N-heterocyclic carbene derivatives for the activation of sulfur fluorides

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

im Fach: Chemie

Spezialisierung: Anorganische und Allgemeine Chemie

eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin

von

MTech. Pooja Tomar

Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät Prof. Dr. Elmar Kulke

Gutachter/innen: 1. Prof. Dr. Thomas Braun

2. Prof. Dr. Erhard Kemnitz

3. Prof. Dr. Christian Müller

Tag der mündlichen Prüfung: 02.07.2020

Acknowledgments

First of all, I would like to thank Prof. Dr. Thomas Braun, for giving me this opportunity to join his working group and carry out research under his supervision. In particular, I am thankful to him for the understanding, trust and motivation he has given throughout these years. I am grateful for the tips, suggestions and time he has dedicated in our numerous scientific discussions. I am very grateful to him, for not giving up on me, even when the project got challenging, also for giving me the freedom of exploring other topics and always helping me with his expertise.

Secondly, I would like to thank my second supervisor Prof. Erhard Kemnitz, for allowing me to carry out this collaborative research. It has been a great learning experience and it certainly widened my extent of knowledge from homogeneous to heterogeneous reaction systems.

I would like to extend my gratitude to Prof. Dr. Christian Müller for giving his valuable time in reviewing the thesis. I am also very thankful to Jun.-Prof. Dr. Matthew Hopkinson and Prof. Dr. Dietrich Volmer for agreeing to be a member of the doctoral committee.

I am thankful to the DFG (Deutsche Forschungsgemeinschaft) and the graduate school SALSA (School of Analytical Science Adlershof) for the financial support and conference allowances.

I am extremely thankful to Nils Pfister, Clara Marshall and Dilcan Dirican for devoting their time in revising my thesis.

I would like to thank all the analytical services and technical staff of the HU, Berlin. In particular, I am thankful to Prof. Dr. Clemens Mügge, Dr. André Dahlmann, Frau Pfaff, Frau Thiesies and Jana Hildebrandt for providing the NMR services. Also, thanks to Claudia Berg, Philipp Roesch, Cortney von Hahmann and Nils Pfister for measuring the low-temperature NMR spectra. I would like to thank Dr. Mike Ahrens and Dr. Maria Nevado Talavera for the LIFDI measurements. I am grateful to Dr. Mike Ahrens also for making a small *Swagelok* stainless steel line suitable for my reaction hood. Likewise, I would like to thank Dr. Thoralf Krahl for his help in the luminescence emission measurements, Dr. Iweta Pryjomska-Ray for her help in installing a potentiostat for the voltammetry experiments and Dr. Matthias Schwalbe for his time and suggestions he gave in understanding the electrochemistry experiments. I would like to appreciate Dr. Beatrice Braun, Reik Laubenstein, Philipp Wittwer and Stefan Sander for their attempts to determine the crystal structures in solid state and for their tips to get good crystals out of the sensitive reaction samples.

I would like to thank all the former and present members of AK Braun for being very supportive and helpful throughout these years. Special thanks to all my lab mates, Hanna, Claudi, Nils, Òscar and Liza for creating an amazing working atmosphere. I am extremely thankful to Hanna, Claudi and Gisa for their massive help in the beginning of my PhD, teaching me every small working technique. I would like to specially thank Nils for being always there to support and help in every possible way. Thanks to Martin for always being enthusiastic to make the SF₆ line better, Ruben for learning the cyclic voltammetry and Domenique for taking this research topic forward. I would like to thank Philipp Wittwer, Macha, Hui and Clara for sharing the office and making the thesis writing enjoyable.

I can't thank enough Clara, Dilcan and Macha for their amazing friendship and beautiful bonding we share. I will always miss and embrace my time I spent here with "you people".

I would like to thank SALSA girls, Marija, Clara, Melissa, Kristina, Vesna and Christine for the lovely time we had during SALSA events.

I would like to appreciate Christopher for being such a nice friend and listener of all my stories from work, even when he did not have any clue of chemistry.

Finally, I would like to thank my parents, my sister Ruchi and my brother Bunty for their unconditional love, support and blessings. Thanks for the belief you have in me that I can achieve anything. I would like to thank my husband Prashant for giving me so much positivity, emotional strength, encouragement and love. Thanks for being very understanding and always making it easier for me to achieve my goals. I would also like to thank my family-in-law for their love and care. Again big thanks to all my family and friends in India for always keeping me part of their celebrations through videos and calls.

Publications

- 1. Photochemical activation of SF₆ by *N*-heterocyclic carbenes to provide a deoxyfluorinating reagent, <u>P. Tomar</u>, T. Braun, E. Kemnitz, *Chem. Commun.* 2018, 54, 9753-9756.
- 2. Preparation of NHC stabilized Al (III) fluorides: Development of reaction routes by fluorination of [(SIMes)AlMe3] with SF4 or Me3SnF, P. Tomar, T. Braun*, E. Kemnitz, Eur. J. Inorg. Chem. 2019, 4735-4739.
- 3. N-heterocyclic carbenes mediated activation of SF₅CF₃ to access a trifluoromethylation reagent, P. Tomar, T. Braun, E. Kemnitz, 2020, Manuscript in progress.
- **4.** Convenient and selective synthesis of acyl fluorides from aldehydes with 1,3-dimesityl-2,2-difluoro-imidazolidine SIMes(F)₂, P. Tomar, R. Müller, M. Kaupp, T. Braun, E. Kemnitz, **2020**, *Manuscript in progress*.

Conference Presentations

- 1. Poster presentation at 8. Berliner Chemie Symposium, September 2019, Berlin, Germany.
 Pooja Tomar, Thomas Braun, Erhard Kemnitz.
 Title: Reduction and Transformation of the Green House Gas SF₆ into a Deoxyfluorinating Reagent.
- **2. Poster presentation at 19th European Symposium on Fluorine Chemistry**, August 2019, Warsaw, Poland. Pooja Tomar, Thomas Braun, Erhard Kemnitz. Title: Reduction and Transformation of the Green House Gas SF₆ into a Deoxyfluorinating Reagent.
- **3. Oral presentation at 18. Deutscher Fluortag,** September 2018, Schmitten/Taunus, Germany. Pooja Tomar, Thomas Braun, Erhard Kemnitz. Title: A Metal-Free Approach for Degradation and Transformation of Green House Gas SF₆ into a Fluorinating Reagent.
- **4. Poster presentation at 22nd International Symposium on Fluorine Chemistry**, July 2018, Oxford, United Kingdom. Pooja Tomar, Thomas Braun, Erhard Kemnitz. Title: Activation and Transformation of the Green House Gas SF₆ into a Fluorinating Reagent A Metal-Free Approach.
- **5. Oral presentation at SALSA Summer University**, September 2016, Berlin, Germany. Pooja Tomar, Mona Bauer, Georgios Kasparis, Clara Marshall, Marija Vranic. Challenge Session with Guest Prof. Bruno Chaudret. Magnetic nanoparticles for Fischer Tropsch Synthesis and Heterogeneous Catalysis.
- 6. **Poster** presentation December 2015, at SALSA, Berlin, Germany. Pooja Tomar, Thomas Erhard Kemnitz. Braun, Title: Cluster compounds as models for lewis acidic aluminium oxide and fluoride surface sites

Abstract

The metal-free activation of the greenhouse gas SF₆ using electron-rich *N*-heterocyclic carbenes (NHCs) furnished 2,2-difluoroimidazolines or 2,2-difluoroimidazolidines and 2-thio derivatives of the NHC precursors. The NHCs can reduce SF₄ as well to give same products. A complete degradation of an another greenhouse gas SF₅CF₃ also gave 2,2-difluoro- and 2-thio-derivatives along with the 2-fluoro-2-trifluoromethyl- derivative of the NHC precursors.

The 1,3-dimesityl-2,2-difluoroimidazolidine [SIMes(F)₂] was taken as an exemplary substrate to be applied in deoxyfluorination reactions and acyl fluorination of aldehydes via aldehydic $C(sp^2)$ –H bond activation. Additionally, the activation of SF₆ and the fluorination of 1-octanol into 1-fluorooctane can be coupled in a one-pot process. Furthermore, trifluoromethylation of Me₃SiCl and arenes was observed with the 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine [SIMes(F)(CF₃)].

SIMes(F)₂ was also used for the fluorination of complex [(SIMes)AlMe₃] to synthesize the NHC stabilized Al(III) fluoride [(SIMes)Al(F)(Me)₂]. Various alternative reaction routes have been developed to synthesize the NHC stabilized Al(III) fluorides [(SIMes)Al(F)(Me)₂] and [(SIMes)Al(F)₃] through the fluorination of [(SIMes)AlMe₃] with SF₄, SF₆ and Me₃SnF. The complex [(SIMes)Al(F)₃] was successfully employed for a F/Cl exchange reaction by treating it with Me₃SiCl to yield [(SIMes)Al(Cl)₃] and Me₃SiF.

Kurzzusammenfassung

Die metallfreie Aktivierung des Treibhasgases SF₆ unter Verwendung von elektronenreichen *N*-heterocyclischen Carbenen (NHCs) resultierte in der Bildung des jeweiligen 2,2-Difluorimidazolins und Imidazolin-2-thions bzw. 2,2-Difluorimidazolidins und Imidazolidin-2-thions. Die Reduktion der NHCs mit SF₄ liefert dieselben Produkte. Im Abbau von SF₅CF₃ mit NHCs werden ebenfalls die zuvor genannten Produkte erhalten, wobei zusätzlich das entsprechende 2-Fluor-2-trifluormethylderivat gebildet wird.

Exemplarisch wurde 1,3-Dimesityl-2,2-difluorimidazolidin [SIMes(F)₂] als Fluorierungsreagenz von Aldehyden unter Bildung von Acylfluoriden sowie als Deoxyfluorierungsreagenz eingesetzt. In einem *one-pot*-Prozess kann zudem die Aktivierung von SF₆ mit der Deoxyfluorierung von 1-Oktanol zu 1-Fluoroktan kombiniert werden. Des Weiteren konnte 1,3-Dimesityl-2-fluor-2-trifluormethylimidazolidin [SIMes(F)(CF₃)] zur Trifluormethylierung von Me₃SiCl und Arenen eingesetzt werden.

Der Einsatz von SIMes(F)₂ ermöglicht die Darstellung von des NHC-stabilisierten Al(III)-Fluorids [(SIMes)Al(F)(Me)₂] durch Monofluorierung von [(SIMes)AlMe₃]. Durch Variation des Fluorierungsmittels (SF₄, SF₆, Me₃SnF) kann ein höherer Fluorierungsgrad erreicht und [(SIMes)Al(F)₃] synthetisiert werden. Dieser Al-Komplex konnte durch Halogenaustausch mit Me₃SiCl in [(SIMes)Al(Cl)₃] überführt werden.

Table of Contents

1. General Introduction	1
1.1. Role of fluorine in everyday life	1
1.2. Synthesis strategies of fluorination.	3
1.2.1. Deoxyfluorination	4
1.2.2. Trifluoromethylation	4
1.2.3. Pentafluorosulfanylation	5
2. Background Literature	7
2.1. Sulfur Hexafluoride (SF ₆)	7
2.1.1. Properties and Usage	7
2.1.2. Greenhouse effect of SF ₆	8
2.2. Approaches for the removal of SF ₆	9
2.2.1. Replacement of SF ₆ with other inert gases for its industrial use	9
2.2.2. Thermal decomposition	9
2.2.3. Nonthermal plasma decomposition	10
2.2.4. Photo-reductive decomposition	10
2.2.5. Catalytic hydrolysis and oxidation	11
2.2.6. Chemical reduction.	12
2.2.7. Metal-free activation of SF ₆	15
2.3. Trifluoromethyl sulfur pentafluoride (SF5CF3)	19
2.3.1. Origin and properties of SF ₅ CF ₃	19
2.3.2. Global warming potential of the SF ₅ CF ₃	21
2.3.3. Reduction or chemical transformation of SF ₅ CF ₃	21
2.4. Sulphur tetrafluoride (SF ₄)	24

2.4.1. Properties and structure of SF ₄	24
2.4.2. SF ₄ reactivity	25
2.5. N-heterocyclic carbenes (NHCs): Stability and reactivity	28
3. Research Objective	34
4. Results and Discussion	36
4.1. Reduction of sulfur hexafluoride with NHCs	36
4.1.1. Photochemical activation of SF ₆ with N-heterocyclic carbenes (NI	HCs)36
4.1.2. Independent synthesis of the products obtained from the activation	n of SF ₆ with-
SIMes	39
4.1.3. Mechanistic proposal for the activation of SF ₆ with NHCs	41
4.1.4. Redox potential of NHCs	43
4.2. Reduction of SF ₅ CF ₃ with SIMes	49
4.2.1. Activation of SF ₅ CF ₃ with SIMes	49
4.2.2. Independent synthesis of [SIMes(F)(CF ₃)]	51
4.2.3. Comparison among NHCs for the reduction of SF ₅ CF ₃	53
4.2.4. Mechanistic proposal for the activation of SF ₅ CF ₃ with SIMes	53
4.2.5. Photochemical activation of SF ₅ CF ₃ with SIMes	55
4.2.6. Possible pathways of CF ₃ group transfer to arenes	56
4.3. Fluorination with 2,2-difluoroimidazolidin SIMes(F)2	59
4.3.1. Deoxyfluorination	59
4.3.2. Deoxyfluorination of alcohols with SIMes(F) ₂	61
4.3.3. Role of CsF	62
4.3.4. One-pot deoxyfluorination of alcohols with SF ₆	64
4.4. Fluorination with SIMes(F) ₂ to access acyl fluorides	66

4.4.1. Properties and synthesis of acyl fluorides	66
4.4.2. Deoxyfluorination of benzoic acid with SIMes(F) ₂	67
4.4.3. Direct fluorination of aldehydes	68
4.4.4. Comparison of the SIMes(F) ₂ with DFI and PhenoFluor [™]	69
4.4.5. Mechanistic proposal for the formation of acyl fluorides with SIMes(F) ₂	71
5. Synthesis of organoaluminiumfluorides with SIMes(F) ₂	74
5.1. Introduction	74
5.1.1. Aluminium fluorides	74
5.1.2. Organoaluminium fluorides	77
5.2. Results and Discussion	81
5.2.1. Fluorination of [(SIMes)AlMe ₃] with SIMes(F) ₂	81
5.2.2. Fluorination of [(SIMes)AlMe ₃] with SF ₄	83
5.2.3. Fluorination of [(SIMes)AlMe ₃] with SF ₆	85
5.2.4. Fluorination of [(SIMes)AlMe ₃] with Me ₃ SnF	85
5.2.5. Alternative routes for the synthesis of NHC-stabilized-	
aluminium (III) fluorides	87
5.2.6. Reactivity of the NHC-stabilized aluminium (III) fluorides towards-	
halogen exchange reactions	90
6. Summary	91
7. Experimental	98
7.1. General working techniques	98
7.2. Instrumentation	99
7.3. Procedures	102

8. Bibliography	127
9. Appendix	144
9.1. Abbreviations	144
9.2. Cyclic voltammograms of NHCs	147
9.3. UV-vis spectra of NHCs	150
9.4. Emission spectra of NHCs	153
9.5. Selbstständigkeitserklärung	156

1. General Introduction

1.1. Role of fluorine in everyday life

Fluorine is a highly advantageous element because it has found its way into almost every branch of chemistry and opened up new paths for scientific progress. The element fluorine plays a key role in pharmaceutical, agrochemical and material science research. [1][2][3] The interest in fluorinated compounds is based essentially on the extraordinary electronic and chemical properties of the fluorine atom. [1a-c, 4] The replacement of hydrogen atoms by fluorine atoms often results in drastically changed physical, chemical and biological properties compared to the non-fluorinated parent compound in organic molecules. [5]

Fluorine has highest electronegativity of 4.0 on the Pauling scale among all elements in the periodic table.^[5] Due to the high electronegativity of the fluorine atom, element – fluorine bonds show considerable ionic bond character, which results in a low polarizability and a short bond. These features often give element - fluorine bonds considerable thermodynamic and kinetic stability. [1b, 4e, 5-6] Thus, fluorine forms the strongest known σ bond to carbon among all elements.^[5] The introduction of fluorine atoms in bioactive organic molecules can increase the lipophilicity and metabolic stability of drugs due to the considerable C – F bond energy and polarity. [1d, 1e, 3] Thayer in 2006 reported that nearly 20 % of pharmaceuticals are estimated to contain fluorine atom. [1c] Some representative examples of fluorinated pharmaceuticals are Lipitor® (atorvastatin), a cholesterol-lowering drug; fluorouracil, a chemotherapy drug; norfloxacin, a broadspectrum antibiotic; risperidone, an antipsychotic drug (Figure 1).[1d, 1e, 3] Another important feature of the fluorine atom is its small atomic radius (1.4 Å) which induces low coefficient of friction and high hydrophobicity in highly fluorinated systems. [1b, 4c-e, ^{5]}. Therefore, the highly fluorinated systems are useful in making surface coatings such as Teflon[®] (polytetrafluoroethylene) or water-repellent fabrics like Gore-Tex[®] (Figure 1).[1b] Perfluorinated and partially fluorinated molecules have diverse application in the form of coolants, fire extinguishing agents, dyes, anesthetics and plant protection agents.[4f, 7]

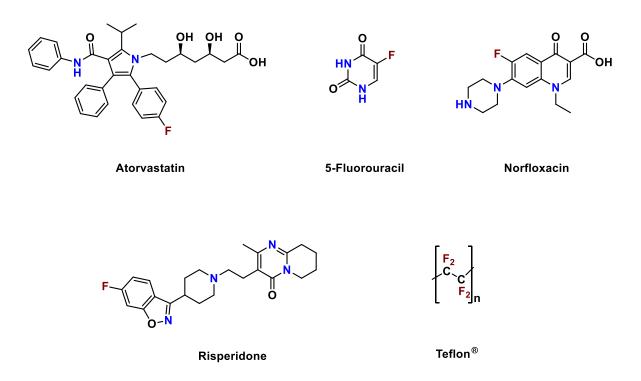
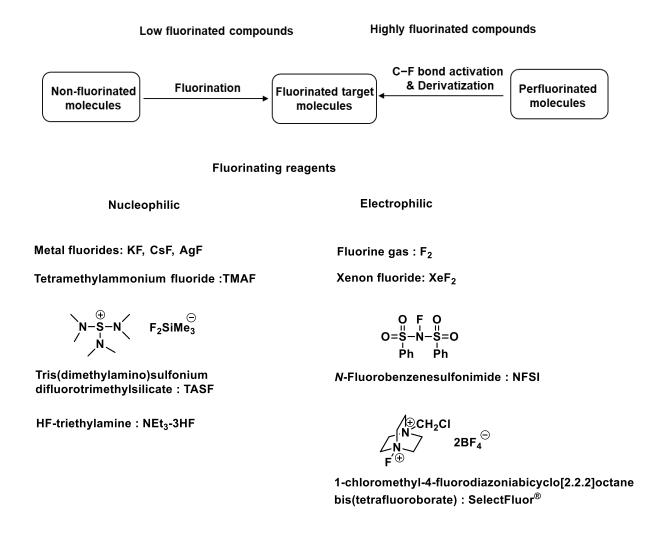



Figure 1. Examples of fluorinated pharmaceuticals and polymers. [1b, 1d, 1e, 3]

It is clear from the examples mentioned that the incorporation of fluorine into compounds indeed plays a pivot role in everyday life. However, although fluorine is the 13th most common element in the earth's crust, majority of naturally occurring fluorine is found in the form of fluorspar (CaF₂) and cryolite Na₃AlF₆. The fluorinated natural products are the least common organohalides on the earth, thus, development of new methods for the introduction of fluorine atom into organic or inorganic molecules is of enormous academic and industrial interest.^{[1a-g, 8][9][3]}

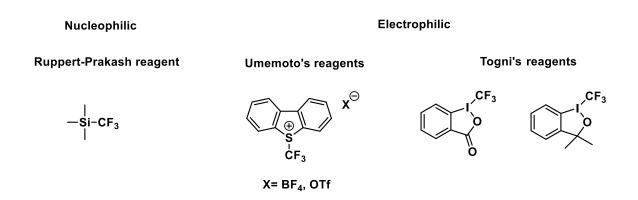
1.2. Synthesis strategies of fluorination

Two general pathways for the preparation of fluorinated compounds are shown in **Figure 2**. The **Figure 2** depicts that the synthesis strategy of fluorination depends on the desired degree of fluorination of the target molecules. If a perfluorinated compound is used as the starting material, highly fluorinated organic molecules can be obtained through C-F bond activation. [6a, 8, 10] Low fluorinated molecules can be prepared by direct fluorination of organic molecules with electrophilic or nucleophilic fluorinating agents (**Figure 2**). [4f, 11]

Figure 2. Synthetic strategies of fluorination with nucleophilic or electrophilic fluorinating reagents or *via* C–F bond activation. [4f, 6a, 10]

1.2.1 Deoxyfluorination

Despite the number of fluorinating reagents discussed above, incorporation of fluorine is not easy, often due to the high reactivity and poor selectivity of these reagents. An alternative synthesis strategy has emerged to incorporate the C–F bond in organic molecules through deoxyfluorination reaction. Deoxyfluorination reagents are broadly categorized as lower sulfur fluorides derived reagents such as sulfur tetrafluoride (SF₄), N,N-diethylaminosulfurtrifluoride (DAST) or Deoxo-fluor and imidazole derived reagents such as 2,2-difluoro-1,3-dimethylimidazolidine (DFI), PhenoFluor or AlkylFluor.


1.2.2. Trifluoromethylation

The introduction of trifluoromethyl group (CF₃) in organic molecules could significantly improve their molecular properties such as lipophilicity, metabolic stability and permeability.^[1b, 1e, 11b, 14] Therefore, organic compounds bearing CF₃ groups are widely used in pharmaceuticals and agrochemicals. For example, the antidepressant fluoxetine (Prozac®) and the urea herbicide fluometuron (Cotoran®) contain the CF₃ group (**Figure 3**).^[1]

Figure 3. Examples of CF₃ group containing pharmaceuticals (Prozac[®]) and herbicide (Cotoran[®])^[1]

The benefits of trifluoromethyl group (CF₃) in biologically active molecules has promoted the development of novel methods to construct C–CF₃ bonds. The CF₃ group can be introduced into various organic structures via nucleophilic, electrophilic and radical trifluoromethylation. For the nucleophilic trifluoromethylation in organic molecules, Ruppert-Prakash reagent with a fluoride anion catalyst is the most commonly

used compound (**Figure 4**).^[15a-c, 15f, 15i, 16] The electrophilic trifluoromethylation is commonly achieved with trifluoromethylchalcogen salts (Umemoto's reagents) or iodonium salts (Togni's reagents) accompanied by an electron transferring catalyst (**Figure 4**).^[13l, 15g-i, 17]

Figure 4. Examples of nucleophilic and electrophilic trifluoromethylation reagents.^[15f, 15g, 15i]

1.2.3. Pentafluorosulfanylation

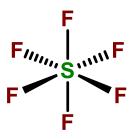
In addition to organic compounds with carbon–fluorine bond, organic molecules with sulfur–fluorine bond have been in the focus of research for many years.^[18] The combination of a "soft" sulfur and a "hard" fluorine atom as well as the ability of the sulfur atom to adopt the oxidation state up to + VI leads to a very wide list of substances containing sulfur–fluorine bond.^[18-19] In particular, the organic molecules having a pentafluorosulfanyl group (SF₅ group), are becoming increasingly important as pharmaceuticals, pesticides, fungicides, liquid crystals and high-energy materials.^{[20][1b, 21]}

The enormous interest in organic pentafluorosulfanyl compounds lies primarily in the unique properties of the SF₅ group. The introduction of SF₅ substituents in organic molecules can change the molecular properties of a compound by causing high electronegativity, increased lipophilicity, thermal stability and large steric bulk.^[22] In organic compounds, the SF₅ group is usually considered to be chemically and hydrolytically stable.^[22d] Based on these properties, the SF₅ group often considered as a

"better" alternative to the trifluoromethyl group (CF₃ group) in organic compounds. The electron withdrawing effects of SF₅ and CF₃ are observed comparable in magnitude. The electronegativity of the SF₅ and CF₃ group has been measured as 3.65 and 3.36 respectively.^[22a-d]

The SF₅ group containing compounds can be synthesized from direct fluorination of thiols or sulfides with fluorine (F₂), metal fluorides (AgF₂, CoF₃) or HF.^[22d, 23] An alternative milder and more efficient method in contrast to direct fluorination is the reaction of SF₅X (X=F, Br, Cl, CF₃) reagents with organic substrates (**Scheme 1**).^[21, 22d, 22e, 24] The SF₆ and SF₅CF₃ are known as strong greenhouse gases having enormous global warming potential. ^[25] The examples shown in the **Scheme 1** make it clear that by developing methods for the effective and selective conversion of SF₅ group containing compounds into less harmful substances, not only provides an effective approach to eliminate the existing stock of greenhouse gases, but also provides an access to the compounds used in pharmaceuticals and agrochemicals.^{[26][1b, 21, 27]}

$$C_4H_9$$
 + SF₅CI $\xrightarrow{BEt_3 (0.1 \text{ eq})}$ F_5S C_4H_9 + SF₆ $\xrightarrow{5 \text{ mol } \% \text{ N-phenylphenothiazine}}$ + SF₆ $\xrightarrow{CH_3CN, 365 \& 525 \text{ nm LEDs}}$


Scheme 1. Pentafluorosulfanylation of organic molecules using SF₅Cl and SF₆. [24c, 24f, 24h]

2. Background Literature

2.1. Sulfur Hexafluoride (SF₆)

2.1.1. Properties and Usage

Sulfur hexafluoride (SF₆) was first synthesized by Lebeau and Moissan in 1900 *via* a highly exothermic reaction ($\Delta_f H^0 = -1220 \text{ kJ mol}^{-1}$) where elemental sulfur was treated with elemental fluorine.^{[28][29]} It is an inert, colorless, odorless, non-combustible and non-toxic gas.^[30] Due to its extremely chemical inertness and other outstanding physical properties such as high density and high dielectric constant, SF₆ is used for many industrial applications, especially as an insulation gas in electrical equipment and electron trapping agent for high voltage power applications.^[25a, 30-31]

Figure 5. Representation of a SF₆ molecule in octahedral symmetry.

SF₆ is the model compound for octahedral symmetry (point group Oh) (**Figure 5**).^[19, 32] For a long time it was assumed that the d orbitals of the sulfur atom are involved in the formation of S–F bonds, forming sp³d² hybrid orbitals.^[19] However, numerous theoretical studies has shown that the 3d orbitals, because of their high orbital energies make a very small contribution to the bonding in SF₆.^[33] The molecular orbital (MO) theory suggests that SF₆ molecule has four bonding orbitals and two non-bonding orbitals, each occupied with two electrons. One bonding orbital has a_{ig} character and rest of the three bonding orbitals has t_{1u} character.^[34]

The bond dissociation energy of the first S–F bond in SF₆ was calculated to be $D^0_{298\,\text{K}} = 387\pm13\,\text{ kJ}$ mol⁻¹.[35] The arrangement of six fluorine atoms around sulfur and formation of strong S–F bonds provide a steric hinderance for reactivity, especially for the attack of a nucleophile and hence S_N2-type reactions are not observed commonly.[33] A comparison of the first Ionization energy of SF₆ (E_i = 15.5 eV) with that of argon (E_i = 15.7 eV) shows that the SF₆ molecule has a noble gas character in regard to the ionization, which is further decisive for its stability.[1b, 36]

2.1.2. Greenhouse effect of SF₆

SF₆ has very low solubility in water and is also a radioactively-active gas with high fugacity and therefore, is a potent greenhouse gas.^[25a, 25b] The atmospheric lifetime and global warming potentials (GWP) for SF₆ are reported by World Meteorological Organization (WMO) as 3200 year and 22,450 relative to carbon dioxide (CO₂), respectively.^[37] Due to its extensive use in electrical industries, the atmospheric emission of SF₆ is increased from less than 1 ppt in 1975 to more than 8 ppt in 2008.^[25a, 25b, 30] The demand of SF₆ in electrical industries is predicted as 4500–5500 ton per annual year by 2020 which is 5 times more than what was needed two decades ago.^[38] Increase in the demand of SF₆ would lead to the increased concentration of SF₆ in atmosphere and hence this would make more environmental hazards.^[39] Therefore, Kyoto protocol was signed in 1997 which listed SF₆ as one of the six greenhouse gases that should be restricted for use.^[40] The European Union has also made an EU regulation (No 517/2014) to reduce the emission of fluorinated greenhouse gases.^[41]

Besides the restricted use of the SF₆, it is also important to find ways for its degradation or removal. Over the years, various physical and chemical methods have been reported for the decomposition of SF₆. Also, investigations were carried out to substitute the SF₆ gas in electrical applications with other inert gases. In the following section different methods for the decomposition of SF₆ gas are discussed in details.

2.2. Approaches for the removal of SF_6

2.2.1. Replacement of SF₆ with other inert gases for its industrial use

To reduce the use of SF₆, a hybrid mix of SF₆ with N₂ was investigated for its application in electrical equipment. The dielectric strength of this mixed gas (SF₆/N₂) was found to be 85 %–90 % of pure SF₆. Since use of such hybrid mix can reduce the use of SF₆ to certain extent therefore electrical properties of the mixture of SF₆ with inexpensive inert gases such as He, CF₄, N₂O, CO₂ were also determined.^[42] Due to their comparable electrical performance and almost negligible global warming potential and very low atmospheric lifetime as compared to SF₆; CF₃I and hybrid mix of CF₃I in inert gases has gained interest as a substitute for SF₆.^[38, 43] CF₃OOCF₃ is a dielectric gas having non-ozone depleting nature and low global warming potential, can also provide a substitute for the SF₆ in electrical equipment.^[44] Use of CF₃I or CF₃OOCF₃ in electrical industries is yet very limited due to the lack in adequate research; thus more investigation and development is required in this field.

2.2.2. Thermal decomposition

SF₆ can be thermally decomposed at elevated temperature (more than 1100 °C) in industrial waste treatment furnaces. In this process SF₆ reacts with CaCO₃ (calcite) to produce naturally occurring materials CaF₂ (fluorspar) and CaSO₄ (gypsum) (**Scheme 2**). Excess amount of CaCO₃ is added in the reaction mixture to ensure the complete reaction with HF or SO₂, which can be produced from thermal decomposition of SF₆. [45]

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

$$2 SF_6 + 6 CaO \longrightarrow 2 SO_2 + 6 CaF_2 + O_2$$

$$2 SO_2 + O_2 \longrightarrow 2 SO_3$$

$$CaO + SO_3 \longrightarrow CaSO_4$$

Scheme 2. General reaction mechanism for the thermal decomposition of SF₆. ^[45b]

2.2.3. Nonthermal plasma decomposition

Partially or fully ionized gas consisting of various particles, such as electrons, ions, atoms, and molecules is called as Plasma. In thermal plasma almost all its components are at thermal equilibrium while in nonthermal plasmas (NTPs) the electrons have a higher temperature than ionic, and neutral species. These highly energetic electrons then collide with a parent molecule and produces various active species such as ions, excited atoms, and free radicals in multiple step physical and chemical processes. [46] These particles can perform oxidative or reductive decomposition of gaseous pollutants such as $SO_2^{[47]}$, $NO_x^{[48]}$, $HFCs^{[49]}$ and $SF_6^{[29, 50]}$. Common methods for producing NTPs, include, microwave plasma [51], dielectric barrier discharge [52] and radio frequency plasma [53]. During nonthermal plasma dissociation of SF_6 , lower sulfur fluorides are formed, which in presence water vapor or oxygen produce SOF_4 , HF, SOF_2 , S_2F_{10} , SOF_{10} , $S_2O_2F_{10}$. [25a, 54] Final products obtained from the degradation of the SF_6 with this method are toxic and corrosive in nature.

2.2.4. Photo-reductive decomposition

The photochemical degradation of SF₆ is a relatively new approach. For the photoreduction of the SF₆, chemically active species are produced from the photolysis of some reductive agents such as olefins or acetone, which then react with SF₆ to decompose it. It has been reported that photodissociation of SF₆ would not take place for wavelength more than 160 nm.^[55] Since commonly used UV lamps emit light more than 160 nm therefore agents like styrene, propene and acetone are used, which get dissociated above 160 nm to produce reactive species such as CH₃, CH₂, H, C₆H₅ radicals. These reactive

species then react with fluorine atoms in the SF₆ to decompose it.^[56] Although this method has advantage of consuming less power and toxic products such as SOF₂, SOF₄, SO₂F₂ are not produced, however, formation of by products such as hydrofluorocarbons (HFCs), HF and SiF₄ can't be avoided.

2.2.5. Catalytic hydrolysis and oxidation

The hydrolysis and oxidation of SF₆ consumes less amount of energy than thermal or photo-reductive decomposition of SF₆. Park *et al.* reported that γ -alumina or a AlPO₄/ γ -alumina based catalyst can be efficiently used for the catalytic hydrolysis or oxidation of SF₆. [57] Zhang *et al.* reported on the efficient removal of SF₆ by reacting it with various metal oxides and silicates present in the electroplating sludge. [58] In the catalytic degradation process of hydrolysis and oxidation of SF₆, hazardous metal fluorides and SOF₄, SO₂F₂, SO₂, SO₃, HF, and F₂ are formed (**Scheme 3**).

Scheme 3. Reaction pathway for the hydrolysis and oxidation of SF₆. [45b]

2.2.6. Chemical reduction

Case and Nyman reported that SF₆ when reacted with AlCl₃ at high temperature (180-200 °C) results in the formation of AlF₃ and sulfur chlorides with a very low conversion (15 %) of SF₆ (**Scheme 4**).^[59]

AICI₃
$$\frac{SF_6}{180-200 \, ^{\circ}C, 24 \, h}$$
 AIF₃ + CI₂ + SCI₂/S₂CI₂

Scheme 4. Reaction of SF₆ with AlCl₃ at high temperature. [59-60]

Alkali (Li-Cs), alkaline (Sr, Ba) and rare (Eu, Yb) earth metals are reported to transform SF₆ into sulfides and corresponding metal fluorides when dissolved in liquid ammonia via electron transfer mechanism.^[61] Demitras *et al.* reported that SF₆ can be activated with sodium (Na) metal dissolved in diphenyl-ethylene glycol, dimethyl ether (DME) solution between -64 °C and -10 °C (**Scheme 5**).^[61b]

Scheme 5. Reduction of SF₆ with sodium. [60, 61b]

Activation of SF₆ at transition metal complexes has been studied extensively in the past 15 years. Ernst *et al.* and Limberg *et al.* described the activation of SF₆ at low-valent Ti, V, Cr, Zr, Fe and at reduced Ni (I) complexes respectively, to obtain organometallic fluoride or poly fluoride complexes. The fate of sulfur is described only for the reactions of SF₆ with $[Ti(1,3-tBu_2C_5H_3)(6,6-dmch)(PMe_3)](6,6-dmch = 6,6-dimethylcyclohexadienyl), <math>[Cr(C_5Me_5)_2]$ and $K_2[(L^{tBu}Ni)_2(\mu_1-\eta^1:\eta^1-N_2)](L^{tBu}=[HC(CtBuNC_6H_3(iPr)_2)_2]^{-1}$ to yield SPMe₃, $[\{Cr(C_5Me_5)(\mu-F)\}_3(\mu_3-S)]^{+}[Cr(C_5Me_5)(F)_3]^{-1}$ and $[(L^{tBu}Ni^{II})_2(\mu-S)]$ respectively. [62]

Braun *et al.* reported on the degradation of SF₆ at the binuclear rhodium complex [{Rh(μ-H)(dippp)}₂] (**1**; dippp =1,3-bis(diisopropylphosphanyl)propane) in presence of HSiEt₃ to give exclusively the thiolato-bridged complex [Rh₂(μ-H)(μ-SSiEt₃)(dippp)₂] (**2**), FSiEt₃ and H₂ [**Scheme 6, (i)**].^[63] For a more efficient degradation of SF₆ in homogeneous phase, complex [Rh(H)(PEt₃)₃] (**3**) was employed catalytically in the presence of PEt₃ and silane, which yielded F₂PEt₃, SPEt₃, fluorosilanes and H₂ as a result of the degradation [**Scheme 6, (ii)**].^[64] Additionally, a selective activation of SF₆ with the complexes [Pt(PCy₃)₂] (**4**) or [Pt(P*i*Pr₃)₂] (**6**) was shown to generate the SF₃ complexes *trans*-[Pt(F)(SF₃)(PCy₃)₂] (**5**) or *trans*-[Pt(F)(SF₃)(P*i*Pr₃)₂] (**6**) respectively which were further employed in deoxyfluorination reactions [**Scheme 6, (iii)**].^[65]

$$[Rh(H)(PEt_3)_3] (3)$$

$$SF_6 + PEt_3 \xrightarrow{HSiEt_3} SPEt_3$$
 (ii)

Scheme 6. Degradation of SF₆ at; (i) complex $[\{Rh(\mu-H)(dippp)\}_2](1)$, (ii) with catalyst $[Rh(H)(PEt_3)_3](3)$ and (iii) complexes $[Pt(PR_3)_2](4, 6)$. [63-65]

The last approach for the degradation of SF_6 involving metals is a photoredox catalytic activation of the SF_6 . Jamison *et al.* reported on the activation of the SF_6 in homogeneous phase using $[Ru(bpy)_3(PF_6)_2]$ (bpy = 2,2' bipyridine) and $[Ir(ppy)_2(dtbbpy)PF_6]$ (ppy = 2-phenylpyridine; dtbbpy = 4,4'- di-*tert*-butyl-2,2' bipyridine) as photocatalysts in the presence of diisopropylethyl amine (DIPEA) as a stoichiometric reductant and irradiation with blue LED (470 nm). [66] The active species generated form the photochemical activation of the SF_6 , were utilized for the deoxyfluorination of allylic alcohols to give the corresponding allylic fluorides (**Scheme 7**). A mechanism was suggested for the deoxyfluorination of alcohol, which involves the activation of alcohol *via* O–S bond formation resulting in a R-O- SF_x intermediate. Subsequently C–O bond cleavage would formally result in the formation of an ion pair comprising $[OSF_x]^-$ anion which delivers fluorine for the fluorination. [66]

$$\begin{array}{c} \text{SF}_6 \\ \text{Ph} & \begin{array}{c} 5 \text{ mol } \% \text{ [Ir(ppy)}_2 \text{(dtbbpy)]PF}_6 \\ \hline \text{DIPEA, blue LED (470 nm)} \end{array} \\ \end{array} \text{Ph} & \begin{array}{c} F \\ \end{array} + \begin{array}$$

Scheme 7. Deoxyfluorination of an allylic alcohol *via* activation of the SF₆ at a photoredox-catalyst $[Ir(ppy)_2(dtbbpy)PF_6]$. [66]

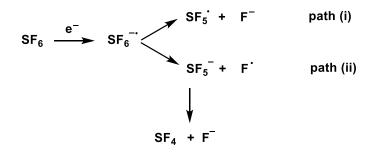
2.2.7. Metal-free activation of SF₆

The first metal-free reduction of SF₆ was reported in 1964 by Padma and Murthy where SF₆ was treated with hydrogen iodide (HI) at room temperature. The reduction of SF₆ with HI produced HF, hydrogen sulfide (H₂S) and iodine (I₂) as end products (**Scheme 8**).^[67]

$$SF_6 + 8 HI \longrightarrow 6 HF + H_2S + 4 I_2$$

Scheme 8. Reduction of SF₆ with HI.^[67]

In a patent in 2004, Röschenthaler and Kirsch *et al.* covered the activation of SF₆ using an organic reducing reagent, tetrakis(dimethylamino)ethylene. It was described that under UV light, an organic donor can reduce the SF₆ to give a salt containing [SF₅], [F] and divalent cationic organic donor molecule [D²⁺] (**Scheme 9**). These studies were further extended by Rueping *et al.* where 2,2'-bipyridyl or 4,4' bipyridyl based organic electron donors are shown to reduce the SF₆ at room temperature without involving UV light. A mixture of [SF₅], [F] and [D²⁺] was obtained *via* single electron transfer to the SF₆ from an organic donor. The redox potentials of different organic electron donors were calculated and it was


concluded that in order to activate the SF₆, an electron donor needs to have a redox potential of about $E_{1/2} = -0.8 \text{ V vs. SCE}$. The mixture of $[SF_5]^-$, $[F]^-$ and $[D^{2+}]$ produces SF₄ when dissolved in the solvents and hence was employed for the fluorination of alcohols and carbonyl compounds. [69-70]

$$D \xrightarrow{SF_6} D^{2+} + SF_5^- + F^-$$

$$D = \underbrace{\begin{array}{c} Me_2N & NMe_2 \\ Me_2N & NMe_2 \end{array}}_{NMe_2}$$

Scheme 9. Metal free activation of SF₆ with organic electron donors.^[71]

An initial single electron transfer from the electron rich substrate to the SF₆ presumably generates a SF₆ radical anion (SF₆).^[72] The SF₆ radical anion can dissociate into two possible ways as depicted in the **Scheme 10**. Path (i) generates a relatively stable SF₅ radical (SF₅) and stable fluoride ion (F̄) and path (ii) generates highly unstable fluorine radical (F̄) and unstable SF₅ anion (SF₅) which can further dissociate to give SF₄ and F̄.^[73] The electron excess energy associated with the reducing electron determines which pathway will be followed for the dissociation of SF₆ radical anion.^[24g, 74] Kline *et al.* and Chen *et al.* reported that path (i) is followed for an electron energy higher than 2.2 eV.^[62a, 72, 75] The SF₆ is reported to get activated with Na metal dissolved in liq. ammonia or diphenyl-ethylene glycol, DME solution. The sodium metal has reducing potential of -2.7 V, therefore a photoredox catalyst or an electron donor having reduction potential similar to that of Na should be able reduce the SF₆ into fluorides.^[61b, 61c]

Scheme 10. Possible pathways for the activation of the SF₆ *via* an initial electron transfer.^[24g]

Wagenknecht *et al.* demonstrated the activation of SF₆ using *N*-phenylphenothiazines as a strong reducing photoredox catalyst having an excited state potential of $E_{1/2}^* = -2.1$ V vs. SCE [Scheme 11, (i)].^[76] A SF₅ radical (SF₅') was generated favorably from the photochemical activation of SF₆ by following the path (i) in Scheme 10. The SF₅ radical was then successfully transferred to photochemically activated styrene at room temperature to yield SF₅ substituted organic products.^[24f, 24g] The copper salt [Cu(acac)₂] was used to obtain good yields by stabilizing the SF₅'. In a similar manner, Beier *et al.* also reported on the activation of SF₆ *via* single electron transfer from TEMPOLi, generated from a reaction of TEMPO {(2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl} with lithium benzophenone ketyl. A SF₆ radical anion produced from the electron transfer, decomposes into lithium fluoride and a SF₅ radical. The latter was transferred to terminal alkenes to access SF₅-substituted organyls in very small amounts (2 %) [Scheme 11, (ii)].^[77]

Scheme 11. Activation of the SF₆ *via* electron transfer mechanism using; (i) *N*-phenylphenothiazines as photoredox catalyst, (ii) TEMPOLi. [24g, 66, 77]

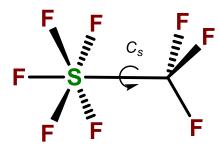
In 2018, Dielman *et al.* reported on the activation of SF₆ with super-basic imidazolin-2-imine or pyridin-4-imine substituted phosphines. A complete degradation of SF₆ into nonvolatile well-defined solid mixture of phosphine sulfides and difluorophosphoranes or formation of SF₅ salt was observed. Mechanistically, a nucleophilic attack of the basic phosphines at fluorine atom in SF₆ *via* S_N2 type reaction was proposed. [78]

The activation of SF₆ provides synthetic routes for the fluorination of organic substrates *via* deoxyfluorination and for synthesizing SF₅- substituted organyl compounds. The SF₅ group possess high electronegativity, lipophilicity and is thermally and chemically stable therefore can be recommended as an alternative to the CF₃ group in organic compounds, especially in drugs. Similar to the SF₆, trifluoromethyl sulfur pentafluoride (SF₅CF₃) has also been reported as a greenhouse gas and its activation might also provide a way to access the SF₅-substituted organic derivatives.^[25c] In contrast to the SF₆, reports on the activation of SF₅CF₃ are very limited.

2.3. Trifluoromethyl sulfur pentafluoride (SF₅CF₃)

2.3.1. Origin and properties of SF₅CF₃

The SF₅CF₃ is a colorless, odorless, and non-flammable gas at normal atmospheric conditions. Like SF₆, it is potentially used as refrigerant, tracer gas and electrical insulating gas due to its electrical characteristic and chemical & thermal stability. SF₅CF₃ is relatively polar than SF₆ and hence has a greater affinity for organic matter as compared to the SF₆.^[79]


The presence of trifluoromethyl sulfur pentafluoride (SF₅CF₃) in the earth's atmosphere was first detected and described by Sturges *et al.*^[80] Due to a parallel trend in increase in the concentration of SF₆ and SF₅CF₃ in the atmosphere over past 30 years, it was suggested that the formation of SF₅CF₃ is associated with the production of the SF₆. It was speculated that SF₅CF₃ is mainly produced *via* recombination of SF₅ and CF₃ free radicals which are produced as breakdown products of SF₆ and fluoropolymers respectively in high-voltage equipment.^[25c] Huang *et al.* reported a reaction between SF₆ and fluorocarbons such as CHF₃ and CH₂F₂ under electric discharge, to investigate the relation between SF₆ and SF₅CF₃ production. (**Scheme 12**).^[81] Santoro *et al.* suggested that SF₅CF₃ can be produced as a by-product in an electrochemical fluorination for the production of perfluorocatantyl sulphonate (PFOS) and other fluorosurfactants.^[82] SF₅CF₃ can also be prepared independently from a reaction of carbon disulfide or methyl mercaptan with cobalt trifluoride at 200-250 °C by an electrochemical process.^[83]

$$SF_6$$
 + $e^ \longrightarrow$ SF_6^*
 CHF_3 + $e^ \longrightarrow$ CHF_3^*
 SF_6^* + CHF_3^* \longrightarrow $[SF_6CHF_3]^{\neq}$ \longrightarrow SF_5CF_3 + HF_3

Scheme 12. Suggested pathway for the formation of SF₅CF₃.^[81]

The structure of SF₅CF₃ in gas phase has been established using microwave spectroscopy, electron diffraction method and infrared & Raman spectroscopy. [84] Based on the infrared and Raman spectroscopy, the SF₅CF₃ was reported to have C_{4v} symmetry. In contradiction, according to the theoretical calculations made by Schaefer *et al.*, the SF₅CF₃ molecule should have C_s symmetry in its ground state. [85] **Figure 6** is depicting a simple representation of SF₅CF₃ molecule having C_s symmetry around S–C bond.

R. P. Tuckett has explained the structural properties of the SF₅CF₃ based on the theoretical calculations made by P. J. Knowles.^[86] The S–C bond length in SF₅CF₃ was calculated as 0.187 nm and the FSF and FCF bond angles were calculated approximately 90° and 109.3° respectively. These values were found in agreement with the microwave and electron diffraction studies of the SF₅CF₃ molecule.

Figure 6. Representation of the SF₅CF₃ molecule with C_s point of symmetry along the S–C bond.^[84b, 85]

2.3.2. Global warming potential of the SF₅CF₃

Sturges *et al.* has identified the SF₅CF₃ as a potential greenhouse gas present in the stratosphere because infrared absorption measurements of the SF₅CF₃ showed that it has a strong radiative forcing per molecule (0.57 W m⁻² ppb⁻¹). [80] Although SF₅CF₃ is present in the atmosphere in low concentrations of about 0.12 ppt, it has a tendency to increase at a rate of about 6% per year. [25c] A report from the "World Meteorological Organization" about global ozone research and monitoring, mentioned that abundance of SF₅CF₃ in the air trapped in polar snow has risen from near zero in the 1960s to about 0.12 ppt in 1999, and is growing at rate of 0.008 ppt per year. [87] Since SF₅CF₃ can't be degraded by reactions with hydroxyl radicals present in the earth's lower atmosphere, the lifetime of SF₅CF₃ in the atmosphere was estimated through dissociative electron attachment experiments as 800 ± 150 years. [88] The global warming potential (GWP) of SF₅CF₃ was estimated to be 18000 times more than carbon dioxide (CO₂). [88-89] To avoid the undesirable accumulation of this potent greenhouse gas in the atmosphere, it is important to control the source(s) of emission of SF₅CF₃ and methods to degrade this gas are needed to be taken into consideration.

2.3.3. Reduction or chemical transformation of SF₅CF₃

The stability of SF₅CF₃ in the stratosphere has led to the research interest towards exploring the ways for its atmospheric degradation. Kennedy *et al.* reported on the decomposition of potent greenhouse gas SF₅CF₃ by fast dissociative electron attachment method. When electrons with a kinetic energy of at least 1.7 eV were attached to the SF₅CF₃, formation of only SF₅ was observed according to the reaction showed in the **Scheme 13**. The CF₃ was not observed even when electrons with kinetic energy higher than 1.7 eV were applied due to the exothermic dissociative attachment reaction for the formation of SF₅ (Δ H = -22 kJ mol⁻¹) and endothermic dissociative attachment reaction for the formation of CF₃ (Δ H = 162 kJ mol⁻¹). (Δ H corresponds to the enthalpy of the reaction for zero kinetic energy electrons.)^[90]

Scheme 13. Decomposition of the SF₅CF₃ by a fast dissociative electron attachment method.^[90]

Zhang *et al.* showed the decomposition reactions of the SF₅CF₃ gas using a Dielectric Barrier Discharge (DBD) reactor in the presence of additive gases (Ar, N₂ or O₂) at high voltage (3000 V). The decomposition efficiency of the SF₅CF₃ was found higher than that of SF₆. SO₂F₂, SOF₂, SF₅SF₅, CF₃CF₃, COF₂, CF₄ and SiF₄ were formed as main products from the decomposition of SF₅CF₃. [52b] Other channels to degrade the SF₅CF₃ gas in the atmosphere involves attachment of the positive ions (H₂O⁺, N₂O⁺, O⁺, CO⁺, CO₂+, N₂+) and the negative ions (O₂-, O-, OH-, F-) present in the ionosphere. [91] Photo-initiated (Lyman-α solar radiation) reactions in the mesosphere also provide an atmospheric sink for the SF₅CF₃ gas. [55a, 92] Similar to the SF₆, photo-reductive decomposition of the SF₅CF₃ gas with propene has been reported by Hou *et al.* giving hydrofluorocarbons, CH₄ and SiF₄ as end products. [56b]

The SF₅CF₃ gas was found thermally stable when heated at 500 °C in a closed system. However its decomposition was observed when reacted with perfluoropropylene (C₃F₆) at temperatures of 425 °C and 518 °C in a nickel-packed reactor, producing fluorocarbons products and SF₄.^[24d]

Owing to its inertness, chemical activation or reduction of SF₅CF₃, is very challenging. No hydrolysis was achieved for SF₅CF₃ when treated with 6N sodium hydroxide (NaOH) for several months at room temperature. [83] The reduction of SF₅CF₃ in the presence of rhodium hydrido species reported by Braun *et al.*, is the only example found in the literature for the chemical transformation of the SF₅CF₃ in homogeneous reaction system under mild reaction conditions. The S–C and S–F bond activation was achieved when SF₅CF₃ was treated with the complex 1 ([{Rh(μ -H)(dippp)}₂], 3.5 equivalents) for 120 h at 50 °C, yielding the fluorido complex 8 [{Rh(μ -F)(dippp)}₂] and hydrido thiolato complex 9 [Rh₂(μ -H)(μ -SCF₃)(dippp)₂ in a ratio of 2.5:1 respectively, along with the formation of H₂ (Scheme 14). [63]

$$3.5 \stackrel{iPr_2}{\stackrel{P}{\stackrel{}}Rh}\stackrel{iPr_2}{\stackrel{}}H^*Rh\stackrel{iPr_2}{\stackrel{}}P^*_2} \xrightarrow{SF_5CF_3} 2.5 \stackrel{iPr_2}{\stackrel{}}Rh\stackrel{iPr_2}{\stackrel{}}F^*_2} \stackrel{iPr_2}{\stackrel{}}H^*_2} + \stackrel{iPr_2}{\stackrel{}}H^*_2} \stackrel{iPr_2}{\stackrel{}}H^*_2} + \stackrel{iPr_2}{\stackrel{}}H^*_2} \stackrel{iPr_2}{\stackrel{}}H^*_2} \xrightarrow{iPr_2} (1)$$

$$(1) \qquad (8) \qquad (9)$$

Scheme 14. Activation of the SF₅CF₃ with rhodium hydrido complex 1.^[63]

As discussed in the *Section 2.2*, SF_4 is often produced as a by-product from the reduction or activation of the SF_6 *via* physical methods of degradation or chemical transformations. Electrical decomposition of the SF_5CF_3 or thermal decomposition of S_2F_{10} also produces SF_4 .^[83, 93] Investigations on the reactivity of the SF_4 provide an insight into the mechanisms possibly involved in the complete degradation of the SF_6 and SF_5CF_3 . Therefore, in the next section reactivity of the SF_4 is discussed in detail.

2.4. Sulphur tetrafluoride (SF₄)

2.4.1. Properties and structure of SF₄

In contrast to the SF₆, SF₄ is a highly reactive and toxic gas at room temperature. [13d, 94] It should be noted that there is no significant difference in the bond dissociation energies D^0 for the cleavage of the respective first S–F bond in SF₆ (387 ± 13 kJ mol⁻¹) and SF₄ (354 ± 13 kJ mol⁻¹). [35] The enormous chemical stability of SF₆ is based primarily on kinetic factors. SF₄ is extremely reactive with moisture and produces toxic and corrosive products such as HF, thionyl fluoride (SOF₂) and sulfur dioxide (SO₂). [95] Sulfur tetrafluoride can be prepared by suspending powdered sulfur in trichlorofluoromethane (CFCl₃) at -78 °C with elemental fluorine in N₂. [96][97] Tullock *et al.* reported a more convenient synthesis of SF₄ from the reaction of sulfur chlorides with metal fluorides, such as NaF, KF, CsF, BaF and CuF₂ (**Scheme 15**). [13a]

3
$$SCI_2$$
 + 4 NaF \longrightarrow CH_3CN SF_4 + S_2CI_2 + 4 $NaCI$ $70-80$ $^{\circ}C$, 2 h

Scheme 15. Reaction of sulfur dichloride with NaF to synthesize the SF₄. [13a]

By taking the lone pair into account, bonding and geometry in SF₄ is expected to be trigonal bipyramidal. But the crystal structure of SF₄ showed that equatorial bonds have the length of a normal S–F_{eq} bond (1.545 Å), while the axial S–F_{ax} bond lengths were found longer (1.646 Å); also, the equatorial angle was found to be 101° (**Figure 7**). [98] This distorted geometry is observed due to the presence of lone pair in the SF₄ [99] Thus the structure of SF₄ was established as $C_{2\nu}$, having molecular see-saw geometry. The solid state structure of the SF₄ was found to be in good accordance with its gas phase structure studied with Raman and IR spectroscopy, electron diffraction and microwave spectroscopy. [99-100] Based on the ¹⁹F NMR spectroscopy, a berry pseudo rotation can be observed for the SF₄, induced by the rapid exchange between the axial and equatorial fluorine atoms. [101]

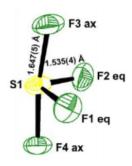


Figure 7. Structure of SF₄ in the solid state as elucidated by Gerken et al. [102]

2.4.2. SF₄ reactivity

The presence of unpaired electrons and empty $\sigma^*(SF)$ antibonding orbitals make SF_4 both, a weak Lewis base and a weak Lewis acid. [103] Several examples of reaction of the SF_4 with Lewis acids such as BF_3 , PF_5 , AsF_5 and SbF_5 have been reported to produce trifluorosulfonium (SF_3^+) salts. [104] SF_4 can act as a Lewis acid by accepting fluoride from strong fluoride ion donor molecules to form SF_5^- salts. [105] Adducts of SF_4 with nitrogen and oxygen based bases have also been reported (**Scheme 16**). [106]

$$SF_4 + BF_3 \longrightarrow [SF_3]^{\dagger}[BF_4]^{-}$$
 (i)

$$SF_4 + CsF \longrightarrow Cs^+SF_5^-$$
 (ii)

$$SF_4 + N(C_2H_5)_3 \longrightarrow SF_4 \cdot N(C_2H_5)_3$$
 (iii)

Scheme 16. Reactivity of the SF₄; (i) as Lewis acid, (ii) & (iii) as Lewis base. [104-106]

SF₄ can be used as a deoxyfluorinating reagent for alcohols and carbonyl compounds to obtain fluorinated building blocks.^[13a-f] Catalytic or sometimes stoichiometric amounts of HF are required to activate the SF₄ to perform the fluorination reaction. The mechanism

of the deoxyfluorination of alcohols with SF₄ has been proposed based on the reaction products (**Scheme 17**).^{[13d][107]} The trifluorosulfonium ion (SF₃⁺) generated from the reaction of SF₄ with HF reacts with the alcohol to give an oxygen-sulfur bonded intermediate. Depending on the structure of the substrate, a fluoride ion can replace the leaving group in the intermediate via a S_N1 or a S_N2 pathway to give the corresponding alkyl fluoride. Thionyl fluoride and HF are obtained as byproducts.^[108]

$$SF_4$$
 \xrightarrow{HF} SF_3^+ $+$ FHF^-

ROH $\xrightarrow{SF_3^+}$ $\xrightarrow{R^-O}$ $\xrightarrow{SF_3}$ $\xrightarrow{-F^-}$ R^-F $+$ SOF_2 $+$ HF

Scheme 17. Possible mechanism for the deoxyfluorination of the alcohols with SF₄. [108]

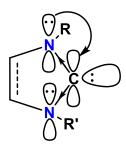
Due to the toxic and corrosive nature of SF₄, its usage is not widespread in the laboratories. Several SF₄ derived reagents such as, N,N-diethylaminosulfur trifluoride (DAST), Deoxy-fluor[®], FluoleadTM have been synthesized and used for the fluorination (**Figure 8**). These reagents have advantage over SF₄ for being relatively stable and often selective in reactivity. [13g-1] However, drawbacks associated with these reagents are their thermal instability and extremely violent reaction with water to generate HF. [109]

Figure 8. SF₄ derived fluorinating reagents.^[18]

Besides the SF₄ derived deoxyfluorinating reagents; several imidazole derived reagents are available for fluorinating the alcohols or phenols and carbonyl compounds. 2,2-difluoro-1,3-dimethylimidazolidine (DFI) was synthesized and isolated by Nagata *et al.* in 2002 as the first thermally stable imidazole derived deoxyfluorinating reagent. [110] A few years later, Ritter *et al.* synthesized another deoxyfluorinating reagent, PhenoFluor comprising a bulkier NHC. [13p] Further details on the imidazole derived deoxyfluorinating reagents are discussed later in the *Chapter 4*.

The classical N-heterocyclic carbenes (NHCs) are reported to have an electron donating tendency comparable to the super basic phosphines having imidazoline-2-imines or benzimidazolin-2-imines as substituents.^[111] The latter have been implemented by Dielmann *et al.* towards successful activation of the SF₆.^[78] Thus, it can be presumed that NHCs could also activate the SF₆ to possibly generate a difluoro-imidazole derivative. In the next section; stability, basic properties and versatile applications of N-heterocyclic carbenes (NHCs) are discussed.

2.5. N-heterocyclic carbenes (NHCs): Stability and reactivity


Wanzlick *et al.* started investigations on isolating free NHCs in 1960, but their attempts remained unsuccessful, observing only dimerization of imidazolidin-2-ylidenes to give entetraamines (**10=10**) (10 = 1,3-diphenyl-2-imidazolidin-2-ylidene). The first stable diaminocarbene (1,3-diadamantylimidazolin-2-ylidene, **11**) was synthesized and isolated by Arduengo *et al.* in 1991. Furthermore, Arduengo *et al.* used bulkier *N,N'*-substituted imidazolinium salts (1,3-dimesitylimidazolinium chloride, **12**) to successfully obtain a saturated NHC (1,3-dimesitylimidazolidin-2-ylidene, SIMes, **13**) as they calculated that bulky mesityl groups provide enough steric hinderance towards the dimerization of singlet carbene centers along a non-least-motion pathway (**Scheme 18**). [114]

Even the non-bulky methyl group substituted, 1,3-dimethylimidazolin-2-ylidene can be isolated *via* an electronic stabilization of the carbene center through the unsaturated backbone.^[115] In contrast, saturated 1,3-dimethylimidazolidin-2-ylidene could not be isolated due to its dimerization. This explains that kinetic stabilization of NHCs *via* steric protection is an important factor more for saturated NHCs as compared to its unsaturated analogue.^[116]

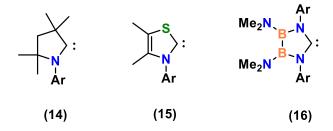
$$\begin{array}{c|ccccc}
Ph & & & & & & Ph & & Ph & & & Ph & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & & & & \\
\hline
\stackrel{N}{\downarrow} & & & \\
\hline$$

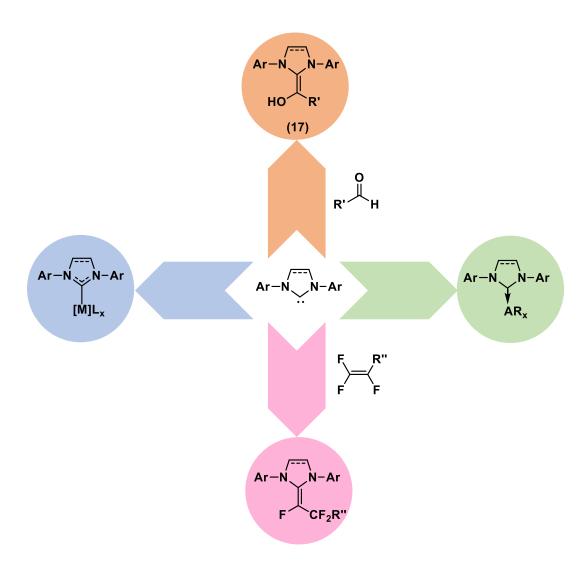
Scheme 18. (i) Wanzlick's olefin; (ii) Arduengo's first stable NHC; (iii) Arduengo's isolated saturated NHC.^[112-114]

The stability of NHCs can further be explained in terms of multiplicity of the carbenes. Singlet carbenes owns a filled σ orbital and an empty p orbital, which makes it ambiphilic in nature. Triplet carbenes have two unpaired electrons in two degenerated p orbitals which makes it biradical in nature. For a large energy difference (>1.5 eV) between σ and p_{Π} orbitals in carbenes, the singlet ground state is observed. Sterically demanding, electron withdrawing and two π - electrons donor substituents in the backbone of carbenes increase the σ - p_{Π} energy gap and hence stabilize the singlet ground state in carbenes. [117-118] (**Figure 9**) The singlet and triplet gap for saturated imidazolidin-2-ylidenes and unsaturated imidazolin-2-ylidenes was calculated as 69 kcal mol⁻¹ and 85 kcal mol⁻¹ respectively. [119] The bigger energy gap in the unsaturated analogue can be attributed to aromaticity of the imidazolin-2-ylidenes. The smaller singlet-triplet gap in the saturated imidazolidin-2-ylidenes leads to the formation of entetraamines via dimerization in the absence of kinetic or steric stabilization and explains why 1,3-dimethylimidazolidin-2-ylidene couldn't be isolated as free NHC. [120]

Figure 9. Stabilization of the singlet ground state in NHCs *via* electronic (+M) and inductive (-I) effects.

Imidazole based NHCs bearing only one nitrogen substituent, such as cyclic (alkyl) (amino) carbenes (CAACs, **14**)^[121], thiazolin-2-ylidene (**15**)^[122] and having boron atoms in the backbone in NHCs (**16**)^[123] are also accessible (**Figure 10**).^[124]




Figure 10. Five membered NHCs having variable substitutions.

Several stable NHCs are isolated since the isolation of first Arduengo's free carbene (11). A large number of complexes bearing NHC ligands, has been reported. NHC stabilized complexes with transitional metals^[125], f-block elements^[126] and adducts with main group elements^[127] are well known due to the ambiphilic nature of the NHCs. Metal bound complexes and adducts of NHCs are discussed later in detail in *Chapter 5* of this thesis. NHC bearing transition metal complexes show remarkable catalytic activities in reactions which include C–C cross coupling^[125b, 128] and olefin metathesis^[129]. NHCs are reported to be used as organocatalysts, where nucleophilic NHCs attack aldehydes to form the Breslow intermediate (17)^{[130][131]} which leads to many organic transformations via condensation, transesterification or umpolung reactions.^[129c, 132] In recent years, NHCs mediated metal – free activation of the robust C–F bond in various aryl fluorides and fluorinated olefins has gained extensive interest (Figure 11).^[133]

Kuhn *et al.* were first to report on the C–F bond activation through a reaction involving the nucleophilic aromatic substitution of pentafluoropyridine by 1,3-dimethyl-4,5-dimethylimidazolin-2-ylidine (18) or 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidine (19) [Scheme 19, (i)]. This approach was later extended by Lee *et al.* where double C–F bond activation was observed when two equivalent of octafluorotoluene were treated with a bulkier NHC; 1,3-di-(2,6-diisopropylphenyl)imidazolin-2-ylidene (IPr, 20). An imidazolium salt was obtained with perfluoro substituents at: i) the former carbene carbon atom, and ii) the backbone of the carbene [Scheme 19, (ii)]. [135]

.

A variety of NHC fluoroalkene compounds were obtained by Baker *et al.* when 1,3-di-(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr, **21**) or SIMes (**13**) was treated with fluorinated alkenes [**Scheme 19**, (**iii**)]. Furthermore, an oxidative addition of the C–F bond to more nucleophilic carbene CAAC (1-dipp-3,3-diethyl-5,5-dimethyl-2-pyrrolidinylidene, **22**) (dipp = 2,6-diisopropylphenyl) was observed for the activation of the fluoroarenes and pentafluoropyridine [**Scheme 19**, (**iv**)]. [133d, 137]

Figure 11. Wide range of applications of *N*-heterocyclic carbenes (NHCs).

(18) : R = Me (19) : R = *i*Pr

Dipp
$$P_{N}$$
:

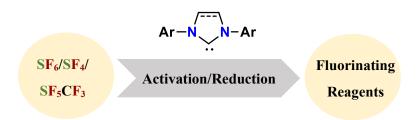
THF

 P_{N} :

 P_{N

(13) : Ar = Mes (21) : Ar = Dipp

Scheme 19. Examples of C–F bond activation by NHCs; Mes= mesityl, Dipp = 2,6-diisopropylphenyl.^[133d, 134-137]


3. Research Objective

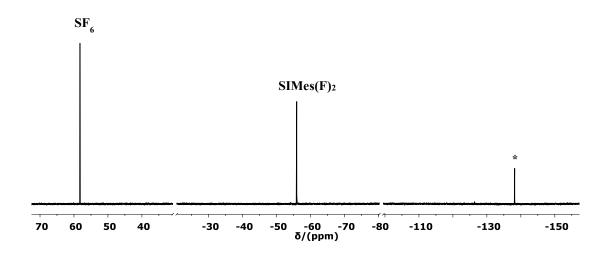
The chemical reduction of the SF₆ and SF₅CF₃ is described in the *Chapter 2* and it can be concluded that metal-free activation of SF₆ and SF₅CF₃ has not yet been studied extensively to develop new fluorinating reagents. However Rueping *et al.* showed the application of SF₅⁻/F⁻ ion pair obtained from the SF₆ activation, towards the fluorination of organic substrates; but it can be presumed that it is rather SF₄ responsible for such reactivity. Wagenknecht and Beier reported on the generation of SF₅-substituted organyl compounds from the activation of the SF₆.

NHCs are capable of activating C–F bonds in the fluorinated olefinic or aromatic substrates therefore it can be expected from them to activate S–F bond in SF₆, SF₄ and SF₅CF₃ as well since the bond dissociation energy for S–F bond (343.5 \pm 6.7 kJ mol⁻¹) is smaller than C–F bond (513.8 \pm 10.0 kJ mol⁻¹)^[138]. From previous literature studies it can be extracted that a strong electron donor or a strong reducing agent having a redox potential similar to that of Na i.e. -2.7 V is needed to activate the SF₆. In this thesis, the redox potential of various NHCs is calculated to estimate their reducing power for the activation.

These findings were set as an inspiration to carry out investigations towards the S–F bond activation in SF₆, SF₄ and SF₅CF₃ with NHCs. The greenhouse gases SF₆ and SF₅CF₃ are attempted to be transformed into well-defined products and used as cheap and safe starting materials to develop new fluorinating reagents for synthesizing organic fluorine building blocks and organometal fluorides (**Figure 12**). The end products obtained from the activation of SF₆, SF₄ and SF₅CF₃, are tested for the fluorination of organic substrates such as alcohols, acids and aldehydes as well as for the synthesis of organoaluminium fluorides.

The synthesis of molecular AlF₃ complexes bearing neutral ligands has been reported only rarely. In this thesis, different synthetic routes for the synthesis of NHC stabilized aluminium (III) fluorides are investigated by using SF₆, SF₄ and Me₃SnF as fluorinating agents. Furthermore, reactivity of the NHC stabilized aluminium (III) fluorides are tested towards the halogen exchange reactions.

Figure 12. Development of new fluorinating reagents *via* NHC mediated activation of the greenhouse gases.


4. Results and Discussion

4.1. Reduction of sulfur hexafluoride with NHCs

4.1.1. Photochemical activation of SF₆ with N-heterocyclic carbenes (NHCs)

Activation of SF_6 was initiated by condensing of SF_6 (0.10 mmol) into a solution of SIMes (13, 0.05 mmol) at room temperature. The reaction was monitored with the help of ¹⁹F NMR spectroscopy. No activation of SF₆ was observed at room temperature. When the reaction mixture containing was heated for 24 h at 80 °C, activation of SF₆ took place to 1,3-dimesityl-2,2-difluoroimidazolidine $(SIMes(F)_2,$ 23) and 1,3dimesitylimidazolidine-2-sulfide (24) as end products, which were identified with ¹⁹F NMR, ¹H NMR, ¹³C{¹H} NMR spectroscopy and LIFDI mass spectrometry (**Scheme** 20). A signal in the ¹⁹F NMR spectrum was observed at $\delta = -55.6$ ppm, which is in accordance with the data of difluoroimidazolidine reported by Ritter et al. (Figure 13). [130] LIFDI mass spectrometry gave molecular ion peaks at m/z 344.3 and m/z 339.3, which fit to the calculated molecular masses of difluoroimidazolidine (23) and imidazolidine sulfide (24) respectively. The yield for 23 was estimated to be only 10 % when calculated with ¹⁹F NMR spectroscopy using 1,2 difluorobenzene as external standard and assuming that three equivalents of 23 were formed. Since no considerable activation of the SF₆ was observed with SIMes at 80 °C, the reaction mixture was put under UV light radiation at 311 nm. After 15 h of irradiation, the mixture of compounds 23 and 24 was obtained in a ratio of 3:1 with a yield of 82 % estimated for 23 by the ¹⁹F NMR spectrum.

Scheme 20. Photochemical activation of the SF_6 with SIMes.

Figure 13. ¹⁹F NMR (282.4 MHz, Tol- d_8) spectrum for the activation of SF₆ with SIMes. * = 1,2 difluorobenzene (external standard).

Sterically and electronically different NHCs such as IPr (20), SIPr (21) and 1,3-dimesitylimidazolin-2-ylidene (IMes, 25) were also tested for the activation of SF₆ using UV light at 311 nm for 15 h. The ¹⁹F NMR resonances and yields of the 2,2-difluoro-derivatives of these NHCs are listed in the **Table 1**. The ¹⁹F NMR resonances obtained for the difluoro-imidazolidin or difluoro-imidazolin derivatives of SIPr, IMes and IPr were found in good agreement of the reported literature.^[130, 13p, 139]

Table 1. 19 F NMR data and yields of the 2,2-difluoro- derivatives of different NHCs obtained from the activation of the SF₆. $^{[13o, 13p, 139]}$

NHC(F)2	¹⁹ F NMR (δ) ppm	Yield
SIMes(F) ₂	-55.8	82 %
$SIPr(F)_2$	-55.7	75 %
$IMes(F)_2$	-34.3	62 %
$IPr(F)_2$	-33.9	15 %

4.1.2. Independent synthesis of the products obtained from the activation of SF₆ with SIMes

At first, 1,3-dimesityl-2-chloroimidazolinium chloride (**26**) was synthesized from a reaction between SIMes (**13**, 1 equivalent) and C₂Cl₆ (1,1,1,2,2,2-hexachloroethane, 1.2 equivalents) and characterized with LIFDI mass spectrometry. ^[13p] The molecular ion peaks obtained for the 1,3-dimesityl-2-chloroimidazolinium ion showed an isotopic pattern at m/z 341.1 (100 %), 343.1(32 %) and 344.1(22.7 %). This data matched well with the molecular mass and isotopic pattern calculated for the 1,3-dimesityl-2-chloroimidazolinium ion. SIMes(F)₂ (**23**) was obtained by treating the **26** (1 equivalent) with tetramethylammonium fluoride (NMe₄F, 3 equivalents). **23** was characterized by ¹H NMR, ¹³C{¹H} NMR, ¹⁹F NMR spectroscopy and LIFDI mass spectrometry (**Scheme 21**). LIFDI mass spectrometry gave a molecular ion peak at m/z 344.3, which fits to the calculated molecular mass of SIMes(F)₂. In the ¹⁹F NMR spectrum a signal was observed at $\delta = -55.8$ ppm, which fits to the signal attributed for the SIMes(F)₂ in the reaction of SF₆ activation with SIMes.

Mes
$$\begin{array}{c|ccccc}
Mes & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & \\
CH_2Cl_2, 15 min & & & & \\
N & & & & & & \\
Mes & & & & & & \\
Mes & & & & & & \\
(13) & & & & & & & \\
\end{array}$$
(23)

Scheme 21. Synthetic route for the formation of the 1,3-dimesityl-2,2-difluoroimidazolidine (SIMes(F)₂, **23**). [130, 13p, 139]

The 1,3-dimesitylimidazolidine-2-sulfide (24) was also obtained as one of the end product from the reduction of SF₆ with SIMes. The thiourea derivative (24) was synthesized independently by treating sulfur with SIMes as depicted in the **Scheme 22**. The characterizations of the product were made by ${}^{1}H$, ${}^{13}C\{{}^{1}H\}$ NMR spectroscopy and LIFDI mass spectrometry. LIFDI mass spectrometry gave a molecular ion peaks at m/z 339.3, which is consistent with the calculated molecular mass of 24. The signal obtained in the ${}^{13}C\{{}^{1}H\}$ NMR spectrum at $\delta = 184.92$ ppm is reported characteristic for the C=S unit in 24. ${}^{[140]}$ Thiourea derivatives of other NHCs (SIPr, IMes, IPr) were also prepared by following the reaction shown in the **Scheme 22**. ${}^{[140-141]}$

Scheme 22. Synthetic route for the formation of the 1,3-dimesitylimidazolidine-2-sulfide (24).

4.1.3. Mechanistic proposal for the activation of SF₆ with NHCs

A possible mechanism for the activation of SF_6 can be proposed from the excited state of NHCs *via* single electron transfer (SET) pathway (**Scheme 23**).

$$Ar - N \longrightarrow N - Ar \xrightarrow{311 \text{ nm}} Ar - N \longrightarrow N - Ar \xrightarrow{SF_6} SET \longrightarrow [SF_6]^- + Ar - N \longrightarrow N - Ar = [NHC]^+$$

$$[SF_5]^+ F^- \qquad or \qquad [SF_5]^- + F^-$$

$$[NHC]^+ \longrightarrow [NHC]^+$$

$$SF_4 + Ar - N \longrightarrow N - Ar = F$$

$$3 \text{ NHC}$$

$$2 \text{ Ar} - N \longrightarrow N - Ar = F$$

$$NHC(F)_2$$

Scheme 23. Proposed pathways for the reduction of SF₆ with NHC.

The excited state of carbene (NHC*) can transfer a single electron to the SF₆ to generate the radical anion SF₆. and the NHC radical cation NHC'+. The SF₆ radical anion is known to be unstable in solution and therefore continues to fragment into a SF₅ radical (SF₅') and a fluoride anion F or into a SF₅ anion and a fluoride radical F . [24g, 69, 74] Since no sulfur containing intermediate was detected or trapped during the progress of the reaction, therefore it is uncertain that which route was favored for the fragmentation of the SF₆ radical anion.

If SF_5^- and F^+ are generated from the fragmentation of SF_6^+ , the NHC⁺⁺ could recombine with F^+ to yield NHC– F^+ and SF_5^- . The SF_5^- can readily decompose into SF_4 and a fluoride anion which could combine with NHC– F^+ to ultimately give NHC(F)2. [98, 104e] Alternatively, if SF_5^+ and F^- are generated from the fragmentation of SF_6^+ , it is conceivable that SF_5^+ can decompose to generate SF_4 and a fluoride radical. The NHC⁺⁺ can recombine with F^- and F^+ to generate (NHC) F_2 and SF_4 can further react with NHC to yield NHC(F)2 and 2-thio carbene. The electron excess energy associated with the reducing electron determines which pathway will be favored for the dissociation of SF_6^+ . [24g, 74] Kline *et al.* and Chen *et al.* reported that SF_5^+ and F^- are generated from the fragmentation of SF_6^+ , for an electron energy higher than 2.2 eV. [62a, 72, 75] Note that, for non-photolytic activation of the SF_6 , Dielmann *et al.* proposed a nucleophilic attack of imidazolin-2-ylidenaminophosphines (IAPs) at SF_6^+ to give SF_5^- and a fluorophosphonium salt. [78]

An independent reaction was carried out between SF_4 (0.10 mmol) and SIMes (0.05 mmol) to confirm the assumption that SF_4 is a reactive intermediate which can further readily react with NHC to furnish the $SIMes(F)_2$ (23) and 2-thio carbene (24) (Scheme 24).

Scheme 24. Reduction of SF₄ with SIMes (13).

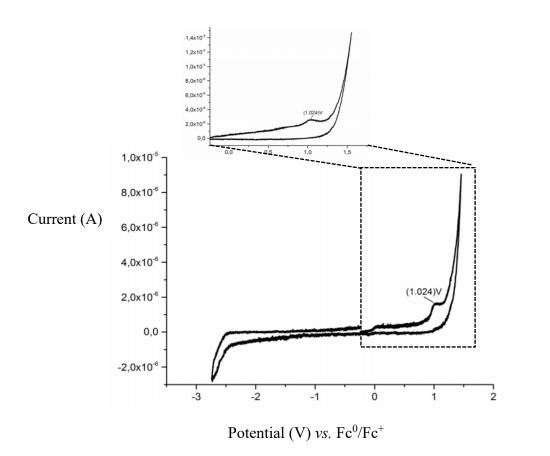
4.1.4. Redox potential of NHCs

Through the attempts made for the activation of SF₆ with NHCs it has been observed that irradiation of the reaction mixture is needed to accomplish the activation. It is conceivable that electron transfer mechanism is involved in the reduction of SF₆ from the excited state of NHCs. To understand the difference in the reactivity among different NHCs for the activation of SF₆, when irradiated at 311 nm, their reducing efficiency was determined by estimating the redox potential in the excited state by using the following formula.^[142]

$$E (D^+/D^*) \approx E (D^+/D) - E_{0-0}$$

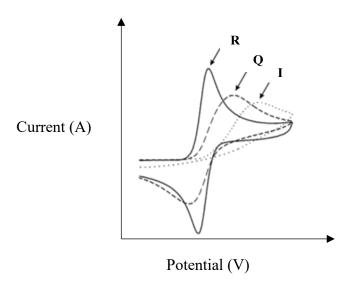
for an oxidative electron transfer reaction ($D^* + A \longrightarrow D^+ + A^-$)

where $E(D^+/D^*)$ = potential of the excited-state couples


 $E(D^+/D)$ = potentials of the ground-state couples measured using cyclic voltammetry.

 E_{0-0} = one-electron potential corresponding to the 0–0 excited-state energy measured as midpoint from maxima of UV-visible (UV-vis) and emission spectra.

A solution of the carbene (1mM) in THF was taken under an argon atmosphere to perform cyclic voltammetry, UV-visible and emission spectroscopic studies. SIMes is taken here as an example to depict the cyclic voltammogram, absorption and emission spectra.


4.1.4.1. Cyclic voltammetry

The voltammogram obtained for the SIMes is shown in the **Figure 14**. An oxidation peak potential (E_p^{ox}) of 1.024 V vs. Fc^0/Fc^+ was estimated from the cyclic voltammogram. The oxidation potential can be re-calculated as $E_p^{ox} = 1.584$ V vs. SCE by taking the redox potential of the Fc^0/Fc^+ couple vs. SCE as 0.56 V in THF.^[143]

Figure 14. Cyclic voltammogram obtained for a solution of SIMes (1mM) in THF, measured with a scan rate of 200 mV/s. $E_p^{\text{ox}} = 1.024 \text{ V } vs. \text{ Fc}^0/\text{Fc}^+ \text{ and } E_p^{\text{ox}} = 1.584 \text{ V } vs.$ SCE.

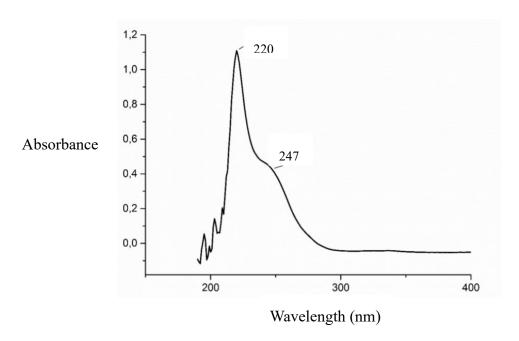

The cyclic voltammogram obtained for the SIMes is typical for an irreversible reaction (**Figure 15**).^[144] Similar voltammograms were observed for the other investigated NHCs (see **appendix**).

Figure 15. Typical cyclic voltammograms for \mathbf{R} = reversible ; \mathbf{Q} = quasi-reversible; \mathbf{I} = irreversible reactions. [144]

4.1.4.2. UV-visible spectroscopy

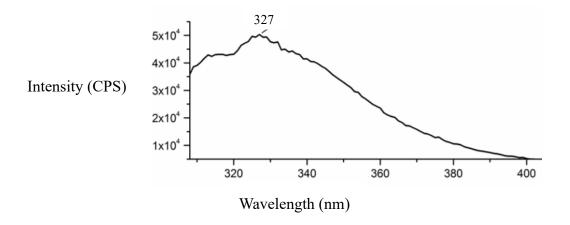

The **Figure 16** shows a UV-vis spectrum obtained for the SIMes showing two absorbance maxima at 220 nm and 247 nm. Absorbance maximum at 220 nm or 221 nm was observed for every carbene investigated (see **appendix**) and therefore can be attributed to the aromatic substituents at the N-atoms.^[145] The maximum at 247 nm can be attributed to the absorption from the inner imidazolyl unit.

Figure 16. UV-vis spectrum obtained for a solution of SIMes (1mM) in THF showing absorbance maxima at 220 nm and 247 nm.

4.1.4.3. Emission spectroscopy

The emission spectrum for SIMes is shown in the **Figure 17**. The excitation wavelength for different NHCs was estimated from the absorbance maxima obtained from scanning them at a fixed emission wavelength of 350 nm. The excitation wavelength for SIMes was chosen at 298 nm and for rest of the investigated NHCs excitation wavelength was chosen at 318 nm (see **appendix**). On being excited at a wavelength of 298 nm, SIMes showed an emission maxima at 327 nm.

Figure 17. Emission spectrum obtained for a solution of SIMes (1mM) in THF when excited at 298 nm, slit width = 5.00 nm. Emission maximum is obtained at 327 nm, slit width = 2.00 nm.

4.1.4.4. Calculation of the excited state potential of NHCs

For simplicity, the oxidation potential $(E_p^{\text{ox}} \text{ vs. SCE})$ estimated from cyclic voltammetry was used as $E(D^+/D)$ and E_{0-0} was estimated from the maximum in the emission spectrum (see above). Excited state oxidation potentials $E(D^+/D^*)$ for NHCs were calculated from the following formula and are listed in the **Table 2**.

$$E(D^{+}/D^{*}) \approx E(D^{+}/D) - E_{0-0}$$

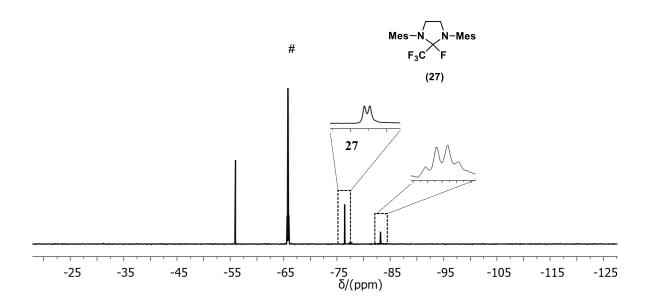
Table 2. Estimation of the excited state oxidation potential of NHCs.

NHC	Emiss. Max	E ₀₋₀	$\mathbf{E}_{\mathbf{p}^{\mathbf{o}\mathbf{x}}}(\mathbf{V})$ vs.	$\mathbf{E}\left(\mathbf{D}^{+}/\mathbf{D}^{*}\right)\left(\mathbf{V}\right)$ vs.
	(nm)	(V)	SCE	SCE
SIMes	327	3.792	1.584	-2.208
SIPr	349	3.553	1.613	-1.940
IMes	349	3.553	1.622	-1.931
IPr	349	3.553	1.538	-2.015

SIMes can be considered as most reducing among all the measured NHCs because it has highest excited state oxidation potential of -2.2 V vs. SCE in the excited state (**Table 2**) and also produces the difluoro-imidazolidine derivative SIMes(F)₂ in maximum yield (80%) from the activation of SF₆ when compared to the other NHCs (**Table 1**). Although IPr has the second highest reducing potential, but it gave lowest yield (15%) for difluoro-imidazoline derivative due to the formation of side products from the activation of SF₆. The excited state oxidation potential obtained for SIPr and IMes are found in accordance to the yield obtained for their respective difluoro-derivatives.

4.2. Reduction of SF₅CF₃ with SIMes

Owing to its chemical and thermal stability, harsh physical methods such as fast electron attachment or dielectric-barrier discharge (DBD) are usually employed to degrade or eliminate the potential greenhouse gas SF₅CF₃ from the atmosphere.^[52b,90] These methods usually results in the formation of toxic end products or other greenhouse gases. The activation of the SF₅CF₃ in homogeneous reaction system has been reported with the rhodium hydrido complex [{Rh(µ-H)(dippp)}₂] (1).^[63] Although several examples of organometallic transformation of SF₅ substituted aromatic or heteroaromatic compounds have been reported the S–F or S–C bond in these cases remained unaffected.^[23b, 24c, 146] Similar to the SF₆; activation of SF₅CF₃ was carried out with SIMes to achieve its complete degradation and transformation into fluorinating reagents under mild reaction conditions without involving metals.


4.2.1. Activation of SF₅CF₃ with SIMes

Treatment of SF₅CF₃ (0.10 mmol) with 4 equivalents of SIMes (13, 0.05 mmol) at 80 °C for 36 h yielded the 1,3-dimesityl-2,2-difluoroimidazolidine (SIMes(F)₂, 23) and 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine [(SIMes(F)(CF₃)] (27) as well as 1,3-dimesitylimidazolidine-2-sulfide (24) in a ratio of 2:1:1 (Scheme 25). Due to similarity in the solubility of the end products obtained from the reduction of SF₅CF₃, it was difficult to separate them from the reaction mixture. Figure 18 is depicting a ¹⁹F NMR spectrum where a signal at δ = -55.6 ppm was attributed to the SIMes(F)₂ (23). A doublet at δ = -76.4 ppm and a quartet at δ = -82.9 ppm with a coupling constant of ³J_{FF} = 4.9 Hz were assigned to the compound 27. The presence of 27 was also confirmed through LIFDI mass spectrometry, revealing a molecular ion peak at m/z 394.2, which fits with the calculated ion molecular mass of 27. The SF₅CF₃ can be reduced with SIMes at room temperature also, but with only 15 % conversion of SIMes after 12 h of reaction.

Treatment of the product mixture obtained after the activation of SF₅CF₃ with trimethyl chlorosilane (Me₃SiCl) led to the generation of Me₃SiF, Me₃SiCF₃ as well as 1,3-dimesityl-2-chloroimidazolinium chloride (**26**) (**Scheme 25**). The Me₃SiF and Me₃SiCF₃ were identified in the ¹⁹F NMR spectrum at $\delta = -157.9$ ppm and -67.3 ppm respectively. [15c, 147] Me₃SiCF₃ is commonly known as Ruppert-Prakash reagent. [15a, 15c, 148] The reactivity pattern of the product mixture obtained from the reduction of SF₅CF₃

with SIMes confirms the identity of 27 and indicates its principle applicability as a source for a CF_3 building block.

Scheme 25. Activation of SF₅CF₃ with SIMes.

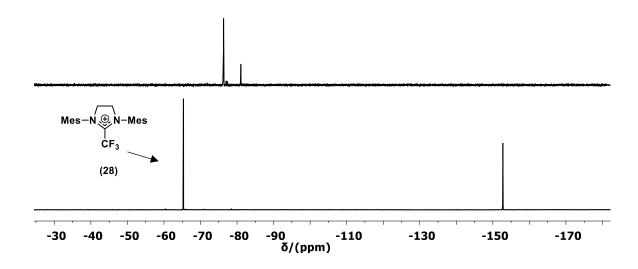


Figure 18. ¹⁹F NMR (282.4 MHz, Tol-d₈) spectrum for the activation of SF_5CF_3 with SIMes. **23** = $SIMes(F)_2$, **27** = [($SIMes(F)(CF_3)$], # = SF_5CF_3

4.2.2. Independent synthesis of 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine [SIMes(F)(CF₃)] (27)

An independent synthesis of [(SIMes(F)(CF₃)] (27) was carried out by treating SIMes (13, 1 equivalent) with Umemoto reagent (1 equivalent) to obtain the 1,3-dimesityl-2-trifluoromethylimidazolinium tetrafluoroboarate salt (28) through an electrophilic trifluoromethylation (Scheme 26). In the ¹⁹F NMR spectrum of 28, two signals at δ = -65.2 ppm and δ = -152.6 ppm were observed for the CF₃ group and BF₄ ion. LIFDI mass spectrometry gave a molecular ion peak at m/z 376.4, which is consistent with the calculated molecular mass of the 1,3-dimesityl-2-trifluoromethylimidazolinium ion. The addition of NMe₄F (5 equivalents) to 28 at room temperature yielded the desired compound 27 in 10 mins, showing two signals in the ¹⁹F NMR spectrum at δ = -76.3 and δ = -82.7 ppm in a ratio of 3:1 (Figure 19).

Scheme 26. Synthesis route for the formation of 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine $[(SIMes(F)(CF_3)]$ (27).

Figure 19. ¹⁹F NMR {282.4 MHz, (a) CD₂Cl₂ (b) C₆D₆} spectra showing (a) 1,3-dimesityl-2-trifluoromethylimidazolinium tetrafluoroboarate **(28)** (b) [(SIMes(F)(CF₃)] **(27)** after adding NMe₄F to **28.**

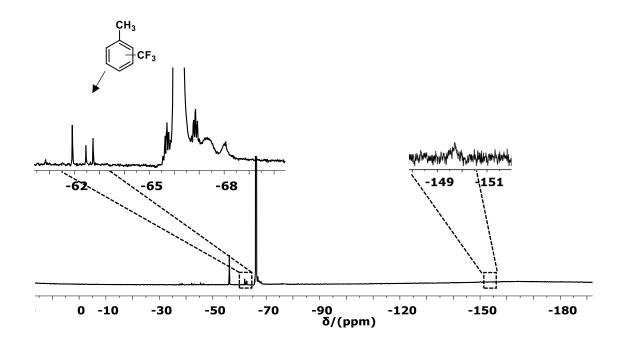
4.2.3. Comparison among NHCs for the reduction of SF₅CF₃

For comparison , other electronically and sterically different NHCs (**SIPr, IMes, IPr**) were reacted with SF₅CF₃ at 80 °C for 36 h. The yield of respective 2,2-difluoroimidazolidine or 2,2-difluoro-imidazoline derivatives was calculated as 38 % for SIMes, 12 % for SIPr, 20 % for IMes and 8 % for IPr from ¹⁹F NMR spectra using 1,2 difluorobenzene as external standard and assuming that two equivalents of the 2,2-difluoro- derivative of NHCs were formed. Similar to the [SIMes(F)(CF₃)] (**27**), signals in the ¹⁹F NMR spectrum at δ = -76.5 ppm and -87.2 ppm can be attributed to the [SIPr(F)(CF₃)], when SIPr was used for the activation of SF₅CF₃. 2-fluoro-2-trifluoromethyl- derivative of the IMes and IPr were formed in very small amount which makes their characterization very difficult in the NMR spectra. However, signals which are present in the ¹⁹F NMR spectrum besides the IMes(F)₂ and IPr(F)₂ derivatives, can be assigned to the 2-fluoro-2-trifluoromethyl- derivative of these NHCs. Based on the yield of the 2,2-difluoro- derivatives, SIMes has shown the best reactivity towards the activation of SF₅CF₃ when compared with other NHCs.

4.2.4. Mechanistic proposal for the activation of SF₅CF₃ with SIMes

It is noteworthy that in contrast to SF₆, SF₅CF₃ can be activated by NHCs from its ground state. Mechanistically, the activation of the SF₅CF₃ with SIMes is proposed to occur via single electron transfer pathway. SIMes can transfer a single electron to SF₅CF₃ to generate a radical anion SF₅CF₃ and a radical cation SIMes⁺. Note that Kennedy et al. has reported on the decomposition of the SF₅CF₃ by fast dissociative electron attachment method where the CF₃ was not observed even when electrons with kinetic energy higher than 1.7 eV were applied due to the exothermic dissociative attachment reaction for the formation of SF_5 ($\Delta H = -22 \text{ kJ mol}^{-1}$) and endothermic dissociative attachment reaction for the formation of CF_3^- ($\Delta H = 162 \text{ kJ mol}^{-1}$) (Scheme 13). [90] Therefore, it is conceivable that the radical anion SF₅CF₃ continues to fragment into a SF₅ anion and a trifluoromethyl radical CF₃. The CF₃ can recombine with SIMes' to give a SIMes-CF₃⁺ cation. SF₅ is reported to be a very reactive intermediate hence it couldn't be isolated and readily decomposes to give SF₄ and a 2-fluoro-2-trifluoromethyl NHC derivative [NHC(F)(CF₃)]. [69, 78, 98, 104e] It has been established in the Section 4.1.3 that SIMes can readily activate the SF₄ when treated at room temperature to give 2,2difluoroimidazolidine (SIMes(F)2, 23) and 2-thioimidazolidine (24) (Scheme 24).[149]

The formation of a trifluoromethyl radical was proved by adding a radical trapping agent TEMPO into the reaction mixture containing SIMes and SF₅CF₃. The CF₃ which was generated from the activation of the SF₅CF₃, reacted with TEMPO to give an TEMPO-CF₃ adduct. A signal in ¹⁹F NMR spectrum at $\delta = -55.3$ ppm and molecular ion peak in GC-MS at m/z 225.2, were found consistent with the data reported for the identification of the TEMPO-CF₃ adduct. ^[150] The SF₅ present in the reaction mixture decomposes into SF₄ and subsequently yielded SIMes(F)₂ (23) and 24 (Scheme 27).


Scheme 27. Proposed mechanism for the activation of SF₅CF₃ with SIMes.

4.2.5. Photochemical activation of SF₅CF₃ with SIMes

SIMes (13) was treated photochemically with SF₅CF₃ to enhance the activation and electron transfer, as observed for the activation SF₆. After 4 h of UV treatment (311 nm) in toluene SIMes(F)₂ (23), the p-, o-, m- isomers of methylbenzotrifluoride in a ratio of 3:1.5:1 and 24 were furnished, as identified by ¹⁹F NMR and ¹H NMR spectroscopy (Scheme 28) (Figure 20).^[151] Additionally, signals at δ = 10.7 ppm and δ = 14.5 ppm in the ¹H NMR spectrum and a weak signal at δ = -149.7 ppm in the ¹⁹F NMR spectrum, could be assigned to the 1,3-dimesityl-2-imidazolinium bifluoride salt (29). 29 has been reported to be usually formed from an attack of HF to the free NHCs.^[151b]

Mes-N_N-Mes
$$\xrightarrow{SF_5CF_3}$$
 $\xrightarrow{Toluene}$ $\xrightarrow{311 \text{ nm}, 4 \text{ h}}$ \xrightarrow{FF} \xrightarrow{F} \xrightarrow{F}

Scheme 28. Photochemical activation of the SF₅CF₃ with SIMes.

Figure 20. ¹⁹F NMR (282.4 MHz, C_6D_6 capillary) spectrum for the activation of SF_5CF_3 with SIMes at 311 nm. **23** = SIMes(F)₂, **29** = 1,3-dimesityl-2-imidazolinium bifluoride, # = SF_5CF_3

4.2.6. Possible pathways of CF₃ group transfer to arenes

There are two possible pathways for transferring the CF₃ group *via* photochemical activation of SF₅CF₃ in the presence of NHC (**Scheme 29**). Path (a) involves the [(SIMes(F)(CF₃)] (**27**) formed from the reduction of SF₅CF₃, responsible for the CF₃ transfer to toluene. Path (b) involves an intermediate **30** generated from the initial electron transfer from the SIMes to SF₅CF₃ [**Scheme 29**, (i)], responsible for the CF₃ transfer. Transfer through path (b) can be discarded based on an attempted reaction of 1,3-dimesityl-2-trifluoromethylimidazolidium tetrafluoroboarate (**28**) with toluene. **28** is an analogous compound of the intermediate **30**. Trifluoromethylation of arene was not obtained when **28** was photochemically treated with toluene even in the presence of excess of SIMes. To confirm the occurrence of CF₃ transfer through path (a), the product mixture obtained from the thermal activation of SF₅CF₃ with SIMes was taken and put under UV (311 nm) for 2h. Successful trifluoromethylation took place to generate the isomers of methylbenzotrifluoride as identified through ¹⁹F NMR spectroscopy. CF₃ group transfer was not achieved when the product mixture was irradiated in the presence

of TEMPO, indicating the trifluoromethylation of arenes *via* a radical pathway in a similar manner reported by Togni *et al.*^[15i, 17b] [(SIMes(F)(CF₃)] (**27**) when treated with UV light, possibly generates the radicals [CF₃] and [SIMes(F)]. [CF₃] can attack the toluene yielding an intermediate radical [Tol-CF₃], which subsequently gets deprotonated in the presence of [SIMes(F)] radical and generates methylbenzotrifluoride [**Scheme 29**, (ii)].

Mes-N N-Mes hv Mes-N N-Mes
$$[CF_3]$$
 (ii)
$$F CF_3 F$$

$$[SIMes(F)]$$

$$[CF_3] \xrightarrow{\text{CH}_3} \qquad [SIMes(F)] \xrightarrow{\text{HF}} \qquad CF_3$$

$$CH_3 \qquad CH_3 \qquad CH_3$$

$$[Tol-CF_3] \xrightarrow{\text{CH}_3} \qquad CH_3$$

Scheme 29. (i) Possible pathways for the trifluoromethylation of toluene; (ii) proposed pathway for the trifluoromethylation of toluene with [(SIMes(F)(CF₃)] (27).

Overall, a complete reduction of SF₅CF₃ was achieved thermally and photochemically through S–F and S–C bond activation with SIMes, generating SIMes(F)₂, 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine [(SIMes(F)(CF₃)] (27) and 1,3-dimesitylimidazolidine-2-sulfide (24). The compound 27 can be utilized as CF₃ or CF₃ transfer reagent. The reactivity of SIMes(F)₂ has been also investigated as fluorinating reagent and discussed in the following chapters.

4.3. Fluorination with 2,2-difluoroimidazolidin $SIMes(F)_2$

4.3.1. Deoxyfluorination

Due to the abundance of compounds containing alcohols and carbonyl groups, deoxyfluorination is an efficient means for introducing fluorine atoms into organic molecules. It has been described in the Section 2.4.2 that deoxyfluorination can be successfully achieved by using SF₄ and SF₄ derived reagents.^[13a-1] Due to difficulties associated with handling toxic SF₄ derived reagents; the development of new deoxyfluorination reagents has gained interest in recent years. In 2002, Nagata et al. thermally stable deoxyfluorination reported reagent, 2,2-difluoro-1,3dimethylimidazolidine (DFI) (Figure 21). The DFI was applied to oxygen-containing functional groups such as alcohols, acids, carbonyl compounds to transform them into the corresponding fluorides.[110] Ritter et al. also synthesized the reagent 1,3-di(2,6diisopropylphenyl)-2,2-difluoroimidazoline (PhenoFluor[™]) for fluorinating phenols and alcohols. Since PhenoFluor[™] tends to undergo hydrolysis upon storage, less moisture sensitive variants of PhenoFluor[™] such as PhenoFluorMix and AlkylFluor were developed later (Figure 21).[130, 13p]

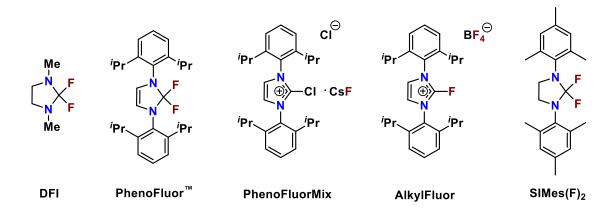


Figure 21. Deoxyfluorination reagents having imidazolidine or imidazoline framework.

Ritter *el al*. proposed a concerted nucleophilic aromatic substitution (CS_NAr) mechanism for the deoxyfluorination of phenols by PhenoFluorTM in the presence of CsF to yield aryl fluorides and the urea derivative of the imidazoline. (**Scheme 30**)^[13p]

Scheme 30. Proposed concerted nucleophilic aromatic substitution (CS_NAr) mechanism for the deoxyfluorination of phenols.^[13p]

Figure 22. Transition state structure for F or FHF attack at the arene.^[13o]

4.3.2. Deoxyfluorination of alcohols with SIMes(F)2

1,3 dimesityl-2,2-difluoroimidazolidine (SIMes(F)₂, **23**) was obtained as one of the end products from the reduction of SF₆ with SIMes and has a structural framework similar to the DFI and PhenoFluorTM (**Figure 21**). **23** can be synthesized also independently by fluorination of 1,3-dimesityl-2-chloroimidazolinium chloride with NMe₄F (**Scheme 21**). The reactivity of SIMes(F)₂ was tested towards the deoxyfluorination of alcohols and acids.

Electronically different alcohols were treated with SIMes(F)₂ (**23**) at room temperature in the presence of CsF. The treatment of SIMes(F)₂ with octanol, allylic and benzylic alcohol yielded 1-fluorooctane (**31a**, 92 %), 4-fluoropent-2-ene (**31b**, 79 %) and 4-nitrobenzylfluoride (**31c**, 85 %) respectively, *via* deoxyfluorination within 30 min at room temperature (**Scheme 31**). The urea derivative of SIMes (1,3-dimesitylimidazolidine-2-one, **32**) was also observed.^[152] All products were identified with the help of ¹H and ¹⁹F NMR spectroscopy and quantified using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard.^[153]

R-OH
$$\frac{\text{SIMes}(F)_2, \text{ CsF}}{\text{CD}_2\text{Cl}_2, 30 \text{ min}}$$
 R-F + Mes-N N-Mes (31) (32)

Scheme 31. Deoxyfluorination of alcohols with SIMes(F)₂.

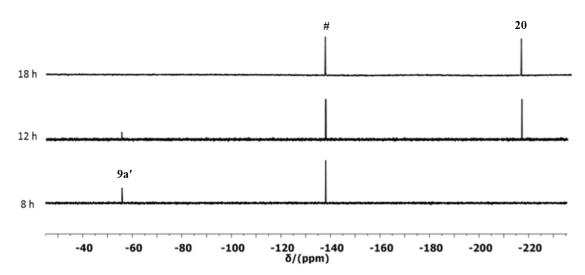
In case of 1,1,1-trifluoropropanol a slightly different reactivity was observed. When treated with SIMes(F)₂, a mixture of tetrafluoropropane (31d) and trifluoropropene (31e) was obtained in the ratio of 1: 0.6. (Scheme 32) When the reaction mixture was followed for 3 h by ¹⁹F NMR spectroscopy, the ratio changed to 1: 0.9, which indicates that the deoxyfluorination was followed by a dehydrofluorination. [154] Note that it is not very common to see the formation of trifluoropropene by dehydrofluorination in a homogeneous reaction system. [155]

Mes-N-Nes
$$F_3$$
C OH, CsF F_3 C F_4 F_3 C F_5 C F_6 F_7 C F_8 C

Scheme 32. Deoxyfluorination of 1,1,1-trifluoropropanol with SIMes(F)₂ (23).

4.3.3. Role of CsF

When 1-octanol was treated with SIMes(F)₂ (**23**) without CsF, the formation of 1,3-dimesityl-2-alkoxyimidazolinium bifluoride was observed, as indicated by a signal at δ = -169.2 ppm in the ¹⁹F NMR spectrum, ^[133b, 151b] and 1-fluorooctane was obtained in lower yield when compared to the deoxyfluorination reaction in the presence of CsF. Utility of the CsF in the deoxyfluorination was described by Ritter *et al.* by taking phenol as an example (**Figure 22**). ^[13o] The activation energy for the deoxyfluorination of phenol via attack of bifluoride (FHF) and fluoride (F) ion at the arene was calculated as 30 kcal mol⁻¹ and 24 kcal mol⁻¹ respectively. The experimental barrier for the deoxyfluorination of phenol was calculated as Δ G*(110 °C) = 23.4 ± 0.19 kcal mol⁻¹ which is closer to the activation energy for deoxyfluorination of phenol in presence of F and hence yield for the fluorinated products was found to be better in the presence of CsF. ^[13o]


In contrast to the PhenoFluorTM, when SIMes(F)₂ was used for the deoxyfluorination of phenol in presence of CsF, no fluorobenzene was observed. Only formation of 1,3-dimesityl-2-phenoxyimidazolinium bifluoride was observed even after heating the reaction mixture at 90 °C for 48 h.^[110] This supports the assumption made by Ritter *et al.* for the need of an unsaturated backbone to stabilize bifluoride (FHF⁻) via hydrogen bonding.^[130, 13p]

4.3.4. One-pot deoxyfluorination of alcohols with SF₆

Mes-N...N-Mes +
$$\longrightarrow$$
 OH \longrightarrow Tol-d₈ 311 nm, 18 h \longrightarrow Mes \longrightarrow Mes \longrightarrow Mes (24) (32)

Scheme 33. One-pot deoxyfluorination of 1-octanol.

Deoxyfluorination of alcohols can not only be achieved in a stepwise fashion by treating them with the mixture of SIMes(F)₂ (23) and 24 generated from the reduction of SF₆ but also be achieved in a one-pot manner (Scheme 33). The SF₆ (0.10 mmol) was added into a solution of SIMes (0.05 mmol) and 1-octanol (0.05 mmol) and the reaction mixture was put under irradiation using UV light at 311 nm (Scheme 33). Monitoring of the reaction with ¹⁹F NMR spectrum shows that SIMes(F)₂ was formed initially, which subsequently reacts with 1-octanol to give 1-fluorooctane in 18 h (Figure 23). For one-pot deoxyfluorination, addition of CsF was not required to get a good yield of 1-fluorooctane and a signal for the bifluoride anion was not observed in the ¹⁹F NMR spectrum. 1,3-dimesitylimidazolidine-2-one (32) were also identified as end products after completion of the reaction. ^[140, 152a]

Figure 23. ¹⁹F NMR (282.4 MHz, Tol-d₈) spectrum for the one-pot deoxyfluorination of 1-octanol *via* reduction of SF₆ with SIMes. * = 1,2 difluorobenzene (external standard).

4.4. Fluorination of aldehydes with 2,2-difluoroimidazolidin SIMes(F)₂ to access acyl fluorides

4.4.1 Properties and synthesis of acyl fluorides

Due to their superior stability and distinct reactivity, acyl fluorides are versatile intermediates in organic synthesis.^[156] They are often prepared as fluorinating reagent in the total synthesis of biologically active enzymes and drugs.^[157] Acyl fluorides have been successfully employed in esterification and amidation to synthesize peptides.^[156, 157b, 157c, 158] Sanford *et al.* reported the use of acyl fluorides as anhydrous fluoride ion source for S_NAr fluorination reactions.^[159] C–H bond formation and Suzuki – Miyaura coupling with arenes can also be achieved with acyl fluorides *via* metal catalyzed decarbonylation or defluorination.^[160] **Scheme 34** is showing synthetic utility of the acyl fluorides.

Scheme 34. Usage of acyl fluorides in organic synthesis.^[161]

Acyl fluorides are variably reported to be synthesized from aldehydes using cesium fluoroxysulfate (CsSO₄F), uranium hexafluoride (UF₆), F₂ gas, N-fluorobenzenesulfonimide (NFSI) with photoactivated decatungstate or SelectFluor[™]. [162]

All these methods involve either harsh reaction conditions, lower yields or long time durations to achieve the fluorination of aldehydic C(sp²)–H bond. Alternatively acyl fluorides can also be prepared from acids via deoxyfluorination or from acyl chlorides *via* halogen exchange reactions. [13g, 13j, 69, 149, 156, 161, 163]

4.4.2 Deoxyfluorination of benzoic acid with SIMes(F)2

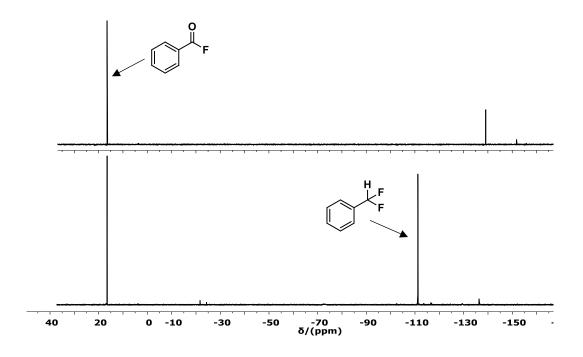
SIMes(F)₂ (23) is discussed in the last section to be successfully employed for the deoxyfluorination of alcohols. Benzoyl fluoride can be obtained in a similar way by treating benzoic acid with 23 at room temperature for 30 mins (Scheme 35). The formation of benzoyl fluoride (31f, 79 %) was identified by using NMR spectroscopy. The ¹⁹F NMR spectrum shows a signal at $\delta = 17.7$ ppm whereas the ¹³C{¹H} NMR spectrum, reveals a signal for the benzoyl carbon at $\delta = 153.2$ ppm. GC-MS, gives a molecular ion peak at m/z 124. These analytical data were found in accordance with the literature reported for the synthesis of benzoyl fluoride. ^[160c]

Scheme 35. Deoxyfluorination of the benzoic acid with SIMes(F)₂ (23).

4.4.3 Direct fluorination of aldehydes

A solution of SIMes(F)₂ in acetonitrile (23, 1 equivalent) on being treated with benzaldehyde (1.5 equivalent) at 85 °C for 9 h produced benzoyl fluoride (31f, 73 %) (Scheme 36). Formation of the benzoyl fluoride was identified by the ¹⁹F NMR spectrum, showing a signal at $\delta = 17.7$ ppm. The 1,3-dimesitylimidazolinium bifluoride (29) was also obtained along with the benzoyl fluoride. [151b] Yield of acyl fluoride 31f, was estimated from the ¹⁹F NMR spectrum by using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard.

Various other substituted benzaldehydes and an aliphatic aldehyde were screened for the fluorination with SIMes(F)₂ at 85 °C for 9 h. (**Scheme 36**) Successful conversion of *p*-nitrobenzaldehyde, *p*-methoxybenzaldehyde and butyraldehyde into *p*-nitrobenzoylfluoride (**31g**, 78 %), *p*-methoxybenzoylfluoride (**31h**, 35 %) and butanoylfluoride (**31i**, 75 %) respectively was observed.^[161, 163b, 164] Observed difference in the yield of acyl fluorides can be attributed to the difference in the electrophilicity of carbonyl center. A electrophilic carbonyl center led to the better yield of the corresponding acyl fluoride. No reaction was observed when acetophenone was treated with SIMes(F)₂.


Scheme 36. Fluorination of various aldehydes with SIMes(F)₂ (23).

4.4.4 Comparison of the SIMes(F)₂ with DFI and PhenoFluor[™] as fluorinating agents

To get more insights on the unusual reactivity of SIMes(F)₂ towards the fluorination of aldehydes, other NHC derived deoxyfluorinating reagents such as DFI and PhenoFluorTM were also treated with benzaldehyde. DFI was used from the commercial source. DFI is reported to produce difluoromethylbenzene when treated with benzaldehyde at 85 °C in acetonitrile for 8.5 h. [110, 165] The reaction sample containing DFI and benzaldehyde was heated at 85 °C and progress of the reaction was monitored with the ¹⁹F NMR spectrum. A mixture of benzoyl fluoride and difluoromethylbenzene at $\delta = 17.7$ and $\delta = -111.1$ (2 J_{FH} = 57.2 Hz) ppm, in a ratio of 1: 0.5 was observed after 8.5 h of heating (**Scheme 37**) (**Figure 24**). When the reaction mixture was continued to heat for 15 h, the ratio of the benzoyl fluoride and difluoromethylbenzene in the mixture changed to 0.5 : 1. PhenoFluorTM was synthesized by following a synthetic route adopted for the synthesis of SIMes(F)₂ (**23**) (**Scheme 21**). Fluorination of the benzaldehyde with PhenoFluorTM gave benzoyl fluoride with a yield of 65 %.

SIMes(F)₂ has the advantage over DFI as it selectively only gives benzoyl fluoride when treated with the benzaldehyde even after heating the reaction mixture for 15 h. Compared to the PhenoFluorTM, a better yield for the benzoyl fluoride was observed when SIMes(F)₂ was used for the fluorination.

Scheme 37. Comparison between DFI and SIMes(F)₂ towards the fluorination of benzaldehyde at 85 °C.^[110]

Figure 24. ¹⁹F NMR (282.4 MHz, CD₃CN) spectra for the fluorination of benzaldehyde with (a) DFI and (b) SIMes(F)₂ at 85 $^{\circ}$ C after 8.5 h. * = 1,2 difluorobenzene (external standard).

4.4.5. Mechanistic proposal for the formation of acyl fluorides with SIMes(F)2

Scheme 38 is showing a tentative mechanism for the formation of benzoyl fluorides with SIMes(F)₂ (23). Fluorination of the aldehyde can be postulated to be initiated from the reaction of adventitious HF present in the reaction system with SIMes(F)₂ yielding a 1,3-dimesityl-2-fluoroimidazolinium bifluoride salt (33). An nucleophilic attack of aldehyde to the salt 33 followed by fluoride migration can produce a uronium bifluoride salt (34). Subsequent rearrangement in the salt 34 can lead to the formation of benzoyl fluoride and the 1,3-dimesitylimidazolinium bifluoride salt (29). When fluorination of the benzaldeyde was performed with 23 in the presence of CsF, a smaller yield of benzoyl fluoride (15 %) was obtained which further supports the involvement of HF in the fluorination.

The presence of less bulky substituents in the DFI can facilitate the further attack of benzoyl fluoride at 1,3-dimesitylimidazolidinium bifluoride. A subsequent attack of the fluoride ion *via* S_N2 can yield difluoromethylbenzene and 1,3 dimethylimidazolidine-2-one.^[110]

The difference in the reactivity of benzaldehyde, p-nitrobenzaldehyde, p-methoxybenzaldehyde and butyraldehyde towards the fluorination with SIMes(F)₂ can be explained on the basis of electrophilicity of carbonyl center in the intermediate salt 34. More electrophilicity and less conjugation in the 34 will favor the acyl group fluorination.

$$R = Me$$

$$R$$

Scheme 38. Proposed mechanism for the fluorination of aldehydes with SIMes(F)₂ (23).

To support the proposed mechanism, the 1,3-dimesityl-2-fluoroimidazolinium tetrafluoroborate salt (35) was prepared as an analogue of the 1,3-dimesityl-2-fluoroimidazolidinium bifluoride (33) by following the procedure reported for the synthesis of AlkylFluor.^[13n] A reaction of the compound 26 with KF and KBF₄ yielded 33 (see experimental). Addition of the benzaldehyde to 35 yielded benzoyl fluoride which supports the formation and need of the 1,3-dimesityl-2-fluoroimidazolinium bifluoride salt (33) to achieve the fluorination of aldehydes (Scheme 39).

Scheme 39. Proposed mechanism for the fluorination of aldehydes with 1,3-dimesityl-2-fluoroimidazolinium tetrafluoroborate (**35**).

SIMes(F)₂ (23) can be successfully used for synthesizing organic building blocks as it has shown versatile reactivity for the deoxyfluorination of alcohols, acids and direct fluorination of aldehydes in a convenient manner without involving any harsh reaction conditions. In the following chapter usage of the SIMes(F)₂ (23) for synthesizing organoaluminium fluorides is investigated and elaborately described.

5. Synthesis of organoaluminum fluorides with 2,2-difluoroimidazolidin SIMes(F)₂

5.1. Introduction

5.1.1. Aluminium fluorides

Inorganic metal fluorides have commercial importance for catalyzing reactions involved in the production of fluoro-organic compounds. Antimony pentafluoride (SbF₅) is likely one of the first and most important fluorination catalysts for the large scale production of chlorofluorocarbons (CFCs) via halogen exchange reactions. [166][167][168] Various aluminum fluoride and fluorinated alumina phases have also been reported as active Lewis acid catalysts for the preparation of chlorofluorocarbons and hydrofluorocarbons and in cracking, isomerization or polymerization reactions. [169] The activity of these catalysts is attributed to the significant concentration of defects or distorted structures. Particularly for crystalline aluminium fluorides, two phases are well studied in the literature, α -AlF₃ and β -AlF₃. The β -AlF₃ phase displays activity for the chlorofluorocarbon (CFC) or hydrochlorofluorocarbon (HCFC) dismutation and halogen exchange as shown in the **Scheme 40**, whereas the thermodynamically more stable α -AlF₃ displays no catalytic activity, even after prolonged treatment with fluorocarbons at high temperatures, up to 600 °C. [169d, 170]

Scheme 40. β-AlF₃ catalyzed dismutation and halogen exchange reactions.^[169d, 170]

The most common methods of synthesizing the aluminium fluorides involve the treatment of aluminium oxides or hydroxides with HF and/or NH₄F.^[169a] These methods generate a mixture of aluminium fluoride hydrates, aluminium hydroxide fluorides and ammonium fluoroaluminates in either amorphous or crystalline state. The obtained products, when treated thermally, yield aluminium fluorides in different metastable phases or partially hydrolyzed aluminium fluorides. The metastable phases, upon heating at temperatures between 450 and 650 °C, undergo an irreversible phase change to α -AlF₃.^[169a] Herron *et al.* reported a successful synthesis of AlF₃ that show different metastable phases (η , β , θ , κ) via thermal decomposition of the fluoroaluminates with ammonium, tetramethylammonium or pyridinium cations.^[171] Case and Nyman reported on the the synthesis of AlF₃ *via* decomposition of the SF₆ at AlCl₃ at 180–200 °C for 24 h. This method produces sulfur chlorides along with the AlF₃.^[59] The AlF₃ can also be produced from the fluorination of aluminium hydroxide [Al(OH)₃] by SF₄ at 20 °C.^[172]

In past 15 years, there has been tremendous progress in the synthesis of nanoscopic aluminium fluorides.. Amorphous aluminium fluorides such as aluminium chlorofluoride (ACF, AlCl_xF_{3-x}, x = 0.05–0.3) and high-surface aluminium fluoride (*HS*-AlF₃) have shown a Lewis acidity comparable to that of SbF₅. [169d, 169e] Owing to their high Lewis acidity, ACF and *HS*-AlF₃ are known as good heterogeneous catalysts for C–H and C–F bond activation reactions at ambient temperature and pressure. [166, 169d] In the presence of silanes or germanes, ACF and *HS*-AlF₃ are useful compounds to perform dehydrohalogenation or hydrodehalogenation reactions of halogenated alkanes or olefins (**Scheme 41**). [173] Typically, Friedel-Crafts-type reactions are also observed besides hydrodehalogenation when ACF or *HS*-AlF₃ are used in the presence of silanes in C₆D₆ (**Scheme 41**). [154, 173c, 174] Microporous ACF is obtained by treating AlCl₃ with trichlorofluoromethane (CCl₃F) whereas mesoporous *HS*-AlF₃ is prepared by the

fluorination of aluminium isopropoxide $[Al(O^iPr)_3]$ with anhydrous HF followed by a post-fluorination step with dichlorodifluoromethane (CCl₂F₂) or chlorodifluoromethane (CHClF₂) at 240 °C in a flow reactor. [175][169d, 176]

ACF, Et₃SiH
$$F_2$$
C + Et₃SiF + D

ACF, Et₃SiH F_2 C F_2 C F_3 C F_4 C F_5 C F_6 D F_6 C F_6 D F_7 C F_7 C

Scheme 41. ACF catalyzed hydrodefluorination and Friedel-Crafts-type reaction in the presence of Et₃SiH in 2,3,3,3-tetrafluoropropene.^[154]

(AlF₃)_x is a non-volatile compound due to its very high melting point (1290 °C).^[177] Being as well very insoluble, the use of the aluminium fluorides was limited to the heterogeneous reaction systems. In contrast, the development of soluble AlF₃ complexes could become an interesting alternative to overcome this limitation and thus has become a topic of research in the past years. Development of synthetic routes for organoaluminium fluorides has therefore lately emerged and are investigated for their reactivity in solutions.

5.1.2. Organoaluminium fluorides

Organoaluminium fluorides can be synthesized by replacing one or two of the fluorine atoms in the AlF₃ by carbon, nitrogen, or oxygen atoms.^[178] The presence of organyl groups in the organoaluminium fluorides makes them soluble in various organic solvents and lowers their melting point. Hence, they become accessible in the homogeneous reaction systems, and can show reactivity in solution. Organoaluminium fluorides such as dimethylaluminium fluoride (Me₂AlF)₄ were established as suitable precursors to access aluminium fluoride clusters.^[179]

In 1957, Ziegler reported the synthesis of the first organoaluminium fluorides and their use as intermediates in the synthesis of trialkylalanes. Latter are used as catalysts in the oligopolymerization of olefins. [180][181][182] Roesky *et al.* have extensively described the synthesis, properties and applications of various organoaluminium fluorides in their reviews. [177-178, 183] The **Scheme 42, (i-ii)** depicts some examples of organoaluminium fluorides reported by Roesky *et al.* on the synthesis of organoaluminium fluorides such as aminoalane difluoride [(2,6-*i*Pr₂C₆H₃)N(SiMe₃)Al(F)₂] (**37**) and diamidoaluminium fluoride [(2,6-*i*Pr₂C₆H₃)N]₂(CH₂)₃AlF(NMe₃) (**38**) through fluorination of dimethyl alane or aluminium hydrides with trimethyltin fluoride (Me₃SnF). [184] Recently, Crimmin *et al.* reported on the synthesis of organoaluminium fluorides such as [{HC(CMeNAr)₂}Al(F)₂] (Ar = 2,6-*i*Pr₂C₆H₃) (**39**) *via* activation of the C–F bonds of fluoroalkenes by treating them with an Al(I) complex [**Scheme 42, (iii)**]. [185]

5.1.2.1. Trimethyltin fluoride (Me₃SnF): A fluorinating reagent for synthesizing organoaluminium fluorides

In the solid state, Me₃SnF is reported to have a polymer-chain-like structure with bridging fluorine atoms and is insoluble in commonly used solvents.^[186] Roesky *et al.* pioneered the use of Me₃SnF as a fluorinating reagent for synthesizing organometallic fluorides.^[187] It has been reported that Me₃SnF can broadly be used in the synthesis of organoaluminium fluorides via chloride, hydride or methyl exchange reactions.^[179, 184] Over the years, Me₃SnF has been used to prepare various inorganic and organometallic fluoride complexes of alkaline-earth metals, transition metals, lanthanide metals and main-group metals (**Scheme 42**).^[178, 188]

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{7$$

Scheme 42. Different approaches for the synthesis of organoaluminum fluorides *via*; (i-ii) direct fluorination with Me₃SnF; (iii) C–F bond activation.^[184-185]

5.1.2.2. AIF₃ complexes bearing neutral ligands

In *Chapter 2*, it has been mentioned that *N*-heterocyclic carbenes (NHCs) are widely used as ligands for stabilizing a wide range of metal complexes bearing unique and interesting properties. The availability of a sp² hybridized lone pair in the NHCs for donation into an empty orbital of metal centers makes NHCs suitable for synthesizing complexes of transition-metals and adducts with a large number of main-group elements.^[125, 127] Transition metal complexes bearing NHCs ligands are widely used in homogeneous catalysis.^[132c] Some examples of important organic transformations include Rh- and Pt-catalysed hydrosilylation, Pd-catalyzed cross-coupling reactions, Au-catalyzed double-bond activation, Ir- and Ru-catalyzed hydrogenation and Ru-catalyzed olefin metathesis.^{[189][190]}

NHCs play an important role in the stabilization of highly unstable and reactive Lewis acidic group 13 molecular compounds in all of their possible oxidation states.^[191] Several Lewis pairs comprising NHC-supported Al(III) complexes have been prepared for instance by the direct reaction of NHCs with AlX₃ (X= halide or alkyl/aryl).^[192]

The stability of the (NHC)AlX₃ adducts depends on the sterics around the aluminum center. Dagorne et al. reported that when sterically bulky carbene 1,3-di-tertbutylimidazolin-2-ylidene (ItBu) is treated with trimethyl aluminium (AlMe₃), the complex [(ItBu)AlMe₃] (40) was obtained in the beginning which subsequently isomerized to the less sterically crowded "abnormal" NHC adduct [(ItBu)AlMe₃] (41) in THF or toluene (Scheme 43). Also, in the presence of an excess of AlMe₃, complex 40 transforms into the trinuclear aluminate anion Me₃Al(μ^3 -CH₂)(AlMe₂)₂(μ^2 -CH₃) (42) through the deprotonation of AlMe₃ (Scheme 43).^[193] Sterically hindered Lewis acid/base pairs which are restricted toward the formation of usual Lewis acid/Lewis base adducts, are defined as "frustrated Lewis pairs" (FLPs).[194] The adduct 40 can be referred as a frustrated Lewis pair. The FLP combination between the sterically encumbered Lewis base ItBu and the strong Lewis acid tris(pentafluoro)phenyl aluminium [Al(C₆F₅)₃] exhibits an interesting activity in polymerization reactions.^[195] FLPs comprising NHC and tris(pentafluoro)phenyl borane $[B(C_6F_5)_3]$ are widely used in the activation of small molecules such as hydrogen (H₂), carbon dioxide (CO₂), ammonia (NH₃) and alkynes. [195-196]

Scheme 43. Unusual reactivity of the sterically bulky adduct [(ItBu)AlMe₃] (40). [193]

Among several synthesized NHC-aluminum(III) halide complexes, no report on the adducts of NHC and aluminum(III) fluoride could be found. The synthesis of molecular AlF₃ complexes bearing neutral ligands has been reported only rarely. In 1999, Kolis *et al.* reported the hydrothermal synthesis of aluminium fluoride amine complex [AlF₃(NH₃)₂] by treating aluminium nitride (AlN) and ammonium fluoride (NH₄F) in supercritical ammonia at 400 °C.^[197] In a recent report, Reid *et al.* documented a 1,4,7-triazacyclononane(tacn)-stabilized AlF₃ complex solvated with water molecules, synthesized *via* fluorination of an analogous tacn-stabilized AlCl₃ complex with NMe₄F or KF.^[198] Certainly, there is a lack of knowledge in the synthesis of organoaluminium fluorides bearing neutral ligands. In this chapter, the research is focused on finding different synthetic routes to synthesize NHC stabilized aluminium (III) fluorides. Furthermore, reactivity of NHC stabilized aluminium (III) fluorides has been investigated towards the halogen exchange reactions.

5.2. Results and Discussion

A two-step reaction was designed to obtain NHC stabilized aluminium (III) fluorides. The first step involved the synthesis of a SIMes-stabilized trimethyl aluminium (III) complex [(SIMes)AlMe₃] (**43**) by treating a solution of AlMe₃ with SIMes as reported by García *et al*.^[192d] The second step involved the fluorination of [(SIMes)AlMe₃] either *via* direct fluorination with mild fluorinating reagents such as SIMes(F)₂ (**23**) and Me₃SnF or *via* activation of SF₄ and SF₆.^[199]


5.2.1. Fluorination of [(SIMes)AlMe3] with SIMes(F)2

Addition of the complex [(SIMes)AlMe₃] (**43**) to SIMes(F)₂ (**23**) at room temperature generated a monofluorinated aluminium complex [(SIMes)Al(F)(Me)₂] (**44**) with a quite low conversion (**Scheme 44**). In the ¹⁹F NMR spectrum, a broad signal was observed at $\delta = -169.9$ ppm for the complex **44**. This ¹⁹F NMR signal fits in the reported range of four-fold coordinated aluminium fluoride species such as for [{HC(CMeNAr)₂}Al(F)₂] (Ar = 2,6-ⁱPr₂C₆H₃). [178, 185] For the methyl groups attached to the Al center in the complex **44**, a doublet at $\delta = -1.09$ ppm with a coupling constant of ${}^{3}J_{HF} = 3.2$ Hz was observed in the ¹H NMR spectrum (**Figure 25**). This coupling constant is in good agreement with the range of ${}^{3}J_{HF}$ values reported for other organofluoroaluminates. [200]

Along with the complex **44**, presence of methane was also observed in the 1 H NMR spectrum at $\delta = 0.16$ ppm, which suggests that reaction mixture contains HF. $^{[201]}$ The latter might react with the complex **43** to give CH₄. When the reaction was carried out in the presence of CsF, the formation of aluminium fluoride was not observed, possibly because HF was trapped by CsF. Also when **23** was treated with a solution of AlMe₃, protonated SIMes and a mixture of fluoroaluminates were formed. These observations are indicative towards the role of HF in the fluorination of complex **43**. The generation of HF can be speculated from the reaction of SIMes(F)₂ (**23**) with adventitious water present in the reaction system. However, reaction of the complex **43** with a HF source such as poly[4-vinylpyridinium poly(hydrogen fluoride)] (PVP-HF) generated protonated SIMes and tetrafluoroaluminate [AlF₄] $^{-}$. $^{[151b, 178]}$ Treatment of the complex **44** with PVP-HF also produced protonated carbene and difluorodimethylaluminate [AlMe₂F₂] $^{-}$ (Scheme **44**). $^{[202]}$

$$\begin{array}{c} \text{Mes-N} \\ \text{N-Mes} \\ \text{Me} \\ \text{N-Mes} \\ \text{Me} \\ \text{N-Mes} \\ \text{Me} \\ \text{N-Mes} \\ \text{Me} \\ \text{N-Mes} \\ \text{N-Mes} \\ \text{Me} \\ \text{N-Mes} \\ \text{N-Mes$$

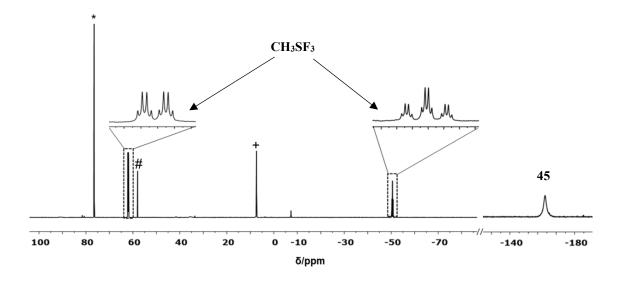
Scheme 44. Fluorination of the complex [(SIMes)AlMe₃] (43) with SIMes(F)₂ (23).

Figure 25. ¹H NMR (300.1 MHz, C_6D_6) spectrum of fluorination of the complex **43** with SIMes(F)₂ giving complex **44** at $\delta = -1.09$ ppm. **43** = [(SIMes)AlMe₃], **44** = [(SIMes)Al(F)(Me)₂].

A reliable reaction pathway for the synthesis of SIMes-stabilized aluminium (III) fluoride complexes could not be established by using SIMes(F)₂ for the fluorination of complex

43. It has been discussed in the *Chapter 4* that SIMes(F)₂ is obtained as a product of the degradation of SF₄ and SF₆ with SIMes. Analogously, [(SIMes)AlMe₃] (**43**) was treated with SF₄ and SF₆ to investigate if it could also activate these gases to produce organoaluminium fluorides.

5.2.2. Fluorination of [(SIMes)AlMe3] with SF4


Studies were initiated by treating a solution of complex [(SIMes)AlMe₃] (43, 0.05 mmol) with SF₄ (0.10 mmol) in tol-d₈. In contrast to the formation of $[(SIMes)Al(F)(Me)_2]$ as in the case of SIMes(F)₂ (23), the reaction of SF₄ with 43 produced the aluminium trifluorido complex [(SIMes)Al(F)₃] (45). The reaction was carried out at a low temperature (-70) °C) and warmed up until room temperature. A complete fluorination of 43 along with the generation of considerable amounts of CH₃SF₃ were observed at -30 °C when monitored by NMR spectroscopy (Scheme 45). Since no methyl group attached to the aluminium center was identified in the ¹H NMR spectrum, the broad resonance at $\delta = -164.5$ ppm in the ¹⁹F NMR spectrum was attributed therefore to the fully fluorinated aluminium complex 45 (Figure 26). The ²⁷Al NMR spectrum showed a signal for the complex 45 at $\delta = 49.8$ ppm which is consistent with the typical range for four-fold coordinated aluminium fluoride species. [178, 185] For CH₃SF₃, two signals at $\delta = -50.6$ ppm and 60.9 ppm were observed in the ¹⁹F NMR spectrum, which are in accordance to the literature. [203] When the reaction mixture of complex 45 and CH₃SF₃ was warmed up from -30 °C to room temperature, decomposition of the complex 45 was observed yielding protonated SIMes and tetrafluoroaluminate [AlF₄]^{-.[178]} This suggests the presence of HF in the reaction mixture, which could react with complex 45 to yield a salt of imidazolinium ion and [AlF₄]. Independent treatment of the complex the 45 with PVP-HF also gave the protonated SIMes and [AlF₄] (Scheme 46). [151b]

Mes-N-Mes
$$\frac{SF_4}{Tol-d_8, -30 °C}$$
 Mes-N-Mes + CH_3SF_3
Mes-N-Me F -Al-F
Me G -Al-F
Hermitian G -

Scheme 45. Formation of [(SIMes)Al(F)₃] (**45**) *via* reaction of **43** with SF₄.

Mes-N N-Mes
$$\xrightarrow{PVP-HF}$$
 $\xrightarrow{CH_3CN, 5 \text{ min}}$ $\xrightarrow{Mes-N N-Mes}$ + $\xrightarrow{F-Al-F}$ \xrightarrow{F} $\xrightarrow{(45)}$

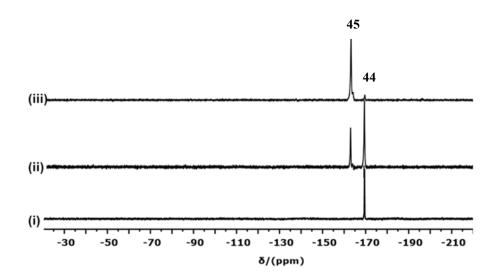
Scheme 46. Addition of PVP-HF to the complex [(SIMes)Al(F)₃](45).

Figure 26. ¹⁹F NMR (282.4 MHz, Tol-d₈, $-30\,^{\circ}$ C) spectrum for the formation of complex **45** at $\delta = -164.5$ ppm and CH₃SF₃ at $\delta = -50.6$ ppm and 60.9 ppm. *SOF₂ (impurity from SF₄), *SF₆, +CH₃SOF.

5.2.3. Fluorination of [(SIMes)AlMe3] with SF6

Activation of the SF₆ with metals is discussed in details in the *Section 2.2.6*. Here, the reactivity of **43** towards SF₆ was investigated with the aim of obtaining SIMes-stabilized aluminium fluorides *via* S–F bond activation. Formation of the monofluorinated complex [(SIMes)Al(F)(Me)₂] (**44**) with a low yield (30 %) was observed upon treatment of the complex [(SIMes)AlMe₃] (**43**, 0.05 mmol) with SF₆ (0.10 mmol) at 70 °C for 15 h. The reaction mixture was heated for longer time to obtain better yields of **44**, but the reaction did not proceed further. Treatment of the complex **43** with SF₆ under UV radiation at 311 nm for 24 h produced [(SIMes)Al(F)(Me)₂] (**44**) and subsequently complex [(SIMes)Al(F)₃] (**45**) was formed. ¹H NMR spectroscopy indicated the evolution of methane (CH₄) in addition.

It can be speculated that the decomposition of the complex **43** took place when it was treated with SF₆ at 70 °C yielding free SIMes. The latter in turn could react with SF₆ at 70 °C within 48 h to give a SIMes(F)₂ (**23**) derivative in very low yield. Fluorination of the complex **43** might have taken place according to a pathway proposed in the *Section* 5.2.1.


5.2.4 Fluorination of [(SIMes)AlMe₃] (43) with Me₃SnF

Due to the involvement of HF in the above mentioned methods of fluorination, a more reliable synthetic route was employed to obtain the complexes 44 and 45 by using Me₃SnF as a fluorinating agent.

Treatment of the complex **43** with 1.5 equivalents of Me₃SnF led to the formation of the complex **44** with full conversion of complex **43**. A signal was obtained in the ²⁷Al NMR at $\delta = 81.9$ ppm , which was assigned to the complex **44**. Tetramethyltin (Me₄Sn) was also observed in addition, identified in the ¹H NMR spectrum as a signal at $\delta = 0.05$ ppm, in the ¹³C{¹H} NMR spectrum at $\delta = -9.4$ ppm and in the ¹¹⁹Sn NMR spectrum at $\delta = 0.00$ ppm. [204] Reaction of the complex **43** with 3 equivalents of Me₃SnF gave a mixture of complexes **44** and **45** in a ratio of 0.5:1 respectively after 2 h at room temperature. When this mixture was heated at 80 °C for 4 h, ¹H and ¹⁹F NMR spectra reveal that the complex

44 got converted into the complex 45 (Figure 27). The reaction of the complex 43 with an excess of Me₃SnF for 2 h yielded complex 45, as shown in the Scheme 47.

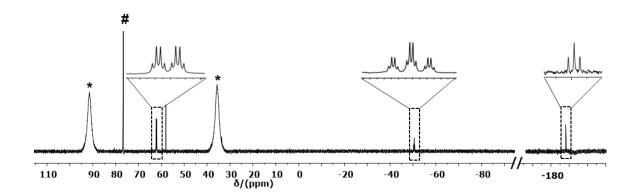
Scheme 47. Synthesis of the SIMes-stabilized aluminium (III) fluorides with Me₃SnF.

Figure 27. ¹⁹F NMR (282.4 MHz, Tol-d₈) spectrum of the reaction of complex **43** with 3 equivalents of Me₃SnF (i) after 30 min, (ii) after 2 h, (iii) after heating the mixture of complex **44** at $\delta = -169.9$ ppm and complex **45** at $\delta = -164.8$ ppm at 80 °C for 4 h.

5.2.5 Alternative routes for the synthesis of NHC-stabilized aluminium (III) fluorides

In this section an alternative approach was investigated to synthesize the SIMes-bearing aluminium (III) fluorides. At first AlMe₃ was treated with various fluorinating reagents such as Me₃SnF, SF₄ and SF₆ to synthesize aluminium fluoride, followed by the addition of free carbene.

a) Me₃SnF: Treatment of a solution of AlMe₃ in toluene with Me₃SnF resulted in the formation of AlMe₂F, which is described in the literature to exist as a dynamic mixture of dimers (Scheme 48 & 49).^[205] The ¹⁹F NMR spectrum shows four signals at δ = –143.6 ppm, –145.8 ppm, –148.9 ppm and –150.8 ppm. These values were found to be in a good accordance with the data reported for the AlMe₂F by Oliva *et al*.^[206] The ¹H{¹⁹F} NMR spectrum measured for the compound AlMe₂F shows resonances at δ = –0.43 ppm, –0.55 ppm, –0.63 ppm and –0.69 ppm, but not with equal intensities, as reported.^[205-206] It can be assumed that binuclear Al compounds containing only one fluorine atom (Al₂Me₃F) were also present and their corresponding NMR resonances might overlap with the reported signals of the dimers of AlMe₂F, therefore former couldn't be identified. When SIMes was added to this reaction mixture, formation of complexes 43 and 44 was observed (Scheme 48). These observations support the proposed structure of the complex 44. There was no evidence for the formation of SIMes stabilized aluminium (III) bifluorido complex [(SIMes)Al(F)₂(Me)].


Scheme 48. An alternative route for the synthesis of the complex **44**.

Scheme 49. Dynamic equilibrium between different dimers of AlMe₂F.

b) SF4: Treatment of a solution of AlMe₃ (0.05mmol) in toluene with SF₄ (0.10 mmol) at 0 °C yielded a mixture of SF₃CH₃ and FCH₂SCH₃ in solution. Furthermore, a white solid precipitated in the reaction mixture which presumably can be considered as AlF₃. The ¹⁹F NMR spectrum reveals resonances for SF₃CH₃ which are in accordance to the signals observed in the case of fluorination of the complex **43** with SF₄ (see *Section 5.2.2*). FCH₂SCH₃ was identified in the ¹⁹F NMR spectrum at $\delta = -188.1$ ppm as a quartet of triplets having coupling constants $^2J_{FH} = 53.9$ Hz and $^4J_{FH} = 2.4$ Hz. In the ¹H NMR spectrum, FCH₂SCH₃ displays two doublets at $\delta = 4.83$ ppm with a coupling constant of $^2J_{HF} = 53.9$ Hz and at $\delta = 1.69$ ppm with a coupling constant of $^4J_{HF} = 2.4$ Hz (**Figure 28**). The formation of FCH₂SCH₃ can be postulated as originating from the transfer of two methyl groups from AlMe₃ to SF₄ yielding SF₂(CH₃)₂ followed by a fast loss of HF to give CH₂=SFCH₃. Then the latter would undergo fluorine migration to give finally FCH₂SCH₃ (**Scheme 50**).

$$\begin{array}{c|c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & \\ & & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ \hline & \\ \hline & &$$

Scheme 50. Proposed reaction pathway for the reaction between AlMe₃ and SF₄.

Figure 28. ¹⁹F NMR (282.4 MHz, Tol-d₈, 0 °C) spectrum for the formation of CH₃SF₃ at $\delta = -50.6$ ppm and 60.9 ppm and FCH₂SCH₃ at $\delta = -188.1$ ppm. *SF₄, #SF₆

c) SF₆: It has been reported that AlMe₃ can activate SF₆ through laser powered homogeneous pyrolysis to generate AlMe₂F vapors.^[207] The activation of SF₆ was attempted in this thesis with a solution of AlMe₃. No activation was observed when a solution of AlMe₃ (0.05 mmol) and SF₆ (0.10 mmol) in toluene was heated at 70 °C. The formation of AlMe₂F was observed when this solution was subjected to UV light at 311 nm for 36 h. Subsequent addition of the SIMes (0.05 mmol) to this reaction mixture at room temperature gave the mixture of complexes 43 and 44 (Scheme 51).

AIMe₃
$$\xrightarrow{SF_6}$$
 AIMe₂F

Tol-d₈, 311 nm, 36 h

Mes-N_N-Mes

Mes-N_N-Mes

Mes-N_N-Mes

Mes-N_N-Mes

(43) (44)

Scheme 51. Reaction between AlMe₃ and SF₆.

5.2.6. Reactivity of the NHC-stabilized aluminium (III) fluorides towards halogen exchange reactions

There are many examples reported where metal chloride complexes can be obtained from the reaction of metal fluoride complexes via F/Cl exchange reaction with chlorosilanes.^[208] The reaction of complex [(SIMes)Al(F)₃] with trimethylchlorosilane (Me₃SiCl) indeed generated the chlorido complex [(SIMes)Al(Cl)₃] (46) along with trimethylfluorosilane (Me₃SiF) (Scheme 52). A signal at $\delta = 104.7$ ppm in the ²⁷Al NMR spectrum was assigned to the complex 46, since it coincides with the signal obtained for the complex [(SIMes)Al(Cl)₃] synthesized independently by following a reported procedure. Me₃SiF showed signals at $\delta = -156.9$ ppm in the ¹⁹F{ 1 H} NMR and at $\delta = 30.3$ ppm in the ²⁹Si NMR spectrum. The formation of SIMes stabilized aluminium trichloride complex 46 can be established as an indirect proof for the identity of the complex [(SIMes)Al(F)₃] (45).

Mes-N-N-Mes
$$3 \text{ Me}_3 \text{SiCl}$$
 $C_6 D_6, 1 \text{ h}$

Mes-N-Mes + Me₃SiF A
 $C_6 D_6, 1 \text{ h}$
 C_6

Scheme 52. Conversion of the complex 45 into 46 via F/Cl exchange reaction.

6. Summary

The incorporation of fluorine into compounds plays a pivot role in everyday life. Thus, development of new methods for the introduction of fluorine atoms into organic or inorganic molecules is of enormous academic and industrial interest. This thesis deals with the development of new fluorinating reagents for synthesizing organic fluorine building blocks and organometal fluorides by activating or reducing the greenhouse gases SF₆ and SF₅CF₃ in a metal-free approach. A complete degradation of SF₆ and SF₅CF₃ into non-volatile, well-defined products was achieved through S–F and S–C bond activation reactions with *N*-heterocyclic carbenes (NHCs) (**Scheme 53**).

Scheme 53. Reduction of SF₆, SF₅CF₃ and SF₄ with SIMes.

Scheme 53 shows a successful reduction of the SF_6 into 1,3-dimesityl-2,2-difluoroimidazolidine ($SIMes(F)_2$, **23**) and 1,3-dimesitylimidazolidine-2-sulfide (**24**)

when treated with SIMes (13) under UV radiation at 311nm. Activation of SF₆ was achieved also with other sterically and electronically different NHCs such as SIPr, IMes and IPr. SIMes was found most reducing among all the NHCs as indicated by the estimated redox potential of -2.2 V vs. SCE in the excited state and a maximum yield of the difluoro-imidazole derivative obtained from the reaction with SF₆.

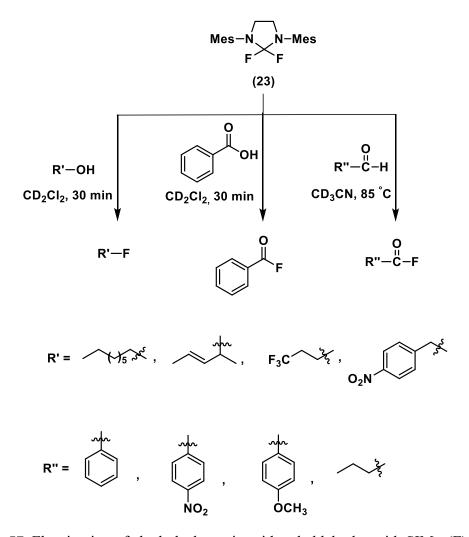
Activation of the SF₅CF₃ was achieved by treatment with SIMes at 80 °C, furnishing SIMes(F)₂, 1,3-dimesityl-2-fluoro-2- trifluoromethylimidazolidine [SIMes(F)(CF₃)] (27) and 24 (Scheme 53). Among other NHCs (SIMes, SIPr, IMes and IPr), the best reactivity was observed for SIMes. Reduction of SF₅CF₃ was attained from the ground state of the NHCs and irradiation was not required for the activation. Photochemical activation of SF₅CF₃ with SIMes (13) using UV radiation at 311 nm showed an unprecedented reactivity of trifluoromethylation of the solvent (toluene) in addition to the formation of SIMes(F)₂ (23) (Scheme 54). Irradiation (311 nm) of the product mixture obtained from the thermal activation of the SF₅CF₃ also showed -CF₃ group transfer to the arenes which suggest that [(SIMes(F)(CF₃)] (27) is behaving as a trifluoromethylation reagent.

Mes-N N-Mes
$$\xrightarrow{SF_5CF_3}$$
 Mes-N N-Mes + $\xrightarrow{CH_3}$ + HF (13) - Mes-N N-Mes $\xrightarrow{SF_5CF_3}$ $\xrightarrow{CH_3}$ + $\xrightarrow{CH_3}$ + $\xrightarrow{CF_3}$ $\xrightarrow{$

Scheme 54. Photochemical activation of SF₅CF₃ with SIMes.

Mechanistically, the activation of SF₆ and SF₅CF₃ with NHCs is proposed to occur *via* single electron transfer pathways. Intermediates such as SF₅ anion (SF₅⁻) or SF₅ radical (SF₅⁻) are proposed to be generated from the activation. It is well known that SF₅⁻ is a very reactive intermediate and readily decomposed to give SF₄. An independent reaction between SF₄ and SIMes yielded SIMes(F)₂(23) and 24, confirming the generation of SF₄ in the reaction sequence of the reduction of SF₆ and SF₅CF₃ (Scheme 53).

Treatment of the product mixture obtained from the activation of SF₆, with 1-octanol yielded 1-fluorooctane. Thus, fluorides can be shuttled from SF₆ to the 1-octanol by NHC mediation in an one-pot process (**Scheme 55**). Also, an addition of Me₃SiCl to the product mixture generated from the reaction between SIMes and SF₅CF₃, furnished Me₃SiF and Me₃SiCF₃ (**Scheme 55**). Me₃SiCF₃ is commonly known as the Ruppert-Prakash reagent. The reactivity pattern of the product mixture obtained from the reduction of SF₆ and SF₅CF₃ with SIMes also confirms the identity of **23** and **27** and indicates its principle applicability as a source for a deoxyfluorination reagent or for CF₃ building block respectively.


Scheme 55. Fluorination with the product mixture obtained from the activation of SF₆ and SF₅CF₃ with SIMes.

 $SIMes(F)_2$ (23), 24 and $[SIMes(F)(CF_3)]$ (27) were synthesized independently starting from the SIMes to prove their identity (Scheme 56).

$$\begin{array}{c} 1.5 \text{ C}_2\text{CI}_6 \\ \hline \text{THF} \\ -45 \text{ to } 25^{\circ}\text{C}, 24 \text{ h} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CI} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CI} \\ \hline \\ \text{CH}_2\text{CI}_2, 15 \text{ min} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CH}_2\text{CI}_2, 15 \text{ min} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CH}_2\text{CI}_2, RT, 12 \text{ h} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CH}_2\text{CI}_2, RT, 12 \text{ h} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CI} \\ \\ \text{Mes} \\ \hline \\ \text{CH}_2\text{CI}_2, 15 \text{ min} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CH}_2\text{CI}_2, 15 \text{ min} \\ \hline \\ \text{Mes} \\ \hline \\ \text{Mes} \\ \hline \\ \text{CI} \\ \\ \text{Mes} \\ \hline \\ \text{Mes} \\ \\ \text{Mes} \\ \hline \\ \text{Mes} \\ \\ \text{Mes} \\ \hline \\ \text{Mes} \\ \\ \text{$$

Scheme 56. Independent synthesis of compounds 23, 24 and 27.

The independently synthesized SIMes(F)₂ (23) was successfully implemented into the fluorination reactions. Various alcohols and benzoic acid were converted into their corresponding fluorinated products via deoxyfluorination reactions. Usually, the direct fluorination of aldehydes to acyl fluorides involves either harsh reaction conditions, lower yields or long time durations. Usage of the SIMes(F)₂ enabled the fluorination of aldehydes via aldehydic $C(sp^2)$ –H bond activation to furnish acyl fluorides in a mild and convenient way (Scheme 57). SIMes(F)₂ shows versatile reactivity for the deoxyfluorination and acyl fluorination as it can tolerate various aliphatic, allylic and aromatic functional groups.

Scheme 57. Fluorination of alcohols, benzoic acid and aldehydes with SIMes(F)₂ (23).

Furthermore, $SIMes(F)_2$ (23) can be used as a fluoride source in the synthesis of the organoaluminium fluoride [(SIMes)Al(F)(Me)₂] (44) (Scheme 58). This shows that 23 can not only be used for the synthesis of fluorinated organic building blocks, but also for the synthesis of metal fluorides in homogeneous reaction systems.

Scheme 58. Synthesis of the organoaluminium fluoride [(SIMes)Al(F)(Me)₂] (44).

SIMes(F)₂ is obtained as a product of the degradation of SF₄ and SF₆ with SIMes. However, [(SIMes)AlMe₃] (43) was also treated with SF₄ and SF₆ to synthesize organoaluminium fluorides. [(SIMes)Al(F)₃] (45) was obtained from a reaction of SF₄ with the complex 43 at -30 °C. The photochemical reaction between complex 43 and SF₆ yielded [(SIMes)Al(F)(Me)₂] (44). Synthesis of the complexes 44 and 45 through the activation of SF₄ and SF₆ involved the formation of HF which gradually leads to the decomposition of theses complexes. A more reliable synthetic route was used to obtain the complexes 44 and 45 by using Me₃SnF as a fluorinating agent. The addition of Me₃SnF to complex 44 and heating this reaction mixture at 80 °C for 4 h, converted the complex 44 into complex 45. [(SIMes)Al(F)₃] (45) was successfully employed for the F/Cl exchange reaction by treating it with Me₃SiCl, affording the chlorido complex [(SIMes)Al(Cl)₃] (46) (Scheme 59).

Scheme 59. Fluorination of the [(SIMes)AlMe₃] (43) with SF₄, SF₆ and Me₃SnF.

Overall, a complete degradation of sulfur fluorides SF₆, SF₅CF₃ and SF₄ was achieved with *N*-heterocyclic carbenes (NHCs) to afford the fluorination and trifluoromethylation reagents; SIMes(F)₂ and [SIMes(F)(CF₃)]. The NHC stabilized Al(III) fluorides were synthesized by fluorinating the complex [(SIMes)AlMe₃] with the fluorinating agents SIMes(F)₂, SF₄, SF₆ or Me₃SnF.

7. Experimental

7.1. General working techniques

All of the compounds presented below were synthesized and handled with the exclusion of air and moisture. Unless otherwise described, all reactions were carried out in preheated, argon-filled glass apparatus using the standard *Schlenk* -technique or in an argon-filled glove box. All substances sensitive to air and hydrolysis were weighed or stored in an *MBraun Lab Master 130* glovebox under an argon atmosphere. Toluene, tetrahydrofuran (THF), hexane, C₆D₆ and toluene-d₈ (Tol-d₈) were dried using Solvona[®]. Dichloromethane (CH₂Cl₂), acetonitrile (CH₃CN), dichloromethane-d₂ (CD₂Cl₂), acetonitrile-d₃ (CD₃CN) were dried using calcium hydride. After drying, all solvents were distilled, degassed three times using "freeze-pump-thaw" and then stored under argon over molecular sieves (3 Å). All commercially bought solid compounds were dried overnight in vacuum prior to use. Commercially purchased liquid compounds or reagents were stored over molecular sieves (3 Å) for two nights prior to use. Trimethylaluminium (2M in Toluene) and trimethylchloro- silane were purchased from the Sigma-Aldrich and used without further drying or purification.

SF₆ was obtained as a gift from the Solvay Fluor GmbH, SF₄ and SF₅CF₃ were purchased from the abcr GmbH. Reactions with SF₆, SF₄ and SF₅CF₃ were carried out on a *Swagelok* stainless steel line under argon atmosphere. The mass of these gases were determined by condensing them into a dried and weighed Young-NMR tube.

The UV irradiation experiments were carried out in a photo multirays reactor (Helios Italquartz) equipped with ten light sources (each 15 W) with an emission maximum at 311 nm.

7.2. Instrumentation

7.2.1. Nuclear Magnetic Resonance (NMR) spectroscopy

Unless otherwise stated, the NMR spectra were recorded at room temperature on a *Bruker AV III 300* or *Bruker DPX 300* spectrometer. The chemical shifts in the ^{1}H and $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectra were calibrated to the residual solvent signal of the deuterated solvents. The ^{1}H NMR spectra were referenced as $\text{C}_{6}\text{D}_{5}\text{H}$: $\delta = 7.16$ ppm; toluene-d₇: $\delta = 6.97$ ppm; CHDCl₂: $\delta = 5.32$ ppm; CHD₂CN: $\delta = 1.94$ ppm. The $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectra were referenced as C_{6}D_{6} : $\delta = 128.06$ ppm; toluene-d₈: $\delta = 20.43$ ppm; CD₂Cl₂: $\delta = 53.84$ ppm; CD₃CN: $\delta = 1.32$ ppm The ^{19}F NMR spectra were referenced externally to CFCl₃ at $\delta = 0.0$ ppm. ^{27}Al NMR spectra were referenced externally to AlCl₃ in D₂O at $\delta = 0.00$ ppm. ^{29}Si NMR spectra were referenced externally to TMS at $\delta = 0.0$ ppm. For quantification 1,2-difluorobenzene at $\delta = -138.1$ ppm in the ^{19}F NMR spectra was used as an external standard. The acquisition, procession and evaluation of all spectra recorded was carried out with the TopSpin or MestreNova software.

7.2.2. Mass spectrometry

Gas chromatography- mass spectrometry: GC–MS measurements were conducted using an Agilent 6890N gas chromatograph with a capillary column (Agilent 19091S-433 Hewlett-Packard 5 MS: 30 m length, 0.25 mm inside diameter, 0.25 μm film thickness) and an Agilent 5973 Network mass selective detector. Helium (0.74 bar, 1.2 mL/min, 40 cm/s) was used as the carrier gas. The electron impact ionization was carried out with an ionization voltage of 70 eV.

Liquid Injection Field Desorption Ionization-Mass Spectrometry (LIFDI-MS): Mass spectra were recorded on a Micromass Q-Tof-2 instrument which was equipped with a Linden LIFDI source (Linden CMS GmbH).

7.2.3. Cyclic voltammetry

A potentiostat/galvanostat Reference 600 from Gamry Instruments was used for the voltammetry experiments. Cyclic Voltammograms (CVs) were measured in THF containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAP) and 1mM of the carbene under an argon atmosphere at room temperature. A conventional one-compartment three electrode cell was equipped with glassy carbon disk as working electrode, a platinum wire as counter electrode, and Ag/Ag^+ wire in (0.1 M TBAP + 0.01 M AgNO₃ in acetonitrile) used as a reference electrode. CVs were recorded at scan rates of 200 mV s⁻¹. All data were referenced to the Fc⁰/Fc⁺ couple at a redox potential $E_{1/2}$ = +0.242 V in THF.

7.2.4. Ultraviolet-visible spectroscopy

UV-vis spectra were recorded at room temperature under argon atmosphere by an Agilent 8453 diode array spectrometer connected with a cryostat from Unisoku Scientific Instruments, Japan using 10mm quartz cuvette.

7.2.5. Emission spectroscopy

Emission spectra were recorded with a FluoroMax-4P from Horiba Jobin Yvon in 10 mm quartz cuvettes at room temperature. The solution of the carbenes in THF (1mM) were scanned at a fixed emission wavelength of 350 nm and the excitation wavelength was chosen where maximum absorbance was observed for the different carbenes.

7.3. Procedures

7.3.1. Synthesis of 1,3-dimesitylimidazolin-2-ylidene (SIMes, 13)

1,3-dimesitylimidazolidin-2-ylidene (SIMes, **13**) was synthesized by following the procedure mentioned in the literature.^[210] To a suspension of 1,3-dimesityl-4,5-dihydroimidazolinium tetrafluoroborate (**36**, 394 mg, 1.0 mmol) in THF (6 mL) were added KH (80.2 mg, 2.0 mmol) and KO*t*Bu (21.1 mg, 0.2 mmol). The resulting suspension was stirred at room temperature for 20 h. H₂ gas produced during the reaction was allowed to escape through a bubbler. The reaction mixture was then filtered, and the volatiles were removed *in vacuo*. The residue was re-dissolved in a mixture of toluene (1 mL) and hexane (5 mL), and the resulting solution was filtered. The filtrate was cooled to -80 °C for 2 nights. The crystalline solids were isolated by decanting the supernatant and dried in vacuum to afford the SIMes (400 mg, 65 % yield).

Analytical data for SIMes (13):

¹H NMR (500.1 MHz, C₆D₆): δ = 2.16 (s, 6H, *p*-CH₃), 2.30 (s, 12H, *o*-CH₃), 3.27 (s, 4H, NCH₂), 6.83 (s, 4H, *m*-Ar-H) ppm.

¹³C{¹H} NMR (125.7 MHz, C₆D₆): δ = 18.63 (p-CH₃), 21.38 (o-CH₃), 51.13 (NCH₂), 129.76 (m-Ar-C), 136.63 (p-Ar-C), 136.70 (o-Ar-C), 140.04 (ipso-Ar-C), 243.25 (NCN) ppm.

The other carbenes 1,3-di(2,6-di-i-propylphenyl)-imidazolidin-2-ylidene (SIPr), 1,3-dimesityl-imidazolin-2-ylidene (IMes) and 1,3-di(2,6-diisopropylphenyl)-imidazolin-2-ylidene (IPr) were purchased from Sigma-Aldrich.

7.3.2. Photochemical activation of SF₆ with NHCs

4
$$\stackrel{\text{Ar}}{\stackrel{\text{N}}{\longrightarrow}}$$
: $\frac{\text{SF}_6}{\text{Tol-d}_8, 311 \text{ nm}, 15 \text{ h}}$ 3 $\stackrel{\text{Ar}}{\stackrel{\text{N}}{\nearrow}}$ + $\stackrel{\text{Ar}}{\stackrel{\text{N}}{\nearrow}}$ + $\stackrel{\text{N}}{\stackrel{\text{N}}{\nearrow}}$ S $\stackrel{\text{Ar}}{\stackrel{\text{N}}{\nearrow}}$ Ar = $\stackrel{\text{Ar}}{\stackrel{\text{N}}{\nearrow}}$ or $\stackrel{\text{Ar}}{\stackrel{\text{N}}{\nearrow}}$

A solution of carbene (0.05 mmol) in Tol-d₈ (0.5 mL) was prepared in a Young NMR tube. The solution was frozen to -180 $^{\circ}$ C and degassed *in vacuo* followed by a condensation of the SF₆(0.10 mmol) into it. The reaction sample was brought to room temperature and irradiated with UV light at 311nm for 15 h. The color of the reaction solution changed from pale yellow to brown. In case of SIMes, full conversion of the carbene was observed after 15 h, whereas other carbenes took 20-24 h for the completion of the reaction. The product mixtures obtained after 15 h were characterized and quantified with NMR spectroscopy and LIFDI spectrometry. NMR yield of fluorinated compounds in the reaction mixture were calculated by using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard and are based upon the assumption that three equivalents of 2,2-difluoroimidazolidine or 2,2-difluoroimidazoline and one equivalent of respective sulfide were formed (see **Table 3**). Formation of the 2-thio- derivatives of the NHCs was confirmed by synthesizing them independently (see *Section 7.3.7*). Unreacted SF₆ was identified in the ¹⁹F NMR spectrum with a signal at δ = 58.7 ppm.

Table 3. ¹⁹F NMR and ¹³C { ¹H } NMR data for the 2,2-difluoro- and 2-thio- derivatives of NHCs obtained from the activation of the SF₆. Yields of NHC(F)₂ were calculated by using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard.

NHC(F) ₂	¹⁹ F NMR (δ) ppm	¹³ C{ ¹ H} NMR (δ) ppm	Yield of NHC(F)2
SIMes(F) ₂	-55.8	181.51	82 %
$SIPr(F)_2$	-55.7	184.94	75 %
$IMes(F)_2$	-34.3	165.17	62 %
$IPr(F)_2$	-33.9	168.45	15 %

7.3.3. Reduction of SF₄ with SIMes

A solution of SIMes (0.015g, 0.05 mmol) in Tol-d₈ (0.3 mL) was prepared in a PFA tube. The solution was frozen to -180 $^{\circ}$ C and degassed *in vacuo* followed by condensation of the SF₄ (0.10 mmol) into it. The PFA tube was sealed, brought to room temperature and inserted into a NMR tube. A change in color from pale yellow to brown was observed as soon as the sample was brought to room temperature. The formation of 1,3-dimesityl -2,2-difluoroimidazolidin (SIMes(F)₂, **23**) and 1,3-dimesitylimidazolidine-2-sulfide (24) was obtained in 5 mins. Unreacted SF₄ was identified in the 19 F NMR spectrum with a signal at $\delta = 76.9$ ppm.

7.3.4. Reduction of SF₅CF₃ with NHCs

A solution of the carbene (0.05 mmol) in Tol-d₈ (0.5 mL) was prepared in a Young NMR tube. The solution was frozen to -180 °C and degassed *in vacuo* followed by condensation of the SF₅CF₃(0.10 mmol) into it. The reaction sample was brought to the room temperature and heated at 80 °C for 36 h The color of the reaction solution changed from pale yellow to light brown. The product mixture obtained after 36 h was characterized and quantified with NMR spectroscopy. The NMR yield of 2,2-difluo-derivative of the NHCs in reaction mixture were calculated by using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard and are based upon the assumption that two equivalents of 2,2-difluoroimidazolidine or 2,2-difluoroimidazoline were formed (see **Table 4**). Along with the 2,2- difluoro- derivatives, 2-fluoro-2-trifluoromethyl- derivative of NHC precursors were also formed. In case of the activation of SF₅CF₃ with SIMes, [SIMes(F)(CF₃)] (27) was identified in the reaction mixture at $\delta = -76.4$ ppm and $\delta = -82.9$ ppm. Similar to the [SIMes(F)(CF₃)], signals in the ¹⁹F NMR spectrum at $\delta = -76.5$ ppm and -87.2 ppm were attributed to the [SIPr(F)(CF₃)], when SIPr was used for the activation. 2-fluoro-2-

trifluoromethyl- derivative of the IMes and IPr were formed in very small amount which makes their characterization very difficult in the NMR spectra. However, signals which are present in the 19 F NMR spectrum besides the IMes(F)₂, and IPr(F)₂ derivatives, can be assigned to the 2-fluoro-2-trifluoromethyl- derivative of these NHCs. Formation of the 2-thio- derivatives of the NHCs was confirmed by comparing the NMR data obtained for these derivatives from their independent synthesis (see *Section 7.3.7*). Unreacted SF₅CF₃ was identified in the 19 F NMR spectrum with signals at $\delta = 62.4$ (F), 37.4 (SF₄) and -65.9 (CF₃) ppm.

Table 4. ¹⁹F NMR data and yields of 2,2-difluoro- derivatives of NHCs obtained from the activation of the SF₅CF₃.

NHC(F)2	¹⁹ F NMR (δ) ppm	Yield of NHC(F)2
SIMes(F) ₂	-55.8	38 %
$SIPr(F)_2$	-55.7	12 %
$IMes(F)_2$	-34.3	20 %
$IPr(F)_2$	-33.9	08 %

7.3.5. Synthesis of the 1,3-dimesityl-2-chloroimidazolidinium chloride (26)

1,1,1,2,2,2-hexachloroethane (142 mg, 0.6 mmol) was added to a solution of SIMes (153 mg, 0.5 mmol) in 1.0 mL of THF at -40 °C. The reaction mixture was then warmed to room temperature and stirred for 24 h. The reaction mixture was cooled to - 40 °C and filtered. The filter cake was washed with cold THF (-25 °C, 2 x 1 mL), toluene (1 x 3 mL) and dried *in vacuo* to afford 226 mg of compound **26** as a colorless solid (60 %).^[13p]

Analytical data for 26:

¹**H NMR** (300.1 MHz, CD₂Cl₂): δ = 2.33 (s, 6H, p-CH₃), 2.37 (s, 18H, o-CH₃), 4.95 (s, 4H, NCH₂), 7.05 (s, 4H, m-Ar-H) ppm

¹³C{¹H} NMR (125.7 MHz, CD₂Cl₂): $\delta = 17.89$ (*p*-CH₃), 21.25 (*o*-CH₃), 52.25 (NCH₂), 129.79 (Ar-C), 130.58 (Ar-C), 135.87 (Ar-C), 142.21 (Ar-C), 156.91 (NCN) ppm.

LIFDI-TOF-MS (CH₂Cl₂): Calculated (m/z) for [**26-Cl**]⁺: 341.1 (100.0 %), 343.1 (32.0 %), 344.1 (22.7 %); Experimental (m/z) for [**26-Cl**]⁺: 341.1 (100 %), 343.1 (32.0 %), 344.1 (22.7 %).

7.3.6. Synthesis of the 1,3-dimesityl -2,2-difluoroimidazolidin (SIMes(F)2, 23)

$$\begin{array}{c|c}
CI \\
Mes \\
N \\
N \\
Mes
\end{array}$$

$$\begin{array}{c|c}
CI \\
\hline
N \\
CI \\
CH_2CI_2, 15 min
\end{array}$$

$$\begin{array}{c|c}
Mes \\
N \\
N \\
F \\
Mes
\end{array}$$

$$\begin{array}{c|c}
N \\
N \\
F \\
Mes
\end{array}$$

$$\begin{array}{c|c}
(23)
\end{array}$$

Compound **26** and NMe₄F were dried *in vacuo* at 70 °C for 8 h prior to use. To a Schlenk tube containing **26** (200 mg, 0.53 mmol) and NMe₄F (262.8 mg, 3 mmol) was added CH₂Cl₂ (5 mL). The Schlenk tube was stirred for 15 min and the reaction mixture was then filtered and the volatiles were removed *in vacuo*. The residue was re-dissolved in toluene (3 mL) and the resulting solution was filtered to a PFA tube followed by the evaporation of solvent to afford 282 mg of a pale yellow solid compound **23** (82 %).

Analytical data for 23:

¹**H NMR** (300.1 MHz, C₆D₆): δ = 2.33 (s, 6H, *p*-CH₃), 2.37 (s, 18H, *o*-CH₃), 4.95 (s, 4H, NCH₂), 7.05 (s, 4H, *m*-Ar-H) ppm

¹³C{¹H} NMR (125.7 MHz, C₆D₆): δ = 18.07 (*p*-CH₃), 20.98 (*o*-CH₃), 49.08 (NCH₂), 128.92 (br, CF₂), 129.57 (Ar-C), 134.81 (Ar-C), 137.19 (Ar-C), 139.98 (Ar-C) ppm.

¹⁹**F NMR** (282.4 MHz, C₆D₆): δ = -55.8 ppm

LIFDI-TOF-MS (Toluene): Calculated (m/z) for $[23]^+$: 344.2; Experimental (m/z) for $[23]^+$: 344.2.

7.3.7. Synthesis of 2-thio carbenes

$$Ar - N \longrightarrow N - Ar \xrightarrow{S_8} Ar - N \longrightarrow N - Ar$$
(13)

 S_8 (0.020 g, 0.05 mmol) was added into a solution of carbene (0.05 mmol) in Tol-d $_8$ (0.5mL) in a NMR tube. After 1h the reaction mixture was separated from the excess of S_8 through filtration to afford 2-thio carbene. [140-141]

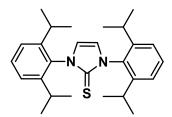
Analytical data for 1,3-dimesitylimidazolidine-2-sulfide:

¹H NMR (300.1MHz, Tol-d₈): δ = 2.09 (s, 6H, *p*-CH₃), 2.24 (s, 12H, *o*-CH₃), 3.27 (s, 4H, NCH₂), 6.73 (s, 4H, *m*-Ar-H) ppm.

¹³C{¹H} (125.7 MHz, Tol-d₈): δ = 17.94 (*p*-CH₃), 21.04 (*o*-CH₃), 47.36 (NCH₂), 129.57 (Ar-C), 135.66 (Ar-C), 136.94 (Ar-C), 137.61(Ar-C), 181.51 (C=S) ppm.

Analytical data for 1,3-di(2,6-diisopropylphenyl)-imidazolidine-2-sulfide:

¹**H NMR** (300.1MHz, Tol-d₈): δ = 1.32 (dd, 24H, *o*-CH(CH₃)₂), 3.11 (sept, 4H, *o*-CH(CH₃)₂), 3.47 (s, 4H, NCH₂), 7.05 (d, 4H, *m*-Ar-H), 7.17 (m, 2H, *p*-Ar-H), ppm.


¹³C{¹H} (125.7 MHz, Tol-d₈): δ = 24.55 (*o*-CH₃), 24.77 (*o*-CH₃), 29.38 (*o*-CH), 50.29 (NCH₂), 124.40 (Ar-C), 129.31 (Ar-C), 135.69 (Ar-C), 147.80 (Ar-C), 184.94 (C=S) ppm.

Analytical data for 1,3-dimesitylimidazoline-2-sulfide:

¹**H NMR** (300.1MHz, Tol-d₈): δ = 2.09-2.05 (m, 18H, CH₃), 5.91 (s, 2H, NCH), 6.70 (s, 4H, *m*-Ar-H) ppm.

¹³C{¹H} NMR (125.7 MHz, Tol-d₈): δ = 18.10 (*p*-CH₃), 21.07 (*o*-CH₃), 117.20 (NCH), 129.30 (Ar-C), 134.23 (Ar-C), 136.13 (Ar-C), 138.59 (Ar-C), 165.17 (C=S) ppm.

Analytical data for 1,3-di(2,6-diisopropylphenyl)-imidazoline-2-sulfide:

¹**H NMR** (300.1MHz, Tol-d₈): δ = 1.26 (dd, 24H, *o*-CH(CH₃)₂), 2.86 (sept, 4H, *o*-CH(CH₃)₂), 6.21 (s, 4H, NCH), 7.07 (d, 4H, *m*-Ar-H), 7.20 (m, 2H, *p*-Ar-H), ppm.

¹³C{¹H} NMR (125.7 MHz, Tol-d₈): δ = 23.8 1(*o*-CH₃), 24.16 (*o*-CH₃), 29.24 (*o*-CH), 118.59 (NCH), 124.20 (Ar-C), 130.08 (Ar-C), 134.66 (Ar-C), 146.88 (Ar-C), 168.45 (C=S) ppm.

7.3.8. Synthesis of the 1,3-dimesityl-2-trifluoromethylimidazolinium tetrafluoroboarate salt (28)

Mes-N_N-Mes +
$$BF_4^{\bigcirc}$$
 CH_2CI_2 , RT, 12 h BF_4^{\bigcirc} CF_3 CF_3 (13) Umemoto's reagent (28)

In a Schlenk tube, SIMes (307 mg, 1 mmol) and the Umemoto's reagent (340.1 mg, 1 mmol) were dissolved in CH_2Cl_2 (10 mL). The reaction mixture was stirred for 12 h and the solvent was removed *in vacuo*. The residue was washed with toluene (2 x 5 mL) and dried *in vacuo* to give 350 mg of a pale yellow solid compound **28** (75 %).

Analytical data for 28:

¹**H NMR** (300.1 MHz, CD₂Cl₂): δ = 2.33 (s, 6H, *p*-CH₃), 2.37 (s, 18H, *o*-CH₃), 4.95 (s, 4H, NCH₂), 7.05 (s, 4H, *m*-Ar-H) ppm

¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): $\delta = -65.2$ (s, 3F, CF₃), -152.6 (s, 4F, BF₄) ppm.

LIFDI-TOF-MS (CD₂Cl₂): Calculated (m/z) for [28-BF₄]⁺: 376.4; Experimental (m/z) for [28-BF₄]⁺: 376.4.

7.3.9. Synthesis of the 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine $[SIMes(F)(CF_3)]$ (27)

Mes-N-Mes
$$BF_4^{\bigcirc}$$
 $\frac{5 \text{ NMe}_4 \text{F}}{\text{CH}_2 \text{CI}_2, \text{RT, 15 min}}$ $\frac{\text{Mes-N}}{\text{F}_3 \text{C}}$ $\frac{\text{N-Mes}}{\text{F}}$ (28)

The compound **28** was dried overnight *in vacuo* at room temperature and NMe₄F was dried *in vacuo* at 70 °C for 8 h prior to use. To a Schlenk tube containing **28** (231.6 mg, 0.5 mmol) and NMe₄F (262.8 mg, 3 mmol) was added CH₂Cl₂ (2 mL). The reaction mixture was stirred for 15 min and the volatiles were removed *in vacuo*. The residue was redissolved in Tol-d₈ (0.5 mL) and the resulting solution was filtered to a PFA NMR tube to identify the compound **27** in solution.

Analytical data for 27:

¹**H NMR** (300.1 MHz, C₆D₆): δ = 2.33 (s, 6H, *p*-CH₃), 2.37 (s, 18H, *o*-CH₃), 4.95 (s, 4H, NCH₂), 7.05 (s, 4H, *m*-Ar-H) ppm

¹⁹**F NMR** (282.4 MHz, C₆D₆): δ = -76.3 (d, 3F, ³J_{CF} = 4.7 Hz, HNCFCF₃), -82.7 (q, 1F, ³J_{CF} = 4.7 Hz, NCFCF₃) ppm.

7.3.10. Photochemical activation of SF₅CF₃ with SIMes

A solution of the SIMes (0.05 mmol) in toluene (0.05 mL) was prepared in a Young NMR tube. The solution was frozen to -180 $^{\circ}$ C and degassed *in vacuo* followed by condensation of the SF₅CF₃ (0.10 mmol) into it. The reaction sample was brought to the room temperature and irradiated at 311 nm for 4 h. The color of the reaction solution changed from pale yellow to light brown. A product mixture was obtained after 4 h containing the compounds **23**, **24** and p-, o-, m- isomers of the methylbenzotrifluoride in a ratio of 3:1.5:1. In the presence of TEMPO (0.10 mmol), only compound **23**, **24** and the TEMPO-CF₃ adduct were observed.

Analytical data for methylbenzotrifluoride: [151a, 211]

¹H NMR (300.1 MHz, C₆D₆ capillary): $\delta = 2.42-2.48$ (9H, p/o/m isomers-CH₃)

¹⁹**F NMR** (282.4 MHz, C₆D₆ capillary): δ = -61.7 (s, *p*-CF₃), -62.4 (s, *m*-CF₃), -62.7 (s, *o*-CF₃) ppm.

GC-MS (Toluene): m/z = 160.0

Analytical data for TEMPO-CF3:[150]

¹⁹**F NMR** (282.4 MHz, C₆D₆ capillary): $\delta = -55.3$ (s)

GC-MS (Toluene): m/z = 225.2

Analytical data for 29: ¹**H NMR** (300.1 MHz, C₆D₆ capillary): δ = 2.27 (s, 6H, CH₃), 2.32 (s, 12H, CH₃), 4.63 (s, 4H, NCH₂), 6.87 (s, 4H, *m*-Ar-H), 10.7 (s, 1H, NCHN), 14.5 (br, 1H, FHF) ppm. ¹⁹**F NMR** (282.4 MHz, CD₃CN): δ = -149.7 (br) ppm.

7.3.11. Deoxyfluorination with SIMes(F)₂(23)

R=
$$(31a, 92\%)$$
 $(31b, 79\%)$ $(31c, 85\%)$ $(31f, 79\%)$ $(31f, 79\%)$

A solution of **23** (0.05 mmol) in CD₂Cl₂ (0.5 mL) was prepared in a NMR tube. To this solution alcohol (0.025 mmol) or benzoic acid (0.025 mmol) and CsF (0.075 mmol) were added. The respective fluorinated product was observed within 30 mins at room temperature and characterized by 19 F NMR spectroscopy. The yields of the fluorinated compounds were calculated by using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard. Fluorination of trifluoropropanol yielded a mixture of tetrafluoropropane (**31d**) and trifluoropropene (**31e**) in a ratio of 1: 0.6. Along with the fluorinated products, 1,3-dimesitylimidazolidin-2-one (**32**) was also identified in the 19 F NMR and 13 C{ 1 H} NMR spectra.

Analytical data for fluorinated products: [153, 173b]

31a: ¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): $\delta = -218.0$ (tt, ²J_{FH} = 47.3 Hz, ³J_{FH} = 24.5 Hz) ppm.

31b: ¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): $\delta = -162.3$ (m) ppm

31c: ¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): $\delta = -215.4$ (t, ²J_{FH} = 44.8 Hz) ppm.

¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): **31d:** δ = -65.0 (m, 3F, ⁴J_{FF} = 6.3 Hz), -221.8 (m, 1F, ⁴J_{FF} = 6.3 Hz); **31e:** δ = -66.1 (d, ³J_{FH} = 7.08 Hz) ppm.

31f: ¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): $\delta = 17.7$ (s) ppm.

Analytical data for 32:[152b]

¹H NMR (300.1MHz, CD₂Cl₂): δ = 2.25 (s, 6H, *p*-CH₃), 2.29 (s, 12H, *o*-CH₃), 3.78 (s, 4H, NCH₂), 6.89 (s, 4H, *m*-Ar-H) ppm.

¹³C{¹H} (125.7 MHz, CD₂Cl₂): δ = 17.94 (p-CH₃), 20.99 (o-CH₃), 44.26 (NCH₂), 129.37 (Ar-C), 134.01 (Ar-C), 136.94 (Ar-C), 137.61(Ar-C), 164.21 (C=O) ppm.

7.3.12. One-pot fluorination of 1-octanol via activation of SF₆ with SIMes

Mes-N_{...}N-Mes +
$$\stackrel{\longleftarrow}{\longrightarrow}$$
OH $\stackrel{SF_6}{\longrightarrow}$ Tol-d₈ $\stackrel{\longleftarrow}{\longrightarrow}$ S + $\stackrel{\stackrel{\longleftarrow}{\longrightarrow}$ N-Mes $\stackrel{\longleftarrow}{\longrightarrow}$ N-Mes $\stackrel{\longrightarrow}{\longrightarrow}$ N-Mes $\stackrel{\longleftarrow}{\longrightarrow}$ N-Mes $\stackrel{\longrightarrow}{\longrightarrow}$ N-Mes

A solution of SIMes (0.015 g, 0.05 mmol) in Tol-d₈(0.5 mL) was prepared in a Young NMR tube and 1-octanol (4 μ L, 0.025 mmol) was added into it. The reaction mixture solution was frozen at -180 °C and degassed *in vacuo*. SF₆ (0.10 mmol) was condensed on it and the reaction sample was brought to room temperature and irradiated with UV at 311 nm. The ¹⁹F NMR spectrum showed a signal for SIMes(F)₂ (23) at δ = 55.8 ppm when reaction sample was measured after 8 h. After 18 h, the resonance for 23 disappeared and a signal for 1-fluorooctane at δ = -218.0 ppm was observed after 18 h. Compound 24 and 32 were identified in the mixture of end products with the help of LIFDI mass spectrometry.

LIFDI-TOF-MS (Tol-d₈): Calculated (m/z) for [**24**]⁺: 338.1; Experimental (m/z) for [**24**]⁺: 338.1. **LIFDI-TOF-MS** (Tol-d₈): Calculated (m/z) for [**32**]⁺: 322.2; Experimental (m/z) for [**32**]⁺: 322.2.

7.3.13. Fluorination of aldehydes with SIMes(F)₂ (23)

A solution of 23 (0.05 mmol) in CD₃CN (0.5 mL) was prepared in a NMR tube. To this solution 0.075 mmol of aldehyde were added and reaction mixture was heated at 85 $^{\circ}$ C for 9 h. The respective fluorinated product was characterized by 19 F NMR spectroscopy. The yields of the fluorinated compounds were calculated by using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard.

Analytical data for acyl fluorides: [160c, 161, 163b, 164]

31f: ¹⁹**F NMR** (282.4 MHz, CD₃CN): $\delta = 17.5$ ppm.

31g: ¹⁹**F NMR** (282.4 MHz, CD₃CN): $\delta = 21.3$ ppm.

31h: ¹⁹**F NMR** (282.4 MHz, CD₃CN): δ = 15.4 ppm

31i: ¹⁹**F NMR** (282.4 MHz, CD₃CN): $\delta = 44.5$ ppm.

Analytical data for 29: ¹**H NMR** (300.1 MHz, CD₃CN): δ = 2.27 (s, 6H, CH₃), 2.37 (s, 12H, CH₃), 4.63 (s, 4H, NCH₂), 6.90 (s, 4H, *m*-Ar-H), 9.8 (s, 1H, NCHN), 14.9 (br, 1H, FHF) ppm; ¹⁹**F NMR** (282.4 MHz, CD₃CN): δ = -145.7 (br) ppm.

7.3.14. Synthesis of 1,3 dimesityl-2-fluoroimidazolinium tetrafluoroboarate salt (35)

Compound **26**, KF, and KBF₄ were dried *in vacuo* at 70 °C for 8 h prior to use. **26** (200 mg, 0.5 mmol), KF (1.5 mmol) and KBF₄ (5 equivalent) were suspended in dry acetonitrile (20 mL) in a Schlenk tube. The mixture was heated at 80 °C for 16 hours with vigorous stirring. The reaction mixture was cooled to room temperature and filtered. The filtrate was dried *in vacuo*, and the residue was dissolved in CH₂Cl₂ (15 mL) and filtered again. The filtrate was dried *in vacuo* to afford the compound **35** (164 mg, 80 %).

Analytical data for 35:

¹**H NMR** (300.1 MHz, CD₂Cl₂): δ = 2.24 (br, 18H, CH₃), 3.94 (s, 4H, NCH₂), 6.90 (s, 4H, *m*-Ar-H) ppm

¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): $\delta = -84.1$ (s, NCFN), -152.7 (s, 4F, BF₄) ppm.

LIFDI-TOF-MS (CD₂Cl₂): Calculated (m/z) for [35-BF₄]⁺: 326.4; Experimental (m/z) for [35-BF₄]⁺: 326.4.

7.3.15. Fluorination of the benzaldehyde with 35

A solution of **35** (0.05 mmol) in CD₃CN (0.5 mL) was prepared in a NMR tube. To this solution 0.075 mmol of benzaldehyde were added and reaction mixture was heated at 85 °C for 9 h. The benzoyl fluoride (**31f**) was identified by ¹⁹F NMR spectrum at $\delta = 17.5$ ppm.

Analytical data for 36:[212]

¹H NMR (300.1 MHz, CD₃CN): δ = 2.27 (s, 6H, CH₃), 2.39 (s, 12H, CH₃), 4.62 (s, 4H, NCH₂), 6.90 (s, 4H, *m*-Ar-H), 8.91 (br, 1H, NCHN) ppm.

7.3.16. Synthesis of [(SIMes)AlMe₃] (43)^[192d]

In a Schlenk tube, SIMes (13) (1.53 g, 5.0 mmol) was dissolved in toluene (15 mL) and AlMe₃ (5.0 mmol, 2M in toluene) was added. The solution was stirred for 12 h at room temperature and the volatiles were evaporated. The residue was washed with hexane to afford the complex 43 (87 %).

Analytical data for 43:

¹**H NMR** (300.1 MHz, C₆D₆): δ = 2.07 (s, 6H, *p*-CH₃), 2.20 (s, 12H, *o*-CH₃), 3.01 (s, 4H, CH₂), 6.76 (s, 4H, *m*-Ar-H), -0.87 (s, 9H, AlCH₃) ppm.

²⁷**Al NMR** (130.3 MHz, C₆D₆): δ = 159.1 ppm.

LIFDI-TOF-MS (Toluene): Calculated (*m/z*) for [43]⁺: 379.28. Experimental (*m/z*) for [43]⁺: 379.27, [43-CH₃]⁺: 364.26, [43-2CH₃]⁺: 349.24.

7.3.17. Synthesis of [(SIMes)Al(F)(Me)₂] (44)

Method A: Fluorination with SF₆

A solution of [(SIMes)AlMe₃] (43) (37.8 mg, 0.05 mmol) was prepared in Tol-d₈ (0.3 mL) in a PFA tube. The solution was frozen to -180 $^{\circ}$ C and degassed *in vacuo* followed by a condensation of SF₆ (0.10 mmol) into it. The PFA tube was sealed and warmed up to room temperature. The sealed PFA tube was inserted into a NMR tube and the reaction mixture was heated at 70 $^{\circ}$ C for 48 h to obtain the complex 44. The yield after 48 h was found to be 30 % when calculated by using 1,2 difluorobenzene (0.2 M in C₆D₆) as an external standard.

Method B: Fluorination with Me₃SnF

In a Schlenk tube, complex [(SIMes)AlMe₃] (43) (37.8 mg, 0.1 mmol) and Me₃SnF (18.6 mg, 0.1 mmol) were dissolved in toluene (5 mL). The solution was stirred for 30 min at room temperature and filtered. The filtrate was then evaporated *in vacuo* to obtain the complex 44 (62 %).

Analytical data for 44:

¹**H NMR** (300.1 MHz, C₆D₆): δ = -1.16 (d, 6H, ³J_{HF} = 3.07 Hz, AlCH₃), 2.06 (s, 6H, *p*-CH₃), 2.22 (s, 12H, *o*-CH₃), 3.04 (s, 4H, CH₂), 6.59 (s, 4H, *m*-Ar-H) ppm.

¹⁹**F NMR** (282.4 MHz, C_6D_6): $\delta = -169.9$ (br, AlF) ppm.

²⁷**Al NMR** (130.3 MHz, C_6D_6): $\delta = 81.9$ ppm.

7.3.18. Synthesis of [(SIMes)Al(F)₃] (45)

Method A: Fluorination with SF₄

A solution of [(SIMes)Al(Me)₃] (43) (37.8 mg, 0.05 mmol) was prepared in Tol-d₈ (0.3 mL) in a PFA tube. The solution was frozen to -180 °C and degassed *in vacuo* followed by condensation of the SF₄(0.10 mmol) into it. The PFA tube was sealed and inserted into a NMR tube. Formation of the complex 45 and CH₃SF₃ was obtained at -30 °C.

Method B: Fluorination with Me₃SnF

In a Schlenk tube, complex [(SIMes)Al(Me)₃] (43) (37.8 mg, 0.1 mmol) was dissolved in toluene (5 mL) and an excess of Me₃SnF (6 equivalents) was added. The solution was stirred for 2 h at room temperature followed by filtration. The filtrate was evaporated *in vacuo* to obtain the complex 45 (68%).

Analytical data for 45:

¹**H NMR** (300.1 MHz, C₆D₆): δ = 2.01 (s, 6H, *p*-CH₃), 2.22 (s, 12H, *o*-CH₃), 4.24 (s, 4H, CH₂), 6.60 (s, 4H, *m*-Ar-H) ppm.

¹⁹F NMR (282.4 MHz, C_6D_6): $\delta = -164.5$ (br, AlF) ppm.

²⁷**Al NMR** (130.3 MHz, C₆D₆): δ = 49.8 ppm.

Analytical data for CH₃SF₃:[203]

¹**H NMR** (300.1 MHz, Tol-d₈, -30 °C): δ = 4.96 (br, CH₃SF₃) ppm.

¹⁹**F NMR** (282.4 MHz, Tol-d₈, -30 °C) : δ = -50.6 (tq, 1F, ²J_{FF} =73 Hz, ³J_{HF} =15.3 Hz, CH₃SF₃), 62.1 (dq, 2F, ²J_{FF} =73 Hz, ³J_{HF} = 15.3 Hz, CH₃SF₃) ppm.

7.3.19. Addition of HF to the complex [(SIMes)Al(F)₃] (45)

Mes-N-N-Mes
$$\xrightarrow{PVP-HF}$$
 $\xrightarrow{CH_3CN, 5 \text{ min}}$ $\xrightarrow{Mes-N-N-Mes}$ $\xrightarrow{+}$ $\xrightarrow{F-Al-F}$ \xrightarrow{F} $\xrightarrow{(45)}$

In a NMR tube, complex **45** (0.025 mmol) was prepared by following *Method B* and dissolved in acetonitrile (0.5 mL) followed by an addition of PVP-HF (0.05 mmol). The solvent was evaporated and the residue was re-dissolved in CD_2Cl_2 . 1H , ^{19}F NMR and ^{27}Al NMR spectra shows the formation of a salt containing protonated SIMes and $[AlF_4]^-$.

Analytical data for the 1,3-dimesitylimidazolinium cation:

¹H NMR (300.1 MHz, CD₂Cl₂): δ = 2.32 (s, 6H, *p*-CH₃), 2.38 (s, 12H, *o*-CH₃), 4.43 (s, 4H, CH₂), 6.99 (s, 4H, *m*-Ar-H), 10.11 (s, NCHN) ppm.

Analytical data for [AlF₄]-:

¹⁹**F NMR** (282.4 MHz, CD₂Cl₂): $\delta = -197.9$ (br, AlF) ppm.

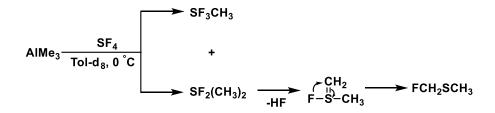
²⁷**Al NMR** (130.3 MHz, CD₂Cl₂): δ = 46.9 (quint) ppm.

7.3.20. Formation of AlMe₂F

Method A: Fluorination with SF₆

A solution of AlMe₃ (2 M in toluene, 0.05 mmol) was prepared in Tol-d₈ (0.5 mL) in a Young NMR tube. The solution was frozen to -180 $^{\circ}$ C and degassed *in vacuo* followed by condensation of the SF₆ (0.10 mmol) into it. The reaction sample was irradiated with UV at 311 nm for 36 h to obtain the AlMe₂F.

Method B: Fluorination with Me₃SnF


In a NMR tube, Me₃SnF (0.10 mmol) was suspended into Tol-d₈ (0.5 mL). AlMe₃ (2 M in toluene, 0.10 mmol) was added to the suspension. Formation of a mixture of AlMe₂F dimers was observed within 5 min at room temperature.

Analytical data for AlMe₂F:

¹**H**{¹⁹**F**} **NMR** (300.1 MHz, Tol-d₈): $\delta = -0.43, -0.55, -0.63, -0.69$ ppm

¹⁹**F NMR** (282.4 MHz, Tol-d₈): $\delta = -143.6, -145.8, -148.9, -150.8$ ppm.

7.3.21. Reaction of AlMe3 with SF4

A solution of AlMe₃ (2 M in toluene, 0.05 mmol) was prepared in Tol-d₈ (0.53mL) in a PFA tube. The solution was frozen to -180 °C and degassed *in vacuo* followed by condensation of the SF₄ (0.10 mmol) into it. The PFA tube was sealed and inserted into a NMR tube. At 0 °C a mixture of SF₃CH₃ and FCH₂SCH₃ was identified in the solution. A white solid precipitated in the reaction mixture which presumably can be considered as AlF₃. The ¹⁹F NMR spectrum reveals resonances for SF₃CH₃ which are in accordance to the signals observed in the case of fluorination of the complex **43** with SF₄ (see *Section 7.3.18*).

Analytical data for FCH₂SCH₃:

¹H NMR (300.1 MHz, Tol-d₈): δ = 1.69 (d, 3H, ⁴J_{HF} = 2.4 Hz, SCH₃), 4.83 (d, 2H, ²J_{HF} =53.9 Hz, CH₂F) ppm.

¹⁹**F NMR** (282.4 MHz, Tol-d₈): $\delta = -188.1$ (qt, ${}^{2}J_{FH} = 53.9$ Hz, ${}^{4}J_{FH} = 2.4$ Hz) ppm.

7.3.22. Synthesis of [(SIMes)Al(Cl)₃] (46)^[209]

In a Schlenk tube, SIMes (13) (307 mg, 1.0 mmol) was dissolved in toluene (5 mL) and AlCl₃ (132 mg, 1.0 mmol) was added. The solution was stirred for 12 h at room temperature and the volatiles were evaporated. The residue was washed with hexane to afford the complex 46 (53 %).

Analytical data for 46:

¹**H NMR** (500.1 MHz, C₆D₆): δ = 2.01 (s, 6H, *p*-CH₃), 2.21 (s, 12H, *o*-CH₃), 4.25 (s, 4H, CH₂), 6.56 (s, 4H, *m*-Ar-H) ppm.

²⁷**Al NMR** (130.3 MHz, C₆D₆): δ = 104.7 ppm.

LIFDI-TOF-MS (Toluene): Calculated (m/z) for [46]⁺: 439.1; Experimental (m/z) for [46]⁺: 439.1.

7.3.23. Addition of Me₃SiCl to the complex [(SIMe₅)Al(F)₃] (45)

Mes-N-N-Mes
$$\begin{array}{c|c}
\hline
 & 3 \text{ Me}_3\text{SiCl} \\
\hline
 & C_6D_6, 1 \text{ h} \\
 & - \text{Me}_3\text{SiF}
\end{array}$$

$$\begin{array}{c|c}
\hline
 & CI \stackrel{Al}{\sim} CI \\
\hline
 & CI \stackrel{Al}{\sim} CI
\end{array}$$
(45)

In a PFA NMR tube complex [(SIMes)Al(F)₃] (**45**) (39.2 mg, 0.10 mmol) was dissolved in C₆D₆ (0.3 mL) and Me₃SiCl (0.3 mmol) was added to it at room temperature. Formation of the complex [(SIMes)Al(Cl)₃] (**46**) and Me₃SiF was observed after 1 h. Signals at $\delta = -156.9$ ppm in the ¹⁹F{¹H} NMR and at $\delta = 30.3$ ppm in the ²⁹Si NMR spectrum were assigned to the Me₃SiF. The ¹H NMR and ²⁷Al NMR spectra recorded for the complex **46** were found consistent with the data obtained from its independent synthesis (see *Section 7.3.22*).

8. Bibliography

- [1] (a) G. V. Röschenthaler, Nachr. Chem. 2005, 53, 743-746; (b) P. Kirsch, Modern fluoroorganic chemistry: synthesis, reactivity, applications, John Wiley & Sons, 2013; (c) A. M. Thayer, Chem. Eng. News 2006, 84, 15-24; (d) D. O'Hagan, J. Fluorine Chem. 2010, 131, 1071-1081; (e) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330; (f) F. Babudri, G. M. Farinola, F. Naso, R. Ragni, Chem. Commun. 2007, 1003-1022; (g) T. Hiyama, Organofluorine compounds: chemistry and applications, Springer Science & Business Media, 2000; (h) G. Theodoridis, in Advances in Fluorine Science, Vol. 2, (Ed.: A. Tressaud), Elsevier, 2006, pp. 121-175.
- [2] J.-P. Begue, D. Bonnet-Delpon, *Bioorganic and Medicinal Chemistry of Fluorine*, John Wiley & Sons, Inc., Hoboken, New York, **2008**.
- [3] K. L. Kirk, J. Fluorine Chem. 2006, 127, 1013-1029.
- [4] (a) H. J. Lindner, Ber. Bunsenges. Phys. Chem. 1989, 93, 535-536; (b) P. Politzer, J. E. Huheey, J. S. Murray, M. Grodzicki, J. Mol. Struct. THEOCHEM 1992, 259, 99-120; (c) A. Bondi, J. Phys. Chem. 1964, 68, 441-451; (d) B. E. Smart, in Organofluorine Chemistry: Principles and Commercial Applications (Eds.: R. E. Banks, B. E. Smart, J. C. Tatlow), Springer US, Boston, MA, 1994, pp. 57-88; (e) D. M. Lemal, J. Org. Chem. 2004, 69, 1-11; (f) M. R. C. Gerstenberger, A. Haas, Angew. Chem. Int. Ed. 1981, 20, 647-667; Angew. Chem. 1981, 93, 659-680.
- [5] D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308-319.
- [6] (a) M. F. Kuehnel, D. Lentz, T. Braun, Angew. Chem. Int. Ed. 2013, 52, 3328-3348; Angew. Chem. 2013, 125, 3412-3433; (b) T. Nakajima, B. Žemva, A. Tressaud, Advanced inorganic fluorides: synthesis, characterization and applications, Elsevier, 2000.
- [7] (a) W. R. Dolbier, J. Fluorine Chem. 2005, 126, 157-163; (b) R. D. Chambers, Fluorine in organic chemistry, CRC press, 2004.
- [8] G. Coates, F. Rekhroukh, M. R. Crimmin, *Synlett* **2019**, *30*, 2233-2246.
- [9] J.-P. Begue, D. Bonnet-Delpon, *Bioorganic and Medicinal Chemistry of Fluorine*, John Wiley & Sons, Inc., Hoboken, New York, **2008**.

- [10] T. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115, 931-972.
- [11] (a) J. A. Wilkinson, *Chem. Rev.* 1992, 92, 505-519; (b) T. Furuya, A. S. Kamlet, T. Ritter, *Nature* 2011, 473, 470-477.
- [12] L. Hunter, X.-G. Hu, W.-L. Hu, Synthesis **2017**, 49, 4917-4930.
- (a) C. W. Tullock, F. S. Fawcett, W. C. Smith, D. D. Coffman, J. Am. Chem. Soc. [13] 1960, 82, 539-542; (b) W. R. Hasek, W. C. Smith, V. A. Engelhardt, J. Am. Chem. Soc. 1960, 82, 543-551; (c) W. C. Smith, C. W. Tullock, R. D. Smith, V. A. Engelhardt, J. Am. Chem. Soc. 1960, 82, 551-555; (d) W. C. Smith, Angew. Chem. Int. Ed. 1962, 1, 467-475; Angew. Chem. 1962, 74, 742-751; (e) R. Harder, W. C. Smith, J. Am. Chem. Soc. 1961, 83, 3422-3424; (f) G. A. Boswell Jr, W. C. Ripka, R. M. Scribner, C. W. Tullock, Org. React. 2011, 1-124; (g) R. P. Singh, J. n. M. Shreeve, Synthesis 2002, 2002, 2561-2578; (h) W. J. Middleton, J. Org. Chem. 1975, 40, 574-578; (i) K. A. Jolliffe, Aust. J. Chem. 2001, 54, 75-75; (j) G. S. Lal, G. P. Pez, R. J. Pesaresi, F. M. Prozonic, H. Cheng, J. Org. Chem. 1999, 64, 7048-7054; (k) G. S. Lal, G. P. Pez, R. J. Pesaresi, F. M. Prozonic, Chem. Commun. 1999, 215-216; (1) T. Umemoto, R. P. Singh, Y. Xu, N. Saito, J. Am. Chem. Soc. **2010**, 132, 18199-18205; (m) M. G. Campbell, T. Ritter, Chem. Rev. **2015**, 115, 612-633; (n) N. W. Goldberg, X. Shen, J. Li, T. Ritter, Org. Lett. 2016, 18, 6102-6104; (o) C. N. Neumann, T. Ritter, Acc. Chem. Res. 2017, 50, 2822-2833; (p) P. Tang, W. Wang, T. Ritter, J. Am. Chem. Soc. 2011, 133, 11482-11484.
- [14] (a) M. Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 2005, 44, 214-231; Angew. Chem. 2005, 117, 218-234; (b) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881; (c) G. B. Li, C. Zhang, C. Song, Y. D. Ma, Beilstein J. Org. Chem. 2018, 14, 155-181.
- [15] (a) G. K. S. Prakash, R. Krishnamurti, G. A. Olah, J. Am. Chem. Soc. 1989, 111, 393-395; (b) G. K. S. Prakash, F. Wang, Z. Zhang, R. Haiges, M. Rahm, K. O. Christe, T. Mathew, G. A. Olah, Angew. Chem. Int. Ed. 2014, 53, 11575-11578; Angew. Chem. 2014, 126, 11759-11762; (c) G. K. S. Prakash, P. V. Jog, P. T. D. Batamack, G. A. Olah, Science 2012, 338, 1324; (d) A. Lishchynskyi, F. M. Miloserdov, E. Martin, J. Benet-Buchholz, E. C. Escudero-Adán, A. I. Konovalov, V. V. Grushin, Angew. Chem. Int. Ed. 2015, 54, 15289-15293; Angew. Chem. 2015, 127, 15504-15508 (e) L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513-1522; (f) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 2015, 115,

- 683-730; (g) S. Barata-Vallejo, B. Lantaño, A. Postigo, *Chem. Eur. J.* **2014**, *20*, 16806-16829; (h) C. Zhang, *Org. Biomol. Chem.* **2014**, *12*, 6580-6589; (i) J.-A. Ma, D. Cahard, *J. Fluorine Chem.* **2007**, *128*, 975-996; (j) X. Pan, H. Xia, J. Wu, *Org. Chem. Front.* **2016**, *3*, 1163-1185; (k) M. Khalid, S. Mohammed, *Orient. J. Chem.* **2018**, *34*, 2708-2715.
- [16] (a) J. Wiedemann, T. Heiner, G. Mloston, G. K. S. Prakash, G. A. Olah, *Angew. Chem. Int. Ed.* 1998, 37, 820-821; *Angew. Chem.* 1998, 110, 880-881.
- [17] (a) T. Umemoto, in Fluorine-Containing Synthons, Vol. 911, American Chemical Society, 2005, pp. 2-15; (b) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015, 115, 650-682; (c) E. Mejía, A. Togni, ACS Catalysis 2012, 2, 521-527; (d) K. Niedermann, J. M. Welch, R. Koller, J. Cvengroš, N. Santschi, P. Battaglia, A. Togni, Tetrahedron 2010, 66, 5753-5761.
- [18] C. Ni, M. Hu, J. Hu, Chem. Rev. 2015, 115, 765-825.
- [19] H. L. Roberts, Q. Rev. Chem. Soc. 1961, 15, 30-55.
- [20] P. J. Crowley, G. Mitchell, R. Salmon, P. A. Worthington, *Chimia*, 2004, 58, 138-142.
- [21] M. V. Ponomarenko, N. Kalinovich, Y. A. Serguchev, M. Bremer, G.-V. Röschenthaler, *J. Fluorine Chem.* **2012**, *135*, 68-74.
- [22] (a) L. J. Sæthre, N. Berrah, J. D. Bozek, K. J. Børve, T. X. Carroll, E. Kukk, G. L. Gard, R. Winter, T. D. Thomas, J. Am. Chem. Soc. 2001, 123, 10729-10737;
 (b) W. A. Sheppard, J. Am. Chem. Soc. 1962, 84, 3072-3076; (c) P. Brant, A. D. Berry, R. A. DeMarco, F. L. Carter, W. B. Fox, J. A. Hashmall, J. Electron. Spectrosc. Relat. Phenom. 1981, 22, 119-129; (d) P. R. Savoie, J. T. Welch, Chem. Rev. 2015, 115, 1130-1190; (e) R. D. Verma, R. L. Kirchmeier, M. S. Jean'ne, in Adv. Inorg. Chem., Vol. 41, Elsevier, 1994, pp. 125-169.
- [23] (a) W. A. Sheppard, *J. Am. Chem. Soc.* 1962, 84, 3064-3072; (b) R. D. Bowden,
 P. J. Comina, M. P. Greenhall, B. M. Kariuki, A. Loveday, D. Philp, *Tetrahedron* 2000, 56, 3399-3408.
- [24] (a) R. W. Winter, R. A. Dodean, G. L. Gard, in *Fluorine-Containing Synthons*, *Vol. 911*, **2005**, pp. 87-118; (b) S. Altomonte, M. Zanda, *J. Fluorine Chem.* **2012**, *143*, 57-93; (c) W. R. Dolbier, S. Aït-Mohand, T. D. Schertz, T. A. Sergeeva, J. A. Cradlebaugh, A. Mitani, G. L. Gard, R. W. Winter, J. S. Thrasher, *J. Fluorine Chem.* **2006**, *127*, 1302-1310; (d) R. Dresdner, *J. Am. Chem. Soc.* **1955**, *77*, 6633-

- 6634; (e) L. Zámostná, T. Braun, B. Braun, *Angew. Chem. Int. Ed.* **2014**, *53*, 2745-2749; *Angew. Chem.* **2014**, *126*, 2783-2787; (f) D. Rombach, H.-A. Wagenknecht, *Angew. Chem. Int. Ed.* **2020**, *59*, 300-303; *Angew. Chem.* **2020**, *132*, 306-310; (g) D. Rombach, H.-A. Wagenknecht, *ChemCatChem* **2018**, *10*, 2955-2961; (h) S. Aït-Mohand, W. R. Dolbier, *Org. Lett.* **2002**, *4*, 3013-3015.
- [25] (a) W.-T. Tsai, J. Fluorine Chem. 2007, 128, 1345-1352; (b) G. P. Stiller, T. von Clarmann, M. Höpfner, N. Glatthor, U. Grabowski, S. Kellmann, A. Kleinert, A. Linden, M. Milz, T. Reddmann, T. Steck, H. Fischer, B. Funke, M. López-Puertas, A. Engel, Atmos. Chem. Phys. 2008, 8, 677-695; (c) W. T. Sturges, T. J. Wallington, M. D. Hurley, K. P. Shine, K. Sihra, A. Engel, D. E. Oram, S. A. Penkett, R. Mulvaney, C. A. M. Brenninkmeijer, Science 2000, 289, 611.
- [26] P. J. Crowley, G. Mitchell, R. Salmon, P. A. Worthington, *Chimia*, **2004**, *58*, 138-142
- [27] T. Braun, D. Dirican, N. Pfister, M. Wozniak, *Chem. Eur. J.* **2019**, doi: 10.1002/chem.201904493.
- [28] H. Moissan, P. Lebeau, Compt. Rend. 1990, 130, 865.
- [29] J. T. Herron, Phys. Chem. Ref. Data 1987, 16, 1-6.
- [30] M. Maiss, C. A. M. Brenninkmeijer, Environ. Sci. Technol. 1998, 32, 3077-3086.
- [31] M. K. W. Ko, N. D. Sze, W.-C. Wang, G. Shia, A. Goldman, F. J. Murcray, D. G. Murcray, C. P. Rinsland, J. Geophys. Res. 1993, 98, 10499-10507.
- [32] L. S. Bartell, S. K. Doun, J. Mol. Struct. 1978, 43, 245-249.
- [33] K. Seppelt, Chem. Rev. 2015, 115, 1296-1306.
- [34] R. Steudel, *Chemie der Nichtmetalle. Von Struktur Und Bindung Zur Anwendung*, de Gruyter, Berlin, New York, **2008**.
- [35] J. T. Herron, J. Phys. Chem. Ref. Data 1987, 16, 1-6.
- [36] (a) L. G. Christophorou, J. K. Olthoff, J. Phys. Chem. Ref. Data 2000, 29, 267-330; (b) B. Gstir, S. Denifl, G. Hanel, M. Rümmele, T. Fiegele, P. Cicman, M. Stano, S. Matejcik, P. Scheier, K. Becker, A. Stamatovic, T. D. Märk, J. Phys. B: At. Mol. Opt. Phys. 2002, 35, 2993-3007.
- [37] World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2002, WMO, Geneva, Switzerland, **2003**.
- [38] S. Xiao, X. Zhang, J. Tang, S. Liu, Energy Rep. 2018, 4, 486-496.
- [39] A. A. Lindley, A. McCulloch, J. Fluorine Chem. 2005, 126, 1457-1462.

- [40] Kyoto Protocol to the United Nations Framework Convention on Climate Change, Dec. 10, **1997**, U.N. Doc FCCC/CP/1997/7/Add.1, 37 I.L.M. 22 (1998).
- [41] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, B. Peris, *Int. J. Refrig.* **2015**, *52*, 21-31.
- [42] N. H. Malik, A. H. Qureshi, *IEEE Trans. Dielectr. Electr. Insul.* **1979**, *EI-14*, 1-13.
- [43] H. Katagiri, H. Kasuya, H. Mizoguchi, S. Yanabu, *IEEE Trans. Dielectr. Electr. Insul.* **2008**, *15*, 1424-1429.
- [44] Matthew H. Luly Honeywell International Inc. US2008135817A1 US, 2008.
- [45] (a) G. Mauthe, B. Pryor, L. Niemeyer, R. Probst, J. Poblotzki, H. Morrison, P. Bolin, P. O'Connell, J. Henriot, SF₆ Recycling Guide, CIGRE Brochure N. 117, 1997; (b) X. Zhang, H. Xiao, J. Tang, Z. Cui, Y. Zhang, Crit. Rev. Environ. Sci. Technol. 2017, 47, 1763-1782.
- [46] (a) H.-H. Kim, **2004**, *I*, 91-110; bL. A. Rosocha, *IEEE Trans. Plasma Sci.* **2005**, 33, 129-137.
- [47] A. Mizuno, J. S. Clements, R. H. Davis, *Combined treatment of SO₂ and high resistivity fly ash using a pulse energized electron reactor*. Proceedings of the Second International Conference on Electrostatic Precipitation, Kyoto, **1984**, pp. 11–17.
- [48] A. Khacef, J. M. Cormier, J. M. Pouvesle, *J. Phys. D: Appl. Phys.* **2002**, *35*, 1491-1498.
- [49] (a) S. Futamura, A. Gurusamy, J. Electrostat. 2005, 63, 949-954; (b) M. S. Gandhi, Y. S. Mok, Int. J. Environ. Sci. Technol. 2015, 12, 499-506.
- [50] H. M. Lee, M. B. Chang, K. Y. Wu, J. Air Waste Manag. Assoc. 2004, 54, 960-970.
- [51] (a) Y. C. Hong, H. S. Uhm, B. J. Chun, S. K. Lee, S. K. Hwang, D. S. Kim, *Phys. Plasmas* 2006, 13, 033508; (b) M. Radoiu, S. Hussain, *J. Hazard. Mater.* 2008, 164, 39-45.
- [52] (a) Q. Zhuang, B. Clements, A. McFarlan, Y. Fasoyinu, Can. J. Chem. Eng. 2014,
 92, 32-35; (b) R. Zhang, J. Wang, X. Cao, H. Hou, Plasma Sci. Technol. 2016,
 18, 388-393.
- [53] M. Shih, W.-J. Lee, C.-H. Tsai, P.-J. Tsai, C.-Y. Chen, *J. Air Waste Manag. Assoc.* **2002**, *52*, 1274-1280.

- [54] (a) K. R. Ryan, I. C. Plumb, *Plasma Chem. Plasma Process.* 1988, 8, 263-280;
 (b) C. T. Dervos, P. Vassiliou, *J. Air Waste Manag. Assoc.* 2000, 50, 137-141.
- [55] (a) R. Y. L. Chim, R. A. Kennedy, R. P. Tuckett, *Chem. Phys. Lett.* 2003, 367, 697-703; (b) P. A. Kendall, N. J. Mason, *J. Electron. Spectrosc. Relat. Phenom.* 2001, 120, 27-31.
- [56] (a) L. Huang, D. Gu, L. Yang, L. Xia, R. Zhang, H. Hou, J. Environ. Sci. 2008, 20, 183-188; (b) L. Huang, Y. Shen, W. Dong, R. Zhang, J. Zhang, H. Hou, J. Hazard. Mater. 2008, 151, 323-330; (c) L. Huang, W. Dong, R. Zhang, H. Hou, Chemosphere 2007, 66, 833-840.
- [57] N.-K. Park, H.-G. Park, T. J. Lee, W.-C. Chang, W.-T. Kwon, *Catal. Today* **2012**, *185*, 247-252.
- [58] (a) J. Zhang, J. Z. Zhou, Q. Liu, G. Qian, Z. P. Xu, Environ. Sci. Technol. 2013, 47, 6493-6499; (b) Z. M. El-Bahy, R. Ohnishi, M. Ichikawa, Catal. Today 2004, 90, 283-290; (c) H. Nagata, T. Takakura, S. Tashiro, M. Kishida, K. Mizuno, I. Tamori, K. Wakabayashi, Appl. Catal. B 1994, 5, 23-31.
- [59] J. R. Case, F. Nyman, *Nature* **1962**, *193*, 473.
- [60] L. Zámostná, T. Braun, Nachr. Chem. 2016, 64, 829-835.
- [61] (a) H. C. Cowen, F. Riding, E. Warhurst, A. D. Buckingham, R. J. W. Le Fèvre, G. D. Meakins, R. N. Haszeldine, J. Jander, G. R. Clemo, B. W. Fox, R. Raper, J. F. W. McOmie, I. M. White, O. L. Brady, P. E. Halstead, A. G. Sharpe, G. W. Gray, B. Jones, J. Cast, T. S. Stevens, F. Bell, J. W. Cook, L. Hunter, R. M. Barrer, N. Mackenzie, D. MacLeod, C. C. Barker, F. D. Casson, G. F. Laws, W. Carruthers, E. S. Lane, C. Williams, J. Chem. Soc. (Resumed) 1953, 4168-4188;
 (b) G. C. Demitras, A. G. MacDiarmid, Inorg. Chem. 1964, 3, 1198-1199; (c) H. Deubner, F. Kraus, Inorganics 2017, 5, 68.
- [62] (a) M. Fenzlaff, R. Gerhard, E. Illenberger, J. Chem. Phys. 1988, 88, 149-155; (b)
 R. Basta, B. G. Harvey, A. M. Arif, R. D. Ernst, J. Am. Chem. Soc. 2005, 127, 11924-11925; (c) B. G. Harvey, A. M. Arif, A. Glöckner, R. D. Ernst, Organometallics 2007, 26, 2872-2879; (d) P. Holze, B. Horn, C. Limberg, C. Matlachowski, S. Mebs, Angew. Chem. Int. Ed. 2014, 53, 2750-2753; Angew. Chem. 2014, 126, 2788-2791.
- [63] L. Zámostná, T. Braun, B. Braun, Angew. Chem. Int. Ed. 2014, 53, 2745-2749;
 Angew. Chem. 2014, 126, 2783-2787

- [64] L. Zamostna, T. Braun, Angew. Chem. Int. Ed. 2015, 54, 10652-10656; Angew. Chem. 2015, 127, 10798-10802.
- [65] C. Berg, T. Braun, M. Ahrens, P. Wittwer, R. Herrmann, *Angew. Chem. Int. Ed.*2017, 56, 4300-4304; *Angew. Chem.* 2017, 129, 4364-4368.
- [66] T. A. McTeague, T. F. Jamison, Angew. Chem. Int. Ed. 2016, 55, 15072-15075;
 Angew. Chem. 2016, 128, 15296-15299.
- [67] D. K. Padma, A. R. V. Murthy, *Inorg. Chem.* **1964**, *3*, 1653-1654.
- [68] P. K. D. Sevenard, A. A. Kolomeitsev, G.-V.Rçschenthaler, DE 10220901, 2004
- [69] M. Rueping, P. Nikolaienko, Y. Lebedev, A. Adams, Green Chemistry 2017, 19, 2571-2575.
- [70] C.-L. J. Wang, in *Organic Reactions*, John Wiley & Sons, Inc., Hoboken, NJ, USA, **1985**, pp. 319–400.
- [71] P. K. D. Sevenard, A. A. Kolomeitsev, G.-V.Rçschenthaler, DE 10220901, 2004
- [72] C. L. Chen, P. J. Chantry, J. Chem. Phys. 1979, 71, 3897-3907.
- [73] T. Kiang, R. N. Zare, J. Am. Chem. Soc. 1980, 102, 4024-4029.
- [74] A. Akhgarnusch, R. F. Höckendorf, M. K. Beyer, J. Phys. Chem. A 2015, 119, 9978-9985.
- [75] L. E. Kline, D. K. Davies, C. L. Chen, P. J. Chantry, J. Appl. Phys. 1979, 50, 6789-6796.
- [76] E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo,
 C. J. Hawker, J. R. de Alaniz, *Chem. Commun.* 2015, *51*, 11705-11708.
- [77] G. Iakobson, M. Pošta, P. Beier, J. Fluorine Chem. 2018, 213, 51-55.
- [78] F. Buß, C. Mück-Lichtenfeld, P. Mehlmann, F. Dielmann, *Angew. Chem. Int. Ed.* **2018**, *57*, 4951-4955; *Angew. Chem.* **2018**, *130*, 5045-5049,
- [79] W.-T. Tsai, J. Hazard. Mater. **2007**, 149, 747-751.
- [80] W. T. Sturges, T. J. Wallington, M. D. Hurley, K. P. Shine, K. Sihra, A. Engel, D. E. Oram, S. A. Penkett, R. Mulvaney, C. A. M. Brenninkmeijer, *Science* 2000, 289, 611.
- [81] L. Huang, L. Zhu, X. Pan, J. Zhang, B. Ouyang, H. Hou, *Atmos. Environ.* **2005**, *39*, 1641-1653.
- [82] R. A. Hites, Science 2000, 290, 935.
- [83] G. A. Silvey, G. H. Cady, J. Am. Chem. Soc. 1950, 72, 3624-3626.

- [84] (a) P. Kisliuk, G. A. Silvey, J. Chem. Phys. 1952, 20, 517-517; (b) C. J. Marsden, D. Christen, H. Oberhammer, J. Mol. Struct. 1985, 131, 299-307; (c) D. F. Eggers, H. E. Wright, D. W. Robinson, J. Chem. Phys. 1961, 35, 1045-1050; (d) J. E. Griffiths, Spectrochim. Acta A 1967, 23, 2145-2157; (e) O. J. Nielsen, F. M. Nicolaisen, C. Bacher, M. D. Hurley, T. J. Wallington, K. P. Shine, Atmos. Environ. 2002, 36, 1237-1240.
- [85] W. Xu*, C. Xiao, Q. Li, Y. Xie, H. F. Schaefer, Mol. Phys. 2004, 102, 1415-1439.
- [86] R. P. Tuckett, in *Advances in Fluorine Science, Vol. 1* (Ed.: A. Tressaud), Elsevier, **2006**, pp. 89-129.
- [87] World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2002, Geneva, Switzerland, **2002**.
- [88] K. Takahashi, T. Nakayama, Y. Matsumi, S. Solomon, T. Gejo, E. Shigemasa, T. J. Wallington, *Geophys. Res. Lett.* **2002**, *29*, 7-1-7-4.
- [89] R. P. Tuckett, in *Fluorine and the Environment Atmospheric Chemistry*, *Emissions*, & *Lithosphere*, **2006**, pp. 89-129.
- [90] R. A. Kennedy, C. A. Mayhew, *Int. J. Mass spectrom.* **2001**, *206*, vii-x.
- [91] (a) C. Atterbury, R. A. Kennedy, C. A. Mayhew, R. P. Tuckett, *Phys. Chem. Chem. Phys.* 2001, *3*, 1949-1953; (b) S. T. Arnold, T. M. Miller, A. A. Viggiano, C. A. Mayhew, *Int. J. Mass spectrom.* 2003, 223-224, 403-409.
- [92] R. Y. L. Chim, R. A. Kennedy, R. P. Tuckett, W. Zhou, G. K. Jarvis, D. J. Collins,
 P. A. Hatherly, *J. Phys. Chem. A* 2001, *105*, 8403-8412.
- [93] S. W. Benson, J. Bott, Int. J. Chem. Kinet. 1969, 1, 451-458.
- [94] W. C. Smith, Angew. Chem. Int. Ed. 1962, 1, 467-475; Angew. Chem. 1962, 74, 742-751.
- [95] I. Sauers, J. L. Adcock, L. G. Christophorou, H. W. Ellis, J. Chem. Phys. 1985, 83, 2618-2619.
- [96] Fedorova, A.N.; Dromov, G.A.; Antonova, E.I.; Antipenko, G.L. U.S.S.R. Pat., 823 276, 1981.
- [97] D. Naumann, D. K. Padma, Z. anorg. allg. Chem. 1973, 401, 53-56.
- [98] J. T. Goettel, N. Kostiuk, M. Gerken, Angew. Chem. Int. Ed. 2013, 52, 8037-8040;
 Angew. Chem. 2013, 125, 8195-8198.
- [99] W. M. Tolles, W. D. Gwinn, J. Chem. Phys. 1962, 36, 1119-1121.

- [100] (a) R. E. Dodd, L. A. Woodward, H. L. Roberts, *Trans. Faraday Soc.* 1956, 52, 1052-1061; (b) K. Kimura, S. H. Bauer, *J. Chem. Phys.* 1963, 39, 3172-3178.
- [101] (a) F. Seel, W. Gombler, *J. Fluorine Chem.* 1974, 4, 327-331; (b) A. N. Taha, N. S. True, C. B. LeMaster, C. L. LeMaster, S. M. Neugebauer-Crawford, *J. Phys. Chem. A* 2000, 104, 3341-3348.
- [102] T. Goettel James, N. Kostiuk, M. Gerken, Angew. Chem. Int. Ed. 2013, 52, 8037-8040; Angew. Chem. 2013, 125, 8195-8198.
- [103] V. d. P. N. Nziko, S. Scheiner, J. Phys. Chem. A 2014, 118, 10849-10856.
- [104] (a) N. Bartlett, P. L. Robinson, J. Chem. Soc. (Resumed) 1961, 3417-3425; (b) F. A. Cotton, J. W. George, J. Inorg. Nucl. Chem. 1958, 7, 397-403; (c) D. D. Gibler, C. J. Adams, M. Fischer, A. Zalkin, N. Bartlett, Inorg. Chem. 1972, 11, 2325-2329; (d) C. W. Tullock, D. D. Coffman, E. L. Muetterties, J. Am. Chem. Soc. 1964, 86, 357-361; (e) J. Bittner, J. Fuchs, K. Seppelt, Z. Anorg. Allg. Chem. 1988, 557, 182-190.
- [105] (a) R. Tunder, B. Siegel, J. Inorg. Nucl. Chem. 1963, 25, 1097-1098; (b) L. F.
 Drullinger, J. E. Griffths, Spectrochim. Acta Part A 1971, 27, 1793-1799.
- [106] (a) C. S. Sass, B. S. Ault, *J. Phys. Chem.* 1985, 89, 1002-1006; (b) J. T. Goettel,
 P. Chaudhary, P. Hazendonk, H. P. A. Mercier, M. Gerken, *Chem. Commun.* 2012, 48, 9120-9122.
- [107] C.-L. Wang, J. Org. React. 1985, 34, 319.
- [108] (a) J. Kollonitsch, S. Marburg, L. Perkins, J. Org. Chem. 1975, 40, 3808-3809;
 (b) J. Kollonitsch, S. Marburg, L. M. Perkins, J. Org. Chem. 1979, 44, 771-777.
- [109] A. L'Heureux, F. Beaulieu, C. Bennett, D. R. Bill, S. Clayton, F. LaFlamme, M. Mirmehrabi, S. Tadayon, D. Tovell, M. Couturier, J. Org. Chem. 2010, 75, 3401-3411.
- [110] H. Hayashi, H. Sonoda, K. Fukumura, T. Nagata, *Chem. Commun.* **2002**, 1618-1619.
- [111] (a) H. V. Huynh, Chem Rev 2018, 118, 9457-9492; (b) M. A. Wünsche, P. Mehlmann, T. Witteler, F. Buß, P. Rathmann, F. Dielmann, Angew. Chem. Int. Ed. 2015, 54, 11857-11860; Angew. Chem. 2015, 127, 12024-12027.
- [112] H. W. Wanzlick, Angew. Chem. Int. Ed. 1962, 1, 75-80; Angew. Chem. 1962, 74, 129-134,
- [113] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.

- [114] (a) A. J. Arduengo, J. R. Goerlich, W. J. Marshall, J. Am. Chem. Soc. 1995, 117, 11027-11028; (b) A. J. Arduengo Iii, H. V. R. Dias, J. C. Calabrese, F. Davidson, Inorg. Chem. 1993, 32, 1541-1542.
- [115] A. J. Arduengo, H. V. R. Dias, R. L. Harlow, M. Kline, *J. Am. Chem. Soc.* **1992**, *114*, 5530-5534.
- [116] (a) M. K. Denk, A. Thadani, K. Hatano, A. J. Lough, *Angew. Chem. Int. Ed.* 1997, 36, 2607-2609; *Angew. Chem.* 1997, 109, 2719-2721; (b) K. Denk Michael, A. Hezarkhani, F. L. Zheng, *Eur. J. Inorg. Chem.* 2007, 3527-3534.
- [117] R. Hoffmann, G. D. Zeiss, G. W. Van Dine, J. Am. Chem. Soc. 1968, 90, 1485-1499.
- [118] (a) J. F. Harrison, J. Am. Chem. Soc. 1971, 93, 4112-4119; (b) J. F. Harrison, R. C. Liedtke, J. F. Liebman, J. Am. Chem. Soc. 1979, 101, 7162-7168; (c) D. Feller, W. Thatcher Borden, E. R. Davidson, Chem. Phys. Lett. 1980, 71, 22-26; (d) N. C. Baird, K. F. Taylor, J. Am. Chem. Soc. 1978, 100, 1333-1338.
- [119] (a) D. A. Dixon, A. J. Arduengo, J. Phys. Chem. 1991, 95, 4180-4182; (b) C.
 Heinemann, W. Thiel, Chem. Phys. Lett. 1994, 217, 11-16.
- [120] (a) A. J. Arduengo, H. V. R. Dias, D. A. Dixon, R. L. Harlow, W. T. Klooster, T. F. Koetzle, J. Am. Chem. Soc. 1994, 116, 6812-6822; (b) C. Heinemann, T. Müller, Y. Apeloig, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 2023-2038; (c) D. C. Graham, K. J. Cavell, B. F. Yates, J. Phys. Org. Chem. 2005, 18, 298-309.
- [121] (a) V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, *Angew. Chem. Int. Ed.* 2005, 44, 5705-5709; *Angew. Chem.* 2005, 117, 5851-5855; (b) M. Melaimi, M. Soleilhavoup, G. Bertrand, *Angew. Chem. Int. Ed.* 2010, 49, 8810-8849; *Angew. Chem.* 2010, 122, 8992-9032; (c) M. Soleilhavoup, G. Bertrand, *Acc. Chem. Res.* 2015, 48, 256-266.
- [122] A. J. Arduengo III, J. R. Goerlich, W. J. Marshall, *Liebigs Ann.* 1997, 365-374.
- [123] K. E. Krahulic, G. D. Enright, M. Parvez, R. Roesler, J. Am. Chem. Soc. 2005, 127, 4142-4143.
- [124] F. E. Hahn, M. C. Jahnke, *Angew. Chem. Int. Ed.* **2008**, *47*, 3122-3172; *Angew. Chem.* **2008**, *120*, 3166-3216.
- [125] (a) W. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. 1997, 36, 2162-2187;Angew. Chem. 1997, 109, 1074; (b) T. Weskamp, V. P. W. Böhm, W. A.

- Herrmann, J. Organomet. Chem. **2000**, 600, 12-22; (c) W. A. Herrmann, Angew. Chem. Int. Ed. **2002**, 41, 1290-1309; Angew. Chem, **2002**, 114, 1342.
- [126] P. L. Arnold, S. T. Liddle, Chem. Commun. 2006, 3959-3971.
- [127] N. Kuhn, A. Al-Sheikh, Coord. Chem. Rev. 2005, 249, 829-857.
- [128] (a) C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247-2273; (b) A. C. Hillier, G. A. Grasa, M. S. Viciu, H. M. Lee, C. Yang, S. P. Nolan, J. Organomet. Chem. 2002, 653, 69-82; (c) G. C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151-5169; (d) E. A. B. Kantchev, C. J. O'Brien, M. G. Organ, Angew. Chem. Int. Ed. 2007, 46, 2768-2813; Angew. Chem. 2007, 119, 2824-2870.
- [129] (a) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29; (b) R. R. Schrock, Angew. Chem. Int. Ed. 2006, 45, 3748-3759; Angew. Chem. 2006, 118, 3832-3844; (c) N. Marion, S. Diez-Gonzalez, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988-3000; Angew. Chem. 2007, 119, 3046-3058.
- [130] (a) R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719-3726; (b) A. Berkessel, S. Elfert, V. R. Yatham, J.-M. Neudörfl, N. E. Schlörer, J. H. Teles, Angew. Chem. Int. Ed. 2012, 51, 12370-12374; Angew. Chem. 2012, 124, 12537-12541.
- [131] Wiley-VCH: Weinheim: *N-Heterocyclic Carbenes in Organocatalysis* (Ed. A. T. Biju), **2019**.
- [132] (a) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606-5655; (b)
 P.-C. Chiang, J. W. Bode, in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, The Royal Society of Chemistry, 2011, pp. 399-435; (c) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
- [133] (a) E. Mallah, N. Kuhn, C. Maichle-Mößmer, M. Steimann, M. Ströbele, K.-P. Zeller, in *Zeitschrift für Naturforschung B, Vol. 64*, 2009, pp. 1176; (b) Y. Kim, E. Lee, *Chem. Commun.* 2016, 52, 10922-10925; (c) S. Styra, M. Melaimi, C. E. Moore, A. L. Rheingold, T. Augenstein, F. Breher, G. Bertrand, *Chemistry* 2015, 21, 8441-8446; (d) S. D. Paul Ursula, U. Radius, *Chem. Eur. J.* 2017, 23, 3993-4009; (e) M. C. Leclerc, S. I. Gorelsky, B. M. Gabidullin, I. Korobkov, R. T. Baker, *Chemistry* 2016, 22, 8063-8067.
- [134] N. Kuhn, J. Fahl, R. Boese, G. Henkel, in *Zeitschrift für Naturforschung B, Vol.* 53, 1998, pp. 881.

- [135] Y. Kim, E. Lee, Chem. Commun. 2016, 52, 10922-10925.
- [136] M. C. Leclerc, S. I. Gorelsky, B. M. Gabidullin, I. Korobkov, R. T. Baker, *Chem. Eur. J.* 2016, 22, 8063-8067.
- [137] (a) S. Styra, M. Melaimi, C. E. Moore, A. L. Rheingold, T. Augenstein, F. Breher,
 G. Bertrand, *Chem. Eur. J.* 2015, 21, 8441-8446; (b) Z. R. Turner, *Chemistry* 2016, 22, 11461-11468.
- [138] Y.-R. Luo, Comprehensive handbook of chemical bond energies, CRC press, **2007**.
- [139] A. Doddi, M. Weinhart, A. Hinz, D. Bockfeld, J. M. Goicoechea, M. Scheer, M. Tamm, *Chem. Commun.* **2017**, *53*, 6069-6072.
- [140] M. Paas, B. Wibbeling, R. Fröhlich, F. E. Hahn, Eur. J. Inorg. Chem. 2006, 158-162.
- [141] (a) K. Das Tamal, T. Biju Akkattu, Eur. J. Org. Chem. 2017, 4500-4506; (b) F.
 Zhang, J. Zhang, X. Zhou, Inorg. Chem. 2017, 56, 2070-2077.
- [142] V. Balzani, G. Bergamini, S. Campagna, F. Puntoriero, in *Photochemistry and Photophysics of Coordination Compounds I* (Eds.: V. Balzani, S. Campagna), Springer Berlin Heidelberg, Berlin, Heidelberg, **2007**, pp. 1-36.
- [143] N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877-910.
- [144] (a) N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 2017, 95, 197-206. (b) D. A. C. Brownson, C. E. Banks, in The Handbook of Graphene Electrochemistry, Springer, London, 2014, pp. 23-77.
- [145] V. A. Petukhov, V. V. Il'in, Russ. Chem. Bull. 1984, 33, 842-846.
- [146] (a) R. W. Winter, G. L. Gard, J. Fluorine Chem. 2006, 127, 1188-1194; (b) C. Berg, T. Braun, R. Laubenstein, B. Braun, Chem. Commun. 2016, 52, 3931-3934;
 (c) A. Frischmuth, A. Unsinn, K. Groll, H. Stadtmüller, P. Knochel, Chem. Eur. J. 2012, 18, 10234-10238.
- [147] M. K. Cybulski, C. J. E. Davies, J. P. Lowe, M. F. Mahon, M. K. Whittlesey, Inorg. Chem. 2018, 57, 13749-13760.
- [148] I. Ruppert, K. Schlich, W. Volbach, *Tetrahedron Lett.* **1984**, *25*, 2195-2198.
- [149] P. Tomar, T. Braun, E. Kemnitz, Chem. Commun. 2018, 54, 9753-9756.
- [150] Y.-F. Wang, G. H. Lonca, S. Chiba, Angew. Chem. Int. Ed. 2014, 53, 1067-1071;
 Angew. Chem. 2014, 126, 1085-1089.

- [151] (a) W. Jud, S. Maljuric, C. O. Kappe, D. Cantillo, Org. Lett. 2019, 21, 7970-7975;
 (b) B. Alič, G. Tavčar, J. Fluorine Chem. 2016, 192, 141-146;
 (c) A. Sato, J. Han, T. Ono, A. Wzorek, J. L. Aceña, V. A. Soloshonok, Chem. Commun. 2015, 51, 5967-5970.
- [152] (a) A. G. Tskhovrebov, B. Vuichoud, E. Solari, R. Scopelliti, K. Severin, J. Am. Chem. Soc. 2013, 135, 9486-9492; (b) S. W. Youn, H. J. Yoo, Adv. Synth. Catal. 2017, 359, 2176-2183.
- [153] (a) H. Koroniak, J. Walkowiak, K. Grys, A. Rajchel, A. Alty, R. Du Boisson, J. Fluorine Chem. 2006, 127, 1245-1251; (b) A. Boukerb, D. Grée, M. Laabassi, R. Grée, J. Fluorine Chem. 1998, 88, 23-27; (c) J. Hu, B. Gao, L. Li, C. Ni, J. Hu, Org. Lett. 2015, 17, 3086-3089.
- [154] G. Meißner, K. Kretschmar, T. Braun, E. Kemnitz, Angew. Chem. Int. Ed. 2017, 56, 16338-16341; Angew. Chem. 2017, 129, 16556-16559.
- [155] M. Hanack, J. Ullmann, J. Org. Chem. 1989, 54, 1432-1435.
- [156] C. Chen, C.-T. Chien, C.-H. Su, J. Fluorine Chem. 2002, 115, 75-77.
- [157] (a) M. P. Baggelaar, Y. Huang, B. L. Feringa, F. J. Dekker, A. J. Minnaard, *Biorg. Med. Chem.* 2013, 21, 5271-5274; (b) T. M. Beale, D. M. Allwood, A. Bender, P. J. Bond, J. D. Brenton, D. S. Charnock-Jones, S. V. Ley, R. M. Myers, J. W. Shearman, J. Temple, J. Unger, C. A. Watts, J. Xian, *ACS Med. Chem. Lett.* 2012, 3, 177-181; (c) Y. Huang, A. J. Minnaard, B. L. Feringa, *Synthesis* 2011, 7, 1055-1058.
- [158] (a) C. S. Schindler, P. M. Forster, E. M. Carreira, Org. Lett. 2010, 12, 4102-4105;
 (b) C. G. Wong, R. R. Rando, J. Am. Chem. Soc. 1982, 104, 7374-7375.
- [159] (a) S. J. Ryan, S. D. Schimler, D. C. Bland, M. S. Sanford, Org. Lett. 2015, 17, 1866-1869; (b) M. A. Cismesia, S. J. Ryan, D. C. Bland, M. S. Sanford, J. Org. Chem. 2017, 82, 5020-5026.
- [160] (a) Y. Ogiwara, Y. Sakurai, H. Hattori, N. Sakai, Org. Lett. 2018, 20, 4204-4208;
 (b) C. A. Malapit, J. R. Bour, C. E. Brigham, M. S. Sanford, Nature 2018, 563, 100-104;
 (c) Y. Ogiwara, D. Sakino, Y. Sakurai, N. Sakai, Eur. J. Org. Chem. 2017, 4324-4327.
- [161] S. B. Munoz, H. Dang, X. Ispizua-Rodriguez, T. Mathew, G. K. S. Prakash, *Org. Lett.* 2019, 21, 1659-1663.

- [162] (a) S. Stavber, Z. Planinsek, M. Zupan, J. Org. Chem. 1992, 57, 5334-5337; (b)
 O. Roy, B. Marquet, J.-P. Alric, A. Jourdan, B. Morel, B. R. Langlois, T. Billard, J. Fluorine Chem. 2014, 167, 74-78; (c) G. A. Olah, J. Welch, J. Am. Chem. Soc. 1978, 100, 5396-5402; (d) R. D. Chambers, G. Sandford, J. Trmcic, T. Okazoe, Org. Process Res. Dev. 2008, 12, 339-344; (e) C. J. Mallia, I. R. Baxendale, Org. Process Res. Dev. 2016, 20, 327-360; (f) M. Meanwell, J. Lehmann, M. Eichenberger, R. E. Martin, R. Britton, Chem. Commun. 2018, 54, 9985-9988; (g)
 R. E. Banks, N. J. Lawrence, A. L. Popplewell, Synlett 1994, 831-832.
- [163] (a) F. Beaulieu, L.-P. Beauregard, G. Courchesne, M. Couturier, F. LaFlamme, A. L'Heureux, Org. Lett. 2009, 11, 5050-5053; (b) T. Scattolin, K. Deckers, F. Schoenebeck, Org. Lett. 2017, 19, 5740-5743; (c) G. A. Olah, M. Nojima, I. Kerekes, Synthesis, 1973, 487-488; (d) G. A. Olah, M. Nojima, I. Kerekes, J. Am. Chem. Soc. 1974, 96, 925-927; (e) T. Gustafsson, R. Gilmour, P. H. Seeberger, Chem. Commun. 2008, 3022-3024; (f) P. Švec, A. Eisner, L. Kolářová, T. Weidlich, V. Pejchal, A. Růžička, Tetrahedron Lett. 2008, 49, 6320-6323.
- [164] W. Dmowski, M. Kamiński, J. Fluorine Chem. 1983, 23, 219-228.
- [165] H. Motohashi, K. Mikami, Org. Lett. 2018, 20, 5340-5343.
- [166] C. G. Krespan, V. A. Petrov, Chem. Rev. 1996, 96, 3269-3302.
- [167] G. A. Olah, in *Index to Reviews, Symposia Volumes and Monographs in Organic Chemistry*, (Eds.: N. KHARASCH, W. WOLF), Interscience, New York, **1964**, pp 173-175.
- [168] G. A. Olah, G. K. S. Prakash, J. Sommer, Superacids, Wiley, New York, 1985.
- [169] (a) E. Kemnitz, D.-H. Menz, *Prog. Solid State Chem.* 1998, 26, 97-153; (b) A. Demourgues, L. Francke, E. Durand, A. Tressaud, *J. Fluorine Chem.* 2002, 114, 229-236; (c) P. J. Chupas, M. F. Ciraolo, J. C. Hanson, C. P. Grey, *J. Am. Chem. Soc.* 2001, 123, 1694-1702; (d) T. Krahl, E. Kemnitz, *Catal. Sci. Technol.* 2017, 7, 773-796; (e) B. Calvo, C. P. Marshall, T. Krahl, J. Kröhnert, A. Trunschke, G. Scholz, T. Braun, E. Kemnitz, *Dalton Trans.* 2018, 47, 16461-16473.
- [170] W. Han, J. Wang, L. Chen, L. Yang, S. Wang, M. Xi, H. Tang, W. Liu, W. Song,J. Zhang, Y. Li, H. Liu, *Chem. Eng. J.* 2019, 355, 594-601.
- [171] N. Herron, D. L. Thorn, R. L. Harlow, G. A. Jones, J. B. Parise, J. A. Fernandez-Baca, T. Vogt, *Chem. Mater.* **1995**, *7*, 75-83.

- [172] V. P. Shendrik, O. D. Lyakh, L. M. Yagupol'skii, *Ukr. Khim. Zh.* 1982, 48, 1108-1109.
- [173] (a) A. K. Siwek, M. Ahrens, M. Feist, T. Braun, E. Kemnitz, *ChemCatChem* 2017, 9, 839-845; (b) G. Meißner, K. Kretschmar, T. Braun, E. Kemnitz, *Angew. Chem. Int. Ed.* 2017, 56, 16338-16341; *Angew. Chem.* 2017, 129, 16556-16559; (c) G. Meißner, D. Dirican, C. Jäger, T. Braun, E. Kemnitz, *Catal. Sci.* 2017, 7, 3348-3354; (d) M.-C. Kervarec, C. P. Marshall, T. Braun, E. Kemnitz, *J. Fluorine Chem.* 2019, 221, 61-65.
- [174] M. Ahrens, G. Scholz, T. Braun, E. Kemnitz, Angew. Chem. Int. Ed. 2013, 52, 5328-5332; Angew. Chem. 2013, 125, 5436-5440.
- [175] A. C. Sievert, C. G. Krespan, F. J. Weigert, US Pat., 5157171, 1992.
- [176] (a) C. G. Krespan, D. A. Dixon, J. Fluorine Chem. 1996, 77, 117-126; (b) E. Kemnitz, U. Groß, S. Rüdiger, C. S. Shekar, Angew. Chem. Int. Ed. 2003, 42, 4251-4254; Angew. Chem. 2003, 115, 4383-4386.
- [177] S. Singh, H. W. Roesky, J. Fluorine Chem. 2007, 128, 369-377.
- [178] J. Pinkas, H. W. Roesky, J. Fluorine Chem. 2003, 122, 125-150.
- [179] H. Wessel, H.-S. Park, P. Müller, H. W. Roesky, I. Usón, *Angew. Chem. Int. Ed.*1999, 38, 813-815; *Angew. Chem.* 1999, 111, 850–852.
- [180] K. Ziegler, R. Köster, *Justus Liebigs Ann. Chem.* **1957**, 608, 1-7.
- [181] K. Ziegler, H. G. Gellert, K. Zosel, W. Lehmkuhl, W. Pfohl, Angew. Chem. 1955, 67, 424.
- [182] R. Köster, P. Binger, in *Advances in Inorganic Chemistry and Radiochemistry*, *Vol.* 7 (Eds.: H. J. Emeléus, A. G. Sharpe), Academic Press, **1965**, pp. 263-348.
- [183] M. Witt, H. W. Roesky, Curr. Sci. 2000, 78, 410-430.
- [184] (a) S. D. Waezsada, F.-Q. Liu, E. F. Murphy, H. W. Roesky, M. Teichert, I. Usón, H. G. Schmidt, T. Albers, E. Parisini, M. Noltemeyer, *Organometallics* 1997, *16*, 1260-1264; (b) H. Zhu, J. Chai, Herbert W. Roesky, M. Noltemeyer, H.-G. Schmidt, D. Vidovic, J. Magull, *Eur. J. Inorg. Chem.* 2003, 3113-3119.
- [185] C. Bakewell, A. J. P. White, M. R. Crimmin, *Angew. Chem. Int. Ed.* **2018**, *57*, 6638-6642; *Angew. Chem.* **2018**, *130*, 6748-6752.
- [186] P. Chaudhary, M. Bieringer, P. Hazendonk, M. Gerken, *Dalton Trans.* **2015**, *44*, 19651-19658.

- [187] A. Herzog, F.-Q. Liu, H. W. Roesky, A. Demsar, K. Keller, M. Noltemeyer, F. Pauer, *Organometallics* **1994**, *13*, 1251-1256.
- [188] (a) L. Dostál, R. Jambor, A. Růžička, R. Jirásko, I. Císařová, J. Holeček, J. Fluorine Chem. 2008, 129, 167-172; (b) B. D. Kagan, A. G. Lichtscheidl, K. A. Erickson, M. J. Monreal, B. L. Scott, A. T. Nelson, J. L. Kiplinger, Eur. J. Inorg. Chem. 2018, 1247-1253.
- [189] B. Marciniec, in *Advances in Silicon Science, Vol. 1*, (Eds.: B. Marciniec), Springer, **2009**, pp. 3-51.
- [190] (a) G. C. Fortman, S. P. Nolan, *Chem. Soc. Rev.* 2011, 40, 5151-5169; (b) N. Marion, S. P. Nolan, *Chem. Soc. Rev.* 2008, 37, 1776-1782; (c) A. T. Normand, K. J. Cavell, Eur. J. *Inorg. Chem.* 2008, 2781-2800; (d) G. C. Vougioukalakis, R. H. Grubbs, *Chem. Rev.* 2010, 110, 1746-1787.
- [191] (a) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678-9842; (b) D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389-399.
- [192] (a) X.-W. Li, J. Su, G. H. Robinson, *Chem. Commun.* 1996, 2683-2684; (b) M. D. Francis, D. E. Hibbs, M. B. Hursthouse, C. Jones, N. A. Smithies, *J. Chem. Soc.*, *Dalton Trans.* 1998, 3249-3254; (c) W.-C. Shih, C.-H. Wang, Y.-T. Chang, G. P. A. Yap, T.-G. Ong, *Organometallics* 2009, 28, 1060-1067; (d) M. Wu. M, A. M. Gill, L. Yunpeng, L. Falivene, L. Yongxin, R. Ganguly, L. Cavallo, F. García, *Dalton Trans.* 2015, 44, 15166-15174; (e) A. Stasch, S. Singh, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, *Eur. J. Inorg. Chem.* 2004, 4052-4055.
- [193] A.-L. Schmitt, G. Schnee, R. Welter, S. Dagorne, *Chem. Commun.* **2010**, *46*, 2480-2482.
- [194] D. W. Stephan, Org. Biomol. Chem. 2008, 6, 1535-1539.
- [195] E. L. Kolychev, E. Theuergarten, M. Tamm, in Frustrated Lewis Pairs II: Expanding the Scope, (Eds.: G. Erker, D. W. Stephan), Springer, Berlin Heidelberg, 2013, pp. 121-155.
- [196] (a) P. A. Chase, A. L. Gille, T. M. Gilbert, D. W. Stephan, *Dalton Trans.* 2009, 7179-7188; (b) S. Würtemberger-Pietsch, U. Radius, T. B. Marder, *Dalton Trans.* 2016, 45, 5880-5895.
- [197] D. R. Ketchum, G. L. Schimek, W. T. Pennington, J. W. Kolis, *Inorg. Chim. Acta* 1999, 294, 200-206.

- [198] (a) R. Bhalla, C. Darby, W. Levason, S. K. Luthra, G. McRobbie, G. Reid, G. Sanderson, W. Zhang, *Chem. Sci.* 2014, 5, 381-391; (b)W. Levason, S. K. Luthra, G. McRobbie, F. M. Monzittu, G. Reid, *Dalton Trans.* 2017, 46, 14519-14522.
- [199] P. Tomar, T. Braun, E. Kemnitz, Eur. J. Inorg. Chem. 2019, 4735-4739.
- [200] B. Werner, B. Neumüller, Chem. Ber. 1996, 129, 355-359.
- [201] G. Meißner, M. Feist, T. Braun, E. Kemnitz, *J. Organomet. Chem.* **2017**, *847*, 234-241.
- [202] H. W. Roesky, A. Stasch, H. Hatop, C. Rennekamp, D. H. Hamilton, M. Noltemeyer, H.-G. Schmidt, *Angew. Chem. Int. Ed.* 2000, 39, 171-173; *Angew. Chem*, 2000, 112, 177-179
- [203] A. J. Downs, A. M. Forster, G. S. McGrady, B. J. Taylor, J. Chem. Soc., Dalton Trans. 1991, 81-87.
- [204] (a) R. N. Arias-Ugarte, K. H. Pannell, *Dalton Trans.* 2018, 47, 1703-1708; (b) W.
 J. Scott, A. F. Moretto, in *Encyclopedia of Reagents for Organic Synthesis*, John Wiley & Sons, Ltd., Chichester, UK, 2001, pp. 1–2.
- [205] Bochmann, M. J. Sarsfield, Organometallics 1998, 17, 5908-5912.
- [206] L. Oliva, P. Oliva, N. Galdi, C. Pellecchia, L. Sian, A. Macchioni, C. Zuccaccia, Angew. Chem. Int. Ed. 2017, 56, 14227-14231; Angew. Chem. 2017, 129, 14415-14419.
- [207] G. A. Atiya, A. S. Grady, S. A. Jackson, N. Parker, D. K. Russel, J. Organomet. Chem. 1989, 378, 307-316.
- [208] (a) T. Braun, J. Izundu, A. Steffen, B. Neumann, H.-G. Stammler, *Dalton Trans*.
 2006, 5118-5123; (b) D. Breyer, T. Braun, P. Kläring, *Organometallics* 2012, 31, 1417-1424; (c) M. A. Ellwanger, C. von Randow, S. Steinhauer, Y. Zhou, A. Wiesner, H. Beckers, T. Braun, S. Riedel, *Chem. Commun.* 2018, 54, 9301-9304.
- [209] B. Bantu, G. Manohar Pawar, K. Wurst, U. Decker, A. M. Schmidt, M. R. Buchmeiser, *Eur. J. Inorg. Chem.* **2009**, 1970-1976.
- [210] W. Jeong, J. L. Hedrick, R. M. Waymouth, J. Am. Chem. Soc. 2007, 129, 8414-8415.
- [211] M. Tordeux, B. Langlois, C. Wakselman, J. Chem. Soc., Perkin Trans. 1990, 2293-2299.
- [212] D. L. Nascimento, E. C. Davy, D. E. Fogg, Catal. Sci. 2018, 8, 1535-1544.

9. Appendix

9.1. Abbreviations

σ Sigma

Å Angstrom; 10^{-10} meters

°C degree Celsius

RT Room temperature

h Hour

min minute

UV Ultra-violet

nm Nanometer

BEt₃ Triethylborane

LED Light emitting diode

CH₃CN Acetonitrile

 $\Delta_f H^0$ Standard enthalpy of formation

oh Octahedral

K Kelvin

kJ kilo Joule

mol Mole

Na Sodium

SCE Saturated calomel electrode

eV Electronvolt

vs. versus

W Watt

ppb Parts per billion

ppt Parts per trillion

CF₃COOCF₃ Bis(trifluoromethyl)peroxide

V Volt

Me Methyl

*i*Pr *iso*-Propyl

*t*Bu *tert*-Butoxide

Ph Phenyl

Cat. Catalyst

Mes Mesityl

Dipp Diisopropylphenyl

SIMes 1,3-dimesityl-imidazolidin-2-ylidene

SIPr 1,3-di(2,6-di-i-propylphenyl)-imidazolidin-2-ylidene

IMes 1,3-dimesityl-imidazolin-2-ylidene

IPr 1,3-di(2,6-diisopropylphenyl)-imidazolin2-ylidene

DMSO Dimethyl sulfoxide

THF Tetrahydrofuran

kcal Kilocalorie (1 kcal = 4,184 kJ)

KOtBu Potassium tert-butoxide

mV Millivolt

A Ampere

mM Millimolar

CPS Counts per second

PVP Polyvinylpyrrolidone

PFA Perfluoroalkoxy alkanes

TOF Time of flight

Hz Hertz

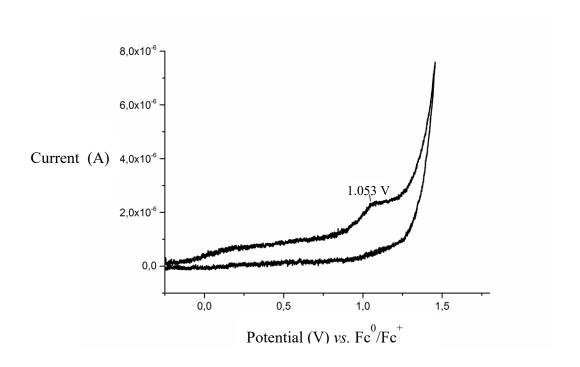
MHz Megahertz

s Singlet

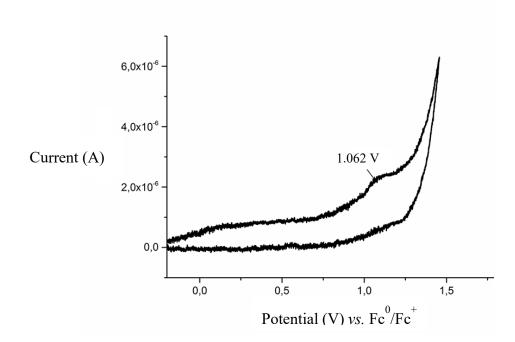
d Doublet

t Triplet

q Quintet


m Multiplet

br Broad signal


J Coupling constant

δ Chemical shift

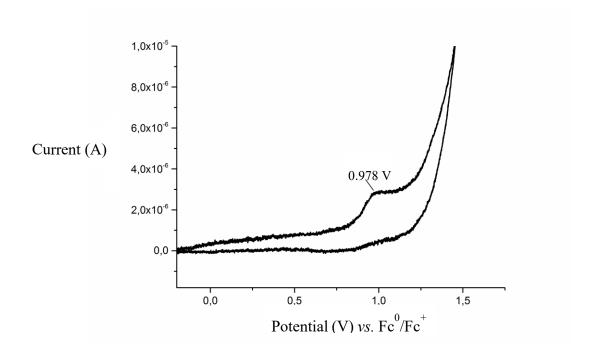

9.2. Cyclic voltammograms of NHCs

Figure 29. Cyclic voltammogram obtained for a solution of SIPr (1mM) in THF, measured with a scan rate of 200 mV/s. $E_p^{ox} = 1.053 \text{ V vs. Fc}^0/\text{Fc}^+$ and $E_p^{ox} = 1.613 \text{ V vs.}$ SCE.

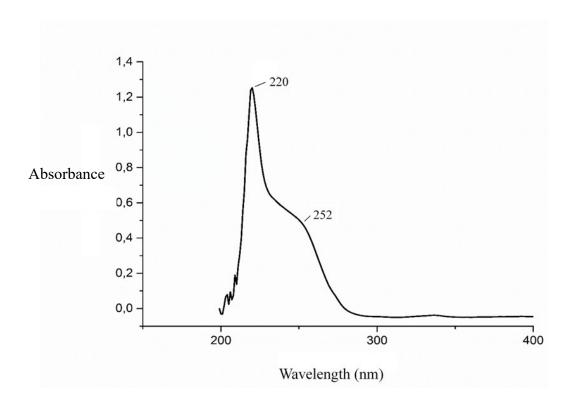


Figure 30. Cyclic voltammogram obtained for a solution of IMes (1mM) in THF, measured with a scan rate of 200 mV/s. $E_p^{\text{ox}} = 1.062 \text{ V vs. Fc}^0/\text{Fc}^+$ and $E_p^{\text{ox}} = 1.622 \text{ V vs.}$ SCE.

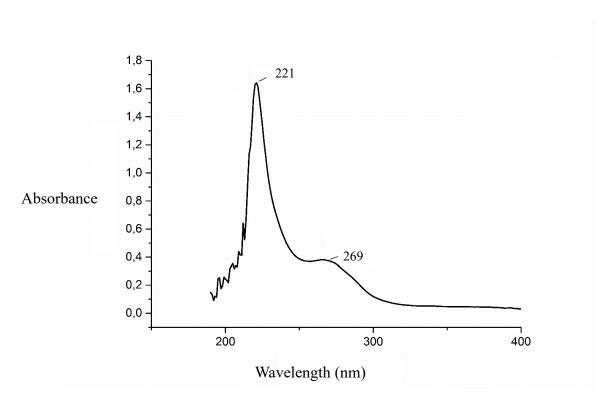


Figure 31. Cyclic voltammogram obtained for a solution of IPr (1mM) in THF, measured with a scan rate of 200 mV/s. $E_p^{ox} = 0.978 \text{ V } vs. \text{ Fc}^0/\text{Fc}^+ \text{ and } E_p^{ox} = 1.538 \text{ V } vs. \text{ SCE.}$

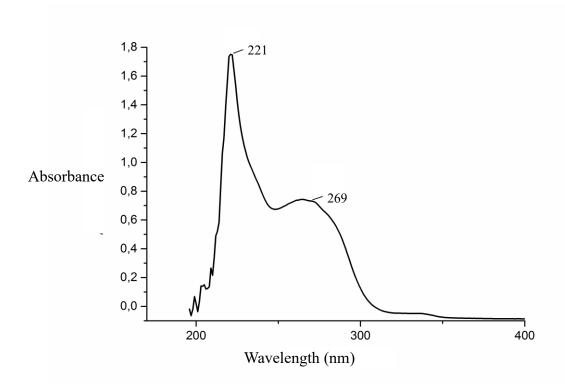

9.3. UV-vis spectra of NHCs

Figure 32. UV-vis spectrum obtained for a solution of SIPr (1mM) in THF showing absorbance maxima at 220 nm and 252 nm.

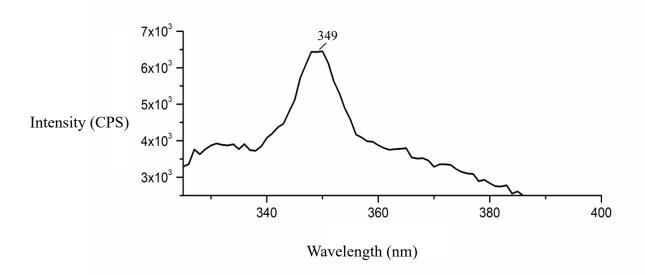


Figure 33. UV-vis spectrum obtained for a solution of IMes (1mM) in THF showing absorbance maxima at 221 nm and 269 nm.

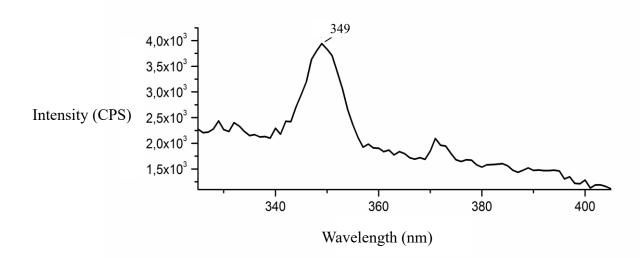


Figure 34. UV-vis spectrum obtained for a solution of IPr (1mM) in THF showing absorbance maxima at 221 nm and 269 nm.

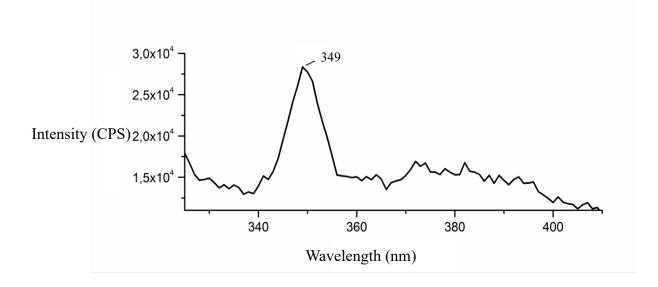

9.4. Emission spectra of NHCs

Figure 35. Emission spectrum obtained for a solution of SIPr (1mM) in THF when excited at 318 nm, slit width = 5.00 nm. Emission maximum is obtained at 349 nm, slit width = 2.00 nm.

Figure 36. Emission spectrum obtained for a solution of IMes (1mM) in THF when excited at 318 nm, slit width = 5.00 nm. Emission maximum is obtained at 349 nm, slit width = 2.00 nm.

Figure 37. Emission spectrum obtained for a solution of IPr (1mM) in THF when excited at 318 nm, slit width = 5.00 nm. Emission maximum is obtained at 349 nm, slit width = 2.00 nm.

9.5. Selbstständigkeitserklärung

Ich erkläre, dass ich die Dissertation selbstständig und nur unter Verwendung der von mir gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr. 42/2018 am 11.07.2018, angegebenen Hilfsmittel angefertigt habe.

Berlin, den 24.03	3.2020
Pooja Tomar	