, defined as new bone 
thickness minus resorption cavity depth) and surface fluid flow velocity (C) for all three investigated mice 
(see Fig. 3B for definition of angles). Strain rate and fluid flow velocity were integrated over regions close 
to the surface (see methods, section 3.4) to obtain a single value. A) Strain rates at the endocortical surface 
(dotted line) are lower compared to the periosteal surface (solid line) and the spatial distribution and peak 
values are very similar between mice. B) The mechanoresponse shows individual differences in bone 
(re)modeling, with mouse 2 showing less (re)modeling compared to the two other mice. C) Also surface 
fluid velocity was found to be lower in mouse 2, while for all animals the flow velocities show similar 
distributions on the endocortical and periosteal surfaces. 
 

4.1.5. Discussion of the Mouse Tibia Study 
To study the effect of the osteocyte LCN on the mechanoresponse of mouse tibiae we first 
measured the mechanoresponse to the controlled loading of the mouse tibiae. After sacrificing the 
mice the architecture of the lacunocanalicular network was measured in exactly the same region 
of these tibiae. Then the network information was used for a functional interpretation by 

Noteworthy is the strong spatial heterogeneity of the network with an intracortical band of loose 
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network (Kerschnitzki, Wagermaier et al. 2011, Genthial, Gerbaix et al. 2019, Shapiro and Wu 
2019) and high porosity within the tibial cross-section. This band correlates spatially with the 
woven bone found in murine bone and islands of calcified cartilage, which are thought to be a 
remnant of early life (Kerschnitzki, Wagermaier et al. 2011, Ip, Toth et al. 2016). Additionally, 
this woven bone is associated with a higher density of vascular canals compared to lamellar bone. 
This heterogeneity implies a caveat when reporting changes in the network architecture of mice 
due to disease or treatment. Only a 3D mapping of large bone volumes (> (50 µm)³) yields reliable 
values for parameters characterizing the LCN architecture.  
 
Therefore, the porosity of the LCN acts not only as transport network for the fluid in this approach, 
but also as source of fluid that has to be drained via the network. Such a poroelastic description of 
bone is the preferred model approach of most researchers studying load-induced fluid flow in the 
LCN (Weinbaum, Cowin et al. 1994, Smit, Burger et al. 2002, Nguyen, Lemaire et al. 2010, 
Cardoso, Fritton et al. 2013). The network architecture crucially influences the fluid flow through 
the LCN and, consequently, the mechanical stimulation of the osteocytes. Consideration of the 
LCN architecture leads to qualitatively different results than considering strain alone. We found 
that fluid flow through the LCN allows one to predict the sites of bone formation correctly in 
individual animals and on different bone surfaces (endocortical vs periosteal). Moreover, our 
analysis allows one to identify mechanisms of how the local network architecture modulates the 
velocity of the local fluid flow. We identified a mechanism to locally cause a high flow velocity 
close to surfaces, which is associated with a strong mechanoresponse. Here, when approaching the 
bone surface, the netw
(Fig. 4.2 J). The (practical) incompressibility of the fluid causes an acceleration of the fluid, once 
a reduced number of canaliculi are available. A very different mechanism is responsible for the 
reduction in the fluid flow, namely the structural incorporation of vascular canals (Fig. 4.2 I). The 
fluid flow patterns (Fig. 4.2 C) demonstrate how vascular canals can act as additional 
sinks/sources, and thereby shield the nearby bone surface from fluid flow. Although this shielding 
effect of vascular canals was already hypothesized based on continuous FE modeling (Gatti, 
Azoulay et al. 2018), our data confirms how the exact position of the vascular canals and the 
interplay with the LCN architecture affects bone (re)modeling. The interpretation of fluid flow 
through networks is based on the principle that fluid flows predominantly through the path of least 
resistance among a set of alternative paths within networks. Since vascular canals are located 
especially near regions with a less dense and less connected LCN (and, therefore, of high flow 
resistance) (Fig. 4.2 I), the path towards these vascular canals is the preferred flow path, thereby 

 
 
The intricacy of the lacunocanalicular network architecture make model assumptions necessary. 
Although the vascular network shows to be important for our study, we did not investigate the 
vascular network architecture at the scale of the whole tibia. Instead we adapted the widely 
accepted assumption that the vascular pressure has a negligible impact on fluid flow in the LCN, 
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as it acts as a constant low pressure reservoir due to the fast relaxation times in the order of 1ms 
(Cowin and Cardoso 2015). Additionally, the quality of the imaged vascular network was 
inadequate for analysis, due to technical limitations. The ex vivo µCT scans reveal only the larger 
pores of the vascular network. Thinner vascular canals appeared non-continuous and the diameter 
of the vascular canals could not be assessed. This is a drawback of measuring porosity using µCT 
(i.e. absorption techniques), as the absolute decrease in intensity due to pores is relatively 
miniscule compared to the high intensity background. This leads to differences in intensity which 
are hardly distinguishable from the noise. In contrast, the same absolute increase in intensity in 
fluorescence is very strong compared to the black background. Therefore, we see a near perfect 
signal to noise ratio in our confocal microscopy images of the LCN, even if the canaliculi are 
thinner than the optical resolution of roughly 300 nm (Fig. 4.2 G, I, J). Consequently, the annulus 
region, where fluid can flow within the canaliculi, was assumed to have a cross sectional area of 
0.045 µm2 for all canaliculi. The fluid does not flow freely through this annular space, but is 
substantially impeded by its fibrous filling. As a consequence, the fluid flow velocity does not 
depend as strongly on the dimensions of the annular space, as in a completely open canal 
(Weinbaum, Cowin et al. 1994). 
 
It is possible to image the LCN with higher resolution with state-of-the-art techniques, such as a 
scanning electron microscope (SEM) equipped with a focused ion beam (FIB) to mill the surface 
specimen with high precision. In collaboration with another PhD student, Mahdi Ayoubi, we 
imaged the same region of bone with both CLSM and the FIB/SEM instrument (Fig. 4.8). All 
canaliculi which were visible in FIB/SEM images of mineralized bone were also visible in the 
CLSM images. The resolution of FIB/SEM is high enough to resolve the diameter of canaliculi, 
however, the field of view was by far too limited to image the whole cross section of the mouse 
bone. The value of this larger field of view to study networks can be explained by using a road 
network, and the traffic flows on it, as an analogy. Imagine a highway, where you can see how fast 
cars can drive based on the quality and curvature of the road. It is still challenging to predict what 
the traffic flow is on the single highway segment, without knowing what happens elsewhere in the 
road network. Moreover, local fluid flow patterns have already been investigated in models with 
single lacunae (Verbruggen, Vaughan et al. 2014, Vaughan, Mullen et al. 2015) and within single 
canaliculi (Anderson and Tate 2008, Kamioka, Kameo et al. 2012). Using the high-resolution 
FIB/SEM images in our study would therefore not significantly contribute to the current 
knowledge of fluid flow patterns in the LCN. In contrast the network topology of the LCN at the 
scale of the whole mouse tibia cross section is largely unexplored. Therefore, analysis of the 3D 
images of the LCN in whole cross sections of the mouse tibiae (Fig. 4.2 G) is an optimal 
compromise between resolution and field of view, which made the analysis in our study possible. 
The imaged volume of the mouse tibia contains approximately 4.5 million canaliculi. The large 
number of canaliculi also restricts the accuracy of the fluid flow calculations compared to previous 
works which analyzed the fluid flow through single lacunae with their adjacent canaliculi 
(Verbruggen, Vaughan et al. 2014, Vaughan, Mullen et al. 2015) or within single canaliculi 
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(Anderson and Tate 2008, Kamioka, Kameo et al. 2012). In particular, our model does not consider 
any interplay between the fluid flow and the shape of osteocyte bodies.  
 

 

Fig.4.8. The same region of human osteonal bone was 
imaged in 3D with both FIB/SEM and CLSM. A) With 4 
nm resolution the FIB/SEM can resolve the diameter of 
the canaliculi, however the field of view is limited to 
roughly hundred micrometer. B) Due to the ~300 nm 
resolution of CLSM the diameter of the canaliculi cannot 
be resolved, however, it can be used to image the topology 
of the canaliculi in much larger fields of view.  

 
Newly formed unmineralized bone is overstained with rhodamine in our mice (Fig. 4.2 J). In 
collaboration with Mahdi Ayoubi we showed that canaliculi already form before the newly formed 
bone mineralizes (Fig. 4.8 A). We observed in the FIB/SEM data that canaliculi connected to the 
surfaces of the bone (including vascular canals), even in newly formed unmineralized bone. Thus, 
we can assume that liquid can be easily drained to the low pressure reservoirs at the surface, even 
if there is new bone formed. Therefore, we predicted fluid flow based on the LCN architecture 
before the mechanoresponse and excluded new bone formation and resorption from analysis. In 
reality, the adaptation process is more dynamic, so that the first bone (re)modeling would already 
have an influence on the fluid flow pattern. Additionally, osteocytes may be even able to actively 
manipulate the permeability of certain canaliculi, for example by obstructing the fluid flow with 
their cell processes. Such an active control of the fluid flow would allow indirect communication 
between osteocytes (Weinkamer, Kollmannsberger et al. 2019). In addition, it has been shown that 
adaptation has a noticeable impact on the strain distribution (Sztefek, Vanleene et al. 2010). Our 
approach can be justified by the observation that there was a time delay between mechanosensing 
and actuation in terms of bone formation and resorption. A strong mechanoresponse was only 
observed at day 15. Therefore, the modeled strain and fluid flow patterns would be correct for the 
majority of the experiment. Moreover, the mechanoresponse to the altered fluid flow pattern in the 
last few days of the experiment would not be visible yet on day 15.  Consequently, to predict 

should analyze the mechanical stimulation in its recent past. For this 
reason, we used a finite element mesh based on a high resolution ex vivo µCT scan of a non-loaded 
mouse.  
 
The time-consuming analysis was limited to three mouse tibiae only. While repeating similar 

be made by extending the analysis to different bones in the mouse, to larger bone volumes 
(Javaheri, Razi et al. 2020) and to different small animals. The strength of our model approach is 
that an assessment of fluid flow in the whole network can be performed, although the large number 
of canaliculi poses a challenge to computational resources available nowadays. The result of the 
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analysis are patterns of fluid flow velocity with a striking spatial heterogeneity (Fig. 4.5 B), 
especially when compared to the smooth strain patterns (Fig. 4.5 C).  
 
A topic which has been largely neglected by bone researchers, because it is so hard to address, is 
the problem of signal integration: how are the biological signals, which are produced by various 
osteocytes as a response to fluid flow, then added up and transported to the surface of the bone to 
orchestrate the behavior of osteoblasts and osteoclasts after mechanotransduction? In the scope of 
our model we therefore asked, how should the averaging over the fluid flow velocities in the LCN 

also allows us  

mechanoresponse is best, when the weighted average of the flow velocity (see Methods section) 
is restricted to canaliculi only tens of micrometers away from the bone surface. If the 
mechanosensitivity is largely restricted to network contributions close to the surface, this would 
have important implications for bone adaptation. The continuous bone apposition at the periosteal 
surface in mice and humans (Ruff and Hayes 1988) could be used for a continuous adaptation of 
the network architecture to modulate the flow through it. A feedback mechanism has been 
hypothesized based on the experimental finding that the osteocyte density correlates with bone 
apposition rate (Qiu, Rao et al. 2002, Buenzli 2015). Also the strong heterogeneity in LCN 
architecture in mice can be associated with differences in bone formation rate (Hernandez, 
Majeska et al. 2004). For example, this could explain why some surfaces have a more sensitive 

 J).  
 
While fluid flow is an excellent predictor of bone formation, this holds much less for resorption. 
A valid prediction is that no resorption was found when the average fluid flow velocity at the 
surface is above 5 µm/s. However, the resorption at the periosteal surfaces was noticeably less 
compared to the endocortical surfaces, despite the surfaces having very similar fluid velocities. 
We want to provide four possible reasons for shortcomings of model predictions: (i) especially for 
the case of resorption, it has been proposed that microdamage in the bone could act to trigger the 
process (Burr, Martin et al. 1985, Noble and Reeve 2000, Verborgt, Gibson et al. 2000); (ii) since 
similar endocortical bone resorption is also observed at the non-loaded limb (Birkhold, Razi et al. 
2014), this could be a response uncoupled to mechanics and related to shape changes of the whole 
tibia (Javaheri, Razi et al. 2020); (iii) to understand details of mechanotransduction, a more 
microscopic viewpoint than taken here is necessary, to consider the role of integrins (Wang, 
McNamara et al. 2007) and the glycocalyx (Thompson, Modla et al. 2011, Sansalone, Kaiser et al. 
2013, Cowin and Cardoso 2015, Wijeratne, Martinez et al. 2016); (iv) although this study focuses 
on biomechanical aspects of bone adaptation, we do not want to give the wrong impression that 
molecular and cell biological aspects should take a back seat. In the end, cells must be available 
and they have to comprehend and execute instructions that are provided by mechanical stimulation. 

hardware, on which the biological software can play. 
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4.2. RESULTS OF THE HUMAN OSTEONAL BONE STUDY 
 
The second project of my PhD work focused on the lacunocanalicular network (LCN) of human 
osteonal bone. crucial for understanding human 
bone health. With age the bone was shown to lose its mechanoresponsiveness (Razi, Birkhold et 
al. 2015). This loss of responsiveness is more pronounced in females after menopause. Changes in 
the responsiveness of bone are very often addressed on the cellular and subcellular level by 
elucidating signaling pathways from the cell membrane to the nucleus and back (Chen, Liu et al. 
2010, Jacobs, Temiyasathit et al. 2010). However, our mouse study suggests that we should not 
focus exclusively on osteocytes and their interaction with each other, but also to consider the flow 
of the interstitial fluid through the LCN. Therefore I aimed to investigate how changes in the 
human LCN could influence the mechanoresponsiveness of bone at the onset of menopause. In 
this investigation, I combined three experimental and computational methods: (1) I used staining 
and laser confocal microscopy to image the three-dimensional LCN, (2) I performed image 
analysis to transfer the image into a mathematical network structure, (3) I used the circuit theory 

imaged networks, to predict local differences in the mechanoresponse to increased mechanical 
loading.  
 

4.2.1. The LCN Architecture of Human Osteonal Bone 
As a first step we selected human osteons with different LCN topology to investigate the effect of 
LCN architecture on the fluid flow patterns in these osteons. Fluid flow was studied in both 
ordinary osteons with a rather homogeneous LCN as well as a frequent subtype of osteons so-
called osteon-in-osteons which are characterized by a ring-like zone of low network connectivity 
between the inner and the outer parts of these osteons. Fig. 4.9. shows a low resolution 2D 
overview image of part of a cross section from the femur midshaft of a 57 year old woman without 
any known bone-related disease. The bone section was provided to us by Boltzmann Institute of 
Osteology, Vienna, Austria. We found that roughly 10% of the osteons in this cross section were 
osteon-in-osteons. Both types of osteons were found throughout the whole cortex (i.e. covering 
the whole distance between the endosteal to periosteal surface). On the overview we selected 12 
osteons and an additional 12 ordinary osteons (yellow and purple, respectively, in Fig. 4.9). 
 
An example of a 3D high-resolution image of an ordinary osteon (#14) is shown in Fig. 4.10 A. 
An osteon-in-osteon with a very clear ring of low connectivity was selected as a representative 
osteon-in-osteon (Fig. 4.10 B, osteon #10). With the reflection signal (i.e. the observed light with 
the same wavelength as the excitation laser) we could image the lamella of all osteons, which lay 
concentric around the Haversian canal. Most canaliculi are oriented in the radial direction, i.e. 
perpendicular to the lamellae. After inspection of all 3D confocal image stacks we selected 8 
ordinary osteons and 9 osteon-in-osteons without any cracks or other damage. Average structural 
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parameters of these osteons are compared in table 4.1. Although the osteons in the two groups 
have very similar sizes, the size of the Haversian canal was larger in ordinary osteons compared 
to the osteon-in-osteons (P < 0.001). Table 4.1 also compares structural LCN parameters such as 
number of intersecting canaliculi and lacunae per volume, number of canaliculi per volume, node 
degree (i.e. average number of canaliculi meeting in a node, or the total length of the canaliculi 
meeting in a node).  
 

 
Fig. 4.9. A low resolution 2D overview image of the surface of the cross section of the human femur, 
imaged by confocal laser scanning microscopy. The pinhole of the confocal microscope was opened as far 
as possible to maximize the optical section thickness (i.e. to decrease the z-resolution (Wilson 2011)). This 
image was used to select 12 osteon-in-osteons (purple markers) and 12 ordinary osteons (yellow markers) 
for further investigation.  
 

These parameters did not show any significant difference between the osteon types. However, the 
average path length through the LCN was in osteon-in-osteons 80% longer compared to ordinary 
osteons. This difference in the accessibility of the Haversian canal can be explained by looking at 
the networks of the two osteon types (two representative examples in Fig. 4.10 A, B). When we 
color code the nodes of these osteons based on tortuosity (the ratio between distance from the node 
to the Haversian canal via the network over the direct Euclidian distance to the Haversian canal), 
we see that the network of the ordinary osteon is well connected and oriented relatively straight to 
the Haversian canal (Fig. 4.10 C). In osteon-in-osteons the nodes in the outer part have a much 
higher average tortuosity, due to the detour that has to be taken to reach the Haversian canal (Fig. 
4.10 D). This demonstrates how a local drop in network density divides the osteon-in-osteon into 
two parts, the inner and outer osteon. Only few bridges connect the inner and outer osteon, as 
indicated by the arrows in Fig. 4.10 B.  



4.1. Results of the Mouse Tibia Study 
 
 

63 
 

 
Fig. 4.10. A-B) Confocal microscopy images of human osteons. The fluorescent signal of rhodamine, 
projected over the whole imaging depth, shows the stained LCN (red). The reflection of the green excitation 
shows the lamella of the osteon due to a preferred orientation  of the collagenous matrix within the image 
plane (the concentric green rings). The canaliculi in both osteons are mostly oriented in the radial direction, 
perpendicular to the lamella. Both osteons have regions which are free of any stained network. The 
canaliculi in the ordinary osteon (A) are mostly well connected from cement line to Haversian canal, while 
the osteon-in-osteon (B) is characterized by a ring of strongly reduced LCN connectivity. The Haversian 
canal of osteon-in-osteons is smaller. C-D) The tortuosity shows the path length through the LCN, 
normalized by the distance directly to the Haversian canal. C) The tortuosity in the ordinary osteon is 
generally between 1 and 2, which is due to the relatively straight and well connected canaliculi as seen in 
(A). Only few nodes have a high tortuosity in the ordinary osteon due to small free of network regions. D) 
The tortuosity in the osteon-in-osteon is much higher, due to the detour that has to be taken from certain 
parts of the outer osteon to the Haversian canal. This is especially true for regions far away from bridging 
canaliculi between the inner and outer osteon.   
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       Table 4.1. Structural parameters for each osteon type group.  

 Ordinary osteons Osteon-in-osteons  

osteon parameters:   

On.Rd 104 ± 22 µm 103 ± 13 µm 

HCa.Rd 36 ± 6 µm 22 ± 5 µm 

evaluated.BV 1.2 106 105  

µm³ 
1.3 106 105  

µm³ 

LCN parameters:   

number density of nodes 0.015 ± 0.002 1/µm³ 0.014 ± 0.003 1/µm³ 

number density of 
canaliculi 

length density of canaliculi 

0.021 ± 0.003 1/µm³ 

0.081 ± 0.008 
µm/µm³ 

0.019 ± 0.004 1/µm³ 

0.072 ± 0.009 
µm/µm³ 

node degree 3.62 ± 0.08 3.65 ± 0.04 

weighted node degree 11.9 ± 0.76 µm 11.3 ± 0.90 µm 

average shortest path 
length 

50.0 ± 11.5 µm 92.8 ± 32.3 µm 

 
 

4.2.2. Load InducedFluid Flow in Human Osteons 
With this knowledge of the LCN architecture we can now predict what impact the LCN 
architecture of the different types of human osteons has on the mechanoresponse. The two 
representative osteons (Fig. 4.12) are therefore used to demonstrate how simulated load-induced 
fluid flow pattern differs between the two osteons in Fig. 4.11. 

The ordinary osteons show generally a higher fluid flow velocity near the Haversian canal, while 
in most canaliculi at the cement line (i.e. the sealed part of the osteon) the flow velocity is very 
low. The fluid flow velocity in the radial canaliculi is generally higher in the radial canaliculi, 
which form the most direct path to the Haversian canal (i.e. to the low pressure reservoir), 
compared to lateral canaliculi (i.e., canaliculi perpendicular to the radial direction). Note that the 
color code in Fig. 4.11 is logarithmic, and that the fluid flow pattern shows a strong heterogeneity. 
The velocity in the canaliculi connecting to the Haversian canal varies roughly over an order of 
magnitude. The heterogeneity in osteon-in-osteons is even stronger (Fig. 4.11 B). The fluid 
displacement forces the fluid flow in osteon-in-osteons to be concentrated on paths to the bridges 
between the inner and outer osteon. Therefore, the fluid flows via the tangential canaliculi in large 
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parts of the outer osteon. As a result of the very few bridges in this osteon-in-osteon the fluid flow 
of the outer osteon is almost exclusively flowing via the upper half of the inner osteon, resulting 
in a fluid flow velocity which is roughly two orders of magnitude higher compared to the fluid 
flow in the lower half of the inner osteon.  

 

 
 
Fig. 4.11. In the model fluid flow was forced out of the ordinary osteon (A) and osteon-in-osteon (B) as 
water is squeezed out of a steadily compressed sponge (i.e. strain rate is constant). A and B show the fluid 
flow patterns resulting in an ordinary osteon and an osteon-in-osteon, respectively. The fluid flow patterns 
in the lacunar-canalicular network are projections of the network in the style of a road map, where in 
addition to the color code edges with higher fluid flow velocity are rendered thicker.  
 
 
Quantitative analysis (Fig. 4.12 A) shows that average fluid velocities are higher close to the 
Haversian canal compared to close to the cement line, independent of osteon type. The mean path 
length to the Haversian canal, the structural network parameter that differs mostly between osteon 
types, correlates directly with the average fluid velocity (Fig. 4.12 B).  As a result of the longer 
path lengths in the osteon-in-osteons fluid flow velocity is 2.3 times higher in this osteon type 
compared to the ordinary osteons (p < 0.01) (Fig. 4.12 A, right). 
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Fig. 4.12. A) The average fluid flow velocity of different parts of the 8 ordinary osteons and 9 osteon-in-
osteons. The halves of the ordinary osteons are divided at half the distance from Haversian canal to the 
cement line. The box extends from the first to third quartile, the red line shows the median and the whiskers 
extend from the box to show the full range of the data. B) The average fluid flow velocity shows a strong 
correlation with a purely structural network parameter, the average path length from each node of the 
network to the Haversian canal. The representative ordinary osteon (+) and the osteon-in-osteon (x) are 
marked.  
 
 
The fluid flow hypothesis and experiments on single - cells suggest that osteocytes 
are particularly sensitive to shear forces on their cell processes (Bonewald 2011). Therefore, the 
shear forces were calculated from the fluid flow velocities (Eq. 1.2). Cumulative probability 
distributions of fluid shear stresses (Fig. 4.13) reveal which fractions of cell processes are exposed 
to shear forces larger than the value plotted on the x-axis. For comparison the shear forces above 
0.4 Pa, which was demonstrated in in vitro experiments to trigger osteogenic responses in 
osteocyte-like cells (Klein-Nulend, Vanderplas et al. 1995, Bakker, Soejima et al. 2001, Bacabac, 
Smit et al. 2004, Jacobs, Temiyasathit et al. 2010) has a shaded gray background. The cumulative 
probability distributions for ordinary osteons and osteon-in-osteons intersect at a shear stress of 
0.8 Pa and a probability of 45%. This means that more canaliculi above this value of 0.8 Pa can be 
found in osteon-in-osteons. Decreasing the strain rate from 0.015 s-1 to 0.0015 s-1 (i.e. simulation 
of walking instead of running), shifts the intersection to 0.08 Pa. Here the percentage of canaliculi 
which are stimulated with a shear stress larger than 0.8 Pa are 6.6-times more numerous in osteon-
in-osteons than in ordinary osteons (9.3% and 1.4%, respectively).  
 

The flow pattern includes very high fluid velocities and a strong spatial heterogeneity. Following 
only canaliculi with high fluid velocity (red canaliculi in Fig. 4.11 B) paths can be found that 
connect the cement line with the Haversian canal. However, these paths are not straight, but rather 
lengthy due to the requirement that they have to pass via the few bridges connecting outer and 
inner osteon. A longer chain of lacunae and canaliculi contain a larger amount of fluid.  Therefore, 
a longer pathlength is also a larger source of fluid flow, which has to be transported through the 
network. This feature of acting as a source of fluid, which has to be drained via the network, causes 
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these high velocities of the interstitial bone fluid of longer paths. This interpretation of the high 
fluid velocities found in osteon-in-osteons explains the good correlations of the mean fluid velocity 
with a structural parameter of the network: the average shortest path length. The source-character 
of the LCN porosity relates longer paths with more fluid that has to be drained to the Haversian 
canal. This can happen only by speeding up the fluid flow and, therefore, the average fluid flow 
velocity shows a direct proportionality with the average shortest path length.  
 
 

 

Fig. 4.13. The cumulative probability distributions 
of fluid shear stresses at the cell process surfaces in 
the canaliculi are plotted for ordinary osteons 
(blue) and osteon-in-osteons (red) for the case of 
strenuous exercise (solid lines) and normal daily 
activities (dashed lines). All lines show the mean 
percentage of canaliculi with a shear stress larger 
than the value on the x-axis. The 99% confidence 
intervals of the mean are shown in the faintly 
colored bands around the lines. The shaded area 
above 0.4 Pa illustrates the range of shear stresses 
where osteocytes showed osteogenic responses to 
fluid shear stress in in vitro experiments (Klein-
Nulend, Vanderplas et al. 1995, Bakker, Soejima et 
al. 2001, Bacabac, Smit et al. 2004, Jacobs, 
Temiyasathit et al. 2010).  

 

4.2.3. Fluid Pressure in Human Osteons 
The load-induced pore pressure patterns of two representative osteons of different type are shown 
in Fig. 4.14.  The two different ranges of the pressure observed in osteon-in-osteons, low pressure 
in the inner and high pressure in the outer osteon, are due to the few bridges connecting the inner 
and outer parts. The pressure encountered on a radial path from the cement line to the Haversian 
canal depends strongly on the starting point on the cement line. Using as an example the osteon of 
Fig. 4.14 A, the pressure gradient is maximal at a direct

pressure pattern is more pronounced for the osteon-in-osteons. To quantify the angular dependency 
of the pressure pattern, the roughly circular osteon was subdivided into 36 sectors with an opening 
angle of 10 degrees and the average pressure was calculated over all the nodes in each sector 
together with the relative standard deviation of these 36 mean values. While the relative standard 
deviation was only 12% for both ordinary osteons and osteon-in-osteons, it was 44% for ordinary 
osteons and 53% for osteon-in-osteons.  
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By comparing all studied osteons, we observed a high variability in the pressure pattern between 
osteons, particularly in osteon-in-osteons. As shown in Fig. 4.15 A, the pressure profiles are non-
linear and very different, especially in osteon-in-osteons. For example, the pressure at the cement 
line  which is not fixed in our modeling approach  varies by more than a factor of three, between 
7 kPa and 25 kPa. This high variability is even stronger for osteon-in-osteons (Fig. 4.15 B). In 
osteon-in-osteons one smooth line per osteon (LOWESS fit) provides only a poor rendering of the 
pressure profile from the Haversian canal to the cement line, due to the much stronger angular 
dependency of the pressure pattern. The pressure values which are found in osteon-in-osteons are 
much higher than in ordinary osteons. The average pressure in the osteon-in-osteons is 12 times 
higher than the average pressure of ordinary osteons.  
 

 
Fig. 4.14. In our model of load-induced fluid flow, the fluid is forced out of the ordinary osteon (A) and 
osteon-in-osteon (B), similarly to how water is squeezed out of a steadily compressed sponge (i.e. constant 
strain rate). Pressure pattern images were made by plotting color coded spheres at the location of each node 
of the network for a representative ordinary osteon (A) and osteon-in-osteon (B). The difference in pressure 
patterns between the two osteon types is a direct result of a difference in LCN topology. The much higher 
pressure in the osteon-in-osteon is caused by a combination of the higher fluid flow velocity and the much 
lower intrinsic permeability of this osteon-in-osteon.  
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Fig. 4.15. 

normalized distance) and its pressure. Secondly, the data of all nodes in this scatter plot (plot not shown) 
were transformed in the shown profiles by using a local regression algorithm (locally weighted scatterplot 
smoothing, LOWESS). A) The pressure profile for all 8 ordinary osteons; B) shows pressure profiles for 
all 9 osteon-in-osteons. The color code in the background indicates the density of data points of the scatter 
plot for the osteon-in-osteon of Fig. 14 B. The corresponding LOWESS fit is shown by the thicker red line. 
This kind of representation was chosen to highlight the spatial heterogeneity of the pressure distribution in 
this case, which can be only poorly rendered by a LOWESS fit.  
 

4.2.4. Discussion of the Human Osteonal Bone Study 
The aim of the second project in my PhD work was to predict the mechanoresponsiveness of 
different osteon types based on differences in calculated load induced fluid flow patterns  (van Tol, 
Roschger et al. 2020). At older age mechanoresponsiveness is impaired as observed in earlier 
studies by Razi, Birkhold et al. (2015) and is one of the biggest challenges in medicine. Changes 
in the responsiveness of bone are often addressed on the cellular and subcellular level by 
elucidating signaling pathways from the cell membrane to the nucleus and back (Chen, Liu et al. 
2010, Jacobs, Temiyasathit et al. 2010). However, a general characteristic of mechanosensing is 
the integration of the multiple length scales to amplify the stimulus signal and to improve its 
fidelity. As we have concluded in the mouse tibia project of my PhD work, it is important to not 
focus entirely on the biology of osteocytes and the interaction with each other, but also to consider 
the flow of the interstitial fluid through the LCN. It is known that osteon-in-osteons are one of the 
products of remodeling, where the inner zone is newly formed bone (Tomes and De Morgan 1853, 
Ericksen 1991, Arhatari, Cooper et al. 2011, Maggiano, Maggiano et al. 2016, Andreasen, Delaisse 
et al. 2018, Raguin and Streeter 2018). Therefore, osteon-in-osteons are more common at older 
age and we assume that their altered LCN architecture plays an important role in aging of human 
bone.  
 
Several studies have explored the effect of an idealized LCN network topology on fluid flow in 
bone. Not only the topology of single canaliculi (e.g. tortuosity) has been taken into account 
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(Lemaire, Lemonnier et al. 2012), but also the influence of an idealized network connectivity has 
been studied (Steck and Tate 2005, Anderson, Kreuzer et al. 2008). New developments in the field 
of confocal microscopy and image analysis make it possible to image the topology of LCN 
networks in macroscopic bone volumes reliably (Repp, Kollmannsberger et al. 2017). The use of 
network data obtained in this way allowed us to study the fluid flow through realistic canalicular 
networks of full cross sections of human osteons.  

For the mechanobiological interpretation of our results Fig. 4.13 is the key. It shows which 
percentage of the canaliculi in the different types of osteons is stimulated by the fluid shear stress. 
For the range of shear forces that were reported to elicit osteogenic responses in osteocyte-like 
cells in in vitro studies (Smalt, Mitchell et al. 1997, Bakker, Soejima et al. 2001), the cumulative 
probability distributions are very similar for ordinary osteons and osteon-in-osteons. However, the 
conclusion that osteon type does not matter for mechanosensation is premature for several reasons. 
(i) Simulated fluid flow velocities in the osteon-in-osteons are considerably higher than the fluid
flow velocities we found in the mouse tibia study. It is therefore unclear from our results whether

increasing shear forces. In vitro experiments have been often performed in an artificial setting with 
cells adhering to plane surfaces. Progress has been made by performing such experiments with 
osteocyte-like cells (Lu, Huo et al. 2012). Using a genetically encoded fluorescent calcium 
indicator, recently it was shown that specific bending strains and frequencies elicited calcium 
spikes in mouse osteocytes. However, the intensity of the cellular response did not change when 
the load was further increased (Lewis, Frikha-Benayed et al. 2017). (ii) Important for the 
interpretation of Fig. 4.11 is how the signals of individual osteocytes are integrated to an effective 
signal controlling osteoblast and osteoclast action on the cortical bone surfaces, millimeters away 
from the osteons (Mullender, Huiskes et al. 1994, Huiskes 2000). From the mouse study we can 
argue that osteocytes closer to the bone surface should contribute more to the integral signal. 
However, there are often significant differences between the biology of mouse and human cells. 
An alternative hypothesis to this is that individual osteocytes which experience the highest stimuli 
play a dominant role in the mechanoresponse (Hartmann, Dunlop et al. 2011). (iii) Like in most 
mechanobiological models, some of the input parameters (listed in table 3.1) are very challenging 
to measure and therefore, are not sufficiently well characterized. As an example, the structure of 
the fibrous matrix in the pericellular space is not sufficiently known and, as a consequence, the 
value of the permeability of the pericellular space described by the parameter kp,eff has some 
uncertainty (Sansalone, Kaiser et al. 2013). As kp,eff occurs as a proportionality factor between the 
pressure difference and the average velocity in the canaliculus, effects are linear, i.e. a 10% 
increase in kp,eff would cause a 10% decrease in the fluid pressure. (iv) Most important, the shear 
stresses for the two osteon types are only very similar for the chosen strain rate of  = 0.015 s-1, 
which corresponds to vigorous exercise like running. For more everyday physical activities like 
walking the corresponding strain rate is about a factor of five lower (Lanyon, Hampson et al. 1975, 
Milgrom, Finestone et al. 2002, Al Nazer, Lanovaz et al. 2012). For comparison, the dashed line 
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in Fig. 4.13 represents the cumulative probability distributions for this more moderate loading on 
bone. In case of walking and other physical activities of even lower loads the large majority of 
osteocytic cell processes  in ordinary osteons would not receive sufficient stimulation to elicit an 
osteogenic response. In osteon-in-osteons the fluid flow through roughly 31% of the canaliculi is 
still fast enough to overcome the stimulation threshold for osteocytic mechanotransduction. For 
moderate loading the strain amplification mechanism via load-induced fluid flow is more efficient 
in osteon-in-osteons. Considering that the frequency of osteon-in-osteons increases with age 
(Ericksen 1991, Yoshino, Imaizumi et al. 1994), it can be speculated that this formation of more 
osteon-in-osteons is a potential mechanism to compensate for a general debilitation of the 
mechanosensing mechanisms.  
 

The opaqueness of the human bone limits the imaging depth to about 35 µm. This limitation in the 
dimensions of the imaging volume should have only minor consequences on the results of our 
study, since the LCN shows only a reduced structural heterogeneity in the direction perpendicular 
to the imaging plane compared to the much more pronounced heterogeneity within the imaging 
plane, particularly, in the radial direction towards the Haversian canal. We paid attention that the 
axial directions of the imaged osteons were perpendicular to the imaging plane by only selecting 
osteons where the Haversian canals appeared circular and straight along the z-axis. Additionally, 
the selected osteons were not close to Volkmann's canals and other structural features, which could 
influence the network topology in the direction perpendicular to the imaging plane. Previous 
studies could not show substantial differences in LCN structures between individuals (Repp, 
Kollmannsberger et al. 2017, Weinkamer, Kollmannsberger et al. 2019). Therefore, the limitation 
of using one human specimen for all the analysis should have no major impact on the main 
conclusions of our work. 
 
A limitation of the human osteon study is that we abstain from an intricate biomechanical 
description of the loading, but again assume a homogeneous strain rate, as it is often found to be a 
main determinant of fluid flow velocity in the LCN. To assume a homogeneous strain is 
reasonable, due to the limited impact of the low porosity (~1%) of the osteon (Yoon and Cowin 
2008). In the presented data we neglected the difference in the compressibility of the solid and 
fluid phases, which could limit the values of the pore pressure (Cowin 1999). To investigate this 
influence, we therefore extended the model to include a saturation pressure. This allowed us to test 
the robustness of our results regarding the assumption that the pericellular fluid is incompressible.  
 
To study the robustness of our modeling approach, the volumetric fluid flow sources (f in methods, 
eq. 3.8) in the osteons were limited by utilizing non- ources 
(Johnson 2003). In these sources the fluid output is limited as the fluid pressure reaches a defined 
saturation pressure to take into consideration the compressibility of the interstitial bone fluid under 
high pressures. Limiting conductors with conductivity  were introduced in parallel with the 
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ideal volumetric flow sources  in each node . As a result, the limited volumetric flow  goes 
to zero when the pressure  approaches the saturation pressure , 
 

 (4.1) 

 
 
and, therefore, 
 

 . (4.2) 

 
Thus, the maximum possible pressure in the osteon is equal to the saturation pressure. Due to the 
already lower values of the occurring pore pressures in the ordinary osteon, the choice of the 
saturation pressure has hardly any effect on the average fluid velocity when chosen above 1000 
kPa (Fig. 4.16 A). The maximum possible pressure in human osteons is estimated to be 12% to 
18% of the applied stress (Weinbaum, Cowin et al. 1994, Zhang, Weinbaum et al. 1998). Under 
stresses during exercise the saturation pressure is, therefore, likely to be above 5000 kPa (Jonkers, 
Sauwen et al. 2008, Al Nazer, Lanovaz et al. 2012). For a saturation pressure of 5000 kPa this 
would result in a reduction of the average fluid flow velocity by 11% for osteon-in-osteons. Taking 
for comparison the osteon-in-osteon with the largest values of the pore pressure, the fluid flow and 
pressure patterns are still qualitatively very similar. The resulting pressure pattern obtained for a 
saturation pressure of 5000 kPa is indistinguishable from the one shown in Fig. 4.14 D when the 
same scale is used. 
 
This saturation pressure had no significant influence on the outcomes, even when applied to the 
osteon-in-osteon which showed the highest fluid pressure. Also, poroelastic models of osteons 
showed that a limitation of the pressure only has a limited effect on the fluid flow velocity 
(Remond, Naili et al. 2008, Yoon and Cowin 2008). 
 
 

 
Fig. 4.16. The effect of a pressure limitation on the average fluid flow velocity in ordinary osteons (blue) 
and osteon-in-osteons (red). A) The relative reduction of the average fluid flow velocity is plotted as 
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function of the saturation pressure. The shaded region denotes the standard deviation. B) The pressure 
pattern with saturation pressures of 50 kPa, 500 kPa and 5000 kPa, respectively. 
 

In our study we modeled the cement line as an impermeable boundary. Based on reports on 
canaliculi crossing the cement line (Curtis, Ashrafi et al. 1985), particularly in younger individuals 
(Milovanovic, Zimmermann et al. 2013)
systematically studied.  
To study the sensitivity of the model for a leading cement line, a total leakage flow was added to 
the volumetric fluid flow sources f of only the cement line nodes:  

 (eq 4.3) 

 
Since the direction of the flow at the cement line is unknown, we simulated both possibilities, i.e. 
leakage into and out of the osteon (positive and negative leakage, respectively). The volumetric 
leakage flow was defined as a percentage of the total volumetric flow into the Haversian canal of 
the osteon. For example, with a leakage of 5% and a total volumetric flow into the Haversian canal 

characteristic pressure patterns in these simulations, as demonstrated by the pressure plots in Fig. 
1.17 A. An approximately linear effect was detected between the amount of fluid leaking through 
the cement line and the average pressure and fluid flow (Fig. 1.17 B), while the characteristic 
pressure and flow patterns of the osteons types were maintained (Fig. 1.17 A). Moreover, since 
realistic values of leakage are likely below 1%, the consideration of a leaking cement line does not 
change our conclusions concerning the difference between ordinary osteons and osteon-in-osteons.  
 
 

 
Fig. 4.17. Consideration of a leaking cement line in the model A) Pressure profiles plotted as function of 
the normalized distance. As in Fig. 4.15 the distance is normalized so that Haversian canal = 0, cement line 
= 1. Four different cases of cement line leakage (all severe cases of leakage) were compared to the 
impermeable cement line (red line). B) The relative impact of the four leakage scenarios on average fluid 
flow velocity and pressure in the two representative osteons from Fig. 4.10, quantified as %change from 
the reference case of an impermeable cement line.  
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5. CONCLUSION AND OUTLOOK 
 
The fluid flow hypothesis states that load-induced fluid flow through the lacunocanalicular 
network (LCN) is the most important stimulus for osteocytes, as the deformations of the stiff bone 
are too small to be sensed directly. The objective of this PhD thesis was to test the hypothesis that 
the architecture of the LCN is a strong contributor to the load-induced fluid flow pattern, and 
therefore important for the mechanoresponsiveness of bone. We approach the LCN as the 
hardware, which is responsible for amplification of the mechanical signals, while the biochemical 

is then signaled to the surfaces of bones, in order to recruit the cells that do the bone formation and 
resorption work.  
 
By measuring the network architecture, the properties of millions of the LCN components at the 
microscale were experimentally obtained, while computational techniques were applied to 
estimate the load-induced fluid flow. A strong heterogeneity was observed in all fluid flow 
patterns, which stresses the importance of taking the LCN architecture into account. Since we 
obtained fluid flow patterns in such fine detail, the quality of the images was found to be essential 
for obtaining adequate fluid flow patterns. Cracks, which very easily form during sample 
preparation, as well as movement artefacts in the microscopic images, lead to artefacts in the fluid 
flow patterns. A big advantage of performing both the imaging and the computational analysis of 
the network by myself is that I could detect this difficulty early. With the observed problems in 
mind I could repeat the imaging experiments of the LCN to create the three high quality datasets.  
 
Based on the comparison with measured mechanoresponses in mice, we concluded that the fluid 
flow was a better predictor of the bone mechanoresponse than strain, especially at the periosteal 
surface. The calculated load-induced fluid flow velocities could more accurately predict where 
formation and resorption occurred, and we could even predict the thickness of the newly formed 
bone. Additionally, the mouse with the lowest fluid flow velocity had a thinner layer of newly 
formed bone compared to the other mice. In contrast, we did not observe most of the bone 
formation near the surfaces of highest strain. Moreover, the strain patterns in the three mice were 
very similar, and therefore, could not explain the differences in mechanoresponse between mice.  
 
Due to the extensive characterization of the LCN we could qualitatively explain how the fluid flow 
was differently influenced by local differences in network architecture and what the role of 
individual blood vessels was. Fluid flow likes to take the path of least resistance. When vascular 
canals are connected to part of the LCN, which has a poor connection to the bone surface, then the 
path of least resistance leads to the vascular canals. This shields this surface of the bone from the 
fluid flow and therefore, is  less mechanoresponsive. In contrast, fluid could be accelerated if a 
tree-like network funnels the flow in fewer canaliculi. These tree-like networks were more 
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pronounced near more mechanosensitive surfaces. This stresses that for a full understanding of 
bone mechanoresponse of bone, the LCN architecture cannot be neglected.  
 
The LCN architecture of mouse and human bone are fundamentally different. Human cortical bone 
contains secondary osteons of two types: (i) ordinary osteons, with a continuous network 
architecture, and (ii) osteon-in-osteons.  Fluid flow patterns indicated that the osteon-in-osteons 
are the more mechanosensitive of the two. We also can observe here the role of the network 
architecture, as average fluid flow velocity shows direct proportionality with the average shortest 
path length. We concluded that longer paths have a larger pore volume (i.e. contain more fluid) 
that must be drained into the Haversian canal, which leads to higher velocities in longer paths.  

 
The research strategy that was successfully applied in this thesis for mouse bone and human 
healthy bone, has high potential for future research. As most promising future research projects, 
the following list comes to mind: 

 Pathological LCN architectures 

This PhD thesis focused on the mechanoresponse in healthy tissues, since there was almost no 
basic knowledge of the impact of the LCN architecture on the mechanoresponse of bone. 
Genetically altered mice are commonly used to study diseases. We are currently investigating mice 
presenting premature aging, which do not show a mechanoresponse. As an altered LCN 
architecture was observed, we collaborate to investigate the link between this abnormal LCN 
architecture and the compromised mechanoresponse.  

 Different Skeletal sites 

It would also be interesting to investigate what the roles of different network architectures are in 
different types of bone. Can we for example explain what the role of the osteocyte network is in 
bones with a different mechanoresponsiveness, such as the skull? It is mostly just speculated how 
changes in the LCN architecture influence the functionality of the osteocyte network in cases of 
diseases. Investigations into the connectome will help to lead into new insights.  

 model refinement - compressibility of fluid 

In the used model approach, I assumed that a steady fluid flow velocity is reached, which is directly 
proportional to the strain rate. However, this assumption is not realistic in cases of very high 
pressure or for high loading frequencies. For small deformations, it is often assumed that the 
relationships between stress and strain are linear. Introducing effective stiffness of the pore (E) 
allows us to use a linear equation to relate with pore fluid pressure (P) and change in pore volume 
( ).  

 .         (5.1) 
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The effective stiffness E can be determined via different models. One could go into detail and use 
a FEM model to calculate it for each individual lacuna, or one could for example adapt the 
simplified poroelastic model by Cowin et al.  

Due to the direct linear relationships this can be modeled in a similar way as a capacitor, 
representing the effective stiffness (Fig. 5.1). The pore volume changes due to strain can also here 
be modeled as an ideal volumetric flow source, similarly to what I did in my PhD study:  

 . (5.2) 

Here  is the volume at rest (i.e. zero pressure and zero strain). The volume change due to 
compression of the fluid is then represented by the volume change in the capacitor, while the 
volume change due to fluid displacement would flow through the two connection points in the 
right (Fig. 5.1). This circuit behaves like a low pass filter, where the output flow is attenuated a 
higher frequencies and the phase of the output flow lags behind that of the volume change.  

Fig. 5.1. A model of a network pore 
which takes the compressibility of fluid 
into account by introducing a capacitor 
which is placed parallel to the earlier 
used ideal fluid flow source. 

To solve a network with these fluid flow sources one can make use of the Laplace transformation, 
which is commonly used to solve alternating currents and voltages in electrical networks of 
resistors, capacitors and inductors. This inertia of the fluid could be modeled as an inductor. In this 
analogy the phase angle of the flow that lags behind the pressure models the pressure gradient 
which slowly accelerates the fluid due to its mass. In short, this results in a set of linear equations 
with complex numbers, where the magnitude is the fluid flow velocity and the argument represents 
the phase angle between strain rate and flow. This improved model can be used to explore how 
bone reacts to different frequencies, as well as how energy is dissipated in the system. When flow 

when the flow 

Diffusion and convection 
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Tracer experiments are often mentioned as proof of fluid flow through the LCN. However, very 
simple models are used to calculate the fluid flow velocity from measured tracer concentrations. 
Transport of tracers happens spontaneously via diffusion (see for example our rhodamine staining) 
and load-induced fluid flow increases the velocity of the tracer. Therefore, including diffusion of 
molecules in network models would also contribute to the biological field. In Fig. 5.2 I show a 
proof of concept, where Markov chains were used to calculate how a substance diffuses from the 
Haversian canal into the different osteons. A discrete time Markov chain is a commonly used 
stochastic model describing a sequence of possible events, for example, the possibility for a 
substance to move from node to node via the canaliculi. In this example the Markov chain models 
a random walk by defining the possibility of a substance to make a random step through the LCN 
in the transition matrix P. The probability Pij to step from node i to node j depends on the 
connectivity of the LCN (if i and j are connected) as well as the length of canaliculi. The initial 
state of the model, for example the concentration in the nodes, is defined by a state matrix S0. After 
each step the state is multiplied to reach the next state. The state SN after N steps is defined as 
 

.         (5.3) 

Note that the probability to step from node i to node j can be different than to step from node j to 
node I, which can be used to introduce a bias to simulate for example convection.  
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Fig. 5.2. Proof of concept of the Markov chain approach to model diffusion through the LCN of osteon-in-
osteons (top) and ordinary osteons (bottom). The color indicates the concentration of the immaginary 
substance in the nodes after 650 time steps The x and y axis indicate the position in µm. The dots in the 
Haversian canal of the left figures are special nodes, which connects all canaliculi which enter the Haversian 
canal. In other plots these nodes are hidden. 

 

  



5. Conclusion and Outlook 
 
 

80 
 

5.1. Additional Projects During my PhD Time 
 
During my PhD study I was involved in several other projects in the bone-related research. This 
section is a short summary of these projects highlighting my contributions.  

Mineral homeostasis is important for the health of most of our organs. Due to the density of the 
LCN 80% of the bone mineral is within 2 µm of the canaliculi. This, in combination with the 
excellent connectivity of the LCN, would make the LCN wall a good candidate for a vast mineral 
reservoir. Therefore, we spatially correlated the LCN architecture with the local bone mineral 
density. We observed a positive correlation between the local canalicular density and local mineral 
density, i.e. an accumulation of mineral has occurred at dense network regions (Roschger, 
Roschger et al. 2019). Note that if mineralization was independent of the LCN, we would have 
observed an inverse correlation due to the increased porosity. The spatial correlation therefore 
suggests a direct impact of the osteocytes to the mineralization process of newly formed bone.  

The mice I work on are used in the project of a PhD student (Victioria Schemenz) in the group of 
Wolfgang Wagermaier. There have been several studies that related the osteocyte LCN to material 
properties of the bone near the canaliculi, but it was not yet done in a full cross section of the 
mouse bone. One of the measurements I did not cover in my thesis, second harmonic imaging of 
the collagen in our mouse tibiae, gives an indication of the collagen orientation (Repp, 
Kollmannsberger et al. 2017). This data will be covered by the PhD thesis of Victoria in the part 
where the properties of the network, the collagen orientation and properties of mineral crystals will 
be correlated. The mineral crystal dimensions and orientation were measured using synchrotron 
SAX and WAX diffraction studies. We measured the diffraction in the PETRA III beamline in 
DESY, Hamburg. From this data she could identify different types of bone (i.e. new, lamellar and 
woven) as well as some mineralized cartilage.  

Halfway in my PhD study, our institute got a new state-of-the-art imaging instrument, a scanning 
electron microscope (SEM) equipped with a focused ion beam (FIB) to mill the surface specimen 
with high precision. This allows for nanometer resolution imaging in 3D. We suggested several 
projects which would benefit from this instrument. The nanometer resolution would for example 
be well suited to image the diameter of canaliculi. How wide are the bridging canaliculi for 
example? Moreover, the SEM shows a strong contrast between mineralized bone and organic 
extracellular matrix. Therefore, this is an excellent tool to study the effect of canaliculi on 
mineralization. PhD student Mahdi Ayoubi measured the mineralization zone in a large number of 
newly forming human osteons at 4 nm resolution and segmented the canalicular network in these 
datasets. I supported the image analysis by writing a python script to perform spatial correlation 
between the canaliculi and the degree of mineralization. When Mahdi performed the correlation, 
he observed that newly formed bone tends to mineralize significantly slower in the vicinity of 

independent of the canaliculi. This indicates that canaliculi are locally actively preventing 
mineralization in very young bone.  
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We collaborate with PhD student Chloé Lerebours and Dr. Pascal Buenzli to study the interplay 
between bone fatigue, remodeling and mineralization in a model of trabecular bone. The model 
was developed during a research stay at Monash University, Melbourne, in January/February 2017. 
The hypothesis in this study is that fatigue stimulates the resorption of bone, and therefore 
influences the remodeling rate. Changes in remodeling can be detected from changes in the bone 
mineral density distribution (BMDD). Therefore, we calibrate the model with measured BMDDs. 
Although work is still in progress, we observed that it is possible that bone fatigue regulates the 
remodeling rate, based on the resulting BMDD. We can also simulate why after sudden extreme 
exercise the bone volume first decreases, before the bone adapts to the increased load by increasing 
the amount of bone.  

The difference in canalicular density between mouse and human bone is strong. Therefore, it seems 
possible to distinguish between these two types of bone. This observation was used by the group 
of Dr. Amaia Cipitria. In a 
helped to obtain the canalicular density and lacunar volume to distinguish between human and 
mouse bone. By comparing these parameters with immunological staining, we concluded that the 
LCN can indeed be used to identify human bone tissue within a mouse. Also in a second study by 
this group I helped with the quantification of the LCN parameters (Ziouti, Soares et al. 2020). 

In a collaboration with Uwe Kornak, Charité University Hospital, Berlin we work on the disease 
gerodermia osteodysplastica. It is characterized by early-onset osteoporosis due to early aging. 
When GORAB, the responsible disease gene, is knocked out in mice they show strong changes in 
their LCN. The canalicular density decreases and the vascular porosity increases. Based on the 
conclusions of my thesis we can hypothesize that these changes in the lead to a decreased 
mechanoresponsiveness. 
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