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Abstract

In this thesis, we study several moduli spaces of Prym pairs, Prym varieties,

and spin curves. After the appropriate theoretical framework is introduced, we

obtain new results concerning two different aspects of their geometry, which we

describe across two corresponding chapters.

In Chapter 1, we consider the universal Prym variety over the moduli space

Rg of Prym pairs of genus g, and determine its unirationality for g = 3. To do

this, we build an explicit rational parametrization of the universal 2-fold Prym

curve over R3, which dominates the universal Prym variety through the global

version of the Abel-Prym map. Furthermore, we adapt the proof to the setting

of Nikulin surfaces and show that the universal double Nikulin surface over FN
3

is also unirational.

In Chapter 2, we explore the interaction between Rg and the moduli space

Sg of (stable) spin curves of genus g. When the divisor of curves equipped with

a vanishing theta-null is moved from S+
g to Rg, it yields two geometric divisors

P+
null and P−null of (stable) Prym curves with a vanishing theta-null. We use test

curve techniques to compute the classes of P+
null and P−null in Pic(Rg)Q for g ≥ 5,

and evaluate these (Prym-null) classes on some more families of curves in order

to analyse their vanishing theta-nulls.

In addition, at the end of Chapter 2 we discuss a potential compactification

of the moduli space of curves carrying a double square root. We then examine

the boundary of the moduli space RSg of (stable) Prym-spin curves of genus g

and check the Prym-null classes against the diagram Rg ← RSg → Sg. Finally,

we propose an extension of the product of roots, defined over smooth curves by

the tensor product, to an operation on stable double roots.
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Zusammenfassung

In dieser Doktorarbeit untersuchen wir einige Modulräume der Prym-Paaren,

Prym-Varietäten und Spin-Kurven. Nachdem der passende theoretische Rahmen

eingeführt wird, erhalten wir neue Ergebnisse zu zwei verschiedenen Aspekten

ihrer Geometrie, die wir in zwei entsprechenden Kapiteln beschreiben.

In Kapitel 1 betrachten wir die universelle Prym-Varietät über dem Modul-

raum Rg der Prym-Paaren vom Geschlecht g und bestimmen ihre Unirationa-

lität für g = 3. Dazu bilden wir eine explizite rationale Parametrisierung der

universellen 2-fachen Prym-Kurve über R3, die die universelle Prym-Varietät

durch die globale Version der Abel-Prym-Abbildung dominiert. Darüber hinaus

passen wir den Beweis an den Rahmen von Nikulin-Flächen an und zeigen, dass

die universelle doppelte Nikulin-Fläche über FN
3 ebenfalls unirational ist.

In Kapitel 2 untersuchen wir die Wechselwirkung zwischen Rg und dem

Modulraum Sg der (stabilen) Spin-Kurven vom Geschlecht g. Wenn man den

Divisor der Kurven, die mit einem verschwindenden Thetanull ausgestattet sind,

von S+
g nach Rg versetzt, erhält man zwei geometrische Divisoren P+

null und

P−null der (stabilen) Prym-Kurven mit einem verschwindenden Thetanull. Wir

verwenden Testkurventechniken, um die Klassen von P+
null und P−null in Pic(Rg)Q

für g ≥ 5 zu berechnen, und werten diese (Prymnull-)Klassen auf einigen weiteren

Familien von Kurven aus, um ihre verschwindenden Thetanulls zu analysieren.

Darüber hinaus diskutieren wir am Ende von Kapitel 2 eine mögliche Kom-

paktifizierung des Modulraums der Kurven, die eine doppelte Quadratwurzel

tragen. Anschließend untersuchen wir den Rand des Modulraums RSg der (stabi-

len) Prym-Spin-Kurven vom Geschlecht g und überprüfen die Prymnull-Klassen

anhand des Diagramms Rg ← RSg → Sg. Zum Schluss schlagen wir eine

Erweiterung des Produkts von Wurzeln, das über glatten Kurven durch das

Tensorprodukt definiert ist, zu einer Operation auf stabilen Doppelwurzeln vor.
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Fuera del ámbito académico, quisiera dar mi sincero agradecimiento a Mar,
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Notation (general)

We work over the field of complex numbers. Although most of the following

conventions are clarified when they are first mentioned, we compile them below

for the sake of readability.

variety algebraic, reduced, separated scheme over C
curve variety of dimension 1

surface variety of dimension 2

p.p.a.v. principally polarized abelian variety

Spec(A) relative Spec (spectrum) of a sheaf A of algebras

Proj(A) relative Proj (homogeneous spectrum) of A
V ∨ dual space Hom(V,C) of a vector space V

G(d, V ) Grassmannian of d-dimensional linear subspaces of V

P(V ) for V vector space: G(1, V ), i.e. projective space of lines of V

P(E) for E quasi-coherent sheaf: Proj(Sym E), i.e. P(E)x = P(E|x∨)

Pic(X) Picard group of a space X

Picd(X) component of Pic(X) of line bundles of degree d

Pic(X)Q rational Picard group of X, i.e. Pic(X)Q = Pic(X)⊗Z Q
O(D) line bundle associated to a divisor D

|L| linear series PH0(L) induced by a line bundle L

Lx stalk of a bundle L at a point x

L|x fiber of a bundle L at a point x, i.e. L|x = Lx ⊗Ox κ(x)

hi(L) dimH i(L)

g(X) arithmetic genus pa(X) of a variety X

pg(X) geometric genus of X

A closure of a subspace A ↪→ X

IZ ideal sheaf of a closed subspace Z ↪→ X

BlZ(X) blow-up of X at Z

Sing(X) set of singular points of X
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Notation (specific)

√
N set of square roots of a line bundle N

OC trivial bundle of a curve C

ωC canonical bundle of C

#U order of a set U

η Prym root of a curve C, with η⊗2 ∼= OC
(C, η) Prym pair, equivalent to (π, ι) or (C ′, ι)

Rg(C) set of Prym roots of C

J(C) Jacobian variety of a curve C, with J(C) = Pic0(C)

P (C, η) Prym variety associated to a Prym pair (C, η)

(−)◦ connected component containing the identity element

θ theta characteristic of a curve C, with θ⊗2 ∼= ωC

(C, θ) spin curve, of even (+) or odd (−) parity

Sg(C) set of theta characteristics of C

Sx
g (C) parity-based subsets of Sg(C), with x ∈ {+,−}

sg, s+
g , s−g orders of Sg(C), S+

g (C) and S−g (C), respectively

Sx,y
η (C) set of theta characteristics θ ∈ Sx

g (C) with θ ⊗ η ∈ Sy
g (C)

N+
g , N−g , N±g orders of S+,+

η (C), S−,−η (C) and S+,−
η (C), respectively

st(X) stable model of a quasistable curve X

BX X − E(X) with E(X) ⊂ X exceptional components

Bpq irreducible 1-nodal curve (obtained by gluing p, q ∈ B)

(C, η, θ) Prym-spin curve, with η ∈ Rg(C) and θ ∈ Sg(C)

(L1, L2)sync double limit root of (N1, N2)

D(N1, N2) difference (line) bundle N1 ⊗N∨2
Vi, V (Li) largest open set where ρi : X ∼= Xi is an isomorphism

~ “limit product” (L1, L2)sync 7→ (L1, L2, L1 ~ L2)sync
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Notation (moduli spaces)

M moduli stack, usually not proper (e.g. M =Mg, Rg, Sg, . . .)
M coarse moduli space for M, with M→M initial, M scheme

M compactification of M, with M ↪→M open, M proper

 

Mg moduli stack of smooth curves of genus g

Mg moduli stack of stable curves of genus g

Ag moduli stack of p.p.a.v. of dimension g

Rg Prym moduli space (moduli stack of Prym pairs of genus g)

Rg moduli stack of stable Prym curves of genus g

Sg, S+
g , S−g moduli stacks of (even, odd) spin curves of genus g

Sg, S+
g , S−g moduli stacks of stable (even, odd) spin curves of genus g

Yg → Rg universal Prym variety over Rg, with (Yg)(C,η)
∼= P (C, η)

(C ′)2 → Rg universal 2-fold Prym curve, with C ′ ∼= Rg ×M2g−1 C2g−1

FN
g,2 → FN

g universal double Nikulin surface (of genus g)

∆ divisor of M or M

δ divisor class OM(∆) ∈ Pic(M) in the moduli stack

[∆] divisor class OM(∆) ∈ Pic(M) in the coarse moduli space

 

∆0, ∆i boundary divisors of Mg, with i ∈ {1, . . . , bg/2c}
∆x

0, ∆y
i boundary divisors of Rg, with x ∈ {t, p, b}, y ∈ {n, t, p}

∆x
0, ∆y

i boundary divisors of S+
g , with x ∈ {n, b}, y ∈ {+,−}

λ Hodge class, corresponding to
∧g φ∗(ωφ)

Θnull theta-null divisor (on S+
g )

P+
null, P

−
null even and odd Prym-null divisors (on Rg)

%+
null, %

−
null Prym-null classes (divisor classes of P+

null and P−null)

S2
lim(N1,N2) moduli space of double limit roots of (N1,N2)

RSg moduli space of stable Prym-spin curves, ↪→ S2
lim(OCg , ωφ)
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Introduction

There are no two moduli spaces quite as studied in Algebraic Geometry as

those of algebraic curves and abelian varieties. Their shared history dates back

to the 19th century1 and has continued to evolve to this very day, giving rise to

a sprawling theory and many open questions. It is precisely between these two

spaces that we find the moduli space Rg of Prym pairs, or Prym moduli space,

parametrizing points (C, η) such that C is a smooth curve and η is a nontrivial

square root of its trivial bundle OC , in the sense of:

η ∈ Pic0(C)− {OC}, η⊗2 ∼= OC

From a geometrical point of view, this Prym root η is the algebraic version of a

nontrivial étale double cover of C, characterised as:

π : C ′ → C, C ′ = Spec(OC ⊕ η)

The involution induced by π on the Jacobian variety J(C ′) brings to the table a

subgroup of (−1)-eigenvectors, whose central connected component

P (C, η) ↪→ J(C ′)

naturally inherits the structure of a principally polarized abelian variety2. In his

landmark paper [Mum74], Mumford refers to P (C, η) as the Prym variety of a

double cover, in recognition of the German mathematician Friedrich Prym. An

account of Prym’s life and contributions, included in [Far12] Section 1, reveals

his instrumental role as “Riemann’s interpreter”, and is a highly recommended

read that provides further historical context for Prym curves and varieties.

When the Prym construction is applied to Rg, it results in a diagram

Rg

}} ""

(C, η):

||

�

%%
Mg Ag−1 C P (C, η)

connecting the aforementioned moduli spaces. This fleshes out the relevance of

Prym pairs within Algebraic Geometry, as they offer an important insight into

1 When Riemann inadvertently obtained the dimension of Mg through an elegant moduli
count, as featured in [Rie57], and Abel and Jacobi laid the foundations for Jacobian varieties
to be regarded as abelian varieties that make up a distinguished locus in Ag.

2 Readers averse to lengthy expressions may find relief in the standard acronym p.p.a.v.
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the behaviour of abelian varieties from the perspective of curves (especially for

genus g ≤ 6, where the Prym map Rg → Ag−1 remains dominant). Additional

interest in Prym curves stems from their interaction with theta characteristics,

that is, square roots θ of the canonical bundle ωC , given by:

θ ∈ Picg−1(C), θ⊗2 ∼= ωC

The moduli space Sg of spin curves, or pairs (C, θ) such that θ is a theta charac-

teristic, splits into two components S+
g , S−g according to the parity of θ. Then

the tensor product yields a map

Rg ×Mg Sg → Sg, (C, η, θ) 7→ (C, θ ⊗ η)

which can be considered in relation to the components S+
g and S−g , leading to a

decomposition of Rg ×Mg Sg into four spaces

RS++
g tRS+−

g tRS−+
g tRS−−g

where RS+−
g parametrizes triplets (C, η, θ) with θ ∈ S+

g (C) and θ ⊗ η ∈ S−g (C),

and so on. Spin curves and Prym pairs have long been close partners, but it is

this very specific interplay that we hope to explore.

In view of the above, the aim of this thesis is twofold. First, we add to the

research on the Prym moduli space in low genus by determining the birational

geometry of the universal Prym variety Yg → Rg for genus g = 3. This moduli

stack, parametrizing points (C, η, L) such that

(C, η) ∈ Rg, L ∈ P (C, η)

should be understood as the (universal) family of all of the Prym varieties that

arise from Prym pairs of genus g, which are recovered as the fibers of Yg → Rg.

In particular, the universal Prym variety Y3 sits in the middle of a diagram

(C ′)2 ap // Y3
//R3

of dominant maps, where (C ′)2 = C ′ ×Rg C ′ is the 2-fold product over Rg of the

universal Prym cover, and ap is the universal Abel-Prym map. By studying the

geometry of general Prym pairs of genus 3, we build a rational parametrization

P12 ≈ G(3, 7)→ (C ′)2, and so obtain the following results:
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Theorem A. In genus 3, it holds that:

(i) The universal 2-fold Prym curve (C ′)2 → R3 is unirational.

(ii) The universal Prym variety Y3 → R3 is unirational.

(iii) The universal double Nikulin surface FN
3,2 → FN

3 is unirational.

In the main body of work, this corresponds to theorem 1.4.6, corollary 1.4.7

and theorem 1.5.8. Note that the statement on Nikulin surfaces is an extension

of the first result, as the proof can be adapted from curves to surfaces.

Our second objective is related to the link between Rg and Sg. On the even

component S+
g of the latter space, we have the well-known geometric divisor of

curves with a vanishing theta-null, or theta-null divisor:

Θnull = {(C, θ) ∈ S+
g / h0(C, θ) ≥ 2}

The theta-null divisor can be moved to the Prym moduli space by means of the

two commutative diagrams

Rg

&&

Rg

&&
RS++

g

77

&&

//Mg | RS+−
g

77

&&

//Mg

S+
g

99

S+
g

99

hence producing a Prym-null divisor Pnull ⊂ Rg that splits into two irreducible

components P+
null and P−null, namely

P+
null = {(C, η) ∈ Rg / ∃ θ ∈ Θnull(C) with θ ⊗ η ∈ S+

g (C)} ⊂ Rg

P−null = {(C, η) ∈ Rg / ∃ θ ∈ Θnull(C) with θ ⊗ η ∈ S−g (C)} ⊂ Rg

which we call even and odd Prym-null divisors. After examining how the parity

of spin curves changes when tensored by a Prym curve, we start a computation

of the classes of P+
null and P−null in the rational Picard group Pic(Rg)Q. With the

help of the method of test curves and the theory of limit linear series on curves

of compact type, this process culminates in the following result:
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Theorem B. For g ≥ 5, the rational divisor classes of P+
null and P−null in

Pic(Rg)Q =
〈
λ, δ′′0 , δ

′
0, δ

ram
0 , {δi, δg−i, δi:g−i}i= 1, ..., bg/2c

〉
Q

are given by:

P+
null ≡ 2g−3

(
(2g−1 + 1)λ − 1

4

(
2g−2 δ′0 + (2g−1 + 1) δram

0

)
−

∑ (
(2i−1 − 1)(2g−i − 1) δi + (2i − 1)(2g−i−1 − 1) δg−i +

+ (2g−1 − 2i−1 − 2g−i−1 + 1) δi:g−i

))

P−null ≡ 2g−3

(
2g−1 λ − 1

4

(
2g−1 δ′′0 + 2g−2 δ′0 + (2g−1 − 1) δram

0

)
−

∑ (
2i−1 (2g−i − 1) δi + (2i − 1) 2g−i−1 δg−i +

+ (2g−1 − 2i−1 − 2g−i−1) δi:g−i

))

In the main body of work, this corresponds to theorem 2.3.14. Note that the

notation for the generating classes of Pic(Rg)Q is the traditional one here3, but

that a personal variant is used anywhere else in this thesis. The reason behind

this change in notation concerns the study of a compactification of Rg ×Mg Sg,
which became our focus during the final period of my doctoral research. It is a

difficult task to describe the boundary of such a space, and the new notation is

intended to make this possible.

While developing theorem B, it became clear to us that it would be efficient

(and enlightening) to approach the problem from the perspective of Prym-spin

curves (C, η, θ). Unfortunately, there seem to be no compactifications of RS++
g

and RS+−
g in the literature, although the moduli space of multiple spin curves

has recently been compactified by Sertöz (in [Ser17] and [Ser19]). If his results

could be adapted to spaces of multiple roots of different bundles, then not only

would we be able to provide a much more essential proof of theorem B, but the

doors would also be wide open for a beautiful new theory to blossom. The time

constraints that a Ph.D. project entails, coupled with the fact that this course

of action was not in our original plans, prevented us from working towards this

goal with the fidelity that it deserves. However, we still arrived at several ideas

which appear promising, and are thus included in this thesis. Due to their role

3 As detailed in [FL10] Section 1, Ex. 1.3 & 1.4, or [Far12] Section 6, Ex. 6.5 & 6.6.
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in our understanding of theorem B, they are collected in the final section of the

second chapter. We briefly summarize them next.

Following closely the efforts of Sertöz, we propose a candidate space

S2
lim(N1,N2)→Mg

for the compactification of the moduli space of double roots of (N1,N2), whose

points are referred to as double limit roots; this is definition 2.4.7. We have no

rigorous proof that the arguments from the multiple spin setting apply to ours,

but we fully believe this to be the case; see remark 2.4.9. Under the (generous)

assumption that they do, we consider the compactification

RSg = S2
lim(OCg , ωφ)− Sg

of the space Rg ×Mg Sg, which splits into four connected components

RS++
g tRS+−

g tRS−+
g tRS−−g

After describing the boundaries of RS++
g and RS+−

g , we derive both Prym-null

classes in an alternative fashion, and obtain the same formulas as in theorem B.

Finally, we further propose a candidate notion of “product of limit roots” that

seeks to extend the tensor product of square roots, in the form of a map

~ : S2
lim(N1, N2) → S3

lim(N1, N2, N1 ⊗N2)

which we build at the level of points; this is proposition 2.4.16. Observe that if

this map could be defined at the level of families, it would have many potential

applications, such as the extension of the isomorphisms

RSxy
g
∼= Sx

g ×Mg Sy
g , (C, η, θ)↔ (C, θ, θ ⊗ η)

to the corresponding compactifications RSxy
g and Sxy

g , for all x, y ∈ {+,−}.

Before finishing this introduction, we point out that theorem B has received

in recent times an independent proof by Rojas; see [Roj21]. His argument, also

developed as part of his ongoing doctoral research, relies on largely similar test

curve techniques, although a clever use of pushforwards removes the need for a

final family of test curves. In addition, he puts together an explicit adaptation

of Teixidor’s irreducibility analysis for P+
null and P−null, which we previously were

addressing with a reference to [TiB88]; this is now remark 2.2.3.

We conclude with a succinct breakdown of the contents of the thesis.
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Content breakdown. This dissertation is comprised of two chapters:

(1) Chapter 1: Birational geometry of the universal Prym variety.

Structured around theorem A, this chapter is divided into five sections.

Sections 1.1, 1.2 and 1.3 focus on preliminary theory, while sections 1.4

and 1.5 focus on novel contributions.

(1.1) Section 1.1 is the cornerstone of the thesis, introducing square

roots of arbitrary line bundles, their interpretation as possibly

branched double covers, and the particular cases of Prym pairs

and spin curves.

(1.2) Section 1.2 continues to lay the groundwork, with the construc-

tion of the Prym variety first as an abelian variety, secondly as

a principally polarized abelian variety, and finally as a subgroup

of Pic2g−2(C ′). Moreover, the Abel-Prym map is introduced.

(1.3) Section 1.3 recounts the theory of fine and coarse moduli spaces

and moduli stacks, and then uses it to define the Prym moduli

space, the universal Prym variety, and other relative versions of

earlier notions. Birational geometry of moduli spaces, including

Grassmannians, is discussed at the end.

(1.4) Section 1.4 describes the geometry of Prym pairs of genus 3, and

then of 2-pointed pairs. This allows for a parametrization of the

universal 2-fold Prym curve to be built explicitly, thus proving

the first part of theorem A.

(1.5) Section 1.5 introduces the basics of the theory of (polarized) K3

and Nikulin surfaces, together with the universal double Nikulin

surface. Then the proof of the previous section is adapted to the

Nikulin case, thus completing theorem A.
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(2) Chapter 2: Prym curves with a vanishing theta-null.

Structured around theorem B, this chapter is divided into four sections.

Section 2.1 focuses on preliminary theory, section 2.2 plays an interme-

diate role and sections 2.3 and 2.4 focus on novel contributions.

(2.1) Section 2.1 provides the necessary background on compactifica-

tions of moduli spaces of curves, defining stable and quasistable

curves, describing the boundary divisor classes and rational Pi-

card groups of Mg, Rg and Sg, and discussing several families

of test curves used in the later computation.

(2.2) Section 2.2 introduces the even and odd Prym-null divisors, as

well as the class expansion of the sum P+
null + P−null. In addition,

the change in parity induced on spin curves by a Prym curve is

studied, both in a smooth and a singular setting.

(2.3) Section 2.3 explores the behaviour of the Prym-null divisors in

relation to the different collections of test curves that were pre-

viously introduced. This requires some standard facts on limit

linear series, which are given at the beginning. Once the class

computation is completed, theorem B is derived and applied to

three more families of curves.

(2.4) Section 2.4 defines double limit roots (of the same bundle) and

suggests how to extend this notion to double limit roots of differ-

ent bundles. A compactification of the Prym-spin moduli space

is then considered, offering a different perspective from which to

look at theorem B. Finally, a notion of “product of limit roots”

is built at the level of points.
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Chapter 1

Birational geometry of the

universal Prym variety



2 Section 1.1. Square roots of line bundles

1.1 Square roots of line bundles

A crucial aspect of the theory of algebraic curves is the fact that there are

several particularly relevant bundles naturally associated to any curve, such as

the trivial or the canonical bundle. The study of square roots of these bundles

(with respect to the tensor product) turns out to be a fruitful pursuit, and some

of its many facets can be traced back to the 19th century. A modern algebraic

treatment of such (Prym and spin) structures finally starts in the 1970s, fueled

by the influential papers [Mum74] and [Mum71]. In this section, we discuss the

notion of square roots of line bundles, its connection to double covers of curves,

and the particular cases of Prym pairs and spin curves.

We work over the complex field, with the following conventions: a “variety”

is an algebraic, reduced, separated scheme over C, and a “curve” is a variety of

dimension 1. Note that we allow varieties to be reducible.

1.1.1 Square roots and double covers

Let C be a smooth, integral curve of genus g, and let N be a line bundle on

C of even degree d.

Definition 1.1.1. A square root of N is a line bundle L on C equipped with an

isomorphism α : L⊗2 ∼= N . An isomorphism (L1, α1) ∼= (L2, α2) of square roots

is an isomorphism ψ : L1
∼= L2 such that α1 = α2 ◦ ψ⊗2. The set of isomorphism

classes of square roots of N will be denoted by
√
N .

It is easy to see that two square roots are isomorphic if and only if they are

isomorphic as line bundles, which translates into an injection

√
N ↪→ Picd/2(C), [(L, α)] 7→ [L]

As is standard practice with line bundles, we will abuse notation and also refer

to the isomorphism class [(L, α)] ≡ [L] as the square root L ∈
√
N .

Remark 1.1.2. J2(C) =
√
OC is the 2-torsion of the Jacobian, which is a finite

group of order 22g by the standard theory of abelian varieties (see for example

[Mum08] Chapter II, Section 6). In addition, the tensor product of a 2-torsion

element T ∈ J2(C) and a root L ∈
√
N is again a root L⊗ T ∈

√
N . This gives

rise to a group action of J2(C) on every space of square roots
√
N , so that

√
N

is in bijection with J2(C) and is also of order 22g.
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Square roots of effective bundles have a natural interpretation as (possibly

branched) double covers. Indeed, fix an effective divisor B on C of degree d and

take N = OC(B). Let L ∈
√
N and observe that L∨ ∈

√
N∨. Then we can use

the morphism β : (L∨)⊗2 ∼= N∨ ∼= OC(−B) ↪→ OC induced by α : L⊗2 ∼= N to

make OC ⊕ L∨ into an OC-algebra with the product

(a, s) · (b, t) = (ab+ β(s⊗ t), at+ bs)

which in turn yields a curve C ′ = Spec(OC ⊕ L∨) over C.

Proposition 1.1.3. The projection π : C ′ → C is a flat double cover branched

over B fitting into the following diagram:

C ′ = Spec(OC ⊕ L∨) ↪→ //

2:1

π

((

�

P(OC ⊕ L∨)

P1
yy

C

Furthermore, π restricts to a bijection Sing(C ′)→ Sing(B); in particular, C ′ is

smooth if and only if B has no multiple points.

Proof. Consider the global section 1B ∈ H0(C,OC(B)) whose zero locus is the

divisor B, given by the natural inclusion

H0(C,OC) ↪→ H0(C,OC(B)), 1 7→ 1B

Take an affine local trivialization {Ui, vi} of L such that α(v⊗2
i ) = 1B|Ui , which

in turn trivializes OC(B)|Ui ∼= (L|Ui)
⊗2 ∼= OUi via α−1. On the one hand, if we

define fi ∈ H0(Ui,OC(−B)) ↪→ H0(Ui,OC) to be the section corresponding to

the morphism

fi : OC(B)|Ui = 1B|Ui OUi −→ OUi , λ · 1B|Ui 7−→ λ

then B is, by construction, the Cartier divisor {(Ui, fi)}. On the other hand, if

we let si ∈ H0(Ui, L
∨) be the section

si : L|Ui = viOUi −→ OUi , λ vi 7−→ λ

induced by vi ∈ H0(Ui, L), i.e. with si(vi) = 1, then it holds that

α(v⊗2
i ) = 1B|Ui ⇔ β(s⊗2

i ) = fi

In particular L∨|Ui ∼= siOUi and (a, λ si) · (b, µ si) = (ab+ λµ fi, (aµ+ bλ) si), so
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we have an isomorphism of OUi-algebras

(OC ⊕ L∨)|Ui ∼= OUi ⊕ L∨|Ui ∼= OUi [t]/(t2 − fi)
(a, λ si) 7→ a+ λ t

showing that π : C ′ → C is a flat double cover branched over the zeroes of {fi},
that is to say, branched over B. Moreover, from the local description it follows

that a point y ∈ π−1(Ui) ⊂ C ′ is singular if and only if both fi and its Jacobian

matrix vanish at π(y), which amounts to π(y) being a zero of fi of order ≥ 2.

Therefore C ′ is smooth if and only if B is also smooth.

Finally, the diagram above stems from the closed embedding

Spec(OC ⊕ L∨) ∼= Proj (OC ⊕ L∨)[x] ↪→ P(OC ⊕ L∨)→ C

induced by SymOC (OC ⊕ L∨)� (OC ⊕ L∨)[x].

With the notation we have introduced to prove the proposition, it is easy to

characterise the image C ′ ↪→ P(OC ⊕ L∨). For x ∈ C, take fx = fi(x) ∈ κ(x)

and hx ∈ κ(x) such that (hx)
2 = fx. Then the fibers of π are:

π−1(x) = Specκ(x)[t]/(t2 − fx) =

{
{(t− hx), (t + hx)} = {x1, x2} if x /∈ B
{(t)} = {q} if x ∈ B

Choosing the basis {(1, 0), (0, vx)} ⊂ κ(x) ⊕ L|x with vx = vi(x) ∈ L|x, we can

compute the image of π−1(x) and π−1(p) for x /∈ B and p ∈ B:

x1 = (t− hx) 7→ (1 : hx) ∈ P(OC ⊕ L∨)x
x2 = (t + hx) 7→ (1 : −hx) ∈ P(OC ⊕ L∨)x
q = (t) 7→ (1 : 0) ∈ P(OC ⊕ L∨)p

To conclude, if we set ωx = hx vx ∈ L|x and consider the restriction

α : (L|x)⊗2 ∼= OC(B)|x ∼= κ(x)

v⊗2
x 7→ 1x 7→ 1

ω⊗2
x 7→ fx · 1x 7→ fx

then it is clear that the rational points of C ′ ↪→ P(OC ⊕ L∨) are of the form

C ′ ∼= {(x; 1, ωx) / ωx ∈ L|x, α(ω⊗2
x ) = fx ∈ κ(x)} ⊂ P(OC ⊕ L∨)

where fx = fi(x) = 0 if and only if x ∈ B.

Furthermore, for every affine open U in C it holds that, by definition of the
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global Spec, π−1(U) ∼= SpecH0(U,OC ⊕ L∨). In other words:

H0(U, π∗OC′) = H0(π−1(U),OC′) ∼= H0(U,OC ⊕ L∨)

so we have a decomposition π∗OC′ ∼= OC ⊕ L∨. This is in fact the case for any

double cover of C.

Proposition 1.1.4. Let π : C ′ → C be a flat double cover branched over B and

ramified over R = π−1(B). Then the exact sequence of OC-modules

0 −→ OC
π#

−→ π∗OC′ −→ coker(π#) ∼= L∨ −→ 0 (?)

splits, and L = coker(π#)∨ is a square root of OC(B) such that π∗L ∼= OC′(R).

Proof. Consider the trace map tr : π∗OC′ → OC associated to π, so that tr ◦ π#

corresponds to multiplication by 2. It follows that the map tr/2: π∗OC′ → OC
is a retraction of π# : OC ↪→ π∗OC′ , which causes (?) to split.

Let us focus next on π∗L ∼= OC′(R). If ωπ is the relative dualizing sheaf for

π, then there is an isomorphism OC′(R) ∼= ωπ ∼= HomOC′ (OC′ , ωπ), and thus

π∗(OC′(R)) ∼= π∗(ωπ) ∼= π∗HomOC′ (OC′ , ωπ) ∼= HomOC (π∗OC′ ,OC) = (π∗OC′)∨

by definition of ωπ. Moreover, observe that the projection formula yields

π∗π
∗M ∼= π∗(OC′ ⊗ π∗M) ∼= π∗OC′ ⊗M

for any line bundle M on C. Keeping these results in mind, we can modify the

split exact sequence (?) through either dualizing or tensoring by L in order to

obtain the following commutative diagram:

(?)∨ : 0 // L //

=

�

(π∗OC′)∨ ∼= π∗(OC′(R)) //

∼= OC //

=

�

0

(?)⊗ L : 0 // L // π∗OC′ ⊗ L ∼= π∗π
∗L // OC // 0

As both exact sequences remain split, they induce an isomorphism

π∗(OC′(R)) ∼= π∗π
∗L ⇒ H0(C ′,OC′(R)) ∼= H0(C ′, π∗L), 1R 7→ v

where 1R is the global section of OC′(R) whose zero locus is R, in keeping with

the notation of proposition 1.1.3. We have then found a global section v of π∗L

defining the ramification divisor R, and thus π∗L ∼= OC′(R) as expected.

To show that L ∈
√
OC(B), we use a similar trick. Note that

π∗OC′(B) ∼= π∗π
∗(OC(B)) ∼= π∗(OC′(2R)) ∼= π∗(OC′(R)⊗2) ∼= π∗π

∗L⊗2
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and tensor (?) by L⊗2 and OC(B) to produce two split exact sequences:

(?)⊗ L⊗2 : 0 // L⊗2 // π∗OC′ ⊗ L⊗2 ∼= π∗π
∗L⊗2 // L // 0

(?)⊗OC(B) : 0 // OC(B) // π∗OC′(B) ∼= π∗π
∗L⊗2 // L∨(B) // 0

By the Krull-Schmidt theorem (as in [Ati56] Th. 2), the decompositions

π∗π
∗L⊗2 ∼= L⊗2 ⊕ L ∼= OC(B)⊕ L∨(B)

have to agree, which is only possible if L⊗2 ∼= OC(B) and L ∼= L∨(B).

If we now consider the isomorphism α : L⊗2 ∼= OC(B) built in the proof, or

equivalently its counterpart β : (L∨)⊗2 ∼= OC(−B), we see that they arise from

compositions

L⊗2 −→ π∗π
∗L⊗2 ∼= π∗(OC′(2R)) ∼= π∗OC′(B) −→ OC(B)

tr/2

(L∨)⊗2 −→ π∗π
∗(L∨)⊗2 ∼= π∗(OC′(−2R)) ∼= π∗OC′(−B) −→ OC(−B)

The latter isomorphism has an alternate description which is useful to mention.

Let ψ : L∨ ∼= coker(π#) ∼= ker(tr/2) ↪→ π∗OC′ be the section splitting

0 −→ OC
π#

−→ π∗OC′ −→ L∨ −→ 0 (?)

and use the product of π∗OC′ to define a map

ψ2 : (L∨)⊗2 → π∗OC′ , s⊗ t 7→ ψ(s) · ψ(t)

A local computation shows that β = (tr/2) ◦ ψ2, that is to say, we have:

ψ(s) · ψ(t)
_

tr/2��

∈ π#(OC(−B))

∼=

⊂ π∗OC′(−B)

tr/2uu

↪→ π∗OC′
tr/2��

β(s⊗ t) ∈ OC(−B) ↪→ OC

for all s, t ∈ L∨. Hence the isomorphism of OC-modules induced by (?), namely

π∗OC′ ∼= OC ⊕ L∨, ψ(s) 7→ (0, s), ψ(s) · ψ(t) 7→ (β(s⊗ t), 0)

becomes an isomorphism of OC-algebras with respect to the previously defined

OC-algebra structure induced on OC ⊕ L∨ by the root L ∈
√
OC(B).
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Additionally, by construction of v ∈ H0(C ′, π∗L) we have

OC ↪→ π∗π
∗L , π∗L⊗2 ∼= OC′(2R) ∼= π∗OC(B)

1 7→ v v⊗2 7→ 1⊗2
R 7→ π#(1B)

That is, even if the section 1B ∈ H0(C,OC(B)) ∼= H0(C,L⊗2) does not admit a

global square root on C, when we pull back to C ′ this global root always exists

and defines the ramification divisor of the double cover.

Remark 1.1.5. In the setting of proposition 1.1.3, it is easy to describe locally

the section v ∈ H0(C ′, π∗L) and check that v|π−1(Ui)
⊗2 = π#(vi)

⊗2 7→ π#(1B|Ui).
The family of roots {vi}, or {π#(vi)}, may not glue, but {v|π−1(Ui)

} does.

Remark 1.1.6. In both of the preceding propositions, π comes equipped with

an involution ι : C ′ → C ′ with fixed locus R = π−1(B), which is induced by the

automorphism (a, s) 7→ (a,−s) of OC ⊕ L∨ and interchanges the points in each

fiber of π.

As might be expected by this point, the previous structures are in fact equi-

valent, which we compile in the following statement.

Theorem 1.1.7. Let C be a smooth, integral curve of genus g together with an

effective divisor B on C of even degree d. Then there are natural bijective maps

between the sets of:

(i) Square roots L ∈
√
OC(B) as in definition 1.1.1.

(ii) Pairs (π, ι) such that π : C ′ → C is a flat double cover branched over B

and ι : C ′ → C ′ is the involution interchanging the points in each fiber

of π, with fixed locus R = π−1(B).

(iii) Pairs (C ′, ι) where C ′ is a curve equipped with an involution ι : C ′ → C ′

with fixed locus R such that there is an isomorphism C ′/〈ι〉 ∼= C which

restricts to R ∼= B and Sing(C ′) ∼= Sing(B).

In both (ii) and (iii), there is a bijection Sing(C ′)→ Sing(B); in particular, the

curve C ′ is smooth if and only if the divisor B is smooth. When this is the case

and furthermore L � OC, then C ′ is integral and has genus 2g − 1 + d/2.

Proof. We have already described the map (i)→ (ii), namely:

L 7→ (π : Spec(OC ⊕ L∨)→ C, ι)

which is well-defined by proposition 1.1.3 and remark 1.1.6, and whose inverse

(π, ι) 7→ coker(π# : OC ↪→ π∗OC′)∨
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is given by proposition 1.1.4 and the subsequent observations.

As for (ii) → (iii), the obvious map (π, ι) 7→ (C ′, ι) is also well-defined and

bijective, since a pair (C ′, ι) as in (iii) yields a flat double cover

π : C ′ → C ′/〈ι〉 ∼= C

branched over B, and so a point (π, ι) as in (ii).

Finally, note that the curve C ′ can only disconnect if the double cover π, or

equivalently the square root L, is trivial. Since smooth curves are irreducible if

and only if they are connected, integrality of C ′ follows from L � OC , while its

genus is determined by the Riemann-Hurwitz formula for π:

2g(C ′)− 2 = 2 (2g − 2) + deg(R) ⇒ g(C ′) = 2g − 1 + d/2

as we have R ∼= B and thus deg(R) = deg(B) = d.

Corollary 1.1.8. Let L be a square root of N = OC(B), and let π : C ′ → C be

the flat double cover associated to it by theorem 1.1.7. Then it holds that

π∗π
∗M ∼= M ⊕ (M ⊗ L∨)

for any M ∈ Pic(C), and the kernel of the pullback π∗ : Pic(C)→ Pic(C ′) is:

ker(π∗) =

{
{OC} if B 6= 0 or L ∼= OC
{OC , L} if B = 0 and L � OC

Proof. Combining different parts of proposition 1.1.4, we get

π∗π
∗M ∼= π∗OC′ ⊗M ∼= (OC ⊕ L∨)⊗M ∼= M ⊕ (M ⊗ L∨)

Assume L to be nontrivial. Then π∗M ∼= OC′ if and only if deg(π∗M) = 0 and

h0(C ′, π∗M) = 1, and furthermore

deg(π∗M) = 0 ⇔ deg(M) = 0

h0(π∗M) = h0(M) + h0(M ⊗ L∨) = 1 ⇔ h0(M) = 1 or h0(M ⊗ L∨) = 1

Since deg(M ⊗ L∨) = deg(M)− d/2, we can see that π∗M ∼= OC′ if and only if

either M ∼= OC or M ∼= L, the latter case requiring d = 0, B = 0.
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1.1.2 Prym pairs and spin curves

Throughout the thesis, we will be particularly interested in square roots of

either the trivial or the canonical bundle. Let C be a smooth, integral curve of

genus g, and let us start with the choice N = OC , which leads to the definition

of Prym roots and Prym pairs:

Definition 1.1.9. A Prym root of C is a nontrivial square root of OC , that is,

a line bundle η � OC of degree zero equipped with an isomorphism η⊗2 ∼= OC .

A Prym pair is a pair (C, η) such that η is a Prym root of C. The set of Prym

roots of C is denoted by Rg(C) ↪→ Pic0(C)− {OC}.

Since Prym roots correspond to nontrivial 2-torsion points of the Jacobian,

we have Rg(C) = J2(C)− {OC}, and thus #Rg(C) = 22g − 1. By remark 1.1.2,

the tensor product of a square root L ∈
√
N and a Prym root η is again a root

L⊗ η of N , different from L.

By virtue of theorem 1.1.7, Prym pairs can be naturally understood as non-

trivial étale double covers. The isomorphism β : η⊗2 ∼= OC identifies η with its

dual η∨, simplifying the overall picture, which we briefly summarize next.

Lemma 1.1.10. The projection π : C ′ = Spec(OC ⊕ η)→ C is a nontrivial étale

double cover fitting into the following diagram:

C ′ = Spec(OC ⊕ η)
∼= {(x; 1, vx) / vx ∈ η|x, β(v⊗2

x ) = 1}
↪→ //

2:1

π

))

�

P(OC ⊕ η)

P1

||
C

Proof. This is proposition 1.1.3, as flat and unramified implies étale. Moreover,

the construction only works locally (as globally we have η � OC), so it cannot

produce the trivial cover.

Recall that OC ⊕ η is an OC-algebra with the product

(a, s) · (b, t) = (ab+ β(s⊗ t), at+ bs)

Specializing proposition 1.1.3, we get 1B = 1 ∈ H0(C,OC), fi = 1, and

(OC ⊕ η)|Ui ∼= OUi ⊕ η|Ui ∼= OUi [t]/(t2 − 1)

(a, λ vi) 7→ a+ λ t

for an affine local trivialization {Ui, vi} of η such that β(v⊗2
i ) = 1. In turn, the
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fibers of π correspond to:

π−1(x) = Specκ(x)[t]/(t2 − 1) = {(t− 1), (t + 1)} = {x1, x2}

Conversely, η can be recovered as a cokernel:

Lemma 1.1.11. Let π : C ′ → C be a nontrivial étale double cover. Then there

is a Prym root η fitting into the following split exact sequence:

0 −→ OC
π#

−→ π∗OC′ −→ η −→ 0

which results in an isomorphism π∗OC′ ∼= OC ⊕ η of OC-algebras.

Proof. This is just proposition 1.1.4 and the ensuing discussion.

In this setting, the trace map can be locally described as

tr : H0(U, π∗OC′) ∼= H0(U,OC)⊕2 → H0(U,OC), (f, g) 7→ f + g

for U $ C, whereas π# : OC ↪→ π∗OC′ is given by f 7→ (f, f). Therefore a local

section s ∈ H0(U, η) is of the form (f,−f) for some f ∈ H0(U,OC), i.e.

ψ : η ∼= coker(π#) ∼= ker(tr/2) ↪→ π∗OC′ , s 7→ ψ(s) = (f,−f)

Consequently we have ψ(s) · ψ(t) = (f,−f) · (g,−g) = (fg, fg) ∈ π#(OC) for

s, t ∈ H0(U, η) such that ψ(s) = (f,−f) and ψ(t) = (g,−g), yielding

β : η⊗2 ∼= π#(OC) ∼= OC , s⊗ t 7−→ ψ(s) · ψ(t)
tr/27−→ fg

as the isomorphism making η into a Prym root.

Remark 1.1.12. Following remark 1.1.6, π is equipped with a fixed-point-free

involution ι : C ′ → C ′, which is induced by the automorphism (a, s) 7→ (a,−s) of

OC ⊕ η and interchanges the points in each fiber of π.

Proposition 1.1.13. Fix a smooth, integral curve C of genus g. Then there are

natural bijective maps between the sets of:

(i) Prym pairs (C, η) as in definition 1.1.9, that is, with η ∈ Rg(C).

(ii) Pairs (π, ι) such that π : C ′ → C is a nontrivial étale double cover and

ι : C ′ → C ′ is the involution interchanging the points in each fiber of π.

(iii) Pairs (C ′, ι) where C ′ is a smooth, integral curve of genus 2g − 1 with a

fixed-point-free involution ι : C ′ → C ′ such that C ′/〈ι〉 ∼= C.

In particular, these sets have order 22g − 1.



1.1.2. Prym pairs and spin curves 11

Proof. The statement is a direct consequence of theorem 1.1.7, when interpreted

through the lemmas above.

In summary, the identification (i)� (ii) of Prym pairs with nontrivial étale

double covers is given by

(C, η) 7→ (π : Spec(OC ⊕ η)→ C, ι)

(C, coker(π# : OC ↪→ π∗OC′)) ←[ (π : C ′ → C, ι)

where π∗OC′ and OC ⊕ η are isomorphic as OC-algebras. Furthermore, observe

that corollary 1.1.8 provides a decomposition π∗π
∗L ∼= L⊕ (L⊗ η) for any line

bundle L on C, and as a result an isomorphism

H0(C ′, π∗L) ∼= H0(C,L)⊕H0(C,L⊗ η)

Accordingly, the pullback π∗ : Pic(C)→ Pic(C ′) has kernel {OC , η} and factors

through a group monomorphism

π∗ : Pic(C)/{OC , η} ↪→ Pic(C ′)

where {OC , η} ∼= Z/2Z.

As a brief interlude, we shall now discuss the choice N = ωC , which brings us

to the notion of theta characteristics and spin curves:

Definition 1.1.14. A theta characteristic of C is a square root of ωC , that is, a

line bundle θ of degree g − 1 equipped with an isomorphism θ⊗2 ∼= ωC . A spin

curve is a pair (C, θ) such that θ is a theta characteristic of C. The set of theta

characteristics of C is denoted by Sg(C) =
√
ωC ↪→ Picg−1(C).

Remark 1.1.2 implies that #Sg(C) = 22g, while theorem 1.1.7 turns into:

Corollary 1.1.15. Let C be a smooth, integral curve of genus g together with a

smooth, effective canonical divisor KC = p1 + . . . + p2g−2 ∈ |ωC | ∼= Pg−1. Then

there are natural bijective maps between the sets of:

(i) Theta characteristics θ ∈ Sg(C) as in definition 1.1.14.

(ii) Pairs (π, ι) where π : C ′ → C is a flat double cover branched over KC

and ι : C ′ → C ′ is the associated involution fixing π−1(KC).

(iii) Pairs (C ′, ι) where C ′ is a smooth, integral curve of genus 3g − 2 and

ι : C ′ → C ′ is an involution equipped with an isomorphism C ′/〈ι〉 ∼= C

which maps the fixed points of ι to KC.

An essential property of spin curves is their parity, whose importance stems
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from its invariance in families. We have thus two types of spin curves:

Definition 1.1.16. A theta characteristic θ of C is said to be even (resp. odd)

if the dimension h0(C, θ) of the space of global sections H0(C, θ) is even (resp.

odd). The parity-based decomposition of Sg(C) is written as

Sg(C) = S+
g (C) t S−g (C)

with + (resp. −) denoting even parity (resp. odd).

As shown in [Mum71], the parity of h0(C, θ) is stable under deformations of

C and θ, which in turn facilitates the computation of

#S+
g (C) = 2g−1(2g + 1), #S−g (C) = 2g−1(2g − 1)

by reducing it to the hyperelliptic case; see ibid. Section 4.

Remark 1.1.17. A question that might arise is how tensoring by a fixed Prym

root modifies the parity of theta characteristics. This issue will be discussed in

the following chapter, as it proves to be very relevant to the problem addressed

there. Specifically, the answer is provided by proposition 2.2.12.

1.2 The Prym construction

Given a smooth, integral curve C, the Jacobian construction is a canonical

way of building a principally polarized abelian variety out of C, namely:

J(C) = (Pic0(C), ΘC)

whose dimension is the genus of the curve:

dim J(C) = dim Pic0(C) = h1(C,OC) = h0(C, ωC) = g(C) = g

After translating by a certain degree g − 1 line bundle, the theta divisor ΘC of

J(C) can be set-theoretically characterised as:

J(C) = Pic0(C) ∼= Picg−1(C)

ΘC
∼= Wg−1(C) = {L ∈ Picg−1(C) / h0(L) ≥ 1}

Sing(ΘC) ∼= W 1
g−1(C) = {L ∈ Picg−1(C) / h0(L) ≥ 2}

If the curve C is further endowed with a nontrivial étale double cover, then the

covering curve C ′ is also smooth and integral, and one might wonder how its
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Jacobian variety J(C ′) differs from that of C. Morally, this difference takes the

shape of a new principally polarized abelian variety, known as the Prym variety

associated to the double cover, which we describe formally in this section.

1.2.1 The Prym variety as an abelian variety

Let (C, η) be a Prym pair, with corresponding nontrivial étale double cover

π : C ′ → C and involution ι, as in proposition 1.1.13. The pullback map

π∗ : Pic(C)→ Pic(C ′), L = OC(D) 7→ π∗L = OC′(π∗D)

restricts over each connected component of Pic(C) to maps

π∗ : Picd(C)→ Pic2d(C ′), π∗ : J(C)→ J(C ′)

for d ∈ Z. Since H0 = ker(π∗) = {OC , η} ∼= Z/2Z is a finite subgroup of J(C),

the pullback map J(C) → J(C ′) factors through an isogeny J(C) � J(C)/H0

into an embedding of abelian varieties

π∗ : J(C)/H0 ↪→ J(C ′), H0 = {OC , η} ⊂ J2(C) ∼= (Z/2Z)2g

of dimensions g and 2g − 1, respectively. As abelian subvarieties admit comple-

ments, there exists some abelian subvariety P of J(C ′) such that

π∗(J(C)/H0) + P = J(C ′), dim(π∗(J(C)/H0) ∩ P ) = 0

so in particular P is of dimension g − 1. Let us construct this variety.

Definition 1.2.1. The norm map associated to π is the group epimorphism

Nmπ : Pic(C ′)→ Pic(C), L′ = OC′(D′) 7→ Nmπ L
′ = OC(π∗D

′)

where π∗D
′ is the standard pushforward of divisors.

Since deg(π∗D
′) = deg(D′), we have restrictions

Nmπ : Picd(C ′)→ Picd(C), Nmπ : J(C ′)→ J(C)

for d ∈ Z. Moreover π∗π
∗D = 2D for any divisor D on C, so the composition

Nmπ ◦ π∗ : Pic(C) → Pic(C), OC(D) 7→ OC(2D)

J(C) → J(C), L 7→ L⊗2
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not just restricts to degree zero, but actually corresponds to the square map of

line bundles. This is far from the only connection between pullback and norm,

however: for instance, if we fix rational points x0 ∈ C, x′0 ∈ C ′ with π(x′0) = x0

and consider the Abel-Jacobi embeddings

aj : C ↪→ J(C), x 7→ OC(x− x0)

aj′ : C ′ ↪→ J(C ′), x′ 7→ OC(x′ − x′0)

then we get commutative diagrams

C ′

π

��

↪→aj
′

J(C ′)

Nmπ

��

J(C ′) ∼= J(C ′)∨
i′∼= J(C ′)∨

�
Pic0

// � �

C ↪→
aj

J(C) J(C)

π∗

OO

∼= J(C)∨

Nm∗π

OO

i

∼= J(C)∨

Nm∗π

OO

where i is the inverse operation of the dual abelian variety J(C)∨ = Pic0(J(C))

and the composite isomorphism λΘ = i ◦ (aj∗)−1 : J(C) ∼= J(C)∨ is precisely the

principal polarization defined by the theta divisor ΘC (resp. i′, C ′, λΘ′ , aj′). In

other words, the maps π∗ and Nmπ are dual to one another:

π∗

≡

: J(C)
∼=

λΘ

→
�

J(C ′)

∼=

λΘ′

Nmπ≡

: J(C ′)

∼=

λΘ′

→
�

J(C)

∼=

λΘ

Nm∗π : J(C)∨ → J(C ′)∨ (π∗)∗ : J(C ′)∨ → J(C)∨

In turn, the involution ι : C ′ → C ′ induces an involution on Pic(C ′):

ι∗ : Pic(C ′)→ Pic(C ′), OC′(x′) 7→ OC′(ι(x′))

which preserves degree. We denote by 1 + ι, 1− ι the following maps:

1 + ι = Id + ι∗ : Pic(C ′) → Pic(C ′), L 7→ L⊗ ι∗L
1− ι = Id− ι∗ : Pic(C ′) → Pic(C ′), L 7→ L⊗ ι∗L∨

Since deg(L⊗ ι∗L) = 2 deg(L) and deg(L⊗ ι∗L∨) = 0, in particular we get:

1 + ι : J(C ′)→ J(C ′), 1− ι : Pic(C ′)→ J(C ′)

Take x1 ∈ C ′ with π(x1) = x ∈ C, π−1(x) = {x1, x2} ⊂ C ′, and observe that

π∗π∗(x1) = π∗(x) = x1 + x2 = x1 + ι(x1) = (Id + ι∗)(x1)
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which allows us to describe the composition π∗ ◦ Nmπ as

π∗ ◦ Nmπ = 1 + ι : Pic(C ′) → Pic(C ′), OC′(D′) 7→ OC′(D′ + ι∗D′)

J(C ′) → J(C ′), L 7→ L⊗ ι∗L

In summary, we have obtained:

Lemma 1.2.2. The pullback map π∗ and the norm map Nmπ are related by the

following properties:

(i) Nmπ ◦ π∗ = (−)⊗2 : J(C)→ J(C), L 7→ L⊗2

(ii) π∗ ◦ Nmπ = 1 + ι : J(C ′)→ J(C ′), L 7→ L⊗ ι∗L
(iii) Nm∗π = λΘ′ ◦ π∗ ◦ λ−1

Θ and (π∗)∗ = λΘ ◦ Nmπ ◦ λ−1
Θ′

Proposition 1.2.3. Consider the maps π∗, Nmπ, 1 + ι and 1 − ι defined over

either Pic(C) or Pic(C ′), as appropriate. Then it holds that:

(a1) ker(Nmπ) = im(1− ι) ⊂ ker(1 + ι) ⊂ J(C ′)

(a2) im(π∗) = im(1 + ι) ⊂ ker(1− ι) ⊂ Pic(C ′)

(b1) ker(Nmπ) ∩ im(π∗) = π∗(J2(C)) ⊂ J2(C ′)

(b2) ker(Nmπ) + π∗(J(C)) = J(C ′)

Proof. Let us start with (a1). Lemma 1.2.2(ii) and corollary 1.1.8 ensure that

ker(1 + ι) = Nm−1
π (kerπ∗) = Nm−1

π ({OC , η}) = ker(Nmπ) ∪ Nm−1
π (η)

Since the involution ι∗ is compatible with pullback and norm (in the sense that

ι∗ ◦ π∗ = π∗ and Nmπ ◦ ι∗ = Nmπ), we also get

(1 + ι) ◦ (1− ι) = Id− (ι∗ ◦ ι∗) = 0 ⇒ im(1− ι) ⊂ ker(1 + ι)

Nmπ ◦ (1− ι) = Nmπ − Nmπ = 0 ⇒ im(1− ι) ⊂ ker(Nmπ)

It remains to check the inclusion ker(Nmπ) ⊂ im(1− ι). Let D′ be a divisor on

C ′ such that NmπD
′ ∼ 0. Then the surjectivity of the norm map over principal

divisors ensures the existence of another divisor D on C ′ such that D ∼ D′ and

NmπD = 0. Consequently, when restricted to any given fiber π−1(x) = {x1, x2},
the divisor D must be of the form

nx x1 − nx x2 = (Id− ι∗)(nx x1) = (Id− ι∗)(−nx x2)

for some nx ∈ Z. In particular, if we write D = D+−D− with D+, D− effective,

it follows that ι∗D+ = D− and ι∗D− = D+, yielding

(Id− ι∗)D+ = (Id− ι∗)(−D−) = D ∼ D′ ⇒ ker(Nmπ) ⊂ im(1− ι)
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Similarly, regarding (a2) we have:

(1− ι) ◦ (1 + ι) = Id− (ι∗ ◦ ι∗) = 0 ⇒ im(1 + ι) ⊂ ker(1− ι)
(1− ι) ◦ π∗ = π∗ − π∗ = 0 ⇒ im(π∗) ⊂ ker(1− ι)

As a result of the property 1 + ι = π∗ ◦ Nmπ and the fact that the norm map is

surjective and preserves degree, we obtain

im(π∗) = im(1 + ι), π∗(J(C)) = (1 + ι)(J(C ′)) = im (1 + ι)|J(C′)

which concludes (a2) and paves the way for (b2). Indeed, any L ∈ J(C ′) can be

written as the tensor product

L = M⊗2 = (1− ι)M ⊗ (1 + ι)M

for some M ∈ J(C ′), as abelian varieties are divisible, and thus

ker(Nmπ) + π∗(J(C)) = im(1− ι) + im (1 + ι)|J(C′) = J(C ′)

Finally, if L = π∗M for some M ∈ Pic(C), then lemma 1.2.2(i) shows that

L ∈ ker(Nmπ) ⇔ OC = Nmπ L = Nmπ π
∗M = M⊗2 ⇔ M ∈ J2(C)

hence ker(Nmπ) ∩ im(π∗) = π∗(J2(C)) as stated in (b1).

A priori, proposition 1.2.3 makes the subvariety

ker(Nmπ) = im(1− ι) ⊂ J(C ′)

seem like a good candidate for the abelian complement P ⊂ J(C ′) of

π∗(J(C)/H0) = π∗(J(C))

that we are trying to build. However, ker(Nmπ) is not an abelian variety due to

lack of connection, and so we have to shift our attention towards its connected

components.

Corollary 1.2.4. The subvariety ker(Nmπ) ⊂ J(C ′) disconnects into two com-

ponents P+ and P−, which correspond to

OC′ ∈ P+ = im (1− ι)|J(C′) = im (1− ι)|Pic2k(C′)

OC′ /∈ P− = im (1− ι)|Pic1(C′) = im (1− ι)|Pic2k+1(C′)

with 1− ι : Pic(C ′)→ J(C ′), for all k ∈ Z.
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Proof. The connected components of Pic(C ′) are {Picd(C ′)}d∈Z, meaning that

im (1− ι)|Picd(C′) = (1− ι)(Picd(C ′)) ⊂ im(1− ι) = ker(Nmπ)

is connected for all d ∈ Z. Furthermore, we have

im (1− ι)|Picd(C′) ∩ im (1− ι)|Pice(C′) 6= ∅

if and only if d ≡ e mod 2. Indeed, take any k ∈ Z and a line bundle L on C of

degree k. Recalling that im(π∗) ⊂ ker(1− ι) by proposition 1.2.3, we get

OC′ = (1− ι)(π∗L) ∈ im (1− ι)|Pic2k(C′)

OC′(x1 − x2) = (1− ι)(π∗L⊗OC′(x1)) ∈ im (1− ι)|Pic2k+1(C′)

for any x ∈ C with π−1(x) = {x1, x2}. Additionally, if D is a divisor on C ′ such

that D′ = (Id− ι∗)D ∼ 0, then applying the Weil reciprocity law to D′ and the

principal divisor E ′ on C ′ given by π∗η = OC′(−E ′) ∼= OC′ we see that

deg(D+) + deg(D−) ≡ 0 mod 2 ⇒ deg(D) ≡ 0 mod 2

which implies OC′ /∈ im (1− ι)|Pic1(C′) and finishes the proof.

As we saw in proposition 1.2.3, any L ∈ J(C ′) can be written as

L = M⊗2 = (1− ι)M ⊗ (1 + ι)M

for M ∈
√
L ⊂ J(C ′). Consequently, the connected component P+ of ker(Nmπ)

is not only an algebraic subgroup of J(C ′), but also satisfies{
P+ + π∗(J(C)) = im (1− ι)|J(C′) + im (1 + ι)|J(C′) = J(C ′)

P+ ∩ π∗(J(C)) ⊂ ker(Nmπ) ∩ im(π∗) = π∗(J2(C))

that is to say, P+ is an abelian subvariety of J(C ′) complementary to π∗(J(C)),

of dimension:

dimP+ = dim J(C ′)− dimπ∗(J(C)) = (2g − 1)− g = g − 1

In particular, its 2-torsion subgroup P+
2 has order 22(g−1) = 22g−2. We are still

missing some information regarding the intersection of P+ and π∗(J(C)), so let

us quickly compute it before using P+ to define our coveted Prym variety. Note

that we can rewrite the intersection as:

P+ ∩ π∗(J(C)) = P+
2 ∩ π∗(J2(C)) ⊂ π∗(J2(C)) ⊂ J2(C ′)
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and express it as the pullback of the following subgroup of J2(C):

H1 = (π∗)−1(P+
2 ) ∩ J2(C) = {η′ ∈ J2(C) / π∗η′ ∈ P+} ⊂ J2(C)

which maps to P+
2 via the homomorphism π∗ : H1 → P+

2 .

Lemma 1.2.5. The subgroup H1 ⊂ J2(C) has index 2 and fits in a chain

{OC} ⊂ H0 ⊂ H1 ⊂ J2(C)

where H0 = ker(π∗) = {OC , η}. Therefore #H1 = 22g−1 and π∗ : H1 → P+
2 is an

epimorphism yielding H1/H0
∼= P+

2 = π∗(H1) ⊂ π∗(J2(C)).

Proof. Using corollary 1.2.4, it is trivial to check that the map

λη : J2(C) → Z/2Z = {±1}, λη(η
′) =

{
1 if π∗η′ ∈ P+

−1 if π∗η′ /∈ P+

is a group homomorphism of kernel H1 ⊂ J2(C). Since the pullback gives rise to

an embedding H1/H0 ↪→ P+
2 , we have

#(H1/H0) ≤ #P+
2 = 22g−2 ⇒ #H1 ≤ 22g−1 < 22g = #J2(C)

so H1 is a proper subgroup of J2(C). Then λη is surjective and we get

#(J2(C)/H1) = #(Z/2Z) = 2 ⇒ #H1 = 22g−1

which shows that H1/H0 ↪→ P+
2 is in fact an isomorphism.

As a result of the lemma, π∗(J(C)) intersects its complement P+ in all 22g−2

of the 2-torsion points of the latter, as opposed to a strictly smaller subset:

P+ ∩ π∗(J(C)) = P+
2 ∩ π∗(J2(C)) = π∗(H1) = P+

2
∼= H1/H0

If we denote by H ′1 ⊂ J(C)⊕ P+ the amalgamated product of IdH1 and π∗, i.e.

H ′1 = H1 ∗H1 P
+
2 = {(η′, π∗η′) / η′ ∈ H1}

= J2(C)×J2(C′) P
+
2 ⊂ J2(C)⊕ P+

2

with #H ′1 = #H1 = 22g−1, then we have a decomposition of J(C ′) as:

(J(C)⊕ P+)/H ′1
∼= (π∗(J(C))⊕ P+)/P+

2
∼= J(C ′)

(N,L′) 7→ (π∗N,L′) 7→ π∗N ⊗ L′

(NmπM, (1− ι)M) ←[ ((1 + ι)M, (1− ι)M) ←[ L = M⊗2
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In conclusion, up to a finite subgroup of 2-torsion points (namely, 22g−1 points),

the Jacobian of C ′ splits into the Jacobian of C and the abelian variety P+.

Remark 1.2.6. We can now build on proposition 1.2.3(a2) to obtain

π∗(J(C)) = im (1 + ι)|J(C′) = ker (1− ι)|J(C′)

Indeed, if we take M,N ∈ J(C ′) such that (1− ι)M = OC′ and M = N⊗2, then

(1 − ι)N ∈ P+
2 ⊂ π∗(J2(C)) by lemma 1.2.5, that is, (1 − ι)N = π∗η′ for some

η′ ∈ H1 ⊂ J2(C). Hence we can write

M = N⊗2 = (1 + ι)N ⊗ (1− ι)N = π∗(NmπN ⊗ η′) ∈ π∗(J(C))

so that ker (1− ι)|J(C′) = π∗(J(C)). In particular, this kernel is connected.

Let us use the notation (−)◦ to refer to the connected component containing

the identity element OC′ ∈ J(C ′). Then we define:

Definition 1.2.7. The Prym variety associated to the Prym pair (C, η), with

corresponding double cover π : C ′ → C and involution ι, is the abelian variety

P (C, η) = P+ = ker◦(Nmπ) = im(1− ι) = ker◦(1 + ι)

where Nmπ : J(C ′)→ J(C), 1− ι : J(C ′)→ J(C ′) and 1 + ι : J(C ′)→ J(C ′).

By the discussion above, the Prym variety P (C, η) can also be written as

P (C, η) = im (1− ι)|Pic2k(C′)

with 1− ι : Pic(C ′)→ J(C ′) and k ∈ Z, and it is an abelian subvariety of J(C ′)

of dimension g − 1, complementary to

J(C)/H0
∼= π∗(J(C)) = im (1 + ι)|J(C′) = ker (1− ι)|J(C′)

If we denote by P2(C, η) the 2-torsion of P (C, η), of order 22g−2, then we have

H ′1 = J2(C)×J2(C′) P2(C, η) = {(η′, π∗η′)} ⊂ J2(C)⊕ P2(C, η)

as above, of order 22g−1, and the decomposition

J(C ′) ∼= (J(C)⊕ P (C, η))/H ′1

which characterises any line bundle L = M⊗2 ∈ J(C ′), up to some 2-torsion, as

the product π∗N ⊗ L′ given by N = NmπM ∈ J(C), L′ = (1− ι)M ∈ P (C, η).
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1.2.2 The Prym variety as a p.p.a.v.

We have built P (C, η) as an abelian variety, but we still need to (principally)

polarize it. In order to do this, we can use the natural maps

π∗ : J(C) → π∗(J(C)) ⊂ J(C ′)

j : P (C, η) = ker◦(Nmπ) ↪→ J(C ′)

to restrict the theta divisor ΘC′ of J(C ′) to both J(C) and P (C, η), respectively

inducing polarizations ϕ and ρ on these varieties:

ϕ = λ(π∗)∗Θ′ : J(C)
π∗→ J(C ′)

λΘ′∼= J(C ′)∨
(π∗)∗→ J(C)∨

ρ = λj∗Θ′ : P (C, η)
j
↪→ J(C ′)

λΘ′∼= J(C ′)∨
j∗→ P (C, η)∨

By construction, ϕ and ρ make up the polarization

J(C)⊕ P (C, η) → J(C ′)
λΘ′∼= J(C ′)∨ → J(C)∨ ⊕ P (C, η)∨

(N,L′) 7→ π∗N ⊗ L′

of J(C)⊕ P (C, η), of kernel H ′1 = H1 ∗H1 π
∗(H1). Moreover, the maps

j : P (C, η) ↪→ J(C ′)

1− ι : J(C ′) � P (C, η) = im (1− ι)|J(C′)

are related by the compositions

(1− ι) ◦ j = (−)⊗2 : P (C, η) → P (C, η)

j ◦ (1− ι) = 1− ι : J(C ′) → J(C ′)

and so play for P (C, η) the same role that π∗ and Nmπ did for J(C) in lemma

1.2.2. As a result, ϕ and ρ are isogenies of exponent 2 such that

H1 ⊂ ker(ϕ) = J2(C), π∗(H1) = ker(ρ) = P2(C, η)

and, in consonance with [Bea77] Th. 3.7, we obtain factorizations

ϕ = λ(π∗)∗Θ′ = λΘ ◦ (−)⊗2 : J(C)
π∗→ J(C ′)

Nmπ→ J(C)
λΘ∼= J(C)∨

ρ = λj∗Θ′ = λΞ ◦ (−)⊗2 : P (C, η)
j
↪→ J(C ′)

1−ι→ P (C, η)
λΞ∼= P (C, η)∨
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where λΘ is the principal polarization of J(C) defined by ΘC . In particular, we

have found a principal polarization of P (C, η), namely

λΞ : P (C, η) ∼= P (C, η)∨, λj∗Θ′ = λΞ ◦ (−)⊗2

through which the maps j and 1− ι are dual to one another.

Remark 1.2.8. The principal polarization λΞ corresponds to a certain divisor

Ξ(C,η) on the Prym variety such that j∗ΘC′ is algebraically equivalent to 2 Ξ(C,η),

in the same way that (π∗)∗ΘC′ is algebraically equivalent to 2 ΘC . Therefore

deg(ΘC′ · P (C, η)) = deg(j∗ΘC′) = 2 deg(Ξ(C,η))

meaning that the intersection of P (C, η) and ΘC′ is of even degree.

We can now complete definition 1.2.7:

Definition 1.2.9. The Prym variety associated to the Prym pair (C, η) is the

principally polarized abelian variety

(P (C, η), Ξ(C,η))

whose theta divisor Ξ(C,η) induces a principal polarization λΞ squaring to

λΞ ◦ (−)⊗2 = ρ : P (C, η)
j
↪→ J(C ′)

λΘ′∼= J(C ′)∨
j∗→ P (C, η)∨

that is, to the polarization that arises when we restrict ΘC′ to P (C, η).

From here on, we will abuse the notation P (C, η) to refer to both the nonpo-

larized and principally polarized versions of the Prym variety, depending on the

context, as well as denote

P (C, η) = P (π, ι) = P (C ′, ι)

on account of proposition 1.1.13.
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1.2.3 The Prym variety in degree 2g − 2

Similarly to how the Jacobian variety had a useful interpretation after trans-

lation to a different degree, i.e.

TK : Pic0(C) ∼= Picg−1(C) 3 K, TK(L) = L⊗K
ΘC

∼= Wg−1(C) = {M ∈ Picg−1(C) / h0(C,M) ≥ 1}
L 7→ L⊗K / multL(ΘC) = h0(C,L⊗K)

for a certain K ∈ Picg−1(C), so will the Prym variety when translated to degree

2g − 2. If we consider the norm map

Nmπ : Pic2g−2(C ′) → Pic2g−2(C) 3 ωC

then it is shown in [Mum71] that Nm−1
π (ωC) disconnects into two components

Nm−1
π (ωC)+ = {M ∈ Nm−1

π (ωC) / h0(C ′,M) ≡ 0 mod 2}
Nm−1

π (ωC)− = {M ∈ Nm−1
π (ωC) / h0(C ′,M) ≡ 1 mod 2}

which can be identified with the components P+, P− of ker(Nmπ) described in

corollary 1.2.4. Indeed, translating by any element K1 ∈ Nm−1
π (ωC)+ we get:

TK1 : P+ ∼= Nm−1
π (ωC)+, OC′ 7→ K1

TK1 : P− ∼= Nm−1
π (ωC)−, L 7→ L⊗K1

Conveniently, we have ΘC′
∼= W2g−2(C ′) ⊂ Pic2g−2(C ′), and furthermore:

Lemma 1.2.10. There is some K1 ∈ Nm−1
π (ωC)+ yielding isomorphisms

TK1 : Pic0(C ′) ∼= Pic2g−2(C ′)

P (C, η) ∼= Nm−1
π (ωC)+

Ξ(C,η)
∼= Ξ

such that (Nm−1
π (ωC)+, Ξ) is a principally polarized abelian variety with

W2g−2(C ′) · Nm−1
π (ωC)+ = 2 Ξ

Moreover, it holds that Nm−1
π (ωC)− ⊂ W2g−2(C ′) ⊂ Pic2g−2(C ′).

Proof. Most of the statement follows directly from the above discussion; for the

remainder, see [Mum74] Section III. Regarding W2g−2(C ′) · Nm−1
π (ωC)+ = 2 Ξ,

observe that multL(ΘC′) = h0(C ′, L⊗K1) is even for all L ∈ P (C, η), and that

ΘC′ · P (C, η) is algebraically equivalent to 2 Ξ(C,η) by remark 1.2.8.
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The equation W2g−2(C ′) · Nm−1
π (ωC)+ = 2 Ξ provided by the lemma renders

a nice set-theoretical description of the theta divisor, namely:

Ξ(C,η)
∼= Ξ = {M ∈ Nm−1

π (ωC)+ / h0(C ′,M) ≥ 2}

and we can summarize the degree 2g − 2 picture in the following manner:

Pic0(C ′) ∼= Pic2g−2(C ′), L 7→ L⊗K1

P (C, η) ∼= Nm−1
π (ωC)+ = {M ∈ Nm−1

π (ωC) / h0(M) ≡ 0 mod 2}
Ξ(C,η)

∼= Ξ = {M ∈ Nm−1
π (ωC)+ / h0(M) ≥ 2}

with W2g−2(C ′) · Nm−1
π (ωC)+ = 2 Ξ

This characterization of the Prym variety is helpful in many ways; for instance,

it can be used to describe the singularities of Ξ, as in [Mum74].

1.2.4 The Abel-Prym map

Given a fixed, rational point x0 ∈ C, the family of Abel-Jacobi maps associ-

ated to x0 plays an important role in the theory of Jacobian varieties:

aj : C(d) → J(C), D 7→ OC(D − d x0)

with d ∈ Z+. In particular, aj is injective for d = 1, and generically injective for

d ≤ g. If we now consider these maps on the cover C ′ and compose them with

1− ι : J(C ′)→ P (C, η), we obtain a new family of maps, relevant to the theory

of Prym varieties. The study of these Abel-Prym maps is generally well known,

but did not seem to properly find its way into the literature until very recently,

when it was compiled by Casalaina-Martin in [LZ21] Appendix A.

Definition 1.2.11. Given a fixed, rational point x′0 ∈ C ′, the morphism

ap : (C ′)(d) → P (C, η), D 7→ (1− ι)(OC′(D − d x′0))

is known as the Abel-Prym map associated to x′0 in degree d ∈ Z+.

If we denote D0 = (Id− ι∗)(d x′0) = d (x′0 − ι(x′0)), we can write

ap(D) = (1− ι)(OC′(D − d x′0)) = OC′(D − ι∗D −D0)
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and see that the Abel-Prym map fits into the commutative diagram

(C ′)(d) aj′ //

↪→

Id×ι∗ ap

((

J(C ′)

1−ι
��

D � //
_

��

OC′(D − d x′0)
_

��

(C ′)(d) × (C ′)(d)

φd
��

P (C, η)

↪→

j

(D, ι∗D)
_

��

	

J(C ′)
TL0

' // J(C ′) OC′(D − ι∗D) � // ap(D)

where the isomorphism TL0 is translation by L0 = OC′(−D0) ∈ im (1− ι)|Picd(C′)

and the map φd is the Abel-Jacobi difference map

φd : (C ′)(d) × (C ′)(d) → J(C ′), (D, E) 7→ OC′(D − E)

as defined in [ACGH85] Chapter V, Ex. D. Moreover, observe that two effective,

degree d divisors D, E belong to the same fiber of ap if and only if the effective,

degree 2d divisors D + ι∗E and E + ι∗D are linearly equivalent:

ap(D) = ap(E) ⇔ D − ι∗D −D0 ∼ E − ι∗E −D0

⇔ D − ι∗D ∼ E − ι∗E
⇔ D + ι∗E ∼ E + ι∗D

If the divisors D + ι∗E and E + ι∗D were to be distinct, they would give rise to

a complete linear series of type gr2d with r ≥ 1, that is, to an element of W 1
2d(C

′).

Therefore we will be able to describe better the fibers of ap in instances where

we have additional information regarding the existence of such linear series.

Lemma 1.2.12. If X is a hyperelliptic curve, then its hyperelliptic involution τ

commutes with any automorphism of X.

Proof. The hyperelliptic involution is uniquely determined by the canonical map

of X, which in this case is a double cover of the rational normal curve. Let ϕ be

an automorphism of X. Then the conjugate ϕ−1 ◦ τ ◦ ϕ is an involution whose

fixed locus is identified with the fixed locus of τ via ϕ. Thus ϕ−1 ◦ τ ◦ ϕ = τ by

uniqueness and τ commutes with ϕ.

Lemma 1.2.13. The Abel-Prym map in degree 1 is injective unless C ′ is hyper-

elliptic.

Proof. Assume C ′ is not hyperelliptic, i.e. W 1
2 (C ′) = ∅, and take D = x, E = y.
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Note that ι(x) 6= x, as ι is fixed-point-free (proposition 1.1.13). Then

ap(x) = ap(y) ⇔ x+ ι(y) ∼ y + ι(x) ∈ G0
2(C ′)

⇔ x+ ι(y) = y + ι(x)

⇔ x = y

so ap : C ′ ↪→ P (C, η) is injective. Conversely, if τ : C ′ → C ′ is the hyperelliptic

involution, then ι commutes with τ by lemma 1.2.12 and as a result restricts to

a fixed-point-free involution on its fixed locus Rτ . In particular we get

x ∈ Rτ ⇒ 2x ∼ 2 ι(x) ⇒ x− ι(x) ∼ ι(x)− x ⇒ ap(x) = ap(ι(x))

(actually, x ∈ C ′ ⇒ ι(τ(x)) ∈ ap−1(ap(x)) in general)

but ι(x) 6= x, so injectivity fails.

Remark 1.2.14. As a side effect of lemma 1.2.12, if C ′ is hyperelliptic then τ

induces an involution on C that causes it to also be hyperelliptic, which can be

derived from a fixed-point count (see lemma 1.4.1). In contrast, the converse is

not true in general, as shown in [Far76]: although it holds in genus 2, where all

15 possible nontrivial étale double covers of a curve are hyperelliptic, it already

breaks down in genus 3, where only 28 of the 63 covers preserve hyperellipticity.

Remark 1.2.15. In the next section we introduce the Prym moduli space, which

allows us to talk about a general Prym pair. In genus g ≥ 3, the difference map

for such a pair, namely

δ = φd ◦ (Id× ι∗) : (C ′)(d) → J(C ′), D 7→ OC′(D − ι∗D),

is generically finite whenever 1 ≤ d ≤ g − 1; see [FV16]. This is not surprising,

as generality comes hand in hand with the dimension of W 1
2d(C

′) remaining low,

by virtue of Brill-Noether theory. Since the Abel-Prym map is the composition

of a translation and the difference map δ, as mentioned above, it follows that

ap : (C ′)(d) → P (C, η), 1 ≤ d ≤ g − 1, g ≥ 3, (C, η) general,

is also generically finite, hence dim ap((C ′)(d)) = dim (C ′)(d) = d ≤ g − 1. More

details and an improved statement can be found in [LZ21] Appendix A.

Lemma 1.2.16. Assume ap : (C ′)(g−1) → P (C, η) to be generically finite. Then

it is dominant.

Proof. Immediate from dim (C ′)(g−1) = g − 1 = dimP (C, η).

Remark 1.2.15 and lemma 1.2.16 ensure that, for a general Prym pair (C, η)
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of genus g ≥ 3, the Abel-Prym map

ap : (C ′)(g−1) → P (C, η), D 7→ OC′(D − ι∗D −D0)

is dominant. Alternatively, note that the difference map

δ = φg−1 ◦ (Id× ι∗) : (C ′)(g−1) → J(C ′), ap = TL0 ◦ δ

maps directly to P (C, η) when g is odd, and thus in this case

δ : (C ′)(g−1) → P (C, η), D 7→ OC′(D − ι∗D)

is dominant as well, and equivalent to ap via TL0 : P (C, η) ∼= P (C, η).

Later in the chapter we will work with Prym pairs of genus g = 3, hence we

will be specifically interested in ap = TL0 ◦ δ : (C ′)(2) → P (C, η), or rather in

δ : (C ′)(2) → P (C, η)

In the setting of moduli spaces and universal families, this Abel-Prym map will

prove useful to study the birational geometry of the universal Prym variety.

1.3 Prym varieties in families

In the previous sections we looked at Prym pairs and varieties as fixed, in-

dividual objects. The next natural step is to arrange them into moduli spaces,

that is to say, into spaces which not only parametrize them, but which are fur-

ther endowed with some additional algebro-geometric structure that allows the

parametrized objects to vary by moving along the space. With this goal in mind,

let us first recall the different notions related to moduli problems.

1.3.1 Moduli spaces and stacks

Let A be the family of objects that we want to parametrize, equipped with an

equivalence relation ∼ (e.g. the family of smooth curves of genus g, equivalent

via isomorphisms). Moreover, let Sch be the category of schemes over C and let

F be a presheaf on Sch (i.e. a contravariant functor from Sch to the category of

sets):

F : Schopp  Sets
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together with an equivalence relation R ⊂ F × F , such that

F(SpecC) = A, R(SpecC) = ∼

The pair (F , R) induces a new presheaf of schemes F/R, namely

F/R : Schopp  Sets, S 7→ F(S)/R(S), Spec(C) 7→ A/∼

which we call the moduli functor of the moduli problem (A,∼,F , R).

Definition 1.3.1. Let C be a category together with a presheaf G : Copp  Sets

on C. We say that G is representable in C if there exist an object M of C and a

natural isomorphism

Φ: G ∼= hM

where hM = Hom(−,M) is standard notation for the (contravariant) functor of

points of M . In particular, there is a set U ∈ G(M) such that Φ(U) = IdM and

Φ−1(f : S →M) = G(f)(U) ∈ G(S)

for all f ∈ hM(S). The set U is usually called the universal family over M .

Definition 1.3.2. A pair (M,Φ) is a fine moduli space for the moduli problem

(A,∼,F , R) if the moduli functor F/R is representable in Sch by (M,Φ), that

is, if M is a scheme and Φ is a natural isomorphism

Φ: F/R ∼= hM , U 7→ IdM

where U ∈ F(M)/R(M) is the universal family over M .

We will regularly drop the natural isomorphism Φ from the notation for fine

moduli spaces, especially when working with the universal family over M , whose

existence is equivalent to that of Φ: F/R ∼= hM .

Remark 1.3.3. If (M,Φ) is a fine moduli space for (A,∼,F , R), then there is

an identification between objects Y ∈ A/∼ and rational points of M , and more

generally between objects Y ∈ F(S)/R(S) over S and S-valued points of M :

A/∼ ∼= Hom(SpecC,M), F(S)/R(S) ∼= Hom(S,M)

which captures the idea of “parametrizing objects as points of a space”.

Example 1.3.4. Take C[x0, . . . , xn] and consider the following functor:

F : Schopp  Sets, S 7→ {(L, ϕ) / L ∈ Pic(S), ϕ : On+1
S � L}
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where F(f : T → S) is given by the pullback map, and ϕ produces a map

Cn+1 ∼= 〈x0, . . . , xn〉� VL ⊂ H0(S, L), xi 7→ σi

such that L is generated by the global sections σ0, . . . , σn ∈ H0(S, L). Let R be

the equivalence relation

(L, ϕ) ∼R (L′, ϕ′) ⇔ ∃χ : L ∼= L′ / χ ◦ ϕ = ϕ′

in which case χ(σi) = σ′i for all i ∈ {0, . . . , n}. Then the moduli functor

F/R : Schopp  Sets, S 7→ {(L, ϕ) / L ∈ Pic(S), ϕ : On+1
S � L}/∼R

aims to parametrize the set of line quotients W of On+1
SpecC = Cn+1, or equivalently,

the set P(Cn+1) of 1-dimensional vector subspaces E = ϕt(W∨) ⊂ Cn+1. As such,

a natural moduli candidate would be the projective space

PnC = ProjC[x0, . . . , xn]

which turns out to be fit for the role, as it is a scheme equipped with a natural

isomorphism

(F/R)(S) ∼= Hom(S,PnC), [(L, ϕ)] 7→ (ϕL : S → PnC)

where ϕL(s) = ϕt(L|s∨) = (σ0(s) : . . . : σn(s)). Hence PnC is indeed a fine moduli

space for the moduli problem (P(Cn+1),=,F , R), with universal family

U = O(1) ∈ (F/R)(PnC), O(1) ∈ Pic(PnC), On+1
PnC
� O(1)

since by definition of the tautological bundle O(−1) ∈ Pic(PnC) it holds that

U |s∨ = Id(s) = O(−1)|s

and thus U is the dual O(−1)∨ = O(1), i.e. the Serre twisting sheaf. Then

Hom(S,PnC) ∼= (F/R)(S), (f : S → PnC) 7→ [(f ∗O(1), ϕ)]

where ϕ : On+1
S � f ∗O(1) is the pullback of On+1

PnC
� O(1). In other words, this

provides an identification between parametrized objects (line quotients of On+1
S )

and S-valued points of PnC, as pointed out in remark 1.3.3.

Example 1.3.4 showcases the interest of moduli spaces, as PnC carries a rich

(topological, algebraic, geometric) structure which permeates into the line quo-

tients parametrized by it, yielding for them notions such as pathwise connection,

continuous and algebraic deformations, and so on. Unfortunately, many natural
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moduli problems do not admit a fine moduli space.

Example 1.3.5. Consider the functor

F : Schopp  Sets, S 7→ {smooth, genus g curves over S}

where F(f : T → S)(X → S) = (X ×S T → T ), with the equivalence relation

(X → S) ∼R (Y → S) ⇔ X ∼= Y as S-schemes

Then the moduli functor

F/R : Schopp  Sets, S 7→ {smooth, genus g curves over S}/∼R

intends to parametrize the set of isomorphism classes of smooth, genus g curves.

Nevertheless, unlike example 1.3.4, this functor fails to be representable due to

the existence of curves with nontrivial automorphisms. Let us briefly discuss

this. First, take a hyperelliptic, smooth, genus g curve X and let τ : X ∼= X be

the hyperelliptic involution. If a fine moduli space Mg were to exist, the natural

isomorphism F/R ∼= hMg would be given by

(F/R)(S)→ Hom(S,Mg), [X → S] 7→ (S →Mg, s 7→ [Xs])

However, the pair (X, τ) allows us to build curves over, for instance, the multi-

plicative group scheme S = Gm = SpecC[t]t = (A1
C − {0}, ·), namely

X = Gm ×X → Gm, Y = (Gm ×X)/∼ → Gm,

(λ, x) 7→ λ [(λ, x)] 7→ λ2

with (λ, x) ∼ (−λ, τ(x)), which are not isomorphic as S-schemes (as they have

different monodromy), but whose fibers are always isomorphic to X:

Xλ = {λ} ×X ∼= X, Yλ = (X tX)/∼ ∼= X

with i1(x) ∼ i2(τ(x)) for i1, i2 : X → X tX canonical injections. Hence

[X → Gm] 6= [Y → Gm] 7→ (Gm →Mg, λ 7→ [X])

both correspond to the same constant map λ 7→ [X] and the natural transforma-

tion F/R→ hMg cannot be an isomorphism.

Intuitively, what stops the moduli problem in example 1.3.5 from admitting a

fine moduli space is the fact that nontrivial automorphisms enable the process of

gluing fibers nontrivially, which twists the family and alters its global structure

(without changing it fiberwise). One possible way of working around this takes
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advantage of the fact that the natural transformation F/R → hM often exists,

even when it fails to be an isomorphism, suggesting it may be useful to slightly

relax the requirements for a moduli space.

Definition 1.3.6. A pair (M,Φ) is a coarse moduli space for (A,∼,F , R) if M

is a scheme and Φ: F/R→ hM is a natural transformation such that

(i) The map Φ(SpecC) : A/∼ ∼= M(C) is a bijection.

(ii) The natural transformation Φ is universal among all natural transforma-

tions of the form F/R→ hT for T scheme, that is, any such transforma-

tion factors through Φ via g∗ : hM → hT for a unique g : M → T .

Condition (i) ensures that the rational points of a coarse moduli space still

parametrize the desired family of objects A/∼, although now the S-valued points

may not represent objects over S anymore. However, by virtue of condition (ii),

the coarse moduli space is still initial among all schemes which parametrize (in

any way) objects of F/R.

Remark 1.3.7. The moduli problem depicted in example 1.3.5 admits a coarse

moduli space Mg, which is equipped with the natural transformation

{smooth, genus g curves over S}/∼R → Hom(S,Mg)

[X → S] 7→ (S →Mg, s 7→ [Xs])

and whose rational points parametrize the set of isomorphism classes of smooth,

genus g curves. Even if it lacks a universal family, Mg is nevertheless a scheme,

a fact that still has significant consequences for the curves it parametrizes.

A notable aspect of the theory of coarse moduli spaces is that they are not

in possession of a universal family. While such a family is easy to understand at

the level of fibers (e.g. for the moduli space of genus g curves it would look like

[U →Mg] ! (Id : Mg →Mg, s 7→ [Us] = s, Us ∼= Cs ∈ s repr.)

U //Mg U //Mg

� �

s 3 Cs ∼= Us

OO

// {s}

OO ⊔
s∈S Cs ≈ U ×Mg S

OO

// S

OO

if it existed), the obstructions to representability of the moduli functor prevent

this collection of fibers from acquiring the necessary structure of object of F/R
over M (e.g. of curve over Mg). In many situations, coarse moduli spaces are

powerful enough on their own to study the way algebro-geometric objects vary in

families – but universal families are convenient tools regardless, and so it makes

sense to wonder if they can be recovered in those situations where fine moduli
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spaces do not exist. This leads us to the notion of stacks, which circumvent the

automorphism issue by taking a different approach, where we opt to remember

the automorphisms instead of modding out by them. In particular, if we recall

that a groupoid is a category where every morphism is an isomorphism, the idea

is to replace the set A/∼ with the groupoid (A,∼) such that any two objects X,

Y ∈ A have an arrow X → Y between them if and only if X ∼ Y .

Through the Yoneda embedding, schemes can be understood as “sheaves of

sets”, that is, presheaves

hX : Schopp  Sets, S 7→ Hom(S,X)

fulfilling a certain gluing condition. Morally, stacks are meant to be understood

as “sheaves of groupoids (up to 2-isomorphism)”:

X : Schopp 99K Grpd, S 7→ “(Hom(S,X ), Isom(Hom(S,X )))”

where Grpd is the 2-category of groupoids. As evidenced by the clunky notation,

the machinery of sheaf theory is not well suited for this construction, and so a

new language is needed, that of fibered categories and descent theory. It would

require a whole book to properly introduce these notions (see e.g. [Ols16] for an

in-depth dive on the topic), hence we will restrict ourselves to stating no more

than the formal definition of (algebraic) stack, and then adhere to the intuitive

interpretation.

Definition 1.3.8. A fibered category X over Sch is a stack if:

(i) X  Sch is fibered in groupoids.

(ii) Every covering in Sch is of effective descent.

Condition (i) provides the “presheaf of groupoids” behaviour,

X : Schopp 99K Grpd, S 7→ XS

where XS denotes the fiber of the scheme S under X  Sch. It is worth noting

the existence of a 2-categorical version of the Yoneda lemma, which renders an

equivalence of categories further supporting the intuition described above:

HOMSch(S,X )∼XS

with HOMSch denoting the category of morphisms of fibered categories over Sch

(as objects) and base preserving natural isomorphisms between them (as arrows).

At the same time, condition (ii) makes it possible to glue compatible local data,

thus providing the sheaf-like behaviour. As a result, definition 1.3.8 succeeds in

generalising the notion of a scheme in a way that accounts for isomorphisms of
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its (S-valued) points.

Schemes, however, are not truly the main objects of study in Algebraic Geo-

metry; algebraic varieties are. Accordingly, stacks are often enriched with addi-

tional layers of algebraic structure in order to obtain spaces whose geometry is

better behaved than that of a plain stack.

Definition 1.3.9. A stack X  Sch is algebraic (resp. Deligne-Mumford) if:

(i) The diagonal X ×Sch X is representable.

(ii) There exists a smooth (resp. étale) surjective morphism π : X � X for

some scheme X.

The surjection π : X � X is usually called an atlas of X .

By virtue of their atlas, algebraic stacks are locally modelled after schemes,

mirroring how schemes are locally modelled after affine schemes. This feature

brings forth important implications, out of which perhaps the most interesting

one for our purposes is the fact that many moduli spaces turn out to naturally

inherit an algebraic (or even Deligne-Mumford) stack structure.

Remark 1.3.10. Most scheme-theoretical notions can be translated into the

language of (algebraic) stacks, such as properties of schemes and morphisms of

schemes, quasi-coherent sheaves, the relative Spec and Proj constructions, and

so on. From a practical point of view, this will allow us to work with algebraic

stacks while still largely using the more familiar language of scheme theory.

If we now go back to the moduli problem (A,∼,F , R) from the beginning,

we can reinterpret the moduli functor to be a “presheaf of groupoids”

FR : Schopp 99K Grpd, S 7→ (FR)S, Spec(C) 7→ (A,∼)

where (FR)S is the groupoid with objects F(S) and arrows X → Y if and only

if X ∼R Y . As the previous discussion suggests, FR is not really a functor, but

rather a fibered category over Sch, with fibers (FR)S.

Definition 1.3.11. If the fibered category FR = M  Sch is a stack, we say

that it is the moduli stack for the moduli problem (A,∼,F , R).

Remark 1.3.12. Recall the identification between sections of the moduli functor

and points of a fine moduli space given in remark 1.3.3:

(F/R)(S) ∼= Hom(S,M)
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If M is a moduli stack for (A,∼,F , R), this is simply the 2-Yoneda lemma:

(FR)S ∼ HOMSch(S,M)

so, in a way, moduli stacks are always “fine” by construction, in the sense that

morphisms S →M with S scheme correspond to objects of FR over S. Notice

that this occurs without the need for a universal family, as the left-hand side of

the equivalence does not make sense for S =M. Nonetheless, if the set F(S) is

given by “schemes of a certain type over S” (e.g. smooth, genus g curves over S,

as in example 1.3.5), it is often possible to build a stack U over M such that

U //M U //M
� �

X ∼= UX

OO

// Spec(C)

φX

OO

X ∼= U ×M S

OO

π
// S

φ(X→S)

OO

for every morphism S →M with S scheme, where we use the notation:

HOMSch(−,M) ∼ FR
φX 7→ X ∈ (FR)C = (A,∼)

φ(X→S) 7→ (π : X → S) ∈ (FR)S

That is to say, U → M is universal in the sense that every object X → S of

FR over S can be obtained as the pullback of U → M by the corresponding

morphism S →M:

φ(X→S)
∗ (U →M) = (X → S)

meaning that we can write the 2-Yoneda equivalence as:

HOMSch(S,M) ∼ (FR)S

(φ : S →M) 7→ φ∗(U →M)

In light of the similarities to definition 1.3.1, we usually refer to U →M as the

universal family over M. Typically, U can be realised as a moduli stack which

parametrizes pairs (X, x) such that X ∈ A and x ∈ X, with

(X, x) ∼ (Y, y) ⇔ ∃ X → Y / x 7→ y

so that U →M is given by the forgetful functor; see example 1.3.15 for a more

detailed description of this in the case of smooth, genus g curves.

The next proposition shows that some of the algebraic structure of the base

M carries over to the universal family described in remark 1.3.12, as well as to

other universal stacks that we will introduce later on.
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Proposition 1.3.13. Let Y → Z be a morphism of stacks over Sch such that,

for every scheme S and morphism S → Z, the fiber product Y ×Z S is a scheme.

If Z is an algebraic stack, then so is Y.

Proof. This is a less general version of [Ols16] Prop. 10.2.2.

Example 1.3.14. The moduli problem from examples 1.3.5 and 1.3.7 admits a

moduli stack Mg over Sch, such that:

(i) An object of Mg is a smooth, genus g curve X → S.

(ii) An arrow (X → S)→ (X ′ → S ′) in Mg is a cartesian diagram

X //

�� �

X ′

��
S // S ′

(iii) Mg is fibered in groupoids over Sch via the forgetful functor

Mg  Sch, (X → S) 7→ S

(iv) Mg is in fact a Deligne-Mumford stack, equipped with a morphism

Mg = FR → F/R → Mg

(X → S) 7→ [X → S] 7→ (S →Mg, s 7→ [Xs])

to the coarse moduli space Mg of smooth, genus g curves (as in 1.3.7).

For a reference to the last statement, see [Ols16] Th. 8.4.5 & 11.1.2. Note that,

for S scheme, the fiber (Mg)S is the groupoid whose objects are smooth, genus

g curves over S and whose arrows are isomorphisms of schemes over S. Indeed,

if we recall the equivalence relation from 1.3.5, as well as the notion of “moduli

functor” for stacks, it is clear that FR =Mg  Sch. Hence curves X → S are

naturally identified with morphisms S →Mg, as in remark 1.3.12:

(FR)S = (Mg)S ∼ HOMSch(S,Mg)

The essential distinction between this picture and the previous one is that now

the nonisomorphic curves X → Gm and Y → Gm no longer correspond to the

same morphism Gm →Mg, and instead sit in the ramification of Mg →Mg.

With the nontrivial automorphism issues of example 1.3.5 addressed by this

new moduli stack construction, universality is swiftly recovered.

Example 1.3.15. The moduli stack Mg described in example 1.3.14 admits a

universal family Cg →Mg (in the sense of remark 1.3.12), such that:
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(i) An object of Cg is a pair (X → S, σ) such that (X → S) ∈ (Mg)S and

σ : S → X is a section of X → S.

(ii) An arrow (X → S, σ)→ (X ′ → S ′, σ′) in Cg is a pair of diagrams

X
f //

�� �

X ′

��

X
f //

	

X ′

S g
// S ′ S g

//
σ
OO

S ′
σ′
OO

where the left one is cartesian and the right one is commutative.

(iii) Cg is a stack via the forgetful functor

Cg  Sch, (X → S, σ) 7→ S

hence it is a moduli stack that parametrizes smooth, 1-pointed, genus g

curves. As such, it is also denoted Mg,1.

(iv) Cg is universal over Mg by means of the forgetful morphism

Cg =Mg,1 →Mg, (X → S, σ) 7→ (X → S)

that is, for every scheme S and curve (X → S) ∈ (Mg)S it holds that

φ(X→S)
∗ (Cg →M) = (X → S)

where φ(X→S) : S →Mg is the morphism corresponding to X → S.

(v) Cg is in fact an algebraic stack, equipped with a morphism

Cg =Mg,1 →Mg,1

to the coarse moduli space Mg,1 of smooth, 1-pointed, genus g curves.

The universality of Cg follows from the definition of fiber product, which yields,

for every curve π : X → S and scheme T , the expression

(Cg ×Mg S)T = {(α : T → X, β : T → S) / β = π ◦ α} ∼= Hom(T,X)

so that Cg ×Mg S is represented by the scheme X. Applying proposition 1.3.13

and the fact that Mg is a Deligne-Mumford stack, we deduce that the stack Cg
is algebraic. Cg is usually referred to as the universal curve over Mg.

In conclusion, the introduction of stacks has enabled us to keep track of all

automorphisms and thus recapture the usefulness of universal families, but this

has come at the significant cost of a black box of technicality. Nevertheless, we

are finally ready to look at previous sections from a modular perspective.
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1.3.2 The Prym moduli space

Recalling definition 1.1.9, we now want to set up a moduli problem for the

family of Prym pairs (C, η) of genus g, with the standard equivalence relation of

isomorphisms of roots:

(C, η) ∼= (C ′, η′) ⇔ ∃ ϕ : C ∼= C ′ / ϕ∗(η′) ∼= η

In order to build an appropriate moduli functor, we first need a relative notion

of Prym pair.

Definition 1.3.16. Let S be a scheme. A family of Prym curves over the base

S, or simply a Prym curve over S, is a triplet (f : C → S, η, β) such that:

(i) f : C → S is a (smooth, genus g) curve over S.

(ii) η ∈ Pic0(C)− {OC} is a nontrivial line bundle on C of degree zero.

(iii) β : η⊗2 → OC is a sheaf homomorphism.

(iv) The restriction of (f : C → S, η, β) to any fiber f−1(s) = Cs gives rise

to a Prym pair (Cs, ηs) ∈ Rg(Cs) with isomorphism βs : η⊗2
s
∼= OCs .

An isomorphism (C → S, η, β) ∼= (C ′ → S, η′, β′) is a pair (ϕ, ψ) where:

(i) ϕ : C ∼= C ′ is an isomorphism over S.

(ii) ψ : ϕ∗(η′) ∼= η is a sheaf isomorphism such that ϕ∗(β′) = β ◦ ψ⊗2.

With minimal changes, we could likewise define families of spin curves, or more

generally families of curves carrying a square root of a fixed line bundle.

Consider the functor

FPr : Schopp  Sch, S 7→ {smooth, genus g Prym curves over S}

together with the equivalence relation given by isomorphisms of roots. Then

(FPr
∼= )C = ({Prym pairs of genus g}, ∼=)

is indeed the family we aim to parametrize.

Definition 1.3.17. The moduli problem (FPr,∼=) admits both a coarse moduli

space Rg and a Deligne-Mumford moduli stack Rg, which fit into a diagram

Rg
πR //

��
	

Mg

��
Rg πR

//Mg
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Depending on the context, we refer to Rg or Rg as the Prym moduli space.

Remark 1.3.18. Note that the Prym moduli space can be expressed as a finite

quotient of the moduli space of smooth, genus g curves with a level 2 structure.

For further details on either of these moduli spaces, see e.g. [DM69], [MFK94],

[Bea77], [BCF04] or [FL10].

Remark 1.3.19. We can describe the stack Rg more explicitly as follows:

(i) An object of Rg is a smooth, genus g Prym curve (f : C → S, η, β).

(ii) An arrow (f, η, β)→ (f ′, η′, β′) in Rg is a pair of a cartesian diagram

C
ϕ //

f �� �

C ′

f ′��
S // S ′

and a sheaf isomorphism ψ : ϕ∗(η′) ∼= η such that ϕ∗(β′) = β ◦ ψ⊗2.

Since this generalises definition 1.3.16, we get FPr∼= = Rg as fibered categories.

As an application of the theory introduced earlier in the section, we have an

equivalence between Prym curves over S and morphisms S → Rg, that is:

(Rg)S ∼ HOMSch(S,Rg)

(f : C → S, η, β) 7→ (φ(f,η,β) : S → Rg)

Similarly, the projection onto the coarse moduli space is given by

Rg → Rg

(f : C → S, η, β) 7→ (S → Rg, s 7→ [(Cs, ηs)])

hence it is branched over Prym pairs with nontrivial automorphisms. On the

other hand, the forgetful maps

πR : Rg →Mg, πR : Rg →Mg

are unramified, finite covers of degree 22g − 1, through which the Prym moduli

space is a multisection of the universal Picard variety

Pic0,g →Mg

and in particular irreducible. In this way, it can be understood as the universal

set of Prym roots over Mg, since π−1
R (C) = Rg(C) as in definition 1.1.9.

Remark 1.3.20. For the remainder of the chapter, we are always assumed to

be working on the moduli stack unless otherwise specified, as it is the natural
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setting to think of the universal Prym variety. We will accordingly use the stack

notation (Rg) from now on, and for the sake of simplicity drop the distinction

between coarse moduli spaces and moduli stacks to gather both of them under

the umbrella term “moduli space”. After all, as far as their birational geometry

is concerned, such a distinction is not relevant.

Let us next translate the results of section 1.2 into the language of moduli

spaces. We saw that the Prym construction associates to a Prym pair (C, η) of

genus g a principally polarized abelian variety of dimension g − 1.

Definition 1.3.21. Let Ag be the moduli space of principally polarized abelian

varieties of dimension g. The Prym construction yields a morphism

Prg : Rg → Ag−1, (C, η) 7→ (P (C, η), Ξ(C,η))

which is called the Prym map, or sometimes the Prym-Torelli map.

Since Rg is a finite cover of Mg and moreover Ag ∼= Hg/Sp(2g,Z), we have{
dimRg = dimMg = 3g − 3

dimAg = dim Symg(C) = g(g + 1)/2

and thus dimRg ≥ dimAg−1 if and only if g ≥ 6. Specifically, we get a table:

g 2 3 4 5 6 7 8 . . .

dimRg 3 6 9 12 15 18 21 . . .

dimAg−1 1 3 6 10 15 21 28 . . .

suggesting that the Prym map might be dominant for low genera. This is indeed

the case.

Proposition 1.3.22. The Prym map Prg : Rg → Ag−1 is:

(i) If g ≤ 6, dominant.

(ii) If g = 6, generically finite of degree 27.

(iii) If g ≥ 7, generically injective, i.e. birational to its image.

It is, however, never injective.

Proof. See [Bea77] for g ≤ 6, [DS81] for g = 6, [FS82] for g ≥ 7, and [Don92] for

the lack of injectivity.

In other words, (principally polarized) abelian varieties of dimension ≤ 5 can

be expressed as generalized Prym varieties of some double cover, in the sense of

[Bea77]. This furthers our understanding of Ag for low g beyond the Jacobian
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construction and its corresponding Torelli map

tg : Mg → Ag, C 7→ (J(C), ΘC)

which is dominant only for g ≤ 3, even if always injective. Furthermore, gen-

eral Prym varieties of dimension ≥ 6 uniquely determine the double cover that

produces them, in a result akin to Torelli’s theorem for Jacobian varieties.

A major aspect of the study of the Prym moduli space is its privileged role

as an intermediary between curves and principally polarized abelian varieties:

Rg

πR

}}

Prg

""
Mg Ag−1

which is of special importance in low genera, due to the dominance of the Prym

map. This leads to a shared effort by many mathematicians to understand better

the geometry of Rg for low g; see [Far12] for an overview of the advances on this

and other related topics.

We aim to contribute to this effort by looking at the universal Prym variety

in genus g = 3.

Definition 1.3.23. The Prym moduli space admits a universal Prym variety

Yg → Rg

that is, an algebraic stack Yg over Rg such that (Yg)(C,η)
∼= P (C, η), i.e.

Yg //Rg

�

P (C, η) ∼= (Yg)(C,η)

OO

// Spec(C)

φ(C,η)

OO

for every Prym pair (C, η) ∈ (Rg)C. The stack Yg is obtained by means of the

cartesian diagram

Xg−1
//

�

Ag−1

Yg

OO

//Rg

Prg

OO

as the pullback of the universal family Xg−1 → Ag−1 by the Prym map.

Noting that Xg−1 is an algebraic stack by proposition 1.3.13, it follows that

the universal Prym variety is indeed an algebraic stack. As a moduli space, Yg
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parametrizes points of the form

(Yg)C = {(C, η, L) / (C, η) ∈ (Rg)C, L ∈ P (C, η)}

maps to a scheme Yg →Mg, and is of dimension

dimYg = dimRg + (g − 1) = 4g − 4

since the fibers of Yg → Rg are (g − 1)-dimensional.

The universal Prym variety is not the only universal object over Rg that we

are interested in.

Definition 1.3.24. The Prym moduli space admits a universal Prym curve

C ′ → Rg

that is, an algebraic stack C ′ over Rg such that (C ′)(C′, ι)
∼= C ′, i.e.

C ′ //Rg

�

C ′ ∼= (C ′)(C′, ι)

OO

// Spec(C)

φ(C′, ι)

OO

for every pair (C ′, ι) ∈ (Rg)C, with the notation of proposition 1.1.13. The stack

C ′ is obtained as the pullback

C2g−1
//

�

M2g−1

C ′

OO

//Rg

OO

of the universal curve C2g−1 →M2g−1 by the map Rg →M2g−1, (C ′, ι) 7→ C ′.

We can consider the d-fold product over Rg of the universal Prym curve

(C ′)d = C ′ ×Rg
(d)
. . .×Rg C ′ → Rg

of fibers (C ′)d, so that dim (C ′)d = dimRg + d = 3g − 3 + d. This is a moduli

space with rational points

((C ′)d)C = {(C ′, ι, x1, . . . , xd) / (C ′, ι) ∈ (Rg)C, x1, . . . , xd ∈ C ′}

and, more importantly, with a natural map to the universal Prym variety.

Definition 1.3.25. For d ∈ Z+ even, the universal Abel-Prym map in degree d
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is the rational map

ap : (C ′)d → Yg, (C ′, ι, x1, . . . , xd) 7→
(
C ′, ι, δ

(∑d
i=1 xi

))
where δ ≡ ap : (C ′)(d) → P (C ′, ι) is the difference map; see remark 1.2.15.

Proposition 1.3.26. The universal Abel-Prym map ap : (C ′)d → Yg is generic-

ally finite for d ≤ g − 1, and moreover dominant if d = g − 1.

Proof. This is the global version of remark 1.2.15 and lemma 1.2.16, or alternat-

ively of the more general corollary A.9 found in [LZ21] Appendix A.

As a result of the proposition, the dominant map

ap : (C ′)g−1 → Yg

controls some of the birational geometry of Yg. In particular, if we managed to

give a rational parametrization of (C ′)(g−1), then the unirationality of Yg would

follow, as we will discuss below.

Remark 1.3.27. The inspiration for this technique stems from [FV16], where

the authors show that (C ′)5 is unirational in genus 6. Using a slightly modified

version of the universal Abel-Prym map, this implies that Y6 is unirational. To

our knowledge, genus 6 is the only instance of the unirationality of the universal

Prym variety that is currently present in the literature.

Ultimately, we will show that (C ′)2 and Y3 are unirational in genus 3.

1.3.3 Birational geometry of moduli spaces

Here we introduce some aspects of the theory of birational invariants while

focusing on the study of the “simplest” of varieties: parametrizable ones. First

we discuss parametrizations from the point of view of Algebraic Geometry, and

then examine them in the setting of moduli spaces of curves. We mostly follow

the excellent survey by Verra [Ver13] on the topic.

Let X be an algebraic variety. We write Pn = PnC = ProjC[t0, . . . , tn].

Definition 1.3.28. A rational parametrization of X is a dominant rational map

from some projective space onto X, that is:

Pn → X
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If such a map exists, X is said to be unirational; if furthermore it can be chosen

to be birational, X is said to be rational. Similarly, a uniruled parametrization

of X is a dominant rational map

Y × P1 → X

for some variety Y of dimension dim(X)− 1. If such a map exists, X is said to

be uniruled.

Note that X is uniruled if and only if there is a rational curve which passes

through a general point of X. Moreover, if Pn → X is a parametrization of X,

then necessarily n ≥ dimX.

Remark 1.3.29. When X is unirational, we can find a rational parametrization

Pn → X such that n = dimX. Such a map is generically finite, but it may not

be generically injective. In fact, even though unirationality and rationality agree

on curves and surfaces over C, some threefolds are unirational but not rational.

The geometry of unirational varieties is remarkably easier to navigate than

that of other, more general varieties; in the sense that, through the dominant

map Pn → X, almost all of X can be covered with a rational grid and explored

with the help of n complex coordinates. This is a very special feature which, for

instance, causes the Kodaira dimension of these varieties to drop. Let us briefly

elaborate on this; see [Laz04] for further details.

Take ωX to be the canonical bundle of X. Consider the rational map

φm : X → PH0(X,ω⊗mX )∨

induced by ω⊗mX , and set N = {m ≥ 0 / h0(X,ω⊗mX ) 6= 0} ⊂ Z.

Definition 1.3.30. The Kodaira dimension of X, denoted κ(X), is defined as:

κ(X) = max
m∈N
{dimφm(X)} ≤ dim(X)

unless h0(X,ω⊗mX ) = 0 for all m > 0, in which case κ(X) = −∞.

In a way, Kodaira dimension classifies varieties by both complexity and fre-

quency, the “simplest” and most special being those of minimal Kodaira dimen-

sion. Some weaker conditions than unirationality also fall into this group.

Definition 1.3.31. We say that X is rationally connected if there is a rational

curve through any two points of X.
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Remark 1.3.32. The previous notions are related by the chain:

rational ⇒ unirational ⇒ rationally connected ⇒ uniruled

and they all have Kodaira dimension −∞. Most notably, the converse implica-

tions on both extremes are known not to hold, whereas the central one remains

an open problem.

On the other side, we have varieties of maximal Kodaira dimension:

Definition 1.3.33. We say that X is of general type if κ(X) = dim(X).

Remark 1.3.34. As the name suggests, “most” varieties are of general type (for

example, smooth degree d hypersurfaces in Pn are of general type if and only if

d > n+ 1), and their geometry tends to be much harder to work with.

If we shift our attention from abstract varieties to moduli spaces, it is clear

that the unirationality of a moduli space is an ideal scenario, in which most of

the objects of a certain type can be determined by a fixed amount of complex

parameters. This is far from the norm, but for some time it was thought to be:

when Severi showed in 1915 that Mg (the first moduli space to be regarded as

such) was unirational for genus g ≤ 10, he conjectured that this would happen

for all genera. It would actually take over 60 years for such a conjecture to be

proven false (by Harris, Mumford and Eisenbud; see [HM82] and [EH87]), in an

event that would go on to radically change the way we understand the geometry

of moduli spaces.

The main reason that Severi’s conjecture stood its ground for so long is the

fact that looking for rational parametrizations, and even more so for birational

ones, is often a really difficult task. Existing techniques are very specific to the

moduli space under review, as they mostly rely on the geometry of the objects

parametrized by the space, which can vary wildly. Nevertheless, there are ideas

that seem to appear with a certain degree of regularity across different moduli

spaces, such as the use of curves moving along a surface (e.g. in a linear series)

to build a parametrization of the space. Because of this, it is at times possible,

even if unlikely, to draw inspiration from one case and adapt its unirationality

statements to another. We are particularly interested in Mg and Rg.

The birational geometry of Mg has been thoroughly studied, and yet some

of the intermediate genera remain inaccessible. We compile the current state of

knowledge into a single proposition.

Proposition 1.3.35. The moduli space Mg is:

(i) For g ≤ 15, of Kodaira dimension −∞.
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(a) If g ≤ 6, rational.

(b) If g ≤ 14, unirational.

(c) If g ≤ 15, rationally connected.

(ii) For g ≥ 22, of maximal Kodaira dimension (i.e. of general type).

For 16 ≤ g ≤ 21, the Kodaira dimension of Mg is unknown.

Proof. See [Ver13] Chapter 2 and references therein.

A similar picture occurs for the Prym moduli space, although the increased

complexity brings about maximal Kodaira dimension at a lower genus.

Proposition 1.3.36. The moduli space Rg is:

(i) For g ≤ 8, of Kodaira dimension −∞.

(a) If g ≤ 4, rational.

(b) If g ≤ 7, unirational.

(c) If g ≤ 8, uniruled.

(ii) For g ≥ 12 and g 6= 13, of Kodaira dimension ≥ 0.

(a) If g ≥ 14, of general type.

For 9 ≤ g ≤ 11 or g = 13, the Kodaira dimension of Rg is unknown.

Proof. See [Ver13] Chapter 4, [Far12] Section 6, and references therein.

One final, rational tool that we need to introduce is the Grassmannian of a

vector space V , that is, the set

G(d, V ) = {U ⊂ V / U is a d-dimensional subspace of V }

with d ≤ n = dim(V ). The Grassmannian G(d, V ) is in fact a fine example of a

moduli space, represented by a scheme of dimension d (n− d), and has already

been discussed for d = 1 in example 1.3.4, since G(1, V ) = P(V ).

Remark 1.3.37. The rationality of G(d, V ) follows from the embedding

ψ : G(d, V ) ↪→ P(
∧d V )

known as the Plücker embedding, and the local description of G(d, V ) in terms

of affine spaces Ad(n−d) that is obtained through ψ. For a good reference on the

topic, we direct the reader to [Har92] Part I, Lecture 6.

As a rare instance of a rational moduli space, the Grassmannian will be key

to building a successful parametrization of (C ′)2, and thus of Y3 → R3.
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1.4 Parametrizing the universal Prym variety

In section 1.3 we have set up both the universal Prym variety Y3 → R3 and

the basic language that is required to study its birational geometry. In order to

look for rational parametrizations of Y3, however, we are still missing one more

step, which is to acquire a better understanding of the geometry of the objects

parametrized by the universal 2-fold Prym curve (C ′)2 → Y3 in genus 3. We fill

in this gap by first looking at general Prym pairs of genus 3, and afterwards at

the slightly harder case of general 2-pointed pairs. The description offered here

is initially motivated by the brief comments on Nikulin surfaces of genus 3 that

are included in [FV12] Section 2.

1.4.1 General Prym pairs of genus 3

We start with a lemma extracted from [Mas76] Prop. 2.7, which shows that,

in the context of proposition 1.1.13, nonhyperelliptic Prym pairs (C, η) give rise

to nonhyperelliptic curves C ′.

Lemma 1.4.1. Let (C, η) be a Prym pair of genus g, and let π : C ′ → C be the

associated double cover, with involution ι. If C ′ is hyperelliptic, then so is C.

Proof. Let τ ′ : C ′ → C ′ be the hyperelliptic involution, which commutes with ι

by lemma 1.2.12. Then τ ′ restricts to an involution τ on C, and ι restricts to a

fixed-point-free involution on the fixed locus R of τ ′, of order 2g(C ′) + 2 = 4g.

As a result, τ fixes at least the 2g points of π(R), and Riemann-Hurwitz shows

that any such involution has to be the hyperelliptic one.

We now fix g = 3, so that C ′ is a smooth, integral curve of genus 2g − 1 = 5

which sits outside the trigonal locus, as ensured by the following lemma. Note

that the nonhyperelliptic case can be found in [dGP05] Lemme 0.3.

Lemma 1.4.2. Let (C, η) be a Prym pair of genus 3, and let π : C ′ → C be the

associated double cover, with involution ι. Then C ′ is not trigonal.

Proof. Assume that C ′ is trigonal, and let L ∈ W 1
3 (C ′). On the one hand, if C ′

is hyperelliptic, with M ∈ W 1
2 (C ′), then the base-point-free pencil trick implies

h0(C ′, L⊗M) ≥ 2h0(C ′,M) = 4

and thus L⊗M ∈ W 3
5 (C ′), which contradicts Clifford’s theorem. On the other

hand, if C ′ is not hyperelliptic, we consider two possibilities:
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(a) If i∗L = L, then ι is compatible with the triple cover φL : C ′ → P1 and

induces an involution on P1, which fixes 2 points by Riemann-Hurwitz.

Then the fiber of φL over any one of the fixed points is stable by ι, yet

of order 3, which is not possible since ι is fixed-point-free.

(b) If L′ = i∗L 6= L, then the image of C ′ under the map

C → PH0(L)× PH0(L′) = P1 × P1 ⊂ P(H0(L)⊗H0(L′)) = P3

is a curve of bidegree (3, 3) lying on the quadric P1 × P1 ⊂ P3, hence of

arithmetic genus (3− 1)(3− 1) = 4. This contradicts g(C ′) = 5.

Observe that the hyperelliptic argument works for any curve of genus g(C ′) ≥ 3,

whereas the nonhyperelliptic one relies on the involution and g(C ′) = 5.

Proposition 1.4.3. For a general point (C ′, ι) ∈ R3, it holds that:

(i) The canonical map embeds C ′ in P4 as the complete intersection of three

linearly independent quadrics.

(ii) H0(P4, IC′(2)) is a 3-dimensional subspace of H0(P4,OP4(2)).

(iii) There is an involution ι : P4 → P4 restricting to ι : C ′ → C ′ such that

H0(P4, IC′(2)) ⊂ ker(Id− ι∗) ⊂ H0(P4,OP4(2))

where ι∗ is the involution induced on H0(P4,OP4(2)) by ι : P4 → P4.

Proof. By generality and lemmas 1.4.1 and 1.4.2, the smooth, genus 5 curve C ′

is neither hyperelliptic nor trigonal, so (i) and (ii) follow from the sequence

0 −→ H0(P4, IC′(2)) −→ H0(P4,OP4(2)) −→ H0(C ′, ω⊗2
C′ ) −→ 0

see e.g. [Har77] Chapter IV, Ex. 5.5. Moreover, ι : C ′ → C ′ induces involutions

H0(C ′, ωC′)
∨ → H0(C ′, ωC′)

∨, PH0(C ′, ωC′)
∨ → PH0(C ′, ωC′)

∨

which after fixing coordinates turn into involutions ι : C5 → C5 and ι : P4 → P4.

The latter restricts to ι : C ′ → C ′ via the canonical embedding, and the former

decomposes C5 as the direct sum of the eigenspaces

EΛ = ker(Id− ι), EL = ker(Id + ι) ⊂ C5 = EΛ ⊕ EL

with dimEΛ + dimEL = 5, so that the fixed subspaces of ι : P4 → P4 are

Λ = P(EΛ), L = P(EL) ⊂ P4

with dim Λ + dimL = 3. Since ι is fixed-point-free over C ′, we have C ′ ∩ Λ = ∅
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and C ′ ∩ L = ∅, hence neither of them can be a hyperplane; we may assume

dim Λ = 2, dimL = 1

Finally, the involution ι∗ decomposes H0(P4,OP4(2)) as the direct sum

H0(P4,OP4(2)) = ker(Id− ι∗)⊕ ker(Id + ι∗)

and restricts to an involution ι′ on H0(P4, IC′(2)), accordingly yielding

H0(P4, IC′(2)) = ker(Id− ι′)⊕ ker(Id + ι′)

Suppose there exists some 0 6= q ∈ ker(Id + ι′) = H0(P4, IC′(2)) ∩ ker(Id + ι∗),

and let Q ⊂ P4 be the quadric hypersurface defined by the zeroes of q. Then

v ∈ EΛ ⇒ q(v) = q(i(v)) = (i∗q)(v) = −q(v) ⇒ q(v) = 0

i.e. Λ is contained in Q, and so is C ′ by definition of IC′(2). Therefore

dim(C ′ ∩ Λ) ≥ dimC ′ + dim Λ− dimQ = 1 + 2− 3 = 0

which contradicts C ′ ∩ Λ = ∅. This concludes the proof, as we get

H0(P4, IC′(2)) = ker(Id− ι′) = H0(P4, IC′(2)) ∩ ker(Id− ι∗)

from plugging ker(Id + ι′) = 0 into the decomposition of H0(P4, IC′(2)).

Given a general Prym pair (C, η) of genus 3, proposition 1.4.3 shows that its

associated involution ι may be understood as a projective involution restricted

to a complete intersection of three quadrics. Additionally, this involution fixes a

plane and a line, while remaining fixed-point-free over the complete intersection.

Let us look at an explicit example, which we shall use as a model.

Definition 1.4.4. Consider the involution

τ : C5 → C5, (x0, x1, x2, x3, x4) 7→ (−x0, −x1, x2, x3, x4)

τ = P(τ) : P4 → P4, (x0 : x1 : x2 : x3 : x4) 7→ (−x0 : −x1 : x2 : x3 : x4)

which we shall refer to as the model involution (on C5 or P4, respectively).

If we write the standard basis of C5 as {e0, . . . , e4}, that is,

e0 = (1, 0, 0, 0, 0), . . . , e4 = (0, 0, 0, 0, 1) ∈ C5
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and follow the proof of proposition 1.4.3, the eigenspaces of τ : C5 → C5 are

ker(Id− τ) = 〈e2, e3, e4〉, ker(Id + τ) = 〈e0, e1〉

meaning that the model involution on P4 fixes a plane and a line, namely

Λτ = {x0 = x1 = 0}, Lτ = {x2 = x3 = x4 = 0}

Furthermore, τ induces an involution τ ∗ on H0(P4,OP4(2)) with eigenspaces

ker(Id− τ ∗) = C[x0, x1]2 ⊕ C[x2, x3, x4]2 (of dim 9)

ker(Id + τ ∗) = x0C[x2, x3, x4]1 ⊕ x1C[x2, x3, x4]1 (of dim 6)

Observe that choosing a complete intersection of three quadrics over which the

model involution is stable amounts to choosing a 3-dimensional subspace U of

ker(Id− τ ∗). Moreover, for a general such U , the curve

C ′ = bs(PU) =
⋂

Q∈PU Q ↪→ P4

does not intersect the plane Λτ or the line Lτ .

As will become clear in theorem 1.4.6, the previous discussion is enough to

show unirationality for R3. Nonetheless, there are better ways of reaching this

conclusion, since R3 is in fact rational (recall proposition 1.3.36, or instead see

[Dol08] Sections 3 & 4 for a proof of rationality).

1.4.2 The universal Prym variety in genus 3

Up to now, we have focused on understanding how a pair (C ′, ι) ∈ R3 looks

like, but we are interested in (C ′)2, so we need to add two points to the picture.

Denote Ei = 〈ei〉 ∈ P4 and Eij = 〈ei + ej〉 ∈ P4, and in particular consider

E02 = (1 : 0 : 1 : 0 : 0), E13 = (0 : 1 : 0 : 1 : 0) ∈ P4

which will play the role of model points. Notice that E02 and E13 are not fixed

by the model involution τ : P4 → P4 described in definition 1.4.4.

Lemma 1.4.5. After an adequate coordinate change, a general point (C ′, ι, x1, x2)

of (C ′)2 can be written as (C ′, τ, E02, E13).

Proof. Adhering to the notation of proposition 1.4.3, the points x1, x2 ∈ C ′ ⊂ P4
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correspond to line subspaces of C5 = EΛ ⊕ EL, and thus are of the form

x1 = 〈vΛ
1 + vL1 〉, x2 = 〈vΛ

2 + vL2 〉

where vΛ
i ∈ EΛ, vLi ∈ EL for i ∈ {1, 2}. Then the sets {vΛ

1 , v
Λ
2 } and {vL1 , vL2 } are

linearly independent by generality, and there is some u ∈ EΛ such that

EΛ = 〈vΛ
1 , v

Λ
2 , u〉, EL = 〈vL1 , vL2 〉

Finally, the automorphism ϕ : P4 → P4 induced by

ϕ : C5 → C5, vL1 7→ e0, vL2 7→ e1,

vΛ
1 7→ e2, vΛ

2 7→ e3, u 7→ e4

justifies the claim, as ϕ ◦ ι ◦ ϕ−1 = τ and ϕ(x1) = E02, ϕ(x2) = E13.

By virtue of lemma 1.4.5, we are able to characterise the points of (C ′)2 in a

very tangible manner, so much so that it becomes possible to interpret them as

points in a certain Grassmannian. This leads to the desired set of results:

Theorem 1.4.6. The universal 2-fold Prym curve (C ′)2 → R3 is unirational.

Proof. Let (C ′, τ, E02, E13) be a general point of (C ′)2, as per lemma 1.4.5, with

H0(P4, IC′(2)) ⊂ ker(Id− τ ∗) = C[x0, x1]2 ⊕ C[x2, x3, x4]2

by proposition 1.4.3. We now have two additional conditions, since

E02, E13 ∈ C ′ ⊂ Q for all Q ∈ PH0(P4, IC′(2))

If we let q =
∑
λij xixj ∈ H0(P4, IC′(2)) be the quadric polynomial defining Q,

then E02, E13 ∈ Q translates into{
0 = q(E02) = λ00 + λ22 ⇔ q = λ00 (x2

0 − x2
2) + . . .

0 = q(E13) = λ11 + λ33 ⇔ q = λ11 (x2
1 − x2

3) + . . .

so that H0(P4, IC′(2)) is a 3-dimensional subspace of the 7-dimensional space

V7 = {q ∈ ker(Id− τ ∗) / q(E02) = q(E13) = 0}
= (x2

0 − x2
2)C ⊕ (x2

1 − x2
3)C ⊕ x0x1C ⊕ x2x3C ⊕ x4C[x2, x3, x4]1

Under these circumstances, choosing a complete intersection of three quadrics

passing through E02, E13 over which the model involution is stable amounts to

choosing a 3-dimensional subspace U of V7. Furthermore, for a general such U ,
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the model involution is fixed-point-free over the curve

C ′ = bs(PU) =
⋂

Q∈PU Q ↪→ P4

In other words, there is a dominant rational map

P12 ≈ G(3, V7)→ (C ′)2, U 7→ (bs(PU), τ, E02, E13)

as a general (C ′, ι, x1, x2) can be recovered from H0(P4, IC′(2)) ⊂ V7. Since the

Grassmannian is rational, this provides a rational parametrization of (C ′)2.

Corollary 1.4.7. The universal Prym variety Y3 → R3 is unirational.

Proof. Immediate from theorem 1.4.6 and proposition 1.3.26.

If we look at the parametrization of (C ′)2 given in theorem 1.4.6, we can see

that its fibers are expected to be 4-dimensional:{
dimG(3, V7) = 3 (7− 3) = 12

dim (C ′)2 = 3g − 3 + 2 = 8

In fact, the general fiber is not only of dimension 4, but also isomorphic to the

subgroup G4 ⊂ PGL(5) of projective linear transformations that fix the model

involution and both of the points E02, E13. This subgroup can be written as:

G4 =




a00 0

0
0 a11

0

a00 0 a24

0 a11 a34

0 0 a44

 ∈ GL(2)×GL(3) ⊂ GL(5)


/
{C∗ Id5}

Then the quotient G(3, V7)/G4 is of dimension 8, and we obtain the following:

Corollary 1.4.8. The rational parametrization G(3, V7) → (C ′)2 (resp. → Y3)

factors through G(3, V7)� G(3, V7)/G4 into the dominant rational map

G(3, V7)/G4 → (C ′)2 (resp. G(3, V7)/G4 → Y3)

which is generically injective, and thus birational (resp. generically finite).

Proof. Note that PU ⊆ |Ibs(PU)(2)|, with equality holding for a general U .
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1.5 Extension to Nikulin surfaces

The idea of drawing from surface theory to study the birational geometry of

Mg, by way of taking linear series of curves that move along a certain surface,

has been present in Algebraic Geometry for quite some time. Families of sextic,

octic and nonic curves lying in the projective plane were used by Severi to show

that Mg is unirational when g ≤ 10, and collections of linear series lying in K3

surfaces are the basis of an unusually uniform, uniruled parametrization of Mg

that works across several genera (namely for 10 6= g ≤ 11).

As it turns out, the connection between K3 surfaces and algebraic curves is

carried over to the realm of Prym pairs, with Nikulin surfaces playing a similar

role in the birational understanding of the Prym moduli space. This analogous

interaction, explored by [FV12], also yields a uniform parametrization of Rg in

low genera (namely for 6 6= g ≤ 7), among many other results.

In this section, we introduce the basics of K3 and Nikulin theory, and adapt

the proof of theorem 1.4.6 to show that the universal double Nikulin surface is

unirational in genus 3. We therefore take advantage of the similarities between

Nikulin surfaces and Prym pairs in the opposite direction, building on the case

of curves to bring section 1.4 into the less hospitable surface world.

1.5.1 K3 and Nikulin surfaces

As usual, we take “surface” to mean algebraic variety of dimension 2. Then

we may consider the following types of (polarized) surfaces:

Definition 1.5.1. A K3 surface is a complete nonsingular surface S such that

ωS ∼= OS and h1(S,OS) = 0. Moreover, a polarized K3 surface of genus g is a

pair (S,OS(H)) such that S is a K3 surface, H is a curve in S with pa(H) = g,

and OS(H) is very ample and primitive in Pic(S).

For each g ≥ 2, the moduli space Fg of polarized K3 surfaces of genus g is a

Deligne-Mumford stack of dimension 19; see e.g. [Huy16] Chapter 5.

Definition 1.5.2. A Nikulin surface is a pair (S, e) such that S is a K3 surface

and e ∈ Pic(S) is a square root of

e⊗2 ∼= OS(E1 + . . .+ E8)

where {Ei}8
i=1 is a set of disjoint, smooth, rational (−2)-curves on S. Moreover,

a polarized Nikulin surface of genus g is a triplet (S, e,OS(H)) where (S, e) is a
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Nikulin surface, (S,OS(H)) is a polarized K3 surface of genus g, and H · Ei = 0

for all i ∈ {1, . . . , 8}.

Through a generalised version of theorem 1.1.7, the root e corresponds to a

double cover branched over the (−2)-curves E1, . . . , E8, namely

πS : S ′ → S

where S ′ is a K3 surface and Fi = π−1
e (Ei) are (−1)-curves on S ′. These can be

blown-down to produce another K3 surface Y ′, which fits into a diagram

S ′
πS //

�� 	

S

��

Fi //
_

��
	

Ei_

��
Y ′ πY

// Y qi
� // pi

such that πY : Y ′ → Y is a double cover ramified over the points q1, . . . , q8. The

involution ι : Y ′ → Y ′ associated to πY , with 8 fixed points, is called a Nikulin

involution. Keeping this diagram in mind, we shall also refer to the pair (Y ′, ι)

as a Nikulin surface; see [vGS07] or [FV12] for more details.

The additional conditions imposed by the root e cause the dimension of the

moduli space FN
g of polarized Nikulin surfaces of genus g to drop by 8, making

it 11-dimensional for each g ≥ 2. Our interest in this space stems from the next

lemma, proven in [Ver13] Lemma 3.6, which reveals that the linear series given

by the polarization is in fact a collection of Prym pairs.

Lemma 1.5.3. Let (S, e,OS(H)) be a polarized Nikulin surface of genus g ≥ 2.

Then ηC = e⊗OC is a Prym root of C for any C ∈ |H|.

The condition H · Ei = 0 for i ∈ {1, . . . , 8} ensures that the diagram above,

when restricted to the curve C ∈ |H|, yields an étale double cover π : C ′ → C

and a fixed-point-free involution ι : C ′ → C ′, induced by the Nikulin involution

on Y ′. The pair (π, ι) corresponds to the Prym pair (C, ηC).

Definition 1.5.4. We say that the universal double Nikulin surface FN
g,2 is the

moduli space parametrizing points of the form

(FN
g,2)C = {(Y ′, ι,OS(H), y1, y2) / (Y ′, ι,OS(H)) ∈ (FN

g )C, y1, y2 ∈ Y ′}

Since the forgetful projection FN
g,2 → FN

g has 4-dimensional fibers, this space is

always of dimension 15.

Observe that the universal double Nikulin surface is related to the universal

2-fold Prym curve (C ′)2 → R3. Indeed, over FN
3,2 we can find a useful projective
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bundle PN
3,2 → FN

3,2, with rational points

(Y ′, ι, C, y1, y2)

such that C ⊂ S is a smooth curve, its induced double cover C ′ = π−1
Y (C) ⊂ Y ′

passes through y1, y2 ∈ Y ′, and (Y ′, ι,OS(C), y1, y2) ∈ FN
3,2. Then the maps

PN
3,2

}} !!

(Y ′, ι, C, y1, y2)
:

||

�

""
FN

3,2 (C ′)2 (Y ′, ι,OS(C), y1, y2) (C ′, ι, y1, y2)

link the birational geometry of FN
3,2 and (C ′)2, in the sense that it is possible to

extend parametrizations of the former to the latter (note that the right map is

dominant due to [FV12] Th. 0.2). Ultimately, the existence of this diagram lies

at the heart of the striking similarities between sections 1.4 and 1.5.

1.5.2 The universal double Nikulin surface in genus 3

As discussed in the previous section (proposition 1.4.3), general Prym pairs

of genus 3 can be expressed as complete intersections of quadric hypersurfaces

together with a projective involution. There is a parallel description for general

polarized Nikulin surfaces of genus 3, in the following sense:

Proposition 1.5.5. For a general point (Y ′, ι,OS(H)) ∈ FN
3 , it holds that:

(i) The surface Y ′ is embedded in P5 as the complete intersection of three

linearly independent quadrics, and the collection of Prym pairs induced

by |H| is realised as a series of hyperplane sections of Y ′ ↪→ P5.

(ii) H0(P5, IY ′(2)) is a 3-dimensional subspace of H0(P5,OP5(2)).

(iii) The involution ι : Y ′ → Y ′ is induced by an involution ι : C6 → C6, and

thus ι : P5 → P5, with eigenspaces (resp. fixed subspaces):

EΛ = ker(Id− ι), EL = ker(Id + ι) ⊂ C6 = EΛ ⊕ EL
Λ = P(EΛ), L = P(EL) ⊂ P5

such that dim Λ = 3, dimL = 1. Furthermore, there is an inclusion

H0(P5, IY ′(2)) ⊂ ker(Id− ι∗) ⊂ H0(P5,OP5(2))

where ι∗ is the involution induced on H0(P5,OP5(2)) by ι : P5 → P5.
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Proof. This characterization can be found in [vGS07] Section 2.6 (for the map to

P2g−1 in arbitrary g) and Example 3.7 (for the case g = 3).

We may now define a new model involution for Nikulin surfaces:

Definition 1.5.6. Consider the involution

τ : C6 → C6, (x0, x1, x2, x3, x4, x5) 7→ (−x0, −x1, x2, x3, x4, x5)

τ : P5 → P5, (x0 : x1 : x2 : x3 : x4 : x5) 7→ (−x0 : −x1 : x2 : x3 : x4 : x5)

which we shall refer to as the model involution (on C6 or P5, respectively).

With the notation of section 1.4, the eigenspaces of τ : C5 → C5 are

ker(Id− τ) = 〈e2, e3, e4, e5〉, ker(Id + τ) = 〈e0, e1〉

the fixed subspaces of τ : P5 → P5 are

Λτ = {x0 = x1 = 0}, Lτ = {x2 = x3 = x4 = x5 = 0}

and the 21-dimensional vector space H0(P5,OP5(2)) decomposes as the sum of

ker(Id− τ ∗) = C[x0, x1]2 ⊕ C[x2, x3, x4, x5]2 (of dim 13)

ker(Id + τ ∗) = x0C[x2, x3, x4, x5]1 ⊕ x1C[x2, x3, x4, x5]1 (of dim 8)

Again, choosing a complete intersection of three quadrics over which the model

involution is stable amounts to choosing a point U in the Grassmannian

G(3, ker(Id− τ ∗)) = G(3, 13) ≈ P30

and a general such U yields a surface

Y ′ = bs(PU) =
⋂

Q∈PU Q ↪→ P5

over which the model involution has 8 fixed points. In this setting, we take

E02 = (1 : 0 : 1 : 0 : 0 : 0), E13 = (0 : 1 : 0 : 1 : 0 : 0) ∈ P5 − (Λτ ∪ Lτ )

to be our model points, and proceed with an analogue to lemma 1.4.5.

Lemma 1.5.7. Consider the line bundle OY ′(1) ∈ Pic(Y ′) induced by Y ′ ↪→ P5.

After an adequate coordinate change, a general point (Y ′, ι,OS(H), y1, y2) ∈ FN
3,2

can be written as (Y ′, τ,OY ′(1), E02, E13).
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Proof. As line subspaces of C6, the points y1, y2 ∈ Y ′ ⊂ P5 are of the form

y1 = 〈vΛ
1 + vL1 〉, y2 = 〈vΛ

2 + vL2 〉

where vΛ
i ∈ EΛ, vLi ∈ EL for i ∈ {1, 2}. Then {vΛ

1 , v
Λ
2 } and {vL1 , vL2 } are linearly

independent by generality and we can complete them to get bases

EΛ = 〈vΛ
1 , v

Λ
2 , u, w〉, EL = 〈vL1 , vL2 〉

so that the map

ϕ : C6 → C6, vL1 7→ e0, vL2 7→ e1,

vΛ
1 7→ e2, vΛ

2 7→ e3, u 7→ e4, w 7→ e5

provides the desired coordinate change.

As in the Prym framework, lemma 1.5.7 is the final piece that is required to

parametrize FN
3,2 by a suitable Grassmannian.

Theorem 1.5.8. The universal double Nikulin surface FN
3,2 is unirational.

Proof. Let (Y ′, τ,OY ′(1), E02, E13) be a general point of FN
3,2, with

H0(P5, IY ′(2)) ⊂ ker(Id− τ ∗) = C[x0, x1]2 ⊕ C[x2, x3, x4, x5]2

As every Q ∈ |IY ′(2)| passes through E02 and E13, we see that H0(P5, IY ′(2)) is

in fact a 3-dimensional subspace of the 11-dimensional space

V11 = {q ∈ ker(Id− τ ∗) / q(E02) = q(E13) = 0}

= (x2
0 − x2

2)C ⊕ (x2
1 − x2

3)C ⊕ x0x1C ⊕ x2x3C ⊕
⊕ x4C[x2, x3, x4]1 ⊕ x5C[x2, x3, x4, x5]1

Once more, choosing a complete intersection of three quadrics passing through

E02, E13 over which the model involution is stable amounts to choosing a point

U ∈ G(3, V11). In addition, for a general such U , the model involution restricts

to a Nikulin involution over the surface

Y ′ = bs(PU) =
⋂

Q∈PU Q ↪→ P5

Finally, the above discussion gives rise to a dominant rational map

P24 ≈ G(3, V11)→ FN
3,2, U 7→ (bs(PU), τ,O(1), E02, E13)

since a general (Y ′, ι,OS(H), y1, y2) can be recovered from H0(P5, IY ′(2)) ⊂ V11,
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implying that FN
3,2 is indeed unirational.

Remark 1.5.9. This result offers an alternative, even if more convoluted, proof

that (C ′)2 and Y3 are unirational, on account of the diagram

PN
3,2

|| ##
FN

3,2 (C ′)2 ap // Y3

Observe that restricting V11 to the hyperplane {x5 = 0} ⊂ P5 brings us back to

the space V7 from theorem 1.4.6.

If we look at the parametrization G(3, V11)→ FN
3,2, we now have:{

dimG(3, V11) = 3 (11− 3) = 24

dimFN
3,2 = 11 + 2 · 2 = 15

The general fiber is 9-dimensional and isomorphic to the subgroup G9 ⊂ PGL(6)

of projective linear transformations fixing the model involution and both of the

points E02, E13, given by



a00 0
0

0 a11

0

a00 0 a24 a25

0 a11 a34 a35

0 0 a44 a45

0 0 a54 a55


∈ GL(2)×GL(4) ⊂ GL(6)


/
{C∗ Id6}

Then the quotient G(3, V11)/G9 is of dimension 15, and birational to FN
3,2.

Corollary 1.5.10. There is a birational equivalence

G(3, V11)/G9
≈−→ FN

3,2

induced by the rational parametrization G(3, V11)→ FN
3,2.



Chapter 2

Prym curves with a vanishing

theta-null
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2.1 Compactifications of moduli spaces

If we move away from birational geometry, it is just a matter of time before

we set foot on the boundary of our moduli space. Indeed, looking at families of

curves reveals that objects in the boundary appear very naturally (as limits of

such families), so it is desirable to work in a proper setting that supports them.

This is provided by a suitable compactification of the moduli space: namely, a

larger, proper space which includes these additional deformations or limits, but

whose points still have a modular meaning.

In this section, we describe some of these compactifications, as well as their

boundaries. We conclude by introducing several specific families of curves that

are frequently tested against interesting divisors in order to study their divisor

class. As a basic source text on this general topic, we refer to [HM98].

2.1.1 Stable, semistable and quasistable curves

Given a connected, δ-nodal curve X with irreducible components X1, . . . , Xn,

the arithmetic genus of X can be computed by the formula:

g(X) = pa(X) =
∑n

i=1 (gi − 1) + δ + 1 =
∑n

i=1 gi + (δ − n+ 1)

where gi = pg(Xi) = pa(X̃i) is the geometric genus of Xi, that is, the arithmetic

genus of its normalization X̃i. Furthermore, we can associate a graph ΓX to X,

called the dual graph of the curve, by means of the following dictionary:

X ΓX

irreducible component Xi vertex Xi with weight gi

node zk ∈ Xi ∩Xj edge zk connecting Xi and Xj

node zk in self-intersection of Xi loop zk on vertex Xi

Then the formula above can be rewritten as:

g(X) = pa(X) =
∑n

i=1 gi + (δ − n+ 1) = w(ΓX) + b1(ΓX)

where w(ΓX) =
∑n

i=1 gi is the total weight of the vertex-weighted dual graph,

while b1(ΓX) = δ − n+ 1 is its first Betti number.

Definition 2.1.1. Let X be a complete, connected, nodal curve. We say that X

is stable (resp. semistable) if every smooth rational component of X meets the
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other components of X in at least 3 points (resp. at least 2 points).

In terms of their dual graph, stable curves (resp. semistable) can be defined

by the property that all 0-weighted vertices are endpoints of at least 3 (resp. 2)

possibly repeated edges. Therefore chains of smooth rational components that

connect two non-rational components are allowed in semistable curves, but not

in stable ones.

As shown by Deligne and Mumford in [DM69], stable curves are the natural

objects that arise when we aim to compactify the moduli space of curves while

still preserving a modular interpretation.

Definition 2.1.2. Let S be a scheme. A family of stable curves of genus g over

the base S, or simply a stable curve of genus g over S, is a curve f : X → S of

genus g such that every geometric fiber f−1(s) = Xs is a stable curve.

Remark 2.1.3. More generally, if we have a property P of curves, we shall say

that a family of P -curves over S, or simply a P -curve over S, is a curve over S

such that every geometric fiber has property P (e.g. semistability).

With definition 2.1.2 and the theory of section 1.3, we can set up a moduli

problem for stable curves of genus g, which admits both a coarse moduli space

M g and a Deligne-Mumford moduli stack Mg. This moduli space is the central

object of study in Deligne and Mumford’s seminal paper, leading up to:

Theorem 2.1.4. The moduli space Mg of stable, genus g curves is proper, and

contains the moduli space Mg of smooth, genus g curves as an open subset.

Proof. See [DM69] Th. 5.2.

Remark 2.1.5. Since Mg both compactifies Mg and parametrizes meaningful

algebro-geometric objects at the same time, it is often referred to as a modular

compactification of Mg. There are many examples of interesting moduli spaces

which are not closed, but admit this type of compactification.

In light of remark 2.1.5, we want to introduce modular compactifications of

several spaces relevant to our work, such as the Prym moduli space Rg (recall

definition 1.3.17), or the moduli space of even spin curves S+
g (resp. odd, S−g ).

The addition of square roots to the compactification turns out to require a new

class of curves, slighty broader than that of stable ones.

Definition 2.1.6. Let E be an irreducible component of a semistable curve X.

Then E is said to be exceptional if it is smooth, rational, and meets the other

components in exactly 2 points.

Note that stable curves can then be characterised as semistable curves with
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no exceptional components. Let us relax this condition.

Definition 2.1.7. Let X be a semistable curve. We say that X is quasistable if

any two distinct exceptional components are disjoint. In turn, the stable model

of a quasistable curve X is the stable curve st(X) obtained by contracting each

exceptional component to a point.

In other words, quasistable curves are semistable curves which do not allow

chains of smooth rational components, but still allow non-rational components

to be connected by a single exceptional one.

Definition 2.1.8. A stable Prym curve is a triplet (X, η, β) where:

(i) X is a quasistable curve (of genus g).

(ii) η ∈ Pic0(X) is a nontrivial line bundle of total degree 0 on X such that

η|E = OE(1) for every exceptional component E of X.

(iii) β : η⊗2 → OX is a sheaf homomorphism such that the restriction β|A is

generically non-zero for every non-exceptional component A of X.

Similarly, a stable even spin curve is a triplet (X, θ, α) where:

(i) X is a quasistable curve (of genus g).

(ii) θ ∈ Picg−1(X) is a line bundle of total degree g − 1 on X with h0(X, θ)

even, and θ|E = OE(1) for every exceptional component E of X.

(iii) α : η⊗2 → ωX is a sheaf homomorphism such that the restriction α|A is

generically non-zero for every non-exceptional component A of X.

For a stable odd spin curve, simply take h0(X, θ) odd.

If we denote by E1, . . . , Er the exceptional components of X, then

BX = X − (E1 ∪ . . . ∪ Er) ⊂ X

is a closed subcurve of X, over which sheaf isomorphisms are recovered:

β|BX : η⊗2|BX ∼= OBX (−p1 − q1 − . . .− pr − qr)

α|BX : θ⊗2|BX ∼= ωX |BX (−p1 − q1 − . . .− pr − qr)

where BX ∩ Ei = {pi, qi} for all i. When X is stable, we get BX = X.

Compare these notions with definitions 1.1.9 and 1.1.14, their smooth coun-

terparts. In the same way, we may extend definition 1.3.16.

Definition 2.1.9. Let S be a scheme. A family of stable Prym curves over the

base S, or a stable Prym curve over S, is a triplet (f : X → S, η, β) such that:
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(i) f : X → S is a quasistable (genus g) curve over S, as in remark 2.1.3.

(ii) η ∈ Pic0(X) is a line bundle on X.

(iii) β : η⊗2 → OX is a sheaf homomorphism.

(iv) The restriction of (f : X → S, η, β) to any fiber f−1(s) = Xs gives rise

to a stable Prym curve (Xs, ηs, βs).

An isomorphism (X → S, η, β) ∼= (X ′ → S, η′, β′) is a pair (ϕ, ψ) where:

(i) ϕ : X ∼= X ′ is an isomorphism over S.

(ii) ψ : ϕ∗(η′) ∼= η is a sheaf isomorphism such that ϕ∗(β′) = β ◦ ψ⊗2.

With minimal changes, we could likewise define families of stable spin curves.

The resulting moduli problems all admit proper moduli spaces, namely Rg,

S+
g and S−g , which respectively compactify Rg, S+

g and S−g . Further details on

these can be found in [Cor89], for the compactification of Sg, and [BCF04], for

the Cornalba-inspired compactification of Rg. It is also important to highlight

[Bea77], where a different but earlier compactification of Rg was built through

the use of admissible double covers of stable curves.

Observe that stabilising a quasistable curve preserves its genus, as the same

number of 0-weighted vertices and edges are removed from its dual graph, and

consider the natural maps

πR : Rg → Mg, (X, η, β) 7→ st(X)

πS : Sg → Mg, (X, θ, α) 7→ st(X)

where st(X) is the stable model of X. These maps are finite and ramified over

the boundary, and extend the finite, unramified covers Rg →Mg, Sg →Mg.

2.1.2 Boundaries and Picard groups

Let us now look at the boundary that has been added to our moduli spaces

in order to compactify them. First we study the boundary divisors of Mg, and

then use them to describe the boundary divisors of the covers Rg, Sg.

Since the curves of ∂Mg =Mg −Mg are nodal, it stands to reason that we

could classify them in terms of the type of nodes they carry.

Definition 2.1.10. Let X be a semistable curve of genus g. We say that a node

z ∈ Sing(X) is of type i ∈ {1, . . . , bg/2c} if it is in the intersection of a genus i

component of X with a genus g − i component of X, and of type 0 if it is in the

self-intersection of an irreducible component of X.
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With respect to the dual graph, nodes of type i ≥ 1 correspond to edges that

connect subgraphs of weights i and g − i, whereas nodes of type 0 correspond to

loops. Furthermore, we can consider the closure of the loci

∆set
i = {curves with a node of type i} ⊂ ∂Mg ⊂ Mg

to obtain divisors ∆i of Mg such that ∆i ⊂ ∂Mg and

∂Mg = ∆0 ∪ ∆1 ∪ . . . ∪ ∆bg/2c

Here it is essential to make a distinction between the moduli stack Mg and the

coarse moduli space M g. If we choose to work in the latter space, we can define

divisors ∆i of M g in the same way, and obtain a diagram

Mg
ρ //M g

∆i

⊂

ρi
//

	

∆i

⊂

with deg(ρi) = # Aut(X) for X ∈ ∆i general; see example 1.3.14. In particular

deg(ρi) =

{
1 if i 6= 1

2 if i = 1

due to the existence of nontrivial involutions on elliptic tails. This difference is

easy to miss, but necessary to track, especially when divisor classes and Picard

groups are brought into the picture.

Proposition 2.1.11. The pullback map ρ∗ sets up an isomorphism between the

rational Picard groups of M g and Mg, namely

ρ∗ : Pic(M g)Q ∼= Pic(Mg)Q

such that

ρ∗[∆i] = deg(ρi) · δi =

{
δi if i 6= 1

2 δi if i = 1

where we use the standard notation

[∆i] = OMg(∆i) ∈ Pic(M g)Q

δi = OMg(∆i) ∈ Pic(Mg)Q

for the classes of ∆i in M g and Mg, respectively.

Proof. The statement is a compilation of results from [HM98] Section 3.D, with

a slight change of notation fostered by the application of stack theory.
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Remark 2.1.12. In general, if M→ M is the projection from a moduli stack

to its coarse moduli space, then the pullback Pic(M)Q → Pic(M)Q is injective,

and further becomes an isomorphism if M has only finite quotient singularities.

This is the case not just for M g, but also for Rg, S
+
g or S−g .

As suggested in proposition 2.1.11, the locus of stable curves with a node of

type i naturally gives rise to two different rational divisor classes

ρ∗[∆i], δi ∈ Pic(Mg)Q

We shall mostly work with the ones defined directly on the moduli stack, i.e.

δ0, δ1, . . . , δbg/2c

since their degree over 1-parameter families of curves is easier to calculate.

Remark 2.1.13. If X → B is a stable curve of genus g over a smooth base B

of dimension 1, with fibers Xb ∈Mg for each b ∈ B, then the degree

deg δi(X → B) = X ·∆i ∈ Z

of δi over X → B morally reflects the “number of fibers Xb lying in ∆i”, in the

sense of [HM98] Section 3.D, Prop. 3.91. Somewhat abusively, we often denote

this degree by X ·∆i = X · δi in order to highlight the stacky framework.

Remark 2.1.14. Any rational divisor class ξ in Mg can be written as

ξ = j∗j
∗ξ + b0 δ0 + . . .+ bbg/2c δbg/2c ∈ Pic(Mg)Q

for some b0, . . . , bbg/2c ∈ Q and the embedding j : Mg ↪→Mg. Indeed, observe

that the class ξ − j∗j∗ξ is trivial over Mg, and that the divisors ∆0, . . . , ∆bg/2c
are the irreducible components of the boundary ∂Mg =Mg −Mg.

According to remark 2.1.14, rational divisor classes in Mg are generated by

rational divisor classes in Mg (or rather, their pushforward) and the boundary

classes δi. Fortunately, the group Pic(Mg)Q has a simple description, which we

can obtain readily thanks to the work of Harer [Har83].

The universal curve φ : Cg →Mg carries a relative dualizing sheaf

ωφ ∈ Pic(Cg)
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whose direct image φ∗(ωφ), the Hodge bundle, can be used to define the classes

λ =
∧g φ∗(ωφ) ∈ Pic(Mg)

λ = j∗λ =
∧g φ∗(ωCg |Mg) ∈ Pic(Mg)

For g ≥ 3, Harer’s theorem implies that Pic(Mg)Q = λQ, and therefore

Pic(Mg)Q = λQ ⊕ δ0Q ⊕ . . . ⊕ δbg/2cQ

as the classes λ, δ0, . . . , δbg/2c are linearly independent. This discussion may be

found in [AC87], together with a stronger result on the structure of Pic(Mg).

Theorem 2.1.15. For any g ≥ 3, it holds that

Pic(Mg)Z = λZ
Pic(Mg)Z = λZ ⊕ δ0 Z ⊕ . . . ⊕ δbg/2c Z

With our current understanding of the rational Picard group of Mg, we are

ready to shift our attention towards Rg and Sg.

In order to study the boundary of Rg, we can take advantage of the map

πR : Rg → Mg, (X, η, β) 7→ st(X)

which turns the decomposition in irreducible components

∂Mg = ∆0 ∪ ∆1 ∪ . . . ∪ ∆bg/2c

into a building block for the corresponding decomposition of ∂Rg.

First, note that a general point Y ∈ ∆i is of the form:

(i > 0) Y = C ∪p∼q D with (C, p) ∈Mi, 1, (D, q) ∈Mg−i, 1

(i = 0) Y = Bpq with (B, p, q) ∈Mg−1, 2

where Bpq denotes the irreducible 1-nodal curve obtained from B by gluing the

points p and q. Let us describe the fibers π−1
R (Y ) for each i.

Example 2.1.16 (i > 0). Let (X, η, β) ∈ Rg with st(X) = Y = C ∪p∼q D. The

existence of β prevents X from having exceptional components, i.e.

X = st(X) = Y = C ∪p∼q D, β : η⊗2 ∼= OY = (OC ,OD)

Then η is a nontrivial element of J2(C)⊕ J2(D), and we have three irreducible

components over ∆i, characterised by their general point (X, η, β):
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(∆n
i ) Condition: η = (ηC ,OD) with ηC ∈ Ri(C).

Notation: ∆n
i ⊂ Rg (for nontrivial on i), or traditionally ∆i.

Degree: deg(∆n
i |∆i) = 22i − 1.

(∆t
i) Condition: η = (OC , ηD) with ηD ∈ Rg−i(D).

Notation: ∆t
i ⊂ Rg (for trivial on i), or traditionally ∆g−i.

Degree: deg(∆t
i|∆i) = 22(g−i) − 1.

(∆p
i ) Condition: η = (ηC , ηD) with ηC ∈ Ri(C), ηD ∈ Rg−i(D).

Notation: ∆p
i ⊂ Rg (for Prym), or traditionally ∆i:g−i.

Degree: deg(∆p
i |∆i) = (22i − 1)(22(g−i) − 1).

The pullback of ∆i ⊂Mg can be written as

π∗R(∆i) = ∆n
i + ∆t

i + ∆p
i

and, with the notation of proposition 2.1.11, we have relations

π∗R(δi) = δn
i + δt

i + δp
i

for 1 ≤ i ≤ bg/2c and δx
i = ORg(∆x

i ) ∈ Pic(Rg), x ∈ {n, t, p}. Observe that

deg(∆n
i |∆i) + deg(∆t

i|∆i) + deg(∆p
i |∆i) = 22g − 1 = deg(πR)

as expected. A small exception to the above is the special case of g = 2i, where

the components ∆n
i = ∆t

i coincide and have degree 2(22i − 1) over ∆i.

Example 2.1.17 (i = 0). Let (X, η, β) ∈ Rg with st(X) = Y = Bpq. There are

two possibilities for X, depending on whether it contains or not an exceptional

component. If it does not, i.e.

X = st(X) = Y = Bpq, β : η⊗2 ∼= OY

then the normalization ν : B → Bpq induces an exact sequence

0 −→ Z2 −→ J2(Bpq)
ν∗−→ J2(B) −→ 0, ηB = ν∗η ∈ J2(B)

and the potential triviality of ηB = ν∗η determines two irreducible components:

(∆t
0) Condition: ηB = OB, hence η ∈ (ν∗)−1(ηB)− {OY } unique.

Notation: ∆t
0 ⊂ Rg (for trivial), or traditionally ∆′′0.

Degree: deg(∆t
0|∆0) = 1.
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(∆p
0) Condition: ηB ∈ Rg−1(B), hence η ∈ (ν∗)−1(ηB) ∼= Z2.

Notation: ∆p
0 ⊂ Rg (for Prym), or traditionally ∆′0.

Degree: deg(∆p
0|∆0) = 2 (22(g−1) − 1).

On the other hand, if X has an exceptional component E, then we can project

it onto Y as a sort of “exceptional blow-up”, i.e. there is a map

X = B ∪p∼0, q∼∞ E −→ st(X) = Y = Bpq

induced by ν : B → Bpq, E 7→ z = ν(p) = ν(q). Then we have

BX = X − E ∼= B, β : η⊗2
B
∼= OB(−p− q)

for ηB = η|B ∈ Pic(B), and Mayer-Vietoris yields an exact sequence

0 −→ C∗ −→ Pic(X)
ξ−→ Pic(B)⊕ Pic(E) −→ 0, ξ(η) = (ηB,OE(1))

This way, we obtain one last irreducible component:

(∆b
0) Condition: ηB ∈

√
OB(−p− q).

Notation: ∆b
0 ⊂ Rg (for blown-up), or traditionally ∆ram

0 .

Degree: deg(∆b
0|∆0) = 22(g−1).

Due to the appearance of an exceptional component over the node z ∈ Bpq, the

divisor ∆b
0 is in fact the ramification divisor of πR : Rg →Mg. The pullback of

∆0 ⊂Mg can accordingly be written as

π∗R(∆0) = ∆t
0 + ∆p

0 + 2 ∆b
0

and, with the notation of proposition 2.1.11, we have the relation

π∗R(δ0) = δt
0 + δp

0 + 2 δb
0

for δx
0 = ORg(∆x

0) ∈ Pic(Rg), x ∈ {t, p, b}. Observe that

deg(∆t
0|∆0) + deg(∆p

0|∆0) + 2 deg(∆b
0|∆0) = 22g − 1 = deg(πR)

as expected.

Remark 2.1.18. In example 2.1.17, note that deg(∆b
0|∆0) is finite because, for

ηB ∈
√
OB(−p− q) fixed, any two line bundles

λ, µ ∈ ξ−1(ηB,OE(1)) ∼= C∗
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even if nonisomorphic as bundles, induce triplets

(X,λ, βλ) ∼= (X,µ, βµ) ∈ Rg

that are always isomorphic as stable Prym curves; see [BCF04] Lemma 2.

We can now repeat the process for Sg, or rather its irreducible components

S+
g , S−g . Recall the projection

πS : Sg → Mg, (X, θ, α) 7→ st(X) = Y

whose fibers π−1
S (Y ) we describe for Y ∈ ∆i general, 0 ≤ i ≤ bg/2c.

Example 2.1.19 (i > 0). Let (X, θ, α) ∈ Sg with st(X) = Y = C ∪p∼q D. The

existence of α forces X to have an exceptional component, i.e. there is a map

X = C ∪p∼0 E ∪q∼∞ D −→ st(X) = Y = C ∪p∼q D

induced by E 7→ z = [p] = [q], and we get

BX = X − E ∼= C tD, α : (θC , θD)⊗2 ∼= ωX |BX (−p− q) = (ωC , ωD)

for (θC , θD) = θ|BX ∈ Pic(C)⊕ Pic(D). Therefore, θ is determined by a pair

(θC , θD) ∈ Si(C)⊕ Sg−i(D), θ = (θC ,OE(1), θD) ∈ Pic(X)

In particular, notice that the (even, odd) parity of θ is subject to the (identical,

alternating) character of the parities of θC and θD, since we have the relation

h0(X, θ) = h0(C, θC) + h0(D, θD)

by Mayer-Vietoris. As a result, out of the four irreducible components that are

obtained over each ∆i, two lie in S+
g and two lie in S−g . The even ones are:

(∆+
i ) Condition: θC ∈ S+

i (C), θD ∈ S+
g−i(D).

Notation: ∆+
i = ∆+

g−i ⊂ S+
g (for even on i), or traditionally A+

i .

Degree: deg(∆+
i |∆i) = 2g−1(2i + 1)(2g−i + 1).

(∆−i ) Condition: θC ∈ S−i (C), θD ∈ S−g−i(D).

Notation: ∆−i = ∆−g−i ⊂ S+
g (for odd on i), or traditionally B+

i .

Degree: deg(∆−i |∆i) = 2g−1(2i − 1)(2g−i − 1).

Similarly, the odd ones are (abusing notation):
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(∆+
i ) Condition: θC ∈ S+

i (C), θD ∈ S−g−i(D).

Notation: ∆+
i = ∆−g−i ⊂ S−g (for even on i), or traditionally A−i .

Degree: deg(∆+
i |∆i) = 2g−1(2i + 1)(2g−i − 1).

(∆−i ) Condition: θC ∈ S−i (C), θD ∈ S+
g−i(D).

Notation: ∆−i = ∆+
g−i ⊂ S−g (for odd on i), or traditionally B−i .

Degree: deg(∆−i |∆i) = 2g−1(2i − 1)(2g−i + 1).

Observe that a factor of 2 has to be considered in the computation

∆+
i ⊂ S+

g , deg(∆+
i |∆i) = 2 ·#S+

i (C) ·#S+
g−i(D)

= 2 · 2i−1(2i + 1) · 2g−i−1(2g−i + 1)

= 2 · 2g−2(2i + 1)(2g−i + 1)

to account for the nontrivial automorphism of (X, θ, α) that arises from scaling

by −1 on the exceptional component. Over the coarse moduli space S+
g →M g,

this factor is not present. Consequently, the pullback of ∆i ⊂Mg (resp. ⊂M g)

by π+ : S+
g →Mg (resp. π+ : S+

g →M g) can be written as

π∗+(∆i) = 2 ∆+
i + 2 ∆−i (resp. π∗+(∆i) = ∆+

i + ∆−i )

and, with the notation of proposition 2.1.11, we have relations

π∗+(δi) = 2 δ+
i + 2 δ−i (resp. π∗+[∆i] = [∆+

i ] + [∆−i ] )

for 1 ≤ i ≤ bg/2c and δx
i = OS+

g
(∆x

i ) ∈ Pic(S+
g ), x ∈ {+,−}. The same analysis

works for S−g and S−g , although we get ∆+
i = ∆−i ⊂ S−g when g = 2i.

Example 2.1.20 (i = 0). Let (X, θ, α) ∈ Sg with st(X) = Y = Bpq. There are

again two possibilities for X. If it has no exceptional components, i.e.

X = st(X) = Y = Bpq, α : θ⊗2 ∼= ωY

then the normalization ν : B → Bpq induces a double cover

ν∗ :
√
ωY −→

√
ωB(p+ q), (ν∗θ)⊗2 ∼= ν∗ωY ∼= ωB(p+ q)

so that θ is determined by a square root θB ∈
√
ωB(p+ q) and a choice on how

to glue its fibers θB|p and θB|q. Only two such gluings are possible, one making

h0(X, θ) even and the other one making it odd. We describe the component ∆n
0

obtained in this way only for S+
g , as its S−g counterpart is very similar.
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(∆n
0) Condition: θB ∈

√
ωB(p+ q) with even gluing.

Notation: ∆n
0 ⊂ S+

g (for not blown-up), or traditionally A+
0 .

Degree: deg(∆n
0|∆0) = 22(g−1).

On the other hand, if X has an exceptional component E, then

X = B ∪p∼0, q∼∞ E −→ st(X) = Y = Bpq, BX = X − E ∼= B

and we have θB = θ|B ∈ Sg−1(B), since α gives rise to an isomorphism

α : θ⊗2
B
∼= ωX |B (−p− q) ∼= ν∗ωY (−p− q) ∼= ωB

Moreover, recall the exact sequence

0 −→ C∗ −→ Pic(X)
ξ−→ Pic(B)⊕ Pic(E) −→ 0, ξ(θ) = (θB,OE(1))

and note that h0(X, θ) = h0(B, θB), again by Mayer-Vietoris. In conclusion, we

get the remaining irreducible component of ∂S+
g , and similarly for ∂S−g , as:

(∆b
0) Condition: θB ∈ S+

g−1(B).

Notation: ∆b
0 ⊂ S+

g (for blown-up), or traditionally B+
0 .

Degree: deg(∆b
0|∆0) = 2g−2(2g−1 + 1).

The pullback of ∆0 ⊂Mg by π+ : S+
g →Mg can be written as

π∗+(∆0) = ∆n
0 + 2 ∆b

0

and, with the notation of proposition 2.1.11, we have the relation

π∗+(δ0) = δn
0 + 2 δb

0

for δx
0 = OS+

g
(∆x

0) ∈ Pic(S+
g ), x ∈ {n, b}. Finally, the divisor

∆b
0 +

∑
(∆+

i + ∆−i ) (resp. ∆b
0)

is the ramification divisor of π+ : S+
g →Mg (resp. π+ : S+

g →M g).

Remark 2.1.21. In the previous examples, it makes sense to denote

(over Rg) ∆n
i = ∆t

g−i and ∆p
i = ∆p

g−i

(over S+
g ) ∆+

i = ∆+
g−i and ∆−i = ∆−g−i

(over S−g ) ∆+
i = ∆−g−i

for all 1 ≤ i ≤ g − 1. These conventions nicely simplify future calculations.
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Examples 2.1.16 and 2.1.17 provide us with a collection of boundary classes

of Rg, while examples 2.1.19 and 2.1.20 follow suit with S+
g (and S−g ):

δt
0, δ

p
0 , δ

b
0 , δt

i , δ
n
i , δ

p
i ∈ Pic(Rg), 1 ≤ i ≤ bg/2c

δn
0 , δ

b
0 , δ+

i , δ
−
i ∈ Pic(S+

g ), 1 ≤ i ≤ bg/2c

For g ≥ 5, we then get

Pic(Rg)Q = λQ ⊕ δt
0Q ⊕ δp

0 Q ⊕ δb
0 Q ⊕

bg/2c⊕
i=1

(δt
i Q ⊕ δn

i Q ⊕ δp
i Q)

and similarly

Pic(S+
g )Q = λQ ⊕ δn

0 Q ⊕ δb
0 Q ⊕

bg/2c⊕
i=1

(δ+
i Q ⊕ δ−i Q)

where λ denotes the pullback of λ ∈ Pic(Mg) to Rg and S+
g , respectively.

Remark 2.1.22. As the Hodge bundle construction used to build λ ∈ Pic(Mg)

commutes with base change, the class λ in Rg or S+
g can likewise be defined by

means of the Hodge bundle associated to each of these spaces.

Remark 2.1.23. For the decompositions of Pic(Rg)Q and Pic(S+
g )Q to hold, it

is enough to see that Pic(Rg)Q and Pic(S+
g )Q are infinite cyclic, as discussed in

remark 2.1.14 for Mg. In the case of Rg, we have finite maps

Mg(2)→ Rg →Mg, (C, η1, . . . , ηg) 7→ (C, η1) 7→ C

where Mg(2) is the moduli of curves with a level 2 structure, that is, a basis of

the 2-torsion of their Jacobian. As a result, we get injective pullback maps

Pic(Mg)Q ↪→ Pic(Rg)Q ↪→ Pic(Mg(2))Q

Since Putman’s work [Put12a, Put12b] shows that Pic(Mg(2))Q ∼= Q for g ≥ 5,

it follows that Pic(Rg)Q ∼= Q in this range. The corresponding result for S+
g is

due to Harer [Har93] for g ≥ 9, and Putman [Put12a] for g ≥ 5.

Knowing the generating classes of a rational Picard group opens the door to

a simple, yet challenging question: how do we express important divisor classes

in terms of these generators? One possible answer is offered by the technique of

intersecting each divisor with specific families of test curves.
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2.1.3 Test curves on the Prym moduli space

If we want to compute the class expansion of some divisor of Rg in terms of

the generating classes of Pic(Rg)Q, we can take an empirical approach. Clearly,

the intersection of any family of Prym curves with either the divisor or its class

expansion must produce the same result. Consequently, choosing well-behaved

families for which both of these intersections may be independently determined

will turn out a series of linear relations between the class expansion coefficients.

Once enough linearly independent linear relations are obtained, the coefficients

(and thus the whole class expansion) can be extracted from them. Since we are,

in a sense, testing the divisor against different families of curves, we often refer

to these tools as test curves.

Let us take the most basic families of test curves on Mg and examine ways

of lifting them to Rg. In the following examples, we denote

π : Rg →Mg

instead of πR, as we will not work with spin curves here. However, descriptions

of common test curves on Sg can be found in [Far10] or [FV14].

Example 2.1.24 (reducible nodal curves). For each integer 2 ≤ i ≤ g − 1, we

fix general curves C ∈Mi and (D, q) ∈Mg−i, 1 and consider the test curve

Ci = (C × C) ∪∆C∼C×{q} (C ×D) −→ C

corresponding to the family of reducible nodal curves

Ci ≡ {C ∪y∼q D}y∈C ⊂ ∆i ⊂ Mg

Using the standard test curve techniques of [HM98] Chapter 3, we can see that

the intersection numbers of Ci with the generators of Pic(Mg)Q given earlier in

the section are described by the table:

λ δi δ(j 6=i)

Ci 0 2− 2i 0

We now fix two Prym roots ηC ∈ Ri(C), ηD ∈ Rg−i(D) and lift Ci to test curves
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Fi, Gi, Hi → C, as follows1:

Fi ≡ {(C ∪y∼q D, (ηC ,OD))}y∈C ⊂ ∆n
i ⊂ Rg

Gi ≡ {(C ∪y∼q D, (OC , ηD))}y∈C ⊂ ∆t
i ⊂ Rg

Hi ≡ {(C ∪y∼q D, (ηC , ηD))}y∈C ⊂ ∆p
i ⊂ Rg

Observe that π∗(Fi) = π∗(Gi) = π∗(Hi) = Ci. Then

Fi · δn
i = Fi · π∗δi = Ci · δi = 2− 2i

Gi · δt
i = Gi · π∗δi = Ci · δi = 2− 2i

Hi · δp
i = Hi · π∗δi = Ci · δi = 2− 2i

and all other intersection numbers are 0, which is collected in the table:

λ δt
0 δp

0 δb
0 δn

i δt
i δp

i δ(j 6=i)

Fi 0 0 0 0 2− 2i 0 0 0

Gi 0 0 0 0 0 2− 2i 0 0

Hi 0 0 0 0 0 0 2− 2i 0

Note the exception of g = 2i, where we have Fi · δn
i = Gi · δn

i = 2− 2i.

Example 2.1.25 (elliptic tails). We fix a general curve (C, p) ∈ Mg−1, 1 and a

general pencil f : Bl9(P2)→ P1 of plane cubics, with fibers

{Eλ = f−1(λ)}λ∈P1 ⊂ M1

together with a section σ : P1 → Bl9(P2) induced by one of the basepoints. We

may then glue the curve (C, p) to the pencil f along σ, thus producing a pencil

of stable curves

C0 = (C × P1) ∪{p}×P1∼σ(P1) Bl9(P2) −→ P1

which corresponds to

C0 ≡ {C ∪p∼σ(λ) Eλ}λ∈P1 ⊂ ∆1 ⊂ Mg

As in the previous example, [HM98] shows that the intersection numbers of the

1 Recall the conventions ∆n
i = ∆t

g−i and ∆p
i = ∆p

g−i set in remark 2.1.21.
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pencil C0 with the generators of Pic(Mg)Q are given by the table:

λ δ0 δ1 δ(j≥2)

C0 1 12 −1 0

If we now fix a Prym root ηC ∈ Rg−1(C), then the degree 3 branched covering

γ1 : R1,1 →M1,1

allows us to lift C0 to test curves F0, G0, H0, as follows:

F0 ≡ {(C ∪p∼σ(λ) Eλ, (ηC ,OEλ))}λ∈P1 ⊂ ∆t
1 ⊂ Rg

G0 ≡ {(C ∪p∼σ(λ) Eλ, (OC , ηEλ)) / ηEλ ∈ γ−1
1 (Eλ)}λ∈P1 ⊂ ∆n

1 ⊂ Rg

H0 ≡ {(C ∪p∼σ(λ) Eλ, (ηC , ηEλ)) / ηEλ ∈ γ−1
1 (Eλ)}λ∈P1 ⊂ ∆p

1 ⊂ Rg

Observe that π∗(F0) = C0 and π∗(G0) = π∗(H0) = 3 C0, so in particular

F0 · δt
1 = F0 · π∗δ1 = C0 · δ1 = −1

G0 · δn
1 = G0 · π∗δ1 = 3 C0 · δ1 = −3

H0 · δp
1 = H0 · π∗δ1 = 3 C0 · δ1 = −3

Looking at the 12 points λ∞ ∈ P1 that correspond to singular fibers of C0 and

blowing up the node of the rational component Eλ∞ ∈ ∆0, we see that, for F0,

the pullback of ηλ∞ = (ηC ,OEλ∞ ) is (ηC ,OP1), which is nontrivial. As discussed

in example 2.1.17, this implies that F0, λ∞ ∈ ∆p
0, hence

F0 · δp
0 = F0 · π∗δ0 = C0 · δ0 = 12

Furthermore, the covering γ1 : R1,1 →M1,1 is branched over Eλ∞ , and thus the

fiber γ−1
1 (Eλ∞) consists of two elements: one lying in the ramification divisor of

γ1, which we denote by ηb
Eλ∞

, and one outside, which we denote by ηt
Eλ∞

. Then

the pullback of (OC , ηt
Eλ∞

) is (OC ,OP1), that is, (OC , ηt
Eλ∞

) ∈ ∆t
0, and we get

G0 · δt
0 = C0 · δ0 = 12

G0 · δb
0 = C0 · δ0 = 12

Finally, the pair (ηC , η
t
Eλ∞

) pulls back to the nontrivial pair (ηC ,OP1), and so it

belongs to ∆p
0, yielding

H0 · δp
0 = C0 · δ0 = 12

H0 · δb
0 = C0 · δ0 = 12
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All other intersection numbers are 0, except for F0 · λ = 1, G0 · λ = H0 · λ = 3.

In summary, we obtain a table:

λ δt
0 δp

0 δb
0 δn

1 δt
1 δp

1 δ(j≥2)

F0 1 0 12 0 0 −1 0 0

G0 3 12 0 12 −3 0 0 0

H0 3 0 12 12 0 0 −3 0

Note that the formulas

π∗(G0) · δ0 = G0 · π∗δ0 = G0 · (δt
0 + 2 δb

0 )

π∗(H0) · δ0 = H0 · π∗δ0 = H0 · (δp
0 + 2 δb

0 )

both hold.

Example 2.1.26 (irreducible nodal curves). In keeping with the notation used

in example 2.1.17, we fix a general curve (B, p) ∈Mg−1, 1 and consider the test

curve obtained by gluing p to a varying point y ∈ B, namely

Y = Bl(p,p)(B ×B)/(∆B ∼ B × {p}) −→ B

This corresponds to a family

Y ≡ {Bpy}y∈B ⊂ ∆0 ⊂ Mg

where Bpy is an irreducible nodal curve for y 6= p and Bpp is a copy of B with a

pigtail attached to p, in the sense of [HM98] Section 3.C. Again, we can readily

see that the intersection table of Y with the generators of Pic(Mg)Q is:

λ δ0 δ1 δ(j≥2)

Y 0 2− 2g 1 0

Pulling back Y by the map ∆t
0 → ∆0, we lift it to a test curve Y0 such that:

Y0 ≡ {(Bpy, η
t
y) / η

t
y ∈ ∆t

0(Bpy)}y∈B ⊂ ∆t
0 ⊂ Rg

Since deg(∆t
0|∆0) = 1, we have π∗(Y0) = Y , hence

Y0 · δt
0 = Y0 · π∗δ0 = Y · δ0 = 2− 2g

In addition, the special fiber ηt
p lies in ∆n

1, as it pulls back to the trivial bundle

(OB,OP1) on the normalization B × P1 of Bpp, and thus is trivial over B. Then
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the last non-zero intersection number standing is

Y0 · δn
1 = Y0 · π∗δ1 = Y · δ1 = 1

and we get a table:

λ δt
0 δp

0 δb
0 δn

1 δt
1 δp

1 δ(j≥2)

Y0 0 2− 2g 0 0 1 0 0 0

Note that we could have also pulled back by ∆p
0 → ∆0 or ∆b

0 → ∆0.

2.2 Prym curves and vanishing theta-nulls

The interaction between Prym curves and theta characteristics leads to the

definition of a divisor Pnull on Rg closely related to an important divisor of S+
g ,

the theta-null divisor. In this section, we introduce the divisor Pnull and set out

on a journey to study its closure in Rg by way of computing the divisor classes

of its two irreducible components. Our first detour involves delving deeper into

the aforementioned interaction; more specifically, into how the parity of a theta

characteristic changes when it is tensored by a Prym root.

2.2.1 The divisor Pnull and its irreducible components

Recall definition 1.1.14, and let C be a smooth, integral curve of genus g.

Definition 2.2.1. An even theta characteristic θ on C with h0(C, θ) 6= 0 (that

is, with h0(C, θ) ≥ 2 and h0(C, θ) ≡ 0 mod 2) is called a vanishing theta-null.

The terminology here may seem confusing, as vanishing theta-nulls are even

theta characteristics with non-vanishing global sections. This is justified by the

classical theory of theta functions, whose Thetanullwert vanishes only when the

associated even theta characteristic is a vanishing theta-null; see [Bea13].

The locus of curves with a vanishing theta-null, namely

Θnull = {(C, θ) ∈ S+
g / h0(C, θ) ≥ 2} = S+

g ∩W2
g−1, g

gives rise to the theta-null divisor Θnull on S+
g , as well as its closure Θnull in S+

g .

This divisor plays an important role in the study of the geometry of S+
g , due to

its intrinsic nature and geometric characterization: for example, a computation
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of the class of Θnull allows [Far10] to prove that S+
g is of general type for g ≥ 9,

and of non-negative Kodaira dimension if g = 8.

The theta-null divisor can be pushed forward by π+ : S+
g →Mg to obtain

Mnull
g = {C ∈Mg / ∃ θ ∈ S+

g (C) with h0(C, θ) ≥ 2} ⊂ Mg

whose closure Mnull
g in Mg is described by [TiB88]. In turn, pulling back Mnull

g

by πR : Rg →Mg results in a divisor

Pnull = {(C, η) ∈ Rg / ∃ θ ∈ S+
g (C) with h0(C, θ) ≥ 2} ⊂ Rg

As discussed in section 1.1, the line bundle θ ⊗ η is again a theta characteristic,

different from θ, which may therefore be even or odd. Moreover, [TiB87] shows

that the projection Θnull →Mnull
g is generically finite of degree 1, hence we can

construct a rational map

Pnull → Sg = S+
g t S−g , (C, η) 7→ (C, θ ⊗ η)

where θ ∈ Θnull(C). Then, with the temporary notation

θ̄ = θ ⊗ η ∈ Sg(C), θ = θ̄ ⊗ η ∈ Θnull(C)

we may rewrite the defining condition of Pnull as

Pnull = {(C, η) ∈ Rg / ∃ θ̄ ∈ Sg(C) with θ̄ ⊗ η ∈ Θnull(C)} ⊂ Rg

and deduce that the parity of θ̄ = θ ⊗ η yields a decomposition

Pnull = P+
null t P

−
null

Dropping the bar for the sake of simplicity, we get the following:

Definition 2.2.2. We refer to the divisor Pnull on Rg as the Prym-null divisor.

Accordingly, its irreducible components P+
null and P−null, namely

P+
null = {(C, η) ∈ Rg / ∃ θ ∈ S+

g (C) with θ ⊗ η ∈ Θnull(C)} ⊂ Rg

P−null = {(C, η) ∈ Rg / ∃ θ ∈ S−g (C) with θ ⊗ η ∈ Θnull(C)} ⊂ Rg

with Pnull = P+
null + P−null, are called the even and odd Prym-null divisors.

Remark 2.2.3. The irreducibility of P+
null and P−null is derived from the analysis

included in [TiB88] Section 2, when appropriately adapted to the even and odd

Prym-null divisors. This argument has been explicitly realised by Rojas as part

of his ongoing doctoral research, which contains an independent study of these
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divisors that effectively complements our work; see [Roj21] Section 4.

Since the Prym-null divisors are natural, geometric divisors on Rg, our goal

is to compute the class of their closures P+
null, P

−
null in Rg. Such a computation

would build upon the findings of [TiB88] and [Far10], where the classes of both

Mnull
g and Θnull are respectively expressed in terms of the generating classes of

Pic(Mg)Q and Pic(S+
g )Q. In particular, write

µnull
g = OMg(Mnull

g ) ∈ Pic(Mg), ϑnull = OS+
g

(Θnull) ∈ Pic(S+
g )

for the aforementioned classes, and consider the notation λ, δi, δ
x
i introduced in

the previous section2. Then [TiB88] and [Far10] provide formulas

µnull
g = 2g−3

(
(2g + 1)λ− 2g−3 δ0 −

bg/2c∑
i=1

(2i − 1)(2g−i − 1) δi

)
ϑnull =

1

4
λ− 1

16
δn

0 −
bg/2c∑
i=1

δ−i

the latter of which implies the former, as the class [Mnull
g ] can also be obtained

by pushing forward the class [Θnull] by the coarse moduli map S+
g →M g.

Remark 2.2.4. The expression for ϑnull appears different than the original one

from [Far10] Th. 0.2, since it is stated in the language of moduli stacks. When

we translate it back into the language of coarse moduli spaces, it becomes clear

that both formulas agree:

[Θnull] =
1

4
λ− 1

16
[∆n

0]− 1

4
[∆−1 ]− 1

2

bg/2c∑
i=2

[∆−i ] ∈ Pic(S+
g )Q

Observe that the class [∆−1 ] in loc. cit. is implicitly divided by 2 to account for

the elliptic tail automorphisms, which we have made explicit here.

Let us write the classes of Pnull, P+
null and P−null as

%null = ORg(Pnull) ∈ Pic(Rg), %null = %+
null + %−null

%+
null = ORg(P+

null) ∈ Pic(Rg)

%−null = ORg(P−null) ∈ Pic(Rg)

and recall the notation δt
0, δ

p
0 , δ

b
0 , δ

n
i , δ

t
i , δ

p
i from examples 2.1.16 and 2.1.17. The

2 See proposition 2.1.11, theorem 2.1.15, and examples 2.1.19 and 2.1.20.
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sum %null can be directly computed as the pullback of µnull
g by the map

πR : Rg →Mg, π∗R(λ) = λ

π∗R(δ0) = δt
0 + δp

0 + 2 δb
0

π∗R(δi) = δn
i + δt

i + δp
i

with 1 ≤ i < g/2, and moreover π∗R(δg/2) = δn
g/2 + δp

g/2 for even g.

Proposition 2.2.5. The class of Pnull in Pic(Rg)Q is given by

%null = 2g−3
(

(2g + 1)λ − 2g−3 (δt
0 + δp

0 + 2 δb
0 )

−
k∑
i=1

(2i − 1)(2g−i − 1)(δn
i + δt

i + δp
i )

− ψ(g) · (2g/2 − 1)2(δn
g/2 + δp

g/2)
)

where the upper bound k and the parity-checking function ψ(g), defined as

k = dg/2e − 1 =

{
bg/2c if g odd

bg/2c − 1 if g even

ψ(g) =
1 + (−1)g

2
=

{
0 if g odd

1 if g even

account for the slight variation in pullback that occurs when g = 2i.

Proof. Follows from π∗R(µnull
g ) = %null and the formulas above.

Remark 2.2.6. Once the classes %+
null and %−null are computed, proposition 2.2.5

offers a quick double-check of their accuracy, by virtue of %+
null + %−null = %null.
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Remark 2.2.7. With the notation of proposition 2.2.5, we may write

%+
null = λ+ · λ −

(
δt,+

0 · δt
0 + δp,+

0 · δp
0 + δb,+

0 · δb
0

)
−

k∑
i=1

(δn,+
i · δn

i + δt,+
i · δt

i + δp,+
i · δp

i )

− ψ(g) · (δn,+
g/2 · δn

g/2 + δp,+
g/2 · δ

p
g/2)

%−null = λ− · λ −
(
δt,−

0 · δt
0 + δp,−

0 · δp
0 + δb,−

0 · δb
0

)
−

k∑
i=1

(δn,−
i · δn

i + δt,−
i · δt

i + δp,−
i · δp

i )

− ψ(g) · (δn,−
g/2 · δn

g/2 + δp,−
g/2 · δ

p
g/2)

and subsequently aim our efforts at determining the rational coefficients

λ+, δt,+
0 , δp,+

0 , δb,+
0 , δn,+

i , δt,+
i , δp,+

i ∈ Q (resp. −)

for 1 ≤ i ≤ bg/2c. To that end, the assortment of test curves introduced earlier

in the chapter will prove to be most useful.

Since the dividing line between P+
null and P−null hinges upon how the parity of

a vanishing theta-null is affected by its interaction with a fixed Prym root, this

phenomenon must be explored before any further analysis is pursued.

2.2.2 Parity change under tensoring by a Prym root

Our objective now is simple: given a Prym root η on a curve C, we wish to

understand how the parity of a theta characteristic θ of C relates to the parity

of the tensor product θ ⊗ η. As it turns out, this amounts to a standard count,

since the behaviour is homogeneous across all curves of the same type.

Definition 2.2.8. Let (C, η) be a Prym pair of genus g. Consider the subsets

S+,+
η (C) = {θ ∈ S+

g (C) / θ ⊗ η ∈ S+
g (C)} ⊂ S+

g (C)

S+,−
η (C) = {θ ∈ S+

g (C) / θ ⊗ η ∈ S−g (C)} ⊂ S+
g (C)

S−,+η (C) = {θ ∈ S−g (C) / θ ⊗ η ∈ S+
g (C)} ⊂ S−g (C)

S−,−η (C) = {θ ∈ S−g (C) / θ ⊗ η ∈ S−g (C)} ⊂ S−g (C)

into which Sg(C) decomposes as a disjoint union.
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Remark 2.2.9. Note that S+,−
η (C) ∼= S−,+η (C), θ 7→ θ ⊗ η. This leaves us with

three distinct sets that we want to study.

As discussed in remark 1.1.2, for any smooth, integral, genus g curve C, the

group J2(C) acts on Sg(C) by means of the map

J2(C)× Sg(C) −→ Sg(C), (η, θ) 7−→ θ ⊗ η

whose associated difference map can be written as

diff : Sg(C)× Sg(C) −→ J2(C), (θ1, θ2) 7−→ θ1 ⊗ θ−1
2

If we remove the diagonal ∆ = diff−1(OX), we get a map

diff 6= : Sg(C)× Sg(C)−∆ −→ Rg(C)

whose fibers, of order 22g, reflect how many ways there are of writing a Prym

root η as a difference of theta characteristics θ1 ⊗ θ−1
2 , that is, with θ1 = θ2 ⊗ η.

Since we aim to keep track of the parity of θ = θ2 and θ ⊗ η = θ1, we just need

to consider the restrictions

diff+ : S+
g (C)× S+

g (C)−∆ −→ Rg(C)

diff− : S−g (C)× S−g (C)−∆ −→ Rg(C)

diff± : S+
g (C)× S−g (C) −→ Rg(C)

Finally, we may recall from definitions 1.1.9 and 1.1.16 that

#Rg(C) = 22g − 1, #S+
g (C) = 2g−1(2g + 1)

#S−g (C) = 2g−1(2g − 1)

which enables us to count the fibers of these difference maps.

Lemma 2.2.10. With the previous notation, it holds that

#diff−1
+ (η) = 2g−1(2g−1 + 1)

#diff−1
− (η) = 2g−1(2g−1 − 1)

#diff−1
± (η) = 22g−2

for any Prym pair (C, η) of genus g.
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Proof. These numbers follow from the computation:

#diff−1
+ (η) =

#S+
g (C) · (#S+

g (C)− 1)

#Rg(C)
= 2g−1(2g−1 + 1)

#diff−1
− (η) =

#S−g (C) · (#S−g (C)− 1)

#Rg(C)
= 2g−1(2g−1 − 1)

#diff−1
± (η) =

#S+
g (C) ·#S−g (C)

#Rg(C)
= 22g−2

Notice that this process depends only on the genus g of the curve.

Definition 2.2.11. We denote

N+
g = #diff−1

+ (η) = 2g−1(2g−1 + 1)

N−g = #diff−1
− (η) = 2g−1(2g−1 − 1)

N±g = #diff−1
± (η) = 22g−2

for any positive integer g ∈ Z+.

The numbers N+
g , N−g and N±g clearly capture the parity-changing behaviour

that we are interested in, revealing the order of each set in definition 2.2.8.

Proposition 2.2.12. Let (C, η) be a Prym pair of genus g. Under the map

Sg(C)→ Sg(C), θ 7→ θ ⊗ η

that is, when tensoring by η, there are:

(i) N+
g = 2g−1(2g−1 + 1) even theta characteristics on C that remain even.

(ii) N−g = 2g−1(2g−1 − 1) odd theta characteristics on C that remain odd.

(iii) N±g = 22g−2 even theta characteristics on C that become odd.

(iv) N±g = 22g−2 odd theta characteristics on C that become even.

In particular, #Sg(C) = N+
g + N−g + 2 N±g = 22g.

Proof. As suggested above, we have

#S+,+
η (C) = #{θ ∈ S+

g (C) / θ ⊗ η ∈ S+
g (C)}

= #{(θ1, θ2) ∈ S+
g (C)× S+

g (C) / θ1 = θ2 ⊗ η ∈ S+
g (C)}

= #{(θ1, θ2) ∈ S+
g (C)× S+

g (C)−∆ / θ1 ⊗ θ−1
2 = η}

= #diff−1
+ (η) = N+

g

and similarly #S−,−η (C) = N−g and #S+,−
η (C) = #S−,+η (C) = N±g .
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Even though the smooth case has been addressed, we are not quite done. It

will also be helpful for our future endeavours to examine the first singular cases

from examples 2.1.17 and 2.1.20, namely ∆t
0 ⊂ Rg and ∆n

0 ⊂ Sg, and determine

how Prym and spin curves in these divisors interact with one another.

Let (B, p, q) ∈ Mg−1, 2 and take the irreducible nodal curve X = Bpq ∈ Mg

obtained from B by gluing the points p and q, with normalization ν : B → Bpq.

The dualizing bundle ωX is the subbundle of ν∗(ωB(p+ q)) fulfilling the residue

condition, that is, such that the following diagram commutes:

ωX

	
resp

||

resq

""
κ(p)

∼=
−1

// κ(q)

In this particular case, we actually have H0(X,ωX) = H0(B,ωB(p+ q)), since

h0(ωB(p+ q)) = 2g − 2− (g − 1) + 1 = g = h0(ωX)

by Riemann-Roch and duality. As mentioned in example 2.1.20, a spin curve

(X, θ, α) ∈ Sg, α : θ⊗2 ∼= ωX , (ν∗θ)⊗2 ∼= ωB(p+ q)

is given by a root θB ∈
√
ωB(p+ q) and a suitable gluing ϕ : θB|p ∼= θB|q, which

by the above discussion is bound to a condition ϕ⊗2 ≡ −1 corresponding to the

commutativity of the following diagram:

ωB(p+ q)|p
ϕ⊗2

∼=
//

resp ∼=
��

	

ωB(p+ q)|q
resq∼=
��

κ(p)
∼=
−1

// κ(q)

Specifically, consider the canonical isomorphism ψ induced by the diagram

θB|p

ψ∼=

��

&&
0 // θB(−p− q) // θB �

88

&&

0

θB|q

88

where θB|p and θB|q are expressed as cokernels of the same map. Let us give an

explicit description of ψ. On the one hand, Riemann-Roch and duality yield

h0(θB)− h0(θB(−p− q)) = g − 1− (g − 1) + 1 = 1
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so we can write θB|p = 〈σ(p)〉 and θB|q = 〈σ(q)〉 for any section

σ ∈ H0(B, θB)−H0(B, θB(−p− q))

and see that ψ is, by definition, the isomorphism

ψ : θB|p ∼= θB|q , σ(p) 7→ σ(q)

On the other hand, we have σ⊗2 ∈ H0(B,ωB(p+ q)) = H0(X,ωX), hence

resp(σ
⊗2) + resq(σ

⊗2) = 0

and it is clear that ψ⊗2 ≡ −1, in the sense of:

ωB(p+ q)|p
ψ⊗2

∼=
//

resp ∼=
��

	

ωB(p+ q)|q
resq∼=
��

σ⊗2(p) � //
_

��
	

σ⊗2(q)
_

��
κ(p)

∼=
−1

// κ(q) resp(σ
⊗2) � // resq(σ

⊗2)

If we also consider the opposite isomorphism

−ψ : θB|p ∼= θB|q , σ(p) 7→ −σ(q) , (−ψ)⊗2 ≡ −1

then ψ and −ψ are the only possible ways of gluing p and q to make θB into a

square root of ωX . The resulting bundles on X, which we denote by

(θB, ψ), (θB,−ψ) ∈
√
ωX

are thus the two elements in the fiber (ν∗)−1(θB) of the double cover

ν∗ :
√
ωX −→

√
ωB(p+ q)

Furthermore, observe that the 1-dimensional space of sections 〈σ〉 ⊂ H0(B, θB)

is preserved under the gluing ψ, but lost under the gluing −ψ. As a result, the

dimension of the glued global sections is given by

h0(X, (θB, ψ)) = h0(B, θB)

h0(X, (θB,−ψ)) = h0(B, θB)− 1

so that (θB, ψ) and (θB,−ψ) always have different parity.

Finally, let ηt be the single Prym root of X lying in the divisor ∆t
0 ⊂ Rg, as

defined in example 2.1.17. In other words, we have

ηt 6= OX , ν∗ηt = OB
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It follows that tensoring by ηt permutes the elements of (ν∗)−1(θB), since

(θB, ψ)⊗ ηt 6= (θB, ψ), ν∗((θB, ψ)⊗ ηt) = θB

and similarly for (θB,−ψ). This corresponds to a change in parity:

Proposition 2.2.13. With the notation above, let (X, θ, α) ∈ S+
g be a general

point of ∆n
0. Then tensoring by (X, ηt, β) ∈ ∆t

0 ⊂ Rg induces a new spin curve

(X, θ ⊗ ηt, α⊗ β) in ∆n
0 ⊂ S−g , of opposite parity (resp. S−g , S+

g ).

Propositions 2.2.12 and 2.2.13 effectively supply the tools required to study

the intersection of the Prym-null divisors with different test curves, paving the

way for a better insight into their geometry.

2.3 The geometry of the Prym-null divisors

Our set-up is essentially ready: if we intersect the test curves from section 2.1

with the Prym-null divisors P+
null and P−null from section 2.2, then we can derive

the class expansions of %+
null and %−null from the resulting linear system. In order

to describe these intersections, we mainly take advantage of the theory of limit

linear series on curves of compact type, as developed by [EH86].

2.3.1 Over reducible nodal curves

Recall the test curves from example 2.1.24, that is

Fi ≡ {(C ∪y∼q D, (ηC ,OD))}y∈C ⊂ ∆n
i ⊂ Rg

Gi ≡ {(C ∪y∼q D, (OC , ηD))}y∈C ⊂ ∆t
i ⊂ Rg

Hi ≡ {(C ∪y∼q D, (ηC , ηD))}y∈C ⊂ ∆p
i ⊂ Rg

with C ∈Mi, (D, q) ∈Mg−i, 1 general,

and ηC ∈ Ri(C), ηD ∈ Rg−i(D) arbitrary.

If g 6= 2i, their intersection table is:

λ δt
0 δp

0 δb
0 δn

i δt
i δp

i δ(j 6=i)

Fi 0 0 0 0 2− 2i 0 0 0

Gi 0 0 0 0 0 2− 2i 0 0

Hi 0 0 0 0 0 0 2− 2i 0
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If g = 2i, we have Fi · δn
i = Gi · δn

i = 2− 2i instead.

Out of all the possible intersections, we introduce Fi ∩ P+
null as a model case,

indicating in detail the techniques and guidelines that will apply to most of the

other test curves in this section.

Remark 2.3.1. If a stable Prym curve

Fi, y = (C ∪y∼q D, (ηC ,OD)) ∈ Fi

lies in P+
null, then it can be expressed as the limit of a smooth family in P+

null, in

the following sense. First, let us write

(Xy, ηy) = (C ∪y∼0 E ∪q∼∞ D, (ηC ,OE,OD))

st(Xy, ηy) = (C ∪y∼q D, (ηC ,OD)) = Fi, y ∈ P+
null

to account for the exceptional component E ∼= P1 which appears when working

with stable spin structures on C ∪y∼q D. Then there exist families

f : X → Spec(R) = {ξ, p0} of quasistable curves,

(st(f), η, β) ∈ Rg of stable Prym curves, and

(f, θ, α) ∈ S+
g of stable (even) spin curves,

such that:

(i) X is a smooth surface.

(ii) R is a discrete valuation ring with maximal ideal m, whose spectrum is

composed of a special point p0 ≡ m and a generic point ξ ≡ (0).

(iii) On the special fiber X0 = f−1(p0), it holds that

(X0, η|X0
) = (Xy, ηy), st(X0, η|X0

) = Fi, y ∈ P+
null

(iv) On the generic fiber Xξ = f−1(ξ) = st(f)−1(ξ), it holds that

(Xξ, ηξ) ∈ P+
null, (Xξ, θξ ⊗ ηξ) ∈ Θnull

or equivalently (θξ ⊗ ηξ)⊗2 ' ωXξ and h0(Xξ, θξ ⊗ ηξ) ≥ 2, ≡ 0 mod 2.

If we recall example 2.1.19 and use the notation

θ|X0
= θ+

y = (θC ,OE(1), θD) ∈ S+
g (Xy)

then it is clear that θC and θD must have the same parity. In addition, since C

and D are general, the dimension of the global sections of θC and θD is at most
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one, and thus we get

h0(C, θC) = h0(D, θD) ∈ {0, 1}

Observe that if Fi, y were to lie in P−null, then θ|X0
= θ−y would be odd instead of

even and these theta characteristics would have opposite parity.

As described in [EH86] Section 2, the data given in remark 2.3.1 produces a

limit linear series of type g1
g−1 on C ∪y∼q D, namely

` =
(
`C = (LC , VC), `D = (LD, VD)

)
∈ G1

g−1(C)×G1
g−1(D)

where the line bundles LC and LD are obtained by looking at the equality

θ|X0
⊗ η|X0

= θ+
y ⊗ ηy = (θC ⊗ ηC ,OE(1), θD)

and twisting with y and q to adjust the degrees to g − 1, so that{
LC = θC ⊗ ηC ((g − i)y)

LD = θD (iq)

Since θξ ⊗ ηξ ∈ Θnull(Xξ) is even and parity is constant in families, we get

h0(θC ⊗ ηC) + h0(θD) = h0(θ+
y ⊗ ηy) ≡ h0(θξ ⊗ ηξ) ≡ 0 mod 2

In particular, θC ⊗ ηC and θD must have the same parity, and the dimension of

their global sections is again either 0 or 1 due to generality. This results in two

distinct possibilities for the P+
null setting, and two more for the P−null one:

h0(θC) h0(θD) h0(θC ⊗ ηC)

P+
null

0 0 0  (F,+, 0)

1 1 1  (F,+, 1)

P−null

1 0 0  (F,−, 0)

0 1 1  (F,−, 1)

In order to study each of these cases, we first need to recall a basic property

of the vanishing sequence of a linear series.

Remark 2.3.2. Given a linear series (L, V ) ∈ Gr
d(C) on a smooth curve C and

a point p ∈ C, we can find an ordered basis

V = 〈s0, . . . , sr〉 ⊂ H0(C,L)
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such that, if we write ai(p) = ordp(si) for all i ∈ {0, . . . , r}, then

a0(p) < . . . < ar(p)

is the vanishing sequence of (L, V ) at p. Taking any b ∈ Z+ and observing that

V (−bp) is the subspace of sections s ∈ V such that ordp(s) ≥ b, we can extract

a basis of V (−bp) out of 〈s0, . . . , sr〉, namely

V (−bp) = 〈sj, . . . , sr〉 ⊂ H0(C,L(−bp))

where the index j ∈ {0, . . . , r + 1} is determined by the inequalities

aj(p) = ordp(sj) ≥ b, aj−1(p) = ordp(sj−1) < b

whenever they make sense. Finally, the fact that there are (r + 1)− j elements

in such a basis leads to the useful relation

dimV (−bp) = r + 1− j ⇔ aj−1(p) < b ≤ aj(p)

which we will systematically use in the subsequent discussion. For example, we

can apply it to LC = θC ⊗ ηC ((g − i)y) and deduce that

h0(θC ⊗ ηC) = h0(LC(−(g − i)y) = 2− j ⇔ a`Cj−1(y) < g − i ≤ a`Cj (y)

with j ∈ {1, 2} depending on the parity of θC ⊗ ηC .

Let us start by analysing the two possibilities related to the even Prym-null

divisor, labelled as in the table above.

Possibility (F,+, 0). In this case, we have

h0(θC ⊗ ηC) = 0 ⇒ a`C0 (y) < a`C1 (y) < g − i ⇒ a`C0 (y) ≤ g − i− 2

h0(θD) = 0 ⇒ a`D1 (q) < i ⇒ a`D1 (q) ≤ i− 1

Combining these upper bounds, we immediately reach a contradiction with one

of the limit g1
g−1 compatibility conditions

g − 1 ≤ a`C0 (y) + a`D1 (q) ≤ g − 3 (!!)

which therefore prevents this type of intersection from taking place.

Possibility (F,+, 1). In this case, we have

h0(θC ⊗ ηC) = 1 ⇒ a`C0 (y) < g − i ≤ a`C1 (y)

h0(θD) = 1 ⇒ a`D0 (q) < i ≤ a`D1 (q)
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On the one hand, (D, q) is general, so we may assume that q /∈ supp(θD). Then

the vanishing sequence of `D at q can be bounded further:

h0(θD (−q)) = h0(θD)− 1 = 0 ⇒ a`D1 (q) < i+ 1

h0(θD (q)) = h0(θD) = 1 ⇒ a`D0 (q) < i− 1 ≤ a`D1 (q)

We thus get a`D1 (q) = i and, by the limit g1
g−1 condition, a`C0 (y) = g − i− 1. On

the other hand, C is general, so supp(θC ⊗ ηC) consists of i− 1 distinct points.

As a result, we obtain a tight upper bound for a`C1 (y), namely

div(θC ⊗ ηC) � 2y ⇒ div(s) � (g − i+ 2)y ∀ s ∈ H0(LC)

⇒ a`C1 (y) ≤ g − i+ 1

which together with the condition a`D0 (q) + a`C1 (y) ≥ g − 1 yields a`D0 (q) = i− 2

and a`C1 (y) = g − i+ 1. In turn, this means that y ∈ supp(θC ⊗ ηC), and that `

is a refined limit g1
g−1 of the form{

`C = |θC ⊗ ηC (y)|+ (g − i− 1)y ∈ G1
g−1(C)

`D = |θD (2q)|+ (i− 2)q ∈ G1
g−1(D)

with vanishing sequences (g − i− 1, g − i+ 1) and (i− 2, i).

Remark 2.3.3. The transversality of the intersection Fi ∩ P+
null is a by-product

of the fact that the restriction P+
null|Fi is isomorphic to a scheme

J1
g−1(Fi)→ Fi

parametrizing those limit linear series of type g1
g−1 on stable Prym curves of Fi

that adhere to the previous characterization. In the vein of [EH86] Th. 3.3, we

then have a decomposition

J1
g−1(Fi) ∼= {`C} × {`D}

where the right-hand side is everywhere reduced, since it corresponds to

{(θC , y) / θC ∈ S−,−ηC
(C), y ∈ supp(θC ⊗ ηC)} × {θD / θD ∈ S−g−i(D)}

Therefore P+
null|Fi ∼= J1

g−1(Fi) is everywhere reduced and the intersection of P+
null

and Fi is transverse, as expected. A breakdown of this argument may be found

in the proof of [Far10] Th. 2.2.

In conclusion, for each pair of theta characteristics θC , θD fulfilling (F,+, 1),

that is, such that θC ∈ S−i (C), θD ∈ S−g−i(D) and θC ⊗ ηC ∈ S−i (C), then every
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y ∈ supp(θC ⊗ ηC) yields a limit g1
g−1 as above, and these limit linear series are

the only ones contributing to the intersection Fi ∩ P+
null. Consequently, we need

to count such pairs of theta characteristics.

Fortunately, we already have all the necessary tools to do this.

Lemma 2.3.4. For all i ∈ {2, . . . , g − 1}, it holds that

Fi · P+
null = 2g−2(2i−1 − 1)(2g−i − 1)(i− 1)

Proof. In light of the previous considerations, we may split the count into three

parts. Specifically, we want to compute the number of:

(i) Theta characteristics θC ∈ S−i (C) such that θC ⊗ ηC ∈ S−i (C).

According to proposition 2.2.12, this is N−i = 2i−1(2i−1 − 1).

(ii) Theta characteristics θD ∈ S−g−i(D).

According to definition 1.1.16, this is #S−g−i(D) = 2g−i−1(2g−i − 1).

(iii) Once θC is fixed, points y in the support of θC ⊗ ηC .

Since θC ⊗ ηC ∈ Si(C), there are deg(θC ⊗ ηC) = i− 1 such points.

Altogether, we obtain

Fi · P+
null = #

{
(θC , θD, y) ∈ S−i (C)× S−g−i(D)× C /

θC ⊗ ηC ∈ S−i (C), y ∈ supp(θC ⊗ ηC)

}
= N−i ·#S−g−i(D) · (i− 1)

= 2i−1(2i−1 − 1) · 2g−i−1(2g−i − 1) · (i− 1)

= 2g−2(2i−1 − 1)(2g−i − 1)(i− 1)

as stated above.

In order to determine Fi ∩ P−null we follow the same argument, with the only

difference being that θC and θD now have opposite parity (remark 2.3.1). Since

this brings about minimal variations, we merely outline the situation and carry

out the corresponding count. There are again two possibilities to tackle.

Possibility (F,−, 0). Similar contradiction to that of (F,+, 0).

Possibility (F,−, 1). As with its even counterpart, we are able to build a limit

linear series contributing to Fi · P−null whenever y ∈ supp(θC ⊗ ηC). In this case,

however, we have θC ∈ S+
i (C).
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We thus get

Fi · P−null = #

{
(θC , θD, y) ∈ S+

i (C)× S−g−i(D)× C /

θC ⊗ ηC ∈ S−i (C), y ∈ supp(θC ⊗ ηC)

}
= N±i ·#S−g−i(D) · (i− 1)

= 22i−2 · 2g−i−1(2g−i − 1) · (i− 1)

= 2g+i−3(2g−i − 1)(i− 1)

which completes the review of the first family of test curves.

The procedure we have employed to study the intersection of Fi and each of

the Prym-null divisors works with Gi and Hi as well. Nonetheless, we still need

to carefully track the small changes that happen along the way.

Let us briefly do this. If a stable Prym curve

Gi, y = (C ∪y∼q D, (OC , ηD)) ∈ Gi

lies in P+
null (resp. P−null), we can produce a limit g1

g−1 on C ∪y∼q D such that{
LC = θC ((g − i)y)

LD = θD ⊗ ηD (iq)

with h0(θC) + h0(θD ⊗ ηD) ≡ 0 mod 2, where θC and θD have the same parity

(resp. opposite parity). Then θC and θD ⊗ ηD have the same parity and we get

the following possibilities:

h0(θC) h0(θD) h0(θD ⊗ ηD)

P+
null

0 0 0  (G,+, 0) : contradiction

1 1 1  (G,+, 1) : y ∈ supp(θC)

P−null

0 1 0  (G,−, 0) : contradiction

1 0 1  (G,−, 1) : y ∈ supp(θC)

With the only contribution of (G,+, 1) and (G,−, 1) to their respective inter-
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sections, we obtain

Gi · P+
null = #

{
(θC , θD, y) ∈ S−i (C)× S−g−i(D)× C /

θD ⊗ ηD ∈ S−g−i(D), y ∈ supp(θC)

}
= #S−i (C) · N−g−i · (i− 1)

= 2i−1(2i − 1) · 2g−i−1(2g−i−1 − 1) · (i− 1)

= 2g−2(2i − 1)(2g−i−1 − 1)(i− 1)

and similarly

Gi · P−null = #

{
(θC , θD, y) ∈ S−i (C)× S+

g−i(D)× C /

θD ⊗ ηD ∈ S−g−i(D), y ∈ supp(θC)

}
= #S−i (C) · N±g−i · (i− 1)

= 2i−1(2i − 1) · 22g−2i−2 · (i− 1)

= 22g−i−3(2i − 1)(i− 1)

Note that there are equalities

Fi · P+
null / (i− 1) = Gg−i · P+

null / (g − i− 1) (resp. P−null)

for all i ∈ {2, . . . , g − 2}, which is not surprising, given the construction of the

families Fi and Gg−i.

Remark 2.3.5. The contradiction in (G,+, 0) and (G,−, 0) is again

g − 1 ≤ a`C0 (y) + a`D1 (q) ≤ g − 3 (!!)

In general, this condition will fail every time we try to use theta characteristics

without global sections to build a limit g1
g−1 on our reducible nodal curve, so in

the future we will refrain from detailing it any further.

Finally, if a stable Prym curve

Hi, y = (C ∪y∼q D, (ηC , ηD)) ∈ Hi

lies in P+
null (resp. P−null), we can produce a limit g1

g−1 on C ∪y∼q D such that{
LC = θC ⊗ ηC ((g − i)y)

LD = θD ⊗ ηD (iq)

with h0(θC ⊗ ηC) + h0(θD ⊗ ηD) ≡ 0 mod 2, where θC and θD have the same
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parity (resp. opposite parity). Then θC ⊗ ηC and θD ⊗ ηD have the same parity

and we get the following possibilities:

h0(θC) h0(θD) h0(θC ⊗ ηC) h0(θD ⊗ ηD)

P+
null

0 0 0 0  contradiction

1 1 0 0  contradiction

0 0 1 1  y ∈ supp(θC ⊗ ηC)

1 1 1 1  y ∈ supp(θC ⊗ ηC)

P−null

0 1 0 0  contradiction

1 0 0 0  contradiction

0 1 1 1  y ∈ supp(θC ⊗ ηC)

1 0 1 1  y ∈ supp(θC ⊗ ηC)

The count has now grown in complexity, but not by much. We have

Hi · P+
null = #


(θC , θD, y) ∈ (S+

i (C)× S+
g−i(D)× C) ∪

∪ (S−i (C)× S−g−i(D)× C) /

θC ⊗ ηC ∈ S−i (C), θD ⊗ ηD ∈ S−g−i(D),

y ∈ supp(θC ⊗ ηC)


= (N±i N±g−i + N−i N−g−i) · (i− 1)

= (22i−2 · 22g−2i−2 + 2i−1(2i−1 − 1) · 2g−i−1(2g−i−1 − 1)) · (i− 1)

= 2g−2(2g−1 − 2i−1 − 2g−i−1 + 1)(i− 1)

and similarly

Hi · P−null = #


(θC , θD, y) ∈ (S+

i (C)× S−g−i(D)× C) ∪
∪ (S−i (C)× S+

g−i(D)× C) /

θC ⊗ ηC ∈ S−i (C), θD ⊗ ηD ∈ S−g−i(D),

y ∈ supp(θC ⊗ ηC)


= (N±i N−g−i + N−i N±g−i) · (i− 1)

= (22i−2 · 2g−i−1(2g−i−1 − 1) + 2i−1(2i−1 − 1) · 22g−2i−2) · (i− 1)

= 2g−2(2g−1 − 2i−1 − 2g−i−1)(i− 1)

which brings our analysis of standard reducible nodal test curves to a close.

To summarize, we compile the simplified expressions for all three collections

of intersections into the following extension of lemma 2.3.4.
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Lemma 2.3.6. For all i ∈ {2, . . . , g − 1}, we have intersection numbers

P+
null P−null

Fi (2i−1 − 1)(2g−i − 1) r 2i−1(2g−i − 1) r

Gi (2i − 1)(2g−i−1 − 1) r (2i − 1) 2g−i−1 r

Hi (2g−1 − 2i−1 − 2g−i−1 + 1) r (2g−1 − 2i−1 − 2g−i−1) r

where r = 2g−2(i− 1) = −2g−3(2− 2i).

Remark 2.3.7. A quick computation shows that these numbers pass the check

suggested by remark 2.2.6. Indeed, we can easily see that

Fi · P+
null + Fi · P−null = 2g−2(2i − 1)(2g−i − 1)(i− 1) = Fi · Pnull

Gi · P+
null +Gi · P−null = 2g−2(2i − 1)(2g−i − 1)(i− 1) = Gi · Pnull

Hi · P+
null +Hi · P−null = 2g−2(2i − 1)(2g−i − 1)(i− 1) = Hi · Pnull

where we have used example 2.1.24 and proposition 2.2.5.

If we combine lemma 2.3.6 with the intersection table of example 2.1.24, we

can derive the first batch of coefficients from the formulas in remark 2.2.7.

Proposition 2.3.8. Fix integers g ≥ 5 and i ∈ {1, . . . , bg/2c}. The generating

classes δn
i , δ

t
i , δ

p
i ∈ Pic(Rg)Q have coefficients

δn,+
i = 2g−3(2i−1 − 1)(2g−i − 1)

%+
null δt,+

i = 2g−3(2i − 1)(2g−i−1 − 1)

δp,+
i = 2g−3(2g−1 − 2i−1 − 2g−i−1 + 1)

δn,−
i = 2g−3 2i−1(2g−i − 1)

%−null δt,−
i = 2g−3(2i − 1) 2g−i−1

δp,−
i = 2g−3(2g−1 − 2i−1 − 2g−i−1)

in the rational expansions of the Prym-null classes in genus g.

Proof. Every family of test curves generates a linear relation between the coeffi-

cients of each expansion. Due to the simplicity of the intersection tables of Fi,

Gi and Hi with the generators of Pic(Rg)Q, their corresponding linear relations

directly determine one coefficient (sometimes the same one, if two relations are

linearly dependent). For the sake of brevity, we shall describe this computation

simply in the Fi case, as all others are analogous. To begin with, we have

deg %+
null(Fi) = Fi · P+

null = −2g−3(2i−1 − 1)(2g−i − 1)(2− 2i)
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by lemma 2.3.6. Furthermore, remark 2.2.7 and example 2.1.24 show that

deg %+
null(Fi) = −δn,+

i deg δn
i (Fi) = −δn,+

i (2− 2i)

with the convention δn,+
i = δt,+

g−i for all i. Since only one coefficient survives, we

can immediately extract it from the resulting equation:

Fi  δn,+
i = 2g−3(2i−1 − 1)(2g−i − 1)

For 2 ≤ i ≤ bg/2c, each coefficient can be similarly computed by means of:

Fi or Gg−i  

{
δn,+
i = 2g−3(2i−1 − 1)(2g−i − 1)

δn,−
i = 2g−3 2i−1(2g−i − 1)

Gi or Fg−i  

{
δt,+
i = 2g−3(2i − 1)(2g−i−1 − 1)

δt,−
i = 2g−3(2i − 1) 2g−i−1

Hi or Hg−i  

{
δp,+
i = 2g−3(2g−1 − 2i−1 − 2g−i−1 + 1)

δp,−
i = 2g−3(2g−1 − 2i−1 − 2g−i−1)

For i = 1, we do not have families F1, G1 and H1. Nevertheless, we can use:

Gg−1  

{
δn,+

1 = 0

δn,−
1 = 2g−3(2g−1 − 1)

Fg−1  

{
δt,+

1 = 2g−3(2g−2 − 1)

δt,−
1 = 2g−3 2g−2

Hg−1  

{
δp,+

1 = 2g−3 2g−2

δp,−
1 = 2g−3(2g−2 − 1)

that is to say, the above formulas hold for i = 1 as well.

Remark 2.3.9. Observe that δn,+
1 = 0 is a consequence of the fact that genus 1

curves do not have nontrivial odd theta characteristics, hence N−1 = 0.

We have obtained all coefficients except for λ+, δt,+
0 , δp,+

0 and δb,+
0 (resp. −),

so four more linear relations are needed for each divisor. Coincidentally, this is

also the number of test curves that we have yet to study.
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2.3.2 Over curves with elliptic tails

Recall the test curves from example 2.1.25, that is

F0 ≡ {(C ∪p∼σ(λ) Eλ, (ηC ,OEλ))}λ∈P1 ⊂ ∆t
1 ⊂ Rg

G0 ≡ {(C ∪p∼σ(λ) Eλ, (OC , ηEλ)) / ηEλ ∈ γ−1
1 (Eλ)}λ∈P1 ⊂ ∆n

1 ⊂ Rg

H0 ≡ {(C ∪p∼σ(λ) Eλ, (ηC , ηEλ)) / ηEλ ∈ γ−1
1 (Eλ)}λ∈P1 ⊂ ∆p

1 ⊂ Rg

with (C, p) ∈Mg−1, 1 general,

{Eλ}λ∈P1 ⊂M1 general pencil of plane cubics with basepoint σ,

ηC ∈ Rg−1(C) arbitrary,

and γ1 : R1,1 →M1,1 forgetful degree 3 branched covering.

Our goal is to expand their intersection table to include the Prym-null divisors,

as we did in lemma 2.3.6 for the previous families of test curves. In this case, it

turns out that the new intersection numbers are much less imposing:

λ δt
0 δp

0 δb
0 δn

1 δt
1 δp

1 δ(j≥2) P+
null P

−
null

F0 1 0 12 0 0 −1 0 0 0 0

G0 3 12 0 12 −3 0 0 0 0 0

H0 3 0 12 12 0 0 −3 0 0 0

Let us check the veracity of this claim.

First, we determine F0 ∩ P+
null (resp. P−null). If a stable Prym curve

F0, λ = (C ∪p∼e Eλ, (ηC ,OEλ)) ∈ F0

lies in P+
null (resp. P−null), we can produce a limit g1

g−1 on C ∪p∼e Eλ such that{
LC = θC ⊗ ηC (p)

LEλ = θEλ ((g − 1)e)

with h0(θC ⊗ ηC) + h0(θEλ) ≡ 0 mod 2, where θC and θEλ have the same parity

(resp. opposite parity). Then θC ⊗ ηC and θEλ have the same parity and we get

the following possibilities:

h0(θC) h0(θEλ) h0(θC ⊗ ηC)

P+
null

0 0 0  contradiction

1 1 1  (F0,+, 1)

P−null

1 0 0  contradiction

0 1 1  (F0,−, 1)
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Note that all four theta characteristics of a genus 1 curve are of degree zero,

hence the nontrivial ones have no global sections other than zero. In particular,

the dimension of the global sections of θEλ is given by

h0(θEλ) =

{
1 if θEλ = OEλ
0 otherwise

for all λ ∈ P1, meaning that the table above is comprehensive. Since half of the

scenarios are already covered by remark 2.3.5, we just need to look at (F0,+, 1)

and (F0,−, 1) to conclude. This can be done in one fell swoop.

Possibilities (F0,+, 1), (F0,−, 1). In both of these cases, we have

h0(θC ⊗ ηC) = 1 ⇒ a`C0 (p) < 1 ≤ a`C1 (p)

h0(θEλ) = 1 ⇒ a`Eλ0 (e) < g − 1 ≤ a`Eλ1 (e)

Now (C, p) is general, so we may assume that p /∈ supp(θC ⊗ ηC). Therefore

h0(θC ⊗ ηC (p)) = h0(θC ⊗ ηC) = 1 ⇒ a`C0 (p) < 0 ≤ a`C1 (p)

Furthermore, Eλ is a genus 1 curve, so deg(θEλ) = 0. As a result, we get

h0(θEλ (−e)) = 0 ⇒ a`Eλ1 (e) < g

that is, a`Eλ1 (e) = g − 1, which contradicts the limit g1
g−1 condition

g − 1 ≤ a`C0 (p) + a`Eλ1 (e) < g − 1 (!!)

(Alternatively, from p /∈ supp(θC ⊗ ηC) we may also deduce

h0(θC ⊗ ηC (−p)) = h0(θC ⊗ ηC)− 1 = 0 ⇒ a`C1 (p) < 2

which yields a`C1 (p) = 1 and, via the limit g1
g−1 condition, a`Eλ0 (e) = g − 2. This

should prevent θEλ from being trivial, due to the implication

h0(θEλ (e)) = h0(OEλ (e)) = 1 ⇒ a`Eλ0 (e) < g − 2 ≤ a`Eλ1 (e)

However, the triviality of θEλ is ensured by h0(θEλ) = 1 and deg(θEλ) = 0.)

As every possibility leads to a contradiction, the intersections F0 ∩ P+
null and

F0 ∩ P−null are both empty, and thus F0 · P+
null = F0 · P−null = 0.

Next we study G0 ∩ P+
null (resp. P−null). If a stable Prym curve

G0, λ = (C ∪p∼e Eλ, (OC , ηEλ)) ∈ G0
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lies in P+
null (resp. P−null), we can produce a limit g1

g−1 on C ∪p∼e Eλ such that{
LC = θC (p)

LEλ = θEλ ⊗ ηEλ ((g − 1)e)

with h0(θC) + h0(θEλ ⊗ ηEλ) ≡ 0 mod 2, where θC and θEλ have the same parity

(resp. opposite parity). Then θC and θEλ ⊗ ηEλ have the same parity and we get

the following possibilities:

h0(θC) h0(θEλ) h0(θEλ ⊗ ηEλ)

P+
null

0 0 0  contradiction

1 1 1  (G0,+, 1)

P−null

0 1 0  contradiction

1 0 1  (G0,−, 1)

Once more, remark 2.3.5 addresses half of the table, and the remaining half

is tackled similarly to, if not more easily than, its F0 counterpart.

Possibility (G0,+, 1). We may repeat (F0,+, 1)’s argument, but a simpler pro-

cedure is available in this case. Since Eλ is a genus 1 curve, it holds that

h0(θEλ) = h0(θEλ ⊗ ηEλ) = 1

deg(θEλ) = deg(θEλ ⊗ ηEλ) = 0

}
⇒

{
θEλ = θEλ ⊗ ηEλ = OEλ ⇒

⇒ ηEλ = OEλ (!!)

in direct contradiction with the nontriviality of a Prym root.

Possibility (G0,−, 1). Same contradiction as in (F0,−, 1).

Hence both intersections are empty again and G0 · P+
null = G0 · P−null = 0.

Finally, let us consider H0 ∩ P+
null (resp. P−null). If a stable Prym curve

H0, λ = (C ∪p∼e Eλ, (ηC , ηEλ)) ∈ H0

lies in P+
null (resp. P−null), we can produce a limit g1

g−1 on C ∪p∼e Eλ such that{
LC = θC ⊗ ηC (p)

LEλ = θEλ ⊗ ηEλ ((g − 1)e)

with h0(θC ⊗ ηC) + h0(θEλ ⊗ ηEλ) ≡ 0 mod 2, where θC and θEλ have the same

parity (resp. opposite parity). Then θC ⊗ ηC and θEλ ⊗ ηEλ have the same parity
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and we get the following possibilities:

h0(θC) h0(θEλ) h0(θC ⊗ ηC) h0(θEλ ⊗ ηEλ)

P+
null

0 0 0 0  contradiction

1 1 0 0  contradiction

0 0 1 1  (H0,+, 1, 0)

1 1 1 1  (H0,+, 1, 1)

P−null

0 1 0 0  contradiction

1 0 0 0  contradiction

0 1 1 1  (H0,−, 1, 1)

1 0 1 1  (H0,−, 1, 0)

Even though there are more cases, they are all covered by already discussed

arguments. We point to those outside of the scope of remark 2.3.5.

Possibilities (H0,+, 1, 0), (H0,−, 1, 0). Same contradiction as in (F0,+, 1).

Possibilities (H0,+, 1, 1), (H0,−, 1, 1). Same contradiction as in (G0,+, 1).

As a result, it is clear that H0 · P+
null = H0 · P−null = 0 as well.

Remark 2.3.10. The intersection numbers above, coupled with example 2.1.25

and proposition 2.2.5, show that

F0 · P+
null + F0 · P−null = 0 = F0 · Pnull

(resp. G0, H0), as expected by remark 2.2.6.

Lemma 2.3.11. In the setting of proposition 2.3.8, the families F0, G0 and H0

provide three linearly independent linear relations

F0  

{
λ+ − 12 δp,+

0 = −2g−3(2g−2 − 1)

λ− − 12 δp,−
0 = −22g−5

G0  

{
λ+ − 4 δt,+

0 − 4 δb,+
0 = 0

λ− − 4 δt,−
0 − 4 δb,−

0 = −2g−3(2g−1 − 1)

H0  

{
λ+ − 4 δp,+

0 − 4 δb,+
0 = −22g−5

λ+ − 4 δp,−
0 − 4 δb,−

0 = −2g−3(2g−2 − 1)

between the coefficients of λ, δt
0, δ

p
0 , δ

b
0 ∈ Pic(Rg)Q in each expansion.

Proof. Follows from combining proposition 2.3.8 with the intersection of F0 and

the Prym-null divisors (resp. G0, H0).
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We need one more relation, which will be supplied by the last family of test

curves that was defined in section 2.1.

2.3.3 Over irreducible nodal curves

Recall the test curve from example 2.1.26, that is

Y0 ≡ {(Bpy, η
t
y) / η

t
y ∈ ∆t

0(Bpy)}y∈B ⊂ ∆t
0 ⊂ Rg

with (B, p) ∈Mg−1, 1 general,

Bpy = B/{y ∼ p} irreducible nodal curve for y 6= p,

and Bpp copy of B with a pigtail attached to p.

As we will see below, its extended intersection table is:

λ δt
0 δp

0 δb
0 δn

1 δt
1 δp

1 δ(j≥2) P+
null P−null

Y0 0 2− 2g 0 0 1 0 0 0 0 2g−3(2g−2(g − 3) + 1)

The reason that the Prym-null intersection gravitates entirely towards the odd

side is the parity change explored in proposition 2.2.13. With the help of both

this result and the notation used to prove it, we can easily determine Y0 ∩ P+
null

and Y0 ∩ P−null.

On the one hand, if a stable Prym curve

Y0, y = (Bpy, η
t
y) ∈ Y0

lies in the even Prym-null divisor P+
null, then by definition there exists a stable

vanishing theta-null θy ∈ Θnull ⊂ S+
g over Bpy such that θy ⊗ ηt

y ∈ S+
g is even.

Since proposition 2.2.13 shows that θy and θy ⊗ ηt
y always have opposite parity,

no such vanishing theta-null can exist, and therefore Y0 · P+
null = 0.

On the other hand, if a stable Prym curve

Y0, y = (Bpy, η
t
y) ∈ Y0

lies in the odd Prym-null divisor P−null instead, then by definition there exists a

stable vanishing theta-null θy ∈ Θnull ⊂ S+
g over Bpy such that θy ⊗ ηt

y ∈ S−g is

odd. Proposition 2.2.13 now makes redundant the second part of the condition,

so we just need to count how many Bpy admit a vanishing theta-null. This can
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be done by taking advantage of the formula for the theta-null class

ϑnull =
1

4
λ− 1

16
δn

0 −
bg/2c∑
i=1

δ−i

introduced in section 2.2 and originally given by [Far10]. If we consider the test

curve Y n
0 obtained as the pullback of {Bpy}y∈B by the divisor ∆n

0 ⊂ S+
g , i.e.

Y n
0 ≡ {(Bpy, θy) / θy ∈ ∆n

0(Bpy)}y∈B ⊂ ∆n
0 ⊂ S+

g

then the previous discussion identifies the intersection Y0 ∩ P−null with the inter-

section Y n
0 ∩Θnull. The latter can easily be derived from the theta-null formula

and the intersection table of Y n
0 with the generators of Pic(S+

g )Q, which is:

λ δn
0 δb

0 δ+
1 δ−1 δ(j≥2)

Y n
0 0 22g−1(1− g) 0 2g−3(2g−1 + 1) 2g−3(2g−1 − 1) 0

Indeed, example 2.1.26 and deg(∆n
0|∆0) = 22g−2 yield all coefficients except for

the δ+
1 , δ−1 ones, while over the special point (Bpp, θp) we can see that

θp = (θB, OE(1), (OP1 , ϕ)) ∈ ∆n
0(Bpp)

for some θB ∈ Sg−1(B) and ϕ ∈ {ψ,−ψ} such that h0(θB) ≡ h0(OP1 , ϕ) mod 2.

Since by construction of ψ and −ψ we have

h0(OP1 , ϕ) =

{
1 ⇔ ϕ = ψ

0 ⇔ ϕ = −ψ

it follows that ϕ is determined by the parity of θB and thus

Y n
0 · (2 δ+

1 ) = #S+
g−1(B) = 2g−2(2g−1 + 1)

Y n
0 · (2 δ−1 ) = #S−g−1(B) = 2g−2(2g−1 − 1)

accounting for the appropriate factor of 2. In conclusion, we get

Y0 · P−null = Y n
0 ·Θnull = −2−4 Y n

0 · δn
0 − Y n

0 · δ−1
= −22g−5(1− g)− 2g−3(2g−1 − 1)

= 2g−3(2g−2(g − 3) + 1)

as indicated earlier.
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Remark 2.3.12. Again, these intersection numbers add up to

Y0 · P+
null + Y0 · P−null = 2g−3(2g−2(g − 3) + 1) = Y0 · Pnull

in line with example 2.1.26, proposition 2.2.5 and remark 2.2.6.

Proposition 2.3.13. In the setting of proposition 2.3.8, the generating classes

λ, δt
0, δ

p
0 , δ

b
0 ∈ Pic(Rg)Q have coefficients

%+
null

λ+ = 2g−3(2g−1 + 1) = 2g−3(2g−1 + 1)

δt,+
0 = 0 = 0

δp,+
0 = 22g−7 = 2g−3 2−2 2g−2

δb,+
0 = 2g−5(2g−1 + 1) = 2g−3 2−2(2g−1 + 1)

%−null

λ− = 22g−4 = 2g−3 2g−1

δt,−
0 = 22g−6 = 2g−3 2−2 2g−1

δp,−
0 = 22g−7 = 2g−3 2−2 2g−2

δb,−
0 = 2g−5(2g−1 − 1) = 2g−3 2−2(2g−1 − 1)

in the rational expansions of the Prym-null classes in genus g.

Proof. Since the δn
1 coefficients have already been computed (proposition 2.3.8),

it is straightforward to check that the linear relation provided by the family Y0

in each case directly determines the corresponding δt
0 coefficient:

Y0  

{
δt,+

0 = 0

δt,−
0 = 22g−6

Plugging these into lemma 2.3.11, we obtain the following linear systems: 1 −12 0

1 0 −4

1 −4 −4

 ·
 λ+

δp,+
0

δb,+
0

 =

 −2g−3(2g−2 − 1)

0

−22g−5


 1 −12 0

1 0 −4

1 −4 −4

 ·
 λ−

δp,−
0

δb,−
0

 =

 −22g−5

2g−3

−2g−3(2g−2 − 1)


The two sets of solutions are precisely the expressions stated above.

As far as coefficients go, proposition 2.3.13 completes the process started in

proposition 2.3.8. The only thing left to do is to assemble the class expansions,
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and examine some of their interactions with other families of curves.

2.3.4 Class expansion and application to other families

For the first time, all of the rational coefficients introduced in remark 2.2.7

are known to us, by virtue of propositions 2.3.8 and 2.3.13. As a result, we are

finally in a position to express the rational classes of P+
null and P−null in terms of

the generating classes of Pic(Rg)Q, which was our main goal.

Theorem 2.3.14. For g ≥ 5, the classes %+
null, %

−
null ∈ Pic(Rg)Q are given by

%+
null = 2g−3

(
(2g−1 + 1)λ − 1

4

(
2g−2 δp

0 + (2g−1 + 1) δb
0

)
−

k∑
i=1

(
(2i−1 − 1)(2g−i − 1) δn

i + (2i − 1)(2g−i−1 − 1) δt
i +

+ (2g−1 − 2i−1 − 2g−i−1 + 1) δp
i

)
− ψ(g) ·

(
(2g/2−1 − 1)(2g/2 − 1) δn

g/2 + (2g−1 − 2g/2 + 1) δp
g/2

))

%−null = 2g−3

(
2g−1 λ − 1

4

(
2g−1 δt

0 + 2g−2 δp
0 + (2g−1 − 1) δb

0

)
−

k∑
i=1

(
2i−1 (2g−i − 1) δn

i + (2i − 1) 2g−i−1 δt
i +

+ (2g−1 − 2i−1 − 2g−i−1) δp
i

)
− ψ(g) ·

(
2g/2−1 (2g/2 − 1) δn

g/2 + (2g−1 − 2g/2) δp
g/2

))
where the upper bound k and the parity-checking function ψ(g), defined as

k = dg/2e − 1 =

{
bg/2c if g odd

bg/2c − 1 if g even

ψ(g) =
1 + (−1)g

2
=

{
0 if g odd

1 if g even

account for the slight variation that occurs when g = 2i.

Remark 2.3.15. Indeed, the check %+
null + %−null = %null of remark 2.2.6 holds, as
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already evidenced by earlier remarks.

With the class expansions of %+
null and %−null under our belt, it becomes easier

to study the intersection of the Prym-null divisors with other families of curves.

We give a couple of interesting examples next.

Example 2.3.16 (quartic tails). We fix a general curve (C, p) ∈ Mg−3, 1 and a

general pencil γ : Bl16(P2)→ P1 of plane quartics, with fibers

{Qλ = γ−1(λ)}λ∈P1 ⊂ M3

together with a section ζ : P1 → Bl16(P2) induced by one of the basepoints. We

may then glue the curve (C, p) to the pencil γ along ζ, thus producing a pencil

of stable curves

Q = (C × P1) ∪{p}×P1∼ ζ(P1) Bl16(P2) −→ P1

which corresponds to

Q ≡ {C ∪p∼ζ(λ) Qλ}λ∈P1 ⊂ ∆3 ⊂ Mg

Standard techniques show its intersection table to be:

λ δ0 δ1 δ2 δ3 δ(j≥4)

Q 3 27 0 0 −1 0

We now fix a Prym root ηC ∈ Rg−3(C) and lift Q to a test curve R, as follows:

R ≡ {(C ∪p∼ζ(λ) Qλ, (ηC ,OQλ))}λ∈P1 ⊂ ∆t
3 ⊂ Rg

Observe that π∗(R) = Q. Then R · λ = Q · λ = 3 and

R · δt
3 = Q · δ3 = −1

If we look at the 27 points λ∞ ∈ P1 corresponding to singular quartics of γ and

blow up the node of the component Qλ∞ ∈ ∆0, we can see that the pullback of

ηλ∞ = (ηC ,OQλ∞ ) is (ηC ,OP1), which is nontrivial. Hence Rλ∞ ∈ ∆p
0 and

R · δp
0 = Q · δ0 = 27

All other intersection numbers are 0, so we get a table:

λ δt
0 δp

0 δb
0 δn

3 δt
3 δp

3 δ(j 6=0, 3)

R 3 0 27 0 0 −1 0 0
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Note the similarities between R and the family F0 from example 2.1.25.

Remark 2.3.17. Applying theorem 2.3.14 to example 2.3.16, we get

R · P+
null = 3λ+ − 27 δp,+

0 + δt,+
3 = 2g−1(2g−4 − 1)

R · P−null = 3λ− − 27 δp,−
0 + δt,−

3 = 22g−5

These intersection numbers may in fact be interpreted, as the limit linear series

techniques introduced in earlier cases are also quite useful here. In this setting,

the problem happens to turn into a beautiful bitangent count.

Again, we want to consider R ∩ P+
null (resp. P−null). If a stable Prym curve

Rλ = (C ∪p∼z Qλ, (ηC ,OQλ)) ∈ R

lies in P+
null (resp. P−null), we can produce a limit g1

g−1 on C ∪p∼z Qλ such that{
LC = θC ⊗ ηC (3p)

LQλ = θQλ ((g − 3)z)

with h0(θC ⊗ ηC) + h0(θQλ) ≡ 0 mod 2, where θC and θQλ have the same parity

(resp. opposite parity). Then θC ⊗ ηC and θQλ have the same parity and we get

the following possibilities:

h0(θC) h0(θQλ) h0(θC ⊗ ηC)

P+
null

0 0 0  contradiction

1 1 1  (R,+, 1)

P−null

1 0 0  contradiction

0 1 1  (R,−, 1)

In order to deal with the cases not covered by remark 2.3.5, we first need to

understand how theta characteristics on canonical genus 3 curves look like. Let

us quickly elaborate on this.

Given a nonhyperelliptic arbitrary curve X ∈ M3, its canonical embedding

realises it as a plane quartic Q ↪→ P2, with the canonical series manifesting as

the restriction of the hyperplane series to the curve.

Take a theta characteristic θ on X, with θ⊗2 ∼= ωX ∈ W 2
4 (X). Then we have

deg(θ) = 2, and θ is of type gr2 on X whenever h0(θ) = r + 1 > 0. But X is not

hyperelliptic, so it does not admit any g1
2 and thus r ≤ 0 ⇒ h0(θ) = r + 1 ≤ 1.

Therefore, the 36 even theta characteristics of X have h0(θ) = 0 and the 28 odd

ones have h0(θ) = 1. In particular, X has no vanishing theta-nulls.
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Let θ be odd. Then |θ| = {D} with 2D ∼ KX , that is, D = x+ y and

2D = 2x+ 2y = H ∩Q

for some hyperplane H ↪→ P2. If moreover x 6= y (for example, for X general),

we get a one-to-one correspondence between odd theta characteristics of X and

bitangents to its canonical model Q. Note that, if X is special enough for Q to

have any hyperflexes, then the tangent lines at such points must be included in

the correspondence too.

Remark 2.3.18. If X is hyperelliptic, the g1
2 is a vanishing theta-null, and the

28 =
(

8
2

)
odd theta characteristics correspond to pairs of ramification points.

Keeping this description in mind, we tackle the remaining possibilities:

Possibilities (R,+, 1), (R,−, 1). In both of these cases, we have

h0(θC ⊗ ηC) = 1 ⇒ a`C0 (p) < 3 ≤ a`C1 (p)

h0(θQλ) = 1 ⇒ a`Qλ0 (z) < g − 3 ≤ a`Qλ1 (z)

Now (C, p) is general, so we may assume that p /∈ supp(θC ⊗ ηC). Therefore

h0(θC ⊗ ηC (−p)) = h0(θC ⊗ ηC)− 1 = 0 ⇒ a`C1 (p) < 4

h0(θC ⊗ ηC (p)) = h0(θC ⊗ ηC) = 1 ⇒ a`C0 (p) < 2 ≤ a`C1 (p)

Hence a`C1 (p) = 3 and, via the limit g1
g−1 condition, a`Qλ0 (z) = g − 4. Moreover,

we may assume that the basepoint z is not a hyperflex of Qλ, as the pencil γ is

also general. Consequently, supp(θQλ) does not consist of z twice, that is,

div(θQλ) 6= 2z ⇒ a`Qλ1 (z) ≤ g − 2

which combined with the condition a`C0 (p) + a`Qλ1 (z) ≥ g − 1 yields a`C0 (p) = 1

and a`Qλ1 (z) = g − 2. In turn, this means that z ∈ supp(θQλ), and that ` is a

refined limit g1
g−1 of the form

`C = |θC ⊗ ηC (2p)|+ p ∈ G1
g−1(C)

`Qλ = |θQλ (z)|+ (g − 4)z ∈ G1
g−1(Qλ)

with vanishing sequences (1, 3) and (g − 4, g − 2).

In conclusion, for each pair (Qλ, θQλ) consisting of a plane quartic Qλ of γ

equipped with an odd theta characteristic θQλ such that z = ζ(λ) ∈ supp(θQλ),

then every θC ∈ S−g−3(C) with θC ⊗ ηC ∈ S−g−3(C) yields a limit g1
g−1 as above,

and these limit linear series are the only ones contributing to the intersection



106 Section 2.3. The geometry of the Prym-null divisors

R ∩ P+
null (resp. θC ∈ S+

g−3(C) with θC ⊗ ηC ∈ S−g−3(C), R ∩ P−null). The natural

question then arises as to how many such pairs (Qλ, θQλ) there are.

We have discussed that odd theta characteristics θQλ of the plane curve Qλ

correspond to bitangents to the quartic. Under this identification, the condition

z = ζ(λ) ∈ supp(θQλ) corresponds to the bitangent having the basepoint z as

one of its contact points. In particular, for each Qλ we get only one candidate:

the tangent line Tz(Qλ) ⊂ P2, which will intersect Qλ in two additional points.

If we find out for how many values of λ these two points coincide, we will have

found the pairs (Qλ, θQλ) ≡ (Qλ, Tz(Qλ)) we are trying to count.

Now, we can study the pencil γ by taking two general polynomials

F (x) =
∑

i+j+k=4 aijk x
i
0x

j
1x

k
2 , G(x) =

∑
i+j+k=4 bijk x

i
0x

j
1x

k
2 ∈ C[x0, x1, x2]4

and considering the family {Qλ} described by H(x, λ) = λ0 F (x) + λ1G(x) = 0,

with basepoints {(x, λ) / F (x) = G(x) = 0} 3 ζ(λ) = z. By a suitable change of

coordinates, we may assume z = (1 : 0 : 0) ∈ P2. If we write H(x, λ) as

H(x, λ) = Hλ(x) =
∑

i+j+k=4 cijk(λ)xi0x
j
1x

k
2 ∈ C[x0, x1, x2]4

with cijk(λ) = λ0 aijk + λ1 bijk ∈ C[λ]1, this means that c400(λ) = 0.

Moreover, the tangent line Tz(Qλ) is given by

∂Hλ(x)
∂x0

(z)x0 + ∂Hλ(x)
∂x1

(z)x1 + ∂Hλ(x)
∂x2

(z)x2 = c310(λ)x1 + c301(λ)x2 = 0

Switching to coordinates u, v on Tz(Qλ) = P1
u,v, that is,

x0 = u , x1 = −c301(λ) v , x2 = c310(λ) v

we see that z = {v = 0} = (1 : 0) ∈ P1
u,v and that the intersection Qλ ∩ Tz(Qλ) is

given by

Hλ(u, v) =
∑

i+j+k=4 (−1)j c301(λ)j c310(λ)k cijk(λ)uivj+k = 0

Since the intersection contains z twice, this polynomial has no v0, v1 terms:

j + k = 0 ⇒ i = 4  c400(λ) = 0

j + k = 1 ⇒ i = 3  −c301(λ) c310(λ) + c310(λ) c301(λ) = 0
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Factoring out v2, we get a quadric

qλ(u, v) =
∑

0≤i≤2
j+k=4−i

(−1)j c301(λ)j c310(λ)k cijk(λ)uiv2−i

= cuu3 (λ)u2 + cuv4 (λ)uv + cvv5 (λ) v2

whose roots correspond to the two additional points lying in Qλ ∩ Tz(Qλ). The

degree of each summand (−1)j c301(λ)j c310(λ)k cijk(λ) is j + k + 1, so we have

cuu3 (λ) =
∑

j+k=2 (−1)j c301(λ)j c310(λ)k c2jk(λ) ∈ C[λ0, λ1]3

cuv4 (λ) =
∑

j+k=3 (−1)j c301(λ)j c310(λ)k c1jk(λ) ∈ C[λ0, λ1]4

cvv5 (λ) =
∑

j+k=4 (−1)j c301(λ)j c310(λ)k c0jk(λ) ∈ C[λ0, λ1]5

Finally, the values of λ for which the roots of qλ(u, v) coincide are determined by

the roots of the discriminant

∆(λ) = ∆(qλ(u, v)) = cuv4 (λ)2 − 4 cuu3 (λ) cvv5 (λ) ∈ C[λ0, λ1]8

which is an octic polynomial. Therefore we obtain

#{(Qλ, θQλ) / z ∈ supp(θQλ)} = #{λ ∈ P1 / ∆(λ) = 0} = 8 = 23

and we can finally observe the appearance of the intersection numbers provided

by theorem 2.3.14 and remark 2.3.17, as the count becomes:

#{(Qλ, θQλ) / z ∈ supp(θQλ)} ·
· #{θC ∈ S−g−3(C) / θC ⊗ ηC ∈ S−g−3(C)} = 23 · N−g−3 = 2g−1(2g−4 − 1)

#{(Qλ, θQλ) / z ∈ supp(θQλ)} ·
· #{θC ∈ S+

g−3(C) / θC ⊗ ηC ∈ S−g−3(C)} = 23 · N±g−3 = 22g−5

In particular, this reveals the lack of contribution from singular fibers.

Example 2.3.19 (more irreducible nodal curves). If we recall the family

Y ≡ {Bpy}y∈B ⊂ ∆0 ⊂ Mg

from example 2.1.26, which was lifted to a test curve Y0 ⊂ ∆t
0 ⊂ Rg, then there

are two more standard lifts Z0 and T0 in Rg, which arise when Y is pulled back

by the maps ∆p
0 → ∆0 and ∆b

0 → ∆0 respectively:

Z0 ≡ {(Bpy, η
p
y ) / ηp

y ∈ ∆p
0(Bpy)}y∈B ⊂ ∆p

0 ⊂ Rg

T0 ≡ {(B ∪p∼0, y∼∞ E, η
b
y ) / ηb

y ∈ ∆b
0(Bpy)}y∈B ⊂ ∆b

0 ⊂ Rg
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If we set k = #Rg−1(B) = 22g−2 − 1, we can see that their intersection table is:

λ δt
0 δp

0 δb
0 δn

1 δt
1 δp

1 δ(j≥2)

Y0 0 2− 2g 0 0 1 0 0 0

Z0 0 0 4k(1− g) 0 0 k k 0

T0 0 0 0 22g−2(1− g) 1 0 k 0

Note that deg(∆p
0|∆0) = 2k and deg(∆b

0|∆0) = 22g−2 = k + 1.

Remark 2.3.20. Applying theorem 2.3.14 to example 2.3.19, it follows that

Z0 · P+
null = (22g−2 − 1)µ = #Rg−1(B) · µ

Z0 · P−null = (22g−2 − 1)µ = #Rg−1(B) · µ

T0 · P+
null = 2g−2(2g−1 + 1)µ = #S+

g−1(B) · µ

T0 · P−null = 2g−2(2g−1 − 1)µ = #S−g−1(B) · µ

with the factor µ = Y n
0 ·Θnull = 2g−3(2g−2(g − 3) + 1) indicating the number of

nodal curves Bpy in Y that admit a vanishing theta-null θy ∈ Θnull(Bpy), which

we computed in the argument preceding preposition 2.3.13. Once more, it may

be interesting to provide an interpretation of these results.

According to example 2.1.17, any Prym root ηB ∈ Rg−1(B) gives rise to two

elements ηp,+
y , ηp,−

y ∈ ∆p
0(Bpy), depending on which of the two possible gluings

ηB|p ∼= ηB|y is chosen. In particular, for each pair (Bpy, θy) ∈ Θnull, tensoring θy
by either ηp,+

y or ηp,−
y produces stable spin curves of opposite parity, so that

(Bpy, η
p,+
y ) ∈ Z0 ∩ P+

null

(Bpy, η
p,−
y ) ∈ Z0 ∩ P−null

which explains the emergence of the factors

k = #{ηB ∈ Rg−1(B)}

µ = #{(Bpy, θy) ∈ Θnull}

in the intersection numbers Z0 · P+
null and Z0 · P−null.

Similarly, for each pair (Bpy, θy) ∈ Θnull, the root θy|B ∈
√
ωB(p+ q) can be

subtracted from any theta characteristic θB ∈ Sg−1(B) =
√
ωB so as to create a

root ηB ∈
√
OB(−p− q). This in turn yields a unique stable Prym curve

(X, ηb
y ) = (B ∪p∼0, y∼∞ E, η

b
y ) ∈ T0 ∩ Pnull
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such that ηb
y restricts to (ηB, OE(1)) on Pic(B)⊕ Pic(E). Furthermore, (X, ηb

y )

lies in P+
null (resp. P−null) whenever θB is even (resp. odd) by construction of the

Prym-null divisors, which brings to light the connection between

#S+
g−1(B), #S−g−1(B), µ

and the intersection numbers T0 · P+
null and T0 · P−null.

2.4 Moduli spaces of multiple roots

Initially, section 2.3 was meant to be the end of our journey. Nonetheless, it

soon became clear that Rg is not really the most natural environment in which

to discuss the Prym-null divisors, in the same manner that the divisor Mnull
g of

Mg finds a more intrinsic expression in S+
g thanks to its theta-null counterpart.

Instead of Rg, we would rather work in a moduli space of curves equipped with

both a Prym root and a theta characteristic, or Prym-spin curves.

Unfortunately, compactifications of spaces of curves carrying multiple roots

of different bundles have not been constructed in the literature yet. The closest

silver lining that we get is offered by Sertöz, who in [Ser17] and [Ser19] focuses

on the geometry of multiple spin curves and builds compactifications of moduli

spaces of curves carrying multiple roots of the same bundle.

In this section, we review the original construction S2
lim(N ) given by Sertöz

and propose an extension S2
lim(N1,N2) for roots of different bundles, as well as

a compactification RSg of the space of Prym-spin curves of genus g. Next, we

examine the consequences that the existence of these spaces would have for the

Prym-null divisors, and comment on the intriguing possibility of compactifying

the standard tensor product of square roots.

2.4.1 Multiple limit roots

We want to study the space RSg →Mg parametrizing points of the form

(RSg)C = {(C, η, θ) / C ∈ (Mg)C, η ∈ Rg(C), θ ∈ Sg(C)}

or rather, to find a good compactification of this space. More generally, we can

take the universal curve φ : Cg →Mg, together with two line bundles N1, N2 on
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Cg of relative even degree, and attempt to build a space

S 2(N1,N2)→Mg

of curves with a double root of (N1,N2), that is, curves carrying both a square

root of N1 and a square root of N2 at the same time. Observe that

RSg = S 2(OCg , ωφ)− Sg

should these moduli spaces exist.

Remark 2.4.1. Since RSg = Rg ×Mg Sg →Mg is the fiber product of each of

the moduli spaces Rg and Sg over Mg, it may seem like the best candidate for

RSg is the fiber product of the corresponding compactifications, that is,

Rg ×Mg Sg →Mg

which is indeed compact. However, the modular interpretation of Rg ×Mg Sg is

not quite natural, as the roots η, θ parametrized by a point

((X1, η), (X2, θ)) ∈ (Rg ×Mg Sg)C

are defined over quasistable curves X1, X2 that have the same stable model, but

whose exceptional components can possibly differ. For instance, consider

(X1, η) ∈ ∆b
0 ⊂ Rg

(X2, θ) ∈ ∆n
0 ⊂ S+

g

}
⇒

{
st(X1) = st(X2) ∈ Mg

X1 6= X2

The potential discrepancy X1 6= X2 is somewhat cumbersome, and prevents the

fiber product from being normal, as shown in [Ser17] Prop. 5.56.

In both [Ser17] and [Ser19], the partial identification issue posed by remark

2.4.1 is tackled through the introduction of a master curve X dominating both

X1 and X2, which provides a common ground for η and θ to be pulled back to

and studied over. Although the referenced work focuses only on multiple roots

of the same bundle, its ideas can be carried over to the more general setting of

multiple roots of several (possibly different) bundles.

We first describe the original treatment of the case N1 = N2 = N , and then

explore the natural extension to N1 6= N2.

To begin with, let Y be a stable curve (of genus g), and N be a line bundle

on Y of even degree d. In more general terms, let Y → S be a stable curve (of

genus g) over a base S, and N be a line bundle on Y of relative even degree d.

Recall that we are interested in φ : Y = Cg →Mg and N ∈ {OCg , ωφ}.
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Definition 2.4.2. Given a subset Z ⊂ Sing(Y ) of nodes of Y with ideal sheaf

IZ ⊂ OY , the projection

π : X = P(IZ) = Proj(SymOY IZ) −→ Y

is referred to as an exceptional blow-up of Y at Z. Note that each node z ∈ Z
is replaced by an exceptional component π−1(z) ∼= P1, so that X is quasistable.

Similarly, a morphism X → Y over S is said to be an exceptional blow-up of Y
if every geometric fiber Xs → Ys is an exceptional blow-up of Ys.

The prime example of an exceptional blow-up is the stabilisation

X −→ Y = st(X)

of a quasistable curve X, in which case Z corresponds to the contraction of the

exceptional components of X.

Definition 2.4.3. We say that (π, L, α) is a limit root of N (resp. stabilizes to

a limit root of N) if:

(i) π : X → Y is an exceptional blow-up of Y .

(ii) L ∈ Picd/2(X) is a line bundle such that deg(L|E) = 1 (resp. ∈ {0, 1})
for every exceptional component E of X.

(iii) α : L⊗2 → π∗N is a sheaf homomorphism such that the restriction α|A
is generically non-zero for every non-exceptional component A of X.

In relative fashion, we say that (π,L, α) is a limit root of N (resp. stabilizes to

a limit root of N ) if:

(i) π : X → Y is an exceptional blow-up of Y .

(ii) L ∈ Picd/2(X ) is a line bundle on X .

(iii) α : L⊗2 → π∗N is a sheaf homomorphism.

(iv) Every geometric fiber (πs, Ls, αs) is a limit root of Ns (resp. stabilizes

to a limit root of Ns).

An isomorphism (X → Y , L, α) ∼= (X ′ → Y , L′, α′) is a pair (ϕ, ψ) where:

(i) ϕ : X ∼= X ′ is an isomorphism over Y .

(ii) ψ : ϕ∗(L′) ∼= L is a sheaf isomorphism such that ϕ∗(α′) = α ◦ ψ⊗2.

The moduli space of limit roots of N is denoted Slim(N )→ S.
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Comparing these notions with definitions 2.1.8 and 2.1.9, we see that

Rg = Slim(OCg)−Mg

Sg = Slim(ωφ)

so stable Prym and spin curves are, as expected, particular cases of limit roots.

On the other hand, observe that if (π, L, α) stabilizes to a limit root of N , then

contracting the exceptional components where L is trivial yields a limit root of

N , which not only justifies the name chosen for this concept but also connects it

with the master curve idea mentioned earlier. Indeed, given two limit roots

(π1 : X1 → Y, L1, α1), (π2 : X2 → Y, L2, α2) ∈ Slim(N )C

then X = X1 ×Y X2 is a quasistable curve fitting into the diagram

X1
π1

''
X

ρ1
77

ρ2 ''

π // Y

X2

π2

77

so that (π : X → Y, ρ∗iLi, ρ
∗
iαi) stabilizes to (πi, Li, αi) for each i ∈ {1, 2}. This

addresses the partial identification issue, but a new problem arises if we require

the moduli space of double roots of N to have finite fibers over Mg.

As already mentioned in the case of stable Prym curves (see remark 2.1.18),

the collection of all limit roots having an exceptional component over a certain,

fixed node gives rise to a finite number of isomorphism classes, since individual

limit roots are considered up to the isomorphisms from definition 2.4.3 and not

simply as isolated line bundles. In particular, this means that the moduli space

of (single) limit roots of N does have finite fibers over Mg.

Unfortunately, when trying to pair two limit roots that are exceptional over

the same node, the corresponding isomorphisms now modify both bundles sim-

ultaneously. As a result, we end up with infinitely many nonisomorphic ways of

lifting one such pair, most of which need to be filtered out in order to obtain a

workable space. This can be achieved through the introduction of an additional

piece of information that synchronizes the pullbacks of both roots.

Definition 2.4.4. Let {(πi : Xi → Y , L′i, α′i)}i=1,2 be a pair of limit roots of N ,

and {π : X → Y , Li, αi}i=1,2 be such that (π,Li, αi) stabilizes to (πi,L′i, α′i) for

each i ∈ {1, 2}. Then we have partial stabilization maps {ρi : X → Xi}i=1,2 and
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a commutative diagram:

X1
π1

''X

ρ1
77

ρ2 ''

π // Y

{
ρ∗iL′i = Li ∈ Pic(X )

ρ∗iα
′
i = αi : L⊗2

i → π∗N
X2

π2

77

We say that a synchronization data of {π,Li, αi}i=1,2 is a collection {F , χi}i=1,2

of a line bundle F on X and sheaf homomorphisms χi : F → L⊗2
i such that:

(i) Each χi restricts to an isomorphism over the largest open set on which

ρi is an isomorphism, which we denote by Vi = V (Li) ⊂ X .

(ii) It holds that α1 ◦ χ1 = α2 ◦ χ2, that is, the diagram

L⊗2
1 α1

))
F

χ1
66

χ2 ((

� π∗N

L⊗2
2

α2

55

of line bundles on X is also commutative.

The combined collection {π,Li, αi,F , χi}i=1,2 is called a double limit root of N ,

and isomorphisms of double limit roots are pairs of isomorphisms of limit roots

which are compatible with the synchronization data. Finally, the moduli space

of double limit roots of N is denoted S2
lim(N )→ S.

The previous discussion may be clarified by looking at a basic example that

encapsulates both the lifting issue and its solution.

Example 2.4.5. Let us see how adding the synchronization data yields a finite

number of lifts for any given pair of limit roots. Using the notation of example

2.1.17, consider the exceptional blow-up

π : X = B ∪p∼0, q∼∞ E −→ st(X) = Y = Bpq

of an irreducible 1-nodal curve Y , together with two limit roots

(π : X → Y, L1, α1), (π : X → Y, L2, α2) ∈ Slim(N)

of some line bundle N ∈ Pic(Y ). Then the Picard groups of Y and X sit in the
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middle of interlocking exact sequences

0 // C∗ // Pic(Y ) ν∗ // Pic(B) // 0

0 // C∗ ζ // Pic(X)
ξ // Pic(B)⊕ Pic(E) // 0

from which we can deduce that, for each i ∈ {1, 2}, the line bundle Li ∈ Pic(X)

is determined up to a constant by its restriction to B. Indeed, if we take{
ϕλ : X → X such that ϕλ|B = IdB, ϕλ|E : e 7→ λ · e, and

M ∈ Pic(X) such that M |E = OE(k),

with λ ∈ C∗ and k ∈ Z+, then (ϕλ)
∗M = M ⊗ ζ(λk), so in particular every line

bundle of the form

Li, λi = (ϕλi)
∗Li = Li ⊗ ζ(λi) ∈ ξ−1(Li|B,OE(1)) ∼= C∗

gives rise to an isomorphism of (single) limit roots

(ϕλi , Id) : (π, Li, λi , αi, λi)
∼= (π, Li, αi) ∈ Slim(N)

However, when taken as a pair of limit roots, two sets of choices

(L1, λ1 , L2, λ2), (L1, µ1 , L2, µ2) ∈ ξ−1(L1|B,OE(1))× ξ−1(L2|B,OE(1))

only give rise to isomorphic (unsynchronized) double roots whenever

λ1/µ1 = λ2/µ2 ⇔ λ1/λ2 = µ1/µ2 ⇔ (λ1 : λ2) = (µ1 : µ2)

since the scaling now happens uniformly. In other words, each of the infinitely

many points

(λ1 : λ2) ∈ P(C2)− {(1 : 0), (0 : 1)} ∼= C∗

corresponds to a different (unsynchronized) lift of {(π, Li, αi)}i=1,2. This can be

avoided with the inclusion of synchronization data, which restricts the selection

of representatives L1 and L2 to those having isomorphic squares:

L⊗2
1 α1

))
F

∼= 66

∼= ((

� π∗N

L⊗2
2

α2

55
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As a result, any other choice is limited by a diagram

L⊗2
1, λ1

=

�

L⊗2
1 ⊗ ζ(λ2

1)

))
F ′

∼= 66

∼= ((

π∗N

L⊗2
2, λ2

= L⊗2
2 ⊗ ζ(λ2

2)

55

with L⊗2
1 = F = L⊗2

2 ∈ Pic(X), so that λ2
1 = λ2

2 ∈ C∗ and thus

λ2
1 = λ2

2 ⇔ (λ1/λ2)2 = 1 ⇔ (λ1 : λ2) ∈ {(1 : 1), (1 : −1)}

In conclusion, we are left with only two possible nonisomorphic lifts

{π, (L1,1, L2,1), F}, {π, (L1,1, L2,−1), F} ∈ S2
lim(N)

of the pair {(π, Li, αi)}i=1,2 ∈ Slim(N)× Slim(N), instead of infinitely many.

After some work, the case N1 = N2 has been successfully resolved, since the

moduli space S2
lim(N ) provides the compactification we were aiming for:

Theorem 2.4.6. Let φ : Cg → Mg be the universal curve, and N ∈ {OCg , ωφ}.
Then the moduli space S2

lim(N ) of double limit roots is proper and contains the

moduli space of smooth double roots as an open subset. Moreover, the forgetful

map S2
lim(N )→Mg is quasi-finite.

Proof. This is the main result of [Ser17] Part I, or [Ser19] Th. 6.8.

It is clear that in order to build S2
lim(N1,N2) we need to extend the notion

of synchronizing to a setting where N1 and N2 may not be the same. The main

apparent obstacle is the fact that the morphisms αi do not have the same target

anymore. We can tackle this by observing that synchronization data serves the

purpose of controlling how the squares of the synchronized limit roots actually

look like, and how they relate to one another. Thus, if we want to take roots of

two different line bundles N1 and N2, we just need to keep track of the difference

between these bundles:

D = D(N1,N2) = N1 ⊗N ∨2 ∈ Pic(Y)

With this in mind, definition 2.4.4 can be readily generalised.

Definition 2.4.7. Let {(πi : Xi → Y , L′i, α′i)}i=1,2 be a pair of limit roots of N1

and N2 respectively, and again {π : X → Y , Li, αi}i=1,2 be such that (π,Li, αi)
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stabilizes to (πi,L′i, α′i) for each i ∈ {1, 2}, with a commutative diagram:

X1
π1

''X

ρ1
77

ρ2 ''

π // Y

{
ρ∗iL′i = Li ∈ Pic(X )

ρ∗iα
′
i = αi : L⊗2

i → π∗Ni
X2

π2

77

We say that a synchronization data of {π,Li, αi}i=1,2 is a collection {F , χi}i=1,2

of a line bundle F on X and sheaf homomorphisms

χ1 : F ⊗ π∗D −→ L⊗2
1

χ2 : F −→ L⊗2
2

such that:

(i) Each χi restricts to an isomorphism over Vi = V (Li) ⊂ X .

(ii) The sequence F → L⊗2
2 → π∗N2 induces a commutative diagram

L⊗2
1 α1

**F ⊗ π∗D

χ1
44

χ2⊗Id **

� π∗N1

L⊗2
2 ⊗ π∗D

α2⊗Id

44

of line bundles on X .

Accordingly, we say that {π,Li, αi,F , χi}i=1,2 is a double limit root of (N1,N2),

and denote their corresponding moduli space as S2
lim(N1,N2)→ S.

Remark 2.4.8. Observe that:

(i) If we set N1 = N2 = N , then D = OY is trivial and we get

S2
lim(N,N ) ∼= S2

lim(N )

since definition 2.4.4 is recovered.

(ii) If we interchange N1 and N2, then the new difference bundle

D(N2,N1) = N2 ⊗N ∨1 = D(N1,N2)∨ = D∨

is the dual of the previous one, which yields an identification

S2
lim(N1,N2) ∼= S2

lim(N2,N1)

where (F ⊗ π∗D, χ2, χ1) synchronizes (L2,L1).
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(iii) If we take n ∈ N and a sequence {Ni}ni=1 of line bundles on Y, then we

can consider all of their associated difference bundles

Dij = D(Ni,Nj) = Ni ⊗N ∨j ∈ Pic(Y)

and define Snlim(Ni)ni=1 by means of the synchronization data

F ′ ∈ Pic(X ), χi : F ′ ⊗ π∗Ni → L⊗2
i

such that each χi restricts to an isomorphism over Vi and the diagrams

L⊗2
i αi

**F ′ ⊗ π∗Ni

χi
33

χj⊗Id ++

� π∗Ni

L⊗2
j ⊗ π∗Dij

αj⊗Id

44

all commute. Note that the (purely stylistic) choice of F ′ = F ⊗ π∗N ∨2
corresponds to the convention used in definition 2.4.7.

(iv) For λ = (a1, . . . , a`) with ai ∈ N and
∑
ai = n, we can write

Sλlim(Ni)`i=1 = Snlim(N1,
(a1). . . ,N1, . . . ,N`, (a`). . . ,N`)

which is consistent with the previous notation and [Ser19].

Remark 2.4.9. Whenever N1 6= N2, we do not have a statement equivalent to

theorem 2.4.6, although we believe it is very likely to exist. At first sight, there

is no reason for the proof of such result not to work in the more general setting,

but a proper claim of this nature would require a thorough check of the theory

developed by Sertöz and its adaptability to the case N1 6= N2, which is outside

of the scope of this thesis. Therefore, from here on we adopt the assumption of

existence and appropriate behaviour for the spaces S2
lim(N1,N2), in the interest

of studying some of their potential uses.

By virtue of definition 2.4.7, we can start thinking about a compactification

of the Prym-spin moduli space, since we can set (N1,N2) = (OCg , ωφ).

2.4.2 Prym-spin curves with a vanishing theta-null

We wanted to compactify the moduli space

RSg = Rg ×Mg Sg → Mg



118 Section 2.4. Moduli spaces of multiple roots

of Prym-spin curves, i.e. of triplets (C, η, θ) such that

C ∈Mg, η ∈ Rg(C) = J2(C)− {OC}, θ ∈ Sg(C) =
√
ωC

Clearly, the compactification RSg sits within the moduli space of double limit

roots of (OCg , ωφ), where φ : Cg →Mg is as usual the universal curve over Mg.

In particular, we need to remove the component of trivial roots of OCg , that is,

the closure of the locus of double roots of the form

{(C,OC , θ) / θ ∈ Sg(C)} ∼= {(C, θ) / θ ∈ Sg(C)} = (Sg)C

Since this component is isomorphic to Sg, we can state the following:

Definition 2.4.10. We refer to the space

RSg = S2
lim(OCg , ωφ)− Sg

as the moduli space of stable Prym-spin curves of genus g.

The two partial stabilizations of a double limit root yield projections

ρR : RSg → Rg, (π, η, θ, β, α,F , χ1, χ2) 7→ (X, η′, β′)

ρS : RSg → Sg, (π, η, θ, β, α,F , χ1, χ2) 7→ (X, θ′, α′)

and consequently a commutative diagram

Rg
πR

&&
RSg

ρR
77

ρS ''

π //Mg

Sg
πS

88

where all maps are finite and ramified over the boundary. We may then wonder

about how the connected components of RSg look like.

Given a Prym pair (C, η) of genus g, definition 2.2.8 provides subsets

Sx,y
η (C) = {θ ∈ Sx

g (C) / θ ⊗ η ∈ Sy
g (C)} ⊂ Sx

g (C)

for x, y ∈ {+,−}, and in doing so refines the standard, parity-based decomposi-

tion Sg(C) = S+
g (C) t S−g (C) into a four-piece decomposition

Sg(C) = S+,+
η (C) t S+,−

η (C)︸ ︷︷ ︸
S+
g (C)

t S−,+η (C) t S−,−η (C)︸ ︷︷ ︸
S−g (C)
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which depends critically on the Prym root η. As a result, the space RSg splits

into four connected components RSxy
g corresponding to the closure of

RSxy
g = {(C, η, θ) / η ∈ Rg(C), θ ∈ Sx,y

η (C) ⊂ Sx
g (C)} ⊂ (RSg)C

for x, y ∈ {+,−}, so that we have:

RSg = RS++
g tRS+−

g︸ ︷︷ ︸
RS+

g

t RS−+
g tRS−−g︸ ︷︷ ︸
RS−g

⊂ S2
lim(OCg , ωφ)

The spaces RS++
g and RS+−

g , together with the commutative diagrams

Rg
πR

%%

Rg
πR

%%
RS++

g

ρ+
R

88

ρ+
S &&

π+
//Mg | RS+−

g

ρ−R
88

ρ−S &&

π− //Mg

S+
g

πS

99

S+
g

πS

99

induced around them by the previous diagram, are of special interest to us. On

each of these connected components we find a very familiar divisor, namely the

pullback of the theta-null divisor Θnull ⊂ S+
g , or equivalently the closure of:

Θ+
null = {(C, η, θ) / η ∈ Rg(C), θ ∈ Θnull(C), θ ⊗ η ∈ S+

g (C)} ⊂ RS++
g

Θ−null = {(C, η, θ) / η ∈ Rg(C), θ ∈ Θnull(C), θ ⊗ η ∈ S−g (C)} ⊂ RS+−
g

As evidenced by definition 2.2.2, the divisors Θ+
null and Θ−null can be respectively

pushed forward to our even and odd Prym-null divisors:

(ρ+
S )∗Θnull = Θ+

null ⊂ RS++
g  (ρ+

R)∗Θ+
null = P+

null ⊂ Rg

(ρ−S )∗Θnull = Θ−null ⊂ RS+−
g  (ρ−R)∗Θ−null = P−null ⊂ Rg

thus suggesting an alternative method of computing their class expansion. This

new approach requires an understanding of the boundary divisors of RS++
g and

RS+−
g over both Rg and S+

g , which we concisely provide next.

Remark 2.4.11 (boundary table legends). Since the boundaries of RS++
g and

RS+−
g contain a very large number of irreducible components, it seems sensible

to summarize their description in some accessible manner. We aim to do so by

collecting the different boundary divisors in tables 2.4.12 and 2.4.13, which are

structured according to the following criteria:

(i) First column (RS+x
g ): name of the boundary divisor ∆RS of RS+x

g .
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(@) A certain divisor might be expected to exist, but in fact not be

present in either RS++
g or RS+−

g .

(ii) Second column (trait): defining feature of the general point

(π : X → Y, η, θ, β, α, F , χ1, χ2) ∈ ∆RS

whose partial stabilizations are distinguished by symbols (×,# ,

�

):

(×) As in examples 2.1.16 and 2.1.19, here we have

X = C ∪p∼0 E ∪q∼∞ D −→ Y = C ∪p∼q D,

η = (ηC ,OE, ηD), θ = (θC ,OE(1), θD)

The notation (ηC ,OD) et al. indicates that

ηC ∈ Rg(C), ηD = OD

while the notation (θu
C , θ

v
D)yz indicates that{

θC ∈ Su
i (C)

θD ∈ Sv
g−i(D)

{
θC ⊗ ηC ∈ Sy

i (C)

θD ⊗ ηD ∈ Sz
g−i(D)

for u, v, y, z ∈ {+,−}.

(# ) As in examples 2.1.17 and 2.1.20, here we have η stabilizing to

(OB,−1) ∈ ∆t
0(Bpq) or (ηB, ϕη) ∈ ∆p

0(Bpq)

with ηB ∈ Rg−1(B) and ϕη : ηB|p ∼= ηB|q, or θ stabilizing to

(θ∼B , ϕθ)wx ∈ ∆n
0(Bpq)

with θ∼B ∈
√
ωB(p+ q) and ϕθ : θB|p ∼= θB|q. Now w, x ∈ {+,−}

indicate the parity of θ and θ ⊗ η, respectively.

(

�

) As in examples 2.1.17 and 2.1.20, here we have η stabilizing to

(η∼B) ∈ ξ−1(η∼B ,OE(1)) ⊂ Pic(B ∪p∼0, q∼∞ E)

with η∼B ∈
√
OB(−p− q), or θ stabilizing to

(θw
B)x ∈ ξ−1(θw

B ,OE(1)) ⊂ Pic(B ∪p∼0, q∼∞ E)

with θw
B ∈ Sw

g−1(B). Once again, x ∈ {+,−} refers to the parity

of the combination of θ and η.
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(iii) Third column (Rg): boundary divisor ∆R of Rg over which ∆RS lies.

(∗) A single asterisk under ∆R indicates that ∆RS is a ramification

divisor of the morphism RS+x
g → Rg of moduli stacks, but not

of the corresponding coarse moduli map RS+x
g → Rg.

(∗∗) A double asterisk under ∆R indicates that ∆RS is a ramification

divisor of both RS+x
g → Rg and RS+x

g → Rg.

(iv) Fourth column (S+
g ): boundary divisor ∆S of S+

g over which ∆RS lies.

(∗∗) A double asterisk under ∆S indicates that ∆RS is a ramification

divisor of both RS+x
g → S+

g and RS+x
g → S+

g .

(v) Final columns (deg): degree of ∆RS → ∆R and ∆RS → ∆S considered as

restrictions of the respective coarse moduli maps. We write
sg = #Sg(C) = 22g

s+
g = #S+

g (C) = 2g−1(2g + 1)

s−g = #S−g (C) = 2g−1(2g − 1)


N±g = 22g−2

N+
g = 2g−1(2g−1 + 1)

N−g = 2g−1(2g−1 − 1)

as in proposition 2.2.12, so that #
√
N = sg and #Rg(C) = sg − 1.
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Table 2.4.12 (boundary of RS++
g ). With the previous notation, the boundary

divisors of RS++
g → Rg, S+

g can be described as follows:

RS++
g Trait Rg S+

g deg |Rg deg |S+
g

∆n+
i

[ ×− (ηC ,OD)

×− (θ+
C , θ

+
D)++

∆n
i
∗

∆+
i N+

i s+
g−i s+

i − 1

∆n−
i

[ ×− (ηC ,OD)

×− (θ−C , θ
−
D)−−

∆n
i
∗

∆−i N−i s−g−i s−i − 1

∆t+
i

[ ×− (OC , ηD)

×− (θ+
C , θ

+
D)++

∆t
i
∗

∆+
i s+

i N+
g−i s+

g−i − 1

∆t−
i

[ ×− (OC , ηD)

×− (θ−C , θ
−
D)−−

∆t
i
∗

∆−i s−i N−g−i s−g−i − 1

∆p++
i

[ ×− (ηC , ηD)

×− (θ+
C , θ

+
D)++

∆p
i
∗

∆+
i N+

i N+
g−i (s+

i − 1) (s+
g−i − 1)

∆p+−
i

[ ×− (ηC , ηD)

×− (θ+
C , θ

+
D)−−

∆p
i
∗

∆+
i N±i N±g−i s−i s−g−i

∆p−+
i

[ ×− (ηC , ηD)

×− (θ−C , θ
−
D)++

∆p
i
∗

∆−i N±i N±g−i s+
i s+

g−i

∆p−−
i

[ ×− (ηC , ηD)

×− (θ−C , θ
−
D)−−

∆p
i
∗

∆−i N−i N−g−i (s−i − 1) (s−g−i − 1)

@∆tn
0

[# − (OB,−1)
# − (θ∼B , ϕθ)++

Not present: parity must change

∆pn
0

[# − (ηB, ϕη)
# − (θ∼B , ϕθ)++

∆p
0 ∆n

0 sg−1/2 sg−1 − 1

∆tb
0

[# − (OB,−1)

�

− (θ+
B)+

∆t
0
∗∗

∆b
0 s+

g−1 1

∆pb
0

[# − (ηB, ϕη)

�

− (θ+
B)+

∆p
0
∗∗

∆b
0 N+

g−1 2 (s+
g−1 − 1)

∆bn
0

[ �

− (η∼B)
# − (θ∼B , ϕθ)++

∆b
0 ∆n

0
∗∗

s+
g−1 s+

g−1

∆bb
0

[ �

− (η∼B)

�

− (θ+
B)+

∆b
0 ∆b

0 s+
g−1 sg−1

Note that all degrees are given with respect to the coarse moduli maps, for the

sake of simplicity and pushforwards. With respect to their stacky counterparts,

an additional factor of 2 appears over Rg whenever i 6= 0, as in example 2.1.19.
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Table 2.4.13 (boundary of RS+−
g ). With the previous notation, the boundary

divisors of RS+−
g → Rg, S+

g can be described as follows:

RS+−
g Trait Rg S+

g deg |Rg deg |S+
g

∆n+
i

[ ×− (ηC ,OD)

×− (θ+
C , θ

+
D)−+

∆n
i
∗

∆+
i N±i s+

g−i s−i

∆n−
i

[ ×− (ηC ,OD)

×− (θ−C , θ
−
D)+−

∆n
i
∗

∆−i N±i s−g−i s+
i

∆t+
i

[ ×− (OC , ηD)

×− (θ+
C , θ

+
D)+−

∆t
i
∗

∆+
i s+

i N±g−i s−g−i

∆t−
i

[ ×− (OC , ηD)

×− (θ−C , θ
−
D)−+

∆t
i
∗

∆−i s−i N±g−i s+
g−i

∆p++
i

[ ×− (ηC , ηD)

×− (θ+
C , θ

+
D)+−

∆p
i
∗

∆+
i N+

i N±g−i (s+
i − 1) s−g−i

∆p+−
i

[ ×− (ηC , ηD)

×− (θ+
C , θ

+
D)−+

∆p
i
∗

∆+
i N±i N+

g−i s−i (s+
g−i − 1)

∆p−+
i

[ ×− (ηC , ηD)

×− (θ−C , θ
−
D)+−

∆p
i
∗

∆−i N±i N−g−i s+
i (s−g−i − 1)

∆p−−
i

[ ×− (ηC , ηD)

×− (θ−C , θ
−
D)−+

∆p
i
∗

∆−i N−i N±g−i (s−i − 1) s+
g−i

∆tn
0

[# − (OB,−1)
# − (θ∼B , ϕθ)+−

∆t
0 ∆n

0 sg−1 1

∆pn
0

[# − (ηB, ϕη)
# − (θ∼B , ϕθ)+−

∆p
0 ∆n

0 sg−1/2 sg−1 − 1

@∆tb
0

[# − (OB,−1)

�

− (θ+
B)−

Not present: parity cannot change

∆pb
0

[# − (ηB, ϕη)

�

− (θ+
B)−

∆p
0
∗∗

∆b
0 N±g−1 2 s−g−1

∆bn
0

[ �

− (η∼B)
# − (θ∼B , ϕθ)+−

∆b
0 ∆n

0
∗∗

s−g−1 s−g−1

∆bb
0

[ �

− (η∼B)

�

− (θ+
B)−

∆b
0 ∆b

0 s+
g−1 sg−1

Note that all degrees are given with respect to the coarse moduli maps, for the

sake of simplicity and pushforwards. With respect to their stacky counterparts,

an additional factor of 2 appears over Rg whenever i 6= 0, as in example 2.1.19.
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Thanks to tables 2.4.12 and 2.4.13, we can write down the pullbacks of the

boundary classes of Rg and S+
g in terms of the boundary classes of RS++

g and

RS+−
g . As usual, we apply the convention δ = O(∆) to refer to divisor classes

in stacks, and obtain:

ρ+
R : RS++

g → Rg

(deg. N+
g )



(ρ+
R)∗(δn

i ) = 2 (δn+
i + δn−

i )

(ρ+
R)∗(δt

i) = 2 (δt+
i + δt−

i )

(ρ+
R)∗(δp

i ) = 2 (δp++
i + δp+−

i + δp−+
i + δp−−

i )

(ρ+
R)∗(δt

0) = 2 δtb
0

(ρ+
R)∗(δp

0 ) = δpn
0 + 2 δpb

0

(ρ+
R)∗(δb

0 ) = δbn
0 + δbb

0

ρ+
S : RS++

g → S+
g

(deg. s+
g − 1)


(ρ+
S )∗(δ+

i ) = δn+
i + δt+

i + δp++
i + δp+−

i

(ρ+
S )∗(δ−i ) = δn−

i + δt−
i + δp−+

i + δp−−
i

(ρ+
S )∗(δn

0 ) = δpn
0 + 2 δbn

0

(ρ+
S )∗(δb

0 ) = δtb
0 + δpb

0 + δbb
0

ρ−R : RS+−
g → Rg

(deg. N±g )



(ρ−R)∗(δn
i ) = 2 (δn+

i + δn−
i )

(ρ−R)∗(δt
i) = 2 (δt+

i + δt−
i )

(ρ−R)∗(δp
i ) = 2 (δp++

i + δp+−
i + δp−+

i + δp−−
i )

(ρ−R)∗(δt
0) = δtn

0

(ρ−R)∗(δp
0 ) = δpn

0 + 2 δpb
0

(ρ−R)∗(δb
0 ) = δbn

0 + δbb
0

ρ−S : RS+−
g → S+

g

(deg. s−g )


(ρ−S )∗(δ+

i ) = δn+
i + δt+

i + δp++
i + δp+−

i

(ρ−S )∗(δ−i ) = δn−
i + δt−

i + δp−+
i + δp−−

i

(ρ−S )∗(δn
0 ) = δtn

0 + δpn
0 + 2 δbn

0

(ρ−S )∗(δb
0 ) = δpb

0 + δbb
0

We now have all of the information needed to extract the Prym-null classes

%+
null and %−null from the theta-null class ϑnull, and a road map given by

(ρ+
S )∗Θnull = Θ+

null ⊂ RS++
g  (ρ+

R)∗Θ+
null = P+

null ⊂ Rg

(ρ−S )∗Θnull = Θ−null ⊂ RS+−
g  (ρ−R)∗Θ−null = P−null ⊂ Rg
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The aforementioned starting class, computed in [Far10], is of the form:

ϑnull =
1

4
λ− 1

16
δn

0 −
bg/2c∑
i=1

δ−i ∈ Pic(S+
g )Q

as stated in section 2.2. Pulling back by ρ+
S and ρ−S , we then deduce that:

ϑ+
null = (ρ+

S )∗ ϑnull

=
1

4
λ− 1

16
δpn

0 −
1

8
δbn

0 −
bg/2c∑
i=1

(δn−
i + δt−

i + δp−+
i + δp−−

i )

∈ Pic(RS++
g )Q

ϑ−null = (ρ−S )∗ ϑnull

=
1

4
λ− 1

16
δtn

0 −
1

16
δpn

0 −
1

8
δbn

0 −
bg/2c∑
i=1

(δn−
i + δt−

i + δp−+
i + δp−−

i )

∈ Pic(RS+−
g )Q

with ϑ+
null = ORS++

g
(Θ+

null) ∈ Pic(RS++
g ) and ϑ−null = ORS+−

g
(Θ−null) ∈ Pic(RS+−

g ).

Finally, we can use tables 2.4.12 and 2.4.13 to push these classes forward by ρ+
R

and ρ−R, which brings us back to %+
null, %

−
null ∈ Pic(Rg) and results in:

%+
null = (ρ+

R)∗ ϑ
+
null

=
1

4
N+
g λ−

1

16

1

2
sg−1 δ

p
0 −

1

8
s+
g−1 δ

b
0

− 1

2

bg/2c∑
i=1

(
N−i s−g−i δ

n
i + s−i N−g−i δ

t
i + (N±i N±g−i + N−i N−g−i) δ

p
i

)
∈ Pic(Rg)Q

%−null = (ρ−R)∗ ϑ
−
null

=
1

4
N±g λ−

1

16
sg−1 δ

t
0 −

1

16

1

2
sg−1 δ

p
0 −

1

8
s−g−1 δ

b
0

− 1

2

bg/2c∑
i=1

(
N±i s−g−i δ

n
i + s−i N±g−i δ

t
i + (N±i N−g−i + N−i N±g−i) δ

p
i

)
∈ Pic(Rg)Q

A quick computation shows that these expansions agree with propositions 2.3.8
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and 2.3.13, and thus with theorem 2.3.14. Indeed, the coefficients are:

λ+ = 2−2 N+
g = 2g−3(2g−1 + 1)

δt,+
0 = 0 = 0

δp,+
0 = 2−5 sg−1 = 2g−3 2−2 2g−2

%+
null δb,+

0 = 2−3 s+
g−1 = 2g−3 2−2(2g−1 + 1)

δn,+
i = 2−1 N−i s−g−i = 2g−3(2i−1 − 1)(2g−i − 1)

δt,+
i = 2−1 s−i N−g−i = 2g−3(2i − 1)(2g−i−1 − 1)

δp,+
i = 2−1 (N±i N±g−i + N−i N−g−i) = 2g−3(2g−1 − 2i−1 − 2g−i−1 + 1)

λ− = 2−2 N±g = 2g−3 2g−1

δt,−
0 = 2−4 sg−1 = 2g−3 2−2 2g−1

δp,−
0 = 2−5 sg−1 = 2g−3 2−2 2g−2

%−null δb,−
0 = 2−3 s−g−1 = 2g−3 2−2(2g−1 − 1)

δn,−
i = 2−1 N±i s−g−i = 2g−3 2i−1(2g−i − 1)

δt,−
i = 2−1 s−i N±g−i = 2g−3(2i − 1) 2g−i−1

δp,−
i = 2−1 (N±i N−g−i + N−i N±g−i) = 2g−3(2g−1 − 2i−1 − 2g−i−1)

as expected. This means that, at least under the assumption from remark 2.4.9,

our analysis of the Prym-null divisors has truly come full circle.

2.4.3 Building a product of limit roots

The construction of S2
lim(N1,N2), or more generally of Snlim(Ni)ni=1 for n ∈ N,

raises the question of whether it is possible to extend a basic operation of roots

to limit roots: we refer, of course, to the tensor product.

Remark 2.4.14. On a smooth curve, the product L1 ⊗ L2 of two square roots

Li ∈
√
Ni is again a square root (of N1 ⊗N2). However, when working over

S1
lim(N1)×Mg S1

lim(N2) −→Mg

the tensor product is not so well-behaved. There are several problems:

(i) Each limit root may be defined over a different quasistable curve.

This is easy to solve: we can take the product of the lifts to a common

exceptional blow-up.
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(ii) Different lifts would produce different products.

This is quite inconvenient, but perhaps a specific lift can be selected.

(iii) Even if we choose a specific lift, the tensor product of two pullbacks of

limit roots is not always a limit root itself.

This is harder, and much less intuitive to tackle.

In view of the third point, the question becomes: can we modify the product in

any consistent way in order to end up with a limit root? To answer this, a shift

in perspective is required: if we switch over to S2
lim(N1,N2), we not only bypass

the second problem, but also have at our disposal a series of new data that will

prove integral to dealing with the third one.

According to remark 2.4.14, we would like to build a map

S2
lim(N1,N2) −→ S3

lim(N1,N2,N1 ⊗N2)

to act as a sort of product of limit roots, or “limit product”. We will propose a

candidate for this, but only at the level of points. First, we need to classify the

nodes of the stable model of a double limit root in terms of the behaviour that

each of the individual limit roots displays over them.

Given a stable curve Y ∈Mg, any pair of exceptional blow-ups

π1 : X1 → Y, π2 : X2 → Y

induces an arrangement of the nodes of Y into four different sets.

Definition 2.4.15. Let (π1, π2) be a pair of exceptional blow-ups of Y . We say

that a node z ∈ Sing(Y ) is of (π1, π2)-exceptional type (a1, a2) when

ai = ai(z) = dim (π−1
i (z)) =

{
0 if π−1

i (z) ∼= P0

1 if π−1
i (z) ∼= P1

for each i. Furthermore, the set of (a1, a2)-nodes of Y is denoted

Z(a1, a2) = Z(a1, a2)(π1, π2) ⊂ Sing(Y )

with (a1, a2) ∈ F2
2, which leads to a decomposition

Sing(Y ) = Z(0,0) t Z(1,0) t Z(0,1) t Z(1,1)

Note that, if we take (L1, L2)sync to be a double limit root

(L1, L2)sync = {π : X → Y, Li, αi, F, χi}i=1,2 ∈ S2
lim(N1, N2)
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partially stabilizing to the pair {(πi : Xi → Y, L′i, α
′
i)}i=1,2, then z ∈ Sing(Y ) is

a (π1, π2)-exceptional (a1, a2)-node when

ai = ai(z) = deg(Li|Ez) =

{
0 if Li|Ez = OEz
1 if Li|Ez = OEz(1)

In this case, we have subsets

E(a1, a2) = E(a1, a2)(π1, π2) = π−1(Z(a1, a2)) ⊂ X

S(a1, a2) = S(a1, a2)(π1, π2) = E(a1, a2) ∩ Sing(X) ⊂ Sing(X)

separating the exceptional components of X, as well as its nodes:

Sing(X) = S(0,0) t S(1,0) t S(0,1) t S(1,1)

Generally, the pair (π1, π2) will be clear from the context, and thus omitted.

The obstruction to a naive extension of the tensor product is created in the

nodes of exceptional type (1, 1). If we can compensate for this obstruction, it is

not out of the question that a suitable product arises.

Proposition 2.4.16. For any stable curve Y of genus g, and any pair (N1, N2)

of line bundles on Y of even degree, there is a “limit product” map

~ : S2
lim(N1, N2) → S3

lim(N1, N2, N1 ⊗N2)

(L1, L2)sync 7→ (L1, L2, L1 ~ L2)sync

that corresponds to the standard tensor product of roots when Y is smooth.

Proof. Given a double limit root (L1, L2)sync as in definition 2.4.15, we can find

an open cover of X by separating its three types of exceptional components

E(X) = E(1,0) t E(0,1) t E(1,1) ⊂ X

and considering adequate open neighbourhoods for each type:

U10 = U10 (π1, π2) = X − (E(0,1) ∪ E(1,1)) ⊂ V1 = X − E(0,1)

U01 = U01 (π1, π2) = X − (E(1,0) ∪ E(1,1)) ⊂ V2 = X − E(1,0)

U11 = U11 (π1, π2) = X − (E(1,0) ∪ E(0,1)) = V1 ∩ V2

In keeping with definitions 2.4.4 and 2.4.7, we write Vi = V (Li) ⊂ X. It is easy
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to check that these open sets are related by the equalities

U10 ∪ U01 ∪ U11 = X

U10 ∩ U01 = U10 ∩ U11 = U01 ∩ U11 = X − E(X)

and that, using the notation from remark 2.4.8(iii), we have

χ1 : F ′ ⊗ π∗N1 → L⊗2
1 isomorphism over V1 = U10 ∪ U11

χ2 : F ′ ⊗ π∗N2 → L⊗2
2 isomorphism over V2 = U01 ∪ U11

α1 : L⊗2
1 → π∗N1 isomorphism over U01

α2 : L⊗2
2 → π∗N2 isomorphism over U10

In particular, the differences π∗Ni ⊗ (L∨i )⊗2 can be locally described:

(π∗N1 ⊗ (L∨1 )⊗2)|U (π∗N2 ⊗ (L∨2 )⊗2)|U
U = U10 (F ′)∨|U10

� OU10

U = U01 OU01 � (F ′)∨|U01

U = U11 (F ′)∨|U11
∼= (F ′)∨|U11

The key observation here is that the standard square of a limit root can locally

differ from its radicand, but by no more than F ′. Consequently, the excess

(L⊗2
1 ⊗ L⊗2

2 )|U11
= (π∗N1 ⊗ π∗N2 ⊗ (F ′)⊗2)|U11

over U11 ⊂ X prevents L1 ⊗ L2 from being a limit root of N1 ⊗N2. However, it

also reveals where the problem lies, and how to work around it through the use

of a correction term R. Indeed, consider the line bundle R on X defined as the

gluing, or recollement, of the following local data:

{(U10, OU10), (U01, OU01), (U11, (F ′)∨|U11
)}  R ∈ Pic(X)

with R|U10
= OU10 , R|U01

= OU01 , R|U11
= (F ′)∨|U11

The inclusion of the correction term R offers a natural candidate for the role of

“limit product” of (L1, L2)sync, starting with a line bundle

L1 ~ L2 = L1 ⊗ L2 ⊗R ∈ Pic(X)
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over X, whose local description is:

over U10 : (L1 ~ L2)|U10
∼= (L1 ⊗ L2)|U10

over U01 : (L1 ~ L2)|U01
∼= (L1 ⊗ L2)|U01

over U11 : (L1 ~ L2)|U11
∼= (π∗N1 ⊗ L2 ⊗ L∨1 )|U11

∼= (π∗N2 ⊗ L1 ⊗ L∨2 )|U11

Moreover, L1 ~ L2 is equipped with a sheaf homomorphism

α1 ~ α2 : (L1 ~ L2)⊗2 → π∗(N1 ⊗N2)

obtained by gluing the following local data:

{(U10, α1 ⊗ α2), (U01, α1 ⊗ α2), (U11, Id)}  α1 ~ α2

In other words, α1 ~ α2 is locally given by:

over U10 : (L1 ~ L2)⊗2|U10
∼= (L⊗2

1 ⊗ L⊗2
2 )|U10

α1⊗α2−→ (π∗N1 ⊗ π∗N2)|U10

over U01 : (L1 ~ L2)⊗2|U01
∼= (L⊗2

1 ⊗ L⊗2
2 )|U01

α1⊗α2−→ (π∗N1 ⊗ π∗N2)|U01

over U11 : (L1 ~ L2)⊗2|U11
∼= (L⊗2

1 ⊗ L⊗2
2 ⊗ ((F ′)∨)⊗2)|U11

∼=
∼= (π∗N1 ⊗ π∗N2)|U11

Now, since (α1 ~ α2)|U11
is an isomorphism, pulling back to E(1,1) ⊂ U11 we see

that L1 ~ L2 is trivial over E(1,1), and so the triplet

(X, L1 ~ L2, α1 ~ α2)

stabilizes to a limit root (π3 : X3 → Y, L′3, α
′
3) of N1 ⊗N2 which we denote

(π3, L
′
3, α

′
3) = (π1, L

′
1, α

′
1)~sync (π2, L

′
2, α

′
2) ∈ Slim(N1 ⊗N2)

where X3 corresponds to contracting E(1,1) ⊂ X. As it turns out, this new limit

root does not exist in isolation; on the contrary, a sheaf homomorphism

χ1 ~ χ2 : F ′ ⊗ π∗(N1 ⊗N2) → (L1 ~ L2)⊗2

is readily associated to it, namely by recollement of the following local data:

{(U10, χ1 ⊗ α−1
2 ), (U01, α

−1
1 ⊗ χ2), (U11, α1 ◦ χ1 ≡ α2 ◦ χ2)}  χ1 ~ χ2
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Observe that this process works due to the synchronizing conditions, yielding:

over U10 : ((F ′ ⊗ π∗N1)⊗ π∗N2)|U10

χ1⊗α
−1
2∼= (L⊗2

1 ⊗ L⊗2
2 )|U10

over U01 : (π∗N1 ⊗ (F ′ ⊗ π∗N2))|U01

α−1
1 ⊗χ2∼= (L⊗2

1 ⊗ L⊗2
2 )|U01

over U11 : ((F ′ ⊗ π∗N1)⊗ π∗N2)|U11

α1◦χ1−→ (π∗N1 ⊗ π∗N2)|U11

(or equiv. (π∗N1 ⊗ (F ′ ⊗ π∗N2))|U11

α2◦χ2−→ (π∗N1 ⊗ π∗N2)|U11
)

Not only does χ1 ~ χ2 restrict to an isomorphism over V (L1 ~ L2) = U10 ∪ U01,

but it also gives rise to a commutative diagram

L⊗2
1 ⊗ π∗N2 α1⊗Id

((
F ′ ⊗ π∗(N1 ⊗N2)

χ1⊗Id 11

χ2⊗Id --

χ1~χ2 // (L1 ~ L2)⊗2
α1~α2 // π∗(N1 ⊗N2)

L⊗2
2 ⊗ π∗N1

α2⊗Id

66

thus making {F ′, χ1, χ2, χ1 ~ χ2} into synchronization data of (L1, L2, L1 ~ L2),

in the sense of remark 2.4.8(iii). That is, we have built a triple limit root
X, L1, L2, L1 ~ L2,

α1, α2, α1 ~ α2,

F ′, χ1, χ2, χ1 ~ χ2

 ∈ S3
lim(N1, N2, N1 ⊗N2)

of (N1, N2, N1 ⊗N2), which we denote (L1, L2, L1 ~ L2)sync, and so a map

~ : S2
lim(N1, N2) → S3

lim(N1, N2, N1 ⊗N2)

(L1, L2)sync 7→ (L1, L2, L1 ~ L2)sync

fitted with a forgetful retraction (L1, L2, L3)sync 7→ (L1, L2)sync.

Recalling definition 2.4.15, note that the exceptional type of the nodes of Y

with respect to the triplet (π1, π2, π3) involved in the limit product

(π3, L
′
3, α

′
3) = (π1, L

′
1, α

′
1)~sync (π2, L

′
2, α

′
2)

directly depends on their (π1, π2)-exceptional type. Specifically, we have

Z(a1, a2)(π1, π2) = Z(a1, a2, a3)(π1, π2, π3) for a3 ≡ a1 + a2 mod 2
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hence the open subsets {Uab (π3, π2)} and {Uab (π1, π2)} are related by{
U ′ab = Uab (π3, π2) = U(a+bmod 2) b (π1, π2) = U(a+bmod 2) b

U ′10 = U10, U ′01 = U11, U ′11 = U01

This indicates that an inverse operation can also be constructed, using

{(U10,OU10), (U01, F
′|U01
∼= (L⊗2

2 ⊗ π∗N∨2 )|U01
), (U11,OU11)}  R′ ∈ Pic(X)

as a correction term to deal with the now problematic (0, 1)-nodes. If modified

accordingly, the above proof results in a “limit division” map

~∨ : S2
lim(N1, N2) → S3

lim(N1, N2, N1 ⊗N∨2 )

(L1, L2)sync 7→ (L1, L2, L1 ⊗ L∨2 ⊗R′)sync

which is supported by the commutative diagram

S2
lim(N1, N2)

~ // S3
lim(N1, N2, N1 ⊗N2)

��
�

S3
lim(N2, N1 ⊗N2, N1)

OO

S2
lim(N2, N1 ⊗N2)

~∨
oo

(L1, L2)sync
� ~ // (L1, L2, L1 ~ L2)sync_

��
(L2, L1 ~ L2, L1)sync

_

OO

(L2, L1 ~ L2)sync
�

~∨
oo

since R′ = R′(L2, L1 ~ L2)sync = (R(L1, L2)sync)
∨ = R∨ implies that

(L1 ~ L2)~∨ L2 = (L1 ⊗ L2 ⊗R)⊗ L∨2 ⊗R′ = L1

and similarly (α1 ~ α2)~∨ α2 = α1, (χ1 ~ χ2)~∨ χ2 = χ1.

Once again, we attempt to clarify the situation with some examples.

Example 2.4.17. Let B = BX ⊂ X be the closure of X − E(X). The bundles

R and L1 ~ L2 defined in proposition 2.4.16 restrict to:

Pic(X) −→ Pic(B) ⊕ Pic(E(1,0)) ⊕ Pic(E(0,1)) ⊕ Pic(E(1,1))

R 7−→
(
OB(S(1,1)) , OE(1,0)

, OE(0,1)
, OE(1,1)

(−2)
)

L1 ~ L2 7−→
(
L1|B ⊗ L2|B ⊗OB(S(1,1)) ,

OE(1,0)
(1) , OE(0,1)

(1) , OE(1,1)

)
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since R is trivial outside of the (1, 1)-nodes, and

R|U11
= (F ′)∨|U11

= (π∗N1 ⊗ (L∨1 )⊗2)|U11
= (π∗N2 ⊗ (L∨2 )⊗2)|U11

otherwise; recall the sheaf isomorphisms given after definition 2.1.8.

Example 2.4.18. In the case of Prym-spin curves over ∆0, the correction term

of (X1, θ, α)~sync (X2, η, β) amounts to

(π∗ωY ⊗ (θ∨)⊗2)|U11
= (π∗OY ⊗ (η∨)⊗2)|U11

= (η∨)⊗2|U11

over U11, so that the limit product θ ~ η is of the form θ ⊗ η∨ over (1, 1)-nodes

and θ ⊗ η elsewhere. With the notation from remark 2.4.11 and the discussion

prior to proposition 2.2.13, the four basic combinations of limit roots and their

respective products are depicted on the back of the page.

If the limit product ~ from proposition 2.4.16 could be defined over families

of double limit roots, it would be of great value for the study of the spaces

S2
lim(N1,N2)→Mg

that have been introduced in this section. We thus conclude this work with the

hope that these notions will, sooner or later, receive a proper treatment.



[Example 2.4.18]
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