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Abstract

This thesis deals with coarse-graining for gradient systems and Markov processes. Coarse-
graining is a well-established tool in mathematical and natural sciences for reducing the
complexity of a physical system and for deriving e↵ective models. The mathematical
problems in this work originate from interacting particle systems. The aim is twofold:
first, providing mathematically rigorous results for physical coarse-graining, and sec-
ondly, formulating mathematically equivalent descriptions for the e↵ective models in
order to obtain complement information that provides new mathematical and modeling
insights.

The first three parts of the thesis deal with fast-reaction limits for reaction systems
and reaction-di↵usion systems. Instead of deriving e↵ective models by solely investigat-
ing the associated reaction-rate equation, we derive e↵ective models using the under-
lying gradient structure of the evolution equation. The starting point is that reaction
systems and reaction-di↵usion systems that satisfy detailed balance can be understood
as a gradient flow equation. For gradient systems a structural convergence, the so-called
EDP-convergence, has been derived in recent years. In this thesis, this coarse-graining
procedure has been applied to the following systems with slow and fast reactions: linear
reaction systems (or Markov process on finite state space), nonlinear reaction systems
of mass-action type, and linear reaction-di↵usion systems. For the fast-reaction limit,
we perform rigorous and structural coarse-graining on the level of the gradient system
by proving EDP-convergence. In all cases, the e↵ective dual dissipation potential of
the limit gradient system incorporates the slow reactions and a restriction of the chem-
ical potentials to a linear submanifold. Moreover, it induces a slow reaction system or
reaction-di↵usion system on a slow manifold with Lagrange multipliers. Equivalently,
the e↵ective gradient systems can be described in coarse-grained slow variables, which
provides a coarse-grained gradient system as well as a coarse-grained gradient flow equa-
tion. In the case of nonlinear reactions, the main assumption is the so-called Unique
Fast Equilibrium Condition, which provides a parametrization of the slow manifold in
terms of slow variables. The reaction-di↵usion system is interpreted as a gradient flow of
the free energy in the space of probability measures. The dissipation potential extends
the well-established Otto gradient structure for di↵usion, also incorporating the linear
reactions.

In the fourth part, the connection between memory equations and Markov processes
is investigated. Considering linear memory equations, which can be motivated from
spatial homogenization, we explicitly construct a larger Markov process that includes
the memory equation as a subsystem. The Markov process is defined by introducing
hidden states or quasi particles, which capture the loss of mass in the evolution. In
particular, analytical tools from the theory of Markov processes can now be used to
investigate these types of memory equations.

The last part deals with numerical discretizations for the Fokker–Planck operator.
These finite volume discretizations can also be understood as a physical coarse-graining
procedure since they reduce an infinite dimensional problem to a finite dimensional
approximation preserving the physics of the model. Di↵erent finite volume schemes, in-
cluding the well-established Scharfetter-Gummel as well as the recently developed SQRA
discretization, are numerically and analytically investigated.





Zusammenfassung

Diese Arbeit beschäftigt sich mit Coarse-Graining (dt. Vergröberung, Zusammenfassung
von Zuständen) für Gradientensysteme und Markov-Prozesse. Coarse-Graining ist ein
etabliertes Verfahren in der Mathematik und in den Naturwissenschaften und hat das
Ziel, die Komplexität eines physikalischen Systems zu reduzieren und e↵ektive Modelle
herzuleiten. Die mathematischen Probleme in dieser Arbeit stammen aus der Theo-
rie der Systeme interagierender Teilchen. Hierbei werden zwei Ziele verfolgt: Erstens,
Coarse-Graining mathematisch rigoros zu beweisen, zweitens, mathematisch äquivalente
Beschreibungen für die e↵ektiven Modelle zu formulieren, welche ergänzende Informa-
tionen enthalten und somit neue Erkenntnisse zur Mathematik und Modellierung beis-
teuern.

Die ersten drei Teile der Arbeit befassen sich mit dem Grenzwert schneller Reak-
tionen für Reaktionssysteme und Reaktions-Di↵usions-Systeme. Um e↵ektive Modelle
herzuleiten, werden nicht nur die zugehörigen Reaktionsratengleichungen betrachtet,
sondern auch die zugrunde liegende Gradientenstruktur. Der Ausgangspunkt dabei
ist, dass Reaktionssysteme und Reaktions-Di↵usions-Systeme unter der Voraussetzung
von detaillierter Balance als Gradientenfluss verstanden werden können. Für Gradien-
tensysteme wurde in den letzten Jahren eine strukturelle Konvergenz, die sogenannte
EDP-Konvergenz, entwickelt. Dieses Coarse-Graining-Verfahren wird in der vorliegen-
den Arbeit auf folgende Systeme mit langsamen und schnellen Reaktionen angewandt:
lineare Reaktionssysteme (bzw. Markov-Prozesse auf endlichem Zustandsraum), nicht-
lineare Reaktionssysteme, die das Massenwirkungsgesetz erfüllen, und lineare Reaktions-
Di↵usions-Systeme. Für den Grenzwert schneller Reaktionen wird eine mathematisch
rigorose und strukturerhaltende Vergröberung auf dem Level des Gradientensystems be-
wiesen, indem EDP-Konvergenz gezeigt wird. In allen drei Fällen beinhaltet das e↵ektive
duale Dissipationspotential des Limes-Gradientensystems die langsamen Reaktionen und
eine Einschränkung der chemischen Potentiale auf einen linearen Unterraum. Außerdem
induziert es ein langsames Reaktionssystem oder Reaktions-Di↵usions-System auf einer
langsamen Mannigfaltigkeit mit Lagrange-Multiplikatoren. Dazu mathematisch äquiva-
lent können die e↵ektiven Gradientensysteme in groben langsamen Variablen beschrieben
werden, was sowohl ein grobes Gradientensystem als auch eine grobe Gradientenflussgle-
ichung liefert. Im Falle nichtlinearer Reaktionen ist die wesentliche Annahme die soge-
nannte Unique Fast Equilibrium Condition, die eine Parametrisierung der langsamen
Mannigfaltigkeit durch langsame Variablen liefert. Das Reaktions-Di↵usions-System
wird als Gradientenfluss der freien Energie im Raum der Wahrscheinlichkeitsmaße inter-
pretiert. Das Dissipationspotential erweitert die etablierte Otto-Gradientenstruktur für
die Di↵usion und bezieht auch Reaktionen mit ein.

Im vierten Teil wird der Zusammenhang zwischen Gleichungen mit Gedächtnis und
Markov-Prozessen untersucht. Dabei werden Gedächtnisintegrale betrachtet, die durch
einen räumlichen Homogenisierungprozess motiviert werden können. Für solche Gle-
ichungen wird explizit ein größer Markov-Prozess konstruiert, der die Gleichung mit
Gedächtnis als Teilsystem enthält. Der Markov-Prozess wird durch die Einführung ver-
borgener Zustände bzw. Quasiteilchen definiert, die den Massenverlust in der Evolution
erfassen. Insbesondere können nun analytische Hilfsmittel aus der Theorie der Markov-
Prozesse verwendet werden, um diese Arten von Gleichungen mit Gedächtnis zu unter-
suchen.



Der letzte Teil beschäftigt sich mit numerischen Diskretisierungen für den Fokker-
Planck-Operator. Die hier betrachteten Finite-Volumen-Diskretisierungen können auch
als ein physikalisches Coarse-graining verstanden werden, da sie, unter Erhaltung der
Physik des Systems, ein unendlichdimensionales Problem auf eine endlichdimension-
ale Approximation reduzieren. Verschiedene Finite-Volumen-Verfahren, darunter das
etablierte Scharfetter-Gummel- sowie das neu entwickelte SQRA-Diskretisierungsver-
fahren, werden numerisch und analytisch untersucht.
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Introduction

Coarse-graining

The mathematical description of complex processes in physics involves many challenging
di�culties. It results from the fact that mathematical models are governed by the
trade-o↵ between accuracy and simplicity. A more accurate description, involving more
physical states, provides richer information about the physical problem, which is desirable
for a detailed understanding of the physical process. In contrast, a precise description
involves many challenges a↵ecting all branches of applied mathematics, namely modeling,
analysis and simulation: First, the validation of an applicable model requires precise
measurements that become practically impossible if the state space is too large. Secondly,
the analytic di�culties grow when increasing the complexity of the problem. Thirdly,
good numerical algorithms may become too costly if the number of parameters and
dimensions increase.

A procedure that reduces the complexity of a system is often called coarse-graining.
It is a prominent research component in all areas of natural sciences. These reductions or
approximations are often physically motivated by scale separations of the problem. On
di↵erent temporal or spatial scales, di↵erent processes may govern the physical system,
resulting in di↵erent levels of description. The derivation of e↵ective systems by reducing
a system involving di↵erent scales to a smaller system with less scales, for example only
one distinguished scale, is one of the main focuses of this work.

Having derived an e↵ective system, the scientific tasks are usually not finished, be-
cause e↵ective systems can often be formulated in mathematically di↵erent but equiva-
lent ways. These mathematically equivalent descriptions are relevant for applications, as
they provide new valuable insights, extending mathematical models with complementary
information. As we will see, a mathematically equivalent description can be obtained by
introducing new additional variables and enlarging the state space, or, conversely, by re-
ducing the system to less variables and shrinking the state space. A prominent example
for that are models for semiconductor physics, where, in addition to the electrons, also
electron holes as their physical counterpart may be included in the model for capturing,
for example, charge conservation. Although mathematically equivalent, di↵erent models
may provide additional information about the physical process.

Mathematically, the two aspects of reduction and equivalent description are the main
focus of my thesis. They are motivated by the two questions:

1. How can the coarse-graining procedure be mathematically justified?
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2. Are there mathematically equivalent descriptions of the e↵ective system that pro-
vide new mathematical and modeling insights?

Of course, the two terms “justification” and “insights” need a philosophical clarification,
because they depend on the proposed question. These two di↵erent but closely related
problems are explained in detail in the next sections. Although coarse-graining is often
already a part of the modeling process, in this thesis, we are interested in a mathe-
matically rigorous justification of the coarse-graining procedure. In particular, we are
interested in a reduction procedure respecting the underlying physical structure, which
is the gradient structure of the evolution system. Additionally, we will derive mathe-
matically equivalent descriptions on both levels, namely the evolution equation as well
as its gradient structure (whenever it exists). The physical examples in all five parts of
the thesis originate from stochastic particle systems and chemical reaction systems. For
these problems, the models are either Markov processes that describe the evolution of
the number of particles of the chemical species, or the corresponding master equation
for the distribution. After introducing gradient systems and the reduction machinery,
the mathematical results for the five parts of the thesis are explained in detail. The
results can be found in [MiS20, MPS21, Ste21, StS19, HKS20], which either refer to the
published article or to the WIAS preprint of the submitted publication.

EDP-convergence and deriving the e↵ective gradient system

The first three parts of the thesis investigate reaction systems and reaction-di↵usion
systems. In many applications the number of chemical species can be huge and the
reaction coe�cients for the chemical reactions may vary in a large range. In such cases
not only the measurement of all necessary physical quantities, but also analytical or
numerical treatment is out of reach. A natural simplification is made by the assumption
that reactions can happen with di↵erent and distinguished magnitudes of speed. We will
consider the case that slow and fast reactions are distinguished, namely the slow ones
of order 1 and the fast ones of order 1/" for a small parameter " > 0. There are many
instances for this kind of assumption in chemical literature, see e.g. [HaR02]. As an
example we refer to [KaK13, Ex. 6.1], where an mRNA-DNA system for 6 species with
8 slow reactions and 2 fast reactions is considered.

The first three parts deal with the fast-reaction limit if " ! 0. Mathematically,
fast-reaction limits for linear and nonlinear reaction systems have attracted attention
for decades starting from the pioneering work by Tikhonov [Tik52] and Fenichel [Fen79].
We refer to [Bot03, KaK13, DLZ18] for modern approaches. Traditionally, ODE or PDE
results provide e↵ective reaction systems or reaction-di↵usion systems that are defined on
the slow manifold described by either a projection or an algebraic relation together with
the corresponding Lagrange multipliers. In contrast, here, the motivation and starting
point was di↵erent. The fundamental idea is that these systems have an underlying
variational structure because they can be understood as a gradient flow. Gradient flows
are inevitable in modeling physical problems in mechanics and thermodynamics, starting
from the pioneering work of Onsager [Ons31, OnM53]. They describe an evolution of the
steepest descent of a driving functional, where the steepness is defined in terms of the
dissipation mechanism. Mathematically, gradient flows are evolution equations that are
induced by a so-called gradient system (Q, E ,R⇤) [Mie11, Pel14, Mie16], consisting of a
state space Q (a subspace of a Banach space X), a driving (or energy) functional E , and a
geometric or dissipative structure in the form of a dissipation potential R that describes
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the geometry of the underlying state space Q. Here, R is called a dissipation potential
if R(q, ·) : X ! [0,1] is lower semicontinuous, convex and satisfies R(q, 0) = 0. Then,
R⇤ is the (partial) Legendre-Fenchel transform given by

R⇤(q, ⇠) := sup
v2X

{h⇠, vi �R(q, v)} .

The induced gradient flow equation is then defined by

q̇ = @R⇤(q,�DE(q)) or equivalently 0 = Dq̇R(q, q̇) + DE(q). (0.1)

The first equation is a rate equation in the state space Q ⇢ X. The second equation is
a force balance, where the viscous force Dq̇R(q, q̇) is balanced by the potential restoring
force �DE(q).

Adding thermodynamic information to the evolution equation, gradient structures are
of great importance from the modeling perspective. In general, an evolution equation
may have many di↵erent gradient structures. However, a gradient system uniquely
defines the gradient flow evolution. A great challenge in modeling is to determine the
gradient structure of a physical system. It provides mathematical features for analytical
and numerical investigation.

Another equivalent formulation of the gradient flow equation (0.1) plays an important
role. Introducing the total dissipation functional

D(q) =

Z T

0

R(q, q̇) +R⇤(q,�DE(q)) dt, (0.2)

the gradient flow evolution can equivalently be described by the so-called energy-dissi-
pation balance

E(q(T )) +D(q) = E(q(0)).

This energy-dissipation balance compares the energy at initial time t = 0 with the energy
at final time t = T . The di↵erence is given by the dissipation functional D(q), which
has a particular form, consisting of two terms R and R⇤. This formulation has many
interesting properties. First, the energy-dissipation principle states that the energy-
dissipation balance is an equivalent formulation of the gradient flow equation (0.1).
Secondly, it rewrites the former evolution equation defined on an (in general) infinite
dimensional space to a relation involving real-valued functionals. The gradient flow
evolution equation is given by the trajectory that provides the optimal relation between
energy and dissipation. Both features together allow for investigating families of gradient
systems (Q, E",R⇤

") depending on a small parameter " > 0.
For families of gradient systems (Q, E",R⇤

"), where " > 0 is a small parameter coming
from a microstructure, a structural convergence, the so-called EDP-convergence has
been established in recent years [LM⇤17, DFM19, MMP21]. The aim is to identify the
e↵ective gradient system (Q, Ee↵ ,R⇤

e↵) in the limit as " ! 0. This convergence relies on
the energy-dissipation principle, which allows for the use of methods from calculus of
variations. Roughly speaking, EDP-convergence is defined by two �-convergences: for
the energy functionals E", defined on the state space Q, and the dissipation functionals
D" given by

D"(q) =

Z T

0

R"(q, q̇) +R⇤
"(q,�DE"(q)) dt,
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defined on the dynamic space of trajectories (in a suitable topology). The limit is again
given by

D0(q) =

Z T

0

Re↵(q, q̇) +R⇤
e↵(q,�DE(q)) dt.

The e↵ective gradient system is, then, given by (Q, Ee↵ ,R⇤
e↵). The dissipation functionals

D" are defined not only for the solution of the gradient flow equation (0.1), but on general
trajectories around solutions. These trajectories can be understood as fluctuations, which
is in accordance with the deep connection between gradient systems and the stochastic
description via large-deviation principles [MPR14]. These fluctuations provide a more
detailed description of the physical problem, since thermodynamical randomness is also
taken into account. In general, these fluctuations have less time regularity than the
solution of the gradient flow equation, which yields several technical problems.

An almost trivial consequence of EDP-convergence is that solutions of the gradient
flow of (Q, E",R⇤

") converge to the solution of the gradient flow of the e↵ective gradient
system (Q, Ee↵ ,R⇤

e↵). The great advantage of EDP-convergence is that the limit gradient
system is uniquely determined, and hence, the previously hidden physical principles of
the e↵ective evolution equation become evident (see Figure 1).

gradient systems

(Q, E",R")

(Q, E0,Re↵)

 
gradient-flow eqn.

ċ = @⇠R⇤
"(c,�DE"(c))  

solutions

c
": [0, T ] ! Q

"
!

0

E
D
P

�!  *

  ċ = @⇠R⇤
e↵(c,�DE0(c)) c

0: [0, T ] ! Q

Figure 1: EDP-convergence leads to a commuting diagram. In particular, EDP-
convergence generates the correct limit equation ċ = R⇤

e↵(c,�DE0(c)) and the solutions
c
" converge to solutions c0 of the limit equation. However, Re↵ , which is uniquely deter-
mined by EDP-convergence, provides information not contained in the limit equation.

Recently, it has become evident that the dissipation functional D(q) given by (0.2)
does not contain all desired information, because only specific forces of the form �DE(q)
are present in the dissipation functional. To overcome these limitations, so-called tilts
in the form of linear shifts of the energy E⌘(q) = E(q) + h⌘, qi have been used. In
particular, a stronger notion, namely EDP-convergence with tilting, has been introduced
in [DFM19, MMP21]. Tilt-EDP-convergence then means that the e↵ective dissipation
potential R⇤

e↵ in the limit of D⌘
" is completely independent of the tilts ⌘. Deriving an

e↵ective dissipation potential R⇤
e↵ that is independent of external energy shifts provides

a physically reasonable distinction between dissipation and energy in the evolution.
In fact, in the first three parts, we derive EDP-convergence with tilting for di↵erent

kinds of fast-slow reaction systems and reaction-di↵usion systems. The physically un-
derlying gradient structure provides the mathematical framework for performing coarse-
graining. Mathematical coarse-graining is intrinsically related to numerical methods,
where complex problems are approximated finite dimensionally respecting the physics
of the problem. The last part of the thesis compares di↵erent numerical schemes for
discretizations of the Fokker-Planck operator. There, the finite volume discretization
provides transition rates for the underlying Markov process that is connected to the gra-
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dient structures used in the first three parts of the thesis for reaction systems. Instead
of proving EDP-convergence here, we aim at deriving convergence rate estimates.

Equivalent model descriptions for the evolution equation and the gradient
systems

So far, we have seen the mathematical framework for deriving e↵ective models. The
e↵ective systems, either gradient systems or solely the evolution equation, can often be
described in various but mathematically equivalent ways. This is also the case for slow-
fast reaction systems and reaction-di↵usion systems. As it turns out, the limit system
can either be described on a larger space with an algebraic constraint and corresponding
Lagrange multipliers, or in smaller space consisting of coarse-grained variables. Both
equivalent formulations are present on the level of the evolution equation and the gra-
dient system and have di↵erent mathematical and modeling properties. An evolution
equation with an algebraic constraint and Lagrange multipliers is defined on a large
space, the evolution equation in coarse-grained variables needs an explicit resolution or
parametrization of the slow manifold.

The same reasoning is the motivation for the fourth part of the thesis. There, the
connection between memory equations and (memoryless) Markov processes is explored.
The memory equation under investigation can be motivated from a space-dependent
homogenization problem [Tar90], where memory e↵ects, as the result of a spatial mi-
crostructure have been derived. Here, we consider the simplest linear space-independent
situation. It is shown that this memory equation with its rich and complex dynamics
can be understood as a reduced subsystem of a Markov process defined on a larger space,
but having easier analytical properties. The construction is done by introducing hidden
states, or quasi particles, which, a priori, do not have any physical meaning. A posteriori
they provide valuable insights in the dynamics of the original problem.

In the following, we describe the results of all five parts of the thesis in more detail.

Part 1: Coarse-graining via EDP-convergence for linear fast-slow
reaction systems

In the first part of the thesis, we perform the fast-reaction limit for a fast-slow linear
reaction system (i.e. a Markov process on a finite state space). The aim is to show
EDP-convergence for the gradient systems under the assumption of detailed balance.
On the state space

Q := Prob({1, . . . , I}) =
n
c 2 [0, 1]I :

XI

i=1
ci = 1

o
⇢ RI =: X,

where we interpret c as a mass distribution, the "-dependent evolution equation reads

ċ
" = A

"
c
" =

�
A

slow +
1

"
A

fast
�
c
"
. (0.3)

Here, A
" is a Markov generator preserving positivity and mass of the evolution. It

consists of a part of slow reactions A
slow and a part of fast reactions A

fast. The basic
assumption is that the detailed-balance condition holds, which means that there exists a
positive equilibrium state w

" = (w"
i )i 2 Q such that

8 i, k 2 {1, . . . , I} : A
"
ikw

"
k = A

"
kiw

"
i . (0.4)
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For reaction systems of mass-action type (which include all linear systems) satisfying
detailed balance, it was shown in [Mie11] that an entropic gradient structure exists, i.e.
E" is free energy of Boltzmann type

E"
Bz(c) =

IX

i=1

w
"
iEBz(ci/w

"
i ),

where the Boltzmann function EBz is given by EBz(r) = r log r � r + 1. Let us mention
that this fact was implicitly used in earlier works, see e.g. [ÖtG97, Yon08]. For linear
reaction systems, which are master equations for Markov processes, a more general theory
was developed in [Maa11, CH⇤12] leading to a large class of possible gradient structures
[MaM20].

Here, we use the physically most natural gradient structure that has its origin in
the theory of large deviation, see [MPR14, MP⇤17]. The dual dissipation potentials
R⇤

"(c, ·) : X ! R are not quadratic but include exponential terms, namely

R⇤
"(c, ⇠) =

1

2

X

i<k


"
ik

p
cick C⇤(⇠i � ⇠k) with C⇤(⇣) = 4 cosh(⇣/2)� 4 (0.5)

and 
"
ik = A

"
ik

p
w"

k/w
"
i . The gradient system (Q, E"

Bz,R⇤
") exactly generates the gradient-

flow evolution (0.3), i.e.
ċ = @⇠R⇤

"(c,�DE"(c)).
The main technical assumption is that the stationary measure is not degenerate for

" ! 0, i.e. w
" ! w

0 and w
0
> 0, which means that mass is present in all states

in the limit " ! 0. This assumption immediately implies that E"
Bz

M�! E0
Bz. To prove

tilt-EDP-convergence, we show that D⌘
"

M�! D⌘
0, where

D⌘
0(q) =

Z T

0

Re↵(q, q̇) +R⇤
e↵(q,�⌘ �DE(q))dt.

To obtain an explicit form of the dissipation potential R⇤
e↵ , we introduce the following

notation. By the non-degeneracy assumption w
0
> 0, the fast part Afast of the reactions

defines an equivalent relation on the set of states {1, . . . , I}. This equivalence relation
separates the states that are connected via fast reactions into di↵erent J < I clusters.
This defines a coarse-graining map

M : Prob({1, . . . , I}) ! Prob({1, . . . , J}),

which is a Markov operator. The crucial idea is that, respecting the microscopic equi-
librium w

0, we may uniquely define a linear reconstruction operator

N : Prob({1, . . . , J}) ! Prob({1, . . . , I}),

which inverts the coarse-graining operator M in a physically reasonable sense. The
e↵ective dissipation potential R⇤

e↵ of the limit gradient structure (Q, E0
Bz,R⇤

e↵) is then
given by

R⇤
e↵(c, ⇠) = R⇤

slow(c, ⇠) + �Range(M⇤)(⇠).

The e↵ective gradient structure defines an e↵ective evolution equation of the form

ċ 2 A
slow

c+ kerM, A
fast

c = 0 ,

6



which describes the slow evolution on the linear slow manifold with Lagrange multipliers.
Equivalently, the e↵ective gradient system can be understood as a gradient system

in coarse-grained slow variables. On the coarse-grained state space

Q̂ := M (Prob({1, . . . , I})) = Prob({1, . . . , J}),

we define the coarse-grained energy functional and dissipation potential via

Ê(ĉ) = E0
Bz(Nĉ), R̂⇤(ĉ, ⇠̂) = R⇤

e↵(Nĉ,M
⇤
⇠̂).

As it turns out, both gradient systems, (Q, E0
Bz,R⇤

e↵) or the coarse-grained gradient sys-
tems (Q̂, Ê , R̂⇤), contain the same information, because there is a one-to-one correspon-
dence between concentrations c on the slow manifold and coarse-grained concentrations
ĉ. The coarse-grained evolution equation is then given by

˙̂c = Âĉ ,

where the coarse-grained Markov generator is simply Â = MA
slow

N .

Part 2: EDP-convergence for nonlinear fast-slow reaction sys-
tems with detailed balance

The second part of the thesis deals with the study of nonlinear reaction systems with
di↵erent time scales. We assume that the species Xi, i 2 I := {1, . . . , i⇤} undergo r⇤
forward-backward chemical reactions of mass-action type

↵
r
1X1 + · · ·+ ↵

r
i⇤Xi⇤ ⌦ �

r
1X1 + · · ·+ �

r
i⇤Xi⇤ ,

where ↵r = (↵r
i )i2I and �

r = (�r
i )i2I are the stoichiometric vectors in Ni⇤

0 . The reaction-
rate equation has the form

ċ = �
r⇤X

r=1

�
k
fw
r c

↵r � k
bw
r c

�r��
↵
r��

r), where c
↵ = c

↵1
1 · · · c↵i⇤

i⇤ .

The main assumption is that the reaction-rate equation satisfies the detailed-balance
condition, which requires the existence of a positive concentration vector c⇤ = (c⇤i )i2I 2
C+ :=]0,1[i⇤ such that all r⇤ reactions are in equilibrium:

9 c⇤ = (c⇤i )i2I 2 C+ 8 r 2 R := {1, . . . , r⇤} : k
fw
r c

↵r

⇤ = k
bw
r c

�r

⇤ .

For notational convenience, we introduce the ratios

er = k
fw
r

�
c
↵r

⇤ /c
�r

⇤
�1/2

= k
bw
r

�
c
�r

⇤ /c
↵r

⇤
�1/2

.

For studying systems with di↵erent time scales, we introduce a small parameter " > 0
measuring the ratio between the slow and the fast time scale. We decompose the set of
reaction pairs into slow and fast reactions (i.e. R = Rslow [ Rfast) and we assume that
er = r for the slow reactions and er = r/" for the fast reactions (where r > 0 are
fixed numbers). Then the fast-slow reaction-rate equation is given by

ċ = Rslow(c) +
1

"
Rfast(c) with Rxy(c) := �

X

r2Rxy

r

�
c
↵r

⇤ c
�r

⇤
�1/2

✓
c
↵r

c
↵r
⇤

� c
�r

c
�r
⇤

◆
(↵r � �

r).

(0.6)
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Following [Mie11, MPR14], the fast-slow reaction-rate equation can be understood as a
gradient flow of the cosh-type gradient structure (C, E ,R⇤), where the energy functional
is the free energy of Boltzmann type

E(c) =
i⇤X

i=1

c
⇤
iEBz(ci/c

⇤
i ), EBz(r) = r log r � r + 1 .

The dual dissipation potential consists of a slow part and a fast part and is given by

R⇤
"(c, ⇠) = R⇤

slow(c, ⇠) +
1

"
R⇤

fast(c, ⇠)

with
R⇤

xy(c, ⇠) =
X

r2Rxy

r

�
c
↵r
c
�r�1/2

C⇤�(↵r � �
r) · ⇠

�
,

where the cosh-function C⇤ is defined exactly like for linear reactions (0.5). It follows
that the reaction-rate equation (0.6) is indeed given by the gradient flow equation

ċ = @⇠R⇤(c,�DE(c)).

The aim of the second part of the thesis is to derive the e↵ective gradient structure
(C, E ,R⇤

") by proving EDP-convergence for the fast-reaction limit " ! 0. Since the
energy functional E is "-independent, the major challenge lies in proving �-convergence
for the tilted dissipation functional

D⌘
"(c) =

Z T

0

R"(c, ċ) +R⇤
"(c, ⌘ �DE(c)) dt.

As in the linear situation, the evolution gets constrained to a submanifold, which is
nonlinear in general. To capture this, we introduce the subspace of fast stoichiometric
vectors

�fast = span {↵r � �
r : r is fast} , �?

fast =
�
⇠ 2 Ri⇤ : 8 � 2 �fast : � · ⇠ = 0

 
.

Moreover, we define the matrix Qfast 2 Rmfast⇥i⇤ that captures the conserved quantities
of the fast reactions, i.e. kerQfast = �fast and Qfast is surjective. The matrix Qfast defines
the coarse-grained slow variables in a linear way and plays the same role as the matrix
M in the linear situation of the first part of the thesis. Then it turns out that (C, E ,R⇤

")
converges in the sense of EDP with tilting to (C, Ee↵ ,R⇤

e↵), where the e↵ective gradient
system is given by

Ee↵ = E , R⇤
e↵ = R⇤

slow + ��?
fast

.

The dissipation potential again consists of two parts: one part that captures the slow
reactions and one part that restricts the evolution to the set of fast equilibria

Efast = {c 2 C : Rfast(c) = 0} .

The main assumption is that these equilibria are uniquely determined in each invariant
subspace Cfast

q = {c 2 C : Qfastc = q}. This Unique Fast Equilibrium Condition (UFEC)
ensures the definition of a non-linear reconstruction map  , which “inverts” the linear
coarse-graining map Qfast. The slow manifold can then be parametrized by  , i.e.

Mslow = { (q) : q 2 QfastC} = {c 2 C : Rfast(c) = 0} .

8



Considering only positive concentrations, the UFEC is no restriction. In particular, the
UFEC is not needed when considering non-trivial solutions of the reaction-rate equation.
In contrast, the concept of EDP-convergence is more general and considers fluctuations
around solutions that are not necessarily positive.

Similar to [MiS20], the e↵ective system can equivalently be described in coarse-
grained slow variables with the nonlinear reconstruction function  . On the state space
Ĉ = QfastC, we define

Ê(q) = E( (q)), R̂⇤(q, ⇠̂) = R⇤
slow( (q), QT

fast⇠̂).

The coarse-grained driving functional is no longer of Boltzmann type, since it takes into
account the curved nonlinear submanifold given by the dissipation. The coarse-grained
evolution equation for the slow variables is given by

q̇ = @⇠̂R̂
⇤(q,�DÊ(q)) = QfastRslow( (q)) .

As an application, a reduction from two bimolecular chemical reactions to one trimolec-
ular reaction can be performed. Considering two reactions

fast : X1 +X2 ⌦ X3 and slow : X3 +X4 ⌦ X5 ,

the coarse-grained gradient structure corresponds to a chemical reaction of the form

X1 +X2 +X4 ⌦ X5,

if, in addition, the limit c⇤3 ! 0 is performed.

Part 3: EDP-convergence for a linear reaction-di↵usion system
with fast reversible reaction

The third part of the thesis considers a linear reaction-di↵usion system with a fast
reversible reaction. On a given bounded domain ⌦ ⇢ Rd, the corresponding evolution
equation is given by

ċ1 = �1�c1 �
1

"

✓q
↵
� c1 �

q
�
↵c2

◆

ċ2 = �2�c2 +
1

"

✓q
↵
� c1 �

q
�
↵c2

◆
, (0.7)

where �1, �2 > 0 are di↵usion coe�cients and ↵, � > 0 are reaction rates (complemented
by no-flux boundary conditions and initial conditions). The aim is to perform the fast-
reaction limit if " ! 0. As in the space-independent situation of the first and the second
part, we are not primarily interested in the convergence of solutions of the linear reaction-
di↵usion system (0.7), which was shown in [BoH02]. Our starting point is that reaction-
di↵usion systems such as (0.7) can be written as a gradient-flow equation induced by a
gradient system (Q, E ,R⇤

"), where the state space Q is the space of probability measures
Q = Prob(⌦⇥ {1, 2}) and the driving functional is the free energy

E(µ) =
Z

⌦

2X

j=1

EBz

✓
cj

wj

◆
wj dx

9



for measures µ = c dx, with the Boltzmann function EBz(r) = r log r� r+1 and the (in
general space-dependent) stationary measure w = (w1, w2)T 2 Q. Here, the dissipation
potential R⇤

" is given by two parts

R⇤
" = R⇤

di↵ +R⇤
react,",

separately describing di↵usion and reaction. Since the pioneering work of Otto and coau-
thors [JKO98, Ott01], it is known that many di↵usion type problems can be understood
as a gradient flow driven by the free energy in the space of probability measures equipped
with the Wasserstein distance. The corresponding dissipation potential R⇤

di↵ is quadratic
and given by

R⇤
di↵(µ, ⇠) =

1

2

Z

⌦

2X

i=1

�i |r⇠i|2 dµi.

Later, Mielke [Mie11] also proposed a quadratic gradient structure for reaction-di↵usion
systems with the same driving functional, combining di↵usion and reaction. Following
[MPR14] and the first two parts of the thesis, we use the cosh-type gradient structure
for the reaction part. In the space-dependent situation, the "-dependent dissipation for
reaction is given by

R⇤
react,"(µ, ⇠) =

1

"

Z

⌦

C⇤(⇠1(x)� ⇠2(x))
p
dµ1dµ2.

Setting R⇤
" = R⇤

di↵ + R⇤
react,", the reaction-di↵usion system (0.7) can now formally be

written as a gradient flow equation

µ̇ = @⇠R⇤
"(µ,�DE(µ)).

For proving EDP-convergence with tilting, the main challenge is in deriving the �-
convergence for the dissipation functionalD" as the energy functional E is "-independent.
The tilts ⌘ are given by an external potential and correspond to a linear shift of the en-
ergy, which has now the form

EV (µ) = E(µ) +
2X

i=1

Z

⌦

Vi dµi.

The total dissipation functional is given by

D⌘
"(µ) =

Z T

0

R"(µ, µ̇) +R⇤
"(µ, ⌘ �DE(µ)) dt,

where the primal dissipation potential R" is an inf-convolution of the primal dissipation
potentials Rdi↵ and Rreact,", and is given by

R"(µ, v) = inf
J,b

( 
2X

j=1

Z

⌦

eQ (�jcj, Jj)dx+

Z

⌦

eC
⇣p

c1c2
" , b2(x)

⌘
dx

!
: (c, J, b) 2 (gCE)

)
.

Here, the infimum is taken over all di↵usion fluxes Jj and reaction fluxes bj, which are
coupled through a linear generalized continuity equation. For v = µ̇ we have that

(c, J, b) 2 (gCE) ,
⇢
b1 + b2 = 0 and

⇢
ċ1 = �divJ1 + b1

ċ2 = �divJ2 + b2

��
.
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Without the reaction part, this correspond to the Benamou-Brenier formulation of the
Wasserstein distance on Q. Here, the dissipation potential R" is extended and the cor-
responding cost function takes the reaction flux into account as well. Since the reaction
part is not quadratic, the velocity part

R T

0 R" dt of the dissipation functional does not
define a metric on the space of probability measures. The induced gradient flow equation
is then a reaction-drift-di↵usion system with space-dependent reaction rates

d

dt

✓
c1

c2

◆
= div

✓✓
�1rc1

�2rc2

◆
+

✓
�1c1rV1

�2c2rV2

◆◆
+

1

"

0

B@
�
q

↵
� e

V1�V2
2

q
�
↵e

V2�V1
2

q
↵
� e

V1�V2
2 �

q
�
↵e

V2�V1
2

1

CA
✓
c1

c2

◆
.

In the potential free situation (i.e. V = const), we recover the original reaction-di↵usion
system (0.7).

The main result is the proof of EDP-convergence with tilting. Again, the e↵ective
gradient system consists of two terms and is given by

R⇤
e↵ = R⇤

di↵ + �{⇠1=⇠2},

where the first term describes the di↵usion of the species and the second term provides
a coupling together with the restriction onto the linear slow manifold respecting the
stationary measure

w
V = (wV

1 , w
V
2 )

T
, w

V
i =

1

Z
wie

�Vi , Z =
2X

i=1

wie
�Vi .

The e↵ective gradient system defines a system of drift-di↵usion equations on the slow
manifold with Lagrange multipliers of the form

ċ1 = div (�1rc1 + �1c1rV1)� �

ċ2 = div (�2rc2 + �2c2rV2) + �
,

c1

wV
1

=
c2

wV
2

.

Like in the first two parts of the thesis the gradient systems can equivalently be
described using coarse-grained slow variables ĉ = c1+ c2. The coarse-grained state space
is given by Q̂ = Prob(⌦). The coarse-grained energy functional and dissipation potential
are defined by

R̂⇤(µ̂, ⇠̂) := R⇤
e↵

✓✓
w

V
1

wV
1 + wV

2

µ̂,
w

V
2

wV
1 + wV

2

µ̂

◆
, (⇠̂, ⇠̂)

◆
=

1

2

Z

⌦

�̂
V |r⇠̂|2 dµ̂ , (0.8)

Ê(µ̂) := EV

✓
w

V
1

wV
1 + wV

2

µ̂,
w

V
2

wV
1 + wV

2

µ̂

◆
=

Z

⌦

⇣
log µ̂+ V̂

⌘
dµ̂,

where the mixed space-dependent di↵usion coe�cient and the mixed potential are given
by

�̂
V =

�1w
V
1 + �2w

V
2

wV
1 + wV

2

, V̂ = � log
�
w1e

�V1 + w2e
�V2
�
,

respectively. The coarse-grained evolution equation is, a scalar drift-di↵usion equation
of the form

˙̂c = �div
⇣
�̂
V
ĉr

⇣
�DÊ(µ̂)

⌘⌘
= div

⇣
�̂
Vrĉ+ �̂

V
ĉrV̂

⌘
.

In particular, for the potential free case V = const, the PDE-result of Bothe and Hilhorst
[BoH02] is recovered.
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Part 4: Memory equations as reduced Markov processes

In the fourth part of the thesis we investigate the connection between memory equations
and Markov processes. Memory equations are evolution equations that may explicitly
depend on the whole history of the evolution. In contrast, Markov processes are evolu-
tion equations, where solely the current state and rate determines the future evolution.
It seems that memory equations describe much more physical problems than Markov
processes. The aim of that part is to show that a large and important class of Memory
equations can be understood as a reduction of a larger Markov process by introducing
hidden states, which may be interpreted as quasi-particles. The memory equation here
can be understood as an evolution equation that loses mass in time. Since Markov pro-
cesses describe physical problems that conserve the total probability in time, we aim
at introducing hidden state variables that captures the loss of mass. This procedure
shows the already mentioned trade-o↵ between analytical simplicity and large geome-
try. Moreover, it continues reasoning of the first three parts of the thesis, which show
the advantage of two di↵erent but equivalent descriptions. It is well-known that non-
autonomous evolution equations can also be understood as autonomous equations in the
space of trajectories (see e.g. [HaV93] for general functional-di↵erential equations or
[NSZ18, NSZ20], where this reformulation is used for linear abstract Cauchy problems).
There the underlying state space is the space of trajectories and becomes immediately
infinite dimensional. This procedure is not meant here, where a large but still finite state
space is constructed.

In this part, we focus on the linear Memory equation of the form

u̇(t) = �au(t) +

Z t

0

K(t� s)u(s) ds, t � 0, u(0) = u0 > 0, (0.9)

where a > 0 is a constant and K : R�0 ! R�0 is a positive kernel satisfying
R1
0 K(t)dt =

a. We interpret u 2 R�0 as a mass of a species. These kinds of evolution equations
appear, for example, as e↵ective limits of homogenization of space-dependent evolution
equations [Tar90]. In general, memory equations as (0.9) encounter various analytical
and modeling di�culties. For example, dynamical properties as stationary solutions and
asymptotic behavior are not obvious. Moreover, modeling aspects of deriving a proper
memory kernel K for a given physical system are not trivial.

Without memory (i.e. putting K = 0), the evolution is governed by usual damping,
which equilibrates in zero. With the memory term (i.e. K � 0), we heuristically expect
that the damping is slower due to the presence of former mass and u equilibrates at
u1 > 0.

Here, the aim is to construct a Markov process, which captures the loss of the mass,
and hence, can be interpreted as a full description of the underlying physical process.
The Markov process ṗ = A

⇤
p is explicitly constructed via an approximation of the

memory kernel K. Since we are aiming at a Markov process that provides a physically
reasonable interpretation, not all general memory kernels K can be approximated in
that way. Instead, we focus on kernels K that are a linear combination of exponentials,
where each addend is a first moment approximation of the corresponding discrete model

K(t) =
NX

j=1

↵jKj(t), Kj(t) ⇡ �(t� tj),
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where 0 = t0 < t1 < · · · < tN are given fixed time values and aj � 0 satisfy
PN

j=1 aj = a.

Here, the approximation respects the mean value, i.e. we have that
R1
0 Kj dt = 1 andR T

0 tKj dt = tj. Defining the rates bj = 1
tj�tj�1

for j = 1, . . . , N , the corresponding

Markov generator A⇤ on RN+1 is given via the following network

z0

z1 z2 z3 zN�1 zN

. . . . . .

b1

b2 b3 bN

a1 a2 a3 aN�1 aN

showing the mass transfer between the original state z0 and the di↵erent quasi-particles
zi, i 2 {1, . . . , N}. As it turns out, the first component of ṗ = A

⇤
p with concentrated

initial value p0 = (u0, 0 . . . , 0)T 2 RN+1 is the solution of the memory equation (0.9).
The Markov generator A

⇤ is defined in such a way that mass is distributed from state
z0 to the N states, which then returns on a loop determined by the rates bj providing
the memory e↵ect. Apart from trivial cases, the generator A

⇤ does not satisfy the de-
tailed balance condition. This construction provides interesting modeling and analytical
insights. For example, the stationary solution, which had previously not been obvious,
can be computed easily and is given by

u1 =
1

Z
u0, Z = 1 +

NX

i=1

 
(tj � tj�1)

NX

j=i

aj

!
.

Moreover, it allows for a procedure to model memory kernels in a comprehensible way,
describing the memory e↵ects as an interaction with given former states.

Finally, we apply the above construction to the degenerate situation of a delay-
di↵erential equation of the form

u̇(t) = �au(t), t 2 [0, T ], u(0) = u0 > 0,

u̇(t) = �au(t) + au(t� T ), t � T,

which can be approximated by a reaction network of infinite size.

Part 5: Consistency and convergence for a family of finite volume
discretizations of the Fokker–Planck operator

The last part compares di↵erent finite volume discretization schemes and proves their
convergence for the Fokker–Planck operator. The Fokker-Planck equation is one of the
most important equations in applied mathematics. It describes the time-evolution of
the probability density of a particle, which is exposed to a potential force field. The
stationary Fokker-Planck equation is given by

�r · (ru)�r · (urV ) = div J(u, V ) = f,

where J(u, V ) = � (ru+ urV ) is the flux,  > 0 is a di↵usion coe�cient and V : ⌦ !
R is a given potential. The finite volume discretization is defined on a decomposition of
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the domain ⌦ =
S

j ⌦j and is given by

�
X

j: j⇠i

mij

hij
ij Sij

✓
uj

⇡j
� ui

⇡i

◆
= fi,

where for two neighboring cells ⌦i and ⌦j, mij denotes the mass of the common inter-
face and hij denotes the distance between their cell centers. Moreover, ij denotes a
suitable approximation of the di↵usion coe�cient , fi approximates the right-hand side
f , ⇡ = e�V (xi) is an average of the Boltzmann distribution ⇡ = e�V . The finite volume
discretization provides a Markov generator that captures the transitions between neigh-
boring cells. This approximation scheme respects the underlying physical model and can
be understood as a coarse-graining procedure from an infinite dimensional system to a
finite dimensional reduction.

The function Sij = S(⇡i, ⇡j) denotes a mean value of the Boltzmann distributions and
is the starting point for our research. The choice of the mean function determines the
weight in the flux between two neighboring cells. In the past, di↵erent choices of the mean
value function S were derived. The well-established Scharfetter-Gummel discretization,
which considers a particular choice of S, has been derived for drift-di↵usion models for
charge carrier transport in semiconductor devices [ScG69]. It provides a robust flux
discretization since it interpolates well between the drift and the di↵usion dominated
regime. Recently and motivated from high-dimensional molecular dynamics simulations,
the so-called square-root approximation (SQRA) scheme has been derived. The SQRA
scheme results from the choice of a di↵erent mean function S and, mathematically,
has been investigated only sparsely. Understanding the di↵erent cells as species and
the di↵usion as a mass exchange in the form of a linear reaction, the SQRA scheme
corresponds to the gradient structure of the linear reaction system (0.5).

Our starting point was to compare both discretization schemes from the analytical as
well as the numerical perspective. In fact, both schemes are special choices of a general
class of Stolarsky means, which are defined by

S↵,�(x, y) =

✓
�(x↵ � y

↵)

↵(x� � y�)

◆ 1
↵��

, x, y > 0, ↵, � 2 R.

As it turns out, the mean for the Scharfetter-Gummel discretization is given by (↵, �) =
(0,�1) and the mean for the SQRA scheme is given by (↵, �) = (1,�1).

In order to compare di↵erent discretization schemes, we rewrite the Fokker–Planck
operator to a purely di↵usive second order operator, by introducing relative densities

U =
u

⇡
, Ui =

ui

⇡i
,

which results in

�r · (⇡rU) = f, and �
X

j: j⇠i

mij

hij
ijSij (Uj � Ui) = fi.

This reformulation allows for deriving convergence rates independent of the chosen mean
if the mesh-discretization is appropriate for the pure Laplace operator. To capture the
mesh-discretization, the notion of consistency is introduced, which basically ensures
a proper finite volume discretization for ��u = f [DiD18]. We show that the conver-
gence rate mainly depends on the mesh-discretization and only secondarily on the chosen
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weights. In general, the convergence is of order O(h) and can be improved for cubic grids
to O(h2), where h is given by the mesh size of the discretization. For a comparison be-
tween di↵erent weights S, we investigate the convergence rate constants. As it turns out,
the actual convergence constant depends non-trivially on the chosen Stolarsky mean S.
In geometrically simple situations, the multifaceted behavior is indicated in numerical
examples.
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Coarse-graining via EDP-convergence for linear
fast-slow reaction systems∗

Alexander Mielke† and Artur Stephan‡

Abstract

We consider linear reaction systems with slow and fast reactions, which can
be interpreted as master equations or Kolmogorov forward equations for Markov
processes on a finite state space. We investigate their limit behavior if the fast
reaction rates tend to infinity, which leads to a coarse-grained model where the
fast reactions create microscopically equilibrated clusters, while the exchange mass
between the clusters occurs on the slow time scale.

Assuming detailed balance the reaction system can be written as a gradient
flow with respect to the relative entropy. Focusing on the physically relevant
cosh-type gradient structure we show how an effective limit gradient structure can
be rigorously derived and that the coarse-grained equation again has a cosh-type
gradient structure. We obtain the strongest version of convergence in the sense of
the Energy-Dissipation Principle (EDP), namely EDP-convergence with tilting.

1 Introduction

Considering I ∈ N particles that interact linearly with each other with given rates Aik,
the evolution of the probability or concentration ci ∈ [0, 1] of a species i ∈ {1, . . . , I} =: I
can be described by the master equation

ċ = Ac, (1.1)

where A is the adjoint of the Markov generator L : RI → RI of the underlying Markov
process, i.e. A = L∗, see e.g. [Dyn65, Bob05, Dur10] for more information. In particular,
this means Aki ≥ 0 for i 6= k and

∑I
k=1 Aki = 0 for all i ∈ I. We interpret the master

equation as a rate equation defined on the state space

Q = Prob(I) :=
{
c ∈ [0, 1]I

∣∣ ∑I

i=1
ci = 1

}
⊂ RI .
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In many applications the number I of particles can be huge and the reaction co-
efficients Aik may vary in a huge range. In such cases the analysis or the numerical
treatment of system (1.1) is out of reach, and hence suitable simplifications are neces-
sary. One natural assumption is that reactions can happen with different speeds. We
will consider the case the slow and fast reactions are distinguished, the slow ones of order
1 and the fast ones of order 1/ε for a small parameter ε → 0. Hence, we decompose
A = Aε into Aε = AS + 1

ε
AF , “S” for slow and “F” for fast reactions. Our equation

then is ε-dependent and reads

ċε = Aεcε =
(
AS +

1

ε
AF
)
cε. (1.2)

The limit passage for ε → 0 in linear and nonlinear slow-fast reaction systems is a
well-established field starting from pioneering work by Tikhonov [Tik52] and Fenichel
[Fen79]. We refer to [Bot03, DLZ18, Ste19b] for modern approaches and to [KaK13] for
nonlinear fast-slow reaction systems under the influence of stochastic fluctuations, see
e.g. Example 6.1 there for a mRNA-DNA system for I = 6 species with 8 slow reactions
and 2 fast reactions.

While we repeat some of these arguments in Section 2, the main goal of this paper is
the study of the associated gradient structures for (1.2), which exist under the additional
assumption that the detailed-balance condition holds. The latter condition means that
there exists a positive equilibrium state wε = (wεi )i∈I ∈ Q such that

detailed-balance condition (DBC): ∀ i, k ∈ I : Aεikw
ε
k = Aεkiw

ε
i . (1.3)

Following [Mie11, Pel14, Mie16], a gradient structure for a rate equation ċ = Vε(c) on
the state space Q means that there exist a differentiable energy functional Eε and a
dissipation potential Rε such that the rate equation can be generated as the associated
gradient-flow equation, namely

ċ = Vε(c) = DξR∗ε(c,−DEε(c)) or equivalently 0 = DċRε(c, ċ) + DEε(c). (1.4)

Here Rε is called a dissipation potential if Rε(c, ·) : TcQ → [0,∞] is lower semicontin-
uous and convex and satisfies Rε(c, 0) = 0. Then, R∗ε is the (partial) Legendre-Fenchel
transform

R∗ε(c, ξ) := sup
{
〈ξ, v〉 − Rε(c, v)

∣∣ v ∈ TcQ
}
.

For reaction systems of mass-action type (which includes all linear systems) satisfying
detailed balance, it was shown in [Mie11] that an entropic gradient structure exists, i.e.
Eε is the relative Boltzmann entropy EεBz(c) := H(c|wε) of c with respect to wε, see
Section 4.3.2. However, this fact was used implicitly in earlier works, see e.g. [ÖtG97,
Eqn. (113)] and [Yon08, Sec. VII]. For linear reaction systems, which are master equations
for Markov processes, a more general theory was developed in [Maa11, CH∗12] leading
to a large class of possible gradient structures, see Section 3 and [MaM20, Sec. 2.5].

Here, we use the physically most natural gradient structure that has its origin in
the theory of large deviation, see [MPR14, MP∗17]. The dual dissipation potentials
R∗ε(c, ·) : TcQ→ R are not quadratic but rather exponential due to cosh terms, namely

R∗ε(c, ξ) =
1

2

∑
i<k

κεik
√
cick C

∗(ξi−ξk) with C∗(ζ) = 4 cosh(ζ/2)− 4 (1.5)
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gradient systems

(Q, Eε,Rε)

(Q, E0,Reff)

 

gradient-flow eqn.

ċ = ∂ξR∗ε(c,−DEε(c)) = V ε(c)  

solutions

cε: [0, T ]→ Q

ε
→

0

E
D

P
−→  ⇀

  ċ = ∂ξR∗eff(c,−DE0(c)) = V 0(c) c0: [0, T ]→ Q

Figure 1: EDP-convergence leads to a commuting diagram, in particular EDP-
convergence generates the correct limit equation ċ = V 0(c) and (subsequences of) the
solutions cε converge to solutions c0 of the limit equation. However, Reff provides infor-
mation not contained in the limit equation.

and κεik = Aεik
√
wεk/w

ε
i . The gradient structure (Q, EεBz,R∗ε) exactly generates the gradient-

flow evolution (1.2), and we call it simply the cosh gradient structure. Note that the
dissipation potential v 7→ Rε(c, ·) is still superlinear, but grows only like |v| log(1+|v|).
In particular, Rε does not induce a metric on Q.

This gradient structure is also in line with the first derivation of exponential kinetic
relations by Marcellin in 1915, see [Mar15]. Moreover, it arises as effective gradient
structure in EDP converging systems, see [LM∗17, FrL19]. In [FrM20] it is shown that
the exponential function “cosh” arises due to the Boltzmann entropy as inverse of the
logarithm. For Lp-type entropies R∗ will have a growth like |ξ|c0/(p−1).

Instead of passing to the limit ε→ 0 in the equation (1.2), our goal is to perform the
limit passage in the gradient system (Q, EεBz,R∗ε) to obtain directly an effective gradient
system (Q, E0,R∗eff) via the notion of EDP-convergence as introduced in [LM∗17, DFM19,
MMP19]. Roughly spoken this convergence asked for the Γ-convergence of the energies,

namely EεBz
Γ−→ E0 on Q, and for the dissipation functionals Dε

Γ−→ D0 on L2([0, T ];Q)
with

Dε(c) =

∫ T

0

(
Rε(c, ċ)+R∗ε(c,−DEε(c))

)
d t and

D0(c) =

∫ T

0

(
Reff(c, ċ)+R∗eff(c,−DE0(c))

)
d t.

The notion of EDP-convergence produces a unique limit gradient system, and we may

have Rε
Γ−→ R0 while Reff 6= R0, see [LM∗17, DFM19]. As a trivial consequence of

EDP-convergence we then find that 0 = DReff(c, ċ) + DE0(c) is the limit equation, cf.
Lemma 3.4. In general the limit equation may have many gradient structures. However,
we emphasize that constructing Reff adds thermodynamical information to the limit
equation, since the gradient structure reflects the underlying microscopic properties of
the model, see [MPR14, MP∗17]. Thus, we turn around the usual limit analysis where
one first works on the gradient-flow equations (1.4) and the solutions cε : [0, T ] → Q,
and then studies gradient structures for the limit equations. As shown in Figure 1,
EDP-convergence works solely on the gradient systems and produces Reff as a nontrivial
result, which then gives the limit equation and the accumulation points c0 : [0, T ] → Q
of the solutions cε : [0, T ]→ Q.

In [LM∗17, Sec. 3.3] an example of a simple linear reaction systems (with I = 3) is
considered, where it is shown that the cosh structure is distinguished by the fact that it
is the only one that is stable under EDP-convergence. It is one of our major results that
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in our situation the same stability is true, i.e. EDP-convergence yields a limit gradient
structure of cosh-type again.

We now describe our results more precisely. We mainly work under the assumption
that our system (1.2) satisfies the DBC (1.3) for wε and assume that wε → w0 ∈ ]0, 1[I ,
i.e. all components w0

i are positive. Then, clearly AF satisfies the DBC for w0. As
is shown in Section 2, the fast reactions encoded in AF separate I = {1, . . . , I} into
J < I clusters, and we define a coarse graining operator M ∈ RJ×I and a reconstruction
operator N ∈ RI×J satisfying

MAF = 0 ∈ RJ×I , AFN = 0 ∈ RI×J , and MN = idRJ .

The coarse graining operator M satisfies Mji ∈ {0, 1} indicating whether the species i be-
longs to the cluster j. The limit equation, which is derived in Theorem 2.9 independently
of any EDP-convergence for clarity, then reads

Mċ(t) = MASc(t) and AF c(t) = 0. (1.6)

Although convergence of solutions of (1.2) is indeed well-known, we added a short proof,
as it shows similarities to the proof of EDP-convergence in using complementary informa-
tion to derive compactness. Using the coarse-grained states ĉ(t) = Mc(t) ∈ Q̂ ⊂ RJ with
probabilities ĉj(t) for the cluster j ∈ J one obtains the coarse-grained linear reaction
systems

˙̂c(t) = Â ĉ(t) with Â = MASN ∈ RJ×J . (1.7)

See Section 2.4 for a detailed description and an interpretation of the coarse-grained
equation.

From the solutions ĉ we obtain all solutions of the limit equation (1.6) via c(t) =
Nĉ(t). In fact, setting ŵ := Mw0 ∈ ]0, 1[J and defining the diagonal mappings Dw0 =
diag(w0

i )i∈I and Dŵ = diag(ŵj)j∈J the reconstruction operator N is given via N =
Dw0M∗D−1

ŵ . The intrinsic definition of N becomes clear from duality theory as Dw0 can
be seen as a duality mapping from relative densities % ∈ (RI)∗ to concentrations c ∈ RI .

c ∈ RI % ∈ (RI)∗ ⊃M∗(RJ)∗

ĉ ∈ RJ %̂ ∈ (RJ)∗

D−1
w0

M

D−1
ŵ

N M∗

In Section 3 we discuss general gradient systems and define different notions of EDP-
convergence as in [DFM19, MMP19], while Section 4 recalls the different possible gradient
structures for linear reaction systems satisfying the DBC (1.3). In Section 4.4 we address
the important notion of tilting of Markov processes which means the change of the
equilibrium measure w into wη = 1

Z

(
e−ηiwi

)
i∈I . It is another remarkable feature of the

cosh gradient structure that it is invariant under tilting (see Proposition 4.1).
In Section 5 we present our main result on the EDP-convergence with tilting of the

cosh-gradient systems (Q, EεBz,R∗ε) defined via (1.5). While the Γ-convergence EεBz
Γ−→ E0

Bz

follows trivially from wε → w0, the Γ-convergence Dε
Γ−→ D0 in L2([0, T ],Q) is much more

delicate. In fact, Theorem 5.3 even provides the Mosco-convergence of Dε
M−→ D0, i.e. (i)
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the liminf estimate lim infε→0 Dε(c
ε) ≥ D0(c0) holds even under the weak convergence

cε ⇀ c0 in L2([0, T ];Q) and (ii) for each c0 ∈ L2([0, T ];Q) there exists a recovery sequence
cε → c0 strongly(!) in L2([0, T ];Q) such that lim supε→0 Dε(c

ε) ≤ D0(c0).
The main point of the result is the exact characterization of Reff . Indeed, we have

D0(c) =


∫ T

0

(
Reff(c, ċ) +R∗eff(c,−DE0

Bz(c))
)

d t for c ∈W1,1([0, 1];PQ),

∞ otherwise in L2([0, 1];Q),

where, for c ∈ PQ the effective dissipation potential Reff is given by

R∗eff(c, ξ) = R∗S(c, ξ)+χM∗(RJ )∗(ξ) or equivalently Reff(c, v) = inf
z∈RI :Mz=Mv

RS(c, z).

Here P = NM is the projection mapping general c ∈ Q into microscopically equilibrated
reactions c = Nĉ with ĉ = Mc, and R∗S is the dual dissipation potential defined as in
(1.5) but using only the slow reactions. Finally, the characteristic function χΞ is 0 for
ξ ∈ Ξ and ∞ else. The condition χΞ(−DE0

Bz(c)) < ∞ is in fact equivalent to c ∈ PQ
(see Section 5.2).

It is easy to see that the degenerate gradient system (Q, E0
Bz,R∗eff) generates exactly

the limit equation (1.6). Moreover, using the bijective linear mapping M : PQ → Q̂ :={
ĉ ∈ [0, 1]J

∣∣ ĉ1 + · · ·+ ĉJ = 1
}
⊂ RJ with inverse N : Q̂→ PQ ⊂ RI we can define the

coarse-grained gradient system (Q̂, Ê , R̂) for the coarse-grained states ĉ = Mc via

Ê(ĉ) = E0
Bz(Nĉ), R̂(ĉ, v̂) = Reff(Nĉ,Nv̂), R̂∗(ĉ, ξ̂) = R∗eff(Nĉ,M∗ξ̂).

The construction and the explicit formula for R∗eff yield that (Q̂, Ê , R̂) is again a cosh gra-
dient structure and the associated gradient-flow equation is the coarse-grained equation
(1.7), see Proposition 5.7.

This is indeed a rigorous coarse-graining in the sense of [MaM20, Sec. 6.1]. This paper
is intended to be an easy-to-understand first result for more general results for EDP-
convergence that will finally cover nonlinear reaction systems [MPS20] (where the coarse-
graining procedure based on Markov operators does not work) and reaction-diffusion
systems as in [FrL19, FrM20] and [Ste20] (where also the reaction fluxes are coarse-
grained and reconstructed). We expect that the cosh gradient structure will also be
stable in these more general situations.

2 Fast-slow reaction network

On Q := Prob(I) :=
{
c ∈ [0, 1]I

∣∣ ∑
i∈I ci = 1

}
⊂ X := RI we consider the Kolmogorov

forward equation or master equation

ċ = Ac with A ∈ RI×I ,

where A is the adjoint of a Markov generator, i.e.

Aik ≥ 0 for all i 6= k and ∀ k ∈ I : 0 =
∑I

i=1
Aik.

Some comments on the notation are in order. Usually, in the theory of Markov operators
and stochastic processes the state space is the set of probability measures which is a
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subset of the dual space of continuous functions. So it would be more convenient to
denote the space of interest by X∗ and not X. Certainly, since we are dealing with finite
dimensional spaces, both are isomorphic and the notation is just a question of manner.
In that paper, the master equation is understood as a rate equation of a gradient system
in the sense of Section 3 which is an equation in X. Strictly speaking, the operator A is
the adjoint of a Markov generator L which generates a semigroup of Markov operators
etL : X∗ → X∗. By definition, a Markov operator M∗ : X∗ → Y ∗ on a finite dimensional
state space maps positive vectors on positive vectors and the constant one vector 11X∗ to
a constant one vector 11Y ∗ . Its adjoint maps the set of probability vectors onto the set
of probability vectors.

The linear reactions given by A, naturally define a graph or reaction network, where
edges eik from node xi to node xk correspond to the entries Aik > 0. The graph is
directed, i.e. edges eik and eki are different and have an orientation. We assume that
A is irreducible, which means that the corresponding graph is irreducible, or in other
words, that any two nodes are connected via a directed path. This implies that there is
a unique steady state w ∈ Prob(I) which is positive, i.e. wj > 0 for all j ∈ I, see e.g.
[Dur10].

The crucial assumption for our systems is the following symmetry condition. The
Markov process satisfies is called to satisfy the detailed-balance condition (DBC) with
respect to its stationary measure w > 0, if Aikwk = Akiwi for all i, k ∈ I. Assuming
detailed balance, the evolution equation ċ = Ac, which is an equation on X, can also be
written in another form. Let us introduce the duality operator

Dw = diag(w) :

{
X∗ → X,
% 7→ c = Dw%

and X 3 c D−1
w−−→ % ∈ X∗.

Hence, Dw maps the relative densities % to the concentrations c, i.e. ci = %iwi. The
linear master equation can now be written as

ċ = B% with B = ADw .

Because of the DBC, B = ADw : X∗ → X is a symmetric operator on X, i.e. B∗ = B.
For our slow-fast systems, we introduce a scaling parameter 1/ε for ε > 0 and the

rates Aik on the right-hand side decompose into A = Aε = AS + 1
ε
AF , where “S” stands

for slow and “F” for fast reactions. Our equation is ε-dependent and reads

ċε = Aεcε = (AS +
1

ε
AF )cε. (2.1)

The aim of the paper is to investigate the system in the limit ε → 0. To do this, some
assumptions on the ε-dependent reaction network are needed.
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2.1 Assumptions on the ε-dependency of the network

Our paper will be restricted to the case where the stationary measure wε ∈ Q converges
to a positive limit measure wε → w0 ∈ ]0, 1[I :

For all ε > 0, the reaction graph defined by Aε is connected.
Moreover, if there is a transition from state i to k (i.e. Aki > 0), then
there is also a transition backwards from k to i.

(2.Aa)

For all ε > 0 there is a unique and positive stationary measure wε ∈ Q,
and the stationary measure converges wε → w0, where w0 is positive.

(2.Ab)

(DBC): For all ε > 0 the detailed-balance condition with respect to wε

holds, i.e. Aεikw
ε
k = Aεkiw

ε
i for all i, k ∈ I.

(2.Ac)

These three conditions are not independent of each other, but it is practical to state
them as above. In particular, if (2.Aa) and the DBC (2.Ac) hold, then (2.Ab) follow,
which is the content of the following results. See [Ste19a] and the references therein for
generalizations.

Proposition 2.1. Let the reaction network satisfy (2.Aa) and (2.Ac) and define, for
transitions according (2.Aa), the transition quotients

qεik =
Aεik
Aεki

=
ASik + 1

ε
AFik

ASki + 1
ε
AFki

.

If there is a (universal) bound q∗ < ∞ such that for all transitions from i to k and for
all ε ≥ 0 the transition quotients qεik satisfy 1/q∗ ≤ qεik ≤ q∗, then wε converges and its
limit w0 is positive, i.e. (2.Ab) holds.

Proof. Using the DBC (2.Ac), the stationary measure wε only depends on the transition
quotient qεik. Hence, each ε 7→ wεi ∈ [0, 1] is a rational polynomial in ε and thus converges
to w0

i with w0 ∈ Q = Prob(I) with polynomial dependency on ε > 0. Moreover,
qεik = 1/qεki converges to q0

ik ∈ [1/q∗, q∗]. Since the limit w0 again depends only q0
ik, we

conclude that it is positive.

We now comment on the relevance of the above assumptions and give two nontrivial
examples.

Remark 2.2.

(a) In the chemical literature, our assumption (2.Aa) is often called (weak) reversibility.
It implies already that the stationary measure wε for Aε is unique and positive.

(b) The assumptions in Proposition 2.1 say that the quotients qεij are bounded even
for ε→ 0 and hence, they converge. In particular, this means that if there is a fast
reaction AFik 6= 0 then necessarily also the backward reaction is fast, i.e. AFki 6= 0.
So, the graph does not change its topology in the limit process ε → 0. Without
this assumption the mass wεi may vanish for some species i, see Example 2.3(b).
This case is more delicate and will be considered in subsequent work.

(c) It was observed in [Yon08, Mie11] that reaction systems of mass-action type have
an entropic gradient structure, if the DBC holds. For linear reaction systems this
was independently found in [Maa11, CH∗12]. However, our work will not use the
quadratic gradient structure derived in the latter works, but will rely on the cosh-
type generalized gradient structure derived in [MPR14, MP∗17], see Section 4.
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(d) Assuming (2.Aa), (2.Ac), and additionally that the reaction quotients qεik scale
either with 1 or with 1/ε, i.e. AFik 6= 0⇒ ASik = 0, then the transition quotients qεik
are ε-independent. In particular, the stationary measure wε as well as the energy
Eε (see Section 4.2) are independent of ε.

Example 2.3. We discuss two cases highlighting the relevance of our assumptions.

(a) A prototype example is the following, where four states are involved:

321 4

A1,2
A2,3

ε

A3,2

ε
A2,1 A4,3

A3,4

As in all reaction chains, this example satisfies the DBC (2.Ac).

We observe that the reaction rates Aεik scale either with 1 or with 1/ε and hence, the
reaction ratios as well as the stationary measure do not depend on ε, see Remark
2.2(d). Hence, the assumptions (2.A) are satisfied. We expect that in the limit
ε→ 0 a local equilibrium between the states 2 and 3 occur, which means that the
system can be described by only three states.

ε = 0 1 {2, 3} 4

Â23,1 Â4,23

Â23,4Â1,23

(b) In [LM∗17], the authors considered the following reaction chain:

ε > 0

21 3

2 2
ε

22
ε ε = 0

31

1

1

The DBC (2.Ac) is again satisfied. The stationary measure is wε = 1
2+ε

(1, ε, 1).

The transition quotients are qε12 = ε and qε23 = 1
ε
, which converge to 0 or ∞,

respectively. Hence assumption (2.Ab) is violated. In fact the limit stationary
measure is w0 = (1

2
, 0, 1

2
), which is no longer strictly positive. In [LM∗17, Sec. 3.3]

the EDP-convergence is performed for different gradient structures and only the
cosh-gradient structure as defined in Section 4.3.3 turned out to be stable.

2.2 Capturing the states connected by fast reactions

In the limit species which are connected by fast reactions have to be treated like one
large particle. Let i1 ∼F i2 denote the relation if states i1 and i2 are connected via fast
reactions. Assumptions (2.Aa),(2.Ab),(2.Ac) guarantees that ∼F defines an equivalence
relation on I and decomposes I into different equivalence classes J := {α1, . . . , αJ},
where the index of ∼F , i.e. the number of (different) equivalence classes, is denoted by
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J . By definition all αj are non-empty. Obviously, we have 1 ≤ J ≤ I. In particular,
J = I means that there are no fast reactions; J = 1 means that each two species
are connected via at least one reaction path consisting only of fast reactions. Let φ :
{1, . . . , I} → {α1, . . . , αJ} be the function, which maps a state i to its equivalence
class αj, i.e. i 7→ φ(i) = [i]∼F = αj. To make notation simpler, we denote the set of
equivalence classes by J = {1, . . . , J} and further use j ∈ J and i ∈ I.

The function φ : I → J defines a deterministic Markov operator M∗ : Y ∗ → X∗,
where Y ∗ is a J-dimensional real vector space, by

(M∗%̂)i := %̂φ(i), %̂ ∈ Y ∗, i ∈ I.

Deterministic Markov operator means that its dual M : X → Y maps pure concentra-
tions, i.e. unit vectors ei, to pure concentrations.

Some facts on deterministic Markov operators are in order. Clearly for a deterministic
Markov operator it holds M∗(%̂ · ψ̂) = M∗%̂ · M∗ψ̂ where the multiplication is meant
pointwise. (This, by the way, characterizes all deterministic Markov operator.) We want
to write the multiplicative relation in form of operators. To do this let us define the
multiplication by %̂ as Π%̂ : Y ∗ → Y ∗, with (Π%̂ψ̂)j = %̂j · ψ̂j. Hence, we conclude for
a deterministic Markov operator that M∗Π%̂ = ΠM∗%̂M

∗. Dualizing this equation, we
get Π∗%̂M = MΠ∗M∗%̂. Note, that the adjoint operator has a simple form: Π∗%̂ : Y → Y ,
Π∗%̂ĉ = Dĉ%̂. So summarizing

Π∗%̂M = MΠ∗M∗%̂ and Π∗%̂ĉ = Dĉ%̂. (2.3)

In the limit process the species connected by fast reactions are identified. This is
done by a linear coarse-graining-operator, which is the adjoint of M∗, M : X → Y . In
matrix representation induced by the canonical basis, we have

M : X ≈ RI → Y ≈ RJ , Mji :=

{
1, for i ∈ αj,
0, otherwise .

Note that the construction is such that M maps X ⊃ Prob(I) onto Y ⊃ Prob(J ). Since
for αj there is at least one i with i ∈ αj, the matrix of M has full rank and each column
is a unit vector. Moreover, we point out that M and M∗ only depend on the reaction
network topology and the locations of the fast reactions, the specific reaction rates Aij
do not matter (see Example 2.6 below).

2.3 Properties of the coarse-graining operator M and the re-
construction operator N

Recall the duality map Dw0 , which is a represented by a diagonal matrix with entries
w0 > 0, connects the concentrations and the relative densities, i.e.

% ∈ X∗
Dw0−−→ c ∈ X.

The subset of X∗ which consists of the equilibrated densities %i is denoted by X∗eq, i.e.

X∗eq :=
{
% ∈ X∗

∣∣ ∀ i1 ∼F i2 : %i1 = %i2
}
.

For the limit system, we define the stationary measure (denoted by ŵ) by ŵ = Mw0.
Since M∗ is a deterministic Markov operator, we have the following characterization of
the multiplication operator induced by ŵ.
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Lemma 2.4. Let M∗ : Y ∗ → X∗ be a deterministic Markov operator induced by a
function φ : {1, . . . , I} → {1, . . . , J} and let w ∈ X. Then Mw = ŵ if and only if
Dŵ = MDwM

∗.

Proof. Assume that Dŵ = MDwM
∗ holds. Evaluating both sides at the constant vector

11Y ∗ , we get Dŵ11Y ∗ = ŵ and MDwM
∗11Y ∗ = MDw11X∗ = Mw, since M∗ is a Markov

operator which maps 11Y ∗ 7→ 11X∗ . This proves the claim in one direction.
Assume ŵ = Mw we have to show that DMw = MDwM

∗. We use statement (2.3) for
deterministic Markov operators and find DMw%̂ = Π∗%̂Mw = MΠ∗M∗%̂w = MDwM

∗%̂.

If M∗ is not a deterministic Markov operator but a general one, then the above
relation will not hold.

We assumed that all equivalence classes αj are non-empty and hence, each row of
M has at least one entry “1”. In particular, this implies that ŵ is strictly positive and
hence, Dŵ is invertible. In particular, we proved that the following diagram commutes:

c ∈ X % ∈ X∗ ⊃ X∗eq =
{
% ∈ X∗

∣∣ ∀ i1 ∼F i2 : %i1 = %i2
}

ĉ ∈ Y Y ∗

D−1

w0

M

D−1
ŵ

M∗

The crucial object is the following operator N : Y → X, which ”inverts” the coarse-
graining operator M : X → Y , by mapping coarse-grained concentrations ĉ ∈ Y to
concentrations c ∈ X (see also [Ste13], where the operator is introduced for its connection
to the direction of time). We call N a reconstruction operator as it reconstructs the full
information on the density c ∈ X from the coarse-grained vector ĉ ∈ Y assuming, of
course, microscopic equilibrium. More precisely, N is defined via

N := Dw0M∗D−1
ŵ : Y → X such that N∗ = D−1

ŵ MDw0 : X∗ → Y ∗. (2.4)

The operator N and its adjoint N∗ have several important properties which are summa-
rized in the next proposition, which is independent of the generators Aε = AS + 1

ε
AF .

Proposition 2.5. Let M∗ : Y ∗ → X∗ be a deterministic Markov operator as in Lemma
2.4 with adjoint M : X → Y and let ŵ := Mw0 for some w0 ∈ ]0, 1[I ⊂ Q. Moreover,
N and N∗ be defined as in (2.4), then the following holds:

1. N∗ is a Markov operator.

2. MN = idY or N∗M∗ = idY ∗, i.e. N∗ is a left-inverse of the Markov operator M∗.

3. NM is a projection on X, which leaves the range of Dw0M∗ : Y ∗ → X invariant.
The adjoint M∗N∗ is a projection as well, which leaves the range of M∗ invariant.

4. Nŵ = w0, i.e. N inverts w.r.t. the stationary measure.

5. The operator P ∗ := M∗N∗ is a Markov operator on X∗ and its adjoint P = NM
has the stationary measure w0. Moreover, P ∗ satisfies detailed balance w.r.t. w0.
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Proof. Clearly, N∗ is non-negative and N∗11X∗ = D−1
ŵ MDw011X∗ = D−1

ŵ Mw0 = 11Y ∗

holds. This proves the first statement.
Lemma 2.4 implies that MN = idY and that NM is a projection on X, which leaves

the range of Dw0M∗ : Y ∗ → X invariant. The fourth claim is also trivial. It is also not
hard to see that P ∗ is a Markov operator and that its adjoint has the stationary measure
w0. Moreover, detailed balance holds:

Dw0P ∗ = Dw0M∗N∗ = Dw0M∗D−1
ŵ MDw0 = NMDw0 = PDw0 .

This proves the result.

The following example shows how the operators look like in a specific case.

Example 2.6. For the reaction network in Example 2.3(a) we have I = 4 with only one
fast reaction 2 ∼F 3, hence J = 3. Using the numbering α1 = {1}, α2 = {2, 3}, and α3 =
{4} and the stationary measures w = (w1, w2, w3, w4)> ∈ X and ŵ = (w1, w2+w3, w4)> ∈
Y , respectively, we find

M =

1 0 0 0
0 1 1 0
0 0 0 1

 , N =


1 0 0
0 w2

w2+w3
0

0 w3

w2+w3
0

0 0 1

 , and P = NM =


1 0 0 0
0 w2

w2+w3

w2

w2+w3
0

0 w3

w2+w3

w3

w2+w3
0

0 0 0 1

 .

2.4 The limit equation and the coarse-grained equation

As a direct consequence of Proposition 2.5 we obtain a decomposition of the state space
X ≈ RI into the microscopically equilibrated states

c = Pc ∈ Qeq := PQ ⊂ Xeq := PX =
{
c ∈ X

∣∣AF c = 0
}
,

which are measures having constant density with respect to w0, and a component
(I−P )c ∈ Xfast := (I−P )X that disappears exponentially on the time scale of the
fast reactions. We emphasize that the following result does not use the DBC (2.Ac).

Proposition 2.7. Under the assumptions (2.Aa)–(2.Ab) we have

PAF = AFP = 0 ∈ RI×I , MAF = 0 ∈ RJ×I , AFN = 0 ∈ RI×J , (2.5a)

X = Xeq ⊕Xfast with (2.5b)

Xeq = kernel(AF ) = range(P ) = range(N) and (2.5c)

Xfast = range(AF ) = kernel(P ) = kernel(M). (2.5d)

Here, Xfast depends on M only, i.e. only on the reaction graph of AF , whereas Xeq

depends on AS and AF through w0.

Proof. By construction of M from the reaction network induced by AF we immediately
obtain range(AF ) = kernel(M). Indeed, the entries of M are all 0 or 1, where the jth
row contains only the entry 1 exactly for i ∈ α(j). Thus, these 1s correspond to the mass
conservation in the corresponding equivalence class α(j) ⊂ {1, . . . , I}, and MAF = 0
follows, which implies range(AF ) ⊂ kernel(M). Dimension counting gives the desired
equality.
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Using the injectivity of N and P = NM we have shown (2.5d).
To establish the relation for Xeq it suffices to show kernel(AF ) = range(N), since the

surjectivity of M and P = NM gives range(N) = range(P ).
Using the dimension counting it is even sufficient to show AFN = 0. Firstly, we use

0 = Aεwε = (AS + 1
ε
AF )wε, which gives AFwε → 0. Hence, AFw0 = 0. Moreover, we

observe that the jth column of N = Dw0M∗Dŵ contains the unique equilibrium measure
associated with the equivalence class α(j) ⊂ {1, . . . , I}, which implies that AFN = 0.

Based on the above result we can formally pass to the limit in our linear reaction
system ċε = (AS+1

ε
AF )cε. Multiplying the equation from the left by M we can use

MAF = 0 and see that the term of order 1
ε

disappears. Moreover, it is expected that the
fast reactions equilibrate, so in the limit ε → 0 we expect the microscopic equilibrium
condition AF cε → 0. Hence, we expect that cε : [0, T ] → Q converges to a function
c0 : [0, T ]→ Q which solves the limit equation

Mċ(t) = MASc(t) and AF c(t) = 0. (2.6)

Before giving a proof for the convergence cε → c we want state that this system has a
unique solution for each initial condition c(0) that is compatible, i.e. AF c(0) = 0 and
that this solution is characterized by solving the so-called coarse-grained equation.

Theorem 2.8 (Coarse-grained equation). For each c0 ∈ Q with AF c0 = 0 there is a
unique continuous solution c : [0, T ] → Q of (2.6) with c(0) = c0. This solution is
obtained by solving the coarse-grained ODE

˙̂c = MASN ĉ, ĉ(0) = Mc0 (2.7)

and setting c(t) = Nĉ(t). Moreover, the stationary solution is ŵ = Mw0.

Proof. On the one hand, by (2.5c) we know that AF c = 0 is equivalent to c = Pc = NMc.
Thus, for any solution c of (2.6) the coarse-grained state ĉ = Mc satisfies the coarse-
grained equation (2.7).

On the other hand, (2.7) is a linear ODE in Q̂ ⊂ Y which has a unique solution
satisfying ĉ(t) ∈ Q̂. This proves the first result.

To see that ŵ = Mw0 is a stationary measure, we use AFw0 = 0 and (2.5b) implies
Pw0 = w0. On the other hand using MAF = 0 we can pass to the limit in 0 = M0 =
MAεwε = MASwε to obtain MASw0 = 0. Combing the two results we find

Âŵ = MASN(Mw0) = MAS Pw0 = MASw0 = 0,

which is the desired result.

We emphasize that the coarse-grained equation (2.7) is again a linear reaction sys-
tem, describing the master equation for a Markov process on J = {1, . . . , J}. The
effective operator Â := MASN can be interpreted in the following way: N divides the
coarse-grained states into microscopically equilibrated states, AS is the part of the slow
reactions, and M collects the states according to their equivalence classes α(j).

Using Mji = δjφ(i) and Nij =
w0
i

ŵj
δjφ(i) the coefficients of the generator Â = MASN

are easily obtained by a suitable average, namely

Âj1j2 =
∑
i1∈αj1

∑
i2∈αj2

ASi1i2
w0
i2

ŵj2
. (2.8)
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2.5 Convergence of solutions on the level of the ODE

Finally, for mathematical completeness, we provide a simple and short convergence proof.
It can also be obtained as a special case of the result in [Bot03]. Of course, the conver-
gence of solutions is also a byproduct of the EDP-convergence given below, see Lemma
3.4. The latter result, which is the main goal of this work, provides convergence of the
gradient structures, which is a significantly stronger concept, because the coarse-grained
equation (2.7) has many different gradient structures, while the EDP-limit is unique.

Theorem 2.9 (Convergence of cε to c0). Assume (2.A) and consider solutions cε :
[0, T ]→ Q of (1.2) such that Mcε(0)→ ĉ0. Then, we have the convergences

Mcε →Mc0 in C0([0, T ];X) and cε → c0 in L2([0, T ];X),

where c0 is the unique solution of (2.6) with c0(0) = Nĉ0.

Proof. Step 1: Weak compactness. We first observe that cε : [0, T ]→ Q ⊂ [0, 1]I provides
a trivial a priori bound for cε in L∞([0, T ];RI). Hence, we may choose a subsequence
(not relabeled) such that cε → c0 weakly in L2([0, T ];RI).

Step 2: Compactness of coarse-grained concentrations. With Step 1 we see that
âε := Mcε is bounded in CLip([0, T ];RI), because of ˙̂aε = Mċε = MAScε. Thus, there
is a subsequence (not relabeled) such that âε → â0 in C0([0, T ];RJ) and â0(0) = ĉ0.
Moreover, with Step 1 we have â0 = Mc0.

Step 3: Generation of microscopic equilibrium. We take the dot product of the ODE
with the vector of relative densities cε/wε := (cεi/w

ε
i )i=1,..,I . Defining the quadratic form

Bε(c) =
∑I

i=1
c2i

2wεi
we obtain

d

d t
Bε(cε) = ċε · c

ε

wε
=
(
Aεcε) · c

ε

wε
=

1

ε

(
Bεcε) · cε with εD−1

wεA
ε =: Bε = (Bε)∗ ≥ 0.

(2.9)

The latter relations follow from the DBC (2.Ac). Defining the quadratic functional

Qε(c) :=
∫ T

0
Bεc(t) · c(t)d t and integrating (2.9) over [0, T ] gives

Qε(c
ε) = εB(cε(0))− εB(cε(T )) ≤ C1ε.

Moreover, using |wε−w0| ≤ C2ε we find |Qε(c)−Q0(c)| ≤ C3ε. Hence Q0(cε) ≤ Qε(c
ε) +

C3ε ≤ C1ε+ C3ε. Using the convexity of Q0 the weak limit c0 of cε satisfies

0 ≤ Q0(c0) ≤ lim inf
ε→0

Q0(cε) ≤ lim inf
ε→0

(C1+C3)ε = 0.

Since B0 = D−1
w0A

F is symmetric and positive semidefinite we conclude AF c0(t) = 0 a.e.

in [0, T ]. More precisely, by (2.5d) c 7→
(
B0c · c

)1/2
defines a norm on Xfast that is

equivalent to c 7→ |(I−P )c|. Thus, we conclude (I−P )cε → (I−P )c0. Moreover, Step 2
gives Pcε = NMcε = Nâε → NMc0 = Pc0 such that cε → c0 in L2([0, T ;RI) follows.

Step 4. Limit passage in the ODE. To see that c0 satisfies the limit equation (2.6)
we pass to the limit in

Mcε(t) = Mcε(0) +

∫ t

0

MAScε(s)ds,

31



EDP-convergence for LRS A. Mielke and A. Stephan

where the left-hand side converges by Step 2 and the right-hand side by the assumption
on the initial condition and by Step 3 and Lebesgue’s’ dominated convergence theorem.
Thus, Mc0(t) = Mc0(0) +

∫ t
0
MASc0(s)d s, and with AF c0 = 0 from Step 3 the desired

limit equation (2.6) is established.
As we already know that the solution of (2.6) is unique, we conclude convergence of

the whole family (cε)ε>0, instead of a subsequence only.

In the above proof the DBC (2.Ac) is not really necessary, but it simplified our proof
considerably.

3 Generalized gradient structures

This small section provides the general notions of gradient systems, gradient-flow equa-
tions, the energy-dissipation principle (EDP), and the three notions of EDP convergence.
We follow the survey article [Mie16] and the more recent works [DFM19, MMP19].

3.1 Gradient systems and the Energy-Dissipation Principle

A triple (Q, E ,R) is called a gradient system if

• Q is a closed convex subset of a Banach space X,

• E : Q → R∞ := R ∪ {∞} is a differentiable functional (e.g. free energy, negative
entropy)

• R : Q × X → R∞ is a dissipation potential, i.e. for all u ∈ Q the functional
R(u, ·) : X → R∞ is lower semicontinuous (lsc), nonnegative, convex and satisfies
R(u, 0) = 0.

(More general, Q can be a manifold, then R is defined on the tangent bundle TQ, but
this generalization is not needed in this work.) A gradient system (Q, E ,R) is called
classical if R(u, ·) is quadratic, i.e. if there are symmetric and positive definite operators
G(u) : X → X∗ such that R(u, v) = 1

2
〈G(u)v, v〉. But often R(u, ·) is not quadratic

(e.g. for rate-independent processes such as elastoplasticity), see [Mie16] and reference
therein. We define the dual dissipation potential R∗ using the Legendre transform via

R∗(u, ξ) = (R(u, ·))∗(ξ) := sup
{
〈ξ, v〉 − R(u, v)

∣∣ v ∈ X }.
The gradient system is uniquely described by (Q, E ,R) or, equivalently by (Q, E ,R∗)
and, in particular, in this paper we use the second representation.

The evolution of the states u(t) in a gradient system are given in terms of the so-
called gradient-flow equation that is given in terms of E and R and can be formulated
in three equivalent ways:

(I) force balance in X∗. 0 ∈ ∂u̇R(u, u̇) + DE(u) ∈ X∗,
(II) power balance in R. R(u, u̇) +R∗(u,−DE(u)) = −〈DE(u), u̇〉,

(III) rate equation in X. u̇ ∈ ∂ξR∗(u,−DE(u)) ∈ X,
(3.1)

where ∂ is the set-valued partial subdifferential with respect to the second variable.
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In general, we cannot expect that the solution of the gradient-flow equation fill the
whole state space. Clearly, along solutions we want to have E(u(t)) < ∞ for t > 0.
Moreover, relation (III) asks that −DE(u(t)) lies in the domain of ∂ξR∗(u(t), ·) for a.a.
t ∈ [0, T ]. Thus, we set

Dom(Q, E ,R) :=
{
u ∈ Q

∣∣DE(u) exists, ∂ξR∗(u,−DE(u)) is nonempty
}
. (3.2)

Typically, one expects that solutions exist for all initial conditions in the closure of
Dom(Q, E ,R).

These three formulations are the same due to the so-called Fenchel equivalences (cf.
[Fen49]): Let Z be a reflexive Banach space and Ψ : Z → R∞ be a proper, convex and
lsc, then for every all pairs (v, ξ) ∈ Z×Z∗ the following holds:

(i) ξ ∈ ∂Ψ(v) ⇐⇒ (ii) Ψ(v) + Ψ∗(ξ) = 〈ξ, v〉 ⇐⇒ (iii) v ∈ ∂Ψ∗(ξ).

We emphasize that (ii) and (II) should be seen as scalar optimality conditions, be-
cause the definition of the Legendre transform easily gives the Young-Fenchel inequality,
namely Ψ(v) + Ψ∗(ξ) ≥ 〈ξ, v〉 for all (v, ξ) ∈ Z×Z∗.

Integrating the power balance (II) in (3.1) over [0, T ] along a solution u : [0, T ]→ Q
and using the chain rule 〈DE(u(t)), u̇(t)〉 = d

dt
E(u(t)) we find the Energy-Dissipation

Balance (EDB):

E(u(T )) +

∫ T

0

(
R(u(t), u̇(t)) +R∗(u(t),−DE(u(t)))

)
d t = E(u(0)). (3.3)

The following Energy-Dissipation Principle (EDP) states that solving (3.3) is equivalent
to solving the gradient-flow equation (3.1).

Theorem 3.1 (Energy-dissipation principle, see e.g. [Mie16, Th. 3.2]). Assume that Q is
a closed convex subset of X = RI , that E ∈ C1(Q,R), and that the dissipation potential
R(u, ·) is superlinear uniformly in u ∈ Q. Then, a function u ∈ W1,1([0, T ];Q) is a
solution of the gradient-flow equation (3.1) if and only if u solves the energy-dissipation
balance (3.3).

Again, the EDB is an optimality condition, because integrating the Young-Fenchel
inequality for arbitrary ũ ∈ W1,1([0, T ];Q) and using the chain rule we obtain the esti-
mate

E(ũ(T )) +

∫ T

0

(
R(ũ(t), ˙̃u(t)) +R∗(ũ(t),−DE(ũ(t)))

)
d t ≥ E(ũ(0)). (3.4)

The above considerations show that an important quantity associated with a gradient
system (Q, E ,R) is given by the dissipation functional

D(u) :=

∫ T

0

(
R(u(t), u̇(t)) +R∗

(
u(t),−DE(u(t))

))
d t,

which is defined for all curves u ∈W1,1([0, T ];Q).
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3.2 General gradient systems and EDP-convergence

In the following, we consider a family of gradient systems (X, Eε,Rε) and define a no-
tion of convergence on the level of gradient systems which uniquely defines the limit or
effective system (Q, E0,Reff). Our notion relies on the the energy-dissipation principle
from above and the so-called sequential Γ-convergence for functionals, which is defined
as follows.

Definition 3.2 (Γ-convergence, see e.g. [Att84]). For functionals (Iε)ε>0 on a Banach

space Z we say Iε (strongly) Γ-converges to I, and write Iε
Γ−→ I, if the following two

conditions hold:

1. Liminf estimate.
if uε → u in Z, then I(u) ≤ lim infε→0 Iε(uε),

2. Existence of recovery sequences.
for all ũ ∈ Z there exists (ũε)ε>0 such that ũε → ũ and limε→0 Iε(ũε) = I(ũ).

If the same conditions hold when the strong convergences “→” are replaced by weak

convergences “⇀”, we say that Iε weakly Γ-converges to I and write Iε
Γ
⇀ I. If Iε

Γ
⇀ I

and Iε
Γ−→ I holds, we say that Iε Mosco converges to I and write Iε

M−→ I.

Clearly, for finite-dimensional Banach spaces Z the convergences
Γ−→,

Γ
⇀, and

M−→ coincide.
The energy dissipation principle allows us to formulate the gradient-flow equation in

terms of the two functionals Eε and Dε. However, to explore the full structure of gradient
systems it is useful to embed the given gradient system into a family of tilted gradient
systems (Q, Eη,R), where the tilted energies Eη are given by

Eη(u) = E(u)− `η(u) with `η(u) := 〈η, u〉 (3.5)

with an arbitrary tilt η ∈ X∗. Moreover, introducing the tilted dissipation functional

Dη
ε(u) :=

∫ T

0

(
Rε(u, u̇) +R∗ε(u, η−DEε(u))

)
d t, (3.6)

we can now define three versions of EDP-convergence for a family
(
(Q, Eε,Rε)

)
ε>0

as
follows.

Definition 3.3 (EDP-convergence [DFM19, MMP19]). Let Q be a closed convex subset
of a Banach space X and let Eε be Gateaux differentiable.

(A) We say that the gradient systems (Q, Eε,Rε)ε>0 converges in the simple EDP sense

to (Q, E0,Reff), and write (Q, Eε,Rε)
EDP−−−→ (Q, E0,Reff), if the following conditions hold:

(i) Eε
Γ
⇀ E0 on Q ⊂ X, and

(ii) Dε
Γ
⇀ D0 on L2([0, T ];Q) with D0(u) =

∫ T
0

(
Reff(u, u̇) +R∗eff(u,−DE0(u))

)
d t.

(B) We say that (Q, Eε,Rε) EDP-converges with tilting to (Q, E0,Reff), if for all η ∈ X∗

we have (Q, Eε−`η,Rε)
EDP−−−→ (Q, E0−`η,Reff).

34



EDP-convergence for LRS A. Mielke and A. Stephan

(C) We say that (Q, Eε,Rε) contact EDP-converges with tilting to (Q, E0,Reff), if (i) holds

and for all η ∈ X∗ we have Dη
ε

Γ
⇀ Dη

0 with Dη
0(u) =

∫ T
0
M(u(t), u̇(t), η−DE0(u(t))

)
d t,

where M satisfies the contact conditions

(c1) M(u, v, ξ) ≥ 〈ξ, v〉 for all (v, ξ) ∈ X×X∗,
(c2) M(u, v, ξ) = 〈ξ, v〉 ⇐⇒ Reff(u, v)+R∗eff(u, ξ) = 〈ξ, v〉.

Clearly, ‘tilted EDP-convergence’ is a stronger notion than ‘contact EDP-convergence’
since the contact potential M is explicitly given in R+R∗ form. We refer to [DFM19,
MMP19] for a general discussions of EDP-convergence and remark that ‘contact EDP-
convergence with tilting’ was called ‘relaxed EDP-convergence’ in [DFM19]. We empha-
size that there are cases where we have the Γ (or even Mosco) convergence Rε → R0,
but EDP-convergence yields Reff 6= R0. In general, EDP-convergence allows for effective
dissipation potentials Reff that inherit properties of the family (Eε)ε>0.

A first important feature of the different notions of EDP-convergence is that the
effective gradient system is uniquely determined. This is a much stronger statement
than determining the effective or limit gradient-flow equation, since a given equation
can have several gradient structures, as we will see below for linear reaction systems.

A further interesting observation is that the notion of EDP-convergence does not
involve the solutions of the associated gradient-flow equation. This may look like an
advantage, since solutions need not be characterized, however typically showing EDP-
convergence is at least as difficult.

Another important feature is that, under suitable technical assumptions, EDP-con-
vergence automatically implies the convergence of the corresponding solutions uε of the
gradient-flow equations to the solutions u of the effective equation

0 ∈ ∂vReff(u(t), u̇(t)) + DE0(u(t)) for a.a. t ∈ [0, T ]. (3.7)

The following result gives one possible variant of such a result, see [MMP19, Lem. 2.8] for
another. We do not enforce the condition uε(0)→ u(0) but only Eε(uε(0))→ E0(u(0)) as
well as the continuity of the limit encoded in the assumption u ∈W1,1([0, T ];X). Thus,
the result still applies to fast-slow reaction systems, where jumps at initial time t = 0 may
develop for ε→ 0, see e.g. the example treated in [MPS20, Sec. 2.5]. Then, it is important
to take into account that limε→0 u

ε(0) may be different from u(0) = limt→0+ u(t).

Lemma 3.4. Let the assumption of Theorem 3.1 be satisfied for all ε ≥ 0. Assume that
the gradient systems (Q; Eε,Rε) EDP-converge to (Q, E0,Reff) in one of the three senses
of Definition 3.3, then the following holds. If uε : [0, T ]→ Q are solutions for (3.1) and
u : [0, T ]→ Q is such that u ∈W1,1([0, T ];X),

Eε(uε(0))→ E0(u(0)), uε ⇀ u in L2([0, T ];Q), and uε(t)→ u(t) for all t ∈ ]0, T ],

then u is a solution of the effective gradient-flow equation (3.7).

Proof. By Theorem 3.1 we know that the EDB (3.3) holds for uε as solutions for the
gradient system (Q, Eε,Rε), namely Eε(uε(T )) + Dε(u

ε) = Eε(uε(0)).
Using uε(T )→ u(T ) and uε ⇀ u in L2 we have the liminf estimates

E0(u(T )) ≤ lim inf
ε→0

Eε(uε(T )) and D0(u) ≤ lim inf
ε→0

Dε(u
ε).
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Together with the assumed convergence of the energies at t = 0 and the representation
of D0 via Reff , we obtain

E0(u(T )) +

∫ T

0

(
Reff(u(t), u̇(t)) +R∗eff(u(t),−DE0(u(t)))

)
d t ≤ E0(u(0)). (3.8)

Together with (3.4) and the EDP in Theorem 3.1 we see that u solves (3.7).

4 Gradient structures for linear reaction systems

In this section we discuss several gradient structures for linear reaction systems satisfying
the detailed balance condition. Moreover, following the theory of Markov processes we
define a natural way of tilting such systems in such a way that a new global equilibrium
state w arises. This will show that the entropic gradient structure with cosh-type dual
dissipation plays a distinguished role.

4.1 A special representation for generators

We start from a general linear reaction system with the finite index space I := {1, . . . , I}.
On the state space Q = Prob(I) we consider the general linear reaction system

ċ = Ac where Ain ≥ 0 for i 6= n and
I∑
i=1

Ain = 0 for all n ∈ I. (4.1)

Throughout we assume that there exists a positive equilibrium state w ∈ Q, i.e. Aw = 0
and wi > 0 for all i ∈ I. At this stage we don’t need the detailed-balance condition.

As we later want to change the equilibrium state w (and hence also the generator A)
we write A in a specific form, namely

A = D1/2
w KD−1/2

w − Db with K = (κin) ∈ RI×I and b ∈ RI given by

κin = Ain
(wn
wi

)1/2
> 0 for i 6= n, κii = 0, and

bi = −Aii =
I∑

n=1

κni
(wn
wi

)1/2
> 0.

(4.2)

This representation is useful, because we can keep K fixed, while varying w to obtain
Markov generators A = Aw,K such that Aw,Kw = 0. The evolution equation (4.1) can
be written in the symmetric form

ċn =
∑
i: i 6=n

κni

((wn
wi

)1/2
ci −

(wi
wn

)1/2
cn

)
for n ∈ I. (4.3)

Moreover, we see that A and w satisfies the DBC Ainwn = Aniwi if and only if K
is symmetric. Thus, fixing a symmetric K and changing w does automatically generate
the DBC for AK,w and w.
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4.2 A general class of gradient structures

We now assume the DBC ADw = (ADw)∗ or equivalently K = K∗ in (4.2) and discuss a
general class of gradient structures for (4.1) following the general approach in [MaM20,
Sec. 2.5].

Let Φ : [0,∞[ → [0,∞[ and Ψin : R → [0,∞[ for 1 ≤ i < n ≤ I be lower semi-
continuous and strictly convex C2 functions such that Ψin(0) = 0 and Ψ′′in(0) > 0. We
search for a gradient system (Q, E ,R∗) with an energy functional E and a dual dissipation
potential in the form

E(c) =
I∑
i=1

wi Φ
( ci
wi

)
and R∗(c, ξ) =

I−1∑
i=1

I∑
n=i+1

ain(c) Ψin(ξi−ξn),

where the coefficient functions ain must be chosen appropriately, but need to be nonneg-
ative to guarantee that R∗(c, ·) is a dissipation potential.

With ∂ξnR∗(c, ξ) =
∑I

k=n+1 ank(c)Ψ
′
nk(ξn−ξk)−

∑n−1
i=1 ain(c)Ψ′in(ξi−ξn) and DE(c) =(

Φ′( ck
wk

)
)
k

we find the relation

∂ξnR∗(c,−DE(c)) =
I∑

i=n+1

ani(c)Ψ
′
ni

(
Φ′
( ci
wi

)
−Φ′

( cn
wn

))
−
n−1∑
i=1

ain(c)Ψ′in

(
Φ′
( cn
wn

)
−Φ′

( ci
wi

))
.

Thus, the equations ċn = ∂ξnR∗(c,−DE(c)) are the same as in (4.3), provided we choose
the coefficient functions ain as

ani(c) :=
κni
√
wnwi

(
ci
wi
− cn

wn
)

Ψ′ni
(
Φ′( ci

wi
)− Φ′( cn

wn
)
) for ci

wi
6= cn

wn
and ani(c) :=

κni
√
wnwi

Ψ′′ni(0)Φ′′( ci
wi

)
for ci

wi
= cn

wn

(4.4)

and exploit the DBC κin = κni. We also emphasize that Φ′ is strictly increasing such that
ci
wi
− cn

wn
and Φ′( ci

wi
) − Φ′( cn

wn
) always have the same sign. Since Ψ′(ζ) and ζ also always

have the same sign, we conclude that ain(c) ≥ 0 as desired for dissipation potentials.
As the choice of entropy functional density Φ and of the dual dissipation potentials

Ψin is general quite arbitrary we see that we can generate a whole zoo of different gradient
structures for (4.1) or (4.3). The following choices relate to situation where all Ψin are
given by one function Ψ, but more general cases are possible.

From the construction it is clear thatR∗ is linear in the generator A, i.e. if A = A1+A2

and the equilibrium w is fixed, then R∗ = R∗A1 +R∗A2 where R∗Am is constructed as above.

4.3 Some specific gradient structures for linear reaction sys-
tems

We now realize special choices for the general gradient structures in the previous sub-
section. These choices are singled out because they lead to natural entropy functionals
and relatively simple coefficient functions ain in (4.4).

4.3.1 Quadratic energy and dissipation

The quadratic gradient structure is given by quadratic energy and dissipation, i.e.

Φquad(%) =
1

2
%2 and Ψquad(ζ) =

1

2
ζ2.
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The coefficient functions are constant and read ain(c) = κin
√
wiwn. Thus, we find

Equad(c) =
1

2

I∑
i=1

c2
i

wi
and R∗quad(c, ξ) =

1

2

I−1∑
i=1

I∑
n=i+1

κin
√
wiwn(ξi−ξn)2 =

1

2
〈ξ,Kquadξ〉.

In this case the dual dissipation functional does not depend on the concentration c ∈ Q,
which means that the equation ċ = Ac = −KDE(c) can be treated as self-adjoint linear
evolution problem in the Hilbert space with the norm induced by R. This leads to the
classical Hilbert space approach for reversible Markov operators.

4.3.2 Boltzmann entropy and quadratic dissipation

The quadratic-entropic gradient structure is defined by the choices

ΦBoltzmann(%) = λBz(%) := % log %− %+ 1 and Ψquad(ζ) =
1

2
ζ2.

This gradient structure for was first introduced in [Mie11, Maa11, ErM12, CH∗12, Mie13]
as a possible generalization of Otto’s gradient structure for the Fokker-Planck and more
general diffusion equations equation, cf. [JKO98, Ott01]. However, similar structures
also appear earlier in the physics literature, see e.g. [ÖtG97, Eqn. (113)]

The associated entropy is Boltzmann’s relative entropy and, using the logarithmic
mean Λ(a, b) =

∫ 1

0
asb1−sds = a−b

log a−log b
, the dual dissipation potential R∗ reads

EBz(c) :=
I∑
i=1

wi λBz

( ci
wi

)
and R∗(c, ξ) =

1

2

I−1∑
i=1

I∑
n=i+1

κin
√
wiwn Λ

( ci
wi
,
cn
wn

)
(ξi−ξn)2.

Again R∗ is quadratic in ξ but now also depends nontrivially on c ∈ Q, viz. R∗(c, ξ) =
1
2
〈ξ,KBz(c)ξ〉. This means that Q can be equipped with the Riemannian metric induced

by R, see [Maa11].
Note that KBz(w) = Kquad and Equad(c) = 1

2
D2EBz(w)[c, c], which is the desired

compatibility under linearization at c = w.

4.3.3 Boltzmann entropy and cosh-type dissipation

The following, so-called entropic cosh-type gradient structure, was derived via a large-
deviation principle from an interacting particle system in [MPR14, MP∗17]. We refer
to Marcellin’s PhD thesis [Mar15] from 1915 for a historical, first physical derivation
of exponential kinetic relations in the context of Boltzmann statistics. Only little of
this important result penetrated into the main stream thermomechanical modeling of
reaction systems, see [Grm10, Item iii on p. 77 and eqn. (69)] for a discussion.

For this gradient structure the choices are

ΦBoltzmann(%) = λBz(%) := % log %− %+ 1 and Ψcosh(ζ) = C∗(ζ) := 4 cosh
(ζ

2

)
− 4,

giving Boltzmann’s relative entropy EBz and the cosh-type dual dissipation potential:

EBz(c) :=
I∑
i=1

wi λBz

( ci
wi

)
and R∗cosh(c, ξ) =

I−1∑
i=1

I∑
n=i+1

κin
√
cicn C

∗(ξi−ξn). (4.5)
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The especially simple form of the coefficient functions arises from the interaction of the
cosh function with the the Boltzmann function λBz, namely

C∗′
(
λ′Bz(p)− λ′Bz(q)

)
= 2 sinh

(
log
√
p/q

)
=
√
p/q −

√
q/p =

p− q
√
pq
.

With this we easily find the simple formula ain(c) = κin
√
cicn.

Because of the close connection between the cosh-type function C∗ and the Boltzmann
function λBz, it is obvious that using C∗ means that we also use the Boltzmann entropy.
Hence, it will not lead to confusion if we simply call (Q, EBz,Rcosh) the cosh gradient
structure.

Again, the quadratic gradient structure in Section 4.3.1 is obtained by linearization:

Equad(c) =
1

2
D2EBz(w)[c, c] and Kquad = D2

ξR∗cosh(w, 0).

4.4 Tilting of Markov processes

Tilting, also called exponential tilting, is a standard procedure in stochastics (in partic-
ular in the theory of large deviations) to change the dynamics of a Markov process in a
controlled way. In particular, the equilibrium measure w is changed into another one,
let us say w̃. For more motivation and theory we refer to [MMP19] and the references
therein.

Defining two entropy functionals, namely the Boltzmann entropies for w and w̃,

EBz(c) =
I∑
i=1

wi λBz

( ci
wi

)
and ẼBz(c) =

I∑
i=1

w̃i λBz

( ci
w̃i

)
the special structure of λBz leads to the relation

ẼBz(c) = EBz(c)− 〈η, c〉 with η =
(

log(wi/w̃i)
)
i∈I .

Thus, we see that a change of the equilibrium measure leads to a tilt in the sense of (3.5)
for the entropy. Moreover, for every tilt η ∈ X∗ there is a unique new equilibrium state
wη, namely the minimizer of c 7→ Eη(c) = EBz(c)− 〈η, c〉. We easily find

wηi =
1

Z
e−ηiwi with Z =

I∑
n=1

e−ηnwn.

This explains the name ‘exponential tilting’.
For a time-dependent linear reaction systems the tilting is defined in a consistent

way, namely using the representation (4.2). Given ċ = Ac with positive equilibrium w
and a tilt η we first construct the equilibrium wη and then, using K = (κin) from (4.2),
we define the evolution

ċ = Aηc with Aη := D1/2
wη KD−1/2

wη − Dbη . (4.6)

One of the important observations in [MMP19] is that the cosh gradient structure is
invariant under tilting, i.e. the dissipation potential does not change if the Boltzmann
entropy is tilted. This can now be formulated as follows:

Aηc = DξR∗cosh

(
c,−DEη(c)

)
. (4.7)
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This relation can easily checked by noting that (4.6) has the form (4.3), where now w is
replaced by wη. But Eη is exactly the relative entropy with respect to wη such that the
results in Section 4.3.3 yield identity (4.7).

Using the formula (4.4) for ain(c) we can find all possible gradient structures in terms
of Φ and Ψin such that the ain(c) is independent for w. The result shows that, up to a
trivial scaling, the only tilt-invariant gradient structures in the form of Section 4.2 are
given by the cosh gradient structure. Indeed, in [MPR14] the case γ = 1/2 is obtained
from the theory of large deviations.

Proposition 4.1 (Characterization of tilt-invariant gradient structures). If Φ and Ψin

are such that ain in (4.4) is independent of w, then there exists ϕ0, ϕ1 ∈ R and ψin, γ > 0
such that

Φ(c) = γλBz(c) + ϕ0 + ϕ1c and Ψin(ζ) = γ ψin C
∗( ζ
γ

)
.

In particular, we always obtain ain(c) = κin
ψin

√
cicn. Since ψin can be integrated into κin,

all tilt-invariant gradient structures are given by scaled cosh gradient structures

E(c) = γ EBz(c) + ϕ0I + ϕ1 and R∗(c, ξ) = γR∗cosh(c,
1

γ
ξ).

Proof. We rewrite ain in the form

ain(c) = κin
√
cicn

%i − %n√
%i%n Ψ′ni

(
Φ′(%i)− Φ′(%n)

) , where %k =
ck
wk

Because the expression has to be independent of wi and wn for all c, w ∈ Q, the fraction
involving %i and %n has to be a constant, which we set 1/ψin , i.e.

(i) Φ′(%i)− Φ′(%n) = G
( %i
%n

)
, (ii) G(σ) =

(
Ψ′in
)−1
(
ψin
(√

σ − 1√
σ

))
.

Setting rk = log %k, f(r) = Φ′(er), and g(s) = G(es) in (i), we arrive at the relation

f(ri)− f(rn) = g(ri−rn) for all ri, rn ∈ R.

As f and g are continuous the only solutions of this functional relation are f(r) = ϕ1+γr
and g(s) = γs with ϕ1, γ ∈ R. This implies Φ′(%) = ϕ1 + γ log % and, hence, Φ(%) =
ϕ0 + ϕ1%+ γλBz(%). Strict convexity of Φ leads to the restriction γ > 0.

Solving (ii) with G(σ) = γ log σ =: ζ yields

Ψ′in(ζ) = ψin
(
eζ/(2γ) − e−ζ/(2γ)

)
= ψin 2 sinh

( ζ
2γ

)
= ψin C

∗′( ζ
γ

)
.

Because of Ψin(0) = 0 this determines Ψin uniquely, and the result is established.

We also refer to [HKS20] for the connections of the cosh gradient structure to the
SQRA-discretization scheme for drift-diffusion systems.
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5 EDP-convergence and the effective gradient struc-

ture

In this section we fully concentrate on the cosh gradient structure, because only this
gradient structure allows to prove EDP convergence with tilting.

Our energy functionals Eε are the relative Boltzmann entropies, while the dual dissi-
pation potentials R∗ε is the sum of a slow and a fast part:

Eε(c) =
I∑
i=1

wεi λBz

( ci
wεi

)
and R∗ε(c, ξ) = R∗S,ε(c, ξ) +

1

ε
R∗F,ε(c, ξ), where

R∗Z,ε(c, ξ) :=
I−1∑
i=1

I∑
n=i+1

κZ,εin
√
cicn C

∗(ξi−ξn) with κZ,εin = AZin
√
wεn/w

ε
i and Z ∈ {S, F}.

Here, the ε-dependencies of the coefficients κS,εin and κF,εin is trivial in the sense that the
limits for ε→ 0 exist. The really important term is the factor 1/ε in front of R∗F,ε .

The structure of this section is as follows. In Section 5.1 we present the main results
concerning the Γ-convergence of Eε and Dε which then imply the EDP-convergence with
tilting of (Q, Eε,Rε) to the limit system (Q, E ,Reff). In Section 5.2 we show that this
provides a gradient structure for the limit equation (2.6), and moreover that we obtain
the natural cosh gradient structure (Q̂, Ê , R̂) for the coarse-grained equation (2.7).

The remaining part of this section then provides the proof of the convergence Dε
M−→

D0, namely the a priori estimates in Section 5.3, the liminf estimate in Section 5.4, and
the construction of recovery sequences in Section 5.5.

5.1 Main theorem on EDP-convergence

We now study the limit for ε → 0 of the family of gradient systems
(
(Q, Eε,R∗ε)

)
ε>0

by
showing EDP-convergence with tilting for a suitable limit.

As a first, and trivial result we state the Mosco convergence of the energies, which
follows immediately from our assumption (2.Ab), i.e. wε → w0.

Proposition 5.1. On Q = Prob(I), we have the uniform convergence Eε → E0, where

E0(c) =
∑I

i=1 w
0
i λBz(ci/w

0
i ). In particular, we have Eε

M−→ E0 on X.

To have a proper functional analytic setting we let

L2([0, T ];Q) =
{
c ∈ L2([0, T ];RI)

∣∣ c(t) ∈ Q a.e. in [0, T ]
}

and use the weak and strong topology induced by L2([0, T ];RI). The dissipation func-
tional Dε is now defined via

Dε(c) :=

{∫ T
0

(
Rε(c, ċ) +R∗ε(c,−DEε(c))

)
d t for c ∈W1,1([0, T ];Q),

∞ otherwise on L2([0, T ];Q),

where Rε(c, ·) is defined implicitly as Legendre transform of R∗ε(c, ·). To see that Dε is
well defined, we derive suitable properties for Rε.

Proposition 5.2 (Properties of Rε). Let Rε : Q×X → [0,∞] be defined by Rε(c, ·) =(
R∗ε(c, ·)

)∗
. Then, Rε : Q×X → [0,∞] is lower semicontinuous and jointly convex.
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Proof. Since (ci, cn) 7→ √
cicn is concave and ξ 7→ C(ξi−ξn) is convex, the mapping

R∗ : Q×X∗ → [0,∞] is concave-convex and thus its partial conjugate is convex in (c, v).
For the lower semicontinuity consider (ck, vk) → (c, v). Then, for all δ > 0 there

exist ξδ with Rε(c, v) ≤ 〈ξδ, v〉−R∗ε(ck, ξδ) + δ. The definition of the Legendre transform
yields

Rε(ck, vk) ≥ 〈ξδ, vk〉 − R∗ε(ck, ξδ)
k→∞→ 〈ξδ, v〉 − R∗ε(c, ξδ) ≥ Rε(c, v)− δ,

where we used the continuity of c 7→ R∗ε(c, ξ). Since δ > 0 was arbitrary, we find
lim infk→∞Rε(ck, vk) ≥ Rε(c, v) as desired.

To formulate the main Γ-convergence result for Dε we define the effective dissipation
R∗eff beforehand. It can be understood as the formal limit of R∗ε when taking ε → 0.
The slow part R∗S,ε simply converges to its limit

R∗S(c, ξ) :=
I−1∑
i=1

I∑
n=i+1

κS,0in
√
cicn C

∗(ξi − ξj) with κS,0in = ASin

√
w0
n/w

0
i = lim

ε→0
κS,εin .

For the fast part 1
ε
R∗F,ε we obtain blow up, except for those ξ that lie in the subspace

that is not affected by fast reactions. For this we set

Ξ = M∗Y ∗ = range(M∗) = kernel(M)⊥ :=
{
ξ ∈ X∗

∣∣ 〈ξ, v〉 = 0 for all v ∈ kernel(M)
}
.

and observe that by construction for all ε > 0 we have

R∗F,ε(c, ξ) = 0 for all ξ ∈ Ξ. (5.1)

Indeed, R∗F,ε(c, ξ) contains C∗(ξi−ξn) with a positive prefactor only if i ∼F n, while ξ ∈ Ξ
implies ξi = ξn in that case. Together we set

R∗eff(c, ξ) := R∗S(c, ξ) + χΞ(ξ), where χA(a) =

{
0 for a ∈ A,
∞ for a 6∈ A.

(5.2)

The dual dissipation potential R∗eff consists of two terms: The first term R∗S contains
the information of the slow reactions in the limit ε → 0. The second term χΞ restricts
the vector of chemical potentials ξ = DE0(c) exactly in such a way that the microscopic
equilibria of the fast reactions holds, i.e. AF c = 0 or equivalently Pc = c, see below.

Because of this constraint, it is actually irrelevant how R∗eff(c, ·) : Ξ → [0,∞] is
defined for c 6∈ Qeq = Q ∩ PX.

We note that R∗ε(c, ·) has a Mosco limit R∗0(c, ·) that is not necessarily equal to
R∗eff(c, ·). For c on the boundary of Q, where some of the ci are 0, we may have
R∗F,ε(c, ξ) = 0 for all ξ, which implies R∗0(c, ξ) = R∗S(c, ξ) for these c and all ξ ∈ RI .
However, the Γ-limit of Dε yields R∗eff ≥ R∗0.

Theorem 5.3 (Mosco convergence of Dε). On L2([0, T ];Q) we have Dε
M−→ D0 with

D0(c) :=

{∫ T

0

(
Reff(c, ċ) +R∗eff(c,−DE0(c))

)
d t for c ∈W1,1([0, T ];Q),

∞ otherwise in L2([0, T ];Q),
(5.3)

where R∗eff is given in (5.2) and leads to the primal dissipation potential

Reff(c, v) = inf
{
RS(c, z)

∣∣ z ∈ RI with Mz = Mv
}

for all c ∈ Qeq = PQ.
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The proof of this theorem is the main part of this section and will be given in Sections
5.3 to 5.5. Now, we want to use the above result to conclude the EDP-convergence with
tilting. For this result, it is essential to study the dependence of the limit D0 on the limit
equilibrium measure w0. One the one hand, E0(c) is the relative Boltzmann entropy of
c with respect to w0, which provides a simple and well-behaved dependence on w0. On
the other hand, R∗eff is given through R∗S and χΞ. The former only depends on (κS,0in )i,n∈I
and the latter depends only on M ∈ {0, 1}J×I . Thus, there is no dependence on w0 at
all. The proof relies on the fact that the two processes of (i) tilting with driving forces
η and of (ii) taking the limit ε→ 0 commute.

Theorem 5.4 (EDP-convergence with tilting). The gradient systems (Q, Eε,Rε) EDP-
converge with tilting to the limit gradient structure (Q, E0,Reff).

The closure of the domain of the limit gradient system in the sense of (3.2) is Qeq.

Proof. Proposition 5.1 and Theorem 5.3 already provide the simple EDP convergence

(Q, Eε,R∗ε)
EDP−−−→ (Q, E0,R∗eff). The domain is restricted by the conditions (i) that DE0(c)

exists, which means that ci > 0 for all i, and (ii) that DE0(c) lies in the domain of
∂ξR∗eff(c, · ). The latter condition is equivalent to DE0(c) ∈ Ξ or equivalently c ∈ Xeq.

For the tilted energies Eηε = Eε−〈η, ·〉 we obviously have Eηε
M−→ Eη0 . We can now apply

Theorem 5.3 once again for Dη
ε . Using the fact that Eη is again a relative Boltzmann

entropy with respect to the exponentially tilted equilibrium state wη,ε that satisfies
wη,ε → wη,0. Thus, the Mosco limit Dη

0 of Dη
ε again exists and has the same form as D0

in (5.3), but with DE0(c) replaced by DE(c)− η. In particular, Reff remains unchanged
and EDP-convergence with tilting is established.

5.2 The limit and the coarse-grained gradient structure

Before going into the proof of Theorem 5.3 we connect the limit gradient systems with
the limit equation (2.6). The gradient-flow equation for the limit gradient systems reads

ċ ∈ ∂ξR∗eff(c,−DE0(c)) a.e. on [0, T ]. (5.4)

Since R∗eff is no longer smooth, we use the set-valued convex subdifferential ∂ξ that
satisfies, because of the continuity of R∗S, the sum rule

∂ξR∗eff(c, ξ) = DξR∗S(c, ξ) + ∂χΞ(ξ) with ∂χΞ(ξ) =

{
kernel(M) for ξ ∈ Ξ,

∅ for ξ 6∈ Ξ,

where we used the relation Ξ = range(M∗) = kernel(M)⊥.
On the one hand, (5.4) implies that DE0(c) ∈ Ξ for a.a. t ∈ [0, T ]. Recalling that the

rows of M ∈ {0, 1}J×I consists of vectors having the entry 1 in exactly one equivalent
class α(j) ⊂ I for ∼F and 0 else, we have

Ξ = range(M∗) =
{
ξ ∈ RI

∣∣ ∀ j ∈ J ∀ i1, i2 ∈ α(j) : ξi1 = ξi2
}

we conclude

DE0(c) ∈ Ξ ⇐⇒ ∀ j ∈ J ∀ i1, i2 ∈ α(j) :
ci1
w0
i1

=
ci2
w0
i2

⇐⇒ c ∈ Xeq ⇐⇒ AF c = 0.
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One the other hand, by construction of the gradient structure the term DξR∗S(c,−DE0(c))
generates exactly the term ASc. Thus, (5.4) is equivalent to

ċ(t) ∈ ASc(t) + kernel(M), AF c(t) = 0 a.e. on [0, T ]. (5.5)

Applying M to the first equation gives the limit equation (2.6) and the following result.

Proposition 5.5 (Gradient structure for limit equation). The limit equation (2.6) is
the gradient-flow equation generated by the limit gradient system (Q, E0,R∗eff).

As a last step, we show that the gradient structure for the limit equation also provides
a gradient structure for the coarse gradient equation (2.7) ˙̂c = MASNĉ for the coarse-
grained states ĉ = Mc ∈ Q̂. For this we exploit the special relations derived for coarse
graining via M : X → Y and reconstruction via N : Y → X.

Theorem 5.6 (Gradient structure for coarse-grained equation). The coarse-grained
equation (2.7) (viz. ˙̂c = MASNĉ) is the gradient-flow equation generated by the coarse-
grained gradient system (Q̂, Ê , R̂) given by

Ê(ĉ) = E0(Nĉ) = HJ(ĉ|ŵ) and R̂(ĉ, v̂) = Reff(Nĉ,Nv̂).

Moreover, we have R̂∗(ĉ, ξ̂) = R∗eff(Nĉ,M∗ξ̂) = R∗S(Nĉ,M∗ξ̂).

This result can be seen as an exact coarse graining in the sense of the formal approach
developed in [MaM20, Sec. 6.1].

Before giving the proof of this result we want to highlight its relevance. First, we
emphasize that the coarse-grained equation is again a linear reaction system, now in RJ ,
i.e. the master equation for a Markov process on J = {1, . . . , J}. Second, the coarse-
grained energy functional is again the relative Boltzmann entropy, now with respect to
the coarse-grained equilibrium ŵ = Mw0. Third, the coarse-grained dual dissipation
potential is again given in terms of the function C∗, i.e. the coarse-grained gradient
system is again of cosh-type. In summary, the coarse-grained gradient structure (Q̂, Ê , R̂)
is again a cosh gradient structure, see Proposition 5.7 below.

We refer to [LM∗17, Sec. 3.3] for an example that shows that other gradient structures
may not be stable under EDP-convergence. All these results rely on the special properties
of M and N developed in Section 2.3. In particular, we use that the projection P =
NM : X → X is a Markov operator, i.e. it maps Q onto itself.

Proof of Theorem 5.6.
Step 1: Ê is a relative entropy. We use the special form N = Dw0M∗Dŵ, which gives

(Nĉ)i = w0
i ĉj/ŵj, where i ∈ α(j). With this and ŵj =

∑
i∈α(j) w

0
i we obtain

Ê(ĉ) = E0(Nĉ) = HI(Nc|w0) =
∑
i

w0
i λBz

((Nĉ)i
w0
i

)
=

J∑
j=1

∑
i∈α(j)

w0
i λBz

( ĉj
ŵj

)
=

J∑
j=1

ŵjλBz

( ĉj
ŵj

)
= HJ(ĉ|ŵ).

Step 2: Legendre-conjugate pair R̂ and R̂∗. We start from the formula for R̂∗ and

calculate R̂ as follows. Using MN = idY and Ξ = M∗Y ∗, we obtain

R̂(ĉ, v̂) = sup
{
〈ξ̂,MNv̂〉J − R̂∗(ĉ, ξ̂)

∣∣ ξ̂ ∈ Y ∗ }
= sup

{
〈M∗ξ̂, Nv̂〉I − R̂∗(ĉ, ξ̂)

∣∣ ξ̂ ∈ Y ∗ } = sup
{
〈ξ,Nv̂〉I −R∗S(Nĉ, ξ)

∣∣ ξ ∈M∗Y ∗
}

= sup
{
〈ξ,Nv̂〉I −R∗S(Nĉ, ξ)− χΞ(ξ)

∣∣ ξ ∈ X∗ } = Reff(Nĉ,Nv̂),

44



EDP-convergence for LRS A. Mielke and A. Stephan

where we use the definition of R∗eff in (5.2).

Step 3: The gradient-flow equation for (Q̂, Ê , R̂). We first observe

M∗N∗DE0(Nĉ) = DE0(Nĉ). (5.6)

Indeed, let us define the component-wise log-function on RI , log : x 7→ (log(xi))i=1,...,I .
We have DE0(c) = log(D−1

w0c). Hence, for c = Nĉ = Dw0M∗D−1
ŵ ĉ, we conclude

DE0(Nĉ) = log(D−1
w0Nĉ) = log(M∗D−1

ŵ ĉ) = M∗ log(D−1
ŵ ĉ) = M∗DÊ(ĉ) = M∗N∗DE0(Nĉ),

where we used that DÊ(ĉ) = N∗DE0(Nĉ).
With DÊ(ĉ) = N∗DE0(Nĉ) and (5.6) the gradient-flow equation for (Q̂, Ê , R̂) reads

˙̂c = ∂ξ̂R̂
∗(ĉ,−DÊ0(ĉ)) = M∂ξR∗S

(
Nĉ,−M∗DÊ(ĉ)

)
= M∂ξR∗S

(
Nĉ,−M∗N∗DE0(Nĉ)

)
= M∂ξR∗S(Nĉ,−DE0(Nĉ)) = MASNĉ,

where we used the identity DξR∗S(c,−DE0(c)) = ASc, which holds for all c by the con-
struction of our gradient structure.

In analogy to formula (2.8) providing the coefficients Âj1j2 of the coarse-grained gen-

erator Â = MASN we can also give a formula for the tilting-invariant reaction intensities
κS,0i1i2 to obtain the corresponding intensities κ̂j1,j2 for the coarse-grained equation (2.7)

by a suitable averaging. In particular, the gradient systems (Q̂, Ê , R̂) provides again a
cosh gradient structure in the sense of Section 4.3.3.

Proposition 5.7 (Cosh structure of R̂∗). The coarse-grained dual dissipation potential
R̂∗ reads

R̂∗(ĉ, ξ̂) =
∑

1≤j1<j2≤J

κ̂j1,j2
√
ĉj1 ĉj2 C

∗(ξ̂j1−ξ̂j2) with κ̂j1,j2 =
∑

i1∈α(j1)

∑
i2∈α(j2)

κS,0i1i2
(w0

i1
w0
i2

ŵj1 ŵj2

)1/2
.

Proof. Theorem 5.6 provides an explicit formula for R̂∗. Inserting the definitions of M
and N and grouping according to equivalence classes will provide the result. Recalling
the function φ : I → J giving for each i the associated equivalence class α(φ(i)) ⊂ I we
have (Nĉ)i = w0

i ĉφ(i)/ŵφ(i) and (M∗ξ̂)i = ξ̂φ(i) and find

R̂∗(ĉ, ξ̂) = R∗S(Nĉ,M∗ξ̂) =
1

2

∑
i1∈I

∑
i2∈I

κS,0i1i2

(w0
i1
cφ(i1)

ŵφ(i1)

w0
i2
cφ(i2)

ŵφ(i2)

)1/2

C∗
(
ξ̂φ(i1) − ξ̂φ(i2)

)
=

1

2

∑
j1∈J

∑
j2∈J

∑
i1∈α(i1)

∑
i2∈α(j2)

κS,0i1i2

(w0
i1
cj1

ŵj1

w0
i2
cj2

ŵj2

)1/2

C∗
(
ξ̂j1−ξ̂j2

)
.

This shows the desired result.

5.3 A priori bounds and compactness

We start the proof of the Γ-convergence for the dissipation functional Dε on L2([0, T ],Q)
by deriving the necessary a priori bounds for proving the compactness for a family (cε)ε>0

of functions satisfying Dε(c
ε) ≤ C <∞.
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Clearly since for all t ∈ [0, T ] we have cε(t) ∈ Q we get immediately uniform L∞-
bounds on cε. Hence, we have (after extracting a suitable subsequence, which is not
relabeled) a weak limit c0 ∈ L2([0, T ],Q). We want to improve the convergence to strong
convergence. Already in the proof of the convergence of the solutions cε in Section 2.5
it became clear that there are two different controls, namely (i) the tendency to go to
microscopic equilibrium and (ii) the dissipation through the slow reactions. From (i) we
will obtain control of the distance of cε from Xeq = PX by estimating (I−P )cε, but we
are not able to control (I−P )ċε. From (ii) we obtain an a priori bound for P ċε, and the
major task is to show that these two complementary pieces of information are enough
to obtain compactness.

Subsequently, we will drop ε in the notations for wε, κα,εin , and RS,ε, and so on. Of
course, we will keep the important factor 1/ε in R∗ε = R∗S + 1

ε
R∗F .

The following result shows the convergence of sequences to the subspace Xeq = PX
of microscopic equilibria. Recall the decomposition X = Xeq ⊕Xfast from (2.5) and the
projection P = NM such that Xeq = PX and Xfast = (I−P )X. In particular, the
semi-norm c 7→ |(I−P )c| is equivalent to c 7→ dist(c,Xeq).

Lemma 5.8 (Convergence in the direction of fast reactions). Consider a sequence (cε)
in L2([0, T ],Q) with Dε(c

ε) ≤ CD < ∞ and cε ⇀ c0 in L2([0, T ],RI). Then, there is a
constant C > 0 such that ∫ T

0

|(I−P )cε(t)|2d t ≤ Cε.

In particular, we have c0(t) ∈ Qeq = PQ for a.a. t ∈ [0, T ].

Proof. The bound on the dissipation functional Dε, Rε ≥ 0, R∗S ≥ 0 and the relation
C∗(log p− log q) = 2

(√
p/q +

√
q/p− 2) imply

CD ≥ Dε(c
ε) ≥ 1

ε

∫ T

0

∑
(i,n)∈F

4κFin√
wiwn

(√
cεi
wi
−
√
cεn
wn

)2

d t,

where the set F is given in term of the equivalence relation ∼F , viz.

F :=
{

(i, n) ∈ I×I
∣∣ i ∼F n and i < n

}
.

Using the decomposition X = Xeq ⊕Xfast from (2.5), we see that the semi-norm

‖c‖F :=
(∑

(i,n)∈F

( ci
wi
− cn
wn

)2
)1/2

defines a norm on Xfast and there exists C2 > 0 such that |(I−P )c| ≤ C2‖c‖F on Q.
Denoting by w > 0 and κ > 0 lower bounds for all wεi and all κFin with i ∼F n,

respectively, we obtain the estimate∫ T

0

|(I−P )cε(t)|2d t ≤ C2
2

∫ T

0

‖cε(t)‖2
Fd t

≤ C2
2

∫ T

0

∑
(i,n)∈F

(√ cεi
wi
−
√
cεn
wn

)2(√ cεi
wi

+

√
cεn
wn

)2

d t

≤ C2
2

w2κ

∫ T

0

∑
(i,n)∈F

4κFin√
wiwn

(√ cεi
wi
−
√
cεn
wn

)2

d t ≤ C2
2

w2κ
CD ε.
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By weak lower semicontinuity of semi-norms we find
∫ T

0
|(I−P )c0(t)|2d t = 0 and

conclude c0(t) = Pc0(t) a.e. on [0, T ]. This proves the result.

The next result shows that we are able to control the time derivative of Pcε. Using
range(P ) = range(N) and NM = idY it suffices to control Mċε. For this, we show
that Rε(c, ·) restricted to PX has a uniform lower superlinear bound in terms of the
superlinear function C, see (A.2).

Proposition 5.9 (Convergence in the direction of slow reactions). Consider a sequence
(cε) in L2([0, T ],Q) with Dε(c

ε) ≤ CD <∞ and cε ⇀ c0 in L2([0, T ];X). Then, there is
a constant CW > 0 such that ∫ T

0

C
( 1

CW

|P ċε(t)|
)
d t ≤ CW. (5.7)

Moreover, Pcε ⇀ Pc0 ∈W1,1([0, T ];Q) and Pcε → Pc0 in C0([0, T ];PQ). With Lemma
5.8 we have cε → c0 strongly in L2([0, T ],Q) and c0 = Pc0 ∈W1,1([0, T ];Q).

Proof. To show a lower bound for Rε(c, Pv) we first derive an upper bound for R∗ε(c, ξ̃)
for ξ̃ ∈ P ∗X∗. Use R∗F,ε(c, ξ̃) = 0 and set κ := sup

{
κS,εin

∣∣ 1 ≤ i < n ≤ I, ε ∈ ]0, 1[
}

to
obtain

R∗ε(c, ξ̃) =
∑
i<j

κS,εin
√
cicj C

∗((ξ̃i−ξ̃j) ≤∑
i<j

κ 1
2
C∗(
√

2 |ξ̃|) ≤ aC∗(
√

2 |ξ̃|)

with a = I2κ/4. Next, Legendre transform, R∗F,ε(c, ξ̃) = 0 by (5.1) and the bound

|P ∗ξ| ≤ CP/
√

2|ξ| yield the lower bound

Rε(c, v) ≥ sup
{
〈ξ̃, v〉 − R∗ε(c, ξ̃)

∣∣ ξ̃ ∈ P ∗X∗ } = sup
{
〈P ∗ξ, v〉 − R∗S,ε(c, P ∗ξ)

∣∣ ξ ∈ X∗ }
≥ sup

{
〈ξ, Pv〉 − aC∗(

√
2|P ∗ξ|)

∣∣ ξ ∈ X∗ } ≥ sup
{
〈ξ, Pv〉 − aC∗(CP |ξ|)

∣∣ ξ ∈ X∗ }
= aC

( |Pv|
aCP

)
.

Applying this to v = ċε we find∫ T

0

aC
( |P ċε(t)|
aCP

)
d t ≤

∫ T

0

Rε(c
ε(t), ċε(t))d t ≤ Dε(c

ε) ≤ CD,

which gives (5.7) with CW = max{aCP , CD/a}.
With the superlinearity of C, we obtain Pcε ⇀ Pc0 in W1,1([0, T ];PX). Moreover, the

sequence Pcε is also equicontinuous, which is seen as follows. By (5.7) and (A.2) we have∫ T
0
|P ċε(t)| log

(
2+|P ċε(t)|

)
d t ≤ C1. For R > 0 we set Σ(R, ε) =

{
t ∈ [0, T ]

∣∣ |P ċε(t)| ≥
R
}

. Thus, for t1 < t2 we obtain the estimate

|Pcε(t2)−Pcε(t1)| ≤
∫ t2

t1

|P ċε(t)|d t

≤
∫

[t1,t2]\Σ(R,ε)

|P ċε(t)|d t+

∫
Σ(R,ε)

|P ċε(t)| log(2+|P ċε(t)|)
log(2+R)

d t ≤ (t2−t1)R +
C1

log(2+R)
.

The last sum can be made smaller than any ε > 0 by choosing first R = R(ε) :=
exp(2C1/ε) and then assuming t2 − t1 < δ(ε) := ε/(2R(ε)). This shows the estimate
|Pcε(t2)−Pcε(t1)| < ε whenever |t2−t1| < δ(ε), which is the desired equicontinuity. By
the Arzelà-Ascoli theorem we obtain uniform convergence.

The final convergence follows from cε = Pcε + (I−P )cε via Lemma 5.8, and the last
statement from Pc0(t) = c0(t) a.e. in [0, T ].
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5.4 The liminf estimate

For the limit passage ε → 0 we use a technique, which was introduced formally in
[LM∗17] and exploited in [MaM20] for the study of the large-volume limit in chemical
master equations. It relies on the idea that the velocity part Dvel

ε =
∫
Rε dt of the

dissipation functional Dε can be characterized by Legendre transform using a classical
result of Rockafellar:

Theorem 5.10 ([Roc68, Thm. 2]). Let f : [0, T ]×Rn → R∞ be a normal, convex
integrand and with conjugate f ∗. Assume there exist u◦ ∈ L1([0, T ];Rn) and ξ◦ ∈
L∞([0, T ];Rn) such that t 7→ f(t, u◦(t)) and t 7→ f ∗(t, η◦(t)) are integrable, then the
functionals

If :

{
L1([0, T ];Rn)→ R∞,

u 7→
∫ T

0
f(t, u(t))d t

and If∗ :

{
L∞([0, T ];Rn)→ R∞,

η 7→
∫ T

0
f ∗(t, η(t))d t

are proper convex functionals that are conjugate to each other with respect to the dual
pairing (u, η) 7→

∫ T
0
〈ξ(t), u(t)〉d t, viz. for all u ∈ L1([0, T ];Rn) we have∫ T

0

f(t, u(t))d t = sup

{ ∫ T

0

(
〈η(t), u(t)〉 − f ∗(t, η(t))

)
d t

∣∣∣∣ η ∈ L∞([0, T ];Rn)

}
. (5.8)

We apply this result with f(t, u) = Rε(c(t), u) and obtain, for ε ∈ [0, 1], the identity

Dε(c) =sup
{
Bε(c, ċ, ξ)

∣∣ ξ ∈ L∞([0, T ];X∗)
}

where Bε(c, u, ξ) :=Bvel
ε (c, u, ξ) +Dslope

ε (c)

with Bvel
ε (c, u, ξ) :=

∫ T

0

(
〈ξ(t), u(t)〉 − R∗ε(c(t), ξ(t))

)
d t (5.9)

and Dslope
ε (c) =

∫ T

0

R∗ε
(
c,−DEε(c(t))

)
d t.

The assumptions are easily satisfied as we may choose u◦ ≡ 0 and η◦ ≡ 0.
With these preparations we obtain the liminf estimate in a straightforward manner.

Theorem 5.11 (Liminf estimate). The weak convergence cε ⇀ c0 in L2([0, T ];Q) implies
lim infε→0 Dε(c

ε) ≥ D0(c0), where D0 is defined via E0 and Reff in (5.3).

Proof. We may assume that α∗ := lim infε→0 Dε(c
ε) < ∞, since otherwise the desired

estimate is trivially satisfied.
Step 1. Strong convergence and limit characterization: Using Proposition 5.9 gives

cε → c0 strongly in L2([0, T ];Q) and c0 = Pc0 ∈W1,1([0, T ];RI).

Step 2. Slope part: Because of Pc0(t) = c0(t) we know ξ0(t) = DE0(c0(t)) ∈ M∗X∗

which implies χΞ

(
−DE0(c0(t))

)
= 0 on [0, T ]. Hence, dropping the nonnegative term

R∗F,ε(cε,−DEε(cε(t))
)

and setting Sε(c) := R∗S,ε(c,−DEε(c)) we obtain

lim inf
ε→0

Dslope
ε (cε) ≥ lim inf

ε→0

∫ T

0

Sε(cε(t))d t
∗
=

∫ T

0

S0(c0(t))d t = Dslope
0 (c0).

In the passage
∗
= we use the strong convergence cε → c0 and the continuity of

[0, 1]×Q 3 (ε, c) 7→ Sε(c) = R∗S,ε(c,−DEε(c)) =
∑
i<n

4κS,εin
wεiw

ε
n

(√
ci
wεi
−
√

cn
wεn

)2

. (5.10)
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Step 3. Velocity part: We exploit the Rockafellar representation (5.9) together with
the fact that ċ0(t) = P ċ0(t) a.e. in [0, T ]. The latter condition allows us to test only by
functions ξ = P ∗ξ ∈ L∞([0, T ];X∗), which leads to the estimate

lim inf
ε→0

Dvel
ε (cε) ≥ lim inf

ε→0
Bvel
ε (cε, ċε, P ∗ξ)

a
= lim inf

ε→0

∫ T

0

(
〈ξ, P ċε〉 − R∗S,ε(cε, ξ)

)
d t

b
=

∫ T

0

(
〈ξ, P ċ0〉 − R∗S(c0, ξ)

)
d t = Bvel

0 (c0, ċ0, ξ),

where in
a
= we used R∗ε(c, ξ) = R∗S,ε(c, ξ) whenever ξ = P ∗ξ, see (5.1). In

b
= we exploited

the weak convergence P ċε ⇀ Pc0 established in Proposition 5.9 as well as the strong
convergence cε → c0 together with the continuity of (ε, c) 7→ R∗S,ε(c, ξ).

Now we exploit Rockafellar’s characterization (5.9) to return to Dvel
0 (c0), namely

Dvel
0 (c0) = sup

{
Bvel

0 (c0, ċ0, ξ)
∣∣ ξ ∈ L∞([0, T ];X∗)

}
= sup

{ ∫ T

0

(
〈ξ, ċ0〉 − R∗S(c0, ξ)− χΞ(ξ)

)
d t
∣∣ ξ ∈ L∞([0, T ];X∗)

}
= sup

{
Bvel

0 (c0, ċ0, ξ)
∣∣ ξ = P ∗ξ ∈ L∞([0, T ];X∗)

}
.

With the above estimate we conclude lim infε→0 D
vel
ε (cε) ≥ Dvel

0 (c0).
Adding this to the estimate in Step 2 we obtain the full liminf estimate.

5.5 Construction of the recovery sequence

Now we construct the recovery sequence for the Mosco-convergence of the dissipation
functionals Dε. This provides the required limsup estimate lim supε→0 Dε(c

ε) ≤ D0(c0)
along at least one sequence with the strong convergence cε → c0 in L2([0, T ];Q). For this
we use in Step 2(b) an approximation result by piecewise affine functions ĉN introduced
in [LiR18, Thm. 2.6, Step 3] and adapted to state-dependent dissipation potentials in
[BEM18, Cor. 3.3].

Theorem 5.12 (Recovery sequences). For every c0 ∈ L2([0, T ];Q) there exists a sequence
(cε)ε∈]0,1[ with cε → c0 in L2([0, T ];Q) such that limε→0 Dε(c

ε) = D0(c0).

Proof. Step 1. The case D0(c0) =∞. We choose the constant sequence cε = c0 and claim

Dε(c
ε) = Dε(c

0)→∞. Because of D0(c0) =∞ one of the following conditions is false:

(i) c0(t) ∈ Qeq a.e. in [0, T ] or (ii) C
(
|P ċ0(·)|

)
∈ L1([0, T ]).

If (i) is false, then c0(t) 6∈ Qeq for t ∈ T ⊂ [0, T ], where |T | =
∫
T 1d t > 0. Setting

Fε(c) := R∗F,ε(c,−DEε(c)) we have

Dslope
ε (c0) =

∫ T

0

(
R∗S,ε

(
c0,−DEε(c0)

)
+

1

ε
R∗F,ε

(
c0,−DEε(c0)

))
d t ≥ 1

ε

∫ T

0

Fε(c0(t))d t.

However, for t ∈ T we have Fε(c0(t)) → F0(c0(t)) > 0. Thus, Dslope
ε (c0) → ∞ follows

which implies Dε(c
0)→∞.

If (ii) is false, then Dvel
ε (c0) =∞ for all ε > 0 and we are done.

Step 2. Preliminary recovery sequences for the case D0(c0) <∞. In the sub-steps (a)

to (c) we discuss three approximations for general c0.
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Step 2(a). Positivity for the case ε = 0. We set c̃δ(t) := δw0 + (1−δ)c0(t) and claim
that D0(c̃δ) → D0(c0) < ∞ for δ ↘ 0. As D0 is convex and lower semicontinuous (cf.
see Proposition 5.2), we have lim infδ↘0 D0(c̃δ) ≥ D0(c0).

Obviously, c̃δ ≥ (1−δ)c0 holds componentwise, and hence the explicit form of R∗0
gives

R∗eff(c̃δ, ξ) ≥ (1−δ)R∗eff(c0, ξ), and thus Reff(c̃δ, v) ≤ (1−δ)Reff

(
c0,

1

1−δ
v
)
.

Inserting v = ˙̃cδ = (1−δ)ċ0 into the latter estimate gives

Dvel
0 (c̃δ) =

∫ T

0

Reff(c̃δ, ˙̃cδ)d t ≤
∫ T

0

(1−δ)Reff(c0, ċ0)d t = (1−δ)Dvel
0 (c0),

which proves the desired claim of Step 2(a), because Dslope
0 (c̃δ)→ Dslope

0 (c0) is trivial.

Step 2(b). We stay with ε = 0 and, by Step 2(a), may assume for some c∗ > 0 that

c0(t) ∈ Qc∗ :=
{
c ∈ Q

∣∣ ∀ i ∈ I: ci ≥ c∗
}

for all t ∈ [0, T ].

We now approximate c0 by a function ĉN ∈W1,∞([0, T ];PX) still satisfying ĉN(t) ∈ Qc∗ .
For N ∈ N we define ĉN : [0, T ] → PX as the piecewise affine interpolant of the

nodal points ĉN(kT/N) = c0(kT/N) for k = 0, 1, . . . , N . We also define the piecewise
constant interpolant cN : [0, T ]→ Qc∗ via cN(t) = c0(kT/N) for t ∈ ](k−1)T/N, kT/N ].
Then, using c0 ∈W1,1([0, T ];PX) ⊂ C0([0, T ];PX) we have

ĉN → c0 in W1,1([0, T ];PX) and in C0([0, T ];PX) and cN → c0 in L∞([0, T ];PX).

We now set
αN := ‖c0−ĉN‖L∞ + ‖c0−cN‖L∞

and obtain αN → 0.
These uniform estimates can be used in conjunction with the uniform continuity of

c 7→ R∗eff(c, ξ) when restricted to Qc∗ . Clearly Qc∗ 3 c 7→
√
cicn is Lipschitz continuous,

and we call the Lipschitz constant λ∗. The special form of R∗eff then implies

∀ c, c̃ ∈ Qc∗ ∀ ξ ∈ X∗ : |R∗eff(c, ξ)−R∗eff(c̃, ξ)| ≤ Λ∗|c−c̃|R∗eff(c, ξ) with Λ∗ = λ∗κ.

Assuming |c−c̃| ≤ α and Λ∗α < 1 and applying the Legendre transform we find

(1−Λ∗α)Reff(c, 1
1−Λ∗α

v) ≥ Reff(c̃, v) ≥ (1+Λ∗α)Reff(c, 1
1+Λ∗α

v).

Exploiting the scaling property (A.4) we arrive at the estimates

1

1−Λ∗α
Reff(c, v) ≥ Reff(c̃, v) ≥ 1

1+Λ∗α
Reff(c, v).

To estimate the velocity part of the dissipation functional as in [LiR18, BEM18] we
introduce

J(c, v) :=

∫ T

0

Reff(c(t), v(t))d t,
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which allows us to use different approximations for c0 and for ċ0. We obtain

Dvel
0 (ĉN) = J(ĉN , ˙̂cN) ≤ (1+Λ∗αN)J(cN , ˙̂cN)

∗
≤ (1+Λ∗αN)J(cN , ċ

0) ≤ (1+Λ∗αN)2J(c0, ċ0) = (1+Λ∗αN)2Dvel
0 (c0).

For the estimate
∗
≤ we split [0, T ] into the subintervals SNk := ](k−1)T/N, kT/N [, where

cN and ˙̂cN are equal to the constants c0(kT/N) and T
N

∫
SN
ċ0(t)d t, respectively. Then,

Jensen’s inequality for the convex function Reff(cN , ·) gives the desired estimate.
Since Dslope

0 (ĉN) → Dslope
0 (c0) by the continuity of the integrand S0 (cf. (5.10)), the

lower semicontinuity of D0 yields D0(ĉN)→ D0(c0).

Step 2(c). Using the Step 2(a) and 2(b), we now may assume c0 ∈ W1,∞([0, T ], X)
with c0(t) ∈ Qc∗ on [0, T ] and define cε via the formula

cε(t) = DwεD−1
w0c

0(t) for t ∈ [0, T ].

This definition gives DEε(cε(t)) ∈ Ξ and hence SFε (cε(t)) = 0. Hence, the definition of
Sε in terms of the ratios ci/w

ε
i (cf. (5.10)) implies Dslope

ε (cε)→ Dslope
0 (c0).

For the velocity part we again use the Rockafellar characterization, namely

Dvel
ε (cε) = sup

{
Bvel
ε (cε, ċε, ξ)

∣∣ ξ ∈ L∞([0, T ];X∗)
}
.

Because of the uniform bound of ċε in L∞([0, T ];X) we indeed see that the supremum over
Bvel
ε (cε, ċε, ·) is attained by maximizers ξε that are uniformly bounded in L∞([0, T ];X∗).

To see this, we firstly observe that for any (c, ċ) ∈ Q × X the functional Bε(c, ċ, ·) is
invariant under scaling ξ 7→ ξ+c11, since 〈11, ċ〉 = 0 and the dissipation potential R∗ε(c, ξ)
only depends on differences ξi−ξn. Hence, it is impossible to obtain compactness for any
maximizer ξε in L∞([0, T ], X∗). On the contrary, one gets compactness for maximizers
ξε with a fixed, say first, component ξε1 = 1. Indeed, by c0(t) ∈ Qc∗ and the exponential
growth of R∗ε we get

R∗ε(cε(t), ξ) ≥ c◦
∑

i<n:Aεin>0

|ξi − ξn|2,

with a positive constant c◦ > 0. By the assumption on connectivity (cf. (2.Aa)) of the
reaction network all vertices can be reached by a reaction path from vertex 1. Hence,
there is another constant c̃◦, such that the estimate

R∗ε(cε(t), ξ) ≥ c◦
∑

i<n:Aεin>0

|ξi − ξn|2 ≥ c̃◦
∑
i>1

|ξ1 − ξi|2

holds. Hence, the maximizers ξε with ξε1 = 1 satisfy

〈ξε, ċε(t)〉 − R∗ε(cε(t), ξ) ≤ |ξε|C‖ċ0‖L∞([0,T ],X) − c̃◦|ξε|2,

which implies the uniform bound ‖ξε‖L∞([0,T ],X∗) ≤ C‖ċ0‖L∞([0,T ],X)/c̃◦.
We now first choose a subsequence (εk)k∈N such that εk ↘ 0 and Dvel

εk
(cεk) → β =

lim supε→0 D
vel
ε (cε). Thus, after selecting a further subsequence (not relabeled) we may

assume ξεk ⇀ ξ0 in L2([0, T ];X∗). With the strong convergence of ċε → ċ0 we conclude

lim sup
ε→0

Dvel
ε (cε) = lim

k→∞
Bvel
εk

(cεk , ċεk , ξεk)
∗
≤ Bvel

0 (c0, ċ0, ξ0) ≤ Dvel
0 (c0),
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where in
∗
≤ we used the convergence of the duality pairing

∫ T
0
〈ξε, ċε〉d t and a Ioffe-type

argument based on the convexity of R∗ε(cε, ·) and the lower semicontinuity of [0, 1]×X∗ 3
(ε, ξ) 7→ R∗ε(cε(t), ξ) ∈ [0,∞], cf. [FoL07, Thm. 7.5]. Adding the convergence of the slope
part, and taking into account the liminf estimate from Theorem 5.11 we obtain the
convergence limε→0 Dε(c

ε) = D0(c0).

Step 3. Construction of recovery sequences for the case D0(c0). We now apply the ap-
proximation steps discussed in Step 2 and show that it is possible to choose an suitable
diagonal sequence for getting the desired recovery sequence.

For a general c0 we apply the approximation as indicated in the sub-steps 2(a), 2(b),
and 2(c) and set

cδ,N,ε = D−1
wεDw0

(
δw0 + (1−δ)ĉ 0

N

)
.

We easily obtain ‖c0 − cδ,N,ε‖L2([0,T ];X) ≤ C(δ + αN + ε) → 0 if δ → 0, N → ∞, and
ε→ 0. Moreover, the difference in the dissipation functionals Dε can be estimated via∣∣Dε(c

δ,N,ε)−D0(c0)
∣∣ ≤ A(δ) + Bδ(N) + Cδ,N(ε), where

A(δ) =
∣∣D0(c̃ δ)−D0(c0)

∣∣ with c̃ δ(t) = δw0 + (1−δ)c0(t),

Bδ(N) =
∣∣D0

(
cδ,N

)
−D0(c̃ δ)

∣∣ with cδ,N(t) = δw0 + (1−δ)ĉ 0
N(t),

Cδ,N(ε) =
∣∣Dε(c

δ,N,ε)−D0(cδ,N)
∣∣.

Constructing a recovery sequence (cε)ε∈]0,1] inductively, one easily sees that Dε(c
ε) →

D0(c0) as desired.

A Special properties of cosh gradient structures

Here we discuss a few special properties that are characterizing for the function C and
C∗ and this lead to corresponding properties of R∗cosh.

We consider the special non-quadratic dissipation functional

C(v) := 2v arsinh(v/2)− 2
√

4+v2 + 4 and its Legendre dual C∗(ξ) := 4 cosh(ξ/2)− 4.

Then, we have C(v) = 1
2
v2 + O(v4) and C∗(ξ) = 1

2
ξ2 + O(ξ4). The function C∗ has the

following properties:

C∗(log p− log q) = 2
(√p

q
+

√
q

p
− 2
)
, C∗′(log p− log q) =

p− q
√
pq
. (A.1)

In addition we have superlinear growth of C:

1

2
|s| log(1+|s|) ≤ C(s) ≤ |s| log(1+|s|) for all s ∈ R. (A.2)

The first of the following scaling properties follows easily by considering the power
series expansion of C∗, the second by Legendre transform:

∀λ ≥ 1 ∀ s, ζ ∈ R : C∗(λζ) ≥ λ2C∗(ζ) and C(λs) ≤ λ2C(s). (A.3)

This implies the corresponding scaling property for Rcosh, namely

∀λ ≥ 1 ∀ c ∈ Q ∀ v, ξ ∈ RI :

R∗cosh(c, λξ) ≥ λ2R∗cosh(c, ξ) and Rcosh(c, λv) ≤ λ2Rcosh(c, v).
(A.4)
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EDP-convergence for nonlinear fast-slow reaction
systems with detailed balance∗
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Abstract

We consider nonlinear reaction systems satisfying mass-action kinetics with
slow and fast reactions. It is known that the fast-reaction-rate limit can be de-
scribed by an ODE with Lagrange multipliers and a set of nonlinear constraints
that ask the fast reactions to be in equilibrium. Our aim is to study the limiting
gradient structure which is available if the reaction system satisfies the detailed-
balance condition.

The gradient structure on the set of concentration vectors is given in terms of
the relative Boltzmann entropy and a cosh-type dissipation potential. We show
that a limiting or effective gradient structure can be rigorously derived via EDP
convergence, i.e. convergence in the sense of the Energy-Dissipation Principle for
gradient flows. In general, the effective entropy will no longer be of Boltzmann
type and the reactions will no longer satisfy mass-action kinetics.

1 Introduction

The study of nonlinear reaction systems with different time scales has attracted much
attention over the last decades, see e.g. [Bot03, KaK13, WiS17, DLZ18, MiS19, MaM20]
and the references therein. In this work we consider the simplest case of fast-slow reaction
systems with mass-action kinetics that have only two time scales, namely 1 and ε,

ċ = Rsl(c) +
1

ε
Rfa(c), (1.1)

where c ∈ C := [0,∞[i∗ denotes the vector of the concentrations ci of the ith species Xi.
The typical aim of the above-mentioned work is to derive the limiting equation for the
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evolution of c on the slow time scale, while the fast reactions are in equilibrium. Under
suitable assumptions the limiting equation can be formulated in three equivalent ways:

constrained dynamics: ċ(t) = Rsl(c(t)) + λ(t), λ(t) ∈ Γfa ⊂ Ri∗ , Rfa(c(t)) = 0,

projected dynamics: ċ(t) = (I−P(c(t)))Rsl(c(t)), Rfa(c(0)) = 0,

reduced dynamics: q̇(t) = QfaRsl(Ψ(q(t))), c(t) = Ψ(q(t)).

We refer to Section 4 for a discussion of these formulations.
The goal of this work is to revisit the same limit process, but now from the point of

view of variational evolution. Our starting point is that reaction-rate equations such as
(1.1) can be written as a gradient-flow equation if the reactions occur in pairs of forward
and backward reactions and that these pairs satisfy the detailed-balance condition. This
observation was highlighted in [Mie11, Sec. 3.1] but was observed and used implicitly
earlier in [ÖtG97, Eqs. (103)+(113)] and [Yon08, Sec. VII]. A different gradient structure
already occurs in [Grm10, Eqn. (69)] and has its origin in the thermodynamic considera-
tions in [Mar15] from 1915. The latter gradient structure, which we will call the cosh-type
gradient structure following [MiS19], was mathematically derived in [MPR14, MP∗17]
from microscopic chemical master equations via a large-deviation principle.

To be specific, we assume that the species Xi, i ∈ I := {1, . . . , i∗} undergo r∗ forward-
backward reactions of mass-action type

αr1X1 + · · ·+ αri∗Xi∗ 
 βr1X1 + · · ·+ βri∗Xi∗ ,

where αr = (αri )i∈I and βr = (βri )i∈I are the stoichiometric vectors in Ni∗0 . The reaction-
rate equation (1.1) takes the form

ċ = −
r∗∑
r=1

(
kfw
r c

αr − kbw
r cβ

r)(
αr−βr), where cα = cα1

1 · · · c
αi∗
i∗ . (1.2)

The detailed-balance condition asks for the existence of a positive concentration vector
c∗ = (c∗i )i∈I ∈ C+ := ]0,∞[i∗ such that all r∗ reactions are in

∃ c∗ = (c∗i )i∈I ∈ C+ ∀ r ∈ R := {1, . . . , r∗} : kfw
r c

αr

∗ = kbw
r cβ

r

∗ . (1.3)

For the subsequent analysis it is advantageous to introduce the scalars δ∗r =
(
cα

r

∗ c
βr

∗
)1/2

and κ̂r = kfw
r c

αr

∗ /δ
∗
r = kbw

r cβ
r

∗ /δ
∗
r .

Throughout this work we will assume that c∗ will not depend on the small parameter
ε measuring the ratio between the slow and the fast time scale. The set of reaction pairs
R will be decomposed into slow and fast reactions, namely R = Rsl ∪̇Rfa, and we assume
κ̂r = κr for r ∈ Rsl and κ̂r = κr/ε for r ∈ Rfa, where κr are fixed numbers. With this we
obtain the symmetric representation of the fast-slow reaction-rate equation via

ċ = Rsl(c) +
1

ε
Rfa(c) with Rxy(c) := −

∑
r∈Rxy

κr δ
∗
r

(
cα

r

cαr∗
− cβ

r

cβr∗

)
(αr − βr). (1.4)

The cosh-type gradient structure is now defined in terms of a gradient system (C, E ,R∗ε),
where the energy functional is given in terms of the relative Boltzmann entropy

E(c) =
∑
i∈I

c∗iλB(ci/c
∗
i ), where λB(ρ) := ρ log ρ− ρ+ 1,
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and the dual dissipation potential R∗ε in the form

R∗ε(c, ξ) = R∗sl(c, ξ) +
1

ε
R∗fa(c, ξ) with R∗xy(c, ξ) =

∑
r∈Rxy

κr
(
cα

r

cβ
r)1/2

C∗
(
(αr−βr) · ξ

)
,

where C∗(ζ) = 4 cosh(ζ/2) − 4. The fast-slow reaction-rate equation (1.4) can now be
written as the gradient flow equation

ċ(t) = ∂ξR∗ε
(
c(t),−DE(c(t))

)
.

In fact, there are many other gradient structures for (1.4), see Remark 2.6; however
the cosh-type gradient structure is special in several aspects: (i) it can be derived via
large-deviation principles [MPR14, MP∗17], (ii) the dual dissipation potential R∗ is inde-
pendent of c∗, and (iii) it is stable under general limiting processes, see [LM∗17, Sec. 3.3].
The property (ii), also called tilt invariance below, will be especially important for us.

The main goal of this paper is to construct the effective gradient system (C, Eeff ,R∗eff)
for the given family (C, E ,R∗ε) in the limit ε→ 0+. Here we use the notion of convergence
of gradient system in the sense of the energy-dissipation principle, shortly called EDP-
convergence. This convergence notion was introduced in [DFM19] and further developed
in [MMP19, FrL19, MiS19] and is based on the dissipation functionals

Dη
ε(c) :=

∫ T

0

{
Rε(c, ċ) +R∗ε(c, η−DE(c))

}
dt,

which are defined for all curves c ∈ L1([0, T ]; C). The notion of EDP-convergence

with tilting now asks that the two Γ-convergences Eε
Γ−→ Eeff and Dη

ε
Γ−→ Dη

0 (in suit-

able topologies) and that for all η the limit Dη
0 has the form Dη

0(c) =
∫ T

0

{
Reff(c, ċ) +

R∗eff(c, η−DE(c))
}

dt; see Section 3.1 for the exact definition.
Our main result is Theorem 3.5 which asserts EDP-convergence with tilting with

Eeff = E and R∗eff(c, ξ) = R∗sl(c, ξ) + χΓ⊥fa
(ξ),

where Γfa = span
{
αr−βr

∣∣ r ∈ Rfa

}
, Γ⊥fa :=

{
ξ ∈ Ri∗

∣∣ ∀ γ ∈ Γfa : γ · ξ = 0
}

and χA is
the characteristic function of convex analysis taking 0 on A and∞ otherwise. The proof
relies on three observations:

(1) Tilting of the relative Boltzmann entropy E by η is equivalent to changing the
underlying equilibrium c∗ to cη∗ := (eηic∗i )i∈I (see (3.7)), and R∗ε is independent of cη∗.

(2) The dual dissipation potentials R∗ε increase monotonically to their limit R∗eff ,
which is singular. Hence, the primal dissipation potentials Rε decrease monotonically to
their limit Reff , which is degenerate. Defining Qfa : Ri∗ → Rmfa such that kerQfa = Γfa

and imQ>fa = Γ⊥fa, the bound Dη
ε(c

ε) ≤ Mdiss <∞ does not provide a uniform bound on
ċε, but we are able to show weak compactness of Qfac

ε in W1,1([0, T ];Rmfa).
(3) To obtain compactness for families (cε)ε∈]0,1[ from the bound Dε(c

ε) ≤Mdiss <∞
we can use

∫ T
0
R∗fa(cε,−DE(cε))dt ≤ εMdiss, which forces cε into the set of equilibria of

the fast equation, namely Efa :=
{
c ∈ C

∣∣Rfa(c) = 0
}

.

An important assumption of the fast reaction system c′(τ) = Rfa(c(τ)) is that it has a
unique equilibrium in each invariant subset Cfa

q :=
{
c ∈ C

∣∣Qfac = q
}

. This equilibrium
is obtained as minimizer of E and is denoted by Ψ(q). Thus, the unique fast equilibrium
condition reads

Msl :=
{

Ψ(q)
∣∣ q ∈ QfaC

} !!
= Efa :=

{
c ∈ C

∣∣Rfa(c) = 0
}
.
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The main difficulty is to show that the information in points (2) and (3) is enough
to obtain the compactness necessary for deriving liminf estimate for the Γ-convergence

Dε
Γ−→ D0 for the non-convex functionals Dε. On the local level, one sees that (2)

provides partial control of the temporal oscillations of ċε via the bound on Qfaċ
ε in

L1([0, T ];Rmfa), whereas (3) provides strong convergence towards Msl, which is locally
defined via DE(c) ∈ Γ⊥fa (see Lemma 3.7). In summary, we are able to show that
Dε(c

ε) ≤ Mdiss < ∞ implies that there exists a subsequence such that cεn → c̃ in
L1([0, T ]; C) and Qfac

εn → q uniformly in C0([0, T ];Rmfa), where c̃(t) = Ψ(q(t)) with
q ∈W1,1([0, T ];Rmfa).

As a corollary we obtain that the limiting evolution lies in Msl and is governed by the
reduced (or coarse grained) equation q̇ = QfaRsl(Ψ(q)) described by the slow variables
q ∈ QfaC and a natural gradient structure (QfaC,E,R). Even on the level of the limiting
equations our result goes beyond those in [Bot03, DLZ18], since we do not assume that
solutions are strictly positive or that the stoichiometric vectors γr = αr−βr, r ∈ Rfa, are
linearly independent.

For illustration, we close the introduction by a simple example involving i∗ = 5
species and one fast and one slow reaction (see Section 4.3 for the details under slightly
more general conditions):

X1 +X2

fast

 X3 and X3 +X4

slow

 X5,

which gives rise to the stoichiometric vectors γfa =(1, 1,−1, 0, 0)> and γsl =(0, 0, 1, 1,−1)>.
Assuming the detailed-balance condition with respect to the steady state c∗=(1, 1, 1, 1, 1)>,
the reaction-rate equation takes the form

ċ = −κ
fa

ε

(
c1c2 − c3

)
γfa − κsl

(
c3c4 − c5

)
γsl .

The limiting reaction system can be described by the slow variables q=(c1+c3,c2+c3,c4,c5)>

and reads
q̇ = QfaRsl(Ψ(q)) = −κsl

(
a(q1, q2)q3 − q4

)
γsl,

where the slow manifold takes the form Ψ(q) =
(
q1, q2, a(q1, q2), q3, q4

)
and the reduced

entropy is E(q) = E(Ψ(q)).

2 Modeling of reaction systems

We first introduce the classical notation for reaction systems with reaction kinetics ac-
cording to the mass-action law. After briefly recalling our notation for gradient systems,
we show that based on the condition of detailed balance, the reaction-rate equation is
the gradient-flow equation for a suitable gradient system. Next we introduce our class
of fast-slow systems, and finally we present a small, but nontrivial example in R3.

2.1 Mass action law and stoichiometric subspaces

We consider i∗ ∈ N species Xi reacting with each other by r∗ ∈ N reactions. The set of
species is denoted by I = {1, . . . , i∗}, the set of reactions by R = {1, . . . , r∗}, and the r∗
chemical reactions are given by

∀ r ∈ R :
i∗∑
i=1

αriXi 

i∗∑
i=1

βriXi,
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where the stoichiometric vectors αr, βr ∈ Ni∗0 contain the stoichiometric coefficients. The
concentration ci of species Xi is nonnegative, the space of concentrations is denoted by

C = [0,∞[i∗ ⊂ Ri∗ ,

which is the nonnegative cone of Ri∗ . Moreover, we introduce C+ := int C = ]0,∞[i∗ ,
the interior of the set of concentrations.

The mass-action law for reaction kinetics assumes that the forward and backward
reaction fluxes are proportional to the product of the densities of the species, i.e. j(c)r =
−kfw

r c
αr + kbw

r cβ
r
, where for stoichiometric vectors δ ∈ Ni+0 the monomials cδ are given

by
∏i∗

i=1 c
δi
i . The reaction-rate equation (RRE) of the concentrations c ∈ C takes the

form

ċ = R(c) = −
r∗∑
r=1

(
kfw
r c

αr − kbw
r cβ

r)
(αr − βr) , (2.1)

with given forward and backward reaction rates kfw
r , k

bw
r > 0.

For each of the r reactions we introduce the stoichiometric vector γr := αr−βr ∈ Zi∗ .
The span of all vectors γr is the stoichiometric subspace Γ ⊂ Ri∗ , i.e. Γ := span

{
γr
∣∣ r ∈

R
}

. We do not assume any properties of the stoichiometric vectors, in particular they
are not assumed to be linearly independent.

Conservation directions are vectors q ∈ Ri∗ such that q ∈ Γ⊥ (also written q ⊥ Γ),
where the annihilator Γ⊥ is defined as Γ⊥ =

{
q ∈ Ri∗

∣∣ ∀ γ ∈ Γ : q · γ = 0
}

. By
construction we have R(c) ∈ Γ, thus for all solutions t 7→ c(t) of the RRE (2.1), the value
of q ·c(t) is constant, i.e. q ·c is a conserved quantity for (2.1). Fixing a basis {q1, . . . , qm}
of Γ⊥, we introduce a matrix Q ∈ Rm×i∗ by defining its adjoint Q> = (q1, . . . , qm). By
construction, Q> : Rm → Ri∗ is injective, Q : Ri∗ → Rm is surjective, and kerQ = Γ.
The image of the nonnegative cone C under Q is denoted by Q, i.e. Q : C→ Q ⊂ Rm.
Fixing a vector q ∈ Q, we define the stoichiometric subsets

Cq :=
{
c ∈ C

∣∣Qc = q
}
.

They provide a decomposition C = ∪q∈QCq into affine sets that are invariant under the
flow of the RRE (2.1).

Notation: In the whole paper we consider all vectors as column vectors. In particular
DE(c) ∈ X∗ is also a column vector although it is an element of the dual space and might
be understood as a covector.

2.2 Notations for gradient systems

Following [Mie11, Mie16], we call a triple (X, E ,R) a (generalized) gradient system (GS)
if

1. the state space X is a closed and convex subspace of a Banach space X,

2. E : X→ R∞ := R∪ {∞} is a sufficiently smooth functional (such as a free energy,
a relative entropy, or a negative entropy, etc.),

3. R : X ×X → R∞ is a dissipation potential, which means that for any u ∈ X the
functional R(u, ·) : X → R∞ is lower semicontinuous, nonnegative and convex,
and satisfies R(u, 0) = 0.
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The dynamics of a gradient system is given by the associated gradient-flow equation that
can be formulated in three different, but equivalent ways: as an equation in X, in R, or
in X∗ (the dual Banach space of X), respectively:

(I) Force balance in X∗ : 0 ∈ ∂u̇R(u, u̇) + DE(u) ∈ X∗,
(2.2a)

(II) Power balance in R : R(u, u̇) +R∗(u,−DE(u)) = −〈DE(u), u̇〉 ∈ R,
(2.2b)

(III) Rate equation in X : u̇ ∈ ∂ξR∗(u,−DE(u)) ⊂ X.
(2.2c)

Here, R∗ is the dual dissipation potential obtained by Legendre-Fenchel transform,
R∗(u, ξ) := supv∈X

{
〈ξ, v〉 − R(u, v)}. The partial derivatives ∂u̇R(u, u̇) and ∂ξR∗(u, ξ)

are the possibly set-valued convex subdifferentials.
For a given evolution equation u̇ = V (u) we say that it has a gradient structure if

there exists a gradient system (X, E ,R) such that the evolution equation is the gradient-
flow equation for this gradient system, namely V (u) = ∂ξR∗(u,−DE(u)). We emphasize
that a given evolution equation may have none or many gradient structures; see Remark
2.6 for the case of our nonlinear reaction systems.

Integrating the power balance (II) in time over [0, T ] and using the chain rule for the
time-derivative of t 7→ E(u(t)), we obtain another equivalent formulation of the dynamics
of the gradient system, which is called Energy-Dissipation-Balance:

(EDB) E(u(T )) +

∫ T

0

{
R(u, u̇) +R∗(u,−DE(u))

}
dt = E(u(0)). (2.3)

This gives rise to the dissipation functional

D(u) :=

∫ T

0

{
R(u, u̇) +R∗(u,−DE(u))

}
dt,

which is now defined on trajectories u : [0, T ] 7→ X.
The following Energy-Dissipation Principle (EDP) states that, under natural techni-

cal conditions, solving the EDB (2.3) is equivalent to solving any of the three versions
of the gradient-flow equation (2.2).

Theorem 2.1 (Energy-dissipation principle, cf. [AGS05, Prop. 1.4.1] or [Mie16, Th. 3.2]).
Assume that X is a closed convex subset of X = Ri∗, that E ∈ C1(X,R), and that
the dissipation potential R(u, ·) is superlinear uniformly in u ∈ X. Then, a function
u ∈ W1,1([0, T ];Ri∗) is a solution of the gradient-flow equation (2.2) if and only if u
solves the EDB (2.3).

2.3 The detailed balance condition induces gradient structures

Already in Section 2.1, we have assumed that each reaction occurs in both forward and
backward directions. Such reaction systems are called weakly reversible. A much stronger
assumption is the so-called detailed-balance condition which states that there is a strictly
positive state c∗ = (c∗i ) ∈ C+ in which all reactions are in equilibrium, i.e. jr(c∗) = 0 for
all r:

(DBC) ∃ c∗ ∈ C+ ∀ r ∈ R : kfw
r c

αr

∗ = kbw
r cβ

r

∗ . (2.4)
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Under this assumption, one can rewrite the RRE (2.1) in the symmetric form

ċ = R(c) = −
r∗∑
r=1

κ̂r δ
∗
r

( cαr
cαr∗
− cβ

r

cβ
r

∗

) (
αr − βr

)
with δ∗r =

(
cα

r

∗ c
βr

∗
)1/2

and κ̂r := kfw
r c

αr

∗ /δ
∗
r = kbw

r cβ
r

∗ /δ
∗
r .

(2.5)

Subsequently, we will use the notion of a reaction system satisfying the detailed-balance
condition, or shortly a detailed-balance reaction system.

Definition 2.2 (Detailed-balance reaction systems (DBRS)). For i∗, r∗ ∈ N consider
the stoichiometric matrices A =

(
αri
)
∈ Ni∗×r∗0 and B =

(
βri
)
∈ Ni∗×r∗0 and the vectors

c∗ = (c∗i ) ∈ ]0,∞[i∗ and κ̂ = (κ̂r) ∈ ]0,∞[r∗ . Then, the quadruple (A,B, c∗, κ̂) is called a
detailed-balance reaction systems with i∗ species and r∗ reactions. The associated RRE
is given by (2.5).

It was observed in [Mie11] (but see also [ÖtG97, Eqn. (103)+(113)] and [Yon08,
Sec. VII] for earlier, but implicit statements) that RREs in this form have a gradient
structure. Here we will use the gradient structure derived in [MP∗17] by a large-deviation
principle from a microscopic Markov process. In Remark 2.6 we will shortly comment
on other possible gradient structures.

With C as above we define the energy as the relative Boltzmann entropy

E :

{
C → R,
c 7→

∑i∗
i=1 c

∗
iλB(ci/c

∗
i ),

with λB(r) =


r log r − r + 1 for r > 0,

1 for r = 0,

∞ for r < 0.

(2.6a)

The dissipation functional R will be defined by specifying the dual dissipation potential
R∗ of “cosh-type” as

R∗ :


C× Ri∗ → R,

(c, ξ) 7→
r∗∑
r=1

κ̂r
√
cαrcβr C∗

(
(αr−βr) · ξ

)
,

with C∗(ζ) = 4 cosh (ζ/2)− 4 .

(2.6b)

We will often use the following formulas for C∗:

(a) C∗(log p− log q) = 2

(√
p−√q

)2

√
pq

,

(b)
(
C∗
)′

(ζ) = e ζ/2 − e−ζ/2, (c)
(
C∗
)′

(log p− log q) =
p− q
√
pq
.

(2.7)

The following result is also easily checked by direct calculations using (2.7)(b) and
the logarithm rules

αrDE(c) = log(cα
r

)− log(cα
r

∗ ) = log
(
cα

r

/cα
r

∗ ). (2.8)

This identity also follows as a special case of Remark 2.6. The primal dissipation potential
R is given by the Legendre-Fenchel transformation:

R(u, v) = sup
{
ξ · v −R∗(c, ξ)

∣∣ ξ ∈ Ri∗ }. (2.9)
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Proposition 2.3 (Gradient structure, [MP∗17, Thm. 3.6]). The RRE (2.5) is the gradient-
flow equation associated with the cosh-type gradient system (C, E ,R) with E and R given
in (2.6).

An important property of this gradient structure, which is not shared with the ones
discussed in Remark 2.6 below, is that the dissipation potential R∗ does not depend
on the equilibrium state c∗. This might seen an artifact of our special choice of the
definition of κ̂r in terms of c∗; however, we already see this in the example treated in
Section 2.5. This property will be even more relevant when we use “tilting” in our
main result Theorem 3.5, which state the “EDP-convergence with tilting”. In [MiS19,
Prop. 4.1] it was shown that this tilt-invariance is a special property of the cosh-gradient
structure; see also Remark 2.6.

Moreover, we have identified c∗ as a “static” property of the RRE (2.5), whereas
the stoichiometric matrices A,B ∈ Ni∗×r∗0 and the reaction coefficients κ̂r encode the
“dissipative” properties.

Because we are going to use the energy-dissipation principle, we explicitly state the
cosh-type dissipation functional given by

D(c) =

∫ T

0

{
R(c, ċ) +R∗(c,−DE(c))

}
dt =

∫ T

0

{
R(c, ċ) + S(c)

}
dt. (2.10)

We will mostly write the dissipation functional D in the first “R+R∗ form” to highlight
its duality structure. However, for mathematical purposes it will be advantageous to use
the second representation via the slope function

S(c) : C→ [0,∞[; c 7→ S(c) :=
r∗∑
r=1

2κ̂rδ
∗
r

((cαr
cαr∗

)1/2 −
(cβr
cβ

r

∗

)1/2
)2

, (2.11)

which is continuous on C and satisfies S(c) = R∗(c,−DE(c)) for c ∈ C+. Sometimes
S is also called the (discrete) Fisher information as it corresponds to

∫
Ω

4k|∇√ρ|2 dx =∫
Ω
k|∇ρ|2/ρdx in the diffusion case.
A special feature of DBRS is that all equilibria have the property that they provide an

equilibrium to each individual reaction r ∈ R, where we do not need linear independence
of (γr)r∈R, see also [MHM15, Sec. 2] or [Mie17].

Lemma 2.4 (Equilibria in DBRS). Let (A,B, c∗, κ̂) be a DBRS with slope function S
defined in (2.11). Then, the following identities hold:

ER :=
{
c ∈ C

∣∣R(c) = 0
}

=
{
c ∈ C

∣∣ S(c) = 0
}

=
{
c ∈ C

∣∣ ∀ r ∈ R : cα
r

cαr∗
= cβ

r

cβ
r
∗

}
.

(2.12)

Moreover, if c̃∗ ∈ ER ∩ C+, then the two DBRS (A,B, c∗, κ̂) and (A,B, c̃∗, κ̂) generate
the same RRE.

Proof. Step 1. For c ∈ C+ the gradient structure R(c) = ∂R∗(c,−DE(c)) of the DBRS
gives

R(c,R(c)) +R∗(c,−DE(c)) = −DE(c) ·R(c). (2.13)

Thus, R(c) = 0 implies S(c) = R∗(c,−DE(c)) = 0, and since S(c) is the sum of r∗
nonnegative terms (cf. (2.11)) we conclude cα

r

cα
r
∗

= cβ
r

cβ
r
∗

as desired.
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Step 2. If c ∈ ∂C satisfies R(c) = 0, then consider cδ = c+δc∗ ∈ C+ for δ ∈ ]0, 1[.
With |R(cδ)| ≤ C0δ, R(cδ, v) ≥ 0, and |DE(cδ)| ≤ i∗ log(1/δ) we find

S(cδ) = R∗(cδ,−DE(cδ)) = −DE(cδ) ·R(cδ)−R(cδ,R(cδ)) ≤ i∗C0δ log(1/δ) + 0 .

Using the continuity of S we obtain S(c) = limδ→0+ S(cδ) = 0 and conclude as in Step
1.

Step 3. The equilibrium condition of Step 1 implies c̃β
r

∗ /c̃
αr

∗ = cβ
r

∗ /c
αr

∗ =: µ2
r for

all r ∈ R. Because in the RRE (2.5) only the terms δr∗/c
αr

∗ =
(
cβ

r

∗ /c
αr

∗
)1/2

= µr and
δr∗/c

βr

∗ = 1/µr appear, the last statement follows.

The next lemma shows that R(c, ·) forbids velocities v outside of the stoichiometric
subspace Γ. Moreover, for all trajectories c : [0, T ] → C with D(c) < ∞, which are
much more than the solutions of the RRE (2.1), we find that they have to lie in one
stoichiometric subset Cq, i.e. the conserved quantities are already encoded in D.

Below we use the characteristic function χA of convex analysis, which is defined via
χA(v) = 0 for v ∈ A and χA(v) =∞ otherwise.

Lemma 2.5 (Conserved quantities via D). Let Γ, Q, Cq, and Q be defined as in Section
2.1, and let R∗ and R be defined as in (2.6b) and (2.9), respectively.

(a) For all (c, v) ∈ C× Ri∗ we have R(c, v) ≥ χΓ(v).
(b) If c ∈W1,1([0, T ]; C) satisfies D(c) <∞, then Qċ = 0 a.e., or equivalently there

exists q ∈ Q such that c(t) ∈ Cq for all t ∈ [0, T ].

Proof. Using γr = αr − βr we find R∗(c, ξ) = 0 for ξ ⊥ Γ = ker(Q) and conclude

R(c, v) = sup
ξ

(ξ · v −R∗(c, ξ)) ≥ sup
ξ⊥Γ

(ξ · v −R∗(c, ξ)) = sup
ξ⊥Γ

(ξ · v) = χΓ(v).

This proves part (a).

The bound D(c) <∞ implies that
∫ T

0
R(c, ċ)dt <∞ and hence ċ ∈ Γ = ker(Q) a.e.

This proves Qċ(t) = 0 a.e. and by the absolute continuity of c, the function t 7→ Qc(t)
must be constant. Hence part (b) is established as well.

Remark 2.6 (Different gradient structures). We emphasize that the symmetric RRE
(2.5), which was obtained from the DBC, indeed has many other gradient structures
with the same relative entropy E given in (2.6a). Choosing arbitrary smooth and strictly
convex functions Φr : R→ [0,∞[ with Φr(0) = 0 and Φr(−ζ) = Φr(ζ) we may define

R∗Φ(c, ξ) =
r∗∑
r=1

κ̂rδ
∗
rΛr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
Φr

(
(αr−βr) · ξ

)
with Λr(a, b) =

a − b

Φ′r
(

log a− log b
)

and δ∗r =
(
cα

r

∗ c
βr

∗
)1/2

. Note that Λr can be smoothly extended by Λr(a, a) = a/Φ′′r(0).
To show that the gradient system (C, E ,RΦ) indeed generates (2.5) as the associated

gradient-flow equation, it suffices to consider the rth reaction pair, because the dual
potential R∗Φ is additive in the reaction pairs. Inserting DE(c) =

(
log(ci/c

∗
i )
)
i=1,..,i∗

we

obtain the relation

DξR∗Φr
(
c,−DE(c)

)
= κ̂rδ

∗
rΛr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
Φ′r
(

(αr−βr) · (−DE(c))
)
(αr−βr)

(2.8)
= −κ̂rδ∗rΛr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
Φ′r

(
log
(cαr
cαr∗

)
−log

(cβr
cβ

r

∗

) )
(αr−βr) = −κ̂rδ∗r

(cαr
cαr∗
− c

βr

cβ
r

∗

)
(αr−βr),
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which is the desired result.
The choice Φr(ζ) = ζ2/2 was used in [Mie11], while here we use Φr = C∗ leading to

Λr(a, b) = (ab)1/2 and δ∗r Λr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
=
(
cα

r

cβ
r)1/2

.

This is the desired term in (2.6b) that is independent of c∗, while for other choice of Φr

the last term will depend on c∗ (see [MiS19]).

2.4 Fast-slow reaction-rate equation

We assume that some reactions are fast with reaction coefficients κ̂εr = κr/ε, while the
others are slow with reaction coefficients κ̂εr = κr (of order 1). Here we assume that the
set or reaction indices R = {1, ..., r∗} decomposes into Rsl ∪̇Rfa. For simplicity we assume
that the detailed-balance steady state c∗ is independent of ε, but a soft dependence with
a limit cε∗ → c∗ ∈ C+ could be allowed as well.

ċ = Rε(c) = −
r∗∑
r=1

κ̂εrδ
∗
r

(cαr
cαr∗
− cβ

r

cβ
r

∗

)(
αr − βr

)
= Rsl(c) +

1

ε
Rfa(c)

with Rxy(c) =
∑
r∈Rxy

κrδ
∗
r

(cαr
cαr∗

cβ
r

cβ
r

∗

)(
αr − βr

)
for xy ∈ {sl, fa}.

(2.14)

Obviously, for each ε > 0 we have a cosh-type gradient structure (C, E ,Rε) with

R∗ε(c, ξ) = R∗sl(c, ξ)+
1

ε
R∗fa(c, ξ) with R∗xy(c, ξ) =

∑
r∈Rxy

κr
√
cαrcβrC∗

(
(αr−βr)·ξ

)
. (2.15)

The aim of this paper is to investigate the behavior of the gradient structures (C, E ,Rε)
in the limit ε → 0+. In particular, we study the Γ-limit of the induced dissipation
functionals Dε obtained as in (2.10) but with the duality pair Rε+R∗ε.

At this stage we report on well-known results (see e.g. [Bot03, DLZ18]) about the
limit evolution for ε→ 0+. For small times of order ε the fast system Rfa will dominate,
while for t ∈ [

√
ε, T ] a slow dynamics takes place where the slow reactions drive the

evolution and the fast reactions remain in equilibrium.
To be more precise we introduce the fast time scale τ = t/ε such that in terms of τ

we obtain the rescaled system c′(τ) = εRsl(c(τ)) +Rfa(c(τ)). For ε→ 0+ we obtain the
fast system

c′(τ) = Rfa(c(τ)), c(0) = c0. (2.16)

This is again a RRE satisfying the detailed-balance condition and all constructions intro-
duced in Sections 2.1 and 2.3. In particular we obtain the fast stoichiometric subspace

Γfa := span
{
γr ∈ Zi∗

∣∣ r ∈ Rfa

}
⊂ Γ ⊂ Ri∗ .

For the annihilator Γ⊥fa :=
{
q ∈ Ri∗

∣∣ ∀ γ ∈ Γfa : q · γ = 0
}

we have Γ⊥ ⊂ Γ⊥fa and
mfa := dim Γ⊥fa ≥ m = dim Γ⊥. Thus, we can extend the basis {q1, . . . , qm} for Γ⊥ to a
basis {q1, ..., qm, ..., qmfa

} for Γ⊥fa and define the conservation operator Qfa : Ri∗ → Rmfa

via

Q>fa :=
(
q1, . . . , qmfa

)
: Rmfa → Ri∗ and set Q :=

{
Qfac ∈ Rmfa

∣∣ c ∈ C
}
.
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In particular, the important defining relations of Qfa are

kerQfa = Γfa and imQ>fa = Γ⊥fa. (2.17)

Of course, our interest lies in the case 0 ≤ m � mfa � i∗. In that case the mapping
c 7→ Qc yields fewer conserved quantities for the full fast-slow RRE (2.14) than the
mapping c 7→ q = Qfac supplies for the fast RRE (2.16). We call q ∈ Q the slow
variables, as they may still vary on the slow time scale. In particular, the decomposition
of C into fast stoichiometric subsets

C = ∪q∈QCfa
q where Cfa

q :=
{
c ∈ C

∣∣Qfac = q
}

(2.18)

is finer than C =
⋃
q∈Q Cq.

Starting from a general initial condition c0, one can show that the solutions cε :
[0, T ] → C of the fast-slow RRE (2.14) have a limit c0 : [0, T ] → C, but this limit may
not be continuous at t = 0. On the short time scale τ = t/ε we may define c̃ ε(τ) = cε(ετ)
which has a limit c̃ 0 : [0,∞[ → C satisfying the fast RRE (2.16) and having a limit
c0 := limτ→∞ c̃

0(τ) with Rfa(c0) = 0. Hence, we define the set of fast equilibria

Efa :=
{
c ∈ C

∣∣Rfa(c) = 0
}

=
{
c ∈ C

∣∣ ∀ r ∈ Rfa : cα
r

cαr∗
= cβ

r

cβ
r
∗

}
(2.19)

such that for τ ∈ [0,∞[ the solution c̃ 0(τ) describes the approach to the slow manifold
and c0 ∈ Efa. On the time scale of order 1, the limits c0(t) of the solutions cε(t) satisfy
c0(t) ∈ Efa for all t ∈ ]0, T ], and one has the matching condition c0 = limt→0+ c

0(t).
The evolution of the solutions c0 within Efa is driven by the slow reactions only; the

fast reactions keep the solution on the fast-equilibrium manifold Efa. In particular, it
can be shown (see [Bot03, DLZ18] or [MiS19] for the linear case) that c0 satisfies the
limiting equation

ċ(t) = Rsl(c(t)) + λ(t) with c(t) ∈ Efa and λ(t) ∈ Γfa, c(0) = c0. (2.20)

The result of our paper is quite different: We will pass to the limit in the gradient systems
(C, E ,Rε) directly and obtain an effective gradient system (C, E ,Reff), see Theorem 3.5.
As a consistency check, we will show in Section 4 that the gradient-flow equation for
(C, E ,Reff) is indeed identical to the limiting equation (2.20), see Proposition 4.4.

2.5 A simple example for a fast-slow system

As a guiding example, we consider a reaction system consisting of three species Xi,
i = 1, 2, 3 = i∗, which interact via r∗ = 2 reactions, one being slow and one being fast:

slow: X1 
 X3 fast: X1 +X2 
 2X3 .

Hence, the stoichiometric vector are given by

α1 = (1, 0, 0)>, β1 = (0, 0, 1)>, γ1 = (1, 0,−1)>,

α2 = (1, 1, 0)>, β2 = (0, 0, 2)>, γ2 = (1, 1,−2)> .

Hence, one can easily check that the space of conserved quantities is span
(
(1, 1, 1)>

)
∈ R3

which defines the matrix Q = (1, 1, 1) ∈ R1×3.
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Figure 2.1: The state space C =
[0,∞[3 decomposes into the trian-
gles Qc = c1 + c2 + c3 = q
(light brown), which decompose
into the straight segments Qfac = q
(brown). Each segment has exactly
one intersection with the fast equi-
libria Efa (green).

We have R = Rfa ∪Rsl = {1} ∪ {2} and the RRE reads

ċ = Rε(c) = (c3−3c1)

 1
0
−1

+
1

ε
(c2

3−c1c2)

 1
1
−2

 . (2.21)

The nontrivial equilibria of this RRE are given by c∗ = (c∗1, c
∗
2, c
∗
3)> = σ(1, 9, 3)> for

σ > 0. All these c∗ satisfy the detailed balance condition, and (2.21) takes the symmetric
form (2.5), viz.

ċ = −κ1δ
∗
1

(c1

c∗1
− c3

c∗3

) 1
0
−1

− κ2

ε
δ∗2

(c1c2

c∗1c
∗
2

− c2
3

(c∗3)2

) 1
1
−2


with δ∗1 = (c∗1c

∗
3)1/2 = σ

√
3, δ∗2 = (c∗1c

∗
2)1/2c3 = 9σ2, κ1 =

√
3, and κ2 = 1.

Thus, we find the cosh-type gradient structure (C, E ,R∗ε) of Section 2.3 with

E(c) = σλB(c1/σ) + 9σλB(c2/(9σ)) + 3σλB(c3/(3σ)),

R∗ε(c, ξ) =
√

3c1c3 C
∗(ξ1−ξ3) +

1

ε

√
c1c2c2

3 C
∗(ξ1+ξ2−2ξ3) .

As noted just after Proposition 2.3, R∗ε is independent of c∗.
The associated fast system consists simply of one reaction, hence we find

Γfa = span(1, 1,−2)>, Qfa =

(
1 1 1
1 −1 0

)
, Q =

{
q ∈ R2

∣∣ q1 ≥ 0
}
.

The stoichiometric sets Cq with Qc = q ∈ R1 are triangles, which decompose into the
straight segments Cfa

q given by Qfac = q, whereas the set of fast equilibria

Efa =
{
c ∈ C

∣∣ c1c2 = c2
3

}
.

is curved. See Figure 2.5 for an illustration.
Finally, we discuss the evolution for our example starting with the initial condition

c0 = (10, 4, 0)> such that Qcε(t) = cε1(t) + cε2(t) + cε3(t) = 14 is the conserved quantity.
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Figure 2.2: Numerical calculation of the solutions cε(t) for the RRE (2.21) with
cε(0) = (4, 0, 10)> with ε = 1 (upper left) and ε = 0.2 (lower left). The lower left
figure shows the fast convergence to c0 = (8, 2, 4)>. The right graphs displays
the curve t 7→ cε(t) (red), which lies in the plane Qc = 14 (light brown). It
quickly approaches Msl (green) and then moves towards the set of steady states
(blue).

Since there is only one fast reaction, the second conserved quantity c1 − c2 = q2 = 6
shows that c̃ε(τ) = cε(εt) converges to c̃(τ) and c̃(τ)→ c0 = (8, 2, 4)> ∈ Efa for τ →∞.

Thus, the limit solution c0 satisfies the limiting equation (2.20), which reads in our
case

ċ = (c3−3c1)

 1
0
−1

+ λ0

 1
1
−2

 , c1(t)c2(t) = c3(t)2, c(0) = c0 = (8, 2, 4)>.

By eliminating the Lagrange multiplier λ0 ∈ R and using the conserved quantity Qc = 14
this system is equivalent to the system

ċ1 − ċ2 = c3 − 3c1, c1c2 = c2
3, c1 + c2 + c3 = 14.

Simulations are shown in Figure 2.5, which show the fast convergence to Efa and then
the slow convergence to the final steady state ceq = (1, 9, 4)>.

3 EDP-convergence and effective gradient structure

In this section we first provide the precise definitions of EDP-convergence for gradient
systems. Next we present the our main result concerning the EDP-limit of the cosh-type
gradient structure for the fast-slow RRE with detailed-balance condition as introduced
in Section 2.4, where the proofs are postponed to later sections. Finally, in Section 4
we discuss the obtained effective gradient system (C, E ,Reff) and show that the induced
gradient-flow equation indeed is the same as the limiting equation (2.20).
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3.1 Definition of different types of EDP-convergence

The definition of EDP-convergence for gradient systems relies on the notion of Γ-conver-
gence for functionals (cf. [Dal93]). If Y is a Banach space and Iε : Y → R∞ we write

Iε
Γ−→ I0 and Iε

Γ
⇀ I0 for Γ-convergence in the strong and weak topology, respectively. If

both holds this is called Mosco convergence and written as Iε
M−→ I0.

For families of gradient systems (X, Eε,Rε), three different levels of EDP-convergence
are introduced and discussed in [DFM19, MMP19], called simple EDP-convergence,
EDP-convergence with tilting, and contact EDP-convergence with tilting. Here we will
only use the first two notions. For all three notions the choice of weak or strong topol-
ogy is still to be decided according to the specific problem. Here in the state space
X = Ri∗ this question is irrelevant, but it is relevant for curves u : [0, T ] → X lying in
Y = L1([0, T ];X), where the state space X is a closed convex subset with non-empty
interior of the Banach space X. For our paper, the strong topology will be sufficient.

Definition 3.1 (Simple EDP-convergence). A family of gradient structures (X, Eε,Rε)
is said to EDP-converge to the gradient system (X, E0,Reff) if the following conditions
hold:

1. Eε
Γ−→ E0 on X ⊂ X;

2. Dε strongly Γ-converges to D0 on L1([0, T ];X) conditioned to bounded energies

(we write Dε
ΓE→ D0), i.e. we have

(a) (Liminf) For all strongly converging families uε → u in L1([0, T ];X) which
satisfy supε>0 ess supt∈[0,T ]Eε(uε(t)) <∞, we have lim infε→0+ Dε(uε) ≥ D0(u).

(b) (Limsup) For all ũ ∈ L1([0, T ];X) there exists a strongly converging fam-
ily ũε → ũ in L1([0, T ];X) with supε>0 ess supt∈[0,T ]Eε(ũε(t)) < ∞ such that
lim supε→0+ Dε(ũε) ≤ D0(ũ);

3. there is an effective dissipation potential Reff : X × X → R∞ such that D0 takes
the form of a dual sum, namely D0(u) =

∫ T
0
{Reff(u, u̇)+R∗eff(u,−DEeff(u))}dt.

Similarly, one can also use weak Γ or Mosco convergence conditioned to bounded

energy, which we will then write as Dε
ΓE⇀ D0 and Dε

ME−→ D0. In fact, for our fast-slow

reaction systems we are going to prove Dε
ME−→ D0.

A general feature of EDP-convergence is that under suitable conditions the gradient-
flow equation u̇ = ∂ξR∗eff(u,−DE0(u)) of the effective gradient system (X, E0,Reff) is
indeed the limiting equation equation for the family u̇ = ∂ξR∗ε(u,−DEε(u)), i.e. limits u0

of solutions uε of latter equations solve the former equation, see e.g. [Bra14, Thm. 11.3],
[MiS19, Lem. 3.4], or [MMP19, Lem. 2.8]. For our case, such a result is given in Propo-
sitions 4.3 and 4.4.

A strengthening of simple EDP-convergence is the so-called EDP-convergence with
tilting. This notion involves the tilted energy functionals Eηε : X 3 u 7→ Eε(u) − 〈η, u〉,
where the tilt η (also called forcing) varies through the whole dual space X∗.

Definition 3.2 (EDP-convergence with tilting (cf. [MMP19, Def. 2.14])). A family of
gradient structures (X, Eε,Rε) is said to EDP-converge with tilting to the gradient system
(X, E0,Reff), if for all tilts η ∈ X∗ we have (X, Eηε ,Rε) EDP-converges to (X, Eηε ,Reff).
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We observe that Eε
Γ−→ E0 implies Eηε

Γ−→ Eη0 for all η ∈ X∗ (and similarly for weak
Γ-convergence), since the linear tilt u 7→ −〈η, u〉 is weakly continuous. The main and
nontrivial assumption is that additionally

Dη
ε : u 7→

∫ T

0

{
Rε(u, u̇) +R∗ε(u, η−DEε(u))

}
dt

Γ-converges in L1([0, T ];X) to Dη
0 for all η ∈ X∗ and that this limit Dη

0 is given in
dual-sum form with Reff via

Dη
0(u) =

∫ T

0

{
Reff(u, u̇) +R∗eff(u, η−DEeff(u))

}
dt.

The main point is that Reff remains independent of η ∈ X∗. We refer to [MMP19] for a
discussion of this and the other two notions of EDP-convergence.

3.2 Our main EDP-convergence result

Since we have assumed that the stationary measure does not depend on ε > 0, also the
energy Eε = E is ε-independent. Since E is also convex and lower semicontinuous, we

have the trivial Mosco convergence Eε
M−→ E .

To study the Γ-limit of the dissipation functionals Dε we first extend them to the
space

L1([0, T ]; C) :=
{
c ∈ L1([0, T ];Ri∗)

∣∣ c(t) ∈ C a.e.
}
.

For this we also use the slope functions (where xy ∈ {fa, sl})

Sε(c) = Ssl(c) +
1

ε
Sfa(c) with Sxy(c) =

∑
r∈Rxy

2κrδ
∗
r

((cαr
cαr∗

)1/2 −
(cβr
cβ

r

∗

)1/2
)2

. (3.1)

For ε > 0 the dissipation functional Dε : L1([0, T ]; C)→ [0,∞] is now given by

Dε(c) =

{∫ T
0

{
Rε(c, ċ) + Sε(c)

}
dt for c ∈W1,1([0, T ]; C),

∞ otherwise.
(3.2)

We recall that the dual dissipation potentials are given by (with γr = αr − βr)

R∗ε(c, ξ) = R∗sl(c, ξ) +
1

ε
R∗fa(c, ξ) with R∗xy(c, ξ) =

∑
r∈Rxy

κr
√
cαrcβr C∗

(
γr · ξ

)
.

Because Sfa(c) ≥ 0 andR∗fa(c, ξ) ≥ 0 we observe that Sε(c) andR∗ε(c, ξ) are monotonously
increasing for ε ↓ 0. Thus, their Γ-limits exist and are equal to the pointwise limits, which
are denoted by S0 and R∗0 respectively (this uses [Dal93, Rem. 5.5] and the continuity of
Sfa and R∗fa.)

Using (2.12) for the fast system we know that for c ∈ C the three conditions Rfa(c) =
0, Sfa(c) = 0, and c ∈ Efa are equivalent. Hence, we conclude

lim
ε→0+

Sε(c) =: S0(c) = Ssl(c) + χEfa
(c), where χA(b) =

{
0 for b ∈ A,
∞ for b 6∈ A.
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Obviously, we have limε→0+R∗ε(c, ξ) =: R∗0(c, ξ) = 0 for ξ ∈ Γ⊥fa and for c ∈ C+ we obtain
R∗0(c, ξ) =∞ for ξ 6∈ Γ⊥fa. Thus, we define the effective dual dissipation potential as

R∗eff(c, ξ) = R∗sl(c, ξ) + χΓ⊥fa
(ξ) . (3.3)

Note that R∗eff(c, ξ) ≥ R∗0(c, ξ) where inequality may happen on the boundary of C, e.g.
at c = 0. Nevertheless, we have the important relation

∀ c ∈ C+ : R∗eff(c,−DE(c)) = S0(c) := Ssl(c) + χEfa
(c) . (3.4a)

The primal effective dissipation potential Reff is given by the Legendre–Fenchel trans-
formation:

Reff(c, v) = sup
ξ∈Ri∗

{v · ξ −R∗eff(c, ξ)} = sup
ξ∈Ri∗

{
v · ξ −R∗sl(c, ξ)− χΓ⊥fa

(ξ)
}

= inf
v1+v2=v

{Rsl(c, v1) + χΓfa
(v2)} = inf

v2∈Γfa

{Rsl(c, v−v2)} ,
(3.4b)

where we have used (χΓfa
)∗ = χΓ⊥fa

and the classical theorem on the Legendre-Fenchel

transformation turning a sum into an infimal convolution (see [Att84, Prop. 3.4]).
To state our main result we now impose a non-trivial structural assumption that

is crucial for our result and its proof. An analogous condition on the uniqueness of
equilibria in each stoichiometric subset Cfa

q was used in [Mie17, Eqn. (17)]. We believe
that the theory of EDP-convergence can be studied without this assumption, but then
one has to refine the results and the solution technique suitably, see the counterexample
in Remark 3.10.

Assumption 3.3 (Conditions on the fast equilibria Efa). For all q ∈ Q :=
{
Qfac

∣∣ c ∈
C
}

, there is exactly one equilibrium of c′ = Rfa(c) in the invariant subset Cfa
q (cf.

(2.18)), i.e.
(UFEC) ∀ q ∈ Q : #

(
Cfa

q ∩ Efa

)
= 1 , (3.5)

which is called the unique fast-equilibrium condition. By Ψ : Q → C we denote the
mapping such that {Ψ(q)} = Cfa

q ∩ Efa for all q ∈ Q.
We further impose the following positivity assumption on Ψ:

∃ q ∈ Q ∀ θ ∈ ]0, 1] ∀ q ∈ Q ∀ i ∈ I : Ψ(q+θq)i > 0 and Ψ(q+θq)i ≥ Ψ(q)i. (3.6)

The positivity and monotonicity assumption (3.6) seems to be only technical and it
is only used at one point, namely in Step 1 in the proof of Theorem 5.5. We expect that
this assumption can be avoided by a more careful construction of recovery sequence.

In Section 3.3 we will show that one of possibly several equilibria in Cfa
q is always

given as the minimizer of E on Cfa
q . Thus, the assumption really means that this “ther-

modynamic equilibrium” is the only steady state. Our main Γ-convergence result reads
as follows.

Theorem 3.4 (Γ-convergence). Consider a fast-slow DBRS (A,B, c∗, κ̂
ε) as in (2.14)

together with its cosh-type gradient structure (C, E ,Rε) as in Proposition 2.3 and the
dissipation functional Dε defined in (3.2). Moreover, let Assumption 3.3 be satisfied.

Then we have Dε
ME−→ D0 on L1([0, T ],C) conditioned to bounded energies, where

D0 : L1([0, T ]; C)→ [0,∞] is defined as

D0(c) :=

{∫ T
0

{
Reff(c, ċ) + S0(c)

}
dt for c ∈ C0([0, T ]; C) and Qfac ∈W1,1([0, T ];Rmfa),

∞ otherwise,

where Reff and S0 are defined in (3.4).
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The proof of this result is the content of Section 5.
We emphasize that the integrand of D0 is (i) degenerate (non-coercive) in q̇ and (ii)

singular (taking the value ∞). Concerning (i), we recall that the definition of Reff in
(3.4b) implies that Reff(c, ·) vanishes on Γfa. In fact, it is only possible to control the
time derivative of t 7→ Qfac(t) ∈ Rmfa . Concerning (ii), we observe that S0 equals +∞
outside of Efa, which is a manifold of dimension mfa, and at each c ∈ Efa ∩ C+ the
subspaces TcEfa and Γfa are transversal, see Section 4. Assumption 3.3 will be needed to
avoid jump-type behavior which can occur otherwise, see the counterexample discussed
in Remark 3.10.

We now come to our main result on the EDP-convergence with tilting for the cosh-
type gradient systems (C, E ,Rε) towards the effective gradient system (C, E ,Reff).

The theorem enables to establish our main result on EDP-convergence with tilt-
ing. The result is a direct consequence of the Γ-convergence stated in Theorem 3.4
and the general fact for the Boltzmann entropy that tilting is equivalent to changing
the reference measure. In fact, introducing the relative Boltzmann entropy H(c |w) =∑i∗

i=1 wiλB(ci/wi) we have E(c) = H(c | c∗) and obtain, for all η ∈ Ri∗ , the relation

Eη(c) = E(c)− η·c = H(c |Dηc∗) + Eη with Dηc := (eηici)i∈I and Eη =
i∗∑
i=1

(1−eηi)c∗i .

(3.7)
Thus, we observe that tilting of a DBRS (A,B, c∗, κ̂

ε) only changes the static property,
namely the equilibrium c∗ into Dηc∗, while the dissipative properties encoded in the
stoichiometric matrices A and B and the reaction coefficients κ̂ remain unchanged.

Theorem 3.5 (EDP-convergence with tilting). Under the assumptions of Theorem
3.4, the gradient systems (C, E ,Rε) EDP-converge with tilting to the gradient system
(C, E ,Reff).

Proof. Step 1. Simple EDP-convergence: Since Eε = E is continuous we obviously have

Eε
M−→ E . Moreover, Theorem 3.4 provides Dε

ME−→ D0. Finally, the relation (3.4a) shows
that the integrand of D0 has the desired dual structure Reff(c, ċ)+R∗eff(c,−DE(c)). Thus,
we have established the simple EDP-convergence of (C, E ,Rε) to the effective gradient
system (C, E ,Reff).

Step 2. EDP-convergence with tilting: We use that Eη = H(· |Dηc∗) + Eη is of the
same type as E = H(· | c∗) if we ignore the irrelevant constant energy shift. Clearly, the
new fast-slow RRE (2.14) has the same A, B, κr, i∗, and hence Qfa; only c∗ is replaced by
Dηc∗. Thus, all structural assumptions are the same, and Theorem 3.4 is applicable for
all η ∈ R∗. In particular, the UFEC in (3.5) holds for the tilted DBRS by Corollary 3.8.
Thus, (C, Eη,Rε) EDP-converges to (C, Eη,Reff) according to Step 1. Since the effective
dissipation potential Reff is independent of η ∈ Ri∗ , we have shown EDP-convergence
with tilting.

3.3 Discussion of the UFEC and definition of Msl

Here we first prove properties of the function Ψ that provides the fast equilibria (see
Assumption 3.3). Secondly, we show that UFEC is invariant under tilting.

The stoichiometric subsets Cfa
q :=

{
c ∈ C

∣∣ Qfac = q
}

are the intersection of the

affine subspace
{
y ∈ Ri∗

∣∣ Qfay = q
}

of dimension mfa with the simplicial convex
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cone C = [0,∞[i∗ . Hence, each Cfa
q is a closed and convex simplex of dimension m(q) ∈

{0, 1, . . . ,mfa}. The simplex-boundary ∂Cfa
q of such a simplex is the union of its boundary

simplices of dimension m(q)− 1. A two-dimensional n-gon has n intervals as boundary,
and an interval has 2 points as boundary. For the case of a point, which is the only
0-dimensional simplex, we say that the boundary is empty. We say that an equilibrium
c ∈ Efa is a boundary equilibrium if c ∈ ∂Cfa

q . Otherwise c ∈ Efa is called an interior
equilibrium.

The following result provides an alternative construction of the mapping Ψ : Q→ C
that is independent of the UFEC (3.5). We observe that Ψ is defined for every fast
DBRS (Afa, Bfa, c∗, κ

fa) and that Ψ only depends on Afa−Bfa and c∗. The first part of
the next result is also shown in [MHM15, Prop. 2.1] or [DLZ18, Lem. 2.3].

Proposition 3.6 (Existence and continuity of interior equilibria). For a fast DBRS
(Afa, Bfa, c∗, κ

fa) the energy E only depends on c∗, and Qfa only on Γfa= im(Afa−Bfa).
For each q ∈ Q, denote by Ψ(q) the unique minimizer of E on Cfa

q . Then, Ψ(q) is the
only equilibrium of ċ = Rfa(c) that lies in the interior Cfa

q \∂Cfa
q . Moreover, the mapping

Ψ : Q→ C is continuous, and Ψ : intQ→ int C is analytic.

Proof. Step 1. Uniqueness and existence of minimizer: The existence of a global mini-
mizer follows from the coercivity of E and the closedness of Cfa

q . The uniqueness follows
from the convexity of Cfa

q and the strict convexity of E .
Step 2. Interior property: If Cfa

q is a singleton {ĉ}, then Ψ(q) = ĉ automatically lies
in the interior. If c∂ is a point in the boundary and c◦ a point in the interior of Cfa

q , then
there is at least one k ∈ I such that c∂k = 0 and c◦k > 0. Since ck 7→ c∗kλB(ck/c

∗
k) has slope

−∞ at ck = 0, we conclude that c∂ cannot be a minimizer of E : c 7→
∑

i c
∗
iλB(ci/c

∗
i ).

Hence, ĉ = Ψ(q) lies in the interior of Cfa
q .

Step 3. Unique equilibrium property: Since E is a strict Liapunov function for the
RRE, the minimizer Ψ(q) has to be an equilibrium.

For the uniqueness, we consider first the case dim(Cfa
q ) = mfa,in which case interior

points in Cfa
q lie in C+. Hence, for any other equilibrium ce in the interior of Cfa

q

the derivative DE(ce) =
(

log(ce
i/c
∗
i )
)
i

is well-defined. Moreover, Lemma 2.4 implies

cα
r

e /cα
r

∗ = cβ
r

e /c
βr

∗ for all r ∈ Rfa. These two properties yield DE(ce) · γr = 0 for r ∈ Rfa.
But DE(ce) ∈ Γ⊥fa and Cfa

q ⊂ ce + Γfa guarantee that ce minimizes the convex functional
E on Cfa

q , which yields ce = Ψ(q).
If dim(Cfa

q ) = m(q) < mfa then there exists I0 ⊂ I with mfa−m(q) elements such

that Cfa
q ⊂

{
c ∈ C

∣∣ ci = 0 for all i ∈ I0

}
and that for interior points c̃ ∈ Cfa

q \ ∂Cfa
q we

have c̃i > 0 for i 6∈ I0. Hence, the above argument can be applied to the reduced system
for c̃ = (ci)i∈I\I0 , i.e. the components ci = 0, i ∈ I0 are simply ignored.

Step 4. Continuity of Ψ: Consider a sequence qk → q∞ and let ck = Ψ(qk), then
we have to show that ck → c∞. We set αk = E(ck) = min

{
E(c)

∣∣ c ∈ Cfa
qk

}
and choose

a subsequence (kl) such that α := lim infk→∞ αk = liml→∞ αkl . By coercivity of E we
know that (ck) is bounded that there exists a further subsequence (not relabeled) with
ckl → c̃ and Qc̃ = limQckl = lim qk = q∞. Hence, we obtain the estimate

E(c∞) ≤ E(c̃) = lim
l→∞
E(ckl) = lim

l→∞
αkl = α. (3.8)

Moreover, our given c∞ and each ε > 0 there exists a δ > 0 such that Q
(
BR

i∗
ε (c∞) ∩C

)
contains the set BR

mfa

δ (q∞) ∩ Q. Thus, we find a sequence (ĉk)k∈N with ĉk → c∞ and
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Qĉk = qk → q∞. Since E is continuous we conclude

E(c∞) = lim
k→∞
E(ĉk) ≥ lim inf

k→∞
E(ck) = α.

With (3.8) we conclude E(c̃) = E(c∞), which implies ck → c∞ = Ψ(q∞), as desired.
Step 5. Analyticity of Ψ: For q ∈ intQ we have Ψ(q) ∈ C+ = int C. Hence, c = Ψ(q)

can be characterized by the Lagrange principle for constrained minimizers using the
Lagrange function L(c, λ) = E(c) − µ · (Qfac − q) with µ ∈ Rmfa . This characterization
leads to the equation F (c, µ) = (0, q), where

F (c, µ) :=
(
DE(c)−Q>faµ,Qfac

)
.

Obviously, F : C+ × Rmfa → Ri∗ × Rmfa is analytic, and we have F (Ψ(q), µ̃(q)) = (0, q)
for a suitable µ̃. If we can show that DF (Ψ(q), µ) is invertible for all q ∈ intQ, then the
implicit function theorem implies that the mapping q→ (Ψ(q), µ̃(q)) is analytic as well.

The Jacobian of F (c, µ) is given by DF (c, µ) =
(

D2E(c) −Q>fa
Qfa 0

)
, and we prove that

DF (c, µ) is invertible by showing that its kernel is trivial. Let (w, η) be such that
DF (c, µ)(w, η)> = 0. We conclude that D2E(c)w = Q>faη and Qfaw = 0. Since c is
positive, the Hessian D2E(c) is invertible, and hence, we have QfaD2E(c)−1Q>faη = 0.
Multiplying η from the left and using that D2E(c)−1 is a positive matrix, we have Q>faη =
0. Since Q>fa is injective, we conclude that η = 0 which implies that also w = 0 due to
D2E(c)w = Q>faη = 0.

For later use we observe that by construction we have the relation

QfaΨ(q) = q for all q ∈ Q. (3.9)

A crucial role in our further analysis will be played by the image of Ψ, which we call the
slow manifold:

Msl := im(Ψ) =
{

Ψ(q)
∣∣ q ∈ Q

}
⊂ C, (3.10)

which is a closed set that is contained in the set of the fast equilibria Efa defined in (2.19).
The UFEC in (3.5) is made to guarantee that Msl contains all the fast equilibria:

(UFEC) ⇐⇒ Efa = Msl. (3.11)

It is important to emphasize that Efa can be strictly bigger than Msl, but by Proposi-
tion 3.6 these equilibria must be so-called boundary equilibria, i.e. they lie in ∂Cfa

q ⊂ ∂C.
(In the case that Cfa

q ⊂ ∂C the equilibrium Ψ(q) lies in the boundary of C, but is not a
boundary equilibrium!)

The equilibria on Msl are stable, since they are global minimizers of the Liapunov
function E in their invariant subset. In contrast, possible boundary equilibria are always
unstable, because starting near the equilibrium but in the interior of Cfa

q gives a solution
moving towards Ψ(q), see Figure 3.1. The UFEC may fail if one has autocatalytic
reactions where the product αriβ

r
i is strictly positive for some i ∈ I; see the example

treated in Remark 3.9.
The following simple result provides the characterization of the slow manifold Msl in

terms of the potential force DE(c) and the annihilator of the fast subspace Γfa.

Lemma 3.7. Consider a fast DBRS (Afa, Bfa, c∗, κ
fa). Then for c ∈ C+ we have

DE(c) ∈ Γ⊥fa =
{
ξ ∈ Ri∗

∣∣ ξ · γr for r ∈ Rfa

}
⇐⇒ c ∈Msl.
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Proof. Using DE(c) =
(

log(ci/c
∗
i )
)
i∈I we find, for all r ∈ Rfa,

0 = DE(c) · γr = log
(cαr
cαr∗

cβ
r

∗
cβr

)
⇐⇒ cα

r

cαr∗
=
cβ

r

cβ
r

∗

With Proposition 3.6 and the definition of Msl in (3.10) we obtain the desired result.

Finally, we show that the UFEC is invariant under tilting. This is a nice consequence
of the fact that tilting in systems satisfying the DBC allows us easily to follow the
changes in the set Efa of fast equilibria.

Corollary 3.8 (UFEC and tilting). Consider a fast DBRS (Afa, Bfa, c∗, κ
fa) and general

tilt vectors η ∈ Ri∗. Denote by E η
fa and M η

sl the set of equilibria and the slow manifold,
respectively, for the fast DBRS (Afa, Bfa,Dηc∗, κfa). Then, the following holds:

(a) E η
fa = DηE 0

fa and M η
sl = DηM 0

sl,
(b) (Afa, Bfa, c∗, κ

fa) satisfies UFEC if and only if (Afa, Bfa,Dηc∗, κfa) does so.

Proof. By Lemma 2.4 the equilibria c ∈ E 0
fa are given by the condition cα

r

cαr∗
= cβ

r

cβ
r
∗

for all

r ∈ Rfa. However, changing c and c∗ into Dηc and Dηc∗, respectively, shows that the
condition remains the same.

Moreover, for c ∈ C+ we have DEη(Dηc) = DE(c) by construction. Since c ∈ C+∩M 0
sl

is equivalent to DE(c) ∈ Γ⊥fa we have Dηc ∈ M η
sl . By the continuity of Ψ = Ψ0 and Ψη

(see Proposition 3.6) we conclude DηM 0
sl ⊂M η

sl . As Dη is invertible, we can revert the
argument and arrive at DηM 0

sl = M η
sl . Thus, (a) is established.

With (a) we see that E 0
fa = M 0

sl is equivalent to E η
fa = M η

sl , and (b) is established as
well.

3.4 Examples and problems without the UFEC

In the following two remarks, we firstly provide a few examples where UFEC does not
hold and secondly show that our main result in Theorem 3.4 fails without UFEC.

Remark 3.9 (Examples without UFEC). The simplest example of a RRE not satisfying
the UFEC condition is the autocatalytic reaction 2X 
 X, leading to the RRE ċ =
1
ε
(c − c2), where Γ = Γfa = R and m = mfa = 0. In particular, the fast stoichiometric

subset C = Cfa
0 = [0,∞[ contains the the interior equilibrium c∗ = 1 and the boundary

equilibrium c = 0.
Next, we consider two different fast systems for two species, the first with the sin-

gle autocatalytic reaction X1 + X2 � 2X1 and the second with two non-autocatalytic
reactions 2X1 � X2 and X1 � 2X2. The fast RREs read

c′ = R(1)(c) = (c2
1−c1c2)

(
−1

1

)
, c′ = R(2)(c) = (c2

1−c2)

(
−2

1

)
+ (c1−c2

2)

(
−1

2

)
.

The conserved quantities are given by the matrices

Q
(1)
fa c = c1 + c2 ∈ Q(1) = [0,∞[ and Q

(2)
fa c = 0 ∈ Q(2) = {0}.

The functions Ψ for the minimizers of E over Cfa
q are given by Ψ(1)(q) = (q/2, q/2)> and

Ψ(2)(0) = (1, 1)> leading to

M (1)
sl =

{
(z, z)>

∣∣ z ≥ 0
}

and M (2)
sl = {(1, 1)>} .
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c1

c2

M (1)
sl

E (1)
fa

c1

c2

M (2)
sl

E (2)
fa 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

Figure 3.1: The slow manifolds M (k)
sl (green) are strictly contained in E (k)

fa (blue and
green). The blue points are unstable, while the green points are stable. In the case (1)
the invariant sets Cfa

q (red) are one-dimensional, while in case (2) we have Cfa
0 = C.

However, the set of fast equilibria is bigger in both cases:

E (1)
fa = M (1)

sl ∪̇
{

(0, z)
∣∣ z ≥ 0

}
and E (2)

fa = M (2)
sl ∪̇ {(0, 0)>}.

Figure 3.1 displays the invariant sets Cfa
q , Msl, and Efa for both cases.

To the knowledge of the authors there are currently no general sufficient conditions
on the fast DBRS (Afa, Bfa, c∗, κ

fa) available that guarantee the validity of the UFEC.
However, in many applications the number #(Rfa) of fast reactions is rather small such
that an analysis of the fast RRE is easily done.

The next remark shows that Theorem 3.4 does not hold if the UFEC in (3.5) does
not hold.

Remark 3.10 (A counterexample with jumps). We return to the first RRE ċ = 1
ε
(c− c2)

of the previous remark. The associated dissipation potential and slope functions are

R∗ε(c, ξ) =
c3/2

ε
C∗(ξ) and Sε(c) =

2

ε
c
(
c1/2−1

)2
.

Moreover, the dissipation functional Dε takes the form

Dε(c) =

∫ T

0

{c3/2

ε
C
( εċ

c3/2

)
+

2c

ε

(
c1/2−1

)2
)}

dt.

Note that c ≡ 0 and c ≡ 1 yield Dε(c) = 0. Moreover, fixing t∗ ∈ ]0, T [ the trajectories
c̃ε(t) = e(t−t∗)/ε/(1+e(t−t∗)/ε) are exact solutions of the RRE ċ = 1

ε
(c−c2), hence the

energy-dissipation principle gives Dε(c̃
ε) = E(c̃ε(0))−E(c̃ε(T )) ≤ E(0)−E(1) = 1. Thus,

the limit function c̃0 with ĉ0(t) = 0 for t < t∗ and ĉ0(t) = 1 for t > t∗ is not continuous
but must satisfy D0(c̃0) ≤ 1, which is in contradiction to Theorem 3.4.

Indeed, using the Modica-Mortola approach as described in [Bra02, Sec. 6] (involving

the estimate Rε(c, ċ) + R∗ε(c,−DE(c)) ≥ −DE(c)ċ) it can be shown that Dε
Γ−→ D0

in L1([0, T ];R), where D0 is finite only on piecewise constant functions taking values
in {0, 1} only. Moreover, for these functions D0(c) equals the number of jumps times
E(0)− E(1) = 1. The same was also observed in [Ste19].

4 The effective GS and the limiting equation

Here we present two different ways to derive the the limiting equation from our effective
gradient system. The first one is in line with the coarse-graining approach developed
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in [MiS19], where a lower-dimensional system is derived for the coarse-grained variable
q = Qfac and the restriction c = Ψ(q) is built into the model. The second one follows
[Bot03] and [DLZ18, Thm. 4.5], where the variable c is maintained and the constraint
c ∈Msl is realized by a suitable projection.

In both cases we start from the Γ-limit D0 of the dissipation functionals Dε. Using
the energy-dissipation principle from Theorem 2.1 the limiting evolution can be recovered
from

E(c(T ))+D0(c; 0, T ) ≤ E(c(0)), D(c; 0, T ) =

∫ T

0

{Reff(c, ċ) +R∗eff(c,−DE(c))} dt (4.1)

via the chain rule, which holds in the finite-dimensional space C ⊂ Ri∗ .
Any solution satisfies the condition∫ T

0

S0(c(t))dt ≤ D0(c; 0, T ) =

∫ T

0

{Reff(c, ċ)+R∗eff(c,−DE(c))} dt ≤ E(c(0))−E(c(T )) <∞,

where by the UFEC the function S0 assumes the value +∞ for c 6∈ Msl. Hence, the
continuity of c implies that c(t) ∈ Msl for all t ∈ [0, T ]. Thus, setting q(t) := Qfac(t)
and using the relation (3.9) we have c(t) = Ψ(q(t)) for all t ∈ [0, T ]. We recall that the
properties

c ∈ C0([0, T ]; C) and q = Qfac ∈W1,1([0, T ];Rmfa)

are consequences of Theorem 3.4.

4.1 Coarse-graining approach

In this part we concentrate solely on the slow variables q and define

E(q) := E(Ψ(q)) and R∗(q, ζ) := R∗sl(Ψ(q), Q>faζ), (4.2)

which defines a reduced gradient system (Q,E,R) for the coarse-grained state q ∈ Q ⊂
Rmfa . In particular, R∗ : Q × Rmfa → [0,∞] is a well-defined dual dissipation potential
as Q>fa : Rmfa → Ri∗ .

The main result of this subsection will be that the gradient-flow equation for the
reduced gradient system (Q,E,R) is indeed the limiting equation and it has a simple
representation in terms of Rsl, Qfa, and Ψ:

q̇ = ∂ζR
∗(q,−DE(q)) = QfaRsl(Ψ(q)). (4.3)

Thus, (Q,E,R) provides an exact nonlinear coarse-graining in the sense of [MaM20,
Sec. 6.1], where the relation Imfa

= QfaDΨ(q) simplifies the formula for R∗ compared to
[MaM20, Eq. (6.2)].

Remark 4.1. This theory is a nonlinear generalization of the coarse-graining theory de-
veloped in [MiS19], where ˙̂c = MAslNĉ is the coarse-grained equation. In our case the
role of the reconstruction operator N : RJ → RI is played by the nonlinear mapping
Ψ : Q → C, while the role of the coarse-graining operator M : RI → RJ is our linear
operator Qfa : C→ Q.

The following result provides first the justification of the second identity in (4.3),
and then shows that this equation is indeed the limiting equation obtained from the
energy-dissipation principle for E and D0.
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Proposition 4.2 (Reduced gradient structure). Let the DBRS (A,B, c∗, κ̂
ε) be given as

in Section 2.4 and satisfy the UFEC (3.5), and let (Q,E,R∗) be defined as above. Then
the following identities are valid:

(a) For q ∈ intQ we have

QfaDΨ(q) = Imfa
, and, Q>faDΨ(q)> is a projection onto im(Q>fa) = Γ⊥fa (4.4)

(b) For q ∈ intQ we have ∂ζR
∗(q,−DE(q)) = QfaRsl(Ψ(q));

(c) the primal dissipation potential R takes the form

R(q, w) = inf
{
Rsl(Ψ(q), v)

∣∣Qfav = w
}

= Reff(Ψ(q), ṽ) whenever Qfaṽ = w ;

(d) For q ∈ intQ we have R∗(q,−DE(q)) = Ssl(Ψ(q)) =: S(q) ;

(e) D0(Ψ(q)) =
∫ T

0

{
R(q, q̇)+S(q)

}
dt .

In part (e) it is crucial to observe that for differentiable t 7→ q(t) we cannot guarantee
that t 7→ c(t) = Ψ(q(t)) is differentiable as well, since q(t) need not remain in the
interior of Q. However, for D0 we only need continuity of c and the differentiability of
t 7→ Qfac(t) = q(t), where we used q = QfaΨ(q), see (3.9).

Proof. For part (a), we use that Ψ is differentiable in intQ. Differentiating the relation
QfaΨ(q) = q yields QfaDΨ(q) = Imfa

. In particular, this implies that DΨ(q)Qfa is a
projection, and hence also its transpose Q>faDΨ(q)>.

To show part (b) we first use the chain rule DE(q) = DΨ(q)>DE(Ψ(q)). With Lemma
3.7 and part (a) we have that DE(Ψ(q)) = Q>faDΨ(q)>DE(Ψ(q)), which yields

∂ζR
∗(q,−DE(q)) = Q>faDξR∗sl

(
Ψ(q),−Q>faDΨ(q)>DE(Ψ(q))

)
= Q>faDξR∗sl

(
Ψ(q),−DE(Ψ(q))

)
= QfaRsl(Ψ(q)).

For (c) we establish the relation R∗ = LR via the Legendre transformation L:(
LR(q, ·)

)
(ζ) = sup

{
ζ · w − R(q, w)

∣∣ w ∈ Rmfa
}

= sup
{
ζ · w + sup

{
−Rsl(Ψ(q), v)

∣∣Qfav = w
} ∣∣∣ w ∈ Rmfa

}
= sup

{
ζ · w −Rsl(Ψ(q), v)

∣∣Qfav = w
}

= sup
{
ζ ·Qfav −Rsl(Ψ(q), v)

∣∣ v ∈ Ri∗ } = R∗sl(Ψ(q), Q>faζ) = R∗(q, ζ).

Part (d) follows similarly as part (b) by inserting DE(q) = DΨ(q)>DE(Ψ(q)) and
DE(Ψ(q)) = Q>faDΨ(q)>DE(Ψ(q)) into the definition of R∗ via R∗sl.

For part (e) we first observe that Ssl(Ψ(q)) = S(q) for all q ∈ Q by definition. For the
rate partReff(c, ċ) part (c) established that the dependence on ċ is only throughQfaċ. But
relation (3.9) gives d

dt
QfaΨ(q(t))= q̇(t), and the relationReff(c, ċ)=Reff(Ψ(q),DΨ(q)q̇)=

R(q, q̇) holds even q(t) touching the boundary of Q.

The next result shows that the reduced gradient-flow equation (4.3) indeed is the
limiting equation for the fast-slow RRE (2.14) in the sense that for solutions cε : [0, T ]→
C any accumulation point q : [0, T ]→ Q of the family

(
Qfac

ε
)

solves indeed (4.3). The
assumptions on the initial conditions cε(0) are special to avoid a potential jump at t = 0,
see Section 2.4. The proof is based on the energy-dissipation principle and follows [Mie16,
Thm. 3.3.3] or [MMP19, Lem. 2.8] with some special care because of the degeneracies and
singularities of the limiting problem.
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Proposition 4.3 (Reduced limiting equation). Consider a fast-slow DBRS (A,B, c∗, κ̂
ε)

satisfying the UFEC (3.5) and let cε : [0, T ] → Ri∗ be a family of solutions of the fast-
slow RRE (2.14). If along a subsequence (not relabeled) we have cε → c0 in L1([0, T ]; C)
and cε(0)→ c0 ∈Msl, then Qfac

ε → q := Qfac
0 weakly in W1,1([0, T ];Q) and strongly in

C0([0, T ];Q), and q solves the reduced gradient-flow equation (4.3) with initial condition
q(0) = Qfac0.

Proof. The solutions cε satisfy the EDB E(cε(T )) + Dε(c
ε) = E(cε(0)). Using cε → c0

in L1([0, T ];Ri∗) and lim supε→0+ Dε(c
ε) ≤ limε→0+ E(cε(0)) = E(c0) < ∞, we obtain

qε := Qfac
ε → q weakly in W1,1([0, T ];Q) and strongly in C0([0, T ];Q) by invoking

Theorem 5.1(ii). Moreover, because of c0 ∈Msl and qε(0) = Qfac
ε(0) → Qfac0 we have

q(0) = Qfac0 and hence c0 = Ψ(q(0)) and E(c0) = E(q(0)). Passing to the limit ε → 0+

using the liminf estimate in Dε
ΓE→ D0 we arrive at

E(q(T )) + D0(Ψ(q)) ≤ E(c0(T )) + D0(c0) ≤ E(c0) = E(q(0)) .

Because D0(Ψ(·)) has the R⊕R∗ structure (cf. Proposition 4.2(d+e)) the energy-dissi-
pation principle shows that q solves the reduced RRE (4.3).

4.2 The projection approach

By contrast to Section 4.1 above, in this section we maintain the variable c. First,
we justify the limiting equation (2.20) with the constraint c ∈ Msl and the Lagrange
multiplier λ(t) ∈ Γfa. Secondly, we show that for positive solutions the evolution can
be written as an ODE involving a suitable projection. Finally, we compare this to the
reduced limiting equation (4.3).

Proposition 4.4 (Limiting equation with constraint). For a fast-slow DBRS (A,B, c∗, κ̂
ε)

satisfying the UFEC (3.5) we consider a family cε : [0, T ]→ Ri∗ of solutions of the fast-
slow RRE (2.14). If along a subsequence (not relabeled) we have cε → c0 in L1([0, T ]; C)
and cε(0) → c0 ∈ Msl, then there exists c ∈ C0([0, T ]; C) such that c(t) = c0(t) a.e.
in [0, T ], c(0) = c0, Qfac ∈ W1,1([0, T ];Q), and c solves the limiting equation with
constraint:

ċ(t) = Rsl(c(t)) + λ(t), λ(t) ∈ Γfa, c(t) ∈Msl. (4.5)

Proof. We proceed as in the proof of Proposition 4.3 but stay with c rather than reducing
to q = Qfac. The solutions cε satisfy the EDB E(cε(T )) + Dε(c

ε) = E(cε(0)). Using
cε → c0 in L1([0, T ];Ri∗) and lim supε→0+ Dε(c

ε) ≤ limε→0+ E(cε(0)) = E(c0) < ∞, we
have Qfac

ε → q weakly in W1,1([0, T ]; C) and strongly in C0([0, T ];Ri∗), see Theorem
5.1(ii). With this we define c(t) = Ψ(q(t)) for t ∈ [0, T ] such that c ∈ C0([0, T ]; C) and
Qfac(t) = q(t).

Passing to the limit ε → 0+ in the EDB we obtain E(c(T )) + D0(c) ≤ E(c(0)), and
the energy-dissipation principle gives the gradient-flow equation

ċ ∈ ∂ξR∗eff(c,−DE(c)) = ∂ξ

(
R∗sl(c,−DE(c)) + χΓ⊥fa

(−DE(c))

)
. (4.6)

For a linear subspace Y ⊂ Ri∗ the set-valued convex subdifferential ∂χY ⊥(ξ) equals Y
for ξ ∈ Y ⊥ and ∅ otherwise, hence the last relation has the form

ċ ∈ ∂ξR∗sl(c,−DE(c)) + Γfa = Rsl(c) + Γfa and DE(c) ∈ Γ⊥fa .
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With Lemma 3.7 we can replace the last constraint by c ∈Msl, and (4.5) is established.

To obtain an ODE of the form ċ = V (c) instead of the limiting equation (4.5) with
constraint, we have to resolve the constraint DE(c) ∈ Γ⊥fa. For any curve s → c̃(s) ∈
Msl ∩C+ we have DE(c̃(s)) ∈ Γ⊥fa and taking the derivative with respect to s, we find

˙̃c(s) ∈ Tc̃(s)Msl and D2E(c̃(s))˙̃c(s) ∈ Γ⊥fa.

Hence, for c ∈Msl ∩C+ the tangent space TcMsl of Msl at c is given by

TcMsl =
(
H(c)

)−1
Γ⊥fa with H(c) := D2E(c) = diag(1/c1, . . . , 1/ci∗).

With this we obtain the following representation of the limiting equation, which
matches that in [Bot03, Thm. 2(b)] and [DLZ18, Thm. 4.5]. Our result is more general,
since we do not need to assume that the stoichiometric vectors

{
γr
∣∣r ∈ Rfa

}
are linearly

independent.

Proposition 4.5 (Limiting equation for c ∈ C+). A curve c : [0, T ]→ C+ is a solution
(4.5) if and only if

ċ =
(
I − P(c)

)
Rsl(c) and c(0) ∈Msl. (4.7)

where the projector P(c) ∈ Ri∗×i∗ is defined via imP(c) = Γfa and kerP(c) = H(c)−1Γ⊥fa.

Proof. Step 1. Definition of the projector P(c): The projector is uniquely defined if YR :=

Γfa and YK := H(c)−1Γ⊥fa provide a direct decomposition of Ri∗ . Assuming v ∈ YR ∩ YK

we have v ∈ Γfa and H(c)v ∈ Γ⊥fa. This implies v · H(c)v = 0, but since H(c) is positive
definite we arrive at v = 0. Hence, YR ∩ YK = {0}. Obviously, dimYR + dimYK = i∗, so
that Ri∗ = YR ⊕ YK is established.

Step 2. (4.7) =⇒ (4.5): We set λ(t) = −P(c(t))Rsl(c), and with (4.7) we obtain

ċ(t) = Rsl(c(t))− P(c(t))Rsl(c(t)) = Rsl(c(t)) + λ(t) with λ(t) ∈ Γfa.

Moreover, P(c(t))ċ(t) = P(c)(I−P(c))Rsl(c) = 0, which implies ċ ∈ H(c)−1Γ⊥fa = Tc(t)Msl.
Hence, with c(0) ∈Msl we obtain c(t) ∈Msl for all t ∈ [0, T ], and (4.5) is established.

Step 3. (4.5) =⇒ (4.7): From c(t) ∈ Msl we obtain ċ(t) ∈ Tc(t)Msl = H(c(t))−1Γ⊥fa
and conclude 0 = P(c)ċ = P(c)Rsl(c)+P(c)λ. Using λ ∈ imP(c) = Γfa we have P(c)λ = λ
and find(

I − P(c)
)
Rsl(c) = Rsl(c)− P(c)Rsl(c) = Rsl(c) + P(c)λ = Rsl(c) + λ = ċ,

which is the desired equation (4.7).

To compare the last result with the reduced limiting equation (4.3), we simply use
the relation c(t) = Ψ(q(t)) and the fact that Ψ is smooth on intQ. From this we obtain(
I − P(c)

)
Rsl(c) = ċ = DΨ(q)q̇ = DΨ(q(t))QfaRsl(Ψ(q)) = DΨ(q(t))QfaRsl(c).

Thus, we can conclude that for c = Ψ(q) ∈Msl we have the identity(
I − P(c)

)
= DΨ(q)Qfa,

since the above identity must hold for all possible right-hand sides Rsl. This can also
be shown by using the identity c = Ψ(Qfac) for all c ∈Msl and taking derivatives in the
direction v ∈ Γfa and w ∈ TcMsl, respectively. In particular, this provides the explicit
form of the projection of Proposition 4.2(a).
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4.3 An example for the effective gradient system

In the following example we consider a system with i∗ = 5 species and r∗ = 2 bimolecular
reactions, one fast and one slow. As a result we obtain a limiting equation with one
reaction that is no longer of mass-action type but involves all species. Taking a further
EDP limit (done only formally) we recover a trimolecular reaction of mass-action type
again.

We consider the following two reactions

fast: X1 +X2 � X3 and slow: X3 +X4 
 X5,

which give rise to the two stoichiometric vectors

γfa = (1, 1,−1, 0, 0)> and γsl = (0, 0, 1, 1,−1)>.

Assuming the steady state c∗ = (1, 1, %, 1, 1)> and the reaction coefficients κ̂ε = (κfa/ε, κsl)
the RRE (2.14) takes the form

ċ = −κ
fa%1/2

ε

(
c1c2 − c3/%

)
γfa − κsl%1/2

(
c3c4/%− c5

)
γsl .

The slow manifold is Msl =
{
c ∈ [0,∞[5

∣∣ c1c2 = c3/%
}

and Γfa = span γfa. With

Qfa =


1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1


we obtain Q = imQfa = [0,∞[4. For q ∈ Q it is easy to compute Ψ%(q) as a minimizer
of c 7→ E(c) under the constraint Qfac = q = (q1, ..., q4). We obtain

Ψ%(q) =
(
q1−a%(q1, q2), q2−a%(q1, q2), a%(q1, q2), q3, q4)> ∈ C = [0,∞[5

with a%(q1, q2) =
1

2%

(
1 + %q1 + %q2 −

√
1+%q1+%q2)2 − 4%2q1q2

)
∈
[
0,min{q1, q2}

]
.

In particular, the UFEC (3.5) holds. Moreover, the positivity and monotonicity condition
(3.6) can be checked easily with q = (1, 1, 1, 1)>. We see that c(θ) := Ψ%(q+θq) for
θ ∈ ]0, 1] is given by

c(θ) =
(
q1+θ − a%(q1+θ, q2+θ), q2+θ − a%(q1+θ, q2+θ), a%(q1+θ, q2+θ), q3+θ, q4+θ

)>
.

Clearly we have c(θ)i > 0, since c(θ)i = 0 would imply qi + θ = 0. Differentiating with
respect to θ, we obtain

c′(θ) =
(
1− a′%[θ], 1− a′%[θ], a′%[θ], 1, 1

)>
with a′%[θ] =

%(c1(θ)+c2(θ))

1 + %(c1(θ)+c2(θ))
,

which implies that c′(θ)i > 0. Hence, Ψ%(q+θq)i = c(θ)i ≥ c(0)i = Ψ(q), i.e. the
monotonicity condition (3.6) holds.

We investigate the reduced system. First, we observe that the reduced limiting
equation (4.3) is given by

q̇ = QfaRsl(Ψ%(q)) = −κsl%1/2
(a%(q1, q2)q3

%
− q4

)
γ̂ with γ̂ := Qfaγ

sl = (1, 1, 1,−1)>.

(4.8)
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Since a% is not a monomial, this RRE is no longer of mass-action type.
According to Section 4.1 the gradient structure (Q,E%,R%) for (4.8) is given via

E%(q) = E(Ψ%(q)) = λB(q1−a) + λB(q2−a) + %λB(a/%) + λB(q3) + λB(q4)
∣∣∣
a=a%(q1,q2)

,

R∗%(q, ζ) = Rsl(Ψ%(q), Q>faζ) = κsl
(
a%(q1, q2) q3q4

)1/2
C∗
(
ζ1+ζ2+ζ3−ζ4

)
.

The energy E% is no longer of Boltzmann type, because the previously uncoupled densities
c1, c2, and c3 are now constrained to lie on Msl, i.e. c1c2 = c3. Nevertheless, the form is
close to a mass-action type for the trimolecular reaction Y1 + Y2 + Y3 
 Y4.

To recover an exact trimolecular reaction of mass-action type, one has to perform
another limit, namely % → 0+, which means that the species X3 is no longer observed,
but still exists on a microscopic reaction pathway. For the limit % → 0+ we simply
observe the expansion

a%(q1, q2) = %q1q2 +O(%2) for %→ 0+,

which implies Ψ%(q)→ Ψ0(q) := (q1, q2, 0, q3, q4)T . If we additionally choose κsl = κ/%1/2

and insert the expansion for a% we obtain

E%(q) → E0(q) =
4∑
j=1

λB(qj),

R∗%(q, ζ)→ R∗0(q, ζ) = κ
(
q1q2q3q4)1/2 C∗

(
ζ1+ζ2+ζ3−ζ4

)
.

Clearly, this is the gradient system generating the RRE of the trimolecular reaction
X1 + X2 + X4 
 X5. Of course, it is possible to show that this convergence is again a
EDP-convergence with tilting of the gradient systems (Q,E%,R%) to the effective system
(Q,E0,R0).

5 Proof of Theorem 3.4

Here we will show the Γ-convergence of the dissipation functionals, namely Dε
ME−→ D0.

As usual the proof consists in three parts: (i) compactness of the sequences (cε) satisfying
Dε(c

ε) ≤ C, (ii) the liminf estimate, and the (iii) the limsup estimate, which needs the
construction of recovery sequences.

All the following results are derived under the assumptions of Theorem 3.4: The fast-
slow DBRS (A,B, c∗, κ̂

ε) satisfies the unique fast-equilibrium condition UFEC (3.5). For
constructing the recovery sequence in Section 5.3, we need additionally the positivity
and monotonicity assumption (3.6) for Ψ.

5.1 Compactness

In the definition of Dε
ME−→ D0 we consider sequences cε → c0 in L1([0, T ]; C) that addi-

tionally satisfy supε∈]0,1[, t∈[0,T ] E(cε(t)) ≤ C. The aim is to extract a strongly converging
subsequence cε → c0, such that we can talk about pointwise convergence almost every-
where. This will be necessary in the liminf estimate because we cannot rely on convexity,
in contrast to the linear theory developed in [MiS19]. The compactness is derived via
two quite different arguments that complement each other and reflect the underlying
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fast-slow structure, which is seen on the local level via the decomposition of TcC = Ri∗
in the direct sum of Γfa and TcMsl, see Step 1 in the proof of Proposition 4.5. First, we
derive time regularity for the slow part of the reactions. Secondly, we prove convergence
towards the slow manifold which then provides the remaining information for the whole
sequence.

Theorem 5.1 (Compactness via dissipation bound). Consider a family (cε)ε>0 with
cε ⇀ c0 in L1([0, T ]; C), supε>0, t∈[0,T ] E(cε(t)) ≤ Mener < ∞, and Dε(c

ε) ≤ Mdiss < ∞.
Then, we have
(i) cε(·) is bounded in L∞([0, T ]; C);
(ii) Qfac

ε → Qfac
0 weakly in W1,1([0, T ];Rmfa) and strongly in C0([0, T ];Rmfa);

(iii) c0(t) = c̃(t) := Ψ(Qfac
0(t)) ∈ Msl for a.a. t ∈ [0, T ], and, in particular c̃ ∈

C0([0, T ],C);
(iv) cε → c0 in Lp([0, T ]; C) strongly for all p ∈ [1,∞[.

We emphasize that c0 and c̃ may be different, and this happens even for solutions, if
near t = 0 a jump develops such that (cf. Section 2.4)

lim cε(0) =: c0 6= c0 := lim
τ→0+

(
lim
ε→0+

cε(τ)
)
.

Before giving the detailed proof we provide two preliminary results that underpin the
two complementary arguments of the proof.

For deriving bounds on the time derivatives, one heuristically sees that for fixed (c, ξ)
we have R∗ε(c, ξ) ↗ R∗eff(c, ξ) as ε → 0. By duality, this implies Rε(c, v) ↘ Reff(c, v).
This already shows that control of time derivatives has to be obtained from Reff(c, ·),
which only controls Qfaċ because Reff(c, v) = Reff(c, w) if Qfav = Qfaw, see (3.4b).

Proposition 5.2 (Effective dissipation potential). For all ε > 0 we have Rε(c, v) ≥
Reff(c, v) for all (c, v) ∈ C× Ri∗. Moreover, Reff takes the form

Reff(c, v) = R̃(c,Qfav) where R̃(c, q) := sup
{
ζ · q−R∗sl(c,Q>faζ)

∣∣ ζ ∈ Rmfa
}
.

Proof. We first use the standard relation from linear algebra: im(Q>fa) =
(

ker(Qfa)
)⊥

=
Γ⊥fa. By construction of Γfa we have R∗fa(c, ξ) = 0 for ξ ∈ Γ⊥fa and obtain

R∗ε(c, ξ) = R∗sl(c, ξ) +
1

ε
R∗fa(c, ξ) ≤ R∗eff(c, ξ) := R∗sl(c, ξ) +χΓ>fa

(ξ) = R∗sl(c, ξ) +χimQ>fa
(ξ).

Applying the Legendre-Fenchel transformation we obtain

Rε(c, v) ≥ Reff(c, v) = sup
{
v · ξ −R∗sl(c, ξ)

∣∣ ξ ∈ im(Q>fa)
}

= sup
{
v ·Q>faζ −R∗sl(c,Q>faζ)

∣∣ ζ ∈ Rmfa
}

= R̃(c,Qfav),

which provides the desired estimate as well as the representation via R̃.

The second result concerns the convergence of points towards the slow manifold Msl,
and the crucial property here is the UFEC (3.5) that guarantees the relation{

Ψ(q)
∣∣ q ∈ Q ⊂ Rmfa

}
=: Msl

!!
= Efa

Lemma 2.4
=

{
c ∈ C

∣∣ Sfa(c) = 0
}
.
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Lemma 5.3 (Convergence towards Msl). For bounded sequences (cn)n∈N in C we have

Qfac
n → q and Sfa(cn)→ 0 =⇒ cn → Ψ(q). (5.1)

Proof. Without loss of generality we may assume cn → c. Hence we have Qfac
n →

Qfac = q. Moreover, the continuity of Sfa gives 0 = limSfa(cn) = Sfa(c). Thus, we have
c ∈ Efa∩Cfa

q . Now, the UFEC (see (3.11)) gives c = Ψ(q) which is the desired result.

We are now ready to establish the main compactness result.

Proof of Theorem 5.1. Part (i): From the energy bound E(cε(t)) ≤ Mener <∞ and the
coercivity of E we obtain an L∞ bound for cε, namely 0 ≤ cεj(t) ≤ |cε(t)| ≤ ‖cε‖L∞ ≤
Mener.

Part (ii): To provide a lower bound on Reff we first observe an upper bound on R∗sl,
namely

R∗sl(cε, Q>faζ) ≤
∑
r∈Rsl

κrM
(αr+βr)/2
ener C∗

(
γr ·Q>faζ

)
≤ bMC∗

(
bQ|ζ|

)
with bQ = max

r∈Rsl

|Qfaγ
r|,

where we used 0 ≤ cεj ≤Mener from part (i). Using the Legendre-Fenchel transformation
and Proposition 5.2 we obtain the lower bound

Rε(c
ε, v) ≥ R̃(cε, Qfav) ≥ sup

{
Qfav · ζ − bMC∗(bQ|ζ|)

∣∣ ζ ∈ Rmfa
}

= bM C
( |Qfav|
bMbQ

)
.

Using the bound Mdiss for the dissipation functionals, the family satisfies∫ T

0

C

(
|Qfaċ

ε(t)|
bMbQ

)
dt ≤

∫ T

0

1

bM
Rε

(
cε(t), ċε(t)

)
dt ≤ 1

bM
Dε(c

ε) ≤Mdiss/bM .

Since C(s) ≥ 1
2
|s| log(1+|s|) for all s ∈ R (cf. [MiS19, Eqn. (A.2)]) we have a uniform

superlinear bound for Qfaċ
ε. Thus, there exists a subsequence (not relabeled) such that

Qfaċ
ε ⇀ w in L1([0, T ];Rmfa). Moreover, Qfac

ε is equicontinuous (cf. [MiS19, Prop. 5.9]),
which implies Qfac

ε → q0 in C0([0, T ];Q).
Because of cε ⇀ c0 we conclude q0 = Qfac

0 ∈ W1,1([0, T ];Q) and q̇ = w. Since the
limit is unique, we also know that the whole family converges.

Part (iii): The dissipation bound gives the estimate
∫ T

0
Sfa(cε(t))dt ≤ εMdiss. Using

Sfa(c) ≥ 0 this implies that fε = Sfa ◦ cε converges to 0 in L1([0, T ]). Thus, we may
choose a subsequence (not relabeled) such that fε(t)→ 0 a.e. in [0, T ].

By the continuity Sfa and |cε(t)| ≤ Mener we also know that (fε(t))ε∈]0,1[ is bounded,
while part (ii) provides the convergence Qfac

ε(t)→ q0(t) = Qfac
0(t). Hence, Lemma 5.3

guarantees cε(t)→ c̃(t) := Ψ(Qfac
0(t)) a.e. in [0, T ]. By cε ⇀ c0 we have c0(t) = c̃(t) a.e.

Since Ψ is continuous by Proposition 3.6, also c̃ = Ψ(Qfac
0) is continuous.

Part (iv): This follows via part (i), the pointwise a.e. convergence established in the
proof of part (iii), and from the dominated-convergence theorem.

5.2 Liminf estimate

The liminf estimate follows in a straightforward manner by using the fact that the velocity
part Rε in Dε satisfies the monotonicity Rε ≥ Reff , see Proposition 5.2, and that the
slope part Sε takes the simple form Ssl + 1

ε
Sfa.
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Theorem 5.4 (Liminf estimate). Let (cε)ε>0 with cε ⇀ c0 in L1([0, T ]; C) as in Theorem
5.1 we have the estimate D0(c0) ≤ lim infε→0+ Dε(c

ε).

Proof. We may assume that α∗ := lim infε→0 Dε(c
ε) < ∞, since otherwise the desired

estimate is trivially satisfied. This implies Sfa(c0(t)) = 0 a.e. in [0, T ] as in the previous
proof. We define the functional

I(c, q) :=

∫ T

0

F(c(t), q(t))dt with F(c,w) = R̃(c,w) + Ssl(c).

Then, using Rε ≥ Reff and Sε ≥ Ssl, we have

Dε(c
ε) ≥ I(cε, Qfaċ

ε) and D0(c0) = I(c0, Qfaċ
0),

where the last identity follows from the construction of the density F via R̃ and Ssl, and
S0(c(t)) = Ssl(c(t)) a.e. because of Sfa(c0(t)) = 0.

Thus, it suffices to show the lower semicontinuity I(c0, Qfaċ
0) ≤ lim infε→0+ I(cε, Qfaċ

ε).
Using the strong convergence cε → c0 in Lp([0, T ]; C) and the weak convergence Qfaċ

ε ⇀
Qfaċ

0 in L1([0, T ];Rmfa), see Theorem 5.1(ii+iv), this follows by Ioffe’s theorem (cf.
[FoL07, Thm. 7.5] if we know that F : C × Rmfa → [0,∞] is lower semicontinuous.

However, the lower semicontinuity of (c,w) 7→ F(c,w) = R̃(c,w) + Ssl(c) follows im-
mediately from the continuity of Ssl and the by Legendre transforming the continuous
function (c, ζ) 7→ R∗sl(c,Q>faζ).

This finishes the proof of Theorem 5.4.

5.3 Construction of the recovery sequence

In this section we construct the recovery sequence which completes the proof of the

Mosco convergence Dε
ME−→ D0 with energy constraint. Below in Step 1, we will need the

positivity and monotonicity condition (3.6) for θ 7→ Ψ(q+θq).

Theorem 5.5 (Limsup estimate). Let c0 ∈ L1([0, T ]; C) with supt∈[0,T ] E(c0(t)) < ∞.
Then there exists a family (cε)ε∈]0,1] with supt∈[0,T ], ε∈]0,1] E(cε(t)) ≤Mener <∞, cε → c0

strongly in L1([0, T ]; C), and limε→0 Dε(c
ε) = D0(c0).

Proof. We prove the theorem in several steps. In Steps 1 and 2 we show that it is
sufficient to consider c0 ∈ W1,∞([0, T ]; C) with c0

j(t) ≥ c > 0, where we only work in
D0 which has the advantage that Reff(c, ċ) only depends on (q, q̇) = (Qfac,Qfaċ), see
Section 4.1. In Step 3 we construct a recovery sequence, and in Step 4 we conclude with
a diagonal argument.

Step 0: To start with we may assume D0(c0) < ∞. Indeed, if D0(c0) = ∞, then
we choose cε = c0 and Theorem 5.4 gives lim infε→0 Dε(c

ε) ≥ D0(c0) =∞, which means
Dε(c

ε)→∞ as desired.
Step 1. Reducing to positive curves c0: For c0 with D0(c0) <∞ we know that Qfac

0 ∈
W1,1([0, T ];Q) and c0 ∈ C0([0, T ]; C) after choosing the continuous representative c0 = c̃,
see Theorem 5.1. Exploiting the positivity and monotonicity condition (3.6) we now set

cl(t) := Ψ
(
q(t) + θl q

)
with θl =

1

l+1
∈ ]0, 1[ for all t ∈ [0, T ].
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By this condition, we know that cl(t) lies in C+ for all t ∈ [0, T ], such that the continuity
of cl guarantees that for each l there exists a δl > 0 such that cli(t) ≥ δl for all i ∈ I and
t ∈ [0, T ].

By the continuity of Ψ we have cl → c0 uniformly and hence strongly in L1([0, T ]; C).
We now show

D0(cl) =

∫ T

0

{
Reff(cl(t), ċl(t)) + S0(cl(t))

}
dt → D0(c0) as l → 0. (5.2)

For the second part, we use cl(t) ∈Msl by construction via Ψ, and the continuity of Ssl

yields S0(cl(t)) = Ssl(c
l(t))→ Ssl(c

0(t)) = S0(c0(t)) uniformly in [0, T ].
For the first part we use (i) the special form of Reff derived in Proposition 5.2,

namely Reff(c, v) = R̃(c,Qfav), where R̃(c, ·) is the Legendre transform of R∗sl(c,Q> · ).
Moreover, the cosh-type dual dissipation potentialR∗sl as defined in (2.6b) or (2.14) enjoys
(ii) a monotonicity property namely R∗sl(c, ξ) ≤ R∗sl(c̃, ξ) or equivalently Rsl(c, v) ≥
Rsl(c̃, v) if c ≤ c̃ componentwise. This can be exploited because of the monotonicity
condition (3.6) using cl(t) ≥ c0(t) componentwise. With Qfa ċ

l(t) = q̇(t) for all l ∈ N we
obtain∫ T

0

Reff(cl, ċl(t))dt
(i)
=

∫ T

0

R̃(cl, q̇(t))dt
(ii)−→

∫ T

0

R̃(c0, q̇(t))dt
(i)
=

∫ T

0

Reff(c0, ċ0)dt,

where the convergence
(ii)−→ follows from the dominated-convergence theorem, since the

integrands on the left-hand side are bounded by that on the right-hand side and we have
pointwise convergence. With this we have established the desired convergence (5.2).

Step 2. Reducing to bounded derivative q̇ = Qfaċ: Because of Step 1, we can now
assume

c0(t) ∈ Cδ :=
{
c ∈ C

∣∣ |c| ≤ 1/δ, ci ≥ δ for all i ∈ I
}

for all t ∈ [0, T ]

where δ > 0. Moreover, as in [MiS19, Step 2(b) of proof of Thm. 5.12] we find Λ∗ such
that

c, c̃ ∈ Cδ and |c−c̃| ≤ α <
1

2Λ∗
=⇒ R̃(c̃,w) ≤ (1+Λ∗α) R̃(c,w).

With this we can estimate R∗sl(c, ·) from below and hence Reff from above. Moreover,
we can use the Lipschitz continuity of c 7→ R∗ε.

For q(t) = Qfac
0 ∈W1,1([0, T ];Q) we define the piecewise affine interpolants q̂k via

q̂k
(
(n+θ)2−kT

)
= (1−θ)q

(
n2−kT

)
+ θq

(
(n+1)2−kT

)
for θ ∈ [0, 1], n ∈ {0, . . . , 2k−1}

and the piecewise constant interpolant qk
(
(n+θ)2−kT

)
= q(2−knT ) for θ ∈ [0, 1[. We

also set ĉk(t) = Ψ(q̂k(t)) and ck(t) = Ψ(qk(t)). By standard arguments we have

‖ck − ĉk‖L∞ + ‖ĉk − c0‖L∞ =: αk → 0 for k →∞.

As in Step 1 we again find
∫ T

0
S0(ĉk(t)) dt →

∫ T
0
S0(c0(t)) dt. To treat the velocity

part we use both interpolants obtain the estimate∫ T

0

Reff(ĉk, ˙̂c
k
)dt =

∫ T

0

R̃(ĉk, ˙̂qk)dt ≤ (1+Λ∗αk)

∫ T

0

R̃(ck, ˙̂q
k
)dt

(J)

≤ (1+Λ∗αk)

∫ T

0

R̃(ck, q̇)dt ≤
∫ T

0

R̃(c0, q̇)dt = (1+Λ∗αk)
2

∫ T

0

Reff(c0, ċ0)dt,
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where
(J)

≤ indicates the use of Jensen’s inequality applied to the convex integrand R̃(ck(t), · ),
which is independent of t in the intervals ]2−knT, 2−k(n+1)T [. Combining this with the
slope part and using αk → 0 we obtain the desired estimate lim supk→∞D0(ĉk) ≤ D0(c0),
which is of course a limit because of the liminf estimate in Theorem 5.4.

Step 3. The limsup for ε → 0+: By Steps 1 and 2 it is sufficient to consider c0 ∈
W1,∞([0, T ]; C) with c0(t) = Ψ(q(t)) ∈ Cδ for some δ > 0. For these functions we can
now use the constant recovery sequence cε = c0, i.e. we will show

Dε(c
0) =

∫ T

0

{
Rε(c

0, ċ0) + Sε(c0)
}

dt → D0(c0) =

∫ T

0

{
Reff(c0, ċ0) + S0(c0)

}
dt (5.3)

for ε → 0+. Because of c0(t) ∈ Msl we have Sε(c0(t)) = Ssl(c
0(t)) = S0(c0(t)), so the

second summand of the integral Dε(c
0) converges trivially.

Recall that Γ = span
{
γr
∣∣ r ∈ R = Rsl ∪̇Rfa

}
and define a projection Q on Ri∗ with

imQ = Γ giving kerQ> = Γ⊥. With this we can estimate the dual dissipation potential
R∗ε from below:

R∗ε(c, ξ) ≥ R∗1(c, ξ) ≥ b∗|Q>ξ|2.

To see this use C∗(σ) ≥ 1
2
σ2 and

(
cα

r
cβ

r)1/2 ≥ δ(αr+βr)/2 for all r ∈ R.
By Legendre-Fenchel transformation we obtain an upper bound for Rε, where we use

ċ0 ∈ Γ, i.e. Qċ0(t) = ċ0(t) (cf. Lemma 2.5):

Rε(c
0(t), ċ0(t)) ≤ R1(c0(t), ċ0(t)) ≤ 1

4b∗
|Qċ0(t)|2 =

1

4b∗
|ċ0(t)|2.

From c0 ∈ W1,∞([0, T ]; C) we see that t 7→ R1(c0(t), ċ0(t)) lies in L∞([0, T ]) and thus
provides an integrable majorant for t 7→ Rε(c

0(t), ċ0(t)). However, the convergence
R∗ε(c, ξ) ↗ Rε

0 = R∗sl + χΓ⊥fa
for ε → 0+ implies Rε(c, v) ↘ Reff(c, v) for all (c, v) ∈

Cδ × Ri∗ . Hence, Lebesgue’s dominated convergence theorem gives∫ T

0

Rε(c
0(t), ċ0(t))dt →

∫ T

0

Reff(c0(t), ċ0(t))dt for ε→ 0+,

and (5.3) is established.
Step 4. Diagonal sequence: The full recovery sequence for a general c0 with D0(c0) <

∞ is obtained via q(t) = Qfac
0(t) as a diagonal sequence cε = Ψ

(
q̂k(ε)(t) + θl(ε)q

)
, where

the functions k(ε) and l(ε) are suitably chosen such that cε → c0 strongly in L1([0, T ]; C)
and Dε(c

ε) → D0(c0). It is also clear from the construction that ‖cε‖L∞ ≤ 1 + ‖c0‖L∞

such that the uniform energy bound E(cε(t)) ≤Mener holds.
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[WiS17] S. Winkelmann and C. Schütte. Hybrid models for chemical reaction networks: Multiscale
theory and application to gene regulatory systems. J. Chem. Physics, 147(11), 114115/1–18, 2017.

[Yon08] W.-A. Yong. An interesting class of partial differential equations. J. Math. Phys., 49, 033503,
21, 2008.

90



Part 3

EDP-convergence for a linear reaction-
di↵usion system with fast reversible reaction

Artur Stephan

This preprint has not undergone peer review or any post-submission improvements or cor-
rections. The Version of Record of this article is published in Calculus of Variations and
Partial Di↵erential Equations, and is available online at https://doi.org/10.1007/s00526-
021-02089-0.

91

https://doi.org/10.1007/s00526-021-02089-0
https://doi.org/10.1007/s00526-021-02089-0


92



EDP-convergence for a linear reaction-diffusion
system with fast reversible reaction∗

Artur Stephan†

Abstract

We perform a fast-reaction limit for a linear reaction-diffusion system consist-
ing of two diffusion equations coupled by a linear reaction. We understand the
linear reaction-diffusion system as a gradient flow of the free energy in the space
of probability measures equipped with a geometric structure, which contains the
Wasserstein metric for the diffusion part and cosh-type functions for the reaction
part. The fast-reaction limit is done on the level of the gradient structure by prov-
ing EDP-convergence with tilting. The limit gradient system induces a diffusion
system with Lagrange multipliers on the linear slow-manifold. Moreover, the limit
gradient system can be equivalently described by a coarse-grained gradient sys-
tem, which induces a diffusion equation with a mixed diffusion constant for the
coarse-grained slow variable.

1 Introduction

Considering two species X1 and X2 which diffuse in a bounded medium Ω ⊂ Rd and react
linearly X1 � X2, the evolution of their concentrations c = (c1, c2) can be described by
the linear reaction-diffusion system

ċ1 = δ1∆c1 − (α̃c1 − β̃c2)

ċ2 = δ2∆c2 + (α̃c1 − β̃c2) (1.1)

complemented with no-flux boundary conditions and initial conditions, where δ1, δ2 > 0
are diffusion coefficients for species X1 and X2, respectively, and α̃, β̃ > 0 are reaction
rates describing the reaction speed of the linear reaction X1 � X2. The aim of the paper
is to investigate system (1.1) if the reaction is much faster than the diffusion. To do this,
we introduce a small parameter ε > 0 and assume that the reaction rates are given

by α̃ = 1
ε

√
α
β
, β̃ = 1

ε

√
β
α

. Then, the system (1.1) can be rewritten in an ε-dependent

∗Research supported by DFG via SFB 1114 (project no.235221301, subproject C05).
†Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Ger-

many, e-mail: artur.stephan@wias-berlin.de
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reaction-diffusion system

ċε1 = δ1∆cε1 −
1

ε

(√
α
β
cε1 −

√
β
α
cε2

)
ċε2 = δ2∆cε2 +

1

ε

(√
α
β
cε1 −

√
β
α
cε2

)
. (1.2)

Reaction systems and reaction-diffusion systems with slow and fast time scales have
attracted a lot of attention in the last years [Eva80, HvdHP00, Bot03, BoP10, BoP11,
BPR12, MuN11, MiS20, DDJ20, MPS20, PeR20]. Bothe and Hilhorst proved a fast-
reaction limit ε→ 0 for (1.2) in the following form.

Theorem 1.1 ([BoH02]). Let Ω ⊂ Rd be a domain with Lipschitz boundary. Let cε1 and
cε2 be weak solutions of (1.2) with no-flux boundary conditions ∇cεi · ν = 0 on ∂Ω. Then
cε1 → c1 and cε2 → c2 in L2([0, T ]×Ω) as ε→ 0 and we have c1

β
= c2

α
. Moreover, defining

the coarse-grained concentration ĉ = c1 + c2, then ĉ solves the diffusion equation ˙̂c = δ̂∆ĉ
with a new mixed diffusion coefficient δ̂ = βδ1+αδ2

α+β
.

Essentially, the proof uses the free-energy as a Lyapunov function to derive ε-uniform
bounds on the concentrations cεi and their gradients ∇cεi , which is then used to prove
convergence towards the slow manifold {c ∈ [0,∞[2 | αc1 = βc2}. This proof also works
for nonlinear reactions once ε-uniform L∞-estimates are established (see [BoH02]). On
the linear slow manifold, one easily verifies that the coarse grained concentration ĉ :=
α+β
β
c1 = α+β

α
c2 = c1 +c2 solves ˙̂c = δ̂∆ĉ where δ̂ = βδ1+αδ2

α+β
is the effective mixed diffusion

coefficient.
In this work, we are not primary interested in convergence of solutions of system

(1.2). Instead, we perform the fast-reaction limit on the level of the underlying vari-
ational structure, which then implies convergence of solutions as a byproduct. Our
starting point is that reaction-diffusion systems such as (1.2) can be written as a gradi-
ent flow equation induced by a gradient system (Q, E ,R∗ε), where the state space Q is
the space of probability measures Q = Prob(Ω×{1, 2}) and the driving functional is the

free-energy E(µ) =
∫

Ω

∑2
j=1 EB

(
cj
wj

)
wjdx for measures µ = c dx, with the Boltzmann

function EB(r) = r log r − r + 1 and the (in general space dependent) stationary mea-
sure w = (w1, w2)T. The dissipation potential R∗ε that determines the geometry of the
underlying space is given by two parts R∗ε = R∗diff +R∗react,ε describing the diffusion and
reaction separately. Since the pioneering work of Otto and coauthors [JKO98, Ott01] it
is known that diffusion has to be understood as a gradient system driven by the free-
energy in the space of probability measures equipped with the Wasserstein distance. The
corresponding dissipation potential R∗diff is quadratic and given by

R∗diff(µ, ξ) =
1

2

∫
Ω

2∑
i=1

δi |∇ξi|2 dµi.

Later Mielke [Mie11] proposed a quadratic gradient structure also for reaction-diffusion
systems with the same driving functional. Geometric properties of that gradient struc-
ture were investigated in [LiM13, GK∗20]. Here, we are not interested in that gradient
structure, but use a different, the so-called cosh-type gradient structure, where the reac-
tion part is given by

R∗react,ε(µ, ξ) =
1

ε

∫
Ω

C∗(ξ1(x)− ξ2(x))
√

dµ1dµ2,
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with C∗(r) = 4(cosh(r/2)−1). SettingR∗ε = R∗diff +R∗react,ε, the reaction-diffusion system
(1.2) can now be written as a gradient flow equation

µ̇ = ∂ξR∗ε(µ,−DE(µ)).

Although there are many gradient structures for (1.2) (see e.g. [MiS20, Sect. 4]) and
the cosh-type gradient structure entails several technical difficulties as defining a non-
linear kinetic relation and not inducing metric on Q, it nevertheless has several signifi-
cant features. Historically, it has its origin in [Mar15] where, following thermodynamic
considerations, chemical reactions are written in exponential terms. In recent years, the
cosh-gradient structure has been derived via a large-deviation principle [MPR14, MP∗17],
and it was shown that it is stable under limit processes [LM∗17] that are similar to our
approach. Moreover, it does not explicitly depend on the stationary measure w, which
allows for an rigorous distinction between the energetic and dissipative part [MiS20].
This is physically reasonable because a change of the energy by an external field should
not influence the geometric structure of the underlying space.

The goal of the paper is to construct an effective gradient system (Q, E ,R∗eff) and
perform the limit (Q, E ,R∗ε) → (Q, E ,R∗eff) as ε → 0. For this, we use the notion of
convergence of gradient systems in the sense of the energy-dissipation principle, shortly
called EDP-convergence. EDP-convergence was introduced in [DFM19] and further de-
veloped in [MMP20, MiS20] and is based on the dissipation functional

Dη
ε(µ) =

∫ T

0

Rε(µ, µ̇) +R∗ε(µ, η −DE(µ)) dt

which, for solutions µ of the gradient flow equation describes the total dissipation be-
tween initial time E(µ(0)) and final time E(µ(T )), and can now be defined for general
trajectories µ ∈ L1([0, T ], Q). The notion of EDP-convergence with tilting requires

Γ-convergences of the energies Eε
Γ−→ E0 and of the dissipation functionals Dη

ε
Γ−→ Dη

0

in suitable topologies, such that for all tilts η the limit Dη
0 has the form Dη

0(µ) =∫ T
0
Reff(µ, µ̇) + R∗eff(µ, η − DE0(µ)) dt, see Section 2.2 for a precise definition. Impor-

tantly, the effective dissipation potential Reff in the Γ-limit is independent of the tilts,
hence allowing for extended energies. In our situation, the tilts η correspond to an exter-
nal potential V = (V1, V2) added to the energy E . On the level of the PDE, the starting
reaction-diffusion system is extended to a reaction-drift-diffusion system of the form

d

dt

(
c1

c2

)
= div

((
δ1∇c1

δ2∇c2

)
+

(
δ1c1∇V1

δ2c2∇V2

))
+

1

ε

−
√

α
β
e
V1−V2

2

√
β
α

e
V2−V1

2√
α
β
e
V1−V2

2 −
√

β
α

e
V2−V1

2

(c1

c2

)
.

The main result of the paper is Theorem 4.3 which asserts tilt EDP-convergence of
(Q, E ,R∗ε) to (Q, E ,R∗eff) as ε→ 0 where the effective dissipation potential is given by

R∗eff = R∗diff + χ{ξ1=ξ2},

where χA is the characteristic function of convex analysis taking values zero in A and
infinity otherwise. The effective dissipation potential describes diffusion but restricts
the chemical potential ξ = (ξ1, ξ2) to a linear submanifold. The induced gradient flow
equation of the gradient system (Q, E ,R∗eff) is then given by a system of drift-diffusion
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equations on a linear submanifold with a space and time dependent Lagrange multiplier
λ

ċ1 = div (δ1∇c1 + δ1c1∇V1)− λ
ċ2 = div (δ2∇c2 + δ2c2∇V2) + λ

,
c1

βe−V1
=

c2

αe−V2
.

Moreover, as an immediate consequence of Theorem 4.3, we obtain that the effective
gradient flow equation can be equivalently described as a drift-diffusion equation of the
coarse-grained concentration ĉ, see Proposition 4.5. Introducing the mixed diffusion

coefficient δ̂V = δ1βe−V1+δ2αe−V2

βe−V1+αe−V2
and the mixed potential V̂ = − log( β

α+β
e−V1 + α

α+β
e−V2),

we obtain
ĉ = div

(
δ̂V∇ĉ+ δ̂V ĉ∇V̂

)
,

which is in accordance with [BoH02] in the potential-free case V = const. Moreover,
we obtain a natural coarse-grained gradient structure (Q̂, Ê , R̂∗), where Q̂ = Prob(Ω) is
the coarse-grained state space and Ê , R̂∗ are the coarse-grained energy functional and
dissipation potential, respectively. Interestingly, this coarse-grained gradient structure
(Q̂, Ê , R̂∗) contains the same information as the effective gradient structure (Q, E ,R∗eff),
although defined on a smaller state space, see Proposition 4.5.

The result on tilt EDP-convergence is an immediate consequence of the Γ-convergence
result of the dissipation functional Dη

ε (Theorem 5.12). The primal dissipation potential
Rε is given by an infimal sum consisting of diffusion fluxes and reaction fluxes coupled
via a generalized continuity equation, see Section 3.3. Theorem 5.12 follows from the
following observations: R∗ε converges monotonically to a singular limit R∗eff , the primal
dissipation potentials Rε degenerate. It is not possible to control the rates of µ̇1 and µ̇2

separately by Rε, since the reaction flux between both species may become unbounded.
Instead, it is possible to prove compactness for the sum (or slow variable) µ1 +µ2 by Rε,
and proving convergence towards the slow-manifold where an equilibration takes place,
i.e. αcε1−βcε2 → 0. The two pieces of complementary information provide strong conver-
gence of the densities cε in L1([0, T ]× Ω). This procedure has been already successfully
applied for linear and nonlinear reaction systems [MiS20, MPS20] and is here applied
to a space-dependent evolution system. A posteriori we conclude that the limit mea-
sure µ0 has indeed an absolutely continuous representative using results from [AGS05].
The construction of the recovery sequence relies on the fact that the limit dissipation
functional can be equivalently written as a functional of coarse-grained variables. Only
the reaction flux, which is present for positive ε > 0 and hidden for ε = 0, has to be
reconstructed. One observes that diffusion causes the reaction flux on an infinitesimally
small scale. Since the dissipation functional considers also fluctuations which may be
not strictly positive and not smooth in contrast to the solution of the linear reaction
diffusion system (1.2), the construction of a recovery sequence is completed by a suitable
approximation argument.

Let us finally mention, that the same results can also be established for reaction-
diffusion systems, where more than two species are involved. Applying the coarse-
graining and reconstruction machinery as developed in [MiS20], a similar Γ-convergence
result for the dissipation functional can be proved. For notational convenience we restrict
to the two-species situation and briefly discuss the multi-species case in Section 6. We
refer also to [Ste21], where coarse-graining and reconstruction for concentrations as well
as the fluxes is developed.
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2 Gradient structures

2.1 Gradient systems and the energy-dissipation principle

Let us briefly recall what we mean with a gradient system. Following [Mie16], we call a
triple (Q, E ,R) a gradient system if

(1) Q is a closed convex subset of a Banach space X

(2) E : Q→ R∞ := R ∪ {∞} is a functional (such as the free energy)

(3) R : Q × X → R∞ is a dissipation potential, which means that for any u ∈ Q
the functional R(u, ·) : X → R∞ is lower semicontinuous (lsc), nonnegative and
convex, and it satisfies R(u, 0) = 0.

We define the dual dissipation potential R∗ : Q × X∗ → [0,∞] using the Legendre
transform via

R∗(u, ξ) = (R(u, ·))∗(ξ) = sup
v∈X
{〈v, ξ〉 − R(u, v)} .

The gradient system is uniquely described by (Q, E ,R) or, equivalently by (Q, E ,R∗)
and, in particular, in this paper we use the second representation.

The dynamics of a gradient system can be formulated in different ways as an equation
in X, in R or in X∗ (the dual Banach space of X), respectively:

(1) Force balance in X∗: 0 ∈ ∂u̇R(u, u̇) + DE(u) ∈ X∗,

(2) Power balance in R: R(u, u̇) +R∗(u,−DE(u)) = −〈DE(u), u̇〉,

(3) Rate equation in X: u̇ ∈ ∂ξR∗(u,−DE(u)) ∈ X.

(Here, ∂ denotes the subdifferential of convex analysis.) Equations (1) and (3) are called
gradient flow equation associated with (Q, E ,R∗). The equivalent formulations rely on
the following fact: Let X be a reflexive Banach space and Ψ : X → R∞ be a proper,
convex and lsc. Then for every ξ ∈ X∗ and v ∈ X the following five statements, the
so-called Legendre-Fenchel-equivalences, are equivalent:

v ∈ Argminw∈X(Ψ(w)− 〈ξ, w〉) ⇔ Ψ(v) + Ψ∗(ξ)=〈ξ, v〉
⇔ Ψ(v) + Ψ∗(ξ)=〈ξ, v〉 ⇔

v ∈ ∂Ψ∗(ξ) ⇔ ξ ∈ Argminη∈X∗(Ψ
∗(η)−〈η, v〉)

Especially the second dynamic formulation, the power balance (2), is interesting for us.
Integrating the power balance (2) in time form 0 to T and using the chain rule for the
time-derivative of t 7→ E(u(t)), we get another equivalent formulation of the dynamics

of the gradient system, which is called Energy-Dissipation-Balance:

(EDB) E(u(T )) +

∫ T

0

[R(u, u̇) +R∗(u,−DE(u))] dt = E(u(0)). (2.1)

Equation (EDB) compares the energy of the system at time t = 0 and at time t = T ,
the difference is described by the total dissipation from t = 0 to t = T . This gives rise

to another definition: We define the De Giorgi dissipation functional as

D(u) =

∫ T

0

[R(u, u̇) +R∗(u,−DE(u))] dt,
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for u ∈W1,1([0, T ], Q) and extend it to infinity otherwise. The following
energy-dissipation principle provides the definition for solutions of the gradient flow

equation, see e.g. [AGS05, Prop. 1.4.1], [AM∗12, Def. 1.1], [MMP20, Thm 2.5].

Definition 2.1. We say u ∈W1,1([0, T ], Q) is a solution of the gradient flow equation
(1) or (3) induced by the gradient system (Q, E ,R∗), if E(u(0)) <∞ and the
energy-dissipation balance holds.

2.2 Definition of EDP-convergence

The definition of EDP-convergence for gradient systems relies on the notion of Γ-conver-
gence for functionals (cf. [Dal93]). If Y is a Banach space and Iε : Y → R∞ we write

Iε
Γ−→ I0 and Iε

Γ
⇀ I0 for Γ-convergence in the strong and weak topology, respectively. If

both holds this is called Mosco-convergence and written as Iε
M−→ I0.

For families of gradient systems (X, Eε,Rε), three different levels of EDP-convergence
are introduced and discussed in [DFM19, MMP20], called simple EDP-convergence,
EDP-convergence with tilting and contact EDP-convergence with tilting. EDP-conver-
gence with tilting is the strongest notion, since it implies the other two notions. Here
we will only use the first two notions. For all three notions the choice of weak or strong
topology is still to be decided according to the specific problem.

Definition 2.2 (Simple EDP-convergence). A family of gradient structures (Q, Eε,Rε)
is said to EDP-converge to the gradient system (Q, E0,Reff) if the following conditions
hold:

1. Eε
Γ−→ E0 on Q ⊂ X;

2. Dε strongly Γ-converges to D0 on L1([0, T ], Q) conditioned to bounded energies

(we write Dε
ΓE→ D0), i.e. we

(a) (Liminf-estimate) For all strongly converging families uε → u in L1([0, T ], Q)
which satisfy supε>0 ess supt∈[0,T ]Eε(uε(t)) <∞, we have lim infε→0+ Dε(uε) ≥
D0(u),

(b) (Limsup-estimate) For all ũ ∈ L1([0, T ], Q) there exists a strongly converging
family uε → ũ in L1([0, T ], Q) with supε>0 ess supt∈[0,T ]Eε(ũε(t)) < ∞ such
that we have lim supε→0+ Dε(uε) ≤ D0(ũ).

3. There is an effective dissipation potential Reff : Q×X → R∞ such that D0 takes
the form of a dual sum, namely D0(u) =

∫ T
0
{Reff(u, u̇)+R∗eff(u,−DEeff(u))}dt.

Similarly, one can also use weak Γ- or Mosco-convergence conditioned to bounded

energy, which we will then write as Dε
ΓE⇀ D0 and Dε

ME−→ D0. In fact, for our fast-slow

reaction systems we are going to prove Dε
ME−→ D0.

A general feature of EDP-convergence is that, under suitable conditions, solutions
u of the gradient flow equation u̇ = ∂ξR∗eff(u,−DE0(u)) of the effective gradient sys-
tem (X, E0,Reff) are indeed limits of solutions uε of the gradient flow equation u̇ =
∂ξR∗ε(u,−DEε(u)), see e.g. [Bra14, Thm. 11.3], [MiS20, Lem. 3.4] and [MMP20, Lem.
2.8].
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A strengthening of simple EDP-convergence is the so-called EDP-convergence with
tilting. This notion involves the tilted energy functionals Eηε : Q 3 u 7→ Eε(u) − 〈η, u〉,
where the tilt η (also called external loading) varies through the whole dual space X∗.

Definition 2.3 (EDP-convergence with tilting (cf. [MMP20, Def. 2. 14]). A family of
gradient structures (Q, Eε,Rε) is said to EDP-converge with tilting to the gradient system
(Q, E0,Reff), if for all tilts η ∈ X∗ we have (Q, Eηε ,Rε) EDP-converges to (Q, Eηε ,Reff).

Clearly, we have that Eε
Γ−→ E0 implies Eηε

Γ−→ Eη0 for all η ∈ X∗ (and similarly for weak
Γ-convergence), since the linear tilt u 7→ −〈η, u〉 is weakly continuous. The main and
nontrivial assumption is that additionally

Dη
ε : u 7→

∫ T

0

{
Rε(u, u̇) +R∗ε(u, η−DEε(u))

}
dt

Γ-converges in L1([0, T ], Q) to Dη
0 for all η ∈ X∗ and that this limit Dη

0 is given in
R⊕R∗-form with Reff via

Dη
0(u) =

∫ T

0

{
Reff(u, u̇) +R∗eff(u, η−DEeff(u))

}
dt.

The main point is that Reff remains independent of η ∈ X∗. We refer to [MMP20] for a
discussion of this and the other two notions of EDP-convergence.

3 Gradient system of reaction-diffusion systems

In this section, we present the gradient system (Q, E ,R∗ε), which induces the reaction-
diffusion system (1.2). In Section 3.2 we derive the gradient flow equation of the gradient
system including general tilts of the energy. In Section 3.3 we compute the primal
dissipation potential Rε, which is only implicitly given via a infimal-convolution, and the
total dissipation functional Dη

ε , which will be the main object of interest in Section 4. In
Section 3, the computations are basically formal; the precise functional analytic setting
is presented in Section 4 which also includes the Γ-convergence and EDP-convergence
result.

3.1 Gradient structure for the linear reaction system

Although a gradient system induces a unique gradient flow equation, a general evolution
equation can often be described by many different gradient systems. The choice of the
gradient structure is a question of modeling since it adds thermodynamic information to
the system, which is not inherent in the evolution equation itself. Here, we follow the
pioneering work of Otto and coauthors [JKO98, Ott01] who showed that certain diffusion
type equations can be understood as a gradient flow equation of the free energy in the
space of probability measures equipped with the Wasserstein distance. Later Mielke
proposed a gradient structure for a reaction diffusion system satisfying detailed balance
[Mie11]. For a system with two species with a reversible reaction detailed balance is
always satisfied. For the reaction part, we use the gradient structure which has been
derived via a large-deviation principle from a microscopic Markov process in [MPR14].
We refer also to [Ren18], where our choice of gradient structure has been formally derived.
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The gradient system (Q, E ,R∗ε) is defined as follows: The state space is the space of
probability measure on Q× {1, 2}

Q := Prob(Ω× {1, 2}) = {µ = (µ1, µ2) ∈ R2 : µi ∈M(Ω), µi ≥ 0,
2∑
i=1

µi(Ω) = 1},

where we assume that Ω ⊂ Rd is a compact domain with normalized mass |Ω| = 1. The
driving energy functional E : Q → R∞ := R ∪ {∞} is the free-energy of the reaction-
diffusion system. It is finite for measures µ = (µ1, µ2) with Lebesgue density c = (c1, c2)
only and has the form

E(µ) :=

{∫
Ω

∑2
j=1 EB

(
cj
wj

)
wjdx, if µ = c · dx

∞, otherwise.
(3.1)

where the Boltzmann function is defined as EB(r) = r log r − r + 1 and the positive
stationary measure is given by w = 1

α+β
(β, α)T. Note that the stationary measure w as

well as the energy E is ε-independent. The derivative of the energy E is only defined in
its domain, i.e. for measures with Lebesgue density c, and has the form

DE(µ) =
2∑
j=1

(log cj − logwj) =
2∑
j=1

(
log

cj
wj

)
.

As the equation splits into a diffusion and reaction part, so does the dual dissipation
functional. We define

R∗ε(µ, ξ) := R∗diff(µ, ξ) +R∗react,ε(µ, ξ)

where

R∗diff(µ, ξ) :=
1

2

∫
Ω

2∑
j=1

δj|∇ξj(x)|2dµj,

R∗react,ε(µ, ξ) :=
1

ε

∫
Ω

C∗(ξ1(x)− ξ2(x)) d
√
µ1µ2,

where we use the cosh-function C∗(x) = 4 (cosh(x/2)− 1) and for measures µ with
Lebesgue density c we have d

√
µ1µ2 :=

√
c1c2dx.

The diffusion part R∗diff induces the Wasserstein distance on Q. The ε-dependent
reaction part R∗react,ε forces the evolution close to a linear submanifold given by

R∗react,ε(µ,−DE(µ)) = 0⇔ αc1 − βc2 = 0 .

Note, that since R∗react,ε is not 2-homogeneous, it does not define a metric on Q. We
refer to [PR∗20] which treats similar and general dissipation potentials and understands
them as generalized transport costs on discrete spaces. Note that R∗ε does not depend
on the stationary measure w explicitly, as highlighted in [MiS20].
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3.2 The tilted gradient flow equation

In this section, we derive the gradient flow equation of the gradient system (Q, E ,R∗ε).
To exploit the full information of the dissipation potential, we consider general tilted
energies. First, we present how a change of energy by a linear tilt corresponds to a change
of stationary measure, and secondly, we compute the induced gradient flow equation.

Let us first consider two free energies (3.1) with different stationary measures w, w̃,
which may be space dependent but are assumed to be positive. Assuming a density
µ = c dx and using

∑
i

∫
Ω
widx =

∑
i

∫
Ω
cidx = 1 (where we used |Ω| = 1), we have

E(µ) =
2∑
i=1

∫
Ω

EB

(
ci
wi

)
widx =

2∑
i=1

∫
Ω

{ci log ci − ci logwi} dx.

In particular, we conclude that Ẽ(µ) +
∑2

i=1

∫
Ω
ci log w̃idx = E(µ) +

∑2
i=1

∫
Ω
ci logwidx

which implies

Ẽ(µ) = E(µ) +
2∑
i=1

∫
Ω

ci log

(
wi
w̃i

)
dx.

Hence, changing the underlying stationary measure corresponds to a linear tilt of the

energy by a two component potential V = (V1, V2) where Vi = log
(
wi
w̃i

)
. On the other

hand, a tilted energy has a different stationary measure as its minimum. To compute
the new stationary measure, we introduce tilted energies

EV (µ) := E(µ) +
2∑
i=1

∫
Ω

Vidµi,

where V ∈ C1(Ω,R2) is a two component smooth potential. Moreover, we introduce
ηi := e−Vi and clearly, we have ηi > 0 on Ω ⊂ Rd. We compute the stationary state wV

by minimizing EV on the space Q = Prob(Ω × {1, 2}). We obtain the space dependent
stationary measure

wVi =
1

Z
wie

−Vi , where Z :=
2∑
i=1

∫
Ω

wie
−Vidx . (3.2)

Next, we compute the tilted gradient flow equation ċ = ∂ξR∗ε(µ,−DEV (µ)), which
is induced by the gradient system (Q, EV ,R∗ε = R∗diff +R∗react,ε). First, we observe that

E(µ) < ∞ if and only if EV (µ) < ∞. Inserting ξi =
(
−DEV (µ)

)
i

into ∂ξR∗diff,ε(µ, ξ), we
see that

∂ξR∗diff(µ, ·)|ξ=−DEV (µ) = −(div(δici∇(− log(ci/wi)−Vi))i=1,2 = div (δi∇ci + δici∇Vi)i=1,2 ,

which is a system of two uncoupled drift-diffusion equations or Fokker-Planck equations
for the concentrations ci where the fluxes are given by a diffusion part −δi∇ci and a drift
part −δici∇Vi.

For the reaction part of the dual dissipation potential, we insert ξi =
(
−DEV (µ)

)
i

into ∂ξR∗react,ε(µ,−DEV (µ)). On readily verifies the identity (C∗)′ (log p − log q) = p−q√
pq

for the cosh-function and conclude

√
c1c2 (C∗)′ (ξ1(x)− ξ2(x))|ξ=−DEV (µ) =

√
c1c1

c2
w2η2
− c1

w1η1√
c1
w1η1

c2
w2η2

=
√
w1η1w2η2

(
c2

w2η2

− c1

w1η1

)
.
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Hence, we get

∂ξ1R∗react,ε(µ, ·)|ξ=−DEV (µ) = −∂ξ2R∗react(µ, ·)|ξ=−DEV (µ) =
1

ε

(√
β

α

√
η1

η2

c2 −
√
α

β

√
η2

η1

c1

)
,

which is linear in c = (c1, c2). In vector notation, we get a tilted Markov generator of
the form

∂ξR∗react,ε(µ,−DEV (µ)) =
1

ε

−√α
β
η2
η1

√
β
α
η1
η2√

α
β
η2
η1

−
√

β
α
η1
η2

 c =
1

ε

−
√

α
β
e
V1−V2

2

√
β
α

e
V2−V1

2√
α
β
e
V1−V2

2 −
√

β
α

e
V2−V1

2

 c

which has the space dependent stationary measure

wV =
1

Z(α + β)
(βη1, αη2)T =

1

Z
(w1e−V1 , w2e−V2)T .

Summarizing, the tilted evolution equation has the form

d

dt

(
c1

c2

)
= div

((
δ1∇c1

δ2∇c2

)
+

(
δ1c1∇V1

δ2c2∇V2

))
+

1

ε

−
√

α
β
e
V1−V2

2

√
β
α

e
V2−V1

2√
α
β
e
V1−V2

2 −
√

β
α

e
V2−V1

2

(c1

c2

)
,

(3.3)
which is a linear reaction-drift-diffusion system with space dependent reaction rates. In
the special case without external forcing V = const, we get the linear reaction diffusion
system (1.2). Note that the reaction part still inherits symmetry since the product
of the off-diagonal elements is constant in space. In particular, not all general linear
reaction-drift-diffusion system with space dependent reaction rates for two species can
be expressed in the form (3.3) and are induced by the gradient system (Q, EV ,R∗ε =
R∗diff +R∗react,ε).

3.3 The dissipation functional

In this section, we compute the dissipation functional Dε, which consists of two parts: the
velocity part given by the primal dissipation potential Rε and the slope-part (sometimes
also called Fisher information) R∗ε(µ,−DE(µ)). Here, all computations are formal and
we always assume that the measure µ has a Lebesgue density c. The precise functional
analytic setting is presented in the Section 4.

The primal dissipation potential Rε, given by the Legendre transform of the dual
dissipation potential R∗ε = R∗diff +R∗ε,react, can be computed via inf-convolution of Rdiff

and Rreact,ε. First, we compute both primal dissipation potentials separately. To do this,
we introduce the following notation: For a convex, lsc. function F : X → [0,∞] on a
reflexive and separable Banach space X with Legendre dual F∗, we define the function
F̃ : [0,∞[×X → [0,∞] by

F̃(a, x) := (aF∗(·))∗ (x) =

{
aF
(

1
a
x
)

for a > 0 ,

χ0(x) for a = 0 .

Introducing the quadratic function Q(x) = 1
2
|x|2 on Rd, the primal dissipation potential

of the diffusion part R∗diff is given by
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Rdiff(µ, v) =
2∑
j=1

∫
Ω

Q̃ (δjcj, Jj) dx,

where Jj is, by definition, the unique solution of the elliptic equation vj +divJj = 0 with

J · ν = 0 on ∂Ω. For positive cj, we have Q̃ (δjcj, Jj) = 1
2

|Jj |2
δjcj

.

The primal dissipation potential of the reaction part is

Rreact,ε(µ, b) =

{∫
Ω
C̃
(√

c1c2
ε
, b2

)
dx, for b1 + b2 = 0

∞ for b1 + b2 6= 0
,

where C = (C∗)∗ is the Legendre transform of the cosh-function C∗(x) = 4 (cosh(x/2)− 1).
In the following, we use the inequality

1

2
|r| · log(|r|+ 1) ≤ C(r) ≤ 2|r| · log(|r|+ 1), (3.4)

which, in particular, implies that the Orlicz class for A ⊂ Rd given by

L̃C(A) := {u ∈ L1(A) :

∫
A

C(u)dx <∞},

is, in fact, a Banach space L̃C(A) = LC(A) with the norm ‖u‖C = sup∫
A C∗(v)≤1

∣∣∫
A
uv dx

∣∣.
Importantly, functions Q̃, C̃ as well as the functionals Rdiff ,Rreact,ε are convex on

their domain of definition.
The primal dissipation potential Rε is the inf-convolution of Rdiff and Rreact,ε, and

is given by

Rε(µ, v) = inf
v=u1+u2

{Rdiff(µ, u1) +Rreact,ε(µ, u2)}

= inf
J,b


2∑
j=1

∫
Ω

Q̃ (δjcj, Jj) dx+

∫
Ω

C̃
(√

c1c2
ε
, b2(x)

)
dx :


v1 = −divJ1 + b1

v2 = −divJ2 + b2

b1 + b2 = 0


 .

In time-integrated form we get for v = µ̇ that∫ T

0

Rε(µ, µ̇) dt = inf
v=v1+v2

∫ T

0

{Rdiff(µ, v1) +Rreact,ε(µ, v2)} dt

= inf
J,b

{∫ T

0

{
2∑
j=1

∫
Ω

Q̃ (δjcj, Jj) dx+

∫
Ω

C̃
(√

c1c2
ε
, b2(x)

)}
dx dt : (c, J, b) ∈ (gCE)

}
.

where we introduce the notation of a (linear) generalized continuity equation

(c, J, b) ∈ (gCE) ⇔
{
b1 + b2 = 0 and

{
ċ1 = −divJ1 + b1

ċ2 = −divJ2 + b2

}}
.

Without the reaction part,
∫ T

0
Rεdt is the dynamic formulation à la Benamou-Brenier

of the Wasserstein distance in Q [BeB00], which can be equivalently written in the form

W2(µ0, µ1)2 = inf

{∫ 1

0

∫
Ω

2∑
j=1

δj|vj|2dµj : µ̇j + div(µjvj) = 0, µj,0 = µ0, µj,1 = µ1

}
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expressed in terms of transport velocities vj = Jj/cj. The Wasserstein distance can be
interpreted as a cost in transporting mass from one measure µ0 to µ1. In our situation∫ T

0
Rεdt is jointly convex in c, J and b and corresponds to modified cost function which

also takes the reaction fluxes into account. The optimal diffusion fluxes Jj and reaction

fluxes bj have to satisfy the generalized continuity equation. Note that
∫ T

0
Rεdt does not

induce a metric on Q since the reaction part is not quadratic.
Next, we compute the tilted slope part R∗ε(µ,−DEV (µ)). To do this, we introduce

the relative densities ρV of µ w.r.t. the stationary measure wV dx, i.e. ρVj = dµ
wVj dx

=
cj
wVj

,

where by (3.2) the stationary measure is wVj = 1
Z
wie

−Vj . Since V ∈ C1(Ω,R2) and Ω ⊂
Rd is compact, µ is absolutely continuous w.r.t. the Lebesgue measure dx if and only if it
is w.r.t. the stationary measure wV dx, . Inserting ξ = −DEV (µ) = −(log(ci/wi)+Vi)i=1,2

in the dual dissipation potential R∗ε, we get for the diffusive part

R∗diff(µ,−DEV (µ)) =
1

2

∫
Ω

2∑
j=1

δjcj|∇ (log cj/wj + Vj) |2dx.

Using wVj = 1
Z
wje

−Vj , a short calculation shows δjcj |∇ (log cj/wj + Vj)|2 = δjw
V
j
|∇ρVj |2
ρVj

.

Hence, we have

R∗diff(µ,−DEV (µ)) =
1

2

∫
Ω

2∑
j=1

δjw
V
j

∣∣∇ρVj ∣∣2
ρVj

dx.

For the reaction part, we use the identity C∗(log p− log q) = 2
(√p−√q)

2

√
pq

and get

R∗react,ε(µ,−DEV (µ)) = 2

∫
Ω

1

ε

√
c1c2

(√
c1/η1w1 −

√
c2/η2w2

)2

√
c1c2/η1w1η2w2

dx

=
2

ε

∫
Ω

√
wV1 w

V
2

(√
ρV1 −

√
ρV2

)2

dx.

Summarizing, the total dissipation functional is

DV
ε (µ) =

∫ T

0

Rε(µ, µ̇) +R∗ε(µ,−V −DE(µ))dt (3.5)

= inf
(c,J,b)∈(gCE)

{∫ T

0

{∫
Ω

2∑
j=1

Q̃ (δjcj, Jj) dx+

∫
Ω

C̃

(√
c1c2

ε
, b2(x)

)
dx

}
dt

}
+

+

∫ T

0

{
1

2

∫
Ω

2∑
j=1

δjw
V
j

∣∣∇ρVj ∣∣2
ρVj

dx+
2

ε

∫
Ω

√
wV1 w

V
2

(√
ρV1 −

√
ρV2

)2

dx

}
dt .

4 EDP-convergence result

In this section we state the EDP-convergence result for the gradient systems (Q, E ,R∗ε)
to (Q, E ,R∗eff) and discuss the properties of the effective gradient system (Q, E ,R∗eff).
Since the energy E is ε-independent the major challenge is to prove Γ-convergence of
the dissipation functional DV

ε , which is a functional defined on the space of trajectories
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in the state space Q. To be mathematical precise, we first fix the functional analytic
setting.

The state space Q = Prob(Ω × {1, 2}) is equipped with the p-Wasserstein distance
dWp , where in our situation either p = 1 or p = 2. Recall that for any compact euclidean
subspace E ⊂ Rk the p-Wasserstein distance is defined on the space of probability
measures Prob(E) by

dWp(µ
1, µ2)p = min

γ∈Γ(µ1,µ2)

∫
E

|x− y|pdγ(x, y),

where Γ(µ1, µ2) is the set of all transport plans with marginals µ1 and µ2 (see e.g.
[AGS05]). The p-Wasserstein distance dWp metrizises the weak*-topology of measures,
i.e. convergence tested against continuous functions on E. In the following we will
consider either E = Ω or E = Ω× {1, 2}.

To define the topology in the space of trajectories on Q, we start very coarse, where we
understand the trajectories on Q as measures in space and time. We denote the space
of trajectories by L∞w ([0, T ], Q) equipped with the weak*-measureability. The weak*-
convergence is defined as usual by

µε(·)→ µ0(·) :⇔ ∀i ∈ {1, 2} , ∀φ ∈ C∞(Ω×[0, T ]) :

∫ T

0

∫
Ω

φdµεi (x)dt→
∫ T

0

∫
Ω

φdµ0
i (x)dt.

A finer topology, which enables to prove compactness and evaluate the effective dissipa-
tion functional is then given by the a priori bounds

sup
ε∈]0,1]

DV
ε (µε) ≤ C, sup

ε∈]0,1]

ess sup
t∈[0,T ]

E(µε(t)) ≤ C.

In fact, as presented in Section 5.1, these bounds provide that the measures µε have
Lebesgue densities cε which converge strongly in L1([0, T ] × Ω,R2

≥0). Moreover, the
limiting coarse-grained measure µ̂0 = µ0

1 + µ0
2 has an representative which is absolutely

continuous in time with values in (Prob(Ω), dW2), i.e. there is a function m ∈ L1([0, T ]
such that for all t, s ∈ [0, T ] with s ≤ t we have

dW2

(
µ̂0(s), µ̂0(t)

)
≤
∫ t

s

m(r)dr.

Each component µ0
i , i = 1, 2 is not a trajectory in the space of probability measure, but in

the space of non-negative Radon measures. Proposition 5.11 shows that µ0
i is absolutely

continuous in time with values in (M+(Ω), dW1) exploiting the dual formulation of the
1-Wasserstein distance (see e.g. [Edw11]). This compactness result is comparable to
the result of Bothe and Hilhorst [BoH02], where also strong convergence of solutions
c = (c1, c2) is proved. In particular, similar to the space independent situation in [MiS20,
Ste19, MPS20] one cannot guarantee that µε(t) → µ0(t) in Q for all times t ∈ [0, T ] as
jumps in time cannot be excluded. Instead the limit µ0 = c0 dx has an absolutely
continuous representative.

4.1 Main theorem

Let us state our main EDP-convergence result. For doing this, we define for V ∈
C1(Ω,R2) the total dissipation functional on L∞w ([0, T ], Q) as

DV
ε (µ) =

{∫ T
0

{
Rε(µ, µ̇) +R∗ε(µ,−DEV (µ))

}
dt, µ ∈ AC([0, T ], Q), µ = c dx a.e. in [0, T ]

∞ otherwise.
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If µ = c dx a.e. in [0, T ], then the dissipation functional is given by∫ T

0

Rε(µ, µ̇) +R∗ε(µ,−V −DE(µ))dt

= inf
(c,J,b)∈(gCE)

{∫ T

0

{∫
Ω

2∑
j=1

Q̃(δjcj, Jj)dx+

∫
Ω

C̃

(√
c1c2

ε
, b2(x)

)
dx

}
dt

}
+

+

∫ T

0

{
1

2

∫
Ω

2∑
j=1

δjw
V
j

∣∣∇ρVj ∣∣2
ρVj

dx+
2

ε

∫
Ω

√
wV1 w

V
2

(√
ρV1 −

√
ρV2

)2

dx

}
dt, (4.1)

where the infimum is taken over all Borel fluxes Jj ∈M([0, T ]×Ω,Rd), bj ∈M([0, T ]×
Ω,R) which satisfy the generalized continuity equation (gCE) in the sense of distribu-
tions, i.e.

∀j = 1, 2 ∀φ ∈ C∞c ([0, T ]× Ω) :

∫ T

0

∫
Ω

φ̇cj −∇φ · Jjdxdt = −
∫ T

0

∫
Ω

bjφdxdt,

J · ν = 0 on ∂Ω.

Remark 4.1. Strictly speaking, the functions Q̃ and C̃ are not defined for measures Jj,bj
and hence, the formula for the dissipation functional (3.5) is a priori not correct. In
fact, introducing the related functional as in Lemma 5.2, the dissipation functional can
be expressed via the densities of Jj, bj. These densities are in L1([0, T ] × Ω) as Lemma
5.1 shows. For notational convenience, we identify the measures with their Lebesgue
densities and stick to the above expression (3.5). In Lemma 5.7, we, in fact, show
compactness for the sequence of measures Jεi .

The main result is the Γ-convergence of DV
ε to the effective dissipation functional DV

0

which is defined by

DV
0 (µ)=

{∫ T
0
Reff(µ, µ̇) +R∗eff(µ,−DEV (µ))dt, if µ ∈AC([0, T ], Q), µ = c dx a.e. in [0, T ]

∞ otherwise.

where

R∗eff(µ, ξ) = R∗diff(µ, ξ) + χ{ξ1=ξ2}(ξ), Reff(µ, v) = (Reff(µ, ·))∗ (v). (4.2)

Theorem 4.2. Let V ∈ C1(Ω,R2). On L∞w ([0, T ], Q), we have Γ-convergence constraint

to bounded energies of DV
ε , i.e. DV

ε

ΓE−→ DV
0 where

DV
0 (µ) =

{∫ T
0
Reff(µ, µ̇) +R∗eff(µ,−V −DE(µ))dt, µ ∈AC([0, T ], Q), µ = c dx a.e. [0, T ]

∞ otherwise

(4.3)

with

R∗eff(µ, ξ) = R∗diff(µ, ξ) + χ{ξ1=ξ2}(ξ),

Reff(µ, v) = inf
u+ũ=v

{Rdiff(µ, ũ) + χ0(u1 + u2)} =

= inf

{
2∑
j=1

∫
Ω

Q̃(δjcj, Jj)dx : u1 + u2 = 0,

{
v1 = −divJ1 + u1

v2 = −divJ2 + u2

}}
.

106



EDP-convergence for linear RDS Artur Stephan

The theorem states that the limit dissipation functional is again of R⊕R∗-form with
an effective dissipation potential R∗eff . The effective dissipation potential R∗eff consists
again of two terms describing the diffusion and a coupling, which forces the chemical
potential −DEV to equilibration. This equilibration provides the microscopic equilibria
of the densities ρV defining the slow manifold of the evolution.

In the Section 5, we will present the detailed proof of this Γ-convergence result.
In this section, we discuss the effective gradient system and its induced gradient flow
equation. As we will see the associated gradient flow equation can be understood as an
evolution equation on Q and also on a smaller state space Q̂ := Prob(Ω) of coarse-grained
variables.

As an immediate consequence, Theorem 4.2 implies that (Q, E ,R∗ε) EDP-converges
with tilting to (Q, E ,R∗eff).

Theorem 4.3. Let R∗eff be defined by (4.2). Then the gradient system (Q, E ,R∗ε) EDP-
converges with tilting to (Q, E ,R∗eff).

Proof. The energy E is ε-independent and lsc. on Q. Hence, it Γ-converges to itself.
Theorem 4.2 implies that DV

ε Γ-converges to DV
0 and DV

0 is of R⊕R∗ structure, where
the effective dissipation potential Reff is independent of the tilts η = V . Hence, EDP-
convergence with tilting is established.

4.2 Effective gradient flow equation

In this section, we discuss the effective gradient flow equation that is associated by
the limit gradient structure (Q, E ,R∗eff). Similar to the space-independent situation in
[MiS20, MPS20] the limit gradient structure can also be equivalently understood as a
gradient structure on a smaller coarse-grained space of slow variables Q̂. In particu-
lar, we obtain an effective gradient flow equation on the original state space Q with a
Lagrange multiplier ensuring the projection on the slow manifold, and, moreover, an
effective gradient flow equation in coarse-grained variables. First, we discuss the effec-
tive gradient flow equation with Lagrange multipliers, and secondly, the coarse-grained
gradient structure and its induced gradient flow equation. Throughout the section the
potential V ∈ C1(Ω,R2) is fixed.

4.2.1 Gradient flow equation with Lagrange multipliers

For being brief, the calculations in this section are rather formal. The effective dissipation
potential R∗eff = R∗diff +χ{ξ1=ξ2} consists of two parts: the first describes the dissipation of
the evolution and the second provides the linear constraint of being on the slow manifold
and also the corresponding Lagrange multiplier. The evolution equation is given by

µ̇ ∈ ∂ξR∗eff(µ,−V −DE(µ)) = ∂ξ
{
R∗diff(µ,−V −DE(µ)) + χ{ξ1=ξ2}(−V −DE(µ))

}
.

Following [EkT76], the subdifferential of a sum is given by the sum of the subdifferential,
if one term is continuous, which holds for the first term. For the second term, the
subdifferential of the characteristic function is only definite in its domain, i.e. if

−V1 −DE(µ)1 = −V2 −DE(µ)2,
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which implies that µ = cdx and that their densities satisfy the relation c1
βe−V1

= c2
αe−V2

defining the linear slow manifold. Moreover, on its domain we have for the subdifferential

that ∂χ{ξ1=ξ2} =M(Ω)

(
1
−1

)
. Hence, we conclude that

µ̇ ∈ ∂ξ {R∗diff(µ,−V −DE(µ))}+M(Ω)

(
1
−1

)
,

c1

βe−V1
=

c2

αe−V2
,

which implies the gradient flow equation on the slow manifold with a Lagrange multiplier
λ = (λ1, λ2) for the densities of the form

{
ċ1 = div {δ1∇c1 + δ1c1∇V1}+ λ1(t, x)

ċ2 = div {δ2∇c2 + δ2c2∇V2}+ λ2(t, x)
, λ1 + λ2 = 0,

c1

βe−V1
=

c2

αe−V2
. (4.4)

4.2.2 Coarse-grained gradient structure and its gradient flow equation

Now, we discuss the effective gradient structure (Q, E ,R∗eff) in the slow coarse-grained
variables. To do this, we introduce the coarse grained probability measure µ̂ = µ1+µ2 on
Ω and the corresponding concentrations ĉ := c1+c2. Moreover, we define the equilibrated
densities ρ̂V = ρV1 = ρV2 and the coarse-grained stationary measure ŵV = wV1 + wV2 , for
which we get ĉ = ρV1 w

V
1 + ρV2 w

V
2 = ρ̂V (wV1 + wV2 ) = ρ̂V ŵV . We introduce the coarse-

grained diffusion coefficient δ̂V =
δ1wV1 +δ2wV2
wV1 +wV2

.

With this notation, we may define the coarse-grained gradient structure (Q̂, Ê , R̂∗).
On the state space Q̂ = Prob(Ω), we define

R̂∗(µ̂, ξ̂) := R∗eff

((
wV1

wV1 + wV2
µ̂,

wV2
wV1 + wV2

µ̂

)
, (ξ̂, ξ̂)

)
=

1

2

∫
Ω

δ̂V |∇ξ̂|2dµ̂ , (4.5)

Ê(µ̂) := EV
(

wV1
wV1 + wV2

µ̂,
wV2

wV1 + wV2
µ̂

)
.

Introducing the coarse-grained potential V̂ = − log(wV1 + wV2 ) − logZ = − log(ŵV ) −
logZ = − log

(
w1e−V1 + w2e−V2

)
, for which the exponential is given by the weighted

arithmetic mean of the exponentials e−V1 and e−V2 , i.e. e−V̂ = w1e−V1 +w2e−V2 (we used
that w1 + w2 = 1). Easy calculations show that the energy has for the explicit form

Ê(µ̂) =

∫
Ω

µ̂ log µ̂+ µ̂V̂ dx.

The coarse-grained dissipation functional is defined by

D̂(µ̂) =

∫ T

0

R̂(µ̂, ˙̂µ) + R̂∗(µ̂,−DÊ(µ̂))dt,

which incorporates the tilt via the coarse-grained variables. Note, that the coarse-grained
dissipation potential R̂∗ depends explicitly on the tilt V via the diffusion coefficient δV .
This is not a contradiction to tilt-EDP convergence (Theorem 4.3), because in original
variables the effective dissipation potential (4.3) is indeed independent of the tilts. The
tilts dependence of R̂∗ originates from the energy and tilt dependent slow manifold.
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To relate the dissipation functional DV
0 with the coarse grained dissipation functional

D̂, we first show that also an equilibration of the fluxes occurs. To do this the following
convexity property is important.

Lemma 4.4. Let X a separable and reflexive Banach space and let F : X → R∞ be
convex and lsc. Then for the function F̃ : [0,∞[×X → R∞, we have

F̃

(
I∑
i=1

ai,

I∑
i=1

xi

)
≤

I∑
i=1

F̃(ai, xi).

If F is strictly convex then equality holds if and only if (ai, xi) = (0, 0) whenever ai = 0
or xi/ai = xj/aj whenever ai, aj > 0. Moreover, if F(0) = 0, we have the following
monotonicity property

F̃(a1, x) ≤ F̃(a2, x), if a1 ≥ a2.

Proof. Let pairs (ai, xi) for i = 1, . . . , I be given. If ai = 0, then either xi = 0 and the
claim has to be shown for I − 1 -number of pairs, or xi 6= 0 and the right-hand side is ∞
meaning that the claim is trivial. So let us assume that ai > 0 for all i = 1 . . . , I. Then
F̃(ai, xi) = aiF(xi/ai) and the claim is equivalent to

I∑
i=1

ai∑I
i=1 ai

F(xi/ai) ≥ F

(
I∑
i=1

ai∑I
i=1 ai

xi
ai

)
= F

(∑I
i=1 xi∑I
i=1 ai

)
,

which holds since F is convex. If F is strictly convex then we immediately observe that
whenever ai, aj > 0 we have xi

ai
=

xj
aj
, and whenever ai = 0 that also xi = 0.

To see the monotonicity property, we observe that F̃(a, 0) = 0 for all a ≥ 0. Hence,
we have

F̃(a1 + a2, x) ≤ F̃(a1, x) + F̃(a2, 0) = F̃(a1, x),

which proves the claim.

Recalling formula (4.3) of the effective dissipation functional DV
0 and using the above

lemma, we observe that the velocity part of the dissipation functional DV
0 can now be

estimated. In particular, we will see that the limit dissipation functional DV
0 can be

equivalently expressed in coarse-grained variables (µ̂, Ĵ) by using that an equilibration
of concentrations also provides an equilibration of the corresponding fluxes. In the
reconstruction strategy in Section 5.3 this equilibration is explicitly used (see 4.10 and
(5.3)).

Proposition 4.5. Let µ ∈ AC([0, T ], Q) with DV
0 (µ) <∞ and ess supt∈[0,T ]E(µ(t)) <∞.

Then the following holds:

1. We have DV
0 (µ) = D̂(µ̂) where µ̂ = µ1 + µ2 and

D̂(µ̂) =

∫ T

0

R̂(µ̂, ˙̂µ) + R̂∗(µ̂,−DÊ(µ̂)) dt

= inf
Ĵ : ˙̂µ+divĴ=0

{∫ T

0

∫
Ω

Q̃(δ̂V ĉ, Ĵ) +
δ̂ŵV

2

|∇ρ̂V |2

ρ̂V
dxdt

}
.
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2. The chain-rule holds for [0, T ] 3 t 7→ Ê(µ̂(t)) ∈ R, i.e. we have

d

dt
Ê(µ̂(t)) = 〈DÊ(µ̂(t)), ˙̂µ(t)〉 .

3. The gradient flow equation of the gradient system (Q̂, Ê , R̂∗) is given by

˙̂c = −div
(
δ̂V ĉ∇

(
−DÊ(µ̂)

))
= div

(
δ̂V∇ĉ+ δ̂V ĉ∇V̂

)
, (4.6)

with the potential V̂ = − log ŵV and stationary measure ŵV .

Equation (4.6) shows that the coarse-grained gradient flow equation induced by
(Q̂, Ê , R̂∗) is a drift-diffusion equation of the coarse-grained concentration ĉ with mixed
diffusion constant δ̂V . In particular, in the tilt free case we have δ̂V=const = βδ1+αδ2

α+β
, and

we recover the result of [BoH02].

Proof. To prove Part 1, we first observe that the bounded energy and dissipation for
the trajectory µ implies that we have c1

wV1
= c2

wV2
a.e. in [0, T ] × Ω. Using ĉ = c1 + c2

for the densities, we get ĉ =
wV1 +wV2
wV1

c1 =
wV1 +wV2
wV2

c2. The Fisher information SV0 (µ) :=

R∗eff(µ,−V −DE(µ)) has the form

SV0 (µ) =
1

2

∫
Ω

2∑
j=1

δjw
V
j

∣∣∇ρVj ∣∣2
ρVj

dx =
1

2

∫
Ω

(
δ1w

V
1 + δ2w

V
2

wV1 + wV2

)(
wV1 + wV2

) |∇ρ̂V |2
ρ̂V

dx (4.7)

=
1

2

∫
Ω

δ̂V ŵV
|∇ρ̂V |2

ρ̂V
dx = R̂∗(µ̂,−DÊ(µ̂)). (4.8)

Lemma 4.4 provides that also an equilibration of the fluxes occurs. Indeed, defining
the coarse-grained flux Ĵ = J1 + J2, we conclude

|J1|2

δ1c1

+
|J2|2

δ2c2

≥ |J1 + J2|2

δ1c1 + δ2c2

=
|Ĵ |2

δ1wV1 +δ2wV2
wV1 +wV2

ĉ
=
|Ĵ |2

δ̂ĉ
, (4.9)

where δ̂V :=
δ1wV1 +δ2wV2
wV1 +wV2

. Equality holds if and only if (J1, c1) = 0 or (J2, c2) = 0 or

J1/δ1c1 = J2/δ2c2 = Ĵ/δ̂V ĉ. The last condition is equivalent to

Ĵ =
δ1w

V
1

δ1wV1 + δ2wV2
J1 =

δ2w
V
2

δ1wV1 + δ2wV2
J2 , (4.10)

which provides an explicit formula for the coarse-grained diffusion flux.
For the dissipation functional that means

DV
0 (µ) = inf

(c,J,b)∈(gCE)

∫ T

0

{∫
Ω

2∑
j=1

Q̃(δjcj, Jj)dx+
1

2

∫
Ω

2∑
j=1

δjw
V
j

|∇ρj|2

ρj
dx

}
dt

≥ inf
˙̂c+divĴ=0

∫ T

0

{∫
Ω

Q̃
(
δ̂ĉ, Ĵ

)
dx+

1

2

∫
Ω

δ̂ŵV
|∇ρ̂|2

ρ̂
dx

}
dt. (4.11)
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To prove equality, we first observe that Ĵ , J1, J2 satisfy the same boundary conditions.
Moreover, the explicitly derived reaction flux b1, b2 from (5.3) shows that the recon-
structed fluxes (J1, J2) from coarse-grained flux Ĵ is admissible. Hence, we obtain equal-
ity

DV
0 (µ) = inf

˙̂c+divĴ=0

∫ T

0

{
1

2

∫
Ω

Q
(
δ̂ĉ, Ĵ

)
dx+

1

2

∫
Ω

δ̂ŵV
|∇ρ̂|2

ρ̂
dx

}
dt,

which proves the first part.
For the chain-rule in Part 2, we refer to the proof [FrL21, Lem 4.8] since we consider

the pure diffusive situation. The proof uses a time-regularization argument and convexity
of the Fisher-information following the ideas of [MRS13, Prop. 2.4].

For Part 3, we compute the evolution equation that is induced by the gradient system
is (Q̂, Ê , R̂∗). We have

∂ξ̂R̂
∗(µ̂, ξ̂) = −div

(
δ̂V ĉ∇ξ̂

)
,

DÊ(µ̂) = log µ̂+ 1− log ŵV − logZ,

∇
(
−DÊ(µ̂)

)
= −∇µ̂

µ̂
+
∇ŵV

ŵV
= −∇µ̂

µ̂
−∇V̂ ,

which results in

ĉ = −div
(
δ̂V ĉ∇ (−DE(µ̂))

)
= div

(
δ̂V∇ĉ+ δ̂V ĉ∇V̂

)
.

Note that the coarse-grained gradient flow equation (4.6) is equivalent to the gradient
flow equation with Lagrange multipliers (4.4). Indeed, adding both equations in (4.4)
together and using that the original concentrations can be expressed by the coarse-
grained concentrations via

ci =
wie

−Vi

w1e−V1 + w2e−V2
ĉ, (4.12)

the coarse-grained gradient flow equation (4.6) with the drift term δ̂V ĉ∇V̂ can be readily
derived. Conversely, using (4.12), we see that c = (c1, c2) are on the slow manifold and
satisfy (4.4). The corresponding Lagrange multipliers λ = (λ1, λ2) can be explicitly
calculated. Introducing the difference of the diffusion constants δ = δ1 − δ2 and the
potentials V = V1 − V2, we have

λ1 =
w2e−V2

w1e−V1 + w2e−V2

(
−δ∆c1 +

(
δ2∇V − δ∇V1

)
· ∇c1 + c1

{
δ2∇V ∇V1 − δ∆V1

})
λ2 =

w1e−V1

w1e−V1 + w2e−V2

(
δ∆c2 +

(
−δ1∇V + δ∇V2

)
· ∇c2 + c2

{
−δ1∇V ∇V2 + δ∆V2

})
.

We observe that the Lagrange multiplier λi has the same regularity as the right-hand side
of the evolution of ci. Moreover, both evolution equations are completely uncoupled but
contain a linear annihilation/creation term, which depends on the potential V = (V1, V2)
and the diffusion coefficient δ = (δ1, δ2). A lengthy calculation shows that indeed we
have λ1 + λ2 = 0.
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5 Proof of Γ-convergence

In this section we prove the Γ-convergence result of Theorem 4.2. As usual, we prove Γ-
convergence in three steps: First deriving compactness, secondly establishing the liminf-
estimate by exploiting the compactness, thirdly constructing the recovery sequence for
the limsup-estimate.

In the following the next lemma will be useful.

Lemma 5.1. Let F : Rk → [0,∞[ be a convex, lsc. function of superlinear growth, i.e.
F(r)/r → ∞ as r → ∞. Then there is a constant kF > 0 such that for any measurable
functions W : Ω→ Rk and ρ : Ω→ R≥0 it holds∫

Ω

|W |dx ≤
∫

Ω

F̃(ρ,W )dx+ kF

∫
Ω

ρdx .

Proof. Let W and ρ be given. We define three measurable subsets of Ω:

Ω0 = {x : ρ(x) = 0}, Ω1 = {x : ρ 6= 0, 1
ρ
|W | ≤ F(1

ρ
W )}, Ω2 = {x : ρ 6= 0, 1

ρ
|W |>F(1

ρ
W )}.

Since F is superlinear, there is a constant kF > 0 such that on Ω2 it holds W/ρ ≤ kF.
Hence we can estimate∫

Ω

|W |dx ≤
∫

Ω0

|W |dx+

∫
Ω1

|W |
ρ
ρdx+

∫
Ω2

|W |
ρ
ρdx

≤
∫

Ω0

F̃(ρ,W )dx+

∫
Ω1

F(1
ρ
W )ρdx+ kF

∫
Ω2

ρdx

≤
∫

Ω

F̃(ρ,W )dx+ kF

∫
Ω

ρdx .

Moreover, we need the following classical lemma. It guarantees the necessary regu-
larity for the limits, and moreover, it provides the desired liminf-estimate.

Lemma 5.2 (AGS05-Lemma 9.4.3, [AGS05]). Let F : [0,∞[→ [0,∞] be a proper, lsc,
convex function with superlinear growth. We define the related functional

F(µ, γ) =

{∫
A
F (dµ

dγ
)dγ, if µ� γ,

∞, otherwise.

Let µε, γε ∈ Prob(A) be two sequences with µε
∗
⇀ µ0 and γε

∗
⇀ γ0. Then

lim inf
ε→0

F(µε, γε) ≥ F(µ0, γ0).

In particular, if the left-hand side is finite then for the limits it holds µ0 � γ0.

5.1 Compactness

In this section, we derive the required compactness for proving the liminf-estimate in
Section 5.2.
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Recall that for given potential V ∈ C1(Ω,R2) the dissipation functional DV
ε is de-

fined on the space of trajectories equipped with the weak topology, i.e. µε → µ0 ∈
L∞w ([0, T ], Q) if and only if it holds

∀i ∈ {1, 2} , ∀φ ∈ C∞0 (Ω× [0, T ]) :

∫ T

0

∫
Ω

φdµεi (x)dt→
∫ T

0

∫
Ω

φdµ0
i (x)dt .

In the following we want to derive compactness for a sequence (µε)ε>0 of trajectories,
satisfying the a priori bounds

sup
ε>0

ess sup
t∈[0,T ]

E(µε(t)) ≤ C, sup
ε>0

DV
ε (µε) ≤ C, (5.1)

where the total dissipation functional is

DV
ε (µ) =

{∫ T
0
Rε(µ, µ̇) +R∗ε(µ,−DEV (µ))dt, µ ∈ AC([0, T ], Q), µ = c dx a.e. in [0, T ]

∞ otherwise,

and for µ = c dx we have∫ T

0

Rε(µ, µ̇) +R∗ε(µ,−V −DE(µ))dt

= inf
(c,J,b)∈(gCE)

{∫ T

0

{∫
Ω

2∑
j=1

Q̃ (δjcj, Jj) dx+

∫
Ω

C̃

(√
c1c2

ε
, b2(x)

)
dx

}
dt

}
+,

+

∫ T

0

1

2

∫
Ω

2∑
j=1

δjw
V
j

∣∣∇ρVj ∣∣2
ρVj

dx+
2

ε

∫
Ω

√
wV1 w

V
2

(√
ρV1 −

√
ρV2

)2

dx dt . (5.2)

Using the bound of the dissipation functional DV
ε (µε) ≤ C, we conclude that there are

diffusive fluxes Jε = (Jε1 , J
ε
2) and reaction fluxes bε = (bε1, b

ε
2) such that Jεi ∈ M(Ω,Rd),

bεi ∈M(Ω,R) and (µε, Jε, bε) satisfies the continuity equation

(c, J, b) ∈ (gCE) ⇔
{
b1 + b2 = 0 and

{
ċ1 = −divJ1 + b1

ċ2 = −divJ2 + b2

}}
.

Moreover, we get bounds:

i = 1, 2 :

∫ T

0

∫
Ω

|∇ρV,εi |2

ρV,εi
dxdt ≤ C,

∫ T

0

∫
Ω

Q̃ (cεi , J
ε
i ) dxdt ≤ C,∫ T

0

∫
Ω

C̃

(√
cε1c

ε
2

ε
, bε2(x)

)
dxdt ≤ C,

1

ε

∫ T

0

∫
Ω

(√
ρV,ε1 −

√
ρV,ε2

)2

dxdt ≤ C .

Remark 5.3. Following [Man07] a distributional solution (µ, J,B) of the generalized con-

tinuity equation µ̇ = −divJ + B satisfying
∫ T

0

∫
Ω
|B| + |J |dx < ∞ can be assumed to

be absolutely continuous. The bounds can be obtained easily using Lemma 5.1 for fixed
ε > 0.

Although the functional is convex in the concentration c and in the fluxes J and
b, weak convergence would be sufficient to prove a liminf-estimate using a Joffe-type
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argument. But, comparing the situation with the evolution equation, we aim in proving
even strong convergence for the densities cε → c0 in L1([0, T ] × Ω,R2

≥0). This is done
in two steps: First, compactness of coarse-grained variables, and secondly, convergence
towards the slow manifold is shown, which together implies strong compactness. This
strategy has successfully been applied already in the space-independent case in [MiS20,
MPS20]. Moreover, we show that the limit trajectory µ0 = c0dx has a representative
which is in AC([0, T ], Q). Note that it is not possible to prove pointwise convergence

µε(t)
∗
⇀ µ0(t) for all t ∈ [0, T ]. Instead, pointwise convergence is only shown for the

coarse-grained variables µ̂ε := µε1 + µε2.
First, we derive weak compactness in space-time, which immediately follows from the

uniform bound in ε and time on the energy.

Lemma 5.4 (Very Weak compactness in space-time). Let (µε)ε>0, µε ∈ L∞w ([0, T ], Q)
satisfy supε>0 ess sup

t∈[0,T ]

E(µε(t)) ≤ C. Then for a.e. t ∈ [0, T ] the measure µε(t, ·) has a

Lebesgue density cε(t, ·). Moreover, there is a subsequence (not relabeled), such that their
densities cε are uniformly integrable in Ω× [0, T ]×{1, 2} and hence, cεi converges weakly
in L1([0, T ]× Ω) to c0

i for i = 1, 2.

Proof. The bound on the energy implies that a.e. t ∈ [0, T ] the measure µε(t, ·) has a

Lebesgue density cε(t, ·). Moreover, the functional µ 7→
∫ T

0
E(µ)dt is superlinear and

convex. Hence, it follows by the Theorem of de Valleé -Poussin that µε are uniformly
integrable and hence, µεi converges weakly in L1([0, T ]× Ω) to µ0

i .

In the following, we are going to derive compactness for the concentrations cεi and
the diffusive fluxes Jεi . It is not possible to get compactness for the fast reaction flux
bε2 by bounding the dissipation functional. In particular, pointwise convergence for the
measures µε(t) cannot be achieved.

Remark 5.5. To see that compactness for the fast reaction flux bε2 is not possible obtain,
we set ρε = 1 constant in [0, T ]× Ω× {1, 2} and bε2 = bε constant in [0, T ]× Ω. Then, a
bound means on the dissipation functional implies a bound

∞ >

∫ T

0

∫
Ω

C

(√
cε1c

ε
2

ε
, bε2(x)

)
dx ≈ C(

1

ε
, bε) =

1

ε
C(εbε) ≈ |bε| log(ε|bε|+ 1).

Setting bε = − log ε, we easily see that |bε| log(ε|bε| + 1) → 0 as ε → 0, however,
bε → ∞. Hence, it is not possible to obtain compactness for the fast reaction flux bεi .
Later in Lemma 5.14 the “converse” statement is proved: If

∫∫
C(b)dxdt < ∞ then∫∫

C(1
ε
, b)dxdt→ 0.

Next, we are going to derive time-regularity for the sequence (µε)ε>0 in proving
compactness for the coarse-grained trajectories µ̂ε = µε1 + µε2. In particular, we are able
to prove pointwise convergence in time.

Lemma 5.6 (Time Regularity of µε). Let (µε)ε>0, µε ∈ L∞w ([0, T ], Q) satisfying the a
priori bounds (5.1). Then the curves t 7→ µ̂ε := µε1(t) + µε2(t) have ε-uniform bounded
total variation in the space Prob(Ω) equipped with the 1-Wasserstein distance, i.e.

‖µ̂ε‖TV := sup

{
K∑
k=1

W1(µ̂ε(tk), µ̂
ε(tk−1)) : 0 = t0 < · · · < tk < · · · < tK = T

}
.
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In particular, by Helly’s selection principle, we conclude pointwise convergence µ̂ε(t) :=

µε1(t) + µε2(t)
∗
⇀ µ̂0(t) := µ0

1(t) + µ0
2(t) for all t ∈ [0, T ] in Prob(Ω) along a suitable

subsequence.

Proof. We exploit the dual formulation of the L1-Wasserstein distance, i.e. integrat-
ing against Lipschitz functions (see e.g. [AGS05]). Take φ ∈ C1(Ω × {1, 2}) with
‖φ‖W1,∞(Ω) ≤ 1 and φ = (φ̂, φ̂). Using the continuity equations{

b1 + b2 = 0 and

{
ċ1 = −divJ1 + b1

ċ2 = −divJ2 + b2

}}
,

we conclude for all [t1, t2] ⊂ [0, T ] that∫
Ω

φ · (dµε(t2)− dµε(t1)) =

∫ t2

t1

〈φ, µ̇ε〉dt

≤
∫ t2

t1

∫
Ω

∇φ̂ · (Jε1 + Jε2) dx dt ≤
∫ t2

t1

∫
Ω

2∑
i=1

|Jεi | dx dt.

By the bound on the dissipation functional, we obtain ε-uniform bounds on the term∫ t2
t1

∫
Ω
Q(δjcj, Jj)dxdt. Moreover, we have

∫
Ω
ρεj ≤ 1 for all t ∈ [0, T ]. Hence by Lemma

5.1 we conclude an ε-uniform bound on each addend
∫ t2
t1

∫
Ω

∑2
i=1 |Jεi | dx dt, which by

summing up implies that ‖µ̂ε‖TV is ε-uniformly bounded.

Next, the compactness result from Lemma 5.2 is used in order to prove compactness
for the fluxes and spatial regularity.

Lemma 5.7 (Regularity for the fluxes and spatial regularity). Let (µε)ε>0 with µε ∈
L∞w ([0, T ], Q) satisfying the a priori bounds (5.1). Then the corresponding diffusive fluxes

Jε : [0, T ]×Ω→ R2 converge weakly-star Jε
∗
⇀ J0 inM([0, T ]×Ω×{1, 2}) and J0

j � µ0
j .

Moreover ∇ρV,ε ∗
⇀ ∇ρV,0 in M([0, T ] × Ω × {1, 2}) and ∇ρ0

j � µ0
j . In particular, we

conclude that ρεj is uniformly bounded in L1([0, T ],W1,1(Ω)), which also implies that ĉε

is uniformly in L1([0, T ],W1,1(Ω)).

Proof. By the bound on the dissipation functional, we get (after extracting a suitable

subsequence of ε→ 0) that Jε
∗
⇀ J0. Moreover, we have

∫ T
0

∫
Ω

|Jεj |2

ρεj
dx ≤ C and ρεj

∗
⇀ ρ0

j

. Hence applying the Lemma 5.2, we conclude that J0
j � µ0

j . Similarly, we conclude
compactness for the gradients ∇ρV,ε. The only thing that remains is to identify the limit.
But this is clear by definition of the weak derivatives, i.e. integrating against smooth
test functions, because this is captured in the weak star convergence. Lemma 5.1 implies
that ρεj is uniformly bounded in L1([0, T ],W1,1(Ω)).

The spatial regularity and the temporal regularity provides a compactness result by
a BV-generalization of the Aubin-Lions-Simon Lemma.

Theorem 5.8 ([BaP86, HPR18]). Let X, Y, Z be Banach spaces such that X is compactly
embedded in Y , and Y is continuously in Z∗. Let uε be a bounded sequence in L1([0, T ], X)
and in BV ([0, T ], Z∗). Then (up to a sequence) uε strongly converges in L1([0, T ], Y ).

In our situation we immediately conclude that ĉε converges strongly.
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Corollary 5.9 (Strong convergence of coarse-grained variables). Let (µε)ε>0 with µε ∈
L∞w ([0, T ], Q) satisfying the a priori bounds (5.1). Then the coarse-grained densities ĉε

converge strongly in L1([0, T ]× Ω).

Proof. Lemma 5.6 provides that ĉε is bounded in BV ([0, T ],W1,∞(Ω)∗) and Lemma 5.7
provides that ĉε is bounded in L1([0, T ],W1,1(Ω)). Since the embedding W1,1(Ω) ⊂ L1(Ω)
is compact and the embedding L1(Ω) ⊂W1,∞(Ω)∗ is continuous, Theorem 5.8 yields that
the sequence ĉε is compact in L1([0, T ]× Ω).

It is also clear that we get convergence towards the fast manifold, which results from
the Fisher information of the fast reaction.

Lemma 5.10 (Convergence towards microscopic equilibrium and strong compactness).
Let (µε)ε>0, µε ∈ L∞w ([0, T ], Q) satisfying the a priori bounds (5.1). Then there is a
subsequence such that cε → c0 strongly in L1([0, T ]×Ω) and, moreover, it holds ρV,01 = ρV,02

a.e. in [0, T ]× Ω.

Proof. The bound on the dissipation functional provides
∫ T

0

∫
Ω

(√
ρV,ε1 −

√
ρV,ε2

)2

dxdt ≤

Cε. Hence, we conclude ‖
√
ρV,ε1 −

√
ρV,ε2 ‖L2([0,T ]×Ω) → 0 as ε → 0. In particular, we

conclude that ρV,01 = ρV,02 . The strong convergence towards the slow manifold provides
strong convergence for the whole sequence. Indeed, using Cauchy-Schwartz inequality
and x− y =

(√
x−√y

) (√
x+
√
y
)
, we have

‖ρV,ε1 − ρ
V,ε
2 ‖L1([0,T ]×Ω) ≤ ‖

√
ρV,ε1 −

√
ρV,ε2 ‖L2([0,T ]×Ω)‖

√
ρV,ε1 +

√
ρV,ε2 ‖L2([0,T ]×Ω).

The last term can be estimated by the AM-GM inequality

‖
√
ρV,ε1 +

√
ρV,ε2 ‖2

L2([0,T ]×Ω) =

∫ T

0

∫
Ω

ρV,ε1 +ρV,ε2 +2

√
ρV,ε1 ρV,ε2 dxdt ≤ 2

∫ T

0

∫
Ω

(
ρV,ε1 + ρV,ε2

)
dxdt,

and the right-hand side is bounded since µ(t) ∈ Q for t ∈ [0, T ]. Hence, we conclude
that ‖ρV,ε1 − ρ

V,ε
2 ‖L1([0,T ]×Ω) → 0 as ε→ 0.

Using this convergence, we have that also cεi → c0
i strongly in L1([0, T ]×Ω). Indeed,

we have

cεi − wVi
c0

1 + c0
2

wV1 + wV2
= wVi

(
cεi
wVi
− c0

1 + c0
2

wV1 + wV2

)
= wVi

(
cεi
wVi
− cε1 + cε2
wV1 + wV2

+
cε1 + cε2
wV1 + wV2

− c0
1 + c0

2

wV1 + wV2

)

= (−1)i

 cε2
wV2
− cε1

wV1

wV1 w
V
2 (wV1 + wV2 )

+
wVi

wV1 + wV2

(
cε1 + cε2 − (c0

1 + c0
2)
)
,

and both terms converge strongly to zero as ε → 0 by convergence of ĉε → ĉ0 and
ρV,ε1 − ρ

V,ε
2 → 0.

Finally, we show that the limit µ0 = c0dx has an absolutely continuous representative
in the space of probability measures. To do this, we exploit the characterization of
absolutely continuous curves as solutions of the continuity equation following [AGS05].
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Proposition 5.11. Let (µε)ε>0, µε ∈ L∞([0, T ], Q) satisfying the a priori bounds (5.1)
and let c0 be the limit of the densities cε. Then the coarse-grained slow variable µ̂ =
µ0

1 +µ0
2 = (c0

1 + c0
2) dx ∈ L∞w ([0, T ],Prob(Ω)) has a representative (in time), which is ab-

solutely continuous in the space of probability measures equipped with the 2-Wasserstein
metric. Moreover, each component µ0

i has an absolutely continuous representative (in
time), which is absolutely continuous in the space of non-negative Radon measures equipped
with the 1-Wasserstein metric.

Proof. The coarse-grained measures µ̂ε satisfy continuity equation ˙̂µε + div(Ĵε) = 0
in the sense of distributions where Ĵε = Jε1 + Jε2 is the coarse-grained diffusion flux.
Since the linear continuity equation is stable under weak convergence, we conclude that
also the limits satisfy the same continuity equation ˙̂µ0 + div(Ĵ0) = 0, where Ĵ0 is the
weak*-limit of Ĵε (see Lemma 5.7). Using (4.9), the bound on the dissipation functional

implies a bound
∫ T

0

∫
Ω
Q(ĉ0, Ĵ0)dxdt < ∞. Let us define the transport velocity v̂ ∈

M([0, T ]× Ω,R)

v̂ =

{
Ĵ
ĉ

for ĉ > 0

0 for ĉ = 0
.

Then
∫ T

0

∫
Ω
Q(ĉ, Ĵ)dxdt = 1

2

∫ T
0

∫
Ω
|v̂|2ĉdxdt = 1

2

∫ T
0

∫
Ω
|v̂|2dµ̂dt and the bound on the dis-

sipation functional implies the bound on the Borel velocity field ‖v̂‖L2(µ̂) <∞. Hence, by
Theorem 8.3.1 from [AGS05] it follows that t 7→ µ̂(t) ∈ (Prob(Ω), dW2) has a continuous
representative which is absolutely continuous.

To prove time-regularity for µ0
i for i = 1, 2, we first observe that µ0

i =
wVi

wV1 +wV2
µ̂ is a

non-negative Radon measure. To show that it has an absolutely continuous representa-
tive, we proceed as in Lemma 5.6 and exploit the dual formulation of the 1-Wasserstein
distance on the space of non-negative Radon measures, i.e. integrating against Lipschitz
functions (see e.g. [Edw11]). Let φ ∈ C1(Ω) with ‖φ‖W1,∞(Ω) ≤ 1. Using the continuity

equations ˙̂µ0 + div(Ĵ0) = 0, we conclude for all [t1, t2] ⊂ [0, T ] that∫
Ω

φ · (dµ0
i (t2)− dµ0

i (t1)) =

∫ t2

t1

〈φ, µ̇0
i 〉dt =

∫ t2

t1

〈φ wVi
wV1 + wV2

, ˙̂µ〉dt

≤
∫ t2

t1

∫
Ω

∇
(
φ

wVi
wV1 + wV2

)
· Ĵ dx dt ≤ C

∫ t2

t1

∫
Ω

|Ĵ | dx dt,

where C = C(w, V ). The bound on the dissipation functional provides again that the
right-hand side is bounded for each interval [t1, t2] ⊂ [0, T ]. Summing up, we conclude
that µ0

i has an absolutely continuous representative, which proves the claim.

5.2 Liminf-estimate

In this section, we state and prove the liminf-estimate of the Γ-convergence result The-
orem 4.2. Once the compactness is established the proof of the liminf-estimate is com-
paratively easy.

Theorem 5.12. Let µε → µ0 in L∞w([0, T ], Q) such that supε∈]0,1] supt∈[0,T ] E(µε) <∞.
Then, we have the liminf-estimate

lim inf
ε→0

Dε(µ
ε) ≥ D0(µ0),
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where the limit dissipation functional is defined by

DV
0 (µ) =

{∫ T
0
Reff(µ, µ̇) +R∗eff(µ,−DEV (µ))dt, µ ∈AC([0, T ], Q), µ = c dx a.e. in [0, T ]

∞ otherwise

with

R∗eff(µ, ξ) = R∗diff(µ, ξ) + χ{ξ1=ξ2}(ξ)

Reff(µ, v) = inf

{
2∑
j=1

∫
Ω

Q̃(δjcj, Jj)dx : u1 + u2 = 0,

{
v1 = −divJ1 + u1

v2 = −divJ2 + u2

}}
.

Proof. We may assume that Dε(µ
ε) ≤ C < ∞ (otherwise the claim is trivial). For the

given curves t 7→ µε(t) ∈ Q take diffusive fluxes Jε and reactive fluxes bε, which satisfy
the generalized continuity equation

(c, J, b) ∈ (gCE) ⇔
{
b1 + b2 = 0 and

{
ċ1 = −divJ1 + b1

ċ2 = −divJ2 + b2

}}
,

and approximate the infimum in Dε(µ
ε) arbitrarily close, i.e.

Dε(µε) + ε ≥
∫ T

0

Dε(µε, Jε, bε)dt.

The integrand Dε consists of a velocity and a slope part and both of them split into a
reaction and a diffusion part:

Dε(µ, J, b) =

∫
Ω

2∑
j=1

Q̃ (δjcj, Jj) dx+

∫
Ω

C̃

(√
c1c2

ε
, b2(x)

)
dx+

+
1

2

∫
Ω

2∑
j=1

δjw
V
j

∣∣∇ρVj ∣∣2
ρVj

dx+
2

ε

∫
Ω

√
wV1 w

V
2

(√
ρV1 −

√
ρV2

)2

dx

=:Vdiff(µ, J) + Vreact,ε(µ, b) + Sdiff(µ) + Sreact,ε(µ) .

Clearly, we also have
∫ T

0
Dε(µε, Jε, bε)dt ≤ C + ε <∞. By Lemma 5.10, we conclude

compactness for the densities cε → c0 in L1([0, T ]× Ω× {1, 2}) and by Lemma 5.7 that

Jε
∗
⇀ J0 in M([0, T ] × Ω × {1, 2}). Using the lower-semicontinuity result from Lemma

5.2 (which implies the liminf-estimates for Vdiff and Sdiff) and that Vreact,ε,Sreact,ε ≥ 0,
we obtain the estimate

lim inf
ε→0

∫ T

0

Dε(µε)dt ≥
∫ T

0

{∫
Ω

2∑
j=1

Q̃(δjc
0
j , J

0
j )dx+

1

2

∫
Ω

2∑
j=1

δjw
V
j

|∇ρ0
j |2

ρ0
j

dx

}
dt.

Let us define Aεi = ċεi + divJεi . We conclude convergence for Aεi → A0
i in the sense of

distributions, and, moreover, we have Aε1 + Aε2 → ċ0
1 + ċ0

2 + divJ0
1 + divJ0

2 = 0. Let us
define u1 := A2

0 = ċ0
2 + divJ0

2 and u2 := A1
0 = ċ0

1 + divJ0
1 . Then u1 + u2 = 0, A0

1 + u1 = 0
and A0

2 + u2 = 0. In particular, we conclude the pointwise estimate∫
Ω

2∑
j=1

Q̃(δjc
0
j , J

0
j )dx ≥ inf

(J,u)


∫

Ω

2∑
j=1

Q̃(δjc
0
j , J

0
j )dx :


ċ1 + divJ1 + u1 = 0
ċ2 + divJ2 + u2 = 0

u1 + u2 = 0


 ,
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which finally establishes the liminf-estimate

lim inf
ε→0

∫ T

0

Dε(µε)dt ≥ DV
0 (µ).

5.3 Construction of the recovery sequence

In this section, we construct the recovery sequence for the functional DV
0 to finish the

Γ-convergence result in Theorem 4.2. To be precise, we will show the following:

Theorem 5.13. Let µ0 ∈ L∞w ([0, T ]×Ω,R2
≥0) such that the a priori bounds DV

0 (µ0) <∞
and ess supt∈[0,T ]E(µ0(t)) <∞ hold. Then there is a sequence (µε)ε>0, µε ∈ AC([0, T ], Q),
supε>0 ess supt∈[0,T ]E(µε(t)) < ∞, such that the densities converge cε → c0 strongly in

L1([0, T ]× Ω× {1, 2}) and we have DV
ε (µε)→ DV

0 (µ0).

Using Proposition 4.5, we see that the limit functionals do not contain more infor-
mation than the functionals in coarse-grained variables and it holds DV

0 (µ0) = D̂(µ̂0).
Hence, we may reconstruct the dissipation functional with the corresponding diffusion
and reaction flux (J, b) from the coarse-grained variables (ĉ, Ĵ).

The dissipation functional DV
0 is defined on the space of general fluctuations around

the solution of the evolution equation (1.2). These fluctuations are neither strictly pos-
itive nor smooth. The proof of the limsup-estimate is done in several steps, which are
elaborated in the next lemmas. The bound DV

0 (µ0) < ∞ can be assumed without loss
of generality because the other case is already treated in the liminf-estimate.

Proof of Theorem 5.13. We do the reconstruction in three steps using different approx-
imation methods. We will do the following steps:

1. Proposition 5.21 shows that for µ0 = c0dx with sufficiently smooth and positive
density c0 the constant sequence µε,γ = µ0 satisfies |Dε(µ

ε,γ)−D0(µε,γ)| → 0.

2. Lemma 5.15 overcomes the positivity assumption, i.e. it shows that for all µ0 =
c0dx there is a positive cγ such that cγ → c0 and D0(µγ)→ D0(µ0) as γ → 0.

3. A mollification argument as in [AGS05, Lemma 8.1.10] and stated in Lemma 5.20
allows us to overcome regularity by smoothing, which shows D0(µε,γ)→ D0(µγ) as
ε→ 0.

Hence, defining the recovery sequence µε := µε,γ , we have∣∣Dε(µ
ε)−D0(µ0)

∣∣ ≤ |Dε(µ
ε,γ)−D0(µε,γ)|+ |D0(µε,γ)−D0(µγ)|+

∣∣D0(µγ)−D0(µ0)
∣∣ ,

where the first term tends to zero by the first reconstruction step, the second term tends
to zero by the third reconstruction step and the third term tends to zero by the second
reconstruction step, which in total proves the desired convergence.

Before performing the three recovery steps in Section 5.3.2, we first illustrate the
general idea of constructing the recovery sequence by forgetting about positivity and
regularity issues for the first moment.
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5.3.1 Construction of recovery sequence for smooth and positive measures

To show the general idea, let us firstly assume that the density of µ̂ is sufficiently smooth
and positive, i.e. we assume that its Lebesgue density satisfies ĉ ≥ 1

C
> 0 on Ω × [0, T ]

and has a enough regularity that will be specified below. Let Ĵ be the diffusion flux
which provides the minimum in D̂(µ̂0) = DV

0 (µ) and satisfies ˙̂c+ div(Ĵ) = 0. We define
the reconstructed variables by

c1 =
wV1

wV1 + wV2
ĉ, c2 =

wV2
wV1 + wV2

ĉ, J1 =
δ1w

V
1

δ1wV1 + δ2wV2
Ĵ , J2 =

δ2w
V
2

δ1wV1 + δ2wV2
Ĵ .

b1 =

(
δ1 − δ2

δ1wV1 + δ2wV2

wV1 w
V
2

wV1 + wV2

)
divĴ + Ĵ · ∇

(
δ1w

V
1

δ1wV1 + δ2wV2

)
, b2 = −b1. (5.3)

The reconstructed concentrations c and diffusion fluxes J = (J1, J2) are proportional
to the coarse grained concentration ĉ and diffusion flux Ĵ , respectively. On the coarse-
grained level, which considers only one species there is no reaction flux anymore. (This
changes when considering large reaction-diffusion system as explained in Section 6). The
reactive flux b = (b1, b2) is given as a function of the coarse-grained diffusion flux Ĵ , which
means that in the limit the diffusion determines the hidden reaction.

Concerning regularity issues, we immediately observe the following. Since wV is
smooth and positive, c1, c2 have the same regularity as ĉ and also J1, J2 have the same
regularity as Ĵ . Only the reaction fluxes bi are a priori not well-defined (e.g. in L1)
if divĴ and Ĵ are not regular enough. This means, that the reaction flux between the
fast-connected species is not well-defined for general Ĵ ∈ M(Ω× [0, T ],R3). Note, that
regularity assumptions for divĴ are not needed if δ1 = δ2, i.e. if both species diffuse with
the same diffusion constant. In particular, in this situation no regularization argument
as in Lemma 5.20 is necessary. Moreover, no additional regularity for Ĵ is needed if

δ1wV1
δ1wV1 +δ2wV2

= θ ∈ ]0, 1[ is constant. This is equivalent to

V1(x)− V2(x) = log

(
1− θ
θ

δ1

δ2

β

α

)
= const,

which means that the potentials V1, V2 differ in a constant on Ω. In particular, this
implies that for the coarse-grained potential V̂ we have ∇V̂ = ∇V1 = ∇V2. As we
will see, enough regularity for Ĵ is already obtained from bounds on the dissipation
functional. Of course, regularity properties for divĴ and Ĵ are independent of each
other.

So let us assume for the moment that bi is well-defined. Then we conclude (c, J, b) ∈
(gCE), because we have

ċ1 + divJ1 =
wV1

wV1 + wV2
˙̂c+ div

(
δ1w

V
1

δ1wV1 + δ2wV2
Ĵ

)
=

=
wV1

wV1 + wV2
˙̂c+ Ĵ · ∇

(
δ1w

V
1

δ1wV1 + δ2wV2

)
+

(
δ1w

V
1

δ1wV1 + δ2wV2

)
divĴ

= − wV1
wV1 + wV2

divĴ + Ĵ · ∇
(

δ1w
V
1

δ1wV1 + δ2wV2

)
+

(
δ1w

V
1

δ1wV1 + δ2wV2

)
divĴ = b1,

where we used that (ĉ, Ĵ) solves ˙̂c + divĴ = 0. Similarly, we see that ċ2 + divJ2 = b2

and, by definition, we have b1 + b2 = 0. Moreover, boundary properties of Ĵ remain for
J = (J1, J2).
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Since c1
wV1

= c2
wV2

, we conclude that DV
ε (µ) ≤ D0(µ) +

∫ T
0

∫
Ω
C̃
(√

c1c2
ε
, b2

)
dxdt. That

means, that for proving that the constant sequence µε = µ is a recovery sequence, it

suffice to show that
∫ T

0

∫
Ω
C̃
(√

c1c2
ε
, b2

)
dxdt→ 0 as ε→ 0. This is, in fact, shown in the

next lemma under the assumption that divĴ , Ĵ ∈ LC([0, T ]×Ω). The proof basically uses

the monotonicity property of the Legendre dual function C̃(a1, b) ≤ C̃(a2, b) as a1 ≥ a2

(see Lemma 4.4), its superlinear growth and the dominated convergence theorem.

Lemma 5.14. Let ĉ ∈ L1(Ω× [0, T ]) with ĉ ≥ 1
C

a.e. in [0, T ]×Ω for a constant C > 0,

and let Ĵ : Ω→ Rd satisfy divĴ , |Ĵ | ∈ LC([0, T ]× Ω). Then
∫ T

0

∫
Ω
C̃
(√

c1c2
ε
, b2

)
dxdt→ 0

as ε→ 0.

Proof. Since ĉ ≥ 1
C

a.e., Lemma 4.4 yields C̃
(√

c1c2
ε
, b2

)
≤ C̃

(
1
Cε
, b2

)
= 1

Cε
C (Cεb2).

Moreover, we have the estimate

1
2
|r| log(|r|+ 1) ≤ C(r) ≤ 2|r| log(|r|+ 1),

which implies∫ T

0

∫
Ω

C̃

(√
c1c2

ε
, b2

)
dxdt ≤ 1

Cε

∫ T

0

∫
Ω

C (Cεb2) dxdt ≤
∫ T

0

∫
Ω

2|b2| log(Cε|b2|+ 1)dxdt.

By assumption, we have that divĴ , |Ĵ | ∈ LC([0, T ]×Ω). Since V ∈ C1(Ω) and the Orlicz
space LC([0, T ] × Ω) is a Banach space, we conclude that b2 ∈ LC([0, T ] × Ω). By the
inequality for C, this implies that for ε < 1

C
, the right-hand side is bounded. We show

that (for a subsequence) the integrand converges to zero pointwise a.e. in [0, T ]×Ω. By

the dominated convergence theorem, this would imply that
∫ T

0

∫
Ω
C̃
(√

c1c2
ε
, b2

)
dxdt→ 0

as ε→ 0.
To see that the integrand converges to zero pointwise, we firstly observe that b2 ∈

LC([0, T ]× Ω) ⊂ L1([0, T ]× Ω), which means that∫ T

0

∫
Ω

log(ε|b2|+ 1)dxdt ≤ ε

∫ T

0

∫
Ω

|b2|dxdt→ 0.

Hence, (for a subsequence) log(ε|b2| + 1) converges pointwise to zero and, thus, also
|b2| log(Cε|b2|+ 1).

In fact, the above proof is quite robust and already suggests that the same convergence
holds even if ĉε → 0 not to fast somewhere in Ω× [0, T ] and ‖b2

ε‖ ≈ ε−α for some α > 0.
This is proved in Proposition 5.21.

In the following, we need to overcome the positivity assumption ĉ ≥ 1
C

and the

regularity assumption for Ĵ and divĴ . The first is done by shifting the density ĉδ :=
1
Zδ

(ĉ + δ), δ > 0; the necessary regularity of Ĵ is provided immediately by the bound

on the dissipation functional; the regularity of divĴ is achieved by smoothing using that
(ĉ, Ĵ) is a solution of the coarse-grained continuity equation ˙̂c+ divĴ = 0.

5.3.2 Auxiliary results for construction of recovery sequence for general
measures

First, we show how to overcome the positivity assumption. This is done by a controlled
positive shift.
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Lemma 5.15. For all µ0 = c0 dx satisfying DV
0 (µ0) = D̂(µ̂0) < ∞ there is a sequence

(ĉγ) of densities satisfying ĉγ ≥ γ, ĉγ → ĉ in L1([0, T ] × Ω) such that for their cor-
responding measures we have D̂(µ̂γ) = D0(µγ) → D0(µ0) = D̂(µ0) as γ → 0 and
supγ∈]0,1] ess supt∈[0,T ]E(µγ(t)) <∞.

Proof. For small γ > 0, we define ĉγ := 1
Zγ

(ĉ + 2γ) , where Zγ = 1 + 2γ|Ω| = 1 +

2γ > 0 is the normalization factor such that
∫

Ω
ĉγdx = 1. Hence, Zγ ↘ 1, ĉγ → ĉ,

supγ∈]0,1] ess supt∈[0,T ]E(µγ(t)) < ∞ and w.l.o.g. we assume that ĉγ ≥ γ. Moreover, we

define Ĵγ := 1
Zγ
Ĵ . Clearly, Ĵγ · ν = 0 on ∂Ω and (ĉγ, Ĵγ) solves the continuity equation

˙̂cγ + divĴγ = 0. We compute the terms in the dissipation functional DV
0 (µγ). We have

ρ̂V,γ = ĉγ

wV
= 1

Zγ

ĉ+2γ
wV

. Using the bounds supx∈Ω

{
∇
(
1/wV

)
, wV

}
≤ C, we get

∇ρ̂V,γ =
1

Zγ

{
∇
(

ĉ

wV

)
+ 2γ∇

(
1

wV

)}
⇒

∣∣∇ρ̂V,γ∣∣ ≤ 1

Zγ

{∣∣∇ρ̂V ∣∣+ 2γC
}

Using the estimates 1
a+δ
≤ 1

a
, 1
Zγ
≤ 1 and the inequality 2xy ≤ √γx2 + 1√

γ
y2 in the

second estimate, we get the pointwise estimate

|∇ρ̂V,γ|2

ρ̂V,γ
=

1

Zγ

(∣∣∇ρ̂V ∣∣+ 2γC
)2

ρ̂V + 2γ
wV

=
1

Zγ

∣∣∇ρ̂V ∣∣2 + 4γC
∣∣∇ρ̂V ∣∣+ 4γ2C2

ρ̂V + 2γ
wV

≤
∣∣∇ρ̂V ∣∣2
ρ̂V

+ 2
2γC

∣∣∇ρ̂V ∣∣
ρ̂V + 2γ

wV

+
4γ2C2

ρ̂V + 2γ
wV

≤
∣∣∇ρ̂V ∣∣2
ρ̂V

+
1

ρ̂V + 2γ
wV

(√
γ
∣∣∇ρ̂V ∣∣2 + 1√

γ
{2γC}2

)
+ 2γC2wV

≤
∣∣∇ρ̂V ∣∣2
ρ̂V

(1 +
√
γ) + 2

√
γwVC2(1 +

√
γ).

Hence,
∫ T

0

∫
Ω
δVwV |∇ρ̂

V,γ |2
ρ̂V,γ

dxdt→
∫ T

0

∫
Ω
δVwV |∇ρ̂

V |2
ρ̂V

dxdt as γ → 0.
Similarly, we get∫ T

0

∫
Ω

|Ĵγ|2

δ̂ĉγ
dxdt =

1

Zγ

∫ T

0

∫
Ω

|Ĵ |2

δ̂ (ĉ+ 2γ)
dxdt ≤

∫ T

0

∫
Ω

|Ĵ |2

δ̂ĉ
dxdt,

which implies that
∫ T

0

∫
Ω
Q̃(δ̂ĉγ, Ĵγ)dxdt ≤

∫ T
0

∫
Ω
Q̃(δ̂ĉ, Ĵ)dxdt. Hence, we conclude that

ĉγ ≥ γ, ĉγ → ĉ and D̂(ĉγ)→ D̂(ĉ) as γ → 0.

Next, we are going to show that the flux b1 = −b2 can be made sufficiently smooth,
i.e. at least in LC which would allow us to proceed similar as in Lemma 5.14.

Recalling the formula for the reconstructed flux, we have

b2 =

(
δ1 − δ2

δ1wV1 + δ2wV2

wV1 w
V
2

wV1 + wV2

)
divĴ + Ĵ · ∇

(
δ1w

V
1

δ1wV1 + δ2wV2

)
=: a1divĴ + Ĵ · a2

and b2 = −b1, where a1 ∈ C1(Ω,R), a2 ∈ C0(Ω,Rd) such that supx∈Ω {|a1(x)|, |a2(x)|} ≤
C. In particular, the regularity of b1 = −b2 does not depend on a1, a2. We are going
to prove that divĴ and Ĵ have enough regularity. The regularity of Ĵ follows from the
bound on the dissipation functional. The regularity of divĴ is achieved by mollification.
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First, we show that Ĵ ∈ Lp̃([0, T ] × Ω), for some p̃ > 1. Clearly, we have Ĵ ∈
L1([0, T ] × Ω) by Lemma 5.1 and the bound on the dissipation functional. To improve
the regularity of Ĵ , we firstly improve the regularity of ĉ ∈ Lp([0, T ] × Ω) which is
provided from the bound on the dissipation functional D0 and the energy functional
E . The bound on the energy yields ĉ ∈ L∞([0, T ],L1(Ω)). The bound on the Fisher-
information yields again by Lemma 5.1 that ĉ ∈ L1([0, T ],W1,1(Ω)) as in Lemma 5.7.
By the Sobolev embedding theorem, we have the compact embedding W1,1(Ω) ⊂ Lq(Ω),

where 1− 1
d
> 1

q
⇔ q < d

d−1
. Thus ĉ ∈ L∞([0, T ],L1(Ω))∩L1([0, T ],L

d
d−1 (Ω)). Using the

next classical interpolation result we get ĉ ∈ Lp([0, T ]× Ω) for some p > 1.

Theorem 5.16 (Theorem 5.1.2, [BeL76]). Let X1, X2 be Banach spaces. Then for the
complex interpolation spaces, it holds for any θ ∈]0, 1[

[Lp1([0, T ], X1),Lp2([0, T ], X2)]θ ' Lpθ([0, T ], [X, Y ]θ),

where 1
pθ

= 1−θ
p1

+ θ
p2

.

In our particular situation, we have the following.

Lemma 5.17. Let µ0 ∈ L∞w ([0, T ], Q) such that DV
0 (µ0) <∞ and ess supt∈[0,T ]E(µ0(t)) <

∞. Then the density ĉ0 is in Lp([0, T ]× Ω) with p = d+1
d
> 1.

Proof. To apply Theorem 5.16, we first observe that the Lebesgue spaces form interpo-

lation couples. In our situation we have p1 = 1, p2 = ∞, X1 = L
d
d−1 (Ω), X2 = L1(Ω).

Hence, pθ = 1
1−θ > 1. Moreover, [X, Y ]θ = [Lq(Ω),L1(Ω)]θ ' Lqθ(Ω), where 1

qθ
= 1−θ

q
+ θ

1
.

Setting pθ = qθ, we conclude 1−θ
1−2θ

= q = d
d−1

. Solving pθ = qθ for θ, we obtain θ = 1
1+d

,

and hence pθ = qθ = d+1
d
> 1. Summarizing, we conclude

ĉ ∈ L∞([0, T ],L1(Ω)) ∩ L1([0, T ],W1,1(Ω)) ⊂ L
d+1
d ([0, T ]× Ω). (5.4)

Remark 5.18. In particular, if d = 2, then ĉ ∈ L3/2([0, T ] × Ω) and if d = 3, then ĉ ∈
L4/3([0, T ]×Ω). Iterating the procedure, it is even possible to obtain ĉ ∈ L(d+2)/d(([0, T ]×
Ω)) for d ≥ 2.

Knowing integrability of ĉ, we get also better integrability of the fluxes Ĵ ∈ Lp̃([0, T ]×
Ω) for some p̃ > 1, which follows from the next lemma.

Lemma 5.19.

1. We have for all J ∈ Rd and c > 0 that

|J |2

c
+

1

p
cp ≥

(
1 +

1

p

)
|J |

2p
p+1 .

2. Let µ0 ∈ L∞w ([0, T ]×Ω,R2
≥0) such that DV

0 (µ0) <∞ and ess supt∈[0,T ]E(µ0(t)) <∞
and let Ĵ ∈ M([0, T ] × Ω,Rd) be the corresponding diffusion flux satisfying the
continuity equation. Then Ĵ ∈ Lp̃([0, T ]× Ω,Rd) for p̃ = 2d+2

2d+1
> 1.
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Proof. For proving the first part, let us define for fixed J ∈ Rd the function F :]0,∞[→
R, F (c) := |J |2

c
+ 1

p
cp. Clearly, F ≥ 0 and F (c)→∞ as c→ 0 or c→∞. We compute

the minimum. We have F ′(c) = −|J |2c−2 + cp−1 and hence the critical point is at
c0 = |J |2/(p+1). Inserting c0 into F we get F (c) ≥ F (c0) = |J |2|J |−2/(p+1) + 1

p
|J |2p/(p+1) =

(1 + 1
p
)|J |2p/(p+1), which proves the claim.

For second part, we use that by Lemma 5.17 we have ĉ ∈ Lp([0, T ]× Ω) for p = d+1
d

.

This implies by the first part that Ĵ ∈ Lp̃([0, T ]× Ω,Rd) for p̃ =
2 d+1

d
d+1
d

+1
= 2d+2

2d+1
.

To obtain regularity for the whole reaction flux b1 = −b2, we have to get regularity
also for divĴ . This is done by mollifying the solution (ĉ, Ĵ) of the continuity equation
˙̂c+divĴ = 0 in time. We already now that ĉ : [0, T ]→ Prob(Ω) is continuous by Lemma
5.11. With a slight abuse of notation, we denote by ĉ also a continuous continuation on R
such that ĉ ∈ Lp(R,Lp(Ω)). Now, we mollify in time and define ĉε(t) =

∫
R ĉ(s)ψε(t−s)ds

where ψε is a positive and symmetric mollifier. Analogously, we define Ĵ ε by convolution,
i.e. Ĵ ε(t) =

∫
R Ĵ(s)ψε(t − s)ds. Since the continuity equation is linear, the smoothed

functions (ĉε, Ĵ ε) satisfy again the continuity equation with the same no-flux boundary
conditions.

The next lemma shows that the dissipation functional can be approximated by mol-
lifying (ĉ, Ĵ). This basically uses the convexity of D̂ in (ĉ, Ĵ).

Lemma 5.20. Let µ0 ∈ L∞w ([0, T ]× Ω,R2
≥0) such that the a priori bounds DV

0 (µ0) <∞
and ess supt∈[0,T ]E(µ0(t)) < ∞ hold. Let Ĵ ∈ M([0, T ] × Ω,Rd) be the corresponding
diffusion flux satisfying the continuity equation. Let ψε : R → R be a positive and
symmetric mollifier. Define ĉε(t) =

∫
R ĉ(s)ψε(t − s)ds and Ĵ ε(t) =

∫
R Ĵ(s)ψε(t − s)ds.

Then, we have supε∈]0,1] ess supt∈[0,T ]E(µε(t)) <∞ and

∫ T

0

{∫
Ω

2∑
j=1

Q̃(δjc
ε
j, J

ε
j )dx+

1

2

∫
Ω

2∑
j=1

δjw
V
j

|∇ρεj|2

ρεj
dx

}
dt (5.5)

→
∫ T

0

{∫
Ω

2∑
j=1

Q̃(δjc
0
j , J

0
j )dx+

1

2

∫
Ω

2∑
j=1

δjw
V
j

|∇ρ0
j |2

ρ0
j

dx

}
dt,

which in particular, implies that DV
ε (µε)→ DV

0 (µ0).

Proof. The energy bound on µε is trivially satisfied. The convergence for the dissipation
functional (5.5) follows directly as the proof of Lemma 8.1.10 in [AGS05] since the
integrand is convex in (ĉ, Ĵ).

With these preparations, we are able to show the remaining step in the proof of The-
orem 5.13. The next proposition shows in analogy to Lemma 5.14 that the contribution
by the reaction flux bε2 to the dissipation functional DV

ε converges to zero as ε→ 0.

Proposition 5.21. Let µ0 ∈ L∞w ([0, T ] × Ω,R2
≥0) such that DV

0 (µ0) = D̂0(µ̂) < ∞ and

ess supt∈[0,T ]E(µ0(t)) < ∞ and let Ĵ ∈ M([0, T ] × Ω,Rd) be the corresponding diffusion
flux satisfying the continuity equation. Let ψε : R → R be a positive and symmetric
mollifier, which is specified below. Let ĉε, Ĵ ε the mollified functions as in Lemma 5.20
and ĉε,γ , Ĵ ε,γ the mollified and shifted functions as in Lemma 5.15.
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Let ψε be such that ‖ ˙̂cε‖Lp̃([0,T ]×Ω) .
1
εα

and γ ≥ Cε1−λ for ε → 0 , where p̃ is the
integrability exponent of the fluxes as in Lemma 5.19, C > 0 is a positive constant and
λ ∈ [0, 1[, α ∈ [0, 1] satisfies the inequality d + 1 ≤ λ

2α
. Then, we have |Dε(µ

ε,γ) −
D0(µε,γ)| → 0.

Proof. First, we observe that for given ĉ such a mollifier and these constants α, λ satis-
fying all the conditions can be easily constructed.

To prove the convergence, we follow the same strategy as in the proof of Lemma 5.14.
Defining the reconstructed concentrations and fluxes as in (5.3), we observe that

|Dε(µ
ε,γ)−D0(µε,γ)| ≤

∫ T

0

∫
Ω

C̃

(√
cε,γ1 cε,γ2

ε
, bε,γ2

)
dxdt .

Using the bound from below on ĉε, and the inequality log(x + 1) ≤ Cp̃x
p̃−1, we get the

estimate

C̃

(√
cε,γ1 cε,γ2

ε
, bε,γ2

)
≤ C̃

(
Cε−λ, bε,γ2

)
≤ Cε−λC

(
C−1ελbε,γ2

)
≤ 2Cε−λ|bε,γ2 |C−1ελ log

(
C−1ελ|bε,γ2 |+ 1

)
≤ 2Cp̃|bε,γ2 |C−p̃+1ελ(p̃−1)|bε,γ2 |p̃−1 ≤ C̃|bε,γ2 |p̃ελ(p̃−1),

where C̃ = C̃(Cp̃, C). By ‖ċε‖Lp̃([0,T ]×Ω) .
1
εα

, we conclude that ‖divĴ ε‖p̃ . 1
εα

, and by

Lemma 5.19, we have Ĵ ε ∈ Lp̃([0, T ]×Ω). Together this implies that ‖bε2‖Lp̃([0,T ]×Ω) .
1
εα

.
Hence, we get

|Dε(µ
ε,γ)−D0(µε,γ)| . ελ(p̃−1)ε−p̃α = ε−

1
2d+1

{(2d+2)α−λ}.

Choosing, λ, α ∈ [0, 1[ such that d + 1 ≤ λ
2α

, we conclude that the right-hand side
converges to zero, which proves the claim.

6 Remarks for reaction-diffusion systems involving

more species

In the last section, we comment on linear reaction-diffusion systems involving more
species. The evolution equation for concentrations c ∈ RI

≥0, I ∈ N is given by

ċ = diag(δ1, . . . , δI)∆c+ Aεc

where Aε = AS + 1
ε
AF is a Markov generator (preserving positivity and total mass),

which consists of a slow part and a fast part. The main assumption is the Aεsatisfies
detailed balance with respect to its stationary measure wε. Similar to [MiS20, MPS20],
we are going to assume that the stationary vector wε satisfies wε → w0 as ε → 0 and
that w0 > 0. The positivity of the limit stationary measure w0 means that in the limit
the evolution respects all concentrations ci and is not degenerate.

The gradient structure is defined on the state space

Q = Prob(Ω× {1, · · · , I}) := {µ = (µ1, . . . , µI) ∈ RI : µi ∈M(Ω), µi ≥ 0, µi(Ω) = 1}.
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The driving energy functional Eε : X → R∞ has the form

Eε(µ) =

{∫
Ω

∑I
j=1 EB

(
cj
wεj

)
wεjdx, if µ = c dx

∞, otherwise.
,

and the dual dissipation potential splits into two parts

R∗(µ, ξ) = R∗diff(µ, ξ) +R∗react(µ, ξ)

R∗diff(µ, ξ) =
1

2

∫
Ω

I∑
j=1

δj|∇ξj(x)|2dµj, R∗react,ε(µ, ξ) =

∫
Ω

∑
i<j

κεijC
∗(ξi(x)− ξj(x)) d

√
µiµj,

where κεij := Aεij

(
wεj
wεi

)1/2

. In particular, the reaction part of the dissipation potential

splits into a fast part and a slow part

R∗react,ε(µ, ξ) = R∗slow,ε(µ, ξ) +
1

ε
R∗fast,ε(µ, ξ)

R∗xy,ε(µ, ξ) =

∫
Ω

∑
i<j

κ̃εij C
∗(ξi(x)− ξj(x)) d

√
µiµj, xy ∈ {slow, fast} ,

where κ̃εij are bounded and positive uniformly in ε > 0. In particular, we call a reaction
and its flux bij slow if Aεij = O(1) and fast if Aεij = O(ε−1). Due to the detailed balance
assumption and by w0 > 0, the distinction between fast and slow reactions is indeed
well-defined.

In the remainder of the section, we briefly explain how to generalize the proof of
the EDP-convergence result also for this situation. Major differences occur at two
stages, namely in 1) deriving compactness for slow reaction fluxes, 2) proving the limsup-
estimate. The reaction fluxes of the fast reactions are not seen in the limit and have
to be reconstructed in an analogous way as in the 2-species situation. Firstly, we ex-
plain the compactness result and the liminf-estimate. Secondly, we comment on the
limsup-estimate.

6.1 Compactness for slow reaction fluxes and liminf-estimate

Here, we comment on proving compactness and the liminf-estimate for the multi species
case. In comparison to the previous situation, compactness for the concentrations, by
using strong compactness for coarse-grained variables and convergence towards the slow
manifold, can be derived (cf. Lemmas 5.6, 5.10). Moreover, compactness of diffusion
fluxes and spatial regularity follows, too (cf. Lemma 5.19).

In contrast to the situation of two species connected with one fast reaction, where
no slow reaction fluxes exists, compactness for slow reaction fluxes bεij has to be derived
in the multi species case. This follows immediately from Lemma 5.2, once compactness
of
√
cεi c

ε
j is obtained. At this point it is clear that weak convergence of cε ⇀ c0 is

not sufficient. Instead the previously derived strong convergence of cε → c0 implies by

dominated convergence also strong convergence of
√
cεi c

ε
j →

√
c0
i c

0
j in L1([0, T ]×Ω), and

hence, compactness for the slow fluxes bεij. Compactness for fast reaction fluxes can not
be obtained as already mentioned in Remark 5.5. Having proved compactness, the proof
of the liminf-estimate is exactly the same as for Theorem 5.12, since the functional Dε
is jointly convex in all variables (c, J, b).
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6.2 Equilibration and reconstruction of reaction fluxes und re-
covery sequence

A crucial observation throughout the proof of the Γ-convergence was Lemma 4.4, which
provides an equilibration of fluxes assuming microscopic equilibria for the concentrations.
In Lemma 4.5, we derived equilibration for the diffusion fluxes. Similarly, also an equili-
bration of the slow reaction fluxes can be derived. In [MiS20] a general operator-theoretic
coarse-graining and reconstruction procedure has been developed. This method can also
be applied to derive coarse-grained fluxes and a coarse-grained continuity equation, see
[Ste21]. Importantly for us, as in (5.3) the reconstructed slow reaction fluxes depend
linearly on the coarse-grained reaction fluxes. The fast reaction fluxes are then of the
form

bij = a1divĴi + a2Ĵi +

k(i)∑
j=3

aij b̂ij,

where all functions aj are C0(Ω,Rkj), where k1 = 1 , k2 = d and kij = 1.
In order to prove that the constant sequence for smooth and positive concentrations

is indeed a recovery sequence, we follow the same reasoning as in the Lemmas 5.14 and
5.21. The only difference comes from the explicit depends on the coarse-grained reaction
flux b̂ij, Using the bound on the limit dissipation functional (which provides bounds on∫ T

0

∫
Ω
C̃(
√
ĉiĉj, b̂ij)dxdt) and the next Lemma 6.1, we obtain that b̂ij ∈ LC([0, T ] × Ω)

(we refer to [FrM21] for a proof). Since LC is an Orlicz-space, we conclude that the
reconstructed fluxes bi are in LC. This allows to proceed as in Lemma 5.21 and proves
the existence of a recovery sequence.

Lemma 6.1 ([FrM21]). Let p > 1. Then, for all a ≥ 0 and B ∈ R we have

C̃(a,B) ≥
(

1− 1

p

)
C̃(B)− 2

p
ap.

In particular, setting a =
√
cicj and B = bij we have∫ T

0

∫
Ω

C̃(
√
cicj, bij)dxdt+ ‖√cicj‖pLp([0,T ]×Ω) &

∫ T

0

∫
Ω

C̃(bij)dxdt,

which proves that bij ∈ LC([0, T ]× Ω) if ci, cj ∈ Lp([0, T ]× Ω) for some p > 1.
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Memory equations as reduced Markov processes∗

Artur Stephan† and Holger Stephan‡

Abstract

A large class of linear memory differential equations in one dimension, where
the evolution depends on the whole history, can be equivalently described as a
projection of a Markov process living in a higher dimensional space. Starting with
such a memory equation, we propose an explicit construction of the correspond-
ing Markov process. From a physical point of view the Markov process can be
understood as a change of the type of some quasiparticles along one-way loops.
Typically, the arising Markov process does not have the detailed balance property.
The method leads to a more realistic modeling of memory equations. Moreover,
it carries over the large number of investigation tools for Markov processes to
memory equations like the calculation of the equilibrium state. The method can
be used for an approximative solution of some degenerate memory equations like
delay differential equations.

1 Introduction

Memory equations describe the time evolution of some quantity, considering the whole
prehistory of the evolution: The past influences the future.

Markov processes, or more generally time evolutions with the Markov property, de-
scribe the problem under the assumption that the evolution can be predicted, knowing
only the current state: The present influences the future.

At first glance, by means of memory equations, it is possible to investigate a wider
class of problems, since evolution equations with the Markov property can be regarded
as degenerate memory problems, where the dependence of the past is concentrated in
one moment.

But from a philosophical point of view, it seems to be natural that a complete de-
scription of a problem has to be a Markov one for the following reason: The Markov
property means that the solution operator is a semigroup, i.e. it is time shift invariant.
Due to Noether’s theorem, this invariant corresponds to the conservation of some energy,
the dual variable of time. Thus, the Markov property is the typical property of a model,
where some energy is conserved.

∗The first author is supported by the Berlin Mathematical School.
†Insitut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-12489 Berlin,
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Conversely, if the evolution is governed by a non-Markovian equation, it is not com-
plete, some energy is lost. This requires finding more degrees of freedom unless the model
is Markovian. In other words, it is to be expected that a non-Markovian description can
be regarded as some part or restriction of a more-dimensional Markov process.

This theoretical thought can be confirmed in various practical situations:

• An arbitrary (nonlinear) dynamical system on a compact space Z can be equiva-
lently formulated as a linear deterministic Markov process on the space of Radon
measures on Z (see, e.g. [Ste05b]) via its Liouville equation.

• A general linear evolution equation that is nonlocal in space and time, including
jumps and memory on some domain in Rn, can be understood as a limit of a
diffusion process (a special Markov process) on a complicated Riemannian manifold
(see [KhS08]).

• The projection of a general Brownian motion (a special Markov process in phase
space) on the coordinate space is a diffusion process if the initial velocity is Max-
wellian (see [Ste05a]).

Hence, the idea that a memory equation can be regarded as part of a higher dimensional
Markov process, does not seem to be very surprising. Indeed, the main result in this
paper is that we provide the construction of an easily analyzable Markov process for a
linear memory integral equation of convolution type with special non-negative kernel.
Mathematically, the kernel is a linear combination of decaying exponentials with coeffi-
cients arising from Lagrange polynomials. Physically, such kernel arises in a natural way
from modeling memory equations.

Let us briefly revise the basic facts in modeling and analyzing memory equations and
Markov processes.

1.1 Memory equations

Memory equations (ME) are differential equations where the evolution depends not only
on the current state but also on the past. MEs are a special case of functional differ-
ential equations - an equation of unknown functions and their derivatives with differ-
ent argument values. The mathematical theory of functional differential equations (or
integro-differential equations) is treated in [HaV93, KoM99].

From the viewpoint of modeling and analysis, MEs have attracted a lot of attention
during the last decades. For example, they arise in modeling flows trough fissured
media, [HoS90, Pes95] or in modeling heat conduction with finite wave speeds [GuP68].
We consider MEs of convolution type. Such equations arise also as effective limits of
homogenization problems, starting with the pioneering work of L. Tartar [Tar90].

The object of interest is a linear memory equation of the form

u̇(t) =− au+K ∗ u = −au+

∫ t

0

K(t− s)u(s)ds, u(0) = u0, (1)

where u : [0,∞[→ R is a scalar state variable, u0 ∈ R≥0 and K : R≥0 → R≥0 is a
positive real kernel. Please note, we focus on a scalar variable, but our considerations
can be generalized to systems as well as to non-autonomous linear PDEs (like diffusion
equations with time-dependent diffusion coefficients).
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Let us briefly explain the ME (1). In contrast to u̇ = −au, where the decay is quite
fast, in this equation the decay is damped due to the influence of former states. The ME
can be interpreted as a reduction of the mass into unknown depots. Phenomenologically,
this can be modeled by a = a(t), which yields a non-autonomous equation. Another way
to think about (1) is the following. Introducing the function A defined by A′ = −K and
A(0) = a, we get

u̇(t) = −A(0)u−
∫ t

0

A′(t− s)u(s)ds = − d

dt

∫ t

0

A(t− s)u(s)ds.

Integrating the above equation, we get

u(t) = u(0)−
∫ t

0

A(t− s)u(s)ds

that can be regarded as a continuous analogue of the time-discrete scheme

un = u0 − a1un−1 − a2un−2 − . . . . (2)

Equivalently, using integration by parts we get

u̇(t) = −A(t)u0 −
∫ t

0

A(t− s)u̇(s)ds.

This form is often considered (e.g. in [Pes95]). Subsequently, we use the form (1).
For solving a ME, the memory described by K(t) or A(t) has to be known for any

time t ≥ 0. This is often postulated, i.e. K(t) is given by heuristic arguments.
A typical and simple example is Kα(t) = αe−αt for α > 0. Then Kα(t) ≥ 0 and∫∞

0
Kα(t)dt = 1.
In this case, for α −→ +∞, the integral on the right-hand side of (1) tends to u(t) –

the ME becomes an ordinary differential equation.
In the same sense, a sequence of some other integrals of convolution type can tend to

a delay differential equation (DDE), that means K(t) =
∑

j αjδ(t− tj) for large enough
t ≥ 0. So, the kernel K can be interpreted as a measure on the time line that can be
approximated by the “simplest” measures: convex combinations of δ-measures. Note
that DDEs with the above kernel of the form

u̇ = −au+
∑
j

αju(t− tj),

are solved with respect to an initial condition φ ∈ C([−max{tj}, 0]). That means the so-
lution space is infinite dimensional. On the other hand regarding the modeling viewpoint,
it is difficult to derive an initial value φ ∈ C([0, T ]) for a DDE. Often the initial value φ
is assumed to be constant or a simple given function. See e.g. [Smi11] for more details,
where the analysis and applications especially for modeling aftereffect phenomena are
presented.

The ME needs the initial value only for one fixed value, say t = 0. But, if t ≥ max{tj},
the DDE becomes a ME. This means, that the beginning of the evolution is also modeled
in the ME. In this sense, MEs include many types of differential equations like ODEs
and DDEs. We remark that also from the modeling viewpoint it is more natural to treat
kernels that are not located at precise time values but are smeared.

135



Memory equations as reduced Markov processes A. Stephan and H. Stephan

Another important property is the asymptotic behavior. The ME is a non-autonomous
differential equation. The equilibrium cannot be calculated setting u̇ = 0. Assuming∫∞
0
K(t)dt = a, any constant solution u(t) = u0 satisfies

lim
t→∞

(
−au(t) +

∫ t

0

K(s)u(t− s)ds
)

= 0.

Assuming
∫∞
0
K(t)dt 6= a, there is no non-trivial solution that makes the right-hand side

zero, so that there is no equilibrium of the ME.

1.2 Markov processes

There is a huge amount of literature on Markov Processes (MP) – see, e.g. [Bob05,
Dur10, Dyn65]. Here we introduce our notation.

Let Z be a given state space, a compact topological space, C := C(Z) the Banach
space of continuous functions on Z and P := P(Z) the set of probability measures, i.e.
the subset of Radon measures p on Z with p ≥ 0 and p(Z) = 1.

A family T(t), t ≥ 0 of linear bounded operators in C is called a Markov semigroup
if it is a semigroup, i.e. if it satisfies

T(t1 + t2) = T(t1)T(t2), T(0) = I, t1, t2 ≥ 0 ,

it is positive T(t) ≥ 0 in the cone sense of C and 1, the constant function is a fix-point
of T(t) for all t ≥ 0, T(t)1 = 1. We refer to [Are86, EnN00]. The semigroup property is
often called Markov property and it is equivalent to the assumption that the trajectory
depends only on the present time point and not on the past.

A linear operator A on C is called Markov generator if it is the generator of a Markov
semigroup, i.e. if g(t) = T(t)g0, where T(t) is a Markov semigroup. Then g(t) = T(t)g0
is the solution of the equation

ġ(t) = Ag(t), g(0) = g0 (3)

for an initial value g0 from the domain of A. This equation is called backward Chapman-
Kolmogorov equation. A MP is the result of the action of the adjoint semigroup T∗(t)
at a probability measure p0, i.e. p(t) = T∗(t)p0. Any MP has at least one stationary
probability measure µ ∈ P . It satisfies T∗(t)µ = µ for all t ≥ 0. This is a consequence
of the Markov-Kakutani Theorem. The stationary probability measure µ is an element
of the null-space of A∗.

In this paper we consider continuous-time MPs on discrete state spaces. Z =
{z0, ..., zN} is a finite set of N+1 states. In this case, we have C = RN+1 and P is the sim-
plex of probability vectors P := Prob({z0, . . . , zN}) := {p ∈ RN+1 : pi ≥ 0,

∑N+1
i=0 pi = 1}

and a subset of RN+1, too. A Markov semigroup is a real matrix family T(t) on RN+1

with positive entries and row sum 1. Its adjoint is the transposed matrix family T∗(t).
A MP is p(t) = T∗(t)p0, where p0 is some given probability vector. It satisfies the

set of equations

ṗ(t) = A∗p(t), p(0) = p0, (4)

where A∗ is the adjoint of the corresponding Markov generator. This equation is called
forward Chapman-Kolmogorov equation. In contrast to equation (3) describing the evo-
lution of moment functions, equation (4) describes the evolution of probability vectors.
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This means that one component of the vector p(t) can be understood as the probability
of the corresponding state, regardless of the probability of the other states.

It is well known that equation (4) has a unique solution p(t) ∈ P if and only if the
off-diagonal elements are non-negative and the columns of A∗ sum up to zero. Thus, for
A = (Aij) we have Aij ≥ 0 for i 6= j and Aii = −

∑n
i 6=j=1Aij.

For a generic Markov matrix the stationary probability µ is unique and all trajectories
T∗(t)p0 for any initial state p0 converge to µ. We only consider MPs with a unique
stationary probability.

The eigenvalues of a Markov generator have always strongly negative real part, ex-
cept one eigenvalue 0. The corresponding eigenvector is 1 for A and µ for A∗. If the
eigenvalues λi of A∗ are all different, every component of the solution to (4), i.e. every
component of T∗(t)p0 is a linear combination of 1 and exponential decaying functions
e−λit.

A MP in RN+1 allows for different physical interpretations. Apart from the canonical
interpretations as a probability vector, it can be understood as some concentration or
amount of N + 1 different materials. We will follow this interpretation and will assume
that this amount of materials is represented by particles of different types. These par-
ticles can transform into each other, changing their type, which can be understood as a
linear reaction. The entries of the Markov matrix Aij describe the rates of transforming
particles of type zj into particles of type zi. Therefore, if we are only interested in the
amount of material of one type, it is enough to consider the corresponding component of
the vector p(t) only. The initial amount of material is p0. Since A is a Markov generator,
positivity of the concentration and the whole mass is conserved.

If a Markov generator A = (Aij) and its stationary state µ = (µi) satisfy Aijµj =
Ajiµi for any i, j ∈ {1, . . . , n}, it is said that the corresponding MP has the detailed
balance property. It is equivalent to the case that the matrix (Aij) is symmetric in the
L2-Hilbert space over µ. Such a matrix has to have real eigenvalues. We remark that
the opposite is not true in general: A Markov process without the detailed balance can
have real eigenvalues, too. Moreover, there can be no Hilbert space at all, where it is
symmetric. From a physical point of view, the condition Aijµj = Ajiµi means that any
transition zi ⇔ zj is in a local equilibrium. Thus, the detailed balance case is easier to
analyze but it rarely appears in general. The systems that we consider do not have the
detailed balance property in principle.

1.3 What our paper deals with

In this paper, we connect the concepts of Markovian dynamics and non-Markovian dy-
namics, which seem to be different at first glance. Starting with a MP of a special form,
we conclude a ME for the first coordinate. The ME is a scalar differential equation, but
our considerations can also be applied to PDEs. The resulting MP can be physically
understood; the ME is governed by a kernel which is the sum of exponential functions.
Then another path is taken: Starting with a ME with an exponential kernel, we find a
MP where its first component again yields the ME. The other components can be under-
stood as hidden degrees of freedom that have to be included in a complete description of
the problem. This procedure is not unique and thus, it cannot be said that the hidden
degrees of freedom are real physical variables. On the other hand, the construction of the
MP out of the kernel is intuitive since the kernel is approximated by its moments. This
method can be used to approximate a general positive kernel taking the enlargement of
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the MP into account. The simple case of two and three states is presented in chapter
2. In this case, all solutions and kernels can be calculated by hand. In chapter 3 we
consider the general case. The main theorems are stated here.

The method has many physical and mathematical advantages – both for the theory of
MPs and MEs. We want to highlight only two of them. Firstly, the modeling of a kernel
for ME is usually done by heuristic arguments. The method presented here can be used
to model kernels in a more convenient manner, since the MP has an underlying physical
meaning. Moreover, the modeling of the beginning of the process is also done. Secondly,
the asymptotic behavior of a non-autonomous differential equation can immediately be
calculated from the Markovian dynamics.

The paper concludes with chapter 4. Here we note the connection to delay differential
equations, where the kernel is highly degenerate. This is also reflected in the setting of
MP: The underlying Markov generator has a very special form. We observe that the
solution of the ME converges to the equilibrium of the MP. The spectral functions of
ME and MP also converge.

Summarizing, we have the following connection of modeling levels:

MP ⊂ DDE ⊂ ME ⊂ MP’.

Here MP’ is a Markov process with a larger number of degrees of freedom.
It is well known that a linear delay equation with delay T in a state space X can

be regarded as an autonomous equation in a much larger space C([−T, 0], X), see e.g.
[EnN00]. There, the evolution of the delay equation is described by a semigroup of linear
operators. This approach is not our aim in this paper. In our setting, the space of the
MP’ is not so large, typically.

Notion. In this paper, the Laplace transform is frequently used. Some properties are
summarized in the appendix. MEs of convolution type have the important property that
the Laplace transform maps them into multiplication operators. The Laplace transform
L(u) of a real valued function t 7→ u(t) is defined by L(u)(λ) = û(λ) =

∫∞
0

e−λtu(t)dt.
If there is no confusion, we omit the ‘hat’ on û and just write u or u(λ).

Some analytical tools concerning Lagrange polynomials and simplex integrals are
presented in the appendix, too.

2 Some simple Markov processes and memory equa-

tions

Before starting the general theory, we firstly present the basic ideas focusing on simple
low dimensional examples – MPs with two and three states. Apart from the sake of
simplicity nearly all phenomena of the general theory are eminent.

2.1 Two states

We consider a MP on a state space of two abstract states {z0, z1}, generated by the
Markov generator

A =

(
−a a
b −b

)
, and its transpose A∗ =

(
−a b
a −b

)
. (5)
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The matrix A∗ describes the switching between the two
states with given rates a ≥ 0, b ≥ 0. We can think of an
amount of matter, represented by particles, which can
occur in two types. For some reason we are interested
only in particles of the first type.

z0 z1
b

a

The equation describing the evolution of the vector p = (u, v) reads ṗ = A∗p with
p(0) = p0. We assume that in the beginning the total mass is concentrated in the first
variable, i.e. p0 = (u0, 0). In other words, all particles have type z0.

The eigenvalues of A∗ are {0,−(a + b)}. The stationary solution is given by µ =(
b

a+b
u0,

a
a+b

u0
)
. It is unique unless the non interesting case a = b = 0. Any MP with two

states has the detailed balance property.
For (u, v) the system reads as {

u̇ = −au+ bv

v̇ = au− bv.
(6)

Using the Laplace transform and writing u(λ) = L(u(t))(λ) and v(λ) = L(v(t))
(λ), we obtain a system of equations for (u, v) in the form{

(λ+ a)u− u0 = bv

(λ+ b)v = au.

This yields an equation for u in the form

(λ+ a)u− u0 =
ba

λ+ b
u⇒ λu− u0 = −au+

ba

λ+ b
u.

Using the inverse Laplace transform, we obtain a memory Equation for u

u̇ = −au+ ab

∫ t

0

e−b(t−s)u(s)ds = −a d

dt

∫ t

0

e−b(t−s)u(s)ds. (7)

The kernel K(t) = be−bt describes a dependence of the current state from previous time
moments. For b −→∞, K(t) tends to δ(t) and the equation becomes u̇ = 0.

Thus, the right hand side of equa-
tion (7) consists of two terms, the first
one, −au describes an exponential de-
cay, whereas the second one, the mem-
ory term describes an opposite effect:
Particles that disappear, occur after a
while. 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Kernel be−bt for b = 1, . . . , 10

K(t)

t

The time that passes between disappearing and reappearing, decreases with 1/b. In
the end, not all matter disappears like in a pure equation u̇ = −au but an equilibrium
between disappearance and reappearance arises.

The same effect is caused by the MP, changing the type of the particles. The particle
changes the type from z0 to z1 with rate a ≥ 0, it seems to disappear, if we look only
at type z0. After a while it re-changes to type z1 (it occurs) with rate b ≥ 0. This give
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the exponential time behavior e−bt (corresponding to the memory kernel K(t) = be−bt),
characteristic for MPs.

The equation (7) – or equivalently the system (6) – can be solved explicitly. We
obtain for the Laplace transform

u(λ) =
λ+ b

λ(λ+ a+ b)
u0 =

(
b

a+ b

1

λ
+

a

a+ b

1

λ+ a+ b

)
u0

and for the solution itself

u(t) =
b

a+ b
u0 +

a

a+ b
e−(a+b)tu0

The solution tends to an equilibrium state u∞ = b
a+b

u0, the first component of the
stationary solution µ.

It is not possible to calculate it from the memory equation (7), directly. Setting
u̇ = 0, the equation

u̇ = −au+ ab

∫ t

0

e−b(t−s)u(s)ds = −a d

dt

∫ t

0

e−b(t−s)u(s)ds.

does not have any solution at all. Passing to the limit t −→ ∞ (and rewriting at first∫ t
0

e−b(t−s)u(s)ds =
∫ t
0

e−bsu(t− s)ds) we obtain

0 = −au∞ + ab

∫ ∞
0

e−bsu∞ds .

Any constant u∞ solves this equation. This strange behavior of the solution of memory
equations is typical and can be illustrated in a picture, showing the time behavior of
both, the solution of the MP and their first component – the solution of the memory
equation.

Investigating only the solution of the
memory equation, it is not clear
why the trajectory u(t) stops in u∞.
Whereas looking from above, the tra-
jectory (u(t), v(t)) has to stop at the
stationary state µ, the intersection of
the subspace u + v = 1 with the null
space of A∗.

µ

u

v

u0u∞

2.2 Three states

A general memory kernel has not to be concentrated in t = 0. It can describe a trans-
fer of mass from a very earlier time. It seems that this situation can be modeled by
transitions between many quasiparticles before it appears at its starting type again. To
understand the action of such a transition loop, we investigate in detail a special case
of three states, namely the transformation of a fixed particle (type z0) in two different
quasiparticles.
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One of them (type z1) can be transformed back into
type z0 immediately, whereas the other (type z2) can be
transformed back into type z0 only by two steps, chang-
ing at first to type z1. This process is illustrated in the
picture.

z1

z0

z2

a1
b1 a2
b2

2.2.1 From Markov to memory

The simple MP on a state space of three abstract states {z0, z1, z2} is described by the
Markov generator

A =

−a1 − a2 a1 a2
b1 −b1 0
0 b2 −b2

 , A∗ =

−a1 − a2 b1 0
a1 −b1 b2
a2 0 −b2

 (8)

with a1, a2, b1, b2 ≥ 0. The equation, generating the MP is

ṗ(t) = A∗p(t), p(0) = p0. (9)

Note, this is a Markov generator depending on four rates. A general Markov generator
on R3 depends on six rates.

The stationary state µ is the solution to A∗µ = 0 and can be calculated easily as

µ =

(
1 +

a1 + a2
b1

+
a2
b2

)−1(
1,
a1 + a2
b1

,
a2
b2

)
u0 =

(b1b2, a1b2 + a2b2, a2b1)

b1b2 + a1b2 + a2b2 + a2b1
u0.

The eigenvalues (they have always non-positive real part) of the matrix are λ0 = 0
and

λ1,2 = −1
2

(a1 + a2 + b1 + b2

±
√

(a1 + a2 + b1 + b2)2 − 4(a1b2 + a2b1 + a2b2 + b1b2)
)
.

Depending on a1, a2, b1, b2 the eigenvalues can be real (e.g. λ1 = −5, λ2 = −11 for
a1 = 2, a2 = 5, b1 = 8, b2 = 1) or complex (e.g. for λ1,2 = −9± 2i for a1 = 2, a2 = 5, b1 =
8, b2 = 3). (By the way, these are suitable values for an explicit solution with rational
terms, only.)

This MP has the detailed balance property, if b1b2a2 = 0, which is not interesting,
since the coupling chain is broken. Roughly speaking, the detailed balance property
means that for any loop in one direction there is a loop backwards with the same product
of the rates. But this is not the case in our model. Thus, the MP under consideration
violate the detailed balance property, generically.

The stationary state is unique if and only if the real parts of λ1,2 are strongly negative.
Or, equivalently, b1b2 + a1b2 + a2b2 + a2b1 = 0. Since the ai, bi are non negative, this is a
non interesting case that we exclude. Then, the stationary state is the equilibrium state
for any initial value. Note, that nevertheless some of the ai, bi might be zero.

As in the case of two states, we are interested only in the state z0 of the system
and ask for an evolution equation of this state. To do this, we introduce the notion
p = (u, v1, v2) and look for the evolution of u with an initial state p0 = (u0, 0, 0). This is
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naturally, since the states z1 and z2 are unknown, and there is no reason to assume that
particles with z1, z2 exist in the beginning.

Equation (9) is now equivalent to the system
u̇(t) = −(a1 + a2)u(t) +b1v1(t)
v̇1(t) = a1u(t) −b1v1(t) +b2v2(t)
v̇2(t) = a2u(t) −b2v2(t)

.

Passing to the Laplace transform, we obtain with u = Lu, vi = Lvi the system
λu = −(a1 + a2)u +b1v1 +u0
λv1 = a1u −b1v1 +b2v2
λv2 = a2u −b2v2

.

or equivalently, introducing a = a1 + a2, we get
(λ+ a)u− u0 = b1v1

(λ+ b1)v1 = a1u+ b2v2

(λ+ b2)v2 = a2u

.

Here, v1 and v2 can be eliminated as

v2 =
a2

λ+ b2
u , v1 =

a1
λ+ b1

u+
b2

λ+ b1
v2 =

a1
λ+ b1

u+
a2b2

(λ+ b1)(λ+ b2)
u.

We conclude the following equation for u

λu− u0 =

(
−a+ a1

b1
λ+ b1

+ a2
b1

λ+ b1

b2
λ+ b2

)
u. (10)

This is an equation for the first state, only. It can be solved explicitly with respect to
u. But, at this moment, this is not our aim. We are looking for an equation for u. We
write

b1
λ+ b1

b2
λ+ b2

=
b1b2
b2 − b1

(
1

λ+ b1
− 1

λ+ b2

)
,

and, after transforming inverse, we get an equation for the function u(t), namely

u̇ = −au+ a1b1

∫ t

0

e−b1su(t− s)ds+ a2
b1b2
b2 − b1

∫ t

0

(e−b1s − e−b2s)u(t− s)ds (11)

= −au+ (K ∗ u)(t),

where

K(t) = b1a1e
−b1t + a2

b1b2
b2 − b1

(
e−b1t − e−b2t

)
= (12)

=

(
b1a1 +

b1b2a2
b2 − b1

)
e−b1t − b1b2a2

b2 − b1
e−b2t. (13)

So, we obtain a memory equation with the kernel K. This equation describes the evo-
lution of the first state of our physical system, depending on the whole past from 0 to
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time t. Obviously, this dependence is a result of the projection, since nothing else had
be done. Thus, u(t) is the solution of two equivalent equations, a memory equation and
a component of a Markov system. The kernel K(t) = a1K1(t) + a2K2(t) is the sum of
two parts

K1(t) = b1e
−b1t

K2(t) =
b1b2
b2 − b1

(
e−b1t − e−b2t

)
each of them is obviously positive. If we denote mi =

∫∞
0
tKi(t)dt the mean time of a

kernel, we have

m1 =
1

b1
, m2 =

1

b1
+

1

b2
.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

K1

2K2

b1 = 2, b2 = 3K(t)

t

The first kernel K1 describes a memory effect with small mean time and correspond

to a small loop z0
a1−→ z1

b1−→ z0 in the MP. The other kernel K1 describes a memory

effect with longer mean time and correspond to a longer loop z0
a2−→ z2

b2−→ z1
b1−→ z0.

The relative coefficients ai/a form a convex combination. The transitions z0
ai−→ zi split

the whole number of particles in parts according to the loops. Let us summarize some
properties of the kernel K(t).

• K(t) is the sum of exponential decaying functions, where the exponents are diag-
onal elements of A.

• The arising memory equation is (11) with a =
∑N

i ai or, equivalently, k(λ = 0) = a

• K(t) ≥ 0 iff k(λ) ≥ 0, since ai, bi ≥ 0.

Equation (10) can be solved explicitly:

u

(
λ+ a− a1b1

λ+ b1
− a2b1b2

(λ+ b1)(λ+ b2)

)
= u0

⇒ λu

(
λ2 + λ(a+ b1 + b2) + a2b1 + a1b2 + a2b2 + b1b2

(λ+ b1)(λ+ b2)

)
= u0

⇒ u =
1

λ

(λ+ b1)(λ+ b2)

λ2 + λ(a+ b1 + b2) + a2b1 + a1b2 + a2b2 + b1b2
u0.

To get an explicit term for u(t) we have to factorize the denominator what leads – of
course – to the same time behavior as determined by the eigenvalues for the MP.
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We compute the asymptotic behavior of the solution u(t), using the asymptotic prop-
erties of the Laplace transform. We obtain for the equilibrium state

u∞ = lim
λ→0

λu =
b1b2

a2b1 + a1b2 + a2b2 + b1b2
u0.

For the other components we get in the same manner

v1(t =∞) =
a1b2 + a2b2

a2b1 + a1b2 + a2b2 + b1b2
u0,

v2(t =∞) =
a2b1

a2b1 + a1b2 + a2b2 + b1b2
u0.

These are the parts of the initial mass that remain in the states z1 and z2.

2.2.2 From memory to Markov

Now, we go the opposite direction and start with a kernel that is the sum of two expo-
nential decaying terms, i.e.

K(t) = c1e
−α1t + c2e

−α2t (14)

with some real coefficients c1, c2. We assume ci 6= 0, otherwise we are in the case of 2
states. For definiteness, we assume α1 > α2 > 0. The αi has to be strongly positive,
otherwise we have no decreasing of the time dependence of the past.

This kernel has to be written in the form (12) with positive coefficients. We have

K(t) = c1e
−α1t + c2e

−α2t =

= (c1 + c2)e
−α1t + c2(α1 − α2)

e−α2t − e−α1t

α1 − α2

.

Thus, we have to demand c1+c2 ≥ 0 and c2 ≥ 0. Both are consequences of the positivity
of K(t), setting t = 0 and t −→∞.

Now, the MP is easily constructed. We set

b1 = α1

b2 = α2

a2 =
c2(α1 − α2)

α1α2

a1 =
c1 + c2
α1

.

The entries of the matrix b1, b2, a2 are strongly positive, a1 is non negative. This guaran-
tees the uniqueness of the stationary solution. Moreover, it violates the detailed balance
property.

The existence of a positive equilibrium is fulfilled, we have the equation

u̇ = −au+

∫ t

0

K(t− s)u(s)ds, u(0) = u0,

with the property of consistency k(0) = a = a1 + a2 = α1c2+α2c1
α1α2

. Summarizing, we get
the following result:
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Proposition 2.1. The first component of the MP generated by A∗ given by (8) is the
solution to the ME (11).

For a ME u̇ = −au+(K∗u) with a kernel (14) with parameters c1, c2, α1, α2 satisfying
α1 > α2 > 0, c1 + c2 ≥ 0 and c2 ≥ 0, it can be constructed a three dimensional MP,
where the first component coincides with the solution to the ME.

3 General memory equations as Markov processes

In this chapter, we generalize the ideas from the last chapter to an arbitrary finite
dimensional MP. Firstly, we show that the first coordinate of a special MP, consisting of
different transformation loops, satisfies a suitable memory equation with a more or less
general kernel. Then, we go the opposite direction: We show that a ME with a kernel of
a special form yields the MP we started with. The construction of the MP is explicitly.

3.1 From Markov to memory

We consider a MP of N + 1 abstract states {z0, z1, . . . , zN} of the following form

A∗ =



−a b1 0 0 . . . 0
a1 −b1 b2 0 . . . 0
a2 0 −b2 b3 . . . 0
a3 0 0 −b3 . . . . . .
. . . . . . . . . . . . . . . . . .
aN−1 0 0 0 −bN−1 bN
aN 0 0 0 0 −bN


, (15)

where aj ≥ 0 and bj > 0 for j = 1, . . . , N are non negative rates and we set a :=
∑N

j=1 aj.
The condition bj > 0 is reasonable, since otherwise the loop is broken somewhere.

The process p(t) is generated by the equation ṗ = A∗p. We set p = (u, v1, . . . , vN)
and understand this quantity as the concentration of some particles. We assume that for
t = 0 the total mass is concentrated in the first coordinate, i.e p0 = (u0, 0, . . . , 0). The
equation conserves positivity of p and the whole mass u+ v1 + ...+ vN = u0. Thus, p is a
vector on the positive simplex in RN+1, intersected by the hyperplane u+v1+...+vN = u0.
Of our interest is the first component, i.e. the amount of matter of particles of type z0.

A∗ is the generator of a special type of MPs. It describes the change of type in the
following way: Particles of type z0 can changes their type to type zi with rates ai. The
change of a particle of type zi back to type z0 does not go in a direct way, but in i steps.
Thus, we have an interaction between the N + 1 types in N loops (see the picture).

z0

z1 z2 z3 zN−1 zN
. . . . . .

b1
b2 b3 bN

a1 a2 a3 aN−1 aN
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Easy calculations show that the stationary solution µ satisfying A∗µ = 0 has the
form

µ =
1

Z

(
1,
a1 + · · ·+ aN

b1
,
a2 + · · ·+ aN

b2
,
a3 + · · ·+ aN

b3
, . . . ,

aN
bN

)
u0,

where Z is the suitable normalization such that
∑N

j=0 µj = u0. Obviously,

Z = 1 +
N∑
i=1

1

bi

N∑
j=i

aj . (16)

For the zeroth coordinate we have

u∞ =
1

Z
u0.

Since any bj > 0, this stationary solution is unique and it is the equilibrium state for
any initial condition.

Let us check, whether detailed balance with respect to µ is satisfied. We have to
check, that Aijµj = Ajiµi. Since A1jµj = Aj1µ1 = 0 for j ≥ 2, we obtain that a2 =
a3 = · · · = aN = 0. Hence, the evolution of the states z2, . . . , zN is not coupled to the
evolution of z0 and z1. In this case, we get N = 1, the two dimensional case, where every
MP has the detailed-balance property. That means, apart from trivial situations, the
MP under consideration does not have the detailed balance property.

The equation ṗ = A∗p is equivalent to the following system for p = (u, v1, . . . , vN)

u̇ = −au+ b1v1

v̇1 = a1u− b1u+ b2v2

v̇2 = a2u− b2v2 + b3v3

v̇3 = a3u− b3v3 + b4v4

. . . . . .

v̇N−1 = aN−1u− bN−1vN−1 + bNvN

v̇N = aNu− bNvN .

Using the Laplace transform, we get the following equation for (u, v1, . . . , vN)

(λ+ a)u− u0 = b1v1

(λ+ b1)v1 = a1u+ b2v2

(λ+ b2)v2 = a2u+ b3v3

(λ+ b3)v3 = a3u+ b4v4

. . . . . .

(λ+ bN−1)vN−1 = aN−1u+ bNvN

(λ+ b1)vN = aNu.

This yields for u

(λ+ a)u− u0 =

(
a1b1
λ+ b1

+
a2b1b2

(λ+ b1)(λ+ b2)
+

a3b1b2b3
(λ+ b1)(λ+ b2)(λ+ b3)

+ . . .

+
aNb1b2 · · · bN

(λ+ b1)(λ+ b2) · · · (λ+ bN)

)
u. (17)
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We define the kernel

k(λ) =
N∑
j=1

ajkj(λ), kj(λ) =

j∏
i=1

bi
λ+ bi

and hence the equation for the Laplace transformed variable u reads

λu− u0 = −au+ k(λ)u. (18)

Now, we formulate the memory equation in terms of t ≥ 0 and some properties of
the kernel. For this purpose, we introduce some quantities, connected with Lagrange
polynomials (see the appendix for details) with different support points b1, ..., bN . Let

ψji =

j∏
k=1,k 6=i

bk
bk − bi

,

assuming bi 6= bk for i 6= k. From the theory of Lagrange polynomials it is well known
that

kj(λ) =

j∏
i=1

bi
λ+ bi

=

j∑
i=1

bi
λ+ bi

ψji .

Using this, we can transform kj(λ) back and obtain

K(t) =
N∑
j=1

ajKj(t), (19)

Kj(t) =

j∑
i=1

biψ
j
i e
−bit. (20)

The assumption bi 6= bj for i 6= j is not principal. If some or all bi coincide, all
formulas of the following can be obtained by some suitable limits. This is obviously
done for the Laplace transform k(λ). For K(t) we get more complicated terms, involving
not only exponential but also polynomials with degree, depending on the frequency of
the bi. We do not bore the reader with this technical complexity, since this is well known
in the theory of Lagrange polynomials. Moreover, from a practical point of view, in a
generic Markov matrix all entries can be chosen differently.

Surely, a different situation is, if the modeling requires equal bi. This is the case for
instance for DDEs. The case is considered in detail in chapter 4.

Now, we are ready for the following

Theorem 3.1. Let p = (u, v1, . . . , vN) be the solution of ṗ = A∗p with p0 = (u0, 0, . . . , 0)
where A∗ is given via (15). Then t 7→ u(t) solves the memory equation

u̇ = −au+

∫ t

0

K(t− s)u(s)ds, u(0) = u0, (21)

where K(t) =
∑N

j=1 ajKj(t) with Kj(t) =
∑j

i=1 biψ
j
i e
−bit and a =

∑
j aj = k(0). More-

over, K(t) ≥ 0 and u∞ = 1/Zu0 with Z given by (16).
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Proof. From the definition of k(λ) it is clear that u(λ) defined by the MP is the solution
to (18). If the inverse transformed function t 7→ u(t) is regular enough, it is solution to
(21).

Rewriting (17) as

λu(λ) =
λ

λ+ a−
∑N

j=1 ajkj(λ)
u0 (22)

Since the kj(λ) are analytical functions and bounded on the right plane, so is λu(λ).
Hence from the properties of the Laplace transform it follows that u(t) is continuously
differentiable. Thus, it solves (21).

To calculate u∞ we use the representation (22) and investigate the behavior of kj(λ)
for λ→∞. We have

kj(λ) = kj(0) + λk′j(0) + o(λ) =

= 1 + λ

(
b1b2 · · · bj

(λ+ b1)(λ+ b2) · · · (λ+ bj)

)′∣∣∣∣
λ=0

+ o(λ) =

= 1− λ
b1b2 · · · bj ·

(
b1b2 · · · bj

∑j
i=1

1
bi

+ o(λ)
)

[
(λ+ b1)(λ+ b2) · · · (λ+ bj)

]2
∣∣∣∣∣∣
λ=0

+ o(λ) =

= 1− λ
j∑
i=1

1

bi
+ o(λ).

By definition a =
∑N

j=1 aj, and hence, it follows from (22)

u∞ = lim
λ→∞

λu(λ) = lim
λ→∞

λ

λ+ a−
∑N

j=1 aj

[
1− λ

∑j
i=1

1
bi

+ o(λ)
] u0 =

=
1

1 +
∑N

j=1 aj
∑j

i=1
1
bi

u0 =
1

1 +
∑N

j=1
1
bj

∑N
i=j aj

u0 ,

what is exactly the zeroth coordinate of µ, i.e. u∞ = 1/Zu0.
The positivity of the Kj(t), t ≥ 0 follows from their representation with simplex

integrals (see the appendix). We have

Kj(t) =

j∑
i=1

biψ
j
i e
−bit =

∫
Sj

(−1)j−1f (j−1)(〈α, s〉t)∣∣∣∣∣
sj=1−s1−s2−sj−1

dsj−1· · · ds1

with f(x) = e−xt and 〈α, s〉 = α1s1 + α2s2 + . . . + αjsj. Since (−1)j−1f (j−1)(〈α, s〉t) =

tj−1e−〈α,s〉t ≥ 0 and any aj ≥ 0, we conclude the positivity of Kj(t) and therefore also
K(t) ≥ 0. This completes the proof of the theorem.

3.2 From memory to Markov

We consider memory equations of the form

u̇(t) = −au+K ∗ u = −au+

∫ t

0

K(t− s)u(s)ds,
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where a > 0 is a real parameter and K is a positive kernel. The aim is to embed the
evolution of u into a MP introducing new variables.

Our main assumptions are K(t) ≥ 0 and
∫∞
0
K(t)dt = a. Clearly, starting with

some given K(t) we want to end up with a kernel of the shape (19-20). Then going
forward to a kernel like in (17), the entries of the Markov generator matrix can be taken
immediately.

The kernels (20) are positive although they are linear combinations of exponential
with – maybe – negative coefficients.

It may seem that any non-negative kernel K(t) can be presented in such a form. But
this is not the case. We show this in a

Counterexample: Let

K(t) = 3e−t − 8e−2t + 6e−3t

and

f(t) = e4tK(t) = 3e3t − 8e2t + 6et

f(t) has a unique minimum f(0.215315...) = 0.8590718.... Thus K(t) ≥ 0.
Seeking for coefficients A,B,C,D,E, F,G (this is the representation (20)) with

K(t) = Ae−3t +Be−2t + Ce−t +D
e−t − e−2t

1
+ E

e−t − e−3t

2
+ F

e−2t − e−3t

1
+

+ G

(
e−t

1 · 2
+

e−2t

(−1) · 1
+

e−3t

1 · 2

)
the resulting system for the coefficients leads to

0 = 2 +D + E + F +B + C

that does not have non-negative solutions.
We think, there is no hope to find a corresponding MP for an arbitrary non-negative

kernel. Therefore we go another way and try to derive a class of sensible kernels starting
from physical considerations. Furthermore, the following reasoning shows how the time
interval of the memory effect is connected with rates of the loops of the MP.

First of all we have to ask: How one can model a meaningful kernel for a ME. We
can assume that the dependence on the past is concentrated at some time point before
the present, say t− t1, ... t− tN where tj are ordered time values, i.e. 0 < t1 < t2 < · · · <
tN , with some coefficients γ1, ..., γN with γi ≥ 0 and

∑
γi = 1 that gives the relative

proportion of each time point. The corresponding memory kernel of such an ansatz is

K̃(t) =
N∑
j=1

γjδ(t− tj)

(here δ means the “δ-function”, the “density” of the Dirac measure). The kernel K̃
occurs when starting from a discrete time model, like equation (2). Clearly, it is a first
guess. A real memory kernel seems to be more smeared. Therefore, we can try to find
kernels K̃j(t) with mean time at tj, i.e∫ ∞

0

K̃j(t)dt = a,

∫ ∞
0

tK̃j(t)dt =

∫ ∞
0

tδ(t− tj)dt = tj.
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We will show that such kernels K̃j(t) can be found and it is possible to find a suitable
MP for them. Note, that this does not determine the kernels K̃j uniquely, of course.

We show that our kernels of shape (19) are suitable for this.

Proposition 3.2. Let a sequence 0 < t1 < t2 < · · · < tN <∞ be given where (tj − tj−1)
are pairwise distinct. There are kernels K(t) =

∑N
j=1 ajKj(t) such that K ≥ 0 and∫∞

0
K(t)dt = a and

∫∞
0
tKj(t)dt = tj.

Proof. We define bj ∈ R via ti =
∑i

j=1
1
bj

. Since the ti are ordered, we get bj > 0. Since

(tj − tj−1), the bj are pairwise distinct. We define

K(t) =
N∑
j=1

ajKj(t), where Kj(t) =

j∑
i=1

biψ
j
i e
−bit.

We prove that K satisfies the desired properties. Using the Laplace transform, we get

L(Kj(t))(λ) =

j∑
i=1

biψ
j
i

1

λ+ bi
=

j∏
i=1

bi
λ+ bi

=: kj(λ).

This yields
∫∞
0
Kj(t)dt = kj(λ = 0) = 1. Moreover,

∫∞
0
tKj(t)dt = −k′j(λ = 0). We

have

k′j(λ) =

j∑
i=1

b1
λ+ b1

· b2
λ+ b2

· · · −bi
(λ+ bi)2

· · · bj−1
λ+ bj−1

· bj
λ+ bj

This yields −k′j(λ = 0) =
∑j

i=1
1
bi

= tj, i.e.
∫∞
0
tKj(t)dt = tj.

Theorem 3.3. Let K(t) be a memory kernel of the form

K(t) =
N∑
j=1

αjKj(t), where Kj(t) =

j∑
i=1

biψ
j
i e
−bit.

and α =
∑

j αj. Let u be the solution to the equation u̇(t) = −αu+K ∗u with u(0) = u0.

Then, there is a MP ṗ = A∗p in RN+1 generated by a Markov matrix A and an initial
condition p(0) such that u(t) = p0(t).

Proof. Define the Markov generator matrix via a = α, ai = αi, bi = βi. The initial
condition for the MP is p0 = (u0, 0, . . . , 0). The claim follows.

For the asymptotic behavior of the ME, we immediately get the following statement.

Corollary 3.4. Let K(t) =
∑N

j=1 aiKi(t), where Ki(t) =
∑i

j=1 bjψje
−bjt and a =

∑
j aj.

Let u be the solution to the equation u̇(t) = −au+K ∗u with u(0) = u0. Then u(t)→ u∞
as t→∞, where u∞ = 1

Z
u0 and Z is given by (16).
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3.3 Remarks

1. Kernels like kj(λ) =
∏j

i=1

(
bi

λ+bi

)mi

with suitable chosen mi ∈ N may approximates

a δ-kernel better. Especially it allows to take into account more moments then only
the first one, or equivalently to allow the bi to be equal. This is possible without
any principal problems (see the note above Theorem 3.1). A special case is treated
in the next chapter, where one delay is approximated arbitrary precise. To prove
positivity of the corresponding functions Lemma 5.1 from the appendix can be
used.

Kernels like in (17) are rational functions of degree N , having poles on the left
plane. They approximate meromorphic functions. This makes one able to consider
more general kernels then linear combinations of exponents – at least approxi-
mately.

2. There are other (similar) MP that lead to a ME and vice versa. For example the
MP with the generator

A∗ =



−a c1 c2 c3 . . . cN

a −c1 − b1 0 0 . . . 0

0 b1 −c2 − b2 0 . . . 0

0 0 b2 −c3 − b3 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 bN−1 −cN


,

can also be used for embedding the presented exponential kernels. Such MP can be
understood in the same manner like at the picture on page 147 but with reversed
arrows. Although this approach is more difficulty from a technical point of view.

3. The presented results can be applied in various manner. We focus on ordinary dif-
ferential equations to present the general idea. Linear MEs in infinite dimensional
space like diffusion equations with time depending diffusion coefficients are also
possible.

Moreover, the well known tools for investigating MP, like inequalities for Lyapunov
functions (see [Ste05b]) can now be carried over to explore ME.

4 Special Markov process leads to a delay differen-

tial equation

In this section we consider a special form of the MP. We define aj = 0 for j =
1, 2, . . . , N − 1 and put aN = a and bj = b ∈ R. Using the observation from the
last section we consider a general cyclic MP with one single but long loop. The MP in
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RN+1 is generated by the matrix

A∗ =


−a b 0 · · · 0
0 −b b · · · 0
0 0 −b · · · 0
...

. . . b
a · · · 0 · · · −b

 .

We assume the initial mass is concentrated in the first reservoir. Then, the equation reads
ṗ(t) = A∗p(t) with p(0) = p0, where p = (u, v1, v2, . . . , vn)T and p0 = (u0, 0, . . . , 0)T .

z0

z1 z2 z3 zN−1 zN
. . . . . .

b
b b b

a

The stationary solution is

µ =
1

Z

(
1

a
,
1

b
,
1

b
, ...,

1

b

)T
u0 ∈ RN+1,

where Z = 1
a

+ N
b

= b+aN
ab

. Note, the system does not have the detailed balance property.
We get

(λ+ a)û− u0 = a

(
b

λ+ b

)N
u.

It holds (
b

λ+ b

)N
= L

(
bN

(N − 1)!
tN−1e−bt

)
(λ).

Hence, we get

u̇(t) = −au(t) +
abN

(N − 1)!

∫ t

0

sN−1e−bsu(t− s)ds

= −a
(
u(t)−

∫ t

0

KN(s)u(t− s)ds
)
,

where we introduced the kernel

KN(t) :=
bN

(N − 1)!
tN−1e−bt.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

Kernel KN(t) for:
b = N

T

T = 1
N = 2, . . . , 30

t
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A delay equation can be understood as a memory equation with a δ-kernel. To do
this, we fix T > 0 and introduce δT (t) = δ(t− T ). We get∫ ∞

0

δT (t)e−λtdt =

∫ ∞
0

δ(t− T )e−λtdt = e−λT .

Moreover, for t > T we have

u(t− T ) =

∫ ∞
0

u(s)δ(t− T − s)ds =

∫ ∞
0

u(s)δT (t− s)ds =

=

∫ t

0

u(s)δT (t− s)ds = u(t) ∗ δT (t).

Hence,

L(u(t− T ))(λ) = û(λ)e−λT .

Putting b = N
T

, we approximate the Laplace transform of the kernel δT , i.e.

L(δT )(λ) = e−λT ≈
(

1 +
λT

N

)−N
=

(
N
T

N
T

+ λ

)N

= L(KN(t))(λ).

Hence, we conclude

L(KN(t))(λ)
N→∞−−−→ e−λT = L(δ(t− T ))(λ),

and the limiting (DDE) reads as

u̇ =

{
−au(t), if 0 ≤ t ≤ T

−au(t) + au(t− T ), if t ≥ T,

or equivalently

u̇ = −au(t) + au(t− T ), for t ≥ T, and u|[0,T ](t) = e−atu0. (23)

Let us note that the initial condition u|[0,T ](t) = e−atu0 results from the modeling ansatz.
No other initial condition is possible.

Let us compute the limiting stationary solution for N →∞ of the first coordinate of
the MP. This means the MP has long loops, but mass is transferred with a high rate. We
have Z = Na+b

ab
. Putting b = N

T
, we conclude for the zeroth coordinate of the stationary

solution

µ0 =
1

Za
u0 =

b

Na+ b
u0 =

N
T

Na+ N
T

u0 =
1

1 + aT
u0.

The solution of the DDE
and the stationary solution
µ0 of the MP can be seen in
the picture. The solution of
the DDE converges nicely to
µ0.

0 5 10 15 20
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Solution for DDE (23) and equilibrium 1
1+aT

for u0 = 1 with parameters:

T = 1.8

a = 1.6

a = 3.1
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Finally, we remark some properties of the spectrum. The spectrum of the DDE is
given by inserting eλt for λ ∈ C into the equation (see e.g. [Smi11]). This yields for
given a, T ≥ 0 the equation

λ = −a+ ae−λT . (24)

This transcendental equation (in λ ∈ C) has in general an infinite discrete amount of
solutions.

The eigenvalues of A∗ for fixed N ∈ N are given by the characteristic equation

φ(λ) = −abN−1 + (λ+ b)N−1(λ+ a) = 0,

that can be computed easily. Hence, setting b = N
T

we get φ(λ) = 0 if and only if

a

a+ λ
=

(
λ+ b

b

)N−1
=

(
1 +

λT

N

)N−1
.

For N → ∞, right hand side converges to eλT . So, in the limit λ ∈ C satisfies the
equation

a

a+ λ
= eλT ,

i.e. the same equation as (24). Hence, one can say that not only the solution converges
but also the spectrum of the MP and of the ME converges to each other. Note, that the
convergence of the spectrum is very slow, as the convergence of the exponential function
is.

5 Appendix

5.1 Laplace transform

Here, we summarize some facts of the Laplace transform. More details can be found,
e.g. in [StS96]. For a given function u : [0,∞) ∈ t 7→ u(t) ∈ R that does not grow faster
than an exponential function in time, the Laplace transform is defined by

û(λ) = (Lu)(λ) =

∫ ∞
0

e−λtu(t)dt.

We use the following formulas that can be checked easily:

L(u̇)(λ) = λû(λ)− u0
L(K ∗ u) = (LK) · (Lu)

L(e−a·)(λ) =
1

λ+ a

L
(

1

(n− 1)!
tn−1e−at

)
(λ) =

1

(λ+ a)n
.

The Laplace transform has an interesting asymptotic behavior. The limit for large times

u(t)
t→∞−→ u∞ can be calculated with the Laplace transform. It holds λû(λ)

λ→0−→ u∞.
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Thus, there is no need to know the whole solution u(t) if one is interested only in the
equilibrium case. This is important, since, in general for non-autonomous equations, the
equilibrium cannot be calculated by setting u̇ = 0.

Let us note that the uniform convergence on compact sets of t ∈ R+ carries over to
uniform convergence on compact sets of λ in the domain of analyticity.

To carry over positivity properties between the original and the transformation the
following lemma is useful:

Lemma 5.1. Let K(t) =
∑N

j=1 γje
−αjt with its Laplace transform k(λ) =

∑N
j=1 γj

1
λ+αj

.

Then K(t) ≥ 0 if and only if
∑N

j=1
γj

(λ+αj)m
≥ 0 for any m ∈ N.

Proof. Let K(t) ≥ 0. Since K(0) ≥ 0, we get
∑N

j=1 γj ≥ 0, i.e. the claim holds for

m = 0. For m ≥ 0, we get 0 ≤
∫∞
0
tmK(t)e−λtdt = (−1)mk(m)(λ) =

∑N
j=1

γj
(λ+αj)m+1

what proves the claim in one direction.
For the other direction, we put λ = n

t
and m+ 1 = n. Then

0 ≤
N∑
j=1

γj(
n
t
)n

(n
t

+ αj)n
=

N∑
j=1

γj
(1 +

αjn

t
)n

=
N∑
j=1

γj

(
1 +

αjt

n

)−n
→

→
N∑
j=1

γje
−αjt, as n→∞,

which proves the claim of the lemma.

5.2 Simplex integrals

In Theorem 3.1, we proved the positivity of the kernel K(t) using an integral over a
simplex. This is based on the following observation.

Let Sn−1 ⊂ Rn be the simplex, defined as

Sn−1 = {s ∈ Rn | si ≥ 0, s1 + ...+ sn = 1}.
We consider functions g : Rn −→ R and their integrals over Sn−1. We have∫

Sn−1

g(s)dσ(s) =
1√
n

∫
Sn−1

g(s1, s2, ..., sn−1, 1−s1− . . .−sn−1)ds1 · · · dsn−1 =

= (n− 1)!

1∫
0

ds1

1−s1∫
0

ds2

1−s1−s2∫
0

ds3 · · ·
1−sn−...−sn−2∫

0

dsn−1 g(s1, s2, ..., sn)
∣∣∣
sn=1−s1−...−sn−1

,

where σ(ds) is the Lebesgue measure on Sn−1 and
√
n is the volume of Sn−1.

Let f : R −→ R be a smooth enough function, f (k) its k- derivative and x1, ..., xn be
given different real values. Set g(s) = f(〈x, s〉), where 〈x, s〉 = x1s1 + x2s2 + . . . + xnsn
is the scalar product in Rn.

Now, using induction one can prove that
n∑
i=1

f(xi)
n∏
j 6=i

1

xi − xj
=

∫
Sn−1

f (n−1)(〈x, s〉)σ(ds) .

This formula gives a powerful tool to switch between expressions connected with
Lagrange polynomials and expressions connected with simplex integrals. In Theorem
3.1, we used this formula with f(x) = e−xt.
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5.3 Lagrange polynomials

Here we summarize basic facts from the theory of Lagrange polynomials. Let

Lji (x) =

j∏
k=1,k 6=i

x− xk
xi − xk

,

assuming xi 6= xk for i 6= k. Obviously Lji (x) is a polynomial of degree j−1 and we have
Lji (xk) = δik with δik the Kronecker symbol. Hence, the polynomial

P (x) =

j∑
i=1

piL
j
i (x)

of degree j − 1 satisfies P (xi) = pi.
Now, let us fix z ∈ R. Seeking for a polynomial P (x) = q0 + q1x+ ...+ qj−1x

j−1 with
the condition P (xi) = pi = xi

z+xi
, we get coefficients qi with q0 =

∏j
i=1

xi
z+xi

among them.
Hence, we have on the one hand

P (0) = q0 =

j∏
i=1

xi
z + xi

and on the other hand

P (0) =

j∑
i=1

piL
j
i (0) =

j∑
i=1

xi
z + xi

j∏
k=1,k 6=i

(−xk)
xi − xk

=

j∑
i=1

xi
z + xi

j∏
k=1,k 6=i

xk
xk − xi

.

It follows

j∏
i=1

xi
z + xi

=

j∑
i=1

xi
z + xi

j∏
k=1,k 6=i

xk
xk − xi

.

Note, in our explanation we use ψji = (−1)j−1Lji (0) and put z = λ.
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Consistency and convergence for a family of
finite volume discretizations of

the Fokker–Planck operator∗

Martin Heida†, Markus Kantner‡, and Artur Stephan§

Abstract

We introduce a family of various finite volume discretization schemes for the
Fokker–Planck operator, which are characterized by different Stolarsky weight
functions on the edges. This family particularly includes the well-established
Scharfetter–Gummel discretization as well as the recently developed square-root
approximation (SQRA) scheme. We motivate this family of discretizations both
from the numerical and the modeling point of view and provide a uniform con-
sistency and error analysis. Our main results state that the convergence order
primarily depends on the quality of the mesh and in second place on the choice
of the Stolarsky weights. We show that the Scharfetter–Gummel scheme has the
analytically best convergence properties but also that there exists a whole branch
of Stolarsky means with the same convergence quality. We show by numerical ex-
periments that for small convection the choice of the optimal representative of the
discretization family is highly non-trivial while for large gradients the Scharfetter–
Gummel scheme stands out compared to the others.

1 Introduction

The Fokker–Planck equation (FPE), also known as Smoluchowski equation or Kolmogorov
forward equation, is one of the most important equations in theoretical physics and ap-
plied mathematics. It describes the time evolution of the probability density function of
a particle in an external force field (e.g., fluctuating forces as in Brownian motion). The
equation can be generalized to other contexts and observables and has been employed
in a broad range of applications, including physical chemistry, protein synthesis, plasma
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physics and semiconductor device simulation. Thus, there is a huge interest in the devel-
opment of efficient and robust numerical methods. In the context of finite volume (FV)
methods, the central objective is a robust and accurate discretization of the (particle or
probability) flux implied by the FPE.

A particularly important discretization scheme for the flux was derived by Schar-
fetter and Gummel [ScG69] in the context of the drift-diffusion model for electronic
charge carrier transport in bipolar semiconductor devices [vRo50]. The typically expo-
nentially varying carrier densities at p-n junctions lead to unphysical results (spurious
oscillations), if the flux is discretized in a naive way using standard finite difference
schemes [MiW94]. The problem was overcome by considering the flux expression as a
one-dimensional boundary value problem along each edge between adjacent mesh nodes.
The resulting Scharfetter–Gummel (SG) scheme provides a robust discretization of the
flux as it asymptotically approaches the numerically stable discretizations in the drift-
(upwind scheme) and diffusion-dominated (central finite difference scheme) limits. The
SG-scheme and its several generalizations to more complex physical problem settings are
nowadays widely used in semiconductor device simulation [Mar86, FR∗17] and have been
extensively studied in the literature [BMP89, EFG06, FKF17, Kan20]. The SG-scheme
is also known as exponential fitting scheme and was independently discovered by Allan
and Southwell [AlS55] and Il’in [Il’69] in different contexts.

Recently, an alternative flux discretization method, called square-root approximation
(SQRA) scheme, has been derived explicitly for high dimensional problems. The origi-
nal derivation in [LFW13] aims at applications in molecular dynamics and is based on
Markov state models. However, it can also be obtained from a maximum entropy path
principle [DJ∗15] and from discretizing the Jordan–Kinderlehrer–Otto variational formu-
lation of the FPE [Mie13a]. In Section 3.2, we provide a derivation of SQRA scheme,
which is motivated from the theory of gradient flows. In contrast to the SG-scheme, the
SQRA is very recent and only sparsely investigated.

The SG and the SQRA schemes both turn out to be special cases of a family of
discretization schemes based on weighted Stolarsky means [Sto75], see Section 3.1. This
family is very rich and allows for a general convergence and consistency analysis, which
we carry out in Sections 4–5. There are also other discretization schemes available in
literature. The Chang–Cooper scheme [ChG70] has been derived for computing ion-
electron collisions and uses another Stolarsky mean, namely the logarithmic mean. Gen-
eral discretization schemes using different weights are called B-schemes and have been
introduced in [ChD11]. We will recall the corresponding results in Section 1.2 below.

1.1 The FPE and the SG and SQRA discretization schemes

In this work, we consider the stationary Fokker–Planck equation

−∇ ⋅ (κ∇u) −∇ ⋅ (κu∇V ) = f, (1.1)

which can be equivalently written as

div J(u,V ) = f

using the flux J(u,V ) = −κ (∇u + u∇V ), where κ > 0 is a (possibly space-dependent)
diffusion coefficient and V ∶ Ω→ R is a given potential. The flux J consists of a diffusive
part κ∇u and a drift part κu∇V , which compensate for the stationary density π = e−V
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(Boltzmann distribution) as J(e−V , V ) = 0. This reflects the principle of detailed balance
in the thermodynamic equilibrium. The right-hand side f describes possible sink or
source terms.

Assumption 1.1. Unless stated otherwise we assume V ∈ C2(Ω), κ ∈ C1(Ω), f ∈ C(Ω)
real valued functions with κ > 0. The standard boundary conditions are the homogeneous
Dirichlet boundary conditions.

Remark 1.2. Some results also hold for lower regularity and for κ a symmetric strictly
positive definite matrix.

In Section 3.1 we derive the following discretization of (1.1)

− ∑
j∶ j∼i

mij

hij
κijSij (

uj
πj
− ui
πi
) = fi, (1.2)

where πi = e−Vi , fi = ∫Ωi f is the integral of f over the i-th cell, Sij = Sα,β (πi, πj) is a
Stolarsky mean of πi and πj and ∑j∶ j∼i denotes the sum over all neighbors of cell i. We
sometimes refer to the general form (1.2) as discrete FPE.

Assumption 1.3. Under the Assumption 1.1 we additionally assume that for some
∞ >K > κ0 > 0 it holds K > κij ≥ κ0.

The weighted Stolarsky means [Sto75]

Sα,β (x, y) = (
β (xα − yα)
α (xβ − yβ)

)
1
α−β

, α ≠ 0, β ≠ 0, α ≠ β, x ≠ y (1.3)

generalize the logarithmic mean and other means and can be extended to the critical
points α = 0, β = 0, α = β, x = y in a continuous way, see Tab. 2. An interesting aspect of
the above representation is that all these schemes preserve positivity with the discrete
linear operator being an M -matrix. This can be seen introducing the relative density
U = u/π for which Eq. (1.2) yields

− ∑
j∶ j∼i

mij

hij
κijSij (Uj −Ui) = fi, (1.4)

which is a discretization of the elliptic equation

−∇ ⋅ (κπ∇U) = f, (1.5)

where the discrete Fokker–Planck operator becomes a purely diffusive second order op-
erator in U . Furthermore, if κ is a symmetric strictly positive definite uniformly elliptic
matrix, the operator in Eq. (1.4) is also symmetric strictly positive definite and uniformly
elliptic. In the latter setting, we can thus rule out the occurrence of spurious oscillations
in our discretization.

The above formulation underpins the diffusive character both of the discrete and
the continuous FPE. Using the relation Sα,β (x, y) = xSα,β (1, y/x) and introducing the
weight function

Bα,β (x) = Sα,β (1, e−x) with Bα,β (−x) = exBα,β (x) , (1.6)
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Eq. (1.2) can equally be reformulated as

− ∑
j∶ i∼j

mij

hij
κij (Bα,β (Vi − Vj)uj −Bα,β (Vj − Vi)ui) = fi.

Two special cases of particular interest are

B0,−1 (Vi − Vj) =
Vi − Vj

eVi−Vj − 1
= S0,−1 (πi, πj)π−1

j , (1.7)

B1,−1 (Vi − Vj) = e−
1
2
(Vi−Vj) = S1,−1 (πi, πj)π−1

j . (1.8)

With regard to Tab. 2 below, these coefficients are known as the Bernoulli function B0,−1

(for SG) and the SQRA-coefficient B1,−1. FV schemes with general weight functions B
have been investigated in [ChD11, LuL20] (B-schemes).

In the purely diffusive regime, i.e., for Vi − Vj → 0, it holds Bα,β (Vi − Vj) → 1 for all
α, β, such that the Stolarsky scheme approaches a discrete analogue of the diffusive part
of the continuous flux Jij = κij (Bα,β (Vj − Vi)ui −Bα,β (Vi − Vj)uj) /hij.

In the drift-dominated regime, i.e., for Vj − Vi → ±∞, the various Bα,β behave dif-
ferently. While B1,−1 (Vi − Vj) cannot be controlled in a reasonable way, asymptotics of
B0,−1 recover the upwind scheme

Ji,j → −κi,j
Vj − Vi
hi,j

⎧⎪⎪⎨⎪⎪⎩

uj if Vj > Vi
ui if Vj < Vi

, (1.9)

which is a robust discretization of the drift part of the flux, where the density u is
evaluated in the donor cell of the flux. Hence, the Bernoulli function B0,−1 interpolates
between the appropriate discretizations for the drift- and diffusion-dominated limits,
which is why the SG scheme is the preferred FV scheme for Fokker–Planck type operators.
Mathematically, this is formulated in Section 5.2.

1.2 Major contributions of this work

As main contribution, we investigate the order of convergence for the general Stolarsky
scheme. Furthermore, we provide a derivation of the general Stolarsky mean FV dis-
cretization in Section 3.1 and discuss the gradient structure of the discretization schemes
in view of the natural gradient structure of the FPE in Section 3.2.

In recent years, convergence order has been derived for many different schemes. In
[LMV96], quantitative convergence of order O(h2) for several upwind schemes on rect-
angular grids has been shown. In [BCC98] the finite volume Scharfetter–Gummel dis-
cretization (of steady convection diffusion equations) is connected to a finite element
method and convergence of order O(h) is obtained by using results from [XuZ99]. Inves-
tigating general B-schemes, [ChD11] proved strong convergence in L2 for the solutions of
the FV scheme to the continuous solution. Recently, convergence of order O(h) for gen-
eral B-schemes including SG, SQRA as well as Stolarsky means has been proved in 1D
[LuL20]. Independently, convergence for the SQRA discretization has been investigated
in [Mie13a] in 1D, [DH∗] (formally, rectangular meshes) and [Hei18] using G-convergence
on grids with random weights.

Here, we are going to derive estimates for the order of convergence in the energy
norm for general Stolarsky schemes. We benefit from analytical properties of Stolarsky
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means and uses the general theory of consistent meshes in the sense of the recent work
[DiD18]. We will see that the error naturally splits into the consistency error for the
discretization of the Laplace operator (the consistency of the elliptic operator) plus an
error which is due to the convective part. Here we have the possibility to study the error
in terms of U and of u, in both cases in the energy norm. While the error in terms of U
can be directly inferred from the diffusive estimate in Lemma 2.12, one can also apply
a splitting into diffusion- and convection-part of the error, both in terms of U and u.
The order of convergence is in general limited by the consistency of the mesh but can
be improved up to order O(h) in u (on all Voronöı grids), resp. O(h2) in U (on cubic
grids). It is interesting to observe that the optimal Stolarsky mean can be different in
the variables u and U for the same problem on the same mesh. This is indicated by the
numerical experiment of Example 7.1.

Despite the latter discrepancy for u and U , the Stolarsky scheme S0,−1 (SG scheme)
turns out to be special among all schemes as it yields order O(h2) in u on cubic grids
(Theorem 6.3). Due to a perturbation result (Corollary 4.4), the good convergence
properties of the SG scheme carry over to every Stolarsky scheme where α + β = −1.

Using the notations of Section 2, we formulate the above in the following theorems,
where RThu is the pointwise evaluation of u in the centers of the Voronöı cells. Hence
the constraint d ≤ 4 in this work stems from the condition H2(Ω)↪ C(Ω).

Theorem 1.4. Let d ≤ 4 and Th = (Vh,Eh,Ph) and κ, V satisfying Assumptions 1.1
and 1.3 such that Th = (Vh,Eh,Ph) is a family of ϕ-consistent meshes (Def. 2.14) with
diamTh → 0 as h → 0 and let the assumptions of Lemma 5.1 hold. If u ∈ H2(Ω) is the
solution of (1.1) and uTh the solution of (1.2) then

∥uTh −RThu∥
2
HT ,κ ≤ C1 (∥u∥H2 + ∥u∥∞ ∥V ∥H2)ϕ(h)2 +C2h

2 ,

where C1 depends on Th and κ and C2 additionally depends on ∥V ∥C2 and ∥u∥H2. In case
S∗ = S0,−1 or S∗ = Sα,β with α + β = −1 and u ∈ C1(Ω) the above can be improved to

∥uTh −RThu∥
2
HT ,κ ≤ C1 (∥u∥H2 + ∥u∥∞ ∥V ∥H2)ϕ(h)2 +C2h

4 .

Proof. This is a consequence of Definition 2.14 together with Lemma 2.12, Theorem 5.6
and Corollary 5.7.

Remark 1.5. As a consequence of former works (see Propositions 2.15 and 2.16) it holds
ϕ(h) = O(h) on Voronöı grids and ϕ(h) = O(h2) on cubic grids. This explains the next
result.

Theorem 1.6. Let d ≤ 4 and Th = (Vh,Eh,Ph) and κ, V satisfying Assumptions 1.1 and
1.3 such that Th = (Vh,Eh,Ph) is a family of cubic ϕ-consistent meshes (Def. 2.14) with
diamTh → 0 as h → 0 and let the assumptions of Lemma 5.1 hold. If u ∈ H2(Ω) is the
solution of (1.1) and uTh the solution of (1.2) then

∥uTh −RThu∥
2
HT ,κ ≤ Ch

2 ,

where C depends on Th, κ, ∥V ∥C2 and ∥u∥H2. In case S∗ = S0,−1 or S∗ = Sα,β with
α + β = −1 the above can be improved to

∥uTh −RThu∥
2
HT ,κ ≤ Ch

4 .
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Proof. This is a consequence of Lemma 2.12, Propositions 2.16 (resp. Theorem 6.2) and
Theorem 6.3.

We note at this point, that these estimates are only “worst case” estimates, while the
true rate of convergence could also be better. In Section 4 we will see that the rate of
convergence is close for different Stolarsky means which share the same value of α+β. I.e.
the difference in the error due to switching Sα,β with Sα̃,β̃ is of order h3 if α̃ + β̃ = α + β,
see Corollary 4.3. This explains the shape of the error graphs in Figs. 2 (a, c) and 3 (a, c).

Although we treat the Stolarsky means as an explicit example, note that some of the
main results also hold for other smooth means.

1.3 Outlook

The results of this work suggest to search for “optimal” parameters α and β in the
choice of the Stolarsky mean in order to reduce the error of the approximation as much
as possible. However, from an analytical point of view, the quest for such optimal α and
β is quite challenging. Moreover, since the optimal choice might vary locally, depending
on the local properties of the potential V , we suggest to implement a learning algorithm
that provides suitable parameters α and β depending on the local structure of V and
the mesh.

1.4 Outline of this work

After some preliminaries regarding notation and a priori estimates in Section 2, we
present a mathematical derivation of the SG scheme in Section 3.1 and discuss its formal
relation to SQRA. We will then provide a derivation of SQRA from physical principles in
Section 3.2, based on the Jordan–Kinderlehrer–Otto [JKO98] formulation of the FPE. In
Section 3.1, we show that SG and SQRA are elements of a huge family of discretization
schemes (1.2).

Section 5 provides the error analysis and estimates for the consistency and the order of
convergence. We distinguish the cases of small and large gradients and have a particular
look at cubic meshes. Section 6 specifies the results to cubic grids.

Finally, we show hat the optimal choice of S∗ depends on V and f , but is not
unique. If Sα,β denotes one of the Stolarsky means, we will prove in Section 4 that the
Stolarsky means satisfying α+β = const. show similar quantitative convergence behavior
as suggested in Corollary 4.3. Finally, this result is illustrated in Section 7 by numerical
simulations.

2 Preliminaries and notation

We collect some concepts and notation, which will frequently be used in this work.

2.1 The Mesh

For a subset A ⊂ Rd, A is the topological closure of A.
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Definition 2.1. Let Ω ⊂ Rd be a polygonal domain. A finite volume mesh of Ω is a
triangulation T = (V ,E ,P) consisting of a family of control volumes V ∶= {Ωi, i = 1, . . . ,N}
which are convex polytope cells, a family of (d − 1)-dimensional interfaces

E ∶= EΩ ∪ E∂
EΩ ∶= {σij ⊂ Rd ∶ σij = ∂Ωi ∩ ∂Ωj}
E∂ ∶= {σ ⊂ Rd ∶ σ = ∂Ωi ∩ ∂Ω is flat}

and points P = {xi, i = 1, . . . ,N} with xi ∈ Ωi satisfying

(i) ⋃i Ωi = Ω

(ii) For every i there exists Ei ⊂ E such that Ωi/Ωi = ⋃σ∈Ei σ. Furthermore, E = ⋃i Ei.

(iii) For every i, j either Ωi ∩Ωj = ∅ or Ωi ∩Ωj = σ for σ ∈ Ei ∩ Ej which will be denoted
σij.

The mesh is called h-consistent if

(iv) The Family (xi)i=1...N is such that xi /= xj if i /= j and the straight line Dij going
through xi and xj is orthogonal to σij.

and admissible if

(v) For any boundary interface σ ∈ E∂ ∩ Ei it holds xi /∈ σ and for Di,σ the line through
xi orthogonal to σ it holds that Di,σ ∩ σ /= ∅ and let yσ ∶=Di,σ ∩ σ.

Property (iv) is assumed in [GHV00] in order to prove a strong form of consistency in
the sense of Definition 2.14 below. It is satisfied for example for Voronöı discretizations.

We write mi for the volume of Ωi and for σ ∈ E we denote mσ its (d − 1)-dimensional
mass. In case σij ∈ Ei ∩ Ej we write mij ∶= mσij . For the sake of simplicity, we consider

P̃ ∶= (xi)i=1,...,N and P ∶= P̃ ∪{yσ ∶ σ ∈ E∂, according to (v)}. We extend the enumeration

of P̃ to P = (xj)j=1,...,Ñ and write i ∼ j if xi, xj ∈ P̃ with Ei ∩ Ej /= ∅. Similarly, if xi ∈ P̃
and xj = yσ for σ ∈ Ei we write σij ∶= σ and i ∼ j. Finally, we write hij = ∣xi − xj ∣.

We further call

P∗ ∶= {u ∶ P → R} , P̃∗ ∶= {u ∶ P̃ → R} , and E∗ ∶= {w ∶ E → R}

the discrete functions from P resp. P̃ resp. E to R.
In this work, we consider function with

discrete homogeneous Dirichlet boundary conditions: ∀σ ∈ E∂ ∶ u(yσ) = 0 . (2.1)

We write the latter also as ui = 0 if xi ∈ P/P̃ . Hence, in what follows we write

∀xi ∈ P̃ ∶ ai ∶= a(xi) , with ∑
i

ai ∶= ∑
xi∈P̃

a(xi) .

For w ∈ E∗ we write wij ∶= w(σ) if σij = σ. Then for fixed i the expression

∑
j∶ i∼j

wij ∶= ∑
σij∈Ei

wij
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symbol meaning symbol meaning

κ diffusion coefficient U u/π

κij
κ̄iκ̄j

κ̄i
di,ij
hij
+κ̄j

dj,ij
hij

u density

κ∗, κ∗ 0 < κ∗ ≤ κ ≤ κ∗ <∞ mi vol(Ωi)
V real potential on Ω ⊂ Rd hi diam(Ωi)

V ∗, V∗ −∞ < V∗ ≤ V ≤ V ∗ <∞ σij ∂Ωi ∩ ∂Ωj

π stat. measure e−V (x) on Ω mij area of σij

πi stat. measure e−V (xi) on Ωi hij xi − xj
ui u(xi) hij ∣hij ∣
f̄i

1
∣Ωi∣ ∫Ωi fdx di,ij dist (xi, σij)

fi mif̄i diamT diameter, i.e. supi∼j ∣xi − xj ∣
J −κ (∇u + u∇V ) JSijU −κijhijSij (Uj −Ui)

Tab. 1: Commonly used notations.

is the sum over all wij such that Ei ∩ Ej /= ∅ and

∑
i

∑
j∶ i∼j

wij =∑
j∼i

wij ∶= ∑
σij∈E

wij ∶=∑
σ∈E

w(σ)

is the sum over all edges.
Moreover, we define the diameter of a triangulation T as

diamT = sup
i∼j
∣xi − xj ∣.

The identity

∑
i

∑
j∶j∼i

Aij =∑
j∼i

(Aij +Aji) (2.2)

will frequently be used throughout this paper, where we often encounter the case Aij =
αijUi with αij = −αji:

∑
i

∑
j∶j∼i

αijUi =∑
j∼i

(αijUi + αjiUj) =∑
j∼i

αij (Ui −Uj) . (2.3)

Formula (2.2) in particular allows for a discrete integration by parts for functions satis-
fying (2.1):

∑
i

∑
j∶j∼i

(Uj −Ui)Ui =∑
j∼i

((Uj −Ui)Ui + (Ui −Uj)Uj) = −∑
j∼i

(Uj −Ui)2 . (2.4)

On a given mesh T = (V ,E ,P), we consider the linear discrete operator LTκ ∶ P∗ → P∗,
which is defined by a family of non-negative weights κ ∶ E → R and acts on functions
u ∈ P∗ via

∀xi ∈ P ∶ (LTκ u)i ∶=∑
i∼j

κij
mij

hij
(uj − ui) . (2.5)
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While (2.5) is very general, it is shown in [GHV00], Lemma 3.3, that the property (iv)
of Definition 2.1 comes up with some special consistency properties for the choice of

κij ∶=
κ̄iκ̄j

κ̄i
di,ij
hij
+ κ̄j dj,ijhij

, (2.6)

where di,ij and dj,ij are the distances between σij and xi and xj respectively and averaged
diffusion coefficient is defined by κi =m−1

i ∫Ωiκ(x)dx.

Lemma 2.2 (A consistency lemma, [GHV00]). Let the T = (V ,E ,P) satisfy Definition
2.1 (i)–(v) and let d ∈ {2,3} and let hij be uniformly bounded from above and from below.
Then for every u ∈H2 (Ω) it holds

∣∫
σij
κ∇u ⋅ νij − κij

mij

hij
(u (xj) − u (xi))∣ ≤ Cm

1
2
ijh

1
2
ij ∥u∥H2(Ωi∪Ωj)

.

Lemma 2.2 was one of the motivations to provide a more general and powerful concept
of consistency in [DiD18], as we will discuss in Section 2.5

2.2 Poincaré inequalities

In order to derive the a priori estimates in Section 2.3 we need to exploit (discrete)
Poincaré inequalities to estimate ∥u∥L2(Ω) by ∥∇u∥L2(Ω) or ∥uT ∥L2(P)

by ∥DuT ∥L2(E)
,

where (DuT )ij = uj − u. In particular, we use the following theorem which can be
found e.g. in [EGH00] or can be proved using Lemma A.1 applied to piecewise constant
functions on the cells with C# ≤ diamΩ

h0
and the choice ∣η∣ > diamΩ.

Theorem 2.3. Given a mesh T = (V ,E ,P) let hinf ∶= inf {∣x − y∣ ∶ (x, y) ∈ P2} > 0 and
hsup ∶= sup{∣x − y∣ ∶ (x, y) ∈ P2} > 0 correspondingly. Then for every u ∈ L2 (P) satisfying
(2.1) and for every η ∈ Rd it holds

∫
Ω
∣∑
i

uiχΩi(x) −∑
i

uiχΩi(x + η)∣
2

dx ≤ ∣η∣ (diamΩ
hsup

hinf
∑
i∼j

mij

hij
(uj − ui)2) , (2.7)

and particularly

∥u∥2L2(P)
≤ (diamΩ)2

hsup

hinf
∑
i∼j

mij (uj − ui)2 . (2.8)

2.3 Existence and a priori estimates

In what follows, we study the properties of (1.4)–(1.5). Putting U ≡ 1 in both of these
equations, we immediately see that the Boltzmann distribution ui ∶= πi = exp (−V (xi)) =
exp (−Vi), resp. the continuous version u = π is the stationary solution for f = 0. Hence,
from the standard theory of elliptic systems ([Eva98] Chapter 6), we have the following
theorem.

Theorem 2.4. Let Ω be as above and f ∈ L2(Ω), κ ∈ C1 (Ω ∶ Rd×d) such that κ is

uniformly bounded, symmetric and elliptic and V ∈ C2(Ω). Then there is a unique
u ∈ H2(Ω) ∩H1

0(Ω) solving −∇ ⋅ (κ∇u) −∇ ⋅ (κu∇V ) = f in the weak sense.

Furthermore, we find the following.
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Theorem 2.5. Let T = (V ,E ,P) be an admissible mesh in the sense of Definition 2.1
and let c > 0 such that κij > c for every i, j. Furthermore, let π > 0. Then there exists a
unique solution UT ∈ L2(P̃) to (1.4) satisfying discrete homogeneous Dirichlet boundary
conditions (2.1).

Proof. Multiplying (1.4) with φ ∈ L2(P̃) and applying (2.4) we find

∑
i

fiφi =∑
i

−φi ∑
j∶j∼i

mij

hij
κijSij (UTj −UTi )

=∑
i∼j

mij

hij
κijSij (UTj −UTi ) (φj − φi) .

The right hand side is a strictly positive symmetric bilinear form in L2(P̃) due to the
Poincaré inequality (2.8). Hence there exists a unique solution UT by the Lax–Milgram
theorem.

Having shown the existence of solutions to (1.5) and (1.4), we recall the derivation
of some natural a priori estimates for both the continuous Fokker–Planck equation and
the discretization.

Continuous FPE Let u, resp. U = u/π, be a solution of the stationary Fokker–Planck
equation (1.5) with homogeneous Dirichlet boundary conditions. Testing with U , we get
from a standard calculation that

∫
Ω

1
κπ ∣κπ∇U ∣

2 ≤ C ∫
Ω
f 2 . (2.9)

Furthermore, the standard theory of elliptic equations (e.g., [Eva98]) yields ∥U∥H2(Ω) ≤
C ∥f∥L2 , where C depends on the C1-norm of κπ and the Poincaré-constant.

Discrete FPE Let UTi be a solution of (1.4) with fi = mif̄i = ∫Ωi fdx (as specified in
the Tab. 1), i.e.,

∀i ∶ − ∑
j∶j∼i

mij

hij
κijSij (UTj −UTi )=mif̄i .

Then, multiplying with UTi , summing over all xi ∈ P and using (2.4), we conclude
with help of the discrete Poincaré inequality (see Theorem 2.3 below)

∑
j∼i

mij

hij
κijSij (UTj −UTi )

2 =∑
i

mif̄iU
T
i ≤∑

i

((UTi )2mi + 1
πi
f̄ 2
i mi)

⇒∑
j∼i

mij

hij
κijSij (UTj −UTi )

2 ≤ C∑
i

mif̄
2
i .

The last estimate can be rewritten as

∑
j∼i

mij

hij
κij

1

Sijκ2
ij

(κijSij(UTj −UTi ))
2 ≤ C∑

i

f̄ 2
i mi. (2.10)
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2.4 Gradients, Fluxes and L2-spaces

In order to derive and formulate variational consistence errors for the discrete FPE (1.4),
we introduce the discrete fluxes

JSijU
T ∶= −

κij
hij
Sij (UTj −UTi ) ,

J ijU ∶= −
1

mij
∫
σij
κπ∇U ⋅ νij .

(2.11)

In particular, if Sij =
√
πiπj we get JSQRA

ij UT ∶= −κij
√
πiπj (UTj −UTi ) /hij for the flux of

the SQRA scheme. The quantity JSijU
T can indeed be considered as a flux in the sense

that it will be shown to approximate J ij, Sij is a discrete approximation of π∣σij , κij is a

discrete approximation of κ∣σij . The differences (UTj −UTi ) /hij take the role of gradients
∇U in the continuous problem and hence we refer to them as discrete gradients even
though they are 1-dimensional objects.

While former approaches focus on the rate of convergence of (uTj − uTi ) /hij → ∇u, we
additionally follow the approach of [DiD18] applied to U and are interested in the rate
of convergence of JSijU

T → J(U), which is an indirect approach to the original problem

as this rate of convergence is directly related to (UTj −UTi ) /hij → ∇U .
In view of the natural norms for the variational consistency (see (2.16) f.f.), we

introduce the following

∀U ∈ L2(Ω) ∶ ∥U∥2L2(Ω) ∶= ∫
Ω
U2dx ∥U∥2L2

π(Ω)
∶= ∫

Ω

1
πU

2dx

∀U ∈ P∗ ∶ ∥U∥2L2(P)
∶=∑

i∈P

miU
2
i ∥U∥2L2

π(P)
∶=∑

i∈P

mi
1
πi
U2
i (2.12)

∀J ∈ E∗ ∶ ∥J∥2L2(E)
∶=∑

i∼j

mijhijJ
2
ij ∥J∥2

L2
S(E)
∶=∑

i∼j

mijhij
1

Sij
J2
ij

Let us introduce the discrete flux JSUT ∈ E∗ via JSUT (σij) ∶= JSijUT and similarly

also 1
κJ

SUT ∈ E∗ via JSUT (σij) ∶= 1
κij
JSijU

T . With all the above notations, our a priori

estimates (2.9) and (2.10) now read

∥ 1√
κ

J(U)∥2L2
π(Ω)
≤ C∥f∥2L2

π(Ω)

∥ 1√
κ
JSUT ∥

2

L2
S(E)

≤ C∥f̄∥2L2
π(P)

.

Assuming that the diffusion coefficient is bounded, i.e. κ∗ ≥ κ ≥ κ∗, we further get

1
κ∗ ∥J(U)∥

2
L2
π(Ω)
≤ C∥f∥2L2

π(Ω)

1

κ∗
∥JSUT ∥2

L2
S(E)
≤ C∥f̄∥2L2

π(P)
.

Remark 2.6 (Naturalness of norms). Let us discuss why these norms are natural to
consider. The left norms in (2.12) can be interpreted as the Euclidean L2-norms on Ω, P
and E , while the right norms are the natural norms for the study of the Fokker–Planck
equation as they are weighted with the inverse of the Boltzmann distribution π, resp.
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πi. Note that assuming V is bounded from above and below, the L2-norms ∥ ⋅ ∥L2
π(Ω)

and
∥ ⋅∥L2(Ω) are equivalent and the same holds true for the two norms in the discrete setting.

Given a discretization T , the linear map

Cc (Rd)→ R , f ↦∑
i∈P

mif(xi)

defines an integral on Ω w.r.t. a discrete measure µT having the property that µT → Ld
vaguely, where Ld is the d-dimensional Lebesgue measure. In particular µT (A)→ Ld (A)
for every bounded measurable set with Ld (∂A) = 0. The norm ∥U∥2

L2(P)
is simply the

L2-norm based on the measure µT .
Similar considerations work also for the norm on E∗. The norm ∥ ⋅ ∥2

L2(E)
is given via

a measure µ̃T having the property

µ̃T ∶ Cc (Rd)→ R , f ↦∑
i∼j

mijhijf(xij) ,

with the property that µ̃T → d⋅Ld vaguely: every Voronöı cell Ωi consists of disjoint cones
with mass 1

dmijhij, where one has to account for all cones with j ∼ i. In particular, we
obtain µ̃T (A) ≈ d ⋅L(A) for Lipschitz domains – an estimate which then becomes precise
in the limit. Without going into details, let us mention that heuristically the prefactor

d balances the fact that Jij ≈ (xi−xj)∣xi−xj ∣
⋅ ∇U which yields for functions U ∈ C1

c (Rd):

∑
i∼j

mijhij ∣
(xi − xj)
∣xi − xj ∣

⋅ ∇U ∣
2

→ ∫
Rd
∣∇U ∣2 .

For the particular case of a rectangular mesh, this is straight forward to verify.

2.5 Consistency and inf-sup stability

Results such as Lemma 2.2 motivated the authors of the recent paper [DiD18] to define
the concepts of consistency and inf-sup stability as discussed in the following. For read-
ability, we will restrict the general framework of [DiD18] to cell-centered finite volume
schemes and refer to general concepts only as far as needed.

Definition 2.7 (inf-sup stability). A bilinear form aT on L2 (P) for a given mesh T =
(V ,E ,P) is called (uniformly) inf-sup stable with respect to a norm ∥⋅∥HT on a subspace
HT ⊂ L2 (P) if there exists γ > 0 (independent from T ) such that

∀u ∈HT ∶ γ ∥u∥HT ≤ sup
v∈HT

aT (u, v)
∥v∥L2(P)

.

Usually, and particularly in our setting, aT is the discretization of a continuous
bilinear form, say e.g. a (u, v) = ∫Ω∇u ⋅ (κ∇v). We are interested in discretizing the
problem

∀v ∈H1
0 (Ω) ∶ a (u, v) = l (v) , (2.13)

where l ∶ H1
0 (Ω)→ R is a continuous linear map, and in the convergence of the solutions

uT of the discrete problems

∀v ∈ L2 (T ) ∶ aT (uT , v) = lT (v) (2.14)

to the solutions u for (2.13).

172



Discretization for the Fokker–Planck operator M. Heida, M. Kantner, A. Stephan

Definition 2.8 (Consistency). Let B ⊂ H1
0 (Ω) be a continuously embedded Banach

subspace and for given T = (V ,E ,P) consider continuous linear operators RT ∶ B →
L2 (P) with uniform bound. Let u be the solution to the linear equation (2.13) and let
lT ∶ L2 (P) → R be a family of linear functionals. The variational consistency error of
u ∈ B is the linear form ET (u; ⋅ ) ∶ L2 (P)→ R where

ET (u; ⋅ ) ∶= lT (⋅) − aT (RT u, ⋅ ) .

Let now a family (T , aT , lT ) with diamT → 0 be given and consider the corresponding
family of linear discrete problems (2.14) and let u ∈ B be a solution of (2.13). We say
that

consistency holds if ∥ET (u; ⋅ )∥H∗T ∶= sup
υ∈HT /{0}

∣ET (u;υ)∣
∥υ∥HT

→ 0 as diamT → 0 .

Remark 2.9. A typical situation is the case d ≤ 3, where H2 (Ω) ∩H1
0 (Ω) ↪ C0 (Ω)

continuously. We then might set B =H2 (Ω) ∩H1
0 (Ω) and (RT u)i ∶= u (xi).

Consistency measures the rate at which RT u − uT → 0 and particularly provides a
positive answer to the question whether the numerical scheme converges, at least if the
solution of (2.13) lies in B. This is formulated in Theorem 10 of [DiD18].

Theorem 2.10 (Theorem 10, [DiD18]). Using the above notation, it holds

∥uT −RT u∥HT ≤ γ
−1 ∥ET (u; ⋅ )∥H∗T (2.15)

In our setting, ∥ ⋅∥HT = ∥ ⋅∥HT ,κ (see (2.16)) is a norm on L2(P) defined in terms of the
discrete gradients. By the discrete Poincaré inequality, (2.15) also implies a convergence
estimate for the discrete solutions itself. The theorem can be understood as a requirement
on the regularity of u, resp. the right hand side of (2.13) for convergence of the scheme.

We introduce

HT ∶= {u ∈ L2(P) ∶ u satisfies hom. Dir. b.c. (2.1)}

with the HT -norm through

∥u∥HT ,κ ∶=∑
i∼j

mij

hij
κij (uj − ui)2 (2.16)

and find by the uniform bound κij > κ0 that ∥ ⋅ ∥HT ,κ and the following norms are equiv-
alent:

∥u∥L2,HT ,κ ∶= ∥u∥HT ,κ + ∥u∥L2(P)
, ∥u∥L2,HT ∶= ∥u∥L2,HT ,1 =∑

i∼j

mij

hij
(uj − ui)2 + ∥u∥L2(P)

.

Due to the discrete Poincaré inequality (2.8), this holds uniformly, i.e. for every κ
there exist constants C1,C2,C3,C4 > 0 independent from T such that for all functions
u ∈ L2(P) with homogeneous Dirichlet boundary values

∥u∥HT ,1 ≤ C1 ∥u∥L2,HT ≤ C2 ∥u∥L2,HT ,κ ≤ C3 ∥u∥HT ,κ ≤ C4 ∥u∥HT ,1 . (2.17)
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Using these relations, we can prove the following theorem for the bilinear discrete
and continuous forms

a (u, v) = ∫
Ω
∇u ⋅ κ∇v + u∇V ⋅ κ∇v ,

aT (u, v) =∑
i∼j

mij

hij
Si,jκij (

uj
πj
− ui
πi
)(vj − vi) .

We furthermore need the following relation

a1b1 − a2b2 =
1

2
(a1 − a2) (b1 + b2) +

1

2
(a1 + a2) (b1 − b2) . (2.18)

Lemma 2.11. Under the Assumption 1.1 the following holds: Let T = (V ,E ,P) be a
family of meshes that satisfy Assumption 1.3 and inequalities (2.8) and (2.17) uniformly
for functions u ∈ HT . Then aT is uniformly inf-sup stable for ∥⋅∥HT ,ω , where ω = κ or

ω = 1 and where γω in both cases depends on Ω,
hsup

hinf
, K, κ0, ∥π∥

∞
and ∥∇π∥

∞
.

Proof. We first observe that (2.18) yields

Uj −Ui =
uj
πj
− ui
πi
= 1

2

(πi + πj)
πiπj

(uj − ui) +
1

2
(ui + uj) (π−1

i − π−1
j ) .

Introducing ūij ∶= 1
2 (ui + uj) we obtain with the triangle inequality

2∑
i∼j

mij

hij
Si,jκij ((Uj −Ui) (Uj −Ui) + ū2

ij (π−1
j − π−1

i )
2)

≥∑
i∼j

mij

hij
Si,jκij

1

4
(
(πi + πj)
πiπj

)
2

(uj − ui)2 .

Observing that

∑
i∼j

mij

hij
Si,jκijū

2
ij (π−1

j − π−1
i )

2 ≤ 2∑
i

U2
i ∑
j∶ j∼i

mij

hij
Si,jκijπ

2
i (π−1

j − π−1
i )

2

and exploiting (2.17) we observe that

∑
i∼j

mij

hij
Si,jκij (Uj −Ui) (Uj −Ui) ≥ C ∥u∥HT ,1 ,

where C depends on Ω,
hsup

hinf
, K, κ0, ∥π∥

∞
and ∥∇π∥

∞
. On the other hand

∑
i∼j

mij

hij
Si,jκij (Uj −Ui) (Uj −Ui) = aT (u,U) ≤ sup

v∈HT

aT (u, v)
∥v∥L2(P)

,

which together implies uniform inf-sup stability.

Next we derive ET in terms of κ, π and T and provide an estimate on ET . The
main message of Lemma 2.12 is that the consistency error can be estimated by two
separate expressions, one estimating the error contributed by the diffusive term and one
estimating the error contributed by the convective term in the FPE.
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Lemma 2.12. Let k ≥ 1 such that Hk(Ω) embeds into C(Ω) let u ∈ Hk(Ω) ∩H1
0(Ω) be

a solution to
∀v ∈H1

0(Ω) ∶ a(u, v) = l(v) ,

where
l(v) = ∫

Ω
f v , lT (v) =∑

i

fivi .

Using the notation (2.11) the consistency of u is given through

ET ,FPE,κ (u; v) =∑
i∼j

(vj − vi) (mijJ
S
ijU −mijJ ijU) (2.19)

= ET ,κ(u; v) +ET ,κ,conv(u; v) , (2.20)

where with ui = (RT u)i

ET ,κ (u; v) =∑
i∼j

(vj − vi)(∫
σij
κ∇u ⋅ νij −

mij

hij
κij (uj − ui)) , (2.21)

ET ,κ,conv(u; v) =∑
i∼j

(vj − vi)(∫
σij
κu∇V ⋅ νij −

mij

hij
κij (

Sij − πj
πj

uj −
Sij − πi
πi

ui)) . (2.22)

In particular, for both ω = κ or ω = 1 we obtain

∥ET ,FPE,κ (u; v)∥2H∗T ,ω ≤∑
i∼j

hij
mij

ω−1
ij (mijJ

S
ijU −mijJ ijU)

2
(2.23)

≤ 2 ∥ET ,κ (u; ⋅)∥2H∗T ,ω + 2 ∥ET ,κ,conv (u; ⋅)∥2H∗T ,ω (2.24)

∥ET ,κ (u; ⋅)∥2H∗T ,ω ≤ ∣E∣T ,κ,ω(u)

∶=∑
i∼j

hij
mij

ω−1
ij (∫

σij
κ∇u ⋅ νij −

mij

hij
κij ((RT u)j − (RT u)i))

2

, (2.25)

∥ET ,κ,conv (u; ⋅)∥2H∗T ,ω ≤ ∣E∣T ,κ,ω,conv(u) (2.26)

∶=∑
i∼j

hij
mij

ω−1
ij (∫

σij
κu∇V ⋅ νij −

mij

hij
κij (

Sij − πj
πj

uj −
Sij − πi
πi

ui))
2

.

(2.27)

Remark. The expression for ∣E∣T ,κ(u) was explicitly provided before in [DiD18].

Proof. In what follows, we combine ideas of the proofs of Theorems 27 and 33 in [DiD18].
However, since our grid and our coefficients have a simple structure, our calculations are
much shorter. We first observe that the definition of fi and (1.1) imply

fi = ∫
Ωi
f = −∫

Ωi
∇ ⋅ (κ∇u + κu∇V ) .

Hence, Gauß’ theorem yields

lT (v) = −∑
i

vi∫
Ωi
∇ ⋅ (κ∇u + κu∇V ) =∑

i∼j

(vj − vi)∫
σij
(κ∇u + κu∇V ) ⋅ νij
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and hence (2.19). By an abuse of notation we write uj ∶= (RT u)j and ui = (RT u)i for
simplicity. Then we obtain

Sij (
uj
πj
− ui
πi
) = (uj − ui) + (

Sij − πj
πj

uj −
Sij − πi
πi

ui)

and hence

ET ,FPE,κ (u; v) = lT (⋅) − aT (RT u, ⋅ )

=∑
i∼j

(vj − vi)(∫
σij
κ∇u ⋅ νij −

mij

hij
κij (uj − ui)) .

+∑
i∼j

(vj − vi)(∫
σij
κu∇V ⋅ νij −

mij

hij
κij (

Sij − πj
πj

uj −
Sij − πi
πi

ui)) .

From here we conclude by direct calculation and by the definition of the dual norm
∥⋅∥2H∗T ,ω .

A particular focus of the calculations below will lie on the following structure.

Lemma 2.13. Let T = (V ,E ,P) be a mesh and d ≤ 4. Let g ∈ C(Ω) and let gT ∈ E∗ with
gT (σij) = gij. Then for every υ ∈H2(Ω) it holds

∑
i∼j

hij
mij

ω−1
ij (∫

σij
κg∇υ ⋅ νij −

mij

hij
gijκij (υj − υi))

2

≤ (sup
i,j
∣gij ∣) ∣E∣T ,κ,ω (υ; ⋅) +∑

i∼j

hij
mij

ω−1
ij (∫

σij
κ (g − gij)∇υ ⋅ νij)

2

Proof. We obtain

1

2
∣∫

σij
κg∇υ ⋅ νij −

mij

hij
gijκij (υj − υi)∣

2

≤

≤ ∣∫
σij
κg∇υ ⋅ νij − ∫

σij
κgij∇υ ⋅ νij∣

2

+ ∣∫
σij
κgij∇υ ⋅ νij −

mij

hij
gijκij (υj − υi)∣

2

≤ ∣∫
σij
κ (g − gij)∇υ ⋅ νij∣

2

+ ∣gij ∣2 ∣∫
σij
κ∇υ ⋅ νij −

mij

hij
κij (υj − υi)∣

2

This implies the claim.

With regard to (2.15) and Lemma 2.2, the above considerations motivate the following
definition.

Definition 2.14 (ϕ-consistency). Let Th = (Vh,Eh,Ph) be a family of meshes with
diamTh → 0 as h → 0. We say that Th is ϕ-consistent (satisfies ϕ-consistency) on the
subspace B ⊂H1

0 (Ω) if for every u ∈ B there exists C ≥ 0 such that for every h > 0

∣E∣T ,κ,ω(u) ≤ C ∥u∥H2 ϕ (h)2 .

Hence, we immediately obtain the following.
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Proposition 2.15. Let d ≤ 3. Under the assumptions of Lemma 2.2 and assuming
hij ≤ Ch for some constant C > 0 the mesh is ϕ-consistent with ϕ(h) = h, i.e.

∣E∣T ,κ,κ(u) ≤ C ∥u∥H2 h2 .

We say that the mesh is h-consistent.

In case the mesh is cubic, we even obtain the following [EGH00].

Proposition 2.16. Let d ≤ 3 and let the mesh be cubic with all cubes of equal size and let
κ ≡ 1. Under the assumptions of Lemma 2.2 and assuming hij ≤ Ch for some constant
C > 0 the mesh is ϕ-consistent with ϕ(h) = h2, i.e.

∣E∣T ,1,1(u) ≤ C ∥u∥H2 h4 .

We say that the mesh is h2-consistent.

3 Derivation of the methods and formal comparison

In this section, we repeat the original derivation of the Scharfetter–Gummel scheme in a
more general way and show that both the SG and the SQRA scheme are members of a
huge family of discretization schemes. Then we provide a physically motivated derivation
of the SQRA scheme which assigns the SQRA a special place in the family of Stolarsky
discretizations.

As mentioned in the introduction, also the SG scheme takes a special role, which is
of mathematical nature and will discussed in Section 5.2.

3.1 A family of discretization schemes

We Repeat the derivation of the SG scheme from a different point of view to reveal some
additional structure and to put it into a broader context.

In one dimension, the Scharfetter–Gummel scheme for the discrete flux on the interval
[0, h] is derived under the assumption of constant flux J and constant diffusion coefficient
κ on [0, h]. In particular, we consider the two-point boundary value problem

J = −κ (u′ (x) + u (x)V ′ (x)) on [0, h], u (0) = u0, u (h) = uh, (3.1)

for a general potential V ∶ [0, h] → R not necessarily assumed to be affine. The
general solution reads

u(x) = −(1

κ
J ∫

x

0
eV + u0eV0) e−V (x).

The flux can be computed explicitly from the assumption J = const. and setting x = h
in the above formula. This yields

J = −κuhe
Vh − u0eV0

∫
h

0 eV
= −κ1

h
(1

h ∫
h

0
π−1)

−1

(uh
πh
− u0

π0

) = −κπmean
1

h
(uh
πh
− u0

π0

)

for the averaged πmean = ( 1
h ∫

h

0 π−1)
−1

, which clearly determines the constant flux along

the edge. In particular, assuming that V is affine, i.e. V (x) = Vh−V0

xh−x0
(x − x0) + V0, one

177



Discretization for the Fokker–Planck operator M. Heida, M. Kantner, A. Stephan

easily checks that πmean = (Vh − V0) / (eVh − eV0), which yields the Scharfetter–Gummel
discretization. However, a potential can also be approximated not by piecewise affine
interpolation but in other ways, resulting in different means πmean. We provide an
example of such an approximation for the SQRA in the Appendix A.4.

Generalizing the later considerations to higher dimensions, we find for the flux on
the edge between two neighboring points in the discretization from the one dimensional
considerations of (2.11) the expression

JSiju
T ∶= −

κij
hij
Sij (

uTj
πj
−
uTi
πi
) ,

where κij relates to κ and Sij relates to πmean.
We aim to express πmean by means of the values π0 and πh at the boundaries. The

choice of this average is non-trivial and determines the quality of the discretization
scheme, as we will see below. In the present work, we focus on the (weighted) Stolarsky
mean, putting πmean = S(πi, πj) although there are also other means like general f -means
(Mf(x, y) = f ([f−1(x) + f−1(y)] /2) for a strictly increasing function f). The Stolarsky
mean has the advantage that it is a closed formula for a broad family of popular means
and that its derivatives can be computed explicitly.

The weighted Stolarsky mean Sα,β [Sto75] is given as (1.3) whenever these expressions
are well defined and continuously extended otherwise, i.e. Sα,β(x,x) = x. We note the
symmetry properties Sα,β (x, y) = Sα,β (y, x) = Sβ,α (x, y). Interesting special limit cases
are

S0,1(x, y) = (x − y) / log (x/y) = Λ(x, y)
(logarithmic mean), S−1,1(x, y) =

√
xy (geometric mean) and S0,−1(x, y) = xy/Λ(x, y)

(Scharfetter–Gummel mean). A list of further Stolarsky means is given in Table 2.
An explicit calculation shows that ∂2

xS0,−1 (x,x)=−(3x)−1
and ∂2

xS−1,1 (x,x)=− (4x)−1
.

For the general Stolarsky mean Sα,β one obtains (see Appendix A.3)

∂xSα,β(x,x) = ∂ySα,β(x,x) =
1

2
,

∂2
xSα,β (x,x) = ∂2

yS∗ (x,x) = −∂2
xyS∗ (x,x) = −∂2

yxS∗ (x,x) =
1

12x
(α + β − 3) ,

(3.2)

particularly reproducing the above findings for ∂2
xS0,−1 and ∂2

xS−1,1.
Interestingly, the derivation of the SQRA in Section 2.2 of [LFW13] relies on the as-

sumption that the flux through a FV-interface has to be proportional to (uTj /πj − uTi /πi)
with the proportionality factor given by a suitable mean of πi and πj. The choice of S−1,1

in [LFW13] seems arbitrary, yet it yields very good results [WeE17, FK∗19, DH∗].

3.2 The Wasserstein gradient structure of the Fokker–Planck
operator and the SQRA method

The choice of S∗ turns out to be crucial for the convergence properties. In this section,
we look at physical structures which are desirable to be preserved in the discretization
procedure. Our considerations are based on the variational structure of the Fokker–
Planck equation. Let us note at this point that a physically reasonable discretization
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mean α β α + β Sα,β(x, y) Bα,β(x)

max +∞ 1 +∞ max (x, y)
⎧⎪⎪⎨⎪⎪⎩

e−x, x ≤ 0

1, x > 0

quadratic mean 4 2 6
√

1
2 (x2 + y2)

√
1
2 (1 + e−2x)

arithmetic mean 2 1 3 1
2 (x + y)

1
2 (1 + e−x)

logarithmic mean 1 0 1 (x − y) / log (x/y) 1
x (1 − e−x)

geometric mean (SQRA) 1 −1 0
√
xy e−x/2

Scharfetter–Gummel mean 0 −1 −1 xy log (x/y)/ (x − y) x/ (ex − 1)
harmonic Mean −2 −1 −3 2xy/ (x + y) 2/ (ex + 1)

min −∞ 1 −∞ min (x, y)
⎧⎪⎪⎨⎪⎪⎩

ex, x ≤ 0

1, x > 0

Tab. 2: Several mean values expressed as Stolarsky means Sα,β with corresponding weight
functions Bα,β, see Eq. (1.6). The geometric mean corresponds to the SQRA scheme,
the S0,−1-mean to the Scharfetter–Gummel discretization.

is not necessarily the best from the rate of convergence point of view. Indeed, this last
point will be underlined by numerical simulations in Section 7. However, the physical
consideration is helpful to understand the family of Stolarsky discretizations from a
further, different point of view.

In [JKO98] it was proved that the Fokker–Planck equation

u̇ = ∇ ⋅ (κ∇u + κu∇V ) (3.3)

has the gradient flow formulation u̇ = ∂ξΨ∗(u,−DE(u)) where

E(u) = ∫
Ω
u logu+V u−u+ 1 = ∫

Ω
u log (u

π
)−u+ 1 , Ψ∗(u, ξ) = 1

2 ∫Ω
κu ∣∇ξ∣2 , (3.4)

and π = e−V is the stationary solution of (3.3). Indeed, one easily checks that DE(u) =
logu + V = log (u/π) and ∂ξΨ∗(u, ξ) = −∇ ⋅ (κu∇ξ) such that it formally holds

∂ξΨ
∗(u, ξ)∣ξ=−DE(u) = −∇⋅(κu∇ξ)∣ξ=−DE(u) = ∇⋅(κu(

∇u
u
+∇V )) = ∇⋅(κ∇u + κu∇V ) = u̇.

Given a particular partial differential equation, the gradient structure might not be
unique. For example, the simple parabolic equation ∂tu = ∆u can be described by (3.4)
with V = 0. But at the same time one might choose E(u) = ∫ u2 with Ψ∗ (ξ) = ∫ ∣∇ξ∣

2
,

which plays a role in phase field modeling (see [HMR11] and references therein) or
E(u) = − ∫ logu with Ψ∗ (ξ) = ∫ u2 ∣∇ξ∣2.

In view of this observation, one might pose the question about “natural” gradient
structures of the discretization schemes. This is reasonable if one believes that dis-
cretization schemes should incorporate the underlying physical principles. The energy
functional is clearly prescribed by (3.4) with the natural discrete equivalent

ET (u) =∑
i

mi (ui log (ui
πi
) − ui + 1) . (3.5)
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Fig. 1. (a) Weight functions Bα,β of the discrete flux scheme for different Stolarsky means Sα,β
according to Eq. (1.6), cf. Tab. 2. (b) Weight functions for α + β = −1 using the parametrization
α = − (1 − δ) /2, β = − (1 + δ) /2 for δ ≥ 0. The SG-mean (α,β) = (0,−1) is obtained for δ = 1. The grey
shaded region indicates the full range δ = [0,∞), where the limit δ →∞ is given by the weight function
e−x/2 of the SQRA scheme.

The discrete linear evolution equation can be expected to be linear. Since we identified
the continuous flux to be J = −κπ∇U with U = u/π, we expect the form

u̇imi = ∂ξΨ∗T (u,−DET (u)) = ∑
j∶i∼j

mij

hij
κi,jπij (

uj
πj
− ui
πi
) (3.6)

for some suitably averaged πij. Equation (3.6) can be understood as a time-reversible
(or detailed balanced) Markov process on the finite state space P . Recently, various dif-
ferent gradient structures have been suggested for (3.6): [Mie11, Maa11, ErM12, CH∗12,
Mie13b] for a quadratic dissipation as a generalization of the Jordan–Kinderlehrer–Otto
approach; and [MPR14, MP∗17], where a dissipation of cosh-type was appeared in the
Large deviation rate functional for a hydrodynamic limit of an interacting particle sys-
tem. All of them can be written in the abstract form

Ψ∗T (u, ξ) =
1

2
∑
i

1

mi
∑
j∶i∼j

mij

hij
Sijaij(u,π)ψ∗ (ξi − ξj) , (3.7)

where

aij(u,π) = (
ui
πi
−
uj
πj
)∂ξψ∗ (log (ui

πi
) − log(

uj
πj
))
−1

. (3.8)

In fact, any positive and convex function ψ∗ defines a reasonable dissipation func-
tional Ψ∗ by (3.7) and (3.8). A special case is when choosing for ψ∗ and exponentially
fast growing function ψ∗(r) ∶= C∗(r) ∶= 2 (cosh(r/2) − 1). Then aij simplifies to

aij(u,π) =
√

uiuj
πiπj

,

and hence, the square root appears. Choosing Sij =
√
πiπj, we end up with a dissipation

functional of the form

Ψ∗T (u, ξ) =∑
i

∑
j∶i∼j

mijhij
√
uiuj

1

h2
ij

C∗ (ξi − ξj) . (3.9)
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There are (at least) three good reasons why choosing this gradient structure, i.e.,
modeling fluxes in exponential terms: a historical, a mathematical and a physical:

1. Already in Marcelin’s PhD thesis from 1915 ([Mar15]) exponential reaction kinetics
have been derived, which are still common in chemistry literature.

2. Recently, convergence for families of gradient systems has been derived based on
the energy-dissipation principle (the so-called EDP-convergence [Mie16, LM∗17,
DFM18]). Vice versa, the above cosh-gradient structure appears as an effective
gradient structure applying EDP-convergence to Wasserstein gradient flow prob-
lems [LM∗17, FrL19].

3. Recalling the gradient structure for the continuous Fokker–Planck equation (3.4),
we observe that the dissipation mechanism Ψ∗ is totally independent of the par-
ticular form of the energy E , which is determined by the potential V . This is
physically understandable, since a change of the energy resulting, e.g., from exter-
nal fields should not influence the dissipation structure. The same holds for the
discretized version (3.9). In fact it was shown in [MiS19], that the only discrete
gradient structure, where the dissipation does not depend on V resp. π = e−V , is
the cosh-gradient structure with the SQRA discretization Sij = S−1,1(πi, πj). In
particular, this characterizes the SQRA. For convenience, we add a proof for that
to the Appendix A.2.

We think that these properties distinguish the SQRA, although in the following the
convergence proofs do not really rely on the particular discretization weight Sij.

Remark 3.1 (Convergence of energy and dissipation functional). Let us finally make
some comments on the convergence of ET and Ψ∗

T
given in (3.5) and (3.9) to the con-

tinuous analogies E and Ψ∗. Γ-convergence can be shown if the fineness of T tends to
0. For the energies it is clear, since u ↦ u log (u/π) − u is convex. For the dissipation
potentials Ψ∗

T
(u, ξ) we observe the following: For smooth functions u and ξ, we have

1
h2
ij
C∗ (ξi − ξj) ≈ 1

2 (
xi−xj
∣xi−xj ∣

⋅ ∇ξ)
2
+O(h2

ij) and
√
uiuj ≈ u (1

2(xi + xj)). The considerations

from Section 2.4 then yield Ψ∗
T
(u, ξ) ≈ 1

2 ∫Q u ∣∇ξ∣
2
.

For quadratic dissipation, qualitative convergence results using the underlying gra-
dient structure and the energy-dissipation principle are obtained in [DiL15] in 1 D, and
in [FMP20] for multiple dimensions. In [GK∗19] convergence of the associated metric is
proved.

4 Comparison of discretization schemes

We mutually compare any two discretization schemes of the form (1.2) in case of Dirichlet
boundary conditions. In this case, even though the problem is only defined on P̃ , we can
simply sum over all P once we multiplied with a test function that assumes the value 0
at all P/P̃ .

Let us recall the formula (2.11) for the fluxes

JSijU = −
κij
hij
Sij(Uj −Ui).
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Moreover, let ui = Uiπi and ũi = Ũiπi be the solution of the discrete FPE (1.2) for
two different smooth mean coefficients Sij = S(πi, πj) and S̃ij = S̃(πi, πj) (e.g. once for
Scharfetter–Gummel and once for SQRA) such that

∑
k∶k∼i

mikhikJ
S
ikU =mif̄i (4.1)

∑
k∶k∼i

mikhikJ
S̃
ikŨ =mif̄i. (4.2)

In order to compare the solutions of (4.1) and (4.2) we take the difference of these two
equations and multiply with Ei = Ui − Ũi. We obtain

0 =∑
i

∑
k∶k∼i

mikhik (JSikU − J S̃ikŨ)Ei

=∑
i

∑
k∶k∼i

mik

hki
κij(Sik(Ui −Uk) − S̃ik(Ũi − Ũk))Ei

Introducing the notation αik = κik mikhik
and using (2.3) we get

0 =∑
k∼i

αik (Sik(Ui −Uk) − Sik(Ũi − Ũk) + (Sik − S̃ik) (Ũi − Ũk)) (Ei −Ek)

=∑
k∼i

αik (Sik (Ei −Ek) + (Sik − S̃ik) (Ũi − Ũk)) (Ei −Ek) .

Using the notation DikA = Ak −Ai for discrete gradients

(S̃ik − Sik) (Ũi − Ũk) (Ei −Ek) ≤
1

2
[Sik (DikE)2 +

(Sik − S̃ik)2
Sik

(DikŨ)
2]

we get

1

2
∑
k∼i

αikSik (DikE)2 ≤
1

2
∑
k∼i

(S̃ik − Sik)2

SikS̃ik
αikS̃ik (DikŨ)

2
. (4.3)

In the case of Stolarsky means the constants are more explicit. We have the following
expansion of Sij: writing πij = 1

2 (πi + πj), π+ = π− =
1
2 (πi − πj) and πi = π0 + π+ and

πj = π0 − π−

Sij = Sα,β (πij, πij) +
1

2
(π+ − π−) +

1

2
∂2
xSα,β (πij, πij) (π+ + π−)

2 +O (π3
±)

= πij +
1
3 (α + β) − 1

8πij
(πi − πj)2 +O (πi − πj)3 . (4.4)

In case (α + β) = (α̃ + β̃), we obtain Sij − S̃ij = O (πi − πj)3 and hence this yields the
following first comparison result:

Proposition 4.1. Let T be a mesh with right hand side f ∈ L2(P) and let u and ũ
be a two solution of the discrete FPE for different Stolarsky mean coefficients Sij =
Sα,β (πi, πj) and S̃ij = Sα̃,β̃ (πi, πj) respectively. Then

1

2
∑
k∼i

κik
mik

hik
Sik (Uk − Ũk − (Ui − Ũi))

2

≤ 1

2
∑
k∼i

⎛
⎝
((α + β) − (α̃ + β̃))2

242 π2
ijS̃ikSik

(πi − πk)4 +O (πi − πk)5
⎞
⎠
κik

mik

hik
(Ũk − Ũi)

2
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In case (α + β) = (α̃ + β̃) we furthermore find

1

2
∑
k∼i

κik
mik

hik
Sik (Uk − Ũk − (Ui − Ũi))

2 = 1

2
∑
k∼i

O (πi − πk)6 κik
mik

hik
(Ũk − Ũi)

2
.

We aim to refine the above result to an order of convergence result for JSU − J S̃Ũ ..
We introduce a third Stolarsky mean Ŝik = Ŝ(πi, πk) and find

Ŝik (Ei −Ek) = Ŝik (Ui − Ũi − (Uk − Ũk))
= Sik(Ui −Uk) − Sik(Ui −Uk) + S̃ik(Ũi − Ũk) − S̃ik(Ũi − Ũk) + Ŝik (Ui − Ũi − (Uk − Ũk))

=mikα
−1
ik (JSikU − J S̃ikŨ) + (Ŝik − Sik) (Ui −Uk) − (Ŝik − S̃ik) (Ũi − Ũk) .

Hence, we have

∑
k∼i

αik (Sik(Ui −Uk) − S̃ik (Ũi − Ũk)) (Ei −Ek)

=∑
k∼i

hik
κik

mik
1

Ŝik
(JSikU − J S̃ikŨ)

2

+∑
k∼i

mik
1

Ŝik
(JSikU − J S̃ikŨ) [(Ŝik − Sik) (Ui −Uk) + (Ŝik − S̃ik) (Ũi − Ũk)] ,

and using Cauchy–Schwartz inequality, we get

∑
k∼i

αik (Sik(Ui −Uk) − S̃ik (Ũi − Ũk)) (Ei −Ek) ≤ −
1

2
∑
k∼i

hikmik

κik

1

Ŝik
(JSikU − J S̃ikŨ)

2

+∑
k∼i

mikκik

hikŜik
((Ŝik − Sik)

2
(Ui −Uk)2 + (Ŝik − S̃ik)

2
(Ũi − Ũk)

2) .

Altogether we obtain

1

2
∑
k∼i

hikmik

κik

1

Ŝik
(JSikU − J S̃ikŨ)

2
≤∑
k∼i

mikhik

κikŜikS2
ik

(Ŝik − Sik)
2
(κik
hik

Sik (Ui −Uk))
2

+∑
k∼i

mikhik

κikŜikS̃2
ik

(Ŝik − S̃ik)
2
(κik
hik

S̃ik (Ũi − Ũk))
2

.

We make once more use of (4.4) writing Cα,β ∶= 1
24 (α + β) and exploiting πi = πij +

πij (Vi − Vij) +O (Vi − Vij)2 with

πi − πj = πij (Vi − Vj) +O (Vi − Vij)2 +O (Vj − Vij)2

Sij = πij +O (πi − πj) .

Hence, we conclude the following result.

Theorem 4.2. Let T be a mesh with right hand side f ∈ L2(P) and let u and ũ be two
solutions of the discrete FPE for different Stolarsky means S and S̃. Moreover, let Ŝ be
any Stolarsky mean and assume that either α + β ≠ α̂ + β̂ or α̃ + β̃ ≠ α̂ + β̂. Then the
solutions u and ũ of the discretized FPE satisfy the symmetrized error estimate up to
higher order

1

2
∑
k∼i

hikmik

κik

1

Ŝik
(JSikU − J S̃ikŨ)

2
≤∑
k∼i

mikhik
κikSik

(Cα,β −Cα̂,β̂) (Vi − Vj)
2 (JSikU)

2

+∑
k∼i

mikhik

κikS̃ik
(Cα̃,β̃ −Cα̂,β̂) (Vi − Vj)

2 (J S̃ikŨ)
2
.
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More general, for any mean we have

1

2κ∗
∥JSU − J S̃Ũ∥2

L2
Ŝ
(E)

≤ 1

κ∗

⎧⎪⎪⎨⎪⎪⎩
sup
i,k

(Ŝik − Sik)
2

ŜikSik
∥JSU∥2

L2
S(E)
+ sup

i,k

(Ŝik − S̃ik)
2

ŜikS̃ik
∥J S̃Ũ∥

2

L2
S̃
(E)

⎫⎪⎪⎬⎪⎪⎭
, (4.5)

and in particular for Stolarsky means with α+β = α̃+ β̃ = α̂+ β̂ we find the following
result:

Corollary 4.3. Let T be a mesh with right hand side f ∈ L2(P) and let u and ũ be two
solutions of the discrete FPE for different Stolarsky mean coefficients Sij = Sα,β (π,πj)
and S̃ij = Sα̃,β̃ (π,πj) with α+β = α̃+ β̃ = α̂+ β̂. Then estimate (4.5) holds. In particular,
we find the refined estimate

1

2κ∗
∥JSU − J S̃Ũ∥2

L2
Ŝ
(E)
= O (πi − πj)6 (∥JSU∥

2

L2
S(E)
+ ∥J S̃Ũ∥

2

L2
S̃
(E)
) .

In particular, the last result shows that convergence rates are similar up to order 3
for different α,β which satisfy α + β = const.

Corollary 4.4. Let T be a mesh with right hand side f ∈ L2(P) and let u and ũ be two
solutions of the discrete FPE for different Stolarsky mean coefficients Sij = Sα,β (π,πj)
and S̃ij = Sα̃,β̃ (π,πj) with α + β = α̃ + β̃ = α̂ + β̂. Then estimate (4.5) holds. For both Sij

and S̃ij let the quantities of Lemma 2.12 which depend on S be denoted by ES
T ,FPE,κ (u; v)

and ES̃
T ,FPE,κ (u; v) as well as ES

T ,κ,conv(u; v) and ES̃
T ,κ,conv(u; v). If π > c > 0 is uniformly

bounded from below then

∥EST ,FPE,κ (u; v)∥2
H∗T ,ω
≤ 2 ∥ES̃T ,FPE,κ (u; v)∥

2

H∗T ,ω
+O(h6) .

Proof. We obtain from Lemma 2.12

∥EST ,FPE,κ (u; v)∥2
H∗T ,ω

≤ 2∑
i∼j

hij
mij

ω−1
ij (mijJ

S̃
ijU −mijJ ijU)

2
+ 2∑

i∼j

hij
mij

ω−1
ij (mijJ

S̃
ijU −mijJ

S
ijU)

2

and from Corollary 4.3 we obtain the claim upon uniform boundedness of π.

5 Convergence of the discrete FPE

In this section, we derive general estimates for the order of convergence of the Stolarsky
FV operators. Throughout this section, we assume that the mesh satisfies the consistency
property of Definition 2.14 with a suitable consistency function ϕ ∶ R≥0 → R≥0 and
discretization operator RT ∶ H1(Ω) ⊃ B → L2(P). The parameters πi and ui below are
then given in terms of

πi = (RT π)i , ui = (RT u)i , Ui = (RT U)i .

We derive consistency errors for U in Section (5.1) and consistency errors for u in
Section (5.2). For both calculations we will need the following result.
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Lemma 5.1. Assume there exists a constant C > 0 such that for all cells Ωi,Ωj with
hi = diamΩi it holds

∀f ∈H1(Ωi) ∶ ∥f∥2L2(σij)
≤ 1

hi
C2 ∥f∥2H1(Ωi)

, (5.1)

∀f ∈H1(Ωi) ∩C(Ωi) ∶ ∥f − fi∥2L2(σij)
≤ hiC2 ∥∇f∥2L2(Ωi)

. (5.2)

Then for C2-smooth Stolarsky means S∗ and for every function $,U ∈ H2(Ω) with
$i ∶=$(xi) and Sij ∶= S∗($i,$j) it holds

∣∫
σij
($ − Sij)κ∇U ⋅ νij∣ ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑k=i,j ∥∇$∥L2(Ωk)
∥κ∇U∥H1(Ωk)

(mijhi)
1
2 ∥κ∇U∥H1(Ωi)

∑k=i,j h
1
2

k ∥∇$∥L2(Ωk)
(∫σij ∣κ∇U ∣

2)
1
2

+O(h2
ij) . (5.3)

Remark. Note that (5.1)–(5.2) can be easily verified for convex sets with uniform bound

on the relation diammax(Ωi)
diammin(Ωi)

between maximal and minimal diameter of a given cell. In

particular, given f ∈H1(Ωi) with fh(x) ∶= f(xh) we find the scaled inequality

1

hd−1 ∫h∂Ωi
∣fh∣2 ≤ C

1

hd ∫hΩi
(∣fh∣2 + h2 ∣∇fh∣2) .

Furthermore, for f ∈ H1(Ωi) ∩C(Ωi) one finds for a calculation similar to the Poincaré
inequality for zero average functions (and for xi = 0)

∫
hΩi
∣fh − fi∣2 ≤ C ∫

hΩi
h2 ∣∇fh∣2 .

Proof. Observe that

∫
σij
∣$ − Sij ∣ ∣κ∇U ⋅ νij ∣ ≤ (∫

σij
∣$ − Sij ∣2)

1
2

(∫
σij
∣κ∇U ⋅ νij ∣2)

1
2

(5.4)

It remains to study 1
mij ∫σij ∣$ − Sij ∣

2
in more detail. We have

S($i,$j)−S (
$i +$j

2
,
$i +$j

2
) = 1

2
($i−$j)∇S ⋅(1,−1)T +O(∣$i−$j ∣)2 = O(∣$i−$j ∣)2

and thus

$ − Sij =
1

2
($ −$i) +

1

2
($ −$j) + (

$i +$j

2
− Sij)

= 1

2
($ −$i) +

1

2
($ −$j) +O(∣$i −$j ∣)2 .

The first term can be estimated by ∣$ −$i∣ ≤ hi ⋅ ∇$ + O(h2
i ) and a similar estimate

holds for the second term. Using (5.1)–(5.2) we obtain in total

∫
σij
∣$ − Sij ∣ ∣κ∇U ⋅ νij ∣ ≤ C ∑

k=i,j

hk ∥∇$∥L2(Ωk)
( 1

hk
∥κ∇U∥2H1(Ωk)

)
1
2

.
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5.1 Error Analysis in U

In what follows, we assume that the discrete and the continuous solution satisfy homo-
geneous Dirichlet conditions. In view of the continuous and the discrete FPE given in
the form (1.5) and (1.4) as well as formula (2.19) we observe that the natural variational
consistency error for a given Stolarsky mean S equivalently takes the form

ET ,FPE,κ (u; v) = ẼT ,FPE,κ (U ; v)

∶ =∑
i∼j

(vj − vi)(∫
σij
κπ∇U ⋅ νij − κijSij

mij

hij
((RT U)j − (RT U)i)) .

We recall that an estimate for ẼT ,FPE,κ (U ; ⋅) implies an order of convergence estimate
by (2.15). Our main result of this section provides a connection between ẼT ,FPE,κ (U ; ⋅)
and the variational consistency ẼT ,κ (U ; ⋅) (given by (2.21)) of the second order equation

−∇ ⋅ (κ∇U) = f

with the discretization scheme

∀i ∶ − ∑
j∶ j∼i

κij
mij

hij
(UTj −UTi ) = fi .

Proposition 5.2. Let T = (V ,E ,P) be a mesh. The variational consistency error
ET ,FPE,κ (U ; ⋅) can be estimated by

∥ẼT ,FPE,κ (U ; ⋅)∥2
H∗T ,κS

≤ ∥π∥
∞
∣E∣T (U ; ⋅)+∑

i∼j

hij
mij

κ−1
ij S

−1
ij (∫

σij
(π − Sij)κ∇U ⋅ νij)

2

. (5.5)

Proof. This is a direct consequence of Lemma 2.13.

Using the above estimates, we can now show the main result of the section.

Theorem 5.3 (Localized order of convergence). Let d ≤ 4 and the mesh T be admissible
in sense of Definition 2.1 and ϕ-consistent in sense of Definition 2.14. Let u ∈ C2

0(Ω) be
the solution to (1.1). Let fT ∶=R∗

T
f and let uT ∈ ST be the solution to (2.4). Moreover,

let κ ≤ κ∗, b > 0 and S ∈ C2(R≥0 ×R≥0). Then it holds

∥ET ,FPE,κ (U ; ⋅)∥2H∗T ,κS ≤ C(κ∗, π, d, ∥U∥C2) × (ϕ(h)2 + h2) .

∥uT −RT u∥HT ,κS ≤ C(κ∗, π, d, ∥U∥C2) × (ϕ(h)2 + h2) .

Proof. Inserting estimate (5.3) into (5.5), we get

∥ET ,FPE,κ (U ; ⋅)∥2H∗T ,κS ≤ ∥π∥∞ ∣E∣T ,κS (U ; ⋅) +C∑
i∼j

hijκ
−1
ij S

−1
ij hi∥κ∇U∥2H1(Ωi)

≤ ∥π∥
∞
∣E∣T ,κS (U ; ⋅) +C(κ∗, π, d) h2∑

i

∥κ∇U∥2H1(Ωi)
.

Using (2.15) we obtain an estimate for the discretization error in the form

∥uT −RT u∥2HT ,κS ≤ ∥π∥∞ ∣E∣T ,κS (U ; ⋅) +C(κ∗, π, d, ∥U∥C2) Size(T )2.

Using the consistency assumption on the discretization of the pure elliptic problem we
obtain the desired estimate.
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5.2 Error Analysis in u

We will now derive an alternative estimate for the consistency error which accounts more
for the convective aspect of the FPE. In Lemma 2.12 we have split the consistency error
ET ,FPE,κ(u; ⋅) into the two parts ET ,κ(u; ⋅) and ET ,conv,κ(u; ⋅). The error ET ,κ(u; ⋅) relates
to the elliptic part and is well understood in literature. Therefore, it remains to study
the second part.

Proposition 5.4. Using the notation of Lemma 2.12 it holds in d ≤ 4

∣E∣T ,κ,conv,ω(u) ≤∑
i∼j

hij
mij

ω−1
ij (∫

σij
κu∇V ⋅ νij −

mij

hij
κij

1

2

Sij
πiπj

(πi − πj) (ui + uj))
2

+C h4 ,

(5.6)
where C depends on ∥π∥

∞
, ∥∇π∥

∞
, ∥u∥

∞
, ∥∇u∥

∞
.

Proof. We use (2.18) to find

Sij − πj
πj

uj −
Sij − πi
πi

ui =
1

2

Sij
πiπj

(πi − πj) (ui + uj) +
1

2

1

πiπj
(Sijπi + Sijπj − 2πiπj) (ui − uj)

and in a next step we find on behalf of (3.2)

(Sijπi + Sijπj − 2πiπj) = (
1

2
+Cα,β (

πj
πi
+ πi
πj
))(πi − πj)2 +O (πi − πj)3

for Cα,β = 1
12(α + β − 3) and thus we conclude from

ET ,conv,κ(u; v) =

=∑
i∼j

(
mij

hij
κij

1

2

Sij
πiπj

(πi − πj) (ui + uj) − ∫
σij
κu∇V ⋅ νij)(vj − vi)

+∑
i∼j

(
mij

hij
κij

1

2

1

πiπj
((1

2
+Cα,β (

πj
πi
+ πi
πj
))(πi − πj)2 (ui − uj) +O (πi − πj)3))(vj − vi)

that (5.6)holds.

Note that in general it holds

Sij
πiπj

(πi − πj) =
1

2
Sij (

1

πi
+ 1

πj
)(Vj − Vi) +O(h). (5.7)

The Scharfetter Gummel scheme turns out to be special at this point.

Lemma 5.5 (SG is superior for large convection). In case of the Stolarsky mean S0,−1

(the Scharfetter–Gummel case), it holds

1

2

Sij
πiπj

(πi − πj) (ui + uj) = (Vj − Vi)
1

2
(ui + uj) .

Proof. This follows immediately from S0,−1(x, y) = xy
x−y log (x/y) and π(x) = e−V (x).

The last observation plays an important role in the estimation of the right hand side
of (5.6).
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Theorem 5.6. Let d ≤ 4 and Th = (Vh,Eh,Ph) be a family of meshes with diamTh → 0 as
h → 0 and let the assumptions of Lemma 5.1 hold. Using the notation of Lemma 2.12
let uij ∶= 1

2 (ui + uj). Then

∣E∣T ,κ,conv,ω(u) = 2 ∥u∥
∞
∣E∣T ,κ,ω (V ; ⋅) + 2∑

i∼j

hij
mij

ω−1
ij (∫

σij
κ (u − uij)∇V ⋅ νij)

2

+O(h2) .

In case S∗ = S0,−1 or S∗ = Sα,β with α + β = −1 the above can be improved to

∣E∣T ,κ,conv,ω(u) = 2 ∥u∥
∞
∣E∣T ,κ,ω (V ; ⋅) + 2∑

i∼j

hij
mij

ω−1
ij (∫

σij
κ (u − uij)∇V ⋅ νij)

2

+O(h4) .

In all cases, O( ⋅ ) depends on ∥∇V ∥
∞

.

Proof. We start from (5.6) applying (5.7). Defining g ∶= u, gij ∶= 1
4Sij (

1
πi
+ 1
πj
) (ui + uj)

applying Lemma 2.13 yields

∣E∣T ,κ,conv,ω(u)

≤ 2(sup
i,j
∣gij ∣) ∣E∣T ,κ,ω (V ; ⋅) + 2∑

i∼j

hij
mij

ω−1
ij (∫

σij
κ (u − gij)∇V ⋅ νij)

2

+O(h2) .

We observe that 1
2Sij (

1
πi
+ 1
πj
) = 1 +O(h), where O(h) depends on ∥∇V ∥

∞
such that

∣∫
σij
κ (u − gij)∇V ⋅ νij∣ ≤ ∣∫

σij
κ (u − uij)∇V ⋅ νij∣ +O(h) .

The claim now follows for general S∗. For S∗ = S0,−1 we apply Lemma 5.5 instead of
(5.7). For general S∗ = Sα,β with α + β = −1 we apply Corollary 4.4.

Corollary 5.7. Under the assumptions of Theorem 5.6 it further holds

∑
i∼j

hij
mij

ω−1
ij (∫

σij
κ (u − uij)∇V ⋅ νij)

2

≤ Ch2 ∥V ∥2C2 ∥∇u∥2L2(Ω) .

In case u ∈ C1(Ω) it even holds

∑
i∼j

hij
mij

ω−1
ij (∫

σij
κ (u − uij)∇V ⋅ νij)

2

≤ Ch5 ∥V ∥2C2 ∥∇u∥2∞ .

Proof. In view of Lemma 5.1 we obtain in total

∣∫
σij
κ (u − gij)∇V ⋅ νij∣ ≤ C ∥V ∥C2 ∑

k=i,j

h
3
2 ∥∇u∥L2(Ωk)

+O(h)

and ∥∇u∥L2(Ωk)
≤ h 3

2 ∥∇u∥
∞

.
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6 Cubic Meshes

In view of Section 5 we consider the following specialization of Lemma 5.1 to cubic grids.
Throughout this section we consider d ≤ 3 and a polygonal domain Ω ⊂ Rd with a cubic
mesh where Ωi = xi + [−h/2, h/2]d, xi ∈ hZ ⊂ Ω.

Lemma 6.1. Let Ω ⊂ Rd be a polygonal domain with d ≤ 4 and a cubic mesh where
Ωi = xi + [−h/2, h/2]d, xi ∈ hZ ⊂ Ω. Then for every function $ ∈ C2 with $i ∶=$(xi) and
Sij ∶= S∗($i,$j) it holds

∣∫
σij
($ − Sij)κ∇U ⋅ νij∣ = O(h2) . (6.1)

Proof. The following calculations are quite standard and, therefore, we shorten our con-
siderations. We have for x ∈ σij

Sij −$(x) = S($i,$j) − S($(x),$(x)) =

= ∇S(x) ⋅ ($i −$(x)
$j −$(x)

) + ($i −$(x)
$j −$(x)

) ⋅ ∇2S(x) ⋅ ($i −$(x)
$j −$(x)

) +O(h3).

The gradient of S is given by (1/2,1/2)T and hence, we Sij −$(x) = $i+$j−2$(x)

2 +O(h2).
We compute the first term in more detail. We have $j −$(x) = ∇$ ⋅ (xj − x) +O(h2)
and correspondingly for j ↝ i and the sum yields

$i +$j − 2$(x) = ∇$ ⋅ (xi + xj − 2x) +O(h2) = 1

2
∇$ ⋅ x̃ +O(h2) ,

where x̃ = x − xi+xj
2 the coordinate on the cell surface with respect to the middle point

x̄ = xi+xj
2 . Hence, we get

∫
σij
($ − Sij)κ∇U ⋅ νij =

1

4 ∫σij
∇$(x) ⋅ x̃κ(x)∇U(x) ⋅ νijdσ(x̃) +O(h2).

Now we can fix the function s(x) = κ(x)∇U(x) ⋅ νij∇$(x) with respect to x̄. We have
s(x) = s(x̄) + (x − x̄)∇s(x̄) +O(h2), which implies (assuming that U,$ ∈ C2 and κ ∈ C1)
that

∫
σij
($−Sij)κ∇U ⋅νij =

1

4∫σij
(s(x̄) + (x − x̄)∇s(x̄))⋅x̃dσ(x̃)+O(h2)= 1

4∫σij
s(x̄)⋅x̃dσ(x̃)+O(h2) .

But the first vanishes, since the interface σij is symmetric w.r.t. the mid point x̄ and we
are integrating along x̃. Hence, we have (6.1).

6.1 Consistency of purely elliptic operators on cubic meshes

Theorem 6.2 (Consistency on cubic meshes). Let Ω ⊂ Rd with d ≤ 4 be a polygonal
domain with a cubic mesh where Ωi = xi + [−h/2, h/2]d, xi ∈ hZ ⊂ Ω. Then

∣E∣T ,κ,ω(u) ≤ Ch4.
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Proof. It holds

∣mijκij
Ûj − Ûi
h

− ∫
σij
κ∇U ⋅ νij∣ ≤ ∣κij ∣ ∣mij

Ûj − Ûi
h

− ∫
σij
∇U ⋅ νij∣+ ∣∫

σij
(κij − κ)∇U ⋅ νij∣ .

We have Ûj = U(x)+∇U ⋅(xj−x)+O(h2) and Ûi = U(x)+∇U ⋅(xi−x)+O(h2). Moreover,
we can write xi − x = −h2νij + x̃ where x̃ ⊥ νij and xj − x = h

2νij + x̃ (the normal νij points
outside or inside of Ωi). Hence, we conclude

Ûj = U(x) +∇U ⋅ (
h

2
νij + x̃) +O(h2)

Ûi = U(x) +∇U ⋅ (−
h

2
νij + x̃) +O(h2).

Subtracting both equations, we end up with
Ûj−Ûi
h = ∇U ⋅ νij +O(h2), and hence,

∣mij

Ûj − Ûi
h

− ∫
σij
∇U ⋅ νij∣ ≤mijO(h2).

The Theorem follows from Lemma 6.1, the definition of κij and the cubic geometry.

6.2 Quantitative estimate on cubic meshes in the diffusive rep-
resentation

In view of Theorem 5.6 combined with Theorem 6.2 and Lemma 6.1 with 1
2 (ui + uj) =

S2,1(ui, uj) we also obtain the following.

Theorem 6.3. Let d ≤ 4. On a polygonal domain Ω ⊂ Rd with a cubic mesh where
Ωi = xi + [−h/2, h/2]d, xi ∈ hZ ⊂ Ω, it holds: Using the notation of Lemma 2.12 it holds

∣E∣T ,ω,conv(u) = O(h2) .

In case S∗ = S0,−1 or S∗ = Sα,β with α + β = −1 the above can be improved to

∣E∣T ,ω,conv(u) = O(h4) .

7 Numerical simulation and convergence analysis

In this section, we provide a numerical convergence analysis of the flux discretization
schemes based on Stolarsky means described in the previous sections. For the sake of
simplicity, we restrict ourselves to one-dimensional examples with equidistant meshes,
for which already non-trivial results can be observed.

Example 7.1. We consider the potential V (x) = 2 sin (2πx), the right hand side f (x) =
x (1 − x) on x = (0,1) with κ = 1 and Dirichlet boundary conditions u (0) = 0 and
u (1) = 1. The Stolarsky mean discretizations are compared point-wise with a numer-
ically computed reference solution uref (and Jref) that was obtained using a shooting
method (involving a fourth order Runge–Kutta scheme) together with Brent’s root find-
ing algorithm [Bre71] on a very fine grid with 136474 nodes.

190



Discretization for the Fokker–Planck operator M. Heida, M. Kantner, A. Stephan

-4 -2 0 2 4
-4

-2

0

2

4

harm.
SG
geom.

log.

arith.

10-2 10-1 100-3 -1 1 3

-3

-1

1

3
(c) (d)

-4 -2 0 2 4
-4

-2

0

2

-6.4

-6.3

-6.2

-6.1

-6.0

-5.9

-5.8

10-3

10-2

10-1

4

harm.

SG
geom.

log.

arith.

10-2 10-1 100

10-3

10-2

10-1

10-4

10-5

10-4

100

-3 -1 1 3

-3

-1

1

3
(a) (b)

10-5-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

Fig. 2. Numerical results for example 7.1. (a) Discretization error log10(∥u − uref∥L2) in the (α,β)-
plane on an equidistant mesh with 210 + 1 nodes. The error is color-coded. Several special means an
highlighted by crosses (notice the symmetry Sα,β (x, y) = Sβ,α (x, y)). (b) Quadratic convergence of
the discrete solution to the exact reference solution uexact under mesh refinement in the L2-norm. See
the inset for a legend and color-coding of the considered means Sα,β . In the present example, the best
numerical result for u is achieved by S3.2,1. (c) Logarithmic error of the numerically computed flux
density log10(∥j − jref∥L2) in the (α,β)-plane on the same mesh as in (a). (d) Convergence of the
numerically computed flux density to jexact. In contrast to the convergence of u shown in (b), here the
harmonic average S−1,−2 performs best.

The convergence results are summarized in Fig. 2. In Fig. 2 (a), the logarithmic error
log10(∥u − uref∥L2) is shown in the (α,β)-plane of the Stolarsky mean parameters for an
equidistant mesh with 210 + 1 = 1025 nodes. First, we note that the accuracy for a mean
Sα,β is indeed practically invariant along α + β = const., which is consistent with our
analytical result in Section 4. In this particular example, we observe optimal accuracy
at about α+β ≈ 4.2. This coincides with the convergence results under mesh refinement
shown in Fig. 2 (b), where the fastest convergence is obtained for the scheme involving
the S3.2,1-mean. The other considered schemes, however, show as well a quadratic con-
vergence behavior with a slightly larger constant. Interestingly, for the same example, we
find that the optimal mean for an accurate approximation of the flux J is on α+β = −3,
see Fig. 2 (c). This is further evidenced in Fig. 2 (d), where the harmonic mean S−1,−2

converges significantly faster than the other schemes. Obviously, in the present exam-
ple, the minimal attainable error for both u and J can not be achieved by the same
discretization scheme.

Example 7.2. We consider the potential V (x) = 5 (x + 1)x and keep the right hand side
function, the diffusion constant and the boundary conditions as in the previous example.
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Fig. 3. Discretization errors and convergence behavior of the numerically computed u and J in exam-
ple 7.2 using the Stolarsky mean schemes. The errors in (a) and (c) are color-coded. The coloring of
the means in (b) and (d) is the same as in Fig. 2 (b). The plots clearly show a superior performance
of the Scharfetter–Gummel scheme (i.e., the Stolarsky mean S0,−1) for the approximation of both the
density u and the flux J .

The problem has an exact solution involving the imaginary error function, that is related
to the Dawson function, which has been obtained using Mathematica [Wol17].

The numerical results are shown in Fig. 3. The discretization errors for both the
density u and the flux J are depicted in Fig. 3 (a) and (c) show a sharp minimum for
α + β = −1. This involves the Scharfetter–Gummel mean S0,−1, which converges fastest
to the analytical solutions for u and J , as shown in 3 (b) and (d). The SQRA scheme,
with geometric mean Sα,−α, is found to be second best in the present example.

The numerical results are in line with Theorem 1.6: In the case of strong gradients
∇V , the Scharfetter–Gummel scheme provides the most accurate flux discretization,
in particular, the SG mean S0,−1 is the only Stolarsky mean that recovers the upwind
scheme (1.9). Away from that drift-dominated regime, the situation is less clear and
other averages Sα,β can be superior, see for instance Example 7.1.

A Appendix

A.1 A General Poincaré Inequality

We derive a general Poincaré inequality on meshes. The idea behind the proof seems to go
back to Hummel [Hum99] and has been adapted in a series of works e.g. [Hei18, HKP17].
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Let e0 = 0 and (ei)i=1,...,n be the canonical basis of Rn. Define:

Dd−1 ∶= {ν ∈ Sd−1 ∣ ∃m ∈ {1,⋯, d} ∶ ν ⋅ ei = 0 ∀ i ∈ {0,1,⋯,m − 1} and ν ⋅ em > 0} .

Every ν ∈ Sd−1 satisfies ν ⋅ ei ≠ 0 for at least one ei. Thus, for every ν ∈ Sd−1 it holds
ν ∈Dd−1 if and only if −ν /∈Dd−1.

We denote Γ = ⋃σ∈EΩ σ and say that x ∈ Γ is a Lipschitz point if Γ is a Lipschitz graph
in a neighborhood of x. The set of Lipschitz-Points is called ΓL ⊂ Γ and we note that for
the (d − 1)-dimensional Hausdorff-measure of Γ/ΓL it holds Hd−1 (Γ/ΓL) = 0.

For x ∈ ΓL, we denote νx ∈Dd−1 the normal vector to Γ in x.. Let

C1
0(Ω; Γ) ∶= {u ∈ C(Ω/Γ) ∶ u∣∂Ω ≡ 0 , ∀i∃vi ∈ C1 (Ωi) ∶ u∣Ωi = vi}

and for u ∈ C1
K,0(Ω) define in Lipschitz points x ∈ ΓL

u±(x) ∶= lim
h→0
(u (x ± hνx)) , ⟦u⟧(x) ∶= u+(x) − u−(x) .

For two points x, y ∈ Rn denote (x, y) the closed straight line segment connecting x and
y and for ξ ∈ (x, y) ∩ ΓL denote

⟦u⟧x,y(ξ) ∶= lim
h→0
(u (ξ + h(y − x)) − u (ξ − h(y − x)))

the jump of the function u at ξ in direction (y − x), i.e. ⟦u⟧x,y(ξ) ∈ ±⟦u⟧ (ξ). We can
extend ⟦u⟧ to Γ by ⟦u⟧ (x) = 0 for x ∈ Γ/ΓL and define

∥u∥H1(Ω;Γ) ∶= (∫
Ω/Γ
∣∇u∣2 + ∫

Γ
⟦u⟧2)

1
2

,

H1
0 (Ω; Γ) ∶= C1

0 (Ω; Γ)
∥⋅∥H1(Ω;Γ)

.

Then we find the following result:

Lemma A.1 (Semi-discrete Poincaré inequality). Let Ω ⊂ Rd be a bounded domain. The
space H1

0 (Ω; Γ) is linear and closed for every s ∈ [0, 1
2) and there exists a positive constant

Cs > 0 such that the following holds: Suppose there exists a constant C# > 0 such that
for almost all (x, y) ∈ Ω2 it holds # ((x, y) ∩ Γ) ≤ C#.. Then for every u ∈ H1

0 (Ω; Γ) it
holds

∥u∥2Hs(Ω) ≤ Cs (C#∫
Γ
⟦u⟧2 + ∥∇u∥2L2(Ω/Γ)) . (A.1)

Furthermore, for every u ∈H1 (Ω; Γ) and every η ∈ Rd it holds

∫
Ω
∣u(x) − u(x + η)∣2 dx ≤ ∣η∣ (C#∫

Γ
⟦u⟧2 + ∥∇u∥2L2(Ω/Γ)) . (A.2)

Proof. In what follows, given u ∈ C1
0(Ω; Γ), we write ∇̂u(x) ∶= ∇u(x) if x ∈ Ω/Γ and

∇̂u(x) = 0 else. For y ∈ Rd we denote (x, y) = {x + s (y − x) ∶ s ∈ [0,1]}. Using 2ab <
a2+ b2, we infer for u ∈ C1

0(Ω; Γ) and x, y ∈ Ω/Γ such that (x, y)∩Γ is finite the inequality

∣u(x) − u(y)∣2 ≤
⎛
⎝ ∑
ξ∈(x,y)∩Γ

⟦u⟧x,y(ξ) + ∫
1

0
∇̂u (x + s(y − x)) ⋅ (x − y)ds

⎞
⎠

2

< ∣x − y∣2∫
1

0
∣∇̂u (x + s(y − x))∣2 ds +

⎛
⎝ ∑
ξ∈(x,y)∩Γ

⟦u⟧x,y(ξ)
⎞
⎠

2
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Since ⟦u⟧x,y = ⟦u⟧ we compute

⎛
⎝ ∑
ξ∈(x,y)∩Γ

⟦u⟧x,y(ξ)
⎞
⎠

2

≤# ((x, y) ∩ Γ) ∑
ξ∈(x,y)∩Γ

⟦u⟧2(ξ)

and obtain

∣u(x) − u(y)∣2 < ∣x − y∣2∫
1

0
∣∇̂u (x + s(y − x))∣2 ds

+# ((x, y) ∩ Γ) ∑
ξ∈(x,y)∩Γ

⟦u⟧2(ξ) . (A.3)

We fix η > 0 and consider the orthonormal basis (ei)i=1,...,d of Rd. The determinant of the
first fundamental form of Γ is bigger than 1 almost everywhere. Hence we can observe
that

∫
Ω

∑
ξ∈(x,x+ηe1)∩Γ

⟦u⟧2(ξ)dx = ∫
R

⎛
⎝∫Rd−1

∑
ξ∈(x,x+ηe1)∩Γ

⟦u⟧2(ξ)dx2 . . .dxd
⎞
⎠

dx1

≤ ∫
R
∫

Γ∩((x1,x1+η)×Rd−1)
⟦u⟧2(x)dσ dx1

≤ η∫
Γ
⟦u⟧2(x)dx ,

where we used that the surface elements are bigger than 1.. Furthermore, we have

η2∫
1

0
∣∇̂u (x + sηe1)∣

2
ds = η∫

η

0
∣∇̂u (x + se1)∣

2
ds .

Replacing e1 in the above calculations with any unit vector e, we obtain from integration
of (A.3) with y = x + η, η = ηe, over Ω that

∫
Ω
∣u(x) − u(x + η)∣2 dx ≤ ∣η∣ (C#∫

Γ
⟦u⟧2 + ∥∇u∥2L2(Ω/Γ)) .

Dividing by ∣η∣ and integrating over η ∈ Rd, we obtain that for every s ∈ [0, 1
2) there

exists a positive constant Cs > 0 independent from u and K such that

∥u∥2Hs(Ω) ≤ Cs (C#∫
Γ
⟦u⟧2 + ∥∇u∥2L2(Ω/Γ)) . (A.4)

Hence, by approximation, the last two estimates hold for all u ∈H1
0 (Ω; Γ)..

A.2 Physical relevance of the geometric mean

Theorem A.2. Let Sij = S∗ (πi, πj) be a Stolarsky mean and let ψ∗ be a symmetric
strictly convex function with ψ∗(0) = 0. If ∂π (Sijaij) = 0 then Sij =

√
πiπj and ψ∗ is

proportional to C∗.

Proof of Theorem A.2. The case Sij =
√
πiπj and ψ∗(ξ) = cosh ξ − 1 was explained in

detail in [Hei18].
In the general case, symmetry of ψ∗ in ξi − ξj implies ψ∗ (ξi − ξj) = ψ∗ (∣ξi − ξj ∣). We

make use of the fact that the original C∗(ξ) = cosh ξ − 1 is a bijection on [0,∞) and
suppose that hence ψ∗ (ξi − ξj) = θ (C∗ (ξi − ξj)). This implies particularly that

0 ≤ x∂x (θ (C∗(x))) = x∂ξθ (C∗(x))∂xC∗(x) .
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Furhtermore, the symmetry of ψ∗ implies by the last inequality that ∂ξθ (C∗(x)) > 0.
Inserting this information in (3.7) and (3.8) we observe that

Sij (
ui
πi
−
uj
πj
)∂ξθ (C∗ (ln(

ui
πi
) − ln(

uj
πj
)))

−1

sinh(ln(ui
πi
) − ln(

uj
πj
))
−1

has to be independent from πi and πj. From the above case Sij =
√
πiπj, we know that

√
πiπj (

ui
πi
−
uj
πj
) sinh(ln(ui

πi
) − ln(

uj
πj
))
−1

is constant in πi and πj. Hence it remains to show that

f (πi, πj) ∶= Sij
√
πiπj

−1∂ξψ (
ui
uj

πj
πi
+
uj
ui

πi
πj
)
−1

is independent from πi and πj if and only if ∂ξψ = const and Sij =
√
πiπj.

Assume first that Sij
√
πiπj

−1 = const. Then for p = πi
πj

we obtain that

∂p
⎛
⎝
∂ξθ (

ui
uj
p−1 +

uj
ui
p)
−1⎞
⎠
= 0

has to hold. This implies that ∂ξψ = const.
If Sij

√
πiπj

−1 /= const, we use the definition of the weighted Stolarsky means given in
(1.3) and note that

Sij ∶= S (πi, πj) =
⎛
⎝
β(παi − παj )
α(πβi − π

β
j )
⎞
⎠

1
α−β

= πj (
β(pα − 1)
α(pβ − 1)

)
1
α−β

,

where again p = πi
πj

. Hence we obtain that

f (πi, πj) = f̃(p) ∶=
√

1

p
(β(p

α − 1)
α(pβ − 1)

)
1
α−β

∂ξθ (
ui
uj
p−1 +

uj
ui
p)
−1

=
⎛
⎜
⎝

β (pα2 − p−α2 )

α (p
β
2 − p−

β
2 )

⎞
⎟
⎠

1
α−β

∂ξθ (
ui
uj
p−1 +

uj
ui
p)
−1

has to be independent of πi and πj. But then, f̃ is independent of p. Now, we define
a = uj

ui
and observe that

f̃ ( 1

a2p
) =
⎛
⎜
⎝

β ((a2p)−
α
2 − (a2p)

α
2 )

α ((a2p)−
β
2 − (a2p)

β
2 )

⎞
⎟
⎠

1
α−β

∂ξθ (
ui
uj
p−1 +

uj
ui
p)
−1

.

We assume for α ≠ β. The case α = β can follows by continuity. For any p it should

holds f̃ ( 1
a2p) = f̃(p), which implies

⎛
⎜
⎝

β (pα2 − p−α2 )

α (p
β
2 − p−

β
2 )

⎞
⎟
⎠

1
α−β

=
⎛
⎜
⎝

β ((a2p)−
α
2 − (a2p)

α
2 )

α ((a2p)−
β
2 − (a2p)

β
2 )

⎞
⎟
⎠

1
α−β

,
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or equivalently, after introducing q2 = p,

(aα − aβ) qα+β + (aβ − a−α) qβ−α + (a−β − aα) qα−β + (a−α − a−β) q−β−α = 0.

Since α ≠ β, one of the terms q±α±β grows faster than the other. Hence we conclude
that aα = a±β which means, a = 1, a contradiction.

A.3 Properties of the Stolarsky mean

Lemma A.3. For every of the above Stolarsky means S∗(x, y) it holds

∂xS∗(x,x) = ∂yS∗ (x,x) =
1

2
and ∂2

xS∗ (x,x) = ∂2
yS∗ (x,x) = −∂2

xyS∗ (x,x) = −∂2
yxS∗ (x,x) .

Proof. Since S∗(x,x) = x and S∗ is symmetric in x and y, we find from differentiating
∂xS∗ = ∂yS∗ = 1

2 . From the last equality, we find ∂xS∗(x,x) − ∂yS∗(x,x) = 0 as well as
∂xS∗(x,x) + ∂yS∗(x,x) = 1 and differentiation yields

∂2
xS∗ (x,x) − ∂2

yS∗ (x,x) − ∂2
xyS∗ (x,x) + ∂2

yxS∗ (x,x) = 0 , (A.5)

∂2
xS∗ (x,x) + ∂2

yS∗ (x,x) + ∂2
xyS∗ (x,x) + ∂2

yxS∗ (x,x) = 0 . (A.6)

Since −∂2
xyS∗ (x,x) + ∂2

yxS∗ (x,x) = 0, equation (A.5) yields ∂2
xS∗ (x,x) = ∂2

yS∗ (x,x).
Inserting the last two relations into (A.6) yields ∂2

xyS∗ (x,x) = ∂2
yxS∗ (x,x) = −∂2

xS∗ (x,x).

Lemma A.4. It holds (3.2)∂2
xSα,β (π,π) = 1

12π (α + β − 3).

Proof. We know from Lemma A.3 that ∂xSα,β (x,x) = 1
2 , ∂2

xSα,β (x,x) = −∂y∂xSα,β (x,x).
Hence we find

∂xSα,β (x + h,x − h) −
1

2
= ( h
−h )(

∂2
xSα,β (x,x)

∂y∂xSα,β (x,x)
) = 2h∂2

xSα,β (x,x) .

We make use of the explicit form

∂xSα,β (x, y) = (
β

α
)

1
α−β (xα − yα)

1
α−β−1

(xβ − yβ)
1
α−β−1

α (xβ − yβ)xα − β (xα − yα)xβ

(α − β) x (xβ − yβ)2

for x /= y. We insert x = x + h and y = x − h and make use of the following expansions

((x + h)α − (x − h)α)c = (αhxα−1)c (2c +O (h2))
β ((x + h)α − (x − h)α) (x + h)β = 2αβhxα+β−1 + 2αβ2h2xα+β−2

+ 1

3
αβh3 (α2 − 3α + 3β2 − 3β + 2) +O (h4)

α ((x + h)β − (x − h)β) (x + h)α = 2αβhxα+β−1 + 2α2βh2xα+β−2

+ 1

3
αβh3 (β2 − 3β + 3α2 − 3α + 2) +O (h4)

(x + h) ((x + h)β − (x − h)β)
2
= 4β2h2x2β−1 + 4β2h3x2β−2 +O (h4)
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α ((x + h)β − (x − h)β) (x + h)α − β ((x + h)α − (x − h)α) (x + h)β

= 2αβ (α − β)h2xα+β−2 + αβ
3
h3xα+β−3 (2α2 − 2β2) +O (h4)

to obtain

β (xα − yα)xβ − α (xβ − yβ)xα

(α − β) x (xβ − yβ)2
=
α (xα+β−2 + h1

3x
α+β−3 (α + β) +O (h2))

2β (x2β−1 + hx2β−2 +O (h2))

and

(xα − yα)
1
α−β−1

(xβ − yβ)
1
α−β−1

≈ (α
β
)

1
α−β−1

(x
α−1 (1 +O (h2))
xβ−1 (1 +O (h2))

)
1
α−β−1

.

Together with

a + bh
c + dh

= a
c
+ bc − ad

c2
h +O (h2)

(1 + ah2

1 + bh2
)
c

= 1 + ch2(a − b) +O (h4)

we find

∂xSα,β (x + h,x − h) = (
(1 +O (h2))
(1 +O (h2))

)
1
α−β−1 ⎛

⎝
(1 + h1

3x
−1 (α + β) +O (h2))

2 (1 + hx−1 +O (h2))
⎞
⎠

= (1

2
+

2
3 (α + β) − 2

4x
h) +O (h2)

and hence (3.2).

A.4 Approximation of potential to get the SQRA mean

The aim of this section is to provide a class of potentials which are easy to handle and

which generate the SQRA-mean S−1,1(π0, πh) by πmean = ( 1
h ∫

h

0 π−1)
−1

. Clearly, choosing

the constant potential V (x) ∶= Vc ∶= − logS−1,1(π0, πh) we obtain right mean. Although
this works for any means, this has two drawbacks

1. The potential jumps and hence the gradient is somewhere infinite, which means
that at these points the force on the particles is infinitely high which is not physical.

2. Approximating a general function by piecewise constants, on each interval the accu-
racy is only of order h. However, approximating a function by affine interpolation
the accuracy is of order h2 on each interval (see below for the calculation).

So we want to get a potential which may be used as a good approximation (i.e. approx-
imating of order h2), is physical (i.e. continuous) and generates the SQRA-mean. Note,
that most considerations below also work for other Stolarsky means. For simplicity we
focus on the SQRA mean S−1,1.
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A.4.1 Approximation order for linear approximation

Let us first realize that a linear interpolation provides an approximation of order h2. Let
V ∶ [0, h]→ R be a general C2-potential. We define with V (0) = V0 and V (h) = Vh

Ṽ (x) = V0 +
Vh − V0

h
x.

Then one easily checks that

V (x) = V0 + ∂xV (0)x +
1

2
∂2
xV (0)x2 +O(h3)

and hence,

V (x) − Ṽ (x) = (∂xV (0) −
Vh − V0

h
)x + 1

2
∂2
xV (0)x2 +O(h3).

Clearly, we also have

Vh = V0 + ∂xV (0)h +
1

2
∂2
xV (0)h2 +O(h3)

which yields

V (x) − Ṽ (x) = −1

2
∂2
xV (0)hx +

1

2
∂2
xV (0)x2 +O(h3) = 1

2
∂2
xV (0)(x − h)x +O(h3) = O(h2).

A.4.2 Definition of potentials V̂ which generate the SQRA mean

We consider a piecewise linear potential of the form

V̂ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Vc−V0

x1
x + V0 , x ∈ [0, x1]

Vc , x ∈ [x1, x2]
Vh−Vc
h−x2
(x − x2) + Vc , x ∈ [x2, h]

.

where x1, x2 ∈ [0, h] are firstly arbitrary and Vc = − logS−1,1(π0, πh) = 1
2(Vh + V0) . The

potential is clearly continuous. Then

1

h ∫
h

0
eV̂ (x)dx = x1

h

eVc − eV0

Vc − V0

+ x2 − x1

h
eVc + h − x2

h

eVh − eVc

Vh − Vc
.

Introducing the ratios α = x1

h and β = h−x2

h (which are in [0,1/2]) , we want to solve

1
h ∫

h

0 eV̂ (x)dx = e
1
2 (Vh+V0). Indeed, introducing the difference of the difference of the po-

tentials V̄ = Vh − V0, we obtain

λ = α
β
= eV̄ /2 − V̄ /2 − 1

e−V̄ /2 + V̄ /2 − 1
≈ 1 + 1

3
V̄ + 1

18
V̄ 2.

Hence, any value α,β satisfying this ratio generates a potential with the SQRA-mean.
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A.4.3 Proof that the potential approximates an arbitrary potential of order
h2

Since the linear potentials approximates a general potential of order h2 it suffices to
approximate the linear potential Ṽ by V̂ . We show that there are α,β satisfying α

β = λ,

such that ∥V̂ − Ṽ ∥C([xi,xi+1]) = O(h2). The difference of V̂ and Ṽ is the largest at x = x1

or x = x2. We estimate both differences. We have

Ṽ (x1) = V0 +
Vh − V0

h
x1 = V0 + αV̄ , Ṽ (x2) = V0 +

Vh − V0

h
x2 = V0 + (1 − β)V̄ .

Hence we have to estimate

∆1 ∶= ∣V0 − Vc + αV̄ ∣, ∆2 ∶= ∣V0 − Vc + (1 − β)V̄ ∣.

In the case of SQRA, one possible choice for α,β is α + β = 1. Then ∆1 =∆2 = ∣V0 − Vc +
αV̄ ∣ = ∣V0 − Vc + λ

1+λ V̄ ∣ =
1

1+λ ∣(1 + λ)(V0 − Vc) + λV̄ ∣. We have V0 − Vc = −V̄ /2, and hence

∆1 =∆2 =
1

1 + λ
V̄

2
∣λ − 1∣.

One can check that λ ≈ 1 + V̄ /3 and hence, ∆1 +∆2 ≈ V̄ 2

6 ≈ O(h2).
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[HMR11] M. Heida, J. Màlek, and K. Rajagopal. On the development and generalizations of
Allen-Cahn and Stefan equations within a thermodynmic framework. to be submitted to Zeitschrift
für Angewandte Mathematik und Physik (ZAMP), 2011.

[Hum99] H. Hummel. Homogenization of Periodic and Random Multidimensional Microstructures.
PhD thesis, Technische Universität Bergakademie Freiberg, 1999.

[Il’69] A. M. Il’in. Differencing scheme for a differential equation with a small parameter affecting the
highest derivative. Mathematical notes of the Academy of Sciences of the USSR, 6(2), 237–248,
1969. Translated from Mat. Zametki, Vol. 6, No. 2, pp. 237–248 (1969).

[JKO98] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the fokker–
planck equation. SIAM journal on mathematical analysis, 29(1), 1–17, 1998.

[Kan20] M. Kantner. Generalized Scharfetter–Gummel schemes for electro-thermal transport in de-
generate semiconductors using the Kelvin formula for the Seebeck coefficient. Journal of Compu-
tational Physics, 402, 109091, 2020.

[LFW13] H. C. Lie, K. Fackeldey, and M. Weber. A square root approximation of transition rates
for a markov state model. SIAM Journal on Matrix Analysis and Applications, 34, 738–756, 2013.

[LM∗17] M. Liero, A. Mielke, M. A. Peletier, and D. R. M. Renger. On microscopic origins
of generalized gradient structures. Discr. Cont. Dynam. Systems Ser. S, 10(1), 1–35, 2017.

200



Discretization for the Fokker–Planck operator M. Heida, M. Kantner, A. Stephan

[LMV96] R. Lazarov, I. D. Mishev, and P. S. Vassilevski. Finite volume methods for convection-
diffusion problems. SIAM Journal on Numerical Analysis, 33(1), 31–55, 1996.

[LuL20] L. Lu and J.-G. Liu. Large time behaviors of upwind schemes and b-schemes for fokker-planck
equations on R by jump processes. Mathematics of Computation, 89(325), 2283–2320, 2020.

[Maa11] J. Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261, 2250–
2292, 2011.

[Mar15] R. Marcelin. Contribution a l’étude de la cinétique physico-chimique. Annales de Physique,
III, 120–231, 1915.

[Mar86] P. A. Markowich. The stationary Semiconductor device equations. Springer, Vienna, 1986.

[Mie11] A. Mielke. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion
systems. Nonlinearity, 24, 1329–1346, 2011.

[Mie13a] A. Mielke. Geodesic convexity of the relative entropy in reversible markov chains. Calculus
of Variations and Partial Differential Equations, 48(1), 1–31, 2013.

[Mie13b] A. Mielke. Geodesic convexity of the relative entropy in reversible Markov chains. Calc.
Var. Part. Diff. Eqns., 48(1), 1–31, 2013.

[Mie16] A. Mielke. On evolutionary Γ-convergence for gradient systems (Ch. 3). In A. Muntean,
J. Rademacher, and A. Zagaris, editors, Macroscopic and Large Scale Phenomena: Coarse Grain-
ing, Mean Field Limits and Ergodicity, Lecture Notes in Applied Math. Mechanics Vol. 3, pages
187–249. Springer, 2016. Proc. of Summer School in Twente University, June 2012.

[MiS19] A. Mielke and A. Stephan. Coarse-graining via EDP-convergence for linear fast-slow reac-
tion systems. WIAS preprint 2643, 2019.

[MiW94] J. J. H. Miller and S. Wang. An analysis of the Scharfetter–Gummel box method for
the stationary semiconductor device equations. ESAIM: Mathematical Modelling and Numerical
Analysis, 28(2), 123–140, 1994.

[MP∗17] A. Mielke, R. I. A. Patterson, M. A. Peletier, and D. R. M. Renger. Non-
equilibrium thermodynamical principles for chemical reactions with mass-action kinetics. SIAM J.
Appl. Math., 77(4), 1562–1585, 2017.

[MPR14] A. Mielke, M. A. Peletier, and D. R. M. Renger. On the relation between gradient
flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential
Analysis, 41(4), 1293–1327, 2014.

[ScG69] D. Scharfetter and H. Gummel. Large-signal analysis of a silicon read diode oscillator.
IEEE Trans. Electron Devices, 16(1), 64–77, 1969.

[Sto75] K. B. Stolarsky. Generalizations of the logarithmic mean. Mathematics Magazine, 48(2),
87–92, 1975.

[vRo50] W. W. van Roosbroeck. Theory of the flow of electrons and holes in germanium and other
semiconductors. Bell Syst. Tech. J., 29(4), 560–607, Oct 1950.

[WeE17] M. Weber and N. Ernst. A fuzzy-set theoretical framework for computing exit rates of
rare events in potential-driven diffusion processes. arXiv preprint arXiv:1708.00679, 2017.

[Wol17] I. Wolfram Research. Mathematica, 2017.

[XuZ99] J. Xu and L. Zikatanov. A monotone finite element scheme for converction-diffusion equa-
tions. Math. Comp., 68(228), 1429–1446, 1999.

201



Discretization for the Fokker–Planck operator M. Heida, M. Kantner, A. Stephan

202



Bibliography

[AGS05] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces
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nonlinear parabolic equations derived from one-dimensional local dirichlet problems.
Numer. Math., 102(3), 463–495, 2006.
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