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Abstract

Cell signaling is a complex process organized in time and
space. Signal transduction is constantly modulated by cell-
intrinsic and cell-extrinsic input cues and the resulting pheno-
typic responses such as morphological can feed back into the
system. This provides cells with a responsive, accurate, and
rugged system to deal with changes in the surroundings or the
genome. Whilst signaling networks (dynamic transient
protein–protein interactions modulated by post-translational
modifications in response to input cues) have been researched
for decades, further analysis of their spatial organization is
critical for both basic and disease biology and will benefit from
recent advances in computational modeling and image anal-
ysis using deep/machine learning and in microscopy and im-
aging. Furthermore, mathematical modeling with reaction-
diffusion approaches on time-varying geometries comple-
ments the investigations, allowing to conceptualize the orga-
nizational principles of signaling and information transduction
in the four dimensions of time and space.
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Cell signaling is foundational to biological organization
[1,2]. The morphology of eukaryotic cells and their or-
ganelles is closely associated with the biochemical states
of these (sub)systems. The dynamical morphology and
corresponding network states are the basis for the cells’

ability to respond to external and internal cues and
www.sciencedirect.com
altering phenotypes or making complex integrative de-
cisions [3,4]. Cell signaling does not occur by homoge-
neous mixing of signaling molecules, instead, it most
often happens in localized transient complexes or even
near solid-state chemical reactions on docking proteins
involving very few single-digit numbers of proteins
[2,5,6]. This way the cell can stringently and in a highly
localized manner regulate its morphology whilst keeping
the components being regulated close to the regulators.
Cell and cellular signaling are not only dependent on time
and space but also ‘context’ or perhaps better termed the
biochemical network state of the cell, which in turn de-

pends on the cell type, mutations, nutritional conditions,
physicochemical parameters, embedding in a tissue or
growth in a cell culture [7]. The network state of the cell
is in a constant state of flux. Activation of a master
controller such as a kinase in a specific network state can
commit the cell to apoptosis, whereas activation of the
same kinase in another network state can result in cell
proliferation [8e10]. Thus, entirely opposite phenotypic
states can be reached through the same regulator
depending on context. This is a result of the multivariate
nature of cell signaling networks and the fact that a cell is

never in total isolation from other cells or external and
internal cues. A dramatic consequence of this is that
debates over whether a certain molecule is a tumor sup-
pressor or oncogene are essentially flawed as both can be
true, depending on the network state of a specific cancer
or tumor cell [11]. It also means that classic
pathway descriptions and a large fraction of the literature
on cell signaling should be considered context-dependent
intersections or snapshots that may not translate to other
cell types or genetic backgrounds or are only valid under a
specific set of biochemical perturbations.

These principles have profound implications for how we
study biological systems and their response to cues. It
first and foremost means that we must rely on multi-
variate perturbations when conducting stimulation-
based experiments. It also means we must design our
experiments to accept the multivariate nature of bio-
logical systems and stop making bold conclusions from
single stimuli (e.g. with just a growth factor) or from
extreme dose stimuli (e.g. 150 ng/ml EGF (epidermal
growth factor) [12]) as these basically force the network
states into (adaption to) a nonphysiological or artificial

context which may not be relevant from a biological
point of view or to the actual cell type being studied.
The eukaryotic cell’s phenotype is basically composed
of macromolecular assemblies in combination with small
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molecules, lipids, water, and ions. Therefore, continuous
imaging of macromolecules and these dynamic assem-
blies whilst sampling experimentally the corresponding
network and cell signaling states would, from a theo-
retical point of view, provide the best basis for devel-
oping biological forecasting models. Such models would
link signaling network states to the phenotype and
enable to forecast how a perturbation or change in the

network will alter the phenotype.
Recently, we demonstrated that in some sense, signaling
network states and phenotypes are mirror images in the
sense that it is possible to move bidirectionally between
them [13].
Meanwhile, it is known that the development of drug
resistance in cancer cells can lead to changes in cell
morphology [14]. What we showed is that by deploying
deep neural networks to analyze this relationship, com-
plex cell morphologies can encode states of signaling
networks and unravel cellular mechanisms otherwise

hidden. From a very large imaging data set, we showed
that from morphology (cell shape space) alone, we could
predict whether a cell was resistant to a therapeutic
antibody (ErbB-family) and predict the potential mech-
anism of resistance [13]. Our work raises many questions,
for example, whether this is a specific feature of antibody
treatments or whether it can also be observed with small
compound treatments. Another open question is whether
it will be possible to use this ‘bridge’ to study mecha-
nisms of many other phenotypes and signaling networks
and the underlying mechanisms. This should be inves-

tigated in a massive scale imaging experiment.
Here, we (i) emphasize the need for accounting for cell
shape in signaling and systems biology more broadly; (ii)
describe experimental approaches to quantify spatial
and temporal cell behavior; (iii) provide an overview of
mathematical modeling of cell shape and dynamics; and
(iv) present a vision for robustly monitoring cell shape
and dynamics.
Why is space important?
The cell with its morphological structures provides the
environment in which signaling operates. A cell is
exposed to hundreds of thousands of input cues at any
given time point, for example, from mechanical stresses
resulting from, for example, cellecell contacts, fluid
flows, osmotic changes, DNA damage, hormone and
cytokine changes, or its own metabolic processes. These

cues are picked up by the cell’s receptors and other
sensing molecules and translated into signals that prop-
agate in highly nonlinear, transient, dynamic networks
primarily composed of signaling proteins interacting
through post-translational modifications. Receptors for
external and internal cues are typically embedded in
membrane structures and interact with other membrane-
associated or diffusive (adaptor) proteins. When an
external cue is processed, the information needs to get
Current Opinion in Systems Biology 2021, 27:100354
from the cell surface to the nucleus; internal signals also
need to be conveyed between organelles (e.g. in plants
from the nucleus to chloroplast and back). At the same
time, organelles, cytoskeleton, or microtubules interfere
with the diffusion of signaling molecules. When it comes
to the cell shape, models show that the curvature of the
membrane as well as the ratio between the surface and
volume influence molecular diffusion and interaction

and, hence, information transmission [15,16].

Signaling is inherently noisy, but cell fate depends on
information being transmitted reliably. Concepts have
been developed to quantify information transmission in
cellular signaling networks [17e19] based on Shannon’s
information theory [20] and need to be extended into
space and into spatial organization of near membrane-
located protein complexes. Questions arise about how
to integrate a variety of signals or how to sharpen the
signal reaching its destination, for example, the nucleus?

Suggested solutions include selected inactivation [21]
or employment of scaffolds proteins (own studies).
Experimental techniques to investigate
spatial composition and dynamics
Imaging techniques are very powerful methodologies to
obtain data about spatial signaling in living cells.
Different techniques are available, and image acquisi-
tion and image analysis are their own quickly developing
fields of research. Computational algorithms and math-
ematical breakthroughs in, for example, machine
learning [22], are a major part of this development.

A frequent approach is to tag proteins with a fluorescent
dye and then follow its distribution in the cell. A recent
example is an assay combining proximity ligation with
chemical labeling of cysteine residues in the sulfenic acid

state to visualize a protein-tyrosine phosphatase and
resulting in spatially and temporally limited protein
oxidation within cells contributing to cellular signaling
[23]. In addition, optogenetic methods to visualize
interesting components are currently gaining momentum
[24e26] allowing to measure the spatiotemporal distri-
bution of, for example, Smad2 in transforming growth
factor beta (TGF-b) signaling [26] or KRas in epidermal
growth factor (EGF) signaling [25]. An example for the
analysis of spatial receptor distribution is ratiometric G-
protein coupled receptor (GPCR) signaling for direc-

tional sensing in yeast [27].

Imaging naturally comes with challenges: (i) despite
impressive progress, the spatio-temporal resolution is
still insufficient to precisely follow single molecules.
Single-particle tracking, that is, assigning signals from
different images to the same molecule to assess its
spatial dynamics is still a hard problem (e.g. Ref. [28]).
(ii) All methods of imaging somehow interfere with the
www.sciencedirect.com
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signaling process itself, and the aim is to minimize this.
For example, tagging is often combined with over-
expression of the protein, which affects the quantitative
contribution to signaling. The tag may also change
binding properties or activities. (iii) Moreover, most
methods focus on a single or few selected molecules,
which gives insight into this molecule’s fate, but not yet
provide the global dynamic overview finally wanted. (iv)

The spatial organization of signaling in human cells
cannot always be understood from single cells alone but
refers to cells in their community.

Mathematical modeling of cell shape and
signaling in four dimensions — from
tradition to deep hidden physics
A frequent type of mathematical models describing
signaling in space and time are reaction-diffusion
models in the form of partial differential equations.
Taking into account processes, both on or close to the
surface (S) and in the volume of the cell (V), a general
form of the reaction-diffusion equations reads

vxi
vt

¼ fið x!; y!ÞþDSDSxi þ ks; i ¼ 1;.n (1)

vyj
vt

¼ fjð x!; y!ÞþDVDV yj þ kv; j ¼ 1;.m (2)

where, x! ¼ ðx1; ::; xnÞT denotes the amount of the com-

pounds moving at the surface, y! ¼ ðy1; ::; ymÞT the com-

pounds diffusing in the volume, fi and fjare the reactions

those compounds can undergo, DS and DV are the diffusion

coefficients in 2 and 3 dimensions, respectively, DS and DV

are the respective Laplace operators, and ks and kv can be

some external stimuli (Figure 1).

Historic attempts to explain growth and form of single
cells using physical principles [29] suggested that turgor

pressure and surface tension determine cell shape. The
Helfrich potential [30] summarizes the energy contri-
butions such as surface tension and bending energies of
biological membranes and has been used to explain the
shape of motile cells such as fish keratocytes [31] or
curvature of red blood cells and vesicles [32,33]. How-
ever, in many cases, cell shape is not static and does not
just follow from energy minimization. Instead, it results
from a response to an external cue.

Polarization is an important process requiring spatial
orientation of a cell, typically orchestrated by Rho-

GTPases. A classic is the Gierer-Meinhardt model [34]
which describes pattern formation of morphogens based
on auto- and cross-catalysis combined with short-range
activation, long-range inhibition, and a distinction be-
tween activator and inhibitor concentrations on one
hand, and the densities of their sources on the other.
www.sciencedirect.com
Different biochemical mechanisms have been suggested
for the necessary symmetry breaking, among them local
excitation, global inhibition [35], Turing instability (e.g.
Ref. [36]), and wave-pinning [37].

One extensively researched example is the mating of
the haploid forms of Baker’s yeast, where direction in
space and polarization are critical for the choice of a

mating partner. Because yeast cannot actively swim,
they have to precisely detect the location and distance
of the mating partner from gradients of pheromone,
then establish cellular polarization and finally grow
toward the mating partner, that is, form a protrusion
called shmoo. Models have been presented for the
establishment and sensing of the pheromone gradients
[38,39], the actual polarization of the cell based on
shuttling of Cdc42 [15,40e48], the resulting intracel-
lular gradient [49] as well as the resulting shape
changes [50]. In motile cells such as the fish kerato-

cytes, F-actin dynamics contribute to the polarization
[51,52].

The shape of the cell also modulates the signaling pro-
cesses [53,40] via (i) the curvature of the relevant sur-
faces, (ii) the alternation of the ratio between the surface
and volume, and (iii) the available volume. The other
way around, intracellular gradients of signaling molecules
are able to influence cellular growth and shape [54,55].
Shape changes and the task to develop predictive models
for signaling networks in growing or deforming cells

establish interesting mathematical challenges. On the
one hand side, shape dynamics have to be extracted from
images and be transformed into an adaptive surface. For
example, Ma et al., 2020 [21] used soft X-ray tomo-
graphic imaging of cells for the reconstruction of the cell
structure with surface and organelles.

On the other hand, models have to capture the shape
changes leading to reaction-diffusion systems on
evolving domains. Solutions for this problem beyond
partial differential equations in one spatial dimension
[56] are, for example, adaptive triangulations as used in

Ref. [50]. The description of spatial configurations is an
active field of research using different versions of finite
element methods [57].

Despite exciting technical developments, it is still an
important task to find sensible simplifications to keep
the model tractable to learn more about the implications
of spatial distribution of components and their tasks
including receptors at the cell surface, large dynamically
forming complexes at the cell surface, and signal
‘pathways’ or networks transmitting information to tar-

gets, with the aim to understand the temporal organi-
zation, signal integration, and which information is
eventually transmitted.
Current Opinion in Systems Biology 2021, 27:100354
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Figure 1

(a) Eukaryotic cells and individual cell types not only contain many different organelles (not shown) but can often adopt many morphologies and dynamic
phenotypes that, for example, relates to cell growth, adhesion to the extracellular matrix, protrusions, or actin formation. These are both regulated and
composed of cell signaling network states. Thus, correlating these in a bidirectional manner is critical for understanding and forecasting biological
systems from single cells to multicellular or complex tumor environments. (b) Signal states can be regulated by external (ks) or internal cues, diffusion of
molecules on surfaces (DS) or in volumes (DV), reactions (fi, fj), and changing gradients.
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Genome-scale experimental design and the
vision of a very large imaging array
Critically, moving forward with deeper biological under-
standing is imaging live cells in their (in situ) context, for
example, in tissues, 3D culture, and other types of cell
culture, organs, and tumors all of varying biological

complexities. Imaging of cellecell contacts and every-
thing from cell populations to single/individual cells is
critical to derive multiscale models. Methods that can
scale to genome-scale and facility analysis across 100.000s
of perturbations (genetic/ clustered regularly interspaced
short palindromic repeats (CRISPR) /RNAi, metabolic,
chemical/drugs/small molecules, antibodies, and combi-
nations thereof) in a fully automated mode is vital
[58,59]. At the same time, it is important to be able to
analyze cell shape at different scales: multicellular,
cellular, and subcellular even down to the molecular as-

sembly level (complexes) with new methods, for
example, electron microscopy/tomography, in vivo NMR,
multiphoton and non-invasive imaging, cytometry by
time of flight (CyTOF) imaging or scanning (positron
emission tomography (PET), continuous-
spectrum emission tomography (CET), etc.) in complex
tissues. In the future, ideally, it should be possible to
conduct this to the degree where robust models of the
molecular assemblies can be derived and how these
create dynamic morphological changes and phenotypes,
that is, multiscale models across time, space and at
different scales and integrated with context.

It is clear we do not have all the tools currently to do
this; however, it is relatively clear that things are moving
in the right direction.
Current Opinion in Systems Biology 2021, 27:100354
Moving forward what is required is perturbation studies,
not only steady states. Signaling makes sense only as a

dynamic process. We must activate or challenge the
system to see its potential and dimensionality and to see
how vulnerable or robust our models are. With models,
we can test how robust our assumptions are but only in
combination with diverse quantitative data. Thus, we
clearly need more live-cell imaging. When we image
different levels of the cell with many levels and precise
quantifications, we can aim to build a whole cell and
tumor or tissue models. Classic definition (spiky, long,
elongated, round, etc.) of phenotypes does not provide
enough description. Phenotypes are like a continuum,

and morphological shape space contains a massive
amount of information that we can use to understand
complex and nonlinear molecular interaction network
dynamics. Hence, shape must be confronted/correlated
with signaling dynamics and network rewiring. Form and
function are integrated and indeed two sides of the same
coin. There is also spatial organization at other levels,
which we need to be able to model. It’s important for
tumor evolution and other complex diseases. For the
mammalian cell, shape is decisive for fate and cellecell
contact. Cancer is a disease driven by organization of

signals in space-time and shape, thus no wonder the
treatment of cancer also requires to embrace cell shape
and complex phenotypes.

To this end, we propose that massively parallel imaging
under hundreds of thousands of perturbations in combi-
nation with network sampling using from single cell to
community-level mass spectrometry, CyTOF [60],
single-cell proteomics with, for example, Single Cell
www.sciencedirect.com
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Figure 2

Quantitative phenotypic signatures (high-dimensional normalized feature vectors or autoencoders representing quantitative imaging space) are used in
deeply hidden physics models [63,64] to generate predictive/forecasting models of corresponding signaling network states and morpho-/pheno-dynamics.
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ProtEomics by MS (SCoPE-MS) [61,62], next-genera-
tion sequencing (NGS), phosphorylation mass-spec-
trometry (phospho-MS), RNAseq, etc. would enable

development of cell forecasting models similar to
climate/weather predictions. Multiscale studies are vital
and thus a European Very Large imaging Array (VLiA)
analogous to the Very Large Array (VLA) in New Mexico
or Square Kilometre Array would also include structural
methods such as electron microscopy (EM)/ electron
tomography (ET)/ nuclear magnetic resonance (NMR),
atomic force microscopy (AFM), and other similar tools
to get information at different molecular and assembly
scales. Crucially, sampling must be performed in live cells
and/or in time series to optimize the likelihood of fore-

casting. The experimental design is critical, both hy-
pothesis- and nonhypothesis-driven studies should be
conducted, however, always in a manner so that the data
generated can assist with answering a specific biological
question. This is far less trivial than it may read and it is
often ignored by large omics studies.

A platform like this could be used for several flagship
studies, one could, for example, be of reverse engi-
neering CRISPR based on cancer mutations in a cell line
or primary cell to analyze the network adaptation and

possibility of reversing malignant phenotypes.

We argue it is time to build such big quantitative live-
cell imaging facilities to obtain massive amounts of
perturbation-based data that can be used to train
learning algorithms or different types of models. Biology
research will have to embrace the model known from, for
example, particle physics (Large Hadron Collider
(LHC), CERN, and accelerators) in terms of infra-
structure and collaboration. However, it is also clear that
not just one technology can do the job. It has been

evident for years that genomics and genome sequencing
www.sciencedirect.com
or mass spectrometry are not enough to understand
complex biological issues such as cancer phenotypes or
therapeutic responses. We now need to move systems

biology away from its ‘omics’ or ‘single-cell’ era to fully
embrace massive and multiscale complex nonlinear dy-
namics and perturbation-based studies that link bio-
logical behavior to the underlying network dynamics
with the clear goal of forecasting and prediction of
critical to know phenotypes/biological processes
(Figure 2). Such a concept would encapsulate every-
thing ongoing in previous systems biology from bio-
markers to models of cellecell communication to the
guided reverse engineering of cells and tumor cells.
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