
Variational Quantum Simulations of
Lattice Gauge Theories

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium

(Dr. rer. nat.)
im Fach: Physik

Spezialisierung: Theoretische Physik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von

Paolo Stornati

Präsidentin der Humboldt-Universität zu Berlin:
Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Elmar Kulke

Gutachter: 1. Prof. Dr. Agostino Patella
2. Dr.rer.nat.habil. Karl Jansen
3. Prof. Dr. Phiala Shanahan

Tag der mündlichen Prüfung: 10. August 2021

Abstract

Simulations of lattice gauge theories play a fundamental role in first principle calcula-
tions in the context of high energy physics. This thesis aims to improve state-of-the-art

simulation methods for first-principle calculations and apply those methods to relevant
physical models. We address this problem using three different approaches: machine
learning, quantum computing, and tensor networks.

In the context of machine learning, we have developed a method to estimate thermody-
namic observables in lattice field theories. More precisely, We use deep generative models
to estimate the absolute value of the free energy. This approach can be used where Markov
chain Monte Carlo methods are problematic. We have demonstrated the applicability of our
method by studying the ϕ4 theory in two dimensions. Our approach yields more precise
measurements compared to the standard Markov-chain Monte Carlo method when we
cross a phase transition point in the phase space. In the context of quantum computing,
our goal is to improve the current algorithms for quantum simulations. In this thesis, we
have addressed two fundamental issues on modern quantum computers: the quantum
noise mitigation and the design of good parametric quantum circuits. We have developed a
mitigation routine for read-out bit-flip errors that can drastically improve quantum simula-
tions. We demonstrate the applicability of the method with numerical simulations on IBM
quantum hardware. The design of efficient parametric quantum circuits is fundamental
for many variational quantum algorithms. We have developed a dimensional expressivity
analysis that can identify superfluous parameters in parametric quantum circuits. Using a
hybrid quantum-classical approach, we show how to implement the expressivity analysis
using quantum hardware efficiently. We provide a proof of principle demonstration of this
procedure on IBM’s quantum hardware. Moreover, we also show how to incorporate global
symmetries in parametric quantum circuits using the dimensional expressivity analysis.
Quantum link models are a formulation of gauge theories in terms of discrete degrees of
freedom. Quantum link models naturally make the Hilbert space finite without breaking
the gauge invariance. In this thesis, we have studied the U(1) quantum link model in 2+1
dimensions in a ladder geometry. Our goal is to analyze the ground-state properties of the
model at finite chemical potential. The only algorithms that are known to be able to perform
these tasks are tensor network algorithms. We have used the density matrix renormalization
group algorithm to find the ground state of the model at different chemical potentials.

Abstract

We have observed different winding number sectors when we have introduced chemical
potential in the system. Moreover, we have found a correlation between the flippability of
the plaquettes and the winding number sectors.

ii

Zusammenfassung

Simulationen von Gittereichtheorien spielen eine grundlegende Rolle bei Berechnungen
ausgehend von ersten Prinzipien, insbesondere im Kontext der Hochenergiephysik. Ziel

dieser Dissertation ist es, modernste Simulationsmethoden für Berechnungen zu verbessern
und diese Methoden auf relevante physikalische Modelle anzuwenden. Wir begegnen
diesem Vorhaben mit drei verschiedenen Ansätzen: maschinelles Lernen, Quantenrechnen
und Tensornetzwerken. Im Rahmen des maschinellen Lernens haben wir eine Methode
entwickelt, um thermodynamische Observablen in der Gitterfeldtheorien zu berechnen.
Genauer gesagt verwenden wir sogenannte tiefe generative Modelle, um den absoluten Wert
der freien Energie abzuschätzen. Dieser Ansatz kann verwendet werden, wenn Markov-
Ketten-Monte-Carlo-Methoden problematisch sind. Wir haben die Anwendbarkeit unserer
Methode demonstriert, indem wir die ϕ4 -Theorie in zwei Dimensionen untersucht haben.
Unser Ansatz liefert wesentlich genauere Messungen im Vergleich zur Standard-Markov-
Ketten-Monte-Carlo-Methode, wenn wir einen Phasenübergangspunkt im Phasenraum
überqueren. Im Rahmen des Quantenrechnens ist es unser Ziel, die aktuellen Algorithmen
für Quantensimulationen zu verbessern. In dieser Arbeit haben wir zwei grundlegende Prob-
leme moderner Quantencomputer angesprochen: die Abschwächung des Quantenrauschens
und das Design von gnenügend aussagekräftigen parametrischen Quantenschaltungen. Wir
haben eine Abschwächungsmethode für ausgelesene Bit-Flip-Fehler entwickelt, die Quanten-
simulationen drastisch verbessern kann. Wir demonstrieren die Anwendbarkeit der Methode
mit numerischen Simulationen auf der IBM Quantenhardware. Der Entwurf effizienter
parametrischer Quantenschaltungen ist für viele Variationsquantenalgorithmen von grundle-
gender Bedeutung. Wir haben eine dimensionale Expressivitätsanalyse entwickelt, mit der
überflüssige Parameter in parametrischen Quantenschaltungen identifiziert werden können.
Mit einem hybriden quantenklassischen Ansatz zeigen wir, wie die Expressivitätsanalyse
mit Quantenhardware effizient implementiert werden kann. Wir liefern einen Beweis für die
prinzipielle Demonstration dieses Verfahrens auf der Quantenhardware von IBM. Darüber
hinaus zeigen wir mit Hilfe der dimensionalen Expressivitätsanalyse, wie globale Symme-
trien in parametrische Quantenschaltungen integriert werden können. Quantenlink Modelle
sind eine Formulierung von Eichentheorien in Bezug auf diskrete Freiheitsgrade. Quanten-
link Modelle machen den Hilbert-Raum in natürlicher Weise endlich, ohne die Eichinvarianz
zu brechen. In dieser Arbeit haben wir das U(1) -Quantenlink Modell in 2 + 1-Dimensionen

Abstract

in einer Leitergeometrie untersucht. Unser Ziel ist es, die Grundzustandseigenschaften des
Modells bei endlichem chemischem Potential zu analysieren. Die einzigen Algorithmen,
von denen bekannt ist, dass sie diese Aufgaben ausführen können, sind Tensornetzwerkalgo-
rithmen. Wir haben den Dichtematrix-Renormierungsgruppenalgorithmus verwendet, um
den Grundzustand des Modells bei verschiedenen Werten des chemischen Potentialen zu
ermitteln. Wir haben verschiedene Wicklungszahlsektoren beobachtet, bei eingeschalteten
chemischen Potenzial. Darüber hinaus haben wir eine Korrelation zwischen der Flippbarkeit
der Plaquetten und den Wicklungszahlsektoren gefunden.

iv

Contents

Abstract i

1 Introduction 1

2 Estimation of thermodynamic observables with normalizing flows 3
2.1 Lattice Quantum Field Theory . 4

2.1.1 Two-dimensional φ4 model . 6
2.1.2 Monte Carlo simulations . 7
2.1.3 Computation of thermodynamic observable with MCMC 9

2.2 Machine learning . 11
2.2.1 Supervised learning . 11
2.2.2 Unsupervised learning . 13
2.2.3 Neural Networks . 14
2.2.4 Normalizing flows . 14
2.2.5 Non-linear Independent Components Estimation 15
2.2.6 The Kullback–Leibler divergence . 16

2.3 Normalizing flows model for lattice field theory 17
2.3.1 Estimator for the KL divergence . 19
2.3.2 Thermodynamic observable evaluations 21
2.3.3 Bias due to imperfect training . 24

3 Quantum Computing 27
3.1 Variational Quantum Simulations . 28

3.1.1 Quantum gates, quantum states and quantum measurements 29
3.1.2 Simulation tools . 31
3.1.3 Variational quantum eigensolver simulations 32

3.2 Read-out Noise Mitigation . 37
3.2.1 Mitigation routine . 38
3.2.2 Computation of the variance for the noisy expectation value 41
3.2.3 Scaling analysis and classical simulator result 42
3.2.4 Noise mitigation of the noisy expectation value of generic H 45

Contents

3.2.5 Experimental results . 48
3.2.6 Discussion and conclusions . 54

3.3 Circuit expressivity . 55
3.3.1 Circuit manifold and dimension analysis 56
3.3.2 Efficient hardware implementation . 61
3.3.3 Implementation of physical symmetry 74
3.3.4 Translationally invariant quantum circuits and sectors 77
3.3.5 Discussion and conclusions . 80

4 Phases at finite winding number of an Abelian Lattice Gauge Theory 81
4.1 Tensor notation . 82
4.2 Matrix product states . 83

4.2.1 Canonical form . 84
4.2.2 Von-Neumann entropy in the MPS formalism 86
4.2.3 Matrix product operator . 88
4.2.4 Density matrix renormalization group 90

4.3 Winding number sectors analysis in the U(1) quantum link model 92
4.3.1 U(1) quantum link model . 93
4.3.2 Numerical results . 99

4.4 Conclusions and outlooks . 103

5 Conclusions 105

A Gross-Neveu Hamiltonian mapped into a spin Hamiltonian 107

B Translational invariant Hilbert space for four qubits 113

List of Figures 127

List of Tables 129

vi

Chapter 1

Introduction

First principles numerical calculations are ubiquitous and of fundamental importance in
physics. For example, in the last 40 years, extraordinary results have been achieved in

high-energy physics with lattice quantum chromodynamics simulations. On the other hand,
there are still many open problems that need to be tackled and lots of physical quantities that
we cannot evaluate with the current methods. This thesis aims to improve state-of-the-art
simulation methods for first-principle calculations and apply those methods to relevant
physical models. We address this effort using three different approaches: machine learning,
quantum computing, and tensor networks. All of these approaches are based on variational
and optimization problems.

Monte Carlo algorithms are the state-of-the-art tool for lattice quantum field theory
simulations. One major problem in Monte Carlo simulation is the critical slowing down.
We have tackled this problem using machine learning techniques. The variational problem
consists of optimizing a neural network to approximate the partition function of the theory.

Quantum computing will be able to outperform classical computers with an exponential
speed-up in some instances. One physical application is the simulation of the real-time
evolution of quantum states via a unitary operator. Quantum computers, in principle, will
be able to perform this kind of simulation. Nowadays, it is not yet the case. Quantum
computers are too noisy and small to perform physical calculations that can impact real-life
problems. In this thesis, we develop a mitigation routine that improves the noise problem
in quantum computing. Moreover, we develop a dimensional expressivity analysis of
parametric quantum circuits to better design quantum circuits. Both methods are crucial for
the development of variational quantum simulations.

Tensor network algorithms are powerful simulation tools to simulate systems in the
Hamiltonian formalism. The tensor network algorithm studied in this work is based on
a variational optimization of a variational ansatz. One of the main advantages of tensor
simulations is the absence of the sign problem. We exploit these advantages using the
density matrix renormalization group algorithm to study the different winding sectors of
the U(1) quantum link model.

Chapter 1 Introduction

These three topics shape the structure of this thesis into three main chapters, each of them
developing one of the directions mentioned above. In the following, we briefly highlight the
structure of this thesis.

chapter 2 - We exploit the use of machine learning techniques to calculate thermodynamic
observables in lattice field theories. This method aims to overcome the critical slowing
down problem present in standard Monte Carlo simulations. This chapter introduces
basic concepts in quantum field theory and machine learning techniques. We then
develop the method that we can use to compute these observables and explain how
to control its convergence. We finally provide a numerical demonstration of how our
method can outperform Monte Carlo simulations at specific parameter space points.

chapter 3 - We develop two methods to improve quantum simulations addressing two
major issues in quantum computing: quantum noise and the design of efficient
quantum circuits. A the beginning of the chapter, we present basic concepts in
quantum computing, classical simulations of quantum systems, and present with the
support of numerical simulations the variational quantum simulation algorithm. The
mitigation routine we develop mitigates the bit-flip error in the read-out measurement
in quantum computers. We present the algorithm and use numerical simulations both
on classical computers and quantum hardware to demonstrate the method’s reliability.
Subsequently, we develop a dimensional expressivity analysis to detect redundant
parametric quantum gates in a given quantum circuit. We provide a proof of principle
numerical demonstration of the method’s applicability.

chapter 4 - We introduce the tensor network formalism and explain the basic building
blocks of the density matrix renormalization group algorithm. We present the U(1)
quantum link model. We use tensor network techniques to study the relations between
the ground state of the theory and the winding number sectors at non-zero chemical
potential in a lattice with a ladder geometry in 2+1 dimensions.

2

Chapter 2

Estimation of thermodynamic observ-
ables with normalizing flows

The use of machine learning techniques to improve physical simulations has stimulated a
lot of interest in the scientific community in recent years. One reason for this activity in

the community is the need to find new tools to overcome the difficulties present nowadays in
the state-of-the-art simulation technique for lattice field theories, i.e., Markov Chain Monte
Carlo simulations (MCMC). To simulate a field theory on the lattice, one needs to discretize
it on a grid, usually called a lattice. The study of quantum field theory on the lattice is
called Lattice Quantum Field Theory (LQFT). LQFT allows for first-principle calculations of
physical quantities and, throughout history, had an extreme success, e.g. [Tanabashi et al.,
2018]. For example, the properties of hadrons, which are composed of quarks and gluons,
are governed primarily by Quantum Chromodynamics (QCD). To properly compute the low
energy properties of QCD we need a non-perturbative formulation of the theory. Lattice
gauge theory, proposed in [Wilson, 1974], allows for essential non-perturbative first-principle
calculations of theoretical properties of QCD. Despite the extreme success LQCD simulations
had in the years, there are still many occasions to improve. Critical slowing down is a major
issue in LQCD simulations [Schaefer et al., 2011]. With critical slowing down, we mean the
increase of the computational cost while approaching the critical points of a theory.
Machine learning-based algorithms can help to overcome, or at least ease, this problem.
In the last two years there have been lots of works using machine learning algorithms to
improve Monte Carlo simulations in the area of:

– field configuration generation [Kanwar et al., 2020; Rezende et al., 2020; Boyda et al.,
2020; Kanwar et al., 2020; Shanahan et al., 2018]

– efficient computations of correlation functions or observables [Nicoli et al., 2021; Yoon
et al., 2019; Zhang et al., 2020]

– sign-problem avoidance via contour deformation of path integrals with machine
learning [Detmold et al., 2020]

Chapter 2 Estimation of thermodynamic observables with normalizing flows

In our work [Nicoli et al., 2021], we focus on the estimation of thermodynamic observables
on the lattice. First principle calculations of thermodynamic observables are very important
due to their direct link to experimental data. For example, the high-temperature phase
structure of QCD is studied in the experiments at the LHC and has a fundamental role
in the study of the physics of the early universe. This chapter is organized as follow: in
section 2.1 we give an introductory overview of lattice field theory and Monte Carlo methods
for LQFT, in section 2.2 we give a brief introduction to the reader of machine learning and
in section 2.3 we present the work we have performed in the study of Thermodynamic
observables in Lattice Field Theory with deep generative models.

2.1. Lattice Quantum Field Theory

This section will not be a complete review of the field. For a complete review, we refer to
[Gattringer and Lang, 2009]. We will focus only on notions that will be relevant to this
thesis. Quantum field theory (QFT) is the basis of the theoretical description of matter and
interactions in many areas of physics. A generic quantum field theory is described by an
action S (in a n-dimensional Minkowski spacetime). S is a function of the fields Φ. The
partition function, in Minkowski spacetime, is defined as:

Zm =
∫︂

D[ϕ] e(iS(Φ)) . (2.1)

The action S(Φ) is defined as:

S(Φ) =
∫︂

dnx L(Φ(x)) (2.2)

where n is the dimension of the spacetime and L is the Lagrangian density. For lattice
simulations, it is useful to define the theory in Euclidean spacetime. To do so we need to
perform the Wick rotation and transform the temporal coordinate as:

i t → τ. (2.3)

With the theory defined in Euclidean spacetime, we can define the Euclidean partition
function as:

Z =
∫︂

D[Φ] e−S(Φ) . (2.4)

We note that, if the action is real, the partition function is no longer a complex number. The
expectation value of an observable O(Φ) is defined as:

⟨O(Φ)⟩ = 1
Z

∫︂
D[ϕ]O(Φ) e−S(Φ) . (2.5)

4

2.1 Lattice Quantum Field Theory

In a quantum statistical mechanical system described by the Hamiltonian H and the
temperature T, the partition function Z is defined as:

Z(T) = Tr
[︂
e−H/T

]︂
(2.6)

And the expectation value of a generic quantum mechanical observable is defined as:

⟨O(Φ)⟩ = 1
Z(T)

Tr
[︂
Oe−H/T

]︂
(2.7)

In the path integral formalism, we can define the theory at finite temperature. The system
befinied by the continuous action is infinite-dimensional, and thus it is impossible to be
simulated on a computer. We need to introduce a regularization of the theory. Let us
introduce a hypercube grid Λ with spacing a in a Euclidean spacetime in n dimensions:

Λ = (x1, . . . , xk) = (am1, . . . , amk), : m1, . . . , mk ∈ Zn (2.8)

where we fix the first direction to be the temporal direction. We also consider the theory at
finite volume. We can define the regularized partition function over the lattice Λ as:

Z =
∫︂

∏
x∈Λ

d[Φ(x)] e−S(Φ(x)) . (2.9)

From the definition of partition function we can define also the expectation value of a certain
observable O(Φ):

⟨O⟩ = 1
Z

∫︂
∏
x∈Λ

d[Φ(x)]O(Φ)e−S(Φ(x)) . (2.10)

From the path integral formulation of the partition function, if the action S is a positive-
definite function, we can also define the probability distribution function P(Φ) as:

P(Φ) =
1
Z

e−S(Φ) . (2.11)

In order to obtain precise results for the thermodynamics in lattice gauge theories an
accurate tuning of the temperature to the desired value is essential. The temperature is the
inverse of the extent of a compactified dimension (usually chosen to be the “time” direction).
To do so, we need to define β as the inverse temperature, choose one direction (xn) in the
spacetime to be the temporal direction and define the action as:

S(Φ) =
∫︂ β

0
dx1

∫︂
dn−1x L(Φ(x)) (2.12)

Let us suppose the temporal direction to be of extension Lt = Nta. If we impose periodic
boundary condition in the temporal direction we can relate the temperature T of the system

5

Chapter 2 Estimation of thermodynamic observables with normalizing flows

Figure 2.1: Estimate absolute magnetization at λ = 0.022 as a function of κ. The two straight dashed lines
denotes two points where further analysis will be made.

as follows:
T =

1
Nta

(2.13)

At fixed temperature T we will then consider the system in a sufficiently large box to avoid
finite size effects, i.e. :

Li ≫ Lt ∀i ∈ [2, n] (2.14)

Once we have defined the finite temperature and the partition function we can define the
thermodynamic observables such as the free energy F, the pressure p and the entropy S as:

F = −T ln Z (2.15)

p =
T∂(ln Z)

∂V
(2.16)

S =
∂ (T ln Z)

∂T
(2.17)

2.1.1. Two-dimensional φ4 model

The φ4 theory is a real scalar field theory. The action of the theory, defined in two dimensions
and discretized on the lattice, is given by:

S(φ) = a2 ∑
x∈Λ

1
2

2

∑
µ̂=1

(φ(x + aµ̂)− φ(x))2

a2 +
m2

0
2

φ2(x) +
g0

4!
φ4(x) (2.18)

If we use the following re-definitions:

6

2.1 Lattice Quantum Field Theory

φ = (2κ)
1
2 ϕ , (2.19)

(am0)
2 =

1 − 2λ

κ
− 4 , (2.20)

a2g0 =
6λ

κ2 . (2.21)

We can write the action S, setting a = 1, as:

S(ϕ) = ∑
x∈Λ

−2κ
2

∑
µ̂=1

ϕ(x)ϕ(x + µ̂) + (1 − 2λ)ϕ(x)2 + λ ϕ(x)4

where κ is the hopping parameter and λ the bare coupling constant of the theory. The action
is invariant under the global transformation ϕ → −ϕ:

S(ϕ) → S(−ϕ) = S(ϕ) (2.22)

This is a Z2-transformation. One important observable for the theory is the absolute
magnetization ⟨|ϕ|⟩. The absolute magnetization increase when κ increases, with fixed λ.
Spontaneous magnetization is observed when κ is increased. This behavior is shown in
Figure 2.1. We can identify the phase transition to be in the interval [0.2, 0.3]. It is useful to
compute the value of the partition function Z in a point of the phase space. For κ = 0, The
computation of Z decouples in independent integrals for each point of the lattice:

Z = ∏
x∈Λ

(︃∫︂
dϕ(x) exp

(︂
−λ ϕ(x)4 − (1 − 2λ) ϕ(x)2

)︂)︃
(2.23)

This integral can be solved as:

Z(λ) =

√︃
1 − 2λ

4λ
exp

(︃
(1 − 2λ)2|Λ|

8λ

)︃
K 1

4

(︃
(1 − 2λ)2

8λ

)︃
(2.24)

where Kn is the modified Bessel function of the second kind. We can obtain the analytic
form of the free energy as:

F = −T ln(Z) , (2.25)

This result agrees with [Gattringer and Lang, 2009]. In this book one can find more
informations about this calculation and the model.

2.1.2. Monte Carlo simulations

The state-of-the-art method for simulating lattice field theories is Monte Carlo simulations.
Monte Carlo is a very generic term that refers to numerical integration methods that involve

7

Chapter 2 Estimation of thermodynamic observables with normalizing flows

random numbers. Given a field theory discretized on the lattice, we would like to compute
the partition function evaluating the integral in Equation 2.9. This integral is of very high
dimension (can be up to 1010 dimensions). Except for certain rare cases, numerical methods
are needed for the computation of those integrals. Since the value of the integral function
is small in almost all the space and has peaks in only small regions, standard integration
routines fail, and importance sampling is needed.
Let us suppose we want to compute an integral in d dimensions over the volume V of the
function f (x):

I =
∫︂

V
dx f (x) (2.26)

Given a normalized probability distribution function p(x), we can rewrite the integral as:

I =
∫︂

V
dx p(x)

f (x)
p(x)

(2.27)

If we sample N random numbers xi ∈ V distributed following the probability distribution
p(x), we can estimate I as follow:

I =
V
N ∑

i

f (xi)

p(xi)
(2.28)

We can use the information we know about f (x) to design p(x) such that we get a smoother
function f (x)/p(x). This is what is called importance sampling. The integrand of the inte-
gral that needs to be computed in Equation 2.9 to estimate the partition function is e−S. This
function is strongly peaked, and the tails of those peaks are exponentially suppressed. To
solve this problem, we want to generate configurations following the probability distribution
function induced by the action of the theory as defined in Equation 2.11 and use those
configurations to compute observables (as defined in Equation 2.10). This can be done with
Markov chain Monte Carlo methods. We refer to [Gattringer and Lang, 2009] for a deep
analysis of the methods. The idea is to start with a random configuration and evolve it
creating a chain of configurations. For a lattice field theory, the goal is to stochastically
converge to the probability distribution function defined in Equation 2.11. A Markov chain
is a series of configurations Un that satisfy the Markov process condition. A Markov process
is defined by the joint probability T defined as:

P(Φn = Φ′|Φn−1 = Φ) = T(Φ′|Φ) (2.29)

T does not depend on the index n and:

0 ≤ T(Φ′|Φ) ≤ 1 (2.30)

∑
Φ′

T(Φ′|Φ) = 1 (2.31)

8

2.1 Lattice Quantum Field Theory

The first equation just ensures the probability to be positive and less then one, the latter
is the normalization prescription. At the equilibrium, A Markov process must obey the
balance condition:

∑
Φ

T(Φ′|Φ)P(Φ)
!
= ∑

Φ
T(Φ|Φ′)P(Φ′). (2.32)

Using the normalization conditions in Equation 2.31 we can derive:

∑
Φ

T(Φ′|Φ)P(Φ) = P(Φ′). (2.33)

This equation shows that the probability distribution P(U) is the equilibrium distribution of
the Markov chain, i.e., it is a fixed point of the Markov process. One can create a Markov
chain by respecting the prescription in Equation 2.32 by imposing the equation to be satisfied
piecewise:

T(Φ′|Φ)P(Φ) = T(Φ|Φ′)P(Φ′). (2.34)

This sufficient condition for generating a Markov process is called the detailed balance
condition. One algorithm that respects these criteria is the Hybrid Monte Carlo (HMC)
algorithm. HMC combines a molecular dynamics update [Callaway and Rahman, 1983]
with a acceptance/rejection criteria introduced in [Metropolis et al., 1953].

2.1.3. Computation of thermodynamic observable with MCMC

For the computation of thermodynamic observables of lattice field theories with MCMC
we mainly follow [de Forcrand et al., 2001; Philipsen, 2013]. It is not possible to compute
the partition function with Markov chain Monte Carlo in a given point of the phase space
[Gattringer and Lang, 2009]. What is possible is to compute the ratio of the partition function
in two different points. Let us suppose we have a theory described by an action SΩ and
partition function ZΩ that depends only on one parameter Ω. Given two points in the phase
space with Ω = a and Ω = b, we can compute the ratio of the partition functions as:

Za

Zb
=

1
Zb

∫︂
D[ϕ] e−Sb(ϕ)

e−Sa(ϕ)

e−Sb(ϕ)
= Epb

[︃
exp(−Sa)

exp(−Sb)

]︃
(2.35)

where Epb is the expectation value with respict to the probability distribution pb. The last
term of Equation 2.35 can be computed via MCMC. From the ratio of the partition functions
we can derive the difference in free energy between the two points of the parameter space:

∆Fab = Fa − Fb = −T ln
(︃

Za

Zb

)︃
(2.36)

If the two distributions pa = e−Sa /Za and pb = e−Sb /Zb are very different and do not have
sufficient overlap, the variance of the Monte Carlo estimator becomes prohibitively large.
Therefore, it is advisable to take small intermediate steps in the parameter space during

9

Chapter 2 Estimation of thermodynamic observables with normalizing flows

Figure 2.2: Integrated autocorrelation time of the free energy during refinement of the step size. The lattice
spacing a is set to one. The mint areas refer to the interval κ ∈ [0.265, 0.28] for which the refinement is applied.
Darker shades refer to smaller step sizes. The step size δκ is presented on top of the panels. The experiments
were performed using the overrelaxed HCM algorithm.

the integration in the parameter space, i.e., dividing the interval [a, b] in small steps. When
crossing a phase transformation, the problem of the overlap of the two distributions becomes
more severe. For example, in [Holland et al., 2008] the probability distribution function of
the SU(4) Yang-Mills theory in 3 dimensions is studied in depth. The theory undergoes a
weakly first-order deconfinement phase transition at T = Tc. It is clearly demonstrated in
this work that the probability distribution function p1 with temperature T1 ≪ Tc and the
probability distribution function p2 with temperature T2 ≫ Tc have basically zero overlap.
In this situation, the computation of Z1/Z2 is completely unfeasible if we use directly
Equation 2.35. If we want to compute the ratio between Za and Zb we can divide the interval
[a, b] in N steps : [a, a + i, a + 2i, . . . a + (n − 1)i, b] and compute the ratio as:

Za

Zb
=

Za

Za+i

Za+i

Za+2i
. . .

Za+(n−1)i

Zb
(2.37)

The computation of the ratio done in this way is practical in modern Monte Carlo simulations.
If we know, for example, the value of the partition function in the point where Ω = a, we
can compute:

Fb = Fa − ∆Fab (2.38)

In our work we have analyzed the φ4 model in 2 dimensions presented in subsection 2.1.1.
At finite volume, for fixed λ = 0.022, the model undergoes a phase transition in the interval
κ = [0.2, 0.3].
In Figure 2.2 the integrated autocorrelation time of the free energy, defined in [Gattringer

and Lang, 2009], is presented. The five different panels stand for finer step-size in the
integration procedure. As we can see from this plot, a finer integration step is needed to

10

2.2 Machine learning

cross the phase transition point.

2.2. Machine learning

It is not trivial to give a unique definition of what machine learning algorithms are. We refer
to [Goodfellow et al., 2016] for a comprehensive analysis of the field and [Carleo et al., 2019]
comprehensive review of the application to physical models. We can identify in a machine
learning algorithm two different elements:

– a task that need to be fulfilled,

– a performance measure.

This measure is fundamental for the learning part of the algorithm. Usually, machine
learning algorithms are built as mathematical functions with learnable parameters. Probably,
the most famous example and use of this kind of function are neural networks. We can
identify three different kinds of learning:

– Supervised learning, where the machine learns from pre-existent data and analyzes
them

– Reinforcement learning, where the learning is based on letting the machine interact
with the system we want to analyze

– Unsupervised learning, where we are given unlabelled data and we want to discover
properties of the mechanism that generates the data

In this thesis, we do not use and thus analyze reinforcement learning. We refer to [Sutton
and Barto, 2018] for a review of the subject. In the following two sections, we briefly review
supervised and unsupervised learning.

2.2.1. Supervised learning

The main goal of supervised learning algorithms is to learn a certain pattern, distribution,
dependencies, or relationships between some output and input data to predict the outcome
for new input data. We can identify two main categories of supervised learning: classification
[Kotsiantis, 2007] and regression [Yildiz et al., 2017]. The goal of a classification algorithm is
to build a classifier that, based on input classified instances, can make predictions about
future instances. The output of a classification algorithm is a discrete variable. Let us make
a concrete trivial example. We want to construct an algorithm that, provided a picture, can
answer the question: "Is there a cat in this picture?". This is our task to be fulfilled. We are
given the set of couples X = {Xi, Bi} where i goes from 1 to N. Xi are pictures and the Bi

are Boolean values that answer the question "Is there a cat in this picture? ". A classification
machine can learn from the data how to classify a new input data. Given a new input picture

11

Chapter 2 Estimation of thermodynamic observables with normalizing flows

y, the classification algorithm c is able to compute the classifier of the picture c(y). One
algorithm that is widely used for this task is logistic regression. This is a hybrid algorithm
between regression and classification. Logistic regression algorithms are able to predict
binary variables: "yes" or "no", "true" or "false", and so on. The logistic regression algorithm
can also predict the probability of dependent variable y, given independent variable X, i.e.:

P(y|X) = True or P(y|X) = False (2.39)

For our simple example, the logistic regression algorithm can predict the probability that
there is a cat in a given picture. More formally, it can predict the probability of the
input variable y given the training variables X. The regression algorithm differs from the
classification algorithm because the output of the algorithm is continuous variables.

The most famous and straightforward example of a regression algorithm is the one-
dimensional linear regression. Simple linear regression studies relationships between two
continuous (quantitative) variables that are supposed to have a linear dependence. Given a

Figure 2.3: Linear regression of random data

set of N data {xi, yi}, we want to find the best set of parameters θ = {θ1, θ2} such that

fθ(x) = θ1 + θ2x (2.40)

describes in the best way as possible the data. The best way to compute the parameters θ is
to minimize the cost function C(θ):

C(θ) =
N

∑
i=1

(yi − fθ(xi))
2 . (2.41)

12

2.2 Machine learning

C is the sum of the squared residuals and this approach is called the method of ordinary
least squares. In Figure 3.6 the example of one-dimensional linear regression is presented.
This is probably the first regression algorithm presented in the literature. The procedure is
easily generalizable in d dimensions and more complicated functions f and loss function
C. Of course, there are regression algorithms that are much more complex than linear
regression. We refer to [Uysal and Güvenir, 1999] for a full review on the subject.

2.2.2. Unsupervised learning

Unsupervised learning refers to algorithms to identify patterns in data sets containing data
points that are neither classified nor labeled. The algorithms are thus allowed to classify,
label and/or group the data points contained within the data sets without having any
external guidance in performing that task. In other words, unsupervised learning allows
the system to identify patterns within data sets on its own.

A specific problem in unsupervised learning is the following. We are given a training
set D, usually in the form of samples like xn ∼ p(x) with n = 1, . . . , N generated from an
unknown true distribution p(x). The goal is to learn some properties of the distribution
p(x) or to be able to create a probability distribution g(x) as close as possible to p(x). It
is not always possible to define a useful distance measure of the two distributions. We
will show examples of this in the next sections. Once we have g(x), we want to generate
samples that are statistically similar to the observed data samples. This is often referred to
as generative modeling.

Generative Adversarial Networks (GANs) are machine learning algorithms that had a
great impact not only within the scientific community but their application became really
popular in the mainstream media. For example, GANs are used to generate images of
persons that do not exist [tpd]. GANs belong to the family of generative models in machine
learning. We refer to [Wang et al., 2019] for a review of the subject. We will focus on the
generation of images as an instructive example. Since images can be stored as 2d tensors of
which every entry takes one of the three colors (g, r, b), we do not lose generality with this
treatment. GANs usually have two fundamental building blocks (functions): a Discriminator
D and a Generator G. The Discriminator distinguishes between real images and generated
images. The Generator creates images trying to fool the Discriminator via the creation of
images that are classified as real by D. Given a simple prior distribution z ∼ pz, G defines a
probability distribution pg = G(z), with z sampled from pz. The goal of GANs is to train the
probability distribution pg that resembles as much as possible the probability distribution
defined by the real data pr. The training of GANs is done via the minimization of a cost
function C This cost function is the joint loss function for D and G:

C = Ex∼pr log [D(x)] + Ez∼pz log [1 − D (G(z))] (2.42)

This loss function can be used both for the training of the discriminator and for the training

13

Chapter 2 Estimation of thermodynamic observables with normalizing flows

of the Generator. Usually D and G are build from deep neural networks.

2.2.3. Neural Networks

Neural networks are a machine learning algorithms that are built of layers which are defined
as:

y(l)(x) = σ(W lx + bl) (2.43)

The weights W l ∈ Rml ,nl and the bias bl ∈ Rn
l define an affine map. The function σ is a

non-linear function that acts element-wise on the input vector x. The layer y(l)(x) is thus
a function from Rn

l → Rm
l . The first layer is usually called the input layer. The last layer,

i.e., the one that produces the output, is called the output layer. All the other layers are
called the hidden layers. We can compose different layers to construct a neural network
g(x) : Rn

1 → Rm
L as:

g(x) = (y(L) ◦ · · · ◦ y(1))(x) (2.44)

We can talk about a deep neural network when the number L is sufficiently large. There is
no fixed threshold for L, but we can say the neural network is deep when L is bigger than
10.

2.2.4. Normalizing flows

Normalizing flows are machine learning algorithms that are defined by an invertible function.
We can also define normalizing flows as tools for constructing complex distributions
by transforming a probability density through a series of invertible maps. We refer to
[Papamakarios et al., 2019; Rezende and Mohamed, 2016] for a review of the subject. These
functions are distributions with learnable parameters. In this section, we present one
example of these architectures. The machine learning architecture is called Non-linear
Independent Components Estimation (NICE) and is presented in [Dinh et al., 2015]. Let us
suppose that we have an element x ∈ Rn, and we want to build a transformation function f
such that:

x = f (u) , u ∼ Pu(u) (2.45)

Where u ∈ Rn′
and P is a probability distribution function. P is usually called the

base distribution of the flow-based model. The base distribution P and the transformation
function f can depend on a set of parameters θ. In our work, we will restrict the depen-
dence on the free parameters θ to the transformation function f . The characteristic and
fundamental property of a normalizing flow is that f is invertible and that both f and f−1

are differentiable, i.e. f is a diffeomorphism. This also implies that the dimension of the
two spaces needs to be equal: n = n′. With these assumptions, we can define a probability

14

2.2 Machine learning

distribution function for x as:

x ∼ Px (x) = Pu

(︂
f−1(x)

)︂ ⃓⃓
Det(J f)

⃓⃓−1 (2.46)

Where J f is the Jacobian of the transformation function f . We can see the absolute Jacobian
determinant as the relative change of volume of a small neighborhood around u (x = f (u))
due to the transformation f . Given two transformations fa and fb that are invertible and
differentiable, we can express the following property:

(fb ◦ fa)
−1 = f−1

a ◦ f−1
b (2.47)

Given the properties of the determinant under the composition of functions we can derive:

Det(J fb◦ fa (u)) = Det(J fb (u))Det(J fa (u)) (2.48)

These properties are useful because they allow us to build an invertible and differentiable
transformation via the composition of simpler functions. This is not enough for practical
applications. We do not just want to build a normalizing flow, but we also want to use
it. For this task, the Jacobian of the transformation needs to be tractable. What do we
mean precisely with tractable Jacobian? Let us suppose we sample from a distribution of
dimension n. It is always possible to compute the Jacobian determinant with computational
cost O(n3). This is not always feasible when n ∼ O(10(3−4)). The computation of the
determinant for every time we evaluate the flow would result in a huge computational cost.
We thus want to construct a network such that, in principle, this evaluation is almost trivial.

2.2.5. Non-linear Independent Components Estimation

One famous example of a normalizing flow architecture that has tractable Jacobian and
allows for efficient sampling is the Non-linear Independent Components Estimation (NICE)
[Dinh et al., 2015]. The NICE architecture is a deep generative model build from neural
networks that has the same layer functional structure of a neural network:

f (x) = (f(L) ◦ · · · ◦ f(1))(x) (2.49)

Each function fi is called coupling layer. Let us suppose that the output of the ith layer is
a vector xi ∈ Rn. The (i + 1)th layer splits xi in two subset xi

a ∈ Rn−k and xb
i ∈ Rk. The

output of the layer is also an element
(︂

x(i+1)
a , x(i+1)

b

)︂
∈
(︁
Rn−k, Rk)︁. The (i + 1)th layer apply

a transformation from
(︁
Rn−k, Rk)︁→ (︁

Rn−k, Rk)︁ described by:

x(i+1)
a = x(i)a (2.50)

x(i+1)
b = x(i)b + m

(︂
x(i)a

)︂

15

Chapter 2 Estimation of thermodynamic observables with normalizing flows

where m is an arbitrary complex function. It is common to define m as a neural network.
Usually, the parameters of the neural network m are the free trainable parameters of the
flow. m usually take the form of Equation 2.43. One important feature of this approach is
that there is a lot of freedom in the definition of m.
The Jacobian of this layer is defined as:

∂x(i+1)

∂x(i)
=

[︄
Ia 0
∗ Ib

]︄
(2.51)

It does not matter the value of the sub-matrix ∗. The analytical value of the determinant of
the Jacobian is:

Det(J f)(x) = 1, ∀x ∈ Rn (2.52)

This is the best-case scenario for the computation of the determinant. It is constant
and equal for all layers, and we know its analytical value. A diffeomorphism is called
volume-preserving if the determinant of the Jacobian is one for any element of the domain
of the transformation. The volume-preserving feature is not necessarily always wanted. To
be able to map from one simple distribution, for example, the standard normal N (0, 1), to
a very complicated one, we want to be able to squeeze or stretch the volume of the prior
distribution. One example of such flow is presented in [Albergo et al., 2021].

2.2.6. The Kullback–Leibler divergence

Once we have defined a normalizing flow, we want to construct a measure to optimize the
flow over a target distribution. Let us suppose that we have two probability distribution
functions p and q from which we can sample configurations. We want a measure of how
q is similar to p. One fundamental assumption we make here is that the two probability
distributions are defined in the same space χ. We need to define a measure of how close the
two distributions are. The Kullback–Leibler (KL) divergence [MacKay and Mac Kay, 2003]
is widely used in the literature as a measure of how two probability distributions differ. The
KL divergence is defined as:

KL(q||p) =
∫︂

χ
D[x]q(x) log

(︃
q(x)
p(x)

)︃
(2.53)

The Kullback–Leibler divergence has the following properties:

– KL is non-negative given the Gibbs inequality, I

– KL=0 if and only if q = p almost everywhere,

IThe Gibbs inequality states that, for two different probability measures p and q, ∑i pi log(pi) ≥ ∑i pi log(qi),
where pi and qi are samples from the probability distributions p and q.

16

2.3 Normalizing flows model for lattice field theory

– KL divergence is not symmetric:

KL(q||p) ̸= KL(p||q), (2.54)

– KL is invariant under parameter transformation:

KL(q||p) =
∫︂

χ
D[x]q(x) log

(︃
q(x)
p(x)

)︃
=
∫︂

χ′
D[y]q(y) log

(︃
q(y)
p(y)

)︃
(2.55)

With x → y = f (x) and χ → χ′.
It is easy to demonstrate this property for a one dimensional case:

KL(q||p) =
∫︂ xβ

xα

dx q(x) log
(︃

q(x)
p(x)

)︃
=
∫︂ yβ

yα

dy q(y) log

(︄
q(y) dy

dx

p(y) dy
dx

)︄
(2.56)

=
∫︂ yβ

yα

dy q(y) log
(︃

q(y)
p(y)

)︃
(2.57)

It is important to state that the KL divergence is not a divergence as defined in calculus. It
is also important to point out that the KL divergence is not a "distance metric", as it does
not satisfy the triangle inequality and it is not symmetric. The KL divergence between q and
p KL(q||p) is also called the relative entropy between the two distributions. If we start from
the definition of the KL divergence and expand Equation 2.53, we can define:

KL(q||p) =
∫︂

χ
D[x]q(x) log(q(x))−

∫︂
χ

D[x]q(x) log(p(x)) = H(q, p)− H(q) (2.58)

Where H(q, p) is called the cross entropy of q and p and H(q) is the entropy of q. The KL
divergence is also widely used in information theory and other disciplines.

2.3. Normalizing flows model for lattice field theory

In Monte Carlo simulations, it is fundamental to be able to sample from the probability
distribution function p(ϕ):

p(ϕ) =
1
Z

e−S(ϕ) . (2.59)

We can also build a probability distribution function using deep generative models as
defined in Equation 2.46. Given a normalizing flow gθ and a prior distribution qz, we define
the induced probability distribution function qθ(ϕ) as:

qθ(ϕ) = qz(g−1
θ (ϕ))

⃓⃓⃓⃓
dgθ

dz

⃓⃓⃓⃓
(2.60)

17

Chapter 2 Estimation of thermodynamic observables with normalizing flows

We define the normalized importance weight as:

w(ϕ) =
p(ϕ)
qθ(ϕ)

. (2.61)

w(ϕ) is an index of how close the two different probability distribution functions are in a
given point ϕ. We can say that the two probability distribution functions are equivalent if
w(ϕ) = 1 almost everywhere. Having access to the probability distribution function p(ϕ)
is of great interest. We want to find the set of parameters θ that makes p(ϕ) ∼ qθ(ϕ). The
Kullback–Leibler divergence, defined in Equation 2.53, is a measure of how two distribution
functions differ from each other. For the target distribution p(ϕ) we can write the KL
divergence as:

KL(qθ ||p) =
∫︂

D[ϕ] qθ(ϕ) ln
(︃

qθ(ϕ)

p(ϕ)

)︃
= β

(︁
Fq − F

)︁
(2.62)

where the variational free energy Fq is:

βFq = Eϕ∼qθ
[S(ϕ) + ln qθ(ϕ)] (2.63)

and the physical free energy F:

F = − 1
β ln(Z). (2.64)

We want to have an estimation of Fq as a function of θ. This estimation is important
for the optimization problem (finding the zero of the KL divergence) and evaluating the
thermodynamic observables (if the two probability distribution functions are equal almost
everywhere Fq = F). To have an efficient sampling of the variational free energy as a function
of the prior distribution, we can rewrite Equation 2.63 as:

βFq = Ez∼qZ

[︃
S(gθ(z))− ln

⃓⃓⃓⃓
dgθ

dz

⃓⃓⃓⃓
(z) + ln qZ(z)

]︃
. (2.65)

The numerical efficiency of this evaluation is ensured by a efficient evaluation of the prior
distribution qz, the normalizing flow architecture gθ and the Jacobian of the transformation
dgθ/dz. Those properties are ensured, for example, by the NICE architecture presented in
subsection 2.2.5 . We minimize the KL divergence with respect to the parameter θ of the
probability distribution function qθ using gradient descent. Since the target distribution and
the free energy F do not depend on the parameters θ, we can still compute the gradient
of KL divergence with respect to θ,i.e., ∇KLθ . This is one of the greatest advantages of
this method. We do not need a tractable partition function for training. Moreover, we do
not need to generate samples from the target distribution for training. The most efficient
way to generate samples for training would be via MCMC simulations. This would kill the

18

2.3 Normalizing flows model for lattice field theory

method’s performance because you can already compute the observables you are interested
in once you have generated those configurations.

2.3.1. Estimator for the KL divergence

During the optimization process, we have access to the Fq and ∇KLθ . We do not have access
to the absolute value of KL. This, in principle, is a problem because we want to control the
training and have control over how close w is to 1. We want to define an estimator for the
normalized importance weight w. We define the un-normalized importance weight:

w̃(ϕ) =
exp(−S(ϕ))

qθ(ϕ)
(2.66)

and the variable C(ϕ)
C(ϕ) = S(ϕ) + ln qθ(ϕ) = − ln w̃ (2.67)

such that:
βFq = ⟨C⟩q (2.68)

During training we can use variance of C(ϕ) to monitor the convergence. We can derive
that, for the normalized importance weight w close to one, it holds:

KL(qθ ||p) = 1
2 Varq[C] +O(Eq[|w − 1|3]) (2.69)

To demonstrate this property we start by noticing that:

Eq

[︂
p
q

]︂
=
∫︂

D[ϕ]q(ϕ)
p(ϕ)
q(ϕ)

= 1 (2.70)

The Kullback–Leibler divergence can be written in terms of w as:

KL(q|p) = −Eq [ln (1 − (w − 1))] = Eq

[︂
∑∞

j=0
(−1)j

j (w − 1)j
]︂

(2.71)

= Eq[w − 1]⏞ ⏟⏟ ⏞
=0

+ 1
2 Eq[(w − 1)2] +O(Eq[|w − 1|3]) .

We can do the same expansion for C = − ln w̃:

Eq[C] = −Eq[ln w̃] = −Eq [ln w + ln Z] = − ln Z − Eq[ln w] = − ln Z + KL(q|p) (2.72)

= − ln Z + 1
2 Eq[(w − 1)2] +O(Eq[|w − 1|3]) .

19

Chapter 2 Estimation of thermodynamic observables with normalizing flows

The variance of C is given by

Varq(C) = Eq

[︂(︁
C − Eq[C]

)︁2
]︂
= Eq

[︂(︁
− ln w̃ + Eq[ln w̃]

)︁2
]︂

(2.73)

= Eq

[︄(︂
− ln w̃ + ln Z⏞ ⏟⏟ ⏞

=− ln w

+O
(︁
Eq[(w − 1)2]

)︁)︂2
]︄

(2.74)

Expanding the logarithm around Eq[w] = 1 we obtain:

Varq[C] = Eq[(w − 1)2] +O
(︁
Eq[|w − 1|3]

)︁
(2.75)

We have easy access to Varq[C] during training. The equation in Equation 2.75 provides a
great advantage for the simulations since it gives excellent control over the optimization
procedure. If, for example, the variance during training does not decrease, it probably
means we are stuck in a local minimum. If this happens, we can restart the simulation from
a new set of parameters θ. This control is rarely possible for lots of machine optimization
problems. All of this is possible also because we know the analytical form of the target
distribution. This is usually unknown, e.g., for image generation problems. We apply all of
this machinery to the φ4 model described in subsection 2.1.1. We minimize the variational

Figure 2.4: The expectation value Eq(C) of C as a function of the training step for one run on the φ4 model
with κ = 0.3 and λ = 0.022 for a 16 × 8 lattice.

free energy Fq during optimization of the parameters θ. Fq is directly proportional to ⟨C⟩q.
In Figure 2.4 Eq(C) as a function of the training step is presented.Even though a plateau may
seem to be reached around 104 steps, we need a deeper analysis to attest to the convergence
of the training. To do so we need to look at Varq(C).

20

2.3 Normalizing flows model for lattice field theory

Figure 2.5: The variance Varq(C) as a function of the training step for one simulation run on the φ4 model
with κ = 0.3 and λ = 0.022 for a 16 × 8 lattice.

In Figure 2.5 the convergence ofVarq(C) as a function of the training step is plotted. We
can see from the plot that the variance of C decreases during training but does not converge
to zero. This implies the target distribution is not exactly approximated. The error we make
by imperfect training is called bias and can be estimated. We refer to subsection 2.3.3 for a
complete analysis of the error.

2.3.2. Thermodynamic observable evaluations

Once the training procedure converges, we can compute thermodynamic observables with
generative models. We can write the partition function as:

Z =
∫︂

D[ϕ] qθ(ϕ) w̃(ϕ) (2.76)

Since we can sample from qθ , we can evaluate the estimator for the partition function as:

Ẑ =
1
N

N

∑
i=1

w̃(ϕi) with ϕi ∼ qθ (2.77)

From Ẑ we can compute the estimator for the Free energy as:

F̂ = −T ln Ẑ . (2.78)

At this point, we want to stress the importance of equation Equation 2.77. Once the training
is complete, we can sample the configuration ϕi in an embarrassingly parallel fashion. One

21

Chapter 2 Estimation of thermodynamic observables with normalizing flows

Figure 2.6: The comparison between the estimation of the free energy density with κ = 0.2 and λ = 0.022
(i.e. in the phase without spontaneous magnetization) for the flow based algorithm and HMC algorithm for
different volumes.

can send the parameters θ of the flow and its functional form to different GPU (CPU) and
do the sampling independently. Another great advantage of this method is the absence of
autocorrelation time. All the configurations are sampled independently and do not need to
be sampled in a chain as in Markov chain Monte Carlo.

The evaluation of thermodynamic observables via Monte Carlo simulations is more
challenging when we need to cross a phase transition point during the integration in the
parameters space. In Figure 2.6 and Figure 2.7, we see the comparison of the estimation of
the free energy between HMC and the flow-based algorithm in two interesting points, one
before the phase transition and one after.

In Figure 2.6 we estimate the free energy at λ = 0.022 and κ = 0.2. These simulations
are performed at a point in the parameter space that does not require crossing the phase
transition point of the theory. Both the HMC method and the flow-based method agree.
Moreover, the errors have the same order of magnitude for comparable runtime. In the next
paragraph, a detailed description of the numerical analysis is given.

For Figure 2.7 the situation is different. In this plot the comparison of the two method is
done at λ = 0.022 and κ = 0.3. The error in the estimation of the free energy is bigger in the
HMC analysis. The crossing of the phase transition causes these larger errors.

Numerical details For the HMC algorithm, we use a Hybrid Markov chain Monte Carlo
Method with overrelaxation [Adler, 1981]. The overrelaxation procedure flips the sign of
the field ϕ, i.e., ϕ → −ϕ every 10 MCMC steps. Such an overrelaxation algorithm is useful

22

2.3 Normalizing flows model for lattice field theory

Figure 2.7: The comparison between the estimation of the free energy density with κ = 0.3 and λ = 0.022 (i.e.
in the phase with spontaneous magnetization) for the flow based algorithm and HMC algorithm for different
volumes in the phase with sponta- neous magnetization.

because MCMC has problems overcoming energy barriers between different (local or global)
minima of the action. In the broken phase of our ϕ4 theory, there are (at least classically)
two degenerate minima related by Z2 symmetry. Without overrelaxation, the HMC would
tend to be stuck in the neighborhood of one of them. With overrelaxation, it is ensured
that the regions around both minima are explored. Each Markov chain consists of 5 ∗ 103

thermalization steps and 4 ∗ 105 estimation steps. For the estimation of the free energy we
have used a integration step size δκ = 0.05 for all the values of κ except for κ ∈ [0.2, 0.3]
where a refinement is needed as explained in subsection 2.1.3. In this interval the integration
step is fixed to δκ = 0.01. Summing up all the integration steps, we generated 14 Markov
chains with a total of 5.6 ∗ 106 configurations used for the estimations. In our non-optimized
implementation, the generation of the samples took about 25 hours of time.

We use a normalizing flow gθ build with the NICE architecture with 6 coupling layers for
the flow-based algorithm. We use the standard normal N (0, 1) for the prior distribution.
To make the flow invariant under Z2 transformations it is enough to make the function gθ

equivariant, i.e. gθ(−x) = −gθ(x). Odd functions are equivariant with respect to the Z2

symmetry. This is evident if we look at the definition of the probability distribution function
qθ in Equation 2.60. One way to build gθ as an odd function is to define all the building
blocks as odd functions. This is easily achievable by constructing the neural networks m as
odd functions. Every coupling layer has the function m in Equation 2.51 defined by a fully
connected neural network (defined in Equation 2.44) with 5 layers with bias set to zero and
Tanh non-linearities, to ensure the Z2 invariance.

23

Chapter 2 Estimation of thermodynamic observables with normalizing flows

The hidden layers of m are built with 103 neurons. We always set the value of a and b in
Equation 2.51 to be equal. Consecutive coupling layers have an alternating checkerboard
partition to update all the lattice sites. The flow is trained for 106 steps with mini-batches
of 8 ∗ 103. The ReduceLROnPlateau learning rate scheduler of PyTorch is used, with an
initial learning rate of 0.5 ∗ 10−3 and minimum fixed to 10−7. To have a comparison with
MCMC results, after training, we sample 5.6 ∗ 106 configurations for the estimation of the
variational free energy. As we have already mentioned, normalizing flows allow for very
efficient sampling. We can generate all the 5.6 ∗ 106 configurations in less than a minute.
This is done with a significant up-front training cost that does not depend on the number of
samples generated for evaluating the observables. In our non-optimized implementation,
the training took 20 hours to converge for the largest volume. Even though we have a
comparable runtime both for HMC and the flow-based algorithm, it does not mean that
the comparison is entirely fair. Since we did not optimize both codes deeply and believe
there is a significant margin to improve, those numbers should be taken as an indication.
This work aims to present the method to the community and not provide a state-of-the-art
method for complex LQFT calculations. This is the reason why we did not invest too much
work in the optimization of the codes.

2.3.3. Bias due to imperfect training

In this section, we analyze the scaling of the bias due to imperfect training of the expectation
value of the free energy with respect to the probability distribution qθ . The discussion
is based on [Nowozin, 2018]. In Figure 2.5 it is evident that the variance of C decreases
during training, but it does not converge to zero. This implies the target distribution is not
approximated exactly. We can estimate the error we make by imperfect training. To estimate
this error, we use what is called in the literature the delta method. We can find an exhaustive
study of the subject in [Bickel and Doksum, 1977].
Let X̂N = 1

N ∑N
i=1 Xi be the sample mean of Xi and h be a real-valued function with uniformly

bounded derivatives. We can write E
[︁
h(X̂N)

]︁
as:

E
[︁
h(X̂N)

]︁
= c0 +

c1

N
+O

(︃
1

N2

)︃
, (2.79)

where the random variables Xi are independent and identically distributed with E
[︂

X2k+2
i

]︂
<

∞ for k ∈ {0, 1} and

c0 = h(µ) , c1 = h′′(µ)
σ2

2
, (2.80)

24

2.3 Normalizing flows model for lattice field theory

with σ2 = E
[︁
(X − EX)2]︁ and µ = E [X]. We can apply this method to estimate the bias of

−βF̂ = ln Ẑ defined in Equation 2.78.

B[−βF̂] = Eq[ln Ẑ]− ln Z . (2.81)

First we remind the reader that:

Eq [w̃] = Z ,

Using the delta method for moments, with h(x) = ln(x) and second derivative h′′(x) = − 1
x2 ,

we derive that:

Eq[ln Ẑ] = ln Z − 1
2NZ2 Eq

[︁
(w̃ − Eq[w̃])2]︁+O

(︁
N−2)︁ , (2.82)

from which we can derive:

B[−βF̂] = − 1
2 N

Eq
[︁
(w̃ − Eq[w̃])2]︁

Eq[w̃]2
+O(N−2) . (2.83)

In this derivation, we have ignored the requirements of the function h for the application
of the delta method. h needs to be bounded with uniformly bounded derivatives. This is
not guaranteed for h(x) = ln(x). For realistic LFT, we can avoid this subtlety by putting
the theory in a box potential. This would make Ẑ and all its derivatives bounded from
below. The effect of this solution does not have a significant impact on practical numerical
experiments. This is because only very high energy states are affected by the potential and
thus are extremely unlikely to be sampled.

We can also compute the variance of the estimator with the same techniques. The variance
of F̂ is given by

Var
[︁
−βF̂

]︁
=

1
N

Eq
(︁
w̃ − Eq [w̃]

)︁2

(Eq[w̃])2 +O
(︃

1
N2

)︃
, (2.84)

We refer to the supplemental material of [Nicoli et al., 2021] for a full demonstration of this
equation. The standard deviation of F̂ is of order O(1/

√
N). We can thus neglect higher

order O(N−1) correction due to the bias given by imperfect training in the large N limit.
In our numerical experiments, we checked that the errors show the theoretic Monte Carlo
scaling of N− 1

2 . The error estimators for general observables involving the partition function
can be derived in a more general fashion as showed in [Nicoli et al., 2020].

25

Chapter 3

Quantum Computing

“I’m not happy with all the analyses that go with just classical theory, because Nature
isn’t classical, dammit, and if you want to make a simulation of Nature, you’d better
make it quantum mechanical, and by golly it’s a wonderful problem!"

– Richard Feynman, 1981

Quantum computing has made many important advancements in recent years due to
significant improvements in algorithms and hardware technologies. One of the first

steps in quantum computing goes back in history to Feynman when he said the sentence
at the top of the page. Since that year, much progress has been made in the quantum
computing scientific community. There has been much advancement both in the algorithms
and the hardware technology. This chapter will focus on algorithm developments for
quantum technologies.

We are in the Noisy Intermediate-Scale Quantum (NISQ) technology era [Preskill, 2018].
This means that soon we will have quantum computers that have the potential to outperform
today’s classical digital computers, but the noises of these quantum devices constitute a
significant obstacle to the usage of those machines. The goal of quantum computing is to
reach quantum advantage. With quantum advantage, we mean the possibility to perform
tasks with controlled quantum systems beyond what can be achieved with ordinary digital
computers. To reach a quantum advantage, we have to complete a simulation with a
useful application in the real world (exponentially) faster with a quantum computer than
any classical digital computer in the world. In 2019 [Arute et al., 2019] published a work
demonstrating the quantum advantage era’s entrance. However, they have only been able to
perform a specially designed problem known to be very difficult for classical computers
and suitable for quantum computers. It has not been performed a calculation that can
demonstrate a quantum advantage for a real life problem. Many algorithms that are
theoretically demonstrated to provide a speed-up with respect to the classical state-of-
the-art best algorithm known to solve the same task have been developed. For example,
the Shor algorithm [Shor, 1997] provides an exponential speed-up in the solution of the

Chapter 3 Quantum Computing

integer-factorization problem. The algorithm presented in [Harrow et al., 2009] provides a
matrix-vector-multiplication exponential speed. The reader can look up the most known
algorithms in [Jordan; Montanaro, 2016]. Unfortunately, algorithms that provide a super-
polynomial speed-up like, for example, require too many resources to be executed on
nowadays quantum computers. The devices we have now have neither enough number of
qubits neither qubits with high enough quality to perform those tasks. Nevertheless, it is
still possible to do interesting physics with what we now have.

One class of algorithms that can be performed in the NISQ era is the variational hybrid
quantum-classical algorithms [McClean et al., 2016; O’Malley et al., 2016; Kandala et al., 2017;
Shen et al., 2017; Colless et al., 2018; Dumitrescu et al., 2018; Hempel et al., 2018; Ganzhorn
et al., 2019; Kokail et al., 2019; Hartung and Jansen, 2019; Jansen and Hartung, 2020]. Those
algorithms are performed on both classical and quantum computers. The idea is to evaluate
computationally demanding cost functions on a quantum computer and perform a classical
optimization on a classical device. Quantum computer devices are affected by certain types
of errors, which can only be partially mitigated using error correction procedures [Kandala
et al., 2017; Li and Benjamin, 2017; Temme et al., 2017; McClean et al., 2017; Bonet-Monroig
et al., 2018; Endo et al., 2018; McArdle et al., 2019; Endo et al., 2019; Kandala et al., 2019;
McClean et al., 2020; Otten and Gray, 2019a,b; Sagastizabal et al., 2019; Urbanek et al., 2019;
Crawford et al., 2019; Chungheon et al., 2019; Córcoles et al., 2015; Sheldon et al., 2016;
Tannu and Qureshi, 2019; Yeter-Aydeniz et al., 2019, 2020; Funcke et al., 2020]. Usually, the
variational cost function depends on a certain ansatz that needs to be engineered specifically
for the problem. The goal of this chapter is to develop algorithms and routines to improve
the performances of quantum algorithms. This is done by developing an algorithm that
mitigates bit-flip errors and a dimensional expressivity analysis of variational quantum
circuits. This chapter is organized as follow: in section 3.1 we present the basis of quantum
computing and variational quantum simulations, in section 3.2 we develop a mitigation
routine that corrects the bit-flip errors in quantum computing [Funcke et al., 2020] and in
section 3.3 we develop a dimensional expressivity analysis of quantum circuits based on
the dimension of the manifold generated by a quantum circuit and its symmetries [Funcke
et al., 2021].

3.1. Variational Quantum Simulations

All computing systems rely on a fundamental ability to store and manipulate information.
Current computers manipulate individual bits, which store information as binary 0 and
1 states. Quantum computers leverage quantum mechanical phenomena to manipulate
information. To do this, they rely on quantum bits or qubits. A qubit is a two-state quantum-
mechanical system (for example, it could be a spin 1/2 atom or the polarization of a single
photon). Quantum mechanics allows the qubit to be in a coherent superposition of both
states simultaneously, a property that is fundamental to quantum mechanics and quantum

28

3.1 Variational Quantum Simulations

computing. An important distinguishing feature between qubits and classical bits is that
multiple qubits can exhibit quantum entanglement. Quantum entanglement is a nonlocal
property of two or more qubits that allows a set of qubits to express higher correlation
than is possible in classical systems. Quantum algorithms try to use those properties to
perform efficient calculations. This section is organized as follows: in subsection 3.1.1 we
briefly introduce the concepts of quantum bits and quantum gates, in subsection 3.1.2 we
briesfly explain the simulation tools used in this chapter, and in subsection 3.1.3 we show
an example of a variational quantum simulation.

3.1.1. Quantum gates, quantum states and quantum measurements

Classical computing is based on classical bits. Classical bits can be only in a completely
defined state: 0 or 1. This is not always true for Quantum bits. A qubit can be in the state
|0⟩, in the state |1⟩ or a superposition of those. We can represent those states using two
orthogonal vectors:

|0⟩ =

[︄
1
0

]︄
, |1⟩ =

[︄
0
1

]︄
(3.1)

Given the basis states, we can construct a generic 1 qubit state as: |Ψ⟩ = a |0⟩+ b |1⟩,
where a, b ∈ C are complex numbers and |a|2 + |b|2 = 1. |Ψ⟩ is called the wave function of
the state.

Now that we have a quantum state, we want to extract information about this state. This
is done via the measurement procedure. What we can extract is the probability of the qubit
to be in the state |0⟩ or |1⟩, e.g., P(|0⟩):

P(|0⟩) = | ⟨0|Ψ⟩ |2 (3.2)

Once we have done a measurement, we destroy the quantum nature of the state. If we have
a qubit in the state |Ψ⟩ and, after the measurement, we get the state |0⟩; the qubit wave
function is collapsed in the state |0⟩. If we measure again, there is a 100% chance of finding
the qubit in the state |0⟩.

We can modify the state of a qubit acting on it with quantum gates. One qubit gate is
represented by 2 ⊗ 2 unitary matrices. One representation based on the group SU(2) of
those matrices are the Pauli matrices:

σx =

[︄
0 1
1 0

]︄
, σy =

[︄
0 −i
i 0

]︄
, σz =

[︄
1 0
0 −1

]︄
. (3.3)

The matrix-vector multiplication represents the action of a gate to a qubit. The most general

29

Chapter 3 Quantum Computing

single-qubit quantum gate is the U3(θ, ϕ, λ);

U3(θ, ϕ, λ) =

[︄
cos(θ/2) −eiλ sin(θ/2)

eiλ sin(θ/2) eiλ+iϕ cos(θ/2)

]︄
(3.4)

Widly used one-qubit quantum gates are the rotation gates Ri(θ) = exp
(︁
−iθσi/2

)︁
, where

j = {x, y, z}. Those notions generalize to more than one qubit. We can use the tensor
product to describe the collective state of any number of qubits. If we have two separated
qubits |α⟩ and |β⟩, we can describe their collective state |Ψ⟩ using the tensor product:

|Ψ⟩ = |α⟩ ⊗ |β⟩ (3.5)

We need 2n complex number to store a generic n qubit state. In the literature, the concept
of quantum circuit is frequently used. We define a quantum circuit as a series of quantum
gate operations on quantum bits in a given order. A quantum circuit C(θ1, θ2) acting on one
qubit can be defined as, for example:

C(θ1, θ2) = Rx(θ1)Ry(θ2). (3.6)

We can use the same rules also for the quantum circuit. For example, we can write:

[U3(θ1, ϕ1, λ1) |α⟩]⊗ [U3(θ2, ϕ2, λ2) |β⟩] = U3(θ1, ϕ1, λ1)⊗ U3(θ2, ϕ2, λ2) |α⟩ ⊗ |β⟩ (3.7)

meaning that U3(θ1, ϕ1, λ1) acts on qubit |α⟩ and U3(θ2, ϕ2, λ2) on qubit |β⟩. A widely used
two-qubit gate is the CNOT gate (also called the CX gate). The CNOTij gate acts on two
qubits i and j. i is called the control qubit and j is called the target qubit. The CNOTij gate
acts as follow:

CNOTij

⎧⎨⎩ if |i⟩ = |0⟩ : |j⟩ → I |j⟩

if |i⟩ = |1⟩ : |j⟩ → σx |j⟩
(3.8)

One reason for its popularity is that it is "a native gate" in the most common quantum
computers based on superconductive qubits. A native gate is a quantum gate operation that
is realized on the hardware. We define a complete set of quantum gates if we can derive all
the possible unitary transformations of a n qubit gates from the composition of the native
set of gates. We can demonstrate that CNOTs and unitary single-qubit operations form a
universal set of quantum computing [Cirac and Zoller, 1995]. Once we have a universal
set of gates, we can generate any quantum state. It is not enough to generate a state to get
information. We must measure this state. When we defined a one-qubit state, we stated
that a qubit could be in the state |0⟩ or |1⟩. Those states are the eigenvectors of the σz

operator. In this case, we say that we have used the Z computational basis. This is not
the only computational basis we can have. For example we can define |+⟩ and |−⟩ as the

30

3.1 Variational Quantum Simulations

eigenvectors of the σx operator:

|+⟩ = |0⟩+ |1⟩
2

, |−⟩ = |0⟩ − |1⟩
2

. (3.9)

Given a computation basis, we can always find a unitary operator that changes the basis of
the state. In current quantum computers, it is possible only to measure in one computational
basis (usually the Z base). Let us suppose we want to measure the expectation value of an
operator that acts on two qubits H:

H = σx
1 σx

2 + σz
1 σz

2 (3.10)

where the multiplication between σ matrices is to be understood as a direct product. The
expectation value is given by:

⟨ψ| H |ψ⟩ = ⟨ψ| σx
1 σx

2 + σz
1 σz

2 |ψ⟩ = ⟨ψ| σx
1 σx

2 |ψ⟩+ ⟨ψ| σz
1 σz

2 |ψ⟩ (3.11)

A quantum computer can only measure in one given basis (e.g., Z). This constraint is a
limitation of the hardware. The term ⟨ψ| σz

1 σz
2 |ψ⟩ can be measured directly. Conversly, we

can not measure directly ⟨ψ| σx
1 σx

2 |ψ⟩, therefore we have to add a post-rotatation to the
quantum circuit. We define the operator H, called the Hadamard gate, as:

H =
σx + σz√

2
=

1√
2

[︄
1 1
1 −1

]︄
. (3.12)

It is trivial to derive that σz = Hσx H. Using this property, we can write rewrite ⟨ψ| σx
1 σx

2 |ψ⟩
as:

⟨ψ| σx
1 σx

2 |ψ⟩ = ⟨ψ| H1H2σz
1 σz

2 H2H1 |ψ⟩ =
⟨︁
ψ′ ⃓⃓ σz

1 σz
2
⃓⃓
ψ′⟩︁ (3.13)

where we have defined |ψ′⟩ = H2H1 |ψ⟩, where H2H1 is intended as a direct product.
This relation allows for the evaluation of the expectation value of σx

1 σx
2 with respect to |ψ⟩.

On a quantum mechanical level, the expectation value of σx
1 σx

2 on the state |ψ′⟩ and the
expectation value of the operator H1H2σz

1 σz
2 H2H1 on the state |ψ⟩ are equivalent. The latter

can be done on the hardware and allows for the computation of the expectation value of
different operators that are not expressed in the Z basis. This procedure can also be applied
to the Y basis using as post-rotation the operator (σy + σz)/

√
2.

3.1.2. Simulation tools

This chapter presents numerical results obtained by using three different kinds of sim-
ulations, demonstrating the applicability and validity of the methods, algorithms, and
routines we have developed. We briefly explain them in order of appearance. The easiest

31

Chapter 3 Quantum Computing

and most straightforward way to perform numerical simulations of quantum computing
is to use a wave function simulator A wave function simulator is a software that performs
classical simulations of quantum circuits. It constructs exactly the wave function of a system
and allows for the efficient application of quantum gates to the wave function. We can
also compute any operator’s exact quantum mechanical expectation value over any wave
function using a wave function simulator. We need to construct the wave function as a
vector and the operator as a matrix and perform the scalar products. We often use a wave
function simulator to perform the first tests of the algorithm we are developing.

In this thesis, we use a self-implemented wave function simulator. In this work, we have
used the hardware of IBMQ [ibm] for the simulations on real quantum devices. Since real
quantum computers are noisy and expensive, it is advisable to perform classical simulations
of the noisy devices before performing quantum simulations on quantum computers. We
used the IBMQ software development toolkit (SDK) Qiskit [Qiskit Aer API documentation
and source code] for both noisy simulations and simulations on the quantum hardware.
Qiskit is a library written in the Python programming language. Using Qiskit SDK we
can write a quantum computing program (most of the quantum gates are implemented in
the library) and run our simulations on three different kinds of backends: a simple wave
function simulator, a wave function simulator combined with a quantum noise model that
mimics the noise of the quantum device and the real quantum device.

An exact description of the quantum noise of any quantum device is non-present at the
moment. Nevertheless, noise modeling of quantum devices is quite reliable. Performing
classical noisy simulations of the quantum hardware can give us good hints of the reliability
of one simulation. One great advantage of Qiskit is that the same code can run on three
different backends. We need to change one line of code in which we specify the back-end to
pass between the three different ways of simulation.

3.1.3. Variational quantum eigensolver simulations

It is often interesting to find the lowest eigenvalue and eigenvector of a given operator (ma-
trix). For example, the eigenvector associated with the lowest eigenvalue of the Hamiltonian
of a physical system is the ground-state-wave function. We can extract a lot of physical
information from the ground state of a given Hamiltonian. Due to limitations in NISQ
devices, it is not yet possible to implement the "quantum phase estimation algorithm"(QPE)
[Nielsen and Chuang, 2010] to find the lowest eigenvalue of a given Hermitian operator. The
QPE algorithm can estimate an operator’s lowest eigenvalue with an exponential speed-up
with respect to the best classical algorithm. In NISQ devices, it is unlikely to implement this
algorithm due to the too short circuit depth possible in the devices and the fact that this
algorithm requires too many qubits to be implemented. We are still able to do interesting
computations in NISQ devices. In 2014 Peruzzo et al. presented the idea of variational
quantum eigensolver [Peruzzo et al., 2014] (VQE). This algorithm is based on attempting to

32

3.1 Variational Quantum Simulations

|0⟩ RY(θ1) RZ(θ5) • RY(θ9) RZ(θ13)

|0⟩ RY(θ2) RZ(θ6) • RY(θ10) RZ(θ14)

|0⟩ RY(θ3) RZ(θ7) • RY(θ11) RZ(θ15)

|0⟩ RY(θ4) RZ(θ8) RY(θ12) RZ(θ16)

Figure 3.1: We show a diagrammatic representation of EfficientSU2 circuit for four qubits and one repetition.
This graphic representation of a quantum circuit is meant to be read from left to right. On the left, the symbols
|0⟩ stands for the qubits initialized in a product state of all |0⟩. A straight black line is associated with every
qubit. A rectangular box drawn on one line represents a single qubit gate operation. The gate applied to the
qubit is written inside the box. A rectangular box drawn on more than one line represents the operation of
a multi-qubit gate. A black circle and a circled-square symbol connected via a vertical black line represent
a CNOT gate. The black circle is drawn on the qubit line of the control qubit. The circled-square symbol is
drawn on the qubit line of the target qubit.

extract as much information as possible from the quantum computer with minimal compu-
tation effort. This is done with the help of a classical device. An algorithm that exploits both
classical and quantum computations is usually called a hybrid-classical-quantum algorithm.
There are two main building blocs in a VQE simulation: a variational ansatz and a cost
function. The goal of a VQE is to minimize the cost function given a particular variational
ansatz. The ansatz is defined by a unitary operator U(θ⃗) that depends on a certain number
of parameters θ⃗ and an initial quantum state |ψ0⟩. The variational ansatz is a quantum
circuit that produces the quantum state

⃓⃓⃓
ψ(θ⃗)

⟩︂
as:

⃓⃓⃓
ψ(θ⃗)

⟩︂
= U(θ⃗) |ψ0⟩ (3.14)

The form of the variational ansatz is arbitrary and up to us. It is advisable to impose the
physical knowledge, e.g., symmetries, into the circuit when we perform a VQE simulation.
In the IBMQ software development toolkit (SDK) Qiskit [Qiskit Aer API documentation
and source code] a standard variational ansatz is proposed. The ansatz is called in the SDK
Qiskit EfficientSU2 variational ansatz. The documentation [Qiskit Aer API documentation
and source code] proposes it as “a heuristic pattern that we can use to prepare trial wave
functions for variational quantum algorithms or classification circuit for machine learning”.
Qiskit EfficientSU2 variational ansatz has a layered structure. The EfficientSU2 circuit
consists of layers of single-qubit operations and CNOT entanglements. For example, the
circuit EfficientSU2(Nqubit=4, Nlayers=1) is presented in Figure 3.1. The cost function, in
our case, is given by the expectation value of a given operator. We suppose that the operator
is a certain hamiltonian H. H is a hermitian operator. This implies that the eigenvalues are

33

Chapter 3 Quantum Computing

Figure 3.2: Expectation value of the energy as a function of the optimization step for a variational quantum
simulation with four qubits and 16 free parameters

real. The cost function we want to minimize is:

C(θ⃗) =
⟨︂

ψ(θ⃗)
⃓⃓⃓
H
⃓⃓⃓
ψ(θ⃗)

⟩︂
(3.15)

For a concrete and pedagogical example, we consider the Heisenberg Hamiltonian for N
spins:

H =
N

∑
i=1

Jxσx
i σx

i+1 + Jyσ
y
i σ

y
i+1 + Jzσz

i σz
i+1 + hxσx

i + hyσ
y
i + hzσz

i (3.16)

where J = {Jx, Jy, Jz}, h = {hx, hy, hz} are real coefficients. The coefficients J tune the
nearest-neighbor interaction between the spins, and the coefficients h can be seen as the
magnitude of an external magnetic field applied to the system. With periodic boundary
condition (i.e. σN+1 = σ1), we can formally write the minimization problem we want to
solve as:

λmin = minθ⃗

{︂
C(θ⃗)

}︂
(3.17)

We now show a concrete numerical example that helps the reader to understand the
numerical problem. We want to compute the ground state of the Heisenberg Hamiltonian.
We choose the parameter J = {1, 1,−1}, h = {1, 1.5, 3}. This set of parameters does not
have a particular physical meaning. They are chosen with the only intent to carefully avoid

34

3.1 Variational Quantum Simulations

the phase transition points in the phase diagram of the model I .
In Figure 3.2 we show the expectation value of the energy as a function of the optimization

step during the VQE minimization. The minimization of the cost function is performed
with the Nelder-Mead optimization algorithm. In red, we plot the exact value of the
energy of the ground state computed via exact diagonalization. The simulations have
been performed classically on a wave function simulator. The quantum circuit used as a
variational ansatz is the one presented in Figure 3.1. In the variational quantum circuit, there
are sixteen free parameters. These simulations can only be performed for a very limited
number of qubits on a wave function simulator. This is due to the exponential growth of
the simulation’s computational cost with the number of qubits. Suppose we would have
access to a powerful quantum computer. In that case, we could evaluate the energy on the
quantum computer with a polynomial computational cost and perform the optimization
of the variational parameters classically. This optimization problem is tough since it is a
non-convex optimization problem [Nakanishi et al., 2020]. We suppose that the dependence
on the quantum circuit’s variational parameters is by the exponential of some operator. This
means that we suppose that we can write every quantum gate Q(θ) as:

Q(θ) = ei θq (3.18)

where the operator q has the following property: [q]2 = 1. The operator q can be a generic
multi-qubit operation. With this mild assumption, we can write the cost function analytically
as the sum of an exponentially large number of terms that depend on the sine and cosine of
all the different θ in the parametric circuit as demonstrated in [Nakanishi et al., 2020].

This class of optimization problems is very sensible to local minima. It is crucial to
choose a suitable algorithm for the classical optimization routine and a good ansatz for the
variational circuit. The simulations become increasingly costly on the classical level also
when the number of parameters increases. Since we are simulating a physical model, we
can use the symmetries of the system to improve the performance of the simulation. The
Hamiltonian of the system we are studying is translationally invariant. This means that a
transformation that relabels qubit i → i + 1 commute with the Hamiltonian. The generator
of the translation transformation is the momentum operator.

We also know that the ground state of the system should have the same symmetry as
the Hamiltonian. If we construct a quantum circuit that is translationally invariant, we can
improve our simulations. It is challenging to build a translationally invariant quantum
circuit with an entangling layer built of CNOT rotations. These difficulties are based on
the fact that the CNOT entangling layer in the circuit EfficientSU2 is not translationally
invariant. To easily construct a variational quantum circuit that is translational invariant, we

IFor example the values J = {0, 0, 1}, h = {1, 0, 0} correspond to the phase transition point of the transversal
Ising model. J = {1, 1, 1}, h = {1, 1, 1} is also a phase transition point.

35

Chapter 3 Quantum Computing

Figure 3.3: The expectation value of the energy as a function of the optimization step for a VQE simulation
with four qubits, 8 free parameters, and a translationally invariant quantum circuit presented in Figure 3.4.

introduce the parametric XX gate as:

XX(θ)j,k = e−
i
2 θσjσk (3.19)

Since we suppose we are using a complete set of gates, we know we can build this gate
from rotation gates and CNOT gates. We can construct a translationally invariant circuit
using the same layered structure as the EfficientSU2 quantum circuit but setting all the
one qubit rotation angles in one layer to be the same and substituting the CNOT gates
with the parametric XX gate. The XX gate-based entangling circuit also allows for a
tunable entanglement inserted into the circuit. This is not possible for the CNOT entangling
layer. The variational quantum circuit used for the simulations in Figure 3.3 is shown
in Figure 3.4. The entangling layer acts with periodic boundary conditions to ensure
translational invariance.

There are different advantages in using this circuit with respect to the EfficientSU2

quantum circuit. The translationally invariant circuit has only five parameters to be opti-
mized compared to sixteen with the EfficientSU2 quantum circuit. Another advantage
is again that the quantum circuit has a symmetry that is also present in the Hamiltonian.
As we can see from the comparison between Figure 3.3 and Figure 3.2 the translationally
invariant circuit performs much better in this case compared to the non-translationally
invariant case. In the translational invariant case, we can reach the global minimum. This
is not true for the non-translationally invariant case. In the latter, we converge to a higher

36

3.2 Read-out Noise Mitigation

|0⟩ RY(θ1) RZ(θ2)
XX(θ3)

XX(θ3) RY(θ4) RZ(θ5)

|0⟩ RY(θ1) RZ(θ2)
XX(θ3)

RY(θ4) RZ(θ5)

|0⟩ RY(θ1) RZ(θ2)
XX(θ3)

RY(θ4) RZ(θ5)

|0⟩ RY(θ1) RZ(θ2) XX(θ3) RY(θ4) RZ(θ5)

Figure 3.4: translational invariant ansatz

value than the exact solution, i.e., we get stuck in local minima. Moreover, the computational
cost for the optimization of the translationally invariant circuit is much smaller than the
non-translationally invariant case. This is because it is much easier to find the global
minimum of a five-dimensional manifold with respect to a sixteen-dimensional manifold.
This pedagogical example shows how important it is to incorporate the symmetry of the
model we are studying in the quantum circuit ansatz. We will explore these concepts in a
much more formal way in section 3.3.

3.2. Read-out Noise Mitigation

One of the big limitations of NISQ devices is the quantum noise. Quantum noise produces
quantum errors that can be mitigated using error correction procedures [Nielsen and
Chuang, 2010] and error mitigation procedures [Li and Benjamin, 2017; Temme et al., 2017;
McClean et al., 2017; Bonet-Monroig et al., 2018; Endo et al., 2018; McArdle et al., 2019; Endo
et al., 2019; Kandala et al., 2019; McClean et al., 2020; Otten and Gray, 2019a,b; Sagastizabal
et al., 2019; Urbanek et al., 2019; Crawford et al., 2019; Chungheon et al., 2019; Córcoles
et al., 2015; Sheldon et al., 2016; Tannu and Qureshi, 2019; Yeter-Aydeniz et al., 2019, 2020;
Funcke et al., 2020]. Error correction codes require too many resources to be implemented in
present hardware. In our work [Funcke et al., 2020] we have developed a mitigation routine
to mitigate bit-flip errors. Bit flip errors give rise to an erroneous readout of a qubit state
(you should measure 0 but get 1 instead). The readout noise is one of the most relevant
noises in NISQ devices [Tannu and Qureshi, 2019].

Our method is based on a pre-calibration of the qubits and a correction of the performed
noisy measurements. We have demonstrated that our approach does not introduce a
significant computational overhead when measuring the expectation value of local operators.
Our measurement mitigation works for any operator and any number of qubits. This
procedure relies on cancellations of different erroneous measurement outcomes. In the
development of the mitigation procedure, the assumption of uncorrelated readout errors is
made. This assumption agrees with hardware data (see [Qiskit Aer API documentation and
source code]). The goal of this section is to mitigate classical bit-flip errors. We thus neglect
other sources of error, such as gate errors and decoherence Alexandrou et al. [2021].

37

Chapter 3 Quantum Computing

3.2.1. Mitigation routine

We assume that we have a quantum computer that can prepare a pure state |ψ⟩ for N qubits,
which we measure in the computational basis (Z in this case). |ψ⟩ can be written as:

|ψ⟩ =
2N−1

∑
i=0

ci |i⟩ (3.20)

where |i⟩ are the elements of the computational basis and ci are normalized complex
coefficients. The mitigation routine we develop aims to mitigate the errors in the expectation
value of a certain operator H. It is fair to assume that we can write H as:

H = ∑
k

hkU∗
k OkUk (3.21)

where k is the number of terms in the operator H and hk are their coefficients. Ok ∈ {1, Z}⊗N

is a list of n Pauli string terms acting on N qubits. The unitary operators Uk transform this
string to U∗

k OkUk ∈ {1, X, Y, Z}⊗N . Since in the experiment we cannot measure directly
on any basis, without loss of generality, we can assume that the operators that need to be
mitigated can always be written in pauli basis. We include the operators Uk in the quantum
circuit that prepares the state |ψ⟩. As a result, one measurement procedure gives a bit string
of 0 and 1. To obtain the expectation value of the operator, we need to reconstruct the bit
string distribution. We must execute the same circuit several times. This procedure consists
of preparing the state Uk |ψ⟩ and measuring it many times. The number of measurements is
referred to as the number of shots.

To give a meaningful description of our mitigation procedure, we need to change the
point of view concerning the action of the bit-flip error. Whereas the bit flip error is usually
seen as a part of the read-out procedure, we can see the read-out error as part of the operator
we are measuring. We denote these operators as noisy operators Z̃q acting on the qubit q
while the corresponding noise-free operator is called Zq.

In this section, we use two different kinds of expectation values. E is the expectation
value with respect to the bit-flip probability p. O = ⟨ψ| Ô |ψ⟩ is the quantum mechanical
expectation value of a generic operator Ô over a state |ψ⟩.

Our goal is to extract the noise-free quantum mechanical expectation value O = ⟨ψ| Ô |ψ⟩
from the noisy expectation value EÕ of a generic operator Ô. To give a concrete example,
we derive the noisy expectation value of a single operator. This procedure can be done
explicitly and provides a good overview of how bit-flip error affects quantum measurements.
We define the bit-flip probability pq,0 as the probability of measuring a qubit q in the state
|1⟩ instead of the state |0⟩. pq,1 is the probability of measuring a qubit q in the state |0⟩
instead of the state |1⟩.

38

3.2 Read-out Noise Mitigation

1-qubit case We consider the noisy expectation value of the operator Z̃q. EZ̃q can take the
values:

– Zq with probability (1 − pq,0)(1 − pq,1) (no bit-flip happens),

– −1q with probability pq,0(1 − pq,1)(one bit-flip happens),

– 1q with probability (1 − pq,0)pq,1(one bit-flip happens),

– or −Zq with probability pq,0 pq,1(two bit-flips happen).

with respect to the bit-flip probability p. pq,0 and pq,1 are the bit flip probabilities for the
qubit q. We can now express the noisy expectation EZ̃q for the operator Z̃q as a function of
the exact quantum mechanical expectation values {Zq,1q}:

EZ̃q = (1 − pq,0 − pq,1)Zq + (pq,1 − pq,0)1q (3.22)

We can easily invert this relation to derive the quantum mechanical expectation value Zq as
a function of the noisy expectation value Z̃q. The expectation value 1q is always 1.

General case Given a specific operator Ok, we assume that each term can be measured
independently from the other. For the operator Z̃Q ⊗ · · · ⊗ Z̃1 we can write:

E
(︁
Z̃Q ⊗ · · · ⊗ Z̃1

)︁
= EZ̃Q ⊗ · · · ⊗ EZ̃1 (3.23)

We can prove this relation by considering the expectation value of two different operators
Z̃a and Z̃b acting on different qubits. We can take the expectation value of one operator and
leave the others untouched. We call this expectation value the conditional expectation value.
We can define the conditional expectation value of the operator Z̃a as EZ̃a and accordingly
EZ̃b for Z̃b. The expectation value of Z̃a can take the value in Tα ∈ {Zq,−Zq,1,−1} with
probability pα. E

(︁
Z̃a ⊗ Z̃b

)︁
can be written as:

E
(︁
Z̃a ⊗ Z̃b

)︁
= EZ̃b

(︄
∑
α

pαTα ⊗ Z̃b

)︄
= EZ̃a ⊗ EZ̃b (3.24)

Our assumption is correct if the bit-flip errors are uncorrelated between the different qubits.
We need to construct a matrix ω−1 that multiplies the noisy expectations E ⟨ψ| Õ |ψ⟩ and
gives us the noise free expectation value:

(O)O∈{1,Z}⊗Q = ω−1 (︁EÕ
)︁

Õ∈{1,Z}⊗Q (3.25)

Given the assumption made in Equation 3.23, we can write:

E
(︁
Z̃Q ⊗ · · · ⊗ Z̃1

)︁
= ∑

O∈{1,Z}⊗Q

γ(OQ)OQ ⊗ · · · ⊗ γ(O1)O1 (3.26)

39

Chapter 3 Quantum Computing

where the coefficients γ can be defined as:

γ(Oq) :=

⎧⎨⎩1 − pq,0 − pq,1 for Oq = Zq

pq,1 − pq,0 for Oq = 1q

(3.27)

We introduce the “lexicographic order” ⪯ for the noise-free operators O ∈ {1, Z}⊗Q and
the noisy operators Õ ∈ {1, Z}⊗Q as:

13 ⊗ 12 ⊗ 11 ⪯ 13 ⊗ 12 ⊗ Z1 ⪯ 13 ⊗ Z2 ⊗ 11 ⪯ 13 ⊗ Z2 ⊗ Z1

⪯Z3 ⊗ 12 ⊗ 11 ⪯ Z3 ⊗ 12 ⊗ Z1 ⪯ Z3 ⊗ Z2 ⊗ 11 ⪯ Z3 ⊗ Z2 ⊗ Z1 ⪯ . . .
(3.28)

This ordering is presented for a set of three operators. It is evident how this generalizes
for N qubits. To find a generic formula to correct any operator, we need to generalize
Equation 3.26. We can write the noisy expectation value as:

E
(︁
ÕQ ⊗ · · · ⊗ Õ1

)︁
= ∑

O∈{1,Z}⊗Q

Γ(OQ|ÕQ)OQ ⊗ · · · ⊗ Γ(O1|Õ1)O1 (3.29)

where Γ(Oq|Õq) is defined as:

Γ(Oq|Õq) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ(Oq) for Õq = Z̃q

1 for Oq = 1q ∧ Õq = 1̃q

0 for Oq = Zq ∧ Õq = 1̃q.

(3.30)

From the coefficients Γ, we can construct the matrix ω that relates the noise and the noiseless
expectation value. The matrix elements of ω are given by:

ω
(︁
O|Õ

)︁
:=

Q

∏
q=1

Γ(Oq|Õq) (3.31)

and the full matrix is defined as:

ω :=
(︁
ω
(︁
O|Õ

)︁)︁
Õ,O∈{1,Z}⊗Q (3.32)

The lexicographic order tells us that the matrix element ω
(︁
O|Õ

)︁
are zero if Õ ≺ O. This

property ensures that the matrix ω is lower triangular. A matrix is invertible if the determi-
nant is non-zero. For a lower triangular matrix, it is sufficient to have the diagonal term to
be non-zero. The diagonal term of ω are:

ω =
Q

∏
q=1

Γ
(︁
Oq|Õq

)︁
(3.33)

40

3.2 Read-out Noise Mitigation

We can now evaluate Equation 3.25 on an arbitrary state |ψ⟩ to find the bit-flip corrected
expectation values. For all O ∈ {1, Z}⊗Q, we find:

⟨ψ|O |ψ⟩ = ∑
Õ∈{1,Z}⊗Q

ω−1
O,ÕE ⟨ψ| Õ |ψ⟩ (3.34)

Even though the generic form for the bit-flip correction of generic operators seems to
have an exponential scaling in the number of qubits, this is not true for many practical
applications. In subsection 3.2.6 we will discuss the scaling of the computational cost in
depth.

2-qubit example For the operator O = Z2 ⊗ Z1, we can derive the explicit formula that
reconstructs the quantum mechanical operator as a function of the noisy expectation values.
We use Equation 3.34 and explicitely derive:

Z2 ⊗ Z1 = 1
γ(Z2)γ(Z1)

E
(︁
Z̃2 ⊗ Z̃1

)︁
− γ(11)

γ(Z2)γ(Z1)
E
(︁
Z̃2
)︁
⊗ 11 (3.35)

− γ(12)
γ(Z2)γ(Z1)

12 ⊗ E
(︁
Z̃1
)︁
+ γ(12)γ(11)

γ(Z2)γ(Z1)
12 ⊗ 11

3.2.2. Computation of the variance for the noisy expectation value

For the computation of the variance of the noisy expectation value, we start again from a
one-qubit case and generalize the formula to arbitrary number of qubits and operators. The
variance VZ̃q of the noisy expectation value of EZ̃q in Equation 3.22 is defined as:

VZ̃q = E(Z̃q ⊗ Z̃q)− (EZ̃q)
2 = Φ′

Z̃q
(0)⊗ Φ′

Z̃q
(0)− Φ′′

Z̃q
(0) (3.36)

where the characteristic function ΦZ̃q
(t) is defined as:

ΦZ̃q
(t) := E exp

[︁
i Tr
(︁
t∗Z̃q

)︁]︁
(3.37)

We need to compute the derivatives Φ′
q(0) = iEZ̃q and Φ′′

Z̃q
(0) = −E(Z̃q)2:

Φ′
Z̃q
(0) = i(1 − pq,0 − pq,1)Zq + i(pq,1 − pq,0)1q

Φ′′
Z̃q
(0) =− (1 − pq,0 − pq,1 + 2pq,0 pq,1)Zq ⊗ Zq − (pq,0 + pq,1 − 2pq,0 pq,1)1q ⊗ 1q

(3.38)

We can now derive the variance in Equation 3.36:

VZ̃q = [(pq,0 + pq,1)(1 − pq,0 − pq,1) + 2pq,0 pq,1]× Zq ⊗ Zq

− (1 − pq,0 − pq,1)(pq,1 − pq,0)Zq ⊗ 1q

− (1 − pq,0 − pq,1)(pq,1 − pq,0)1q ⊗ Zq

+ (pq,0 + pq,1 − p2
q,0 − p2

q,1)1q ⊗ 1q

(3.39)

41

Chapter 3 Quantum Computing

We now generalize the variance to operators acting on more than one qubit, i.e., Q > 1.
We use the notion of uncorrelated measurements Equation 3.23 to demonstrate that the
covariance of two operators Õ1 and Õ2 acting on different qubits vanishes:

Cov⊗(Õ1, Õ2) := E(Õ1 ⊗ Õ2)− E(Õ1)⊗ E(Õ2) = 0 (3.40)

For the operator Z̃Q ⊗ · · · ⊗ Z̃1, the variance with respect to the noisy expectation value is:

V
(︁
Z̃Q ⊗ · · · ⊗ Z̃1

)︁
=

= E
(︁
Z̃Q ⊗ · · · ⊗ Z̃1 ⊗ Z̃Q ⊗ · · · ⊗ Z̃1

)︁
− E

(︁
Z̃Q ⊗ · · · ⊗ Z̃1

)︁
⊗ E

(︁
Z̃Q ⊗ · · · ⊗ Z̃1

)︁
= U∗

(︄
E
(︁
Z̃Q ⊗ Z̃Q

)︁
⊗ · · · ⊗ E

(︁
Z̃1 ⊗ Z̃1

)︁
−

Q⨂︂
q=1

(︁
EZ̃q ⊗ EZ̃q

)︁⎞⎠U

= U∗
(︄(︁

VZ̃Q + EZ̃Q ⊗ EZ̃Q
)︁
⊗ · · · ⊗

(︁
VZ̃1 + EZ̃1 ⊗ EZ̃1

)︁
−

Q⨂︂
q=1

(︁
EZ̃q ⊗ EZ̃q

)︁⎞⎠U

(3.41)

where the unitary operation U re-orders the tensor products from |ψQ⟩ ⊗ · · · ⊗ |ψ1⟩ ⊗ |ψQ⟩ ⊗
· · · ⊗ |ψ1⟩ to (|ψQ⟩ ⊗ |ψQ⟩)⊗ · · · ⊗ (|ψ1⟩ ⊗ |ψ1⟩).

3.2.3. Scaling analysis and classical simulator result

In this section, we explore the scaling of the absolute error of the expectation value of
different operators, simulated on classical computers, as a function of the number of shots.
We have performed these simulations on a classical wave function simulator where we
implemented only readout error. The expectation value of an operator is extracted from
the bit-flip distribution of a state. The readout error has been implemented as a distortion
of these bit-string distributions. Let us give a practical example. We want to measure the
expectation value of σz over the state |1⟩. Without any quantum noise, every measurement
would give 1 as a result. If we have a bit-flip-probability of 10%, for any measurement, we
flip the result from 1 → 0 with a probability of 10%. From the final bit-string distribution,
we extract the expectation value of the operator σz. In the limit of an infinite number of
shots, the expectation value of σz with 10% bit-flip probability would give the result of 0.9.
To give an intuitive analysis, we fix all bit-flip probabilities pq,b = p to be equal. For one
qubit, the expectation EZ̃q,defined in Equation 3.34, reduces to:

EZ̃q = (1 − 2p)Zq (3.42)

42

3.2 Read-out Noise Mitigation

Figure 3.5: Relative errors (blue dots) and standard deviations (orange triangles) for the bit-flip corrected
expectation values of ⟨ψ| Z̃Q ⊗ · · · ⊗ Z̃1 |ψ⟩, as retrieved from histogram data using Equation 3.34 compared
to the “true” bit-flip free expectation values of ⟨ψ| ZQ ⊗ · · · ⊗ Z1 |ψ⟩. Shown are the four different operators
(a) Z1, (b) Z2 ⊗ Z1, (c) Z3 ⊗ Z2 ⊗ Z1, and (d) Z4 ⊗ Z3 ⊗ Z2 ⊗ Z1. The average relative errors are fitted with
a power law in the number of shots n, y(n) ∝ nα (green lines), the slopes obtained are indicated in the different
panels. The standard deviations of the relative errors are extracted from 4096 random states |ψ⟩ and random
bit-flip probabilities pq,b uniformly drawn between 0.05 and 0.25.

For Q > 1 and equal bit-flip probabilities, the expectation value of Q different operators
(E(Z̃Q ⊗ · · · ⊗ Z̃1)) in Equation 3.34 reduces to:

E(Z̃Q ⊗ · · · ⊗ Z̃1) = (1 − 2p)Q ZQ ⊗ · · · ⊗ Z1 (3.43)

This implies that the matrix ω (defined in Equation 3.31) becomes diagonal with

E(ÕQ ⊗ · · · ⊗ Õ1) = (1 − 2p)#Z(O)OQ ⊗ · · · ⊗ O1 (3.44)

where #Z(O) is the number of terms Oq = Zq in the tensor product O = ON ⊗ · · · ⊗ O1

In particular, ω is invertible as long as p ̸= 1/2. In Figure 3.5, we show the relative
error for the bit-flip corrected expectation value of ⟨ψ| Z̃Q ⊗ · · · ⊗ Z̃1 |ψ⟩, as retrieved from
histogram data using Equation 3.34, compared to the quantum mechanical expectation value
⟨ψ| ZQ ⊗ · · · ⊗ Z1 |ψ⟩: ⃓⃓

⟨ψ| Z̃Q ⊗ · · · ⊗ Z̃1 |ψ⟩ − ⟨ψ| ZQ ⊗ · · · ⊗ Z1 |ψ⟩
⃓⃓

|⟨ψ| ZQ ⊗ · · · ⊗ Z1 |ψ⟩|
. (3.45)

43

Chapter 3 Quantum Computing

Figure 3.6: Benchmark of the scaling of the absolute error of the bit flip corrected expectation value of the
operator ZZ acting on two qubits. The values of the bit flip probabilities are p1,0 = 0.1 , p1,1 = 0.13,
p2,0 = 0.15 and p2,1 = 0.2.

|0⟩ RX(θ1) RZ(θ2) • RX(θ5)

|0⟩ RX(θ3) RZ(θ4) RX(θ6)

Figure 3.7: Quantum circuit used for the data in Figure 3.6.

We also plot the standard deviation of this relative error instead of plotting the error bars to
visualize the plot better. Figure 3.5 also contains a fit y(n) = Cn−α of the relative error in
Equation 3.45, where n is again the number of shots, i.e., the number of ⟨ψ| Z̃Q ⊗ · · · ⊗ Z̃1 |ψ⟩
evaluations to produce the histogram. In particular, the fit indicates Monte-Carlo type
convergence α ≈ 1/2 for Q ∈ {1, 2, 3, 4}. Figure 3.5 has been generated using 4096 random
states |ψ⟩ satisfying |⟨ψ| ZQ ⊗ · · · ⊗ Z1 |ψ⟩| ≥ 0.25 to avoid dividing by small numbers when
computing relative errors.

In Figure 3.6 we analyze the scaling of our routine in the context of states generated by
quantum circuits on a wave function simulator algorithm. We plot the absolute error of
the measurement of the expectation value of the operator Z2 ⊗ Z1. We prepare the state ψ

using the parametric circuit shown in Figure 3.7. The circuit is composed of six single-qubit
gates, one two-qubit operation, and allows for generating arbitrary two-qubit wave functions
starting from |00⟩. We have used different bit-flip probabilities for the two qubits. Our

44

3.2 Read-out Noise Mitigation

Figure 3.8: Scaling of the difference between the bit-flip corrected data and the values with 0 bit-flip probability
data in Figure 3.6.

results demonstrate that the absolute error of the corrected data shows a power-law decay
with an exponent of ∼ −0.5, which one would expect for the case without readout error. In
Figure 3.6 it seems that there is a constant offset between the bit-flip corrected values and
the values with 0 bit-flip probability. This offset is not constant since this is a logarithmic
plot. This offset decreases following a power-law with the power of ∼ −0.5 as shown in
Figure 3.8. The offset is zero in the limit of an infinite number of shots.

3.2.4. Noise mitigation of the noisy expectation value of generic H

In practical applications, we want to measure the energy of the ground state of a given
Hamiltonian. If we measure the distribution of |ψ⟩, the measurements of ⟨ψ|U∗OU |ψ⟩ com-
prising ⟨ψ| H |ψ⟩ are no longer independent. However, it has no impact on the expectation
subject to bit flips since the linearity of the expectation value implies:

E ⟨ψ| H̃ |ψ⟩ =E ⟨ψ|∑
α

λαU∗
αÕαUα |ψ⟩ = ⟨ψ|∑

α

λαU∗
α

(︁
EÕα

)︁
Uα |ψ⟩ , (3.46)

which is precisely the expression we would obtain from summing the independently
measured operators Õα. In order to correct for bit-flips in this setting, we need to keep in
mind that the general case requires measurements of all operators O ⪯ Oα (with respect to
the lexicographic order ⪯ on {1, Z}⊗N) for all operators Oα in H = ∑α λαU∗

αOαUα. Hence,
the histogram for ⟨ψ| H̃ |ψ⟩ does not contain sufficient information. However, we can use

45

Chapter 3 Quantum Computing

the classical bit-flip correction method to find coefficients ωα,O such that:

Oα = ∑
O⪯Oα

ωα,OEÕ (3.47)

Inserting this into H, we can express H as

H = ∑
α

λαU∗
α ∑

O⪯Oα

ωα,OEÕUα. (3.48)

In other words, we can replace the operator H by the bit-flip corrected noisy operator:

H̃bfc := ∑
α

λαU∗
α ∑

O⪯Oα

ωα,OÕUα (3.49)

and obtain

E ⟨ψ| H̃bfc |ψ⟩ = ⟨ψ| H |ψ⟩ . (3.50)

We define the variance of the expectation value with respect to the bit-flip distribution
as Vbsd. In general, if H̃ = ∑α λαU∗

αÕαUα, we are still able to predict the variance
Vbsd ⟨ψ| H̃ |ψ⟩ using the same method as above althought the covariance terms no longer
vanish (each Õα is a tensor product Õα,Q ⊗ · · · ⊗ Õα,1). For Õα,q = Z̃q, Õα,q takes one of the
possible values {Zq,−1q,1q,−Zq}. For Õα,q = 1̃q, Õα,q always takes the value 1q. Using
these replacements for all summands in H̃, we obtain that H̃ takes finitely many (up to 2N)
values Hα with probability pα. The characteristic function ΦH̃ is then given by

ΦH̃(t) :=E exp
(︁
i tr
(︁
t∗H̃

)︁)︁
= ∑

α

pα exp (i tr (t∗Hα)) . (3.51)

As such, we can directly conclude

Φ′
H̃(0) =∑

α

pαiHα = iEH̃, (3.52)

Φ′′
H̃(0) =− ∑

α

pαHα ⊗Hα, (3.53)

and find the variance operator

VbsdH̃ = Φ′
H̃(0)⊗ Φ′

H̃(0)− Φ′′
H̃(0)

=

(︄
∑
α

pαHα ⊗Hα

)︄
−
(︁
EH̃

)︁
⊗
(︁
EH̃

)︁
=

(︄
∑
α

pαHα ⊗Hα

)︄
−
(︄

∑
α,β

pα pβHα ⊗Hβ

)︄
.

(3.54)

Similarly, we can measure the operator H̃ on the state |ψ⟩ and obtain the variance

46

3.2 Read-out Noise Mitigation

Figure 3.9: Energy histograms for the transversal Ising model in light green. The vertical dashed orange line
indicates the true ground-state energy, the solid red line the prediction and the dashed black line a fit to the
data. The left column corresponds to N = 4, J = −1, h = 2, n = 2048 with (a) p = 0.05, (c) p = 0.50, and
(e) p = 0.95. The right column shows varied N, h, and n: (b) h = 1, (d) n = 256, and (f) N = 8.

Vbsd ⟨ψ| H̃ |ψ⟩ =
(︄

∑
α

pα ⟨ψ| Hα |ψ⟩2

)︄
−
(︄

∑
α,β

pα pβ ⟨ψ| Hα |ψ⟩ ⟨ψ| Hβ |ψ⟩
)︄

. (3.55)

The analysis of the bit-flip error above assumed that we measure general operators H
by expressing them as linear combinations of operators U∗OU with O ∈ {1, Z}⊗N on an
N-qubit machine, and by measuring each O independently (U being the transformation into
the Z basis).

Example for a simple Hamiltonian We are interested in measuring the expectation value
of:

HZZ =
N

∑
i=1

ZiZi+1 (3.56)

47

Chapter 3 Quantum Computing

with N = 3 qubits. We generate independent histograms for ⟨ψ|13 ⊗ Z2 ⊗ Z1 |ψ⟩, ⟨ψ| Z3 ⊗
Z2 ⊗11 |ψ⟩, and ⟨ψ| Z3 ⊗12 ⊗Z1 |ψ⟩, extract their expectation values, and recover ⟨ψ| HZZ |ψ⟩
accordingly.

Transversal Ising model We consider the transversal Ising model Hamiltonian defined as:

HTI =
N

∑
i=1

ZiZi+1 + h
N

∑
i=1

Xi (3.57)

where h is the transversal field strength. We cannot directly recover the full expectation
value ⟨ψ| HTI |ψ⟩ from measuring the distribution of |ψ⟩. However, we can compute HZZ =

∑N
i=1 ZiZi+1 that can be measured directly by using the bit-string distribution of the state

|ψ⟩, and HX = h ∑N
i=1 Xi can be measured by using h ∑N

i=1 Zi and the bit-string distribution
of the state H⊗N |ψ⟩, i.e., after applying a Hadamard gate H on each qubit. In other words,
we only have to measure two bit-string distributions instead of measuring each of the 2N
Pauli-terms separately.
In Figure 3.9 the energy histograms for the transversal Ising model are presented. We
have performed those simulations on a classical machine with equal bit-flip probability
for all qubits. The histograms are generated by the bit-flip distribution of the energy as
defined above. The expectation values are evaluated on the exact ground state (computed
via exact diagonalization). The corrected measure can be recovered from Equation 3.29
and the variance from Equation 3.55. The solid red line is the prediction of the histogram
distribution computed using Equation 3.55 and the dashed black line a fit to the data. The
two lines are almost perfectly overlapped, showing great agreement between the prediction
and the data.

This agreement shows that the correction procedure can predict both the mean energy
value and the bit-flip distribution variance. This ability to predict the exact value (mean) is
of great interest for practical applications. Let us suppose we have computed the ground
state via a variational quantum simulation, and we want to calculate the expectation value
of a specific operator on the ground state. If we know the bit-flip probabilities, we can
recover the quantum mechanical expectation value of this operator precisely and extract
physical information. It is important to note that, for non-equal bit-flip probabilities, there
is always a constant offset between the exact value and the noisy expectation value. This
constant offset would prevent the extraction of any physical values even with an infinite
number of shots.

3.2.5. Experimental results

We perform quantum simulations on IBMQ hardware to demonstrate our mitigation rou-
tine’s applicability using the Qiskit software development kit (SDK) [Qiskit Aer API doc-

48

3.2 Read-out Noise Mitigation

Figure 3.10: Bit-flip probabilities p0,0 (blue triangles) and p0,1 (orange dots) for the single qubit case measured
with the calibration procedure as a function of the repetition for (a) classically simulating ibmq_burlington with
readout error only, (b) the full noise model, and (c) data obtained on the hardware. The solid lines correspond
to the data provided by the noise model.

Figure 3.11: Bit-flip probabilities p0,0 (blue triangles) and p0,1 (orange dots) for the single qubit case measured
with the calibration procedure as a function of the repetition for (a) classically simulating ibmq_london with
readout errors only, (b) the full noise model, and (c) data obtained on the quantum hardware. The solid lines
correspond to the data provided by the noise model.

umentation and source code]. Although the Qiskit SDK provides values for the bit-flip
probabilities for the different qubits on the different chips, we choose to calibrate pq,0 and
pq,1 ourselves. To obtain pq,0, we measure the initial state using ncalibration shots and record
the number of |1⟩ outcomes. Similarly, we determine pq,1 by first applying an X gate to the
qubit q, thus preparing the state |1⟩ and measure the resulting state again ncalibration times
and record the number of 0 outcomes. We use ncalibration = 8192, which is the maximum
number of repetitions possible on the real quantum hardware for all data shown in the text.
Moreover, to acquire some statistics on how the obtained values for the bit-flip probabilities
fluctuate, we repeat this procedure multiple times. Subsequently, we average all the data
obtained for pq,b. The resulting bit-flip probabilities are the ones used for correcting the
data.

The corresponding results for the calibration of the imbq_burlington quantum hardware
are shown in Figure 3.10. The classical simulation of the chip using the noise model
produces, as expected, bit-flip probabilities in agreement with the values provided. Looking
at the data from the quantum hardware in Figure 3.10(c), we see that these fluctuate over a
wide range between different repetitions. Thus, in this case the bit-flip probabilities cannot
be extracted very reliably. The corresponding results for the calibration of the ibmq_london
quantum hardware are shown in Figure 3.11. Looking at the data resulting from simulating

49

Chapter 3 Quantum Computing

ibmq_london classically with readout noise only in Figure 3.11(a), we observe that the
bit-flip probabilities of our calibration procedure yields scatter around the value provided
by the noise model. Using the full noise model does not change the picture a lot, only the
values for p0,1 scatter slightly more around the value of the noise model, as Figure 3.11(b)
reveals. The data generated on the actual ibmq_london quantum hardware in Figure 3.11(c)
does not agree very well with the values of the noise model. Even the values for p0,0, which
does not involve a single gate, are in general lower than the value provided by the noise
model. In contrast, p0,1 exceeds the value of the noise model. Despite the fact that the values
for the experimentally obtained bit-flip probabilities deviate from the noise model, they only
fluctuate moderately and we can extract a reasonable bit-flip probability by averaging over
all repetitions. Comparing the different panels of Figure 3.11 closely, one can also observe
that the values for the bit-flip probabilities provided by the noise model in panel (c) differ
slightly from those in panel (a) and (b). The reason for that is that the data in the noise
model is updated every day and our classical simulations as well as our simulations on real
quantum hardware were not carried out the same day.

Figure 3.12: Bit-flip probabilities p0,0 (blue triangles), p0,1 (orange dots), p1,0 (green squares), p1,1 (red
diamonds) for the two-qubit case measured with the calibration procedure as a function of the repetition for (a)
classically simulating ibmq_london with readout error only, (b) the full noise model, and (c) data obtained on
the hardware. The solid lines correspond to the data provided by the noise model.

Figure 3.13: Bit-flip probabilities p0,0 (blue triangles), p0,1 (orange dots), p1,0 (green squares), p1,1 (red
diamonds) for the two-qubit case measured with the calibration procedure as a function of the repetition for (a)
classically simulating ibmq_burlington with readout error only, (b) the full noise model, and (c) data obtained
on the hardware. The solid lines correspond to the data provided by the noise model.

We show the data for extracting the bit-flip probabilities for the imbq_burlington and
ibmq_london device obtained in our two-qubit simulations in Figure 3.12 and Figure 3.13.
The bit-flip probabilities obtained from classical simulating ibmq_burlington in in Fig-

50

3.2 Read-out Noise Mitigation

chip name first 4 points full range
ibmq_london 0.460 0.298
ibmq_burlington 0.405 0.217

Table 3.1: Exponents α obtained from fitting the function Cn−α to our hardware data for the one qubit case
for the mean absolute error in Figure 3.14 after applying the correction.

ure 3.13(a) and Figure 3.13(b) show a similar picture than the previous cases. The data
show a good agreement with the values provided in the noise model. On the contrary,
the real quantum device’s data does not agree very well with the noise model’s values.
Moreover, the values for p0,0 and p0,1 show large fluctuations. In this case, the theoretical
values for the bit-flip probabilities differ between the simulator data and the hardware
data. Most noticeably, the theoretical value for p1,1 almost doubled during the time between
the classical simulations and the experiments on quantum hardware. The results for the
two-qubit case on ibmq_london show fairly similar behavior to the single-qubit case. The
classical simulations in panels (a) and (b) yield as expected good agreement with the noise
model’s values. In contrast, the data obtained on the real quantum device (Figure 3.12(c)) do
not agree with the data in the noise model, in particular for p0,1 and p1,0. Nevertheless, the
experimental data are fairly consistent and allow us to determine the bit-flip probabilities
for ibmq_london reliably. Again, we see that the theoretical values differ between the panels
in the upper row and the lower row differ noticeably. This disagreement is once more due
to the fact that the hardware data was taken on a different day than the simulator data, and
the noise model has been updated in between.

Once we have extracted the bit-flip probabilities, we can mitigate the expectation value
of quantum measurements. We begin with the one qubit case. We measure ⟨ψ| Z |ψ⟩ for
a randomly chosen |ψ⟩. Starting from the initial state |0⟩, we can prepare any state on
the Bloch sphere by first applying a rotation gate around the x-axis followed by a rotation
around the z-axis. Hence, we choose the following circuit:

|0⟩ Rx(θ0) Rz(θ1) M (3.58)

We are interested in the scaling of the absolute error, defined as:

| ⟨ψ| Z̃ |ψ⟩measured − ⟨ψ| Z |ψ⟩exact | (3.59)

The absolute error and the standard deviation of our measurements are plotted as a function
of the number of shot s. In Figure 3.14 the results for quantum simulation for the one qubit
case are presented.

Correcting for the readout error yields a significant improvement and considerably reduces
the mean and standard deviation of the absolute error. We can fit our data with a power law.
While for a small number of shots around n < 500 we observe an exponent of about 1/2,
for a larger number of measurements, the curve for the corrected result starts to flatten out,

51

Chapter 3 Quantum Computing

Figure 3.14: Mean value (dark green) and standard deviation (light green) of the absolute error in Equation 3.59
after applying the correction procedure (triangles) and without it (dots) as a function of the number of shots
nshots. The solid red line corresponds to a power law fit to all our data points for the mean absolute error, the
orange dashed line to fit including the lowest four number of shots. Different panels correspond to single-qubit
data obtained on quantum hardware (a) ibmq_london and (b) ibmq_burlington.

and the exponent obtained from the fit over the entire range is considerably smaller than
1/2 (see Table 3.1 for details). Since increasing n should decrease the inherent statistical
fluctuations of the projective measurements, and readout errors can be dealt with in our
scheme, this might indicate that in addition to readout errors, other noise sources play a
significant role. Their effects cannot be corrected with our procedure and thus dominate in
the regime of a large number of shots.

We repeat the same procedure we did previously for the one qubit experiments but
instead now we use a circuit of two qubits. Since we assume the bit-flip probabilities pq,b

(with q = 1, 2, b = 0, 1) of the qubits to be independent of each other, we apply the same
procedure that we used to obtain the bit-flip probabilities in the single-qubit case, but this
time for each qubit individually.

After the calibration procedure, we prepare a two-qubit state using the following circuit:

|0⟩ Rx(θ0) Rz(θ1) • M

|0⟩ Rx(θ2) Rz(θ3) M

where the angles θ0, θ1, θ2, θ3 are random numbers drawn uniformly from [0, 2π], and the
final CNOT gate allows for creating entanglement between the two qubits. As for the
single-qubit case, we first simulate the quantum hardware classically before carrying out our
experiments on an actual quantum device. In both cases we measure the noisy expectation
value of Z2 ⊗ Z1, E(Z̃2 ⊗ Z̃1), and apply Equation 3.36 to correct for noise caused by readout
errors. Again, we repeat the procedure for 1050 randomly chosen sets of angles and compute

52

3.2 Read-out Noise Mitigation

chip name first 4 points full range
ibmq_london 0.478 0.390
ibmq_burlington 0.105 0.047

Table 3.2: Exponents α obtained from fitting the power law Cn−α to our hardware data for the two qubit case
for the mean absolute error in Figure 3.15.

the mean and the standard deviation of the absolute error defined as:

Absolute error = | ⟨ψ| Z̃2 ⊗ Z̃1 |ψ⟩measured − ⟨ψ| Z2 ⊗ Z1 |ψ⟩exact | (3.60)

In Figure 3.15 we present the results for quantum simulations with two qubits. The
absolute error and the standard deviation of the expectation value defined in Equation 3.60
are plotted as a function of the number of shot s.

Figure 3.15: Mean value (dark green) and standard deviation (light green) of the absolute error after applying
the correction procedure (triangles) and without it (dots) as a function of the number of shots nshots. The solid
red line corresponds to a power law fit to all our data points for the mean absolute error, the orange dashed line
to fit including the lowest four number of shots. Different panels correspond to two-qubit data obtained on
quantum hardware (a) ibmq_london and (b) ibmq_burlington.

We have been able to significantly reduce the mean of the absolute error and its standard
deviation by correcting our data according to Equation 3.36. We gain a more significant
improvement in the two-qubit experiments with respect to the one-qubit experiments. In
particular, for our largest number of shots s = 8192, the mean and the standard deviation
of the absolute error are reduced by approximately one order of magnitude. A power
law again well describes the corrected data. By fitting the first 4 data points, we obtain
an exponent of 0.48. Using the entire range of n shots for the fit, the exponent only
decreases moderately to 0.39 (see also Tab. 3.2), thus showing that the readout error
has still a significant contribution to the overall error. Our results for ibmq_london in
Figure 3.15(a) show a qualitative agreement with the classical simulation. From the results
for ibmq_burlington in Figure 3.15(b), we see that the data for this chip is significantly
worse compared to ibmq_london. The mean value (standard deviation) of the absolute error

53

Chapter 3 Quantum Computing

without applying any correction procedure is roughly a factor 3 larger than the one obtained
on ibmq_london. Applying the correction procedure still yields an improvement, however,
this time it is a lot smaller than for ibmq_london, as a comparison between Figure 3.15(a)
and Figure 3.15(b) shows. While for a small number of shots, the absolute error’s mean
value after correction still shows a power-law decay, although with an exponent a lot smaller
than 1/2. For a large number of shots, this trend stops, as fits of our data reveal (see
also Tab. 3.2). This behavior is indicating that for ibmq_burlington the readout error is
not the dominant one. Also in this case, other source of errors seem to have a significant
contribution that we cannot correct for using our scheme.

3.2.6. Discussion and conclusions

This section presents a mitigation procedure that can mitigate bit-flip errors for any number
of qubits, bit flip probabilities, and any operator. The computational overhead is moderate.
Let us consider the transversal Ising Hamiltonian. The Hamiltonian, defined in Equation 3.57,
has a number of operators that grow linearly with the number of qubits. The mitigation
routine, for the term in the Hamiltonian in the Z computational basis ∝ Zi ⊗ Zi+1 and the
term in the X computational basis ∝ Xi, does not include any computational overhead
compared to the naive measurement of the expectation value of the Hamiltonian. For n-local
Hamiltonians, the individual Pauli terms do not act on all N qubits but on a given number
Q ≤ n ≤ N of qubits, independent of the total number N of qubits. For example, the Ising
model and the Heisenberg model exhibit at most two-qubit interaction terms and thus have
Q ≤ n = 2. We now need to replace each term of the Hamiltonian of the Q non-identity
Pauli matrices by up to 2Q operators for our mitigation method. For each Q ≤ n we can
estimate the total number using the upper bound ∑Q≤n (

N
Q) ≤ (n + 1)Nn. Each of the

matrices ω are triangular and can be inverted with a computational cost of O(4n), which
is constant and independent of the total number of qubits. We can put an upper bound
on the overall computational complexity that is O(Nn). This computational complexity
implies that the computational cost scales polynomially in the number of qubits N. Note
that for n-local interactions between adjacent qubits, the computational complexity gets even
further reduced, as for the transversal Ising model. Our mitigation routine also allows for
pre-processing mitigation. We can evaluate the bit-flip corrected Hamiltonian and recover
the bit-flip corrected expectation value of the original Hamiltonian instead of post-process
the data. For example, we consider the Ising Hamiltonian HZZ:

HZZ = J
N

∑
i=1

ZiZi+1 (3.61)

54

3.3 Circuit expressivity

Using the definition of the parameter γ(Oi) in Equation 3.27, we can construct the bit-flip-
corrected Hamiltonian Hcor

ZZ as:

Hcor
ZZ = J

N

∑
i=1

1
γ(Zi)γ(Zi+1)

[ZiZi+1 − γ(1i)Zi+1 − γ(1i+1)Zi + γ(1i+1)γ(1i)] (3.62)

The noisy expectation value of Hcor
ZZ with respect to the bit-flip probability is equivalent to

the expectation value of HZZ with respect to the quantum mechanical bit-flip probability.
This Hamiltonian pre-processing routine can be of great advantage to VQS simulations and
ease optimization problems.

3.3. Circuit expressivity

In variational quantum simulations and, more generally, quantum computing, it is essential
to develop quantum circuits that are as expressive as possible. With the expressivity of a
circuit, we mean the number of states it can generate. In this section, we develop a method
to study and optimize the expressivity of quantum circuits. This method aims to identify
and, in principle, remove superfluous parameters in a parametric quantum circuit. We will
present the method and show a hardware-efficient way to recognize those parameters. We
also present quantum simulations on IBMQ quantum computers that help to demonstrate
the efficiency of our method. Another great tool for building an efficient quantum circuit is
exploiting the symmetries of the system we want to study. In this section, we demonstrate
how to include, remove or use those symmetries. Variational quantum circuit are at the
center of variational quantum simulations [Peruzzo et al., 2014; McClean et al., 2016; Kandala
et al., 2017; Hempel et al., 2018; Kokail et al., 2019].

The design of an efficient quantum ansatz is fundamental for the performance of varia-
tional quantum simulations. In NISQ devices, we are limited to very little circuit depth. We
thus want to make the quantum simulations as efficient as possible regarding the number
of gates. In this regard, we want to avoid as much as possible the presence of redundant
parametric gates in our quantum circuit. The field of the design of parametric quantum
circuits is deeply studied in the literature, see [Geller, 2018; Sim et al., 2019; Bataille, 2020;
Sim et al., 2020; Rasmussen et al., 2020; Hubregtsen et al., 2020; Schuld et al., 2020; Fontana
et al., 2020; Gard et al., 2020; Barron et al., 2020; Kim et al., 2020].

For example, in [Sim et al., 2019] the authors have proposed identifying the circuit
expressivity by analyzing its ability to reach every point of the Hilbert space. The authors
of [Kim et al., 2020] have demonstrated that, with a perfect quantum computer, one over
parametrized quantum circuit can lead to an excellent approximation of ground states. This
approach’s applicability has two significant downsides in quantum computers nowadays.
First, the proposed overparameterization of the quantum circuit is unfeasible due to quantum
noise in the machines. Secondly, the number of quantum gates presented would annihilate
any quantum advantage. In this work, we focus on the minimization of parametric quantum

55

Chapter 3 Quantum Computing

gates. It is possible to develop an algebraic study of the entanglement effect of CNOT and
SWAP gates [Sim et al., 2019] and minimize the number of nonparametric gates like in
[Bataille, 2020]. We can see our work as complementary to [Bataille, 2020].

In this work we identify a quantum circuit as an operator that acts on a given initial
fixed state in the Hilbert space to identify superfluous parameters of a quantum circuit.
Thus, we can consider parametric quantum circuits as a map from the set of parameters to a
subset of the quantum device’s state space. In many cases, the set of reachable states by the
quantum circuit forms a submanifold of the quantum device’s state space. The (dimensional)
expressivity of the quantum circuit can be understood as the dimension of this manifold
of reachable states. We will also call this manifold the circuit manifold. In the ideal case
scenario, we have that the submanifold’s dimension generated by the quantum circuit is
equal to the number of parameters of the circuit.

The goal of this section is to develop a method that allows for the identification of
superfluous parameters in parametric quantum circuits. We organize this section as follows:
first, we introduce the mathematical background for the dimensional expressivity analysis
of quantum circuits. Then, we propose a hardware efficient implementation of the algorithm
and provide proof of principle demonstration of the method’s applicability with simulations
on quantum hardware. We then study how to implement symmetries of the model we are
investigating into quantum circuits.

3.3.1. Circuit manifold and dimension analysis

Given an initial state |ψ0⟩, a list of non-parametric gates, a list of parametric gates whose
parameters can be grouped in a vector θ⃗ and a certain ordering structure of those gates, we
can define a parametric quantum circuit as the map C:

C := θ⃗ →
⃓⃓⃓
ψ(θ⃗)

⟩︂
(3.63)

The map C is defined as a map from the parameter space θ⃗ to the quantum device state
space S . We can assume that the parameter space θ⃗ is a compact manifold. The compactness
property is valid for the rotational gates where the parameter space is defined in:

θ⃗ ∈ (R/2πZ)N (3.64)

Where N is the number of variational parameters. We can also assume that the state space
S is a compact manifold. Since the parametric quantum states are elements of the Hilbert
space H, S is automatically a submanifold of H. We also notice that the parametric quantum
circuit is a continuously differentiable map if the basic parametric gates we use are the set
of rotation gates {Rx, Ry, Rz}. The set of reachable states of C is a submanifold of S . We
define this manifold as the circuit manifold M. M is the image of C with respect to the

56

3.3 Circuit expressivity

domain θ⃗ defined in Equation 3.64.
One of this study’s goals is to identify and eliminate the dependent parameters in the

parametric quantum circuit, i.e., which of the parameters {θ1, . . . , θN} are not necessary to
generate M. We want to express the dependence (independence) of the parameters of the
variational circuit locally. We can achieve this by looking at the tangent space of M. The
tangent space of M is locally spanned by the tangent vectors of the map. Those vectors are
the partial derivative of the map C with respect to the parameters θ⃗: {∂1C(θ⃗), . . . , ∂NC(θ⃗)}.
A parameter θk is redundant if ∂kC(θ⃗) can be written as a linear combination of ∂jC(θ⃗)
with j ̸= k. We can construct an inductive procedure to determine which parameters are
redundant. Let us start with θ1:

– θ1 is always an independent parameter if the parametric gate on which θ1 depends is
non-trivial.

Given {θ1, . . . , θk} independent parameters we can analyze θk+1:

– θk+1 is a dependent parameter if ∂k+1C(θ⃗) is a linear combination of {∂1C(θ⃗), . . . , ∂kC(θ⃗)}

If ∂k+1C(θ⃗) is not a linear combination of {∂1C(θ⃗), . . . , ∂kC(θ⃗)}, θk+1 is not a dependent
parameter. Since the parameter space is a real space (see Equation 3.64), we need to
check the linear independence with respect to real coefficients. This procedure allows us
to identify the redundant parameters in our circuit. At this point, we can either remove
the quantum gate associated with this parameter or keep the quantum gate and keep the
parameter fixed to a constant during the optimization. If we remove a superfluous quantum
gate, we gain efficiency in the simulation. On the other hand, non-parametric gates can
help us to create and explore different circuit manifolds. For example, if we perform our
quantum expressivity analysis during a variational quantum simulation, we rather keep the
parametric gate to a fixed value and optimize the other directions rather than remove the
gate and start from scratch again. We define the real partial Jacobian Jk for {θ1, . . . , θk} as:

Jk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| |
Re ∂1C · · · Re ∂NC

| |

| |
Im ∂1C · · · Im ∂NC

| |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.65)

If Jk has full rank, all the vectors are linear independent. This means that all the parameters
are linearly independent. The computational cost of classically simulating these vectors
grows exponentially with the number of qubits. To mitigate this scaling problem, we take
the square of the matrix:

Sk := J∗k Jk (3.66)

57

Chapter 3 Quantum Computing

Sk is a k × k matrix. Sk has the same rank as Jk. It is sufficient to check the invertibility of Sk

to check the vector’s linear independence of Jk. Sk is invertible if the determinant is non
zero: det Sk ̸= 0. In the following part of the section, we explicitly show few examples of
how the dimensional analysis just introduced works.

One qubit and two independent parameters We can use these properties to check the
dependence of the k + 1th parameter with respect to the first k parameters in our inductive
procedure. The computation of the determinant of Sk is not numerically advisable, as we
will be demonstrated later in this section. This computation is challenging because we can
run almost instantly into numerical instability.

We note that Sk is a positive matrix: Sk ≥ 0. Every positive semidefinite matrix has
only positive or zero eigenvalues. We assume the first k − 1 parameters to be independent.
Therefore, we need to compute only the smallest eigenvalue of Sk to check if the determinant
of Sk is non-zero. In practical applications, we need to fix a threshold value ϵ from which
we decide that λk ≥ ϵ implies that the determinant is non zero. The value of ϵ depends on
the accuracy of the hardware.
We start the practical presentation of the procedure by applying the dimensional expressivity
analysis to a circuit composed of two parametric gates and one qubit.

C(θ⃗) = Rz(θ2)Rx(θ1) |0⟩ (3.67)

In the coordinates of the Hilbert space C2, C(θ) can be represented as:

C(θ⃗) =
(︄

cos θ1
2 cos θ2

2 − i cos θ1
2 sin θ2

2

−i sin θ1
2 cos θ2

2 + sin θ1
2 sin θ2

2

)︄
(3.68)

We can compute ∂1C and ∂2C as:

∂1C(θ⃗) =
1
2

(︄
− sin θ1

2 cos θ2
2 + i sin θ1

2 sin θ2
2

−i cos θ1
2 cos θ2

2 + cos θ1
2 sin θ2

2

)︄
(3.69)

(3.70)

∂2C(θ⃗) =
1
2

(︄
− cos θ1

2 sin θ2
2 − i cos θ1

2 cos θ2
2

i sin θ1
2 sin θ2

2 + sin θ1
2 cos θ2

2

)︄
(3.71)

We need to compute the Jacobian of the circuit C. First, we notice that, for the Jacobian to
have rank 1, there should exist two real number α and β such that:

α∂1C(θ⃗) + β∂2C(θ⃗) = 0 (3.72)

This equation has no solution for any value of θ⃗. We thus already know that the Jacobian of
C has rank two. We can still pursue the analysis to give an instructive example. Following

58

3.3 Circuit expressivity

equation Equation 3.65, we can write the Jacobian of the circuit map C as:

J2(θ⃗) =
1
2

⎛⎜⎜⎜⎜⎝
− sin θ1

2 cos θ2
2 − cos θ1

2 sin θ2
2

cos θ1
2 sin θ2

2 sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2 − cos θ1
2 cos θ2

2

− cos θ1
2 cos θ2

2 sin θ1
2 sin θ2

2

⎞⎟⎟⎟⎟⎠ (3.73)

In this formulation, we split the real and the imaginary parts as in Equation 3.65. We can
study the form of J2 for a set of values of θ⃗ = {0, 0}:

J2(0, 0) =
1
2

⎛⎜⎜⎜⎜⎝
0 0
0 0
0 −1
−1 0

⎞⎟⎟⎟⎟⎠ (3.74)

Since it is clear that the rank of J2(0, 0) is 2, we can conclude that in a neighborhood of θ⃗ =

{0, 0} the two parameters are independent. If we construct the matrix S2(θ⃗) = J∗2 (θ⃗)J2(θ⃗),
we can use the properties of sine and cosine and demonstrate, after a bit of algebra, that:

S2(θ⃗) =
1
4

(︄
1 0
0 1

)︄
(3.75)

One qubit and two dependent parameters We can now study a trivial example to illustrate
how the dimensional reduction works in a case where we can compute everything explicitly.
In this case, the parameters of the circuit are dependent. The quantum circuit we want to
study is:

C(θ⃗) = Rx(θ2)Rx(θ1) |0⟩ (3.76)

The Jacobian of the circuit is:

J2(θ⃗) =
1
2

⎛⎜⎜⎜⎜⎝
− sin θ1

2 cos θ2
2 − cos θ1

2 sin θ2
2 − cos θ1

2 sin θ2
2 − sin θ1

2 cos θ2
2

0 0
0 0

− cos θ1
2 cos θ2

2 + sin θ1
2 sin θ2

2 sin θ1
2 sin θ2

2 − cos θ1
2 cos θ2

2

⎞⎟⎟⎟⎟⎠ (3.77)

In this case it is again trivial to compute the S1 and S2 matrices. We note that:

S1(θ⃗) =
1
4

(3.78)

Since the S1 has one positive eigenvalue, as expected, the parameter θ1 is non-trivial and
independent. For θ2, the situation is different. The explicit form of S2 is:

59

Chapter 3 Quantum Computing

|0⟩ RY(θ1) RZ(θ4) • • RY(θ7) RZ(θ10) • • RY(θ13) RZ(θ16)

|0⟩ RY(θ2) RZ(θ5) • RY(θ8) RZ(θ11) • RY(θ14) RZ(θ17)

|0⟩ RY(θ3) RZ(θ6) RY(θ9) RZ(θ12) RY(θ15) RZ(θ18)

Figure 3.16: QISKIT’s EfficientSU2 2-local circuit with N = 2 for three qubits.

S2(θ⃗) =
1
4

(︄
1 1
1 1

)︄
(3.79)

S2 has eigenvalues {0, 1
2}. This means that S2 is not invertible, and θ2 does not increase

the dimension of the manifold M. We can fix the value of the parameter θ2 to a constant.
If we choose this constant to be 0, we can remove the gate associated with the parameter
θ2. This statement is true because Rx(0) = 1. We can now pass to a more instructive and
practical example.

QISKIT’s EfficientSU2 circuit analysis We analyze QISKIT’s [Abraham et al., 2019] Effi-
cientSU2 2-local circuit EfficientSU2(3, reps=N). This circuit comprises N + 1 blocks of
RY and RZ gates applied to every qubit. These blocks are alternated with N blocks containing
CNOT(q, q′) gates for all q < q′. In the definition of the method EfficientSU2(3, reps=N)

in [Qiskit Aer API documentation and source code] we can tune many parameters to the
problem one is studying. We leave all the parameters at their default value except for the
number of repetitions N. For example, setting N = 2, the method produces the circuit in
Figure 3.16.

|0⟩ RY(θ1) RZ(θ4) • • RY(θ7) RZ(θ10) • • RY(θ13)

|0⟩ RY(θ2) RZ(θ5) • RY(θ8) RZ(θ11) • RY(θ14)

|0⟩ RY(θ3) RZ(θ6) RY(θ9) RZ(θ12) RY(θ15)

Figure 3.17: Reduction of QISKIT’s EfficientSU2 2-local circuit with N ≥ 2 to a maximally expressive
circuit for three qubits using the minimal number of parameters.

From a dimension analysis of the manifolds, it is clear that there are dependent parameters
in the circuit in Figure 3.16. Let us call the number of qubits n. We need 2n+1 − 1 = 15 real
numbers to represent the Hilbert space generated by three qubits. Since we have eighteen
free parameters, we already know that three parameters are redundant, but we do not know
which ones. For an eighteen-dimensional space, a graphic representation of the matrices

60

3.3 Circuit expressivity

Sk is no longer helpful for understanding the procedure. Here we give a summary of the
results of the dimensional analysis. If we perform dimensional expressivity analysis, we
get the reduced circuit in Figure 3.17. The difference between the two circuits is that we
have just removed the last three gates. The first fifteen parameters are all independent, and
the last three are dependent. Since this circuit is maximally expressive, it can generate any
arbitrary product state. Let us suppose we want to run a Variational quantum simulation
routine.

It is often good to start VQS simulations with a random product state. Given the circuit in
Figure 3.17, it is non-trivial to generate an arbitrary product state. One would need to adjust
the first 12 parameters to have a non-entangled state. This circuit is not the only one we
can construct that is maximally expressive. We can choose any ordering of the parameters
during the dimensional expressivity analysis. If we prioritize the last parameters, i.e., in the
analysis, we first analyze the parameters {13, . . . , 18} and then the parameters {1, . . . , 12},
we get a different quantum circuit. This different circuit is shown in Figure 3.18 and has
useful features. The circuit in Figure 3.18 is still maximally expressive and allows for an
easy generation of arbitrary product states. If we set the first nine parameters to zero, the
effects of the CNOT gates are null. To generate an arbitrary product state, we have to fix the
first nine parameters to zero and tune only the last six parameters. This circuit can generate
any arbitrary product state.

|0⟩ RY(θ1) RZ(θ4) • • RY(θ7) • • RY(θ13) RZ(θ16)

|0⟩ RY(θ2) RZ(θ5) • RY(θ8) • RY(θ14) RZ(θ17)

|0⟩ RY(θ3) RZ(θ6) RY(θ9) RY(θ15) RZ(θ18)

Figure 3.18: Reduction of QISKIT’s EfficientSU2 2-local circuit with N ≥ 2 to a maximally expressive
circuit for three qubits using the minimal number of parameter but using a different ordering with respect to
Figure 3.17.

3.3.2. Efficient hardware implementation

The dimensional expressivity analysis (DEA) presented in the previous section works for
any circuit, any number of parameters, and any qubit number. On the other hand, the
practical application of this analysis is very challenging. These difficulties arise if we want
to have a classical implementation of the DEA. The classical resources required for the
application of the DEA are prohibitive. The storage of the matrix Jk requires the storage of a
number of double-precision numbers ∝ 2n+1 × k, where n is the number of qubits II. This

IIWe do not need in principle to store the whole matrix. On the other hand, if we do not store the matrix, we
would have to compute this matrix on the fly during the DEA and still have an exponential cost in the number
of qubits.

61

Chapter 3 Quantum Computing

approach is then doomed to fail in the region of about fifty qubits. We can overcome this
problem with a hybrid quantum-classical implementation of the dimensional expressivity
analysis. We propose to use the quantum computer to measure the matrix Sk = J∗k Jk as:

Sk =
1
4

(︄
Sk−1 Ak

A∗
k ck

)︄
(3.80)

The matrix Sk is a k × k matrix. The largest value of k is equal to the number of parametric
quantum gates in the quantum circuit. The magnitude of k is independent of the number
of qubits N and, in all practical applications, does not have exponential scaling. One very
common goal of quantum computing is to overcome exponential scaling of the computational
cost in the simulation of many-body quantum systems. A circuit with an exponentially large
number of parametric quantum gates still suffers from this problem and is not considered
in this work. In this section, we have only considered local operators.

The storage of the matrix Sk requires the storage of O(k2) double-precision numbers. The
invertibility of Sk can be checked classically with O(k3) CPU calls. The computations of the
matrix elements of Sk require O(k2ϵ−2) QPU calls.

The value of ϵ depends on the acceptable noise level we require for the precision in
evaluating the elements of {Sk}i,j. Thus, the overall cost is polynomial in the number of
parameters k and independent of the number of qubits. Of course, the number of parameters
necessary for a variational quantum simulation is not independent of the qubit’s number.

The more qubits we have implies that the Hilbert space we want to study is bigger,
and thus we need more parametric quantum gates to study it. We do not address this
problem deeply here. The dimension of the Hilbert space grows exponentially with the
number of qubits. Thus, to fully represent all the possible states, we need an exponentially
large number of parametric gates to cover the whole space. However, in most cases, the
representation of the whole Hilbert space is not necessary. For example, if we want to study
the ground-state properties of local Hamiltonians, we need to explore a small corner of the
Hilbert space in which we know the entanglement is small [Eisert, 2013]. In subsection 4.2.2
we give an exhaustive demonstration of this concept in the context of tensor network
simulations. This implies that, for this specific case, we do not need an exponentially large
number of quantum gates to reach a precise enough solution to our problem. Moreover,
the dimensional expressivity analysis computational cost is independent of the number of
qubits.

The matrix element of Sk are given by real part of the scalar product of the derivative of
the quantum circuit with respect to the parameters θm and θn as:

{Sk}m,n = ⟨Re ∂mC|Re ∂nC⟩+ ⟨Im ∂mC|Im ∂nC⟩ = Re ⟨∂mC|∂nC⟩ (3.81)

62

3.3 Circuit expressivity

In this analysis we suppose that the parametric gates are generalized rotations gates:

RG(θ) = e−
i
2 θG (3.82)

Where G is an hermitian operator. We can have, for example, the usual rotation gates:

Ri(θ) = e−
i
2 θσi (3.83)

or more complex two-qubit gates like the generic parameteric XXi,j gate:

Ri,j
XX(θ) = e−

i
2 θσi

xσ
j
x . (3.84)

In this case, i and j do not need to be nearest neighbor qubits. The fundamental assumption
that we make is that the derivative of the quantum circuit C with respect to those gate
rotations can be written with just one gate insertion in C:

∂C
∂θi

= γi (3.85)

γi has the same structure as C with just one more additional gate. Let us give a practical
example. If we consider the one qubit circuit:

C(θ⃗) = Rx(θ2)Ry(θ1) |0⟩ (3.86)

We can derive the circuits γi as:

γ1 = Rx(θ2)σyRy(θ1) |0⟩ (3.87)

γ2 = σxRx(θ2)Ry(θ1) |0⟩

The matrix element of Sk can thus be written as the real part of the scalar product of the
quantum circuits:

{Sk}i,j = Re
⟨︁
γi
⃓⃓
γj
⟩︁

(3.88)

Using the setup and circuit assumptions laid out above, we can measure the matrix elements
{Sk}i,j with the same number of qubits plus an ancillary qubit and insertion of controlled
gates. For example, if we consider the circuit C(θ1, θ2) defined as:

C(θ1, θ2) = RZ(θ2)RX(θ1) |0⟩ . (3.89)

We can derive γ1 and γ2 as:

γ1 = RZ(θ2)XRX(θ1) |0⟩ (3.90)

γ2 = ZRZ(θ2)RX(θ1) |0⟩ (3.91)

63

Chapter 3 Quantum Computing

In particular, we note that for all such circuits C, the diagonal elements of Sk are given by

Re ⟨∂nC, ∂nC⟩ = 1
4

. (3.92)

In order to compute Re ⟨γm, γn⟩ with m ̸= n on a quantum device, we need to construct,
as explained in [Zhao et al., 2019], the state:

|ϕm,n⟩ =
|0⟩ ⊗ |γm⟩+ |1⟩ ⊗ |γn⟩√

2
. (3.93)

The construction of this state requires an ancillary qubit and insertion of controlled gates
CGj after RGj where CGm is controlled by the ancilla being |0⟩ and CGn is controlled by the
ancilla being |1⟩. The former can be achieved using a standard “control if |1⟩” gate CGj if it
is conjugated with X gates on the ancilla, i.e., inserting XCGjX after RGj . For example, the
state |ϕ2,1⟩ for C(θ1, θ2) defined in Equation 3.89 is obtained using the following circuit:

|0⟩ RX(θ1) RZ(θ2) •

|0⟩ H • X • X

Once the state |ϕm,n⟩ is prepared, we can apply a final Hadamard gate on the ancilla. This
circuit produces the state

Hanc |ϕm,n⟩ =
|0⟩ ⊗ (|γm⟩+ |γn⟩) + |1⟩ ⊗ (|γm⟩ − |γn⟩)

2
(3.94)

and measuring the ancilla yields

p(anc = 0) =
(⟨γm|+ ⟨γn|) (|γm⟩+ |γn⟩)

4
=

1 + Re ⟨γm, γn⟩
2

(3.95)

for the ancilla being measured in |0⟩. Returning to the two gate circuit in Equation 3.89, we
obtain

Re ⟨γ2, γ1⟩ = 2p(anc = 0)− 1, (3.96)

retrieving p(anc = 0) from the circuit shown in Figure 3.19.

In general, with this procedure, we can compute the matrix Sk using O(k2ϵ−2) QPU calls.
The quantum algorithm part only requires an additional ancilla qubit to the starting qubits,
two Hadamard gates, two X gates, and two controlled gates CG depending on the specific
rotation gates RG used in the quantum circuit. Now that we know how to compute the
matrix elements of Sk, we can present the details on the implementation of the inductive
procedure on the hardware. We can see that:

64

3.3 Circuit expressivity

|0⟩ RX(θ1) RZ(θ2) •

|0⟩ H • X • X H M

Figure 3.19: Circuit to compute Re ⟨∂2C, ∂1C⟩ using an ancilla qubit (lower quantum wire) for the circuit in
Equation 3.89. The gate with the M symbol indicates the measurement procedure.

Sk =

(︄
Sk−1 Ak

A∗
k

1
4

)︄
(3.97)

with Ak defined as follow:

Ak := J∗k−1

(︄
Re ∂kC
Im ∂kC

)︄
=

⎛⎜⎜⎝
1
4 Re⟨γ1, γk⟩

...
1
4 Re⟨γk−1, γk⟩

⎞⎟⎟⎠ (3.98)

With this definition, we can state that Sk is invertible if and only if the following relation
holds:

A∗
k S−1

k−1Ak −
1
4
̸= 0 (3.99)

This is strictly true if we assume Sk − 1 to be invertible. Noting that Jk−1 has independent
columns, we conclude that the Moore-Penrose pseudo-inverseIII J+k−1 is a left-inverse of Jk−1

and satisfies

J+k−1 = S−1
k−1 J∗k−1 (3.100)

Furthermore, we obtain

A∗
k S−1

k−1Ak =

(︄
Re ∂kC
Im ∂kC

)︄∗

Jk−1 J+k−1

(︄
Re ∂kC
Im ∂kC

)︄
(3.101)

Since J+k−1 is only a left-inverse (unless in the case which will become the termination
condition of the DEA), the central Jk−1 J+k−1 will not reduce to the identity. However, if J+k−1

is a right-inverse as well, then we can write:

1
4
− A∗

k S−1
k−1Ak =

1
4
−
(︄

Re ∂kC
Im ∂kC

)︄∗(︄
Re ∂kC
Im ∂kC

)︄
=

1
4
− 1

4
⟨γk, γk⟩ = 0. (3.102)

The condition proposed in Equation 3.102 holds until the dimension of the circuit, and the

IIIThe Moore-Penrose pseudo-inverse of a matrix A is defined as a matrix A+ that satisfies AA+A = A,
A+AA+ = A+, (AA+)∗ = AA+, and (A+A)∗ = A+A.

65

Chapter 3 Quantum Computing

dimension of the image M (M is the image of C with respect to the domain θ⃗) are equal.
If, for a given k̃, the condition in Equation 3.102 is not satisfied, we also know that all the
parameters with k ≥ k̃ are also dependent parameters and can be removed (or fixed to
a constant). All operations are performed classically apart from the computation of the
expectation of 1

4 Re⟨γl , γk⟩. Both independent and redundant parameters are generated for
pedagogical reasons. We can assume that, in evaluating those matrix numbers, we make an
error of order ϵ since the matrix elements Re⟨γi, γj⟩ come from a stochastic measurement.
This means that the matrix Sk is estimated as Sk + δk. Every matrix element of δk is smaller in
absolute value than ϵ. If we choose to test Sk for invertibility by computing its eigenvalues,
then we can use the eigenvalue stability theorem:

|error(λ)| ≤ ∥δk∥F ≤ k ≤ N (3.103)

for all eigenvalues λ of Sk, where

∥T∥F :=
√︄

∑
i,j

⃓⃓
Ti,j
⃓⃓2 (3.104)

denotes the Frobenius normIV of the matrix T. This implies that we can distinguish the
smallest eigenvalue from zero. An eigenvalue λmin can be considered zero inside machine
precision if:

λmin ≤ kϵ. (3.105)

We do not need to worry about negative eigenvalues since the matrix Sk is semi-positive
definite. However, we can still confuse an eigenvalue with being non-zero instead of zero
if the tolerance ϵ is too big. We can solve this problem by increasing the precision of the
evaluation of the matrix elements Re⟨γi, γj⟩. We remind the reader that the computational
cost of the evaluation of the matrix elements at finite precision ϵ grows as O(ϵ−2). This
implies that the error scales as ∼ 1/

√
m, where m is the number of QPU calls. Since we

work on quantum computers, our method needs to be resistant to perturbations given by
the quantum device’s noise. We can have two different approaches to this study: study if a
parameter depends on the others or if it is independent of the others. For the parameter
dependence test, we need to test if det(Sk) = 0. For the parameter independence test we
need to verify if λmin > kϵ will be satisfied. This is true if we can sufficiently reduce the
noise level ϵ. Both of these tests ask whether some mathematical object is an element of a
zero-measure set. Once we introduce the quantum device’s perturbations, the probability of
positively identifying a dependent parameter as being dependent is zero. We need noise-
resistant criteria to discern if an eigenvalue is zero or not. This means that the identification

IVThe Frobenius norm is also known as the Hilbert-Schmidt norm and is sometimes called Euclidean norm.

66

3.3 Circuit expressivity

|0⟩ RZ(θ1) RX(θ2) • RZ(θ3) • RY(θ4)

|0⟩ H X • X H M

Figure 3.20: Circuit for obtaining Re⟨γ2, γ3⟩ on quantum hardware for the ansatz in Equation 3.106. The
ancillary qubit is initially put into superposition and acts as a control for the additional CNOT and CZ gates.
After applying a Hadamard again on the ancilla, a final measurement reveals the probability for the qubit to be
in state |0⟩, which is related to Re⟨γ2, γ3⟩.

criteria we deploy must discern if a value is zero or non-zero for a given level of noise. If we
do not have this criterion, we could erroneously identify parameters as dependent instead
of independent or vice-versa.

Hardware simulations To demonstrate our method’s applicability, we have tested the
algorithm proposed on different IBMQ quantum computers using QISKIT SDK [Qiskit Aer
API documentation and source code]. Given a quantum circuit C, we will compute on the
quantum hardware the matrix element {Sk}i,j inductively for any k using Equation 3.97. It
is always important to remember that S1 is non-zero for a non-trivial gate. As an instructive
example, we consider the single-qubit circuit:

C(θ1,θ2, θ3, θ4) = Ry(θ4)Rz(θ3)Rx(θ2)Rz(θ1) |0⟩ . (3.106)

The circuit in Equation 3.106 has four parameters for one qubit. The first Rz can generate
any arbitrary global phase in the quantum state. The second and the third gates generate
any rotation in the Block sphere. It is thus clear that the fourth parameter needs to be
dependent. This implies that, for our analysis, the matrix S4 must have three non-vanishing
eigenvalues and one null eigenvalue.

To check if this is indeed the case, we choose various random parameter sets (θ1, θ2, θ3, θ4),
where each angle is drawn uniformly from the interval [0, 2π), and evaluate the spectra
of the Sk matrices (note that S1 is always 1/4 and thus we do not need to measure it).
To construct the matrices Sk, we measure the vector Ak, defined in Equation 3.98, on the
quantum device. An example for a circuit allowing us to obtain one of the entries of Ak for
our ansatz in Equation 3.106 is shown in Figure 3.20. The data for the low lying spectrum of
the matrix Sk are shown in Table 3.3 and Figure 3.21. From the exact solutions, it is clear
that S4 has a vanishing eigenvalue. This implies that θ4 is a dependent parameter. This is in
agreement with the discussion above. Following the data for the exact solution in Table 3.3,
we see clearly that for the set of parameters presented in Figure 3.21(a) Figure 3.21(b) and,
Figure 3.21(c), S3 has non-vanishing eigenvalues. This is not exactly true for Figure 3.21(d).

In the plots, it seems that the smallest eigenvalue of S3 is compatible with zero. This is
not true if we look at the exact solution. The smallest eigenvalue of S3 is of order ∼ 10−3.
This magnitude is big enough to distinguish it from zero. By construction, Sk has a single

67

Chapter 3 Quantum Computing

Figure 3.21: Smallest (triangles) and second smallest (dots) eigenvalues of the matrices Sk, k ≥ 2, for the
circuit in Equation 3.106. The different panels each correspond to a different, randomly drawn parameter set
θ1, . . . , θ4. The red markers indicate the exact solution, the green colored markers indicate the results obtained
from ibmq_vigo with 1000 measurements (darkest green), 4000 measurements (green) and 8000 measurements
(lightest green). The data points for each k are slightly horizontally shifted for better visibility.

vanishing eigenvalue if and only if θk is the first redundant parameter in the circuit. Our
data also show that, apart from the parameter set close to a singular one, there is a clear
separation between the smallest and the second smallest eigenvalue for Sk, where k is greater
than 3. Hence, even if one can only resolve the spectra of the Sk matrices to a finite precision
(e.g., due to a finite number of measurements or noise on a real device), we can still resolve
the physical information we are interested in.

We can still find good agreement between the exact solutions and the simulations per-
formed on the IBMQ devices looking at the hardware data. Due to the IBMQ quantum
computer’s noise, some eigenvalues are shifted with respect to the exact solutions. We also
note that the eigenvalue’s magnitude does not show a strong dependence on the number
of shots. We can have consistent measurements already with 1000 shots. The effect of the

(a) (b) (c) (d)
s2 exact 0.250 0.250 0.250 0.250
s2 ibmq 0.247 0.243 0.248 0.242
s3 exact 0.105 0.021 0.068 0.002
s3 ibmq 0.115 0.034 0.082 0.022
s4 exact 0 0 0 0
s4 ibmq 0.022 0.018 0.012 0.007

Table 3.3: Numerical values for the smallest eigenvalues Sk matrices for the exact case and the hardware
results obtained with 8000 shots. The different columns correspond the different parameter sets shown in the
panels of Figure 3.21.

68

3.3 Circuit expressivity

Figure 3.22: Smallest (triangles) and second smallest (dots) eigenvalues of the matrices Sk, k ≥ 2, for the
circuit in Equation 3.106. The different panels correspond to a randomly drawn parameter set evaluated on the
different hardware backends ibmq_ourense (a), ibmq_santiago (b), ibmq_valencia (c), and ibmq_vigo (d). The
red markers indicate the exact solution, the green colored markers indicate the results obtained from ibmq_vigo
with 1000 measurements (darkest green), 4000 measurements (green), and 8000 measurements (lightest green).
The data points for each k are slightly horizontally shifted for better visibility.

noise is to make the identification of the redundancy of the parameter θ4 difficult. As we
can see from Table 3.3, the measurement of the value of the smallest eigenvalue of S4 is
never exactly zero. Looking at Figure 3.21(b) and Figure 3.21(d), we see that these shifts in
the spectrum might affect the determination of the redundant parameter. In Figure 3.21(d),
the shifts due to noise lead to a clear separation between the smallest eigenvalues of S3

and S4, although the parameter set chosen is close to a singular one. On the contrary, in
Figure 3.21(b), the effects of the noise cause the smallest eigenvalues of S3 and S4 to slightly
deviate from zero and become more similar (see Table 3.3). As a result, the noise in current
quantum devices might lead to misidentifying the superfluous parameter in some instances.
We will discuss the effect of misidentification later in the section. Nevertheless, considering
all our hardware results for the different parameter sets, the smallest eigenvalue of S4 is
consistently the closest to zero. Thus, despite the noise in ibmq_vigo, we can confidently
identify θ4 as a superfluous parameter.

Up to this point, we have explained the results extensively for ibmq_vigo. To assess the
DEA’s performance on different quantum hardware, we repeat the single-qubit experiment
using the circuit in Equation 3.106 for randomly drawn parameter sets on different chips.
Our results are shown in Figure 3.22 and Table 3.4. We can see only minor differences
between the four hardwares analyzed here. The data from ibmq_ourense (Figure 3.22(a)),
imbq_santiago (Figure 3.22(b)), ibmq_valencia (Figure 3.22(c)) and ibmq_vigo (Figure 3.22(d))
are in good agreement with the exact solution. Moreover, the shift of the values of the
different eigenvalues is compatible between different devices. We also see a not strong

69

Chapter 3 Quantum Computing

(a) (b) (c) (d)
s2 exact 0.250 0.250 0.250 0.250
s2 ibmq 0.245 0.238 0.238 0.242
s3 exact 0.132 0.132 0.132 0.132
s3 ibmq 0.123 0.132 0.120 0.131
s4 exact 0 0 0 0
s4 ibmq 0.024 0.022 0.017 0.014

Table 3.4: Numerical values for the smallest eigenvalues of the Sk matrices for the exact case and the hardware
results obtained with 8000 shots. The different columns correspond the different parameter sets shown in the
panels of Figure 3.22.

dependence on the number of shots. As in the previous case, It seems that we have enough
precision with just 1000 measurements. From those data, we can identify the parameter θ4

unambiguously as a redundant parameter, as we expect from the theoretical study.

EfficientSU2 quantum circuit study At this point, we can move to a more difficult (but
not necessarily more instructive) example. We want to analyze the QISKIT’s EfficientSU2

circuit. We focus on the EfficientSU2 circuit for two-qubits and one repetition, N = 1. This
circuit has 8 parameters θ1, . . . , θ8 originating from two blocks of RY and RZ rotations, with
a CNOT gate in between. The circuit EfficientSU2 is illustrated in Figure 3.23. Applying
the dimensional expressivity analysis, we find that the first 7 parameters are independent,
and the final RZ(θ8) is superfluous.

|0⟩ RY(θ1) RZ(θ3) • RY(θ5) RZ(θ7)

|0⟩ RY(θ2) RZ(θ4) RY(θ6) RZ(θ8)

Figure 3.23: EfficientSU2 circuit for two-qubits and one repetition

To check for that behavior with our algorithm, we proceed in the same way as the single-
qubit examples. We draw various random parameter sets, measure the entries of the Ak

vectors for those on quantum hardware and construct the Sk matrices from these data. An
example of the circuit used to obtain the entries of the vector Ak is given in Figure 3.24.
Afterward, we examine the spectra of the Sk matrices using a classical computer.

Our results obtained on ibmq_vigo for the low-lying spectrum of these matrices are shown
in Figure 3.25 and Table 3.5.

Focusing first on the exact results, we see that it is harder, in this case, to identify the
redundant parameter in the circuit unambiguously. While S8 has as expected a vanishing
eigenvalue for all the parameter combinations we study, Table 3.5 shows that the matrix S7

has in general a very small, but non-vanishing, eigenvalue of the order of 10−4 − 10−5. We
observe reasonable agreement in the results obtained from ibmq_vigo with the exact solution.

70

3.3 Circuit expressivity

|0⟩ RY(θ1) RZ(θ3) • • RY(θ5) RZ(θ7)

|0⟩ RY(θ2) RZ(θ4) RY(θ6) Y RZ(θ8)

|0⟩ H • X • X H M

Figure 3.24: Circuit for measuring Re⟨γ3, γ6⟩ on quantum hardware. The ancillary qubit is initially put into
superposition and acts as a control for the additional CZ and CY gates. A final measurement on the ancilla
reveals the probability for obtaining 0 which allows for obtaining Re⟨γ3, γ6⟩ according to Equation 3.95.

Compared to the single-qubit case, the dependence on the number of measurements is
slightly stronger. In general, the results deviate from the exact solution a little more (see
Table 3.5). These more severe deviations are expected for the two-qubit case. The circuits
necessary for computing the Sk matrices are deeper and contain an additional CNOT gate
compared to the single-qubit case. Consequently, our results are more affected by noise.
In particular, Figure 3.25(b) and Figure 3.25(c) reveal that noise can indeed obscure the
identification of the superfluous parameter. In those cases, the smallest eigenvalues we
obtain from the hardware data for S7 and S8 are quite small and very similar (see Table 3.5).
This can create a situation where we could misinterpret S7 as a dependent parameter. The
results for the parameter sets shown in Figure 3.25(a) and Figure 3.25(d) hint that θ8 is the
superfluous parameter, however the difference between the smallest eigenvalue of S7 and
S8 is enhanced by noise in those cases. The data obtained from ibmq_vigo still indicates
that θ8 is interdependent, but the results are a lot less precise compared to the single-qubit
experiments. This picture also does not change using different hardware backends, as
Figure 3.26 and Table 3.6 demonstrate.

Running the same randomly drawn parameter set on different quantum hardware, we
observe somewhat similar performance. While the data from ibmq_valencia in Figure 3.26(c)
seems slightly worse for the parameter set we study, none of the other backends can produce

(a) (b) (c) (d)
s5

10−4 exact 1267 1212 1955 1405
s5

10−4 ibmq 1525 1282 1544 1021
s6

10−4 exact 1.632 371.5 1496 120.9
s6

10−4 ibmq 414.0 465.3 1307 366.1
s7

10−4 exact 1.078 4.064 1.522 0.4057
s7

10−4 ibmq 256.1 242.1 263.7 257.2
s8

10−4 exact 0 0 0 0
s8

10−4 ibmq 171.9 240.7 218.5 193.2

Table 3.5: Numerical values for the smallest eigenvalues of the Sk matrices for the exact case and the hardware
results obtained with 8000 shots. The different columns correspond the different parameter sets shown in the
panels of Figure 3.25.

71

Chapter 3 Quantum Computing

Figure 3.25: Smallest (triangles) and second smallest (dots) eigenvalues of the matrices Sk, k ≥ 2, for the
EfficientSU2 circuit for two qubits and a single repetition. The different panels each correspond to a randomly
drawn parameter set θ1, . . . , θ8. The red markers indicate the exact solution, the green colored markers indicate
the results obtained from ibmq_vigo with 1000 measurements (darkest green), 4000 measurements (green)
and 8000 measurements (lightest green). The data points for each k are slightly horizontally shifted for better
visibility.

the exact solution with notably better accuracy than the others. Again, our results give a hint
that the rotation gate associated with θ8 might be superfluous, but this is not unambiguously
clear from the data, as Table 3.6 shows. Our results indicate that with the current noise levels
in NISQ devices, it might not be possible to identify the circuit’s independent parameters.
Nevertheless, as we approach the interdependent parameters, some signals in the data
might allow getting an idea of which parameters are redundant. Over-parametrization can
sometimes be beneficial in optimization problems. In [Wiersema et al., 2020] the authors

72

3.3 Circuit expressivity

Figure 3.26: Smallest (triangles) and second smallest (dots) eigenvalues of the matrices Sk for k ≥ 2. The
different panels correspond to a randomly drawn parameter set evaluated on the different chips (a) ibmq_ourense,
(b) ibmq_santiago, (c) ibmq_valencia, and (d) ibmq_vigo. The red markers indicate the exact solution, the
green colored markers indicate the results obtained from ibmq_vigo with 1000 measurements (darkest green),
4000 measurements (green) and 8000 measurements (lightest green). The data points for each k are slightly
horizontally shifted for better visibility.

have numerically observed that the optimization landscape of cost function built from
over-parametrized quantum circuits and physical Hamiltonians becomes almost convex.
However, in NISQ devices, this approach is still not feasible, and we need to use as few
quantum gates as possible to avoid being overwhelmed by the device’s noise.

73

Chapter 3 Quantum Computing

(a) (b) (c) (d)
s5

10−4 exact 1955 1955 1955 1955
s5

10−4 ibmq 1949 1877 1553 1544
s6

10−4 exact 1496 1496 1496 1496
s6

10−4 ibmq 1524 1729 1381 1307
s7

10−4 exact 1.522 1.522 1.522 1.522
s7

10−4 ibmq 484.0 379.8 483.5 263.7
s8

10−4 exact 0 0 0 0
s8

10−4 ibmq 449.2 218.2 450.7 218.5

Table 3.6: Numerical values for the smallest eigenvalues sk of the Sk matrices for the exact case and the
hardware results obtained with 8000 shots. The different columns correspond the different parameter sets
shown in the panels of Figure 3.26.

3.3.3. Implementation of physical symmetry

In this section, we study the implementation of the physical symmetries into a quantum
circuit. As already discussed in section 3.1, when we talked about a translationally invariant
quantum circuit ansatz, it is crucial to incorporate the model’s physical symmetries into
the quantum circuit we want to use. We will use the dimensional expressivity analysis
to identify the quantum gates that generate certain symmetry and remove them. This
procedure will leave us with a quantum circuit with fewer parameters but with the same
expressivity.

In many applications of quantum computing (e.g., variational quantum simulations),
the global phases of quantum states are irrelevant. Let us consider the global phase
transformation of a state |ψ⟩ for any real number θ:

|ψ⟩ → eiθ |ψ⟩ (3.107)

The quantum mechanical expectation value ⟨ψ| H |ψ⟩ is invariant under this transforma-
tion V. A maximally expressive quantum circuit allows for the generation of any state |ψ⟩
with a fixed global phase. This section wants to consider a maximally expressive quantum
circuit and remove the redundant generation of any state with a fixed global phase. The
removal of this redundant parameter is helpful, for example, for the variational quantum
simulations classical optimization routine. It reduces the parameter space that we want to
optimize classically and makes the quantum simulation more efficient.

Let us consider a generic quantum circuit C(θ). The circuit C̃(ϕ, θ) is given by C(θ) with
an additional RZ(ϕ) gate as in Figure 3.27. The insertion of the RZ(ϕ) rotation gate at the
beginning of the circuit C̃(ϕ, θ) adds a global phase to the state. RZ(ϕ) is the generator
of the symmetry we want to remove in C(θ). The quantum gate RZ(ϕ) can generate any

VGlobal phases are mathematically relevant. For example, let us consider two different quantum states |ϕ⟩
and |ρ⟩. The scalar product between these two states ⟨ϕ|ρ⟩ depends on the global phases of the two states.

74

3.3 Circuit expressivity

C(θ) = |0⟩

C(θ)
|0⟩

...
...

|0⟩

C̃(ϕ, θ) = |0⟩ RZ(ϕ)

C(θ)|0⟩
...

...
|0⟩

Figure 3.27: On the left we have a schematic representation of a variational circuit C(θ). On the right we
have a schematic representation of a variational circuit C̃(ϕ, θ) that is equivalent to the circuit C(θ) with the
insertion of a RZ(ϕ) gate before the operator C(θ).

transformation defined in Equation 3.107. The parameter ϕ is always labeled as independent
in the dimensional expressivity analysis since it is the first parameter of the circuit. We
suppose we have already performed the dimensional expressivity analysis on the circuit
C(θ) and all the parameters in C(θ) are independent. When we analyze the parameters
of C̃(ϕ, θ), either all the parameters are independent, or one parameter is dependent on ϕ.
Let us call this parameter θj. If adding RZ(ϕ) to C(θ) makes θj a dependent parameter, the
effect of θj is the generation of the global phase and can be removed.

We now formalize in a mathematically rigorous way how to identify these symmetries
and incorporate or remove them. Let us suppose we have a quantum circuit C(θ) with
θ = {θ1, . . . , θn} and the Jacobian is C′(θ). The reduced row echelon formVI for C′(θ) can be
written as: (︄

n×n

0(d−n)×n

)︄
(3.108)

where d is the real dimension of the Hilbert space. We suppose that the unwanted symmetry
we want to remove can be generated using a parametric gate U(ϕ) on some qubits to
generate a global phase (e.g., for the global phase U(ϕ) = RZ(ϕ)). Instead of analyzing C,
we may analyze C̃(ϕ, θ) given by the following circuit:

|0⟩
U(ϕ) C(θ)...

...
|0⟩

The dependence of U on ϕ should include at least one parameter ϕ0 where U(ϕ0) = 1.
This condition is necessary if the circuit U generates a symmetry. The dimension of ϕ

depends on the dimension of the group of the symmetry it generates. For example, ϕ is of
dimension one for the global symmetry generation (U(1) group) or eight-dimensional for an
SU(3) symmetry. To proceed with this analysis, we need to consider the circuit manifold’s
local properties under a transformation of a compact group. A circuit is subject to a global

VIA matrix being in row echelon form means that Gaussian elimination has operated on the rows, and
column echelon form means that Gaussian elimination has operated on the columns

75

Chapter 3 Quantum Computing

symmetry if and only if the symmetry’s action maps the circuit manifold into itself.

It is sufficient to check this property locally for a compact group. This makes the analysis
much more straightforward. We can analyze the circuit in a neighborhood of ϕ0 and
extract the global properties of the circuit. Moreover, for this case, it sufficient to check the
properties of independence on a single point to obtain independence on a neighborhood of
the point. Since we plan to use the dimensional expressivity analysis on an extended circuit
C̃(ϕ, θ), this means that it is sufficient to check for parameter independence at ϕ0 satisfying
U(ϕ0) = 1 and sufficiently many θ. Therefore, we can identify the parameters generating
a symmetry by looking at parameters that are shown as independent under dimensional
expressivity analysis for the circuit C but dependent when analyzing C̃. For simplicity,
we assume a one-dimensional symmetry again. Let us suppose that the symmetry is not
generated in the circuit U(θ). One possible outcome for the reduced row echelon form of
C̃′
(ϕ0, θ) would be: ⎛⎜⎜⎜⎜⎝

ϕ0 θ

1 0
0 n×n

0(d−n−1)×1 0(d−n−1)×n

⎞⎟⎟⎟⎟⎠ . (3.109)

for almost all of the parameters θ. If the symmetry is generated by the quantum circuit
U(θ), there exists one parameter θm such that the outcome for the reduced row echelon
form of C̃′

(ϕ0, θ) can be written as:⎛⎜⎜⎜⎜⎜⎜⎝
ϕ θ1, . . . , θm−1 θm θm+1, . . . , θn

1 0 a 0
0 b 0
0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (3.110)

where a, b, both 1, and each 0 are matrices/vectors of the appropriate dimension. a is
non-zero, and the vector b may or may not be zero. If b = 0, then θm has locally the
same effect as U. The gate corresponding to θm thus locally only contributes the unwanted
symmetry. In general, b is expected to be non-zero. In this case, the gate corresponding
to θm locally generates the unwanted symmetry. We can remove the unwanted symmetry
by setting the parameter θm to a constant value. In general, it is not possible to remove
directly the gate corresponding to the parameter θm. For example, if the dependence on θm

in the quantum circuit U is given by RY(θm)and θm = π, we would remove a Y gate from
the circuit U and modify the manyfold we are studying.

While it is not clear a priori whether or not the same θm is always responsible for the
additional symmetry, it is at least locally always true. In other words, if we find that
the mth parameter (θm) generates an unwanted symmetry at a point θ, then there exists

76

3.3 Circuit expressivity

|0⟩ RY(θ1) RZ(θ4) • • RY(θ7) RZ(θ10) • • RY(θ13)

|0⟩ RY(θ2) RZ(θ5) • RY(θ8) RZ(θ11) • RY(θ14)

|0⟩ RY(θ3) RZ(θ6) RY(θ9) RZ(θ12)

Figure 3.28: Reduction of QISKIT’s EfficientSU2 2-local circuit similar to Figure 3.17, but with removing
the option to change a global phase.

a neighborhood of θ such that the unwanted symmetry is always generated by the mth

parameter.

Example We apply this procedure to remove the global phase symmetry to the circuit
EfficientSU2(3, reps=2). The application of this analysis to EfficientSU2(3, reps=2)

at random values of θ shows that for all tested values, the parameter θ15 adds only a global
phase. This implies that we can remove the gate on which θ15 depends or set θ15 = 0. In
this case, we still have maximally expressivity for variational quantum simulations. We can
reduce the computational cost of the circuit while keeping the physical space dimension
constant. The resultant circuit is presented in Figure 3.28.

3.3.4. Translationally invariant quantum circuits and sectors

As already introduced in section 3.1, it is crucial to construct a quantum circuit embedding
the symmetries of the system that we are studying. We have shown that a translational
invariant quantum circuit performs much better when studying a translational invariant
Hamiltonian’s ground state compared to a non-translational invariant circuit. In this sub-
section, we study translational invariant circuits more rigorously. The translation operator
is also called in the literature as momentum operator. A quantum state is translationally
invariant if it is an eigenvector of the momentum operator. We denote the corresponding
eigenvalue as ω. ω must be a root of unity, i.e., for N qubits, we have ωN = 1. This
sub-section aims to be a general overview of the topic. For more detailed derivation and
demonstrations of the concepts, we refer to [Funcke et al., 2021]. The first concept we
want to present here is that the momentum operator’s eigenvalues divide the Hilbert space
into different sectors with a defined eigenvalue. The Hilbert space subspace with definite
eigenvalue is spanned by the eigenvector associated with the corresponding eigenvalue. The
subspaces are highly degenerate and are spanned by different eigenvectors. Let us define
the Hilbert space’s subspace spanned by the eigenvector ω as Eig(ω). The Hilbert space H
can be written as the direct sum of the subspace given by the momentum operator τ:

H =
⨁︂

ω

Eig(ω) (3.111)

77

Chapter 3 Quantum Computing

First, we note that, for a state |ψ⟩ to be an eigenvector of the momentum operator τ it must
hold:

τ |ψ⟩ = ω |ψ⟩ . (3.112)

For a Hilbert space defined by N qubits, it must hold:

τN = 1. (3.113)

We can understand Equation 3.113 by thinking that if we have N qubit state and we translate
it N times with τ, the state should not change. Given ω to be a root of the unity of order
d, it holds that, if d | N (“d divides N”), ω is an eigenvalue of the translation operator. To
compute efficiently the dimension of the momentum subspace defined by the eigenvalue ω

of order d, we define recursively #(d) as:

#(d) := 2d − ∑
d′|d

d′<d

#(d′) (3.114)

with #(1) = 2. We also define [#](d) as:

[#](d) :=
#(d)

d
(3.115)

With these definitions we can estimate the complex dimension dimC Eig(ω) of the eigenspace
Eig(ω):

dimC Eig(ω) = ∑
d|k|N

[#](k). (3.116)

The dimension on the real space R is given by the mapping of the degrees of freedom
from C to R. The different sectors are path-connected. This means that, given τ to be the
momentum operator, λ an eigenvalue of τ, |ϕ⟩ and |ψ⟩ two normalized eigenvectors of τ

with respect to λ, there always exist a path γ, inside the sector, such that γ(0) = |ϕ⟩ and
γ(1) = |ψ⟩. This means that we can use our dimensional expressivity analysis to check
whether we can reach any subsector’s point given a subsector and its dimension. The path
connectedness property of the different sectors ensures that, if we can generate a circuit
manifold with the same dimension and eigenvalue ω as the sector related to ω, we are
sure that we have full expressivity in this sector. All these concepts and equations are
demonstrated in [Funcke et al., 2021].

In the following part of this section we show how to compute dimC Eig(ω). We can have
a representation of the Hilbert space given by:

H := {|j⟩ ; j ∈ N0,<2Q} (3.117)

where |j⟩ denotes the tensor product state |bN(j)N−1 . . . bN(j)0⟩ if and only if bN(j) :=
bN(j)N−1 . . . bN(j)0 is the binary representation of j. For example, b3(5) = 101 with b3(5)2 =

78

3.3 Circuit expressivity

b3(5)0 = 1 and b3(5)1 = 0. The translation operator τN is defined as the linear operator
mapping H to itself and satisfying the following relation:

bN(τN(j)) := bN(j)N−2 . . . bN(j)0bN(j)N−1 (3.118)

The different ω are the eigenvalues of the operator τ. The momentum subspaces are defined
by the degenerate eigenvectors space of τ. We need the following equivalence relation on
N0,<2N to compute the dimension of each momentum sector:

j ∼N k : ⇐⇒ t ∈ N : j = τt
N(k). (3.119)

We denote the equivalence class of a element j with N qubits as [j]N . For simplicity, we will
order the elements by value, that is:

[j]N = {j0, . . . , j
N(j)−1} (3.120)

where m < n implies jm < jn. With this ordering we can define:

ωN(jn) := exp
(︃

2πi
n

N(jn)

)︃
(3.121)

which is a bijection between the elements of [j]N and the roots of unity of order N(j). This
implies that we can construct an eigenvector eN(jn) of τN for each element of each [j]N by
setting

ẽN(jn) :=
N(j)−1

∑
k=0

ωN(jn)k
⃓⃓⃓
τk

N(j0)
⟩︂

(3.122)

and

eN(jn) :=
ẽN(jn)

∥ẽN(jn)∥ℓ2(N)

. (3.123)

For example, [1]2 = {1, 2} implies e2(1) =
|01⟩+|10⟩√

2
and e2(2) =

|01⟩−|10⟩√
2

. By construction,
the eN(jn) are independent of all eN(km) if [j]N ̸= [k]N because they are linear combinations
of linearly independent sets. Furthermore, the eN(jn) are independent of the remaining
eN(jm) since they are eigenvectors of different eigenvalues of τ. In other words, we have
found a basis transformation between H and a basis of eigenvectors of τ. In particular,
we have found a complete set of eigenvectors for τ. In Appendix B we construct all the
eigenvector subspaces for N = 4 qubits explicitly. Moreover, we check that the Hilbert space
can be written as a direct sum of the different eigenspaces of the momentum operator.

79

Chapter 3 Quantum Computing

3.3.5. Discussion and conclusions

In this section, we have presented a method to analyze the expressivity of a quantum circuit.
We can use this method to design parametric quantum circuits to improve, for example,
variational quantum simulations. Since a classical implementation of the dimensional
expressivity analysis algorithm requires a prohibitive amount of resources, we have also
developed a hybrid quantum-classical implementation of the dimensional expressivity
analysis. This hardware-efficient implementation of the algorithm has a computational cost
that is feasible in near-term computations. We have tested and benchmarked our dimensional
expressivity analysis on IBMQ quantum hardware and demonstrated its applicability. We
have shown how to generate an invariant quantum circuit under a certain symmetry. Finally,
we have focused on the translational invariance symmetry. We have explicitly worked out all
the details of the dimensional expressivity analysis and explicitly showed how the Hilbert
space could be written as a direct sum of the different sectors defined by the eigenvalues of
the momentum operator.

80

Chapter 4

Phases at finite winding number of

an Abelian Lattice Gauge Theory

Quantum simulations are an up-and-coming tool to simulate quantum field theories. How-
ever, classical simulations still play a leading role in understanding lattice gauge theories
in this moment of history. In particular, in recent years, there has been a boost in the
development of tensor network methods to simulate lattice gauge theories. We refer to
[Bañuls et al., 2020] for a recent review of the field.

There is no unique approach or method to simulate lattice field theories using tensor
networks and not just one tensor network algorithm. For example, in [Bañuls et al.,
2013a] and [Bañuls et al., 2013b], the authors have successfully mapped the Swinger model
Hamiltonian into a spin Hamiltonian with long-range interaction. With the use of matrix
product states, the authors have extracted the ground state’s fundamental properties of
the theory and conducted the extrapolation to the continuum limit. Other approaches
are based on the formulation of gauge-invariant tensor networks in the quantum link
formulation. For example, in [Tschirsich et al., 2019] the authors have used the quantum
link model formulation introduced in [Chandrasekharan and Wiese, 1997] to perform quasi
(2+1) dimensional simulations of a U(1) quantum spin model. Many other works have been
published in recent years that address these topics (e.g. see [Silvi et al., 2014a; Montangero,
2018; Bruckmann et al., 2019; Tagliacozzo et al., 2014; Buyens et al., 2014; Silvi et al., 2014b]).

In this chapter, we do not analyze tensor-network algorithms that go beyond the 1+1 di-
mensional case. Very successful tensor network algorithms and ansätze in higher dimensions
are, for example, the multi-scale entanglement renormalization ansätz (MERA), projected
entangled pair states (PEPS) [Evenbly and Vidal, 2011], and the tensor renormalization
group algorithm (TRG) (see, e.g., [Levin and Nave, 2007; Evenbly and Vidal, 2015]).

In this chapter, after a brief introduction of the tensor network algorithm used for our
numerical simulations, we study the condensation phenomena associated with the stringy
excitations of an Abelian lattice gauge theory. It can be considered a generalization of the
well-known Bose-Einstein condensation in the context of scalar field theories coupled with a

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

vi =
i

Mα,β =
α

β

Ta,b,c,d =
c

a
b

d

Figure 4.1: Diagrammatic representation of different multidimentional tensors.

chemical potential. For example, in scalar and fermionic theories, one can create ultra-local
excitations. For a gauge theory, such excitations need to be closed loops that do not violate
gauge invariance. The presence of string-like excitations that can spread over the entire
lattice extent in a cylindrical geometry is also of great interest. These stringy excitations of a
gauge theory have their own interesting dynamics, which can in principle be very different
from the dynamics of point-particles in scalar theories or mesons in fermionic theories. The
goal of this study is to demonstrate the presence of the string excitations in the ground
state numerically. In scalar theories or fermionic theories, the expectation value of the
particle number operator presents discrete jumps when the chemical potential is increased
(e.g., [Bañuls et al., 2017]). When we raise the system’s density, a higher particle state may
have lower energy than the correspondent lower particle state. We expect to see this same
behavior for string-like excitations in the here considered Abelian gauge theory. Tensor
network algorithms have been chosen to simulate this model. This is motivated by the fact
that, presently, there are no other numerical methods able to give a satisfying description of
the properties of the ground state of the model at finite chemical potential.

This chapter is structured as follows: in section 4.1 we present the notation used for
the diagrammatic representation of tensors and tensor contractions introduced by Penrose
[Penrose, 1971]. In section 4.2, we present the basic concepts for understanding the matrix
product state ansätz and the density matrix renormalization group algorithm. In section 4.3,
we introduce the U(1) quantum link model Hamiltonian. We then explore the different
winding sectors of the ground state of the model in a ladder geometry at finite chemical
potential.

4.1. Tensor notation

An nth-rank tensor in m-dimensional space is a mathematical object that has n indices and
mn components. Tensors are generalizations of scalars (that have no indices), vectors (that
have exactly one index), and matrices (that have exactly two indices) to an arbitrary number
of indices. In the tensor network community, it is ubiquitous to represent tensor contraction
in a diagrammatic form. In our diagrammatic form, we denote the tensors by solid shapes
(e.g., square or circles) and tensor indices by lines emanating from these shapes. In Figure 4.1
we give an example of a vector vi, a matrix Mα,β and a four-dimensional tensor Ta,b,c,d. We
can represent tensor contraction with the following rule: connecting two index lines implies
a contraction, or summation over the connected indices. In Figure 4.2 we present the

82

4.2 Matrix product states

diagrammatic representation of the tensor contraction for a matrix-vector multiplication
(vj = kimj,i) and the tensor contraction of two indeces between a four dimentional tensor
and a three dimentional tensor (Ge,c,d = Ja,b,c,dKe,a,b). We do not explicitly write all the

vj =
ki i

mi,j
j

c

a

b

d

e

Ja,b,c,d

Ke,a,b

Ge,c,d =

Figure 4.2: Diagrammatic representation of two different tensor contractions.

indexes in the diagrams and the tensors’ names for simplicity when not necessary. We
represent the identity (in the literature it is usually called an isometry) as a black line without
a solid figure in the middle.

4.2. Matrix product states

The storage of a generic wave function of a quantum many-body system requires an
exponentially large memory to be stored. For a spin chain of spin 1/2 and length n,
we would need to store O(2n) complex numbers on the computer’s memory. Even the
biggest supercomputer in the world cannot store a generic wave function of 60 spins. This
exponential cost makes direct calculations of quantum mechanical systems unfeasible. We
define the wave function of a many-body quantum state as [Schollwöck, 2011]:

|ψ⟩ = ∑
s1,...,sn

cs1,...,sn |s1⟩ ⊗ ... ⊗ |sn⟩ (4.1)

We can define cs1,...,sn as the contraction of tensors Ai as:

cs1,...,sn = ∑
α,β, ... ,γ

A1
α,β,s1

A2
β,δ,s2

... An
γ,α,sn

(4.2)

The indexes α, β, ... , γ can be contracted to recover the tensor cs1,...,sn . This is an exact relation.
We can reduce the dimension of the tensors by reducing the dimension of the greek indexes
of the tensors A. This procedure and how to perform the truncation will be explained clearly
later in this section. We can visualize the procedure of regularization of a wave function in
Figure 4.3. On the left of the equation we have the full wavefunction and on the right the
wavefunction represented as a matrix product state.
We can now compare the number of parameters in the quantum mechanical representation of
the wave function and the matrix product state ansätz. We consider a many-body quantum
system. We denote the local Hilbert space dimension (e.g., the spin dimension if we have

83

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

=
Figure 4.3: Schematic form of the matrix product state ansätz.

a spin chain) d. The number of lattice points is n. We then have O(dn) parameters in the
wave function’s quantum mechanical representation. For the matrix product state we have
another parameter. We set the maximal dimension of the greek indexes (i.e. α, β, ...) to be
at most D (usually called bond dimension in the literature). The number of parameters in
the matrix product state ansätz is O(dnD2). The exponential scaling in the matrix product
state ansätz is hidden in the bond dimension D. We need to have an exponentially large
D to have an exact equivalence as in Figure 4.3. We can truncate this bond dimension by
fixing a smaller maximal value of D. This truncation is at the core of the matrix product
state ansätz and it can be done in an elegant and controlled fashion using the singular value
decomposition (SVD) of the tensors A. The singular value decomposition decomposes a
matrix as the product of three different matrices and highlights the matrix’s singular values.
Given a generic rectangular matrix M, it is always possible to find the matrices U, S, V such
that:

M = U S V† (4.3)

U is a matrix containing the left eigenvectors of M. Since U has orthonormal columns and
thus it is also unitary UU† = U†U = 1. S is a diagonal matrix with non-negative entries.
The diagonal elements of U are the singular values of M. The number of non-zero singular
values is the rank of M. V† is a matrix that contains the right eigenvectors of M. In the
same way as U, V† has orthonormal columns it is also unitary VV† = V†V = 1. Given a
tensor of a matrix product state Ai

α,β,si
, we can always define a rectangular matrix given

by the fusion of two indexes. For example, we can fuse the index β and si in β′ ∼ β ∗ si

such that the tensor Ai is a rectangular matrix. We can perform the SVD of this rectangular
matrix and keep only the largest singular values. Moreover, we can remove the right and
left eigenvectors of the matrix and reshape them back to the previous form. The bond
dimension of the new tensor Ai will be reduced, but the biggest contribution to the wave
function given by the biggest singular values will be kept. This is demonstrated rigorously
in [White, 1992].

4.2.1. Canonical form

We define the matrix product state by the tensors Ai. On the other hand, the set of tensors
Ai that define a generic wave function |ψ⟩ are not unique. |ψ⟩ is defined as the contraction
of the Ai tensors. Given a element of GlD(C)I M, a matrix product state is invariant under

IGlD(C) is called the general linear gruop of dimension D over C and it is the group of invertible matrices
of dimention D × D

84

4.2 Matrix product states

=

A

A†

Figure 4.4: Diagrammatic equivalence between a matrix product state contraction in the right canonical form
and an isometry.

the insertions:
Ai

α, β Ai+1
β, γ = Ai

α, β Mβ, δ M−1
δ, ξ Ai+1

ξ, γ (4.4)

We say we are fixing a gauge when we fix the matrices M such that the tensors of the MPS
satisfy certain relations (gauges) [Perez-Garcia et al., 2006]. Two particular gauges are the
so-called canonical forms. They are particularly useful when computing expectation values of
operators (e.g., the Hamiltonian H of a quantum system). These gauge conditions consist of
choosing the matrices M such that the tensors Ai satisfy the following relations:

D

∑
β=1

d

∑
s=1

(︂
A[s](i)

α, β

)︂∗
A[s](i)

β, γ = δα, γ (4.5)

and
D

∑
β=1

d

∑
s=1

A[s](i)
α, β

(︂
A[s](i)

β, γ

)︂∗
= δα, γ (4.6)

A matrix product state is in the left canonical form if it satisfies the relation in Equation 4.5.
A matrix product state is in the right canonical form if it satisfies the relation in Equation 4.6.
In Figure 4.4 we give a diagrammatic expression of Equation 4.6. We also present a very
useful notation introduced by [Vidal, 2003] that highlights the singular values of a matrix
product state’s matrix. We can write the wave function |ψ⟩ as:

|ψ⟩ = ∑
s1, ... , sN

Us1 S1Us2 S2 ... SN−1UsN |s1, ... , sN⟩ (4.7)

where we have at each site i a set of d matrices Ui if size D2 and on each bond between two
different sites a diagonal matrices Si. The connection between the matrices A defined in
Equation 4.2 and the matrices U and S in Equation 4.7 is given by the following relation:

Ai
α,β,si

= [Usi−1]α,α [Si]α,β . (4.8)

85

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

Usually, during the SVD, we only keep the non-zero elements of Usi−1 . This is an elegant
way to regularize and reduce the dimension of the states in the wave function that we are
studying.

4.2.2. Von-Neumann entropy in the MPS formalism

Entanglement plays a central role in the study of strongly correlated quantum systems since
a highly entangled ground state is at the heart of a large variety of collective quantum phe-
nomena [Osborne and Nielsen, 2002]. Quantum phase transitions occur at zero temperature
and involve the appearance of long-range correlations. These correlations are not due to
thermal fluctuations but to the intricate structure of a strongly entangled ground state of
the system. For several 1D spin chain models both near and at the quantum critical regimes,
the entanglement obeys universal scaling laws as dictated by the representations of the
conformal group and its classification motivated by string theory [Calabrese and Cardy,
2009].

With a deep scaling analysis of the entanglement entropy, we can extract the central
charge associated with the conformal theory that describes the universal properties of the
quantum phase transition [Vidal et al., 2003]. Let us suppose we have a random state in a
Hilbert space. We can cut the volume in two and compute their entanglement entropy. If
we vary the system’s volume, the entanglement entropy grows with the system’s volume
(volume law). There is one special class of state that does not follow this law. Ground states
of gapped and local Hamiltonians follow an area law. In this case, the entanglement entropy
increases proportionally with the area of the cut [Eisert et al., 2010]. A rigorous proof of
the area law in 1+1 dimensions is given in [Hastings, 2007]. Therefore, the entanglement
entropy of the ground state of a 1+1 dimensional gapped Hamiltonian does not depend on
the volume and can be approximated by a constant.

We now describe how to compute the entanglement entropy in the matrix product state
formalism where the von Neumann entropy is easily accessible. We also show how the bond
dimension D of a matrix product state naturally induces an upper limit of the maximal
entanglement entropy S of a matrix product state (S = O(log2 D)).

Let us suppose we have the ground state of a gapped model on a lattice Λ described by
the density matrix ρ. The von Neumann entropy is defined as:

S(ρ) = −Tr(ρ log(ρ)) (4.9)

At zero temperature, the entropy of the ground state is zero for any gapped Hamiltonian
[Eisert et al., 2010]. We can not state this for a subset of the system. We define a subset A of
Λ such that B := Λ/A. We define the reduced density matrix of the sub-system as:

ρA = TrB(ρ) (4.10)

86

4.2 Matrix product states

We define the von-Neumann entropy of the subsystem A as:

S(ρA) = −Tr(ρA log(ρA)) (4.11)

The entropy S(ρA) is null if the subsystems A and B are product states. This is not true
if there are quantum correlations between A and B. Quantum correlations can lead to
non-vanishing values of S(ρA). The von-Neumann entropy is also called entanglement
entropy. For any partition A and B of the Hilbert space in which |ψ⟩ is defined, it is always
possible to write:

|ψ⟩ = ∑
α, β

cα, β |α⟩A |β⟩B . (4.12)

This decomposition is also called the Schmidt decomposition of the wave function |ψ⟩. If
we perform a singular value decomposition of the matrix c in Equation 4.12, we can write:

|ψ⟩ = ∑
α, β

∑
sa

Uα, sa Ssa, sa V
†
sa, β |α⟩A |β⟩B . (4.13)

We can absorb U and V in A and B due to their orthonormality in those spaces and write:

|ψ⟩ = ∑
sa

sa
⃓⃓
α′⟩︁

A

⃓⃓
β′⟩︁

B (4.14)

In this decomposition it is trivial to derive the reduced density matrix for the sub-system A
in Equation 4.10:

ρA = ∑
sa

s2
a
(︁⃓⃓

α′⟩︁ ⟨︁α′ ⃓⃓)︁
A (4.15)

We consider a spin chain of local physical dimension d and N sites described by a MPS in
the left canonical form. The density matrix ρ is defined as:

ρ =
d

∑
s1, ... ,sN

d

∑
s′1, ... ,s′N

Tr
[︂

M1, s1, s′1 M2, s2, s′2 ... MN, sN , s′N
]︂
|s1, ... , sN⟩

⟨︁
s′1, ... , s′N

⃓⃓
(4.16)

where:
Mi, si , s′i = A[si](i) ⊗

(︂
A[s′i](i)

)︂†
. (4.17)

Now let us partition the system into two subsystems A and B. A includes all sites up to l
and B its complement. We can always rewrite a MPS in the form of Equation 4.7. From this
form, it is trivial to derive the von-Neumann entanglement entropy. If we define:

|α⟩A = ∑
s1, ... , sl

Us1 S1Us2 S2 ... Sl−1Usl |s1, ... , sl⟩ , (4.18)

|α⟩B = ∑
s1, ... , sN

Usl+1 Sl+1Usl+2 Sl+2 ... UsN SN |sl+1, ... , sN⟩ . (4.19)

87

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

Figure 4.5: Schematic form of matrix product operator

We can derive the reduced density matrix ρA as:

ρA = ∑
sa

s2
a (|α⟩ ⟨α|)A = ∑

a
(Sl)

2
a, a (|α⟩ ⟨α|)A (4.20)

where (Sl)a, a are the singular values of a matrix product state’s matrices. Since we have the
coefficients of the reduced density matrix ρA, we can compute the von-Neumann entropy
as:

S(ρA) = −Tr(ρA log2(ρA)) = −∑
a
(Sl)

2
a, a log2 (Sl)

2
a, a . (4.21)

From Equation 4.24 we can derive that, in a matrix product state, the maximal entanglement
entropy of the ansätz state is S(ρA) = O(log2 D). We want to stress here that this quantity
is trivially computable for a matrix product state.

4.2.3. Matrix product operator

Any operator Ô in a finite Hilbert space can be written, in the same fashion as the wave
function in Equation 4.1, in the form:

Ô = ∑
s′1, ... ,s′N , s1, ... ,sN

cs′1, ... ,s′N , s1, ... ,sN

⃓⃓
s′1, ... , s′N

⟩︁
⟨s1, ... , sN | (4.22)

Given this definition, we can apply the same tools used to derive the matrix product state
ansätz to derive the matrix product operator (MPO) associated with the operator Ô. The
matrix product operator formalism redefines the coefficients cs′1, ... ,s′N , s1, ... ,sN

as the contraction
of different matrices Mi, such that:

cs′1, ... ,s′N , s1, ... ,sN
= ∑

α,β, ... ,γ
M1

α,β,s′1,s1
M1

α,β,s′2,s2
... MN

α,β,s′N ,sN
(4.23)

We show the diagrammatic form of a matrix product operator in Figure 4.5 From this
definition we can define the matrix product operator correspondent to the operator Ô as:

Ô = ∑
s′1, ... ,s′N , s1, ... ,sN

∑
α,β, ... ,γ

M1
α,β,s′1,s1

M1
α,β,s′2,s2

... MN
α,β,s′N ,sN

⃓⃓
s′1, ... , s′N

⟩︁
⟨s1, ... , sN | (4.24)

88

4.2 Matrix product states

At this point, the definition of the MPO ansätz of Ô is equivalent to the quantum mechanical
operator Ô. This means that the computational cost of generating the matrices Mi is still
exponential in the volume. We can apply the same tools to reduce the dimension of the
greek indexes α, β, ... , γ. We can apply a singular value decomposition to every tensor Mi

and only keep the tensor’s non-zero singular values. This procedure, although formally
correct, is impossible to apply to practical cases due to the exponential cost in the storage of
the tensor cs′1, ... ,s′N , s1, ... ,sN

. Usually, at least for local Hamiltonians, we can write the MPO of
a Hamiltonian in a very concise way. We now give a practical example. We consider a spin
1/2 chain with the following Hamiltonian:

H =
N−1

∑
i=1

Jxσx
i σx

i+1 + Jyσ
y
i σ

y
i+1 + Jzσz

i σz
i+1 +

N

∑
i=1

hzσz
i (4.25)

where σi and σj are the Pauli matrices. The Hamiltonian in Equation 4.25 is an abbreviation.
It is common to omit the tensor product of every term of the Hamiltonian with the identity
for any site of the system. For example, σx

i σx
i+1 stands for 11 ⊗ 12 · · · ⊗ 1i−1 ⊗ σx

i ⊗ σx
i+1 ⊗

1i+2 · · · ⊗ 1N . We need to include all the identity matrices in the matrix product operator.
We can easly and explicitely derive all the matrix M for this Hamiltonian:

M1 =
[︂

hzσz Jxσx Jyσy Jzσz 1

]︂
(4.26)

MN =

⎡⎢⎢⎢⎢⎢⎢⎣
1

σx

σy

σz

hzσz

⎤⎥⎥⎥⎥⎥⎥⎦ (4.27)

Mi =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
σx 0 0 0 0
σy 0 0 0 0
σz 0 0 0 0
hzσz Jxσx Jyσy Jzσz 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.28)

This Hamiltonian has a lot of physical applications, and we can use the same procedure for
constructing the MPO of the local Hamiltonian.
Let us consider an operator Ô in the matrix product operator form and a many-body
quantum state |ψ⟩ in the matrix product state formalism. We want to compute the quantum
mechanical expectation value of the operator Ô over the wave function |ψ⟩. This expectation
value can be computed very efficiently in the tensor network formalism. A diagrammatic

89

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

Figure 4.6: Schematic form of the expectation value of an operator Ô in the matrix product operator form and
a many body quantum state |ψ⟩ in the matrix product state form.

form of the expectation value is Figure 4.6. There is a very efficient way to contract all the
network in such a way to have minimal computational cost. For the contraction, we start
from the very first tensor of the MPS A1, and we contract it with the first tensor of M1 such
that A1M1 = [AM]1. We then contract the tensor [AM]1 with the tensor

[︁
A1]︁† and we get

the tensor
[︁
AMA†]︁1. We then contract the tensor

[︁
AMA†]︁1 with A2, then the resulting with

M2 and finally with
[︁
A2]︁†. We continue with this pattern until site N. A schematic diagram

of the efficient contraction is presented in Figure 4.7. To estimate the computational cost
of this procedure, we again define the system’s parameters. We consider the model with
open boundary conditions. The matrix product state’s bond dimension is at most D. The
bond dimension of the matrix product operator is at most D′. The local dimension of the
Hilbert space is d (two for a spin 1/2 chain). The number of lattice points is N. This type of
contraction is very efficient, and the numerical cost is O(D3D′2d2N). Usually, D is much
larger than the other parameters. If we consider periodic boundary conditions (which will
no be studied in this work), the computational cost is O(D5).

A1

→

A1

M1 →

A1

M1

[︁
A1]︁†

→

A1

M1

[︁
A1]︁†

A2

. . .

Figure 4.7: Efficient tensor contraction between a matrix product states and a matrix product operator.

4.2.4. Density matrix renormalization group

We can use the matrix product state as a variational ansätz for the computation of the
ground state (lowest eigenvalue) of a given Hamiltonian H. We can do this minimization
at finite volume and zero temperature. In the literature, the most used variational mini-
mization algorithm for the optimization of matrix product states is called the density matrix

90

4.2 Matrix product states

Li−1 = Ri+1 =

Figure 4.8: Diagrammatic scheme of the left and right tensor environment.

renormalization group (DMRG). Steven White firstly introduced it in [White, 1992]. At
finite volume and for gapped Hamiltonians, the ground state is unique. This means that
the minimum of the energy corresponds to the system’s ground state. Having access to the
ground state wave function (even if somehow truncated) is of great interest for physical
(and, e.g., chemical) applications. From the ground state of a system, we can extract many
fundamental physical properties of the system.

The problem we want to solve is a minimization problem. The tensor Ai contain the
variational parameters of our minimization. The DMRG algorithm is based on local opti-
mizations. In most cases, we observe exponential convergence of the energy as a function of
the bond dimension. We consider the one-site DMRG, where we update the tensors Ai one
by one. To illustrate the algorithm, we first consider the update of one tensor Ai at site i, for
a generic i. If we consider the expectation value ⟨ψ| H |ψ⟩ represented in Figure 4.6, we can
fix all the tensors Aj ̸=i to a constant and minimize the expectation value of the energy with
respect to the tensor Ai. The expectation value of the energy is given by:

E =
⟨ψ| H |ψ⟩
⟨ψ|ψ⟩ (4.29)

where E depends on the variational tensor Ai. The problem we want to solve is to find the
minimum λ such that:

⟨ψ| H |ψ⟩ = λ ⟨ψ|ψ⟩ (4.30)

For an efficient implementation of the algorithm, we need to build what are called in the
tensor network language the left environment (Li−1) and the right environment (Ri+1). The
left environment is given by the contraction between all the tensor Aj up to site i − 1 with
the MPO tensors Mj and

[︁
Aj]︁†. Figure 4.7 explains how to perform the contraction starting

from the left bond. We can perform the same kind of contraction starting from the right
bond (i.e., from site N to site i + 1). A diagrammatic form of the left and right environment
is shown in Figure 4.8. We can represent the left part of Equation 4.30 as a contraction
between the left environment, the tensor Ai, the tensor Mi, and the right environment. We
impose the tensors Aj to be in the left gauge form for j < i and in the right gauge from
for j > i. It is always possible to impose these conditions when we have open boundary

91

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

conditions. We can map the optimization problem of the tensor Ai into a minimization
problem of the map represented in Figure 4.9. This minimization problem can be solved

Ai

→ Li−1 Ri+1

[︁
Ai]︁†

Mi

Figure 4.9: Diagrammatic scheme of the Linear map induced by the minimization of the expectation value of
the Hamiltonian. This is the most important step in the DMRG algorithm.

using the Lanczos method [Lanczos, 1950]. Now that we have a way to update the tensor
Ai, we can sweep through all tensors A until convergence. The algorithm works as follows:

– 1) Start from site 1 with a MPS in the right gauge form

– 2) Apply the update procedure

– 3) Transform A1 in the left gauge form

– 4) Compute L1 and R3

– 5) proceed to update the A2

– 6) Apply the same procedure until you reach the site N

– 7) Transform AN into the right gauge and update the left environment.

– 8) Update AN−1 and continue until site 1.

When the energy, after one full update of all tensors from left to right (or right to left), do
not change up to a small factor (in our numerical simulations, we usually fix the tolerance
to 10−10), we can say we have converged. When we reach convergence, you have the energy
of the ground state and the ground state wave function. We can use the ground state wave
function to compute any local observable expectation value we are interested in and extract
physical quantities.

4.3. Winding number sectors analysis in the U(1) quantum link

model

The wave functions of gauge theories are members of continuous groups and have infinite-
dimensional Hilbert space, even at finite volume. Quantum link models regulate these

92

4.3 Winding number sectors analysis in the U(1) quantum link model

ux,µ

ux+µ̂,ν

u†
x+ν̂,µ

u†
x,ν

Figure 4.10: Classical plaquette representation

infinite-dimensional Hilbert spaces while maintaining exact gauge invariance [Horn, 1981;
Orland and Rohrlich, 1990; Chandrasekharan and Wiese, 1997]. In [Brower et al., 1999] the
authors have developed the quantum link model framework for an SU(N) gauge symmetry
and provide a non-perturbative formulation of QCD using the domain wall formulation
introduced in [Kaplan, 1992]. The U(1) quantum link model was proposed in [Rokhsar and
Kivelson, 1988] on a two-dimensional square lattice in what is called a "Quantum Dimer
Model". This model aims at understanding quantum states or phases, which can give rise to
high-temperature superconductivity. The authors of [Zheng and Sachdev, 1989; Read and
Sachdev, 1990] showed that a dual theory to the U(1) quantum link model was essentially
identical to models obtained from a semiclassical theory of the quantum fluctuations of the
Neel order.

As we will show, quantum link models are different from their Wilsonian counterparts in
terms of how the gauge-invariant Hilbert space is regulated. While a Wilson-type abelian
gauge theory has an infinite-dimensional Hilbert space for every link, the quantum link
models regulate this infinite-dimensional Hilbert space in a completely gauge-invariant
fashion. The resulting finite-dimensional Hilbert space has size (2S + 1), where S =

1/2, 1, 3/2, ..., and the Wilsonian theory can be obtained when S → ∞ [Schlittgen and Wiese,
2001]. The following sub-section defines the U(1) quantum link model hamiltonian at zero
temperature and finite volume. We then explore the winding number sectors structure of
the ground state numerically. We also find a correlation between the flippability of the
plaquettes and the transition point of different winding sectors.

4.3.1. U(1) quantum link model

The model we choose to explore these phenomena is the U(1) quantum link model (QLM),
which is the simplest U(1) lattice gauge theory in (2+1)-dimensions. To understand the
claim of being the simplest, let us consider the standard Wilson-type lattice gauge theory.
This theory uses a U(1) phase variable as a parallel transporter between two sites x and y,

93

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

associated with each link x, µ:

ux,µ = eiφx,µ = cos
(︁

φx,µ
)︁
+ i sin

(︁
φx,µ

)︁
(4.31)

We define the plaquette action as:

f□ = ux,µux+µ̂,νu†
x+ν̂,µu†

x,ν (4.32)

A schematic representation of the plaquette is presented in Figure 4.10. The plaquettes
can be completely space-like, giving the magnetic field energy B. The plaquettes can be
time-like (one space direction and one time direction), giving the electric field energy (in
the continuum limit, the action is thus E2 + B2). The classical lattice action is given by:

S[u] = −1
2 ∑

□

(f□ + f †
□) + k(f□ + f †

□)
2 (4.33)

where ∑□ denotes the sum over all plaquettes. The k-term is an adjoint term. Terms like this
for the U(1) lattice gauge theory were explored in the early days of lattice field theory in the
Wilson formulation [Bhanot and Creutz, 1981]. These are typically higher representations of
the fundamental representation. Such terms are useful to explore new phases, as well as to
decrease cut-off effects when approaching the continuum limit. The action S[u] is invariant
under the U(1) transformation:

ux,µ → eiαx ux,µ e−iαx+µ̂ (4.34)

We now construct the quantum counterpart of the standard U(1) gauge theory action. We
want to replace the classical action with a quantum Hamilton operator.

H = −J ∑
□

(U□ + U†
□) + λ(U□ + U†

□)
2 (4.35)

where we have defined the plaquette operator U□ as:

U□ = Ux,µUx+µ̂,νU†
x+ν̂,µU†

x,ν (4.36)

U, U† are operators that act on the Hilbert space. There are three operators associated
with every link: U, U†, and E. These operators are not yet identified. The coupling λ in
Equation 4.62 is also called in the literature the Rokhsar-Kivelson (RK) coupling. Here the
operators U, U†, and E are operators acting on a Hilbert space and not a c-numbers, like
ux,µ. We can decompose Ux,µ as:

Ux,µ = Cx,µ + iSx,µ (4.37)

94

4.3 Winding number sectors analysis in the U(1) quantum link model

where C and S are Hermitian operators. U† can be decomposed as:

U†
x,µ = Cx,µ − iSx,µ (4.38)

We denote the infinitesimal Gauge transformation operator as Gx. The quantum link
model’s gauge symmetry requires that the Hamiltonian commutes with the generators Gx of
infinitesimal gauge transformations at each lattice site. The gauge invariance requirements
induce the following commutation relations, as demonstrated in [Chandrasekharan and
Wiese, 1997]:

[Ex,µ, Uy,ν] = Ux,µδµ,νδx,y (4.39)

[Ex,µ, U†
y,ν] = U†

x,µδµ,νδx,y (4.40)

[Ux,µ, U†
y,ν] = 2Ex,µδµ,νδx,y (4.41)

(4.42)

A representation of the operators C, S, E and G that satisfies these commutation relations is:

Ex,µ = S3
x,µ (4.43)

Cx,µ = S1
x,µ (4.44)

Sx,µ = S2
x,µ (4.45)

Gx = ∑
µ

(︁
Ex−µ̂,µ − Ex,µ

)︁
= ∑

µ

(︂
S3

x−µ̂,µ − S3
x,µ

)︂
(4.46)

where the Si
x,µ operators follow the angular momentum commutation relations:[︂

Si
x,µ , Sj

y,ν

]︂
= iδx,yδµ,νϵi,j,kSx

x,µ (4.47)

We can realize these commutation relations with any representation of SU(2). The local
Hilbert space formed by the link passes to be from infinite-dimensional to two-dimensional.
We can recover the original theory with the limit of the local spin to infinity, as shown
in [Schlittgen and Wiese, 2001]. For simplicity in the numerical simulations and having
quantum simulations in our mind, we choose the spin 1/2 representation of the link and the
Pauli matrices as a representation of those matrices. We can then identify S1 = σx, S2 = σy

95

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

⟲

|□1⟩

⟳

|□2⟩

Figure 4.11: Schematic representation of the Plaquette states |□1⟩ and |□2⟩.

and S3 = σz. The operators Ux,µ and U†
x,µ are given by:

Ux,µ = Sx
x,µ + iSy

x,µ = S+
x,µ (4.48)

U†
x,µ = Sx

x,µ − iSy
x,µ = S−

x,µ (4.49)

The system’s Hamiltonian is invariant under any gauge transformation of the U(1) group.
The following commutation relation ensures this invariance:

[H , Gx] = 0 (4.50)

Since the two operators commute, the states in the Hilbert space can be characterized by the
eigenstates of the operator Gx. This naturally divides the Hilbert space into different sectors.
The gauge invariance restricts the sector of physical states to be in the eigenspace of states
with 0 eigenvalues with respect to G. This means that any physical state |Ψ⟩ must obey the
relation:

Gx |Ψ⟩ = 0 (4.51)

Thus, we can identify the eigenvalues of the operator S3
x,µ as the electric fluxes associated

with the links. We can make this identification because Gauss’s law requires that the fluxes
associated with links emanating from the same lattice point add up to zero. These electric
fluxes, being the eigenvalues of S3 can only be ±1/2. Thus, contrary to ordinary lattice
gauge theories, the Hilbert space of a quantum link model is finite (on a finite lattice).

Flippability of the plaquettes We now consider all the possible states that one plaquette
can have. In our quantum link model, since a plaquette is formed by four different spins
1/2, the number of states is nstates = 24 = 16.

When we act on a generic plaquette state |ψ⟩ with the plaquette operator U□, only two
states are left. This is an effect of the regularization of the Hilbert space. In the quantum

96

4.3 Winding number sectors analysis in the U(1) quantum link model

link model we consider, the plaquette operator comprises raising and lowering operators
in a finite Hilbert space (S+ and S−). To describe the action of the plaquette operator on a
generic state, we start by focusing on a simple link. We have chosen a representation of the
spin 1/2 link. The two basis states are |↑⟩ and |↓⟩. If the link is in the state |↑⟩, the state is
annihilated by the raising operator S+. The state |↓⟩ is transformed in the state |↑⟩ by the
raising operator. The operator S− acts accordingly.

The plaquette operators U□ and U†
□ are composed by the combination of four different

raising and lowering operators:

U□ = S+
x,µS+

x+µ̂,νS−
x+ν̂,µS−

x,ν (4.52)

U†
□ = S−

x,µS−
x+µ̂,νS+

x+ν̂,µS+
x,ν (4.53)

In our representation, a plaquette can be any combination of the four different spins that
compose the plaquette (e.g., |↓↓↓↑⟩).

Between all the possible 16 states that a plaquette can have, only two are not annihilated
by the action of the U□ and U†

□ operators. The two possible states are: |□1⟩ and |□2⟩. To
give a schematic representation of these two states, we consider a gauge link starting from
the node x in the µ̂ direction. We represent the link as an arrow pointing in the µ̂ direction
if the expectation value of σz on the state is +1 (|↑⟩). We represent the link as an arrow
pointing in the −µ̂ direction if the expectation value of σz on the state is −1(|↓⟩). We define
|□1⟩ as the classical state in which the plaquette state has a clockwise orientation(|↑↑↓↓⟩).
We define |□2⟩ as the classical state in which the plaquette state has a counter-clockwise
orientation (|↓↓↑↑⟩). The operator U□ acts on the two states as:

U†
□ |□1⟩ = |□2⟩ (4.54)

U□ |□2⟩ = |□1⟩ (4.55)

Those two states are the only flippable states. We define the flippability operator Oflipp
II

Oflipp = ∑
□

(U□ + U†
□)

2 = ∑
□

(U□U†
□ + U†

□U□) (4.56)

The operator Oflipp counts the flippable plaquette states in a given configuration. The
operator Oflipp acts on the two flippable states as:

Oflipp |□1⟩ = |□1⟩ (4.57)

Oflipp |□2⟩ = |□2⟩ (4.58)

All the other possible states are annihilated by Oflipp.

IIThe operator Oflipp coincides with the quadratic term in the plaquette operator in the Hamiltonian H.

97

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

Figure 4.12: Phase diagram of the U(1) quantum link model at finite temperature adapted from [Banerjee
et al., 2013].

Chemical potential In 2+1 dimensions and on a finite lattice of spatial dimension Lx × Ly,
we define the point in the space x defined before as a couple (x, y) and the directions of the
link to be µ ∈ {x, y}. In addition to the U(1) gauge symmetry, the Hamiltonian also has the
point group symmetries (translation, rotation, and parity). The Hamiltonian is invariant
under the charge conjugation symmetry (Z2). The Hamiltonian also has a winding number
symmetry (U(1)⊗ U(1)) corresponding to the two spatial directions. The generator of this
symmetry are the operators:

Wx =
1
Lx

Lx

∑
x

Ly

∑
y

S3
(x,y),x̂ (4.59)

for the x direction and

Wy =
1
Ly

Lx

∑
x

Ly

∑
y

S3
(x,y),ŷ (4.60)

for the y direction. The generators of this symmetry commute with the Hamiltonian:

[H , Wx] =
[︁
H , Wy

]︁
= 0 (4.61)

As for Gauss’s law, we can simultaneously diagonalize H, Wy and Wx. We can add these
terms to the Hamiltonian and explore the different phases of the phase space as a function
of the couplings µx and µy:

H′ = −J ∑
□

(U□ + U†
□) + λ(U□ + U†

□)
2 + µx ∑

x
Wx + µy ∑

y
Wy (4.62)

Since Wx and Wy are good quantum numbers, the energy eigenstate is also a winding
number eigenstate. We can call the couplings µx and µy chemical potentials in the sense

98

4.3 Winding number sectors analysis in the U(1) quantum link model

→

Figure 4.13: Mapping the local degrees of freedom(four spin 1/2 of dimension 2) into a single spin (of dimension
16).

that they are conjugate to a conserved quantity, in analogy with the chemical potential in
fermionic and scalar systems. The operators Wx and Wy allow for the formation of stringy
excitations that spread over the lattice. Moreover, in analogy with the particle number
operators in fermionic and scalar theories, the ground state energy is given by:

EGS = EH − µx Nx − µyNy (4.63)

where we have introduce Nx and Ny as the expectation value of Wx and Wy on the ground
state respectively. We call Nx and Ny the winding numbers of the state.

Phase diagram At zero temperature and zero chemical potential, the model undergoes a
phase transition for J = 1 and λ between −1 and 1. An overview of the phase diagram is
presented in Figure 4.12 adapted from [Banerjee et al., 2013]. We can identify three different
phases of the model in the phase diagram. At zero temperature, the model is confining for
λ < 1. At finite temperature T, it has a deconfinement phase transition. The deconfinement
phase transition point reaches zero temperature at λ = 1. At λc, a quantum phase transition
separates two phases with spontaneously broken translational symmetry. The phase at
λ < λc has a spontaneously broken charge conjugation symmetry. The exact values of the
phase transition points and an extended analysis of the phase diagram are presented in
[Banerjee et al., 2013].

4.3.2. Numerical results

Our numerical simulation studies the U(1) quantum link model in 2+1 dimensions with
open boundary conditions in the y direction and periodic boundary conditions in the x
direction. We study this system using the density matrix renormalization group algorithm
with the matrix product state ansätz. We study a system in a ladder geometry in which
we keep the Ly dimension fixed to 2, and the Lx dimension can vary. This geometry is
motivated by the numerical computational cost.

The density matrix renormalization group algorithm and the ladder geometry of the

99

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

Figure 4.14: Lattice configuration

lattice allow us to simulate the model as a 1 + 1 dimensional model. We map all the spins in
the y direction into a unique index with dimension d = 2Ly = 16, as showed in Figure 4.13.
This computational base is repeated over all the lattice.

We have been able to perform simulations only with Ly = 2 because the numerical cost
grows exponentially with Ly

III. A scheme of the lattice geometry is presented in Figure 4.14.
The dashed line means that periodic boundary conditions are imposed. In the numerical
studies, we have imposed µx = 0. A large value of µx would fix all the horizontal links and
destroy all the dynamics. The open boundary conditions affect the commutation relation
between the Hamiltonian and the operator Wy. The commutator [H, Wy] is no longer zero
when open boundary conditions are imposed. In our numerical simulation we explore the
effect of the chemical potential (µy) on the ground state properties of the theory.

Figure 4.15: Energy density (Energy / Volume) as a function of the chemical potential for different lattice sites

We fix J = 1 and λ = −1 to focus on the chemical potential effects on the ground state.
This choice of parameters ensures the system to be far away from the phase transition point.

IIIThe exponential scaling is given by the local Hilbert space dimension and the representation of the matrix
product operator of the system mapped into a one-dimensional spin-chain. When we increase Ly, much more
terms need to be included in the matrix product operator making the simulations unfeasible for Ly > 10. If we
want to study a full 2 + 1 dimensional model, we would need to use a different algorithm.

100

4.3 Winding number sectors analysis in the U(1) quantum link model

Figure 4.16: Expectation value of the winding number as a function of the chemical potential for different
lattice sites

Tensor network algorithms are the only known methods to analyze the phase diagram of
the model at a finite chemical potential, at least when generic values are considered. In
this study, we do not aim to perform a continuum limit and a thermodynamic limit. We
study three different volumes with Lx = 8, Lx = 12, and Lx = 16. In Figure 4.15, we plot
the ground state’s energy density as a function of the chemical potential.

In Figure 4.16 we plot the expectation value of the winding number operator Wy as a
function of the chemical potential µy for the three different volumes. The expectation value
of Wx is always precisely zero for every state we checked. We have studied this numerically.
We used this information to crosscheck convergence at the end of the simulations. We
measured Ny on the ground state for every value of the chemical potential. In Figure 4.16 we
see that Ny acquires discrete values depending on the chemical potential. This means that
when we increase the chemical potential, the ground state is in a different winding number
sector. The magnitude of the jumps is not constant as a function of the chemical potential. In
Figure 4.17 we plot the difference in the expectation value of the winding number operator
divided by the chemical potential as a function of the chemical potential. We choose this
particular form to highlight that the magnitude of these differences ∆ winding grows almost
linearly with the chemical potential. Asymptotically the ratio ∆winding/µ is constant. We
can thus express the difference in winding number as:

∆winding = aµy + b (4.64)

The offset value seems to converge to 1. More precise and extensive numerical simulations on
larger volumes are needed to confirm this value. In Figure 4.18 the expectation values of the
flippability operator and the expectation values of the winding number operator are plotted

101

Chapter 4 Phases at finite winding number of an Abelian Lattice Gauge Theory

Figure 4.17: Differences in winding numbers divided by the chemical potential as a function of the chemical
potential for different lattice sites

Figure 4.18: Average flippability of plaquettes (expectation value of Oflipp and expectation value of the operator
Wx as a function of the chemical potential for Lx = 16 (32 plaquettes)

as a function of the chemical potential µy. When we focus on the expectation value of the
Oflipp operator, we notice that there are discrete jumps from zero to non-zero values. At the
same chemical potential at which the Oflipp operator jumps, we also observe a corresponding
discontinuity in the winding number. This points out an apparent correlation between Oflipp

and the winding number sectors. While the winding jumps are expected in analogy with the
discrete jumps in the particle number happening in scalar and fermionic theories (e.g., see
[Bañuls et al., 2017]), we did not have similar expectations for the flippability of the ground
states. Moreover, we cannot explain physically why the winding number and the flippability

102

4.4 Conclusions and outlooks

jumps happen at the same chemical potential values. This unexpected correlation needs
further investigation. Nevertheless, this is a new effect that was never observed nor studied
before.

4.4. Conclusions and outlooks

In this chapter, we have introduced the matrix product state as a variational ansätz. We
have described the matrix product operator formalism for generic operators and made an
explicit example for a local Hamiltonian. We have applied this machinery to a U(1) quantum
link model in 2+1 dimensions in a ladder geometry. We have studied the properties of the
model’s ground state at finite volume and finite chemical potential. We have explored the
properties of the different winding sectors of the ground state and studied the different
winding sectors. We have also seen a correlation between the winding number sectors and
the average flippability of the plaquettes. We did not expect this correlation before this
study, and a deeper numerical analysis of this phenomenon is presently being performed.
This model is also a good candidate for cold atom simulations [Lewenstein et al., 2007]. It is
also possible to extend the U(1) quantum link model Hamiltonian and include an external
magnetic field that passes through the lattice. The action of this external magnetic field is to
modify the kinetic term of the Hamiltonian, adding a phase α□ to the plaquette operation:

U□ → U□eiα□ (4.65)

U†
□ → e−iα□U†

□ (4.66)

This modification can alter the ground state properties and give rise to interesting phenom-
ena. Moreover, we can also simulate fermionic fields in 1+ 1 dimensions. The basic building
block for tensor network simulations of fermion fields is the Jordan-Wiegner transformation
[Jordan and Wigner, 1928]. It allows the mapping of fermionic degrees of freedom into a
spin system. In Appendix A we derive the spin formulation for the lattice Hamiltonian of the
Gross-Neveu model [Gross and Neveu, 1974]. The Gross-Neveu model is a fermionic model
with a four-Fermi interaction term. The model can be seen as a toy model for quantum
chromodynamics. In the large N (number of flavors) limit, we can demonstrate that the
model is asymptotically free. The model also presents a dynamical symmetry breaking
of chiral symmetry. Numerical studies of the Gross-Neveu model are being performed
presently.

103

Chapter 5

Conclusions

Quantum simulations of lattice gauge theories play a fundamental role in first principle
calculations in the context of high energy physics. The goal of this thesis was to

improve the state-of-the-art simulation methods for first-principle calculations and apply
those methods to relevant physical models. We have addressed this problem using three
approaches: machine learning, quantum computing, and tensor networks.

In the context of machine learning, we have developed a method to estimate thermody-
namic observables in lattice field theories based on normalizing flows. The method we have
developed has two main advantages compared to Markov Chain Monte Carlo. When we
want to compute the free energy of the system in MCMC, we have to generate overlapping
distributions at various, subsequent parameter values until the target parameter is reached.
This procedure is increasingly complex when we have to cross a phase transition in the
parameter space and can lead to the accumulation of systematic errors. This integration is
not needed in our machine learning-based approach. Moreover, in the MCMC integration,
one requires an integration constant to evaluate the free energy. This is again not required
with our approach. We have demonstrated the applicability of our method by studying
the ϕ4 theory in two dimensions. Our approach can compute the system’s free energy
with much smaller errors compared to Monte Carlo simulations. Future work will focus
on scaling this approach to larger volumes and different models, with the final goal of
simulating non-Abelian gauge theories and, ultimately, quantum chromodynamics.

In the context of quantum computing, we have introduced the variational quantum
simulation algorithm and presented two works that can improve the applicability of this
algorithm. One of the most significant limitations of modern quantum computers is
the noise of the simulations. Read-out noise is one of the more relevant noises in most
quantum computers. We have developed a classical bit-flip correction method to mitigate
measurement errors on noisy quantum computers in this context. This method is based
on the replacement of the operator we want to measure with a different operator in such
a way that the noisy expectation value of the new operator corresponds to the quantum
mechanical expectation value of the original operator. Our method, which scales only

Chapter 5 Conclusions

polynomially in the number of qubits, only requires the knowledge of the different bit-
flip probabilities during read-out for each qubit. We can easily compute these quantities
with a suitable calibration procedure. The computational overhead is moderate for local
Hamiltonians. We have tested our method numerically, and we have provided a proof of
principle demonstration of this procedure on IBM’s quantum hardware. Our approach can
be applied to any platform and lends itself to superconducting qubits and other architectures
such as trapped ions. We aim at extending this mitigation procedure to different errors in
future and ongoing works, starting with the depolarising errors. As already demonstrated
in this work, scalable error mitigation can drastically improve quantum simulations.

The design of efficient variational quantum circuits for quantum simulation is also crucial
in practical simulations. In this thesis, we have developed a dimensional expressivity analysis
of parametric quantum circuits that can help to design these circuits. This analysis relies on
comparing the tangent spaces of this map and the manifold of reachable states by a quantum
circuit. This analysis also allows for the identification and implementation of physical
symmetries in variational quantum circuits. We have shown how to identify parameters
that correspond to an unwanted symmetry. We have applied this approach to remove a
global phase in parametric quantum circuits for variational quantum simulations. Moreover,
we have also shown how the Hilbert space of translationally invariant Hamiltonians is
divided into different sectors, and how to compute those dimensions. We have applied
the dimensional expressivity analysis to interesting examples and developed a hardware-
efficient quantum algorithm to perform this analysis. The algorithm scales polynomially in
the number of parameters of the parametric quantum circuit. This algorithm is helpful for
any quantum simulation that we will perform in the future and is highly recommended to
anyone who wants to perform quantum simulations.

Tensor network simulations are an up-and-coming tool to simulate quantum field the-
ories. In particular, in recent years, there has been a boost in the development of tensor
network methods to simulate lattice gauge theories. This thesis used the density matrix
renormalization group with the matrix product state ansatz to study the 2+1 dimensional
U(1) quantum link model in a ladder geometry. The study’s goal was to explore the stringy
excitations present in the ground state when chemical potential is added to the system.
The use of tensor network algorithms is motivated by the fact that no other algorithm is
presently known to simulate the model at a finite chemical potential. We have demonstrated
the presence of these stringy excitations numerically and we have found a correlation
between the different winding number sectors and the flippability of the ground state. We
did not expect this correlation before this study, and a deeper numerical analysis of this
phenomenon is currently ongoing. Other work focuses on a better understanding of the
physical phenomena we have seen in our numerical simulations. The long-term goal would
be to simulate a quantum link model Abelian gauge theory on a quantum simulator.

106

Appendix A

Gross-Neveu Hamiltonian mapped into

a spin Hamiltonian

In this appendix, we derive the (flavored) Gross-Neveu model [Gross and Neveu, 1974]
Hamiltonian 1+1 dimensions in a formulation that we can use for matrix product state
calculations. Such calculations are being performed presently. In [Lenz et al., 2020] the
authors have identified inhomogeneous phases of the model at finite number of flavors,
finite chemical potential, and finite temperature. The authors use Monte Carlo simulations to
analyze the model. Monte Carlo simulations are bounded to an even number of flavors due
to a sign problem. We can overcome this problem using the density matrix renormalization
group algorithm. Our goal is to check whether the behaviors observed by [Lenz et al., 2020]
still persist with tensor network simulations.

The Lagrangian density of the Gross-Neveu (GN) model in 1+1 dimension is:

L =
N

∑
a=1

ψ̄a(i/∂ − m)ψa +
g2

2N

(︄
N

∑
a=1

ψ̄aψa

)︄2

(A.1)

where a runs from 1 to N. The hamiltonian is:

HGN =
∫︂

dx

⎛⎝ N

∑
a=1

ψ̄a(γ1∂1 − m)ψa +
g2

2N

(︄
N

∑
a=1

ψ̄aψa

)︄2
⎞⎠ (A.2)

This Hamiltonian can be rewritten using a dummy bosonic field Φ that does not have a
kinetic term. This corresponds to a Yukawa theory with interaction mediated by an infinitely
massive field that reproduce the GN effective four fermion interaction:

HΦ =
∫︂

dx

(︄
N

∑
a=1

ψ̄a(γ1∂1)ψ
a + gmΦ

(︄
N

∑
a=1

ψ̄aψa

)︄
+

g2

2N

(︄
N

∑
a=1

ψ̄aψa

)︄)︄
(A.3)

It is trivial to show that HGN and HΦ describe the same dynamics when you compute

Appendix A Gross-Neveu Hamiltonian mapped into a spin Hamiltonian

the equation of motion for the field Φ. The HGN Hamiltonian causes the system to create
bosonic pairs. This phenomenon can lead to the condensation of the bosonic pairs and lead
to a Φ expectation value on the vacuum non zero. Thus, the rise of a mass term in the
dynamic theory leads to a dynamichal symmetry breaking.
We have to define the representation of the Clifford algebra we will use in 1+1 dimension.
We define:

γ0 = σz (A.4)

γ0γ1 = σx (A.5)

We introduce the discretization of the space in d points divided by lattice spacing j and the
staggered formulation of the fermion mass (that introduces 2d lattice sites dividing add and
even sites). Following the usual convention, we represent the spinor ψa†

I as:

ψa†
i =

(︂
Ca†

2I−1 Ca†
2I

)︂
(A.6)

where we have put the positive (negative) eigenvalue of γ0 in the odd (even) sites (thus, we
will have 2d sites instead of the original lattice with d sites(i = 2I)). We want to express the
therm:

Hkin =
i=2d

∑
i=1

ψ̄a
i (iγ1∂1)ψ

a
i (A.7)

as a function of the operators Ci. Hkin is equivalent to:

I=d

∑
I=1

(︂
Ca†

2I−1 Ca†
2I

)︂
γ0γ1 ∗ ∂1

(︂
Ca

2I−1
Ca

2I

)︂
(A.8)

Introducing the symmteric discrete derivative:

∂1 f (x) =
1
2a

(f (x + 1)− f (x − 1)) (A.9)

we obtain:
I=d

∑
I=1

(︂
Ca†

2I−1, Ca†
2I

)︂
σx
(︂

Ca
2I+1−Ca

2I−3
Ca

2I+2−Ca
2I−2

)︂
(A.10)

that leads to the following formulation of Hkin:

Hkin =
I=d

∑
I=1

Ca†
2I Ca

2I+1 − Ca†
2I Ca

2I−3 + Ca†
2I−1Ca

2I+2 − Ca†
2I−1Ca

2I−2 (A.11)

This equation can be simplified and leads to:

Hkin =
i=2d

∑
i=1,a

Ca†
i+1 ∗ Ca

i + H.C (A.12)

108

Let us now define the number operator na
i :

na
i = Ca†

i Ca
i (A.13)

and

Ni =
a=N

∑
a=1

na
i (A.14)

with the property:
na

i na
i = na

i (A.15)

The mass term of the hamiltonian can be written as:

Hmass = −m
i=d

∑
i=1

ψ̄a
i ψa

i (A.16)

If we write explicitly ψ̄a
i ψa

i , using the staggered formulation, we obtain:

Hmass = −m
I=2d

∑
I=1

(na
2I−1 − na

2I) = −m
i=d

∑
i=1

(−1)i+1na
i (A.17)

The interaction term can be written as:

Hint =
g2

2N

i=2d

∑
i=1

(︄
N

∑
a=1

ψ̄a
i ψa

i

)︄(︄
N

∑
b=1

ψ̄b
i ψb

i

)︄
. (A.18)

We have already evaluated the therm ψ̄b
i ψb

i when we evaluated the mass term:

ψ̄b
I ψb

I = nb
2I−1 − nb

2I (A.19)

so we can write Hint as:

Hint =
g2

2N

(︄
i=2d

∑
i=1

N2
i − 2

I=d

∑
I=1

N2I−1N2I

)︄
(A.20)

For our purpose it is better to rewrite this term as a function of na
i :

Hint =
g2

2N

i=2d

∑
i=1

(︄
N

∑
a=1

na
i na

i + 2
N

∑
a<b=1

na
i nb

i

)︄
−

I=d

∑
I=1

N

∑
a,b=1

na
2I−1nb

2I (A.21)

We have three terms in the hamiltonian on the lattice: Hkin , Hmas and Hint. In the staggered

109

Appendix A Gross-Neveu Hamiltonian mapped into a spin Hamiltonian

formulation, they can be written as:

Hkin =
N

∑
a=1

i=2d

∑
i=1

Ca†
i+1Ca

i + H.C (A.22)

Hmass = −m
i=2d

∑
i=1

(−1)i+1na
i (A.23)

Hint =
g2

2N

[︄
i=2d

∑
i=1

(︄
N

∑
a=1

na
i + 2

N

∑
a<b=1

na
i nb

i

)︄
−

I=d

∑
I=1

N

∑
a,b=1

na
2I−1nb

2I

]︄
(A.24)

A map between the operators Ca
i and the spin opertors σx, σy, σz (Pauli operators) that act

on a spin 1/2 system has been introduced by [Jordan and Wigner, 1928]. The map is:

Ca,±
j = ∏

i<j

[︁
σz

i,a
]︁

σ±
j,a (A.25)

na
j =

1 + σz
j,a

2
(A.26)

We want to map our fermionic system into a spin system. We will do this process for every
term of the Hamiltonian separately. Let us consider the kinetic term:

Hkin =
N

∑
a=1

i=2d

∑
i=1

Ca†
i+1Ca

i + H.C. = (A.27)

=
I=d

∑
I=1

Ca†
2I+1Ca

2I +
I=d

∑
I=1

Ca†
2I Ca

2I−1 + HC (A.28)

Let us focus on the first term of this sum:

Ca†
2I+1Ca

2I =

[︄
∏

j<2I+1

[︂
σz

j,a

]︂
σ+

2I+1,a

]︄†

∏
l<2I

[︁
σz

l,a
]︁

σ−
2I,a (A.29)

Since the sigma operators commute at different sites, (σ+)
†
= σ−, σzσz = 1 and σzσ− = −σ−

we can rewrite this term as:
Ca†

2I+1Ca
2I = −σ−

a,2I+1σ−
a,2I (A.30)

Following the same procedure for the other terms we can derive:

Hkin =
N

∑
a=1

i=d

∑
I=1

(︂
σ+

a,2Iσ
+
a,2I−1 − σ−

a,2I+1σ−
a,2I

)︂
+ H.C. (A.31)

The Hmass transformation is trivial:

Hmass =
−m

2

i=N

∑
a=1

i=2d

∑
i=1

(−1)i+1 (︁1 + σz
i,a
)︁

(A.32)

110

The interaction term is definitely the most complicate (for semplicity of the notation the
sum over I always goes from 1 to 2d, the sum over I always goes from 1 to d, and the sum
over a or b goes from 1 to n):

Hint =
g2

2N

[︄
∑
i,a

1 + σz
i,a

2
+ ∑

i,a<b

1 + σz
i,a

2
1 + σz

i,b

2
− 1

2 ∑
I,a,b

1 + σz
2I−1,a

2
1 + σz

2I,b

2

]︄
(A.33)

This can be rewritten, negletting the constant term, as:

Hint =
g2

2N

[︄
3
2 ∑

i,a
σz

i,a + ∑
i,a<b

σz
i,aσz

i,b −
1
2 ∑

i,a,b
σz

2I−1,aσz
2I,b

]︄
(A.34)

If we fin N = 1, we have the simple following Hamiltonian:

HN=1 = −1
2

L−2

∑
n=0

(︁
σ+

n σ−
n+1 + σ−

n σ+
n+1

)︁
+

L

∑
n=1

m0(−1)n (σz
n) + (A.35)

+
g2

2

L/2−1

∑
n=0

(1 − σz
2nσz

2n+1) (A.36)

111

Appendix B

Translational invariant Hilbert space

for four qubits

In this appendix we construct all the eigenvector subspaces for N = 4 qubits. The equiva-
lence classes [j]4 are:

– [0]4 = {0 = 0000},

– [1]4 = {1 = 0001, 2 = 0010, 4 = 0100, 8 = 1000},

– [3]4 = {3 = 0011, 6 = 0110, 12 = 1100, 9 = 1001},

– [5]4 = {5 = 0101, 10 = 1010},

– [7]4 = {7 = 0111, 14 = 1110, 13 = 1101, 11 = 1011},

– [15]4 = {15 = 1111},

For four qubits we have four different eigenvalue of τ: 1, −1, i, and −i. The corresponding
dimension of the Hilbert space is given by:

– dim Eig(1) = #{[0]4, [1]4, [3]4, [5]4, [7]4, [15]4} = 6 (orders divisible by 1),

– dim Eig(−1) = #{[1]4, [3]4, [5]4, [7]4} = 4 (orders divisible by 2),

– dim Eig(i) = #{[1]4, [3]4, [7]4} = 3 (orders divisible by 4),

– dim Eig(−i) = #{[1]4, [3]4, [7]4} = 3 (orders divisible by 4).

And the different eigenspaces are spanned by:

– Eig(1):

1. e4(00) = |0000⟩,

2. e4(10) =
|0001⟩+|0010⟩+|0100⟩+|1000⟩√

4
,

Appendix B Translational invariant Hilbert space for four qubits

3. e4(30) =
|0011⟩+|0110⟩+|1100⟩+|1001⟩√

4
,

4. e4(50) =
|0101⟩+|1010⟩√

2
,

5. e4(70) =
|0111⟩+|1110⟩+|1101⟩+|1011⟩√

4
,

6. e4(150) = |1111⟩.

– Eig(−1):

1. e4(11) =
|0001⟩−|0010⟩+|0100⟩−|1000⟩√

4
,

2. e4(31) =
|0011⟩−|0110⟩+|1100⟩−|1001⟩√

4
,

3. e4(51) =
|0101⟩−|1010⟩√

2
,

4. e4(71) =
|0111⟩−|1110⟩+|1101⟩−|1011⟩√

4
.

– Eig(i):

1. e4(12) =
|0001⟩+i|0010⟩−|0100⟩−i|1000⟩√

4
,

2. e4(32) =
|0011⟩+i|0110⟩−|1100⟩−i|1001⟩√

4
,

3. e4(72) =
|0111⟩+i|1110⟩−|1101⟩−i|1011⟩√

4
.

– Eig(−i):

1. e4(13) =
|0001⟩−i|0010⟩−|0100⟩+i|1000⟩√

4
,

2. e4(33) =
|0011⟩−i|0110⟩−|1100⟩+i|1001⟩√

4
,

3. e4(73) =
|0111⟩−i|1110⟩−|1101⟩+i|1011⟩√

4
.

Finally we can compute the dimension of the different sectors as:

– dimC Eig(1) = [#](1) + [#](2) + [#](4) = 2 + 1 + 3 = 6,

– dimC Eig(−1) = [#](2) + [#](4) = 1 + 3 = 4,

– dimC Eig(i) = [#](4) = 3,

– dimC Eig(−i) = [#](4) = 3.

The sum of the dimension of the different sectors is 16. This is the same dimension as
the Hilbert space H. In this case, as expected, the H can be written as a direct sum of the
different momentum sectors:

H =
⨁︂

ω=1,−1,i,−i

Eig(ω) (B.1)

It is important to stress that we can apply our dimensional expressivity analysis in any
possible momentum eigenspace. The knowledge of the dimension of the space allows us to
estimate the maximal dimension needed for the dimensional expressivity analysis of any
sector.

114

Bibliography

Tanabashi et al. Review of particle physics. Phys. Rev. D, 98:030001, Aug 2018. doi: 10.1103/
PhysRevD.98.030001. URL https://link.aps.org/doi/10.1103/PhysRevD.98.030001.

Kenneth G. Wilson. Confinement of quarks. Phys. Rev. D, 10:2445–2459, Oct 1974. doi: 10.
1103/PhysRevD.10.2445. URL https://link.aps.org/doi/10.1103/PhysRevD.10.2445.

Stefan Schaefer, Rainer Sommer, and Francesco Virotta. Critical slowing down and error
analysis in lattice QCD simulations. Nucl. Phys. B, 845:93–119, 2011. doi: 10.1016/j.
nuclphysb.2010.11.020.

Gurtej Kanwar, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Sébastien
Racanière, Danilo Jimenez Rezende, and Phiala E. Shanahan. Equivariant flow-based
sampling for lattice gauge theory. Phys. Rev. Lett., 125:121601, Sep 2020. doi: 10.1103/
PhysRevLett.125.121601. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.

121601.

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racanière, Michael S. Albergo,
Gurtej Kanwar, Phiala E. Shanahan, and Kyle Cranmer. Normalizing flows on tori and
spheres, 2020.

Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S.
Albergo, Kyle Cranmer, Daniel C. Hackett, and Phiala E. Shanahan. Sampling using su(n)
gauge equivariant flows, 2020.

Phiala E. Shanahan, Daniel Trewartha, and William Detmold. Machine learning action
parameters in lattice quantum chromodynamics. Phys. Rev. D, 97:094506, May 2018. doi:
10.1103/PhysRevD.97.094506. URL https://link.aps.org/doi/10.1103/PhysRevD.97.

094506.

Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan
Kessel, Shinichi Nakajima, and Paolo Stornati. Estimation of thermodynamic observables
in lattice field theories with deep generative models. Phys. Rev. Lett., 126:032001, Jan
2021. doi: 10.1103/PhysRevLett.126.032001. URL https://link.aps.org/doi/10.1103/

PhysRevLett.126.032001.

https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.10.2445
https://link.aps.org/doi/10.1103/PhysRevLett.125.121601
https://link.aps.org/doi/10.1103/PhysRevLett.125.121601
https://link.aps.org/doi/10.1103/PhysRevD.97.094506
https://link.aps.org/doi/10.1103/PhysRevD.97.094506
https://link.aps.org/doi/10.1103/PhysRevLett.126.032001
https://link.aps.org/doi/10.1103/PhysRevLett.126.032001

Bibliography

Boram Yoon, Tanmoy Bhattacharya, and Rajan Gupta. Machine learning estimators for lattice
qcd observables. Phys. Rev. D, 100:014504, Jul 2019. doi: 10.1103/PhysRevD.100.014504.
URL https://link.aps.org/doi/10.1103/PhysRevD.100.014504.

Rui Zhang, Zhouyou Fan, Ruizi Li, Huey-Wen Lin, and Boram Yoon. Machine-learning
prediction for quasiparton distribution function matrix elements. Phys. Rev. D, 101:034516,
Feb 2020. doi: 10.1103/PhysRevD.101.034516. URL https://link.aps.org/doi/10.

1103/PhysRevD.101.034516.

William Detmold, Gurtej Kanwar, Michael L. Wagman, and Neill C. Warrington. Path
integral contour deformations for noisy observables. Physical Review D, 102(1), Jul 2020.
ISSN 2470-0029. doi: 10.1103/physrevd.102.014514. URL http://dx.doi.org/10.1103/

PhysRevD.102.014514.

Christof Gattringer and Christian Lang. Quantum chromodynamics on the lattice: an introductory
presentation, volume 788. Springer Science & Business Media, 2009.

David J. E. Callaway and Aneesur Rahman. Lattice gauge theory in the microcanonical
ensemble. Phys. Rev. D, 28:1506–1514, Sep 1983. doi: 10.1103/PhysRevD.28.1506. URL
https://link.aps.org/doi/10.1103/PhysRevD.28.1506.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The Journal
of Chemical Physics, 21(6):1087–1092, jun 1953. doi: 10.1063/1.1699114.

Philippe de Forcrand, Massimo D’Elia, and Michele Pepe. ’t hooft loop in su(2) yang-mills
theory. Phys. Rev. Lett., 86:1438–1441, Feb 2001. doi: 10.1103/PhysRevLett.86.1438. URL
https://link.aps.org/doi/10.1103/PhysRevLett.86.1438.

Owe Philipsen. The qcd equation of state from the lattice. Progress in Particle and Nuclear
Physics, 70:55–107, May 2013. ISSN 0146-6410. doi: 10.1016/j.ppnp.2012.09.003. URL
http://dx.doi.org/10.1016/j.ppnp.2012.09.003.

Kieran Holland, Michele Pepe, and Uwe-Jens Wiese. Revisiting the deconfinement phase
transition in su(4) yang-mills theory in 2+1 dimensions. Journal of High Energy Physics,
2008(02):041–041, Feb 2008. ISSN 1029-8479. doi: 10.1088/1126-6708/2008/02/041. URL
http://dx.doi.org/10.1088/1126-6708/2008/02/041.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali
Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical
sciences. Reviews of Modern Physics, 91(4), Dec 2019. ISSN 1539-0756. doi: 10.1103/
revmodphys.91.045002. URL http://dx.doi.org/10.1103/RevModPhys.91.045002.

116

https://link.aps.org/doi/10.1103/PhysRevD.100.014504
https://link.aps.org/doi/10.1103/PhysRevD.101.034516
https://link.aps.org/doi/10.1103/PhysRevD.101.034516
http://dx.doi.org/10.1103/PhysRevD.102.014514
http://dx.doi.org/10.1103/PhysRevD.102.014514
https://link.aps.org/doi/10.1103/PhysRevD.28.1506
https://link.aps.org/doi/10.1103/PhysRevLett.86.1438
http://dx.doi.org/10.1016/j.ppnp.2012.09.003
http://dx.doi.org/10.1088/1126-6708/2008/02/041
http://www.deeplearningbook.org
http://dx.doi.org/10.1103/RevModPhys.91.045002

Bibliography

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.

html.

S B Kotsiantis. Supervised machine learning: A review of classification techniques. Informat-
ica, 31(3):249–268, 2007. URL http://www.informatica.si/PDF/31-3/11_Kotsiantis%

20-%20Supervised%20Machine%20Learning%20-%20A%20Review%20of...pdf.

Baran Yildiz, Jose Bilbao, and Alistair Sproul. A review and analysis of regression and
machine learning models on commercial building electricity load forecasting. Renewable
and Sustainable Energy Reviews, 73:1104–1122, 06 2017. doi: 10.1016/j.rser.2017.02.023.

İlhan Uysal and Halil Altay Güvenir. An overview of regression techniques for knowl-
edge discovery. Knowledge Engineering Review, 14:319–340, 12 1999. doi: 10.1017/
S026988899900404X.

This person does not exist. https://thispersondoesnotexist.com. Accessed: 2021-01-28.

Zhengwei Wang, Qi She, and Tomas E. Ward. Generative adversarial networks: A survey
and taxonomy. CoRR, abs/1906.01529, 2019. URL http://arxiv.org/abs/1906.01529.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference, 2019.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing
flows, 2016.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent compo-
nents estimation, 2015.

Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien
Racanière, Danilo Jimenez Rezende, and Phiala E. Shanahan. Introduction to normalizing
flows for lattice field theory, 2021.

David JC MacKay and David JC Mac Kay. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

Stephen L. Adler. Over-relaxation method for the monte carlo evaluation of the partition
function for multiquadratic actions. Phys. Rev. D, 23:2901–2904, Jun 1981. doi: 10.1103/
PhysRevD.23.2901. URL https://link.aps.org/doi/10.1103/PhysRevD.23.2901.

Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted au-
toencoders and jackknife variational inference. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=HyZoi-WRb.

117

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://www.informatica.si/PDF/31-3/11_Kotsiantis%20-%20Supervised%20Machine%20Learning%20-%20A%20Review%20of...pdf
http://www.informatica.si/PDF/31-3/11_Kotsiantis%20-%20Supervised%20Machine%20Learning%20-%20A%20Review%20of...pdf
https://thispersondoesnotexist.com
http://arxiv.org/abs/1906.01529
https://link.aps.org/doi/10.1103/PhysRevD.23.2901
https://openreview.net/forum?id=HyZoi-WRb

Bibliography

P.J. Bickel and Kjell A. Doksum. Mathematical Statistics: Basic Ideas and Selected Topics. Holden-
Day Series in Probability and Statistics. Prentice Hall, 1977. ISBN 9780135641477. URL
https://books.google.com.vc/books?id=I_AuswEACAAJ.

Kim A. Nicoli, Shinichi Nakajima, Nils Strodthoff, Wojciech Samek, Klaus-Robert Müller,
and Pan Kessel. Asymptotically unbiased estimation of physical observables with neural
samplers. Phys. Rev. E, 101:023304, Feb 2020. doi: 10.1103/PhysRevE.101.023304. URL
https://link.aps.org/doi/10.1103/PhysRevE.101.023304.

John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018. ISSN 2521-327X. doi: 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/

q-2018-08-06-79.

F. Arute et al. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505, 2019. doi: 10.1038/s41586-019-1666-5.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, Oct 1997.
ISSN 1095-7111. doi: 10.1137/s0097539795293172. URL http://dx.doi.org/10.1137/

S0097539795293172.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical Review Letters, 103(15), Oct 2009. ISSN 1079-7114. doi:
10.1103/physrevlett.103.150502. URL http://dx.doi.org/10.1103/PhysRevLett.103.

150502.

S. P. Jordan. Quantum algorithm zoo. http://math.nist.gov/quantum/zoo/. Accessed:
2021-01-28.

Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2(1), Jan
2016. ISSN 2056-6387. doi: 10.1038/npjqi.2015.23. URL http://dx.doi.org/10.1038/

npjqi.2015.23.

Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory
of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023,
Feb 2016. ISSN 1367-2630. doi: 10.1088/1367-2630/18/2/023023. URL http://dx.doi.

org/10.1088/1367-2630/18/2/023023.

P. J. J. O’Malley et al. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6:
031007, 2016. doi: 10.1103/PhysRevX.6.031007.

A. Kandala, A. Mezzacapo, K. Temme, et al. Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets. Nat., 549:242, 2017. doi: 10.1038/
nature23879.

118

https://books.google.com.vc/books?id=I_AuswEACAAJ
https://link.aps.org/doi/10.1103/PhysRevE.101.023304
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
 http://math.nist.gov/quantum/zoo/
http://dx.doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023

Bibliography

Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and K. Kim. Quantum implementation
of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A,
95:020501, 2017. doi: 10.1103/PhysRevA.95.020501.

J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean,
J. Carter, W. A. de Jong, and I. Siddiqi. Computation of molecular spectra on a quantum
processor with an error-resilient algorithm. Phys. Rev. X, 8:011021, 2018. doi: 10.1103/
PhysRevX.8.011021.

E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C.
Pooser, D. J. Dean, and P. Lougovski. Cloud quantum computing of an atomic nucleus.
Phys. Rev. Lett., 120:210501, 2018. doi: 10.1103/PhysRevLett.120.210501.

C. Hempel et al. Quantum chemistry calculations on a trapped-ion quantum simulator.
Phys. Rev. X, 8:031022, Jul 2018. doi: 10.1103/PhysRevX.8.031022.

M. Ganzhorn, D.J. Egger, P. Barkoutsos, P. Ollitrault, G. Salis, N. Moll, M. Roth, A. Fuhrer,
P. Mueller, S. Woerner, I. Tavernelli, and S. Filipp. Gate-efficient simulation of molecular
eigenstates on a quantum computer. Phys. Rev. Applied, 11:044092, 2019. doi: 10.1103/
PhysRevApplied.11.044092.

C. Kokail, C. Maier, R. van Bijnen, et al. Self-verifying variational quantum simulation of
lattice models. Nat., 569:355, 2019. doi: 10.1038/s41586-019-1177-4.

T. Hartung and K. Jansen. Zeta-regularized vacuum expectation values. J. Math. Phys., 60(9):
093504, 2019. doi: 10.1063/1.5085866.

K. Jansen and T. Hartung. Zeta-regularized vacuum expectation values fromquantum
computing simulations. Proc. Sci. LATTICE2019, 363:153, 2020. doi: 10.22323/1.363.0153.

Y. Li and S. C. Benjamin. Efficient variational quantum simulator incorporating active error
minimization. Phys. Rev. X, 7:021050, 2017. doi: 10.1103/PhysRevX.7.021050.

K. Temme, S. Bravyi, and J. M. Gambetta. Error mitigation for short-depth quantum circuits.
Phys. Rev. Lett., 119:180509, 2017. doi: 10.1103/PhysRevLett.119.180509.

J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. de Jong. Hybrid quantum-
classical hierarchy for mitigation of decoherence and determination of excited states. Phys.
Rev. A, 95:042308, 2017. doi: 10.1103/PhysRevA.95.042308.

X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O’Brien. Low-cost error mitigation by
symmetry verification. Phys. Rev. A, 98:062339, 2018. doi: 10.1103/PhysRevA.98.062339.

S. Endo, S. C. Benjamin, and Y. Li. Practical quantum error mitigation for near-future
applications. Phys. Rev. X, 8:031027, 2018. doi: 10.1103/PhysRevX.8.03102.

119

Bibliography

S. McArdle, X. Yuan, and S. Benjamin. Error-mitigated digital quantum simulation. Phys.
Rev. Lett., 122:180501, 2019. doi: 10.1103/PhysRevLett.122.180501.

S. Endo, Q. Zhao, Y. Li, S. Benjamin, and X. Yuan. Mitigating algorithmic errors in a
hamiltonian simulation. Phys. Rev. A, 99:012334, Jan 2019. doi: 10.1103/PhysRevA.99.
012334.

A. Kandala, K. Temme, A. D. Córcoles, et al. Error mitigation extends the computational
reach of a noisy quantum processor. Nat., 567:491, 2019. doi: 10.1038/s41586-019-1040-7.

J. R. McClean, Z. Jiang, N. C. Rubin, R. Babbush, and H. Neven. Decoding quantum errors
with subspace expansions. Nat. Comm., 11(1), 2020. doi: 10.1038/s41467-020-14341-w.

M. Otten and S. K. Gray. Recovering noise-free quantum observables. Phys. Rev. A, 99:
012338, 2019a. doi: 10.1103/PhysRevA.99.012338.

M. Otten and S. K. Gray. Accounting for errors in quantum algorithms via individual error
reduction. npj Quantum Inf., 5:11, 2019b. doi: 10.1038/s41534-019-0125-3.

R. Sagastizabal et al. Experimental error mitigation via symmetry verification in a variational
quantum eigensolver. Phys. Rev. A, 100:010302, 2019. doi: 10.1103/PhysRevA.100.010302.

M. Urbanek, B. Nachman, and W. A. de Jong. Quantum error detection improves accuracy
of chemical calculations on a quantum computer. arXiv:1910.00129, 2019. URL https:

//arxiv.org/abs/1910.00129.

O. Crawford, B. van Straaten, D. Wang, T. Parks, E. Campbell, and S. Brierley. Effi-
cient quantum measurement of pauli operators in the presence of finite sampling error.
arXiv:1908.06942, 2019. URL https://arxiv.org/abs/1908.06942.

B. Chungheon, O. Tomohiro, T. Seigo, and C. Byung-Soo. Density matrix simulation of
quantum error correction codes for near-term quantum devices. Quantum Sci. Technol., 5
(1):015002, 2019. doi: 10.1088/2058-9565/ab5887.

A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen, J. M. Gambetta, and
J. M. Chow. Demonstration of a quantum error detection code using a square lattice of
four superconducting qubits. Nat. Commun., 6(1):6979, 2015. doi: 10.1038/ncomms7979.

S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta. Procedure for systematically
tuning up cross-talk in the cross-resonance gate. Phys. Rev. A, 93(6):060302, 2016. doi:
10.1103/PhysRevA.93.060302.

S. S. Tannu and M. K. Qureshi. Mitigating measurement errors in quantum computers by
exploiting state-dependent bias. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’52, page 279, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450369381. doi: 10.1145/3352460.3358265.

120

https://arxiv.org/abs/1910.00129
https://arxiv.org/abs/1910.00129
https://arxiv.org/abs/1908.06942

Bibliography

K. Yeter-Aydeniz, E. F. Dumitrescu, A. J. McCaskey, R. S. Bennink, R. C. Pooser, and G. Siop-
sis. Scalar quantum field theories as a benchmark for near-term quantum computers.
Phys. Rev. A, 99:032306, Mar 2019. doi: 10.1103/PhysRevA.99.032306.

K. Yeter-Aydeniz, R. C. Pooser, and G. Siopsis. Practical quantum computation of chemical
and nuclear energy levels using quantum imaginary time evolution and lanczos algorithms.
npj Quantum Information, 6(1), jul 2020. doi: 10.1038/s41534-020-00290-1.

Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Paolo Stornati, and Xiaoyang Wang.
Measurement error mitigation in quantum computers through classical bit-flip correction.
2020. arXiv:2007.03663.

Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, and Paolo Stornati. Dimensional
Expressivity Analysis of Parametric Quantum Circuits. Quantum, 5:422, March 2021.
ISSN 2521-327X. doi: 10.22331/q-2021-03-29-422. URL https://doi.org/10.22331/

q-2021-03-29-422.

J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74:
4091–4094, May 1995. doi: 10.1103/PhysRevLett.74.4091. URL https://link.aps.org/

doi/10.1103/PhysRevLett.74.4091.

Ibm quantum. https://quantum-computing.ibm.com. Accessed: 2021-04-14.

Qiskit Aer API documentation and source code. Accessed on 15/02/2021.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010. doi: 10.1017/CBO9780511976667.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J.
Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a
photonic quantum processor. Nature Communications, 5(1), Jul 2014. ISSN 2041-1723. doi:
10.1038/ncomms5213. URL http://dx.doi.org/10.1038/ncomms5213.

Ken M. Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal optimization for
quantum-classical hybrid algorithms. Physical Review Research, 2(4), Oct 2020. ISSN
2643-1564. doi: 10.1103/physrevresearch.2.043158. URL http://dx.doi.org/10.1103/

PhysRevResearch.2.043158.

C. Alexandrou, L. Funcke, T. Hartung, K. Jansen, S. Kuehn, G. Polykratis, P. Stornati,
and X. Wang. Using classical bit-flip correction for error mitigation including 2-qubit
correlations, 2021.

M. R. Geller. Sampling and scrambling on a chain of superconducting qubits. Physical
Review Applied, 10(2), 2018. ISSN 2331-7019. doi: 10.1103/physrevapplied.10.024052.

121

https://doi.org/10.22331/q-2021-03-29-422
https://doi.org/10.22331/q-2021-03-29-422
https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
 https://quantum-computing.ibm.com
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1103/PhysRevResearch.2.043158
http://dx.doi.org/10.1103/PhysRevResearch.2.043158

Bibliography

S. Sim, P. D. Johnson, and A. Aspuru-Guzik. Expressibility and entangling capability
of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced
Quantum Technologies, 2(12):1900070, 2019. ISSN 2511-9044. doi: 10.1002/qute.201900070.

M. Bataille. Quantum circuits of cnot gates. arXiv:2009.13247, 2020. URL https://arxiv.

org/abs/2009.13247.

S. Sim, J. Romero, J. F. Gonthier, and A. A. Kunitsa. Adaptive pruning-based optimization
of parameterized quantum circuits. arXiv:2010.00629, 2020. URL https://arxiv.org/

abs/2010.00629.

S. E. Rasmussen, N. J. S. Loft, T. Bækkegaard, M. Kues, and N. T. Zinner. Reducing
the amount of single-qubit rotations in vqe and related algorithms. Advanced Quantum
Technologies, 3:2000063, 2020. doi: 10.1002/qute.202000063.

T. Hubregtsen, J. Pichlmeier, P. Stecher, and K. Bertels. Evaluation of parameterized quantum
circuits: on the relation between classification accuracy, expressibility and entangling
capability. arXiv:2003.09887, 2020. URL https://arxiv.org/abs/2003.09887.

M. Schuld, R. Sweke, and J. J. Meyer. The effect of data encoding on the expressive
power of variational quantum machine learning models. arXiv:2008.08605, 2020. URL
https://arxiv.org/abs/2008.08605.

E. Fontana, N. Fitzpatrick, D. Muños Ramo, R. Duncan, and I. Rungger. Evaluating
the noise resilience of variational quantum algorithms. arXiv:2011.01125, 2020. URL
https://arxiv.org/abs/2011.01125.

B. T. Gard, L. Zhu, G. S. Barron, N. J. Mayhall, S. E. Economou, and E. Barnes. Ef-
ficient symmetry-preserving state preparation circuits for the variational quantum
eigensolver algorithm. npj Quantum Information, 6(1), 2020. ISSN 2056-6387. doi:
10.1038/s41534-019-0240-1.

G. S. Barron, B. T. Gard, O. J. Altman, N. J. Mayhall, E. Barnes, and S. E. Economou.
Preserving symmetries for variational quantum eigensolvers in the presence of noise.
arXiv:2003.00171, 2020. URL https://arxiv.org/abs/2003.00171.

Joonho Kim, Jaedeok Kim, and Dario Rosa. Universal effectiveness of high-depth circuits in
variational eigenproblems. arXiv:2010.00157, 2020. URL https://arxiv.org/abs/2010.

00157.

H. Abraham et al. Qiskit: An Open-source Framework for Quantum Computing. Zenodo,
2019. doi: 10.5281/zenodo.2562111.

J. Eisert. Entanglement and tensor network states, 2013.

122

https://arxiv.org/abs/2009.13247
https://arxiv.org/abs/2009.13247
https://arxiv.org/abs/2010.00629
https://arxiv.org/abs/2010.00629
https://arxiv.org/abs/2003.09887
https://arxiv.org/abs/2008.08605
https://arxiv.org/abs/2011.01125
https://arxiv.org/abs/2003.00171
https://arxiv.org/abs/2010.00157
https://arxiv.org/abs/2010.00157

Bibliography

L. Zhao, Z. Zhao, P. Rebentrost, and J. Fitzsimons. Compiling basic linear algebra subroutines
for quantum computers. 1902.10394, 2019. URL https://arxiv.org/abs/1902.10394.

Roeland Wiersema, Cunlu Zhou, Yvette de Sereville, Juan Felipe Carrasquilla, Yong Baek
Kim, and Henry Yuen. Exploring entanglement and optimization within the hamiltonian
variational ansatz. PRX Quantum, 1:020319, Dec 2020. doi: 10.1103/PRXQuantum.1.020319.
URL https://link.aps.org/doi/10.1103/PRXQuantum.1.020319.

Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello
Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, and
et al. Simulating lattice gauge theories within quantum technologies. The European Physical
Journal D, 74(8), Aug 2020. ISSN 1434-6079. doi: 10.1140/epjd/e2020-100571-8. URL
http://dx.doi.org/10.1140/epjd/e2020-100571-8.

Mari Carmen Bañuls, Krzysztof Cichy, J. Ignacio Cirac, Karl Jansen, and Hana Saito. Matrix
product states for lattice field theories, 2013a.

M.C. Bañuls, K. Cichy, J.I. Cirac, and K. Jansen. The mass spectrum of the schwinger model
with matrix product states. Journal of High Energy Physics, 2013(11), Nov 2013b. ISSN 1029-
8479. doi: 10.1007/jhep11(2013)158. URL http://dx.doi.org/10.1007/JHEP11(2013)

158.

Ferdinand Tschirsich, Simone Montangero, and Marcello Dalmonte. Phase diagram and
conformal string excitations of square ice using gauge invariant matrix product states.
SciPost Physics, 6(3), Mar 2019. ISSN 2542-4653. doi: 10.21468/scipostphys.6.3.028. URL
http://dx.doi.org/10.21468/SciPostPhys.6.3.028.

S Chandrasekharan and U.-J Wiese. Quantum link models: A discrete approach to gauge
theories. Nuclear Physics B, 492(1-2):455–471, May 1997. ISSN 0550-3213. doi: 10.1016/
s0550-3213(97)80041-7. URL http://dx.doi.org/10.1016/S0550-3213(97)80041-7.

Pietro Silvi, Enrique Rico, Tommaso Calarco, and Simone Montangero. Lattice gauge tensor
networks. New Journal of Physics, 16(10):103015, Oct 2014a. ISSN 1367-2630. doi: 10.1088/
1367-2630/16/10/103015. URL http://dx.doi.org/10.1088/1367-2630/16/10/103015.

Simone Montangero. Introduction to Tensor Network Methods: Numerical simulations of low-
dimensional many-body quantum systems. 01 2018. ISBN 978-3-030-01408-7. doi: 10.1007/
978-3-030-01409-4.

Falk Bruckmann, Karl Jansen, and Stefan Kühn. O(3) nonlinear sigma model in 1 + 1
dimensions with matrix product states. Phys. Rev. D, 99:074501, Apr 2019. doi: 10.1103/
PhysRevD.99.074501. URL https://link.aps.org/doi/10.1103/PhysRevD.99.074501.

L. Tagliacozzo, A. Celi, and M. Lewenstein. Tensor networks for lattice gauge theories with
continuous groups. Phys. Rev. X, 4:041024, Nov 2014. doi: 10.1103/PhysRevX.4.041024.
URL https://link.aps.org/doi/10.1103/PhysRevX.4.041024.

123

https://arxiv.org/abs/1902.10394
https://link.aps.org/doi/10.1103/PRXQuantum.1.020319
http://dx.doi.org/10.1140/epjd/e2020-100571-8
http://dx.doi.org/10.1007/JHEP11(2013)158
http://dx.doi.org/10.1007/JHEP11(2013)158
http://dx.doi.org/10.21468/SciPostPhys.6.3.028
http://dx.doi.org/10.1016/S0550-3213(97)80041-7
http://dx.doi.org/10.1088/1367-2630/16/10/103015
https://link.aps.org/doi/10.1103/PhysRevD.99.074501
https://link.aps.org/doi/10.1103/PhysRevX.4.041024

Bibliography

Boye Buyens, Jutho Haegeman, Karel Van Acoleyen, Henri Verschelde, and Frank Verstraete.
Matrix product states for gauge field theories. Physical Review Letters, 113(9), Aug 2014.
ISSN 1079-7114. doi: 10.1103/physrevlett.113.091601. URL http://dx.doi.org/10.1103/

PhysRevLett.113.091601.

Pietro Silvi, Enrique Rico, Tommaso Calarco, and Simone Montangero. Lattice Gauge Tensor
Networks. New J. Phys., 16(10):103015, 2014b. doi: 10.1088/1367-2630/16/10/103015.

G. Evenbly and G. Vidal. Tensor network states and geometry. Journal of Statistical Physics,
145(4):891–918, Jun 2011. ISSN 1572-9613. doi: 10.1007/s10955-011-0237-4. URL http:

//dx.doi.org/10.1007/s10955-011-0237-4.

Michael Levin and Cody P. Nave. Tensor renormalization group approach to two-
dimensional classical lattice models. Phys. Rev. Lett., 99:120601, Sep 2007. doi: 10.
1103/PhysRevLett.99.120601. URL https://link.aps.org/doi/10.1103/PhysRevLett.

99.120601.

G. Evenbly and G. Vidal. Tensor network renormalization. Phys. Rev. Lett., 115:180405, Oct
2015. doi: 10.1103/PhysRevLett.115.180405. URL https://link.aps.org/doi/10.1103/

PhysRevLett.115.180405.

Mari Carmen Bañuls, Krzysztof Cichy, J. Ignacio Cirac, Karl Jansen, and Stefan Kühn.
Density induced phase transitions in the schwinger model: A study with matrix product
states. Phys. Rev. Lett., 118:071601, Feb 2017. doi: 10.1103/PhysRevLett.118.071601. URL
https://link.aps.org/doi/10.1103/PhysRevLett.118.071601.

Roger Penrose. Applications of negative dimensional tensors. Combinatorial mathematics and
its applications, 1:221–244, 1971.

Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product
states. Annals of Physics, 326(1):96–192, Jan 2011. ISSN 0003-4916. doi: 10.1016/j.aop.2010.
09.012. URL http://dx.doi.org/10.1016/j.aop.2010.09.012.

Steven R. White. Density matrix formulation for quantum renormalization groups. Phys.
Rev. Lett., 69:2863–2866, Nov 1992. doi: 10.1103/PhysRevLett.69.2863. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.69.2863.

D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix Product State Representa-
tions. arXiv e-prints, art. quant-ph/0608197, August 2006.

Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations.
Physical Review Letters, 91(14), Oct 2003. ISSN 1079-7114. doi: 10.1103/physrevlett.91.
147902. URL http://dx.doi.org/10.1103/PhysRevLett.91.147902.

124

http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1007/s10955-011-0237-4
http://dx.doi.org/10.1007/s10955-011-0237-4
https://link.aps.org/doi/10.1103/PhysRevLett.99.120601
https://link.aps.org/doi/10.1103/PhysRevLett.99.120601
https://link.aps.org/doi/10.1103/PhysRevLett.115.180405
https://link.aps.org/doi/10.1103/PhysRevLett.115.180405
https://link.aps.org/doi/10.1103/PhysRevLett.118.071601
http://dx.doi.org/10.1016/j.aop.2010.09.012
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.91.147902

Bibliography

Tobias J. Osborne and Michael A. Nielsen. Quantum Information Processing, 1(1/2):45–53, 2002.
ISSN 1570-0755. doi: 10.1023/a:1019601218492. URL http://dx.doi.org/10.1023/A:

1019601218492.

Pasquale Calabrese and John Cardy. Entanglement entropy and conformal field theory.
Journal of Physics A: Mathematical and Theoretical, 42(50):504005, Dec 2009. ISSN 1751-8121.
doi: 10.1088/1751-8113/42/50/504005. URL http://dx.doi.org/10.1088/1751-8113/

42/50/504005.

G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena.
Physical Review Letters, 90(22), Jun 2003. ISSN 1079-7114. doi: 10.1103/physrevlett.90.
227902. URL http://dx.doi.org/10.1103/PhysRevLett.90.227902.

J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the entanglement
entropy. Rev. Mod. Phys., 82:277–306, Feb 2010. doi: 10.1103/RevModPhys.82.277. URL
https://link.aps.org/doi/10.1103/RevModPhys.82.277.

M B Hastings. An area law for one-dimensional quantum systems. Journal of Statistical Me-
chanics: Theory and Experiment, 2007(08):P08024–P08024, aug 2007. doi: 10.1088/1742-5468/
2007/08/p08024. URL https://doi.org/10.1088/1742-5468/2007/08/p08024.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Natl. Bur. Stand. B, 45:255–282, 1950. doi:
10.6028/jres.045.026.

D. Horn. Finite matrix models with continuous local gauge invariance. Physics Letters B, 100
(2):149–151, 1981. ISSN 0370-2693. doi: https://doi.org/10.1016/0370-2693(81)90763-2.
URL https://www.sciencedirect.com/science/article/pii/0370269381907632.

Peter Orland and Daniel Rohrlich. Lattice gauge magnets: Local isospin from spin. Nu-
clear Physics B, 338(3):647–672, 1990. ISSN 0550-3213. doi: https://doi.org/10.1016/
0550-3213(90)90646-U. URL https://www.sciencedirect.com/science/article/pii/

055032139090646U.

R. Brower, S. Chandrasekharan, and U.-J. Wiese. Qcd as a quantum link model. Physical
Review D, 60(9), Sep 1999. ISSN 1089-4918. doi: 10.1103/physrevd.60.094502. URL
http://dx.doi.org/10.1103/PhysRevD.60.094502.

David B. Kaplan. A method for simulating chiral fermions on the lattice. Physics Letters B,
288(3-4):342–347, Aug 1992. ISSN 0370-2693. doi: 10.1016/0370-2693(92)91112-m. URL
http://dx.doi.org/10.1016/0370-2693(92)91112-M.

Daniel S. Rokhsar and Steven A. Kivelson. Superconductivity and the quantum hard-core
dimer gas. Phys. Rev. Lett., 61:2376–2379, Nov 1988. doi: 10.1103/PhysRevLett.61.2376.
URL https://link.aps.org/doi/10.1103/PhysRevLett.61.2376.

125

http://dx.doi.org/10.1023/A:1019601218492
http://dx.doi.org/10.1023/A:1019601218492
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1103/PhysRevLett.90.227902
https://link.aps.org/doi/10.1103/RevModPhys.82.277
https://doi.org/10.1088/1742-5468/2007/08/p08024
https://www.sciencedirect.com/science/article/pii/0370269381907632
https://www.sciencedirect.com/science/article/pii/055032139090646U
https://www.sciencedirect.com/science/article/pii/055032139090646U
http://dx.doi.org/10.1103/PhysRevD.60.094502
http://dx.doi.org/10.1016/0370-2693(92)91112-M
https://link.aps.org/doi/10.1103/PhysRevLett.61.2376

Bibliography

Wei Zheng and Subir Sachdev. Sine-gordon theory of the non-néel phase of two-dimensional
quantum antiferromagnets. Phys. Rev. B, 40:2704–2707, Aug 1989. doi: 10.1103/PhysRevB.
40.2704. URL https://link.aps.org/doi/10.1103/PhysRevB.40.2704.

N. Read and Subir Sachdev. Spin-peierls, valence-bond solid, and néel ground states of
low-dimensional quantum antiferromagnets. Phys. Rev. B, 42:4568–4589, Sep 1990. doi: 10.
1103/PhysRevB.42.4568. URL https://link.aps.org/doi/10.1103/PhysRevB.42.4568.

B. Schlittgen and U.-J. Wiese. Low-energy effective theories of quantum spin and quantum
link models. Phys. Rev. D, 63:085007, Mar 2001. doi: 10.1103/PhysRevD.63.085007. URL
https://link.aps.org/doi/10.1103/PhysRevD.63.085007.

Gyan Bhanot and Michael Creutz. Variant actions and phase structure in lattice gauge
theory. Phys. Rev. D, 24:3212–3217, Dec 1981. doi: 10.1103/PhysRevD.24.3212. URL
https://link.aps.org/doi/10.1103/PhysRevD.24.3212.

D. Banerjee, F. J. Jiang, P. Widmer, and U. J. Wiese. The (2 + 1)-d U(1) quantum link
model masquerading as deconfined criticality. J. Stat. Mech., 1312:P12010, 2013. doi:
10.1088/1742-5468/2013/12/P12010.

Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen(De),
and Ujjwal Sen. Ultracold atomic gases in optical lattices: mimicking condensed matter
physics and beyond. Advances in Physics, 56(2):243–379, Mar 2007. ISSN 1460-6976. doi:
10.1080/00018730701223200. URL http://dx.doi.org/10.1080/00018730701223200.

Pascual Jordan and Eugene P. Wigner. About the Pauli exclusion principle. Z. Phys., 47:
631–651, 1928. doi: 10.1007/BF01331938.

David J. Gross and Andre Neveu. Dynamical Symmetry Breaking in Asymptotically Free
Field Theories. Phys. Rev. D, 10:3235, 1974. doi: 10.1103/PhysRevD.10.3235.

Julian Lenz, Laurin Pannullo, Marc Wagner, Björn Wellegehausen, and Andreas Wipf.
Inhomogeneous phases in the gross-neveu model in 1 + 1 dimensions at finite number of
flavors. Physical Review D, 101, 05 2020. doi: 10.1103/PhysRevD.101.094512.

126

https://link.aps.org/doi/10.1103/PhysRevB.40.2704
https://link.aps.org/doi/10.1103/PhysRevB.42.4568
https://link.aps.org/doi/10.1103/PhysRevD.63.085007
https://link.aps.org/doi/10.1103/PhysRevD.24.3212
http://dx.doi.org/10.1080/00018730701223200

List of Figures

2.1 Absolute magnetization as a function of κ . 6
2.2 Integrated autocorrelation time of the free energy 10
2.3 Linear regression of random data . 12
2.4 Expectation value Eq(C) as a function of the training step 20
2.5 Variance Varq(C) as a function of the training step 21
2.6 Variational free energy density with κ = 0.2 and λ = 0.022 22
2.7 Variational free energy density with κ = 0.3 and λ = 0.022 23

3.1 EfficientSU2 circuit for four qubits and one repetition. 33
3.2 Energy scaling in in VQS optimization . 34
3.3 Energy scaling in in VQS optimization for a TI circuit 36
3.4 translational invariant ansatz . 37
3.5 Bit-flip corrected expectation values of ⟨ψ| Z̃Q ⊗ · · · ⊗ Z̃1 |ψ⟩ 43
3.6 Error scaling analysis . 44
3.7 Quantum circuit used for the data in Figure 3.6. 44
3.8 Offset in the scaling analysis . 45
3.9 Energy histograms for the transversal Ising model 47
3.10 Hardware extrapolation of one-qubit bit-flip probabilities for ibmq_burlington 49
3.11 Hardware extrapolation of one-qubit bit-flip probabilities for ibmq_london . 49
3.12 Hardware extrapolation of two-qubit bit-flip probabilities for ibmq_london . 50
3.13 Hardware extrapolation of two-qubit bit-flip probabilities for ibmq_burlington 50
3.14 Absolute error of the expectation value for single qubit hardware experiments 52
3.15 Absolute error of the expectation value for two qubit hardware experiments 53
3.16 QISKIT’s EfficientSU2 2-local circuit with N = 2 for three qubits. 60
3.17 Reduction of QISKIT’s EfficientSU2 . 60
3.18 Reduction of QISKIT’s EfficientSU2 with different oredering 61
3.19 Circuit to compute Re ⟨∂2C, ∂1C⟩ using an ancilla qubit 65
3.20 Circuit for obtaining Re⟨γ2, γ3⟩ on quantum hardware 67
3.21 Eigenvalues of the matrices Sk for a single qubit experiment on ibmq_vigo . 68
3.22 Eigenvalues of the matrices Sk for a single qubit experiment on different

hardwares . 69

List of Figures

3.23 EfficientSU2 circuit for two-qubits and one repetition 70
3.24 Circuit for measuring Re⟨γ3, γ6⟩ on quantum hardware for a two-qubit circuit 71
3.25 Eigenvalues of the matrices Sk for a two-qubit experiment on ibmq_vigo . . 72
3.26 Eigenvalues of the matrices Sk for a two-qubit experiment on different hardwares 73
3.27 A generic quantum circuit C(θ) with and without the insertion of a RZ(ϕ) gate 75
3.28 A QISKIT’s EfficientSU2 circuit with removed global phase gate 77

4.1 Diagrammatic representation of different multidimentional tensors. 82
4.2 Diagrammatic representation of two different tensor contractions. 83
4.3 Schematic form of the matrix product state ansätz. 84
4.4 Schematic contraction of an isometry. 85
4.5 Schematic form of matrix product operator . 88
4.6 Schematic expectation value of a MPO over a MPS 90
4.7 Efficient tensor contraction between a matrix product states and a matrix

product operator. 90
4.8 Diagrammatic scheme of the left and right tensor environment. 91
4.9 Linear map in the minimization problem of DMRG 92
4.10 Classical plaquette representation . 93
4.11 Schematic representation of the Plaquette states |□1⟩ and |□2⟩. 96
4.12 Phase diagram of the U(1) quantum link model 98
4.13 Local Hilbert space for DMRG . 99
4.14 Lattice configuration . 100
4.15 Energy density as a function of the chemical potential 100
4.16 Winding number sectors for different volumes 101
4.17 Winding number jumps for different volumes 102
4.18 Correlation between flippability and Winding sectors 102

128

List of Tables

3.1 Scaling analysis results of absolute error for one qubit hardware experiments 51
3.2 Scaling analysis results of absolute error for two qubit hardware experiments 53
3.3 Smallest eigenvalue of the matrix Sk matrices for exact and hardware simula-

tion for a one qubit circuit . 68
3.4 Smallest eigenvalue of the matrix Sk matrices for exact simulations and

different hardware simulation for a one qubit circuit 70
3.5 Smalles eigenvalues of Sk for a two-qubit case coputed on a classical simula-

tion and a quantum hardware for different parameters 71
3.6 Smalles eigenvalues of Sk for a two-qubit case coputed on a classical simula-

tion and different quantum hardware . 74

Acknowledgments

There is a long list of people I want to thank for this work. I think that writing their names
here would be superfluous. My biggest gratitude goes to Karl Jansen for giving me the
opportunity and the privilege to work with him and for his knowledgeable guidance. I am
also very grateful to Agostino Patella for being my tutor at Humboldt University, for his
support and his advice in these three years. Thanks to all my collaborators and colleagues
for all the valuable discussions and the always friendly interactions.

Thanks to all my friends in Berlin that always made me feel at home in this city. For the
next part, I will switch to Italian. Voglio ringraziare tutta la mia famiglia, senza la quale,
tutto questo non sarebbe mai stato possibile. Da essa ho sempre ricevuto un incondizionato
supporto, senza il quale non sarei mai riuscito a raggiungere tutti questo risultati. A tutti
voi dico semplicemente: Grazie!

Erklärung

Ich erkläre, dass ich die vorliegende Dissertation selbständig und nur unter Verwendung der
von mir gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin
Nr. 42/2018 am 11/07/2018, angegebenen Hilfsmittel angefertigt habe.

Berlin, March 21, 2022

Paolo Stornati

	Abstract
	1 Introduction
	2 Estimation of thermodynamic observables with normalizing flows
	2.1 Lattice Quantum Field Theory
	2.1.1 Two-dimensional 4 model
	2.1.2 Monte Carlo simulations
	2.1.3 Computation of thermodynamic observable with MCMC

	2.2 Machine learning
	2.2.1 Supervised learning
	2.2.2 Unsupervised learning
	2.2.3 Neural Networks
	2.2.4 Normalizing flows
	2.2.5 Non-linear Independent Components Estimation
	2.2.6 The Kullback–Leibler divergence

	2.3 Normalizing flows model for lattice field theory
	2.3.1 Estimator for the KL divergence
	2.3.2 Thermodynamic observable evaluations
	2.3.3 Bias due to imperfect training

	3 Quantum Computing
	3.1 Variational Quantum Simulations
	3.1.1 Quantum gates, quantum states and quantum measurements
	3.1.2 Simulation tools
	3.1.3 Variational quantum eigensolver simulations

	3.2 Read-out Noise Mitigation
	3.2.1 Mitigation routine
	3.2.2 Computation of the variance for the noisy expectation value
	3.2.3 Scaling analysis and classical simulator result
	3.2.4 Noise mitigation of the noisy expectation value of generic H
	3.2.5 Experimental results
	3.2.6 Discussion and conclusions

	3.3 Circuit expressivity
	3.3.1 Circuit manifold and dimension analysis
	3.3.2 Efficient hardware implementation
	3.3.3 Implementation of physical symmetry
	3.3.4 Translationally invariant quantum circuits and sectors
	3.3.5 Discussion and conclusions

	4 Phases at finite winding number of an Abelian Lattice Gauge Theory
	4.1 Tensor notation
	4.2 Matrix product states
	4.2.1 Canonical form
	4.2.2 Von-Neumann entropy in the MPS formalism
	4.2.3 Matrix product operator
	4.2.4 Density matrix renormalization group

	4.3 Winding number sectors analysis in the U(1) quantum link model
	4.3.1 U(1) quantum link model
	4.3.2 Numerical results

	4.4 Conclusions and outlooks

	5 Conclusions
	A Gross-Neveu Hamiltonian mapped into a spin Hamiltonian
	B Translational invariant Hilbert space for four qubits
	List of Figures
	List of Tables

