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Abstract

In 1978 Eugène Cremmer and Bernard Julia discovered the existence of hidden non-
compact global En(n)(R) exceptional symmetries in the maximal supergravity theories
that follow from the compactification of eleven-dimensional supergravity on an n-torus
[1, 2]. The existence of these hidden exceptional symmetries in maximal supergrav-
ity theories is one of their most notable features, but the role of these symmetries
is not yet fully understood at the quantum level. Moreover it has only been known
since 2013 how a manifestly En(n) covariant exceptional field theory (ExFT) can be
constructed, which is based on an extended generalised exceptional geometry and in
particular contains the eleven-dimensional supergravity [3].
In this thesis we construct and investigate the canonical formulation of the (bosonic)
E6(6) ExFT, which can be seen as the starting point of the canonical quantisation
procedure. We calculate the explicit non-integral form of the topological term of the
E6(6) ExFT and explore a topological model theory based on the two-form kinetic term,
where we identify problems regarding the construction of a Dirac bracket in an ex-
tended generalised geometry. To illustrate the construction of an extended generalised
geometry we explicitly construct the Y-tensor for the symplectic group Sp(2n). Fur-
thermore we establish a simplified canonical treatment of the scalar coset constraints,
which we illustrate for the SL(n)/SO(n) coset. As a preparation to the canonical
analysis of the E6(6) ExFT we calculate the canonical formulation of the manifestly
E6(6) invariant ungauged maximal five-dimensional supergravity theory and carry out
a comprehensive canonical analysis including all gauge transformations and the full
constraint algebra. We then proceed to work out the canonical formulation of the
E6(6) ExFT. We calculate the full ExFT Hamiltonian, most of the canonical (gauge)
transformations and parts of the constraint algebra. Moreover we examine how the
canonical formulation can be expressed in the generalised vielbein form and we discuss
the possible existence of generalised Ashtekar variables.

Keywords: supergravity, duality covariance, exceptional field theory, exceptional ge-
ometry, canonical formalism, Hamiltonian formalism, Hamiltonian
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Zusammenfassung

Eugène Cremmer und Bernard Julia haben 1978 die Existenz von verborgenen nicht-
kompakten globalen En(n)(R)-exzeptionellen Symmetrien in den maximalen Super-
gravitationstheorien, die aus der Kompaktifizierung der elfdimensionalen Supergra-
vitation auf einem n-Torus folgen, entdeckt [1, 2]. Die Existenz dieser exzeptionellen
Symmetrien in den maximalen Supergravitationstheorien ist eine ihrer bemerkens-
wertesten Eigenschaften, aber die Bedeutung dieser Symmetrien in der Quantenthe-
orie ist noch nicht vollständig verstanden. Zudem ist erst seit 2013 bekannt, wie
eine manifest En(n)-kovariante exzeptionelle Feldtheorie (ExFT), die auf einer verall-
gemeinerten exzeptionellen Geometrie basiert und insbesondere die elfdimensionale
Supergravitation beinhaltet, konstruiert werden kann [3].
In dieser Dissertation konstruieren und untersuchen wir die kanonische Formulierung
der (bosonischen) E6(6)-ExFT, was als Ausgangspunkt der kanonischen Quantisierung
angesehen werden kann. Wir ermitteln die explizite nicht-integrale Form des topolo-
gischen Terms der E6(6)-ExFT und untersuchen eine topologische Modelltheorie, die
auf dem kinetischen Term der zwei-Form basiert, wobei wir Schwierigkeiten identi-
fizieren, die die Konstruktion einer Dirac-Klammer auf einer verallgemeinerten exzep-
tionellen Geometrie betreffen. Um die Konstruktion einer verallgemeinerten Ge-
ometrie zu illustrieren konstruieren wir explizit den Y-Tensor für die symplektische
Gruppe Sp(2n). Außerdem beschreiben wir eine vereinfachte kanonische Behand-
lung der Zwangsbedingungen des skalaren symmetrischen Raumes, welche wir für
den symmetrischen Raum SL(n)/SO(n) erläutern. Zur Vorbereitung der kanonischen
Analyse der E6(6)-ExFT untersuchen wir die kanonische Formulierung der manifest
E6(6)-invarianten ungeeichten maximalen fünfdimensionalen Supergravitationstheorie
und führen eine umfassende kanonische Analyse, inklusive aller Eichtransformationen
und der vollständigen Poisson-Algebra der Zwangsbedingungen, durch. Anschließend
fahren wir mit der Ermittlung der kanonischen Formulierung der E6(6)-ExFT fort.
Wir errechnen die vollständige Hamilton-Funktion der ExFT, sowie den Großteil der
kanonischen (Eich-)Transformationen und Teile der Poisson-Algebra der Zwangsbe-
dingungen. Zudem untersuchen wir, wie die kanonische Formulierung durch das ver-
allgemeinerte Vielbein ausgedrückt werden kann und erörtern die mögliche Existenz
von verallgemeinerten Ashtekar-Variablen.
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“ὁ κόσμος, ἀλλοίωσις· ὁ βίος, ὑπόληψις.”

“Mundus mūtātiō, v̄ıta op̄ıniō.”

— Marcus Aurelius Antoninus Augustus,
τὰ εἰς ἑαυτὸν ἠθικά (Meditations), IV, 3

“But among the principles readiest to thine hand, upon which thou shalt pore, let
there be these two. One, that objective things do not lay hold of the soul, but stand
quiescent without; while disturbances are but the outcome of that opinion which is
within us. A second, that all this visible world changes in a moment, and will be
no more; and continually bethink thee to the changes of how many things thou hast
already been a witness. ‘The Universe—mutation: Life—opinion.’ ” [4]
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Chapter 1

Introduction

More than a century ago Albert Einstein developed the theory of general relativity,
which is a classical (i.e. non-quantum) theory that describes gravity in an entirely
geometric form [5]. The space-time geometry is described by the dynamical metric
field gµν . Moreover the theory is generally covariant, which means that the Einstein
field equations (1.1), that govern the dynamics of the metric field, are the same in all
coordinate systems.

Rµν −
1

2
gµν R =

8πGN

c4
Tµν (1.1)

The left hand side of the Einstein field equations is fully geometric and only depends
on the metric field and its curvature. The right hand side however describes the energy
or matter content of the universe. Albert Einstein himself already noted in 1916 that,
because of the quantum properties of matter, this classical and deterministic theory
of gravity would necessarily require a modification [6]. This leads to the question of
what such a theory of quantum gravity should look like.1

In the Einstein field equations GN is Newton’s constant and c is the speed of light in
vacuum. Combined with the reduced Planck’s constant ℏ we can use these quantities
to define a mass or energy scale by mP :=

√
ℏ c/GN ≈ 2.18 · 10−8 kg, which is called

the Planck mass.2 Similarly we can define the Planck length lP :=
√
ℏGN/c3 ≈

1.62 · 10−35 m and the Planck time tP :=
√

ℏGN/c5 ≈ 5.39 · 10−44 s. Naively one
would expect to see the effects of quantum gravity only at energies around or above
the Planck mass, but even the most advanced particle physics experiments at the
Large Hadron Collider (LHC) only reach a total kinetic energy that is equivalent to
a mass of ca. 10−23 kg and even some of the most energetic cosmic radiation that
has been measured on earth only reaches an energy scale equivalent to ca. 10−16 kg
[9], which is far less than the Planck mass. Equivalently one should expect to have
to observe processes that take place at scales below the Planck length or Planck time
scales in order to see any measurable effects of quantum gravity.
Due to this immense difference between the Planck scale and the scales that are ac-
cessible to current experiments and observations there is no real phenomenological or
experimental guidance as to what a theory of quantum gravity should look like. The
only physical phenomena for which the quantum effects of gravity are currently (gen-
erally) expected to be relevant are the space-time singularities found at the centre of
black holes and at the Big Bang, where general relativity is ill-defined. Unfortunately
such singularities are also conjectured to be shielded from any direct observation (this
is known as the cosmic censorship hypotheses) [10].
In absence of any direct measurements many different approaches to quantum grav-
ity have been developed, some of which take a minimalistic approach to extending

1Reference [7] is a good general introduction to quantum gravity and reference [8] contains an
interesting description of some of the historical developments concerning quantum gravity.

2In the remainder of this thesis we will work in Planck units with ℏ = c = GN = 1.
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general relativity, while others introduce radically new concepts, such as the idea
of replacing point-like fundamental particles with one-dimensional fundamental rel-
ativistic strings, which is known as string theory.3 In order to be consistent with
the known physics, any theory of quantum gravity needs to reduce to (or at least
contain) general relativity at energy scales below the Planck scale and be compat-
ible with all other experimentally verified results. One can try to quantise general
relativity perturbatively around a flat space-time, but one finds that the theory is
non-renormalisable, which means that one cannot remove the divergencies (or infini-
ties), that appear in this case at the second order in the perturbation theory, without
introducing an infinite number of counter terms, which in turn lead to an infinite
number of constants that would need to be determined experimentally and this would
essentially make the theory lose all its predictive power [12]. There are numerous
other computational and conceptual problems that arise when considering theories of
quantum gravity, such as the meaning of quantum fluctuations of the causal structure
of space-time and the role of time itself (this is known as the problem of time) [13, 14].

One possible approach to quantum gravity, which we describe in more detail in chap-
ter 2, is called supergravity and it postulates an enlarged local space-time symmetry
of general relativity that is called supersymmetry [15]. One particular supergravity
theory (the four-dimensional maximal N = 8 theory [16]) could moreover be a per-
turbatively finite theory of quantum gravity [17, 18]. The divergencies that arise in
the perturbative quantisation of general relativity are (at least in part) cancelled in
supergravity due to the additional supersymmetry between the bosonic (“forces”) and
fermionic (“matter”) parts of the theory.
One can also consider supergravity theories in more than four dimensions and although
there is currently no experimental evidence for the existence of extra dimensions, it
can be mathematically useful to consider higher dimensional space-time geometries
and to relate them back to lower dimensional physics. For example one finds that for
an eleven-dimensional space-time geometry there exists only one unique supergravity
theory [19]. If one assumes that seven of the dimensions of the eleven-dimensional
space-time are given by a compact 7-torus and furthermore that the size of this 7-torus
is very small, e.g. comparable to the Planck length lP, then the eleven-dimensional
theory can be equivalently described in terms of the above-mentioned four-dimensional
supergravity theory for energy scales that are well-below the Planck scale. This pro-
cedure is called (toroidal) compactification and in this manner one can recover a
four-dimensional theory from the eleven-dimensional supergravity theory.
In 1978 it was discovered by Eugène Cremmer and Bernard Julia that an additional
hidden (global) symmetry emerges in the four-dimensional (maximal) supergravity
theory that is obtained from the eleven-dimensional supergravity by toroidal com-
pactification and this symmetry is described by the (non-compact real) exceptional
Lie group E7(7)(R) [1, 2]. More generally one can find an En(n)(R) symmetry in the n-
torus compactifications of eleven-dimensional supergravity. The unexpected existence
of these hidden exceptional symmetries lead to the question of whether this symmetry
already exists in the eleven-dimensional supergravity. In the following decade refor-
mulations of the eleven-dimensional supergravity were found that manifestly exhibit
symmetries that are subgroups of the exceptional groups [20–22].

3Reference [11] tries to visually represent some of the conceptual relations between various ap-
proaches to quantum gravity and reference [8] contains a visual representation of the historical de-
velopment of some concepts.
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It was however only in 2013 that the first fully and manifestly En(n)(R) covariant field
theory, called exceptional field theory (ExFT), was constructed, which in particular
contains the dynamics of eleven-dimensional supergravity [3]. ExFT achieves mani-
fest (local) En(n)(R) covariance with the help of a generalised and extended notion of
space-time geometry, which was developed in the previous decade and which we de-
scribe in more detail in chapter 3. This generalised exceptional geometry is moreover
related to the concept of geometrisation, which is the idea that one can find a common
higher dimensional geometric origin for originally non-geometric degrees of freedom.
This idea was historically pioneered by Theodor Kaluza and Oskar Klein in the 1920s,
when it was discovered that four-dimensional general relativity coupled to Maxwell
theory and a massless scalar field can be equivalently described by a purely gravi-
tational theory in five dimensions when the five-dimensional theory is compactified
on a circle [23, 24]. Similarly ExFT combines geometric and non-geometric degrees
of freedom of eleven-dimensional supergravity. What is moreover remarkable about
ExFT is that the exceptional symmetry seems to be intricately connected to super-
symmetry, because the bosonic ExFT, without the requirement of supersymmetry,
is already uniquely determined by the requirement of (generalised) diffeomorphism
invariance [3, 25]. Nonetheless one can extend the ExFT to be supersymmetric [26].
This may hint at a more fundamental interpretation of the generalised exceptional ge-
ometry. A brief overview of some of the application of ExFT can be found in chapter 3.

The quantisation of ExFT poses several challenges due to the generalised exceptional
geometry. The path integral formalism cannot be used to quantise the theory because
any integral over the generalised exceptional geometry has to obey, what is called, the
section condition (1.2).

Y KL
MN ∂K ⊗ ∂L = 0 (1.2)

The section condition (1.2) restricts the coordinate dependence of any function on the
generalised exceptional geometry in a way that is governed by the Y-tensor Y KL

MN ,
which is determined by the structure of the exceptional group En(n)(R). The co-
ordinate derivatives ∂K sit in a representation of En(n)(R). In ordinary differential
geometry there is no analogue to the section condition of extended generalised ge-
ometry. In order to quantise ExFT one therefore has to make use of other kinds of
quantisation procedures. One possibility is to consider the canonical quantisation pro-
cedure, which proceeds via the canonical (or Hamiltonian) formulation of the theory
[27, 28]. The aim of this thesis is the construction and analysis of the canonical formu-
lation of ExFT, which can be seen as the first step towards the canonical quantisation
of ExFT.
The canonical formulation of double field theory [29, 30], which is based on an ex-
tended generalised O(n, n) geometry (doubled geometry) similar to the geometry of
ExFT, has been examined in [31]. Very recently the geometric quantisation procedure
has been discussed in the context of double field theory [32]. However the geometric
quantisation approach may be less suitable in the context of ExFT as there is no clear
analogy between the extended generalised exceptional geometry and the geometry of
phase space — the quantisation of ExFT is briefly commented on in [32]. For special
geometries, which are of the form of Minkowski space times a compact torus, some
En(n) invariant amplitudes of ExFT have been computed (up to three loops) in [33–
35].
To simplify the canonical analysis we focus on the bosonic sector of the E6(6) ExFT [3,
25, 36], which in contrast to some of the other ExFTs does not involve any self-dual
differential forms or constrained compensator fields, that would otherwise complicate
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the canonical analysis. Some of the main challenges in the canonical analysis of the
E6(6) ExFT are the treatment of the generalised exceptional geometry and the com-
plicated topological term.

Apart from the aim of the canonical quantisation of ExFT, one may furthermore hope
to learn about some other aspects of the generalised exceptional geometry from the
canonical formulation of ExFT — such as the role and physical meaning of the section
condition in the canonical formulation of ExFT or how the generalised diffeomorphism
transformations are generated canonically. Moreover it may be interesting to investi-
gate the local initial value problem for the extended generalised exceptional geometry.
Furthermore one could try to identify a generalised definition of asymptotic flatness
and ADM charges for non-compact extended generalised exceptional geometries, in
analogy to what has been done in the canonical formulation of double field theory in
[31]. The Ashtekar connection is an alternative phase space variable in general relativ-
ity that transforms the canonical constraints into polynomial expressions [37, 38], due
to the results of [39] one might hope to find the definition of a generalised Ashtekar
connection for the generalised exceptional geometry from the canonical formulation
of ExFT — this is discussed in more detail in chapter 7.

The three central concepts used in this thesis are supergravity, generalised (excep-
tional) geometry and the canonical formalism. Each of these topics is discussed re-
spectively in the chapters 2, 3 and 4. In chapter 5 the canonical analysis of the
five-dimensional E6(6) invariant (maximal) supergravity theory is carried out as an in-
termediate step — this theory is related to the E6(6) ExFT by the trivial ∂K ≡ 0 ∀K
solution of the section condition (1.2). In chapter 6 we construct and analyse the
canonical formulation of the E6(6) ExFT itself. A more detailed outline of this thesis
can be found in section 1.1.

1.1 Outline

The outline of this thesis is as follows:

In chapter 2 the concept of supersymmetry is introduced and the basic ideas of super-
gravity are discussed. We explain the concept of toroidal compactifications and de-
scribe the global exceptional symmetries that arise in the compactifications of eleven-
dimensional supergravity on an n-torus. Furthermore we examine how group invariant
supergravity Lagrangians can be constructed and how subgroups of global symmetries
can be gauged. The relationship between hidden exceptional symmetries of maximal
supergravity and string theory dualities is briefly discussed.

In chapter 3 the concept of geometrisation is first illustrated by looking at Kaluza-
Klein theory. It is then explained how generalised notions of geometry can be used
to achieve the geometrisation of degrees of freedom in more general settings. We
briefly discuss generalised (complex) geometry, which is based on the idea of an en-
larged tangent bundle and then look at doubled geometry, which moreover extends
the dimension of the base geometry at the cost of introducing a consistency condition
called the section condition. Next we describe how the string theory low energy ef-
fective action (of the NSNS sector) can be rewritten in a manifestly duality covariant
and geometrised formulation called double field theory. Moreover we examine the
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construction of a generalised symplectic geometry as an example and explicitly con-
struct the Y-tensor for the symplectic group Sp(2n). We then review how an extended
generalised exceptional geometry can be used to reformulate the dynamics of eleven-
dimensional supergravity in a manifestly E6(6) covariant form called exceptional field
theory and we construct the explicit non-integral (not manifestly gauge invariant)
form of the topological term of this theory.

In chapter 4 we first review some of the basics of the canonical (or Hamiltonian)
formalism of constrained Hamiltonian systems and then briefly discuss some aspects
of the Arnowitt-Deser-Misner formulation of general relativity. In order to examine
and illustrate an explicit and implicit canonical treatment of coset constraints we look
at the canonical formulation of the SL(n)/SO(n) scalar coset sigma model. Next we
investigate the canonical formulation of a topological two-form model theory on an
extended generalised geometry, which is based on the topological term of the E6(6)

exceptional field theory. We construct the canonical constraint algebra and discuss
some problems regarding the construction of a Dirac bracket in this model.

In chapter 5 we investigate the canonical formulation of the bosonic sector of the
unique manifestly E6(6) invariant ungauged maximal five-dimensional supergravity
theory, which is closely related to the E6(6) exceptional field theory by the trivial so-
lution of the section condition. We calculate the canonical Hamiltonian, the complete
set of canonical constraints, all gauge transformations and construct the complete
Poisson bracket algebra of the canonical constraints. In this analysis we identify a
crucial redefinition of the canonical variables and examine the canonical treatment of
the topological term.

In chapter 6 we investigate the canonical formulation of the bosonic sector of the E6(6)

exceptional field theory. We carry out the Legendre transformation and calculate the
canonical Hamiltonian of the theory. The canonical constraints are identified and
we calculate most of the canonical (gauge) transformations and part of the canonical
constraint algebra. Furthermore we discuss the treatment of the intricate topological
term and examine the role of the section condition in the canonical formalism. Finally
we introduce the internal generalised vielbein and explain how the canonical formu-
lation of exceptional field theory can be rewritten in terms of these variables.

In chapter 7 we review and discuss the main findings of this thesis. Furthermore we
give an outlook on possible applications of the results of this thesis, including on the
possible existence of generalised Ashtekar variables and the quantisation of excep-
tional field theory.

In appendix A we list some useful mathematical identities concerning the Levi-Civita
symbol, the Dirac delta distribution and derivatives of the vielbein determinant.

In appendix B additional Poisson bracket relations and intermediate results concerning
the content of chapter 5 are listed.
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1.2 Publications

The results presented in this thesis are mainly based on the following publications:

I Lars T. Kreutzer, “Canonical analysis of E6(6)(R) invariant five dimensional
(super-)gravity”, Journal of Mathematical Physics 62, p. 032302 (2021),
DOI: 10.1063/5.0037092, arXiv: 2005.13553, cited in the following as [40]

II Lars T. Kreutzer, “The canonical formulation of E6(6) exceptional field theory”,
arXiv: 2105.02238 (submitted), cited in the following as [41]

Section 4.1, section 4.2, section 4.3, chapter 5, appendix A and appendix B are based
on and closely follow the structure of the publication [40]. Section 3.5, section 4.4
and chapter 6 are based on and closely follow the structure of the publication [41].
Chapter 7 is based on parts of both publications [40, 41], but more closely follows
the structure of parts of [41]. Many of the sections listed above contain additional
(unpublished) explanations and information that are not contained in the publications
[40, 41]. The results of section 3.4, which are derived from the procedure described in
[42, 43], have not been published elsewhere.

https://doi.org/10.1063/5.0037092
https://arxiv.org/abs/2005.13553
https://arxiv.org/abs/2105.02238
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Chapter 2

Supergravity

In this chapter we briefly introduce supersymmetry and supergravity, we explain the
relation of supergravity to superstring theory and the emergence of exceptional sym-
metries in supergravity.

2.1 What is supersymmetry?

In order to understand what supergravity is we first need to define supersymmetry.
Supersymmetry (SUSY) is an extension of the Poincaré space-time symmetry.1 The
Poincaré Lie algebra is generated by the generators of d-dimensional translations Pµ,
the generators of the SO(1, d − 1) Lorentz transformations Lµν and the generators
XM of some internal symmetry. The Coleman-Mandula no-go theorem, published in
1967 [45], states that the most general symmetry Lie algebra of the scattering matrix
of a physical theory can only combine the space-time symmetry with the internal
symmetry in a trivial way [XM , Pµ] = 0, [XM , Lµν ] = 0 and that there is no mixing
of particles of different spins.

One possible workaround to the Coleman-Mandula theorem is to relax the condition
for the resulting algebra to be a Lie algebra. Instead one can consider a superalgebra
with a Z2 graded product, which allows for so called fermionic generators QA

α (grading
na = 1) in a spinor representation of the Lorentz group, in contrast to the bosonic
generators Pµ, Lµν and XM (grading na = 0). The graded product of this super-
Poincaré algebra is given by (2.1) where Oa is a generator of the superalgebra and f c

ab

are the structure constants.

{Oa, Ob} := Oa ·Ob − (−1)nanb Ob ·Oa = f c
abOc (2.1)

The super-Poncaré algebra is the supersymmetric extension of the Poincaré algebra.
The Haag-Łopuszański-Sohnius no-go theorem, published in 1975 [46], extends the
Coleman-Mandula theorem and also considers superalgebras. When acting on the
fields of a theory the generators QA

α exchange fermionic and bosonic fields and therefore
this transformation mixes different spins. In particular one finds that the product of
two fermionic generators has to result in a translation (2.2) [46].2

{QA
α , Q̄

B
β̇
} = δAB σµ

αβ̇ Pµ (2.2)

Therefore a consistent theory that is invariant under local supersymmetry is neces-
sarily invariant under diffeomorphisms and thus it is a theory of gravity. Likewise it

1See reference [44] for lecture notes on supersymmetry.
2The relation (2.2) is written here for the four-dimensional case, but a similar relation holds in any

dimension. The overline indicates the Dirac adjoint, the dots indicate the chirality (van der Vaerden
notation) and the σµ are the Pauli matrices.
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is true that a supersymmetric theory of gravity is necessarily invariant under local
supersymmetry. The fermionic generators QA

α carry one spinor index α and the index
A labels the different generators A = 1, . . . ,N . The number N is sometimes referred
to as the number of supersymmetries. The components of the fermionic generators
are also called supercharges. The case N = 1 is referred to as basic supersymmetry,
whereas N > 1 is called extended supersymmetry. The maximal (real) number of su-
percharges that a theory can have without necessarily leading to fields of spin greater
than two and without having several fields of spin two (gravitons) is 32 and this case
is referred to as maximal supersymmetry (e.g. N = 8 in d = 4 or N = 1 in d = 11)
[47]. The representation spaces of these groups are called supermultiplets.

2.2 What is supergravity?

Supergravity (SUGRA) theories are theories with local supersymmetry.3 Therefore
supergravity theories are necessarily also theories of supersymmetric gravity (cf. equa-
tion (2.2)). One possible motivation for considering theories of supersymmetric gravity
is the hope that supersymmetry might cure the inherent problems (ultraviolet diver-
gencies) that arise when quantising gravity, because supersymmetry seems to improve
the quantum behaviour of theories with global supersymmetry, such as Super-Yang-
Mills theory, Super-Maxwell theory or Wess-Zumino theory [51, 52]. Furthermore
maximal (N = 8) supergravity could be a finite quantum field theory that includes
gravity [16–18]. Moreover it is in itself a remarkable fact that it is at all possible to
write down a consistent theory that extends general relativity in a supersymmetric
way — therefore implying a non-trivial spinorial structure that is hidden in general
relativity.

The simplest supergravity theory has basic supersymmetry N = 1 and the correspond-
ing supermultiplet contains only one spin two field, the graviton (or metric) Gµν and
one spin 3/2 field, the gravitino Ψµ

α [15]. The metric Gµν can be used to define the
(equivalent) vielbein Eµ

a by Gµν = Eµ
aEν

b ηab, where ηab is the Minkowski metric.4

The gravitino is the supersymmetry partner of the graviton and the supersymmetry
transformations (see equations (2.6) and (2.7)) exchange these fields [15]. We can
write an action for this theory as in equation (2.3).

SSUGRA =

∫
ddx (LEH + LRS + LInt.) (2.3)

The first part of the action is simply the Einstein-Hilbert term of general relativity
(2.4), which is the kinetic term of the graviton [53–55]. E is the determinant of the
vielbein Eµ

a and Rµν
ab is the Riemann tensor.

LEH = −E

4
Ea

µEb
ν Rµν

ab (2.4)

The second term in the action is the Rarita-Schwinger term (2.5), which was first
published in 1941 [56].

LRS = − i

2
EΨµ γ

µνρDνΨρ (2.5)

3See reference [15] for a comprehensive textbook introduction to supergravity, which contains
most topics covered in this chapter. For lecture notes on supergravity see [48–50].

4The vielbein Eµ
a is introduced in detail in section 6.2. Note that the index a denotes a d-

dimensional Lorentz index in this section, whereas a different convention for the indices is used in
section 6.2.
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It is the relativistic kinetic term for a spin 3/2 field in a curved background that is
minimally coupled to gravity via the covariant derivative Dµ, which contains the spin
connection. Because we are only interested in a qualitative discussion of the fermionic
degrees of freedom, we will refrain from defining all the fermionic conventions and
objects, instead we refer the reader to reference [15] for the details about the fermionic
fields. The Lagrangian LEH + LRS is called the universal part of the supergravity
action because it is present in all supergravity actions [15]. The Einstein-Hilbert
term effectively contains an infinite number of interaction terms for the graviton. The
Rarita-Schwinger term is the kinetic term of a spinor coupled to gravity, but in general
further higher order fermionic interaction terms LInt. ∼ Ψ4 are needed for the action
to be supersymmetric. Using the supersymmetry transformations (2.6) and (2.7) with
parameter ε, we can nonetheless verify that, at least at the lowest order in fermions,
the universal action of supergravity is indeed supersymmetric (2.8) [15, 57].

δεEµ
a = −i ε γaΨµ (2.6)

δεΨµ = Dµε (2.7)

The result (2.8) holds in all dimensions to lowest order in the fermionic fields — in
general however one needs to add very specific interaction terms and a very specific
matter content to make the theory supersymmetric to all orders.

δε(LEH + LRS) = 0 (2.8)

The universal supergravity action for the case of four-dimensional basic supergravity
(i.e. d = 4, N = 1) is supersymmetric to all orders if the spin connection ωµab is
modified to include an additional gravitino contorsion term ωµab = ωµab(e) + Kµab,
with the contorsion tensor defined by Kµνρ := −1

4(ΨµγρΨν − ΨνγµΨρ + ΨργνΨµ),
which effectively acts as a spinorial interaction term [15, 57].

2.2.1 M-theory: eleven-dimensional supergravity

In the case of maximal supergravity, with 32 supercharges, there is only one unique
supermultiplet and one unique associated supergravity theory. In eleven dimensions
there are already 32 supercharges for a single supersymmetry generator Qµ and there-
fore there is a unique eleven-dimensional theory of supergravity which is sometimes
referred to as M-theory, it was first published in 1978 [19]. Its canonical formulation
was first published in 1986 [58, 59].

The bosonic field content of M-theory is just the graviton and a three-form Cµνρ with
field strength Fµνρσ := 4 ∂[µCνρσ]. The bosonic action is given by (2.9), it consists of
the Einstein-Hilbert term, a three-form kinetic term F 2 and a topological term of the
form F ∧ F ∧ C.

S =

∫
d11x

(
ER11 −

E

48
Fµνρσ F

µνρσ +
1

124
ϵµ1...µ11 Fµ1...µ4 Fµ5...µ8 Cµ9µ10µ11

)
(2.9)

The relative coefficients in (2.9) are fixed by requiring the action to have a supersym-
metric completion [15, 19]. The only fermionic field is the Rarita-Schwinger spinor
(gravitino) Ψµ

α and the fermionic action is given by the universal Rarita-Schwinger
term plus O(Ψ2 F ) interaction terms [2]. To simplify the discussion we will, in the
following, only consider the bosonic sector of supergravity. The bosonic action (2.9)
is invariant under diffeomorphisms (2.10) and (2.11), tensor gauge transformations
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(2.12) and local SO(1,10) Lorentz transformations (2.13).

δξEµ
a = ξν ∂νEµ

a + ∂µξ
ν Eν

a (2.10)
δξCµνρ = ξσ Fσµνρ (2.11)
δζCµνρ = 3 ∂[µζνρ] (2.12)

δλEµ
a = λa

bEµ
b (2.13)

2.3 Toroidal compactifications and emerging symmetries

The eleven-dimensional supergravity theory described in section 2.2.1 is furthermore
notable because it is possible to derive from it most ungauged maximally supersym-
metric supergravity theories in dimensions lower than eleven by the process of toroidal
compactification — the notable exception being the type IIB supergravity [60, 61].5

Toroidal compactification means that we take the eleven-dimensional space-time M11

to be split as M11 = M11−n × Tn into a lower dimensional Lorentzian manifold and
a compact n-torus whose radii we assume to be small enough for us to be able to
assume a low energy limit which effectively leads to a lower dimensional theory in
11− n dimensions.

2.3.1 S1 compactification and cylinder condition

To illustrate the process of toroidal compactification of supergravity we briefly look
at the simpler case of a free massless scalar ϕ̂(x̂ρ̂) in d + 1 dimensions that we com-
pactify on a 1-torus, i.e. a circle S1, as Md+1 = Md × S1 [2, 62].6 This example is
instructive and we will come back to a similar situation in section 3.1 when talking
about Kaluza-Klein theory.

We split the coordinates of the (d+1)-dimensional geometry as x̂µ̂ = (xµ, y) where y
is the coordinate on the circle. Because the circle is compact we can express the scalar
field ϕ̂(x̂ρ̂) in terms of its Fourier series as in equation (2.14), where n ∈ Z labels the
Fourier modes ϕ(n)(xρ) and R > 0 is proportional to the radius of the circle.

ϕ̂(x̂ρ̂) =
∑
n∈Z

ϕ(n)(xρ) e
iny
R (2.14)

The equation of motion for the free massless scalar field ϕ̂(x̂ρ̂) is the free wave equation
given by the d’Alembert operator as in (2.15).

∂µ̂∂
µ̂ϕ̂(x̂ρ̂) = 0 (2.15)

Inserting the Fourier decomposition (2.14) of the scalar field into the equation of
motion (2.15) we find the set of equations (2.16).

∂µ∂
µϕ(n) − n2

R2
ϕ(n) = 0 ∀n ∈ Z (2.16)

In the equations (2.16) we see the d-dimensional d’Alembert operator term, however
because of the exponential factor in the Fourier series the ∂y∂y derivative in (2.15)

5The “ungauged” refers here to the global R-symmetry that relates different supercharges [15, 52].
This in contrast to the gauged supergravity that we discuss in section 2.3.4.

6The argument presented here mainly follows [62].
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generates an additional mass term with masses m2 = n2/R2. We can therefore inter-
pret (2.16) as the equations of motion for an infinite number of massive scalar fields
in d dimensions. The only exception to this is the zero mode ϕ(0), which is massless
and obeys the equation of motion of a free massless scalar (2.17), just like equation
(2.15) but in one dimension lower.

∂µ∂
µϕ(0)(xρ) = 0 (2.17)

Because the masses are inversely proportional to the radius of the circle m ∼ 1/R
we can make the masses arbitrarily large by shrinking (i.e. compactifying) the circle.
Physically speaking this means that we can consider the low energy limit of this the-
ory where the masses are much larger than the energy scale that we are interested in
m(R) ≫ E. In this limit the massive modes decouple from the theory and we can con-
sistently truncate to the theory that only has the massless mode [62]. Equivalently we
can impose the “cylinder condition” (or Kaluza-Klein condition) (2.18) which reduces
the equation (2.15) directly to (2.17).

∂y ≡ 0 (2.18)

The set of equations (2.16) in d-dimensions are equivalent to the original equation
of motion (2.15) in (d + 1)-dimensions. The truncated theory, described by just the
equation (2.17) is the theory of a single free massless scalar field in d-dimensions and
is related to the higher dimensional theory by circular compactification.

2.3.2 Emerging exceptional symmetries En(n)

Toroidal compactification proceeds in analogy to the circular reduction of section 2.3.1
and for theories other than that of a free scalar the resulting lower dimensional the-
ory can be very interesting.7 In general the lower dimensional theory will inherit a
subgroup of the symmetries of the higher dimensional theory. Which subgroup this is
depends on the compact geometry (which can even be more general than a torus, see
e.g. [63, 64]) and the low energy limit that is chosen [2, 65].

For the M11 = Md × Tn (with d := 11 − n) torus compactification of eleven-
dimensional supergravity the eleven-dimensional fields Eµ

a and Cµνρ split into d-
dimensional tensors with additional internal indices and the finite number of massless
modes that survive become the field content of the d-dimensional theory. In this sec-
tion we will not look at the details of this reduction but instead focus on the results.
In chapter 3 we will come back to this point and describe how the fields of eleven-
dimensional supergravity decompose in this reduction and how one can arrive at the
compactified theory on an alternative path.

In general the compactification of eleven-dimensional supergravity on an n-torus Tn

is equivalent to the ungauged maximal supergravity theory in d-dimensions (cf. [1,
2, 66, 67]). In 1978 it was discovered by Eugène Cremmer and Bernard Julia that
there are additional hidden non-compact global exceptional symmetries En(n) present
in the lower dimensional theories that are realised non-linearly [1, 2, 66, 67]. Further-
more there are associated local symmetries given by the maximal compact subgroup
of En(n).
The notion of exceptional Lie group (in the split real form) En(n) that is used here is

7In this thesis the terms compactification and reduction are used synonymously.
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n En(n) dim(En(n)) K(En(n)) dim(K(En(n)))
1 GL(1) 1 SO(1) 0
2 SL(2)×R 4 SO(2) 1
3 SL(3)×SL(2) 11 SO(3)×SO(2) 4
4 SL(5) 24 SO(5) 10
5 SO(5,5) 45 (SO(5)×SO(5))/Z2 20
6 E6(6) 78 USp(8)/Z2 36
7 E7(7) 133 SU(8)/Z2 63
8 E8(8) 248 SO(16)/Z2 120

Table 2.1: The split real forms of the exceptional groups En(n), their
maximal compact subgroups K(En(n)) and their dimensions. This ta-
ble is based on [70], an early version of this list can be found in [66].

a generalisation of the exceptional groups E6, E7, E8 from the Cartan classification,
by choosing an analogous form for the Dynkin diagrams of the algebras [15, 68, 69].
The groups En(n) and their maximal compact subgroups K(En(n)) are listed in table
2.1.
The discovery of the hidden exceptional symmetries in lower dimensions lead to the

question of what the full symmetry group of eleven-dimensional supergravity itself is.
And furthermore as to why the exceptional groups emerge naturally in this context,
as they had not appeared in this way in a physical theory before [67].8

In 1985 Bernard de Wit and Hermann Nicolai were able to prove that the local
SO(1, 10) symmetry of eleven-dimensional supergravity can be manifestly extended
to a local SO(1, 3)×SU(8) by combining degrees of freedom from the metric and the
three-form [20, 21, 72]. Hermann Nicolai furthermore showed that the transformation
rules and the bosonic field representations can be made manifestly SO(16) invariant
[22].9 As we will discuss in chapter 3 further progress was later made in enlarging the
manifest symmetries of eleven-dimensional supergravity by reformulating the theory
on generalised and extended notions of geometry.

We can write the lower dimensional Lagrangian in a form that is manifestly invariant
under the full exceptional symmetry [1, 2, 66, 67, 74]. The vector fields are abelian
and transform linearly under the global En(n), whereas the spinor fields transform
linearly under the local K(En(n)) [67]. The scalar fields are described by a non-linear
En(n)/K(En(n)) coset sigma model and transform under both groups [67]. In section
2.3.3 we discuss how to explicitly construct (ungauged) supergravity Lagrangians for
a general coset symmetry. In chapter 5 we carry out a detailed canonical analysis for
the manifestly E6(6) invariant theory in five dimensions, which was first described in
the Lagrangian formulation in [74].

The appearance of hidden (exceptional) symmetries in toroidal compactifications of
eleven-dimensional supergravity can furthermore be compared to the symmetry en-
hancements that arise in the toroidal compactification of four-dimensional general
relativity. The reduction of general relativity to three dimensions leads to the SL(2)
Ehlers symmetry [75] and reduction to two dimensions leads to the infinite dimensional
Geroch symmetry [76, 77] (which is the affine extension of the loop group ŜL(2) [69]).

8The related compact exceptional group E6 has already been considered as a grand unified theory
(GUT) symmetry candidate in 1975, however the symmetry did not emerge from the framework
itself, as is the case in supergravity [71].

9See [73] for a review of [20–22, 72].
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2.3.3 Group invariant Lagrangians

In general we can write the scalar part of the Lagrangian of ungauged supergravity as
in equation (2.19), where the target space metric Gij(ϕ) of the non-linear sigma model
depends on the scalar fields ϕi and just like the scalar potential V (ϕ) it is constrained
by the amount of supersymmetry of the theory [15, 48, 57].10,11

Lsc. = −E

2
∂µϕ

i ∂µϕj Gij(ϕ)− E V (ϕ) (2.19)

For more than eight real supercharges the geometry of the target space is given by a
symmetric space G/K (where G is a Lie group and K its maximal compact subgroup)
[15, 48, 57]. However it is only in the case of maximal supersymmetry that this space
is uniquely given by the cosets En(n)/K(En(n)) — in this case the scalar potential has
to vanish [15, 57].

Instead of this geometric picture we can describe the scalar fields in an algebraic way
using the group elements V(ϕ) ∈ G, which are analogous to the vielbein of the Lorentz
symmetry. The V transform as in equation (2.20) under global (i.e. constant) Λ ∈ g
and local k(x) ∈ k transformations, where g is the Lie algebra of G and k is the Lie
algebra of K(G) [57, 67].

δV = ΛV − V k(x) (2.20)

The Lie algebra g of G can be written in terms of its Cartan decomposition (cf.
Iwasawa decomposition) g = k⊕p where k is the Lie algebra of K and p its orthogonal
complement (with respect to the Killing form) and the following Lie bracket relations
hold for these subalgebras [k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k [79]. Using this we can define
the left invariant currents Jµ ∈ g (2.21), with the compact Qµ ∈ k and non-compact
Pµ ∈ p parts [57, 67].

Jµ := V−1 ∂µV =: Qµ + Pµ (2.21)

We can use this to write the kinetic Lagrangian (2.19) as (2.22) [57, 67].

Lsc. = −1

2
E Tr(Pµ P

µ) (2.22)

In this picture Qµ transforms under the local symmetry as a (composite) gauge con-
nection δQµ = −∂µk+[k,Qµ] and Pµ as δPµ = [k, Pµ] [57, 67]. Furthermore if we were
to consider fermions the Qµ appear as the K-connection in their covariant derivatives,
this is in analogy to the spin connection for the Lorentz symmetry. Using the Cartan
involution θ (a Lie group G-automorphism with θ2 = idG) we can furthermore define
the analogue of the Lorentzian metric (2.23) which is manifestly K-invariant δV = V k
[57, 67].12

M := V θ(V)−1 (2.23)

Using this scalar metric (2.23) we can again rewrite the scalar Lagrangian as (2.24)
[57, 67].

Lsc = +
E

8
Tr(∂µM ∂µM−1) (2.24)

10This section is mainly based on the lectures [48, 57].
11Most of the contents of this section can also be found in reference [78].
12For the simple case of the coset SL(n)/SO(n) M is just M = V VT and it is obviously invariant

under orthogonal transformations.
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The p-form gauge fields AM transform as δΛA
M
µ1...µp

= ΛN
MAN

µ1...µp
, with Λ ∈ G, in

a linear representation under G. The scalar metric MMN from (2.23) furthermore
contracts the field strengths FM := dAM of the gauge fields in the p-form kinetic
term (2.25) [57].

Lp-kin ∼ E FM
µ1...µp+1

Fµ1...µp+1N MMN (2.25)

An additional metric-independent topological (Chern-Simons) term, whose form de-
pends on the dimension, can also exist. The G-representation of the p-form gauge
fields needs to admit a (constant) group invariant symbol with the right number of
indices to contract the p-form gauge fields and field strengths in the topological term.
For example in five dimensions the topological term can take the form (2.26) if the
invariant symbols dMNK exist [15, 57, 74]. Because the field strengths are gauge
invariant the topological term transforms as a total derivative if the group invariant
symbol is constant.

Ltop ∼ FM ∧ FN ∧AK dMNK (2.26)

Furthermore there exists an equivalent Hodge-dual description of the p-forms in d
dimensions in terms of (d− p− 2)-forms BM by dualising the field strengths (see e.g.
[48]). In the following the “⋆” indicates Hodge dualisation.

GM := ⋆MMNFN (2.27)

We can define the Hodge-dual field strength GM by (2.27) and locally we can define
the (d−p−2)-forms BM by GM =: dBM . The Bianchi identity dFM = 0 and the dual
Bianchi identity dGM = 0 hold and we can can write the (non-topological) equation
of motion d ⋆ (MMNFM ) = 0 equivalently as d(⋆(M−1)MN GN ) = 0. Due to Hodge-
duality there exist many on-shell equivalent descriptions of the theory. The description
where all p-forms are dualised to the lowest possible degree is the formulation in which
the exceptional symmetries can be displayed manifestly — we will come back to this
point in chapter 3.

2.3.4 Gauged supergravity

As was mentioned in section 2.3.2 the geometry on which one carries out the compact-
ification can be more general than an n-torus. For example a consistent reduction on
a seven-sphere S7 is also possible and leads to a gauging of the (S7 isometry) group
SO(8) in d = 4, N = 8 supergravity [63]. The reduction on a four-sphere has also
been shown to be consistent [64]. However not all geometries lead to consistent the-
ories upon reduction. There are alternative ways of gauging a subgroup G0 < G of
the global symmetry group directly in d-dimensional supergravity [78, 80–88].13 This
section is based on [48, 57].

In principle one can try to gauge any subgroup G0 < G of the global symmetry
group, however the dimension of G0 needs to be less or equal to the number of vector
fields because we cannot introduce other gauge connections due to the supersymmetry
constraints imposed on the field content of the theory. The generators XM of the sub-
group G0 can then be expressed in terms of the generators tζ of G by XM = Θζ

M tζ ,
where Θζ

A is the embedding tensor which acts as a projector that encodes the local
gauge symmetry. The embedding tensor is subject to consistency conditions coming

13A comprehensive introduction to the embedding tensor formalism for gauged supergravity can
be found in [78].
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from the group structure (called the quadratic constraints) and from supersymme-
try (called the linear constraints). These consistency conditions restrict the choices
of groups G0 that lead to consistent gaugings. In particular the generators of the
subgroup have to close under the bracket (2.28).

[XM , XN ] = −XMN
K XK , with XMN

K := Θζ
M (tζ)N

K (2.28)

The vector fields AM
µ transform initially linearly under G and under abelian gauge

transformations. One can then write down covariant derivatives, which can be ex-
pressed as Dµ = ∂µ − g AM

µ Θζ
M tζ , however there is an issue with this construction

because the “structure constants” XMN
K are not anti-symmetric in general and we

can define their symmetric and anti-symmetric parts as in (2.29).

XMN
K =: −f[MN ]

K + Z(MN)
K (2.29)

The one-form field strength defined by (2.29) is then given by (2.30).

FM
µν = ∂µA

M
ν − ∂νA

M
µ −AK

µ AL
ν fKL

M (2.30)

The f[MN ]
K do not satisfy the Jacobi identity and have a non-vanishing Jacobiator

(2.31).
fMN

Q fKQ
P + cycl. = −ZQ[M

P fNK]
Q (2.31)

Equation (2.31) leads to an additional Z(KL)
M term in the transformation of FM

µν

(2.32) and it does not transform covariantly.

δΛF
M
µν = −ΛP XPN

M FN
µν + ZKL

M
(
ΛK FL

µν −AK
[µ δA

L
ν]

)
(2.32)

A possible solution to this problem is the introduction of two-forms B
(KL)
µν that are

added to the one-form field strength as a Stückelberg coupling (2.33).

FM
µν := ∂µA

M
ν − ∂νA

M
µ −AK

µ AL
ν fKL

M + ZKL
M B(KL)

µν (2.33)

In some dimensions two-forms that can be used for this procedure are already present
in the field content, but in other cases one has to dualise other fields into the two-
forms. If the two-forms are introduced with a topological kinetic term no propagating
degrees of freedom are added and they can be made dual to existing p-forms.
The gauge transformations of the p-forms can then be defined as (2.34) and (2.35)
in order to make the two-forms absorb the non-covariant transformation from (2.32).
Because of the introduction of the two-forms the fields now also transform under the
two-form gauge transformations with parameter ΞKL

ν .

δAM
µ = DµΛ

M − ZKL
M ΞKL

µ (2.34)

δBKL
µν = −Λ(KFL)

µν +A
(K
[µ δA

L)
ν] + 2D[µΞ

KL
ν] (2.35)

The transformations (2.34) and (2.35) make the one-form field strength transform
covariantly, but because we have introduced the two-forms they also come with a
field strength HKL

µνρ which does not transform covariantly. One can then proceed
by introducing (p + 1)-forms to repair the non-covariance, only to discover that the
introduction of ever higher degree p-forms is required. This is known as the tensor
hierarchy [78, 82–87]. Fortunately not all higher forms need to appear explicitly
in the Lagrangian, e.g. in d = 4, 5 already the three-form does not appear in the
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Lagrangian.
The full gauged supergravity should then be written in terms of the covariantised
derivatives and field strengths, obeying the group specific consistency conditions on
the embedding tensor that follow from supersymmetry. We will not need the full
construction of gauged supergravity in this thesis, but it is useful to have the above
construction in mind when we discuss exceptional field theory, which has a similar
structure, in chapter 3.

2.4 Low energy effective action of string theory and string
dualities

There is another perspective for thinking about the exceptional symmetries of super-
gravity, which were discussed in section 2.3.2, which is the perspective from the point
of string theory. In this section we take a very brief look at string theory, how it
relates to supergravity and how the exceptional symmetries arise in this context.

String theory is a framework of several different theories, with the fundamental idea
being the extension of the action of a relativistic point particle to a one-dimensional
extended string.14 The Polyakov action of a bosonic string in a (26-dimensional)
curved background, with background metric Gµν can be written as the non-linear
sigma model (2.36) [89].

S =
1

4πα′

∫
d2σ

√
g gαβ ∂αX

µ ∂βX
ν Gµν(X) (2.36)

The generalisation of the world-line is the two-dimensional world-sheet of the string
(with coordinates σα) and gαβ is an auxiliary world-sheet metric. From the world-
sheet perspective the fields Xµ are scalar fields on the world-sheet. α′ is the square
of the string length scale.
The action (2.36) is invariant under world-sheet diffeomorphisms and in particular it
is Weyl invariant, with the world-sheet metric transforming as gαβ(σ) → Ω(σ) gαβ(σ)
under Weyl transformations [89]. In the quantised bosonic string one can expand
around a classical solution and find that the Weyl invariance requires the background
metric Gµν to be Ricci-flat Rµν = 0 [93]. The bosonic string theory (2.36) is therefore
at low energies effectively described by general relativity — this is the low energy
effective action. Even for bosonic string theory one can look at a more general back-
ground that also has a two-form Bµν (Kalb-Ramond field or B-field) and a scalar field
ϕ (dilaton). The consistency conditions of such a background can also be interpreted
as equations of motion and add a two-form kinetic term HµνρH

µνρ and a scalar ki-
netic term ∂µϕ∂µϕ to the low energy effective action of the (critical) bosonic string
theory (2.37) [89, 91, 94, 95].

SEff. =
1

2κ20

∫
d26x

√
−Ge−2ϕ

(
R(Gµν)−

1

12
HµνρH

µνρ + 4 ∂µϕ∂µϕ

)
(2.37)

In (2.37) R(Gµν) is the Ricci scalar, κ0 is a constant, Hµνρ is the field strength of
the two-form. For the supersymmetric string theories one finds similarly that the

14A textbook introduction to both the bosonic and superstring is given in the books [89, 90]. The
Part III lecture notes by Prof. David Tong give a didactic introduction to the bosonic string [91].
The Part III lecture notes by Prof. Paul Townsend discuss the canonical formulation of string theory
[92].
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low energy effective actions are in fact given by supergravity actions [90]. This close
relationship between supergravity and string theory makes supergravity an important
tool for string theory calculations, but likewise string theory can serve as a different
perspective on results in supergravity.

There is a web of duality symmetries between the different quantised superstring the-
ories that relate solutions of one theory to those of another [89, 90]. T-duality relates
solutions whose geometry includes an n-torus by exchanging the discrete momentum
modes (regarding the compact hypertorus) with the winding number (i.e. winding
of the string around the hypertorus) while simultaneously inverting the radii of the
torus Ri → 1/Ri [89]. This toroidal duality can be described in terms of the discrete
orthogonal group O(n,n;Z) [89]. S-duality (or strong-weak duality) relates strongly
coupled theories to weakly coupled ones by inverting the string coupling gs → 1/gs
[90]. Combining all duality transformations the unified or U-duality group En(n)(Z)
is generated [90, 96]. It has been conjectured that there exists an eleven-dimensional
theory, called M-theory, from which all the ten-dimensional superstring theories orig-
inate and for which U-duality would be a true symmetry [90, 97]. Furthermore the
unique eleven-dimensional supergravity theory (cf. section 2.2.1) is thought to be the
low energy effective action of this string M-theory. Therefore, from the string the-
ory perspective, the origin of the exceptional symmetries En(n)(R), that arise from
the toroidal compactifications of eleven-dimensional supergravity (cf. section 2.3.2),
can be interpreted as being inherited from the U-duality symmetry of M-theory [96].
However in string theory the exceptional symmetry is discrete En(n)(Z) and for n ≤ 7
this can be understood to be due to the Dirac quantisation of charges [96, 98]. This
interpretation does not explain how much of the exceptional symmetry is present al-
ready in eleven-dimensional supergravity prior to any reduction. It does however give
a possible interpretation for the existence of exceptional symmetries in supergravity in
general, at least from the string theory perspective. Moreover it is a remarkable fact
that any trace of the non-perturbative “stringy” duality symmetries would survive in
the low energy field theory limit.
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Chapter 3

Geometrisation and generalised
notions of geometry

Geometrisation is the idea that seemingly unrelated (non-geometric) degrees of free-
dom of a theory can be described in terms of a common higher dimensional geometric
origin. In some cases the gauge transformations of these degrees of freedom can be
combined into generalised notions of diffeomorphisms.

In section 3.1 we look at Kaluza–Klein theory to illustrate the concept of geometri-
sation by describing how four-dimensional gravity coupled to Maxwell theory and a
scalar field can be seen as originating from pure five-dimensional gravity. In section
3.2 we introduce generalised (complex) geometry, which generalises complex geome-
try by means of a broader notion of the tangent bundle. We briefly discuss how the
same ideas can be applied to exceptional groups. In section 3.3 we introduce dou-
bled geometry, which is an extension of generalised geometry, in which not only the
tangent bundle but also the coordinates of the base manifold are extended (but we
also comment on the more general construction of extended generalised geometries for
general Lie groups). Furthermore we discuss double field theory, which is an O(n, n)
covariant field theory built on doubled geometry, that encodes the string theory low
energy effective action in a manifestly O(n, n) invariant form. The extended gen-
eralised geometry can be constructed for different Lie groups and in section 3.4 we
consider the extended generalised symplectic geometry as an example and construct
the Y-tensor explicitly. In section 3.5 we discuss the extended generalised excep-
tional geometry in detail, taking the E6(6) case as an example. We then discuss the
Lagrangian formulation of the E6(6) exceptional field theory, which encodes the dy-
namics of eleven-dimensional supergravity in a manifestly E6(6) covariant formulation
based on an extended generalised exceptional geometry.

3.1 Basic idea: Geometrisation and Kaluza–Klein theory

Kaluza-Klein theory, developed in the 1920s by Theodor Kaluza and Oskar Klein,
is the historical origin of the idea of geometrisation [23, 24].1 Kaluza-Klein theory
demonstrates that five-dimensional gravity can be understood as giving rise to four-
dimensional gravity coupled to Maxwell theory and a massless scalar field upon com-
pactification on a circle. The circular compactification of a scalar field was already
explained in section 2.3.1 and the compactification of the five-dimensional metric
ĝµ̂ν̂(x̂

ρ̂) proceeds in the same way — in fact the idea of compactification was origi-
nally popularised by Kaluza-Klein theory. In this section we follow the description of

1See references [62, 99–103] for modern discussions of Kaluza-Klein theory.
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Kaluza-Klein theory presented in [103].

The Einstein-Hilbert action in five dimensions is given by (3.1) where R̂5 is the five-
dimensional Ricci scalar and µ̂, ν̂ are five-dimensional space-time indices.

S5 =

∫
d5x̂

√
−ĝ R̂5(ĝµ̂ν̂) (3.1)

The action (3.1) is invariant under local diffeomorphisms. Infinitesimally the metric
transforms under diffeomorphisms as its Lie derivative and in local coordinates we can
write this transformation as (3.2). The first term in the Lie derivative (3.2) can be
interpreted as a local translation and the second term as a local ∂µ̂ξ̂ρ̂ ∈ gl(5) rotation.

δξ̂ ĝµ̂ν̂ = Lξ̂ ĝµ̂ν̂ = ξ̂ρ̂ ∂ρ̂ĝµ̂ν̂︸ ︷︷ ︸
translation

+2 ∂(µ̂ξ̂
ρ̂ ĝν̂)ρ̂︸ ︷︷ ︸

rotation

(3.2)

In order to compactify the theory, given by the action (3.1), on a circle (with a
radius proportional to R and with a circular coordinate y) we Fourier expand the
five-dimensional metric ĝµ̂ν̂(x̂

ρ̂) as (3.3), which is in direct analogy to (2.14).

ĝµ̂ν̂(x̂
ρ̂) =

∑
n∈Z

g
(n)
µ̂ν̂ (x

ρ) e
iny
R (3.3)

The indices µ, ν, ρ in (3.3) are four-dimensional. The g
(n)
µν (xρ) are the Fourier modes,

labelled by the mode number n ∈ Z, that only depend on the (non-circular) four-
dimensional coordinates xρ. Just like in section 2.3.1, only the massless zero-mode
g
(0)
µν (xρ) will survive after the compactification. The compactification of the circle can

again be understood as applying the cylinder or Kaluza-Klein condition (2.18) which
singles out the zero-mode. For a circular (or toroidal) compactification the truncation
to the massless zero-mode is consistent because the massive modes are not sourced by
the massless mode and hence decouple. Equivalently we can think of the zero-mode as
the only singlet of the isometry group U(1) of the circle and the truncation to the sin-
glet mode is consistent because it cannot generate any non-singlet modes, cf. [62, 104].

In contrast to a scalar field, the metric has tensorial indices which also need to be
decomposed in a 4+1 Kaluza-Klein split µ̂ = (µ, y). Naively we can try to decompose
the metric as in (3.4) in terms of the four-dimensional metric gµν , a one-form field Aµ

and a scalar field ϕ.

ĝµ̂ν̂ =

(
gµν Aµ

Aν ϕ

)
(3.4)

While (3.4) is a valid way of carrying out this decomposition it turns out that the
parametrisation (3.5) is a better way to arrive at the result we want.

ĝµ̂ν̂ =

(
ϕ− 1

2 gµν + ϕAµAν ϕAµ

ϕAν ϕ

)
(3.5)

With the parametrisation (3.5) the diffeomorphism transformations (3.2) decompose
into the following infinitesimal transformations of the four-dimensional fields [103].
The metric (3.6) and the scalar field (3.8) simply transform as their four-dimensional
Lie derivatives. The one-form field transforms as the Lie derivative, but there is an
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additional U(1) gauge transformation term in (3.7) with gauge parameter Λ.

δξgµν = Lξgµν = ξρ ∂ρgµν + 2 ∂(µξ
ρ gν)ρ (3.6)

δξ,ΛAµ = LξAµ + ∂µΛ (3.7)
δξϕ = Lξϕ (3.8)

Decomposing the five-dimensional Einstein-Hilbert action (3.1) and applying the Ka-
luza-Klein condition we find the four-dimensional action (3.9) [103]. In (3.9) we intro-
duced the dilaton φ :=

√
3
2 ln(ϕ) as a field redefinition of the scalar field ϕ, the abelian

one-form field strength Fµν := 2 ∂[µAν] and the four-dimensional Ricci scalar R4.

S4 =

∫
d4x

√
−g

(
R4(gµν)−

e
√
3φ

4
Fµν F

µν − 1

2
gµν ∂µφ∂νφ

)
(3.9)

The four-dimensional action (3.9) describes four-dimensional gravity coupled to Max-
well theory (Einstein-Maxwell theory) and coupled to the kinetic term of the massless
scalar field φ. The coupling constants are fixed and the action is unique up to overall
rescalings and field redefinitions. The action (3.9) is invariant under the transforma-
tions (3.6), (3.7) and (3.8).

We can think of the action (3.9) as arising from five-dimensional gravity through cir-
cular compactification, but conversely we can think of five-dimensional gravity (3.1)
as being a geometrised description of four-dimensional gravity coupled to this precise
set of further “non-geometric” degrees of freedom. Importantly for this geometrisation
to be equivalent to the lower dimensional theory, we have to apply the Kaluza-Klein
condition ∂y = 0 to the higher-dimensional geometric description, which implies that
some of the higher-dimensional degrees of freedom that become massive in the com-
pactification are truncated. We can moreover see that the four-dimensional diffeomor-
phisms are unified with the U(1) gauge transformations to appear as five-dimensional
diffeomorphisms.

In the following sections we look at generalised notions of geometry and how they can
be used to geometrise the description of supergravity, which makes it possible to man-
ifest larger (duality) symmetries. While there are some important differences between
Kaluza-Klein theory and the theories that we discuss in the following sections, the
idea of geometrisation is very much the same.2 The main advantage of geometrisation
is that it allows the display of a greater amount of symmetry and the use of geometric
methods.

3.2 Generalised (complex) geometry

Generalised (complex) geometry was first introduced in 2002 by Nigel Hitchin in
[106] and further developed by Marco Gualtieri [107] and Gil Cavalcanti.3,4 In this
section we follow the reference [108]. Generalised geometry generalises the notion
of both symplectic and complex geometry by replacing the tangent bundle T(M) of
the manifold M with an extended bundle (3.10) that is the sum of the tangent and

2This analogy has been emphasised e.g. in [102, 103, 105]
3For lecture notes on generalised geometry by Hitchin and Cavalcanti see [108, 109] respectively.
4Generalised complex geometry can also be seen as an extension of the concept of Dirac structures

and Dirac manifolds [110].
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cotangent bundles.
E := T(M)⊕ T∗(M) (3.10)

The structure group of the extended bundle is the orthogonal group O(n,n), with
n = dim(M). The Lie bracket is replaced by the Courant bracket (3.11) where
X,Y ∈ T(M) and ξ, λ ∈ T∗(M), which does however not satisfy the Jacobi identity.

[X + ξ, Y + λ] := [X,Y ] + LXλ− LY ξ −
1

2
d(λ(X)− ξ(Y )) (3.11)

Furthermore there exists a natural (indefinite) inner product (3.12) that can be con-
sidered as being the analogue of the Minkowski metric, i.e. an O(n,n) metric (3.13).

η(X + ξ, Y + λ) :=
1

2
(ξ(Y ) + λ(X)) (3.12)

η =

(
0 1
1 0

)
(3.13)

There is a naturally appearing two-form B ∈ Λ2T∗(M), which acts on X+ξ ∈ T⊕T∗

as (3.14), where i is the interior product.

B : X + ξ → X + ξ + iXB (3.14)

The inner product and the Courant bracket are invariant under diffeomorphisms and
under the action of B if the two-form is closed. The local diffeomorphism invariance
under Diff(M) is then extended to the group (3.15), which is the semi-direct product
of closed two-forms on M with the diffeomorphisms of M.

Ω2
cl.(M)⋊ Diff(M) (3.15)

The Lie algebra associated to the Lie group (3.15) consists of the sections of T ⊕
Λ2T and the antisymmetrised action of these sections on the sections of T ⊕ T∗ is
precisely given by the Courant bracket (3.11). In generalised (complex) geometry
the diffeomorphisms and tensor gauge transformations are hence treated as being
on the same footing, i.e. the tensor gauge transformations are geometrised in this
framework. Therefore one can define a generalised Lie derivative (Dorfman derivative)
that encodes not just the original diffeomorphisms but also the gauge transformations
of the two-form [108, 111–114]. For φ ∈ Λ∗T∗ and u = X + ξ ∈ T⊕T∗ we can define
the product (3.16) and using this we can define the generalised Lie derivative (3.17)
along the direction of the section u.

(X + ξ) · φ := φ(X) + ξ ∧ φ (3.16)
Luφ := d(u · φ) + u · dφ (3.17)

For specific types of spacetimes (that are warped products of lower dimensional man-
ifolds with Minkowski space) one can rewrite eleven-dimensional supergravity as gen-
eralised gravity [70, 113, 114].
It is important to note that generalised (complex) geometry only extends the tangent
bundle but leaves the dimension of the base manifold M unchanged.

3.2.1 Generalised exceptional geometry

Motivated by the existence of hidden symmetries in eleven-dimensional supergrav-
ity [21, 22, 115] one can extend the idea of generalised (complex) geometry to even
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larger bundles, such as (3.18), in order to accommodate exceptional structure groups
En(n) (n ≤ 7) in such a generalised exceptional geometry and this was done in [70,
114, 116, 117].

E := T(M)⊕ Λ2T∗(M)⊕ Λ5T∗(M)⊕ (T∗(M)⊗ Λ7T∗(M)) (3.18)

The terms in (3.18) can be interpreted physically as various brane charges, i.e. the
momentum, M2- and M5-brane charges and the Kaluza-Klein Monopole charge [114,
117, 118].5 The precise form of the bundle one should consider depends on the excep-
tional group, e.g. for E6(6) only the additional two- and five-form terms are necessary
(see table 2 in [70]).

Similar to generalised complex geometry one can rewrite eleven-dimensional super-
gravity in the generalised exceptional geometry for a certain class of space-times that
have a warped Minkowski factor [114, 117]. For now we focus only on the geometry
and do not worry too much about how it relates to any specific theory or physical
aspects thereof.

The generalised Lie derivative (3.17) of generalised (exceptional) geometry, that en-
codes diffeomorphisms and p-form gauge transformations, can also be written as (3.19)
in order to make the exceptional symmetry En(n) apparent [114, 117].

LUV
M = UN ∂NV M − αPM

N
K

L ∂KUL V N + λ(V ) ∂NUN V M (3.19)

The indices M,N,K,L are in a representation of the exceptional group En(n) (for
many n this is the fundamental representation), the partial derivatives are identical
to the coordinate derivatives of the manifold M, i.e. ∂M = ∂µ and else vanishing i.e.
∂M = 0. PM

N
K

L is a projector onto the adjoint representation of En(n), λ(V ) is a
generalised weight, α ∈ R and U, V are sections of the extended tangent bundle (3.18).

The expression (3.19) seems somewhat strange given that we do not actually have as
many coordinates as the derivative ∂M seems to suggest. In the following sections we
discuss extensions of generalised geometry that do not just extend the tangent bundle
but also the underlying manifold, thus justifying the notation in (3.19).

3.3 Doubled geometry and double field theory (DFT)

In this section we look at doubled geometry to illustrate how generalised (complex)
geometry can be further generalised by not just enlarging the tangent bundle but also
extending the underlying manifold. We discuss this extended geometry first for the
orthogonal O(n, n) structure group because this case is simpler than the exceptional
cases and for now we will mainly focus on the geometric ideas. We briefly discuss how
a doubled field theory (DFT) [29, 30, 119] can be constructed in terms of the doubled
geometry, which is manifestly T-duality invariant and encodes the string theory low

5Branes are in general objects with two or more dimensions, however there is a range of very
different ideas. Some are postulated as fundamental objects generalising the idea of fundamental
particles and strings (p-branes), they can be described in terms of higher dimensional sigma-model
“world-volume” actions. D-branes arise from boundary conditions of open strings. Black p-branes
on the other hand can be thought of as higher dimensional black hole solutions, e.g. of supergravity.
Similarly the M-branes mentioned here are eleven-dimensional supergravity solutions (black branes)
that are charged with respect to some p-forms.
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energy effective equations of motion (and hence also supergravity).6

Starting again with a n-dimensional manifold M we extend the tangent bundle to
the bundle (3.10) from generalised (complex) geometry. The local coordinates on the
manifold M are xµ with µ = 1, . . . , n. Moreover we introduce “dual coordinates” x̃µ
and collectively write the coordinates as the O(n,n) vector XM (M = 1, . . . , 2n) of
extended coordinates as in (3.20).

XM =

(
xµ

x̃µ

)
(3.20)

Simultaneously we introduce the condition (3.21) on the coordinate derivatives asso-
ciated to the extended coordinates (3.20), with ηMN being the inverse of the O(n,n)
invariant (3.13).

ηMN ∂M ⊗ ∂N = 0 (3.21)

Equation (3.21) is called the section condition and it is interpreted to hold on all func-
tions on the doubled geometry, with the derivatives either on the same or on different
functions [123].

There is a lot going on in this construction and we should take a step back. We
introduced the additional dual coordinates x̃µ in order to reflect the extension of the
tangent bundle (3.10) — however it is not clear that there exist ordinary manifolds
that have such tangent bundles and indeed it seems to be the case that we have to
extend the notion of manifold to allow for this construction globally [105, 122, 124–
126]. As the global properties of this coordinate extended doubled geometry are not
completely clear we generally work in local coordinates. The section condition (3.21)
can be interpreted as a consistency condition and in particular it implies that only
half of the 2n coordinates XM actually exist [123]. Therefore the doubled geometry
and the generalised complex geometry are locally equivalent [113].

Physically one can think of the ordinary coordinates xµ as being associated to mo-
mentum modes, while the dual coordinates x̃µ are associated to winding modes, in the
sense of strings winding around compact toroidal dimensions [29, 30]. T-duality mixes
these modes and therefore it makes sense physically to combine all of the coordinates
in the O(n,n) vector XM of the extended coordinates. This doubled geometry is what
makes it possible to talk about the O(n,n) T-duality of string theory in terms of a
field theory that would otherwise have no notion of T-duality. The section condition
of doubled geometry (3.21) can (partially) be interpreted as coming from the level
matching condition of string theory, which relates left and right moving modes of
closed strings [123].

Because the explicit structure of extended generalised geometries varies significantly
depending on the structure group one can introduce the Y-tensor Y MQ

PR, which
helps, to some extent, in unifying the description of extended generalised geometries.
How the Y-tensor can be constructed for general Lie algebras was described in ref-
erences [42, 43, 127] (although there is no guarantee that there exists a consistent
extended generalised geometry for any Lie algebra).7 In section 3.4 we construct

6See references [120–122] for reviews of double field theory.
7It is actually possible to be more general and one can construct an extended generalised geometry

for any Kac-Moody algebra and any coordinate representation thereof, however closure of the algebra
of the generalised diffeomorphisms is not guaranteed [42, 43].
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the Y-tensor for the generalised Sp(2n) symplectic geometry as an example. For the
Riemannian structure group GL(n) the Y-tensor is vanishing and we can interpret
the Y-tensor as describing corrections to Riemannian geometry [42]. The Y-tensor
of O(n,n) doubled geometry is Y MN

KL = ηMN ηKL and the section condition can
also be formulated in terms of the Y-tensor as (3.22). In the form (3.22) the section
condition holds true for any structure group and due to the vanishing Y-tensor the
section condition of Riemannian geometry is trivial [42, 117, 127].

Y MN
KL ∂M ⊗ ∂N = 0 (3.22)

We can write the O(n,n) version of the generalised Lie derivative (3.19) acting on a
generalised vector, in local coordinates, as (3.23), with α = 2 [103].

LUV
M := UN ∂NV M︸ ︷︷ ︸

translation

−αPM
N

K
L ∂KUL V N︸ ︷︷ ︸

o(n,n) rotation term

+λ(V ) ∂NUN V M︸ ︷︷ ︸
weight term

(3.23)

In contrast to generalised complex geometry the coordinate derivatives ∂M all have
corresponding extended coordinates — at least until we solve the section condition.
Furthermore we allow a weight term, with λ(V ) being the generalised diffeomorphism
weight of the generalised vector V M . The definition (3.23) implies the transformation
of general O(n,n) tensors by requiring the Leibniz property to hold. The projector
PM

N
K

L onto the adjoint representation of O(n,n) is explicitly given as (3.24) [103].

αPM
N

K
L := δML δKN − ηMK ηNL (3.24)

Compared to the normal gl(n) rotation term in the Riemannian Lie derivative we can
interpret PM

N
K

L ∂KUL as an o(n,n) transformation acting on the generalised vector
V N .

In general we can write the generalised Lie derivative in terms of the Y-tensor as
(3.25), which makes it apparent that the Y-tensor represents a correction term to the
standard Lie derivative [42, 43, 103, 127].

LΛV
M = ΛN ∂NV M−V N ∂NΛM+Y MQ

PR ∂QΛ
P V R+(λ(V )+ω) ∂NUN V M (3.25)

The coefficient α and the special weight ω are structure group dependent constants and
for Riemannian and doubled geometry ω = 0 [103]. The generalised Lie derivative
can in general be written as both (3.23) or (3.25) if the correct constants and the
appropriate Y-tensor or adjoint projector are inserted. The Y-tensor is closely related
to the adjoint projector by (3.26) [103, 127].

Y MN
PQ = −αPM

Q
N

P + δMP δNQ − ω δMQ δNP (3.26)

In doubled geometry one can check in particular that the generalised Lie derivative is
compatible with the O(n, n) invariant ηMN (3.27).

LUηMN = 0 (3.27)

In general the generalised Lie derivative should be compatible with the invariant
tensors in the coordinate representation and accordingly with the Y-tensor. Using
the section condition we find that generalised diffeomorphism parameters of the form
(3.28), where T is some scalar function, lead to trivial generalised diffeomorphisms
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LU = 0 and we refer to parameters of this form as trivial.

UM = ηMN ∂NT (3.28)

Looking at the commutator of generalised Lie derivatives (3.29) we find that they
close into the C-bracket defined as (3.30) if and only if we apply the section condition
[128].

[LU ,LV ] = L[U,V ]C (3.29)

In this sense the section condition can be seen as a consistency condition that is
required for the algebra of generalised diffeomorphisms to close.

[U, V ]MC = UN ∂NV M − V N ∂NUM − 1

2
ηMN ηKL(U

K ∂NV L − V K ∂NUL) (3.30)

The C-bracket is bilinear and anti-symmetric, however it fails to satisfy the Jacobi
identity by a trivial term [128]. When the section condition is applied the C-bracket of
doubled geometry (3.30) is equivalent to the Courant bracket of generalised geometry
(3.11) [128].

The generalised bracket, which we may call [[U, V ]], can in general be written in terms
of the Y-tensor as (3.31), which can be seen as a Y-tensor correction to the generalised
commutator [127].

[[U, V ]]M = UN ∂NV M − V N ∂NUM − 1

2
Y MN

KL(U
K ∂NV L − V K ∂NUL) (3.31)

In generalised geometry we saw that the diffeomorphisms and two-form gauge trans-
formations are combined (3.15) and therefore the metric and two-form should be
treated on the same footing. We can introduce a generalised metric HMN (G,B) that
parametrises the coset O(n, n)/(O(n)×O(n)) and therefore leaves the O(n, n) symbol
ηMN invariant (3.32) [129].

HMK ηKLHLN = ηMN (3.32)

We can express the generalised metric explicitly as (3.33) [129].8 The generalised
diffeomorphism transformations of (3.33) are, up to the section condition, equivalent
to the standard diffeomorphisms and two-form gauge transformations of Gµν and Bµν .

HMN (G,B) =

(
Gµν −BµρG

ρσ Bσν BµρG
ρν

−Gµσ Bσν Gµν

)
(3.33)

Concerning the construction of a field theory on this doubled geometry we need to
introduce a (weight one) scalar field (generalised dilaton), which we call d, in order
to write down an appropriate measure. For the fields HMN and d one can then con-
struct the unique action principle (3.34), which is manifestly invariant under O(n, n)
generalised diffeomorphisms and moreover encodes the low energy effective action of
either the bosonic string (with the critical dimension n = 26, cf. equation (2.37)) or
the NSNS sector of the superstring (with the critical dimension n = 10) [30, 129, 131].

SDFT =

∫
d2nX e−2dRDFT(H, d) (3.34)

8This form of the generalised metric encodes the Buscher rules that describe T-duality transfor-
mations on these fields [130].
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RDFT is given explicitly by the function (3.35) and determined by requiring invariance
under the generalised diffeomorphisms [129].

RDFT(H, d) :=
1

8
HMN ∂MHPQ ∂NHPQ − 1

2
HMN ∂MHPQ ∂PHQN

+ 4 ∂MHMN ∂Nd− 4HMN∂Md ∂Nd

− ∂M∂NHMN + 4HMN ∂M∂Nd (3.35)

The integral in (3.34) is taken to be symbolical since we do not actually know how to
integrate on this doubled geometry while observing the section condition. To carry out
the integral explicitly we need to solve the section condition, which breaks the O(n, n)
covariance. One can think of (3.34) as a tool to encode the equations of motion in a
symmetrical form, however we cannot associate a number to this action for a given
solution of the theory. It is therefore not clear for example how one should approach
the action (3.34) in the path integral formalism and hence one cannot quantise the
theory this way. Recently the geometric quantisation of DFT has been discussed in
[32].

Because T-duality in this formalism is simply an O(n, n) transformation and because
(3.34) is manifestly O(n, n) invariant by construction, double field theory is manifestly
T-duality invariant — i.e. its equations of motion are T-duality invariant.

The action (3.34) was analysed in the canonical formalism in reference [31].9

A manifestly T-duality invariant double sigma model, for which double field theory
is the low energy effective field theory, was constructed in [132–134]. Its canonical
formulation was worked out in [135].

3.3.1 Kaluza-Klein rewriting of DFT

It is possible to partially gauge fix the local Lorentz symmetry and rearrange the
degrees of freedom described by the double field theory action (3.34) in a way that is
in direct analogy to a Kaluza-Klein compactification — but without actually carrying
out any truncation of degrees of freedom [136]. It is this formulation of double field
theory that is best suited to be considered for the extension to the exceptional groups.
We keep the description of this reformulation of DFT very brief and focus only on
the main idea of rewriting the theory in a Kaluza-Klein-like split. In this section we
follow reference [136].

The DFT space-time coordinates (3.20) can be split according to (3.36), where the
index µ = 1, . . . , n is split into what we may think of as external non-compact µ =
0, . . . , n− d− 1 and internal (compact) ∆ = 1, . . . , d coordinates and their duals.

xµ =: (xµ, y∆) x̃µ =: (x̃µ, ỹ∆) (3.36)

By partially solving the section condition with ∂̃µ = 0 we can drop the dual non-
compact coordinates x̃µ. The internal coordinates can be arranged as in equation

9In order for this to be possible it is assumed in [31] that nothing depends on the dual time
coordinate. The reformulation of DFT described in section 3.3.1 does not have this difficulty —
while a canonical analysis of this formulation has not been carried out so far the results should be
equivalent because no truncation has been carried out in the rewriting.
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(3.37) with M = 1, . . . , 2d.
Y M = (y∆, ỹ∆) (3.37)

The final set of coordinates is then (xµ, Y M ) where xµ are external non-compact and
Y M internal. In the remainder of this section we will cease to write the overline
notation for these indices and write (xµ, Y M ) where µ = 1, . . . ,n = n − d − 1 and
M = 1, . . . ,d = 2d.

This rewriting of DFT is similar to the Kaluza-Klein inspired rewritings of eleven-
dimensional supergravity in [20, 22], however the theory still depends on the dual
compact coordinates and the section condition applies.

The field content is given by (3.38).

{Gµν , Bµν , ϕ, HMN , AM
µ } (3.38)

Gµν and Bµν are the external components of the metric and the two-form of DFT,
the internal components are contained in the generalised metric HMN . The scalar
field ϕ is a redefinition of the generalised dilation field. The vector fields AM

µ are the
Kaluza-Klein vector (cf. section 3.1).

The Kaluza-Klein vector fields AM
µ are used as a gauge connection for the generalised

diffeomorphisms and external covariant derivatives (3.39) are introduced.

Dµ := ∂µ − LAµ (3.39)

In direct analogy to the tensor hierarchy of gauged supergravity (cf. section 2.3.4) the
one-form field strength defined with the C-bracket fails to transform covariantly and
an additional Stückelberg-type coupling to the two-form Bµν has to be added (3.40).

FM
µν := 2 ∂[µA

M
ν] − [Aµ, Aν ]

M
C + ηMK ∂KBµν (3.40)

The two-form field strength (3.41) likewise requires an additional Chern-Simons three-
form contribution, but the tensor hierarchy terminates in this case and no three-form
is needed as (3.41) is already covariant.

Hµνρ = 3

(
D[µBνρ] + ηMN AN

[µ ∂νA
M
ρ] −

1

3
ηMN AN

µ [Aν , Aρ]]
M
C

)
(3.41)

Using these covariant field strengths the DFT action can be rewritten as (3.42).

SDFT =

∫
ddY

∫
dnx

√
−Ge−2ϕ

(
R̂+ 4Gµν DµϕDνϕ− 1

12
HµνρHµνρ

+
1

8
Gµν DµHMN DνHMN − 1

4
HMN FµνM FN

µν − V

)
(3.42)

The internal integral
∫
ddY is again understood to be symbolic, because the sec-

tion condition needs to observed during the integration. R̂ is the modified Ricci
scalar of the external metric, it contains an additional one-form field strength term
+FM

αβ E
αρ ∂MEρ

β where Eρ
β is the external vielbein. The scalar potential V is given
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by (3.43).

V (ϕ,HMN , Gµν) = −R(ϕ,H)− 1

4
HMN ∂MGµν ∂NGµν (3.43)

The action (3.42) is manifestly O(d,d) invariant.

The Kaluza-Klein rewriting of the DFT action, which we reviewed in this section,
is conceptually very useful, because the Kaluza-Klein-like construction of the E6(6)

exceptional field theory, which we discuss in detail in section 3.5, is in many ways
very similar. The fully internal E11 exceptional field theory [137] may be thought of
as the exceptional analogue to the original fully doubled DFT action — this analogy
should become clearer after we have discussed the construction of exceptional field
theory.

3.4 Excursion: Generalised Sp(2n) symplectic geometry

In this section we make an excursion into generalised symplectic geometry — which is
not normally considered because there does not seem to be any physical application
for it so far. Nonetheless it is a nice example to contrast ordinary symplectic geometry
with generalised symplectic geometry and moreover it illustrates how the Y-tensor can
be constructed for a general group. In this section we follow the procedure described
in the references [42, 43].10

If we look at the ordinary Lie derivative (3.44) of a vector V µ then we find, using
Darboux’s theorem, that ∂ρξ

µ ∈ sp(2n) if and only if ξ is a symplectic field, meaning
LξΩ = 0, where Ω is a symplectic form (i.e. a closed, non-degenerate two-form) [139].

LξV
µ = ξρ∂ρV

µ − V ρ∂ρξ
µ (3.44)

In this case the Lie derivative (3.44) describes a symplectomorphism. For symplectic
manifolds (i.e. manifolds that admit a symplectic form) one can consider symplecto-
morphisms as a subset of the standard diffeomorphisms with the additional condition
that the parameter is a symplectic field. This is equivalent to the statement that
the diffeomorphism preserves the symplectic form, i.e. the compatibility condition
LξΩ = 0 holds. The rotation term of the generalised Lie derivative of generalised
symplectic geometry is also an element of the sp(2n) algebra, however it turns out we
get a very different kind of geometry. In particular we find a non-vanishing section
condition, as opposed to the trivial vanishing section condition of gl(n), which is valid
for both Riemannian and ordinary symplectic geometry.

In analogy to the approach taken in reference [42, 43] we now proceed to construct
the Y-tensor of generalised symplectic geometry.
The symplectic algebra sp(2n) is defined by the condition (3.45) for any algebra ele-
ment X and with Ω being the sp(2n) symplectic form.

XTΩ+ ΩX = 0 (3.45)

We can define the inverse of the symplectic form by ΩklΩlm = −δkm, with the funda-
mental indices k, l,m = 1, . . . , 2n. Defining Xml := Ωmk X

k
l we can see that (3.45)

10See also the following references for more information about generalised diffeomorphisms [42, 43,
127, 138].
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implies X[ml] = 0 and therefore the generators of the algebra need to be symmetric.
There are (2n + 1)n = dim(sp(2n)) many generators of sp(2n). Equation (3.46) is a
general ansatz for the generators of sp(2n) in the fundamental representation.

(T r
s)

k
l = α δrs δ

k
l + β δrl δ

k
s + γ Ωrk Ωsl (3.46)

In the ansatz (3.46) the fundamental indices k, l = 1, . . . , 2n label the (fundamental)
coordinate representation of sp(2n), while the index pair r, s = 1, . . . , 2n labels the
generators. The real coefficients α, β, γ of this ansatz are to be determined. The
expression for the representation of the generators (T i

j)
k
l is required to satisfy the

condition (3.47), which is equivalent to the definition (3.45).

(T i
j)

r
sΩ

sk Ωrl = −(T i
j)

k
l (3.47)

Solving for the coefficients α, β, γ we find that the generators in the fundamental
representation are explicitly given by (3.48).

(T r
s)

k
l = δrlδ

k
s − ΩrkΩsl (3.48)

We can verify that this is indeed a representation of sp(2n) by checking that the
algebra (3.49) of these generators closes and we find that the structure constants are
given by (3.50).

[T k
l, T

r
s] = fk

l
r
s
p
m Tm

p (3.49)

fk
l
r
s
p
m := δks δ

r
m δpl − δpl Ω

rk Ωsm − δrmΩkpΩls + δrl Ω
kpΩsm (3.50)

The trace (3.51) of the representation indices defines an inner product and this ex-
pression is proportional to the Cartan-Killing form because it automatically satisfies
the defining invariance condition. The factor N−1 ∈ R is a normalisation factor that
will be determined below.

κkl
r
s :=

1

N
(T k

l)
m

p (T
r
s)

p
m =

2

N

(
δks δ

r
l − Ωkr Ωls

)
(3.51)

To find the inverse κ−1 of the inner product (3.51) we need to require that the inversion
is relative to the identity that is of the same form as the expression of the generators
(3.48), but with all indices being interpreted as labelling the generators. The inverse
is found to be (3.52).

(κ−1)kl
r
s =

N

4

(
δks δ

r
l − Ωkr Ωls

)
(3.52)

In order to calculate the Y-tensor we now need to compute some quantities determined
by the representation theory of sp(2n). We will carry out this computation explicitly
for sp(4), but the results can be generalised to all sp(2n). The Dynkin diagram of the
symplectic algebra sp(4) is that of C2 and there are two simple roots α1 and α2.
From the Cartan matrix equivalent to the Dynkin diagram we can construct the root
lattice and find that the set of positive roots is given by {α1, α2, (α1+α2), (2α1+α2)}.
The fundamental weights of sp(4) are w1 = α1 +

1
2α2 and w2 = α1 + α2. The highest

weight of the four-dimensional fundamental representation of sp(4) is Λ = w1 and
the remaining weights of this representation are ±(w1 − w2) and −w1. The norm
of the highest weight Λ of the fundamental representation of any sp(2n) is given by
(Λ,Λ) = 1

2 . For sp(4) this implies that 1 = (α1, α1) = −(α1, α2) = 1
2(α2, α2). The

Weyl vector is defined by (3.53), which is the sum over all positive roots times 1/2
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[140].

ϱ :=
1

2

∑
α∈∆+

α =
1

2
(α1 + α2 + (α1 + α2) + (2α1 + α2)) (3.53)

Using the definition (3.53) of the Weyl vector and the above relations for the positive
roots we can compute the quadratic Casimir operator C2 (3.54) for the fundamental
representation Λ [140].

(C2)kl :=
1

2
(Λ,Λ + 2ϱ) δkl =

1

2
· 5
2
δkl (3.54)

The Casimir operator (3.54) is proportional to the identity because the fundamental
representation is irreducible [140]. The expression (3.54) is needed to define a normal-
isation for (3.52) and the Casimir operator can be related to κ−1 by (3.55) [42, 43].

(C2)mp =
1

2
(κ−1)kl

r
s (T

l
k)

m
t (T

s
r)

t
p =

N

2
(2n+ 1) δmp (3.55)

Comparing (3.54) to (3.55) for the case of sp(4), i.e. n = 2, we then find that the
normalisation of (3.52) should be N = 1

2 . In analogy to reference [43] we can define
the constant k := 2/(α1, α1) = 2 and σ is the operator that exchanges the factors of
the tensor product, which in this case is simply δks δ

r
l. Having found the invariant

symbol (i.e. the symplectic form Ω), all generators in the fundamental representation,
how they act on the representation and the inverse of the Cartan-Killing form, with
the correct normalisation, we can now compute the Y-tensor. In general the Y-tensor
can be written as (3.56) [43], here we are suppressing the representation indices.

σ Y = k ·
[
−(κ−1)lm

r
s T

m
l T

s
r + (Λ,Λ)

]
+ σ − 1 (3.56)

We find that k · (Λ,Λ)− 1 = 0 and the σ term precisely cancels the only other δks δ
r
l

term. The Y-tensor of generalised symplectic geometry is hence given by (3.57).

Y kl
rs = Ωkl Ωrs (3.57)

The section condition that follows from this Y-tensor is (3.58).

Ωmn ∂m ⊗ ∂n = 0. (3.58)

It has been argued that the section condition in an extended generalised geometry only
allows for at most as many coordinates as there are nodes in the longest simply laced
chain in the Dynkin diagram of the algebra (that contains the node of the coordinate
representation) plus one additional coordinate (because of the regular embedding of
GL(n) into the symmetry group GL(n) ↪−→ G) [34, 43]. The Dynkin diagram associated
to to the symplectic algebra sp(2n) is that of Cn: . The longest simply
laced chain for Cn is therefore of length n− 1 which tells us that we can keep at most
n, i.e. half of the 2n coordinates, which is the same result as in the case of O(n, n).
Another way of thinking about equation (3.58) is to look at the decomposition of a
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general tensor product of two fundamental (coordinate) representations (3.59).

∂m ⊗ ∂n =

[
∂[m ⊗ ∂n] +

1

2n
ΩmnΩ

kl∂k ⊗ ∂l

]
− 1

2n
ΩmnΩ

kl∂k ⊗ ∂l

+ ∂(m ⊗ ∂n) (3.59)

Each line in (3.59) corresponds to a different irreducible representation of sp(2n) (i.e.
the antisymmetric traceless, the trace and the symmetric representations) in the ten-
sor product of two fundamental representations. The section condition (3.58) then
removes the one-dimensional trace representation. The existence of the section condi-
tion (3.58) illustrates that the extended generalised geometry based on the symplectic
algebra sp(2n) is not equivalent to ordinary symplectic geometry, which has a vanish-
ing Y-tensor.

As we have seen in the case of o(n, n), the generalised diffeomorphisms generally do
not close into the Lie bracket (cf. equation (3.29)) and one needs to identify an ap-
propriate generalisation (such as the C-bracket), although it is not proven that such
a bracket exists for all algebras [42]. Upon application of the section condition the
generalised diffeomorphisms reduce to the ordinary gl(n) diffeomorphisms because the
Y-tensor vanishes and similarly the generalised bracket reduces to the ordinary Lie
bracket because it too only differs by a Y-tensor term. The next step would be the
construction of such a generalised bracket for the generalised symplectic diffeomor-
phisms, but we will now turn our attention to the case of the extended generalised
exceptional geometry.

3.5 Exceptional geometry and exceptional field theory

Exceptional field theory (ExFT) is a manifestly En(n)(R) invariant Kaluza-Klein-like
rewriting and extension of eleven-dimensional supergravity based on an extended gen-
eralised exceptional geometry, but without actually truncating any degrees of freedom.
ExFT is in some aspects very similar to the gauged supergravity discussed in section
2.3.4 (e.g. regarding the tensor hierarchy [78, 82–87]) and to the Kaluza-Klein rewrit-
ing of manifestly O(n, n) invariant DFT described in section 3.3.1 (e.g. regarding the
extended generalised geometry).

In 2011 a manifestly E4(4) invariant canonical formulation of the bosonic sector of
eleven-dimensional supergravity, based on a generalised geometry, was published in
[141], in [142] an attempt towards an E5(5) invariant reformulation was made and some
other notable early works in this direction are [70, 123, 127, 143–146].
The bosonic E6(6) ExFT was first published in 2013 [3, 25]. Its supersymmetric com-
pletion was first published in [26] and the theory was later reviewed in [36, 103]. The
E7(7) and E8(8) ExFTs and their supersymmetric completions have been published
in [147, 148] and [149, 150] respectively. In the sense of the extended notion of the
exceptional groups from table 2.1, the E2(2) [151], E3(3) [152], E4(4) [153] and E5(5)

[154] ExFTs have also been constructed. General reviews of these exceptional field
theories were published in [103, 155].
Extending the concepts of ExFT to infinite dimensional Kac-Moody algebras, the E9

ExFT was constructed in [42, 156, 157]. Already in the early 2000s, before ExFT
existed, there have been proposals conjecturing E10 [158] or E11 [159–161] to be a
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n En(n) R1 R2 R3 R4 R5 R6

3 SL(3)×SL(2) (3,2) (3,1) (1,2) (3,1) (3, 2) (8,1) ⊕ (1,3)
4 SL(5) 10 5 5 10 24
5 SO(5,5) 16 10 16 45
6 E6(6) 27 27 78
7 E7(7) 56 1 ⊕ 133
8 E8(8) 248 1 ⊕ 248 ⊕ 3875

Table 3.1: The split real forms of the exceptional groups En(n)

and some of their representations that are relevant in the context of
exceptional field theory [103, 147, 149].

symmetry of eleven-dimensional supergravity. Recently an E11 master ExFT, con-
taining all other ExFTs and thereby also eleven-dimensional supergravity, has been
constructed [137, 162].

The starting point for the construction of the extended generalised exceptional ge-
ometry of En(n) (n ≤ 8) exceptional field theory is to locally split the space-time
manifold of eleven-dimensional supergravity M11 (3.60) into an external non-compact
d-dimensional (d := 11−n) Lorentzian manifold Mext.

d and an internal n-dimensional
Riemannian manifold Mint.

n . The split (3.60) is in the spirit of Kaluza-Klein theory,
however we do not assume any specific topology for the internal manifold Mint.

n and
importantly no degrees of freedom are truncated in this construction.

M11 = Mext.
d ×Mint.

n (3.60)

The global structure of this exceptional geometry is not known [163] and we will al-
ways work in local coordinates. We define the coordinates of the external manifold
to be xµ with µ = 0, . . . , d− 1 and the coordinates of the internal geometry to be ym

with m = 1, . . . , n. Next we need to transform the internal manifold into an extended
generalised exceptional geometry. To do so we extend the tangent bundle (e.g. as in
(3.18)) and simultaneously add additional auxiliary (or dual) coordinates. As in the
doubled geometry the extended coordinates need to be in a representation R1(En(n))
of the duality group — in doubled geometry the duality group is O(n, n) and in excep-
tional geometry it is En(n). We therefore need to add as many auxiliary coordinates to
the internal coordinates ym as are needed to turn them into the extended coordinates
Y M , with M = 1, . . . , dim(R1). The coordinate representations of the exceptional
groups R1(En(n)) are listed in table 3.1. The extended internal coordinates come with
associated coordinate derivatives ∂M . Overall the coordinates of the external-internal
extended geometry are then given by the d + dim(R1) many coordinates (xµ, Y M ).
Consistency of the extended generalised exceptional geometry requires the, now En(n)

covariant, section condition (3.22) to hold. The section condition can be understood
as a projection of ∂M ⊗ ∂N onto the representations R2(En(n)), which are listed in
table 3.1. Following the argument made in section 3.4 we can deduce that, at most,
a subset of n of the dim(R1) extended coordinates can survive in any solution of the
En(n) section condition and therefore solving the section condition effectively removes
the internal coordinates that were added.

As is apparent from table 3.1 the dimensions of the representations of the exceptional
groups En(n) are very different depending on the rank n and the invariant symbols
that the representations admit are therefore also very different. This is in contrast
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to the representations and invariant symbols of O(n, n), for which we could write
down formulas that are valid for any rank and therefore we could describe doubled
geometry and doubled field theory in a unified form for any n. Due to the diversity
and irregularity of the dimensions of the representations of En(n) it is not possible to
formulate all aspects of exceptional geometry and exceptional field theory in a form
that is true for all ranks. We will therefore focus on the (5 + 27)-dimensional E6(6)

exceptional field theory in the remainder of this thesis. We choose to consider the
E6(6) ExFT because it is, in some sense, the simplest case of the true exceptional
groups (n = 6, 7, 8). Because the external space-time is odd-dimensional there are no
self-dual differential forms in E6(6) ExFT and therefore it has a true Lagrangian —
unlike the E7(7) ExFT, in which the one-forms are (twisted) self-dual and therefore it
only has a pseudo-Lagrangian. And unlike in the E8(8) ExFT there are no constrained
compensator fields in the E6(6) theory. As was stated earlier we furthermore focus on
the bosonic sector of the theory for simplicity.

The outline of the remainder of this chapter is as follows. In section 3.5.1 we make
a brief excursion to describe the Lie algebra e6. In section 3.5.2 we discuss the E6(6)

extended generalised exceptional geometry in detail. In section 3.5.3 we discuss the
E6(6)-covariant field theory constructed on this extended geometry, its gauge transfor-
mations are discussed in section 3.5.4 and its gauge algebra is discussed in 3.5.5. In
section 3.5.6 we discuss how the section condition can be solved and how the section
condition relates ExFT to eleven-dimensional supergravity. Applications of ExFT are
briefly discussed in section 3.5.7. In the section 3.5.8 we construct the explicit non-
integral form of the Lagrangian topological term of the E6(6) ExFT.

Most of the remainder of this chapter is based on and closely follows the structure of
parts of the publication [41], which in particular reviews the results of [3, 25, 36].

3.5.1 Excursion: e6 Lie algebra

The Lie algebra e6 is a rank 6 exceptional Lie algebra (in the sense of the Cartan
classification [68]) of real dimension 78. Its Dynkin diagram is shown in figure 3.1.
Using the Iwasawa (Cartan) decomposition the e6 algebra can be decomposed as

Figure 3.1: The Dynkin diagram of the Lie algebra e6

e6 = usp8 ⊕ p, into the algebra of USp(8), which is the maximal compact subgroup
of E6(6), and the non-compact complement p. We can therefore explicitly write the
e6 algebra in terms of the 36 generators of usp8, which we call XAB = X(AB), with
A,B, ... = 1, . . . , 8 and the 42 fully antisymmetric generators of the non-compact
complement p, which we call Y ABCD = Y [ABCD]. The full e6 algebra can then be
written in terms of the generators XAB and Y ABCD as the Lie bracket relations (3.61),
(3.62) and (3.63). The δ-symbols with several indices here signify (anti-)symmetrised
products of the δAB-symbols. Ω is the symplectic form of usp8. The first relation (3.61)
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is simply the sp8 subalgebra.

[XAB, XCD] = 4 XÃC̃ΩB̃D̃ · (δ(AB)

ÃB̃
δ
(CD)

C̃D̃
) (3.61)

[XAB, Y CDEF ] = −8 ΩC̃B̃Y ÃD̃ẼF̃ · (δ(AB)

ÃB̃
δ
[CDEF ]

C̃D̃ẼF̃
) (3.62)

[Y ABCD, Y EFGH ] = 242 (XÃẼΩB̃F̃ΩC̃G̃ΩD̃H̃ − 3

4
XÃẼΩB̃C̃ΩF̃ G̃ΩD̃H̃)

· (δ[ABCD]

ÃB̃C̃D̃
δ
[EFGH]

ẼF̃ G̃H̃
) (3.63)

We will not need to make use of the explicit form of the e6 algebra in the following,
but it may help conceptually to keep this result in mind.

3.5.2 E6(6) extended generalised exceptional geometry

We can think of the (internal) extended 27-dimensional E6(6) generalised exceptional
geometry as the coordinate-extended version of the generalised exceptional geometry
(cf. section 3.2.1) associated to the vector bundle (3.64), with T(Mint.

6 ) being the stan-
dard tangent bundle of the (unextended) internal Riemannian manifold. The (inter-
nal) extended coordinates Y M , are in the fundamental representation R1(E6(6)) = 27,
with index M = 1, . . . , 27.

E := T(Mint.
6 )⊕ Λ2T∗(Mint.

6 )⊕ Λ5T∗(Mint.
6 ) (3.64)

In this section we review some of the results of [25]. Before we can begin to explic-
itly describe the extended E6(6) exceptional geometry we first need to introduce the
E6(6)-invariant d-symbols. The invariant symbols dLMN and dLMN carry three, fully
symmetric, indices in the (anti-)fundamental 27 (or 27) representation of E6(6) [25, 74].
Up to the normalisation, they are the unique invariant symbols of the fundamental
representation of E6(6). The invariance condition can be written as (3.65). We choose
the normalisation of the symbols to be determined by the requirement for them to
be inverse to each other (3.66). Furthermore the d-symbols obey the cubic identities
(3.67) and (3.68), which are required in some calculations, because they allow us to
move E6(6) indices between objects.

dKLM MKN MLR MMS = dNRS (3.65)

dMKL dKLN = δMN (3.66)

dS(MN dPQ)T dSTR =
2

15
δR(M dNPQ) (3.67)

dSTR dS(MN dPQ)T =
2

15
δ
(M
R dNPQ) (3.68)

We label the adjoint representation by ζ = 1, . . . , 78 and take tζ to be the generators of
the algebra e6. We can then express the generators in the fundamental representation
as (tζ)

M
N . The Cartan-Killing form is proportional to the trace (tζ1)

N
M (tζ2)

M
N

and we can use this to raise and lower the adjoint indices. The projector PM
N

K
L

onto the adjoint representation is defined by (3.69) and its normalisation is given by
PM

N
N

M = 78. The adjoint projector can be expressed explicitly in terms of the
invariant symbols as in (3.70).

PM
N

K
L := (tζ)

M
N (tζ)KL (3.69)

PM
N

K
L =

1

18
δMN δKL +

1

6
δML δKN − 5

3
dMKR dRNL (3.70)
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The E6(6) Y-tensor, from which we can derive the structure of the E6(6) exceptional
geometry, is given by (3.71). We can also arrive at this Y-tensor by using the relation
(3.26), with the E6(6) special weight ω = −1/3 (for a general En(n) it is ω = 1

n−9)
and the coefficient α = 6 and inserting the explicit expression of the adjoint projector
(3.70) [103, 127].

Y MK
NL = 10 dMKR dRNL (3.71)

The E6(6) covariant section condition, which follows from (3.22) with the Y-tensor
(3.71), is given by (3.72).

dKLM ∂L ⊗ ∂M = 0 (3.72)

The section condition (3.72) is interpreted as the two conditions (3.73) where Ψ, Φ
are arbitrary functions, which includes in particular all fields and gauge parameters.
In this sense the section condition is not a constraint on any particular function, but
we should think of it as a condition on the extended coordinates themselves.

dKLM ∂LΦ ∂MΨ = 0, dKLM ∂L∂MΦ = 0 (3.73)

Unlike the section condition of double field theory, which can be seen as (partially)
originating from the level-matching condition of string theory, the section condition of
ExFT is (physically) postulated ad hoc by analogy. In some situations it may be pos-
sible to interpret the section condition of ExFT as coming from 1/2-BPS constraints
[33, 164]. The section condition also appears as a consistency condition for the closure
of the generalised diffeomorphism algebra, just like in doubled geometry. The E6(6)

section condition furthermore implies that at most 6 of the 27 coordinates exist in any
solution of the section condition, which is equal to the number of the original internal
(physical) coordinates of eleven-dimensional supergravity.

The E6(6) generalised Lie derivative LΛ, with parameter ΛM , of a generalised vector
V M , can be written in terms of the adjoint projector (3.70) as (3.74). The constant
λ(V ) ∈ R is the generalised weight of the generalised vector V M . This expression is
in form analogous to the generalised Lie derivative in doubled geometry (3.23), but
here the second term is interpreted as an E6(6) transformation.

LΛV
M := ΛK ∂KV M − 6PM

N
K

L ∂KΛL V N + λ(V ) ∂NΛN V M (3.74)

The generalised Lie derivative of a generalised covector WM , of weight λ(W ), can
equivalently be written as (3.75). Because the generalised Lie derivative satisfies the
Leibniz rule these expressions extend in the standard fashion to arbitrary generalised
tensors.

LΛWM := ΛK ∂KWM + 6PN
M

K
L ∂KΛLWN + λ(W ) ∂NΛN WM (3.75)

Parameters of the generalised Lie derivative that are of the form (3.76), with WK

being an arbitrary generalised covector, lead to a vanishing generalised Lie derivative
on any other function, when the section condition is applied. Therefore we refer to
parameters of the form (3.76) as trivial.

ΛM = dMNK ∂NWK (3.76)
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We can furthermore verify the compatibility of the above generalised Lie derivative
with the E6(6) invariant d-symbols and find that they transform as constants (3.77).

LΛdMNK = 0 (3.77)

In the extended generalised exceptional geometry the Lie bracket needs to be modified
by an additional Y-tensor contribution (in analogy to the C-bracket of DFT), accord-
ing to (3.31), and we call the modified bracket the E-bracket. Inserting the explicit
expression for the E6(6) Y-tensor (3.71) into the general formula (3.31) we find that
we can write the E-bracket of two generalised vectors ΛM

1 ,ΛN
2 explicitly as (3.78).

[Λ1,Λ2]
M
E := 2ΛK

[1 ∂KΛM
2] − 10 dMNP dKLP ΛK

[1 ∂NΛL
2] (3.78)

It can be verified, in a somewhat lengthy calculation, that the commutator of two
generalised Lie derivatives can again be written as a generalised Lie derivative, i.e.
the generalised Lie derivative obeys the algebra (3.79). The parameter of the resulting
generalised Lie derivative is given by the E-bracket of the original parameters. This
relation holds true acting on any function, however only up to terms that vanish when
the section condition (3.72) is applied. We can thus think of the section condition as a
consistency condition, in the sense that it is required by the closure of the generalised
diffeomorphism algebra and it arises naturally in this context. In the calculation of
the algebra (3.79) the cubic identities (3.67) and (3.68) have to be applied repeatedly,
in order to move E6(6) indices between objects.

[LΛ1 ,LΛ2 ] = L[Λ1,Λ2]E
(3.79)

The E-bracket is bilinear, antisymmetric and obeys the Leibniz rule, hence it defines a
Leibniz (or Loday) algebra [165–167]. But the E-bracket is not itself a Lie bracket be-
cause the Jacobi identity holds only up to a trivial parameter term, i.e. the Jacobiator
(3.80) is of trivial form, where UM , V N ,WK are generalised vectors.

J(U, V,W ) := [[U, V ]E ,W ]E + [[W,U ]E , V ]E + [[V,W ]E , U ]E (3.80)

We can define the bracket (3.81), which is in analogy to the Dorfman bracket of
generalised (complex) geometry or the D-bracket of doubled geometry [25].

(V ◦W )M := LV W
M (3.81)

Sometimes it is beneficial to trade the antisymmetry of the E-bracket for the Jacobi
identity and indeed the Dorfman bracket (3.81) satisfies the Jacobi identity, but it is
not antisymmetric, instead the relation (3.82) holds, if λ(W ) = 1/3.

(V ◦W )M = [V,W ]ME + 5 dMKR ∂K(dRPL V P WL) (3.82)

The antisymmetric part of (3.82) is identical to the E-bracket, but there is an addi-
tional symmetric term, which is of trivial form. In some calculations the symmetrised
Dorfman bracket is a useful expression and we will make use of it in chapter 6.

Written in the form of (3.82) the Dorfman bracket can be seen as an analogy to
the split (2.29) of the embedding structure constants XMN

K of gauged supergravity.
Just like the antisymmetric part of XMN

K the E-bracket does not satisfy the Jacobi
identity. As we will see in section 3.5.3, when discussing the exceptional field theory,
this leads to further similarities between these theories. At least in part the section
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condition in ExFT can be seen as being analogous to the quadratic constraints of the
embedding tensor in gauged supergravity [57].

3.5.3 The Lagrangian of E6(6) exceptional field theory

Having discussed the extended E6(6) generalised exceptional geometry we can now turn
to the exceptional field theory that is build upon it. In this section we summarise some
of the main findings of the references [3, 25] concerning the Lagrangian formulation of
the bosonic sector of E6(6) ExFT. We begin with the description of the bosonic field
content of the E6(6) ExFT, which is given by (3.83).

{Eµ
α,MMN , AM

µ , BµνM} (3.83)

All of the fields (3.83) and all of the gauge parameters of the E6(6) ExFT depend on all
of the 5+27 external and internal coordinates (xµ, Y M ). The α, β = 0, . . . , 4 are exter-
nal five-dimensional flat Lorentz indices, µ, ν = t, 1, . . . , 4 are external five-dimensional
curved space-time indices and M,N = 1, . . . , 27 are the (anti-)fundamental E6(6) in-
dices. The external vielbein Eµ

α is related to the external metric Gµν by (3.84), with
ηαβ being the external Minkowski metric with signature (−++++).

Gµν = Eµ
αEν

β ηαβ (3.84)

The fields MMN = M(MN) can be interpreted either, from the internal perspective, as
generalised E6(6) metric components or from the external perspective, as scalar fields.
The inverse internal metric is defined by MMK MKN = δNM . The MMN parametrise
the E6(6)/USp(8) coset, which is 42-dimensional (cf. table 2.1). This moreover im-
plies that only 42 of its 378 symmetric components are independent. We refer to
the relations among the 378 components, implied by the coset structure, as the coset
constraints of the scalar fields. Among other things the coset constraints imply that
det(MMN ) = 1. The one- and two-form fields AM

µ and BµνM each carry one addi-
tional (anti-)fundamental E6(6) index — thus they are (co-)vectors from the internal
perspective.

In order to understand why the bosonic field content of the E6(6) ExFT is given by
(3.83) and how these fields relate to the degrees of freedom of eleven-dimensional su-
pergravity we need to consider the Kaluza-Klein-like (5 + 6)-dimensional split (3.60)
of eleven-dimensional supergravity. We decompose the eleven-dimensional space-time
indices as µ̂ = (µ,m), with µ = t, 1, . . . , 4 and m = 1, . . . , 6. In section 2.2.1 we have
seen that the bosonic field content of eleven-dimensional supergravity is a metric Gµ̂ν̂

and a three-form Cµ̂ν̂ρ̂. Now we need to decompose the metric and the three-form
according to the (5 + 6)-dimensional split into their components Gµν , Gµn, Gmn and
Cµνρ, Cµνr, Cµnr, Cmnr. These components can now be rearranged. As was explained
in section 2.3.3, we can Hodge-dualise the field strength of a p-form in d dimensions to
yield an equivalent (d− p− 2)-form. One has to dualise all forms, with respect to the
external geometry, to the lowest possible degree to arrive at the field content (3.83).
The fully external part of the metric Gµν becomes the external metric of ExFT. The
independent components of the scalar fields MMN comprise the 42 = 21 + 1 + 20
scalar fields coming from Gmn, Cµνρ and Cmnr. The vector fields AM

µ consist of the
27 = 6+6+15 vector fields coming from Gµn, Cµνr and Cµnr. There are now no more
degrees of freedom left to make the two-forms BµνM , but the two-forms are needed in
E6(6) ExFT to make the one-forms transform covariantly. In five dimensions the 27
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one-forms AM
µ are dual to the 27 two-forms BµνM and we can hence introduce them

as (on-shell) dual topological fields. Because the two-forms are dual to the one-forms
no new propagating degrees of freedom are introduced. The duality relation is given
dynamically by the two-form equations of motion. Overall we have thus found one
metric, 42 scalars, 27 one-forms and 27 two-forms, which agrees with the field content
(3.83).

In ExFT the one-forms AM
µ act as the gauge connection for the generalised diffeo-

morphism symmetry. Because the generalised diffeomorphism parameters ΛM (x, Y )
also depend on the external coordinates we need to introduce the external covariant
derivative defined by (3.85).

Dµ := ∂µ − LAµ (3.85)

We define the one-forms to transform, under a generalised diffeomorphism with pa-
rameter ΛM , as the covariant derivative of the gauge parameter (3.86). We can fur-
thermore think of (3.86) as the covariantised version of an abelian U(1)27 gauge trans-
formation δΛA

M
µ = ∂µΛ

M .
δΛA

M
µ := DµΛ

M (3.86)

We can define the naive field strength (3.87), which replaces the Lie bracket with the
E-bracket (3.78). This field strength is analogous to the field strength (2.30) in gauged
maximal supergravity.

FM
µν := 2 ∂[µA

M
ν] − [Aµ, Aν ]

M
E (3.87)

In analogy to gauged maximal supergravity, the naive field strength (3.87) fails to
transform covariantly. Instead it transforms as (3.88) (cf. equation (2.32)) with an
additional trivial non-covariant term, which is due to the non-vanishing Jacobiator of
the E-bracket.

δFM
µν = 2D[µ δA

M
ν] + 10 dMKR dNLR ∂K

(
AN

[µ δA
L
ν]

)
(3.88)

The relation (3.88) furthermore implies (3.89).11

δΛF
M
µν = LΛF

M
µν + 10 dMKR dNLR ∂K

(
−ΛN FL

µν +AN
[µ δA

L
ν]

)
(3.89)

Continuing with the analogy to gauged supergravity we can solve this issue by in-
troducing the two-forms BµνM , which we can define to transform in such a way that
they absorb the offending non-covariant term. There are not naturally any two-forms
present in the field content coming from eleven-dimensional supergravity, but we can
Hodge-dualise the one-forms (via their field strength) to yield the two-forms BµνM

that we need, as was discussed above. In analogy to the covariant field strength
(2.33) of gauged supergravity we then add a Stückelberg-type coupling term to the
naive one-form field strength (3.87) to arrive at the covariant field strength (3.90).

FM
µν :=FM

µν + 10 dKLM ∂KBµνL (3.90)

=2 ∂[µA
M
ν] − [Aµ, Aν ]

M
E + 10 dKLM ∂KBµνL (3.91)

Comparing the improved covariant field strengths of gauged supergravity (2.33) and
ExFT (3.90), we can see that the E-bracket takes the place of the antisymmetric part
of the embedding structure constants and the d-symbol contracted with an internal

11To show (3.89) one can make use of the relations (3.86), (3.94) and the symmetrised Dorfman
product (3.82).
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derivative dKLM ∂K take the place of the symmetric part of the embedding structure
constants.

The improved field strength (3.90) does indeed transform covariantly as (3.92).

δFM
µν = 2D[µ δA

M
ν] + 10 dMNK ∂K∆BµνN (3.92)

In (3.92) we have used the modified transformation ∆BµνN of the two-forms, which
is defined as (3.93) in order to cancel the non-covariant term in (3.88).

∆BµνN := δBµνN + dNKLAK
[µ δA

L
ν] (3.93)

The commutator of the external covariant derivatives (3.94) generates the one-form
field strength. Because the covariant derivative is of the form (3.85) the field strength
appears as the parameter of a generalised Lie derivative. The Stückelberg coupling
term in the covariant field strength (3.90) is of trivial form and hence the commutator
(3.94) cannot distinguish between the naive and the covariant field strengths.

[Dµ,Dν ] = −LFµν = −LFµν (3.94)

The field strength HρστN of the two-forms BµνM can be written as (3.95), where the
“ . . . ” indicate terms that vanish under the projection dMNK ∂K .

HρστN := 3D[ρBστ ]N − 3 dNKLA
K
[ρ

(
∂σA

L
τ ] −

1

3
[Aσ, Aτ ]]

L
E

)
+ . . . (3.95)

The two-form field strength (3.95) can be found by solving the Bianchi identity (3.96).

3D[µFM
νρ] = 10 dMNK ∂KHµνρN (3.96)

The (topological) two-forms were introduced in order for the one-form field strength
(3.90) to transform covariantly. This was in analogy to the tensor hierarchy of gauged
supergravity. Similarly the two-form field strength (3.95) does not transform co-
variantly without the introduction of a three-form and so on [25, 103]. Luckily the
three-form terms in (3.95), which are contained in the “ . . . ”, are projected out in the
E6(6) ExFT and do not appear in the Lagrangian.

The bosonic E6(6) exceptional field theory action is given by (3.97).

SExFT =

∫
d5x

∫
d27Y LExFT (3.97)

As in double field theory, the action (3.97) should be thought of as a symmetric and
effective way of encoding the classical equations of motion. It is not known how the
integral over the internal geometry can be carried out explicitly, in a meaningful way,
before the section condition (3.72) is solved. We should therefore regard the internal
integral in the ExFT action as being symbolic.
The bosonic E6(6) ExFT Lagrangian LExFT consists of the five distinct terms (3.98).

LExFT = LEH + Lsc + Lpot + LYM + Ltop (3.98)

The first term in the Lagrangian is the improved Einstein-Hilbert term LEH (3.99).
LEH consists of the standard Einstein-Hilbert term ER, where E := det(Eµ

α) is
the vielbein determinant and R is the Dµ-covariantised Ricci scalar of Eµ

α. What is
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meant by Dµ-covariantised is that all (external) partial derivatives in the Ricci scalar
are replaced by covariant derivatives Dµ. Because of the covariantisation of the Ricci
scalar and because of the non-commutativity of the covariant derivatives (3.94) one
needs an additional one-form-dependent improvement term in order for the covari-
antised Riemann tensor to transform tensorially under local Lorentz transformations.
LEH is analogous to the covariantised Einstein-Hilbert term in the Kaluza-Klein-like
reformulation of DFT (3.42).

LEH = ER̂ = ER+ E FM
αβ E

αρ ∂MEβ
ρ (3.99)

Lsc =
E

24
Gµν DµMMN DνM

MN (3.100)

Lpot = −E Vpot(Gµν ,MMN ) (3.101)

LYM = −E

4
MMNFM

µν FµνN (3.102)

The second term in (3.98) is the scalar kinetic term Lsc (3.100). Moreover we can
think of (3.100) as a covariantised E6(6)/USp(8) non-linear coset sigma model. The
third term in the Lagrangian is the scalar potential term Lpot (3.101). The potential
Vpot(Gµν ,MMN ) itself is explicitly given by (3.103) and only depends on the external
metric (G := det(Gµν)), the scalar fields and internal coordinate derivatives. It does
not depend on the external derivatives and hence the name potential is justified.

Vpot = − 1

24
MMN ∂MMKL ∂NMKL +

1

2
MMN ∂MMKL ∂LMNK (3.103)

− 1

2
G−1 ∂MG∂NMMN − 1

4
MMN G−1 ∂MGG−1 ∂NG

− 1

4
MMN ∂MGµν ∂NGµν

The fourth term in (3.98) is the (generalised) Yang-Mills term LYM (3.102), which is
of the standard Yang-Mills form, but using the covariant field strength (3.90). The
E6(6) indices are contracted by the internal generalised metric MMN .
The fifth and final term in the Lagrangian is the topological term Ltop, whose action
can be written as the (6+27)-dimensional integral over an exact six-form (3.105) [25].
Here we have used the definitions FM := 1

2F
M
µν dx

µ ∧ dxν and HM := 1
3!HµνρM dxµ ∧

dxν ∧ dxρ. In the Lagrangian formulation the explicit non-integral form Ltop of the
topological term in 5+ 27 dimensions, which is not manifestly gauge-invariant, is not
needed. We construct the explicit non-integral topological term Ltop in section 3.5.8,
because the explicit form of this term is required in the Hamiltonian formalism in
order to carry out the Legendre transformation of the Lagrangian (3.98).

Stop =

∫
d27Y

∫
d5xLtop (3.104)

= κ

∫
d27Y

∫
M6

(
dMNK FM ∧ FN ∧ FK − 40 dMNKHM ∧ ∂NHK

)
(3.105)

We should note that the only kinetic term of the two-forms, i.e. the only appearance of
the two-form field strength, is inside the topological term and thus the two-forms are
indeed topological degrees of freedom. In contrast the field strength of the one-forms
appears in the Yang-Mills term, in the topological term and in the Einstein-Hilbert
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Weight λ Objects
−2/3 Gµν , R̂, Vpot
−1/3 ∂M , Eα

µ

0 ∂µ, LAµ , dMNK , MMN , R̂µν
αβ

1/3 AM
µ , FM

µν , Λ
M , Eµ

α

2/3 BµνM , ΞµM , HµνρM , Gµν

1 LExFT
5/3 E

Table 3.2: The exceptional generalised diffeomorphism weights of
the most important objects of E6(6) exceptional field theory.

improvement term. The two-forms couple to all of these terms too due to the Stück-
elberg coupling term in the one-form field strength (3.90).

In the topological action (3.105) the overall constant of the topological term κ is
introduced. In this thesis we will keep κ general and not insert its value, because this
allows us to track where the terms of the topological Lagrangian are going. If we were
to insert its numerical value it would be given by κ = +

√
10/6 [25, 26, 36, 155].12

Only the modulus of κ, but not the sign, is fixed by the symmetries in the bosonic
ExFT and hence the sign is conventional [26].

3.5.4 Lagrangian gauge transformations

We can now discuss the (infinitesimal) gauge transformations that leave the action
(3.97) invariant. This section reviews some of the results of [25].

Each of the terms of the Lagrangian (3.98) is individually invariant under generalised
diffeomorphisms. From the perspective of eleven-dimensional supergravity the gener-
alised diffeomorphisms combine the spatial diffeomorphisms of the six original internal
dimensions with three-form gauge transformations. In this sense the three-form gauge
transformations have become geometrised.
With the exception of the p-forms the fields of ExFT transform under generalised dif-
feomorphisms, with parameter Λ, as the generalised Lie derivative δΛ = LΛ, including
the appropriate weight terms, with the generalised diffeomorphism weights listed in
table 3.2. The transformations of the p-forms are modified due to the tensor hierar-
chy and the Stückelberg coupling. By definition the transformation of the one-forms
(3.106) combines the abelian U(1)27 gauge transformations with the generalised Lie
derivative to transform as the covariant derivative of the gauge parameter ΛM . The
Stückelberg coupling term in the one-form field strength (3.90) moreover induces a

12In the ExFT literature there is some confusion regarding the coefficient of the topological term
which stems from a hidden rescaling of κ in reference [25] — if we are aware of this fact and do not
mix up the different values of the constants then the calculations of [25] are nonetheless all correct.
We define κ1 :=

√
10/6 and κ2 := 3

4
κ1 =

√
10/8 to distinguish the rescaling. The value of κ1 is used

in the equations (3.7), (3.8) and (3.9) of [25]. But starting with equation (3.29) of [25], where the
numerical value of this coefficient is determined and in particular in the equation (3.31), which states
κ2 = 5

32
, the rescaled coefficient κ2 is used. As can be seen from equation (3.8) of [25] this additional

factor of 3
4

comes from taking the variation of the topological term and has been absorbed into κ2.
The references [26, 155] continue to use the rescaled κ2 consistently, while the reference [36] uses the
original κ1 consistently.
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two-form tensor gauge transformation, with parameter ΞµN , in the one-forms (3.106).

δAM
µ = DµΛ

M − 10 dMNK ∂KΞµN (3.106)

∆BµνM = 2D[µΞν]M + dMKL ΛK FL
µν +OµνM (3.107)

With the modified transformation ∆BµνM , defined in (3.93), the two-forms trans-
form under tensor gauge transformations, generalised diffeomorphisms and shifts as
(3.107). The two-form tensor gauge transformation, with parameter ΞνM , is of the
standard form, but covariantised. Due to (3.93) and (3.89) the two-forms transform
under generalised diffeomorphisms, in this parametrisation, not as the generalised Lie
derivative but as in (3.107). In addition there is a shift transformation with parameter
OµνM and the parameter vanishes under the projection (3.108), which is consistent
with the Stückelberg coupling and the properties of the two-form field strength.

dMNK ∂KOµνM = 0 (3.108)

The ExFT action (3.97) is furthermore invariant under external diffeomorphisms. The
parameter ξµ(x, Y ) of the external diffeomorphisms depends on all of the coordinates
— like every other gauge parameter — but the external diffeomorphism symmetry
is only manifest for parameters that do not depend on the internal coordinates, i.e.
∂Mξµ = 0 ∀M . If the gauge parameter depends non-trivially on the internal coordi-
nates, i.e. ∃M : ∂Mξµ ̸= 0, then the external diffeomorphism transformations connect
all terms in the Lagrangian (3.98) and requiring invariance of the action fixes all rel-
ative coefficients in (3.98).

The bosonic ExFT action (3.97) is the unique bosonic action that is invariant un-
der both internal and external diffeomorphisms, up to overall rescalings and terms
that vanish under the section condition. The terms in the Lagrangian (3.98) were
first constructed to be invariant under internal diffeomorphisms and invariance under
the external diffeomorphisms fixed all remaining coefficients. The uniqueness of the
bosonic ExFT action is quite remarkable. Coming from supergravity one would ex-
pect that the symmetries fix the structure of the bosonic action but not the relative
coefficients. Instead one would expect them to be determined by requiring the full
action to be supersymmetric. Nonetheless, the unique bosonic ExFT action (3.97)
admits a supersymmetric extension [26] — which may indicate a hidden relationship
between supersymmetry and exceptional symmetry.

The fields transform under the covariantised external diffeomorphisms as the covari-
antisation of the standard Lie derivative, with all partial derivatives replaced by co-
variant derivatives. For the external vielbein (3.109) and for the scalar fields (3.110)
this is the full transformation, but the transformations of the differential forms are
further modified.

δξEµ
α = ξν DνEµ

α +Dµξ
ν Eν

α (3.109)
δξMMN = ξµDµMMN (3.110)

∆ξBµνM =
1

16κ
ξρE ϵµνρστ FστN MMN (3.111)

δξA
M
µ = ξν FM

νµ +MMN gµν ∂Nξν (3.112)

Naively one would expect ∆ξBµνM = ξρHµνρM to be the transformation of the two-
forms under external diffeomorphisms. But in order to realise the diffeomorphism
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symmetry of the action (3.97) off-shell one has to insert the two-form equation of
motion (3.113) (i.e. the on-shell duality relation between the one- and two-forms) in
the naive transformation to yield (3.111).

dPML ∂L
(
EMMN FµνN + κ ϵµνρστ HρστM

)
= 0 (3.113)

The transformation of the one-forms is given by (3.112). The first term in (3.112)
is the covariantisation of the expected transformation of a one-form under external
diffeomorphisms.
The perhaps unexpected second term in (3.112) comes from a compensating Lorentz
transformation. This term only exists for diffeomorphism parameters that depend on
the internal coordinates. Because this term, in the transformation of the one-forms,
depends on the external metric and the scalar fields it connects different terms in the
Lagrangian. It is instructive to discuss the origin of this term in more detail and
moreover the term will be relevant in the canonical formulation of the theory. To
understand the origin of the second term in (3.112) we need to look at how the ExFT
relates to eleven-dimensional supergravity. Here we follow the calculation presented
in reference [25].

We begin with a Kaluza-Klein-like 11 = 5 + 6 split of the eleven-dimensional indices.
The eleven-dimensional curved index splits as µ̂ = (µ,m) and the flat Lorentz index
splits as α̂ = (α, a).13 In this split we can parametrise the eleven-dimensional vielbein
as (3.114), where we have defined ϕ := det(ϕm

a) and γ := −1/3.

Eµ̂
α̂ =

(
ϕγ Eµ

α Am
µ ϕm

a

0 ϕm
a

)
(3.114)

We can furthermore define ϕmn := ϕa
m ϕan. We can interpret the ϕm

a as an internal
vielbein and consequently the ϕmn as an internal metric. The Am

µ are the Kaluza-
Klein vectors. These fields are the “unextended” precursors to the scalar fields MMN

and one-forms AM
µ of the ExFT. The eleven-dimensional Lorentz symmetry has to be

partially gauge-fixed in order to achieve the upper-triangular form of (3.114).
The eleven-dimensional vielbein transforms under eleven-dimensional diffeomorphisms
with parameters ξν̂ and Lorentz transformations with parameters λα̂

β̂ as (3.115).

δEµ̂
α̂ = ξν̂ ∂ν̂Eµ̂

α̂ + ∂µ̂ξ
ν̂ Eν̂

α̂ + λα̂
β̂ Eµ̂

β̂ (3.115)

The transformation (3.115) implies the transformations of the components of the de-
composition (3.114). Moreover the condition (3.114) on the vielbein, to be of upper-
triangular form, implies that the vanishing components cannot transform non-trivially
under the gauge transformations (3.115), i.e. Em

α = 0 ⇒ δEm
α = 0. As a conse-

quence the condition δEm
α = 0 implies the partial gauge fixing (3.116) of the Lorentz

gauge parameters.
λα

b = −ϕγ ϕb
m ∂mξν eν

α (3.116)

The structure of the Lorentz algebra implies further restriction on the Lorentz param-
eters (3.117).

λα
b = −δab η

αβ λa
β (3.117)

13The flat indices used here differ in nomenclature from those used in reference [25] in order to be
consistent with notation used in the remainder of this thesis.
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Looking at the transformation of the Eµ
a component of the eleven-dimensional viel-

bein and inserting the conditions (3.116) and (3.117) for the Lorentz gauge parameters
we find that the transformation of Am

µ is given by (3.118), which contains the term in
question.

δξA
m
µ = ξν FM

νµ + ϕ2γ ϕmn gµν ∂nξ
ν (3.118)

In the extended exceptional geometry the transformation (3.118) of the Kaluza-Klein
vectors of eleven-dimensional supergravity becomes the transformation (3.112) of the
generalised vectors AM

µ of ExFT. The correction term in (3.112) exists as a conse-
quence of a compensating Lorentz transformation to keep the parametrisation (3.114)
consistent. In particular the sign of the correction term in (3.112) is completely fixed
— we will come back to this fact in chapter 6, when we discuss the canonical gauge
transformations.

The final symmetry of the action (3.97) are external Lorentz transformations. The
vielbein of ExFT Eµ

α transforms under the five-dimensional external Lorentz trans-
formations as (3.119).

δλEµ
α = λα

β Eµ
β (3.119)

In conclusion, the bosonic E6(6) ExFT action (3.97) is invariant under external Lorentz
transformations, external (covariantised) diffeomorphisms, internal generalised diffeo-
morphisms, two-form tensor gauge transformations and certain shift transformations.

3.5.5 Lagrangian gauge algebra

The parts of the gauge algebra that concern the covariantised external and inter-
nal generalised diffeomorphisms have been described in [25, 36], which we review in
this section. We can write the commutator of two external (covariantised) diffeomor-
phisms as (3.120), which is the sum of an external and an internal diffeomorphism.
The internal diffeomorphism appears here due to the covariantisation of the external
diffeomorphisms. The dots in (3.120) indicate possible tensor gauge transformations
of higher degree differential forms from the tensor hierarchy (e.g. three-form gauge
transformations).

[δξ1 , δξ2 ] = δξ12 + δΛ12 + . . . (3.120)

The resulting external diffeomorphism parameter ξ12 is given by (3.121), which is the
covariantised commutator of the original parameters. The internal diffeomorphism
parameter ΛM

12 is given by (3.122). If we compare (3.122) to the transformation of
the one-forms under external diffeomorphisms (3.112), we can see that this is a very
similar expression.

ξµ12 := ξν2 Dνξ
µ
1 − ξν1 Dνξ

µ
2 (3.121)

ΛM
12 := ξµ2 ξν1 FM

µν − 2MMN gµν ξ
µ
[2 ∂Nξν1] (3.122)

The commutator of an external and an internal diffeomorphism is given by (3.123),
which consists of an external diffeomorphism and a two-form tensor gauge transfor-
mation.

[δΛ, δξ] = δξ′ + δΞ′ (3.123)

The resulting external diffeomorphism parameter ξ′µ in (3.123), is given by (3.124),
which is the generalised Lie derivative of the original external parameter ξµ. The
parameter Ξ′ of the tensor gauge transformation is given by (3.125). We can compare
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(3.125) to the gauge transformations and find that it is of the form of the transforma-
tion of the one-forms under external diffeomorphisms (3.112) inserted in a generalised
diffeomorphism acting on the two-forms (3.107).

ξ′µ := −ΛM ∂Mξµ (3.124)

Ξ′
µM := −dMNK

(
ξν FN

νµ +MKL gµν ∂Lξ
ν
)
ΛK (3.125)

The generalised diffeomorphisms form the subalgebra (3.126) of the gauge algebra.
Because the generalised diffeomorphism transformations can be written as the gener-
alised Lie derivative δΛ = LΛ the algebra (3.126) is equivalent to the commutator of
the generalised Lie derivatives (3.79).

[δΛ1 , δΛ2 ] = δΛ12 (3.126)

The resulting gauge parameter Λ12 is, by definition, given by the E-bracket (3.127) of
the original parameters.

ΛM
12 := [Λ2,Λ1]

M
E (3.127)

The generalised diffeomorphism algebra (3.126) closes only up to terms that vanish
under the section condition (3.72), as was discussed in section 3.5.2.

3.5.6 Solutions of the ExFT section condition

Now that we have discussed the field content, the action, the gauge transformations
and the gauge algebra of the bosonic E6(6) exceptional field theory we can discuss how
the ExFT relates back to supergravity. We constructed the ExFT from a Kaluza-
Klein-like split of eleven-dimensional supergravity, without truncating any degrees
of freedom, and then transformed the internal six-dimensional Riemannian geome-
try into a 27-dimensional extended generalised exceptional geometry. The extended
generalised exceptional geometry is what allowed us to write the action of ExFT in
an E6(6) invariant form, but its consistency required the introduction of the section
condition (3.72).
The section condition should be seen, not as a condition on the fields, but instead as
a condition on the 27 extended coordinates Y M . We can solve the section condition
(3.72) by selecting a suitable subset of the extended coordinates, thereby undoing the
construction and breaking the E6(6) symmetry to a subgroup thereof. Solutions of the
E6(6) section condition contain at most six of the 27 coordinates, but solutions with
fewer coordinates exist.

The solution of the section condition that leads back to eleven-dimensional supergrav-
ity is found by considering the embedding (3.128) of the subgroup GL(6) into E6(6).

GL(6) = SL(6)× GL(1) ⊂ E6(6) (3.128)

The fundamental 27 and the adjoint 78 representations of E6(6) decompose into the
direct sum of representations of GL(6) according to (3.129) and (3.130) respectively,
where the index indicates the weight under the GL(1).

27 → 6+1 ⊕ 15′0 ⊕ 6−1 (3.129)
78 → 1−2 ⊕ 20−1 ⊕ (1⊕ 35)0 ⊕ 20+1 ⊕ 1+2 (3.130)
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The internal coordinates Y M decompose under the embedding (3.129) as (3.131),
with the GL(6) indices m,m, n, n = 1, . . . , 6 — the overline is used here to indicate
the difference in GL(1) weight. The ymn = y[mn] are antisymmetric and therefore
represent 15 independent coordinates.

Y M → (ym, ymn, y
m) (3.131)

To verify that the section condition can be solved in this embedding the section
condition (3.72) itself has to be decomposed too. The only non-vanishing components
of the invariant symbol dMNK are given by (3.132) [25].

dmn
kl =

1√
5
δm[k δnl] , dmnkl pq =

1

4
√
5
ϵmnklpq (3.132)

Now that we know how to write the section condition in the GL(6) decomposition
(3.129), we can identify a suitable subset of the extended coordinates that solves the
section condition. We find that if we keep only the 6+1 coordinates ym from the 27
extended coordinates Y M (3.131) and therefore only the internal derivatives ∂m, this
solves the section condition. The 21 remaining coordinates are dropped, i.e. ∂mn = 0
and ∂m = 0. In this solution of the section condition the full set of coordinates are then
the 11 = 5+6 external and internal coordinates (xµ, ym). We should now decompose
all objects according to (3.129) and only keep the 6+1 components. Furthermore the
Hodge-dualisations that were necessary in the construction of the ExFT have to be
undone. The result is then that one recovers the full structure of eleven-dimensional
supergravity — written in the Kaluza-Klein-like 5 + 6 split.

When the above GL(6) solution to the section condition is chosen one can view the
ExFT as a true, though possibly unusual, rewriting of eleven-dimensional supergrav-
ity, because no degrees of freedom were truncated and when the section condition
is applied none were added. To realise the E6(6) symmetry one has to make use of
the extended exceptional geometry however, which suggests that the E6(6) symmetry
does not exist in the eleven-dimensional theory in the usual sense. Conversely this
may be seen as pointing towards a more fundamental interpretation of the exceptional
geometry.

A further advantage of the ExFT is that there is more than one solution to the
section condition and in this sense the ExFT is a unified description of several su-
pergravity theories — as illustrated by figure 3.2. Instead of GL(6) one can choose
to embed GL(5)×SL(2) ⊂ E6(6). When keeping only the (5, 1)+4 components of the
GL(5)×SL(2) decomposition one finds another inequivalent but consistent solution to
the section condition. The supergravity theory that is reached by this solution is the
ten-dimensional type IIB supergravity [36, 60, 61]. This fact is all the more interest-
ing because the type IIB theory cannot be reached by toroidal compactification from
eleven-dimensions. Furthermore one can choose to embed a different GL(5), which is
contained in the GL(6) that leads to eleven-dimensional supergravity, keeping five of
the 6+1 coordinates then leads to ten-dimensional type IIA supergravity, which can
be reached by a circle compactification from eleven-dimensions.
For the E7(7) ExFT it has moreover been shown that it is possible to introduce consis-
tent deformations of the generalised Lie derivative which makes it possible to arrive at
the massive type IIA supergravity via the section condition [168]. Therefore all max-
imal supergravity theories in ten and eleven dimensions can be reached from ExFT.
Furthermore the section condition can be trivially solved by discarding all internal
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E6(6) ExFT
dLMN ∂M ⊗ ∂N = 0

5D max. sugra.
with global E6(6)

11D sugra.IIB sugra. IIA sugra.∂M = 0
∀M

GL(5)× SL(2)
27 → (5, 1)+4 ⊕ (5′, 2)+1

⊕ (10, 1)−2 ⊕ (1, 2)−5 GL(6)
27 → 6+1 ⊕ 15′0

⊕ 6−1

T1

T5 T6

Figure 3.2: The embedding of the eleven-dimensional, type IIA, type
IIB and ungauged maximal five-dimensional supergravity theories in
the E6(6) ExFT. The solid lines indicated the GL(5) × SL(2), GL(6)
and trivial solutions of the section condition. Dashed lines indicate
toroidal compactifications on m-tori Tm. Adapted from a similar figure

in reference [25].

coordinates ∂M = 0 ∀M and therefore only the five external coordinates survive —
this can be seen as a reduction on an internal T27 torus. The supergravity theory
that is reached in this solution of the section condition is the manifestly E6(6) in-
variant form of the ungauged maximal five-dimensional supergravity, which was first
described in [74]. This is the only solution to the section condition that does not break
the E6(6) symmetry, however it only survives as a global symmetry in five dimensions.
As discussed in section 2.3.2, this five-dimensional theory can also be reached by a
toroidal reduction of eleven-dimensional supergravity on a six-torus. In contrast to
the toroidal compactification the trivial solution of the ExFT leads directly to the
manifestly E6(6) invariant form, without requiring any further changes.
The canonical formulation and analysis of this five-dimensional theory are carried out
in chapter 5.

It is moreover possible to partially solve the section condition for the NSNS sector
to arrive at DFT coupled to additional RR-fields, as has been shown in [169] for the
E4(4) theory [141]. Due to the embedding of En−1(n−1) ⊂ En(n) ∀n one would suspect
that it should also be possible to reach any of the Em(m) ExFTs from any En(n) ExFT
if m < n. This question has been examined in [170] for some cases, but not all as-
pects about these reductions are understood and questions about some aspects of the
reductions, in particular concerning the tensor hierarchy and the topological terms,
remain.

3.5.7 Applications of exceptional field theory

Since its development, almost a decade ago, exceptional field theory has grown into
a very active field with a diverse range of topics and applications and here we want
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to mention some examples of these applications — this list is however far from be-
ing comprehensive. An overview of the applications of ExFT can also be found in [103].

Perhaps we should judge the main “application” of ExFT to be the fact that its En(n)

invariant action in particular encodes the dynamics of eleven-dimensional supergrav-
ity, as was discussed in section 3.5.6. A further immediate application is that the
GL(5)×SL(2) ⊂ E6(6) solution of the section condition leads to an off-shell action for
the type IIB supergravity [25, 36].

Many applications of ExFT are concerned with the construction of consistent re-
ductions, gaugings and the generalised Scherk-Schwarz reduction procedure. Scherk-
Schwarz reductions [65] are a generalisation of the toroidal compactification procedure
to more general manifolds via a factorisation ansatz for the coordinate dependence.
The generalised Scherk-Schwarz reduction procedure has been developed in [155, 171–
179] and similarly assumes a (twisted) factorisation of the coordinate dependence for
the fields of ExFT, e.g. MMN (x, Y ) = UA

M (Y )UB
N (Y ) M̃AB(x) for the scalar fields,

where UA
M (Y ) ∈ E6(6) is the twist matrix, which has to satisfy certain (Scherk-

Schwarz) consistency conditions. Using a generalised Scherk-Schwarz reduction, the
ExFT can be reduced on a twisted torus to arrive at the five-dimensional SO(6) gauged
maximal supergravity theory [180, 181], which was first constructed in [182]. More-
over one can use this to prove the consistency of the equivalent reduction of the type
IIB supergravity on an AdS5×S5 manifold, which leads to the same gauged super-
gravity [180, 181]. In this sense the generalised Scherk-Schwarz reductions of ExFT
can be used to make statements about reductions of supergravity. The twisted tori
generalised Scherk-Schwarz reductions of the ExFT can also lead to the SO(p, q) and
CSO(p, q, r) gauged maximal supergravity theories that can otherwise be constructed
from the type IIB theory by reduction on warped hyperboloids [183, 184]. One can
furthermore identify the Kaluza-Klein mass spectra of the reduced theory [179]. Re-
ductions with less than maximal supersymmetry have also been constructed [185–189].

Another topic concerns the study of solutions that are “non-geometric”, in the sense
that one cannot define a metric globally, instead one has to make use of duality trans-
formations to connect local patches of coordinates. These geometries are hence not
solutions of ordinary supergravity theories, which are not duality-covariant. In the
case of U-folds and T-folds the transformations are the U- and T-duality transforma-
tions [190, 191] and similarly one can study O-folds (or generalised orbifolds) where
the extended coordinates are related by transformations Y M ∼ ZM

N Y N where ZM
N

is an element of a discrete subgroup of En(n) [192]. Furthermore reductions on non-
geometric spaces could be relevant to finding de Sitter solutions of supergravity [193].

One can moreover take advantage of the duality covariance of ExFT (or DFT) to con-
struct duality invariant amplitudes [33–35] and α′ (string length scale) corrections,
see e.g. [194–197]. An exceptional sigma-model, which can be reduced to the doubled
sigma model, has also been constructed [198].

Another direction of research is the formalisation of the structure of ExFT and tensor
hierarchy in terms of L∞ algebras [199–202].
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3.5.8 The explicit non-integral form of the topological term Ltop

This section is based on the publication [41]. In section 3.5.3 the complete (bosonic)
Lagrangian of the E6(6) ExFT was presented, as published in [3, 25]. The terms of the
Lagrangian (3.98) were stated explicitly, with the exception of the topological term
Ltop, which is instead given as Stop (3.105), which is a manifestly invariant (6 + 27)-
dimensional integral over an exact six-form. Reference [25] furthermore states the
general variation δLtop as (3.133).

δLtop = κ ϵµνρστ (
3

4
dMNK FM

µν FN
ρσ δA

K
τ + 5 dMNK dKQP∂NHµνρMAP

σ δA
Q
τ (3.133)

+ 5 dMNK ∂NHµνρMδBστK)

From the point of view of the canonical analysis of the theory the general variation
(3.133) would be sufficient for the calculation of the contributions to the canonical
momenta of the one- and two-forms. Where the integral form of the topological term
(3.105) is problematic is the Legendre transformation of the Lagrangian, because the
topological term mixes with the Legendre transformation terms. Hence we need to
construct the explicit non-integral form of the topological Lagrangian Ltop, which is
not manifestly gauge invariant, in order to carry out the Legendre transformation.

In the previous sections we have seen that the structure of the E6(6) ExFT is often
analogous to that of gauged five-dimensional maximal supergravity [84]. The analo-
gies between these theories and in particular the similarity of the topological terms
have also been pointed out in [25]. We can use this similarity to find the explicit form
of the topological term Ltop. First we construct an ansatz, with general coefficients for
each term, based on the topological term of gauged supergravity, cf. equation (3.11)
of [84], which is known explicitly, but depends on the “structure constants” (2.29)
of the gauging. Then we fix the coefficients of the ansatz by comparing the general
variation of the ansatz to the variation δLtop given in (3.133).

In section 2.3.4 we have seen that the “structure constants” XMN
P , which appear

in the topological term of gauged supergravity can be split into a symmetric and an
antisymmetric part (3.134) (cf. equation (2.29)).

XMN
P = X(MN)

P +X[MN ]
P (3.134)

In order to write down a suitable ansatz for the ExFT topological term these XMN
P

have to be replaced by objects from the ExFT itself. The split of (3.134) into a sym-
metric and an antisymmetric part is analogous to the relation (3.82) of the Dorfman
bracket of ExFT. Moreover the covariant one-form field strength of gauged super-
gravity (2.33) can be compared to the analogous expression (3.90) in ExFT. We can
compare further structures, but these comparisons all point to the following identi-
fications. The antisymmetric part of the structure constants should be analogous to
the E-bracket X[MN ]

K AM
µ AN

ν ∼ [Aµ, Aν ]
K
E and the projector ZKL ∼ dKLM ∂M can

be seen as being analogous to the symmetric part. Because general coefficients are
used in the ansatz the precise relations between these objects is irrelevant. These
identifications can now be inserted in the topological term of gauged supergravity,
which is given in (3.11) of [84], to yield the desired ansatz.

Next we compute the general variation of this ansatz and compare it to the variation
(3.133) to fix all coefficients and arrive at the topological term of the E6(6) ExFT.
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What we find is that the topological term given by (3.135) has the same general
variation δLtop as given by (3.133).

Ltop =− 5κ

2
ϵµνρστ dMNR ∂RBµνM (3.135)

×
[
3DρBστN − 6dNKLAK

ρ

(
∂σA

L
τ − 1

3
[Aσ, Aτ ]

L
E

)]
+ κ ϵµνρστdMNP AN

µ ∂νA
M
ρ ∂σA

P
τ

− 3κ

4
ϵµνρστdMNP AN

µ [Aν , Aρ]
M
E ∂σA

P
τ

+
3κ

20
ϵµνρστdMNP AN

µ [Aν , Aρ]
M
E [Aσ, Aτ ]

P
E

The topological term (3.135) can be rewritten in the slightly more covariant form
(3.136) using the definition of the covariant two-form field strength (3.95). We will
however only make use of the more explicit form (3.135) in the remainder of this
thesis.

Ltop =− 5κ

2
ϵµνρστ dMNR ∂RBµνM (3.136)

×
[
HρστN − 3dNKLAK

ρ

(
∂σA

L
τ − 1

3
[Aσ, Aτ ]

L
E

)]
+ κ ϵµνρστdMNP AN

µ ∂νA
M
ρ ∂σA

P
τ

− 3κ

4
ϵµνρστdMNP AN

µ [Aν , Aρ]
M
E ∂σA

P
τ

+
3κ

20
ϵµνρστdMNP AN

µ [Aν , Aρ]
M
E [Aσ, Aτ ]

P
E
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Chapter 4

Constrained Hamiltonian systems
and canonical case studies

In consideration of the importance of the Hamiltonian formalism to the content of this
thesis, we review the foundational theory of the Hamiltonian formalism in section 4.1.
We use the terms Hamiltonian formalism and canonical formalism interchangeably.1

A complete introduction to the Hamiltonian formalism is far beyond the scope of this
brief introductory section and we review only the basic definitions and statements
that are needed in the following chapters — necessarily omitting many details. Some
of the standard references that give a very detailed account of the intricacies of the
canonical formalism are [27, 28].
Following the general discussion of the Hamiltonian formalism in section 4.1 we in-
troduce the Arnowitt-Deser-Misner (ADM) [203] formulation of general relativity in
section 4.2, focusing on the space-time decomposition of the degrees of freedom. In
section 4.3 the canonical formulation of the SL(n)/SO(n) scalar coset sigma model is
investigated, with a focus on the canonical treatment of the coset constraints. The
insights that we derive from this model theory are valuable when dealing with the
much more complicated E6(6)/USp(8) coset of the scalar fields of E6(6) ExFT. In sec-
tion 4.4 we study the canonical formulation of a certain model theory of topological
two-forms in 5+27 dimensions, based on the topological kinetic term of the two-forms
in the E6(6) ExFT. This topological toy model illustrates some of the main challenges
concerning the second class nature of the two-form constraints.

Section 4.1 is based on parts of the publication [40], which reviews some of the contents
of [27, 28]. Section 4.2 is based on parts of the publication [40], which reviews [203].
Section 4.3 is based on parts of the publication [40] and section 4.4 is based on parts
of the publication [41].

4.1 Foundational theory of the Hamiltonian formalism

The study of constrained Hamiltonian systems encompasses the study of gauge (field)
theories. Gauge theories are ubiquitous in physics, because the introduction of auxil-
iary frames of reference is able to simplify the description of the true physical degrees
of freedom by increasing the overall symmetry. The presence of these auxiliary ref-
erence frames entails the freedom to make changes to the reference frames, which

1Sometimes we may distinguish between the canonical formulation and the canonical analysis,
though these terms are not always distinguished in other works. We consider the canonical formula-
tion to be the study of the canonical momenta, the construction of the canonical Hamiltonian and the
construction of the complete and consistent set of canonical constraints and consider the canonical
analysis to be the study of the transformations generated by the canonical constraints, the algebra
of the canonical constraints and in general the properties of the constraints and the Hamiltonian.
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in turn leads to transformations of the variables (fields) of the theory that we call
gauge transformations. Only the true physical degrees of freedom, the observables,
are invariant under these gauge transformations. The transformations of the auxiliary
variables can moreover be time dependent and thus, for a gauge theory, a given set
of initial conditions does not lead to a unique time evolution. This arbitrariness in
the time evolution implies that not all of the variables, that are used to describe the
theory, are independent — this is expected since we know that the auxiliary reference
frames are not truly physically meaningful. The study of the constraints that relate
the variables of the theory and the transformations that they generate are a central
part of the Hamiltonian formalism.
The Hamiltonian formalism may be seen as being more fundamental than the La-
grangian formalism because it is able to find the most general time evolution where
the full gauge symmetry is manifest. Furthermore the Hamiltonian formalism pro-
vides an algorithmic framework with which we can systematically identify the gauge
symmetries, constraints, observables, etc. The Lagrangian formalism on the other
hand also has its advantages, e.g. when wanting to write down a theory that obeys
the principle of relativity. And it is normally the case that one starts the Hamiltonian
formalism coming from the Lagrangian description of the theory and this is were we
begin too.

In the Lagrangian formalism a theory is written as an action S and the principle of
stationary action δS = 0 is used to determine the equations of motion and solutions of
the theory. The action can be written as a functional (4.1), by taking a d-dimensional
space-time integral of the Lagrangian density L(Qn, Q̇n), which in turn depends on a
number of fields Qn(x) (n = 1, . . . , N) and their time derivatives Q̇n(x).

S =

∫
ddx L(Qn, Q̇n) (4.1)

We now introduce the canonical momenta Πn(Q) as defined by the functional deriva-
tive of the Lagrangian density to the time derivatives of the fields (4.2). Throughout
this thesis we use the notation that a capital Π(Q) — with appropriate indices — sig-
nifies the canonical momentum conjugate to the field Q. Sometimes the specification
of the field is omitted if it is clear which field is meant.

Πn(Q) :=
δL
δQ̇n

(4.2)

The canonical momenta are generally treated on an equal footing to the fields in the
Hamiltonian formalism. Therefore we define the Hamiltonian density H(Qn,Πn(Q))
by the Legendre transformation of the Lagrangian density (4.3) that eliminates the
time derivatives of the fields as variables and replaces them with the canonical mo-
menta. We can likewise rewrite the action as (4.4).2

H(Qn,Πn(Q)) := Q̇nΠn(Q)− L(Qn, Q̇n) (4.3)

S =

∫
ddx

(
Q̇nΠn(Q)−H(Qn,Πn(Q))

)
(4.4)

2The terms Lagrangian density and Lagrangian, as well as Hamiltonian density and Hamiltonian
are used interchangeably in this thesis — in the true Lagrangian or Hamiltonian the dependence on
the spatial coordinates is integrated out.
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The Hamiltonian H(Qn,Πn(Q)) only depends on the canonical coordinates (also called
Darboux coordinates) (Qn,Πn(Q)) and we call the space that they parametrise phase
space. As explained above, in a gauge theory not all of the 2N coordinates of phase
space are physically meaningful and there are constraints that relate some of the
canonical coordinates. In particular we find that some of the canonical momenta
yield equations of the form Hm(Qn,Πn(Q)) = 0 (m = 1, . . . ,M) that only depend on
the canonical coordinates and not on their time derivatives and we call these primary
constraints. We ought not to confuse the constraints Hm with the canonical Hamil-
tonian H, but we will see that they are indeed closely related — this is particularly
true for the case of generally covariant theories, such as general relativity and we will
see that in this case the Hamiltonian consists entirely of constraints.

Since the primary constraints follow directly from the definition of the canonical mo-
menta, we have not used the equations of motion to find them and they cannot
place any restriction on the dynamics. The simplest primary constraint is a vanishing
canonical momentum Hm(Qn,Πn(Q)) = Πm(Q) = 0. This type of constraint is quite
common and appears when there are no time derivatives on a field in the Lagrangian.
We refer to constraints of this type as shift type primary constraints because they
generate shift transformations on the conjugate field variables. Similarly when there
are fields whose kinetic term is linear in time derivatives, we find constraints that
directly relate field and momentum Πm(Q) ∼ Qm (cf. Dirac spinors) and therefore
also generate shift transformations of the field. This will become clear once we have
seen how gauge transformations are generated by the constraints.

Because of the constraints, the Hamiltonian is only well defined on the hypersurface in
phase space that is defined by the set of primary constraints Hm(Qn,Πn(Q)) = 0 ∀m.
In particular this implies that we can add a general linear combination of the primary
constraints to the Hamiltonian because the linear combination is by definition always
vanishing on the primary constraint surface. This way we can extend the Hamiltonian
arbitrarily away from the primary constraint surface as the coefficient functions are
arbitrary and we call this function (4.5) the total Hamiltonian HT .

HT := H+ um Hm (4.5)

Another central object in the Hamiltonian formalism is the Poisson bracket, which is
closely related to the symplectic structure of phase space. The Poisson bracket is a
binary operation and using the coordinates of phase space we can define it as (4.6),
where F,G are phase space functions.3

{F,G} :=
δF

δQn

δG

δΠn
− δG

δQn

δF

δΠn
(4.6)

One can easily verify that the Poisson bracket is antisymmetric in its arguments, bi-
linear, obeys the Leibniz rule and satisfies the Jacobi identity. Regarding the canoni-
cal coordinates the only non-vanishing Poisson bracket relations are the fundamental
(equal time) Poisson brackets (4.7).

{Qn(x),Πñ(x̃)} = δnñ δ(d−1)(x− x̃) (4.7)
3There is a hidden space-time integral over the coordinate dependence of the derivatives in the

definition since we are working with functional derivatives.
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The time evolution of a phase space function F can be written as (4.8). At this point
this is the most general time evolution we can write down. Note that we can clearly
see the arbitrariness in the time evolution in (4.8).

Ḟ = {F,H}+ um {F,Hm} (4.8)

For the formalism to be consistent the primary constraints need to be constant in
time and the equations (4.9) need to hold.

Ḣm = {Hm,H}+ um̃ {Hm,Hm̃} !
= 0 (4.9)

If a consistency condition (4.9) is independent of the arbitrary parameters um and
independent of the primary constraints we call it a secondary constraint Hk. The
secondary constraints also need to be conserved and may yield further tertiary con-
straints. We iterate this procedure until it terminates — for reasonable physical
theories termination is guaranteed.

Because we have made use of the equations of motion (4.8) to find the secondary
constraints they can restrict the dynamics of the theory. This is the only difference
between the primary and secondary constraints and we will not need to distinguish
them further. From now on we will simply refer to the complete set of constraints as
Hj , (j = 1, . . . , J).

In this thesis we make frequent use of the concept of smeared or integrated con-
straints, in order to avoid writing derivatives of Dirac delta distributions. The smeared
constraints HConstr.[λ] are defined as the spatial integral of the constraints Hj fully
contracted with an appropriate tensor of test functions λj(x) (4.10).

HConstr.[λ] :=

∫
d(d−1)x λj Hj (4.10)

Another useful notational tool is the weak equality sign “ ≈ ”, which indicates that
the equality holds on the phase space hypersurface defined by the complete set of
constraints Hj = 0 ∀j. The equality that holds throughout phase space is by con-
trast also called strong equality. One should note that just because a function is
weakly zero does not imply that Poisson brackets of this function are vanishing too
(cf. det(M)− 1 ≈ 0 in section 4.3).

Having gone through the consistency algorithm with the consistency condition (4.9)
we should have a complete set of canonical constraints. The um dependent equations
that we have so far ignored pose a set of differential equations for the — a priori
— arbitrary phase space coefficients um. The general solution of these differential
equations can be written in terms of the linearly independent homogeneous solutions
V m
a (a = 1, . . . , A) and a particular solution Um (4.11). The remaining va coefficients

of the homogeneous solution are the truly arbitrary part of um. The time evolution
Ḟ ≈ {F,HT } generated by the total Hamiltonian is equivalent to the Lagrangian time
evolution.

um = Um + va V m
a (4.11)

While the distinction between primary and other constraints is not relevant after the
construction of the complete set of constraints, there is an important property of phase
space functions that we call the class. A phase space function F — this includes the
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constraints — is called a first class function if it Poisson-commutes weakly with every
canonical constraint (4.12). Conversely if there exists a constraint with which the
function does not weakly Poisson-commute then we call it a second class function
(4.13). Clearly if all the constraints are first class, the algebra that the constraints
form under the Poisson bracket closes.

F first class ⇔ ∀j : {F,Hj} ≈ 0 (4.12)
F second class ⇔ ∃j : {F,Hj} ̸≈ 0 (4.13)

First class constraints generally have the interpretation of generators of gauge trans-
formations. For primary constraints this is guaranteed, for first class secondary con-
straints the Dirac conjecture states that this should be true for physical theories.4

The infinitesimal gauge transformation δF of a phase space function F is generated
by the right action of the Poisson bracket with the constraints Ha := Hm V m

a and the
arbitrary gauge parameters va (4.14).

δF = {F,Ha} va (4.14)

The total Hamiltonian only contains the primary first class constraints, but we can
improve on this by adding the complete set of first class constraints H(fc)

a and thus
define the extended Hamiltonian (4.15).

HE := HT + waH(fc)
a (4.15)

The time evolution generated by the extended Hamiltonian HE (4.16) is the most
general time evolution we can write down since it contains the full gauge freedom,
in this sense it transcends the Lagrangian formalism. By definition observables are
invariant under gauge transformations and hence their extended time evolution is
equivalent to the canonical and total time evolution HE ⇔ HT ⇔ H.

Ḟ ≈ {F,HE}, Hj ≈ 0 (4.16)

Generally covariant theories — this includes in particular general relativity and su-
pergravity — have Hamiltonians that vanish weakly H ≈ 0. The interpretation of this
is that there are only gauge transformations and time evolution itself is just a gauge
transformation generated by the Hamilton constraint.

If second class constraints are present they have to be handled separately. We can
think of second class constraints in terms of first class constraints that have been gauge
fixed, meaning that some condition has been imposed to remove the arbitrariness and
hence the do not generate gauge transformation. Conversely we can gauge fix first
class constraints and turn them into second class constraints.

Taking the set of second class constraints to be H(sc)
a we can define the matrix given

by their Poisson bracket relations amongst each other Mab := {H(sc)
a ,H(sc)

b }. The
determinant of this matrix is non-zero if the constraints are indeed all second class
and we can invert it by requiring MabM

bc = δca for an appropriate identity on the
4Counterexamples to the Dirac conjecture exist, as discussed in [28], however they tend to be

rather special theories e.g. L = 1
2
ey ẋ2.
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constraints. The Dirac bracket is then defined as (4.17).

{F,G}DB := {F,G} − {F,H(sc)
a }Mab {H(sc)

b , G} (4.17)

The Dirac bracket is antisymmetric, obeys the Leibniz rule and the Jacobi identity, but
it has further properties that make it very useful. If we take the Dirac bracket of any
second class constraint with an arbitrary function we find that it vanishes by construc-
tion {H(sc)

a , F}DB = 0. The Dirac bracket of any first class constraint with an arbitrary
function weakly reduces to the same Poisson bracket {H(fc)

a , F}DB ≈ {H(fc)
a , F} as

can easily be seen from the definition. It follows that the algebra that the canonical
constraints form under the Dirac bracket necessarily closes.

To determine the number of physical degrees of freedom of a theory — or equivalently
the number of independent canonical coordinates — we only need to know the number
of first class and second class constraints. A first class constraint is equivalent to two
second class constraints because we can think of it as a gauge fixing condition and a
second class constraint. We count the number of independent canonical coordinates
according to (4.18) [28]. The number of physical degrees of freedom is half of the
number of independent canonical coordinates since we are not counting the momenta
in this case.(Number of indep.

canonical coord.

)
=
(

Number of
canonical coord.

)
− 2 ·

(
Number of

1st cl. constr.

)
−
( Number of
2nd cl. constr.

)
(4.18)

4.2 Arnowitt-Deser-Misner (ADM) formulation of gen-
eral relativity

In this section we take a first look at the canonical Arnowitt-Deser-Misner (ADM) for-
mulation of general relativity, which was first published in 1959 [203, 204]. The ADM
formulation of general relativity takes a globally hyperbolic d-dimensional Lorentzian
manifold Md and foliates (or slices) the manifold into spatial hypersurfaces Σt la-
belled by a time coordinate Md = Σt × R. The condition of global hyperbolicity in
particular guarantees that there are no closed causal curves and allows for this foli-
ation to exist. In this section we focus on the structure of the ADM decomposition
of the fields under this foliation of space-time, because this is needed in the following
chapters. We omit some topics in this section, in particular the detailed discussion of
the canonical momenta, the Hamiltonian, the constraints and their gauge symmetries
and constraint algebra, whose discussion can be found in chapter 5, where we discuss
the five-dimensional case, which is in substance identical to the discussion in a general
dimensions. The topic is also covered in detail in references [13, 54, 55, 203–205]. The
letters for the different indices used in this section are listed in table 4.1.

Type of index Dimension Letters used
Curved (external) d µ, ν, ρ, σ, τ, . . .

Curved (time) 1 t

Curved (external spatial) d− 1 k, l,m, n, o, p, q, r, s, u, . . . , x, y, z

Flat (external) d α, β, γ, δ, . . .

Flat (time) 1 0
Flat (external spatial) d− 1 a, b, c, d, e, f, g, h,. . .

Table 4.1: Conventions for the indices used in this section.
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Taking xµ to be the coordinates of a d-dimensional manifold Md we can take the first
coordinate xt to be the curved time coordinate and the remaining xm to describe the
spatial hypersurfaces.

Furthermore we want to write the theory in the vielbein formalism (which is some-
times also called the Cartan-, local frame- or tetrad formalism) where instead of using
the metric as the dynamical field we use the frame field (or vielbein) Eµ

α. The viel-
bein formalism has some advantages over the metric formalism, namely that it makes
the Lorentz symmetry manifest — which allows us to include this symmetry in the
canonical analysis and that it is required if we ever want to extend the results and
add Fermionic fields to the theory.

Using the Minkowski metric ηαβ (with signature −++ · · ·+) we can relate the vielbein
to the metric via equation (4.19).

Gµν = Eµ
αEν

βηαβ (4.19)

The inverse vielbein can be defined by the following equivalent identities.

Eµ
αEα

ν = δνµ (4.20)

Eβ
µEµ

α = δαβ (4.21)

Now we want to carry out the ADM decomposition of the space-time manifold and
hence we have to introduce new degrees of freedom that are better adapted to this
foliation of the manifold. On the spatial hypersurfaces we use a spatial vielbein em

a

or equivalently a spatial metric gmn := em
aen

bδab. How different hypersurfaces in the
foliation relate to each other is parametrised by the lapse function N and by the shift
vector Na — which will appear as Lagrange parameters of the time evolution and
spatial diffeomorphisms in the Hamiltonian respectively. We define these new fields
via the parametrisation of the vielbein as in equation (4.22).5

Eµ
α =:

(
N Na

0 em
a

)
(4.22)

Using the definition of the inverse vielbein (4.20) we find that it is parametrised by
(4.23), where we defined Nm := Na ea

m. We raise and lower curved spatial indices
with the spatial metric gmn. Because we raise and lower flat spatial indices with the
identity δab the placement of these indices is irrelevant.

Eα
µ =

(
N−1 −N−1Nm

0 ea
m

)
(4.23)

Using the relation (4.19) we can determine the parametrisation of the d-dimensional
metric in terms of the new objects.

Gtt = NaNa −N2 (4.24)
Gtn = Nn = Naen

a (4.25)

Gmn = gmn = em
aen

bδab (4.26)

5A part of the Lorentz symmetry has to be gauge fixed in order for this parametrisation to be of
triangular form.
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Similarly we can find the parametrisation of the inverse metric using Gµν G
νρ = δρµ.

Looking for example at equation (4.29) we can see that the parametrisation of the
inverse metric is not componentwise the inverse of the metric.

Gtt = −N−2 (4.27)

Gtn = N−2Nn (4.28)

Gmn = gmn −N−2NmNn (4.29)

The determinant E of the d-dimensional vielbein decomposes according to (4.30) into
the product of the lapse function and the spatial vielbein determinant e.

E = N · e (4.30)

The determinant G of the d-dimensional metric is given by (4.31). This is moreover
important because it means we can express the vielbein determinant in terms of the
metric as E =

√
−G.

G = −E2 = −N2e2 (4.31)

When we are considering an action where further tensor fields, such as differential
forms, exist on the manifold we also have to decompose them according to their
space-time index structure. For example a one form Aµ becomes the fields At and
Am, a two form Bµν becomes Btn and Bmn etc. Scalar fields however remain un-
changed.

We continue the discussion of the ADM formulation of general relativity in chapter
5, where we discuss the canonical formulation and analysis of the ungauged maximal
E6(6) invariant five-dimensional supergravity.

4.3 Canonical SL(n)/SO(n) scalar coset sigma model

In this section we look at the canonical formulation and analysis of scalar coset sigma
models, taking the coset SL(n)/SO(n) as an example. The coset SL(n)/SO(n) is
a relatively simple model described only by a single coset constraint — this means
there is only one additional condition on a generic symmetric matrix of scalar fields
MMN to make it a coset representative. Nonetheless SL(n)/SO(n) will allow us
to see the general structures we would find in more complicated coset models (e.g.
E6(6)(R)/USp(8)). We will go through the full canonical formalism of this model and
in particular we will treat the coset constraint that is associated to SL(n)/SO(n) com-
pletely explicitly. In the end we will contrast this with the implicit treatment of the
coset constraints.

4.3.1 Explicit treatment of the coset constraints

In order to describe the SL(n)/SO(n) scalar coset model we take indices M,N =
1, ..., n and for simplicity only a time derivative in the scalar sigma model. We take
an a priori general symmetric matrix of scalar fields MMN = M(MN) but add to
its kinetic term in the Lagrangian a coset constraint term in order to make MMN a
SL(n)/SO(n) representative, as in equation (4.32). For this model we only need to
add the constraint c := det(M)− 1 with a Lagrange multiplier ϕ. The inverse field is
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defined by MMN MNK = δKM .

L(MMN , ϕ) = −1

2
ṀMNṀMN + c ϕ (4.32)

Since we only consider the time derivative we can immediately compute the canonical
momenta of the scalar field and of the Lagrange multiplier field.

ΠMN (M) = −2ṀMN (4.33)
Π(ϕ) = 0 (4.34)

By design we find the primary constraint (4.34), which will lead us to find the
secondary constraint c. Defining ΠMN (M) := −ΠRS(M)MRM MSN the canonical
Hamiltonian is given by equation (4.35).

H = +
1

8
ΠMN (M)ΠMN (M) + ϕ̇Π(ϕ)− c ϕ (4.35)

To check the consistency of the primary constraint we need to construct the total
Hamiltonian HT as defined by adding the primary constraint with a general parameter
to the canonical Hamiltonian HT := H+ uΠ(ϕ).

{Π(ϕ),HT }
!
= 0 (4.36)

Checking the consistency of the primary constraint with the condition (4.36) we find
the secondary constraint (4.37) as expected.

c = det(M)− 1 = 0 (4.37)

We now need to repeat this process to check that the total time evolution of the
secondary constraint vanishes, as is needed in order for the constraints to be consistent.

{c,HT }
!
= 0 (4.38)

In order to evaluate the condition (4.38) we need to use the fundamental Poisson
bracket given by equation (4.39). This is the fundamental Poisson bracket for a
generic symmetric Matrix and there is no coset projector term — this is due to the
fact that MMN is a coset representative only by virtue of the secondary constraint c,
which we are not allowed to use before evaluating all Poisson brackets and hence this
relation is the same for all cosets treated in this way. Furthermore we need to use the
equation (4.40) which follows from the fundamental Poisson bracket identity.

{MMN (x),ΠPQ(M)(y)} =
(
δPM δQN + δPN δQM

)
δ(x− y) (4.39)

{det(M),ΠMN (M)} = det(M)MMN (4.40)

We now find that the consistency condition (4.38) does indeed yield a tertiary con-
straint p given by equation (4.41).

det(M)MMN ΠMN (M) =: p = 0 (4.41)

The tertiary constraint p, implying the tracelessness of the sl(n) algebra element
MRN ΠNS(M), can be interpreted as a coset constraint on the momenta induced by
the consistency of the coset constraint of the fields det(M) = 1. The consistency of the
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tertiary constraint does not yield any new constraints and the consistency procedure
thus terminates.

4.3.2 Second class constraints and the Dirac bracket

We can now compute the gauge algebra of the canonical constraints under the Poisson
bracket. We find that the primary constraint Poisson-commutes with all other con-
straints, thus making it a first class constraint. The secondary and tertiary constraints
however do not commute and form a second class system of constraints as given by
equation (4.44). It is important to note here that the right hand side of equation
(4.44) cannot be rewritten in terms of the secondary constraint without a constant
term — as otherwise they would be first class constraints. The factor n originates
from the trace of an SL(n) identity MMN MMN = δMM = n.

{c, c} = 0 (4.42)
{p, p} = 0 (4.43)

{c, p} = n det(M)2 (4.44)

The fact that we have a system of second class constraints is equivalent to the fact
that the algebra of constraints does not close under the Poisson bracket. The way to
resolve this problem is to introduce the Dirac bracket {g, f}DB — where g and f are
arbitrary functions on phase space — as defined in equation (4.45) which improves
upon the Poisson bracket. Fortunately the equation (4.44) is a scalar equation and so
it is straightforward to define the Dirac bracket.

{f, g}DB := {f, g} − 1

n det(M)2
({f, p}{c, g} − {f, c}{p, g}) (4.45)

We find that all the constraints commute in the Dirac bracket and the algebra thus
indeed closes.

We already mentioned that we are not allowed to apply the canonical constraints
before evaluating all Poisson brackets and that hence the general result of equation
(4.40) is in fact not inconsistent with the secondary constraint det(M) = 1. The Dirac
bracket does not have this restriction and we are free to apply the constraints before
or after evaluating the Dirac bracket. Calculating the relation (4.40) with the Dirac
bracket instead we find equation (4.46), which is clearly consistent with the constraint
det(M) = 1.

{det(M),ΠMN (M)}DB = 0 (4.46)

4.3.3 Physical degrees of freedom and the implicit formalism

Now that we have a complete understanding of the algebra we can compute the num-
ber of physical degrees of freedom of this theory. The complete set of phase space
variables is {MMN , ΠKL(M), ϕ, Π(ϕ)}. We need to count the components of MMN

and ΠKL(M) as those of generic symmetric fields as the coset constraints are counted
separately. We count n(n+1)

2 + n(n+1)
2 +1+1 components for the phase space variables.

There are three constraints, however the primary constraint is a first class constraint
and thus has to be counted twice since it is associated to a gauge symmetry (the
shift symmetry of the Lagrange multiplier) and we have effectively 2 · 1 + 1 + 1 con-
straints. Subtracting the constraints from the phase space field components leaves
us with n2 + n − 2 independent phase space degrees of freedom or equivalently with
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n2

2 + n
2 − 1 independent physical degrees of freedom in field space. This concludes the

canonical analysis of the SL(n)/SO(n) coset model.

In this canonical analysis we have treated the coset constraint det(M) = 1 completely
explicitly and seen that its introduction led to further coset constraints on the canoni-
cal momenta. Furthermore we saw that this explicit treatment of the coset constraints
required us to introduce Dirac brackets. We call this treatment the explicit treatment
of the coset constraints. However it may be quite difficult to write down all the coset
constraints and go through these calculations for more complicated cosets, such as
E6(6)(R)/USp(8) and there is an implicit way of treating the coset constraints canon-
ically.

The implicit treatment of coset constraints consists of using the scalar sigma model
Lagrangian of a symmetric field, without adding the coset constraints explicitly, but
applying the coset constraints only after evaluating all Poisson brackets. In a sense this
implicit treatment resembles more closely how the constraints are normally treated
in the Lagrangian formalism. In our simplified model the Lagrangian would hence be
just the free theory L = −1

2ṀMNṀMN and there would be no canonical constraints.
The implicit formalism is only applicable if the coset constraints are not needed dur-
ing the canonical analysis, since we are not allowed to apply them inside the Poisson
brackets. The benefit of this formalism is that we can skip the entire analysis of the
coset constraints — which may be of considerable effort for complicated cosets and
may not provide much insight. Moreover we can still compute the right number of
physical degrees of freedom by looking at the dimension of the coset — in the case
of our model here it would be dim(SL(n)/SO(n)) = n2

2 + n
2 − 1, which confirms the

result from the explicit analysis.

An alternative canonical treatment of coset sigma models, using the vielbein formal-
ism, is described in reference [206].

4.4 Canonical topological 2-forms in 5 + 27 dimensions

In this section we investigate the canonical formulation of a model theory of certain
topological generalised two-forms BµνM on the (5 + 27)-dimensional extended gen-
eralised exceptional geometry (cf. section 3.5.2). We want to consider this model
theory, based on the topological kinetic term of the two-forms of the E6(6) ExFT, as a
preparation to the canonical analysis of the full ExFT. Due to its topological nature
and the use of the extended generalised geometry, this model theory has a somewhat
unusual canonical structure, which we seek to explore and better understand before
adding further complications.

Starting from the Lagrangian of the model — which we introduce below — we first
calculate the canonical momenta of the two-forms and the canonical Hamiltonian in
section 4.4.1. In section 4.4.2 we construct the complete set of canonical constraints.
Next we compute all canonical transformations and the full algebra of the constraints
in section 4.4.3. We thereby confirm that no propagating degrees of freedom exist in
this theory. Moreover we learn that the external diffeomorphisms are not canonically
generated in this model, because of the topological nature of the two-forms. In sec-
tion 4.4.4 we identify some obstacles, which appear for constraint algebras of a certain
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form in exceptional generalised geometry, related to the construction of Dirac brackets.

In this section we use the notation introduced for the Lagrangian formulation of the
E6(6) ExFT in section 3.5. We want to consider an action of the form (4.47) and
we denote the five external coordinates by xµ and the 27 internal coordinates by
Y M . As was discussed in section 3.5, the integral over the internal coordinates of the
exceptional generalised geometry in the action (4.47) is taken to be symbolic, because
we do not know how this integral should be carried out explicitly while the section
condition is being observed.

SB =

∫
d5x d27Y LB (4.47)

The Langrangian of the model we want to examine is given by (4.48), where ϱ is an
overall real constant and ϵµνρστ is the constant Levi-Civita symbol in five dimensions.

LB = −ϱ ϵµνρστ dMNR ∂RBµνM ∂ρBστN (4.48)

In the two-form kinetic term of the full ExFT the external derivative in (4.48) is
covariantised, however the issues that we want to discuss in this section are unrelated
to this covariantisation. Because we ignore this covariantisation term we do not see
the generalised diffeomorphisms as canonical transformations in this model theory.

HρστN := 3 ∂[ρBστ ]N (4.49)

There are several alternative ways of rewriting the Lagrangian and action of this
model. We can make use of the (naive) two-form field strength HM := dBM (4.49)
to rewrite (4.48) as either (4.50) or equivalently (4.51). We should note that this
Lagrangian is linear in the field strength HM and hence linear in the time derivative.
This linearity in the time derivative, combined with the dMNK ∂K projector that
appears in the Lagrangian, leads to the peculiar canonical structure that we will
describe in the following analysis.

LB =− ϱ

30
dMNR ∂RBM ∧HN (4.50)

=− ϱ

3
ϵµνρστ dMNR ∂RBµνM HρστN (4.51)

Moreover we can reformulate the action (4.47) equivalently as the boundary term
(4.52) in a (6 + 27)-dimensional geometry. Because the two-form field strength is
closed, i.e. dHM = 0, the rewriting (4.52) is equal to (4.53), which can be compared
to the two-form dependent term in the ExFT topological term (3.105).

SB = − ϱ

30

∫
d6x̃ d27Y d

(
dMNR ∂RBM ∧HN

)
(4.52)

= − ϱ

30

∫
d6x̃ d27Y dMNR ∂RHM ∧HN (4.53)

The external five-dimensional indices decompose in a (1 + 4)-dimensional space-time
split as µ = (t,m), where t denotes the (curved) time index and m = 1, . . . , 4 denotes
the (curved) spatial index. Decomposing the space-time indices of the two-form and
the Levi-Civita symbol we can write the Lagrangian as (4.55), which is the starting
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point of the canonical formalism.

LB =− ϱ ϵµνρστ dMNR ∂RBµνM ∂ρBστN (4.54)

=− ϱ ϵtnrsl dMNR ∂RBnrM ∂tBslN (4.55)

− 2ϱ ϵtnrsl dMNR ∂RBtnM ∂rBslN

+ 2ϱ ϵtnrsl dMNR ∂RBnrM ∂sBtlN

4.4.1 Canonical momenta and canonical Hamiltonian

The canonical momenta of the time component ΠtlN (B) and the spatial components
ΠslN (B) of the two-forms can be read off from the space-time split of the Lagrangian
(4.55) and are given explicitly by (4.56) and (4.57). Because the Lagrangian is linear
in the time derivative ∂t the canonical momenta do not contain any time derivatives
themselves, which means that each of the canonical momenta leads to a primary
constraint. We denote the primary constraints by HP1 and HP2 and they are defined
by (4.56) and (4.57).

(HP1)
lN := ΠtlN (B) = 0 (4.56)

(HP2)
slN := ΠslN (B) + 2ϱ ϵtmnsl dMNR ∂RBmnM = 0 (4.57)

The Legendre transformation of the Lagrangian (4.55) is given by (4.58). Because we
are summing over all of the spatial components of an antisymmetric object we need
to insert a factor of 1/2 in the transformation in order to avoid overcounting.

HB = ḂtlN · ΠtlN (B) +
1

2
ḂmnN ·ΠmnN (B)− LB (4.58)

= ḂtlN · (HP1)
lN +BtnM · (HS1)

nM (4.59)

Using the space-time split of the Lagrangian, the definition of the canonical momenta
and the primary constraints we can write the canonical Hamiltonian as (4.59). Here
we have furthermore introduced HS1, which are explicitly defined by (4.60) and will
turn out to be secondary constraints.

(HS1)
nM := −4ϱ ϵtnrsl dMNR ∂R∂rBslN (4.60)

We can use the field strength (4.49) to rewrite (4.60) as (4.61).

(HS1)
nM = −4ϱ

3
ϵtnrsl dMNR ∂RHrslN (4.61)

4.4.2 Constraints and consistency

The consistency of the primary constraints (4.56) and (4.57) has to be verified. The
consistency of constraints is equivalent to a vanishing time evolution with respect to
the total Hamiltonian HB-Total (4.62). The total Hamiltonian is defined as the canon-
ical Hamiltonian plus a general linear phase space sum over the primary constraints.

HB-Total := HB + (u1)lN · (HP1)
lN + (u2)slN · (HP2)

slN (4.62)

Next we need to define the fundamental equal time Poisson brackets. Using the
notation that X1 := (x1, Y1) denotes both the spatial external and internal coordinates
and writing X1 − X2 = (x1 − x2, Y1 − Y2) we can define the fundamental equal
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time Poisson brackets by (4.63) and (4.64), where δ(4+27)(X1 − X2) is the (4 + 27)-
dimensional Dirac delta distribution.

{BtlR(X1),Π
tnS(B)(X2)} = δnl δ

S
R δ(4+27)(X1 −X2) (4.63)

{BklR(X1),Π
mnS(B)(X2)} = (δmk δnl − δml δnk ) δ

S
R δ(4+27)(X1 −X2) (4.64)

It is computationally advantageous to first compute the algebra of the primary con-
straints before considering their consistency. We find that all primary constraints
Poisson-commute.

{(HP1)
kK , (HP1)

lL} = 0 (4.65)

{(HP1)
kK , (HP2)

mnM} = 0 (4.66)

{(HP2)
klK , (HP2)

mnM} = 0 (4.67)

This means that their time time evolution generated by the total Hamiltonian is equiv-
alent to the time evolution generated by the canonical Hamiltonian (4.59).

The consistency condition of the primary constraints HP1 is given by (4.68) and
confirms that the (HS1) (4.61) are indeed secondary constraints.

{(HP1)
kK ,HB-Total} = −(HS1)

nM = 0 (4.68)

It is convenient to define the smeared or integrated constraints HS1[Φ] by (4.69), with
ΦnM being the (test function) smearing parameters. This allows us to move derivatives
onto the parameters instead of writing derivatives of Dirac delta distributions.

HS1[Φ] :=

∫
d4x d27Y ΦnM · (HS1)

nM (4.69)

It is furthermore useful to first calculate the Poisson brackets of HS1[Φ] with the
primary constraints, before we go on to check the consistency of the remaining primary
constraints HP2. We find that HP1 Poisson-commutes with the HS1[Φ], whereas HP2
does not. Therefore HP2 and HS1 are second class constraints.

{(HP1)
mM ,HS1[Φ]} = 0 (4.70)

{(HP2)
mnM ,HS1[Φ]} = 8ϱ ϵtklmn dKLM ∂K∂lΦkL (4.71)

Using the explicit expression for the Poisson bracket (4.71) it is straightforward to
compute the consistency condition (4.72) of the primary constraints HP2. The con-
dition (4.72) implies the existence of the secondary constraints HS2, which are of the
same form as expression (4.71) but with BtkL replacing the smearing parameters.

{(HP2)
mnM ,HB-Total} =: (HS2)

mnM = 8ϱ ϵtklmn dKLM ∂K∂lBtkL = 0 (4.72)

Finally we have to verify the consistency of the secondary constraints, but no new
constraints arise and the consistency algorithm thus terminates. The coefficient func-
tions of the total Hamiltonian however should be vanishing u1 ≡ 0, u2 ≡ 0. The
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complete set of canonical constraints of the model is listed below.

(HP1)
lN = ΠtlN (B) (4.73)

(HP2)
slN = ΠslN (B) + 2ϱ ϵtmnsl dMNR ∂RBmnM (4.74)

(HS1)
nM = −4ϱ ϵtnrsl dKLM ∂K∂rBslL (4.75)

(HS2)
mnM = +8ϱ ϵtklmn dKLM ∂K∂lBtkL (4.76)

4.4.3 Canonical transformations, algebra and degrees of freedom

In the following we make use of the integrated versions of all constraints. In the
context of canonical transformations the smearing parameters are interpreted as the
parameters of the canonical (gauge) transformations. All non-vanishing transforma-
tions generated by the canonical constraints are listed below.

{BtnN ,HP1[χ1]} = 2 (χ1)nN (4.77)
{BmnN ,HP2[χ2]} = 2 (χ2)mnN (4.78)

{ΠmnN (B),HP2[χ2]} = +4ϱ ϵtmnsl dMNR ∂R(χ2)slM (4.79)

{ΠmnM (B),HS1[Φ1]} = +8ϱ ϵtlkmn dKLM ∂K∂k(Φ1)lL (4.80)

{ΠtnM (B),HS2[Φ2]} = +16ϱ ϵtnklm dKLM ∂K∂k(Φ2)lmL (4.81)

Because the field strengths of differential form fields are defined by the exterior deriva-
tive there are no time derivatives on the time components of the differential forms.
And if the Lagrangian is furthermore linear in the field strength, then all the primary
canonical constraints directly relate the field components to the canonical momenta.
This then leads to the generic shift transformations (4.77) and (4.78) generated by
the primary constraints. These general shift transformations in particular include
transformations where the gauge parameter is a derivative, e.g. (χ2)mnN =: ∂[mλn]N ,
which leads to the more familiar transformations δHP2[λ]BmnN given by (4.82).

δHP2[λ]BmnN = {BmnN ,HP2[λ]} = 2 ∂[mλn]N (4.82)

In the case of free Maxwell theory the general shift transformations of the one-form can
be made into the usual form by way of the parameters of the extended Hamiltonian
(see chapter 19 of reference [28]). As we will determine below, all of the constraints
in our model are second class and therefore the extended Hamiltonian agrees with
the already fully determined total Hamiltonian. It is hence unclear how a procedure
analogous to that of reference [28] would work in this model. It seems nonetheless
probable that a way of fully rearranging the shift transformations into the usual form
should exist (and that these transformations survive the introduction of the Dirac
bracket). Moreover it may be instructive to investigate the canonical formulation of
the three-dimensional Chern-Simons theory L = A ∧ F , whose canonical constraints
are structured in a similar way as those of our model theory, because it is also topo-
logical and linear in the field strength.

The action of this model can be written in terms of differential forms as the bound-
ary integral (4.52). We should therefore expect that the (external) diffeomorphisms
are a symmetry of this action — but canonically we do not find any constraints that
generate diffeomorphism transformations. The (external) diffeomorphisms are usually
generated by the secondary constraints that arise from the consistency requirement of
the primary constraints Πa(Na) = 0, which tell us that the canonical momenta of the
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shift vector are vanishing. In a purely topological theory the fields do not couple to
the space-time metric by definition and therefore we do not see any external diffeomor-
phism transformations in purely topological theories, including in this model. Even if
we couple this model to other fields, as in ExFT, we do not see any external diffeomor-
phism transformation as long as the only kinetic term is topological. By contrast the
internal generalised diffeomorphism symmetry appears canonically if we covariantise
the external derivative of the model with respect to the generalised diffeomorphisms,
as is discussed in chapter 6. The (non-)existence of Lagrangian symmetries in the
canonical formalism has also been discussed in [207].

Now that we have all the non-vanishing canonical transformations we can compute the
full algebra of the canonical constraints. The primary and the secondary constraints
Poisson-commute amongst each other and there are only two non-vanishing Poisson
brackets, which mix primary and secondary constraints. The relation (4.83) is what
we have already seen in equation (4.71), the other relation can be stated as (4.84).

{HP1[χ1],HS2[Φ2]} = +16ϱ ϵtklmn dKLM (χ1)kL ∂K∂l(Φ2)mnM (4.83)

{HP2[χ2],HS1[Φ1]} = +8ϱ ϵtklmn dKLM (χ2)mnM ∂K∂l(Φ1)kL (4.84)

All canonical constraints are involved in these two relations, which do not close into
the canonical constraints. Therefore all of the canonical constraints of this model are
second class functions.

# Fields Momenta Primary Secondary
108 BtnN ΠtnN (HP1)

nN (HS1)
nN

162 BmnN ΠmnN (HP2)
mnN (HS2)

mnN

Table 4.2: This table lists the number and names of the independent
components of all the fields, canonical momenta as well as of the pri-

mary and secondary constraints.

As is expected in a topological theory, there are no propagating degrees of freedom
and the number of physical degrees of freedom described by the Lagrangian (4.48)
is zero. In the canonical formalism this is because the total number of independent
components of all the second class constraints HP1, HP2, HS1 and HS2 exactly cancels
the number of independent phase space variables of the theory, as can be seen in table
4.2.

4.4.4 Dirac brackets in exceptional generalised geometry

Due to the existence of second class constraints the canonical analysis should proceed
with the construction of the Dirac bracket {., .}DB. Taking a, b ∈ {P1, P2, S1, S2} to
be symbolic indices that label the constraints we can define the matrix Mab by (4.85).

Mab(x1, x2, Y1, Y2) := {Ha(x1, Y1),Hb(x2, Y2)} (4.85)

The components of the matrix Mab are identical to the constraint algebra relations
above, but with the smearing parameters replaced by Dirac delta distributions. In-
dices that were contracted into the smearing parameters are now open, but we take
them to be included in the symbolic indices a, b too.
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Using (4.85) we can now try to define the Dirac bracket of this model by (4.86),
however there are several difficulties and potential problems with this definition.

{f, g}DB := {f, g} −
∑
a,b

∫
d4x1

∫
d4x2

∫
d27Y1

∫
d27Y2

·
(
{f,Ha(x1, Y1)}Mab(x1, x2, Y1, Y2) {Hb(x2, Y2), g}

)
(4.86)

The first difficulty concerns the definition of the inverse matrix Mab. Because the
components of Mab depend on Dirac delta distributions and have open indices its
inverse should be defined by a condition such as (4.87).∑

b

∫
d4x2

∫
d27Y2Mab(x1, x2, Y1, Y2)M

bc(x2, x3, Y2, Y3)

= δa
c δ(4+27)(x1 − x3, Y1 − Y3) (4.87)

Because of the derivatives in the constraint algebra relations (4.83) and (4.84), solving
equation (4.87) for the components of the inverse Mab requires us to find distributions
Ψ, which satisfy equations of the type (4.88), where mixed external and internal
derivatives of Ψ yield the (4 + 27)-dimensional Dirac delta distribution.

(. . . )mM ∂M∂mΨ(x1 − x3, Y1 − Y3) = δ(4+27)(x1 − x3, Y1 − Y3) (4.88)

Thus solving equations of the form of (4.87), to determine the inverse Mab, turns out
to be a rather difficult problem, because we need to find a primitive function of the
(4 + 27)-dimensional Dirac delta distribution. This problem arises in all constraint
algebras of a form that includes terms with mixed external and internal derivatives.
Because the E6(6) d-symbol and the Levi-Civita symbol are invertible one should be
able to solve (4.87) if such a distribution can be identified.

Moreover it is not obvious that this definition of the Dirac bracket is well defined and
that the internal integration can be carried out consistently, because the internal in-
tegrals in (4.86) and (4.87) have to be carried out while observing the section condition.

In principle it should be possible for us to avoid the introduction of a Dirac bracket
altogether by “unfixing” the gauge conditions that make the constraints of this model
second class functions [28, 208]. However the procedure of introducing a new set of
first class constraints, together with additional gauge fixing conditions, to replace the
second class constraints, is not unique and it is not immediately clear how one should
proceed with this model.

We should again point out that the structure of the canonical constraints in this model
is very similar to the canonical structure of the three-dimensional Chern-Simons the-
ory L = A ∧ F , which is also topological and linear in the field strength. It may thus
be possible to identify a solution to these problems in Chern-Simons theory. There is
of course no analogue to the generalised geometry in ordinary Chern-Simons theory,
although it may be possible to add an internal derivative to Chern-Simons theory with
a suitably symmetric symbol, which would make the theories even more similar.
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In reference [209] Dirac brackets have recently been used in the context of the canonical
formulation of exceptional world volume theories, with a definition somewhat similar
to (4.86), but in a very different set up.
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Chapter 5

Canonical E6(6)(R) invariant
five-dimensional (super-)gravity

In this chapter we investigate the canonical formulation and analysis of the bosonic
sector of the unique ungauged maximal five-dimensional supergravity theory that is
manifestly invariant under the global action of E6(6)(R). This chapter is based on and
closely follows the structure of parts of the publication [40].

As was discussed in section 2.3, the compactification of eleven-dimensional super-
gravity on an n-torus leads to a symmetry enhancement and the lower dimensional
theory gains a hidden global E6(6)(R) symmetry. The Lagrangian formulation of the
manifestly E6(6)(R) invariant five-dimensional supergravity theory was first described
in [74]. Equivalently one can reach the manifestly E6(6)(R) invariant theory directly
by choosing the trivial solution to the section condition of the E6(6) exceptional field
theory [25], which was discussed in section 3.5.

The five-dimensional manifestly E6(6)(R) invariant supergravity theory is an interest-
ing theory in its own right and we should expect there to be applications of the results
of this analysis that are unrelated to exceptional field theory. For the purpose of this
thesis however we are mainly interested in the five-dimensional theory as a stepping
stone towards the canonical analysis of the full E6(6) exceptional field theory.
In the canonical analysis of the five-dimensional supergravity the main computational
difficulties are the treatment of the Einstein-Hilbert term and the topological term
of the one-forms. The study of the (relatively simple) topological term of this model
gives crucial insights into the canonical treatment of topological terms of this form,
which will be very useful in the analysis of the exceptional field theory. Conceptually
one also has to pay attention to the treatment of the scalar coset model, which has
already been discussed in section 4.3 for the example of the SL(n)/SO(n) coset.
What makes this theory a good theory to consider in view of the E6(6) exceptional field
theory, is that much of the structure of these theories is indeed analogous. What is
missing in the five-dimensional theory is the generalised exceptional geometry, hence
also the generalised exceptional diffeomorphisms and the topological two-forms, which
were analysed separately in section 4.4.1

This chapter is structured as follows. In section 5.1 we review the Lagrangian formu-
lation [74] of the five-dimensional ungauged maximal E6(6)(R) invariant supergravity
theory. In section 5.2 we construct the canonical formulation of this theory and calcu-
late the canonical momenta, the full set of the canonical constraints and the canonical

1Alternatively one could also consider the canonical formulation of the gauged maximal five-
dimensional supergravity theory [84], which is in some ways even more similar to the E6(6) ExFT,
but it also just as complicated as the ExFT and therefore not much of a simplification.
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Hamiltonian. The canonical formulation is then analysed in section 5.3, where we
compute all gauge transformations, the complete gauge algebra formed by the canon-
ical constraints and rederive the number of physical degrees of freedom.

5.1 E6(6)(R) invariant five-dimensional (super-)gravity

In this section we review the Lagrangian formulation [74] of the bosonic sector of the
maximal ungauged supergravity in five dimensions, that is also manifestly E6(6)(R)
invariant, before we carry out its canonical formulation in the following sections.

We take the indices M,N = 1, . . . , 27 to be in the (anti-)fundamental representa-
tion of E6(6)(R). The curved five-dimensional indices µ, ν = t, 1, . . . , 5 decompose
in the space-time split as µ = (t,m) and the flat five-dimensional Lorentz indices
α, β = 0, . . . , 5 decompose in the space-time split as α = (0, a).

The bosonic field content of the theory is {Gµν , A
M
µ ,MMN} — equivalently we can

describe this on the ADM foliation of space-time as {N,Na, em
a, AM

t , AM
m ,MMN} [15,

74]. As described in section 4.2 the five-dimensional metric Gµν decomposes into the
lapse function N , the shift vector field Na and the spatial vielbein em

a. The gen-
eralised one form fields AM

µ are U(1)27 abelian vector gauge fields with one Lorentz
index and one fundamental E6(6)(R) index. The fields MMN are Lorentz scalars and
carry two symmetric fundamental E6(6)(R) indices.

We want the scalars to describe the E6(6)(R)/USp(8) coset model and hence they need
to be elements of this 42-dimensional coset [74]. The scalars transform covariantly
under the global action of E6(6)(R) and are invariant under the local action of USp(8).
We can interpret the scalar fields as an E6(6)(R) metric. If we wanted to add the
fermionic fields to our analysis it would be necessary to describe the scalar fields in
terms of the coset vielbein VAB

M with USp(8) indices A,B [74].

The symmetric scalar matrix MMN (M,N = 1, ..., 27) has 378 components, but since
it has to parametrise the 42-dimensional coset E6(6)(R)/USp(8) not all components of
MMN are independent and there is a large number of coset constraints. We have seen
in section 4.3 — for the much simpler coset SL(n)/SO(n) — how one can add the
coset constraints to the Lagrangian explicitly and then go through the analysis of their
second class system of constraints. In the explicit treatment of the E6(6)(R)/USp(8)
coset we would also need to write down explicitly all the coset constraints and add
them to the Lagrangian. They would then produce many canonical constraints whose
consistency conditions would produce further constraints on the canonical momenta
of MMN . These constraints would form systems of second class constraints and re-
quire the introduction of the Dirac bracket. Due to the much greater complexity
of the E6(6)(R)/USp(8) coset we want to employ the implicit treatment of the coset
constraints, which we also explained in section 4.3. We treat the scalar fields MMN

as an a priori generic symmetric matrix until all Poisson brackets have been fully
evaluated. Only at that point we can apply the coset constraints — since they should
still be thought of as canonical constraints we cannot apply them inside the Pois-
son brackets. The implicit formalism is sufficient for the calculations that we need to
carry out and we find that it leads to the correct gauge transformations and dynamics.
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Now that we know what the field content of the theory is we can write down the
action of the theory as given by the equation (5.1). The Lagrangian density can be
written as in equation (5.2). This Lagrangian was first published in 1980 [74]. The
Lagrangian can also be found by taking the Lagrangian of the E6(6)(R) ExFT and
then applying the trivial solution of the section condition ∂M = 0 [25].

S =

∫
d5x L5D (5.1)

L5D =+ E R5 +
1

24
E Gµν ∂µMMN ∂νM

MN

− 1

4
E MMN FM

µν FN
ρσ Gµρ Gνσ + κ5 ϵµνρστ dLMN AL

µ FM
νρ FN

στ (5.2)

The Lagrangian consists of the Einstein-Hilbert term in five dimensions, the scalar
coset sigma model of E6(6)(R)/USp(8), a U(1)27 Maxwell theory term of the gener-
alised one forms and a topological term. The fields are minimally coupled to the
metric. R5 = (R5)

µ
νµσ G

νσ is the Ricci scalar in five dimensions. The inverse scalar
fields MMN are defined by requiring MMPM

PN = δNM .

The AM
µ kinetic term is a Maxwell theory type term where the additional indices

of the E6(6)(R) representation are contracted by the scalar fields. The abelian field
strength is FM

µν := 2 ∂[µA
M
ν] .

2 Unlike in standard Maxwell theory the abelian gauge
group of the one forms is U(1)27 since they carry the additional anti-fundamental
representation 27 of E6(6)(R).

The topological term ∼ A∧F∧F is metric independent and second order in derivatives.
Its coefficient κ5 = +

√
10
24 (the sign is convention dependent) is determined by the

requirement of maximal supersymmetry in five dimensions.3 Furthermore this value
of κ5 guarantees E8(8)(R) invariance when reducing to three dimensions (cf. reference
[210] for the reduction from eleven dimensions), however for the following analysis we
do not need the precise value. We can relate the coefficient κ5 also to the coefficient
of the topological term of E6(6) ExFT (3.135) by κ5 =

1
4κ — the factor 1/4 originates

from the use of the abelian field strength in (5.2).

5.2 Canonical formulation: Hamiltonian and canonical
constraints

Following the description of the Lagrangian theory in section 5.1 we can now start to
investigate the canonical formulation of the theory. We begin by finding the canonical
momenta and then calculate the canonical Hamiltonian. This allows us to construct
the total Hamiltonian and identify the complete and consistent set of canonical con-
straints.

2The Bianchi identity ∂[µ FM
νρ] = 0 is not a canonical constraint however since it does not constrain

the canonical variables. The Bianchi identity follows directly from the commutativity of the partial
derivatives.

3Without the requirement of maximal supersymmetry other values of κ5 can be considered. In
reference [210] the ungauged minimal supergravity theory with the value κ5 = ± 1

3
√
3

is investigated
This theory does not have a scalar field and only has a single gauge field. Upon compactification to
three dimensions this theory yields a G2 symmetry
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5.2.1 Canonical momenta

Defining the coefficients of anholonomy Ωαβγ := 2E[α
µEβ]

ν ∂µEνγ we can write the
ADM decomposition of the Einstein-Hilbert term as in equation (5.3) [205].

ER5 = N e
(
R4 +Ω0(ab)Ω0(ab) − Ω0aaΩ0bb

)
(5.3)

In particular the Ω0bc components of the coefficients of anholonomy are the only
components that contain a time derivative — notably this derivative only acts on the
spatial vielbein. Explicitly we can write these components as (5.4).

Ω0bc = N−1 · [ebn(∂t −Nm∂m)enc − eb
menc∂mNn] (5.4)

Because the Lagrangian does not depend on the time derivatives of the lapse function,
the shift vector and the time component of the gauge field the following shift type
primary constraints of the form Π(X) = 0 have to exist.

Π(N) = 0 (5.5)
Πa(Na) = 0 (5.6)

ΠM (AM
t ) = 0 (5.7)

Moreover we find the following non-vanishing canonical momenta.

Πm
a(e) = + 2 e ebm

[
Ω0(ab) − δabΩ0cc

]
(5.8)

Πl
T (A) = +

e

N
gln MTN

[
FN
tn +NkFN

nk

]
+ 4κ5 ϵ

lmnrdMNT AM
m FN

nr (5.9)

ΠRS(M) = +
1

6

e

N

[
ṀQP MQRMPS +Nn ∂nM

RS
]

(5.10)

The Πab(e) and Π(e) are contractions of the spatial vielbein momentum with the
vielbein defined as follows.

Πab(e) := + em(aΠ
m

b)(e) (5.11)

Π(e) := + em
aΠm

a(e) (5.12)

In the general relativity literature (e.g. [13, 55, 203]) the ADM formalism is often
written in the metric formulation. To be able to compare to these sources we can
use equation (5.13) to translate the canonical momenta of the spatial vielbein to the
canonical momenta of the metric.

Πmn(g) =
1

2
e(ma Πn)a(e) (5.13)

The scalar momenta ΠRS(M) follow from the variation of the Lagrangian of the form
(5.14). We have to be careful to respect the symmetry of the scalar fields while
taking these derivatives, but for now we may take this, together with the fundamental
Poisson bracket of equation (5.15) as a definition — we will discuss this point in detail
in chapter 6 when we will go through the Legendre transformation of ExFT in great
detail.

δL5D =
1

2
ΠMN (M) δṀMN + . . . (5.14)

{MMN (x),ΠPQ(M)(y)} =
(
δPM δQN + δPN δQM

)
δ(4)(x− y) (5.15)
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Perhaps the most important fact we learn by analysing this theory concerns the canon-
ical momenta of the generalised one-forms (5.9). Πl

T (A) are perfectly fine canonical
momenta, however if we were to continue the canonical formulation with these mo-
menta we would find that the Hamiltonian takes a rather undesirable form and the
following canonical analysis is quite unappealing. It turns out that this is telling us
something important. The canonical momenta that the theory seems to want us to
use are the Πl

T (A) given by equation (5.16). We subtract the topological term contri-
bution from the generic canonical momenta Πl

T (A) and arrive at the P l
T (A) — which

consequentially appear as if the topological term does not exist. Writing the canonical
Hamiltonian in terms of the new variables gives a greatly simplified appearance and
also simplifies the gauge transformations a great deal.

P l
L(A) :=Πl

L(A)− 4κ5 ϵ
lmnrdMNL AM

m FN
nr (5.16)

=
e

N
gln MLN

[
FN
tn +NkFN

nk

]
(5.17)

Of course this redefinition does not actually remove the complication coming from
the topological term and in some sense it may just be moving it to another part of
the analysis. When we are working with P l

L(A) we are no longer working with the
actual canonical momenta and so the Poisson bracket structure is affected since this
redefinition is in fact not a canonical transformation. The Poisson bracket of the
new momenta with themselves is no longer vanishing {P l

L(A), P k
K(A)} ≠ 0 since the

topological contribution, which we subtracted, depends on the one-forms. We can
explicitly compute this Poisson bracket and we find that it is given by the rather
uninspiring expression of equation (5.18). Here the upper letter at the derivative
operator indicates the coordinate along which the derivative acts.

{P l
L(A)(x), P

k
K(A)(y)} =+ 8κ5 ϵklrs dLKM ∂y

rA
M
s (y) δ(x− y)

+ 8κ5 ϵklrs dLKM AM
r (y) ∂x

s δ(x− y)

+ 8κ5 ϵklrs dLKM ∂x
rA

M
s (x) δ(x− y)

+ 8κ5 ϵklrs dLKM AM
r (x) ∂x

s δ(x− y) (5.18)

In the following analysis — instead of using this equation, although it is completely
correct — we carry out the calculations in a sort of exact perturbation approach in
orders of the coefficient of the topological term κ5. First we compute the result for
κ5 = 0 and then we improve on it by calculating the terms linear in κ5. This proves
to be a good way to manage this complication.

Even though P l
L(A) introduces this new difficulty it seems that the greatly simplified

Hamiltonian is worth this trade off. Moreover we find in section 5.3.2 that the new
momenta have rather nice transformation properties, which we may also take as a hint
from the theory that these are the best variables to use in the canonical formulation.

5.2.2 Canonical Hamiltonian

Now that we have all the canonical momenta we can proceed to calculate the canon-
ical Hamiltonian by writing the ADM decomposition of all terms in the Lagrangian
as described in section 4.2 and then carrying out the Legendre transformation as de-
scribed in section 4.1. In this section we will simply state the resulting Hamiltonian
and refer the reader to the detailed discussion regarding the Legendre transformation
of ExFT in chapter 6 which includes all the terms and intricacies that appear in the
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five-dimensional supergravity.

The resulting canonical Hamiltonian density is given by equation (5.19). The fields
whose conjugate canonical momenta we found to be primary constraints of shift type
are factored out in the Hamiltonian (5.19) since we expect their cofactors to become
secondary constraints. We will see that these secondary constraints will generate time
evolution, spatial diffeomorphisms and U(1)27 gauge transformations respectively.

H5D =+N ·
[
+

1

4e
Πab(e) Πab(e)−

1

12e
Π(e)2 − e R

+
3

2e
ΠMN (M) ΠRS(M) MMR MNS − e

24
gkl ∂kMMN ∂lM

MN

+
e

4
MMN grm gsn FM

rs FN
mn +

1

2e
glm MKL P l

L Pm
K

]
+Nn ·

[
+ 2 Πm

a(e) ∂[nem]a − ena ∂mΠm
a(e)

+
1

2
ΠMN (M) ∂nMMN

+ FM
nl P

l
M

]
+AM

t ·
[
− ∂lP

l
M − 3κ5 ϵ

lmnr dMNP FN
lm FP

nr

]
+ Ṅ ·Π(N) + Ṅa ·Πa(Na) + ȦM

t ·ΠM (At) (5.19)

The terms that appear in the ADM formulation of canonical general relativity are
simply the first and fourth line of this Hamiltonian. One should note here that the
two quadratic terms of the vielbein momenta are distinct since the are contracted
differently. R here simply denotes the four-dimensional spatial Ricci scalar.

Regarding the modified momenta P l
M (A) we find that there are just three terms in

the Hamiltonian that depend on these variables. Furthermore there is only a single
topological term that explicitly depends on the topological coefficient κ5 — in anal-
ogy to the topological term of the Lagrangian, albeit of the form F ∧ F . One can
contrast this simplified form of the Hamiltonian to the generic form by reinserting the
definition (5.16). This comparison will prove much more striking for the case of the
exceptional field theory, further strengthening the argument for using the canonical
momenta P l

M (A).

The last line of terms in the Hamiltonian (5.19) come from the Legendre transfor-
mations of the fields that do not appear with time derivatives in the Lagrangian and
hence they each contain as factors momenta that are primary constraints. Since we
do not want to restrict the canonical analysis to the primary constraint surface we
keep these terms intact — however we find that these terms do not have much effect
on the further analysis.

5.2.3 Primary constraints

In order to construct the full set of canonical constraints we have to find the complete
set of primary constraints first. When calculating the canonical momenta in section
5.2.1 we have already identified a number of shift type primary constraints that are
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immediately apparent. There are six further primary constraints that follow from
the fact that the canonical momenta of the spatial vielbein (5.8) only depend on
the symmetric part of the anholonomy. We call these the Lorentz constraints Lab,
written as in equation (5.23), with Lab = L[ab] since they are associated to the Lorentz
symmetry that is manifest because we are using the vielbein formalism. In total we
count 38 primary constraints and the complete set is as follows.

Π(N) = 0. (5.20)
Πa(Na) = 0 (5.21)

ΠM (AM
t ) = 0 (5.22)

Lab := em[aΠ
m

b](e) = 0 (5.23)

5.2.4 Fundamental Poisson brackets

Before we can construct the full set of canonical constraints we need to define the
fundamental Poisson bracket structure. The fundamental non-vanishing equal time
Poisson brackets are as follows.

{N(x),Π(N)(y)} = δ(4)(x− y) (5.24)

{Nn(x),Πm(Nk)(y)} = δnmδ(4)(x− y) (5.25)

{ena(x),Πm
b(e)(y)} = δmn δab δ

(4)(x− y) (5.26)

{AM
t (x),ΠN (AK

t )(y)} = δMN δ(4)(x− y) (5.27)

{AM
m (x),Πn

N (AK
k )(y)} ={AM

m (x), Pn
N (y)} = δMN δnmδ(4)(x− y) (5.28)

{MMN (x),ΠPQ(M)(y)} =
(
δPM δQN + δPN δQM

)
δ(4)(x− y) (5.29)

As expected the redefined one-form momentum (5.16) does not modify the Poisson
bracket (5.28) since the topological contribution only depends on the one-form itself.
We have to remember however that {P l

L(A), P
k
K(A)} ≠ 0.

It is worth repeating here that due to the use of the implicit formalism for the coset
constraints — as explained in section 4.3 — the relation (5.29) is simply the funda-
mental Poisson bracket of a generic scalar matrix and there is not coset projector term.

These fundamental Poisson brackets — together with the linearity, Leibniz and anti-
symmetry properties of the Poisson bracket — are all that is needed to evaluate any
Poisson bracket. There are however a number of very useful derived identities that
can be constructed from the fundamental brackets and we list some useful Poisson
bracket identities, that we need to use in the following computations, in the appendix
B.

5.2.5 Total Hamiltonian and secondary constraints

Having found the set of primary constraints we now need to verify their consistency
and in the process new secondary constraints emerge whose consistency we then also
verify as explained in section 4.1.

The total Hamiltonian (5.30) is found by adding the primary constraints with arbitrary
phase space coefficient functions C0, C1, C2, C3 to the canonical Hamiltonian — we are
free to do so since we can arbitrarily extend the Hamiltonian away from the primary
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constraint surface.

HT := H5D + C0 ·Π(N) + (C1)a ·Πa(Na) + (C2)
M ·ΠM (At) + (C3)

ab · Lab (5.30)

For some primary constraint Φ to be consistent for all times we need its total time
evolution to vanish (5.31).

Φ̇ = {Φ,HT }
!
= 0 (5.31)

A useful observation that can be made about the set of primary constraints that we
have found, is that they all Poisson-commute amongst each other, with the exception
of the Lorentz constraints {Lab, Lcd} ≠ 0. This should be expected because we want
them to form the Lorentz subalgebra of the gauge algebra.

The shift type primary constraints each lead to a secondary constraint since their
conjugated fields necessarily appear as Lagrange multipliers. The conservation of the
lapse function momentum constraint leads to the Hamilton constraint (5.32) HHam :=
{H5D, Π(N)}. Likewise we find the diffeomorphism constraint (5.33) (HDiff)n :=
{H5D, Πa(Na)} ean and the Gauß constraint (5.34) takes the form of the transforma-
tion (HGauß)M := {H5D, ΠM (AM

t )}. We have chosen to insert a vielbein contraction
into the definition of the diffeomorphism constraint as it is advantageous to have
a curved index on the gauge parameter. The name Gauß constraint was chosen in
analogy to Maxwell theory and Gauß’s law that appears there. We will see that the
constraints to indeed generate the transformations that their names suggest.

HHam =+
1

4e
Πab(e) Πab(e)−

1

12e
Π(e)2 − e R

+
3

2e
ΠMN (M) ΠRS(M) MMR MNS − e

24
gkl ∂kMMN ∂lM

MN

+
e

4
MMN grm gsn FM

rs FN
mn +

1

2e
glm MKL P l

L Pm
K (5.32)

(HDiff)n =+ 2 Πm
a(e) ∂[nem]a − ena ∂mΠm

a(e)

+
1

2
ΠMN (M) ∂nMMN

+ FM
nl P

l
M (5.33)

(HGauß)M =− ∂lP
l
M − 3κ5 ϵ

lmnr dMNP FN
lm FP

nr (5.34)

The secondary constraints are generated by the time evolution of the primary con-
straints and as such they restrict the canonical coordinates dynamically. We can see
that the Gauß constraints HGauß only depend on the gauge field and its momentum
and take the form of the constraint that we would expect in Maxwell theory plus a
topological contribution.

So far we have only discussed the shift type primary constraints, but we still need
to discuss the Lorentz constraints. The first line of the diffeomorphism constraint
HDiff concerns general relativity and we can rewrite these terms as in equation (5.35).
This rewriting reveals a Lorentz constraint term with the coefficient given by the spin
connection ωn

ab = eak∇nek
b which is field dependent. Here we also make use of the

covariant derivative ∇n that contains the Levi-Civita connection and the covariant
derivative Dm that contains the spin connection.

+2 Πm
a(e) ∂[nem]a − ena ∂mΠm

a(e) = −en
aDmΠm

a(e) + ωn
ab Lab (5.35)
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The existence of this term tells us that the diffeomorphism constraint and the Lorentz
constraint do not Poisson-commute and we might want to try to redefine the diffeo-
morphism constraint as in equation (5.36) in order to make them commute.

(H̃Diff)n := (HDiff)n − ωn
ab Lab (5.36)

This redefinition would essentially be a different choice of basis in the algebra of con-
straints — but we will find that the constraint (5.33) generates the expected gauge
transformations (cf. equation (5.55)) and is easier to work with in general. Hence we
continue to work with (5.33).
If we now investigate the consistency of the Lorentz constraints we find that no new
secondary constraints are generated, however consistency requires that the coefficient
function (C3)

ab of the Lorentz constraint term (C3)
ab Lab in the total Hamiltonian has

to be (C3)
ab = −Nn ωn

ab for the constraints to be consistent. This term is precisely
the same term we identified in equation (5.36) — implying that the total Hamilto-
nian overall does not contain a Lorentz constraint term. We will see in section 5.3.4
that because the Lorentz constraints are first class they will explicitly appear in the
extended Hamiltonian nonetheless.

The final total Hamiltonian can be written as (5.37) with the arbitrary coefficients
C0, (C1)a and (C2)

M .

HT =+N ·HHam +Nn · (HDiff)n +AM
t · (HGauß)M

+ C0 ·Π(N) + (C1)a ·Πa(Na) + (C2)
M ·ΠM (At)

−Nn ωn
ab Lab (5.37)

The total time evolution of a generic phase space function F can be written as the
weak equality (5.38) and is equivalent to the Lagrangian time evolution [28].

Ḟ ≈ {F,HT } (5.38)

When we construct the extended Hamiltonian in section 5.3.4 we find that the ex-
act coefficients in the total Hamiltonian are irrelevant since they are replaced in the
extended Hamiltonian by arbitrary coefficient functions. If one wants to explicitly
calculate the time evolution of some phase space function it is in practice easiest to
use the Leibniz rule of the Poisson bracket and then insert the gauge transformations
that we compute in section 5.3.2.

Calculating the total time evolution of the secondary constraints we do not find any
new tertiary constraints. The set of constraints we found thus far is hence complete
and consistent. We do not expect to find a constraint associated to the exceptional
E6(6)(R) symmetry of the theory since it is a global symmetry and therefore not gen-
erated by a canonical constraint.

We find that the Hamiltonian (5.19) is given entirely in terms of constraints and
therefore weakly vanishing H5D ≈ 0, meaning that the time evolution can be writ-
ten entirely in terms of gauge transformations. This observation is a general fact of
generally covariant theories and in particular true for general relativity [28]. This the-
ory inherits this property from general relativity because supergravity is built upon it.
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In the following canonical analysis we will make use of integrated of smeared con-
straints — as explained in section 4.1 — in order to avoid dealing with derivatives
of Dirac delta distributions. Therefore we take all the constraints to be integrated
over the spatial hypersurface with appropriate tensors of gauge parameters that are
test functions. Concerning the notation, we distinguish the smeared constraints by
adjoining the name of the gauge parameter to the constraint name. For example, the
smeared diffeomorphism constraint HDiff[ξ] is defined by equation (5.39), the gauge
parameter ξn(x) is a spatial four-vector of test functions defined on the spatial hyper-
surface.

HDiff[ξ] :=

∫
(HDiff)n(x) ξ

n(x) d4x (5.39)

Furthermore we choose not to insert any symmetry factors in the smeared constraints.
In this theory this only concerns the Lorentz constraints and their integrated form is
given by equation (5.40), with an antisymmetric gauge parameter γab = γ[ab].

L[γ] :=

∫
Lab(x) γ

ab(x) d4x (5.40)

5.3 Canonical analysis: Gauge transformations and gauge
algebra

In the previous section 5.2 we have constructed the Hamiltonian formulation of the
theory and found the complete set of canonical constraints. In this section we analyse
this canonical formulation by computing the full set of gauge transformations gen-
erated by the constraints, furthermore we compute the full gauge algebra that the
constraints form with the Poisson bracket. This analysis allows us to determine the
number of physical degrees of freedom and to construct the extended Hamiltonian.

5.3.1 Diffeomorphism weight and the Lie derivative

Before we begin with the analysis we briefly review the Lie derivative of standard
diffeomorphisms and the diffeomorphism weight.

We write the standard Lie derivative of a tensor T with diffeomorphism parameter
ξ as LξT . And we define the diffeomorphism weight Λ(T ) as the coefficient of the
weight term in the Lie derivative. The Lie derivative of a vector T , for example, would
be written as in equation (5.41) with the diffeomorphism weight denoted by Λ.

(LξT )
ν = ξµ ∂µT

ν︸ ︷︷ ︸
transport term

− ∂µξ
ν Tµ︸ ︷︷ ︸

rotation term

+ Λ · ∂µξµ︸ ︷︷ ︸
weight term

(5.41)

The diffeomorphism weights of the canonical variables are listed in table 5.1. Since
the vielbein determinant e is a tensor density, and since it appears as a factor in every
kinetic term in the action, the momenta all have weight one too.
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Object Weight Λ

em
a, AM

m , MMN 0
Πm

a(e) , Pm
M (A) , ΠRS(M) 1
e 1

Table 5.1: The standard diffeomorphism weights of the canonical
coordinates of bosonic maximal supergravity in five dimensions.

In the following the Lie derivatives always include the correct weight terms and we
have to pay attention to this fact during the computations.

5.3.2 Gauge transformations

In this section we explicitly compute all the infinitesimal gauge transformations δλX,
here λ is a gauge parameter and X represents a canonical coordinate. Canonically
we think of this as δλX = {X,H[λ]} where H[λ] represents a smeared constraint.
The Poisson brackets are then evaluated using the fundamental brackets defined in
section 5.2.4 and using the identities listed in the appendix B. In general we will in the
following only list the non-vanishing gauge transformations unless we want to make a
point of a specific transformation vanishing.
For the sake of simplicity we omit the notation of the coordinate dependence. In
the following expressions the gauge parameters on the right hand side of each gauge
transformation only depend on the coordinate of the field that the smeared constraint
acts upon.

First we look at the primary constraints of shift type and as expected we find that
they generate shift transformations on the fields canonically conjugate to the vanishing
momenta.

{N,Π(N)[λ1]} =λ1 (5.42)
{Na,Π(Nb)[λ2]} =(λ2)a (5.43)

{AN
t ,Π(AM

t )[λ3]} =(λ3)
N (5.44)

The Lorentz constraints generate local Lorentz transformations on the spatial vielbein
and its conjugate momentum. The Lorentz transformations take the form of rotations
of the flat Lorentz indices by the matrix of gauge parameters. All quantities that can
be expressed purely via the metric tensor are invariant under these transformations
and hence also the vielbein determinant is Lorentz invariant.

{ena, L[γ]} =+ enb γ
ba (5.45)

{Πn
a(e), L[γ]} =+Πn

c(e) γ
cb δba (5.46)

In the canonical formalism time evolution can be thought of as a gauge transforma-
tion [28]. This time evolution is generated by the Hamilton constraint. In general
relativity and supergravity, this time evolution is distinct from the time evolution
that the canonical Hamiltonian generates because the Hamilton constraint is just one
constituent constraint of the canonical Hamiltonian. The meaning of this is that time
evolution is not unique in a gauge theory and there are always other possible time
evolutions that differ by gauge transformations and this gauge freedom is not captured
by the Hamilton constraint. Conversely the Hamiltonian time evolution without the
Hamilton constraint is just gauge transformations and there is no real time evolution
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at all.

For theories that are second order in the time derivatives of the fields, the Hamilton
constraint should contain terms that are quadratic in the conjugate momenta. This
fact then implies that the time evolution of the fields is given by terms linear in the
conjugate canonical momenta — and this is in fact what we find below. The time
evolution of the canonical momenta themselves is more subtle, it captures most of the
dynamics and depends on the theory at hand. In the case of general relativity and
supergravity we find the time components of the Einstein and Maxwell equations in
these transformations.

The metric contracts all terms besides the topological term in the Lagrangian and
therefore we expect the vielbein canonical momentum Πn

a(e) to have a complicated
time evolution. Therefore to simplify the complicated computation of (5.48) it makes
sense to first compute the time evolution of the spatial Einstein-Hilbert term eR4, as
given in the appendix in equation (B.2), on its own. Most of the identities following
(B.2) also have to be used in the computation of (5.48). The spatial Einstein equation,
in the vielbein form, that we can see in the third line of (5.48) comes precisely from
the time evolution of the spatial Einstein-Hilbert term eR4.

The equation (5.13) relating the vielbein momenta to the spatial metric momenta
allows us to compare the time evolution of Πn

a(e) to the time evolution of the canonical
momentum of the metric in pure general relativity, as given in the references [55, 203].

{ena, HHam[ϕ]} =+
ϕ

2e
gmn Πm

a(e)−
ϕ

6e
Π(e) ena (5.47)

{Πn
a(e), HHam[ϕ]} =+

ϕ

4e
Πbc(e) Πbc(e) ea

n − ϕ

2e
Πk

b(e) Π
n
b(e) eka (5.48)
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)
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(
∇a∇nϕ−∇k∇kϕ ea

n
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+
3ϕ
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+
ϕe

24
∂kMMN ∂lM

MN gkl ea
n − ϕe
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∂kMMN ∂lM

MN gln ea
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− ϕe

4
MMN FM

rs FN
km grk gsm ea
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s

+
ϕ

2e
MKL P l

L(A) P k
K(A) glk ea

n − ϕ

e
MKL Pn

K(A) P l
L(A) ela

It is a general fact that the Hamiltonian generates the time derivative of the field
that it acts on in the Poisson bracket {X,H} = Ẋ. In generally covariant theories
this is already true for the Hamilton constraint because the other transformations
are “actual” gauge transformations. The time evolution of the scalar fields (5.49)
and of the one-form fields (5.51) is given by their canonical momenta, which are
proportional to the time derivatives of the fields. Therefore the time evolution of their
canonical momenta (5.50) and (5.52) is equivalent to the Euler-Lagrange equations of
the Lagrangian for these fields, because the time derivative of the canonical momenta
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is proportional to the second time derivative of the fields.

{MMN , HHam[ϕ]} =+
6

e
ϕ ΠQP (x) MMQ MNP (5.49)

{ΠMN (M), HHam[ϕ]} =− ∂l

(
ϕe

6
gkl ∂kM

MN

)
− ϕe

6
gkl ∂kMKL ∂lM

KM MLN

− 6ϕ

e
ΠPM (M) ΠNR(M) MPR

− ϕe
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grm gsn FM

rs FN
mn

+
ϕ

e
glm P l

L Pm
K MKM MLN (5.50)

{AN
n , HHam[ϕ]} =+

ϕ

e
gnl M

NL P l
L (5.51)

{P l
S , HHam[ϕ]} =+ ∂m

(
e ϕ MNS grm gls FN

rs

)
(5.52)

− 12κ5ϕ

e
gmk MKL dSLM ϵlmrs FM

rs P k
K

The Gauß constraint generates abelian U(1)27 gauge transformations on the one-form
gauge field AN

n (5.53). As we can see from equation (5.54) the modified momentum
Pn
N from (5.16) is invariant under the U(1)27 gauge transformations — like it would

be in the free theory. This is a nice property of the modified momentum and further
evidence that this is the better canonical variable to use. The Gauß constraint is
independent of the other fields and so they do not transform. In the analysis of the
exceptional field theory in chapter 6 we find that this behaviour is drastically modified
as the one-form fields are used as a gauge connection for the exceptional generalised
diffeomorphisms and they are found to be generated by the analogue of the Gauß
constraint — i.e. the cofactor of the Lagrange multiplier AM

t .

{AN
n , HGauß[ζ]} =+ ∂nζ

N (5.53)
{Pn

N , HGauß[ζ]} =0 (5.54)

The diffeomorphisms on the spatial hypersurfaces of the ADM decomposition of the
space-time are generated by the diffeomorphism constraint. We can express these
diffeomorphisms via the standard Lie derivative (including the appropriate weight
terms as given in table 5.3.1). This way we can see that the redefined diffeomorphism
constraint of equation (5.36) would contribute additional terms for the transformation
of the vielbein and its conjugate momentum, which we do not want.

{ena, HDiff[ξ]} =+ Lξen
a (5.55)

{Πn
a(e), HDiff[ξ]} =+ LξΠ

n
a(e) (5.56)

{MMN , HDiff[ξ]} =+ LξMMN (5.57)

{ΠMN (M), HDiff[ξ]} =+ LξΠ
MN (M) (5.58)

{AN
n , HDiff[ξ]} =− ξm FN

nm (5.59)

=+ LξA
N
n + δ(ξmAm)A

N
n (5.60)

{P l
S , HDiff[ξ]} =+ LξP

l
S + ξl (HGauß)S (5.61)

≈+ LξP
l
S
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We should pay attention to the additional terms in the transformations of the one-
forms (5.60) and their conjugate momenta (5.61). These extra terms are due to
the parametrisation of the Lagrangian. For the one-forms (5.60) we find that the
transformation is a Lie derivative only up to a U(1)27 gauge transformation. This
gauge transformation, generated by the constraint HGauß, is understood to be read as
δ(ξmAm)A

N
n = {AN

n , HGauß[ξ
mAM

m ]} = +∂n(ξ
mAN

m). The transformation of the canon-
ical momenta P l

S is a Lie derivative only up to a Gauß constraint HGauß term and
therefore it is weakly equal to the pure Lie derivative term.

The shortest computation of (5.61) involves working order by order in κ5, but also
makes use of the Leibniz rule and the Schouten identity from appendix A. We want to
briefly sketch this way of doing the calculation since it is advantageous to proceed in
the same fashion in this calculation for exceptional field theory when there are many
more additional complications.
To do so we define ∆l

T to be the topological term — i.e. linear in κ5 — in the
momentum ∆l

T (A) := P l
T (A)− Πl

T (A). We proceed by using the Leibniz property of
the Poisson bracket in the very first step of the computation (5.62), this will guarantee
the right structure of terms in the following steps. Then we use the definition of the
modified momentum to arrive at (5.63).

{P q
Q(x),

∫
d4y ξn(y)F T

nl(y)P
l
T (y)}

=

∫
d4y ξn(y) {P q

Q(x), F
T
nl(y)}P l

T (y) +

∫
d4y ξn(y) {P q

Q(x), P
l
T (y)}F T

nl(y) (5.62)

=

∫
d4y ξn(y) {Πq

Q(x), F
T
nl(y)}P l

T (y) +

∫
d4y ξn(y) {Πq

Q(x),∆
l
T (y)}F T

nl(y)

+

∫
d4y ξn(y) {∆q

Q(x),Π
l
T (y)}F T

nl(y) (5.63)

The first term in (5.63) can be written as the Lie derivative plus the pure Maxwell
theory Gauß constraint but all in terms of the modified momentum P q

Q.∫
d4y ξn(y) {Πq

Q(x), F
T
nl(y)}P l

T (y) = LξP
q
Q + ξq (−∂nP

n
Q) (5.64)

Using the Dirac delta distribution identity from the appendix A.2 we can evaluate
both of the remaining brackets in (5.63). We find that we can write each of these
brackets as three terms and taken together four terms cancel while the other two join
and we arrive at equation (5.65). Using the Schouten identity we can rewrite this as
(5.66) if we also realise that we can use the symmetry of the E6(6) invariant symbol
to avoid generating more terms in the Schouten identity.∫

d4y ξn(y) {Πq
Q(x),∆

l
T (y)}F T

nl(y) +

∫
d4y ξn(y) {∆q

Q(x),Π
l
T (y)}F T

nl(y)

= −12κ5 ϵ
qn1n2n3 ξl dMNQ FM

ln1
FN
n2n3

(5.65)

= −3κ5 ϵ
n1n2n3n4 ξq dMNQ FM

n1n2
FN
n3n4

(5.66)

Taking the results from (5.64) and (5.66) together we arrive at the equation (5.61)
that we are looking for.
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5.3.3 Algebra of constraints

Having computed how all the constraints act on the canonical coordinates in section
5.3.2, we can now use this knowledge to compute the algebra that the canonical con-
straints generate under the Poisson bracket by acting on each other.
The interpretation of an integrated constraint H[λ] acting with the Poisson bracket on
a canonical coordinate X from the right δH[λ]X = {X,H[λ]} was that of an infinites-
imal gauge transformation δH[λ]X. Consequentially the interpretation of a Poisson
bracket of two constraints {H1[ξ],H2[λ]} is that of a commutator of two infinitesi-
mal gauge transformations. To prove this we can start with the commutator of two
infinitesimal gauge transformations [δH2[λ], δH1[ξ]]X and expand this expression using
the definition the commutator. Writing the infinitesimal transformations in terms of
Poisson brackets we can rewrite this using the antisymmetry and the Jacobi identity
of the Poisson bracket to arrive at equation (5.67). The different ordering of the trans-
formations comes from the fact that the constraints act from the right whereas the
gauge transformations act from the left.

[δH2[λ], δH1[ξ]]X = {X, {H1[ξ],H2[λ]}} (5.67)

Concerning the actual computation of the algebra it is often easiest to take apart the
constraint with fewer terms and then apply the gauge transformations that we have
found. If the diffeomorphism constraint is involved one should make use of the fact
that most fields transform as a Lie derivative, this fact greatly simplifies the calcula-
tion.

The shift type primary constraints Poisson-commute with every other constraint and
hence all algebra relations concerning them are vanishing.

Below we state the full algebra of the canonical constraints.

{HHam[θ], HHam[τ ]} = HDiff[(θ∇mτ − τ ∇mθ) gmn]

− L [(θ∇mτ − τ ∇mθ) gmn ωnab] (5.68)

{HDiff[λ], HHam[θ]} = HHam[Lλθ] +HGauß

[
θ

e
λp gpk P k

L MLM

]
(5.69)

{HHam[θ], HGauß[ξ]} = 0 (5.70)
{HDiff[λ], HDiff[ρ]} = HDiff [[λ, ρ]

n] = HDiff [Lλρ
n] (5.71)

{HDiff[λ], HGauß[ξ]} = 0 (5.72)
{HGauß[ξ], HGauß[ζ]} = 0 (5.73)

{L[γ], L[ρ]} = L[−2γc[a ρb]c] (5.74)
{HHam[ϕ], L[γ]} = 0 (5.75)

{HDiff[λ], L[γ]} = L[Lλ(γ
ab)] (5.76)

{HGauß[ξ], L[γ]} = 0 (5.77)

The relations (5.68), (5.69) and (5.71) of the algebra are also called the universal part
of the gauge algebra — they concern the relations found in general relativity. Some-
times the algebra is restricted to the primary constraint surface where the Lorentz
constraint vanishes and hence can be ignored — thus also removing the Lorentz con-
straint term from (5.68).
Equation (5.68) tells us that two different orderings of time evolutions by the Hamilton
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constraint can only deviate from one another by a diffeomorphism and a Lorentz trans-
formation. The time evolution is hence only unique up to these gauge transformations.

The Lorentz constraint term in equation (5.68) appears in the vielbein formalism of
general relativity, depending on the choice of diffeomorphism constraint as discussed
in section 5.2.5.4 Its gauge parameter explicitly depends on the spin connection, how-
ever Lorentz invariance is unaffected by this term, because taken together the spin
connection and the Lorentz constraint transform under a Lorentz transformation to
cancel out the transformation of the diffeomorphism constraint.

The relation (5.69) tells us that the difference in ordering of time evolution and a
diffeomorphism is essentially another time evolution where the resulting gauge pa-
rameter is the Lie derivative of the original gauge parameters. The additional Gauß
constraint term, with field dependent gauge parameter, is due to the additional terms
in the transformations of the one-form (5.60) and its conjugate momenta (5.61) under
the diffeomorphism constraint.

We have used the term algebra to describe the above structure, however it would be
more precise to refer to it as an open- or pseudo-algebra since the smearing functions
on the right hand side of some relations (e.g. (5.68) and (5.69)) are field dependent
[15, 28]. Commonly this distinction in terminology is not made and we will continue
to refer to it as an algebra. Already for the case of pure general relativity the gauge
parameter of the diffeomorphism constraint in equation (5.68) contains the inverse
metric and is thus field dependent.

The gauge algebra of pure general relativity is also discussed in the references [7, 13,
55, 211]. Moreover the canonical formulation and the algebra of the canonical con-
straints of eleven-dimensional supergravity have been discussed in [58, 59].

The spatial diffeomorphisms, the U(1)27 gauge transformations and the Lorentz trans-
formations each generate their own subalgebra of the overall constraint algebra, as can
be seen from (5.71), (5.73) and (5.74). Since U(1)27 is an abelian Lie group the rela-
tion (5.73) vanishes since the ordering of the gauge transformations does not matter.
In fact we find that the Gauß constraint commutes with every constraint.

The difference in the ordering of a diffeomorphism and a Lorentz transformation, as
equation (5.76) tells us, is a Lorentz transformation with the Lie derivative acting on
the Lorentz gauge parameter.5

In conclusion, the algebra of the canonical constraints closes with the Poisson bracket,
since there are no terms that are not given by a canonical constraint. As a consequence
all constraints are first class since each relation in the algebra is weakly vanishing.6

4The Lorentz constraint term in equation (5.68) can be removed by the redefinition (5.36) which is
essentially a change in the basis of the algebra. Unfortunately this redefinition has numerous further
undesirable consequences, including the introduction of new terms in the algebra and in some gauge
transformations.

5The redefinition (5.36) of the diffeomorphism constraint allows us to cancel the resulting Lorentz
transformation of the bracket, but as described earlier there are further unintended consequences,
such as changes to the gauge transformations.

6If we look at the full supergravity theory including Fermions this is no longer true and there will
be second class constraints that necessitate the introduction of the Dirac bracket [28].
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5.3.4 Extended Hamiltonian

The extended Hamiltonian, describing the most general time evolution possible of
the theory, is constructed starting from the total Hamiltonian (5.37) by adding to it
all first class constraints with arbitrary phase space coefficient functions. We have
found that the Poisson bracket algebra closes and hence that all constraints are first
class. Therefore the extended Hamiltonian (5.78) is, in this case, just a general linear
combination of all constraints. The difference between the total and the extended
Hamiltonian is in this case that the parameters of the secondary constraints and
the Lorentz constraints become generic functions. This makes the time evolution,
of a gauge-variant function, generated by the extended Hamiltonian more general
than that of the Lagrangian, which was equivalent to the time evolution of the total
Hamiltonian. For gauge invariant functions — i.e. observables — the time evolution of
the extended Hamiltonian is of course equivalent to that of the canonical Hamiltonian.

HE =+ CHam ·HHam + (CDiff)
n · (HDiff)n + (CGauß)

M · (HGauß)M

+ C0 ·Π(N) + (C1)a ·Πa(Na) + (C2)
M ·ΠM (At)

+ (C3)
ab Lab (5.78)

For a general phase space function F the most general time evolution we can write
down is hence given by (5.79).

Ḟ (q, p) ≈ {F,HE} (5.79)

Using the results from section 5.3.2 and the properties of the Poisson bracket we
can now compute the time evolution of any phase space function with the full gauge
freedom manifest.

5.3.5 Counting the degrees of freedom

The computation of the gauge algebra told us that all canonical constraints in this
theory are first class. This knowledge allows us to confirm the number of physical
degrees of freedom of the theory, this calculation is also a good consistency check, to
make sure that we have found all constraints. To do so we list all fields and canonical
constraints in table 5.2.

Fields # Primary constraints # Secondary constraints #
N 1 Π(N) 1 Hamilton constraint 1
Na 4 Π(Na) 4 Diffeomorphism constraints 4
ema 16 Lorentz constraints 6 - 0

M(MN) 42 - 0 - 0
AT

t 27 Π(AT
t ) 27 Gauß constraints 27

AT
l 108 - 0 - 0

Total: 198 Total: 38 Total: 32

Table 5.2: A counting of the number of fields and the number of
primary and secondary canonical constraints in the bosonic sector of
E6(6)(R) invariant five-dimensional supergravity. The distinction be-
tween primary and secondary constraints is irrelevant to the number
of physical degrees of freedom, but illustrates where the constraints

came form.



88 Chapter 5. Canonical E6(6)(R) invariant 5D (super-)gravity

At this point all Poisson brackets have been evaluated and the implicit formalism
tells us that we should reinstate the coset constraints, as explained in section 4.3.
Therefore we can now consider the scalar fields and their canonical momenta to be
coset representatives and should only count the 42 independent degrees of freedom
that correspond to the dimension of the E6(6)(R)/USp(8) coset in table 5.2.

Counting the field components we find that there are a total of 198 field variables,
equivalently there are 396 = 2 · 198 canonical coordinates in the phase space of this
theory.

Looking at the complete set of canonical constraints we count a total of 70 canonical
constraint components. They can be split into 38 primary and 32 secondary con-
straints as in table 5.2, although this distinction is no longer relevant, it serves to
remind us where the constraints originated from. The constraints are all first class,
meaning that they are all generators of gauge transformations — as we have seen,
they generate shift transformations, Lorentz transformations, time evolution, spatial
diffeomorphisms and U(1)27 transformations — and as such we have to count their
components twice [28].

The number of physical phase space dimensions that emerge from the total 396 phase
space coordinates is thus 256 = 2 · (198− 70). Equivalently this means that there are
128 = 198− 70 physical (bosonic) degrees of freedom.7 This number agrees with the
well-known result that maximal supergravity has 128 bosonic degrees of freedom [15,
19, 74, 212].

7Since we are considering a field theory this is the number of degrees at freedom at each point in
space-time.
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Chapter 6

Canonical formulation of E6(6)
exceptional field theory

In this chapter we calculate and analyse the canonical formulation of the (bosonic)
E6(6) exceptional field theory. This chapter is based on and closely follows the struc-
ture of parts of the publication [41].

We begin by clarifying the notation and conventions used in this chapter in section
6.1. In section 6.2 we then compute the external ADM decomposition of the ExFT
Lagrangian. In section 6.3 we compute all canonical momenta and introduce some
redefinitions of the canonical variables inspired by the results of chapter 5. We then
identify all primary canonical constraints in section 6.4. In section 6.5 the Legendre
transformation of the ExFT Lagrangian is calculated sector by sector and the canon-
ical Hamiltonian of the ExFT is presented in section 6.6. In section 6.7 we define
the fundamental Poisson brackets. The consistency algorithm of the canonical con-
straints is investigated in section 6.8. In section 6.9 we compute most of the (gauge)
transformations generated by the canonical constraints. We then calculate some of
the canonical constraint algebra relations in section 6.10 and discuss speculative re-
sults for some of the remaining brackets. In section 6.11 we introduce the internal
generalised vielbein and discuss the canonical formulation in terms of these variables.

6.1 Notation and conventions

In this section we briefly clarify the notation and the conventions used in this chapter.
The notation of this chapter generally agrees with the notation used in chapter 5.

The types of indices used in this chapter are listed in table 6.1. The indices t and 0 are
reserved for the external curved and flat time coordinates respectively. In the space-
time split we decompose the external curved five-dimensional index as µ = (t,m) and
the flat five-dimensional index decomposes as α = (0, a).

The constant five-dimensional Levi-Civita symbol (without any vielbein factors) is
ϵµνρστ . The convention ϵklmn := ϵtklmn for the four-dimensional Levi-Civita symbol is
used occasionally. The convention of the Minkowski metric signature for the external
geometry is (−++++), which agrees with the convention used in [25]. A (curved)
time derivative ∂t, on some function X, is sometimes written as Ẋ. As explained in
chapter 4 we use the notation that Π(X), with the appropriate indices, is used to
denote the canonical momenta that are canonically conjugate to any fields X.

As was discussed in section 3.5 (and similarly in chapter 5), the scalar fields MMN =
M(MN) of the E6(6) ExFT parametrise the E6(6)/USp(8) coset and therefore only 42
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Type of index Dimension (real) Letters used
Fundamental rep. of E6(6) 27 K,L,M,N, . . . ,X, Y, Z

Fundamental rep. of USp(8) 8 A,B,C,D,E, . . . , J

Curved (external) 5 µ, ν, ρ, σ, τ, . . .

Curved (time) 1 t

Curved (external spatial) 4 k, l,m, n, o, p, q, r, s, u, . . .

Flat (external) 5 α, β, γ, δ, . . .

Flat (time) 1 0

Flat (external spatial) 4 a, b, c, d, e, f, g, h, . . .

Table 6.1: Conventions for the indices used in chapter 6, their di-
mensions and the descriptions of the types of indices.

out of the 378 components of the symmetric matrix MMN are actually independent.
From the canonical analysis of the SL(n)/SO(n) scalar coset sigma model in section
4.3 we learned that we can treat the coset constraints either explicitly, by adding
them to the Lagrangian, or implicitly. In the implicit formalism we treat the gener-
alised matrix as a generic symmetric matrix of scalar fields, but we have to refrain
from using the coset constraints inside the Poisson brackets in this case. In chapter
5 we have successfully made use of the implicit formalism for the treatment of the
E6(6)/USp(8) coset constraints in the canonical analysis of the five-dimensional max-
imal supergravity theory. For the analysis of the E6(6) ExFT we will likewise use the
implicit treatment of the coset constraints in order to simplify the analysis.

One aspect that we are looking at in this investigation of the canonical formulation
of ExFT concerns the (physical) role of the section condition (3.72). Before we be-
gin with the canonical analysis we should note that the section condition cannot be
interpreted as a canonical constraint itself. The reason for this is that canonical con-
straints only pose restrictions on the canonical coordinates of phase-space, whereas
the section condition is not a condition on any specific function, but instead on the
internal coordinate derivatives ∂M (see section 3.2). The section condition is hence
more fundamental than the canonical constraints and it has to be applied ad hoc —
as is the case in the Lagrangian formalism. One could try to add the section condi-
tion explicitly to the Lagrangian with Lagrange multipliers, but because the section
condition applies to any function one would have to add infinitely many terms to the
Lagrangian, which in this form does not seem possible.

In this chapter the generalised Lie derivative LΛX of any object X always includes a
weight term (cf. definition (3.74)), where the generalised diffeomorphism weight λ(X)
is as stated in table 6.2.

6.2 ADM decomposition of the Lagrangian

In this section we compute the ADM decomposition of all terms in the Lagrangian of
the (bosonic) E6(6) EFT (3.98). The results of this section are later used to compute
the canonical momenta in section 6.3 and to carry out the Legendre transformation in
section 6.5. The explicit computation of the ADM decomposition of the Lagrangian
can furthermore give some intuition and insight into where the various terms originate
from and what their role may be. In this section we are working on terms that are
part of the Lagrangian and — as we did in chapter 5 — we sometimes discard total
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Gen. weight λ Objects
−2/3 Gµν , gµν , R̂, Vpot
−1/3 ∂M , Eα

µ, ea
m

0 ∂µ, LAµ , dMNK , MMN , VM
AB, R̂µν

αβ , Nn

1/3 AM
µ , FM

µν , Λ
M , N, Na, Eµ

α, em
a, ΠstN (B)

2/3 BµνM , ΞµM , HµνρM , Πm
M (A), Gµν , gmn, Nn, Π(e)

m
a

1 LExFT, Π
MN (M), ΠM

AB(V)
4/3 e

5/3 E

Table 6.2: The generalised exceptional diffeomorphism weights of
the most important objects in the canonical formulation of E6(6) ex-

ceptional field theory.

derivative terms that include the Lagrange multipliers in the derivative, because they
are not relevant to the results of this work.

ADM decomposition of the improved Einstein-Hilbert term

In the following we use the ADM decomposition described in section 4.2, but applied
only to the external Lorentzian part of the ExFT geometry — the internal extended
generalised exceptional geometry is left untouched in this decomposition. We further-
more fix the external Lorentz symmetry partially and use the parametrisation (4.22)
to decompose the external vielbein Eµ

α into the lapse function N , the shift vector Na

and the spatial vielbein em
a. These are all functions that also depend on the 27 inter-

nal coordinates Y M . We use the spatial vielbein to flatten or unflatten spatial indices.

The first term in the Lagrangian (3.98) is the improved Einstein-Hilbert term, which
is given by (6.1).

LEH = E R̂ = ER+ E FM
µν E

αρ ∂MEρ
β Eα

µEβ
ν (6.1)

We begin by calculating the ADM decomposition of the covariantised Einstein-Hilbert
term ER. This term is covariantised in the sense that the external derivatives ∂µ
have been replaced by the covariant derivatives Dµ (3.85). The Ricci scalar is then
constructed in terms of the covariantised coefficients of anholonomy, which are defined
by (6.2) (cf. section 5.2.1).

Ωαβγ := 2E[α
µEβ]

ν DµEνγ . (6.2)

This gauging of the Ricci scalar, which introduces a dependence on the one-forms AM
µ

via the covariant derivative, is what makes the vielbein transform under the gener-
alised diffeomorphisms.

Inserting the ADM decomposition of the vielbein (4.22) into the definition of the
covariantised coefficients of anholonomy (6.2) we find the expressions (6.3), (6.4) and
(6.5).

Ωabc = 2 e[a
meb]

nDmenc (6.3)

Ωab0 = 0 (6.4)

Ω0b0 = −eb
nN−1DnN (6.5)
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We saw in section 5.2.1 that in supergravity (and general relativity) only the Ω0bc

components (5.4) depend on the time derivative. This is also the case in the ExFT,
although the time derivative is now covariantised and the Ω0bc components are given
by (6.6).

Ω0bc =
1

N

(
eb

n (D0 −NmDm) enc − eb
m encDmNn

)
(6.6)

Equation (6.6) can be inverted to give the time derivative of the spatial vielbein as
(6.7).

∂0ekc = Nek
bΩ0bc + (LA0 +NmDm) ekc + encDkN

n (6.7)

With the above decomposition of the coefficients of anholonomy the ADM decom-
position of the Einstein-Hilbert term can be written as (6.8), with Rd being the
(covariantised) d-dimensional Ricci scalar.

ER5 = eN (Ω0(ab)Ω0(ab) − Ω0aaΩ0bb +R4) (6.8)

The decomposition (6.8) is of the standard form [54, 205], which we also saw in chapter
5, cf. equation (5.3), but we have to remember that the objects in (6.8) are nonethe-
less covariantised.

The second term in (6.1) is the Einstein-Hilbert improvement term and we can write
its ADM decomposition as (6.9).

+E FM
µν E

αρ ∂MEρ
β Eα

µEβ
ν =+

e

N
FM
tn ∂MNn

− e

N
FM
mnN

m ∂MNn

+ eN FM
mn e

ar ∂Mer
b ea

m eb
n (6.9)

Due to the time component of the field strength the first term in (6.9) contributes to
the canonical momenta of the one-forms. We can note in particular the sign of the
second term in (6.9) and we will come back to this point in section 6.5.4. The last
term in (6.9) is the spatial Einstein-Hilbert improvement term and together with the
spatial Ricci scalar R4 from (6.8) it will define the spatial improved Ricci scalar R̂4.

ADM decomposition of the Yang-Mills term

Equation (6.10) states the ADM decomposition of the generalised Yang-Mills term.

−E

4
MMN FµνM FN

µν =+
e

2N
MMN FM

ts FN
tn gsn

− e

N
MMN FM

ts FN
mn g

snNm

− eN

4
MMN FM

rs FN
mn g

rm gsn

+
e

2N
MMN FM

rs FN
mnN

r Nm gsn (6.10)

The first two terms of (6.10) contribute to the canonical momenta because they
are quadratic or linear in the time components of the one form field strength. The
quadratic term here is responsible for many terms in the Hamiltonian due to the com-
plicated one-form momenta, which will replace the time derivatives of the one-forms
in the Legendre transformation. The third term in (6.10) is the spatial Yang-Mills
term. The last term will cancel in the Legendre transformation.
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ADM decomposition of the scalar kinetic term

Equation (6.11) states the ADM decomposition of the scalar kinetic term — the
structure of these terms will become clearer after the Legendre transformation, but in
the last line of (6.11) we can already recognise the spatial scalar kinetic term as the
first term.

+
1

24
E gµν DµMMN DνM

MN (6.11)

=− e

24N

(
− ṀMN ṀRS MRM MSN − ṀMN LAtM

MN

+ LAtMMN ṀRS MRM MSN + LAtMMN LAtM
MN

)
+

e

24N
N l

(
+ ṀMN DlM

MN − ṀRS MRM MSN DlMMN

− LAtMMN DlM
MN −DlMMN LAtM

MN

)
+

1

24

(
eN gkl − e

N
Nk N l

)
DkMMN DlM

MN

ADM decomposition of the topological term

In order to keep the expressions simple we split the topological term (3.135) into its
individual constituent terms and compute the space-time splits of these.1

First we examine the two-form kinetic term and find that its space-time split is given
by (6.12).

−15κ

2
ϵµνρστ dMNR ∂RBµνM DρBστN =− 15κ ϵtnrsl dMNR ∂RBtnM DrBslN

+ 15κ ϵtnrsl dMNR ∂RBnrM DsBtlN

+
15κ

2
ϵtnrsl dMNR ∂RBnrM LAtBslN

− 15κ

2
ϵtnrsl dMNR ∂RBnrM ∂tBslN (6.12)

The expression (6.12) is the covariantised version of the space-time split (4.55) of the
model theory from section 4.4. The only time derivative on the two-forms, in the
ExFT Lagrangian, is found in the last term of (6.12). Up to the Stückelberg and
topological couplings the dynamics of the two-forms should thus expected to be iden-
tical to those of the model in section 4.4.

1We use the terms ADM decomposition and space-time split somewhat interchangeably in this
chapter.
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The space-time decomposition of the two topological terms that couple the one- and
two-forms are given by (6.13) and (6.14).

+ 15κϵµνρστ dMNR dNKL ∂RBµνM AK
ρ ∂σA

L
τ (6.13)

=+ 30κϵtnrsl dMNR dNKL ∂RBtnM AK
r ∂sA

L
l

− 15κϵtnrsl dMNR dNKL ∂RBnrM AK
s Ȧl

l

− 15κϵtnrsl dMNR dNKL ∂l∂RBnrM AK
s AL

t

+ 30κϵtnrsl dMNR dNKL ∂RBnrM AK
t ∂sA

L
l

We should take note of the time derivative on the one-form in the third line of (6.13)
— this leads to the first of three topological contributions to the one-form momenta.

− 5κ ϵµνρστ dMNR dNKL ∂RBµνM AK
ρ [Aσ, Aτ ]

L
E (6.14)

=− 10κ ϵtnrsl dMNR dNKL ∂RBtnM AK
r [As, Al]

L
E

− 5κ ϵtnrsl dMNR dNKL ∂RBnrM AK
t [As, Al]

L
E

+ 10κ ϵtnrsl dMNR dNKL ∂RBnrM AK
s [At, Al]

L
E

The only part of the topological term of the E6(6) ExFT (3.135) that does not depend
on any internal derivatives is the term whose space-time split is given by (6.15).

+ κ ϵµνρστdMNP AN
µ ∂νA

M
ρ ∂σA

P
τ (6.15)

=+ κ ϵtnrsl dMNP AN
t ∂nA

M
r ∂sA

P
l

− 2κ ϵtnrsl dMNP AN
n ȦM

r ∂sA
P
l

+ 2κ ϵtnrsl dMNP AN
n ∂rA

M
t ∂sA

P
l

Hence (6.15) is the only part of topological term that exists in the trivial solution of
the section condition and we can see that it becomes the topological term in the La-
grangian of the E6(6) invariant formulation of the five-dimensional maximal ungauged
supergravity that was analysed in chapter 5. As for the canonical momenta (5.9) of
the five-dimensional theory, the time derivative in (6.15) contributes another topolog-
ical term to the canonical momenta of the one-forms.

The final topological contribution to the one-form momenta comes from the term in
the fourth line of the space-time split of the term (6.16).

− 3κ

4
ϵµνρστdMNP AN

µ [Aν , Aρ]
M
E ∂σA

P
τ (6.16)

=− 3κ

4
ϵtnrsl dMNP

(
+AN

t [An, Ar]
M
E ∂sA

P
l

− 2AN
n [At, Ar]

M
E ∂sA

P
l

−AN
n [Ar, As]

M
E ȦP

l

+AN
n [Ar, As]

M
E ∂l A

P
t

)
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The space-time split of the last topological term is given by (6.17).

+
3κ

20
ϵµνρστdMNP AN

µ [Aν , Aρ]
M
E [Aσ, Aτ ]

P
E (6.17)

=+
3κ

20
ϵtnrsl dMNP

(
+AN

t [An, Ar]
M
E [As, Al]

P
E

− 4AN
n [At, Ar]

M
E [As, Al]

P
E

)
The terms (6.13) and (6.17) do not depend on any external derivatives and hence do
not contribute to any of the canonical momenta.

ADM decomposition of the scalar potential term

The scalar potential (3.103) decomposes in the ADM split as (6.18) — one should
take note here that the potential is already written with the sign that it will take in
the Hamiltonian.

+E Vpot =− e

2N
gmnM

MN∂MNn ∂NNm (6.18)

− N e

4
MMN∂Mgmn ∂Ngmn − N

e
MMN∂Me ∂Ne

− N e

24
MMN∂MMKL ∂NMKL +

N e

2
MMN∂MMKL ∂LMNK

+N ∂M∂NMMN e+N 2MMN ∂M∂Ne+N 2 ∂MMMN ∂Ne

The first term in (6.18) depends on several Lagrange multipliers, this would be prob-
lematic in the Hamiltonian formalism, but we will see that this term fortunately can-
cels in the Legendre transformation. None of the other terms cancel and they will form
the scalar potential of the Hamiltonian, which sits inside the Hamilton constraint.

6.3 Canonical momenta

Based on the ADM decomposition of the Lagrangian (3.98) that we have found in
section 6.2 we can now go on to compute the canonical momenta of all fields in this
section. Moreover we introduce important redefinitions of some canonical coordinates
in this section, which are crucial to making the Legendre transformation and the
Hamiltonian as simple as possible.

The canonical momenta of the one-forms AM
µ

In the Lagrangian (3.98) there are no time derivatives on the time components AT
t

of the one-forms, because of the antisymmetry of the field strength and because all
of the topological terms are contracted with the Levi-Civita symbol. The canonical
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momenta (6.19) of the time components AT
t hence vanish.

Πt
T (A) = 0 (6.19)

Πl
T (A) =

e

N
gln MTN

(
FN
tn +NkFN

nk

)
(6.20)

− 3κ

4
ϵlmnrdMNTA

N
m [An, Ar]

M
E

+ 2κ ϵlmnrdMNT AM
m ∂nA

N
r

+ 15κ ϵlmnrdMNRdNKT ∂RBmnM AK
r

+
e

N
∂TN

l

Equation (6.20) states the canonical momenta of the spatial components of the one-
forms AT

l . The first line in (6.20) comes from the covariantised generalised Yang-Mills
term. The topological contributions to (6.20) are the next three terms. We can com-
pare these terms in (6.20) to the canonical momenta (5.9) of the five-dimensional
theory, although there are of course more topological contributions in ExFT. The fi-
nal e

N ∂TN
l term in (6.20) is the contribution from the Einstein-Hilbert improvement

term (6.9) and it does not have any analogue in the five-dimensional supergravity
theory.

One of the main lessons that we can learn from the canonical analysis in chapter 5
is the treatment of the topological contributions to the canonical momenta. For the
five-dimensional supergravity we defined modified momenta-like variables (5.16) by
subtracting all topological contributions from the canonical momenta Πl

T (A). The
resulting modified variables then took the form (5.17), which is just the terms that
one would expect in Yang-Mills theory coupled to gravity. We found that this greatly
simplified the Hamiltonian and that the gauge transformations of these modified mo-
menta took a nice form. In the ExFT we can define the modified momenta-like
variables P l

T (A) by analogy as (6.21), where we subtract the three topological contri-
butions.

P l
T (A) := + Πl

T (A) (6.21)

+
3κ

4
ϵlmnrdMNTA

N
m [An, Ar]

M
E

− 2κ ϵlmnrdMNT AM
m ∂nA

N
r

− 15κ ϵlmnrdMNRdNKT ∂RBmnM AK
r

=+
e

N
gln MTN

(
FN
tn +NkFN

nk

)
+

e

N
∂TN

l (6.22)

The P l
T (A) can hence be written explicitly as (6.22). In order to arrive at the most

concise Hamiltonian it turns out that the e
N ∂TN

l term should not be subtracted from
the momenta.

We will see that the modified momenta P l
T (A) do indeed greatly simplify the Hamil-

tonian — without them there are many topological terms scattered in all of the
secondary constraints. The Legendre transformation with respect to the canonical
momenta Πl

T (A) is very messy because there is a large number of topological terms
involved. But as we will see in section 6.5, we can write the Legendre transformation
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with respect to P l
T (A) in a comparatively compact form.

The definition (6.21) is not a canonical transformation. As we have already seen in
chapter 5, redefinitions of this form lead to variables that do not Poisson-commute
with themselves {Pn

N (A),Pm
M (A)} ̸= 0. We saw that the explicit Poisson brackets

of these variables can be rather complicated, see equation (5.18), and because of the
additional topological contributions in the momenta the analogous relation is much
worse in ExFT. The Poisson-noncommutativity of Pn

N (A) represents one of the great-
est difficulties in the canonical analysis of the E6(6) ExFT. This is further exacerbated
by the very complicated Hamiltonian topological term (which is analogous to the
rather simple F 2 term in the Gauß constraint (5.34) of the five-dimensional theory).
These difficulties are not avoided if we use the canonical momenta Πl

T (A) instead,
because in this case the Hamiltonian itself is already much more complicated.

As in chapter 5, we can use the topological coefficient κ to break up the computa-
tions into orders of κ. By definition the modified momenta agree with the canonical
momenta Πn

N (A) = Pn
N (A) at κ = 0. The main structure of most computations is

already apparent at κ = 0. An exception to this are all computations that primarily
concern the two-forms, whose entire dynamics is topological. In some cases the full
computation may turn out to be exceedingly difficult and we only give the results at
κ = 0.

We should emphasise that the case κ = 0 is only used as a computational tool, which
allows us to remove one of the main difficulties — i.e. the topological contributions
— from the calculations. It should not be expected that the limit κ = 0 leads to any
physically meaningful theory when the section condition is solved.

The canonical momenta of the two-forms BµνM

The only term in the Lagrangian that has a time derivative on the two-forms is the
topological kinetic term (6.12). Therefore the canonical momenta (6.23) and (6.24)
are identical to those of the model two-form theory that we examined in section 4.4.1.

Πtl N (B) = 0 (6.23)

Πsl N (B) =− 15κ ϵmnsldMNR ∂RBmnM (6.24)

The canonical momenta of the scalar fields MMN

The calculation of the canonical momenta of the scalar fields involves a minor technical
subtlety that we glossed over in chapter 5, but it may be beneficial to be precise and to
briefly explain this point because it concerns the Legendre transformation in section
6.5.
The issue concerns the scaling of the diagonal components of the scalar matrix MMN .
Both ∂Ṁ11

∂Ṁ11
= 1 and ∂Ṁ12

∂Ṁ12
= 1 should be true (and similarly for the other components),

but this is equivalent to (6.25), which is rather unappealing due to the Kronecker delta
term.

∂ṀQP

∂ṀMN

= δMQ δNP + δMP δNQ − (δKronecker
MN )δMQ δNP (6.25)
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With (6.25) the canonical momenta of the scalar fields are computed to be (6.26) (the
indices R, S are not summed over in this expression).

ΠRS(M) =
e

12N
(2−δKronecker

RS )

[
+ṀQP MQRMPS+Nn DnM

RS+LAtM
RS

]
(6.26)

In order to get rid of the Kronecker delta term in (6.26) we can introduce the rescaling
(6.27) of the diagonal components of the canonical momenta by a factor of 2.

Π̃RS(M) :=

{
2 ·ΠRS(M), if R = S

ΠRS(M), if R ̸= S
(6.27)

Explicitly the rescaled momenta Π̃RS(M) are then given by (6.28).

Π̃RS(M) =
e

6N

[
+ ṀQP MQRMPS +Nn DnM

RS + LA0M
RS

]
(6.28)

The distinction between the rescaled and original canonical momenta is only relevant
during the Legendre transformation in section 6.5, where it is needed to find the
correct coefficients of the scalar terms. After section 6.5 the distinction is irrelevant
and we simply write ΠRS(M) = Π̃RS(M).

The canonical momenta of the external metric components N, Na, em
a

We have seen that the Ricci scalar only contains a time derivative in the Ω0bc com-
ponents (6.6) of the coefficients of anholonomy, which is on the spatial vielbein. The
canonical momenta of the lapse function (6.29) and the shift vector (6.30) are vanish-
ing.

Π(N) = 0 (6.29)
Πa(Na) = 0 (6.30)
Πm

a (e) = 2 e emb (Ω0(ab) − δabΩ0cc) (6.31)

The canonical momenta of the spatial vielbein are given by (6.31), which is of the same
form as (5.8), but written in terms of the covariantised coefficients of anholonomy. As
in chapter 5 we define the contractions Πab(e) (6.32) and Π(e) (6.33) of the canonical
momenta of the spatial vielbein.

Πab(e) := + em(aΠ
m

b)(e) (6.32)

Π(e) := + em
aΠm

a(e) (6.33)

6.4 Primary constraints

In section 6.3 we have computed all of the canonical constraints, which we can now
use to identify the complete set of primary canonical constraints.

We have found that the canonical momenta of the lapse function (6.34), of the shift
vector (6.35) and of the time components of the differential forms (6.36) and (6.37)
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vanish.

Π(N) = 0 (6.34)
Πa(Na) = 0 (6.35)

ΠM (AM
t ) = 0 (6.36)

These are all primary constraints of shift type, analogous to those we have already
seen in chapter 5, which only generate shift transformations on the canonically conju-
gate fields. We will see that all of the fields conjugate to these momenta are Lagrange
multipliers and that the consistency of each of the shift type primary constraints gen-
erates a secondary constraint.

In analogy to the model of section 4.4 we find the primary constraints HP1 (6.37) and
HP2 (6.38) coming from the two-form momenta.

(HP1)
mM := ΠtmM (B) = 0 (6.37)

(HP2)
slN :=

(
Πsl N (B) + 15κ ϵtmnsldMNR ∂RBmnM

)
= 0 (6.38)

As was discussed in section 4.4 the constraints (6.38) exist because the topological
kinetic term of the two-forms is linear in the time derivative, which has numerous
important consequences, as we will see.

The Lorentz constraints of ExFT (6.39) are analogous to those of five-dimensional
supergravity (or pure general relativity) and have already be discussed in chapter 5.

Lab := em[aΠ(e)
m

b] = 0 (6.39)

In total we have found 1 + 4 + 27 + 108 + 162 + 6 = 308 primary constraints.

6.5 Legendre transformation

In chapter 5 we glossed over the Legendre transformation of the five-dimensional the-
ory as it was quite straightforward. For the E6(6) exceptional field theory the Legendre
transformation is significantly more complicated and we want to discuss the calcula-
tion in this section. First we explain how the calculation can be broken up into the
transformations of each sector of the theory. Then we carry out the partial calcula-
tions using the results of section 6.2.
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Formally we can write the Legendre transformation of the bosonic Lagrangian LExFT
as (6.40).

HExFT = + Ṅ ·Π(N) +
∑

a=1,...,4

Ṅa ·Πa(Na) +
∑

a=1,...,4
m=1,...,4

ėma ·Πma(ema) (6.40)

+
∑

N=1,...,27

ȦN
t ·ΠN (AN

t ) +
∑

N=1,...,27
n=1,...,4

ȦN
n ·Πn

N (AN
n )

+
∑

N=1,...,27
n=1,...,4

ḂtnN ·ΠnN (BtnN ) +
1

2

∑
N=1,...,27
m,n=1,...,4

ḂmnN ·ΠmnN (BmnN )

+
∑

R,S=1,...,27
R≤S

ṀRS ·ΠRS(MRS)− LExFT

In order to avoid overcounting we explicitly write out the sums in (6.40) and only
sum over the independent components. For the spatial two-form components we can
insert a factor of 1/2 and sum over all components. Due to the use of the implicit
treatment of the coset constraints (cf. section 4.3) we can treat the scalar fields as a
generic symmetric matrix. We cannot simply sum over all components of the scalar
fields because that would give the wrong coefficient for the diagonal terms. Using the
rescaled scalar momenta (6.27) we can write the transformation term as (6.41) where
we can now sum over all components.∑

R≤S

ΠRS(M)ṀRS =
1

2

∑
R,S=1,...,27

Π̃RS(M)ṀRS (6.41)

Inserting the Lagrangian (3.98) we can write the Legendre transformation as (6.42),
where the lines are already separated into the various sectors of the theory.

HExFT = +
∑

a=1,...,4
m=1,...,4

ėma ·Πma(ema)− ER5 (6.42)

+
∑

N=1,...,27
n=1,...,4

ȦN
n ·Πn

N (AN
n )− LYM − (5)E FM

αβE
αρ∂MEβ

ρ

+
1

2

∑
N=1,...,27
m,n=1,...,4

ḂmnN ·ΠmnN (BmnN )− Ltop

+
1

2

∑
R,S=1,...,27

ṀRS · Π̃RS(MRS)− Lsc − Lpot

+ Ṅ ·Π(N) +
∑

a=1,...,4

Ṅa ·Πa(Na)

+
∑

N=1,...,27

ȦN
t ·ΠN (AN

t ) +
∑

N=1,...,27
n=1,...,4

ḂtnN ·ΠnN (BtnN )

Next we compute the Legendre transformation for each sector separately in the follow-
ing sections. Time derivatives of the one-forms appear in the generalised Yang-Mills
term, the Einstein-Hilbert improvement term and in the topological term, which makes
the one-form sector the most difficult and we look at it in more detail.
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6.5.1 Legendre transformation of the Einstein-Hilbert term

Because the Einstein-Hilbert term does not contain any time derivatives of the lapse
function or shift vector the Legendre transformation terms of these fields stay in
the Hamiltonian as primary constraint terms. The Legendre transformation of the
Einstein-Hilbert term (without the improvement term) with respect to the spatial
vielbein is given by (6.43).

Πm
a (e) ėma − ER5 =+N ·

(
1

4e
Πab(e)Πab(e)−

1

12e
Π2(e)− eR4

)
(6.43)

+Nn ·
(
2Πm

a(e)D[nem]a − enaDmΠm
a(e)

)
+AK

t ·
(
Πm

a(e) ∂Kema −
1

3
∂KΠ(e)

)
In (6.43) we have already factored out the Lagrange multipliers, which makes the con-
tributions to the secondary constraints apparent. We can recognise the covariantised
version of the pure general relativity Hamiltonian [13, 203, 205] in the first two lines
of (6.43), which we can also compare this to the Hamiltonian (5.19) from chapter 5.
Due to the one-form connection terms in the Ricci scalar we find additional AK

t terms,
which are needed to generate the generalised diffeomorphism transformations of the
vielbein and of its canonical momenta.

6.5.2 Legendre transformation of the scalar kinetic term

The scalar potential changes sign in the Legendre transformation, but only the first
term in (6.18) cancels, which is discussed in section 6.6. The Legendre transformation
of the scalar kinetic term is given by (6.44).

1

2

∑
R,S=1,...,27

ṀRS · Π̃RS(MRS)− Lsc (6.44)

=+N ·
(

3

2 e
Π̃MN (M) Π̃RS(M) MMR MNS − e

24
gkl DkMMN DlM

MN

)
+Nn ·

(
1

2
Π̃MN (M)DnMMN

)
+AK

t ·
(
1

2
Π̃MN (M) ∂KMMN − 6PR

L
S
K ∂S

(
Π̃LN (M)MRN

))
The first two lines of (6.44) are the contributions to the Hamilton and external diffeo-
morphism constraints, which are the covariantised version of the terms found in the
Hamiltonian (5.19) from chapter 5. Due to the covariantised derivatives we find the
additional AK

t terms, which generate the generalised diffeomorphism transformations
on the scalar canonical variables. The adjoint projector PR

L
S
K appears in (6.44) be-

cause we factorised out the Lagrange multiplier AK
t from the generalised Lie derivative

terms in the ADM decomposition (6.11). The adjoint projector terms only appear for
the fields that carry E6(6) indices and hence we do not see such terms in the vielbein
sector.
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6.5.3 Legendre transformation of the two-form kinetic term

The Legendre transformation of the two-form kinetic term LBK, defined by (6.45),
can be separated from the Legendre transformation of the remaining terms.

LBK := −15κ

2
ϵµνρστdMNR ∂RBµνM DρBστN (6.45)

The remainder of the terms coming from the topological term Ltop − LBK are trans-
formed together with the other one-form terms in section 6.5.4. The term (6.45) is the
covariantised version of the model Lagrangian (4.48) from section 4.4. The Legendre
transformation of LBK is given by (6.46).

1

2
ḂmnN ·ΠmnN (BmnN )− LBK (6.46)

=− 15κ

2
ϵnrsl dMNR ∂RBnrM LAtBslN − 30κ ϵnrsl dMNR BtnM Dr∂RBslN

In (6.46) we can see the covariantisation of the HS1 constraints from section 4.4. Due
to the covariant derivatives we find another At dependent term, which does not have
an analogue in the model of section 4.4. For the model theory we were able to express
the BtnM term as (4.61) by making use of the naive two-form field strength. Here
we are indeed allowed to freely exchange the internal derivative with the covariant
derivative because both the internal derivative and the two-forms are contracted with
the d-symbol as dMNR∂RBslN and we can apply the identity (2.36) of reference [25].
But we cannot yet rewrite the BtnM term in terms of the covariantised field strength
HlmnL, because we are missing the one-form terms, which will however appear in the
remainder of the Legendre transformation.

We should now examine the At dependent term in (6.46) more closely. This term
again exists due to the covariant derivative and hence we expect that it is related to
the generalised diffeomorphism transformations. Because the two-form kinetic term
is linear in the time derivative there are no canonical two-form momenta in (6.46).
By inserting the definition of the primary constraints (6.38) we can express this term
as (6.47).

− 15κ

2
ϵnrsl dMNR ∂RBnrM LAtBslN

= +
1

2

(
ΠslN (B)− (HP2)

slN
)
LAtBslN (6.47)

=AM
t ·

(
+

1

2
ΠlnN (B) ∂MBlnN − 3PR

K
S
M ∂S

(
ΠlnK(B)BlnR

)
− 1

2
(HP2)

lnN ∂MBlnN + 3PR
K

S
M ∂S

(
(HP2)

lnK BlnR

)
− 1

3
∂M
(
BmnNΠmnN (B)

)
+

1

3
∂M
(
BmnN (HP2)

mnN
))

(6.48)

Written in this form the first term in (6.47) seems to be what we are looking for to
generate generalised diffeomorphism transformations on the two-form canonical vari-
ables. We are however not allowed to go to the primary constraint surface and set
HP2 = 0 because this is only allowed after Dirac brackets have been constructed —
this point is further discussed in section 6.9.2. Factorising out the Lagrange multipli-
ers we arrive at (6.48), which again makes adjoint projector PR

K
S
M visible.
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Without using the primary constraints we can expand the generalised Lie derivative
directly in (6.46) and factor out the Lagrange multiplier AM

t to find (6.49).

− 15κ

2
ϵnrsl dMNR ∂RBnrM LAtBslN

= AM
t ·

(
− 75κ ϵnrsl dQNR dLST dNMT ∂RBnrQ ∂SBslL

)
(6.49)

To arrive at the result (6.49) one needs to make use of the section condition (3.72). If
we were to use (6.49) in the Hamiltonian it would be the only instance of the section
condition being used in the calculation of the ExFT Hamiltonian. This can be avoided
by using (6.47) instead. The form (6.48) has the further advantage that it makes the
generalised Lie derivative apparent. Depending on the situation we will have to make
use of both (6.48) and (6.49) in the following.

6.5.4 Legendre transformation of the Yang-Mills, Einstein-Hilbert
improvement and topological terms

The terms whose Legendre transformation we have not yet computed are the gener-
alised Yang-Mills term, the Einstein-Hilbert improvement term and the (Ltop −LBK)
part of the topological term. In this section we compute their Legendre transformation
(6.50) with respect to the time derivative of the one-forms.

ȦN
n ·Πn

N (AN
n )− LYM − E FM

αβE
αρ∂MEβ

ρ − (Ltop − LBK) (6.50)

The Legendre transformation of the one-form sector is the most complicated part
of the computation of the canonical Hamiltonian. We define the expression ΥM

s by
(6.51), which simplifies the calculation somewhat, but we only need it in this section.

ΥM
s := FM

ts − ȦM
s (6.51)

= −∂sA
M
t − [At, As]

M
E + 10 dMNK ∂NBtsK (6.52)

It is however the use of the modified one-form momenta P l
T (A) that really bring the

following calculation in a relatively compact form.

First we deal with the terms that depend on the time derivative, i.e. terms with a ȦN
n

or FM
tl . In this calculation the ’. . . ’ always stand for the same terms which do not

depend on any time derivatives — once we have dealt with the time derivatives the
terms in the ’. . . ’ will be written explicitly. Starting from the Legendre transformation
(6.53) we insert the ADM decomposition of the terms, we then use (6.51) to rewrite
the time components of the field strength. After some rearrangements we arrive at



104 Chapter 6. Canonical E6(6) exceptional field theory

(6.54).

ȦN
n ·Πn

N (AN
n )− LYM − E FM

αβE
αρ∂MEβ

ρ − (Ltop − LBK) (6.53)

= ȦN
n ·Πn

N (AN
n )− e

2N
MMN FM

ts FN
tn gsn +

e

N
MMN FM

ts FN
mn g

snNm

− e

N
FM
tn ∂MNn + 15κ ϵtnrsl dMNR dNKL ∂RBnrM AK

s Ȧl
l

+ 2κ ϵtnrsl dMNP AN
n ∂tA

M
r ∂sA

P
l − 3κ

4
ϵtnrsl dMNPA

N
n [Ar, As]

M
E ȦP

l + . . .

= ȦN
n ·Πn

N (AN
n ) (6.54)

− e

N
MMN FM

ts ȦN
n gsn +

e

2N
MMN (ȦM

s +ΥM
s ) (ȦN

n −ΥN
n ) gsn

+
e

N
MMN (ȦM

s +ΥM
s )FN

mn g
snNm

− e

N
(ȦM

n +ΥM
n ) ∂MNn + 15κ ϵtnrsl dMNR dNKL ∂RBnrM AK

s Ȧl
l

+ 2κ ϵtnrsl dMNP AN
n ∂tA

M
r ∂sA

P
l − 3κ

4
ϵtnrsl dMNPA

N
n [Ar, As]

M
E ȦP

l + . . .

To get rid of the Legendre transformation term ȦN
n ·Πn

N (AN
n ) we need to compare (6.54)

to the canonical momenta (6.20) — we find that if we insert the explicit expression
for Πn

N (AN
n ) most of the time derivative terms cancel. We arrive at (6.55) and time

derivatives are now only found in the first term.

ȦN
n ·Πn

N (AN
n )− LYM − E FM

αβE
αρ∂MEβ

ρ − (Ltop − LBK) (6.55)

=+
e

2N
MMN (ȦM

s +ΥM
s ) (ȦN

n −ΥN
n ) gsn

+
e

N
MMN ΥM

s FN
mn g

snNm − e

N
ΥM

n ∂MNn + . . .

The remaining time derivatives in (6.55) can only be replaced by inverting the canoni-
cal momenta. If we were to use the canonical momenta Πl

T (A) here, we would generate
many topological terms. If we use the modified momenta P l

T (A) instead however, we
only generate the terms that are needed. Using (6.51) we can write P l

T (A) as (6.56),
which we can invert to express ȦN

n as (6.57).

P l
T (A) =

e

N
gln MTN

(
ȦN

n +ΥN
n +NkFN

nk

)
+

e

N
∂TN

l (6.56)

⇒ ȦN
n =

N

e
glnM

TN

(
P l
T (A)− e

N
∂TN

l

)
−ΥN

n −NkFN
nk (6.57)

With (6.57) we can replace the time derivatives in (6.55) with the canonical momenta
to find (6.58).

ȦN
n ·Πn

N (AN
n )− LYM − E FM

αβE
αρ∂MEβ

ρ − (Ltop − LBK)

= +
N

2 e
glmMKL P l

L(A)Pm
K (A) +

e

2N
glmMKL∂LN

l ∂KNm

− glmMKLP l
L(A) ∂KNm − Pn

N (A)ΥN
n +

e

N
NnFM

mn ∂MNm

+NnFM
nl P l

M (A) +
e

2N
gmnMMN Nk N l FM

mk FN
nl + . . . (6.58)

It is useful to examine these terms more closely. It is the interplay of the Einstein-
Hilbert improvement term and the generalised Yang-Mills term that generates the
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term + e
2N glmMKL∂LN

l ∂KNm. The Einstein-Hilbert improvement term contributes
the e

N ∂NNn term to Pn
N (A), which when inserted via (6.57) in the Ȧ2 Yang-Mills term

generates the term in question. This term cancels against the first term in the scalar
potential (6.18). This is the only cancellation with the potential and we can further-
more note that the sign of the Einstein-Hilbert improvement term is irrelevant in this
cancellation, because of Ȧ2.
The same interplay of terms generates the term −glmMKLP l

L(A) ∂KNm, which is
discussed in detail in section 6.9.3, where we discuss the external diffeomorphism
transformations.

By inserting the definition of ΥN
n into the −Pn

N (A)ΥN
n term we find (6.59).

−Pn
N (A)ΥN

n = ∂nA
M
t Pn

M (A) + Pn
M (A) [At, An]

M
E − 10 dMKL ∂KBtnL Pn

M (A) (6.59)

The first two terms of (6.59) can be rewritten as (6.60), which is the covariantised
version of the U(1)27 Gauß constraint from chapter 5 plus an additional momentum
term that has no analogue in five dimensions.

∂nA
M
t Pn

M (A) + Pn
M (A) [At, An]

M
E

=AM
t ·

(
−DnPn

M (A)− 5 dKLR dMRS AS
n ∂LPn

K(A)
)

(6.60)

It is the E-bracket in the field strength of the one-forms FM
mn that leads to the addi-

tional momentum term AM
t

(
−5 dKLR dMRS AS

n ∂LPn
K(A)

)
in (6.60). The E-bracket

is similarly responsible for the covariantisation of the term −DnPn
M (A). We will see

that the additional momentum term in (6.60) is related to the tensor gauge transfor-
mations of the two-forms.
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Writing out the many terms that we have so far hidden inside the ’. . . ’ in (6.58), we
find that there are some cancellations and we arrive at equation (6.61).

ȦN
n ·Πn

N (AN
n )− LYM − E FM

αβE
αρ∂MEβ

ρ − (Ltop − LBK)

= +
N

2 e
glmMKL P l

L(A)Pm
K (A) +

e

2N
glmMKL∂LN

l ∂KNm (6.61)

− glmMKLP l
L(A) ∂KNm − 10 dMKL ∂KBtnL Pn

M (A) +NnFM
nl P l

M (A)

−AM
t DnPn

M (A)− 5AM
t dKLR dMRS AS

n ∂LPn
K(A)

− eN FM
mn e

ar ∂Mer
b ea

m eb
n +

eN

4
MMN FM

rs FN
mn g

rm gsn

− 30κϵtnrsl dMNR dNKL ∂RBtnM AK
r ∂sA

L
l

+ 15κϵtnrsl dMNR dNKL ∂l∂RBnrM AK
s AL

t

− 30κϵtnrsl dMNR dNKL ∂RBnrM AK
t ∂sA

L
l

+ 10κ ϵtnrsl dMNR dNKL ∂RBtnM AK
r [As, Al]

L
E

+ 5κ ϵtnrsl dMNR dNKL ∂RBnrM AK
t [As, Al]

L
E

− 10κ ϵtnrsl dMNR dNKL ∂RBnrM AK
s [At, Al]

L
E

− 3κ ϵtnrsl dMNP AN
t ∂nA

M
r ∂sA

P
l

+
3κ

4
ϵtnrsl dMNP AN

t [An, Ar]
M
E ∂sA

P
l

− 3κ

2
ϵtnrsl dMNP AN

n [At, Ar]
M
E ∂sA

P
l

+
3κ

4
ϵtnrsl dMNP AN

n [Ar, As]
M
E ∂l A

P
t

− 3κ

20
ϵtnrsl dMNP AN

t [An, Ar]
M
E [As, Al]

P
E

+
3κ

5
ϵtnrsl dMNP AN

n [At, Ar]
M
E [As, Al]

P
E
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We then factor out the Lagrange multipliers in (6.61) for the non-topological terms
and organise the terms according to the Lagrange multipliers as in (6.62).

ȦN
n ·Πn

N (AN
n )− LYM − E FM

αβE
αρ∂MEβ

ρ − (Ltop − LBK)

= +
e

2N
glmMKL∂LN

l ∂KNm (6.62)

+N ·
(
+

N

2 e
glmMKL P l

L(A)Pm
K (A) +

e

4
MMN FM

rs FN
mn g

rm gsn

− eFM
mn e

ar ∂Mer
b ea

m eb
n

)
+Nn ·

(
+ FM

nl P l
M (A) + ∂K

(
gmnM

KLPm
L (A)

))
+AM

t ·
(
−DnPn

M (A)− 5 dKLR dMRS AS
n ∂LPn

K(A)

)
+ 15κϵtnrsl dMNR dNKL ∂l∂RBnrM AK

s AL
t

− 30κϵtnrsl dMNR dNKL ∂RBnrM AK
t ∂sA

L
l

+ 5κ ϵtnrsl dMNR dNKL ∂RBnrM AK
t [As, Al]

L
E

− 10κ ϵtnrsl dMNR dNKL ∂RBnrM AK
s [At, Al]

L
E

− 3κ ϵtnrsl dMNP AN
t ∂nA

M
r ∂sA

P
l

+
3κ

4
ϵtnrsl dMNP AN

t [An, Ar]
M
E ∂sA

P
l

− 3κ

2
ϵtnrsl dMNP AN

n [At, Ar]
M
E ∂sA

P
l

+
3κ

4
ϵtnrsl dMNP AN

n [Ar, As]
M
E ∂l A

P
t

− 3κ

20
ϵtnrsl dMNP AN

t [An, Ar]
M
E [As, Al]

P
E

+
3κ

5
ϵtnrsl dMNP AN

n [At, Ar]
M
E [As, Al]

P
E

+ 10 dMKLBtnL ∂KPn
M (A)

+ 30κϵtnrsl dMNR dNKLBtnM ∂R(A
K
r ∂sA

L
l )

− 10κ ϵtnrsl dMNR dNKLBtnM ∂R(A
K
r [As, Al]

L
E)

In the form of (6.62) we recognise the quadratic one-form field strength F2 and mo-
menta terms P2, as well as the spatial Einstein-Hilbert improvement term, which will
become part of the Hamilton constraint. Furthermore we find the expected diffeomor-
phism term FP and the additional +∂K

(
gmnM

KLPm
L (A)

)
term which was already

mentioned above.

The last three terms of (6.62) can be combined with the BtnM term from section 6.5.3
into HS1 as defined by (6.63).

+BtlM ·
[
10 dMKL∂K

(
P l
L − κ ϵlmnr HmnrL

)]
=: +BtlM · (HS1)

lM (6.63)

In analogy to the eponymous secondary constraints from the model of section 4.4, the
HS1 will be identified as secondary constraints that generate part of the tensor gauge
transformations.
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Finally we should also factor out all the remaining Lagrange multipliers of the topo-
logical terms. This expression is however not particularly interesting and makes the
Hamiltonian much more complicated. What makes this expression complicated are
in particular the terms with a time index in an E-bracket [At, Ar]

M
E , which generate

many additional terms when factoring out the At. Hence we only state the topological
terms in this form in the final form of the Hamiltonian topological term (6.68).

6.6 Canonical Hamiltonian of the E6(6) ExFT

We can now combine the results of the partial computations from section 6.5 to
piece together the Legendre transformations (6.42). We find that the full canonical
Hamiltonian HExFT of the (bosonic) E6(6) exceptional field theory is give by (6.64).

HExFT =+N ·
[
+

1

4e
Πab(e) Πab(e)−

1

12e
Π(e)2 − e R̂+ e VHP

+
3

2e
ΠMN (M) ΠRS(M) MMR MNS − e

24
gkl DkMMN DlM

MN

+
e

4
MMN grm gsn FM

rs FN
mn +

1

2e
glm MKL P l

L Pm
K

]
+Nn ·

[
+ 2 Πm

a(e) D[nem]a − ena DmΠm
a(e)

+
1

2
ΠMN (M) DnMMN

+ FM
nl P l

M + ∂M
(
gmnM

MN Pm
N

) ]
+AM

t ·
[
−DlP l

M − 5 dNLS dMNK AK
m∂SPm

L + (Htop)M

+ Πm
a(e) ∂Mema −

1

3
∂MΠ(e)

+
1

2
ΠKL(M) ∂MMKL − 6PR

K
S
M ∂S

(
ΠKL(M)MRL

) ]
+BtlM ·

[
+ 10 dMKL∂K

(
P l
L − κ ϵlmnr HmnrL

)]
+ Ṅ ·Π(N) + Ṅa ·Πa(Na) + ȦM

t ·ΠM (At) + ḂtnN ·ΠnN (BtnN ) (6.64)

In (6.64) the Hamiltonian is written in the form where the Lagrange multipliers
N, Nn, AM

t , BtlM are factored out, which is useful because it makes the secondary
constraints apparent.

The improved spatial Ricci scalar R̂ in (6.64) is defined by (6.65), which we can
compare to (3.99).

−e R̂ := −e R4 − eFM
mn ea

meb
n (era∂Mer

b) (6.65)

The scalar potential of the Hamiltonian VHP is defined by (6.66).

N eVHP := N eVpot +
e

2N
gmnM

MN∂MNn ∂NNm (6.66)

As we can see in (6.66), VHP is given by the Lagrangian scalar potential Vpot plus the
contribution that originates from the interplay of the Einstein-Hilbert improvement
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term and the Yang-Mills term in section 6.5.4. This term cancels overall and the
Hamiltonian scalar potential is explicitly given by (6.67).

+e VHP =− e

4
MMN∂Mgmn ∂Ngmn − 1

e
MMN∂Me ∂Ne (6.67)

− e

24
MMN∂MMKL ∂NMKL +

e

2
MMN∂MMKL ∂LMNK

+ ∂M∂NMMN e+ 2MMN ∂M∂Ne+ 2 ∂MMMN ∂Ne

The Hamiltonian topological term Htop is defined by (6.68).

(Htop)M := (6.68)

+
1

2
ΠlnN (B) ∂MBlnN − 3PR

K
S
M ∂S

(
ΠlnK(B)BlnR

)
− 1

3
∂M
(
BmnNΠmnN (B)

)
− 1

2
(HP2)

lnN ∂MBlnN + 3PR
K

S
M ∂S

(
(HP2)

lnK BlnR

)
+

1

3
∂M
(
BmnN (HP2)

mnN
)

− 3κ ϵtlmnr dMNP ∂lA
N
m ∂nA

P
r

− 15κ ϵtlmnr dSRN dMNK ∂l∂SBmnR AK
r − 30κ ϵtlmnr dSRN dMNK ∂SBmnR ∂l A

K
r

+ 5κϵtlmnr dSRN dMNK [Al, Am]KE ∂SBnrR − 20κϵtlmnrdSRN dQNK AK
l ∂MAQ

m ∂SBnrR

+ 100κ ϵtlmnr dNKT dQRS dMNL dTPQAP
l ∂KAL

m ∂SBnrR

+
3

2
κ ϵtlmnr dMNK ∂lA

N
m [An, Ar]

K
E − 3κ ϵtlmnr dQNK AQ

l ∂mAN
n ∂MAK

r

+ 15κ ϵtlmnr dNRS dMNK dRLP AL
l ∂SA

K
m ∂nA

P
r

− 3

2
κ ϵtlmnr dMNP AN

l ∂mAS
n ∂SA

P
r − 3

2
κ ϵtlmnr dMNP AN

l AS
n ∂m∂SA

P
r

+
15

2
κ ϵtlmnr dPXS dMNP dXY Z AN

l ∂mAY
n ∂SA

Z
r

+
15

2
κ ϵtlmnr dPXS dMNP dXY Z AN

l AY
n ∂m∂SA

Z
r

− 3

20
κ ϵtlmnr dMNK [Al, Am]NE [An, Ar]

K
E +

6

5
κ ϵtlmnr dQNK AQ

l ∂MAN
m [An, Ar]

K
E

− 6κ ϵtlmnr dNRS dMNK dRLQAL
l ∂SA

K
m [An, Ar]

Q
E

Every κ-dependent term that originates from the Lagrangian topological term Ltop

(3.135) goes either into the Hamiltonian topological term Htop, into the modified mo-
menta Pn

N or into the two-form field strength HklmN . The great complexity of the
Hamiltonian topological term Htop is inherited from the complexity of the Lagrangian
topological term Ltop and exacerbated by the need to factor out the Lagrange multipli-
ers AM

t . By definition every term in Htop is linear in the coefficient of the Lagrangian
topological term κ, although this coefficient is hidden in the terms coming from the
two-form kinetic term due to the use of the primary constraints HP2 (cf. section 6.5.3).
Htop is analogous to the much simpler topological F 2 θ-term in the Gauß constraint
(5.34) in the Hamiltonian formulation of the E6(6) invariant five-dimensional ungauged
maximal supergravity of chapter 5. In ExFT this “F 2” term can be found in the third
line of (6.68), which is the only term that survives in the trivial solution of the section
condition because it does not depend on any internal derivatives. We cannot express
it in terms of the field strength in ExFT because the non-integral topological term of
ExFT is not manifestly covariant.
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It is instructive to further compare the E6(6) ExFT Hamiltonian (6.64) to the Hamilto-
nian H5D (5.19) of five-dimensional E6(6) invariant supergravity. When the trivial solu-
tion of the section condition (∂M = 0 ∀M) is applied to the ExFT Hamiltonian (6.64),
we find that it reduces to the Hamiltonian H5D (6.64) of the manifestly E6(6) invariant
five-dimensional supergravity as expected. Every term of the five-dimensional Hamil-
tonian H5D (5.19) can be found in the ExFT Hamiltonian (6.64), but the (external)
derivatives, the one-form field strength and the Ricci scalar are replaced by the covari-
antised and improved expressions Dµ, FM

µν and R̂ (with the exception of the topolog-
ical term). Additionally there are purely internal terms that completely vanish in the
trivial solution of the section condition and that have no analogue in five dimensions,
which includes the scalar potential terms VHP, the term +Nn ∂M

(
gmnM

MN Pm
N

)
,

which we discuss in detail in section 6.9.3, as well as all of the BtlM dependent terms
and most of the AM

t dependent terms. In the five-dimensional Hamiltonian H5D (5.19)
the AM

t dependent terms are the Gauß constraints and generated the abelian U(1)27

gauge transformations. In the ExFT Hamiltonian (6.64) there are far more AM
t de-

pendent terms and the analogue expression is significantly more complicated due to
the covariant derivatives Dµ in the Lagrangian and due to the complicated ExFT
topological term. We will see in section 6.9.2 that the AM

t dependent terms are the
constraints which generate the generalised exceptional diffeomorphisms. There is no
analogue for the BtlM dependent terms in H5D (5.19) because there is no two-form in
the field content of the five-dimensional theory — we will find that these constraints
generate a part of the tensor gauge transformations.

We can appreciate how much simpler the ExFT Hamiltonian is due to the use of the
modified canonical momenta Πm

N (A) if we insert the definition (6.21) of the modified
momenta back into the Hamiltonian (6.64) and see how many additional topological
constraints are generated. Looking at (6.64) the Pm

N (6.21) hence seem to be the best
and most natural variables to use.

6.7 Fundamental Poisson brackets

Next we need to define the fundamental Poisson brackets before we can begin to
construct the complete set of canonical constraints. Here we take X1 = (x1, Y1) to
mean the tuple of the four spatial external and the internal coordinates and define
X1 −X2 = (x1 − x2, Y1 − Y2) to be the difference between two such tuples. The non-
vanishing equal-time fundamental Poisson brackets are then defined as listed below.

{N(X1),Π(N)(X2)} = δ(4+27)(X1 −X2) (6.69)

{Nn(X1),Πm(Nk)(X2)} = δnmδ(4+27)(X1 −X2) (6.70)

{ena(X1),Π
m

b(e)(X2)} = δmn δab δ
(4+27)(X1 −X2) (6.71)

{AM
t (X1),ΠN (AK

t )(X2)} = δMN δ(4+27)(X1 −X2) (6.72)

{AM
m (X1),Π

n
N (AK

k )(X2)} = {AM
m (X1),Pn

N (X2)} (6.73)

= δMN δnmδ(4+27)(X1 −X2) (6.74)

{BtlR(X1),Π
tnS(BtqQ)(X2)} = δnl δ

S
R δ(4+27)(X1 −X2) (6.75)

{BklR(X1),Π
mnS(BpqQ)(X2)} = (δmk δnl − δml δnk ) δ

S
R δ(4+27)(X1 −X2) (6.76)

{MMN (X1),Π
PQ(M)(X2)} =

(
δPM δQN + δPN δQM

)
δ(4+27)(X1 −X2) (6.77)
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As we can see from the Poisson bracket (6.73) the modified momenta Pn
N (A) satisfy

the same Poisson bracket relation with the one-forms as the original one-form mo-
menta, because the topological terms that were subtracted in (6.21) only depend on
the differential forms. Because (6.21) is not a canonical transformation the modified
momenta do however not Poisson-commute among themselves {P l

L(A),Pk
K(A)} ≠ 0

or with the two-form momenta {P l
L(A),ΠmnS(B)} ≠ 0.

Because we use the implicit formalism for the E6(6)/USp(8) coset constraints (cf.
section 4.3) the relation (6.77) is simply the fundamental Poisson bracket of a generic
scalar matrix and there is in particular no coset projector term.

6.8 Canonical constraints

We now construct the secondary constraints that arise as the consistency conditions
of the primary constraints from section 6.4. Here we follow the procedure described
in section 4.1.

6.8.1 Total Hamiltonian

The consistency of the primary constraints needs to be verified with respect to the
total Hamiltonian (6.78), which consists of the canonical Hamiltonian plus a general
phase space linear combination of the primary canonical constraints.

HExFT-Total :=HExFT + u0 ·Π(N) + (u1)a ·Πa(Na) + (u2)
ab · Lab (6.78)

+ (u3)
M ·Πt

M (A) + (u4)lN · (HP1)
lN + (u5)slN · (HP2)

slN

The consistency algorithm is simplified by first computing the algebra that the pri-
mary constraints form under the fundamental Poisson brackets from section 6.7. As
expected the Lorentz constraints form the Lorentz subalgebra, which is again of the
form (5.74). One can check that every other Poisson bracket among the primary con-
straints vanishes. The only non-trivial primary constraint algebra relations are those
among the two-form primary constraints, which we have already seen in the model of
section 4.4.2.

{(HP1)
kK , (HP1)

lL} = 0 (6.79)

{(HP1)
kK , (HP2)

mnM} = 0 (6.80)

{(HP2)
klK , (HP2)

mnM} = 0 (6.81)

6.8.2 Secondary constraints

The condition for the consistency of the primary constraints (cf. equation (4.9) in
section 4.1) tells us that the primary constraints have to be conserved in time, under
the time evolution generated by the total Hamiltonian, for the formalism to be con-
sistent. The consistency of each of the shift type primary constraints Π(N), Πn(Nn),
ΠM (AM

t ) and (HP1)
lM (B) = ΠtlM (B) respectively requires the following expressions

to be secondary canonical constraints: the Hamilton constraint HHam (6.82), the (ex-
ternal) diffeomorphism constraints HDiff (6.83), the (internal) generalised exceptional
diffeomorphism constraints HGD (6.84) and the two-form tensor gauge constraints
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HS1 (6.85).

HHam := +
1

4e
Πab(e) Πab(e)−

1

12e
Π(e)2 − e R̂+ e VHP (6.82)

+
3

2e
ΠMN (M) ΠRS(M) MMR MNS − e

24
gkl DkMMN DlM

MN

+
e

4
MMN grm gsn FM

rs FN
mn +

1

2e
glm MKL P l

L Pm
K

(HDiff)n := + 2 Πm
a(e) D[nem]a − ena DmΠm

a(e) (6.83)

+
1

2
ΠMN (M) DnMMN

+ FM
nl P l

M + ∂M
(
gmnM

MN Pm
N

)
(HGD)

M :=−DlP l
M − 5 dNLS dMNK AK

m∂SPm
L + (Htop)M (6.84)

+ Πm
a(e) ∂Mema −

1

3
∂MΠ(e)

+
1

2
ΠKL(M) ∂MMKL − 6PR

K
S
M ∂S

(
ΠKL(M)MRL

)
(HS1)

lM := + 10 dMKL∂K

(
P l
L − κ ϵlmnr HmnrL

)
(6.85)

The above secondary constraints make up the main part of the canonical Hamilto-
nian (6.64) and on the primary constraint surface the Hamiltonian only consists of
these secondary constraints. Because ExFT is a generally covariant the Hamiltonian
is weakly vanishing.

As was already discussed for the five-dimensional supergravity in section 5.2.5, the
Lorentz constraints do not require any secondary constraints.

We can see that the secondary constraints HS1 (6.85) are the covariantised ExFT ver-
sion of the eponymous constraints (4.61) of the two-form model theory from section
4.4, which originated from the consistency condition (4.68). Moreover we should note
the similarity of the covariantised constraints (6.85) to the Lagrangian equations of
motion of the two-forms (3.113), which act as the duality relation between the one-
and two-forms.

Lastly we have to examine the consistency of the primary two-form constraints HP2
(6.38), which are not of the simple shift type form. In section 4.4 we found that the
consistency of the analogous constraints HP2 of the model theory requires the sec-
ondary constraints HS2 (4.72) because of the non-vanishing Poisson bracket relation
{HP2,HS1} ≠ 0. The primary constraints HP2 Poisson-commute with every other
primary constraint and hence their time evolution as generated by the total Hamilto-
nian is identical to the time evolution generated by the canonical Hamiltonian. The
consistency conditions for HP2 can thus be written as (6.86).

0
!
= {(HP2)

mnM ,HExFT-Total} = {(HP2)
mnM ,HExFT} (6.86)

What makes the consistency condition (6.86) of ExFT more complicated than the
analogous condition in the model theory from section 4.4 is the fact that there are
other (secondary) constraints in the ExFT Hamiltonian HExFT, all of which depend
on the two-forms. This two form dependence is hidden inside the topological term,
the modified one-form momenta or the Stückelberg coupling in the one-form field
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strength. Furthermore the secondary constraints do not Poisson-commute with HP2.
Because the Lagrangian kinetic term of the two-forms is linear in the time derivative
the Hamiltonian does not depend on the two-form momenta ΠklL(B). Hence only
the ΠmnM (B) part of the constraints HP2 is relevant to the calculation of (6.86).
This allows us to express (6.86) in terms of the transformation (6.87) of the momenta
ΠmnM (B) generated by the canonical Hamiltonian.

{(HP2)
mnM ,HExFT} = {ΠmnM (B),HExFT}

!
= 0 (6.87)

In the model theory of section 4.4 the consistency condition which is directly analo-
gous to (6.87) implies the secondary constraints (4.72). However in ExFT there are
contributions to (6.87) from every secondary constraint. The Lagrange multipliers of
the secondary constraints in the Hamiltonian are independent and hence we should
be able to split up (6.87) into the independent consistency conditions (6.88), (6.89),
(6.90) and (6.91), where we use the smeared version of the secondary constraints.

{HP2[λ],HHam[N ]} = {ΠmnM (B),HHam[N ]} ≠ 0 (6.88)

{HP2[λ],HDiff[N
l]} = {ΠmnM (B),HDiff[N

l]} ≠ 0 (6.89)

{HP2[λ],HGD[A
L
t ]} = {ΠmnM (B),HGD[A

L
t ]} ≠ 0 (6.90)

{HP2[λ],HS1[BtlL]} = {ΠmnM (B),HS1[BtlL]} ≠ 0 (6.91)

The above consistency conditions are simply the statement that the transformations
of ΠmnM (B) generated by these secondary constraints, with the transformation pa-
rameters given by the relevant Lagrange multipliers, should vanish. These conditions
are in direct analogy to the second-class secondary HS2 constraints of the model the-
ory from section 4.4 and we should expect that they behave in way that is similar to
the results of section 4.4.3. These second class consistency conditions should then in
particular require the introduction of a Dirac bracket, which involves the same issues
that were discussed in section 4.4.4. In section 6.9.5 we calculate the explicit trans-
formations that are equivalent to (6.88), (6.89), (6.90) and (6.91).

The consistency of the secondary constraints that we have found does not require any
further (tertiary) canonical constraints.

6.9 Canonical (gauge) transformations of the E6(6) ExFT

In this section we calculate the transformations generated by the canonical constraints
via the Poisson brackets on the canonical coordinates. As in the previous chapters
we may think of the canonical (gauge) transformations generated by an integrated
(first class) constraint H[λ] on any canonical coordinate X as the infinitesimal trans-
formation δH[λ]X = {X,H[λ]}. Without the full constraint algebra we do not know
at this point which constraints are first class and which are second class. Hence we
will intuitively use the term “gauge transformation” in this chapter for those canon-
ical transformations which we can identify with the gauge transformations of the
Lagrangian formulation of ExFT.

In the section 6.9.1 we briefly explain why it may be computationally advantageous
to examine the (gauge) transformations in the “non-topological” limit of κ = 0.
Thereafter the canonical (gauge) transformations are computed and considered on a
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constraint by constraint basis.

In the remainder of this chapter we generally use the smeared (or integrated) versions
of the canonical constraints, which have been described in section 4.1, in order to
avoid having to write derivatives of the Dirac delta distribution.

6.9.1 Gauge transformations at κ = 0

The complexity of the Hamiltonian topological term Htop, defined by (6.68), is inher-
ited from the Lagrangian topological term and poses a major computational challenge
to the canonical analysis of the E6(6) ExFT. To simplify the canonical Hamiltonian
we modified the canonical momenta of the one-forms in section 6.3 by subtracting
all topological contributions. Because this modification is not a canonical transfor-
mation the modified momenta do not Poisson-commute {Pn

N (A),Pm
M (A)} ̸= 0. This

procedure is identical to the treatment of the topological term of the E6(6) invariant
five-dimensional supergravity in chapter 5, but the topological term of the E6(6) ExFT
is unfortunately far more complicated. Nonetheless we can proceed with the compu-
tations in the same manner as in chapter 5.
We first carry out the computation for the case κ = 0 and often we find that this
expression already contains much of the relevant information about the overall result
because only the topological contribution is missing. Next we proceed to compute the
topological contributions which are linear in the coefficient κ. This is the full result,
because the terms that are quadratic in κ can only consist of Poisson brackets that
do not involve any canonical momenta and hence have to vanish.

For many computations the only difference between κ = 0 and κ ̸= 0 is that the
one-form momenta Πn

N (A) are replaced by the modified momenta Pn
N and in some

cases the full result does not depend on κ at all. The transformations of the modified
momenta Pn

N are however particularly difficult to compute for the case of κ ̸= 0 and
for some of these transformations we only give the result for the κ = 0 computation
because the computation of the remaining terms becomes too difficult. What we are
missing completely in the case of κ = 0 is the dynamics of the two-forms, which is
purely topological.

We only consider the case κ = 0 as a computational tool that allows us to manage one
of the main difficulties of this canonical analysis. Moreover this method allows us to
formulate partial results for some of the most difficult calculations. It is very likely
that the case κ = 0 has no meaningful physical interpretation and upon solution of the
section condition it probably does not correspond to any physically meaningful theory.

It is useful to briefly examine the consequences of setting κ = 0. By definition the
modified one-form momenta reduce to the canonical momenta Pn

N = Πn
N (A) and the

topological term in the Hamiltonian vanishes Htop = 0. The two-form field strength
∂KHklmN term in the tensor gauge constraints HS1 vanishes too. Although the dynam-
ics of the two-forms is governed by a topological kinetic term, the two-form constraints
HS1 do not vanish completely due to the remaining BtlM term that originates from
the Stückelberg coupling term in the field strength FM

µν of the generalised Yang-Mills
term. The canonical Hamiltonian in the case κ = 0, denoted by H κ=0

ExFT, is hence
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vastly simplified and explicitly given by (6.92).

H κ=0
ExFT =+N ·

[
+

1

4e
Πab(e) Πab(e)−

1

12e
Π(e)2 − e R̂+ e VHP (6.92)

+
3

2e
ΠMN (M) ΠRS(M) MMR MNS − e

24
gkl DkMMN DlM

MN

+
e

4
MMN grm gsn FM

rs FN
mn +

1

2e
glm MKL Πl

L(A) Π
m
K(A)

]
+Nn ·

[
+ 2 Πm

a(e) D[nem]a − ena DmΠm
a(e)

+
1

2
ΠMN (M) DnMMN

+ FM
nl Π

l
M (A) + ∂M

(
gmnM

MN Πm
N (A)

) ]
+AM

t ·
[
−DlΠ

l
M (A)− 5 dNLS dMNK AK

m∂SΠ
m
L (A)

+ Πm
a(e) ∂Mema −

1

3
∂MΠ(e)

+
1

2
ΠKL(M) ∂MMKL − 6PR

K
S
M ∂S

(
ΠKL(M)MRL

) ]
+BtlM ·

[
+ 10 dMKL ∂KΠl

L(A)

]
+ Ṅ ·Π(N) + Ṅa ·Πa(Na) + ȦM

t ·ΠM (At)

In the following we will add a κ = 0 to the name of the (secondary) constraints, e.g.
H κ=0

S1 , to indicate that the above version of the constraints is meant.

6.9.2 Generalised exceptional diffeomorphisms

We find that the generalised diffeomorphism constraints HGD (6.84) (mainly) gen-
erate the generalised exceptional diffeomorphisms in the form of the generalised Lie
derivative, which includes the correct generalised weight terms. The generalised Lie
derivative δΛ = LΛ is the full result for the transformation of the spatial vielbein, the
scalar fields and their conjugate canonical momenta, which agrees with the transfor-
mations described in the Lagrangian formulation. The structure of the generalised
Lie derivative is already apparent in the form of the constraints (6.84).

{ena,HGD[ζ]} = Lζena (6.93)
{Πn

a(e),HGD[ζ]} = LζΠ
n
a(e) (6.94)

{MMN ,HGD[ζ]} = LζMMN (6.95)

{ΠMN (M),HGD[ζ]} = LζΠ
MN (M) (6.96)

As in the Lagrangian formalism the situation is more complicated for the transforma-
tions of the generalised differential forms.

The relevant part of the constraints for the transformation of the one-forms are the
momentum terms from the expression (6.60). We can see from the transformation
(6.97) that the HGD constraints generate a generalised diffeomorphism transformation
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in the one-forms, as represented by the generalised Lie derivative acting on the one-
forms, but we also find that they generate further terms.

{AN
n ,HGD[ζ]} = LζA

N
n + ∂nζ

N − 5 dNLR ∂L(dRMK ζMAK
n ) (6.97)

= Dnζ
N + 5 dNLR ∂L(dRMK ζMAK

n ) (6.98)

= Dnζ
N + δHS1[− 1

2
d·MK ζMAK

· ](A
N
n ) (6.99)

We can recognise the second term in (6.97) as the abelian U27(1) transformation
(5.53), which we know from the five-dimensional supergravity from chapter 5 and this
is the only part of this transformations that exists in the trivial solution of the section
condition. The additional momentum term in (6.60), which was found during the
Legendre transformation, is responsible for generating the last term in the transfor-
mation (6.97). To rewrite the transformation (6.97) we can use the symmetrisation
of the ExFT Dorfman bracket relation (3.82) to find the useful identity (6.100).

LζA
N
n = −LAnζ

N + 10 dNLR dRMK ∂L(ζ
MAK

n ) (6.100)

By combining the definition of the covariant derivative with the identity (6.100) we are
able to rewrite the transformation (6.97) in the form of (6.98). Instead of cancelling
the trivial term coming from the identity (6.100) the extra term in the transformation
(6.97) simply switches sign. As we will see later, the trivial extra term in (6.98) should
be thought of as a tensor gauge transformation, as generated by the HS1 constraints
on the one-forms. We can thus write the transformation as (6.99) and we find that
this expression agrees with the Lagrangian gauge transformation (3.86), up to the
tensor gauge transformation term.

Equation (6.101) gives the transformation of the (original) canonical one-form mo-
menta Πn

N (A) at κ = 0.

{Πn
N (A),HGD[ζ]} = LζΠ

n
N (A)− 5 dPKLdNMP ζM ∂KΠn

L(A) (6.101)

= LζΠ
n
N (A)− 1

2
dNMP ζM (Hκ=0

S1 )nP (6.102)

In the transformation (6.101) we can find the generalised Lie derivative term, but
there is again an additional term, which also originates from the second momentum
term in (6.60). We can identify the additional term in (6.101) as the κ = 0 version
of the HS1 constraints (cf. equation (6.92) and we can rewrite the transformation as
(6.102).

Due to the Pn
N terms in the constraints (6.84) and due to the complexity of the

topological term the calculation of the full transformation of Pn
N is computationally

exceedingly complicated. What we can say about the full transformation of Pn
N is

that it should certainly reduce to the expression (6.102) for the case κ = 0. It should
therefore be expected that some of the topological contributions arrange into the
modified momenta Pn

N (A) and some into the full HS1 constraint, which in particular
includes the covariantisation terms in the two-form field strength. One might hope
that the transformation of the form (6.103) is the full transformation and that all
other contributions cancel, but this may be too optimistic and there may indeed be
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further transformations that appear in (6.103) which remain to be determined.

{Pn
N (A),HGD[ζ]}

?
= LζPn

N (A)− 1

2
dNMP ζM (HS1)

nP (6.103)

Moreover it may be interesting to notice the analogy between the appearance of the
U(1)27 one-form gauge transformations in the canonical (external) diffeomorphism
transformations of the ungauged maximal five-dimensional E6(6) invariant supergrav-
ity and the appearance of the two-form gauge transformations in the canonical (in-
ternal) generalised exceptional diffeomorphisms of the ExFT, which we have seen
above. This analogy can be seen more readily when comparing the explicit canoni-
cal transformations generated by the diffeomorphism constraints of five-dimensional
supergravity on the one-forms (5.60) and their momenta (5.61) to the transforma-
tions generated by the generalised diffeomorphism constraints on the one-forms (6.99)
and their momenta (6.102). What we can see in this comparison is that where a
U(1)27 gauge transformation and the Gauß constraints (i.e. the constraints which
generate the U(1)27 transformations) appear in the standard diffeomorphisms of the
five-dimensional supergravity, respectively a tensor gauge transformation and the HS1
constraints appear in the generalised diffeomorphism transformations in the ExFT.

Because the Lagrangian kinetic term of the two-forms (6.45) is linear in the time
derivative this term cancels in the Legendre transformation described in section 6.5.3.
The canonical Hamiltonian hence cannot depend on the two-form canonical momenta
ΠklM (B), which is also illustrated by the Hamiltonian of the two-form model theory
in section 4.4. The absence of the canonical momenta from the canonical Hamiltonian
is a general feature of theories where the kinetic term only depends on a single time
derivative. Moreover this implies that the two-forms cannot transform under any
of the secondary constraints that make up the canonical Hamiltonian. The primary
constraints HP2 (6.38), which are not part of the Hamiltonian, do however lead to
non-vanishing transformations of the two-forms, as we have seen in section 4.4. By
definition the two-form canonical momenta are contained in the constraints HP2, which
directly relate the momenta to (the internal derivative of) the two-form components.
We can make use of the primary constraints HP2 to insert the canonical momenta
ΠklM (B) into the two-form kinetic term, which is part of HGD, to rewrite it as in
(6.47). If we then apply the primary constraints HP2 = 0 we do indeed find that the
(6.47) terms in HGD generate the generalised Lie derivative acting on the two-forms
as (6.104).

{BmkZ ,HGD[ζ]} = LζBmkZ if (HP2) = 0 is used, else 0 (6.104)

What is problematic about the transformation (6.104) is that we are not allowed to
apply the canonical constraints inside the Poisson bracket, but this would be allowed
inside the Dirac bracket [28]. From the model of section 4.4 we know that the two-form
constraints are second class constraints and hence we should ultimately construct the
Dirac bracket. It does however seem rather likely that the transformation (6.104)
would take the same form in the Dirac bracket, perhaps with some additional gauge
transformation terms being generated.
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The transformation of the two-form momenta ΠmkZ(B) that is generated by HGD is
given by (6.105).

{ΠmkZ(B),HGD[ζ]} = −300κ ϵtmknr dRNQ dZST dMNT ∂S
(
ζM ∂RBnrQ

)
(6.105)

− 15κ ϵtmkls dZNR dNKM ∂l∂R
(
ζM AK

s

)
+ 30κ ϵtmklr dZNR dNKT ∂R

(
∂Lζ

T AK
r AL

l

)
− 10κ ϵtmklr dZNR dNKT ∂R

(
ζLAK

r ∂LA
T
l

)
− 150κ ϵtmklr dZNR dNKT dLTS dPLQ ∂R

(
∂Sζ

P AK
r AQ

l

)
+ 50κ ϵtmklr dZNR dNQL dLKX dMYX ∂R

(
ζM AQ

r ∂KAY
l

)
+ 5κ ϵtmklr dZNR dNML ∂R

(
ζM [Al, Ar]

L
E
)

The transformation (6.105) has many topological contributions that originate from the
two-form terms inside the topological term that is contained in the HGD constraints.
There is no obvious simplification for these terms, but we know from the consistency
condition (6.90) that the expression (6.105) should itself be a canonical constraint if
we replace the parameter by ζM = AM

t . This constraint is then the analogue of the
HS2 constraints that we found in the model theory in section 4.4. Without the explicit
form of the Dirac bracket these constraints and the transformation (6.105) are very
hard to interpret.
Nonetheless we find that if we again make use of the primary constraints HP2 to
insert the canonical momenta into HGD, then the term (6.47) will also generate the
generalised Lie derivative of the two-form momenta LζΠ

mkZ(B). For the momenta
there will however be additional topological contributions in this transformation due
to the topological (non-kinetic) two-form terms in the modified one-form momenta
and inside the topological term Htop.

6.9.3 External diffeomorphisms

We find that the canonical external diffeomorphism constraints HDiff (6.83) (mainly)
generate the covariantised external diffeomorphism transformations in the canonical
variables.

When the constraints HDiff act on the spatial vielbein (6.106) and the scalar fields
(6.108) we find that the resulting gauge transformations are identical to the covari-
antised versions of the standard diffeomorphism transformations, where all derivatives
have been replaced by the (external) covariant derivatives. These transformations
agree with the spatial parts of the Lagrangian gauge transformations (3.109) and
(3.110) respectively.

{ena,HDiff[ξ]} =+ ξl Dlen
a +Dnξ

l el
a (6.106)

{Πn
a(e),HDiff[ξ]} =+ ξl DlΠ

n
a(e)−Dlξ

nΠl
a(e) +Dlξ

l Πn
a(e) (6.107)

+ 2 elaM
MN ∂Mξ(l Pn)

N (A)

{MMN ,HDiff[ξ]} =+ ξnDnMMN (6.108)

{ΠMN (M),HDiff[ξ]} =+ ξnDnΠ
MN (M) +Dnξ

nΠMN (M) (6.109)

− 2 ∂Kξm gmn Pn
L(A)MK(MMN)L

Similarly we find that the transformations of the canonical momenta of the vielbein
(6.107) and of the scalar fields (6.109) are also given by the covariantised standard



6.9. Canonical (gauge) transformations of the E6(6) ExFT 119

diffeomorphism transformations (with the appropriate external standard diffeomor-
phism weights, as listed in table 5.1), but there are additional ∂Nξn terms in these
transformations. These ∂Nξn terms originate from the −glmMKLP l

L(A) ∂KNm term
in the HDiff constraints, which we identified in the Legendre transformation in section
6.5.4 as coming from the interplay of the Einstein-Hilbert improvement and the Yang-
Mills terms. Because this term depends on the spatial components of all of the fields
it leads to similar contributions in the transformations of all canonical momenta. And
because this term in particular also depends on the modified one-form momenta it
also contributes to the transformation of the one-forms, which is given by (6.110).

{AN
n ,HDiff[ξ]} = +ξm FN

mn − gmnM
MN ∂Mξm (6.110)

When compared to the analogous transformation (5.59) in the five-dimensional super-
gravity from chapter 5 we can recognise the first term of (6.110) as the covariantised
version of the standard diffeomorphism. Furthermore this term agrees with the spatial
part of the first term in the Lagrangian gauge transformation (3.112). The second
term in (6.110) also agrees with the spatial components of the ∂Mξm term of the La-
grangian transformation (3.112) in form, but surprisingly the signs of the ∂Mξm term
do not agree. This point will be discussed further at the end of this section when we
examine the origin of the −glmMKLP l

L(A) ∂KNm term in detail.

When the coordinate dependence of the gauge parameters of the external diffeomor-
phisms is restricted to depend only on the external coordinates, i.e. ξn

(
xµ, Y M

)
=

ξn(xµ) or equivalently ∂Nξn = 0, then the above transformations that are generated
by the HDiff[ξ] constraints are precisely the D-covariantised version of the standard
diffeomorphism transformations. External diffeomorphism transformations with the
parameters ξn(xµ) are a manifest symmetry of each of the terms in the E6(6) ExFT La-
grangian (3.98) [3, 25]. By contrast the external diffeomorphism transformations with
parameters ξn

(
xµ, Y M

)
are not a manifest symmetry of (3.98), instead they connect

the different terms of the Lagrangian and thereby the invariance of the action requires
very specific coefficients in the Lagrangian which makes the E6(6) ExFT action unique
(up to the overall scaling and the section condition) [3, 25]. Moreover it seems to
be the case that the ∂Mξm terms in the transformations (6.107), (6.109) and (6.110)
have a similar connecting function in the canonical formalism because these terms
depend on different canonical variables and mix the coordinate dependence. We can
therefore speculate that the closure of the (bosonic) canonical constraint algebra may
require the cancellation of such mixing terms in the relations that concern the HDiff[ξ]
constraints which would in turn fix all coefficients in the canonical Hamiltonian.

The transformation of the (original) canonical one-form momenta Πn
N (A) is more com-

plicated than the above transformations, because of the one-form dependent covari-
ant derivative terms and the covariant one-form field strength in the diffeomorphism
constraints (6.83). Under the κ = 0 version of the diffeomorphism constraints the
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momenta Πn
N (A) transform as (6.111).

{Πn
N (A),Hκ=0

Diff [ξ]} =+ ξk DkΠ
n
N (A)−Dkξ

nΠk
N (A) +Dkξ

k Πn
N (A) (6.111)

+ ξn
(
Hκ=0

GD
)
N
+

1

2
dNKL ξk AK

k (Hκ=0
S1 )nL

+ ∂Nξk Πn
a(e) ek

a − 1

3
∂NξnΠk

a(e) ek
a

− 1

3
∂NξnΠKL(M)MKL − ∂KξnΠKL(M)MLN

+ 10 dRSM dKNR ∂Sξ
nΠKL(M)MLM

+ 10 dRSM dKNR ∂Sξ
[mΠ

n]
M (A)AK

m

The covariantised standard Lie derivative of Πn
N (A) can be found in the first line

of the transformation (6.111). The transformation (6.111) can be compared to the
analogous transformation (5.61) of the canonical analysis of the five-dimensional su-
pergravity from chapter 5 and we can see that the Hκ=0

GD term that appears in the
transformation (6.111) is an extension of the U(1)27 Gauß constraint term in the
transformation (5.61). As we can see from (6.92) the Hκ=0

S1 constraints consist only of
a Πn

N (A) term. The Πn
N (A) terms in (6.111), some of which are hidden inside the Hκ=0

GD
and Hκ=0

S1 constraints originate from the transformation of the covariantised one-form
field strength FM

mn. All of the remaining terms in (6.111) are of the ∂Nξn form. In
the case κ = 0 the −glmMKLΠl

L(A) ∂KNm term is irrelevant to the transformation
of the momenta Πn

N (A) and the ∂Nξn terms in the transformation (6.111) originate
from the covariant derivative terms in the HDiff constraints.

The calculation of the transformation of the modified momenta Pn
N (A) can proceed

in analogy to the calculation outlined in section 5.3.2 and we need to be aware of the
Poisson non-commutativity of these variables. What we find is that the transformation
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of the Pn
N (A) can be expressed as in equation (6.112).

{Pn
N (A),HDiff[ξ]} =+ ξk DkPn

N (A)−Dkξ
n Pk

N (A) +Dkξ
k Pn

N (A) (6.112)

+ ξn (HGD)N +
1

2
dNKL ξk AK

k (HS1)
nL

+ ∂Nξk Πn
a(e) ek

a − 1

3
∂NξnΠk

a(e) ek
a

− 1

3
∂NξnΠKL(M)MKL − ∂KξnΠKL(M)MLN

+ 10 dRSM dKNR ∂Sξ
nΠKL(M)MLM

+ 10 dRSM dKNR ∂Sξ
[m Pn]

M (A)AK
m

− 9

2
κ ϵlmqn dNQT ∂KAQ

mAK
q ∂W ξk glk M

TW

− 3

2
κ ϵlmqn dNQT ∂KAK

q AQ
m ∂W ξk glk M

TW

+ 3κ ϵlmnr dMQT ∂NAM
r AQ

m ∂W ξk glk M
TW

+
30

4
κ ϵlmqn dMQT dMRK dRSN ∂KAQ

mAS
q ∂W ξk glk M

TW

+
45

2
κ ϵlmqn dMQT dMRK dRSN ∂KAS

q AQ
m ∂W ξk glk M

TW

− 15κ ϵlnqr dMNT dMRK dRSL ∂KAL
r AS

q ∂W ξk glk M
TW

+ 6κ ϵlmqn dMNT ∂qA
M
m ∂W ξk glk M

TW

− 30κ ϵlmqn dMQR dQNT ∂RBmqM ∂W ξk glk M
TW

+ κΓ(A,B)N ξn

In the calculation of (6.112) we have to repeatedly apply the Schouten identity (equa-
tion (A.2) in appendix A) in order to move the correct index onto the gauge param-
eters. The two Pn

N (A) dependent terms in HDiff generate many topological contribu-
tions and most of these terms end up in the HS1 constraints or in the complicated
topological term (6.68), which is contained in the HGD constraints. What is perhaps
most surprising about the calculation of (6.112) is that the rewriting (6.49) of the
purely two-form dependent terms has to be used in order to match the term found
in HGD and this calculation requires the application of the section condition (3.72).
As far as the transformations presented in this thesis are concerned this is the only
calculation outside of the canonical constraint algebra where the section condition is
required in the canonical formulation of ExFT. We continue to discuss this point in
chapter 7.
In the transformation (6.112) we furthermore find many topological ∂Nξn terms for
which we do not seem to be able to find a simpler form. And finally we have written
κΓ(A,B)N ξn in (6.112) to capture a rather large number of topological contributions
that are left over. Most of these terms that are contained in the Γ(A,B) depend only
on the one-forms and few depend on both the one- and two-forms. However there are
no terms inside Γ(A,B) that purely depend on the two-forms. We should furthermore
note that these terms are not of the ∂Nξn form and the interpretation of these terms
is not clear at this point — they might either cancel in a non-trivial way Γ(A,B) = 0
or they might form some more complicated transformation terms.

Because the two-form kinetic term in the ExFT Lagrangian is linear in the time
derivative we argued in section 6.9.2 that the two-forms do not transform non-trivially
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under any of the secondary constraints in the Hamiltonian because they cannot contain
any two-form momenta. Moreover we showed in section 6.9.2 that if one were allowed
to make use of the primary constraints HP2 one could rewrite the two-form term
in the HGD constraints to insert the canonical momenta ΠklM (B) and generate the
generalised Lie derivative of the two-forms. This trick only works because of the
structure of the two-form term in the HGD constraints, the same procedure does not
work for the other secondary constraints, e.g. in the diffeomorphism constraints HDiff
we cannot use the primary constraints at all because the two-forms only appear inside
of the FM

mn and Pn
N (A), which do not have the right structure. Even if we were allowed

to use the primary constraints it would thus not be possible to make the topological
two-forms transform under external diffeomorphisms canonically. This is consistent
with the results of the canonical analysis of the model two-form theory in section
4.4. Canonically this should moreover be expected for any fields whose only kinetic
term is located in the topological term, which by definition does not depend on the
metric Gµν and hence not on the shift vector Nn, which is the Lagrange multiplier
of the diffeomorphism constraints. Thus the two-forms cannot “see” the external
diffeomorphisms canonically because their kinetic term does not couple to the shift
vector and their transformation (6.113) vanishes.

{B,HDiff[ξ]} = 0 (6.113)

The same argument applies to the transformation of the conjugated two-form mo-
menta ΠpvS(B) and we do not find any Lie derivative terms in this transformation.
The transformation of the momenta ΠpvS(B) is nonetheless non-vanishing because of
the contributions from the two-form dependent FM

mn and Pn
N (A) terms in the HDiff

constraints. The transformation is given explicitly by (6.114).

{ΠpvS(B),HDiff[ξ]} =+ 20 dTKS ∂K

(
ξ[p Pv]

T (A)
)

(6.114)

+ 30κ ϵlpvrdSNRdNKT ∂R

(
∂Lξ

k gkl M
LT AK

r

)
− 30κ ϵlpvrdSNRdNKT∂R

(
ξk FT

kl A
K
r

)
The expression of the transformation (6.114) is moreover equivalent to the consistency
condition (6.89) when we replace the parameters by ξn = Nn. We continue the
discussion of this point in section 6.9.5 when discussing the two-form constraints and
the tensor gauge transformations.

The origin and sign of the term −glmMKLP l
L(A) ∂KNm in the Hamiltonian

The only diffeomorphism transformation that contains a ∂Nξn term which we can com-
pare to an analogous Lagrangian gauge transformation is the transformation (6.110)
of the one-forms, which we can compare to the transformation (3.112). From this
comparison we can see that the sign of the ∂Nξn term in the canonical transformation
differs from the sign of this term in the Lagrangian transformation, which is unex-
pected. What is clear is that the minus sign in the transformation (6.110) is a direct
consequence of the sign of the −glmMKLP l

L(A) ∂KNm term in the diffeomorphism
constraints of the ExFT Hamiltonian. In the remainder of this section we want to
examine and explain the origin of this term in detail.

We begin by looking at the ADM decomposition of the Einstein-Hilbert improvement
term (6.9) where we find the term + e

N FM
tn ∂MNn. This term can be found by taking
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the µ = t, ν = n, α = 0, β = b, ρ = {t, r} parts of the five-dimensional indices and
then making use of the identity ∂M (eb

n er
b) = 0 to unify the ρ = {t, r} contribu-

tions. In the computation of the canonical momenta Πl
T (A) (6.20) the + e

N FM
tn ∂MNn

term in the Lagrangian leads to the contribution + e
N ∂TN

l to the Πl
T (A) and conse-

quently to the modified momenta P l
T (A). Due to the linearity in the time derivative,

the Lagrangian term + e
N FM

tn ∂MNn cancels in the step from (6.54) to (6.55) in the
Legendre transformation against the Legendre transformation term of the one-forms
ȦN

n · Πn
N (AN

n ). What we then found, at the point (6.55) of the Legendre transfor-
mation, was that only the Yang-Mills term, which in particular contains the term
+ e

2N gsnMMN ȦM
s ȦN

n , contains time derivatives. Many terms are then generated by
inserting the expression (6.57) for ȦN

n into this + e
2N gsnMMN ȦM

s ȦN
n term in (6.55).

And focusing on the terms where one Ȧ ∼ P(A) and the other Ȧ ∼ − e
N ∂TN

l we then
arrive at the term −glmMKLP l

L(A) ∂KNm in the Hamiltonian. Hence the minus sign
of this term originates from the inversion of the modified momenta Ȧ(P) (6.57).
When the −glmMKLP l

L(A) ∂KNm term acts on the one-forms via the Poisson bracket,
as in the transformation (6.110), we immediately find the contribution (6.115) to the
transformation.

{AN
n ,−glmMML P l

L(A) ∂MNm} = −gmnM
MN ∂MNm (6.115)

Regarding the Lagrangian gauge transformation in section 3.5.3, we explained the
origin of the analogous term in the transformation (3.112) as originating from a com-
pensating Lorentz transformation when considering the Kaluza-Klein-like rewriting
of eleven-dimensional supergravity (see also references [25, 103]). What we found in
section 3.5.3 was that there does not seem to be any choice in the derivation of this
sign coming from the gauge transformations of eleven-dimensional supergravity.
Moreover the difference in sign between the Hamiltonian and Lagrangian formalism
could possibly be explained by a diverging convention, but the conventions chosen in
this work and in particular the signature of the Minkowski metric, seem to agree with
the conventions that are used in the references [3, 25].

Looking at the transformation (6.110) from a purely canonical perspective it is not
immediately clear that the sign in (6.110) is problematic, although it remains to be
examined whether this sign might affect the closure of the canonical constraint algebra.

With all the above factors taken into consideration we do not have an explanation
for the difference in the sign of the ∂Nξn term in the transformation (6.110) when
compared to the analogous term in the Lagrangian gauge transformation (3.112).

6.9.4 Time evolution

Acting on the canonical coordinates with the Hamilton constraint HHam (6.82) gen-
erates the time evolution. The time evolution that is generated by the Hamilton
constraint on the spatial vielbein (6.116), the scalar fields (6.117) and the one-forms
(6.118) is in form identical to the time evolution that we have seen in E6(6) invariant
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five-dimensional supergravity in section 5.3.2.

{ena,HHam[ϕ]} =+
ϕ

2e
gmn Πm

a(e)−
ϕ

6e
Π(e) ena (6.116)

{MMN ,HHam[ϕ]} =+
6

e
ϕ ΠQP (x) MMQ MNP (6.117)

{AN
n ,HHam[ϕ]} =+

ϕ

e
gnl M

NL P l
L(A) (6.118)

The form of the time evolutions of these fields is identical in both theories because
the canonical momenta terms in the Hamilton constraint are of the same form in both
theories. We can see the transformation (6.118) as another argument in favour of
the modified momenta Pn

N (A) because the time evolution of the one-forms is most
concisely written in terms of the modified variables.

In contrast to the time evolution of the fields the time evolution of the canonical mo-
menta is significantly more complicated in the ExFT when compared to that of E6(6)

invariant five-dimensional supergravity. Some of the five-dimensional transformations
are already relatively complicated, but much of the added complexity comes from the
scalar potential, the topological contributions and the covariant external derivatives.

In the canonical formulation of the E6(6) invariant five-dimensional supergravity the
canonical time evolution of the vielbein momenta Πn

a(e) is given by (5.48), which con-
tains the spatial Einstein equation in vielbein form and contributions from all other
terms in the Hamilton constraint because the metric couples to all fields. The analo-
gous covariantised time evolution in the ExFT contains a number of additional terms,
mostly due to the scalar potential (6.67) which does not exist in five-dimensional
E6(6) invariant supergravity. The canonical time evolution of the vielbein momenta in
ExFT is given by (6.119), the covariant derivative ∇n contains only the Levi-Civita
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connection.

{Πn
a(e),HHam[ϕ]} =+

ϕ

4e
Πbc(e) Πbc(e) ea

n − ϕ

2e
Πk

b(e) Π
n
b(e) eka (6.119)

− ϕ

12e
Π2(e) ea

n +
ϕ

6e
Π(e) Πn

a(e)

− 2ϕe

(
R̂nk eka −

1

2
R̂ ea

n

)
+ 2e

(
∇a∇nϕ−∇k∇kϕ ea

n
)

+
3ϕ

2e
ΠMN (M) ΠRS(M) MMR MNS ea

n

+
ϕe

24
∂kMMN ∂lM

MN gkl ea
n − ϕe

12
∂kMMN ∂lM

MN gln ea
k

− ϕe

4
MMN FM

rs FN
km grk gsm ea

n + ϕeMMN FM
rs FN

km grk gmn ea
s

+
ϕ

2e
MKL P l

L(A) Pk
K(A) glk ea

n − ϕ

e
MKL Pn

K(A) P l
L(A) ela

+
eϕ

4
MMN ∂Mgkl ∂Ngkl ea

n + ∂M

(
eϕ

2
MMN ∂Ngkl

)
gkn ea

l

− ∂N

(
eϕ

2
MMN∂Mgmn

)
ema

− ϕ

e
MMN ∂Me ∂Ne ea

n − 2 ∂N

(
ϕ

e
MMN ∂Me

)
e ea

n

+
e ϕ

24
MMN∂MMKL∂NMKL ea

n − e ϕ

2
MMN∂MMKL∂LMNK ea

n

− eϕ∂M∂NMMNea
n − 2e∂M∂NϕMMNea

n − 2e∂Nϕ∂MMMNea
n

− 2 e ϕFM
mk g

mn ∂Meka − ∂M

(
e ϕFM

mk g
mn eka

)
− e ϕFM

mk ∂Mebr

(
enb e

k
a g

mr + ekb e
m
a grn + ekb e

r
a g

mn
)

In E6(6) invariant five-dimensional supergravity the canonical time evolution of the
scalar momenta ΠKL(M) (5.50) is relatively simple. In (5.50) we can see the con-
tributions from the scalar kinetic terms and the transformation is only slightly com-
plicated by the use of the scalar fields MMN as a generalised metric to contract the
E6(6) indices in the Yang-Mills term. In the analogous transformation in ExFT these
terms also exist, but there are numerous additional contributions coming from the
covariant derivatives in the scalar kinetic terms and in particular also from the scalar
potential (6.67). The canonical time evolution of the scalar momenta in ExFT is given
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by (6.120).

{ΠKL(M),HHam[ϕ]} = −6ϕ

e
ΠPK(M) ΠLR(M) MPR (6.120)

− ∂l

(
ϕe

6
gkl ∂kM

KL

)
− ϕe

6
gkl ∂kMMN ∂lM

KM MLN

− ϕe

2
grm gsn FK

rs FL
mn +

ϕ

e
glm P l

M (A) Pm
N (A) MKM MLN

− ∂n

(
e ϕ

12
gmn LAmMMN

)
MKM MLN + ∂n

(
e ϕ

12
gmn LAmM

KL

)
+ ∂R

(
e ϕ

12
gmnDnM

KLAR
m

)
− e ϕ

18
gmnDnM

KL ∂RA
R
m

− e ϕ

6
gmnDnM

M(K∂MAL)
m +

5 e ϕ

3
gmnDnM

M(K dL)TX dUXM ∂TA
U
m

− ∂R

(
e ϕ

12
gmnDnMMN AR

m

)
MKM MLN − e ϕ

18
gmnDnMMN ∂RA

R
mMKM MLN

− e ϕ

6
gmnDnMMN ∂RA

M
m MN(K ML)R

+
5 e ϕ

3
gmnDnMMN dXTM dRUX ∂TA

U
mMN(K ML)R

− e ϕ

2
∂Mgmn ∂NgmnM

M(K ML)N − 2ϕ

e
∂Me ∂NeMKM MLN

+ 4ϕ∂M∂NeMKM MLN + 2∂N∂M (eϕ)MKM MLN − 4∂M (ϕ∂Ne)MM(K ML)N

− e ϕ

12
∂MMRS ∂NMRS MM(K ML)N + ∂M

(
e ϕ

12
MMN ∂NMRS

)
MKR MLS

− ∂N

(
e ϕ

12
∂MMKLMMN

)
+ ∂S

(
e ϕMM(K ∂MML)S

)
+ e ϕ ∂MMRS ∂SMNR MM(K ML)N − ∂M

(
e ϕMMN ∂SMNR

)
MR(K ML)S

It seems likely that there exists a slightly simpler and more covariant form of express-
ing the terms in (6.120) that are coming from the scalar kinetic term, but there seems
to be little hope of significantly simplifying the scalar potential contributions.

In ungauged E6(6) invariant five-dimensional supergravity the canonical time evolution
of the modified one-form momenta P k

K(A), which is given by (5.52), is quite simple
and only consists of two terms. The first term in (5.52) is the contribution from the
abelian Maxwell-like kinetic term and the second term is a topological contribution
that originates from the Poisson non-commutativity of the modified momenta P k

K(A),
but due to the simple topological term in five-dimensions this does not complicate
the transformation much. In the ExFT we have used the one-forms AM

µ to gauge
the generalised diffeomorphism symmetry and as a consequence the canonical time
evolution of their conjugate modified momenta Pk

K(A) becomes very complicated.
These complications originate in part from the more complicated covariant non-abelian
field strength terms and from the covariant derivatives of other fields, but in particular
there are numerous topological contributions from the Poisson non-commutativity of
the modified momenta Pk

K(A) with the P2 term of the Hamilton constraint. Due to
the complexity of the calculation we do not give the full transformation of Pk

K(A) here,
but the canonical time evolution of Πk

K(A), for the case κ = 0 without the topological
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contributions, can be expressed as (6.121).

{Πk
K(A),Hκ=0

Ham[ϕ]} =+ ∂m

(
e ϕ MMK grm gks FM

rs

)
(6.121)

− ∂R

(
e ϕ MMK grm gks FM

rs AR
m

)
+ e ϕ MMN grk gsn FM

rs ∂KAN
n

− 5 dNRS dRKL e ϕ MMN grk gsn FM
rs ∂SA

L
n

+ 5 dNRS dRKL ∂S

(
e ϕ MMN grm gks FM

rs AL
m

)
− eϕ

12
gknDnM

MN ∂KMMN

+ PR
M

L
K ∂L

(
e ϕ gknDnM

MN MRN

)
− 2 ∂m

(
e ϕ ea

[m eb
k](ear∂Ker

b)
)

+ 2 ∂R

(
e ϕAR

m ea
[m eb

k](ear∂Ker
b)
)

− 2 e ϕ ∂KAM
n ea

[k eb
n](ear∂Mer

b)

+ 10 dMRS dRLK e ϕ ∂SA
L
n ea

[k eb
n](ear∂Mer

b)

− 10 dMRS dRLK ∂S

(
e ϕAL

m ea
[m eb

k](ear∂Ker
b)
)

In the first line of (6.121) we can recognise the covariantised version of the transforma-
tion (5.52), the topological term is missing here because the expression above is given
at κ = 0. The remainder of the terms in the transformation (6.121) originate from
the covariantised one-form field strengths in the Einstein-Hilbert term and generalised
Yang-Mill term, as well as from the covariant external derivatives in the scalar kinetic
term.

In the previous sections we have already explained for the external and internal dif-
feomorphism constraints that, due to the Lagrangian two-form kinetic term being
topological and linear in the time derivative, the two-forms cannot transform canoni-
cally under these secondary constraints. The same argument applies to the Hamilton
constraint and we find that the canonical time evolution of the two-forms that is
generated by the Hamilton constraint (6.122) vanishes.

{BklM ,HHam[ϕ]} = 0 (6.122)

Equation (6.122) moreover implies that the overall canonical time evolution of the two-
forms consists entirely of the transformations generated by other canonical constraints
that are not vanishing. We have already confirmed in the topological model theory in
section 4.4 that there are no propagating degrees of freedom for this two-form kinetic
term and this fact should not be changed by the topological and Stückelberg coupling
to the other fields. In contrast to the canonical time evolution of the propagating
fields, which is given in terms of their canonical momenta (cf. (6.116), (6.117) and
(6.118)) we should therefore not expect the canonical time evolution of the two-forms
to be given in terms of ΠklM (B). Furthermore the construction of a (Π(B))2 term in
the Hamilton constraint is not possible, even if we make use of the primary constraints
HP2, because the Stückelberg coupling in the one-form field strength does not have
the same structure as the HP2 constraints.
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Because of the Stückelberg coupling in FM
mn and because of the two-form term that

is hidden inside the modified one-form momenta Pm
M , the canonical two-form mo-

menta ΠpvW (B) do transform under the secondary constraints, including the Hamil-
ton constraint. The Hamilton constraint generated the transformation (6.123) on the
two-form momenta ΠpvW (B).

{ΠpvW (B),HHam[ϕ]} = − ∂N

(
20 dWMNϕ e ea

[p eb
v] (era ∂Mer

b)
)

(6.123)

+ ∂R
(
100ϕ e dMKL dNRW MMN grp gsv ∂KBrsL

)
− ∂K

(
30κϕ

e
gmnM

MN Pn
N AS

q ϵtmpvq dRKW dMRS

)
The transformation (6.123) should not be interpreted as a normal time evolution due
to the above argument and due to the results from the topological model theory in
section 4.4. Moreover the expression (6.123) corresponds to the consistency condition
(6.88) when the transformation parameter is replaced by the lapse function ϕ = N .

6.9.5 BµνM tensor gauge transformations

In this section the transformations that are generated by the constraints HP1 (6.37),
HP2 (6.38) and HS1 (6.85) are discussed and we can identify some of these trans-
formations with the tensor gauge transformations of the two-forms. Furthermore we
comment on the consistency conditions (6.88), (6.89), (6.90) and (6.91) in this section,
which can be seen as being analogous to the HS2 constraints in the topological model
theory from section 4.4.

Because the form of the primary constraints HP1 and HP2 is identical to that of the
eponymous constraints from the model theory of section 4.4 they generate the same
transformations canonically. The primary constraints HP1 (6.37), which are of shift
type, only generate the shift transformations (6.124) on the time components of the
two-forms BtmN , which are conjugate to them.

{BtmN ,HP1[λ]} = 2λmN (6.124)

Likewise the primary constraints HP2 generate the shift transformations (6.125) on
the spatial two-form components BmnS .

{BmnS ,HP2[ρ]} = 2 ρmnS (6.125)

{ΠmnS(B),HP2[ρ]} = 30κ ϵtmnkl dSRN ∂RρklN (6.126)

{Pm
M (A),HP2[ρ]} = −30κ ϵtklmn dKST dTNM AN

n ∂SρklK (6.127)

As has been illustrated in equation (4.82), the general shift transformations (6.124)
and (6.125) in particular include the more specific tensor gauge transformations ΞµM

(3.107), as well as the restricted OµνM shift transformations (3.107). Although in
principle there should be a way of explicitly bringing these canonical shift transfor-
mations into the usual Lagrangian form, which was also discussed in section 4.4, it is
at this point not clear how this can be achieved for the tensor gauge transformations.
The HP2 constraints generate the transformation (6.126) on the momenta ΠmnS(B),
which is identical to the transformation (4.79) of the model two-form theory.
The modified momenta Pm

M (A) transform as (6.127), because of the topological two-
form term that is hidden inside them. We should however not think of this as a new
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transformation, because (6.127) is induced by the transformation (6.125) in the com-
posite expression Pm

M (A) which is not a fundamental canonical coordinate.

The secondary constraints HS1 generate the transformation (6.128) on the one-forms
AN

n .
{AN

n ,HS1[Ξ]} = −10 dLMN ∂LΞnM (6.128)

Moreover we can identify the transformation (6.128) precisely as the tensor gauge
transformation of AN

n , which is induced by the Stückelberg coupling, by comparing
the canonical transformation (6.128) to the Lagrangian ΞµM transformation in equa-
tion (3.106). The one-form momentum term in (6.92) originates from the Stückelberg
coupling and is thus not dependent on the topological term, which means that the
transformation (6.128) of AN

n exists even in the case κ = 0.

By contrast the canonical momenta Πn
N (A) do not transform (6.129) under HS1 in

the κ = 0 case.
{Πn

N (A),Hκ=0
S1 [Ξ]} = 0 (6.129)

Due to the large number of terms originating from the Poisson non-commutativity of
the modified momenta Pn

N and due to the covariantisation terms in HklmN the explicit
transformation of the modified momenta Pn

N generated by HS1 is very complicated
and remains to be calculated.

In agreement with the results of section 4.4 we find that the transformation (6.130)
of the two-forms, generated by the secondary constraints HS1, vanishes. The trans-
formation generated by the HS1 constraints on the two-form momenta ΠqsR(B) is
non-vanishing and given by (6.131), which we can expand as (6.132).

{BqsR,HS1[Ξ]} =0 (6.130)

{ΠqsR(B),HS1[Ξ]} =+ 300κ ϵlqsr dMKL dSNR dQSL ∂N
(
∂KΞlM AQ

r

)
(6.131)

+ 60κ ϵlmqs dMKR Dm∂KΞlM

= + 300κ ϵlqsr dMKL dSNR dQSL ∂N
(
∂KΞlM AQ

r

)
(6.132)

+ 60κ ϵlmqs dMKR ∂m∂KΞlM

− 60κ ϵlqsr dMKR AN
r ∂N∂KΞlM

+ 60κ ϵlmqs dMKN ∂KΞlM ∂NAR
m

− 600κ ϵlmqs dMKL dRPS dLTP ∂sA
T
m ∂KΞlM

In the transformation (6.131) we can recognise the covariantised version of (4.80) plus
an additional one-form dependent term. In the expanded expression (6.132) we can
furthermore see that, due to the different structures of the terms, it is not possible to
simplify this expression in any meaningful way.

The expression (6.132) is equivalent to the consistency condition (6.91) when the
transformation parameter is replaced by the time components of the two-forms ΞnM =
BtnM . In this case the expression is in direct analogy to the HS2 constraints (4.72)
from the two-form model in section 4.4. Although the HS2 constraints consisted only
of the second term in (6.132) for the model theory. With the expression (6.91) we now
have the explicit form of each of the consistency conditions (6.88), (6.89), (6.90) and
(6.91), all of which follow from the conditions (6.87). In analogy to the (second class)
constraints HS2 from the model theory in section 4.4, these consistency conditions
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are all non-vanishing and independent from the other constraints, which means that
we should think of them as canonical constraints. These constraints originate from
the combination of the topological term (3.135) with the Stückelberg coupling in the
one-form field strength (3.90).

What makes these constraints somewhat unusual is their dependence on the Lagrange
multipliers N , Nn, AM

t and BtnN . We have already seen this structure in the model
theory in section 4.4 where the HS2 constraints depend on the Lagrange multipliers
BtnN . Moreover we have found that this circumstance leads to the constraint algebra
relation (4.83), which means that HS2 and the primary constraints HP1 are second
class constraints in the model theory and a similar relation should hold true in ExFT.
In the two-form model theory the HS2 constraints are themselves of the form of the
algebra relation (4.84) which is responsible for making the other constraints second
class and this seems to suggest some relationship between these unusual constraints
and the need for a Dirac bracket. In the ExFT it may be possible that a similar
relation for the constraints (6.88), (6.89), (6.90) and (6.91) means that the shift type
primary constraints, which are simultaneously the canonical momenta conjugate to
the Lagrange multipliers, become second class.
A better understanding of the model theory from section 4.4 and in particular of the
HS2 constraints and the Dirac bracket is needed to make sense of these constraints.

6.9.6 Shifts and Lorentz transformations

In this section we briefly describe the transformations generated by the remaining
primary constraints listed in section 6.4, which are either of the shift type form or
the Lorentz constraints. These transformations are identical to those that appear in
the canonical analysis of the E6(6) invariant five-dimensional supergravity in chapter 5.

The shift type primary constraints generate the shift transformations of the conjugate
canonical variables (Lagrange multipliers) that are listed below.

{N,Π(N)[λ1]} = λ1 (6.133)
{Na,Π(Nb)[λ2]} = (λ2)a (6.134)

{AN
t ,Π(AM

t )[λ3]} = (λ3)
N (6.135)

The spatial Lorentz transformations of the spatial vielbein and their conjugate mo-
menta are generated by the Lorentz constraints (6.39) and can be explicitly written
as follows.

{ena, L[γ]} =+ enb γ
ba (6.136)

{Πn
a(e), L[γ]} =+Πn

c(e) γ
cb δba (6.137)

These Lorentz transformations are identical to those of the E6(6) invariant five-dimen-
sional supergravity which have already been discussed in detail in chapter 5.

6.10 Canonical constraint algebra

In this section the algebra formed by the canonical constraints under the Poisson
bracket is discussed. For some of the relations in the constraint algebra we can only
give speculative results because not all of the transformations of the modified one-
form momenta Pm

M have been fully computed and because some of the calculations
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concerning the constraint algebra are very difficult to compute.

With the exception of the Lorentz constraints, which form the Lorentz subalgebra
(6.138), all of the primary constraints Poisson-commute. In section 4.4 the Poisson-
commutativity of the primary two-form constraints HP1 and HP2 has already been
verified.

Furthermore we can examine the algebra relations which concern the Lorentz con-
straints and the secondary constraints. In chapter 5 we found that the Lorentz con-
straints Poisson-commute with the Hamilton constraint in the canonical formulation
of E6(6) invariant five-dimensional supergravity. The ExFT scalar potential is Lorentz
invariant because it can be expressed entirely in terms of the metric and hence we find
that the Lorentz constraints Poisson-commute with the ExFT Hamilton constraint
(6.139).

{L[γ], L[κ]} = L[−2γc[a κb]c] (6.138)
{HHam[ϕ], L[γ]} = 0 (6.139)

{HDiff[λ], L[γ]} = L[λmDmγab] (6.140)

{HGD[Λ], L[γ]} = L[LΛγ
ab] (6.141)

{HS1[Ξ], L[γ]} = 0 (6.142)

The Poisson bracket of the Lorentz constraints with the external diffeomorphism con-
straints can be written as (6.140), which is another Lorentz constraint term but the
gauge parameters are the covariantised Lie derivative of the original Lorentz parame-
ters. Moreover the relation (6.140) is the covariantised version of the equivalent alge-
bra relation (5.76) from the canonical analysis of the E6(6) invariant five-dimensional
supergravity. The contribution from the −glmMKLP l

L(A) ∂KNm term in the HDiff
constraints to the relation (6.140) vanishes, irrespectively of the sign of the term, due
to the antisymmetry of the Lorentz constraints.
Equation (6.141) states the Poisson bracket of the Lorentz constraints with the gener-
alised diffeomorphism constraints and we can see that the parameters of the resulting
Lorentz constraints are the generalised Lie derivative of the original parameters. The
algebra relation (5.77) of the E6(6) invariant five-dimensional supergravity is analogous
to the relation (6.141) and vanishes, this is consistent because in the trivial solution
of the ExFT section condition the generalised Lie derivative vanishes.
Due to the form of the HS1 constraints they Poisson-commute with the Lorentz con-
straints and we find the relation (6.142).

In the above algebra relations we did not need to make use of the section condi-
tion (3.72). In the computation of the algebra relation (6.143) which concerns the
generalised diffeomorphism constraints however we need to make use of the section
condition many times.

{HGDC[Λ],HGDC[ζ]} = HGDC [[Λ, ζ]E ] + . . . (6.143)

Canonically the computation of the relation (6.143) is much more complicated than in
the Lagrangian formalism. This is in part due to the fact that the HGD constraints do
not just generate generalised diffeomorphisms but also contain some information about
the tensor gauge transformations (cf. equations (6.99) and (6.102)). Furthermore it is
easy to see that the HGD constraints are much complicated than the generalised Lie
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derivative and due to the Poisson non-commutativity of the modified momenta Pm
M

and due to the Hamiltonian topological term inside of the HGD numerous terms are
generated in the computation of (6.143). The constraint algebra relation of the gener-
alised diffeomorphism constraints (6.143) has been verified only for the κ = 0 case. In
this computation there are additional terms which one might be able to rearrange into
further constraints that are possibly related to the tensor gauge transformations, but
the details of this remain to be computed. In the computation of (6.143) one needs
to make use of the cubic d-symbol relations (3.67) and (3.68) repeatedly in order to
move the E6(6) indices between objects.
The fact that the canonical constraints act in the Poisson brackets from the right
onto the fields explains the seeming difference in sign between the canonical relation
(3.127) and the relation (6.143) of the Lagrangian gauge transformation. We can
moreover verify this explicitly by making use of the relation δHGDC[Λ] = { · ,HGDC[Λ]}
to translate the Lagrangian relation (3.126) into the canonical formalism and then
making use of the Jacobi identity and the antisymmetry of the Poisson bracket.

To be consistent the canonical constraint algebra of the E6(6) ExFT has to reduce
to the constraint algebra of the canonical formulation of the E6(6) invariant five-
dimensional supergravity, which was comprehensively calculated in section 5.3.3, when
applying the trivial solution of the section condition. We can thus combine the canoni-
cal results from section 5.3.3 with the Lagrangian gauge algebra, which was calculated
in reference [36] and which we summarised in section 3.5, to make some conjectures
about the remaining canonical constraint algebra relations. For each of the following
conjectured constraint algebra relations it is possible that additional canonical con-
straints appear and this is particularly true for the two-form constraints which do not
have any analogues in five dimensions. Due to the fact that one can always choose
a different basis for the constraint algebra, the constraint algebra of the Hamiltonian
formalism does not have to be identical in form to that of the gauge algebra in the
Lagrangian formalism.

In analogy to the Lagrangian algebra relations (3.120) and (3.121) one might conjec-
ture the canonical constraint algebra relations (6.144) and (6.145), which concern the
external and internal diffeomorphism constraints — these relations are conjectures
and have not been verified computationally.

{HDiff[λ],HDiff[ξ]}
?
= HDiff [λ

µDmξn − ξmDmλn]

+HGD[✘✘✘✘✘✘
λm ξnFM

mn +MMN gmn (λ
m∂Mξn − ξm∂Mλn)] + . . .

(6.144)

{HGD[Λ],HDiff[ξ]}
?
= HDiff[LΛξ

n]

+HS1[dMNK ΛK
(
ξmFN

mn −MKL gmn ∂Lξ
n
)
] + . . . (6.145)

The field-strength term in the parameter of the HGD constraints in (6.144) seems
to be problematic because this term does not vanish in the trivial solution of the
section condition. This however would be inconsistent with the relation (5.71) from
the canonical formulation of E6(6) invariant five-dimensional supergravity and thus
it seems that this term should not appear canonically — possibly due to a different
parametrisation of the algebra with respect to the Lagrangian formulation. Further
uncertainty about the precise form of these relations is added by the fact that the sign
of the ∂Mξm term from the transformation (6.110) appears in two of the above gauge
parameters. On the other hand the HDiff constraint terms on the right hand sides of
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both of these relations seem rather likely to be correct. Due to the involvement of the
generalised diffeomorphism constraints it seems probable that the section condition
may play a role in the computation of the above relations.

The constraint algebra relation {HHam[θ],HGD[ξ]} is especially difficult to compute
due to the number of modified one-form momentum terms involved. Because the
analogous relation vanishes in the canonical formulation of the E6(6) invariant five-
dimensional supergravity we cannot extrapolate the result to the ExFT and in the
Lagrangian formulation there is no analogue to this algebra relation.
In analogy to the constraint algebra relations (5.68) and (5.69) from the canonical
analysis of the five-dimensional supergravity we may finally conjecture the relations
(6.146) and (6.147) for the canonical formulation of ExFT.2

{HHam[θ],HHam[τ ]} ?
= HDiff[(θ∇mτ − τ ∇mθ) gmn]

− L [(θ∇mτ − τ ∇mθ) gmn ωnab] + . . . (6.146)

{HDiff[λ],HHam[θ]} ?
= HHam[λmDmθ] +HGD

[
θ

e
λp gpk Pk

L MLM

]
+ . . . (6.147)

Additional (two-form) constraint terms might possibly appear on the right hand sides
of the relations (6.146) and (6.147).

Because there are no two-forms in the E6(6) invariant five-dimensional supergravity we
are unable to get any information about the algebra relations concerning the two-form
constraints from the results of chapter 5. Nonetheless we should probably expect that
the topological two-forms do not contribute any propagating degrees of freedom to
the theory, as the results from the canonical analysis of the two-form model in section
4.4 suggest. Similarly we do not yet have a good understanding of the meaning of the
consistency condition (6.87) that follows from the HP2 constraints.

The complete canonical constraint algebra of ExFT needs to be known in order to
verify that the number of physical field space degrees of freedom is indeed 128, because
we cannot otherwise know which of the canonical constraints are first class and which
ones are second class functions.
It seems that based on the results of the canonical analysis of the five-dimensional
ungauged maximal E6(6) invariant supergravity of chapter 5 we should expect that the
(bosonic) E6(6) ExFT, without the two-forms, does indeed have 128 physical degrees
of freedom. These 128 physical field space degrees of freedom consist of 5 that come
from the external metric Gµν , while 42 come from the scalar fields MMN and 81
are contributed by the generalised one-forms AM

µ .3 As is suggested by the results of
the canonical analysis of the topological two-form model in section 4.4 the two-forms
BµνM should not contribute any additional propagating physical degrees of freedom to
ExFT. One might hence naively suspect that only the canonical constraints associated
to the two-forms are second class functions, at least if the implicit treatment of the
scalar coset constraints is used (cf. section 4.3) and in this case the counting of the
physical degrees of freedom would work out, as described above, to be 128 — this
however remains to be verified by the explicit computation of the complete canonical
constraint algebra of the ExFT.

2The explicit appearance of the spin connection ωnab in the relation (6.146) has been discussed
in chapter 5 for the analogous five-dimensional relation.

3To arrive at the 42 degrees of freedom from the scalar fields the implicit coset constraints have
to be taken into account, as was explained in section 4.3.
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6.11 The generalised vielbein and USp(8)

In this chapter we have so far discussed the canonical analysis of the E6(6) exceptional
field theory formulated in terms of the generalised metric MMN . While the descrip-
tion in terms of the generalised metric is sufficient for the bosonic sector of ExFT it
can be useful for some applications (e.g. coupling the theory to fermions or explicitly
manifesting the USp(8) symmetry) to make use of the formulation of ExFT that is
written in terms of the generalised USp(8) vielbein VAB

M . In this section we introduce
the generalised USp(8) vielbein and discuss how it can be used to reformulate the
canonical E6(6) ExFT.

In the fully supersymmetric E6(6) ExFT the generalised USp(8) vielbein is essential for
coupling the theory to the fermions and in this section we use the same conventions for
the USp(8) invariant form as the references [26, 36]. The unitary symplectic Lie group
USp(8), which is the maximal compact subgroup of E6(6), is 36-dimensional and it
has an 8-dimensional fundamental representation (cf. table 2.1). As indicated by the
table 6.1 we use the capital indices A,B, . . . , F = 1, . . . , 8 to denote the fundamental
representation of the USp(8).

For the E6(6) ExFT the internal generalised metric MMN is an E6(6)/USp(8) coset
representative and hence there is a direct analogy between the internal metric MMN

and the external metric Gµν (of general relativity), which is itself a GL(d)/SO(1, d−1)
coset representative, with d being the space-time dimension. In analogy to the local
Lorentz invariance and the (external) vielbein (or frame field) Eµ

α of the external
metric (3.84) we can make use of the local USp(8) invariance to introduce a generalised
internal vielbein VAB

M = V [AB]
M defined by (6.148).

MMN =: VAB
M VCD

N ΩAC ΩBD = VAB
M VNAB (6.148)

Compared to the definition of the usual vielbein (3.84) the USp(8) symplectic form
ΩAB takes the place of the Minkowski metric in the definition (6.148). We define the
lowered indices of VNAB in (6.148) by VNAB := VCD

N ΩACΩBD. Furthermore we define
the inverse symplectic form, as in section 3.4, by the condition ΩAB ΩCB := δCA , which
is equivalent to ΩAB ΩBC = −δCA . Moreover the tracelessness condition (6.149) has
to be satisfied by the generalised vielbein.

VAB
M ΩAB = 0 (6.149)

The antisymmetric fundamental index pair [AB] has 27 components, when the condi-
tion (6.149) is taken into account, which agrees with the dimension of the fundamental
E6(6) representation. We can then define the inverse generalised vielbein by the con-
ditions (6.150) and (6.151) as in reference [26].

VAB
M VN

AB := δNM (6.150)

VAB
M VM

CD :=
1

2
(δACδ

B
D − δADδ

B
C )−

1

8
ΩAB ΩCD (6.151)

As in the generalised metric formulation we can compute the canonical momenta of
the generalised vielbein, which only get contributions from the kinetic term of the
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scalar fields (6.11) and we find that they are given by (6.152).

ΠM
AB(V) =

e

3N

[
V̇CD
N VM

CDVN
AB + V̇EF

K VK
CDVN

EFVMCDVNAB (6.152)

+ LAtVM
AB + LAtVN

CDVNABVMCD

+NnDnVM
AB +NnDnVN

CDVNABVMCD

]
The canonical momenta of the generalised vielbein (6.152) can be related to the
rescaled canonical momenta of the generalised metric by the identity (6.153).

ΠM
AB(V) = 2ΠMN (M)VNAB (6.153)

ΠMN (M) =
1

2
Π

(M
AB(V)V

N)AB (6.154)

We find that the inverse relation (6.154) is in form identical to the analogous identity
(5.13) which relates the canonical momenta of the (external) metric to the canonical
momenta of the (external) vielbein in general relativity.

Just like the canonical vielbein momenta imply the Lorentz constraints (6.39) in gen-
eral relativity the above generalised vielbein momenta lead to the primary canonical
USp(8)-constraints HUSp(8) (6.155).

(HUSp(8))
AD := VAB

M ΩBC ΠMCD + VDB
M ΩBC ΠMCA = 0 (6.155)

The contraction of the canonical momenta with the generalised vielbein in the USp(8)-
constraints (6.155) is symmetrised, which is in contrast to the antisymmetric Lorentz
constraints. Therefore the (HUSp(8))

AD constraints consist of 36 independent compo-
nents, which is equal to the dimension of the group USp(8).

We can define the fundamental Poisson bracket of the generalised vielbein with its
canonical momenta by (6.156).

{VAB
M ,ΠM

CD(V)} :=
1

2
(δACδ

B
D − δADδ

B
C )−

1

8
ΩAB ΩCD (6.156)

We should furthermore verify that the Legendre transformation is indeed invariant
under this change of canonical coordinates before we are able to rewrite the ExFT
Hamiltonian (6.64) in terms of the generalised vielbein VAB

M . We can confirm that
the Legendre transformation is indeed invariant (6.157) and the additional symplectic
term that originates from the identity (6.151) vanishes because of (6.149).

1

2

∑
R,S=1,...,27

ṀRS · Π̃RS(M) =
1

2

∑
M=1,...,27
A,B=1,...,8

V̇AB
M ·ΠM

AB(V) (6.157)

Because of the equivalence (6.157) we can now replace the generalised metric and
its canonical momenta in the Hamiltonian (6.64) by making use of the identities for
the generalised vielbein (6.148) and their canonical momenta (6.154) to replace the
canonical variables. The contributions to the Hamiltonian from the scalar kinetic
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term (6.44) can then be rewritten in terms of the generalised vielbein as in (6.158).

1

2

∑
M=1,...,27
A,B=1,...,8

V̇AB
M ·ΠM

AB(V)− Lsc (6.158)

= N ·
[

3

16e
ΠM

ABΠ
S
CDVCD

M VAB
S +

3

16e
ΠM

ABΠ
R
CDVSCDVAB

S VEF
M VREF

− e

12
gklDkVAB

M DlVM
AB − e

12
gklDkVAB

M DlVN
CDVNABVMCD

]
+N l·

[
1

4
ΠM

ABDlVAB
M +

1

4
ΠM

ABDlVNCDVNABVCD
M

]
+AK

t ·
[
1

4
ΠM

AB(∂KVAB
M − 6PP L

M K∂LVAB
P )

+
1

4
ΠM

AB(∂KVCD
N − 6PP L

N K∂LVCD
P )VNABVMCD

]
It seems to be a general feature of the generalised USp(8) vielbein formulation that
there are always two differently contracted versions of each term of (6.44) in the
rewriting (6.158). In these terms of (6.158) we can moreover note the appearance
of the inverse vielbein, which seems to necessary and which makes this expression
non-polynomial.
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Chapter 7

Summary, conclusions and outlook

In this thesis we have constructed and investigated the canonical formulations of the
bosonic E6(6) exceptional field theory and of the bosonic sector of the unique manifestly
E6(6) invariant ungauged maximal five-dimensional supergravity theory. We have cal-
culated the explicit non-integral form of the topological term of the E6(6) ExFT, which
we needed in order to carry out the Legendre transformation of the theory, and exam-
ined a topological model theory based on the two-form kinetic term, which lead us to
identify problems related to the construction of a Dirac bracket in the extended gen-
eralised geometry. To illustrate the construction of an extended generalised geometry
we explicitly constructed the Y-tensor for the symplectic group Sp(2n). Furthermore
we established a simplified canonical treatment of the scalar coset constraints, which
we explained by taking the SL(n)/SO(n) coset as an example. The canonical formula-
tion of the manifestly E6(6) invariant ungauged maximal five-dimensional supergravity
theory was constructed and we carried out a comprehensive canonical analysis, which
included all gauge transformations and the full constraint algebra. This canonical
analysis in particular provided crucial insights into the treatment of the topological
term, which we applied in the construction of the canonical formulation of the E6(6)

ExFT. The full canonical Hamiltonian of the E6(6) ExFT was constructed and most
of the canonical (gauge) transformations and parts of the constraint algebra were cal-
culated. Moreover we examined how the canonical E6(6) ExFT can be formulated in
terms of the generalised USp(8) vielbein.
In this chapter we summarise and discuss the main findings of this thesis, as well as
the remaining open questions. Furthermore we give an outlook on some of the possible
directions of future research.1

Background

In the chapters 2, 3 and 4 we reviewed the background knowledge concerning (gauged
maximal) supergravity, extended generalised (exceptional) geometry, exceptional field
theory and the canonical analysis of constrained Hamiltonian systems. In chapter 2
we discussed the hidden exceptional global symmetries that emerge in the toroidal
compactifications of eleven-dimensional supergravity, how group invariant supergrav-
ity Lagrangians can be constructed and how the tensor hierarchy in gauged maximal
supergravity arises due to the non-trivial Jacobiator of the structure constants of the
gauge group. This information became useful later on to understand the structure
of the manifestly E6(6) invariant formulation of five-dimensional supergravity and to
see the analogy between the structure of the tensor hierarchy of ExFT and gauged
supergravity. The concept of geometrisation was illustrated in chapter 3 by looking at
Kaluza-Klein theory, in which four-dimensional Maxwell theory and a massless scalar

1This chapter follows the structure of parts of the publications [40, 41].
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field become geometrised and can be seen as arising from five-dimensional gravity.
Next we reviewed how extended generalised geometries can be constructed for var-
ious symmetry groups, e.g. O(n, n), Sp(2n) or En(n) and we explicitly constructed
the Y-tensor of the extended generalised Sp(2n) symplectic geometry as an exam-
ple. We discussed how the extended generalised geometries can be used to manifest
larger symmetry groups and thereby geometrise part of the original degrees of free-
dom. Moreover we reviewed how the section condition of ExFT can be solved in
order to reduce the theory to, among others, eleven-dimensional supergravity or the
manifestly E6(6) invariant maximal five-dimensional supergravity. In chapter 4 we
reviewed the fundamental theory of constrained Hamiltonian systems, which formed
the methodological basis for the following chapters.

The topological term of the E6(6) ExFT

In the Lagrangian formulation of the E6(6) ExFT [3, 25, 26, 36] the topological term
is only stated in the manifestly covariant form, where it is written as a (6 + 27)-
dimensional integral over an exact six-form, although the variation of the explicit
term is also given. But in order to calculate the Legendre transformation of the E6(6)

ExFT Lagrangian, in which the topological term is mixed with the other transfor-
mation terms, the explicit non-integral (5 + 27)-dimensional (non-manifestly gauge
invariant) form of the topological term is needed. Noting the similarity of gauged
maximal supergravity in five dimensions to the E6(6) ExFT we constructed an ansatz
for the ExFT topological term based on the topological term of the five-dimensional
gauged supergravity [84]. The coefficients in this ansatz were then fixed by computing
its general variation, which we compared to the variation stated in [25]. The explicit
form of the topological term (3.135) which was thus found is very complicated. Be-
cause this complexity results in a very large number of contributions to many of the
calculations in the canonical analysis of the theory, the topological term presents one
of the main computational challenges in the canonical formulation of the E6(6) ExFT.
There does not seem to be any possibility of avoiding this complication in the E6(6)

ExFT. Due to an exceedingly large number of topological contributions some of the
transformations of the modified momenta Pm

M have not been fully computed and con-
sequently many of the constraint Poisson algebra relations have also not been (fully)
computed. With the assistance of a suitable computer algebra program, that is able
to simultaneously handle the multitude of mathematical structures involved in the
canonical formulation of ExFT, it should be possible to perform these calculations in
full, because the complexity of the topological contributions is a purely computational
issue. For the canonical quantisation of ExFT, where a simpler Hamiltonian topo-
logical term is certainly desirable, one might alternatively want to consider the E8(8)

ExFT [149], whose topological term is already explicitly known in a non-integral form
and which is perhaps (slightly) simpler than that of the E6(6) ExFT, although this
would introduce new complications e.g. in the form of the more complicated group
E8(8) and constrained compensator fields.

Topological two-forms model theory and the Dirac bracket in ExFT

The existence of the two-form fields BµνM in the tensor hierarchy of the E6(6) ExFT
is necessary in order to absorb the non-covariance in the transformation (3.88) of
the one-form field strength and this is in direct analogy to the tensor hierarchy of
gauged supergravity. Because there are no degrees of freedom, coming from eleven-
dimensional supergravity, left to make these two-form we are required to introduce
them as topological fields and their dynamics is governed entirely by the topological
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term (3.135). To better understand the properties of these two-forms, we investigated
the canonical formulation of a model theory consisting of just the isolated two-form
kinetic term, which is part of the topological term of the E6(6) ExFT, in section
4.4. In the canonical analysis we confirmed that there are no propagating degrees of
freedom in this model and we moreover found that because the kinetic term of the
two-forms is topological the two-forms do not canonically transform under external
diffeomorphisms. This fact remains true in the full ExFT because the two-forms only
couple to the external metric through the (non-kinetic) Stückelberg coupling terms in
the one-form field strength.
In the topological model theory we moreover saw that the two-form tensor gauge
transformations appear in a very different form canonically. We can compare the
canonical two-form tensor gauge transformations to the canonical one-form gauge
transformations of Maxwell theory, which initially also appear as shift transformations,
but which can be translated into the usual Lagrangian form δλAµ = ∂µλ by means
of the extended Hamiltonian formalism (this procedure has been described in chapter
19 of reference [28]). What we have found for the topological two-forms however, is
that all canonical constraints of the model are second class functions and hence the
extended Hamiltonian is identical to the total Hamiltonian and therefore an approach
analogous to the procedure of reference [28] does not work, because there are no
arbitrary parameters in the Hamiltonian. Three-dimensional Chern-Simons theory is
very similar to this two-form model in the sense that it is also a topological theory with
a Lagrangian that is linear in the field strength (and hence in the time derivative).
This similarity leads to a very similar canonical constraint structure and through
a better understanding of this analogy one might hope to identify a procedure that
would make it possible to cast the tensor gauge transformations of the two-form model
into the standard form.
In section 4.4 we proposed the definition (4.86) for a Dirac bracket in an extended
generalised exceptional geometry, which is needed in order to manage the second class
constraints of the two-form model. The non-constraint terms in the Poisson algebra of
the two-form model are not constant and they depend on both external and internal
derivatives. To calculate the explicit expression for the Dirac bracket we consequently
found that we would need to solve equations of the form (4.88) for a primitive of the
(5 + 27)-dimensional Dirac delta distribution. It is not clear how such a primitive
distribution can be identified, but if it was known one should be able to compute the
explicit form of the Dirac bracket for this model and for the full ExFT, which would
likely also clarify the structure of the tensor gauge transformations and the meaning
of the two-form constraints in the ExFT.

Canonical treatment of the scalar coset constraints

In section 4.3 we discussed how the second class scalar SL(n)/SO(n) coset constraints
can be treated explicitly by adding the coset constraints with Lagrange multipliers to
the Lagrangian and constructed the Dirac bracket of this model. We then explained
how one can treat the coset constraints implicitly, thereby avoiding the need for a Dirac
bracket. In chapter 5 and chapter 6 the much more complicated scalar E6(6)/USp(8)
coset constraints were treated in the implicit formalism. The implicit formalism of the
coset constraints significantly simplified the canonical analysis of the manifestly E6(6)

invariant five-dimensional supergravity, because it meant that all canonical constraints
are first class functions and there was no need to construct a Dirac bracket for this
theory. Nonetheless we recovered the correct dynamics for all fields of this theory in
the implicit formalism. In the canonical analysis of the E6(6) ExFT the benefits of
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this treatment are less substantial due to the second class two-form constraints, which
necessarily require the introduction of a Dirac bracket, as was discussed above.

Canonical E6(6) invariant five-dimensional supergravity

In chapter 5 we carried out a comprehensive canonical analysis of the bosonic sector of
the unique manifestly E6(6) invariant ungauged maximal five-dimensional supergravity
theory. We constructed all canonical momenta, the extended canonical Hamiltonian,
all canonical gauge transformation, the complete Poisson algebra of the canonical
constraints and re-derived the number of physical degrees of freedom. The mani-
festly E6(6) invariant five-dimensional supergravity is related to the E6(6) ExFT via
the trivial solution of the section condition, which eliminates all internal coordinate
dependence in the ExFT. Because of this close relation of the theory to the ExFT
we were able to derive some crucial insights from this canonical analysis and perhaps
the most important lesson was the canonical treatment of the topological term. We
were able to simplify the Hamiltonian and the form of the gauge transformations
by introducing modified one-form momenta, where the topological contribution to
the canonical momenta has been subtracted. While this (non-canonical) redefinition
resulted in a simpler Hamiltonian it complicated the analysis because the modified
momenta do not Poisson-commute amongst each other, but we were able to carry out
all calculations by working in orders of the topological term coefficient. We were able
to apply all of these insights in the canonical analysis of the E6(6) ExFT and knowing
the right canonical coordinates greatly simplified the Legendre transformation. Be-
cause the canonical analysis of the E6(6) invariant five-dimensional supergravity has
been carried out in a general and comprehensive form these results may also be useful
to applications that are unrelated to ExFT.

E6(6) ExFT Hamiltonian and canonical constraints

In chapter 6 we calculated the ADM decomposition of the E6(6) ExFT Lagrangian,
all canonical momenta and the Legendre transformation to find the canonical Hamil-
tonian of E6(6) ExFT (6.64) (see also equation (7.1)), which is one of the main results
of this thesis. The most concise canonical formulation of ExFT was found to be
given in terms of the modified one-form momenta-like variables Pm

M (A) (6.21) where,
in analogy to chapter 5, all of the topological contributions to the canonical mo-
menta Πm

M (A) have been subtracted. The modified momenta do not Poisson-commute
{Pm

M (A),Pn
N (A)} ≠ 0 because the redefinition (6.21) is not a canonical transformation,

nonetheless they seem to be the most natural variables to use to write the canonical
(gauge) transformations and the Hamiltonian. This Poisson non-commutativity is
a further computational complication in the canonical analysis of the theory, which
originates from the complexity of the topological term (3.135).
The canonical Hamiltonian (6.64) of the E6(6) ExFT is found to be given by the co-
variantisation of the canonical Hamiltonian (5.19) of the manifestly E6(6) invariant
five-dimensional supergravity, but there are further purely internal terms, such as e.g.
the Hamiltonian scalar potential. When written on the primary constraint surface, the
canonical Hamiltonian (6.64) of the E6(6) ExFT can be written in the form (7.1) and
consists of the Hamilton constraint HHam, the (external) diffeomorphism constraints
HDiff, the generalised diffeomorphism constraints HGD and the two-form tensor gauge
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constraints HS1.

HExFT =+N ·
[
+

1

4e
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1

12e
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+ 2Πm
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S
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(
ΠKL(M)MRL

) ]
+BtlM ·

[
+ 10 dMKL∂K

(
P l
L − κ ϵlmnr HmnrL

)]
(7.1)

The scalar potential (6.66) remains largely unchanged in the Legendre transformation
and only a single potential term cancels. In comparison to five-dimensional supergrav-
ity the Hamiltonian scalar potential is the main addition to the Hamilton constraint,
besides the covariantisation terms. Because the one-form fields AM

µ of ExFT are used
to gauge the generalised diffeomorphism symmetry, the generalised diffeomorphism
constraints, which are associated to the Lagrange multiplier AM

t , can be seen as an
extension of the abelian U(1)27 or Gauß constraints of the five-dimensional super-
gravity. Inside the generalised diffeomorphism constraints we can find the extensive
Hamiltonian topological term (6.68), which in particular contains the two-form ki-
netic term. In the Lagrangian formulation the duality between the differential forms
is implied by the on-shell duality relation (3.113), which is the Lagrangian equation of
motion of the two-forms. The duality relation (3.113) is in form very similar to the sec-
ondary second class two-form tensor gauge constraints HS1 and we may suspect that
the duality of the one- and two-forms is canonically implied by the transformations
that the two-form constraints generate. Naively one would expect the time evolution
of the two-form canonical momenta to be equivalent to the Lagrangian equation of
motion of the two-forms, but this Poisson bracket does not seem to be of the right
form. The precise details of this duality are not yet fully understood canonically and
may require the Dirac bracket.
We confirmed that the above secondary constraints are indeed required by verify-
ing the consistency of the primary constraints of shift type, i.e. those that take the
form of vanishing canonical momenta. Because the Lagrangian two-form kinetic term
contains only a single time derivative the primary two-form constraints HP2 are not
of shift type and instead directly relate the spatial components of the two-form to
their canonical momenta. The consistency of the primary HP2 constraints requires
the condition (6.87), which implies the existence of secondary constraints that depend
on the Lagrange multipliers. These constraints are in analogy to the HS2 constraints
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of the topological two-form model theory from section 4.4, which depend on the La-
grange multipliers BtnM . Because the Lagrange multipliers N, Nn, AM

t and BtnM of
ExFT are independent one should be able to divide the consistency condition (6.87)
into several independent constraints, which take the form of the transformations gen-
erated on the canonical momenta ΠklM (B) but with the transformation parameters
given by the Lagrange multipliers. The explicit form of the transformations that
these constraints generate canonically is not very illuminating, at least without the
use of the proper Dirac bracket, but in analogy to the model theory from section 4.4
we should probably expect that these transformations are ultimately related to the
tensor gauge transformations of the two-forms BµνM . The origin of these constraints
can be traced back to the fact that the Lagrangian two-form kinetic term is linear in
the time derivative combined with the fact that the two-forms only couple to the sec-
ondary constraints via the Stückelberg coupling and the topological term couplings.
A better understanding of the topological two-form model from section 4.4, including
the explicit construction of the Dirac bracket, is needed to properly understand the
role of the two-form constraints in the full E6(6) ExFT.

Canonical (gauge) transformations of the E6(6) ExFT

Most of the transformations that are generated by the canonical constraints of the
E6(6) ExFT, via the Poisson brackets, have been calculated in section 6.9. Due to
the complexity of the topological term of the E6(6) ExFT the full transformations
of the modified momenta Pm

M are very difficult to compute and hence some of these
transformations have only been calculated for the κ = 0 case, in which the topological
contributions are omitted. In this thesis the κ = 0 case is only considered as a com-
putational tool and one should not expect this limit to correspond to any meaningful
physical theory upon solution of the section condition. Nonetheless we have found
that the form of most results remains largely unchanged in the κ = 0 limit, with the
notable exception of the purely topological two-form dynamics.
We found that the generalised diffeomorphism constraints, which are associated to the
Lagrange multiplier AM

µ , do indeed generate generalised diffeomorphism transforma-
tions and all fields and canonical momenta transform as the generalised Lie derivative
— although this is only true on the primary constraint surface for the two-forms.
Furthermore we found that additional tensor gauge transformation terms appear in
the transformations of the one-forms and their conjugate momenta. These tensor
gauge transformations and HS1 constraint terms in the transformations generated by
the HGD constraints can be seen as being analogous to the one-form gauge trans-
formations that appear in the transformations generated by the HDiff constraints in
E6(6) invariant five-dimensional supergravity. Similarly they can be seen as being
analogous to the HGD constraint terms which appear in the transformation gener-
ated by the HDiff constraints in ExFT, because the HGD constraints are analogous
to the HGauß constraints of the five-dimensional supergravity which are associated to
the same Lagrange multiplier. The transformations of the two-forms under the HGD
constraints can only be written as the generalised Lie derivative if the primary HP2
constraints are applied and we found that there are additional contributions, which
may be related to the tensor gauge transformations. Because the Lagrangian kinetic
term of the two-forms is linear in the time derivative the two-forms do generally not
transform under the secondary constraints of the Hamiltonian.
We found that the external diffeomorphism constraints HDiff generate transformations
on the external vielbein and the scalar fields which are of the form of the covariantised
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external Lie derivative. This is in agreement with the covariantised external diffeo-
morphisms of the Lagrangian formulation of the E6(6) ExFT. The form of the external
diffeomorphism transformation of the one-forms (6.110) agrees with the Lagrangian
gauge transformation (3.112), but surprisingly the sign of the ∂Mξn term, which is
responsible for determining the coefficients in the Lagrangian, differs. In section 6.9.3
we showed that this sign originates canonically from the ADM decomposition of the
Einstein-Hilbert improvement term. Furthermore we showed in section 3.5 that the
analogous sign in the Lagrangian formulation originates from a compensating Lorentz
transformation and this calculation has already been carried out in [25, 103] with the
same result. In both formalisms the calculation of the sign of this ∂Mξn term does not
seem to involve any choices. In particular there does not seem to be any choice with
respect to the Lorentz transformations and the conventions of both formulations, e.g.
for the Minkowski metric, also seem to agree. We thus do not have an explanation
for this difference of the sign of the ∂Mξn term. The HDiff constraints generate trans-
formations on the canonical momenta conjugate to the vielbein, the scalar fields and
the one-forms, which are of the form of the covariantised external Lie derivative, but
there are additional ∂Mξn terms. In analogy to the Lagrangian formulation it should
be expected that they take a similar role in determining the relative coefficients in
the Lagrangian or equivalently in determining the coefficients in the Hamiltonian by
mixing the field dependence of terms — one might thus presume that these ∂Mξn

terms lead to precise cancellations in the Poisson algebra of the constraints. The
HDiff constraints furthermore induce additional HGD and HS1 constraint terms in the
transformation of the one-form momenta.
We found that the canonical time evolution of the vielbein, scalar fields and one-
forms, as generated by the Hamilton constraint HHam, takes the same form as the
analogous time evolutions in five-dimensional E6(6) invariant supergravity. Because
the two-forms do not transform canonically under the secondary constraints of the
Hamiltonian their time evolution has to be given entirely in terms of gauge trans-
formations. Due to the Hamiltonian scalar potential, the covariant derivatives and
the modified one-form momenta term in the Hamilton constraint, the time evolution
of the canonical momenta in ExFT is significantly more complicated than the time
evolution of the canonical momenta in the five-dimensional E6(6) invariant supergrav-
ity. When the trivial solution of the section condition is applied the expressions we
found for the time evolutions reduce to those of the five-dimensional theory. However
the expressions for the canonical equations of motion stated in this thesis are likely
not written in the simplest and most covariant form and it should be constructive
to compare these expressions to the decomposition of the analogous Euler-Lagrange
equations to find a simpler form.
The transformations generated by the HS1 constraints are identical to those of the
topological model theory, however we were able to identify the transformation that
they generate on the one-forms with the Lagrangian tensor gauge transformation that
is induced in the one-forms (3.106) by the Stückelberg coupling.

Poisson algebra of the E6(6) ExFT canonical constraints

In section 6.10 we investigated the Poisson algebra of the canonical constraints of
the E6(6) ExFT. The Poisson brackets of the Lorentz constraints with the secondary
constraints were computed and we found that the section condition was not needed
in these calculations. The Poisson brackets of the second class two-form constraints
were computed in section 4.4 for the topological model theory and require the intro-
duction of a Dirac bracket, as discussed above. The Poisson bracket of the generalised
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diffeomorphism constraints with themselves was computed at κ = 0 and we were
able to verify that the correct generalised diffeomorphism constraint term appears,
but further canonical constraint terms may appear in this relation canonically. The
canonical Poisson algebra does not necessarily need to take the same form as the
Lagrangian gauge algebra, because it is possible to change the basis of the algebra.
The Poisson algebra should however reduce to the Poisson algebra of the manifestly
E6(6) invariant five-dimensional supergravity, which we fully computed in chapter 5.
Combining this information with the Lagrangian gauge algebra relations, which have
been described in [25, 36] and which we reviewed in section 3.5.5, we were able to give
speculative results for some of the remaining Poisson brackets. The calculation of the
full E6(6) ExFT Poisson algebra is computationally very difficult, in particular due to
the topological terms, but also due to the complexity of the secondary constraints.

Role of the section condition in canonical E6(6) ExFT

The section condition (3.72) is not needed in the construction of the canonical Hamil-
tonian of the E6(6) ExFT. In the calculation of the canonical (gauge) transformations
we found that the section condition was only needed once in order to match the
two-form terms of the HGD constraints to the equivalent terms that appear in the
transformation (6.112) of the modified momenta Pm

M under the external diffeomor-
phism constraints. It may be possible to avoid the use of the section condition in the
calculation of the transformations if there exists some ambiguity in the definition of
the topological term, which could allow the addition of a term that vanishes under
the section condition without affecting the overall variation of the topological term.
In the formulation presented in this thesis the section condition has to be used in
the calculation of (6.112) and such a modification of the topological term remains
to be investigated. As far as the calculation of the Poisson algebra of the canonical
constraints of ExFT has been carried out in this thesis, the section condition was only
needed in the computation of the Poisson bracket of the generalised diffeomorphisms
constraints with themselves (6.143), where it has to be applied many times and this
was expected from the analogous Lagrangian relation. In this canonical analysis we
have not found any natural physical interpretation for the section condition and the
section condition has to be postulated ad hoc in the canonical formalism. The section
condition cannot be interpreted as a canonical constraint because it restricts the (in-
ternal) coordinate dependence and not the canonical variables. For the same reason
the section condition cannot be explicitly added to the Lagrangian.

Outlook

In order to fully complete the canonical analysis of the E6(6) ExFT the following ques-
tions should be addressed. The full transformations of Pm

M , including all topological
contributions, remain to be computed and the role of the two-form HS2 constraints
remain to be fully understood, this also requires the explicit construction of the Dirac
bracket of the ExFT. Moreover one should calculate the missing relations of the canon-
ical Poisson algebra, including all topological contributions. Finally the explanation
for the difference in the sign of the transformation (6.110) with respect to the La-
grangian formulation remains to be found.
Once all of these questions have been answered one should be able to proceed with
the canonical quantisation procedure as described in [27, 28]. As was mentioned in
chapter 1, some En(n) invariant ExFT amplitudes have already been computed up
to three loops in [33–35] for geometries that are of the particular form of Minkowski
space times a torus. Furthermore the geometric quantisation of double field theory
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has very recently been investigated in [32] and the extension of these results to ExFT
has been briefly commented on.
Another possibly interesting direction of research would be to investigate the cosmo-
logical implications of ExFT in the canonical formulation and to study the local initial
value problem of the extended generalised exceptional geometry, which has to obey
the section condition. In analogy to the results of the canonical analysis of double
field theory [31] one could try to conceive a generalised notion of asymptotic flatness
and generalised definitions of ADM charges for a non-compact extended generalised
exceptional geometry.
Finally it may be interesting to try to generalise the definition of the canonical
Ashtekar phase space variables of general relativity. The Ashtekar variables (or
Ashtekar connection) Ama of general relativity were first discovered by Abhay Ashtekar
in 1986 [37, 38]. They are an alternative set of phase space coordinates for four-
dimensional (or three-dimensional) general relativity and when written in terms of
the Ashtekar connection the canonical constraints of general relativity are of polyno-
mial form, which means in particular that their inverses do not appear. The Ashtekar
connection is moreover one of the basic ingredients of the loop quantum gravity (LQG)
[213] approach to the quantisation of general relativity and a basic introduction to
both topics can also be found in [214]. The Ashtekar connection of general relativity
can take the form of (7.2), where ωmab is the spatial spin connection, Πm

a(e) are
the canonical momenta of the spatial dreibein em

a, γ is a constant (Barbero-Immirzi
parameter) and ϵabc is the spatial Levi-Civita symbol [214].

Ama := −1

2
ϵabc ωmbc +

γ

e
(Πma(e)−

1

2
emaΠ(e)) (7.2)

The inverse densitised dreibein Ẽa
m := e ea

m are the canonical variables conjugate
to the Ashtekar connection [214]. When analysing eleven-dimensional supergravity,
written in an external-internal split in the SO(16) =K(E8(8)) invariant form [22], it
was discovered in reference [39] that the internal vielbein (which combines both met-
ric and three-form degrees of freedom) behaves in a way that is similar to the Ẽa

m

variables. It was found that these variables in particular lead to supersymmetry con-
straints and transformations that are of polynomial form [39]. It was thus argued in
[39, 73, 215] that generalised Ashtekar variables, which are canonically conjugate to
the internal vielbein, might exist in the context of duality-covariant reformulations of
eleven-dimensional supergravity. The internal vielbein of [39] should be seen as part
of the generalised internal vielbein of the E8(8) ExFT and therefore one might hope
to find a similar structure in the canonical formulation of ExFT.
The rewriting of the canonical formulation of the E6(6) ExFT in terms of the internal
generalised USp(8) vielbein VAB

M has been investigated in section 6.11. In section
6.11 we found that the (naive) generalised USp(8) vielbein VAB

M does not have the
desired properties of the Ashtekar connection and in particular we found that these
variables do not lead to fully polynomial canonical constraints — although the gen-
eralised vielbein momenta terms in the Hamilton constraint (6.158) and the scalar
potential, which we might regard as an “internal Ricci scalar”, look somewhat like the
Hamilton constraint of the ADM formulation of general relativity. It may nonetheless
be interesting to attempt to identify a possible definition for a generalised Ashtekar
connection and perhaps this may require a modification of the generalised vielbein.
As the SO(16) =K(E8(8)) covariant results of [39] seem to suggest, the construction of
a generalised Ashtekar connection could depend on the dimension of the geometry and
hence it may be beneficial to examine the canonical formulation of the E8(8) ExFT.
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If a generalised Ashtekar connection for ExFT could be found, one might be able
to pursue a non-perturbative and background independent quantisation approach to
ExFT similar to that of loop quantum gravity [213, 214]. A similar approach was
taken in the references [216–218], where the background independent quantisation of
eleven-dimensional supergravity was investigated using methods borrowed from loop
quantum gravity — though without the use of a generalised Ashtekar connection and
not in a duality-covariant formulation. One might moreover find that the quantised
ExFT is not equivalent to supergravity anymore and this is perhaps more likely if the
theory is quantised in terms of unusual canonical coordinates, such as a generalised
Ashtekar connection.
Because the existence of a generalised Ashtekar connection remains speculative the
canonical quantisation of ExFT, in the present set of canonical coordinates, may seem
more attainable.
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Appendix A

Useful formulæ

In this appendix we explain some useful formulæ that are needed in the calculations
of the chapters 4, 5 and 6. This appendix is based on parts of the publication [40].

A.1 Schouten identity

We can exploit the fact that we can “over-antisymmetrise” a tensor to make it vanish,
e.g. we can take a set of (d+ 1) indices in d dimensions and antisymmetrise them to
get zero (here given in four dimensions). Where ϵlmnr is the Levi-Civita symbol in
four dimension and vk are vector components.

ϵ[lmnr vk] = 0 (A.1)

If we expand this expression we get the following useful identity.

ϵlmnr vk = −4 ϵk[lmn vr] (A.2)

In other words the statement of the identity is that there cannot be (d+1) independent
vectors in d dimensions.

A.2 Delta distribution identities

Here we list some useful identities concerning the Dirac delta distribution.

δ(x− y) = δ(y − x) (A.3)
δ′(x− y) = − δ′(y − x) (A.4)

∂(x)δ(x− y) =
dδ(z)

dz

∣∣∣∣
z=x−y

d(x− y)

dx
= − ∂(y)δ(x− y) (A.5)

∂(x)δ(x− y) =
dδ(z̃)

dz̃

∣∣∣∣
z̃=−z=y−x

d(y − x)

dx
= ∂(x)δ(y − x) (A.6)

A.3 Vielbein determinant derivatives

From the definition of the determinant and the fact that its variation is given by
δe = e ean δe

n
a we find the following identity.

ena ∂pe
a
n = e−1 ∂pe = −e ∂pe

−1 (A.7)
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Appendix B

Additional Poisson bracket
relations for chapter 5

We list some Poisson bracket relations in this appendix that are either intermediate
results or formulae that can be derived from more fundamental statements in chapter
5, but which may not be immediately obvious. This appendix is based on parts of the
publication [40].

{MMN ,ΠPQ(M)} =
(
−MMP MQN −MMQMPN

)
δ(4)(x− y) (B.1)
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