Mesoporous WC_x Films with NiO-Protected Surface: Highly Active Electrocatalysts for the Alkaline Oxygen Evolution Reaction

Marvin Frisch+,a Meng-Yang Ye+,a Muhammad Hamid Razab Aleks Arinchtein,a Denis Bernsmeier,a Anna Gomer,c Thomas Bredow,a Nicola Pinna,b and Ralph Kraehnert*[a]

Metal carbides are promising materials for electrocatalytic reactions such as water electrolysis. However, for application in catalysis for the oxygen evolution reaction (OER), protection against oxidative corrosion, a high surface area with facile electrolyte access, and control over the exposed active surface sites are highly desirable. This study concerns a new method for the synthesis of porous tungsten carbide films with template-controlled porosity that are surface-modified with thin layers of nickel oxide (NiO) to obtain active and stable OER catalysts. The method relies on the synthesis of soft-templated mesoporous tungsten oxide (mp. WO\textsubscript{x}) films, a pseudomorphic transformation into mesoporous tungsten carbide (mp. WC\textsubscript{x}), and a subsequent shape-conformal deposition of finely dispersed NiO species by atomic layer deposition (ALD). As theoretically predicted by density functional theory (DFT) calculations, the highly conductive carbide support promotes the conversion of Ni2+ into Ni3+, leading to remarkably improved utilization of OER-active sites in alkaline medium. The obtained Ni mass-specific activity is about 280 times that of mesoporous NiO (mp. NiO\textsubscript{x}) films. The NiO-coated WC\textsubscript{x} catalyst achieves an outstanding mass-specific activity of 1989 mA g-1 in a rotating-disc electrode (RDE) setup at 25 °C using 0.1 M KOH as the electrolyte.

Introduction

Generating hydrogen through electrocatalytic water splitting is a sustainable way of obtaining clean energy.[1–3] In this reaction, the oxygen evolution reaction (OER) plays a crucial role due to its electron transfer process.[4–6] The exploration of high performance OER electrocatalysts remains one of the major challenges in order to achieve highly efficient electrocatalytic water splitting.[6,7] In recent years, tremendous efforts have been made in the pursuit of identifying highly active sites in OER electrocatalysis.[8–11] However, developing suitable catalysts and support materials for highly active sites is equally important.[12–15] The introduction of supporting materials enables a compensation of many limitations of the catalytically active centers, thus culminating in superior catalytic activities.[13–14]

Nickel-derived oxides are known to be low-cost, highly active OER electrocatalysts in alkaline electrolytes.[16–18] Beside a high stability, the excellent OER activity of these materials has been attributed to the preoxidized Ni2+ on the surface of the NiO electrocatalyst.[16] The surface-exposed oxidic Ni species can be activated during OER,[19]19 However, a previous study by Bernsmeier et al.[20] indicated that a minimum electrical conductivity is often required to enable efficient electrocatalysis. Unfortunately, bulk NiO materials suffer from rather low conductivities, which hinders fast charge transportation during the reaction.[16]

In general, efficient OER catalysis requires a large number of well-accessible, highly active surface species as well as a high electrical conductivity favorable for charge transfer and a sufficient stability of the catalyst against corrosion.[21,22] A maximization of surface-exposed Ni species can be achieved by introducing a mesoporous nanostructure, for instance.[8,23,24] Moreover, the latter also provides short diffusion pathways and facilitates mass transport during catalysis.[25,26] An optimized utilization of weakly conductive NiO is targeted by employing a highly conductive carrier material.[27] Ordered mesoporous carbon or carbides could be used to provide both high electrical conductivity and high porosity, yet they suffer from oxidative corrosion during OER.[28–31] Moreover, the study of powder electrocatalysts mostly relies on the addition of binders such as Nafion.[27,32,33] The latter was shown to partially block active sites and hampers analyses of the spent catalysts.[7]

Tungsten carbides (WC) are highly electrically conductive,[34] earth abundant and show a promising behavior in electrocatalysis.[29,35,36] WC materials can be prepared by carburization of their corresponding metal oxides,[37–39] which were...
frequently synthesized and analyzed due to their interesting electrochromic properties.40,41 However, typical syntheses of WC powders require high carburization temperatures above 800 °C, which results in pronounced crystallite growth, sintering and low surface area.37 In contrast, soft-templated mesoporous WO\textsubscript{3} (mp. WO\textsubscript{3}) films enable a facile diffusion of reactive carbon species into the oxide lattice,42,43 hence decreasing the carburization temperature and, concomitantly, preserving the mesoporosity in the obtained WC films (mp. WC\textsubscript{3}).

Herein, we propose a new concept for nanostructured OER catalysts, in which the bulk consists of a Nafion-free, highly conductive, nanostructured tungsten carbide film, and the entire surface of the carbide is uniformly coated with a homogenous thin layer of NiO.

Scheme 1 outlines the overall concept. As a first step, a substrate is coated homogeneously with a nanostructured mesophase by dip-coating from a solution containing an amphiphilic triblock copolymer (PEO-b-PB-b-PEO) as a structure-directing agent,39 a metal oxide precursor (WC\textsubscript{3}), a complexing agent (citric acid),44 and suitable solvents (EtOH). This mesophase is dried and then transformed into the corresponding oxide by thermal treatment in nitrogen, which leads to a concomitant removal of the template polymer and finally results in a controlled mesoporosity of the oxide film. Exposing this oxide phase to a mixture of CH\textsubscript{4}/H\textsubscript{2}/Ar at 700 °C induces the pseudomorphic transformation of the oxide into the respective carbide, while retaining the film integrity and its open porosity, affording a mesoporous tungsten carbide phase (mp. WC\textsubscript{3}). ALD is used as a next step to coat the entire internal surface of the porous carbide systems with NIO (ALD-NIO/mp. WC\textsubscript{3}).

In order to produce defined reference catalysts, templated mesoporous nickel oxide (mp. NiO\textsubscript{3}) films were prepared by a synthesis route previously described in literature.24 Moreover, the pore system of this mp. NiO\textsubscript{3} as well as that of mp. WO\textsubscript{3} were coated with a thin conformal NiO layer by a similar procedure as employed for the carbide. All catalyst films were deposited on polished titanium substrates and subsequently tested in alkaline OER (0.1 M KOH) by cyclic voltammetry in a rotating disk electrode (RDE, 1600 rpm) setup to assess activity and stability. DFT calculations were carried out to provide further evidence for the synergistic effects of the carbide carrier and the surface NiO layer. Moreover, electrical conductivity (impedance spectroscopy), crystallinity (GI-XRD, SAED), sample morphology (SEM, TEM) and local composition (EDX) as well as surface area (Kr-physisorption) were assessed.

The herein developed system has several advantages: (a) maximizing the surface exposure of Ni species, while minimizing the content of less conductive NiO, (b) providing protection of the carbide against corrosion and (c) developing a binder-free electrocatalytic system. As a result, the obtained ALD-NIO/mp. WC\textsubscript{3} catalyst films show a low overpotential of 360 mV at a current density of 10 mA cm-2 in 0.1 M KOH. At a potential of 1.60 V vs. RHE, an outstanding Ni-mass based OER activity of 1989 Ag-1, which is ~284-fold higher than that of pristine mesoporous NiO films, can be achieved.

Results and Discussion

Physicochemical characterization of mp. WO\textsubscript{3}, mp. WC\textsubscript{3}, and ALD-NIO/mp. WC\textsubscript{3}.

We synthesized micelle-templated mesoporous WO\textsubscript{3} films in a similar way as previously reported by Brezesinski, Smarsly and co-workers45,46 (Figure 1a-I–c-I). The synthesis of the initial porous oxide relies on the Evaporation Induced Self Assembly (EISA) process.47–50 The obtained mp. WO\textsubscript{3} films were carburized in a mixture of CH\textsubscript{4}, H\textsubscript{2} and Ar for 6 h at 700 °C to afford a homogeneous, macroscopically crack-free mesoporous WC\textsubscript{3} film (mp. WC\textsubscript{3}) (Figure 1a-II–c-II). The obtained mp. WC\textsubscript{3} was then coated with a thin layer of NIO through ALD by alternating cycles of Ni(Cp)\textsubscript{2} and ozone (O\textsubscript{3}) at 200 °C (Figure 1a-III–c-III). As shown in previous reports,27,51–53 such an ALD process can ensure the deposition of a homogenous and thin particulate-
like film onto high-aspect-ratio nanostructured carriers. By changing the number of ALD cycles, the amount and thickness of the NiO coating can be precisely adjusted (for further evidence, see the Supporting Information, Section 1).\(^{27,51,52}\)

Representative top-view SEM and bright-field (BF) TEM images confirm the homogenous mesoporosity of the synthesized mp. WO\(_x\) film (Figure 1a-I, b-I). The surface area of the film amounts to around 120 m\(^2\) per geometric m\(^2\) on average, according to BET evaluations of independent Kr-physisorption measurements.

The FFT image (Figure 1a-I, inset) shows a diffuse ring, indicating a locally ordered mesoporous structure. The SAED and GI-XRD patterns of mp. WO\(_x\) film (Figure 1c-I, d-I) show broad reflections indicating the formation of a mesoporous material. The XPS W4f spectrum (see the Supporting Information, Figure S2a) shows a typical doublet peak centered at 35.7 eV, indicating that the dominating tungsten species in mp. WO\(_x\) is W\(^{6+}\), while the corresponding W–O bond centered at 530.2 eV can be observed in the corresponding O 1s spectrum (Figure S2d).\(^{18,27}\)

After carburization, both top-view SEM and TEM images of the mp. WC\(_x\) film clearly portray its homogenous mesoporosity originating from the mp. WO\(_x\) precursor (Figure 1a-II, b-II). The surface area of the mp. WC\(_x\) film remains high with a value of \(\sim 100\) m\(^2\) m\(^{-2}\) on average. A diffuse ring can be found in the corresponding FFT (Figure 1a-II, inset), indicating a similar structure to the mp. WO\(_x\) precursor film. The conversion from mp. WO\(_x\) into mp. WC\(_x\) can be observed from both SAED and GI-XRD patterns (Figure 1c-II, d-II) and the reflections can be assigned to WC (PDF# 01-072-0097) as well as W\(_2\)C (PDF# 01-089-2371). Importantly, no signs for any remaining WO\(_x\) phases are found. Broad reflections underline the preserved nanocrystallinity of the material. Beyond that, the conversion from an oxide into a carbide can be confirmed through XPS analysis of the obtained mp. WC\(_x\) after carburization (Figure S2e–h). In the W4f XPS spectrum of mp. WC\(_x\) (Figure S2e), the dominating species is indicated by a doublet peak located at 31.9 eV, which can be assigned to tungsten carbides. Only a weak signal of W\(^{6+}\) remains, which can be rationalized by a surface oxidation of the WC\(_x\) as a result of the passivation step subsequent to carburization.\(^{34}\)

The deposition of NiO by ALD in the last synthesis step did not show any significant impact on the crystallinity and mesoporosity of the mp. WC\(_x\) carrier. As expected, the surface area slightly decreased to \(\sim 85\) m\(^2\) m\(^{-2}\) after the deposition of NiO onto the pore walls of the carrier film, which adds evidence for the preserved mesoporosity in ALD-NiO/mp. WC\(_x\). The GI-XRD pattern looks essentially unaltered, still showing broad reflections of W\(_2\)C and WC (Figure 1d), which can also be confirmed by SAED (Figure 1c-III). A weak reflection can be found at 43.4°, which corresponds to the (200) facet of cubic
after the ALD process, which can be addressed to typical Ni species in NiO. \(^{27,32,55–58}\) In addition, the corresponding Ni–O interaction was found in the O 1s spectrum (Figure S2k).\(^{24}\) Notably, Ni took up 17.65 at\% of the surface element composition after ALD, while the content of W drastically reduced to 0.13 at\% (Table S1), indicating that the NiO layer has covered almost the entire surface of ALD-NiO/mp. WC. This conclusion can be further supported by the results from bulk-sensitive WDX/StrataGem analysis, showing a significantly lower overall Ni content of 4.2 at\% in the entire film volume. Note that a pronounced surface oxidation of WC can be observed in W4f spectrum of ALD-NiO/mp. WC, most likely due to the exposure to \(O_2\) at elevated temperatures in the ALD chamber.\(^{24}\) Still, the existence of WC species on the surface of ALD-NiO/mp. WC, is evident. In addition, the distributions of Ni and W were investigated by using energy dispersive X-ray spectroscopy (EDX) elemental mapping coupled with TEM. A representative BF-TEM image of ALD-NiO/mp. WC, is given in Figure 2a. The area shown in Figure 2a was analyzed by EDX spectroscopy (see the Supporting Information, Section 3). It can be observed that the signals of both Ni and W homogeneously cover the entire volume of the analyzed film fraction (Figure 2b, c), suggesting that the NiO layer is uniformly distributed over the entire surface of the mp. WC, carrier. Furthermore, the power spectra of selected regions of a representative high-resolution HR-TEM image of ALD-NiO/mp. WC, (Figure 2d) are typical of WC in [100] zone axis (Figure 2e) and of NiO in [100] zone axis (Figure 2f). Beyond that, lattice fringes corresponding to the (101) facet of \(W\) can as well as (111) and (200) facets of NiO can be observed and, importantly, the mesoporous structure of ALD-NiO/mp. WC, is further corroborated (see the Supporting Information, Section 6).

Evaluation of OER activities, stabilities and Tafel slopes through RDE measurements in 0.1 M KOH (25 °C)

The OER activity of ALD-NiO/mp. WC, was measured in a RDE setup through cyclic voltammetry (CV) measurements in 0.1 M KOH at RT for all samples listed in Table 1. From the electrochemical testings, Tafel slopes, Ni-based mass activities and electrochemically accessible surface areas (ECSA) of the catalysts were derived. To understand both the impact of the carrier material and the impact of the ALD process on the electrical properties, impedance spectroscopy was used to calculate the electrical sheet conductivities.

Table 1 provides an overview of the calculated electrical properties, Ni loadings and corresponding electrochemical performance data for all investigated catalyst systems. Figure 3a shows the current density-potential plots of the 30° CVs for all developed electrocatalyst systems (for further CV cycles see Figure S4). ALD-NiO/mp. WC, exhibits by far the highest OER activity. Over 100 cycles of RDE-OER testing, ALD-NiO/mp. WC, presents an remarkable stability, since the overpotential amounts to 360 mV at 10 mA cm\(^{-2}\) in CV 30 and well-preserved in CV 50 (368 mV, Table 1) as well as in CV 100 (372 mV, Table S2). Hence, ALD-NiO/mp. WC, ranks amongst the state-of-the-art alkaline OER electrocatalysts in terms of overpotential in 0.1 M KOH electrolyte, yet with a significantly enhanced mass activity (Table 2). Importantly, the OER activities of the herein investigated Ni-containing electrocatalysts were normalized by
the Ni content (Figure 3b). The latter was determined by using inductively coupled plasma optical emission spectrometry (ICP-OES, Table 1). In addition, for the most active catalyst system, StrataGem/WDX analysis was performed to confirm the Ni loading without dissolution of the material. At a potential of 1.60 V vs. RHE, ALD-NiO/mp. WC\textsubscript{x} reaches a Ni-mass based OER activity of 1989 A g-1, which is ~9-fold higher than that of ALD-NiO/mp. WO\textsubscript{x} -221-fold higher than that of pristine mp. NiO\textsubscript{x} and ~284-fold higher than that of ALD-NiO/mp. NiO\textsubscript{x}. The outstanding Ni mass-specific activity of the ALD-NiO/mp. WC\textsubscript{x} electrocatalyst can be explained by the ultra-low loading and high accessibility of the well-dispersed NiO active centers at the entire surface of the porous carrier film. Beyond that, a comparison of OER activities with state-of-the-art Ni-based catalysts highlights the superior OER activity of ALD-NiO/mp. WC\textsubscript{x} (Table 2). In this context, it has to be noted that the herein developed catalyst does not suffer from any blocking of active sites by Nafion binder species.[59]

Moreover, the Tafel slopes (Figure S5) of the electrocatalysts were derived from the CV curves shown in Figure 3a. Pristine

<table>
<thead>
<tr>
<th>Sample description</th>
<th>ALD cycle number</th>
<th>Ni loading[a] [μg cm-2 geom. area]</th>
<th>Sheet conductivity[b] (S cm-1)</th>
<th>ECSA[c] [cm2 per geometric cm2 film area on extensively polished Ti substrates]</th>
<th>Overpotential [mV][d]</th>
<th>Mass activity (1.60 V, CV 30) [A g-1]</th>
<th>Tafel slope [CV 30] [mV dec-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp. WC\textsubscript{x}</td>
<td>0</td>
<td>0</td>
<td>5.4 \times 10-2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>117</td>
</tr>
<tr>
<td>ALD-NiO/mp. WC\textsubscript{x}</td>
<td>150</td>
<td>7 \pm 1</td>
<td>2.9 \times 10-1</td>
<td>11.4</td>
<td>*</td>
<td>360</td>
<td>368</td>
</tr>
<tr>
<td>mp. WO\textsubscript{x}</td>
<td>0</td>
<td>0</td>
<td>1.1 \times 10-1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ALD-NiO/mp. WO\textsubscript{x}</td>
<td>150</td>
<td>8 \pm 2</td>
<td>1.1 \times 10-1</td>
<td>4.5</td>
<td>427</td>
<td>550</td>
<td>234</td>
</tr>
<tr>
<td>mp. NiO\textsubscript{x}</td>
<td>0</td>
<td>33 \pm 2</td>
<td>3.0 \times 10-2</td>
<td>2.2</td>
<td>*</td>
<td>*</td>
<td>9</td>
</tr>
<tr>
<td>ALD-NiO/mp. NiO\textsubscript{x}</td>
<td>150</td>
<td>45 \pm 4</td>
<td>1.4 \times 10-5</td>
<td>1.7</td>
<td>*</td>
<td>*</td>
<td>7</td>
</tr>
</tbody>
</table>

[a] Ni loading determined by ICP-OES after dissolution of the films via acid digestion. [b] Electrical conductivity investigated by impedance spectroscopy in the dark. [c] ECSA calculated from double layer capacitance \(C_{dl}\) (Figure S8). The values are stated in cm2 per geometric cm2 film area on extensively polished Ti substrates. [d] Asterisks denote catalysts for which the current density did not reach \(j = 10\) mA cm-2 within the investigated OER potential window (1.20–1.95 V vs. RHE).
mp. NiO, and ALD-NiO/mp. NiO, feature large Tafel slopes of 138 and 154 mV dec\(^{-1}\), corresponding fairly well to the typical Tafel slope of pristine NiO reported in literature (see Table 2). In contrast, ALD-NiO/mp. WC, exhibits a significantly reduced Tafel slope of 57 mV dec\(^{-1}\), indicating remarkably faster reaction kinetics. Interestingly, the Tafel slope of ALD-NiO/mp. WC resembles that of ALD-NiO/CNT in our previous work,\(^{27}\) further highlighting that applying a highly conductive substrate can significantly enhance the performance of a NiO-containing electrocatalyst.

Beside a high catalytic activity, a sufficient stability represents a key challenge of carbon-based support materials in OER catalysis under oxidative potentials. Hence, the stability of ALD-NiO/mp. WC, was examined as a next step (Figure 3c). In the initial phase of the chronopotentiometric stability test, a slight increase in potential is visible, which originates from the oxidation of residual carbon species either from an incomplete decomposition of the polymer template or from the carburization step. In addition, a slight surface oxidation process at the carbide-NiO interface occurs, as described in the following. After reaching a stable state after about 4 h of testing, the catalytic activity of ALD-NiO/mp. WC, remained stable until the end of the stability test over 24 h, providing strong evidence that the ALD-derived NiO coating is indeed effective in preventing an oxidative degradation of the bulk of the porous tungsten carbide scaffold. Contrarily, ALD-NiO/mp. WO\(_x\) did not reach a stable performance during the stability test, which is a consequence of an ongoing loss of active material by means of dissolution into the electrolyte. After about 14 h, most of the active material was dissolved into the surrounding electrolyte, resulting in a steep increase in potential. High-resolution TEM (HR-TEM) images of post-OER ALD-NiO/mp. WC, scraped off from the Ti substrate were taken (Figure S6-I). From the representative HR-TEM images, the crystallinity of both mp. WC, carrier and NiO layer can still be claimed, which is further underlined by SAED analysis (see the Supporting Information, Section 6 for details). Ultimately, the existence of the thin NiO layer is proposed to effectively protect the WC, carrier from pronounced bulk oxidation during OER, leading to the observed high catalytic stability.

XPS depth profiling of the spent catalyst ALD-NiO/mp. WC, revealed a surface-oxidation of the WC, carrier during OER, yet the underlying carbide phase appears to be sufficiently stable against further oxidation (see the Supporting Information, Section 7). Song et al.\(^{60}\) reported similar observations for Ni/WC composite nanoparticles. The formation of a Ni-rich shell was demonstrated to effectively prevent the WC from oxidation during DRE-OER measurements in 1.0 M KOH.

In the present work, highly conformal NiO-ALD (cf. Figure S1) ensures the development of nanostructured catalyst coatings with well-defined mesoporosity that is essentially preserved after OER testing (see the Supporting Information, Section 7).

Electrical properties, estimation of ECSA and DFT calculations

In order to understand the superior OER activity of the ALD-NiO/mp. WC, electrocatalytic system, the electrical properties of the bare and the NiO-coated carrier materials were investigated (Figure 3f). The sheet conductivities of both mp. WC, and ALD-NiO/mp. WC, are several orders of magnitude higher than that of the other materials, leading to significantly enhanced kinetics of the ALD-NiO/mp. WC, electrocatalyst,\(^{26}\) which is further proven by its smaller Tafel slope.\(^{9,27,60}\) Regarding the superior catalytic activity, calculations of the ECSA from the double-layer capacitance (Supporting Information, Section 8) provide deeper insights, as the significantly enhanced ECSA of ALD-NiO/mp. WC, reveals an excellent active site accessibility, which can be attributed to the mesoporosity introduced by the mp. WC, carrier. This highlights the excellent suitability of ALD for the introduction of active species onto the porous system of an inactive, yet highly conductive, carrier. Enlarging the CV curves in a lower potential range of 1.20–1.60 V vs. RHE (Figure 3d, e),

Table 2. RDE-OER performance of highly efficient nickel-based electrocatalysts in alkaline electrolyte at RT reported in literature. Unless otherwise stated, the supporting electrolyte refers to unpurified KOH electrolyte which is expected to contain trace amounts of Fe impurities.

Catalyst Electrolyte Electrode type\(^{[d]}\) Binder Tafel slope [mV dec\(^{-1}\)] Overpotential\(^{[i]}\) [V] Mass activity\(^{[j]}\) [A g\(^{-1}\)]	Reference				
ALD-NiO/mp. WC, mp. NiO, NiFe	0.1 M KOH Ti chip binder-free	57	0.36	1989 (1.60 V\(_{RHE}\))	this work
LDH/GNi	0.1 M KOH Ni-foam binder-free	44	0.33	23 (1.60 V\(_{RHE}\))	[59]
NIO-LA\(_{665}\)Ca\(_{38}\)NiO\(_{4}\) (Fe-saturated)	0.1 M KOH GC Nafion 42	0.37	52 (1.63 V\(_{RHE}\))	[61]	
RuNi/NaS	0.1 M KOH GC Nafion 152	0.38	n. a.	[62]	
NiFe\(_{2}\)O\(_{3}\)	0.1 M KOH GC Nafion 80	0.37	11 (1.70 V\(_{RHE}\))	[63]	
FeNi sheet/NiO	0.1 M KOH carbon paper Nafion 76	0.39	n. a.	[64]	
AlNOD/CNT	1.0 M KOH GC Nafion 50	0.32	n. a.	[27]	
Ni/WC composite	0.1 M KOH GC Nafion 52	0.32	~ 530\(^{[a]}\)	[60]	

\([a]\) GC = glassy carbon. \([b]\) Overpotential at a current density of \(j = 10 \text{ mA cm}^{-2}\), unless otherwise stated. \([c]\) Mass activities calculated based on the loading amount of active species in the catalysts. \([d]\) Mass activity estimated from compositional analysis by EDX (catalyst composition of Ni, WC assumed) and LSV curve in 1.0 M KOH.
the pre-oxidation wave of \(\text{Ni}^{2+}/^{3+} \) located at approximately 1.42 V vs. RHE becomes evident.\(^{31}\) Due to the fact that \(\text{Ni}^{2+} \) has been shown to be the main responsible species for high OER activity, particularly, the pre-oxidation of \(\text{Ni}^{2+} \) to \(\text{Ni}^{3+} \) is a crucial process to optimize the electrocatalytic behavior.\(^{30}\) When comparing with ALD-NiO/mp. WO\(_x\) ALD-NiO/mp. NiO\(_x\) and mp. NiO\(_x\) the pre-oxidation wave for ALD-NiO/mp. WC\(_x\) is, on the one hand, more pronounced and, on the other hand, shifted to lower potentials. However, it has to be noted that the presence of trace Fe impurities in the KOH electrolyte alters both intensity and position of the reversible \(\text{Ni}^{2+}/^{3+} \) redox peaks (see the Supporting Information, Section 4)\(^{9,23,65}\). However, our experimental data reveal a significantly increased number of well-accessible active \(\text{Ni}^{3+} \) sites for ALD-NiO/mp. WC\(_x\) that finally lead to the excellent OER activity due to the systematic investigations and similar measurement conditions for all herein studied catalyst systems. In order to highlight the high intrinsic activity of the surface Ni species in ALD-NiO/mp. WC\(_x\), additional electrochemical measurements using an extensively purified Fe-free KOH electrolyte were conducted (Figure S4-II).

To gain deeper insights into the experimentally observed carbide-promoted \(\text{Ni}^{3+} \ldots \text{Ni}^{3+} \) transitions, DFT calculations using the Vienna ab initio simulation package (VASP)\(^{66-69}\) and projector-augmented wave (PAW) approach of Joubert and Kresse\(^{70,71}\) (see Computational details and Section 9 in the Supporting Information) were performed based on simplified structural slab models of a NiO-coated W\(_x\)C (100) surface and a bare NiO (100) surface as a reference. Therefore, the reaction energies with \(*\text{OH}\) intermediate species during the initial phases of the OER process were calculated for both NiO-coated W\(_x\)C and NiO. The obtained free energies clearly reveal a pronounced beneficial impact of the underlying carbide layers on the adsorption of \(*\text{OH}\) intermediates on the surface-exposed NiO layer. Our theoretical results provide clear evidence for a more favorable adsorption of \(*\text{OH}\) intermediate species for the NiO-coated W\(_x\)C lattice compared to the NiO reference (Figure S9). Thus, the theoretical findings corroborate the experimentally observed enhanced conversion of \(\text{Ni}^{2+} \) into \(\text{Ni}^{3+} \) active sites for ALD-NiO/mp. WC\(_x\). Ultimately, the high number of surface-exposed and well-accessible NiOOH structural motifs in ALD-NiO/mp. WC\(_x\) boosts its OER activity in alkaline electrolyte.

Conclusion

In summary, a synthesis route affording macroscopically crack-free, homogeneous mp. WC\(_x\) films with interconnected porosity by pseudomorphic carbonization of a mp. WO\(_x\) precursor film was developed for the first time. A highly efficient ALD-NiO/mp. WC\(_x\), OER electrocatalyst was obtained by using highly conformal NiO-ALD on the mp. WC\(_x\), carrier. Despite the ultra-low loading, the NiO/WC\(_x\), electrocatalyst shows a moderate overpotential of 360 mV in 0.1 M KOH and a remarkably high Ni mass-based OER activity of 1989 A g\(^{-1}\) as a result of the easily accessible active sites. In this system, the mp. WC\(_x\), carrier plays a crucial role in leading to this outstanding activity. On the one hand, the mp. WC\(_x\) provides a highly conductive mesoporous scaffold that largely enhances the kinetics of the entire system. On the other hand, the synergistic effects between NiO and mp. WC\(_x\), significantly improve the conversion from \(\text{Ni}^{2+} \) into \(\text{Ni}^{3+} \), hence, it provides additional highly active sites for the electrocatalytic OER. In this context, theoretical calculations provide further evidence for a more favorable adsorption energy of \(*\text{OH}\) intermediate species with respect to bare NiO. All in all, a novel and highly promising mp. WC\(_x\), carrier film was developed, offering new approaches for the production of highly active electrocatalysts with excellent electrical properties. The present study serves as a proof-of-concept for the development of highly efficient electrocatalysts with maximized utilization of active species provided by conformal ALD on porous metal carbide scaffolds. Future works will focus on controlled surface modifications of different mesoporous carbide carriers, for example with binary metal oxides such as Co–Ni oxides or noble metal species.

Experimental Section

Synthesis of mesoporous films

Different substrates were used for the deposition of the materials. Single-side polished silicon (Si) wafers obtained from University Wafers with (100) orientation were cleaned with EtOH after a thermal treatment in air for 2 h at 600 °C prior to film deposition. For the electrical sheet conductivity measurements by using impedance spectroscopy, insulating quartz glass (SiO\(_x\)) substrates (Science Services GmbH) were used and cleaned using a mixture of KOH and iPrOH prior to film deposition. Electrochemical measurements were performed using conductive titanium (Ti) substrates, polished with a 0.02 µm colloidal silica suspension (amorphous: Buehler, MasterMet 2) and cleaned using a 1:1 mixture of EtOH and iPrOH.

For the synthesis of mesoporous WO\(_x\) films, anhydrous tungsten(VI) chloride (WCl\(_{6}\) [99.9 % trace metals basis]) was purchased from Merck. Citric acid (>99.5 %, reagent grade) and ethanol (>99.8 %) were purchased from VWR Chemicals. As structure-directing agent, a triblock copolymer PEO-PB-PEO, composed of 20400 gmol\(^{-1}\) polyethylene oxide (PEO) and 10000 gmol\(^{-1}\) polybutadiene (PB) was purchased from Polymer Service Merseburg GmbH.\(^{31}\) All chemicals were used as received without any further purification. In a typical synthesis, the PEO-PB-PEO polymer template (55 mg) was dissolved in EtOH (1.50 mL) at 45 °C (Ar). A clear solution was obtained after stirring for 2 h at 45 °C (I). In another vial, WCl\(_3\) (397 mg, 1.0 mmol) was dissolved in EtOH (1.50 mL; Ar) under stirring. Citric acid (384 mg, 2.0 mmol; 2.0 eq.) were added under stirring (Ar) affording a clear dark blue solution (II). The addition of citric acid led to a change from a dark green to a dark blue solution, indicating the formation of a metal-ligand complex, as described by Eckhardt et al.\(^{46}\) for different metal ions in previous works. After stirring for 30 min at 45 °C (Ar), solution (I) was added. After stirring for a further 2 h at 45 °C (Ar), the obtained clear dark blue solution (III) was transferred into a Teflon cuvette (preheated to 45 °C) and dip-coating was performed in a controlled atmosphere in air (7–25 °C, relative humidity of 35–40 %) on different substrates with a withdrawal rate of 300 mm min\(^{-1}\). The films were dried for at least 5 min in the controlled atmosphere. After calcination in nitrogen atmosphere for 5 h at 500 °C with a heating ramp of 2 K min\(^{-1}\), colored films were obtained.

\[\text{NiO} \rightarrow \text{NiOOH} \]

\[\text{NiOOH} \rightarrow \text{NiOO}^+ + \text{OH}^- \]

\[\text{NiOO}^+ + \text{H}_2\text{O} \rightarrow \text{NiOOH} + \text{OH}^- \]

\[\text{NiOOH} \rightarrow \text{NiO} + \text{OH}^- \]

\[\text{NiO} + \text{H}_2\text{O} \rightarrow \text{NiOOH} \]

\[\text{NiOOH} + \text{OH}^- \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]

\[\text{NiO} + 2\text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} \]

\[\text{NiOOH} + \text{H}_2\text{O} \rightarrow \text{NiO} + 2\text{OH}^- \]
The obtained mp. WO$_3$ films were converted into mp. WC$_x$ films with well-preserved nanocrystallinity and porous structure by carburization in a ternary gas mixture of CH$_4$, H$_2$, and Ar. The ratio of CH$_4$ to H$_2$ during the carburization step for 6 h at 700 °C in a large tube furnace was set to 6:1. A heating rate of 1 K min$^{-1}$ was used. The films were passivated after reaching RT in a mixture of 1% O$_2$/Ar for at least 3 h. For the removal of surface coke deposits on the materials, another heat treatment for 2 min at 550 °C in air was performed. Dark grey films were obtained.

For the synthesis of mp. NiO, films, a previously established method by Bernicke et al.$^{[29]}$ was used. In brief, dip-coating solutions were prepared by dissolving a triblock-copolymer template (PEO$_{1260}$PBD$_{1300}$PEO$_{1260}$; 60 mg) in EtOH (3.0 mL). The solution was stirred for 2 h at 45 °C. Then, citric acid (144 mg) and Ni(NO$_3$)$_2$·6H$_2$O (436.0 mg; NeoLab, 98%) were added. The obtained clear green solution was transferred into a cuvette placed inside a dip-coater at 25 °C and a relative humidity of 40%. After drying, the samples were heated with 2 K min$^{-1}$ to 250 °C and after 1 h at 250 °C, temperature was increased with a ramp of 2 K min$^{-1}$ to 400 °C and again held for 1 h.

NIO-ALD

Nickelocene (Bis(cyclopentadienylnickel, Ni(Cp)$_2$, 99%) was purchased from STRREM Inc. Ozone (O$_3$, 99.99%) was generated using oxygen (99.99%) at a pressure of 0.5 bar in a BMT803N ozone generator. The estimated concentration of ozone delivered to the ALD system was 60–70 G Nm$^{-2}$. Argon, nitrogen, and oxygen were provided by Air Liquide (99.99% purity). NiO was directly deposited on the mesoporous WC$_x$, WO$_3$, and NiO films on flat Ti, Si or quartz substrates. Moreover, pre-cleaned single-side polished Si wafers (Siegert Wafer B014002) with a native SiO$_2$ layer (about 1.2–1.8 nm) were also added into the ALD chamber for calibration of the NiO-thickness by spectroscopic ellipsometry (SE). ALD was performed in a commercial ALD system by ABBRADIO (GEMStar-6). The comprehensive of the experimental procedure can be found elsewhere.$^{[27,51,52]}$ In brief, nickelocene (contained in a stainless-steel canister at 90 °C) and O$_3$ (as generated at RT) were used as metal precursor and oxygen source, respectively. The precursors were supplied using two separate manifolds for metal precursor and oxygen source that were maintained at 120 °C and 100 °C, respectively. Argon was used as a carrier and purging gas for the precursors to the reaction chamber, and to remove any of the excess reactants and by-products. Additionally, an Ar booster was used as pulsed-vapor-push method (PVP$^{[53]}$) to carry out nickelocene vapors to the reaction chamber. The ALD system was evacuated (approx. 7.5·10$^{-7}$ mbar), and the temperature of the ALD reaction chamber was stabilized at 200 °C before starting the deposition. Prior to ALD, all samples were treated in situ with UV-O$_3$. The obtained clear green solution was transferred into a cuvette placed inside a dip-coater at 25 °C and a relative humidity of 40%. After drying, the samples were heated with 2 K min$^{-1}$ to 250 °C and after 1 h at 250 °C, temperature was increased with a ramp of 2 K min$^{-1}$ to 400 °C and again held for 1 h.

Characterization

SEM images were recorded at 20 kV on a JEOL 7401F. The obtained SEM images were evaluated with ImageJ freeware, version 1.48 (www.imagej.nih.gov/ij). Corresponding FFT images were created using this software.

TEM images were taken using a FEI Tecnai G2 20 S-TWIN and a FEI Talos transmission electron microscopes at 200 kV acceleration voltage on scraped-off film fragments deposited on carbon-coated copper grids. A FEI Talos EDX detector was used to collect the elemental mapping for the samples. The EDX elemental mappings were analyzed using FEI Velox software version 2.6. The obtained TEM images and SAED patterns were evaluated with ImageJ freeware.

X-ray photoelectron spectra (XPS) were obtained using a Thermo Fisher Scientific ESCALAB 250Xi featuring a spot size of 400 μm, K- alpha X-rays. The peak position of adventitious carbon (284.80 eV) was used in order to correct the binding energy of the obtained spectra. The fitting of the XPS spectra and the quantification of the elemental composition was processed by the software Avantage. The XPS depth profile was measured with 3 cycles of Ar monatomic ion gun etching. The measurement was in low current, single phase etching mode, ion energy for the etching was 4000 eV. Raster size was 1 mm. The sputter rate using Ta$_2$O$_5$ as a reference amounts to 0.74 nm s$^{-1}$.

For the ICP-OES measurements, mesoporous films deposited on Si and on Ti substrates were used after dissolution in acid. Measurements were conducted on a Varian ICP-OES 715 ES (radial configuration). For calibration, aqueous solutions containing both Ni and W (Carl Roth) were prepared. For the calculation of the geometric Ni loading, the geometric areas of the films were evaluated using ImageJ software prior to dissolution of the materials. Each film was digested using a mixture of MilliQ H$_2$O (1.50 mL) and concentrated HNO$_3$ (1.50 mL; 65%, Carl Roth) under the application of ultrasound for 4 h at 60 °C. Complete dissolution was indicated by the bare polished wafer surface becoming visible for all investigated samples after the digestion step. Similar geometric Ni loadings were obtained for films deposited on Si and Ti substrates. Alternatively, the evaluation of the geometric loading of the synthesized films, wavelength-dispersive X-ray spectroscopy (WDX) was performed using StrataGem film analysis software (v. 4.8). Five independent measurements were conducted to the most important sample of the study-ALD-NiO/mp. WC$_x$-using a JEOL JXA-8530F electron microprobe at 10 kV. The mass depth of all components of the analyzed film amounts to an average of 96±1 μg cm$^{-2}$. Cross-sectional SEM revealed an average sheet thickness of 230 nm (see the Supporting Information Figure S3-II).

The surface areas were measured by Kr-physisorption at 77 K on an Autosorb-iQ (Quantachrome) cooled with liquid N$_2$. Films were deposited on both sides of double-side polished Si wafers. Prior to the measurements, all samples were degassed for 2 h at 150 °C under vacuum. The geometric areas of the investigated films was analyzed using ImageJ freeware. Finally, the surface areas were calculated by using the well-established Brunauer-Emmett-Teller (BET) method. Note that for the analysis of the NiO-coated samples, the ALD process was applied twice to ensure coating of both sides on the substrate (successful loading was checked for both sides by EDX in a SEM at 20 kV acceleration voltage).

Values for the electrical sheet conductivities were calculated by impedance spectroscopy measurements in a home-built setup in the dark. The measurements were performed using a 8×8 gold pin array as probe head with an altering polarity sequence. A SP-200 potentiostat (Biologic) was used in a range between 100 mHz and 1 kHz. The obtained spectra (Nyquist impedance) were fitted using EIS Zfit software (EC-Lab v. 11.33, Biologic). All values are stated after normalization to the respective film thickness of the investigated material, which was obtained through cross-section SEM. All materials were deposited on insulating quartz glass substrates for the impedance measurements.

Pre-cleaned Si wafers (SSP, Siegert wafer B014002) with a native SiO$_2$ layer of approximately 1.2–1.8 nm were added into the ALD chamber to calibrate the NiO thickness by spectroscopic ellipsom-
Electrochemistry

Electroanalytical testing was performed in a three electrode rotating disc setup (RDE) using a reversible hydrogen electrode (Gaskatel, HydroFlex) as a reference and a Pt gauze (Chempur, 1024 mesh cm\(^{-1}\), a wire diameter of 0.06 mm, 99.9% purity) as counter electrode at 25 °C. All potentials were referred to reversible hydrogen electrode (RHE) and are \(E_{corr}\)-corrected to account for Ohmic losses in the setup. For the investigations of the OER activity, mesoporous films coated on a spherical Ti chip of 5 mm diameter were mounted on a rotating disc shaft serving as working electrode. A constant rotation of 1600 rpm was set. 0.1 M KOH was used as supporting electrolyte (Sigma Aldrich, pellets, 99.99% trace metals basis, purity excluding sodium content) and a SP-200 as potentiostat. The electrolyte solution was purged with N\(_2\) at least 30 min prior to catalytic testing. The OER activity was investigated by cyclic voltammetry (CV) between 0.10 and 1.95 V vs. RHE at a scan rate of 6 mVs\(^{-1}\). It has to be noted that no electrochemical activation of the films has been performed, which is known to increase the observed OER activities for NiO electrocatalysts.[74]

For the evaluation of the double-layer capacitance (\(C_{dl}\) and determination of the ECSA, after 50 CVs in OER regime, cycling with increasing scan rates of 50, 75, 100, 125, and 150 mVs\(^{-1}\) was performed in a lower potential range between 0.40 to 1.40 V vs. RHE at 25 °C. At each scan rate, five consecutive CVs were recorded. \(iR\)-corrections were applied for each scan rate. For the calculation of the double-layer capacitance from CV, the average values of the anodic and cathodic current densities were set to 10 mA cm\(^{-2}\). For the chronoamperometric stability testing, mesoporous films coated on a conductive Ti substrate, to which a piece of Ti wire was attached by welding, were used. The relative geometric areas of the mesoporous films were measured using ImageJ software and the current densities were set to 10 mA cm\(^{-2}\) OER during chronopotentiometry in 0.1 M KOH at 25 °C.

Computational details

All calculations were carried out with the plane wave Vienna ab initio simulation package VASP[31–33], version 6.1.1/6.1.2, using the projector-augmented wave (PAW) approach of Joubert and Kresse.[32,71] The PBE functional[73] was applied. London dispersion effects were taken into account by the D3 correction with Becke-Johnson damping.[34,77] The respective PAW parameters were extracted from the VASP POTCAR files library, C 08Apr2002 (4 valence electrons (VE), W 08Apr2002 (6 VE), Ni 02Aug2007 (10 VE), O 08Apr2002 (6 VE), H 15Jun2001 (1 VE)). The energy cutoff was set to 900 eV, except for the adsorbed *OH species on ALD-NiO/mp. WC\(_6\), with 600 eV and the gas phase molecules H\(_2\)O and H\(_2\) with 450 eV. For the WC\(_6\), carrier material, a simplified description using the predominant W\(_C\) substrate was established. Preliminary tests for the W\(_C\) bulk revealed that its ground state is non-magnetic. Thus, restricted Kohn–Sham calculations were performed for this system. In all calculations, for NiO an antiferromagnetic state was assumed by defining alternating magnetic moments on the Ni atoms, but without fixing the total magnetic moment during the SCF procedure. The space groups of NiO and W\(_C\) are Fm\(3\bar{m}\)[76] and P3\(1m\).[70] respectively. For the antiferromagnetic ground state of NiO, a [0,0,1],[1,0,1],[1,1,0] supercell was built. The crystal structure of WC, which includes partial occupations of Wyckoff sites 2c and 2d by the carbon atoms, was simplified and all carbon atoms were placed on 2d (1/3, 2/3, 1/2) Wyckoff positions. For the surface optimization, the lattice constants were fixed at the optimized bulk values and only the atomic positions were relaxed. The Monkhorst-Pack k-point grids were set to 4 × 4 × 4 for the NiO and W\(_C\) bulk and to 4 × 4 × 1 for the surface calculations. To receive the antiferromagnetic order in NiO in the (100) surface, a 2 × 1-supertcell of a (121)-cut of the bulk supercell was set up. The surface models were composed of six stoichiometric layers for NiO and five W\(_C\) layers with one NiO layer at both top and bottom for the NiO-covered W\(_C\) models. The vacuum distance was set to 12 Å, convergence was tested for adsorption of oxygen species for similar systems. Convergence criteria were set to 10\(^{-8}\) eV for the chronopotentiometric electronic self-consistent cycle and 0.01 eVÅ\(^{-1}\) for structure optimization.

Acknowledgements

The authors thank ZELMI (TU Berlin) for access to TEM and SAED analyses and gratefully acknowledge financial support by BMBF (Bundesministerium für Bildung und Forschung) ATO-KAT: Atomar dünne beschichtete poröse Elektroden als neuartige Katalysatoren für die Wasser-Elektrolyse (03EK3052A, 03EK3052C). A.A. and R.K. gratefully acknowledge funding through the DFG SPP 2080 priority program (KR 3920/4-1). Arne Thomas (TU Berlin) is thankfully acknowledged for providing access to XPS analyses. Christoph Erdmann (HU Berlin) is acknowledged for HRTEM, SAED, HAADF-STEM, and elemental mapping measurements. The authors thank Jörg Nissen (TU Berlin, ZELMI) very much for WDX/StrataGem analyses and Astrid Kluge (TU Berlin) for performing ICP-OES measurements and calibration. Benjamin Paul (TU Berlin) is thankfully acknowledged for assistance in building a setup for impedance spectroscopy measurements of thin films in the dark.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: atomic layer deposition · electrocatalysis · metal carbides · mesoporous materials · nickel
